
EPTCS 409

Proceedings of the

Fifteenth International Symposium on

Games, Automata, Logics, and Formal

Verification

Reykjavik, Iceland, 19-21 June 2024

Edited by: Antonis Achilleos and Adrian Francalanza

Published: 30th October 2024

DOI: 10.4204/EPTCS.409

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . iii

Invited Presentation: Hyperproperties: the Exciting World Beyond k-Hypersafety 1

Bernd Finkbeiner

Invited Presentation: Shielded Reinforcement Learning for Safe and Optimal Cyber Physical

Systems . 2

Kim Guldstrand Larsen

Invited Presentation: Mechanizing Session-Types: Challenges and Lessons Learned 3

Brigitte Pientka

Invited Presentation: Bug Detection at Scale . 4

Azalea Raad

Synthesis of Timeline-Based Planning Strategies Avoiding Determinization . 5

Renato Acampora, Dario Della Monica, Luca Geatti, Nicola Gigante, Angelo Montanari and

Pietro Sala

Jumping Automata Must Pay . 19

Shaull Almagor and Ishai Salgado

Reactive Synthesis for Expected Impacts . 35

Emanuele Chini, Pietro Sala, Andrea Simonetti and Omid Zare

Towards the Usage of Window Counting Constraints in the Synthesis of Reactive Systems to

Reduce State Space Explosion . 53

Linda Feeken and Martin Fränzle

Deterministic Suffix-reading Automata . 70

R Keerthan, B Srivathsan, R Venkatesh and Sagar Verma

Adding Reconfiguration to Zielonka’s Asynchronous Automata . 88

Mathieu Lehaut and Nir Piterman

A Game-Theoretic Approach for Security Control Selection . 103

Dylan Léveillé and Jason Jaskolka

Epistemic Skills: Logical Dynamics of Knowing and Forgetting . 120

Xiaolong Liang and Yì N. Wáng

ii

An Evaluation of Massively Parallel Algorithms for DFA Minimization. 138

Jan Martens and Anton Wijs

Reachability and Safety Games under TSO Semantics . 154

Stephan Spengler

A. Achilleos and A. Francalanza (Eds.): Fifteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2024).

EPTCS 409, 2024, pp. iii–iv, doi:10.4204/EPTCS.409.0

Preface

Antonis Achilleos Adrian Francalanza

This volume contains the proceedings of GandALF 2024, the Fifteenth International Symposium on

Games, Automata, Logics, and Formal Verification. The symposium was held in Reykjavik, Iceland, on

June 19–21, 2024.

The GandALF symposium was established to provide an opportunity for researchers interested in

logic for computer science, automata theory, and game theory, to gather and discuss the application

of formal methods to the specification, design, and verification of complex systems. Previous editions

of GandALF were held in Udine, Italy (2024); Madrid, Spain (2022); Padova, Italy (2021); Brussels,

Belgium (2020); Bordeaux, France (2019); Saarbrücken, Germany (2018); Rome, Italy (2017); Catania,

Italy (2016); Genoa, Italy (2015); Verona, Italy (2014); Borca di Cadore, Italy (2013); Napoli, Italy

(2012); and Minori, Italy (2011 and 2010). The symposium provides an international forum where

people from different areas, backgrounds, and countries, can fruitfully interact, as witnessed by the

composition of the program and steering committees and by the country distribution of the submitted

papers.

The program committee selected 10 papers (out of 20 submissions) for presentation at the sympo-

sium. Each paper was reviewed by at least three referees, and the selection was based on originality,

quality, and relevance to the topics of the call for papers. The scientific program included presentations

on automata, logics for computer science and verification, learning for verification, formal methods and

specification languages, games for security and verification, session types, and synthesis. The program

included four invited talks, given by Bernd Finkbeiner (CISPA Helmholtz Center for Information Se-

curity), Kim G. Larsen (Aalborg University), Brigitte Pientka (McGill University), and Azalea Raad

(Imperial College London). We are deeply grateful to them for contributing to this year’s edition of

GandALF.

We would like to thank the authors who submitted papers, the speakers, the program committee

members, and the additional reviewers for their excellent work. We also thank EPTCS and arXiv for

hosting the proceedings; in particular, we thank Rob van Glabbeek for the precise and prompt technical

support with issues related to the proceeding publication procedure.

Finally, we would like to thank the local organisers: Angeliki Chalki, Jana Wagemaker, Vasiliki

Kyriakou, and Jasmine Xuereb for ensuring the event ran smoothly.

Antonis Achilleos and Adrian Francalanza

Program Chairs

• Antonis Achilleos, Reykjavik University (Iceland)

• Andrian Francalanza, University of Malta (Malta)

Program Committee

• Parosh Aziz Abdulla, Uppsala University (Sweden)

• Valentina Castiglioni, Eindhoven University of Technology (Netherlands)

http://dx.doi.org/10.4204/EPTCS.409.0

iv Please define \titlerunning

• Aggeliki Chalki, Reykjavik University (Iceland)

• Laure Daviaud, University of East Anglia (UK)

• Dario Della Monica, Università degli Studi di Udine (Italy)

• Giorgio Delzanno, Università degli Studi di Genova (Italy)

• Léo Exibard, Université Gustave Eiffel (France)

• Nicola Gigante, Free University of Bozen-Bolzano (Italy)

• Julian Gutierrez, Monash University (Australia)

• Jonas Kastberg Hinrichsen, Aarhus University (Denmark)

• Ryan Kavanagh, Université du Québec à Montréal (Canada)

• Orna Kupferman, Hebrew University (Israel)

• Martin Leucker, University of Luebeck (Germany)

• Jakub Michaliszyn, University of Wroclaw (Poland)

• Laura Nenzi, University of Trieste (Italy)

• Paweł Parys, University of Warsaw (Poland)

• Guillermo Perez, University of Antwerp (Belgium)

• Jakob Piribauer, TU Dresden (Germany)

• Ocan Sankur, Université Rennes, CNRS/Irisa (France)

• Felix Stutz, University of Luxembourg (Luxembourg)

• Patrick Totzke, University of Liverpool (UK)

• Tomoyuki Yamakami, University of Fukui (Japan)

• Matteo Zavatteri, University of Padova (Italy)

• Martin Zimmermann, Aalborg University (Denmark)

Steering Committee

• Luca Aceto, Reykjavik University (Iceland)

• Javier Esparza, University of Munich (Germany)

• Salvatore La Torre, University of Salerno (Italy)

• Angelo Montanari, University of Udine (Italy)

• Mimmo Parente, University of Salerno (Italy)

• Jean-François Raskin, Université libre de Bruxelles (Belgium)

• Martin Zimmermann, Aalborg University (Denmark)

External Reviewers

Luca Geatti, Karam Kharraz, Paolo Marrone, Piotr Polesiuk, Nicola Prezza, Christian Schilling, Daniel

Thoma, Alexander Weinert.

A. Achilleos and A. Francalanza (Eds.): Fifteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2024).

EPTCS 409, 2024, pp. 1–1, doi:10.4204/EPTCS.409.1

Hyperproperties: the Exciting World Beyond k-Hypersafety

Bernd Finkbeiner

CISPA Helmholtz Center for Information Security

finkbeiner@cispa.de

System requirements related to concepts like information flow, knowledge, and robustness cannot be

judged in terms of individual system executions, but rather require an analysis of the relationship between

multiple executions. Such requirements belong to the class of hyperproperties, which generalize classic

trace properties to properties of sets of traces.

A key idea in the verification of hyperproperties has been to analyze self-compositions of programs.

Hyperproperties that need to hold for all possible combinations of k traces, such as k-hypersafety prop-

erties, can be analyzed as standard trace properties of the k-fold self-composition. The implicit universal

quantification over the traces is, however, an inherent limitation of this paradigm, which makes it difficult

to abstract in an existential manner from phenomena like scheduling in concurrent programs, nondeter-

ministic choice, or speed of execution in asynchronous computations. Alternations between quantifiers

are furthermore essential for counterfactual reasoning about causation and blame.

In this talk, we will explore the exciting world of hyperproperties beyond k-hypersafety. I will

discuss the decidability and complexity of reasoning about such hyperproperties and present algorithmic

techniques for the effective resolution of quantifier alternations. I will also give an overview of recently

introduced logics for the specification of hyperproperties beyond k-hypersafety, including logics that

combine hyperproperties with reasoning over strategies, and logics for second-order hyperproperties.

http://dx.doi.org/10.4204/EPTCS.409.1

A. Achilleos and A. Francalanza (Eds.): Fifteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2024).

EPTCS 409, 2024, pp. 2–2, doi:10.4204/EPTCS.409.2

Shielded Reinforcement Learning for Safe and Optimal

Cyber Physical Systems

Kim Guldstrand Larsen

Aalborg University

kgl@cs.aau.dk

I will present recent advances and applications of the tool UPPAAL Stratego (www.uppaal.org)

supporting automatic synthesis of guaranteed safe and near-optimal control strategies for cyber physi-

cal systems. UPPAAL Stratego support reinforcement learning methods to construct near-optimal con-

trollers. However, their behavior is not guaranteed to be safe, even when it is encouraged by reward

engineering. One way of imposing safety to a learned controller is to use a safety shield, synthesized

using symbolic methods from checking, and hence correct by design. To make synthesis of shields for

hybrid environments tractable UPPAAL Stratego are using various abstraction techniques for hybrids

systems.

We study the impact of the synthesized shield when applied as either a pre-shield (applied before

learning a controller) or a post-shield (only applied after learning a controller). In addition trade-offs

between efficiency of strategy representation and degree of optimality subject to safety constraints will be

discussed, as well as successful on-going applications (water-management, heating systems, and traffic

control).

http://dx.doi.org/10.4204/EPTCS.409.2
www.uppaal.org

A. Achilleos and A. Francalanza (Eds.): Fifteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2024).

EPTCS 409, 2024, pp. 3–3, doi:10.4204/EPTCS.409.3

Mechanizing Session-Types: Challenges and Lessons Learned

Brigitte Pientka

McGill University

bpientka@cs.mcgill.ca

Process calculi provide a tool for the high-level description of interactions, communications, and

synchronizations between a collection of independent processes. Session types allow us to statically

verify that processes communicate according to prescribed protocols. Hence, they rule out a wide class

of communication-related bugs before executing a given process. They also statically guarantee safety

properties such as session fidelity and deadlock freedom, analogous to preservation and progress in the

simply typed lambda-calculus.

Although there have been many efforts to mechanize process calculi such as the pi-calculi in proof

assistants, mechanizing these systems remains an art. Process calculi use channel or action names to

specify process interactions, and they often feature rich binding structures and semantics such as channel

mobility. Both of these features can be challenging to mechanize, for we must track names to avoid

conflicts, ensure that α-equivalence and renaming are well-defined, etc. Moreover, session types em-

ploy a linear type system, where variables cannot be implicitly copied or dropped, and therefore, many

mechanizations of these systems require modeling the context and carefully ensuring that its variables

are handled linearly.

In this talk, I give an introduction to the challenges that arise when mechanizing session types, and

showcase two different kinds of solutions focusing on a session typed system based on classical linear

logic: first, I show how to mechanize the a session tysystem directly using explicit contexts identifying

key context operations to manage linear contexts; then I show a technique to localize linearity conditions

as additional predicates embedded within type judgments, which allows us to use unrestricted typing

contexts instead of linear ones. This latter technique is especially relevant when leveraging (weak)

higher-order abstract syntax to defer the intricate channel mobility and bindings that arise in a session

typed system.

From this mechanization, we discuss key design decisions and draw some key lessons for mecha-

nizing substructural systems, such as session types. The goal of this talk is to engage the community in

discussions on what support in proof environments is needed to support the mechanization of substruc-

tural systems.

This is joint work with Chuta Sano, Daniel Zackon, Ryan Kavanagh, and Alberto Momigliano.

http://dx.doi.org/10.4204/EPTCS.409.3

A. Achilleos and A. Francalanza (Eds.): Fifteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2024).

EPTCS 409, 2024, pp. 4–4, doi:10.4204/EPTCS.409.4

Bug Detection at Scale

Azalea Raad

Imperial College London

azalea@imperial.ac.uk

Incorrectness Logic (IL) has recently been advanced as a logical under-approximate theory for prov-

ing the presence of bugs—dual to Hoare Logic, which is an over-approximate theory for proving the

absence of bugs. To facilitate scalable bug detection, we developed incorrectness separation logic (ISL)

by marrying the under-approximate reasoning of IL with the local reasoning of separation logic. This

locality leads to techniques that are compositional both in code (concentrating on a program component)

and in the resources accessed (spatial locality), without tracking the entire global state or the global

program within which a component sits. This enables reasoning to scale to large teams and codebases:

reasoning can be done even when a global program is not present. To demonstrate this, we developed

Pulse, an automatic program analysis for catching memory safety errors, underpinned by ISL. Using

Pulse, deployed at Meta, we found a number of real bugs in large codebases such as OpenSSL.

Inspired by this success, we later studied the power of under-approximation for detecting non-

termination bugs. Program termination is a classic non-safety property that cannot in general be wit-

nessed by a finite trace. This makes testing for non-termination challenging, and also makes it a natural

target for symbolic proof. Discovering non-termination is an under-approximate problem. We thus

developed an under-approximate logic for proving non-termination, resulting in a compositional proof

method. We prototyped this in an automated tool, Pulse∞ (an extension of Pulse), which has already

discovered a number of non-termination bugs in large open-source libraries.

http://dx.doi.org/10.4204/EPTCS.409.4

A. Achilleos and A. Francalanza (Eds.): Fifteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2024).
EPTCS 409, 2024, pp. 5–18, doi:10.4204/EPTCS.409.5

© Acampora et al.
This work is licensed under the
Creative Commons Attribution License.

Synthesis of Timeline-Based Planning
Strategies Avoiding Determinization*

Renato Acampora
University of Udine, Italy

renato.acampora@uniud.it

Dario Della Monica
University of Udine, Italy

dario.dellamonica@uniud.it

Luca Geatti
University of Udine, Italy

luca.geatti@uniud.it

Nicola Gigante
Free University of Bozen-Bolzano, Italy

nicola.gigante@unibz.it

Angelo Montanari
University of Udine, Italy

angelo.montanari@uniud.it

Pietro Sala
University of Verona, Italy

pietro.sala@univr.it

Qualitative timeline-based planning models domains as sets of independent, but interacting, compo-
nents whose behaviors over time, the timelines, are governed by sets of qualitative temporal con-
straints (ordering relations), called synchronization rules. Its plan-existence problem has been shown
to be PSPACE-complete; in particular, PSPACE-membership has been proved via reduction to the
nonemptiness problem for nondeterministic finite automata. However, nondeterministic automata
cannot be directly used to synthesize planning strategies as a costly determinization step is needed. In
this paper, we identify a large fragment of qualitative timeline-based planning whose plan-existence
problem can be directly mapped into the nonemptiness problem of deterministic finite automata,
which can then be exploited to synthesize strategies. In addition, we identify a maximal subset of
Allen’s relations that fits into such a deterministic fragment.

1 Introduction

Timeline-based planning is an approach that originally emerged and developed in the context of plan-
ning and scheduling of space operations [16]. In contrast to common action-based formalisms, such
as PDDL [9], timeline-based languages do not make a distinction between actions, states, and goals.
Rather, the domain is modeled as a set of independent, but interacting, components whose behavior over
time, the timelines, is governed by a set of temporal constraints. It is worth pointing out that timeline-
based planning was born with an application-oriented flavor, with various successful stories, and only
relatively recently some foundational work about its expressiveness and complexity has been produced.
The present paper aims at bringing back theory to practice by identifying expressive enough and compu-
tationally well-behaved fragments.

Timeline-based planning has been successfully employed by planning systems developed at
NASA [5, 6] and at ESA [10] for both short- to long-term mission planning and on-board autonomy.
More recently, timeline-based planning systems such as PLATINUm [18] are being employed in collab-
orative robotics applications [19]. All these applications share a deep reliance on temporal reasoning and
the need for a tight integration of planning with execution, both features of the timeline-based framework.
The latter feature is usually achieved by the use of flexible timelines, which represent a set of possible
executions of the system that differ in the precise timing of the events, hence handling the intrinsic tem-
poral uncertainty of the environment. A formal account of timeline-based planning with uncertainty

*This work is partially supported by the INdAM-GNCS Project Analisi simbolica e numerica di sistemi ciberfisici (project
n. CUP_E53C22001930001).

http://dx.doi.org/10.4204/EPTCS.409.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

6 Synthesis of Timeline-Based Planning Strategies Avoiding Determinization

has been provided by [7], and much theoretical research followed, including complexity [3, 4, 12] and
expressiveness [14, 11] analyses, based on such a formalization, which is the one we use here as well.

To extend the reactivity and adaptability of timeline-based systems beyond temporal uncertainty, the
framework of timeline-based games has been recently proposed. In timeline-based games, the system
player tries to build a set of timelines satisfying the constraints independently from the choices of the
environment player. This framework allows one to handle general nondeterministic environments in the
timeline-based setting. However, this expressive power comes at the cost of increasing the complexity of
the problem. While the plan-existence problem for timeline-based planning is EXPTIME-complete [12],
deciding the existence of strategies for timeline-based games is 2EXPTIME-complete [13], and a con-
troller synthesis algorithm exists that runs in doubly exponential time [1].

Such a high complexity motivates the search for simpler fragments that can nevertheless be useful in
practical scenarios. One of these is the qualitative fragment, where temporal constraints only concern the
relative order between events and not their distance. The qualitative fragment already proved itself to be
easier for the plan-existence problem, being PSPACE-complete [8], and this makes it a natural candidate
for the search of a good fragment for the strategy existence problem.

A deterministic arena is crucial to synthesize a non-clairvoyant strategy in reactive synthesis prob-
lems (see, for instance, [17]). However, determinizing the nondeterministic (exponentially sized) au-
tomaton built for the qualitative case in [8] would cause an exponential blowup, thus resulting in a
procedure of doubly-exponential complexity. In this paper, we show that, by imposing some natural
restrictions on the set of temporal constraints of the qualitative fragment, it is possible to lower the com-
plexity of the strategy existence problem to EXPTIME. We show that, on the one hand, these restrictions
are sufficient to directly synthesize a deterministic finite automaton (DFA) of singly-exponential size,
thus usable as an arena to play the game in an asymptotically optimal way, and, on the other hand,
the resulting fragment is expressive enough to capture a large subset of Allen’s relations [2], defined in
Section 7.

The rest of the paper is organized as follows. Section 2 recalls some background knowledge on
timeline-based planning. Section 3 defines the considered fragment, that directly maps into a DFA of
singly exponential size. Section 4 gives a word encoding of timelines, and vice versa. Section 5 builds an
automaton to recognize plans, and Section 6 shows how to construct an automaton that accepts solution
plans. Section 7 identifies the maximal subset of Allen’s relations which is captured by the fragment
of Section 3. Finally, Section 8 summarizes the main contributions of the work and discusses possible
future developments.

2 Background

In this section, we recall the basic notions of timeline-based planning and of its qualitative variant.

2.1 Timeline-Based Planning

The key element of the framework is the notion of state variable. Let N+ be the set of positive natural
numbers.

Definition 1 (State variable). A state variable is a tuple x = (Vx,Tx,Dx), where:

• Vx is the finite domain of the variable;

• Tx : Vx → 2Vx is the value transition function, which maps each value v ∈Vx to the set of values that
can (immediately) follow it;

Acampora et al. 7

• Dx : Vx → N+ × (N+ ∪ {+∞}) is a function that maps each v ∈ Vx to the pair (dx=v
min ,d

x=v
max) of

minimum and maximum durations allowed for intervals where x = v.

A timeline is a finite sequence of tokens, each denoting a value v and (the duration of) a time interval
d, that describes how a state variable x behaves over time.

Definition 2 (Tokens and timelines). A token for x is a tuple τ = (x,v,d), where x is a state variable,
v ∈Vx is the value held by the variable, and d ∈N+ is the duration of the token, with Dx(v) = (dx=v

min ,d
x=v
max)

and dx=v
min ≤ d ≤ dx=v

max . A timeline for a state variable x is a finite sequence T= ⟨τ1, . . . ,τk⟩ of tokens for
x, for some k ∈ N, such that, for any 1 ≤ i < k, if τi = (x,vi,di), then vi+1 ∈ Tx(vi).

For any timeline T = ⟨τ1, . . . ,τk⟩ and any token τi = (x,vi,di) in T, we define the functions
start(T, i)=∑

i−1
j=1 d j and end(T, i)= start(T, i)+di. We call the horizon of T the end time of the last token

in T, that is, end(T,k). We write start(τi) and end(τi) to indicate start(T, i) and end(T, i), respectively,
when there is no ambiguity.

The overall behavior of state variables is subject to a set of temporal constraints known as synchro-
nization rules (or simply rules). We start by defining their basic building blocks. Let N be a finite set
of token names. Atoms are formulas of the following form:

atom := term ≤l,u term | term <l,u term

term := start(a) | end(a) | t

where a ∈ N , l, t ∈N, and u ∈N∪{+∞}. As an example, atom start(a)≤l,u end(b) (resp., start(a)<l,u
end(b)) relates tokens a and b by stating that the end of b cannot precede (resp., must succeed) the
beginning of a, and the distance between these two endpoints must be at least l and at most u. An atom
term ≤l,u term, with l = 0 and u =+∞, is qualitative (the subscript is usually omitted in this case).

An existential statement E is a constraint of the form:

∃a1[x1 = v1]a2[x2 = v2] . . .an[xn = vn]. C

where x1, . . . ,xn are state variables, v1, . . . ,vn are values, with vi ∈ Vxi , a1, . . . ,an are symbols from the
set N of token names, and C is a finite conjunction of atoms, involving only tokens a1, . . . ,an, plus,
possibly, the trigger token (usually denoted by a0) of the synchronization rule in which the existential
statement is embedded, as described below.1

Intuitively, an existential statement asks for the existence of tokens a1,a2, . . . ,an whose state variables
take the corresponding values v1,v2, . . . ,vn and are such that their start and end times satisfy the atoms in
C .

Synchronization rules are clauses of one of the following forms:

a0[x0 = v0]→ E1 ∨E2 ∨ . . .∨Ek

⊤→ E1 ∨E2 ∨ . . .∨Ek

where a0 ∈N , x0 is a state variable, v0 ∈Vx0 , and Ei is an existential statement, for each 1 ≤ i ≤ k. In the
former case, a0[x0 = v0] is called trigger and a0 is the trigger token, and the rule is considered satisfied if
for all the tokens a0 for which the variable x0 takes the value v0, at least one of the existential statements
is satisfied. In the latter case, the rule is said to be triggerless, and it states the truth of the body without
any precondition.2 We refer the reader to [7] for a formal account of the semantics of the rules.

1W.l.o.g., we assume that if a token a appears in the quantification prefix ∃a1[x1 = v1]a2[x2 = v2] . . .an[xn = vn] of E , then
at least one among start(a) and end(a) occurs in one of its atoms.

2W.l.o.g., for non-triggerless rules, we assume that both start(a0) and end(a0) occur in all of its existential statements.

8 Synthesis of Timeline-Based Planning Strategies Avoiding Determinization

A timeline-based planning problem consists of a set of state variables and a set of rules that represent
the problem domain and the goal.
Definition 3 (Timeline-based planning problem). A timeline-based planning problem is defined as a pair
P = (SV,S), where SV is a set of state variables and S is a set of synchronization rules involving state
variables in SV.

A solution plan for a given timeline-based planning problem is a set of timelines, one for each state
variable, that satisfies all the synchronization rules.
Definition 4 (Plan and solution plan). A plan over a set of state variables SV is a finite set of timelines
with the same horizon, one for each state variable x ∈ SV. A solution plan for a timeline-based planning
problem P = (SV,S) is a plan over SV such that all the rules in S are satisfied.

The problem of determining whether a solution plan exists for a given timeline-based planning prob-
lem is EXPSPACE-complete [12].
Definition 5 (Qualitative timeline-based planning). A timeline-based planning problem P = (SV,S) is
said to be qualitative if the following conditions hold:

1. Dx(v) = (1,+∞), for all state variables x ∈ SV and v ∈Vx.

2. all synchronization rules in S involve only qualitative atoms.
Unlike timeline-based planning, such a qualitative variant is PSPACE-complete [8]. A reduction of

qualitative timeline-based planning to the nonemptiness problem for non-deterministic finite automata
(NFA) has been provided in [8].

3 A Well-Behaved Fragment

In this section, we introduce a meaningful fragment of qualitative timeline-based planning for which we
will show that it is possible to construct DFAs of singly exponential size.

The fragment is characterized by means of some conditions on the admissible patterns of synchro-
nization rules (eager rules). The distinctive feature of eager rules is that they can be checked using an
eager/greedy strategy, that is, when a relevant event (start/end of a token involved in some atom) occurs,
we are guaranteed that the starting/ending point of such a token is useful for rule satisfaction. Instead, in
case of non-eager rules, it may happen that a relevant event happens that is not useful for rule satisfaction:
some analogous event in the future will be.

W.l.o.g., we assume that no constraint of the forms start(a) ≤ end(a) and start(a) < end(a) occurs
explicitly in synchronization rules, even though they hold tacitly, as they follow from the definition of
token (Definition 2).

As a preliminary step, we define a sort of transitive closure of a clause. First, by slightly abusing the
notation, we identify a clause C with the finite set of atoms occurring in it. Let t, t1, t2, t3 be terms of the
form start(a) or end(a), with a ∈N . We denote by Ĉ the transitive closure of C , defined as the smallest
set of atoms including C and such that: (i) if term t occurs in C , then atom t ≤ t belongs to Ĉ , (ii) if
terms start(a) and end(a) both occur in C for some token name a, then atom start(a) < end(a) belongs
to Ĉ , (iii) if atom t1 < t2 belongs to Ĉ , then atom t1 ≤ t2 belongs to Ĉ as well, (iv) if atoms t1 ≤ t2 and
t2 ≤ t3 belong to Ĉ , then atom t1 ≤ t3 belongs to Ĉ as well, (v) if atoms t1 < t2 and t2 ≤ t3 belong to Ĉ ,
then atom t1 < t3 belongs to Ĉ as well, (vi) if atoms t1 ≤ t2 and t2 < t3 belong to Ĉ , then atom t1 < t3
belongs to Ĉ as well.3

3W.l.o.g., we assume that Ĉ is consistent, i.e., it admits at least a solution. We point out that this check can be done in
polynomial time, since it is an instance of linear programming.

Acampora et al. 9

Notice that, in some particular cases, condition (ii) may introduce in the closure of a clause atoms of
the form start(a)< end(a), which, according to our assumption, do not belong to any clause.

Let us now define the core notion of eager rule.

Definition 6 (Eager rules). Let R be a synchronization rule and let C1, . . . ,Ck be the clauses occurring in
its existential statements. We say that R is eager if and only if, for all C ∈ {C1, . . . ,Ck} and a1,a2 ∈ N
appearing in C , the following conditions hold:

1. if both a1 and a2 are non-trigger tokens and {start(a2) ≤ end(a1),end(a1) ≤ end(a2)} ⊆ Ĉ , then
end(a1)≤ start(a2) ∈ Ĉ (i.e., the end of a1 and the start of a2 coincide),

2. if a1 is either a trigger token or a non-trigger one, a2 is a non-trigger token, and {start(a2) ≤
start(a1),start(a1)≤ end(a2)} ⊆ Ĉ , then start(a1)≤ start(a2) ∈ Ĉ (i.e., a1 and a2 start together),
and

3. if a1 is a trigger token, a2 is a non-trigger one, and {start(a1)≤ start(a2),end(a1)≤ end(a2)}⊆ Ĉ ,
then start(a2)≤ start(a1) ∈ Ĉ (i.e., a1 and a2 start together).

We define the eager fragment of a qualitative timeline-based planning problem as the set of qualita-
tive timeline-based planning problems P = (SV,S) such that S contains only eager rules.

An explanation of the restrictions in Definition 6 is due. Given a non-trigger token a2, Condition 1
forces any other non-trigger token a1 ending during a2 (that is, such that start(a2)≤ end(a1)≤ end(a2))
to end exactly when a2 starts, while Condition 2 forces any other (trigger or non-trigger) token a1 starting
during a2 (that is, such that start(a2)≤ start(a1)≤ end(a2)) to start simultaneously to a2. Finally, when-
ever a non-trigger token a2 starts during a trigger token a1 and ends not before the end of a1, Condition
3 forces the two tokens to start at the same time.

Conditions 1, 2, and 3 suffice to obtain a singly exponential DFA, whose construction will be illus-
trated in the next sections. We give here a short intuitive account of the rationale of the above conditions.

Consider the following rule:

a0[x0 = v0]→∃a1[x1 = v1].

(start(a0) = start(a1)∧ end(a0)≤ end(a1)),

where start(a0) = start(a1) is an abbreviation for start(a0) ≤ start(a1)∧ start(a1) ≤ start(a0). This rule
is eager because Conditions 1, 2, and 3 are fulfilled; in particular, we have that start(a0) = start(a1).
This is crucial for any DFA A recognizing solution plans, because, when A reads the event start(a0), it
can eagerly and deterministically go to a state representing the fact that both start(a0) and start(a1) have
happened. Moreover, if later it reads the event end(a1), but it has not read end(a0) yet, then it transitions
to a rejecting state, that is, a state from which it cannot accept any plan.

Let us provide now an example of a non-eager rule that cannot be checked in an eager/greedy fashion.
Consider the rule obtained from the above one by replacing = with ≤:

a0[x0 = v0]→∃a1[x1 = v1].

(start(a0)≤ start(a1)∧ end(a0)≤ end(a1)).

This rule is not eager, because atom start(a1)≤ start(a0) does not belong to Ĉ (Condition 3 is violated).
Indeed, for this rule, a DFA A that first reads event start(a0), but not start(a1), and then, strictly after,
reads event start(a1) has to nondeterministically guess the order between the end of such a token a1
and the end of a0, making the construction of an automaton of singly exponential size impossible in the

10 Synthesis of Timeline-Based Planning Strategies Avoiding Determinization

general case. Indeed, if token a1 ends before token a0, the rule is not satisfied, but we cannot exclude the
existence of another token for x1 = v1 that starts after that one and ends after the end of a0, thus satisfying
the rule.

We conclude by showing that excluding constraints of the forms start(a) ≤ end(a) and start(a) <
end(a) from clauses makes it sometimes possible to turn an otherwise non-eager rule into an eager one.
As an example, rule a0[x0 = v0]→∃a1[x1 = v1].(start(a1)< end(a1)∧ start(a0) = end(a1)) is not eager
(Condition 2 is violated); however, it can be rewritten as a0[x0 = v0]→∃a1[x1 = v1].start(a0) = end(a1),
which is eager.

In what follows, we give a reduction from the plan-existence problem for the eager fragment of the
qualitative timeline-based planning problem to the nonemptiness problem of DFAs of singly exponential
size with respect to the original problem. The approach is inspired by those in [8, 14] for non-eager
timeline-based planning problems, where an NFA of exponential size is built for any timeline-based
planning problem. However, the reductions presented there use nondeterministic automata, which cannot
be used as arenas to solve timeline-based games without a previous determinization step that would cause
a second exponential blowup.

First, we show how to encode timelines and plans as finite words, and vice versa (Section 4). Then,
given a planning problem P, we show how to build a DFA whose language encodes the set of solution
plans for P. The DFA consists of the intersection of two DFAs: one aims at verifying the constraint on
the alternation of token values expressed by functions Tx, for x ∈ SV, as well as that the word correctly
encodes a plan over SV (Section 5); the other one verifies that the encoded plan is indeed a solution plan
for P (Section 6).

From now on, we consider only qualitative timeline-based planning problems belonging to the eager
fragment and, for the sake of brevity, we sometimes refer to them simply as planning problems.

4 From Plans to Finite Words and Vice Versa

In this section, as a first step in the construction of the DFA corresponding to an eager qualitative timeline-
based planning problem, we show how to encode timelines and plans as words that can be recognized by
an automaton, and vice versa.

Let P = (SV,S) be an eager qualitative timeline-based planning problem, and let V = ∪x∈SVVx. We
define the initial alphabet ΣI

SV as ({−}×V)SV, that is the set of functions from SV to ({−}×V).4

Similarly, we define the non-initial alphabet ΣN
SV as ((V ×V)∪{⟲})SV, where the pairs (v,v′) ∈V ×V

are supposed to represent the value v of the token that just ended and the value v′ of the token that has just
started, and ⟲ represents the fact that the value for the state variable has not changed. The input alphabet
(or, simply, alphabet) associated with SV and denoted by ΣSV is the union ΣI

SV ∪ΣN
SV. Observe that

the size of the alphabet ΣSV is at most exponential in the size of SV, precisely |ΣSV| = |ΣI
SV|+ |ΣN

SV| =
|V ||SV|+(|V |2 +1)|SV|.

We now show how to encode the basic structure5 underlying each plan over SV as a word in ΣI
SV ·

(ΣN
SV)

∗ ∪{ε}, where ε is the empty word (and corresponds to the empty plan), (ΣN
SV)

∗ is the Kleene’s
closure of ΣN

SV, and · denotes the concatenation symbol. Intuitively, let ν be the symbol at position i of a
word σ ∈ ΣI

SV · (ΣN
SV)

∗∪{ε}. Then, if ν(x) = (v,v′) for some x ∈ SV, then at time i a new token begins
in the timeline for x with value v′; instead, if ν(x) =⟲, then no change happens at time i in the timeline

4The symbol {−} is a technicality that allows us to consider pairs instead of just values in V .
5With “basic structure” we refer to the fact that, in this section, we neither take into account the transition functions Tx of

state variables nor their domains Vx (cf. Definition 1), which will be dealt with in Section 5.

Acampora et al. 11

for x, meaning that no token ends at that time point in the timeline for x. The value v of the token ending
at time i will be used later in the construction of the automata.

We remark that not all words in ΣI
SV · (ΣN

SV)
∗ ∪ {ε} correspond to plans over SV: for a word to

correctly encode a plan, the information carried by the word about the value of a starting token and the
one associated to the end of the same token must coincide. Formally, given a word σ = ⟨σ0, . . . ,σ|σ |−1⟩ ∈
ΣI
SV · (ΣN

SV)
∗ ∪{ε} and a state variable x ∈ SV, let changes(x) = (ix0, i

x
1, . . . , i

x
kx−1), for some kx ∈ N, be

the increasing sequence of positions where x changes, i.e., σi(x) ̸=⟲ if and only if i ∈ changes(x), for all
i ∈ {0, . . . , |σ |− 1}. We denote by vx

i and v̂x
i the first and the second component of σi(x), respectively,

for all x ∈ SV and i ∈ changes(x). We omit superscripts x when there is no risk of ambiguity.

