
EPTCS 414

Proceedings of the

17th

Interaction and Concurrency Experience

Groningen, The Netherlands, 21st June 2024

Edited by: Clément Aubert, Cinzia Di Giusto, Simon Fowler and Violet Ka I

Pun



Published: 11th December 2024

DOI: 10.4204/EPTCS.414

ISSN: 2075-2180

Open Publishing Association



i

Table of Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Clément Aubert, Cinzia Di Giusto, Simon Fowler and Violet Ka I Pun

Invited Talk: A Gentle Overview of Asynchronous Session-based Concurrency: Deadlock

Freedom by Typing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Bas van den Heuvel and Jorge A. Pérez

An Overview of the Decentralized Reconfiguration Language Concerto-D through its Maude

Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Farid Arfi, Hélène Coullon, Frédéric Loulergue, Jolan Philippe and Simon Robillard

Safe Composition of Systems of Communicating Finite State Machines . . . . . . . . . . . . . . . . . . . . . . . . . 39

Franco Barbanera and Rolf Hennicker

The B2Scala Tool: Integrating Bach in Scala with Security in Mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Doha Ouardi, Manel Barkallah and Jean-Marie Jacquet



C. Aubert, C. Di Giusto, S. Fowler & V. K. I Pun (Eds.):
17th Interaction and Concurrency Experience (ICE 2024)
EPTCS 414, 2024, pp. ii–iii, doi:10.4204/EPTCS.414.0

© C. Aubert, C. Di Giusto, S. Fowler & V. K. I Pun
This work is licensed under the
Creative Commons Attribution License.

Preface

Clément Aubert
Augusta University, USA

Cinzia Di Giusto
Université Côte d’Azur, CNRS, I3S Sophia Antipolis, FR

Simon Fowler
University of Glasgow School of Computing Science, UK

Violet Ka I Pun
Western Norway University of Applied Sciences, NO

This volume contains the proceedings of ICE'24, the 17th Interaction and Concurrency Experi-
ence, which was held in Groningen, the Netherlands, as a satellite event of DisCoTec'24. The previ-
ous editions of ICE were affiliated with ICALP'08 (Reykjavik, Iceland), CONCUR'09 (Bologna, Italy),
DisCoTec'10 (Amsterdam, The Netherlands), DisCoTec'11 (Reykjavik, Iceland), DisCoTec'12 (Stock-
holm, Sweden), DisCoTec'13 (Florence, Italy), DisCoTec'14 (Berlin, Germany), DisCoTec'15 (Greno-
ble, France), DisCoTec'16 (Heraklion, Greece), DisCoTec'17 (Neuchâtel, Switzerland), DisCoTec'18
(Madrid, Spain), DisCoTec'19 (Lyngby, Denmark), DisCoTec'20 (virtual, hosted by the University of
Malta), DisCoTec'21 (virtual, hosted by the University of Malta), DisCoTec'22 (hybrid event, hosted in
Lucca, Italy), and DisCoTec'23 (Lisbon, Portugal). The details of previous editions, proceedings and spe-
cial issues as well as the composition of the steering committee can be found on the new series website,
at https://ice-workshop.github.io/.

The ICE workshop series features a distinguishing review and selection procedure: PC members
are encouraged to interact, anonymously, with authors. This year these interactions took place on the
HotCRP platform which combines paper selection features with forum-like interactions. As in the past
editions, the forum discussion during the review and selection phase of ICE'24 considerably improved
the accuracy of the feedback from the reviewers and the quality of accepted papers, and offered the
basis for lively discussion during the workshop. The time and effort spent on the interaction between
reviewers and authors is rewarding for all parties. The discussions on HotCRP made it possible to
resolve misunderstandings at an early stage of the review process, to discover and correct mistakes in
key definitions, and to improve examples and presentation.

The 2024 edition of ICE included double anonymous reviewing of original research papers, in order
to increase fairness and avoid bias in reviewing. Research papers were submitted with authors' names and
identifying details removed, and authors were given anonymous access to a dedicated section of HotCRP.
Each paper was reviewed by three PC members, and altogether 3 papers were accepted for publication –
plus 1 oral presentation which is not part of this volume. We were proud to host one invited talk by Jorge
A. Pérez. The full paper of the invited talk is included in this volume, together with the final versions of
the research papers, which takes into account the discussion at the workshop.

We would like to thank the authors of all the submitted papers for their interest in the workshop.
We thank Jorge A. Pérez for accepting our invitation to present his recent work. We are grateful for the
efforts of the PC members:

• Matthew Alan Le Brun (University of Glasgow, UK)

• Kirstin Peters (Augsburg University, DE)

• Carla Ferreira (NOVA University Lisbon, PT)

• Eva Graversen (University of Southern Denmark, DK)

• Bas van den Heuvel (Karlsruhe University of Applied Sciences / University of Freiburg, DE) ⋆
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https://matthewalanlebrun.github.io/
https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/swtti/team/kirstin-peters/
http://ctp.di.fct.unl.pt/~cf/
https://portal.findresearcher.sdu.dk/en/persons/efgraversen
https://basvdheuvel.github.io/
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• Gerard Tabone (University of Malta, MT)

• Ping Hou (University of Oxford, UK)

• Sergueï Lenglet (Université de Lorraine – Université Sorbonne Paris-Nord, FR)

• Emanuele D’Osualdo (Max Planck Institute for Software Systems, DE)

• Seyed Hossein Haeri (IOG & University of Bergen, NO)

• Ivan Prokić (Faculty of Technical Sciences, University of Novi Sad, RS)

• Luc Edixhoven (Open University of the Netherlands, NL)

• Felix Stutz (University of Luxembourg, LU)

• Lorenzo Gheri (University of Liverpool, UK)

• Andreia Mordido (LASIGE, University of Lisbon, PT)

⋆ The ICE 2024 Outstanding PC Member Award was awarded this year to Bas van den Heuvel!

Previous ICE Outstanding PC members include:

• ICE 2023: Sergueï Lenglet

• ICE 2022: Duncan Paul Attard

• ICE 2021: Ivan Prokić

We thank the ICE steering committee and the DisCoTec'24 organizers, in particular the general chair,
Jorge A. Pérez, for providing an excellent environment for the preparation and staging of the event.
Finally, we thank the editors of EPTCS for the publication of these post-proceedings.

https://gerardtabone.com/
https://www.cs.ox.ac.uk/people/ping.hou/
https://members.loria.fr/SLenglet/
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https://research.ou.nl/en/persons/luc-edixhoven
https://fstutz.pages.mpi-sws.org/felix-stutz/
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https://www.di.fc.ul.pt/~amordido/
https://basvdheuvel.github.io/
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A Gentle Overview of Asynchronous Session-based

Concurrency: Deadlock Freedom by Typing

Bas van den Heuvel

Karlsruhe University of Applied Sciences, Karlsruhe, and University of Freiburg, Freiburg, Germany

Jorge A. Pérez

University of Groningen, The Netherlands

While formal models of concurrency tend to focus on synchronous communication, asynchronous

communication is relevant in practice. In this paper, we will discuss asynchronous communication in

the context of session-based concurrency, the model of computation in which session types specify

the structure of the two-party protocols implemented by the channels of a communicating process.

We overview recent work on addressing the challenge of ensuring the deadlock-freedom property for

message-passing processes that communicate asynchronously in cyclic process networks governed

by session types. We offer a gradual presentation of three typed process frameworks and outline how

they may be used to guarantee deadlock freedom for a concurrent functional language with sessions.

1 Introduction

The purpose of this paper is to overview recent work on new verification techniques that enforce deadlock

freedom for message-passing processes. We target concurrent systems that form cyclic process networks

and that communicate asynchronously, governed by protocols expressed as session types [43, 25].

We rely on process calculi as formal models of concurrency, as they provide a firm foundation for

specifying and analyzing message-passing programs and for principled designs of programming abstrac-

tions involving concurrent, interactive behavior. We are also interested in asynchronous communication,

which, from the standpoint of distributed systems, can be informally described as the kind of process

communication in which no global clock is assumed; as such, an observer has no way of knowing if the

message they have sent has been received. These intuitions can be precisely formulated in a language-

independent way (cf. [42]). Unsurprisingly, asynchronous communication is of clear practical relevance:

it is the standard in most distributed systems and web-based applications nowadays.

Despite this pragmatic interest, process calculi such as the π-calculus tend to focus on synchronous

communication, rather than on asynchronous communication. In fact, as we discuss later on, the study

of formalisms such as the asynchronous π-calculus originated from an interest in the essential ingre-

dients of the synchronous π-calculus. There is a vast literature on the asynchronous π-calculus as a

‘fundamental core’ of the π-calculus, its behavioral theory, and its relationship with the original syn-

chronous π-calculus, in particular from the point of view of relative (or comparative) expressiveness

(see, e.g., [23, 4, 36, 1, 33, 32, 37, 5]). In the π-calculus, asynchronous communication admits an el-

egant and economical formulation: asynchronous processes can be defined simply by decreeing that in

output-prefixed processes x[v];P the continuation P can only correspond to the inactive process 0. This

ensures that there are no processes that are blocked by an output action, but also that a process x[v];0 can

be regarded as an ‘output particle’ that has been emitted but not yet received by some intended receiver.

These particles could then be arranged into some suitable structure, such as a queue or a stack [3].

http://dx.doi.org/10.4204/EPTCS.414.1
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2 Asynchronous Session-Based Concurrency

Asynchronous communication is also relevant for session-based concurrency, which can be de-

scribed as the model of interaction in which processes exchange messages following some predetermined

protocols specified as session types. Session types specify sequences of input and output actions, possi-

bly recursive, which define communication structures between two or more interacting parties. Session-

type systems leverage those structures to ensure that interacting processes always respect their intended

specifications and never exhibit issues such as message mismatches (e.g., ill-formatted data), message

duplication and loss, out-of-order messages, race conditions, and deadlocks—the insidious situation in

which processes are permanently blocked, awaiting indefinitely a message that will never arrive. The use

of session types for excluding deadlocks in asynchronous processes is the central theme in our work.

Session-based concurrency has been widely studied using (variants of) the π-calculus, which provide

a simple yet rigorous framework for developing verification techniques for message-passing programs.

In this context, asynchronous communication usually has a less economical definition than in the untyped

setting: processes/programs are typically defined together with some runtime entities, such as buffers,

which explicitly account for the in-transit messages by following the structure of their corresponding

sessions [15, 16]. Different designs for these buffers, accounting for different levels of granularity, are

possible [28]. This treatment has direct consequences on the notions of causality that govern reasoning

over well-typed processes: actions from different sessions should be independent from each other, but

actions (including outputs) within a session should follow the ordering described by their session type. As

a result, the machinery required by asynchronous sessions entails some notational burden, for instance

when formulating the meta-theoretical results for well-typed processes. Moving to an asynchronous

setting has also important consequences for central notions, such as subtyping, which is decidable under

a synchronous semantics but becomes undecidable in the asynchronous case [29].

In this paper, we are interested in verification techniques for ensuring that asynchronous session pro-

cesses are deadlock free. Just as session-based concurrency integrates elements and concepts originating

from different areas (concurrency theory, process calculi, type systems, programming languages), we

consider an amalgamation of two separate developments, which leads to a clean formulation of asyn-

chronous communication in which deadlock-freedom guarantees hold for a wide class of processes.

On the one hand, we consider logical correspondences, in the style of Curry-Howard, that connect

session types and linear logic [8, 46]. This line of work provides in particular clean foundations for both

the analysis of deadlock freedom and for asynchronous communication. Indeed, as shown by DeYoung et

al. [14], in a logically-motivated setting, asynchronous communication enjoys a remarkably economical

formulation, in which output particles represent the intended communication structure using continuation

passing. On the other hand, we consider type systems for the π-calculus that exclude deadlocks by

considering priority-based approaches [26, 34], which avoid vicious cycles in advanced communication

patterns. These two strands of work are distinct in nature but complementary nevertheless; in particular,

it is known that priority-based approaches to deadlock freedom are strictly more powerful than logic-

based approaches [12, 13]. In this paper we show how the proposed amalgamation enables a fresh

understanding of the key insights involved in enforcing deadlock freedom in an asynchronous setting,

gradually going from no enforcement, to enforcement restricted to tree-like topologies, and culminating

in deadlock freedom for the cyclic topologies of processes that abound in practice (such as those present

in parallel algorithms).

Structure of the document. Section 2 gives a high-level discussion on the interplay of asynchronous

communication and (session) protocols. Section 3 presents AP: a π-calculus with asynchronous com-

munication whose session-type system enforces conformance to session protocols but does not exclude
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deadlocks. Sections 4 and 5 build upon AP to gradually illustrate the essentials of deadlock freedom by

typing. We first introduce ACP, an asynchronous variant of Wadler’s CP [46] that enforces deadlock

freedom for processes that form tree-like networks. Then, we present the key ideas underlying APCP,

an enhancement of AP with a priority-based approach to typing, which enforces deadlock freedom also

for processes that form cyclic networks. Section 6 briefly discusses LASTn, a functional language with

asynchronous sessions (based on the language by Gay and Vasconcelos [16]), for which deadlock free-

dom can be guaranteed via a correct translation into APCP. Section 7 collects some final remarks.

Origin of the results. This paper is intended as a gentle introduction to our journal paper [21], which

offers a full treatment of APCP, its meta-theoretical results, formal connections with LASTn, and com-

parisons with related works. In particular, Sections 5 and 6 collect selected results first reported in [21].

For the sake of presentation, here we consider typed calculi without recursive processes and recursive

session types, which are included in [21]. The discussion in Section 2 and the asynchronous variant of

CP presented in Section 4 are new to this presentation.

2 Encodings as (Session) Protocols and Asynchronous Communication

In the theory of the π-calculus, asynchronous communication was not the first choice. The π-calculus

was introduced as a calculus of synchronous, channel-based communication, from which asynchrony

arose as a (syntactic) limitation—a sort of afterthought. Much of what we know about asynchronous

communication in this setting actually comes from studies investigating the (non-)existence of (correct)

encodings of synchronous into asynchronous communication. Perhaps unsurprisingly, the theory of ses-

sion types followed a similar path: it was first formulated using programming models with synchronous

communication; the interest in asynchrony came later, and continues to be relevant, especially as session

types have found their way into (mainstream) programming languages [2].

Encodings between process calculi can intuitively be seen as protocols: given a step in a source

calculus, an encoding gives a precise sequence of steps in the target calculus that represents it. A bit of

history may be instructive here. Shortly after the (synchronous) π-calculus was introduced, researchers

sought to determine the essential ingredients of interaction and concurrency. An initial subject of study

was polyadicity—the ability to send and receive finite lists of names in a single communication step:

x[v1, . . . ,vk];P | x(y1, . . . ,yk);Q −→ P |Q{v1/y1} . . .{vk/yk}

where x[ṽ] and x(ỹ) denote output and input prefixes, respectively, and ‘;’ and ‘|’ denote sequential

and parallel composition, respectively. The question is then whether the polyadic π-calculus can be

encoded into the monadic variant, in which at most one value can be exchanged. Milner [31] gave the

following protocol for the exchange of a list of values v1, . . . ,vk over name x: create a fresh name s, send s

over x, and then use s to individually transmit each vi (with i ∈ 1 . . .k) using a monadic communication.

Hence, this protocol represents a single k-adic communication with k + 1 monadic communications,

using s as a private session to avoid interferences. Interestingly, as simple and plausible as this protocol

looks, its correctness is not obvious, in particular if one considers full abstraction: as shown by Quaglia

and Walker [40], using types for monadic processes is essential for establishing a sound and complete

correspondence between source (polyadic) processes and their corresponding target (monadic) processes.

This brings us back to the issue of asynchronous communication. Studies on asynchronous vari-

ants of the π-calculus originated from the question: can a synchronous communication discipline be

represented in the simpler and more pragmatic asynchronous setting, in which output is not a blocking
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operation? For the π-calculus without choice constructs, two encodings/protocols were independently

proposed by Boudol [4] and by Honda and Tokoro [23] (who studied it for a core language for objects).

We briefly review these two encodings, following the presentation by Van Glabbeek [17], writing J·KB
and J·KHT, respectively (in both cases, the encoding is a homomorphism for other process constructs):

Jx[y];PKB = (νu)(x[u] |u(w);(w[y] | JPKB)) Jx[y];PKHT = x(u);(u[y] | JPKHT)

Jx(z);PKB = x(u);(νw)(u[w] |w(z);JPKB) Jx(z);PKHT = (νw)(x[w] |w(z);JPKHT)

The encodings adopt different approaches to represent synchronous communication. In Boudol’s encod-

ing/protocol, a single communication step is represented using three steps in the asynchronous calculus:

first on x and then on the two fresh names u and w (on which the source value y is finally communicated).

Observe that the direction of actions is preserved: an output is encoded into an output, and same for

input. Honda and Tokoro’s encoding/protocol is simpler. It only involves one fresh name but it does not

preserve directionality: indeed, the encoding of input takes the initiative by sending a freshly created

name on which the communication of y will occur. Despite these differences, both encodings are correct

with respect to Gorla’s correctness criteria [18], as shown in [17].

In our opinion, the view of encodings as protocols is insightful in itself, but also because we are

interested in session types as a way of specifying protocols for (deadlock-free) concurrent processes. In

this respect, there are two salient points worth making.

• First, there is a tension between asynchronous communication and session types: while the former

aims at unconstraining behaviors (by ensuring that only inputs are blocking points in communi-

cation), session types aim at constraining behaviors, for a good reason: to ensure that processes

conform to some intended communication structure. This tension does not entail a conflict, but

it does have a consequence: the incorporation of session types in asynchronous process calculi

results in a model that stands “in between” synchrony and asynchrony but differs from both [28]:

(output) actions from different sessions should be independent from each other, but (output) ac-

tions within a session should follow the ordering described by their session type.

• Second, it is known that the choice between synchronous and asynchronous communication di-

rectly influences deadlock-freedom analyses [10]: the asynchronous setting appears as the most

convenient scenario in which to develop techniques for ensuring deadlock freedom for (session)

processes, as it involves the least amount of blocking operations. Also, when considering sessions,

asynchronous communication makes differences between different sessions even more prominent.

To see this, consider the following process in a synchronous setting:

P = (νxy)(νuw)(u[z];y[v];P1 | x(v);w(z);P2)

where we use the restriction (νxy) to declare x and y as dual endpoints of a session. Hence, in P we

have that x and y form one session, different from the session formed by u and w. Also, P consists

of two sub-processes, both with blocking operations (outputs in the left sub-process, inputs in the

right sub-process); the cyclic dependencies induced by these operations make P deadlocked.

Having an output on a session that blocks an output from another session is difficult to justify.

While a variant of P in which these two outputs are swapped (as in y[v];u[z];P1) would immedi-

ately solve the issue, a more fundamental observation is that P is not directly expressible in an

asynchronous setting. In fact, in an asynchronous setting we could have a process like

(νxy)(νuw)(u[z] | y[v] |P1 | x(v);w(z);P2)

that expresses the dependency between the two sessions in a deadlock-free manner.
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Process syntax:

P,Q ::= x[a,b] send | x(y,z);P receive

| x[b]⊳ j selection | x(z)⊲{i : P}i∈I branch

| P |Q parallel | (νxy)P restriction

| 0 inaction | [x ↔ y] forwarder
................................................................................................................................................

Structural congruence:

[SC-ALPHA]

P ≡α Q

P ≡ Q

[SC-PAR-UNIT]

P |0 ≡ P

[SC-PAR-COMM]

P |Q ≡ Q |P

[SC-PAR-ASSOC]

P | (Q |R)≡ (P |Q) |R

[SC-SCOPE]

x,y /∈ fn(P)

P | (νxy)Q ≡ (νxy)(P |Q)

[SC-RES-COMM]

(νxy)(νzw)P ≡ (νzw)(νxy)P

[SC-RES-SYMM]

(νxy)P ≡ (νyx)P

[SC-RES-INACT]

(νxy)0 ≡ 0

[SC-FWD-SYMM]

[x ↔ y]≡ [y ↔ x]

[SC-RES-FWD]

(νxy)[x ↔ y]≡ 0

................................................................................................................................................

Reduction:

[RED-SEND-RECV]

(νxy)(x[a,b] | y(a′ ,b′);Q)−→ Q{a/a′,b/b′}

[RED-SEL-BRA]

j ∈ I

(νxy)(x[b]⊳ j | y(b′)⊲{i : Qi}i∈I)−→ Qj{b/b′}

[RED-FWD]

y 6= z

(νxy)([x ↔ z] |P)−→ P{z/y}

[RED-SC]

P ≡ P′ P′ −→ P′ Q′ ≡ Q

P −→ Q

[RED-RES]

P −→ Q

(νxy)P −→ (νxy)Q

[RED-PAR]

P −→ Q

P |R −→ Q |R

Figure 1: The AP process language: syntax and reduction semantics.

Having presented a high-level discussion on the interplay between encodings/protocols, asynchronous

communication, and deadlock freedom, we now move on to formally presenting a basic process model

of asynchronous communication and its corresponding type system.

3 Asynchronous Processes

We start by presenting a calculus of asynchronous processes, dubbed AP. We define its syntax, reduction

semantics, and session-type system. Well-typed processes perform their ascribed session protocols but

may run into deadlocks. As such, AP provides a basic framework for developing more sophisticated
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typing disciplines that enforce deadlock freedom, namely ACP and APCP, to be introduced later on.

Syntax. We write a,b,c, . . . ,x,y,z, . . . to denote names (or endpoints); by convention we use the early

letters of the alphabet for the objects of output-like constructs. Also, we write x̃, ỹ, z̃, . . . to denote finite

sequences of names. With a slight abuse of notation, we sometimes write xi ∈ x̃ to refer to a specific

element in the sequence x̃. Also, we write i, j,k, . . . to denote labels for choices, and I,J,K, . . . to denote

finite sets of labels. In AP, communication is asynchronous (cf. [23, 24, 4]) and dyadic: each com-

munication involves the transmission of a pair of names, usually interpreted as a message name and a

continuation name. We use P,Q, . . . to denote processes.

Figure 1 (top) gives the syntax of processes. The send x[a,b] emits along x a message name a and

a continuation name b. The receive x(y,z);P blocks until along x a message and continuation name

are received (referred to in P as the placeholders y and z, respectively), binding y and z in P. The

selection x[b]⊳ i sends along x a label i and a continuation name b. The branch x(z)⊲{i : Pi}i∈I blocks

until it receives along x a label i ∈ I and a continuation name (referred to in Pi as the placeholder z),

binding z in each Pi. In the rest of this paper, we refer to sends, receives, selections, and branches as

prefixes (even though sends and selections do not prefix a continuation process). We refer to sends and

selections collectively as outputs, and to receives and branches as inputs.

The process P |Q denotes the parallel composition of P and Q. Restriction (νxy)P binds x and y in P,

thus declaring them as the two names of a channel and enabling communication (cf. [45]). The process 0

denotes inaction. The forwarder [x ↔ y] is a primitive copycat process that links together names x and y.

Names are free unless otherwise stated (i.e., unless they are bound somehow). We write fn(P) for the

set of free names of P, and bn(P) for the set of bound names of P. Also, we write P{x/y} to denote the

capture-avoiding substitution of the free occurrences of y in P for x. We write sequences of substitutions

P{x1/y1} . . .{xn/yn} as P{x1/y1, . . . ,xn/yn}.

Reduction semantics. The reduction relation for processes (P −→ Q) formalizes how complemen-

tary outputs/inputs on connected names may synchronize. As usual for π-calculi, reduction relies on

structural congruence (P ≡ Q), which relates processes with minor syntactic differences. Structural con-

gruence is the smallest congruence on the syntax of processes (Figure 1 (top)) satisfying the axioms in

Figure 1 (middle).

Structural congruence defines the following properties for processes. Processes are equivalent up

to α-equivalence (Rule [SC-ALPHA]). Parallel composition is associative (Rule [SC-PAR-ASSOC]) and

commutative (Rule [SC-PAR-COMM]), with unit 0 (Rule [SC-PAR-UNIT]). A parallel process may be

moved into or out of a restriction as long as the bound channels do not occur free in the moved process

(Rule [SC-SCOPE]): this is scope inclusion and scope extrusion, respectively. Restrictions on inac-

tive processes may be dropped (Rule [SC-RES-INACT]), and the order of names in restrictions and of

consecutive restrictions does not matter (Rules [SC-RES-SYMM] and [SC-RES-COMM], respectively).

Forwarders are symmetric (Rule [SC-FWD-SYMM]), and equivalent to inaction if both names are bound

together through restriction (Rule [SC-RES-FWD]).

