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This volume contains the Technical Communications presented at the 39th International Conference

on Logic Programming (ICLP 2023), held at Imperial College London, UK from July 9 to July 15,

2023. Technical Communications included here concern the Main Track, the Doctoral Consortium, the

Application and Systems/Demo track, the Recently Published Research Track, the Thematic Tracks on

Logic Programming and Machine Learning, and Logic Programming and Explainability, Ethics, and

Trustworthiness.

The International Conference on Logic Programming (ICLP) is the premiere international scientific

venue for presenting, discussing, and disseminating fundamental and applied research in the field of

logic programming and in related interdisciplinary areas. The conference was launched in 1982, with

its first edition in Marseille, France, and continues to serve the broad international logic programming

community.

ICLP 2023 was a special edition of the conference as it represented the closing event of the Year

of Prolog—a year-long celebration of the 50th anniversary of the introduction of the Prolog program-

ming language. The conference included a dedicated session to discuss the achievements accomplished

throughout the year and the assignment of the 2023 Alan Colmerauer Prize, as well as an event on

”Teaching Prolog: the Next 50 Years”.

ICLP 2023 also included an Industry Event, with the participation of representatives of several for-

profit organizations engaged in the use of logic programming technologies. The event consisted of a

panel discussion on the role of symbolic AI in today’s AI industrial landscape. The Conference featured

Invited Speakers: Marco Maratea (University of Calabria, Italy), presenting on applications of answer set

programming; Jan Wielemaker (Centrum Wiskunde & Informatica, The Netherlands), presenting on the

rise, fall, and future of Prolog; Keith Stenning (The University of Edinburgh, Scotland) for the special

track on Logic Programming and Machine Learning; Gopal Gupta (University of Texas at Dallas, USA)

for the special track on Logic Programming and Explainability, Ethics and Trustworthiness; Mehul Bhatt

(Orebro University, Sweden), tutorialist speaking on Cognitive Vision; and Joseph Townsend (Fujitsu

Research of Europe, UK), tutorialist speaking on medical applications of neuro symbolic AI.

The Technical Communications (TCs) appearing in this volume are papers of great quality but pre-

senting results that are more preliminary and not yet ready for the standards of journal publication. The
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TCs also include accepted short papers, summaries of system presentations, and accepted extended ab-

stracts from the Recently Published Research Track. In particular: 26 papers have been accepted for

regular TC publication; 5 papers have been accepted as short papers in the TC category; 8 papers have

been accepted as system demonstrations. In addition, we received and accepted 11 abstracts for the Re-

cently Published Research track. All of them received an allocation of time in the conference program

for presentation. In order to foster the engagement of students and their precious contribution to the

research community, ICLP also hosted a doctoral consortium with 9 accepted submissions, two of which

by women. A mentoring lunch event with a dedicated panel session were specifically held in order to

facilitate exchange of ideas and networking.

ICLP 2023 gratefully received generous funding from the following sponsors.

• Platinum Sponsors: Artificial Intelligence Journal; the National Science Foundation, USA.
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• Silver Sponsors: ILASP, DLVSystems.

• Bronze Sponsors: EurAI, European Association for Artificial Intelligence, Google DeepMind,

Imperial College London and Imperial-X, LPA, New Mexico State University, Potassco Solutions.
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• Program Chairs: Stefania Costantini, University of L’Aquila, Italy, and Enrico Pontelli, New Mex-
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• Organizing and Publicity Chairs: Guilherme Paulino-Passos and Alex Spies, Imperial College

London, UK.

• Workshop Chair: Wolfgang Faber, University of Klagenfurt, Austria.

• Thematic Tracks Chairs:

– LP and Explainability, Ethics and Trustworthiness: Roberta Calegari, University of Bologna,

Italy

– LP and Machine Learning: Artur Garcez, City University of London, UK.

• Applications, Systems & Demos Chair: Carmine Dodaro, University of Calabria, Italy.

• Recently Published Research Chair: Sarah Gaggl, TU Dresden, Germany.

• Tutorials Chairs: Agostino Dovier, University of Udine, Italy, and Esra Erdem, Sabanci University,

Turkey.
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Recently, ABA Learning has been proposed as a form of symbolic machine learning for drawing

Assumption-Based Argumentation frameworks from background knowledge and positive and neg-

ative examples. We propose a novel method for implementing ABA Learning using Answer Set

Programming as a way to help guide Rote Learning and generalisation in ABA Learning.

1 Introduction

Recently, ABA Learning has been proposed [12] as a methodology for learning Assumption-Based Argu-

mentation (ABA) frameworks [1, 2] from a background knowledge, in the form of an ABA framework,

and positive and negative examples, in the form of sentences in the language of the background knowl-

edge. The goal of ABA Learning is to build a larger ABA framework than the background knowledge

from which arguments for all positive examples can be “accepted” and no arguments for any of the nega-

tive examples can be “accepted”. In this paper, for a specific form of ABA frameworks corresponding to

logic programs [1], we focus on a specific form of “acceptance”, given by cautious (or sceptical) reason-

ing under the argumentation semantics of stable extensions [1, 2]. We then leverage on the well known

correspondence between stable extensions in the logic programming instance of ABA and answer set pro-

grams [5] to outline a novel implementation strategy for the form of ABA Learning we consider, pointing

out along the way restrictions on ABA Learning enabling the use of Answer Set Programming (ASP).

Related Work Our strategy for ABA Learning differs from other works learning argumentation frame-

works, e.g. [3, 11], in that it learns a different type of argumentation frameworks and it uses ASP. ABA

can be seen as performing abductive reasoning (as assumptions are hypotheses open for debate). Other

approaches combine abductive and inductive learning [13], but they do not learn ABA frameworks. Some

approaches learn abductive logic programs [6], which rely upon assumptions, like ABA frameworks. A

formal comparison with these methods is left for future work. ABA captures several non-monotonic rea-

soning formalisms, thus ABA Learning is related to other methods learning non-monotonic formalisms.

Some of these methods, e.g. [7, 14, 17], do not make use of ASP. Some others, e.g. [8, 15, 16], do. While

our use of ASP to help guide some aspects of ABA Learning (e.g. its Rote Learning transformation rule)

is unique, a formal and empirical comparison with these methods is left for future work.

2 Background

ASP In this paper we use answer set programs (ASPs) [5] consisting of rules of the form

p :- q1, . . . ,qk, not qk+1, . . . , not qn or :- q1, . . . ,qk, not qk+1, . . . , not qm

where p, q1, . . . , qn, q1, . . . , qm are atoms, k≥ 0, n≥ 0, m≥ 1, and not denotes negation as failure.
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2 ABA Learning via ASP

Given any ASP program P, by ans(P), called answer set of P, we denote the set of ground atoms

assigned to P by the answer set semantics. Let ans1(P), . . . ,ansl(P) be the answer sets of P, for l ≥ 1 (if

l = 0, then P is unsatisfiable). By C (P)=
⋂

i ansi(P), we denote the set of cautious consequences of P.

ABA An ABA framework (as originally proposed in [1], but presented here following recent accounts

in [4, 18] and [2]) is a tuple 〈L , R, A , 〉 such that

• 〈L ,R〉 is a deductive system, where L is a language and R is a set of (inference) rules of the

form s0← s1, . . . ,sm (m≥ 0,si ∈L , for 1≤ i≤ m);

• A ⊆L is a (non-empty) set of assumptions;1

• is a total mapping from A into L , where a is the contrary of a, for a ∈A .

Given a rule s0← s1, . . . ,sm, s0 is the head and s1, . . . ,sm is the body; if m = 0 then the body is said to be

empty (represented as s0← or s0← true) and the rule is called a fact. If assumptions are not heads of

rules then the ABA framework is called flat. In this paper we focus on flat ABA frameworks. Elements

of L can be any sentences, but in this paper we focus on (flat) ABA frameworks where L is a set of

ground atoms. However, in the spirit of logic programming, we will use schemata for rules, assumptions

and contraries, using variables to represent compactly all instances over some underlying universe.

Example 1. The following is a flat ABA framework with L a set of atoms.

R = {innocent(X)← person(X), not guilty(X), guilty(X)← witness con(X ,Y ),

person(mary)←, person(alex)←, witness con(mary,alex)←}

L = {innocent(X), person(X),not guilty(X),guilty(X),witness con(X ,Y )|X ,Y ∈ {mary,alex}}

A = {not guilty(mary)} where not guilty(mary) = guilty(mary).

The semantics of flat ABA frameworks is given in terms of “acceptable” extensions, i.e. sets of

arguments able to “defend” themselves against attacks, in some sense, as determined by the chosen

semantics. Intuitively, arguments are deductions of claims using rules and supported by assumptions,

and attacks are directed at the assumptions in the support of arguments. For illustration, in the case of

Example 1, there are, amongst others, arguments {not guilty(mary)} ⊢{ρ1,φ1} innocent(mary) (with ρ1

the first rule in R and φ1 the fact person(mary)← in R) and /0 ⊢{ρ2,φ3} guilty(mary) (with ρ2 the second

rule in R and φ3 the fact witness con(mary,alex)← in R), with the latter argument attacking the former.

Given a flat ABA framework 〈L , R, A , 〉, let Args be the set of all arguments and Att = {(α ,β )∈
Args×Args | α attacks β}. Then, the notion of “acceptable” extensions we will focus on in this paper is

as follows: ∆ ⊆ Args is a stable extension iff (i) ∄α ,β ∈∆ such that (α ,β )∈Att (i.e. ∆ is conflict-free)

and (ii) ∀β ∈Args \∆,∃α ∈∆ such that (α ,β )∈Att (i.e. ∆ “attacks” all arguments it does not contain,

thus pre-emptively “defending” itself against potential attacks). We will consider the cautious (a.k.a.

sceptical) consequences of (flat) ABA frameworks 〈L , R, A , 〉, i.e. the sets of sentences in L that

are claims of arguments in all stable extensions for 〈L , R, A , 〉. The cautious consequences of the

ABA framework in Example 1 include guilty(mary) and innocent(alex).
Here we will work with ABA frameworks admitting at least one stable extension. Also, without

loss of generality, we will leave the language component of all ABA frameworks implicit, and use, e.g.,

〈R,A , 〉 to stand for 〈L , R, A , 〉 where L is the set of all sentences in R, A and in the range

of . We will also use 〈R,A , 〉 |= s to indicate that s ∈L is a cautious consequence of 〈R,A , 〉.

1The non-emptiness requirement can always be satisfied by including in A a bogus assumption, with its own contrary,

neither occurring elsewhere in the ABA framework. For conciseness, we will leave this assumption and its contrary implicit.
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3 Preliminaries: Cautious ABA Learning under Stable Extensions

Here we recap the instance of the ABA Learning method proposed in [12] that we focus on implementing

using ASP in this paper, while stating restrictions on ABA Learning required by the implementation.

In [12], the background knowledge is any ABA framework 〈R,A , 〉. Here, we assume that (i) it

is restricted so that each assumptions occurs in the body of at most one rule schema in R, (ii) for each

non-ground α(X) ∈ A in the body of any ρ ∈R, for X a tuple of variables, for each variable X ′ in X ,

there is at least one non-assumption (in L \A ) p(Y ) in the body of ρ with X ′ in Y , and (iii) each fact in

R is ground. Restriction (i) is without loss of generality; the other two derive from the use of schemata.

In [12], positive/negative examples are ground atoms of the form p(c), for p a predicate with arity n≥
0 and c a tuple of n constants. Here, we impose that examples are non-assumptions (in the background

knowledge 〈R,A , 〉). So, for L as in Example 1, not guilty cannot appear in examples (but contraries,

e.g. guilty(mary), can be examples). The exclusion of assumptions from examples is derived from the

flatness restriction. We also assume that for each example p(c) and c′ in c, ∃q(d)←∈R such that c′ is

in d. We impose the same restriction on constants c′ anywhere in the background knowledge.

Given background knowledge 〈R,A , 〉, positive examples E + and negative examples E − with

E + ∩E − = /0, the goal of ABA Learning is to construct (a flat ABA framework) 〈R ′,A ′
,

′〉 such that

R ⊆R ′, A ⊆A ′, and α ′ = α for all α ∈A , so that 〈R ′,A ′
,

′〉 entails 〈E +
,E −〉, that is:

(Existence) 〈R ′,A ′
,

′〉 admits at least one stable extension,

(Completeness) for all e ∈ E +, 〈R ′,A ′
,

′〉 |= e, and

(Consistency) for all e ∈ E −, 〈R ′,A ′
,

′〉 6|= e.

〈R ′,A ′
,

′〉 is called a solution of the ABA Learning problem (〈R,A , 〉,〈E +
,E −〉). The second

condition implies, when E + 6= /0, that the set of cautious consequences of a solution is non-empty.

In this paper we strive towards what we may call intensional solutions, namely such that R ′ \R

comprises of intentional rules (i.e. non-ground rule schemata), to avoid or limit “lazy” learning of facts

covering the positive examples alone and none of the negative examples, leading to poor generalisation.

Example 2. Consider the background knowledge:

R = {innocent(X)← defendant(X), not guilty(X),

witness con(mary,alex)←, witness con(david,carol)←, witness con( john,carol)←,

defendant(mary)←, defendant(david)←, defendant( john)←, liar(alex)←, away(bob)←,

person(alex)←, person(bob)←, person(carol)←,

person(mary)←, person(david)←, person( john)←}

A = {not guilty(X) | X ∈ {mary,david, john}} where not guilty(X) = guilty(X)

and examples E += {innocent(mary), innocent(bob)}, E −= {innocent(david), innocent( john)}. Then,

solutions of (〈R,A , 〉,〈E +
,E −〉) include ABA frameworks with R ′1 and R ′2 whereby

R ′1 \R = {innocent(bob)←, guilty(david)←, guilty( john)←} and

R ′2 \R = {innocent(X)← away(X), guilty(X)← witness con(X ,Y ), person(Y ), a(X ,Y ),

c a(X ,Y )← defendant(X), liar(Y )}.
The latter can be deemed to be intensional, whereas the former is not.

In the remainder, as in [12], we will represent ground facts p(t)← as p(X)← X = t. We will also

use vars(A) to denote the set of all variables occurring in assumption, rule or rule body A.



4 ABA Learning via ASP

4 Learning ABA Frameworks via Transformation Rules and ASP Solving

In order to learn ABA frameworks from examples, we follow the approach based on transformation rules

presented in [12], but only consider a subset of those rules: Rote Learning, Folding, Assumption Intro-

duction, and (a special case of) Subsumption (thus ignoring Equality Removal). Some rules (Folding and

Subsumption) are borrowed from logic program transformation [10], while others (Rote Learning and

Assumption Introduction) are specific for ABA. Given an ABA framework 〈R,A , 〉, a transformation

rule constructs a new ABA framework 〈R ′,A ′
,

′〉 (in the remainder, we will mention explicitly only

the modified components). The application of the transformation rules is guided by the ASP-ABALearn

strategy (see Figure 1), a variant of the strategy in [12] amenable to be implemented via an ASP solver,

towards the goal of deriving an intensional solution of the given ABA Learning problem.

Strategy ASP-ABAlearn. Input: An ABA Learning problem (〈R,A , 〉,〈E +
,E −〉);

RoLe(〈R,A , 〉,〈E +
,E −〉); GEN(〈R,A , 〉,〈E +

,E −〉).

Procedure RoLe(〈R,A , 〉,〈E +
,E −〉).

P := ASP∗(〈R,A , 〉,〈E +
,E −〉,A );

if P is unsatisfiable then fail;

for all c α(t) ∈ C (P)\C (ASP(〈R,A , 〉)), where c α(t) = α(t) for some α(t) ∈A do

apply Rote Learning and get R := R ∪{c α(X)← X = t};
for all p(u) ∈ E + such that p(u) 6∈ C (ASP(〈R,A , 〉)) do

apply Rote Learning and get R := R ∪{p(X)← X = u};
if 〈R,A , 〉 does not entail 〈E +

,E −〉 then fail;

Procedure GEN(〈R,A , 〉,〈E +
,E −〉).

while there exists a non-intensional rule ρ1 ∈Rlearnt do

// Folding:

ρ2 := fold-all(ρ1); R := (R \{ρ1})∪{ρ2};

// Assumption Introduction:

if 〈R,A , 〉 does not entail 〈E +
,E −〉 then

let ρ2 be of the form H← B; apply Assumption Introduction and get ρ3: H← B,α(X)
where α is a new predicate symbol and X = vars(H ← B);
R := (R \{ρ2})∪{ρ3}; A := A ∪{α(X)}, with: α(X) = c α(X);

// Rote Learning:

for all c α(t) ∈ C (ASP+(〈R,A , 〉,〈E +
,E −〉,{α(X)})) do

apply Rote Learning and get R := R ∪{c α(X)← X = t};
if 〈R,A , 〉 does not entail 〈E +

,E −〉 then fail;

// Subsumption:

for all ρ : p(X)← X = t ∈Rlearnt do

if p(t) ∈ C (ASP(〈R \{ρ},A , 〉) then apply Subsumption and delete ρ : R := R \{ρ}.

Figure 1: ASP-ABAlearn strategy. By Rlearnt we denote the subset of the rules in R that do not belong

to the original background knowledge. The function fold-all, given a non-intensional rule ρ1, returns an

intensional rule ρ2 obtained by applying once or more times the Folding rule to ρ1 using rules in R.
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(a) Each rule in R is rewritten in the ASP syntax (e.g. innocent(X)←defendant(X),not guilty(X) in

Ex. 2 becomes innocent(X) :- defendant(X), not guilty(X).). In the following, we use the

teletype font for the ASP translation of the rules.

(b.1) Each αi ∈ A occurring in the body of H ← B,α1, . . . ,αn ∈ R is encoded as the following ASP

rule, where c αi is an ASP atom encoding αi, and vars(αi)⊆ X:

αi :- dom(X), not c αi.

(b.2) Each αi ∈K occurring in the body of H← B,α1, . . . ,αn ∈R is encoded as the following pair of

ASP rules:

c αi :- dom(X), not αi. :- αi, c αi.

(c) Each e ∈ E + is encoded as the ASP rule :- not e.

(d) Each e ∈ E − is encoded as the ASP rule :- e.

(e) Each atom p(X) ∈ E + ∪ E − such that p(X) is not the contrary of any assumption in A is addi-

tionally encoded as the following triple of ASP rules, where neg p is a new predicate name:

p(X) :- dom(X), not neg p(X). neg p(X) :- dom(X), not p(X). :- p(X), neg p(X).

Figure 2: ASP-encodings for a given ABA Learning problem (〈R,A , 〉,〈E +
,E −〉) and a set K ⊆A

of assumptions. Here, dom is chosen so that dom(X) holds for all X encoding tuples of constants of L .

Note that, without loss of generality, in (b.1)-(b.2) we can assume vars(α1,. . . ,αn)⊆ vars(B). So, we

could replace dom(X) by any subset of B that contains all variables of αi and dom may already occur

in 〈R,A , 〉 (this is an optimisation, as fewer ground instances of the rule may be given by the ASP

solver). Also, in (e) dom may already occur in 〈R,A , 〉.

The ASP-ABAlearn strategy is the composition of two procedures: (1) RoLe, which has the goal of

adding suitable facts to the initial background knowledge 〈R,A , 〉 so that the new ABA framework

〈R ′,A ′
,

′〉 is a (non-intensional) solution of the learning problem (〈R,A , 〉,〈E +
,E −〉) given in

input, and (2) GEN, which has the objective of transforming 〈R ′,A ′
,

′〉 into an intensional solution.

In general, it is not obvious which fact should be added to R in RoLe and how to generalise a non-

intensional solution to obtain an intentional one in GEN. For these purposes, we use various encodings

into ASP defined in Fig.2 to obtain the following sets of ASP rules:

• The set of ASP rules at points (a) and (b.1) of Fig. 2 is denoted by ASP(〈R,A , 〉). For a claim

s ∈L , we can check that 〈R,A , 〉 |= s (i.e., s is a cautious consequence of 〈R,A , 〉 under

stable extensions) by checking that s ∈ C (ASP(〈R,A , 〉)).

• The set of ASP rules at points (a)–(d) is denoted ASP+(〈R,A , 〉,〈E +
,E −〉,K ). By comput-

ing C (ASP+(〈R,A , 〉,〈E +
,E −〉,K )) we generate facts, if at all possible, for contraries of

assumptions in K that, when added to R, enable the entailment of the examples in 〈E +
,E −〉.

• The set of ASP rules at points (a)–(e) is denoted ASP∗(〈R,A , 〉,〈E +
,E −〉,K ). It can be used

similarly to ASP+(〈R,A , 〉,〈E +
,E −〉,K ), but also generates facts for positive examples that

cannot be obtained by ASP+(〈R,A , 〉,〈E +
,E −〉,K ).

The RoLe procedure repeatedly applies Rote Learning, which adds a fact ρ : p(X)← X = t, where t

is a tuple of constants, to R (thus, R ′=R ∪{ρ}). We illustrate with the innocent running example.



6 ABA Learning via ASP

Example 3. Let us consider the learning problem (〈R,A , 〉,〈E +
,E −〉) of Example 2. In this case,

ASP∗(〈R,A , 〉,〈E +
,E −〉,A ) consists of R rewritten in ASP syntax and of the following ASP rules:

not_guilty(X) :- person(X), not guilty(X). :- not innocent(mary).

guilty(X) :- person(X), not not_guilty(X). :- not innocent(bob).

:- not_guilty(X), guilty(X). :- innocent(john).

innocent(X) :- person(X), not neg_innocent(X). :- innocent(david).

neg_innocent(X) :- person(X), not innocent(X).

:- innocent(X), neg_innocent(X).

In this example, C (ASP∗(〈R,A , 〉,〈E +
,E −〉,A )) \C (ASP(〈R,A , 〉)) includes innocent(bob),

guilty(david), guilty(john) , and by Rote Learning, we obtain:

R1 = R ∪{innocent(X)← X = bob, guilty(X)← X = david, guilty(X)← X = john}

〈R1,A , 〉 is a (non-intensional, due to the added ground facts) solution of our ABA Learning problem.

Now, the ASP-ABAlearn learning strategy proceeds by applying the GEN procedure, for transforming

a non-intensional rule into an intensional one. First, GEN applies (once or more times) Folding, which,

given rules ρ1: H← Eqs1,B1,B2 and ρ2: K← Eqs1,Eqs2,B1 in R, replaces ρ1 by ρ3: H← Eqs2,K,B2

(hence, R ′ = (R \{ρ1})∪{ρ3}). Folding is a form of inverse resolution [9], which generalises a rule by

replacing some atoms in its body with their ‘consequence’ using a rule in R.

Example 4. By applying Folding to innocent(X) ← X = bob and guilty(X) ← X = david, using

away(X)← X = bob, witness con(X ,Y )← X = david, Y = carol, and person(Y )← Y = carol in R1,

we get:

R2=R∪{ innocent(X)← away(X), guilty(X)← witness con(X ,Y ), person(Y ),
guilty(X)← X = john}.

The ABA framework 〈R2,A , 〉, though, is not a solution, as it does no longer entail innocent(mary).

If the effect of Folding a rule is that the resulting ABA framework is no longer a solution of the

given learning problem, GEN applies Assumption Introduction and Rote Learning with the goal of de-

riving a new ABA framework which is again a (non-intensional) solution. Assumption Introduction

replaces a rule ρ1 : H ← B in R by ρ2 : H ← B,α(X), where X = vars(H)∪ vars(B) and α(X) is a

new assumption with contrary c α(X) (thus, R ′ = (R \ {ρ1})∪ {ρ2}, A ′ = A ∪ {α(X)}, α(X)
′
=

c α(X), and β
′
= β for all β ∈ A ). New facts for c α(X) are learnt by Rote Learning by using

ASP+(〈R ′,A ′
,

′〉,〈E +
,E −〉,{α(X)}. The facts for c α(X) can be seen as the exceptions to the defea-

sible rule ρ2.

Example 5. By Assumption Introduction, we get:

R3 = R ∪{innocent(X)← away(X), guilty(X)← witness con(X ,Y ), person(Y ), a(X ,Y ),
guilty(X)← X = john}

with A ′ = A ∪{a(X ,Y ) | X ,Y ∈ {alex, bob,carol,david, john,mary}} and a(X ,Y )
′
= c a(X ,Y ). To

determine the facts for c a(X ,Y ), we use ASP+(〈R3,A , 〉,〈E +
,E −〉,{a(X ,Y )}) (we omit the encoding

of the background knowledge R):

innocent(X) :- away(X). :- not innocent(mary).

guilty(X) :- X=john. :- not innocent(bob).

guilty(X) :- witness_con(X,Y), person(Y), alpha1(X,Y). :- innocent(david).

alpha1(X,Y) :- witness_con(X,Y), not c_alpha1(X,Y). :- innocent(john).

c_alpha1(X,Y) :- witness_con(X,Y), not alpha1(X,Y).

:- alpha1(X,Y), c_alpha1(X,Y).
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C (ASP+(〈R3,A , 〉,〈E +
,E −〉,{a(X ,Y )})) contains the atom c alpha1(mary,alex) and thus, by

Rote Learning, we obtain again a (non-intensional) solution, by adding a fact for predicate c a(X ,Y ):

R4 = R3∪{c a(X ,Y )← X = mary, Y = alex}

GEN proceeds by applying the Subsumption rule, which gets rid of redundant facts. Indeed, suppose

that R contains ρ : p(X)← X = t and let R ′ = R \{ρ}. If 〈R ′,A ′
,

′〉 |= p(t), then, by Subsumption,

ρ can be deleted from R. Subsumption is applicable if p(t) ∈ C (ASP(〈R ′,A ′
,

′〉)).

Example 6. The rule ρ = guilty(X)←X= john can be deleted, as guilty(john)∈C (ASP(〈R4\{ρ})).

ASP-ABAlearn halts when GEN generates no new contrary, as Folding yields an intensional solution.

Example 7. By two final applications of the Folding rule, GEN gets:

R5 = R ∪{ innocent(X)← away(X), guilty(X)← witness con(X ,Y ), person(Y ), a(X ,Y ),

c a(X ,Y )← defendant(X), liar(Y )}

Now, 〈R5,A
′
,

′〉 is an intensional solution of the given learning problem.

5 Discussion and Conclusion

We have revisited a strategy recently proposed for learning ABA frameworks based on transformation

rules [12], and we have shown that, in the case of the stable extension semantics, many of the reasoning

tasks used by that strategy can be implemented through an ASP solver.

A proof-of-concept implementation of our ASP-ABAlearn strategy is ongoing using SWI-Prolog (v.

9.0.4) and the Clingo ASP solver (v. 5.6.2). It consists of two Prolog modules implementing RoLe and

GEN and two further modules implementing (i) the ASP, ASP+, and ASP∗ encodings, and (ii) the API

to invoke Clingo from SWI-Prolog and collect the cautious consequences to be used by RoLe and GEN.

The most critical issue for implementing GEN is that the application of Folding is non-deterministic,

as there may be different choices for the rules to be used for applying that transformation. Currently,

we simply make use of a bound to limit the number of alternatives. The design of more sophisticated

mechanisms to control Folding, e.g., based on the notion of information gain[17], is left as future work.

In addition to refining the implementation, we also plan to perform an experimental comparison to

non-monotonic ILP systems (such as Fold [17] and ILASP [8]). On the theoretical side, further work is

needed to investigate conditions under which ASP-ABAlearn is complete, in the sense that it terminates

and finds a solution if it exists. A simple way of guaranteeing termination is based on a mechanism for

avoiding the generation of contraries that are “equivalent” to previously generated ones. However, the

solution obtained in this way is not guaranteed to be intensional.
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In this extended abstract we report about new results about reasoning on weighted knowledge bases
for Description Logics (DLs) with typicality under a “concept-wise” multi-preferential semantics, which
have been shown to provide a logical interpretation of MultiLayer Perceptrons [18]. In particular, we
provided a completeness result for the complexity of the problem, and new Answer Set Programming
encodings in the same complexity class, that are shown to be able to deal with weighted knowledge bases
with large search spaces. A detailed description in available in the full paper [1].

Description logics are widely used for knowledge representation, often to verify and discover prop-
erties of individuals in a concept by means of DLs inference services [2, 22]. Many properties of real
world concepts, however, are defeasible, that is, they are not universally true, but have exceptions, and
actually hold only for some prototypical individuals in the concept. This led to research on defeasible
DLs [8, 15, 10, 16]. Specifically, to represent the defeasible properties of a concept, DLs have been
extended with a typicality operator T that is applied to concepts to obtain typicality inclusions of the
form T(C) v D [15, 16]. Intuitively, T(C) v D means that the typical individuals in the concept C also
belong to concept D (that, normally C’s are D’s), and corresponds to a conditional implication C |∼ D in
KLM preferential logics [24, 25]. From the semantic point of view a preference relation is considered as
in KLM preferential semantics, to select the most typical individual in a class (concept). A (conditional)
knowledge base (KB) comprising typicality inclusions enables defeasible reasoning, as in fact properties
holding for typical individuals in C are not necessarily enforced on all individuals in C.

Based on the idea that each concept C can be associated a set of prototypical properties, ranked
DL knowledge bases [17] — reminiscent of ranked KBs by Brewka [6] — and weighted DL KBs with
typicality [18] have been proposed. In particular, in weighted knowledge bases, a set TC of weighted
typicality inclusions (T(C)v D1, w1), . . . ,(T(C)v Dk, wk) is associated to a concept C to describe the
prototypical properties of C-elements. For each property, the associated weight wi is a real number,
representing the plausibility/ implausibility of the property Di for C-elements.

Semantically, these formalisms have led to a concept-wise multi-preferential semantics, as the rel-
ative typicality of two domain individuals usually depends on the aspects we are considering for com-
parison [20, 17]: Bob may be a more typical as sport lover than Jim (bob <SportLover jim), but Jim may
be a more typical than Bob as a swimmer (jim <Swimmer bob). It has been proven that this semantics has
interesting properties in both the two-valued and in the fuzzy case (e.g., it is able to deal with specificity,
irrelevance and satisfies the KLM properties).

The concept-wise multi-preferential semantics has been used to provide a logical interpretation to
some neural network models, such as Self-Organising Maps [23], psychologically and biologically plau-
sible neural network models, and for MultiLayer Perceptrons (MLPs) [21]. In both cases, a preferential
interpretation can be constructed from a trained network (see [14] and [18]) and exploited for verifica-
tion of typicality properties of the network through model checking. For MLPs a trained network can as
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well be regarded as a weighted knowledge base by encoding synaptic connections as weighted typicality
inclusions under a fuzzy semantics [18, 13]. This concrete application and the widespread interest in
neural networks strongly motivates the development of proof methods for reasoning with weighted KBs.

Entailment for fuzzy DLs is in general undecidable [11, 4], and this motivates the investigation of
many-valued approximations of fuzzy multi-preferential entailment. In particular, the finitely many-
valued case is widely studied [12, 3, 5], and has been recently considered in the context of weighted DL
KBs [19] by means of the notions of coherent, faithful and ϕ-coherent models of such KBs, previously
considered in the fuzzy case [18, 13]. A proof-of-concept implementation in Answer Set Programming
(ASP) and asprin [7] has been provided for the L C fragment of A L C , which is obtained by disabling
roles, and universal and existential restrictions. The approach adopts Gödel (alternatively, Łukasiewicz)
connectives and addresses ϕ-coherent entailment, a form of defeasible reasoning based on canonical
ϕ-coherent models. The ϕ-coherence condition makes weighted KBs correspond to MLPs with ϕ as
activation function; here a finitely many-valued approximation of such a function is used. As concerns
the complexity of the problem, a Π

p
2 upper bound was given [19], but the exact complexity was unknown.

We briefly describe here two significant advancements with respect to the earlier work [19], from a
theoretical point of view and on the practical side, for the ϕ-coherent entailment of typicality inclusions
[1]. The complexity upper bound can be improved to PNP[log] by showing an algorithm running in
polynomial time and performing parallel queries to an NP oracle (P||NP). As P||NP is known to coincide
with PNP[log] [9], while Π

p
2 = PNP[log] is unlikely to hold (unless the polynomial hierarchy collapses to

PNP[log]), there was space for improving the proof-of-concept implementation.
Different ASP encodings have been considered. For the enforcement of ϕ-coherence (where ground-

ing explosion should be avoided) the best results are obtained using weight constraints. Weak constraints
are used to encode the preferential semantics, relying on an order encoding to stay in the PNP[log] class.
Further improvements at an asymptotic level are unlikely, as the problem is shown to be PNP[log]-complete
by giving a polynomial-time reduction of the MAX SAT ODD problem [26], which amounts to determining
whether the maximum number of jointly satisfiable clauses among a given set is an odd number.

The scalability of the ASP encodings has been assessed empirically on defeasible entailment queries
over synthetic weighted DL KBs to show that the redesigned ASP encoding can go beyond the small
KBs and search spaces processable by the earlier proof-of-concept implementation [1].
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Integrating logic rules with other language features is increasingly sought after for advanced applica-
tions that require knowledge-base capabilities. To address this demand, increasingly more languages
and extensions for such integration have been developed. How to evaluate such languages?

This paper describes a set of programming and performance benchmarks for evaluating lan-
guages supporting integrated use of rules and other features, and the results of evaluating such an
integrated language together with logic languages and languages not supporting logic rules.

1 Introduction

As knowledge-base capabilities are increasingly needed for advanced applications, especially applica-

tions that require sophisticated reasoning, logic rules are increasingly needed together with other lan-

guage features. This leads to increasingly more languages and extensions that provide such programming

support, for using rules through libraries or directly as built-ins, in many different ways. To evaluate such

language support for integrated uses of rules with other language features, a set of benchmarking prob-

lems is needed.

Many benchmarking suites have been developed for evaluating logic languages and rule engines, and

even drastically more for imperative and other languages. In contrast, benchmarks and evaluation for

languages that support integrated use of rules together with other language features have been lacking.

This paper describes a set of programming and performance benchmarks for such evaluation, and

the uses of these benchmarks in evaluating an integrated language together with logic languages and

languages not supporting logic rules. The benchmarks are developed and organized into three sets:

OpenRuleBench—for problems focused on using rules and evaluating rule systems, including all prob-

lems from OpenRuleBench [15], but modified and organized to use more appropriate language

features for the benchmarking itself, especially imperative scripts for running and taking measure-

ments.

RBAC—for problems that require (1) frequent imperative updates interleaved with expensive queries

and (2) objects and classes with inheritance to organize system components, subsuming full Role-

Based Access Control (RBAC) [1, 17], with queries expressed in different ways of using rules and

not using rules.

PA—for problems expressed using rules together with set queries and aggregate queries and recursive

functions, from problems in program analysis (PA), because aggregate queries are particularly

important for many database, data mining, and machine learning applications, but are not in Open-

RuleBench [15].

The input data and workload for these benchmarks are designed for runs with different problem scales—

(1) large input data for queries using rules, (2) large query results from inference using rules, (3) large

number of rules, (4) frequent switches between using rules and using other features, and (5) frequent

invocations of inference using rules.
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The evaluation is for benchmark problems written in (1) Alda, (2) XSB, (3) Python, and (4) DistAlgo.

XSB [28, 32] is a top logic rule engine for queries using rules, selected for reasons stated in Sec-

tion 3.1. Python [27] is most used for its rich features including high-level queries but lacks logic rules.

DistAlgo [20, 16] extends Python for distributed programming with higher-level and faster queries but

still lacks logic rules. Alda [21] is an integrated language that supports logic rules as built-ins by building

on DistAlgo and employing XSB. The evaluation yields the following main results:

• Queries using rules in Alda and XSB are similar, and are (1) simpler than using while loops in

Python and DistAlgo, even when these loops use high-level set queries, and (2) drastically, asymp-

totically faster than while loops with high-level set queries in Python and DistAlgo.

• Benchmarking using more generic imperative scripts in Alda is drastically simpler than using

rules in XSB in OpenRuleBench; and integrated use of rules with other features for RBAC and PA

problems yields simpler programs than not using rules or only using rules.

• The performance of Alda programs is the accumulated performance of queries in XSB, other

features in Python and DistAlgo, and interface between XSB and Python. Thus it is expected

to increase accordingly when any part used is improved, including reducing the current interface

overhead to 1% of it.

• Even with the current interface overhead, Alda programs are faster or even drastically faster than

half or more of the rule engines tested in OpenRuleBench [15] for all but one benchmark, because

the overhead is only linear in sizes of data and results and number of queries, and thanks to the

XSB query performance.

Our analysis supports that similar results can be obtained by using other efficient rule engines, including

ASP systems, and other languages not supporting logic rules, including lower-level languages. Our

implementation has been available by request and will be made public pending improved documentation.

2 Language

XSB and Python are well established, and DistAlgo is subsumed by Alda. So we first introduce Alda, an

integrated language that supports rules with all of sets, functions, updates, and objects, all as built-ins,

seamlessly integrated without extra interface code. Figure 1 shows an example program in Alda.

Rules are defined using rule sets (e.g. lines 15–17, with rule set name trans_rs), and queried using

calls to an inference function, infer (e.g. on line 19, using rule set trans_rs). The two rules in trans_rs

(lines 16–17) define predicate path using predicate edge, where the first rule is the base case, and the

second rule is the recursive case. The call to infer (line 19) returns the result of querying path, i.e., the

set of pairs for which path holds, given that edge equals RH, i.e., edge holds for the set of pairs in RH.

In a rule set, predicates not in any conclusion are called base predicates; the other predicates are

called derived predicates. The key idea is that predicates are simply set-valued variables and vice versa.

So predicates can be defined and used directly as other variables, in any scope—global, object field, or

local to a rule set. The only exception is that derived predicates can only be updated by infer, and are

automatically maintained by an implicit call to infer when any non-local base predicates are updated.

The exception ensures the declarative semantics of rules.

All other features—class, inheritance, method (function and procedure), update, and set query—are

the same as in object-oriented languages. We mostly use Python syntax except for a few conventions from

Java (extends for inheritance, new for object creation, and omission of self when there is no ambiguity)

for ease of reading, and a few ideal syntax (:= for assignment, {} for empty set, and + for set union), and

pattern matching in queries (in examples explained later).

For the example in Figure 1 but without using rules, computing the transitive closure (i.e., result of

infer in function transRH) in a variable T, by adding a parameter E to function transRH and passing the

value of RH to E when calling transRH, can use a while loop in Python, as used for [17]:
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1 class CoreRBAC : # class for Core RBAC component /object
2 def setup (): # method to set up the object , with no arguments
3 self.USERS , self.ROLES , self.UR := {},{},{}
4 # set users , roles , user -role pairs to empty sets
5 def AddRole (role): # method to add a role
6 ROLES .add(role) # add the role to ROLES
7 def AssignedUsers(role): # method to return assigned users of a role
8 return {u: u in USERS | (u,role) in UR} # return set of users having the role

...

9 class HierRBAC extends CoreRBAC : # Hierarchical RBAC extending Core RBAC
10 def setup ():
11 super (). setup () # call setup of CoreRBAC , to set sets as in there
12 self.RH := {} # set ascendant -descendant role pairs to empty set
13 def AddInheritance(a,d): # to add inherit . of an ascendant by a descendant
14 RH.add ((a,d)) # add pair (a,d) to RH
15 rules trans_rs : # rule set defining transitive closure
16 path(x,y) if edge(x,y) # path holds for (x,y) if edge holds for (x,y)
17 path(x,y) if edge(x,z), path(z,y) # ... if edge holds for (x,z) and for (z,y)
18 def transRH (): # to return transitive RH and reflexive role pairs
19 return infer (path , edge=RH , rules=trans_rs ) + {(r,r): r in ROLES}
20 def AuthorizedUsers(role ): # to return users having a role transitively
21 return {u: u in USERS , r in ROLES | (u,r) in UR and (r,role) in transRH ()}

...

22 h = new (HierRBAC , []) # create HierRBAC object h, with no args to setup
23 h.AddRole (’chair ’) # call AddRole of h with role ’chair ’

...

24 h. AuthorizedUsers(’chair ’) # call AuthorizedUsers of h with role ‘chair ’
...

Figure 1: An example program in Alda, for Role-Based Access Control (RBAC), demonstrating logic

rules used with sets, functions, updates, and objects.

T = E.copy ()
W = {(x,y) for (x,z) in T for (z2 ,y) in E if z2 ==z} - T
while W:

T.add(W.pop ())
W = {(x,y) for (x,z) in T for (z2 ,y) in E if z2==z} - T

or a while loop with higher-level set queries in DistAlgo:

T := E.copy ()
while some (x,z) in T, (z,y) in E | (x,y) not in T:

T.add ((x,y))

Using rules is clearly simpler, both conceptually and in the amount of code.

Alda is implemented by extending the DistAlgo compiler [20, 16] and invoking XSB [28, 32] for

inference. DistAlgo is compiled to Python. Function infer translates data from Python to Prolog facts,

translates results back, and invokes XSB in between using command line and file passing. The obvious

overhead of this external interface can be removed with an in-memory interface between Python to XSB,

which is actively being developed by the XSB team.1 However, this has not affected Alda programs from

having generally good performance, thanks to the XSB query performance.

3 Programming and performance benchmarks

1A version working for Unix, not yet Windows, has been released, and passing lists of length 100 million in memory took

about 30 nanoseconds per element [32, release notes]. So even for the largest data in our experiments, of size a few millions, it

would take 0.1-0.2 seconds to pass in memory, instead of 10-20 seconds with the current external interface.
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Name Description Prog size Data size

Join1 non-recursive tree of binary joins as inference rules 225 *

Join2 join from IRIS system producing large intermediate result 41 *

JoinDup join of separate results of five copies of Join1 163 *

LUBM university database adapted from LUBM benchmark 377 *

Mondial geographical database derived from CIA Factbook 36 59,733

DBLP well-known bibliography database on the Web 20 2,437,867

TC classical transitive closure of a binary relation 75 *

SG well-known same-generation siblings problem 90 *

WordNet natural language processing queries based on WordNet 298 465,703

Wine well-known OWL wine ontology as rules 1103 654

ModSG modified SG to exclude ancestor-descendant relationships 38 *

Win well-known win-not-win game with non-stratified negation 24 *

MagicSet non-stratified rules from magic-set transformation 34 *

The three groups (of 6, 4, 3) in order are called large join tests, Datalog recursion, and default negation, respec-

tively. Prog size is the XSB program size in lines of code without comments and empty lines. Data size is the

input data size in number of facts; * means that scripts are used to generate input data of desired sizes.

Table 1: Benchmarks from OpenRuleBench.

This section presents three sets of benchmarks that we developed. They are written to express each given

problem in the most direct way we can think of. This helps make the benchmarks clear and easy to read.

This also avoids being unfair to any particular language or system being compared with.

3.1 OpenRuleBench—a wide variety of rule-based applications

OpenRuleBench [15] contains a wide variety of database, knowledge base, and semantic web application

problems, written using rules in 11 well-known rule systems from 5 different categories, as well as large

data sets and a large number of test scripts for running and measuring the performance. Among 14

benchmarks described in [15], we consider all except for one that tests interfaces of rule systems with

databases (which is a non-issue for Python and its extensions DistAlgo and Alda, because Python has

standard and widely-used database interfaces).

Table 1 summarizes the benchmarks. We compare with the benchmark programs in XSB, for three

reasons: (1) XSB has been the most advanced rule system supporting well-founded semantics for non-

stratified negation and tabling techniques for efficient query evaluation, and has been actively developed

for over three decades, to this day; (2) among all systems reported in [15], XSB was one of the fastest,

if not the fastest, and the single most consistent across all benchmarks; and (3) among all measurements

reported, only XSB, OntoBroker, and DLV could run all benchmarks, but OntoBroker went bankrupt,

and measurements for DLV were almost all slower, often by orders of magnitude.

We easily translated all 13 benchmarks into Alda, automatically for all except for three cases where

the original rules used features beyond Datalog, which became two cases after we added support for

negation. In all cases, it was straightforward to express the desired functionality in Alda, producing a

program that is very similar to XSB or even simpler. Additionally, the code for reading data, running

tests, timing, and writing results is drastically simpler in Alda than in XSB, because Alda extends Python.

The three exception cases and additional findings are described below.

Result set. In most logic languages, including Prolog and many variants, a query returns only the first

result that matches the query. To return the set of all results, some well-known tricks are used. The

LUBM benchmark includes the following extra rules to return all answers of query9_1:
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query9 :- query9_1(X,Y,Z), fail.
query9 :- writeln(’========query9.======’).

The first rule first queries query9_1 to find an answer (a triple of values for X,Y,Z) and then uses fail to

trick the inference into thinking that it failed to find an answer and so continuing to search for an answer;

and it does this repeatedly, until query9_1 does fail to find an answer after exhausting all answers. The

second rule is necessary, even if with an empty right side, to trick the inference into thinking that it

succeeded, because the first rule always ends in failing; this is so that the execution can continue to do

the remaining work instead of stopping from failing.

In fact, this trick is used in all benchmarks, but other uses are buried inside the code for running,

timing, etc., specialized for each benchmark, not as part of the rules for the application logic.

In Alda, such rules and tricks are never needed. A call to infer with query query9_1 returns the set of

all query results as desired.

Function symbols. Logic rules may use function symbols to form structured data that can be used as ar-

guments to predicates. Uses of function symbols can be translated away. The Mondial benchmark uses a

function symbol prov in several intermediate conclusions and hypotheses of the form isa(prov(Y,X),provi)

or att(prov(Y,X),number,A). They can simply be translated to isa(’prov’,Y,X,provi) and

att(’prov’,Y,X,number,A), respectively.

Negation. Logic languages may use negation applied to hypotheses in rules. Most logic languages only

support stratified negation, where there is no negation involved in cyclic dependencies among predicates.

Such negation can be done by set differences. The ModSG benchmark has such a negation, as follows,

where sg is defined by the rules in the SG benchmark, and nonsg is defined by two new rules.
sg2(X,Y) :- sg(X,Y), not nonsg(X,Y).

In Alda, this can be written as
sg2 = infer(sg, rules=sg_rs) - infer(nonsg, rules=nonsg_rs)

where sg_rs and nonsg_rs are the rule sets defining sg and nonsg, respectively.

Alda also supports negation in rules. Its current implementation translates negation to tabled negation

tnot in XSB. This handles even non-stratified negation by computing well-founded semantics using

XSB [3], contrasting Prolog’s negation as failure. The Win and MagicSet benchmarks have non-stratified

negation. Both of them, as well as ModSG, can be expressed directly in Alda rule sets by using not for

negation.

Benchmarking and organization. In OpenRuleBench benchmarks, even though the rules to be bench-

marked are declarative and succinct, the benchmarking code for reading input, running tests, timing, and

writing results are generally much larger. For example, the Join1 benchmark has 4 small rules and 9

small queries similar in size to those in the transitive closure example, plus a manually added tabling

directive for optimization. However, for each of the 9 queries, 19 more lines for an import and two much

larger rules are used to do the reading, running, timing, and writing.

In general, because benchmarking executes a bundle of commands, scripting those directly is sim-

plest. Furthermore, organizing benchmarking code using procedures, objects, etc., allows easy reuse

without duplicated code. These features are much better supported in languages like Python than rule

systems, for both ease of programming and performance,

In fact, OpenRuleBench uses a large number of many different files, in several languages (language

of the system being tested, XSB, shell script, Python, makefile) for such scripting. For example for Join1,

the 4 rules, tabling directive, and benchmarking code are also duplicated in each of the 9 XSB files, one

for each query; a 46-line shell script and a 9-line makefile are also used.

In contrast, our benchmarking code is in Alda, which uses Python functions for scripting. A single

45-line Alda program is used for timing any of the benchmarks, and for pickling (i.e., object serialization

in Python, for fast data reading after the first reading) and timing of pickling.



Y. A. Liu, S. D. Stoller, Y. Tong, and K. T. Tekle 17

Name Features used for computing transitive role hierarchy

RBACnonloc rule set transRH_rs with implicit infer, without transRH(), Sec. 3.2

RBACallloc rule set trans_role_rs and transRH() that has only infer, Sec. 3.2

RBACunion rule set trans_rs and transRH() that has infer and union, Sec. 2

RBACda while loop and high-level set queries in DistAlgo, Sec. 2

RBACpy while loop and high-level set comprehensions in Python, Sec. 2

Each benchmark performs a combination of updates to sets and relations USERS, ROLES, UR, and RH and queries

with function AuthorizedUsers(role), where the transitive role hierarchy is computed with a different way of

using rules, or not using rules. In AuthorizedUsers(role) of all five programs, the call to transRH(), or reference

to field transRH, is lifted out of the set query, by assigning its value to a local variable and using that variable in

the query.

Table 2: Benchmarks for RBAC updates and queries.

Aggregation. Despite the wide variety of benchmarks in OpenRuleBench, no benchmark uses aggre-

gate queries. Aggregate queries are essential for many database, data mining, and machine learning

applications. We discuss them and compare with aggregate queries in a rule language like XSB in Sec-

tion 3.3.

3.2 RBAC—rules with objects, updates, and set queries

The ANSI standard for Role-Based Access Control (RBAC [7, 1] involves many sets and query and

update functions in a total of 9 components. To program the transitive role hierarchy at a high level,

a complex and inefficient while loop was used before [17], because an efficient algorithm would be

drastically even more complex.

With support for rules, the entire RBAC standard is easily written in Alda, similar as in Python [17],

except with rules for computing the transitive role hierarchy, as shown in Figure 1, yielding a simpler yet

more efficient program.

Below, we specify more ways of using rules to compute the transitive role hierarchy and function

AuthorizedUsers(role) in Figure 1. All these ways are declarative and differ in size by only 1-2 lines.

Table 2 summarizes the benchmarks for RBAC that include all RBAC classes with their inheritance

relationships and perform update operations and these query functions in different ways.

In particular, in the first way below, a field, transRH, is used and maintained automatically; it avoids

calling transRH() repeatedly, as desired in the RBAC standard, and it does so without the extra mainte-

nance code in the RBAC standard for handling updates.

Rules with only non-local predicates. Using rules with only non-local predicates, one can add a field

transRH, and use transRH in place of calls to transRH(), e.g., in function AuthorizedUsers(role), and use

the following rule set instead of trans_rs in class HierRBAC:2

rules transRH_rs : # no need to use infer explicitly
transRH (x,y) if RH(x,y)
transRH (x,y) if RH(x,z), transRH(z,y)
transRH (x,x) if ROLES(x)

Field transRH is automatically maintained at updates to RH and ROLES by implicit calls to infer; no explicit

calls to infer are needed. This eliminates the need of function transRH() and repeated expensive calls

to it even when its result is not changed most of the time. Overall, this simplifies the program, ensures

correctness, and improves efficiency.

2The first rule could actually be omitted, because the second argument of RH is always in ROLES and thus the second rule

when joining RH with reflexive pairs in transRH from the third rule subsumes the first rule.
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Part Analysis Features used

1 Ext classes, extension relation rules (recursive if refined name analysis is used)

2 Stat statistics, roots aggregate and set queries

3 Hgt max height, roots of max height recursive functions, aggregate and set queries

4 Desc max desc, roots of max desc recursive rules, functions, aggregate and set queries

In Parts 1 and 4 that use rules, not using rules (esp. for recursive analysis, with tabling) would be drastically

worse (i.e., harder to program and less efficient). In Parts 2-4 that use aggregate and set queries, using rules or

recursive functions would be clearly worse. In Parts 3 and 4 that use functions, not using functions (with tabling,

also called caching) would be much worse.

Table 3: Benchmark PA for program analysis, integrating different kinds.

Rules with only local predicates. Using rules with only local predicates, infer must be called explic-

itly. One can simply use the function transRH() in Figure 1, which calls infer using rule set trans_rs

in the running example and then unions with reflexive role pairs. Alternatively, one can use the rules in

trans_rs plus a rule that uses a local predicate role to infer reflexive role pairs:

rules trans_role_rs : # as trans_rs plus the added last rule
path (x,y) if edge(x,y)
path (x,y) if edge(x,z), path (z,y)
path (x,x) if role(x)

def transRH (): # use infer only , pass in also ROLES
return infer(path , edge =RH , role=ROLES , rules= trans_role_rs )

Both ways show the ease of using rules by simply calling infer. Despite possible inefficiency in some

cases, using only local predicates has the advantage of full reusability of rules and full control of calls to

infer.

3.3 Program analysis—rules with aggregate queries and recursive functions

We designed a benchmark for program analysis (PA) problems, especially to show integrated use of

rules with aggregate queries and recursive functions. Aggregate queries help quantify and characterize

the analysis results, and recursive functions help do these on recursive structures. We describe programs

written in Alda and then in XSB.

The benchmark is for analysis of class hierarchy of Python programs. It uses logic rules to extract

class names and construct the class extension relation; aggregate queries and set queries to characterize

the results and find special cases of interest; recursive functions as well as aggregate and set queries

to analyze the special cases; and more logic rules, functions, and set and aggregate queries to further

analyze the special cases.

Table 3 summarizes different parts of this benchmark, called PA. A variant, called PAopt, is the same

as PA except that, in the recursive rule for defining transitive descendant relationship, the two hypotheses

are reversed, following previously studied optimizations [18, 33].

Because the focus is on evaluating the integrated use of different features, each part that uses a single

feature, such as rules, is designed to be small. Compared with making each part larger, which exercises

individual features more, this design highlights the overhead of connecting different parts, in terms of

both ease of use and efficiency of execution.

The benchmark program takes as input the abstract syntax tree (AST) of a Python program (a module

or an entire package), represented as a set of facts. Each AST node of type T with k children corresponds

to a fact for predicate T with k+1 arguments: id of the node, and ids of the k children. Lists are represented

using Member facts. A Member(lst,elem,i) fact denotes that list lst has element elem at the ith position.
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Part 1: Classes and class extension relation. This part examines all ClassDef nodes in the AST. A

ClassDef node has 5 children: class name, list of base-class expressions, and three nodes not used for

this analysis. The following rules can be used to find all defined class names and build a class extension

relation using base-class expressions that are Name nodes. A Name node has two children: name and

context.

rules class_extends_rs :
defined (c) if ClassDef (_,c,_, _,_,_)
extending (c,b) if ClassDef (_,c,baselist , _,_,_),

Member(baselist ,base ,_), Name (base ,b,_)

For a dynamic language like Python, analysis involving names can be refined in many ways to give

more precise results, e.g., [9]. We do not do those here, but Datalog rules are particularly good for such

analysis of bindings and aliases for names, e.g., [30].

Part 2: Characterizing results and finding special cases. This part computes statistics for defined

classes and the class extension relation and finds root classes (class with subclass but not super class).

These use aggregate queries and set queries, where (_,c) and (=c,_) are tuple patterns, _ matches any-

thing, c is bound to the matched value, and =c matches the value of c.

num_defined := count(defined)
num_extending := count(extending )
avg_extending := num_extending /num_defined
roots := {c: (_,c) in extending , not some (=c,_) in extending }

Similar queries can compute many other statistics and cases: maximum number of classes that any class

extends, leaf classes, histograms, etc.

Part 3: Analysis of special cases. This part computes the maximum height of the extension relation,

which is the maximum height of the root classes, and finds root classes of the maximum height. These

use a recursive function as well as aggregate and set queries.

def height(c):
return 0 if not some (_,=c) in extending

else 1 + max{height(d): (d,=c) in extending }
max_height := max{height(r): r in roots}
roots_max_height := {r: r in roots , height(r) = max_height }

For efficiency when a subclass can extend multiple base classes, caching of results of function calls is

used. In Python, one can simply add import functools to import module functools, and add @functools.cache

just above the definition of height to cache the results of that function.

Part 4: Further analysis of special cases. This part computes the maximum number of descendant

classes following the extension relation from a root class, and finds root classes of the maximum number.

Recursive functions and aggregate queries similar to finding maximum height do not suffice here, due

to shared subclasses that may be at any depth. Instead, the following rules can infer all desc(c,r) facts

where class c is a descendant following the extension relation from root class r, and aggregate and set

queries with function num_desc then compute the desired results.

rules desc_rs:
desc (c,r) if roots(r), extending (c,r)
desc (c,r) if desc(b,r), extending (c,b)

def num_desc (r):
return count{c: (c,=r) in desc }

max_desc := max{num_desc (r): r in roots}
roots_max_desc := {r: r in roots , num_desc (r) = max_desc }
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For efficiency of the last query, caching is also used for function num_desc. If the last query is omitted,

function num_desc can also be inlined in the max_desc query.

Comparing with aggregate queries and functions in rule languages. While rules in Alda corre-

spond directly to rules in rule languages, expressing aggregate queries and functions using rules require

translations that formulate computations as hypotheses and introduce additional variables to relate these

hypotheses.

Aggregate queries are used extensively in database and machine learning applications, and are es-

sential for analyzing large data or uncertain information. These queries are easy to express directly in

database languages and scripting languages, but are less so in rule languages like Prolog; most rule lan-

guages also do not support general aggregation with recursion due to their subtle semantics [19]. For

example, the simple query num_defined := count(defined) in Alda, when written in XSB, becomes:

num_defined(N) :- setof(C, defined(C), S), length(S, N).

Recursive functions are used extensively in list and tree processing and in solving divide-and-conquer

problems. They are natural for computing certain information about parse trees, nested scopes, etc.

However, in rule languages, they are expressed in a way that mixes function arguments and return values,

and require sophisticated mode analysis to differentiate arguments from returns. For example, the height

query, when written in XSB, becomes:

height(C,0) :- not(extending(_,C)).
height(C,H) :- findall(H1, (extending(D,C), height(D,H1)), L),

max_list(L,H2), H is H2+1.

4 Experimental results

We present results about running times, program sizes, and data sizes. All measurements were taken

on a machine with an Intel Xeon X5690 3.47 GHz CPU, 94 GB RAM, running 64-bit Ubuntu 16.04.7,

Python 3.9.9, and XSB 4.0.0. For each experiment, the reported running times are CPU times averaged

over 10 runs. Garbage collection in Python was disabled for smoother running times when calling XSB.

Program sizes are numbers of lines excluding comments and empty lines. Data sizes are number of facts.

Compilation times and program sizes. Table 4 shows Alda compilation times and related XSB, Alda,

DistAlgo, and Python program sizes before and after compilation. They are for all benchmarks described

in Section 3, plus three variants of TC, explained below in the paragraph on performance of classical

queries using rules. The Alda programs are 4–970 lines for OpenRuleBench benchmarks, 385–423 lines

for RBAC benchmarks, and 33 lines for PA benchmarks. For each group of benchmarks, there is a single

shared Alda file of benchmarking code, shown in the last row of each group.

The compilation times for all programs are 0.6 seconds or less, and for all but RBAC benchmarks

and Wine in OpenRuleBench are about 0.1 seconds or less.

For Alda programs that have corresponding XSB programs (OpenRuleBench in Table 1 and PA),

Alda programs are all much smaller, almost all by dozens or even hundreds of lines, and by an order

of magnitude for Join1 and TC in OpenRuleBench, because we have all the benchmarking code in the

shared benchmarking file.

Performance of classical queries using rules. We experimented with four programs for computing

transitive closure: TC, the TC benchmark from OpenRuleBench, which is the same as trans_rs except

with renamed predicates; TCrev, a well-known variant with the two predicates reversed in the recursive

rule; and TCpy and TCda, which use the Python and DistAlgo while loops, respectively, in Section 2. For

comparison, we also directly run the XSB program for TC from OpenRuleBench, and its corresponding
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Benchmark Original Alda Compilation Generated Generated

name XSB size size time (ms) Python size XSB size

Join1 225 23 33.0 32 5

Join2 41 11 18.5 16 9

JoinDup 163 42 45.6 20 36

LUBM 377 125 116.4 29 110

Mondial 36 8 16.2 16 6

DBLP 20 4 16.3 16 2

TC 75 5 7.9 16 3

TCrev *75 5 7.7 16 3

TCda – 5 4.9 18 -

TCpy – 7 6.5 11 -

SG 90 13 17.9 20 7

WordNet 298 58 76.2 44 28

Wine 1103 970 605.6 16 968

ModSG 38 14 14.8 16 12

Win 24 4 9.5 16 2

MagicSet 34 9 18.2 16 7

ORBtimer – 45 35.2 56 -

RBACnonloc – 423 346.4 538 4

RBACallloc – 387 318.4 481 4

RBACunion – 386 316.6 481 3

RBACda – 385 312.8 483 -

RBACpy – 387 314.6 476 -

RBACtimer – 44 43.3 67 -

PA *55 33 49.7 93 6

PAopt *55 33 40.8 93 6

PAtimer – 40 32.6 56 -

For Original XSB size, entries without * are from OpenRuleBench, as in Table 1; * indicates XSB programs

we added; – means there is no corresponding XSB program. For Generated XSB size, - means no XSB code is

generated.

Table 4: Compilation times and program sizes before and after compilation.

version for TCrev, except we change load_dyn to load_dync, for much faster reading of facts in XSB’s

canonical form; we call these programs TCXSB and TCrevXSB, respectively. The same data generation

as OpenRuleBench is used to return large query results—almost complete graphs.

Figure 2 shows the running times of the TC benchmarks. RawR and PickleW are times for reading

facts in XSB/Prolog form as used in OpenRuleBench and writing them in pickled form for use in Alda,

respectively. Pickling is done only once; the pickled data is read in all repeated runs and all of TC, TCrev,

TCda, and TCpy. The running time of Alda programs includes not only (1) reading data, (2) executing

queries, and (3) returning results, but also (2pre) preparing data, queries, and commands and writing data

to files for XSB before (2), and (2post) reading results from files written by XSB after (2). TC_extra and

TCrev_extra are the part of TC and TCrev, respectively, for extra work interfacing with XSB, i.e., for

2pre and 2post and for XSB to read data (xsbRdata) and write results (xsbWres). A breakdown showing

the time needed for each step in the extra work is in [22].

The results are as expected: the two Alda programs that use rules are asymptotically, drastically faster

than Python and DistAlgo while loops, and they exhibit known notable performance differences [33, 34].

Most notably but as expected, passing the query results back from XSB has a high overhead, up to 5.9

seconds, out of 29.2 seconds total, for graphs of 100K edges, but this overhead is expected to be reduced
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TCpy and TCda are not in the charts because they are asymptotically slower and took drastically longer: on 100

vertices, with cyclic data of 200 edges (2% of smallest data point in the charts), TCpy took 624.6 seconds, and TCda

took 249.9 seconds; and with acyclic data of 600 edges, TCpy took 160.4 seconds, and TCda took 65.2 seconds.

Figure 2: Running times of TC benchmarks on cyclic (left) and acyclic (right) graphs.

to 1% of it when the in-memory Python-XSB interface is used. Note that reversing the two predicates in

the recursive rule does give a linear-factor asymptotically different running time, but that barely shows

because OpenRuleBench uses almost complete graphs.

Integrating with objects, updates, and set queries. We use RBAC benchmarks in Table 2, Sec-

tion 3.2, for this evaluation, especially with frequent queries and updates and intensively frequent restart

of XSB for queries randomly mixed with updates of the queried data: 5000 users, 500 roles, 5000 UR

relation, 550 RH relation, up to 500 queries, and 230 updates of various kinds.

Figure 3 shows the running times of the RBAC benchmarks, all scaling linearly in the number of

queries, as expected. Labels with suffix _extra indicate the part of the running time of the corresponding

program for extra work interfacing with XSB. A breakdown of the time for extra work is in [22].

The results are as expected as well: RBACunion and RBACalloc are very close, and are much slower

than RBACnonloc—up to 331.7 and 333.9 seconds, respectively, vs. 97.9 seconds. Most notably but as

expected, the overhead of repeated queries using XSB is high for RBACunion and RBACalloc, but low

for RBACnonloc, up to 134.5 and 145.9 seconds, respectively, vs. 2.8 seconds. The highest overhead is

from restarting XSB 500 times, which will be totally eliminated when in-memory interface is used.

Integrating with aggregate queries and recursive functions. We use PA and PAopt benchmarks and

their corresponding programs in XSB, as described in Section 3.3, for this evaluation, and we focus on

applying the analysis to large programs as input data. The programs analyzed include 9 widely-used

open-source Python packages for a wide range of application domains: NumPy, SciPy, MatPlotLib,

Pandas, SymPy, Blender, Django, Scikit-learn, and PyTorch—with 641K–5.1M input facts total and

252K–2.2M facts used by the analysis.

Table 5 shows data sizes, analysis results, and running times of the analysis. The columns are sorted

by the total number of facts used. A breakdown of the running time into steps interfacing with XSB as

well as the remainder of the running time is in [22].
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Figure 3: Running times of RBAC benchmarks, for a workload of updates and queries over 5000 users,

500 roles, 5500 user-role assignments, and 550 role hierarchy pairs.

The results are not as expected: we found the corresponding XSB programs to be highly inefficient,

being all slower and even drastically slower than Alda programs, even 120 times slower for PyTorch.

Significant effort was spent on performance debugging and manual optimization, and we eventually

created a version that is faster than Alda—5.1 seconds vs. 15.2 seconds on the largest input, SymPy—by

using additional directives for targeted tabling that also subsumes some indexing.

As expected, the Alda programs here have a high overhead of passing the data to XSB, up to 13.1

seconds on SymPy, which again is expected to be reduced to 1% of it with in-memory Python-XSB

interface. This means that the resulting Alda programs would be faster than even the manually optimized

XSB, showing that computations not using rules, e.g., aggregations and functions, are not only simpler

and easier in Alda/Python than in XSB but also faster.

Scaling with data and rules. We use the two largest benchmarks from OpenRuleBench: DBLP, with

over 2.4 million facts, the largest real-world data set among all in OpenRuleBench; and Wine, with 961

rules, the largest rule set among all. Table 6 shows the running times for both benchmarks, for both

the Alda programs and the XSB programs. _extra is the part of the total time on 2pre, 2post, xsbRdata,

and xsbWres. OrigTotal is the Total time for the original program from OpenRuleBench, which uses

load_dyn instead of load_dync.

The results are again as expected. For DBLP, XSB is more than three times as fast as Alda, 9.5

seconds vs. 30.6 seconds, but as for PA benchmarks, the overhead of passing the large data to XSB is

large, here 26.9 seconds, and is expected to be reduced to 1% of that; note that the Alda program has

faster reading from pickled data.

For Wine, XSB is more than eight times as fast as Alda, 3.8 seconds vs. 31.0 seconds. This is due to

the use of auto_table in Alda generated code, which does variant tabling, whereas this program, through

manual debugging and optimization, was found to need subsumptive tabling [34]. Optimizations [18, 33,

34] can be added to the Alda compiler to match this efficiency automatically. Note that this slowest Alda

program is still faster than half of the systems tested in OpenRuleBench, which took up to 140 seconds

and three systems gave errors, and where XSB was the fastest at 4.47 seconds [15].
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Measure Item/Name numpy django sklearn blender pandas matplot scipy pytorch sympy

Data Total 640,715 815,551 862,031 909,600 942,315 1,064,859 1,092,466 5,142,905 5,115,105

size ClassDef 587 1,835 535 2,146 849 994 898 6,467 1,830

Name 96,076 119,077 137,066 107,638 153,664 152,357 178,754 797,072 1,063,842

Member 155,207 199,416 210,410 242,531 227,766 268,736 260,848 1,270,917 1,112,296

Total used 251,870 320,328 348,011 352,315 382,279 422,087 440,500 2,074,456 2,177,968

Ratio Used/Total 39.3% 39.3% 40.4% 38.7% 40.6% 39.6% 40.3% 40.3% 42.6%

Result #defined 519 1610 533 2118 804 935 882 4323 1786

size #extending 419 1457 710 2951 407 610 719 2207 1816

#roots 79 225 51 133 88 104 60 137 92

max_height 8 7 5 4 7 5 3 5 12

#roots_max_h 1 2 2 1 2 1 4 1 1

#desc 427 2329 822 4376 436 605 721 2174 2413

max_desc 84 309 256 1,638 65 47 353 1,045 1,078

#roots_max_d 1 1 1 1 1 1 1 1 1

Running PA 2.542 3.573 3.263 5.134 3.342 3.733 3.646 14.652 15.243

time PAopt 2.631 3.520 3.235 4.661 3.341 3.676 3.633 14.706 15.132

(in PAXSB 6.297 112.091 10.795 243.765 6.378 14.400 22.221 969.228 65.382

seconds) PAoptXSB 13.170 343.428 17.066 326.629 18.863 40.871 29.675 1773.374 181.961

PAXSBopt 0.804 1.499 1.071 2.149 1.118 1.317 1.300 5.158 5.051

Ratio PAopt 103.5% 98.5% 99.1% 90.8% 100.0% 98.5% 99.6% 100.4% 99.3%

over PAXSB 247.7% 3137.2% 330.8% 4748.0% 190.8% 385.7% 609.5% 6615.0% 428.9%

PA PAoptXSB 518.1% 9611.7% 523.0% 6362.1% 564.4% 1094.9% 813.9% 12103.3% 1193.7%

PAXSBopt 31.6% 42.0% 32.8% 41.9% 33.5% 35.3% 35.6% 35.2% 33.1%

Total is the total number of facts about each package. Total used is the sum of numbers of ClassDef, Name, and Member facts.

Table 5: Data size, analysis results, and running times for program analysis benchmarks.

Alda XSB

Name RawR PickleW 2pre xsbRdata xsbWres 2post _extra Total Total OrigTotal

DBLP 12.187 3.131 15.722 11.197 0.054 0.020 26.993 30.573 9.492 63.494

Wine 0.008 0.000 0.037 0.219 0.000 0.001 0.257 30.960 3.754 3.826

Table 6: Running times (in seconds) of DBLP and Wine benchmarks.

5 Related work and conclusion

Many benchmarking suites have been developed for evaluating the performance of queries in logic lan-

guages and rule engines, including the carefully constructed OpenRuleBench for comprehensively evalu-

ating a diverse set of problems in a wide range of systems [15]. In particular, Prolog has had benchmarks

for comparing performance of different implementations [5, 4]. Some are focused on a special class of

problems, e.g., interpreters written in Prolog [13]. Some are for evaluating the performance of a partic-

ular implementation, e.g., SWI Prolog [31]. There are also works that evaluate queries in more general

rule engines and database systems, e.g., the LUBM benchmark [11] and its extensions [24, 29] for OWL

on a range of systems, and evaluations including SQL with rules [12, 2]. There are also works focused

on evaluating interfaces, e.g., Java Prolog Interface [23]. These works study only queries.

Even drastically more benchmarking suites were developed for evaluating other systems. Works

range from systematic studies, e.g., [14, 10, 25], to a large variety of specific benchmarks, e.g., the SPEC

benchmarks for computer systems in general [25], the TPC benchmarks for transaction processing [26],

the LINPACK benchmarks [6] on solving linear equations, and many more. These benchmarks exercise

updates and many other language features but not logic rules.

In contrast, our work develops benchmarks that exercise integrated use of rules together with other
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language features. We improve OpenRuleBench benchmarks with significantly simplified benchmarking

code, and design new benchmarks that exercise tightly integrated uses of different features on problems

that test different problem scales in different ways. We also compare different ways of using rules vs.

not using rules.

In conclusion, this work presents a set of programming and performance benchmarks for evaluating

languages supporting integrated use of rules and other features, and the results of using these benchmarks

in an evaluation. Future work can perform evaluations with additional languages and systems, especially

efficient ASP systems such as Clingo [8].
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The paper presents an enhancement of xASP, a system that generates explanation graphs for Answer
Set Programming (ASP). Different from xASP, the new system, xASP2 , supports different clingo
constructs like the choice rules, the constraints, and the aggregates such as #sum, #min. This work
formalizes and presents an explainable artificial intelligence system for a broad fragment of ASP,
capable of shrinking as much as possible the set of assumptions and presenting explanations in terms
of directed acyclic graphs.

1 Introduction

Recently, many modern artificial intelligence systems are increasingly capable of tackling complex prob-
lems. However, their lack of transparency can create a new issue: users may not comprehend why a
solution was obtained, making it difficult to trust the results. Moreover, with the right to an explanation
law extensively discussed in the USA, EU, and UK, and partly enacted in some countries, explainable
artificial intelligence (XAI) has experienced a substantial increase in interest. Thus, the focus of this
paper is on the development of an XAI system for Answer Set Programming (ASP) [10, 13]. Answer
Set Programming (ASP) [10, 13] is a well-known paradigm for problem-solving using logic programs
under answer set semantics [7] in knowledge representation and reasoning (KR&R) and an extension
of Datalog with a strong connection with well-founded semantics [14]. A variety of applications such
as planning, diagnosis, etc, have been successfully implemented using it. In this paper, our goal is to
provide an answer to the question “given an answer set A of a program Π and an atom α , why an atom
α is true (or false) in A?”.

The emergence of XAI has brought significant attention from researchers in ASP community, result-
ing in numerous proposed systems aimed at addressing this issue such as xclingo [4], DiscASP [9], xASP
[19], exp(ASPc) [18]. However, these systems are incapable of handling one or more of the following
scenarios: (i) false atoms can be explained by the system, (ii) the ability to support certain advanced lan-
guage features. In this paper, we proposed an improvement system, called xASP2 , that takes inspiration
from the approach used in xASP [19] and [16]. xASP2 are able to substantially increase scalability and
breadth of supported language features while producing explanation graphs with more immediately and
consistently useful to users. The improvement presented here deals with two main issues in explaining
the assignment of α in A: (i) how to compute a minimum cardinality set of atoms that is assumed to be
false such that it is capable of explaining the assignment of α in A; and (ii) how to support sophisticated
linguistic constructs such as choice rules and aggregates, which can be involved to explain the falsity of
some atoms in easily understandable terms.

Our main contributions are the following:

• A notion of explanation in terms of directed acyclic graphs explains why an atom is (or is not) in
an answer set in terms of easy-to-understand inferences originating from a hopefully minimum set
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of assumed false atoms (Section 3). Note that the explanation graph of an atom is restricted to the
atoms involved in the relevant rules for the explaining atoms.

• A proof of existence for the explanations according to the given definition that guarantees the
correctness of our implementation (Section 4).

• The implementation of an enhancement system, xASP2 , for producing explanations powered by
ASP and its empirical evaluation(Sections 5–6). xASP2 tackles logic programs with different
clingo constructs such as aggregates and constraints.

The supported fragment of ASP includes uninterpreted function symbols, common aggregation func-
tions, comparison expressions, strong negation, constraints, normal rules, and choice rules. Aggregates
are expected to be stratified, to not involve default negation, and to have a single atomic condition.
Choice rules are expected to be unconditional, or otherwise to have exactly one conditional atom with a
self-explanatory condition (as for example a range expression or an extensional predicate). Additionally,
to ease the presentation, in Section 2 we only consider sum aggregates, and completely omit uninter-
preted function symbols, comparison expressions, strong negation, and conditions in choice rules. To
the best of our knowledge, this is the first explanation generation system that supports different clingo
constructs such as aggregates and constraints.

2 Background

All sets and sequences considered in this paper are finite. Let P, C, V be fixed nonempty sets of predicate
names, constants and variables. Predicates are associated with an arity, a non-negative integer. A term
is any element in C∪V. An atom is of the form p(t), where p ∈ P, and t is a possibly empty sequence
of terms. A literal is an atom possibly preceded by the default negation symbol not; they are referred to
as positive and negative literals.

An aggregate is of the form
sum{ta, t ′ : p(t)}� tg (1)

where � is a binary comparison operator, p ∈ P, t and t ′ are possibly empty sequences of terms, and ta
and tg are terms.

A choice is of the form
t1 ≤ {atoms} ≤ t2 (2)

where atoms is a possibly empty sequence of atoms, and t1, t2 are terms. Let ⊥ be syntactic sugar for
1≤ {} ≤ 1.

A rule is of the form
head← body (3)

where head is an atom or a choice, and body is a possibly empty sequence of literals and aggregates. For
a rule r, let H(r) denote the atom or choice in the head of r; let BΣ(r), B+(r) and B−(r) denote the sets of
aggregates, positive and negative literals in the body of r; let B(r) denote the set BΣ(r)∪B+(r)∪B−(r).

A variable X occurring in B+(r) is a global variable. Other variables occurring among the terms t
of some aggregate in BΣ(r) of the form (1) are local variables. And any other variable occurring in r is
an unsafe variable. A safe rule is a rule with no unsafe variables. A program Π is a set of safe rules.
Additionally, we assume that aggregates are stratified, that is, the dependency graph GΠ having a vertex
for each predicate occurring in Π and an edge pq whenever there is r ∈Π with p occurring in H(r) and
q occurring in B+(r) or BΣ(r) is acyclic.
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b a d c

Figure 1: The undirected graph used as running example. Source vertices in blue, sink vertex in red.
Example 1. Given a connected undirected graph G encoded by predicate edge/2, source and sink nodes
encoded by predicates source/1 and sink/1, the following program assigns a direction to each edge so
that source nodes can still reach all sink nodes:

1≤ {arc(X ,Y ); arc(Y,X)} ≤ 1← edge(X ,Y ) (4)

reach(X ,X)← source(X) (5)

reach(X ,Y )← reach(X ,Z), arc(Z,Y ) (6)

⊥← source(X), sink(Y ), not reach(X ,Y ) (7)

If failures on the reachability condition are permitted up to a given threshold encoded by predicate
threshold/1, the program comprising rules (4)–(6) and

fail(X ,Y )← source(X), sink(Y ), not reach(X ,Y ) (8)

⊥← threshold(T ),sum{1,X ,Y : fail(X ,Y )}> T (9)

can be used. Note that X and Y are local variables in rule (9), and all other variables are global. �

A substitution σ is a partial function from variables to constants; the application of σ to an expres-
sion E is denoted by Eσ . Let instantiate(Π) be the program obtained from rules of Π by substituting
global variables with constants in C, in all possible ways; note that local variables are still present in
instantiate(Π). The Herbrand base of Π, denoted base(Π), is the set of ground atoms (i.e., atoms with
no variables) occurring in instantiate(Π).

Example 2. Let Πrun comprise rules (4)–(6), (8)–(9) and the facts (i.e., rules with an empty body)
edge(a,b), edge(a,d), edge(d,c), source(a), source(b), sink(c), and threshold(0) (see Figure 1). Hence,
instantiate
(Πrun) contains, among others, the rules

1≤ {arc(a,b); arc(b,a)} ≤ 1← edge(a,b)

⊥← threshold(0),sum{1,X ,Y : fail(X ,Y )}> 0

and base(Πrun) contains fail(a,c), fail(b,c), and so on. �

A (two-valued) interpretation is a set of ground atoms. For a two-valued interpretation I, relation
I |= · is defined as follows: for a ground atom p(c), I |= p(c) if p(c)∈ I, and I |= not p(c) if p(c) /∈ I; for an
aggregate α of the form (1), the aggregate set of α w.r.t. I, denoted aggset(α, I), is {〈ta, t ′〉σ | p(t)σ ∈ I,
for some substitution σ}, and I |= α if (∑〈ca,c′〉∈aggset(α,I) ca)� tg is a true expression over integers; for a
choice α of the form (2), I |= α if t1 ≤ |I∩atoms| ≤ t2 is a true expression over integers; for a rule r with
no global variables, I |= B(r) if I |= α for all α ∈ B(r), and I |= r if I |= H(r) whenever I |= B(r); for a
program Π, I |= Π if I |= r for all r ∈ instantiate(Π).

For a rule r of the form (3) and an interpretation I, let expand(r, I) be the set {p(c)← body | p(c) ∈ I
occurs in H(r)}. The reduct of Π w.r.t. I is the program comprising the expanded rules of instantiate(Π)
whose body is true w.r.t. I, that is, reduct(Π, I) :=

⋃
r∈instantiate(Pi), I|=B(r) expand(r, I). An answer set of

Π is an interpretation A such that A |= Π and no I ⊂ A satisfies I |= reduct(Π,A).
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Example 3. The only answer set Arun of program Πrun contains, among others, the atoms arc(b,a),
arc(a,d), arc(d,c), no other instance of arc/2, and no instance of fail/2. Hence, Arun |= 1≤ {arc(a,b);
arc(b,a)} ≤ 1 and Arun 6|= sum{1,X ,Y : fail(X ,Y )}> 0. �

A three-valued interpretation is a pair (L,U), where L,U are sets of ground atoms such that L ⊆U ;
sets L and U , also denoted (L,U)1 and (L,U)2, are the lower and upper bounds on the true atoms, so
atoms in L are true, atoms in U \L are undefined, and all other atoms are false. The evaluation function
[[·]]UL associates literals and aggregates with a truth value among u, t and f as follows: [[α]]UL = u if α is a
literal whose atom is p(c) and p(c)∈U \L, or α is an aggregate of the form (1) and aggset(α,U \L) 6= /0,
or α is a choice of the form (2) and (U \L)∩atoms 6= /0; [[α]]UL = t if [[α]]UL 6= u and L |= α; and [[α]]UL = f
if [[α]]UL 6= u and L 6|= α . The evaluation function extends to rule bodies as follows: [[B(r)]]UL = f if there
is α ∈ B(r) such that [[α]]UL = f; [[B(r)]]UL = t if [[α]]UL = t for all α ∈ B(r); otherwise [[B(r)]]UL = u.

Example 4. For α being sum{1,X ,Y : fail(X ,Y )}> 0, [[α]]
{fail(a,c)}
/0 = u, [[α]]

{fail(a,c)}
{fail(a,c)} = t, and [[α]] /0

/0 = f.
�

Mainstream ASP systems compute answer sets of a given program Π by applying several inference
rules on (a subset of) instantiate(Π), the most relevant ones for this work summarized below. Let (L,U)
be a three-valued interpretation, and p(c) be a ground atom such that [[p(c)]]UL = u. Atom p(c) in H(r)
is inferred true by support if [[B(r)]]UL = t. (Actually, if H(r) is a choice of the form (2), inference by
support additionally requires that |atoms∩U | = t1, that is, undefined atoms in atoms∩U are required
to reach the bound t1. Such extra condition is not relevant for our work, and will not be used, because
our explanations aim at associating true atoms with rules with true bodies.) Atom p(c) is inferred false
by lack of support if each rule r ∈ instantiate(Π) with p(c) occurring in H(r) is such that [[B(r)]]UL = f.
Atom p(c) is inferred false by a constraint-like rule r ∈ instantiate(Π) if p(c) ∈ B+(r), [[H(r)]]UL = f and
[[B(r)\{p(c)}]]UL = t. Atom p(c) is inferred false by a choice rule r ∈ instantiate(Π) if H(r) has the
form (2), p(c) ∈ atoms, |atoms∩L| ≥ t2 and [[B(r)]]UL = t. Atom p(c) is inferred false by well-founded
computation if it belongs to some unfounded set X for Π w.r.t. (L,U), that is, a set X such that for all
rules r ∈ instantiate(Π) at least one of the following conditions holds: (i) no atom from X occurs in
H(r); (ii) [[B(r)]]UL = f; (iii) B+(r)∩X 6= /0.

Example 5. Given the program instantiate(Πrun), and the three-valued interpretation ( /0,base(Πrun)),
atom edge(a,a) is inferred false by lack of support, atom source(a) is inferred true by support, and the set
{edge(a,a), arc(a,a)} is unfounded. Given ({arc(d,c)},base(Πrun)\{reach(a,c)}), atom reach(a,d)
is inferred false by the constraint-like rule (6), and arc(c,d) is inferred false by the choice rule (4). �

3 Explanations

Let Π be a program, and A be one of its answer sets. A well-founded derivation for Π w.r.t. A, denoted
wf (Π,A), is obtained from the interpretation ( /0,base(Π)) by iteratively (i) adding to its lower bound
atoms of A that are inferred true by support, and (ii) removing from its upper bound atoms belonging to
some unfounded set. Note that wf (Π,A) is computed as a preprocessing step.

Example 6. Given Πrun and Arun from Examples 2–3, the lower bound of wf (Πrun,Arun) contains head
atoms in Example 2, arc(b,a), arc(a,d), arc(d,c), reach(a,a), reach(b,b), reach(a,d), reach(a,c),
reach(b,a), reach(b,c), and reach(b,d). The upper bound additionally contains arc(a,b), arc(d,a),
arc(c,d), and several instances of reach/2 and fail/2. �

An explaining derivation for Π and A from (L,U) is obtained by iteratively (i) adding to L atoms
of A that are inferred true by support, and (ii) removing from U atoms that are inferred false by lack of
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Figure 2: Induced DAG on the vertices reachable from arc(a,b) for the minimal assumption set /0 for Πrun.
support, constraint-like rules and choice rules. An assumption set for Π and A is a set X ⊆ base(Π)\A
of ground atoms such that the explaining derivation for Π and A from ( /0,wf (Π,A)2 \X) terminates with
A (in words, A is reconstructed from the false atoms of the well-founded derivation extended with X).
Let AS(Π,A) be the set of assumption sets for Π and A. A minimal assumption set for Π, A and a ground
atom α is a set X ∈ AS(Π,A) such that X ′ ⊂ X implies X ′ /∈ AS(Π,A), and α ∈ X implies α ∈ X ′ for
all X ′ ∈ AS(Π,A). (In other words, we prefer assumption sets not including the atom to explain. When
all assumption sets include the atom to explain, we opt for the singleton comprising the atom to explain
alone.) Let MAS(Π,A,α) be the set of minimal assumption sets for Π, A and α .

Example 7. Set base(Πrun)\Arun is an assumption set for Πrun and its answer set Arun. It can be checked
that also /0∈ AS(Πrun,Arun,α), and it is indeed the only minimal assumption set in this case, for any atom
in base(Πrun). �

Given an assumption set X and an explaining derivation from ( /0,wf (Π,A)2 \X), a directed acyclic
graph (DAG) can be obtained as follows: The vertices of the graph are the atoms in base(Π) and the
aggregates occurring in instantiate(Π). (The vertex p(c) is also referred to as not p(c).) Any aggregate of
the form (1) is linked to instances of p(t). Atoms inferred true by support due to a rule r ∈ instantiate(Π)
are linked to elements of B(r). Any atom α inferred false by lack of support is linked to an element of
B(r) that is inferred false before α , for each rule r ∈ instantiate(Π) such that α occurs in H(r). Any
atom α inferred false by a constraint-like rule r ∈ instantiate(Π) is linked to the atoms occurring in H(r)
and the elements of B(r)\{α}. Any atom α inferred false by a choice rule r ∈ instantiate(Π) is linked
to the atoms occurring in H(r) that are true in A, and to the elements of B(r). A portion of an example
DAG is reported in Figure 2.

4 Existence of Minimal Assumption Sets

This section is devoted to formally show that the existence of minimal assumption sets is guaranteed,
and so are DAGs as defined in Section 3.

Theorem 1 (Main Theorem). Let Π be a program, A one of its answer sets, and α a ground atom in
base(Π). Set MAS(Π,A,α) is nonempty.

To prove the above theorem, we introduce some additional notation and claims. Let Π be a program,
and (L,U) be a three-valued interpretation. We denote by Π,L,U ` α the fact that α ∈ base(Π) is
inferred true by support, which is the case when [[α]]UL = u, and there is r ∈ instantiate(Π) such that α

occurs in H(r) and [[B(r)]]UL = t, as defined in Section 2. Similarly, we denote by Π,L,U ` not α the
fact that α ∈ base(Π) is inferred false by lack of support, constraint-like rules and choice rules, which is
the case when [[α]]UL = u, and one of the following conditions holds: each rule r ∈ instantiate(Π) with α
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occurring in H(r) is such that [[B(r)]]UL = f; there is r ∈ instantiate(Π) with α ∈ B+(r), [[H(r)]]UL = f and
[[B(r)\{α}]]UL = t; there is r ∈ instantiate(Π) with H(r) of the form (2), α ∈ atoms, |atoms∩L| ≥ t2 and
[[B(r)]]UL = t.

The explaining derivation operator DΠ is defined as

DΠ(L,U) := (L∪{α ∈ base(Π) |Π,L,U ` α},
U \{α ∈ base(Π) |Π,L,U ` not α}).

Let (L,U)v (L′,U ′) denote the fact that L⊆ L′ ⊆U ′ ⊆U , i.e., everything that is true w.r.t. (L,U) is true
w.r.t. (L′,U ′), and everything that is false w.r.t. (L,U) is false w.r.t. (L′,U ′).

Lemma 1. Operator DΠ is monotonic w.r.t. v .

Proof. For (L,U) v (L′,U ′), we shall show that DΠ(L,U) v DΠ(L′,U ′) holds. For α ∈ DΠ(L,U)1 \L
such that α /∈ L′, we have Π,L,U ` α , that is, there is r ∈ instantiate(Π) such that α occurs in H(r) and
[[B(r)]]UL = t. As (L,U) v (L′,U ′), we have that [[B(r)]]U

′

L′ = t, that is, Π,L′,U ′ ` α holds, and therefore
α ∈ DΠ(L′,U ′)1 \L.

For α ∈U \DΠ(L,U)2 such that α ∈U ′, we have Π,L,U ` not α , and therefore we have three cases:

1. Each rule r ∈ instantiate(Π) with α occurring in H(r) is such that [[B(r)]]UL = f. As (L,U) v
(L′,U ′), [[B(r)]]U

′

L′ = f holds.

2. There is r ∈ instantiate(Π) with α ∈ B+(r), [[H(r)]]UL = f and [[B(r)\{α}]]UL = t. As (L,U) v
(L′,U ′), [[H(r)]]U

′

L′ = f and [[B(r)\{α}]]U ′L′ = t.

3. There is r ∈ instantiate(Π) with H(r) of the form (2), α ∈ atoms, |atoms∩L| ≥ t2 and [[B(r)]]UL = t.
As (L,U)v (L′,U ′), |atoms∩L′| ≥ t2 and [[B(r)]]U

′

L′ = t.

In any case, Π,L′,U ′ ` α holds, and therefore α ∈U ′ \DΠ(L′,U ′)2.

Lemma 2. L⊆ A⊆U implies DΠ(L,U)1 ⊆ A⊆ DΠ(L,U)2.

Proof. For α ∈DΠ(L,U)1\L we have Π,L,U `α , that is, there is r∈ instantiate(Π) such that [[B(r)]]UL =
t. Hence, A |= B(r), and therefore expand(r,A) ⊆ reduct(Π,A). In particular, α ← B(r) belongs to the
reduct, and therefore α ∈ A.

For α ∈U \DΠ(L,U)2 we have Π,L,U ` not α and we have to show that α /∈ A. Three cases:

1. Each rule r ∈ instantiate(Π) with α occurring in H(r) is such that [[B(r)]]UL = f.

2. There is r ∈ instantiate(Π) with α ∈ B+(r), [[H(r)]]UL = f and [[B(r)\{α}]]UL = t.

3. There is r ∈ instantiate(Π) with H(r) of the form (2), α ∈ atoms, |atoms∩L| ≥ t2 and [[B(r)]]UL = t.

In the first case, A\{α} |= reduct(Π,A), and therefore A\{α}= A because A is an answer set of Π. In
the other two cases, α /∈ A because A |= Π by assumption.

The explaining derivation from (L,U) is obtained as the fix point of the sequence (L0,U0) := (L,U),
(Li+1,Ui+1) := DΠ(Li,Ui) for i≥ 0. Note that the fix point is reached in at most |base(Π)| steps because
of Lemma 1 and each application of DΠ reduces the undefined atoms (or is a fix point). Thus, the system
eventually terminates in at most |base(Π)| steps.

Lemma 3. For any answer set A of Π, set base(Π)\A is an assumption set for Π and A.



M. Alviano, L.L. Trieu, T.C. Son & M. Balduccini 33

Proof. Let (L,U) be the explaining derivation from ( /0,base(Π)\A). Thanks to Lemma 2, it is sufficient
to show that p(c) ∈ A implies p(c) ∈ L. Let us consider a topological ordering C1, . . . ,Cn (n≥ 1) for the
strongly connected components of GΠ, and let p ∈Ci. We use induction on i. Since p(c) ∈ A, there must
be r ∈ reduct(Π,A) such that H(r) = p(c) and A |= B(r). Hence, [[B−(r)]]UL = t. Moreover, [[BΣ(r)]]UL = t,
either because i = 1 and BΣ(r) = /0, or because of the induction hypothesis. Therefore, to have α /∈ L, it
must be the case that [[B+(r)]]UL 6= t for all such rules, but in this case L |= reduct(Π,A), a contradiction
with the assumption that A is an answer set of Π.

Given Lemma 3, the proof of Main Theorem is immediate by the definition of MAS(Π,A,α) as
following:

Proof of Main Theorem. By definition, a minimal assumption set for Π, A and α is a set X ∈ AS(Π,A)
such that X ′ ⊂ X implies X ′ /∈ AS(Π,A), and α ∈ X implies α ∈ X ′ for all X ′ ∈ AS(Π,A). Lemma 3
guarantees the existence of an assumption set for Π and A. Existence of a minimal assumption set for Π,
A and α is therefore guaranteed.

5 Generation via Meta-Programming

By leveraging ASP systems, the concepts introduced in Section 3 can be computed. A meta-programming
approach is presented in this section, where the full language of ASP is used, including constructs omitted
in the previous sections, like weak constraints, uninterpreted functions, conditional literals and @-terms.
The reader is referred to [5] for details. We will use the name ASP programs for encodings using the full
language of ASP, in contrast to the name program that we use for encodings using the restricted syntax
introduced in Section 2.

Program Π, answer set A and the atom to explain are encoded by a set of facts obtained by com-
puting the unique answer set of the ASP program serialize(Π,A,α), defined next. Each atom p(c)
in base(Π) is encoded by a fact atom(p(c)); moreover, the encoding includes a fact true(p(c))
if p(c) ∈ A, and false(p(c)) otherwise; additionally, if p(c) is false in wf (Π,A), the encoding in-
cludes a fact explained_by(p(c), initial_well_founded). As for α , the encoding includes a
fact explain(α). Each rule r of instantiate(Π) is encoded by

rule(id(X)) :- atom(p1(t1)), ..., atom(pn(tn)).

where id is an identifier for r, X are the global variables of r, and B+(r)= {pi(ti) | i= 1, . . . ,n}; moreover,
the encoding includes

head(id(X),p(t)) :- rule(id(X)).

pos_body(id(X),p′(t ′)) :- rule(id(X)).

neg_body(id(X),p′′(t ′′)) :- rule(id(X)).

for each p(t) occurring in H(r), p′(t ′) ∈ B+(r) and p′′(t ′′) ∈ B(r); additionally, for each aggregate α of
the form (1) in BΣ(r), the encoding includes

pos_body(id(X),agg(X)) :- rule(id(X)).
aggregate(agg(X)) :- rule(id(X)).
true(agg(X)) :- rule(id(X)),

#sum{ta, t ′ : true(p(t))}� tg.
false(agg(X)):- rule(id(X)), not true(agg(X)).

rule(agg(X)):- aggregate(agg(X)),true(agg(X)).
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head(agg(X),agg(X)) :- rule(agg(X)).
pos_body(agg(X),p(t)):- rule(agg(X)),true(p(t)).
neg_body(agg(X),p(t)):-rule(agg(X)),false(p(t)).

rule((agg(X),p(t))) :- aggregate(agg(X)), false(agg(X)), atom(p(t)).
head((agg(X),p(t)),agg(X)):- rule((agg(X),p(t))).
pos_body((agg(X),p(t)),p(t)) :- rule((agg(X),p(t))), false(p(t)).
neg_body((agg(X),p(t)),p(t)) :- rule((agg(X),p(t))), true(p(t)).

where agg is an identifier for α; finally, if H(r) is a choice of the form (2), the encoding includes

choice(id(X),t1,t2) :- rule(id(X)).

Note that a true ground aggregate of the form (1) identified by agg(c) is associated with a single rule
whose body becomes true after all instances of p(t) are assigned the truth value they have in the answer
set A; on the other hand, a false aggregate is associated with one rule for each instance of p(t), whose
bodies becomes false when instances of p(t) are assigned the truth value they have in the answer set A.

Example 8. Recall Πrun and Arun from Examples 2–3. The ASP program serialize(Πrun,A,arc(a,b))
includes

atom(edge(a,b)). atom(arc(b,a)). atom (arc(a,b)). explain(arc(a,b)).
true(edge(a,b)). true(arc(b,a)). false(arc(a,b)).

rule(r4(X,Y)) :- atom(edge(X,Y)).
choice(r4(X,Y),1,1) :- rule(r4(X,Y)).
head(r4(X,Y), arc(X,Y)) :- rule(r4(X,Y)).
head(r4(X,Y), arc(Y,X)) :- rule(r4(X,Y)).
pos_body(r4(X,Y), edge(X,Y)):- rule(r4(X,Y)).

aggregate(agg1(T)) :- rule(r9(T)).
true(agg1(T)) :- rule(r9(T)), #sum{1,X,Y : true(fail(X,Y))} > T.

and several other rules. The answer set of serialize(Πrun,A,arc(a,b)) includes, among other atoms,
aggregate(agg1(0)) and false(agg1(0)). �

The ASP program ΠMAS reported in Figure 3, coupled with a fact for each atom in the answer set of
serialize( ,A,α), has optimal answer sets corresponding to cardinality-minimal elements in MAS(Π,A,α).
Intuitively, line 1 guesses the assumption set, line 2–3 minimizes the size of the assumption set (prefer-
ring to not assume the falsity of the atom to explain), and lines 4–5 impose that each atom must have
exactly one explanation. The other rules encode the explaining derivation for Π and A from wf (Π,A)\X ,
where X is the guessed assumption set.

Given a minimal assumption set encoded by predicate assume_false/1, an explaining derivation
can be computed by removing lines 1–3 from the ASP program ΠMAS. Let ΠEXP be such an ASP program.
Finally, given an explaining derivation encoded by explained_by(Index,Atom,Reason), with the
additional Index argument encoding the order in the sequence, a DAG linking atoms according to the
derivation can be computed by the ASP program ΠDAG reported in Figure 4.

Example 9. Let ΠS have a fact for each atom in the answer set of serialize(Πrun,Arun,arc(a,b)). ΠMAS∪
ΠS generates the empty assumption set. ΠEXP∪ΠS ∪ /0 generates an explaining derivation, for example
one including explained_by(edge(a,b),(support,r6)), explained_by(arc(b,a),(support,r1(a,b))) and
explained_by(arc(a,b),(choice_rule,r1(a,b))). Let ΠE have a fact for each instance of explained_by/3
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1 {assume_false(Atom)} :- false(Atom), not aggregate(Atom).
2 :∼ false(Atom), assume_false(Atom), not explain(Atom). [1@1, Atom]
3 :∼ false(Atom), assume_false(Atom), explain(Atom). [1@2, Atom]

4 has_explanation(Atom) :- explained_by(Atom,_).
5 :- atom(X), #count{Reason: explained_by(Atom,Reason)} != 1.

6 explained_by(Atom, assumption) :- assume_false(Atom).

7 {explained_by(Atom, (support, Rule))} :- head(Rule,Atom), true(Atom);
8 true (BAtom) : pos_body(Rule,BAtom); has_explanation(BAtom) : pos_body(Rule,BAtom);
9 false(BAtom) : neg_body(Rule,BAtom); has_explanation(BAtom) : neg_body(Rule,BAtom).

10 {explained_by(Atom, lack_of_support)} :- false(Atom); false_body(Rule) : head(Rule,Atom).
11 false_body(Rule) :- rule(Rule); pos_body(Rule,BAtom), false(BAtom), has_explanation(BAtom).
12 false_body(Rule) :- rule(Rule); neg_body(Rule,BAtom), true(BAtom), has_explanation(BAtom).

13 {explained_by(Atom, (required_to_falsify_body, Rule))} :- false(Atom), not aggregate(Atom);
14 pos_body(Rule,Atom), false_head(Rule); true(BAtom) : pos_body(Rule,BAtom), BAtom != Atom;
15 has_explanation(BAtom) : pos_body(Rule,BAtom), BAtom != Atom;
16 false(BAtom) : neg_body(Rule,BAtom); has_explanation(BAtom) : neg_body(Rule,BAtom).
17 explained_head(Rule) :- rule(Rule); has_explanation(HAtom) : head(Rule,HAtom).
18 false_head(Rule) :- explained_head(Rule), not choice(Rule,_,_);
19 false(HAtom) : head(Rule,HAtom).
20 false_head(Rule) :- explained_head(Rule), choice(Rule, LowerBound, UpperBound);
21 not LowerBound <= #count{HAtom' : head(Rule,HAtom'), true(HAtom')} <= UpperBound.

22 {explained_by(Atom, (choice_rule, Rule))} :- false(Atom);
23 head(Rule,Atom), choice(Rule, LowerBound, UpperBound);
24 true(BAtom) : pos_body(Rule,BAtom); has_explanation(BAtom) : pos_body(Rule,BAtom);
25 false(BAtom) : neg_body(Rule,BAtom); has_explanation(BAtom) : neg_body(Rule,BAtom);
26 #count{HAtom : head(Rule, HAtom), true(HAtom), has_explanation(HAtom)} = UpperBound.

Figure 3: ASP program ΠMAS for computing a minimal assumption set
in the explaining derivation. ΠDAG∪ΠS∪ΠE generates a DAG, for example one including link(arc(b,a),
edge(a,b)), link(arc(a,b),arc(b,a)) and link(arc(a,b),edge(a,b)). �

6 Implementation and Experiment

We deployed an XAI system for ASP named xASP2 , which is powered by the clingo python api

[8]. By taking an ASP program Π, one of its answer sets A, and an atom α as input, xASP2 is capable
of producing minimal assumption sets, explaining derivations, and DAGs as output to assist the user in
determining the assignment of α . The source code is available at https://github.com/alviano/xasp and an
example DAG is given at https://xasp-navigator.netlify.app/.

The pipeline implemented by xASP2 starts with the serialization of the input data, which is obtained
by means of an ASP program crafted from the abstract syntax tree of Π and whose answer set identifies
the relevant portion of instantiate(Π) and base(Π). In a nutshell, ground atoms provided by the user,
A∪ {α}, are part of base(Π) and used to instantiate rules of Π (by matching positive body literals),
which in turn may extend base(Π) with other ground atoms occurring in the instantiated rules; possibly,
some atoms of base(Π) of particular interest can be explicitly provided by the user. Aggregates are also
processed automatically by means of an ASP program, and so is the computation of false atoms in the
well-founded derivation wf (Π,A).

Obtained serialize(Π,A,α), xASP2 proceeds essentially as described in Section 5, by computing
a minimal assumption set, an explaining derivation and an explanation DAG. As an additional opti-

https://github.com/alviano/xasp
https://xasp-navigator.netlify.app/
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1 link(Atom, BAtom) :- explained_by(_, Atom, (support, Rule)); pos_body(Rule, BAtom).
2 link(Atom, BAtom) :- explained_by(_, Atom, (support, Rule)); neg_body(Rule, BAtom).

3 {link(Atom, A) : pos_body(Rule,A), false(A), explained_by(I,A,_), I < Index;
4 link(Atom, A) : neg_body(Rule,A), true (A), explained_by(I,A,_), I < Index} = 1 :-
5 explained_by(_, Atom, lack_of_support); head(Rule, Atom).

6 link(Atom,A) :- explained_by(_, Atom, (required_to_falsify_body, Rule)); head(Rule,A).
7 link(At,A) :- explained_by(_,At,(required_to_falsify_body, Rule)); pos_body(Rule,A), A!=At.
8 link(Atom,A) :- explained_by(_,Atom,(required_to_falsify_body, Rule)); neg_body(Rule,A).

9 link(Atom, HAtom) :- explained_by(_,Atom,(choice_rule, Rule)); head(Rule,HAtom), true(HAtom).
10 link(Atom, BAtom) :- explained_by(_, Atom, (choice_rule, Rule)); pos_body(Rule, BAtom).
11 link(Atom, BAtom) :- explained_by(_, Atom, (choice_rule, Rule)); neg_body(Rule, BAtom).

Figure 4: ASP program ΠDAG for computing a directed acyclic graph associated with an explaining derivation
mization, the explaining derivation is shrunk to the atoms reachable from α , utilizing an ASP pro-
gram. Finally, the user can opt for a few additional steps: obtain a graphical representation by means
of the igraph network analysis package (https://igraph.org/); obtain an interactive representation in
https://xasp-navigator.netlify.app/; ask for different minimal assumption sets, explaining derivations and
DAGs.

We assessed xASP2 empirically on the commercial application. The ASP program comprises 420
rules and 651 facts. After grounding, there are 4261 ground rules and 4468 ground atoms. The program
was expected to have a unique answer set, but two answer sets were actually computed. Our experiment
was run on an Intel Core i7-1165G7 @2.80 GHz and 16 GB of RAM. xASP2 computed a DAG for the
unexpected true atom, behaves_inertially(testing_posTestNeg,121), in 14.85 seconds on
average, over 10 executions. The DAG comprises 87 links, 45 internal nodes and 20 leaves, only one of
which is explained by assumption; only 30 of the 420 symbolic rules and 11 of the 651 facts are involved
in the DAG; at the ground level, only 48 of the 4261 ground rules and 65 of the 4468 ground atoms
are involved. Additionally, we repeated the experiment on 10 randomly selected atoms with respect to
two different answer sets, repeating each test case 10 times. We measured an average runtime of 14.79
seconds, with a variance of 0.004 seconds.

Table 1: The action preconditions and effects in Blockworlds problem

Action Precondition Effects
stack(X ,Y )
- stack block X is on
block Y

Block Y is clear
The agent holds the block X

X is clear
X is on Y
Y is no longer clear
The agent does not hold anything

unstack(X ,Y )
- unstack block X is
on block Y

X is clear
X is on Y
The agent does not hold anything

The agent holds the block X
Y becomes clear
X is not clear

pickup(X)
- pickup block X
from the table

X is clear
X is on the table
the agent does not hold anything

The agent holds the block X
X is no longer on the table and is not
clear

putdown(X)
- put down block X
onto the table

The agent holds the block X X is clear
X is on the table
the agent does not hold anything

xASP2 also has the ability to handle explainable planning, meaning it can generate an explanation

https://igraph.org/
https://xasp-navigator.netlify.app/
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Figure 5: The initial and goal states of Blocksworld.

1 h(X,T+1) :- action(action(A)),occurs(A,T), postcondition(action(A),
effect(unconditional),X,value(X,true)).

2 -h(X,T+1) :- action(action(A)),occurs(A,T), postcondition(action(A),
effect(unconditional),X,value(X,false)).

3 h(X,T+1) :- h(X,T), not -h(X,T+1).
4 -h(X,T+1) :- -h(X,T), not h(X,T+1).
5 non_exec(A,T) :- action(action(A)), not h(X,T), precondition(action(A),X,value(X, true)).
6 non_exec(A,T) :- action(action(A)), not -h(X,T), precondition(action(A),X,value(X, false)).
7 :- action(action(A)),occurs(A,T), non_exec(A,T).

Figure 6: ASP program for reasoning about effects of actions [12]
graph showing why a particular action cannot take place at a certain time. To demonstrate this capability,
we will use a popular problem known as Blocksworld. The initial state (left) and goal state (right) of the
problem are shown in Figure 5. Five fluents are on(X ,Y ) - block X is on block Y , onTable(X) - block
X is on the table, clear(X) - block X is clear, holding(X) - the agent holds the block X , and handEmpty
- the agent does not hold anything. Four differnt actions are stack, unstack, pickup and putdown. The
domain description of the problem is shown in Table 1 in which the predictions and effects of four actions
are presented.

The rules for reasoning about effects of actions, action generation and goal enforcement [12] are
utilized as programming input in xASP2 . Figure 6 shows the ASP program for reasoning about the
effects of actions in which an action occurs only when its preconditions are true and then its effects are
true in the next time step. Specifically, lines 5 and 6 are used to define states in which an action cannot
be executed, and constraint is employed to prevent non-executable actions from occurring (line 7).

For the problem described in Figure 5, executing the actions of unstack(a,b), putdow(a), pickup(b)
and stack(b,a) at times 0, 1, 2, and 3 respectively constitutes the optimal plan (assuming time starts at
0). However, if users are in a rush and want to put down block a on the table at time 0, as represented
by the atom occurs((”putdown”,constant(”a”)),0), they will encounter a false occurrence of the ac-
tion putdown(a). Figure 6 shows that atom occurs((”putdown”,constant(”a”)),0) is false because the
constraint rule prevents its execution and the prediction of the action holding block a is invalid/false.

7 Related Work

Our work, as stated in the introduction, is situated within the realm of XAI and can be used as a debugging
tool to provide explanations for an unexpected result. For instance, if an element α is false in all answer
sets of a program Π despite user expectations, our system can help identify which rules are contributing
to this anomalous behavior. Thus, in this section, we will explore both debugging tools for ASP and
cutting-edge XAI systems designed for ASP.

In Table 2, a summary of the compared features is presented. The features include as follows:
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Figure 7: The DAG for atom occurs((”putdown”,constant(”a”)),0).
whether the explanation is guaranteed to be acyclic; the capability to handle the input program with
aggregates and constraints; the ability to provide an explanation when the query atom can be false in the
answer set; and whether the system is available for experimentation. As can be seen from Table 2, our
system is capable of providing explanations for false atoms and does not lead to cyclic argumentation
in the explanation. xASP2 is the only system that tackles a program that includes both aggregates and
constraints. It is worth noting that the topic of aggregates is addressed in another approach [11], even
though no system implementing this approach is mentioned or available.

8 Conclusion

We have developed and implemented xASP2 , an XAI system that targets the ASP language and is
powered by ASP engines. Our approach to explaining why an atom is true/false in an answer set involves
deriving easy-to-understand inferences originating from a hopefully small set of atoms assumed false.
xASP2 has the ability to support different clingo constructs such as aggregates and constraints. It
produces an explanation as a DAG with the atom to be explained as the root and takes a few seconds
to compute the explanation in our test cases. Further investigation to include ASP’s other linguistic
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Table 2: Summary of compared features

System (if any)
and reference

Acyclic
explanation

Linguistic
extentions

Explanation for
false atoms

System
availability

s(CASP) [1] Yes Constraints Yes Yes
ASPeRiX [2] Yes Constraints Yes Yes
spock [3] Yes Constraints No Yes

xclingo [4] Yes None No Yes
DWASP [6] Yes Constraints No Yes

[11] No Aggregates Yes No
Visual-DLV [15] Yes Constraints No Yes

[16] No None Yes No
LABAS [17] No None Yes Yes

exp(ASPc) [18] No Constraints Yes Yes
[20] Yes None Yes No

xASP2 Yes Aggregates and Constraints Yes Yes

constructs such as conditional literals, beyond those currently supported, present in the future work.
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In this work, which is done in the context of a (moded) logic programming language, we devise a
data-flow analysis dedicated to computing what we call argument profiles. Such a profile essentially
describes, for each argument of a predicate, its functionality, i.e. the operations in which the argu-
ment can be involved during an evaluation of the predicate, as well as how the argument contributes
to the consumption and/or construction of data values. While the computed argument profiles can
be useful for applications in the context of program understanding (as each profile essentially pro-
vides a way to better understand the role of the argument), they more importantly provide a way to
discern between arguments in a manner that is more fine-grained than what can be done with other
abstract characterizations such as types and modes. This is important for applications where one
needs to identify correspondences between the arguments of two or more different predicates that
need to be compared, such as during clone detection. Moreover, since a total order can be defined
on the abstract domain of profiles, our analysis can be used for rearranging predicate arguments and
order them according to their functionality, constituting as such an essential ingredient for predicate
normalization techniques.

1 Introduction

When writing code, subroutines (be it methods, procedures, functions or predicates) and their arguments
play an important role, as they constitute the main mechanism by which the programmer can make
his or her code modular and general and thus applicable in different contexts. While this is true in
any language, it is even more so in declarative languages where modularity is often more fine-grained,
resulting in lots of small functions and predicates, and where the lack of iterative control structures makes
induction-based control (which itself heavily relies on argument manipulation) the rule rather than the
exception [11]. In this work we consider logic programming and thus predicates as the program’s main
building blocks.

Understanding the source code of a predicate requires thus understanding the role of the arguments
involved, and the data flow relations expressed within the code. If one pursues debugging purposes
for instance, statically inferring upon which potential instructions (or, in a logic programming context,
atoms) each argument does or does not have influence is crucial to better understand the program at
hand [14, 24]. While dataflow analysis is a well-known and indispensable ingredient in applications such
as code comprehension [13], compiler optimization [3] and automatic parallelization [17], its potential
has, to the best of our knowledge, been less explored in applications such as code normalization, anti-
unification and clone detection [18, 19] which is the prime motivation for the current work.

Indeed, when comparing predicate definitions during clone detection or anti-unification, one wants to
detect as many (dis)similarities as possible [27]. It is then often important to consider the right matching
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between the respective arguments, as the following somewhat contrived example shows. Consider the
traditional definition of the append/3 predicate and another predicate, concat/3:

append ( [ ] , L , L ) .
append ( [X | Xs ] ,Y , [ X | Zs ] ) : − append ( Xs , Y, Zs ) .

c o n c a t ( L , [ ] , L ) .
c o n c a t ( [ E | Zs ] , [ E | Es ] ,Y) : − c o n c a t ( Zs , Es ,Y ) .

Intuitively it is clear that the two predicates define essentially the same ternary relation, where one
argument is the concatenation of the two others. The code of the two predicates differs not only in
the names of the variables used, but also in the role played by the arguments. Indeed, for an atom
append(t1,t2,t3) to succeed, t3 must be the concatenation of t1 and t2 whereas for concat(t1,t2,t3) to
succeed, it is t1 that must be the concatenation of t2 and t3. For an analysis to detect that one of these
predicates is a "clone" – a textual variant (renaming) of the other modulo a permutation of the arguments,
it needs to consider potentially all possible argument permutations which adds a non-negligible factor to
the complexity of the detection process. In fact, the search for a so-called argument mapping (designating
the pairing of corresponding arguments in two predicates) that maximizes the outlined similarity of the
involved definitions is one of the key factors rendering a search-based clone detection procedure or, more
broadly, the computation of so-called predicative anti-unification intractable [28]. This is especially true
when the predicates to be compared are composed of more than a few clauses, since for each suitable
argument mapping, there might exist a large number of potential clause mappings that should be explored
to find a functional link between the predicates to be compared.

It is not hard to see that the problem of finding a suitable argument mapping can be alleviated by
taking adequate abstractions into account. Type- and mode information, for instance, can substantially
reduce the number of argument mappings to consider, at least if a sufficient number of arguments are of
different type and/or mode. In the example above type information does not really help (as all arguments
are supposed to be of the same list type), but using mode information allows to limit the search for
corresponding arguments to the subset of input, respectively output arguments of each predicate.

In a more general setting, the question is related to the problem of reordering the arguments in a
standard (and preferably unique) way such that arguments playing a similar role (in different predicates)
are positioned in similar positions. Ordering arguments is an important aspect of code normalization, a
process that, generally speaking, aims at restructuring and simplifying code fragments or programs into
some kind of normal or canonical form [5, 2] Again, while type and mode information can be used to
classify arguments, it is generally not sufficient to sort all of the arguments in a unique way.

In this work, we introduce the notion of an argument profile being an abstract characterization of
how that argument is used within the predicate and we devise an analysis capable of computing such
profiles. Our approach encompasses, to some extent, type and mode information, but goes further by
incorporating into the abstract domain the operations in which the argument participates. While the
result of our analysis is not guaranteed to identify each and every argument by a unique value, examples
show that it is capable of distinguishing between arguments much more precisely than approaches using
only type and mode information.

2 Basic Concepts and Notations

In this paper we consider a simple logic language L where predicates, clauses, atoms and terms are
used and defined in a style similar to that of Prolog. The language is however moded and represents,
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as such, certain similarities with (a subset of) Mercury [12]. We assume given a finite set of variables
V , a finite set of functor symbols F and a finite set of predicate symbols P . As usual variables in V

are strings starting with an uppercase letter while functors and predicates from F , respectively P are
written p/n where p is a string starting with a lowercase letter or symbol called the name of the functor
(resp. predicate) and n ∈ N its arity, i.e. its number of arguments. We will ease notation by supposing
that if a predicate (or functor) p/n exists in the program, then no predicate (or functor) p/m with m 6= n

can exist, so that a predicate (or functor) p/m will sometimes simply be referred to as p. The set of terms
constructed from V and F is denoted T . A term t ∈ T is said to be ground if it contains no variables.

A program is defined as a set of predicate definitions, where each predicate is defined by a set
of clauses. For simplicity, we will consider only definite clauses, that is each clause is of the form
H ← B1, . . . ,Bn where H is an atom denoted the head of the clause, and B1, . . . ,Bn a conjunction of
atoms denoting its body. We furthermore assume that the head of a clause contains only variables as
arguments (all unifications are made explicit in the body) and that all clauses defining a predicate share
the same head. For a predicate p we will use def (p) to denote the set of clauses in its definition and
args(p) to denote the sequence of its formal argument variables. With a slight abuse of notation we
denote by args(p)i the ith formal argument of p (i being a number between 1 and the arity of p). For any
given program construction c, be it a predicate, a clause, an atom or a clause head, we denote by vars(c)
the set of variables occurring in c. We will suppose that each atom in the program is uniquely identified
by a natural number from N that will be referred to as the atom’s program point in the program.

We will restrict ourselves to programs that are directly recursive to ease the analysis formulation and
obtain concrete and efficient results [7]. Without loss of generality, we will also assume that clause bodies
are in some standard, flattened, form in which each atom is either a predicate call having only variables
as arguments, or a unification between variables and/or terms in which each term has only an outermost
functor (its arguments being variables). We consider our language to be moded: each argument appearing
in a clause’s head is characterized as being either input or output. The argument modes restrict the usage
of the predicate in the sense that any call to the predicate must provide a fully instantiated (ground) value
for the input arguments, whereas each output argument will be a free variable that is guaranteed to be
bound to a ground value upon success of the call. Likewise, unifications are moded as well.

Definition 1. A moded unification is an atom in one of the following forms.

• V ⇒ f (X1, . . . ,Xn), called deconstruction, where V is supposed to be input and X1, . . . ,Xn output. It

succeeds if the value bound to V has f/n as an outermost functor in which case it binds X1, . . . ,Xn

to the values figuring in the arguments of f/n.

• V ⇐ f (X1, . . . ,Xn), called construction, where V is supposed to be output and X1, . . . ,Xn input.

The construction succeeds if during evaluation f (X1, . . . ,Xn) is a ground value that can be bound

to the free variable V .

• V ↔W, called test, where both V and W are supposed to be input. The test succeeds if both V and

W are bound to identical ground values.

• V := W, called assignment, where V is supposed to be output, and W input. The assignment

succeeds if W is bound to a ground value that can be assigned to the free variable V .

Given these constructions and the moded context, our predicates do to some extent resemble what
are called procedures in Mercury [12].

Example 1. If we represent lists in the usual way, by a functor nil representing the empty list and a func-

tor cons/2 for list construction, the predicate app/3 below, to be used in a mode (input,input,output)
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realizes the classical ground list concatenation operation in L . The first two arguments are thus sup-

posed to be input, the third one output. The subscript numbers represent the atoms’ program points.

app(X ,Y,Z) ← X ⇒1 nil,Z :=2 Y.
app(X ,Y,Z) ← X ⇒3 cons(E,Es),app4(Es,Y,Zs),Z⇐5 cons(E,Zs).

In the remainder of the paper, we will use A to represent the set of atoms (predicate calls and
unifications) as they can occur in the program text, i.e. in the flat form defined above. For an atom
A ∈ A , we denote by in(A) the input arguments of A and by out(A) its output arguments. Note that
this only concerns variables, i.e. for any A ∈ A we have in(A) ⊆ vars(A) and out(A) ⊆ vars(A). As
usual, a substitution is a mapping from variables to terms and applying a substitution θ to a syntactical
construct e, written eθ , denotes the construct obtained by simultaneously replacing in e all variables from
the domain of θ , denoted dom(θ), with their corresponding value. Given substitutions θ and σ , their
composition θ ◦σ is also written as θσ . A renaming ρ : V 7→ V is a special kind of substitution as it is
an injective (and idempotent) mapping between variables.

We suppose that programs, when executed, behave in a mode-correct way, meaning that if an instance
of an atom (be it a unification or a predicate call) is selected for resolution, the arguments in the atom’s
input positions are bound to ground values, whereas the arguments in the output positions are unbound
variables. To formalize the semantics of our language, we thus introduce the notion of a mode-correct
instance.

Definition 2. Let A ∈ A be an atom (predicate call or unification). We say that A′ is a mode-correct

instance of A if and only if there exists a substitution θ such that A′ = Aθ and

(1) ∀X ∈ in(A) : θ(X) is a ground term;

(2) ∀X ∈ out(A) : θ(X) is a free variable if X ∈ dom(θ).

The semantics of the moded unifications defined above can easily be defined as follows:

Definition 3. Let U ∈A denote a unification and Uθ (for some substitution θ ) a mode-correct instance.

Then we say that Uθ succeeds with answer θ ′ if and only if the following holds:

• If U is of the form X ⇒ f (Y1, . . . ,Yn) it holds that θ(X) = f (t1, . . . , tn) and θ ′ = {Y1/t1, . . . ,Yn/tn}.

• If U is of the form X ⇐ f (Y1, . . . ,Yn) it holds that θ ′ = {X/ f (θ(Y1), . . . ,θ(Yn))}.

• If U is of the form X ↔ Y it holds that θ(X) = θ(Y ) and θ ′ = /0.

• If U is of the form X := Y it holds that θ ′ = {X/θ(Y )}.

The operational semantics of a program is defined in function of a query as usual.

Definition 4. Given a program P, let Q be a query of the form← A1, . . . ,An. We say that a query Q′ is
derived from Q with answer θ if and only if one of the following conditions holds:

1. A1 is a mode-correct instance of a unification that succeeds with answer θ , and Q′ is the query

← (A2, . . . ,An)θ .

2. A1 is a mode-correct instance p(t1, . . . , tn) of the head H = p(X1, . . . ,Xn) of a (renamed apart)

clause H ← B1, . . . ,Bk ∈ P and Q′ is the query ← (B1, . . . ,Bk,A2, . . . ,An)θ where it holds that

θ = {X1/t1, . . . ,Xn/tn}.

The above definition is basically equivalent to a traditional SLD-resolution step (with a leftmost
selection rule) except for the explicit handling of the (moded) unifications and the limitation to resolving
mode-correct instances of atoms only. Next, we can define the notion of a derivation as a sequence of
individual derivation steps.
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Definition 5. Given a program P and query Q0. A derivation for Q in P is a sequence of queries

and substitutions Q0
θ0→ Q1

θ1→ . . .
θn−1
→ Qn such that Qi is derived from Qi−1 with answer θi−1 for each

1 ≤ i ≤ n. If Qn is the empty query ⋄ then we say that the derivation is successful and has associated

computed answer substitution θ0θ1 . . .θn−1.

Again, our notion of a derivation is essentially equivalent to an SLD-derivation with a left-to-right
selection rule. However, as a consequence of the simple mode system, all computed answers are ground
substitutions.

3 Argument and Predicate Profiles

The analysis described in the next section essentially interprets a well-moded logic program and registers
the encountered operations into special sets called interaction sets that will in the end allow to define a
so-called profile for each of the predicate’s arguments. The key idea of this section is to formalize the
values that will be computed and manipulated by our analysis.

First, let us abstract n-ary computations by the dataflow relations that are exhibited between the
arguments of a predicate, each dataflow relation being annotated by the set of operations that participate
in the relation. Among the operations of interest are the basic unification operators defined by the set B

as follows:
B = {:=,↔}∪

⋃

f∈F

{⇐ f ,⇒ f }

For a given argument, we will represent a single dataflow relation it participates in by means of an o-set,
the latter being essentially a tuple (o, j) in which o represents a subset of operations (from a given set
of admissible operations, like B above) and j a natural number representing the position of one of the
(other) arguments. More formally:

Definition 6. Given a set of operations S, we define the set of o-sets over S as

OS(S) = {(o, j) |o ∈ P(S) and j ∈ N}

In general, an argument participates in more than one dataflow relation, relating it to several other
arguments (each time by means of a set of operations). To represent such a set of dataflow relations, we
introduce the notion of an argument profile. Intuitively, an argument profile for the i’th argument of p/n

denotes a set of dataflow dependencies with some of the other arguments of p, where each dependency
is represented – through an o-set – by the set of operations linking both arguments. Formally, we define
the notion of an argument profile for an n-ary operation as follows:

Definition 7. Given a set of operations S and n∈N, we define an argument profile for an n-ary operation

with respect to S as a set A ⊆ OS(S) where for each (o, j) ∈ A we have that j ∈ {1, . . . ,n}. We will use

APn(S) to represent the set of all possible argument profiles for an n-ary operation with respect to S.

Example 2. The following is an argument profile: {({⇒cons, :=},2),({⇐cons},3)}. It represents the

fact that the concerned argument is involved through a deconstruction in a list, and an assignment, with

the value of the argument in position 2. It also helps building the argument in position 3 through a list

construction atom.

The above definitions are fine as long as we restrict ourselves to using operations from a fixed set
of operations such as B. However, it is worthwhile to include among the allowed operations also those
operations defined (by means of predicates) in the program itself. We will not include the predicates
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as such in the set of admissible operations as it would make the domain too dependent on the names
chosen for the predicates at hand. Rather, we will use abstractions of these predicates – notably those
abstractions our analysis aims to compute. As such, the basic idea is to represent an n-ary operation (or
predicate) by means of a term ψ(α1, . . . ,αn) where the α are argument profiles. A special term ψ⊥ is
introduced in order to represent an operation for which no argument profiles are known; in the analysis
it will be used to represent direct recursive calls. Since these ψ-based terms use argument profiles that
themselves can contain ψ-based terms, we define the set of all possible abstract operations as the least
fixed point of the following operator R:

Definition 8. Given a set of operations S, we define

R(S) = B∪{ψ⊥}∪
⋃

n∈N0

{ψ(α1, . . . ,αn) |αi ∈ APn(S)}

While lfp(R) contains some infinite terms, all terms created by our analysis will be of finite size, as
will be made clear further down. In the following we use APn to refer to the set of all possible argument
profiles for an n-ary operation with respect to OS(lfp(R)). We will refer to the elements of lfp(R) in
which a ψ appears as ψ-based operations.