Definition 7 (Words weakly-encoding plans). Let σ ∈ ΣI
SV ·(ΣN

SV)
∗ and let changes(x) = (i0, i1, . . . , ik−1).

We say that σ weakly-encodes a plan over SV if v̂ih−1 = vih for all x ∈ SV and h ∈ {1, . . . ,k−1}. If this
is the case, then the plan induced by σ is the set {Tx | x ∈ SV}, where Tx = ⟨(x, v̂i0 , i1 − i0),(x, v̂i1 , i2 −
i1), . . . ,(x, v̂ik−1 , ik − ik−1)⟩ and ik = |σ |, for all x ∈ SV.

Intuitively, if a word weakly-encodes a plan, then it captures the dynamics of a state variable mod-
ulo its domain and its transition function, which will be taken care of in the next section. A converse
correspondence from plans to words can be defined accordingly.

Before concluding the section, we introduce another notation that will come handy later. We denote
by events(σ) the set of events (beginning/ending of a token) occurring at a given time, encoded in the
alphabet symbol σ . Formally, events(σ) is the smallest set such that:

• if σ(x) = (v,v′) for some x, then {end(x,v),start(x,v′)} ⊆ events(σ), and

• if σ(x) = (−,v′) for some x, then start(x,v′) ∈ events(σ).

5 DFA Accepting Plans

Given an eager qualitative timeline-based planning problem P = (SV,S), we show how to build a DFA
TSV, of size at most exponential in the size of P, accepting words that correctly encode plans over
SV, that is, words that weakly-encode plans (cf. Definition 7) and comply with the constraints on the
alternation of token values expressed by functions Tx, for x ∈ SV. In the next section, we show how to
obtain a DFA, of size at most exponential in the size of P, that accepts exactly the solution plans for P.

For every planning problem P = (SV,S), the DFA TSV is the tuple ⟨QSV,ΣSV,δSV,q0
SV,FSV⟩, whose

components are defined as follows.

• QSV is the set of states of TSV. Intuitively, a state of TSV keeps track of the token values of the
timelines at the current and the previous step of the run. Therefore, a state is a function mapping
each state variable x into a pair (v,v′), where v′ (resp., v) denotes the token value of timeline x at the
current (resp., previous) step. To formally define QSV, we exploit the definition of alphabet ΣSV

from Section 4. Mostly, states are alphabet symbols, except for those functions σ ∈ ΣSV assigning
to at least one state variable x ∈ SV value ⟲. For technical reasons, we also need a fresh initial
state q0

SV and a fresh rejecting sink state sSV.

Formally, QSV =
(
ΣSV \QSV

)
∪{q0

SV,sSV}, where QSV = {σ ∈ ΣSV | σ(x) =⟲ for some x ∈ SV}.
Clearly, the size of QSV is at most as the size of ΣSV, which is in turn at most exponential in the
size of P.

• ΣSV is the input alphabet, defined as in Section 4.

12 Synthesis of Timeline-Based Planning Strategies Avoiding Determinization

• δSV : QSV ×ΣSV → QSV is the transition function. Towards a definition of δSV, we say that an
alphabet symbol σ ∈ ΣSV is compatible with a state σ1 ∈ QSV (we use for states the same symbols
as for the alphabet, i.e., σ ,σ1,σ2, . . ., to stress the fact that states are closely related to alphabet
symbols) if one of the following holds: (i) σ1 = q0

SV is the initial state and σ ∈ ΣI
SV is an initial

symbol such that for each x∈ SV it holds that σ(x)= (−,v) with v∈Vx; (ii) σ1 =(v,v′)∈ΣSV\QSV

and σ ∈ ΣN
SV is a non-initial symbol such that for each x ∈ SV either σ(x) =⟲ or σ(x) = (v′,v′′)

with v′′ ∈ Tx(v′)∩Vx.
Now, δSV : QSV ×ΣSV → QSV is defined as follows. For all σ1 ∈ QSV and σ ∈ ΣSV, if σ is not
compatible with σ1 or σ1 is the sink state (i.e., σ1 = sSV), then δ (σ1,σ) = sSV; otherwise

– if σ1 is the initial state (i.e., σ1 = q0
SV), then δ (σ1,σ) = σ ; in other words, in this case the

automaton transitions to the state represented by the input letter;
– if σ1 ∈ ΣSV \QSV, then δ (σ1,σ) = σ2, where σ2(x) = σ1(x) if σ(x) =⟲, and σ2(x) = σ(x)

otherwise, for all x ∈ SV; intuitively, the automaton transitions into a state keeping track of
the updated information about which tokens have changed value and which ones have not.

We point out that, in both cases, the automaton transitions to the next state in a deterministic
fashion.

• FSV = QSV \{sSV} is the set of final states.

Correctness of the DFA TSV is proved by the next lemma.

Lemma 1. Let P = (SV,S) be an eager qualitative timeline-based planning problem. Then, words ac-
cepted by TSV are exactly those encoding plans over SV. Moreover the size of TSV is at most exponential
in the size of P.

6 DFA Accepting Solution Plans

In this section, we go through the construction of an automaton recognizing solution plans for a planning
problem. Towards that, it will come in handy to define some auxiliary structures, namely blueprints,
snapshots and viewpoints; moreover, we will define how these structures evolve and give a high-level
intuition for each of them.

Let P = (SV,S) be an eager qualitative timeline-based planning problem, and let V = ∪x∈SVVx. We
first show how to build a DFA AP, whose size is at most exponential in the size of P, that accepts exactly
those words encoding solutions plans for P when restricted to words encoding plans over SV. In different
terms, if a word encodes a plan over SV, then it is accepted by AP if and only if it encodes a solution
plan for P. However, AP may also accept words that do not encode a plan over SV. Therefore, we need
the intersection of such a DFA AP with DFA TSV from the previous section.

In the following, we use preorders to represent the ordering relation imposed by synchronization
rules. Each existential statement of the form ∃a1[x1 = v1]a2[x2 = v2] . . .an[xn = vn].C , with C conjunction
of atoms, identifies a preorder whose domain is the set of terms start(a)/end(a) occurring in C , and
where term t1 precedes term t2 in the preorder whenever t1 ≤ t2 belongs to Ĉ .

For a preorder P , we denote by dom(P) its domain and by ⪯P the ordering relation. Moreover,
we use x ≡P y to denote the fact that both x ⪯P y and y ⪯P x hold, and x ≺P y to denote the fact that
x ⪯P y holds but y ⪯P x does not. Finally, we denote by [x]≡P the equivalence class of x with respect to
≡P for every x ∈ dom(P), that is, [x]≡P = {y ∈ dom(P) | y ≡P x}. We omit the subscript P when it is
clear from the context. A preorder P induces a directed acyclic graph (DAG) G = (V,A), where V is the
set of equivalence classes, that is, V = {[x]≡ | x ∈ dom(P)}, and, for every x,y ∈ dom(P) there is an arc

Acampora et al. 13

start(a0)
start(a1)

end(a0) end(a1)

start(a0)
start(a1)

end(a0) end(a1)

Figure 1: Above, we show the blueprint for the unique existential statement in the rule a0[x0 = v0] → ∃a1[x1 =
v1].(start(a0) = start(a1)∧end(a0)≤ end(a1)), from Section 3. It forces token a0 to either be a prefix of or coincide
with token a1. Below, the blueprint obtained replacing end(a0) ≤ end(a1) with end(a0) < end(a1), that forces a1
to be a strict prefix of a1.

from [x]≡ to [y]≡ in A (denoted by ([x]≡, [y]≡) ∈ A or [x]≡ → [y]≡ when set A is clear from the context) if
and only if x ≺ y and there is no w ∈ dom(P) such that x ≺ w and w ≺ y. Clearly, there is a path from
[x]≡ to [y]≡ (denoted by [x]≡ →∗ [y]≡) if and only if x ⪯ y. Therefore, given an existential statement E
occurring in a synchronization rule R, we refer to the associated preorder and DAG as, respectively, PE

and GE .
It is important to observe that a conjunction of atoms C within an existential statement E contains

atoms of both forms t1 ≤ t2 and t1 < t2. To keep track of these different constraints in DAG GE = (V,A)
associated with E , we identify the subset A< ⊆ A of arcs of GE as the set A< = {([x]≡, [y]≡) ∈ A | x <
y ∈ Ĉ }. We sometimes write [x]≡ ⇒ [y]≡ for ([x]≡, [y]≡) ∈ A<, when A is clear from the context. Figure
1 shows such a difference.

Let E be an existential statement occurring in a rule R and GE the DAG associated with E . The
set of events associated with a vertex [x]≡ of GE , denoted by eventsGE ([x]≡), is the smallest set such
that if start(a) ∈ [x]≡ (resp., end(a) ∈ [x]≡) and a[y = v] either occurs in E or is the trigger of R, then
start(y,v)∈ eventsGE ([x]≡) (resp., end(y,v)∈ eventsGE ([x]≡)). The set of events associated with a subset
V ′ of vertices of GE , denoted by eventsGE (V

′), is the set
⋃

v∈V ′ eventsGE (v).

6.1 Blueprints, Snapshots, and Viewpoints

A DAG associated with an existential statement E is also called a blueprint for E . A snapshot for an
existential statement E is a pair (G,K), where G = (V,A) is a blueprint for E and K ⊆V is a downward
closed subset of vertices of G, that is, v ∈ K implies v′ ∈ K for all v′ ∈ V with v′ →∗ v. The number
of different snapshots for E is at most 2|V |, hence at most exponential in the size of P, denoted by |P|.
A viewpoint V for a rule R is a set of snapshots for existential statements in R, at most one for each
statement. Let nR be the number of existential statements in R; then, it is easy to see that the number
of different viewpoints for R is at most (2|P|)nR , hence exponential in the size of P. If K = ∅ for all
(G,K) ∈ V, then V is the initial viewpoint of R; analogously, if K is the entire set of vertices of G, for
some (G,K) ∈ V, then V is a final viewpoint of R.

Intuitively, a viewpoint checks the satisfaction of a rule R by recognizing when at least one existential
statement has been fulfilled. This check works by collecting, for each existential statement, information
about the tokens seen so far along the plan into snapshots, which are downward closed and accurately
represent all relevant symbols read. How information is collected, thus how viewpoints and snapshots
evolve, is explained in the following.

14 Synthesis of Timeline-Based Planning Strategies Avoiding Determinization

States of automata AP are sets of viewpoints containing at least one viewpoint for each rule of P
(besides a fresh rejecting sink state sP); recall that viewpoints are in turn sets of snapshots. Therefore,
to define automata runs, we first show how snapshots and viewpoints evolve upon reading an alphabet
symbol. To this end, we need the following notions.

For a snapshot (G,K), we set next(G,K) = K′, where K′ is the largest downward closed subset of
vertices of G for which there is no pair of vertices v,v′ ∈ K′ \K with v ⇒ v′. Moreover, given an alphabet
symbol σ ∈ ΣSV, we define next((G,K),σ) = K′, where K′ is the largest downward closed subset of
vertices of next(G,K) such that eventsG(K′ \K)⊆ events(σ). We say that snapshot (G,K) is compatible
with symbol σ if for all start(x,v)∈ eventsG(K) and end(x,v)∈ events(σ)∩eventsG(V \K), it holds that
end(x,v) ∈ eventsG(next((G,K),σ)).

Intuitively, during a run of the automaton, a snapshot (G,K) evolves by suitably extending K.
next(G,K) identifies the only vertices that can appear in such an extension independently from the al-
phabet symbol read, that is, vertices in V \K reachable (from K) without crossing arcs in A<. The exact
extension, however, depends on the actual symbol σ read by the automaton: K cannot be extended with
events that are not included in σ . Therefore, next((G,K),σ) identifies precisely how a snapshot evolves.
At last, observe that for a snapshot to be allowed to evolve upon reading a symbol, it must be guaranteed
that no token ending is overlooked, which is formalized by the notion of compatibility of a snapshot with
a symbol.

We can now characterize the evolution of snapshots and viewpoints when reading an alphabet sym-
bol σ ∈ ΣSV. The evolution of a snapshot (G,K) when reading σ , denoted evol((G,K),σ), is snapshot
(G,next((G,K),σ)), if (G,K) is compatible with σ ; it is undefined otherwise. The evolution of a view-
point V when reading σ , denoted evol(V,σ), is viewpoint V′, defined as the smallest set such that for all
(G,K) ∈ V, if evol((G,K),σ) is defined, then evol((G,K),σ) ∈ V′.

6.2 States, Initial State, and Final States of AP

We have already mentioned that states of AP are sets of viewpoints containing at least one viewpoint for
each rule R ∈ S (recall that S is the set of rules in planning problem P), besides a fresh rejecting sink
state sP. However, since it is crucial for us to bound the size of AP to be at most exponential in the one
of P, we impose the linearity condition, formalized in what follows.

First, recall that, given a rule R, featuring existential statements E1, . . . ,EnR , a viewpoint V for R
only contains at most one snapshot for each existential statement in R; therefore, it holds that |V| ≤ nR

and there is a partial surjective function fV : {E1, . . . ,EnR}→V, where fV(E) is the only snapshot for E
in V, if any, for all E ∈ {E1, . . . ,EnR}.

Now, for all rules R ∈ S, let ϒR be the set of viewpoints for R, and let ϒP =
⋃

R∈S ϒR . We de-
fine an ordering relation ⪯ between viewpoints: for all V,V′ ∈ ϒP, it holds that V ⪯ V′ if and only if
(i) V,V′ ∈ ϒR for some R ∈ S, (ii) dom(fV′) ⊆ dom(fV),6 and (iii) for all E ∈ dom(fV′), we have that
fV(E) = (G,K), fV′(E) = (G,K′), and K ⊆ K′. Intuitively, V ⪯ V′ captures the fact that V′ has gone
further than V in matching input symbols to satisfy a rule. Therefore, a snapshot in V either evolved into
one in V′, according to the symbols read, or has disappeared because it is not compatible with some of
the symbols read, and thus it cannot be used anymore to satisfy the rule.

At this point, we can formalize the linearity condition, crucial to constrain the size of AP (Lemma 2).

Definition 8 (Linearity condition). A set of viewpoints ϒ satisfies the linearity condition if for all view-
points V,V′ ∈ ϒ and rules R ∈ S, if V,V′ ∈ ϒR , then V⪯ V′ or V′ ⪯ V holds.

6For a partial function f , we denote by dom(f) the set of elements where f is defined.

Acampora et al. 15

Intuitively, we impose all viewpoints for the same rule in a state of AP to be linearly ordered.
We are now ready to formally characterize the set of states of AP, consisting of the sets ϒ ⊆ ϒP of

viewpoints that contain at least one viewpoint for each rule R ∈ S and that satisfy the linearity condition,
and including, in addition, a fresh rejecting sink state sP. We denote it by QP.

The initial state q0
P of AP is the set {V0

R | R ∈ S}, where V0
R is the initial viewpoint of rule R.

Towards a definition of the set FP of final states of AP, we introduce the notion of enabled viewpoints.
A viewpoint V for rule R ∈ S is enabled if either R is triggerless or R has trigger token a0 and start(a0)∈
K for some (G,K) ∈ V. A state q of AP is final if every enabled viewpoint therein is final.

6.3 Transition Function of AP

The last step of our construction is the definition of the transition function δP for automaton AP.
To this end, we introduce the notion of alphabet symbol enabling a viewpoint V along with the one

of states of AP compatible with an alphabet symbol. Let V be a viewpoint for a non-triggerless rule R
with trigger token a0 and σ ∈ ΣSV an alphabet symbol. We say that σ enables V if there is (G,K) ∈ V
with start(a0) ∈ next((G,K),σ). Moreover, we say that a state q ∈ QP \{sP} is compatible with σ if for
all non-triggerless rules R ∈ S, with trigger token a0[x0 = v0], if start(x0,v0) ∈ events(σ), then there is a
viewpoint V ∈ q such that σ enables V.

We are now ready to define the transition function δP of AP. For all q ∈ QP and alphabet symbol
σ ∈ ΣSV:

• if q = sP or q is not compatible with σ , then δ (q,σ) = sP;

• otherwise, δ (q,σ) = q′, where q′ is the smallest set such that for all V ∈ q

– evol(V,σ) ∈ q′ and

– if σ enables V, then V ∈ q′.

Lemma 2. Let P = (SV,S) be an eager qualitative timeline-based planning problem. Then, each finite
word over ΣSV that encodes a plan over SV is accepted by AP if and only if it encodes a solution plan
for P. Moreover, the size of AP is at most exponential in the size of P.

Proof. For lack of space, we omit the proof of soundness showing that the automaton accepts the correct
language as claimed. Instead, we show that the size of AP is indeed at most exponential in the size of P.

Let k be the largest number of existential statements in a rule of P and k′ the largest number of atoms
in an existential statement of P. Thanks to the linearity rule enjoyed by states of P, it is not difficult to
convince oneself that the number of different viewpoints for the same rule in a state q ∈ QP to be at most
k×k′. Thus, each state in QP contains at most |S|×k×k′ different viewpoints (the product of the number
of rules in P by the number of different viewpoints for the same rule).

Therefore, the size of QP is at most |ϒP|(|S|×k×k′). Clearly, (|S|× k× k′) is at most polynomial in the
size of P. Since |ϒP| ≤ ∑R∈S |ϒR | and, as already pointed out, |ϒR | is at most exponential in the size of
P, we can conclude that the size of QP is at most exponential in the size of P.

Theorem 1. Let P = (SV,S) be an eager qualitative timeline-based planning problem. Then, the words
accepted by the intersection automaton of AP and TSV are exactly those encoding solution plans for P.
Moreover, the size of the intersection automaton of AP and TSV is at most exponential in the size of P.

16 Synthesis of Timeline-Based Planning Strategies Avoiding Determinization

7 A Maximal Subset of Allen’s Relations

Allen’s interval algebra is a formalism for temporal reasoning introduced in [2]. It identifies all possible
relations between pairs of time intervals over a linear order and specifies a machinery to reason about
them. In this section, we isolate the maximal subset of Allen’s relations captured by the eager fragment
of qualitative timeline-based planning. To this end, we show how to map Allen’s relations over tokens in
terms of their endpoints, that is, as conjunctions of atoms over terms start(a),start(b),end(a),end(b), for
token names a and b. Then, we check which relation encoding satisfies the conditions of Definition 6.
Let a,b ∈ N .

• a before b (b after a) can be defined as end(a)< start(b).

• a meets b (b is-met-by a) can be defined as end(a) = start(b).

• a ends b (b is-ended-by a) can be defined as start(b)< start(a)∧ end(a) = end(b).

• a starts b (b is-started-by a) can be defined as start(a) = start(b)∧ end(a)< end(b).

• a overlaps b (b is-overlapped-by a) can be defined as start(a) < start(b)∧ start(b) < end(a)∧
end(a)< end(b).

• a during b (b contains a) can be defined as start(b)< start(a)∧ end(a)< end(b).

• a = b can be defined as start(a) = start(b)∧ end(a) = end(b).

It is not difficult to see that, if one of the tokens, let’s say a, is the trigger token, then the encod-
ings not complying with Definition 6 are the ones for Allen’s relations ends, is-ended-by, overlaps,
is-overlapped-by, and during. Thus, the maximal subset of Allen’s relations that can be captured by an
instance of the eager fragment of the timeline-based planning problem consists of relations before, after,
meets, is-met-by, starts, is-started-by, contains, and =.

As an example, consider relation overlaps and let C = {start(a) < start(b),start(b) <
end(a),end(a) < end(b)} be its encoding. Clearly, the transitive closure Ĉ of C (cf. Section 3) in-
cludes also start(a) ≤ start(b) and end(a) ≤ end(b) but it does not include start(b) ≤ start(a), thus vi-
olating Condition 2 of Definition 6. A similar argument can be used for relations ends, is-ended-by,
is-overlapped-by, and during.

If, instead, none of the token is a trigger token, then the only Allen’s relations not violating any of
the conditions of Definition 6 are before, after, meets, and is-met-by. We omit the details.

8 Conclusions

In this paper, we identified a meaningful fragment of timeline-based planning whose solutions can be
recognized by DFAs of singly exponential size. Specifically, we identified restrictions on the allowed
synchronization rules, which we called eager rules, for which we showed how to build the corresponding
deterministic automaton of exponential size, that can then be directly exploited to synthesize strategies.
Moreover, we isolated a maximal subset of Allen’s relations captured by such a fragment.

Whether the fragment of timeline-based planning identified by the eager rules is maximal or not is
an open question currently under study. Further research directions include a parametrized complexity
analysis over the number of synchronization rules and a characterization in terms of temporal logics, like
the one in [15].

Acampora et al. 17

References
[1] Renato Acampora, Luca Geatti, Nicola Gigante, Angelo Montanari & Valentino Picotti (2022): Controller

Synthesis for Timeline-based Games. In Pierre Ganty & Dario Della Monica, editors: Proceedings of the 13th
International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2022, Madrid,
Spain, September 21-23, 2022, EPTCS 370, pp. 131–146, doi:10.4204/EPTCS.370.9.

[2] James F. Allen (1983): Maintaining Knowledge about Temporal Intervals. Commun. ACM 26(11), pp.
832–843, doi:10.1145/182.358434.

[3] Laura Bozzelli, Alberto Molinari, Angelo Montanari & Adriano Peron (2018): Complexity of Timeline-Based
Planning over Dense Temporal Domains: Exploring the Middle Ground. In Andrea Orlandini & Martin
Zimmermann, editors: Proceedings of the 9th International Symposium on Games, Automata, Logics, and
Formal Verification, EPTCS 277, pp. 191–205, doi:10.4204/EPTCS.277.14.

[4] Laura Bozzelli, Alberto Molinari, Angelo Montanari & Adriano Peron (2018): Decidability and Complexity
of Timeline-Based Planning over Dense Temporal Domains. In Michael Thielscher, Francesca Toni & Frank
Wolter, editors: Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth Inter-
national Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018, AAAI Press, pp. 627–628.
Available at https://aaai.org/ocs/index.php/KR/KR18/paper/view/17995.

[5] Steve Chien, Gregg Rabideau, Russell Knight, Robert Sherwood, Barbara Engelhardt, Darren Mutz, Tara
Estlin, Benjamin Smith, Forest Fisher, T Barrett et al. (2000): ASPEN-Automating space mission operations
using automated planning and scheduling. In: SpaceOps 2000, AIAA Press.

[6] Steve A. Chien, Rob Sherwood, Daniel Tran, Benjamin Cichy, Gregg Rabideau, Rebecca Castaño, Ash-
ley Davies, Rachel Lee, Dan Mandl, Stuart Frye, Bruce Trout, Jerry Hengemihle, Jeff D’Agostino, Seth
Shulman, Stephen G. Ungar, Thomas Brakke, Darrell Boyer, Jim Van Gaasbeck, Ronald Greeley, Thomas
Doggett, Victor R. Baker, James M. Dohm & Felipe Ip (2004): The EO-1 Autonomous Science Agent. In: 3rd
International Joint Conference on Autonomous Agents and Multiagent Systems, IEEE Computer Society, pp.
420–427, doi:10.1109/AAMAS.2004.10022.

[7] Marta Cialdea Mayer, Andrea Orlandini & Alessandro Umbrico (2016): Planning and execution with flexible
timelines: a formal account. Acta Informatica 53(6-8), pp. 649–680, doi:10.1007/s00236-015-0252-z.

[8] Dario Della Monica, Nicola Gigante, Salvatore La Torre & Angelo Montanari (2020): Complexity of Qual-
itative Timeline-Based Planning. In Emilio Muñoz-Velasco, Ana Ozaki & Martin Theobald, editors: 27th
International Symposium on Temporal Representation and Reasoning, TIME 2020, September 23-25, 2020,
Bozen-Bolzano, Italy, LIPIcs 178, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 16:1–16:13,
doi:10.4230/LIPICS.TIME.2020.16.

[9] Maria Fox & Derek Long (2003): PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains. J. Artif. Intell. Res. 20, pp. 61–124, doi:10.1613/jair.1129.

[10] Simone Fratini, Amedeo Cesta, Andrea Orlandini, Riccardo Rasconi & Riccardo De Benedictis (2011):
APSI-based Deliberation in Goal Oriented Autonomous Controllers. In: ASTRA 2011, 11, ESA.

[11] Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer & Andrea Orlandini (2016): Timelines Are Ex-
pressive Enough to Capture Action-Based Temporal Planning. In Curtis E. Dyreson, Michael R. Hansen &
Luke Hunsberger, editors: 23rd International Symposium on Temporal Representation and Reasoning,, IEEE
Computer Society, pp. 100–109, doi:10.1109/TIME.2016.18.

[12] Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer & Andrea Orlandini (2017): Complexity of
Timeline-Based Planning. In Laura Barbulescu, Jeremy Frank, Mausam & Stephen F. Smith, editors:
Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling,
ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017, AAAI Press, pp. 116–124. Available at
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758.

[13] Nicola Gigante, Angelo Montanari, Andrea Orlandini, Marta Cialdea Mayer & Mark Reynolds (2020):
On timeline-based games and their complexity. Theoretical Computer Science 815, pp. 247–269,
doi:10.1016/j.tcs.2020.02.011.

https://doi.org/10.4204/EPTCS.370.9
https://doi.org/10.1145/182.358434
https://doi.org/10.4204/EPTCS.277.14
https://aaai.org/ocs/index.php/KR/KR18/paper/view/17995
https://doi.org/10.1109/AAMAS.2004.10022
https://doi.org/10.1007/s00236-015-0252-z
https://doi.org/10.4230/LIPICS.TIME.2020.16
https://doi.org/10.1613/jair.1129
https://doi.org/10.1109/TIME.2016.18
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758
https://doi.org/10.1016/j.tcs.2020.02.011

18 Synthesis of Timeline-Based Planning Strategies Avoiding Determinization

[14] Dario Della Monica, Nicola Gigante, Angelo Montanari & Pietro Sala (2018): A Novel Automata-Theoretic
Approach to Timeline-Based Planning. In Michael Thielscher, Francesca Toni & Frank Wolter, editors:
Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Confer-
ence, KR 2018, Tempe, Arizona, 30 October - 2 November 2018, AAAI Press, pp. 541–550. Available at
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024.

[15] Dario Della Monica, Nicola Gigante, Angelo Montanari, Pietro Sala & Guido Sciavicco (2017): Bounded
Timed Propositional Temporal Logic with Past Captures Timeline-based Planning with Bounded Con-
straints. In Carles Sierra, editor: Proceedings of the Twenty-Sixth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, ijcai.org, pp. 1008–1014,
doi:10.24963/IJCAI.2017/140.

[16] Nicola Muscettola (1994): HSTS: Integrating Planning and Scheduling. In Monte Zweben & Mark S. Fox,
editors: Intelligent Scheduling, chapter 6, Morgan Kaufmann, pp. 169–212.

[17] Amir Pnueli & Roni Rosner (1989): On the Synthesis of an Asynchronous Reactive Module. In Giorgio
Ausiello, Mariangiola Dezani-Ciancaglini & Simona Ronchi Della Rocca, editors: 16th International Collo-
quium on Automata, Languages and Programming, Lecture Notes in Computer Science 372, Springer, pp.
652–671, doi:10.1007/BFB0035790.

[18] Alessandro Umbrico, Amedeo Cesta, Marta Cialdea Mayer & Andrea Orlandini (2017): PLATINUm: A New
Framework for Planning and Acting. In Floriana Esposito, Roberto Basili, Stefano Ferilli & Francesca A.
Lisi, editors: Proceedings of the 16th International Conference of the Italian Association for Artificial Intel-
ligence, LNCS 10640, Springer, pp. 498–512, doi:10.1007/978-3-319-70169-1_37.

[19] Alessandro Umbrico, Amedeo Cesta & Andrea Orlandini (2023): Human-Aware Goal-Oriented Auton-
omy through ROS-Integrated Timeline-based Planning and Execution. In: 32nd IEEE International
Conference on Robot and Human Interactive Communication, IEEE, pp. 1164–1169, doi:10.1109/RO-
MAN57019.2023.10309516.

https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024
https://doi.org/10.24963/IJCAI.2017/140
https://doi.org/10.1007/BFB0035790
https://doi.org/10.1007/978-3-319-70169-1_37
https://doi.org/10.1109/RO-MAN57019.2023.10309516
https://doi.org/10.1109/RO-MAN57019.2023.10309516

A. Achilleos and A. Francalanza (Eds.): Fifteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2024).

EPTCS 409, 2024, pp. 19–34, doi:10.4204/EPTCS.409.6

© S. Almagor & I. Salgado

This work is licensed under the

Creative Commons Attribution License.

Jumping Automata Must Pay*

Shaull Almagor

Technion, Israel

shaull@technion.ac.il
†

Ishai Salgado

Technion, Israel

ishaisalgado@campus.technion.ac.il

Jumping automata are finite automata that read their input in a non-sequential manner, by allowing

a reading head to “jump” between positions on the input, consuming a permutation of the input

word. We argue that allowing the head to jump should incur some cost. To this end, we propose

three quantitative semantics for jumping automata, whereby the jumps of the head in an accepting

run define the cost of the run. The three semantics correspond to different interpretations of jumps:

the absolute distance semantics counts the distance the head jumps, the reversal semantics counts

the number of times the head changes direction, and the Hamming distance measures the number of

letter-swaps the run makes.

We study these measures, with the main focus being the boundedness problem: given a jumping

automaton, decide whether its (quantitative) languages is bounded by some given number k. We

establish the decidability and complexity for this problem under several variants.

1 Introduction

Traditional automata read their input sequentially. Indeed, this is the case for most state-based compu-

tational models. In some settings, however, we wish to abstract away the order of the input letters. For

example, when the input represents available resources, and we only wish to reason about their quan-

tity. From a more language-theoretic perspective, this amounts to looking at the commutative closure of

languages, a.k.a. their Parikh image. To capture this notion in a computation model, Jumping Automata

(JFAs) were introduced in [19]. A jumping automaton may read its input in a non-sequential manner,

jumping from letter to letter, as long as every letter is read exactly once. Several works have studied the

algorithmic properties and expressive power of these automata [11, 12, 21, 10, 17, 4].

While JFAs are an attractive and simple model, they present a shortcoming when thought of as model

for systems, namely that the abstraction of the order may be too coarse. More precisely, the movement

of the head can be thought of as a physical process of accessing the input storage of the JFA. Then,

sequential access is the most basic form of access and can be considered “cheap”, but allowing the head

to jump around is physically more difficult and therefore should incur a cost.

To address this, we present three quantitative semantics for JFAs, whereby a JFA represents a func-

tion from words to costs, which captures how expensive it is to accept a given word with respect to the

head jumps. The different semantics capture different aspects of the cost of jumps, as follows.

Consider a JFA A and a word w, and let ρ be an accepting run of A on w. The run ρ specifies the

sequence of states and indices visited in w. We first define the cost of individual runs.

• In the Absolute Distance semantics (ABS), the cost of ρ is the sum of the lengths of jumps it makes.

• In the Reversal semantics (REV), the cost of ρ is the number of times the reading head changes its

direction (i.e., moving from right to left or from left to right).

*The full version can be found at the authors’ homepages.
†This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 989/22). We also thank Michaël

Cadilhac for fruitful discussions about this submission.

http://dx.doi.org/10.4204/EPTCS.409.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

20 Jumping Automata Must Pay

• In the Hamming semantics (HAM), we consider the word w′ induced by ρ , i.e., the order of letters

that ρ reads. Then, the cost of ρ is the number of letters where w′ differs from w.

We then define the cost of the word w in A according to each semantics, by taking the run that minimizes

the cost.

Thus, we lift JFAs from a Boolean automata model to the rich setting of quantitative models [5, 3,

8, 9]. Unlike other quantitative automata, however, the semantics in this setting arise naturally from the

model, without an external domain. Moreover, the definitions are naturally motivated by different types

of memory access, as we now demonstrate. First, consider a system whose memory is laid out in an

array (i.e., a tape), with a reading head that can move along the tape. Moving the head requires some

energy, and therefore the total energy spent reading the input corresponds to the ABS semantics. Next,

consider a system whose memory is a spinning disk (or a sliding tape), so that the head stays in place and

the movement is of the memory medium. Then, it is cheap to continue spinning in the same direction1,

and the main cost is in reversing the direction, which requires stopping and reversing a motor. Then, the

REV semantics best captures the cost. Finally, consider a system that reads its input sequentially, but is

allowed to edit its input by replacing one letter with another, such that at the end the obtained word is a

permutation of the original word. This is akin to edit-distance automata [20, 13] under a restriction of

maintaining the amount of resources. Then, the minimal edits required correspond to the HAM semantics.

Example 1. Consider a (standard) NFA A for the language given by the regular expression (ab)∗

(the concrete automaton chosen is irrelevant, see Remark 6). As a JFA, A accepts a word w if and

only if w has an equal number of a’s and b’s. To illustrate the different semantics, consider the words

w1 = ababbaab and w2 = ababbaba, obtained from (ab)4 by flipping the third ab pair (w1) and the third

and fourth pairs (w2). As we define in Section 3, we think of runs of the JFA A as if the input is given

between end markers at indices 0 and n+1, and the jumping run must start at 0 and end in n+1.

• In the ABS semantics, the cost of w1, denoted AABS(w1), is 2: the indices read by the head are

0,1,2,3,4,6,5,7,8,9, so there are two jumps of cost 1: from 4 to 6 and from 5 to 7. Similarly, we

have AABS(w2) = 4, e.g., by the sequence 0,1,2,3,4,6,5,8,7,9, which has two jumps of cost 1 (4

to 6 and 7 to 9), and one jump of cost 2 (5 to 8). (formally, we need to prove that there is no better

run, but this is not hard to see).

• In the REV semantics, we have AREV(w1) = 2 by the same sequence of indices as above, as the

head performs two “turns”, one at index 6 (from → to ←) and one at 5 (from ← to →). Here,

however, we also have AREV(w2) = 2, using the sequence 0,1,2,3,4,6,8,7,5,9, whose turning

points are 8 and 5.

• In the HAM semantics we have AHAM(w1) = 2 and AHAM(w2) = 4, since we must change the letters

in all the flipped pairs for the words to be accepted.

Example 2. Consider now an NFA B for the language given by the regular expression a∗b∗. Note that

as a JFA, B accepts {a,b}∗, since every word can be reordered to the form a∗b∗.

Observe that in the REV semantics, for every word w we have BREV(w)≤ 2, since at the worst case

B makes one left-to-right pass to read all the a’s, then a right-to-left pass to read all the b’s, and then

jump to the right end marker, and thus it has two turning points. In particular, BREV is bounded.