We define the reduction relation P −→ Q by the axioms and closure rules in Figure 1 (bottom). We

write −→∗ for the reflexive, transitive closure of −→. Rule [RED-SEND-RECV ] synchronizes a send and

a receive on connected names and substitutes the message and continuation names. Rule [RED-SEL-BRA]
synchronizes a selection and a branch: the received label determines the continuation process, substitut-

ing the continuation name appropriately. Rule [RED-FWD] implements the forwarder as a substitution.

Rules [RED-SC], [RED-RES], and [RED-PAR] close reduction under structural congruence, restriction, and
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parallel composition, respectively.

Type system. AP types processes by assigning binary session types to names. Following Curry-

Howard interpretations, we present session types as linear logic propositions (cf., e.g., Caires et al. [9],

Wadler [46], Caires and Pérez [7], and Dardha and Gay [11]).

Definition 1 (Session Types for AP). The following grammar defines the syntax of session types A,B.

A,B ::= A⊗B |A

&

B |⊕{i : A}i∈I |&{i : A}i∈I |•

A name of type A⊗B (resp. A

&

B) first sends (resp. receives) a message name of type A and a contin-

uation name of type B. A name of type ⊕{i : Ai}i∈I selects a label i ∈ I and sends a continuation name

of type Ai. A name of type &{i : Ai}i∈I offers a choice: after receiving a label i ∈ I, the continuation

name should behave as Ai. We write • to denote the type of a session protocol that is finished, i.e., a

session that is closed. Closed sessions are usually typed using the linear logic units 1 and ⊥ (cf., e.g.,

[8, 11]), but AP does not associate any process behavior with closed sessions, so we follow Caires [6] in

conflating 1 and ⊥ to the single, self-dual type •.

Duality, the cornerstone notion of session types and linear logic, ensures that the two names of a

channel have complementary behaviors.

Definition 2 (Duality). The dual of session type A, denoted A, is defined inductively as follows:

A⊗B, A

&

B ⊕{i : Ai}i∈I ,&{i : Ai}i∈I •, •

A

&

B, A⊗B &{i : Ai}i∈I ,⊕{i : Ai}i∈I

Judgments are of the form

P ⊢ Γ

where P is a process and Γ is a context that records assignments of types to channels of the form x : A.

A judgment P ⊢ Γ then means that P can be typed in accordance with the type assignments for names

recorded in Γ. The context Γ obeys exchange (assignments may be silently reordered), but disallows

weakening (all assignments must be used, except names typed with •) and contraction (assignments may

not be duplicated). The empty context is written ∅. In writing Γ,x : A we assume that x /∈ dom(Γ).
Figure 2 gives the typing rules. We describe the typing rules from a bottom-up perspective. Rule [TYP-

SEND] types a send; this rule does not have premises to provide a continuation process, leaving the free

message and continuation names to be bound to a continuation process using Rules [TYP-PAR] and [TYP-

RES] (both of which will be discussed next). Similarly, Rule [TYP-SEL] types a selection, where the

continuation name is free. Rules [TYP-RECV] and [TYP-BRA] type receives and branches, respectively.

In the tradition of simply-typed π-calculi [41], we have two separate rules for parallel composition

and restriction. Rule [TYP-PAR] types the parallel composition of two processes that do not share as-

signments on the same names. Rule [TYP-RES] types a restriction, where the two restricted names must

be of dual type. Rule [TYP-END] implements a constrained form of weakening, which silently removes

a closed name from the typing context. Rule [TYP-INACT] types an inactive process with no names.

Rule [TYP-FWD] types forwarding between names of dual type.

AP satisfies an important form of type soundness that guarantees consistency of typing across struc-

tural congruence and reduction. This property is key to proving safety properties such as session fidelity

(correct implementation of assigned session types) and communication safety (no message mismatches).

Theorem 1 (Type Preservation for AP). Given P ⊢ Γ and Q such that P ≡ Q or P −→ Q, we have Q ⊢ Γ.
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[TYP-SEND]

x[a,b] ⊢ x : A⊗B,a : A,b : B

[TYP-RECV]

P ⊢ Γ,y : A,z : B

x(y,z);P ⊢ Γ,x : A

&

B

[TYP-SEL]

j ∈ I

x[b]⊳ j ⊢ x : ⊕{i : Ai}i∈I,b : Aj

[TYP-BRA]

∀i ∈ I : Pi ⊢ Γ,z : Ai

x(z)⊲{i : Pi}i∈I ⊢ Γ,x : &{i : Ai}i∈I

[TYP-END]

P ⊢ Γ
P ⊢ Γ,x : •

[TYP-PAR]

P ⊢ Γ Q ⊢∆

P |Q ⊢ Γ,∆

[TYP-RES]

P ⊢ Γ,x : A,y : A

(νxy)P ⊢ Γ

[TYP-INACT]

0 ⊢∅

[TYP-FWD]

[x ↔ y] ⊢ x : A,y : A

Figure 2: The typing rules of AP.

Deadlock freedom is a fundamental property for message-passing processes. However, typing in AP

is too permissive to guarantee deadlock freedom, as illustrated by the following example.

Example 1. Consider the process

(νxy)(νuw)(x(v,x′);u[a,b] |w(z,w′);y[c,d])

which can be considered as the “hello world” of deadlocked message-passing processes. The process

is deadlocked because the left receive (on x) is waiting for the right send (on y), which is blocked by

a receive (on w) waiting for the left send (on u), which is blocked by the left receive. We refer to such

a state as a cyclic dependency. The corresponding typing derivation, given below, is valid in AP; for

brevity, the right subtree (analogous to the left one) is omitted and superscripts on rule labels indicate a

number of repeated applications of the same rule.

u[a,b] ⊢ u : •⊗•,a : •,b : •
[TYP-END]2

u[a,b] ⊢ v : •,x′ : •,u : •⊗•,a : •,b : •
[TYP-RECV]

x(v,x′);u[a,b] ⊢ x : •

&

•,u : •⊗•,
a : •,b : •

...

w(z,w′);y[c,d] ⊢ w : •

&

•,y : •⊗•,
c : •,d : •

[TYP-PAR]
x(v,x′);u[a,b] |w(z,w′);y[c,d] ⊢ x : •

&

•,u : •⊗•,a : •,b : •,w : •

&

•,y : •⊗•,c : •,d : •
[TYP-RES]2

(νxy)(νuw)(x(v,x′);u[a,b] |w(z,w′);y[c,d]) ⊢ a : •,b : •,c : •,d : •

Note that deadlock freedom is usually guaranteed for closed processes, i.e., without free names. The

process above is not closed, but it can be trivially closed because all its free names are typed •.

In fact, the cyclic dependencies introduced in the example above are the only source of deadlock

in our process calculus. As we will see in the next two sections, there are multiple ways for typing to

guarantee deadlock freedom by ruling out cyclic dependencies.

4 Asynchronous CP

ACP is an asynchronous variant of Wadler’s Classical Processes (CP) [46]. It can be obtained from AP

by a minor yet crucial modification to Figure 2: Rules [TYP-PAR] and [TYP-RES] are replaced by the
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following Rule [TYP-CUT], which combines parallel composition and restriction:

P ⊢ Γ,x : A Q ⊢∆,y : A
[TYP-CUT]

(νxy)(P |Q) ⊢ Γ,∆

As we will see, replacing Rules [TYP-PAR] and [TYP-RES] with Rule [TYP-CUT] guarantees deadlock

freedom simply by ruling out all possible cyclic dependencies, because it ensures that every pair of

processes shares at most a single pair of names with dual behaviors. We shall write C⊢ instead of ⊢ to

denote the difference between the two type systems.

The different typing for parallel composition has an effect on the semantics of (typable) processes.

Indeed, note that most structural congruence rules in Figure 1 (middle) do not preserve typing under C⊢
(e.g., the left process in Rule [SC-SCOPE] is not typable at all). Therefore, we define an alternative

structural congruence for ACP, denoted C≡, with Rules [SC-ALPHA] and [SC-FWD-SYMM] as in Fig-

ure 1 (middle) and the following rules:

[SC-CUT-SYMM]

(νxy)(P |Q) C≡ (νyx)(Q |P)

[SC-CUT-ASSOC-L]

y /∈ fn(Q) w /∈ fn(P)

(νxy)(P | (νzw)(Q |R)) C≡ (νzw)(Q | (νxy)(P |R))

[SC-CUT-ASSOC-R]

y /∈ fn(R) z /∈ fn(P)

(νxy)(P | (νzw)(Q |R)) C≡ (νzw)((νxy)(P |Q) |R)

Accordingly, we define reduction for ACP, denoted C−→, as in Figure 1 (bottom), except that Rule [RED-

SC] uses C≡. We write P C 6−→ whenever there exists no Q such that P C−→ Q. We have the following:

Theorem 2 (Type Preservation for ACP). Given P C⊢ Γ and Q such that P C≡ Q or P C−→ Q, we have

Q C⊢ Γ.

Example 2. Recall the deadlocked process from Example 1. Under C⊢, this process is not typable,

because its two parallel sub-processes are connected on two pairs of names. We can create a well-typed

variant by splitting one of the sub-processes into a parallel composition instead of sequence, such that

the resulting two sub-processes can be connected to the original left sub-process on a single pair of

names each:

(νxy)
(

(νuw)(x(v,x′);u[a,b] |w(z,w′);0) | y[c,d]
)

The corresponding derivation is shown below; for readability, we omit the left subtree, which is identical

to that in Example 1 (writing C⊢ instead of ⊢).

...

x(v,x′);u[a,b] C⊢ x : •

&

•,u : •⊗•,
a : •,b : •

[TYP-INACT]

0 C⊢∅
[TYP-END]2

0 C⊢ z : •,w′ : •
[TYP-RECV]

w(z,w′);0 C⊢ w : •

&

•

[TYP-CUT]

(νuw)(x(v,x′);u[a,b] |w(z,w′);0) C⊢ x : •

&

•,a : •,b : •
[TYP-SEND]

y[c,d] C⊢ y : •⊗•,
c : •,d : •

[TYP-CUT]

(νxy)
(

(νuw)(x(v,x′);u[a,b] |w(z,w′);0) | y[c,d]
)

C⊢ a : •,b : •,c : •,d : •

As a result, the cyclic dependency from Example 1 is broken, and the process is deadlock free. Note that

we use 0 to accommodate the standalone receive.
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The following result captures common definitions of deadlock freedom (cf., e.g., [26]), where, e.g.,

when a process contains a non-blocked output it will reduce until an input on an opposite endpoint is

non-blocked and communication can take place.

Theorem 3 (Deadlock Freedom for ACP). Given P C⊢∅, if P C 6−→, then P C≡ 0.

Commuting conversions. The sequent calculus of linear logic induces a form of proof equivalence

known as commuting conversions, where rule applications may be commuted past each other while pre-

serving assumptions and conclusion. Caires and Pfenning [8] noticed that some commuting conversions

correspond to structural congruences in type systems such as ACP. For example, Rule [SC-CUT-ASSOC-

L] commutes two applications of Rule [TYP-CUT]. On the other hand, other commuting conversions

induce more significant process transformations, e.g., they change the order of blocking prefixes. Writ-

ing to denote such transformations and annotating processes with relevant free names, we have, e.g.,

(νxy)((νaa′)(νbb′)z[a,b];(Pa′ |Qb′,x) |Ry) (νaa′)(νbb′)z[a,b];(Pa′ | (νxy)(Qb′,x |Ry))

by commuting the application of the synchronous variant of Rule [TYP-SEND] past the application of

Rule [TYP-CUT]. These conversions do not correspond to structural congruences but to typed behav-

ioral equivalences (cf. [38, 39]). Importantly, this behavioral characterization of commuting conversions

holds under synchronous communication, where outputs are blocking. Interestingly, DeYoung et al. [14]

discovered that, under asynchronous communication, some of these latter commuting conversions that

involve outputs correspond to simple structural congruences. This is the case for our previous example:

(νxy)((νbb′)((νaa′)(z[a,b] |Pa′) |Qb′,x) |Ry)
C≡ (νbb′)((νaa′)(z[a,b] |Pa′) | (νxy)(Qb′,x |Ry))

As discussed in Section 2, to study deadlock freedom at its core, it is desirable to have a setting with

the least possible “amount of blockage”. Hence, the above discoveries confirm that deadlock freedom is

best studied under asynchronous communication, for synchronous communication entails unnecessary

blockages by outputs leading to artificial sources of deadlock, whereas asynchronous communication

adequately considers inputs as the only source of blockage.

5 Priorities for AP

We now consider APCP [21], which uses the same process language as AP: syntax, structural congru-

ence, and reduction are defined exactly as in Figure 1. Following [26, 11], we extend the session types

of AP (Definition 1) with priority annotations on binary connectives. Priorities are natural numbers.

Intuitively, prefixes whose type has lower priority should not be blocked by those with higher priority.

We write π,ρ , . . . to denote priorities, and ω to denote the ultimate priority that is greater than all

other priorities and cannot be increased further. That is, for every π ∈ N, ω > π and ω +π = ω . Also,

by abuse of notation, we reuse A,B, . . . to denote APCP session types.

Definition 3 (Session Types for APCP). The following grammar defines the syntax of session types A,B.

A,B ::= A⊗π B |A

&π B |⊕π{i : A}i∈I |&
π{i : A}i∈I |•

Session types retain the same meaning as in Section 4. A name of type • does not require a priority,

as closed names do not exhibit behavior and thus are non-blocking.

The priority of a type is determined by the priority of its outermost connective:
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[TYP-SEND]

π < pr(A),pr(B)

x[y,z] P⊢ x : A⊗π B,y : A,z : B

[TYP-RECV]

P P⊢ Γ,y : A,z : B π < pr(Γ)

x(y,z);P P⊢ Γ,x : A

&π B

[TYP-SEL]

j ∈ I π < pr(Aj)

x[z]⊳ j P⊢ x : ⊕π{i : Ai}i∈I,z : Aj

[TYP-BRA]

∀i ∈ I : Pi
P⊢ Γ,z : Ai π < pr(Γ)

x(z)⊲{i : Pi}i∈I
P⊢ Γ,x : &

π{i : Ai}i∈I

Figure 3: Typing rules of APCP that add priority conditions to the AP typing rules in Figure 2.

Definition 4 (Priorities). For session type A, pr(A) denotes its priority:

pr(A⊗π B), pr(A

&π B), pr(⊕π{i : Ai}i∈I), pr(&π{i : Ai}i∈I), π pr(•), ω

The priority of • is the constant ω : the type denotes the “final”, non-blocking part of protocols.

Although the connectives ⊗ and ⊕ also denote non-blocking prefixes, they do block their continuation

until they are received. Hence, their priority is not constant.

APCP typing judgments are denoted P P⊢ Γ. We write pr(Γ) to denote the least of the priorities of

all types in Γ:

pr(∅), ω pr(Γ,x : A), min(pr(Γ),pr(A)).

The typing rules of APCP ensure that prefixes with lower priority are not blocked by those with

higher priority. To this end, they enforce the following laws:

1. Outputs with priority π must have messages and continuations with priority strictly larger than π;

2. A prefix typed with priority π must be prefixed only by inputs with priority strictly smaller than π;

3. Dual prefixes leading to a synchronization must have equal priorities.

The typing rules for APCP are the same as those for AP in Figure 2, and have the same meaning.

To enforce the laws above, conditions on priorities are needed: Figure 3 shows the modified typing

rules for prefixes. Rules [TYP-SEND] and [TYP-SEL] require that the priority of the subject is lower

than the priorities of both objects (continuation and payload)—this enforces Law 1. In Rules [TYP-

RECV] and [TYP-BRA], the used name’s priority must be lower than the priorities of the other types in

the continuation’s typing context—this enforces Law 2. Law 3 is enforced by extending type duality

(Definition 2) to require that A= B not only if the sequences of actions in A and B are complementary,

but also that their priority annotations match up perfectly. This is then implicitly enforced by Rules [TYP-

RES] and [TYP-FWD] (omitted from Figure 3).

We have the following results:

Theorem 4 (Type Preservation for APCP). Given P P⊢ Γ and Q such that P ≡ Q or P −→ Q, we have

Q P⊢ Γ.

Theorem 5 (Deadlock Freedom for APCP). Given P P⊢∅, if P 6−→, then P ≡ 0.

Example 3. Recall the deadlocked process from Example 1:

(νxy)(νuw)(x(v,x′);u[a,b] |w(z,w′);y[c,d])
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An attempt to type this process under P⊢ reveals the cyclic dependency: the dual receive on x and send

on y have priority π , the dual send on u and receive on w have priority ρ , and the two applications of

Rule [TYP-RECV] contradictorily require π < ρ and ρ < π .

On the other hand, recall the non-deadlocked variant from Example 2:

(νxy)
(

(νuw)(x(v,x′);u[a,b] |w(z,w′);0) | y[c,d]
)

In this case, P⊢ only requires π < ρ but not ρ < π , so no cyclic dependency is detected and the process

is considered well typed.

By abuse of notation, we write ⊢, C⊢, and P⊢ to denote the sets of processes that are well typed by

the typing rules of AP, ACP, and APCP, respectively. These classes are related by strict inclusions:

Theorem 6 (Comparative Expressiveness). We have C⊢ ⊂ P⊢ ⊂ ⊢.

The example above is typable under C⊢, so we illustrate how much more expressive APCP is than

ACP with a variant of Milner’s cyclic scheduler [30] (inspired by [11, Example 1]), which is not typable

under C⊢. This variant is finite and has a fixed number of three participants; the interested reader can

consult [21] for a recursive cyclic scheduler with n ≥ 2 participants.

Example 4. We construct a ring of three partial schedulers Ai, each of which simultaneously invokes a

worker Bi and waits for the others to finish. Each scheduler Ai (1 ≤ i ≤ 3) communicates with its worker

on name wi (connected to the worker’s name zi), with its left neighbor on name xi−1 (x0 , x3), and with

its right neighbor on name yi. The schedulers and workers are defined as follows, writing ‘_’ for unused

names:

A1 , (νa1y′1)(νb1w′
1)(νc1_)

(

y1[a1]⊳ start |w1[b1]⊳ start |w′
1(_)⊲{done : y′1[c1]⊳done | x3(x

′
3)⊲{start : x′3(_)⊲{done : 0}}}

)

Ai , (νaiy
′
i)(νbiw

′
i)(νci_)

(

xi−1(x
′
i−1)⊲{start : wi[bi]⊳ start | yi[ai]⊳ start |w′

i(_)⊲{done : x′i−1(_)⊲{done : y′i[ci]⊳done}}}
)

2 ≤ i < 3

Bi , (νdi_)(zi(z
′
i)⊲{start : doSomething();z′i [di]⊳done}) 1 ≤ i ≤ 3

Thus, A1 starts the routine by signaling its right neighbor and worker. It then waits for its worker to

finish, and signals its right neighbor it is done. Only in the end does it wait for a start signal from its left

neighbor, and then wait for it to finish. The other two schedulers are defined identically. They wait for

a start signal from their left neighbor, and then start their worker. After its worker is done, it signals to

its right neighbor, and waits for its left neighbor to finish. Workers wait for a start signal, do some task

(doSomething() stands for some arbitrary computation), and signal that they are finished afterwards.

A complete, cyclic scheduler Sched is then formed by connecting the partial schedulers on channels

between xi and yi for 1 ≤ i ≤ 3.

Sched , (νx1y1)(νx2y2)(νx3y3)
(

(νw1z1)(A1 |B1) | (νw2z2)(A2 |B2) | (νw3z3)(A3 |B3)
)

To type Sched, we assign the following types to names for 1 ≤ i ≤ 3:

• wi : ⊕πi{start : &
π ′

i {done : •}},

• xi : &
ρi{start : &

ρ ′
i {done : •}},

• yi : ⊕σi{start : ⊕σ ′
i {done : •}}
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• zi : &
φi{start : ⊕φ ′

i {done : •}}.

Applications of Rule [TYP-RES] require that πi = φi, π ′
i = φ ′

i , ρi = σi, and ρ ′
i = σ ′

i , for 1 ≤ i ≤ 3. Appli-

cations of Rules [TYP-SEL] and [TYP-BRA] then require:

• ρ1 < ρ ′
1, and π1 < π ′

1 < ρ ′
1,ρ3;

• ρ1 < π2,ρ2,π
′
2,ρ

′
2, π2 < π ′

2, ρ2 < ρ ′
2, and π ′

2 < ρ ′
1,ρ

′
2;

• ρ2 < π3,ρ3,π
′
3,ρ

′
3, π3 < π ′

3, ρ3 < ρ ′
3, and π ′

3 < ρ ′
2,ρ

′
3.

We verify that these requirements are consistent, so Sched P⊢∅. Hence, Sched ∈ P⊢\ C⊢, yet the process

is deadlock free (following Theorem 5).

6 Asynchronous Functional Sessions

With APCP we have established a solid foundation for asynchronous processes that are deadlock free

by typing (Theorem 5). To bring these foundations closer to programming calculi, we consider LAST: a

concurrent λ -calculus in which asynchronous message-passing is governed using session types [16]. In

LAST, which stands for Linear Asynchronous Session Types, channels can form cyclic connections and

deadlock freedom is not guaranteed by typing.

The variant LASTn that we consider here is, in spirit, the functional variant of AP (Section 3): it

is obtained via translation into AP, resulting in a call-by-name semantics (rather that LAST’s call-by-

value semantics) and an explicit treatment of variable substitution. Prior works ensure deadlock freedom

for synchronous variants of LAST by extending the type system with priorities [35, 27]. Rather than

accommodating these contributions to the asynchronous setting, as in Section 5, for LASTn we develop

an alternative approach to deadlock freedom: LASTn translates into AP, and operational correctness of

the translation guarantees that well typedness under P⊢ implies deadlock freedom for the source program.

We illustrate the call-by-name semantics and explicit substitutions in LASTn using a simple example.

Example 5. Using standard λ -calculus notation, the following sequence of term reductions (M−→) and

structural congruences (M≡) illustrate the call-by-name semantics and explicit substitution (⦃. . .⦄) of

LASTn:

(

λx.x (λy.y)
) (

(λw.w) (λz.z)
)

M−→
(

x (λy.y)
)

⦃
(

(λw.w) (λz.z)
)

/x⦄
M≡ (x⦃

(

(λw.w) (λz.z)
)

/x⦄) (λy.y)
M−→

(

(λw.w) (λz.z)
)

(λy.y)
M−→ (w⦃(λz.z)/w⦄) (λy.y) M−→ (λz.z) (λy.y)
M−→ z⦃(λy.y)/z⦄ M−→ λy.y

Notice how every function application immediately evolves into an explicit substitution, instead of first

reducing the argument to a value as a call-by-value semantics would.

LASTn programs are configurations C,D, . . . of parallel threads executing functional terms M,N, . . .
connected by buffered channels for asynchronous message-passing. The semantics of configurations is

defined in terms of a reduction relation, denoted C C−→ D. We write C−→∗ for the reflexive, transitive

closure of C−→, and CC 6−→ if there is no D such that C C−→ D. Next, we briefly discuss the types of

LASTn, and thereafter focus on the deadlock-freedom guarantee through translation. We refer to [21]

for details about the language and type system of LASTn.
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Types can be divided into functional types T,U and session types S:

T,U ::= T×U pair | T⊸U function | 1 unit | S session

S ::= !T.S send | ?T.S receive | ⊕{i : T}i∈I select | &{i : T}i∈I branch | end

Configurations may contain at most one main thread with a return type, denoted �M, and arbitrarily

many unit-typed child threads, denoted ♦N. Configurations are then typed Γ C⊢φ C : T. The annotation φ

can be � or ♦, denoting whether C contains a main thread or not, respectively. The typing context Γ is a

list of variable-type assignments x : U, and T is the configuration’s return type (T= 1 if φ = ♦).

We translate configurations into AP processes. Our translation crucially relies on the typing of

configurations, in particular to correctly translate buffers. Note that AP processes have no functional be-

havior, so as usual our translation is parametric on a dedicated name on which the source configuration’s

return type can be observed. In the following we describe the translation focussing on types, operational

correctness, and deadlock freedom; again, we refer to [21] for details on other aspects.

Definition 5 (Translation). The translation of typed LASTn configurations into AP processes is denoted

JΓ C⊢φ C : TKz, where z is the name on which T can be observed.

Although this translation does not return typed processes, it does preserve typing. Notice that LASTn

and AP have different types, and so the connection between LASTn configurations and AP processes

(Definition 5) can be captured by a translation on types: it reflects how the translation on configurations

adds additional synchronizations that ensure that the behavior of configurations is soundly captured by

the “more concurrent” nature of AP (i.e., the translation does not add behavior not present in the source

configuration). This way, the following definition illustrates the work done by the translation to ensure

operational soundness (discussed hereafter). Given Γ C⊢φ C : T, we refer to types in Γ as context types.