In order to obtain argument profiles, the analysis will compute data flow relations within a predicate,
annotated with the operations that are encountered upon establishing the relation. We thus define an
interaction as being the association of an input variable and an output variable with a set of operations
and the program points these operations are occurring at. Formally:

Definition 9. Let p be a predicate in a program P. An interaction in p is a mapping vars(p)×vars(p) 7→

P(lfp(R)×N). Notation-wise, we will typically write V
O

V̂ to represent an interaction between a

variable V and another variable V̂ through a set O⊂ lfp(R)×N.

In order not to overload our notation, when writing interactions, we will usually drop the program
points and consider the sets of operations in an interaction to be a multiset O⊂ lfp(R). We will thus allow
doubles in the set, assuming they are operations implemented by atoms located at different program
points. We will only occasionally include program points explicitly when needed in order to explicitly
distinguish between identical operations coming from different atoms.

An important characteristic of the set of interactions describing a predicate is that for each pair
of variables, there is at most a single interaction between these variables present in the set. Another

characteristic is the fact that for any interaction V
O

V̂ it holds that V̂ cannot be an input argument, since
mode-correct input arguments cannot be constructed by computations in a predicate’s body. V does not
have such a limitation, as long as V and V̂ are distinct. More formally:

Definition 10. For a predicate p, we call a well-defined interaction set for p a set φ of interactions in

p such that for all V,V̂ ∈ vars(p) it holds that if there exists V
O

V̂ ∈ φ for some O, then the following

conditions all hold:

1. V 6= V̂ ;

2. ∄V
O′

V̂ ∈ φ : O′ 6= O;

3. V̂ ∈ args(p)⇒ V̂ is an output argument.

We will use ISetp to denote the set of all well-defined interaction sets for a given predicate p. In
case p is clear from the context, we will use the shorter notation ISet. Now we define the following
quasi-order allowing to organize ISetp in a lattice.
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Definition 11. Let p be a predicate. For φ1,φ2 ∈ ISetp we say that φ1 is more precise than φ2, denoted

φ1 ⊑ φ2, if and only if ∀V
O

V̂ ∈ φ1 : ∃V
O′

V̂ ∈ φ2 such that O⊆ O′.

That is, φ1 ⊑ φ2 when each interaction appearing in φ1 labeled by an operation set O is matched by an
interaction in φ2 that is labeled by an operation set being a superset of O, and φ2 may contain interactions
involving pairs of variables that are not linked by an interaction in φ1. We now define the following
operator.

Definition 12. For a predicate p, let φ ∈ ISetp and let V
O

V̂ be an interaction for p. Then we define

(V
O

V̂ ) ⊔ φ =







{V
O

V̂}∪φ if ∄(V
O′

V̂ ) ∈ φ for some O′

(φ \{V
O′

V̂})∪{V
O∪O′

V̂} otherwise

Note that adding an interaction to a well-defined interaction set results in a well-defined interaction
set. It can also be easily seen that when constructing a well-defined interaction set, the order in which
the individual interactions are added has no influence on the final result. Consequently, we can extend
the ⊔ operator such that it merges two well-defined interaction sets:

Definition 13. Let φ and φ ′ be well-defined interaction sets for a predicate p. Then we define φ ⊔φ ′ as

the following well-defined interaction set: φ ⊔φ ′ =
⊔

V
O

V̂∈φ

(V
O

V̂ )⊔φ ′.

Proposition 1. For a predicate p, (ISetp,⊔) is a join semi-lattice.

Proof. We need to prove that for a predicate p, the ⊔ : ISetp× ISetp 7→ ISetp operation is idempotent,
associative and commutative. This follows directly from the definition of ⊔ (being essentially a union
operation on sets of interactions and possibly on sets of operations) and the fact that the union operator
on sets is itself idempotent, associative, and commutative.

The induced partial order, namely ⊑, is such that φ ⊑ φ ′ if and only if φ ⊔ φ ′ = φ ′, so that we
get a partially ordered set (ISetp,⊑) in which each subset {φ1, . . . ,φn} has a least upper bound, namely
⊔{φ1, . . . ,φn}. The partially ordered set has a minimal element, namely the empty set {} which we will
refer to by ⊥ as it is a unit for the join operator: ∀φ ∈ ISetp :⊥⊔φ = φ ⊔⊥= φ . The maximal element
⊤p ∈ ISetp is the set containing all possible interactions between each argument and all the (other) output
arguments.

The goal of our analysis is to compute, for each predicate p in a given program P, a well-defined
interaction set for p. This element of ISetp will be such that it only reflects the interactions between
variables V,V̂ such that V,V̂ ∈ args(p). Such an element is what we will call a predicate profile.

Definition 14. Given a program P and a predicate p defined therein. A predicate profile for p is a well-

defined interaction set φ of interactions in p such that for all V
O′

V̂ ∈ φ we have that V and V̂ are

formal arguments of p, that is {V,V̂} ⊆ args(p).

We can "decompose" a predicate profile into individual argument profiles as follows:

Definition 15. Given a program P, a predicate p in P, and a predicate profile φ for p, we define the

argument profile of the i’th argument of p with respect to φ as the following set of o-sets:

αi = {(O, j) |Vi
O

Vj ∈ φ}

where Vi = args(p)i and Vj = args(p) j. Moreover, we define the computed argument profile of p with

respect to φ as the sequence 〈α1, . . . ,αn〉.
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Recall that, based on such computed argument profiles, our objective is to reorder the predicate
arguments, preferably in a unique way. As a first observation, note that it is not hard to define a total
order on AP as the following example illustrates.

Example 3. For an argument profile α ∈AP, let us define the features of α as the vector (#α ,o,m,s,r,c,d)
with o the total number of operations contained in α , r the number of ψ-based operations in it, c, a, d its

number of constructions, assignments and deconstructions respectively. Denoting by (0) a vector filled

with zeroes, we define the total order ≤ as the operator such that for any two argument profiles α1 and

α2 with respective features t1 and t2, the following holds:

α1 ≤ α2⇔ t1− t2 = (0)∨ the first non-zero dimension in t1− t2 is positive

While the order of Example 3 is somewhat arbitrary and not necessarily capable of producing a
unique order, its definition is independent of the analyzed program. In the following section, we construct
our analysis that takes a total order ≤ on AP as a parameter. Given such an order ≤, for a predicate p

with some profile φ , we will use opr(φ) to represent a profile of p ordered by ≤ with respect to φ .

Definition 16. Given a predicate p/n, a profile φ and a total order ≤. Let 〈α1, . . . ,αn〉 be the argument

profile of p with respect to φ . Then we define the ordered profile of p with respect to φ as a permutation

〈α ′1, . . . ,α
′
n〉 of 〈α1, . . . ,αn〉 such that αi ≤ αi+1 for all 1≤ i < n.

4 A Dataflow Analysis Computing Argument Profiles

The analysis will basically compute what we call an environment which is a mapping from predicates
to well-defined interaction sets that represent the already computed interactions between the predicate’s
formal arguments. We will use the symbol Φ : P 7→ ISet to represent such an environment. The analysis
is defined by induction on the syntactic structure of the program’s predicates. We start by defining
the analysis of an individual atom. It basically incorporates the operations of interest into interactions
involving local variables as well as arguments. The analysis is parametrized by the current environment
Φ and a total order ≤ capable of ordering a predicate profile φ into opr(φ).

Definition 17. Let P be a program of interest. The atomic analysis function A : A 7→ (P 7→ ISet) 7→ ISet

is defined as the function that returns, given an atom A and an environment Φ, a set of interactions

composed by those operations from lfp(R) that are found occurring in A:

AJV ⇒ f (Y1, . . . ,Yn)KΦ =
⊔

i∈1..n

{V
{⇒ f }

Yi}

AJV ⇐ f (Y1, . . . ,Yn)KΦ =
⊔

i∈1..n

{Yi

{⇐ f }
V}

AJV :=W KΦ = {W
{:=}

V}

AJV ↔W KΦ = {}

AJq(Y1, . . . ,Ym)KΦ = Φ(q)ρ ⊔φq

where ρ = {args(q)1/Y1, . . . ,args(q)m/Ym}

and φq =
{

Yi
o

Yj |Yi ∈ in(q(Y1, . . . ,Ym)),Yj ∈ out(q(Y1, . . . ,Ym))
}

in which o =

{

ψ⊥ if it is a directly recursive call

ψ(opr(Φ(p))) otherwise
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In the definition, we apply a renaming ρ to a set of interactions Φ(q), which consists in replacing each
variable V from dom(ρ) occurring in Φ(q) by ρ(V ). Using opr(Φ(p)) allows the ψ-based operations
occurring in an argument profile to describe atoms based on similar operations by means of normalized
values. For instance, as will be made clear later on, whether a predicate makes a call to app/3 or to a
variant of it where some arguments are swapped, the resulting ψ-based operation will be the same.
Example 4. The following are applications of our function A on atoms that appear in the predicate app

from Example 1. We consider given an environment Φ0 that maps app on ⊥.

AJX ⇒ cons(E,Es)KΦ0 = {X
{⇒cons}

E,X
{⇒cons}

Es}

AJZ⇐ cons(E,Zs)KΦ0 = {E
{⇐cons}

Z,Zs
{⇐cons}

Z}

AJapp(Es,Y,Zs)KΦ0 = {Es
{ψ⊥}

Zs,Y
{ψ⊥}

Zs}

Extending the analysis function to clauses is relatively straightforward as it suffices to analyze each
of the body atoms, joining the results using ⊔. However, we need to include a transitive closure operator
that allows to combine the interactions resulting from the analysis of the individual atoms such that the
resulting interactions represent – where possible – data flow between arguments rather than involving
local variables.
Definition 18. Let p ∈P and φ ∈ ISetp. Let T : ISet 7→ ISet denote the following operator

T (φ) = {X
O∪O′

Z |X
O

Y,Y
O′

Z ∈ φ for some distinct X ,Y,Z ∈ V }

and let clT (φ) denote the transitive closure of T on φ , that is the smallest relation on φ that contains T

and is transitive. Then the projection of φ onto the arguments of p is denoted by πp(φ) and defined as

πp(φ) = {X
O

Y ∈ clT (φ) |X ,Y ∈ args(p)}.

For a given φ ∈ ISet, the transitive closure clT (φ) can always be computed by merging into φ those
interactions that can be seen as transitive interactions, i.e. interactions that concern three different vari-
ables X ,Y,Z in the way described in the Definition above. The number of these transitive interactions is
inevitably finite, being proportional to the number of combinations among a finite number of variables.

The analysis of a complete program consists in repeatedly analyzing each and every clause of the
program with respect to the current environment, computing as such an updated environment that incor-
porates the results of the current analysis round.
Definition 19. Let P be a program and p ∈ P a predicate of interest. The predicate analysis function S :
P 7→ (P 7→ ISet) 7→ ISet is defined as the function that returns, given a predicate p and an environment

Φ, a well-defined interaction set for p:

SJpKΦ =
⊔

h←a1,...,an∈def (p)

πp(
⊔

i∈1...n

AJaiKΦ)

Note the effect of the different join operations. First, the interaction sets resulting from the analysis
of the individual atoms in a clause body are combined (using the innermost join). The outermost join
combines the interaction sets resulting from the different clauses, after projection, into a single interaction
set. The projection onto the arguments of the predicate is important, as it avoids the construction of
spurious interactions caused by the same local variable that might be used in different clauses. The fact
that local variables are ignored in the result of the formula above is no limitation, since the operator S
is used below to compute the successive environments, and our analysis uses the environment solely for
exploiting the interactions among arguments.



50 A Dataflow Analysis for Comparing and Reordering Predicate Arguments

Algorithm 1 Analyzing a program P

PS← P, i← 0,Φ0←
⋃

p∈P{ (p,⊥)}
while leafs(PS) 6= /0 do

select p ∈ leafs(PS)
while (SJpKΦi)(p) 6= Φi(p) do

Φi+1← SJpKΦi

PS← PS \ {p}
i← i+ 1

Example 5. Let us consider again the predicate app from Example 1. A round of our analysis for app is

partially depicted in Example 4, its result being SJappKΦ0 = {Y
{:=,ψ⊥}

Z,X
{⇒cons,ψ⊥⇐cons}

Z}, which

corresponds to the projection on X, Y and Z of the following computed interactions:

{Y
{:=}

Z,X
{⇒cons}

E,X
{⇒cons}

Es,X
{ψ⊥}

Z,Y
{ψ⊥}

Z,E
{⇐cons}

Z,Zs
{⇐cons}

Z}

Now, to analyze a program from scratch, we start from an initial environment Φ0 in which each
predicate is associated to an initial interaction set⊥. The predicates are subsequently analyzed according
to their position in the program’s call graph in a bottom-up manner, that is prioritizing those predicates
that contain no calls to predicates except maybe themselves or predicates that have previously been
analyzed. We will denote by leafs(P) the set of such eligible predicates in a program P. Each time a
predicate’s analysis reaches a fixpoint, the analysis proceeds to the next eligible predicate. The process
is repeated until every predicate has been considered. It is depicted in Algorithm 1.

Example 6. Let us resume the analysis of app/3 started in Examples 4 and 5, where we obtained an

environment value, say Φ1, after one analysis round. A second round of the analysis will only differ in

the handling of the atom app(Es,Y,Zs):

AJapp(Es,Y,Zs)KΦ1 = {Y
{:=,ψ⊥}

Zs,Es
{⇒cons,⇐cons,ψ⊥}

Z}

After merging and projection on the arguments, we obtain Φ2 such that

Φ2(app) = {X
{⇒cons,⇐cons ,ψ⊥}

Z,Y
{⇐cons,:=,ψ⊥}

Z}

where the⇐cons operation linking Y to Z is obtained by the fact that we have both Y
{:=}

Zs and Zs
⇐cons

Z in the computed interactions set. Any subsequent analysis round would not alter this environment, so

that the analysis is finished for app.

Let us now consider that our program is also constituted of a moded version of the concat/3 predicate

introduced in Section 1:

concat(A,B,C) ← B⇒6 nil,A :=7 C.
concat(A,B,C) ← B⇒8 cons(I, Is),concat9(As, Is,C),A⇐10 cons(I,As).

Analyzing concat yields the interactions {B
{⇒cons,⇐cons ,ψ⊥}

A,C
{⇐cons ,:=,ψ⊥}

A}. Now using ≤, the

ordered profiles of both predicates are one and the same, namely

〈{({⇒cons,⇐cons,ψ⊥},2)} ,{({:=,ψ⊥,⇐cons},2)}〉

which corresponds to the respective profiles of X/B, Y/C and Z/A. In other words, reordering the

arguments according to ≤ leaves app untouched but transforms concat(A,B,C) into concat(B,C,A).

The predicate calls in the example above being recursive calls, we introduce the following example
to illustrate the case where a predicate makes calls to other predicates.
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Example 7. Let us extend Example 6 with the double append operation embodied by dapp/4:

dapp(L1,L2,L3,L4)← app11(L1,L2,L12),concat12(L4,L12,L3).

The analysis finds the following final interaction set for dapp:



















L1
{⇒cons(3),⇐cons(5),ψ⊥(4),ψa(11),⇒cons(8),⇐cons(10),ψ⊥(9),ψa(12)}

L4,

L2
{:=(2),ψ⊥(4),⇐cons(5),ψa(11),⇒cons(8),⇐cons(10),ψ⊥(9),ψa(12)}

L4,

L3
{:=(7),ψ⊥(9),⇐cons(10),ψa(12)}

L4



















where ψa = ψ({({⇒cons,⇐cons,ψ⊥},2)},{({:=,ψ⊥ ,⇐cons},2)}) and where the program points have

been made explicit when applicable.

The example shows that our analysis allows to entirely distinguish the four arguments of dapp/4,
whereas type- and mode information alone would not have made a distinction among the first three
arguments. Having these profiles for different arguments allows to order these by using an appropriate ≤
operator and, hence, to match dapp/4 with predicates that implement the same functionality differently.

A prototype implementation of the analysis, taking into account more elaborate examples, has been
implemented. It is available online as an open source project1. The tool is capable of reordering predicate
arguments and displaying the computed profiles for a directly recursive CLP program given as input.

We conclude this section with two important observations on the analysis described above. First, we
show that the algorithm terminates. Next, we give an upper bound of its computational complexity.

Proposition 2. The sequence (Φn) as defined by Algorithm 1 is convergent.

Proof. First note that by construction, the sequence of computed environments Φ0,Φ1, . . . is such that
∀i ∈ N0, either Φi = Φi−1 and then Φi is the fixpoint of the sequence, or there exists p ∈P such that
Φi(p) 6= Φi−1(p). In that case, the only possibilities are that

• Φi(p) ⊃Φi−1(p), due to a new interaction being discovered during the iteration, and/or

• ∃V
O1

V̂ ∈Φi(p),V
O2

V̂ ∈Φi−1(p) : O1 6= O2. This can only happen if a new operation is added
to an existing interaction, or if a ψ-based operation is replaced by a different ψ-based operation.

Now, for a predicate p/n, the number of interactions in Φi(p) (for any i) is limited by the number
of pairs of (possibly interacting) arguments, which is of the order O(n2). Likewise, the set of operations
labeling an interaction is necessarily finite, as its size is limited by the number of program points. What
remains to be shown is that for an operation (a predicate call, say to some predicate q/m) at a given
program point, there is no infinite succession of different ψ-based operations representing this operation.
Now, this could only happen if the called predicate q/m was itself re-analyzed between analysis rounds
of p. This is excluded, as we restricted programs to direct-recursive programs only, and our analysis
analyses predicates bottom-up in the call-graph such that when a predicate is analyzed that is calling
q/m, the analysis results for q/m are definitely known and hence the ψ-based operation representing this
call will always be the same (some abstract profile ψ(α1, . . . ,αm) or ψ⊥ in case the call is recursive).

Proposition 3. Let P be a program containing ℓP predicates, with a total of ℓa program points. Let

ℓio = max{( j + (l− 1))× l | p/n ∈ P, p/n has j input arguments and l output arguments}. Then the

running time of the analysis is of worst-case complexity O(ℓP× ℓio× ℓa× ℓR) with ℓR a finite natural

proportional to the number of potential operations to be registered in the predicates.

1The artifact code is available as a GitHub repository located at https://github.com/Gounzy/PredArgs .

https://github.com/Gounzy/PredArgs
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Proof. Let us consider the analysis of a given predicate pk/n(k ∈ 1..ℓP). The required lattice for the
abstract value associated to the predicate has ⊥, i.e. {}, as minimal set of interactions. The maximal

element, ⊤p, is the set containing an interaction Vi

Ok
Vo for each pair of variables Vi,Vo ∈ args(pk)

such that i 6= o and Vo is output. The elements in-between in the lattice are the sets of "incomplete"
interactions, i.e. where all variables and/or operations are not present.

The number of combination of arguments in potential interactions of pk is ( j+(l− 1))× l, with j,
resp. l, the number of input, resp. output arguments of pk, since each input argument can have exactly one
interaction with each output argument, and each output argument can also contribute to the construction
of the (l−1) other output arguments. This quantity is majored by n−1×n.

We still need to prove that a finite number of (also finite) operations from lfp(R) suffices to populate
the potential interactions and thereby restrict the lattice’s height. First, observe that the number of oper-
ations in an interaction is majored by the number of program point in P which is finite. Now concerning
the ψ-based operations, only a finite amount of these is treated by the analysis as stated earlier. We will
denote by ℓR the number of operations that the analysis could possibly compute for a predicate given a
program’s call graph. For pk, this quantity is proportional to both the number of program points in its
body and, recursively, the number of potential operations of the predicates it makes calls to. These ψ-
based operations evolve as they are recomputed by successive analysis rounds; ℓR represents the number
of such steps that can occur before a computed ψ-operation converges.

So the height of the lattice, that is the maximal number of steps from ⊥ to ⊤p, is majored by ℓR×
(n− 1)× n (this corresponds to adding, at each step up the lattice, an operation to one of the existing
interactions, or creating an interaction decorated by one operation). As the analysis climbs up in the
lattice until reaching a fixpoint, this gives a realistic upper bound for the number of analysis iterations for
pk. The analysis might have to run up the lattice of each of the ℓP predicates in P, and at each iteration it
needs to crawl through ℓa program points and compute ℓP projections, hence the result.

5 Conclusions and Future Work

This work aims to develop a tractable process for profiling predicate arguments and normalizing their
order of apparition in a prototypical Mercury-like language. Our analysis essentially computes a high-
level abstraction of program derivations, called interactions. Although a normalization procedure already
existed for Mercury [8], it focused on normalizing clause bodies and did not address predicate arguments.

Our approach to code normalization revolves around the search of an ordering among predicate
arguments. Central to this technique is the research for an ideal ordering of the arguments, i.e. a total
order ≤ that allows to sort arguments in a non-ambiguous, unique way, at least in the context of a single
program. While we have introduced a first working, but rather arbitrary, example of such an order based
on argument profiles metrics, it is our belief that more precise or application-tailored orderings could be
found to enhance the analysis output in concrete situations. In particular, identifying the situations in
which an order is to be preferred over other incarnations, is left as future work.

Having a normal form for programs is recognized as an important step in several applications, one
of interest being a clone detection scheme, where recognizing a couple of similar predicates implies
finding a mapping of clauses and a mapping of arguments among the predicates such that two clauses,
or arguments, in the mapping play similar roles in the predicate’s definition. The problem, which is
intractable in general, becomes radically more manageable if a quadratic approximation is found for
one of the two interleaved matching problems [28]. We intend to explore the use of our analysis for
computing a matching of arguments in this context.
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Program comprehension is a rising research field in which all aspects of dataflow information consti-
tute useful pieces of information. Program slicing, for example, is a way of extracting the computations
in which a given (set of) argument(s) plays a prominent role [24]. Interestingly, what we achieve by
computing argument profiles resembles the extraction of such program slices. In existing program slic-
ing techniques however, the computed slices are actual parts of the considered program [24], whereas our
profiles rather constitute abstract representations of data flow information. Moreover, while an argument
profile typically exhibits the details of the operations (be it unifications or calls to predicates) that involve
the argument, the program portions obtained by means of slicing do not carry any interpretation of the
program, as the slices’ purpose is to represent the part of the program that might be of interest [20]. As
an example, consider a predicate in which all of the arguments are somehow participating in every single
atom but in different manners. The slices for the different arguments then systematically come down
to the whole predicate definition. In contrast, our argument profiles contain finer-grained distinctions,
allowing to identify which operations involve which arguments, as well as specific links between input
and output arguments – but abstracting from the order in which the involved atoms are executed. We
therefore believe our approach to be complementary to program slicing and to constitute a new step to-
wards better understanding links between arguments and, hence, deriving useful information about the
operations hidden in a predicate definition.

Other analyses addressing program comprehension or security concerns by studying interactions
among variables could benefit from our method, some examples being feature analysis, trace analysis
and taint analysis [9, 4].

References

[1] Magnus Ågren, Tamás Szeredi, Nicolas Beldiceanu & Mats Carlsson (2002): Tracing and Explaining Exe-

cution of CLP(FD) Programs. In Alexandre Tessier, editor: Proceedings of the 12th International Workshop
on Logic Programming Environments, pp. 1–16, doi:10.48550/arXiv.cs/0207047.

[2] Danilo Bruschi, Lorenzo Martignoni & Mattia Monga (2007): Code Normalization for Self-Mutating Mal-

ware. IEEE Security & Privacy 5(2), pp. 46–54, doi:10.1109/MSP.2007.31.

[3] Keith D. Cooper, Timothy J. Harvey & Ken Kennedy (2006): An Empirical Study of Iterative Data-Flow

Analysis. In: 2006 15th International Conference on Computing, pp. 266–276, doi:10.1109/CIC.2006.22.

[4] Bas Cornelissen, Andy Zaidman, Arie Deursen, Leon Moonen & Rainer Koschke (2009): A Systematic

Survey of Program Comprehension through Dynamic Analysis. Software Engineering, IEEE Transactions on
35, pp. 684 – 702, doi:10.1109/TSE.2009.28.

[5] Stefania Costantini & Alessandro Provetti (2005): Normal forms for Answer Sets Programming. Theory and
Practice of Logic Programming 5, doi:10.1017/S1471068404002339.

[6] Céline Dandois & Wim Vanhoof (2012): Semantic Code Clones in Logic Programs. In E. Albert, editor: Proc.
of the 22nd International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR’12),
LNCS 7844, Springer, pp. 35–50, doi:10.1007/978-3-642-38197-3_4.

[7] Saumya K. Debray (1992): Efficient Dataflow Analysis of Logic Programs. J. ACM 39(4), p. 949–984,
doi:10.1145/146585.146624.

[8] François Degrave & Wim Vanhoof (2008): Towards a Normal Form for Mercury Programs. In
Andy King, editor: Logic-Based Program Synthesis and Transformation, Springer, pp. 43–58,
doi:10.1007/978-3-540-78769-3_4.

[9] Thomas Eisenbarth, Rainer Koschke & Daniel Simon (2001): Aiding Program Comprehension by Static and

Dynamic Feature Analysis. doi:10.1109/ICSM.2001.972777.

https://doi.org/10.48550/arXiv.cs/0207047
https://doi.org/10.1109/MSP.2007.31
https://doi.org/10.1109/CIC.2006.22
https://doi.org/10.1109/TSE.2009.28
https://doi.org/10.1017/S1471068404002339
https://doi.org/10.1007/978-3-642-38197-3_4
https://doi.org/10.1145/146585.146624
https://doi.org/10.1007/978-3-540-78769-3_4
https://doi.org/10.1109/ICSM.2001.972777


54 A Dataflow Analysis for Comparing and Reordering Predicate Arguments

[10] Rebecca Faust, Katherine Isaacs, William Z. Bernstein, Michael Sharp & Carlos Scheidegger (2019):
Anteater: Interactive Visualization for Program Understanding. CoRR, doi:10.48550/arXiv.1907.02872.

[11] Melvin Fitting (2002): Fixpoint semantics for logic programming a survey. Theoretical Computer Science
278(1), pp. 25 – 51, doi:10.1016/S0304-3975(00)00330-3. Mathematical Foundations of Programming Se-
mantics 1996.

[12] Fergus Henderson, Thomas Conway, Zoltan Somogyi, Peter Schachte, Simon Taylor & Chris Speirs (1999):
The Mercury Language Reference Manual.

[13] Ulf Kargén & Nahid Shahmehri (2012): InputTracer: A Data-Flow Analysis Tool for Manual Program

Comprehension of x86 Binaries. In: 2012 IEEE 12th International Working Conference on Source Code
Analysis and Manipulation, pp. 138–143, doi:10.1109/SCAM.2012.16.

[14] Ludovic Langevine, Pierre Deransart, Mireille Ducassé & Erwan Jahier (2001): Prototyping CLP(FD) trac-

ers: a trace model and an experimental validation environment. In Anthony J. Kusalik, editor: Proceedings
of the Eleventh Workshop on Logic Programming Environments, doi:10.48550/arXiv.cs/0111043.

[15] Florian D. Loch, Martin Johns, Martin Hecker, Martin Mohr & Gregor Snelting (2020): Hybrid Taint Analysis

for Java EE. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, SAC ’20,
Association for Computing Machinery, New York, NY, USA, p. 1716–1725, doi:10.1145/3341105.3373887.

[16] Anne Mulkers, William Winsborough & Maurice Bruynooghe (1994): Live-Structure Dataflow Analysis for

Prolog. ACM Trans. Program. Lang. Syst. 16(2), p. 205–258, doi:10.1145/174662.174664.

[17] Kalyan Muthukumar, Francisco Bueno, Maria Jose García de la Banda & Manuel Hermenegildo (1999):
Automatic compile-time parallelization of logic programs for restricted, goal level, independent and paral-

lelism. The Journal of Logic Programming 38(2), pp. 165–218, doi:10.1016/S0743-1066(98)10022-5.

[18] Davide Pizzolotto & Katsuro Inoue (2020): Blanker: A Refactor-Oriented Cloned Source Code Normalizer.
In: 14th International Workshop on Software Clones, pp. 22–25, doi:10.1109/IWSC50091.2020.9047634.

[19] Dhavleesh Rattan, Rajesh Bhatia & Maninder Singh (2013): Software clone detection: A systematic review.
Information and Software Technology 55(7), pp. 1165–1199, doi:10.1016/j.infsof.2013.01.008.

[20] Gyöngyi Szilágyi, Tibor Gyimóthy & Jan Maluszynski (2002): Static and Dynamic Slicing of Constraint

Logic Programs. Automated Software Engineering 9, pp. 41–65, doi:10.1023/A:1013280119003.

[21] Jichang Tan & I-Peng Lin (1992): Compiling Dataflow Analysis of Logic Programs. SIGPLAN Not. 27(7),
p. 106–115, doi:10.1145/143103.143123.

[22] Wim Vanhoof (2000): Binding-Time Analysis by Constraint Solving. In Michel Parigot & Andrei Voronkov,
editors: Logic for Programming and Automated Reasoning, Springer, Berlin, Heidelberg, pp. 399–416,
doi:10.1007/3-540-44404-1_25.

[23] Wim Vanhoof & Gonzague Yernaux (2020): Generalization-Driven Semantic Clone Detection in CLP. In
Maurizio Gabbrielli, editor: Logic-Based Program Synthesis and Transformation, Springer International Pub-
lishing, Cham, pp. 228–242, doi:10.1007/978-3-030-45260-5_14.

[24] Martin Ward & Hussein Zedan (2007): Slicing as a program transformation. ACM Trans. Program. Lang.
Syst. 29, doi:10.1145/1216374.1216375.

[25] William Hale Winsborough & Charles N. Fischer (1988): Automatic, Transparent Parallelization of Logic

Programs at Compile Time. Ph.D. thesis, The University of Wisconsin - Madison.

[26] Mengmei Ye, Jonathan Sherman, Witawas Srisa-an & Sheng Wei (2018): TZSlicer: Security-aware dynamic

program slicing for hardware isolation. In: 2018 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 17–24, doi:10.1109/HST.2018.8383886.

[27] Gonzague Yernaux & Wim Vanhoof (2019): Anti-unification in Constraint Logic Programming. Theory and
Practice of Logic Programming 19(5-6), p. 773–789, doi:10.1017/S1471068419000188.

[28] Gonzague Yernaux & Wim Vanhoof (2022): On Detecting Semantic Clones in Constraint Logic

Programs. In: 2022 IEEE 16th International Workshop on Software Clones (IWSC), pp. 32–38,
doi:10.1109/IWSC55060.2022.00014.

https://doi.org/10.48550/arXiv.1907.02872
https://doi.org/10.1016/S0304-3975(00)00330-3
https://doi.org/10.1109/SCAM.2012.16
https://doi.org/10.48550/arXiv.cs/0111043
https://doi.org/10.1145/3341105.3373887
https://doi.org/10.1145/174662.174664
https://doi.org/10.1016/S0743-1066(98)10022-5
https://doi.org/10.1109/IWSC50091.2020.9047634
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1023/A:1013280119003
https://doi.org/10.1145/143103.143123
https://doi.org/10.1007/3-540-44404-1_25
https://doi.org/10.1007/978-3-030-45260-5_14
https://doi.org/10.1145/1216374.1216375
https://doi.org/10.1109/HST.2018.8383886
https://doi.org/10.1017/S1471068419000188
https://doi.org/10.1109/IWSC55060.2022.00014


S. Costantini, E. Pontelli, A. Russo, F. Toni,
R. Calegari, A. D’Avila Garcez, C. Dodaro, F. Fabiano,
S. Gaggl, A. Mileo, (Eds.): ICLP 2023
EPTCS 385, 2023, pp. 55–57, doi:10.4204/EPTCS.385.6

Towards a Rule-based Approach for Deriving
Abstract Domains (Extended Abstract) * †

1,2Daniel Jurjo, 1,2Jose F. Morales, 3,2Pedro López-Garcı́a, and 1,2Manuel V. Hermenegildo
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Abstract interpretation [3] allows constructing sound program analysis tools which can extract properties
of a program by safely approximating its semantics. Static analysis tools are a crucial component of the
development environments for many programming languages. Abstract interpretation proved practical
and effective in the context of (Constraint) Logic Programming ((C)LP) [15, 12, 14, 13, 1, 10, 9] which
was one of its first application areas (see [6]), and the techniques developed in this context have also
been applied to the analysis and verification of other programming paradigms by using semantic trans-
lation to Horn Clauses (see the recent survey [4]). Unfortunately, the implementation of (sound, precise,
efficient) abstract domains usually requires coding from scratch a large number of domain-related oper-
ations. Moreover, due to undecidability, a loss of precision is inevitable, which makes the design (and
implementation) of more domains, as well as their combinations, eventually necessary to successfully
prove arbitrary program properties. In this paper we focus on the latter problem by proposing a rule-
based methodology for the design and rapid prototyping of new domains for logic programs, as well
as composing and combining existing ones. Our techniques are inspired by those used in logic-based
languages for implementing constraint domains at different abstraction levels.

Proposal. The construction of analyses based on abstract interpretation requires the defintion of some
basic domain operations (v,u,t and, optionally, the widening ∇ operator); the abstract semantics of the
primitive constraints (representing the built-ins, or basic operations of the source language) via transfer
functions ( f α ); and possibly some other additional instrumental operations over abstract substitutions. In
addition, the classical top-down analysis approach requires a number of additional definitions of derived
operations used by the analysis framework to implement procedure call, return, recursion, etc. Detailed
descriptions of all these operations can be found in [12, 11, 2, 7, 5]. We propose a rule language inspired
in rewriting to derive, script, and combine abstract domains. The objective is to reduce the time and
effort required to write new abstract domains, both from scratch and as combinations of other domains

The proposed rule-based language. Given s+1 sets of constraints, L ,C1, . . . ,Cs, we define
AND(L ,C1, . . . ,Cs) as the set of rules of the form l1, . . . , ln | g1, . . . ,gl ⇒ r1, . . . ,rm # label, where s, n,
m, and l are arbitrary positive integers, and the rule meets the following condition:

∀i, j,k s.t. i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} and k ∈ {1, . . . , l} : (li,r j ∈L and ∃u ∈ {1, . . . ,s} s.t. gk ∈ Cu)

The elements l1, . . . , ln constitute the left side of the rule; r1, . . . ,rm the right side; and g1, . . . ,gl the
guards. Given t + s sets of constraints L1, . . . ,Lt ,C1, . . . ,Cs such that ∀v ∈ {1, . . . , t} : Lv ⊆ L , we

*An extended version of this work can be found in [8].
†This work has been partially supported by MICINN projects PID2019-108528RB-C21 ProCode, TED2021-132464B-I00

PRODIGY, and FJC2021-047102-I, the European Union NextGenerationEU/PRTR, and the Tezos foundation.
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inf(X, top) | X = [] ==> inf(X, 0.Inf). # empty

inf(L, X) | L = [H|T] ==> inf(T, X). # list_const1

inf(T, X) | L = [H|T], H =< X ==> inf(L, H). # list_const2

inf(L, X) | L = S ==> inf(S, X). # unif_prop

inf(L, X) | Y =< X ==> inf(L, Y). # reduction

inf(X, A) ; inf(X, B) | A =< B ==> inf(X, A). # lub_1

inf(X, A) ; inf(X, B) | A >= B ==> inf(X, B). # lub_2

Figure 2: A subset of the inf-domain rules.

define OR(L ,C1, . . . ,Cn) as the set of rules of the form l1; . . . ; ln | g1, . . . ,gl ⇒ r1, . . . ,rm # label, where
s, t, n, m, and l are arbitrary positive integers, and the rule meets the following condition:

∀i, j,k s.t. i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} and k ∈ {1, . . . , l} :
∃v ∈ {1, . . . , t}∃u ∈ {1, . . . ,s} s.t. (li ∈Lv,r j ∈L and gk ∈ Cu)

Notice that while in AND−rules all the elements li belong to the same set of constraints L , in the OR-
rules they belong to (possibly) different subsets of a set of constraints L . The operational meaning of
AND−rules is similar to that of rewriting rules. If the left side holds in the set where the rule is being
applied to, and the guards also hold, then the left-side elements are replaced by the right-side elements.
The operational meaning of OR−rules is similar, but instead of rewriting over the “same” set the right-
side elements are written in a “new” set. When no more rules can be applied, different strategies can be
followed. In general we can rewrite the pending elements to a given element or simply delete them.
In the context of abstract interpretation the sets of constraints that we have mentioned have to be seen
as abstract domains being the rules applied then over abstract substitutions/constraints. AND-rules are
intended to capture the behaviour of operations over one abstract substitution with the knowledge that can
be inferred from other substitutions that meet the guards. This is useful for example when defining the
greatest lower bound. Moreover, these rules are also useful for refining abstract substitutions, performing
abstractions, combining different abstract domains, etc. On the other hand, OR-rules are intended to
capture the behaviour of operations applied over multiple abstract substitutions of an abstract domain,
such as the least upper bound or the widening.�

1 partition([], _, [], []).
2 partition([E|R], C, Left,

[E|Right1]) :-
3 E >= C,
4 partition(R, C, Left, Right1).
5 partition([E|R], C, [E|Left1],

Right) :-
6 E < C,
7 partition(R, C, Left1, Right).� �

Figure 1: A Prolog program.

An example. Fig. 1 shows a classic Prolog predicate for
partitioning a list. A call partition(L, X, L1, L2) is
expected to satisfy some properties; for example, that ∀v ∈
L2,X ≤ v, which we can express as inf(L2, X). With the
help of two auxiliary domains to deal with structures con-
taining variables and with constraints (resp. depth− k and
polyhedra) we can derive an abstract domain for the inf/2
property. A subset of the rules can be seen in Fig. 2. These
rules allow, when connected with the abstract domain op-

erations, to exploit the information gathered from the previous domains and use it to infer inf(L2,
X). Similarly, we can also capture the equivalent sup(L1, X), or multiset properties capturing that
L⊆ L1∪L2 and L1∪L2⊆ L. Moreover, we can infer the sortedness property for the classical quicksort
implementation.

Conclusions & future work. We have presented a framework for simplifying the development of ab-
stract domains for logic programs in the context of abstract interpretation frameworks, and concretely that
of CiaoPP. While some domains are easier to specify with a rule-based language, keeping a constraint-
based representation for abstract substitutions may not be efficient compared with specialized represen-
tations and operations. In this respect, we plan to explore the use of rules both as an input language for
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abstract domain compilation and as a specification language for debugging or verifying properties of
hand-written domains. In our experience so far, the proposed approach seems promising for prototyp-
ing and experimenting with new domains, enhancing the precision for particular programs, and adding
domain combination rules, without the need for understanding the analysis framework internals.
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© K. Rückschloß, F. Weitkämper

This work is licensed under the

Creative Commons Attribution License.

“Would life be more interesting if I were in AI?”

Answering Counterfactuals based on

Probabilistic Inductive Logic Programming

Kilian Rückschloß
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Probabilistic logic programs are logic programs where some facts hold with a specified probabil-

ity. Here, we investigate these programs with a causal framework that allows counterfactual queries.

Learning the program structure from observational data is usually done through heuristic search rely-

ing on statistical tests. However, these statistical tests lack information about the causal mechanism

generating the data, which makes it unfeasible to use the resulting programs for counterfactual rea-

soning. To address this, we propose a language fragment that allows reconstructing a program from

its induced distribution. This further enables us to learn programs supporting counterfactual queries.

1 Introduction

While only observing the world, humans are used to drawing counterfactual conclusions, i.e. they reason

about how events would have unfolded under different circumstances. This leads us to judgements like:

“I would have published more papers, if I were in AI.” without actually experiencing the alternative real-

ity in which we work in AI. Note that this capability allows us to make sense of the past, to plan courses

of actions, to make emotional and social judgments as well as to adapt our behaviour [2]. Hence, in

artificial intelligence one also wants to infer a model of the world that supports counterfactual reasoning.

Currently, the WHATIF-solver [3] establishes a counterfactual reasoning for ProbLog programs [1],

i.e. logic programs in which each clause holds with a specified probability. However, is the counterfactual

reasoning provided by a ProbLog program uniquely determined by its distribution semantics [7]?

Assume for instance that a patient is treated, denoted treatment, with a probability of 0.5. If we treat a

patient, we expect him to recover, denoted recovery, with a probability of 0.7, otherwise he recovers with

a probability of 0.5. The resulting distribution can be encoded with the following two programs P1/2.

P1 : 0.5 :: treatment 0.5 :: recovery 0.4 :: recovery← treatment

P2 : 0.5 :: treatment 0.5 :: recovery←¬treatment 0.7 :: recovery← treatment

Assume further that the patient recovers while he has not been treated. What is the probability that

he would have recovered under treatment?

In both programs P1/2, we conclude from our observations that the patient recovers because of the

second clause, i.e. we conclude that the second clause holds in the world we observe. If we had addi-

tionally treated the patient, under program P1, he would still have recovered as the second clause in P1

is still applicable under treatment. Hence, we obtain a probability of one for the patient to recover under

treatment. Whereas, in program P2, the second clause is not applicable under treatment. Hence, in this
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case, if we had treated the patient here, he can only recover because of the third clause and we obtain a

probability of 0.7 for the patient to recover under treatment.

As we see, in general, the classical distribution semantics [7] does not uniquely determine the out-

come of a counterfactual query. Further, note that ProbLog programs are usually learned from observa-

tions sampled from a distribution of interest. Hence, even if we assume perfect learning, we can only

ensure to obtain a program representing the correct distribution. In particular, a structure learning algo-

rithm is not able to distinguish the programs P1/2, i.e. we cannot ensure that a learned program answers

counterfactual queries correctly.

In this contribution, we present a fragment in which each program is uniquely determined by its class

dependency graph and the corresponding distribution. We further argue that this yields a setting for the

available structure learning methods which supports counterfactual reasoning.

2 Foundations

Here, we introduce ProbLog programs [1] and we recall how counterfactual queries are processed on

them [3]. Finally, we quickly explain the design of the currently available structure learning algorithms

for these programs.

As the semantics of non-ground ProbLog programs is usually defined by grounding, we restrict

ourselves to the propositional case. Hence, we construct our programs from a propositional alphabet

that is given by a finite set of propositions P together with a subset E(P)⊆P of external proposition.

In this context, we call I(P) :=P\E(P) the set of internal propositions.

A literal l is an expression p or ¬p for a proposition p ∈ P. We call l a positive literal if it is

of the form p and a negative literal if it is of the form ¬p. Further, we call l an external or internal

literal if p ∈ E(P) or p ∈ I(P) respectively. A (logical) clause LC is an expression h ← b1, ...,bn

where h ∈ I(P) is an internal proposition called the head and where {b1, ...,bn} is a finite set of literals

called the body of LC. Finally, a random fact RF is an expression π(RF) :: u(RF) where π(RF)∈ [0,1]
is the probability and where u(RF) ∈ E(P) is an external proposition called the proposition of RF .

Example 1. Consider the alphabet P := {treatment, recovery,u1 ,u2,u3} with external literals E(P)
given by {u1,u2,u3}. We have that treatment is a positive literal, whereas ¬treatment is a negative

literal. Further, recovery← treatment,u3 is a clause and 0.4 :: u3 is a random fact.

Now a logic program is a finite set of clauses and a ProbLog program P is given by a logic

program LP(P) and a set Facts(P) consisting of a unique random fact for every external proposition. In

this case, we call LP(P) the underlying logic program of P. Finally, we define (P-)formulas φ and

(P-)structures M : P→{True,False} as usual in propositional logic. Whether a given P-structure M

satisfies a formula φ , written M |= φ , is also defined as usual in propositional logic.

Example 2. In the alphabet P of Example 1 we can write the following ProbLog program.

0.5 :: u1 0.5 :: u2 0.4 :: u3 treatment ← u1 recovery← u2 recovery← treatment,u3

As the semantics of ProbLog programs we choose the FCM-semantics [6], which supports coun-

terfactual reasoning: For a ProbLog program P we define the functional causal models semantics
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or FCM-semantics to be the system of Boolean equations

FCM(P) :=















pFCM :=
∨

LC∈LP(P)
head(LC)=p









∧

l∈body(LC)
l internal literal

lFCM∧
∧

u(RF)∈body(LC)
RF∈Facts(P)

u(RF)FCM























p∈I(P)

.

Here, we find that the u(RF)FCM are mutually independent Boolean random variables for every random

fact RF ∈ Facts(P), each holding hold with probability π(RF).

Example 3. The FCM-semantics of the program P in Example 2 is given by

treatmentFCM := uFCM
1 recoveryFCM := uFCM

2 ∨ (treatmentFCM∧uFCM
3 ),

where uFCM
1 , uFCM

2 and uFCM
3 are mutually independent Boolean random variables holding true with a

probability of 0.5, 0.5 and 0.4 respectively.

For the rest of this section, we fix a ProbLog program P with an acyclic underlying logic program.

Note that the FCM-semantics FCM(P) yields a unique solution for every internal proposition p ∈ I(P)
in terms of the mutually independent Boolean random variables u(RF)FCM. In this way, it defines a

distribution on the P-structures M : P→ {True,False} which coincides with the distribution seman-

tics [7] according to Rückschloß and Weitkämper [6]. Finally, we define the probability of a formula φ

to hold as π(φ) := ∑M P-structure
M |=φ

π(M ).

However, the FCM-semantics does not only support queries about conditional and unconditional

probabilities. It allows us to answer two more general causal query types, namely determining the effect

of external interventions and counterfactuals [6]. Assume for instance we want to intervene and set

a subset X ⊆ I(P) of internal propositions to truth values specified by an assignment x. In this case,

we build a modified program Pdo(x) by erasing all clauses LC ∈ LP(P) with head in X and by adding a

fact p← if p ∈X is set to true by x. If we now ask for the probability π(φ |do(x)) of a formula φ to hold

after setting X to the values x, we query the program Pdo(x) for the probability of φ .

Example 4. Assume we treat the patient in the program P of Example 2. In this case, we obtain

0.5 :: u1 0.5 :: u2 0.4 :: u3 treatment ← recovery← u2 recovery← treatment,u3

for the modified program P
do(treatment). This means we obtain a probability of 0.7 for recovery if we are

the doctor and decide to treat our patient.

Further, we do not only want to either observe or intervene, we also want to know what the probability

of an event would have been if we had intervened before observing some evidence. This is especially

interesting in the counterfactual case where our evidence contradicts the given intervention.

Example 5. Consider the query in the introduction and observe that the evidence {¬treatment,recovery}
contradicts the intervention do(treatment), i.e. this is a counterfactual query.

Hence, fix another subset of internal propositions E ⊆ I(P) and assume we observe the evidence

that the propositions in E take values according to the assignment e. We now ask for the probabil-

ity π(φ |e,do(x)) of the formula φ to hold if we had set the propositions in X to the values specified by x

before observing our evidence e. To answer queries like that we proceed as Kiesel et al. [3]:
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First we generate two copies I(P)e/i of the set of internal propositions – one to handle the evi-

dence and the other to handle the interventions. Further, we set ue/i := u for every external proposi-

tion u ∈ E(P). Note that this yields maps e/i of literals, clauses, programs etc. We define the counter-

factual semantics of P to be the ProbLog program PK which consists of the logic program L(P)e∪L(P)i

and the random facts Facts(P). Now we intervene in PK and set the proposition in Xi to the truth values

specified by x to obtain the program PK,do(x). Finally, we query the program PK,do(x) for the probabil-

ity π(φ i|Ee = e) to obtain the desired result for π(φ |e,do(x)).

Example 6. Assume we did not treat the patient in the program P of Example 2 and he recovered. What

is the probability π(recovery|¬treatment,recovery,do(treatment)) that he would have recovered, if he

had been treated? To answer this question we query the program P
K,do(treatment)

0.5 :: u1 0.5 :: u2 0.4 :: u3

treatment i← recoveryi← u2 recoveryi ← treatment i,u3

treatmente← u1 recoverye← u2 recoverye ← treatmente,u3

for the probability π(recoveryi|recoverye,¬treatmente) = 1.

This procedure automates Pearl’s counterfactual reasoning [4] and is implemented in the WHATIF-

solver of Kiesel et al. [3].

In this contribution, we restrict ourselves to ProbLog programs, which can be represented with

ProbLog clauses. A ProbLog clause RC is an expression π(RC) :: effect(RC)← causes(RC), where

effect(RC) ∈ I(P) is an internal proposition called the effect, where causes(RC) is a finite set of inter-

nal literals called the causes and where 0 ≤ π(RC) ≤ 1 is a number called the probability of RC. The

ProbLog clause RC is an abbreviation for the following pair of a random fact and a logical clause.

RF(RC) := (π(RC) :: u(RC)) LC(RC) := (h← b1, ...,bn,u(RC)),

where u(RC) ∈ E(P) is a distinct external literal. From now on, by abuse of language, a ProbLog

program P is a finite set of ProbLog clauses, i.e. a ProbLog program consisting of the logic program

L(P) := {LC(RC) : RC ∈ P} and of the random facts Facts(P) := {RF(RC) : RC ∈ P}.

Example 7. Observe that the program P1 from the introduction is an abbreviation for the ProbLog

program in Example 2.

The class dependency graph Graph(P) of a ProbLog program P is the directed graph on the in-

ternal propositions I(P) obtained by drawing an edge p1→ p2 if and only if there exists a ProbLog

clause RC ∈ P with a cause p1 or ¬p1 and with effect p2. We say that the program P is acyclic if its

class dependency graph Graph(P) is a directed acyclic graph. Moreover, the program P is positive if the

causes of every ProbLog clause RC ∈ P form a set of positive literals.

Example 8. The class dependency graph of the programs P1/2 in the introduction is given by the edge

treatment → recovery. Further, program P1 is positive whereas P2 is not.

Next, we quickly recall the overview over the structure learning techniques for propositional ProbLog

programs from Riguzzi [5, §10]. Given suitable data, all those algorithms search the space of programs

defined by a language bias and background knowledge with heuristics relying on statistical tests.

Here, the language bias defining the clause and therefore the program space is defined by mode dec-

larations of the form modeb(∗,q) and modeh(∗, p) as well as declarations of the form determination(p,q)
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for propositions p and q. A positive ProbLog clause π :: effect(RC) ← causes(RC) lies in the lan-

guage defined by our bias if we declared modeh(∗,effect(RC)), modeb(∗,c) for all c in causes(RC)
and determination(effect(RC),c) for all c in causes(RC).

Moreover, we can express background knowledge in a logic program defining further propositions

in terms of the given data. This is also the way how one can learn clauses with negation by adding a

clause neg p←¬p to the background knowledge for every proposition p. We call the pair of a language

bias and a background knowledge the setting for a structure learning algorithm.

Example 9. To learn the program P1 of the introduction we nee to specify the setting S1 which con-

sists of the bias modeh(∗,recovery), modeb(∗, treatment), determinantion(recovery, treatment) and an

empty background knowledge. If we want to consider the program P2 as well, we additionally need the

declarations modeb(∗,neg treatment) and determinantion(recovery,neg treatment) together with the

the clause neg treatment ←¬treatment in the background knowledge resulting in the setting S2.

Note that via the determination/2 predicate the language bias essentially provides the class depen-

dency graph, i.e. the corresponding cause-effect relationships, of our program as prior knowledge to the

structure learning algorithm.

3 Results

Generally, in structure learning, from some prior knowledge encoded by a setting one wants to derive a

program that describes a given set of data. In most of the cases, the data consists of observations. We

additionally assume that our data consists of samples drawn from the distribution induced by a hidden

ProbLog program P̃ of interest and the prior knowledge consists of a language bias, i.e. of the class

dependency graph of P̃. Further, to decide how good a candidate program P represents our dataset we

process statistical tests. However, statistical tests only measure how well the induced distribution of

the program P fits a given set of observations. They generally reveal no information about the causal

mechanism generating our data. Hence, we cannot measure whether the causal mechanism represented

by a candidate ProbLog program P coincides with the causal mechanism underlying our data, i.e. with

the causal mechanism described by P̃.

Example 10. Consider the programs P1/2 of the introduction. While they both represent different causal

models yielding to different counterfactual estimations, they yield the same distribution semantics and

share the same class dependency graph.

Hence, if we take P̃ := P1/2 for the hidden program, we sample from the same distribution in both

cases. That means that even with the correct language bias a structure learning algorithm cannot deter-

mine which of the two programs actually generated the provided data unless it is given further knowledge.

More drastically, Example 10 illustrates that without further prior knowledge, even under the assump-

tion of perfect learning, it is only possible to learn a program P which is ensured to represent the correct

distribution. In particular, we expect that a learned program P does not necessarily answer counterfactual

queries correctly. ´
In the following, we study the fragment of acyclic proper positive ProbLog programs in normal form.

A ProbLog program P is proper in normal form if every clause RC∈P has a probability 0 < π(RC)< 1,

if any two distinct clauses RC1/2 ∈ P have distinct causes causes(RC1) 6= causes(RC2) or distinct effects

effect(RC1) 6= effect(RC2) and if every sink s in the class dependency graph gives rise to a random

fact α :: s. The main result of this contribution now states that all programs lying in this fragment

are uniquely determined by their class dependency graph and their underlying distribution.
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Theorem 1. Every acyclic proper positive ProbLog program in normal form P can be reconstructed

from its class dependency graph Graph(P) and the induced distribution π .

Proof. We proceed by induction on the number n of nodes in the class dependency graph Graph(P).

n = 1: In this case, the program P consists only of one clause π :: p←. Hence, we set π := π(p) and we

are done.

n > 1: Choose a sink h ∈ P of Graph(P). Further, denote by P \ h the program that results from P if

we erase all clauses with effect h. By maximality h does not occur in the causes of any other

clause, i.e. P\h induces the same distribution on I(P)\{h} as the program P and it has the graph

Graph(P)\h as its class dependency graph. Here, Graph(P)\h denotes the graph that results from

Graph(P) if we erase the node h together with all edges pointing into it. Now, by the induction

hypothesis we can reconstruct the program P\h from the given data.

Hence, we are left to reconstruct the clauses defining h itself. Note that the parents b ∈ pa(h) of h

in Graph(P) are the only propositions that may occur in the body of a clause defining h. Further,

note that each of these occurrences is positive. We consider the function

IndP
h :P(pa(h))→ [0,1] T 7→ π(h|{t,¬s : t ∈ T, s ∈ pa(h)\T}),

where P( ) denotes the power set operator. Recall from Pearl [4, §3] that observing the parents

of h is the same as intervening on them. Hence, we see that

IndP
h (T ) := π













∨

RC∈P
causes(RC)⊆T

effect(RC)=h

u(RC)













= ∑
RC1,...,RCk∈P

k∈N, causes(RC)⊆T

effect(RC)=h

(−1)k
k

∏
i=1

π(RCi) (1)

Now, it is easy to see that T ⊆ pa(P) are the causes of a clause in P if and only if IndP
h (S)< IndP

h (T )
for all S ⊆ pa(h) with S ( T . Further, we obtain the parameters of P by recursion: We find that

π(RC) = IndP
h (body(RC)) for every clause RC ∈ P with a minimal body. Further, in the recursion

step Equation (1) yields a one-dimensional linear equation for the parameter of interest.

In a forthcoming paper, we prove that the answers to all counterfactual queries uniquely determine a

proper ProbLog program in normal form. Thus if we want to answer counterfactual queries based on a

learned program P, we almost need to fully reconstruct the hidden program P̃.

Remark 1. If we estimate the functions IndP

h using relative frequencies, we obtain a structure learning

algorithm that recovers an acyclic proper positive ProbLog program in normal form from a known causal

structure and a sufficiently large set of samples. The resulting distributions (one for every counterfactual

query) are guaranteed to converge in probability. Further, the complexity is exponential in the maximal

number of parents of a node in the class dependency graph and linear in the size of the alphabet P.

Finally, assume we apply a structure learning algorithm [5, §10] with a language bias encoding the

class dependency graph Graph(P̃) to obtain a program P. Let us further assume that we learned perfectly,

i.e. that the program P encodes the same distribution as P̃. If we now assume that both programs P and P̃

are acyclic proper positive ProbLog programs in normal form, Theorem 1 yields that P and P̃ coincide,

i.e. P expresses the full causal content of P̃.
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Since without background knowledge each currently available structure learning algorithm [5, §10]

only searches for positive programs fitting a given dataset, the assumption to learn proper positive

ProbLog programs in normal form is realized easily. Causally, the absence of background knowledge

implies that we assume our data to be generated by a proper positive ProbLog program in normal form.

Corollary 1. Assume we are given data sampled from a hidden proper positive ProbLog program in

normal form P̃ and assume we are aware of the class dependency graph Graph(P̃) of P̃. Every structure

learning algorithm that is able to learn a proper positive ProbLog program in normal form with the

correct class dependency graph and the correct distribution reconstructs P̃ from the provided data. In

particular, the result of such a structure learning algorithm supports counterfactual reasoning. �

4 Conclusion

In the introduction, we show that the distribution semantics does not uniquely determine counterfactual

query outcomes for ProbLog programs, making it unfeasible to use the currently available structure

learning algorithms for counterfactual reasoning. However, our main result reveals that proper positive

ProbLog programs in normal form are actually uniquely determined by their distribution semantics and

their class dependency graph. Hence, if applied without background knowledge and if we assume perfect

learning, the currently available structure learning algorithms can recover these programs when provided

with the correct language bias i.e. they support counterfactual reasoning in this setting.

In a forthcoming paper, we show that counterfactual reasoning uniquely determines a proper program

in normal form, i.e. it is not sufficient to learn programs under a coarser notion of equivalence. Deter-

mining the equivalence classes of ProbLog programs representing the same distributions and predicting

the behaviour of the available structure learning algorithm for more general fragments of ProbLog are

promising directions for future work extending this contribution.
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We address the problem of checking the satisfiability of a set of constrained Horn clauses (CHCs)
possibly including more than one query. We propose a transformation technique that takes as input
a set of CHCs, including a set of queries, and returns as output a new set of CHCs such that the
transformed CHCs are satisfiable if and only if so are the original ones. The transformed CHCs
incorporate in each new query suitable information coming from the other ones so that the CHC
satisfiability algorithm is able to exploit the relationships among all queries. We show that our
proposed technique is effective on a non trivial benchmark of sets of CHCs that encode many
verification problems for programs manipulating algebraic data types such as lists and trees.

1 Introduction

Constrained Horn Clauses (CHCs) are a logical formalism very well suited for automatic program
verification and analysis [1]. Indeed, many verification problems can be reduced to problems of checking
satisfiability of CHCs and several effective CHC solvers are currently available as back-end tools for
program verification purposes [5, 6].

Following the CHC-based verification approach, a program is translated into a set of definite CHCs
(that is, clauses whose head is different from false), which capture the semantics of the program, together
with a set of queries (that is, clauses whose head is false), which specify the program properties to be
verified. Very often the program includes several functions, each one having its own contract (that
is, a pair of a pre-condition and a post-condition) and the CHC translation of the verification problem
generates several queries.

CHC solvers try to show the satisfiability of a set of CHCs of the form: P∪{false←G1, . . . , false←
Gn}, where P is a set of definite CHCs, and false←G1, . . . , false←Gn are queries, by trying to show
in a separate way the satisfiability of each set P∪{false←Gi}, for i=1, . . . ,n. This approach may not
always be effective, as the solver may not be able to exploit, possibly mutual, dependencies among the
various queries.

2 The Transformation Algorithm

In this paper we propose a CHC transformation technique that, given a set P∪{false←G1, . . . , false←
Gn} of CHCs, derives an equisatisfiable set P′ ∪{false←G′1, . . . , false←G′n}, for whose satisfiability

http://dx.doi.org/10.4204/EPTCS.385.8
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proof a CHC solver may exploit the mutual interactions among the n satisfiability proofs, one for each
query.

The CHC transformation algorithm Tmq we present here, is based on adaptations of the usual
unfold/fold transformation rules for CHCs (and CLP programs), and on a novel rule, called Query-based
Strengthening, specifically designed for incorporating into the clauses relative to a particular query Q
some additional properties and constraints derived from other queries that are relative to predicates on
which the predicates in Q depend.

Algorithm Tmq is both sound and complete, that is, the transformed clauses are satisfiable if and only
if so are the original ones. The completeness of Tmq is very important because if a property does not
hold, it allows us to infer the unsatisfiability of the original clauses, and hence to deduce the invalidity of
the property to be verified.

The proposed algorithm improves over the Tcata algorithm presented in a previous paper [4] which
works by eliminating ADTs from sets of CHCs. Tcata is only sound (indeed, it can be seen as computing
an abstraction of the initial clauses), and thus if the transformed clauses are unsatisfiable we cannot
infer anything about the satisfiability of the initial CHCs. The new algorithm Tmq does not eliminate
ADT variables, but the additional constraints it discovers are often very beneficial to the CHC solvers
when trying to check the satisfiability of a given set of clauses, thereby enhancing their ability to verify
program properties.

In order to define a class of CHCs for which our transformation algorithm always terminates, we
have considered predicates for expressing properties that are catamorphisms, that is, predicates that are
total and functional with respect to some of their arguments, and have a somewhat restricted recursive
structure.

3 Experimental Evaluation

We have implemented algorithm Tmq in a tool, called VeriCaTmq, which extends VeriCaT [4] by
guaranteeing a sound and complete transformation. VeriCaTmq is based on: (i) VeriMAP [2] for
transforming CHCs, and (ii) SPACER [6] (with Z3 4.11.2) to check the satisfiability of the transformed
CHCs.

We have considered 170 problems, as sets of CHCs, with 470 queries in total, equally divided
between the class of satisfiable (sat) problems and unsatisfiable (unsat) problems (for each class we
have 85 problems and 235 queries).

The problems we considered refer to programs that manipulate: (i) lists of integers by performing
concatenation, permutation, reversal, and sorting, and (ii) binary search trees, by inserting and deleting
elements. For list manipulating programs, we have considered properties encoded by catamorphisms
such as: list length, minimum and maximum element, sum of elements, list content as sets or multisets
of elements, and list sortedness (in ascending or descending order). For trees, we have considered tree
size, tree height, minimum and maximum element, tree content and the binary search tree property.

In addition to satisfiable problems, we have also considered unsatisfiable problems that have been
obtained from their satisfiable counterparts by introducing bugs in the programs: for instance, by not
inserting an element in a list, or adding an extra constraint, or replacing a non-empty tree by an empty
one.

In summary, VeriCaTmq was able to prove all the 170 considered problems whereas SPACER was
able to prove the properties of 84 ‘unsat’ problems out of 85, and none of the ‘sat’ problems. The total
time needed for transforming the CHCs was 275 seconds (1.62 s per problem, on average), and checking
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Program Problems Queries SPACER VeriCaTmq

sat unsat sat unsat

List Membership 2 6 0 1 1 1
List Permutation 8 24 0 4 4 4
List Concatenation 18 18 0 8 9 9
Reverse 20 40 0 10 10 10
Double Reverse 4 12 0 2 2 2
Reverse w/Accumulator 6 18 0 3 3 3
Bubblesort 12 36 0 6 6 6
Heapsort 8 48 0 4 4 4
Insertionsort 12 24 0 6 6 6
Mergesort 18 84 0 9 9 9
Quicksort (version 1) 12 38 0 6 6 6
Quicksort (version 2) 12 36 0 6 6 6
Selectionsort 14 42 0 7 7 7
Treesort 4 20 0 2 2 2
Binary Search Tree 20 24 0 10 10 10
Total 170 470 0 84 85 85

Table 1: Programs and problems proved by SPACER and VeriCaTmq.

the satisfiability of the transformed CHCs took about 174 s in total (about 1s average time, 0.10 s median
time). For comparison, SPACER took 30.27 s for checking the unsatisfiability of 84 problems (0.36 s
average time, 0.15 s median time). The benchmark and the tool are available at https://fmlab.unich.
it/vericatmq.

For instance, for all the list sorting programs we have considered (Bubblesort, Heapsort, Insertionsort,
Mergesort, Quicksort, Selectionsort and Treesort), VeriCaTmq was able to prove properties stating that
the output list is sorted and has the same multiset of elements of the input list. Similarly, VeriCaTmq was
able to prove that those properties do not hold, if extra elements are added to the output list, or some
elements are not copied from the input list to the output list, or a wrong comparison operator is used.

The results obtained by the prototype implementation of our method are encouraging and show that,
when used in combination with state-of-the-art CHC solvers, it can greatly improve their effectiveness to
prove satisfiability of sets of CHCs with multiple queries, while it does not inhibit their remarkable ability
to prove unsatisfiability, although some extra time due to the transformation process may be required.

Full details about the contributions of this paper can be found in the original publication [3].
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With the ever-increasing potential of AI to perform personalised tasks, it is becoming essential to
develop new machine learning techniques which are data-efficient and do not require hundreds or
thousands of training data. In this paper, we explore an Inductive Logic Programming approach for
one-shot text classification. In particular, we explore the framework of Meta-Interpretive Learning
(MIL), along with using common-sense background knowledge extracted from ConceptNet. Results
indicate that MIL can learn text classification rules from a small number of training examples, even
one example. Moreover, the higher complexity of chosen example for one-shot learning, the higher
accuracy of the outcome. Finally, we utilise two approaches, Background Knowledge Splitting and
Average One-Shot Learning, to evaluate our model on a public News Category dataset. The outcomes
validate MIL’s superior performance to the Siamese net for one-shot learning from text.

1 Introduction

Machine learning, in particular, Deep Neural Networks (DNNs), has achieved outstanding outcomes in
numerous real world applications such as image and text classification [7, 20]. However, these learning
methods require a huge number of training instances, which is not always possible to be provided in
advance. An automated software tool, for example, should be able to learn from a small number of inter-
actions with the user in order to be efficiently customised with every new user’s requirement. Inductive
Logic Programming (ILP) and, in particular, Meta Interpretive Learning (MIL) can learn human-readable
hypotheses from a small amount of training data [17, 24]. This capability is very promising for medical
and industrial usage, especially when we do not have access to a large amount of training data. The
main contribution of this study is to develop and evaluate a new learning algorithm, Meta-Goal Learner
(MGL), based on the framework of Meta-Interpretive Learning (MIL), which can be utilised for one-
shot learning from textual data along with using a common-sense knowledge-base (i.e. ConceptNet) as
background knowledge for learning.

2 Inductive Logic Programming

Inductive Logic Programming (ILP) is a subfield of symbolic artificial intelligence, which works based
on inductive reasoning to detect generalisations, rules, or models [13, 18]. In this method, the system
learns from training examples with the help of background information and using logic programming
[24]. Indeed, the primary purpose of ILP [13], like the other types of machine learning, is to induce a
model/ hypothesis that can generalise training examples but, unlike them, uses logic programs to repre-
sent data and learns relations [2].

http://dx.doi.org/10.4204/EPTCS.385.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Using logic programs brings several benefits to ILP. Firstly, as they represent hypotheses in ILP and
are related to relational databases, they can support relational data like graphs. On the other hand,
because of its expressivity, it can learn complex relational theories like cellular automata, event calculus
theories, and Petri nets [2]. Secondly, it is similar to natural language; therefore, readable and valuable
for explainable AI and scientific discovery ([17]).

Every standard ILP setting consists of three input sets, including Background Knowledge (B), positive
training examples (E+), and negative training examples (E−) [11, 13]. The output is a Hypothesis H
such that:

• It is necessary ∀ e ∈ E+ B 6|= e

• H is complete/ sufficient if ∀ e ∈ E+ and H ∧B |= e

• H is strong consistent if ∀ e ∈ E− and H ∧B 6|= e

• H is weak consistent if H ∧B 6|=�

2.1 Meta-Interpretive Learning

Meta-Interpretive Learning (MIL) [15] is a type of Inductive Logic Programming which allows learning
logic programs from background knowledge, training examples and a declarative bias called metarules.
Metarules are datalog clauses with variables quantified over predicate symbols (i.e., second-order vari-
ables) [19, 10].

The advantage of MIL is its capability to (1) automatically introduce new sub-definitions when it
learns a predicate definition [16, 15]. This is referred to as Predicate Invention. (2) learning recursive
clauses. MIL uses metarules to restrict hypotheses space. In other words, a meta-rule is a higher-order
expression in which the form of permitted clauses in the hypothesis space is instructed[16, 12].

A metarule is a higher-order well formed formula as follows:
∃σ∀τP(s1, ...,sm)← ...,Qi(t1, ..., tn), ...

where σ ,τ are disjoint variables, ρ and ζ are sets of predicate symbols and constants respectively
P,Qi ∈ σ ∪τ ∪ρ and s1, ...,sm, t1, ..., tn ∈ σ ∪τ ∪ζ . Metarules are shown normally without quantifiers as:
P(s1, ...,sm)← ...,Qi(t1, ..., tn), ... . P and Qi are existentially quantified higher-order variables, while the
other variables present universally quantified variables.

The standard MIL problem [15] is defined as follows: Given metarules (M), definite program back-
ground knowledge (B) and ground positive and negative unit examples (E+, E−), MIL returns a higher-
order datalog program hypothesis (H) if one exists such that: M∧B∧H |= E+ and M∧B∧H 6|= E− is
consistent.

In ILP, selecting proper Background Knowledge (B) is essential for appropriate learning performance.
However, this could be difficult or expensive as often this should be done by experts. There are two
main problems related to having a balance background knowledge, including too little and too much
Background Knowledge. If using too little Background Knowledge, we might lose the target hypoth-
esis. Having too much irrelevant Background Knowledge is another ILP challenge that can increase
hypothesis space size and decrease learning performance ([4]).
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Category Source Relations Example
Commonsense KGs ConceptNet 37 mother-related_to-family

Atomic 9 Person X bakes bread-xEffect-eat food
Glucose 10 someone A -eats- something A

WebChild 4groups eating -type of- consumption
Quasimodo 78636 pressure cooker-cook faster-food
SenticNet 1 cold food -polarity- negative

HasPartKB 1 dairy food -has part- vitamin
Probase 1 apple -is a- food
Isacore 1 snack food -is a- food

Common KGs Wikidata 6.7k food -has quality- mouthfeel
YAGO4 116 banana chip -rdf:type- food
DOLCE 1 n/p
SUMO 1614 food -hyponym- food_product

Lexical resources WordNet 10 food -hyponym- comfort food
Roget 2 dish -synonym- food

FrameNet 8(f2f) eating -evoke- Ingestion
MetaNet 14(f2f) food -has role- food_consumer
VerbNet 36(roles) eating -haspatient- comestible

Visual sources Visual Genome 42374 food -on- plate
Flickr30k 1 eating place -confers with- their kitchen

Corpora& LMs GenericsKB n/a Animals search for food
GPT-2 n/a eating at home will not lead to weight gain

ChatGPT n/a Food provides nourishment: People eat food to..
(huge amount of information about eating)

Table 1: Overview of common-sense knowledge sources partly taken from [6]

There are two methods to overcome this issue, one is to enable an ILP system to invent a new predicate
instead of missing background knowledge [23]. The second method is to use transfer learning to discover
knowledge that can help mitigate the effects of background knowledge shortage [8].

3 Commonsense Knowledge and ConceptNet

Commonsense knowledge is an ordinary information that helps people make sense of everyday situations
without mentioning them in their communications. Due to its implicitness, capturing this knowledge is
beneficial for designing an effective human-computer interface and various types of Artificial Intelligence
(AI) [6, 5]. These common-sense knowledge sources are in various forms and about different types of
knowledge. Ilievski et al. [6] divided them into five categories, common-sense knowledge graphs ( e.g.
ConceptNet and Atomic), common knowledge graphs and ontologies( e.g. Wikidata and Yago ), lexical
resources ( e.g. WordNet and Roget), visual common-sense sources ( e.g. Visual Genome), and Corpora
and language models ( e.g. GenericsKB and Language models) as shown in Table 1.

ConceptNet is a multilingual common-sense knowledge graph derived from the crowd-sourced Open
Mind Common Sense project and knowledge from other resources like WordNet, DBPedia, Games with
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Figure 1: An illustration of ConceptNet used by our system.

a purpose, Wiktionary, OpenCyc and JMDict, connecting words and terms of natural language as nodes
with labelled weighted edges with 37 types of relations [6].

The standard definition of a Common-sense Knowledge Graph is as follows [26]:
G= (V,E,R) is a Common-sense Knowledge Graph, where V, E and R are the node, edge and relation
sets. Edges comprise triplets (h, r, t) where h and t are head and tail entities connected by relation
r : E = (h,r, t) | h ∈V, t ∈V,r ∈ R, and nodes are along with a free-text description.

These node relations in ConceptNet5.5 have been categorised [21] to two sub-classes: Symmetric
relations like LocatedNear, RelatedTo, SimilarTo, and Asymmetric relations such as AtLocation, Capa-
bleOf, CreatedBy, DefinedAs, HasA, and Entails [6]. We use relations of "RelatedTo", which demon-
strate an undefined meaning relation between two words. As shown in Figure 1, every node represents a
word extracted from ConceptNet and connected to another node by a bidirectional edge. These symmet-
ric edges show the relatedness of the connected words and, therefore, are bidirectional.

4 One-shot text classification using ILP and MIL

The basis of an interactive learning system is to learn from the user. This challenge requires incremental
learning techniques that help the system to learn from time to time. In this section, we introduce Meta-
Goal Learner (MGL), a novel machine learning from user interactions. We explore Metagol[3] learning
engine for the task of few-shot learning in MGL.
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(a) Model Prototype (b) MGL illustration

Figure 2: Meta-Goal Learner.

MGL initially fetches the words of the task (i.e. sentence given by the user) and obtains relevant
background knowledge from ConceptNet. The system can then learn and categorise the upcoming tasks,
as shown in Figure 2. For instance, when a user writes a task (e.g. "call mother"), the system will
wait for the first answer/ label from the user and then will consider it as a positive example. In this
case, the positive example represents the task and its category name. The system then generates relevant
background knowledge as follows:

1. Tokenise the sentence and generate clauses as part of the background knowledge:
e.g., contains(X,call). contains(X,mum).

2. Send a request to ConceptNet web API for fetching the relations of the words separately and
adding them to the background knowledge:
e.g., related_to(call, phone). related_to(mother, family).

Given the positive example and background knowledge, the system will learn the hypothesis using
ILP. When the user adds the next sentence, the system will follow steps one and two and checks with the
hypotheses learned before. If there is a match, the system will label the sentence as before; otherwise,
the system will try to learn a new classification rule using the current input task as a positive example and
examples from other tasks as negative examples. In the next section, we present some of the experimental
evaluations of the learning algorithms which we have been exploring for integration within MGL.

4.1 ILP Experiments using the learning engine Aleph

In this experiment, we check whether it is possible to use the ILP learning engine Aleph[22] for few-shot
text classification. Examples and background knowledge are defined as follows:

Examples We use two positive examples for each of the "family", "work", and "sport" categories. For
negative examples, we use every example of each category as the negative example for the other category.

Background Knowledge To provide Background knowledge, we initially omit stop-words using
NLTK library. Then, the system generates predicates for each sentence in two steps:

1. Indicating every word of the sentences in a "contains" predicate
(e.g. contains([registering,gym],gym)).
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2. Sending a request to ConceptNet API for each word of the sentence to fetch their "related" terms
and then generating their "related_to" predicate (e.g. related_to(mother,family)).

Results and discussion Using the learning engine Aleph, three rules (hypotheses) have been gener-
ated to classify the three categories.

Rule 1: category(A,family) :- contains(A,B), related_to(B,shop).
Rule 2: category(A,work) :- contains(A,B), related_to(B,letter).
Rule 3: category(A,sport) :- contains(A,B), related_to(B,exercise).

As explained above the training data for each category included 2 positive examples. We also ex-
perimented with one positive example (one-shot learning) but Aleph was unable to learn any rule. To
evaluate the accuracy of the above rules on separate test data, we use a different dataset with 29 positive
examples, including 15 "family", 9 "work" and 5 "sport" examples and the negative test data for each
group consists of examples from other groups (i.e., 15 family examples used as negative for work, 9
work examples are used as negative for sport, and 5 sport examples are used as negative for family) and
reached to the overall predictive accuracy of 64%.

4.2 MIL Experiments using the learning engine Metagol

In this experiment, we first check whether it is possible to learn a hypothesis from one positive and one
negative example using MIL then explore the possibility of learning more general rules using predicate
invention and recursive rules in MIL.

We employ the learning engine Metagol [14] to utilise MIL with the same Background Knowledge
and examples applied in the Aleph experiment. In addition to training examples and background knowl-
edge, Metagol also needs metarules to induce the hypothesis. We test our system with two different
types of metarules. At first, we utilise a chain metarule to obtain the learning hypothesis. In the second
experiment, we use indent, chain, and recursive metarules along with using constants.

Results and discussion The system induces one hypothesis from one positive and one negative ex-
ample. Note that in this experiment, the positive example is a simple case where the category name
is directly related to one of the words in the sentence. Consequently, one chain metarule is enough to
generate the hypothesis. For instance, in category([call, mother], family), ’mother’ directly connects
to ’family’ with only one edge of ’related_to’ relation in ConceptNet. Hence, the acquired hypothesis
consists of one ’related_to’ predicate as follows:

category(A,B) :- contains(A,C), related_to(C,B).

This rule is similar to the rule which was learned by Aleph in the previous section when we provided
at least two positive examples for each category and used variable in mode declaration but Aleph (unlike
Metagol) was unable to learn from just one positive example. However, the rule above cannot cover all
relevant positive examples as it only considers ’related_to’ once. To demonstrate this, we provided more
training examples (4 positive and 6 negative) which include cases where we need at least two levels of
connections, along with using chain metarule. Consequently, the system invents a new predicate (i.e.,
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category_1(A,B):- related_to(A,C),related_to(C,B).) within its hypothesis set as follows:

category(A,B) :- contains(A,C), category_1(C,B).
category_1(A,B):- related_to(A,C),related_to(C,B).

The new rule can capture cases such as the category name ’home’ which does not directly connect to
’mother’ but is connected via ’family’. However, in order to have a general transitive rule for ’related_to’
we need to learn a recursive rule.

Finally, we demonstrate that Metagol can be used to learn a recursive rule to capture transitive ’re-
lated_to’ relations. In this experiment, we provide two positive examples with several relatednesses in
their structure. Moreover, we use constant and variable at the indent metarule and consequently, the
following results including a complete recursive hypothesis are achieved:

category(A,B):-contains(A,C),category_1(C,B).
category_1(A,B):-related_to(A,C),category_1(C,B).
category_1(A,home):-related_to(A,home).

As shown above, it is notable that whatever a chosen example for one-shot learning has more related-
ness in its structure, i.e. higher complexity compared to the other examples, it could achieve a complete
recursive hypothesis. This, in turn, is especially beneficial for choosing the best possible shot to do one-
shot learning.

To evaluate one-shot learning, we employ the same test dataset used for the experiments with Aleph
in the previous section. As evidenced by the results, Metagol could achieve around 70% accuracy, while
Aleph could not learn any rule from one example.

In summary, we demonstrated that the Metagol learning engine can be used in our system to learn
text classification rules from one example (one-shot learning). This feature clearly distinguishes Metagol
(MIL) from Aleph (standard ILP). Moreover, we also demonstrated learning recursive rules in addition
to predicate invention. However, this capability required metarules defined for the given application.
In future, we will explore new implementations of MIL which can automatically generate the required
metarules from background knowledge and examples.

4.3 Experiments comparing MIL with Deep Learning

In this experiment, we use Siamese Network for few-shot learning for text classification and compare the
results with MIL from the previous sections. A Siamese network includes two identical sub-networks
with shared weights. Each sub-network works simultaneously and compares its outputs at the end [1].
If the input of the twin sub-networks is the same, they extract similar semantic features, and the dis-
tance between their output will be less; otherwise, the distance will be more significant. The Siamese
Network used in this experiment is similar to the CNN-based Siamese model described in [27] where
each twin sub-networks consist of a convolutional layer, a max pooling layer and a fully connected layer.
The model sets with a batch size of 50, and a learning rate of 0.00001. To achieve optimal results, the
network is trained over ten epochs.
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Following the approach described in [25], we evaluate the performance of the Siamese network and
compare the results with our one-shot learning approach using Metagol. The training data for both sys-
tems are one positive example and one or more negative examples (examples from other categories) and
the test data is the same as the one used in the previous section.

(a) Increasing negative samples (b) Increasing positive samples

Figure 3: Comparison between the average predictive accuracy of MIL (Metagol) vs Deep Learning
(Siamese Net) on Task Classification dataset. (a) learning with one positive example and one or more
negative examples. (b) learning with one or more positive examples, and the same number of negatives.
The training and test data have been randomly chosen from the Task Classification dataset and the test
data includes 15 positive and 14 negative examples.

As shown in Figure (3a), the Siamese model started from 47% average accuracy with one positive
and one negative example and stays around the default accuracy after learning from 6 examples(50%).
Our system achieved an average accuracy of 70% from one positive and one negative example and main-
tained higher average accuracy than the Siamese model throughout. Figure (3b), depicts the average
accuracy of our system and Siamese model in the case of an increasing number of positive examples. It
also confirms the outperformance of our model over Siamese model.

To evaluate our model on a publicly available dataset, we use News Category Dataset [9] which
contains news articles from different sources and covers various topics such as sports, technology and
the environment. We randomly selected five positive examples from the environment news headlines to
train our model and test the gain hypotheses on randomly selected 50 positive and 50 negative samples.
As shown in Figure 4, the results suggest the advantage of our method based on MIL over the Siamese
model when we have few training examples, e.g. one positive and one negative example.

It is noticeable that for training and evaluating a large dataset, we use two techniques as follows:

1. To solve the problem of requiring large amounts of background knowledge for training and testing,
we use the background knowledge of each example separately.

2. To train our model on a large dataset with only one or a few examples (one-shot learning), we
randomly select 10 samples and make an average from several possible one-shots to calculate the
average of different types of one-shots (ex: the average of possible one positive and one negative
example shots or an average of one positive and two negative examples etc).
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(a) Increasing negative samples (b) Increasing positive samples

Figure 4: Comparison between the average predictive accuracy of MIL (Metagol) vs Deep Learning
(Siamese Net) on News Category dataset. (a) learning with one positive example and one or more
negative examples. (b) learning with one or more positive examples, and the same number of negatives.
The training and test data have been randomly chosen from News Category Dataset and the test data
includes 50 positive and 50 negative examples.

5 Conclusion

Short text classification is challenging due to the freely constructed sentence structures and their limited
length. This study aims to provide a novel algorithm to classify short texts called "tasks" automatically
based on the user’s interests and without having any prior information about user behaviours. Thus,
the first research question sought to determine a reliable source for providing pertinent background in-
formation to feed the system. We utilised Conceptnet to prepare the required background information
related to the task. Our model was then designed based on different types of ILP and MIL systems, in-
cluding Aleph and Metagol. We also used a Siamese Network model to compare with the deep learning
methods. Siamese nets are the most popular DL approaches for one or few-shot learning. We applied
the Convolutional-Siamese model with one positive and one or more negative examples. According to
the current results, the MIL-based approach achieved 70% accuracy for one-shot learning, while the
accuracy of ILP and Deep Learning was around default accuracy (50%) in this task.

Finally, we used News Category Dataset as a publicly available dataset to evaluate our model. This
led us to utilise two techniques, including Background Knowledge Splitting and the Average One Shot
Learning approach to train and evaluate the large dataset. The final results validated MIL’s superior
performance to the Siamese network for one-shot learning from text.

Supplemental Materials
The data and code used in the experiments can be found in the following Github repository:
https://github.com/ghazalmilani/One-Shot-Learning-from-Text-ICLP2023.git
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In this paper we explore the possibility of using OpenAI’s CLIP to perform logically coherent

grounded visual reasoning. To that end, we formalize our terms and give a geometric analysis of

how embeddings in CLIP’s latent space would need to be configured in order for the system to be

logically coherent. Our main conclusion is that, as usually configured, CLIP cannot perform such

reasoning.

Introduction

Recent work in machine learning has seen stunning results in combining generative language models

with vision models. By tying vision and language, such models are capable of generating images from

descriptions [9], [10] or engaging in sophisticated visual question answering [2] and other forms of vi-

sual reasoning. One striking feature of models trained on the latter class is the reasoning they do tends

to produce new inferences via the generative mechanisms of the language model rather than through

any kind of formal logical reasoning. However, logical reasoning exhibits a number of desirable prop-

erties, including the known soundness and completeness of first-order logic. These in turn constitute a

particular form of systemic compositionality – the capacity noted in symoblic engines to systematically

combine symbols to produce more complex representations [12]. Indeed, in old debates between sym-

bolic and connectionist approaches to artificial intelligence, a frequent critique made by proponents of

the symbolic approach was that connectionist systems lacked such compositionality. To a certain degree,

the tremendous success of large language models and their derivatives has muted this criticism – indeed

large language models are connectionist systems which easily recombine symbolic tokens to produce

complex sentences (see, e.g. [13]). Further, their obvious power leads one to wonder whether the sys-

tematic compositionality found in classical AI system might be present in contemporary neural systems

as well.

This in turn leads specifically to the question of whether a more logic-based kind of reasoning can

occur in vision-language models. This paper presents an analytical study of this possibility in one such

model, OpenAI’s CLIP [7], which embeds sets of images and sets of captions in a common vector space

and uses cosine similarity to measure how well each caption describes each image. We are specifically

interested in the possiblity of using CLIP as a basis for grounded, logical reasoning. By the first, I simply

mean that reasoning about an image should in some way be connected to the image (grounded in the

image). The joint-embedding mechanism of CLIP, along with cosine similiarity, provides precisely such

a mechanism. Logical reasoning refers to a way of reasoning about the image that is based in symbolic

logic. As noted above, this differs from most of what is called visual reasoning in the literature, where

large language models (rather than logic) are usually used to generate implications. In the taxonomy

Daniel Kahnemahn laid out in Thinking Fast and Slow[5], the logical visual reasoning we are interested

http://dx.doi.org/10.4204/EPTCS.385.10
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in would be an instance of slow, System 2, reasoning, whereas the usual literature is (arguably) concerned

with System 1. As such, it loses many of the desirable characteristics (e.g. soundness and completeness)

of logical reasoning.

Our final analysis will show that, as usually configured, CLIP cannot serve as a basis for grounded

logical reasoning about images. Our final contributions are thus:

1. We give a formal analysis of grounded logical reasoning in systems like CLIP; and

2. We show that such systems ultimately cannot support such reasoning.

We by no means see this negative result as the end of the story. Indeed, our formal analysis will point

strongly to CLIP’s use of cosine similarity as imposing severe geometric contraints on what a grounded

logical reasoning system based on CLIP would look like. This points to the desirability of analyzing

whether other ways of measuring similarity between a caption and an image might prove better suited to

building such a system.

CLIP

We preface our analysis with a summary of the operation of CLIP – full details are in [7]. Given a set of

images { I1, . . . , Im } and a set of potential captions {C1, . . . ,Cn } as input, CLIP will process the two sets

as follows:

1. Each image is passed through a fixed visual feature detector (often a vision-transformer) and the

detected features are then passed into a learned embedding network which maps each Ii to a vector

Ii in some finite dimensional vector space L = Rd . Thus CLIP implicitly defines a function f

which maps images to vectors in L.

2. Similarly, each caption Ci is passed through a language model (e.g GPT2 [8]) to obtain vector

embedding of the caption, which is then also passed into a an embedding network to produce a

vector Ci ∈ L. Thus CLIP implicitly defines a function g which maps captions to L.

3. For each image Ii, the probability distribution on captions describing Ii is determined by taking a

softmax of the cosine similiarities between each C j and Ii. That is,

p = softmax

















Ii·C1

‖ii‖‖c1‖
...

Ii·Cn

‖ii‖‖cn‖

















where softmax(
[

x1 . . . xn

]T
) is defined as 1

∑n
i=1 exi

[

ex1 . . . exn
]T

We note that CLIP has been shown to be a very effective model for recognizing a wide variety of

classes [7], and indeed its flexibility seems to offer tremendous potential for using CLIP as a basis for

visual reasoning in the wild. This promise largely underwrites the interest in this paper in studying CLIP

as a basis for grounded logical reasoning.

Related Work

The genesis of this paper is a desire to combine the seemingly grounded object recognition capabilities

of CLIP with the power of traditional logical reasoning. This places the current work within the body of
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literature studying visual reasoning using language model; some prominent examples include Flamingo

[1], Visual Comet [6] and more generally the large contemporary literature on visual question answer-

ing and visual commonsense reasoning. While our analysis takes place in the context of CLIP, similar

analyses can be done for other vision-language systems.

Our particular emphasis here is on compositionality in such systems, and in particular in our theoret-

ical analysis we will focus on some geometric considerations on the latent space of CLIP. This ties the

current work to the literature on compositionality in symbolic systems [12]. The geometric analysis finds

some precedent in the work of Peter Gärdenfors [3].

There is other work specifically dealing with compositionality in language models and language-

vision models. For example, [4] shows that the BERT-like language models often fail at logical reasoning,

while [11] raises the question of whether VQA models are truly compositional.

Geometric Analysis

The question in this paper is whether or not CLIP (or a variant thereof) can support grounded logical

reasoning. As noted, the explicit tying of the images and the captions which desribe them provides some

kind of grounding. Indeed, we can view the behavior of CLIP as providing a kind of logical interpretation

function: for any fixed image i and description d, we can think of d being true in i exactly when CLIP

gives higher probability to d than to ¬d. In classical logic, such an interpretation then extends to a notion

of truth in a model for arbitrarily complex combinations of atomic descriptions. Moreover, this notion

of truth is exactly reflected in the inference rules of classical logic – this is precisely the soundness and

completeness of first-order (or propositional) logic. That is, starting with a consistent set of axioms and

applying inference rules not only yields logical consequences of the axioms, but every such consequence

can be attained this way.

We would like to examine whether the grounding obtained by viewing CLIP as providing an in-

terpretation function can be extended in a similar vein. To address this question, we first sharpen our

definitions and introduce some notation. Suppose we are working with some fixed set of image descrip-

tions D , and further that D is the closure under some set of logical operations of some generating set

of atomic descriptions A . For example, A might be a set of natural language descriptions of images as

belonging to a set of basic categories, containing strings like “An image of a cat” and “An image of a

dog”. Then closing under logical operators would add descriptions like “An image of a cat or a dog” and

“Not an image of a cat” (we will formalize these notions below). For any d ∈ D , let us say that d is true

of i when d accurately describes i, and write this as i |=C d 1 . We will write i ⊢C d when CLIP assigns

higher probability to d than to ¬d given the image set { i} and the caption set {d,¬d }. In analogy with

the soundness and completeness of propositional calculus, our hope is that i |=C d exactly when i ⊢C d.

We begin our discussion by defining our basic syntax and semantics. Throughout, we will subscript

standard logical notation with C (e.g. ∨C) to indicate that we are working with related but different no-

tions. Since CLIP uses natural language descriptions, this is slightly more complicated than the siutation

in propostional calculus, where atomic propositions are combined in a natural way. Let N denote the

set of all English language descriptions. We will fix functions φ∨ : N ×N → N ,φ∧ : N ×N → N

and φ¬ : N → N which determine how logical operators combine descriptions. For example, we might

have φ∨(“An image of a cat”, “An image of a dog”) = “An image of either a cat or a dog”. Given these

1We recursively define i |=C d for any d ∈ D in Definition 3 below.
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functions and given d,e ∈ A , we will write d ∨C e for φ∨(d,e), and similarly for ∧C and ¬C. The syntax

and semantics of these operations are defined recursively in the expected way.

Definition 1. Let A be any set of descriptions, which we take to be atomic. Then we define DA , the set

of well-formed sentences generated by A as the set of strings of the form:

• d for d ∈ A ; OR

• ¬C(d) for well-formed d ∈ D ; OR

• (d ∨C e) for well-formed d,e ∈ D ; OR

• (d ∧C e) for well-formed d,e ∈ D

When context makes them unnecessary, we will omit the parentheses in well-formed sentences (adopting

the usual precedence conventions for logical operators).

We now turn to the models under consideration; these are meant to have the same basic structure as

CLIP and use cosine similarity to measure the closeness of embeddings.

Definition 2. Let I denote any set of images and let D be as in convention 5. Then a CLIP-like model

is a pair of functions ( f ,g) where for some Euclidean vector space L, we have that f : I → L and

g : D → L. That is, f and g embed images and descriptions into a shared latent space.

If C is CLIP-like, then for i ∈ I ,d ∈ D we define α(i,d) to be the cosine similarity between the

respective embeddings of i and d.

αC(i,d) :=
f (i) ·g(d)

‖ f (i)‖‖g(d)‖

We will use this notion to recursively define the relation i |=C d.

Definition 3. Let C = ( f ,g) be CLIP-like. For any image i and well-formed d,e ∈ DA :

• If d ∈A , then i |=C d if and only if C assigns higher probability to d then to ¬d when C uses input

image { i} and caption set {d,¬d }. That is, i |=C d if and only if αC(i,d)> αC(i,¬Cd).

• i |=C ¬C d if and only if it is not the case that i |=C d.

• i |=C d ∨C e if and only if i |=C d or i |=C e.

• i |=C d ∧C e if and only if i |=C d and i |=C e

We want to introduce some modest constraints on the types of images and their potential descriptions

which we will consider.

Definition 4. Let I be a set of images and let A be a set of strings which represents atomic descriptions

of elements of I , as above. Let C be CLIP-like.

• We say that I is describable by A if for i ∈ I , there is some d ∈ A such that i |=C d and

conversely for every d ∈ A there is some i ∈ I such that i |=C d.

• If I is describable by A we say that (I ,A ) is separable if:

– For every i ∈ I , there is some e ∈ A such that i |=C ¬C e.

– For every e ∈ A , there is some i ∈ I such that i |=C ¬C e.

Separability prevents a situation where all descriptions are true of any one image or any one de-

scription is true of all images.

Convention 5. For the remainder of this paper, we fix a set of images I and a set of strings A with I

describable by A and (I ,A ) separable. Further, we shall abbreviate DA simply as D .
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In our analysis, the following observations will be used repeatedly

Remark 6. Let C be CLIP-like with latent space L. For any two points a,b ∈ L, let χ(x,y) := a·b
‖a‖‖b‖

denote the cosine similartiy between x and y

1. χ(a,b) is not defined for a = 0 or b = 0.

2. The cosine similarity of a,b is maximal when the angle between a,b is 0 and χ(a,b) = 1; it is

minimal when the angle is π
2

and χ(a,b) =−1

3. The set of all c ∈ L such χ(a,c) = 1 forms a ray in L as does the set of all c ∈ L with χ(a,c) =−1.

Further, the latter ray is the reflection of the former ray over the origin. We refer to the latter ray

as the anti-ray of the former ray. Since χ is not defined at the origin, any ray is disjoint from its

anti-ray.

We now define C-completeness for a CLIP-like structure.

Definition 7. If C is CLIP-like, we say that

• C respects basic descriptions if for every i ∈ I ,d ∈ A , if i |=C P then αC(i,d) = 1.

• C respects negation if for i ∈ I ,d ∈ A , if i |=C ¬C d then αC(i,d) =−1

• C respects disjunction if for i ∈ I ,d,e ∈ D , if i |=C d ∨C e, then αC(i,d ∨C e) = 1.

• C respects conjunction if for i ∈ I ,d,e ∈ D , if i |=C d∧C e, then αC(p,d ∧C e) = 1.

• C is C-complete if it respects descriptions, negation, disjunction and conjunction.

A simple induction (on sentence length) shows that if C is C-complete, then for any description d ∈D

and image i ∈I , if i |=C d then αC(i,d) = 1 and, a fortiori, i ⊢C d. The idea here is that the relation i ⊢C d

represents some kind of notion of d being inferred by C. In first-order logic, completeness means that

everything which can be inferred IS inferred. We would like something similar for ⊢C derivations – in

particular the ability to derive all true descriptions of an image.

What we will see is that this desire places extreme geometric constraints on the embeddings f (i),g(d).
In fact, assuming that C-completeness holds, we will show that all descriptions which are true of any im-

age will necessarily live on a single ray, while all descriptions which are false of any image will live on

that ray’s anti-ray. This will imply that all descriptions are on both the ray and it’s anti-ray, which is a

contradiction since the two are disjoint.

Proposition 8. If C = ( f ,g) is CLIP-like then C is not C-complete.

We will prove this via a sequence of lemmas.

Lemma 9. If C = ( f ,g) is C-complete, then there exists a ray R in L such that f (I )⊆ R and g(D)⊆ R.

Proof. Fix i, j ∈ I and d,e ∈ D such that i |= d, j |= e. We will show that f (i), f ( j),g(d),g(e) are all

on the same ray. Since C respects basic descriptions, we have

αC(i,d) = 1 (1)

Since i |=C d, we have i |=C d ∨C e as well. Since C respects disjunctions, we have

αC(i,d ∨C e) = 1 (2)

Similarly, we have
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αC( j,e) = 1 (3)

αC( j,d ∨ e) = 1 (4)

By (3) and (4), f ( j) is on the same ray as g(d ∨C e), as is g(e). By (1) and (2), these are on the same ray

as f (i) and g(d).

Lemma 10. If C = ( f ,g) respects descriptions, disjunctions and negations, then there exists a ray A in

L such that for every i ∈ I ,d ∈ D , if i |= ¬d then g(d) ∈ A. Moreover, A is the anti-ray of the ray R

guaranteed by Lemmma 9.

Proof. By Lemma 9, f (i) ∈ R. Since C respects negations, αC(p,d) =−1; thus g(d) ∈ A.

Fix R as in Lemma 9 and A as in Lemma 10. We note that Lemma 10 showed that if d is false for

any i ∈ I , then g(d) ∈ A. We also know from Lemma 9 that if d is true any i ∈ I, then g(d) ∈ R.

Corollary 11. For C = ( f ,g) as above and any d ∈ D ,

1. If there is any i ∈ I for which i |=C ¬C d, then g(d) ∈ A.

2. If there exist p,q ∈ I such that p |=C d,q |=C ¬Cd, then g(d) ∈ R∩A

Finally we prove our main result.

Proof of Proposition 8. Suppose, by way of contradiction, that C = ( f ,g) is CLIP-like and C-complete.

Fix d ∈A . Since I is describable by A , there exists some i∈I such that i |= d. By Lemma 9, f (i)∈ R

and g(d) ∈ R. Using separability and describability, choose j ∈I and e ∈A such that j |=¬d∧e. Since

j |= ¬d, we have g(d) ∈ A as well by Corollary 11. However, we have that αC(i,d) = 1 so that f (i) ∈ A

as well. Thus { f (i),g(d)} ⊆ R∩A. But R∩A = /0, contradicting that f ,g are maps into L.

Conclusions and Future Work

Our theoretical analysis shows no matter how accurately a CLIP-like model detects basic categories, this

cannot extend to arbitrary boolean combinations. This is by no means a fatal blow to the use of CLIP

in compostional reasoning; indeed two immediate possibilities present themselves. The most obvious is

simply to use CLIP for basic category recognition and deploy an external system to handle composition

of categories. For example, to determine whether an image is described by P∧¬(Q∨R) we can simply

run CLIP to recognize each of the categories P,Q,R and combine the results using something like fuzzy

logic. In a sense, this is a validation of using hybrid neurosymbolic models rather than trying to reason

within a vision-language model.

That said, there are reasons it would be desirable to work in a visual reasoning system in which the

latent space was organized in a logically coherent manner as discussed in the paper. While this cannot be

done for a CLIP-like system using cosine similarity, it is still open whether a similar system organized

according to Euclidean distance or some other metric might work. This will be explored in future work.

We also note that the results in this paper represent a kind of limiting case – the question of logical

coherence basically amounts to asking what the geometry of a perfectly coherent system would look like.

We have not addressed what the possibilities would be for a system where the requirement of perfection

was relaxed, for example by having i |=C d correspong to αC(i,d)≥ 1−ε for some small ε > 0. This too

will be explored in future work.
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This paper introduces the Fusemate probabilistic logic programming system. Fusemate’s inference
engine comprises a grounding component and a variable elimination method for probabilistic in-
ference. Fusemate differs from most other systems by grounding the program in a bottom-up way
instead of the common top-down way. While bottom-up grounding is attractive for a number of
reasons, e.g., for dynamically creating distributions of varying support sizes, it makes it harder to
control the amount of ground clauses generated. We address this problem by interleaving grounding
with a query-guided relevance test which prunes rules whose bodies are inconsistent with the query.
We present our method in detail and demonstrate it with examples that involve “time”, such as (hid-
den) Markov models. Our experiments demonstrate competitive or better performance compared to
a state-of-the art probabilistic logic programming system, in particular for high branching problems.

1 Introduction

Probabilistic Logic Programming (PLP) combines logic programming with probability theory. Most PLP
systems implement the distribution semantics (DS) [13]. The DS was introduced for ground definite
programs whose facts are annotated with probabilities. More expressive languages require additional
concepts to equip their programs with a DS. ProbLog [8], for instance, features probability annotations
of rule heads, not just facts, disjunctive heads, for expressing distributions, and an expressive form of
default negation. These are dealt with by a combination of program transformation, and defining the
DS via two-valued well-founded models of the grounded transformed program (if it exists) [7]. After
grounding, a probabilistic inference engine solves a given inference problem, e.g., the probability of
a query being satisfied in the models of the program. Many PLP systems implement their grounding
component (or monolithic reasoner) in a top-down way.

In this paper, we investigate the potential of bottom-up grounding as an alternative to the more common
top-down grounding. Our main motivation is efficient reasoning in applications with a high branching
rate, for approximating continuous distributions, in a timed setting (Markov models). Our main results
are a novel method for bottom-up grounding, its implementation in our PLP system Fusemate, and
the favourable experimental results we obtained with it. A main challenge with bottom-up grounding
is controlling the amount of ground rules generated. Our method addresses this problem by pruning
redundant rules based on a certain inconsistency test. The test is applied dynamically, at each step of the
grounding process along a certain program stratification ordering. Our method supports an expressive
input language with default negation, where default negation is eliminated on-the-fly at each step.

In the main part of the paper, we describe the method in detail and prove its correctness. The rest of this
introduction has more motivation, overviews the main ideas, and discusses related work.

http://dx.doi.org/10.4204/EPTCS.385.11
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Bottom-up grounding. We propose a method for grounding the program in a bottom-up way as an
alternative to the top-down approach described above. Our grounding is defined for a certain form of
program stratification called SBTP, defined in Section 2 below. The result ground program is obtained
via fixpoint computation along this stratification order. In each step of the fixpoint computation the
program rules of the proper stratification level are grounded thereby also eliminating occurrences of
default negation. This is advantageous for on-the-fly removal of redundant ground rules, which can be
informed with the result program lower than the stratum of the current step. See below for details.

The default negation operator is expressive and allows for negation over (implicitly) existentially quan-
tified conjunctions of atoms. As an example consider this program (Fusemate uses ProbLog syntax):

0.5 :: q(0). 0.5 :: q(1). 0.5 :: q(2). 0.5 :: p(T) :- q(T), \+ (q(S), S < T).
Its grounding has the same three facts and the rule above replaced by the following three ground rules:

0.5::p(0) :- q(0). 0.5::p(1) :- q(1), -q(0). 0.5::p(2) :- q(2), -q(0), -q(1).
These rules explain all ways for p-literals to become true in the least Herbrand model extending a given
choice of the probabilistic facts, where -a is true if the fact a is false. They are computed bottom-up with
a stratification that puts q-atoms before p-atoms. With this approach we obtain an extension of the DS
that is compatible with, e.g., the transformation-based approach of ProbLog mentioned above.

Motivation. We are interested in exploring the potential of bottom-up grounding for practical applica-
tions. An example are dynamic distributions, i.e., distributions whose domain is dynamically altered by
the program. Dynamic distributions are not supported by most PLP systems (exceptions are, e.g., CP-
logic [18], and the approach by Gutmann et al. [9]). Fusemate has a construct t ∼ l where t is a term for
a random variable and l = [v1, . . . ,vn] is a Prolog list of values to draw from, uniformly by default. The
list can be constructed by the program and draw cases can be queried as equations t = vi. The following
program models iterated drawing balls from an urn without replacement (an annotation a@T stands for
a dedicated “time” argument T considered part of atom a’s arguments; list append ++ and difference –
are built-in infix operators):

urn([r(1), r(2), g(1)]) @ 0. %% Initially two red and one green distinguishable balls
draw ~ Balls @ T :- urn(Balls) @ T, Balls \= []. %% Draw a ball uniformly if urn is not empty
urn(Balls -- [B]) @ T+1 :- urn(Balls) @ T, draw = B @ T. %% Drawing a ball removes it from urn
some(red) @ T :- draw=r(_) @ T. %% Abstract from ball id, color only
some(green) @ T :- draw=g(_) @ T.
To give an idea of the overall system, Fusemate can solve queries like the following:

?- some(green) @ 0. % 0.333333
?- some(green) @ 1 | some(red) @ 0. % 0.5 conditional query
?- some(C1) @ 1, some(C2) @ 2 | some(red) @ 0. % Non-ground conditional query, two solutions:
% 0.5 :: [C1 = red, C2 = green], 0.5 :: [C1 = green, C2 = red]

As in the example above, we are particularly interested in applications that involve “time”, such as hidden
Markov models and their enrichments with rules for domain constraints. Such applications are within
the scope of many PLP systems, see [17, 14, e.g.]. In Section 5 below we report on experimental results
on Markov models which demonstrate the viability of our bottom-up approach.1

1Bottom-up grounding also makes it easy to catch positive loops as it does not need mechanisms like tabling (in the presence



P. Baumgartner & Elena Tartaglia 89

Query-guided grounding and inconsistency pruning. The advantages of bottom-up grounding are
offset by some drawbacks. A major drawback is its inherent lack of goal-orientedness. Compared
to the satisfiability problem for (stratified) non-probabilistic programs, the problem is amplified in a
probabilistic setting as exponential branching into model candidates is unavoidable. To address this
problem we developed a technique for query-guided bottom-up grounding. It has two components which
reinforce each other: goal regression and inconsistency pruning. They rest on a fixed interpretation of
equations as right-unique relations, which is also taken advantage of in the inference component.

To explain, let a query be a set of ground literals. Goal regression makes the query more constrained by
adding literals to it. To ensure models are preserved, only literals that are included in every model of the
query are added. This is done iteratively along the stratification order and using the grounded rules so far
at each step. Inconsistency pruning prevents, at each step in the iteration, applying rules for grounding
that cannot contribute to a model of the query. As an example consider this Hidden Markov Model:

1 state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0. %% T = 0, non-uniform distribution given
2 obs ~ [3..30] @ 0 :- state=rainy @ 0. %% Observation is accumulated rainfall over time in mm
3 obs ~ [0..5] @ 0 :- state=sunny @ 0.
4 state ~ [[rainy, 0.7], [sunny, 0.3]] @ T+1 :- state=rainy @ T. %% T -> T+1
5 state ~ [[rainy, 0.4], [sunny, 0.6]] @ T+1 :- state=sunny @ T.
6 obs ~ [R+3..R+30] @ T :- state=rainy @ T, T > 0, obs=R @ T-1. %% Increase observation at T-1
7 obs ~ [R..R+5] @ T :- state=sunny @ T, T > 0, obs=R @ T-1.

Take the query ?- obs=0 @ 0, obs=4 @ 1, obs=20 @ 2, obs=24 @ 3. The task is to compute its success prob-
ability. Note that an increase of observed rain by 0 at time 0 can be proven only through the sub-
goal state=sunny@0 as per the rule on line 3. Goal regression detect this and extends the query with
state=sunny@0. Then, inconsistency pruning applies and rejects the rule on line 2 because its body lit-
eral state=rainy@0 is inconsistent with the (extended) query. This inconsistency follows from our fixed
semantics of equations for representing functions, i.e., right-unique relations. With that, state=sunny@0
and state=rainy@0 are inconsistent as sunny ̸= rainy (by unique name assumption). The ground instance
state ~ [[rainy, 0.7], [sunny, 0.3]] @ 1 :- state=rainy @ 0 is rejected for the same reason. The jus-
tification for inconsistency pruning is that no model of the query can satisfy the body of a rule that is
inconsistent with the query. Rejected rules can only “fire” in non-models of the query. As these interpre-
tations receive probability 0 anyway, such rules can just as well be ignored.

Goal regression and inconsistency happen during each step of the bottom-up grounding process. For
instance, the query is extended later with state=rainy@2 and all ground instances of the rules with a
body literal state=sunny@2 are rejected. The general technique is detailed in Section 3.

Related work. Too many PLP systems have been developed to discuss them all in detail. De Raedt
and Kimmig [7], and Riguzzi et al. [12] provide overviews. Fierens et al. [8] explains ProbLog in depth
and compares it with related systems. Systems with built-in top-down grounding are based on variants of
SLD-resolution (e.g., ProbLog, PITA [11]) and construct (ground-level) stratified programs by design.
The most closely related work comes from systems with built-in bottom-up grounding and that optimize
the grounding in some way. This excludes systems that assume an external grounding component but
otherwise have a related execution model, e.g., CP-Logic [18], which also supports dynamic distribu-
tions. Vlasselaer et al. [19] describe a fixpoint approach for incrementally grounding stratified programs

of symmetry and transitivity axioms, for instance). Fusemate deals with cyclic programs by means of certain query rewriting
techniques. The details are beyond the scope of this paper.
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with possibly positive cycles. Their grounding works incrementally and supports any-time reasoning for
varying queries. Grounding can be controlled heuristically, which guarantees lower success probabilities
bounds, or, in certain cases, exact probabilities, e.g., for filtering queries in Hidden Markov Models.
Several authors have considered (variants of) magic set transformations for controlling the grounding
process. The idea is to avoid bottom-up inferences with program rules that are impossibly relevant for
proving the query at hand. Relevance is determined in a regression process from the query towards the
facts using the program rules. Gutmann et al. [9] introduced magic sets for probabilistic logic programs.
Their approach supports dynamic distributions but not default negation. Tsamoura et al. [16] extend
the work by Vlasselaer et al. [19] by adding an incremental magic set transformation during grounding.
While the goal of magic sets and our inconsistency pruning are similar, their realizations are different.
Our inconsistency pruning also regresses the query, however, by adding literals in the intersection of all
rule applications instead of taking unions. Furthermore, pruning is based on inconsistency of grounded
bodies with the query, which is not the case in magic sets. The HMM example above, for instance, is not
covered by magic sets. As future work, it seems promising to combine these orthogonal techniques. The
first author introduced SBTP in an earlier non-probabilistic Fusemate system [2, 4] and combined it with
description logic reasoning and the event calculus [3]. In this paper we adapt SBTP to a probabilistic
setting and integrate query guidance into it. The unguided grounding in these earlier Fusemate systems
is unsuitable for all but the smallest problems. Skarlatidis et al. [15] use ProbLog for event calculus
reasoning, which is an interesting application for us as well.

2 Stratified Logic Programs

Assume as given a first-order logic signature comprised of function and predicate symbols of fixed arities.
Assume a countable set of variables. A term is either a variable or an expression of the form f (t1, . . . , tn)
where f is a function symbol and t1, . . . , tn are terms. Atoms are of the form p(t1, . . . , tn) where p is a
predicate symbol. A ground term or atom does not contain any variable. We also use vector notation t⃗
to denote a list t1, . . . , tn of terms (or other objects), for some n ≥ 0. We distinguished between ordinary
(free) symbols and “built-in” symbols. The latter include the integer constants Z and infix operators like
< and +. A term or atom with a built-in symbol is called an interpreted term or atom, otherwise it is
ordinary. We require that all terms are well-sorted, so that interpreted ground terms can effectively be
evaluated to a unique irreducible term. Interpreted ground atoms must be valuable to a Boolean ⊤ or ⊥.
We assume built-in function symbols for forming lists as in Prolog.We require that every ordinary atom
has a dedicated Z-sorted argument, say, the first one, for a time term tt. When we write p(⃗t)@ tt we mean
p(tt,⃗ t) instead. If a is an atom we write a@ tt to indicate it has time term tt, i.e., a is of the form p(tt,⃗ t).
We assume an ordinary ternary infix predicate symbol = and write =-atoms as s = t @ tt. An =-atom is
admissible if its left hand side term s is an ordinary functional term f (⃗t). We only work with admissible
=-atoms. An admissible =-atom f (⃗t) = t @ tt could be taken as an ordinary atom f (⃗t, t) @ tt with f as a
predicate symbol. The infix notation is warranted as equations have built-in semantics as right-unique
relations (see Section 3). Let e be a term or atom. By var(e) we denote the set of variables occurring in
e. Let σ be a substitution. We write eσ for the term or atom resulting from applying σ to e. The domain
of σ is dom(σ). A substitution γ is a grounding substitution for a set of variables X iff dom(γ) = X
and xγ is ground for every x ∈ dom(σ). In the following, the letters x,y,z stand for variables, p,q,r for
predicate symbols, and s, t for terms, possibly indexed. A (Fusemate) rule is an implication of the form

H :–b1, . . . ,bk,\+ c⃗1, . . . ,\+ c⃗n . (1)
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where b1, . . . ,bk is a sequence of atoms and each c⃗ j is a sequence of atoms, for some k,n ≥ 0. The part
to the right of :– is called the body B. Every bi is called a positive (body) literal and every \+ c⃗ j is called
a negative body element. A singleton \+ a⃗ is also called a negative (body) literal and also written as ¬a.
The head H is one of the following: (a) an ordinary head pr ::a@ tt, (b) a distribution head f (⃗t)∼ t @ tt,
or (c) a sum head pr1 ::a1 @ tt + · · ·+prm ::am @ tt, for some m ≥ 2. Here, a(i) are ordinary atoms, t is an
ordinary term, pr( j) are variables or built-in real-sorted terms, and tt is the time term (of the rule). We
write a@ tt as short form for the ordinary head 1.0::a@ tt.

A body B is variable-free iff XB := fvar(b1, . . . ,bk) = /0. A rule is range-restricted if fvar(H) ⊆ XB. A
range-restricted rule is variable-free iff XB = /0. It is ground iff additionally fvar(⃗ci) = /0 for each c⃗i. (In
variable-free rules, the extra variables in the c⃗i are implicitly existentially quantified.) A fact is a rule
with k,n= 0, still matching “H :–B” where B is empty, but also written as H. Notice that range-restricted
facts are always ground. In the following we work with range-restricted rules only. A ground body B is
normal if all its negative body elements are literals, i.e., B has the form b1, . . . ,bk,¬c1, . . . ,¬cn where all
ci are ordinary atoms. A set of ground rules is normal iff all non-fact rules have a normal body and an
ordinary head with probability 1. Facts with a head probability < 1.0 are also called probabilistic facts.

The standard notion of stratification [1] is equivalent to saying that the call graph of a normal logic
program has no cycles going through negative body literals. Every strongly connected component of the
call graph is called a stratum and contains the predicates that are defined mutually recursive with each
other. In stratified programs, negative body literals can only contain atoms with predicates defined in
lower strata. The semantics of stratified programs is defined by bottom-up model computation on the
program’s ground instances from lower to higher strata until fixpoint. In that, rule heads are inserted into
the model only if their body is true. Importantly, the truth value of a negative body literal depends alone
from the models at the lower strata, which have all been computed in full earlier.

Fusemate employs a weaker notion of stratification that we call stratification by time and by predicates
(SBTP) [4]. SBTP generalizes standard stratification to a lexicographic combination of the standard
ordering on time (the non-negative integers) and standard stratification. For the purpose of defining
SBTP, every =-atom f (⃗t)=t @ tt or distribution head f (⃗t)∼t @ tt is taken as an ordinary atom with predicate
symbol f . We say that a set of rules is time constrained if for every non-fact rule (1) there is a variable n
(for “now”) that is the time term of a positive body literal bi and such that

(i) the time term of every other ordinary positive body atom b j is constrained to ≥ n.

(ii) the time term of H is either (a) the variable n or else (b) constrained to > n.

(iii) the time term of every ordinary atom b in every c j is constrained to either (a) ≥ n or else (b) > n.

Every such atom bi is called a pivot (of the rule).2 To time constrained sets of rules we associate a
call graph that ignores all rules satisfying (ii)-(b) and in all remaining rules ignores all ordinary atoms
b in all c j that satisfy (iii)-(b). Intuitively, (ii)-(b) rules define an atom in the future and, hence, are
irrelevant for time-stratified model computation at “now”; the (iii)-(b) atoms are all computed strictly
earlier than “now” and this way are already time-stratified. (All other cases need a second-tier call graph
based stratification.) A predicate symbol of an ignored atom or an atom in an ignored rule is added as an
isolated node to the call graph if it does not already occur in it. We say that a set of rules is SBTP if it is
time-constrained and its call graph has no cycles through negative body elements. A (Fusemate) program

2Pivots are not needed in variable-free rules as the head can be used in lieu. For example, a ruleall_innocent @ 0 :- \+ guilty(Person) @ 0 can be accommodated by taking all_innocent @ 0 as the pivot.
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P is a finite set of range-restricted rules that is SBTP. The stratification induced by the call graph is a
set {s1, . . . ,sm} of sets of predicates equipped with a strict partial order ≺ (“lower-than”) induced by the
edges in the call graph. Every si is a strongly connected component in the call graph. We identify ≺ with
an arbitrary extension to a linear order s1 ≺ ·· · ≺ sm. A timed stratum is a pair (n,sk) where n ≥ 0 and
1 ≤ k ≤ m. We extend ≺ lexicographically to timed strata, also denoted by ≺. If a is a ground ordinary
atom p(⃗t)@n define strat(a) = (n,sk) where sk ∋ p.

For example, a program rule p @ N :- q @ N, \+ (r @ T, T <= N) has to be predicate stratified with r ≺ q
to be SBTP. The rule p @ N :- q @ N, \+ (r @ T, T < N) can have r and q unrelated because T < N already
provides time constrained stratification. We found the two-level stratification useful in practice. It helps,
for instance, to embed the fluent calculus. See [3, 2] for more motivating usages.

3 Bottom-Up Grounding and Distribution Semantics

In this section we define our bottom-up grounding, define a Distribution semantics for Fusemate pro-
grams, and prove the correctness of our pruning technique.

Let D be a set of ordinary atoms, the domain. A (Herbrand) interpretation I over D is any subset I ⊆ D.
The atoms in I are “true” and those in D \ I are “false”. We define a satisfaction relation |= as follows:
for ground ordinary atoms a, I |= a iff a ∈ I for ground built-in atoms a, I |= a iff a evaluates to ⊤; for
sequences a⃗ of ground atoms, I |= a⃗ iff I |= a for all a ∈ a⃗. A matcher for a sequence a⃗ of atoms to I is a
grounding substitution γ for fvar(⃗a)) such that I |= a⃗γ . For a negative body element, I |= \+ c⃗ iff there is
no matcher for c⃗ to I. Notice that for ground ordinary atoms a, I |= ¬a iff a /∈ I iff I ̸|= a.

The following procedure eliminates negative body elements from a variable-free body B by introducing
ground negative body literals. Parameterized in a domain D, it returns a (disjunctive) set of bodies that
is equisatisfied with B for any interpretation I with domain D, see Lemma 3.3 below.

Procedure 3.1 (Body grounding gndD(B)) Let B be a variable-free body and D a set of ground ordinary
atoms. Initiate a result set R := {B}. As long as R contains a body B′,\+ c⃗ with \+ c⃗ not a ground negative
body literal, do the following: let E = {⃗cγ1, . . . , c⃗γk} where γ1, . . . ,γk are all matchers of c⃗ to D (k = 0
is possible). Let H be the set of all hitting sets of E.3 H determines explanations for making the c⃗γi

false in D, as follows: let R′ = {B′,¬d1, . . . ,¬dk | {d1, . . . ,dk} ∈ H} and set R := (R \ {B′,\+ c⃗})∪R′.
After completion, R is a set of ground bodies with negative body literals only. Finally apply obvious
Boolean simplification rules to R, enabled by the constants ⊤ and ⊥ present after evaluating built-ins.
The resulting set is denoted by gndD(B). □

Example 3.2 (Grounding) Consider the following program (time is implicitly 0).

0.5 :: p(a). q(a). 0.5 :: p(c).
0.5 :: p(b). q(b). s :- \+ (p(X), q(X)).
Let D = {p(a),p(b),q(a),q(b),p(c)}. The grounding of the body gndD(\+ (p(X), q(X))) has four
bodies (¬q(a), ¬q(b)), (¬q(a), ¬p(b)), (¬p(a), ¬q(b)), and (¬p(a), ¬p(b)). They represent all four
ways to make the body true in interpretations I ⊆ D. Notice that {p(c),q(c)} is not in E and hence is
ignored for grounding. □

3Given a set E = {E1, . . . ,En}, n ≥ 0, where each Ei is a sequence of elements, a hitting set h of E is a subset-minimal set
that contains an element from each Ei. If E = /0 then uniquely h = /0.
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Lemma 3.3 states the core property for correctness of grounding (proofs are in [5]).

Lemma 3.3 (Grounding preserves semantics) Let D a domain, I ⊆ D and c⃗ a sequence of atoms. Let
E = {⃗cγ1, . . . , c⃗γk} where γ1, . . . ,γk are all matchers of c⃗ to D (k = 0 is possible) and H the set of all
hitting sets of E. Then I |= \+ c⃗ iff there is a {d1, ...,dk} ∈ H such that I |= ¬d1, ...,¬dk.

The following function NORMAL(r) expands a ground rule with a sum head into normal form. It splits
disjunctions into disjoint cases using default negation, and extracts head probabilities by introducing
probabilistic facts. This technique is well-known [10].

NORMAL(pr1 ::a1 @ tt + · · ·+prm ::am @ tt :–B) // m ≥ 1, possibly empty B
1 M := 1.0 // probability mass available for remaining cases
2 G := {headB @ tt :–B} // result set of rules, introduce name headB @ tt for head
3 for i 1 . .m do
4 G := G∪{ai @ tt :–headB @ tt,¬caseB,1 @ tt, . . ,¬caseB,i−1 @ tt,caseB,i @ tt}
5 G := G∪{(M ·pri):: caseB,i @ tt}
6 M := M · (1.0−pri)
7 return G

NORMAL is applied to ground rules with distribution heads f (⃗t)∼[t1, . . . , , tm]@ tt, where [t1, . . . , , tm] is
a non-empty term list, by prior conversion to the sum head 1/m:: f (⃗t)= t1 @ tt + · · ·+1/m:: f (⃗t)= tm @ tt.

To define bottom-up grounding, let B be a body as in (1), D a set of ordinary atoms, and S a timed
stratum. A matcher γ for b1, . . . ,bk to D is called an S-matcher for B to D if either B is empty or else
strat(biγ) = S for some 1 ≤ i ≤ k and pivot bi. Let D⪯S = {a ∈ D | strat(a)⪯ S}, analogously for ≺. For
sets G of normal rules let G⪯S = {a:–B ∈ G | strat(a)⪯ S for some B}. A query is a normal body.

GROUND(P,Q,eot) // Input: P program, Q query, eot ≥ 0 “end of time”. Output: normal program
1 D := /0 // current domain
2 G := /0 // result ground program
3 R := Q // current regressed query
4 for n 0 . .eot do
5 for s s1 . .sm do // s1 ≺ ·· · ≺ sm is linearization of P’s stratification
6 let S = (n,s) // current timed stratum
7 let D¬ = D≺S // finished domain for strictly earlier timed strata
8 for H :–B ∈ P do
9 for γ sth γ is an S-matcher of B to D⪯S do

10 for B′ ∈ gndD¬(Bγ) do
11 if B′ is consistent with R then // see below, assume “true” for now
12 let G′ = NORMAL(Hγ :–B′)
13 D := D∪{a | a:–B′′ ∈ G′ for some B′′ or pr ::a ∈ G′ for some pr}
14 G := G∪G′

15 R := reg{r∈G⪯S|r is not a fact}(R) // update regressed goal – ignore for now
16 return G⪯(eot,sm)

The GROUND procedure iterates over all timed strata, in increasing order, capped after eot. It thereby
monotonically grows a domain D and a set of normal rules G obtained by S-matchers of the bodies of
all rules to D⪯S, thereby grounding out negative body elements over D¬ = D≺S. Notice that while D
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and D⪯S can grow while S is fixed, the subset D¬ remains unchanged. This holds thanks to using pivot
literals stratified at S in S-matchers. For, by SBTP, all ordinary atoms in a negative body element are
lower than S, but head atoms are at S or higher and, hence, cannot contribute to D¬. The consistency test
on line 11 is ignored for now, i.e., treated as always “true”. In Section 3 we will show that enabling it,
as well as regression on line 15, does not affect semantics. Example 3.2 has an example for grounding.
The ground rules and set D are computed by a run of GROUND on the program there.

We are going to define the Distribution semantics for Fusemate programs in terms of their grounding via
the GROUND procedure and standard (ground level) stratification. The latter enables a standard fixpoint
construction, which includes the standard Distribution semantics for definite programs as a special case.

Proposition 3.4 Let P be a program and n ≥ 0. Then GROUND(P,n) is SBPT.

Let Pg = GROUND(P,n). From Proposition 3.4 it follows that Pg is stratified in the standard way. For, if
Pg were not stratified then the call graph of Pg has a cycle going through a negative body literals. This
cycle can be lifted to a cycle in the call graph of P by following the rules in P corresponding to the ones
witnessing the cycle in Pg. However, with Proposition 3.4 this cycle does not exist.