However, in the ABS and HAM semantics, the costs can become unbounded. Indeed, in order to

accept words of the form bnan, in the ABS semantics the head must first jump over all the bn, incurring a

high cost, and for the HAM semantics, all the letters must be changed, again incurring a high cost.

1We assume that the head does not return back to the start by continuing the spin, but rather reaches some end.

S. Almagor & I. Salgado 21

Related work Jumping automata were introduced in [19]. We remark that [19] contains some erro-

neous proofs (e.g., closure under intersection and complement, also pointed out in [12]). The works

in [11, 12] establish several expressiveness results on jumping automata, as well as some complexity

results. In [21] many additional closure properties are established. An extension of jumping automata

with a two-way tape was studied in [10], and jumping automata over infinite words were studied by the

first author in [4].

When viewed as the commutative image of a language, jumping automata are closely related to

Parikh Automata [16, 7, 6, 14], which read their input and accept if a certain Parikh image relating to the

run belongs to a given semilinear set (indeed, we utilize the latter in our proofs). Another related model

is that of symmetric transducers – automata equipped with outputs, such that permutations in the input

correspond to permutations in the output. These were studied in [2] in a jumping-flavour, and in [1] in a

quantitative k-window flavour.

More broadly, quantitative semantics have received much attention in the past two decades, with

many motivations and different flavors of technicalities. We refer the reader to [5, 9] and the references

therein.

Contribution and paper organization Our contribution consists of the introduction of the three jump-

ing semantics, and the study of decision problems pertaining to them (defined in Section 3). Our main

focus is the boundedness problem: given a JFA A , decide whether the function described by it under

each of the semantics bounded by some constant k. We establish the decidability of this problem for all

the semantics, and consider the complexity of some fragments. More precisely, we consider several vari-

ants of boundedness, depending on whether the bound is a fixed constant, or an input to the problem, and

on whether the jumping language of A is universal. Our complexity results are summarized in Table 1.

Our paper is organized as follows: the preliminaries and definitions are given in Sections 2 and 3.

Then, each of Sections 4 to 6 studies one of the semantics, and follows the same structure: we initially

establish that the membership problem for the semantics is NP-complete. Then we characterize the set

of words whose cost is at most k using a construction of an NFA. These constructions differ according

to the semantics, and involve some nice tricks with automata, but are technically not hard to understand.

We note that these constructions are preceded by crucial observations regarding the semantics, which

allow us to establish their correctness. Next, in Section 7 we give a complete picture of the interplay

between the different semantics (using some of the results established beforehand). Finally, in Section 8

we discuss some exciting open problems. Due to lack of space, some proofs appear in the full version.

k-BND PARAM-BND UNIV-k-BND
UNIV-PARAM-BND

unary binary

ABS
Decidable

PSPACE-h

Decidable

PSPACE-h
PSPACE-c

EXPSPACE

PSPACE-h

2-EXPSPACE

PSPACE-h

REV
Decidable

PSPACE-h

Decidable

PSPACE-h
PSPACE-c

EXPSPACE

PSPACE-h

2-EXPSPACE

PSPACE-h

HAM
Decidable

PSPACE-h

Decidable

PSPACE-h
PSPACE-c PSPACE-c

EXPSPACE

PSPACE-h

Table 1: Complexity results of the various boundedness problems for the three semantics. The com-

plexity of membership is NP-complete for all the semantics. The “Decidable” entries depend on the

complexity of the containment problem for Parikh Automata.

22 Jumping Automata Must Pay

2 Preliminaries and Definitions

For a finite alphabet Σ we denote by Σ∗ the set of finite words over Σ. For w ∈ Σ∗ we denote its letters

by w = w1 · · ·wn, and its length by |w|= n. In the following, when discussing sets of numbers, we define

min /0 = ∞

Automata A nondeterministic finite automaton (NFA) is a 5-tuple A = 〈Σ,Q,δ ,Q0,α〉 where Σ is a

finite alphabet, Q is a finite set of states, δ : Q×Σ→ 2Q is a nondeterministic transition function, Q0 ⊆Q

is a set of initial states, and α ⊆ Q is a set of accepting states. A run of A on a word w = w1w2 . . .wn is

a sequence ρ = q0,q1, . . . ,qn such that q0 ∈ Q0 and for every 0 ≤ i < n it holds that qi+1 ∈ δ (qi,wi+1).
The run ρ is accepting if qn ∈ α . A word w is accepted by A if there exists an accepting run of A on

w. The language of A , denoted L(A), is the set of words accepted by A .

Permutations Let n ∈ N. The permutation group Sn is the set of bijections (i.e. permutations)

from {1, ...,n} to itself. Sn forms a group with the function-composition operation and the identity

permutation as a neutral element. Given a word w = w1 · · ·wn and a permutation π ∈ Sn, we define

π(w) = wπ(1) · · ·wπ(n). For example, if w = abcd and π =

(

1 2 3 4

3 4 2 1

)

then π(w) = cdba. We usu-

ally denote permutations in one-line form, e.g., π is represented as (3,4,2,1). We say that a word y is a

permutation of x, and we write x∼ y if there exists a permutation π ∈ S|x| such that π(x) = y.

Jumping Automata A jumping automaton is syntactically identical to an NFA, with the semantic

difference that it has a reading head that can “jump” between indices of the input word. An equivalent

view is that a jumping automaton reads a (nondeterministically chosen) permutation of the input word.

Formally, consider an NFA A . We view A as a jumping finite automaton (JFA) by defining its

jumping language J(A) = {w ∈ Σ∗ | ∃u ∈ Σ∗. w∼ u∧u ∈ L(A)}.

Since our aim is to reason about the manner with which the head of a JFA jumps, we introduce a

notion to track the head along a run. Consider a word w of length n and a JFA A . A jump sequence is

a vector a = (a0,a1,a2, . . . ,an,an+1) where a0 = 0, an+1 = n+1 and (a1,a2, . . . ,an) ∈ Sn. We denote by

Jn the set of all jump sequences of size n+2.

Intuitively, a jump sequence a represents the order in which a JFA visits a given word of length n.

First it visits the letter at index a1, then the letter at index a2 and so on. To capture this, we define

wa = wa1
wa2
· · ·wan

. Observe that jump sequences enforce that the head starts at position 0 and ends at

position n+1, which can be thought of as left and right markers, as is common in e.g., two-way automata.

An alternative view of jumping automata is via Parikh Automata (PA) [16, 6]. The standard definition

of PA is an automaton whose acceptance condition includes a semilinear set over the transitions. To

simplify things, and to avoid defining unnecessary concepts (e.g., semilinear sets), for our purposes, a

PA is a pair (A ,C) where A is an NFA over alphabet Σ, and C is a JFA over Σ. Then, the PA (A ,C)
accepts a word w if w ∈ L(A)∩J(C). Note that when L(A) = Σ∗, then the PA coincides with J(C).
Our usage of PA is to obtain the decidability of certain problems. Specifically, from [16] we have that

emptiness of PA is decidable.

S. Almagor & I. Salgado 23

3 Quantitative Semantics for JFAs

In this section we present and demonstrate the three quantitative semantics for JFAs. We then define the

relevant decision problems, and lay down some general outlines to solving them, which are used in later

sections. For the remainder of the section fix a JFA A = 〈Σ,Q,δ ,Q0,α〉.

3.1 The Semantics

The Absolute-Distance Semantics In the absolute-distance semantics, the cost of a run (given as a

jump sequence) is the sum of the sizes of the jumps made by the head. Since we want to think of a

sequential run as a run with 0 jumps, we measure a jump over k letters as distance k−1 (either to the left

or to the right). This is captured as follows.

For k∈Z, define JkK= |k|−1. Consider a word w∈Σ∗ with |w|= n, and let a=(a0,a1,a2, . . . ,an,an+1)
be a jump sequence, then we lift the notation above and write JaK = ∑n+1

i=1 Jai−ai−1K.

Definition 3 (Absolute-Distance Semantics). For a word w ∈ Σ∗ with |w|= n we define

AABS(w) = min{JaK | a is a jump sequence, and wa ∈ L(A)}

(recall that min /0 = ∞ by definition).

The Reversal Semantics In the reversal semantics, the cost of a run is the number of times the head

changes direction in the corresponding jump sequence. Consider a word w ∈ Σ∗ with |w| = n, and let

a = (a0,a1,a2, . . . ,an,an+1) be a jump sequence, we define

#REV(a) = |{i ∈ {1, . . . ,n} | (ai > ai−1∧ai > ai+1)∨ (ai < ai−1∧ai < ai+1)}|

Definition 4 (Reversal Semantics). For a word w ∈ Σ∗ with |w|= n we define

AREV(w) = min{#REV(a) | a is a jump sequence, and wa ∈ L(A)}

The Hamming Semantics In the Hamming measure, the cost of a word is the minimal number of

coordinates of w that need to be changed in order for the obtained word to be accepted by A (sequentially,

as an NFA), so that the changed word is a permutation of w.

Consider two words x,y ∈ Σ∗ with |x| = |y| = n such that x ∼ y, we define the Hamming Distance

between x and y as dH(x,y) = |{i | xi 6= yi}|.

Definition 5 (Hamming Semantics). For a word w ∈ Σ∗ we define

AHAM(w) = min{dH(w
′,w) | w′ ∈ L(A),w′ ∼ w}

Remark 6. Note that the definitions of the three semantics are independent of the NFA, and only refer

to its language. We can therefore refer to the cost of a word in a language according to each semantics,

rather than the cost of a word in a concrete automaton.

24 Jumping Automata Must Pay

3.2 Quantitative Decision Problems

In the remainder of the paper we focus on quantitative variants of the standard Boolean decision problems

pertaining to the jumping semantics. Specifically, we consider the following problems for each semantics

SEM ∈ {ABS,HAM,REV}.

• MEMBERSHIP: Given a JFA A , k ∈ N and a word w, decide whether ASEM(w)≤ k.

• k-BND (for a fixed k): Given a JFA A , decide whether ∀w ∈ J(A) ASEM(w)≤ k.

• PARAM-BND: Given a JFA A and k ∈ N, decide whether ∀w ∈ J(A) ASEM(w)≤ k.

We also pay special attention to the setting where J(A) = Σ∗, in which case we refer to these problems

as UNIV-k-BND and UNIV-PARAM-BND. For example, in UNIV-PARAM-BND we are given a JFA A

and k ∈ N and the problem is to decide whether ASEM(w)≤ k for all words w ∈ Σ∗.

The boundedness problems can be thought of as quantitative variants of Boolean universality (i.e., is

the language equal to Σ∗). Observe that the problems above are not fully specified, as the encoding of

k (binary or unary) when it is part of the input may effect the complexity. We remark on this when it is

relevant. Note that the emptiness problem is absent from the list above. Indeed, a natural quantitative

variant would be: is there a word w such that ASEM(w) ≤ k. This, however, is identical to Boolean

emptiness, since L(A) 6= /0 if and only if there exists w such that ASEM(w) = 0. We therefore do not

consider this problem. Another problem to consider is boundedness when k is existentially quantified.

We elaborate on this problem in Section 8.

4 The Absolute-Distance Semantics

The first semantics we investigate is ABS, and we start by showing that (the decision version of) com-

puting its value for a given word is NP-complete. This is based on bounding the distance with which a

word can be accepted.

Lemma 7. Consider a JFA A and w ∈ J(A) with |w|= n, then AABS(w)< n2.

Proof. Since w ∈ J(A), there exists a jump sequence a = (a0,a1,a2, . . . ,an,an+1) such that wa ∈ L(A).
Therefore, AABS(w) ≤ JaK. Observe that |ai−ai−1| ≤ n for all i ∈ {1, . . . ,n+1}, since there is no jump

from 0 to n+1 (since a0 = 0 and an = n+1). The following concludes the proof:

JaK =
n+1

∑
i=1

Jai−ai−1K =
n+1

∑
i=1

|ai−ai−1|−1≤
n+1

∑
i=1

n−1 = (n+1)(n−1)< n2

We can now prove the complexity bound for computing the absolute distance, as follows.

Theorem 8 (Absolute-Distance MEMBERSHIP is NP-complete). The problem of deciding, given A ,w
and k ∈ N, whether AABS(w)≤ k, is NP-complete.

Proof. In order to establish membership in NP, note that by Lemma 7, we can assume k ≤ n2, as oth-

erwise we can set k = n2. Then, it is sufficient to nondeterministically guess a jump sequence a and to

check that wa1
· · ·wan

∈ L(A) and that JaK ≤ k. Both conditions are easily checked in polynomial time,

since k is polynomially bounded.

Hardness in NP follows by reduction from (Boolean) membership in JFA: it is shown in [12] that

deciding whether w∈ J(A) is NP-hard. We reduce this problem by outputting, given A and w, the same

A and w with the bound k = n2. The reduction is correct by Lemma 7 and the fact that if w /∈ J(A) then

AABS(w) = ∞.

S. Almagor & I. Salgado 25

4.1 Decidability of Boundedness Problems for ABS

We now turn our attention to the boundedness problems. Consider a JFA A and k ∈ N. Intuitively, our

approach is to construct an NFA B that simulates, while reading a word w ∈ Σ∗, every jump sequence

of A on w whose absolute distance is at most k. The crux of the proof is to show that we can indeed

bound the size of B as a function of k. At a glance, the main idea here is to claim that since the absolute

distance is bounded by k, then A cannot make large jumps, nor many small jumps. Then, if we track a

sequential head going from left to right, then the jumping head must always be within a bounded distance

from it. We now turn to the formal arguments. Fix a JFA A = 〈Σ,Q,δ ,Q0,α〉.
To understand the next lemma, imagine A ’s jumping head while taking the jth step in a run on w

according to a jump sequence a = (a0,a1,a2, . . . ,an,an+1). Thus, the jumping head points to the letter at

index a j. Concurrently, imagine a “sequential” head (reading from left to right), which points to the jth

letter in w. Note that these two heads start and finish reading the word at the same indices a0 = 0 and

an+1 = n+1. It stands to reason that if at any step while reading w the distance between these two heads

is large, the cost of reading w according to a would also be large, as there would need to be jumps that

bridge the gaps between the heads. The following lemma formalizes this idea.

Lemma 9. Consider a jump sequence a = (a0,a1,a2, . . . ,an,an+1). For every 1 ≤ j ≤ n it holds that

JaK≥ |a j− j|.

Proof. Let 1 ≤ j ≤ n+ 1. First, assume that a j ≥ j and consider the sum ∑
j
i=1Jai− ai−1K ≤ JaK. From

the definition of J·K we have ∑
j
i=1Jai−ai−1K =

(

∑
j
i=1 |ai−ai−1|

)

− j, and we conclude that in this case

JaK≥ |a j− j| by the following:

(

j

∑
i=1

|ai−ai−1|

)

− j ≥


y

triangle inequality

∣

∣

∣

∣

∣

j

∑
i=1

ai−ai−1

∣

∣

∣

∣

∣

− j =


y

telescopic sum

|a j−a0|− j =


y

a0=0

a j− j =


y

a j≥ j

|a j− j|

The direction a j < j is proved by looking at the sum of the last j elements: assume a j < j, and consider

the sum ∑n+1
i= j+1Jai−ai−1K≤ JaK. From the definition of J·K we have

n+1

∑
i= j+1

Jai−ai−1K =

(

n+1

∑
i= j+1

|ai−ai−1|

)

− (n+1− (j+1)+1) =

(

n+1

∑
i= j+1

|ai−ai−1|

)

− (n+1− j)

Similarly to the previous case, from the triangle inequality we have

(

n+1

∑
i= j+1

|ai−ai−1|

)

−(n+1− j)≥ |an+1−a j|−(n+1− j) = n+1−a j−(n+1− j) = j−a j = |a j− j|

where we use the fact that an+1 = n+1 > a j, and our assumption that a j < j. This again concludes that

JaK≥ |a j− j|.

From Lemma 9 we get that in order for a word w to attain a small cost, it must be accepted with a

jumping sequence that stays close to the sequential head. More precisely:

Corollary 10. Let k ∈ N and consider a word w such that AABS(w) ≤ k, then there exists a jumping

sequence a = (a0,a1,a2, . . . ,an,an+1) such that wa ∈ L(A) and for all 1≤ j ≤ n we have |a j− j| ≤ k.

We now turn to the construction of an NFA that recognizes the words whose cost is at most k.

26 Jumping Automata Must Pay

Lemma 11. Let k∈N. We can effectively construct an NFA B such that L(B)={w∈ Σ∗|AABS(w)≤ k}.

Proof. Let k ∈ N. Intuitively, B works as follows: it remembers in its states a window of size 2k+ 1

centered around the current letter (recall that as an NFA, it reads its input sequentially). The window is

constructed by nondeterministically guessing (and then verifying) the next k letters, and remembering

the last k letters.

B then nondeterministically simulates a jumping sequence of A on the given word, with the property

that the jumping head stays within distance k from the sequential head. This is done by marking for each

letter in the window whether it has already been read in the jumping sequence, and nondeterministically

guessing the next letter to read, while keeping track of the current jumping head location, as well as the

total cost incurred so far. After reading a letter, the window is shifted by one to the right. If at any point

the window is shifted so that a letter that has not been read by the jumping head shifts out of the 2k+1

scope, the run rejects. Similarly, if the word ends but the guessed run tried to read a letter beyond the

length of the word, the run rejects. The correctness of the construction follows from Corollary 10. We

now turn to the formal details. Recall that A = 〈Σ,Q,δ ,Q0,α〉. We define B = 〈Σ,Q′,δ ′,Q′0,β 〉 as

follows.

The state space of B is Q′ = Q× (Σ×{?,X})−k,...,k×{−k, . . . ,k}×{0, . . . ,k}. We denote a state of

B as (q, f , j,c) where q ∈ Q is a state of A , f : {−k, . . . ,k} → Σ×{?,X} represents a window of size

2k+1 around the sequential head, where X marks letters that have already been read by A (and ? marks

the others), j represents the index of the head of A relative to the sequential head, and c represents the

cost incurred thus far in the run. We refer to the components of f as f (j) = (f (j)1, f (j)2) with f (j)1 ∈ Σ
and f (j)2 ∈ {?,X}.

The initial states of B are Q′0 = {(q, f , j, j−1) | q ∈ Q0∧ j > 0∧ (f (i)2 =X ⇐⇒ i≤ 0)}. That is,

all states where the state of A is initial, the location of the jumping head is some j > 0 incurring a cost

of j− 1 (i.e., the initial jump A makes), and the window is guessed so that everything left of the first

letter is marked as already-read (to simulate the fact that A cannot jump to the left of the first letter).

The transitions of B are defined as follows. Consider a state (q, f , j,c) and a letter σ ∈ Σ, then

(q′, f ′, j′,c′) ∈ δ ′((q, f , j,c),σ) if and only if the following hold (see Fig. 1 for an illustration):

• f (1)1 = σ . That is, we verify that the next letter in the guessed window is indeed correct.

• f (−k)2 = X. That is, the leftmost letter has been read. Otherwise by Corollary 10 the cost of

continuing the run must be greater than k.

• f (j)2 6=X and f ′(j−1) =X (if j > −k). That is, the current letter has not been previously read,

and will be read from now on (note that index j before the transition corresponds to index j− 1

after).

• q′ = δ (q, f (j)1), i.e. the state of A is updated according to the current letter.

• c′ = c+ | j′+1− j|−1, since j′ represents the index in the shifted window, so in the “pre-shifted”

tape this is actually index j+1. We demonstrate this in Fig. 1. Also, c′ ≤ k by the definition of Q.

• f ′(i) = f (i+1) for i < k. That is, the window is shifted and the index f ′(k) is nondeterministically

guessed2.

Finally, the accepting states of B are β = {(q, f ,1,c) | q ∈ α ∧ f (j)2 =? for all j > 0}. That is,

the state of A is accepting, the overall cost is at most k, the location of the jumping head matches the

sequential head (intuitively, location n+1), and no letter beyond the end of the tape has been used.

2The guess could potentially be X, but this is clearly useless.

S. Almagor & I. Salgado 27

αX β? γX ε? µX η? ξ ? ζX θ?

−4 −3 −2 −1 0 1 2 3 4

=⇒ βX γX ε? µX η? ξ ? ζX θ? ψ?

−4 −3 −2 −1 0 1 2 3 4

Figure 1: A single transition in the construction of Lemma 11. The dashed arrow signifies the sequential

head, the full arrow is the “imaginary” jumping head. Here, the head jumps from −3 to 2, incurring a

cost of 4, but in the indexing after the transition ξ is at index 1, thus the expression given for c′ in the

construction. Note that the letter being read must be µ , and that α must be checked, otherwise the run

has failed.

It is easy to verify that B indeed guesses a jump sequence and a corresponding run of A on the given

word, provided that the jumping head stays within distance k of the sequential head. By Corollary 10,

this restriction is complete, in the sense that if AABS(w)≤ k then there is a suitable jump sequence under

this restriction with which w is accepted.

We can now readily conclude the decidability of the boundedness problems for the ABS semantics.

The proof (in the full version) makes use of the decidability of emptiness for Parikh Automata [16].

Theorem 12. The following problems are decidable for the ABS semantics: k-BND, PARAM-BND,

UNIV-k-BND and UNIV-PARAM-BND.

With further scrutiny, we see that the size of B constructed as per Lemma 11 is polynomial in the size

of A and single-exponential in k. Thus, UNIV-k-BND is in fact decidable in PSPACE, whereas UNIV-

PARAM-BND is in EXPSPACE and 2-EXPSPACE for k given in unary and binary, respectively. For the

non-universal problems we do not supply upper complexity bounds, as these depend on the decidability

for PA containment, for which we only derive decidability from [16].

4.2 PSPACE-Hardness of Boundedness for ABS

In the following, we complement the decidability result of Theorem 12 by showing that already UNIV-

k-BND is PSPACE-hard, for every k ∈N.

We first observe that the absolute distance of every word is even. In fact, this is true for every jumping

sequence.

Lemma 13. Consider a jumping sequence a = (a0,a1, . . . ,an,an+1), then JaK is even.

Proof. Observe that the parity of |ai−ai−1| is the same as that of ai−ai−1. It follows that the parity of

JaK = ∑n+1
i=1 Jai−ai−1K = ∑n+1

i=1 |ai−ai−1|−1 is the same as that of

n+1

∑
i=1

(ai−ai−1−1) =

(

n+1

∑
i=1

ai−ai−1

)

− (n+1) = n+1− (n+1) = 0

and is therefore even (the penultimate equality is due to the telescopic sum).

We say that AABS is k-bounded if AABS(w)≤ k for all w∈ Σ∗. We are now ready to prove the hardness

of UNIV-k-BND. Observe that for a word w ∈ Σ∗ we have that AABS(w) = 0 if and only if w ∈ L(A)
(indeed, a cost of 0 implies that an accepting jump sequence is the sequential run 0,1, . . . , |w|+ 1). In

particular, we have that AABS is 0-bounded if and only if L(A) = Σ∗. Since the universality problem

28 Jumping Automata Must Pay

for NFAs is PSPACE-complete, this readily proves that UNIV-0-BND is PSPACE-hard. Note, however,

that this does not imply that UNIV-k-BND is also PSPACE-hard for other values of k, and that the same

argument fails for k > 0. We therefore need a slightly more elaborate reduction.

Lemma 14. For ABS the UNIV-k-BND and k-BND problems are PSPACE-hard for every k ∈N.

Proof. We sketch the proof for UNIV-k-BND. The case of k-BND requires slightly more effort and is

delegated to the full version. By Lemma 13, we can assume without loss of generality that k is even.

Indeed, if there exists m ∈ N such that AABS(w)≤ 2m+1 for every w ∈ Σ∗, then by Lemma 13 we also

have AABS(w)≤ 2m. Therefore, we assume k = 2m for some m ∈N.

We reduce the universality problem for NFAs to the UNIV-2m-BND problem. Consider an NFA

A = 〈Q,Σ,δ ,Q0,α〉, and let ♥ /∈ Σ be a fresh symbol. Intuitively, we obtain from A an NFA B over

the alphabet Σ∪{♥} such that w ∈ L(B) if and only if the following hold:

1. Either w does not contain exactly m occurrences of ♥, or

2. w contains exactly m occurrences of ♥, but does not start with ♥, and w|Σ ∈ L(A) (where w|Σ is

obtained from w by removing all occurrences of ♥).

We then have the following: if L(A) = Σ∗, then for every w ∈ (Σ∪{♥})∗ if w ∈ L(B) then BABS(w) =
0 ≤ 2m, and if w /∈ L(B) then w starts with ♥ but has exactly m occurrences of ♥. Thus, jumping to

the first occurrence of a letter in Σ incurs a cost of at most m, and reading the skipped ♥ symbols raises

the cost to at most 2m. From there, w can be read consecutively and be accepted since w|Σ ∈ L(A). So

again BABS(w)≤ 2m, and B is 2m-bounded.

Conversely, if L(A) 6= Σ∗, take x /∈ L(A) such that x 6= ε (see the full version for details regarding

this assumption), and consider the word w = ♥mx. We then have w /∈ L(B), and moreover – in order

to accept w (if at all possible), B first needs to jump over the initial ♥m, guaranteeing a cost of at least

2m (m for the jump and another m to later read the ♥m prefix), and needs at least one more jump to

accept x, since x /∈ L(A). Thus, BABS(w)> 2m, so B is not 2m-bounded. The precise construction and

correctness are given in the full version.

Lemma 14 shows hardness for fixed k, and in particular when k is part of the input. Thus, UNIV-

PARAM-BND and PARAM-BND are also PSPACE-hard, and UNIV-k-BND is PSPACE-complete. Also,

UNIV-PARAM-BND is in EXPSPACE and 2-EXPSPACE for k given in unary and binary, respectively.

5 The Reversal Semantics

We now study the reversal semantics. Recall from Definition 4 that for a JFA A and a word w, the cost

AREV(w) is the minimal number of times the jumping head changes “direction” in a jump sequence for

which w is accepted.

Consider a word w with |w| = n and a jump sequence a = (a0,a1,a2, . . . ,an,an+1). We say that an

index 1 ≤ i≤ n is a turning index if ai > ai−1 and ai > ai+1 (i.e., a right-to-left turn) or if ai < ai−1 and

ai < ai+1 (i.e., a left-to-right turn). We denote by Turn(a) the set of turning indices of a.

For example, consider the jump sequence (
a0

0 ,
a1

2 ,
a2

3 ,
a3

5 ,
a4

7,
a5

4 ,
a6

1 ,
a7

6 ,
a8

8), then Turn(a) = {4,6}. Note

that the cost of w is then AREV(w) = min{|Turn(a)| | wa ∈ L(A)}. Viewed in this manner, we have that

AREV(w) ≤ |w|, and computing Turn(a) can be done in polynomial time. Thus, analogously to Theo-

rem 8 we have the following.

S. Almagor & I. Salgado 29

Theorem 15 (Reversal MEMBERSHIP is NP-complete). The problem of deciding, given A and k,

whether AREV(w)≤ k is NP-complete.

Remark 16. For every jump sequence a we have that |Turn(a)| is even, since the head starts at position

0 and ends at n+1, where after an odd number of turning points the direction is right-to-left, and hence

cannot reach n+1.

5.1 Decidability of Boundedness Problems for REV

We begin by characterizing the words accepted using at most k reversals as a shuffle of subwords and

reversed-subwords, as follows. Let x,y ∈ Σ∗ be words, we define their shuffle to be the set of words

obtained by interleaving parts of x and parts of y. Formally:

x� y = {s1 · t1 · s2 · t2 · · · sk · tk | ∀i si, ti ∈ Σ∗∧ x = s1 · · · sk ∧ y = t1 · · · tk}

For example, if x = aab and y = cd then x� y contains the words aabcd, acabd, caadb, among others

(the colors reflect which word each subword originated from). Note that the subwords may be empty,

e.g., caadb can be seen as starting with ε as a subword of x. It is easy to see that � is an associative

operation, so it can be extended to any finite number of words.

The following lemma states that, intuitively, if AREV(w)≤ k, then w can be decomposed to a shuffle

of at most k+ 1 subwords of itself, where all the even ones are reversed (representing the left-reading

subwords). See the full version for the proof.

Lemma 17. Let k ∈ N. Consider an NFA A and a word w ∈ Σ∗. Then AREV(w)≤ k if and only if there

exist words s1,s2, . . . ,sk+1 ∈ Σ∗ such that the following hold.

1. s1s2 . . . sk+1 ∈ L(A).

2. w ∈ s1� s2
R
� s3� s4

R
� . . .� sk+1 (where sR

i is the reverse of si).

Using the characterization in Lemma 17, we can now construct a corresponding NFA, by intuitively

guessing the shuffle decomposition and running copies of A and its reverse in parallel. See the full

version for the proof.

Lemma 18. Let k ∈N and consider a JFA A . We can effectively construct an NFA B such that L(B) =
{w ∈ Σ∗ |AREV(w)≤ k}.

The proof of Lemma 18 shows that the size of B is polynomial in the size of A and single-

exponential in k, giving us PSPACE membership for UNIV-k-BND.

5.2 PSPACE-Hardness of Boundedness for REV

Following a similar scheme to the Absolute Distance Semantics of Section 4, observe that for a word

w∈ Σ∗ we have that AABS(w) = 0 if and only if w∈L(A), which implies that UNIV-0-BND is PSPACE-

hard. Yet again, the challenge is to prove hardness of UNIV-k-BND for all values of k.

Theorem 19. For REV, UNIV-k-BND is PSPACE-complete for every k ∈ N.

Proof. Membership in PSPACE follows from Lemma 18 and the discussion thereafter. For hardness, we

follow the same flow as the proof of Lemma 14, but naturally the reduction itself is different. Specifically,

we construct an NFA that must read an expression of the form (♥♠)m before its input. This allows us to

shuffle the input to the form ♠m♥m, which causes many reversals (see the full version).

As in Section 4.2, it follows that UNIV-PARAM-BND, k-BND and PARAM-BND are also PSPACE-hard.

30 Jumping Automata Must Pay

6 The Hamming Semantics

Recall from Definition 5 that for a JFA A and word w, the cost AHAM(w) is the minimal Hamming

distance between w and w′ where w′ ∼ w and w′ ∈ L(A).

Remark 20 (An alternative interpretation of the Hamming Semantics). We can think of a jumping au-

tomaton as accepting a permutation w′ of the input word w. As such, a natural candidate for a quan-

titative measure is the “distance” of the permutation used to obtain w′ from the identity (i.e. from w).

The standard definition for such a distance is the number of transpositions of two indices required to

move from one permutation to the other, namely the distance in the Cayley graph for the transpositions

generators of Sn. It is easy to show that in fact, the Hamming distance coincides with this definition.

In the full version we establish the complexity of computing the Hamming measure of a given word.

Theorem 21 (Hamming MEMBERSHIP is NP-complete). The problem of deciding, given A and k ∈N,

whether AHAM(w)≤ k is NP-complete.

Similarly to Sections 4.1 and 5.1, in order to establish the decidability of UNIV-PARAM-BND, we

start by constructing an NFA that accepts exactly the words for which AHAM(w)≤ k.

Lemma 22. Let k ∈ N. We can effectively construct an NFA B with L(B) = {w ∈ Σ∗ |AHAM(w)≤ k}.

Proof. Let k ∈ N. Intuitively, B works as follows: while reading a word w sequentially, it simulates

the run of A , but allows A to intuitively “swap” the current letter with a (nondeterministically chosen)

different one (e.g., the current letter may be a but the run of A can be simulated on either a or b). Then,

B keeps track of the swaps made by counting for each letter a how many times it was swapped by

another letter, and how many times another letter was swapped to it. This is done by keeping a counter

ranging from −k to k, counting the difference between the number of occurrences of each letter in the

simulated word versus the actual word. We refer to this value as the balance of the letter. B also keeps

track of the total number of swaps. Then, a run is accepting if at the end of the simulation, the total

amount of swaps does not exceed k, and if all the letters end up with 0 balance. See the full version for a

detailed construction and proof.

An analogous proof to Theorem 12 gives us the following.

Theorem 23. The following problems are decidable for the HAM semantics: k-BND, PARAM-BND,

UNIV-k-BND, and UNIV-PARAM-BND.

We note that the size of B constructed in Lemma 22 is polynomial in k and single-exponential in

|Σ|, and therefore when Σ is fixed and k is either fixed or given in unary, both UNIV-PARAM-BND and

UNIV-k-BND are in PSPACE.

For a lower bound, we remark that similarly to Section 4.2, it is not hard to prove that UNIV-k-BND

is also PSPACE-hard for every k, using relatively similar tricks. However, since UNIV-PARAM-BND is

already PSPACE-complete, then UNIV-k-BND is somewhat redundant. We therefore make do with the

trivial lower bound whereby we reduce universality of NFA to UNIV-0-BND.

Theorem 24. For HAM, the UNIV-PARAM-BND problem is PSPACE-complete for k encoded in unary

and fixed alphabet Σ.

S. Almagor & I. Salgado 31

7 Interplay Between the Semantics

Having established some decidability results, we now turn our attention to the interplay between the

different semantics, in the context of boundedness. We show that for a given JFA A , if AABS is bounded,

then so is AHAM, and if AHAM is bounded, then so is AREV. We complete the picture by showing that

these are the only relationships – we give examples for the remaining cases (see Table 2).

Lemma 25. Consider a JFA A . If AABS is bounded, then AHAM is bounded.

Proof. Consider a word w ∈ Σ∗, we show that if AABS(w) ≤ k for some k ∈ N then AHAM(w) ≤ (2k+
1)(k+1). Assume AABS(w)≤ k, then there exists a jump sequence a = (a0, . . . ,an+1) such that JaK≤ k

and wa ∈ L(A). In the following we show that ai = i for all but (2k+ 1)(k+ 1) indices, i.e., |{i | ai 6=
i}| ≤ (2k+1)(k+1).

It is convenient to think of the jumping head moving according to a in tandem with a sequential head

moving from left to right. Recall that by Lemma 9, for every index i we have that i− k ≤ ai ≤ i+ k, i.e.

the jumping head stays within distance k from the sequential head.

Consider an index i such that ai 6= i (if there is no such index, we are done). we claim that within

at most 2k steps, A performs a jump of cost at least 1 according to a. More precisely, there exists

i+1≤ j ≤ i+2k such that |a j−a j−1|> 1. To show this we split to two cases:

• If ai > i, then there exists some m ≤ i such that m has not yet been visited according to a (i.e.,

by step i). Index m must be visited by ai within at most k steps (otherwise it becomes outside the

i− k, i+ k window around the sequential head), and since ai > i, it must perform a “ left jump” of

size at least 2 (otherwise it always remains to the right of the sequential reading head).