Definition 6 (Translation: Types). The translation of LASTn types is denoted JTK, and LTM for context

types. They are defined mutually, by induction on the structure of T.

LTM, •⊗ JTK

JT×UK, LTM⊗ LUM JT⊸UK, LTM

&

JUK J1K, •

J!T.SK, •⊗ LTM

&

LSM J⊕{i : Si}i∈IK, •⊗&{i : LSiM}i∈I JendK, •⊗•

J?T.SK, LTM⊗ LSM J&{i : Si}i∈IK,⊕{i : LSiM}i∈I

Context type translation extends naturally to typing contexts LΓM.

Example 6. We illustrate the translation of types by means of an example:

J(T×S)⊸ !T.SK = LT×SM

&

J!T.SK

= (•⊗ JT×SK)

&

•⊗ LTM

&

LSM

= (•⊗ LTM⊗ LSM)

&

•⊗ (•⊗ JTK)

&

•⊗ JSK

= (•⊗ LTM

&

LSM)

&

•⊗ (•⊗ JTK)

&

•

&

JSK

= (•⊗ (•⊗ JTK)

&

•⊗ JSK)

&

•⊗ (•⊗ JTK)

&

•

&

JSK

Figure 4 breaks down the resulting AP type and explains it in terms of the associated behavior of a

process translated from a term implementing the type.

The first property of the translation is type preservation, under ⊢:
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(•⊗ announce pair ready

(•⊗ announce substitution ready

JTK first component

)

&

receive first component

•⊗ announce substitution ready

JSK second component

)

&

receive parameter

•⊗ trigger buffer

(•⊗ announce substitution ready

JTK payload

)

&

receive payload provider

•

&

await substitution ready

JSK continuation

Figure 4: The translation of (T×S)⊸ !T.S, given in Example 6, in detail.

Theorem 7 (Translation: Type Preservation). Suppose given P = JΓ C⊢φ C : TKz. Then P ⊢ LΓM,z : JTK.

Let us now make precise what we mean by our translation being operationally sound. The property

is based on Gorla’s criteria for correct translations [18]. We focus on operational correctness, which

encodes a correspondence between the behavior of a source program and its translation. Operational

soundness then means that any behavior of the translation is reflected by behavior of the source pro-

gram. In context of our translation, this means that at any state of execution of a translated configuration,

another state can be reached that is the translation of a configuration reachable from the source config-

uration. Note that the other direction, where any behavior of the source program is preserved by the

translation (operational completeness), holds as well but is omitted for brevity.

Theorem 8 (Translation: Operational Soundness). Suppose given P = JΓ C⊢φ C : TKz, and suppose

P −→∗ Q. Then there exists D such that C C−→∗ D and Q −→∗ Q′ for Q′ = JΓ C⊢φ D : TKz.

As discussed before, the type system for LASTn cannot guarantee deadlock freedom by itself. How-

ever, we can rely on APCP for an indirect result. Operational soundness is key here, as it guarantees

that if a translated configuration is able to reduce, then so is the source configuration. We are then able

to prove deadlock freedom for closed configurations (with empty typing context and unit return type) if

their translation is well typed under P⊢. The idea is that a closed configuration translates into a closed

AP process. Well typedness under P⊢ (more stringent than under ⊢) then guarantees deadlock freedom

(Theorem 5), which transfers back to the source configuration through operational soundness. Hence,

we state a deadlock-freedom result for LASTn in the spirit of Theorems 3 and 5 (recall: given P P⊢∅,

if P 6−→, then P ≡ 0), where the inactive process 0 corresponds to a main thread of unit value �().

Theorem 9 (Deadlock Freedom for LASTn). If J∅ C⊢� C : 1Kz is well typed under P⊢, then CC 6−→ im-

plies C C≡ �().
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Hence, Theorem 9 defines a proof technique for enforcing deadlock freedom for LASTn programs,

which, given a program, first applies the translation into asynchronous processes and then checks for

typability in APCP (i.e., under P⊢). Our deadlock-freedom result is conditional in that it is contingent

on correct typability in APCP. A practical procedure for type reconstruction/inference would be needed

to correctly associate priorities to the session types obtained using the translation in Definition 6.

7 Conclusion

This paper has presented an overview of recent work on static verification techniques for message-passing

processes with asynchronous communication. Based on our results in [21], we have provided a unified

presentation for different forms of deadlock enforcement based on type systems. Our presentation in-

volves four typed languages: AP, ACP, APCP, and LASTn.

We started by presenting AP, a simple session π-calculus with asynchronous communication, whose

typing discipline enforces conformance to session protocols but does not exclude deadlocks. As such,

AP is representative of a class of typed process frameworks that make the conscious decision of im-

posing minimal conditions over the processes/programs that can be typed (cf. [16, 45, 44])—in these

frameworks, the programmer has wide agency to write typable programs, but also the responsibility of

ensuring that their programs enjoy correctness guarantees that go beyond protocol conformance.

Subsequently, we presented ACP, an asynchronous variant of Wadler’s CP, which results from AP

via a simple but crucial modification: the two separate typing rules for process composition and restric-

tion in AP are replaced in ACP by a single rule that coalesces both constructs following the cut rule in

linear logic (Rule [TYP-CUT]). ACP is based on the logical correspondence that connects session types

and classical linear logic; its formulation follows the presentation by DeYoung et al. [14], which was

given in the setting of intuitionistic linear logic. To our knowledge, an asynchronous version of CP had

not been presented before, so this can be considered an original (yet modest) contribution of this paper.

Owing to its logical foundations, ACP inherits the known expressiveness limitations of its predecessors:

it can only enforce deadlock freedom for processes that form tree-like topologies.

APCP then arises as another variant of AP, aimed at overcoming these limitations by adopting the

key features from priority-based approaches. This ensures that APCP can enforce deadlock freedom

for processes forming cyclic topologies. We briefly discussed how AP and APCP provide a suitable

foundation for a correct interpretation of a concurrent functional calculus with asynchronous sessions,

dubbed LASTn. The fact that AP, ACP, and APCP determine a wide spectrum of techniques for

enforcing deadlock freedom is important when considering LASTn. In fact, AP suffices for a basic

concurrent interpretation of functional sessions; if the interest is in deadlock-free behaviors, then APCP

(and, to some extent, ACP) can provide an indirect approach based on a correct typed translation.

Here we have focused on typing disciplines for binary (two-party) protocols. Further applications of

APCP include the analysis of multiparty (n-ary) protocols, which involve more than two parties and for

which the analysis of deadlock freedom is both important and challenging, especially when processes

can interleave actions from different sessions and exchange references to sessions in communications

(aka delegation), as supported in AP, ACP, and APCP. Interestingly, APCP provides a basis for the

decentralized (static) analysis of process implementations of multiparty protocols, as developed in [20];

this decentralized analysis, in turn, can be adapted also to a setting with dynamic (run-time) verification,

to consider (untyped) asynchronous processes whose behavior is governed by a monitoring infrastructure

based on session types [22]. The PhD thesis of the first author provides a unified account of APCP—its

theory and applications—, but also detailed comparisons with related works [19].
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We propose an overview of the decentralized reconfiguration language CONCERTO-D through its
Maude formalization. CONCERTO-D extends the already published CONCERTO language. CONCERTO-
D improves on two different parameters compared with related work: the decentralized coordination
of numerous local reconfiguration plans which avoid a single point of failure when considering un-
stable networks such as edge computing, or cyber-physical systems (CPS) for instance; and a mech-
anized formal semantics of the language with Maude which offers guarantees on the executability of
the semantics. Throughout the paper, the CONCERTO-D language and its semantics are exemplified
with a reconfiguration extracted from a real case study on a CPS. We rely on the Maude formal speci-
fication language, which is based on rewriting logic, and consequently perfectly suited for describing
a concurrent model.

1 Introduction

Running and maintaining large-scale distributed software is now a commonplace activity, but managing
the inherent complexity of this task requires dedicated tools, models, and languages. The complexity
is particularly apparent when distributed software needs to be reconfigured during execution, either to
satisfy changing requirements or to carry out maintenance operations.

The DevOps community (and associated tools) as well as component-base software engineering
(CBSE) are the main domains focussing on the deployment and reconfiguration of distributed software
systems. A reconfiguration consists of a set of actions to execute on the different pieces of software,
distributed across the network, to lead the system in the new desired configuration (i.e., state). In these
domains, actions are almost always orchestrated by a central coordinator [25, 9], i.e., an entity that keeps
track of the actions to apply and their dependencies, as well as the global state of the distributed system.

However, a centralized model is necessarily limited in terms of resilience, as it creates a single point
of failure. For instance, in the context of constrained (e.g., energy, communications) cyber-physical sys-
tems [21, 22], or edge computing where network disconnections are commonplace, as well as in the
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Figure 1: Full overview of the CPS use case with 2+n nodes hosting database, system, n listeners, and
n sensors.

context of large-scale projects where cross-DevOps teams [16, 23, 25, 26] have to collaborate, decentral-
ized reconfiguration models are preferred.

With this work, we extend the semantics of the reconfiguration language CONCERTO [6] and turn
it into a decentralized model called CONCERTO-D, by extending the semantics to describe the specifics
of communication and synchronization between components. In CONCERTO-D multiple coordinators
collaborate to achieve their respective local reconfigurations (one for each node). Both CONCERTO [4, 5]
and CONCERTO-D [23, 21, 22] have been the subject of experimental studies to validate the approach
and compare it to related work [10, 25]. In particular, and while this is not the main subject of this paper,
CONCERTO and CONCERTO-D allow better parallel execution of reconfiguration actions compared to
the related work, thus leading to faster reconfigurations.

To support the development of this decentralized semantics, it appeared necessary to go beyond a
pen-and-paper approach and to provide a mechanized formalization of the semantics. To this end, we
used Maude [8, 20], a language based on rewriting logic, and consequently perfectly suited to describing
a concurrent model. Developing and formalizing the semantics of CONCERTO-D in Maude helped us
manage the complexity of the model, and clarify it where needed, but it also allowed us to generate
tools such as an interpreter and a model-checker for these semantics. A Maude program describes a
logical theory, while a Maude computation consists of logical deductions using the axioms specified in
the theory.

Throughout the paper, we will use an example taken from a real case study from the literature: a
wildlife monitoring system that utilizes sensors to capture animal sounds [19] illustrated in Figure 1.
These sensors are linked to a gateway and calibrated to specific sound frequencies. Reconfiguration is
regularly required in this system to adjust the listening frequency of each sensor. However, during the
reconfiguration process, the sensor must temporarily cease listening. Similarly, if the gateway fails to
receive data from a sensor, the sensor is required to halt its observation activities. The collected data is
stored in a remote database. In such a use case, disconnections are common between listeners and sen-
sors. A central coordination of the reconfiguration program is typically a single point of failure, which
makes the system fully inactive during unavailability. Furthermore, when facing disconnections, it is
more difficult to maintain the global state of the system, which slows down the process: synchroniza-
tion with the central entity is required even for purely local actions. A decentralized language such as
CONCERTO-D is preferable in such a context.

In this paper, we give an overview of the semantics of CONCERTO-D through its Maude formaliza-
tion. The complete Maude specification with all the rules is available at https://doi.org/10.5281/
zenodo.12786127.

First, Section 2 presents how the life cycles of components, and the creation and modification of a
components assembly are formalized in CONCERTO-D. Second, Section 3 gives an overview of the main
semantics rules of CONCERTO-D and how are formalized communications in CONCERTO-D. Finally,
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Section 4 and Section 5 respectively give the related work and a conclusion on this contribution.

2 Control components and reconfiguration language

This section presents the structural concepts of CONCERTO-D as well as its reconfiguration language.
Some elements of the formalization in Maude are included, as well as examples based on our case study.

2.1 Control components

In CONCERTO-D, a distributed software system is modeled as an assembly of control component in-
stances, linked together via ports (i.e., interfaces), to represent dependencies in their life cycles (e.g.,
data exchanges, or other interactions between components). There are two types of ports in such con-
nections: provide ports and use ports. A provide port represents information or a resource offered by
a component when the port is active. Conversely, a use port indicates that a component requires some
information or resources to perform.

Each piece of software (i.e., component, service), identified by a unique identifier, is an instance of a
control component type, that models a component’s life cycle as a set of places and transitions. Each port
is bound to a subset of the life cycle (i.e., places and transitions) that is called a group. Places represent
milestones of the life cycle. A specific initial place serves as the starting point for the component’s life
cycle. Transitions represent concrete actions to perform between places (e.g., admin commands).

The dynamic nature of components is captured by their behaviors. A behavior is a subset of the
component’s transitions. At any given point, a control component instance executes one behavior, i.e.,
only the transitions in this behavior can be fired. Requests to change the active behavior for a component
(see reconfiguration actions in Section 2.2) are queued and executed in the order in which they are
received: a behavior remains active until no more transitions in it can be fired, at which point the behavior
is changed to the next requested behavior, if any. This mechanism makes up the behavioral interface of
components.

Informal example. Figure 1 depicts an assembly modeling our use case, where distributed sensors
interact with a system through listeners. Physically, the components are distributed on several nodes. The
first node serves as a host for the database component responsible for storing recorded data obtained from
sensors. The second node comprises the components system and listener. The system component
establishes a connection with the database through a use port (represented using the UML notation),
enabling the usage of the database’s service. Furthermore, the system is interconnected with n listeners,
each corresponding to a program responsible for monitoring and reconfiguring remote sensors. These
listeners are connected to system via their use port. Finally, each sensori is hosted on a node and is
connected to its associated listeneri.

Figure 2 shows the internals of some components of this assembly, omitting others (i.e., database,
system) for clarity. Each listener has four places: off, paused, configured, and running; and three be-
haviors deploy, update, and destroy. The sensors have five places: off, provisioned, installed,
configured, and running; and also three behaviors: start, pause, stop. Each listener has two con-
nections with its respective sensor. Through the first connection, the listener exposes the configuration
to apply on the sensor (e.g., frequency of listening). Through the second connection, the listener offers a
service to which data can be sent by the sensor when observing.
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Maude specification. Let us present the definitions of sorts, subsorts, and operators used to encode
the above syntactic aspects of the CONCERTO-D model, starting from elementary concepts to the con-
struction of a net of CONCERTO-D components. In Maude, a type hierarchy can be defined using the
keywords sort and subsort. An operator definition starts with the keyword op followed by the operator
name and type signature; several operators with the same signature can be defined using ops.

A component type is defined by a set of places, an initial place, and a set of transitions. The definition
also includes the behaviors (sets of transitions) of the component type, and its use and provide ports, each
bound to a group of places. In the definition below, some details are omitted for simplicity.

We use predefined data structures and the module system of Maude to import the parameterized
module SET{Place} and define the sort Places to be a supersort of SET{Place}. Generally, given a
sort T, we let Ts stand for SET{T} and QT stand for LIST{T}.

1 sorts Place InitialPlace Transition Behavior UsePort ProvidePort GroupUse GroupProvide
2 ComponentType .
3 sorts Places Transitions Behaviors GroupUses GroupProvides .
4 subsort InitialPlace < Place .
5

6 −−− [...]
7 op b(_) : Transitions -> Behavior [ctor] .
8 op g(_?_) : UsePort Places -> GroupUse [ctor] .
9 op g(_!_) : ProvidePort Places -> GroupProvide [ctor] .

10

11 op { places: _,
12 initial: _,
13 −−− [...]
14 transitions: _,
15 behaviors: _,
16 groupUses: _,
17 groupProvides: _
18 } :
19 Places InitialPlace
20 −−− [...]
21 Transitions Behaviors GroupUses GroupProvides ->
22 ComponentType
23 [ctor] .

Example in Maude. We can now describe the component type sensor (an instance of which is dis-
played on the right of Figure 2). We first define a few constants corresponding to the element of the
component type, then the type itself:

1 ops Running Configured Installed Provisioned Off : -> Place .
2 op Off : -> InitPlace .
3 −−− [...]
4 ops RcvService ConfigService : -> UsePort .
5 ops Start11 Start12 Start13 Start2 Start3 Start4 Pause1 Stop1 : -> Transition .
6 ops Start Pause Stop : -> Behavior .
7

8 eq Deploy = b(Start11,Start12,Start13,Start2,Start3,Start4) .
9 eq Pause = b(Pause1) .

10 eq Stop = b(Stop1) .
11 op sensor : -> ComponentType .
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12 eq sensor =
13 { places: Running, Configured, Installed, Provisioned, Off,
14 initial: Off,
15 −−− [...]
16 transitions: (Start11,Start12,Start13,Start2,Start3,Start4,Pause1,Stop1),
17 behaviors: (Start, Pause, Stop),
18 groupUses: g(RcvService \lstinline[language=maude,basicstyle=\ttfamily]! (

Configured, Running)),
19 g(ConfigService \lstinline[language=maude,basicstyle=\ttfamily]! (

Configured, Installed, Running)),
20 groupProvides: empty } .

2.2 Reconfiguration language and assembly of components

To allow the modification of assemblies, CONCERTO-D proposes a simple imperative language for writ-
ing reconfiguration programs, that offers four commonly used topological actions to create or modify
the existing assemblies: add(idc,c), del(idc) (creation and deletion of control component instances),
con(idc1,u, idc2, p), dcon(idc1,u, idc2, p) (connection and disconnection between two control component
instances), where idc is an instance identifier, c a component type, u a use port, p a provide port. Besides
these actions, two additional actions manage the execution of behaviors: pushB(idc,b, idb) to request the
execution of a behavior b on the component instance idc; and wait(idc, idb) to synchronize onto the end
of a given behavior. idc is a component instance identifier, and idb the identifier of a given pushB.

As a decentralized coordination model, CONCERTO-D considers a system of n nodes, and a partition
of component instances over these nodes. Each node operates its own local CONCERTO-D controller
and runs its own reconfiguration program. Concrete communications allow the synchronization of ac-
tions between paired components. This is an evolution of previous work on the CONCERTO model [6],
in which a single central entity executed the reconfiguration and synchronization of components, and
communications were implicit. Two examples of CONCERTO-D reconfiguration programs in our case
study are given in Listings 1 and 2.

Listing 1: Listeners reconfiguration on node2

for i in range(nb_listener):
pushB(listeneri, update, 2+i*2)
pushB(listeneri, deploy, 3+i*2)

Listing 2: One sensor reconfiguration on node2+i

pushB(sensori, pause, 0)
wait(listeneri, 2+i*2)
pushB(sensori, start,1)

In CONCERTO-D reconfiguration, programs apply changes to the current assembly of components,
i.e., component instances and their connection, and to the queue of requested behaviors for each com-
ponent instance. A specific instance of a component (and its state at any given point of the execution)
is specified by its component type, a queue of identified behaviors to be executed by the instance, and a
marking that indicates the places reached and transitions fired.

1 sorts Instance Id PushedBehavior TransitionEnding Marking .
2

3 op (_;_) : Id Behavior -> PushedBehavior [ctor] .
4 op m(_,_,_) : Places Transitions TransitionEndings -> Marking [ctor] .
5 op { type: _,
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6 queue: _,
7 marking: _
8 } :
9 ComponentType List{PushedBehavior} Marking -> Instance [ctor] .

To illustrate this, the definition below describes an instance sensor1 of type sensor, in a state where
only the place running is marked, and a single behavior pause is pending in the queue of behaviors.
This corresponds to the state (0) in Figure 2.

1 eq instanceS1 = { type: sensor,
2 queue: (0 ; Pause),
3 marking: m(Running, empty, empty) } .

In order to describe an assembly, it is also necessary to specify the connections between the ports of
its component instances, through their identifiers.

1 sort Connection .
2 sorts Connections .
3 op (_,_)--(_,_) : Id UsePort Id ProvidePort -> Connection [ctor] .

Here is an example of such connections between node2 and node3:

1 eq connectionSL1 = (sensor1, RcvService)--(listener1, Rcv) .
2 eq connectionSL2 = (sensor1, ConfigService)--(listener1, Config) .

We now define actions that can be executed to perform a reconfiguration on a CONCERTO-D assem-
bly.

1 sorts Action Program .
2 subsort List{Action} < Program .
3

4 op add(_,_) : Id ComponentType -> Action [ctor] .
5 op del(_) : Id -> Action [ctor] .
6 op pushB(_,_,_) : Id Behavior Id -> Action [ctor] .
7 op con(_) : Connection -> Action [ctor] .
8 op dcon(_) : Connection -> Action [ctor] .
9 op wait(_,_) : Id Id -> Action [ctor] .

The reconfiguration program given in Listing 2 (as instantiated specifically for node3) can thus be
specified in Maude as follows:

eq programNode3 =
pushB(sensor1, start, 0) wait(listener1, 4) pushB(sensor1, start, 1) .

3 Elements of operational semantics

CONCERTO-D is equipped with a small-step semantics. We first illustrate the execution of a reconfigu-
ration on our use case to give an intuition of this semantics.

We consider deployed and running components, i.e., the places running are marked in all listener
and sensor components. From there, we aim to trigger an update of each sensor’s listening frequency.
Hence, each listener has to pause to change its configuration, forcing the sensors to pause as well.

Listings 1 and 2 give the reconfiguration programs respectively for all listeners (all hosted on the
same node node2) and one sensor i (corresponding to the update of the frequency of each sensor). These
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Figure 2: Control components of listeneri on node2 and sensori from node2+i. State example when
applying the reconfiguration plans of Listings 1 and 2.

programs are executed concurrently on each node. The execution of these scripts is illustrated in Figure 2
to give the reader an intuition of the semantics of CONCERTO-D. Some possible steps of the execution are
represented by a number representing the current configuration of the system (i.e., a snapshot). Using
these numbers, three pieces of information are given: (i) the marking, represented by the red dots on
marked places and transitions; (ii) the status of the behavior queue, and (iii) the coordination information
required between nodes introduced by decentralized execution of CONCERTO-D. In the following, we
describe the state of each configuration according to its number. We decompose each state, and we
highlight communication steps using the notation ∆.

0. Both listeneri and sensori services are running. Thus, the running places are marked. The be-
haviors to trigger the update are pushed in the queue, i.e., update and deploy for listeneri, and
pause for sensori. The behavior start for sensori is not pushed due to wait action of a behavior
of listeneri.

1. By triggering pause, sensori leaves the place running.

∆ listeneri needs to know if any component is using its ports before executing update. Then,
listeneri requests information on sensori’s use ports rcv_service and config_service, to know if
they are active or not.

2. sensori ends its previously fired transition.

∆ sensori answers listeneri about its use ports rcv_service and config_service, indicating that both
are inactive.
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3. listeneri can begin the update behavior, therefore deactivating its provide ports. sensori removes
the pause behavior from its queue, as no more transitions in this behavior can be fired.

∆ The information sent in 2 is received by listeneri, allowing it to start its update.
4. listeneri finishes its transition related to its update behavior.
∆ sensori is now waiting the behavior identified by 2+i*2, and runs on listeneri, to be ended. Then it

sends a request to listeneri to know if the behavior 2+i*2 (update) is completed.
5. The behavior update of listeneri is retrieved from its queue.
∆ sensori is informed that this behavior is completed, which allows it to continue its execution, i.e.,

to push and execute the transitions of the start behavior.
6. After pushing the behavior start and completing its first transition.
∆ sensori sends a request to determine whether the port config of listeneri is connected and active,

before entering in config_service group.
7. ∆ sensori receives information on listeneri’s port config. It is now active and connected.
8. sensori enters the place installed. listeneri begins the activation of its service.
9. listeneri activates its service and provides the port rcv.
∆ sensori sends a request asking whether the port rcv is active and connected before entering the

place configured.
10. listeneri removes the deploy behavior from its queue.

∆ sensori get the information that listeneri provides the port rcv.
11. sensori enters the place configured.
12. sensori reactivates its service and removes the start behavior from its queue.

The rest of this section gives some formal elements of the small-step semantics of CONCERTO-D.
Because of space reasons, we cannot fully detail all rules of the semantics. Instead, the section first
illustrates one execution rule at a reconfiguration program level, one execution rule at a component level,
and then details communications, i.e., the main formalization challenge in a decentralized model as
CONCERTO-D.