This allows us to replace SBTP by standard stratification for ground programs. As said in the introduc-
tion, we do not consider programs with positive cycles here.4 The call graph of Pg, hence, has no cycles.
Similarly to above, let ≺g denote both the edge relation and its transitive closure. We can now define the
distribution semantics of P in terms of least fixpoint models of probabilistic choices over Pg, as follows.

Definition 3.5 (Distribution semantics) Let P be a program, n ≥ 0 and Pg = GROUND(P,n). Let Pg =
F ⊎R where F = {pr ::a ∈ Pg | pr < 1} are all probabilistic facts in Pg. A (probabilistic) choice is any
subset X ⊆ F . Define the probability of the choice X as P(X) = Π{pr | pr ::a ∈ X for some a} ·Π{1−
pr | pr ::a ∈ F \X for some a}. Define IR(X) as the least fixpoint model of the (non-probabilistic, ≺g-
stratified, normal) program {a | pr :: a ∈ X for some pr}∪R. Let Q be a query (i.e., a ground normal
body). Define the success probability of Q in P as P(Q | P) := Σ{P(X) | X ⊆ F and IR(X) |= Q}. □

In Definition 3.5, any IR(X) is called a model of P, and any IR(X) such that IR(X) |=Q is called a model of
Q and P. An interpretation I satisfies right-uniqueness of = iff there are no terms s, t and u ̸= t such that
{s= t, s=u} ⊆ I. A program P is admissible if for every n ≥ 0, each model of P satisfies right-uniqueness
of =. Admissibility of models is needed for correctness of our query-guided grounding (Theorem 3.7).

Query-guided grounding. We complete the description of the GROUND procedure by definitions of
the consistency test and the regression operator reg. We say that two normal bodies B1 and B2 are
consistent if there is no atom a such that {a,¬a} ⊆ B1 ∪B2 and there are no terms tt, s, t and u ̸= t such
that {s = t @ tt,s = u @ tt} ⊆ B1 ∪B2. The term inconsistent means “not consistent”. The idea is that B1
and B2 should be simultaneously satisfiable which is impossible if one of the these cases applies.5 For
example, {f(a) = b,f(a) = c} is inconsistent. See Section 1 for an additional example. The semantics of
consistency is given by right-uniqueness of =, as follows:

4A program like fib(0, 0). fib(1, 1) . fib(N+1, N1+N2) :- fib(N, N1), N > 0, N <= 20, fib(N-1, N2).
is in scope as it is SBTP and its grounding has no positive cycle. A symmetry rule r(X,Y) :- r(Y,X). is out of scope.

5While in first-order logic s= t and s=u enforces t = u this is not consistent with the unique name assumptions that is usually
assumed with Herbrand interpretations.
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Lemma 3.6 Let B1 and B2 be inconsistent normal bodies. For every interpretation I satisfying right-
uniqueness of =, not both I |= B1 and I |= B2.

Goal regression. Let Q be a query, G a set of normal rules, and a an ordinary atom. (Goal) regression
repeatedly expands subgoals a by SLD resolution but keeps only new subgoals common to all bodies
of the rules for a. Formally, define one-step regression reg1

P(a) :=
⋂
{B | a :–B ∈ P} and reg1

P(Q) :=
Q∪

⋃
a∈Q reg1

P(a). Define regP(Q) as the least fixpoint of reg1
P starting from Q, i.e., regP(Q) :=(reg1

P(Q))k

where k is the least integer such that (reg1
P(Q))k = (reg1

P(Q))k+1. See Section 1 for an example.

By query-guided grounding we mean the GROUND procedure with the call to reg on line 15 and the
consistency test on line 11 enabled. By unguided grounding we mean line 15 disabled and the condition
on line 11 be replaced by “true”. The following theorem is our main theoretical result.

Theorem 3.7 (Correctness of query-guided grounding) Let P be an admissible program and Q be a
ground query. Then the success probability of Q in P is the same with query-guided grounding and with
unguided grounding.

Note 3.8 (Top-down grounding) The grounding procedure implemented in Fusemate also integrates
an SLD-like procedure for top-down grounding. For instance, in the urn example a top-down rule
no(C) @ T :- \+ ( some(C) @ S, S <= T ) is useful to express that up to time T no ball of color C has been
drawn. The call site has to instantiate both C and T. Top-down grounding is structurally similar to bottom-
up grounding in that it also requires elimination of subgoals by introducing sets of possible explanations.
This makes it not too difficult to incorporate when positive cycles are not allowed. □

4 Inference

We implemented the grounding algorithm of Section 3 in our Fusemate system. We also implemented
functionality for probabilistic query answering for non-ground conditional queries based on a ground-
level variable elimination algorithm at its core. In this section we briefly describe the latter components.

An conditional input query has the form B | E consisting of a body B = ?– b1, . . . ,bk,\+ c⃗1, . . . ,\+ c⃗n as
in (1) and optional evidence E = e1, . . . ,em of ground ordinary atoms (see Section 1 for examples). Given
B | E and a program P, we want to compute the success probability of B | E in P.We do this by grounding
B | E and P and reduction to query success probability (Definition 3.5). The grounding executes several
calls to GROUND(P,Q,eot): (a) a call with query Q = E, (b) a call with query Q comprised of all ground
literals in the conjunction (B,E), and (c) calls with queries Q = (Bγ,E), for every S-matcher for B to
domain D computed in GROUND in step (b) and biggest stratum S. The value for eot is given as input.

The rationale for this staged process is to obtain in (b) a domain D as small as possible for exhaustive
grounding of (B,E) in (c). The result reported to the user are answer substitutions γ and their probabil-
ities, i.e., pairs (γ,P(Bγ | E)) where P(Bγ | E) = P(Bγ,E | P)/P(E | P) for every answer substitution γ

in step (c). Notice that for each of these computations the optimized ground programs Pg computed by
GROUND in steps (a), (b) and (c) are available for that. Theorem 3.7 guarantees the correctness.

With the above considerations, the algorithmic problem now is to compute P(Q | Pg) for a query Q and
ground program Pg. Many PLP systems would convert Pg into an equivalent weighted Boolean formula
and apply weighted model counting algorithms on its d-DNNF normal form (or other) [8, 6]. For now,
Fusemate implements a variable elimination algorithm based on finding all SLD proofs of the query.
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To explain the main ideas, every SLD proof provides a factor by multiplying the probabilities of the facts
at its leaves. The success probability of Q in Pg then is the sum of the probabilities of these factors.
For correctness, the bodies of all rules with the same head have to be made disjoint (inconsistent) first.
This can be achieved with indicator variables [10]: every collection {h :–B1, · · · ,h :–Bm} of all rules in
Pg with the same head h is replaced by the rules

⋃
i({hi :–Bi}∪{h :–¬h1, . . . ,¬hi−1,hi}) where hi is a

fresh predicate symbol indicating which case is tried exclusively. (Probabilistic facts are not affected,
as they are all made with pairwise distinct atoms, by design of the NORMAL procedure.) Our variable
elimination algorithm VE can be applied to such programs and (ground, conjunctive) queries Q. It caches
intermediate results, and it prunes inconsistent queries as soon as they come up:

VE(Pg,Q) // Input: Pg normal program with disjoint bodies, Q query. Output: P(Q | P)
1 Cache := /0 // cached pairs (Query, Probability)
2 RETURN(Q,R) // Caches and returns result R for Q
3 Cache := Cache∪{(Q,R)}
4 R
5 INNER(Q) // Input: worked off and remaining query literals Q. Output: probability of Q
6 if Q = /0 then 1.0
7 else if Q is inconsistent then 0.0 // from here on Q is consistent
8 else if (Q,pr) ∈ Cache then pr
9 else let L ∈ Q sth L is maximal in Q wrt. the stratification order ≺g

10 let Q′ = Q\{L}
11 if L = ¬A then // P(¬A,Q′) = P(Q′)−P(A,Q′)
12 RETURN(Q, INNER(Q′)− INNER(Q′∪{A}))
13 else if pr ::L ∈ Pg then
14 RETURN(Q,pr · INNER(Q′))
15 else let Bs = {B | L :–B ∈ Pg} // Bs is new subgoals as per rules for L in Pg

16 RETURN(Q,ΣB∈BsINNER(B∪Q′))
17 INNER(Q)

The main ideas behind VE should be clear from the comments above, but some notes are in order.
Starting from INNER(Q) the query literals in Q are successively resolved away using facts and rules
from Pg (except negative literals, which are expanded in the obvious way in line 12). Line 7 is the
mentioned early pruning check. For example, let Pg contain, among others, 0.5::p. a=1 :- p. a=2 :- -p.
and Q = {. . . ,a=1, a=2}. Notice that the stated rules do not offend admissibility as no model can make
both a=1 and a=2 simultaneously true. That is, the conjunction a=1, a=2 does not hold in any model.
Early pruning discovers this fact via inconsistency of a=1, a=2 and assigns probability 0 to Q. This
avoids redundantly solving potentially present subgoals of Q that are greater wrt. ≺g than a=1 and a=2.
Another points to notice is that no probabilistic fact is multiplied in more than once. This follows from
working off the query literals in decreasing stratification order.

5 Application Examples and Benchmarks

In this section we evaluate the practical effectiveness of Fusemate and query-guided grounding. Fuse-
mate and the problem sets described below can be downloaded from https://bitbucket.csiro.
au/projects/MOVEMENTANALYTICS/repos/fusemate-distrib/. All experiments were run on a Dell
Latitude 7330 laptop, with Windows 11 operating system (32 GB RAM, 3.2 GHz). For each problem,

https://bitbucket.csiro.au/projects/MOVEMENTANALYTICS/repos/fusemate-distrib/
https://bitbucket.csiro.au/projects/MOVEMENTANALYTICS/repos/fusemate-distrib/
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we compared timings in Fusemate and ProbLog by running several sets of queries for increasing com-
plexity in the query. We only summarize our findings here. More details on the ProbLog and Fusemate
encodings are in [5].

Markov model. This problem is from the ProbLog tutorial Markov chain example. 6 The code models
the movement in time between three locations a, b and c, where the probability of moving to the next
location depends only on the current location. We timed three kinds of queries which we refer to as
timesteps, specificity and timepoint. The timesteps query asks for the probability of being at position a
during a whole period of N = 0, . . . ,80 timesteps. The specificity query asks for the probability of being
in a certain location across nine timesteps, where complexity N is increased by decreasing the specificity
of those locations. We do that by replacing fixed location a with a variable, so the program has to repeat
the calculation for all possible locations, increasing the branching. The timepoint query asks for the
probability of being at location a at a final time point N. The logic program, sample queries and runtime
performance are in Figure 1.

%% Markov Model
in ~ [a, b, c] @ 0.
in ~ [[a, 0.9],[b, 0.05],

[c, 0.05]] @ T+1 :- in=a @ T.
in ~ [[a, 0.7],[c, 0.3]] @ T+1 :- in=b @ T.
in ~ [[a, 0.8],[c, 0.2]] @ T+1 :- in=c @ T.
%% Time steps N = 20
?- in=a@0, in=a@1,.., in=a@20.
%% Specificity, N = 7
?- in=a@0, in=a@1, in=L2@2,..,in=L8 @ 8.
%% Timepoint, N = 20
?- in=a@23.
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Figure 1: Timings for three kinds of queries to the Markov chain in Fusemate (red) and ProbLog (blue).

Results in Figure 1 indicate that Fusemate performs better than ProbLog for increasing problem com-
plexity. The Fusemate times are measured with query-guided grounding on. However, Fusemate can
also solve the problems without it. Runtimes and number of ground rules generated raise by a factor
of 2-3 without guidance. It seems that Fusemate’s variable elimination procedure is better suited to this
example than the ProbLog inference engine. Inconsistency pruning (line 7 in VE) did not have an impact
on these problems.

Hidden Markov model. This example is based on the example from the Wikipedia page for hidden
Markov models7. It models the situation where a prediction of the weather (sunny/rainy) is determined
by observations of how much water due to precipitation has been collected in a bowl that is placed
outside. The idea is that more water will be collected when it rains more, which is the measurement of

6https://dtai.cs.kuleuven.be/problog/tutorial/various/08_bayesian_dataflow.html
7https://en.wikipedia.org/wiki/Hidden_Markov_model

https://dtai.cs.kuleuven.be/problog/tutorial/various/08_bayesian_dataflow.html
https://en.wikipedia.org/wiki/Hidden_Markov_model
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how the weather has been. For simplicity, this example assumes no evaporation, so the observations of
water in the bowl are non-decreasing. The logic program was described in Section 1.

We timed three kinds of filtering queries for estimating the current state based on past observations
trending around slightly rainy, sunny, and mixed, scenarios, respectively. In the slightly rainy scenario
each timepoint increased the amount of water observed by four, a value that can occur from either the
sunny or the rainy distributions. In the sunny scenario, each observation was of zero precipitation, so the
observations must have come from the sunny distribution. In the mixed weather scenario, a variety of
observations were included in this query, which meant there was a mixture of observations from both the
sunny and rainy distributions. For each scenario, the query complexity N was increased by increasing
the number of observations and the timepoint at which the final state is predicted. The results and sample
queries are described in Figure 2.

%% See Introduction for program

%% Queries for N=3
%% Sunny
?-state=X @ 3 | obs=0 @ 1, obs=0 @ 2, obs=0 @ 3.
%% Rainy
?-state=X @ 3 | obs=4 @ 1, obs=8 @ 2, obs=12 @ 3.
%% Mixed
state=X @ 3 | obs=0 @ 1, obs=4 @ 2, obs=24 @ 3.
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Figure 2: Timings for three kinds of queries to the hidden Markov model precipitation example: Fuse-
mate without query-guidance (green), Fusemate with query-guidance (red), and ProbLog (blue).

For all problems, Fusemate with unguided grounding was the slowest, but Fusemate with query-guided
grounding consistently outperformed ProbLog. What sets this example apart from the Markov Chain
example is its high branching rate (30 support values in a rain state, vs. two or three Markov Chain) , and
the implicit dependence of each state on its history via the accumulated rainfall up to that state.

Inconsistency pruning did not play a role in Fusemate’s good performance in the problem above. We
tested this by disabling the test on line 7 in the VE procedure. With less constraining queries, however,
inconsistency pruning can lead to drastic performance improvements. We experimented with relaxing
the evidence of a slightly modifed “sunny” scenario by leaving out observations. For a query size N = 4,
for instance, we obtained the following runtime results (in seconds):

Inconsistency pruning
Query Off On
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=0 @ 3, obs=10 @ 4 7.5 7.5
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=10 @ 4 44.5 13.5
?- state=S @ 4 | obs=0 @ 1, obs=10 @ 4 >2000 30.0
?- state=S @ 4 | obs=10 @ 4 >2000 180.75
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In addition to overall solution times we were also interested in comparing groundings. For ProbLog we
observed unusual high grounding times, and for Fusemate with unguided grounding we observed large
but quickly computed groundings (which become unmanageable for inference quickly). For the mixed
weather problem, we observed:

Fusemate #ground rules ProbLog
N query-guided unguided total time grounding time #ground rules
2 2200 6500 9.0 8.3 53
3 2270 12900 30 19 276
4 2300 21400 119 33 499
5 2400 32000 50 682
6 2470 45000 65 839
7 2500 60000 95 1068

Grounding sizes between Fusemate and ProbLog are only roughly comparable. Fusemate outputs ground
normal rules, where ProbLog outputs ground rules with annotated disjunctions, where head probabilities
are left in place. The Fusemate total times are between 1 and 7 seconds and not listed in the table. For
ProbLog, grounding time is still well below solving time but well above Fusemate total times.

6 Conclusion

In this paper, we proposed a bottom-up grounding approach for an expressive probabilistic logic pro-
gramming language (expressive form of stratification, expressive default negation, dynamic distribu-
tions). We defined the semantics of the input languages as an extension of the standard Distribution
semantics via a standard fixpoint construction after grounding and transforming away default negation.
As the main contribution of this paper, we integrated and proved correct a novel technique for avoiding
ground instances that are irrelevant for proving a given query. Grounding, transforming away default
negation, and query-guided pruning are tightly integrated and carried out incrementally along the pro-
gram’s stratification order. They rest on a built-in semantics for equations as right-unique relations,
which is appropriate, e.g., for representing (finite) distributions.

We showed the effectiveness of query-guided pruning experimentally. The rationale is to tackle combi-
natorial explosion during grounding instead of attempting optimizations afterwards. Without guidance,
example problems tend to grow to unmanageable size quite quickly. Our system outperformed ProbLog
on hidden Markov model filtering problems with a high branching rate. (On other domains not reported
here we found that ProbLog often performs better than Fusemate.) We also showed that the performance
of our top-down variable elimination algorithm benefits from building-in inconsistency pruning. While
the result are somewhat limited in scope, we suggest that the research direction begun in this paper looks
promising for further exploration. We will consider optimized off-the-shelf backends for weighted infer-
ence as a possibly better alternative to our variable elimination algorithm in such cases. We also plan to
integrate a magic set transformation, which is complementary to our query-guided grounding.

We conjecture that query-guided grounding enables Fusemate to solve filtering queries in linear time.
This would be the same complexity as the dedicated forward-backward algorithm. The proof hinges on
an analysis of the solution caching mechanism in Fusemate’s variable elimination inference algorithm.

Acknowledgements. We thank the reviewers for their valuable comments.
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In answer set programming (ASP), answer sets capture solutions to search problems of interest and
thus the efficient computation of answer sets is of utmost importance. One viable implementation
strategy is provided by translation-based ASP where logic programs are translated into other KR
formalisms such as Boolean satisfiability (SAT), SAT modulo theories (SMT), and mixed-integer
programming (MIP). Consequently, existing solvers can be harnessed for the computation of answer
sets. Many of the existing translations rely on program completion and level rankings to capture the
minimality of answer sets and default negation properly. In this work, we take level ranking con-
straints into reconsideration, aiming at their generalizations to cover aggregate-based extensions of
ASP in more systematic way. By applying a number of program transformations, ranking constraints
can be rewritten in a general form that preserves the structure of monotone and convex aggregates
and thus offers a uniform basis for their incorporation into translation-based ASP. The results open
up new possibilities for the implementation of translators and solver pipelines in practice.

1 Introduction

Answer set programming (ASP, [8]) offers rich rule-based languages for knowledge representation (KR)
and reasoning. Given some search or optimization problem of interest, its encoding in ASP is a logic
program whose answer sets capture solutions to the problem. Thus the efficient computation of answer
sets is of utmost importance. One viable implementation strategy is provided by translation-based ASP
where logic programs are translated into other KR formalisms such as Boolean satisfiability (SAT, [5]),
SAT modulo theories (SMT, [4]), or mixed-integer programming (MIP, [32]). Consequently, existing
solver technology can be harnessed for the computation of answer sets.

The semantics of answer set programming rests on stable models [14] that incorporate a notion of
minimality and give a declarative semantics for default negation. Capturing these aspects in satisfaction-
based formalisms such as pure SAT is non-trivial; see, e.g., [17, 22]. There are also various syntactic
aggregations [2] that enable compact encodings but whose translation is potentially expensive if there
is no respective primitive in the target formalism. A typical translation consists of several steps such
as (i) normalization [7], (ii) instrumentation for loop prevention [6, 17, 23], and (iii) completion [10].
The first step concerns the removal of syntactic extensions that have been introduced to increase the
expressive power of ASP in favor of normal rules. The second step either transforms the program or
adds suitable constraints so that the difference between stable and supported models disappears. The
third step captures supported models by transforming rules into equivalences. Ideally, the syntactic
details of the target language are deferred during translation and incorporated at the very end; either after
or while forming the completion. This strategy realizes a cross-translation approach [19] in analogy to
modern compiler designs.
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https://creativecommons.org
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Many of the existing translations [20, 25, 26] essentially rely on level ranking constraints formalized
by Niemelä [27] as formulas in difference logic [28]. Such constraints describe level numbers that
order the atoms of a normal program in such a way that stable models can be distinguished among the
supported ones [11]. Thus, level numbers are essential when it comes to capturing the minimality of
stable models and the semantics of default negation properly. As shown in [17], level numbers can be
made unique so that they match with the levels of atoms obtained by applying the immediately true
operator TP iteratively. Uniqueness can also be enforced in terms of strong level ranking constraints
[27]. Unique level numbers are also highly desirable when aiming at one-to-one correspondences with
stable models, e.g., when counting solutions to problems or carrying out probabilistic inference [12].

In this work, we take level ranking constraints into reconsideration, aiming at generalizations that
cover aggregate-based extensions of ASP in a more systematic way. So far, only normal programs
are truly covered [17, 27] and the normalization of input programs is presumed. The generalization for
weight constraint programs (WCPs), as sketched by Liu et al. [25], concerns only weak constraints and is
confined to translations into MIP. However, the idea of avoiding or delaying normalization is interesting
as such, opening up new possibilities for ordering the translation steps discussed above. For instance,
if NORM(·) and LRC(·) stand for translations based on normalization and level ranking constraints,
respectively, it would be highly interesting to compare LRC(NORM(P)) with potential generalizations
LRC(P) that express level ranking constraints at an aggregated level. Such representations are expected
to be more compact and to favor level rankings with fewer variables. The resulting formulas can also be
Booleanized afterwards [16], if translations toward SAT are desirable, or rewritten in some other form
that complies with the intended back-end formalism. In the sequel, we use translations LRC(NORM(P))
of increasingly complex programs P as guidelines when lifting level ranking constraints for aggregates.
The idea is to cover program classes involving standard aggregations subject to recursion. It turns out that
the structure of monotone and convex aggregates can be preserved to a high degree, offering a uniform
basis for their incorporation into translation-based ASP. On the one hand, the resulting generalizations
exploit ordered completion [3] in the reformulation of weak level ranking constraints but, on the other
hand, make novel contribution when imposing the uniqueness of level rankings with strong ones.

The rest of this article is structured as follows. We begin by recalling the basic notions of logic pro-
grams in Section 2, including the usual syntactic fragments, stable and supported model semantics, and
other concepts relevant for this work. Then, in Section 3, we explain the details of ranking constraints
in their standard form corresponding to normal logic programs. Actually, we present them in a slightly
rewritten form in order to pave the way for their generalization for monotone aggregates in Section 4.
Therein, we begin the analysis from the case of (positive) cardinality and weight rules and, eventually,
incorporate negative conditions to ranking constraints. To illustrate the generality of the results even
further, we investigate how certain convex aggregates get also covered via appropriate program transfor-
mations in Section 5. Finally, the conclusions of this work are presented in Section 6.

2 Preliminaries

In the sequel, we will consider propositional logic programs that are finite sets rules of the forms (1)–(5)
below. In the rules, a, ai’s, b j’s, and ck’s are propositional atoms (or atoms for short) and ∼ denotes
default negation. The rules in (1)–(5) are known as normal, choice, cardinality, weight, and disjunctive
rules, respectively. Each rule has a head and a body separated by the← sign, and the rough intuition is
that if the condition(s) formed by the rule body are satisfied, then the respective head atom a in (1)–(4),
or some of the head atoms a1, . . . ,ah in (5) can be derived.
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a ← b1, . . . ,bn,∼c1, . . . ,∼cm. (1)

{a} ← b1, . . . ,bn,∼c1, . . . ,∼cm. (2)

a ← l ≤ {b1, . . . ,bn,∼c1, . . . ,∼cm}. (3)

a ← w≤ {b1 = wb1 , . . . ,bn = wbn ,∼c1 = wc1 , . . . ,∼cm = wcm}. (4)

a1 | . . . | ah ← b1, . . . ,bn,∼c1, . . . ,∼cm. (5)

The choice regarding the head of (2) is optional while (5) insists on deriving at least one head atom ai in
a minimal way, as to be detailed in Definition 1. A positive body condition b j holds if b j can be derived
by some other rules whereas ∼ck holds if ck cannot be derived. A cardinality rule (3) demands that at
least l of such conditions are met to activate the rule. Weight rules (4) are similar but body conditions
b j and ∼ck are valued by their respective non-negative integer weights wb j and wck when it comes to
reaching the bound w. In the sequel, we use shorthands B+(r) = {b1, . . . ,bn}, B−(r) = {c1, . . . ,cm}, and
B(r) = {b1, . . . ,bn}∪{∼c1, . . . ,∼cm} when referring to the body conditions occurring in a rule r. The
set of head atoms in r is denoted by H(r) and for entire programs P, we define H(P) =

⋃
r∈P H(r).

Typical (syntactic) classes of logic programs are as follows: normal logic programs (NLPs) consist
of normal rules (1) and the same can be stated about disjunctive logic programs (DLPs) and disjunctive
rules (5) that are normal as a special case (h = 1). The class of weight constraint programs (WCPs) [30]
is essentially based on normal rules (1) and the aggregated rule types in (2)–(4), out of which weight
rules are expressive enough to represent the class of WCPs alone. Contemporary ASP systems—aligned
with the ASP-core-2 language standard [9]—support these fragments so well that programmers can mix
rule types freely in their encodings. When the fragment is not important, we may refer to logic programs
or programs for short. Finally, we say that a rule is positive1 if m = 0 and it is of the forms (1), or (3)–(5).
An entire program is called positive if its rules are all positive.

The signature At(P) of a logic program P is the set of atoms that occur in the rules of P. An
interpretation I ⊆ At(P) of P tells which atoms a ∈ At(P) are true (a ∈ I, also denoted I |= a) whereas
others are false (a ∈ At(P) \ I, denoted I 6|= a). Atoms are also called positive literals. Any negative
literal ∼c, where c is an atom, is understood classically, i.e., I |= ∼c, iff I 6|= c. The relation |= extends
for the bodies of normal/choice/disjunctive rules r as follows: I |= B(r) iff B+(r)⊆ I and B−(r)∩ I = /0.
The body l ≤ B(r) of a cardinality rule r is satisfied in I iff l ≤ |B+(r)∩ I|+ |B−(r)\ I|. More generally,
the body of a weight rule r in (4) is satisfied in I iff the weight sum WSI(b1 = wb1 , . . . ,bn = wbn ,∼c1 =
wc1 , . . . ,∼cm = wcm) = ∑b∈B+(r)∩I wb +∑c∈B−(r)\I wc is at least w. For rules r, we have I |= r iff the
satisfaction of its body implies the satisfaction of its head, except that choice rules (2) are always satisfied.
An interpretation I ⊆At(P) is a (classical) model of a program P, denoted I |= P, iff I |= r for each r ∈ P.
A model M |= P is ⊆-minimal iff there is no M′ |= P such that M′ ⊂M. The set of ⊆-minimal models of
P is denoted by MM(P). If P is positive and non-disjunctive then |MM(P)|= 1 and the respective least
model of P is denoted by LM(P).

Definition 1 (Stable models [14, 15, 30]). For a program P and an interpretation I ⊆ At(P), the reduct
PI of P with respect to I contains

1. a rule a← B+(r) for each normal rule (1) such that B−(r)∩ I = /0, and for each choice rule (2)
such that a ∈ I and B−(r)∩ I = /0;

2. a rule a← l′ ≤ B+(r) for each cardinality rule (3) and the bound l′ = max(0, l−|B−(r)\ I|);
1Note that the head {a} of choice rule embeds hidden (double) negation since it can be expressed as a←∼∼a.
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3. a rule a← w′ ≤ {b1 = wb1 , . . . ,bn = wbn} for each weight rule (4) and the bound w′ = max(0,w−
WSI(∼c1 = wc1 , . . . ,∼cm = wcm)); and

4. a rule a1 | . . . | ah← B+(r) for each disjunctive rule (5) such that B−(r)∩ I = /0.

An interpretation M ⊆ At(P) is a stable model of the program P iff M ∈MM(PM).

Example 1. Consider a cardinality rule a← 1≤ {b1, . . . ,bn} with choice rules {b1}. . . .{bn}. Besides
the empty stable model /0, these rules induce 2n−1 stable models M = {a}∪N with /0⊂N ⊆{b1, . . . ,bn}:
the head a is set true whenever at least one of b1, . . . ,bn is chosen to be true. �

In the sequel, we mostly concentrate on non-disjunctive programs P. Then, the stability of M⊆At(P)
can also be captured with the fixed point equation M = LM(PM). Moreover, the well-known TP operator,
when applied to an interpretation I ⊆ At(P), produces the set of atoms a ∈ At(P) that are immediately
true under I, i.e., for which there is a positive rule r having a as the head and whose body is satisfied by
I. It follows that M |= P holds for a non-disjunctive program P iff TPM(M) ⊆M and M is a supported
model of P iff M = TPM(M). Given a supported model M, the support is provided by the set of rules
SuppR(P,M) ⊆ P whose bodies are satisfied by M. Since LM(PM) is obtained as the least fixed point
TPM ↑∞ ( /0), each stable model of P is also supported. We write SM(P) and SuppM(P) for the sets of
stable and supported models of P, respectively. Thus SM(P)⊆ SuppM(P) holds in general.

Next we recall some concepts related to modularity. First, given a WCP P, the set of defining rules
for an atom a ∈ H(P) is DefP(a) = {r ∈ P | a ∈ H(r)}. Thus P can be partitioned as

⋃
a∈H(P) DefP(a).

Second, the positive dependency graph of P is DG+(P) = 〈At(P),�P〉 where a�P b holds for a,b ∈
At(P), if a ∈ H(r) and b ∈ B+(r) for some rule r ∈ DefP(a). A strongly connected component (SCC)
of DG+(P) is a maximal subset S ⊆ At(P) such that all distinct atoms a,b ∈ S depend on each other via
directed paths in DG+(P). For an atom a ∈ H(P), the SCC of a is denoted by SCC(a). As shown in
[29], each SCC S of a WCP P gives rise to a program module PS =

⋃
a∈S DefP(a) where pure body atoms

b ∈ At(PS)\S are treated as input atoms taking any truth value, intuitively defined by choice rules {b}.
This yields a set of stable models SM(PS) for each module PS based on Definition 1. Given two stable
models M ∈ SM(P) and N ∈ SM(Q), we say that M and N are mutually compatible, if they agree on
the truth values of atoms in At(P)∩At(Q), i.e., M∩At(Q) = N ∩At(P). The module theorem of [29]
states that the stable models of P can be obtained as mutually compatible collections of stable models
M1, . . . ,Mn for the program modules PS1 , . . . ,PSn induced by the SCCs S1, . . . ,Sn of P.

Finally, some notions of equivalence should be introduced. Logic programs P and Q are weakly
equivalent, denoted P ≡ Q, iff SM(P) = SM(Q). They are strongly equivalent, denoted P ≡s Q, iff
P∪R ≡ Q∪R for any other context program R [21]. Then P ≡s Q implies P ≡ Q but not vice versa.
Strong equivalence can be characterized by using only contexts formed by unary positive rules a← b,
or semantically by using SE-models [31]. To address the correctness of various translations, however,
more fine-grained relations become necessary. The signature At(P) of a logic program P can be split
into visible and hidden parts Atv(P) and Ath(P), respectively. Given a stable model M ∈ SM(P), only
its visible projection M∩Atv(P) is relevant when comparing P with other programs. Thus, P and Q are
visibly equivalent, denoted P ≡v Q, iff Atv(P) = Atv(Q) and M∩Atv(P) = N ∩Atv(Q) holds for each
pair of models M ∈ SM(P) and N ∈ SM(Q) in a bijective correspondence [17]. There is a generalization
of both ≡v and ≡s, viz. visible strong equivalence ≡vs, that incorporates context programs R that respect
the hidden atoms of P and Q for comparisons [7]. The correctness of normalization has been addressed
in this sense. E.g., for a weight rule r in (4), {r} ≡vs NORM({r}), which meas that r can be safely
substituted by NORM({r}) in contexts respecting the hidden atoms introduced by the normalization.
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3 Level Rankings and Ranking Constraints

When a stable model M ⊆At(P) of a non-disjunctive logic program P is constructed using the reduct PM

and the TPM operator, atoms true in the model M get divided into levels Mi = (TPM ↑i (I))\(TPM ↑i−1 (I))
where i > 0 and I ⊆ At(P) \H(P) is a set of input atoms. By default I = /0 and M0 = /0, but if I 6= /0,
then M0 = I. For finite programs P, the index i is bounded from above by |At(P)|. Based on this
division of atoms, it is possible to read off a level ranking # : At(P)→ N∪{∞} for the atoms of the
program [27]: the rank #a = i, if a ∈Mi, and #a = ∞, if a 6∈M. A level numbering # [17] extends any
level ranking for the supporting rules r ∈ SuppR(P,M) by the equality2 #r = max{#b | b ∈ B+(r)}+1.
Intuitively, the level #r of a rule r indicates when r can be applied to derive its head and, consequently,
#a = min{#r | r ∈ DefP(a)∩SuppR(P,M)}. By these interconnections, we may use level rankings and
numberings interchangeably in the sequel. If r 6∈ SuppR(P,M), then #r = ∞. The value ∞ emphasizes
that an atom is never derived or a rule becomes never applicable. The other option is to restrict the
domain of # to M∪SuppR(P,M) for which finite values exist, but some big value greater than any level
rank is useful in practice. E.g., given an SCC S of the program P, the level ranks #a of atoms a ∈ S can
be effectively constrained by 0 < #a < |S|+1; cf. (6) below.

Many existing translations of logic programs into SAT, SMT, and MIP rely on program completion
[10]. The idea is to translate a (normal) logic program P into classical equivalences that capture the sup-
ported models of the program. The purpose of level ranking constraints [27], however, is to distinguish
the stable ones among them by incorporating a requirement that there is a level ranking # for a model
M ∈ SuppM(P). These constraints can be expressed, e.g., as formulas in difference logic (DL). This
SMT-style logic [28] enriches propositional formulas with difference constraints of the form x− y ≤ k
where x,y are real/integer variables and k is a constant. The evaluation of a difference atom x− y≤ k is
based on an assignment τ : V → Z on the set of variables V in use. Given τ , the constraint x− y ≤ k
is satisfied by τ , denoted by τ |= x− y ≤ k, iff τ(x)− τ(y) ≤ k. A DL-interpretation is a pair 〈I,τ〉
where I a standard propositional interpretation and τ an assignment. A formula φ of DL is satisfied by
〈I,τ〉, denoted 〈I,τ〉 |= φ , if φ evaluates to true under I by the usual propositional rules extended by the
evaluation of difference atoms subject to τ .

A difference constraint xb− xa ≤ −1 (i.e., xa > xb) can express that a is derived after b under the
assumption that xa and xb store the level ranks of a and b, respectively. Based on this idea, we introduce
formulas for the representation of level ranks. Their scope is specified in terms of a set of atoms S⊆At(P)
to be discussed in further detail below.

(1≤ xa ≤ |S|+1), ¬a→ (xa ≥ |S|+1), (6)

dep(a,b) ↔ b∧ (xa > xb), (7)

gap(a,b) ↔ b∧ (xa > xb +1). (8)

By the two formulas in (6), level ranks are positive and fixed to |S|+1 if an atom a is false. In addition,
we introduce two kinds of new atoms to help with the formulation of the actual level ranking constraints.
First, the atom dep(a,b) defined by (7), denotes an active dependency of a head atom a on a positive
body atom b, i.e., b must be true. Such dependencies are deployed by Bomanson et al. [6], but we use
a definition in terms of the difference constraint. Second, the atom gap(a,b), as defined by (8), means a
similar relationship except that b is derived so early that it is not critical for determining the exact level
rank of a. Note that gap(a,b) implies dep(a,b) in general but not vice versa. In particular, if dep(a,b) is
true and gap(a,b) is false, then b must be true and xa = xb +1, indicating that a is derived right after b.

2This holds for rules whose body is essentially normal (1) while generalizations for more complex bodies follow.
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Such body atoms b from the preceding level are relevant when a is derived by some rule r ∈ DefP(a) at
level xa.

In the following, we present a reformulation of level ranking constraints [27] by exploiting the de-
pendency relations from (7) and (8). Our further goal is to incorporate the idea of ordered completion [3]
for the sake of more compact representation. Given an atom a ∈ At(P), its completion is based on the
set DefP(a) = {r1, . . . ,rk} of its defining rules. In the sequel, the applicability of a rule ri is denoted by
a new atom app(ri).

a ↔ app(r1)∨·· ·∨ app(rk), (9)

app(ri) ↔
∧

b∈B+(ri)∩S

dep(a,b)∧ (B+(ri)\S)∧¬B−(ri) (1≤ i≤ k), (10)

app(ri) →
∨

b∈B+(ri)∩S

¬gap(a,b) (1≤ i≤ k, B+(ri)∩S 6= /0), (11)

app(ri) → (xa ≤ 1) (1≤ i≤ k, B+(ri)∩S = /0). (12)

Intuitively, the equivalence (9) sets the head atom a true if and only if at least one of its defining
rules ri is applicable. This, in turn, is defined by the equivalence (10) insisting that atoms in B+(ri)∩S
have been previously derived and all remaining positive and negative body conditions are satisfied. This
formulation embeds both weak level ranking constraints [27] and ordered completion [3] but relative to
the set S. The constraint (11) is the counterpart of strong level ranking constraints [27] enforcing the
minimality of level ranks assigned to atoms. Besides this, the formula (12) resets the level of the head
atom a to 1 when a can be derived by applying an externally supporting rule ri with B+(ri)∩S = /0.

Regarding the scope S, it is natural to think that the head atom a is included usually. Also, few
special cases deserve further attention. (i) If S = At(P), then the completion becomes fully ordered, i.e.,
B+(ri)\S becomes empty in (10) and the formula (12) is generated only for ri ∈ DefP(a) with an empty
B+(ri). Moreover, if all atoms of At(P) are completed using (9)–(12), the resulting formulas capture
stable models directly, including level ranks of atoms. (ii) If S = SCC(a), then the ordering becomes
local to the component S. Then, if all atoms of S are completed, the formulas capture stable models M
for the program module PS induced by the component S [29]. It should be emphasized that the input
atoms in At(PS)\S are not subject to completion and they may vary freely. Therefore, given a set of facts
I ⊆ At(PS) \ S as an actual input for PS, the stable models of PS become solutions to M = LM(PM

S ∪ I)
whose levels i are determined by TPM

S
↑i (I). (iii) Finally, if S = /0 and a 6∈ S as an exception, equations

(9) and (10) capture the standard completion of a, the formula (11) becomes void, and the formula (12)
ensures that xa = 1 whenever a is true.

Example 2. As a minimal example, consider a← a as the only rule r1 of a program P and the SCC
S = {a} = SCC(a). We obtain the following formulas: (1 ≤ xa ≤ 2), ¬a→ (xa ≥ 2), dep(a,a)→
a∧ (xa > xa), gap(a,a)→ a∧ (xa > xa + 1), a↔ app(r1), app(r1)↔ dep(a,a), app(r1)→¬gap(a,a).
They can be satisfied by falsifying a and all new atoms, as well as by setting xa = 2, indicating that
M1 = /0 is stable. On the other hand, M2 = {a} is not stable, which can be realized by an attempt to make
a true in the formulas listed above. Thus app(r1) and dep(a,a) must be true, too, and gap(a,a) false. By
further inspection of the formulas, it follows that xa > xa is true and xa > xa +1 is false, both indicating
a contradiction. �

The case S = SCC(a) is the most general one and deserves justifications for correctness due to
reformulations done in view of [27] and the limitations of ordered completion [3] with regard to (11).
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Definition 2. Given a normal logic program P and a scope S ⊆ At(P) of completion, the tight ordered
completion (TOC) of P relative to S is the set of formulas (6) for a ∈ S, (7) and (8) for a,b ∈ S whenever
a�P b, and (9)–(12) for each a ∈ At(P) and ri ∈ DefP(a).

The TOC of P relative to S is denoted by TOCS(P) and we omit S from the notation TOCS(P), if
S = At(P). It is worth noting that the length ‖TOCS(P)‖ stays linear in ‖Ps‖.
Theorem 1. Let P be a normal logic program, S an SCC of P, and PS the module of P induced by S.

1. If M ⊆ At(PS) is a stable model of PS for an input I ⊆ At(PS)\S and # : M∩S→ N the respective
level ranking, then there is a model 〈N,τ〉 for TOCS(P) such that M = N∩At(PS), τ(xa) = #a for
each a ∈M∩S, and τ(xa) = |S|+1 for each a ∈ S\M.

2. If 〈N,τ〉 is a model of TOCS(P), then M = N ∩At(PS) is a stable model of PS for the input I =
N∩ (At(PS)\S) and for each a ∈M∩S, #a = τ(xa)− τ(z) is the respective level rank.

As a preparatory step toward generalizations for aggregated rules, our final example in this section illus-
trates TOCS in the context of a cardinality rule (3) that is normalized before completion.

Example 3. Let us assume that an atom a is defined by a single cardinality rule a← 1≤ {b1, . . . ,bn} as
part of a larger program P having an SCC S = SCC(a) such that {b1, . . . ,bn} ⊆ S. The rule is compactly
expressible even without auxiliary atoms in terms of n positive normal rules

a← b1. . . . a← bn.

The tight ordered completion produces the following formulas for the joint head atom a ∈ S:

a↔ app1(a)∨·· ·∨ appn(a), (13)

app1(a)↔ dep(a,b1) , . . . , appn(a)↔ dep(a,bn), (14)

app1(a)→¬gap(a,b1) , . . . , appn(a)→¬gap(a,bn). (15)

In the above, we adopt a convention that appi(a) denotes the application of ri ∈ DefP(a). Since each
bi ∈ S the respective rules a← bi may not contribute to external support via (12). �

4 The Case of Monotone Aggregates

Cardinality rules (3) and weight rules (4) with lower bounds are widely used examples of monotone
aggregates and, in particular, if the (anti-monotone) effect of negative literals is disregarded in the sense
of stable models (cf. Definition 1). The level number #a of an atom a ∈ At(P) is generalized in a
straightforward way when positive cardinality/weight rules are incorporated to the definition of the TP

operator [30]. As before, #a is the least value i ∈ N such that a ∈ TP ↑i ( /0) for positive programs P.
Default negation is analogously treated via the reduct, i.e., given a stable model M ⊆At(P), the operator
TPM can be used to assign level ranks for a ∈ At(P). The goal of this section is to generalize tight
ordered completion for rules involving monotone aggregates. The resulting formulas can be used to
enforce stability in various settings where the semantics is no longer based on stable models themselves.

The normalization [7] of cardinality rules is used to guide our intuitions about the intended gener-
alization of tight ordered completion. Besides this, to enable compact representations of aggregates as
propositional formulas, we extend the language of difference logic by pseudo-Boolean constraints of the
form c1a1+ · · ·+cmam≥ b where a1, . . . ,am are atoms, c1, . . . ,cm their respective integer coefficients, and
b an integer bound. Obviously, given an interpretation 〈I,τ〉 in DL, we define 〈I,τ〉 |= c1a1+ · · ·+cmam≥
b, iff ∑I|=ai ci ≥ b, since the truth values of a1, . . . ,am are determined by I independently of τ . Let us
begin with an example that concentrates on a corner case (l = 1 and m = 0) of (3) from Example 1.
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Example 4. Recalling formulas (13)–(15) from Example 3, we pull them back to the setting of the
original cardinality rule a← 1≤ {b1, . . . ,bn} where b1, . . . ,bn depend recursively on the head a. Based
on a connecting formula app1(a)∨ ·· · ∨ appn(a)↔ app(a) on the applicability of the n rules in the
normalization versus the applicability of the original rule, we rewrite (13)–(15) as follows:

a↔ app(a), (16)

app(a)↔ (dep(a,b1)+ · · ·+dep(a,bn)≥ 1), (17)

app(a)→ (gap(a,b1)+ · · ·+gap(a,bn)< 1), (18)

where the new atoms dep(a,b1), . . . ,dep(a,bn) and gap(a,b1), . . . ,gap(a,bn) are still to be interpreted
subject to formulas (6)–(8) as in the context of Example 3. �

Note that the formula (18) expresses a dynamic check, i.e., it works for any subset B of {b1, . . . ,bn}
of atoms true and derived earlier than a. If the cardinality rule is applied (i.e., |B| ≥ 1), gap(a,bi) must
be false for each bi ∈ B, amounting to the effect of the individual implications in (15). The formulas
in Examples 3 and 4 are based on different auxiliary atoms denoting the applicability of rules. The
connecting formula app1(a)∨·· ·∨ appn(a)↔ app(a) describes their intended semantic interconnection
for propositional interpretations M and N, i.e., M |= app1(a)∨·· ·∨appn(a) iff N |= app(a). Because (7)
and (8) disconnect all integer variables from the formulas under consideration, the following proposition
concentrates on the propositional parts of DL-interpretations that are intended to satisfy TOC formulas
in the end.

Proposition 1. The formulas (13)–(15) and (16)–(18) constrain the respective interpretations 〈M,τ〉 and
〈N,τ〉 equivalently, as conveyed by the satisfaction of the formula app1(a)∨·· ·∨ appn(a)↔ app(a).

Proof. Assuming the connecting formula makes formulas (13) and (16) equivalent. Formulas (13) and
(14) imply a↔ dep(a,b1)∨ ·· · ∨ dep(a,bn) that is equivalent to (17) under (16). Finally, gap(a,b1)+
· · ·+gap(a,bn)< 1 is the same as ¬gap(a,b1)∧·· ·∧¬gap(a,bn). These conditions are equally enforced
by (15) and (18) when the connecting formula is satisfied.

Proposition 1 indicates that the formulas (13)–(15) introduced for the normalizing rules can be safely
substituted by the formulas (16)–(18) for the original rule. In this way, the aggregated condition is
restored as a subformula in (17) while its negation incarnates in (18). Recall that the truth values of atoms
gap(a,bi) are determined by (8). If (18) were not satisfied by 〈N,τ〉, at least one gap(a,bi) atom must be
true, i.e., N |= bi and τ |=(xa > xbi +1) assuming the satisfaction of (8). Thus bi would be derived so early
that the derivation of a is feasible before and the value of xa could be decreased. Consequently, the joint
effect of the formulas (17) and (18) is that xa = min{xbi +1 | N |= bi} holds which is in harmony with
the characterization of [17] when applied to the normalizing rules a← b1. . . .a← bn. Before addressing
arbitrary cardinality rules, we draw the reader’s attention to the other extreme.

Example 5. When l = n and m = 0 in (3), the rule can be directly cast as a positive normal rule a←
b1, . . . ,bn. Still assuming that {b1, . . . ,bn} ⊆ SCC(a), the TOC formulas resulting from (9)–(11) are a↔
app1(a), app1(a)↔ dep(a,b1)∧·· ·∧dep(a,bn), and app1(a)→

∨
1≤i≤n¬gap(a,bi). The corresponding

aggregated formulas can be seen in the formulas (17) and (18) if the bound 1 is substituted by n. The
resulting strong level ranking constraint ensures that at least one body atom bi is derived just before a
and xa = max{xbi | 1≤ i≤ n}+1. �

The preceding example reveals our plan when it comes to covering more general lower bounds 1 <
l < n in (3) still pertaining to the positive case m = 0 and {b1, . . . ,bn} ⊆ SCC(a). In the sequel, we
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write ⊆l to denote the l-subset relation restricted to subsets of size l exactly. Due to monotonicity,
the satisfaction of the rule body l ≤ {b1, . . . ,bn} essentially depends on the l-subsets of {b1, . . . ,bn}.
Thus, the cardinality rule (3) with m = 0 can be normalized by introducing a positive rule a← B for
each B ⊆l {b1, . . . ,bn}. The number of such rules

(n
l

)
is at maximum when l is n halved.3 In spite of

exponential growth, the resulting normalization serves the purpose of understanding the effect of l on the
required TOC formulas. To update equations (13)–(15) for this setting, we need a new atom appB(a) for
every B⊆l {b1, . . . ,bn} to capture the individual applicabilities of the respective positive rules a← B:

a ↔
∨

B⊆l{b1,...,bn}
appB(a), (19)

appB(a) ↔
∧
b∈B

dep(a,b) (for B⊆l {b1, . . . ,bn}), (20)

appB(a) →
∨
b∈B

¬gap(a,b) (for B⊆l {b1, . . . ,bn}). (21)

The connecting formula
∨

B⊆k{b1,...,bn} appB(a)↔ app(a) links the above back to the original rule a←
l ≤ {b1, . . . ,bn} suggesting the revisions of (16)–(18) for any lower bound 1≤ l ≤ n:

a ↔ app(a), (22)

app(a) ↔ (dep(a,b1)+ · · ·+dep(a,bn)≥ l), (23)

app(a) → (gap(a,b1)+ · · ·+gap(a,bn)< l). (24)

Most importantly, the length of the formulas (22)–(24) stays linear in n in contrast with their alternatives
(19)–(21) based on l-subsets. The aggregate-based formulation covers all l-subsets of {b1, . . . ,bn} and
their supersets that also satisfy the body of (3) with m = 0 by monotonicity.

Proposition 2. The formulas (19)–(21) and (16)–(24) constrain the respective interpretations 〈M,τ〉 and
〈N,τ〉 equivalently, as conveyed by the satisfaction of the formula

∨
B⊆l{b1,...,bn} appB(a)↔ app(a).

The proof is similar to that of Proposition 1 and amounts to showing that the (big) disjunctive formula∨
B⊆l{b1,...,bn}

∧
b∈B dep(a,b) is expressible as (dep(a,b1)+ · · ·+ dep(a,bn) ≥ l). Similar aggregation is

achieved in (24) in terms of gap(a,b1), . . . ,gap(a,b1). An important observation is that 〈N,τ〉 6|= (24) if
and only if N |= app(a) and ∃B⊆l {b1, . . . ,bn} such that for each b ∈ B, N |= b, N |= gap(a,b), and τ |=
(xa > xb +1). Since B reaches the bound l the value of xa could be decreased to max{τ(xb) | b ∈ B}+1
or even further if |B| > l. Thus the satisfaction of (24) means that no B ⊆l ({b1, . . . ,bn}∩N) of true
atoms could be used to decrease the value of xa. The net effect is that xa has the critical minimum value.
Since (23) is also satisfied there are at least l true atoms derived before a but sufficiently many of them
are derived just before a. For those atoms b we have xa = xb +1, dep(a,b) true, but gap(a,b) false!

Example 6. Consider the rule a← 2 ≤ {b1,b2,b3,b4} in the context of a model 〈N,τ〉 where N =
{a,b1,b3,b4,app(a)}, τ(xb1) = τ(xb4) = 2, τ(xb3) = 1, and τ(xb2) = 6 by default as N 6|= b2, see (6). Now
the rule body is satisfied by three 2-subsets B1 = {b1,b3}, B2 = {b1,b4}, and B3 = {b3,b4} justifying the
level rank τ(xa) = 3, since max{τ(xb) | b ∈ Bi}= 2 for each 1≤ i≤ 3. We have gap(bi,a) true only for
i = 3 and thus (24) is respected for l = 2. But, if τ(xa) = 4 had been alternatively set, the count of such
bi’s would be 3, falsifying (24). �

3Note that
( n
bn/2c

)
≥ 3bn/2c from n > 4 onward.
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4.1 Weights

So far, we have established relatively general form of TOC formulas (22)–(24) that cover cardinality
rules (3) when m = 0. Before addressing negative body conditions (m > 0) and settings where SCCs
play a major role, we take the weights of literals into consideration as already present in weight rules
(4) when m = 0. Consequently, we have to substitute l-subsets used in (19)–(21) by weighted sub-
sets B ⊆w {b1 = wb1 , . . . ,bn = wbn}. Such a subset B can be formally defined in terms of the con-
dition WSB({b1 = wb1 , . . . ,bn = wbn}) ≥ w from Section 2. It is clear by monotonicity that if B ⊆w

{b1 = wb1 , . . . ,bn = wbn}, then B′ ⊆w {b1 = wb1 , . . . ,bn = wbn} for every B′ with B ⊆ B′ ⊆ {b1, . . . ,bn}.
A weighted set B ⊆w {b1 = wb1 , . . . ,bn = wbn} is defined to be ⊆-minimal with respect to w, if for no
B′ ⊂ B, B′ ⊆w {b1 = wb1 , . . . ,bn = wbn}. We use ⊆min

w to indicate such ⊆-minimal weighted subsets of
{b1, . . . ,bn}. Assuming orthogonal generalizations of (19)–(21) for a positive weight rule (4) and the
weighted subsets B ⊆min

w {b1 = wb1 , . . . ,bn = wbn} of its body, we rather incorporate weights into the
formulas (22)–(24) as follows:

a ↔ app(a), (25)

app(a) ↔ (wb1×dep(a,b1)+ · · ·+wbn×dep(a,bn)≥ w), (26)

app(a) → (wb1×gap(a,b1)+ · · ·+wbn×gap(a,bn)< w). (27)

Proposition 3. The formulas (19)–(21) revised for weighted subsets B subject to the bound w and the
formulas (25)–(27) constrain the respective interpretations 〈M,τ〉 and 〈N,τ〉 equivalently, as conveyed
by the satisfaction of the equivalence

∨
B⊆min

w {b1=wb1 ,...,bn=wbn} appB(a)↔ app(a).

Proof. Due to high similarity with respect to Proposition 2, we just point out the equivalence of the
formulas

∨
B⊆min

w {b1=wb1 ,...,bn=wbn}
∧

b∈B dep(a,b) and (wb1×dep(a,b1)+ · · ·+wbn×dep(a,bn)≥ w). The
equivalence involving gap(a,b1), . . . ,gap(a,bn) is analogous but negated.

Again, 〈N,τ〉 6|= (27) implies N |= app(a) and for some B⊆min
w {b1 = wb1 , . . . ,bn = wbn}, N |= B and

for every b ∈ B, τ |= (xa > xb +1). Then, the value of xa could be decreased to max{τ(xb) | b ∈ B}+1.
Thus the formula (27) makes τ(xa) minimal as before.

Example 7. Let us consider a positive weight rule a← 7 ≤ {b1 = 7,b2 = 5,b3 = 3,b4 = 2,b5 = 1} in
the context of a model 〈N,τ〉 where N sets all body atoms b1, . . . ,b5 true and τ the level numbers

τ(xa) = 5, τ(xb1) = 5, τ(xb2) = 4, τ(xb3) = 3, τ(xb4) = 2, τ(xb5) = 1.

The ⊆-minimal satisfiers of the body are B1 = {b1}, B2 = {b2,b3}, and B3 = {b2,b4}. The only atom
in B1 has a weight that reaches the bound 7 alone, but it is derived too late to affect the derivation of a.
Both B2 and B3 yield the same value max{τ(xb) | b ∈ Bi} = 4 and hence justify the one higher value 5
assigned to xa. Interestingly, there is also an atom b5 that is derived early, but whose weight is irrelevant
for satisfying the rule body nor deriving a any earlier. In fact, this weighted atom could be safely deleted
from the rule (under strong equivalence).

As regards the satisfaction of (27), the relevant body atoms are b3, b4, and b5, for which the atom
gap(a,bi) is made true by (8). The sum of the respective weights 3+2+1 is less than 7.

Also, note that the level numbers assigned by τ to b1, . . . ,b5 can be easily arranged with positive
rules, e.g., by using the chain of rules: b1← b2. b2← b3. b3← b4. b4← b5. b5. Given the respective
program P, the operator TP should be applied 5 times to make a true. �
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4.2 Negative Conditions

Negative body conditions form the missing pieces when it comes to fully covering WCPs with level
ranking constraints as embedded in tight ordered completion. To this end, our strategy is based on
rewriting and ideas used in [7] where the correctness of normalization is first shown for positive programs
and then generalized for programs with negation. In a nutshell, negative literals in (4) can be replaced
by new atoms c1, . . . ,cm that respectively denote that c1, . . . ,cm cannot be derived. These atoms are
subsequently defined by (atomic) normal rules c1 ← ∼c1. . . . cm ← ∼cm. The outcome is a set of
rules that is visibly strongly equivalent with the original weight rule (4). The completions of c1, . . . ,cm

are c1↔¬c1, . . . ,cm↔¬cm, enabling the substitution of c1, . . . ,cm by ¬c1, . . . ,¬cm in any formulas of
interest. In this way, c1, . . . ,cm can be readily forgotten under classical semantics. The transformation
described above leaves the SCCs of the program intact, because positive dependencies are not affected.
Thus, besides taking care of negative body conditions, our next rewriting step recalls the scope S⊆At(P)
from (10)–(12): we present TOC formulas to cover WCPs split into modules based on SCCs. We say
that a WCP is pure if it contains weight rules (4) only.

Definition 3. Let P be a pure WCP and S ⊆ At(P) an SCC of P used as the scope of completion. The
tight ordered completion of P relative to S, denoted TOCS(P), consists of the formulas listed below:

• If |S|> 1, then for each a ∈ S:

1. the formulas (6);
2. the formulas (7) and (8) for each b ∈ S such that a�P b; plus
3. the following formulas based on the definition DefP(a) = {r1, . . . ,rk}in the program P:

a ↔ app1(a)∨·· ·∨ appk(a), (28)

appi(a) ↔ inti(a)∨ exti(a), (29)

inti(a) ↔ (∑b∈B+(ri)∩S(wb×dep(a,b))+∑b∈B+(ri)\S(wb×b)

−∑c∈B−(ri)(wc× c)≥ wri−wi), (30)

inti(a) → (∑b∈B+(ri)∩S(wb×gap(a,b))+∑b∈B+(ri)\S(wb×b)

−∑c∈B−(ri)(wc× c)< wri−wi) ∨ exti(a), (31)

exti(a) ↔ (∑b∈B+(ri)\S(wb×b)−∑c∈B−(ri)(wc× c)

≥ wri−wi), (32)

exti(a) → (xa ≤ 1), (33)

where wi = ∑c∈B−(ri) wc is the adjustment to the bound wri of ri.

• If |S|= 1 and S = {a}= SCC(a), then (28)–(32) are replaced by the standard completion

appi(a)↔ ( ∑
b∈B+(ri)

(wb×b)− ∑
c∈B−(ri)

(wc× c)≥ wri−wi). (34)

In the equations of Definition 3, the treatment of negative literals occurring in a defining rule ri is
justified by their contribution ∑c∈B+(ri)(wc× (1− c)) = wi−∑c∈B+(ri)(wc× c) toward the bound wri .
Weight rules can also create external support in more flexible ways, i.e., if the bound wri can be reached
by satisfying any positive body conditions outside the SCC S in question or any negative body conditions.
Moreover, a single weight rule ri may justify the head a either internally or externally as formalized by
(29), which is different from the case of normal rules. Formulas (30) and (32) capture this distinction.
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Note that exti(a) implies inti(a). The constraint (31) generalizes (11) while (33) is the analog of (12).
The consequent of (31) is weakened by the condition exti(a), since the other disjunct is falsified if
ri provides external support, xa = 1 holds, and all atoms dep(a, ·) and gap(a, ·) associated with a are
falsified. The reader may have noticed that the formulas concerning inti(a) and exti(a) share a potentially
large subexpression si = ∑b∈B+(ri)\S(wb×b)−∑c∈B−(ri)(wc× c). Certain back-end formalisms, such as
DL and MIP, enable the representation of this expression only once using an integer variable.

The following theorem states the correctness of TOC(P) obtained as the union of TOCS(P) for the
SCCs S of P. The claimed one-to-one correspondence, however, must take into account the fact that
a satisfying assignment 〈M,τ〉 in DL can be replicated into infinitely many copies by substituting τ in
〈M,τ〉 by a function τ ′(x) = τ(x)+k for any k ∈Z. The remedy is to introduce a special variable z which
is assumed to hold 0 as its value and the values of the other variables are set relative to the value of z.
The current difference constraints mentioning only one variable must be rewritten using z. For instance,
1 ≤ xa ≤ |S|+ 1 in (6) is expressed by the conjunction of z− xa ≤ −1 and xa− z ≤ |S|+ 1, and this is
how the variable z gets introduced.
Theorem 2. Let P be a WCP with SCCs S1, . . . ,Sq and PS1 , . . . ,PSq the respective modules of P. Then P
and the set of formulas F =

⋃q
j=1 TOCS j(P) are visibly equivalent (up to assigning z = 0).

5 Generalizations Toward Convex Aggregates

Weight rules (4) can be generalized by introducing upper bounds u besides lower bounds l:

a← l ≤ {b1 = wb1 , . . . ,bn = wbn ,∼c1 = wc1 , . . . ,∼cm = wcm} ≤ u. (35)

This gives a rise to a convex condition which is easier to explain for positive rules (m = 0). If the con-
dition can be satisfied by setting the atoms of B1 ⊆ {b1, . . . ,bn} true and the same holds for a superset
B2 ⊆ {b1, . . . ,bn} of B1, then every intermediate set B′ such that B1 ⊆ B′ ⊆ B2 satisfies the condition, too.
It is easy to check that this is a property of (35), since B1⊆B2 implies WSB1({b1 = wb1 , . . . ,bn = wbn})≤
WSB2({b1 = wb1 , . . . ,bn = wbn}) in general. However, the bounds play a role here: upper bounds jeop-
ardize monotonicity in general but convexity is still guaranteed. Thus, we use WCPs based on (35) to
understand the role of level ranking constraints in the context of convex aggregates. The effect of nega-
tive literals is anti-monotonic, but their semantics is determined by the reduct as usual. Simons et al. [30]
present a transformation that checks the upper bound of (35) with another weight rule. The rules below
adopt this idea but using a constraint and new atoms that are in line with (34) and ri ∈ DefP(a):

appi(a) ← l ≤ {b1 = wb1 , . . . ,bn = wbn ,∼c1 = wc1 , . . . ,∼cm = wcm}. (36)

vubi(a) ← u+1≤ {b1 = wb1 , . . . ,bn = wbn ,∼c1 = wc1 , . . . ,∼cm = wcm}. (37)

← appi(a),vubi(a). (38)

For the moment, this relaxes the notion of applicability for ri but the constraint (38) makes sure that the
upper bound is not violated. Since no atom depends positively on vubi(a), the resulting TOC formula
is analogous to (34) with vubi(a) as its head. The constraint (38) can be expressed as ¬(appi(a)∧
vubi(a)). The net effect is that if appi(a) is true, then (∑b∈B+(ri)(wb× b)−∑c∈B−(ri)(wc× c) ≤ u−wi)
must hold. Thus (30)–(32) can be revised for (35) by replacing the previous lower bound wri with l and
by incorporating u−wi into (30) and (32) as upper bounds; either as two pseudo-Boolean constraints or a
combined one with two bounds. The respective upper bound does not play a role in (31) that concerns the
criticality of the lower bound and this check does not interfere with the satisfaction of the upper bound
due to convexity.
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5.1 Abstract Constraint Atoms

Based on the preceding analysis of weight rules, we will rephrase our approach for an arbitrary convex
aggregate Aggr(B) that takes a set of (body) atoms B as input and accepts a certain subset S of the
powerset 2B by evaluating to true. This set must satisfy the convexity condition, i.e., if S1,S2 ∈S then
S ∈S for each intermediate set S1 ⊆ S ⊆ S2, too. Moreover, we let Aggr∗(B) stand for the monotonic
(upward) closure of Aggr(B) based on the signature B. The set of satisfiers S ⊆ 2B of the latter is
extended to a set of satisfiers S ∗ = {S | ∃S′ ∈S , S′ ⊆ S⊆ B} for the former. The syntax of logic
programs can be extended by introducing aggregated conditions as rule bodies in analogy to (3) and (4):

a← Aggr(b1, . . . ,bn,∼c1, . . . ,∼cm). (39)

Let P be a logic program consisting of rules of the form (39) and M⊆At(P) a model of P that satisfies all
rules (39) in the standard sense, i.e., if the body is satisfied by M, then the head a∈M. The reduct PM can
be formed by including a positive rule a←Aggr∗(b1, . . . ,bm,c1 ∈M ?⊥ :>, . . . ,cm ∈M ?⊥ :>) for each
(39) such that M |= Aggr(b1, . . . ,bn,∼c1, . . . ,∼cm). In the above, we exploit conditional substitutions
c?v :u by the value v if the condition c is true and the value u otherwise. Thus, given a set of input atoms
I ⊆At(P)\H(P), we can calculate the least model of PM and assign level ranks #a = i of atoms a∈H(P)
based on the membership a ∈ TPM ↑i (I)\TPM ↑i−1 (I) as earlier. Assuming a defining rule ri ∈ DefP(a)
for an atom a ∈ H(P) and the scope S = SCC(a), we generalize (30)–(32) as follows:

inti(a) ↔ Aggr(b1 ∈ S?dep(a,b1) :b1, . . . ,bn ∈ S?dep(a,bn) :bn,¬c1, . . . ,¬cm), (40)

inti(a) → ¬Aggr∗(b1 ∈ S?gap(a,b1) :b1, . . . ,bn ∈ S?gap(a,bn) :bn,¬c1, . . . ,¬cm)

∨exti(a), (41)

exti(a) ↔ Aggr(b1 ∈ S?⊥ :b1, . . . ,bn ∈ S?⊥ :bn,¬c1, . . . ,¬cm). (42)

The formulas above assume that the aggregate Aggr(·) can be expressed as a propositional formula,
or the target language has sufficient syntactic primitives available such as pseudo-Boolean constraints.
Conditional substitutions are necessary, because we have not made any assumptions about ordering
the arguments to Aggr(·). For instance, if the weight constraint from Example 7 were abstracted as
Aggr(b1,b2,b3,b4,b5), the meaning of Aggr(b5,b4,b3,b2,b1) would become different due to asymmet-
ric weights. As in the case of pure WCPs, the TOC formula (40) takes care of the (potential) internal
support delivered by ri and the support is ordered by the conjoined atoms dep(a,bi) so that the stability
of models can be guaranteed. The formula (42) for external support is analogous except that the contri-
bution of positive body conditions from the same component is hindered by substituting them by ⊥. By
the side of these formulas, the strong ranking constraint (41) ensures that Aggr(·) could not be satisfied
with arguments derived way before a.

6 Conclusions

In this work, we investigate potential generalizations of level ranking constraints [27] for extended rule
types involving aggregates. It turns out that the structure of aggregates can be preserved if the back-end
language offers analogous syntactic primitives for expressing such conditions. As a consequence, it is not
necessary to normalize rules before the introduction of ranking constraints in a form or another, depend-
ing on the target formalism and the back-end solver to be used for actual computations. The particular
novelty of our approach lies in the generalization of strong level ranking constraints for WCPs and other
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monotone/convex aggregates. Using them level rankings can be made unique which is desirable, e.g.,
when counting answer sets. A further by-product is that any WCP can be translated into a tight WCP if
the formulas in TOC(P) are expressed with rules rather than formulas, also justifying “tight” as part of
TOC.

Although the results of this article are theoretical by nature, they enable new kinds of strategies when
it comes to implementing the search of stable models using existing solver technology for SAT, SMT,
and MIP. E.g., the presented TOC formulas offer a common ground for the translators in the LP2* family
[19]. We leave non-convex aggregates as future work for two main reasons. First, there is no consensus
about their semantics when recursive definitions are enabled [2]. The ASP-core-2 language standard
assumes the stratified setting only whereas the Clingo system implements one particular semantics for
recursive non-convex aggregates [13]. Second, there is also evidence [1] that the removal of non-convex
aggregates tends to produce disjunctive rules which go beyond level rankings in the first place. One
potential solution is provided by the decomposition of non-convex aggregates into their maximal convex
regions, cf. [18, 24].
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Answer set programs in practice are often subject to change. This can lead to inconsistencies in the

modified program due to conflicts between rules which are the results of the derivation of strongly

complementary literals. To facilitate the maintenance of consistency in answer set programs, in

this paper we continue work on a recently presented framework that implements interactive conflict

resolution by extending the bodies of conflicting rules by suitable literals, so-called λ -extensions.

More precisely, we present strategies to choose λ -extensions that allow for resolving several conflicts

at a time in an order that aims at minimizing (cognitive) efforts. In particular, we present a graphical

representation of connections between conflicts and their possible solutions. Such a representation

can be utilized to efficiently guide the user through the conflict resolution process by displaying

conflicts and suggesting solutions in a suitable order.

1 Introduction

Answer set programming provides valuable features for usage in real-world applications where complex

decisions have to be made, thanks to its declarative nature and the availability of both strong negation

and default negation. Such programs, though, are often subject to change. Adding rules to an answer

set program can however potentially lead to inconsistency due the activation of conflicting rules, i. e.,

rules with complementary literals in their heads.The approach in [9] deals with inconsistency caused by

the derivation of strongly complementary literals. Herefore, the notion of λ -extensions for conflicting

rules has been introduced that enables an interactive conflict resolution process in which a knowledge

expert can help restore the consistency of an updated program in a professionally adequate way. A

λ -extension is a set of (default) literals with which the body of a conflicting rule can be extended to

constrain its applicability and thus resolves the conflict. However, the paper [9] focuses on conflicts

between two rules only. But conflicts can involve more than two rules, and solutions to one conflict can

affect solutions to other conflicts. It is clear that no new conflicts may arise by extending rule bodies. So

we might expect even synergetic positive effects when considering all interactions between conflicts in a

program at the same time and finding a clever order to solve conflicts. This is exactly the topic here.

In this work, we extend the approach of [9] by first defining a graph that shows the connections be-

tween the conflicts and their solutions, thereby embedding the conflicts of a program and their possible

solutions within the overall context of the program’s conflict resolution. This graphical representation of

possible solutions is then utilized to define suitable orders over conflicts and the respective λ -extensions

so that one solution can help solving subsequent other conflicts. In particular, the strategies presented in

this paper can also help shrink the (sometimes large) sets of possible λ -extensions by choosing such ex-

tensions that are involved in more than one conflict. In this way, also the cognitive burden for knowledge

experts during the conflict resolution process can be reduced.

The main contributions of this paper can be summarized as follows:

• We introduce a suitable graph structure named λ -graphs for λ -extensions to display the relation-

ships between conflicts w.r.t. their possible solutions.

http://dx.doi.org/10.4204/EPTCS.385.13
https://creativecommons.org
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• We show how λ -graphs provide the necessary, syntax-based information to find suitable orders

over conflicts.

• Utilizing λ -graphs, we furthermore explain how one can obtain an order over the possible solutions

of a conflict.

• Based on these results, we present an explicit sorting strategy that defines an order over conflicts

and their solutions for the application in a conflict resolution framework as proposed in [8, 9].

This paper begins by laying out the necessary preliminaries in Section 2. Section 3 provides further

terminology regarding conflict resolution which is then used in Section 4 to construct λ -graphs that

provide crucial information regarding the connections between conflicts and λ -extensions. Based on

these results in Section 5.1, a sorting strategy is proposed that defines an order over conflicts and their

possible solutions by taking their relationships among each other into account. Section 6 gives a brief

overview of related work. We conclude this paper by summarizing our findings in Section 7 and briefly

outlining possible future work.

2 Preliminaries

In this paper, we look at non-disjunctive extended logic programs (ELPs) [4]. An ELP is a finite set

of rules over a set A of propositional atoms. A literal L is either an atom A (positive literal) or a

negated atom A (negative literal). For a literal L, the strongly complementary literal L is A if L = A and

A otherwise. A default-negated literal L, called default literal, is written as ∼L. Given a set S of literals,

we say a literal L is true in S (symbolically S � L) iff L ∈ S and ∼L is true in S (symbolically S �∼L) iff

L /∈ S. A set of literals is inconsistent if it contains strongly complementary literals.

We are now ready to specify the form of ELPs.

A rule r is of the form

L0←L1, . . . ,Lm,∼Lm+1, . . . ,∼Ln., (1)

with literals L0, . . . ,Ln and 0≤ m≤ n. The literal L0 is the head of r, denoted by H(r), and {L1, . . .Lm,
∼Lm+1, . . .∼Ln} is the body of r, denoted by B(r). Furthermore, {L1, . . . ,Lm} is denoted by B+(r) and

{Lm+1, . . . ,Ln} by B−(r). An extended logic program (ELP) is a set of rules of the form (1). Given

a set S of literals, a rule r is true in S (symbolically S � r) iff H(r) is true in S whenever B(r) is true

in S. In this case we also say that S satisfies r. Given an ELP P over A without default negation

and LitA = {A ∪{A | A ∈ A }}, the answer set of P is either (a) the smallest set S ⊆ LitA such that

S is consistent and S � r for every rule r ∈P , or (b) the set LitA of literals in case all such sets are

inconsistent. Note that, similar to Horn logic programs, each such ELP without default negation has

exactly one minimal model which might, however, be inconsistent.

In general, an answer set of an ELP P is determined by its reduct. The reduct PS of a program P

relative to a set S of literals is defined by

P
S = {H(r)←B+(r). | r ∈P,B−(r)∩S = /0}.

A set S of literals is an answer set of P if it is the answer set of PS [4].
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3 Conflicts and λ -extensions

In [8, 9], a framework is outlined that supports knowledge experts in restoring consistency interactively

in answer set programs. To this aim, the bodies of rules involved in a conflict are extended suitably by

known literals, so-called λ -extensions. In this way, conflicts that cause inconsistency can be resolved. In

particular, a method is provided that for every conflict generates all possible λ -extensions, from which

the expert can then choose the most adequate ones.

We briefly recall the basic techniques from [8, 9], in particular the terms conflicts and λ -extensions,

and illustrate them with the following (running) example.

Example 1. Let Pex be specified by the following rules:

r1: a←b,∼c. r2: a←b. r3: x←d,e, f ,∼c. r4: x←d,e.

r5: y←g,h, f . r6: y←g. r7: z← j,k,∼l. r8: z← j,∼l.

r9: w← f ,m,n. r10: w←m. r11: w←n. r12: p←o,h, f ,∼q.

r13: p←o,∼q. r14: u← s. r15: u←s, t,h. r16: u←s, t,h.

Note that Pex in Example 1 is trivially consistent because it is a so-called program core [9], i.e., it has

no facts. Program cores are usable with different instances by expanding the program by a corresponding

set F of facts (instance data). A typical example would be a medical expert system where the instance

data are provided by the patients and so cannot be part of the generic program.

Example 2. Suppose the following program P describing the symptoms of and treatments for two

diseases disA and disB:

disA←sympM,sympN. disB←sympM,sympO. treatX←disA. treatY←disB.

Program P is a program core. Adding the instance data F = {sympM,sympO} as patient data to P

yields the unique answer set F ∪{disB, treatY} describing that the corresponding patient has condition

disB and should be treated with treatment treatY.

However, it is easy to see that there exist multiple instance data F for Pex that would yield an

inconsistent program Pex ∪F because of rules in Pex that, if their bodies are satisfied simultaneously,

derive strongly complementary literals.

Example 3 (Example 1 contd.). Let Fex be a set of instance data for Pex such that b∈Fex and c 6∈Fex.

Then in Pex∪Fex, both r1 and r2 are simultaneously satisfied. Hence, Pex∪Fex is inconsistent as both

a and a are derivable.

Rule sets like {r1,r2} of the previous example are called conflicting rules or conflicts.

Definition 1 (Conflict and conflict group (cf. [8])). In a logic program P , two rules r,r′ are conflicting

iff there exists a set S of literals such that S satisfies B(r) and B(r′) simultaneously and the head literals

H(r) and H(r′) are strongly complementary. A conflict is a set γ = {r,r′} of two conflicting rules r,r′.
For a rule r, the corresponding conflict group Γ(r) is the set of all conflicts γ in P with r ∈ γ . The size

of a conflict group is the number of different conflicts in a conflict group.

Intuitively, two rules are conflicting if their bodies can be true simultaneously and their head literals

are contradictory. The following example illustrates conflict groups and their sizes in Pex.

Example 4 (Example 1 contd.). The conflict groups for r1 and r4 are the sets Γ(r1) = {{r1,r2}} and

Γ(r4) = {{r3,r4}}, respectively. Both groups have each size 1 while conflict group Γ(r14) = {{r14,r15},
{r14,r16}} has size 2.
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Table 1: Components of λ -graph

Group Representative Conflicts λ -Ext. Node Cliques

Γ(r2) r2 {r1,r2} {c} (Γ(r2),1) Q3

Γ(r4) r4 {r3,r4} {∼ f},{c} (Γ(r4),1) Q2,Q3

Γ(r6) r6 {r5,r6} {∼h},{∼ f} (Γ(r6),1) Q1,Q2

Γ(r8) r8 {r7,r8} {∼k} (Γ(r8),1) Q4

Γ(r10) r10 {r9,r10} {∼ f} (Γ(r10),1) Q1

Γ(r11) r11 {r9,r11} {∼ f} (Γ(r11),1) Q1

Γ(r13) r13 {r12,r13} {∼h},{∼ f} (Γ(r13),1) Q1,Q2

Γ(r14) r14 {r14,r15},{r14,r16} {∼h},{∼t,∼t} (Γ(r14),2) Q2,Q5

If both rules of a conflict in a program core are simultaneously satisfiable, a program is potentially

inconsistent [9]. In the rest of this paper, we deal with programs that are inconsistent due to conflicts and

we require a program to be coherent, that is, each given program has at least one answer set (cf. [1]).

In order to guarantee that a program has an answer set whenever it is extended by consistent instance

data, all conflicts have to be resolved. For that, we use an approach called λ -extensions. In the following,

we will present the main aspects of λ -extensions and properties that are relevant to this work. For more

details, we refer the reader to [9].

Definition 2 (λ -extensions, cf. [9]). Suppose a program P and a rule r ∈P that is in conflict with a

non-empty set of rules R ⊂P . Let X be a set of (default) literals built from atoms occurring in R, and

let r′′ be a rule obtained from r where B(r) is extended by X, viz., r′′: H(r)←B(r)∪X .. This set X is

a (conflict-resolving) λ -extension for rule r if for every rule r′ ∈ R it holds that r′ and r′′ are no longer

conflicting. Such a rule r′′ is called a λ -extended rule w.r.t. X. A λ -extension X for r is minimal iff there

exists no set X ′ ⊂ X such that X ′ is also a λ -extension for r. A conflict group Γ(r) is called resolvable

if there exists a rule r′ and a λ -extension X for r′ such that replacing r′ in every conflict of Γ(r) by the

corresponding λ -extended rule w.r.t. X leads to all conflicts in Γ(r) being resolved. Rule r′ is then called

the representative of Γ(r).

Intuitively, a λ -extension X for a representative r of a resolvable conflict group Γ(r) is a set of

(default) literals such that if the body of r is expanded by X , any previous conflicts of r are resolved.

In [9], the authors show that a conflict {r,r′} can only be resolved iff there exists at least one atom in B(r′)
that is not in B(r) or vice versa. They also demonstrate that resolving each conflict in a program core P

using λ -extensions yields a uniformly non-contradictory program core P⋆, meaning, the program core

can be used with any set of consistent instance data that consists of literals that only appear in rule bodies

of P .

We will illustrate the workings of λ -extensions in the following example.

Example 5 (Example 4 contd.). Consider conflict groups Γ(r14) in Example 1 which consists of the

conflicts {r14,r15} and {r14,r16}. For these conflicts, we get the λ -extensions {∼h}, {h} and {∼t,∼t}
as possible extensions for the rule body of r14. This means both conflicts of r14 can be solved by replacing

r14 in Pex by one of the following rules:

r′14: u← s,∼h. r′′14: u←s,h. r′′′14: u← s,∼t,∼t.

Note that no additional conflicts are introduced as the premise for r is solely extended yielding a

more specific condition. However, not every conflict group of a program is resolvable. The following
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example shows that in order to utilize conflict groups for the resolution of conflicts, their proper selection

is a crucial step.

Example 6 (Example 4 contd.). For rules r1 and r2 it holds that Γ(r1) = Γ(r2) = {{r1,r2}}. As B(r2)⊆
B(r1) holds, r1 can not be picked as a representative. However, B(r1)\B(r2) = {∼c} holds and thus

the λ -extension {c} resolves the conflict of both conflict groups. Similarly, regarding Γ(r4), we get the

λ -extensions { f }, {∼ f}, and {c} for r4. Note that conflict group Γ(r9) has no possible representative

as there does not exist any λ -extension for r9 that solves all conflicts in Γ(r9). It is therefore necessary

to pick the conflict groups Γ(r10) and Γ(r11) which are both resolvable via the representative r10 and r11

respectively. Table 1 shows the λ -extensions of the different resolvable conflict groups of Pex.

In the rest of this paper for any atom a, we omit the λ -extension that contains a whenever ∼a and a

can both be used because ∼a is more cautious. In Example 6, we henceforth solely state {c} and {∼ f}
as the λ -extensions for r4.

Furthermore, note that conflicts like {a←b.,a←b.} require an expansion of both rules bodies by

complementary literals in order to be resolved. We argue that suitable expansions for such conflicts can

only be determined by the knowledge expert. Thus, conflicts of this type will not be considered in this

paper.

4 Relationship between λ -extensions

Naturally, a practical implementation of the interactive framework for conflict resolution, as presented in

[8, 9], has to provide a proper workflow to resolve each conflict and suggest solutions in a suitable order.

We propose that a syntax-based approach considers the different connections between possible solutions

in order to condense the resolution of multiple conflicts. For this reason, we introduce λ -graphs and

corresponding clique covers that can be used to point out such connections. Based on these results in

Section 5, we demonstrate how λ -graphs and clique covers can be used to define explicit strategies that

specify in which order conflicts and solutions should be presented to the knowledge expert.

For resolving conflicts in a program thoroughly, we have to make sure that each rule that is involved

in a conflict must be taken into regard. This idea is formalized by conflict group covers.

Definition 3 (Conflict group cover). Let Pcf be the set of all rules in P that are part of a conflict, and

let ΓΓΓ be a set of resolvable conflict groups. Then, ΓΓΓ is a conflict group cover of P if each rule in Pcf

appears in at least one conflict group of ΓΓΓ. The set of all inclusion-minimal conflict group covers of a

logic program P is denoted by CCG(P) .

A conflict group cover ΓΓΓ of P therefore implies via the representative of each conflict group in ΓΓΓ

which rules in P shall be modified.

Notice that a conflict group cover ΓΓΓ involves a sufficient set of rules that have to be modified to

resolve every conflict.

Proposition 1. Given a conflict group cover ΓΓΓ, expanding the body of each rule r in {r | there is Γ(r′) ∈
ΓΓΓ such that r is a representative of Γ(r′)} by one of its respective λ -extensions yields a consistent pro-

gram.

Proof. Let ΓΓΓ be a conflict group cover of a program P with conflicts and Pcf the set of conflicting rules

in P . By Definition 3, a set ΓΓΓ ∈ CCG(P) is a set of conflict groups such that every rule in Pcf appears

in at least one conflict group Γ ∈ ΓΓΓ. Since every conflict group in ΓΓΓ is resolvable by Definition 3, there

exists at least one λ -extension for the representative of each conflict group in ΓΓΓ. This in turn means that
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applying a respective λ -extension to the representative of each conflict group in ΓΓΓ resolves every conflict

in P , thus, yielding a conflict-free program P ′.

This result implies that regarding conflicting rules, it is mandatory for the knowledge expert to ini-

tially decide which rules are allowed to be modified and which rules must stay unaffected. This allows to

determine all appropriate conflict groups and consequently all appropriate conflict groups covers. Choos-

ing the most suitable cover then ensures that a sufficient and moreover the most suitable set of rules can

be modified using λ -extensions to obtain a uniformly non-contradictory program.

We can now define λ -graphs w.r.t. a conflict group cover ΓΓΓ by making use of weights for the nodes,

and labels for the edges to store information which is crucial for the resolution process.

Definition 4 (λ -graph). Given a conflict group cover ΓΓΓ ∈ CCG(P) of a logic program P , the ΓΓΓ-

induced λ -graph G(ΓΓΓ) is a tuple (V,E) of weighted nodes V and labeled edges E where V contains a

weighted node (Γ,wΓ) for each conflict group Γ in ΓΓΓ with size wΓ, and E contains labeled edges (Γ,Γ′,λ )
whenever the representatives of two different conflict groups Γ and Γ′ have a common λ -extension λ ,

and for any λ -extension λ that is an extension for a representative of only one conflict group Γ, there

exists a self-loop (Γ,Γ,λ ).

Since every conflict group in a program P is represented by a weighted node and each node has

either an edge to itself or to another node that shares a common λ -extension, every conflict is considered

in a λ -graph.

We now illustrate ΓΓΓ-induced λ -graphs using the running example.

Example 7 (Example 1 contd.). Suppose Pex = Pcf and the conflict group cover ΓΓΓex = {Γ(r2), Γ(r4),
Γ(r6), Γ(r8), Γ(r10), Γ(r11), Γ(r13), Γ(r14)} ∈ CCG(Pex) are given. Table 1 shows the conflict groups

in ΓΓΓex and the λ -extensions of the corresponding representatives as stated in Table 1. The ΓΓΓex-induced

λ -graph G(ΓΓΓex) = (V,E) is obtained in the following way: for each conflict group Γ and its size wΓ, we

define (Γ,wΓ) as the corresponding weighted node. Then, V consists of all such weighted nodes, viz.,

V = {(Γ(r2),1), (Γ(r4),1), (Γ(r6),1), (Γ(r8),1), (Γ(r10),1), (Γ(r11),1), (Γ(r13),1), (Γ(r14),2)}. The

set E consists of all labeled edges (Γ,Γ′, lb) such that Γ and Γ′ are pairs of different nodes in V that

share the common label lb, or pairs of identical nodes Γ if the extension corresponding to lb is only a

solution for Γ, viz., E = { (Γ(r2),Γ(r4),{c}), (Γ(r8),Γ(r8),{∼k}), (Γ(r14),Γ(r14),{∼t,∼t}) }∪F ∪H

where F = {(Γ(r),Γ(r′),{∼ f}) | r,r′ ∈ {r4,r6,r10,r11,r13},r 6= r′} and H = {(Γ(r),Γ(r′),{∼h}) | r,r′ ∈
{r6,r13,r14},r 6= r′}.

The graphical representation of the resulting λ -graph G(ΓΓΓex) is displayed in Figure 1.

The graph illustrates several complete subgraphs which are sets of nodes where all nodes are con-

nected to each other by an edge with the same label. Such subgraphs we call λ -cliques.

Definition 5 (λ -clique). Suppose a logic program P and a conflict group cover ΓΓΓ ∈ CCG(P). A λ -

clique w.r.t. a label lb in a λ -graph G(ΓΓΓ) = (V,E) is a maximal subgraph G(ΓΓΓ, lb) = (V ′,E ′) of G(ΓΓΓ)
where (1) E ′ ⊆ E contains all edges in E with label lb, and (2) V ′ ⊆ V contains every node that is

connected to an edge in E ′. We define the weight of a λ -clique as the sum of the weights of all nodes that

occur in the λ -clique. The set of all λ -cliques in a λ -graph G(ΓΓΓ) is denoted by CLQ(ΓΓΓ).

In the following, given a set of edges E , its subset of all edges with label lb is denoted by E lb.

Since a λ -clique G(ΓΓΓ, lb) contains all edges of E lb and all their connected nodes, every λ -clique is a

complete graph.

Example 8 (Example 7 contd.). G(ΓΓΓex) = (V,E) contains the following five λ -cliques:

Q1 = ({(Γ(r6),1),(Γ(r13),1),(Γ(r14),2)},E
∼h,{∼h}) with weight 4
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Figure 1: λ -graph G(ΓΓΓex)

Q2 = ({(Γ(r4),1),(Γ(r6),1),(Γ(r10),1),(Γ(r11),1),(Γ(r13),1)},E
∼ f ,{∼ f}) with weight 5

Q3 = ({(Γ(r2),1),(Γ(r4),1)},E
∼c,{c}) with weight 2

Q4 = ({(Γ(r8),1)},E
∼k,{∼k}) with weight 1

Q5 = ({(Γ(r14),2)},E
∼t,∼t ,{∼t,∼t}) with weight 2

Table 1 shows which conflicts are involved in the different cliques

As all conflicts represented in a λ -clique (V ′,E ′) share a λ -extension λ , its weight ω indicates that

ω different conflicts can be solved by extending B(r) of each representative rule r in (Γ(r),w) ∈ V ′ by

lb.

To find sets of cliques such that every conflict in a program is considered, we introduce clique covers

for λ -graphs.

Definition 6 (Clique cover). Suppose a logic program P and a set Q⊆CLQ(ΓΓΓ) of λ -cliques in a graph

G(ΓΓΓ) = (V,E) are given. We say Q is a clique cover for G(ΓΓΓ) if every node in V appears in at least

one clique of Q. Moreover, Q is the minimal clique cover if there is no clique cover Q′ for G(ΓΓΓ) s. t.

|Q′|� |Q|.

A minimal clique cover for a graph G(ΓΓΓ), therefore, provides us with minimal compositions of

cliques where every conflict is considered. For this reason, our approach uses clique covers to determine

which conflicts can be solved by the same λ -extensions which in turn can be used to find a suitable order

in which conflicts and their solutions can be suggested to the user. Herewith, we arrive at the following

result which will be useful in the following.

Proposition 2. Given a program P with conflicts and a λ -clique ΓΓΓ ∈ CCG(P), a minimal clique cover

for G(ΓΓΓ) provides a minimal set of λ -extensions L = {lb | (V ′, lb) ∈ Q} that is required to obtain a

program without conflicts.
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Proof. Let ΓΓΓ ∈ CCG(P) be a λ -clique of a program P = (V,E) with conflicts, and Q ⊆ CLQ(ΓΓΓ) a

clique cover for G(ΓΓΓ). By Definition 4, V contains a node for each conflict group of a conflict group

cover ΓΓΓ. By Proposition 1, ΓΓΓ considers all conflicting rules of P . Thus, every conflict in P is implicitly

represented by at least one node in V . By Definition 5, a λ -clique (V ′,E lb, lb) in G(ΓΓΓ) condenses conflict

groups that share a common λ -extension lb, and by Definition 6, each node in V appears in at least one

clique of Q. Hence, Q implies a set of λ -extensions L = {lb | (V ′, lb) ∈Q} that are sufficient to resolve

all conflicts in P , by extending the body of representative rules in the conflict groups suitably. Likewise

if such a clique cover is minimal, ΓΓΓ implies the smallest set of solutions for P .

The notion of minimal cover is illustrated in the following example.

Example 9 (Example 7 contd.). The minimal clique cover in G(ΓΓΓex) is the set {Q1,Q2,Q3,Q4}. There-

fore, the four λ -extensions {c}, {∼ f}, {∼h}, and {∼k} suffice to obtain a program without conflicts.

Now we are ready to show how the results provide the crucial basis to define suitable orders over

conflicts and λ -extensions for their usage in conflict resolution frameworks.

5 Sorting conflicts and λ -extensions

In this section we show how λ -graphs and clique covers can be utilized to define strategies that compute

(1) an order over all conflict groups of a program, and (2) an order over the λ -solutions of each conflict

group. These orders can then be used to define in which sequence they should be presented to the knowl-

edge expert. The goal is to improve the efficiency of the interactive conflict resolution process with the

expert and to facilitate the resolution process overall by prioritizing those conflict groups whose solutions

can be used for other conflict groups and thereby solve the most amount of conflicts simultaneously. For

that reason in this section, we provide an example of such a strategy that makes use of the technical

notions introduced in the preceding sections.

We begin by introducing the notion of relationships: We say a λ -clique Q is related to another λ -

clique Q′ iff Q and Q′ share a common node. Moreover, we say that a conflict group Γ is part of a

λ -clique Q if the node that corresponds to Γ is in Q. With these conventions, we are now able to define

a strategy to sort conflicts and their λ -extensions such that the user can resolve all conflicts in a more

suitable way.

5.1 Order strategy

The goal of an order strategy is to establish an order in which the conflict groups are presented to

the user and to additionally obtain an order for each conflict group that specifies how the respective

λ -extensions are suggested. The primary objective is to assist the knowledge expert to efficiently find

the correct resolution for each conflict by preferring solutions that solve the most amount of conflicts

simultaneously.

Recall that a clique cover of G(ΓΓΓ) contains a set of conflict groups that considers all conflicts in

P and, by definition, also implicitly provides possible solutions for every conflict. The clique cover

furthermore specifies explicitly which rules of P will be modified. The following strategy will illustrate

how these properties can be used to obtain an order over conflict groups and λ -extensions.

The first step employs two sorting criteria in lexicographical order. First, a general order over the

conflict groups in ΓΓΓ is determined by viewing the number of edges of each node in G(ΓΓΓ) in order to prefer

conflict groups with less possible solutions. Conflicts with only one possible solution can hereby be dealt



124 Sorting Strategies for Interactive Conflict Resolution in ASP

Algorithm 1 Interactive conflict resolution

Input: Logic program P with conflicts

Output: Uniformly non-contraditory logic program P⋆

1: Let P⋆ = P .

2: while P⋆ has conflicts do

3: Choose a suitable conflict group cover ΓΓΓ ∈ CCG(P⋆).
4: Generate corresponding λ -graph G(ΓΓΓ).
5: Choose a suitable clique cover Q⊆ CLQ(ΓΓΓ).
6: Compute >ΓΓΓ : Sort conflict groups by the number of related λ -cliques in ascending order.

7: for Element e in >ΓΓΓ do

8: if e contains more than one conflict group then

9: Extend order >ΓΓΓ : sort conflict groups in e by their weight in descending order.

10: Sort conflict groups with the same weight in alphanumerical order.

11: end if

12: end for

13: for Element Γ(r) in >ΓΓΓ do

14: Compute ≻Γ(r): Sort λ -extensions of the representative of Γ(r) by their λ -clique’s weight.

15: for Element e in ≻Γ(r) do

16: if e contains multiple λ -extensions then

17: Extend ≻Γ(r): Sort λ -extensions in e in alphanumerical order.

18: end if

19: end for

20: end for

21: Present expert the conflict groups and the λ -extensions of the representatives in their respective

order.

22: if Expert chooses a λ -extension for a conflict group Γ(r) then

23: In P⋆, replace r by the corresponding λ -extended rule of r.

24: end if

25: end while

26: return P⋆

with first which can potentially reduce the complexity of subsequent conflict resolutions. However, since

many conflict groups can have the same amount of solutions, we refine this order in a subsequent action

by taking the corresponding clique weights into account.

The second step of the strategy determines an order over λ -extensions for each conflict group. Here

again, clique weights are utilized. Consequently, this strategy defines an order over conflict groups and

possible solutions where those groups with the least possible solutions are presented first and for each

conflict group those solutions are preferred that can be used to resolve related conflicts in parallel.

We now define these steps in more detail. Each step is explained by means of our running example.

Step 1a: In the first step, the conflict groups are ordered by the number of cliques they are part of.

The user is shown those conflict groups first that are related to the least amount of cliques. By this, the

knowledge expert is being presented with as few choices at a time as possible.

Example 10 (Example 9 contd.). The respective representatives of conflict groups Γ(r2), Γ(r8), Γ(r10),
and Γ(r11) each have only one possible λ -extension. The representatives of all remaining conflict groups
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have two. For G(ΓΓΓex), we thus get the preliminary order of conflict groups

Γ(r2),Γ(r8),Γ(r10),Γ(r11)>ΓΓΓ Γ(r4),Γ(r6),Γ(r13),Γ(r14)

that says that all conflict groups on the left side should be presented before those on the right.

It is easy to see that even in smaller programs, this kind of order can be too coarse-grained. To order

conflict groups that have the same amount of possible solutions, we propose the following subsequent

step.

Step 1b: To refine the order obtained in Step 1a, we use the weight of the cliques. As mentioned

before, the weight of a clique represents the amount of different conflict groups that can be solved by the

λ -extension that is represented by the label of the clique. Therefore, the conflict groups with the same

amount of solutions should additionally be arranged by the sum of weights of all cliques they are part

of in descending order. Thereby, we provide the knowledge expert with the opportunity to resolve as

many conflicts as possible as soon as possible. If there are conflict groups with the same total weight, we

simply arrange them in alphanumerical order.

Example 11 (Ex. 10 contd.). Conflict group Γ(r2) is only part of clique Q3 that has weight 2. Conflict

group Γ(r8) is only part of clique Q4 with weight 1. Conflict groups Γ(r10) and Γ(r11) are only part of

clique Q2 that has weight 5. For conflict group Γ(r4), which is both in Q2 and Q3, we get the total weight

of 7 as Q3 has weight 2 and Q2 has weight 5. Likewise for Γ(r6) and Γ(r13), we get a total weight of 9,

and for Γ(r14) a total weight of 6. This way, for G(ΓΓΓex) we obtain the following, more specific order:

Γ(r10)>ΓΓΓ Γ(r11)>ΓΓΓ Γ(r2)>ΓΓΓ Γ(r8)>ΓΓΓ Γ(r6)>ΓΓΓ Γ(r13)>ΓΓΓ Γ(r4)>ΓΓΓ Γ(r14)

Step 2: Step 1 provides us with a suitable order over conflict groups. As conflict groups can have

multiple λ -extensions (see Example 5), Step 2 defines how one can obtain an order ≻Γ over all λ -

extensions for the representative of each conflict group Γ. For that we will use the weight of their

respective cliques. That is, the λ -extensions for the representative in each group are ordered by the

weight of their respective clique in descending order. If for two extensions the clique weight is identical,

again, we sort them in alphanumerical order.

Example 12 (Ex. 11 contd.). The representative of conflict groups Γ(r2), Γ(r8), Γ(r10), and Γ(r11) each

have their own unique solution, viz., {c}, {∼k}, and {∼ f}. According to Step 2 for Γ(r6), {∼ f} should

be suggested first as its clique has weight 5, and, if the expert does not accept the first extension, {∼h}
whose clique has size 4 can be presented as an alternative. The same order also holds for Γ(r13) as the

possible λ -extensions of their representatives are identical. For Γ(r4), {∼ f} has also to be suggested

first, then the remaining solution {c}. Similarly, for Γ(r14), {∼h} has to be presented first and {∼t,∼t}
after that. As a result, for those conflict groups with multiple extensions, we gain the following orders:

{∼ f} ≻Γ(r4) {c}, {∼ f} ≻Γ(r6) {∼h}, {∼ f} ≻Γ(r13) {∼h}, {∼h} ≻Γ(r14) {∼t,∼t}

Keep in mind that since the expert can apply a λ -extension on conflicts of multiple conflict groups

simultaneously, some of the subsequent conflict groups and solutions can become obsolete. It is there-

fore necessary to recalculate the sorting of the remaining conflict groups and solutions once the expert

accepted a λ -extension to be applied as the input program changes, in other words, after each program

modification the remaining conflict groups have to be identified and the order over conflict groups and

λ -extensions have to be computed accordingly. The computation of λ -graphs and all its orders after each
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program modification is however expedient as it provides the means to implement the crucial function-

ality to postpone the resolution of certain conflicts as the orders of conflict groups and λ -extension are

only a recommendation based on the syntactical properties of the program.

Algorithm 1 summarizes the complete workflow. We recommend that in an actual implementation,

the choices stated in lines 3 and 5 should be made in interaction with the expert by presenting the conflicts

in an appropriate fashion as Example 6 shows that choosing the representatives of conflicts is a crucial

step and not straightforward especially if multiple rules of a conflict are eligible for modification by a

λ -extension. An explicit implementation should therefore provide the ability to revise the chosen conflict

groups and representatives if the final program is not deemed satisfactory.

To conclude this section, we illustrate the workings of this strategy by applying it on the running

example. This example will also propose possible ways to provide the knowledge expert with additional

information using the λ -graph and simulate a possible line of thought of the expert.

Example 13 (Example 12 contd.). Assume that a knowledge expert is assigned to resolve all conflicts in

Pex. According to the conflict group order obtained in Example 11, conflict group Γ(r10) is presented

first. As stated in Table 1, r10 only has the possible solution {∼ f}. The λ -graph of G(ΓΓΓex) shows that this

solution belongs to λ -clique Q5 (see Example 8) which states that the representatives of conflict groups

Γ(r4), Γ(r6), Γ(r11), and Γ(r13) all have {∼ f} as a possible solution. By showing these connections, the

knowledge expert can decide whether they want to apply the extension {∼ f} to to the representatives of

other conflict groups of Q5 as well. Suppose that the expert knows of a connection between the property

encoded in f and those encoded in y, w, and p. Regarding atom x and rules r3 and r4, the expert sees no

immediate connection.They therefore decide to apply the λ -extension ∼ f not only to r10, but also to r6,

r11, and r13. This action leaves the set ΓΓΓ′ = {Γ(r2),Γ(r4),Γ(r8),Γ(r14)} of unresolved conflict groups

with the resulting λ -graph G(ΓΓΓ′) = ({(Γ(r2),1), (Γ(r4),1), (Γ(r8),1), (Γ(r14),2)}, {(Γ(r2), Γ(r4),{c}),
(Γ(r8),Γ(r8),{∼k}), (Γ(r14),Γ(r14),{∼h}), (Γ(r14),Γ(r14),{∼t,∼t})} Note that since the conflicts of

Γ(r6) and Γ(r13) are resolved now, there is an additional self-loop (Γ(r14),Γ(r14),{∼h}) for Γ(r14).
This reduced λ -graph therefore leads to the following conflict group order

Γ(r2)>ΓΓΓ′ Γ(r4)>ΓΓΓ′ Γ(r8)>ΓΓΓ′ Γ(r14).

As before, along with Γ(r2), the expert is also presented with Γ(r4) as they both still build up λ -clique

Q3 and their representatives share the common λ -extension {c}. Let the knowledge expert apply {c}
to both representatives, thereby reflecting that {c} is a more suitable solution for resolving the conflict

in Γ(r4) than {∼ f}. This leaves the expert with the last conflict group cover ΓΓΓ′′ = {Γ(r8),Γ(r14)} and

the resulting λ -graph G(ΓΓΓ′′) = ({(Γ(r8),1), (Γ(r14),2)}, {(Γ(r8),Γ(r8),{∼k}), (Γ(r14),Γ(r14),{∼h}),
(Γ(r14),Γ(r14),{∼t,∼t})}. For Γ(r8), the expert chooses the only solution {∼k}. For the conflicts of

Γ(r14), the expert can lastly choose between {∼h} and {∼t,∼t} as λ -extensions. Originally, the order

over these extensions was {∼h} ≻Γ(r14) {∼t,∼t} (see Example 12) because λ -clique Q1 has a higher

weight than Q5. Now that all conflicts are resolved except for those of Γ(r14) and the weight of the λ -

clique regarding ∼h decreased from 4 to 2, the order between the two λ -extensions is determined by their

alphanumerical order. In this case, the alphanumerical order coincides with the original order. Thus, for

Γ(r14), the expert is first presented with λ -extension {∼h} which they immediately choose as the most

fitting solution. This concludes the conflict resolution process that outputs the following conflict-free

program:
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r1: a←b,∼c. r2: a←b,c. r3: x←d,e, f ,∼c. r4: x←d,e,c.

r5: y←g,h, f . r6: y←g,∼ f . r7: z← j,k,∼l. r8: z← j,∼l,∼k.

r9: w← f ,m,n. r10: w←m,∼ f . r11: w←n,∼ f . r12: p←o,h, f ,∼q.

r13: p←o,∼q,∼ f . r14: u←s,∼h. r15: u←s, t,h. r16: u←s, t,h.

Note that Example 13 illustrates just one of many possible ways how ordering strategies and λ -

graphs can be utilized for the implementation of interactive resolution of conflicts. For instance, instead

of completely omitting conflicts during the process once they are resolved, these conflicts can be shown

further on, only flagging them as resolved. This would provide the expert with additional information

that is otherwise removed once the cliques of resolved conflict groups are removed. Such a functionality

could also be extended by the possibility to revert previous modifications.

6 Related work

The method of conflict resolution is closely related to the topic of ASP debugging. There we find several

approaches that deal with the modification of logic programs [3, 6, 7]. These programs are not neces-

sarily inconsistent. They rather help the user knowledge expert to fix the mismatch between the current

program’s semantics and the semantics intended by the program’s modeller. In [2], the authors utilize the

notion of incoherence to implement the debugging of programs. All these approaches, however, require

the knowledge expert to provide further information in order to detect and resolve the faulty parts of the

program.

In [5], the authors present an approach to resolve inconsistency (by contradictions or incoherence)

by finding minimal sets of rules that are causing inconsistency. Similar to [9], it also presents a way

to compute possible solutions, which in this case are minimal correction sets of rules whose removal

guarantee that the reduced program is consistent. These minimal sets are identical to those found in the

presented approach if the inconsistency is caused by contradictory literals. Compared to that work, our

approach in this paper helps to preserve information by not removing those rules, but instead exploiting

dependencies and subtle differences in conflicting rules so that the knowledge expert is provided with

suitable information to sharpen the rules by extending them. In this way, (potential) conflicts are resolved

and actually help to make the knowledge expressed by the program more professionally adequate.

In this work, we provide an interactive solution strategy by suggesting an order over the problem

causes and an order over the possible solutions. Once suitable solutions are available, both, the ap-

proach using λ -extensions as well as debugging approaches like those based on the meta-programming

technique [3] can be used to obtain a consistent program.

7 Conclusion and future work

In practice, it is often imperative that a program (core) is usable with different instance data. For example,

in the medical sector, decision support systems are often required to be usable with different patient data.

Resolving conflicts in this manner ensures that program cores can be used in such real-world applications

in a safely manner w.r.t. consistency. This paper extends the work in [8, 9] that propose a framework

for obtaining uniformly non-contraditory logic programs by enabling knowledge experts to interactively

resolve conflicts. Since conflicting rules can have a large amount of possible solutions, methods are
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necessary that provide a proper order in which the conflicts of a program and their possible solutions

should be presented to the knowledge expert. This paper tackled this issue by providing the theoretical

groundwork to define such sorting methods. We furthermore provide an explicit strategy for sorting

conflicts and λ -extensions to illustrate the results. We have shown that the syntactical structure of answer

set programs suffices to acquire preferences over conflicts and their solutions as it provides the necessary

information to find relationships between conflicting rules and their λ -extensions.

Further investigations are needed to combine the syntax-based view to sort elements during the con-

flict resolution process with methods based on the (intended) semantics of the program. For this, proper

interaction with the user is needed to obtain the relevant information. In future work we want to extend

the approach of λ -extensions to consider other types of conflict groups as they are currently limited to

finding solution for a single rule that is in conflict with one or multiple other rules and, for example, not

the other way around (see rules r9-r11 in Example 1). Such results offer data to find more connections

between rules and solutions and ergo for even more precise sorting strategies. To illustrate the prac-

tical relevance and feasibility, we are currently working on an implementation of a conflict resolution

framework with the presented capabilities.
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Domain-specific heuristics are a crucial technique for the efficient solving of problems that are large

or computationally hard. Answer Set Programming (ASP) systems support declarative specifications

of domain-specific heuristics to improve solving performance. However, such heuristics must be

invented manually so far. Inventing domain-specific heuristics for answer-set programs requires ex-

pertise with the domain under consideration and familiarity with ASP syntax, semantics, and solving

technology. The process of inventing useful heuristics would highly profit from automatic support.

This paper presents a novel approach to the automatic learning of such heuristics. We use Inductive

Logic Programming (ILP) to learn declarative domain-specific heuristics from examples stemming

from (near-)optimal answer sets of small but representative problem instances. Our experimental re-

sults indicate that the learned heuristics can improve solving performance and solution quality when

solving larger, harder instances of the same problem.

1 Introduction

Answer Set Programming (ASP) [3, 12, 15, 22] is a declarative problem-solving approach applied suc-

cessfully in many industrial and scientific domains. For large and complex problems, however, domain-

specific heuristics may be needed to achieve satisfactory performance [7, 9].

Therefore, state-of-the-art ASP systems offer ways to integrate domain-specific heuristics in the

solving process. An extension for WASP [1] facilitates external procedural heuristics consulted at specific

points during the solving process via an API [7]. Declarative specifications of domain-specific heuristics

in the form of so-called heuristic directives are supported by CLINGO [11, 13, 14] and ALPHA [6, 25].

However, such heuristics must be invented manually so far. Human domain experts and ASP experts

are needed to invent suitable domain-specific heuristics. This paper presents a novel approach capable

of learning basic declarative heuristics automatically.

Our core idea is to use Inductive Logic Programming (ILP) to learn declarative domain-specific

heuristics from examples stemming from (near-)optimal answer sets of small but representative problem

instances. These heuristics can then be used to improve solving performance and solution quality for

larger, harder problem instances. Our experimental results are promising, indicating that this goal can be

achieved.

After covering preliminaries in Section 2, we present our main contribution in Section 3. Section 4

presents experimental results, and Section 5 describes related work. Section 6 concludes the paper by

giving an outlook on future work.

*This paper is a significant revision of a previous workshop paper [5]. Improvements include: Using FASTLAS instead

of ILASP; creating the mode bias in a systematic way; using multiple examples in the learning task; learning “soft” in addi-

tion to “hard” heuristics; experimentally comparing learned heuristics to CLINGO’s built-in heuristics as well as human-made

heuristics; updated related work.

http://dx.doi.org/10.4204/EPTCS.385.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Figure 1: Sample HRP instance (left) and one of its solutions (right) [6]

2 Preliminaries

In this section, we introduce a running example and cover preliminaries on domain-specific heuristics

in ASP and inductive learning in ASP. We assume familiarity with ASP and refer to [3, 12, 15, 22] for

detailed introductions.

2.1 Running Example: The House Reconfiguration Problem (HRP)

The House Reconfiguration Problem (HRP) [10] is an abstracted version of industrial (re)configuration

problems, e.g., rack configuration. A complete description is available from the ASP Challenge 2019,1

and an encoding is available in Anna Ryabokon’s PhD thesis [23].

Formally, HRP is defined as a modification of the House Configuration Problem (HCP) [6].

Definition 1 (HCP). The input for the House Configuration Problem (HCP) is given by four sets of con-

stants P, T , C, and R representing persons, things, cabinets, and rooms, respectively, and an ownership

relation PT ⊆ P×T between persons and things.

The task is to find an assignment of things to cabinets TC ⊆ T ×C and cabinets to rooms CR ⊆C×R

such that: (1) each thing is stored in a cabinet; (2) a cabinet contains at most five things; (3) every

cabinet is placed in a room; (4) a room contains at most four cabinets; and (5) a room may only contain

cabinets storing things of one person.

Definition 2 (HRP). The input for the House Reconfiguration Problem (HRP) is given by an HCP in-

stance H = 〈P,T,C,R,PT〉, a legacy configuration 〈TC′
,CR′〉, and a set of things T ′ ⊆ T that are defined

as “long” (all other things are “short”).

The task is then to find an assignment of things to cabinets TC ⊆ T ×C and cabinets to rooms

CR ⊆C×R, that satisfies all requirements of HCP as well as the following ones: (1) a cabinet is either

small or high; (2) a long thing can only be put into a high cabinet; (3) a small cabinet occupies 1 and a

high cabinet 2 of 4 slots available in a room; (4) all legacy cabinets are small.

The sample HRP instance shown in Fig. 1 comprises two cabinets, two rooms, five things belonging

to person p1, and one thing belonging to person p2. A legacy configuration is empty, and all things are

small. In a solution, the first person’s things are placed in cabinet c1 in the first room, and the thing

of the second person is in cabinet c2 in the second room. For this sample instance, a solution of HRP

corresponds to a solution of HCP [6].

Instances use the following predicates: cabinetDomainNew/1 and roomDomainNew/1 define po-

tential cabinet and potential rooms; thingLong/1 defines which things are long; and legacyConfig/1

defines all the other data in the legacy configuration, e.g., legacyConfig(personTOthing(p1,t1))

1https://sites.google.com/view/aspcomp2019/problem-domains

https://sites.google.com/view/aspcomp2019/problem-domains
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defines that person p1 owns thing t1, and legacyConfig(roomTOcabinet(r1,c1)) specifies one

tuple in the legacy assignment of cabinets to rooms.

For the present work, unique predicates have been used instead of predicates with function terms,

e.g., legacyConfig personTOthing(p1,t1) instead of legacyConfig(personTOthing(p1,t1)).

The main two choice rules guessing the assignment of things to cabinets and the assignment of

cabinets to rooms look as follows:

{ cabinetTOthing(C,T) } :- cabinetDomain(C), thing(T).

{ roomTOcabinet(R,C) } :- roomDomain(R), cabinet(C).

To define the domains of cabinets and rooms as the union of existing objects and newly available

identifiers, the encoding also contains the following rules:

cabinetDomain(C) :- cabinetDomainNew(C).

cabinetDomain(C) :- legacyConfig_cabinet(C).

roomDomain(R) :- roomDomainNew(R).

roomDomain(R) :- legacyConfig_room(R).

Instances may optionally include atoms of various predicates to define costs for specific actions such

as placing a thing in a cabinet, placing a cabinet in a room, reusing an existing placement of a thing in a

cabinet, reusing an existing placement of a cabinet in a room, removing a thing from a cabinet, removing

a cabinet from a room, etc. These costs are then determined based on the difference between solution

〈TC,CR〉 and legacy configuration 〈TC′
,CR′〉. A weak constraint in the encoding instructs the solver to

minimise the costs.

Each available instance belongs to one of four instance classes [10, 23]: Empty (“ec”, empty legacy

configuration); long (“lt”, some things are long); new room (“nr”, some cabinets have to be reallocated

to new rooms); and swap (“ss”, only one person and a specific pattern of legacy configuration).

2.2 Domain-Specific Heuristics in ASP

To solve large instances of industrial problems, employing an ASP solver out-of-the-box may not be

sufficient. Sophisticated encodings or solver tuning methods (such as portfolio solving) are common

ways to deal with this issue.

Domain-specific heuristics are another way to speed-up answer set solving. They were even needed

to achieve breakthroughs in solving industrial configuration problems with ASP [7].

Several approaches have been proposed to embed heuristic knowledge into the ASP solving process.

HWASP [7] extends WASP [1] by facilitating external procedural heuristics consulted at specific points

during the solving process via an API.

A declarative approach to formulating domain-specific heuristics in ASP is provided by CLINGO,2

supporting #heuristic directives [11, 14]. Heuristic directives enable the declarative specification of

weights determining atom and sign orders in a solver’s internal decision heuristics. An atom’s weight

influences the order in which atoms are considered by the solver when making a decision. A sign modifier

instructs whether the selected atom must be assigned true or false. Atoms with a higher weight are

assigned a value before atoms with a lower weight.

In the syntax for (non-ground) heuristic directives in CLINGO (1), ha is an atom, hB is a conjunction

of literals representing the heuristic body, and w, p, and m are terms [11].

#heuristic ha : hB. [w@p,m] (1)

2https://potassco.org/clingo/

https://potassco.org/clingo/
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The optional term p gives a preference between heuristic values for the same atom (preferring those with

higher p). The term m specifies the type of heuristic information and can take the following values: sign,

level, true, false, init and factor. For instance, heuristics for m=init and m=factor allow

modifying initial and actual atom scores evaluated by the solver’s decision heuristics (e.g., VSIDS). The

m=sign modifier forces the decision heuristics to assign an atom ha a specific sign, i.e., true or false,

and m=level allows for the definition of an order in which the atoms are assigned—the larger the value

of w, the earlier an atom must be assigned. Finally, m=true specifies that a should be assigned true with

weight w if hB is satisfied, and m=false is the analogue heuristics that assigns a false.

A new approach implemented in the lazy-grounding ASP system ALPHA,3 based on the CLINGO

approach, has introduced novel semantics for heuristic directives aimed at non-monotonic heuristics [6].

2.3 Inductive Learning in ASP

Inductive Logic Programming (ILP) is an approach to learning a program that explains a set of examples

given some background knowledge. FASTLAS4 [19, 21] is a system capable of learning Answer Set

Programs.5

FASTLAS operates on a learning task, which consists of three components [19,21]: The background

knowledge B (an ASP program already known before learning), the mode bias M (that expresses which

ASP programs can be learned), and the examples E (which specify properties the learned program must

satisfy). When the properties specified by a particular example in E are satisfied, the example is said to

be covered.

FASTLAS finds a program (often called a hypothesis) H such that B ∪ H covers every example

in E (or, if the examples are considered noisy, such that the total penalty of non-covered examples is

minimised) [21]. H is an element of the search space defined by M.

The syntax used to define learning tasks for FASTLAS follows the one used by ILASP (cf. [16, 20]).

2.3.1 Mode Bias

The mode bias consists of a set of mode declarations of types #modeh and #modeb, specifying what

the heads and bodies of learned rules may look like, respectively. A placeholder is a term var(t) or

const(t) for some constant term t. Such placeholders can be replaced by any variable or constant

(respectively) of type t [21].

As a simple example, Listing 1 shows part of the mode bias for a learning task for the HRP.

Listing 1: Part of the mode bias for HRP

1 #modeh( cabinetTOthing(var(cabinetDomain),var(thing))).

2 #modeb(cabinetDomain(var(cabinetDomain))).

3 #modeb(thing(var(thing))).

The first mode declaration specifies that the binary predicate cabinetTOthing can be used in the head

of rules and that its terms are of variable types cabinetDomain and thing (in this order). The other two

mode declarations specify which predicates can occur in the bodies of learned rules. Note that the same

terms may be used in learned rules wherever the same placeholders are used.

3https://github.com/alpha-asp/Alpha
4https://spike-imperial.github.io/FastLAS/
5FASTLAS is not the only ILP system in the ASP setting. It was chosen for this work because of its speed and recency.

ILASP [20], on the other hand, has successfully been used in a previous version of the paper [5].

https://github.com/alpha-asp/Alpha
https://spike-imperial.github.io/FastLAS/
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Thus, the rule space defined by the mode bias given in Listing 1 consists of the following rule:

cabinetTOthing(V0,V1) :- cabinetDomain(V0), thing(V1).

FASTLAS (contrary to ILASP [18, 20]) uses strict types, which need to be defined [19]. Thus, the rules

in Listing 2 are needed in the background knowledge to make the mode bias from Listing 1 work.

Listing 2: Definition of some strict types for HRP

1 cabinetDomain(C) :- cabinetDomainNew(C).

2 cabinetDomain(C) :- legacyConfig_cabinet(C).

3 thing(T) :- thingLong(T).

4 thing(T) :- thingShort(T).

5 thing(T) :- legacyConfig_thing(T).

2.3.2 Examples

A positive example is given by a #pos statement, and a negative example by a #neg statement [16, 20].

Each example consists of several components:6 an optional example identifier, a set of ground atoms

called inclusions, a set of ground atoms called exclusions, and an optional set of rules (usually just facts)

called context.

A positive example is covered iff there exists at least one answer set for B∪H that contains all of the

inclusions and none of the exclusions. A negative example states that there must not exist an answer set

that contains all of its inclusions and none of its exclusions [16, 20].

The context is the problem instance to which the inclusions and exclusions refer (considering the

usual distinction between unvarying problem encoding and problem instances specified by facts) [16,20].

Listing 3 shows a simplified example for HRP stating that cabinetTOthing(1,2) shall be true for

the problem instance in which cabinetDomainNew(1) and thing(2) are true. The identifier of this

example is ex1.

Listing 3: A simplified example in a learning task for HRP

1 #pos(ex1 ,

2 { cabinetTOthing(1,2) }, % inclusions

3 { }, % exclusions

4 { cabinetDomainNew(1). thing (2). } % context

5 ).

3 Inductive Learning of Domain-Specific Heuristics

This section presents the main contribution of this paper—our approach to the inductive learning of

domain-specific heuristics for ASP.

The basic idea is to solve one or more small but representative instances of a problem, use the result-

ing answer sets as positive examples for inductive learning, learn a set of definite rules, and transform the

learned rules into declarative heuristic directives in the form of Eq. (1) presented in Section 2.2. These

heuristics can then be used to speed up solving larger/harder instances of the same problem.

The learning task for FASTLAS is defined in our approach in the way described in the following

paragraphs.

6Currently, we do not use penalties.
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Head mode declarations. Predicates that appear in the problem encoding in the heads of choice ele-

ments in the heads of choice rules7 are used to create #modeh declarations. The placeholders are created

in the following way:

• If the rule body and the choice condition together are (indirectly via rules) completely determined

by the problem instance, use the body/condition predicate name as a strict type name and include

the defining rules in the background knowledge. For example, from the choice rule in line 1 in

Listing 4, the mode bias in line 2 in Listing 5 along with the background knowledge in lines 11–12

in Listing 5 is created.

• If the head predicate depends on another predicate that is used as a #modeh predicate itself, use

the underlying strict type. Example: Line 2 in Listing 4, lines 3–4 in Listing 5.

• To define placeholders for non-unary predicates, define strict types for each argument in a deter-

ministic way, appending arg1 etc. to the predicate name, along with corresponding rules. Exam-

ple: Line 3 in Listing 4, lines 5–6 and 13–14 in Listing 5.

Body mode declarations. All other predicates appearing in the problem encoding are used to create

#modeb declarations. Placeholders are directly built from the predicate names for unary predicates, and

with suffixes such as arg1 etc. as above for non-unary predicates. As an example, cf. Listing 4 and lines

8–9 in Listing 5.

Background knowledge. The background knowledge consists only of rules needed to define strict

types as described above.

Examples. As positive examples for learning, answer sets for small but representative problem in-

stances are used (one answer set per problem instance, yielding one example per problem instance). In

case the underlying problem is an optimisation problem (like the HRP described in Section 2.1), we

propose to use (near-)optimal answer sets for this process. The (yet unproven) hypothesis is that learning

from better answer sets yields better heuristics.

We use context-dependent examples; the context is given by the problem instance. The set of inclu-

sions corresponds to the answer set filtered to cover only the predicates appearing in #modeh, and the set

of exclusions is empty.

3.1 Learning in the House Reconfiguration Problem

Let us re-consider the running example from Section 2.1, the House Reconfiguration Problem (HRP). As

representative problem instances, the smallest instance of each of the four instance classes was used. A

near-optimal8 answer set for each of these instances was computed by CLINGO [13].

We built a learning task from the full HRP encoding and the four representative instances as described

at the beginning of Section 3. The entire mode bias contains 16 #modeh declarations and 32 #modeb

declarations and is too large to be shown here. Listing 5 shows the parts of the learning task that are

created for the choice rules in Listing 4.

7More formally: The head of a choice rule contains a collection of choice elements, each of the form a : l1, . . . , lk [4]; the

predicates used for a are the ones that are used to create #modeh declarations.
8

CLINGO was used to find the best solution that could be found with human-made domain-specific heuristics within 10

minutes; for some instances, optimality could not be proven within several days of search.
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Listing 4: Some choice rules from the HRP encoding

1 { cabinet(C) } :- cabinetDomain(C).

2 1 = {cabinetHigh(C); cabinetSmall(C)} :- cabinet(C).

3 1 = {reuse_cabinetTOthing(C,T); delete_cabinetTOthing(C,T)} :-

legacyConfig_cabinetTOthing(C,T).

Listing 5: Part of the learning task for HRP

1 % HEAD MODE DECLARATIONS:

2 #modeh(cabinet(var(cabinetDomain))).

3 #modeh(cabinetHigh(var(cabinetDomain))).

4 #modeh(cabinetSmall(var(cabinetDomain))).

5 #modeh( reuse_cabinetTOthing(var(legacyConfig_cabinetTOthing_arg1 ),

var(legacyConfig_cabinetTOthing_arg2 ))).

6 #modeh( delete_cabinetTOthing(var( legacyConfig_cabinetTOthing_arg1 ),

var(legacyConfig_cabinetTOthing_arg2 ))).

7 % BODY MODE DECLARATIONS:

8 #modeb(cabinetDomain(var(cabinetDomain))).

9 #modeb( legacyConfig_cabinetTOthing(var( legacyConfig_cabinetTOthing_arg1 ),

var(legacyConfig_cabinetTOthing_arg2 ))).

10 % BACKGROUND KNOWLEDGE:

11 cabinetDomain(C) :- cabinetDomainNew(C).

12 cabinetDomain(C) :- legacyConfig_cabinet(C).

13 legacyConfig_cabinetTOthing_arg1 (C) :- legacyConfig_cabinetTOthing (C,T).

14 legacyConfig_cabinetTOthing_arg2 (T) :- legacyConfig_cabinetTOthing (C,T).

Results. The following rules form the hypothesis learned by FASTLAS:9

cabinet(V0) :- cabinetDomain(V0).

cabinetHigh(V0) :- cabinetDomain(V0).

cabinetSmall(V0) :- cabinetDomain(V0).

room(V0) :- roomDomain(V0).

roomTOcabinet(V0,V1) :- roomDomain(V0), cabinetDomain(V1).

cabinetTOthing(V0 ,V1) :- cabinetDomain(V0), thing(V1).

reuse_room(V0) :- legacyConfig_room(V0).

reuse_cabinet(V0) :- legacyConfig_cabinet(V0).

reuse_personTOroom(V0 ,V1) :- legacyConfig_personTOroom(V0 ,V1).

reuse_roomTOcabinet(V0,V1) :- legacyConfig_roomTOcabinet(V0,V1).

delete_roomTOcabinet(V0 ,V1) :- legacyConfig_roomTOcabinet(V0,V1).

reuse_cabinetTOthing(V0 ,V1) :- legacyConfig_cabinetTOthing (V0,V1).

delete_cabinetTOthing(V0 ,V1) :- legacyConfig_cabinetTOthing (V0,V1).

FASTLAS needed approximately 3 minutes to come up with this result on the author’s personal computer.

As a next step, we transformed these rules to heuristics in the form of Eq. (1) by using the head

of each rule as ha and the body as hB. Syntactically, this replaces :- with : in each rule and adds an

appropriate annotation at the end of each resulting heuristic directive. The learned heuristics instruct the

solver to choose the heads of most–but not all–choice rules.