• If ai < i, then there exists some m≥ i such that m has already been visited by step i according to a.

Therefore, within at most 2k steps, the jumping head must skip at least over this position (think of

m as a hurdle coming toward the jumping head, which must stay within distance k of the sequential

head and therefor has to skip over it). Such a jump incurs a cost of at least 1.

Now, let B = {i | ai 6= i} and assume by way of contradiction that |B| > (2k+ 1)(k+ 1). By the above,

for every i ∈ B, within 2k steps the run incurs a cost of at least 1. While some of these intervals of 2k

steps may overlap, we can still find at least k+ 1 such disjoint segments (indeed, every i ∈ B can cause

an overlap with at most 2k other indices). More precisely, there are i1 < i2 < .. . < ik+1 in B such that

i j > i j−1+2k for all j, and therefore each of the costs incurred within 2k steps of visiting i j is independent

of the others. This, however, implies that JaK≥ k+1, which is a contradiction, so |B| ≤ (2k+1)(k+1).
It now follows that AHAM(w) = |{i | wai

6= wi}| ≤ |{i | ai 6= i}| ≤ (2k+1)(k+1)

Lemma 26. Consider a JFA A . If AHAM is bounded, then AREV is bounded.

Proof. Consider a word w ∈ Σ∗, we show that if AHAM(w) ≤ k for some k ∈ N then AREV(w) ≤ 3k.

Assume AHAM(w) ≤ k, then there exists a jump sequence a = (a0, . . . ,an+1) such that wa ∈ L(A) and

wa differs from w in at most k indices. We claim that we can assume without loss of generality that for

every index i such that wai
= wi we have ai = i (i.e., i is a fixed point). Intuitively – there is no point

swapping identical letters. Indeed, assume that this is not the case, and further assume that a has the

minimal number of fixed-points among such jump sequences. Thus, there exists some j for which a j 6= j

but wa j
= w j. Let m be such that am = j, and consider the jump sequence a′ = (a′0, . . . ,a

′
n+1) obtained

from a by composing it with the swap (a j am). Then, for every i /∈ { j,m} we have that a′i = ai. In

addition, a′j = am = j as well as a′m = a j. In particular, a′ has more fixed points than a (exactly those of

a and j). However, we claim that wa = wa′ . Indeed, the only potentially-problematic coordinates are a j

32 Jumping Automata Must Pay

and am. For j we have wa j
= w j = wa′j

. and for m we have wa′m
= wa j

= w j = wam
. This is a contradiction

to a having a minimal number of fixed points, so we conclude that no such coordinate a j 6= j exists.

Next, observe that Turn(a)⊆ {i | ai 6= i∨ai+1 6= i+1∨ai−1 6= i−1}. Indeed, if ai−1 = i−1, ai = i

and ai+1 = i+ 1 then clearly i is not a turning index. By the property established above, we have that

wai
= wi, if and only if ai = i. It follows that Turn(a)⊆ {i | wai

6= wi∨wai+1
6= wi+1∨wai−1

6= wi−1}, so

|Turn(a)| ≤ 3k (since each index where wa 6= w is counted at most 3 times3 in the latter set).

Combining Lemmas 25 and 26, we have the following.

Corollary 27. If ABS is bounded, then so is REV.

We proceed to show that no other implication holds with regard to boundedness, by demonstrating

languages for each possible choice of bounded/unbounded semantics (c.f. Remark 6). The examples are

summarized in Table 2, and are proved below.

ABS HAM REV Language

Bounded Bounded Bounded (a+b)∗

Unbounded Bounded Bounded (a+b)∗a

Unbounded Unbounded Bounded a∗b∗

Unbounded Unbounded Unbounded (ab)∗

Table 2: Examples for every possible combination of bounded/unbounded semantics. The languages are

given by regular expressions (e.g., (a+b)∗a is the languages of words that end with a.)

Example 28. The language (a+ b)∗ is bounded in all semantics. This is trivial, since every word is

accepted, and in particular has cost 0 in all semantics.

Example 29. The language (a+b)∗a is bounded in the HAM and REV semantics, but unbounded in ABS.

Indeed, let A be an NFA such that L(A) = (a+ b)∗a and consider a word w ∈ J(A), then w has at

least one occurrence of a at some index i. Then, for the jumping sequence a = (0,1,2, . . . , i− 1,n, i+
1, . . .n−1, i,n+1) we have that wa ∈ L(A). Observe that dH(wa,w)≤ 2 (since wa differs from w only

in indices i and n), and Turn(a)⊆ {i,n}, so AHAM(w)≤ 2 and AREV(w)≤ 2.

For ABS, however, consider the word abn for every n ∈ N. Since the letter a must be read last, then

in any jumping sequence accepting the word, there is a point where the jumping head is at index n and

the sequential head is at position 1. By Lemma 9, it follows that AABS(w) ≥ n−1, and by increasing n,

we have that AABS is unbounded.

Example 30. The language a∗b∗ is bounded in the REV semantics, but unbounded in HAM and ABS.

Indeed, let A be an NFA such that L(A) = a∗b∗ and consider a word w ∈ J(A), and denote by i1 <
i2 . . . < ik the indices of a’s in w in increasing order, and by j1 > j2 > .. . > jn−k the indices of b’s in

decreasing order. Then, for the jumping sequence a = (i1, . . . , ik, j1, . . . jn−k,n+ 1) we have that wa ∈
L(A), and AREV(w)≤ 2 (since the jumping head goes right reading all the a’s, then left reading all the

b’s, then jumps to n+1).

For HAM, consider the word w = bnan for every n ∈ N. The only permutation of w that is accepted

in L(A) is w′ = anbn, and dH(w,w
′) = n, so AHAM is unbounded. By Lemma 25 it follows that AABS is

also unbounded.

3A slightly finer analysis shows that this is in fact at most 2k, but we are only concerned with boundedness.

S. Almagor & I. Salgado 33

Example 31. The language (ab)∗ is unbounded in all the semantics. Indeed, let A be an NFA such that

L(A) = (ab)∗, then by Lemma 26 and Corollary 27 it suffices to show that AREV is unbounded.

Consider the word w = bnan for every n ∈N, and let a = (a0,a1, . . . ,a2n,a2n+1) such that wa ∈ (ab)∗,
then for every odd i≤ 2n we have ai ∈ {n+1, . . . ,2n} and for every even i≤ 2n we have ai ∈ {1, . . . ,n}.
In particular, every index 1≤ i≤ 2n is a turning point, so AREV(w) = 2n, and AREV is unbounded.

8 Discussion and Future Work

Quantitative semantics are often defined by externally adding some quantities (e.g., weights) to a finite-

state model, usually with the intention of explicitly reasoning about some unbounded domain. It is rare

and pleasing when quantitative semantics arise naturally from a Boolean model. In this work, we study

three such semantics. Curiously, despite the semantics being intuitively unrelated, it turns out that they

give rise to interesting interplay (see Section 7).

We argue that Boundedness is a fundamental decision problem for the semantics we introduce, as

it measures whether one can make do with a certain budget for jumping. An open question left in this

research is existentially-quantified boundedness: whether there exists some bound k for which ASEM is k-

bounded. This problem seems technically challenging, as in order to establish its decidability, we would

need to upper-bound the minimal k for which the automaton is k-bounded, if it exists. The difficulty

arises from two fronts: first, standard methods for showing such bounds involve some pumping argument.

However, the presence of permutations makes existing techniques inapplicable. We expect that a new

toolbox is needed to give such arguments. Second, the constructions we present for UNIV-PARAM-BND

in the various semantics seem like the natural approach to take. Therefore, a sensible direction for the

existential case is to analyze these constructions with a parametric k. The systems obtained this way,

however, do not fall into (generally) decidable classes. For example, in the HAM semantics, using a

parametric k we can construct a labelled VASS. But the latter do not admit decidable properties for the

corresponding boundedness problem.

We remark on one fragment that can be shown to be decidable: consider a setting where the jumps

are restricted to swapping disjoint pairs of adjacent letters, each incurring a cost of 1. Then, the JFA

can be translated to a weighted automaton, whose boundedness problem is decidable by [15, 18]. We

remark that the latter decidability is a very involved result. This suggests (but by no means proves) that

boundedness may be a difficult problem.

References

[1] Antonio Abu Nassar & Shaull Almagor (2022): Simulation by Rounds of Letter-To-Letter Transducers. In:

30th EACSL Annual Conference on Computer Science Logic, doi:10.4230/LIPIcs.CSL.2022.3.

[2] Shaull Almagor (2020): Process Symmetry in Probabilistic Transducers. In: 40th IARCS Annual Conference

on Foundations of Software Technology and Theoretical Computer Science, doi:10.4230/LIPIcs.FSTTCS.

2020.35.

[3] Shaull Almagor & Orna Kupferman (2011): Max and sum semantics for alternating weighted automata.

In: International Symposium on Automated Technology for Verification and Analysis, Springer, pp. 13–27,

doi:10.1007/978-3-642-24372-1_2.

[4] Shaull Almagor & Omer Yizhaq (2023): Jumping Automata over Infinite Words. In: International Conference

on Developments in Language Theory, Springer, pp. 9–22, doi:10.1007/978-3-031-33264-7_2.

https://doi.org/10.4230/LIPIcs.CSL.2022.3
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.35
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.35
https://doi.org/10.1007/978-3-642-24372-1_2
https://doi.org/10.1007/978-3-031-33264-7_2

34 Jumping Automata Must Pay

[5] Udi Boker (2021): Quantitative vs. weighted automata. In: Reachability Problems: 15th International Con-

ference, RP 2021, Liverpool, UK, October 25–27, 2021, Proceedings 15, Springer, pp. 3–18, doi:10.1007/

978-3-030-89716-1_1.

[6] Michaël Cadilhac, Alain Finkel & Pierre McKenzie (2012): Affine Parikh automata. RAIRO-Theoretical

Informatics and Applications 46(4), pp. 511–545, doi:10.1051/ita/2012013.

[7] Michaël Cadilhac, Alain Finkel & Pierre McKenzie (2012): Bounded parikh automata. International Journal

of Foundations of Computer Science 23(08), pp. 1691–1709, doi:10.1142/S0129054112400709.

[8] Krishnendu Chatterjee, Laurent Doyen & Thomas A Henzinger (2010): Quantitative languages. ACM Trans-

actions on Computational Logic (TOCL) 11(4), pp. 1–38, doi:10.1007/978-3-540-87531-4_28.

[9] Manfred Droste, Werner Kuich & Heiko Vogler (2009): Handbook of weighted automata. Springer Science

& Business Media, doi:10.1007/978-3-642-01492-5.

[10] Szilárd Zsolt Fazekas, Kaito Hoshi & Akihiro Yamamura (2021): Two-way deterministic automata with

jumping mode. Theoretical Computer Science 864, pp. 92–102, doi:10.1016/j.tcs.2021.02.030.

[11] Henning Fernau, Meenakshi Paramasivan & Markus L Schmid (2015): Jumping finite automata: charac-

terizations and complexity. In: International Conference on Implementation and Application of Automata,

Springer, pp. 89–101, doi:10.1007/978-3-319-22360-5_8.

[12] Henning Fernau, Meenakshi Paramasivan, Markus L Schmid & Vojtěch Vorel (2017): Characterization and

complexity results on jumping finite automata. Theoretical Computer Science 679, pp. 31–52, doi:10.1016/

j.tcs.2016.07.006.

[13] Dana Fisman, Joshua Grogin & Gera Weiss (2023): A Normalized Edit Distance on Infinite Words. In: 31st

EACSL Annual Conference on Computer Science Logic (CSL 2023), Schloss-Dagstuhl-Leibniz Zentrum für

Informatik, doi:10.4230/LIPIcs.CSL.2023.20.

[14] Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen & Martin Zimmermann (2022): Parikh Automata over

Infinite Words. In: 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science, doi:10.4230/LIPIcs.FSTTCS.2022.40.

[15] Kosaburo Hashiguchi (1982): Limitedness theorem on finite automata with distance functions. Journal of

computer and system sciences 24(2), pp. 233–244, doi:10.1016/0022-0000(82)90051-4.

[16] Felix Klaedtke & Harald Rueß (2003): Monadic second-order logics with cardinalities. In: Automata,

Languages and Programming: 30th International Colloquium, ICALP 2003 Eindhoven, The Netherlands,

June 30–July 4, 2003 Proceedings 30, Springer, pp. 681–696, doi:10.1007/3-540-45061-0_54.

[17] Giovanna J Lavado, Giovanni Pighizzini & Shinnosuke Seki (2014): Operational state complexity un-

der Parikh equivalence. In: Descriptional Complexity of Formal Systems: 16th International Workshop,

DCFS 2014, Turku, Finland, August 5-8, 2014. Proceedings 16, Springer, pp. 294–305, doi:10.1007/

978-3-319-09704-6_26.

[18] Hing Leung & Viktor Podolskiy (2004): The limitedness problem on distance automata:

Hashiguchi’s method revisited. Theoretical Computer Science 310(1-3), pp. 147–158, doi:10.1016/

S0304-3975(03)00377-3.

[19] Alexander Meduna & Petr Zemek (2012): Jumping finite automata. International Journal of Foundations of

Computer Science 23(07), pp. 1555–1578, doi:10.1142/S0129054112500244.

[20] Mehryar Mohri (2002): Edit-distance of weighted automata. In: International Conference on Implementation

and Application of Automata, Springer, pp. 1–23, doi:10.1007/3-540-44977-9_1.

[21] Vojtěch Vorel (2018): On basic properties of jumping finite automata. International Journal of Foundations

of Computer Science 29(01), pp. 1–15, doi:10.1142/S0129054118500016.

https://doi.org/10.1007/978-3-030-89716-1_1
https://doi.org/10.1007/978-3-030-89716-1_1
https://doi.org/10.1051/ita/2012013
https://doi.org/10.1142/S0129054112400709
https://doi.org/10.1007/978-3-540-87531-4_28
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1016/j.tcs.2021.02.030
https://doi.org/10.1007/978-3-319-22360-5_8
https://doi.org/10.1016/j.tcs.2016.07.006
https://doi.org/10.1016/j.tcs.2016.07.006
https://doi.org/10.4230/LIPIcs.CSL.2023.20
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.40
https://doi.org/10.1016/0022-0000(82)90051-4
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/978-3-319-09704-6_26
https://doi.org/10.1007/978-3-319-09704-6_26
https://doi.org/10.1016/S0304-3975(03)00377-3
https://doi.org/10.1016/S0304-3975(03)00377-3
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.1007/3-540-44977-9_1
https://doi.org/10.1142/S0129054118500016

A. Achilleos and A. Francalanza (Eds.): Fifteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2024).
EPTCS 409, 2024, pp. 35–52, doi:10.4204/EPTCS.409.7

© E. Chini, A. Simonetti, P. Sala, and O. Zare
This work is licensed under the
Creative Commons Attribution License.

Reactive Synthesis for Expected Impacts

Emanuele Chini
Department of Computer, Control

and Management Engineering,
University “La Sapienza”,

Rome, Italy.
emanuele.chini@uniroma1.it
Department of Computer Science,

University of Verona, Verona (Italy)
emanuele.chini@univr.it

Pietro Sala
Department of Computer Science,

University of Verona, Verona (Italy)
pietro.sala@univr.it

Andrea Simonetti
Department of Computer Science,

University of Verona, Verona (Italy)
andrea.simonetti@studenti.univr.it

Omid Zare
Department of Computer Science,

University of Verona, Verona (Italy)
omid.zare@univr.it

As business processes become increasingly complex, effectively modeling decision points, their like-
lihood, and resource consumption is crucial for optimizing operations. To address this challenge, this
paper introduces a formal extension of the Business Process Model and Notation (BPMN) that incor-
porates choices, probabilities, and impacts, referred to as BPMN+CPI. This extension is motivated
by the growing emphasis on precise control within business process management, where carefully
selecting decision pathways in repeated instances is crucial for conforming to certain standards of
multiple resource consumption and environmental impacts. In this context we deal with the problem
of synthesizing a strategy (if any) that guarantees that the expected impacts on repeated execution
of the input process are below a given threshold. We show that this problem belongs to PSPACE
complexity class; moreover we provide an effective procedure for computing a strategy (if present).

1 Introduction

BPMN (Business Process Model and Notation) has emerged as a pivotal formalism in the realm of process
management, offering a standardized method for detailing business processes in various sectors, including
healthcare and industry. Its graphical notation facilitates the clear and precise representation of process
flows, enabling stakeholders to comprehend, analyze, and improve business operations. In the healthcare
sector, BPMN plays a critical role in implementing patient care guidelines [26]. Similarly, in the industrial
domain, it aids in the efficient management of manufacturing and supply chain processes, ensuring timely
delivery of products and services [15]. In these domains, increasing attention has arisen in the past
decade on the topic of Business Processes Management, where the choice of traces on the control side
is paramount. These applications demand measurement and employ, as a means for selection, notions
such as cost-awareness[23], energy-awareness[5], and resource-awareness [11], which naturally induce
scenarios where multiple measurements must be controlled.

In this paper, we proceed under the implicit assumption that all costs, energies, and resources utilized
are positive and exhibit additive characteristics. This implies that our process instances solely deplete
resources to fulfill their objectives without the capability to generate resources. As we will demonstrate,
this restriction contributes to favorable computational properties.

Moreover, we use the probabilistic split, referred to as nature, which signifies a decision based on a
probability distribution beyond the worker’s control. For instance, in healthcare, a nature is the chance

http://dx.doi.org/10.4204/EPTCS.409.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

36 Reactive Synthesis for Expected Impacts

of developing gastritis when taking Brufen 600 with a probability of 1%. Similarly, in industrial applica-
tions, machinery wear and tear may influence the production process, requiring maintenance stops during
production.

Finally, time consumption for tasks is considered, as they will be equipped with specific durations.
Our approach here is twofold. First, we aim to introduce a formal BPMN extension that addresses

execution in the presence of all the previously mentioned components, namely, BPMN plus Choices/
Probability/Impacts (BPMN+CPI). Next, we seek to provide a dynamic control mechanism, i.e., a strat-
egy, for BPMN execution. This is to ensure, where possible, that the expected impacts remain below a
set of user-defined thresholds. To elegantly juggle all these concepts within a single framework, we en-
rich the standard Petri Net semantics for BPMN to capture impacts, durations, and probabilities. We call
this model of computation the Simultaneous Probabilistic Impactful Network (𝖲𝖯𝖨𝖭). We then define a
graph representing all possible executions of 𝖲𝖯𝖨𝖭. This graph is combined with a natural modification
of classical reachability games to derive the desired strategy, if any. The primary aim of this study is
to determine, for a process formalized in BPMN+CPI, whether a controller exists that can accurately
execute each step of the process while ensuring that the expected value of each resource, across repeated
process instances, remains within predefined thresholds.

Upon establishing the computational model for BPMN+CPI, we tackle the challenge of synthesizing
a strategy for a specified process in BPMN+CPI, given a set of expected value thresholds. This is achieved
through the following steps:

1. Semantics by Petri Nets. After defining how to translate a BPMN+CPI into a 𝖲𝖯𝖨𝖭, we define the
semantics of both of them by giving the semantics of 𝖲𝖯𝖨𝖭 alone as an extension of classical Petri
net semantics. This includes introducing time durations for places, probabilistic transitions, and
the possibility (under certain conditions) of executing a set of enabled transitions simultaneously
instead of one at a time;

2. Computation Graph. All possible computations for the given 𝖲𝖯𝖨𝖭 are represented as a graph.
In this graph, each node represents a path of executions, and any edge between two computations
indicates that the source computation can be extended to the target computation by firing one or
more enabled transitions in the source computation;

3. Classical Reachability Game Graph Transformation [27]. By transforming the computation graph
into a classical reachability game graph, where spoiler nodes (typically denoted by □) represent
choices made by nature, we assess the existence of a “good” set of final states that can “attract” the
initial state. If such a set exists, we can infer the existence of our strategy.

The paper is organized as follows. In Section 2, we present and describe related work and the state-of-
the-art algorithms for finding strategies in computational models that can encode BPMN+CPI through
suitable translation. In Section 3, we illustrate a practical example of a BPMN process in an industrial
setting, followed by a formal definition of the BPMN+CPI model, detailing the components of choices,
probabilities, and impacts. Since we restrict ourselves to acyclic graphs, at the end of this section, we
briefly discuss a simple way of dealing with loops within the proposed framework. In Section 4, we
provide the complexity bounds for the strategy synthesis problem for BPMN+CPI. While Section 4 deals
with the decision problem of establishing whether a strategy exists or not, Section 5 focuses on effectively
synthesizing a strategy given a BPMN+CPI process and a bound for expected impacts. Finally, Section 6
highlights our main findings, their theoretical and practical impacts, and future research avenues.

E. Chini, A. Simonetti, P. Sala, and O. Zare 37

Methods Costs Durations Strategy

UPPAAL-Stratego
multiple,
not considered
for strategy

explicitly defined,
time is continuous

∙non-deterministic
∙ state explosion due to subset construction

PRISM multiple
negative allowed

implicit via
multiple states

∙ 𝜖-approximated strategy
∙ increases exponentially w.r.t 1∕𝜖

MPG-MDP multiple
negative allowed

implicit via
multiple states

∙ infinite plays
∙ BPMN+CPI would need difficult encoding
∙ game averages values on a per-step basis

Our method multiple,
only positive explicitly defined

∙ deterministic
∙ exact strategy by integrating rewards
and probabilities
∙ game averages values on a per-instance basis

Table 1: A summary of the features of the tool introduced in this study and the problems addressed by
UPPAAL-Stratego, PRISM, and MPG-MDP, respectively.
2 Related work

The most commonly accepted semantics for BPMN processes, used for both formal tasks like monitoring,
verification, and querying, and application-driven tasks like process discovery and execution forecasting,
is the Petri Net semantics. In this approach, a BPMN process is mapped into a Petri Net [12]. This
mapping retains several beneficial properties, including the crucial feature that the resulting net is 1-
bounded [6], meaning that from an initial state with one token, all configurations will have at most one
token per place. Under this 1-boundedness assumption, the Petri Net reduces to an exponentially succinct
representation of a finite automaton (FA) [18], where all labelings can be represented as sets of places
holding one token, making the number of states finite. If the language of this automaton is defined by
its transitions, the resulting FA is deterministic (DFA). Thus, many formal problems, such as querying,
emptiness checking, strategy synthesis (reachability games), and Linear Temporal Logic (LTL) model
checking, can be equivalently viewed in BPMN, 1-bounded Petri Nets, or succinct DFAs, as transforma-
tions between these representations can be performed in LOGSPACE.

Incorporating resources into BPMN processes is well-explored in process optimization literature. In
[23], an extension of the classical BPMN notation is proposed to evaluate the overall cost of process dia-
grams, comparing costs associated with tasks as single values or intervals to find the most cost-effective
way to perform the intended job. Our contribution specifically focuses on the positive impacts of such
integration, further allowing the specification of impacts as arrays of cost values to express monetary
costs and other resources or requirements. In [9], Combi et al. outlined a method for enforcing distinctive
temporal behaviors by introducing temporal patterns (e.g., minimum and/or maximum durations) linked
to tasks. They proposed creating reusable, duration-aware process models using existing BPMN ele-
ments, capturing duration constraints at various abstraction levels, and checking for duration constraint
violations at runtime. Duran et al. [14] introduced a rewriting logic executable specification of BPMN
extended with time and probabilities, allowing stochastic expressions to specify task durations and flow
delays. Herbert et al. [19] formalize an extension of the BPMN language incorporating probabilistic non-
deterministic branching. Additionally, they present an algorithm for translating such models into MDPs
expressed in the syntax of the PRISM model checker [22]. This facilitates precise quantitative analysis
of business processes. We have adopted a similar extension of BPMN to introduce non-deterministic be-
haviour (for nature nodes), which is frequently observed in real-world application scenarios. Probabilities
are linked to gateway branching behaviors, enabling discrete-event simulation and automatic stochastic

38 Reactive Synthesis for Expected Impacts

Start End

Bending

Milling

Heavy
polishing

Light
polishing

Fine
deposition

Rough
deposition

HPHS
painting

LPLS
painting

Cutting

<latexit sha1_base64="GeEIonUQoRRFdDc7ZUmrTDhyJ5k=">AAACLXicbVDLSgMxFM34rOOr6tJNsAiuykwX6lLQhUsFq8JkKJn0ThvMZIbkjlCG/pAbf0UEFxVx62+Y1ln4OhA4nHNuknuSQkmLQTDx5uYXFpeWGyv+6tr6xmZza/va5qUR0BW5ys1twi0oqaGLEhXcFgZ4lii4Se5Op/7NPRgrc32FowLijA+0TKXg6KRe84xFPlOQYkRZAgOpK24MH40rMfapQyegjNEZDanPQPfrAGVGDoYY+yz2e81W0A5moH9JWJMWqXHRaz6zfi7KDDQKxa2NwqDA2N2MUigY+6y0UHBxxwcQOap5BjauZtuO6b5T+jTNjTsa6Uz9PlHxzNpRlrhkxnFof3tT8T8vKjE9jiupixJBi6+H0lJRzOm0OtqXBgSqkSNcGOn+SsWQGy7QFTwtIfy98l9y3WmHh+3Dy07rhNZ1NMgu2SMHJCRH5ISckwvSJYI8kCcyIa/eo/fivXnvX9E5r57ZIT/gfXwChY+khw==</latexit>
20
1

�

<latexit sha1_base64="osiKywhD9XUfTKJkTDtyPB40NUA=">AAACLXicbVDLSgMxFM34rOOr6tJNsAiuyowLdSnowqWCVWEylEx6pw1mMkNyRyhDf8iNvyKCi4q49TdM21n4OhA4nHNuknuSQkmLQTD25uYXFpeWGyv+6tr6xmZza/vG5qUR0BG5ys1dwi0oqaGDEhXcFQZ4lii4Te7PJv7tAxgrc32NwwLijPe1TKXg6KRu85xFPlOQYkRZAn2pK24MH44qMfKpQxhQxuiMUp+B7tUByozsDzD2Wex3m62gHUxB/5KwJi1S47LbfGG9XJQZaBSKWxuFQYGxuxmlUDDyWWmh4OKe9yFyVPMMbFxNtx3Rfaf0aJobdzTSqfp9ouKZtcMsccmM48D+9ibif15UYnoSV1IXJYIWs4fSUlHM6aQ62pMGBKqhI1wY6f5KxYAbLtAVPCkh/L3yX3Jz2A6P2kdXh61TWtfRILtkjxyQkByTU3JBLkmHCPJInsmYvHlP3qv37n3MonNePbNDfsD7/AKD56SG</latexit>
10
1

�

<latexit sha1_base64="qBEtzbRdqXMilRoJXZ2GmonJeR4=">AAACLHicbVDLSsNAFJ34Nr6qLt0MFsFVScTXUnDjUsFWIRPKZHrTDk4mYeZGKKEf5MZfEcSFIm79DqdtFr4OXDicc+/MvScplLQYBG/ezOzc/MLi0rK/srq2vtHY3OrYvDQC2iJXublNuAUlNbRRooLbwgDPEgU3yd352L+5B2Nlrq9xWECc8b6WqRQcndRtnLPIZwpSjChLoC91xY3hw1ElRj51OKKM0Qk7pD4D3at9yozsDzD2Wex3G82gFUxA/5KwJk1S47LbeGa9XJQZaBSKWxuFQYGxexmlUDDyWWmh4OKO9yFyVPMMbFxNjh3RPaf0aJobVxrpRP0+UfHM2mGWuM6M48D+9sbif15UYnoaV1IXJYIW04/SUlHM6Tg52pMGBKqhI1wY6XalYsANF+jyHYcQ/j75L+kctMLj1vHVQfOM1nEskR2yS/ZJSE7IGbkgl6RNBHkgT+SVvHmP3ov37n1MW2e8emab/ID3+QUPsqRT</latexit>
5
4

�

<latexit sha1_base64="/96f5GhvS9UQulsi4DS8Fhmz02k=">AAACLHicbVBNS8NAEN34bfyqevSyWARPJRGsHgUvHitYFbKhbLaTdnGzCbsToYT+IC/+FUE8WMSrv8NtzcGvBwOP92Z2Z15SKGkxCCbe3PzC4tLyyqq/tr6xudXY3rm2eWkEdEWucnObcAtKauiiRAW3hQGeJQpukrvzqX9zD8bKXF/hqIA44wMtUyk4OqnXOGeRzxSkGFGWwEDqihvDR+NKjH3qcEwZozMWUp+B7tc+ZUYOhhj7LPZ7jWbQCmagf0lYkyap0ek1nlk/F2UGGoXi1kZhUGDsXkYpFIx9VloouLjjA4gc1TwDG1ezY8f0wCl9mubGlUY6U79PVDyzdpQlrjPjOLS/van4nxeVmJ7GldRFiaDF10dpqSjmdJoc7UsDAtXIES6MdLtSMeSGC3T5TkMIf5/8l1wftcJ2q3151DyjdRwrZI/sk0MSkhNyRi5Ih3SJIA/kibySiffovXhv3vtX65xXz+ySH/A+PgEK26RQ</latexit>
5
1

�

<latexit sha1_base64="hlqETTLQiorblrxmB5eNsJhVV+A=">AAACLXicbVDLSsQwFE19jvU16tJNcBBcDa2CuhR04VLBUaEpQ5q5nQmmaUluhaHMD7nxV0RwoYhbf8PMTBe+DgQO55yb5J6kUNJiELx6M7Nz8wuLjSV/eWV1bb25sXlt89II6Ihc5eY24RaU1NBBiQpuCwM8SxTcJHenY//mHoyVub7CYQFxxvtaplJwdFK3ecYinylIMaIsgb7UFTeGD0eVGPnU4SCgjNEJDanPQPfqAGVG9gcY+yz2u81W0A4moH9JWJMWqXHRbT6zXi7KDDQKxa2NwqDA2N2MUigY+ay0UHBxx/sQOap5BjauJtuO6K5TejTNjTsa6UT9PlHxzNphlrhkxnFgf3tj8T8vKjE9jiupixJBi+lDaako5nRcHe1JAwLV0BEujHR/pWLADRfoCh6XEP5e+S+53m+Hh+3Dy/3WCa3raJBtskP2SEiOyAk5JxekQwR5IE/klbx5j96L9+59TKMzXj2zRX7A+/wChzekiA==</latexit>
30
1

�

<latexit sha1_base64="osiKywhD9XUfTKJkTDtyPB40NUA=">AAACLXicbVDLSgMxFM34rOOr6tJNsAiuyowLdSnowqWCVWEylEx6pw1mMkNyRyhDf8iNvyKCi4q49TdM21n4OhA4nHNuknuSQkmLQTD25uYXFpeWGyv+6tr6xmZza/vG5qUR0BG5ys1dwi0oqaGDEhXcFQZ4lii4Te7PJv7tAxgrc32NwwLijPe1TKXg6KRu85xFPlOQYkRZAn2pK24MH44qMfKpQxhQxuiMUp+B7tUByozsDzD2Wex3m62gHUxB/5KwJi1S47LbfGG9XJQZaBSKWxuFQYGxuxmlUDDyWWmh4OKe9yFyVPMMbFxNtx3Rfaf0aJobdzTSqfp9ouKZtcMsccmM48D+9ibif15UYnoSV1IXJYIWs4fSUlHM6aQ62pMGBKqhI1wY6f5KxYAbLtAVPCkh/L3yX3Jz2A6P2kdXh61TWtfRILtkjxyQkByTU3JBLkmHCPJInsmYvHlP3qv37n3MonNePbNDfsD7/AKD56SG</latexit>
10
1

�

<latexit sha1_base64="jpY2UXvkJTVxXYcrTwRys3sMVbM=">AAACLXicbVDLSsQwFE19jvU16tJNcBBcDa2IuhR04VLBUaEpQ5q5nQmmaUluhaHMD7nxV0RwoYhbf8PMTBe+DgQO55yb5J6kUNJiELx6M7Nz8wuLjSV/eWV1bb25sXlt89II6Ihc5eY24RaU1NBBiQpuCwM8SxTcJHenY//mHoyVub7CYQFxxvtaplJwdFK3ecYinylIMaIsgb7UFTeGD0eVGPnU4SCgjNEJDanPQPfqAGVG9gcY+yz2u81W0A4moH9JWJMWqXHRbT6zXi7KDDQKxa2NwqDA2N2MUigY+ay0UHBxx/sQOap5BjauJtuO6K5TejTNjTsa6UT9PlHxzNphlrhkxnFgf3tj8T8vKjE9jiupixJBi+lDaako5nRcHe1JAwLV0BEujHR/pWLADRfoCh6XEP5e+S+53m+Hh+3Dy/3WCa3raJBtskP2SEiOyAk5JxekQwR5IE/klbx5j96L9+59TKMzXj2zRX7A+/wCiN+kiQ==</latexit>
40
1

�

<latexit sha1_base64="VfLt9AixttykeBMkZhBNKzR79kY=">AAACLXicbVDLSsQwFE19W1+jLt0EB8HV0I4wuhR04VLBUaEpQ5q5nQmmaUluhaHMD7nxV0RwoYhbf8PM2IWvA4HDOecmuScplLQYBC/ezOzc/MLi0rK/srq2vtHY3LqyeWkEdEWucnOTcAtKauiiRAU3hQGeJQquk9uTiX99B8bKXF/iqIA44wMtUyk4OqnXOGWRzxSkGFGWwEDqihvDR+NKjH3q0A4oY3RKD6jPQPfrAGVGDoYY+yz2e41m0AqmoH9JWJMmqXHeazyxfi7KDDQKxa2NwqDA2N2MUigY+6y0UHBxywcQOap5BjauptuO6Z5T+jTNjTsa6VT9PlHxzNpRlrhkxnFof3sT8T8vKjE9iiupixJBi6+H0lJRzOmkOtqXBgSqkSNcGOn+SsWQGy7QFTwpIfy98l9y1W6FnVbnot08pnUdS2SH7JJ9EpJDckzOyDnpEkHuySN5Ia/eg/fsvXnvX9EZr57ZJj/gfXwCiMmkiQ==</latexit>
20
3

�
<latexit sha1_base64="8Ge/ts+i/FCEkLH2k9vw4Z9uQJM=">AAACLXicbVDLSgMxFM34rOOr6tJNsAiuyozgYynowqWCVWEylEx6pw1mMkNyRyhDf8iNvyKCC0Xc+hum7Sx8HQgczjk3yT1JoaTFIHj1Zmbn5hcWG0v+8srq2npzY/Pa5qUR0BG5ys1twi0oqaGDEhXcFgZ4lii4Se5Ox/7NPRgrc32FwwLijPe1TKXg6KRu84xFPlOQYkRZAn2pK24MH44qMfKpw0FAGaMTGlKfge7VAcqM7A8w9lnsd5utoB1MQP+SsCYtUuOi23xmvVyUGWgUilsbhUGBsbsZpVAw8llpoeDijvchclTzDGxcTbYd0V2n9GiaG3c00on6faLimbXDLHHJjOPA/vbG4n9eVGJ6HFdSFyWCFtOH0lJRzOm4OtqTBgSqoSNcGOn+SsWAGy7QFTwuIfy98l9yvd8OD9uHl/utE1rX0SDbZIfskZAckRNyTi5IhwjyQJ7IK3nzHr0X7937mEZnvHpmi/yA9/kFioekig==</latexit>

50
1

�

<latexit sha1_base64="xA/Gh05NgHbkjtTNQz4Q3ExeXGE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkmR6rHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWeqWy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0U0wESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadog3BX355lTQrrl91q/dX5dp5HkcBTuEMLsGHa6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBPjI0V</latexit>

0.2

<latexit sha1_base64="SdpqxllI8HnFcFdJTkZMb2OIOq4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0hEao8FLx4rWltoQ9lsN+3SzSbsToRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOd9O4W19Y3NreJ2aWd3b/+gfHj0aJJMM95kiUx0O6SGS6F4EwVK3k41p3EoeSsc3cz81hPXRiTqAccpD2I6UCISjKKV7j231itXPNebg6wSPycVyNHolb+6/YRlMVfIJDWm43spBhOqUTDJp6VuZnhK2YgOeMdSRWNugsn81Ck5t0qfRIm2pZDM1d8TExobM45D2xlTHJplbyb+53UyjGrBRKg0Q67YYlGUSYIJmf1N+kJzhnJsCWVa2FsJG1JNGdp0SjYEf/nlVfJ46fpVt3p3Vamf5XEU4QRO4QJ8uIY63EIDmsBgAM/wCm+OdF6cd+dj0Vpw8plj+APn8wdYpI0b</latexit>

0.8

Figure 1: An example of BPMN+CPI diagram for an industrial process.

verification of various properties. Our work will consider task durations by imposing stringent time con-
straints, ensuring that each task extends over a time interval precisely equal to its duration, which possibly
affects which choice is enabled first in a given execution. Additionally, incorporating probabilities into
BPMN situates our research within the specialized domain of Markov Decision Processes (MDPs) [17],
significantly enhancing the applicability of BPMN in decision-making under uncertainty.