3.1 Execution and synchronization of reconfiguration actions

Let us first describe the semantics rules that govern the execution of actions in reconfiguration programs.
Recall that each node executes its own reconfiguration program, affecting components hosted on that
node. Actions to add and delete component instances are straightforward. Actions for connections and
disconnections of components are also fairly standard. They only modify the view that one node has of
the component’s topology. When components to (dis)connect are located on different nodes, both nodes
should eventually execute their own similar (dis)connection actions, however, the node-local views of
the topology do not have to be kept continuously synchronized. Finally, we turn to the pushB action,
which is specific to the CONCERTO-D model. The rule in Listing 3 gives the semantic of that action,
describing the modification of a node (as defined in Section 3.2). The action adds a behavior request to
the queue of behaviors of one component. The target component is indicated by its identifier, and the
behavior type is indicated, as well as an identifier. The latter is used for synchronization points, in order
to distinguish between multiple executions of the same behavior type.

The behavior requests determine the active behavior of a component instance at a given point, which
plays a role in the evolution of this component. We now describe the rules of this evolution. As described
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in Section 2, the life cycles of components are modeled by places (milestones in the reconfiguration)
and transitions between places (reconfiguration actions). A marking on places and transitions indicates
the current state of the reconfiguration. When a place is marked, its outgoing transitions can be fired.
The place is then unmarked, and the fired transitions are marked. Conversely, when all the incoming
transitions toward a place are finished, those transitions are unmarked and the place is entered. This
model is well suited to represent concurrent execution, in particular, multiple transitions can be marked
simultaneously, corresponding to parallel execution of reconfiguration actions.

Listing 3: The rule to execute the pushB action. The rule applies to a node (as defined in Section 3.2)
but rewrites a single component instance in that node.

1 crl [PushingBehavior] :
2 < −−− [...]
3 instances: (Id1 7→ { type: Ct, queue: Qb, marking: M }) , Isx,
4 −−− [...]
5 program: pushB(Id1, B, IdB) RPx,
6 −−− [...] >
7 =>
8 < −−− [...]
9 instances: ( Id1 7→ { type: Ct, queue: append(Qb,(IdB ; B)), marking: M } ), Isx,

10 −−− [...]
11 program: RPx,
12 −−− [...]
13 >
14 if (B in (Ct).behaviors) .

This evolution of markings is desribed by four rules: FiringTransitions, EndingTransition, Entering-
Place, and FinishingBehavior. For space reasons, we only detail one of these rules: Firing Transitions
given in Listing 4. It modifies the marking in one component on one node, namely unmarking a place P
and marking the outgoing transitions of Ts (only those transitions that belong to the active behavior of
the component). Note that this is a conditional rule, as indicated by the keyword crl and the boolean
conditions after the rule. The first condition merely ensures that there are transitions to fire. The second
condition relies on the predicate isSafeToFire to check dependencies towards other components, mod-
eled by ports, are not violated by the firing of the transitions. In particular, this predicate is true only if
the firing of the transitions does not lead to deactivating a provide port that is being used, i.e., connected
to an active use port. The rule to end a transition (not given) is somewhat similar but instead requires
that use ports attached to the reached place are connected to an active provide port. Thus, ports impose
inter-component synchronization conditions on the execution.

Listing 4: The rule to fire a transition. As before, this rule modifies a component instance in a node.

1 crl [FiringTransitions] :
2 < nodeInventory: Idsx,
3 instances: (Id1 7→ { type: Ct,
4 queue: (IdB ; b(TsB)) Qb,
5 marking: m((P, Ps),Ts,Tes)
6 }) , Isx,
7 connections: Csx,
8 −−− [...] >
9 =>

10 < nodeInventory: Idsx,
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11 instances: (Id1 7→ { type: Ct,
12 queue: (IdB ; b(TsB)) Qb,
13 marking: m(Ps,union(Ts, getTransitionsofPlace(TsB,P) ),

Tes)
14 }), Isx ,
15 connections: Csx,
16 −−− [...] >
17 if ( getTransitionsofPlace(TsB,P) =/= empty and
18 isSafeToFire( Idsx,
19 m(Ps,union(Ts, getTransitionsofPlace(TsB,P) ),Tes) ,
20 (Id1 7→ { type: Ct,
21 queue: (IdB ; b(TsB)) Qb,
22 marking: m(P, Ps,Ts,Tes)
23 } ,Isx),
24 eStatex,
25 getPConnectionsofCInst(Id1, Csx))) .
26 ) .

3.2 Communications

Firing or ending a transition on one component may require checking the activity status of a port on
another component. In previous work [6], the coordination was assumed to be carried out by a central
entity that kept track of the status of every port. Instead, CONCERTO-D is meant to represent a decentral-
ized process, it is therefore necessary to explicitly model communications between the nodes that host
components.

The following boolean information may be needed for synchronization, and can be called on remote
nodes: (1) the completion of a dcon action; (2) the completion of a behavior (i.e., wait action); (3) the
activity of a use or provide port.

When evaluating the status of one of the above queries (such as the status of a port in the predicate
safeToFire), we distinguish the case where the element of interest (dcon action, behavior, port etc.)
belongs to the local node, from the case where messages must be exchanged between nodes:

1 eq question(R1,Ids,RcvAns, Is,Cs,RP ) = if (isLocal(R1,Ids)) then
2 localQuestion(R1,Is,Cs,RP)
3 else externQuestion(R1,RcvAns) fi .

Essentially, each CONCERTO-D node maintains a localized perspective of its components and com-
municates with neighboring nodes (i.e., other CONCERTO-D controllers hosting connected control com-
ponents). In CONCERTO-D, an asynchronous message-based communication model, increasingly fa-
vored in distributed systems, manages the communication [21]. To achieve asynchronous communica-
tions each node is equipped with an incoming queue of messages. Messages must transit through this
queue before being effectively received (this assumes that the order of messages is preserved).

A message can either be a Question or an Answer. The former is aimed at a specified component
instance and contains one of several possible queries while an Answer gives the boolean value corre-
sponding to a question. It can take the values true, false.

Listing 5: Constructors for Question, Answer and Message

1 sorts Query .
2 op isActive(_) : Port -> Query [ctor] .
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3 op isRefusing(_) : Port -> Query [ctor] .
4 op isConnected(_) : Connection -> Query [ctor] .
5 op isCompleted(_) : Id -> Query [ctor] .
6 op onDisconnect(_) : Connection -> Query [ctor] .
7 op [ dst: _ , query: _ ] : Id Query -> Question [ctor] .
8 op [ question: _, value: _ ] : Question Bool -> Answer [ctor] .
9 op mkMsg : Question -> Message [ctor] .

10 op mkMsg : Answer -> Message [ctor] .

For example, the question [ dst: listener1, query: isActive(Rcv)] can be sent by node3
(which hosts sensor1) to node2 (which hosts listener1) to check whether the port Rcv of listener1
is active. This corresponds to the state 9 in Figure 2. The answer [ req: [ dst: listener1, query
: isActive(Rcv)], value: true ] is the answer which will be returned at state (10) to indicate that
the port is indeed active. For more details about the remaining queries, the reader can refer to [6].

A node is specified by the set of identifiers of all the component instances involved in the recon-
figuration programs, a mapping (called an inventory) that associates these identifiers to their associated
nodes, the connections between local component instances and external instances, and the local recon-
figuration program to be executed on the node. A node is additionally specified by five parameters used
for communication: (1) a local vision of the state of external components externState; (2) a queue of
pending questions waiting for an answer pendingQuestions; (3) a queue of outgoing questions asked to
other nodes outgoingQuestions; (4) a queue of incoming messages incomingMsgs including incom-
ing questions asked by other nodes and answers received from other nodes to previously sent questions;
and finally (5) a history of previously sent questions (to avoid redundant messages for already pending
requests). Received answers are stored in externState as a mapping that associates requests to the
value of the answer. This represents the local node’s vision of the status of other components. This
information is updated each time external information is needed in a semantics rule.

Listing 6: Local configuration

1 op < nodeInventory: _,
2 instances: _,
3 connections: _,
4 program: _,
5 externState: _,
6 pendingQuestions: _,
7 outgoingQuestions: _,
8 history: _,
9 incomingMsgs: _

10 > :
11 Ids Instances Connections Program Map{Question, Bool} List{Question} List{

Question} Set{Question} List{Message}
12 -> LocalConfiguration

For example, the description of the local configuration of node3 in state 0 is as follows:

1 eq ConfNode3 =
2 < nodeInventory: sensor1,
3 instances: { sensor1 7→ instanceS1 },
4 connections: { connectionSL1, connectionSL2 },
5 program: programNode3,
6 externState: eStateNode3,
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7 pendingQuestions: nil,
8 outgoingQuestions: nil,
9 history: empty,

10 incomingMsgs: nil >

where instanceS1, connectionSL1, connectionSL2 and programNode3 are the elements previ-
ously described for our use case in Sections 2 and 3.2. sensor1 is the identifier of instanceS1 and
eStateNode3 is the external state (i.e., mapping of questions and received answers sent by node3).
Following the deployment steps that preceded the reconfiguration state 0, eStateNode3 of node3 is
described as follows:

1 eq eStateNode3 =
2 [ dst: listener1, query: isRefusing(Rcv) ] 7→ false ,
3 [ dst: listener1, query: isConnected(connectionSL1) ] 7→ true ,
4 [ dst: listener1, query: isRefusing(Config) ] 7→ false ,
5 [ dst: listener1, query: isConnected(connectionSL2) ] 7→ true .

The rest of this section gives the execution semantics of communication in CONCERTO-D using
Maude rewrite rules, which operate on a system of local configurations of nodes. The associated rules
for communication are presented in listings 7, 8, 9 and 10. The rules consider two nodes x and y.

First, Listing 7 describes the rule [SendQuestion] sending of a request [ dst: Dst, query: Q
] from node x to node y. The destination node y is determined since the identifier of the instance of

the request Dst appears in the inventory of node y. Sending the request implies adding to the incoming
messages of y the message mkMsg([ dst: Dst, query: Q ]). The sent request will also be inserted
in the history Hx of node x to avoid the request being sent multiple times while waiting for an answer.

Listing 7: The rule to send a question, that rewrites two nodes (unaffected variables are omitted).

1 rl [SendQuestion] :
2 < −−− [...]
3 outgoingQuestions: [ dst: Dst, query: QY ] OutQx,
4 history: Hx,
5 −−− [...]
6 > ,
7 < nodeInventory: (Dst, Idsy),
8 −−−[...]
9 incomingMsgs: iMsgsy >

10 =>
11 < −−− [...]
12 outgoingQuestions: OutQx,
13 history: ([ dst: Dst, query: Q ], Hx),
14 −−− [...]
15 > ,
16 < nodeInventory: (Dst, Ids),
17 −−− [...]
18 incomingMsgs: append(iMsgsy, mkMsg([ dst: Dst, query: QY ])) >

Second, Listing 8 describes the sending of an answer from node x to node y concerning a question Q
previously sent by y. The destination node y is chosen when the concerned request Q is in its history of
sent requests, and has not yet received in an answer to this request (!not occurs(mkMsg(Q), iMsgsy)!).
The value of the answer is computed on node x by the function localQuestion and sent to node y by
placing the answer in the incoming messages of node y.
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It is important to maintain the consistency of shared information, so if a node x sends information that
could allow an external component y to change the status of one of its ports p, the previously recorded
information about p on x is deleted. For example, when a component on node y asks x if one of its
provide port p is active, it means that the associated use port u on y may be activated soon after the
answer is sent by x. Consequently, the node x that sends the answer on p will simultaneously reset the
information in its external state regarding u on y (of course, it should not yet assume that the use port is
active). In Listing 8, this update is carried out by the function resetState.

Listing 8: The (conditional) rule to send an answer

1 crl [SendAnswer] :
2 < −−− [...]
3 instances: Isx,
4 connections: Csx,
5 program: RPx,
6 externState: eStatex,
7 pendingQuestions: Q pendingQx,
8 −−− [...]
9 > ,

10 < −−− [...]
11 history: (Q, Hy),
12 incomingMsgs: iMsgsy >
13 =>
14 < −−− [...]
15 instances: Isx,
16 connections: Csx,
17 program: RPx,
18 externState:resetState(eStatex,getIdsForReset(Csx,Q,localQuestion(Q,Isx,Csx,RPx))),
19 pendingQuestions: pendingQx,
20 −−− [...]
21 > ,
22 < −−− [...]
23 history: Hy,
24 incomingMsgs: append(iMsgsy, mkMsg([ question: Q,
25 value: localQuestion(Q,Isx,Csx,RPx) ]))
26 >
27 if (not occurs(mkMsg(Q), iMsgsy)) .

Third, Listing 9 describes the rule for receiving a question on a component local to x. This is
started when the identifier Dst of the request [dst: Dst, query: Q] is in the set of identifiers of
the components of node x. The request is evaluated and the answer is placed in the queue of pending
questions.

Listing 9: The rule for receiving a question

1 rl [ReceiveQuestion] :
2 < nodeInventory: (Dst, Idsx),
3 −−− [...]
4 pendingQuestions: pendingQx,
5 −−− [...]
6 incomingMsgs: mkMsg([dst: Dst, query: QY]) iMsgsx >
7 =>
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8 < nodeInventory: (Dst, Ids),
9 −−− [...]

10 pendingQuestions: append(pendingQx,[ dst: Dst, query: QY ]),
11 incomingMsgs: iMsgsx >

Finally, Listing 10 describes the rule for receiving an answer to a question Q previously sent by node x
(as indicated by its presence in the history). The answered value val is recorded (!insert(R, val, RcvA)!)
and it replaces previous information about the result of request Q, if any. The request Q is removed from
the history of node x, so that a similar request may be sent again in the future.

Listing 10: The rule for receiving an answer

1 rl [ReceiveAnswer] :
2 < −−− [...]
3 externState: eStatex,
4 −−− [...]
5 history: (Q,Hx),
6 incomingMsgs: mkMsg([ question: Q, value: Val ]) iMsgsx >
7 =>
8 < −−− [...]
9 externState: insert(Q,Val,eStatex),

10 −−− [...]
11 history: Hx,
12 incomingMsgs: iMsgsx >

Example. To illustrate the communication protocol of the above semantics rules, a subpart of the
example of Figure 2 is used with one listener and one sensor. In step 4, the sensor sends a question
to the listener regarding the completion of its behavior idb4. The question is created following the
wait(listener, idb4) action in the local reconfiguration program of the sensor, and is placed in
outgoingQuestion. The question is [dst: listener1, query: isCompleted(idb4)]. The fol-
lowing communication rules are applied:

1. [SendQuestion] is applied: the question in outgoingQuestion on sensor is popped and placed
into history of sensor. The incomingMsgs of listener appends the question received from
sensor.

2. [ReceiveQuestion] is applied: The node listener appends the incoming question to its list
pendingQuestions. The question is removed from incomingMsgs.

3. [SendAnswer] is applied: The question in pendingQuestions on listener is popped. The an-
swer is created and pushed to the incomingMsgs of sensor. The answer message to the question is
[question: [dst: listener1, query: isCompleted(idb4)], value: true]. The orig-
inal question is removes from history on sensor.

4. [ReceiveAnswer] is applied: The answer received on sensor in incomingMsgs is removed and
inserted (added or updated) to the externState of sensor as a mapping [dst: listener,
query: isCompleted(idb4)] 7→ true].

Once completed a pushed behavior cannot be executed again as being uniquely identified. For this reason,
no consistency issue can happen in this small example. The resetState of the rule SendAnswer has no
consequences on externState in this case.
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4 Related work

CONCERTO and CONCERTO-D can be considered as component models, such as defined in Component-
Based Software Engineering (CBSE). As explained in [6, 9] CONCERTO, and by extension CONCERTO-
D, differ from usual component models by modeling the life cycle of components instead of modeling
the functional code of components. For this reason, both CONCERTO and CONCERTO-D are more com-
parable to DevOps approaches. Only one other component model can be compared to CONCERTO:
Aeolus [10]. However, Aeolus is more limited than CONCERTO in terms of parallelism and concurrency.
As for CONCERTO, and unlike CONCERTO-D, Aeolus is a centralized model, and it has been formalized
manually.

Regarding DevOps approaches for deployments, a few contributions have studied a decentralized
approach. In [16, 26] each component of the application expresses its dependencies with the other com-
ponents in a central plan, distributed to the corresponding nodes, deploying their part of the application.
Deployment executions are then coordinated between the nodes according to their dependencies. Here,
the execution is decentralized as in CONCERTO-D. In [25], an extension of the DevOps tool Pulumi is
presented to handle both the computation and execution of deployment and update programs in a de-
centralized manner. However, the three approaches above, and almost all DevOps tools, lack formal
specifications: their language is defined by a unique implementation and informal documentation.

To our knowledge, there are only two DevOps contributions that offer formal semantics of their
system configuration languages: SMARTFROG [2] a tool no longer maintained, and µPUPPET [14] a
subset of PUPPET. The semantics of SMARTFROG is a denotational semantics of a compiler for a core
SMARTFROG fragment. From the high-level language SF, which handles features such as inheritance,
composition, references, etc., the compilation process produces a store, basically a tree of attribute-value
pairs. These trees are also the abstractions for system states in SMARTFROG’s semantics. The authors
wrote three implementations (in Scala, Haskell, and OCaml) of the compiler guided by the semantics
but not proved correct w.r.t. to the formal semantics (which is not mechanized). These implementations
were randomly tested and a few implementation errors were found. They were also tested against the
production compiler: it allowed them to find both a misunderstanding of the semantics of SMARTFROG

and bugs in the production compiler. The semantics of µPUPPET is a small-step operational semantics.
An implementation of a µPUPPET compiler exists, guided by the semantics but not proved correct w.r.t.
the formal semantics, which is also not mechanized. The output of the compiler is a catalog, i.e., a
structure close to the stores’ output by SMARTFROG’s compiler. A catalog is also an abstraction for a
system state. To help debug µPUPPET manifests, Fu [13] also proposed an analysis of provenance [7]
based on the µPUPPET operational semantics. In both cases, the formal semantics is not an executable
artifact as is our proposal.

Khebbeb et al. also use Maude to formalize adaptation in the Cloud [18] and at the edge [17].
The motivation and approach are however very different from our work. There is no reconfiguration
language: the goal is to automatically adapt resources depending on the load of the Cloud system. On
the one hand, this work considers the provisioning and de-provisioning of virtual machines, an aspect
we do not consider. On the other hand, their concept of service is very simplistic: a service is something
that processes requests (and only the number of requests is formalized) and there are no connections
between services. Their rewrite rules implement pre-defined elasticity strategies. While they perform
model-checking on a small example (3 services, 1 VM, and 2 Fog nodes) [17], they neither provide any
information about the number of states, nor the time required for the verification. In its complexity, our
proposal is closer to work that models APIs for e.g., [27]. As Yu et al., to analyze interesting enough
case studies, we will need to optimize the model-checking by implementing partial order reduction [12].
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5 Conclusion and Future Work

In this paper, we proposed a formalization in Maude of the decentralized reconfiguration language
CONCERTO-D, an extension of the centralized reconfiguration language CONCERTO [6]. In CONCERTO-
D, the assembly of components is distributed among a set of nodes. Each node is responsible for a local
reconfiguration program that may require some coordination with the nodes that host connected compo-
nent instances. CONCERTO-D automatically manages the necessary communications between nodes via
asynchronous communications, which involve nodes communicating by exchanging messages through
buffers. The advantage of having a formal semantics with Maude is that it is executable and hence we
can check by running examples that the semantics we designed behaves as we expect it to do.

This is however a first step. We ambition to verify properties of specific assemblies and their recon-
figuration programs as well as to verify properties of the semantics itself.

To verify specific assemblies and their programs, Maude offers on-the-fly model-checking of LTL
formulas. Preliminary experiments show that in its current form the semantics does not allows to scale
up to the model-checking of realistic applications. We will first explore the application of partial order
reduction techniques [12] to limit the state-space explosion problem. Another way to avoid such an
explosion is to use symbolic model-checking techniques in particular verification by over-approximation
of the set of descendants [15, 3]. In these approaches, the goal is to check that a set of bad states does
not intersect the over-approximations of the sets of descendants. There are however constraints on how
the (approximations of) sets of terms are described (for e.g. regular tree automata) and constraints on the
rewriting rules describing the dynamic of the system.

Verifying properties of the CONCERTO-D model itself may require the use of interactive theo-
rem proving (ITP). There are ongoing efforts to develop a dedicated interactive theorem prover for
Maude [11] as well as to translate Maude specifications [24] into existing ITP specification languages.
The main properties we plan to prove interactively are that the semantics preserves well-formed instances
and well-formed systems, as well as that the consistency of the communicated information between nodes
is ensured.

Finally, thanks to CONCERTO-D, CONCERTO could be transformed into a choreographic language
(as defined in [1]). In a choreographic approach CONCERTO would be the choreography language. A
compilation process would then automatically generate the CONCERTO-D programs (i.e., local projec-
tions) on the nodes, and guarantee that required communications between nodes will be performed when
required. The formalization may be used to prove that the set of CONCERTO-D programs yielded by that
process has a behavior that corresponds to the behavior original centralized CONCERTO program.
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The Participants-as-Interfaces (PaI) approach to system composition suggests that participants of a

system may be viewed as interfaces. Given a set of systems, one participant per system is chosen to

play the role of an interface. When systems are composed, the interface participants are replaced by

gateways which communicate to each other by forwarding messages. The PaI-approach for systems

of asynchronous communicating finite state machines (CFSMs) has been exploited in the literature

for binary composition only, with a (necessarily) unique forwarding policy. In this paper we consider

the case of multiple system composition when forwarding gateways are not uniquely determined and

their interactions depend on specific connection policies complying with a connection model. We

represent connection policies as CFSM systems and prove that a bunch of relevant communication

properties (deadlock-freeness, reception-error-freeness, etc.) are preserved by PaI multicomposition,

with the proviso that also the used connection policy does enjoy the communication property taken

into account.

1 Introduction

Concurrent/Distributed systems are hardly – especially nowadays – stand-alone entities. They are part of

“jigsaws” never completely finished. Either in their design phase or after their deployment, they should

be considered as open and ready for interaction with their environment, and hence with other systems.

The possibility of extending and improving their functional and communication capabilities by compos-

ing them with other systems is also a crucial means against their obsolescence. Compositional mecha-

nisms and techniques are consequently an important subject for investigation. As mentioned in [3], sys-

tem composition investigations should focus on three relevant features of these mechanisms/techniques:

• Conservativity: They should alter as little as possible the single systems we compose.

• Flexibility: They should not be embedded into the systems we compose, i.e. they should be “sys-

tem independent”. In particular, they should allow to consider any system as potentially open.

• Safety: Relevant properties of the single systems should not be “broken” by composition.

A fairly general and abstract approach to binary composition of systems was proposed in [1] and

dubbed afterwards Participants-as-Interfaces (PaI). Roughly, the composition is achieved by transform-

ing two selected participants – one per system, say h and k, – into coupled forwarders (gateways),

provided the participants exhibit “compatible” behaviours. The graphics in Fig. 1 illustrates the PaI idea

for the binary case. If interface participant h of the first system S1 can receive a message a from some

participant of S1 and interface participant k of the second system S2 can send a to some participant of
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mento 1.3.
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Figure 1: The PaI idea for binary composition

S2, then the gateway replacing the first interface (also called h) will forward the received message to the

gateway for k. How PaI works for multicomposition of systems will be illustrated in Section 2. It is

worth remarking that the PaI approach to system composition does not expect any particular condition

to be satisfied by a single participant in order to be used as an interface.

Conservativity as well as flexibility are definitely features of the PaI composition idea. Conserva-

tivity holds since all participants not acting as interfaces remain untouched and flexibility holds since,

in principle, any participant can play the role of an interface. This fact is independent of the concrete

formalism used for protocol descriptions and system designs/implementations. Safety, instead, can be

checked only once we take into account a specific formalism. Such checks were carried out in a number

of papers where two relevant formalisms for the description and verification of concurrent communi-

cating systems were considered: MultiParty Session Types (MPST) [21, 22] and Communicating Finite

State Machines (CFSM) [12]. Safety of the binary PaI approach was investigated for MPST in [4], where

a synchronous communication model was considered. The PaI approach to multicomposition for MPST

has been exploited in [3, 2], again for synchronous communications. In particular, in [2], a restricted no-

tion of multiple connections in a client-server setting has been considered. For the synchronous MPST

formalism used in those papers, PaI proved to be safe. The binary PaI approach for safety in systems of

(standard) asynchronous CFSMs was taken into account in [1], whereas safety of PaI for a synchronous

version of the CFSM formalism was investigated in [6, 7, 8], again for binary composition.