9FASTLAS was called with parameter --force-safety to enforce learned rules to be save also without artificially added

strict type atoms, and those atoms have been stripped from the learned rules in postprocessing where they were redundant. With

this learning task, it does not seem to make a difference whether FASTLAS is called with --opl or --nopl. Rules have been

re-ordered manually to improve readability.
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For the annotation, we tried two approaches. The first annotation used for all heuristic directives is

[1,true]. The idea is to instruct the solver to make the heads of the heuristics true, since the positive

examples consist of atoms that are true in answer sets. And since we don’t have any information on

prioritising the heuristics at this point, all get the same weight 1.

The second approach uses the annotation [2,factor]. By this, the solver will multiply the atom

scores of its domain-independent heuristics by the factor 2 for the atoms indicated by the heuristic direc-

tives. The idea here is to gently steer the solver into the right direction without enforcing any decisions.

4 Experimental Results

To test the effects of the learned heuristics, we used CLINGO version 5.6.2 to solve all available HRP

instances (94 in number) with and without the learned heuristics. Additionally, other (built-in and human-

made) heuristics were used in the experiments for comparison. The HRP instances stem from previous

experiments [6]. These instances were generated in the pattern of the original instances [10]. This

pattern represents four different reconfiguration scenarios encountered in practice, and the instances are

abstracted real-world instances. Our instances are considerably larger than the original ones, though

(ranging up to 800 things, while the original instances used at most 280 things).

Each of the machines used to run the experiments ran Ubuntu 22.04.2 LTS Linux and was equipped

with two Intel® Xeon® E5-2650 v4 @ 2.20GHz CPUs with 12 cores. Hyperthreading was disabled and

the maximum CPU frequency was set to 2.90GHz. Scheduling of benchmarks was done with Slurm10

version 21.08.5. Runsolver11 v3.4.1 was used to limit time consumption to 10 minutes per instance and

memory to 20 GiB. Care was taken to avoid side effects between CPUs, e.g., by requesting exclusive

access to an entire machine for each benchmark from Slurm.

CLINGO was instructed to search for the optimal answer set in its default configuration, given an

encoding including a weak constraint. After 10 minutes per instance, search was aborted and the opti-

misation value of the best solution found so far was recorded. The solver was used in the following five

configurations:

plain: the plain encoding without any domain-specific heuristics

learned (hard): the learned heuristics with annotation [1,true], i.e., first assigning true on all atoms

determined by the learned heuristics

learned (soft): the learned heuristics with annotation [2,factor], i.e., modifying the atom scores of

the solver-internal heuristics by the factor 2 for all atoms determined by the learned heuristics

built-in: CLINGO’s built-in heuristics --dom-mod=false,opt, i.e., preferring atoms being optimised

human-made: the human-made heuristics introduced by Comploi-Taupe et al. [6].

Table 1 shows the achieved optimisation values and the relative improvement when using the learned

heuristics for all 30 instances that could be solved in any solver configuration. For the other 64 instances,

no answer set could be found in any configuration; therefore, they are not included in the table.

The first column shows the instance identifier. The first two characters of each identifier refer to one

of the four instance classes of the HRP (cf. Section 2.1). The numeric part of the identifier increases with

increasing instance size.

10https://slurm.schedmd.com/
11https://github.com/utpalbora/runsolver

https://slurm.schedmd.com/
https://github.com/utpalbora/runsolver
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Table 1: Experimental results: Achieved optimisation values without and with various heuristics, and

relative improvement (positive percentage, boldface) or deterioration (negative percentage, italics)

Instance plain learned (hard) learned (soft) built-in human-made

ec-0001 100 125 (-25%) 100 (0%) ∞ (−∞) 100 (0%)

ec-0002 125 195 (-56%) 125 (0%) ∞ (−∞) 125 (0%)

ec-0003 155 230 (-48%) 150 (3%) ∞ (−∞) 150 (3%)

ec-0004 180 290 (-61%) 175 (3%) ∞ (−∞) 175 (3%)

ec-0005 230 335 (-46%) 200 (13%) ∞ (−∞) 200 (13%)

ec-0006 270 675 (-150%) 225 (17%) ∞ (−∞) 225 (17%)

ec-0007 310 550 (-77%) 250 (19%) ∞ (−∞) 250 (19%)

ec-0008 350 1220 (-249%) 275 (21%) ∞ (−∞) 275 (21%)

ec-0009 385 1250 (-225%) 505 (-31%) ∞ (−∞) 300 (22%)

ec-0010 1045 1585 (-52%) 1045 (0%) ∞ (−∞) 325 (69%)

ec-0011 1340 1750 (-31%) 1325 (1%) ∞ (−∞) 350 (74%)

lt-0001 337 980 (-191%) 460 (-36%) ∞ (−∞) 192 (43%)

lt-0002 1347 1138 (16%) 1330 (1%) ∞ (−∞) 224 (83%)

lt-0003 1589 1302 (18%) 1527 (4%) ∞ (−∞) 256 (84%)

lt-0004 1848 ∞ (−∞) 1798 (3%) ∞ (−∞) 288 (84%)

lt-0005 2103 ∞ (−∞) 1979 (6%) ∞ (−∞) 320 (85%)

lt-0006 2382 ∞ (−∞) 2357 (1%) ∞ (−∞) 352 (85%)

nr-0001 1297 1064 (18%) 1283 (1%) ∞ (−∞) 256 (80%)

nr-0002 1124 1194 (-6%) 1403 (-25%) ∞ (−∞) 288 (74%)

nr-0003 1711 1324 (23%) 1550 (9%) ∞ (−∞) 320 (81%)

nr-0004 1023 ∞ (−∞) 1739 (-70%) ∞ (−∞) 352 (66%)

nr-0005 2008 ∞ (−∞) 1870 (7%) ∞ (−∞) 384 (81%)

nr-0006 ∞ ∞ 2173 (100%) ∞ 416 (100%)

nr-0007 ∞ ∞ ∞ ∞ 448 (100%)

ss-0001 46 176 (-283%) 4 (91%) 4 (91%) 4 (91%)

ss-0002 209 207 (1%) 8 (96%) 4 (98%) 4 (98%)

ss-0003 726 242 (67%) 843 (-16%) 4 (99%) 4 (99%)

ss-0004 1580 707 (55%) 1649 (-4%) 4 (100%) 4 (100%)

ss-0005 1785 840 (53%) 1655 (7%) 4 (100%) 4 (100%)

ss-0006 2313 1272 (45%) 2124 (8%) 4 (100%) 4 (100%)
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The second column contains the achieved optimisation values in the “plain” solver configuration,

i.e., without domain-specific heuristics. The remaining columns contain the achieved optimisation values

using the other solver configurations (“learned (hard)”, “learned (soft)”, “built-in”, and “human-made”).

In all columns, the symbol ∞ is used instead of an optimisation value when no answer set could be found

within the time limit of 10 minutes.

The columns for non-plain solver configurations additionally show, within parentheses, the respec-

tive change in the optimisation value when using heuristics relative to solving without domain-specific

heuristics. A positive percentage signifies an improvement (printed in boldface), and negative values

indicate a deterioration (printed in italics). The value 100% is used in cases where an answer set could

be found only when using one of the heuristics and the value −∞ is used when an answer set could be

found only without heuristics.

The learned heuristics seem to have positive effects even though they are (still) straightforward. Pos-

itive effects could be seen especially when the heuristics were applied in a “soft” way, weighting but not

replacing the domain-independent search heuristics, leading to improved solution quality in 20 cases and

to a deterioration in 6 cases. However, improvements varied strongly between different instances. Fur-

thermore, results are sensitive to the chosen time-out. For example, we observed stronger improvements

(on fewer solved instances) when experimenting with a time-out of three minutes instead of ten.

Surprisingly, the solver benefited only rarely from learned “hard” heuristics as well as the built-in

heuristics preferring atoms being optimised. Human-made heuristics still outperformed learned heuris-

tics by a great degree, which could show untapped potential for our approach.

Besides our experiments with CLINGO, we also experimented with the lazy-grounding ASP system

ALPHA [25]. This system accepts heuristic directives in a slightly different syntax [6]. Without domain-

specific heuristics, ALPHA could solve none of the HRP instances under consideration. The heuristics

learned by our approach enabled ALPHA to solve three instances (without optimisation, which is not yet

supported by ALPHA). Human-made heuristics (cf. [6]) enabled ALPHA to solve 58 of these instances

on the same benchmarking infrastructure.

5 Related Work

Balduccini [2] has also presented an approach to learning domain-specific heuristics offline from repre-

sentative instances. The basic idea, which is very different to our approach, is to record which choices

are made in the path of a search tree that led to a solution and to use this information to compute prob-

abilities for decisions on ground atoms. These probabilities are then used while solving other problem

instances to reduce the likelihood of backtracks. The approach is restricted to DPLL-style solvers like

SMODELS [24], and extending it to CDCL-based systems like CLINGO is mentioned as future work.

A similar approach is aimed at configuration problems encoded as constraint satisfaction problems

(CSPs) [17].

Dodaro et al. [8] use deep learning to learn domain-specific heuristics for the graph colouring prob-

lem to be used by the solver WASP. As usual with deep learning, this approach requires huge numbers

of training instances (in reported experiments, 210,000 instances were used for training, 60% of which

have been randomly chosen to build the training set). The approach, including the integration in WASP’s

solving algorithm, is specific to the graph colouring problem. In contrast to the work presented in this pa-

per, learned heuristics apply to ground ASP and don’t offer a concise, declarative representation readable

by humans.
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6 Conclusions and Future Work

We have proposed a novel approach to inductively learning declarative specifications of domain-specific

heuristics for ASP from answer sets of small but representative instances. Our approach employs the

inductive learning system FASTLAS. Utilising an example representing a significant real-world config-

uration problem, we have demonstrated that simple heuristics can easily be learned.

Experimental results are promising, since the learned heuristics led to improved solution quality in

many cases. The fact that so far, we have only learned very simple heuristics and those already led to

significant improvements is encouraging. Future work will show whether our method can be extended to

learn more complex heuristics that can improve solving performance and solution quality even further.
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Driven by expressiveness commonalities of Python and our Python-based embedded logic-based
language Natlog, we design high-level interaction patterns between equivalent language constructs
and data types on the two sides.

By directly connecting generators and backtracking, nested tuples and terms, coroutines and first-
class logic engines, reflection and meta-interpretation, we enable logic-based language constructs to
access the full power of the Python ecosystem.

We show the effectiveness of our design via Natlog apps working as orchestrators for JAX and
Pytorch pipelines and as DCG-driven GPT3 and DALL.E prompt generators.

Keyphrases: embedding of logic programming in the Python ecosystem, high-level inter-paradigm
data exchanges, coroutining with logic engines, logic-based neuro-symbolic computing, logic gram-
mars as prompt-generators for Large Language Models, logic-based neural network configuration
and training.

1 Introduction

Turing-complete programming languages win users based on how easily one can make computers do
things, for which we will use here expressiveness as an umbrella concept. Declarative programming has
been seen over the years as an expressiveness enhancer, assuming that telling what rather than how to
do things makes it easier to achieve a desired outcome. With this view of declarative programming in
mind, besides competition from today’s functional programming languages and proof assistants, all with
strong declarative claims, logic-based languages face an even stiffer competition from the more radical
approach coming from deep learning.

To state it simply, this manifests as replacement of rule-based, symbolic encoding of intelligent be-
haviors via machine learning, including unsupervised learning among which transformers [11] trained
on large language models have achieved outstanding performance in fields ranging from natural lan-
guage processing to computational chemistry and image processing. For instance, results in natural
language processing with prompt-driven generative models like GPT3 [2] or prompt-to-image genera-
tors like DALL.E [5] or Stable Diffusion [12] have outclassed similarly directed symbolic efforts. In fact,
it is quite hard to claim that a conventional programming language (including a logic-based one) is as
declarative as entering a short prompt sentence describing a picture and getting it back in a few seconds.

Thus it is becoming clearer as time goes by, that ownership of the declarative umbrella is slowly
transitioning to deep neural networks-based machine learning tools that replace human coding (including
that done in declarative languages) with models directly extracted from labeled and more and more often
from raw, unlabeled data.

This forces us to question, as lucidly as possible, what contribution logic-based reasoning and more
concretely logic-based language design can bring to this fast evolving ecosystem, and what language
features are needed to enable them.

http://dx.doi.org/10.4204/EPTCS.385.15
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Language features facilitating interoperation of a logic-based language with the Python deep-
learning ecosystem

Rather than fighting it, we will explore in this paper several ways to join and enhance this strongly disrup-
tive ecosystem. Toward this end, we will design logic-based language features that will not only facilitate
embedding of logic-based reasoning in the Python but also simplify, syntactically and semantically the
interaction with the deep learning tools that make the ecosystem itself appealing.

While aware that more accurate (but also more intricate) solutions might come out in the near future
as part of emerging neuro-symbolic computing research1 we will apply our findings to two mechanisms
of interoperation with deep learning tools, of practical interest today, where the embedding of a logic
programming language in the ecosystem brings a fresh approach.

Logic languages as orchestrators for deep learning architectures

Let’s start by observing that the actual code base enabling most of today’s deep learning systems is a
convoluted, ungeneralizable mix of unstructured scripting, low level GPU-acceleration and linear-algebra
libraries.

This suggests that there’s plenty of room to enhance and clarify the design and implementation of
the networks themselves in the declarative frameworks logic-based programming languages provide. To
facilitate interoperation with the ecosystem of logic-based orchestrators for deep-learning tools, we will
design a component composition framework implemented in a lightweight logic language embedded in
Python.

Logic languages as prompt-generators and Large Language Model interaction refiners

The emergence of Large Language Models like GPT3 and their refinements like ChatGPT and text-
to-image variants like DALL.E exhibits a strong dependency on an essentially declarative component:
prompt engineering. Prompt engineering can be seen as a goal-driven language generation, a logically
specifiable endeavor for which we will show that logic grammars are a natural match.

To make our research goals and related language design proposals experimentally testable, we have
embedded in Python a lightweight Prolog-like language, Natlog. We refer to [9] for a description, in an
early, proof-of-concept version, of its concrete syntactic and semantic features, while we will focus here
on advanced use cases based on a fresh “from-scratch” reimplementation.

The paper is organized as follows. Section 2 introduces and motivates the key design ideas behind the
Natlog embedded logic-based language, in particular Natlog’s coroutining mechanisms using First-Class
Logic Engines. Section 3 shows uses of Natlog scripts as orchestrators for designing, training and testing
deep-learning systems in the JAX and Pytorch ecosystems. Section 4 discusses the use Natlog’s logic
grammars as prompt generators for text-to-text and text-to-image large language model neural networks.
Section 5 discusses related work and section 6 concludes the paper.

Caveat emptor: As the paper is about interoperation of language constructs between Python and
a Prolog-like logic programming language implemented in it, we assume that the reader is fluent in
Prolog and Python. We also assume exposure to essential language constructs of today’s very high-level
programming languages as well as familiarity with deep learning frameworks and some key design and
implementation decisions behind them.

1a fast evolving research field, thoroughly overviewed in [6]
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2 Key Design Ideas behind Natlog, a Lightweight Prolog-dialect Embed-
ded in Python

Our Natlog system has been originally introduced in [9], to which we refer to for syntax, semantics and
low level implementation details. It is currently evolving as a fresh implementation2, and it will be used
as a testbed for the key ideas of this paper.

2.1 Prolog’s semantics, but with a lighter syntax

While keeping Natlog’s semantics the same as Prolog’s LD-resolution, we have brought its syntax a step
closer to natural language. In particular, we are not requiring predicate symbols to wrap parenthesized
arguments or predicate symbols to be constants. As a quick glimpse at its syntactic simplifications, here
is a short extract from the usual “family” program in Natlog syntax.

sibling of X S: parent of X P, parent of S P, distinct S X.

grand parent of X GP: parent of X P, parent of P GP.

ancestor of X A : parent of X P, parent or ancestor P A.

parent or ancestor P P.

parent or ancestor P A : ancestor of P A.

2.2 A Quick Tour of Natlog’s “Expressiveness Lifters”

Expressiveness is the relevant distinguishing factor between Turing-complete languages. It can be seen
as a pillar of code development automation as clear and compact notation entails that more is delegated
to the machine. At the same time, expressiveness enhancers need to be kept as simple as possible, with
their users experience in mind.

2.2.1 A finite function API

Finite functions (tuples, lists, dictionaries, sets) are instrumental in getting things done with focus on the
problem to solve rather than its representation in the language.

In Natlog they are directly borrowed from Python. They can be easily emulated in any Prolog system,
but often with a different complexity than if they were natively implemented.

In an immutable form, as well as enabled with backtrackable and non-backtrackable updates, finite
functions implemented as dynamic arrays and hash-maps offer a more flexible and semantically simpler
alternative to reliance on Prolog’s assert and retract family of built-ins.

2.2.2 Built-ins as functions or generators

Reversible code like in Prolog’s classic append/3 examples or the use of DCGs in both parsing and
generation are nice and unique language features derived from the underlying LD-resolution semantics,
but trying to lend reversibility and multi-mode uses to built-ins obscures code and hinders debugging.

2at https://github.com/ptarau/natlog, ready to install with “pip3 install natlog”

https://github.com/ptarau/natlog
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Keeping Natlog’s built-ins uniform and predictable, while not giving up on flexibility, can be achieved
by restricting them to:

• functions with no meaningful return like print, denoted in Natlog by prefixing their Python calls
with “#”.

• functions of N inputs returning a single output as the last argument of the corresponding predicate
with N + 1 arguments, denoted in Natlog by prefixing their calls with a backquote symbol “‘”.
Note that this syntax, more generally, also covers Python’s callables and in particular class objects
acting as instance constructors.

• generators with N inputs yielding a series of output values on backtracking by binding the N +1-
th argument of the corresponding predicate, denoted in Natlog by prefixing their call with two
backquotes “ ‘‘”.

2.2.3 Interoperation with Python, as seen from a few Natlog library predicates

Interaction with Python’s finite functions happens via function and generator calls. For instance, the
predicate argx implements backtracking over all elements of a tuple or list by relaying on the Python
generator range that iterates over all index positions from where arg picks an item to be unified with
variable X.

argx I T X: `len T L, ``range 0 L I, `arg T I X.

Given Natlog’s expected practical uses as a Python package, even when inside Natlog’s REPL, answers
are shown as the corresponding Python objects, given the one-to-one correspondence between terms and
nested tuples and between variable binding and dictionaries. Note also that constructors like dict (and
any other Python callables) are usable directly with the same syntax as function calls.

?- `dict ((one 1) (two 2) (three 3)) D?

ANSWER: {'D': {'one': 1, 'two': 2, 'three': 3}}

?- eq (a b c) T, argx I T X?

ANSWER: {'T': ('a', 'b', 'c'), 'I': 0, 'X': 'a'}

ANSWER: {'T': ('a', 'b', 'c'), 'I': 1, 'X': 'b'}

ANSWER: {'T': ('a', 'b', 'c'), 'I': 2, 'X': 'c'}

Natlog uses cons-lists like (1 (2 (3 ()))) for the usual, unification-based list operations. A few
built-in predicates support their conversion to/from Python tuples or lists:

to_tuple Xs T : `from_cons_list_as_tuple Xs T.

to_cons_list T Xs : `to_cons_list T Xs.

2.2.4 Reflecting metaprogramming constructs

In function and generator calls, Python’s eval is used to map the Natlog name of a function or generator
to its Python definition. However, to conveniently access object and class attributes, Natlog implements
setprop and getprop relying directly on corresponding Python built-ins.

setprop O K V : #setattr O K V.

getprop O K V : `getattr O K V.
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Similary, method calls are supported via the Python function meth_call as in the following stack ma-
nipulation API:

stack S : `list S. % note the use of the callable empty list constructor

push S X : #meth_call S append (X).

pop S X : `meth_call S pop () X.

In fact, a method call has a surprisingly succinct Python definition, a testimony that elegant metapro-
gramming constructs on the two sides make language interoperation unusually easy.

def meth_call(o, f, xs):

m = getattr(o, f)

return m(*xs)

As the reader familiar with Python will notice, a method “m” is simply an attribute of an object “o”,
directly callable once it has been retrieved from its name “f”.

These predicates are part of the Natlog library code in file lib.nat3 that can be included as part of
a Natlog script with help of the Python function lconsult4.

2.2.5 Reflecting the type system

As the following examples show, Python’s “type” built-in can be used to reflect and inspect Natlog’s
data-types.

?- `type (a b) T?

ANSWER: {'T': <class 'tuple'>}

?- `type a T1, `type b T2, eq T1 T2.

ANSWER: {'T1': <class 'str'>, 'T2': <class 'str'>}

?- `type X V, eq X a, `type X C?

ANSWER: {'X': 'a', 'V': <class 'natlog.unify.Var'>, 'C': <class 'str'>}

Note in the last example, that after unification, the type of a variable is dereferenced to the type of its
binding.

2.3 Natlog’s First Class Logic Engines

Constraint solvers bring to logic-based languages an automated coroutining mechanism when they sus-
pend computations until more data is available and propagate constraints to the inner loops of SLD-
derivations with impressive performance gains including on NP-complete problems. However this im-
plicit coroutining mechanism does not reflect control on backtracking and does not expose the interpreter
itself as a first-class object.

One can think about First Class Logic Engines as a way to ensure the full meta-level reflection of the
execution algorithm. As a result, they enable on-demand computations in an engine rather than the usual
eager execution mechanism of Prolog.

We will spend more time on them as we see them as “the path not taken” that can bring significant
expressiveness benefits to logic-based languages, similarly to the way Python’s yield primitive supports
creation of user-defined generators and other compositional asynchronous programming constructs.

3at https://github.com/ptarau/natlog/blob/main/natlog/natprogs/lib.nat
4in file https://github.com/ptarau/natlog/blob/main/natlog/natlog.py

https://github.com/ptarau/natlog/blob/main/natlog/natprogs/lib.nat
https://github.com/ptarau/natlog/blob/main/natlog/natlog.py
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2.3.1 A First-class Logic Engines API

To obtain the full reflection of Natlog’s multiple-answer generation mechanism, we will make fresh
instances of the interpreter first-class objects.

A logic engine is a Natlog language processor reflected through an API that allows its computations
to be controlled interactively from another logic engine.

This is very much the same thing as a programmer controlling Prolog’s interactive toplevel loop:
launch a new goal, ask for a new answer, interpret it, react to it. The exception is that it is not the
programmer, but it is the program that does it!

We will next summarize the execution mechanism of Natlog’s interoperating logic engines.
The predicate eng AnswerPattern Goal Engine works as follows:

• creates a new instance of the Natlog interpreter, uniquely identified by Engine

• shares code with the currently running program

• it is initialized with Goal as a starting point, but not started

• AnswerPattern ensures that answers returned by the engine will be instances of the pattern.

The predicate ask Engine AnswerInstance works as follows:

• tries to harvest the answer computed from Goal, as an instance of AnswerPattern

• if an answer is found, it is returned as (the AnswerInstance), otherwise the atom no is returned

• it is used to retrieve successive answers generated by an Engine, on demand

• it is responsible for actually triggering computations in the engine

One can see this as transforming Natlog’s backtracking over all answers into a deterministic stream
of lazily generated answers.

Finally, the predicate stop Engine works as follows:

• stops the Engine, reclaiming the resources it has used

• ensures that no is returned for all future queries

In Natlog these predicates are implemented as built-ins.

2.3.2 The coroutining Mechanism Implemented by the Engine API

Natlog’s yield operation: a key co-routining primitive The annotation “^Term” extends our corou-
tining mechanism by allowing answers to be yield from arbitrary places in the computation. It works as
follows:

• it saves the state of the engine and transfers control and a result Term to its client

• the client will receive a copy of Term simply by using its ask/2 operation

• an engine returns control to its client when initiating a yield operation as when a computed answer
becomes available.

As implemented in Python, engines can be seen simply as a special case of generators that yield one
answer at a time, on demand.

We will outline next, with help from a few examples, a few expressiveness improvements First Class
Logic Engines can bring to a logic-based programming language.
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2.3.3 An infinite Fibonacci stream with yield

Like in a non-strict functional language, one can create an infinite recursive loop from which values are
yielded as the computation advances:

fibo N Xs : eng X (slide_fibo 1 1) E, take N E Xs.

slide_fibo X Y : with X + Y as Z, ^X, slide_fibo Y Z.

Note that the infinite loop’s results, when seen from the outside, show up as a stream of answers as if
produced on backtracking. With help of the library predicate take, we extract the first 5 (seen as a
Python dictionary with name “X” of the variable as a key and the nested tuple representation of Natlog’s
list as a value), as follows:

?- fibo 5 Xs?

ANSWER: {'Xs': (1, (1, (2, (3, (5, ())))))}

2.3.4 The trust operation

When the special atom trust is yielded, the goal that follows it replaces the goal of the engine, with all
backtracking below that point discarded and all memory consumed so far made recoverable. As a practi-
cal consequence, infinite loops can work in constant space, even in the absence of last call optimization.

Using it, the predicate loop shows how to generate an infinite sequence of natural numbers.

loop N N.

loop N X : with N + 1 as M, ^trust loop M X.

? - loop 0 X?

ANSWER: {'X': 0}

ANSWER: {'X': 1}

...

3 Natlog as an Orchestrator for Neuro-Symbolic Deep Learning Systems

We will show next how the use of Natlog as an embedded logic-based scripting language can simplify the
design and the execution of neural networks as well as making their internal logic easily understandable.

3.1 Accessing the namespaces of the Python packages

To ensure unimpeded access to relevant Python objects that can be as many as a few hundred for packages
like JAX or Pytorch, we have devised a namespace sharing mechanism with the Python side. For objects
visible in the original namespace of the “natlog” package this can be achieved by calling eval on the
name of the function or generator. However, when Natlog itself is imported as a package (as in the JAX
and Pytorch apps relying on it) we collect to a dictionary the names visible in the Python client importing
Natlog in the app and then pass it to Natlog.
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3.2 Interoperation with JAX

A natural partner to logic-based languages when interacting with deep learning systems is a declaratively
designed neural-network like Google and DeepMind’s JAX [1].

JAX is referentially transparent (no destructive assignments) and fully compositional, via a lazy
application of matrix/tensor operations, automatic gradient computations and a just-in-time compilation
function also represented as a first-class language construct.

The interaction with a logic-based programming language is facilitated by the lazy functional syntax
of JAX (seen as an embedded sublanguage in Python).

After defining a set of data loaders, initialization functions and basic neural network layers, both
learning and inference can be expressed in JAX as a composition of functions (more exactly as a future
consisting of such a composition to be eventually activated after a compilation step).

In a Python-based logic language like Natlog, this orchestration process can be expressed as a set of
Horn Clauses with logic variables bound to immutable JAX objects transferring inputs and outputs be-
tween neural predicates representing the network layers. JAX’s high-level, referentially transparent ma-
trix operations can be reflected safely as Natlog predicates with the result of the underlying N-argument
function unified with their N+1-th extra argument. As such, they can be passed as bindings of logic vari-
ables between clause heads and clause bodies in an easy to understand, goal-driven design and execution
model.

JAX’s equivalents of Natlog’s compound terms, called pytrees, hold arbitrary aggregates of data and
can be differentiated with JAX’s grad operator as a single unit.

Hyperparameter optimization searches can be naturally expressed as constraint-driven optimization
processes.

The synergy between the declarative neural framework and the declarative logic orchestrator can
also help with identifying the complex causal chains needed for debugging, optimizing the network
architecture as well as with the explainability of both the design and the execution of the resulting neuro-
symbolic system.

The following Natlog code snippet5 generates a “deep xor” dataset, known to be unusually challeng-
ing even for deep neural nets.

xor 0 0 0.

xor 0 1 1.

xor 1 0 1.

xor 1 1 0.

The predicate iter recurses N times over the truth table of xor to obtain the truth table of size 2N of
X1 xor X2 xor ...Xn that we will use as our synthetic dataset.

iter N Op X Y: iter_op N Op () E 0 Y, to_tuple E X.

iter_op 0 _Op E E R R.

iter_op I Op E1 E2 R1 R3 :

when I > 0, with I - 1 as J,

Op X R1 R2,

with X + X as XX, % x->2x-1 maps {0,1} into {-1,1} to facilitate

with XX - 1 as X1, % the work of the network's Linear Layers

iter_op J Op (X1 E1) E2 R2 R3.

5see https://github.com/ptarau/natlog/blob/main/apps/deepnat/natjax.nat for more details

https://github.com/ptarau/natlog/blob/main/apps/deepnat/natjax.nat
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The dataset will be passed to JAX after conversion to tuples of tuples, that will eventually become
JAX tensors.

dataset N Op Xss (Ys):

findall (X Y) ( iter N Op X Y) XssYsList,

to_pairs XssYsList XssList YsList,

to_tuple XssList Xss,

to_tuple YsList Ys.

to_pairs ()()() . % note Prolog's [X|Y] becoming (X Y) in Natlog

to_pairs ((Xs Y) Zss) (Xs Xss) (Y Ys) :

to_pairs Zss Xss Ys.

We also generate, depending on the number of variables N, an appropriate list of hidden-layer sizes
(via the predicate hidden_sizes) for a Multi-Layer Perceptron that we design in JAX to be trained on
our synthetic dataset. We use the “’” marker to indicate Python calls to functions like train_model and
test_model implemented in a companion Python file6.

run N Op Seed Epochs Loss Acc LossT AccT:

dataset N Op Xss Ys,

split_dataset Xss Ys X Xt Y Yt,

hidden_sizes N Sizes,

#print hidden sizes are Sizes,

`train_model X Y Sizes Epochs (Model LossFun), % training set

`test_model Model LossFun X Y (Loss Acc), % validation set

`test_model Model LossFun Xt Yt (LossT AccT). % testing set

Similar calls to pass the dataset to Python and to split it into “train” and “test” subsets, as well as seamless
interaction with objects like JAX-arrays (seen by Natlog as constant symbols) are shown in the Natlog
definition of split_dataset.

split_dataset Xss Ys Xtr Xt Ytr Yt:

`array Xss X,

`array Ys Y0,

`transpose Y0 Y,

`split X Y 0 0.1 (Xtr Xt Ytr Yt),

show_sizes (X Y Xtr Xt Ytr Yt).

For instance, “‘array Xss X” converts a Natlog tuple of tuples Xss to a two-dimensional JAX array X,
relying on the fact that JAX’s underlying numpy matrix library does such operations automatically. Note
that the embedding of Natlog in Python makes such data exchanges O(1) in time and space as no data-
conversions need to be performed. Note also that the same applies to compound terms that correspond
one-to-one to immutable nested tuples in Python and in particular to pytrees, instrumental in creating
more advanced neural nets in the JAX ecosystem.

3.3 Interoperation with Pytorch

In the Pytorch ecosystem a combination of object-orientation and callable models encapsulate the un-
derlying complexities of dataset management, neural network architecture choices, automatic differen-
tiation, backpropagation and optimization steps. However, we can follow a similar encapsulation of

6https://github.com/ptarau/natlog/blob/main/apps/deepnat/natjax.py

https://github.com/ptarau/natlog/blob/main/apps/deepnat/natjax.py
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architectural components as we have shown for JAX, and delegate to Python the details of building and
initializing the network layers7 with Natlog used to glue together the training and inference steps8.

4 Logic Grammars as Prompt Generators

We will next overview Natlog applications for text-to-text and text-to-image generation. We refer to the
Natlog code9 and its Python companion10 for full implementation details.

4.1 Prompt engineering by extending GPT3’s text completion

GPT3 is basically a text completion engine, which, when given an initial segment of a sentence or
paragraph as a prompt, it will complete it, often with highly coherent and informative results.

Thus, to get from GPT3 the intended output (e.g., answer to a question, elations extracted from a
sentence, building analogies, etc.) one needs to rewrite the original input into a prompt that fits GPT3’s
text completion model.

We will use here Natlog’s syntactically lighter Definite Clause Grammars, with one or more terminal
symbols prefixed by “@” and “=>” replacing Prolog’s “-->”. A prompt generator with ability to be
specialized for several “kinds” of prompts is described by the DCG rule:

prompt Kind QuestText => prefix Kind, sent QuestText, suffix Kind.

The predicate sent takes a question sentence originating from a user’s input and maps it into a DCG
non-terminal transforming cons-list Ws1 into cons-list Ws2:

sent QuestText Ws1 Ws2 :

`split QuestText List, to_cons_list List Ws, append Ws Ws2 Ws1.

The predicate query takes the DCG-generated prompt derived from user question Q and converts it back
to a string passed to GPT’3 completion API by a call to the function complete, implemented in Python.

query Kind Q A: prompt Kind Q Ps (), to_list Ps List, `join List P, `complete P A.

Next we will describe specializations to question/answering, relation extraction and analogy invention.
An easy way to transform a question answering task into a completion task is to emulate a hypothet-

ical conversation:

prefix question => @ 'If' you would ask me.

suffix question => @ 'I' would say that.

Similarly, extraction of subject-verb-object phrases can be mapped to completion tasks as in:

prefix relation =>

@ 'If' you would ask me what are the subject and the verb and the object in .

suffix relation =>

@ 'I' would say subject is.

For analogy invention we create a custom trigger as follows:

7see https://github.com/ptarau/natlog/blob/main/apps/deepnat/nattorch.py
8see https://github.com/ptarau/natlog/blob/main/apps/deepnat/nattorch.nat
9see https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.nat

10see https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.py

https://github.com/ptarau/natlog/blob/main/apps/deepnat/nattorch.py
https://github.com/ptarau/natlog/blob/main/apps/deepnat/nattorch.nat
https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.nat
https://github.com/ptarau/natlog/blob/main/apps/natgpt/chat.py
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trigger X Y Z =>

@ given that X relates to Y by analogy 'I' would briefly say that Z relates to.

analogy X Y Z A:

trigger X Y Z Ps (), to_list Ps List, `join List P, `complete P A.

We will next show interaction examples for all these use cases. First, question answering:

?- query question 'how are transformers used in GPT' R.

ANSWER: {'R': 'transformers are used in GPT (Generative Pre-trained Transformer)

models to generate text from a given prompt. The transformer architecture is

used to learn the context of the input text and generate a response based on the

context. GPT models are used in many natural language processing tasks such as

question answering, machine translation, summarization, and text generation.'}

Next, relation extraction. Note that after some preprocessing, the extracted triplets can be used as
building blocks for knowledge graphs.

?- query relation 'the quick brown fox jumps over the lazy dog' R.

ANSWER: {'R': '"quick brown fox", verb is "jumps" and object is "lazy dog".'}

?- query relation 'high interest rates try to desperately contain inflation' R.

ANSWER: {'R': '"high interest rates", verb is "try to desperately contain",

and object is "inflation".'}

Finally, some examples of analogical reasoning that show GPT3 finding the missing component and
explaining its reasoning.

?- analogy car wheel bird A?

ANSWER: {'A': 'wing by analogy. This is because both car and wheel are used for

transportation, while bird and wing are used for flight.'}

?- analogy car driver airplane A?

ANSWER: {'A': 'pilot by analogy. The pilot is responsible for the safe operation

of the airplane, just as the driver is responsible for the safe operation

of the car.'}

?- analogy cowboy horse advertiser A?

ANSWER: {'A': 'customer by analogy in that they both need each other to achieve

a goal. The advertiser needs the customer to purchase their product or service

and the customer needs the advertiser to provide them with the product or

service they are looking for.'}

4.2 Text-to-image with DALL.E

With magic wands on a lease from generators like DALL.E [5] or Stable Diffusion [12], Natlog’s Definite
Clause Grammars can work as easy to customize prompt generators for such systems.

As the same OpenAI API (with a slightly different Python call) can be used for text-to-image gen-
eration (followed by displaying the generate picture in the user’s default browser), the interaction with
Python is expressed succinctly by the predicate paint that receives as Prompt the description of the
intended picture from the user.
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paint Prompt: `paint Prompt URL, #print URL, #browse URL.

The query to visualize in the user’s browser one of the DCG-generated prompts is:

?- paint '<text description of intended image>'.

with some detail delegated to Python and taking advantage of the fact that the same OpenAI API is used
for both text-to-text and text-to-image generation.

The Natlog DCG, in generation mode, can iterate over possible styles and content elements of a
desired painting as in the following example:

image => style, subject, verb, object.

style => @photorealistic rendering.

style => @a dreamy 'Marc' 'Chagall' style picture.

style => @an action video game graphics style image.

subject => @of, adjective, noun.

noun => @robot.

verb => @walking.

adjective => @shiny.

object => location, @with, instrument.

location => @on planet 'Mars'.

instrument => @high hills and a blue purse.

instrument => @a sombrero hat.

This generates text ready to be passed via the OpenAI Python APIs to DALL.E:

?- image Words (), `to_tuple Words Ws, #writeln Ws, nl, fail.

photorealistic rendering of shiny robot walking on planet Mars with high hills

and a blue purse

photorealistic rendering of shiny robot walking on planet Mars with a sombrero hat

.....

Besides the expected dependence on the style component (photorealistic vs. Chagall-style), as an
illustration of GPT3’s stereotyping bias, female and respectively male features would be derived from
the generated robot pictures depending on the purse vs. sombrero hat picked by the DCG, as can be
seen in the generated images11.

5 Related Work

An introduction to Natlog, its initial proof-of-concept implementation and its content-driven indexing
mechanism are covered in [9], but the language constructs and application discussed in this paper are
all part of a fresh, “from scratch” implementation. We have implemented similar First-Class Logic
Engines in the BinProlog [8] and Jinni Prolog systems [7], but their addition to Natlog, is motivated by
their strong similarity with Python’s own coroutining mechanisms. The use of coroutining in languages
like C#, JavaScript and Python has also been used in the Yield Prolog system [10] as a facilitator for

11at https://github.com/ptarau/natlog/tree/main/apps/natgpt/pics

https://github.com/ptarau/natlog/tree/main/apps/natgpt/pics
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implementing backtracking, similarly to our implementation. Contrary to Natlog, which adopts its own
surface syntax and reflection-based interaction with the host language, Yield Prolog requires idiomatic
use of the syntax of the target language, making it significantly more cumbersome to work with.

Interoperation with Python has been also used in Problog [3] and DeepProblog [?], in the latter as a
facilitator for neuro-symbolic computations. A comprehensive overview of neuro-symbolic reasoning,
including logic-based, term-rewriting and graph-based is given in [6]. While in [9] we describe, as
an example of neuro-symbolic interaction the use of a neural network as an alternative multi-argument
indexer for Natlog, in this paper our focus is on the use of Natlog as an orchestrator for putting together
and training deep learning systems and as a prompt generator for Large Language Models.

OpenAI’s own GPT 3.5-based ChatGPT12 automates the mapping of more queries (e.g., questions,
code generation, dialog sessions, etc.) using an extensive Reinforcement Learning With Human Ad-
vice process [4]. By contrast, our DCG-supported approach relies exclusively on the pure GPT3 text-
completion API on top of which we engineer task-specific prompts.

6 Conclusion

Motivated by expressiveness challenges faced by logic-based programming languages in the context
of today’s competitive landscape of alternative paradigms as well as from neural net-based machine
learning frameworks, we have sketched some implementationally speaking “low-hanging” enhancements
to them, with emphasis on coroutining methods and neuro-symbolic interoperation mechanisms. The
main contributions of this work, likely to be reusable when bridging other Prolog systems to deep-
learning ecosystems, are techniques that facilitate interoperation in the presence of high-level language
constructs like finite functions, generators, on-demand computations, backtracking, nested immutable
data types and strong reflection and metaprogramming features. The use cases described in the paper
show the practical expressiveness of the Natlog-Python symbiosis by enhancing interaction with today’s
latest generation deep-learning tools with the declarative convenience of a lightweight embedded logic
programming language.
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Automatic static cost analysis infers information about the resources used by programs without actu-
ally running them with concrete data, and presents such information as functions of input data sizes.
Most of the analysis tools for logic programs (and other languages) are based on setting up recur-
rence relations representing (bounds on) the computational cost of predicates, and solving them to
find closed-form functions that are equivalent to (or a bound on) them. Such recurrence solving is a
bottleneck in current tools: many of the recurrences that arise during the analysis cannot be solved
with current solvers, such as Computer Algebra Systems (CASs), so that specific methods for differ-
ent classes of recurrences need to be developed. We address such a challenge by developing a novel,
general approach for solving arbitrary, constrained recurrence relations, that uses machine-learning
sparse regression techniques to guess a candidate closed-form function, and a combination of an
SMT-solver and a CAS to check whether such function is actually a solution of the recurrence. We
have implemented a prototype and evaluated it with recurrences generated by a cost analysis system
(the one in CiaoPP). The experimental results are quite promising, showing that our approach can
find closed-form solutions, in a reasonable time, for classes of recurrences that cannot be solved by
such a system, nor by current CASs.

1 Introduction and Motivation

The motivation of the work presented in this paper stems from automatic static cost analysis and verifi-
cation of logic programs [3, 2, 4, 13, 17, 9, 8]. The goal of such analysis is to infer information about the
resources used by programs without actually running them with concrete data, and present such informa-
tion as functions of input data sizes and possibly other (environmental) parameters. We assume a broad
concept of resource as a numerical property of the execution of a program, such as number of resolution
steps, execution time, energy consumption, memory, number of calls to a predicate, number of transac-
tions in a database, etc. Estimating in advance the resource usage of computations is useful for a number
of applications, such as automatic program optimization, verification of resource-related specifications,
detection of performance bugs, helping developers make resource-related design decisions, security ap-
plications (e.g., detection of side channels attacks), or blockchain platforms (e.g., smart-contract gas
analysis and verification).

The challenge we address originates from the established approach of setting up recurrence relations
representing the cost of predicates, parameterized by input data sizes [18, 16, 3, 2, 4, 13, 1, 17, 9], which
are then solved to obtain closed forms of such recurrences (i.e., functions that provide either exact, or
upper/lower bounds on resource usage in general). Such approach can infer different classes of functions
(e.g., polynomial, factorial, exponential, summation, or logarithmic).

http://dx.doi.org/10.4204/EPTCS.385.16
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Figure 1: Control flow diagram of our novel solver based on machine learning.

The applicability of these resource analysis techniques strongly depends on the capabilities of the
component in charge of solving (or safely approximating) the recurrence relations generated during the
analysis, which has become a bottleneck in some systems.

A common approach to automatically solving such recurrence relations consists of using a Computer
Algebra System (CAS) or a specialized solver to find a closed form. However, this approach poses
several difficulties and limitations. For example, some recurrence relations contain complex expressions
or recursive structures that most of the well-known CASs cannot solve, making it necessary to develop
ad-hoc techniques to handle such cases. Moreover, some recurrences may not have the form required
by such systems because an input data size variable does not decrease, but increases instead. Note
that a decreasing-size variable could be implicit in the program, i.e., it could be a function of a subset
input data sizes (a ranking function), which could be inferred by applying established techniques used in
termination analysis [15]. However, such techniques are usually restricted to linear arithmetic.

In order to address this challenge we have developed a novel, general method for solving arbitrary,
constrained recurrence relations. It is a guess and check approach that uses machine learning techniques
for the guess stage, and a combination of an SMT-solver and a CAS for the check stage (see Figure 1). To
the best of our knowledge, there is no other approach that does this. The resulting closed-form function
solutions can be of different kinds, such as polynomial, factorial, exponential, summation, or logarithmic.

The rest of this paper is organized as follows. Section 2 gives and overview of our novel guess and
check approach. Then Section 3 provides some background information and preliminary notation. Sec-
tion 4 presents a more detailed, formal and algorithmic description of our approach. Section 5 describes
the use of our approach in the context of static cost analysis. Section 6 comments on our prototype im-
plementation and its experimental evaluation. Finally, Section 7 summarizes some conclusions and lines
for future work.

2 Overview of our Approach

We now give an overview of the two stages of our approach already mentioned: guess a candidate closed-
form function, and check whether such function is actually a solution of the recurrence relation.

Given a recurrence relation for a function f (~x), solving it means to find a closed-form function f̂ (~x)
that has the same domain as f (~x), and for all~x in such domain, f̂ (~x) = f (~x). By a closed-form function
f̂ we mean an expression that is built by using only elementary arithmetic functions, e.g., constants,
addition, subtraction, multiplication, division, exponential, or even factorial functions. In particular,
this means that f̂ does not contain any subexpressions built by using the same function f̂ (i.e., f̂ is not
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recursively defined). We will use the following recurrence as an example to illustrate our approach:

f (x) = 0 if x = 0
f (x) = f ( f (x−1))+1 if x > 0

(1)

2.1 The “guess” stage (sparse linear regression via Lasso)

We use a sparse linear regression mechanism (see Section 3 for more details), so that any possible model
we can obtain (which constitutes a candidate solution) must be a linear combination of a predefined set
of terms, but using a usually small subset of terms. That is, a function f̂ (~x) of the form:

f̂ (~x) = β0 +β1 t1(~x)+β2 t2(~x)+ · · ·+βn tn(~x)

where the ti’s are arbitrary functions on~x from a set T of candidate terms that we call base functions, and
the βi’s are the coefficients (real numbers) that are estimated by regression, but so that only a few coeffi-
cients are nonzero. Currently, the set T is fixed, and contains the base functions that are representative of
the common complexity orders (in Section 7 we comment on future plans to obtain it). For illustration
purposes, assume that we use the following set T of base functions:

T = {λx.x,λx.x2,λx.x3,λx.dlog2(x)e,λx.2x,λx.x · dlog2(x)e}

where each base function is represented as a lambda expression. Then, the sparse linear regression is
performed as follows:

1. Generate a training set S. First, a set Xtrain = {~x1, . . . ,~xk} of input values to the recurrence function
is randomly generated. Then, starting with an initial S= /0, for each input value~xi ∈Xtrain, a training
case si is generated and added to S. For any input value~x ∈ Xtrain the corresponding training case
s is a tuple of the form:

s = 〈b,c1, . . . ,cn〉

where ci = [[ti]]~x for 1 ≤ i ≤ n, and [[ti]]~x represents the result (a scalar) of evaluating the base
function ti ∈ T for input value ~x, where T is a set of n base functions, as already explained. The
(dependent) value b (also a constant number) is the result of evaluating the recurrence f (~x) that we
want to solve or approximate, in our example, the one defined in Equation 1. Assuming that there
is an~x ∈ Xtrain such that~x = 〈5〉, its corresponding training case s in our example will be:

s = 〈f(5), [[x]]5, [[x2]]5, [[x
3]]5, [[dlog2(x)e]]5, . . .〉

= 〈5,5,25,125,3, . . .〉

2. Perform the sparse regression in two steps using the training set S created above. In the first step,
we use linear regression with Lasso (`1) regularization [6] on the coefficients. This is a penalty
term that encourages coefficients whose associated base functions have a small correlation with
the dependent value to be exactly zero. This way, typically most of the base functions in T will
be discarded, and only those that are really needed to approximate our target function will be
kept. The level of penalization is controlled by a hyperparameter λ ≥ 0. As commonly done in
machine learning [6], the value of λ that generalizes optimally on unseen (test) inputs is found via
cross-validation on a separate validation set (generated randomly in the same way as the training
set). The result of this step is a (column) vector ~β of coefficients, and an independent coefficient
β0. Finally, we generate a test set Xtest (again, randomly in the same way as the training set) of
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input values to the recurrence function to obtain a measure R2 of the accuracy of the estimation.
Additionally, we discard those terms whose corresponding coefficient is less than a given threshold
ε . The resulting closed-form expression that estimates the target function is

f̂ (~x) = rmε(~β
T ) ·E(T,~x)+β0

where E(T,~x) is a vector of the terms in T with the arguments bound to~x, and rmε takes a vector of
coefficients and returns another vector where the coefficients less than ε are rounded to zero. Both
the Lasso regularization and the pruning function discard many terms from T in the final function.

3. Finally, our method performs again a standard linear regression (without Lasso regularization) on
the training set S, but without using those base functions corresponding to the terms discarded
previously by Lasso and the ε-pruning. In our example, with ε = 0.05, we obtain:

f̂ (x) = 1.0 x

with a value R2 = 1, which means that the estimation obtained predicts exactly the values for the
test set, and thus, it is a candidate solution for the recurrence in Equation 1. If R2 were less than 1,
it would mean that the function obtained is not a candidate (exact) solution, but a (possibly unsafe)
approximation, as there are values in the test set that cannot be exactly predicted.

2.2 The “check” stage

Once a function that is a candidate solution for the recurrence has been guessed, the second step of
our method tries to verify whether such a candidate is actually a solution. To do so, the recurrence is
encoded as a first order logic formula where the references to the target function are replaced by the
candidate solution whenever possible. Afterwards, we use an SMT-solver to check whether the negation
of such formula is satisfiable, in which case we can conclude that the candidate is not a solution for the
recurrence. Otherwise, if such formula is unsatisfiable, then the candidate function is an exact solution.
Sometimes, it is necessary to consider a precondition for the domain of the recurrence, which is also
included in the encoding.

To illustrate this process, Expression (2) below shows the recurrence relation we target to solve,
followed by the candidate solution obtained previously using linear regression:

f (x) = 0 if x = 0
f (x) = f ( f (x−1))+1 if x > 0
f̂ (x) = x if x≥ 0

(2)

Now, Expression (3) below shows the encoding of the recurrence as a first order logic formula.

∀x
(
(x = 0 =⇒ f (x) = 0)∧ (x > 0 =⇒ f (x) = f ( f (x−1))+1)

)
(3)

Finally, Expression (4) below shows the negation of such formula, as well as the references to the function
name substituted by the definition of the candidate solution. We underline both the subexpressions to be
replaced, and the subexpressions resulting from the substitutions.

∃x¬(((x = 0 =⇒ x = 0)∧ (x > 0 =⇒ x = x−1+1))) (4)

It is easy to see that Formula (4) is unsatisfiable. Therefore, f̂ (x) = x is an exact solution for f (x) in the
recurrence defined by Equation 1.
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For some cases where the candidate solution contains transcendental functions, our implementation
of the method uses a CAS to perform simplifications and transformations, in order to obtain a formula
supported by the SMT-solver. We find this combination of CAS and SMT-solver particularly useful,
since it allows solving more problems than only using one of these systems in isolation.

3 Preliminaries

Recurrence relations. A recurrence relation of order k, k > 0, for a function f , is a set of equations
that give k initial values for f , and an equation that recursively defines any other value of f as a function g
that takes k previous values of f as parameters. For example, the following recurrence relation of second
order (k = 2), with g being the arithmetic addition +, defines the Fibonacci function:

f (n) =

{
1 if n = 0 or n = 1

f (n−1)+ f (n−2) if n ≥ 2
(5)

A challenging class of recurrences that we can solve with our approach are “nested” recurrences, e.g.,
recurrences of the form f (n) = g( f ( f (n−1))).

We use the letters x, y, z to denote variables, and a, b, c, d to denote constants and coefficients. We
use f ,g to represent functions, and e, t to represent arbitrary expressions. We use ϕ to represent arbitrary
boolean constraints over a set of variables. Sometimes, we also use β to represent coefficients obtained
with linear regression. In all cases, the symbols can be subscribed. We use~x to denote a finite sequence
〈x1,x2, . . . ,xn〉, for some n > 0. Given a sequence S and an element x, 〈x|S〉 is a new sequence with first
element x and tail S.

Given a piecewise function:

f (~x) =


e1(~x) if ϕ1(~x)

e2(~x) if ϕ2(~x)
...

...

ek(~x) if ϕk(~x)

(6)

where f ∈ D → R+, with D = {~x|~x ∈ Zm ∧ϕpre(~x)} for some boolean constraint ϕpre, and ei(~x),ϕi(~x)
are arbitrary expressions and constraints over ~x respectively. We say that ϕpre is the precondition of f ,
and that f is a constrained recurrence relation if and only if:

• ∃i ∈ [1,k] such that ei contains a call to f .

• ∃i ∈ [1,k] such that ei does not contain any call to f (i.e., it is in closed form).

• ϕpre |=
∨

1≤i≤k
ϕi.

Given a concrete input ~d ∈D , we evaluate f (~d) deterministically, assuming the evaluation of f as a
nested if-then-else control structure as follows:
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if ϕ1(~d) then
return e1(~d)

else
if ϕ2(~d) then

return e2(~d)
else
· · ·

end if
end if

More formally, let def( f ) denote the definition of a (piecewise) constrained recurrence relation f
represented as the sequence 〈(e1(~x),ϕ1(~x)), . . . ,(ek(~x),ϕk(~x))〉, where each element of the sequence is
a pair representing a case. The order of such sequence determines the evaluation strategy. Then, the
evaluation of f for a concrete value ~d, denoted EvalFun( f (~d)), is defined as follows:

EvalFun( f (~d)) = EvalBody(def( f ), ~d)

EvalBody(〈(e,ϕ)|Ps〉, ~d) =

{
[[e]]~d if ϕ(~d)

EvalBody(Ps, ~d) if ¬ϕ(~d)

Our goal is to find a function f̂ ∈D → R+ such that for all ~d ∈D :

• If EvalFun( f (~d)) terminates, then EvalFun( f (~d)) = [[ f̂ ]]~d , and

• f̂ does not contain any recursive call in its definition.

In particular, we look for a definition of the form:

f̂ (~x) = β0 +β1 t1(~x)+β2 t2(~x)+ · · ·+βn tn(~x) (7)

where βi ∈ R, and ti are expressions over~x, not including recursive references to f̂ . If the above condi-
tions are met, we say that f̂ is a closed form for f .

To illustrate the need of introducing an evaluation strategy for the recurrence that is consistent with
the termination of the program, consider the following Prolog program which does not terminate for a
call p(X) where X is bound to an integer:

1 p(X) :- X > 0, X1 is X + 1, p(X1).

2 p(X) :- X = 0.

The following recurrence relation for its cost (in resolution steps) can be set up:

Cp(x) = 1 if x = 0
Cp(x) = 1+Cp(x+1) if x > 0

(8)

A CAS will give the closed form Cp(x) = 1− x for such recurrence, however, the cost analysis should
give Cp(x) = ∞.
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Linear Regression. Linear regression [5] is a statistical technique used to approximate the linear rela-
tionship between a number of independent variables and a dependent (output) variable. Given a vector of
independent (input) variables X = (X1, . . . ,Xp)

T ∈Rp, we predict the output variable Y using the formula

Y = β0 +
p

∑
i=1

βiXi (9)

which is defined through the vector of coefficients β = (β0, . . . ,βp)
T ∈ Rp. Such coefficients are esti-

mated from a set of observations {yi,xi1, . . . ,xip}n
i=1 so as to minimize a loss function, most commonly

the sum of squares

β = argmin
β∈Rp

n

∑
i=1

(
yi−β0−

p

∑
j=1

xi jβ j

)2

(10)

Sometimes (as is our case) some of the input variables are not relevant to explain the output, but the above
least-squares estimate will almost always assign nonzero values to all the coefficients. In order to force
the estimate to make exactly zero the coefficients of irrelevant variables (hence removing them and doing
feature selection), various techniques have been proposed. The most widely used one is the Lasso [6],
which adds an `1 penalty on β (i.e., the sum of absolute values of each coefficient) to Expression 10:

β = argmin
β∈Rp

n

∑
i=1

(
yi−β0−

p

∑
j=1

xi jβ j

)2

+λ

p

∑
j=1
|β j| (11)

where λ ≥ 0 is a hyperparameter that determines the level of penalization: the greater λ , the greater
the number of coefficients that are exactly equal to 0. The Lasso has two advantages over other feature
selection techniques for linear regression. First, it defines a convex problem whose unique solution can
be efficiently computed even for datasets where either of n or p are large (almost as efficiently as a
standard linear regression). Second, it has been shown in practice to be very good at estimating the
relevant variables.

4 Algorithmic Description of the Approach

In this section we describe our approach for generating and checking candidate solutions for recurrences
that arise in resource analysis. Algorithms 1 and 2 correspond to the guesser and checker components,
respectively, which are shown in Figure 1.

Algorithm 1 receives a recurrence relation for a function F to solve, a set of base functions, and a
threshold to decide when to discard irrelevant terms. The output is a closed-form expression F̂ for F , and
a score S that reflects the accuracy of the approximation, in the range [0,1]. If S ∼ 1, the approximation
can be considered a candidate solution. Otherwise, F̂ is a (possibly unsafe) approximation. In line 1 we
start by generating a set I of random inputs for F . Each input~xi is a m-tuple verifying precondition ϕpre,
where m is the number of arguments of F . In line 2 we produce the training set X . The independent
inputs are generated by evaluating the base functions in T = 〈t1, t2, . . . , tp〉 with each tuple ~x ∈I . This
is done by using function E, defined as follows:

E(〈t1, t2, . . . , tp〉,~x) = 〈t1(~x), t2(~x), . . . , tp(~x)〉

We also evaluate the recurrence equation for input ~x, and add the observed output F(~x) as the first
element in the vectors of the training set. In line 3 we generate a first linear model by applying func-
tion CVLassoRegression to the generated training set. CVLassoRegression performs a linear regression
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Algorithm 1: Candidate Solution Generation (Guesser).
Input : F ∈D → R+: target recurrence relation.

ϕpre: precondition defining D .
T ⊆D → R+: set of base functions.
Λ: range of values to automatically choose a Lasso hyperparameter λ ∈ R+ that
maximizes the performance of the model via cross-validation.
k: indicates performing k−fold cross-validation, k ≥ 2.
ε ∈ R+: threshold for term (ti ∈ T ) selection.

Output: F̂ ∈ Exp: a candidate solution (or an approximation) for F .
S ∈ [0,1]: score, indicates the accuracy of the estimation (R2).

1 I ←{~xi|~xi ∈ Zm∧ϕpre(~xi)}N
i=1 ; // N Random inputs for F

2 X ←{〈F(~x)|E(T,~x)〉|~x ∈I } ; // Training set

3 (~β ′,β ′0)← CVLassoRegression(X ,Λ,k);
4 (T ′,X ′)← RemoveTerms(T,X , ~β ′,β ′0,ε);
5 (~β ,β0,S)← LinearRegression(X ′);
6 F̂ ← λ~x ·~β T ×E(T ′,~x)+β0;
7 return (F̂ ,S);

with Lasso regularization. As already mentioned, Lasso regularization requires a hyperparameter λ

that determines the level of penalization for the coefficients. Instead of using a single value for λ ,
CVLassoRegression uses a range of possible values, applying cross-validation on top of the linear re-
gression to automatically select the best value for that parameter, from the given range. The parameter
k indicates performing k−fold cross-validation, which means that the training set is split into k parts or
folds. Then, each fold is taken as the validation set, training the model with the remaining k− 1 folds.
Finally, the performance measure reported is the average of the values computed in the k iterations. The
result of this function is the vector of coefficients ~β ′, together with the intercept β ′0. These coefficients
are used in line 4 to decide which base functions are discarded before the last regression step. Note that
RemoveTerms removes the base functions from T together with their corresponding input values from
the training set X , returning the new set of base functions T ′ and its corresponding training set X ′. In
line 5, standard linear regression (without regularization nor cross-validation) is applied, obtaining the
final coefficients ~β and β0. Additionally, from this step we also obtain the score S of the resulting model.
In line 6 we set up the resulting closed-form expression, given as a function on the variables in~x. Note
that we use the function E to bind the variables in the base functions to the arguments of the closed-form
expression. Finally, the closed-form expression and its corresponding score are returned as the result of
the algorithm.

Algorithm 2 mainly relies on an SMT-solver and a CAS. Concretely, given the constrained recurrence
relation F ∈D → R+ defined as

F(~x) =


e1(~x) if ϕ1(~x)

e2(~x) if ϕ2(~x)
...

...

ek(~x) if ϕk(~x)
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Algorithm 2: Solution Checking (Checker).
Input : F ∈D → R+: target recurrence relation.

ϕpre: precondition defining D .
F̂ ∈ Exp: a candidate solution for F .

Output: true if F̂ is a solution for F , false otherwise.
1 ϕprevious← true ;
2 Formula← true ;
3 foreach (e,ϕ) ∈ def(F) do
4 Eq← replaceCalls(“F(~x)− e = 0”,F(~x), F̂ ,ϕpre,ϕ);
5 if ¬ containsCalls(Eq,F) then
6 Eq← simplifyCAS(inlineCalls(Eq, F̂ ,def(F̂)));
7 if supportedSMT(Eq) then
8 Formula← “Formula∧ (ϕpre∧ϕprevious∧ϕ =⇒ Eq)”;
9 ϕprevious← “ϕprevious∧¬ϕ” ;

10 else
11 return false;
12 end
13 else
14 return false;
15 end
16 end
17 return (6|=SMT J¬FormulaKSMT);

our algorithm constructs the logic formula:

s k∧
i=1

((
i−1∧
j=1

¬ϕ j(~x)

)
∧ϕi(~x)∧ϕpre(~x) =⇒ Eqi

){

SMT
(12)

where Eqi is the result of replacing in F(~x) = ei(~x) each occurrence of F , if possible, by the definition of
the candidate solution F̂ (by using replaceCalls in line 4), and performing a simplification by the CAS
(by using simplifyCAS in line 6). A goal of such simplification is to obtain (sub)expressions supported by
the SMT-solver. The function replaceCalls(expr,F(~x′), F̂ ,ϕpre,ϕ) replaces every subexpression in expr
of the form F(~x′) by F̂(~x′), if ϕpre(~x′)∧ϕ =⇒ ϕpre(~x′). The operation JeKSMT is the translation of any
expression e to an SMT-LIB expression. Although all variables appearing in Formula 12 are declared
as integers, we omit these details in Algorithm 2 and in Formula 12 for the sake of brevity. Note that
this encoding is consistent with the evaluation (EvalFun) described in Section 3. Finally, the algorithm
asks the SMT-solver for models of the negated formula (line 17). If no model exists, then it returns
true, concluding that F̂ is an exact solution to the recurrence, i.e., F̂(~x) = F(~x) for any input~x ∈D such
that EvalFun(F(~x)) terminates. Otherwise, it returns false. Note that, if it is not possible to replace all
occurrences of F by F̂ , or if after performing the simplification by simplifyCAS there are subexpressions
not supported by the SMT-solver, then the algorithm finishes returning false.
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5 Our Approach in the Context of Static Cost Analysis

In this section, we describe how our approach could be used in the context of the motivating application,
Static Cost Analysis. Although it is general, and could be integrated into any cost analysis system based
on recurrence solving, we illustrate its use in the context of the CiaoPP system. Using a logic program,
we first illustrate how CiaoPP sets up recurrence relations representing the sizes of output arguments of
predicates and the cost of such predicates. Then, we show how our novel approach is used to solve a
recurrence relation that cannot be solved by CiaoPP.

Example 1 Consider predicate p/2 in Figure 2, and calls to it where the first argument is bound to
a non-negative integer and the second one is a free variable. Upon success of these calls, the second
argument is bound to an non-negative integer too. Such calling mode, where the first argument is input
and the second one is output, is automatically inferred by CiaoPP (see [7] and its references).

1 :- entry p/2: nnegint*var.

2 p(X,0):-

3 X=0.

4 p(X,Y):-

5 X>0,

6 X1 is X - 1,

7 p(X1,Y1),

8 p(Y1,Y2),

9 Y is Y2 + 1.

Figure 2: A program with a nested recursion.

The CiaoPP system first infers size relations for the different arguments of predicates, using a rich
set of size metrics (see [13, 17] for details). Assume that the size metric used in this example, for the
numeric argument X is the actual value of it (denoted int(X)). The system will try to infer a function
Sp(x) that gives the size of the output argument of p/2 (the second one), as a function of the size (x) of the
input argument (the first one). For this purpose, the following size relations for Sp(x) are automatically
set up (the same as the recurrence in Equation 1 used in Section 2 as example):

Sp(x) = 0 if x = 0
Sp(x) = Sp(Sp(x−1))+1 if x > 0

(13)

The first and second recurrence correspond to the first and second clauses respectively (i.e., base and
recursive cases). Once recurrence relations (either representing the size of terms, as the ones above,
or the computational cost of predicates, as the ones that we will see latter) have been set up, a solving
process is started.

Nested recurrences, as the one that arise in this example, cannot be handled by most state-of-the-art
recurrence solvers. In particular, the modular solver used by CiaoPP fails to find a closed-form function
for the recurrence relation above. In contrast, the novel approach that we propose, sketched in next
section, obtains the closed form Ŝp(x) = x, which is an exact solution of such recurrence (as shown in
Section 2).

Once the size relations have been inferred, CiaoPP uses them to infer the computational cost of a
call to p/2. For simplicity, assume that in this example, such cost is given in terms of the number of
resolution steps, as a function of the size of the input argument, but note that CiaoPP’s cost analysis
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is parametric with respect to resources, which can be defined by the user by means of a rich assertion
language, so that it can infer a wide range of resources, besides resolution steps. Also for simplicity,
we assume that all builtin predicates, such as arithmetic/comparison operators have zero cost (in practice
there is a “trust”assertion for each builtin that specifies its cost as if it had been inferred by the analysis).

In order to infer the cost of a call to p/2, represented as Cp(x), CiaoPP sets up the following cost
relations, by using the size relations inferred previously:

Cp(x) = 1 if x = 0
Cp(x) = Cp(x−1)+Cp(Sp(x−1))+1 if x > 0

(14)

We can see that the cost of the second recursive call to predicate p/2 depends on the size of the output
argument of the first recursive call to such predicate, which is given by function Sp(x), whose closed
form Sp(x) = x is computed by our approach, as already explained. Plugin such closed form into the
recurrence relation above, it can be solved now by CiaoPP, obtaining Cp(x) = 2x+1−1.

6 Implementation and Experimental Evaluation

We have implemented a prototype of our novel approach and performed an experimental evaluation in the
context of the CiaoPP system, by solving recurrences generated during static cost analysis. Our prototype
takes a recurrence and returns a closed form obtained together with two measures: 1) the accuracy of the
estimation (score) of the candidate closed-form solution generated by the machine learning phase, and
2) an indication of whether such closed form is an exact solution of the recurrence (i.e., if it has been
formally verified). It is implemented in Python 3, using Sympy [11] as CAS, and Scikit-Learn [14] for
the regression with Lasso regularization. We use Z3 [12] as SMT-solver, and Z3Py [19] as interface.

Our experimental results are shown in Table 1. Column Bench shows the name that we have assigned
to each recurrence that we have chosen (which is inspired in the logic program such recurrence originated
from during cost/size analysis), and Column Recurrence shows their definitions, where we use the same
function symbol, f , for all of them. Such recurrences are challenging for CiaoPP, either because they
cannot be solved by any of the back-end solvers, or because they are necessarily over-estimated in the
solving process. Some recurrences, like nested, are problematic even for most of the current state-of-
the-art solvers. For each recurrence and for each argument x of it, there is an implicit constraint that
x is an integer, x ≥ 0, which we do not include for brevity. Also, the disjunction of all the constraints
defining the cases of the recurrence is a constraint ϕpre that defines the domain of the corresponding
function. Column CF shows the closed forms obtained by our previous recurrence solver, and Column
CFNew shows the closed forms obtained by our approach, applying Algorithms 1 and 2. All of them
have been verified as exact solutions to the recurrences by Algorithm 2. As already said in Section 3, the
closed form solution of any recurrence gives the same results as the recurrence for the inputs for which
the evaluation of the recurrence terminates. The base cases of the recurrences have been considered
apart from the others, and included in the final solution. Finally, Column T(s) shows the total time, in
seconds (executing on a MacBook Pro machine, 2.4GHz Intel Core i7 CPU, 8 GB 1333 MHz DDR3
memory), needed to obtain the closed forms and verify them. For all the experiments, we have set k = 2,
in order to perform 2−fold cross-validation. We have also set the range for λ to 100 values taken from
the interval [0.001,1], and ε = 0.05. Regarding the set T of base functions, for recurrences with one or
two arguments, we provide a predefined set of representative functions of the most common complexity
orders, as well as some compositions of them. For recurrences with three or more arguments, we provide
an initial set of simple functions, that are combined automatically to generate the base functions ti for the
set T .
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Table 1: Closed forms obtained with the previous (CF) and new solver (CFNew).

Bench Recurrence CF CFNew T (s)

merge-sz f (x,y) =


max( f (x−1,y),

f (x,y−1))+1 if x > 0∧ y > 0

x if x > 0∧ y = 0

y if x = 0∧ y > 0

− x+ y 0.92

merge f (x,y) =


max( f (x−1,y),

f (x,y−1))+1 if x > 0∧ y > 0

0 if x = 0∨ y = 0

−
{

x+ y−1 if x > 0∧ y > 0

0 if x = 0∨ y = 0
0.71

nested f (x) =

{
f ( f (x−1))+1 if x > 0

0 if x = 0
− x 0.13

open-zip f (x,y) =


f (x−1,y−1)+1 if x > 0∧ y > 0

f (x,y−1)+1 if x = 0∧ y > 0

f (x−1,y)+1 if x > 0∧ y = 0

0 if x = 0∧ y = 0

− max(x,y) 0.12

div f (x,y) =

{
f (x− y,y)+1 if x >= y∧ y > 0

0 if x < y∧ y > 0
−

⌊
x
y

⌋
0.13

div-ceil f (x,y) =


f (x− y,y)+1 if x >= y∧ y > 0

1 if x < y∧ x > 0

0 if x = 0∧ y > 0

−
⌈

x
y

⌉
0.12

s-max f (x,y) =

{
max(y, f (x−1,y))+1 if x > 0

y if x = 0
x+ y x+ y 0.12

s-max-1 f (x,y) =

{
max(y, f (x−1,y+1))+1 if x > 0

y if x = 0
− 2x+ y 0.14

sum-osc f (x,y) =


f (x−1,y)+1 if x > 0∧ y > 0

f (x+1,y−1)+ y if x = 0∧ y > 0

1 if y = 0

−
{

x+ y2

2 + 3y
2 if y > 0

1 if y = 0
0.13

As we can see, none of the recurrences are solvable by the current CiaoPP solver, except s-max.
The specialized solver for such recurrence has been developed relatively recently. Also, none of the
recurrences are solvable by the CASs Mathematica [10] and Sympy [11], which we can arguably consider
state-of-the-art CASs. In contrast, our new solver is able to infer exact closed-forms functions for all the
recurrences in a reasonable time.

7 Conclusions and Future Work

We have developed a novel approach for solving or approximating arbitrary, constrained recurrence
relations. It consists of a guess stage that uses a sparse linear regression via Lasso regularization and
cross-validation to infer a candidate closed-form solution, and a check stage that combines an SMT-solver
and a CAS to verify that such candidate is actually a solution. We have implemented a prototype and
evaluated it with recurrences generated by the cost analysis module of CiaoPP, and are not solvable by it
nor by the (arguably state-of-the-art) CASs Mathematica and Sympy. The experimental results are quite
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promising, showing that our approach can find exact, verified, closed-form solutions, in a reasonable
time, for such recurrences, which imply potentially, arbitrarily large accuracy gains in cost analysis of
(logic) programs. Not being able to solve a recurrence can cause huge accuracy losses, for instance, if
such a recurrence corresponds to a predicate that is deep in the control flow graph of the program, and
such accuracy loss is propagated to the main predicate, inferring not useful information at all.

Since our technique uses linear regression with a randomly generated training set (by evaluating the
recurrence to obtain the dependent value), it is not guaranteed that a solution can be found. Even if an
exact solution is found in the first stage, it is not always possible to prove its correctness in the second
stage. Therefore, in this sense, this approach is not complete. However, it is able to find some solutions
that current state-of-the-art solvers are unable to find. As a proof of concept, we have considered a par-
ticular deterministic evaluation for constrained recurrence relations, and the verification of the candidate
solution is consistent with this evaluation. However, it is possible to implement different evaluation se-
mantics for the recurrences, adapting the verification stage accordingly. Note that we need to require the
termination of the recurrence evaluation as a precondition for the conclusions obtained. This is also due
to the particular evaluation strategy of recurrences that we are considering. In practice, non-terminating
recurrences can be discarded in the first stage, by setting a timeout. Our approach can also be combined
with a termination prover in order to guarantee such a precondition. Finally, note that an alternative
use of our tool is to omit the verification stage, using only the closed-form function inferred by the first
stage, together with an error measure. This can be useful in some applications (e.g., granularity control
in parallel/distributed computing) where it is enough to have good although unsafe approximations.

As a future work, we plan to fully integrate our novel solver into the CiaoPP system, combining
it with its current set of back-end solvers in order to improve the static cost analysis. We also plan to
further refine and improve our algorithms in several directions. As already explained, currently the set T
of base functions is fixed, user-provided. We plan to automatically infer it by using different heuristics.
We can perform an automatic analysis of the recurrence we are solving, to extract some features that
allow selection of the terms that most likely are part of the solution. For example, if the recurrence has
a nested, double recursion, then we can select a quadratic term, etc. Also, machine learning techniques
may be applied to learn a good set of base functions from some features of the programs.
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Pearl and Verma developed d-separation as a widely used graphical criterion to reason about the
conditional independencies that are implied by the causal structure of a Bayesian network. As acyclic
ground probabilistic logic programs correspond to Bayesian networks on their dependency graph, we
can compute conditional independencies from d-separation in the latter.

In the present paper, we generalize the reasoning above to the non-ground case. First, we ab-
stract the notion of a probabilistic logic program away from external databases and probabilities to
obtain so-called program structures. We then present a correct meta-interpreter that decides whether
a certain conditional independence statement is implied by a program structure on a given external
database. Finally, we give a fragment of program structures for which we obtain a completeness
statement of our conditional independence oracle. We close with an experimental evaluation of our
approach revealing that our meta-interpreter performs significantly faster than checking the definition
of independence using exact inference in ProbLog 2.

1 Introduction

A probabilistic logic program is a logic program, in which each clause holds with a specified probability.
The most common semantics for these programs is the distribution semantics [13], which assigns to each
ground program a joint probability distribution over the atoms occurring in it. It is the basis for many
programming languages such as the Independent Choice Logic [9], PRISM [14], Logic Programs with
Annotated Disjunctions [15] and ProbLog [1].

Since conditional independence is a rather fundamental notion in probability theory, it is natural to
ask for its counterpart in probabilistic logic programming. Moreover, considering the work of Holtzen et
al. [4], such an analysis may contribute to speed up lifted inference. In this paper, we extend the effort of
Rückschloß and Weitkämper [11] to establish a calculus deriving the conditional independencies that are
determined by the clause structure of a ProbLog program. Let us illustrate this problem in the following
example:

Example 1. We consider storages, which consist of rooms, tanks, employees and liquids that are given by
the unary predicates room/1, tank/1, employee/1, liquid/1, respectively. For each storage a database
table passage(R,R′) tells us, between which rooms R and R′ we find a passage. Moreover, in each
room R we find tanks T , denoted by in(T,R) and a tank T may store a liquid L, denoted by stores(T,L).
Finally, we assume a database table f lammable(L), indicating the flammable liquids. In this context, it
makes sense to assume that each tank stores at most one liquid which results in the following integrity
constraint:

⊥← tank(T ), liquid(L1), liquid(L2),L1 ̸
.
= L2,stores(T,L1),stores(T,L2). (Const)

http://dx.doi.org/10.4204/EPTCS.385.17
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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With a certain probability _ we find an employee E opening a tank T , denoted by opens(E,T ). This
leads to the following ProbLog clause:

_ :: opens(E,T )← employee(E), tank(T ). (RC1)

Further, if employee E opens tank T , it may be that E does not close the tank T properly, which then
causes the tank T to leak, denoted by leaks(T ). Again we assume that we don’t know the exact probabil-
ities and capture the mechanism in the following clause:

_ :: leaks(T )← employee(E), tank(T ),opens(E,T ). (RC2)

Moreover, an employee E may smoke in a room R, denoted by smokes(E,R):

_ :: smokes(E,R)← employee(E),room(R). (RC3)

If employee E smokes in a room R, which contains a leaking tank storing an flammable liquid, this may
cause a fire in room R. Further, the smoke immediately spreads to the rooms R1, which are connected to
the room R by passages, where it may trigger a sensor. In this case, we observe the event f ire(R1). This
mechanism is captured in the clauses below:

connected(R,R)← room(R).

connected(R,R1)← room(R),room(R1),room(R2), passage(R2,R1),

connected(R,R2). (Int)

_ :: f ire(R1)← room(R1),room(R),employee(E), tank(T ), liquid(L), in(T,R),

(connected(R,R1);connected(R1,R)),stores(T,L), f lammable(L),

smokes(E,R), leaks(T ). (RC4)

Given (RC1), (RC2), (RC3), (RC4), (Const) and (Int) together with a concrete storage, we aim to
answer queries about conditional independencies. For instance, we want to determine whether the event
smokes(e1,r) of employee e1 smoking in room r is independent of the event opens(e2, t) of employee e2
opening the tank t without knowing the probabilities of the clauses (RC1), (RC2), (RC3) and (RC4).
Further, we would also like to predict how things change if we observe f ire(r1) a fire in room r1.

We accomplish our goal by grounding ProbLog programs to Bayesian networks, where we can ap-
ply the theory of d-separation [16] to derive the desired independence statements. In this way we can
efficiently reason about conditional independencies. Further, we highlight that the theory of d-separation
lies at the basis of constraint based causal structure discovery, i.e. it enables us to reason about causal
relationships on the basis of observational data. Hence, we suppose that the present work also serves
as a starting point in the development of causal structure discovery techniques for probabilistic logic
programming.

2 On the Independencies Hidden in a Propositional Causal Structure

At the beginning, we discuss how conditional independencies can be inferred from a causal structure
in the propositional case. Here, we identify a causal structure on a set of random variables V with a
directed acyclic graph G, i.e. a partial order, on V. The intuition is that X is a cause of Y if there is a
directed path from X to Y in G. In this case, we also say that Y is an effect of X . Further, we say that X
is a direct cause of Y if the edge X → Y exists in G, i.e. if and only if the node X ∈ Pa(Y ) lies in the
set Pa(Y ) of parents of Y .
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Example 2. Consider a road that passes by a field with a sprinkler in it. The sprinkler is switched on
by a weather sensor and the pavement of the road may be wet, denoted by wet, because the sprinkler is
on, denoted sprinkler or because it rains, denoted by rain. Further, we know that the events rain and
sprinkler are caused by the season, denoted by season, as they both are triggered by the weather. Finally,
we note that a wet road is more likely to be slippery, denoted by slippery. The situation above gives rise
to the following causal structure on the random variables V := {season,rain,sprinkler,wet,slippery}:

rain

season sprinkler wet slippery

(1)

In particular, we find that season is a cause of slippery but not a direct cause, whereas wet is a direct
cause of slippery. Further, there is no causal relationship between sprinkler and rain.

Next, a given probability distribution π on the random variables V is consistent with a causal struc-
ture G if the influence of any cause X on an effect Y is moderated by the direct causes of Y . This intuition
is formally captured in the following definition:

Definition 1 (Markov Condition). We say that the distribution π on the set of random variables V satisfies
the Markov condition with respect to a causal structure G on V, if every random variable X ∈ V is
independent of its causes in G, once we observe its direct causes Pa(X). In this case, we write π |= G.

Example 3. In Example 2 the Markov condition states for instance that the influence of season on the
event slippery is completely moderated by the event wet. Once we know that the pavement of the road is
wet, we expect it to be slippery regardless of the event that caused the road to be wet.

If a distribution π |= G satisfies the Markov condition with respect to a given causal structure G, it is
represented by a Bayesian network on G and vice versa [8, §1.2.3]:

Definition 2 (Bayesian Network). A Bayesian network on a set of random variables V consists of a
causal structure G on V and the probability distributions π(X |Pa(X)) of the random variables X ∈ V
conditioned on their direct causes in G. A Bayesian network gives rise to a joint probability distribution
on V = {X1, ...,Xk} by setting

π (X1 = x1, ...,Xk = xk) :=
k

∏
i=1

π (Xi = xi|pa(Xi)) ,

where pa(Xi) := {X j = x j|X j ∈ Pa(Xi)}.

The Markov condition equips a causal structure with a semantics that is given by conditional inde-
pendence statements. Further, Verma and Pearl [16] derive d-separation as a criterion to compute all
conditional independencies that follow if we apply the Markov condition to a given causal structure.

Definition 3 (d-Separation). Let G be a directed acyclic graph, i.e. it is a causal structure. An undirected
path P between two nodes A and B is an alternating sequence of nodes and edges

P = R0
E1
− R1

E2
− R2

E3
− ...

En−1
− Rn−1

En
− Rn,

where Ei ∈ {Ri−1 → Ri, Ri−1 ← Ri} for all 1 ≤ i ≤ n. We call a node Ri of P a collider if P is of the
form ...→ Ri← ..., otherwise Ri is said to be a non-collider of P.
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Further, let Z be a set of nodes. We say that a node N is blocked by Z if it lies in Z, i.e. if we have
that N ∈ Z. Moreover, N is said to be activated by Z if there exists a directed path from N to a node in Z.
The undirected path P is a d-connecting path with respect to the observations Z if every non-collider N
of P is not blocked and if every collider C of P is activated.

We say that Z d-connects two nodes A and B if there exists a d-connecting path between A and B
with respect to Z. Otherwise, we say that Z d-separates A and B. Finally, two sets of nodes A and B are
said to be d-separated by Z if Z d-separates A and B for every A ∈ A and every B ∈ B. Otherwise, the
sets A and B are d-connected by Z.

Note that the term “d-connected” is a shorthand for “directionally connected” [3].

Example 4. Let us consider the causal structure (1) again and take Z := {slippery} for the observations.
We find the following d-connecting path P := season→ rain→ wet ← sprinkler. The intuition behind
this d-connecting path is as follows:

Assume we observe the event Z. We know that this increases the probability for wet, which itself is
triggered by rain or sprinkler. If we additionally suppose that it is summer, this decreases the probability
for rain, which increases the probability of sprinkler as we have an increased probability for wet. To
summarize we expect season and sprinkler to be dependent once we observed slippery.

Note that the argument above does not go through anymore, if we observe additionally that it rains
or if we observe nothing.

The reasoning of Example 4 is now formalized in the following theorem.

Theorem 1 (Verma and Pearl [16]). Let G be a causal structure on the set V, let Z := {Z1, ...,Zn} ⊆ V
be a subset of nodes and let A,B ∈ V be nodes of G. If Z d-separates A and B, we obtain that A and B
are independent conditioned on Z in every distribution π |= G, which is Markov to G. Here, being
conditionally independent means that

∀a value of A ∀b value of B ∀z1,...,zn values of Z1,...,Zn :

π(A = a,B = b|{Zi = zi}n
i=1) = π(A = a|{Zi = zi}n

i=1) ·π(B = b|{Zi = zi}n
i=1). □ (2)

However, McDermott [5] demonstrates that in general d-separation does not yield a complete inde-
pendence oracle. This observation motivates the following definition.

Definition 4 (Faithfulness). A distribution π is (causally) faithful to a causal structure G on V if it is
Markov to G and if every conditional independence of two random variables A,B ∈ V with respect to a
set of observations Z⊆ V can be derived from d-separation by Theorem 1.

Fortunately, Meek [6] shows that faithfulness holds for almost all Boolean Bayesian networks in the
following sense:

Theorem 2. Let G be a causal structure and let θ ∈ [0,1]n be the vector, which determines the conditional
distributions that turn G into a Boolean Bayesian network representing the distribution π . In this case
we obtain finitely many non-trivial polynomial equations such that π is faithful to G unless θ solves one
of these equations. □

Note that Theorem 2 states that d-separation enables us to derive all conditional independence state-
ments that are implied by a causal structure under the Markov condition.

Finally, we identify a causal structure G with the database that contains a fact X ---> Y for every
edge X→Y in G. In this case the predicate dseparates/3 in following meta-interpreter decides whether
two nodes X and Y are d-separated by a list of observations Z.
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Program 1 (Deciding d-Separation).
% Implement hactivates/2 as the transitive closure of (--->)/2 and
% calculate activated nodes
hactivates(X,X). hactivates(Z,X):-(Y ---> Z), hactivates(Y,X).
activates([Z|_],X):-hactivates(Z,X). activates([_|TZ],X):-activates(TZ,X).
% Implement dconnects/3 by case distinction over the last orientation
dconnects(X,Y,Z):-\+member(X,Z), \+member(Y,Z), dconnects(X,Y,Z,_).
dconnects(X,Y,_,right):-(X--->Y). dconnects(X,Y,_,left):-(Y--->X).
dconnects(X,Y,Z,right):-(Y1--->Y),\+member(Y1,Z),dconnects(X,Y1,Z,right).
dconnects(X,Y,Z,right):-(Y1--->Y),\+member(Y1,Z),dconnects(X,Y1,Z,left).
dconnects(X,Y,Z,left):-(Y--->Y1),\+member(Y1,Z),dconnects(X,Y1,Z,left).
dconnects(X,Y,Z,left):-(Y--->Y1),activates(Z,Y1),dconnects(X,Y1,Z,right).
% dseparates/3 is the complement of dconnects/3
dseparates(X,Y,Z):-\+dconnects(X,Y,Z).

3 A Formalism for Lifted Probabilistic Logic Programming

Recall that events of the trivial probabilities zero and one are independent of every other event. To
overcome this obstruction, we introduce a language which separates logical predicates, denoting logical
statements with probabilities zero and one, from random predicates, denoting events with a probability
lying between zero and one.

Let us fix a query language i.e. a language Q⊇L⊇ E in three parts with an external vocabulary E
and a logical vocabulary L. Here, Q is a finite relational vocabulary with equality .

=, i.e. it consists of
a finite set of relation symbols, a finite set of constants as well as a countably infinite set of variables.
Further, L is a subvocabulary of Q containing all of the variables and constants of Q as well as a (possibly
empty) subset of the relation symbols of Q. Moreover, E is a subvocabulary of L, which satisfies the
same properties in L as L does regarding Q.
Example 5. In Example 1 the vocabulary E consists of the predicates room/1, employee/1, tank/1,
liquid/1, passage/2, in/2, stores/2 and f lammable/1, which we assume to be given by a database.
Further, L extends E by the predicate connected/2, which is deterministically defined in terms of the
predicates of E. Finally, Q extends L by the predicates opens/2, leaks/1, smokes/2 and f ire/1, which
we expect to denote non-deterministic random variables.

As usual, an atom is an expression of the form r(t1, . . . , tn) or t1
.
= t2, where r is a relation symbol

and t1 to tn are constants or variables, and a literal is an expression of the form A or ¬A for an atom A. It
is called an external atom or literal if r is in E, a logical atom or literal if r is in L, an internal atom
or literal if r is in L\E and a random atom or literal if r is in Q\L. Here, we regard equality .

= as a
relation in E. A literal of the form A is called positive and a literal of the form ¬A is called negative. A
literal L is said to be ground if no variable occurs in it. Finally, we use var(E) to refer to the variables
occurring in a given expression E.
Example 6. In Example 5 passage(R,R′) is an external atom, whereas connected(R,R′) is an internal
atom and f ire(R) is a random atom.

Formulas, as well as existential and universal formulas are defined as usual in first-order logic.
The logical vocabulary will be used to formulate constraints and conditions for our probabilistic logic
program. The purpose of a probabilistic logic program, however, is to define distributions for the random
variables determined by the language Q. This is done by so-called ProbLog clauses.
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Definition 5 (ProbLog Clause). A generalized ProbLog clause RC is an expression of the form

(_ :: R← R1, ...,Rm,L1, ...,Ln.) = (_ :: effect(RC)← causes(RC)∪ cond(RC)) ,

which is given by the following data:

i) a random atom R := effect(RC), called the effect of RC

ii) a finite and possibly empty set of random literals causes(RC) := {R1, ...,Rm}, called the causes
of RC

iii) a finite and possibly empty set of logical literals cond(RC) := {L1, ...,Ln}, called the condition
of RC

We call RC positive if the set of causes causes(RC) contains only positive literals. Further, we ob-
tain a ProbLog clause RCπ(RC) := (π(RC) :: R← R1, ...,Rm,L1, ...,Ln.) from the generalized ProbLog
clause RC by choosing a probability π(RC) ∈ [0,1].

In i) and ii) of Definition 5 we use the terminology of cause and effect to reflect that under our
semantics, a ground program represents a functional causal model [8, §1.4].

Example 7. Note that (RC4) of Example 1 yields a generalized ProbLog clause. Further, if we choose
the probability π(RC4) := 0.6 we obtain the ProbLog clause RC40,6 below.

0.6 :: f ire(R1)← room(R1),room(R),employee(E), tank(T ), liquid(L), in(T,R),

(connected(R,R1);connected(R1,R)),stores(T,L), f lammable(L),

smokes(E,R), leaks(T ). (3)

After having established the necessary syntax we proceed to the semantics. Let us begin with the
logical expressions. The semantics of logical expressions is given in a straightforward way.

We highlight the unique names assumption in our definition of a structure:
An L-structure Λ consists of a domain ∆, an element of ∆ for every constant in L, such that two

different constants are mapped to different elements, and an n-ary relation on ∆ for every relation symbol
of arity n in L.

Whether a logical formula is satisfied by a given L-structure (under a given interpretation of its free
variables) is determined by the usual rules of first-order logic. Finally, note that the semantics of external
expressions is defined analogously.

For the semantics of clauses and programs we choose the FCM-semantics [12] since it directly relates
an acyclic ground program to a Bayesian network. We start with the definition of a lifted program:

Definition 6 (Lifted Program and Program Structure). A program structure P := (R,I,C) is a triple,
which consists of the following data

i) a finite set of integrity constraints C(P) := C of the form (⊥← L1, ...,Lk.) for logical literals Li

with 1≤ i≤ k, which we call the constraints of P.

ii) a finite set of normal clauses I(P) := I of the form (H← B1, ...,Bm.) with logical literals B1, ...,Bm

and an internal atom H, which we call the internal part of P.

iii) a finite set of generalized ProbLog clauses R(P) := R, which we call the random part of P.



K. Rückschloß, F. Weitkämper 175

We say that P is stratified if its internal part I is a stratified set of normal clauses and we say that P is
positive if every generalized ProbLog clause of its random part R(P) is positive.

A choice of parameters for the program structure P is a function π : R(P)→ [0,1]. A program struc-
ture P and a choice of parameters π yield a (lifted) program Pπ := (R(P)π ,I(P),C(P)), where R(P)π is
the set of ProbLog clauses π(RC) :: effect(RC)← causes(RC)∪ cond(RC) for RC ∈ R(P). In this case,
C(P) are the constraints, I(P) is the internal part and R(P)π is the random part of the program Pπ .
Further, P is called the structure of the program Pπ . Finally, the program Pπ is stratified or positive if P
is.

Example 8. In Example 1 we obtain a stratified program structure P with random part (RC1), (RC2),
(RC3), (RC4), internal part (Int) and constraints (Const). Further, we obtain a choice of parameters π

by assigning π(RC1) := 0.8, π(RC2) := 0.1, π(RC3) := 0.5 and π(RC4) := 0.05. Finally, the choice of
parameters π gives rise to the following (lifted) program Pπ :

%Random part
0.8 :: opens(E,T) :- employee (E), tank(T).
0.1 :: leaks(T) :- employee(E), tank(T), opens(E,T).
0.5 :: smokes(E,R) :- employee(E), room(R).
0.05 :: fire(R1) :- employee(E), room(R), room(R1), tank(T), liquid(L),

flammable(L), in(T,R), stores(T,L), (connected(R,R1); connected(R1,R)),
smokes(E,R),leaks(T).

%Internal part
connected(R,R):-room(R).
connected(R,R1) :- room(R), room(R1), room(R2), passage(R2,R1),

connected(R, R2).
%Constraints
:- tank(T), liquid(L1), liquid(L2), L1 \= L2, stores(T,L1), stores(T,L2).

Definition 7 (Ground Variable and External Database). Let P be a stratified program structure and
let E be an E-structure. In our setting, we may assume without loss of generality that E is a Her-
brand model of a language E∗, which extends the external language E by constants. Further, denote
by L∗ and Q∗ respectively the extension of the languages L and Q by the new constants in E∗. We
write E I := E I(P) := {L ground atom of L∗ : I∪E |= L} for the minimal Herbrand model of I∪E , which
is the result of applying the stratified Datalog program I to E .

Further, we call E an external database of the program structure P if it satisfies the constrains of P
after applying the Datalog program I to E , i.e. if

E I |=
∧

⊥←L1,...,Ln∈C(P)
κ interpretation on var(L1,...,Ln)

¬

(
n∧

i=1

Lκ
i

)
.

A ground variable is a ground atom G := r(x1, ...,xn) of Q∗ with a random predicate r ∈Q. Finally, we
write G (E ) for the set of all ground variables.

The term ground variable indicates that we expect G to denote a proper random variable under our
semantics. From now on we restrict ourselves to the study of stratified program structures. Hence, let us
fix a stratified program structure P for the rest of this work.



176 On the Independencies Hidden in the Structure of a PLP

Definition 8 (FCM-Semantics of Lifted Programs). Let π be a choice of parameters and let E be an
external database for P. The grounding P(π,E ) of the program structure P with respect to π and E is the
system of Boolean equations given by

G :=
∨

RC∈R(P)
κ interpretation on var(RC)

effect(RC)κ=G
(E I,κ)|=cond(RC)

 ∧
C∈causes(RC)

Cκ ∧u(RC,κ)

 (4)

for every ground variable G ∈ G (E ). Here, the error term u(RC,κ) is a distinct Boolean random
variable with the distribution π (u(RC,κ)) = π(RC) for every generalized ProbLog clause RC ∈ R(P)
and every variable interpretation κ on var(RC). Besides, the error terms u(RC,κ) are assumed to be
mutually independent. Finally, the grounding of the program Q := Pπ is given by QE := P(π,E ).

Example 9. It is easy to observe that the program structure P of Example 8 is indeed a stratified pro-
gram structure in our sense. Now assume we are given a specific storage, which consists of four rooms
r1,r2,r3 and r4. These rooms are connected by passages as follows:

passage(r1,r2), passage(r2,r3)

Moreover, we have five tanks t1,t2,t3,t4 and t5 with

in(t1,r1), in(t2,r2), in(t3,r3), in(t4,r4), in(t5,r4).

The tanks contain two types of liquids gasoline and water, which we describe in the following way:

stores(gasoline,t1), stores(gasoline, t2), stores(water, t3),
stores(water, t4), stores(gasoline,t5), flammable(gasoline)

Finally, assume there are two employees Mary and John, which we express simply as mary and john. In
this case, one checks that the storage above satisfies the integrity constraint (Const), i.e. we are given an
external database E for the program structure P.

Further, let π be the choice of parameters in Example 8. For e ∈ { john,mary}, t ∈ {t1, t2, t3, t4, t5}
and r ∈ {r1,r2,r3,r4} the grounding P(π,E ) is given by the equations of the form:

• opens(e, t) := u((_ :: opens(E,T )← employee(E), tank(T ).),{E 7→ e,T 7→ t}) such that
u((_ :: opens(E,T )← employee(E), tank(T ).),{E 7→ e,T 7→ t}) is true with probability 0.8

• leaks(t) := opens(e, t)∧ u(RC2,{E 7→ e,T 7→ t}) such that u(RC2,{E 7→ e,T 7→ t}) is true with
probability 0.1

• smokes(e,r) := u(RC3,{E 7→ e,R 7→ r}) such that u(RC3,{E 7→ e,R 7→ r}) is true with probabil-
ity 0.5

• f ire(ri) :=
∨3

j=1 smokes(e,r j)∧ leaks(t j)∧u(RC4,{R1 7→ ri,E 7→ e,R 7→ r j,T 7→ t j}) such that
u(RC4,{R1 7→ ri,E 7→ e,R 7→ r j,T 7→ t j}) is true with probability 0.05 for 1≤ i, j ≤ 3

• f ire(r4) := smokes(e,r4)∧ leaks(t5)∧u(RC4,{R1 7→ r4,E 7→ e,R 7→ r4,T 7→ t5}) such that
u(RC4,{R1 7→ r4,E 7→ e,R 7→ r4,T 7→ t5}) is true with probability 0.05

In the present paper, we reason on a syntactic level about the conditional independencies implied by
the program structure P and an external database E . We proceed as Geiger and Pearl [2] and restrict our-
selves to those independence statements following from d-separation in the corresponding propositional
causal structures, which we call ground graphs.
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Definition 9 (Ground Graph and Acyclicity). Let E be an external database for P. We define the ground
graph GraphE (P) to be the directed graph on the set of ground variables G (E ), which is obtained
by drawing an edge G1 → G2 if and only if there exists a generalized ProbLog clause RC ∈ R(P), a
cause C ∈ causes(RC) and a variable interpretation ι on var(C)∪var(effect(RC)) such that the following
assertions are satisfied:

i)
(
E I, ι

)
|= ∃var(cond(RC))\(var(C)∪var(effect(RC))) cond(RC)

ii) Cι ∈ {G1,¬G1}
iii) effect(RC)ι = G2.

In this case we say that the edge G1→ G2 is induced by RC. Moreover, we call P an acyclic program
structure if GraphE (P) is a directed acyclic graph i.e. a causal structure for every external database E .

From now on we assume the program structure P to be acyclic. In this case it is easy to see that the
grounding P(π,E ) yields a unique expression for every ground variable G ∈ G (E ) in terms of the error
terms u(RC,κ) for every choice of parameters π and for every external database E . Hence, it induces a
unique probability distribution on G (E ). Rückschloß and Weitkämper [12] further show that this distri-
bution coincides with the distribution semantics of the ProbLog program Pπ ∪E . Overall Definition 6
yields a causal generalization of the standard semantics for acyclic ProbLog programs. Further, we obtain
the following result:

Proposition 1 (Rückschloß and Weitkämper [12]). For every external database E and for every choice of
parameters π the grounding P(π,E ) yields a distribution, which is Markov to the ground graph GraphE (P). □

Example 10. The program structure P of Example 8 is indeed acyclic in our sense. Further, in the
situation of Example 9 we obtain the following ground graph.

smokes(mary,r1) smokes( john,r1) smokes(mary,r2) smokes( john,r2)

smokes(mary,r3) smokes(mary,r4) smokes( john,r4)

f ire(r1) f ire(r2) f ire(r3) smokes( john,r3) opens( john, t5) f ire(r4)

leaks(t1) leaks(t2) opens( john, t3) leaks(t3) leaks(t4) leaks(t5)

opens(mary, t1) opens( john, t1) opens(mary, t2) opens( john, t2) opens(mary, t3) opens(mary, t4) opens( john, t4) opens(mary, t5)

As we now defined the necessary refinement of the ProbLog language [1], we can return to reasoning
about conditional independence.

4 A Symbolic Calculus for Conditional Independencies

By Proposition 1, for every external database E the causal information about the conditional independen-
cies implied by our program structure P lies in the ground graph GraphE (P). Hence, applying Theorem 1
we obtain a correct conditional independence oracle if we combine a Prolog representation of the ground
graph GraphE (P) with the d-separation oracle in Program 1.

Assume we are given a meta-predicate random/2 that indicates all random predicates together with
their arities.

Example 11. In Example 8, this means we add the facts
random(opens,2). random(leaks,1). random(smokes,2). random(fire,1).
to the program structure P.
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In this case, Program 2 computes the ground graph GraphE (P) when applied to the program struc-
ture P and an external database E .
Program 2 (Representation of the Ground Graph).
underlyingAtom(Atom,Atom) :- Atom \= (\+_).
underlyingAtom(Literal,Atom) :- Literal = (\+Literal1),

underlyingAtom(Literal1,Atom).
% Determine the conditions in a body of a random clause
conditions(Body,true) :- Body \= (_,_), underlyingAtom(Body,Atom),

functor(Atom,R,Arity), random(R,Arity).
conditions(Body,Body) :- Body \= (_,_), underlyingAtom(Body,Atom),

functor(Atom,R,Arity), \+random(R,Arity).
conditions((C1,Body), Cond) :- underlyingAtom(C1,Atom),

functor(Atom,R,Arity), random(R,Arity), conditions(Body,Cond).
conditions((C1,Body),(C1,Cond)) :- underlyingAtom(C1,Atom),

functor(Atom,R,Arity), \+random(R,Arity), conditions(Body,Cond).
% Calculate the potential parents
potentialParents(Body,[Atom]) :- Body \= (_,_), underlyingAtom(Body,Atom),

functor(Atom,R,Arity), random(R,Arity).
potentialParents(Body,[]) :- Body \= (_,_), underlyingAtom(Body,Atom),

functor(Atom,R,Arity), \+random(R,Arity).
potentialParents((C1,Body), [Atom|Parents]) :- underlyingAtom(C1,Atom),

functor(Atom,R,Arity), random(R,Arity), potentialParents(Body,Parents).
potentialParents((C1,Body), Parents) :- underlyingAtom(C1,Atom),

functor(Atom,R,Arity), \+random(R,Arity),
potentialParents(Body,Parents).

%Check whether edge exists
(X ---> Y) :- random(R,Arity), functor(Y,R,Arity), clause((_::Y),Body),

potentialParents(Body,Parents), member(X,Parents),
conditions(Body,Conds), Conds.

Together, Program 1 and 2 yield a meta-interpreter that computes valid conditional independence
statements implied by an acyclic, stratified program structure and an external database. In the appendix
we prove the following result that establishes the completeness of this conditional independence oracle
for a fragment of program structures.
Theorem 3 (Completeness). Let P be a positive program structure and let E be an external database
such that the ground graph GraphE (P) is singly connected. Further, let π be a choice of parameters
for P with values in (0,1) that yields proper unconditional probabilities for all ground variables. In this
case, the grounding P(π,E ) yields a distribution that is faithful to the ground graph GraphE (P).

In particular, if the ground graph GraphE (P) is singly connected for every external database E and
has a generalized ProbLog clause grounding to a probabilistic fact for every source in GraphE (P), our
meta-interpreter is correct and complete for every choice of parameters π of P with values in (0,1).

As singly connected ground graphs imply mutual independence of body atoms, the fragment of The-
orem 3 reminds us of the (Ind,Ind) assumption [10], under which marginal probabilities can be computed
in a much simpler way.
Example 12. As the program structure P of the introduction lies in the fragment of Theorem 3, Program 1
and 2 yield a correct and complete conditional independence oracle whenever we choose probabilities
in (0,1) for every generalized ProbLog clause in P.
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5 Experimental Evaluation

To evaluate our conditional independence oracle in Program 1 and 2, we investigate the lifted program P
that defines the random predicate random(p,1) with the random part below.

random(p,1). 0.5 :: p(X)← n(X). 0.5 :: p(Y )← p(X),n(X),n(Y ),e(X ,Y ).

Further, the program P expects a directed acyclic graph G as external database, represented by storing its
nodes n/1 and its edges e/2. Here, p/1 is a random property that holds with a base probability of 0.5 for
every node of G. If we observe p(n) for a node n of G, this enhances the probability of p(c) for every
child c of n by a factor of 0.5.

Further, we generate directed acyclic graphs G with S := 5i nodes for 1 ≤ i ≤ 20 by sampling five
times from the following ProbLog program.

n(1). n(Y )← n(X), Y = X +1, X < S+1.
1√
S

:: e(X ,Y )← n(X), n(Y ), X < Y.

In this way we obtain five directed acyclic graphs on the nodes {1, ...,S} that have an edge i→ j with
probability

√
S
−1

for every 1≤ i < j ≤ S. Next, we choose for every graph size S ten tuples (a,b) of
even numbers between one and S. We then process the queries

dseparates(p(a), p(b), []) and dseparates(p(a), p(b), [p(i) : i odd number between 1 and S])

on P for every graph of size S using the meta-interpreter of Program 1 and 2 with a timeout of 10 seconds.
Finally, we aim to compare our approach with checking the definition of independence, i.e. with

checking whether π(p(a)∧ p(b)) = π(p(a)) ·π(p(b)). To this aim we additionally calculate the prob-
abilities of p(a), p(b) and p(a)∧ p(b) with the evidence {p(i) : i odd number between 1 and S} and
without evidence using ProbLog 2 with a timeout of 10 seconds. The median and maximal run times of
the queries described above are visualized in Figure 1, clearly demonstrating that our approach performs
significantly faster than checking (conditional) independencies with exact inference in ProbLog 2.

Figure 1:

6 Conclusion

First, we establish a framework for lifted probabilistic logic programming, i.e. we abstract the notion of a
ProbLog program away from a concrete database and away from the concrete probabilities mentioned in
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the clauses. In this way we obtain so-called program structures. As our main result we then use the theory
of d-separation from Bayesian networks to reason about conditional independence on the basis of these
program structures. We also implement the corresponding independence oracle as a meta-interpreter in
Prolog. Finally, we prove the completeness of our conditional independence oracle for a fragment of
programs structures in Theorem 3. The paper then closes with an experimental evaluation of our results
revealing that our approach processes significantly faster than checking the definition of independence
with exact inference in ProbLog 2.

As the theory of d-separation is the basis of causal structure discovery in Bayesian networks, one
direction for future work is to develop the analogue of this theory in probabilistic logic programming.
In this context, we note that causal faithfulness is needed to extract possible causal structures from an
observed distribution. Furthermore, Theorem 2 suggests that our independence oracle is complete for
most program structures and choices of parameters. Hence, in our opinion determining completeness
results for more general fragments of program structures is a promising direction for future work.
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Appendix

Lemma 1 (Weak Transitivity, [7, p.137, Exercise 3.10]). Let A and C be sets of random variables. Fur-
ther, let B be a Boolean random variable and let π be a distribution on A∪C∪{B}. Choose possible
values a and c for the random variables in A and C respectively. Further, choose a possible value b
for B. If b is both dependent on a and on c, we find that a and c are marginally dependent or they become
dependent once we condition on b. □

Lemma 2. Let π be a distribution on the set Ω of all valuations on the variables X ,X1, . . . ,Xn such that
{X}∪{Xi}i=1,...,n encodes a mutually independent set of events and let ϕ be a propositional formula (in
minimal DNF) in which X occurs, and only occurs positively.

Then ϕ and X are positively correlated as events on Ω.

Proof. We must show that π(ϕ | X)> π(ϕ). Let ψ be the formula obtained by substituting⊤ for X in ϕ .
Then we have the following:

π(ϕ | X) = π(ψ | X) = π(ψ).

The first equality holds because ϕ and ψ are equivalent on valuations satisfying X , and the second
equality holds because π is an independent distribution. As ψ is staisfied by all valuations satisfying ϕ ,
but also on at least one valuation not satisfying ϕ (since X occurs in the minimal DNF formula ϕ), this
implies the statement.

Proof of Theorem 3. Let G := GraphE (P) be the ground graph of the program structure P with respect
to the external database E . Let P be a d-connecting path from A to B over a subset of nodes Z in G.
We show that for all truly probabilistic choices of parameters, A and B are dependent over Z. Let π be
the probability distribution on the random variables corresponding to such a choice of parameters. We
proceed by induction on the length of P.

As we use this in the argument for colliders below, we first show that for directed paths, one obtains
the stronger statement that A and B are positively correlated over Z.

We begin with paths of length two. If the length of P is two, there is an edge between A and B.
Assume without loss of generality that the edge goes from A to B. Consider the definition ϕ of B in the
Clark completion of the logic program associated with P. This is a propositional formula in the parents
of B and the error terms of ground clauses with head B; Since A is a parent of B, there is a clause C

http://ceur-ws.org/Vol-3193/paper1PLP.pdf
http://ceur-ws.org/Vol-3193/paper1PLP.pdf
https://doi.org/10.7551/mitpress/4298.003.0069
https://dl.acm.org/doi/10.5555/1622270.1622348
https://dl.acm.org/doi/10.5555/1622270.1622348
https://doi.org/10.1007/978-3-540-27775-0_30
https://doi.org/10.1016/B978-0-444-88650-7.50011-1
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whose body includes A, and thus since B is true if and only if A is true when the error terms associated
with all other clauses are set to false and all other facts in the body of C are true, A occurs in a minimal
disjunctive normal form representation of ϕ . As G is singly connected, the only path between any two
parents of B is via B /∈ Z, and thus the distribution induced by π | Z on the parents of B is independent
by the correctness of d-separation. Therefore A and B are positively correlated by Lemma 2.

So assume it to be true for directed paths of length n and let A1 . . .AnAn+1 be a directed path of
length n+1. Then π(An+1 | A1,Z) is equal to

π(An+1 | An,A1,Z)π(An | A1,Z)+π(An+1 | ¬An,A1,Z)π(¬An | A1,Z)

and π(An+1 | Z) is equal to

π(An+1 | An,Z)π(An | Z)+π(An+1 | ¬An,Z)π(¬An | Z).

Since P is the only path between A1 and An+1, A1 and An+1 are d-separated by An. Thus, we find
π(An+1 | An,A1,Z) = π(An+1 | An,Z) and π(An+1 | ¬An,A1,Z) = π(An+1 | ¬An,Z). Furthermore, by the
induction hypothesis, π(An+1 | An,Z) > π(An+1 | ¬An,Z) and π(An | A1,Z)> π(An | Z). Overall, this
implies that π(An+1 | A1,Z)> π(An+1 | Z) as required. (□)

We now return to the case of a general d-connecting path. As paths of length 2 are necessarily
directed, the base step of the induction follows from the directed case above. So assume that dependence
holds for all paths of length n and let P be a path of length n+1 > 2.

We proceed by appeal to weak transitivity.
Let A′, C and B be the final three nodes in P. We first cover the case where C is not a collider.
Then by the induction hypothesis, A and C are dependent over Z, and by the length two case above,

C and B are dependent over Z. Thus, either A and B are dependent over Z, or they are dependent
over {C}∪Z. However, since G is singly connected, P is the only path from A to B and thus A and B are
d-separated by {C}∪Z. Together with the correctness of d-separation we can conclude that A and B are
dependent over Z.

Now consider the case of a collider where C has a descendant in Z. Note that since conditioning
on a descendant Ci of C blocks the (only) path between A and B and any descendant C′ of Ci, we can
assume by correctness of d-separation without loss of generality that all descendants Ci of C in Z are non-
descendants of each other. Let {Ci}i=1,...,n be the descendants of C in Z, and let Z′ := Z\{Ci}i=1,...,n.

We show by induction on n that π(X |C1, . . . ,Cn,Z′)> π(X ,Z′) for X ∈ {A′,B}. The base case of the
induction is given by the special case of a directed path above. So assume π(X |C1, . . . ,Cn,Z′)> π(X | Z′).
We want to show that π(X |C1, . . . ,Cn,Cn+1,Z′)> π(X | Z′). However, we know that

π(X |C1, . . . ,Cn,Cn+1,Z′)> π(X |C1, . . . ,Cn,Z′)

by the special case of directed paths above, from which the claim follows. (□)
To apply weak transitivity, we alter the graph by introducing a new node

∧
C with arrows from

every Ci into
∧

C. We extend the probability distribution to
∧

C by setting
∧

C to be true of and only if
all Ci are true. By the argument above, A′ and B are both positively correlated with

∧
C over Z′. Thus,

by weak transitivity, either A′ and B are dependent over Z′ or they are dependent over {
∧

C}∪Z′. The
former is excluded by the correctness of d-separation and the fact that the collider C blocks the only path
from A′ to B (since the original graph was singly connected). Therefore A′ and B are dependent over
{
∧

C}∪Z′, which implies A′ and B being dependent over Z =C1, . . . ,Cn,Z′ in the original graph.
We can now conclude the proof by using weak transitivity and singly-connectedness a final time to

deduce that A and B are dependent over Z from the fact that A and A′ are dependent over Z (the induction
hypothesis) and the fact that A′ and B are dependent over Z.



S. Costantini, E. Pontelli, A. Russo, F. Toni,

R. Calegari, A. D’Avila Garcez, C. Dodaro, F. Fabiano,

S. Gaggl, A. Mileo, (Eds.): ICLP 2023

EPTCS 385, 2023, pp. 183–189, doi:10.4204/EPTCS.385.18

© Toni, Potyka, Ulbricht & Totis

This work is licensed under the

Creative Commons Attribution License.

Understanding ProbLog as Probabilistic Argumentation

Francesca Toni Nico Potyka

Department of Computing
Imperial College London, UK

{ft, n.potyka}@ic.ac.uk

Markus Ulbricht

Department of Computer Science
Leipzig University, Germany

mulbricht@informatik.uni-leipzig.de

Pietro Totis

Department of Computer Science
KU Leuven, Belgium

pietro.totis@kuleuven.be

ProbLog is a popular probabilistic logic programming language/tool, widely used for applications re-

quiring to deal with inherent uncertainties in structured domains. In this paper we study connections

between ProbLog and a variant of another well-known formalism combining symbolic reasoning and

reasoning under uncertainty, i.e. probabilistic argumentation. Specifically, we show that ProbLog is

an instance of a form of Probabilistic Abstract Argumentation (PAA) that builds upon Assumption-

Based Argumentation (ABA). The connections pave the way towards equipping ProbLog with al-

ternative semantics, inherited from PAA/PABA, as well as obtaining novel argumentation semantics

for PAA/PABA, leveraging on prior connections between ProbLog and argumentation. Further, the

connections pave the way towards novel forms of argumentative explanations for ProbLog’s outputs.

1 Introduction

ProbLog [10, 20] is a popular probabilistic logic programming formalism, equipped with efficient tools

in support of applications1 In a nutshell, ProbLog programs amount to logic programs where facts may

be equipped with probabilities. Thus, ProbLog can be naturally used for applications requiring to deal

with inherent uncertainties, e.g. in neuro-symbolic settings to learn how to operate on images [18], object

tracking [1], modelling metabolic networks[16], or synthesising inductive data models [7].

As a knowledge representation and reasoning (KRR) formalism, ProbLog can be seen as bringing

together symbolic reasoning and reasoning under uncertainty. Thus, it makes sense to wonder how it

relates to the family of KRR formalisms broadly referred to as Probabilistic Argumentation (PA) [14],

which also bring together these two types of reasoning. Indeed, some existing works already study

the connections between the two, in particular in the presence of inherent uncertainties, e.g. in neuro-

symbolic settings with images [18]. Also, SMProbLog [23] extends ProbLog beyond the standard well-

founded model semantics [11] towards the stable model semantics [12] so as to capture a form of PA.

Further, [19] shows how the form of PA in [17] can be implemented in ProbLog. These existing works

thus focus on showing how (variants of) Problog can obtain (forms of) PA. In this paper, instead, we focus

on the opposite direction, specifically on whether (some forms of) PA can be used to obtain (variants of)

ProbLog. In summary, our contribution is two-fold:

• We define a new instance of the well-known Assumption-based Argumentation (ABA) [3, 4] and

use it to instantiate Probabilistic Abstract Argumentation (PAA) [9] (Section 3);

• We formally relate ProbLog and the proposed instance of PAA (Section 4).

This reinterpretation of ProbLog in argumentation terms opens new avenues (as discussed in Section 5).

1See https://dtai.cs.kuleuven.be/problog/.

http://dx.doi.org/10.4204/EPTCS.385.18
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://dtai.cs.kuleuven.be/problog/
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2 Background

Logic Programs. A logic program (LP) is a set of (implicitly universally quantified) rules of the form

l0← l1, . . . , lm, with m≥ 0, l0 an atom (called the head of the rule) and each li (for 1≤ i≤m) an atom or

the negation-as-failure not ai of an atom ai. If m = 0 then the rule is called a fact. The Herbrand base of

an LP is the set of all ground atoms obtained from the predicate, function/constant symbols in the LP.

ProbLog. The material in this section is adapted from [10, 20]. A ProbLog program is a set R of

rules as in an LP together with a set F of probabilistic facts of the form p :: l0←, where p ∈ [0,1] and

l0 is an atom that is not the head of any rule in R. The semantics of a ProbLog program is based on

distribution semantics [21]: a ProbLog program T = F ∪R defines a probability distribution over LPs

L = F ′∪R,F ′ ⊆ {l← |p :: l←∈ F}:

P(L|T ) = ∏
l←∈F ′,p::l←∈F

p · ∏
l←6∈F ′,p::l←∈F

(1− p)

Then, for a query q, the success probability for q, given T , is2

Ps(q|T ) = ∑
L=F ′∪R,F ′⊆{l←|p::l←∈F},∃θ :L|=qθ

P(L|T )

for |= the chosen logic programming semantics: if L is a positive LP (without negation as failure), as in

[21], then this is the least Herbrand model; otherwise, let it be the well-founded model [11].

Example 1. Consider the (propositional) LP amounting to the following rules:

a← b,not c; b←; d← not d

(referred to in short as ρ1,ρ2,ρ3, respectively). Then, for R = {ρ1,ρ3} and F = {0.3 :: b←}, T = F ∪R

is a ProbLog program. Given that R 6|= a (as the well-founded model of R deems a,b,c false and d

undecided) and R∪ {ρ2} |= a (as the well-founded model of R∪ {ρ2} deems a,b true, c false and d

undecided), Ps(a|T ) = P(R∪{ρ2}|T ) = 0.3.

ProbLog typically assumes that the well-founded model of every LP L⊆F ′∪R,F ′⊆{l←|p :: l←∈F}
is two-valued [10, 23], but the well-founded model may be three-valued [13], as in the example .

Abstract Argumentation. An Abstract Argumentation (AA) framework [8] is a pair (Args,Att) with

Args the arguments and Att⊆Args×Args the attack relation. AA frameworks can be equipped with

various argumentative semantics [8], e.g. the grounded or stable extensions semantics [8], identifying

sets of “acceptable arguments”. For illustration, given AAF = (Args,Att) with Args = {α ,β} and Att =
{(β ,β )}, the grounded extension of AAF is {α} and there is no stable extension of AAF.

Assumption-based argumentation (ABA). An ABA framework (as originally proposed in [3], but

presented here following more recent accounts by [22, 4]) is a tuple 〈L , R, A , 〉 where

• 〈L ,R〉 is a deductive system, where L is a language and R is a set of (inference) rules of the

form s0← s1, . . . ,sm (m≥ 0,si ∈L , for 1≤ i≤ m);

• A ⊆L is a (non-empty) set of assumptions;

• is a total mapping from A into L , where a is the contrary of a, for a ∈A .

2A query q is a possibly non-ground atom from the Herbrand base of T and θ denotes a possibly empty variable substitution.
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Given a rule s0 ← s1, . . . ,sm, s0 is referred to as the head and s1, . . . ,sm as the body; if m = 0 then the

body is said to be empty. Flat ABA frameworks are restricted so that assumptions are not heads of rules.

Differently from AA, where arguments and attacks are given, in flat ABA they are derived from the

building blocks of ABA frameworks. Specifically, arguments are deductions of claims using rules and

supported by assumptions, and attacks are directed at the assumptions in the support of arguments:

• an argument for (the claim) s ∈L supported by A⊆A and S ⊆R (denoted A ⊢S s) is a finite

tree with nodes labelled by sentences in L or by true3, the root labelled by s, leaves either true or

assumptions in A, and non-leaves s′ with, as children, the elements of the body of one rule in S

with head s′ (true in the case of a rule with an empty body), and S the set of all these rules;

• an argument A1 ⊢S1
s1 attacks an argument A2 ⊢S2

s2 iff s1 = a for some a ∈ A2.

Given an ABA framework 〈L , R, A , 〉, let Args be the set of all arguments and Att be defined as

above. Then (Args,Att) is an AA framework (that we refer to as the AA framework for 〈L , R, A , 〉)
and standard argumentative semantics for the latter can be used to determine, e.g., grounded extensions.4

LPs as Flat ABA Frameworks. Flat ABA can be instantiated to capture logic programming under

several semantics [3], including the well-founded model [11] and the stable model semantics [12].

Example 2. The semantics of the LP {ρ1,ρ2,ρ3} from Example 1 can be captured by understanding it

as a flat ABA framework 〈L , R, A , 〉 with

• R = {ρ1,ρ2,ρ3};

• L = {a,b,c,d,not a,not b,not c,not d} (this is the Herbrand base of the LP together with all the

negation as failure literals that can be constructed from its Herbrand base);

• A = {not a,not b,not c,not d} (this is the set of all negation as failure literals in L );

• not X = X for all X ∈ {a,b,c,d}.

(Args,Att) can then be obtained from this ABA framework, with:

• Args = {{not c} ⊢{ρ1,ρ2} a, {} ⊢{ρ2} b, {not d} ⊢{ρ3} d}∪{{not X} ⊢{} not X |X ∈ {a,b,c,d}}

• Att = {({not c} ⊢{ρ1,ρ2} a,{not a} ⊢{} not a), ({not d} ⊢{ρ3} d,{not d} ⊢{} not d),
({not d} ⊢{ρ3} d,{not d} ⊢{ρ3} d), ({} ⊢{ρ2} b,{not b} ⊢{} not b)}.

R, as a LP, admits no stable model [12], and there is no stable extension [8] of this ABA framework.

The well-founded model [11] of R deems a,b true, c false and d undecided, and the grounded extension

[8] of 〈L , R, A , 〉 accepts

{{not c} ⊢{ρ1,ρ2} a, {} ⊢{ρ2} b, {not c} ⊢{} not c}.
The two correspond in the sense that the atomic claims of accepted arguments in the grounded exten-

sion are true in the well-founded model, the negation as failure claims of accepted arguments are the

complement of false atoms in the well-founded model, and no other atoms are true or false therein (and

vice versa, i.e. every true atom and the negation as failure of every false atom in the well-founded model

are claims of accepted arguments in the grounded extension, and no other arguments exist therein).

Our results will leverage on the correspondence illustrated here (see [3] for formal results, including

correspondences between other semantics of LPs and notions of extensions in flat ABA [3]).

3Here true stands for the empty body of rules.
4ABA semantics were originally defined in terms of sets of assumptions and attacks between them [3], but can be reformu-

lated, for flat ABA frameworks, in terms of sets of arguments and attacks between them (see [22]), as given here.
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Probabilistic Abstract Argumentation (PAA). The material in this section is adapted from [9] (fo-

cusing on a single juror). A PAA framework basically consists of an AA framework and a probability

distribution assigning probabilities to subframeworks. Formally, it is a triple (AAF,PS,) where:

• AAF=(Args,Att) is an AA framework;

• PS=(W ,P) is a probability space, with W the world set and P a probability distribution over W ;

• ⊆W ×Args specifies which arguments are applicable in worlds in PS, where α ∈ Args is appli-

cable in w ∈W iff (w,α) ∈ (we also write w  α for (w,α) ∈).

Given a possible world w ∈ W , the AAF wrt w, denoted by AAFw = (Argsw,Attw), is defined by re-

stricting AAF to the arguments applicable in w. More formally, Argsw = {α ∈ Args | w  α } and

Attw = Att ∩ (Argsw ×Argsw). We denote the grounded extension of AAFw by G(AAFw). Then, the

grounded probability of argument α ∈ Args is defined as follows:

ProbG(α) = ∑
w∈W :α∈G(AAFw)

P(w).

Intuitively, ProbG(α) is the probability that α is accepted in a possible world (under the grounded exten-

sion semantics). PAA is a form of probabilistic argumentation under the constellation approach [14].

3 ProbLog-ABA and ProbLog-PAA

Several instances of (flat and non-flat) ABA have been studied [3, 5] (including the flat logic program-

ming instance illustrated in Example 2 [3]). Here, we introduce the following (flat) instance, referred to

as ProbLog-ABA since, as we will show, it is a first step towards capturing ProbLog programs as PAA.

Definition 1. A ProbLog-ABA framework is a flat ABA framework 〈L , R, A , 〉 where

• R is a (ground)5 LP;

• L is a set of atoms and negation as failure literals; formally, for HB the Herbrand Base of R and

HBnot = {not p|p ∈HB}, L = HB∪HBnot∪{χ}, for a special symbol χ 6∈HB∪HBnot;

• A = HBnot ∪F , for some F ⊆ HB;

• for any not p ∈A , not p = p; for any φ ∈F , φ = χ .

Basically, ProbLog-ABA frameworks generalise the ABA frameworks capturing LPs by including

additional assumptions (F ), all having the same contrary (χ) not occurring in the LP (R). These addi-

tional assumptions can be seen as playing the role of abducibles in abductive logic programming [15].

They amount to the atoms in probabilistic facts in ProbLog programs T = R∪F, as follows.6

Definition 2. The ProbLog-ABA framework corresponding to T is 〈L , R, A , 〉 as in Definition 1

where R = R and F = {l|(p :: l←) ∈ F}.

We can then instantiate PAA with ProbLog programs, so that the AA framework component is drawn

from the ProbLog-ABA framework corresponding to a given ProbLog program and the probability space

is defined to mirror the probability distribution over LPs captured by the ProbLog program, as follows.

5This is in line with standard practices when studying the semantics of LPs: they are assumed to stand for the set of all their

ground instances over their Herbrand universe.
6Given that we are focusing on semantics, in the remainder we assume that the ProbLog program is ground.
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Definition 3. Let 〈L T
, RT

, A T
,

T 〉 be the ProbLog-ABA framework corresponding to T , for A T =
HBnot∪F , and let AAFT = (ArgsT

,AttT ) be the AA framework for 〈L T
, RT

, A T
,

T 〉. Then, the PAA

framework corresponding to T is (AAFT
,PST

,
T ) where PST = (W T

,P) is the probability space with

• W T = 2F ,

• for w ∈W T : P(w) = ∏l∈w,p::l←∈F p ·∏l∈F\w,p::l←∈F (1− p),
and 

T is such that, for w ∈W T , α ∈ ArgsT , α = A ⊢S s: w 
T α iffA∩F ⊆ w.

In line with [9], we assume that the AA frameworks in PAA frameworks corresponding to ProbLog

programs are finite. Given such a PAA framework, we can measure the grounded probability of argu-

ments (as in standard PAA), as well as the grounded probability of queries, as follows.