Moving beyond BPMN, our approach primarily involves devising a strategy within an MDP enhanced
with vectors of positive impacts. The objective is to ensure that the strategy’s expected value does not
exceed a specific threshold. The realm of strategy synthesis for MDPs has been extensively explored,
leading to notable breakthroughs like the PRISM model checker [22]. PRISM has emerged as a key
instrument, evolving over time to incorporate sophisticated features for strategizing within MDP contexts.
Another notable development is UPPAAL-Stratego [10], an extension of the well-regarded UPPAAL-
TIGA [4], which solves the strategy synthesis problem for games played on timed automata incorporating
both costs and probabilities. From a theoretical perspective, albeit less focused on specific tools, our
issue shares similarities with Mean Payoff Games (MPG)[28] as applied to MDP (MPG-MDP)[8]. The
differences and similarities between our proposed method and the current state of the art are concisely
summarized in Table 1. While we focus on a system with probabilities, we are aware of other formalisms
that allow impact vectors with negative contributions, such as infinite energy games [2].

3 BPMN+CPI: Processes with Choices, Probabilities, and Impacts

In this section, we begin by informally illustrating the concept of BPMN+CPI through an intuitive ex-
ample of a metal manufacturing process together with an initial, intuitive understanding of the expected
impacts induced by a strategy in Section 3.1. These concepts are then formalized in Section 3.2, where
we also state the core problem of this work: finding an optimal strategy that minimizes the overall im-
pact. Finally, in Section 3.3, we discuss the advantages and drawbacks of reducing diagrams with loops
to acyclic ones from the perspective of strategy synthesis.

3.1 Motivating Example

The BPMN+CPI diagram of Figure 1 depicts a metal manufacturing process that involves cutting, milling,
bending, polishing, depositioning, and painting a metal piece. It consists of a single-entry-single-exit
(SESE) diagram, with a choice, a nature, and an impact for each task, which is defined as a numbers vec-
tor. The bracketed numbers next to each activity represent impact vectors

[

𝑎
𝑏

]

where 𝑎 = cost of the task
and 𝑏 = hours/men required to complete the task. For instance, cutting the metal piece costs 10 units (e.g.,

E. Chini, A. Simonetti, P. Sala, and O. Zare 39

currency, resource, etc.), and requires 1 unit of time or manpower (e.g., 1 hour or 1 worker). In Figure 1,
the nature’s probability of each chosen path is indicated with the numbers next to decision points. For
example, there’s a high probability (0.8) of the process moving from bending to light polishing and a low
probability (0.2) of it moving to fine heavy polishing.

Whenever the process is executed, the worker and nature make a series of choices, which result in a
path executed on the BPMN with a total impact vector for that specific instance. Let’s now assume that,
for economic reasons, the process must stay within a certain bound. Therefore, our interest is always to
stay below that bound. However, we have to consider that the path also depends on the natures within
the process, of which we do not know the choice a priori, but we only have the probability of going one
way or the other. Consequently, we can formulate a strategy, defined as a series of choices taken while
considering the nature and a maximum expected impact, to manage to reach the end of the process with
a certain impact vector.

Strategy example: after cutting the metal piece, we have two tasks after the parallel split node, so we
do the bending and milling in parallel. Then, after milling we have two options to choose from, here we
choose fine deposition. After bending, we have two options to choose from: we choose light polishing
with the probability of 0.8. Then, we have two final tasks to choose from: we select LPLS painting.
Finally, we have the maximum expected impact of

[

115
11

]

×0.2+
[

135
8

]

×0.8 =
[

131
8.6

]

.
A strategy is defined as winning only if the expected impact vector is below the bound. Therefore, the

goal is to find a winning strategy. Consider, for example, that you want to keep the BPMN+CPI visible
in Figure 1 under the limit of 𝑒𝑖 =

[

155
7.5

]

. In this case, the strategy shown is not a winning strategy. In
fact, it presents a maximum expected impact greater than the bound 𝑒𝑖. Below we propose an example of
a winning strategy.

Wining strategy example: after cutting we perform milling in parallel with bending. we have two
options that come after milling; we choose fine deposition. We have two options to choose from after
bending; we choose light polishing with a probability of 0.8. Then, we have two final tasks to choose
from and select HPHS painting this time. Finally, we have

[

135
9

]

×0.2+
[

155
6

]

×0.8 =
[

151
6.6

]

≤ 𝑒𝑖 , so this
strategy successfully keeps the overall impact below the expected impact.

3.2 Problem Formulation

In this section, we formally state the BPMN+CPI semantics. First, we define the concept of Structured
Single-Entry Single-Exit (SESE) BPMN, Figure 2, as follows.
Definition 1. A structured single-entry-single-exit diagram, from now on simply a SESE diagram, is a
directed graph  = (𝑉 ,𝐸,𝐸⊤,) where (𝑉 ,𝐸) is a directed graph, 𝐸⊤ ⊆𝐸,  ∶ 𝑉 → {𝑒𝑣𝑒𝑛𝑡, 𝑡𝑎𝑠𝑘,𝑗𝑜𝑖𝑛,
𝑠𝑝𝑙𝑖𝑡} such that:

1. for each 𝑣 ∈ 𝑉 if  (𝑣) = 𝑒𝑣𝑒𝑛𝑡 then there exists at most one edge departing from 𝑣, there exists
at most one edge entering 𝑣, and at least one edge departing from 𝑣 or entering 𝑣, i.e., |{(𝑣,𝑣′) ∈
𝐸}| ≤ 1, |{(𝑣′,𝑣) ∈ 𝐸}| ≤ 1, and |{(𝑣′,𝑣) ∈ 𝐸}∪{(𝑣,𝑣′) ∈ 𝐸}| > 0;

2. there exists exactly two distinct nodes 𝑣̂, 𝑣̌ in 𝑉 such that 𝑣̂ has not incoming edges and 𝑣̌ has not
outgoing edges, i.e., {(𝑣, 𝑣̂) ∈ 𝐸} = {(𝑣̌,𝑣) ∈ 𝐸} = ∅;

3. for each 𝑣∈ 𝑉 if  (𝑣) = 𝑡𝑎𝑠𝑘 there exists exactly one edge departing from 𝑣 and one edge entering
𝑣, i.e., |{(𝑣,𝑣′) ∈ 𝐸}| = |{(𝑣′,𝑣) ∈ 𝐸}| = 1;

4. for each 𝑣∈ 𝑉 if  (𝑣) = 𝑠𝑝𝑙𝑖𝑡 there exists exactly two edges departing from 𝑣 and one edge entering
𝑣, i.e., |{(𝑣,𝑣′) ∈ 𝐸}| = 2 and |{(𝑣′,𝑣) ∈ 𝐸}| = 1;

5. 𝐸⊤ ⊆ {(𝑣,𝑣′) ∶  (𝑣) = 𝑠𝑝𝑙𝑖𝑡} and for each 𝑣 ∈ 𝑉 if  (𝑣) = 𝑠𝑝𝑙𝑖𝑡 we have |{𝑣′ ∶ (𝑣,𝑣′) ∈𝐸⊤}| = 1;

40 Reactive Synthesis for Expected Impacts

Start

End

T1

T3

T2

T4

T5

12

5

4

6

8

<latexit sha1_base64="HDpkcGbiWfYhlB1sJShHUmMWmas=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD261NihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVa9erd/XKo2rPI4inME5XIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gBTvI0j</latexit>

0.2
<latexit sha1_base64="E4+P7zmr/c3TVqDs5HBBMBxaDjI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR2mPBi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkdu53nlBpHstHM03Qj+hI8pAzaqz04Fbqg1LZrbgLkHXi5aQMOZqD0ld/GLM0QmmYoFr3PDcxfkaV4UzgrNhPNSaUTegIe5ZKGqH2s8WpM3JplSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPczLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2naEPwVl9eJ+1qxatVavfVcuM6j6MA53ABV+DBDTTgDprQAgYjeIZXeHOE8+K8Ox/L1g0nnzmDP3A+fwBc1I0p</latexit>

0.8

<latexit sha1_base64="1pJ+rO7/7ihdzpKInw/SYcvrYz8=">AAACLHicbVBNS8NAEN34WeNX1aOXxSJ4KkkR9Sh48ahgVciGstlO2sXNJuxOhBL6g7z4VwTxYBGv/g63NQe/Hgw83pvZnXlJoaTFIJh4c/MLi0vLjRV/dW19Y7O5tX1t89II6Ipc5eY24RaU1NBFiQpuCwM8SxTcJHdnU//mHoyVub7CUQFxxgdaplJwdFKvecYinylIMaIsgYHUFTeGj8aVGPvUIaCM0Rk7pD4D3a99yowcDDH2Wez3mq2gHcxA/5KwJi1S46LXfGb9XJQZaBSKWxuFQYGxexmlUDD2WWmh4OKODyByVPMMbFzNjh3Tfaf0aZobVxrpTP0+UfHM2lGWuM6M49D+9qbif15UYnoSV1IXJYIWXx+lpaKY02lytC8NCFQjR7gw0u1KxZAbLtDlOw0h/H3yX3LdaYdH7aPLTuu0U8fRILtkjxyQkByTU3JOLkiXCPJAnsgrmXiP3ov35r1/tc559cwO+QHv4xMM2aRg</latexit>
0
4

�

<latexit sha1_base64="obVvKDGvSDPDMYuA/n3t22EJv8U=">AAACLHicbVBNS8NAEN34bfyqevSyWARPJamgHgUvHitYFbKhbLaTdnGzCbsToYT+IC/+FUE8WMSrv8NtzcGvBwOP92Z2Z15SKGkxCCbe3PzC4tLyyqq/tr6xudXY3rm2eWkEdEWucnObcAtKauiiRAW3hQGeJQpukrvzqX9zD8bKXF/hqIA44wMtUyk4OqnXOGeRzxSkGFGWwEDqihvDR+NKjH3qcEoZozN2RH0Gul/7lBk5GGLss9jvNZpBK5iB/iVhTZqkRqfXeGb9XJQZaBSKWxuFQYGxexmlUDD2WWmh4OKODyByVPMMbFzNjh3TA6f0aZobVxrpTP0+UfHM2lGWuM6M49D+9qbif15UYnoaV1IXJYIWXx+lpaKY02lytC8NCFQjR7gw0u1KxZAbLtDlOw0h/H3yX3LdboXHrePLdvOsXcexQvbIPjkkITkhZ+SCdEiXCPJAnsgrmXiP3ov35r1/tc559cwu+QHv4xMYdKRn</latexit>
8
3

�

<latexit sha1_base64="QPqn21wazeimVoiAYvGRpXd31cc=">AAACLHicbVBNS8NAEN34WeNX1aOXxSJ4KkkP6rHgxaOCVSEbymY7aRc3m7A7EUroD/LiXxHEg0W8+jvc1hz8ejDweG9md+YlhZIWg2DqLSwuLa+sNtb89Y3Nre3mzu61zUsjoCdylZvbhFtQUkMPJSq4LQzwLFFwk9ydzfybezBW5voKxwXEGR9qmUrB0Un95hmLfKYgxYiyBIZSV9wYPp5UYuJTh5AyRuesQ30GelD7lBk5HGHss9jvN1tBO5iD/iVhTVqkxkW/+cwGuSgz0CgUtzYKgwJj9zJKoWDis9JCwcUdH0LkqOYZ2LiaHzuhh04Z0DQ3rjTSufp9ouKZteMscZ0Zx5H97c3E/7yoxPQ0rqQuSgQtvj5KS0Uxp7Pk6EAaEKjGjnBhpNuVihE3XKDLdxZC+Pvkv+S60w6P28eXnVa3U8fRIPvkgByRkJyQLjknF6RHBHkgT+SVTL1H78V7896/Whe8emaP/ID38QkLRqRf</latexit>
1
2

�

<latexit sha1_base64="/3jleyd4beXGj/5IUjW9RjPZcpo=">AAACLHicbVDLSsNAFJ34rPFVdelmsAiuSlLwsRTcuFSwKmRCmUxv2sHJJMzcCCX0g9z4K4K4sIhbv8NpzcLXgQuHc+6dufckhZIWg2Dizc0vLC4tN1b81bX1jc3m1va1zUsjoCtylZvbhFtQUkMXJSq4LQzwLFFwk9ydTf2bezBW5voKRwXEGR9omUrB0Um95hmLfKYgxYiyBAZSV9wYPhpXYuxTh0PKGJ2xkPoMdL/2KTNyMMTYZ7Hfa7aCdjAD/UvCmrRIjYte85n1c1FmoFEobm0UBgXG7mWUQsHYZ6WFgos7PoDIUc0zsHE1O3ZM953Sp2luXGmkM/X7RMUza0dZ4jozjkP725uK/3lRielJXEldlAhafH2UlopiTqfJ0b40IFCNHOHCSLcrFUNuuECX7zSE8PfJf8l1px0etY8uO63TTh1Hg+ySPXJAQnJMTsk5uSBdIsgDeSKvZOI9ei/em/f+1Trn1TM75Ae8j08QRaRi</latexit>
5
1

�

<latexit sha1_base64="45zR6dTjcSt9TMgf4mJPlLQj938=">AAACLHicbVBNS8NAEN34WeNX1aOXxSJ4KkkF9Sh48ahgVciGstlO2sXNJuxOhBL6g7z4VwTxYBGv/g63NQe/Hgw83pvZnXlJoaTFIJh4c/MLi0vLjRV/dW19Y7O5tX1t89II6Ipc5eY24RaU1NBFiQpuCwM8SxTcJHdnU//mHoyVub7CUQFxxgdaplJwdFKvecYinylIMaIsgYHUFTeGj8aVGPvUoUMZozN2SH0Gul/7lBk5GGLss9jvNVtBO5iB/iVhTVqkxkWv+cz6uSgz0CgUtzYKgwJj9zJKoWDss9JCwcUdH0DkqOYZ2LiaHTum+07p0zQ3rjTSmfp9ouKZtaMscZ0Zx6H97U3F/7yoxPQkrqQuSgQtvj5KS0Uxp9PkaF8aEKhGjnBhpNuViiE3XKDLdxpC+Pvkv+S60w6P2keXndZpp46jQXbJHjkgITkmp+ScXJAuEeSBPJFXMvEevRfvzXv/ap3z6pkd8gPexycOiqRh</latexit>
2
3

�

(a)

<latexit sha1_base64="OCJ7v+YG3mWZR57KMl6Inrs9PXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxWvVqk1q+X6dR5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ad9WMrw==</latexit>

0
<latexit sha1_base64="OCJ7v+YG3mWZR57KMl6Inrs9PXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxWvVqk1q+X6dR5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ad9WMrw==</latexit>

0

<latexit sha1_base64="HDpkcGbiWfYhlB1sJShHUmMWmas=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD261NihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVa9erd/XKo2rPI4inME5XIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gBTvI0j</latexit>

0.2

<latexit sha1_base64="E4+P7zmr/c3TVqDs5HBBMBxaDjI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR2mPBi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkdu53nlBpHstHM03Qj+hI8pAzaqz04Fbqg1LZrbgLkHXi5aQMOZqD0ld/GLM0QmmYoFr3PDcxfkaV4UzgrNhPNSaUTegIe5ZKGqH2s8WpM3JplSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPczLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2naEPwVl9eJ+1qxatVavfVcuM6j6MA53ABV+DBDTTgDprQAgYjeIZXeHOE8+K8Ox/L1g0nnzmDP3A+fwBc1I0p</latexit>

0.8

<latexit sha1_base64="soswmvtHkDl0EiPd1NLeFnYmsQY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVI8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD15tUK64VXcBsk68nFQgR3NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLSGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimGN34mVJIiV2y5KEwlwZjM3yZDoTlDObWEMi3srYSNqaYMbTglG4K3+vI6adeqXr1av69VGld5HEU4g3O4BA+uoQF30IQWMAjhGV7hzZk4L86787FsLTj5zCn8gfP5A+o2jOw=</latexit>

12

<latexit sha1_base64="Jb7eDtYSCjz3sm/vJhOCMJPw7dU=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJokcSLx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFS47pfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1460+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtCplr1quNiql2lUWRx7O4BwuwYMbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH9pjLQ=</latexit>

5

<latexit sha1_base64="kFK9A1jrd+RUddqDilxe4FBTKuM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY4kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzdqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZU81Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2pWyVy1Xm5VS/SaLIw8XcAnX4MEt1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/g/WMtw==</latexit>

8
<latexit sha1_base64="OCJ7v+YG3mWZR57KMl6Inrs9PXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxWvVqk1q+X6dR5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ad9WMrw==</latexit>

0

<latexit sha1_base64="ntlZRiNsXAk4Y98vNkCHs2DuaBM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJQY8kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzeqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZ066dcxolByVaLRokgJiKLr8mQK2RGzCyhTHF7K2ETqigzNpuCDcFbf3mTtCtlr1auNSulejWLIw8XcAnX4MEN1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/feWMsw==</latexit>

4

<latexit sha1_base64="HQZQiMG2yGeTWa1oNSunUiZdJ/E=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyterVJrVsv16zyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBgO2MtQ==</latexit>

6
<latexit sha1_base64="OCJ7v+YG3mWZR57KMl6Inrs9PXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxWvVqk1q+X6dR5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ad9WMrw==</latexit>

0

<latexit sha1_base64="OCJ7v+YG3mWZR57KMl6Inrs9PXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxWvVqk1q+X6dR5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ad9WMrw==</latexit>

0

<latexit sha1_base64="OCJ7v+YG3mWZR57KMl6Inrs9PXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxWvVqk1q+X6dR5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ad9WMrw==</latexit>

0

<latexit sha1_base64="OCJ7v+YG3mWZR57KMl6Inrs9PXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxWvVqk1q+X6dR5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ad9WMrw==</latexit>

0

<latexit sha1_base64="OCJ7v+YG3mWZR57KMl6Inrs9PXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxWvVqk1q+X6dR5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ad9WMrw==</latexit>

0

<latexit sha1_base64="OCJ7v+YG3mWZR57KMl6Inrs9PXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxWvVqk1q+X6dR5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ad9WMrw==</latexit>

0

<latexit sha1_base64="OCJ7v+YG3mWZR57KMl6Inrs9PXU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxWvVqk1q+X6dR5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ad9WMrw==</latexit>

0

<latexit sha1_base64="obVvKDGvSDPDMYuA/n3t22EJv8U=">AAACLHicbVBNS8NAEN34bfyqevSyWARPJamgHgUvHitYFbKhbLaTdnGzCbsToYT+IC/+FUE8WMSrv8NtzcGvBwOP92Z2Z15SKGkxCCbe3PzC4tLyyqq/tr6xudXY3rm2eWkEdEWucnObcAtKauiiRAW3hQGeJQpukrvzqX9zD8bKXF/hqIA44wMtUyk4OqnXOGeRzxSkGFGWwEDqihvDR+NKjH3qcEoZozN2RH0Gul/7lBk5GGLss9jvNZpBK5iB/iVhTZqkRqfXeGb9XJQZaBSKWxuFQYGxexmlUDD2WWmh4OKODyByVPMMbFzNjh3TA6f0aZobVxrpTP0+UfHM2lGWuM6M49D+9qbif15UYnoaV1IXJYIWXx+lpaKY02lytC8NCFQjR7gw0u1KxZAbLtDlOw0h/H3yX3LdboXHrePLdvOsXcexQvbIPjkkITkhZ+SCdEiXCPJAnsgrmXiP3ov35r1/tc559cwu+QHv4xMYdKRn</latexit>
8
3

�

<latexit sha1_base64="QPqn21wazeimVoiAYvGRpXd31cc=">AAACLHicbVBNS8NAEN34WeNX1aOXxSJ4KkkP6rHgxaOCVSEbymY7aRc3m7A7EUroD/LiXxHEg0W8+jvc1hz8ejDweG9md+YlhZIWg2DqLSwuLa+sNtb89Y3Nre3mzu61zUsjoCdylZvbhFtQUkMPJSq4LQzwLFFwk9ydzfybezBW5voKxwXEGR9qmUrB0Un95hmLfKYgxYiyBIZSV9wYPp5UYuJTh5AyRuesQ30GelD7lBk5HGHss9jvN1tBO5iD/iVhTVqkxkW/+cwGuSgz0CgUtzYKgwJj9zJKoWDis9JCwcUdH0LkqOYZ2LiaHzuhh04Z0DQ3rjTSufp9ouKZteMscZ0Zx5H97c3E/7yoxPQ0rqQuSgQtvj5KS0Uxp7Pk6EAaEKjGjnBhpNuVihE3XKDLdxZC+Pvkv+S60w6P28eXnVa3U8fRIPvkgByRkJyQLjknF6RHBHkgT+SVTL1H78V7896/Whe8emaP/ID38QkLRqRf</latexit>
1
2

�

<latexit sha1_base64="1pJ+rO7/7ihdzpKInw/SYcvrYz8=">AAACLHicbVBNS8NAEN34WeNX1aOXxSJ4KkkR9Sh48ahgVciGstlO2sXNJuxOhBL6g7z4VwTxYBGv/g63NQe/Hgw83pvZnXlJoaTFIJh4c/MLi0vLjRV/dW19Y7O5tX1t89II6Ipc5eY24RaU1NBFiQpuCwM8SxTcJHdnU//mHoyVub7CUQFxxgdaplJwdFKvecYinylIMaIsgYHUFTeGj8aVGPvUIaCM0Rk7pD4D3a99yowcDDH2Wez3mq2gHcxA/5KwJi1S46LXfGb9XJQZaBSKWxuFQYGxexmlUDD2WWmh4OKODyByVPMMbFzNjh3Tfaf0aZobVxrpTP0+UfHM2lGWuM6M49D+9qbif15UYnoSV1IXJYIWXx+lpaKY02lytC8NCFQjR7gw0u1KxZAbLtDlOw0h/H3yX3LdaYdH7aPLTuu0U8fRILtkjxyQkByTU3JOLkiXCPJAnsgrmXiP3ov35r1/tc559cwO+QHv4xMM2aRg</latexit>
0
4

�

<latexit sha1_base64="/3jleyd4beXGj/5IUjW9RjPZcpo=">AAACLHicbVDLSsNAFJ34rPFVdelmsAiuSlLwsRTcuFSwKmRCmUxv2sHJJMzcCCX0g9z4K4K4sIhbv8NpzcLXgQuHc+6dufckhZIWg2Dizc0vLC4tN1b81bX1jc3m1va1zUsjoCtylZvbhFtQUkMXJSq4LQzwLFFwk9ydTf2bezBW5voKRwXEGR9omUrB0Um95hmLfKYgxYiyBAZSV9wYPhpXYuxTh0PKGJ2xkPoMdL/2KTNyMMTYZ7Hfa7aCdjAD/UvCmrRIjYte85n1c1FmoFEobm0UBgXG7mWUQsHYZ6WFgos7PoDIUc0zsHE1O3ZM953Sp2luXGmkM/X7RMUza0dZ4jozjkP725uK/3lRielJXEldlAhafH2UlopiTqfJ0b40IFCNHOHCSLcrFUNuuECX7zSE8PfJf8l1px0etY8uO63TTh1Hg+ySPXJAQnJMTsk5uSBdIsgDeSKvZOI9ei/em/f+1Trn1TM75Ae8j08QRaRi</latexit>
5
1

�

<latexit sha1_base64="45zR6dTjcSt9TMgf4mJPlLQj938=">AAACLHicbVBNS8NAEN34WeNX1aOXxSJ4KkkF9Sh48ahgVciGstlO2sXNJuxOhBL6g7z4VwTxYBGv/g63NQe/Hgw83pvZnXlJoaTFIJh4c/MLi0vLjRV/dW19Y7O5tX1t89II6Ipc5eY24RaU1NBFiQpuCwM8SxTcJHdnU//mHoyVub7CUQFxxgdaplJwdFKvecYinylIMaIsgYHUFTeGj8aVGPvUoUMZozN2SH0Gul/7lBk5GGLss9jvNVtBO5iB/iVhTVqkxkWv+cz6uSgz0CgUtzYKgwJj9zJKoWDss9JCwcUdH0DkqOYZ2LiaHTum+07p0zQ3rjTSmfp9ouKZtaMscZ0Zx6H97U3F/7yoxPQkrqQuSgQtvj5KS0Uxp9PkaF8aEKhGjnBhpNuViiE3XKDLdxpC+Pvkv+S60w6P2keXndZpp46jQXbJHjkgITkmp+ScXJAuEeSBPJFXMvEevRfvzXv/ap3z6pkd8gPexycOiqRh</latexit>
2
3

�

(b)
Figure 2: A BPMN+CPI utilizing all the components considered in this work (a) and its 𝖲𝖯𝖨𝖭 translation
(b).

6. for each 𝑣∈ 𝑉 if  (𝑣) = 𝑗𝑜𝑖𝑛 there exists exactly one edge departing from 𝑣 and two edges entering
𝑣, i.e., |{(𝑣,𝑣′) ∈ 𝐸}| = 1 and |{(𝑣′,𝑣) ∈ 𝐸}| = 2;

Every non-SESE BPMN diagram can be translated into a SESE diagram as demonstrated in [13].
In particular, in the rest of this work, we will restrict ourselves to acyclic SESE diagrams. We will

discuss this limitation and how it can be overcome in Section 3.3.
We define BPMN+CPI processes as follows.

Definition 2. A BPMN+CPI is a tuple 𝑃𝑐𝑝𝑖 = (, ,, 𝛿) where  = (𝑉 ,𝐸,) is a SESE diagram, and
 ∶ 𝑠𝑝𝑙𝑖𝑡(𝑉)→ℝ[0,1] is a partial function,  ∶ 𝑡𝑎𝑠𝑘(𝑉)→ (ℝ≥0

)𝑘 with 𝑘 ∈ ℕ, and 𝛿 ∶ 𝑡𝑎𝑠𝑘(𝑉)→ ℕ+.
Let us notice that since  is a partial function, it suffices to encode the natural split gateways in

the diagrams, i.e., the one with associated probabilities. Then we may define 𝑉𝑛𝑎𝑡𝑢𝑟𝑒 as the set 𝑉𝑛𝑎𝑡𝑢𝑟𝑒 =
𝐷𝑜𝑚() and, on the other hand, for the choice of the system 𝑉𝑐ℎ𝑜𝑖𝑐𝑒 as 𝑉𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑠𝑝𝑙𝑖𝑡(𝑉)⧵𝑉𝑛𝑎𝑡𝑢𝑟𝑒.

Let us now extend the semantics of classical Petri nets [25] in order to capture the semantics of
BPMN+CPI process.
Definition 3. A Simultaneous Probabilistic Impactful Network (𝖲𝖯𝖨𝖭) is a tuple 𝑁 = (𝑃𝑇 = 𝑃 ∪𝑇 ,𝑇𝑝,Δ,
𝐼,𝑃 𝑟,𝐷) where 𝑃 and 𝑇 are finite disjoint set of places and transition, respectively, 𝑇𝑝 ⊆ 𝑇 , Δ ⊆ (𝑃 ×
𝑇)∪ (𝑇 ×𝑃), 𝐼 ∶ 𝑇 → ℕ𝑘, 𝐷 ∶ 𝑃 → ℕ, and 𝑃𝑟 ∶ 𝑇𝑝 → [0,1].

Given a 𝖲𝖯𝖨𝖭 𝑁 = (𝑃𝑇 = 𝑃 ∪ 𝑇 ,𝑇𝑝,Δ, 𝐼,𝑃 𝑟,𝐷) for each 𝑝𝑡 ∈ 𝑃𝑇 let 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑝𝑡) = {𝑝𝑡′ ∈ 𝑃𝑇 ∶
(𝑝𝑡′, 𝑝𝑡) ∈ Δ} and let 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑝𝑡) = {𝑝𝑡′ ∈ 𝑃𝑇 ∶ (𝑝𝑡,𝑝𝑡′) ∈ Δ}. Here we focus on a specific restriction of
𝖲𝖯𝖨𝖭 called structured acyclic 𝖲𝖯𝖨𝖭.
Definition 4. We say that a 𝖲𝖯𝖨𝖭𝑁 = (𝑃𝑇 = 𝑃 ∪𝑇 ,𝑇𝑝,Δ, 𝐼,𝑃 𝑟,𝐷) is structured and acyclic if and only
if the directed graph (𝑃𝑇 ,Δ) is acyclic, and the following conditions hold:

E. Chini, A. Simonetti, P. Sala, and O. Zare 41

1. for each 𝑝𝑡∈ 𝑃𝑇 we have, |𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑝𝑡)|≤ 2 |𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑝𝑡)|≤ 2 and |𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑝𝑡)|+ |𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑝𝑡)|≤ 3;
2. there exists a unique partition 𝑝 = {𝑡1, 𝑡1},… ,{𝑡𝑚, 𝑡𝑚} of 𝑇𝑝 such that 𝑃𝑟(𝑡𝑖) = 1−𝑃𝑟(𝑡𝑖),

|𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑡𝑖)| = |𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑡𝑖)| = 1, and 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑡𝑖) = 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑡𝑖);
3. there exists a unique set cover 𝑃𝑇1,…𝑃𝑇𝑚 of 𝑃𝑇 such that for each pair 𝑃𝑇𝑖,𝑃 𝑇𝑗 of the cover

𝑃𝑇𝑖∪𝑃𝑇𝑗 also belongs to the cover and the following conditions hold:
• 𝑝𝑡 ∈ 𝑃𝑇 we have that there exists at most two incoming and two outgoing edges, and the

cardinality of the incoming and outgoing edges is at most 3, i.e., {(𝑝𝑡′, 𝑝𝑡)}.
• for each pair 𝑃𝑇𝑖,𝑃 𝑇𝑗 𝑃𝑇𝑖∩𝑃𝑇𝑗 = ∅, or 𝑃𝑇𝑖 ⊆ 𝑃𝑇𝑗 , or 𝑃𝑇𝑗 ⊆ 𝑃𝑇𝑖;
• for each 𝑃𝑇𝑖 ≠ 𝑃𝑇 there exists a unique element 𝑝𝑡𝑖𝑛(𝑖) ∈ 𝑃𝑇𝑖 (resp., 𝑝𝑡𝑜𝑢𝑡(𝑖) ∈ 𝑃𝑇𝑖) such that

{𝑝𝑡𝑖𝑛(𝑖)} = {𝑝𝑡 ∶ (𝑝𝑡′, 𝑝𝑡) ∈ Δ, 𝑝𝑡′ ∉ 𝑃𝑇𝑖, 𝑝𝑡 ∈ 𝑃𝑇𝑖} (resp., {𝑝𝑡𝑜𝑢𝑡(𝑖)} = {𝑝𝑡 ∶ (𝑝𝑡,𝑝𝑡′) ∈ Δ, 𝑝𝑡′ ∉
𝑃𝑇𝑖, 𝑝𝑡 ∈ 𝑃𝑇𝑖});

• for each 𝑃𝑇𝑖 ≠ 𝑃𝑇 all the elements of 𝑃𝑇𝑖 are reachable from 𝑝𝑡𝑖𝑛(𝑖) via Δ and all the elements
of 𝑃𝑇𝑖 can reach 𝑝𝑡𝑜𝑢𝑡(𝑖) via Δ.

The class of 𝖲𝖯𝖨𝖭, as captured by Definition 4, is the counterpart of acyclic BPMN+CPI. The formal
translation from BPMN+CPI to 𝖲𝖯𝖨𝖭 provided which enriches the work [12], is not here shown for the
sake of brevity. However, an example that includes the main BMPN elements is shown in Figure 2.

Let us notice that by the above definition a structured acyclic 𝖲𝖯𝖨𝖭, a 𝖲𝖯𝖨𝖭 from now on, features
exactly one place 𝑝0 with 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑝0) = ∅ and a unique place 𝑝𝑓 with 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑝𝑓) = ∅. Let us define a
switch function 𝑠𝑤 ∶ 𝑇𝑝 → 𝑇𝑝 such that for every 𝑡 ∈ 𝑇𝑝 {𝑠𝑤(𝑡), 𝑡′} ∈ 𝑝. Basically 𝑠𝑤 act as a tool that
allow us, for every probabilistic transition 𝑡, to access the unique other probabilistic 𝑡 transition which
shares the same incoming place of 𝑡.