Contributions. In the present paper we investigate safety of PaI multicomposition for the asynchronous

formalism of CFSMs. For this purpose we reuse the PaI multicomposition idea of [3] but realise it –

instead of the synchronous MPST framework – in the asynchronous CFSM setting which needs com-

pletely different design and proof techniques. At the same time we go beyond the binary composition

of asynchronous CFSMs of [1] and study multicomposition of CFSM systems. Clearly this goes also

beyond the aforementioned papers [6, 7, 8] dealing with binary composition of synchronous CFSMs.

In particular, in the asynchronous case different communication properties, like unspecified-reception

freeness, are relevant.

A crucial role in our approach to multicomposition is played by connection policies which can be

individually chosen by the system designer on the basis of a given concrete connection model. A connec-

tion model describes architectural aspects of compositions. It specifies which forwarding links between

interface roles of different systems are meaningful from a static perspective. The concrete behavioural

instantiation of such links, in terms of which message of an interface role, say h, is forwarded in which

state of h to which interface role of another system, is determined by a connection policy which therefore

also determines the construction of gateway CFSMs. The multicomposition of n systems of CFSMs is

then simply defined by taking all CFSMs of the single systems but replacing each CFSM of an interface

participant by its gateway CFSM. The use of connection models is methodologically important since it is

more likely that a connection policy complying with a connection model will satisfy desired communica-

tion properties. For the proofs of our safety results, however, only the specifics of the chosen connection

policy is relevant.

We show that a number of relevant communication properties (deadlock-freeness, orphan-message
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freeness, unspecified-reception freeness, and progress) are preserved by PaI multicomposition of CFSM

systems whenever the particular property is satisfied also by the connection policy used, which is for-

malised as a CFSM system itself. Apart from orphan-message-freeness preservation we need, however,

an additional assumption which requires that interface participants do not have a state with at least one

outgoing output action and one outgoing input action, a condition referred to in the literature as no-

mixed-state [15]. We shall provide counterexamples illustrating the role played by the no-mixed-state

condition in guaranteeing safety of composition. In contrast with deadlock-freeness, the stronger prop-

erty of lock-freeness will be shown (by means of a counterexample) not to be preserved in general, even

in absence of of mixed-states.

Outline. The main ideas underlying PaI multicomposition are intuitively described in Section 2. In Sec-

tion 3 we recall the definitions of communicating finite state machine, communicating system and their

related notions. There we also provide the definitions of a number of relevant communication properties.

In Section 4, PaI multicomposition is formally defined on the basis of the definitions of connection policy

and gateway. Our main results are presented in Section 5 including counterexamples spotting the role of

the no-mixed-state condition and a counterexample for lock-freeness preservation. Section 6 concludes

with a brief summary, by pointing out a few more approaches to system composition, and with hints for

future work.

2 The PaI Approach to Multicomposition
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|
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|
|
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Figure 2: Four interface participants

In order to illustrate the idea underlying PaI multicom-

position1 , we consider an example of [3] with four sys-

tems S1, S2, S3 and S4. As shown in Fig. 2, we have

selected for each system one participant as an interface,

named h, k, v and w. As in Fig. 1, we consider here only

static aspects abstracting from dynamic issues, like the

logical order of the exchanged messages, whose repre-

sentation depends on the chosen formalism.

Following the PaI approach, the composition of the

four systems above consists in replacing the partici-

pants h, k, v and w, chosen as interfaces, by gateways.

Note that a message, like a in S1 sent to h, could be for-

warded (unlike the binary case) to different other gate-

ways. This means that a connection policy has to be set up in order to appropriately define the gateways.

Such a policy primarily depends on which partner is chosen for the current message to be exchanged.

For what concerns the present example, one could decide that message a received by h has to be

forwarded to w; the a received by v to k; the b received by k and w to v; the c received by w to h. Another

possible choice could be similar to the previous one but for the forwarding of the messages a: the one

received by h could be forwarded now to k whereas the one received by v could be forwarded to w. Such

different “choices of partners”, that we formalise by introducing the notion of connection model, can be

graphically represented, respectively, by Choice A and Choice B in Fig. 3.

1It is of course possible to compose, two by two, several systems using binary composition, but in that way – by looking at

systems as vertices and gateway connections as undirected edges – we can get only tree-like structures of systems.
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Figure 3: Two possible choices of partners.
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Figure 4: Two possible PaI multicompositions via gateways

The architecture of the resulting composed systems, according to the particular choices of partners

(i.e. connection models), are represented by the diagrams in Fig. 4.

In both drawings of Fig. 4, the names h,k, etc. do now represent gateways. It is important to see

that even if the original CFSMs for the participants in the single systems, like the CFSM for v in S3,

are given, the connection models and the drawings in Fig. 4 do not always determine how a gateway

CFSM, modelling the dynamic forwarding strategy, should look like. This can be illustrated by looking

at message b and participant v. No matter whether we consider Choice A or Choice B it is not determined

when the gateway for v will accept b from k and when from w. For instance, a message b from w could

be accepted by v only after two b’s are received from k. Therefore, a given choice of partners needs,

in general, to be “refined” – according to the formalism taken into account – into a specific connection

policy taking care of the dynamic choice of partners.

This PaI approach to multicomposition has been exploited in [3] for a MPST formalism with syn-

chronous communications. We are now going to realise PaI multicomposition in the context of CFSM

systems with asynchronous communications.

3 Systems of Communicating Finite State Machines

Communicating Finite State Machines (CFSMs) is a widely investigated formalism for the description

and analysis of distributed systems, originally proposed in [12]. CFSMs are a variant of finite state

I/O-automata that represent processes which communicate by asynchronous exchanges of messages via

FIFO channels. We now recall (partly following [15, 17, 24, 1]) the definitions of CFSM and system of
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CFSMs.

We assume given a countably infinite set PU of participant names (ranged over by p,q,r,h,k, . . .) and

a countably infinite alphabet AU of messages (ranged over by a, b, c, l, m, . . .).

Definition 3.1 (CFSM). Let P and A be finite subsets of PU and AU respectively.

i) The set CP of channels over P is defined by CP = {pq | p,q ∈ P,p 6= q}

ii) The set ActP,A of actions over P and A is defined by ActP,A =CP ×{!,?}×A

The subject of an output action pq!m and of an input action qp?m is p.

iii) A communicating finite-state machine over P and A is a finite transition system given by a tuple

M = (Q,q0,A,δ )
where Q is a finite set of states, q0 ∈ Q is the initial state, and δ ⊆ Q×ActP,A×Q is a set of transi-

tions such that all the actions have the same subject, to which we refer as the name of M.

We shall write Mp to denote a CFSM with name p. Where no ambiguity arises we shall refer to a CFSM

by its name.

Notice that the above definition of CFSM is generic with respect to the underlying sets P and A.

This is necessary, since we shall not deal with a single system of CFSMs but with an arbitrary number

of systems of CFSMs that can be composed. We shall write C and Act instead of CP and ActP,A when no

ambiguity can arise. We assume l, l′, . . . to range over Act; ϕ ,ϕ ′, . . . to range over Act∗ (the set of finite

words over Act), and w,w′, . . . to range over A∗ (the set of finite words over A). The symbol ε (/∈A∪Act)
denotes the empty word and | v | the lenght of a word v ∈ Act∗∪A

∗.

The transitions of a CFSM are labelled by actions; a label sr!a represents the asynchronous send-

ing of message a from machine s to r through channel sr and, dually, sr?a represents the reception

(consumption) of a by r from channel sr.

Given a CFSM M = (Q,q0,A,δ ), we also define

in(M) = {a | ( , ?a, ) ∈ δ} and out(M) = {a | ( , !a, ) ∈ δ}.

If M is a CFSM with name p, we also write in(p) for in(M) and out(p) for out(M). Note that, in concrete

examples, the name of a CFSM together with its input and output messages can be graphically depicted

as in Fig. 2.

A state q ∈ Q with no outgoing transition is final; q is a sending (resp. receiving) state if it is not final

and all outgoing transitions are labelled with sending (resp. receiving) actions; q is a mixed state if there

are at least two outgoing transitions such that one is labelled with a sending action and the other one is

labelled with a receiving action.

A communicating system, called “protocol” in [12], is a finite set of CFSMs. In [15, 17, 24] the

names of the CFSMs in a system are called roles. In the present paper we call them participants.

The dynamics of a system is formalised as a transition relation on configurations, where a configura-

tion is a pair of tuples: a tuple of states of the machines in the system and a tuple of buffers representing

the content of the channels.

Definition 3.2 (Communicating system and configuration). Let P and A be as in Def. 3.1.

i) A communicating system (CS) over P and A is a set S = (Mp)p∈P where

for each p ∈ P, Mp = (Qp,q0p,A,δp) is a CFSM over P and A.

ii) A configuration of a system S is a pair s = (~q,~w) where

~q = (qp)p∈P with qp ∈ Qp, and ~w = (wpq)pq∈C with wpq ∈ A
∗.
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The component ~q is the control state of the system and qp ∈ Qp is the local state of machine Mp.

The component ~w represents the state of the channels of the system and wpq ∈ A
∗ is the state of the

channel pq, i.e. the messages sent from p to q. The initial configuration of S is s0 = (~q0,~ε) with

~q0 = (q0p)p∈P.

In the following we shall often denote a communicating system (Mp)p∈{ri}i∈I
by (Mri

)i∈I .

Definition 3.3 (Reachable configuration). Let S be a communicating system over P and A, and let s =

(~q,~w) and s′ = (~q′, ~w′) be two configurations of S. Configuration s′ is reachable from s by firing a

transition with action l, written s
l
−→ s′, if there is a ∈ A such that one of the following conditions holds:

1. l = sr!a and (qs, l,q
′
s) ∈ δs and

a) for all p 6= s : q′p = qp and

b) w′
sr = wsr ·a and for all pq 6= sr : w′

pq = wpq;

2. l = sr?a and (qr, l,q
′
r) ∈ δr and

a) for all p 6= r : q′p = qp and

b) wsr = a ·w′
sr and for all pq 6= sr : w′

pq = wpq.

We write s −→ s′ if there exists l such that s
l
−→ s′ and we write s 6−→ if no s′ and no l exist with s

l
−→ s′.

As usual, we denote the reflexive and transitive closure of −→ by →∗. The set of reachable configurations

of S is RC(S) = {s | s0 →
∗ s}.

According to the above definition, communication happens via buffered channels following the FIFO

principle.

The overall behaviour of a system can be described (at least) by the traces of configurations that

are reachable from a distinguished initial one. Configurations may exhibit some pathological properties,

like various forms of deadlock or progress violation, channels containing messages that will never be

consumed (orphan messages) or just sent to a participant who is expecting another message to come

(unspecified receptions). The goal of the analysis of communicating systems is to check whether such

kinds of configurations are reachable or not. Although the desirable system properties are undecidable in

general [12], sufficient conditions are known that are effectively checkable relying, for instance, on half-

duplex communication [15], on the form of network topologies [16], or on synchronous compatibility

checking [19].

We formalise now a number of relevant communication properties for systems of CFSMs that we

shall deal with in the present paper.

Definition 3.4 (Communication properties). Let S be a communicating system, and let s = (~q,~w) be a

configuration of S.

i) s is a deadlock configuration of S if ~w =~ε and ∀p ∈ P. qp is a receiving state.

I.e. all buffers are empty, but all machines are waiting for a message.

We say that S is deadlock-free whenever, for any s ∈ RC(S), s is not a deadlock configuration.

ii) s is an orphan-message configuration of S if ∀p ∈ P. qp is final and ~w 6=~ε .

I.e. each machine is in a final state, but there is still at least one non-empty buffer. We say that S is

orphan-message free whenever, for any s ∈ RC(S), s is not an orphan-message configuration.

iii) s is an unspecified reception configuration of S if ∃r ∈ P such that

a) qr is a receiving state; and
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b) ∀s ∈ P.[ (qr,sr?a,q′r) ∈ δr =⇒ (|wsr|> 0 ∧ wsr 6∈ a ·A∗) ].

I.e. there is a receiving state qr which is prevented from receiving any message from any of its

buffers. (In other words, in each channel sr from which role r could consume there is a message

which cannot be received by r in state qr.) We say that S is reception-error free whenever, for any

s ∈ RC(S), s is not an unspecified reception configuration.

iv) S satisfies the progress property if for all s = (~q,~w) ∈ RC(S), either there exists s′ such that s −→ s′

or (∀p ∈ P. qp is final).

v) s is a p-lock configuration of S if p ∈ P, qp is a receiving state and

p does not appear as subject in any label of any transition sequence from s

i.e. p remains stuck in all possible transition sequences from s. We say that S is lock-free whenever,

for each p ∈ P and each s ∈ RC(S), s is not a p-lock configuration.

Note that progress property (iv) implies deadlock-freeness. Moreover, an unspecified reception con-

figuration is trivially a p-lock for some p. This immediately implies that lock-freeness implies reception-

error-freeness. It is also straightforward to check that lock-freeness does imply both deadlock-freeness

and progress. The other properties are mutually independent.

The above definitions of communication properties (i)–(iv) are the same as the properties considered

in [17], though the above formulation of progress is slightly simpler but equivalent to the one in [17]. The

notions of orphan message and unspecified reception are also the same as in [24]. The same notions of

deadlock and unspecified reception are given in [15] and inspired by [12]. The deadlock notions in [12]

and [24] coincide with [15] and [17] if the local CFSMs have no final states. Otherwise deadlock in [24]

is weaker than deadlock above. A still weaker notion of deadlock configuration, and hence a stronger

notion of deadlock-freeness, has been suggested in [28]. This deadlock notion has been formally related

to the above communication properties in [1].

4 PaI Multicomposition of Communicating Systems

As described in Section 2, the PaI approach to multicomposition of systems consists in replacing, in each

to-be-composed system, one participant identified as an interface by a forwarder (that we dub “gateway”).

Any participant in a system, say h, can be considered as an interface. This means that we can look at

the CFSM h as an abstract description of what the system expects from a number of “outer” systems

(the environment) through their respective interfaces. Hence, any message received by h from another

participant p of the system (to which h belongs) is interpreted as a message to be forwarded to some

other interface h′ among the available ones. Conversely, any message sent from h to another participant

p of the system (to which h belongs) is interpreted as a message to be received from some other interface

h′ and to be forwarded to p.

In order to clarify the notions introduced in this section, we present below an example from [3],

“implemented” here in the CFSM formalism.

Example 4.1 (Working example). Let us consider the following four systems2:

System-1 with participants h1 and p.

Participant h1 controls the entrance of customers in a mall (via some sensor). As soon as a customer

enters, h1 sends a message start to the participant p which controls a display for advertisements.

2For the sake of simplicity, the example considers only systems with two or three participants. Our definitions and results

are of course independent of the number of participants in the single systems.
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Figure 5: The four communicating systems formalising the systems of Example 4.1

On receiving the start message, p displays a general advertising image. Participant p does also

control a sensor detecting emotional reactions as well as a card reader distinguishing regular from

new customers. Such information, through the messages react, rc and nc is sent to h1. Using that

information h1 sends to p a customised image, depending on the kind of the customer, through

message img.

System-2 with participants h2 and q.

Participant h2 controls an image display. Images are provided by participant q according to some

parameters sent by h2 itself and depending on the reaction acquired by a sensor driven by q. Images

are chosen also in terms of the kind of customers, on the basis of their cards. Participant q is able

to receive a reset message too, even if h2 cannot ever send it.

System-3 with participants h3, r and r′.

Participant r controls a sensor detecting the entrance of people from a door. Once someone enters,

a message start is sent by r to participant h3 which turns on a light. The reaction of who enters,

detected by a sensor driven by h3, is sent back to r which, according to the reaction, communicates

to r′ the greeting to be broadcasted from the loudspeakers.

System-4 with participants h4 and s.

Some sensors driven by Participant h4 acquire the first reactions of people getting into a hall

adorned by several Christmas lights. Such reactions, sent to participant s through a message react,

enable s to send to h4 a set of parameters (pars) allowing the latter to adjust the lights of the hall.

The behaviours of the participants of the above systems – assuming an asynchronous model of com-

munication – can be formalised as CFSMs. So the systems above can be formalised as the following

communicating systems

S1 = (Mx)x∈{h1,p} S2 = (Mx)x∈{h2,q} S3 = (Mx)x∈{h3,r,r′} S4 = (Mx)x∈{h4,s}

as described, anticlockwise, in Figure 5. ⋄
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Notation: We use the following notation to denote the above set of communicating systems:

{Si}i∈{1,2,3,4} where Si = (Mx)x∈Pi
with P1 = {h1,p}, P2 = {h2,q}, P3 = {h3,r,r

′} and P4 = {h4,s}.

The composition of a set of systems relies on a selection of participants, one for each system, con-

sidered as interfaces.

Definition 4.2 (Interfaces). Let {Si}i∈I be a set of communicating systems such that, for each i ∈ I,

Si = (Mx)x∈Pi
, where the Pi’s are pairwise disjoint. A set of participants H = {hi}i∈I ⊆

⋃
i∈I Pi is a set of

interfaces for {Si}i∈I whenever, for each i ∈ I, hi ∈ Pi. An interface hi has no mixed states if the CFSM

Mhi
in Si has no mixed states.

Example 4.3. We choose {hi}i∈{1,2,3,4} as set of interfaces for the communicating systems of Figure 5.

⋄

We introduce now the notion of connection model3, formalising what we have informally called

“choice of partners” in Section 2. A connection model is intended to specify the structural (architec-

tural) aspects of possible “reasonable” connections between interfaces of systems. Connection models

should be provided before systems are composed since they help the system designer to avoid blatantly

unreasonable compositions. Formally, a connection model is a set of connections, where a connection is

a triple (h,a,h′) in which h and h′ are, respectively, interfaces of two systems, say S and S′, and a is an

input message for h and an output message for h′. Being a an input for h, this participant is supposed

to receive a from the “inside” of S, i.e. from another participant of S. As previously mentioned, PaI

multicomposition relies on the idea that a can be forwarded to the interface of some other system. The

connection (h,a,h′) hence specifies that h′ is one of the possible interfaces a can be forwarded to. This

is sound since a is an output of h′, i.e. it is sent by h′ to some participant of S′. The actual composition

will then rely on gateways (forwarders) which comply with the connection model taken into account.

Definition 4.4 (Connection model). Let {Si}i∈I be a set of communicating systems and let H be a set of

interfaces for it.

i) A connection model for H is a ternary relation CM ⊆ H ×AU×H such that, for each h ∈ H and

a ∈ AU,

• a ∈ in(h) implies ∃ h′ ∈ H s.t. a ∈ out(h′) and (h,a,h′) ∈ CM

• a ∈ out(h) implies ∃ h′ ∈ H s.t. a ∈ in(h′) and (h′,a,h) ∈ CM

where h 6= h′.

Elements of CM are called connections. In particular, (h,a,h′)∈ CM is called connection for a (from

h to h′). We also define Msg(CM) = {a | ( ,a, ) ∈ CM} and assume that any message a ∈Msg(CM)
occurs in one of the interfaces in H either as an input or as an output.

ii) A connection model CM for H is strong if, for each h ∈ H and a ∈ AU,

• a ∈ in(h) implies ∃! h′ ∈ H s.t. (h,a,h′) ∈ CM

• a ∈ out(h) implies ∃! h′ ∈ H s.t. (h′,a,h) ∈ CM.

where h 6= h′ and the unique existential quantifier ‘∃!’ stands for “there exists exactly one”.

Connection models can be graphically represented by diagrams, like those used in Fig. 3.

3Such a notion was informally introduced in [3] in the setting of MultiParty Session Types.



48 Composition of CFSM Systems

Example 4.5 (Some connection models). Let H = {h,k,v,w} be the set of interfaces for the systems

{Si}i∈{1,2,3,4} in Section 2. Fig. 3 represents the following connection models for H:

CMA = {(h,a,w),(v,a,k),(w,c,h),(k,b,v),(w,b,v)}
CMB = {(h,a,k),(v,a,w),(w,c,h),(k,b,v),(w,b,v)}

Obviously, both connection models are not strong, because of the presence of the connections (k,b,v)
and (w,b,v).

Let us now provide a connection model for the systems in Fig. 5 with set of interfaces H = {hi}i∈{1,2,3,4} .

First we determine in(h1) = {react,nc, rc}, out(h1) = {img,start}, in(h2) = {react, img},

out(h2) = {nc, rc,pars}, in(h3) = {start}, out(h3) = {react}, and in(h4) = {pars}, out(h4) = {react}.

A connection model for H is

CM = {(h1, react,h4),(h3,start,h1),(h2, img,h1),(h1,nc,h2),
(h1, rc,h2),(h4,pars,h2),(h2, react,h3)}

The representation of CM is as in Fig. 6. Obviously, this connection model is strong. ⋄

h1 h2h3 h4

rc
pars

reactreact

start

nc

img

Figure 6: A connection model for the interfaces of Fig. 5.

When we have more than two systems to compose, the gateways are, in general, not uniquely deter-

mined. In order to produce gateways out of interfaces we need to decide which connection model we

wish to take into account and how the interfaces do actually interact “complying” with the connection

model. Once a connection model is selected, the forwarding strategy of the gateway is still not uniquely

determined if the connection model is not strong. The reason is that in the case of at least two connectors

with the same source or the same target, like (k,b,v) and (w,b,v) in Example 4.5, the gateway for v has a

dynamic choice when to accept message b from k and when from w. Therefore we need further (dynamic)

information which will be provided by connection policies. A connection policy is itself a communicat-

ing system which describes the dynamic choice of partners among the possible gateways by respecting

the constraints of (that is, complying with) the connection model. Technically, we first associate a set

of CFSMs (the “local connection policy set”) to each interface. Any element of this set specifies which

communications to the “outside” are allowed in which state. Technically these communications are dual

to the communications of its corresponding interface.

Definition 4.6 (Local Connection Policy Set). Let CM be a connection model for a set of interfaces H

and let h ∈ H with CFSM Mh = (Q,q0,A,δ ).
The local connection policy set of Mh w.r.t. CM is the set of CFSMs LCPS(Mh,CM) defined as follows:

LCPS(Mh,CM) = {(
.

Q,
.

q0,A,
.

δ ) |
.

δ is a minimal relation s.t. (∗) and (∗∗)}

where
.

Q = {
.

q | q ∈ Q} and

(∗) = q
rh?a
−−→ q′ ∈ δ implies ∃p ∈ H \{h}s.t.

.

q

.

h
.

p!a
−−→

.

q′ ∈
.

δ and (h,a,p) ∈ CM,

(∗∗) = q
hr!a
−−→ q′ ∈ δ implies ∃p ∈ H \{h}s.t.

.

q
.

p
.

h?a
−−→

.

q′ ∈
.

δ and (p,a,h) ∈ CM.
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Notice that, in the above definition, each CFSM in LCPS(Mh,CM) has name
.
h. Moreover,

.
q (resp.

.
h)

is to be looked at as a “decoration” of the state q (resp. the name h). This will enable us to immediately

retrieve q (resp. h) out of
.
q (resp.

.
h).

Notation: In the following, for the sake of readability, we shall write k (resp. ki) for
.
h (resp.

.
hi).

Local connection policy sets are finite, since they contain CFSMs which only differ in the names

of participants and these names belong to a finite set. Any element (
.

Q,
.
q0,A,

.
δ ) of LCPS(Mh,CM)

.
0

k1

.
1

.
2

.
3

.
4

k
3 k
1 ?start

k 1
k 4

!r
ea
ctk

1 k
2 !rc

k2
k1

?im
g

k
1 k

2 !nc

k 2
k 1

?i
m
g

does comply with the connection model CM, since it can only have transitions

.
q

.
hp!a
−−→

.
q′ ∈

.
δ with (h,a,p) ∈ CM and transitions

.
q

p
.
h?a

−−→
.
q′ ∈

.
δ with (p,a,h) ∈

CM, Moreover, LCPS(Mh,CM) is a singleton if the connection model CM is strong.

Example 4.7 (An element of a local connection policy set). Let Mh1
be the CFSM

for the participant h1 of Example 4.1 and let CM be the strong connection model

for H = {hi}i∈{1,2,3,4} of Example 4.5. The CFSM on the right is the unique

element of LCPS(Mh1
,CM). ⋄

Given a connection model, a connection policy is obtained by choosing, for

each interface, an element of its local connection policy set.

Definition 4.8 (Connection policy). Let {Si}i∈I be a set of communicating systems such that, for each

i ∈ I, Si = (Mx)x∈Pi
, and let CM be a connection model for a set of interfaces H = {hi}i∈I . A connection

policy (for H) complying with CM is a communicating system K = (Mki
)i∈I such that, for each i ∈ I,

Mki
∈ LCPS(Mhi

,CM).