Definition 4. Let T be a (ground) ProbLog program and (AAFT
,PST

,
T ) be the PAA framework cor-

responding to T , for AAFT = (ArgsT
,AttT ) and PST = (W T

,P). Then, the grounded probability of

(ground) query q is

ProbG(q) = ∑
w∈W T :α∈G(AAFT

w ),α=A⊢S q

P(w).

This notion is more fine-grained than that of grounded probability of arguments, reflecting the struc-

tured nature of our PAA framework. We conjecture (and leave to future work) that this notion is an

instance of that of grounded probability of sentences in the Probabilistic ABA of [9].

4 Results

We show that the semantics of ProbLog can be captured in probabilistic argumentation, as follows.

Proposition 1. Let T be a (ground) ProbLog program and (AAFT
,PST

,
T ) be the PAA framework

corresponding to T , for AAFT = (ArgsT
,AttT ) and PST = (W T

,P). Then, for any (ground) query q:

Ps(q|T ) = ProbG(q); (1)

Ps(q|T )≤ ∑
α∈ArgsT :α=A⊢S q

ProbG(α). (2)

Proof. (Sketch) Ps(q|T ) = ∑L=F ′∪R,F ′⊆{l←|p::l←∈F},L|=q P(L|T ) by definition. Given the correspondence

between well-founded model of a LP and grounded extension of the AA framework for the ABA frame-

work corresponding to the LP [3], and by definition of the probability space in the PAA framework corre-

sponding to T , we obtain Ps(q|T ) = ∑w∈W T :α∈G(AAFT
w ),α=A⊢S q P(w), proving (1). (1) implies (2) because

∑α∈ArgsT :α=A⊢S q ProbG(α) = ∑α∈ArgsT :α=A⊢S q ∑w∈W :α∈G(AAFw) P(w) = ∑w∈W P(w) · |{α ∈ ArgsT | α =
A ⊢S q}| ≥ ∑w∈W T :α∈G(AAFT

w ),α=A⊢S q P(w) (there may be multiple arguments for the same claim in the

grounded extensions obtained by different choices of worlds).

Thus, the notion of grounded probability of queries in the ProbLog-ABA instance of PAA corre-

sponds exactly to the notion of success probability in ProbLog, whereas grounded probability of argu-

ments in PAA approximates it.

5 Conclusion and Discussion

We have defined a form of PAA, instantiated with a novel form of ABA and probability spaces mirroring

ProbLog’s probability distributions over logic programs, to re-interpret ProbLog in argumentative terms.
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This allows us to broaden the semantics of ProbLog beyond (two-valued) well-founded models, lever-

aging on other semantics for ABA, notably semantics of sceptically preferred and ideal extensions (see

[4]). Moreover, it opens the way to different forms of explainability for the outputs of ProbLog (under

the standard or new semantics). Indeed, argumentative abstractions of various reasoning problems have

been shown to lend themselves to diverse explanatory formats, including interactive ones [6], and it is

well known that different forms of explanations are needed to deal with different cognitive needs [2].

Future work includes exploring whether reasoning under the new semantics can be efficiently imple-

mented in practice, and whether the new forms of explanations can be beneficially deployed in applica-

tions to increase user trust. Also, we have focused on success probability of queries: it would also be

interesting to study whether and how explanation probability of queries can be captured argumentatively.

It would also be interesting to explore whether ProbLog can be captured directly in Probabilistic ABA

of the more general form proposed in [9] (again focusing on a single juror). It would also be interesting

to explore whether credulous versions of ProbLog, notably SMProbLog [23], could inform the definition

of novel credulous semantics in probabilistic argumentation. Finally, it would be interesting to study

whether other languages/tools based on the distribution semantics [21] could also be captured in PAA.
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Probabilistic Answer Set Programming under the Credal Semantics is a recently introduced formal-

ism to express uncertainty with answer set programming where the probability of a query is described

by a range. We propose to extend it to encode decision theory problems.

1 Encoding

Probabilistic Answer Set Programming under the Credal Semantics [5] extends answer set program-

ming [3] with ProbLog [6] probabilistic facts of the form Π :: f , where Π is a floating point value

(between 0 and 1) representing the probability of f of being true. A selection of a truth value for every

probabilistic fact identifies a world whose probability is the product of the probabilities of the probabilis-

tic facts true times the product of one minus the probability of every probability fact false. In formula:

P(w) = ∏
fi true∈w

Πi · ∏
fi false∈w

(1−Πi).

In Probabilistic Logic Programming [6] (PLP), a world is a Prolog program, so it has exactly one model.

In Probabilistic Answer Set Programming under the credal semantics (PASP), every world is an answer

set program [8], so it has zero or more (stable) models. Every world is required to have at least one

stable model. In PASP, the probability of a query (i.e., a conjunction of ground atoms) is represented

with a probability range, composed of a lower and upper bound. A world contributes to both the lower

and upper bounds if the query is true in every answer set while it contributes only to the upper bound if

it is true in some of the answer sets. That is, P(q) = [P(q),P(q)] where

P(q) = ∑
wi|∀m∈AS(wi), m|=q

P(wi), P(q) = ∑
wi|∃m∈AS(wi), m|=q

P(wi).

The probability bounds can be computed with, for example, the tool described in [1]. The DTProbLog

framework [4] allows to express decision theory problems with a ProbLog [6] program. It introduces a

set U of utility atoms of the form utility(a,r) where r is the reward obtained to satisfy a (i.e., when a

is true) and a set of decision atoms D. Every subset of decision atoms defines a strategy σ (a ProbLog

program) and its utility is computed as

Util(σ) = ∑
(a,r)∈U

r ·Pσ (a)

where Pσ(a) is the probability of a computed in the ProbLog program identified by fixing the deci-

sion atoms in σ to true. The goal is to find the strategy σ ∗ that maximizes the utility, i.e., σ ∗ =
argmaxσUtil(σ).
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We apply this framework to PASP, where every world has one or more stable models. Thus, the

utility is described by a lower and an upper bound:

Util(σ) =
[

Util(σ),Util(σ)
]

=

[

∑
(a,r)∈U

r ·Pσ (a), ∑
(a,r)∈U

r ·Pσ (a)

]

We have now to select whether to optimize the lower or upper utility, and so there are two possible goals:

σ ∗ = argmaxσ (Util(σ)).

or

σ ∗ = argmaxσ (Util(σ)).

depending on the considered target probability. Note that with this representation the lower utility can

be greater than the upper utility, when, for example, there are both positive and negative rewards. We

consider here only the strategies where the lower utility is less or equal than the upper utility. To clarify,

consider this simple program:

0.7::pa. 0.2::pb.
decision da. decision db.
utility (r0 ,3). utility(r1 ,-11).

r0:- pa, da.
r0;r1:- pb, db.

pa and pb are two probabilistic facts and da and db two decision atoms. The rewards we get to satisfy r0

and r1 are respectively 3 and -11. There are 4 possible strategies (no decision atoms selected, only one

decision atom selected, and both decision atoms selected). Each of these have 4 worlds (no probabilistic

facts true, only one probabilistic fact true, and both probabilistic facts true). If we consider the strategy

σda = {da}, we have Pσda
(r0) = [0.7,0.7] and Pσda

(r1) = [0,0] (only the first rule is considered), and

Util(σda) = [3 · 0.7 + (−11) · 0,3 · 0.7 + (−11) · 0] = [2.1,2.1]. If we repeat this process for all the

strategies and we consider the upper utility as target, we get that σda = {da} is the one that maximizes

the upper utility.

A naive algorithm consists in enumerating all the possible strategies and then computing the lower

and upper probability for every decision atom [1]. However, this clearly cannot scale, since the number

of possible strategies is 2|D|. Moreover, the algorithm of [1] adopts enumeration of stable models and

projection on probabilistic facts [7], that also requires the generation of an exponential number of answer

sets. Thus, a practical solution should adopt both approximate methods for the generation of the possible

strategies and for inference. For the former, greedy algorithms such as genetic algorithms [9] can be

a possible solution. For inference, approximate methods based on sampling, such as the one proposed

in [2] can be of interest.
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The programming language Prolog makes declarative programming possible, at least to a substantial
extent. Programs may be written and reasoned about in terms of their declarative semantics. All the
advantages of declarative programming are however lost when it comes to program debugging. This
is because the Prolog debugger is based solely on the operational semantics. Declarative methods of
diagnosis (i.e. locating errors in programs) exist, but are neglected. This paper discusses their pos-
sibly main weaknesses and shows how to overcome them. We argue that useful ways of declarative
diagnosis of logic programs exist, and should be usable in actual programming.
Keywords: declarative diagnosis / algorithmic debugging, Prolog, coroutining, program correctness,
program completeness

1 Introduction

The main concept of logic programming is that a program is a set of formulae, and computation produces
its logical consequences. Such program can be understood declaratively – not as a description of any
computation, but rather as a description of a problem to solve. Its answers depend solely on its “logic”,
i.e. on the formulae of which it consists. So logic programming is a declarative programming paradigm.
The programmer can construct programs and reason about them at a higher level of logic, abstracting
from their computations. Whole reasoning about program correctness (more precisely, correctness and
completeness) can be done at this level. This is an important advantage of the paradigm. One needs to
resort to the operational semantics (the “control”) only to deal with termination and efficiency. Modifying
the control does not change (the set of) the answers of the program. What is changed is the way they
are computed; the logic is separated from the control [Kow79]. The programming language Prolog was
introduced as an implementation of logic programming. It is still the major logic programming language.
It makes declarative programming possible, at least to a substantial extent.

On the other hand, a Prolog program can be looked at from a point of view of its operational seman-
tics. A program is a precise description of computations; one can program in Prolog imperatively. This is
often necessary, for instance when a program has to interact with its environment. Dealing with the oper-
ational semantics is often difficult, due to among others the non-straightforward nature of backtracking,
coroutining and tabulation.

An important activity in programming is program debugging. And when it comes to debugging of
Prolog programs, all the declarativeness is lost. Declarative methods, known as declarative diagnosis
(DD) or algorithmic debugging, exist but are neglected. Basically, the only tool available for a pro-
grammer is the Prolog debugger, which is based solely on the operational semantics. So the tool is
incompatible with declarative programming (cf. e.g. [Llo87, DN94, Dra19]). To use the debugger the
programmer has to go into details of the operational semantics, abandoning the declarative thinking.
This makes the debugging difficult, and encourages programmers to resign from the declarative view
of programs. The difficulties are even more serious when more sophisticated control is involved, like
coroutining or tabulation.

http://dx.doi.org/10.4204/EPTCS.385.20
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As the Prolog debugger is a rather powerful tool, one may expect that a “declarative programmer”
can obtain from it the information she needs. An example of such information is which premises have
been used to derive a given answer, displayed at an exit port. Obtaining such information is possible,
but surprisingly tedious [Dra19].

In the next section we briefly introduce declarative diagnosis (DD), present a unifying view of in-
correctness and incompleteness diagnosis, and suggest a kind of suitable DD tools. Then (Section 3) we
identify the intended model problem, which has possibly been the main obstacle for acceptance of DD,
and show how to overcome it. In Section 4 we discuss applying DD to Prolog with tabulation and delays.
Preliminaries. The presentation is rather informal, in most cases references are given to a more precise
treatment. In some places the terminology of logic is used [Apt97], instead of that of Prolog manuals.
So by an atom we mean an atomic formula, not a Prolog constant. We consider SLD-resolution dealing
with queries (conjunctions of atoms), instead of goals (negated queries). From a programmer’s point of
view, the selected atom in a query in an SLD-derivation is a procedure call. By a (computed) answer
of a program we mean the result of applying a (computed) answer substitution to the initial query. The
set of clauses (in a program) beginning with a predicate symbol p will often be called procedure p. The
Herbrand base will be denoted by H B, and the least Herbrand model of a program P by MP.

In imperative and functional programming, program correctness consists of program termination and
partial correctness. The latter means that the program produces required results provided it terminates.
In logic programming, due to its nondeterministic nature, partial correctness splits into correctness and
completeness [Hog84, DM05, Dra16]. Correctness means that each answer of the program is compatible
with the specification. Completeness means that all the answers required by the specification are pro-
duced by the program. Obviously, termination is a property of the operational semantics, in contrast to
correctness and completeness. Debugging consists of program diagnosis, i.e. locating errors in programs,
and program correction. In this paper we are interested in diagnosing incorrectness and incompleteness
for logic / Prolog programs.

2 Declarative diagnosis

The idea of declarative diagnosis was introduced by Shapiro in his seminal thesis [Sha83], under the
name algorithmic debugging. Shapiro gave algorithms for diagnosing incorrectness and incompleteness
(and also non-termination). His ideas were followed and developed by further work, dealing mainly with
logic programming, but also with other paradigms (see e.g. [Per86, DNTM89, Nai92, CRS17]).
Specifications, symptoms, errors. Diagnosis starts with a symptom of program incorrectness or in-
completeness. The purpose is to locate in a program an error, i.e. a fragment responsible for the symptom.
In incorrectness diagnosis a symptom is an incorrect answer of the program. In diagnosing incomplete-
ness it is, generally speaking, a missing answer. Here by an incompleteness symptom we mean an atomic
query for which the program terminates, but it does not produce some required answers.

Diagnosis must be based on a specification. In DD the specification is the intended model of the
program. This is the least Herbrand model of the target program. A DD algorithm is informed about the
intended model by an oracle, which answers queries about the model. Usually the oracle is the user.

program
+

symptom
GGGGGGA

located error DGGGGGG

DD algorithm

queries
GGGGGGGGGGGA

about the
intended model

DGGGGGGGGGGG

answers

user
(oracle)
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In incorrectness diagnosis, an incorrectness error is an incorrect clause. In such clause the body atoms
are true, and the head is not true in the intended specification. In logical terms M 6|= C, where M is the
intended model and C the clause.

By an incompleteness error we will mean an atomic query A whose answer (required by the specifi-
cation) cannot be produced by any clause of the program (out of atomic queries required by the specifi-
cation). Logically, we have an instance Aθ ∈M such that the program does not contain a clause with an
instance Aθ ← ~B such that M |= ~B, where M is the intended model. So an incompleteness error points at
a procedure responsible for the error (and presents an atom the procedure should additionally produce).

It can be shown that a more precise notion of an error is impossible. For instance, an incorrect clause
can be corrected in various ways, leaving various its fragments unchanged. So we cannot consistently
name such a fragments as correct, or incorrect.

DD algorithms, a unifying view. For incompleteness, we prefer Pereira style diagnosing [Nai92], as
it is more convenient than that of [Sha83]. In such context, both incorrectness and incompleteness diag-
nosis can be treated as instances of a single algorithm. (See [Nai97, CRS17] for a similar observation.)

Let us first describe the oracle queries. A query in incorrectness diagnosis is an atom A (which was
obtained as an answer in the computation). In incompleteness diagnosis it is an atom A (a procedure call
from the computation) together with the computed answers Aθ1, . . . ,Aθn (n ≥ 0) obtained for A. The
oracle has to answer whether the query is a symptom (of correctness or completeness, respectively).

The algorithm inspects an erroneous computation of the program, and builds builds a DD search tree
of oracle queries. The root is the symptom we begin with. The tree contains a target, i.e. a node which
is a symptom and its children are not. The algorithm employs the oracle to search the tree for a target.
Now we give further details of the tree and explain how a target determines an error.

In incorrectness diagnosis the tree is a proof tree (the root is a wrong answer, each node together with
its children is an instance of a program clause). Thus a target with its children is an incorrectness error.

For incompleteness diagnosis, each node A (which is an atom A with its computed answers) has
children that are the top-level queries (together with the answers) used in the computation for A. (By
top-level we mean one that is an instance of a body atom of a clause used to resolve A.) If A is a target
and its children are not, then A contains an incompleteness error (which is the procedure call from
A ). Informally, as we found no incompleteness related to the body atoms of the applicable clauses, the
clauses are responsible (for the initial symptom).

It is important that with a DD algorithm the user can locate the error without looking at the program.
Also, all the diagnosis is performed solely in terms of the declarative semantics. So we do not need to
understand the operational semantics.

Non-algorithmic declarative diagnosis. Practice shows some inconveniences of using DD algorithms,
at least in their basic form (cf. e.g. [DNTM89]). An inconvenient and counterproductive feature is that
the order of queries is determined by the algorithm. The effort (and time) to answer various queries may
differ substantially,1 so it is desirable to first deal with queries considered by the user to be easier. As a
result, some difficult queries many eventually not be asked. Also, it should be possible to modify one’s
previous answer, as errors in answering are possible. Such modifications are also useful in making and
withdrawing temporary assumptions (“what if this were correct”).

Such inconveniences disappear when the search is performed by the user. It is sufficient that a DD
tool extracts from the computation the DD search tree, and gives the user convenient means to explore the
tree. The author’s experience with such prototype tools shows that they are more convenient to use than

1So it is not realistic to judge the efficiency of DD algorithms by means of query complexity [Sha83, CRS17], which deals
solely with the number of queries.
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(prototype implementations of) DD algorithms. The main burden – with understanding and answering
queries – is the same (only the answers are not typed in). Additional human effort, due to performing
the search, is minor. Being relieved of the restraints of DD algorithms is a substantial convenience. The
user may look at various queries and choose which to answer first. Some answers may be postponed, the
user may inspect the tree freely. An already visited part of the tree may be re-inspected, to correct former
decisions (if erroneous, or assumed temporarily).

What we propose is, in a sense, a declarative counterpart of the Prolog debugger. The debugger gives
the user access to the operational semantics of a program; we show how to give access to the declarative
semantics.

3 The intended model problem

In this section, based on [Dra16, Section 7], we discuss what possibly is the main reason for lack of
acceptance of DD in practice. Namely a fundamental notion of DD is that of the intended model. This
means the the programmer has to know exactly the intended least Herbrand (2-valued) model of her
program; in other words, to know exactly the relation to be defined by each predicate. This is usually not
realistic.

As an example [Dra16] consider insertion sort and predicate insert/3, dealing with inserting an ele-
ment into a sorted list (to obtain a sorted list as a result). The user does not (and should not) know how
the predicate should behave on unsorted lists. Hence she is unable to answer an oracle query like “Is
atom B = insert(2, [3,1], [2,3,1]) correct”? Let us call this phenomenon the intended model problem.

Both treating B as correct, or incorrect may be reasonable, and result in different debugged programs.
For instance treating all such atoms as incorrect leads to a program in which insert/3 checks that its
second argument is a list. Such program is inefficient. So choosing the intended model may then force
certain design decisions, possibly undesirable ones. Often while developing a program it is impossible
to know in advance its exact semantics (i.e. its intended model). Apparently the semantics of insert/3 (in
a standard insertion sort program [SS94, Program 3.21]) is a result of making the program simple and
efficient, and has not been decided in advance. See [Dra18] for a larger example.

In the author’s opinion the intended model problem makes DD inapplicable in many, if not in most
of, practical cases.
Approximate specifications. Such examples show a common feature of specifications in logic pro-
gramming (both formal, and informal ones which programmers have in their minds): often such speci-
fications have a 3-valued flavour. Some atoms are clearly true, some false, and the remaining ones are

MP︷ ︸︸ ︷
specification for completeness︷ ︸︸ ︷

required

1

irrelevant erroneous

H B

︸ ︷︷ ︸
specification for correctness

irrelevant. They may be accepted as answers,
but should not be required to be answers of
the program.

So instead of specifying a single in-
tended model, we should provide two spec-
ifications, S0 for completeness and S for
correctness (where S0 ⊆ S). The irrelevant
atoms, like B in our example are in S \ S0.
Let us call such pair S0,S of specifications an
approximate specification.

A program P is correct w.r.t. an approxi-
mate specification S0,S if S |= A for each answer A of P (i.e. P |= A implies S |= A); P is complete w.r.t. it
if S0 |= A implies that A is an answer of P (S0 |= A implies P |= A).
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A reasonable approximate specification for insert/3 of insertion sort is:

for completeness: S0
insert =

{
insert(n, l1, l2) ∈H B

∣∣∣∣ l1, l2 are sorted lists of integers,
elms(l2) = {n}∪ elms(l1)

}
,

where elms(l) – the multiset of elements of l,

for correctness: Sinsert =

 insert(n, l1, l2) ∈H B

∣∣∣∣∣∣
if n is an integer and
l1 is a sorted list of integers,
then insert(n, l1, l2) ∈ S0

insert

 .

Note that neither S0
insert, nor Sinsert corresponds to the semantics of the actual corrected insertion sort

program (i.e. neither of them is the set of atoms of the form insert(~t) from its least Herbrand model).
Obviously, diagnosis of incorrectness and that of incompleteness should be done employing the

respective specification. With such approach to specifications, the standard DD methods (based on in-
tended, 2-valued interpretations) are sufficient.

The intended model problem has been noticed, among others, by [Per86, DNTM89, Nai00, Fer93].
Pereira [Per86] introduces inadmissible atoms, which should not appear in the computation. In this
way the debugging is no more declarative as it refers also to the intended operational semantics of the
program.

Naish [Nai00] introduces a rather sophisticated 3-valued approach to DD, and two kinds of errors
(e-bug and i-bug). The atoms from Sinsert \ S0

insert above have in the 3-valued intended model the third
logical value i. (Those from S0

insert are t, and those from H B \ Sinsert are f.) It seems strange, that
both incorrectness and incompleteness diagnosis treat in the same way the i atoms; the discussion above
shows that this should not be the case.

Any such complications are not necessary when we have separate specifications for correctness and
completeness. Introducing such specifications solves the intended model problem. In the author’s opin-
ion this is a main step to make DD practical.
Negation and partial specifications. When we deal with logic programs with negation, a specification
should also describe the negative results of programs; roughly, which ground atoms fail. In other words,
which negated literals are program consequences under the chosen semantics.

As in the discussion above, a specification often has to distinguish between those atoms that have to
fail (specifying completeness) from those that may fail (specifying correctness). To specify both positive
and negative program answers, it is natural to use an approximate specification S0,S as introduced above,
and interpret it as follows [DM05]. The atoms that are not allowed to succeed have to fail. The atoms that
are required to succeed cannot fail. Thus the set of atoms that have to fail is H B \S (the “erroneous” in
the diagram). Similarly, the set of atoms that may fail is H B \ S0 (the “irrelevant” and “erroneous” in
the diagram). In a correct program, if ¬A is its answer then S0 |= ¬A. In a complete program, if S |= ¬A.
then ¬A is an answer. So the description of correctness for positive answers describes completeness of
negative ones, and vice versa.

We do not discuss here DD of programs with negation [Llo87, DNTM89, NT90]. We only mention
that finding ¬A as a target in incorrectness diagnosis leads to incompleteness diagnosis for A (and vice
versa).

4 Extracting the DD search tree.

This section considers implementing declarative diagnosis for Prolog with tabulation and coroutining.
It turns out that only incompleteness diagnosis for coroutining poses problems. We discus two ways of



198 Declarative diagnosis

dealing with them.
DD requires extracting the necessary information (i.e. the DD search tree) from a computation of

the program. For basic Prolog (without tabulation and coroutining) we know how to do this, see e.g.
[Sha83, DNTM89, Nai92]; we skip further details. For incorrectness diagnosis this means extracting the
proof tree. (Most of) the methods to do this for basic Prolog seem easy to generalize for coroutining and
tabulation. Such generalization is far from obvious for incompleteness diagnosis.

For incompleteness diagnosis (in Pereira-style) one needs to collect from the computation the pro-
cedure calls, and for each of them the obtained computed answers. For basic Prolog, a simplest way
to do this seems top-level meta-interpretation for the considered procedure call (cf. [DNTM89], where
however the DD search tree is not made explicit). So for a call p(~t), all the clauses p(~s)← B1, . . . ,Bn

are meta-interpreted, however each encountered procedure call Biθ j is executed by the Prolog system.
All such calls (together with their answers) are children in the DD search tree of the node p(~t) (with its
answers).

Other ways of obtaining the search tree for incompleteness DD may be suitable. In particular, ob-
taining the whole tree from a single computation may be preferable (as this mimics the actual side effects
of a not purely declarative program).

Transferring such ideas to Prolog with tabulation should not create problems. The task is however
difficult for programs with coroutining. This is because the answers for a given procedure call may
actually not be computed (during the computation for the considered initial query). The query instance
returned by Prolog as an answer (e.g. that appearing at the Exit port of Prolog debugger) will be called
here a pseudo-answer. See [Dra23] for a formal description of coroutining.

Let us explain. During a computation for a sub-query A it may happen that (i) unblocking of a
formerly delayed sub-query results in a pseudo-answer being an instance of an actual computed answer,
or (ii) delaying of a sub-query results in a pseudo-answer being more general than an actual one (or an
actual answer may not exist). When (i) and (ii) coincide, nothing can be concluded.

For sound incompleteness diagnosis, a DD query should contain actual computed answers for a
given sub-query A, but what we can obtain from the computation are pseudo-answers. This difficulty
was discussed in [Nai92], without a general solution. Executing A without coroutining is of no help
in general, as it may result in non-termination. It is useful to do this under a suitable time limit; if A
terminates, the problem is solved. For a general case consider the following. From a computation trace
one can find if cases (i) or (ii) have been involved in producing a given pseudo answer for A. If not,
the pseudo-answer is an answer. If (i) has not occurred then the pseudo-answer is more general than the
actual answer (or the latter does not exist). If (ii) has not occurred, the pseudo-answer is an instance of
an actual one. A pseudo-answer together with such information can be included in a DD query, instead
of the unknown actual answer; the information makes it possible in some cases to answer the query
(formally, to state whether A with the actual answers is an incompleteness symptom).2

This approach may fail to find that, despite of the involved coroutining, a pseudo-answer is an answer.
We propose another method of checking this, and to find the actual answer in some cases.

From the computation producing a pseudo-answer Aθ for A (w.r.t. a program P) a proof tree may
be collected as in incorrectness diagnosis. Due to delays, some subtrees of an actual proof tree may be
missing, so the obtained tree will be called a pseudo-proof tree. Such tree T , with root Aθ , is inspected
to find if it is (a) a proof tree or (b) not. For (a), Aθ is an answer of P, but it may not be a computed

2 If case (i) has not occurred for any pseudo-answer for A, and some required answer is not an instance of any displayed
(pseudo-)answer, then A (with its possibly unknown answers) is surely a symptom. If case (ii) has not occurred for any pseudo-
answer for A, and each answer required by the specification is an instance of some displayed one, then A (with answers) is
surely not a symptom.
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answer for A (but its instance, case (i)). Out of the tree we can obtain the clauses of P used to compute
Aθ . Applying the clauses, we can obtain a computed answer Aσ for A, so that T is an instance of the
proof tree T ′ for Aσ (and Aσ is more general than Aθ ). Now Aσ can be used in a DD query,

The same procedure can be applied to T in case (b), it results in a pseudo-proof tree T ′ with root
Aσ , more general than Aθ . The tree corresponds to executing A alone (in a context without any pending
delayed sub-queries). Formally, T ′ corresponds to a prefix D of an SLD-derivation for A; the last query
Q of D consists of the delayed sub-queries. So any computed answer for A obtained by completing the
derivation is an instance of Aσ . Thus Aσ can be used instead of the unknown answer in a DD query, and
be treated like a pseudo-answer for which (i) has not occurred (cf. footnote 2).

As previously, it makes sense to execute Q under a time limit. If it terminates, then all the derivations
with D as a prefix have been found. They provide computed answers for A, to be used in a DD query
(instead of the pseudo-answer Aθ ).

To summarize, generalizing DD to take care of tabulation and coroutining seems rather obvious,
except for diagnosing incompleteness for coroutining. In this case some DD queries cannot be extracted
from the computation of the program. We discussed how to deal with this problem. For most of cases we
showed a way to obtain a sound answer for such an undetermined DD query. There is one exception (in
case (b) above, when the delayed Q does not terminate under a given time limit, one cannot determine
that the DD query is not a symptom). We do not pursue here another possible approach, based on detailed
monitoring of variable bindings during the computation.

5 Conclusion

Comments. Due to lack of space, we do not discuss various issues related to pragmatics of DD (declar-
ative diagnosis), and to Prolog features apart basic ones. The importance of a user friendly interface is
obvious (it should be possible to view big terms effectively, to conveniently inspect DD search trees, etc).
Experience from actual debugging is needed to evaluate diagnosis approaches, and to better understand
which features a useful diagnosis tool should have. The author is interested in buggy programs that could
be used in such experiments, preferably with challenging or otherwise interesting bugs.

DD diagnosis turns out to be applicable also to programs with non-declarative fragments. Of course
this concerns only issues related to the program answers (and not e.g. the sequences of input/output
actions). For instance, prototype “non-algorithmic” DD tools (cf. Section 2) for incorrectness and in-
completeness have been used to debug themselves. Locating errors with these tools seems substantially
simpler than with the Prolog debugger.

Debugging for ASP is a separate issue, not dealt with here (as the role of answers in ASP is different
from that in standard logic programming). An interesting challenge is to generalize DD so that more
symptoms (of possibly a single error) can be used to locate the error more efficiently.

Summary. This note deals with DD of logic programs. We treat incorrectness diagnosing and incom-
pleteness diagnosing (Pereira style) as instances of the same algorithm. We point out the intended model
problem as possibly the main reason for lack of acceptance of DD in practice. We also consider DD
for programs with tabulation and coroutining, and propose how to cope with the difficulties that arise.
We advocate that a tool which allows the user to inspect the DD search tree is more suitable to perform
diagnosis than an implementation of a whole DD algorithm.
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Traffic sign detection is a critical task in the operation of Autonomous Vehicles (AV), as it ensures
the safety of all road users. Current DNN-based sign classification systems rely on pixel-level fea-
tures to detect traffic signs and can be susceptible to adversarial attacks. These attacks involve small,
imperceptible changes to a sign that can cause traditional classifiers to misidentify the sign. We
propose an Inductive Logic Programming (ILP) based approach for stop sign detection in AVs to
address this issue. This method utilises high-level features of a sign, such as its shape, colour, and
text, to detect categories of traffic signs. This approach is more robust against adversarial attacks,
as it mimics human-like perception and is less susceptible to the limitations of current DNN clas-
sifiers. We consider two adversarial attacking methods to evaluate our approach: Robust Physical
Perturbation (PR2) and Adversarial Camouflage (AdvCam). These attacks are able to deceive DNN
classifiers, causing them to misidentify stop signs as other signs with high confidence. The results
show that the proposed ILP-based technique is able to correctly identify all targeted stop signs, even
in the presence of PR2 and ADvCam attacks. The proposed learning method is also efficient as it
requires minimal training data. Moreover, it is fully explainable, making it possible to debug AVs.

1 Introduction

The popularity of AVs is rising rapidly because of their potential to reduce human error on the road,
leading to safer transportation. AVs are believed to make more accurate perceptions and react faster than
humans. Deep Neural Networks (DNNs) play a significant role in developing perception systems for
AVs. However, DNNs face significant challenges that must be addressed before AVs can be deployed
safely [7]. The major challenges facing DNN-based vision systems in autonomous driving are discussed
below.

DNN-based systems are often considered "black boxes" because their logic is not transparent. Since
it is difficult to explain how the system makes the prediction, it is challenging to debug them when they
make a wrong decision. For example, misclassifying objects, such as mistaking shadows for pedestrians,
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is a common problem in AVs and making decisions based on these misclassifications can lead to fatal
accidents. Considering the fatal Uber accident [23], given that the AV’s DNN-based decision-making is
opaque, there is no way to debug the system and ensure such mistakes do not happen again. Moreover,
using algorithms with ambiguous logic makes it impossible to evaluate and trust them. This means that
regulatory approval is not applicable to stochastic-based AV vehicles.

Furthermore, DNNs face significant challenges when it comes to learning from small data and achiev-
ing out-of-distribution generalizability and transferability to new domains. In real-world scenarios, par-
ticularly in security domains, there is often a lack of large, annotated, and carefully curated data sets
to train these systems. This can make it difficult for DNNs to acquire knowledge from a few examples
and transfer it to new domains, unlike humans, who can do so with ease. Anomaly detection tasks, in
particular, are affected by this challenge due to the rarity of anomalous data. Anomalies can be caused by
errors, faults, or adversarial attacks, which can lead to security and safety hazards. Adversarial examples
provide evidence of a network’s weakness in achieving high generalisation performance [31]. Improving
generalizability is crucial for adapting models to new domains when there is insufficient data. Given the
lack of generalizability, current DNNs are not able to incrementally learn and improve when deployed in
real-life situations and transfer knowledge from one domain to another (multi-domain) [28].

In the real world, DNNs are vulnerable to adversarial attacks and can be deceived easily. In adver-
sarial cases, minor perturbations will lead to misclassifications with high confidence. Adversarial attacks
have been investigated for different vision tasks, such as image classification, object detection, and se-
mantic segmentation. For example, it is possible to change the red traffic light to green for AV [35], make
people invisible to AI [32] using small crafted adversarial patches held in front of the body or make the
AV to misinterpret a stop sign as a speed limit sign [16].

Researchers have suggested a few solutions, such as transfer learning for transferring knowledge to
another domain, to address challenges associated with DNN classifiers. However, the proposed solutions
partially solve the problems and have many limitations. For example, the transfer learning approach
faces a significant challenge regarding data sharing and several legal issues such as privacy and property
law [21].

To strengthen the safety of autonomous driving, this paper proposes an explainable ILP-based so-
lution focusing on traffic sign detection. The proposed method mimics human perception to recognise
traffic signs by detecting high-level features, including signs’ geometric shapes, colours and contents,
that differentiate them from other signs. While DNNs only use low-level (pixel-level) features that can
be easily misled [16] and need a large amount of data, this traffic sign detector only needs a handful of
training images and is fully robust against adversarial attacks.

Several studies have investigated the application of Inductive Logic Programming (ILP) in image
recognition tasks. ILP has been employed in Logical Vision [12, 11], incorporating the abductive percep-
tion technique [29] to extract high-level interpretation of objects such as classical 2D shapes by utilising
low-level primitives, such as high contrast points. ILP has also been used for 3D scene analysis [17] with
3D point cloud data. However, to our knowledge, a traffic sign detection based on the ILP has not been
proposed previously for traffic sign classification. Therefore, our approach is a novel contribution to this
context.

The paper is structured as follows. Section 2 surveys some successful adversarial examples in AVs.
Section 3 describes the framework for robust traffic sign detection using ILP. Section 4 details experi-
ments. In this section, the Aleph-based approach is compared with the Metagol-based approach. Metagol
can learn hypotheses with only one positive and one negative example, while Aleph needs at least eight
positive and negative examples to have the same accuracy as Metagol. Also, the ILP-based system is
compared with the DNN-based classifier on adversarial examples. The results show that the ILP-based
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approach is considerably more resilient to adversarial attacks. Finally, Section 5 summarises the out-
comes and discusses further work.

2 Adversarial Attacks on AVs’ Perception

In this section, we survey a sample of successful adversarial attacks in autonomous driving that easily
deceived DNN-based vision classifiers. An adversarial attack aims to generate adversarial examples as
the input for machine learning systems. However, adversarial examples are only negligibly modified
from the real examples; they lead to misclassification [19].

When the fragility of deep neural networks to specific input perturbations was discovered for the
first time, it was shown that an adversarial attack could turn a bus into an ostrich for an AI system
[31]. Another algorithm named Show-and-Fool [8] was introduced to evaluate the robustness of an
image captioning system. This method attained a 95.8% attack success rate for adversarial examples via
applying a minor perturbation on image pixels which are invisible to humans, turning a stop sign into a
teddy bear for the AI system.

The authors of [20] devised a method whereby semantic image segmentation could be attacked using
adversarial perturbation to blend out (vanish) a desired target. They showed the existence of univer-
sal noise, which removes a target class (e.g. all pedestrians) from the segmentation while leaving it
mostly unchanged otherwise. The robustness of the popular DNN-based semantic segmentation mod-
els evaluated against adversarial attacks on urban scene segmentation [2]. The results showed that the
segmentation performances of all models seriously dropped after the attacks.

Later it was shown that adversarial examples could be misclassified by deep learning systems in real
life [22]. Previous works have threatened the model by feeding machine learning classifiers directly,
which is not always possible in the real world.

Another paper [16] proposed the Robust Physical Perturbations (RP2) technique to fool a Convolu-
tional Neural Network (CNN) based road sign classifier in the physical world under various distances and
viewpoints using different robust visual adversarial perturbations. This approach caused targeted mis-
classification, which changed a stop sign into a speed limit sign for the AI system. They also proposed
a disappearance attack, causing a stop sign hidden from state-of-art object detectors like Mask R-CNN
and YOLO [15]. An Adversarial Camouflage (AdvCam) approach [14] generated adversarial photos to
fool a DNN classifier at various detecting angles and distances. With a few stains invisible to humans,
this technique can cause the classifier to misclassify the objects, such as misidentifying a stop sign as a
"barber shop" with .82% confidence.

Fig. 1 illustrates targeted stop signs with successful physical-world attacking approaches named RP2
and AdvCam, misleading the state-of-the-art DNN classifiers.

An Adaptive Square Attack (ASA) method [24] has been suggested that can attack the black box
by generating invisible perturbation for traffic sign images, successfully leading to sign misclassifica-
tion. Five adversarial attacks and four defence methods have been investigated on three driving models
adopted in modern AVs [13]. They demonstrated that while these defence methods can effectively defend
against a variety of attacks, none can provide adequate protection against all five attacks.

One recent work proposed three sticker application methods, namely RSA, SSA and MCSA, that
can deceive the traffic sign recognition DNNs with realistic-looking stickers [4]. Another attack included
painting the road, which targeted deep neural network models for end-to-end autonomous driving control
[5]. Another work demonstrated a successful physical adversarial attack on a commercial classification
system to deceive an AV’s sign classifier[25].
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Figure 1: Targeted physical perturbation by a) AdvCam and b) RP_2 misleading DNN classifiers, SL45
is speed limit 45 sign.

BadNets algorithm [18] was implemented to deceive a complex traffic sign detection system leading
to maliciously misclassifying stop signs as speed-limit signs on real-world images.

These adversarial attacks on the deep-learning models pose a significant security threat to autonomous
driving.

3 Robust Traffic Sign Detection Using ILP

Inductive Logic Programming (ILP) is a machine learning method which uses logic-based representation
and inference. Depending on the type of logical inference and the search algorithm, there are different
ILP systems, such as Aleph [3] and Metagol [10], that used in this paper.

Due to a logic-based representation and inference, ILP has the potential for human-like abstraction
and reasoning. These logic-based AI approaches have the ability to learn unknown complex tasks with
only a few examples. It complements deep learning because logic programs are interpretable and data-
efficient, leading them towards a strong generalisation. Moreover, these rule-based approaches, which
are explicitly symbolic, are sometimes considered safer than neural approaches [1].

ILP aims to learn a hypothesis (rule) using a few positive and negative examples and Background
Knowledge (BK); this induced rule, alongside BK, should cover as many positive and as few negative
examples as possible [26]. For inducing the rules, BK should include all essential predicates to represent
the relevant information.

One of the advantages of ILP is its ability to use BK, including facts and rules in the form of logical
expressions, which could be related. In ILP, choosing appropriate BK based on well-selected features
is essential to obtaining good results [9]. Moreover, using BK makes ILP incremental. For example,
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suppose we want to learn animal signs in traffic sign detection, choosing sign "a" contains an animal(
contains(a, animal) as a BK, which holds when traffic sign "a" has an animal symbol. Then we provide
BK with various different animal shaped symbols (deer, cow, . . . ). In that case, if we see a new animal
sign that doesn’t exist in our BK, we can add it to our BK without relearning, and there is no need to
change the hypothesis. This feature makes it possible to have real-time interaction with drivers towards
customised autonomous driving.

Our proposed ILP-based stop sign detection system is demonstrated in Fig. 2. The first step is
pre-processing all the images, including training and test images, and turning them into a symbolic
representation to provide BK. In the pre-processing phase, high-level features of traffic sign images,
including colour, shape, text and digits, are extracted and represented as a set of logical facts for the next
step. For feature extraction, computer vision tools such as OpenCV can extract high-level features using
low-level features such as pixel colours or colour gradients.

In the next step, a set of positive and negative training examples (E) and a set of logical facts as
BK extracted from the previous step will be provided to the ILP system. The system aims to learn a
hypothesis H such that B,H |= E where |= is logical entailment.

We use Aleph and Metagol as the ILP system to induce the rule for stop sign detection.

Figure 2: ILP- based traffic sign classifier

We used Aleph5 as the ILP system in one of our experiments; it is an old ILP system developed
in Prolog and based on inverse entailment. Aleph’s algorithm resolves the relationship between the
determination predicate and the determining predicate to generate a general theory.

Metagol is employed in our other experiment. It is an ILP system based on Meta Interpretive Learn-
ing (MIL) [27] implemented in Prolog. By instantiating metarules, MIL learns logic programs from
examples and BK. In addition, MIL not only learns the recursive definition and fetches higher-order
meta-rules but also supports predicate invention.
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4 Experimental Evaluation

This experiment aims to learn "traffic_sign", which is the target predicate. For simplicity, only the stop
sign is investigated; other traffic signs can be included to have a complete traffic sign classifier. We
provide Aleph and Metagol with the same BK. The Aleph mode declarations are illustrated in Table 1,
and the Metagol-based system is supplied with the metarules demonstrated in Table 2, uppercase letters
represent predicate symbols (second-order variables), and lowercase letters represent variables.

Table 1: Mode declarations for Aleph experiments.
:−modeh(1, tra f f ic_sign(+sign,#class).
:−modeb(∗,colour(+sign,#colour)).
:−modeb(∗,shape(+sign,#shape)).
:−modeb(∗,word(+sign,−w)).
:−modeb(∗,closely_match(+w,#word)).
:−modeb(∗,number(+sign,−n)).
:−modeb(∗,digits(+n,#int)).

In Aleph mode declaration, "modeh" indicates that the predicate should appear in the head of the
hypothesis, and "modeb" indicates that it should be in the body of the induced hypothesis. According to
Table 1, six predicates can be used in the body of the induced hypothesis which. The meaning of each
predicate is defined as follows:

• traffic_sign(a, #class), which holds when the sign "a" belongs to a specific category of traffic sign
determined by #class (e.g. a stop sign).

• colour(a, #colour), which holds when a certain #colour(e.g. red) exists in the sign "a".

• shape(a, #shape), which holds when the shape of sign "a" is a specific shape determined by #
shape(e.g. circle).

• has_word(a, a_w1), which holds when the sign "a" has the word a_w1 on it.

• closely_match(a_w1, w), which holds when the word "a_w1" closely matches the word "w" (e.g.
stop).

• number(a, a_n1), which holds when the sign "a" has the number "a_n1".

• digits(a_n1,n), which holds when the number "a_n1" includes "n" (e.g. 60)

Table 2: Employed metarules in Metagol experiment.
Name Metarule
Identify P(x,y)←− Q(x,y)
Inverse P(x,y)←− Q(y,x)
Precon P(x, y)←− Q(x), R(x, y)
Postcon P(x, y)←− Q(x, y), R(y)
Chain P(x, y)←− Q(x, z), R(z, y)
Recursion P(x, y)←− Q(x, z), P (z, y)
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Table 3: Extracted features for a positive (p1) and negative (n1) examples.
Pos example(p1) Neg example(n1)
color (p1,red) . color (n1,red) .
color (p1,white) . color (n1,white) .
shape(p1,octagon) . shape(n1,Circle) .
has_word (p1, p1_w1) . number (n1,n1_d1) .
closely_match(p1_w1,stop) . digits(n1_d1,30) .

To further explain the process of converting images into a set of logical facts, we take one positive
example, a stop sign named p1, and one negative example, a speed limit sign named n1. In the pre-
processing stage, the high-level features of these traffic signs were extracted to be included in the BK.
The details of these features and their corresponding logical representation are presented in Table 3.

These logical facts, together with the names of the positive and negative examples (such as sign(p1)
as a positive and sign(n1) as a negative example), will enable the ILP system to induce a hypothesis
(logical rule). Finally, the ILP system recognises the new traffic signs using this induced rule.

4.1 Material and Method

Base data set. Our base data set includes traffic sign images without any adversarial perturbation. They
have been downloaded from Wikimedia Commons as no-restriction images. Positive examples contain
stop sign images, and negative examples include other traffic signs excluding stop sign images. Normal
positive and negative examples are shown in Fig. 3.

Adversarial test data set. To evaluate the robustness of the ILP stop sign detector against adversarial
attacks, we used the targetted traffic signs attacked by RP_2 and AdvCam.

RP_2 is a general attack algorithm for misleading standard-architecture road sign classifiers. It gener-
ates visual adversarial perturbations, such as black and white stickers attached to a traffic sign to mislead
the classifier. The RP_2 data set contains three types of perturbation, stop signs perturbed by subtle,
camouflage graffiti and camouflage art attacks viewed from different angles.

AdvCam is an approach for creating camouflage physical adversarial images to fool state-of-the-art
DNN-based image classifiers. This approach can make the classifier identify a stop sign as a "barber
shop" with high confidence. This paper will utilise targetted stop signs with Advcam with different stain
styles to evaluate the proposed ILP sign classifier.

The feature recognition element should extract high-level features, including the traffic sign’s border
shape, colour and text; symbol extraction can be added in future; OpenCV is employed for this purpose.
First, the image background is removed utilising rembg and then pre-processed by cv2.bilateralFilter for
noise reduction.

Colour masks were then employed using cv2.inRange for colour detection, and small areas were
ignored. After that, by applying morphological operations, colour masks were post-processed.

For text and digit detection, EasyOCR is utilised; if the detected item is a word, it will be investigated
if the detected word closely matches some common words in traffic signs; for example, it should have at
least three letters in common with the word STOP to recognise as a stop word.

For shape detection, cv2.findContours is applied on detected colour masks, and cv2.approxPolyDP
is utilised for polygon detection.
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Figure 3: Base data set for training and testing

Convolutional Neural Network. To compare the results, a well-known CNN classifier [34] is utilised
that is trained on the German Traffic Sign Recognition Benchmark (GTSRB) [30]. The evaluation of this
architecture achieved 97.6% accuracy on the GTSRB test data set.

The base data set is utilised for training the ILP systems (Aleph and Metagol). First, we randomly
select an equal number of positive and negative examples in each run, so the default accuracy is 50% for
this training data set. Next, the ILP-based systems try to find a hypothesis that covers as many positive
and as few negative examples as possible. Then the remaining examples in the data set are used as a
test data set for evaluation to determine the accuracy. This process is repeated one hundred times, and
average accuracy is calculated for each certain number of positive and negative examples in the training
set. Therefore we have a fair comparison between Aleph and Metagol regarding the size of the required
training data set.

The data and the code used in this experiment are available on GitHub [6].

4.2 Results and Discussion

Fig. 4 illustrates the average accuracy of Aleph and Metagol-based ILP systems with increasing training
examples. According to this figure, Metagol can find a hypothesis with 100% accuracy on the test data
set including only one positive and one negative example. In comparison, Aleph starts learning with
at least two positive and two negative examples with around 65% accuracy. Aleph can reach the same
level of accuracy as Metagol by learning from eight positive and negative examples. According to these
results, Metagal is more data-efficient than Aleph. In this figure, the orange curve shows the default
accuracy, which is equal to 50% because the number of negative and positive examples are equal in each
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run.

Figure 4: Average accuracy of Aleph vs Metagol with an increasing number of training examples from
the base data set (equal positive and negative sets)

The hypothesis (a logic program) induced by Metagol with only one set of positive and negative
examples is the same as the learned rule by Aleph with eight positive and negative examples. It is
entirely accurate on the base test data set and is shown below:

t r a f f i c _ s i g n (A, s t o p _ s i g n ) : −
has_word (A, A_w1 ) ,
c l o s e l y _ m a t c h ( A_w1 , s t o p ) .

This learned rule is completely explainable and matches human interpretation. The rule says the
traffic sign "A" is a stop sign when the two literals has_word(A, A_w1) and closely_match(A_w1, stop)
hold, i.e. if the sign contains a word and that word closely matches stop, that sign would be predicted a
stop sign.

The performance of this hypothesis is evaluated on the base data set and attack data sets, including
RP_2 (subtle, camouflage graffiti and camouflage art attacks) and AdvCam with different stains. The
accuracy of this rule on all test data sets is 100%. While the ILP-based sign detector shows a perfect
performance, the DNN-based classifier shows abysmal performance facing manipulated images.

Table 4 compares the results of the DNN-based classifier and the ILP-based classifier on different
data sets. The DNN-based classifier is trained on the GTSRB data set, which contains more than 50,000
images. The Aleph-based classifier is trained on eight positive and negative examples, while the Metagol
approach is trained on only one negative and one positive example. It shows that while ILP-based systems
can learn from small amounts of data, they are more resilient to noise and adversarial attacks.
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data set DNN-based ILP-based
Base 100% 100%

RP_2
subtle 0 100%
camouflage graffiti 0% 100%
camouflage art attacks 6.6% 100%

AdvCam 66.6% 100%

Table 4: Comparing the results of the hypothesis induced by the proposed ILP-based approach (Aleph
and Metagol) on different test data sets with a DNN classifier.

5 Conclusions

DNN-based traffic sign classifiers need a large amount of data for training, and it has been shown that
they are vulnerable to adversarial attacks or natural noise. They are also not explainable; consequently,
there is no way to debug them. While DNN-based classifiers suffer from these problems, we propose an
ILP-based approach for traffic sign detection in autonomous vehicles to address these issues.

Our proposed technique mimics humans in traffic sign detection and uses high-level features of a
sign, such as colour and shape, for detection. Therefore this method is data efficient, explainable and
able to withstand adversarial attacks that cannot easily deceive humans.

The results indicate that our approach with only a handful of training data can induce logical rules
easily understandable by humans. Furthermore, it significantly outperforms the deep learning approach
regarding adversarial attacks. It shows a 100% accuracy on the data set targetted with RP_2 and AdvCam
attacking approaches, while a DNN-based classifier performs poorly on these data sets.

For future works, we suggest employing DNN for high-level feature extraction (shapes or symbols)
in traffic signs. Integrate Machine Learning and Logic programming in AV applications will use both the
strengths of machine learning and symbolic AI (knowledge and reasoning) to address the AI obstacles.
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We argue that in some KR applications, we want to quantify over sets of concepts formally repre-
sented by symbols in the vocabulary. We show that this quantification should be distinguished from
second-order quantification and meta-programming quantification. We also investigate the relation-
ship with concepts in intensional logic.

We present an extension of first-order logic to support such abstractions, and show that it allows
writing expressions of knowledge that are elaboration tolerant. To avoid nonsensical sentences in
this formalism, we refine the concept of well-formed sentences, and propose a method to verify
well-formedness with a complexity that is linear with the number of tokens in the formula.

We have extended FO(·), a Knowledge Representation language, and IDP-Z3, a reasoning engine
for FO(·), accordingly. We show that this extension was essential in accurately modelling various
problem domains in an elaboration-tolerant way, i.e., without reification.

1 Introduction

The power of a KR language for compact expression of knowledge lies for an important extent in the way
it allows us to abstract over certain types of objects, e.g., to quantify, count, or sum over them. Classical
first-order logic (FO) is a much stronger KR language than Propositional Calculus (PC) because it allows
to quantify over domain objects. Still, the abstraction power of FO is limited, e.g., it does not allow
counting or sum over domain objects satisfying some condition. Many first-order modeling languages
are therefore extended to support aggregations. Likewise, one can only quantify over individuals in the
domain, not over relations and functions. This is resolved in second-order logic (SO).

In this paper, we argue that in some KR applications, we want to abstract (i.e., quantify, count, sum,
. . . ) not over relations and functions, but over certain concepts in the problem domain, as the following
example will show.

Example 1 Consider a corona testing protocol. A person is to be tested if she shows at least two of the
following symptoms: fever, coughing and sneezing. The set of persons showing a symptom is represented
by a unary predicate ranging over persons, i.e., hasFever/1, coughs/1, and sneezes/1. Leaving first-
order logic behind us, assume that the set of symptoms is represented by the predicate symptom/1.

Testing is expressed as a unary predicate test1/1, ranging over persons. Informally, this predicate is
to be defined along the following lines (while freely extending the syntax of FO):

∀p(test1(p)⇔ 2≤ #{x|symptom(x)∧ x(p)}) (1)
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The question is: what is the nature of the variable x and the predicate symptom? Over what sorts of
values does x range?

At first sight, one might think that x is a second-order variable ranging over the set of sets of persons,
and that we want to count the sets of persons having one of the symptoms and containing person p.
A ‘possible world’ analysis refutes this idea. Consider a state of affairs where everybody has all 3
symptoms. Formally, in a structure I abstracting such a state, the interpretation of each symptom
predicate is identical: it is the set of all persons, hasFeverI = coughsI = sneezesI = {y|person(y)}.
Thus, there is only one set that contains person p: the cardinality in Eq. (1) would be one, and the
condition for the first test would not be satisfied for any p, even though everyone should be tested. A
different idea is that x is ranging over symbols, and that we want to count the number of symptom symbols
whose interpretation contains person p. This sort of variable is generally found in meta programming, of
the kind investigated in, e.g., Logic Programming [4] or Hilog [10]. While this view has merits, it is not
totally satisfying. Assume, for insight, that the team working on this application is international, and the
French group has introduced the predicate estFievreux/1, French for “has fever”. Thus, hasFever/1 and
estFievreux/1 are synonymous. Consider John whose only symptom is fever. Both isFievreux(John) and
hasFever(John) are true. The number of symptom symbols whose interpretation contains John would be
two, leading to the erroneous decision that John needs to be tested.

The view that we elaborate in this paper, is that the abstraction in this example is over concepts. For
context, consider that the first phase of a rigorous approach to building a KR specification is the selection
of a formal ontology Σ of symbols representing relevant concepts of the application field. These concepts
can be identified with the user’s informal interpretations of the symbols in the ontology of the domain.
The informal interpretation is in practice a crucial concept in all knowledge representation applications: it
is the basis of all actions of formal knowledge representation, and of all acts of interpreting formal results
of computation in the application domain. Connecting concepts to informal interpretations provides a
good intuitive explanation of what concepts are and how they are relevant in a KR context.

In classical first-order logic, a structure only has the extension of symbols. The extension of symbol
σ in a structure is its formal interpretation, a.k.a value, in that structure. It is a relation or function, of a
precise arity, over the universe of discourse; in formulae, it is denoted simply by σ .

For our purpose, we extend a structure to also have the intension of symbols, i.e., an object in the
domain of discourse representing its informal interpretation. This intension is rigid in the sense that it
is the same in every extended structure. Since the informal meaning of symbols is known, the synonym
relation ∼s is known too, and it is an equivalence relation on Σ. Synonymous symbols have the same
arity and type. Synonymous symbols σ1, σ2 have the same intension, and, in each structure I , the same
extension. In formulae, the intension of σ is denoted by ‘σ . Finally, we introduce the value functor $(·):
when applied to an intension, it returns its formal interpretation in the current structure.

In the example, the intension of the symbols hasFever/1 and estFievreux/1 are the same object
denoted by ‘hasFever (or ‘estFievreux) which is the abstraction of the concept of people having fever.
The symbol symptom denotes the set containing the intensions ‘hasFever, ‘coughs and ‘sneezes. In any
particular structure, the hasFever/1 symbol has an interpretation which is a set of elements abstracting
the set of people having fever in the state of affairs. This set is also the value of the ‘hasFever intension,
i.e., of $(‘hasFever). Suppose we want to count the concepts in symptom whose value (a set) contains
person p. The following formula expresses the testing protocol:

∀p(test1(p)⇔ 2≤ #{x|symptom(x)∧$(x)(p)}) (2)

In the current state of the art of Knowledge Representation, one might consider, as we once did,
applying the common KR technique of reification, rather than laboriously extending KR languages as
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we do. In this particular case, one could introduce object symbols Fever,Sneezing,Coughing (under the
Unique Name Assumption), and a predicate, Has/2. We can now represent that Bob has fever by the
atom Has(Bob,Fever). The testing protocols can then be formalized (in a proper extension of FO) as:

∀x(symptom(x)⇔ x = Fever∨ x = Sneezing∨ x = Coughing) (3)

∀p(test1(x)⇔ 2≤ #{x|symptom(x)∧Has(p,x)}) (4)

Still, we believe that our study is valuable for two reasons. First, we improve the scientific under-
standing of the problem, thus helping avoid using KR encoding tricks to circumvent it. Second, our
logic is more elaboration tolerant. Per [26], “a formalism is elaboration tolerant to the extent that it is
convenient to modify a set of facts expressed in the formalism to take into account new phenomena or
changed circumstances”. Because it helps reduce development costs, elaboration tolerance is a desirable
feature of formalisms used in AI applications, and in particular in knowledge representation. Consider a
knowledge base that, initially, does not contain rule (1). Per standard KR practice, it would use predicates
such as hasFever/1 to encode symptoms. Then, circumstances change, and rule (1) must be introduced.
A formalism that requires rewriting the knowledge base using reified symptoms Has/2 is not elaboration
tolerant. Our formalism, by contrast, would not require any change to the initial knowledge base.

To evaluate our approach, we have extended FO(·) to allow quantification and aggregation over con-
cepts, and extended IDP-Z3, a reasoning engine for FO(·), accordingly. It proved essential to accurately
model the knowledge of various problem domains in an elaboration tolerant way, i.e., without reification.

To summarize, the main contributions of the paper are as follows. We argue that in some KR applica-
tions, it is useful to abstract over concepts in quantification and aggregations. We analyze the connection
to well-known intensional logic (Section 2), and explain how to distinguish this from second-order quan-
tification and meta-programming (Section 6). We explain how to extend a simple predicate logic so that
every ontology symbol has an intensional and an extensional component (Section 3). We show that this
may lead to nonsensical sentences, and we restrict our syntax to avoid them. In Section 4, we extend
FO(·), a model-based knowledge representation language, and IDP-Z3, a reasoning engine for FO(·), as
we propose, and illustrate the benefits of this extension in different applications (Section 5).

2 “Concepts” in Logic

The notions that we study here, i.e., the notions of a “concept” and of its “value” in a particular state
of affairs, are closely related, if not identical, to the broadly studied distinction between intension and
extension, meaning and designation, or sense and reference as studied in philosophical and intensional
logic. The close relation between the two urges us to detail the role of concepts or “intensions” in
intensional logic, and to make the comparison with our approach.

In philosophical logic, the concepts of intension and extension have been investigated at least since
Frege (for a historical overview, see [22]). A prototypical example concerns the “morning star” and
“evening star”, i.e., the star visible in the east around sunrise, and in the west around sunset. These
words have two different intensions (i.e., they refer to two different concepts), but as it happens, in the
current state of affairs, their extensions (i.e., their interpretation) are the same: the planet also known as
Venus.

Early key contributors in this study are Frege, Church, Carnap and Montague. The intensional logics
of Montague, of Tichý, and of Gallin, are typed modal logics based on Kripke semantics in which expres-
sions at any level of the type hierarchy have associated intensions. They provide notations to access the



216 Aggregation over Concepts

intension and the extension of expressions. They also provide modal operators to talk about the different
values that expressions may have in the current and in accessible worlds.

The principles of intensions of higher-order objects are similar to those of the base level (i.e., domain
elements), leading Fitting in several papers [21, 22] to develop a simplified logic, called FOIL, where
only expressions at the base level of the type hierarchy have intensions.

In intensional logic, the intension of an expression is modelled as a mapping from possible worlds
to the interpretation of the expression. For example, the intension of EveningStar is the mapping from
possible worlds to the extension of EveningStar in that world. We can express that the extension of
MorningStar in the current world, equals the extension of EveningStar in a (possibly different) accessible
world:

[λx(�(EveningStar = x))](MorningStar) (5)

Here the lambda expression binds variable x to the extension of MorningStar in the current world, and
the “�” modal operator is used to indicate an accessible world. This statement would be true, e.g., in the
view of a scientist that may not have evidence that both are the same but accepts it as a possibility.

A comparison between the work presented in this paper and the intensional logics in philosophical
logic, is not easy. Even if the notion of intension versus extension is underlying the problems that we
study here, the focus in our study is on very different aspects of intensions than in philosophical logic.
As a result, the logic developed here differs strongly from intensional logics.

An important difference is the lack of modal logic machinery in our logic to analyze the difference
between intensions and extensions. In our logic, a symbol has an extension (a.k.a interpretation) in
different possible worlds, but there are no modal operators to “talk” about the extension in other worlds
than the current one.

Another important difference is that we provide an abstraction mechanism through which we can
quantify over, and count, intensional objects (a.k.a concepts). In KR applications, problems such as the
symptom example easily occur (see Section 5). They can be analyzed and demonstrated and solved in a
logic much closer to standard logic.

Compared to FOIL, we associate intensions to predicate and function symbols of any arity even
though, as hinted earlier, it poses additional challenges to ensure the syntactical correctness of formulae.
We will address these by introducing guards. By contrast, FOIL associates intensions only to intensional
objects of arity 0, like Morningstar, avoiding the issue. Finally, our research also includes the exten-
sion of an existing reasoning engine for the proposed logic, capable of reasoning with aggregates over
concepts such as in Eq.(3).

3 FO(Concept)

Below, we describe how first-order logic, in its simplest form, can be extended to support quantification
over concepts. The language, FO(Concept), is purposely simple, to explain the essence of our ideas.
We present the syntax (3.1) of the extension, its semantics (3.2), and discuss its complexity and some
alternative formulations (3.3).

3.1 Syntax

A vocabulary Σ is a set of symbols with associated arity. We want to extend the FO syntax of terms over
vocabulary Σ with these four new construction rules:

• n is a term if n is a numeral, i.e., a symbol denoting an integer;
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• #{x1, . . . ,xn : φ} is a term if x1, . . . ,xn are variables and φ a formula;

• ‘σ is a term if σ ∈ Σ,

• $(x)(t1, . . . , tn) is a term if x is a variable, and t1, . . . , tn are terms over Σ.

The last rule is problematic, however. In a structure I extended as we propose, x ranges not only
over the domain of I , but also over the set of intension of the symbols in Σ: when the value of x is such
an intension, $(x) is the extension of the associated symbols; but when x is not such an intension, $(x) is
undefined. Furthermore, the value assigned to x may be the intension of a predicate symbol: in that case,
$(x)(t1, . . . , tn) is not a term. Finally, the value of x may be the intension of a function of arity m 6= n: in
that case, $(x)(t1, . . . , tn) is not a well-formed term.

For example, $(x)() is not a well-formed term in the following cases (among others):

. [x = 1] where 1 denotes a numeric element of the domain of discourse;

. [x = ‘p] where p is a predicate symbol;

. [x = ‘ f ] where f is a function symbol of arity 1.

Essentially, whereas in FO, arities of function and predicate symbols are known from the vocabulary,
and taken into account in the definition of well-formed composite terms and atoms by requesting that
the number of arguments matches the arity, this now has become impossible due to the lack of informa-
tion about $(x). Thus, to define well-formed terms, we need additional information about the variables
occurring in them. We formalize that information in a typing function.

We call γ a typing function if it maps certain variables x to pairs (k,n) where k is either PRED or
FUNC, and n is a natural number. Informally, when a variable x is mapped to (k,n) by γ , we know that x
is a concept, of kind k and arity n. For a given typing function γ , we define γ[x : (k,n)] to be the partial
function γ ′ identical to γ except that γ ′(x) = (k,n).

This allows us to define the notion of well-formed term and formula:

Definition 1 (Well-formed term) We define that a string e is a well-formed term over Σ given a typing
function γ (denoted γ `t e) by induction:

. γ `t x if x is a variable;

. γ `t f (t1, .., tn) if f is an n-ary function symbol of Σ and for each i, γ `t ti;

+ γ `t n if n is a numeral, a symbol denoting the corresponding natural number n;

+ γ `t #{x1, . . . ,xn : φ} if x1, . . . ,xn are variables and γ ` f φ ;

+ γ `t ‘σ if σ ∈ Σ;

+ γ `t $(x)(t1, . . . , tn) if x is a variable, γ(x) = (FUNC,n) and for each i ∈ [1,n], γ `t ti.

(The rules with a “+” bullet are those we add to FO’s definition of terms.)

Definition 2 (Well-formed formula) We define that a string φ is a well-formed formula over Σ given γ

(denoted γ ` f φ ) by induction:

. γ ` f t, γ ` f f;

. γ ` f p(t1, . . . , tn) if p is an n-ary predicate of Σ and for each i ∈ [1,n], γ `t ti;

. γ ` f (¬φ) if γ ` f φ ;

. γ ` f (φ ∨ψ) if γ ` f φ and γ ` f ψ;
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. γ ` f ∃x : φ if x is a variable and γ ` f φ ;

. γ ` f t1 = t2 if γ `t t1 and γ `t t2;

+ γ ` f t1 ≤ t2 if γ `t t1 and γ `t t2 and t1 and t2 are numeric terms or cardinality aggregates;

+ γ ` f (if x :: k/n then φ else ψ) if x is a variable, k is either PRED or FUNC,
n is a natural number, γ[x : (k,n)] ` f φ and γ ` f ψ;

+ γ ` f $(x)(t1, . . . , tn) if x is a variable, γ(x) = (PRED,n) and for each i ∈ [1,n], γ `t ti.

Notice that, because of the aggregate term rule, these definitions are mutually recursive. Also, due to
their constructive nature, well-formed terms and formulae can be arbitrarily large, but always finite.

Formulae of the form φ ∧ψ,φ ⇒ ψ,φ ⇔ ψ,∀x : φ are shorthand for these formulae, and are not
further discussed:

¬(¬φ ∨¬ψ),¬φ ∨ψ,(φ ∧ψ)∨ (¬φ ∧¬ψ),¬∃x : ¬φ

The other comparison operators, <,>,≥, can be defined similarly.
Let ∅ be the typing function with empty domain. We say that φ is a well-formed formula over Σ if

∅ ` f φ .

Example 2 Here is a well-formed version of the cardinality sub-formula of Equation 2:

#{x|if x :: PRED/1 then Symptom(x)∧$(x)(p) else f alse}

We say that Symptom(x)∧$(x)(p) is guarded by the x :: PRED/1 condition, and that the formula is
well-guarded.

Note that, in this logic, a value $(x) cannot occur in a formula without immediately being applied to
a tuple of arguments.

3.2 Semantics

Definition 3 (Intensional ontology and equivalence class |σ |O ) We define an intensional ontology O
as a pair of a vocabulary Σ and a synonym relation ∼s between symbols of same arity in the vocabulary.
We denote the equivalence class of symbol σ in O by |σ |O , and the set of such equivalence classes (or
witnesses) by CO .

In the philosophical papers about intensional logic, the set of concepts is open. Here, however, we
want to quantify only over the concepts that are interpretations of symbols in Σ, not over any concepts.
In essence, we want to quantify over CO .

Hence, to define the semantics of FO(Concept), we extend the notion of a structure to include CO

and an additional mapping from concepts to their value.

Definition 4 (Total structure) A (total) structure I over ontology O consists of:

. an object domain D containing the set of natural numbersN,

. a (total) mapping from predicate symbols p/n in Σ to n-ary relations pI over D∪CO ,

. a (total) mapping from function symbols f/n in Σ to n-ary functions f I over D∪CO ,

+ a (total) mapping $I from concepts in CO to relations and functions over D∪CO .
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$I interprets the value function “$(·)”.
We now define a notion of coherency for structures I , expressing that synonyms have the same

value or, more formally, that $(‘σ) = σ for any σ .

Definition 5 (Coherent structure) A total structure I over O is coherent iff

+ for every predicate symbol p ∈ Σ, $I (|p|O) = pI ;

+ for every function symbol f ∈ Σ, $I (| f |O) = f I .

From now on, we consider only coherent structures.
We define a variable assignment ν as a mapping of variables to elements in D∪CO . A variable

assignment extended so that the mapping of x is d is denoted ν [x : d].
We introduce the ternary valuation function, that maps terms t (resp. formulae φ ), structures I and

variable assignment ν to values v ∈ D∪CO (resp. to Booleans).

Definition 6 (Value of a term) We partially define the value v of well-formed t in (I , ν) (denoted
JtKI

ν = v) by induction:

. JxKI
ν = ν(x) if x is a variable in the domain of ν ;

. J f (t1, . . . , tn)KI
ν = f I (Jt1KI

ν , . . . ,JtnKI
ν ) if f is an n-ary function symbol and Jt1KI

ν , . . . ,JtnKI
ν are

defined;

+ JnKI
ν = n if n is the integer denoted by n;

+ J#{x1, . . . ,xn : φ}KI
ν = m if JφKI

ν [x1:d1]...[xn:dn] is defined for every d1, . . . ,dn ∈ D∪CO , m is an
integer, and #{x1, . . . ,xn : JφKI

ν [x1:d1]...[xn:dn] = t}= m

+ J‘SKI
ν = |S|O ;

+ J$(x)(t1, . . . , tn)KI
ν = $I (JxKI

ν )(Jt1KI
ν , . . . ,JtnKI

ν ) if JxKI
ν is a concept in CO mapped by $I to an

n-ary function, and Jt1KI
ν , . . . ,JtnKI

ν are defined;

+ JtKI
ν is undefined in all the other cases.

Definition 7 (Truth value of a formula) We partially define the truth value v of well-formed φ in (I ,
ν) (denoted JφKI

ν = v) by induction:

. JtKI
ν = t; JfKI

ν = f;

. Jp(t1, . . . , tn)KI
ν = pI (Jt1KI

ν , . . . ,JtnKI
ν ) if p is an n-ary predicate symbol and Jt1KI

ν , . . . ,JtnKI
ν are

defined;

. J¬φKI
ν = ¬JφKI

ν if JφKI
ν is defined;

. Jφ ∨ψKI
ν = JφKI

ν ∨ JψKI
ν if JφKI

ν and JψKI
ν are defined;

. J∃x : φKI
ν = (∃d ∈ D∪CO : JφKI

ν [x:d]) if JφKI
ν [x:d] is defined for every d ∈ D∪CO ;

. Jt1 = t2KI
ν = (Jt1KI

ν = Jt2KI
ν ) if and Jt1KI

ν and Jt2KI
ν are defined;

. Jt1 ≤ t2KI
ν = (Jt1KI

ν ≤ Jt2KI
ν ) if and Jt1KI

ν and Jt2KI
ν are defined and integers;

+ Jifx :: k/n thenφ elseψKI
ν = JφKI

ν if JxKI
ν is a concept in CO mapped by $I to an n-ary predicate

or function according to k, and JφKI
ν is defined;

+ Jif x :: k/n then φ else ψKI
ν = JψKI

ν if JxKI
ν is not a concept in CO mapped by $I to an n-ary

predicate or function according to k, and JψKI
ν is defined;
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+ J$(x)(t1, . . . , tn)KI
ν = $I (JxKI

ν )(Jt1KI
ν , . . . ,JtnKI

ν ) if JxKI
ν is a concept in CO mapped by $I to an

n-ary predicate, and Jt1KI
ν , . . . ,JtnKI

ν are defined;

+ JφKI
ν is undefined in all the other cases.

Theorem 1 The truth value JφKI
ν is defined for every well-formed formula φ over Σ, every total structure

I over (Σ, ∼s), and every variable assignment ν that assigns a value to all free variables of φ .

This can be proven by parallel induction over the definitions of well-formed formulae (and terms) and
of their value, applying the properties of I and ν when needed. Indeed, the conditions in the inductive
rules of the valuation function match the conditions in the inductive rules of well-formed formulae (and
terms).

A sentence is a well-formed formula without free variables. We say a total, coherent structure I
satisfies sentence φ iff JφKI

ν = t for any ν . This is also denoted I |= φ . Coherent structures I that
satisfy sentence φ are called models of φ .

3.3 Complexity and alternative formulations

The determination of the well-formedness of a formula (Section 3.1) can be performed by backward
reasoning, using the appropriate inductive rule at each step based on the syntactic structure of the formula
under consideration. Each inductive step consists of simple syntactical analysis, and, for formulae having
sub-formulae, of determining the well-formedness of each sub-formula; formula $(x)(t1, . . . , tn) requires
an additional lookup of x in γ . Notice that, at each step, the complexity of the reasoning does not
depend on the size of the domain of discourse. Bounding the cost of both the syntactical analysis and
of the variable lookup by α , the cost C of the computation for any formula φ having sub-formulae φi

is bounded as follows: C(φ) ≤ α +∑iC(φi) ≤ α ×N(φ), where N(φ) is the number of tokens in the
formula (N(φ) = 1+∑i N(φi)). Thus, the complexity is linear with the number of tokens in the formula.

The complexity of decision and search problems in FO(Concept) is the same as in FO. This is because
the domain D of structures is extended only with a fixed, constant-sized set CO of elements (and not over
higher-order objects). For example, deciding the existence of a model of an FO (resp. FO(Concept))
theory with an input domain D (resp. D∪CO ) is an NP problem measured in the size of D (resp.
D∪CO ).

FO could be extended to support quantification over concepts in other ways than the one presented
above. Instead of the if .. then .. else .. construct, we could use ∨ (and ∧) with non-strict evaluation.
Well-guarded quantifications would then be written as follows:

∃x((x :: PRED/1)∧$(x)(p)) (6)

∀x((x :: PRED/1) =⇒ $(x)(p)) (7)

Also, instead of giving partial definitions of values (Def. 6 and 7), we could give total definitions by
assigning an arbitrary value when the term (resp. formula) is undefined. We would then show that this
arbitrary value is not relevant in well-formed formula.

4 Extending FO(·) with intensions

We now discuss how we extended the Knowledge Representation language called FO(·) [17, 16] to
support quantification over intensions.

FO(·) is first-order logic extended with language constructs to make it more expressive:



P. Carbonnelle, et al. 221

+ types: the vocabulary may include custom types, in addition to the built-in types (e.g., Int, Bool).
Each symbol has a type signature of the form T1×...×Tn→T specifying their domain and range.
The range of a predicate is the set of Booleans Bool. Formula must be well-typed, i.e., predicates
and functions must be applied to arguments of the correct type.

+ equality: t1=t2 is a formula, where t1 and t2 are terms of the same type.

+ arithmetic over integers and rationals: arithmetic operators (+,-,*,/) and comparisons (e.g., ≤)
are interpreted functions.

+ binary quantification: ∃x ∈ P: p(x). (where P is a type or predicate) is equivalent to ∃x: P(x) 
∧ p(x).

+ aggregations, such as #{x ∈ P: p(x)} (count of x in P satisfying p) and sum{{f(x) | x ∈ P}}
(sum of f(x) over x in P).

+ (inductive) definitions [17]: FO(·) theory consists of a set of logic sentences and a set of (poten-
tially inductive) definitions. Such a definition is represented as a set of rules of the form:
    ∀ x1 in T1,..,xn in Tn: p(x1,..,xn) ← F.
where F is an FO(·) formula.

Thanks to the support of inductive definitions, FO(·) is unique in combining the expressivity of
classical logic and logic programming [16]. The reference manual of FO(·) is available online1.

A Knowledge Base (KB) written in FO(·) cannot be run: like human knowledge, it is just a “bag of
information”, formally describing models in a problem domain. Knowledge bases do not distinguish in-
puts from outputs, and allow reasoning in any direction. They are used to perform a variety of reasoning
tasks (each with a particular set of inputs and outputs), using generic methods provided by reasoning en-
gines, such as IDP-Z32 and FOLASP [20]: they can find relevant questions to solve a particular problem,
derive the consequences of new information, explain how they derived these consequences, find possible
models, and find a model that minimizes a cost function [15].

These generic capabilities are used to easily build knowledge-based interactive systems that assist
users in finding solutions to problems in a problem domain [13, 19].

To allow reasoning about concepts, we have extended FO(·) with the “ `. ” operator (to refer to the
intension of a symbol) and the “$(.)” operator (to refer to the interpretation of a concept), as described
in Section 3 for FO.

An issue arises in expressions of the form

        $(x)(t1 ,...,tn)
    

x must be a Concept, the arguments t1,...,tn must be of appropriate types and number for the predicate
or function $(x), and $(x)(t1,...,tn) must be of the type expected by its parent expression.

To address this issue and to support the writing of well-guarded formulae, we have introduced types
for the concepts having a particular type signature:

        Concept[T1 × .. × Tn  →  T]
    

The interpretation of this type is the set of concepts with signature T1×..×Tn→T. Note that T1,..,Tn,T
themselves can be conceptual types.

The well-formedness and semantics of quantifications over a conceptual type :
1https://fo-dot.readthedocs.io/
2http://idp-z3.be/

https://fo-dot.readthedocs.io/
http://idp-z3.be/
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        ∃x ∈  Concept[T1 × .. × Tn  →  T]:  $(x)(t1,  ..,  tn).
    

is defined by extending the concept of guards (Section 3.1), and considering the following equivalent
statement with guards:

        ∃x:  if  x::[T1 × .. × Tn  →  T]  then  $(x)(t1 ,..,tn)  else  false.
    

where x::[T1×..×Tn → T] is a guard specifying the types of the arguments of x, and the type of $(x
)(t1,...,tn). The definitions of the typing function γ (Section 3.1), and of well-formed formulae and
their semantics are updated accordingly.

The syntax of FO(·) allows applying the “$(.)” operator to expressions (not just to variables), e.g.,
in atom $(expr)(). The type of expr must be a conceptual type with appropriate signature.

We have updated the IDP-Z3 reasoning engine3 to support such quantification over concepts. IDP-Z3
transforms FO(·) theories into the input language of the Z3 SMT solver [29] to perform various reasoning
tasks. A quantification

        ∃  x  in  Concept[T1 × .. × Tn→ T]:  expr(x).
    

is transformed into a disjunction of expr(`c) expressions, where `c is a Concept[T1×..×Tn→T]. Oc-
currences of $(`c)(t1,..tn) within expr(`c) are transformed into c(t1,..tn) where c is the symbol
denoting concept `c (Our implementation currently does not support synonymous concepts). The result-
ing formula is an FO sentence that can be submitted to Z3.

5 Examples in FO(·)

In our practice, we have identified a few examples where quantifications over concepts proved essential
to accurately model the knowledge available within a domain in an elaboration tolerant way, i.e., without
reification. These examples come from a broad range of applications. They are:

• the May 2021 DM Community challenge4 about deciding to perform additional testing of patients,
based on a set of symptoms (similar to the example we used in the introduction);

• the “International Law to fight money laundering” example, where we want to represent the general
rule that the national laws must be stricter than the EU directive.

• the “Word disambiguation” example, in which the word “child” in a statutory law could represent
either the biological or legal child.

• the “template” example, in which intensional objects are used to define templates.

The examples are available online5, and can be run using the IDP-Z3 reasoning engine. Below, we
discuss the International law example for illustration purposes.

Since 1990, the European Union has adopted legislation to fight against money laundering and ter-
rorist financing. It creates various obligations for the parties in a business relationship, such as verifying
the identity of the counter-party. The member states have to transpose the directive into national laws.
The national laws must meet the minimum obligations set forth in the EU directive.

3http://idp-z3.be/
4https://dmcommunity.org/challenge/challenge-may-2021/
5https://tinyurl.com/Intensions

http://idp-z3.be/
https://dmcommunity.org/challenge/challenge-may-2021/
https://tinyurl.com/Intensions
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In our simplified example, the EU directive requires the verification of identity in any transaction
with a value above 1MD; a national law might set the threshold at 500KDinstead. Similarly, the EU
directive might require a bank to send a report to their authority at least quarterly, but a country might
require a monthly report.

Our goal is then to express the requirement that the national obligations are stricter than the EU ones.
We choose an ontology in which “has a lower value” means “stricter”. We also use a mapping from the
parameters of the national laws to their equivalent parameter in the EU law.

        vocabulary  {
            type  Country
            threshold ,  period:  Country  →  Int
            obligation:  Concept[Country→ Int]→ Bool

            thresholdEU ,  periodEU:  ()  →  Int
            mapping:  Concept[Country→ Int]→  Concept [()→ Int]

        }
        theory  {
            obligation  :=  {`threshold ,  `period}
            mapping  :=  {`threshold  → `thresholdEU ,  `period→ `periodEU}

            // national law must be stricter than European law.

            ∀o ∈ obligation:  ∀c ∈ Country:  $(o)(c) ≤ $(mapping(o))().

        }
        

Notice that an expression (not a variable) is applied to the value operator: $(mapping(o))(). Because
o is a Concept[Country→Int] by quantification, it is in the domain of mapping, and mapping(o) has type
Concept[()→Int]. Its value is thus a nullary function of range Int.

6 Related Work

We discussed the relation between intensional logic and our work in Section 2. We now discuss the
relation with other work.

6.1 Second-order quantification and relations

A contribution of this work is to clarify the utility of being able to quantify over concepts in the vocabu-
lary and to show how it differs from quantifying over sets or functions as in second-order quantification.
Certainly in the case of predicate or function intensions, it is our own experience that it is easy to con-
fuse the two. We showed in the introduction the need for quantification over intensions as opposed to
over second or higher-order objects (relations or functions). However, the quantification over intensions
cannot replace quantification over second-order. A clear-cut example of second-order quantification and
relation occurs in the graph mining problem [23].

Example 3 A graph homomorphism h is a function from the nodes of a graph, called the pattern p, to
nodes of a graph g, that preserves the edges. The following expression intends to define hom/1 as the set
of homomorphisms of p in g, where p(x,y) (resp. g(x,y)) denotes an edge between nodes x and y.

∀h(hom(h)⇔∀x∀y(p(x,y)⇔ g(h(x),h(y))))
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The question is: over what sorts of values does h range (in the context of a structure I )? Over the set
of intensions of unary function symbols in Σ? There may be none! Or over the set of all binary functions
from nodes of the pattern to nodes of the graph in I ? Clearly, over the latter. Hence, h is a second-order
variable and hom/1 a second-order predicate symbol.

6.2 Metaprogramming

Variables ranging over concepts, as we propose, are similar to variables ranging over symbols, as found
in meta programming. Indeed, meta programming also brings the benefit that we seek: formulating
knowledge about concepts in an elaboration tolerant way (i.e, without reification).

Meta programming has been proposed in logic-based languages such as OWL [28, 30], as well as in
rule-based languages such as Prolog [4], HiLog [10], or webdamlog [1], but not in languages integrating
the two types of formulation, such as FO(·). This integration is needed to support all the use cases that we
describe. For example, the International Law example encodes a logic constraint that cannot be encoded
in a rule-based system; the Template example encodes an inductive definition that cannot be encoded in
logic-based systems. By contrast, our reasoning engine does support the two types of formulation, and
all the use cases.

Furthermore, we formalize the guarding mechanism that ensures that sentences are well-formed. To
the best of our knowledge, this mechanism is missing in all meta-programming implementations (and
in particular in HiLog and webdamlog). Without this mechanism, the developer of a knowledge base
cannot benefit from the automatic detection of syntactical errors.

7 Summary

As our examples illustrate, it is often useful in knowledge-intensive applications to quantify over con-
cepts, i.e., over the intensions of the symbols in an ontology. An intension is an atomic object represent-
ing the informal interpretation of the symbol in the application domain.

First-order logic and FO(·) can be extended to allow such quantifications in an elaboration tolerant
way. Appropriate guards should be used to ensure that formulae in such extensions are well-formed: we
propose a method to verify such well-formedness with a complexity that is linear with the number of
tokens in the formula.

While related to modal logic, the logic introduced here differs strongly from it. It has no modal
operators to talk about the extension of a symbol in other worlds than the contextual one, but it offers
mechanisms to quantify and count intensional objects.
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In a co-design environment changes need to be integrated quickly and in an automated manner. This
paper considers the challenge of creating and optimizing a global logistics system for the construc-
tion of a passenger aircraft within a co-design approach with respect to key performance indicators
(like cost, time or resilience). The product in question is an aircraft, comprised of multiple com-
ponents, manufactured at multiple sites worldwide. The goal is to find an optimal way to build the
aircraft taking into consideration the requirements for its industrial system. The main motivation for
approaching this challenge is to develop the industrial system in tandem with the product and mak-
ing it more resilient against unforeseen events, reducing the risks of bottlenecks in the supply chain.
This risk reduction ensures continued efficiency and operational success. To address this challeng-
ing and complex task we have chosen Answer Set Programming (ASP) as the modeling language,
formalizing the relevant requirements of the investigated industrial system. The approach presented
in this paper covers three main aspects: the extraction of the relevant information from a knowledge
graph, the translation into logic programs and the computation of existing configurations guided by
optimization criteria. Finally we visualize the results for an effortless evaluation of these models.
Internal results seem promising and yielded several new research questions for future improvements
of the discussed use case.

1 Introduction

Co-design is a holistic approach ([23]) for the development of new products in tandem with an existing
industrial system, and is essential for the development of innovative and complex products. Consider
the scenario that a product development department chooses a material that cannot be processed by
the existing industrial system. This may lead to significant cost increases and bottlenecks later in the
lifecycle. In contrast, a co-design enabled environment encourages trade-offs and suggests to adapt
either the product or the industrial system. The results of that trade-off are integrated into the future
developments, before the product is ready-to-market.

The first step towards co-design is to determine if a product can be produced by the existing indus-
trial system. This assessment is especially difficult for products — like aircrafts — where not only the
product itself is complex but which is also manufactured by a global industrial system in an intricate lo-
gistics network. Therefore, we propose the following approach: a data model to represent the industrial
system and the product, means to capture the data about these systems, a method to create valid system
architectures, ways to calculate key performance indicators and lastly visualize the results.

Creating a unified data model is a challenging task since the co-design approach requires to combine
different data domains together. We propose an Resource Description Framework (RDF) based ontology
to create the data model. This ontology needs to be instantiated with the available company knowledge
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captured in multiple sources, resulting in a co-design knowledge graph. Since the data can change
anytime the attached domains develop their respective systems further the knowledge graph needs to
be as lean as possible to quickly adapt to the evolving environment. After each iteration of the ’to be
developed’ product new variants of the industrial system need to be created and evaluated. A naive
approach would expand all possible variants and evaluate each of them. However, given a sufficiently
complex system, this would soon extend the capabilities of even the most advanced computer systems.1

We address this challenging task by applying ASP, an expressive, logic-based declarative modeling
language and problem-solving framework for hard computational problems ([24, 11]). Given that these
techniques require deep knowledge about the deployed technologies this process needs to be as seamless
and automated as possible to be suitable for a co-design framework. Thus, it is supported by a Continuous
Integration (CI) based process to integrate company knowledge into ASP statements automatically. For
a straightforward evaluation the results are visualized.

The paper is structured as follows: After the preliminaries, Section 3 illustrates the structure of the
data as a knowledge graph, the extraction of the relevant information and its conversion to logic program
facts. Next, the (choice) rules and integrity constraints for finding possible logistics configurations opti-
mized with respect to certain performance indicators and the visual representation of these configurations
are presented. Section 4 summarizes some lessons learned.

2 Background

The proposed framework is based on a variety of modules that exploit the technological advancements
in Software Engineering and Knowledge Representation and Reasoning. This section introduces the
preliminaries for knowledge extraction and computation.

2.1 Semantic Web Technologies

The World Wide Web Consortium (W3C) defined a standardized technology stack for representing data
in a semantic way. These technologies can be used to create ontologies that model the investigated
system and populating them with entities to build a knowledge graph.

In our context an ontology is defined as a formal, explicit specification of shared conceptualization
([14]). Formal because an ontology needs to be machine-readable, explicit specification demands the
capability of defining concepts, properties, constraints and axioms, shared as it represents consensual
knowledge while conceptualization defines an ontology as an abstract model, a simplified view of the
system.

The W3C technology stack proposes RDF as the standard model to represent information in the form
of Subject Predicate Object (SPO) triples ([6]). To be valid RDF each part of the triple has to be an
Internationalized Resource Identifier (IRI), a data type literal — that stores discrete values — or a blank
node. Blank nodes are either subjects or objects that do not have an IRI or literal. RDF can be serialized
into a variety of formats such as Turtle, RDF/XML or JSON-LD depending on the consuming interface
([1]).

To foster re-usability several standardized RDF vocabularies are available. The Web Ontology Lan-
guage is an RDF vocabulary that allows the creation of ontologies ([33]). Web Ontology Language
(OWL) implements classes (owl:Class), properties (e.g. owl:ObjectProperty, , owl:Datatype-
Property), constraints (e.g. owl:minCardinality) and axioms (e.g. owl:equivalentClass). An

1A product with 70 parts, 16 possible manufacturers and 2 manufactures per part yields 10166 variants.
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ontology forms one part of a knowledge graph, called the terminological component (TBox). The other
part, that contains instances of the classes defined in the TBox, is called assertion component (ABox)
([14]). Tools like Protégé support the creation of OWL ontologies by providing a graphical editor to
implement concepts and relations ([31]).

OWL can be split into several fragments with varying levels of expressiveness. These fragments, like
OWL-DL, provide a subset of constructs of the full implementation of OWL. Since OWL-DL imple-
ments the S ROI Q(D) Description Logic (hence the suffix DL) ([16]) reasoning engines can ingest
knowledge graphs backed by an OWL-DL ontology in order to infer new knowledge based on existing
facts.

Semantic Web Rule Language (SWRL) provides a way to express these inferences rules. These rule
sets can be used by the reasoning engines to create new knowledge ([17]). OWL-DL (like all OWL
fragments) is using the Open World Assumption (OWA) for reasoning. Possibly, reasoners might not
terminate, since OWL and its fragments are undecidable.

In order to access data stored in the knowledge graphs specialized data stores and query languages
have been developed. SPARQL Protocol and RDF Query Language (SPARQL) is the W3C recommen-
dation for querying knowledge graphs implemented with RDF ([15]). SPARQL provides expressions
and features of traditional query languages for relation databases like the Structured Query Language
(SQL). However, since SPARQL is implemented as a graph pattern matching language, it provides addi-
tional methods for traversing RDF graphs, querying multiple graphs at once and constructing sub-graphs.
SPARQL is running under the Closed World Assumption (CWA), either it matches a graph pattern or not.
Executing a query will always yield a result, even if empty. An extension of SPARQL called SPARQL
Update allows to manipulate the data in the knowledge graph by inserting, updating and deleting triples
with the help of a query ([9]).

Specialized data stores for RDF data are called triple stores. These stores come in two varieties: they
are either storing RDF data natively, or convert them into their own, internal data format. Usually these
storage solutions come with tools, Application Programming Interfaces (APIs) and SPARQL endpoints
to extract and manipulate RDF triples. One such storage solution is MarkLogic ([22]). MarkLogic is a
NoSQL document store that stores all data in Extensible Markup Language (XML) documents. In order
to store RDF data the RDF triples are put into documents. Internally the provided SPARQL endpoints
access the data stored in the documents.

MarkLogic provides reasoning at query run time; so called backward-chaining inference ([22]).
However, this is resource intensive. To facilitate fast query execution times, reasoning via ontologies
or SWRL rules should be done before executing the query, explicitly materializing the inferred facts.
Not only due to the additional run time of the reasoning step but also because of the undecidability of
OWL.

We focus on two areas of Semantic Web technologies: unify data from several diverse sources sup-
ported by an ontology and generate new knowledge with the help of reasoning to keep the resulting
knowledge graph as concise and easy to maintain as possible.

2.2 Logic Programming and Stable Model Semantics

We introduce the general notation and terminology used in this paper and assume the reader to be familiar
with ASP ([24, 11]) and the stable model semantics ([12]). The interested reader is referred to [3] and
[18].

We consider the countable set of terms T = {t1, . . . , tn} that consists only of constants and variables
with a total order ≤ over the elements in T . An atom is an expression p(t1, . . . tm) where p is a pred-
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icate, m ≥ 0 and t1, . . . tm ⊆ T . A is a fixed, finite and non-empty set of atoms. A ground atom is
an atom with only constants. If A is an atom, then A and not A are literals, the positive literal and the
negative literal, respectively. A ground formula is a formula with only constants. Consider the exam-
ple where productionLoc and warehouseLoc are predicates, hamburg and hamburgHarbor are constants
and X is a variable: productionLoc(hamburg) and warehouseLoc(hamburgHarbor) are ground atoms,
not productionLoc(hamburgHarbor) is a negative ground literal and productionLoc(X) is a non-ground
atom. A (normal) rule r is of the form

A← A1, . . . ,Am,not Am+1, . . . ,not An. (1)

where A and Ai with 1≤ i≤ n are atoms. The head of r is denoted as H(r) = A. The subformula to the
right of the implication symbol is called body of r and is denoted as B(r)=A1, . . . ,Am,not Am+1, . . . ,not An.
The set of all positive literals in B(r) is denoted as B+(r) = {A1, . . . ,Am} and the set of all negative lit-
erals in B(r) is denoted as B−(r) = {not Am+1, . . . ,not An}. A rule is safe if each variable in r occurs in
B+(r). A rule is ground if no variable occurs in r. A fact is a ground rule with empty body, i.e. n = 0.
The rule loc(X)← productionLoc(X) is safe, but neither ground nor a fact.

A logic program P is a (finite) set of (normal) rules. For any program P , let C be the set of all
constants appearing in P . In the sequel, we assume for all P it holds that CP 6= /0. The ground program
gP is the set of rules rσ obtained by applying to each rule r ∈P , all possible substitutions σ from the
variables in r to the elements of CP .

Program Ploc consists of the following rules, where CPloc
= {hamburg,hamburgHarbor}:

loc(X)← productionLoc(X). productionLoc(hamburg). warehouseLoc(hamburgHarbor).

The ground program gPloc consists of the following rules:

loc(hamburg) ← productionLoc(hamburg). productionLoc(hamburg).
loc(hamburgHarbor) ← productionLoc(hamburgHarbor). warehouseLoc(hamburgHarbor).

The set of all atoms in gP is denoted by AP . An interpretation I of a program P is a mapping of AP

to the set of truth values {>,⊥}, where>means true and⊥means false. Given a ground rule r, I(r) =>
denotes that the interpretation I maps r to > according to the corresponding logic. An interpretation I is
a model of P where for each rule r occurring in gP it holds that I(r) =>. Consider gPloc again.

APloc
= { loc(hamburg), productionLoc(hamburg), loc(hamburgHarbor),

productionLoc(hamburgHarbor), warehouseLoc(hamburgHarbor) }.

I1 = APloc
, I2 = {loc(hamburg),productionLoc(hamburg),warehouseLoc(hamburgHarbor)} and I3 = /0

are interpretations of Ploc, but only I1 and I2 are models of Ploc. An interpretation I ⊆AP satisfies a
ground rule r iff H(r)∩ I 6= /0 whenever B+(r) ⊆ I and B− ∩ I = /0. I satisfies a ground program P , if
each r ∈P is satisfied by I. A non-ground rule r (resp. a program P) is satisfied by an interpretation I
if I satisfies all ground instances of r (resp. gP). I is an answer set (also called stable model) of P iff
I is the subset-minimal set satisfying the Gelfond-Lifschitz reduct: P I = {H(r)← B+(r) | I ∩B−(r) =
/0,r ∈ gP}. I2 is the only answer set of Ploc.

The following two syntactic extensions are commonly used in ASP.

← A1, . . . ,Am,not Am+1, . . . ,not An. (2)

min{A : A1, . . . ,Am,not Am+1, . . . ,not An}max . (3)
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Figure 1: Knowledge extraction, computation and visualization for a global logistics framework.

Figure 2: A logistics system where the gray waves, the black rectangles and the black squares represent
a sea, countries and locations, respectively. The lines represent transport routes.

(2) and (3) are called integrity constraint and choice rule, respectively. Similar as above, A and Ai

with 1 ≤ i ≤ n are atoms. Intuitively, an integrity constraint represents an undesirable situation, i.e.
A1, . . . ,Am,not Am+1, . . . ,not An should be evaluated to false. No location can be both a warehouse and
a production location can be expressed as ← productionLoc(X),warehouseLoc(X). In choice rules,
min and max are non-negative expressions, and {A : A1, . . . ,Am,not Am+1, . . . ,not An} denotes the set of
all ground instantiations of A, governed through {A : A1, . . . ,Am,not Am+1, . . . ,not An}. Intuitively, an
interpretation satisfies a choice rule if min≤ N ≤max holds, where N is the cardinality of any subset of
{A : A1, . . . ,Am,not Am+1, . . . ,not An}. At least one location to be a production location can be expressed
as 1{productionLoc(X) : loc(X)}.

3 Logistics in Action

Figure 1 shows the proposed framework: The first box on the left contains the information about the
global logistics system as a knowledge graph in RDF on a triple store. Predefined queries specified in
SPARQL allow the extraction of relevant data resulting in JavaScript Object Notation (JSON) objects that



232 A Logic Programming Approach to Global Logistics in a Co-Design Environment

are transposed with JSONata for the conversion into logic program facts. The endpoints of an express
server ingested through a Representational State Transfer (REST) interface are called by a Python script
via MarkLogic to receive the facts from the knowledge graph. This Python script invokes the clingo ASP
tool chain to compute the stable models. Finally, a graph shows a scatter-matrix according to different
performance indicators of the computed models. Each model can be visualized as a global logistics
configuration in a Python Dash Plotly environment.

The discussed concept of co-design development in Section 1 includes considering new variants of
the industrial system for the product optimized towards some key performance indicators. Here, we
mainly focus on the modeling part of the industrial system, i.e. the logistics facts and their requirements.
The real industrial system is about the logistics of constructing an aircraft from multiple components.
The goal of the task is to build a complete aircraft. Each component can be constructed from smaller
components at some production site. These components need to be transported to the production sites
where they can be further processed, possibly via warehouses. Several production sites exist in vari-
ous countries and are reachable via various transport means. Not all production sites can construct all
components, not all components can be transported with all transport means and not all production or
warehouse sites can be reached by all transport means.

Because of the obligation of non-disclosure, we discuss here an adapted and simplified logistics
system, which covers all relevant components that are necessary to compute configurations for the real
industrial system: Figure 2 shows a fictional map. The production locations aP, bP and cP are located
in aCountry, bCountry, and cCountry, respectively. The warehouse locations aH and bH are located
in aCountry and bCountry, respectively. Existing transport means are plane, truck and ship. Possible
transport means at each location and transport routes between each two locations are denoted by a line: A
continuous yellow line denotes a truck route, a dashed blue line denotes a ship route and a dotted green
line denotes a plane route. The black circles at the corner of the squares of the production locations
denote which of the four parts (p1, p2, p3 and p4) is produceable at which site. The production plan
that tells us the order in which the parts have to be assembled is as follows: p1 is the final product and
needs p2 for its assembly. p3 is necessary for the production of p2 and in turn, p4 is necessary for the
production of p3.

3.1 From Knowledge Graph to Logic Program Facts

The data for the global logistics scenario was modeled as an RDF knowledge graph. The implementation
follows the technology stack presented in Section 2.1, The knowledge is scattered over multiple different
sources is collected in manually created spreadsheets for the main bulk of the data but also captured as
unstructured data in the form of documents. Additional assumptions of the system were not captured in
any written form but were acquired via interviews with subject-matter experts for the industrial system.
As a first step we modeled the ontology to capture all the the necessary knowledge.

In the next step we instantiated the concepts from the ontology with the help of collected data from
the subject-matter experts. In order to minimize the workload we decided that not every fact had to be
added to the knowledge graph but rather be created with the help of reasoning and SWRL rules whenever
possible.

For example since the number of production locations in our industrial network can change, routes
between these locations would have to be updated not only to the new location but also extended to
all the already existing locations in our knowledge graph. This would mean an effort of creating and
maintaining n(n−1)/2 for the n location nodes in the network ([27]). These efforts multiply if different
transport means (like ships, trucks, airplanes) are taken into account, that all travel on different routes.



E. Dietz, T. Philipp, G. Schramm, A. Zindel 233

Figure 3: CI process for deploying the global logistics knowledge base.

In order to better reflect the actual industrial system — and to reduce the number of possible routes
— the knowledge graph was extended so that some locations support restricted transportation means.
For example locations without a harbor cannot handle ships. Additionally, certain transportation means
are only available in certain geographic regions of the world. Further we implemented concepts for con-
tinental and intercontinental transport means to accurately model the SWRL rules for overseas transport
routes. This had to be done due to the Open World Assumption used for reasoning.

Since the ontology has no means to accurately determine the distance between locations for each
transport mean an attached routing service calculates them before uploading the knowledge graph into
MarkLogic.

Finally, reasoning on the properties of the ontology was preformed to materialize additional facts.
Utilizing the owl:inverseOf object property automatically creates the reverse connection between
entities. The knowledge graph only indicates which transport means can carry certain parts (can_-
transport). The reasoner then materializes the inverse connection: which part can be transported by
what transport mean (is_transported_by). This was implemented in order to create shortcuts in the
knowledge graph to easier extract the data for the creation of the logic program facts.

The goal was to provide as much information prior to the grounding of the logic program. This
reduced the facts that had to be derived in ASP and improved its performance for the model computation.
It also provides a mechanism to perform consistency checks while modeling with the Protégé graphical
editor.

The data for the ASP client was accessed through a MarkLogic data store (Section 2.1). In order to
reduce the amount of work the knowledge graph developer has to put into the deployment in MarkLogic
a Jenkins task ([5]) which is deployed to automatically push the data to the data store. This happens
every time a new push to the git repository is detected by a webhook ([21]). Before the data is ultimately
pushed into the store several scripts are being executed by Jenkins. First the different files are combined
into a single file, for easier processing. Then all the SWRL rules are executed to materialize the additional
facts. Next, the data is completed by accessing the REST service that calculated the distance between
two locations. As a last step a process checks via predefined Shapes Constraint Language (SHACL)
([20]) shapes if all the entities in the knowledge graph conform to predefined shapes. If all the entities
conform to the SHACL shapes they will be pushed into the data store. Figure 3 gives an overview over
the process.

To extract the data from the data store we use the provided SPARQL endpoint of MarkLogic (Sec-
tion 2.1). For each set of logic program facts a SPARQL SELECT query is implemented. SPARQL
SELECT queries produce a tabular output which needs to be transformed into such facts so they can be
consumed by the clingo client. For this we deploy a facade of REST web services with Node.js that
uses the JSONata library ([19]) to convert the resulting tabular data from the SELECT query into logic
program facts. Table 1 shows a mapping from the entities in the knowledge graph to the facts and gives



234 A Logic Programming Approach to Global Logistics in a Co-Design Environment

Entities in Knowledge Graph Logic Program Fact Example Description

Instance of Country class country(aCountry). aCountry is a country

Instance of ProductionLocation productionLoc(aP). aP is a
class and its sub-classes Locations production location
that can manufacture Products

Instance of WarehouseLocation warehouseLoc(bH). bH is a
classes and its sub-classes warehouse location

Instance from is_located_in locatedIn(aP,aCountry). aP is located
Locations in Country in aCountry

Entities that can transport parts transportMean(ship). ship is a
via TransportationResource transport mean

via has_terminal and can_handle transportMeanAtSite(bH,ship). ship is a
what TransportationResource transport
accepted at location mean at bH

Correlated to instances of Product part(part2). part2 is a part
class and its sub-classes to be produced

What TransportationResource canTransport(ship,part2). ship can
can transport what Product transport part2

Via ProductionResource that links partProduceableAt(part2,aP). part2 is
via has_location and can_produce produceable at aP

Routes via has_destination, transportRoute(aH,bH,ship,7). Distance from aH

has_source and has_transport_mean to bH by ship is 7

combination of Product instances productionPlan(part1,part2). part2 necessary for
and has_part object properties production of part1

Table 1: One example for each type of fact that is extracted from the knowledge graph.

one example for each (predicate) type.2

In the next section we describe how the facts from the industrial system knowledge graph are used
for the definition of requirements in ASP.

3.2 Representation of Logistics Requirements in ASP

Facts Eleven different (predicate) types of logic program facts with in total more than 70.000 facts, are
extracted from the knowledge graph as described in Section 3.1.

Rules The assembly of the aircraft is specified by a production plan (last row in Table 1). For the
example introduced at the beginning of this section, part1 is the final product (or root). The following

2In Figure 2 part is abbreviated with p.
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rule defines this root:

root(X)← productionPlan(X,_),not productionPlan(_,X). (4)

For all X, if X is a productionLoc or warehouseLoc, then X is a location:

location(X)← productionLoc(X). location(X)← warehouseLoc(X). (5)

All transportRoute relations are symmetric:

transportRoute(From,To,TM,D)← transportRoute(To,From,TM,D). (6)

All locations have an intrasiteTransport which can transport all parts with distance 0:

transportMeanAtSite(X, intrasiteTransport)← location(X). (7)

canTransport(intrasiteTransport,X)← part(X). (8)

transportRoute(X,X, intrasiteTransport,0)← location(X). (9)

At all locations all parts can be transported intra-site with distance 0:

canBeTransportedFromTo(X ,X ,Part, intrasiteTransport,0)← location(X),part(Part). (10)

A part can be transported from one location to another location by a certain transport mean with a given
distance if the following holds:

canBeTransportedFromTo(From,To,Part,TM,D)← canTransport(TM,Part), (11)

transportMeanAtSite(From,TM), transportMeanAtSite(To,TM),

transportRoute(From,To,TM,D).

A part can be transported from its original location (where it is produced) to its final location (where it
is further assembled), directly, via one or via two locations:

direct(Part,From,To,TM,D)← canBeTransportedFromTo(From,To,Part,TM,D). (12)

via1(Part,From,(Via1,To),(TM1,TM2),D)← (13)

canBeTransportedFromTo(From,Via1,Part,TM1,D1),From! = To,

canBeTransportedFromTo(Via1,To,Part,TM2,D2),D= D1+D2.

via2(Part,From,((Via1,Via2),To),(TM1,TM2,TM3),D)← (14)

canBeTransportedFromTo(From,Via1,Part,TM1,D1),From! = To

canBeTransportedFromTo(Via1,Via2,Part,TM2,D2),Via1! = Via2,

canBeTransportedFromTo(Via2,To,Part,TM3,D3),D= D1+D2+D3.

Choice Rules The requirements for the logistics system are specified through choice rules. Each part
needs to be produced at some production location at which it is produceable (15) and each production
location needs to produce at least one part (16):

1{partProducedAt(Part,PL) : partProduceableAt(Part,PL)}1← part(Part). (15)

1{partProducedAt(Part,PL) : part(Part)}← productionLoc(PL). (16)
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These choice rules lead ASP to guess partProducedAt(Part,PL) for each part and production location.
After that, the transport paths and the transport means are guessed. If the part is the final product, i.e. the
root part, then no further transportation is needed:

1{path(Part,From,(), intrasiteTransport,0) : partProducedAt(Part,From)}1← (17)

partProducedAt(Part,From), root(Part).

Otherwise, one of the other route types (direct, via1 or via2) applies:

1{path(Part,From,To,TM,D) : direct(Part,From,To,TM,D); (18)

path(Part,From,(Via1,To),(TM1,TM2),D) :

via1(Part,From,(Via1,To),(TM1,TM2),D);

path(Part,From,((Via1,Via2),To),(TM1,TM2,TM3),D) :

via2(Part,From,((Via1,Via2),To),(TM1,TM2,TM3),D)}1 :−
partProducedAt(Part,From),productionPlan(Super,Part),partProducedAt(Super,To).

Integrity Constraint So far, we have assumed a single sourcing strategy, i.e. every part is produced
at exactly one location. The resilience of a logistics system can be strengthened by applying a multi
sourcing strategy. For double sourcing, every part is required to be produced at two different locations,
thus the min and max 1 constraints in choice rule (15) need to be replaced by 2. It is then desirable that
these two locations are not located in the same country.

← part(Part),partProducedAt(Part,Location1), locatedIn(Location1,Country), (19)

partProducedAt(Part,Location2), locatedIn(Location2,Country),Location1! = Location2.

Optimization The next statement minimizes the overall distance of the transport paths:

#minimize{D,part,From,To,TM : path(part,From,To,TM,D)}. (20)

Assertions In total we defined 25 assertions, which are rules that test if the extracted facts are correctly
specified. Here are two examples: It should not be the case that a location is not located in a country (21)
and it should not be the case that locations are located in different countries (22).

invalidLocatedIn(X)← location(X),not locatedIn(X,_). (21)

invalidLocatedInTwoCountries(X)← location(X),country(Y1),country(Y2), (22)

locatedIn(X,Y1), locatedIn(X,Y2),Y1! = Y2.

These assertions could also be expressed as integrity constraints. However, in case an integrity constraint
is violated, ASP would simply lead to UNSAT. The expression as assertion leads the head of the respec-
tive ‘invalid’ rule to be true in all models and allows us to immediately identify invalid specifications.

3.3 Visual Model Representation

A visual representation seems to be the simplest way for humans to communicate a model. Post-
processing was done with the computed models by translating the relevant facts into .csv tables and
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Figure 4: Overview of all models with respect to the total distance of necessary transportation.

one overview table showing key performance indicators. The graphical representation of the overview
table and the individual configurations was done in a Python application using Plotly and Dash ([26, 29]).
This toolkit produces an interactive representation of the already available .csv tables. Figure 4 shows
an example for the simplified logistics system. The user interface is split into three parts: The drop-
down menu at the top shows that ‘single_sourcing’ is selected. When selected, a scatter matrix appears
(left). Each scatter plot represents the tradeoff between two indicators. As this example has only one
performance indicator (‘distance’) it is simply plotted against itself. Each dot in the plot represents one
computed model. The user can then hover on any dot in order to show details of one model (right),
which consists of a map, showing production locations (red small factories) and warehouses locations
(black small anchors). The line between these locations represent instantiated routes, where colors and
shapes of the lines denote the mode of transport. Hovering over each route shows the part that is being
transported. The red dotted arrow indicates that the red circled dot in the scatter matrix corresponds
to the configuration shown in the map. This configuration shows a model with three indirect transport
paths: part 4 is transported from cP to bP via bH (anchor next to bP), part 3 is transported from bP to
aP via bH and aH and part 2 is transported from aP to cP via aH (anchor next to aP) where part 1 (root)
is assembled into the final product.

4 Variations & Evaluation

Experiments on a 2.3 GHz Quad-Core Intel Core i7+16 GB RAM 3733 MHz type DDR4 with 29 loca-
tions (13 productionLoc facts and 16 productionLoc facts), 182 transportMeanAtSite facts and 34 part

facts (including one root), show that variations in the encoding can have a strong impact on grounding
and solving time: Rules (6) to (10) in Section 3.2 were replaced with almost 30.000 canBeTransport-

edFromTo facts directly derived from the ontology, omitting the instantiation of irrelevant rules. The
second row in Table 2, Baseline, shows the resulting number of (choice) rules, times (in minutes) for
grounding and finding the first model. The third row, PL Choice as IC, refers to the variation where
choice rule (16) is replaced by the following rule and integrity constraint:

producedAtLoc(PL)← productionLoc(PL),partProducedAt(Part,PL). (23)

← productionLoc(PL),not producedAtLoc(PL). (24)
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LP Variation # Rules (%) # Choice Rules (%) Grounding in min. 1st model in min.

Baseline 63148530 (100) 4475 (100) 14.47 5.67
PL Choice as IC 63142310 (99) 3098 (69) 14.24 5.42
Loc Type Req 2873012 (4.5) 4307 (96) 1.14 0.24
TM Type Req 1313162 (2) 3107 (69) 0.19 0.05

All 194129 (0.3) 2667 (60) 0.04 0.01

Table 2: Configurations wrt # (choice) rules, time for grounding and 1st model.

The fourth row, Loc Type Req, refers to the extension of the via1 (13) and via2 (14) rules by requiring
From,To and Via1,Via2 to be production locations and warehouse locations, respectively. As all ware-
houses in the current ontology are harbours, the transport mean between via1 and via2 can only be a ship.
The results by extending the via2 rule to require TM2 to be a ship, i.e. ship(TM2), is shown in the fifth
row, TM Type Req. The last row, All, shows the results when all the replacements and extension were
applied.

5 Conclusions, Lessons Learned & Future Work

The representation as RDF ontology and the computation of configurations in ASP seems promising
for co-design development. With the help of the graphical Protégé editor it was easy to discuss the
architecture, concepts and meta-data of the global industrial system with the industrial architects to
crosscheck if we understood their provided constraints and data sets properly. For the first time we were
able to devise a machine readable model of the global industrial system.

The construction of additional facts with the help from SWRL rules and reasoning was beneficial
in two regards. Firstly, it allowed the creation of ancillary knowledge for the configuration of the logic
programs. It also provided a mechanism to quickly adapt the product and industrial system to new re-
quirements from the stakeholders. Secondly, some entities like valid Routes for the global logistics
system and additional facts were generated automatically, which reduced the number of entities in the
graph that had to be added or adapted considerably. Reasoning conducted under the Open World As-
sumption resulted in the creation of more concepts and properties to capture everything with the SWRL
and reasoning rules. It was still manageable for our use case but could become a hindrance when scal-
ing up the industrial system knowledge graph. Alternative approaches like the Ontological Modeling
Language (OML), that automatically create additional statements to close the world, could be deployed
([7]). The CI pipeline implemented with Jenkins made the deployment of new iterations of the knowl-
edge graph seamless. Through the git webhook the CI pipeline was always informed when new changes
had to be deployed in MarkLogic. The SHACL shapes ensured that no invalid data was integrated into
the knowledge graph. The knowledge graph could locally implement changes while the computational
intensive tasks was handled by the Jenkins server. The computed models in ASP were validated by a
fully fledged simulation environment in AnyLogic ([32]).

As Table 2 in Section 4 shows, adding obvious information to the rules accelerated the search process
in ASP significantly: The extension of the via1 (13) and via2 (14) rules with a requirement on the location
type (row 4, Loc Type Req) and a requirement on the transport mean type between warehouses (row 5,
TM Type Req), reduced grounding from minutes to seconds. A surprising feature of ASP compared to
other approaches that we investigated so far, is that it was very simple to specify partial configurations,
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when they were known (by simply adding them as facts) or modify requirements, as shown by the simple
extension for the multi sourcing strategy in Section 3 (on page 236).

In the future, we intend to extract certain requirements directly from OWL, such that choice rules
and integrity constraints can be automatically built from templates. Another aspect would be to pro-
duce a wider range of variations by means of the multishot feature in ASP. [8] suggest the fixed-domain
semantics, an alternative formal semantics for an intuitive understanding in OWL and description log-
ics that might be accessible for logically less skilled practitioners and provide a translation into ASP.
Even though our purpose was to reduce the grounding time by deriving relevant facts from the ontology
directly, their approach might be interesting for us.
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Python and Prolog express different programming paradigms, with different strengths. Python is

wildly popular because it is well-structured, easy to use, and mixes well with thousands of scien-

tific and machine learning programs written in C. Prolog’s logic-based approach provides powerful

reasoning capabilities, especially when combined with constraint evaluation, probabilistic reason-

ing, well-founded negation, and other advances. Both languages have commonalities as well: both

are usually written in C, both are dynamically typed, and both use data structures based on a small

number of recursive types.

This paper describes the design and implementation of Janus, a system that tightly combines

Prolog and Python into a single process. Janus bi-translates data structures and offers performance

of many hundreds of thousands of round-trip inter-language calls per second. Although Janus is still

new, it has been used in commercial applications including natural language processing, visual query

answering and robotic automation. Janus was developed for XSB, but porting Janus code to a second

Prolog has been straightforward, indicating that Janus is a tool that other Prologs may easily adopt.

1 Introduction

Modern Prolog systems offer a rich array of functionality that reflects a strong research community.

There are well over a dozen Prolog systems that are actively developed and/or maintained, including

SWI([15]), SICStus ([3]), Ciao ([7]), YAP ([11]), ECLIPSe ([12]), GNU Prolog ([4]), Picat ([16]), Tre-

alla, 1 Tau, 2 and XSB ([13]). Most of these Prologs are compliant with Prolog’s ISO standard ([8]), but

also offer diverse functionality far exceeding the standard.3 We offer several examples. Picat, SICStus,

and ECLIPSe are excellent for constraint-evaluation; Ciao is particularly strong for program analysis

and a flexible syntax; YAP is especially fast for SLDNF; SWI offers a fast and stable multi-threaded

engine; and XSB has pioneered a wide array of tabling strategies, many of which are now offered by

other Prologs.

Altogether, the dialects of these modern Prolog systems offer numerous useful features that are either

unavailable or rarely available in other programming languages. Despite these features the author’s

experience is that Prolog is rarely used in industry – certainly not as often as it might be. Perhaps the

major factor behind this is the lack of programmers trained in Prolog, but there are also issues of usability.

The first of these is embeddability. Many Prologs can be called from C or Java, but fewer can be called

from other languages popular in industry such as Python or C#. Fewer still can be called from emerging

languages such as Rust or Julia.4 While the above problems are more acute for research-oriented Prologs

like XSB than for more heavily used Prologs like SWI or SICStus, the paucity of packages can make

1https://github.com/trealla-prolog/trealla
2http://tau-prolog.org
3Picat has a non-ISO syntax, but it is based on the B-Prolog engine ([17]).
4Scryer is an emerging Prolog implemented in Rust.

http://dx.doi.org/10.4204/EPTCS.385.24
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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development in any Prolog uneconomical. Languages like Java, Python and Javascript each have package

repositories with well over 100,000 packages, perhaps two orders of magnitude more than the total

packages available from currently maintained Prologs. As a result, the use of Prolog in a commercial

system may be limited to a few modules – or most commonly, avoided altogether.

The Janus system combines Prolog and Python into a single system running in a single process,

with development possible from either the Prolog or the Python command line (or IDE). Because Prolog

and Python are tightly connected, round trip calls between languages can be made many hundreds of

thousands of times per second, so that there is little need to implement functionality in one language if it

is present in the other.

Several features of Python make it a productive choice of language for Prolog integration. Python is

currently one of the most popular of all programming languages both for commercial and scientific com-

puting, with large package managers that are easy to use. Like most Prologs, the most popular version of

Python, CPython is written in C, with a well-written C-API.5 Furthermore, Python is dynamically typed,

as is Prolog. Nearly all of Python’s data structures are recursively formed using lists, tuples, sets, and

dictionaries; as discussed in Section 2 these data structures map well into Prolog’s logical terms.

In addition to establishing a tight, fast connection between Python and Prolog, the authors put sub-

stantial effort towards making Janus ’s configuration as easy as possible. Janus was originally developed

for XSB and its first version is available as part of the XSB distribution. XSB’s installation process

generates code enabling either Python and Prolog to load the other language on demand. Alternately, a

test site on the PyPI repository allows Janus and XSB to be installed via a Python pip command.6 Once

Janus is installed, Prolog is at a Python programmer’s fingertips, and vice versa.

In the less than a year since Janus ’ release, it has been used in commercial applications including

reasoning over large knowledge graphs, natural language processing, visual query answering, and situ-

ational awareness of autonomous agents. Furthermore, our experience in porting Janus to LVM Prolog

developed by Permion, Inc.7 has shown that Janus is easy for a developer to port. 8

This paper focuses on the design and architecture of Janus. First, Section 2 describes the design of

the Prolog and Python APIs of Janus . Section 3 describes implementation of the heart of Janus : its

bi-translation between Python and Prolog data structures. This section also discusses implementation of

calls in the Janus interface as well as Janus performance. Section 5 lists applications using Janus and

describes in detail the implementation of one of a dozen or so libraries that use Janus.9

1.1 Related Work

Most of the Prologs mentioned above are written largely in C and so offer bi-directional C/C++ inter-

faces. Many also offer bi-directional Java interfaces using JPL (SWI and YAP), Jasper (SICStus), Inter-

prolog ([2]) (XSB) and other frameworks (including Ciao, YAP, ECLIPSe and GNU Prolog). Further,

some Prologs also have Python interfaces (e.g, SWI), Javascript interfaces (e.g., Tau, Ciao) or Rust inter-

faces (Scryer). In addition, the Natlog interpreter ([14]), written in Python provides a form Prolog-style

evaluation within Python.

Three factors distinguish the Janus interfaces and how they are used. First, Janus tightly combines

5https://docs.python.org/3/c-api/index.html
6Installation via the PyPi site currently works only for Linux.
7http://permion.ai
8Although all functionality described in this is available in XSB, its first version used non-generic xsbpy and px within

function and module names. These names are in the process of being changed.
9These applications are described in more detail in a companion paper about Janus applications [1].
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Prolog and Python into a single process. As will be discussed in subsequent sections, the result is that

Janus is extremely fast. Second, its automatic bi-translation (Section 3.1) allows large and complex

data structures to be copied from one language to another without requiring special declarations. Third,

compiling and linking is handled by the Janus configuration process, allowing transparent, on-demand

compilation for both Prolog and Python modules, and on-demand loading of Python modules when

called by Prolog. These features are fully supported for Python and Prolog modules even when they call

other languages, such as C.

2 The Janus Programmer’s API

This section describes the bi-directional Janus API.

2.1 Calling Python from Prolog

Janus is consulted (loaded) by Prolog just as any other module (currently, XSB and LVM Prolog are sup-

ported). When Janus is loaded, Python is also loaded and initialized within the same process as Prolog;

paths to Janus and its subdirectories are added both to the library directories of Python (sys.path) and

Prolog; and core Prolog modules are loaded. Subsequent calls from Prolog cause the Python interpreter

to search for its modules and packages in the same manner as if Python were stand-alone.

We introduce further Janus functionality through a series of examples.

Calling Python Functions The Janus Prolog predicates pyfunc/3 and pyfunc/4 are used to call
Python functions. We invoke the Python standard library json, which reads and writes JSON strings,
to illustrate Python calls via pyfunc/3. The Python function json.loads(string) inputs a JSON-
formatted string, and returns a Python dictionary. A simple call of json.loads() from Prolog and
subsequent write has the form:

?- pyfunc(json,loads(’{"name":"Bob", "langs":["English", "GERMAN"]}’),Dict),

writeq(Dict).

and prints out:

pyDict([’’(name,’Bob’),’’(languages,[’English’,’GERMAN’])])

Here, Prolog invokes the Python call

json.loads(’{"name":"Bob", "langs":["English", "GERMAN"]}’)

which parses the string and outputs a Python dictionary, which is then translated into a Prolog term and

bound to the Dict variable.10

More specifically, Janus translates a Python dictionary (a set of key-value pairs) to a Prolog term

pyDict(List), where List is a list of key-value tuples. Janus represents each such tuple as a Prolog

term ’’(Key,Value), in which the functor ’’ (the empty string) is chosen to make the pairs resemble

Python tuples.11 Because Python-Prolog translations can be complex, multi-level Prolog terms, Janus

provides Prolog tools to traverse these data structures that are analogous to the Python methods values

and keys().
A slightly different call shows Janus’ support for Python keyword arguments.

10Any errors encountered in the Python execution are caught and wrapped in a Prolog exception.
11The choice of functor ’’ used for tuples is configurable, as are most Janus functors.
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?- pyfunc(json,loads(’{"name":"Bob", "langs":["English","GERMAN"]}’),pyDict(L)),

append(L,[’’(gpa,3.5)],L1),

pyfunc(json,dumps(pyDict(L1)),[sort_keys=1],NewString).

Here, the call to json.dumps() is made via the Prolog predicate pyfunc/4, which takes an addi-

tional parameter specifying the optional Python keyword parameter sort keys. In this case, the output

is sorted by key, producing

{"gpa": 3.5, "languages": ["English", "GERMAN"], "name": "Bob"}

Using Python Objects and Methods Janus also supports the use of Python class objects and meth-

ods. We demonstrate these capabilities via calls to the fasttext Python package for Natural Language

Processing, specifically its lid.176.bin language identification model ([5]). The model is loaded by

calling an initializer directly from the fasttext package:

pyfunc(fasttext,load_model(’./lid.176.bin’),Obj).

This call unifies Obj with a Prolog reference to the (Python) model object, represented for this example

as pyObj(p0x7faca3428510). Using the reference, the object’s class methods can be called, or its

class attributes obtained, via pydot/[3,4]. For example, a call to the class method predict:

pydot(pyObj(p0x7faca3428510),predict(

’Janus is a really useful addition to Prolog! But language detection

requires a longer string than I usually want to type.’),Lang).

returns the detected language and confidence value.

In the preceding examples, once Janus was consulted, Python functions and methods were imme-

diately available to Prolog. In practice, it is sometimes convenient to write libraries containing small

amounts of Prolog and Python wrapper code. For instance, the jns rdflib.P library transforms rdf

triples, which are maintained as objects in the Python rdflib library, into Prolog terms that can be as-

serted as facts. In other cases, it may make sense to provide an access from Prolog that is a bit higher

level than that provided by Python functions or methods, as will be illustrated in Section 5.

2.2 Calling Prolog from Python

When used from Python, Janus is loaded just like any other Python package. When Janus is loaded into
a Python session, the XSB executable and its core libraries are loaded and initialized, and XSB’s paths
configured. For convenience, Python functions for compiling and consulting user Prolog code are also
provided, as in the following invocation of Prolog’s consult:

>>> import janus

>>> consult(prolog_file)

When Prolog calls Python, a goal of Janus is to make the Python data structures and calls as natural

as possible for a Prolog programmer. Similarly, when Python calls Prolog, the goal is to make Prolog

data structures and calls as “Pythonic” as possible. Several Prolog features make a Pythonic translation

challenging. Python has no analog of Prolog’s logical variables, nor a direct analog to the named functors

of Prolog terms.12 Additionally, the non-determinism of Prolog predicates must be accounted for; and in

12Using Python’s namedtuple library, classes can be created whose instances syntactically resemble terms with named

functors, but both a class and its instances have to be specifically instantiated to be used.
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Prologs like XSB and SWI that support the well-founded semantics (WFS), each answer must must be

associated with its truth value, which may be true or undefined.