Let us now formally define how computations work for 𝖲𝖯𝖨𝖭s. Given a 𝖲𝖯𝖨𝖭 𝑁 = (𝑃𝑇 = 𝑃 ∪
𝑇 ,𝑇𝑝,Δ, 𝐼,𝑃 𝑟,𝐷), a state 𝑞 ∶ 𝑃 → ℕ∪ {𝜖} is a function that maps places in temporal units, where 𝜖
states that the specific place has not been visited yet, or that it has already been visited.

Initial state 𝑞0 and final state 𝑞𝑓
for a 𝖲𝖯𝖨𝖭 are defined as follows: 𝑞0(𝑝) =

{

0 if 𝑝 = 𝑝0
𝜖 otherwise ; 𝑞𝑓 (𝑝) =

{

0 if 𝑝 = 𝑝𝑓
𝜖 otherwise .

We will say that a transition 𝑡 ∈ 𝑇 is enabled in a state 𝑞 if and only if, for all 𝑝 ∈ 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑡), 𝑞(𝑝) ≥
𝐷(𝑝). Let us introduce now the concept of saturated state.
Definition 5. Given a state 𝑞 for a spin 𝑁 = (𝑃𝑇 = 𝑃 ∪𝑇 ,𝑇𝑝,Δ, 𝐼,𝑃 𝑟,𝐷) we say that 𝑞 is saturated if
and only if there exists at least one transition 𝑡 ∈ 𝑇 which is enabled in 𝑞

Since in a not saturated state 𝑞 no transition 𝑡 ∈ 𝑇 is enabled the net will be stuck in 𝑞. Then the
intuition behind not saturated states is that the corresponding BPMN+CPI process is waiting for one or
more tasks to terminate before going further. For getting out of such not saturated states we introduce
a special transition 𝑡𝑤, the so called wait transition which encode the passing of one time units and it is
enabled only in not saturated states.

Unlike classical Petri Nets, where each transition is fired one at the time here may fire either 𝑡𝑤 or a
subset of 𝑇 called maximal non-conflicting enabled transition set.
Definition 6. Given a state 𝑞 for a spin 𝑁 = (𝑃𝑇 = 𝑃 ∪𝑇 ,𝑇𝑝,Δ, 𝐼,𝑃 𝑟,𝐷) and a subset 𝑇 ⊆ 𝑇 we say
that 𝑇 is a maximal non-conflicting enabled transition set, MNCE for short, in 𝑞 if and only if the following
conditions hold:

1. for each 𝑡 ∈ 𝑇 we have that 𝑡 is enabled in 𝑞 (enabled);
2. for each 𝑡, 𝑡′ ∈ 𝑇 with 𝑡 ≠ 𝑡′ we have (𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑡)∪ 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑡))∩ (𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑡′)∪ 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑡′)) = ∅ (non-

conflicting);
3. for any 𝑡 ∈ 𝑇 ⧵𝑇 we have that 𝑇 ∪{𝑡} violates the above two conditions (maximal);

42 Reactive Synthesis for Expected Impacts

0.2

0.8

0

0

0

0

3

1

2

3

2

4

Figure 3: A 𝖲𝖯𝖨𝖭 for illustrating MNCE and proba-
bilistic variants.

Given a set of transitions 𝑇 ⊆ 𝑇 , let

OutPlaces(𝑇) =
⋃

𝑡∈𝑇

𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑡)

and let

Places(𝑇) =
⋃

𝑡∈𝑇

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑡)∪OutPlaces(𝑇).

Now we are ready to define the transition rela-
tion between states in a 𝖲𝖯𝖨𝖭. Let 𝑁 = (𝑃𝑇 =
𝑃 ∪𝑇 ,𝑇𝑝,Δ, 𝐼,𝑃 𝑟,𝐷) a spin for any pair of states 𝑞,𝑞′ for it we have:

𝑞
𝑡𝑤
→𝑞′ iff

𝑞 is not saturated
and

𝑞′(𝑝) =

{

𝑞(𝑝)+1 if 𝑞(𝑝) ∈ ℕ
𝜖 otherwise

; 𝑞 𝑇
→𝑞′ iff

𝑞 is saturated, 𝑇 is an MNCE in 𝑞,
and

𝑞′(𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞(𝑝)+1
if 𝑞(𝑝) ∈ ℕ and
𝑝 ∉ Places(𝑇)

0 if 𝑝 ∈ OutPlaces(𝑇)
𝜖 otherwise

.

Definition 7. A computation 𝑐 = 𝑞0
𝑇1
→…

𝑇𝑛
→𝑞 in a 𝖲𝖯𝖨𝖭 is a sequence of sets of transitions 𝑇𝑖 where for

each 1 ≤ 𝑖 ≤ 𝑛 we have that 𝑇𝑖 is either 𝑡𝑤 or an MNCE for 𝑞𝑖−1.

A computation 𝑐 = 𝑞0
𝑇1
→…

𝑇𝑛
→𝑞 in a 𝖲𝖯𝖨𝖭 is called a final computation if 𝑞 = 𝑞𝑓 . Stated that 𝐼(𝑡𝑤) = 0𝑘 we

can compute 𝐼(𝑐) = ∑

𝑡∈
⋃𝑛

𝑖=1 𝑇𝑖

𝐼(𝑡) the impact associated with the computation 𝑐 and 𝑝(𝑐) =
∏

𝑡∈
⋃𝑛

𝑖=1 𝑇𝑖∩𝑇𝑝

𝑃𝑟(𝑡),
the probability associated with the computation 𝑐. Let 𝑇

�𝑝
= 𝑇 ⧵𝑇𝑝, that is, the set of transitions devoid of

probabilistic transition, a strategy is defined as follows.
Definition 8. Let ℂ be the set of all the computations for a 𝖲𝖯𝖨𝖭, we can define a strategy 𝑆 ∶ ℂ →

2𝑇�𝑝 ∪{𝑡𝑤}, a function that maps computations either into subsets of 𝑇
�𝑝

or into 𝑡𝑤.

So, starting from a computation 𝑐 in which we have reached the last state of the sequence, a strategy 𝑆(𝑐)
tells us which are the next non-probabilistic transitions that are going to be fired. For all computations
𝑐 = 𝑞0

𝑇1
→…

𝑇𝑛
→𝑞 we implicitly assume that 𝑆(𝑐) is 𝑡𝑤 if 𝑞 is not saturated and for and does not exists an

enabled transition 𝑡 ∈ 𝑇
�𝑝
⧵𝑆(𝑐) such that 𝑡∪𝑆(𝑐) is non-conflicting, i.e., 𝑆(𝑐) may always be completed

into an MNCE for 𝑞. Given a computation 𝑐 = 𝑞0
𝑇1
→…

𝑇𝑖
→𝑞𝑖

𝑇 𝑖+1
→ …

𝑇𝑛
→𝑞, we refer to the first 𝑖 transitions sets

of the sequence with the term sub-computation, written 𝑐[0…𝑖].
Definition 9. Given a strategy 𝑆, a play of S is a computation 𝑐 = 𝑞0

𝑇1
→…

𝑇𝑛
→𝑞, such that for all sub-

computations 𝑐[0…𝑖], 𝑆(𝑐[0…𝑖]) ∈ 𝑇 𝑖+1.

Let 𝐺𝑎𝑚𝑒𝑠(𝑆) be the set of all the final computations in ℂ which are also plays of 𝑆.
Definition 10. Given a vector bound 𝔼𝕀 ∈ ℕ𝑘, a strategy 𝑆 is said to be winning for 𝔼𝕀 if and only if

∑

𝑐∈𝐺𝑎𝑚𝑒𝑠(𝑆)
𝑝(𝑐)𝐼(𝑐) ≤ 𝔼𝕀.

E. Chini, A. Simonetti, P. Sala, and O. Zare 43

<latexit sha1_base64="uFhAotuJ0QXbCXxsQpodd1kYyh0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy6r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuNeqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPjbWRcw==</latexit>R
<latexit sha1_base64="kvsuuBqipC1kWeXXnzjBiBrUBnM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4CkmR6rHoxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWeqWy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiXnVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0XUwESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadog3BX355lTQrrl91q/eX5dpNHkcBTuEMLsCHK6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBYko0z</latexit>

0.2

<latexit sha1_base64="/4jLgKNDMd+F0bw76NzvhILUCq8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEao9FLx4rWltoQ9lsJ+3SzSbsboRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG8/7dgpr6xubW8Xt0s7u3v5B+fDoUSeZYthkiUhUO6QaBZfYNNwIbKcKaRwKbIWjm5nfekKleSIfzDjFIKYDySPOqLHSvefWeuWK53pzkFXi56QCORq98le3n7AsRmmYoFp3fC81wYQqw5nAaambaUwpG9EBdiyVNEYdTOanTsmZVfokSpQtachc/T0xobHW4zi0nTE1Q73szcT/vE5molow4TLNDEq2WBRlgpiEzP4mfa6QGTG2hDLF7a2EDamizNh0SjYEf/nlVfJ44fpVt3p3Walf53EU4QRO4Rx8uII63EIDmsBgAM/wCm+OcF6cd+dj0Vpw8plj+APn8wdhqo05</latexit>

0.8

<latexit sha1_base64="uFhAotuJ0QXbCXxsQpodd1kYyh0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy6r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuNeqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPjbWRcw==</latexit>R

<latexit sha1_base64="uFhAotuJ0QXbCXxsQpodd1kYyh0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy6r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuNeqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPjbWRcw==</latexit>R
<latexit sha1_base64="uFhAotuJ0QXbCXxsQpodd1kYyh0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy6r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuNeqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPjbWRcw==</latexit>R

<latexit sha1_base64="uFhAotuJ0QXbCXxsQpodd1kYyh0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy6r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuNeqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPjbWRcw==</latexit>R <latexit sha1_base64="uFhAotuJ0QXbCXxsQpodd1kYyh0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy6r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuNeqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPjbWRcw==</latexit>R

<latexit sha1_base64="kvsuuBqipC1kWeXXnzjBiBrUBnM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4CkmR6rHoxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWeqWy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiXnVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0XUwESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadog3BX355lTQrrl91q/eX5dpNHkcBTuEMLsCHK6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBYko0z</latexit>

0.2

<latexit sha1_base64="/4jLgKNDMd+F0bw76NzvhILUCq8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEao9FLx4rWltoQ9lsJ+3SzSbsboRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG8/7dgpr6xubW8Xt0s7u3v5B+fDoUSeZYthkiUhUO6QaBZfYNNwIbKcKaRwKbIWjm5nfekKleSIfzDjFIKYDySPOqLHSvefWeuWK53pzkFXi56QCORq98le3n7AsRmmYoFp3fC81wYQqw5nAaambaUwpG9EBdiyVNEYdTOanTsmZVfokSpQtachc/T0xobHW4zi0nTE1Q73szcT/vE5molow4TLNDEq2WBRlgpiEzP4mfa6QGTG2hDLF7a2EDamizNh0SjYEf/nlVfJ44fpVt3p3Walf53EU4QRO4Rx8uII63EIDmsBgAM/wCm+OcF6cd+dj0Vpw8plj+APn8wdhqo05</latexit>

0.8

<latexit sha1_base64="kvsuuBqipC1kWeXXnzjBiBrUBnM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4CkmR6rHoxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWeqWy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiXnVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0XUwESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadog3BX355lTQrrl91q/eX5dpNHkcBTuEMLsCHK6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBYko0z</latexit>

0.2

<latexit sha1_base64="/4jLgKNDMd+F0bw76NzvhILUCq8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEao9FLx4rWltoQ9lsJ+3SzSbsboRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG8/7dgpr6xubW8Xt0s7u3v5B+fDoUSeZYthkiUhUO6QaBZfYNNwIbKcKaRwKbIWjm5nfekKleSIfzDjFIKYDySPOqLHSvefWeuWK53pzkFXi56QCORq98le3n7AsRmmYoFp3fC81wYQqw5nAaambaUwpG9EBdiyVNEYdTOanTsmZVfokSpQtachc/T0xobHW4zi0nTE1Q73szcT/vE5molow4TLNDEq2WBRlgpiEzP4mfa6QGTG2hDLF7a2EDamizNh0SjYEf/nlVfJ44fpVt3p3Walf53EU4QRO4Rx8uII63EIDmsBgAM/wCm+OcF6cd+dj0Vpw8plj+APn8wdhqo05</latexit>

0.8

<latexit sha1_base64="jqOtnWrMH3bRX+iTNlPbsp7mQZs=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmIzHBhtxRoCXRxhKjfCRwIXvLHGzY27vs7pkQwk+wsdAYW3+Rnf/GBa5Q8CWTvLw3k5l5QSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzSRBP6JDyUPOqLHSQ5le9oslt+IuQNaJl5ESZGj0i1+9QczSCKVhgmrd9dzE+FOqDGcCZ4VeqjGhbEyH2LVU0gi1P12cOiMXVhmQMFa2pCEL9ffElEZaT6LAdkbUjPSqNxf/87qpCa/9KZdJalCy5aIwFcTEZP43GXCFzIiJJZQpbm8lbEQVZcamU7AheKsvr5NWteLVKrX7aql+k8WRhzM4hzJ4cAV1uIMGNIHBEJ7hFd4c4bw4787HsjXnZDOn8AfO5w+LnY1T</latexit>

(a)
<latexit sha1_base64="CCojrv5AyQNhmx1TlOX7Rj2vIdU=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmIzHBhtxRoCXRxhKjfCRwIXvLHGzY27vs7pkQwk+wsdAYW3+Rnf/GBa5Q8CWTvLw3k5l5QSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzSRBP6JDyUPOqLHSQzm47BdLbsVdgKwTLyMlyNDoF796g5ilEUrDBNW667mJ8adUGc4Ezgq9VGNC2ZgOsWuppBFqf7o4dUYurDIgYaxsSUMW6u+JKY20nkSB7YyoGelVby7+53VTE177Uy6T1KBky0VhKoiJyfxvMuAKmRETSyhT3N5K2IgqyoxNp2BD8FZfXietasWrVWr31VL9JosjD2dwDmXw4ArqcAcNaAKDITzDK7w5wnlx3p2PZWvOyWZO4Q+czx+NIo1U</latexit>

(b)

Figure 4: An example of a 2-unraveling of a loop region.

Finally, we highlight the problem we aim to resolve throughout this work.

Problem 1. Given a structured acyclic 𝖲𝖯𝖨𝖭 and an expected vector bound 𝔼𝕀 decide whether or
not there exists a winning strategy 𝑆 for 𝔼𝕀 in 𝖲𝖯𝖨𝖭.

Given a generic state 𝑝, e.g., 𝑞 = {𝑝1 ↦ 0, 𝑝2 ↦ 0} (for the sake of brevity, because the other positions
are equal to 𝜖 are not inserted in 𝑞) from the diagram in Figure 3. Then, we are interested in the MNCE set
of transitions and suppose we are in state 𝑞. In this case, all the MNCE are {𝑡1, 𝑡3},{𝑡1, 𝑡4},{𝑡2, 𝑡3},{𝑡2, 𝑡4}.
Now, consider a transition set 𝑇 where 𝑇 = {𝑡1}; it is clear that 𝑇 is not MNCE because it is not maximal as
it does not consider a transition that originates from 𝑝2, e.g. can be extended to {𝑡1, 𝑡2}. Let’s suppose now
that we have 𝑇 = {𝑡1, 𝑡4, 𝑡5}. In this case, it is not MNCE because it contains 𝑡5 that is not enabled. Finally,
let’s suppose that we have 𝑇 = {𝑡1, 𝑡2, 𝑡4}; it is not MNCE because it contains 𝑡1, 𝑡2 that have the same origin
in 𝑝1. In fact, 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑡1) = 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑡2) = 𝑝1. We now propose an example to clarify what we mean by
𝑃𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑇) 11. Consider the MNCE {𝑡1, 𝑡3}, the 𝑃𝑣𝑎𝑟𝑖𝑎𝑛𝑡 is 𝑃𝑣𝑎𝑟𝑖𝑎𝑛𝑡({𝑡1, 𝑡3}) = 𝑃𝑣𝑎𝑟𝑖𝑎𝑛𝑡({𝑡1, 𝑡4}) =
{{𝑡1, 𝑡3},{𝑡1, 𝑡4}}. Notice that one variant of {𝑡1, 𝑡3} is {𝑡1, 𝑡3}, because one variant of 𝑇 is always 𝑇 .

3.3 Dealing with Loops

Despite the whole work being based on acyclic SESE diagrams, we are aware that an important compo-
nent of such diagrams is missing, i.e., loops. We briefly discuss a simple method for handling loops in
our framework, and we are interested in exploring more elegant and theoretical options in future devel-
opments. In our framework, the split node 𝑣 that induces a loop must be a nature one, i.e., 𝑣 ∉ 𝑉𝑛𝑎𝑡𝑢𝑟𝑒, to
represent a more general problem. If 𝑣∈ 𝑉𝑐ℎ𝑜𝑖𝑐𝑒, we restrict our search to strategies that avoid further loop
iterations due to the non-negative nature of impacts. We highlight a set 𝑉𝑙𝑜𝑜𝑝 ⊆ 𝑉𝑛𝑎𝑡𝑢𝑟𝑒, identifying split
nodes encapsulating a loop region. We introduce a function 𝑚𝑎𝑥𝑙𝑜𝑜𝑝 ∶ 𝑉𝑙𝑜𝑜𝑝 →ℕ to encode the maximum
loop iterations, allowing us to unravel the cyclic structure into an acyclic one. An example of this unrav-
eling is provided in Figure 4, where 𝑚𝑎𝑥𝑙𝑜𝑜𝑝(𝑣) = 2 results in a chain of 2 copies of 𝑣 nested into each
other. Each additional iteration reduces the contribution to the expected impact by an order of magnitude.
This approach is simple to understand and implement and can be parametrized by the user. However, it
may result in an exponential increase in size for multiple nested loops, even if 𝑚𝑎𝑥(𝐼𝑚𝑔(𝑚𝑎𝑥𝑙𝑜𝑜𝑝)) is
small. This could affect the feasibility of finding a winning strategy.

We would like to point out that the finite user-parametrized loop unraveling is one of the simplest and
most common approaches adopted in the BPMN field [12] in order to deal with loops. For the time being,
our tool (see the end of Section 5.2 for further) deals with loops by the method described above, which
is still good for contexts that do not put to much emphasis on high numbers of iterations of the loops, for

44 Reactive Synthesis for Expected Impacts

quick experiments, or for comparison with more sophisticated methods to come.

4 Computational Complexity

In this section, we provide a complexity upper bound for Problem 1, that is PSPACE, by means of the
Algorithm 2. The lower bound for the complexity, which is within NP-HARD and PSPACE (NP-HARD
lower bound may be provided by a reduction similar to the one presented in Section 5 for 𝑘 cost game)
is still an open problem. First, we have to observe that due to the duration constraints, we may have an
exponential number of wait steps if we express such durations in binary. However, this may be easily dealt
with if we consider the fact that chains of wait transition by their very definition do not generate possible
branching in the computation. Let 𝑄 the set of all possible states, we define a function 𝑠𝑎𝑡 ∶ 𝑄→ 𝑄 as
follows: 𝑠𝑎𝑡(𝑞) =

{

𝑞 if q is saturated
𝑠𝑎𝑡(𝑞′) with 𝑞

𝑡𝑤
→𝑞′otherwise .

Basically, the 𝑠𝑎𝑡 function take a state 𝑞 and returns the next saturated state that can be obtained by
𝑞. Now we can provide the definition of saturating transition between two saturated states 𝑞,𝑞′:

𝑞
𝑇
⇒𝑞′ iff 𝑞 is saturated, 𝑇 is an MNCE for 𝑞 and either 𝑞 𝑇

→𝑞′ with 𝑞′ saturated
or there exists 𝑞′′ such that 𝑞 𝑇

→𝑞′ and 𝑠𝑎𝑡(𝑞′′) = 𝑞′

Algorithm 1: Saturate(𝑞,𝑁)

Input: a state 𝑞 of a 𝖲𝖯𝖨𝖭𝑁 = (𝑃𝑇 =
𝑃 ∪𝑇 ,𝑇𝑝,Δ, 𝐼,𝑃 𝑟,𝐷)

Output: 𝑠𝑎𝑡(𝑞)
1 if there exists 𝑡 ∈ 𝑇 s.t. 𝑡 is enabled in 𝑞

then
2 return 𝑞

3 let 𝑇 ⊆ 𝑇 s.t. for each 𝑡 ∈ 𝑇 and for each
𝑝 ∈ 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑡) we have 𝑞(𝑝) ≠ 𝜖

4 foreach 𝑡 ∈ 𝑇 do
5 𝑘𝑡 ←max{𝐷(𝑝)− 𝑞(𝑝) ∶ 𝑝 ∈ 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔(𝑡)}

6 𝑘← 𝑛min{𝑘𝑡 ∶ 𝑡 ∈ 𝑇 }
7 let 𝑞′ s.t. ∀𝑝 ∈ 𝑃

𝑞′(𝑝) =

{

𝜖 if 𝑞(𝑝) = 𝜖
𝑞(𝑝)+𝑘 otherwise

8 return 𝑞′

It is easy to see that a partial strategy 𝑆 that is
defined only on the computations 𝑐 which end in a
saturated state 𝑞 is as good as a complete strategy
since there is only one “move” allowed in a not-
saturated state. The decision algorithm for Prob-
lem 1 makes use of Algorithm 1, that given a state
𝑞 computes 𝑠𝑎𝑡(𝑞) in logarithmic space by means
of binary arithmetic.
Our decision procedure relies on the following no-
tion of variant for and MNCE .
Definition 11. Given an MNCE 𝑇 in 𝑞 an MNCE 𝑇̂
in 𝑞 is a probabilistic variant of 𝑇 if the following
conditions hold: 1. 𝑇 ∩ (𝑇 ⧵ 𝑇𝑝) = 𝑇̂ ∩ (𝑇 ⧵ 𝑇𝑝);
2. ∀𝑡 ∈ 𝑇𝑝 s.t. 𝑡, 𝑠𝑤(𝑡) ∉ 𝑇 we have 𝑡, 𝑠𝑤(𝑡) ∉ 𝑇̂ ;
3. ∀𝑡 ∈ (𝑇̂ ∩𝑇𝑝) either 𝑡 ∈ 𝑇̂ or 𝑠𝑤(𝑡) ∈ 𝑇̂ .

Informally speaking, a probabilistic variant for
an MNCE 𝑇 in 𝑞 is still an MNCE 𝑇̂ in 𝑞 which shares
with 𝑇 all the non-probabilistic transitions. Given
an MNCE 𝑇 in 𝑞, we denote with 𝑃𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑇 ,𝑞) the
set of all and only the probabilistic variants of 𝑇 in 𝑞. Clearly, we have 𝑇 ∈ 𝑃𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑇 ,𝑞).

Algorithm 2 employs a non-deterministic approach to ascertain the existence of a viable strategy for
a given instance of Problem 1. This is achieved by dynamically enumerating all possible plays, thereby
maintaining only a single play in memory at any given moment. This method ensures polynomial memory
utilization while providing a comprehensive evaluation of potential strategies.

For the sake of brevity, we do not provide the full proof that Algorithm 2 works in polynomial space.
However, we informally provide the key arguments of the proof:

E. Chini, A. Simonetti, P. Sala, and O. Zare 45

• Algorithm 2 is non-deterministic because it guesses the correct move (if any) at line 9, where
𝑇 ∩(𝑇 ⧵𝑇𝑝) represents the output of the current strategy;

• 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒 operates in LOGSPACE and deals with the binary representation of durations for places;
• Given that 𝑁 is acyclic, we have that any transition is considered at most for one recursive call

to 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐸𝑥𝑖𝑠𝑡𝑠. Therefore, the number of nested procedure calls is bounded by |𝑇 | since 𝑡𝑤
transitions are collapsed via the function 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒;

• In principle, |𝑃𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑇 ,𝑞)| (line 10 of Algorithm 2) may be of the order of 2|𝑇 |. However, since
only one element 𝑇̂ ∈ 𝑃𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑇 ,𝑞) is needed at a time for updating 𝑟𝑒𝑖 via the recursive call in
the body of the for loop (line 12 of Algorithm 2), it is possible to set up an enumeration to keep the
space polynomial at each step.

Since each play may be represented in polynomial space, we have the following result.
Theorem 1. Problem 1 is NP-HARD and belongs to the complexity class PSPACE.

However, our primary objective is to formulate a strategy rather than merely verifying its existence.
Consequently, Section 5 is dedicated to addressing the strategy synthesis problem for BPMN+CPI. This
section elaborates on the proposed solution, central to the functionality of the effective prototype that we
have developed and implemented.
The exact complexity of Problem 1 is still open, we know that it can be proved to be NP-HARD by means
of a reduction from the Partition problem introduced in Section 5 for 𝑘-cost reachability games.

The NP-HARD lower bound may be achieved by building a game devoid of nature nodes in a way that
resembles the one-player restriction of the generalized game proposed in [16], but here Partition is used
instead of SAT as the NP-HARD problem we reduce from. In [16], the authors provide a QSAT reduction
for the unrestricted case, thus obtaining a PSPACE-HARD lower bound. Such a reduction is not directly
applicable in our setting since our winning conditions embrace all possible plays, not a single one. In
other words, in [16], a faulty strategy may be detected by witnessing a faulty single play it generates,
while in our setting, a faulty strategy may be detected only by considering a subset (possibly all) the plays
it generates. For this reason, at this point, we cannot conjecture the exact lower bound for the complexity
of Problem 1 without further analysis.

5 Synthesizing Strategies

In this section, we will take advantage of the 𝖲𝖯𝖨𝖭 translation which has been fully described in Sec-
tion 3.2. This tree has the foundational semantics of classical Petri Nets [25] for BPMN process. These
concepts serve as the mathematical and logical basis for describing a graph-game representation and how
the strategy is discovered presented below.

5.1 A 𝑘-cost Reachability Game

In this section, we will introduce a graph-game representation for dealing with the synthesis of strate-
gies given a BPMN+CPI diagram  = (𝑉 ,𝐸,𝐸⊤,) which decides whether there exists a strategy that
guarantees that the expected impact of a diagram is dominated by a given impact vector bound 𝕀.
Definition 12. A 𝑘-cost game board is a tuple  = (𝑃 = 𝑃◦ ∪𝑃□, 𝑝0,𝐹 ,,𝑀) such that 𝑝0 ∈ 𝑃 , 𝑀 ⊆
𝑃 ×𝑃 , 𝐹 ⊆ 𝑃 with {(𝑚,𝑚′) ∶𝑚 ∈ 𝐹 } = ∅ (i.e, there aren’t outgoing edges from 𝐹),  ∶ 𝑃 →ℝ𝑘, (𝑃 ,𝑀)
is a directed acyclic graph.
Definition 13. Given 𝑘-cost game board = (𝑃 = 𝑃◦∪𝑃□, 𝑝0,𝐹 ,,𝑀) a strategy is a function 𝑠 ∶ 𝑃 ∗ →
𝑃 such that: for every 𝜌 ∈ 𝑃 ∗ we have (𝜌[−1], 𝑠(𝜌)) ∈𝑀 .

46 Reactive Synthesis for Expected Impacts

Algorithm 2: Recursive Procedure for Solving Problem 1
Input: a 𝖲𝖯𝖨𝖭 𝑁 = (𝑃 ,𝑃𝑇 = 𝑇 ∪𝑇𝑝,Δ, 𝐼,𝑃 𝑟,𝐷) and 𝔼𝕀 ∈ ℕ𝑘

Output: 𝑒𝑖 ∈ℝ𝑘 with 𝑒𝑖 ≤ 𝔼𝕀 if there exists a strategy with residual expected impact 𝑒𝑖, and
FAIL otherwise

1 let 𝑞0 be the initial state of 𝑁 ;
2 return StrategyExists(Saturate (𝑞0,𝑁),0𝑘,1,𝔼𝕀)

3 Procedure StrategyExists(q, im, cp, rei):
Data: A saturated state 𝑞 of 𝑁 , the value cp of the cumulative probability of the current

play, 𝑖𝑚 ∈ℝ𝑘 the current impact for the play, 𝑟𝑒𝑖 ∈ℝ𝑘 the residual expected impact
currently available for consumption.

Result: 𝑟𝑒𝑖 ∈ (ℝ+)𝑘 if there exists a strategy from the current state 𝑞 that that has 𝑟𝑒𝑖
residual w.r.t. 𝑒𝑖, and FAIL otherwise

4 if 𝑞 is final then
5 if 𝑟𝑒𝑖 ≰ 0𝑘 then
6 FAIL
7 return 𝑟𝑒𝑖−(𝑐𝑝 ⋅ 𝑖𝑚)

8 let 𝑇 an MNCE for 𝑞′
9 𝑟𝑒𝑖← 𝑟𝑒𝑖

10 foreach 𝑇̂ ∈ 𝑃𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑇 ,𝑞) do

11 let 𝑞′ s.t. 𝑞 𝑇̂
→ 𝑞′

12 𝑟𝑒𝑖← 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐸𝑥𝑖𝑠𝑡(Saturate(q’, N), 𝑖𝑚+
∑

𝑡∈𝑇̂ 𝐼(𝑡), 𝑐𝑝 ⋅
∏

𝑡∈𝑇̂∩𝑇𝑝
𝑃𝑟(𝑡), 𝑟𝑒𝑖)

13 if 𝑟𝑒𝑖 ≱ 0𝑘 then
14 FAIL
15 return 𝑟𝑒𝑖

Definition 14. Given a 𝑘-cost game board  = (𝑃 = 𝑃◦∪𝑃□, 𝑝0,𝐹 ,,𝑀) and a strategy 𝑠, a successful
play 𝜌 ∈ 𝑃 ∗ is generated by 𝑠 in  if and only if: (i) 𝜌[0] = 𝑝0; (ii) 𝜌[−1] ∈ 𝐹 ; (iii) for every 0 < 𝑖 < |𝜌|
if 𝜌[𝑖−1] ∈ 𝑃◦ then 𝜌[𝑖] = 𝑠(𝜌[0 ∶ 𝑖]).

Let 𝑃 ∗
𝑠 be the set of all the possible plays generated by 𝑠.

Definition 15. Given 𝑠 we say that 𝑃 ∗
𝑠 is closed if for each 𝜌 ∈ 𝑃 ∗

𝑠 and for each 0 ≤ 𝑖 < |𝜌|−1 such
that 𝜌[𝑖] ∈ 𝑃□ then for each (𝜌[𝑖], 𝑝) ∈𝑀 we have that there exists 𝜌′ ∈ 𝑃 ∗

𝑠 with 𝜌′[0 ∶ 𝑖] = 𝜌[0 ∶ 𝑖] and
𝜌′[𝑖+1] = 𝑝.

Given a 𝑃 ∗
𝑠 we let 𝑓𝑖𝑛𝑎𝑙(𝑃 ∗

𝑠) the set 𝑓𝑖𝑛𝑎𝑙(𝑃 ∗
𝑠) = {𝜌[−1] ∶ 𝜌 ∈ 𝑃 ∗

𝑠 }.
Problem 2. Given a 𝑘-cost game board  = (𝑃 = 𝑃◦ ∪𝑃□, 𝑝0,𝐹 ,,𝑀) and a cost 𝑐 ∈ ℝ𝑘 determine
whether or not there exists a strategy 𝑠 for which 𝑃 ∗

𝑠 is closed and
∑

𝑝∈𝑓𝑖𝑛𝑎𝑙(𝑃 ∗
𝑠)
(𝑝) ≤ 𝑐.

A strategy 𝑠 is positional if and only if for every 𝜌,𝜌′ ∈ 𝑃 ∗ we have that 𝜌[−1] = 𝜌′[−1] implies
𝑠(𝜌) = 𝑠(𝜌′). For the purpose of our game, w.l.o.g. a positional strategy may be redefined as 𝑠 ∶ 𝑃◦ → 𝑃 .
Problem 3. Given a 𝑘-cost game board  = (𝑃 = 𝑃◦ ∪𝑃□, 𝑝0,𝐹 ,,𝑀) and a cost 𝑐 ∈ ℝ𝑘 determine
whether or not there exists a positional strategy 𝑠 for which 𝑃 ∗

𝑠 is closed and
∑

𝑝∈𝑓𝑖𝑛𝑎𝑙(𝑃 ∗
𝑠)
(𝑝) ≤ 𝑐.

E. Chini, A. Simonetti, P. Sala, and O. Zare 47

Theorem 2. For every 𝑘-cost game board and each cost vector 𝑐 ∈ ℝ𝑘 we have that (, 𝑐) is a positive
instance of Problem 2 if and only if (, 𝑐) is a positive instance of Problem 3

Figure 5: Reduction from Partition to k-cost game Problem.

It is easy to prove that Problem 3
belongs to the complexity class NP, by
simply provide a succinct certificate,
that is, given an instance (= (𝑃 =𝑃◦∪
𝑃□,𝑀,𝑝0,𝐹 ,), 𝑐) of Problem 3 guess
a subset 𝑀 ′ ⊆ 𝑀 such that {(𝑝,𝑝′) ∈
𝑀 ∶ 𝑝∈ 𝑃□}⊆𝑀 ′ and for each 𝑝∈ 𝑃◦
either {(𝑝,𝑝′) ∈𝑀} = ∅ or there exists
a unique edge (𝑝,𝑝′) ∈ 𝑀 ′. Then, let
𝐹 ′ be the subset of 𝐹 reachable from
𝑝0 in the 𝑀 ′-induced sub-graph (𝑃◦ ∪
𝑃□,𝑀 ′) we have that 𝑀 ′ is a solution
if and only if ∑

𝑝∈𝐹 ′
(𝑝) ≤ 𝑐. The NP-

HARD lower bound for Problem 3, and
thus for Problem 2, is proved by a re-
duction from the following NP-HARD
problem.
Problem 4. (Distinct Partition) Given a set of natural numbers 𝑆 = {𝑛1,… , 𝑛𝑚} decide whether or not
there exists a partition (𝑆1,𝑆2) of 𝑆 such that

∑

𝑛∈𝑆1

𝑛 =
∑

𝑛∈𝑆2

𝑛.

As formulated by Korf in [21], Problem 4 is actually NP-complete. We recall this in Theorem 3.
Theorem 3. Distinct Partition (Problem 4) is NP-Complete [21].