Connection policies are made of local connection policies which, due to the conditions (∗) and (∗∗)
in Definition 4.6, fit to the given communication model CM. Consequently, in the above definition, the

connection policy is said to be compliant with CM. If we dropped the two requirements (∗) and (∗∗) in

Definition 4.6 we would get non-compliant connection policies.

Example 4.9 (A connection policy). The following four CFSMs constitute a connection policy for H =
{hi}i∈I complying with CM, where the Mhi

’s are as in Figure 5 and CM is the connection model of
Example 4.5.

.
0

k1

.
1

.
2

.
3

.
4

k
3 k
1 ?start

k 1
k 4

!r
ea
ctk

1 k
2 !rc

k2
k1

?im
g

k
1 k

2 !nc

k 2
k 1

?i
m
g

.
0

k2

.
1

.
2

.
3

.
4

k
2 k
3 !react

k 4
k 2

?p
ar
s

k
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!im
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.
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k4
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?
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4
k
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!p
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⋄

Remark 4.10. A connection model can be looked at as a static and abstract description of connection

policies. In particular a connection model abstracts from the order of exchanged messages. As already

pointed out above there may be several connection policies complying with a given connection model

CM if CM is not strong. As an example assume given three systems with the following interfaces:

0 1

h1 sh1?a

rh1?a
0 1

h2
h2 v!a

0 1

h3
h3 w!a
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We can now consider the following (non-strong) connection model: CM = {(h1,a,h2),(h1,a,h3)}.
It is easy to check that the connection policies K1 and K2 below do both comply with CM.

K1 =

.
0

.
1

k1

k
1
k
2
!a

k
1
k
3
!a

.
0

.
1

k2

k
2
k
1
?
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.
0

.
1

k3

k
3
k
1
?
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.
0
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k
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k
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k
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!a

.
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.
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k
2
k
1
?
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.
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.
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k3

k
3
k
1
?
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⋄

By now we have almost all the necessary notions to formally define the PaI multicomposition of

systems of communicating systems. The only missing piece is that of building the gateways using a

connection policy.

We get a gateway essentially by transforming an interface Mh by inserting a fresh state in between any

transition. Any input transition q
sh?a
−−→ q′ (resp. output transition q

hs!a
−−→ q′) of Mh is then transformed

into two consecutive transitions

q
sh?a
−−→ q̂

hh′!a
−−−→ q′ (resp. q

h′h?a
−−−→ q̂

hs!a
−−→ q′)

where q̂ is a fresh state and
.
q

kk′!a
−−−→

.
q′ (resp. q

k′k?a
−−−→

.
q′) belonging to the connection policy taken into

account. In the formal definition below we distinguish the fresh states by superscripting them by the

transition they are “inserted in between”.

Definition 4.11 (Gateway).

Assume given a connection model CM and two CFSMs Mh and Mk such that Mh = (Q,q0,A,δ ) and

Mk = (
.

Q,
.

q0,A,
.

δ ) ∈ LCPS(Mh,CM). The gateway Mh"Mk obtained out of Mh and Mk is defined by

Mh"Mk = (Q∪ Q̂,q0,A, δ̂ )

where

− Q̂ =
⋃

q∈Q{q(q,l,q
′) | (q, l,q′) ∈ δ},

− δ̂ = {(q,rh?a, q̂),(q̂,hs!a,q′) | (q,hs!a,q′) ∈ δ ,(
.

q,
.

rk?a,
.

q′) ∈
.

δ , q̂ = q(q,hs!a,q′)}

∪{(q,sh?a, q̂),(q̂,hr!a,q′) | (q,sh?a,q′) ∈ δ , (
.

q,k
.

r!a,
.

q′) ∈
.

δ , q̂ = q(q,sh?a,q′)}.

We refer to δ̂ as δ̂h whenever h is not clear from the context; similarly for Q̂.

Example 4.12 (A gateway). Let Mh1
be as in Example 4.1, and let Mk1

be as in the connection policy of

Example 4.9. The gateway Mh1
"Mk1

is as follows.

0h1

0̂ 1 1̂

2

2̂

2̂′3

4

3̂

4̂

h3
h1

?s
ta
rt h1 p!start ph1?react h

1 h
4 !react

p
h 1

?r
c

h1 h2!rch2 h1?img

h
1 p!im

g

ph1
?n
c

h1 h2!nch2 h1?img

h
1 p!img

⋄

Definition 4.13 (Composability). Let {Si}i∈I be a set of communicating systems such that, for each i ∈ I,

Si = (Mx)x∈Pi
. Moreover, let H = {hi}i∈I be a set of interfaces for it. We say that {Si}i∈I is composable

with respect to H whenever the sets Pi’s are pairwise disjoint.

Let us now describe how systems are composed on the basis of a given connection policy.
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Definition 4.14 (Multicomposition of communicating systems). Let {Si}i∈I be a set of communicating

systems composable with respect to H = {hi}i∈I and let K = (Mki
)i∈I be a connection policy complying

with a connection model CM for H. The multicomposition of {Si}i∈I with respect to K is the communi-

cating system

MC({Si}i∈I ,K) = (M′
p)p∈

⋃
i∈I Pi

where

M′
p =

{
Mp if p 6∈ {hi}i∈I

Mhi
"Mki

if p= hi with i ∈ I

Note that the CFSMs of a composition are CFSMs over P =
⋃

i∈I Pi and A =
⋃

i∈I Ai. Graphically,

the architectural structure of a multicomposition via gateways can be shown as in Fig. 4.

5 On the Preservation of Communication Properties

The main result of the present paper is the safety of PaI multicomposition of CFSM systems for all

communication properties of Definition 3.4 but lock-freeness. Apart from orphan-message-freeness we

need the no-mixed-state assumption for interfaces to obtain the preservation results.

Theorem 5.1 (Safety of PaI multicomposition of CFSM systems). Let {Si}i∈I be a set of communicating

systems composable with respect to a set H = {hi}i∈I of interfaces with no mixed states (cf. Defini-

tion 4.2) and let K be a connection policy for H. Let P be either the property of deadlock-freeness

or reception-error-freeness or progress. If P holds for each Si with i ∈ I and for K, then P holds for

S = MC({Si}i∈I ,K). Moreover, the above holds also if the no-mixed-state condition is removed and P

is orphan-message-freeness.

Remark 5.2. The above result about safety of multicomposition is actually independent of a concrete

connection model. Considering connection policies which comply with a connection model is, however,

helpful at the design stage of the multicomposition and enhances the possibility of getting connection

policies which satisfy communication properties and hence support the preservation of communication

properties of the composed systems. ⋄

Theorem 5.1 can be proved for each property P separately by contradiction. In particular by showing

that P does not hold for S implies that it does not hold either for one of the Si’s or for K.

A key notion for the proofs is that of projection of a reachable configuration of the composed system

to configurations of each of the single systems Si and also of the connection policy K. On this basis, the

most important tool to get contradictions is the subsequent Proposition 5.4 which essentially shows that

projections of reachable configurations involving no intermediate gateway states are reachable configu-

rations again. The complete proofs of property preservations are provided in [5]. They are independent

of the communication model K complies with.

Definition 5.3 (Configuration projections). Let S = MC({Si}i∈I ,K) be as in Theorem 5.1 (but without

no-mixed-state assumption). Let s = (~q,~w) ∈ RC(S) where ~q = (qp)p∈P and ~w = (wpq)pq∈CP
. For each

i ∈ I, the projection s|i of s to Si is defined by

s|i = (~q|i ,~w|i)
where ~q|i = (qp)p∈Pi

and ~w|i = (wpq)pq∈CPi
.

The projection s|K of s = (~q,~w) to K is defined if qhi
6∈ Q̂hi

for each i ∈ I and then

s|K = (~q|K ,~w|K)
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where ~q|K = (pki
)i∈I is such that, for each i ∈ I, pki

=
.

qhi
(with

.

qhi
being the “dotted decoration” of

the local state qhi
) and where ~w|K = (w′

pq)p,q∈{ki}i∈I ,p 6=q is such that, for each pair i, j ∈ I with i 6= j,

w′
kik j

= whih j
.

Proposition 5.4 (On reachability of projections). Let s = (~q,~w) ∈ RC(S).

i) For each i ∈ I, (qhi
6∈ Q̂hi

=⇒ s|i ∈ RC(Si));

ii) (qhi
6∈ Q̂hi

for each i ∈ I) =⇒ s|K ∈ RC(K).

The connection policy of Example 4.9 does enjoy all the properties of Definition 3.4. Moreover, the

interfaces of the four systems of Example 4.1 are all with no mixed state. Hence Theorem 5.1 guarantees

that any property (among those of Definition 3.4, but lock-freedom) enjoyed by the systems is also

enjoyed by their PaI multicomposition.

Now we provide some examples for cases in which communication properties are not preserved.

First we show that all the three properties for which we have assumed the no-mixed-state condition

in Theorem 5.1 would, in general, not be preserved by composition if the condition is dropped. In the

counterexamples, the receiving states introduced by the gateway construction cause the breaking of the

property taken into account.

Example 5.5 (No-mixed-state counterexample for deadlock-freeness and progress preservation). Let us

consider the two following systems S1 and S2 with interfaces, respectively, h1 and h2 containing mixed

states.

0

u

1

h
1
u

?a

0

h1

1

2

h1u!a

uh
1
?b

|
|
|
| 0

h2

1

2

vh2?a
h 2
v!
b 0

v

1

h
2
v

?b

S1 and S2 are both deadlock free and both enjoy the progress property. There is a unique commu-

nication model for their composition: CM = {(h2,a,h1),(h1,b,h2)} The unique communication policy

complying with CM is the following one.

K=

.
0

k1

.
1

.
2

k2k1?a

k 1
k 2

!b

.
0

k2

.
1

.
2

k2k1!a

k 1
k 2

?v
b

Also K is deadlock free and enjoys the progress property. The system MC({S1,S2},K) is the fol-

lowing one.

0
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1

h
1
u

?a

0

0̂

h1

1

0̂′ 2

h
2 h

1 ?a

uh1
?b

h1u!a

h1h2!b

0

0̂

h2

1

0̂′ 2

h
1 h

2 ?b

vh2
?a

h2v!b

h2h1!a

0

v

1

h
2
v

?b

The initial configuration is actually a deadlock, and hence the system does also not enjoy progress. ⋄
Example 5.6 (No mixed-state counterexample for reception-error-freeness preservation). Let us consider

the two following systems S1 and S2 with interfaces, respectively, h1 and h2 containing mixed states.
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|
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|
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2
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h2v!a
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v
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v
h

2 !d
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S1 and S2 are both reception-error free. The unique communication model for their composition is

CM = {(h1,a,h2),(h1,b,h2),(h2,c,h1)}
The unique communication policy complying with CM is

K= .
0

k1

.
1

.
2

.
3

k1k2!a k1k2!b k2k1?c

.
0

k2

.
1

.
2

.
3

k1k2?b

k 2
k 1

!c

k1k2?a

Also K is reception-error free. The system MC({S1,S2},K) is the following one.

0

u

1 2 3

uh1!a uh1!b h1u?c

0 0̂

h1

1 1̂ 2 2̂ 3

uh1?a uh1?bh1h2!a h1h2!b h2h1?c h1u!c

0

0̂
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1 h

2 ?b
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?c

h2v!b

h2h1!c

h1h2?a h2v!a

0

v

1

v
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2 ! d

This communication system, however, is not reception-error free, since it is possible to reach the config-

uration s = (~q,~w) where

~q = (2u,2h1
,0h2

,1v), wh1h2
= 〈a ·b〉, wvh2

= 〈d〉, wc = ε (∀c 6∈ {h1h2,vh2})
In the configuration s, the CFSM h2 is in a receiving state, namely 0, from which there are two transi-

tions, namely (0,vh2?c, 0̂′) and (0,h1h2?b, 0̂). Moreover, the channels vh2 and h1h2 are both not empty

and their first element is different from both b and c. The above configuration is hence an unspecified

reception configuration. ⋄

Notice that in case we dropped the requirement that K has to comply with a communication model,

the interfaces h1 and h2 of Example 5.6 could be simplified to get the counterexample. In particular, they

could have just, respectively, two and three states. The use of communication models hence limits the

possibility of getting systems whose properties are not preserved by composition. This is an indication

that connection models increase the possibility of getting safe compositions.

Let us now turn to the last communication property stated in Definition 3.4 which is lock-freeness.

This property is also meaningful in the context of synchronous communication.

In [8, Example 6.7] a counterexample is provided, showing that in the formalism of synchronous CF-

SMs the properties of (synchronous) lock-freeness and deadlock-freeness are, in general, not preserved.

As a matter of fact, lock-freeness is problematic also for the case of asynchronous communications and

no mixed states, as shown in the following example, adapted from [8].

Example 5.7 (Lock-freeness is not preserved by composition). Let us consider the following communi-

cating systems S1 and S2.

0q

qh1!m

0h1 1

qh1?m

qh1?x |
|
|
|

0h2 1

h2 s!x

h2 s!m

0r

1

s
r

?
sto

p

0s

1

2

h2 s?m

h
2 s?x

sr
!st
op

Note that both S1 and S2 are lock-free and their respective interfaces h1 and h2 have no mixed states.
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Let us now consider the (unique) connection policy K = (Mki
)i∈{1,2} where Mk1

∈ LCPS(Mh1
,CM)

and Mk2
∈ LCPS(Mh2

,CM) with connection model CM = {(h1,x,h2),(h1,m,h2)}.

K=

.
0k1

.
1

k1 k2!m

k1 k2!x .
0k2

.
1

k1 k2?x

k1 k2?m

It is easy to see that K is lock-free. The multicomposition MC({Si}i∈{1,2},K) is the following commu-

nicating system:
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h2 s?m

h
2 s?x

sr
!st
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The initial configuration s0 of MC({Si}i∈{1,2},K) is an r-lock, since the transition qh1?x of h1 can never

be fired, so implying, in turn, that also h1 h2!x of h1, h1 h2?x of h2, h2s!x of h2, h2s?x of s and sr!stop

of s can never be fired. Hence, no transition sequence out of s0 will ever involve the participant r. Thus

MC({Si}i∈{1,2},K) is not lock-free. ⋄

Remark 5.8. It is worth noticing that, in Examples 5.5, 5.6 and 5.7 above, the interfaces of the systems

we compose do have unreachable states. It is hence natural to wonder whether it is the presence of

unreachable states in interfaces that entails the possibility of getting counterexamples for the properties

taken into account. ⋄

6 Conclusions

The necessity of supporting the modular development of concurrent/distributed systems, as well as the

need to extend/modify/adapt/upgrade them, urged the investigation of composition methods. Focusing

on such investigations in the setting of abstract formalisms for the description and verification of systems

enables to get general and formal guarantees of relevant features of the composition methods.

An investigation of composition in a formalism for choreographic programming was carried out

in [25]. In [23] a modular technique was developed for the verification of aspect-oriented programs

expressed as state machines. Team Automata is another formalism in which compositionality issues have

been addressed [10, 9], as well as in assembly theories considered in [20]. Composition for protocols

described via a process algebra has been investigated in [11]. In [14, 26] a technique for modular design

in the setting of reactive programming is proposed. A possible approach to composition for a MultiParty

Session Type (MPST) formalism is developed in [27]. The mentioned papers provide just a glimpse of

the variety of approaches to system composition in the literature.

Papers dealing with the (binary) composition of systems on the basis of the participants-as-interfaces

(PaI) approach have been pointed out already in Section 1 and the idea of PaI for multicomposition of

systems has been explained in Section 2. In the present paper we study the PaI approach to multicom-

position for systems of asynchronously communicating finite state machines (CFSMs). We show that
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(under mild assumptions) important communication properties relevant in the context of asynchronous

communication, like freeness of orphan messages and unspecified receptions, are preserved by compo-

sition (a feature dubbed safety in [3]). For this we assume that for each single system one participant is

chosen as an interface. A key role in our work, inspired by [3], is played by connection policies, which

are CFSM systems which determine the ways how interfaces can interact when they are replaced by

gateways (forwarders) in system compositions.

For an “unstructured” formalism like CFSM, the natural generalisation from multicomposition with

single interfaces to multicomposition with multiple interfaces (per system) is not trouble-free, as dis-

cussed in [1, Sect.6] for binary composition. This is mainly due to the possible indirect interactions

which could occur among the interfaces inside the single systems. In more structured formalisms, how-

ever, such possible interactions can be controlled. This is the case, for instance, in MPST formalisms. In

fact, in [18] the authors devise a direct composition mechanism without using gateways for MPST sys-

tems. Such a mechanism allows for the presence of multiple interfaces thanks to an hybridisation with

local and external information of the standard notion of global type. A combination of global and local

constructs in order to get flexible specifications (uniformly describing both the internal and the interface

behavior of systems) is also present in [13].

There are several directions to be pursued in future work starting from our results. On the first place,

we want to generalise the notion of connection policy such that PaI multicomposition could actually be

obtained by replacing interfaces by gateways which, instead of interacting directly with each other, can

interact through an “interfacing infrastructure” represented via a system of CFSMs. Such a generalisation

would be equivalent to multicomposition where exactly one system can have multiple interfaces. Let us

consider a possible application of the above idea. In Example 4.1, in the resulting composed system,

both participants p and q do emit a react message. It would be more natural to have only one of them

producing such a message, e.g., to have p be the sole sensor registering reactions which then passes that

information to both r and s. This would not be possible by our composition mechanism and we cannot

but make the best of the fact that we are dealing with two sensors. One could think, instead, about using

an “interfacing infrastructure” containing some further participant enabling to ignore the messages from

one sensor and properly duplicating the messages from the other.

We are also planning to consider further communication properties, like strong lock-freeness (any

participant can eventually progress in any continuation of any reachable configuration), as well as to

investigate conditions to get lock-freeness preservation, not guaranteed yet.

Unlike the present paper, in [1] safety is ensured for the binary case by assuming compatibility of

interfaces and an extra condition (called ?!-determinism) on them. We are currently considering a gener-

alisation of the binary compatibility relation. Such generalisation should imply relevant communication

properties for the communication policy it depends on.

Finally, we are interested in considering “partial” gateways, where only some communications of

an interface are interpreted as communications with the environment. Such an idea was actually im-

plemented in [2] in a MPTS setting for a restricted client-multiserver composition with synchronous

communications.
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Process algebras have been widely used to verify security protocols in a formal manner. However
they mostly focus on synchronous communication based on the exchange of messages. We present an
alternative approach relying on asynchronous communication obtained through information available
on a shared space. More precisely this paper first proposes an embedding in Scala of a Linda-like
language, called Bach. It consists of a Domain Specific Language, internal to Scala, that allows us
to experiment programs developed in Bach while benefiting from the Scala eco-system, in particular
from its type system as well as program fragments developed in Scala. Moreover, we introduce a
logic that allows to restrict the executions of programs to those meeting logic formulae. Our work
is illustrated on the Needham-Schroeder security protocol, for which we manage to automatically
rediscover the man-in-the-middle attack first put in evidence by G. Lowe.

1 Introduction

Besides the use of theorem provers, process algebras have been widely used to verify security protocols
in a formal manner. A seminal effort in this direction is reported in [19]. There the author illustrates
how modeling in CSP [12] and utilizing the FDR tool [10] can be used to produce an attack on the
Needham-Schroeder protocol. As another example, the article [2] demonstrates how state reduction
techniques can be applied to analyze a model of the Bilateral Key Exchange protocol written in mCRL
[6]. In these two cases the models rely on synchronous communication obtained by the exchange of
messages. Although this type of communication has been fundamental in the theory of concurrency and
has consequently benefited from extensive research support, it is not necessarily intuitive for analyzing
security protocols. Indeed, the idea of exchanging messages in a synchronous manner between partners
rests on the assumption that the communication takes place instantaneously on agreed actions and thus
does not naturally leave room for an intruder to intercept messages. As an evidence at the programming
level, in the above two pieces of work, this has lead the authors to duplicate the exchange of messages in
their model.

Another path of research has been initiated by Gelernter and Carriero, who advocated in [9] that a
clear separation between the interactional and the computational aspects of software components has to
take place in order to build interactive distributed systems. Their claim has been supported by the design
of a model, Linda [3], originally presented as a set of inter-agent communication primitives which may
be added to almost any programming language. Besides process creation, this set includes primitives
for adding, deleting, and testing the presence/absence of data in a shared dataspace. In doing so they
proposed a new form of synchronization of processes, occurring asynchronously, through the availability
or absence of pieces of information on a shared space. A number of other models, now referred to as
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https://creativecommons.org/licenses/by/4.0/


D. Ouardi, M. Barkallah & J-M. Jacquet 59

coordination models, have been proposed afterwards. These models seem highly attractive to us because,
in practice, message exchanges do not occur atomically through the synchronous communication of
actors. Instead, they must happen through a medium – such as a network – which can be easily modeled
as a shared space.

The aim of this paper is to explore how coordination models can be used to analyze security protocols.
More concretely, we will focus on a specific coordination model, named Bach, will derive a tool, named
B2Scala, and will employ it to produce the attack on the Needham-Schroeder protocol [20] first put in
evidence by G. Lowe (see [19]).

Implementing coordination models can be done in three different ways. First, as illustrated by Tucson
[7], one may provide an implementation as a stand alone language. This has the advantage of offering
support for a complete algebra-like incarnation of Linda but at the expense of having to re-implement
classical programming constructs that are proposed in conventional languages (like variables, loops,
lists, . . . ). The second approach, illustrated by pSpaces [18] is to provide a set of APIs in a conventional
language in order to access the shared space through dedicated functions or methods. This approach
benefits from the converse characteristics of the first one: it is easy to access classical programming
constructs but the abstract control flow that is offered at a process algebraic level, like non-deterministic
choice and parallel composition, is to be coded in an ad hoc manner. Finally, a third approach consists in
using a domain specific language embedded inside an existing language. We will turn to this approach
since, in principle, it enjoys the benefits of the first two approaches. More specifically, this paper proposes
to embody the Bach coordination language inside Scala. In doing so we will profit from the Scala eco-
system while benefiting from all the abstractions offered by the Bach coordination language. A key
feature is that we will interpret control flow structures, which we put in good use to restrict computations
to those verifying logic formulae. As an interesting consequence, we shall be able to produce the man-
in-the-middle attack of the Needham-Schroeder security protocol first put in evidence by G. Lowe.

The rest of the paper is structured as follows. Section 2 presents the Needham-Schroeder use-case
as well as the Bach and Scala languages. Section 3 describes the B2Scala tool, both from the point of
view of its usage by programmers and from the implementation point of view. A logic is proposed in
Section 4 together with its effect on reducing executions. Section 5 illustrates how B2Scala coupled to
constraint executions can be used to analyze the Needham-Schroeder protocol. Finally Section 6 draws
our conclusions and compares our work with related work.

2 Background

2.1 Use-case: the Needham-Schroeder Protocol

The Needham-Schroeder protocol, developed by Roger Needham and Michael Schroeder in 1978 [20], is
a pioneering cryptographic solution aimed at ensuring secure authentication and key distribution within
network environments. Its primary objective is to establish a shared session key between two parties,
typically referred to as the principal entities, facilitating encrypted communication to safeguard data
confidentiality and integrity. The protocol unfolds in a series of steps: initialization, where a client (A)
requests access to another client (B) from a trusted server (S), followed by the server’s response, which
involves authentication, session key generation, and ticket encryption. Subsequently, communication
with party B ensues, facilitated by the transmission of the encrypted ticket, along with nonces to ensure
freshness. Parties exchange messages encrypted with the session key and incorporate nonces to prevent
replay attacks. Mutual authentication is achieved through encrypted messages exchanged between A and
B, leveraging the established session key and nonces. Despite its early contributions, the original protocol
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exhibited vulnerabilities, notably the reflection attack. In response, refined versions have emerged, such
as the Needham-Schroeder-Lowe [19] and Otway-Rees protocols [17].

The description of the Needham-Schroeder public key protocol is often slimmed down to the three
following actions:

Alice −→ Bob : message(na : a)pkb
Bob −→ Alice : message(na : nb)pka
Alice −→ Bob : message(nb)pkb

where each transition of the form X → Y : m represents message m being sent from X to Y . Moreover,
the notation mk represents message m being encrypted with the public key k.

This version assumes that the public keys of Alice and Bob (resp. pka and pkb) are already known
to each other. The full version also involves communication between the parties and a trusted server to
obtain the public keys.