Prolog Deterministic Goals We first describe how Prolog deterministic goals (goals returning exactly
one answer) can be called via the Janus Python function jns qdet(). Specifically, consider a call from
Python to reverse a list:

>>> (Answer,TV) = jns_qdet(’basics’,’reverse’,[1,2,3,(’mytuple’),{’a’:{’b’:’c’}}])

which calls the Prolog goal

basics:reverse([1,2,3,(’mytuple’),{a:{b:c}}],Return)

The first two parameters of jns qdet() are the module (basics) and the name (reverse) of the Prolog

predicate to be called . The remaining parameters are a (possibly empty) sequence of ground arguments

that are passed to the Prolog predicate: in this case only one argument is passed, the list to be reversed.

The Prolog predicate that is called must have one additional argument not included in the Python call: in

this case it is the second argument of reverse/2 bound to the variable Return.13 Here, the call returns

to Python the tuple (Answer, TV), in which Answer is the binding of the Return variable (the reversed

list) and TV is the call’s returned truth value (here, 1). The Janus convention is that a truth value in Python

may be 1 representing true, 0 representing false, or 2 representing undefined. (If a goal fails, None is

returned for the answer).14 jns qdet() is designed to be extremely fast, and so is suitable for uses like

calling Prolog as part of a neuro-symbolic loss function for machine learning.

Prolog Non-deterministic Goals Non-deterministic Prolog goals can be called via the Janus Python
function jns_comp(), which uses the same parameters as jns qdet() but also offers optional key-
word parameters. We introduce a small Prolog knowledge base, jns test to illustrate the behavior of
jns comp():

test1(a,b,1). test1(a,c,2).

test1(a,d,5):- unk(something). unk(X):- tnot(unk(X)).

If jns test is already loaded in Prolog, then the Python call:

>>> jns_comp(’jns_test’,’test1’,’a’,vars=2)

calls the Prolog goal:

?- jns_test:test1(a,V1,V2).

The keyword argument vars=2 causes a Prolog goal to be formed with two free variables at the end.
The call returns a list of answer bindings to V1 and V2, each of which has a distinct truth value:

[((b,1),1), ((c,2),1), ((d,5),2) ]

The answer tuple ((d,5),2) has an undefined truth value because it is proved via the subgoal

unk(something)

13A function jns cmd() handles similarly restricted goals where no answer binding needs to be returned.
14The version of Janus using XSB does not use the Python keywords True and False since three truth values are needed

and it was thought best for all truth values to have the same class.
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which is undefined in WFS. Under the hood, XSB’s tabled evaluation of WFS semantics maintains a

delay list for each answer that tracks potential proofs of the answer that are delayed until their undefined

dependencies are resolved. In this case, the answer (d,5) has a non-empty delay list (i.e. its undefined

dependency is never resolved) [13].

jns comp() has other useful keyword arguments. The keyword argument comprehension=set re-

turns the answers as a set instead of a (default) list. The keyword argument truth_vals=no_truthvals

drops the truth value from the answer tuple. Alternately, truth vals=delay lists causes the full de-

lay lists of answers to be returned.

Janus also supports an alternative means of calling complex Prolog goals using a Python string
to hold the arguments of the goal. The Python string is first translated to a Prolog atom, and then the
argument terms are read from the atom. For example, a system of numerical constraints could be invoked
through a call such as

>>> jns_cmnd(’jns_constraints’,’check_entailed’,’[[X > 3*Y + 2,Y>0],[X > Y]]’)

Here, the predicate check entailed/1 reads the input atom, sets up its constraints, and calls a constraint

evaluator such as clpr.15 In fact, a Janus -based interface from Logtalk ([10]) expands on this approach

by returning logical variables and their bindings to Python in a dictionary.

Because jns comp() returns a list or set, it can be used in Python anywhere an iterable object can

be used, for instance in the Python code fragment:

>>> for answer in jns_comp(...):

Although iterable objects are arguably central to Pythonic programming, the current Janus implemen-

tation constructs answer lists/sets eagerly, returning all answers at once, which can cause performance

issues when answer sets are very large. A more incremental alternative would make use of Python’s

generator type, a cursor-like mechanism through which answers can be returned lazily via Python’s

yield statement. This approach is in fact taken by the Natlog interpreter, written in Python ([14]).

However, multiple generators cannot directly be supported by a single-threaded Prolog engine since this

corresponds to multiple top-level backtracking points. Future versions of Janus may provide support for

table cursors, using a lightweight mechanism to backtrack through completed tables.16

Finally, Janus also supports round-trip callbacks from Python to Prolog to Python, enabling flex-

ible combinations of the two languages’ capabilities and ecosystems. For example, Prolog reasoning

could be leveraged by Python-based graphical interface libraries like Tkinter, web interfaces libraries

like django, or IDE plug-ins. Here, round-trip callbacks enable both languages to participate in the

orchestration of the overall program.

3 Implementation and Performance

The Janus code base is small: approximately 1500 lines of C code and 750 lines Prolog code, apart

from that used for configuration, which has made it straightforward to port. It is also designed to be as

fast as possible. In this section, we first describe the implementation of bi-translation, followed by the

implementation of sample Janus predicates and functions. ¡

15See Volume 2, Section 18.2.4 of the XSB manual.
16Multi-threaded Prologs can support multiple backtrack points, but with a likely space overhead, since a Prolog thread

requires more memory than a cursor.
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3.1 Bi-Translation of Data Structures

Bi-translation is at the heart of Janus, which offers one translator to traverse a Prolog term to create a

corresponding object on the Python heap; and another to traverse a Python object to create a term on the

Prolog heap.

Translating a Prolog Term to a Python Object. Prolog to Python translation is performed by the

function translate_prTerm_pyObj() which recursively traverses a Prolog term to convert atoms,

integers, floats, and lists to their Python form. The function also uses translation conventions described

earlier, such as translating terms having the ’’/n outer functor to tuples, pySet/1 to sets, and pyDict/1

to dictionaries. A domain error is thrown if a term is encountered having some other outer functor.

Figure 1 shows a fragment of C-like pseudo-code for the translation of pyDict/1 terms (via the

macro PYDICT C). We note several points. First, the fragment begins with the else if’ conditional since

translate prTerm pyObj() is structured as a series of conditions rather than as a switch statement.

This choice was made because the number of possible checks is small, and the conditions can be ordered

by expected frequency. Conditions are ordered to first check for integers, atoms, floats and then lists. If

the term is a structure, checks are made for tuples, dictionaries and finally sets.

Second, the code shown largely consists of Python C-API calls that create and assemble Python

objects (PyDIct New() and PyDict SetItem()) along with calls that interact with the Prolog heap.

In the latter category, (get functor string() returns the functor of a term as a string, is list(),

get arg() returns the nth argument of a structure, while get car() and get cdr() return the head

and tail of a list). When Janus is ported to another Prolog, only the calls that interact with the Prolog

heap need to be redefined. (E.g., by using macros to redefine functions like get arg() to corresponding

functions in the target Prolog.)

Third, although translate prTerm pyObj() is recursive, recursion depth has never been a prob-

lem in practice, in part because iteration is used to traverse through the top-level elements of data struc-

tures as in the while statement of Figure 1. Furthermore, any Prolog term traversed must correspond

to a Python data structures and in our experience Python data structures like dictionaries or tuples are

rarely nested with depth of more than a couple dozen. Instead, lists and sets may have a large number of

elements, and dictionaries a large number of associations at a given level.

else if (get functor string(prTerm) == PYDICT C)

PyObject pykey, pyval;

prolog term list, elt;

list = get arg(prTerm, 1);

pydict = PyDict New();

while (is list(list))

elt = get car(list);

pykey = translate prTerm pyObj(get arg(elt,1));

pyval = translate prTerm pyObj(get arg(elt,2));

PyDict SetItem(pydict,pykey,pyval);

list = get cdr(list);

Pyobj = pydict;

return TRUE;

Figure 1: Pseudo-C code for fragment of translate prTerm pyObj()
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else if(PyDict Check(pyObj))

prolog term head, tail;

prolog term P = new heap cell();

create beap functor(PYDICT C,1,P);

tail = get arg(P, 1);

PyObject* tup;

PyObject** key, value;

Py size t* pos = 0;

while ( PyDict Next(pyObj, pos, key, value))

create beap list(tail);

head = get car(tail);

tup = PyTuple New(2);

PyTuple SET ITEM(tup,0,key);

PyTuple SET ITEM(tup,1,value);

head = translate pyObj prTerm(tup);

tail = get heap cdr(tail);

set heap nil(tail);

Figure 2: Pseudo-C code for fragment of translate pyObj prTerm()

For memory management, Python maintains reference counts of all objects, and objects with a pos-

itive reference count cannot be garbage collected. The block of code in Figure 3.1 does not need to

explicitly decrement Python object reference counts (via Py DECREF()) since object references are au-

tomatically decremented when control exits the end of a code block.17

Translating a Python Object to a Prolog Term. Figure 2 shows a fragment of

translate_pyObj_prTerm()

which builds Prolog pyDict/1 terms from Python dictionaries. As when translating Prolog to Python,

translate pyObj prTerm() is structured as an ordered series of conditions, where some conditions

call the function recursively. The code first sets up the outer pyDict functor, and then builds a list in its

first argument, iterating through the dictionary via the Python C API function PyDict Next() that sets

key and value point to the key and value, respectively, of each association. For convenience, a tuple is

built with the key and value variables, and translate pyObj to prTerm() called recursively.

One key difference of Python from Prolog is Python’s support for complex classes and class in-

stances. To translate these to Prolog, a Python object reference is built and returned to Prolog if the type

of a Python object is not otherwise handled (e.g., for Python binary objects or complex numbers).

3.2 Implementation of Janus Calls

This section describes at a high level the implementation of Janus calls using pyfunc/[3,4] and

jns comp() as representative examples.

17https://docs.python.org/3/c-api/refcounting.html
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1) int pyfunc(module,prologTern)

PyErr Clear()

modulePtr = PyImport ImportModule(module)

if modulePtr is null throw janus error /* module cannot be found */

5) Obtain functor and arity from prologTerm

funcPtr = PyObject GetAttrString(modulePtr, functor)

if(not PyCallable Check(funcPtr)) throw janus error

funcTuple = PyTuple New(arity)

for(int i = 1; i <= arity; i++)

10) Set the translated ith argument of funcTuple to the ith argument of prologTerm

Set up dictionary of keyword arguments if called by pyfunc/4

retValue = PyObject CallObject(funcPtr, funcTuple,dictionary)

if (retValue == NULL) throw janus error

return translate pyobj prTerm(retValue)

Figure 3: Pseudo-C code for pyfunc/[3,4]

Calling Python from Prolog: pyfunc/[3,4]. Figure 3 provides pseudo-code for pyfunc/[3,4] (i.e.,

with and without keyword arguments). Much of the work is done by translate prTerm to pyObj()

to translate the call, and translate pyObj to prTerm() to return the results. The pseudo-code pro-

vides a taste of how Python’s C API is used. The Prolog module, functor name, and (if applicable) the list

of keyword arguments are translated to Python objects via C API calls. The module loading in lines 2-3 of

Figure 3.2 has the benefit that Python modules are loaded on-demand: if the goal pyfunc(module,...)

is called, module will be loaded if necessary without needing any special import declarations. Note that

since Python functions are variadic, the function name can be resolved in line 6 without specifying its

cardinality. To properly handle errors, the Python error buffer is cleared in line 1; any Python error

“caught” in line 13 is re-thrown as a Prolog error containing the Python error message and backtrace in

addition to the Prolog message and backtrace.

Calling Prolog from Python: jns comp. The implementation of a call

jns_comp(module,functor,arg_1,...,arg_n,varnum=m)

consists of a C function and a Prolog predicate. First the C function creates the goal

jns_comp(PrologGoal,Flag,Comp)

on the Prolog heap, where PrologGoal is the goal

module:functor(arg_1,...,arg_n,var_1,...var_m)

created from the arguments of jns comp() as described in Section 2.2. Here, Flag is an integer encoding

of keyword arguments, and Comp is unified with the list or set constructed by Prolog. Due to space

constraints, we present in detail only the Prolog predicate jns comp/3.

Since jns comp() is treated as a list or set comprehension in Python, the Prolog answers must be

gathered into a list or set. As shown in Figure 4, if no truth values are needed, this can be done directly

through findall/3. In this case each answer tuple (Section 2.2) consists solely of answer bindings.

Within the findall, after each success of PrologGoal with substitution θ , the answer bindings must be

extracted from the last varnum arguments of PrologGoalθ .
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1) jns comp(PrologGoal,Flag,Result) /* Pseudo-Prolog code */

If no truthvals(Flag)
findall(Binding,(PrologGoal,strip bindings(PrologGoal,Flag,Binding),InterimResult)

Else if tabled(PrologGoal)
5) findall(Binding,(PrologGoal,table bindings(PrologGoal,Flag, Binding),InterimResult)

Else abolish table pred(jns table goal( ))
findall(AnswerTuple,(jns table goal(PrologGoal),

table bindings(PrologGoal,Flag,AnswerTuple),InterimResult)
If set comp(Flag) Result = pySet(sort(InterimResult)) else Result = InterimResult

Figure 4: Pseudo-Prolog code for jns comp()

If truth values are to be returned along with the answer bindings, tabled calls may need to be used to

retrieve undefined results. If PrologGoal isn’t a tabled predicate, the findall calls PrologGoal through

the tabled meta-call jns table goal/1, otherwise PrologGoal can be called directly. In lines 5 and 7

the findall first calls PrologGoal and then backtracks through the completed table using the predicate

get residual/2 which binds PrologGoal with each answer substitution θ and returns the answer’s

delay list. Answer bindings are taken from PrologGoalθ as in the non-tabled case. The answer tuple is

constructed from these bindings along with either a numeric truth value or the delay list of the answer. If

set comprehension is required, the list of tuples is sorted and then clothed in pySet/1 which signals to

the translation that a set is to be returned to Python.

4 Performance

Initially, Janus was coded using the Python ctypes package, which did not provide adequate perfor-

mance, so Python’s lowest level C-API was used instead. Table 1 shows the average times for both intra-

and inter-language calls.18 As an aside, for standard Prolog benchmarks the performance of XSB is

neither the fastest nor the slowest of the Prologs listed in Section 1.

Table 1 compares the time within and between each language. The first row shows the time per

iteration of a simple loop that calls a function or predicate to decrement a counter. The second row calls

the haversine function, 19 a small function that makes multiple trigonometric and exponentiation calls.

The third row tests creation of 20 element lists, via list comprehension based on a set of 20 elements

in Python and findall/3 calling a predicate in XSB. From these timings, XSB is generally faster than

native Python, except for list comprehension/findall: this is likely due to the difference between calling

a predicate and reading a list from a set. Table 1 also shows that for Python calling XSB, while there is

an overhead for inter-language calls, this overhead is still small: many hundreds of thousands of round-

trip Prolog/Python calls can be made per second. Even for the small haversine function, Prolog calling

Python is only about 3x slower than a Python-only loop.

Python calling XSB is slower than XSB calling Python. For the first two rows, timings are reported

for jns qdet() (the timings for jns cmd() are nearly the same). The third row uses jns comp() with

18All benchmarks were run within a VM on a server with an AMD EPYC 7542 32-Core Processor running Ubuntu 20.04,

using Python 3.9.16 and the repo version of XSB of February, 2023, available at xsb.sourceforge.net. The smallest time

over three runs was taken for each benchmark, but since these tests were done on a shared server all times should be regarded

as approximate. Benchmark tests used in this paper are available from the XSB repo version under xsbtests/python tests.
19https://en.wikipedia.org/wiki/Haversine formula
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XSB Only Python Only XSB/Python Python/XSB

Simple Loop 30 ns 78 ns 1.98 µs 79 µs

Haversine 675 ns 1.5 µs 5.07 µs 81 µs

List Comp. 92 µs 586 ns 5.69 µs 584 µs

Table 1: Timings of Intra- and Inter-languaage Calls

its default values, which incurs an overhead due to need to use findall/3, to return only the bindings

of calls, as described in the previous section. Surprisingly, tests that set truth vals=None did not run

significantly faster than the default. Nonetheless, even the slowest timing in Table 4 is still fairly fast,

supporting thousands of round trips calls per second.

The timings in Table 4 transferred small amounts of data between the languages. To illustrate the
performance of bi-translation, Table 4 shows the transfer time per element of tuples, lists, sets and dictio-
naries of varying sizes, each of which consisted only of integers. For these tests, XSB called the Python
function

def bitranslate(X):

return(X)

so that Table 4 represents the average of times to translate a data structure from Prolog to Python and from

Python to Prolog. Because XSB allows a maximum arity of 64K for predicates, the last two columns

for tuples were not tested. While there was unavoidable variance in the timings, Translation times for

sets and dictionaries, which in Python are based on hash tables, are sometimes higher than for lists and

tuples. Nonetheless, the cost of per-element transfer is always small.

10 elts 100 elts 1000 elts 10000 elts 100000 elts 1000000 elts

Tuple 30 28.9 36.1 48.7 * *

List 53.8 54.3 73.4 58.4 77.8 73.5

Set 109 104 78.1 85.5 62.0 86.1

Dict. 113 40 221 58.5 90.5 72.5

Table 2: Per-element round-trip transfer cost for data structures of increasing size. All times in ns.

Python’s garbage collection works by maintaining reference counts to each object: only when an

object’s reference count is 0 can the object be safely abolished and its space reclaimed. Because of

Janus’ use of bi-translation, it does not create persistent references to Python objects, except when a

Python object reference is returned to Prolog, for use in e.g., pydot/4. Otherwise, the bi-translation code

of Janus is able to execute without causing a memory leak due to stray references. This has been verified

by tests of jns cmd(), jns qdet() and jns comp() where the heap analysis toolset guppy.heapy20

was used to check for uncollected Python objects.

5 Libraries

To support the use of Janus in applications, we have steadily built a library of Janus interfaces to Python

packages. The XSB distribution includes interfaces to Elsasticsearch21 , Faiss (Facebook AI Similarity

20https://pypi.org/project/guppy3
21https://www.elastic.co
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Search)22 fastText word vectors ([5]), the GIS library Geopy23, Google Maps24, Google Translate25,

RDFlib (for hdt, jsonld, ntriples, nquads, and turtle)26, shapely (an interface to GIS files)27,

SpaCy28, Wikidata-hdt29 , Wikidata Integrator30and others.
Because of the mapping of data structures between Python and Prolog, some of these interfaces need

not be large. For instance, the jns elastic library contains predicates to create and search Elastic-
search indices in various ways. Because the Python interface to Elasticsearch relies on sending and
receiving JSON structures over a simple REST interface, much Elasticsearch functionality can be called
directly using pyfunc/[3,4] or pydot/4. As an example, given a Python connection conn, searching
an Elasticsearch index ind via a search condition bdy (represented as a Python dictionary) can be done
via the Python statement

>>> result = conn.search(index=ind, body=bdy)

For a Prolog connection reference Conn, index atom Ind and Prolog dictionary term Bdy, the analogous
statement is quite similar:

pydot(Conn.search(),[index=Ind, body=Bdy],Result)

Indeed, a few of the Janus libraries are little more than starting examples showing how common calls to

a Python package are formed in Janus.

Case Study of a Library: jns spacy. Some Janus libraries, such as jns spacy, implement useful

Prolog functionality on top of the basic Prolog-Python interface. SpaCy is a widely used Python tool

that exploits neural language models to analyze text via tools such as dependency parses, named entity

recognition, relation extraction, and sentence or span vectors based on Roberta ([9]) or other transformer-

models.
To use jns spacy, a SpaCy model is first loaded via the Prolog convenience predicate:

?- load_model(en_core_web_trf).

which loads SpaCy’s English transformer model. Multiple models can be loaded when text from more
than one language must be analyzed. Once a model is loaded, analytics commands can be called:

?- proc_string(en_core_web_trf,’She was the youngest of the two daughters

of a most affectionate, indulgent father; and had, in consequence of

her sister’s marriage, been mistress of his house from a very early period.’,Doc)

The above command uses en core web trf to analyze the atom in the second argument, returning a
Python object reference Doc to the SpaCy result. Text files can be analyzed in a similar manner. At this
stage, either the Doc object can be queried directly, or the object’s dependency graph can be asserted into
Prolog via

?- token_assert(Doc).

The Prolog form of the dependency graph has binary relations connecting nodes of the form

token_info(Index,Text,Lemma,Pos,Tag,Dep,EntType)

22https://engineering.fb.com/2017/03/29/data-infrastructure
23https://geopy.readthedocs.io/en/stable
24https://developers.google.com/maps
25https://cloud.google.com/translate
26https://rdflib.readthedocs.io/en/stable
27https://shapely.readthedocs.io/en/stable/manual.html
28https://spacy.io
29https://www.rdfhdt.org/datasets
30https://github.com/SuLab/WikidataIntegrator
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Such a node contains in order: the character offset of the token within the string, the token itself, the

lemma of the token (the base form of a verb or singular form or a noun), the token’s part of speech, the

fine-grained part of speech, the tokens relation with it’s parent in the dependency graph, and the entity

type if any, for a span containing the token.
A highly simplified example gives a taste of how Prolog can exploit the above interface to better

use the results of neural models. Here, a Prolog rule infers a spatial proximity relation from the span
information in the dependency graph:

trigger_relation(class(proximity),Span,rel(SibSpan,ChildSpan),[spatial]):-

dg_subord_conj(Span,SibSpan,ChildSpan),

span_EREid(SibSpan,physical),

span_EREid(ChildSpan,physical).

The rule infers spatial proximity between entities (here represented as entity textual spans) Span and

ChildSpan. The rule infers proximity if (i) Span has a dependency graph sibling SibSpan that is a

physical entity (e.g., person, place, object); and (ii) SibSpan is the head of a subordinating conjunction

to another entity ChildSpan. Both entities are required to be of the class physical by span EREid/2

which checks the classes of relation and event ids as well as entity ids. Other clauses (not shown) repre-

sent the different forms of a subordinating conjunctions using the Prolog form of the SpaCy dependency

graph.

The above rule is a simplified example of actual rules used in an textual analytic application assess-

ing how changing information affected the behavior of human agents. In our work, we use rule-based

reasoning as a complement to neural models for neural extraction and annotation (e.g. SpaCy). Neural

models are the standard for entity and relation extraction, but their results are often noisy, especially if

they were trained on data different than the run-time domain. Accordingly rules like the above are useful

to refine the meaning of neural models, to map a model trained on one ontology to a different ontology, to

disambiguate the results of relation extraction (perhaps using defeasibility), and to assign the extraction

a useful likelihood. 31 While we have not done so, similar rules could also be used for weak supervision

of neural models using data labeling, as in the Snorkel framework.32

6 Discussion

As described in a companion paper ([1]), while Janus is still new, it has formed an essential basis for

several commercial and institutional applications using XSB Prolog; it has also formed the basis for sev-

eral commercial applications using LVM Prolog. The largest of the XSB applications involved reasoning

over a large scale knowledge graph (O(108) edges) of entities, relations and events created by analyzing

thousands of documents, images and videos. In this applications, XSB both performed reasoning, and or-

chestrated the integration of various Python tools, such as SpaCY and FastText, along with external KBs

(e.g. Wikidata) accessed via Python. Orchestration was also a feature of a commercial research project in

which Ergo, ([6] a system based on XSB, orchestrated and reasoned about natural language analysis and

geo-spatial data; as well as a feature of a separate commercial research project on visual query answer-

ing. While these applications used Prolog calling Python, a more recent project used Python bindings

to the Robot Operating System (ROS)33 to call XSB to perform situational assessment reasoning for an

31The direct use of certainty measures from many neural models is unreliable, since the softmax layer of neural models may

artificially reduce the entropy of its output distribution.
32https://snorkel.ai/
33https://www.ros.org
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autonomous agent.

This small flurry of applications is no coincidence. Prolog’s reasoning power and scalability has ad-

vanced over the last two decades: Prolog systems now include high-quality finite-domain and numerical

constraint systems, event-action rules, defeasible logics based on the well-founded semantics with prior-

ities and integrity constraints, and probabilistic and T-norm based reasoning. Yet one may argue that the

application of these reasoning methods has been throttled by a lack of data. Most Prolog systems provide

interfaces to relational databases, but few interface to the current generation of no-SQL databases such

as Elasticsearch or MongoDB, or to systems like Faiss or Annoy that store high-dimensional numerical

knowledge vectors. Most Prolog systems can be called by a language like C or Java, but it is not always

easy to leverage these interfaces to embed Prologs in frameworks like ROS. Indeed, the types of data that

applications need and the types of frameworks that applications use is constantly changing. The ability

to read any new form of data or fit into any new framework is only possible for the most heavily used

languages like Java, C#, Javascript and Python. However, the use of the Janus framework has allowed

two Prologs to view Python as a term-server for nearly any kind of data, and for Python to view Prolog

as a reasoning mechanism working over its standard data types.
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When modelling expert knowledge as logic programs, default negation is very useful, but might lead
to there being no stable models. Detecting the exact causes of the incoherence in the logic program
manually can become quite cumbersome, especially in larger programs. Moreover, establishing co-
herence requires expertise regarding the modelled knowledge as well as technical knowledge about
the program and its rules. In this demo, we present the implementation of a workflow that enables
knowledge experts to obtain a coherent logic program by modifying it in interaction with a system
that explains the causes of the incoherence and provides possible solutions to choose from.

1 Introduction

Due to its declarative nature, and with the availability of both strong and default negation, answer set
programming offers valuable features for the usage in real-world applications. But often knowledge
bases are subject to change. Adding rules to a logic program is not as straightforward as it might seem.
Due to its declarative nature, adding new information can easily lead to contradictory knowledge. Such
contradictions can result from rules whose conclusions are contradictory while both their premises can
potentially hold simultaneously. However, by using default negation, another form of inconsistency can
appear which is called incoherence. Incoherent answer set programs do not possess answer sets. In many
cases, though, the cause of the incoherence generally comprises only one or a couple of rules. Several
approaches show how these causes can be found and which part of the programs are affected and thus
have to be revised in order to restore the coherence of a program [5, 4, 10]. These approaches do not
describe, however, how to establish coherence. In recent work [11], we have defined a method that of-
fers strategies for computing suitable solutions without the need for additional information from the user
and which in turn can be used to enable implementations where coherence can be interactively estab-
lished in collaboration with an expert. This method is based on results on coherence in argumentation
graphs [10] for normal logic programs which in turn enables us to locate those parts of the program that
are responsible for the incoherence.

2 The ICARUS-system

We implemented the framework from [11] in a prototype system1. In this section, we describe and
illustrate this implementation.

Figure 1 shows the general workflow that is implemented in this prototype for establishing the co-
herence in a given incoherent program P .

1The implementation is available on icarus.cs.tu-dortmund.de.

http://dx.doi.org/10.4204/EPTCS.385.25
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
icarus.cs.tu-dortmund.de
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Figure 1: Amendment Workflow

In the following, we will describe the general workflow for this application, and how it helps the
knowledge expert to gradually restore coherence. For this consider the following program P1 inspired
by the medical domain will be used as a running example2:

r1: fever←highTemp,∼sunstrk. r2: fatigue← lowEnergy,∼stress,∼sports.

r3: highTemp← temp > 37. r4: sunstrk←highTemp,∼fever.

r5: allrg←pollenSeason, fatigue,∼flu,∼cold. r6: cold← fatigue,soreThroat,∼migrn.

r7: flu← fatigue,∼migrn. r8: migrn←headache,∼allrg.

r9: soreThroat. r10: headache. r11: pollenSeason. r12: lowEnergy. r13: temp > 37.

The process starts with the knowledge expert providing an extended logic program [7], e.g. P1, via
the interface3. For each P i, the regular models are computed using an ASP encoding for abstract argu-
mentation frameworks presented in [8]. If the program is already coherent, the total stable interpretations
are shown accordingly. If not, the user can choose the regular model Mi that is closest to an intended
total stable interpretation of P (see Figure 2 (1)). On the basis of the labelling that corresponds to Mi,
the argumentation graph for P i is computed and shown to the user alongside the subgraphs responsible
for incoherence (called SCUPS) (see Figure 2 (2)). The system then displays the argumentation graph,
where nodes are coloured according to their label where gray nodes stand for undefined atoms, green
ones for true atoms, and red nodes for false atoms. Likewise, nodes that are part of a SCUP have red
dashed border. Figure 2 shows that P1 contains a SCUP involving the atoms allrg, cold, flu, and migrn.
The user is then shown the list of SCUPs and can choose the SCUP they want to resolve (first) (see
Figure 2 (3)). For the chosen SCUP, the interface shows all involved atoms and rules (see Figure 2 (4)).

Advantage is taken of the high explanatory potential of computational argumentation by imple-
menting explanation methods inspired by the dialogue games for argumentation [2, 3] to explain (non-
)acceptability of atoms in a regular model, via the explanation of the (non-)acceptability of an argument
for that atom w.r.t. the corresponding preferred labelling of the argumentation framework. This compo-
nent contains explanations for the label of each atom (set) in AF(P i). It uses an approach derived from
argumentative dialogue games to tackle the following explanation task: Given the regular interpretation
〈I, I′〉 of P and A ∈A , explain Int2Lab(〈I, I′〉)(∼ A). If the user wishes to see explanations for the la-
bels of certain atom sets, they can choose the respective set in this component (see Figure 4 (1)). For the
chosen atom set, the application will present the list of their attackers and explain each of their labels. It
furthermore shows the rules that are associated with the atom set and their labelling. Figure 4 (2) shows

2Here, the atoms sunstrk, migrn and allrg denote that a person suffers from a sunstroke, migraine, or allergies, respectively.
3Future work will include the support of ASP extensions such as aggregates and cardinality atoms [1].
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Figure 3: Amendment selection
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Figure 4: Explanation component

the explanation why the assumption ∼allrg is labelled undecided in the chosen model. If an explanation
for an attacker is additionally available, the user can analyze these as well. In Figure 4 (3) the presented
explanation is illustrated if the user decides to inspect the attackers of ∼cold.

In a next step, on the basis of the explanations for the labelling of AF(P i), the user can explore
the amendments that are suitable for resolving for resolution of the chosen SCUP. The amendments
are computed using the approach defined in [11]. The list of amendments can additionally be filtered
by a strategy as even relatively small programs can have a vast amount of possible amendments (see
Figure 3). For each amendment, its used strategy, the amended rule and amendment are shown. The
chosen amendment is directly applied on the given input program P i and the modified program P i+1 is
solved. In our running example, applying the first suggested amendment that is shown in Figure 3 would
replace r7 in P1 by a fact migrn., which results in a coherent program as this modification dissolves
the unique SCUP in P1. If otherwise P i+1 is still incoherent, the remaining SCUPs can be resolved
by starting a new iteration of this process again with the modified program P i+1. The result of this
workflow is a coherent program Pn that represents professionally adequate knowledge.

The presented system was implemented using Python 3.10 and clingo 5.6 [6] with asprin 3.1.2beta [9].
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Signalling pathways are conserved across different species, therefore making yeast a model organism
to study these via disruption of kinase activity. Yeast has 159 genes that encode protein kinases and
phosphatases, and 136 of these have counterparts in humans. Therefore any insight in this model
organism could potentially offer indications of mechanisms of action in the human kinome. This
study utilises a Prolog-based approach, data from a yeast kinase deletions strains study and pub-
licly available kinase-protein associations. Prolog, a programming language that is well-suited for
symbolic reasoning is used to reason over the data and infer compensatory kinase networks. This
approach is based on the idea that when a kinase is knocked out, other kinases may compensate for
this loss of activity. Background knowledge on kinases targeting proteins is used to guide the anal-
ysis. This knowledge is used to infer the potential compensatory interactions between kinases based
on the changes in phosphorylation observed in the phosphoproteomics data from the yeast study.
The results demonstrate the effectiveness of the Prolog-based approach in analysing complex cell
signalling mechanisms in yeast. The inferred compensatory kinase networks provide new insights
into the regulation of cell signalling in yeast and may aid in the identification of potential therapeutic
targets for modulating signalling pathways in yeast and other organisms.

1 Introduction

As with any organism, so with Saccharomyces cerevisiae, protein phosphorylation plays a crucial role
in various signalling pathways that control cellular activities such as gene expression, protein synthesis,
DNA replication, RNA processing, cell cycle regulation, metabolism, transport of vesicles and other or-
ganelles, response to environmental stress and nutrients, and cell differentiation. The specific actions of
kinases and substrates are largely determined by protein interactions, which are effected via phosphory-
lation [10].

It is also known that many of these signalling pathways are conserved across different species, so
yeast can be used as a model organism to study phosphorylation networks. Yeast has 159 genes that
encode protein kinases and phosphatases, and 136 of these have counterparts in humans [8]. Therefore
any insight in this model organism could potentially offer indications of mechanisms of action in the
human kinome.

Ours is not the first application of symbolic AI in the study of yeast and its pathways more specif-
ically. A major inspiration for applying techniques that fall under the symbolic framework came from
the extensive work done by Prof R.King. Particularly, work of the type found in this study by A.Clare
and R.King [2] showed that it is possible to build a knowledge base via the use of a declarative logic
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programming language. The seminal work on Robot Scientist Project also offered insight in how logic
programming (in this case inductive) can be used to model the metabolism of yeast and how deletion in
associated genes can affect their respective processes [6]. Further use of a Prolog based approach can
be found in [12] where a Flux Balance Analysis model was combined with genome related information
from the KEGG database to predict the growth patterns of yeast. More recently, network reconstruction
as well as new structure hypotheses were made using ProbLog, with the aim of providing new insights
to experimental biologists [4].

However, all of the above approaches have focused on the use of gene-based background knowledge
and experimentally derived facts to reach their conclusions. These lack the granularity of a proteomics
and even more so a phosphoproteomics based approach.

2 Methods

2.1 Toy Model development

Initially a Toy Model version of our logic program was developed, in order to test the feasibility and
applicability of our proposed methodology. The perturbations modelled were gene deletions and the
question thus became whether silencing (or deletion) of a given kinase has actually worked. Within the
context of the study chosen (to be described in detail in subsequent section), specific gene deletions were
confirmed by either proteomics or PCR assays. Therefore and due to the nature of gene deletions in yeast
it was unnecessary to identify off targets or known targets of a given perturbation.

In Figure 1 the overall structure of our yeast Toy Model can be seen. Edges represent either per-
turbations (deletions in this case), observational facts, presence of a phosphosite on a kinase and kinase
phosphosite associations. Nodes represent either phosphosites, perturbations, kinases or other proteins.

To determine whether a kinase has been successfully silenced, development of the logic program
began with the first iteration of rules. When queried, it is satisfied in the case where a kinase K (1), for
which a known phosphosite S target on a protein P is found (2). Lastly, (3) checks whether a correspond-
ing mass spectrometry fact following deletion of K can be matched. If all these conditions are met then
the interpreter responds with true thus confirming that the δgene perturbation encoding kinase K has
been successful.

1 doesSilofKwork(deletionOF (( kinase(K))) :-

2 phosphorylates(kinase(K), phosphosite(S), protein(P)),

3 perturbs(deletionOF (( kinase(K))),phosphosite(S), occupancy(down),_).

In the next rule, developed in an iterative manner, a “uniqueness check” was added. This establishes
whether a phosphosite S is uniquely targeted by a kinase K. This is achieved by establishing a rule and
checking for its negation as part of this second iteration. In Prolog notation:

1 doesSilofKwork2(deletionOF (( kinase(K))) :-

2 phosphorylates(kinase(K), phosphosite(S), protein(P)),

3 \+ sharedtarget(kinase(K), kinase(_K2), phosphosite(S)),

4 perturbs(deletionOF (( kinase(K))),phosphosite(S), occupancy(down),_).

The rule sharedtarget(kinase(K), kinase(_K2), phosphosite(S)) includes two
goals matching phosphorylation facts on shared phosphosites then checking that the two phosphorylating
are not the same.
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Figure 1: A Toy Model illustrates the minimal number of interactions needed to understand a biological
scenario involving kinases (k), proteins (p), and their phosphosites (s) in response to an initial perturba-
tion (δ ). In our model, the perturbation refers to a gene encoding a specific kinase being deleted. Our
background information in this implementation has levels of granularity, in this case the kinase targeting
a phosphosite on a protein version is depicted.

1 sharedtarget(kinase(K), kinase(K2), phosphosite(S)) :-

2 (phosphorylates(kinase(K), phosphosite(S), kinase(P)),

3 phosphorylates(kinase(K2), phosphosite(S), kinase(P)),

4 K1 \= K2).

In the toy model, the responses to these two iterations were as expected. However, there is still a
concern that when applied to the larger dataset with more than five perturbation-affected phosphosites,
the true responses will be based on only one phosphosite instance. Therefore the addition of a majority
check was decided. The final version of the rule took the following form:
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1 doesSilofKwork3(deletionOF (( kinase(K))) :-

2 phosphorylates(kinase(K), phosphosite(S), kinase(P),

3 \+ sharedtarget(kinase(K), kinase(_K2), phosphosite(S)),

4 findall (( phosphosite(S),

5 perturbs(deletionOF (( kinase(K))),phosphosite(S), occupancy(up),_),

6 perturbs(deletionOF (( kinase(K))),phosphosite(S), occupancy(

unaffected),_),

7 List1)),

8 findall (( phosphosite(S),

9 perturbs(deletionOF (( kinase(K))),phosphosite(S), occupancy(down),_),

10 List2)))),

11 length(List1 , Length1), length(List2 , Length2),

12 compare( '>', Length2 , Length1).

This rule adds the majority check to the previous rule version. This creates two lists, one containing
all known targets of the kinase that are either “up” or “unaffected” and another that contains all the ones
described as “down”, then compares the length of the two. The aim of this is to establish whether the
majority of the known targets were “down” rather than not, therefore confirming the silencing of the
kinase.

2.2 Experimental facts and background knowledge sources

A recently published study that looked at the effect of kinase perturbation at the phosphoproteomic level
was chosen as the source of our experimental data. In [7], a systems-level proteomic and phosphopro-
teomic analysis was carried out on 110 yeast single-kinase or phosphatase deletion strains under stan-
dard growth conditions. The 110 were split in 84 kinases and 26 phosphatases. They employed various
methods, including traditional enrichment analysis, δgene-δgene correlation networks, and molecular
covariance networks in order to analyse the functional relationships between these active proteins.

In total their chosen deletions, which will be referred to as perturbations in this section, cover 82% of
all possible yeast and phosphatase deletion strains. Through their experimental and mass spectrometry
workflow they were able to identify more than 4,600 and 13,000 proteins and phosphosites, respectively.
Of interest is the finding that they were able to capture a large part of regulated phosphorylation events as
well as 30% of those being newly captured. This was entirely attributed to their ability to normalise their
data with protein abundance. This is also the data that we elected to include in our ’perturbs/n’ predicate
format.

Key constituents of our background knowledge base are the associations between kinases and their
targets both at the protein and phosphosite levels. For this, two main sources were chosen, namely
the Yeast Kinase Interaction Database [11] (accessible at http://www.moseslab.csb.utoronto.ca/
KID/) and the Yeast Kinome database [1] (accessible at https://thebiogrid.org/project/2).

The Yeast Kinase Interaction Database (KID) is a resource that contains data on phosphorylation
events from various high- and low-throughput experiments. It includes a total of literature-curated low-
throughput (6,225) and high-throughput (21,990) interactions, stemming from over 35,000 experiments.
It includes 517 high-confidence (or 853 low-confidence) kinase-substrate pairs depending on the cutoffs
used for the metric provided in the study. On the other hand the Yeast Kinome database contains 1,844
interactions observed by mass-spectrometry based analysis of protein complexes. It is updated monthly
and has been subsumed as part of the BioGRID project which, in turn is a broad interaction database
including more than 1.7m individual interactions [9].

http://www.moseslab.csb.utoronto.ca/KID/
http://www.moseslab.csb.utoronto.ca/KID/
https://thebiogrid.org/project/2
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Both these contain kinase (and phosphatase) target associations with the latter (Yeast Kinome db)
also containing these at the phosphosite level. As will be shown below however, there was an issue of
overlap between our experimental facts and background knowledge which limited the predictions that
could be made.

2.2.1 Yeast perturbation observation facts and background knowledge sources

From the perturbation study chosen, a total of 685,358 facts were extracted containing the effect of the
aforementioned 110 kinase and phosphatase deletions over 13,258 individual phosphosites. They were
extracted from a .csv file containing the log2fold change recorded for each phosphosite between wild type
and δgene strains of yeast (i.e. strains where selected genes have been deleted). For most phosphosites
there were two replicates reported. Not all phosphosites had both replicates for all δgene combinations.
Only phosphosites containing two replicates were considered and the mean value between the two was
taken for those that did. The code determined whether the average of the log2 fold change values is less
than or equal to -0.5, greater than or equal to 0.5, or between those two values. Depending on the value
of the average, the code sets the value of a variable called “ change” to “down”, “up”, or “unaffected”,
respectively. Facts took the following form:

perturbs(’YCK2’, ’ENO2_pT324’, ’ENO2’, unaffected, 0.0475).

The background knowledge base includes facts that describe the relationships between kinases, pro-
teins and phosphosites at both the kinase-protein and kinase-phosphosite level. These were taken from
the two databases described above and were transcribed into facts in the following format:

Protein level information: knownKtarget(’ARK1’, ’PAN1’).
Phosphosite level information: knowntarget(’ATG1’,’ALY1_pS813’).

The first set of facts describing kinase - protein level information came from the Kinome Interaction
Database and the Yeast KINOME database, while the kinase - phosphosite level information came from
the KINOME/bioGRID database alone.

All scripts used during data and background knowledge curation and transcription as well as .pl
Prolog files can be found at https://github.com/Dudelder/Yeast_Prolog_Compensatory). Total
number of facts that make up knowledge base can be seen in Table 1.

2.2.2 Overlap between experimental observations and background knowledge

There is an overlap between the observational facts at the kinase-phosphosite level and the phosphosites
in the background knowledge base. Specifically, out of the total number of individual phosphosites,
only 667 are found in the kinase-phosphosite associations knowledge base (Figure 2 A), accounting for
approximately 5% of the total.. At the protein level things improve slightly depending on the data source
and cutoff used (for Kinase Interaction Database). In the Kinome database (see Figure 2), there is an
overlap between the information obtained from Kinase Protein pairs and Kinase Protein Phosphosite
level triples. However, there is a discrepancy in the numbers. The overlap consists of 72 deleted kinases
when considering the Kinase Protein pairs, but only 58 deleted kinases when extracting the information
from the Kinase Protein Phosphosite level triples. This difference may be due to errors in formatting or

https://github.com/Dudelder/Yeast_Prolog_Compensatory
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Facts List Source
Size
(Number of facts)

Dgene-Dgene phosphosite
phosphosite observations

Perturbation
Study

685,358

Kinase Substrate Associations
Yeast Kinome
Database / bioGRID

7589

Kinase Protein Associations
Yeast Kinome
Database / bioGRID

1558

Kinase Protein Associations
Kinase Interaction
Database (lenient)

853

Kinase Protein Associations
Kinase Interaction
Database (Strict)

517

Total = 695,875

Table 1: Table listing the title, sources and associated number of facts that make up the Background
Knowledge section of the yeast logic model. The total reported is for the strict cut-off of the Kinome
Interaction Database. For the lenient cut-off, the total is 696,211. Specific sources referenced [11], [7],
[1].

the omission of a subset of data in one of the database files. Looking at the Kinase Interaction database as
a source, the overlap depends on the cutoff used. Cutoffs of 6.73 and 4.72 correspond to a P value of less
than 0.01 and 0.05, respectively, for strict and lenient lists of kinase-protein pairs as were suggested in the
article. Accordingly the overlap between the deleted kinases and the two lists of Kinase and their target
Protein pairs was 52 and 58 for the strict and lenient cutoffs, respectively. As will be demonstrated in the
results section of this paper, the poor overlap was addressed by considering combinations of background
knowledge sources.
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Figure 2: Venn Diagrams depicting the overlap between our experimental data and background knowledge sourced
from Kinome Database / bioGRID [1]. In A) total number of phosphosites is 13,256. B: Overlap between kinases
in KinomeDB/bioGRID and deleted kinases at the kinase-protein level of association. C: Overlap between kinases
in KinomeDB/bioGRID and deleted kinases at the kinase-phosphosite level of association.



George A. Elder & Conrad Bessant 267

3 Results

3.1 Silence-of-K Rule iterations and Kinase Compensation Rule

Collecting the results was accomplished following a pipeline briefly described here. The Prolog inter-
preter was used to perform queries across all kinase deletions, and the resulting output was stored in
lists. These lists were then parsed by Python scripts to perform additional visualisation and analysis in
RStudio. This centered around the number of deletions that were predicted to have worked. Additionally,
RStudio was used to create the kinase compensation networks, as described below in this section.

Using kinase-phosphosite level associations, the first iteration of the rule proved to exhibit the best
recall, confirming 21 kinase gene deletions having taken place, thus confirming the ground truth estab-
lished by PCR, as reported in the study. Successive iterations of the rule, 2nd (checking uniqueness)
and 3rd (checking majority of known phosphosites) were less accurate, both confirming only 5 kinases
as being silenced. Using kinase-protein level associations the results improved overall depending on the
source of kinase protein pairs used. For the Kinome Database from bioGrid, 33, 7 and 3 kinase deletions
were confirmed for rule iterations 1, 2 and 3, respectively. Kinase Interaction Database (KID) with a
lenient cut-off yielded 26, 9 and 5, whereas with a strict cut-off the results were 21, 8 and 4. Results
summarised in Table 2.

As the overlap with a ground truth (the deletion of a kinase encoding gene) was poor, it was imper-
ative to look at ways of improving this. Firstly, combining the outputs of the two levels of background
knowledge considered was the most straightforward approach. Starting with the Kinome Database as a
Kinase-Protein association source, 54, 12 and 8 ground truths were captured with each successive itera-
tion of the rule. From the Kinase Interaction Database, the lenient cut off gave 47, 14 and 10, and with
the strict cut off 42, 13 and 9. Overall we noted a significant improvement which was mainly evident in
the first iteration of the rule, picking up increasingly more of the ground truth. These can be considered
True Positive results.
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Rule Iteration &
Background Knowledge
Level (Source where appropriate)

True Positive False Negative

First Iteration & Phosphosite level 21 63
Second Iteration & Phosphosite level 5 79
Third Iteration & Phosphosite level 5 79
First Iteration & Protein level (bioGrid) 33 51
Second Iteration & Protein level (bioGrid) 7 77
Third Iteration & Protein level (bioGrid) 3 81
First Iteration & Protein level (KID Strict) 21 63
Second Iteration & Protein level (KID Strict) 8 76
Third Iteration & Protein level (KID Stict) 4 80
First Iteration & Protein level (KID Lenient) 26 68
Second Iteration & Protein level (KID Lenient) 9 75
Third Iteration & Protein level (KID Lenient) 5 89

Table 2: Table listing the True Positive and False Negative counts for each of the rule iterations. The
False Negatives refer to kinase gene deletions we were not able to pick up due to either poor background
information overlap or rule iterations not performing as intended.

The next step was to combine all of the known background sources whilst removing duplicates to
avoid clashes. This yielded a kinase-protein pair background knowledge base which covered (with at
least one association) 79/82 of the deleted kinases in our dataset. This was the largest overall cover-
age and yielded the best result, confirming 62 individual deletions as seen in Figure 3. In contrast,
iterations two and three yielded worse results, 13 and 8, respectively. From the above the best combina-
tions between knowledge base sources (KID: strict/lenient and KINOME:bioGRID), level of background
knowledge considered (kinase-phosphosite, kinase-protein or both) for each rule iteration were:

• Rule 1: All BK, both levels: 62 TP / 17 FN

• Rule 2: KID Lenient cut-off, both levels: 14 TP / 46 FN

• Rule 3: KID Lenient cut-off, both levels: 10 TP / 50 FN
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Figure 3: Figure containing Venn Diagrams depicting the ground truth (true positives) and false negatives captured
by the top performing rule iterations and background knowledge levels considered. In all three Venn diagrams
(A,B and C) the colour scheme is as follows: Purple for True Positives, light yellow for False Negatives, light blue
for background knowledge kinase protein target pairs and light pink for gene deletion kinases. A: Rule iteration
1 with background knowledge at the protein level and from all sources combined had the best recall with 62
True Positives identified out of a potential 78. B: Rule iteration 2, Kinase Interaction database lenient cut-off and
phosphosite level information with 14 True Positives and 46 False Negatives out of 60 potential. C: The third
iteration of the rule performed best when the background knowledge was sourced from KID with lenient cutoff
at 10 True Positives, 50 False Negatives out of a potential 64. The difference in potential totals comes can be
attributed to how many of the deleted kinases were present and therefore queriable in each instance of background
knowledge source and protein or phosphosite level consideration.
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3.1.1 Explaining the 17 missed deletions with a new rule

From the above it was decided to further focus on explaining the results obtained from rule iteration 1,
with the results of both levels included and all background knowledge sources combined. However, as
can be seen in the triple Venn diagram of Figure 3 A, there were 17 kinase deletions the rule iteration
was not able to identify. As this iteration did not exclude shared targets between kinases a possible
hypotheses is that other kinases are acting in a compensatory manner. For this the ’ykinasecompcheck/2’
rule was developed.

In brief, it checks whether a kinase (K2) increases its activity when a different kinase (DelK1) is
silenced, in order to compensate for the loss of K1 activity and maintain the overall integrity of the sig-
nalling pathway. Specifically the Prolog notation the rule took the following form:

1 ykinasecompcheck(DelK1 , K2) :-

2 (perturbs(DelK1 ,_Pst ,Tprot1 ,down ,_) ;

3 perturbs(DelK1 ,_Pst ,Tprot1 ,unaffected ,_)),

4 sharedKinasetarget(DelK1 ,K2 ,Tprot1),

5 knowntarget(K2 , Pst1 , Tprot1),

6 (perturbs(DelK2 ,Pst1 ,Tprot1 ,up ,_),

7 (DelK2 \= K2, DelK2 \= DelK1)).

Specifically, the first goal ’perturbs/5’ holds if the first argument (DelK1) perturbs the fourth argu-
ment (TProt1) in the direction specified by the fifth argument (down or unaffected). ’sharedKinasetar-
get/3’ is a goal that is satisfied if the first argument (DelK1) and the second argument (K2) share the third
argument (Tprot1) as a target. The information used for this, in order to maintain consistent background
knowledge was the combination of all kinase protein background knowledge sources. ’knowntarget/3’
is a goal that is satisfied if Tprot1 is a known target of the K2 at the phosphosite specified by the second
argument (Pst1). Finally, (6) holds if the first argument (DelK2) perturbs the second argument (Pst1) in
the direction specified by the fifth argument (up). The condition is true if DelK2 is different from both
K2 and DelK1. The last goal ensures that kinase K2 indeed phosphorylates phosphosite Pst1 (in the
condition it, itself is not deleted).

Using the above rule and the list of 17 missed deleted Kinases, for each, a further list of compensatory
kinases was collated. These lists where then used to build compensatory kinase interaction networks in
order to visualise the effect of kinase deletions on known kinase interaction networks. Predicted or
compensatory pathways were compared with pathways reconstructed from literature [11]. Visualisations
were carried out in Rstudio using the igraph package.

None of the false negatives (kinase deletions not present in the rule predictions) were present in the
pathways associated with endocytosis, transcription response and mating. Cell cycle had the largest num-
ber of kinases compensating for ones from within our list. In Figure 4 Cell Cycle pathway is highlighted
with a red border, the High-Osmorality glucose (HOG) pathway with a blue border and the meiosis with
a fuchsia border. They are all connected canonically, showing the relative accuracy of the rule described
above in picking up the shift in pathway activity to account for the deletion of a given kinase within the
pathway. For the highlighted pathways the majority of their constituent kinases are present, deletions of
which the first iteration of the rule did not pick up. This indirectly suggests that in response to certain
key deletions these highlighted pathways are able to rewire themselves in an effort to counteract the
perturbation.
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Figure 4: Predicted manner of kinase network rewiring following gene deletions. Kinases within pathways act in
a compensatory manner. A) Cell Cycle pathway, predicted pathway rewiring. B) High-osmorality glucose and cell
cycle pathway rewiring. C) High-osmorality and Meiosis pathway rewiring. Highlighted are the kinases belonging
to the respective pathways that include False Negative i.e. missed gene deletions within our predictions.
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4 Discussion

Despite Saccharomyces cerevisiae being extensively studied as a model system, there was a notable lack
of coverage between kinase-phosphosite associations and the observational (phosphoproteomics) data
obtained from the gene knockout study. Therefore implementing the methodology developed initially on
the Toy Model, proved to be more challenging than anticipated.

The approach that yielded the most accurate results, in terms of recall, with the simplest iteration of
the rule. The issue of poor overlap was also partially overcome by combining background knowledge
sources and levels of granularity. Increasing complexity of rules did not yield better results.

Delving deeper into the False Negatives, i.e. kinases from verified deleted genes which we were
unable to pick up, yielded interesting results. The interconnected nature of kinase interaction pathways
was captured by the ’ykinasecompcheck/2’ rule. Using the 17 kinases as a base we were able to identify
and contextualise the majority of major large Yeast pathways, namely HOG and cell cycle as well as
smaller one such as Meiosis. For the remaining pathways, their constituents were correctly captured as
having been silenced. Combining the outputs of the individual silenced gene queries offers an insight into
potential yeast signalling rewiring following strong perturbation such as silencing of a group of kinases.

The issue with overlap can be addressed by initiatives such as bioGRID and other datasets providing
consistent information at both the protein and phosphosite level interactions. This problem is even greater
and more present in the human kinome and proteome. However, combining resources, a crude approach
at best, seemed to alleviate this, at least partially. A recently published study [5] made a significant
contribution in assigning substrates to a large number of active Ser/Thr kinases (approximately 84%) in
humans.

Next steps in applying this methodology would involve augmenting facts with probabilities, via the
ProbLog2 [3] framework. Specifically, the immediate aim of this would be to capture the epistemic un-
certainty in the kinase phosphosite associations as well as the mix of alleatoric and epistemic uncertainty
that characterises the process of mass spectrometry based data acquisition and related post processing.
The resulting output could further increase confidence in the predictions. Both of these require the min-
ing of appropriate and well curated information in order to prove viable.
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Humans understand language by extracting information (meaning) from sentences, combining it with
existing commonsense knowledge, and then performing reasoning to draw conclusions. While large
language models (LLMs) such as GPT-3 and ChatGPT are able to leverage patterns in the text to
solve a variety of NLP tasks, they fall short in problems that require reasoning. They also cannot
reliably explain the answers generated for a given question. In order to emulate humans better, we
propose STAR, a framework that combines LLMs with Answer Set Programming (ASP). We show
how LLMs can be used to effectively extract knowledge—represented as predicates—from language.
Goal-directed ASP is then employed to reliably reason over this knowledge. We apply the STAR
framework to three different NLU tasks requiring reasoning: qualitative reasoning, mathematical
reasoning, and goal-directed conversation. Our experiments reveal that STAR is able to bridge the
gap of reasoning in NLU tasks, leading to significant performance improvements, especially for
smaller LLMs, i.e., LLMs with a smaller number of parameters. NLU applications developed using
the STAR framework are also explainable: along with the predicates generated, a justification in the
form of a proof tree can be produced for a given output.

1 Introduction

The long-term goal of natural language understanding (NLU) research is to build systems that are as
good as humans in understanding language. This is a challenging task since there are multiple skills that
humans employ to understand a typical sentence. First, a person needs to be proficient in the language to
be able to interpret the sentence and understand its surface-level meaning. Second, they need to be able
to interpret the meaning of the sentence in the current context, using the commonsense knowledge they
already possess. This helps resolve ambiguities in the sentence and assess if any information is missing.
Third, if required, they should be able to pose a question that would seek to fill in any information that
is missing. Finally, once they attain a complete understanding of the sentence, they should be able to
explain what they understood. We believe that all of these skills are also important for an NLU system
that seeks to reliably answer questions or hold a conversation with a human.

In recent years, Large Language Models (LLMs) have been trained on massive amounts of text
extracted from the internet. They have shown language proficiency to the extent that they are able to
perform reading comprehension, translate languages, and generate text to complete stories, poems, or
even code ([7, 9]). However, they can fall short when applied to problems that require complex reasoning.
When tested on commonsense reasoning or mathematics word problems, LLMs such as GPT-3 have been
shown to make simple reasoning errors ([12]). Though such errors may be mitigated with strategies such
as chain-of-thought prompting ([28]), they continue to make mistakes that originate from calculation
errors or missing reasoning steps in the solution, making it difficult to rely completely on such systems.
While it is possible to prime LLMs to generate explanations for their answers, they sometimes generate
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Figure 1: STAR framework Design

the right explanation along with a wrong answer and vice versa ([28]). This brings into question the
dependability of such explanations. The lack of a clear separation of the reasoning process also makes it
difficult to assess the models’ state of knowledge and identify commonsense knowledge that needs to be
integrated as necessary. These shortcomings point to the need for better NLU systems that use explicit
reasoning.

With this motivation, we propose the STAR (Semantic-parsing Transformer and ASP Reasoner”)
framework that closely aligns with the way human beings understand language. STAR maps a sen-
tence to the semantics it represents, augments it with commonsense knowledge related to the concepts
involved—just as humans do—and then uses the combined knowledge to perform the required reasoning
and draw conclusions (see Figure 1). The STAR framework relies on LLMs to perform semantic parsing
(converting sentences to predicates that capture their semantics) and shifts the burden of reasoning to an
answer set programming (ASP) system ([14, 6]). For our experiments, we use variants of GPT-3 ([7]) to
generate predicates from the text. LLMs can be taught to do this either using fine-tuning or in-context
learning using a small number of text-predicate pairs, resulting in a ‘Specialized LLM’. Commonsense
knowledge related to these predicates is coded in advance using ASP. Depending on the problem, a
query is either pre-defined or can also be similarly generated from the problem using LLMs. The query
is executed on the s(CASP) ([2]) goal-directed ASP system against the LLM-generated predicates and
ASP-coded commonsense knowledge to generate a response.

In this paper, we use the STAR framework for three different NLU applications: (i) a system for
solving qualitative reasoning problems, (ii) a system for solving math word problems, and (iii) a system
representing a hotel concierge that holds a conversation with a human user who is looking for a restaurant
recommendation. All three tasks require different types of reasoning. Qualitative reasoning and math-
ematical reasoning tasks require the system to perform a few steps of reasoning involving qualitative
relationships and arithmetic operations, respectively. On the other hand, the conversation bot task re-
quires the system to interact with the user to seek missing information, “understand” user requirements,
and reason over it.

Our experiments involve two main variants of GPT-3; Davinci (∼ 175B parameters) and Curie (∼
6.7B parameters). To measure the performance with STAR, we perform direct answer prediction using
both models and compare them to the corresponding answers produced using our framework. The results



276 Reliable NLU

show that STAR shows an increase in answer prediction accuracy and the difference is especially large
for the smaller LLM, which might be weaker at reasoning. In both question-answering tasks, we are able
to produce proof trees for the generated response, making them explainable. The knowledge predicates
also help us understand the shortcomings and potential design improvements, which is not possible when
the models are run using the LLMs alone. In the conversation bot task that requires in-depth reasoning,
we observe that STAR provides much better control wrt seeking information from the user to under-
stand their requirements. When used on its own for the purpose of restaurant recommendation, Davinci
sometimes alters restaurant information based on user interaction. However, our approach always gives
restaurant suggestions faithfully based on the database of restaurants available, making it more reliable.
Since reasoning is performed using s(CASP) in our approach, we can also handle an arbitrarily large
database of restaurants. This is not possible when LLMs are used end-to-end for this conversation bot,
as there is a limit on the maximum prompt size. Thus, our approach can scale easily to larger restaurant
databases.

2 Background

Large Language Models: Until recently, transformer-based deep learning models have been applied to
NLP tasks by training and fine-tuning them on task-specific datasets ([8]). With the advent of Large Lan-
guage Models, the paradigm changed to teaching a language model any arbitrary task using just a few
demonstrations, called in-context learning. Brown et al. ([7]) introduced an LLM called GPT-3 contain-
ing approximately 175 billion parameters that have been trained using a massive corpus of filtered online
text, on which the well-known ChatGPT is based ([23])). The model was able to perform competitively
on several tasks such as question-answering, semantic parsing ([26]), and machine translation. However,
such LLMs tend to make simple mistakes in tasks such as semantic (commonsense) and mathematical
reasoning ([12, 28]).

In our work, we use GPT-3 for semantic parsing and leave the reasoning part to ASP. We theorize
that given the vast pre-training they go through, LLMs can be used to automatically extract knowledge
inherent in the text, just like humans do. Our experiments confirm that Davinci and Curie are able to
extract such knowledge as predicates from sentences—with high accuracy—after learning from a few
example demonstrations. Thus, our experiments show that LLMs are able to extract, what linguists call,
the deep structure of a sentence, given a sentence’s surface structure.

Answer Set Programming and the s(CASP) system: The s(CASP) system (developed by Arias et
al.[2]) is an answer set programming ([6]) system that supports predicates, constraints over non-ground
variables, uninterpreted functions, and, most importantly, a top-down, query-driven execution strategy.
These features make it possible to return answers with non-ground variables (possibly including con-
straints among them) and compute partial models by returning only the fragment of a stable model that
is necessary to support the answer to a given query. The s(CASP) system supports constructive nega-
tion based on a disequality constraint solver and unlike Prolog’s negation as failure and ASP’s default
negation, not p(X) can return bindings for X on success, i.e., bindings for which the call p(X) would
have failed. Additionally, s(CASP) system’s interface with a constraint solver (over reals) allows for
sound non-monotonic reasoning with constraints (useful for solving algebra problems in one of the NLU
applications we discuss later).

Complex commonsense knowledge can be represented in ASP and the s(CASP) query-driven predi-
cate ASP system can be used for querying it ([15, 29, 14]). Commonsense knowledge can be emulated
using (i) default rules, (ii) integrity constraints, and (iii) multiple possible worlds ([14, 15]). Default
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rules are used for jumping to a conclusion in the absence of exceptions, e.g., a bird normally flies unless
it’s a penguin. Default rules with such exceptions represent an elaboration-tolerant way of representing
knowledge ([14]).

flies(X) :- bird(X), not abnormal bird(X).
abnormal bird(X) :- penguin(X).

Integrity constraints allow us to express impossible situations and invariants. For example, a person
cannot sit and stand at the same time.

false :- person(X), sit(X), stand(X).

Finally, multiple possible worlds allow us to construct alternative universes that may have some of the
parts common but other parts inconsistent. For example, the cartoon world of children’s books has a lot
in common with the real world (e.g., birds can fly in both worlds), yet in the former birds can talk like
humans but in the latter they cannot.

Default rules are used to model a bulk of our commonsense knowledge. Integrity constraints help
in checking the consistency of the information extracted. Multiple possible worlds allow us to perform
assumption-based reasoning (for example, knowing that “Alice loves Bob”, we could assume that either
Bob also loves Alice or he does not).

A large number of commonsense reasoning applications have already been developed using ASP
and the s(CASP) system ([21, 25, 11, 29]). In the three applications reported in this paper, we have
kept the commonsense reasoning component simple, as our main goal is to illustrate our framework
for combining LLMs and ASP to develop NLU applications that are explainable and reliable. Because
of the use of ASP, it is also possible to detect inconsistencies or biases in the text by reasoning over
the predicates extracted. Justification for each response can also be given, as the s(CASP) system can
generate justifications as proof trees ([1]).

3 Qualitative Reasoning

Qualitative reasoning tests a model’s ability to reason about the properties of objects and events in the
World. Tafjord et al. ([27]) introduced the QuaRel dataset in order to test question answering about
qualitative relationships of a set of physical properties, which forms a perfect test-bed for our approach.
Our experimental results show that the STAR framework significantly improves the model accuracy
compared to the cases where the LLMs are applied directly to question answering.

3.1 The QuaRel Dataset

The QuaRel dataset consists of 2771 questions designed around 19 different properties such as ‘friction’,
‘heat’, ‘speed’, ‘time’, etc. In order to answer these questions, one must account for the correlation
between these properties. Each question has a certain observation made about the two worlds where a
property has a higher (or lower) value in one world compared to the other. Based on this observation, a
(commonsense) inference needs to be drawn about other related properties described in the two worlds.
This inference helps pick one of the two choices as the answer for the given question [27].

A question from the dataset is given in example 3.1. In this example, the two worlds are ’Carpet’ and
’Floor’. The observation made is that the distance traveled by a toy car is more in world1 (floor). From
this, the model needs to infer that the resistance or friction would be higher in world2 (carpet), which
should lead to picking option A as the answer.

Example 3.1:
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Question: Alan noticed that his toy car rolls further on a wood
floor than on a thick carpet. This suggests that:
(world1: wood floor, world2: thick carpet)

(A) The carpet has more resistance (Solution)
(B) The floor has more resistance

Along with each question, Tafjord et al. provide a logical form that captures the semantics of the question
and we use it to extract the predicates needed for our method ([27]). For the above question (example
3.1), the logical form given is as follows:

qrel(distance,higher,world1)→ qrel( f riction,higher,world2) ; qrel( f riction,higher,world1) (1)

The predicate qrel(distance,higher,world1) refers to the observation that the distance is higher in world1,
while qrel( f riction,higher,world2) and qrel( f riction,higher,world1) refer to the conclusions drawn in
the two answer options, respectively.

3.2 Predicate Generation Step

We use GPT-3 to convert the Quarel dataset’s natural language question (including the two answers) into
appropriate predicates. We fine-tune the two GPT-3 model variants named Davinci and Curie ([7]) on the
QuaRel dataset, instead of just using in-context learning1. Fine-tuning performs better since the models
can learn from all the examples in the training set. Such data is available only for this task. Our input
prompt consists of the question (including answer options), followed by the world descriptions. The
world descriptions are included to enable the model to link the two worlds to the ones in the predicates
(obs and conc) that are generated in the output. The prompt and completion formats for fine-tuning are
given below:
Prompt format:

<Question-Answers>\n world1:<world1>\n world2:<world2>\n\n##\n\n
Completion format:

obs(<p>, <h/l>, <w1/w2>)→ conc(<p>, <h/l>, <w1/w2>) ;

conc(<p>, <h/l>, <w1/w2>) <EOS>

where p is the property involved, h/l is the relation which can be either higher or lower and w1/w2 is
either world1 or world2. After fine-tuning on the training set using the prompt and completion pairs, we
use the prompt to generate the completion during testing. The <EOS> token helps cut off the genera-
tion when apt, avoiding completions that are either too long or too short. The extracted obs and conc
predicates are then used by the logic program to determine the correct answer.

3.3 Commonsense Reasoning Step
The commonsense knowledge required to answer the questions is encoded in ASP as facts and rules.
First, we ground the 19 properties using facts such as,
property(friction). property(heat). property(speed).

Next, we define the relationships between the properties, including their positive correlations (denoted
as qplus), negative correlations (denoted as qminus) and symmetry,
qplus(friction, heat). qminus(friction, speed).
qplus(speed, distance). qminus(distance, loudness).
positive(X, Y) :- qplus(X, Y). negative(X, Y) :- qminus(X, Y).
positive(X, Y) :- qplus(Y, X). negative(X, Y) :- qminus(Y, X).

1Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.
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In the QuaRel dataset, we are only dealing with two worlds. Hence, if a property P is higher in
world1, it must be lower in world2 and vice versa. We capture this logic using the opposite predicates
and the rules below:

opposite_w(world1,world2). opposite_v(higher,lower).
opposite_w(world2,world1). opposite_v(lower,higher).
conc(P, V, W) :- obs(P, Vr, Wr), property(P),

opposite_w(W,Wr), opposite_v(V,Vr).

In order to capture the relationship between each pair of properties, we need to account for 4 different
cases that may arise. If properties P and Pr are positively correlated, then (i) if P is higher in world W,
Pr must also be higher in W, and (ii) if P is higher in world W, Pr must be lower in the other world Wr.
Similarly, if P and Pr are negatively correlated, then (i) if P is higher in world W, Pr must be lower in W,
and (ii) if P is higher in world W, Pr must be higher in the other world Wr. Note that the higher/lower
relations may be swapped in all cases above. These 4 possible scenarios can be encoded in logic using
the following rules:

conc(P,V,W) :- obs(Pr,V,W), property(P), property(Pr),
positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),
opposite_w(W,Wr), opposite_v(V,Vr), positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,W), property(P), property(Pr),
opposite_v(V,Vr), negative(P,Pr).

conc(P,V,W) :- obs(Pr,V,Wr), property(P), property(Pr),
opposite_w(W,Wr), negative(P,Pr).

Using this knowledge base, asserting a fact as an observation (obs) allows us to check for the correct
conclusion (conc) that is entailed. For the example question in example 3.1, we can arrive at the answer
by checking for entailment of the two possible conclusions as shown:

assert(obs(distance, higher, world1)), conc( f riction, higher, world2).→ True
and

assert(obs(distance, higher, world1)), conc( f riction, higher, world1).→ False

3.4 Results and Evaluation

We compare the results of our models to those reported by Tafjord et al. ([27]) in Table 1. Accuracy
for four QuaRel datasets is considered (QuaRelF refers to the subset of the dataset which only focuses
on friction-related questions). The first 8 rows show the accuracy of the baseline models proposed in
the QuaRel paper. Curie-Direct and Davinci-Direct rows report the performance of Curie and Davinci
models which directly predict the answer after fine-tuning on the QuaRel’s training set. The Curie-STAR
and Davinci-STAR rows show the performance for our approach, i.e., first generating the predicates
and then reasoning using ASP and commonsense knowledge. The values in bold represent the highest
accuracy values obtained for each dataset.

The results show a large improvement in the accuracy of the Curie model on all four QuaRel datasets.
Table 1 shows that Davinci-STAR either matches or exceeds the performance of Davinci-Direct on three
of the four QuaRel datasets. However, interestingly, we see that Davinci-Direct outperforms Davinci-
STAR on the QuaRel-Dev dataset. Since our framework is explainable, we were able to analyze the
cases where our approach makes a mistake. We found that the LLM sometimes generates properties that
are not in the domain for some predicates (such as ’smoke’ instead of ’heat’ since the question mentions
smoke). We hypothesize that this is because similar examples were not seen during training. QuaRel has
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a larger number of questions based on friction, which we believe led to our framework performing better
on QuaRelF datasets (which contain solely friction-based questions). Similarly, adding more examples
for other properties might help our framework bridge the gap for other properties. Clearly, there is a
stark difference between Curie and Davinci when used with our framework. We infer from this that
while Davinci has some ability to reason, Curie lacks the reasoning skill required for the task and our
approach helps bridge this reasoning gap.

Table 1: Comparison of accuracy of models on the QuaRel Dataset (Qualitative Reasoning)

No. Model QuaRel Dev QuaRel Test QuaRelF Dev QuaRelF Test

1. Random 50.0 50.0 50.0 50.0
2. Human 96.4 - 95.0 -
3. IR 50.7 48.6 50.7 48.9
4. PMI 49.3 50.5 50.7 52.5
5. Rule-Based - - 55.0 57.7
6. BiLSTM 55.8 53.1 59.3 54.3
7. QUASP 62.1 56.1 69.2 61.7
8. QUASP+ 68.9 68.7 79.6 74.5
9. Curie-Direct 67.6 63.5 45.7 52.7
10. Curie-STAR (ours) 86.2 85.2 87.9 85.9
11. Davinci-Direct 93.1 90.5 90.0 91.3
12. Davinci-STAR (ours) 90.6 90.5 90.6 93.5

4 Solving Word Problems in Algebra

Solving word problems in algebra requires extracting information from the question (interpreting its
language) and performing mathematical reasoning to come up with an answer. Hence, it forms a good
experiment to test our framework. We choose a specific type of addition and subtraction problems from
the dataset used by Koncel-Kedziorski et al. ([18]). We define the predicates has/4, transfer/5
and total/4 as shown below to encode the knowledge in the problems:

has(entity, quantity, time stamp, k/q).

transfer(entity1, entity2, quantity, time stamp, k/q).

total(entity, quantity, time stamp, k/q).

The predicate has/4 defines that an entity has a certain quantity of some objects, at a partic-
ular time stamp. The transfer/5 predicate defines that an entity1 has transferred a certain
quantity of objects, to entity2 at a particular time stamp. Finally, the total/4 predicate
defines that an entity has a total amount of some objects equal to the quantity, at a particular
time stamp. The last term in each predicate is either the current knowledge (denoted as k) or a place-
holder for the query (denoted q). We design these based on what information a human might glean from
the problem in order to solve it.

The computation of the answer is done by simple s(CASP) rules. The rules are not shown due
to lack of space and can be thought of as commonsense knowledge required to solve simple Algebra
word problems given the has/4, transfer/5, and total/4 predicates. An example problem and
corresponding predicates generated to represent the knowledge are shown below.
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Ex 1: Joan found 70 seashells on the beach. Joan gave Sam some of her seashells. Joan has 27 seashells
left. How many seashells did Joan give to Sam?

has(joan,70,0,k). transfer(joan,sam,X,1,q). has(joan,27,2,k).

Following the STAR approach, we convert the knowledge in the chosen algebraic problem to the pred-
icates defined above using an LLM. The predicates thus obtained (including the query) along with the
rules then constitute the logic program. The query predicate is then executed against the program to solve
the word problem.

4.1 Experiments and Results

Our dataset contains 91 problems drawn from a collection of word problems provided by Koncel-
Kedziorski et al. ([18]). Since we hand-craft the rules for the domain, we select a set of problems
that have a similar logic that we can encode. We use text-davinci-003 which is the most capable GPT-3
model for in-context learning. We did not use the text-curie-001 model as done in the qualitative reason-
ing experiment because the model requires fine-tuning on a larger set of questions to be effective. We
provide a context containing a few problems with their corresponding predicates to the GPT-3 models
and then use each problem as a prompt along with the context for the model to generate the facts and the
query predicate(s) corresponding to the new problem. We then use the commonsense rules we defined
along with the generated predicates (facts) as the logic program and query the program using the query
predicate. We then compare the answer generated by the logic program with the actual, human-computed
answer for each problem. As a baseline, we use the GPT-3 model for direct answer prediction. Here,
with the algebra problems as the context, we provide the correct answer as the expected completion.

For our experiments, we initially started with a smaller context of 12 problems and examined the
mistakes the LLM was making in generating the predicates. Since our approach is explainable (unlike
the direct answer prediction approach), we were able to analyze the mistakes and added more problems
to the context that might fix them. Repeating this process a few times, we end up with 24 problems as
the final context for the GPT-3 model. Results of our experiments are shown in table 2.

Table 2: Performance comparison between the baseline model and our approach

Model Accuracy

text-davinci-003-Direct 1.00
text-davinci-003-STAR 1.00

Both text-davinci-003-Direct and text-davinci-003-STAR result in 100% accuracy on the test set of
67 problems. Our experiments show that algebraic word problems that require simple reasoning can be
solved easily by large LLMs. While our STAR approach achieves the same accuracy, it can also generate
justification, making it explainable. Below we show a justification tree generated by s(CASP) ([1]) for
the problem shown in Example 1 above, where the computed answer is 43.

JUSTIFICATION_TREE:
transfer(joan,sam,43,1,q) :-

has(joan,70,0,k),
has(sam,27,2,k),
43 #= 70-27.

global_constraint.
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A major weakness of LLMs is that they perform poorly on mathematical tasks. Since the computation
in our approach is done by the reasoning process externally (as seen above), it circumvents any potential
calculation mistakes the LLMs might make. The set of problems we selected ended up being simple
enough for the baseline model to also learn. We believe that the performance difference will be evident
with more complex algebraic problems, similar to our experiments on qualitative reasoning. We plan to
explore this in our future work.

5 Concierge Bot: A Goal-Directed Conversational Bot

In this section, we describe the conversational bot that we have developed using our STAR framework.
We first leverage LLMs to extract implicit and explicit knowledge predicates from a user’s dialogue and
then reason over the extracted predicates using s(CASP) to satisfy the user’s request. To illustrate the
applicability of our method to conversational AI, we narrow the domain of the bot to a very specific
problem: restaurant recommendations. This ensures that commonsense knowledge that needs to be
modeled is within a limited domain that can be expanded later as necessary. We call this bot the concierge
bot. Since the conversational bot is an interactive application, the commonsense reasoning involved is
more complex than the other two tasks. Here, the reasoner also has to keep track of the state of the
conversation. In order to make a restaurant recommendation, the bot needs to ask the user for information
(preferred cuisine, price range, etc.) and recommend a restaurant once all information is procured. At
any stage, the bot can explain why it’s asking for a given piece of information as well as the reason for
its recommendation. The benefits of the STAR framework are more apparent in this application. The
bot can ask user questions to acquire more information when missing or to verify if any errors are made
in predicate generation. We show an example transcript of an interaction session below of the concierge
bot with a human user. The English responses are generated using GPT-3 again after learning from
predicate-text demonstrations (essentially, using the reverse of the text-to-predicate generation process).

Bot: Hi, what can I assist you with?
Human: Can you help me find a place for food with curry?

I don’t want a pricey one.
Bot: Are you looking for a place with a specific customer rating?
Human: No, I don’t mind the rating.
Bot: What kind of restaurant would you like to visit?
Human: A normal restaurant.
Bot: Would you like somewhere family-friendly for tonight?
Human: No. Just for myself.
Bot: Unfortunately, we cannot provide the results to your request.
Human: How about one with a high price?

But it should be then at least above average quality.
Bot: Are you looking for a Thai restaurant?

The Rice Boat may be suitable but it can be pricey and
customer feedback has been mixed. Additionally, it may
not have the best atmosphere for families.

Human: Yes, that’s what I need! Tell me where it is.
Bot: The Rice Boat, located on 901 Bangkok Road, has an average

customer rating and offers Thai cuisine at a premium cost.
Unfortunately, it is not suitable for children.

Human: Great! Thank you for the service!
Bot: It’s no problem, I’m happy to assist.
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5.1 Predicate Generation using LLMs

We adapt examples from the E2E dataset released by Novikova et al. ([22]) for our use case. We
employ in-context learning where we give the LLM examples of pairs containing a natural language sen-
tence and the corresponding restaurant predicates. We use the following six predicates from the dataset:
restaurant-name, eatType (as establishment type), food (as cuisine), priceRange, customerRating,
familyFriendly.

We use the STAR framework with in-context learning where we provide the GPT-3 model with 11
selected examples from the dataset, which covers all the predicates along with their possible arguments.
This ensures that the LLM is aware of every possible predicate as well as every possible argument value
these predicates can take. To assess the viability of LLMs for the predicate generation task, we tested
the model using the first 500 examples in the E2E training set and obtained an accuracy of 89.33%.
The accuracy metric we use is designed to account for the generation of correct predicates as well as
arguments. The high predicate generation accuracy supports the feasibility of using our STAR framework
for the concierge bot. Our framework can similarly be applied, to build any robust domain-specific
conversational bots such as a front desk office receptionist or an airline reservation assistant.

5.2 Concierge Bot System Construction

To make GPT-3 better understand the meaning of each predicate, we first change the predicate names in
E2E as follows: restaurnt-name, typeToEat, cuisine, priceRange, customerRating, familyFriendly.
We also add two predicates address and phoneNumber to record the location and contact information
for the user’s query. An external predicate prefer is also added to capture the user’s preference (such as
curry, spicy, etc.) The information asked by the user is expressed by the value “query”. We specialized
GPT-3 with about a dozen example sentences along with the corresponding predicate(s). Below we show
some examples of the sentences and the predicates generated after this specialization.

Sentence: Fitzbillies coffee shop provides a kid-friendly venue for
Chinese food at an average price point in the riverside area.
It is highly rated by customers.

Predicates: restaurant-name(Fitzbillies), typeToEat(coffee shop),
cuisine(Chinese), priceRange(moderate),
customerRating(high), familyFriendly(yes)

Sentence: Can you find a place for food at a low price? Both English
and French cuisine is fine for me.

Predicates: restaurant-name(query), cuisine([Engish, French]),
priceRange(cheap)

Commonsense knowledge involved in making a restaurant recommendation is coded using s(CASP).
The interactive bot will take in the user’s response and convert it to predicates using GPT-3. The predi-
cates become part of the state. At this stage, we check for user preference. For example, if the user wants
curry, Indian and Thai cuisine would be automatically added to the state through appropriate rules. The
bot then examines the state to assess if all the information needed is present so that it can make a recom-
mendation and if not, it will generate a question to ask the user for that information. This logic, shown
in Figure 2, can be thought of as a state machine and has been referred to as a conversational knowl-
edge template (CKT) by Basu et al. ([5]). The concierge bot determines which predicates are missing
in its state to make a recommendation. One of the missing predicates is then selected and a query is
created using it. Note that we use GPT-3 again to generate natural-sounding text from the predicate(s)



284 Reliable NLU

Figure 2: The framework of the reasoning system in Concierge Bot. The green boxes indicate the steps
done by LLMs and the orange ones indicate the steps done by s(CASP).

corresponding to the response that our bot computes. The users can also change their preferences during
the conversation and our bot can handle that. Take the conversation mentioned above as an example.
When the user asks “Can you help me find a place for food with curry? I don’t want a pricey one.”,
following predicates are generated by the GPT-3 text-davinci-003 model: “restaurant-name(query), pre-
fer(curry), priceRange([cheap, moderate])”. The predicates are then added to the memory of the bot,
where the log of the user requirements of the current conversation is stored. Note that the predicates
“prefer(curry)” and “cuisine([indian,thai])” are also added to the state using the specific commonsense
rule we wrote for this purpose (not shown due to lack of space). After the state gets updated, the bot
checks to see whether any other key information is missing using another commonsense rule (not shown
also due to lack of space). If no information is missing, the bot comes to the recommendation step where
it searches for the appropriate restaurant in its database, consistent with the user’s input, and outputs it
as a recommendation.

Since we use GPT-3 to generate predicates from user utterances, the user has complete freedom in
terms of what they say. GPT-3 is able to extract the appropriate predicates from the corresponding deep
form of the sentence. GPT-3 is also used to generate the natural language response of the bot. As a result,
the interaction appears quite natural, as the example above shows.

5.3 Experiments

To explore GPT-3’s ability to generate goal-directed conversation without the reasoning system that
STAR contains, we tested the conversation directly on GPT-3 with the sample conversations as input. We
showed GPT-3 three full paragraphs of conversations and asked GPT-3 to generate a similar conversation
according to the user input. The database of restaurants used by our concierge bot is also included in the
input to the GPT-3 model. An example interactive conversation directly with GPT-3 is as follows:

Bot: Hello, what can I do for you today?
Human: I’d like to have a family meal with my children.
Bot: What type of cuisine would you like?
Human: Mexican food is suitable for me.
Bot: What is your desired price range for the place?
Human: At a higher price, please.
Bot: I recommend The Wrestlers, a coffee shop serving Mexican

cuisine at a moderate price range. It is family-friendly
and has an average customer rating. The address is 470 Main Rd.
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The responses given by GPT-3 in the above conversation are correct except for the price range. In
the given database, the restaurant recommended only serves cheap food. Hence, GPT-3 modified the
information to align with the user’s request. GPT-3 also follows the given examples and asks about
the cuisine and price, but does not request other information like our STAR framework does. This is
because these questions are not motivated by missing information, unlike in our approach. This example
shows that although GPT-3 used on its own as a conversational bot is able to generate natural-sounding
sentences fluently, it is unreliable and does not understand the knowledge given. Bots developed using
our framework do not face such problems because they employ explicit commonsense reasoning. The
methodology we use to build the concierge bot is explained in more detail in the paper Zeng et. al. [32].

6 Related Work

A recent line of research on improving the reasoning capabilities of LLMs focus on prompt engineering.
Wei et al. ([28]) show that generating a chain of thought before the answer leads to a significant improve-
ment in performance in a variety of reasoning tasks. However, in some cases, a wrong reasoning chain
can lead to the right answer or vice versa. Zelikman et. al. ([31]) extend this by generating rationales
using a self-taught approach. While the above approaches focus primarily on machine learning, our
approach instead relies on s(CASP) to perform reasoning explicitly. This explicit reasoning is not only
more reliable but is also explainable. Our approach falls into the line of Neuro-symbolic research that
does heavy reasoning and light learning as categorized in the survey by Hamilton et al. ([16]). Typically
such works try to integrate neural and symbolic components ([30, 24]). In contrast, we separate both
components by using LLMs for predicate extraction and the s(CASP) system for reasoning.

This paper follows our earlier research where we advocate a combination of machine learning and
commonsense reasoning to carry out intelligent tasks in a human-like manner ([4, 3, 19]). In the SQuARE
question-answering system ([3]), knowledge was extracted using the Stanford CoreNLP Parser ([20]) and
then mapped to templates from VerbNet. This method was only usable for simple sentences such as for
the bAbI dataset. Along similar lines, Tafjord et al. ([27]) report models that convert problems in English
to logical forms, which are then processed using a custom interpreter. The semantic parsers discussed in
their paper are variations of LSTMs that generate CFG-like grammar rules which create the logic form.
The main bottleneck of these two approaches was in the parsers used. In our work, we use LLMs that
can extract predicates from arbitrary sentences which makes our approach applicable to more complex
problems and translates to better performance. The closest works to ours are along the lines of Chen et
al. ([10]) and Gao et al. ([13]) who use LLMs to generate program steps which are then executed in
a programming language such as Python. Here the program steps still need to be generated by LLMs
completely. Instead, our work delegates the entire reasoning task to the s(CASP) system. Since s(CASP)
is designed for complex reasoning, our research can be extended more easily to complex text-based
reasoning problems. Similar to our conversation bot, Inclezan et al. ([17]) use an ASP-based action
language to reason in a restaurant setting, but it is not an interactive system like our work.

7 Conclusions and Future Work

In this paper, we described the STAR framework that combines LLMs and ASP for NLU tasks. We
show that our system is reliable and explainable using three different reasoning tasks. For the qualitative
reasoning task, STAR outperforms purely LLM-based approaches and advances the state-of-the-art wrt



286 Reliable NLU

performance on most datasets in QuaRel. The performance difference is more significant for Curie, in-
dicating that it helps bridge the reasoning gap in smaller LLMs. In all three tasks, STAR can explain its
reasoning process by producing a justification tree. In the LLM-only approach for developing a concierge
bot, we noticed that the LLM mixes up information collected during the conversation and leads to incor-
rect suggestions, while our STAR-based approach stays faithful to the information given in the restaurant
database. Our approach also allows for holding long, interactive, and meaningful conversations.

The potential applications of our STAR framework are very broad. It can help in any NLU appli-
cation that requires reasoning about knowledge in text or utterances. Some examples are, automatically
extracting formal software requirements from textual specifications, building conversational agents for
other domains, and reliable machine translation. We believe that performance improvement using STAR
will be more pronounced for problems that require complex reasoning. We also plan to develop a general
commonsense knowledge base that applications developed using the framework can employ.
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Next-gen computing paradigms foresee deploying applications to virtualised resources along a con-
tinuum of Cloud-Edge nodes. Much literature has focused on how to place applications onto such
resources so as to meet their requirements. To lease resources to application operators, infrastructure
providers need to identify a portion of their Cloud-Edge assets to meet application operators’ require-
ments. This article proposes a novel declarative resource selection strategy, prototyped in Prolog, to
determine a suitable infrastructure portion that satisfies all requirements. The proposal is showcased
over a lifelike scenario.

1 Introduction

Recent utility computing paradigms (e.g. Fog, Edge, Mist, Cloud-IoT computing) foresee deploying ap-
plications to virtualised resources along a continuum of Cloud-Edge computing, storage and networking
resources. Much literature (surveyed, for instance, by [13] and [17]) has focussed on how to place (multi-
service) applications onto such resources so as to meet their stringent functional and non-functional
requirements (e.g. in terms of latency, bandwidth, security, deployment location, Quality of Service
(QoS), energy sources, costs). Application placement has been proven an NP-hard problem ([1]), fea-
turing worst-case exp-time complexity of O(NS) for placing S application services onto an infrastructure
of N nodes. Most of the proposed solutions (i) take the perspective of application operators that need to
deploy their application services, and (ii) determine eligible placements by trying to match each service
with any node in the infrastructure.

We tackle here a different, yet complementary, problem by (a) taking the perspective of infrastructure
providers leasing Infrastructure-as-a-Service (IaaS) resources in the Cloud-Edge continuum to paying
application operators that need to deploy their services, and by (b) identifying a portion of the available
Cloud-Edge infrastructure that meets the requirements set by application operators and maximizes the
expected profit that the infrastructure provider will get from leasing such infrastructure portion.

Said otherwise, we consider a setting in which:

(1) Application operators request to lease a Cloud-Edge continuum portion, featuring specific (hard-
ware, software, security, network) resources and suitably guaranteeing performance metrics (e.g.
sustainability, availability),

(2) Infrastructure providers identify a portion that meets all the requirements of applications operators
and that maximises their profit, by exploiting an automated (virtual) resource selection mechanism,

*Research partly funded by projects: Energy-aware management of software applications in Cloud-IoT ecosystems
(RIC2021PON_A18), funded with ESF REACT-EU resources by the Italian Ministry of University and Research through
the PON Ricerca e Innovazione 2014–20 and hOlistic Sustainable Management of distributed softWARE systems (OSMWARE),
UNIPI PRA_2022_64, funded by the University of Pisa, Italy.
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(3) Application operators can seamlessly deploy applications onto the leased infrastructure portion by
employing any appplication placement strategy of their choice.

It is worth noting that such a change of perspective enables taming the exp-time complexity of the
application placement problem by considering only a small portion of n < N nodes in the available
infrastructure. For instance, our experiments in [5] and [7] show how placement execution times grow
exponentially at increasing sizes of the considered infrastructure and, therefore, how reducing decision-
making to smaller portions of such an infrastructure brings considerable speed-ups, viz. from 2× up to a
1000× in realistic use cases.

This article presents a declarative strategy to automate the aforementioned step (2) by solving the
following resource selection problem:

Let N be a set of heterogeneous nodes of a Cloud-Edge infrastructure managed by an infrastructure
provider. Let p : N → R be the function that defines the profit of the infrastructure provider for
leasing a node. Let R be a request of resources of an application operator. A solution to the
considered resource selection problem is a portion C = {n1,n2, . . .nm} ⊆ N that guarantees all
requirements in R while maximising the infrastructure provider profit. Formally, given N, p, and R,
we aim at determining C such that

argmax
C⊆N
C|=R

∑
n∈N

p(n).

We present our novel open-source prototype1 FOGCUTTER, entirely written in Prolog. FOGCUTTER al-
lows infrastructure providers to describe the capabilities of their nodes and application operators to input
their requests with a declarative syntax – implying better readability, maintainability and extensibility.
FOGCUTTER will benefit both infrastructure providers and application operators. Infrastructure providers
will identify suitable infrastructure portions to lease to maximise their profit. Application operators will
reduce decision-making times for managing their distributed software by considering an infrastructure
portion built à la carte, specially based on their deployment needs.

The rest of this article is organised as follows. We describe a motivating scenario (Sect. 2) and
illustrate the FOGCUTTER Prolog prototype (Sect. 3), which we then use over the motivating scenario
(Sect. 4). Last, after discussing some related work (Sect. 5), we conclude pointing out to directions for
future work (Sect. 6).

2 Motivating Scenario

Consider the Cloud-Edge continuum of Fig. 1, provided by a single infrastructure operator across differ-
ent geographical regions (viz. US, EU, China). The infrastructure is made of 20 nodes: 10 access points
(APs) ap1–ap10, 7 more edge gateways n1–n7 and 3 Cloud datacentres c1–c3. Assume the application
operator connects to the network through ap3.

Each node in the available Cloud-Edge infrastructure of Fig. 1 is characterised by its geographical
location (represented as a flag), security capabilities (represented as icons), share of renewable energy it
exploits to run (indicated by the colour of the node), and availability (reported in the bottom right side of
each node). Finally, each node features a different amount of hardware and is associated to a profit value
established by the infrastructure provider. Hardware and profit for each node are listed in Table 1.

1Available at https://github.com/di-unipi-socc/fogCutter

https://github.com/di-unipi-socc/fogCutter
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ap2 ap3 ap4 ap5 ap6 ap7 ap8ap1

n1 n2 n3 n4 n5 n6 n7

c1 c2 c3

ap9 ap10

encrypted storage anti-malware security audit

100% 75% 50% 25%

0.99 0.95 0.999

0.9 0.9 0.90.85 0.98 0.99 0.9

0.9 0.8 0.990.990.85 0.9 0.8 0.99 0.999 0.7

Share of renewable energy:

Security capabilities:

Figure 1: Available Cloud-Edge infrastructure.

As an example, the Cloud node c2 is located in the EU, features encrypted storage, anti-malware and
security audit capabilities, is powered by 50% of renewable energy, has an availability of 95%, features
16 free hardware units, and – when leased – brings a profit of 7 e/hour to the infrastructure provider.

Node Id Hardware Units Profit Node Id Hardware Units Profit
ap1 2 2.5 n1 8 4
ap2 4 1 n2 12 5
ap3 3 1.75 n3 4 3
ap4 4 3 n4 12 4
ap5 2 2.5 n5 2 2.5
ap6 2 1.5 n6 8 4
ap7 4 3 n7 8 4
ap8 1 2.25 c1 24 9
ap9 3 1.75 c2 16 7
ap10 8 4 c3 12 6

Table 1: Node hardware and profit.

As they are deployed at different geographical locations and interconnected with different (wired and
wireless) technologies, end-to-end latency and bandwidth between nodes vary depending on the type of
node and its location. For instance, on average, APs in the same location reach out to each other with
latency of 10 ms and average symmetric bandwidth of 100 Mbps; those at different locations incur in a
latency of 150 ms with a bandwidth of 25 Mbps. Besides, APs reach out edge nodes in their location
with a latency of 60 ms, an upload bandwidth of 30 Mbps and a download bandwidth of 200 Mbps (viz.
200/30 Mbps). Last, APs connect to Cloud nodes at their location experiencing 130 ms latency and a
90/15 Mbps connection; those at a different location are reached out to with a latency of 200 ms and a
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25/10 bandwidth. Data about the QoS of all other end-to-end links can be found online2.
An application operator aims at deploying a Smart Traffic application onto a portion of the available

infrastructure. Smart traffic management is a classical use case for Cloud-Edge applications ([2, 15]),
having to collect and process data from various sensors (i.e. live video feed from traffic cameras, speed
radar, air quality monitor sensor) and services (weather, date-time, location) to detect traffic congestion,
issue speeding fines, dynamically adjust the price of tollgates and speed limits, control traffic signal
duration, and send alerts and notifications.

Assume that the application operator accesses the network from node ap3. To deploy her software
artefacts, the application operator estimates she will need at least 20 free hardware units, reachable within
250 ms from node ap3 with a 10 Mbps bandwidth. Not to incur in too high management costs (i.e. time
to decide where to place/migrate her application services at deployment and runtime, respectively), she
would like her Cloud-Edge portion to include at most 4 nodes (ap3 included).

Receiving the above request, the infrastructure provider might wonder the following:

Q1. Is there a portion of the available Cloud-Edge infrastructure that features at least 20
hardware units, and is made of at most four nodes with end-to-end connections featuring at
least 10 Mbps bandwidth and at most 250 ms latency?

Before she can deploy her Smart Traffic application, the application operator realises she also would
need to meet GDPR constraints and deploy the software only to resources in the EU, provided with an an-
timalware and encrypted storage capabilities. She consequently updates her request to the infrastructure
provider, who must answer the following question:

Q2. Is there a portion of the available Cloud-Edge infrastructure that satisfies all require-
ments at Q1, is fully located in the EU, and features antimalware and encrypted storage on
all nodes?

Lastly, the application operator also determines that she wants the resources onto which to deploy her
application to feature an overall availability of 85% and to be likely to be powered by renewable energy
at least 30% of the time. Therefore, considering this new request, the infrastructure provider will look
for an answer to the following question:

Q3. Is there a portion of the available Cloud-Edge infrastructure that satisfies all require-
ments at Q1 and Q2 , and features 85% availability and 30% sustainability score?

3 Our Methodology

In this section, we first illustrate how FOGCUTTER enables describing infrastructure capabilities and user
requests with a simple and extensible model (Sect. 3.1). Then, we illustrate the logic program that, by
processing such a model, determines solutions to the considered problem (Sect. 3.2).

3.1 Infrastructure and request model

Nodes are declared with a valid N (e.g. their IP address, a symbolic name within the DNS) by means of
facts like

node(N).

2Available at: https://github.com/di-unipi-socc/fogCutter/blob/main/scenarios/smarttraffic.pl

https://github.com/di-unipi-socc/fogCutter/blob/main/scenarios/smarttraffic.pl
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Each node is associated to the profit that its lease brings to the infrastructure provider, as in

profit(N, Profit).

After declaring a node, it is possible to declare its capabilities3 through facts like

nodeCap(N, CapabilityType, FeaturedCapabilities).

that specifies the CapabilityType and the currently FeaturedCapabilities for such a type at node N. For
instance, node c1 of the motivating scenario of Sect. 2 is declared as in:

node(c1).
nodeCap(c1, hardware, 24).
nodeCap(c1, location, us).
nodeCap(c1, security, [antimalware, encryptedStorage, audit]).
nodeCap(c1, availability, 0.99).
nodeCap(c1, sustainability, 0.75).

Similarly, the capabilities of end-to-end links between nodes N and M can be declared as facts like

linkCap(N, M, Capability, FeaturedCapabilities).

As an example, the end-to-end link connecting nodes ap1 and n1 in the previous example can be
expressed through the following facts:

linkCap(ap1,n1,latency,60). linkCap(ap1,n1,bandwidth,30).
linkCap(n1,ap1,latency,60). linkCap(n1,ap1,bandwidth,200).

We distinguish two kinds of capability types: local and global. Local capabilities are checked on a
single resource, either a node or a link. Such capability types are declared through facts like

capType(Capability, Resource, ComparisonOperator).

that specify the Resource for which such capability can be declared (viz. node s or link s), a Comparison-

Operator to check whether the FeaturedCapabilities at a node satisfy a request on such Capability.
For instance, FOGCUTTER defines the following four local capabilities

capType(security, node, supset). capType(location, node, member).
capType(latency, link, smaller). capType(bandwidth, link, greater).

that enable checking4 the set of security capabilities featured by a node against a set of requested capabil-
ities, the location of a node against a list of permitted locations, and the latency and bandwidth featured
by communication links against an upper and a lower bound, respectively.

Global capabilities are instead checked against a portion of the available infrastructure and also need
to be aggregated. They can be declared through facts like

capType(CapabilityType, Resource, ComparisonOperator, AggregationOperator).

3Node capabilities can be obtained by tools targeting Cloud-Edge infrastructure monitoring, e.g. [6].
4For the sake of conciseness, comparison operators are not listed here. The interested reader can find them in the online

project repository.
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that also specify a suitable AggregationOperator to compute them over a selected portion of the whole
infrastructure. Again, FOGCUTTER features the following default capabilities

capType(hardware, node, smaller, sum).
capType(availability, node, smaller, product).
capType(sustainability, node, smaller, product).

that correspond to the total amount of hardware of an infrastructure portion, and to the overall availabil-
ity5 and sustainability6 featured by such a portion. The model above is designed to be easily extensible
by taking into account further node/link capabilities of arbitrary (local and global) types.

FOGCUTTER receives requests for Cloud-Edge portions through facts like

request(RequestId, SourceNode, MaxNodes, Requirements).

where RequestId is a unique identifier for the request, SourceNode is the identifier of the user node from
which the request is issued, MaxNodes is the maximum number of nodes the user wants in her portion, and
requirements is a list of pairs (CapabilityType, R) that specifies which global/local capability is needed
and the target amount or threshold R that is requested by the user. For instance, the fact

request(req42, ap3, 3, [(hardware,20),
(latency,250),(bandwidth,10),
(security,[antimalware, encryptedStorage]), (location,[eu]),
(availability, 0.85), (sustainability, 0.3)]).

requires an infrastructure portion of at most 3 nodes in addition to ap3, with at least 20 hardware units,
reachable through end-to-end link featuring at most 250 ms latency and at least 10 Mbps bandwidth,
featuring antimalware and encrypted storage capabilities, located in the EU, and with at least 85% avail-
ability and 30% sustainability.

3.2 Resource Selection: a Logic Programming Strategy

Predicate portion/3 inputs a RequestId, determines a Portion of the available Cloud-Edge continuum
that satisfies all the request’s requirements and associates the Portion with an estimate of the Profit that
the infrastructure provider will get from leasing such Portion.
portion(RequestId, (Portion, Profit)) :-

request(RequestId, N, MaxNodes, Reqs),
splitRequirements(Reqs, NodeReqs, LinkReqs, GlobalReqs),
portion(N, MaxNodes, NodeReqs, LinkReqs, GlobalReqs, [N], Portion),
portionProfit(Portion, Profit).

Predicate portion/3 first fetches the data (N, MaxNodes, Reqs) of the input RequestId. Then predicate
splitRequirements/4 simply partitions the list of request’s requirements Reqs into three lists, depending
on whether they refer to local capabilities of nodes (NodeReqs) or of links (LinkReqs), or on whether they
are global requirements on the overall infrastructure portion (GlobalReqs).
Predicate portion/7 determines a Portion of the infrastructure that contains node N and at most other
MaxNodes nodes and satisfies all the NodeReqs, LinkReqs and GlobalReqs requirements.

5We define availability as the probability that a system is operational at a given time. It is obtained over a portion of an
infrastructure by multiplying the availability of the single nodes in the portion.

6We define sustainability as the probability that a system is fully powered by renewable energy. It is obtained over a portion
of an infrastructure by multiplying the sustainability of the single nodes in the portion.



294 Leasing the Cloud-Edge Continuum, à la Carte

portion(N, MaxNodes, NodeReqs, LinkReqs, GlobalReqs, I, NewI) :-
MaxNodes > 0,
\+ satisfiesGlobalReqs(GlobalReqs, I),
node(M), \+ member(M,[N|I]),
satisfiesNodeReqs(M,NodeReqs),
satisfiesLinkReqs(M,N,LinkReqs),
NewMaxNodes is MaxNodes-1,
portion(N, NewMaxNodes, NodeReqs, LinkReqs, GlobalReqs, [M|I], NewI).

portion(_, _, _, _, GlobalReqs, I, I) :-
satisfiesGlobalReqs(GlobalReqs, I).

Until all the global requirements GlobalReqs are satisfied, predicate portion/7 recursively adds to the
infrastructure portion a new node M that satisfies all the NodeReqs and LinkReqs local requirements.

Predicate satisfiesGlobalReqs/2 verifies whether the (non empty) infrastructure portion determined so
far satisfies the list GlobalReqs of global requirements.

satisfiesGlobalReqs(Rs, [I|Is]) :- satisfies(Rs, [I|Is]).

satisfies([], _).
satisfies([(P,V,Op,Ag)|Rs], I) :-

findall(Vm, (member(M,I),nodeCap(M,P,Vm)), Vs),
aggregatedListValue(Vs,Ag,AV), compareValue(V,Op,AV),
satisfies(Rs, I).

aggregatedListValue([V|Vs],Ag,AV):-
aggregatedListValue(Vs,Ag,AV2), aggregatedValue(V,Ag,AV2,AV).

Predicate satisfies/2 verifies that each global requirement (P,V,Op,Ag) is satisfied by the infrastructure
portion I determined so far. After fetching into a list Vs all the values of property P in the nodes M in I,
satisfies/2 aggregates all the values in Vs according to the indicated aggregator operator Ag and com-
pares the obtained aggregated value AV with the value P of the considered global requirement according
to the indicated comparison operator Op. For instance, the aggregator operators sum and product and the
comparison operators smaller and greater are defined as follows:

aggregatedListValue([],sum,0).
aggregatedListValue([],product,1).

aggregatedValue(X,sum,Y,Z) :- Z is X+Y.
aggregatedValue(X,product,Y,Z) :- Z is X*Y.

compareValue(X,smaller,Y) :- X < Y.
compareValue(X,greater,Y) :- X > Y.

Predicates satisfiesNodeReqs/2 and satisfiesLinkReqs/2 verify that each local node and link require-
ment is satisfied if the new node M is added to the infrastructure portion I determined so far.

satisfiesNodeReqs(M,[(P,V,Op)|Rs]) :-
nodeCap(M,P,Vm), compareValue(Vm,Op,V),
satisfiesNodeReqs(M,Rs).

satisfiesNodeReqs(_,[]).
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satisfiesLinkReqs(M,N,[(P,V,Op)|Rs]) :-
linkCap(M,N,P,Vmn), compareValue(Vmn,Op,V),
satisfiesLinkReqs(M,N,Rs).

satisfiesLinkReqs(_,_,[]).

Predicate portionProfit/2 associates an infrastructure Portion with an estimate of the Profit that the
infrastructure provider will get from leasing such Portion. The estimate of the overall Profit can be
simply obtained by summing the profit associated with each node in the determined Portion.
portionProfit([N|Ns], Profit) :-

profit(N, N_Profit),
portionProfit(Ns, Ns_Profit),
Profit is N_Profit + Ns_Profit.

portionProfit([], 0).

Finally, predicate fogCutter/2 inputs a RequestId and determines the Portion of the available Cloud-
Edge continuum that satisfies all the request’s requirements and that corresponds to the highest estimated
Profit for the infrastructure provider.
fogCutter(RequestId, (Portion,Profit)) :-

setof(X, portion(RequestId, X), CandidatePortions),
bestPortion(CandidatePortions, (Portion,Profit)).

bestPortion(CandidatePortions, (Portion,Profit)) :-
member((Portion,Profit), CandidatePortions),
\+ (member((_,HigherProfit), CandidatePortions), Profit < HigherProfit).

4 FOGCUTTER in Action

In this section, we exploit the FOGCUTTER prototype to answer questions Q1, Q2 and Q3 of Sect. 2.

We start by retaking question Q1:

Q1. Is there a portion of the available Cloud-Edge infrastructure that features at least 20
hardware units, and is made of at most four nodes with end-to-end connections featuring at
least 10 Mbps bandwidth and at most 250 ms latency?

The request of the application operator is denoted by a fact like:

request(req42, ap3, 3, [(hardware,20), (latency,250), (bandwidth,10)]).

The infrastructure provider can suitably query predicate fogCutter/2, obtaining the following as a result:

?- fogCutter(req42,P).
P = ([ap3, ap8, c1, c2], 20.0) ;
false.

Therefore, there exist only one best candidate portion to lease to the application operator, associated
to a profit of 20 e/h, and spanning node ap3, ap8, c1 and c2. Note that there exist other 412 alternative
solutions7 that satisfy all the requirements of the application operator but feature a lower profit.

7We determined the number of alternative solutions by querying predicate setof(X,portion(RequestId,
X),CandidatePortions) and counting the found results.
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We now consider question Q2:

Q2. Is there a portion of the available Cloud-Edge infrastructure that satisfies all require-
ments at Q1, is fully located in the EU, and features antimalware and encrypted storage on
all nodes?

In this case, the request of the application operator is extended with security and location require-
ments, and can be expressed through the fact:

request(req42, ap3, 3, [(hardware,20), (latency,250), (bandwidth,10),
(security,[antimalware, encryptedStorage]),
(location,[eu])]).

Querying again predicate fogCutter/2, the infrastructure provider obtains:

?- fogCutter(req42,P).
P = ([ap3, ap4, c2, n2], 16.75) ;
P = ([ap3, ap7, c2, n2], 16.75) ;
false.

Therefore, this request can be satisfied by two different candidate portions of the available infras-
tructure that bring a maximum profit of 16.75 e/h, and span nodes ap3, ap4, c2 and n2, or ap3, ap7, c2
and n2, respectively. Also in this case, other 35 alternative portions exist that do not maximise the profit
of the infrastructure provider.

Last, we focus on answering question Q3:

Q3. Is there a portion of the available Cloud-Edge infrastructure that satisfies all require-
ments at Q1 and Q2 , and features 85% availability and 30% sustainability score?

Here, the request of the application operator becomes:

request(req42, ap3, 3, [(hardware,20), (latency,250),(bandwidth,10),
(security,[antimalware, encryptedStorage]),
(location,[eu]),
(availability, 0.85), (sustainability, 0.3)]).

The query to fogCutter/2 from the infrastructure provider returns:

P = ([ap3, ap4, c2], 11.75).

Hence, the request can be satisfied by providing the application operator with the portion made from
nodes ap3, ap4 and c2, with an associated profit of 11.75 e/h. For this last question, such a portion also
represents the only eligible solution to the considered resource selection problem instance.

Table 2 recapitulates on the performance of the experiments in our motivating scenario, showing the
number of Prolog inferences and the CPU time needed8 to answer the queries. It also lists the number of
optimal solutions (i.e. those that maximise profit and satisfy all requirements set by the application op-
erator) and the number of eligible solutions (i.e. those that satisfy all requirements set by the application
operator). It is worth noting that FOGCUTTER determines an optimal solution almost instantaneously for
all three questions.

8Prolog inferences and CPU time are obtained by relying on SWI-Prolog’s time/1 predicate. Experiments are obtained by
running FOGCUTTER in SWI-Prolog v. 8.4.3 ([19]) on a machine equipped with Apple Silicon M1 and 16GB of RAM.



S. Forti et al. 297

Question Prolog Inferences CPU Time Optimal Solution(s) Eligible Solution(s)
Q1 1,712,813 0.186 s 1 413
Q2 208,776 0.033 s 2 37
Q3 343,393 0.048 s 1 1

Table 2: Performance of FOGCUTTER over the motivating scenario.

More in general, given the maximum number MaxNodes of nodes requested for a portion, the worst-
case time complexity for running FOGCUTTER is O(NMaxNodes). As mentioned before, determining valid
placements of S services onto N nodes also features an exp-time complexity of O(NS). Setting, however,
MaxNodes < S permits to quickly identify a portion of the infrastructure where to deploy applications
and can dramatically reduce decision-making times related to placements. Indeed, as shown for instance
in [5] and [7], considering smaller problem instances can reduce execution times from minutes to mil-
liseconds, with speed-ups from 2× up to a 1000× in realistic use cases. Also, note that portions of
the Cloud-Edge continuum can be pre-computed by the infrastructure provider over pre-defined request
templates, and be immediately ready to be returned to application operators, when needed.

5 Related Work

Resource allocation is an important challenge in the Cloud-edge continuum. Lahmar and Boukadi [9]
conducted a comprehensive survey of resource allocation challenges that should be considered while
deploying an application over a Cloud-Edge continuum. A similar survey by Shakarami et al. [16]
classified existing resource allocation algorithms into five categories i.e., heuristic, framework, model,
machine learning and game theory based, discussed their pros and cons and common performance met-
rics that are relevant for the application operators. Faticanti et al. [3] tackle a different problem which is
to maximise the profit of the infrastructure provider by maximising the number of Fog applications in a
batch that can be deployed over the Cloud-Edge continuum. To accomplish that their algorithm partition
the application’s components into two groups i.e., Cloud-only and Fog-only. Using throughput as QoS
metrics, their algorithm tried to recommend appropriate regions for these components.

The role of the broker in the Cloud is also well investigated. Mei et al. [11] discuss the role and
necessity of brokers in a Cloud-Edge continuum. According to them, the presence of a Cloud broker
can lead to better pricing for the end user and at the same time, high utilisation of providers’ resources.
Cloud brokers can also earn profit in these transactions. Wang et al. [18] discussed the idea that a Cloud
broker can maximise resource utilisation by differentiating between latency sensitive tasks (such as Fog
applications) versus non-latency sensitive applications. They highlighted different strategies to deal with
fairly pricing the two categories of applications for the broker that could make the offer attractive for a
wide variety of users and providers.

The concept of IoT brokers was described in [12, 14]. Sciancalepore et al. [14] discussed a strategy
that is aimed towards IoT brokers that can service different customers using IoT slices. In their approach,
resources can be increased for a given slice as per demand in real-time. A subscription based model for
IoT providers on the Cloud-Edge continuum was described by Niyato et al. [12]. In their scheme, IoT
owners and IoT data users have to subscribe to a service that enables data exchange data based on an
agreed pricing model. They also described different strategies for IoT owners to bundle their offerings
and make them attractive to the Cloud-Edge continuum users.

Slicing in a network is also thoroughly investigated although it is a slightly different problem for a
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different setting (i.e., telecom) [20]. IoT slicing is another related topic that deals with creating slices
(partitions) of IoT resources in a Cloud-Edge continuum to satisfy different types of user requirements.
Fernandez et al. [4] proposed a concept of an IoT orchestration service that could satisfy a customer re-
quest, especially on a resource constraint platform using IoT slices. Similarly, Hwang et al. [8] described
a central service to manage incoming requests (tasks), partition the infrastructure into different slices of
the IoT sensors and distribute the tasks to different IoT slices to answer the query. Experimental results
conducted by Luthra et al. [10] show that different operator placement algorithms are needed to suit the
dynamic environment and conflicting QoS demands.

Our approach is different from the existing approaches as we try to solve a resource selection problem
marginally addressed before. Our approach allows a declarative and extensible definition of parameters
which can be adopted as per application operator and infrastructure operator requirements.

6 Concluding Remarks

The problem of selecting an infrastructure portion matching the requirements set by an application op-
erator is challenging in the Cloud-Edge continuum due to the large number of assets with heterogeneous
capabilities. The problem is important both for application operators, who need to suitably deploy their
applications, and for infrastructure providers, who wish to maximize their profit in leasing infrastructure
resources to application operators.

In this article, we have presented a declarative resource selection strategy for the Cloud-Edge con-
tinuum, implemented in the open source prototype FOGCUTTER. Using a motivating example, we have
shown how FOGCUTTER can be successfully exploited to reply to different requests of customers (viz.
application operators). The main advantages of the declarative solution implemented by FOGCUTTER are
its readability and ease of extensibility to include new types of requirements. Indeed, it is straightforward
to include further local (e.g. availability of IoT devices or specialised hardware, link jitter) and global
requirements (e.g. QoS-assurance, nodes’ trust) by simply programming new capType predicates and the
associated comparison and aggregation operators. Directions for future work include:

• returning partial solutions (when not all requirements can be met), considering partial allocations
of Cloud-Edge resources, and allowing customers to declare hard and soft constraints in requests,

• performing a thorough scalability assessment at varying sizes of the input Cloud-Edge infras-
tructure and number of considered requirements for the portion to be determined, also extending
FOGCUTTER with heuristic strategies, and

• assessing the tool with real data (possibly against alternative solutions, e.g. constraint-based)
in simulated, laboratory or testbed settings, also in pipeline with placement strategies to better
estimate the obtainable speed-ups.
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Semi-autonomous driving, as it is already available today and will eventually become even more
accessible, implies the need for driver and automation system to reliably work together in order to
ensure safe driving. A particular challenge in this endeavour are situations in which the vehicle’s au-
tomation is no longer able to drive and is thus requesting the human to take over. In these situations
the driver has to quickly build awareness for the traffic situation to be able to take over control and
safely drive the car. Within this context we present a software and hardware framework to asses how
aware the driver is about the situation and to provide human-centred assistance to help in building
situation awareness. The framework is developed as a modular system within the Robot Operating
System (ROS) with modules for sensing the environment and the driver state, modelling the driver’s
situation awareness, and for guiding the driver’s attention using specialized Human Machine Inter-
faces (HMIs).

A particular focus of this paper is on an Answer Set Programming (ASP) based approach for
modelling and reasoning about the driver’s interpretation and projection of the scene. This is based
on scene data, as well as eye-tracking data reflecting the scene elements observed by the driver. We
present the overall application and discuss the role of semantic reasoning and modelling cognitive
functions based on logic programming in such applications. Furthermore we present the ASP ap-
proach for interpretation and projection of the driver’s situation awareness and its integration within
the overall system in the context of a real-world use-case in simulated as well as in real driving.

1 Introduction

With the rise of automated and semi-automated driving, a range of new challenges have moved into
sight of developers. In particular semi-autonomous vehicles pose important questions when it comes
to the interplay between driver and vehicle, since for these systems it is critical that the cooperation of
the human and the automation system is seamless. To ensure this, the automation system needs to be
designed with the needs of the human in mind and ideally have the functionality to asses the mental
state of the driver and the driver’s interaction with the system. Such functionality is especially important
in situations when the driver and the automation have to function together, in order to safely operate
the vehicle. A particular challenge in this context, and of importance with respect to this paper, is the
question of how to enable the driver to quickly take over control from the automation system in situations,
in which the automation cannot ensure safe driving, e.g., in unforeseen situations, or in situations outside
of the Operational Design Domain (ODD) of the automation.

http://dx.doi.org/10.4204/EPTCS.385.29
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The SituWare project presented in this application paper aims at developing a system to provide the driver
with assistance in such situations, by modelling the driver’s awareness of the situation and guide their
attention to critical elements of the situation possibly missed by the driver. The focus of this paper is on
highlighting the application of declarative logic programming methods as a means to model the driver’s
mental processing of the situation and demonstrate its integration within a large-scale modular assistive
system. The work presented in this paper is driven by considerations in the fields of human-centred
design, cognition, and formal semantic reasoning.

Human-centred design for (semi-)autonomous vehicles. With the above challenges in mind human
factors play a central role in the development of novel mobility systems and autonomous vehicles [12]
and development of novel systems is often accompanied and driven by empirical research investigating
how humans interact with these systems, either for external communication with vulnerable road users,
e.g. [18, 26], and for internal communication e.g. in handover scenarios [7, 8, 16] or for acceptance and
user experience [20].

Cognitive abilities for driving assistance systems. Research in the area of cognitive systems and
cognitive modelling is concerned with developing methods and tools that reflect cognitive abilities. Most
directly connected to the topic of this paper and the development of SituSYS is the research on Situation
Awareness and its modelling in computational systems [3]. In the context of driving assistance systems
research on Situation Awareness has mostly been concerned with modelling e.g. by [11, 17, 19].

Semantic reasoning about dynamic situations. A key factor in developing such capabilities is the
ability to abstractly represent the driving environment and the traffic dynamics within it, to interpret and
reason about them on a semantic level. In this context logic programming and Answer Set Programming
(ASP) [4, 5, 6] in particular has evolved as a powerful tool for semantic reasoning about dynamic scenes.
For instance, ASP has been used in the area of stream reasoning [2] as a general tool for reasoning about
large scale dynamic data, e.g, in the driving domain [13], for decision-making [9], or for recognition
and reasoning about events [24]. Furthermore, [23] has developed a general method for visual abduction
based on ASP, and applied it in the area of online semantic sense-making with commonsense knowledge
in the context of safety-critical situations in driving [21, 22].

Within this paper we build on these works to develop an ASP-based approach for assessing the
driver’s situation awareness by characterising driving dynamics for modelling and reasoning about the
driver’s interpretation and projection of the scene dynamics.

2 SituWare: An Online System for Assessing Situational Awareness

The general focus of the SituWare project is f build and evaluate the technological basis for developing
a usable software and hardware system (SituSYS), targeted at the reliable detection, interpretation, and
consideration of the driver’s situational awareness. In this section we discuss the relevance of situation
awareness in (semi-)autonomous driving and provide an overview of the full system and its components.

2.1 Situation Awareness in (Semi-)Autonomous Driving

Today, in the automotive domain and within the framework of the SAE J3016 automation level system,
it is generally assumed that the driver observes the environment and is thus immediately available as
a fallback level (SAE level 2 - partial automation), can react to a request to intervene (SAE level 3 -
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conditional automation) or can take over the vehicle control outside the operational area of the automation
(SAE level 4 - high automation). Previous studies on handover scenarios, especially in the context of
conditional automation, show that a considerable amount of time of at least 7 to 10 seconds must be
reserved for the driver to safely take over the driving task. This time is needed by the driver(s) to gain an
accurate situation awareness so that a safe handover is accomplished. Current approaches for handover
scenarios from the system to the driver consider the current driver’s state only peripherally and very
roughly. However, the potential of such recognition and interpretation is very large. Adaptive interaction
sequences can be used to optimally return the driver to the driving task. In addition, a more detailed
picture of the driver’s state also allows for the adaptation of the driving behavior of the automation
system, so that larger time reserves can be kept available for a highly distracted driver, while time reserves
can be reduced for an attentive driver without reducing safety. One of the most prominent models for
Situation Awareness is the one developed by Mica Endsley [3]. The idea behind this model is that
Situation Awareness is built in three Stages, namely the Perception, Interpretation, and Projection stage,
also known as Level 1 to Level 3 Situation Awareness (L1 - L3):

L1. At Level 1, the data and elements of the environment that build the current situation are perceived.
The main factor that influences Level 1 Situation Awareness is the focus of attention that is apparent in
the situation, which in turn is guided by the goals and objectives of the user, as well as their expectations.
Previous Experience and Training can influence the attention process and thus the ability of the user to
perceive the environment correctly. Drivers need to perceive the cars around their own car, signs along
the road, the road curvature and condition, and lots of other things.

L2. Level 2 Situation Awareness builds upon Level 1 through interpretation and comprehension of the
perceived elements. At Level 2, a holistic picture of the environment including the significance of objects
and events is formed. This interpretation is influenced by the goals of the user, previous experience as
well as the workload and stress. In the automotive example, drivers need to understand that proximity of
other cars might indicate a risk, that there are speed limits to keep, or the importance of the other signs
on the road.

L3. At Level 3, the user builds a projection of the current situation into the future, based on the com-
prehension built at Level 2. Level 3 Situation Awareness is mainly influenced by the previous experience
and training of the user, since this builds his knowledge on how the entities in the environment may act in
the near future. For drivers, this could mean to predict the future speed and positions of other cars as well
as possible actions the other drivers might take (like changing lanes, or breaking) as well as upcoming
speed limits and the risk associated with the road conditions ahead.

2.2 A Modular System implemented in ROS

Objective of the SituWare project is to build SituSYS, a system that predicts the situation awareness of
a driver, calculates possible deviations from an optimal situation awareness and finally uses specialized
interaction techniques to improve the driver’s situation awareness. Figure 1 shows a conceptual overview
of the architecture of SituSYS: SituSYS consists of three parts, the sensor layer SituSENSORS which mea-
sures the driver and environment, the model layer SituMODEL which calculates the situation awareness,
and SituHMI for the interaction. Starting at the sensor-layer SituSENSORS, multiple Vehicle Sensors are
used to sense the environment and vehicle state, i.e. surrounding objects, signs, current vehicle speed
and automation state. In addition to the vehicle sensors, an eye-tracker is used to detect the gaze of the
driver. The calculated gaze vector is then used in the Perception-Model within SituMODEL to predict
which elements in the environment and in the car has been looked at, i.e. other cars, street signs, or
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Figure 1: SituSYS: Conceptual Overview

any cockpit elements. Based on this information, the objects that have been perceived are then written
into the Memory-Model. The Memory-Model implements retrieval and forgetting processes, and can be
accessed by the other SituMODEL components. The Interpretation- and Projection-Models are for the
calculation of the situation interpretation and the projection of the future state (A detailed description
can be found in Section 3.2). The outputs of the Perception-, Interpretation-, and Projection-Models are
then used by the Model Comparison to calculate the overall situation awareness (Level 1, Level 2 and
Level 3 in Endsley’s Model), by comparing the content in the memory, that has been produced by the
components of the SituMODEL, with the data gathered by the vehicle sensors. Although the vehicle sen-
sors have an error probability associated with them, we assume in this case that this is the ground truth
for SituSYS. The Model Comparison then weights the differences between the memory and the ground
truth and calculates a list of diverging elements sorted by priority. This list is then used by SituHMI to
direct the focus of attention to the most important element. In SituWare we tested different interaction
methods for that purpose [1].

To organize and coordinate the implementation of the different components of SituSYS, the ROS
framework has been used. Each component of SituSYS has been implemented as separate node, allowing
a modularization of the system. ROS messages describing the data exchanged between the components
are used to provide a standardised interface between the different modules. The use of the ROS frame-
work also facilitates the use of different sources for the input, i.e. we connected SituSYS to two different
driving simulators as well as to a real car, by implementing a dedicated node that collects the data from
the simulator or car and then sends them in the defined messages to SituSYS, and receives the messages
from SituHMI to implement the selected interaction method in the vehicle/simulator.

2.3 Technical Setup and Data

The SituWare project integrates SituSYS within two different simulators and one real semi-autonomous
vehicle and provides the hardware basis for sensing the ego vehicle and the environment together with
mobile tracking of the driver’s gaze. Figure 2 shows the simulated scenario within one of the two simu-
lators used within the SituWare project.
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a) Simulated scene of construction site after takeover b) Driving Simulator

Figure 2: Simulation Environment: The simulated scene and the simulator setup.

I Scene Data The vehicle sensors implemented in the specific platform are used to sense the state
of the ego vehicle and to sense the environment including the vehicles within it. This information is
published as ROS messages and used by the modules of SituSYS. The messages contain data on the ego
vehicle, the automation system, and other vehicles in the scene as listed in table 1.

I Eye-Tracking Data The driver’s perception is sensed using mobile eye-tracking that provides
gaze coordinates and fixations within an ego view of the scene, as captured by the camera of the eye
tracker. These coordinates are translated to the 3-dimensional space of the scene, which allows mapping
of gaze data to scene elements. Within SituSYS the gaze data is provided as a 3D vector. The modular
design of the system abstracts from the actual eye-tracking system, however, in the case study presented
in this paper the PupilLabs mobile eye-tracker is used, which is equipped with a eye camera capturing
the gaze with up to 120Hz and providing an accuracy of 0.60◦.

3 Assessing the Driver’s Situation Awareness

Within SituSYS situation awareness is modelled by the perception module and the interpretation & pro-
jection module. The perception module implements 1st level Situation Awareness using scene data from
the SituSENSORS together with eye-tracking data to calculate fixation probabilities for each scene object.