There exists a simple LOG-SPACE reduction from Distinct Partition to Problem 3, and thus to Problem 2,
for 𝑘≥ 3. The reduction is very simple, it suffices to transform the distinct partition problem 𝑆 = {𝑛1,… ,
𝑛𝑚} into an instance of Problem 2 (𝑆 = (𝑃 = 𝑃◦∪𝑃□,𝑀,𝑝0,𝐹 ,), 𝑐𝑆) as follows:

1. 𝑃◦ = {𝑝𝑖, 𝑝𝑖↑, 𝑝
𝑖
↓ ∶ 1 ≤ 𝑖 ≤ 𝑚},

2. 𝑃□ = {𝑝0},
3. 𝑀 = {(𝑝0, 𝑝𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑚}∪{(𝑝𝑖, 𝑝𝑖↑), (𝑝

𝑖, 𝑝𝑖↓) ∶ 1 ≤ 𝑖 ≤ 𝑚},
4. 𝐹 = {𝑝𝑖↓, 𝑝

𝑖
↑ ∶ 1 ≤ 𝑖 ≤ 𝑚},

5. (𝑝𝑖↑) = [𝑛𝑖,0,1] and (𝑝𝑖↓) = [0,𝑛𝑖,1] for each 1 ≤ 𝑖 ≤ 𝑚,

6. 𝑐𝑆 =
⎡

⎢

⎢

⎣

𝑚
∑

1
𝑛𝑖

2 ,

𝑚
∑

1
𝑛𝑖

2 ,𝑚
⎤

⎥

⎥

⎦

.
An example of the proposed reduction is given in Figure 5. It is easy to prove that (𝑆 , 𝑐𝑆) is a positive

instance of Problem 2 if and only if 𝑆 is a positive instance of the distinct partition problem.
Theorem 4. Problem 3 and Problem 2 for 𝑘 ≥ 3 are NP-Complete problems.

5.2 From BPMN+CPI to 𝑘-cost Reachability Game

We conclude this section by providing the direct translation from an instance (𝑁,𝔼𝕀) of Problem 1 into
a 𝑘-cost game (,𝔼𝕀), which admits a solution if and only if the problem (𝑁,𝔼𝕀) admits a solution.

48 Reactive Synthesis for Expected Impacts

with

(a) Single MNCE, 𝑇 ◦∪∅

with

with

(b) Two MNCE one variant of the
other, 𝑇 ◦∪𝑇

1
□ and 𝑇 ◦∪𝑇

2
□

with

with

(c)
Two MNCE representing a choice

split with no probabilistic
transition, 𝑇 1

◦∪∅ and 𝑇
2
◦∪∅

with

with

with

with

(d)
A choice split happening

together with a
probabilistic split.

Figure 6: Different scenarios involving at most one choice and at least one probabilistic split.

Moreover, if (,𝔼𝕀) admits a solution, i.e., it is a positive instance of Problem 2, such a solution will
effectively represent a strategy for the original problem.

Before providing this translation, we introduce a couple of useful definitions. Given an MNCE 𝑇
for a state 𝑞, we define two sets: 𝑇□ = 𝑇 ∩ 𝑇𝑝 and 𝑇 ◦ = 𝑇 ⧵ 𝑇□. Additionally, for any 𝑇□ ⊆ 𝑇𝑝, let
𝑃𝑟(𝑇□) =

∏

𝑡∈𝑇□
𝑃𝑟(𝑡); clearly, 𝑃𝑟(∅) = 1. For any 𝑇 ∗ ⊆ 𝑇 , let (𝑇 ∗) =

∑

𝑡∈𝑇 ∗
(𝑡); clearly, (∅) = 0.

Finally, let 𝑄 be the set of all possible saturated states on 𝑁 and 𝐶+
𝑄 be the set of all possible non-empty

combinations of elements in 𝑄. Given a combination 𝜌 ∈ 𝐶+
𝑄, we denote its last element as 𝜌[−1].

Given an instance (𝑁,𝔼𝕀) of we define a 𝑘-cost game board 𝑁 = (𝑆 = 𝑆◦∪𝑆□, 𝑠0,𝐹 ,,𝑀) as follows:
𝑆◦ = {(𝜌,𝑇□) ∈ 𝐶+

𝑄 ×2𝑇𝑝 ∶ 𝜌[−1] 𝑖𝑠 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑}, 𝑆□ =

{

(𝜌,𝑇 ◦) ∶
𝜌 ∈ 𝐶+

𝑄, there exists 𝑇□ ⊆ 𝑇𝑝𝑠.𝑡.
𝑇 ◦∪𝑇□ 𝑖𝑠 𝑎𝑛 MNCE 𝑓𝑜𝑟 𝜌[−1]

}

,

𝑠0 = (𝑠𝑎𝑡(𝑞0),∅), 𝐹 = {(𝜌,𝑇□) ∈ 𝐶+
𝑄 ×2𝑇𝑝 ∶ 𝜌[−1] = 𝑞𝑓},

and 𝑀 = {((𝜌,𝑇□), (𝜌,𝑇 ◦)) ∶ (𝜌,𝑇□) ∈ 𝑃◦, (𝜌,𝑃□) ∈ 𝑃□}∪{((𝜌,𝑇 ◦), (𝜌𝑞,𝑇□)) ∶ 𝜌[−1]
𝑇 ◦∪𝑇□
⇒ 𝑞}.

Graphical examples of how the relation 𝑀 is build in the case when the MNCE 𝑇 = 𝑇 ◦∪𝑇□ satisfies
|𝑇 ◦| ≤ 1 and |𝑇□| ≤ 1 are provided in Figure 6.
Lastly, for the cost function, let 𝑀∗ denote the reflexive and transitive closure of 𝑀 . For any 𝑠 ∈ 𝐹 , the
cost function (𝑠) is defined as:

(𝑠) =
⎛

⎜

⎜

⎝

∏

(𝜌,𝑇□)∈𝑆◦∶(𝑠0,(𝜌,𝑇□)),((𝜌,𝑇□),𝑠)∈𝑀∗

𝑃𝑟
(

𝑇□

)
⎞

⎟

⎟

⎠

⋅
⎛

⎜

⎜

⎝

∑

(𝜌,𝑇 ∗)∈𝑆◦∪𝑆□∶(𝑠0,(𝜌,𝑇 ∗)),((𝜌,𝑇 ∗),𝑠)∈𝑀∗


(

𝑇 ∗

)
⎞

⎟

⎟

⎠

The formula described assigns to each final state 𝑠 ∈ 𝐹 the contribution to the expected impact gen-
erated by paths terminating at 𝑠. Now, as a final measure, we resolve the 𝑘-cost game by selecting 1 a

1This is implemented by evaluating all possible subsets 𝐹 ′ ⊆ 𝐹 such that ∑

𝑠∈𝐹 ′
(𝑝) ≤ 𝔼𝕀 and for each 𝑠′ ∈ 𝐹 ⧵ 𝐹 ′,

∑

𝑠∈𝐹 ′∪{𝑠′}
(𝑠) > 𝔼𝕀. We consider only the maximal admissible subsets of 𝐹 , as they can “attract” the initial state if and only if

at least one of their subsets does.

E. Chini, A. Simonetti, P. Sala, and O. Zare 49

subset 𝐹 ′ ⊆ 𝐹 such that the total expected impact satisfies: ∑

𝑠∈𝐹 ′
(𝑠) ≤ 𝔼𝕀

We employ the standard attractor procedure as described in [27], initiating with 𝐴𝑡𝑡𝑟0 = 𝐹 ′ in . A
positive outcome, along with the strategy formulated by the attractor procedure, is confirmed if there exists
𝑘 ∈ ℕ such that 𝑠0 ∈ 𝐴𝑡𝑡𝑟𝑘. While the attractor procedure itself runs in polynomial time, approximately
(𝑛𝑚) for a graph with 𝑛 nodes and 𝑚 edges, the non-deterministic selection of a candidate 𝐴𝑡𝑡𝑟0 from the
set of final states remains computationally intensive, since the number of final states may be exponential
in the size of 𝖲𝖯𝖨𝖭 thus the above procedure for synthetizing a strategy operates in NEXPTIME.

Implementation The algorithm described in this section, known as PACO, has been developed and is
accessible at https://github.com/ansimonetti/PACO. PACO is designed as a Dash App [20]. The
process is written in Lark syntax [1], with all choices, probabilities, and impacts clearly defined, as visible
in Figure 7a and printed using Graphviz [3] and PyDot [7], as shown in Figure 7b. A specific section is
dedicated to defining the expected impacts vector. Subsequently, the AALpy automata [24] is employed to
provide a strategy, as previously described, if one exists. If one is found, the algorithm returns it together
with the associated impact factors. Moreover, it prints the tree associated with the strategy, indicating
which tasks have to be done to complete the process within the bound vector as shown in Figure 7c.

(a) (b) (c)
Figure 7: Example of using our Dash App: defining the BPMN in our Dah App 7a, print the BPMN using
Lark 7b and example of founded strategy using PACO 7c

6 Conclusion

In this study, we developed a BPMN extension, denoted as BPMN+CPI, designed to handle execution in
the presence of impacts, probabilistic splits, and choices. The semantics for this extension were formu-
lated using an enriched version of Petri Nets, namely, 𝖲𝖯𝖨𝖭. The primary objective of this work was to
create a system capable of informing users about the existence of a strategy for a given process and user-
defined thresholds. This involves determining whether there is a controller capable of executing each step
of the process while ensuring that the expected value of each resource across repeated process instances
remains within the predefined thresholds.

First, we proved that the associated decision problem, i.e., determining if such a controller exists, be-
longs to the complexity class PSPACE. Then, we provided an effective method for building the controller
by modifying classical reachability games over graphs. Based on these theoretical results, we imple-
mented a tool capable of determining the existence of a strategy given a BPMN+CPI process and a given

https://github.com/ansimonetti/PACO

50 Reactive Synthesis for Expected Impacts

threshold 𝔼𝕀. This tool is currently under development, but a working prototype is available online for
the benefit of the community.

For future work, we envision two promising extensions. The first, theoretical, aims to deal with loops
in the workflow in a non-approximated fashion and to propose alternative algorithms for solving the
problem, potentially closing the complexity gap, which currently stands between PSPACE and NP. The
second, more practical extension, focuses on better representing the obtained strategy by integrating it
into the choice gateway of the BPMN+CPI, for instance, representing decisions with a set of inequalities
involving intervals of values for the impact components observed in specific choice nodes.

Acknowledgments This work has been carried out while Emanuele Chini was enrolled in the Italian
National Doctorate on Artificial Intelligence run by Sapienza University of Rome in collaboration with
the University of Verona.

References
[1] (2024): Lark - Parsing Library & Toolkit. Available at https://github.com/lark-parser/lark. Ac-

cessed: 2024-04-20.
[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Piotr Hofman, Richard Mayr, K. Narayan Kumar & Patrick

Totzke (2014): Infinite-state energy games. In Thomas A. Henzinger & Dale Miller, editors: Joint Meeting of
the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,
2014, ACM, pp. 7:1–7:10, doi:10.1145/2603088.2603100.

[3] Sebastian Bank (2024): Graphviz. Available at https://github.com/xflr6/graphviz. Accessed: 2024-
04-20.

[4] Gerd Behrmann, Agnes Cougnard, Alexandre David, Emmanuel Fleury, Kim G Larsen & Didier Lime (2007):
UPPAAL-Tiga: Time for Playing Games! (Tool Paper). In: Computer Aided Verification: 19th Interna-
tional Conference, CAV 2007, Berlin, Germany, July 3-7, 2007. Proceedings 19, Springer, pp. 121–125,
doi:10.1007/978-3-540-73368-3_14.

[5] Cinzia Cappiello, Maria Grazia Fugini, GR Gangadharan, Alexandre Mello Ferreira, Barbara Pernici & Pier-
luigi Plebani (2010): First-step toward energy-aware adaptive business processes. In: On the Move to Mean-
ingful Internet Systems: OTM 2010 Workshops: Confederated International Workshops and Posters: Inter-
national Workshops: AVYTAT, ADI, DATAVIEW, EI2N, ISDE, MONET, OnToContent, ORM, P2P-CDVE,
SeDeS, SWWS and OTMA. Hersonissos, Crete, Greece, October 25-29, 2010. Proceedings, Springer, pp.
6–7, doi:10.1007/978-3-642-16961-8_4.

[6] J. Carmona, J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno & A. Yakovlev (2008): A Symbolic
Algorithm for the Synthesis of Bounded Petri Nets. In: Proceedings of the 29th International Conference on
Applications and Theory of Petri Nets, PETRI NETS ’08, Springer-Verlag, Berlin, Heidelberg, p. 92–111,
doi:10.1007/978-3-540-68746-7_10.

[7] Ero Carrera (2024): Pydot. Available at https://github.com/pydot/pydot. Accessed: 2024-04-20.
[8] Krishnendu Chatterjee & Laurent Doyen (2011): Energy and mean-payoff parity Markov decision processes.

In: International Symposium on Mathematical Foundations of Computer Science, Springer, pp. 206–218,
doi:10.1007/978-3-642-22993-0_21.

[9] Carlo Combi, Barbara Oliboni & Francesca Zerbato (2019): A modular approach to the specifica-
tion and management of time duration constraints in BPMN. Information Systems 84, pp. 111–144,
doi:10.1016/j.is.2019.04.010.

https://github.com/lark-parser/lark
https://doi.org/10.1145/2603088.2603100
https://github.com/xflr6/graphviz
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-642-16961-8_4
https://doi.org/10.1007/978-3-540-68746-7_10
https://github.com/pydot/pydot
https://doi.org/10.1007/978-3-642-22993-0_21
https://doi.org/10.1016/j.is.2019.04.010

E. Chini, A. Simonetti, P. Sala, and O. Zare 51

[10] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius Mikučionis & Jakob Haahr Taankvist
(2015): Uppaal Stratego. In Christel Baier & Cesare Tinelli, editors: Tools and Algorithms for the Construc-
tion and Analysis of Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 206–211, doi:10.1007/978-
3-662-46681-0_16.

[11] Massimiliano De Leoni, Wil MP Van Der Aalst & Boudewijn F Van Dongen (2012): Data-and resource-
aware conformance checking of business processes. In: Business Information Systems: 15th Interna-
tional Conference, BIS 2012, Vilnius, Lithuania, May 21-23, 2012. Proceedings 15, Springer, pp. 48–59,
doi:10.1007/978-3-642-30359-3_5.

[12] Remco M Dijkman, Marlon Dumas & Chun Ouyang (2008): Semantics and analysis of business process mod-
els in BPMN. Information and Software technology 50(12), pp. 1281–1294, doi:10.1016/j.infsof.2008.02.006.

[13] Marlon Dumas, Luciano García-Bañuelos & Artem Polyvyanyy (2010): Unraveling Unstructured Process
Models. In Jan Mendling, Matthias Weidlich & Mathias Weske, editors: Business Process Modeling Nota-
tion - Second International Workshop, BPMN 2010, Potsdam, Germany, October 13-14, 2010. Proceedings,
Lecture Notes in Business Information Processing 67, Springer, pp. 1–7, doi:10.1007/978-3-642-16298-5_1.

[14] Francisco Durán, Camilo Rocha & Gwen Salaün (2018): Stochastic analysis of BPMN with time in rewriting
logic. Science of Computer Programming 168, pp. 1–17, doi:10.1016/j.scico.2018.08.007.

[15] Jorge Fernandes, João Reis, Nuno Melão, Leonor Teixeira & Marlene Amorim (2021): The role of Industry
4.0 and BPMN in the arise of condition-based and predictive maintenance: A case study in the automotive
industry. Applied Sciences 11(8), p. 3438, doi:10.3390/app11083438.

[16] Nathanaël Fijalkow & Florian Horn (2010): The surprizing complexity of generalized reachability games.
arXiv preprint arXiv:1010.2420, doi:10.48550/arXiv.1010.2420.

[17] Jerzy Filar & Koos Vrieze (2012): Competitive Markov decision processes. Springer Science & Business
Media, doi:10.1007/978-1-4612-4054-9.

[18] Christoph Haase, Stephan Kreutzer, Joël Ouaknine & James Worrell (2009): Reachability in Succinct and
Parametric One-Counter Automata. pp. 369–383, doi:10.1007/978-3-642-04081-8_25.

[19] Luke Herbert & Robin Sharp (2013): Precise quantitative analysis of probabilistic business process model
and notation workflows. Journal of Computing and Information Science in Engineering 13(1), p. 011007,
doi:10.1115/1.4023362.

[20] Plotly Technologies Inc. (2024): Dash. Available at https://dash.plotly.com/. Accessed: 2024-04-20.
[21] Richard E. Korf (1998): A complete anytime algorithm for number partitioning. Artificial Intelligence 106(2),

pp. 181–203, doi:10.1016/S0004-3702(98)00086-1.
[22] M. Kwiatkowska, G. Norman & D. Parker (2011): PRISM 4.0: Verification of Probabilistic Real-time Sys-

tems. In G. Gopalakrishnan & S. Qadeer, editors: Proc. 23rd International Conference on Computer Aided
Verification (CAV’11), LNCS 6806, Springer, pp. 585–591, doi:10.1007/978-3-642-22110-1_47.

[23] Matteo Magnani & Danilo Montesi (2007): BPMN: How Much Does It Cost? An Incremental Approach. In
Gustavo Alonso, Peter Dadam & Michael Rosemann, editors: Business Process Management, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 80–87, doi:10.1007/978-3-540-75183-0_6.

[24] Edi Muškardin, Bernhard Aichernig, Ingo Pill, Andrea Pferscher & Martin Tappler (2022): AALpy:
an active automata learning library. Innovations in Systems and Software Engineering 18, pp. 1–10,
doi:10.1007/s11334-022-00449-3.

[25] James L Peterson (1977): Petri nets. ACM Computing Surveys (CSUR) 9(3), pp. 223–252,
doi:10.1145/356698.356702.

[26] Luise Pufahl, Francesca Zerbato, Barbara Weber & Ingo Weber (2022): BPMN in healthcare: Challenges
and best practices. Information Systems 107, p. 102013, doi:10.1016/j.is.2022.102013.

[27] Wolfgang Thomas (1995): On the synthesis of strategies in infinite games. In: Annual Symposium on Theo-
retical Aspects of Computer Science, Springer, pp. 1–13, doi:10.1007/3-540-59042-0_57.

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-30359-3_5
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1007/978-3-642-16298-5_1
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.3390/app11083438
https://doi.org/10.48550/arXiv.1010.2420
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1115/1.4023362
https://dash.plotly.com/
https://doi.org/10.1016/S0004-3702(98)00086-1
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-75183-0_6
https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.1145/356698.356702
https://doi.org/10.1016/j.is.2022.102013
https://doi.org/10.1007/3-540-59042-0_57

52 Reactive Synthesis for Expected Impacts

[28] Uri Zwick & Mike Paterson (1996): The complexity of mean payoff games on graphs. Theoretical Computer
Science 158(1), pp. 343–359, doi:10.1016/0304-3975(95)00188-3.

https://doi.org/10.1016/0304-3975(95)00188-3

A. Achilleos and A. Francalanza (Eds.): Fifteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2024).
EPTCS 409, 2024, pp. 53–69, doi:10.4204/EPTCS.409.8

© L. Feeken & M. Fränzle
This work is licensed under the
Creative Commons Attribution License.

Towards the Usage of Window Counting Constraints in the
Synthesis of Reactive Systems to Reduce State Space

Explosion

Linda Feeken
German Aerospace Center (DLR)

Oldenburg, Germany
linda.feeken@dlr.de

Martin Fränzle
Carl von Ossietzky Universität Oldenburg

Oldenburg, Germany
fraenzle@informatik.uni-oldenburg.de

The synthesis of reactive systems aims for the automated construction of strategies for systems that
interact with their environment. Whereas the synthesis approach has the potential to change the de-
velopment of reactive systems significantly due to the avoidance of manual implementation, it still
suffers from a lack of efficient synthesis algorithms for many application scenarios. The translation
of the system specification into an automaton that allows for strategy construction is nonelementary
in the length of the specification in S1S and double exponential for LTL, raising the need of highly
specialized algorithms. In this paper, we present an approach on how to reduce this state space ex-
plosion in the construction of this automaton by exploiting a monotony property of specifications.
For this, we introduce window counting constraints that allow for step-wise refinement or abstraction
of specifications. In an iterating synthesis procedure, those window counting constraints are used
to construct automata representing over- or under-approximations (depending on the counting con-
straint) of constraint-compliant behavior. Analysis results on winning regions of previous iterations
are used to reduce the size of the next automaton, leading to an overall reduction of the state space
explosion extend. We present the implementation results of the iterated synthesis for a zero-sum
game setting as proof of concept. Furthermore, we discuss the current limitations of the approach in
a zero-sum setting and sketch future work in non-zero-sum settings.

1 Introduction

The automated translation of a system specification into its implementation is one of the most challenging
problems in formal methods. Such a synthesis offers great potential in the development of new systems
by significantly reducing the need for manual work in the engineering process. In this paper, we focus
on synthesis for reactive systems, i.e. systems that are influenced by and interact with their environment.
This interaction can be modeled as a game, in which the system tries to play according to its specification,
whereas the moves of the environment can potentially impede the system from reaching its goal. Since
the interaction between system and environment is typically of long-lasting nature without predefined
end date, the game is infinite in the sense that a play of the game has infinite duration, while the arena,
modeled as a graph, has finitely many states. The players play by moving a token from one state of
the arena to the next. The player whose turn it is decides which of the outgoing transitions of the
current state is chosen. A well-known type of game is the safety game: The system wins a play if it
can avoid to reach predefined unsafe states. Otherwise, the environment wins. A player has a winning
strategy, if it wins against all possible behavior of the other player. For two-player safety games on
finite graphs, there always exists a winning strategy for one of the players and this winning strategy can
be computed [1], [20]. However, the efficient computation of winning strategies (not only in the case
of safety games) is still an open challenge in the synthesis of reactive systems. A common synthesis

http://dx.doi.org/10.4204/EPTCS.409.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

54 Window Counting Constraints for the Synthesis of Reactive Systems

approach is to generate a deterministic word automaton as game graph from specifications written as
Linear Temporal Logic (LTL) formulae. Finally, a strategy that is winning in the game is calculated. By
construction, the strategy automatically satisfies the specification. Unfortunately, the construction of the
deterministic word automaton leads to an automaton with a number of states that is double-exponential in
the length of the specification [17], making the whole strategy synthesis unfeasible for many applications.
For avoiding the most expensive part of the synthesis procedure, there exist synthesis algorithms that
start with a subset of the specification language LTL, such that it is possible to construct the game
graph in a more efficient way. One example for that is the usage of the LTL subclass Generalized
Reactivity(1) (GR(1)), which allows to construct and solve the game in time O(N3) with N being the size
of the state space [16]. While GR(1) is expressive enough for the specification of many systems [13],
some specifications that do not fall into GR(1) remain unconsidered. For example, Maoz and Ringert
mention the consideration of synthesis with counting patterns as future work in [13], but to the best of
our knowledge, this is not yet done.

In this paper, we deal with the request for efficient synthesis for some types of counting patterns as
part of the system specification and present the idea of iterated synthesis for such games. We call the
considered counting patterns “window counting constraints”. These are of the form

“The system plays action act at most k times out of l of its own moves.”
with parameters k, l ∈ N, k ≤ l. The “at most” can also be replaced by “at least”. Such constraints arise
naturally when the desired behavior of systems includes reoccurring elements. For example, an auto-
mated guided vehicle on a factory floor might need to charge its battery in at least two out of ten moves
to avoid to get empty batteries on an exit path. The term “window” in the constraint type name empha-
sizes the relation of those specifications to sliding windows in data stream monitoring [15]. For the sake
of better readability, we also call them counting constraints in short.

We avoid the direct full translation of the specifications into a graph and instead focus on the fol-
lowing two observations: (1) It is possible to influence how hard it is to satisfy a counting constraint
by varying the parameters k, l included in the counting constraints. More precisely, the (non-)existence
of a strategy that fulfills the specification in a game with a set of counting constraints allows to make
statements about the (non-)existence of such a strategy in a game with a set of counting constraints with
varied parameters. (2) The values in the counting constraints influence the scale of the game graph that
encodes all information given by the constraints. The greater k and l, the greater is the graph. Con-
sequently, the values influence how much computational power and/or memory is needed in order to
synthesize a winning strategy.

Combining these observations, the presented approach can be summarized as follows: Consider a
two-player game graph and some specifications in the form of counting constraints. For solving the
synthesis problem of finding a strategy for the system, such that the counting constraints are fulfilled,
start with a subset of counting constraints that result in a small game graph or a trivially winnable game.
Calculate winning strategies (if existent) and check what the (non-)existence of a winning strategy means
for a game with refined/relaxed (depending on the constraints) constraints. This information shall give
hints on which parts of the game with adapted values in the counting constraints are worth to investigate
in the next iteration step and which parts of the game graph can then be neglected, leading to a reduction
in the state space. In each iteration, the set of considered counting constraints converges more to the game
of interest. Although the size of the game graphs may increase in each iteration, the gained state space
reduction leads to a synthesis algorithm more efficient than when considering the game of interest as a
whole from the beginning. The motivation for starting with a game graph accompanied with counting
constraints instead of a pure set of specifications comes from the robotic domain. In many applications,

L. Feeken & M. Fränzle 55

automated guided vehicles are moving in specified areas (like a factory floor). Modeling the setting as
a game graph in which states encode the position of systems arises naturally. However, the initial game
graph can also represent the winning region of a priorly solved safety game [14], [23], [10] that shall be
accompanied with additional counting constraints. This way, it is possible to use the presented approach
for safety games. Note that the safety game with neglected counting constraints is usually significantly
smaller and hence easier to solve than the game with already included counting constraints.

This paper is structured as follows. In Section 2, related work in the field of synthesis for reactive
systems is presented, focusing on the challenge of constructing efficient algorithms. After summarizing
concepts and notations required to formulate the game, Section 3 provides the definition of a game with
counting constraints. In Section 4, we present the idea of iterated synthesis with counting constraints,
including the results of a non-optimized implementation as proof-of-concept. The presented algorithm
delivers promising results, but suffers of limitations that are targeted by our current research work. We
discuss planned directions of future work in Section 5. Section 6 concludes the paper.

2 Related Work

In 1957, Church formulated the Synthesis Problem as finding finite-memory procedures to transform an
infinite sequence of input data into an infinite sequence of output data, such that the relation between
input and output satisfies given specifications [3], [21]. Around a decade later, Büchi and Landweber
showed the decidability of the problem [1]. However, the algorithmic complexity of synthesis algorithms
remains a challenge. The translation of specifications from monadic second-order logic of one successor
(S1S) into a Büchi automaton as part of the synthesis procedure is nonelementary in the length of speci-
fications [19]. This indicates that it is not possible to construct a universally (or an in all cases) efficient
synthesis algorithm that can handle complete S1S specifications. For specifications expressible in Linear
Temporal Logic (LTL), the problem is 2EXPTIME-complete [17].
Acknowledging the absence of a generally low-complexity synthesis algorithm for arbitrary S1S/LTL
specifications, the literature presents three primary approaches [8]. (1) The first approach restricts the
scope of considered specifications for synthesis to less expressive logics. Here, the structure of the con-
sidered specifications is used to reduce the synthesis complexity. (2) The second one is tackling the
internal representation of the problem. Solutions following this approach are often aiming for algorithms
with in average good runtime. In this approach, it suffices if most systems can be synthesized with ac-
ceptable resources (memory, computational time), while the existence of corner cases with worst-case
complexity is accepted. (3) The third approach focuses on the output of the problem, the implementa-
tion. The size of the implementation is restricted, such that only small implementations are accepted as
solutions of the synthesis problem. The rationale behind this is that small and hence less complicated
implementations often exist for applications. Such solutions are often easier (that is, with less computa-
tional time) identifiable than bigger (complicated) implementations, if it is possible to steer the algorithm
towards small solutions. Synthesis algorithms can follow more than one of those approaches.

A well studied class of specifications for approach (1) is General Reactivity of Rank 1 (GR1), a
fragment of LTL for which there are symbolic synthesis algorithms that are polynomial in the size of
the state space of the design [16]. Examples for other specification classes for which efficient solutions
of the synthesis problem are investigated are Safety LTL [22], Metric Temporal Logic with a Bounded
Horizon [12] and Extended Bounded Response LTL [4].

Following approach (2), Kupferman and Vardi developed a synthesis method that does not require the
costly determinization of non-deterministic Büchi automata representing the specification [11], which is

56 Window Counting Constraints for the Synthesis of Reactive Systems

the most complex part in many synthesis algorithms. Other synthesis algorithms rely for instance on
symbolic synthesis to represent sets of states of a game graph in a compact matter via antichains [6], [7],
binary decision diagrams [5] and LTL fragements [4].

The work by Schewe and Finkbeiner presents a synthesis algorithm that employs bounded synthesis
as approach (3). Their method uses translation of LTL specifications into sequences of safety tree au-
tomata, in order to constraint the size of the implementation [18]. “Lazy synthesis”, in which an SMT
solver is used to construct potential implementations for an incomplete constraint system, extends the
system only if required [9].

The synthesis algorithm presented in this paper includes elements of approaches (2) and (3). We
avoid the full construction of an automaton representing the specifications by starting with a small spec-
ification that is successively enlarged. In each step, the size of the resulting automaton is reduced (if
possible). The procedure stops, if a winning strategy can already be found in some intermediate step,
leading to small solutions. However, it is not possible to restrict the size of the implementation directly
as commonly done in bounded synthesis.

The general idea is inspired by the work of Chen et al. on games with delay. In this work, one
player only receives information on the moves of the environment with a delay of k ∈ N turns. For
strategy synthesis, the delay is incrementally enlarged from zero to k with a graph reduction step after
each iteration step [2].

3 Games with Counting Constraints

This section introduces games with counting constraints after repeating standard definitions for two-
player games that are needed to formalize the presented game.

Definition 3.1 (Two-player game graph). A two-player finite-state game graph is of the form G =
(S,s0,SEGO,SALT ER,ΣEGO,ΣALT ER,→) where S is a finite (non-empty) set of states, SEGO, SALT ER de-
fine a partition of S, s0 ∈ SEGO is the initial state, ΣEGO is a finite alphabet of actions for player EGO,
ΣALT ER is a finite alphabet of actions for player ALT ER and →⊆ S× (ΣEGO ∪ΣALT ER)× S is a set of
labeled transitions satisfying the following four conditions:

• Bipartition: For each (s,σ ,s′) ∈→ holds either (1) s ∈ SEGO and s′ ∈ SALT ER or (2) s ∈ SALT ER

and s′ ∈ SEGO.

• Absence of deadlock: For each s ∈ S there exists σ ∈ ΣEGO ∪ ΣALT ER and s′ ∈ S, such that
(s,σ ,s′) ∈→.

• Alphabet restriction on actions: For a player p ∈ {EGO,ALT ER} holds: If (s,σ ,s′) ∈→ with
s ∈ Sp, then σ ∈ Σp.

• Determinacy of moves: For p ∈ {EGO,ALT ER} and σ ∈ ΣEGO ∪ΣALT ER holds: if s ∈ Sp and
(s,σ ,s′),(s,σ ,s′′) ∈→, then s′ = s′′.

Such a game graph, also referred to as “arena”, encodes a game between the two players EGO and
ALT ER. For p ∈ {EGO,ALT ER} the set of states Sp contains the states where it is the turn of player
p to perform an action, also called “p controls s”. Due to the bipartition and alphabetic restriction on
actions, the game is “turn-based”, i.e. the two players alternate between choosing one of the possible
actions. Since the game graph does not contain deadlocks, it results in an infinite sequence of states and
actions, called an infinite play.

L. Feeken & M. Fränzle 57

Definition 3.2 (Infinite play). Let G = (S,s0,SEGO,SALT ER,ΣEGO,ΣALT ER,→) be a two-player game
graph. An infinite play on G is an infinite sequence π = (πiσi)i∈N0 = π0σ0π1σ1 . . . with π0 = s0 and
πiσiπi+1 ∈→ for all i ∈ N0. Π(G) denotes the set of all infinite plays on G.

In such an infinite play, the two players play against (or in case of collaborative games: with) each
other. Players can have strategies that determine how they react in each step of the play.

Definition 3.3 (Strategy). Let G = (S,s0,SEGO,SALT ER,ΣEGO,ΣALT ER,→) be a two-player game graph.

• For a play π =(πiσi)i∈N0 , a prefix of π up to position n is denoted by π(n)= π0σ0π1 . . .πn−1σn−1πn.
The length of π(n), denoted by |π(n)|, is n+ 1. The last state πn of π(n) is called the tail of the
prefix π(n), denoted by Tail(π(n)). The set of all prefixes of plays in the game graph G is Pre f (G).

• For a player p ∈ {EGO,ALT ER} and a game graph G, the set of all prefixes that end in a state
controlled by p is Pre fp(G) := {π(n) ∈ Pre f (G) |Tail(π(n)) ∈ Sp}.

• A strategy for a player p ∈ {EGO,ALT ER} in the game graph G is a mapping ϕ : Pre fp(G)−→
2Σp , such that for all prefixes π(n) ∈ Pre fp(G) and all σ ∈ ϕ(π(n)) there exist a state s ∈ S \ Sp

and a transition (Tail(π(n)),σ ,s) ∈→.

• The outcome O(G,ϕ) of a strategy ϕ of p ∈ {EGO,ALT ER} in the game graph G is the set
of all possible plays when player p follows the strategy ϕ and the other player plays arbitrary,
i.e. O(G,ϕ) := {π = (πiσi)i∈N0 ∈Π(G) |∀i ∈N0 : σ2i ∈ ϕ(π(2i)) if s0 ∈ Sp and σ2i+1 ∈ ϕ(π(2i+
1)) otherwise}.

In a safety game, the player EGO wins, if it has a strategy that guarantees to never visit predefined
unsafe states. The environment, on the other hand, wins if an unsafe state is reached. Hence, each play
of a two-player safety game always has exactly one winner and one loser. Games with this property are
called zero sum games.

Definition 3.4 (Safety Game). A safety game G = (G′,U) consists of a two-player finite-state game
graph G′ = (S,s0,SEGO,SALT ER,ΣEGO,ΣALT ER,→) and a set U ⊆ S of unsafe states.
Player EGO has a winning strategy ϕ on G, if ϕ is a strategy on G′, such that none of the plays in
O(G′,ϕ) include a state u ∈ U . The winning region of G is defined as the set of states S̃ ⊆ S, where
EGO can win from any state s ∈ S̃. This means EGO has a winning strategy in the game G̃s with
G̃s = (S,s,SEGO,SALT ER,ΣEGO,ΣALT ER,→,U).