In this model, Alice initiates the protocol by sending to Bob her nonce na together with her identity
a, the whole message being encrypted with Bob’s public key pkb. Bob responds by sending to Alice her
nonce na together with his nonce nb, the whole message being encrypted this time with Alice’s public
key pka. Finally Alice sends to Bob his nonce nb, as a proof that a session has been safely made between
them. The message is this time encrypted with Bob’s public key.

It is worth stressing that, although public keys are known publicly (as the noun suggests), it is only
the owners of the corresponding private keys that can decrypt encrypted messages. For instance, the first
message sent to Bob can only be decrypted by him.

It is also worth noting that, although sending messages appears as an atomic action in the above
description, this is in fact not the case. Messages are transmitted through some medium, say the network,
and thus are subject to be read or picked up by opponents. This will be illustrated in Section 5 where a
more detailed model will be examined.

2.2 The Bach Coordination Language

Bach [8, 15] is a Linda dialect developped at the University of Namur by the authors. It borrows from
Linda the idea of a shared space and reformulates data and the primitives according to the constraint
logic programming setting [24]. The following presentation is based on the one of article [1].

2.2.1 Definition of data

According to the logic programming setting, we assume a non-empty set of function names, each one
associated with an arity, which indicates the number of arguments the function takes. We assume a non-
empty subset of function names associated with an arity 0, namely taking no argument. Such function
names are subsequently referred to as tokens. Based on their existence, so-called structured pieces of in-
formation are introduced inductively as expressions of the form f (a1, · · · ,an) where f is a function name
associated with arity n and where arguments a1, . . . , an are structured pieces of information, understood
either as tokens or in the structured form under description. Note that, as the special case where n = 0,
tokens are considered as being structures information terms. The set of structured pieces of information
is subsequently denoted by I . For short, si-term is used later to denote a structured piece of information.

Example 1 The nounces used by Alice and Bob in the Needham-Schroeder protocol are coded by the
tokens na and nb, respectively. Similarly, their public keys are coded by the tokens pka and pkb. A
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(T) ⟨ tell(t) | σ ⟩ −→ ⟨ E | σ ∪{t} ⟩

(A) ⟨ ask(t) | σ ∪{t} ⟩ −→ ⟨ E | σ ∪{t} ⟩

(G) ⟨ get(t) | σ ∪{t} ⟩ −→ ⟨ E | σ ⟩

(N)
t ̸∈ σ

⟨ nask(t) | σ ⟩ −→ ⟨ E | σ ⟩

Figure 1: Transition rules for the primitives (taken from [1])

(S) ⟨A | σ⟩ −→ ⟨A′ | σ ′⟩
⟨A ; B | σ⟩ −→ ⟨A′ ; B | σ ′⟩

(P)
⟨A | σ⟩ −→ ⟨A′ | σ ′⟩

⟨A || B | σ⟩ −→ ⟨A′ || B | σ ′⟩
⟨B || A | σ⟩ −→ ⟨B || A′ | σ ′⟩

(C)

⟨A | σ⟩ −→ ⟨A′ | σ ′⟩
⟨A + B | σ⟩ −→ ⟨A′ | σ ′⟩
⟨B + A | σ⟩ −→ ⟨A′ | σ ′⟩

(Pc) P(x) = A,⟨A[x/u | σ⟩ −→ ⟨A′ | σ ′⟩
⟨P(u) | σ⟩ −→ ⟨A′ | σ ′⟩

Figure 2: Transition rules for the operators (taken from [1])

message encrypted by Alice with Bob’s public key and providing Alice’s nounce with her identity ‘a’ is
encoded as the following structured piece of information encrypt(na, a, pkb).

2.2.2 Agents

Following the concurrent constraint setting, Linda primitives out, rd and in respectively used to output
a tuple, check its presence and consume one occurrence are reformulated as tell, ask, get, acting on
si-terms. We add to them a negative counterpart, nask checking the absence of a si-term. The execution
of these primitives is described by the transition relation defined in Figure 1. The configurations to
be considered are pairs of instructions, for the moment reduced to simple primitives, coupled to the
contents of the shared space. Following the concurrent constraint setting, the shared space is referred to
as the store. It is taken as a multiset of si-terms. Moreover, the E symbol is used to denote a terminated
computation. Consequently, rule (T) expresses that the execution of the tell(t) primitive always succeeds
and add an occurrence of t to the store. Rule (A) requires ask(t) to succeed that t is present on the store.
As this primitive just makes a test, the contents of the store is unchanged. According to rule (G), the
get(t) primitive acts similarly but remove one occurrence of t. Finally, as specified by rule (N), the
primitive nask(t) succeeds in case t is absent from the store.

Primitives are combined to form more complex agents by means of traditional operators from con-
currency theory: sequential composition, denoted by the ; symbol, parallel composition, denoted by the
|| symbol, and non-deterministic choice, denoted by the + symbol.

Procedures are defined by associating an agent with a procedure name possibly coupled to parame-
ters. As usual, we shall assume that the associated agents are guarded, in the sense that the execution of
a primitive preceeds any call or can be rewritten in such a form. Procedures are subsequently declared
after the proc keyword.

The execution of complex agents is defined by the transition rules of Figure 2. Sequential, parallel
and choice composition operators are given the convention semantics in rules (S), (P) and (C), respec-
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tively. Rule (Pc) dictates that the procedure call P(u) operates as the agent A that defines P with the
formal arguments x replaced by the actual ones u. It is important to note that, in these rules, agents of the
form (E;A), (E || A) and (A || E) are rewritten as A.

Example 2 As an example, the behavior of Alice and Bob can be coded as follows:

proc A l i c e = t e l l ( e n c r y p t ( na , a , pkb ) ) ; g e t ( e n c r y p t ( na , nb , pka ) ) ;
t e l l ( e n c r y p t ( nb , pkb ) ) .

Bob = g e t ( e n c r y p t ( na , a , pkb ) ; t e l l ( e n c r y p t ( na , nb , pka ) ) ;
g e t ( e n c r y p t ( nb , pkb ) ) .

Note that Alice and Bob only tell messages encrypted with the public key of the other and only get
messages encrypted with their public key, which simulates their sole use of their private key.

It is also worth stressing that we will present a model of the Needham-Schroeder protocol and not a
concrete implementation. Hence the above tokens (na, nb, . . . ) are to be understood as globally defined
and not as a form of local variables.

2.3 The Scala Programming Language

Scala is a statically typed language known for its concise syntax and seamless fusion of object-oriented
and functional programming. Variables can be declared as immutable or mutable, as illustrated by the
following code snippet.

v a l i m m u t a b l e V a r i a b l e : I n t = 42
v a r m u t a b l e V a r i a b l e : S t r i n g = " Hel lo , S c a l a ! "

Methods are introduced with the def keyword, can be generic (with type parameters specified in square
brackets), can be written in curried form (with multiple parameter lists) and have a return type which is
specified at the end of the signature. Here is a simple example for adding two integers.

d e f add ( x : I n t , y : I n t ) : I n t = x + y

Methods are typically included in the definition of objects, classes and traits, which act as interfaces in
Java. Of particular interest for the implementation of B2Scala is the definition of case classes which are
classes that automatically define setter, getter, hash and equal methods.

Two main additional features of Scala are worth stressing.

2.3.1 Functions and objects

Functions may be coded by defining objects with an apply function. For instance, if we define

o b j e c t t e l l {
d e f a p p l y ( s i t e r m : SI_Term ) = T e l l A g e n t ( s i t e r m )

}

o b j e c t Agent {
d e f a p p l y ( a g e n t : BSC_Agent ) = C a l l e d A g e n t ( a g e n t )

}

then the evaluation of

v a l P = Agent { t e l l ( f ( 1 , 2 ) ) }



D. Ouardi, M. Barkallah & J-M. Jacquet 63

consists first in evaluating tell on the si-term f (1,2), which results in the structure TellAgent( f (1,2)),
and then in evaluating the function Agent on this value, which results in the structure
CalledAgent(TellAgent( f (1,2))). It is that result which is assigned to P.

2.3.2 Strictness and lazyness

Scala is a strict language that eagerly evaluates expressions. However there are cases in which it is
desirable to postpone the evaluation of expressions, for instance to handle recursive definitions of agents.
To that end, Scala proposes two basic mechanisms: call-by-name of arguments of functions and so-called
thunks. To understand these two concepts, let us modify the add function so that it returns the double of
its first argument, regardless of the value of the second one:

d e f doubleAdd ( x : I n t , y : => I n t ) = x + x

The first argument is passed using the call-by-value strategy. It is evaluated whenever the function is
called. In contrast, the second argument is passed using the call-by-name strategy. Accordingly, it is
evaluated when needed and thus in our example not evaluated at all. However one step further needs to
be made to handle recursive expressions that we want to evaluate step by step. In that case, so-called
thunks are used. They amount to consider functions requiring no arguments, as in the following definition

d e f myIf [A] ( cond : Boolean , onTrue : ( ) => A,
o n F a l s e : ( ) => A ) : A = {

i f ( cond ) onTrue ( ) e l s e o n F a l s e ( )
}

Note that the arguments onTrue and onFalse are functions taking no arguments and leading to expres-
sions rather than simply expressions.

To conclude this point, it is possible to delay the evaluation of val-declared expression by using the
lazy keyword, such as in

l a z y v a l r e c u r s i v e E x p r e s s i o n = (1+ r e c u r s i v e E x p r e s s i o n )*2

3 The B2Scala Tool

3.1 Programming interface

To embed Bach in Scala, two main issues must be tackled: on the one hand, how is data declared, and,
on the other hand, how are agents declared.

3.1.1 Data

As regards data, the trait SI_Term is defined to capture si-terms. Concrete si-terms are then defined as
case classes of this trait. For instance in order to manipulate f (1,2) in one of the primitives (tell, ask,
. . . ) the following declaration has to be made:

c a s e c l a s s f ( x : I n t , y : I n t ) e x t e n d s SI_Term

Similarly, tokens can be declared as in

c a s e c l a s s a ( ) e x t e n d s SI_Term
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However that leads to duplicate parentheses everywhere as in tell(a()). To avoid that a Token class has
been defined as a case class of SI_Term. It takes as argument a string so that token a can be declared as

v a l a = Token ( ‘ ‘ a ’ ’ )

Accordingly, a may now be used without parentheses, as in tell(a).

Example 3 As examples, the public keys and nonces used in the Needham-Schroeder protocol are de-
clared as the following tokens:

v a l pka = Token ( ‘ ‘ pka ’ ’ )
v a l pkb = Token ( ‘ ‘ pkb ’ ’ )
v a l na = Token ( ‘ ‘ na ’ ’ )
v a l nb = Token ( ‘ ‘ nb ’ ’ )

Encrypted messages are coded by the following si-terms:

c a s e c l a s s e n c r y p t 2 ( n : SI_Term , k : SI_Term ) e x t e n d s SI_Term
c a s e c l a s s e n c r y p t 3 ( n : SI_Term , x : SI_Term , k : SI_Term ) e x t e n d s SI_Term

Note that Scala does not allow the same name to be used for different case classes. We have thus renamed
them according to the number of arguments.

3.1.2 Agents

The main idea for programming agents is to employ constructs of the form

v a l P = Agent { ( t e l l ( f ( 1 , 2 ) ) + t e l l ( g ( 3 ) ) ) | | ( t e l l ( a )+ t e l l ( b ) ) }

which encapsulate a Bach agent inside Scala definitions. The Agent object is the main ingredient to do
so. It is defined as an object with an apply method as follows

o b j e c t Agent {
d e f a p p l y ( a g e n t : BSC_Agent ) = C a l l e d A g e n t ( ( ) => a g e n t )

}

It thus consists of a function mapping a BSC_Agent into the Scala structure CalledAgent taking a thunk,
which consists of a function taking no argument and returning an agent. As we saw above, this is needed
to treat in a lazy way recursively defined agent.

The BSC_Agent type is in fact a trait equipped with the methods needed to parse Bach composed
agents. Technically it is defined as follows:

t r a i t BSC_Agent { t h i s : BSC_Agent =>
d e f * ( o t h e r : => BSC_Agent ) =

C o n c a t e n a t i o n A g e n t ( ( ) => t h i s , o t h e r _ )
d e f | | ( o t h e r : => BSC_Agent ) =

P a r a l l e l A g e n t ( ( ) => t h i s , o t h e r _ )
d e f +( o t h e r : => BSC_Agent ) =

ChoiceAgent ( ( ) => t h i s , o t h e r _ )
}

As ; is a reserved symbol in Scala, sequential composition is rewritten with the ∗ symbol.
The definition of the composition symbol ∗, || and + employs Scala facility to postfix operations.

Using the above definitions, a construct of the form tell(t)+ tell(u) is interpreted as the call of method
+ to tell(t) with argument tell(u).
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It is worth observing that the composition operators take agent arguments with call-by-name and
deliver structures using thunks, namely functions without arguments to agents.

It will be useful later to generalize choices such that they offer more than two alternatives according
to an index ranging over a set, such as in ∑x∈L ag(x) where ag(x) is an agent parameterized by x. This is
obtained in B2Scala by the following construct

GSum( L , x => ag ( x ) )

where L is a list.

3.2 Implementation of the Domain Specific Language

The implementation of the domain specific language is based on the same ingredients as those employed
in the Scan and Anemone workbenches [13, 14]. They address two main concerns: how is the store
implemented and how are agents interpreted.

3.2.1 The store

The store is implemented as a mutable map in Scala. Initially empty, it is enriched for each told structured
piece of information by an association of it to a number representing the number of its occurrences on
the store. The implementation of the primitives follows directly from this intuition. For instance, the
execution of a tell primitive, say tell(t), consists in checking whether t is already in the map. If it
is then the number of occurrences associated with it is simply incremented by one. Otherwise a new
association (t,1) is added to the map. Dually, the execution of get(t) consists in checking whether t
is in the map and, in this case, in decrementing by one the number of occurrences. In case one of these
two conditions is not met then the get primitive cannot be executed.

3.2.2 Interpretation of agents

Agents are interpreted by repeatedly executing transition steps. This boils down to the definition of
function run_one, which assumes given an agent in an internal form, namely as a subtype of BSC_Agent,
and which returns a pair composed of a boolean and an agent in internal form. The boolean aims at
specifying whether a transition step has taken place. In this case, the associated agent consists of the
agent obtained by the transition step. Otherwise, failure is reported with the given agent as associated
agent.

The function is defined inductively on the structure of its argument, say ag. If ag is a primitive,
then the run_one function simply consists in executing the primitive on the store. If ag is a sequentially
composed agent agi ; agii, then the transition step proceeds by trying to execute the first subagent agi.
Assume this succeeds and delivers ag′ as resulting agent. Then the agent returned is ag′ ; agii in case ag′

is not empty or more simply agii in case ag′ is empty. Of course, the whole computation fails in case agi

cannot perform a transition step, namely in case run_one applied to agi fails.
The case of an agent composed by a parallel or choice operator is more subtle. Indeed for both

cases one should not always favor the first or second subagent. To avoid that behavior, we use a boolean
variable, randomly assigned to 0 or 1, and depending upon this value we start by evaluating the first or
second subagent. In case of failure, we then evaluate the other one and if both fails we report a failure. In
case of success for the parallel composition we determine the resulting agent in a similar way to what we
did for the sequentially composed agent. For a composition by the choice operator the tried alternative
is simply selected.
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The computation of a procedure call is performed by computing the defining agent.

4 Constrained executions

The fact that Bach agents are interpreted in the B2Scala tool opens the door to select computations of
interest. This is obtained by stating logic formulae to be met.

Two main approaches have been used in concurrency theory to describe properties by means of
logic formulae. One approach, exemplified by Linear Temporal Logic (LTL) [22], is based on Kripke
structures. In two words, LTL extends classical propositional logic by introducing temporal operators
that allow to describe how properties evolve over time. For instance, X Φ means that Φ holds in the next
state while ΦU Ψ specifies that Φ holds until Ψ holds. Central to this approach are, on the one hand, a
transition relation between states, indicating which states can be reached from which states, and, on the
other hand, a labelling function that assigns to each state a set of atomic propositions that are true in that
state.

The other approach is based on labelled transition systems. It is exemplified by the Hennessy-Milner
logic (HML) [11]. This logic provides a way to specify properties in terms of actions and capabilities.
The two following modalities are the key concepts of HML:

• <a>Ψ means that, by following the labelled transition system, it is possible to make a transition
by a such that the resulting process satisfies Ψ

• [a]Ψ means that, whenever a is performed the resulting process satisfies Ψ.

However, since they are finite HML formulae can only describe properties with a finite depth of reason-
ing. A way to circumvent this problem is to use a generalisation called the µ-calculus [16]. It extends
HML with fixed-point operators, such as in µX .(Φ∨<a>X) which states that there is a path where Φ

holds directly or after having repeatedly taken a-transitions.
The logic we use is inspired by these three logics. It is subsequently presented in two steps by

describing so-called basic formulae and the bsL-calculus. The effect on computations is then specified.
This yields so-called constrainted computations.

4.1 Basic formulae

Similarly to LTL logic, we first specify formulae that are true on states. Obviously, a key concept in our
coordination setting is whether a si-term is present on the store under consideration. This is specified by
a construct of the form bf (t) which requires that the si-term t is present on the current store. The formal
definition is as follows.

Definition 1 For any si-term t, the formula bf (t) holds on store σ iff t ∈ σ . This is subsequently denoted
as σ |= bf (t). Such formulae are subsequently called bf-formulae.

As expected, bf-formulae can be combined with the classical logic operators. Formulae built in this
way are called basic formulae. The formal definition is as follows.

Definition 2 Basic formulae are the formulae meeting the following grammar:

b ::= bf (t) | !b | b1 ∨b2 | b1 ∧b2

where bf (t) denotes a bf-formula, b, b1, b2 denote basic formulae and the symbols !, ∨, ∧ respectively
express the negation, the disjunction and the conjuction of basic formulae.
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The fact that a basic formula f holds on the store σ is defined from the relation |= on bf-formulae
according to the traditional truth tables of propositional logic. By extension, this will be subsequently
denoted by σ |= f .

Example 4 As an example, bf (i_running(Alice,Bob)) is a bf-formula that states that the si-term
i_running(Alice,Bob) is on the store, which can be used to specify that Alice and Bob have initiated
a session.

4.2 The bsL calculus

Similarly to Hennessy-Milner logic and the mu-calculus, we now turn to specify sequences of properties
that have to hold on the sequences of stores produced by computations. Obviously, as we want to restrict
computations, we have to discard the [. . .] modality. However we can use the <.. .> modality in the
following manner. Remember that in HML the formula <a><b>F expresses that it is possible to do an
a step followed by a b step and reach a process in which F holds. In a similar way, we will express by
bf (a);bf (b) the property that it is possible to do a step which leads to bf (a) being true followed by a step
after which bf (b) is true. This is for instance performed by the Bach agent tell(a); tell(b). Note that as a
reminder of the sequential composition of agents in Bach, we have used the “;” to compose sequentially
bf-formulae. As noticed in the above mu-calculus formula, besides sequential composition, we shall also
use disjunction to allow the choice between several paths. This leads us to the following grammar where,
by analogy to Bach operators, the “+” symbol is used to indicate disjunction.

Definition 3 BsL-formulae are the formula defined by the following grammar:

f ::= b | P | f1 + f2 | f1 ; f2

where b denotes a basic formula, f1 and f2 are bsL-formulae and P a variable to be defined by an
equation of the form P = f ′ with f ′ being a bsL-formula. As usual in concurrency theory, we assume
that f ′ is guarded in the sense that a bf-formula is requested before variable P is called recursively.

Example 5 As an example, the attack on the Needham-Schroeder protocol may be discovered by finding
a computation that obeys the bsL-formula X defined by

X = (not(i_running(Alice,Bob)) ; X )+ r_commit(Alice,Bob)

that is by a computation that does not produce the si-term i_running(Alice,Bob) and that ends when
r_commit(Alice,Bob) appears on the store. Restated in other terms such a computation never includes
the start of a session between Alice and Bob but terminates with Alice and Bob ending the session by
committing together.

4.3 Constrained computations

We are now in a position to detail how computations may be constrained by bsL-formulae. Intuitively,
if f is a bsL-formula composed of a sequence of basic formulae, a computation c is considered to be
constrained by f if the sequence of stores involved in c successively obeys the successive basic formulae
in f . This is defined by means of the auxiliary ⊢ relation, itself defined by the rules of Figure 3. Intu-
itively, the notation σ ⊢ f [ f ′] states that a first basic formula of f is satisfied on the store σ and that the
remaining formulae of f ′ need to be satisfied. Accordingly rule (BF) asserts that if the basic formula b
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(BF)
σ |= b

σ ⊢ b [ε]

(CF)
σ ⊢ f1 [ f3]

σ ⊢ ( f1 + f2) [ f3]
σ ⊢ ( f2 + f1) [ f3]

(PF)
P = f , σ ⊢ f [ f ′]

σ ⊢ P [ f ′]

(SF)
σ ⊢ f1 [ f3]

σ ⊢ ( f1 ; f2) [( f3 ; f2)]

Figure 3: Transition rules for the ⊢ relation

(ET)
⟨A | σ⟩ −→ ⟨A′ | σ ′⟩, σ ′ ⊢ f [ f ′]

⟨A@ f | σ⟩ ↪→ ⟨A′@ f ′ | σ ′⟩

Figure 4: Extended transition rule

is satisfied by the store σ then it is also the first formula to be satisfied and nothing remains to be estab-
lished. The symbol ε is used there to denote an empty sequence of basic formulae. Rule (PF) states that
if formula P is defined as f and if a first bf-formula of f is satisfied by σ yielding f ′ to be satisfied next
then so does P with f ′ to be satisfied next. Finally rules (CF) and (SF) specify the choice and sequential
composition of bsL-formulae as one may expect.

Given the ⊢ relation, we can define constrained computations by extending the → transition relation
as the ↪→ relation specified by rule (ET) of Figure 4. Informally this rule states that if, on the one hand,
agent A can do a transition from the store σ yielding a new agent A′ and a new store σ ′ and if, on the other
hand, a first formula of f is met by σ ′ yielding f ′ as a remaining bsL-formula to be established, then
agent A can make a constrained transition from store σ and bHM-formula f to agent A′ to be computed
on store σ ′ and with respect to bHM-formula f ′.

It is worth noting that the encoding in B2Scala is quite easy. On the one hand, bf-formulae are
defined similarly to Bach primitives through the bf function and are combined as primitives are. On the
other hand, bsL formulae are defined by the bsL function and recursive definitions are handled in the
same way as recursive agents.

The interpretation of agents is then made with respect to a bsL-formula. Basically, a step is allowed
by the run_one function if one step can be made according to the bsL-formula, as specified by the
↪→ transition relation. This results in a new agent to be solved together with the continuation of the
bsL-formula to be satisfied.

5 The Needham-Schroeder protocol in B2Scala

As an application of the B2Scala tool, let us now code the Needham-Schroeder protocol and exhibit a
computation that reflects G. Lowe’s attack. The interested reader will find the code, the tool and a video
of its usage under the web pages of the authors at the addresses mentioned in [21].