2 Perception

Level 1 Situation Awareness – perception of the scene1– is estimated based on the gaze data of the driver
which is recorded by SituSENSORS. From this information a probability is computed for each scene
object giving the likelihood that the driver has fixated the object together with a fixation time providing
the duration of the fixation on the object. These measures are then published within the ROS message as
an input for the interpretation & projection module, as well as the model comparison.

2nd and 3rd level Situation Awareness are implemented together in the interpretation & projection mod-
ule. These consist of:

• Level 2 Situation Awareness – interpretation of the scene – models the awareness of the driver
regarding scene elements in the current situation;

1Technical details on the used method for calculating the probabilities are out of the scope of this paper. For the examples
of this paper we consider the perception module to be a black-box system providing the information if an object was perceived
by the driver.
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Attribute Type Description
Ego Vehicle

ID string The ID of the ego vehicle.
type string The type of the ego vehicle.
position {float, float, float} The position of the ego vehicle as 3D vector.
orientation {float, float, float} The orientation of the ego vehicle as 3D vector.
velocities {float, float, float} The velocity of the ego vehicle as 3D vector.
indicator_left bool Truth value whether the le f t indicator is active.
indicator_right bool Truth value whether the right indicator is active.
acceleration float The acceleration of the ego vehicle.
current_speed_limit int The current speed limit holding for the ego vehicle.
current_lane float The current lane the ego vehicle is on.

Ego Automation
takeover_request bool Truth value whether the takeover request is active.
time_until_odd_boundary float Time until the driver has to take over.
criticality_level int Criticality level of the takeover request.
takeover_reason string Reason for the takeover request.
ego_automation_state bool Truth value whether the automation is active.

Other Vehicles
ID string The ID of the traffic vehicle.
type string The type of the traffic vehicle.
position {float, float, float} The position of the traffic vehicle as 3D vector.
orientation {float, float, float} The orientation of the traffic vehicle as 3D vector.
velocities {float, float, float} The velocity of the traffic vehicle as 3D vector.
acceleration {float, float, float} The acceleration of the traffic vehicle as 3D vector.
dimension {float, float, float} The dimension of the traffic vehicle as 3D vector.
lane int The lane the traffic vehicle is on.
fixation_probability float The probability that the driver fixated the vehicle.
fixation_time int The duration of the driver’s fixation on the vehicle.

Table 1: Scene Data: Relevant data-points from SituSYS.

• Level 3 Situation Awareness – projection of scene dynamics – models the expectations of the driver
how the scene will evolve, i.e., the scene dynamics with respect to the task of the driver.

The implementation of these levels is based on semantic characterisations of the dynamics of the driving
domain, which are declaratively defined within answer set programming (ASP) [4, 5, 6]. In particular,
the interpretation & projection module of SituSYS consist of an online Python process maintaining a
representation of the scene and uses an integrated ASP solver to generate interpretation and projection
models based on the scene data from the SituSENSORS and the perception data from the perception
module. In the following we provide the formal characterisation of the driving domain, and describe the
interpretation and projection process in detail.

3.1 The Driving Domain

The domain is characterised by Σ<O, E , R, T , Φ, Θ>, which is used to formalise the driver’s repre-
sentation of the scene dynamics. In particular, the driver’s belief state is represented on the one hand by
the static and dynamic properties of the scene and the elements within it given by the domain objects,
the basic entities representing these objects, and the spatial and temporal aspects of the scene < O, E ,
R, T >. On the other hand it is represented by the high-level event dynamics of perceived events and
possible future events given by < Φ, Θ >.
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Events Description
change_lane(Entity,Lane1,Lane2,Location) An Entity changing the lane from Lane1 to Lane2 to

a specific Location.
audio_signal_start The audio signal indicating that the driver has to

take over started.
audio_signal_end The audio signal indicating that the driver has to

take over ended.
takeover_manual The driver takes over control of the vehicle.
takeover_automation The automation takes over control of the vehicle.

Fluents Description
curr_task(Task) The current task, the driver has to perform.
automation If the driving automation of the vehicle is on or not.
audio_signal If the audio signal indicating that the driver has to take over control of the

vehicle is on or not.
on_lane(Entity, Lane) The lane a scene entity is driving on.

Table 2: Event Dynamics: Exemplary events and fluents applicable in take-over situations of the use-
case described in section 3.2.

I Domain Objects (O) and Spatial Entities (E). The scene consists of different scene elements,
in particular we are considering the ego vehicle and other vehicles in the scene, as well as the lanes on
the road and gaps between vehicles.

Vehicles. We distinguish between the ego vehicle and other vehicles in the scene, constituting the traffic.
We use the following objects for representing vehicles:

• The ego vehicle: Oego = ego;

• other vehicles in the traffic: Otr f = {tr f1, ..., tr fn}.

These elements are geometrically represented as spatial entities E = {ε1, ...,εn} within the 3-dimensional
scene space. Additionally they are assigned dynamic and static attributes as obtained from the egos
driving system (for the attributes of the ego vehicle) and the ego vehicle sensors (for estimated attributes
of other vehicles) as detailed in section 2.3.

Lanes. These are based on the OpenDRIVE standard [25] , in which lanes are numbered with positive
and negative numbers and 0 represents the middle of the road. Lanes are adjacent when the lane ids are
consecutive.

• Lanes: Olanes = {lane1, ..., lanen}∪{lane−1, ..., lane−n}.

We define the adjacency of lanes lanei, lane j ∈Olanes on the road using the predicate ad jacent(lanei, lane j).

Gaps. Of particular interest for the task at hand are gaps between vehicles in the scene. Therefore we
introduce objects representing these gaps.

• Gaps: Ogaps = {gaptr fi,tr f j , ...,gaptr fp,tr fq}.

Gaps are declaratively defined based on the vehicles in the scene using the predicate gap(tr fi, tr f j),
where tr fi, tr f j ∈Otr f . Additionally we define the predicate gap_size(gaptr fi,tr f j ,size), where gaptr fi,tr f j ∈
Ogaps and size is a number representing the distance between tr fi and tr f j.
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I Spatial Con�guration (R). The spatial arrangement of the entities in the scene is represented
from an egocentric perspective in the context of the road, i.e., representing whether vehicles are ahead
or behind the ego vehicle, on the same lane, or on the lane to the left or right of the ego vehicle, and
how many other vehicles are between a vehicle and the ego vehicle. To this end we define the following
relations inR holding between the ego vehicle and the other scene elements.

• Relative longitudinal direction: Rrel_long = {ahead,behind,overlapping}, representing the direc-
tion of an object on the longitudinal axis based on the road layout.

• Relative lane: Rrel_lane = {same, le f t,right}, representing the lane an object is on, relative to the
lane the ego vehicle is on.

• Relative ordering: Rrel_order = n+1, where n is the number of other vehicles between the vehicle
and the ego vehicle, representing the position of an object with respect to the ego vehicle and the
other vehicles on the road.

I Time (T ). We represent time using time points T = {t1, ..., tn}. These are used to denote that
dynamic object properties and spatial relations between basic entities representing scene objects hold at
a certain time, as well as to describe temporal aspects of event dynamics.

I Driving Event Dynamics (<Φ, Θ>). We use the event calculus notation to define the event dy-
namics in the driving domain. Towards this we define fluents Φ= {φ1, ...,φn} and events Θ= {θ1, ...,θn}
to characterise dynamic properties of the scene objects and high-level events (e.g., Table 2). We use the
axioms occurs_at(θ , t) denoting that an event occurred at time t and holds_at(φ ,v, t) denoting that v
holds for a fluent φ at time t.

3.2 Reasoning about Situation Awareness Level 2 & 3: Interpretation and Projection

The interpretation and projection module is based on declarative characterisations of driving dynamics
(as defined in section 3.1 ) implemented in ASP, using Event Calculus [10] for reasoning about events
in the scene. In particular, we are building on the Event Calculus (EC) as formalised in [14, 15]. The
module is implemented as a hybrid system, in which an online Python process maintains a representation
of the mental belief state of the driver and uses an integrated ASP solver for generating the interpretation
and the projection model. For this, the module uses the scene data S containing the ego vehicle data and
the environmental data including the gaze data of the driver, together with the characterisations of the
driving domain in Σ.

Application: The Case of Take-Over Situations in a Construction Environment

As a use case we have applied SituSYS in the context of a case study conducted in the driving simulator.
The case study implemented a situation in which a driver had to take over the control of a highly auto-
mated vehicle at a section of a highway, where the current lane ended because of a construction site and
the vehicle had to change lanes. The driver got notified about the upcoming take-over and had a certain
time window to get familiar with the situation and take over control to manually perform the lane change.

As a test case the overall system is applied in the context of the above case study, in which the driver has
to take over control from the automation to safely drive the vehicle. Fig. 3 shows an exemplary situation
in the context of the case study and depicts the interpretation and the projection step.
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Figure 3: Application Example: Interpretation & Projection

Computational Steps for Situation Awareness Level 2 & 3. The overall process for interpretation
and projection consists of the following steps (S1-S3, also refer to Alg. 1) performed at each time point:

S1. Update Scene Elements and Predict Current State. Update the driver’s mental belief
state (MBS) with the scene elements for which the fixation probability is above the fixation threshold,
and predict the current position of all scene elements that are part of the driver’s mental belief state, using
a Kalman Filter base motion model, assuming constant velocity.

S2. Generate the Problem Speci�cation. Generate an ASP problem statement, containing the
scene elements that are part of the driver’s mental belief state, and the characterisations of the driving
domain in Σ.

S3. Integrated ASP Solving. Generate the interpretation model (IM) and the projection model
(PM) by solving the generated problem specification using the Clingo solver integrated within the
Python process.

Within this process the interpretation and the projection are implemented as follows:

I Interpretation. The interpretation level of situation awareness is modelled as an extrapolated
representation of the scene, consisting of the perceived scene elements, together with the arrangement of
these elements and the events happening in the scene. When the probability that the driver has fixated
a particular object exceeds a certain threshold we register it within the scene representation and use a
Kalman Filter based motion model assuming constant velocity to maintain a representation of the object
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Algorithm 1: Interpret_and_Project(S, Σ)
Data: Scene data (S), and the characterisation of the driving domain Σ

Result: Interpretation Model (IM), Projection Model (PM)

1 MBS←∅
2 for t ∈ T do
3 for ob ject ∈MBS do
4 positionob ject ← kalman_predict(ob ject)

5 for ob ject ∈ S ∧not ob ject ∈MBS do
6 if f ixation_probabilityob ject > f ixation_threshold then
7 MBS←MBS ∪ob ject

8 for ob ject ∈ S ∧ob ject ∈MBS do
9 if f ixation_probabilityob ject > f ixation_threshold then
10 positionob ject ← kalman_update(ob ject)

11 < IM,PM>← ASP_solve(MBS,Σ)

12 return < IM,PM>

while the driver is not fixating on it. When the driver is fixating the object again the estimated position is
updated with the sensed one. In this way we estimate the driver’s mental belief state about the movement
of scene elements.

This estimated mental representation of the scene is then used together with the characterisations of the
driving domain in Σ to generate the interpretation model (IM). To this end we declaratively model
scene artefacts, spatial configuration, and events.

Scene Artefacts. These are elements of the scene that are indirectly obtained from the sensed objects.
For instance, gaps between vehicles the driver is aware of, are declaratively defined using the following
rule, stating that there is a gap between two entities if they are on the same lane and there is no other
entity between these two entities.

Spatial Configuration. The relational spatial structure holding between the scene elements the driver
is aware of, is represented using the spatial relations defined inR.

Events. We use the event calculus to detect driving events based on the driver’s mental belief state
of the scene. Towards this we define fluents representing dynamic scene properties, e.g, the fluent
on_lane(entity(ID), lane(Lane)) denotes that an entity is on a particular lane, or the fluent curr_task(Task)
denotes the current task of the driver.

Additionally, we define events changing these scene properties. For instance the following definition of
the event takeover_manual states that the event occurs if the fluent automation is true and the sensed
state of the automation is false. Further, it states that the event initiates the fluent curr_task(changelane),
and terminates the fluent automation and curr_task(build_sit_aware).
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Generating the Driver’s Scene Interpretation. Solving this Answer Set Program with the scene el-
ements the driver is aware of results in a model of the scene based on the drivers subjective perception,
which constitutes the interpretation model (IM).

In particular this model includes the following elements:

This generated interpretation model (IM) serves as input to the model comparison module to compare
the drivers interpretation of the scene to the scene sensed by the SituSENSORS. Additionally these serve
as abstractions needed for the projection step.

I Projection. Within SituWare the projection step is used to explore possible future states by
generating the set of events, which are possible in the current situation, and which are consistent with
the task of the driver. For instance in our use-case the driver has to perform a lane change after taking
over control from the automation system. To model this we define the lane change event within our
domain characterisation and use the event calculus to generate possible lane change events the driver
could perform for each time point. This set of possible events constitute the projection model (PM)
and can be used to identify scene elements the driver needs to be aware of in order to safely perform the
given task.

Event Anticipation. To anticipate scene events we define the events relevant for the driving task within
the event calculus. For instance, the lane change event is defined based on the changes the event causes
to the fluents and the constraints defining in which situations the event is possible.
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event(takeover_manual).
initiates(takeover_manual, curr_task(change_lane), T) :- timepoint(T).
terminates(takeover_manual, automation, T) :- timepoint(T).
terminates(takeover_manual, curr_task(build_sit_aware), T) :- timepoint(T).

occurs_at((takeover_manual, T) :- holds_at(automation, T), ego_automation_state(false), timepoint(T).

Generating the Driver’s Scene Interpretation. Solving this Answer Set Program with the scene el-
ements the driver is aware of results in a model of the scene based on the drivers subjective perception,
which constitutes the interpretation model (IM).

In particular this model includes the following elements:

Driving events the driver is aware of.
occurs_at(audio_signal_start,119208). ... occurs_at(takeover_manual,135258).

Fluents representing the driver’s belief state about the properties of the scene.
holds_at(curr_task(lane_change),136275). ...
holds_at(on_lane(entity(trf(1)),lane(1)),136275). holds_at(on_lane(entity(trf(2)),lane(1)),136275). ...

Gaps between the vehicles the driver is aware of.
gap(entity(trf(1)),entity(trf(2))). gap(entity(trf(2)),entity(trf(3))). ...

The qualitative spatial configuration of the vehicles the driver is aware of.
rel_longitudal_direction(ahead, entity(3)). rel_lane(left, entity(3)). rel_order(0, entity(3)). ...

This generated interpretation model (IM) serves as input to the model comparison module to compare
the drivers interpretation of the scene to the scene sensed by the SituSENSORS. Additionally these serve
as abstractions needed for the projection step.

I Projection. Within SituWare the projection step is used to explore possible future states by
generating the set of events, which are possible in the current situation, and which are consistent with
the task of the driver. For instance in our use-case the driver has to perform a lane change after taking
over control from the automation system. To model this we define the lane change event within our
domain characterisation and use the event calculus to generate possible lane change events the driver
could perform for each time point. This set of possible events constitute the projection model (PM)
and can be used to identify scene elements the driver needs to be aware of in order to safely perform the
given task.

Event Anticipation. To anticipate scene events we define the events relevant for the driving task within
the event calculus. For instance, the lane change event is defined based on the changes the event causes
to the fluents and the constraints defining in which situations the event is possible.

event(change_lane(entity(ego(ID)), lane(Lane1), lane(Lane2), Location)) :-
entity(ego(ID)), entity(lane(Lane1)), entity(lane(Lane2)),
gap(entity(ID1), entity(ID2)).

initiates(change_lane(entity(ego(ID)), lane(Lane1), lane(Lane2), Location),
on_lane(entity(ego(ID)), lane(Lane2)), T) :-

entity(ego(ID)), entity(lane(Lane1)), entity(lane(Lane2)), timepoint(T).
terminates(change_lane(entity(ego(ID)), lane(Lane1), lane(Lane2), Location),

on_lane(entity(ego(ID)), lane(Lane2)), T) :-
entity(ego(ID)), entity(lane(Lane1)), entity(lane(Lane2)), timepoint(T).

poss(change_lane(entity(ego(ID)), lane(Curr_Lane), lane(Lane), Location)) :-
holds_at(on_lane(entity(ego(ID)), lane(Curr_Lane)), T), curr_time(T),
adjacent(lane(Lane), lane(Curr_Lane)), free(Location),
on_lane(gap(entity(ID1), entity(ID2)), lane(Lane)).
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In particular, a lane change is possible, when the lanes are adjacent to each other and there is a free
location on the target lane. This free location may be either a gap between two vehicles, a free space
behind or in front of a vehicle, or a completely empty lane. For the projection of the scene we generate
all events that initiate the goal of a particular task and that are possible in the current situation.
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In particular, a lane change is possible, when the lanes are adjacent to each other and there is a free
location on the target lane. This free location may be either a gap between two vehicles, a free space
behind or in front of a vehicle, or a completely empty lane. For the projection of the scene we generate
all events that initiate the goal of a particular task and that are possible in the current situation.

anticipate(Event) :-
initiates(Event, Goal, T), holds_at(curr_task(Task), T), goal(curr_task(Task), Goal), curr_time(T).

:- anticipate(Event), not poss(Event).

For the example scene this results in two possible lane changes.
anticipate(change_lane(ego(1),lane(2),lane(1),gap(entity(trf(1)),entity(trf(2))))).
anticipate(change_lane(ego(1),lane(2),lane(1),gap(entity(trf(2)),entity(trf(3))))).

4 Results and Future Directions

We presented an online and real-time capable approach for modelling drivers’ situation awareness in the
context of takeover situations as they happen in semi-autonomous driving. The approach is based on
declarative characterisations of driving dynamics and is implemented as a ROS module within Python
and Answer Set Programming (ASP) as a part of SituSYS, a modular system for measuring the drivers’
situation awareness and guiding their attention based on the results. We highlighted the application of
the presented approach as part of the SituSYS framework, which has been integrated in simulated as well
as real-world driving. And we presented a case study concerned with situation awareness in take-over
situations.

I Application Results. Application of the interpretation and projection model in the context
of the case study has shown that the model is capable of maintaining a representation of the scene and
provide the necessary information for comparing the estimated scene representation of the driver with the
sensed information, and to provide individual guidance using the specialized attention guidance devices
implemented in the SituHMI. The module works in real-time (approx. 30 Hz) with up to 20 vehicles
plus the ego vehicle in the scene. However, to fully assess the effectiveness of the system it is required
to perform a long term empirical study with the complete integrated system and measure the effect of
SituSYS on the driving performance in take-over situations. To conduct such a study is not in the scope
of this paper and subject of ongoing and future research.

I Future Directions. The presented SituSYS framework constitutes an ideal basis for applying
logic based reasoning within simulated and real-world driving tasks. In this context future developments
are aiming for more elaborate approaches for projecting scene dynamics, including the generation of pos-
sible and expected trajectories. Aside from this, an ongoing effort is the long term empirical assessment
of the performance of SituSYS with respect to the cognitive adequacy of the generated mental models
within simulated as well as real-world driving.
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PASTA is a novel framework to perform inference, both exact and approximate, in Probabilistic

Answer Set Programming under the Credal Semantics and to solve other related tasks, such as ab-

duction, decision theory, maximum a posteriori inference, and parameter learning. Moreover, it also

allows the expression of statistical statements. This paper shows the overall structure of the PASTA

tool as well as some of the main options.

1 Description

Answer Set Programming (ASP) is a logic-based language useful in describing complex combinatorial

domains. Most of ASP research focuses on deterministic programs. There are some semantics that

extend ASP and allow uncertainty on data, mainly LPMLN [15], P-log [7], and the credal semantics [9].

The PASTA tool considers the last.

A probabilistic answer set program under the credal semantics is an answer set program extended

with probabilistic facts [10], i.e., constructs of the form Π :: a. where a is an atom and Π ∈ [0,1] is its

probability value. The intuitive meaning is that a is true with probability Π. We assume that probabilistic

facts cannot appear as head of rules. The following is an example of a program:

0.4::a.
0.7::b.
qr:- a.
qr ; nqr:- b.

A selection of a truth value for every probabilistic fact defines a world w, i.e., an answer set program,

whose probability can be computed as P(w)=∏ fi selected Πi ·∏ fi not selected(1−Πi). The previously shown

program has 22 = 4 worlds. The probability of the world, for example, where both a and b are true is

0.4 ·0.7 = 0.28. Since every world is an answer set program [14], every world has zero or more answer

sets. The credal semantics requires that every world has at least one answer set. The probability of a

query (conjunction of ground atoms) P(q) is defined by a range, with a lower and upper probability, i.e.,

P(q) = [P(q),P(q)]. A world contributes to the upper probability if it has at least one answer set where

the query is true and it contributes to both the lower and upper probability if the query is true in all the

answer sets. That is, the lower probability is the sum of the probabilities of the worlds where the query is

true in all the answer sets while the upper probability is the sum of the probabilities of the worlds where

the query is true in at least one answer set. In formula

P(q) = ∑
wi|∀m∈AS(wi), m|=q

P(wi), P(q) = ∑
wi|∃m∈AS(wi), m|=q

P(wi). (1)

http://dx.doi.org/10.4204/EPTCS.385.30
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


D. Azzolini 315

Consider the query qr in the previous program. The world where both a and b are false has one empty

answer set, so it does not contribute to the probability. The world where a is false and b is true has two

answer sets, {{b qr},{b nqr}}. The query is true in only one of the two, so we have a contribution only

to the upper probability of 0.6 · 0.7 = 0.42. The world where a is true and b is false has one answer

set, {{a qr}}. The query is true in all the answer sets, so we have a contribution of 0.4 · 0.3 = 0.12 to

both the lower and upper probability. Lastly, the world where both a and b are true has one answer set,

{{a b qr}}. The query is true in all the answer sets, so we have a contribution of 0.4 ·0.7 = 0.28 to both

the lower and upper probability. Overall, P(q) = [0.12+0.28,0.42+0.12+0.28] = [0.4,0.82].

Currently, the PASTA tool performs exact inference [2], whose algorithm is based on projected an-

swer set enumeration [13], approximate inference via sampling [3], abduction [1] (i.e., computing the

minimal set, in terms of set inclusion, of abducible facts such that the probability of the query is maxi-

mized), MAP/MPE [5] (finding an assignment to a subset of probabilistic facts that maximizes the sum

of the probabilities of the identified worlds while evidence is satisfied), decision theory [6] (finding a

subset of decision atoms that maximizes a reward), and parameter learning [4] (learning the probability

of the probabilistic facts such that the likelihood of the examples is maximized). It allows to express

statistical statements of the form [2] (C|A)[Πl,Πu] meaning that the fraction of As that are also Cs is

between Πl and Πu. Moreover, it adopts normalization [11] to perform inference in probabilistic answer

set programs where some worlds have no answer sets. That is, the lower and upper probability bounds

are divided by the sum of the probabilities of the worlds with no answer sets.

The system is written in Python, is open source, and is available on GitHub1. It can be installed via

the Python package installer pip and provides a command line interface with several options to select

the task to solve. Moreover, a web interface2 exposes some of the most relevant options in a more

intuitive way. It is also possible to use the system as a Python library. PASTA leverages the clingo ASP

solver [12] to compute answer sets. The system is structured in multiple modules: the pasta module

parses the command line arguments and selects the subsequent functions and methods to call. The

generator module parses the program into an ASP version that can be interpreted by the clingo solver.

The interface with clingo is managed by the asp_interface module and the resulting answer sets

are analyzed with the models_handler module which also computes the various probabilities. There

are some reserved keywords: abducible, that denotes abducible facts in the context of abduction (for

example, abducible a states that the atom a is an abducible); map, that denotes facts to be considered

for the MAP/MPE task (for example, map 0.4::a states that a is a probabilistic fact whose probability

is 0.4 and that can be selected to be included in the solution set for the MAP/MPE task); and decision
and utility, that mark decision facts and utility attributes [8] for the decision theory task (for example,

decision a states that a is a decision atom and utility(f,2.3) states that the reward obtained when

f is true is 2.3).
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Logical English (LE) is a natural language syntax for pure Prolog and other logic programming
languages, such as ASP and s(CASP). Its main applications until now have been to explore the
representation of a wide range of legal texts, helping to identify ambiguities, explore alternative
representations of the same text, and compare the logical consequences of the alternatives. The texts
include portions of loan agreements, accountancy law, Italian citizenship, EU law on criminal rights,
International Swaps and Derivative contracts, and insurance contracts. The current implementation
in SWI Prolog can be accessed at https://logicalenglish.logicalcontracts.com.

1 Introduction to Logical English

The basic form of LE is simply syntactic sugar for pure Prolog[2], with predicates written in infix form
and declared by means of templates, as in:

* a b o r r o w e r * d e f a u l t s on * a d a t e *

where asterisks delimit the argument places of the predicate. Variables are signalled by the use of one of
the determiners “a”, “an” or “the”. An indefinite determiner, “a” or “an”, introduces the first occurrence
of a variable in a sentence. All later occurrences of the same variable in the same sentence are prefixed
by the definite determiner “the”.

LE has only minimal linguistic knowledge of English. Its knowledge of English vocabulary is re-
stricted to the determiners; the logical connectives “if”, “and”, “or” and “it is not the case that”; the
logical pattern “for all cases in which. . . it is the case that. . . ”; and the logical keyword “that”. The
keyword “that” identifies the use of a meta-predicate, for representing such “propositional attitudes as
prohibition, obligation, belief, desire, fear, notification, etc. Indentation, rather than parentheses, is used
to indicate the relative strength of binding of the logical connectives. LE has virtually no knowledge of
English grammar. In particular, it does not distinguish between singular and plural nouns and verbs, and
it does not know about the relationship between the different tenses of verbs. Despite these restrictions,
and because it has the same expressiveness as pure Prolog, it can be used to represent a broad range of
knowledge, as shown by its application to the representation of legal texts [3, 4, 5, 6, 7]. Here is an
example based on the loan agreement in [1]. The SWISH implementation of the example can be found
at https://logicalenglish.logicalcontracts.com/p/new_loan_with_cure.pl.

Ordinary English: The Borrower will be in default under this agreement upon the failure of the Borrower to
fulfil any obligation of this agreement, provided the failure shall remain uncured within a period of two
days after notice is given to the Borrower by the Lender of the failure (such an uncured event an “Event of
Default”).

Logical English:
t h e b o r r o w e r d e f a u l t s on a d a t e D2
i f t h e b o r r o w e r has t h e o b l i g a t i o n t h a t an e v e n t u a l i t y
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and t h e b o r r o w e r f a i l s t o s a t i s f y t h e o b l i g a t i o n t h a t t h e e v e n t u a l i t y
and t h e l e n d e r n o t i f i e s t h e b o r r o w e r on a d a t e D1 t h a t

t h e b o r r o w e r f a i l s t o s a t i s f y t h e o b l i g a t i o n t h a t t h e e v e n t u a l i t y
and D2 i s 2 days a f t e r D1
and i t i s n o t t h e c a s e t h a t
t h e b o r r o w e r c u r e s on or b e f o r e D2 t h e f a i l u r e t o s a t i s f y t h e o b l i g a t i o n t h a t

t h e e v e n t u a l i t y .

Prolog:
d e f a u l t s _ o n ( t h e _ b o r r o w e r , A) : −

h a s _ t h e _ o b l i g a t i o n _ t h a t ( t h e _ b o r r o w e r , B) ,
f a i l s _ t o _ s a t i s f y _ t h e _ o b l i g a t i o n _ t h a t ( t h e _ b o r r o w e r , B) ,
n o t i f i e s _ o n _ t h a t ( t h e _ l e n d e r , t h e _ b o r r o w e r , C ,

f a i l s _ t o _ s a t i s f y _ t h e _ o b l i g a t i o n _ t h a t ( t h e _ b o r r o w e r , B ) ) ,
i s _ d a y s _ a f t e r (A, 2 , C) ,
n o t c u r e s _ o n _ o r _ b e f o r e _ t h e _ f a i l u r e _ t o _ s a t i s f y _ t h e _ o b l i g a t i o n _ t h a t ( t h e _ b o r r o w e r , A, B ) .

Notice that the original English suggests that an Event of Default occurs retroactively on the date D0 of
the failure to fulfil an obligation. However, elsewhere the loan agreement states that “upon the occur-
rence of an Event of Default all outstanding payments under this agreement will become immediately
due and payable”. To avoid inconsistency, the LE version represents the intended interpretation as being
that the default occurs on the date D2, two days after the notification of the failure on date D1.

Figure 1: Rules and payment scenario

Figure 1 illustrates a scenario, called “payment”, in which the borrower fails to satisfy the obligations,
on lines 22 and 23, to pay the lender 550 on 2015-06-01 and 525 on 2016-06-01. The lender does not
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notice the first failure, but notices the second failure, and gives notice to the borrower of the second
failure on 2016-06-04. The borrower attempts to cure the failure, by paying the correct amount 525
and by notifying the lender of the payment within the two day period of grace. But unfortunately, the
borrower notifies the lender incorrectly that the payment was made on the date of notification rather than
on the date of payment.

Figure 2: Querying LE

Figure 2 illustrates the result of answering the combination of the stored query, called “defaults” with
the scenario. An LE document can contain several stored scenarios and several stored queries, which can
be combined in the SWISH query pane.

The SWISH implementation also generates explanations in response to commands of the form
answer(de f aults,with(payment), le(E),R) as shown in figure 3. For VSC users there exist extensions
for syntax highlighting and remote execution on a SWISH server. It is also possible to call the LE parser
without the SWISH environment, as a standalone Prolog application. All the sources and further infor-
mation are available at https://github.com/LogicalContracts/LogicalEnglish/.

Figure 3: Explanations in LE
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The relatively young area of forgetting is concerned with the removal of selective information, while
preserving other knowledge. This might be useful or even necessary, for example, to simplify a
knowledge base or to tend legal requests. In the last few years, there has been an ample amount of
research in the field, in particular with respect to logic programs, spanning from theoretical consider-
ations to more practical applications, starting at the conceptual proposal of forgetting, to suggestions
of properties that should be satisfied, followed by characterizations of abstract classes of operators
that satisfy these properties, and finally the definition of concrete forgetting procedures.

In this work we present novel Python implementations of all the forgetting procedures that have
been proposed to date on logic programs. We provide them in a web interface, and hope to thereby
give anybody who is interested a low-barrier overview of the landscape.

An Overview

While dynamics in knowledge representation are often examined with respect to the addition of new
information, there is an increasing amount of research on how it may be removed. Forgetting, or variable
elimination, seeks to make a knowledge base independent of elements of the underlying formal language,
while keeping as many logical connections between the remaining elements as possible. Though it
was initially proposed as a semantical notion over classical formulas [LR94], in the context of logic
programming forgotten atoms are usually also required to be removed syntactically. More broadly, there
have been several suggestions for properties that a plausible forgetting procedure should satisfy [EW08,
ZZ09, WZZZ12, WWZ13, KA14, DW15], cf. [GKL16b] for an extensive overview.

Along the way, there have also been a number of suggestions for concrete syntactical transformations
to forget atoms from a program [ZF06, EW08, KA14, BGKL19, GJKL21, ACF+22b, ACF+22a, Ber22]
that satisfy some of the proposed properties, or at least satisfy them whenever possible [GKL16a]. The
hope for such operators is to produce forgetting results that in some way resemble their origin, while
avoiding a computational blow-up as much as possible. Given a semantic definition of a class of for-
getting operators, e.g. [GKLW17, GJK+19], the construction of a program from the desired HT-models
remains a baseline that can be employed to confirm the existence of a concrete forgetting operator [CF07].

The definitions of the syntactic forgetting procedures are rather involved, sometimes spanning over
several pages of text. In order to make them more accessible, we compiled encodings as well as short
explanations, of the operators (those that are defined over logic programs) and the construction of canon-
ical programs into a web interface.1 We hope to thereby give anybody who is interested a good overview
of the material.

A screenshot of the interface is shown in Figure 1. In the leftmost column, users can specify a logic
program and the atoms to be forgotten, or select a predefined sample input. Subsequently, they select the

1ForgettingWeb can be accessed here. Its source code is available here.
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Figure 1: Screenshot of ForgettingWeb.

forgetting operator of their choice from the dropdown in the middle column. These are implementations
from operators proposed in the literature. For more details, the user presses the "Operator Explanation"
button: this triggers a pop-up with an explanation of the operator and a reference to the paper in which it
was proposed. After pressing the "Forget it!" button, the result program appears in the rightmost column.

An input program P is specified by one rule per line, where the head atoms are separated by ‘;’, the
head and the body are separated by ‘:-’, and the body literals are separated by commas. As negation
signs both the traditional ‘not’ and the shorter ‘∼’ can be used. No dot at the end of a rule is required.
The atoms of the forgetting set V are separated by commas. In the “Result” column on the right side, the
new program has the same syntax as the input program.

The input of the counter-models construction auxcm are tuples with delimiters ‘<’ and ‘>’, e.g.:

<ab,ab><a,ab><b,ab><,ab>

<a,a><,>

Each character within an element of a tuple is assumed to be a single element of a set.
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We propose a demonstration of the Active Logic Documents (ALDs) approach and the Ciao Play-
ground, as well as a recent extension to ALDs to facilitate the integration of other tools into the system for
creating Hybrid Active Logic Documents (HALD), and a concrete application of these technologies.

Active Logic Documents (ALD) [10, 11] are web pages which incorporate embedded Prolog engines.
ALD’s are generated using the LPdoc documentation generation system [7, 6], extended to be able to in-
clude embedded Ciao Playground cells in documents, so that interaction with Prolog is possible within
the documents produced (Fig. 1). Documents can contain integrated environments that allow for the pro-
cessing of code blocks, including compiling, parsing, and analyzing them. This facilitates the creation of
web-based materials with editable and runnable educational resources such as activities, runnable exam-
ples, programming exercises, etc. With the ability to directly edit and evaluate code within the document,
these interactive documents can act as oracles, providing valuable feedback and supporting self-evaluation
mechanisms. In comparison with other tools [14, 2, 1], two fundamental aspects of the Active Logic
Documents approach are that a) all the reactive parts run locally on the user’s web browser without any
dependency on a central server or a local Prolog installation, and that b) output is generated from a single,
easy to use source that can be developed with any editor. We argue that the ALD approach has multiple
advantages from the point of view of scalability, low maintenance cost, security, privacy, ease of packaging
and distribution, etc. over other approaches. As an example, the ALD source and output for a simple Prolog
exercise1 is shown in Fig. 4. Active Logic Documents are used for development of materials for teaching
logic programming [8], embedding runnable code and exercises in slides 2, manuals, etc., and in other
projects, such as, for example, in the development of a Programming course for young children (around 10
years old) within the Year Of Prolog initiatives.

*This research has received funding from the PROCODE Project (PID2019-108528RB-
C21/MCIN/AEI/10.13039/501100011033) and the PRODIGY Project (TED2021-132464B-I00) funded by
MCIN/AEI/10.13039/501100011033/ and the European Union NextGenerationEU/ PRTR.

1http://ciao-lang.org/ciao/build/doc/ciao_playground.html/factorial_peano_iso.html
2E.g., Course material in Computational Logic: https://cliplab.org/~logalg

Figure 1: Generating Active Logic Documents.

http://dx.doi.org/10.4204/EPTCS.385.33
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
http://ciao-lang.org/ciao/build/doc/ciao_playground.html/factorial_peano_iso.html
https://cliplab.org/~logalg
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Figure 2: The Ciao Prolog Playground

The Ciao Prolog Playground [3, 4] is a key component of our approach. In its standalone form,3 it
allows editing and running code locally on the user’s web browser (See Fig. 2). To this end, the playground
uses modern Web technology (WebAssembly and Emscripten) to run an off-the-shelf Prolog engine and
top level directly in the browser, with access to browser-side local resources, including a full interface with
JavaScript that enables graphical input and output, interactivity, etc. This engine is contained in Ciaowasm,
a Ciao Prolog bundle that compiles a variant of the standard Ciao engine with all necessary Ciao bundles
and manuals. The main advantage of this general architecture over the widely used server-based approaches
such as SWISH [14, 2] or Jupyter notebooks [1], is that it is easily reproducible and significantly alleviates
maintenance effort and cost, as it essentially eliminates the server-side infrastructure. Previously, compila-
tion of Prolog to JavaScript [9] enabled the use of Prolog to develop also the client side of web applications,
running fully on the browser. This functionality is also provided by, e.g., Tau Prolog [13] and the tuProlog
playground 4 which are recent Prolog interpreters written in JavaScript. However, the approach of com-
pilation to WebAssembly and Emscripten allows the immediate reuse of existing, well-developed engines
(which include many non trivial optimizations and features) and tooling.

Hybrid Active Logic Documents (HALDs). This addition to the ALD architecture, illustrated in
Fig. 3, allows for the integration into ALDs of output from other tools, that can be run either at document
generation time (to produce static content) or during the user interactions with the generated documents
(producing the content dynamically). The overall input is, as in Fig. 1, a set of LPdoc source files (e.g.,
in .md markdown format or .lpdoc documentation files) including code blocks, narrative text, etc. In the
static phase, center of Fig. 3, LPdoc scans and composes all these files, processing the different elements
and inserting embedded Prolog playground instances (editors, engine instances, query blocks, etc.) as
necessary. In addition, in the case of a hybrid document, one or more auxiliary tool(s) are additionally run
by LPdoc while generating the ADL so that selected output from such tools can be incorporated. We refer
to this process of projection of tool output as filtering. There are a number of library filters available for
this purpose, and this set can be extended by the user. When LPdoc finds filtering calls (again, center of
Fig.3, and see also Fig. 5), it sends requests to the corresponding tool (including code fragments, command
line options, queries at its top level, etc.), and then filters the output obtained and incorporates this projected
output statically into the document being produced. This is very useful for example when writing lecture
notes, tutorials, manuals, etc.: when including, e.g., the results to a query or exercise, instead of pasting
them in manually, these results can be generated automatically from the tool being used or documented.
This ensures that the contents and format of the outputs produced by the tool are kept automatically in sync
with any changes in the tool, which is a tedious and error-prone task without automation. This includes
also for example obtaining from the tool the results to compare to in student exercises.

The dynamic phase (right of Fig.3) occurs once the HTML pages produced by LPdoc are deployed,
and users have loaded them into their browsers. When processing some user input in one of the interactive
elements of the pages –e.g., when a student issues a solution to an exercise–, the embedded playground
framework issues the intervening filtering calls dynamically. This process involves loading the program,
calling the corresponding tool (via command line interface or interacting with its top level), obtaining the

3https://ciao-lang.org/playground
4https://pika-lab.gitlab.io/tuprolog/2p-kt-web

https://ciao-lang.org/playground
https://pika-lab.gitlab.io/tuprolog/2p-kt-web
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1 A static example:

2 @exfilter{app.pl}

3 An interactive example:

4 ‘‘‘ciao_runnable
5 %! \begin{exfilter}
6 app([],Y,Y).
7 app([X|Xs], Ys, [Xs|Zs]) :-
8 app(Xs,Ys,Zss).
9 %! \end{exfilter}

10 %! \begin{opts}
11 filter=warn_err
12 %! \end{opts}
13 ‘‘‘

tutorial.lpdoc

1 Example of static filtering call:

2 @exfilter{app.pl}{filter=warn_err}

3 Example of dynamic filtering call:

4 ‘‘‘ciao_runnable
5 %! \begin{code}
6 app([],Y,Y).
7 app([X|Xs], Ys, [Xs|Zs]) :-
8 app(Xs,Ys,Zss).
9 %! \end{code}

10 %! \begin{opts}
11 filter=warn_err
12 %! \end{opts}
13 ‘‘‘

tutorial.html

playground
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Playground

Active Document
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(WASM environment)

filtered output
code and
options feedbackanswer

Figure 3: Overall architecture of hybrid ALDs.
output from this execution, and processing it with the specified filter in order to select the relevant part
before presenting it to the user. Filtering can be customized to accommodate various types of tasks, such as
"fill in the blanks" style exercises or to facilitate understanding and remediation of testing and verification
failures, by displaying warning or error messages. Thus, students can test their code rapidly and effectively
and receive useful feedback, all within the browser. As mentioned before, the embedded Prolog is a full
system with all necessary Ciao bundles, manuals, etc, so that not just filtering but also the tool called or
any user applications can be loaded and called to run locally on the browser, provided they are written in
Prolog, or also of course JavaScript, compiled to wasm. Alternatively, calls can also be issued to tools
available at some server or installed locally. Overall, the framework greatly facilitates the whole process,
saving much coding.

An example application of HALDs. We will also present a concrete application in the generation
of hybrid, interactive, web-based documentation, tutorials, courses, etc., for a program verification tool,
CiaoPP [5, 12]. The aim is assisting students in learning how to use an advanced verification tool like
CiaoPP, as well as learning more about Prolog. The HALD approach is a great aid here for adding so-
lutions to exercises, examples, etc. automatically, while keeping the content synchronized with the sys-
tem, greatly reducing the tracking of what documentation needs to be changed when an update to the
system is made. CiaoPP [5, 12] performs several program debugging, analysis, and source-to-source
transformation tasks for Prolog programs, and also for other high- and low- level languages. The out-
put produced by CiaoPP generally contains significant amounts of information, including transformations,
static analysis information, results of assertion checking or testing, counterexamples, etc. These results
are typically presented as a new version of the source file annotated with (additional) assertions. The
full analysis results produced by CiaoPP can be quite large, and cover the whole file or program. When
writing the documentation it is interesting to show only a small fraction of this information at a time:
the particular part that helps to understand the topic or step being explained. The filters are used here
to extract, e.g., particular properties of a concrete predicate, particular types of assertions, etc. Analy-
sis information can easily be embedded in human-readable explanations. A set of tutorials is available
at https://ciao-lang.org/ciao/build/doc/ciaopp_tutorials.html/ and we also refer again to
Fig. 5 in the appendix.

The source code of all components of our system is available at https://github.com/ciao-lang/,
including the build/install instructions. When the Ciao playground is installed, all the bundles and doc-
umentation will be run and hosted on your localhost server. Additional examples and instructions can
be found in the Ciao playground manual [3] 5. Although we have developed and described our work
for concreteness in the context of the Ciao system, we believe the proposed mechanisms are of general

5https://ciao-lang.org/ciao/build/doc/ciao_playground.html/

https://ciao-lang.org/ciao/build/doc/ciaopp_tutorials.html/
https://github.com/ciao-lang/
https://ciao-lang.org/ciao/build/doc/ciao_playground.html/
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applicability and readily adaptable to other systems.
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Appendix A – ALD example

1 \title Exercise: factorial using ISO-Prolog arithmetic
2
3 Consider again the factorial example, using Peano
4 arithmetic:
5 ‘‘‘ciao\_runnable
6 :- module(_, _, [assertions ,library(bf/bfall)]).
7 %! \begin{focus}
8 factorial(0,s(0)).
9 factorial(s(N),F) :-

10 factorial(N,F1),
11 times(s(N),F1,F).
12 %! \end{focus}
13
14 nat_num(0).
15 nat_num(s(X)) :- nat_num(X).
16
17 times(0,Y,0) :- nat_num(Y).
18 times(s(X),Y,Z) :- plus(W,Y,Z), times(X,Y,W).
19
20 plus(0,Y,Y) :- nat_num(Y).
21 plus(s(X),Y,s(Z)) :- plus(X,Y,Z).
22 ‘‘‘
23 Some facts to note about this version:
24 - It is fully reversible!
25 ‘‘‘ciao_runnable
26 ?- factorial(X,s(s(s(s(s(s(0))))))).
27 ‘‘‘
28 - But also inefficient...
29 ‘‘‘ciao_runnable
30 ?- factorial(s(s(s(s(0)))),Y).
31 ‘‘‘
32 We can also code it using ISO-Prolog arithmetic ,
33 i.e., ‘is/2‘:
34 ‘‘‘ciao
35 ... Z is X * Y ...
36 ‘‘‘
37 Note that this type of arithmetic has limitations:
38 it only works in one direction , i.e., ‘X‘ and ‘Y‘
39 must be bound to arithmetic terms.
40
41 But it provides a (large!) performance gain. Also,
42 meta-logical tests (see later) allow using it in more
43 modes.
44
45 Try to encode the factorial program using ‘is/2‘:
46 ‘‘‘ciao_runnable
47 :- module(_, _, [assertions]).
48 :- test factorial(5, B) => (B = 120) + (not_fails).
49 :- test factorial(0, 0) + fails.
50 :- test factorial(-1,B) + fails.
51 %! \begin{hint}
52 % TASK 1 - Rewrite with Prolog arithmetic
53
54 factorial(0,s(0)). % TODO: Replace s(0) by 1
55 factorial(M,F) :- % TODO: Make sure that M > 0
56 M = s(N), % TODO: Compute N from M using is/2
57 % (note that N is unbound,
58 factorial(N,F1), % so you need to compute N from M!)
59 times(M,F1,F). % TODO: Replace times/3 by a call
60 % to is/2 (using *)
61
62 % When you are done, press the triangle ("Run tests") or
63 % the arrow ("Load into playground").
64 %! \end{hint}
65 %! \begin{solution}
66 factorial(0,1).
67 factorial(N,F) :-
68 N > 0,
69 N1 is N-1,
70 factorial(N1,F1),
71 F is F1*N.
72 %! \end{solution}
73 ‘‘‘
74 Note that wrong goal order can raise an error (e.g.,
75 moving the last call to ‘is/2‘ before the call to
76 factorial).
77 **Next:** Let’s try using constraints instead!

Figure 4: The full source and LPdoc output for the Active Logic Document for a simple factorial exercise.
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Appendix B – HALD example

Output (exercise.html) Input (exercise.md)

1 # Assertion Checking
2
3 In the example above, we have also added an assertion
4 with properties that we want to prove about the execution
5 of the program.
6 ‘‘‘ciao
7 :- pred app(A,B,C) : (list(A), list(B)) => var(C).
8 ‘‘‘
9 This assertion is stating that if the predicate is called

10 with a A and B list, if it succeeds C will be a free
11 variable. Of course, this assertion does not hold and we
12 get a message saying so:
13
14 @exfilter{app_assrt_false.pl}{V,filter=warn_error}
15
16 Assertion checking can also be reported within the source
17 code, we can see that the analyzer does not verify the
18 assertion that we had included. Run the analysis again
19 (clicking ? button) to see the result.
20
21 Exercise. What assertion would we need to add?
22 ‘‘‘ciao_runnable
23 %! \begin{code}
24 :- module(_, [app/3], [assertions]).
25
26 :- pred app(A,B,C) : (list(A), list(B)) => var(C).
27
28 app([],Y,Y).
29 app([X|Xs], Ys, [X|Zs]) :-
30 app(Xs,Ys,Zs).
31 %! \end{code}
32 %! \begin{opts}
33 solution=verify_assert
34 %! \end{opts}
35 %! \begin{solution}
36 :- module(_, [app/3], [assertions]).
37
38 :- pred app(A,B,C) : (list(A), list(B)) => list(C).
39
40 app([],Y,Y).
41 app([X|Xs], Ys, [X|Zs]) :-
42 app(Xs,Ys,Zs).
43 %! \end{solution}
44 ‘‘‘

Figure 5: The full source and LPdoc output for a Hybrid Active Logic Document containing a simple
assertion checking exercise. Note the use of a filtering command in the source to call CiaoPP during the
static phase and select certain outputs that are incorporated in the page (the box with the error messages).
Also, an interactive exercise is embedded and filtering is used again (this time dynamically) to present a
selected part of the analysis output for the program entered by the student and to compare it to the expected
results.
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Answer Set Programming (ASP) enables the solving of challenging search and optimization prob-
lems with concise, declarative programs. However, the most human-readable encoding does not
always coincide with the most efficient encoding from the standpoint of grounding and solving. In
the process of making a program more efficient the programmer may substantially refactor the initial
program. The system presented here can automatically provide guarantees that the new versions ad-
here to the original “specification" version of the program. While refactoring is the primary intended
use of this system, it can in general be used to confirm that certain pairs of ASP programs share the
same external behavior under a given set of assumptions.

Introduction The tool presented here is designed to support the development of correct logic programs
under the stable model semantics. For a broad class of tight programs, anthem-p2p can automatically
provide a formal guarantee that a pair of programs have the same external behavior. A precise definition
of this concept may be found in [3]. Broadly speaking, two logic programs have equivalent external
behavior if the extents of their output/shown predicates coincide for any inputs that conform to the
intended use of the program.

The anthem-p2p system assists in the process of refactoring (modifying a program while preserving
its external behavior), which is an important strategy in the construction of provably correct programs.
One of the envisioned uses of this system is the following methodology. First, a highly declarative,
human-readable program is shown to be correct via a meta-level proof (see, for instance [1, 2]). Next,
subsequent refactorings improving the program’s efficiency at the expense of clarity can be proven to be
equivalent via object-level proofs constructed by anthem-p2p. The remainder of this paper presents the
implementation details behind anthem-p2p, the theoretical foundations and key concepts of which are
studied in [3].

Using Anthem-P2P To get started with program-to-program verification, readers may wish to first
visit the AP2P website1. This website allows users to experiment with the anthem-p2p system2 without
installing its software sub-components such as vampire [5] and anthem [4] on their personal computers.
Figure 1 shows the text editing portion of the AP2P homepage, which is populated by default with an
example showcasing equivalent prime numbers programs. Users may enter a time limit for the proof
search process (one direction of which derives the original program from the alternative, the other di-
rection derives the alternative from the original). The “Verify Equivalence of Programs" button invokes
the anthem-p2p system on a UNO server (Oracle Linux 8, 4 Intel(R) Xeon(R) Gold 6248 CPUs, 4 GB
RAM) and displays the result.

1Available at https://ap2p.unomaha.edu/.
2The tool is also available for download at https://github.com/ZachJHansen/anthem-p2p.

http://dx.doi.org/10.4204/EPTCS.385.34
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://ap2p.unomaha.edu/
https://github.com/ZachJHansen/anthem-p2p
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Figure 1: AP2P Online Interface: Verifying the prime numbers example.

The GitHub repository contains a number of examples, which may be tested using variations of the
following command:

python3 anthem-p2p <program file> <program file> <user guide file>

The preceding command may be optionally extended with the following arguments:

-l <lemmas file> -t <time limit (seconds)> -c <number of cores>

System Design The system design of anthem-p2p is summarized in Figure 2. Given two logic pro-
grams written in the mini-GRINGO [4, Section 2] subset of the input language of clingo, and a user
guide written in a custom specification language [4, Section 5], anthem-p2p will verify that the pro-
grams have equivalent external behavior under the assumptions of the user guide. This is accomplished
by transforming the problem into an input (consisting of a logic program and a specification) to the
system anthem [4]. This transformation is justified by the theory presented in [3]. Similarly, anthem
transforms the task of proving that a logic program implements a specification into a theorem-proving
task for vampire [5]. The proof search can often be accelerated by providing helper lemmas (optional)
that direct the search. We now describe how the example shown in Figure 1 is processed by the system
depicted in Figure 2.

The first task of anthem-p2p is to identify the public (input and output) predicates occurring in User
Guide (in this case just prime/1). Any predicates occurring in Original (Alternative) that are not public
are considered private to that program. The pre-processing step creates new programs where private pred-
icate constants are replaced with fresh predicate constants obtained by appending an “_1" to constants
from Original and an “_2" to constants from Alternative. We will call the lists of such new predicates
p and q, respectively. In this example, p = {composite_1/1} and q = {composite_2/1}. Next, anthem
is used to generate the formula representations of rules from New Original. Specifically, we obtain the
completed definitions [4] of predicates from p (call this list of formulas a), and the completed defini-
tions of public predicates from New Original (call this list of formulas s). To s we also add the formula
representations of constraints from New Original. Final specification is generated by extending the user
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Figure 2: Anthem-P2P System Design: Verifying the equivalence of Original and Alternative programs.

guide with predicate symbols from p as input symbols, formulas from a as assumptions, and formulas
from s as specs (conjectures that must be proven). The anthem system is invoked a second time to verify
that New Alternative implements Final Specification, which is equivalent to proving that Original and
Alternative have the same external behavior under the assumptions of User Guide.
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This system demonstration presents Nemo, a new logic programming engine with a focus on reli-
ability and performance. Nemo is built for data-centric analytic computations, modelled in a fully
declarative Datalog dialect. Its scalability for these tasks matches or exceeds that of leading Datalog
systems. We demonstrate uses in reasoning with knowledge graphs and ontologies with 105 − 108

input facts, all on a laptop. Nemo is written in Rust and available as a free and open source tool.

From the early days of logic programming, it has been clear that declarative rules can also be useful for
data analysis and query answering. Datalog can either be viewed as the core of virtually every logic
programming language, or as the generalisation of conjunctive queries with recursion [2]. This bridge
between rule-based systems and databases has become even more important recently, since it fits well
with the growing demand for data analytics, graph-based data management, and declarative processing.

Accordingly, there is a great number of Datalog-based rule engines, with widely different goals and
features. The following overview of relevant system types is far from complete:

1. logic programming systems, esp. for ASP [8, 3] and Prolog [10],

2. knowledge graph and deductive database engines like RDFox [11], VLog [12], and Vadalog [5],

3. specialised data-analytics systems like Souffé [9], LogicBlox [4], or EmptyHeaded [1], and

4. data management frameworks such as Datomic, Google Logica, and CozoDB.

Our new system Nemo is most closely related to tools of type (2) and (3). From tools of type (2),
it inherits the focus on scalability (especially with regards to data size), compatibility with open data
standards like RDF, and its support for existential rules (a.k.a. tuple-generating dependencies), which are
important in databases and rule-based ontologies. At the same time, it aims to support a broader range
of datatypes, built-in operations, and aggregates, as are typically used in data analytics tools of type (3).
A commonality shared with most tools above (except those of type (4)) is that Nemo runs in memory,
without a persistent database backend (though using input data from such databases is planned).

Nemo is still at an early stage of development, but already able to solve real and synthetic bench-
marking tasks at speeds that can compete with other tools mentioned above. This system demonstration
offers a first glimpse at the current functionalities and planned upcoming features. Nemo is developed in
Rust. Its source code, releases, and documentation are at https://github.com/knowsys/nemo/. A
live demo of Nemo can be tried online at https://tools.iccl.inf.tu-dresden.de/nemo/.

Supported Datalog Dialect Nemo works on a custom Datalog dialect that modifies common notation
from logic programming to accommodate the more flexible and accurate data model from the W3C RDF
and SPARQL standards. The syntax is widely compatible with that of Rulewerk [7, formerly VLog4j],
and with the Datalog fragment of RDFox [11]. An example is shown in Figure 1.

The program in Figure 1 integrates two data sources – public trees in Dresden and taxonomic
information about plant species from Wikidata – to find old lime (linden) trees, i.e., trees of any sub-
species of genus Tilia. The datasets are loaded in @source directives, where the comments note the
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@declare tree(any,any,integer,integer) .
@source tree[4]: load-csv("dresden-trees.csv") . % location,species,age,height
@source taxon[3]: load-csv("wikidata-taxons.csv.gz") . % taxon,label,supertaxon

lime(?id, "Tilia") :- taxon(?id, "Tilia", ?parentId) .
lime(?id, ?name) :- taxon(?id, ?name, ?parentId), lime(?parentId, ?parentName) .
oldLime(?loc,?species,?age) :- tree(?loc,?species,?age,?height), ?age>200, lime(?id,?species) .

Figure 1: Finding Dresden’s oldest lime (linden) trees in Nemo

Doctors-1M Ontology-256 LUBM-01k Deep200 Galen EL SNOMED CT
Inferred facts 792,500 5,674,201 186,742,694 725,457 1,858,810 24,117,991

Nemo (sec) 3.2 13.4 163.3 5.1 3.6 62.1
VLog (sec) 2.5 22.2 199.4 timeout 45.2 oom

Table 1: Selected benchmarking results (loading+reasoning); timeout: 60min; oom: out of memory

meaning of the parameters. For tree, we @declare specific datatypes, where any is the most general
type that supports all data (the default if no declaration is given), whereas integer loads numeric values.
The first two rules find all species of lime tree by recursively collecting all taxons below the genus
Tilia in the tree of life. The third rule then finds trees of some such species and an age of over 200
years. Finding Dresden’s seven old limes (the oldest a small-leaved lime of 337 years) from the >88,000
city trees with known age and >3.6M taxons takes about 7 sec on a laptop, of which 200 msec are
used to apply rules (the rest is for data loading). The example data and program is available online at
https://github.com/knowsys/nemo-examples in directory examples/lime-trees.

In addition to the features illustrated above, Nemo also supports stratified negation (denoted ~),
conjunctions in rule heads (denoted ,), further datatypes and built-ins (esp. floating point numbers), and
existentially quantified head variables (using ! instead of ? in front of the variable name).

System Overview The underlying reasoning procedure is based on materialisation (forward chaining
of rules) using semi-naive evaluation [2] and the restricted chase [6]. Key to overall performance is
a combination of columnar data structures (introduced for Datalog by Urbani et al. [12]), a multiway
join algorithm based on leapfrog triejoin [13], and own new optimisation techniques based on careful
computation planning. The columnar design also allows for efficient support for values of different types
at the lowest level. The system aims at maximal declarativity and syntax-independent performance (e.g.,
the order or parameters in predicates or the order of atoms in rules has no effect on performance).

As a system, Nemo can be invoked through a command-line client nmo, which includes options for
storing results. Various input and output formats are supported, currently CSV and TSV, RDF, and logic
programming facts. We strive to support both the elaborate type system and data representation forms
of RDF, and the more basic data schemes often found in CSV or classical logic programming, without a
burden on the user. Nemo is implemented in Rust and can also be used as a Rust library (a crate).

Experiments We compare runtimes (loading and reasoning) of Nemo (v0.2.0) and VLog (v1.3.6) on
established benchmarks and real-world tasks. Times were measured on a notebook (Dell XPS 13; Ubuntu
Linux 22.04; Intel i7-1165G7@2.80GHz; 16GB RAM; 512 GB SSD). Table 1 presents an overview of
the results obtained. The first four result columns are existential rule benchmarks from ChaseBench [6];
the final two columns used an unoptimised encoding of a well-known OWL EL reasoning calculus on two
different ontologies. Nemo matched or outperformed VLog in all experiments, with notable advantages
on hard cases (Deep200 is a synthetic stress test; SNOMED is one of the largest real-world ontologies).
Full details are at https://github.com/knowsys/nemo-examples/ under evaluations/iclp2023.

https://github.com/knowsys/nemo-examples
https://github.com/knowsys/nemo-examples/tree/main/examples/lime-trees
https://github.com/knowsys/nemo-examples/
https://github.com/knowsys/nemo-examples/tree/main/evaluations/iclp2023
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Outlook Nemo is still in its early stages, and many additional features are under development. They
include further datatypes, built-in functions, and (stratified) aggregates; support for structured data (func-
tional terms, sets, frames, etc.); and interface improvements (programming APIs, extended client func-
tionality). Moreover, we are researching new optimisation and explanation approaches for rule reasoning.
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1 Introduction

The increasing use of data-centric techniques in autonomous intelligent systems in areas such as health-
care, automotive, and finance raises concerns about their predictions’ reliability, fairness, and trans-
parency. In the case of systems empowered by black-box machine learning models, the user has no
access to the inner mechanics of the systems, thus making it essential to obtain a human-readable inter-
face providing explanations of the models’ operations.
Explainable Artificial Intelligence (XAI) techniques aim to provide user-friendly explanations for mod-
els. SpArX (Sparse Argumentative Explanations for Neural Networks [2]) is an XAI method that faith-
fully explains the mechanics of neural networks in the form of Multi-Layer Perceptrons (MLPs) by
exploiting the correspondence between MLPs and Quantitative Argumentation Frameworks (QAF) [11].
Intuitively, QAFs are a form of argumentation framework amounting to weighted graphs that hold argu-
ments as their nodes and relations (of attack or support) between arguments as their edges. To provide an
explainable interface of MLPs using QAFs, the MLPs are first sparsified, through a per-layer clustering
of neurons based on output-similarity. The sparsified MLPs are then transformed into QAFs and then
global (input-independent) and local (within the vicinity of a target input) explanations are generated,
while faithfully preserving the mechanics of the original MLPs.
Building upon SpArX, we have provided users with tools that help them prove and understand how
MLPs, trained on specific datasets, work. The tools allow users to customize explanations to their needs.

2 System Overview

The architecture comprises of three primary components, namely a Python library, a GUI for generating
models, and a web-based application for visualization. We have provided technical users with a Python
Pip package [7] in which a modular implementation of SpArX can be found, as well as a GUI [5] in which
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they can input their own dataset, and generate a customizable MLP. This is forwarded to our framework
pipeline, which performs the aforementioned transformations (sparsification and mapping onto a QAF).
The final QAF is then stored in a database and made available online to other users via a shareable link
[10] where it can be visualised.

2.1 sparx-lib

The Python Pip package, sparx-lib [7], is a custom library developed to handle the heavy computations
required for generating SpArX explanations. It is designed with a modular architecture that allows for
the flexible integration of different components of the SpArX algorithm. It enables users to generate
explanations for a variety of models, which can be either user-specified, with a dataset, or imported.
Tensorflow and Keras are utilized to develop and train custom models. Users can generate two types of
visualisations: pure JSON, which can be viewed as text or parsed, or a GUI using NetworkX and Bokeh.
We used a documentation generation tool called Sphinx to create documentation for the sparx-lib pip
package [6].

2.2 Model generation GUI

The model generation GUI [5] is a tool developed using the React framework. It provides a platform
for administrators or technical users to design MLPs for a selected dataset, generate explanations, and
store visualizations in a remote database for access by other users. The model generation process is
currently performed locally due to the computational demands involved in training the model and calcu-
lating explanations. The requirements and instructions for its execution are provided in the SpArX-GUI
repository [5].

Figure 1: Web app visualisation [10] for the Iris dataset [3]

2.3 Visualisation

The customizable visualization component [9] provides features such as:

• displaying node and edge information such as attackers/supporters and their weight using hover-
cards, and visualising node dependencies using charts;

• filtering graph information by progressively rendering layers and restricting the nodes shown;
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• sharing generated visualisations via a link/QR code.

We have utilised React with React Flow to create interactive graphs that can be easily modified (See
Figure 1). Our server has been deployed on the web to enhance accessibility to the app. Administrators
can simply share a link to the dedicated visualisation page with other non-technical users.

3 Demo requirements

To run the project, follow the instructions in the README file from the SpArX-GUI repository [5]. The
model generation GUI accepts datasets in CSV format where the first line represents the name of the
parameter/column. A test dataset is provided in the SpArX-GUI repository under data/iris.data. For
demo purposes, an already generated visualisation of a SpArX explanation can be found online [10]. A
demonstration video can be found at [4].
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One approach to explaining the hierarchical levels of understanding within a machine learning model
is the symbolic method of inductive logic programming (ILP), which is data efficient and capable of
learning first-order logic rules that can entail data behaviour. A differentiable extension to ILP, so-
called differentiable Neural Logic (dNL) networks, are able to learn Boolean functions as their neural
architecture includes symbolic reasoning. We propose an application of dNL in the field of Relational
Reinforcement Learning (RRL) to address dynamic continuous environments. This represents an
extension of previous work in applying dNL-based ILP in RRL settings, as our proposed model
updates the architecture to enable it to solve problems in continuous RL environments. The goal
of this research is to improve upon current ILP methods for use in RRL by incorporating non-linear
continuous predicates, allowing RRL agents to reason and make decisions in dynamic and continuous
environments.

1 Introduction

One approach to explaining the hierarchical levels of understanding within a machine learning model
is the symbolic method of inductive logic programming (ILP) [15], which is data efficient and capa-
ble of learning first-order logic rules that can entail data behaviour. Recent contributions to the field
have expanded the ILP framework to allow for end-to-end learning, resulting in hybrid models that can
be classified as neuro-symbolic [6, 16, 22, 3]. The recent developments in neuro-symbolic ILP have
expanded the potential applications of these models to a wider range of learning challenges, including
reinforcement learning [17]. The ILP-based neuro-symbolic model implemented in this proposal is a
differentiable extension to ILP, so-called differentiable Neural Logic (dNL) networks [16]. dNL net-
works are able to learn Boolean functions as their neural architecture includes symbolic reasoning. The
primary neural layers in the dNL model contain weighted neurons associated with conjunctions as well
as weighted activation neurons associated with disjunctions, providing a means of logical reasoning on
the input as well as a means of optimisation via gradient descent.

Relational RL (RRL) is concerned with learning policies for decision-making tasks in complex,
discrete relational environments [4]. In RRL, the environment is characterised by a set of entities and
relationships between them, and the agent’s actions can affect the state of these entities and relationships.
Due to its focus on relational problems, RRL has leveraged the progress made in ILP but is not limited
to one method. Recent efforts have enabled RRL to effectively tackle more complex RL problems by
transitioning from purely symbolic reasoning to a more neuro-symbolic approach that leverages neural
systems. Earlier research in RRL primarily focused on planning [4], emphasising model-based learning.
Later research, however, focused on model-free methods that combined neuro-symbolic models and
RRL [23] or on the derivation of interpretable FOL policies [10, 17]. Despite these advancements,
there is limited research in applying RRL to more complex learning challenges, such as continuous state
dynamics. This gap in knowledge motivates the proposed research.
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The work by Payani et al. extended RRL to learn FOL policies using a dNL agent [17]. Taking
the concepts of dNL, Payani et al. combined their dNL-ILP framework with RRL [17]. The author
tested on the block world gaming environment and took advantage of the declarative bias with provided
background knowledge. The authors expanded RRL to handle complex scene interpretations and used
their dNL-ILP differentiable inductive engine to give RRL an end-to-end learning framework, so-called
dNL-RRL, where the authors focused on policy gradients in order to improve interpretability and expert
constraints to improve the speed of convergence.

The following paper is an extension that incorporates both a continuous and non-linear interpretation
of [16] and the dNL-RRL agent found in [17] resulting in a dNL-ILP based agent that can both learn in
dynamic continuous environments typically seen in RL control problems and extract FOL rules which
define the agent policy. Various RL algorithms were explored in evaluating our dNL-ILP agent and
ultimately Soft Actor-Critic was found to perform the best when solving problems on continuous state
spaces. As the contribution bridges the application of dNL-ILP agents in discrete state spaces with that
of continuous, we evaluated the model on a dynamic RL environment where the optimal policy captured
rules such as those seen with classical mechanics in physics. In our evaluation, the model was applied to
two control problems including the Cart Pole problem and Lunar Lander problem [1]. From our initial
results, we were able to obtain agent policies which incorporate continuous predicate functions as well as
non-linear continuous predicate functions. We also add that our proposed agent, while primarily focused
on solving classical RL problems, is referred to as an RRL agent due to its use of relational language in
the derived FOL rules and the ability to incorporate background knowledge through the use of non-linear
predicate functions.

2 Background

2.1 Reinforcement Learning

Reinforcement learning (RL) aims to find an optimal action sequence for an agent to maximize its
expected future reward. This is typically done by modelling the environment as a Markov Decision
Process (MDP), which is defined as a tuple M = 〈S ,A ,R,T ,E 〉. S is the set of states, A is
the set of actions that can be taken, R(st ,at ,st+1) is the reward function that takes the current state
st , current action at , and returns the reward from transitioning to the state st+1, T (st ,at ,st+1) is the
transition probability function which represents the probability of transitioning to state st+1 from state
st given action at was taken, and E ⊂ S is the set of terminal states [20, 11]. A discount factor
γ ∈ [0,1] determines the importance of receiving a reward in the current state versus the future state,
where Rt = ∑

∞
k=0 γkr(at+k,st+k) is the total accumulated return from the time step. The value func-

tion V π(s) = Eπ [Rt ] of a policy is the measure of the expected sum of discounted rewards. The goal
is to find the optimal policy π∗ = argmaxπ E[∑∞

t=0 γ tr(at ,st)|s0 = s], which maps a history of obser-
vations to the next action[20, 19, 11, 18, 9, 13]. In practice, at each time step, the agent selects an
action based on its current state and the policy, and receives a reward based on the transition to the
next state. In our investigation of RL methods, we found that Soft Actor-Critic (SAC) is the best ap-
proach for our dNL based agent. SAC combines the strengths of both value-based and policy-based
methods by alternating between updates to the policy and updates to the value function and Q-function.
The entropy regularisation term is added to the policy update step to encourage exploration, and the
algorithm uses a temperature parameter, α , to control the trade-off between exploration and exploita-
tion. As we evaluate our agent on environments consisting of discrete actions, we use a discrete action
variant of SAC [2]. The main difference is in the policy update step, where the objective becomes
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π∗ = argmaxπ ∑
T
t=0Est∼D[Eat∼π [r(st ,at)+αH(π(·|st))]]. Where H(π(a|s)) is the entropy of the pol-

icy, γ is the discount factor, D is the replay buffer, and α is the temperature parameter. In the discrete
setting, π maps states to a vector of probabilities with |A| elements. For the actor cost function, we
use the following equation Jπ(φ) = Est∼D[Eat∼π [α log(πφ (at |st))−Qθ (st ,at)]]. Where πφ is the policy
parameterized by φ and Qθ is the Q-function parameterized by θ . Discrete SAC policy maximises the
probability of discrete actions as opposed to the continuous SAC policy which optimises two parameters
of a Gaussian distribution.

2.2 Inductive Logic Programming (ILP)

Inductive logic programming (ILP) is a method of symbolic computing which automatically constructs
logic programs given a background knowledge base (KB) [15]. An ILP problem is represented as a tuple
(B,P,N ) of ground atoms, with B being the background assumptions, P being a set of positive
instances which help define the target predicate to be learned, and N being the set of negative instances
of the target predicate. The goal of ILP is to construct a logic program that explains all provided positive
sets and rejects the negative ones. Given an ILP problem (B,P,N ), the goal is to identify a set of
hypotheses (clauses) H such that B∧H |= γ for all γ ∈P and B∧H 6|= γ for all γ ∈N , where |=
denotes logical entailment. In other words, the conjunction of the background knowledge and hypothesis
should entail all positive instances and not entail any negative instances.

2.3 Differentiable Neural Logic (dNL)

The core component of the dNL network is their use of differentiable neural logic layers to learn Boolean
functions [16]. The dNL architecture uses membership weights and conjunctive and disjunctive layers
to learn a target predicate or Boolean function. Learning a target predicate p requires the construction
of Boolean function Fp which passes in a Boolean vector x of size N with elements x(i), into a neural
conjunction function fcon j (see equation 1a) which is defined by a conjunction Boolean function Fcon j

(see equation 1b). A predicate defined by Boolean function in this matter is extracted by parsing the
architecture for membership weights (w(i)) above a given threshold, where membership weights are
converted to Boolean weights via a sigmoid m(i) =σ(cw(i)) with constant c≥ 1. Membership weights are
paired with continuous lower and upper bound predicate functions (see equation 3) which are eventually
interpreted as atoms in the body of the predicate being learned. These same Boolean predicate functions
are used to transform non-Boolean data into a Boolean format for the logic layers.

fcon j(x) =
N

∏
i=1

Fcon j(x(i),m(i)) (1a)

Fcon j(x(i),m(i)) = x(i)m(i) = 1−m(i)(1− x(i)) (1b)

Following induction by the conjunctive layer, outputs are fed into a neural disjunction function fdis j
(see equation 2a) which is constructed from disjunctive Boolean functions Fdis j (see equation 2b). The
disjunctive layer provides multiple definitions for our target predicate if necessary.

fdis j(x) = 1−
N

∏
i=1

(1−Fdis j(x(i),m(i))) (2a)

Fdis j(x(i),m(i)) = x(i)m(i) (2b)
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x∗ = 0.8

Flt1
x
(x,0.5) Flt2

x
(x,1.0) Fgt1

x
(x,0.5) Fgt2

x
(x,1.0)

Figure 1: Given k = 2 and feature instance x∗ with value 0.8, would result in two distinct activations of
bounded Boolean predicates. Stating x∗ is less than 1.0 and x∗ is greater than 0.5.

As mentioned, a target predicate function F p is defined by the cascading architecture of the dNL
network, and within the network bounded continuous Boolean predicates associated with a continuous
feature are used to define our target predicate. Boolean predicate functions are used to handle continuous
input by partitioning input into a series of lower and upper-bound predicates, referred to as continuous
predicates as they capture the interval bounds of continuous features. Similarly, Boolean predicates
mapped to discrete features are referred to as discrete predicates. These bounded continuous predicates
return either true or false when a continuous value meets the condition. A continuous input x is associated
with k pairs of upper and lower boundary predicates, each pair corresponding to a bounded range (lxi <
x< uxi), where i∈ 1,2, · · · ,k. A Boolean upper boundary predicate gt i

x(x, lxi), states whether “x is greater
than lxi" is true, and a Boolean lower boundary predicate lt i

x(x,uxi) states whether “x is less than uxi" is
true (see equation 3). The lower and upper boundary values lxi and uxi are treated as trainable weights
which can be optimised during training. To clarify the need for both lower and upper predicate bounds,
the regions are complete and disjoint, meaning that each input value belongs to exactly one region.
Although most of the upper and lower bounds may coincide, having both upper and lower predicates
allows for greater flexibility in defining the regions and ensures that no input values fall outside the
defined regions. A diagram illustrating this partitioning of the input domain can be found in Figure 1.

Fgt i
x
= σ(c(x−uxi)), Flt i

x
= σ(−c(x− lxi)) (3)

3 Methodology

Developing a neuro-symbolic RL agent that incorporates continuous predicate functions posed several
non-trivial challenges. Firstly, the work of Payani et al. [16, 17], which our model extends, did not
explore non-linear predicate functions, so we had to develop new functions to capture more complex
relationships in the data (see equation 7). Additionally, while Payani et al. did introduce continuous
predicates in a supervised setting, they only tested dNL-ILP on two datasets (Wine and Sonar datasets
[16, 5]), whereas we made the integration of continuous predicates a focus of our work. 1 Another
challenge was the fact that the original dNL-RRL model explicitly dealt with discrete predicates, so
we had to adapt the model to incorporate continuous predicates. Finally, while Payani et al. used the
REINFORCE RL algorithm [21], we had to test out various other RL algorithms, including SAC [8], to
find the most effective implementation for our model.2

In the dNL-RL interpretation, the Boolean target predicate function Fp is referred to as a discrete
action predicate function. The actions of the agent are the target predicates and so must remain discrete.
For example, an agent that can take an action turnLe f t(), has the corresponding discrete action predicate

1Moreover, from an engineering standpoint, the dNL code was originally written in TensorFlow 1, which had to be converted
to TensorFlow 2 for use in the RL environment.

2Extensive coding was required to convert the SAC algorithm, which typically has a discrete action space, to TensorFlow 2,
as all available examples online were coded in PyTorch.
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function FturnLe f t . Each discrete action predicate function is defined by an input matrix I, which is
composed of continuous lower and upper bound predicate functions as well as discrete Boolean predicate
functions, all with associated weights. The set of the continuous state features cntp and the set of the
discrete state features dscp for the associated RL environment are given Boolean interpretations after
being passed through the input matrix, as seen in equation 4. The row dimensions of I are defined by the
batch size b and the column dimensions are defined by Ne = (2× k× |cntp|)+ (2× |dscp|) (assuming
discrete features are Boolean). The state feature ranges used to define the Boolean predicate functions
are determined by equal-width binning, and we define the batch size as b. The Fe function takes in a
one-hot encoded Boolean discrete input.

I =

Fgt1
e1
,Flt1

e1
· · · Fgtk

e1
,Fltk

e1
· · · Fgtk

e|cntp|
,Fltk

e|cntp |
...

...
...

...
...

⊕[
Fe1 ,Fe1 · · · Fe|dscp |

,Fe|dscp |
...

...
...

]
(4)

In defining the discrete action predicate function Fp for an action p, the function takes as input the
input matrix I as well as the disjunction layer Fdis j and the conjunction layer Fcon j where Ne is used to
define the number of layers in the conjunction layer and Np is used to define the number of layers in the
disjunction layer, seen in equation 5. As an agent learns rules for multiple actions, we define the set of
discrete action predicates as the predicate action policy πF which is the set {Fp1 ,Fp2 , · · · ,Fpn} for all
actions in the action space p ∈A for the RL environment.

To prevent the gradient from becoming excessively small during training, initial weights W are ini-
tialised using a negative mean random Gaussian distribution, which ensures that they are close to zero.
To keep membership weights m between 0 and 1, a constant c ≥ 1 is applied, followed by a sigmoid
function. In equations 6a and 6b, we apply the conjunction function to the input matrix using the corre-
sponding membership weights. Note that Wcon j is a matrix with dimensions Np and Ne while Wdis j is a
vector of size Np. The disjunction function takes the output of the conjunction function as input as we
cascade our neural architecture.

Fp|I,Ne,Np = Fdis j(Np,Fcon j(Ne,I)) (5)

Fcon j =
Ne

∑
i=1

[1−mcon j
i (1− Ii)] where mcon j = σ(cWcon j), Wcon j

Np,Ne
∼N (6a)

Fdis j = 1−
Np

∑
i=1

[1−mdis j
i F i

con j] where mdis j = σ(cWdis j), Wdis j
1,Np
∼N (6b)

We incorporate non-linear transformations on some of the state features. As in the case of various
control problems in RL, the calculation of state transitions is based on non-linear transformations from
the current state. We define the following k upper-boundary and lower-boundary functions as non-linear
transformation predicates in equation 7.

Fgt i
f (x)

= σ(c( f (x)−uxi)), Flt i
f (x)

= σ(−c( f (x)− lxi))where f (x) ∈ {sqr(x),sin(x), · · ·} (7)

Our dNL based agents can be differentiated by the type of prior information used. The baseline dNL
agent uses only continuous and discrete Boolean predicates and is referred to as a dNL RL continu-
ous (dNLRLc) agent. It learns the continuous state features without using any prior information from a
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knowledge base KBT which contains transformation functions mapped to specific continuous state fea-
tures. However, when prior information such as non-linear equations or transformations between features
is included, the agent becomes a dNL RL non-linear continuous (dNLRLnlc) agent. This involves adding
non-linear continuous Boolean predicates to the input matrix as new predicate functions in πF . In the
experiment section, we specify which non-linear transformations were used for the dNLRLnlc agent in
each RL environment.

In Algorithm 1 we provide a pseudo-code implementation for a dNL-RL agent. The agent takes
in a state st , at time step t and returns an action at for that time step. The algorithm iterates through
each feature of the state, s(i)t , and separates the elements into two cases: discrete and continuous. If the
element is discrete, it adds the mapping of the discrete predicate dscp[i] to the state element s(i)t in a
processed state set St . If the element is continuous, it checks if a transformation function for the feature
exists in the knowledge base KBT [i]. If it does, it adds the mapping of the continuous predicate cntp[i]
to the function applied to the state feature s(i)t in the state set St . If the knowledge base does not exist,
it adds the mapping of the continuous predicate cntp[i] to the state feature s(i)t instead. After iterating
through all state features, the policy is returned by applying the dNLRL policy function to the set St , and
then sampling an action at from the predicate action policy.

Algorithm 1 dNL-RL agent
1: Input: st -state at time step t
2: Output: at -action at time step t
3: for s(i)t ∈ st do
4: if s(i)t is discrete then
5: St ∪{dscp[i] 7→ s(i)t }
6: end if
7: if s(i)t is continuous then
8: if KBT [i] exists then
9: St ∪{cntp[i] 7→ KBT [i](s

(i)
t )}

10: else
11: St ∪{cntp[i] 7→ s(i)t }
12: end if
13: end if
14: end for
15: πF ← dNLRL(St)
16: at ∼ πF (Fat |St)

To derive the predicate action policy πF , we perform Boolean reasoning on the set of processed state
features with associated predicates as seen in Algorithm 2. Here we take as input a set of discrete predi-
cates dscp, a set of continuous predicates cntp, a set of target action predicates P, and a set of processed
state feature predicates St . We loop through each target action predicate in the set P and for each predi-
cate, it creates two empty sets used for constructing the input matrix, one for the continuous predicates Ic

and one for the discrete predicates Id . The dNLRL policy then loops through each continuous predicate
in cntp and for each predicate, it creates a disjunction of predicates, which are added to the continuous
input matrix set Ic. Then it does the same for each discrete predicate in dscp but instead, the discrete
predicates are added to the discrete input matrix set Id . We take the union of these two sets to get the
final input matrix I. Finally, it creates an evaluated target action predicate Xp by reasoning on target
predicate function Fp as defined in equation 5. This target action predicate Xp is then added to the
predicate action policy πF .
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Algorithm 2 Single Step Forward Chain Model/ dNLRL policy
1: Input: dscp-set of discrete predicates, cntp-set of continuous predicates, P-set of target action predicates, St -set of state feature predicates

at time step t
2: Output: πF -predicate action policy
3: for p ∈ P do
4: Ic=[]
5: Id=[]
6: for e ∈ cntp do
7: Ic ∪

∨k
i=1

(
Fgti

e
(St [e])∨Flti

e
(St [e])

)
8: end for
9: for e ∈ dscp do

10: Id ∪
(
Fe(St [e])∨Fe(St [e])

)
11: end for
12: I← Id ∪ Ic
13: Xp←Fp|I,Ne,Np
14: πF ∪ (Xp)
15: end for

4 Experiments and Results

4.1 Environments and Tasks

The following RL environments are continuous control problems developed by Open AI Gym [1]. The
Cart Pole problem is a benchmark for evaluating RL algorithms [12]. The goal of the problem is to
balance a pole in the upright position by selecting between two discrete actions (move left, move right).
The state space is 4-dimensional, all continuous. The features are the following x : Cart Position, x′ :
Cart Velocity, θ : Pole Angle, and θ ′ : Pole Angular Velocity. In the Lunar Lander environment, an agent
learns a policy for throttling the side and main engines to control the descent of a lander such that it
lands on a landing pad. The discrete actions include activating the right thruster engine, activating the
left thruster engine, activating the main engine, and doing nothing. The state space is 8-dimensional,
6 inputs are continuous and 2 are discrete. The continuous state inputs include including x : Lander
Position on the X-axis, y : Lander Position on the Y-axis, vx : Horizontal velocity, vy : Vertical velocity,
θ : Angular orientation in space, and vθ : Angular velocity. The remaining two features are Boolean,
Left: which indicates if the left leg is touching the ground and Right: which indicates if the right leg is
in contact with the ground.

4.1.1 Baselines

During our investigation into the development of our continuous logic-based algorithm, we sought first
to see if the dNLRLc agent could in fact learn interpretable policies on continuous environments. As
stated this led to evaluation of the dNLRLc architectures on various RL algorithms. This includes the
policy gradient algorithm REINFORCE [21], the model-free algorithm Deep Q-Network (DQN) [14],
the on-policy method of Advantage Actor-Critic (A2C) [13], and the Soft Actor-Critic (SAC) [8]. In
the case of SAC, we use a variant designed to handle discrete actions [2]. In cases where we inject prior
knowledge in the form of non-linear functions added to the transformation knowledge base, we designate
the model as (SAC-NL).



346 Deep Inductive Logic Programming meets Reinforcement Learning

4.2 Algorithm Performance Comparison

We present algorithmic comparisons of the various RL algorithms combined with the dNLRLc agent
where evaluation is carried out on the Cart Pole problem. For the evaluation, only SAC is used to test the
dNLRLnlc agent, as it was the best-performing algorithm with the dNLRLc agent. In the Lunar Lander
environment, we evaluate a dNLNLc agent and dNLRLnlc agent using SAC entirely. Each algorithmic
framework used the same binning scheme for the continuous features, that being ‘equal-width binning’
where bins for each feature were predefined for the learning environment and kept constant between the
various RL algorithms.

4.2.1 Task: Cart Pole Problem

For the Cart Pole problem, each algorithmic framework used the same binning scheme for ‘equal-width
binning’ with the number of bins set to [4,4,4,4] for each feature respectively. In Figure 2, we can
observe the results comparing the performances of each dNLRLc agent and paired RL architecture in the
Cart Pole Problem domain. As can be observed, the best performing model is that of the SAC and SAC-
NL. Performance of dNL based agents is noticeably poor in the cases of the REINFORCE algorithm
where rewards cap at 22.0. DQN and A2C perform better but rewards plateau far below what is to be
expected. The non-linear addition for the dNLRLnlc agent is a simple transformation of the Pole Angle
θ , as the calculation of the next state st+1 within the code for the Cart Pole problem is dependent on the
sine transformation of θ . For SAC-NL, we apply a sine transformation and so policies can contain atoms
designated PoleAngleSine with corresponding inequalities. The performance of the dNLRLnlc agents is
not significantly better than the dNLRLc agent when using SAC. Both agent variants are able to achieve
the maximum reward of 300.0 consistently with periodic fluctuations. In figure 4, we can observe the
moving standard deviation for the dNLRLc and dNLRLnlc when using SAC. Although the fluctuations
in the standard deviations are not in sync, the variation between the two agents is not significant enough
to conclude that one agent is more stable.

Figure 2: Episode scores for RL algorithms relying on dNLRLc and dNLRLnlc agents.

Figure 3 presents a comparison of the performance of the various RL algorithms using standard
neural networks in solving the Cart Pole problem. The figure shows that, while SAC is able to solve the
problem and stabilise, the neural network agents learn faster and are more stable than dNLRLc agents.
Both agents using A2C and DQN exhibit inconsistent performance with rewards fluctuating greatly and
both the neural networks and dNLRLc agents perform poorly when using REINFORCE. These findings
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Figure 3: Episode scores for RL algorithms relying on neural net-
work based agents.

Figure 4: Moving (window size 20) standard deviation for SAC
relying on dNLRLc and dNLRLnlc agents.

suggest that while dNLRLc models may offer greater interpretability, they may come at the cost of
decreased performance in some RL tasks. Given that, it is also evident that SAC is the primary contributor
to solving the control problem as even standard neural network based agents failed otherwise. We also
note that the black-box neural network-based SAC agent outperforms the interpretable dNL-RL SAC
agent in terms of speed, achieving an average convergence time of 2168.31 seconds, compared to the
average convergence time of 10807.94 seconds for the dNL-RL agent, highlighting a trade-off between
interpretability and learning efficiency, which could be addressed in future research by optimising the
algorithm for faster convergence.

The main advantage of using dNL agents is that returned policies are interpretable. These policies
provide predicate logic interpretations for the individual discrete actions, in the case of the Cart Pole
problem, we have rules for when to move left() and when to move right(). The policy in our case is
defined as predicate action policy, that is individual actions are treated as target predicates where the
clausal body states what inequalities should be true for a state feature in order for the action to be
considered by the agent. We also clarify that the clausal body is defined by a conjunction of atoms where
the associated membership weight is placed before the atom in brackets, extracted from the conjunction
neuron. If the membership weight is above 0.95, i.e. the model is confident it should be in the definition,
then the weight is not listed next to the atom. Similarly, for the disjunction neurons, the value in brackets
before the rule represents the membership weights.

CartPole Policy rules for dNLRLc

mean reward:
290.3±32.3

left()

:−([0.56]CartPos < 2.83∧ [0.64]CartVeloc >−1.19∧CartVeloc > 0.18

∧PoleAngle >−0.62∧PoleAngleVeloc >−0.24)

:−([0.81]CartPos < 2.82∧PoleAngle >−0.06∧PoleAngleVeloc > 0.08)

right()

:−(CartVeloc >−1.19∧PoleAngle <−0.03∧PoleAngleVeloc < 0.34∧ [0.56]PoleAngleVeloc < 2.48)

:−(CartPos < 0.16∧ [0.52]CartVeloc < 2.11∧ [0.50]PoleAngle >−0.56

∧PoleAngle < 0.11∧PoleAngleVeloc < 0.25)

Table 1: The FOL policy rules for the dNLRLc agent, trained using SAC. Extracted continuous inequality predicates define rules for each
action.

In table 1, the predicate action policy for the dNLRLc agent trained using SAC is provided. In
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the body of the discrete action predicate left(), it is observed that two definitions are returned wherein
which we see both associated disjunction neuron membership weights pass the threshold. The three state
features present in the second definition are Cart Position (CartPos < 2.82), Pole Angle (PoleAngle >
−0.06), and Pole Angular Velocity (PoleAngleVeloc > 0.08). Similarly, the body for the discrete ac-
tion predicate right() contains two predicate definitions. In both cases, the agent is confident in either
definition as indicated by the absence of a membership weight for the corresponding disjunction neuron.

CartPole Policy rules for dNLRLnlc

mean reward:
294.7±25.8

left()

:−([0.60]CartPos < 2.57∧PoleAngleSine > 0.00∧PoleAngleVeloc >−0.38)

right()

:−(PoleAngleSine < 0.04∧PoleAngleVeloc < 0.00)

:−(CartPos < 0.74∧ [0.55]CartVeloc >−1.64∧CartVeloc <−0.11

∧PoleAngleSine < 0.65∧ [0.66]PoleAngleVeloc >−2.04∧PoleAngleVeloc < 0.28)

Table 2: The FOL policy rules for the dNLRLnlc agent, trained using SAC. Extracted continuous inequality predicates define rules for each
action with the inclusion of non-linear continuous inequality predicates.

In table 2, the predicate action policy for the dNLRLnlc agent trained using SAC is provided. The
definitions of the predicate action policy are comparable to those given by the dNLRLnlc agent. Note that
the discrete action predicate left() is defined by a single predicate rule. For both discrete action predicates,
we see the presence of the non-linear continuous predicate in the definitions, that is (PoleAngleSine >
0.00) of the discrete action predicate le f t() and (PoleAngleSine < 0.00) for the first definition of right()
and (PoleAngleSine < 0.65∧PoleAngleSine < 0.28) for the second definition. In figure 1 and figure 2
the mean reward is also provided with the standard deviation. The mean reward in this case refers to the
mean of the last 100 episodes.

4.2.2 Task: Lunar Lander

At present, the Lunar Lander stands as a more challenging environment for the dNL-RL agents. As the
previous control problem environment has demonstrated that SAC is the best performing algorithm, only
SAC was tested on the Lunar Lander environments. In setting up the experiments, it was found that
both the discretisation scheme and the initial high and low values for the state features had a significant
impact. In the context of the Lunar Lander, a reward of 200 indicates the lander successfully landed on
the platform. The current binning scheme being deployed is [3,3,3,3,3,3,−,−] for each feature, where
(−) indicates no binning performed as it is a discrete/Boolean feature. In order to evaluate the consistency
and performance of the dNLRLc and dNLRLnlc agents, multiple trials were conducted using different
random seeds. We ran each experiment 5 times and the resulting policies were analysed. While only
one representative policy is presented for each agent, any variations or discrepancies across the trials are
discussed. The non-linear change was again a sine transformation on the state feature angular orientation
in space θ associated with the transformation predicate AngleSine.

In Figure 5, we can observe the results comparing the performance of the dNLRLc agent where dark
purple corresponds to the mean reward. The results indicate the agent does in fact learn, however, it is
challenging for the dNL agent to successfully land the lander consistently. The episode rewards show
the agent can land the lander but the mean rewards skew below a true success of 200. We note the mean
reward across all trials fluctuates around rewards of a hundred with significant deviations from the mean.
In some initial states, the learned policy does result in successful landings, often over 200. The rules in
the predicate action policy for the Lunar Lander environment are given in table 3. As the Lunar Lander
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has four actions, we find that all disjunction layers pass the parameter threshold and only in a few cases
do we have conjunction weights for specific atoms. For example for the rule f ireLe f t, the first rule
contains a weighted atom [0.65]CoordX >−1.52. For the action predicate, fireRight() the agent learned
four rules, where only the second rules contain listed conjunction layer weights for individual atoms
[0.60]CoordX > −1.53 and [0.94]AngularVeloc > −2.58. We observe as well, that while the bounded
atom CoordX appears in the definitions for each action, each is associated with a conjunction weight.
Indicating the agent was less confident about the inclusion of the CoordX continuous predicate function.

Figure 5: Episode scores for SAC algorithms relying on dNLRLc. Dark purple corresponds to the mean reward. Light purple corresponds
to the standard deviation and the red line is the moving average for 50 episodes.

LunarLander Policy rules for dNLRLc

mean reward:
162.1±110.9

doNothing()

:−(CoordY < 1.28∧LinearVelocX <−0.14)

:−([0.80]CoordX >−1.53∧ [0.76]CoordX < 1.70∧LinearVelocY <−0.12

∧[0.66]Angle >−1.60)

:−([0.82]CoordX < 1.70∧LinearVelocY <−0.04∧RightLegContactFalse)

fireLeft())

:−([0.65]CoordX >−1.52∧LinearVelocX <−0.14∧ [0.73]Angle >−0.09)

:−([0.72]CoordX < 1.70∧ [0.68]CoordY >−0.99∧LinearVelocX < 1.93∧Angle >−0.09)

fireMain()

:−(LinearVelocX > 0.20∧Angle < 0.17∧AngularVeloc < 0.10)

:−([0.58]CoordY >−0.91∧LinearVelocY >−0.11)

:−([0.75]CoordX < 1.70∧LinearVelocX <−0.11∧Angle > 0.01∧AngularVeloc >−0.14)

fireRight()

:−(LinearVelocX >−0.63∧Angle >−1.60∧Angle < 0.17∧AngularVeloc <−0.02)

:−([0.60]CoordX >−1.53∧Angle < 0.17∧ [0.94]AngularVeloc >−2.58

∧Le f tLegContactTrue)

:−(CoordY < 1.28∧LinearVelocX >−0.05∧Angle < 0.32∧AngularVeloc >−1.98

∧RightLegContactFalse)

:−(LinearVelocX >−0.05∧Angle >−1.60∧Angle < 0.17)

Table 3: The FOL policy rules for the dNLRLc agent, trained using SAC. Extracted continuous bounded predicates define rules for each
action.

In Figure 6, we can observe the results comparing the performance of the dNLRLnlc agent. The
inclusion of the sine is a very minor addition, but one that does take into account the state transition
mechanics. Performance is better than dNLRLc in later episodes. The moving average shows mean
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rewards rising above 100.0 consistently. The rules in the predicate action policy for the Lunar Lander
environment are given in table 4. For each discrete action, all rules pass the parameter threshold for the
disjunction layer except for a single rule associated with f ireLe f t(). For the predicate actions fireLeft()
and fireRight(), which have four rules each, we observe the majority of definitions include the sine
transformed state feature θ .

Figure 6: Episode scores for SAC algorithms relying on dNLRLnlc.

4.2.3 Discussion

The performance of both the dNLRLc and dNLRLnlc agents is comparable. In the CartPole problem, see
Figure 2, the dNLRLnlc appears more stable in later episodes than dNLRLc as evidenced by the higher
occurrence of total rewards of 300. The Lunar Lander problem, with a larger action and state space,
proved more challenging for the dNLRL agents. Both agents were unable to produce mean rewards of
200, although dNLRLnlc achieved higher rewards than dNLRLc in later episodes. While the deviation
was high, indicating both dNLRLc and dNLRLnlc landed successfully on occasion, this also signified
that the Lander would crash periodically. The various hyperparameters were also found to impact the
model. Specifically, the instantiation of the binning scheme would sway performance. We note, that
in [7], equal-width binning was not necessarily an optimal approach for the Lunar Lander except in
specific regions with respect to the positional axis, and we leave this investigation for future research.
Multiple trials of both agents were conducted, with performance across all episodes averaging around
100 for dNLRLc and slightly higher for dNLRLnlc, and performance fluctuations resulted in a variety
of final policy rules. The position of the lander along the X and Y axis, as signified by atoms associated
with CoordX or CoordY , would often have corresponding conjunction weights, indicating uncertainty
in these predicates. The fluctuating bounded values during training might have caused confusion for the
agent, as the position of the lander is a significant factor in landing success. To address this issue, future
investigations could explore alternative schemes for training the bound weights, and consider adding
additional non-linear transformation predicates or operation predicates between state features.

5 Conclusion

We aimed to incorporate both continuous and non-linear interpretations of dNL networks into an RRL
framework, creating a dNL-ILP based agent that can learn in dynamic continuous environments. SAC
was found to be the best among RL algorithms for evaluating the agent. The agent produced policies
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LunarLander Policy rules for dNLRLnlc

mean reward:
133.4±113.9

doNothing()

:−(CoordX < 1.66∧LinearVelocY <−0.61)

:−([0.90]CoordX < 1.66∧ [0.65]CoordY >−0.98∧ [0.91]CoordY < 1.42∧Le f tLegContactFalse))

:−(LinearVelocY <−0.22)

:−([0.61]CoordX < 1.51∧AngleSine <−0.25)

:−([0.86]CoordY < 2.12∧AngularVeloc > 0.23)

fireLeft())

:−(LinearVelocX <−0.15)

:−([0.88]CoordY >−0.98∧LinearVelocX < 0.20∧ [0.56]LinearVelocY < 0.92∧AngleSine >−0.08)

:−([0.53]AngleSine >−1.00∧AngleSine >−0.08∧AngularVeloc > 0.07)

:−[0.65]([0.52]CoordY >−0.98∧CoordY < 0.14∧ [0.72]LinearVelocY >−2.32, [0.68]AngleSine >−1.00

∧AngleSine >−0.08∧ [0.85]AngularVeloc < 1.88)

fireMain()

:−(LinearVelocX <−0.15∧LinearVelocX <−0.58∧ [0.71]LinearVelocX < 0.20∧AngleSine >−0.08∧

AngularVeloc >−1.12∧Le f tLegContactFalse)

:−(CoordX >−1.06∧LinearVelocY >−0.11)

:−(CoordY > 0.34∧LinearVelocY >−0.42∧ [0.62]AngularVeloc >−1.12)

:−(LinearVelocX > 0.42∧AngleSine <−0.25∧AngularVeloc >−1.12)

fireRight()

:−(LinearVelocX >−0.25∧LinearVelocY <−0.61∧AngleSine < 0.37, [0.73]AngularVeloc < 2.08)

:−(CoordX > 0.36∧CoordY < 0.14∧ [0.64]LinearVelocY >−2.32∧ [0.70]AngleSine < 0.37

∧AngleSine < 0.25∧ [0.74]AngularVeloc >−1.12)

:−([0.52]CoordY >−0.91∧AngleSine < 0.25∧AngularVeloc < 0.05)

:−(CoordX > 0.36∧CoordY < 1.42∧AngleSine < 0.25∧AngularVeloc < 1.88∧Le f tLegContactFalse)

Table 4: The FOL policy rules for the dNLRLnlc agent, trained using SAC. Extracted continuous bounded predicates define rules for each
action with the inclusion of non-linear continuous bounded predicates.

incorporating continuous and non-linear continuous predicate functions and was the first to successfully
integrate ILP-based reasoning, RRL, and learning in dynamic continuous settings. The Lunar Lander
problem was more challenging for the dNLRL agents, resulting in a high deviation from the mean, but
our dNLRLc and dNLRLnlc agents still provide a promising starting point for ILP and RL research in
continuous domains.
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The generation of natural language text from data series gained renewed interest among AI research
goals. Not surprisingly, the few proposals in the state of the art are based on training some system,
in order to produce a text that describes and that is coherent to the data provided as input. Main chal-
lenges of such approaches are the proper identification of what to say (the key descriptive elements
to be addressed in the data) and how to say: the correspondence and accuracy between data and text,
the presence of contradictions/redundancy in the text, the control of the amount of synthesis.

This paper presents a framework that is compliant with xAI requirements. In particular we model
ASP/Python programs that enable an explicit control of accuracy errors and amount of synthesis, with
proven optimal solutions. The text description is hierarchically organized, in a top-down structure
where text is enriched with further details, according to logic rules. The generation of natural lan-
guage descriptions’ structure is also managed by logic rules.

1 Introduction

The last decades witnessed a remarkable attention to the impact of Artificial Intelligence (AI) on many
aspects of everyday life. The ensuing debate underscores the social and ethical implications of the use
of AI-based systems and is maturing into new regulations in USA and in Europe [15, 4]. The European
proposal should be operational by 2024 and it introduces a risk-based classification of AI systems based
on the principles of ethical AI [9].

The term explainable AI (xAI, see, for instance, [3, 1]) has emerged to capture desirable properties
of high-risk systems: e.g., transparency (or glass box approach), ethics, the capability to support results
in terms of intelligible descriptions, accountability, security, privacy, and fairness. In the near future,
the adoption of AI systems will depend on the capability of providing a high-level description of inner
activities, which promotes the interpretability and transparency of the decisions that lead to a result.
Hence, domain experts could easily understand and criticize the contributions coming from an AI system,
in a similar way colleague’s opinions would be considered.

In general terms, the data-to-text generation task consists in automatically generating descriptions
from non-linguistic data. In recent years, there has been growing interest in such systems (see for instance
the work [6], supported by the Alexa AI organization). Systems able to textually summarize data, such
as time-series, can help in making data more accessible to non-experts, compared to traditional forms of
presentations. Indeed, natural language descriptions of data can help readers even in cases where data
are depicted by means of forms of representations usually considered “self-explanatory”, such as charts,
histograms, pies, etc, that might be difficult to read if the amount and/or complexity of data is large.

Text-to-speech tools, such as screen readers, might exploit textual generator to extract information
from charts contained in a digital document. This is also relevant in situations where the interpretation
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INdAM–GNCS projects CUP E55F22000270001 and CUP E53C22001930001.
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of visualizations is made difficult or hindered for people with visual impairments or when readers have
limited cognitive abilities in comprehending and analyzing complex charts.

Variants of this problem have been widely studied and solutions have been proposed in various do-
mains. For example, [13] and [16] apply a data-to-text generation system to interpret data-records con-
cerning NBA basketball games. In the financial field, [10] proposes an approach to the problem of
comment generation for time-series of stock prices. Different solutions have been proposed expressively
to treat specific forms of diagrammatic representations of data such as charts and histograms [11, 2] or
tables [8]. In the healthcare domain, [12] presents the prototype BT-45 aimed at generating textual sum-
maries of physiological clinical data (acquired automatically from sensors or entered routinely by the
medical staff). For space limits, we cannot provide an exhaustive description of the literature concerning
data-to-text generation. We refer the reader to the previously mentioned papers and to references therein.

Almost all the recent approaches to data-to-text are based on Machine Learning (ML) and ultimately
rely on Deep Learning (DL) techniques, usually exploiting Neural Networks training algorithms. For
example, the paper [6], mentioned earlier, proposes DataTuner a neural data-to-text generation system.

There are a few exceptions worth mentioning. Among them we mention the seminal work [7] that
proposes a rule-based approach (actually, an expert system written in the OPS5 production system lan-
guage) to generate descriptions of inputs from a Dow Jones stock quotes database. Another notable
exception is the BT-45 system cited earlier. It exploits signal analysis and pattern detection techniques to
process input time series and relies on a corpus of human-authored sample linguistic expression of con-
cepts to be used in generating textual summaries. The system is one of the few proposals appeared in the
literature that do not rely on ML/DL techniques. In this sense, it is similar to our approach. Nevertheless,
it is conceived and designed for a very specific application field. Indeed, it requires the development, by
human experts, of an ontology of medical concepts. Such an ontology is essential both for assessing the
importance of patterns in input data and for generating expert-oriented output descriptions (see [12] for
a detailed presentation of the system).

It should be noted that Machine Learning and Deep Learning methods optimize inner parameters
(sub-symbolic representation) to adhere to training targets, while they struggle to produce a high-level
description (or symbolic) about how and why the network learned specific parameters (black box ap-
proach). This limitation favoured post-hoc explanations [3], e.g., textual captioning and/or visual expla-
nation by examples, still powered by an additional sub-symbolic machinery. Even though explanations
in Deep Learning approaches are one of the next big challenges for AI, [14] expresses some concerns
about the accuracy achievable by this type of explainability and postulates that interpretable models for
high-stakes decisions should be sub-symbolic free systems.

The urge for explainability represents an opportunity of discontinuity with respect to current AI
methods. We divert from mainstream methods based on ML and DL, and the recent trend of producing
a high-level explanation of such black box systems. The design of an architecture that is explainable and
ML/DL free represents an innovative and unexplored research direction.

Our strategic choice is to use robust and off-the-shelf technologies to reach xAI compliance. We
select Answer Set Programming (ASP) and Clingo [5] as the explainable core of the system, because
they allow knowledge representation at a high-level and enables reasoning about such knowledge. This
framework not only is explainable, but also domain experts, in a scientists-in-the-loop fashion, can detect
flaws in the automated process and review the knowledge base accordingly. Handling of incoherent
points of view, inconsistent rules, uncertainty and lack of knowledge can be explicitly supported by the
system.
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2 System’s Design

Our systems models the selection of what to say in (which descriptions are interesting to be narrated)
and how to say (how to build the qualitative features and how to create a narration structure) the final
narration. The core of the system is explainable by design, since we develop a transparent deductive
handling of semantic rules that describe features, by exploiting ASP. The descriptions selection is done
through two optimization steps performed by two ASP programs which determine, possibly multiple,
descriptions for each relevant region of the input. Then, the best candidate descriptions (for different
levels of detail) are selected. The outcome of this selection phase is then processed, again by using ASP,
to determine structural relations among the fragments (narration order, dependencies, etc) to be used for
the generation of the narration. A Python script controls the pre-computation of input, the handling of
ASP programs execution and the conversion of ASP’s output to text and enriched plots.

2.1 Descriptions and curve fitting

Let us present the overall idea and specific explainability targets we set in the process of conversion of
a data series to text. In this work we focus on scalar data acquired on a time domain (represented by
a sequence of floats). Each element can be associated to a timestamp. A description of the data is a
simple and peculiar feature that generalizes a particular distribution along time. A possible bridge from
data to robust descriptions is to rely on fitting functions. We select function prototypes that are fitted
to data (i.e., least square curve fitting) and that are described by few and intuitive parameters, in order
to promote a simple textual description. In the paper we refer to description/descriptor as the function
model and its parameters, while we refer to narration as the corresponding natural language wording of
such description. As an example let us consider the concept of a valley in a series: a sudden decrease
followed by another sudden increase of values can be modeled by a specific function (e.g., a V like
function). The feature extraction, based of curve fitting, allows to retrieve which optimal parameters
provide minimal Root Mean Square Error (RMSE) of the curve w.r.t. the original data. Parameters,
that control the degrees of freedom of the shape of the curve, allow to build a high level narration.
For example, if the two sides of the valley have a high angular coefficient (or vertical orientation), the
valley can be described as sharp. Potential domain-dependent descriptors can be encoded (e.g., specific
patterns) and added with no relevant modification of the system.

In our model, we allow an arbitrary large number of functions prototypes, to support a modular and
general usage. Each of them allows to investigate particular behaviors. Each prototype requires to encode
its fitting function and its conversion to text as natural language description (we discuss about it later).
In our system we currently encoded (number of parameters inside brackets): line (2), two segments
polyline (4), a tooth like function (5) and the most prominent sinusoid (3). We plan for the future to
include the analysis of transformed spaces (e.g., Fourier transform and wavelets) and patterns occurring
with characteristic shapes (e.g., EEG tracks).

Such choice allows to accomplish some steps towards explainability. In particular, measuring the
accuracy of a description, allows the system to provide a self-judgement feedback. There is a measurable
error (the fitting accuracy) and a more qualitative error caused by conversion of descriptions (numerical)
to narrations (textual).

When interpreting the evolution of a measure along time, often we extrapolate a multi-resolution
description: in the simplest case we focus on the overall trend and also on remarkable details. Therefore,
we pre-process descriptors at different sub-intervals, in order to capture potential features at different
time scales. Formally, we divide the time domain into regular n = 2` zones. Each zone covers a subset
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of time samples and it is the smallest unit for RMSE optimizations. The parameter ` (levels of divisions)
controls the amount of time resolution is provided to descriptors. Each descriptor d covers a zone range
from i to j: Zd = {z : 0≤ i≤ z≤ j < n}. In Figure 1 we show an example for some descriptors (bilinear,
sinusoid and squared peak), colored by zones size, for a series resulting to the search term “Concert” in
the last 5 years (from Google Trends) and normalized between 0 and 1. Given a descriptor d, we measure
RMSE for each zone i ∈ Zd , namely Err(d, i). The error is set to infinity for zones not in Zd .

Figure 1: Example of three function prototypes fitting for 16 zones

2.2 Optimal descriptions covering

The problem of finding optimal descriptions that minimize the overall RMSE error is rather trivial and
it is the first phase in the overall optimization process. In a practical scenario, we can expect thousands
of description candidates (set D) to be processed. They originate from a rather small set of function
prototypes combined with a large set of sub-intervals of 2` to be investigated.

The goal is to represent the series through a set of descriptions D ⊆ D out of the description pool.
Each description d has an associated set of zones Zd , the curve type, optimal parameters and the RMSE
Err(d, i).

We wish to control the level of synthesis by an explicit parameter. In other DL approaches this is
rather complex to handle, especially in case of rather long descriptions because of the incoherence in
long text generation. We introduce the concept of verbosity (v = |D|) that defines the maximal number of
descriptions to be employed to describe the series. The verbosity corresponds to the number of sentences
used in the final narration.

The problem can be stated as follows. Given a verbosity v, select a set Dv such that |Dv|= v and the
sum of errors Err(d, i) of each description d ∈ Dv for each zone i ∈ Zd is minimal. We also ask for no
zones overlaps (Zd ∩Z′d = /0, for each d,d′ ∈ Dv) and that each description covers at least n/2v zones.
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Figure 2: Example of optimal descriptions for verbosity 1–5

This last requirement ensures that for low verbosity the descriptions cover a sufficient time span, as a
preference for general descriptions rather than extremely small details.

In Figure 2 it is shown, for the same dataset of Figure 1, the optimization results for v ∈ [1..5]. It can
be noted that the red functions (descriptors) provide a better accuracy on details as more descriptors can
be included. E.g., starting by a tooth function (v = 1), the sharp peak reaching 1.0 is better approximated
with v > 3. Figure 3 shows in a black-red-yellow palette the RMSE for each zone (on the left, 16 zones,
`= 4) and for each v. It can be noted how the error is significantly reduced by higher verbosity.

We believe that a fluent and effective description should find a balance between general synthesis
and offered details. Details should be selected in order to avoid redundant information and/or no RMSE
improvement w.r.t. larger descriptions. Finally, relationships among descriptions (hierarchical structure)
could improve the structure of the narration. In conclusion, selecting a low (general description) and
a high (details) verbosity, e.g., 1 and v, would result into an unnatural flat list of sentences, with the
possible outcome of repetitions and loss of interesting details. Unfortunately, extending the previous
model by these additional requirements creates a combinatorial explosion that can not be easily handled,
essentially because every descriptor is a valid candidate.

2.3 The right balance between summary and details

We present the second optimization problem that models the creation of a summary and a set of details
that describe the series only where necessary and accounting for the relationships among the other details.

We define summary descriptors as the ones that cover the series with a minimal verbosity and a
specified accuracy. This selection allows to control the minimum accuracy for cases in which the fitting
functions encounter a noisy dataset and/or a distribution very different from the prototypes. Formally,
the set S = Ds of summary descriptors is selected among the output of the previous optimization (sets
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Figure 3: Example of optimal RMSE for verbosity 1–5 (left 16 zones, right 32 zones)

D1 . . .Dv, for verbosity up to v). We select the minimal verbosity level s such that a threshold on maximal
RMSE allowed (max_thr) is satisfied by all zones: Err(d, i)< max_thr for i ∈ Zd and d ∈ S.

The decision variables of the optimization are the detail descriptors. We ask for at most v details
that will compose the set of details of the narration. In principle, such details could be taken from Dv (as
mentioned above), being |Dv|= v. We prefer selecting details from ∩i≤vDi, with the introduction of some
constraints among them and a cost function that accounts for accuracy improvements. The inclusion
of lower verbosity levels allows us to consider coarser descriptions of details that may be suitable for
narration as well as a more hierarchical narration structure that covers some overlaps. Moreover, some
details from Dv can be redundant and other aspects captured by lower verbosity could be introduced.
Finally, comparing different verbosity configurations, the introduction of details can be balanced in terms
of minimal amount of RMSE improvement as opposed to the cost of the introduction itself.

Let us start modeling the introduction of details. If two descriptions (including summary) taken from
two different verbosity intersect on some zones, i.e., there is an additional more detailed description,
there must be a minimal RMSE improvement on any zone in order to be willing to talk about the detail.
This threshold (min_thr) ensures that a new detail is introduced for a minimal improvement. Formally,
d ∈ Di and d′ ∈ D j with i < j ∃z.z ∈ Zd ∩Z′d ,Err(d,z)−Err(d′,z)> min_thr.

Another constraint is that if a detail d is selected, it can not be completely covered in all of its
zones Zd by other details of higher verbosity. In this case d would be completely re-worded and thus
redundant in the final textual description.

Finally, we design a maximization problem with a cost function related to the amount of RMSE
improvement provided by details. Ideally, we try to select those details that improve the RMSE coverage
of the summary. In particular, we focus on each zone. If a zone i is covered by at least a detail, the cost
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is the difference between the best and the worst Err(d, i) ∀d.i ∈ Zd . We also reduce the cost by a tiny
penalty p proportional to the number of details that cover the same zone (p = |d.i ∈ Zd |) in order to favor
more distributed coverings.

Let us conclude with a consideration about the decision variables size. The current model needs
only Σi≤v|Di| = v(v− 1)/2 candidates. We believe that exploiting this hierarchy provided by verbosity
levels is rather beneficial for an efficient selection of most relevant descriptors. If the two optimization
problems were joined, the decision variables would become in the order of thousands, depending on the
number of zones and function prototypes.

2.4 Towards natural language

We present now the final processing performed by the last ASP program. The goal is to create a narra-
tion structure that orders and relates the descriptions computed by the last optimization and to retrieve
qualitative properties associated to descriptions. This ASP program allows a single Answer Set and it
does not require any optimization. This crucial step allows to clearly define the properties and rules in
use, to deliver a transparent program.

The paragraph structure is retrieved by computing lexicographic ordering of summary and details
descriptions, based on zones coverage. A narration predicate enumerates properties associated to a
description. In particular it stores description location inside the narration order, grammar connective
relation with next description (immediate/separated), inclusion relation with a description from lower
verbosity and specific qualitative properties.

The larger part of this ASP code is devoted to the conversion of a description into a set of qualitative
properties (accompanied by some quantitative measures). Each function prototype requires a dedicated
ASP fragment that produces a shape property that describes the type of function in relation to its param-
eters. Moreover, it classifies qualitatively the extension of the shape.

As an example, let us show in Figure 4, on the left, the mapping of parameters for a description
made of two consecutive segments into an interpreted shape. In the lower left gray corner we depict two
consecutive segments, characterized by a normal N angle and an aperture angle A. Given the constraints
of the three points forming the segments, N ∈ [0..180] degrees and A ∈ [0..360] degrees. We report the
case when the two segments are rather similar in length; other cases are approximated by a single main
line. As an example, the combination N = 90 and A = 270 would result in a peak (green area) with an
smaller angle of 90 degrees. We depict the arrangements of the two segments at various combination
of the two angles. Gray areas represent impossible combinations, since one of the two segments would
invert the time order along x-axis. The blue area is interpreted as rather constant shape, being A similar
to 180. Adverbs that report on the quality the shape (e.g., rather constant, moderately constant, etc.) can
be generated and the choice of intensity can be modulated by distances from optimum. Red and green
areas represent valleys and peaks, with a rather symmetric normal. White areas represent drop and rise
lines, with different flavours. Also, qualitative amount of shape extension along y axis is associated to
an ordered list of adjectives (e.g., very mild, mild, steep, very steep) that are selected by quantizing the
measures and mapping them on the list. In the same Figure, on the right, we report a fragment of ASP
encoding for valley detection with conversion of the numerical quantification of its depth to a qualitative
description (Strength in the last atom in the body of the first rule).

This modus operandi, even if crafted for each function prototype, can result in a robust general
library. From the explainability point of view, the error introduced from translating a description (still a
mathematical function with associated RMSE) to a qualitative narration, even if not easily measurable,
it can be manually assessed by ASP code analysis and conversion maps like the one shown in Figure 4.
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...

Figure 4: Example of mapping parameters (normal and angle) to type of curve

2.5 Narration of descriptions

Once the narration structure is output by last ASP program, the facts are ready to be embedded in a text
generation.

As a proof of concept, we used a Python procedure that follows the structure and merges strings, to
show that the only problem left is the actual string processing. Connectives are handled according to the
information received and notably, no processing of relevant adjectives and nouns is performed anymore.
This is to show that with minimal imperative intervention is possible to produce the text. A more fluent
version could be reached if grammar rules, variants, style rules and synonyms would be implemented in
a more general ASP program. This is planned as future work.

Another positive side effect of our processing is the capability of plotting an enriched and summa-
rized version of the series, based on the selected descriptions, as shown in Figure 5. On the left we depict
the summary function (in this case a valley) and on the right we highlight some peaks and valleys. On
the bottom of the figures there is a red-green colored bar that reports the relative errors of each zone (16
for this example), where the red value corresponds to max_thr (0.15 in this examples).

The text associated to the Figure 5 is:
In general, the series presents a very deep valley reaching an average of 0.09 between

0.42 and 0.69 out of a general average of 0.42 among the whole dataset. In detail, a

rather sharp valley reaching a value of 0.24 occurs at 0.69; followed by a very steep

increase reaching a value of 0.99 at 0.75; then by a very sharp valley reaching a

value of 0.45 at 0.81; and finally by a sharp peak reaching a value of 0.39 at 1.0.

Notice that, as depicted in Figure 5, in processing the series we used a normalized scale between
0 and 1 for the x axis. A further improvement could map positions to timestamps for a more fluent
processing of ranges and positions in time.

3 Implementation

In implementing our tool, we took advantage of Potassco Clingo Python’s API. The process is started by
a Python script that downloads a tagged time series from Google Trends service.

The main program consists of a Python configurator that sends the descriptor facts to the Control
object for grounding jointly with the first optimization ASP program. For the control structure of the first
optimization program, we opted for an explicit branch and bound inner loop, since we want to recover
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Figure 5: Example of enriched chart. On the left the Summary and on the right the Details

optimal covering at different verbosity levels. As soon as a solution is found, the verbosity value is
incremented by means of an external feature in the outer loop.

The second optimization and description structured are located on the same ASP program, while
each function prototype conversion is stored on a separate ASP file.

Results are plotted with Matplotlib and enriching visual description are computed directly from the
description structure output by the program.

The code is available at ahead-lab.unipr.it/files-for-iclp2023/

4 Results

Let us present some results and discuss the impact of some parameters changes. Defaults parameters are
max_thr = 0.15 and min_thr = 0.02.

4.1 Impact of zones on accuracy

The number of zones clearly affects the quality of fitting functions as well as the number of descriptors.
We compare the results in terms of overall accuracy of the narration (the sum of best contributions for
each zone position, as optimized by the second program). We compare 16 vs 32 zones, that give rise to
408 and 1584 descriptors respectively (we used 3 functions prototypes).

Starting with our running example of “Concert” series, we can see on Figure 3 the heatmaps for 16
(left) and 32 (right) zones as results of the first optimization. In general colors for 32 zones are darker,
meaning that descriptors are more accurate. Measuring the global RMSE (the sum for each position of the
best error covered by any selected description) gives a metric to judge the accuracy of the output. Recall
that the optimization goal included a penalty for overlapped descriptions. Therefore, global RMSE could
be improved with a cost of more awkward narration. Nevertheless, penalties are rather low and therefore
global RMSE is not too distant from the optimization cost.

ahead-lab.unipr.it/files-for-iclp2023/
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Figure 6: Comparison between 16 zones (left) and 32 zones (right). On top details on the enriched plot
and at bottom the heatmaps with accuracy of descriptor candidates

Solution with 32 zones allows a selection of better descriptors and the ones selected by second
optimization improve the global RMSE (0.041 with 16 zones and 0.036 with 32 zones). The global
RMSE for 8 zones is 0.048, which is still acceptable, given the ability of descriptors to find optimal
fitting inside the zone. However, when data has interesting patterns across zones, the ability of capturing
them is lost if too few zones are used. We found that a good compromise could be 16 zones.

From a computational time point of view the complete program wall time, including function fitting
(80% of the time) is a couple of seconds for 8 zones, around 30 seconds for 16 zones and around 2
minutes for 32 zones on a standard laptop.

Let us present a second test case where the “microsoft teams” search term was retrieved on Google
Trends. In this case global RMSE for verbosity 5 is 0.043 (8 zones), 0.030 (16 zones) and 0.024 (32
zones). In Figure 6 we depict on top the two detail results for 16 zones (left) and 32 zones (right). It can
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be noticed that more accurate zones allow to better describe the last two features (valley and drop on the
right) rather than corresponding a mild decrease (left). In order to maintain the number of descriptions
equal to 5, there is an introduction of a small peak plateau (left) in place of two sharp peaks (right). The
overall RMSE is improved, as depicted on the green-red bar at the bottom of the chart. The two heatmaps
at the bottom of the figure show the accuracy with a black-red-yellow scale depending on the zones. The
descriptors selected by the second optimization are colored green.

4.2 Verbosity comparison and text generation

We show here the impact of verbosity, which is the most influential control for sentence summary.
We setup another test case with the series obtained with the search term “blockchain” from Google

Trends (last 5 years) with 16 zones. We launched the program with verbosity 3, 4, and 5. Figure 7
depicts the corresponding enriched plots. On the top left the summary, which is common to all solutions,
presents the main description (a deep plateau). On the top left we show verbosity 3 with the presence of
an initial drop, a narrow peak and a sharp peak. It is interesting to note on bottom left (verbosity 4) that
the initial drop is better approximated by a sequence of two steep drops. At their intersection a new peak
is determined. As future work we plan to implement the abstraction of consecutive functions, which
could result in a higher level identification of other patterns as post processing. Finally, at bottom right
the introduction of another description captures the last emerging peak at the end of the series.

Let us report here the text generation from the selected descriptors.
Verbosity 3: In general, the series presents a very deep lower peak plateau reaching an

average of 0.12 between 0.16 and 0.57 out of a general average of 0.45 among the whole

dataset. In detail, a steep drop reaching a value of 0.05 occurs at 0.44; followed

by a very high peak reaching an average of 0.59 between 0.58 and 0.66 out of a general

average of 0.17 between 0.44 and 0.69; and finally by a sharp peak reaching a value of

0.1 at 1.0.

Verbosity 4: In general, the series presents a very deep lower peak plateau reaching an

average of 0.12 between 0.16 and 0.57 out of a general average of 0.45 among the whole

dataset. In detail, a very steep decrease reaching a value of 0.32 occurs at 0.25;

followed by a steep drop reaching a value of 0.04 at 0.44; then by a very high peak

reaching an average of 0.59 between 0.58 and 0.66 out of a general average of 0.17

between 0.44 and 0.69; and finally by a sharp peak reaching a value of 0.1 at 1.0.

Verbosity 5: In general, the series presents a very deep lower peak plateau reaching an

average of 0.12 between 0.16 and 0.57 out of a general average of 0.45 among the whole

dataset. In detail, a very steep decrease reaching a value of 0.32 occurs at 0.25;

followed by a steep drop reaching a value of 0.04 at 0.44; then by a very high peak

reaching an average of 0.59 between 0.58 and 0.66 out of a general average of 0.17

between 0.44 and 0.69; a very sharp peak reaching a value of 0.36 at 0.88; and finally

by a very steep decrease reaching a value of 0.13 at 1.0.

4.3 Conclusion

As future work we plan to optimize the Python fitting pre-processing, being the most time demanding
(several seconds). The goal is to optimize the system to deliver almost real time answers. We also plan to
develop a comprehensive interpretation of consecutive descriptions, with the goal of inferring additional
descriptions. In this case, some higher-level description could highlight interesting information that
emerges, e.g., if two sharp peaks are adjacent, a valley is probably in between. Another ASP program
could take care of the translation of the narration structure into natural language, porting some Logic
Programming ideas already appeared in the literature. In the results, we showed a simple translation
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Figure 7: Enriched charts with different verbosity (3 = top right, 4 = bottom left, 5 = bottom right). At
top left the summary, shared by all solutions.

to natural language in Python, but a richer rule-based model (e.g., a DCG in Prolog) could handle the
variants and nuances of a natural language in a more elegant and effective form.

In general, we plan to move from single time series and to extend the work in order to handle multiple
and synchronized time series. Such analysis could be extended to high level interpretation of multiple
source events that could be described by an ontology. This could result in critical systems monitoring
(e.g., in healthcare), where explainability is fundamental. Moreover, comparisons of series as well as
comparisons of multidimensional data are other domains for future investigation.

In conclusion, the paper presented an explainable methodology that produces a natural language
text, coming from a structured organization of descriptions, as result of the interpretation of a time
series. Reasoning about descriptions is ruled by an ASP core (transparent and domain-independent):
choices about what to say depend on an optimization problem that is controlled by an ASP concise
and transparent program; the definition of how to say is handled by an ASP program that organizes
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descriptions into a narration structure, assigns qualitative evaluations and is able to abstract low level
features into more general ones. The output is associated to a RMSE measure on accuracy of each
sentence; the conversion from descriptors to qualitative interpretation is described by means of a logic
program; full control on minimal and maximal errors is provided; verbosity is a key input parameter that
models the whole process; the narration structure is handled by a logic program and its description can
be easily converted to natural language and to enriched graphs.
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The rise of powerful AI technology for a range of applications that are sensitive to legal, social, and
ethical norms demands decision-making support in presence of norms and regulations. Normative
reasoning is the realm of deontic logics, that are challenged by well-known benchmark problems
(deontic paradoxes), and lack efficient computational tools. In this paper, we use Answer Set
Programming (ASP) for addressing these shortcomings and showcase how to encode and resolve
several well-known deontic paradoxes utilizing weak constraints. By abstracting and generalizing
this encoding, we present a methodology for translating normative systems in ASP with weak
constraints. This methodology is applied to "ethical" versions of Pac-man, where we obtain a
comparable performance with related works, but ethically preferable results.

1 Introduction

Norms, which involve concepts such as obligation and permission, are an integral part of human society.
They are enormously important in a variety of fields – from law and ethics to artificial intelligence (AI).
In particular, imposing norms – be they ethical, legal or social – on AI systems is crucial, as these systems
have become ubiquitous in our daily routines.

A main difference between norms and other constraints lies in the fact that norms typically allow for the
possibility of violation. Reasoning with and about norms (normative reasoning) requires deontic logic,
the branch of logic that deal with obligation and related concepts. Normative reasoning comes with a
variety of idiosyncratic challenges, which are often exemplified by benchmark examples (so called deontic
paradoxes). A crucial challenge is reasoning about sub-ideal situations, such as contrary-to-duty (CTD)
obligations, which are obligations only triggered by a violation. Other challenges are associated, e.g.,
with defeasibility issues (norms having different priorities, exceptions, etc.).

The first deontic system introduced – Standard Deontic Logic [27] – was failing most of the benchmark
examples, (un)deriving formulas which are counterintuitive in a common-sense reading. This has moti-
vated the introduction of a plethora of deontic logics, see, e.g. [10]. These logics have been investigated
mainly in connection with philosophy and legal reasoning, and with the exception of Defeasible Deontic
Logic DDL [14, 15], they lack defeasibility and efficient provers. Defeasibility and efficient reasoning
methods are instead offered by Answer Set Programming (ASP), which is one of the most successful
paradigms of knowledge representation and reasoning for declarative problem solving [7]. Indeed, in a
long and systematic effort of the knowledge representation community, efficient solvers for fast evaluation
of ASP programs have been developed, see, e.g., [18]. Defeasibility is also inherent in ASP, due to its
default-negation and also weak constraints. This paper introduces a method for using weak constraints for
encoding norms in ASP. We first translate desired basic properties of deontic operators in a common core
that will be used in all further encodings. These properties are established by analyzing multiple well-
known deontic paradoxes (e.g., Ross Paradox, the Fence Scenario,. . . ). By abstracting and generalising

*Work partially supported by the WWTF project TAIGER (ICT22-026).
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the encodings of the specific paradoxes, we provide a methodology for encoding normative systems in
ASP with weak constraints. The methodology is put to work on a case study from [23, 22] that involves a
reinforcement learning agent playing a variant of the Pac-man video game with additional “ethical” rules.
Our encoding is used as a “shield" to filter out the non compliant actions of Pac-man and the outcome is
compared with [22], that uses DDL. For space reason, we must omit details, for which we refer to [16].

2 Preliminaries

Answer Set Programming. We consider extended logic programs with disjunction [11, 20], which are
finite sets of rules r (henceforth referred to as programs)

H1∨ . . .∨Hl :−A1, . . .An, not B1, . . . , not Bm. l,m,n≥ 0, (1)

where all Hi, A j, and Bk are literals in a first-order language. Here not denotes weak (default) negation
and ¬ (also written −) strong negation. Informally, r can be read as: “If all Ai are true and for no B j there
is evidence that it is true, at least one of H1, . . . ,Hl must be true”.

The answer sets of a ground (variable-free) program Π are given in terms of consistent sets S of
ground literals as follows. Let S |= r denote that S |= B(r) implies S |= H(r), where S |= B(r) denotes
that {A1, . . . ,An} ⊆ S and {B1, . . . ,Bm}∩S = /0, and S |= H(r) denotes that {H1 . . . ,Hl}∩S 6= /0. S is an
answer set of Π if S satisfies all rules r in Π(S) = {r ∈Π | S |= B(r)}, and no S′ ⊂ S satisfies Π(S). The
answer sets of a general program Π are those of its grounding grd(Π) that consists of all ground instances
of its rules. For modeling defeasibility of obligations, we use weak constraints of the form

:∼A1, . . . ,An. [w : l]

(as in the system DLV[20]) where A1, . . . ,An are literals (that may be weakly negated) and w, l ≥ 0 are the
weight and the (integer) level of the weak constraint, respectively. Informally, weak constraints single out
optimal answer sets that have minimal total weights of violated weak constraints with higher levels being
more important; see [20] for formal definitions and more background.

SDL. Standard Deontic Logic [27], is the best known system of deontic logic.
SDL formulas are constructed by the following grammar (A is the set of atomic propositions):

ϕ := p ∈A | ¬ϕ | (ϕ) | ϕ ∨ϕ | ϕ ∧ϕ | ϕ → ϕ | Oϕ | Pϕ | Fϕ

SDL is a monadic deontic logic, as the operators O (obligation), P (permission) and F (prohibition) apply
to single formulas; they are read as “it is obligatory that ϕ”, “it is permissible that ϕ”, and “it is forbidden
that ϕ”, resp., and inter-definable, e.g., Pϕ := ¬O(¬ϕ), and Fϕ := O¬ϕ .

The semantics of SDL – also known as the modal logic KD – is based on possible worlds, where the
accessibility relation is serial. A Hilbert system for SDL is obtained by adding the following axiom-
schemata and rules to any axiomatization of classical propositional logic:

If ϕ is a theorem, Oϕ is a theorem (RND)

O(ϕ → ψ)→ (Oϕ → Oψ) (KD) Oϕ →¬O¬ϕ (DD)

In the following we will also use the derived axiom and rule:

If ϕ → ψ is a theorem, Oϕ → Oψ is a theorem (RMD) ¬O⊥ (OD)

For more details about SDL and other deontic logics, see, e.g., [10]
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3 Deontic Paradoxes

As the foundation for our work, we examine several deontic paradoxes. These consist of (un)derivable
formulas which are counter-intuitive when viewed from a common-sense perspective. While referred to
in the literature as paradoxes, many of them are not paradoxes per se, but rather puzzles or dilemmas.
Deontic paradoxes play an important role in deontic logic and normative reasoning; they serve as sanity
checks for existing systems, and as driving force for defining new systems. In particular, they exemplify
that SDL fails to capture the nuances of normative reasoning expected in certain scenarios. There are
many such paradoxes. We categorise them according to the reason for their failure, see e.g. [17, 10], and
analyze one example for each class:

1. Paradoxes centering around RMD: Ross’s Paradox, Good Samaritan Paradox, Åqvist’s Paradox of
Epistemic Obligation

2. Puzzles centering around DD and OD: Sartre’s Dilemma, Plato’s Dilemma

3. Puzzles centering around deontic conditionals: Broome’s Counterexample, Chisholm’s Contrary-
to-Duty Paradox, Forrester’s Paradox, Considerate Assassin Paradox, Asparagus Paradox, Fence
Paradox, Alternative Service Paradox

Deontic conditionals refer to obligations that arise situationally; written as O(A/B) (to be read as “A is
obligatory if B”) they have been introduced to cope with contrary-to-duty obligations, i.e., obligations
which come into force when another obligation is violated.

Paradoxes centering around RMD show, in general, that SDL is too strong as it derives unwanted
consequences. An example is Ross’s Paradox, which consists of the following two sentences:

It is obligatory that the letter is mailed. (R1)

It is obligatory that the letter is mailed or burned. (R2)

Let O(m) and O(m∨ b) formalize (R1) and (R2), respectively. As m→ (m∨ b) is a theorem in SDL,
O(m∨ b) follows from O(m) by RMD and modus ponens. But it seems counterintuitive to derive an
obligation that is satisfied by burning the letter, when failing to mail the letter.

Puzzles centering around DD and OD involve conflicting obligations that cannot be obeyed. An example
is Plato’s Dilemma:

It is obligatory that I meet my friend for dinner. (P1)

It is obligatory that I rush my child to the hospital. (P2)

Clearly, it is not possible to satisfy both obligations at the same time. Using common sense reasoning,
P2 should override P1, but in SDL the presence of two contradictory obligations would make everything
obligatory (deontic explosion).

Puzzles centering around deontic conditionals have as a prominent example the Fence Scenario [24],
which combines two different weaknesses of SDL regarding CTD obligations and exceptions:

There must be no fence. (F1)

If there is a fence then it must be a white fence. (F2)

If the cottage is by the sea, there may be a fence. (F3)
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Figure 1: The common core of our encodings

O(X)∨−O(X) :−act(X). (1) :−F(X),Do(X). (7)

F(X)∨−F(X) :−act(X). (2) Happens(X) :−Do(X). (8)

:−O(X),−Dia(X). (3) :−Do(X),−Dia(X). (9)

−Dia(X) :−−Do(X),act(X). (4) :∼O(X).[1 : 1] (10)

:−O(X),F(X). (5) :∼F(X).[1 : 1] (11)

Do(X)∨−Do(X) :−act(X). (6)

Here (F2) serves as a CTD obligation that is active when (F1) is violated, while (F3) serves as an exception
to (F1). Note that under this interpretation, if the cottage is by the sea the fence need not be white. The
contrary-to-duty obligation (F2) cannot be formalised in SDL: having a white fence implies having a fence,
and by (RND) the obligation to have a fence; this contradicts (F1). Moreover, as SDL lacks expressing
defeasibility, (F3) cannot be properly formalized.

4 Encoding the Paradoxes

We now proceed to encode the paradoxes from above All encodings share the same common core, shown
in Figure 1, that encodes properties of SDL, using the following predicates:

• O(X) resp. F(X) denotes that X is obligatory resp. forbidden;

• act(X) denotes that X is eligible for reasoning about whether X is obligatory or not. While an
action by default, in some cases X may not materialize but viewed as such. An example from above
would be owning a white fence, as we reason about whether it is obligatory.

• Do(X) denotes that the agent has chosen to take the action X , and −Do(X) denotes that the agent
will definitely not take the action X .

• Dia(X) is an auxiliary predicate to denote that an action X is an option resp. possible (in the sense
on modal logic). Thus, −Dia(X) can either mean that the agent cannot take the action or that the
agent has chosen not to take the action.

• Happens(X) is an auxiliary predicate that denotes an event X happening. It is sometimes used in
encodings to denote events happening which are usually outside the agents control.

Intuitively, the common core guesses whether something is obligatory (1), forbidden (2) and whether the
agent takes the action (6). The remaining rules then encode connections between predicates and exclude
answer sets that we deem inconsistent, e.g., something being obligatory and forbidden or something being
obligatory and that action not taken. The weak constraints (10) and (11) are used to eliminate answer sets
that derive obligations/prohibitions with no need.

We note that the common core is not a faithful encoding of full SDL and its axioms: while theoretically
possible, this would be undesired as SDL axioms lead to multiple paradoxes. Instead, the common core
captures some of the SDL axioms, while satisfactory handling the deontic paradoxes. For instance
Proposition 1. The SDL axiom DD holds in the common core.

Proof. DD is formalized in rule (5), that forbids an action from being both forbidden and obligatory, as
Oϕ →¬O¬ϕ which is equivalent to ¬Oϕ ∨¬Fϕ , and to ¬(Oϕ ∧Fϕ).
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The idea behind the common core is to generate all maximal sets of non-auxiliary predicates that are
consistent and filter out suboptimal answer sets using weak constraints. We require that in a consistent set
an action is not obligatory and forbidden at the same time and any obligatory action is taken (resp. any
forbidden action is not taken). For instance, disregarding the auxiliary predicates Dia, Happens and act,
the following are all maximal consistent sets of deontic predicates:

{O(action),−F(action),Do(action)},{F(action),−O(action),−Do(action)},
{−F(action),−O(action),−Do(action)},{−F(action),−O(action),Do(action)}

The next proposition can be seen as a soundness and completeness result for the common core.
Proposition 2. The rules (1)–(9) from Figure 1 allow for all and only the maximal consistent sets of
deontic predicates as answer sets.

This can be seen by inspecting the answers sets output by a solver. Intuitively, soundness of the rules (1)
to (9) is achieved, as inconsistent answer sets are excluded. Completeness on the other hand is given, as
all answer sets that are considered consistent for an action are generated.

Note that in Prop. 2 the weak constraints (10) and (11) are excluded: as every answer set for them
would represent an optimal way to handle given norms, they would eliminate every answer set containing
obligations or prohibitions, and completeness would be lost. By including them, preference will be given
to unrestricted behaviour, in interplay with possible further rules.

4.1 Paradox encodings

We describe how to extend the common core to encode selected paradoxes from above.

Ross’s Paradox. In contrast with what happens in SDL, we do not want to derive (R2) in the ASP
encoding. To achieve this, we add the following rule and facts to the core:

:∼−O(mail). [1 : 2] (12) act(mail). (13) act(burn). (14)

Note that a disjunction over obligations is represented by two different answer sets that each contain one
possible way to satisfy the obligation over the disjunction.

The obligation (R1) is created using the weak constraint (12), while the facts (13) and (14) declare mail
and burn as actions to reason about. For mail (resp. burn) the core encoding guesses it as obligatory or
not; (12) may penalise the guess at the highest level if the program does not entail mailing the letter as
obligatory. As constraint violation at the highest level is minimised, each optimal answer set includes the
obligation to mail the letter, should such an answer set exist.

The program has two answer sets; none of them derive the obligation to burn the letter, and they only
differ for the choice of the agent to burn the letter or not. By adding a rule specifying that it is not possible
to perform both acions: burn the letter and mail it, the answer set where the agent chooses to burn the
letter would not be derived.

Plato’s Dilemma. Recall that the desired outcome of this dilemma would be that the agent takes her child
to the hospital, thereby violating the obligation of meeting her friend for dinner. The encoding presents
two interesting aspects: prioritisation of the obligations and the impossibility of taking both actions. This
can be encoded as follows:

:∼−O(hel p),Happens(emergency).[1 : 3] (20) act(hel p). (23)

:∼−O(meet).[1 : 2] (21) :−Do(hel p),Do(meet). (24)

act(meet). (22) Happens(emergency). (25)
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The weak constraint (20) is at level 3, the highest in this encoding, and penalises answer sets in which
Happens(emergency) is true but the obligation to help is not derived. In other words, it derives the
obligation (P2) to help the child in case of an emergency. The weak constraint (21) encodes the obligation
(P1) to meet the friend for dinner, but at a lower level (viz. 2), which gives priority to (P2). The constraint
(24) encodes the impossibility of taking both actions. With the assertions that an emergency occurs and
meet and hel p are the possible actions, as desired, a single answer set exists containing the obligation to
help the child.

Fence Paradox One might think that CTD obligations could be handled like exceptions to obligations.
While one could accordingly state “There may be a fence if it is white”, it would not have the same
meaning as in the paradox. Handling a CTD obligation as an exception results in a loss the original
obligation to a certain degree; it could in this case be seen as the least thing to do to set things right. While
having a white fence improves the situation, the presence of the fence itself remains undesirable [24].

The important fact to consider is that should the cottage be by the sea, then as (F1) is not active due to
(F3), the fence need not be white. To this end, we add the following to the common core:

:∼−F(have_ f ence), not Location(sea). [1 : 2] (30)

:∼Do(have_ f ence), not Location(sea), act(have_ f ence). (32)
−O(have_white_ f ence). [1 : 2] (31) act(have_white_ f ence). (33)

Here (30) caters for (F1) and (31) for (F2); notably, (F3) also affects the CTD obligation (F2). This is
needed as the fence has to be white only when the cottage is not by the sea. Otherwise the obligation for
the fence to be white would also be derived if the cottage was by the sea.

To check whether the obligation for the fence to be white is deduced when the cottage is by the sea (and
we have a fence), we further add:

Location(sea). Do(have_ f ence).

Then two answer sets exist; both do not derive the obligation for the fence to be white. When testing
other constellations, the answer sets obtained also represent the expected results.

5 Generalisation and Methodology

We can classify the obligations that appeared in the paradoxes into the following classes:

• Regular obligations: These obligations should be followed as long as possible (without violating a
more important obligation).

• Conditional obligations: These are obligations that only need to be followed given certain
preconditions. E.g., the obligation to wear a suit when at a formal event.

• Obligations over disjunctions: obligations that are fulfilled by satisfying any disjunct that consti-
tutes the obligation; e.g., bring dessert or salad.

• Conjunctions of obligations that all need to be satisfied: obligations consisting of multiple parts
where satisfying all parts is necessary.

• Obligations with exceptions: obligations to be followed unless an exception is given.

• Contrary-to-duty obligations: obligations that arise as another obligation is violated.
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Type of obligation Encoding
Regular :∼−O(o). [w : l]

Conditional :∼−O(o),condition. [w : l]
Disjunction :∼−O(o1),−O(o2), . . . ,−O(on). [w : l]
Conjunction :∼not Con j. [w : l]

Con j :−O(o1), . . . ,O(on).

Exceptions :∼−O(o), not Exception. [1 : 2]
Contrary-to-duty :∼−Do(o1),−O(o2). [1 : 2]

Table 1: Encodings for different types of obligations

Note that prohibitions are viewed as regular negative obligations, i.e. the obligation not to do something.
The different kinds of obligations are encoded as shown in Table 1. Their encoding uses weak constraints
to model defeasibility. An obligation to take an action a that should always hold is encoded in the
following way:

:∼−O(a). [w : l]

Note that the weight w and the level l of the weak constraint depend on the importance of the obligation and
conflicting obligations. In most cases, w = 1 and merely l is used to encode priorities among obligations.
Conflicts between obligations are detected and the priority among obligations is established through weak
constraints (more important obligations have higher level).

By generalising the encodings of the considered paradoxes (from Section 3), we propose the following
encoding methodology that consists of the following steps:

Step 1. For each of the norms determine what kind of obligation it represents, among the six
different kinds of obligations we have considered.

Step 2. Determine which actions are simultaneously incompatible. Knowing which actions are in
conflict eases determining the importance of the obligations. Incompatibility needs to be determined
through context. E.g., while in general it is possible to watch a movie while browsing the internet,
these actions may be incompatible on an old smartphone.

Step 3. Encode the different kinds of obligations and their importance. Here weights as priorities
play an important role. There are two cases we need to consider:

Case 1. An obligation (of whatever kind) is more important than the other. In this case, setting the
level of one constraint higher than the other is sufficient. E.g., consider the case of two obligations
o1 and o2 where the latter is more important. If o1 and o2 have no special properties, the encoding
is: (with j ≥ 1)

:∼−O(o1). [1 : l] :∼−O(o2). [1 : l + j]

Note that j may differ given additional obligations. We account for this as follows.
Suppose the incompatibilities between actions are given, as well as the importance of obligations
by a preference O′ �O stating that the obligation O′ is strictly more important than O. We generate
a directed graph G = (V,E) whose vertices V = {O1, . . . ,On} are the obligations having the edges
E = {(Oi,O j) ∈V 2 | Oi � O j}; note that G must be acyclic.1 The sinks of G, i.e., vertices with no

1For Non-strict preference �, we can use the supergraph of G, whose nodes cluster all equally preferable obligations.
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outgoing arcs, are assigned priority p1 = 2. After simultaneously removing all sinks, we iterate the
process with increased priority, i.e., assign the new sinks priorities p2 = 3, p3 = 4 etc.; this results
in a priorization by levels.

Case 2. Multiple obligations o1, . . .on are in conflict with an obligation o. While satisfying o
is better than satisfying a single oi, satisfying multiple oi’s may be equally good or better than
satisfying o. In this case, we can use the weights of the weak constraints for o1, . . . ,on to encode
this: they must then correspond to their importance and o must have a weight that is equal or smaller
than the joint weights.
For example, if o1,o2 and o3 are mutually non-exclusive and equally important to o if all are
satisfied, the following weights could be chosen, for a number k ≥ 1 (the level is the same):

:∼−O(o1). [k : l] :∼−O(o2). [k : l] :∼−O(o3). [k : l] :∼−O(o). [3k : l]

Step 4. Encode the exclusion of combinations of actions found incompatible. If two actions a1 and
a2 are incompatible, this is encoded by adding the following constraint:

:−Do(a1),Do(a2).

Step 5. Encode additional information. This includes denoting constants as actions using the
predicate act, and specifying dependencies between actions; e.g., if the action running entails the
action moving, we add a rule

Do(move) :−Do(run).

Observation 1. The common core simulates the SDL axioms RND and KD.
As there are no theorems in our framework, RND is not directly implemented. However, if we read a
theorem as something than cannot be violated, RND becomes: “If it is impossible to violate ϕ , then ϕ

is obligatory.” In our semantics this obligation would not be derived; however the obligation to take the
action ϕ is given indirectly as the agent must do ϕ (that cannot be violated). For KD, recall that if an
obligation is in an answer set, the agent has to take the corresponding action. We encode O(ϕ→ ψ) using
a weak constraint that sanctions answer sets including Do(ϕ) but not O(ψ). As every answer set that
contains O(ϕ) also contains Do(ϕ), each answer set that contains O(ϕ) but not O(ψ) is also sanctioned.
This way we simulate KD, as an answer set that contains O(ϕ) must also contain O(ψ), unless the latter
conflicts with an obligation of higher or equal importance.

6 A Case Study: Ethical Pac-man

We put the methodology described in the previous section to work on a reinforcement learning agent
playing variants of the game Pac-man. Pac-man features a closed environment with simple game mechanics
and parameters which are easy to manipulate, and extend with norms that can simulate normative conflicts.

The starting position of the game is depicted in Fig. 2. Pac-man’s objective is to eat all the pellets in the
maze while avoiding two ghosts (orange and blue) that will kill him upon contact. Pac-man and the ghosts
typically move one step at a time, with the ghosts’ movements being non-deterministic. If Pac-man ate
one of the larger pellets, the ghosts enter a scared state and become vulnerable, allowing Pac-man to eat
them. In this state, the ghosts move at half speed. A scared ghost is instantly eaten by Pac-man when their
distance is less than 1 on both axes. Points are awarded for consuming pellets and ghosts, with a discount
applied based on the duration of the game (the longer the game lasts, the lower the score). Pac-man wins
if he collects all the pellets, and a faster completion time results in a higher score.
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Figure 2: Pac-manFollowing [23, 22], we consider variants of the Pac-man
game with additional “ethical norms". Vegan Pac-man, in
which Pac-man is not allowed to eat any ghost has been
introduced in [23] and implemented there using multi-
objective Reinforcement Learning (RL) with policy or-
chestration. Vegan Pac-man and its vegetarian variant
were analyzed in [22], that will serve as the benchmark for
our work. Vegetarian Pac-man can eat the orange ghost (as
it would be cheese) but not the blue ghost. The approach
used in [22] combines RL with formal tools for normative
reasoning. The authors implement a logic-based normative
supervisor module, which informs the trained RL agent of the ethical requirements in force in a given
situation. At each step, Pac-man chooses an action complying with the norms, and a least evil action
if there is no such action. Their approach allows to deal with complex normative systems, conflicting
obligations, and situations where no compliance is possible. Norms and the current state of the agent’s
environment are encoded in defeasible deontic logic [14, 15], which is a deontic logic with defeasible
rules that specify typical correlations, such as “birds usually fly"; its theorem prover SPINdle is used to
check norms compliance. Exceptions are encoded by so-called defeaters, e.g., if the bird is a penguin.

We consider here an alternative realization of the normative supervisor, based on our norms encoding
and using the DLV reasoner. We experimentally compare the obtained results and apply our methodology
to more intricated “ethical norms" for Pac-man.

Vegan Pac-man: To prohibit Pac-man from eating any ghost, we can state:

O(¬eat(g)) respectively F(eat(g)), for g ∈ {blue_ghost,blue_ghost}.

Vegetarian Pac-man: To prohibit Pac-man from eating the blue ghost, we state:

O(¬eat(blue_ghost)) respectively F(eat(blue_ghost)).

We encode the norm bases by forbidding Pac-man to move in a direction if the ghosts are scared and
moving there could lead to eat a ghost. Furthermore, we forbid Pac-man from stopping if a ghost could
move into Pac-man (and then be eaten). Pac-man may still eat a ghost. This can happen if both a ghost
and Pac-man move towards a larger pellet from perpendicular directions. In this case, Pac-man will first
eat the pellet and then the ghost. Furthermore, Pac-man could be cornered between two scared ghosts,
leaving him no choice but eating one of them.

The scenarios that can precede Pac-man eating a ghost are the same for both norm bases. As Pac-man
and the ghosts can move at most one step at a time, we can derive that the Manhattan distance between
Pac-man and a scared ghost must in this case be at least 1 and at most 2 (coordinates are integers). This
leaves three possibilities for their relative locations. We encoded the norms by accounting for the locations
of the ghosts relative to Pac-man and forbidding Pac-man to make moves that could lead to eating a ghost.

Experimental Results. The vegan norm base was implemented in [23] who trained two different models
for Pac-man; in one model he was trained to maximize the game score, and in the other to comply with
the norms using respective data. An external function enabled the agent to decide which model to use
for choosing the next move. When the importance of the norm-compliance model was low, the agent
in general did not comply with the norm, resulting in around 2 ghosts eaten per game. Making the
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norm base % games won game score avg[max] avg ghosts eaten (blue/orange) avg time (s)
Vegan 90.7 | 91.2 1209.86[1708] | 1217[1538] 0.023/0.02 | 0.013/0.018 10.1 | 6.7
Vegetarian 94.0 | 90.6 1413.80[1742] | 1366[1751] 0.01/0.79 | 0.001/0.788 9.8 | 6.5
Weak Vegan | 89.9 | 1204[1731] | 0.002/0.043 | 6.7

Table 2: Results for Neufeld et al.’s normative supervisor [22] | our encoding

importance sufficiently high, the number of ghosts eaten did decrease to one (similar to our results, see
Table 2). In this approach, however, it is not clear how to enforce more complex norm sets, including, e.g.,
contrary-to-duty obligations.

In order to compare Neufeld et al.’s approach [22] with our ASP encodings, we utilized their Java-based
framework. This framework is built in Java and provides the normative reasoners with a ready-to-use
interface to the Pac-man game.2 The RL agent was trained on 250 games and the normative supervisor
was evaluated on 1000 games with the same initial state.

The results reported in [22] for their normative supervisor (using SPINdle) and for our ASP-based
normative supervisor (using JDLV, the java framework for DLV) are shown in Table 2. The latter
outperformed the original supervisor for both norm bases w.r.t. the ghosts eaten and speed: its average
running time was less than 7 seconds, while for Neufeld et al.’s normative supervisor it was some seconds
(roughly 50%) longer, using a Lenovo Y50-70 with 8GB RAM and Ubuntu 22.04 LTS. For the vegan
norm base, our encoding resulted in a higher winning rate and an improved average score. (A game loss
costs 500 points, resulting possibly in a negative score.) The higher maximum score in Neufeld et al.’s
results is likely attributed to a game where both ghosts were eaten. In the vegetarian norm base, the lower
winning rate and average score is probably due to Pac-man’s preference to lose in our framework a game
rather than eating a ghost.

Weak Vegan Pac-man. Consider the following more intricated variant of the vegan norm base:

O1 It is obligatory not to eat the blue ghost.

O2 It is obligatory not to eat the orange ghost, unless a ghost has already been eaten.

O3 It is obligatory to stop (for one move) after having eaten a ghost.

Thus, the behaviour may change at some point. To encode it, we follow our methodology:
Step 1: We categorise the obligations.

− O1 is a regular obligation. It has no exceptions and should be followed at all times.

− O2 is an obligation with an exception. Once the latter occurs, it holds until the game is over.

− O3 is a derived obligation. Note that it is not necessarily a CTD obligation, as eating a ghost may not
violate an obligation if the ghost is blue.

Step 2: We look at pairs of obligations that cannot be fulfilled simultaneously.

− O1 and O2 could possibly be in conflict, as Pac-man may be stuck between two ghosts moving towards
him. This may force him to eat one of them. In this case we prioritize O1, as we want preventing the blue
ghost from being eaten to have the highest priority.

− O1 and O3 could be in conflict, as stopping after eating an orange ghost may lead to eating a blue ghost.

2For complete DLV code and experimental data, see github.com/Chrisi-boop/DLV-Normative-Reasoning-.

github.com/Chrisi-boop/DLV-Normative-Reasoning-
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Figure 3: Encoding for the Pac-man norm base

:∼−F(eat(blue_ghost)). [1 : 3]

:∼not Exception,
−F(eat(orange_ghost)). [1 : 2]

:∼−O(stop),
Do(eat(orange_ghost)). [1 : 2]

:∼−O(stop),
Do(eat(blue_ghost)). [1 : 2]

(a) obligations

:−Do(stop), Do(north).
· · ·

:−F(eat(blue_ghost)),

−F(east),Pacman(A,B),

BlueGhost(C,D,1),

E =C−A, E ≤ 2,

G = B−D, G≤ 1.
· · ·

(b) conflicting actions

act(d). for d ∈ D

act(eat(blue_ghost)).

act(eat(orange_ghost)).

:−
∧

d∈D F(d).

(c) action specs; D = {stop,
north, east, south, west}

− O2 and O3 cannot be in conflict, as after eating a ghost the exception to O2 is empowered. We give
priority to O1 over O3 since the preservation of the blue ghost from being consumed has highest priority.

Summarizing the statements above, we obtain the following preferences: O1 � O2, O1 � O3.
Step 3: We derive the following weights and levels for the weak constraints corresponding to the
obligations: O1 is assigned [1 : 3], O2 is assigned [1 : 2], and O3 is assigned [1 : 2].

We next look at the predicates used in the encoding:

• Pacman(X,Y) denotes the location of Pac-man. X and Y refer to his coordinates on the map.

• BlueGhost(X,Y,B) and OrangeGhost(X,Y,B) denotes the location of the blue resp. orange ghost,
where X ,Y are its coordinates and B is 1 if the ghost is scared and 0 otherwise.

• Exception means the agent has already eaten a ghost and may eat orange ghosts. Whenever
Exception is in an answer set, the normative reasoner will inject it into any later answer set.

The actions to reason about are stop, north, east, south, west, eat(blue_ghost), eat(orange_ghost):

• Do(stop) means that the agent remains stationary for one action.

• Do(d), d ∈ {north,east,south,west}, means that the agent will move in direction d.

• Do(eat(g), g ∈ {blue_ghost,orange_ghost} means that the agent eats that ghost.

To encode the norms we add the rules and facts in Fig. 3 to the common core. Following our methodology,
we encode the obligations as in Fig. 3a. Note that the obligation to eat the blue and orange ghost are
encoded as separate actions as two different obligations (O3).
Step 4: The conflicting actions from Step 2 are encoded in Fig. 3b. For Pac-man, we encode that he
cannot take two actions at once, e.g., stop and move north. For ghosts, as a scared ghost may move both
towards and away from Pac-man, we cannot encode ensuing conflicts directly. However, we can assert that
permitting an action that could potentially involve consuming a ghost is inconsistent with the prohibition
of consuming that ghost. Fig. 3.b shows one such rule; for space reasons we omit the other rules, as well
as further action constraints for Pac-man.2

Step 5: We state the actions to reason about (Fig. 3c), and encode that it is not possible to prevent Pac-man
from taking any action (i.e., Pac-man must either stop or move).
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In fact, our actual encoding omits the actions eat(blue_ghost) and eat(orange_ghost); they are substi-
tuted by prohibitions on moving towards scared ghosts. We used them here for readability.

Experiments. The implementation of this norm base yielded results that align with our expectations, as
depicted in Table 2. Pac-man consumed more ghosts compared to the vegan norm base but fewer than
the vegetarian norm base, and mostly orange ghosts. The obligation to halt when Pac-man eats a ghost
resulted in a lower average score, as time passage leads to point deductions. This observation also explains
the marginal increase in the maximum score and the slight decrease in the winning rate. Despite the added
complexity of the norm base, there was no significant difference in the running time.

7 Related Work and Conclusion

Starting with an analysis of well-known deontic paradoxes, we have introduced a methodology to encode
normative systems in ASP, using DLV as the system of choice. Our approach determines optimal ways to
handle scenarios, using agreed upon prioritizations of obligations.

Multiple approaches to implement normative systems do exist. Some of those related to the multi-agent
systems community can be found, e.g., in [2]. We will discuss below the approaches most similar to ours.

One of the earliest works on encoding normative systems is Sergot et al. [25], who did encode the British
Nationality Act in logic programming. However, their work focused on determining the applicability of
the British Nationality Act to specific individuals, without delving into the reasoning about obligations or
seeking optimal courses of action within the framework of given norms.

[26] introduced in IMPACT syntax and semantics for reasoning about obligations and prohibitions
among agents in a rule-based language under different semantics, among them stable model semantics.
Although they refer to deontic logic, the proposed way of dealing with conflicting obligations is to satisfy
a maximal subset of obligations, without considering possible preferences among them.

An abductive logic programming framework has been employed in [19] to encode obligations in various
deontic paradoxes. Rather than trying to derive all optimal ways of fulfilling given obligations, the authors
focused on finding a best model of a definite Horn logic program that satisfies given goals. When it comes
to establishing model preferences, the auxiliary symbols used in the encodings played a significant role.
However, their usage requires care, and no systematic way of defining model preference was considered,
for which our work could provide inspiration.

Using a combination of input-output logic and game theoretic methods, [6] encoded the behaviour of
(multi-)agents subjected to a normative system. In their work, agents possess the ability to reason in a
manner more akin to humans, for example, determining if the consequences of violating an obligation are
worth the penalty. Their work lacks however computational support.

Temporal Logic has been used to simulate normative reasoning. Temporal Logic approaches offer an
advantage in enforcing norms that indirectly restrict certain actions [1, 8]. Moreover there are advanced
tools that effectively combine reinforcement learning, with, e.g., LTL (see [4]), and LDLf (see [9]).
However, as is well known temporal logic cannot handle all the intricacies of normative reasoning, see,
e.g., the discussion in [2, 21].

Different ASP approaches have been proposed in [13, 3, 12]. In these works, logic programs were
extended with the SDL modality, and [12] introduces also temporal operators. Alferes et al. [3] further
provides a way to check equivalence of two deontic logic programs. These approaches however require
an understanding of the embedded logic and some implementation efforts, whereas our method can be
used out of the box and with an ASP solver off the shelf.
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In our approach, the selection of paradoxes has proven to be of utmost importance, as failure to include
certain ones resulted in overlooking crucial aspects of normative systems; e.g., the analysis of the Fence
Paradox has enabled us to differentiate between contrary-to-duty obligations and exceptions, which is
a well-known problem in the field of normative reasoning [24]. An important feature of our approach
is the availability of optimized tools (ASP solvers) and the simplicity of the encoding. There is a clear
cut common core that is supplemented with defined ways for encoding different kinds of obligations.
The approach, described for DLV in this work, can be easily transferred to other ASP solvers, e.g. clasp
(potassco.org/clasp). A main limitation of our approach is that encoding intricate normative systems
can result in large programs. Furthermore, obligations that require the agent to maintain certain conditions
might be cumbersome to encode for complex scenarios where taking particular actions might indirectly
lead to a violation. Consider for instance “See to it that the child stays dry.” Here it is not enough to simply
not get the child wet, but one must also take measures to protect the child from getting wet through other
means. This may entail preventing the child from going outside if it is about to rain. For such normative
systems, approaches extending ASP with temporal logics [12], may be preferable.

Outlook. A peculiar feature of our approach is that all encoded obligations are comparable based on
their associated weights and priorities. While in our encoding we did not run into problems, it is possible
that certain normative systems may require optimal answer sets encoding solutions that are inherently
incomparable. Future work may also look into other ASP solvers with more sophisticated means for
filtering out answer sets to model normative reasoning. The clasp extension asprin (potassco.org/
asprin) or the DLV2 system using WASP [5], could serve as examples.

The Pac-man case study highlighted the fact that even simple obligations can require a substantial
number of weak constraints to accurately encode the means of fulfilling those obligations. To address
this weakness, we plan to explore the integration of our framework with auxiliary software capable of
reasoning about the actions neeeded to fulfill specific obligations. In the context of Pac-man, such software
might have to interpret, e.g., how the obligation to not eat a ghost could be fulfilled.
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Approximation fixpoint theory (AFT) provides an algebraic framework for the study of fixpoints of
operators on bilattices and has found its applications in characterizing semantics for various non-
monotonic languages. Here, we show that the alternating fixpoint operator by Knorr et al. for the
study of the well-founded semantics for hybrid MKNF is in fact an approximator of AFT in disguise,
which, thanks to the abstraction power of AFT, characterizes all two-valued and three-valued seman-
tics for hybrid MKNF. Furthermore, we show an improved approximator for these knowledge bases,
of which the least stable fixpoint is information richer than the one formulated from Knorr et al.’s
construction, which leads to an improved computation for the well-founded semantics. This work
is built on an extension of AFT that supports consistent as well as inconsistent pairs in the induced
product bilattice, to deal with inconsistencies that arise in the context of hybrid MKNF. This part of
the work generalizes the original AFT from symmetric approximators to arbitrary approximators.

1 Generalization of AFT

Given a complete lattice 〈L,≤〉, AFT is built on the induced product bilattice 〈L2,≤p〉, where ≤p is
the precision order and defined as: for all x,y,x′,y′ ∈ L, (x,y) ≤p (x′,y′) if x ≤ x′ and y′ ≤ y. A pair
(x,y) ∈ L2 is consistent if x ≤ y and inconsistent otherwise, and a pair (x,x) is called exact. We denote
the set of consistent pairs by Lc. Since the≤p ordering is a complete lattice ordering on L2,≤p-monotone
operators on L2 possess fixpoints and a least fixpoint. The original AFT is restricted to consistent and
symmetric approximators [1, 2], and we generalize it to all ≤p-monotone operators on L2.

Definition 1 An operator A : L2→ L2 is an approximator if A is ≤p-monotone on L2 and for all x ∈ L,
whenever A(x,x) is consistent, A maps (x,x) to an exact pair.

The original definition of an approximator requires an ≤-monotone operator A : L2→ L2 to map an
exact pair to an exact pair. For example, consider a complete lattice where L = {⊥,>} and ≤ is defined
as usual. Let A be an identity function on L2 everywhere except A(>,>) = (>,⊥). Thus, A(>,>) is
inconsistent. But it is easy to check that A is≤p-monotone. Thus, while the operator A is an approximator
by our definition, it is not by the original definition.

For the study of semantics, the main focus has been on the stable revision operator, which is defined
as: Given any pair (u,v) ∈ L2 and an approximator A, we define StA(u,v) = (lfp(A(·,v)1), lfp(A(u, ·)2)),
where A(·,v)1 denotes the operator L→ L : z 7→ A(z,v)1 and A(u, ·)2 denotes the operator L→ L : z 7→
A(u,z)2. That is, both A(·,v)1 and A(u, ·)2 are projection operators on L. Since A is ≤p-monotone on L2,
both projection operators A(·,v)1 and A(u, ·)2 are ≤-monotone on L for any pair (u,v) ∈ L2, and thus the
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least fixpoint exists for each. The stable revision operator is therefore well-defined, and furthermore, it
is ≤p-monotone as well. The fixpoints of the stable revision operator StA are called stable fixpoints of A.

In general, however, there is no guarantee that under the above notion of stable revision consis-
tent stable fixpoints under consistent AFT are preserved. One can argue that a desirable approximator
should not exhibit this “anomaly” so that accommodating inconsistent pairs does not have to sacrifice
the preservation of consistent stable fixpoints.

Definition 2 Let A be an approximator on L2 and (u,v)∈Lc such that (u,v)= (lfp(A(·,v)1), lfp(A(u, ·)2))
where A(·,v)1 is an operator on [⊥,v] and A(u, ·)2 is an operator on [u,>].1 Approximator A is called
strong for (u,v) if (u,v) = (lfp(A(·,v)1), lfp(A(u, ·)2)) where both A(·,v)1 and A(u, ·)2 are operators on
L. Approximator A is called strong if it is strong for every (u,v) ∈ Lc that satisfies the above condition.

2 Alternating Fixpoint Operator for Hybrid MKNF as an Approximator

The logic of MKNF consists of a first-order language with two modal operators, K, for minimal knowl-
edge, and not, for negation-as-failure. Motik and Rosati [5] propose hybrid MKNF for integrating non-
monotonic rules with description logics (DLs) under two-valued logic, and Knorr et al. [3] generalize
it to three-valued semantics where the information-minimum three-valued MKNF model of an MKNF
formulat φ , when it exists, is call the well-founded MKNF model of φ .

In three-valued MKNF, formulas are evaluated by three-valued MKNF structures in the form of
(I,M ,N ), which consists of a first-order interpretation, I, and two pairs, M = 〈M,M1〉 and N =
〈N,N1〉, of sets of first-order interpretations, where M1 ⊆M and N1 ⊆N. I is to evaluate object formulas,
M is to evaluate K-atoms, and N to evaluate not-atoms. From the two component sets in M = 〈M,M1〉,
three truth values for modal K-atoms are defined as: Kϕ is true w.r.t. M = 〈M,M1〉 if ϕ is true in all
interpretations in M; it is false if it is false in at least one interpretation in M1; and it is undefined
otherwise. For not-atoms, a symmetric treatment w.r.t. N = 〈N,N1〉 is adopted. A three-valued MKNF
model (M,N) of an MKNF formula φ is a three MKNF structure (I,(M,N),(M,N)) that satisfies φ and
a condition that guarantees minimal knowledge and “minimal undefinedness”.

A hybrid MKNF knowledge base K = (O,P) consists of a decidable description logic (DL) knowl-
edge base O , translatable into first-order logic and a rule base P , which is a finite set of rules with modal
atoms. Following [3], our focus here is on nondisjunctive rules.

A (normal MKNF) rule r is of the form: KH←KA1, . . . ,KAm,notB1, . . . ,notBn, where H,Ai, and
B j are function-free first-order atoms. Given a rule r, we let hd(r) = KH, bd+(r) = {KAi | i = 1..m},
and bd−(r) = {Bi | i = 1..n}. We use the notation K(bd−(r)) = {KB1, . . . ,KBn}.

For the interpretation of a hybrid MKNF knowledge base K = (O,P), a transformation π(K ) =
Kπ(O)∧π(P) is performed to transform O into a first-order formula and rules r ∈P into a conjunction
of first-order implications to make each of them coincide syntactically with an MKNF formula, i.e.,

π(r) = ∀~x : (KH ⊂KA1∧ . . .∧KAm∧notB1∧ . . .∧notBn)
π(P) =

∧
r∈P π(r), π(K ) = Kπ(O)∧π(P)

where~x is the vector of free variables in r.
Under the additional assumption of DL-safety a first-order rule base is semantically equivalent to a

finite ground rule base under both two-valued [5] and three-valued semantics [3]; hence decidability is
guaranteed. In the following, we assume that a given rule base is DL-safe and already grounded.

1This is the original definition of stable revision for consistent AFT.
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Given a hybrid MKNF knowledge base K = (O,P), let KA(K ) be the set of all (ground) K-atoms
Kφ such that either Kφ occurs in P or notφ occurs in P . A partition of KA(K ) is a pair (T,P) such
that T,P⊆ KA(K ); if T ⊆ P, then (T,P) is said to be consistent, otherwise it is inconsistent.

Knorr et al. [3] define an alternating fixpoint construction to compute the well-founded MKNF model.
Their construction can be equivalently formulated by stable revisions with the following approximator.

Definition 3 Let K = (O,P) be a normal hybrid MKNF knowledge base. Define an operator ΦK on
(2KA(K ))2 as follows: ΦK (T,P) = (ΦK (T,P)1,ΦK (T,P)2), where

ΦK (T,P)1 = {K a ∈ KA(K ) | OBO,T |= a}∪
{Ka | r ∈P : hd(r) = {Ka}, bd+(r)⊆ T, K(bd−(r))∩P = /0}

ΦK (T,P)2 = {K a ∈ KA(KB) | OBO,P |= a} ∪
{Ka | r ∈P : hd(r) = {Ka}, OBO,T 6|= ¬a, bd+(r)⊆ P, K(bd−(r))∩T = /0}

Stable revision computes the least fixpoints of the projection operators ΦK (·,P)1 and ΦK (T, ·)2,
respectively. Intuitively, given a partition (T,P), the operator ΦK (·,P)1, with P fixed, computes the set
of true K-atoms w.r.t. (T,P) and operator ΦK (T, ·)2, with T fixed, computes the set o K-atoms that are
possibly true w.r.t. (T,P). The condition OBO,T 6|=¬a attempts to avoid the generation of a contradiction.
We can show that ΦK is an approximator on the bilattice (2KA(K ))2 and preserves all consistent stable
fixpoints (and is thus a strong approximator). Note that operator ΦK is not symmetric and it can map
a consistent pair to an inconsistent one. A major advantage of AFT is that the stable fixpoints of ΦK

satisfying a consistency condition characterize all three-valued MKNF models.

Theorem 1 Let K = (O,P) be a normal hybrid MKNF knowledge base and (T,P) be a partition. Also
let (M,N) = ({I | I |= OBO,T},{I | I |= OBO,P}). Then, (M,N) is a three-valued MKNF model of K iff
(T,P) is a consistent stable fixpoint of ΦK and OBO,lfp(ΦK (·,T )1) is satisfiable.

Thus, given a hybrid MKNF KB K , we can compute the least stable fixpoint of ΦK and check if
OBO,lfp(ΦK (·,T )1) is satisfiable to determine the existence of a well-founded MKNF model. The process is
polynomial if so is the underlying DL. Since the problem of computing the well-founded MKNF model
is in general intractable, even for normal hybrid MKNF KBs [4], a question is whether we can enlarge
the class of hybrid MKNF KBs whose well-founded MKNF model can be tractably computed this way.
We answer this question positively by formulating a strictly more precise approximator.
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Statistical statements, also called Type 1 statements by Halpern, have a new representation in terms

of Probabilistic Answer Set Programming under the credal semantics. In this extended abstract we

summarize that contribution.

1 Contribution

This is a summary of the paper “Statistical Statements in Probabilistic Logic Programming” [1] presented

at LPNMR2022. In First-Order knowledge bases, we can adopt statistical statements, also known as Type

1 statements [6], to represent statistical information about the domain, such as “40% of the elements have

a particular property”. The authors of [7] propose to encode probabilistic conditionals (i.e., statistical

statements) with formulas of the form (C | A)[Π], where C and A are First-Order formulas and Π ∈ [0,1]
with the meaning that 100 · Π% of elements that satisfy formula A also satisfy C, and compute the

probability of a query by adopting the maximum entropy principle [8].

Differently, in [1] the authors propose to encode statistical statements with the syntax

(C | A)[Πl,Πu]

with the meaning that at least 100 ·Πl% and at most 100 ·Πu% of the elements that satisfy formula A

also satisfy C. To assign a semantics to these and to perform inference, the authors propose to adopt

the credal semantics of probabilistic answer set programs [3] and encode statements with answer set

rules and constraints [2]. Probabilistic answer set programming under the credal semantics represents

uncertainty with answer set programming extended with ProbLog probabilistic facts [4] Π :: f , with the

meaning that the probability of f of being true if Π (Π ∈ [0,1]). A world is a selection of a truth value

for every probabilistic fact and is an answer set program with one or more answer sets (the semantics

requires that every world has at least one answer set). A world is associated with a probability value

computed as

P(w) = ∏
fi selected

Πi · ∏
fi not selected

(1−Πi).

Since every world has one or more stable models, the probability of a query P(q) is defined by a range:

a world contributes to the upper bound if the query is true in at least one answer set and also contributes

to the lower bound if it is true in every answer set. It is required that every world has at least one answer

set.

The meaning of a statistical statement is given in terms of models for every world. That is, the models

of a world where the constraint

Πl ≤
#count{X : C(X),A(X)}

#count{X : A(X)}
≤ Πu
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is false should be excluded. Practically speaking, consider the following small knowledge base:

0.4:: bird(1). 0.4:: bird(2). 0.4::bird(3). 0.4::bird(4).
(fly(X)|bird(X))[0.6 ,1].

The first line contains four probabilistic facts stating that each of the four elements (indexed with 1, . . . ,

4) can be birds with probability 0.4. The statistical statement states that at least 60% (and at most 100%)

of the birds fly. The statement is converted into two answer set rules:

fly(X) ; not_fly(X) :- bird(X).
:- #count{X:bird(X)}=H, #count{X:fly(X),bird(X)}=FH, 100*FH <60*H.

Only two rules suffice, since Πu = 1. From this, we can compute the probability of a query, such as

f ly(1). This requires checking its validity in the answer sets of each world. Since we are interested

only in knowing if it holds in all the answer sets of a world or in at least one, and not in the number

of answer sets, we can adopt projection [5]: every probabilistic fact Π :: f is converted into three rules

f (PT ) :− f ., n f (PF) :−not f ., { f}., where PT =Π ·10n and PF =(1−Π) ·10n (where n can be selected

and is needed since ASP cannot deal with floating point values), and then we can compute the projective

solutions on the query, f/1 and, n f/1 atoms. For the previous program, we get P( f ly(1)) = [0.2592,0.4].
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1 Introduction

This research investigates the potential of declarative languages to advance what can be achieved by
domain experts producing their own automation. We illustrate this potential by exploring the issue of do-
main experts implementing their own executable legal documents as both human- and machine-readable
smart legal contracts deployable on a blockchain [7, 11].

Smart contracts have the potential to enable automation in previously automation-resistant areas (e.g.,
legal contracts and contract management). While some legal documents can probably never be fully au-
tomated (e.g., subjective performance criteria), many legal documents and contracts use forms of logic
that are computable, can be agreed by electronic signature, have performance that can be delivered and
administered electronically and use money as the consideration. The current reality; however, is that this
type of automation is usually impractical because of: an inability to build custom smart contracts eco-
nomically; the risk of errors and security breaches; and, inflexibility in regard to implementing contract
modifications. These hurdles motivate the research question that we answer: Is it possible for domain
experts to design, build, test and deploy their own custom legal documents as smart contracts which
are free from errors and security exploits and can also support contract modifications?

After pure first-order logic was shown to be inadequate for expressing legal concepts [4], non-
monotonic declarative languages like Answer Set Programming (ASP), TOAST, SPINdle [1], Turnip
[2], and a controlled natural language, Logical English [6] were developed and used to model legal logic.
Following this stream of research, we investigate the use of ASP for modelling legal logic by iteratively
developing a proof-of-concept smart document editor (SDE editor) which reads an existing legal docu-
ment (in HTML) and transforms it in five domain expert-guided steps into an error-free executable logic
program [8, 9, 10]. Domain experts model the ontology, legal logic, generate the assertional data, and
perform all testing tasks for amenable legal documents. The editor communicates visually and verbally
in domain familiar concepts; a feature made possible by the formal correspondences achieved between
graphics, text and declarative representations, and automation of steps not requiring domain knowledge.
Our approach allows automatic construction of ASP code and enables highly automated testing.

2 System Description

The SDE editor uses ASP to represent the ontology and the legal processes derived from a legal docu-
ment. Firstly, the artefacts in the document and their relationships are captured in representations by a
process where three different notations (a term, a graphic and an ASP-like string) are allocated the same
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meaning by the user. This formal correspondence and the use of a grammar facilitates the automatic
generation of representations, rules and the automation of model validation and program verification.
The user sees the ontology being built up as they work through the legal document, and can use ontology
elements in rules which are then tested in dynamic visualisations. Other formal correspondences ease
translation into structured English sentences that use the correct verb tense and correctly describe both
general and instance descriptions of artefacts.

Figure 1: SDE Editor Logical Architecture.

Legal documents have evolved from paper documents filled out and signed by hand, into documents
signed digitally and managed by tools like document automation systems [5] which provide support
for drafting through to the administration of active contracts. The SDE editor (see Figure 1) adds the
ability to first understand the closed world of a legal document, then assist in the modelling and testing
of the embedded logic, resulting in an exhaustively tested logic program that can be deployed as a smart
contract. This approach offers the potential of broader applicability and more comprehensive automation
than current approaches. The workflow of the SDE editor can be split into two phases: 1) document
understanding; and, 2) smart contract creation. Document understanding involves: (i) modelling the
ontology (ontology discovery); (ii) modelling the legal logic (logic modelling); and, (iii) validating these
models against the designer’s understanding (model validation). Smart contract creation involves: (i)
entering actual data (assertional data); and, (ii) testing that the output is what is expected across all
possible inputs (program verification). These processes accumulate knowledge in representations that
are consistent across the workflow due to auto-generation from ontology representations. The result is a
tested ASP program embedded in the original completed legal document (i.e., a Ricardian Contract [3]).

3 Evaluation and Results

If the components of the research question are used as evaluation criteria then the SDE editor achieves
most criteria. The SDE editor enables: 1) design, build and testing of suitable legal documents as
smart contracts by domain experts; 2) practical custom smart legal contracts; 3) smart legal contracts
that are free from errors from the perspective of the designer; 4) reduction in security risk by reducing
unproven components in the toolchain; and, 5) practical smart legal contract modifications.
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By using an executable declarative language to represent and reason over business/legal logic, the SDE
editor overcomes most of the hurdles experienced with smart contracts coded in an imperative program-
ming language like Solidity, and extends what practical automation is achievable for legal documents.
The approach promises smart contracts that: 1) are designed, built and tested by domain experts; 2) are
error-free (designer perspective); 3) explain their automatic decisions in controlled English in an audit
log; 4) achieve practical customisation due to the ontology discovery step; 5) achieve practical contract
modifications (legal sense) due to the use of an elaboration tolerant declarative language; 6) are flexi-
ble in regard to fitting with current practice and partial automation (uses existing legal documents and
supports human-in-the-loop processes); 7) achieve user interaction in structured English and via visu-
alisation with optional visual interaction; 8) encode business/legal logic in a declarative language with
formal semantics, then verbalises the computed responses back into English; an approach that opens
the way to achieving error-free smart legal contracts; 9) use a smart assistant to reduce user workload;
and, 10) achieve simplified representations of complex logic and legal reasoning (defeasible logic); a
capability beyond current smart contract programming languages, and which extends applicability.

4 Future Work

Recent machine learning advances allow a more fluent user-interface experience than achieved by the
SDE editor; however, these approaches struggle to produce explainable solutions and generate error-
free programs. Enhancing the current smart assistant with machine learning capabilities could further
simplify the user interface and extend maximum practical program size by automating tedious user inter-
actions. We also believe that the proof-of-concept system is ready to be applied to a difficult problem of
significance; however, two open questions remain: the degree to which ASP can express the full spectrum
of deontic logic; and, the percentage of legal documents that contain logic inexpressible in ASP.
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This paper presents semantics for logic programs with aggregates that refer to neither fixpoints nor
grounding, relying instead on transformations into first and second-order theories. This character-
ization introduces new function symbols to represent aggregates, whose meaning can be fixed by
adding appropriate axioms to the result of the proposed transformations. These semantics provide a
foundation for reasoning formally about non-ground programs with aggregates in a direct manner.
This is useful for the task of formally verifying logic programs, and represents a first step towards
using first-order theorem provers to automatically verify properties of programs with aggregates. For
programs without positive recursion through aggregates our semantics coincide with the semantics
of the answer set solver clingo.

Introduction Answer set programming (ASP) is a widely-utilized logic programming paradigm en-
compassing a number of highly expressive modeling languages and efficient solvers. Aggregates are
one of the most useful ASP language constructs, and one of the most well-studied. This is due, in
part, to the difficulty of defining a universally accepted semantics for aggregates [6]. Most approaches
to defining aggregate semantics rely upon grounding, a process by which programs with variables are
transformed into propositional programs. There are also several approaches to describe the semantics
of aggregates that bypass the need for grounding. However, these approaches either only allow a re-
stricted class of aggregates [7, 8] or extend the language of classical logic with new constructs to deal
with aggregates [1, 2, 3]. Our approach uses only the language of classical logic as in [7, 8], but it is
applicable to all programs with aggregates that fit within the restrictions of the ASP-Core-2 semantics,
namely, that aggregates are non-recursive. Exclusively using the language of classical logic opens the
door for automated verification with tools such as anthem [4].

In the following section, we summarize our translation from logic programs with aggregates to
second-order logic formulas. We restrict our attention to a simple subset of the gringo input language
which forbids nested aggregates and positive recursion through aggregates. We then show how the ad-
dition of second-order axioms can fix the interpretation of aggregate function symbols in a way that
conforms to their behavior under the semantics implemented by the answer set solver clingo. Finally,
we demonstrate that this second-order characterization can be replaced with a first-order one when we
consider only programs with finite aggregates.1

Syntax of Logic Programs With Aggregates We consider a basic fragment of the gringo input lan-
guage, with program terms ranging over symbolic constants, program variables, special terms inf and
sup, and numerals (which have a one-to-one correspondence with integers). Atoms and comparisons are
defined as usual in ASP. Basic literals are atoms and comparisons, optionally preceded by one or two
occurrences of not. An aggregate element has the form

t1, . . . , tk : l1, . . . , lm (1)

1It is worth noting that this is not a practical restriction due to the inability of solvers to process infinite sets.
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where each ti (1≤ i≤ k) is a program term and each li (1≤ i≤m) is a basic literal. An aggregate element
can be informally understood as representing the set of tuples of program terms 〈t1, . . . , tk〉 satisfying the
list of conditions l1, . . . , lm. An aggregate atom is of form #op{E}≺ u where op is an operation name, E is
an aggregate element,≺ is a comparison symbol, and u is a program term, called the guard. We consider
operation names count, sum, sum+, min, and max. Our task in this work is to formalize the intuition that
these operations characterize functions on the sets of tuples represented by aggregate elements. Finally,
programs are defined as a collection of basic rules (containing a single atom in the head) and constraints.

Semantics of Logic Programs With Aggregates For each rule R in a program Π, we obtain its many-
sorted first-order formula representation by applying a translation τ∗Z, where Z is the list of global vari-
ables2 in R. Broadly speaking, this is a syntactic transformation that maps default negation into clas-
sical negation, commas into conjunctions, and the rule operator :- into an implication from the body
of the rule to the head. For an aggregate atom A of form #op{E} ≺ u, its translation τ∗Z is the atom
op(set|E/X|(X)) ≺ u, where X is the list of variables in Z occurring in E. For every rule R, its transla-
tion τ∗R is the universal closure of the implication

τ
∗
ZB1∧·· ·∧ τ

∗
ZBn→ τ

∗
ZH,

where Z is the list of the global variables of R. For example, given an aggregate symbol Y : r(X ,Y,Z)/X
named e1,

τ
∗ (s(X) :- q(X),#sum{Y : r(X ,Y,Z)} ≥ 1.) is ∀X (q(X)∧ sum(sete1(X))≥ 1 → s(X)) .

Note that this is a formula over a signature of many sorts. Specifically, we consider separate domains
(universes) for program terms, integers, tuples (of program terms), and sets of tuples. The second domain
is a subset of the first, and the fourth domain is the powerset of the third. Assumptions about the forms
of these domains and the behavior of fundamental functions and predicates such as addition and set
membership are defined in our notion of standard interpretations. These assumptions do not fix the
interpretation of aggregate elements or the function symbols corresponding to aggregate operations. To
properly characterize the behavior of aggregates, we require our standard interpretations to additionally
satisfy a set of second-order axioms ∆ (introduced in the next section). Finally, we define the semantics
of logic programs with aggregates using a many-sorted generalization of the SM operator [5]. We say
that a standard interpretation I is a stable model of program Π if it satisfies the second-order sentence
SMp[τ

∗Π]∧∆ with p being the list of all predicate symbols occurring in Π.

Axiomatization of Aggregates In this section, we will highlight a few representative axioms in set ∆.
In general, this set contains second-order axioms; however, assuming our aggregates are finite allows us
to replace the second-order axioms with first-order ones. First, we introduce the class of set formation
axioms, which formally relate aggregate elements to sets of tuples. An aggregate symbol E/X, where E
is an aggregate element, is associated with a unique set characterized by the sentence

∀X T
(
T ∈ set|E/X|(X)↔∃Y

(
T = tuplek(t1, . . . , tk)∧ l1∧·· ·∧ lm

))
,

where Y is the list of all the variables occurring in E that are not in X. All variables in Y are of the sort
program. T is a variable of the sort tuple. For instance, recall the aggregate symbol e1 introduced earlier.
The set formation axiom for this symbol has the form

∀XT
(
T ∈ sete1(X)↔∃Y Z

(
T = tuple2(Y,Z)∧ r(X ,Y,Z)

))
2Variables occurring in basic literals or the guards of aggregates are global.
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Similarly, we can characterize the removal of an element from a set with function symbol rem:

∀ST S′
(
rem(S,T ) = S′↔∀T ′

(
T ′ ∈ S′↔ (T ′ ∈ S∧T ′ 6= T )

))
The sum aggregate can be formalized for finite aggregates with the axiom

∀X S
((
∀T

(
T ∈ S→ T ∈ set|E/X|(X)

))
→ FiniteSum(S)

)
where FiniteSum(S) is shorthand for

∀T
(
T ∈ tset→∃N(sum(rem(tset,T )) = N∧ sum(tset) = N +weight(T ))

)
Finally, when Π is tight, we can replace the second-order sentence SMp[τ

∗Π] with a first-order sentence
using program completion. This gives us a fully first-order characterization.

Final Remarks The proposed semantics characterize logic programs with aggregates in terms of clas-
sical logic, allowing us to reason directly about the meaning of non-ground programs. This approach is
highly general: the restrictions prohibiting nested aggregates and positive recursion through aggregates
are less restrictive than those imposed by existing solvers and the ASP-Core-2 standard. Additionally,
the assumptions made by standard interpretations, such as the assumption that the + symbol behaves as
addition, are relatively modest. Nevertheless, the task of encoding such assumptions within automated
theorem provers is a non-trivial task, and a direction for future work.
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Contemporary artificial vision systems lack abilities for high-level, human-scale mental simulation,
e.g., concerning perceived everyday multimodal interactions. Cognitively driven sensemaking func-
tions such as embodied grounding for active vision, visuospatial concept formation, commonsense
explanation, diagnostic introspection all remain fertile ground. We posit that developing high-level
visual sensemaking capabilities requires a systematic, tight yet modular integration of (neural) visual
processing techniques with high-level commonsense knowledge representation and reasoning meth-
ods pertaining to space, motion, actions, events, conceptual knowledge etc. As an exemplar of this
thinking, we position recent work on deeply semantic, explainable, neurosymbolic visuospatial rea-
soning driven by an integration of methods in (deep learning based) vision and (KR based) semantics.
The positioned work is general, but its significance is demonstrated and empirically benchmarked in
the context of (active, realtime) visual sensemaking for self-driving vehicles.

Visual Sensemaking: A Human-Centred Cognitive Perspective

Artificial visual intelligence [5] denotes the computational capability to semantically process, interpret,
and explain diverse forms of visual stimuli (typically) emanating from sensing embodied multimodal in-
teraction of/amongst humans and other artefacts in diverse naturalistic situations of everyday life and
profession. Through semantic processing, interpretation, and explanation, alluded here are a wide-
spectrum of high-level human-centred sensemaking capabilities. These capabilities encompass functions
such as visuospatial conception formation, commonsense/qualitative generalisation, hypothetical rea-
soning, analogical inference, argumentation, event based episodic maintenance & retrieval for perceptual
narrativisation, counterfactual reasoning and explanation etc. In essence, in scope are all high-level com-
monsense visuospatial sensemaking capabilities –be it mundane, analytical, or creative in nature– that
humans acquire developmentally or through specialised training, and are routinely adept at performing
seamlessly in their everyday life and work.

The Need for Integrated “Vision and Semantics”. Computational visual sensemaking requires a sys-
tematically developed general and modular integration of high-level techniques concerned with “com-
monsense and semantics” with low-level neural methods capable of computing primitive features of
interest in visual data. Realising computational visual sensemaking —be it realtime or post-hoc— in
view of human-centred AI concerns pertaining to explainability, ethics, regulation and requires a sys-
tematic (neurosymbolic) integration of Vision and Semantics, i.e., robust commonsense representation
& inference about spacetime dynamics on the one hand, and powerful low-level visual computing capa-
bilities, e.g., pertaining to object detection and tracking on the other. It is also critical that the semantics
of formal representations, e.g., of space and motion, be rooted to counterparts in natural language [4].
Towards this, the positioned research [11] demonstrates the significance of semantically-driven methods
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Figure 1: Application Scenarios: Autonomous Systems, Minds and Media Studies, Behavioural Re-
search in Multimodality Interaction [5].

rooted in knowledge representation and reasoning (KR) in addressing research questions pertaining to
explainability and human-centred AI particularly from the viewpoint of (perceptual) sensemaking of dy-
namic visual imagery. This goal is pursued within the larger agenda of cognitive vision and perception
[5], which is an emerging line of research bringing together a novel & unique combination of method-
ologies from Artificial Intelligence, Vision and Machine Learning, Cognitive Science and Psychology,
Visual Perception, and Spatial Cognition and Computation (also, [9, 10, 11, 12], and [7]). Research
in cognitive vision and perception addresses visual, visuospatial and visuo-locomotive perception and
interaction from the viewpoints of language, logic, spatial cognition and artificial intelligence [4].

Visuospatial Commonsense, Driven by Answer Set Programming

Answer Set Programming (ASP) is now widely used as a foundational declarative language and robust
methodology for a range of (non-monotonic) knowledge representation and reasoning tasks [6, 8]. With
ASP as a foundation, and motivated by requirements of semantics, commonsense and explainability, our
work bridges the gap between high-level formalisms for logical visual reasoning (e.g., by abduction) and
low-level visual processing1 by tightly integrating semantic abstractions of space and motion with their
underlying numerical representations within the declarative framework of ASP. Furthermore, directly
within ASP, we also address several challenges concerning epistemological and phenomenological as-
pects relevant to a wide range of dynamic spatial systems [1, 2, 3]: projection and interpolation, object
identity maintenance at a semantic level, ability to make default assumptions, maintaining consistent
beliefs etc.

Although the work positioned herein [10, 11] selectively focusses on the needs and challenges of active
/ online sensemaking in autonomous driving, the generality and modularly of the developed ASP-based
neurosymbolic framework ensures foundational applicability in diverse applied contexts requiring per-
ceptual interpretation, interaction and control functions. Of at least equal importance are the modularity
and elaboration tolerance of the framework, enabling seamless integration and experimentation with ad-
vances in (fast evolving) computer vision methods, as well as experimenting with different forms of
formal methods for (declarative) reasoning about space, actions, and change [1].

1Visual processing encompasses capabilities including but not limited to motion analysis, object detection, pose estimation,
semantic segmentation, image classification. A detailed review is available in [5].
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Modern semiconductor manufacturing involves complex production processes with hundreds of op-

erations from lot release to completion, which often takes several months. In contrast to abstract

job-shop scheduling benchmarks, our work addresses the scheduling of realistic semiconductor man-

ufacturing processes. We model their sophisticated requirements by hybrid Answer Set Programming

and take advantage of difference logic for expressing machine processing, setup, and maintenance

times. Unlike existing approaches that schedule semiconductor manufacturing processes locally by

greedy heuristics or isolated optimization of specific machine groups, we explore the potential and

limits of large-scale semiconductor fab scheduling.

1 Introduction

Classical and Flexible Job-shop Scheduling Problems (FJSPs) [17, 6], focusing on the allocation of

production tasks and resource planning, have been targeted bibliographystyle various local and exact

search methods (see [7] for an overview). The importance of optimization in production and supply

chain management has grown due to diversified technologies, product customization, quality-of-service

targets, and ecological footprint. However, abstract scheduling benchmarks do not adequately represent

the complex production processes found in semiconductor manufacturing, facing long production routes,

product-specific machine setups, dedicated maintenance procedures, and stochastic factors. These chal-

lenges have led to the development of the recent SMT2020 simulation scenario [14], modeling modern

semiconductor manufacturing processes and facilities. Currently, production management is performed

locally using preconfigured dispatching rules [12] or machine-learned decision making policies [19].

Exact search and optimization frameworks like Constraint, Integer and Answer Set Programming (ASP)

[15] at least in principle enable global approaches to resource allocation and operation scheduling that

take the entire range of viable schedules into account and guarantee optimality to the extent feasible. For

instance, ASP has been successfully applied for scheduling printing devices [4], specialist teams [16],

work shifts [2], course timetables [5], medical treatments [8], and aircraft routes [18]. In particular, the

hybrid framework of ASP modulo difference logic [13] specifically supports a compact representation

and reasoning with quantitative resources like time, which has been exploited in domains such as lab

resource [10], train connection [1], and classical job-shop [9] scheduling.

In our work [3], we use ASP modulo difference logic to model the scheduling of semiconductor

manufacturing processes, particularly accounting for machine processing, setup, and maintenance times

*This work, providing an extended abstract of our PADL 2023 paper [3], was partially funded by FFG project 894072

(SwarmIn) as well as KWF project 28472, cms electronics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH, incubed IT

GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse.
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present in the SMT2020 scenario. Although long-term, global optimization of production routes with

hundreds of operations is prohibitive due to problem size and unpredictable stochastic factors, we lay the

ground for a future integration of more informed exact scheduling techniques with simulation and reac-

tive decision making methods, enabling globally optimized (re)scheduling for a certain time in advance.

2 Application Scenario

The recent SMT2020 simulation scenario specifies two kinds of semiconductor fab settings, one de-

noted High-Volume/Low-Mix (HV/LM) with two types of products and the other Low-Volume/High-

Mix (LV/HM) with ten kinds of products. Both have in common that, depending on the product type,

the production route of each lot includes many operations, i.e., between 300 and 600 of them. Each op-

eration needs some machine in a given tool group to be performed, which may have to be equipped with

a product-specific setup before processing the operation. Moreover, periodic maintenance procedures

must be applied after a certain number of operations or accumulating some amount of processing time.

The overall objective is to minimize the completion time of lots by making effective use of fab resources.

We represent problem instances in terms of specific facts along with a general ASP modulo difference

logic encoding. Our problem encoding supports two assignment strategies: fully flexible or fixed, the

latter based on the lexicographic order of operations requiring machines in the same tool group. Setup

times and maintenance procedures are also taken into account in scheduling the processing of operations.

3 Experimental Evaluation and Conclusion

We extracted test instances for scheduling from the STM2020 scenario by considering a part of the

available tool groups along with their setups and maintenances. Our comparison includes the fixed and

flexible machine assignment strategies, for which Table 1 reports the obtained makespan, solving time,

conflicts and constraints, where ‘TO’ stands for more than 600 seconds solving time of clingo[DL] [13].

With the fixed machine assignment, we observe that the transition from trivial runs taking less than

a second to aborts is sharp when increasing the number of operations, as the number of search conflicts

goes up. A similar behavior is encountered even earlier, i.e., on smaller instances, with the flexible

machine assignment, where the up to one order of magnitude greater number of constraints also yields a

significantly increased problem size. Our hybrid ASP encoding for semiconductor fab scheduling reflects

work in progress. As future work, we target the improvement of space and search efficiency, addition of

yet missing capabilities like batch processing and operation pipelining, and integration with simulation.

Fixed Machine Assignment Flexible Machine Assignment

OxM Makespan Time Conflicts Constraints Makespan Time Conflicts Constraints

10x2 120 <1 44 2249 120 <1 44 2258

15x3 169 <1 7910 8980 169 <1 16562 12916

20x3 224 TO 6091128 23751 204 TO 5869538 33682

20x4 120 <1 88 4569 105 15 162085 45364

25x4 171 <1 16303 15862 160 TO 2656812 89214

30x4 219 405 2626786 32872 227 TO 2868459 157258

30x5 191 93 1027764 26460 169 TO 2702824 159548

30x6 120 <1 128 6828 153 TO 2250537 158243

35x6 142 <1 925 11526 123 TO 2947938 181867

40x6 192 18 189240 30657 210 TO 1711929 387488

45x6 226 TO 3553153 49191 300 TO 1226970 554625

Table 1: Results for scheduling instances with fixed and flexible machine assignment
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Answer-Set Programming (ASP) has seen tremendous progress over the last two decades and is
nowadays successfully applied in many real-world domains. However, for certain problems, the
well-known ASP grounding bottleneck still causes severe problems. This becomes virulent when
grounding of rules, where the variables have to be replaced by constants, leads to a ground program
that is too huge to be processed by the ASP solver. In this work, we tackle this problem by a novel
method that decouples non-ground atoms in rules in order to delegate the evaluation of rule bodies to
the solving process. Our procedure translates a non-ground normal program into a ground disjunctive
program that is exponential only in the maximum predicate arity, and thus polynomial if this arity
is bounded by a constant. We demonstrate the feasibility of this new method experimentally by
comparing it to standard ASP technology in terms of grounding size, grounding time and runtime.

1 Body-Decoupled Grounding

Motivated by the ASP grounding bottleneck [3, 6], the problem of traditional grounding systems re-
sulting in exponentially large programs when instantiating non-ground rules (even for programs with
bounded predicate arities), we briefly tease the concept of body-decoupled grounding. The idea of this
approach is to reduce the grounding size and grounding time by decoupling dependencies between dif-
ferent predicates of rule bodies. The potential of this is motivated by the following example.

Example 1. Assume the following non-ground program Π that decides in (1) for each edge (e) of a given
graph, whether to pick it (p) or not (p̄). Then, in (2) it is ensured that the choice of edges does not form
triangles.

p(A,B)∨ p̄(A,B)← e(A,B) (1)
← p(X ,Y ), p(Y,Z), p(X ,Z),X 6= Y,Y 6= Z,X 6= Z. (2)

The typical grounding effort of (2) is in O(|dom(Π)|3). Our approach grounds body predicates of (2)
individually, yielding groundings that are linear in the size of the ground atoms. In our example, this
corresponds to O(|dom(Π)|2) due to arity 2.

Ground Non-Ground (bounded arity)

Tight/Normal Programs NP-c ΣP
2 -c

Disjunctive Programs ΣP
2 -c ΣP

3 -c

Table 1: Known complexity results for some of the program types.

*This is an extended abstract of a paper [1] that appeared at IJCAI’22. Research was funded by Vienna Science and
Technology Fund (WWTF) grant ICT19-065 and Austrian Science Fund (FWF) grants J 4656 and P 32830.
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Based on earlier complexity results for ground and non-ground logic programs [2, 5, 4], we introduce
a reduction-based translation from non-ground, tight (and normal) programs to ground, disjunctive pro-
grams (see arrow in Tab. 1), resulting in an alternative grounding procedure. Our encodings translate a
non-ground rule by (i) guessing whether the head atom is part of the answer set, (ii) ensuring satisfiabilty
of the rule and (iii) preventing unfoundedness of the guessed head atom. To lift this idea to normal pro-
grams, one can rely on encoding (iv) orderings. Since every step of the procedure instantiates at most one
body predicate at a time, we intuitively deploy body-decoupling, which keeps the grounding size polyno-
mial when assuming bounded predicate arity. Notably, our results imply that body-decoupled grounding
blends-in well with existing approaches, enabling us to interleave different grounding approaches.

2 Experimental Results

We implemented a software tool, called newground1, realizing body-decoupled grounding via search
as described above. The system newground is written in Python3 and uses, among others, the API of
clingo 5.5 and its ability to efficiently parse logic programs via syntax trees. In our implementation,
we opted for partial reducability, allowing users to select program parts that shall be reduced and those
being (traditionally) grounded, thereby internally relying on gringo.

In order to evaluate newground, we design a series of benchmarks. Clearly, we cannot beat highly
optimized grounders in all imaginable scenarios. Instead, we discuss potential use cases, where body-
decoupled grounding is preferrable, since this approach can be incorporated into every grounder. We
consider these (directed) graph scenarios: (S1) 3-coloring, (S2) reachable paths, (S3) cliques, (S4) non-
partition-removal colorings [8] and (S5) stable marriages (ASP comp. 2014), and compared to gringo

and idlv while measuring grounding size, grounding time as well as overall time.
From our experiments we crafted grounding profiles for each tool. Figure 1 depicts the grounding

profile of S1 for gringo (left) and newground (right), showing grounding times and sizes, depending on
the instance size (x-axis) and density (y-axis). Interestingly, for newground grounding times and sizes
for a fixed instance size (column) of Figure 1 (right) are quite similar, which is in contrast to Figure 1
(left), suggesting that compared to gringo, newground is not that sensitive to instance density.

In terms of pure grounding time, our experiments show that newground in fact outperforms in four
of five scenarios. Interestingly, while doing so, newground also massively reduces the grounding size
(cf., Figure 2 (left), almost all dots above diagonal), while keeping instances solvable where gringo

and idlv output groundings beyond 30GB. For the overall (solving) performance we refer to Figure 2

1The system (incl. supplemental material) is available at https://github.com/viktorbesin/newground.

Figure 1: Grounding profile of S1 for gringo (left) and newground (right). The x-axis refers to the
instance size; the y-axis indicates density. Circles mark instances grounded < 1800s; the left (right) half
depicts grounding time (size), respectively. Mind the different color scales (e.g., 10000MB vs. 1600MB).

https://github.com/viktorbesin/newground
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Figure 2: (Left): Scatter plot of grounding size over Scenarios S1–S4 of newground (x-axis) compared to
both gringo (blue) and idlv (green) on the y-axis. Those instances that could be solved are highlighted
in orange. (Right): Cactus plot of overall (grounding and solving) time over Scenarios S1-S4.

(right). While newground performs best, we still see a clear difference between solving and grounding
performance, which reveals that only a small amount of those grounded instances can then actually be
solved by clingo within the remaining time. More plots and evaluation can be found in [1].

3 Conclusion
This work introduces a grounding-approach based on a reduction suggesting the body-decoupling of
grounding-intense ASP rules. The reduction translates tight (normal) non-ground rules into disjunctive
ground rules, thereby being exponential only in the maximum predicate arity. While our evaluation
shows that body-decoupled grounding applied on crucial (tight) program parts reduces grounding size
compared to state-of-the-art exact grounders, we are currently working on evaluating and tuning of an
implementation for normal programs [7].
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This extended abstract summarizes work published in Theory and Practice of Logic Programming [5].

1 Introduction

The Decision Model and Notation (DMN) [4] standard, maintained by the Object Management Group,

allows to represent data and decision logic in an intuitive, table-based way. It is meant to be used directly

by business experts, and as such, aims to be user-friendly and low in complexity. Decisions in DMN are

modelled in decision tables, which contain the in-depth business logic of the model. As an example, Fig 1

shows a table to decide a patient’s BMI Level. The meaning of such a decision table is straightforward:

the value of the output variable (right, in light blue) is defined by the value of the input variable(s) (left,

in green). Each row of the table corresponds to a decision rule. We say that a rule fires whenever the

actual value of the input variables match the values listed in its cells. The way in which the inputs define

the output depends on the hit policy, denoted in the top-left corner. In the example, the U(nique) hit

policy denotes that the rules may not overlap.

BMI Level

U BMI BMI Level

1 < 18.5 Underweight

2 [18.5..25] Normal

3 (25..30] Overweight

4 > 30 Obese

Figure 1: Example of decision table

*This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie

(AI) Vlaanderen” programme.
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2 cDMN: Extending DMN with constraints

While DMN allows modellers to elegantly represent a deterministic decision process, it lacks the ability

to specify constraints on the solution space. To address this, we present “Constraint Decision Model and

Notation” (cDMN), an extension of DMN with constraints. It also allows for representations that are

independent of domain size by supporting types, functions, relations and quantifications. Importantly, it

does so in a way that retains the ease of use for domain experts.

To illustrate cDMN, we will now briefly go over each type of table, and illustrate them using the

graph colouring example in Fig. 2.

Glossary In logical terms, the “variables” of standard DMN correspond to constants (i.e., 0-ary func-

tions). cDMN extends these by adding n-ary functions and predicates. Modellers must declare their

vocabulary by means of a glossary, which consists of at most five glossary tables: Type, Function, Rela-

tion, Boolean and Constant.

Logic in cDMN is typed: modellers must define types in the Type table together with a set of do-

main elements. For example, the types Country and Colour respectively represent the domain of coun-

tries and colours. In the Function table, symbols can be declared as functions of one or more types

to another. All types that appear in the description are interpreted as arguments, and the remainder

constitutes the name of the function itself. As such, colour of Country in our example corresponds

to colour o f : Country → Colour. In a similar manner, we can declare n-ary predicates in the

Relation table, such as Country borders Country. This predicate corresponds to the 2-ary predicate

borders : Country×Country → B. The last two glossary tables are used to introduce boolean symbols

(i.e., propositions) and constants, and are not demonstrated in the example.

Decision tables and constraint tables Where DMN decision tables must precisely define a symbol,

our constraint tables do not have this property. Instead, each row of the table expresses a logical impli-

cation: if the conditions on the inputs are satisfied, the condition on the output must hold as well. We

introduce a new hit policy, denoted as “E*” (Every), because it expresses that every implication must be

satisfied.

cDMN also extends the expressions that are allowed in the column headers. Columns of the form

“Type called var” introduce a universally quantified variable var over the domain of Type. Each sub-

sequent column may use this variable in the header or the cells. In this way, we introduce universal

quantification in decision and constraint tables. To illustrate, the constraint table in the example intro-

duces two variables, c1 and c2, both of type Country. It can be read as: “For every country c1 and c2, it

must hold that if the two countries border, they do not have the same colour”. The table corresponds to

the following FO formula:

∀c1,c2[Country] : border(c1,c2) ⇒ colour of(c1) 6= colour of(c2).

Data tables Typically, problems can be split up into two parts: (1) the general logic of the problem,

and (2) the specific problem instance to solve. In the map colouring example, the general logic consists

of the constraint that two bordering countries cannot share a colour, whereas the instance of the problem

is the specific map (e.g., Western Europe) to colour. cDMN extends DMN with data tables, which are

used to represent the problem instances, separating them from the general logic. In terms of classical

logic, a data table corresponds to the interpretation of a symbol.
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Type

Name Type Values

Country String BE, FR, LU, NL, DE, . . .

Colour String Red, Blue, Green, Yellow

Function

Name Type

colour of Country Colour

Relation

Name

Country borders Country

Colour constraint

E* Country called c1 Country called c2 c1 borders c2 Colour of c1

1 — — Yes not(Colour of c2)

Data table: bordering countries

Country called c1 Country called c2 c1 borders c2

1 BE FR, LU, NL, DE Yes

2 DE FR, DK, LU, BE, NL Yes

3 . . . . . . . . .

Goal

Get 3 models

Figure 2: Example of a cDMN model for the map colouring problem

Goal table A standard DMN model defines a deterministic decision procedure. In cDMN, this is no

longer the case: cDMN models instead have a solution space. By including a goal table, modellers can

state what the specification is to be used for: generating x solutions, generating the solution with an

optimal value for a variable, or deriving the consequences.

cDMN models can be executed using the cDMN solver [1]. It translates the model to First Order

Logic, and then runs the IDP-Z3 reasoning engine [3] to generate solutions.

3 Results

We evaluated cDMN by implementing DM Community challenges [2], which are challenges set forth

by the decision management community to test the boundaries of DMN. Of the 24 challenges we con-

sidered, cDMN could model 22, whereas state-of-the-art DMN engines could model 12. We find that

our models are more robust to domain changes due to the introduction of types, quantification and data

tables. Moreover, cDMN implementations are typically more concise, and do not need to rely on uncon-

ventional workarounds (as is the case in some of the DMN implementations). We feel that these benefits

make cDMN models more readable and maintainable compared to the other solutions due to its increased

expressiveness.
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This abstract summarizes work presented at the Thirteenth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence [6].

1 Introduction

First-order logic (FO) is an important foundation of many domains, such as mathematics, philosophy,
computer science and artificial intelligence. Currently, there is a growing interest in teaching computer
science concepts and computational thinking to children, such as through Scratch [5], Blockly [3] or CS
Unplugged [1]. One topic which appears to be curiously understudied, however, is that of teaching of
FO. Indeed, FO is not only important in CS and AI, but learning FO can also help children in a variety
of other disciplines by sharpening their reasoning skills. While Kowalski and colleagues already saw the
potential of teaching Prolog in 1980 [4], not many tools or applications have been published for teaching
any form of logic since then. This is due to a number of issues that may make teaching FO difficult: (1)
logic has a steep learning curve, (2) it does not “do” anything, and (3) it is not fun due to the lack of
graphics, animations and sounds. In our work, we overcome these objections by designing an appropriate
learning environment. The focus of this environment is twofold: a child-friendly representation for FO,
combined with a fun and engaging task to solve.

2 Goals and Approach

Representation of FO: The traditional way of writing logic is hard for children to understand. Our
goal is therefore to introduce an alternative notation that meets four goals: (G1) avoid discouraging
children with finicky syntax, (G2) make the structure of formulas clear, (G3) encourage experimentation,
and (G4) encourage collaboration.

To meet these goals, we designed a block-based representation for FO, inspired by languages such
as Scratch [5] and Blockly [3]. It was designed according to a pegs-and-slots approach, in which blocks
physically fit together if the connection is syntactically correct and the formulas are correctly typed. This
representation, of which an example is shown in Fig. 1a, effectively eliminates syntax errors (G1), and
provides a clear overview of the structure of the formulas (G2).

*This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie
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(a) Blocks expressing
“∀c : Color(c) = red” (b) Laser-cut blocks (Engraving in Dutch)

Figure 1: Block-based notation for FO

Instead of implementing these blocks in a GUI, we laser cut physical blocks out of 3mm plywood,
engraved with their intended meaning and, when possible, a relevant icon (Fig. 1b). Blocks represent-
ing a colour were also painted in that colour. In this way, the bocks are low on text, with much visual
stimulation. This results in a tactile, playful and almost puzzle-like experience, which stimulates experi-
mentation (G3) and encourages experimentation between children (G4).

Task to solve: Our system asks children to construct formulas in order to solve certain tasks. In de-
signing these tasks, we focus on teaching the |=-relation (R1). In addition, we also aim to: (R2) provide
clear and immediate feedback, (R3) offer a gradual increase in difficulty, and (R4) make learning fun
and engaging.

As an application domain, we have chosen the design of simple robots, as shown on the monitor in
Fig. 2a. A robot consists of six body parts, called components, which can be individually coloured in one
of three colours. Additionally, a robot may also wear a hard hat. In the application, children are shown
three “good” robots and three “bad” robots, and must devise a rule that distinguishes between them. In
other words, they must create a formula for which the three good robots are models and the three bad
ones are not (R1).

By puzzling together blocks, the children can express sentences of increasing difficulty, such as “The
left leg is blue”, “If the robot wears a helmet, it has a green body” and “Every component that is a limb
must be coloured green” (R3). A Raspberry Pi mini-computer continually scans the playing area, and, as
soon as it detects a complete sentence, will run the IDP-Z3 reasoning system [2] to verify which robots
satisfy the formula, which is shown visually on the screen. FOLL-E is “always live”: in this way, it gives
immediate feedback (R2). Moreover, the feedback is entirely visual, which makes the application more
intuitive, enticing and engaging (R4).

(AI) Vlaanderen" programme.
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(a) (b)

Figure 2: Photos taken at a FOLL-E workshop

3 Results

As a preliminary evaluation, we tested FOLL-E in workshops aimed at 8-13 year old children. During
the workshop, the children are given a 5 minute introduction on FOLL-E, after which they are free to
play through the levels in pairs. All students were able to complete all ten levels, but the time required
varied with age: children near the upper age limit (13) finished about 15 minutes ahead of the others.

The children reported that in general (a) they enjoyed their time with FOLL-E, (b) found the puzzle-
like nature inviting and (c) liked the assignment. One of the older children remarked “It’s satisfying to
puzzle the pieces together and see the result, especially if it’s correct.”

In future work, we will be teaming up with cognitive psychology researchers to measure the effec-
tiveness of the tool. Furthermore, we will be looking at what changes can be made to make the tool
more effective, such as introducing more levels, experimenting with applications besides robot design,
and adding automated error explanation.
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The ability to efficiently solve hard combinatorial optimization problems is a key prerequisite to

various applications of declarative programming paradigms. Symmetries in solution candidates pose

a significant challenge to modern optimization algorithms since the enumeration of such candidates

might substantially reduce their optimization performance. The full version of this paper proposes a

novel approach using Inductive Logic Programming (ILP) to lift symmetry-breaking constraints for

optimization problems modeled in Answer Set Programming (ASP). Given an ASP encoding with

optimization statements and a set of representative instances, our method augments ground ASP

programs with auxiliary normal rules enabling the identification of symmetries by existing tools, like

SBASS. Then, the obtained symmetries are lifted to first-order constraints with ILP. We show the

correctness of our method and evaluate it on optimization problems from the domain of automated

configuration. Our experiments show significant improvements of optimization performance due to

the learned first-order constraints. The full version of this paper was presented at AAAI 2023.

1 Introduction

Combinatorial optimization problems appear in various practical applications, including transportation,

manufacturing, healthcare, or power generation and distribution. An efficient and elegant approach to

tackle these problems is to model them in a declarative programming paradigm such as Answer Set Pro-

gramming (ASP) [6]. However, finding optimal solutions to the vast majority of real-world problems is

challenging since their search spaces include many symmetric solution candidates, i.e., an isomorphic

candidate can be obtained by permuting elements of a known solution. To be effective, the problem en-

coding must thus include Symmetry-Breaking Constraints (SBCs) that prune the search space of solution

candidates by removing symmetric ones. Hence, several techniques to automatically identify and discard

redundant solutions have been designed in the recent decades [7, 8, 13], based on embedding symmetry

breaking in search algorithms or adding SBCs to a given problem encoding or instance, respectively.

In the context of ASP, the system SBASS [5] was designed to provide an instance-specific approach

to symmetry breaking. To this end, SBASS identifies symmetries of a ground ASP program by (i) rep-

resenting the input program as a colored graph, (ii) finding symmetric vertex permutations in the graph

using SAUCY [1, 3], and (iii) constructing ground SBCs from the permutations. In previous work [9],

we introduced an approach that learns first-order constraints by lifting ground SBCs of SBASS by means

of Inductive Logic Programming (ILP) [2]. Our method applies SBASS to a set of representative prob-

lem instances and then uses the obtained permutations to define an ILP task. The subsequent learning

*also affiliated with Graz University of Technology, Austria
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phase determines first-order constraints that remove symmetric solutions (classified as negative exam-

ples) while preserving the representative solutions (positive examples).

The main shortcoming of previously introduced methods [10, 12] to learn constraints from SBCs of

ASP programs is their inability to deal with optimization statements. That is, if a suboptimal solution

happens to be lexicographically smallest and is taken as representative to discard symmetric solutions,

the learned constraints might eliminate (all) optimal solutions from the search space.

Example. Let us consider the (ground) ASP program P1:
1 {a;b;c} 1.

:∼ a. [3] :∼ b. [2] :∼ c. [3]

The choice rule in the first line gives rise to three answer sets: AS(P1) = {{a},{b},{c}}. Three weak

constraints in the second line attribute the weight 3 to answer sets including a or c, and 2 to the answer

set comprising b, so that the optimal answer set is {b}. When SBASS is run to analyze P1, i.e., the

choice rule in the first line, it classifies the answer sets in AS(P1) as symmetric. Thus, applying the

previous approach [12] yields the lexicographically smallest answer set {a} as representative solution

to preserve, while {b} and {c} are considered redundant. As a consequence, the framework will learn

some constraint(s), e.g., :- not a., eliminating the optimal answer set {b} with the smallest weight 2.

2 Contributions

In our AAAI 2023 paper [11], we extend the learning approaches of [10, 12] to optimization problems

and make the following contributions:

• We propose a method that augments a ground ASP program P with auxiliary rules, OP, that do not

change the solutions but tighten the applicable symmetries for optimization problems. We show

that SBASS on P∪OP partitions solutions of P in a way that respects their quality determined by

optimization statements. That is, each cell of the partition of answer sets computed by SBASS is

guaranteed to consist of symmetric solutions sharing the same optimization value.

• We enhance the previous learning approaches to support the learning of effective first-order con-

straints for optimization problems.

• Lastly, we test the proposed framework on combinatorial configuration problems incorporating

optimization statements. Our results show that the learning performance is comparable between

ILP tasks defined with or without taking optimization statements into account. Moreover, the

learned first-order constraints prune the symmetries of optimization problems and thus speed up

the computation of (representative) optimal solutions.

3 Conclusion

Our AAAI 2023 paper extends the previous framework [9, 10, 12] to support the learning of effective

first-order constraints for optimization problems. The introduced auxiliary rules are crucial for SBASS

to identify symmetries applicable to ASP programs with optimization statements. We have shown the

correctness of this approach and devised suitable methods to generate ILP tasks for optimization prob-

lems. Experiments with the new framework on optimization versions of the combinatorial problems

addressed in [10, 12] as well as on the fastfood problem [4] show that the learned constraints can help

to significantly speed up the computation of (representative) optimal solutions. The implementation,

benchmarks as well as settings for reproducing our experiments can be found at https://github.

com/prosysscience/Symmetry_Breaking_with_ILP/tree/optimization.

https://github.com/prosysscience/Symmetry_Breaking_with_ILP/tree/optimization
https://github.com/prosysscience/Symmetry_Breaking_with_ILP/tree/optimization
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This paper presents a framework for enforcing penalties on intelligent agents that do not comply with

authorization or obligation policies in a changing environment. A framework is proposed to represent

and reason about penalties in plans, and an algorithm is proposed to penalize an agent’s actions based

on their level of compliance with respect to authorization and obligation policies. Being aware of

penalties an agent can choose a plan with a minimal total penalty, unless there is an emergency goal

like saving a human’s life. The paper concludes that this framework can reprimand insubordinate

agents.

1 Introduction and Motivation

A framework will be presented that can enforce penalties on intelligent agents in a changing environment

if autonomous agents don’t obey authorization or obligation policies. Policies for an agent A acting in

a changing domain/environment T are encoded as a set of conditions that describes whether an agent’s

actions are permitted or not, and whether the agent is obligated to perform an action or not perform it. In

some cases, an autonomous agent can choose to perform an unauthorized action. In this case, the agent is

forced to pay a penalty, where it can be reprimanded for its actions or lose its job for insubordination [1].

To make this possible, an architecture will be created to represent and reason about penalties in plans.

As autonomous agents continue to develop, it is necessary that proper policy representation and

comprehension exist. It is essential to monitor the issues within the environment to ensure that agents

act appropriately. Autonomous agents are intended to perform certain actions without any instructions

or interference from a controller (pilot or driver) of the agent. The activities of an autonomous agent are

often modeled after human behavior so that the agent can perform tasks that humans would. In order to do

this, human behavior needs to be accurately represented. This can be successfully achieved by a logical

approach, using declarative programming languages. Declarative programming languages are able to

define human behavior correctly and in an understandable way. One such declarative programming

language is Answer Set Programming [2],

2 Background and overview of the existing literature

In this section, background work related to the penalization framework for autonomous agents will be

described. I assume that the reader is familiar with Answer Set Programming (ASP) [8, 7], a declarative

programming language with roots in Logic Programming and Nonmonotonic reasoning [4], and the ASP

solver CLINGO
1. Full details about CLINGO can be found in the papers by Calimeri et al. [3] and Gebser

1https://potassco.org/Clingo/

http://dx.doi.org/10.4204/EPTCS.385.50
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et al. [5]. I also assume familiarity of the reader with autonomous intelligent agents.

2.1 Transition Systems

In order for intelligent agents to be functional and autonomous, they require a proper description of

the changing environment in which they act. Transition systems are a tool that is used to describe

these domains. Transition systems are fundamentally directed graphs that represent a changing domain,

in which the nodes represent the state of the domain, and actions that might occur in the domain are

represented by arcs [1]. As a result, the domain is altered from one state to another. Transition diagrams

can become huge if many fluents are being tracked, thus they are not used in practice. They can be

represented in a more concise way by an action language 2 which is a high-level declarative language.

2.2 Policies

The proposed research will be focusing on agents which are aware of policies. Policies are sets of

rules to follow in a given domain or environment and are also described using declarative programming

languages. Given a policy, P, with respect to a given environment T, all actions performed in the said

environment can be judged based on whether or not they follow the rules defined by the policy. In the

case of an intelligent agent, it is important for it to be aware of all the policies in advance in order to

comply with all the necessities when coming up with plans for action. The following section will define

compliance to policy, look into both authorization and obligation policies.

2.2.1 Authorization

Authorization policies are policies in which an agent is either permitted (authorized) or not permitted

(not authorized) to perform an action. Gelfond and Lobo [9] define Authorization Policy Language

(APL) to describe authorization policies in a dynamic system Σ = 〈A,T 〉, with an agent A and a transition

diagram/environment T. This language is implemented through Answer Set Programming (ASP). The

signature of APL includes a predicate for authorization policies permitted(e) where e is an elementary

action of A. [9].

2.2.2 Obligation

An obligation policy is one in which an agent is obligated to carry out an action or not to carry it out.

AOPL is a policy language to describe systems with an agent A and a transition diagram T over signature

Σ, similar to APL [9]. Known as Authorization and Obligation Policy Language, Gelfond and Lobo [9]

designed this language, to extend APL with obligation policies by adding a new symbol obl(h) where h

is an elementary action of A or negation of any such action [9]. This language is implemented through

ASP.

2.3 Compliance

Compliance denotes whether an action or set of actions should be taken or not in accordance with a

given policy P. A set of actions is defined as strongly compliant, weakly compliant, or non-compliant.

Strongly compliant means that no rules were broken and it allows/supports their execution. If there is

2See https://www.diva-portal.org/smash/get/diva2:1716299/FULLTEXT01.pdf

https://www.diva-portal.org/smash/get/diva2:1716299/FULLTEXT01.pdf
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no sufficient information then it is called weakly compliant, and if the actions have broken one or more

policies then it is called as non-compliant.

2.3.1 Authorization Compliance

Compliance in relation to authorization policies, as defined by APL(Σ), can be divided into strongly

compliant, weakly compliant, or not compliant [9].

2.3.2 Obligation Compliance

For obligation policies defined through AOPL(Σ), events are classified into compliant or non-compliant [9].

Unlike authorization policies, there are no weakly compliant events with respect to obligations.

2.4 Planning

A plan is a sequence of actions taken by an agent in order to achieve a given goal [6]. Answer Set

Planning [10] refers to the use of Answer Set Programming to solve different types of planning problems

by adding a planning module to an ASP description of a changing environment. Answer sets of the

resulting program correspond to possible plans.

3 Goal of the research

The goal of the proposed research is to create a penalization framework for autonomous agents using

ASP where autonomous agents are penalized if they do any job/task that they are not intended to do

according to the policy.

3.1 Constructing the Framework

In this section, we present our ideas for constructing a penalization framework for autonomous agents.

3.1.1 Encoding the penalties

In order for these penalties to be imposed on the agents we will create a statement to penalize the agents.

we will choose a specific scale to impose penalty points for agents; as of now the scale is 1-3, in the

actual framework we will explore different possibilities.

We keep track of the values as low, medium, and high to help the agent calculate the value of the

penalty while choosing the plans.

3.1.2 Calculating the total penalty

We calculate the total penalty, in the end, using the aggregate sum in CLINGO
3 (solver for ASP). Ag-

gregates are functions that combine the values of a set of terms to produce a single value. Using this

function we add up all the penalties given to an agent in an environment and we can evaluate an agent

based on these penalties.

3https://potassco.org/Clingo/run/

https://potassco.org/Clingo/run/
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4 Current status of the research

Collected all background and related work, and created two domains to test the penalization framework.

4.1 Collecting policies and scenarios

When we speak about penalizing autonomous agents, we need to create domains and scenarios where we

evaluate autonomous agents for their actions and penalize them. Also, to achieve this we need to specify

authorization and obligation policies for the domain beforehand. Conflicts may arise when Authorization

and obligation policies interact or come across each other. Therefore we need to specify authorization

and obligation policies precisely. First definitions and rules of both the authorization and obligation

policies developed by Gelfond and Lobo [9] must be understood. After fully understanding the rules that

exist, different scenarios can be tested. Scenarios will be tested to see what an agent selects if it has two

non-compliant plans, and what plan it chooses. Some of the scenarios are:

4.1.1 Domain 1: Drone Delivery

Goal: Its goal is to deliver a package to a customer’s doorstep, located in a suburban area with many

houses.

Policy Rules: Consider an autonomous agent in this scenario as a delivery drone with the following rules

to ensure safe and efficient deliveries:

• Always fly at a safe height to avoid obstacles and people on the ground.

• only land on designated landing pads or open spaces to avoid collisions and ensure safe deliveries.

4.1.2 Domain 2: Self-Driving Car

The autonomous agent in this scenario is a self-driving car, programmed with a set of rules to ensure safe

and efficient transportation.

Goal: Its goal is to transport a passenger from their current location to a specified destination, which

involves driving through a busy city street with heavy traffic.

Policy Rules: Consider an autonomous agent in this scenario as a self-driving car with the following

rules to ensure safe and efficient deliveries:

• Always obey traffic laws and signals, including speed limits, stop signs, and traffic lights.

• Prioritize the safety of passengers and other drivers on the road.

5 Open issues and expected achievements

Open Issues

• We can’t create a penalty for each and every possible action, so should we set a default value if the

action is not encoded?

• Setting a maximum penalty limit after which the agent would be automatically disabled from its

operations for not following the compliance. This would ensure the agents that they do not perform

any operations that are not compliant.

The expected achievement is to create a framework where autonomous agent chooses plans with

fewer penalties and also according to the strength of the goal.
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Deep Learning (DL) models have become popular for solving complex problems, but they have

limitations such as the need for high-quality training data, lack of transparency, and robustness issues.

Neuro-Symbolic AI has emerged as a promising approach combining the strengths of neural networks

and symbolic reasoning. Symbolic Knowledge Injection (SKI) techniques are a popular method

to incorporate symbolic knowledge into sub-symbolic systems. This work proposes solutions to

improve the knowledge injection process and integrate elements of ML and logic into multi-agent

systems (MAS).

1 Introduction and Problem Description

Deep Learning (DL) models have gained popularity for addressing complex problems in various do-

mains. However, they face challenges. Insufficient or biased training data can result in poor model

performance and limited generalization. DL models heavily rely on statistical models which can restrict

their ability to reason about concepts not explicitly represented in the data. This limitation hampers their

capacity to understand the world and draw accurate conclusions from available information. To address

these issues, Neuro-Symbolic AI has emerged, which seeks to combine the strengths of neural networks

and symbolic reasoning to overcome the limitations of purely statistical models. There are various tech-

niques for integrating neural and symbolic systems (for a better understanding c.f., e.g., [6, 12, 21]). This

work focuses mainly on methods that aim to combine these two systems by injecting symbolic knowl-

edge into neural networks, known as Symbolic Knowledge Injection (SKI) techniques. Additionally, we

propose the creation of collaborative networks that combine the strengths of logic-based agents and neu-

ral agents within a Neuro-Symbolic architecture, creating a more comprehensive and efficient system.

This approach offers a unique synergy, paving the way for more advanced and intelligent systems.

2 Background and Existing Literature

In this section, we will provide a quick overview of the concepts and methods considered in our work.

Symbolic Knowledge Injection SKI is a strategy used to improve the performance of sub-symbolic

predictors, such as neural networks, by integrating useful symbolic knowledge into them. It has sev-

eral benefits, such as alleviating the problem of insufficient training data, reducing the required time

http://dx.doi.org/10.4204/EPTCS.385.51
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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and computational resources for learning, increasing the predictive accuracy of sub-symbolic predictors,

and providing human-interpretable frameworks. There are several ways the knowledge can be injected

into predictors, mainly: (i) loss constraining [3, 13, 28], i.e., the inclusion of penalty terms in the loss

function. Penalty terms are indicative of the limitations imposed by prior knowledge; (ii) structure con-

straining [4, 19, 29], i.e., the alteration of the structure of the sub-symbolic model to reflect symbolic

knowledge expressed as constraints, e.g. by changing the number and size of hidden layers or by setting

the connections between neurons; (iii) knowledge embedding [5, 7, 27], i.e., incorporating additional

domain-specific knowledge by generating numeric data from the symbolic ones.

Abductive Logic Programming ALP is a programming paradigm [16] that combines logic program-

ming with abductive reasoning [18] to generate hypotheses (or abducibles) that explain certain obser-

vations. Abduction is formally described [20] as a framework where, given a knowledge base KB and

observations O, one seeks to find a hypothesis H , s.t. KB∪H |= O.

ALP is a version of traditional logic programming in which the reasoner generates abductive hy-

potheses by assuming the truth of abducibles (a set of open predicates) given some integrity constraints.

Integrity constraints are logical formulas of the form :-Body., where Body is a conjunction of logical

literals. Intuitively, an integrity constraint specifies a set of conditions that must not hold for any valid

solution to the problem. According to [17], an abductive framework is known as a triple < P,A, Ic >,

where P is a collection of clauses, A is a set of predicate symbols, called abducibles, and Ic is a set

of closed formulae. Clauses in P are of the form H ← L1,L2, ..,Lk, k ≥ 0, where H is an atom with

a predicate symbol not present in A and Li is a single literal. Therefore, P is a general logic program

with the limitation that predicates present in A do not have definitions in P. Here, the idea is to link to

an abductive framework a collection of models–commonly called generalized stable models, or GSMs

[14]– that are assumed to reflect the framework itself and may be used to characterise abduction within

this framework. Hence, any observation has an abductive explanations if it is consistent with at least

one of these GSM models. Let < P,A, Ic > represent an abductive framework, whereas O represents an

observation. Then O is explained abductively given a set of hypotheses ∆ iff exists a GSM, M(∆), s.t.

M(∆) |= O. In general, the main aim of abduction, given an observation O, is to find a set of abductive

explanation ∆⊆ A, s.t.: (i) M |= O., and (ii) M |= Ic.

DALI DALI [8, 9] is a programming language developed to construct logical agents. It is an extension

of the Prolog language1, and any Prolog program can be considered a DALI agent. The agent orientation

is provided through events as first-class objects in the language, as well as two types of rules: reactive

rules and proactive rules. Reactive rules permit agents to interact with and respond to their surroundings.

These rules enable the agents to react to external events. External events are triggered by the environment

of the agent and are denoted by the postfix E. An agent may choose to react to an external event by

employing a reactive rule containing the event in its head. Proactive rules, on the other hand, are used

by DALI agents to take initiative and start activities when they deem it suitable. Using internal events,

that are denoted by the postfix I, agents can act independently of their environment and other agents.

DALI agents use actions to influence their surroundings, potentially in response to external or internal

events. Actions may have pre-conditions, which are specified in the action rule. Otherwise, they are just

an action atom denoted with the postfix A. Agents can communicate with and affect their environment

through actions.

1https://en.wikipedia.org/wiki/Prolog

https://en.wikipedia.org/wiki/Prolog
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3 Goal of the Research

This work aims to address challenges in the field of DL models by exploring the integration of neural

models and computational logic. It will focus on two main tools: SKI and MAS. The main goals are:

(i) RG 1: use abduction as a way of integrating targeted knowledge into the injection process. (ii) RG

2: develop metrics to assess the goodness-of-fit of injection mechanisms from several perspectives, both

qualitative and efficiency-related. (iii) RG3: formalise an integrated MAS in which one or more agents

have purely perceptual tasks and other purely logical tasks.

RG 1 aims to use abduction to improve the SKI process. In supervised learning, the observation

comprises input-output pairs encoded as a model f (X )→ Y . When using SKI, we want to modify

f (·) to align it with symbolic knowledge. However, selecting the right rules for each output becomes

challenging with increasing rule count, causing possible scalability issues. One solution is to leverage

abduction, which helps identify plausible rules for a given output. Here, abduction can be seen as a

rule Y : −A., where Y is the observation (ground-truth) and A are abducibles generated by the reasoner.

The injection procedure can then be modified to incorporate abducibles, making the predictions of f (·)
consistent with the provided abducibles.

RG 2 aims to investigate different metrics to gain a deeper understanding of the potential benefits

and limitations of SKI from multiple perspectives. In the field of SKI, the effectiveness of the injection

procedure is often measured by comparing the performance of the SKI predictor with its counterpart

(non-injected predictor), using metrics such as accuracy, F1 score or MSE. However, these metrics may

not fully capture all aspects of knowledge injection, such as whether such injection resulted in a more

sustainable predictor in terms of allocated resources or a more robust predictor, and so on. Therefore, RG

2 seeks to study the injection process through a broader lens, including factors such as the sustainability

and robustness of the injection procedure.

Finally, the aim of RG 3 is to create a MAS, in which ML and logic-based elements can collaborate

and interact with each other. In practice, given a neuro-symbolic architecture, the main objective is to

allocate the different modules of the architecture to different collaborating agents. The integration of

ML and logic-based elements into MAS could potentially lead to more efficient and effective decision-

making processes.

Results We provided a rough idea of RG 1 in a conference position paper [24], in which we proposed

the incorporation of abductive reasoning through two possible frameworks. The idea is applied to image

segmentation to address issues of data scarcity and low robustness. In this proposal, we suggest the

use of either ABL [11] or a combination of ABL and knowledge injection. The article aims to indicate

possible uses of abduction within the realm of Neuro-Symbolic integration.

We presented a preliminary idea of RG 2 in [2], where we provide the first - to the best of our

knowledge - set of Quality-of-Service (QoS) metrics for SKI, with a focus on quantifying robustness and

efficiency advantages owing to injection. In this paper, we offer an initial formulation for the following

metrics: (i) memory footprint efficiency, i.e., the gain in model complexity; (ii) energy efficiency, i.e.,

the gain in total energy required to train and deploy a sub-symbolic model; (iii) latency efficiency, i.e.,

improvements in terms of the time required for inference; (iv) data efficiency, i.e., the improvement in

terms of the amount of data required to optimise a sub-symbolic model; (v) robustness, i.e., the capability

of the injection mechanism to adapt to variations of input data and knowledge; (vi) comprehensibility,

i.e., the capability of the injection mechanism to produce more intelligible models. In addition, this

work discusses the potential impact of these metrics within the field of MAS, considering that a probable
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inefficiency of the sub-symbolic models incorporated in the agents affects their functioning in multiple

ways (e.g. energy inefficiency, data inefficiency, computational inefficiency, and so on).

In a subsequent paper, [1], we extended and enhanced RG 2 by providing a more rigorous mathemat-

ical definition and implementation of the following metrics: memory footprint, energy efficiency, latency

efficiency, and data efficiency. The software tools necessary for the practical use of these metrics were

also provided, and the metrics were evaluated on three different datasets using three different injection

models2. The results provide valuable insights into the performance of different injection predictors on

various datasets, highlighting the importance of adopting specific metrics when evaluating them. The pa-

per emphasises that the use of these metrics in the context of MAS could be a crucial tool for comparing

different predictors and selecting the most suitable one for a given task.

In [22], an initial approach to symbolic and sub-symbolic integration within a MAS was proposed.

This paper was later extended in [23]. These two works are a first step towards RG 3. In [22], we

present the potential capabilities of an integrated system consisting of logical agents and a neural network

specialized in monitoring flood events for civil protection purposes. The paper describes a framework

composed of a group of intelligent agents performing various tasks and communicating with each other

to efficiently generate alerts during flood crisis events. In [23], the work is extended, and an initial

implementation of the framework is provided. The paper presents a preliminary prototype of a MAS

that autonomously collects weather warnings, categorises related images using a DL module, filters the

results, and alerts human operators only if there is a reasonable certainty that a risk situation is occurring.

To this end, we implemented a system3 using a combination of logical agents and a DL component.

The neural network is trained on eight classes of topographic entities to segment the images. Once the

images have been segmented, a Logical Image Descriptor (LID) is used to generate a logical description

of the segmented mask predicates. This description is then submitted to a logical agent that performs

the reasoning. In our system, the reasoning is performed using a perception-fusion approach, where the

MAS agents use their perceptions to reason about the environment and make decisions collectively. The

paper emphasises the adoption of agents based on computational logic with a logical basis to provide

verifiability, explainability, and reliability.

4 Future Works

In the future, potential research directions include: (i) for RG 1: explore abductive reasoning technique

to enhance knowledge injection efficiency and effectiveness. Evaluate the framework’s performance

through extensive experiments in various domains; (ii) for RG 2: refine and expand evaluation metrics,

including comprehensibility metrics, for better assessment of injected models. Validate metrics across

different scenarios and datasets; (iii) for RG 3: explore collaborative frameworks and hybrid models

combining logical and neural reasoning. Possibly evaluate their performance in real-world applications.

Overall, these future works aim to improve knowledge injection, evaluation methodologies, and the

integration of logical and neural agents, contributing to more efficient and interpretable machine learning

models.

2The repository containing the experiments can be found at the following link: https://github.com/pikalab-unibo/

ski-qos-jaamas-experiments-2022
3The repository containing the experiments can be found at the following link: https://github.com/

AAAI-DISIM-UnivAQ/MAS_Py_FLOOD

https://github.com/pikalab-unibo/ski-qos-jaamas-experiments-2022
https://github.com/pikalab-unibo/ski-qos-jaamas-experiments-2022
https://github.com/AAAI-DISIM-UnivAQ/MAS_Py_FLOOD
https://github.com/AAAI-DISIM-UnivAQ/MAS_Py_FLOOD
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The interest in explainability in artificial intelligence (AI) is growing vastly due to the near ubiqui-
tous state of AI in our lives and the increasing complexity of AI systems. Answer-set Programming
(ASP) is used in many areas, among them are industrial optimisation, knowledge management or
life sciences, and thus of great interest in the context of explainability. To ensure the successful
application of ASP as a problem-solving paradigm in the future, it is thus crucial to investigate ex-
planations for ASP solutions. Such an explanation generally tries to give an answer to the question
of why something is, respectively is not, part of the decision produced or solution to the formulated
problem. Although several explanation approaches for ASP exist, almost all of them lack support for
certain language features that are used in practice. Most notably, this encompasses the various ASP
extensions that have been developed in the recent years to enable reasoning over theories, external
computations, or neural networks. This project aims to fill some of these gaps and contribute to the
state of the art in explainable ASP. We tackle this by extending the language support of existing ap-
proaches but also by the development of novel explanation formalisms, like contrastive explanations.

1 Introduction and Problem Definition

The topic of “explainability” in artificial intelligence (AI) has become increasingly prominent over the
recent years and regulation is being discussed.

Nowadays, there is a multitude of AI systems in use for decision-making and problem-solving. In this
project we concern ourselves with Answer-set Programming (ASP) [12] which is a popular declarative
problem-solving paradigm used in many domains [13, 15]. ASP allows for the encoding of problems in
a succinct way. Such a problem encoding usually consists of a set of rules representing the underlying
constraints of the problem and sets of facts describing concrete scenarios. The solutions are given in
terms of answer-sets, which capture the evaluation of the rules.

Extensions of ASP have been considered to model and solve problems in practice for a variety of
reasons. Sometimes language extensions ease the modelling of the problem and make the representation
more concise. However, ASP extensions can also enable new forms of reasoning and problem-solving,
like for example, over custom theories [18], external computations [8, 20], or neural networks [38].

The same reasons that make ASP a popular problem-solving paradigm, also make it attractive in the
context of explainable AI. ASP is a symbolic and rule-based approach and thus has good prerequisites
for humanly readable and intuitive explanations. In ASP, they usually amount to justifications as to why
certain elements are (or are not) contained in an answer-set or why there is no answer-set at all.

While there is a rich body of work on explainability for standard ASP [17], the same is not the case
for its numerous extensions. In fact, most current explanation approaches do not directly support basic
language features like variables or disjunction. Furthermore, the notion of contrastive explanations has
recently been brought to attention to the AI community by Miller [26], who argues in favour of them due
to their established history in the psycho- and sociological communities.

The goal of this project is thus to close those gaps by focusing on (contrastive) notions of explain-
ability for ASP extensions.
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2 Background

Answer-set Programming We consider disjunctive Answer-set Programming (ASP) [12]. An ASP
program is a (finite) set of (disjunctive) rules of the form a1∨ ·· ·∨an← b1, . . . ,bk,not bk+1, . . . ,not bm,
where all a1, . . .an and b1, . . . ,bm are function-free first-order atoms. The head is the set of atoms a1, . . .an

before the implication symbol←, and the body are the atoms and negated atoms b1, . . . ,bm. The intuitive
meaning of a rule is that if all atoms b1, . . . ,bk can be derived, and there is no evidence for any of
the atoms bk+1, . . . ,bm (i.e., the rule fires), then at least one of a1, . . . ,an has to be derived. A rule
with an empty body (i.e., m = n = 0) is called a fact, with ← usually omitted and a rule with empty
head (i.e., n = 0) is a constraint. Furthermore, whenever the head of a rule is a singleton, we call
the rule normal. The semantics is defined as usual in terms of particular (Herbrand) models of the
grounding of the program and an answer-set I is a ⊆-minimal model of the Gelfond-Lifschitz reduct
PI = {a1∨·· ·∨an← b1, . . . ,bk | r ∈ P, {bk+1, . . .bm}∩ I = /0}.

Several ASP language extensions exist, some are mainly syntactic sugar enabling more concise rep-
resentation of problems, like aggregates [14] or choice rules [19]. However, others either extend the
semantics of ASP or generalise them to full propositional theories as equilibrium logic [29] does. Ex-
tensions of the semantics include reasoning over linear constraints [2] or arbitrary theories [20], but they
also facilitate neuro-symbolic computation, like for example, NeurASP [38] or LPMLN programs [22].

Explanations for ASP Several approaches for explaining consistent ASP programs exist. The goal is
usually to give a justification as to why an atom is contained respectively not contained in an answer-set.
Off-line justifications [32, 34, 35] are labelled directed graphs providing reasons for why an atom is (or is
not) contained in a given answer-set. Intuitively, this can be seen as a derivation of the truth value of the
respective atom using the rules of the program. Causal justifications [16] provide explanations for literals
in a given answer-set by means of an alternative semantics for logic programs with disjunction. The basis
for causal justifications are causal terms which are algebraic terms representing joint causation through
multiplication and alternative causes through addition. Why-not provenance [36] provides justifications
for the truth values of atoms w.r.t answer-set semantics for normal logic programs. In particular, it
explains literals in a general fashion for a given program without the need of a specific answer-set.
Witnesses [37] give reason as to why an atom is contained in a particular answer-set by giving a resolution
proof. Similary, the system xclingo [5] prints out a rule derivation for the atom to be explained.

Explanations for inconsistent programs are usually generated to help with debugging programs and
make them consistent. For example, the systems spock [21] and Ouroboros [27] explain why an inter-
pretation is not an answer-set via program transformations which encode the given ASP program into a
meta-program. Answer-sets of this program contain an interpretation which is not an answer-set and the
reasons why. Saribatur et al. [33] employed Ouroboros in their abstraction method and used it to gen-
erate explanations for inconsistent instances in certain problem domains. Further debugging approaches
are DWASP [7] and stepping [28]. DWASP was introduced for the ASP solver WASP [1] and works
by amending debug atoms to programs. The inconsistency of the resulting debugging program can then
be explained in terms of sets of debug atoms that cannot jointly hold. In difference, stepping takes lets
the user perform the solving process by applying one applicable rule after the other.

Contrastive Explanation To answer questions like “Why P and rather than Q?” is the basis of con-
trastive explanations [23]. It has been argued that such explanations are intuitive for humans to under-
stand and to produce and also that standard why questions contain a hidden contrast case, e.g., “Why
P?” represents “Why P rather than not P?” [26]. Lipton [23] defines an answer to such a question as the
difference condition, stating that the answer contains a cause for P that is missing for not Q.
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Example 1. Consider an algorithm that classifies bugs and suppose the algorithm has classified a par-
ticular bug as a beetle. A potential non-contrastive explanation for this classification is to present the
values of the features, i.e., the bug is a beetle because it has 8 legs, 2 eyes and 2 wings. If we interpret
the question “Why is the bug a beetle?” as “Why is the bug a beetle instead of another bug?”, then an
adequate explanation is to highlight that the bug has 2 eyes, if it had 5 eyes, then it would be a fly.

3 Research Goals

Explaining ASP Extensions and Advanced Features One of our main research directions will be
the study of explainability in the context of the ASP extensions, as the mentioned existing explanation
approaches often do not support them. Besides existing approaches, we intend to investigate explanations
based on abduction, i.e. the process of determining which hypothesis need to be added to a theory to
explain given observations. This reasoning method has been studied for logic programs [11] and –
depending on the use-case – can be also be employed as an explanation approach. This seems interesting
in the context of contrastive explanations [23], which can be expressed through abductive reasoning. [25]

Furthermore, it is worthwhile to investigate the different ways of how the “inner workings” of exten-
sions can be considered in the explanations. We intend to consider the following settings. In a black-box
setting the explanation approach does not take into account how the ASP extension determines the truth
values of its atoms. For HEX programs, this would mean that external atoms are simply considered true
or false depending on the context and their truth values. The direct opposite to the previously mentioned
approach would be the white-box setting, where the semantics of the ASP extension is fully known and
considered in the explanation. In the case of NeurASP, the explanation would need to incorporate infor-
mation about the neural network. The middle way between the black-box and the white-box approach
would be a gray-box setting, where we do not have full access to the inner workings of the ASP extension
but we do have some information. For external computations or neural atoms, the explanation approach
could take, for example, certain input/output relationships into account.

Explaining Instead of Debugging Inconsistency The explanation approaches for inconsistent pro-
grams mentioned in Section 2 are all intended to facilitate debugging of answer-set programs. While
those explanations focused on debugging are of course all valid, they may not be useful in all contexts,
for example when the explanation is needed by an end-user and not an ASP engineer. Our aim is thus
to investigate explanation approaches for inconsistency that are more akin to the ones for consistent pro-
grams. Related work in this direction was done by Damásio et al. [6] who extended the debugging system
spock with providing justifications for atoms in the case that the program is actually consistent.

Explainability and Equilibrium Logic Certainly, a formal proof can be seen as an explanation as
to why some proposition has to follow from the given premises. In equilibrium logic [29] this is not
different.While a proof system for equilibrium logic based on tableaux methods exists [30], there are two
main issues that make it problematic for usage in explainability. The first is that the tableaux approach
contains multiple steps and it is difficult to obtain humanly readable explanations from the tableaux. The
other is that the axiomatized entailment relation is similar to what is also called skeptical inference, i.e.
the inference holds if the proposition is contained in each equilibrium model (answer-set). However,
as we have seen in Section 2, explanation approaches generally concern themselves with the question
of why something is true in some answer-set and this case is arguably also more important in practice.
The corresponding entailment relation is often called brave or credulous inference. We thus intend to
develop proof systems for this type of inference that are more akin to the more understandable sequent
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calculi, similar to what was done for related nonmonotonic formalisms [4]. Furthermore, abduction has
also been investigated for equilibrium logic [31] and we intend to investigate abductive explanations.

Towards Practical Algorithms A natural step in our study of explainability for ASP is to produce
implementations for the methods we introduce. An approach that is often employed in generating in-
consistent explanations, like for spock [21] and Ouroboros [27], is to encode this in ASP itself. We
also aim to provide implementations of the approaches we introduce in certain problem domains, like
scheduling or planning, where ASP has been shown to produce good solutions and benchmark data is
available. Specific questions may arise in those areas and whenever possible we aim to investigate tai-
lored enhancements for said domains. Any developed explanation system should also be interactive, as
it has been argued that the act of explanation is not static and more of a dialogue [26]. Hence, we aim to
build systems, where the user can guide the explanation process.

4 Research Status & Outlook

The project was officially started in the summer of 2022 and is expected to last for 3 years. Currently, we
are focused on two research directions. The first is investigating formal notions of justification, akin to
off-line justifications [32] and witnesses [37], for disjunctive programs comprised of Abstract Constraint
Atoms [24]. Programs defined over such atoms neatly generalise several language extensions.
Example 2. Consider the aggregate #sum{2 : a,1 : b,1 : c}> 1. Suppose we have a model I1 = {a,b,c}.
Then, an intuitive justification as to why I1 is a model of the aggregate, is that it is because a ∈ I1. Of
course, it is also valid to say that I1 is a model because b,c ∈ I1. Consider I2 = {b}. Since I2 is not a
model of the aggregate, we would like to know why. The justification in this case is that neither a nor c
are satisfied by I2, which, since b cannot be false in I2, would be a requirement.

As the example shows, this approach is purely based on semantics and does not take rule application
into account. Therefore, we are also working on more syntactic notions that can be used together with the
above concept is to use them both in an interactive explanation system that supports choice, aggregates
and disjunctive rules. A conference paper on this topic has recently been accepted [9].

The other direction we are pursuing is that of contrastive explanations with and for ASP.
Example 3. Consider the bug classification from Example 1 and suppose it is expressed by an ASP
program P. So, given the instance F = {legs(6),eyes(2),wings(2)}, we obtain the answer-set I =
{class(beetle)}. The question “Why is the bug a beetle instead of another bug?” can then be formulated
as the problem of finding some F ′ such that I is not the answer-set of P∪F ′ and F ′ differs minimally
from F. In this case, F ′ = {legs(6),eyes(5),wings(2)}, F \F ′ = {eyes(2)} and F ′ \F = {eyes(5)}.

In the example we said that the contrastive set of facts should be minimally different. A natural
choice would be minimal symmetric difference, but in general this difference is problem-dependent. In
the example the rules remained fixed, which is not always suited. For example, Bogatarkan et al. [3] use
similar explanations for their path finding system, but they focus on relaxing constraints. On this subject,
a paper, focused on a specific application, has just been accepted [10] and another is under review.

Besides the numerous research goals we have not tackled yet, there are some bigger issues with the
overall topic of explainability. When Miller [26] surveyed the work on explainability, he noticed that
formal notions of explainability often differ from what is accepted as explanation in the social sciences.
This includes explanation approaches that are purely static mathematical objects and Miller thus argues
for interactive approaches that may or may not utilise contrastiveness.

Regarding expected achievements, we plan to investigate the research topics presented in Section 3
and implement them in an explanation system to offer interactive explanations.
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