Allowing for an attack requires us to introduce an intruder. It is subsequently named Mallory. This
being said, the first point to address is to declare nonces and public keys for all the participants of the
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protocol, namely Alice, Bob and Mallory. This is achieved by the following token declarations:

v a l na = Token ( " A l i c e _ n o n c e " )
v a l nb = Token ( " Bob_nonce " )
v a l nm = Token ( " Mal lo ry_nonce " )

v a l pka = Token ( " A l i c e _ p u b l i c _ k e y " )
v a l pkb = Token ( " Bob_pub l i c_key " )
v a l pkm = Token ( " M a l l o r y _ p u b l i c _ k e y " )

It will also be useful later to refer to the three participants, which can be achieved by means of the
following token declarations:

v a l a l i c e = Token ( " A l i c e _ a s _ a g e n t " )
v a l bob = Token ( " Bob_as_agen t " )
v a l m a l l o r y = Token ( " M a l l o r y _ a s _ i n t r u d e r " )

To better view who takes which message produced by whom, encrypted messages introduced in
Section 3, are slightly extended as si-terms of the form message(Sender,Receiver,Encryted_Message).
Moreover, to highlight which message is used in the protocol, we shall subsequently rename encrypted
messages as encrypt_n, with n the number in the sequence of messages. This has the additional advantage
of avoiding to overload case classes, which is forbidden in Scala. The following declarations follow.

c a s e c l a s s e n c r y p t _ i ( vNonce : SI_Term , vAg : SI_Term ,
vKey : SI_Term ) e x t e n d s SI_Term

c a s e c l a s s e n c r y p t _ i i ( vNonce : SI_Term , wNonce : SI_Term ,
vKey : SI_Term ) e x t e n d s SI_Term

c a s e c l a s s e n c r y p t _ i i i ( vNonce : SI_Term ,
vKey : SI_Term ) e x t e n d s SI_Term

c a s e c l a s s message ( agS : SI_Term , agR : SI_Term ,
encM : SI_Term ) e x t e n d s SI_Term

Finally, si-terms are introduced to indicate with whom Alice and Bob start and close their sessions.
They are declared as follows:

c a s e c l a s s a _ r u n n i n g ( vAg : SI_Term ) e x t e n d s SI_Term
c a s e c l a s s b _ r u n n i n g ( vAg : SI_Term ) e x t e n d s SI_Term
c a s e c l a s s a_commit ( vAg : SI_Term ) e x t e n d s SI_Term
c a s e c l a s s b_commit ( vAg : SI_Term ) e x t e n d s SI_Term

We are now in a position to code the behavior of Alice, Bob and Mallory. Coding Alice’s behavior
follows the description we gave in Example 2 in Section 2. The code is provided in Figure 5. Although
Alice wants to send a first encrypted message to Bob, she can just put her message on the network,
hoping that it will reach Bob. The network is simulated here by the store, which leaves room to Mallory
to intercept it. As a result, the first action is for Alice to start of a session. Hopefully it is with Bob but,
to test for a possible attack, we have to take into account the fact that Mallory can take Bob’s place. This
is coded by offering a choice between Bob and Mallory by the GSum([bob,mallory], ...) construct.
Calling this actor Y , Alice’s first action is to tell the initialization of the session with Y , thanks to the a_-
running(Y) si-term being told and then to tell the first encrypted message with her nonce, her identity
and the public key of Y. The sender and receiver of this message are respectively Alice and Y . Then
Alice waits for a second encrypted message with her nonce and what she hopes to be Bob’s nonce, this
message being encrypted by her public key. As the second nonce is unknown a new choice is offered
with the WNonce si-term. Finally, Alice sends the third encrypted message with this nonce, encoded with
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v a l A l i c e = Agent {
GSum( L i s t ( bob , m a l l o r y ) , Y => {

t e l l ( a _ r u n n i n g (Y) ) *
t e l l ( message ( a l i c e , Y, e n c r y p t _ i ( na , a l i c e , p u b l i c _ k e y (Y ) ) ) ) *

GSum( L i s t ( na , nb , nm ) , WNonce => {
g e t ( message (Y, a l i c e , e n c r y p t _ i i ( na , WNonce , pka ) ) ) *
t e l l ( message ( a l i c e , Y, e n c r y p t _ i i i ( WNonce , p u b l i c _ k e y (Y ) ) ) ) *
t e l l ( a_commit (Y) )

} )
} )

}

Figure 5: Coding of Alice in B2Scala

v a l Bob = Agent {
GSum( L i s t ( a l i c e , m a l l o r y ) , Y => {

t e l l ( b _ r u n n i n g (Y) ) *
GSum( L i s t ( a l i c e , m a l l o r y ) , VAg => {

g e t ( message (Y, bob , e n c r y p t _ i ( na , VAg, pkb ) ) ) *
t e l l ( message ( bob , Y, e n c r y p t _ i i ( na , nb , p u b l i c _ k e y (VAg ) ) ) ) *
g e t ( message (Y, bob , e n c r y p t _ i i i ( nb , pkb ) ) ) *
t e l l ( b_commit (VAg) )

} )
} )

}

Figure 6: Coding of Bob in B2Scala

the public key of Y and terminates the session by telling the a_commit(Y) si-term. It is worth noting
that public_key(Y) consists of a call to a Scala function that returns the public key corresponding to
the Y argument.

Coding Bob’s behavior proceeds in a dual manner. This time the coding has to take into account that
Mallory can have taken Alice’s place. Hence the first choice GSum([alice,mallory], ...) with Y
denoting the sender of the message. Moreover, the identity of the agent in the first message being got
can be different from Y . A second choice GSum([alice,mallory], ...) results from that. The whole
agent is given in Figure 6.

As an intruder, Mallory gets and tells messages from Alice and Bob, possibly modifying some parts
in case the messages are encrypted with his public key. This applies for the three kinds of message
sent/received by Alice and Bob. Figure 7 provides the code for the first message. It presents three GSum
choices resulting from the three unknown arguments VNonce, VAg, VPK of the message. In all the cases,
Bob’s attitude is to get the message and to resend it, by modifying the public key if he can decrypt the
message, namely if VPK is his public key.

To conclude the encoding of the protocol in B2Scala, a bsL-formula F is specified, on the one hand,
by excluding a session starting between Bob and Alice and, on the other hand, by requiring the end
of the session by Bob with Alice. These two requirements are obtained through the basic formulae
inproper_init and end_session, as specified below:

v a l i n p r o p e r _ i n i t = n o t ( b f ( a _ r u n n i n g ( bob ) ) o r b f ( b _ r u n n i n g ( a l i c e ) ) )
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l a z y v a l Mal lo ry : BSC_Agent = Agent {

( GSum( L i s t ( na , nb , nm ) , VNonce => {
GSum( L i s t ( a l i c e , bob ) , VAg => {

GSum( L i s t ( pka , pkb , pkm ) , VPK => {
g e t ( message ( a l i c e , ma l lo ry , e n c r y p t _ i ( VNonce , VAg,VPK ) ) ) *
( i f ( VPK == pkm ) {

t e l l ( message ( ma l lo ry , bob , e n c r y p t _ i ( VNonce , VAg, pkb ) ) )
} e l s e {

t e l l ( message ( ma l lo ry , bob , e n c r y p t _ i ( VNonce , VAg,VPK ) ) )
} ) * Mal lo ry

} )
} )

} ) ) + . . .

Figure 7: Coding of Mallory in B2Scala

v a l e n d _ s e s s i o n = bf ( b_commit ( a l i c e ) )

Formula F is then coded recursively by requiring F after a step meeting inproper_init and by
stopping the computation once a step is done that makes end_session holds. This is specified as follows.

v a l F = bsL { ( i n p r o p e r _ i n i t * F ) + e n d _ s e s s i o n }

Computations are started by invoking the following Scala instructions

v a l P r o t o c o l = Agent { A l i c e | | Bob | | Ma l lo ry }

v a l b s c _ e x e c u t o r = new BSC_Runner
b s c _ e x e c u t o r . e x e c u t e ( P r o t o c o l , F )

The result is given in Figure 8 in a verbose form in which all the primitives are displayed as Scala
objects. As we shall see in a few lines, it produces G. Lowe’s attack. To view that, let us reformulate
the Scala objects TellAgent, GetAgent and BSC_Token in their corresponding Bach counterparts. The
listing of Figure 8 then becomes as follows, where numbers are introduce to facilitate the explanation:

( 1 ) t e l l ( a _ r u n n i n g ( m a l l o r y ) )
( 2 ) t e l l ( b _ r u n n i n g ( m a l l o r y ) )
( 3 ) t e l l ( message ( a l i c e , ma l lo ry , e n c r y p t _ i ( na , a l i c e , pkm ) ) )
( 4 ) g e t ( message ( a l i c e , ma l lo ry , e n c r y p t _ i ( na , a l i c e , pkm ) ) )
( 5 ) t e l l ( message ( ma l lo ry , bob , e n c r y p t _ i ( na , a l i c e , pkb ) ) )
( 6 ) g e t ( message ( ma l lo ry , bob , e n c r y p t _ i ( na , a l i c e , pkb ) ) )
( 7 ) t e l l ( message ( bob , ma l lo ry , e n c r y p t _ i i ( na , nb , pka ) ) )
( 8 ) g e t ( message ( bob , ma l lo ry , e n c r y p t _ i i ( na , nb , pka ) ) )
( 9 ) t e l l ( message ( ma l lo ry , a l i c e , e n c r y p t _ i i ( na , nb , pka ) ) )

( 1 0 ) g e t ( message ( ma l lo ry , a l i c e , e n c r y p t _ i i ( na , nb , pka ) ) )
( 1 1 ) t e l l ( message ( a l i c e , ma l lo ry , e n c r y p t _ i i i ( nb , pkm ) ) )
( 1 2 ) g e t ( message ( a l i c e , ma l lo ry , e n c r y p t _ i i i ( nb , pkm ) ) )
( 1 3 ) t e l l ( a_commit ( m a l l o r y ) )
( 1 4 ) t e l l ( message ( ma l lo ry , bob , e n c r y p t _ i i i ( nb , pkb ) ) )
( 1 5 ) g e t ( message ( ma l lo ry , bob , e n c r y p t _ i i i ( nb , pkb ) ) )
( 1 6 ) t e l l ( b_commit ( a l i c e ) )
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Figure 8: Screenshot of the computation

Lines (1), (2), (13) and (16) evidence that Alice and Bob have actually exchanged messages with
Mallory whereas they thought they would speak to each other. In fact Mallory manages to make himself
appear as Bob to Alice and as Alice to Bob. Let us abstract from these lines. It is then worth observing
that the above listing makes appear tell and get in pairs employing the same message. This corresponds
to one actor sending the message to another actor, which is translated in our framework as the first actor
telling the message and the second one getting it. By reusing the description of Section 2.1, the listing
can then be summed up as follows:

Alice −→ Mallory : message(na : alice)pkm (lines 3 and 4)
Mallory −→ Bob : message(na : alice)pkm (lines 5 and 6)
Bob −→ Mallory : message(na : nb)pka (lines 7 and 8)

Mallory −→ Alice : message(na : nb)pka (lines 9 and 10)
Alice −→ Mallory : message(nb)pkm (lines 11 and 12)
Mallory −→ Bob : message(nb)pkb (lines 14 and 15)

This is in fact the attack identified by G. Lowe in [19]. It consists essentially in placing Mallory in be-
tween Alice and Bob, in having him forward Alice’s first message, by changing the public key encrypting
the message, in getting Bob’s reply and transfer it as such, and finally in forwarding Alice’s reply to Bob,
again by changing the public key encrypting the message.

Note that a key ingredient for producing the above computation is that imposing inproper_init to
hold forces the first choice in Alice’s code and Bob’s code to be made such that Y takes Mallory as value.

6 Conclusion

In the aim of formally verifying security protocols, this paper has proposed an embedding of the coordi-
nation language Bach in Scala, in the form of an internal Domain Specific Language, named B2Scala. It
has also proposed a logic that allows for constraining executions. The Needham-Schroeder protocol has
been modeled with our proposal to illustrate its interest in practice.

The choice for an internal Domain Specific Language has been motivated by the possibility of tak-
ing profit from the Scala eco-system, notably its type system, while benefiting from all the abstractions
offered by the Bach coordination language. We hope to have convinced the reader of these two features
through the coding of the Needham-Schroeder protocol. Indeed, on the one hand, the BSC_Agents coding
Alice, Bob and Mallory mimick the procedures that would have been written directly in Bach. Moreover
the sequential composition operator, the parallel composition operator and the non-deterministic choice
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operator have been used as one would have used them in Bach. This feature allows to embed the Bach
control flow operators in B2Scala. It is here also worth observing that a similar description could have
been written in a pure process algebra setting like the one used in the workbenches Scan and Anemone.
However type checking is not supported by these workbenches but is given for free in B2Scala. More-
over, auxiliary concepts like public_key(Y ) would have been rewritten as mapping functions, with care
for completeness of the code left to the programmer while it is provided for free in B2Scala (through
completeness verification done by Scala for the match operation).

On the other hand, the code to be written is a real Scala code. Examples of that are the definitions
of tokens or si-terms, which are Scala case classes. In that respect, it is worth stressing that arguments
of si-terms need to be declared with a type, which is verified at compilation time. Moreover, they can be
obtained as the result of a Scala function, as exemplified by the use of public_key(Y ) in the coding of
Alice and Bob (see Figures 5 and 6). It is also to be noted that the GSum construct offers a form of local
variable, binding the Scala and Bach worlds. Take for instance the first GSum of Figure 5 :

GSum( L i s t ( bob , m a l l o r y ) , Y => {
t e l l ( a _ r u n n i n g (Y) ) * . . .

There Y plays the role of a local variable which has to be bound to bob or mallory. Once the value has
been decided (by the run_one function through the alternative selected for the choice, see Section 3.2.2),
it can be used later in the code. Similarly, the second GSum construct allows to bind WNonce to the value
selected by the get primitive:

GSum( L i s t ( na , nb , nm ) , WNonce => {
g e t ( message (Y, a l i c e , e n c r y p t _ i i ( na , WNonce , pka ) ) ) * . . .

This being said, our main goal in this paper is to offer a modelling language to describe and reason
on systems, such as the Needham-Schroeder protocol, rather than a programming language to code the
implementation of the protocol. In these lines, it is worth observing that a direct modelling for analysis
purposes would not have been possible in (pure) Scala since we would lack the abstraction offered by
process algebras like Bach.

As reported in [5], many coordination languages have been implemented, in some cases as stand
alone languages, like Tucson [7], but mostly as API’s of conventional languages, accessing tuple spaces
through dedicated functions or methods, as in pSpaces [18]. To the best or our knowledge, B2Scala is
the first implementation of a coordination language as a Domain Specific Language. We are also not
aware of an implementation done in Scala. However, our work is linked to the work on Caos [23], which
provides, by using Scala, a generic tool to implement structured operational semantics and to generate
intuitive and interactive websites. In practice, one has however to define the semantics of the language
under consideration by using Scala. In contrast, we take an opposite approach which already offers an
implementation of the Bach constructs and in which programmers need to code Bach-like programs in a
Scala manner. Moreover we propose a logic to constraint executions, which is not proposed in [23].

Scafi [4] is another research effort to integrate a coordination language in Scala. It targets a different
line of research in the coordination community by being focussed on aggregate computing. Moreover, to
the best of our knowledge, no support for constrained executions is proposed.

This work is a continuation of previous work on the Scan and Anemone workbenches [13, 14]. It
differs by the fact that both Scan and Anemone interpret directly Bach programs. Moreover the PLTL
logic they use is different from the logic proposed in this paper.

As regards the Needham-Schroeder protocol, to our best knowledge, it has been never been modeled
in a coordination language, most probably because the Coordination community and the one on security
are quite different. Nevertheless it has been modeled in more classical process algebras. In [19] the
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author uses CSP and its associated FDR tool to produce an attack on the protocol. This analysis has
been complemented in [2] by using the mCRL process algebra and its associated model checker. Our
work differs by using a process algebra of a different nature. Indeed the Bach coordination language
rests on asynchronous communication which happens by information being available or not on a shared
space. This allows to naturally model messages being put on the network as si-terms told on the store.
Similarly the action of an intruder is very intuitively modeled by getting si-terms. In contrast, [2] and [19]
use synchronous communication which does not naturally introduce the network as a communication
medium and which technically forces them to model the intruder by duplicating Alice and Bob’s send
and receive actions by intercept and fake messages.

Our work open several paths for future research. First the synergy with Scala given by B2Scala offers
a natural way of making interfaces much more user friendly than the one of Figure 8. Second we have
only investigated the use of B2Scala to analyze the Needham-Schroeder protocol. Our current research
aims at exploring the security of other protocols, such as the Quic protocol. Finally, our logic is used to
restrict computations at run-time without lookahead strategies, which could lead to select computations
that fail later to meet the remaining logic formulae. As a solution to that problem, we are investigating
how statistical model checking can be married with B2Scala.

7 Acknowledgment

The authors warmly thank the anonymous reviewers for their insightful comments, which greatly con-
tributed to the improvement of this article. They also thank the University of Namur for its support as
well as the Walloon Region for partial support through the Ariac project (convention 210235) and the
CyberExcellence project (convention 2110186).

References

[1] M. Barkallah & J.-M. Jacquet (2023): On the Introduction of Guarded Lists in Bach: Expressiveness, Cor-
rectness, and Efficiency Issues. In C. Aubert, C. Di Giusto, S. Fowler & L. Safina, editors: Proceedings 16th
Interaction and Concurrency Experience (ICE) 2023, EPTCS 383, pp. 55–72, doi:10.4204/EPTCS.383.4.

[2] S. Blom, J.F. Groote, S. Mauw & A. Serebrenik (2004): Analysing the BKE-security Protocol with µCRL. In
I. Ulidowski, editor: Proceedings of the 6th AMAST Workshop on Real-Time Systems, Electronic Notes in
Theoretical Computer Science 139, Elsevier, pp. 49–90, doi:10.1016/J.ENTCS.2005.09.005.

[3] N. Carriero & D. Gelernter (1989): Linda in Context. Communications of the ACM 32(4), pp. 444–458,
doi:10.1145/63334.63337.

[4] R. Casadei, M. Viroli, G. Aguzzi & D. Pianini (2022): ScaFi: A Scala DSL and Toolkit for Aggregate
Programming. SoftwareX 20, p. 101248, doi:10.1016/j.softx.2022.101248.

[5] G. Ciatto, S. Mariani, G. Di Marzo Serugendo, M. Louvel, A. Omicini & F. Zambonelli (2020): Twenty Years
of Coordination Technologies: COORDINATION Contribution to the State of Art. Journal of Logical and
Algebraic Methods in Programming 113, p. 100531, doi:10.1016/j.jlamp.2020.100531.

[6] S. Cranen, J.F. Groote, J.J.A. Keiren, F.P.M. Stappers, E.P. de Vink, W. Wesselink & T.A.C. Willemse (2013):
An Overview of the mCRL2 Toolset and Its Recent Advances. In N. Piterman & S.A. Smolka, editors: Pro-
ceedings of the 19th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science 7795, Springer, pp. 199–213, doi:10.1007/978-3-642-36742-
7_15.

[7] M. Cremonini, A. Omicini & F. Zambonelli (2000): Coordination and Access Control in Open Distributed
Agent Systems: The TuCSoN Approach. In A. Porto & G.-C. Roman, editors: Proceedings of 4th International

https://doi.org/10.4204/EPTCS.383.4
https://doi.org/10.1016/J.ENTCS.2005.09.005
https://doi.org/10.1145/63334.63337
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.jlamp.2020.100531
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-642-36742-7_15


D. Ouardi, M. Barkallah & J-M. Jacquet 75

Conference on Coordination Languages and Models, Lecture Notes in Computer Science 1906, Springer, pp.
99–114, doi:10.1007/3-540-45263-X_7.

[8] D. Darquennes, J.-M. Jacquet & I. Linden (2018): On Multiplicities in Tuple-Based Coordination Languages:
The Bach Family of Languages and Its Expressiveness Study. In G. Di Marzo Serugendo & M. Loreti, editors:
Proceedings of the 20th International Conference on Coordination Models and Languages, Lecture Notes in
Computer Science 10852, Springer, pp. 81–109, doi:10.1007/978-3-319-92408-3_4.

[9] D. Gelernter & N. Carriero (1992): Coordination Languages and Their Significance. Communications of the
ACM 35(2), pp. 97–107, doi:10.1145/129630.129635.

[10] T. Gibson-Robinson, P. Armstrong, A. Boulgakov & A.W. Roscoe (2014): FDR3 — A Modern Refinement
Checker for CSP. In E. Abraham & K. Havelund, editors: Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science 8413, pp. 187–201, doi:10.1007/978-3-642-54862-
8_13.

[11] M. Hennessy & R. Milner (1980): On Observing Nondeterminism and Concurrency. In J.W. de Bakker &
J. van Leeuwen, editors: Proceedings of the International Conference on Automata, Languages and Program-
ming, Lecture Notes in Computer Science 85, Springer, pp. 299–309, doi:10.1007/3-540-10003-2_79.

[12] C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice-Hall International Series in Computer
Science, Prentice Hall.

[13] J.-M. Jacquet & M. Barkallah (2019): Scan: A Simple Coordination Workbench. In H. Riis Nielson &
E. Tuosto, editors: Proceedings of the 21st International Conference on Coordination Models and Languages,
Lecture Notes in Computer Science 11533, Springer, pp. 75–91, doi:10.1007/978-3-030-22397-7_5.

[14] J.-M. Jacquet & M. Barkallah (2021): Anemone: A workbench for the Multi-Bach Coordination Language.
Science of Computer Programming 202, p. 102579, doi:10.1016/j.scico.2020.102579.

[15] J.-M. Jacquet & I. Linden (2007): Coordinating Context-aware Applications in Mobile Ad-hoc Networks.
In T. Braun, D. Konstantas, S. Mascolo & M. Wulff, editors: Proceedings of the first ERCIM workshop on
eMobility, The University of Bern, pp. 107–118.

[16] D. Kozen (1983): Results on the Propositional mu-Calculus. Theoretical Computer Science 27, pp. 333–354,
doi:10.1016/0304-3975(82)90125-6.

[17] K. Liu, J. Ye & Y. Wang (2012): The Security Analysis on Otway-Rees Protocol Based on BAN Logic. In:
Proceedings of the Fourth International Conference on Computational and Information Sciences, pp. 341–
344, doi:10.1109/ICCIS.2012.349.

[18] M. Loreti & A. Lluch Lafuente (2024): Programming with Spaces. Available at https://github.com/
pSpaces/Programming-with-Spaces/blob/master/README.md.

[19] G. Lowe (1996): Breaking and Fixing the Needham-Schroeder Public-Key Protocol using FDR. In T. Mar-
garia & B. Steffen, editors: Proceedings of the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Lecture Notes in Computer Science 1055, Springer, pp.
147–166, doi:10.1007/3-540-61042-1_43.

[20] R.M. Needham & M.D. Schroeder (1978): Using Encryption for Authentication in Large Networks of Com-
puters. Communication of the ACM 21, pp. 993–999, doi:10.1145/359657.359659.

[21] D. Ouardi, M. Barkallah & J.-M. Jacquet (2024): Coding and Breaking the Needham-Schroeder Protocol
using B2Scala. Available at https://github.com/UNamurCSFaculty/B2Scala. Created on February
26th, 2024.

[22] A. Pnueli (1977): The Temporal Logic of Programs. In: Proceedings of the 18th Annual Symposium on
Foundations of Computer Science, IEEE Computer Society, pp. 46–57, doi:10.1109/SFCS.1977.32.

[23] J. Proença & L. Edixhoven (2023): Caos: A Reusable Scala Web Animator of Operational Semantics. In S.-
S. Jongmans & A.Lopes, editors: Proceedings of the 25th International Conference on Coordination Models
and Languages, Lecture Notes in Computer Science 13908, Springer, pp. 163–171, doi:10.1007/978-3-031-
35361-1_9.

https://doi.org/10.1007/3-540-45263-X_7
https://doi.org/10.1007/978-3-319-92408-3_4
https://doi.org/10.1145/129630.129635
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.1007/978-3-030-22397-7_5
https://doi.org/10.1016/j.scico.2020.102579
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1109/ICCIS.2012.349
https://github.com/pSpaces/Programming-with-Spaces/blob/master/README.md
https://github.com/pSpaces/Programming-with-Spaces/blob/master/README.md
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1145/359657.359659
https://github.com/UNamurCSFaculty/B2Scala
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1007/978-3-031-35361-1_9


76 The B2Scala Tool

[24] V. Saraswat (1993): Concurrent Constraint Programming. ACM Doctoral dissertation awards, MIT Press,
doi:10.7551/mitpress/2086.001.0001.

https://doi.org/10.7551/mitpress/2086.001.0001

	Introduction
	Encodings as (Session) Protocols and Asynchronous Communication
	Asynchronous Processes
	Asynchronous CP
	Priorities for AP
	Asynchronous Functional Sessions
	Conclusion
	Introduction
	Control components and reconfiguration language
	Control components
	Reconfiguration language and assembly of components

	Elements of operational semantics
	Execution and synchronization of reconfiguration actions
	Communications

	Related work
	Conclusion and Future Work
	Introduction
	The PaI Approach to Multicomposition
	Systems of Communicating Finite State Machines
	PaI Multicomposition of Communicating Systems
	On the Preservation of Communication Properties
	Conclusions
	1 Introduction
	2 Background
	2.1 Use-case: the Needham-Schroeder Protocol
	2.2 The Bach Coordination Language
	2.2.1 Definition of data
	2.2.2 Agents

	2.3 The Scala Programming Language
	2.3.1 Functions and objects
	2.3.2 Strictness and lazyness


	3 The B2Scala Tool
	3.1 Programming interface
	3.1.1 Data
	3.1.2 Agents

	3.2 Implementation of the Domain Specific Language
	3.2.1 The store
	3.2.2 Interpretation of agents


	4 Constrained executions
	4.1 Basic formulae
	4.2 The bsL calculus
	4.3 Constrained computations

	5 The Needham-Schroeder protocol in B2Scala
	6 Conclusion
	7 Acknowledgment