We are now introducing window counting constraints as a mean to encode reoccurring behavior of
the player EGO with limits on which action can be selected how often in each snippet (or: window) of a
play of a given length.

Definition 3.5 (Window Counting Constraints). Let G be a game graph with the two players EGO and
ALT ER, denote with a an action and k, l ∈ N with k ≤ l. Let π = (πiσi)i∈N0 be a play on G.

1. CC_max(EGO, a, k, l) is defined as the abbreviation for “The player EGO plays action a at most
k times out of l of its own turns.”
CCmax(EGO,a,k, l) is satisfied on π , if for all i ∈ N0 holds |{σ2m |σ2m = a, i≤ m≤ i+ l}| ≤ k.

2. CC_min(EGO, a, k, l) is defined as the abbreviation for “The player EGO plays action a at least
k times out of l of its own turns.”
CCmin(EGO,a,k, l) is satisfied on π , if for all i ∈ N0 holds |{σ2m |σ2m = a, i≤ m≤ i+ l}| ≥ k.

A prefix of a play on G satisfies a counting constraint, if it can be complemented to an infinite play that
satisfies the counting constraint in any way (in particular, the extended prefix does not need to be a play
on G). The parameter l is called the length of a counting constraint.

58 Window Counting Constraints for the Synthesis of Reactive Systems

The above definition might raise the question why we do not consider similar counting constraints
for the player ALT ER, representing the environment. Such constraints impose a set of challenges, which
we will discuss in Section 5 and plan to tackle as future work.

We extend the definition of satisfying a counting constraint for a play canonically to satisfying a set
of counting constraints and counting constraints being satisfied on a strategy.
In a (zero-sum) game with counting constraints, the EGO player needs to satisfy all of its counting
constraints in order to win the game.

Definition 3.6 (Games with Counting Constraints). A two-player game with counting constraints is
defined as G = (G′,CCEGO), where

• G′ = (S,s0,SEGO,SALT ER,ΣEGO,ΣALT ER,→) is a two-player finite-state game graph.

• CCEGO ⊂ {CCm(EGO,a,k, l) |m∈ {min,max},k, l ∈N,k≤ l,a∈ ΣEGO} is a finite sets of counting
constraints of EGO

Player EGO wins a play on G, if the play satisfies all counting constraints CCEGO. Otherwise, ALT ER
wins. A strategy ϕ of EGO is winning for EGO (or a winning strategy of EGO), if EGO wins all plays
in O(G,ϕ).

4 Iterated Synthesis with Counting Constraints

The key advantage of counting constraints for synthesis is their monotony property: If EGO has a strat-
egy, such that EGO plays an action a at most k times in l turns (i.e. the strategy satisfies CCmax(EGO,a,k,
l)), then EGO also plays a at most k times in l−1 turns (i.e. the strategy satisfies CCmax(EGO,a,k, l−1)).
In other words: The existence of a winning strategy for a game with counting constraint CCmax(EGO,a,k,
l−1) is a necessary condition for the winning strategy for a game with CCmax(EGO,a,k, l). Moreover,
only a strategy that fulfills CCmax(EGO,a,k, l− 1) can also fulfill CCmax(EGO,a,k, l). From an algo-
rithmic perspective, it is more favorable to search for strategies that satisfy CCmax(EGO,a,k, l−1) then
for strategies that satisfy CCmax(EGO,a,k, l), since the graph that encodes the first (shorter) constraint
is smaller than the one that encodes the latter (longer) constraint. Intuitively, this is caused by more
memory that is needed for remembering the last l own turns instead of only l− 1 turns. The synthesis
idea is related to the incremental approach used by synthesis with antichains [6].
For a counting constraint of the form CCmin(EGO,a,k, l − 1) (“EGO plays action a at least k times
out of l − 1 of its turns”), we can conduct that if a strategy fulfills the constraint, it automatically
also fulfills the larger constraint CCmin(EGO,a,k, l). Hence, if we already have a strategy that ful-
fills CCmin(EGO,a,k, l− 1), it is needless to do the more challenging search for a strategy that fulfills
CCmin(EGO,a,k, l).

Theorem 4.1. Let G = (S,s0,SEGO,SALT ER,ΣEGO,ΣALT ER,→,CCEGO) be a two-player game with count-
ing constraints.

1. For CCmax(EGO,a,k, l) ∈CCEGO holds: If ϕ is a winning strategy for EGO on G, then it is also a
winning strategy for EGO on G′, where G′ equals G except that CCmax(EGO,a,k, l) is exchanged
by CCmax(EGO,a,k, l−1).

2. For CCmin(EGO,a,k, l) ∈CCEGO holds: If ϕ is a winning strategy for EGO on G, then it is also a
winning strategy for EGO on G′, where G′ equals G except that CCmax(EGO,a,k, l) is exchanged
by CCmax(EGO,a,k, l +1).

L. Feeken & M. Fränzle 59

Since the proof is straightforward, we omit it here. It is also possible to vary the k parameter in the
constraints instead of l with similar conclusions. With each of those iterations, the number of previously
made turns that need to be memorized is increasing. We introduce situation graphs as a mean to encode
the relevant history of a play into game graphs. In a nutshell, a situation is a state of the game graph
G combined with the counting constraint-relevant part of the history on how the state was reached. It
allows for categorizing states of the game into “part of the winning region” and “not winnable”, which
reduces a game with counting constraints to a classical safety game with states in which EGO violates
its constraints as unsafe states.

Definition 4.1 (Situation Graph). Let G=(S,s0,SEGO,SALT ER,ΣEGO,ΣALT ER,→,CCEGO) be a game with
counting constraints. Fix some order CCEGO = {CEGO,1, . . . ,CEGO,q} of the counting constraints. For
each counting constraint C =CCm(EGO,a,k, l) ∈CCEGO, m ∈ {min,max} define a transition

hC : {0,1,none}l×ΣEGO→{0,1,none}l, ((v1, . . . ,vl),act) 7→
{
(1,v1, . . . ,vl−1), if act = a

(0,v1, . . . ,vl−1), else.

A situation is a tuple (s,HEGO) with s∈ S being a state in G, HEGO ∈
�q

i=1 codom(hCEGO,i) and codom(f)
= Y denoting the codomain of a function f : X → Y . Denote the set of all situations by S̃. Define a
transition

↪→′ : S̃×ΣEGO→ S̃

((s,(v1, . . . ,vq)),act) 7→
{
(s′,(hCEGO,1(v1,act), . . . ,hCEGO,q(vq,act)), if s ∈ SEGO

(s′,(v1, . . . ,vq)), if s ∈ SALT ER

such that (s,act,s′) ∈→. The transition ↪→′ defines how to get from one situation to another when using
the transition→ in G.
A situation (s,HEGO) is satisfying a counting constraint CCmin(EGO,a,k, l) ∈ CCEGO, if for the corre-
sponding part (v1, . . . ,vl) in HEGO holds |{vi |vi = 1, i = 1, . . . , l}| ≤ k. Similarly, the situation satisfies
CCmax(EGO,a,k, l) ∈CCEGO, if |{vi |vi = 1, i = 1, . . . , l}| ≥ k.
The situation graph of G is the two-player finite game graph Sit = (S′,sinit ,S′EGO,S

′
ALT ER,ΣEGO,ΣALT ER,

↪→) with

• initial state being the situation sinit = (s0,Hinit,EGO) with all entries in Hinit,EGO being none,

• transition relation ↪→⊆ S̃×ΣEGO× S̃ with (s,act,s′) ∈↪→

• set of states S′ being all situations that are reachable from sinit via ↪→,

• S′p ⊆ S′ the states (s,HEGO) that are controlled by player p ∈ {EGO,ALT ER}, that is s ∈ Sp.

The winning region of EGO in the situation graph is the set of states S̃ ⊆ S′ from which EGO has a
winning strategy, that is, from which EGO can guarantee to only visit states that satisfy all counting
constraints in CCEGO.

The situation graph of a game is a deterministic Büchi automaton that represents the full specification
of EGO, if the complete set of counting constraints is considered. Counting constraints are expressible as
(long) LTL-formulae, hence, using the full situation graph for synthesis is generally only doable in time
double-exponential in the size of the LTL-specification [17]. The iterated synthesis approach avoids to
construct the full situation graph. The general idea is to start with a rather small game by using counting
constraints of small lengths and iterate over the length. In each iteration, a part of the corresponding

60 Window Counting Constraints for the Synthesis of Reactive Systems

situation graph is constructed and analyzed and knowledge that can be reused in following iterations is
identified. This knowledge is determining which parts of the situation graph for the next iteration needs
to be constructed and which parts can be omitted, relying on Theorem 4.1.

For iteration over one counting constraint CCmin(EGO,a,k, l), the synthesis procedure is sketched
in Algorithm 1 and algorithms called therein. For better readability, the algorithms only handle one
other counting constraint CCmax(EGO,b,m,n) besides the one that is iterated over. However, since the
other counting constraint remains fixed during the iteration approach, it is possible to add additional
(fixed) counting constraints with only minor adaptions. Algorithm 1 basically alternates between calling
two other algorithms: Starting with the smallest possible counting constraint CCmin(EGO,a,k,k), the
situation graph for the respective game is generated (Algorithm 2). After that, the resulting graph is
analyzed in order to find the winning region for EGO (Algorithm 3). If the initial state of the situation
graph belongs to the winning region, a set of winning strategies for EGO is found and the algorithm
terminates. If the initial state is not winnable, the next iteration starts with the next longer counting
constraint. If even the winning region of the situation graph for CCmin(EGO,a,k, l) does not contain the
initial state of the situation graph, no winning strategy for EGO exists.

Algorithm 2 generates (parts of) the situation graphs in each iteration. States of the situation graph
are called “situations” in the algorithm in order to avoid confusion with the states of the underlying
game graph. Note that the algorithm omits successors of states that violate counting constraints of
EGO, since those states do not belong to the winning region (line 13). In the first iteration, there is
no additional information on winnable states available, hence the full situation graph (minus successors
of states violating constraints of EGO) needs to be constructed. Due to the small counting constraint
length, this graph is significantly smaller than it would be for the full constraint length. As soon as
Algorithm 3 identifies any winnable states, this knowledge can than be used in the construction of the
situation graph in the next iteration: The construction begins with adding the initial state to an empty
(directed) graph. Successors of already added states are added successively. For each added state, it is
checked if there is a “related” state in the winning region of the previous iteration. If this is the case, the
state can also be marked as being in the winning region and successors do not need to be considered. As
a consequence, the situation graph is only partly constructed, saving computational time and memory. A
state s of a situation graph in one iteration for a counting constraint with action a is related to a state s′ of
the situation graph of the previous iteration, if s can be transformed into s′ by only deleting the last entry
of the history of a. The identification of such states is the key factor for more efficient synthesis via the
presented approach, since it allows to perform synthesis on incomplete graphs, allowing for a pruning
step in each iteration.

Algorithm 3 calculates the winning region for a given (incomplete) situation graph. The reduction
of the size of the graph by incomplete construction is again speeding up the algorithm. States of the
situation graph without successor are considered first. Such states are either already identified as being
winnable since they are related to winnable states of the previous iteration (line 1) or can be marked
as non-winnable (aka losing, line 2), since the counting constraint of EGO is violated. The rest of the
algorithm is rather generic and uses a version of fixed point computation for a finite-state two-player
safety game with the already identified states in losing as unsafe states.

In iterations over counting constraints of the form CCmax(EGO,a,k, l), it is searched for states of the
situation graph that are not in the winning region of EGO. Such states will also not be visited by winning
strategies in the following iterations. Except for searching for non-winnable states instead of winnable
states, the synthesis procedure is similar to the one for CCmin(EGO,a,k, l) constraints. If the initial state
of a situation graph in any iteration is marked as non-winnable, there exists no winning strategy for EGO.

L. Feeken & M. Fränzle 61

Algorithm 1: Iterated Synthesis over one CCmin(EGO,a,k, l) counting constraint
Input: G = (S,s0,SEGO,SALT ER,ΣEGO,ΣALT ER,→,{CCmin(EGO,a,k, l),CCmax(EGO,b,m,n)}) - two-player game with counting

constraints.
Output: If winning strategy for EGO exists:
situation_graph - part of the smallest situation graph in which a winning strategy exists
winning_situations - set of states of the situation graph, forming a subset of the winning region for the graph

Else: LOSING - no winning strategy for EGO exists
1 winning_region←− empty directed graph
2 for c ∈ {k, . . . , l} do // increase EGO counting constraint length from k to l
3 situation_graph,←− generate_situation_graph(G,k,c,m,n,winning_region.states)
4 winning_region←− find_winning_region(situation_graph, {CCmin(EGO,a,k,c), CCmax(EGO,b,m,n)}, SEGO, SALT ER)
5 if situation_graph.initial_situation ∈ winning_region.states then
6 return situation_graph, winning_region
7 return LOSING

Algorithm 2: generate_situation_graph: Construction of the situation graph without unfold-
ing regions already won in previous iterations

Input: G = (S,s0,SEGO,SALT ER,ΣEGO,ΣALT ER,→,{CCmin(EGO,a,k,c),CCmax(EGO,b,m,n)}) two-player safety game with
counting constraints; previous_winning_situations set of winnable states of the situation graph for G with
CCmin(EGO,a,k,c−1)

Output: situation_graph - situation graph of G without unfolding areas that are already winnable in the previous iteration
(considering CCmin(EGO,a,k,c−1))

1 initial_situation←− (s0,[none for i in range(c)], [none for i in range(n)]); un f inished_situations←− {initial_situation}
2 f inished_situations←− /0; winning_situations←− /0
3 situation_graph←− empty directed graph; situation_graph.situations←− {initial_situation}
4 A←−CCmin(EGO,a,k,c); B←−CCmax(EGO,b,m,n)
5 while un f inished_situations do // while not all successors of states in the graph are considered

/* take a situation from un f inished_situations and add all needed successors to the graph */
6 choose any current_situation ∈ un f inished_situations; un f inished_situations.remove(current_situation)
7 all_next_moves←− {(current_situation.state,act,s′) ∈

(SEGO ∪SALT ER)× (ΣEGO ∪ΣALT ER)× (SEGO ∪SALT ER) |(current_situation.state,act,s′) ∈→}
8 for next_move ∈ all_next_moves do
9 if current_situation.state ∈ SEGO then // case: EGO controls the current situation

/* construct one successor of current_situation in the situation graph */
10 next_situation←− (next_move.tail, [next_move.action == a,current_situation.historyEGO.A[:

−1]], [next_move.action == a,current_situation.historyEGO.B[:−1]])
11 if next_situation /∈ situations then // case: situation not yet in the situation graph
12 situation_graph.situations.add(next_situation)
13 if next_situation does not satisfy A or B then f inished_situations.add(next_situation)
14 else // check if next_situation is related to a winnable situation of prev. iteration
15 related_next_situation←− (next_situation.state,next_situation.historyEGO.A[:

−1],next_situation.historyEGO.B)
16 if related_next_situation ∈ previous_sa f e_situations then
17 winning_situations.add(next_situation); f inished_situations.add(next_situation)
18 else
19 if next_situation /∈ f inished_situations then un f inished_situations.add(next_situation)
20 situation_graph.transitions.add((current_situation,next_move.action,next_situation))
21 else // case: ALT ER controls the current situation
22 next_situation←− (next_move.tail,current_situation.historyEGO)
23 if next_situation /∈ situations then
24 situation_graph.situations.add(next_situation)
25 related_next_situation←− (next_situation.state,next_situation.historyEGO.A[:

−1],next_situation.historyEGO.B)
26 if related_next_situation ∈ previous_sa f e_situations then
27 winning_situations.add(next_situation); f inished_situations.add(next_situation)
28 situation_graph.transitions.add((current_situation,next_move.action,next_situation))
29 if next_situation /∈ f inished_situations then un f insihed_situations.add(next_situation)
30 f inished_situations.add(current_situation)
31 return situation_graph

62 Window Counting Constraints for the Synthesis of Reactive Systems

Algorithm 3: find_winning_region
Input: situation_graph as constructed in Algorithm 2; CCmin(EGO,a,k,c), CCmax(EGO,b,m,n) counting constraints belonging to

situation_graph; SEGO, SALT ER states of the underlaying game
Output: part of the winning region for EGO in situation_graph
/* Divide states of situation_graph without successor into winnable and losing states */

1 winning←− {sit |state sit has no successor and satisfies CCmin(EGO,a,k,c) and CCmax(EGO,b,m,n)}
2 losing←− {sit |state sit has no successor and does not satisfy CCmin(EGO,a,k,c) or CCmax(EGO,b,m,n)}
/* mark predecessors of winning ALT ER-situations as winning */

3 winning.add({pred | pred is predecessor of some sit ∈ winning with sit.state ∈ SEGO})
/* mark ALT ER-situations as winning, if all successors are winning */

4 winning.add({sit |sit.state ∈ SALT ER, for all successors suc of sit holds: suc ∈ winning})
/* identify losing states */

5 progress← TRUE
6 while progress do
7 progress← FALSE

/* handle all situations controlled by EGO and marked as losing */
8 losing_EGO_sit = {situation |situation.state ∈ SEGO}∩ losing
9 if losing_EGO_sit then

10 losing.add({predecessor |∃sit ∈ losing_EGO_sit : sit is a successor of predecessor})
/* delete all ingoing and outgoing transitions from states in losing_EGO_sit and those

states itself from situation_graph */
11 situation_graph.remove_nodes_from(losing_EGO_sit); progress←− TRUE

/* handle situations controlled by ALT ER & already marked as losing */
12 losing_ALT ER_sit←{situation |situation.state ∈ SALT ER}∩ losing
13 if losing_ALT ER_sit then

/* delete all ingoing and outgoing transitions from states in losing_ALT ER_sit and those
states itself from situation_graph */

14 situation_graph.remove_nodes_from(losing_ALT ER_sit); progress←− TRUE
/* handle situations not marked as winning and without successor */

15 no_win←{situation |situation /∈ winning,situation has no successor in situation_graph}
16 if no_win then losing.add(no_win); progress←− TRUE
17 return situation_graph

L. Feeken & M. Fränzle 63

1 2

3 4

56

7 8 9

10

¬ a
b

¬ a
b

a

b

¬ b

a
b

a

¬ a

b

Figure 1: Two-player game graph. States represented as circles are controlled by EGO, diamond-shaped
states are controlled by ALT ER. EGO shall fulfill the counting constraint CCmin(EGO,a,1,7) (EGO
plays a at least one time in 7 turns).

For illustrating the synthesis algorithm, we consider the game in Figure 1 as small example. Cir-
cles represent locations controlled by EGO. Diamond-shaped locations are controlled by ALT ER. Let
CCmin(EGO,a,1,7) be a counting constraint that EGO needs to satisfy. For the sake of keeping the
example small, we pass on more counting constraints and only distinguish between the actions “a” and
“¬a” of EGO. The constructed parts of the situation graphs for three iterations are shown in Figure 2.
Each state of the situation graph is marked with the respective state number of the game graph and with
the history of last counting constraint-relevant turns of EGO. The history length depends on the size of
the counting constraint in the considered iteration. For example, the state marked with state 9 and history
(1,0) in Figure 2b encodes that EGO played a in its last turn and played something else (¬a) in its second
to last turn. States highlighted with gray background are identified as being winnable. The first iteration
reduces the counting constraint to CCmin(EGO,a,1,1) (“EGO plays a at least in one of 1 turns”), fully
specifying how EGO is allowed to behave. The corresponding situation graph is shown in Figure 2a.
State 2,(0) has no successor, since the counting constraint is already violated in this state. None of the
states of the situation graph are in the winning region of the game. In the second iteration, the counting
constraint for EGO is more relaxed, consequently the situation graph (Figure 2b) has more states. 10 of
the states belong to the winning region of EGO, since EGO can guarantee to avoid states with counting
constraint violations (state 4,(0,0)) from those states. Since the initial state is not marked as winnable,
there exists no winning strategy for EGO and the third iteration is entered. In the situation graph for
the third iteration (Figure 2c) the benefit of the iterated approach becomes visible: State 7,(0,−,−) is
related to state 7,(0,−) of the previous iteration and since the latter one is already marked as winnable,
so can state 7,(0,−,−). Hence, successors of 7,(0,−,−) do not need to be further considered. The
same holds for state 6,(1,0,0), which is related to the winnable state 6,(1,0) of the second iteration. As
a consequence, the situation graph of the third iteration is even smaller than the one of the second itera-
tion. The initial state 1,(−,−,−) can now be marked as winnable, hence there already exists a winning
strategy for EGO in the third iteration and no further iteration is required. Please note that the focus on
the example is to show how the situation graph evolves over multiple iterations, illustrating the benefit of
the iterated approach. However, the example is too small to actually be significantly more efficient than
synthesizing a winning strategy without iterations.

A non-optimized explicit state implementation of Algorithm 1 in Python was used to give an idea for

64 Window Counting Constraints for the Synthesis of Reactive Systems

1
(-)

2
(0)

¬a

(a) Iteration 1
(CCmin(EGO,a,1,1))

1
(-,-)

2
(0,-)

3
(0,-)

7
(0,-)

4
(0,0)

8
(1,0)

9
(1,0)

8
(1,1)

9
(1,1)

10
(0,1)

5
(0,1)

6
(1,0)

3
(1,0)

4
(0,1)

¬a
b

¬b

¬a

a

b

a

b
¬a

¬a
b

a

b
¬a

b

(b) Iteration 2
(CCmin(EGO,a,1,2))

1
(-,-,-)

2
(0,-,-)

7
(0,-,-)

3
(0,-,-)

4
(0,0,-)

5
(0,0,-)

6
(1,0,0)

¬a

¬b

b

¬a

b

a

(c) Iteration 3
(CCmin(EGO,a,1,3))

Figure 2: Situation graphs for the game in Figure 1 with iteration over CCmin(EGO,a,1,7). More than
three iterations are not necessary, since there already is a winning strategy for EGO in the third iteration.

the performance of iterated synthesis with counting constraints in larger examples. We will now sketch
the insights retrieved from an exemplary game, solved with this implementation. The game graph had
around 1.8mio states, 2.7mio transitions and a counting constraint for EGO of length 10. The algorithm
took around 28 minutes to find a winning strategy for EGO in the 8th iteration. Hence, iteration 9 and
10 were neither needed nor performed. The situation graph in the last required iteration had around
2.8mio states. For comparing those numbers with a non-iterated synthesis approach, Algorithm 2 and
Algorithm 3 were used to directly calculate a winning strategy for constraint length 8 for the same game.
The calculation required around 4 times longer and used around 2.5 times more states. Note that limiting
the constraint length directly to 8 was only possible because of the retrieved knowledge on strategy
existence for this constraint length of the iterated synthesis calculations before. The comparison would
even be more in favor of the iteration approach if the minimal counting constraint for which a winning
strategy exists were not given for the non-iterative computation. We did not let the non-iterative algorithm
run for the full counting constraint length of 10, since the expected amount of required states would
have reached hardware limitations. The realized comparison shows the great potential of successively
enlarging counting constraints, allowing for incomplete graph constructions due to retrieved information
on already winnable states of prior graphs instead of encoding the full constraints directly in a graph for
strategy synthesis.

5 Discussion and Future Work

The exploitation of the monotony property inherent in counting constraints for iterative synthesis has
demonstrated promising outcomes, indicating the potential for time- and memory-efficient computation
of controllers for reactive systems. The current investigation aimed to explore the broader applicability
of iterated synthesis utilizing counting constraints, an objective that has been achieved. However, certain
challenges and considerations in the chosen game setting should be discussed in the following, paving
the way for future research directions.

L. Feeken & M. Fränzle 65

1 2

3

4 5

67

a

b a

¬b a

¬b
a

b

Figure 3: ALT ER can always fulfill the counting constraint CCmin(ALT ER,b,1,3), but can run into a
violation for CCmin(ALT ER,b,1,2).

Towards cooperative games: As already mentioned above, the idea of adding window counting
constraints like “The player ALT ER plays a at least (or: at most) k times out of l of its own turns.” for
the other player ALT ER seems obvious. In the current setting, we apply the synthesis algorithm on the
winning region of the underlying safety game. If ALT ER-constraints are added, the previous winning
region (without counting constraints) would only be an under-approximation of the winning region for
the safety game with counting constraints. Hence, the synthesis algorithm may fail to find an existing
winning strategy for EGO. The problem can be solved by omitting the calculation of the winning re-
gion beforehand and integrate the safety condition in the iterated synthesis approach. This can be done
by handling unsafe states the same way as states in which EGO violates its constraints. If we want to
stay in a zero-sum game setting, we could restrict the games of interest to those in which ALT ER can
actually fulfill its constraints. The following property could be added to the definition of a game with
counting constraints (Definition 3.6). ALT ER cannot be forced into constraint violations: For each pre-
fix π(n) = π0σ0π1 . . .πn−1σn−1πn, n ∈ 2N+1, of a play on G that satisfies all counting constraints of
ALT ER, there exists (πn,a,πn+1) ∈→, such that π0σ0π1 . . .πn−1σn−1πnaπn+1 is also a prefix of a play
on G that satisfies the counting constraints of ALT ER. This property simplifies the formulation of win-
ning conditions for EGO, circumventing complex scenarios arising from ambiguous outcomes wherein
one player forces the other into constraint violations at the expense of own future constraint violations.
However, this restriction is limiting the possibility to iterate over counting constraints to constraints of
EGO. In general, a game with counting constraints may satisfy the requirement of ALT ER always be-
ing able to adhere to its counting constraints, only to find the requirement violated for the game with a
modified counting constraint as used in the iterations. An illustrative example is provided in Figure 3.
ALT ER has the counting constraint CCmin(ALT ER,b,1,3), i.e. ALT ER plays b at least once in three of
its turns. Recall that “ALT ER cannot be forced into constraint violations” is defined in Definition 3.6
as ALT ER is able to enlarge each prefix that satisfies the constraint such that the resulting prefix is also
satisfying the constraint. This property is fulfilled when considering the game graph and the constraints
CCmin(ALT ER,b,1,1) or CCmin(ALT ER,b,1,3). However, it is violated for CCmin(ALT ER,b,2,3), since
the prefix (1,a,2,¬b,4,a,5) satisfies the constraint1, but there is no possibility for ALT ER to still satisfy
the constraint with the next turn. Since the definition of a winning strategy relies on the game property
of ALT ER not be forceable into counting constraint violations, Theorem 4.1 cannot be extended to iter-
ations over ALT ER-constraints. However, such an extension would offer additional potential for more
efficient synthesis algorithms.

We plan to approach this problem by leaving the zero-sum setting. The environment wins if it has
a strategy that guarantees to satisfy all of its counting constraints. In particular, it is possible that the
environment violates a constraint and loses. The envisioned game setting shall avoid the well-known

1ALT ER could play b forever to complete the prefix to an infinite play that satisfies the constraint. This play is not in G, but
nonetheless is sufficient according to the definition of a prefix satisfying a constraint in Definition 3.5.

66 Window Counting Constraints for the Synthesis of Reactive Systems

problem of EGO winning only by falsifying the assumptions in form of counting constraints on ALT ER.
Instead, EGO shall support ALT ER in satisfying all constraints as long as this does not compromise the
adherence of own constraints. This leads us in the direction of searching for strategy profiles with certain
properties as synthesis results instead of winning strategies only for EGO with the exact profile properties
yet to be determined. It can be foreseen that this setting requires more synchronization between the
players than that presented by a zero-sum setting, in which ALT ER did not even need knowledge on
counting constraints of EGO.

Extension of counting constraint types: It is worth to consider additional specification patterns
with similar monotony properties as the presented counting constraints. For instance, a pattern like “if
x is played, EGO plays y after at most k turns” is frequently used as specification. Satisfying such a
specification becomes easier for larger k. In terms of an iterative algorithm: states of the situation graph
for some iteration are winnable, if the related state is winnable in an earlier iteration. The identification
of additional counting constraints and the adaption of the iterative strategy synthesis algorithm to such
constraints increases the applicability of the approach to more systems.

Combination of various counting constraints: In the presented synthesis algorithm, iteration is
only done over one counting constraint. All other constraints remain fixed. We anticipate greater savings
in memory and computational time than already provided by the presented algorithm by iterating over
several constraints (successively or alternating). Such an extension is expected to require only manage-
able modifications of the existing algorithm for sets of counting constraints that use the same type of
information from one iteration to the other (e.g. exclusively on winnable states of the various situation
graphs). The iteration over a set of constraints that use different types of information during iteration
(e.g. on winnable states for some of the constraints and on non-winnable states for other constraints) is
expected to require a more thorough adaption of the algorithm.

Symbolic representation: The presented synthesis approach uses an explicit representation of states
in the situation graph as arena. However, symbolic synthesis showed to be significantly more efficient
than explicit synthesis algorithms for many (but not all) applications [8]. Since the presented approach
already has similarities to antichains and the states of the arena have a special structure (representing a
snippet of the history of a play), we expect that the approach can be transformed in a symbolic algorithm.
We plan to investigate a symbolic version of the algorithm and to compare its performance with its
explicit version.

6 Conclusion

Synthesis algorithms for reactive systems are promising tools for various engineering tasks, most promi-
nently for the creation of correct-by-construction controllers and for checking the feasibility of speci-
fications. The efficiency of such algorithms is a challenge for getting synthesis into application, since
the translation of the system specification into an automaton that is suitable for synthesis is costly in
terms of memory and computational time. The exploitation of specific properties in the specification
can help to overcome this challenge. In this paper, we have shown the potential of iterative synthesis
algorithms for specifications with monotony properties as for the presented counting constraints. With
each iteration, the automaton encoding the specification is becoming larger. The key idea is to gather in-
formation in each iteration that can be used in the next iteration to reduce the size of the automaton. The
precise nature of this information depends on the considered specification. We have shown an iterated
algorithm for a counting constraint of the form “the system does a specific move m at least in k turns out
of l”, in which information on winnable states of the automaton in one iteration can be used to deter-

L. Feeken & M. Fränzle 67

mine which parts of the automaton for the next iteration do not need to be constructed. In the presented
example, the iterative approach requires significantly less memory and computational time than direct
synthesis with full specification translation into one automaton. As future work, we plan to extend the
iterative synthesis in four dimensions: (1) Consideration of more cooperative behavior between system
and its environment instead of a purely adversarial setting, (2) identification of new specification types
with monotony properties that can be exploited via iterated synthesis, (3) development of algorithms that
use advantages of different specification types simultaneously and (4) transformation of the synthesis
approach to a symbolic synthesis algorithm.

References

[1] J. Richard Buchi & Lawrence H. Landweber (1969): Solving sequential conditions by finite-state strate-
gies. In Ernst W. Mayr & Claude Puech, editors: Transactions of the American Mathematical So-
ciety, Transactions of the American Mathematical Society 138, American Mathematical Society, pp.
295–311, doi:10.1090/S0002-9947-1969-0280205-0. Available at https://docs.lib.purdue.edu/cgi/
viewcontent.cgi?article=1087&context=cstech.

[2] Mingshuai Chen, Martin Fränzle, Yangjia Li, Peter Nazier Mosaad & Naijun Zhan (2018): What’s to Come
is Still Unsure - Synthesizing Controllers Resilient to Delayed Interaction. In Shuvendu K. Lahiri & Chao
Wang, editors: Automated Technology for Verification and Analysis - 16th International Symposium, ATVA
2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, Lecture Notes in Computer Science 11138,
Springer, pp. 56–74, doi:10.1007/978-3-030-01090-4_4. Available at https://moves.rwth-aachen.de/
wp-content/uploads/ATVA2018_FULL.pdf.

[3] Alonso Church (1957): Applications of recursive arithmetic to the problem of circuit synthesis.
In: Summaries of the Summer Institute of Symbolic Logic, Cornell Univ., Ithaca, NY, pp. 3–50,
doi:10.2307/2271310.

[4] Alessandro Cimatti, Luca Geatti, Nicola Gigante, Angelo Montanari & Stefano Tonetta (2020): Re-
active Synthesis from Extended Bounded Response LTL Specifications. In: 2020 Formal Methods
in Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020, IEEE, pp. 83–92,
doi:10.34727/2020/ISBN.978-3-85448-042-6_15.

[5] Rüdiger Ehlers (2010): Symbolic Bounded Synthesis. In Tayssir Touili, Byron Cook & Paul B. Jackson,
editors: Computer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-
19, 2010. Proceedings, Lecture Notes in Computer Science 6174, Springer, pp. 365–379, doi:10.1007/978-
3-642-14295-6_33.

[6] Emmanuel Filiot, Naiyong Jin & Jean-François Raskin (2009): An Antichain Algorithm for LTL Realizability.
In Ahmed Bouajjani & Oded Maler, editors: Computer Aided Verification, 21st International Conference,
CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, Lecture Notes in Computer Science 5643,
Springer, pp. 263–277, doi:10.1007/978-3-642-02658-4_22.

[7] Emmanuel Filiot, Naiyong Jin & Jean-François Raskin (2011): Antichains and compositional algorithms for
LTL synthesis. Formal Methods Syst. Des. 39(3), pp. 261–296, doi:10.1007/S10703-011-0115-3.

[8] Bernd Finkbeiner (2016): Synthesis of Reactive Systems. In Javier Esparza, Orna Grumberg & Salomon
Sickert, editors: Dependable Software Systems Engineering, NATO Science for Peace and Security Series -
D: Information and Communication Security 45, IOS Press, pp. 72–98, doi:10.3233/978-1-61499-627-9-72.
Available at https://finkbeiner.groups.cispa.de/publications/F16.pdf.

[9] Bernd Finkbeiner & Swen Jacobs (2012): Lazy Synthesis. In Viktor Kuncak & Andrey Rybalchenko, ed-
itors: Verification, Model Checking, and Abstract Interpretation - 13th International Conference, VMCAI
2012, Philadelphia, PA, USA, January 22-24, 2012. Proceedings, Lecture Notes in Computer Science 7148,
Springer, pp. 219–234, doi:10.1007/978-3-642-27940-9_15. Available at https://finkbeiner.groups.
cispa.de/publications/lazySynthesis.pdf.

https://doi.org/10.1090/S0002-9947-1969-0280205-0
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1087&context=cstech
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1087&context=cstech
https://doi.org/10.1007/978-3-030-01090-4_4
https://moves.rwth-aachen.de/wp-content/uploads/ATVA2018_FULL.pdf
https://moves.rwth-aachen.de/wp-content/uploads/ATVA2018_FULL.pdf
https://doi.org/10.2307/2271310
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_15
https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1007/978-3-642-02658-4_22
https://doi.org/10.1007/S10703-011-0115-3
https://doi.org/10.3233/978-1-61499-627-9-72
https://finkbeiner.groups.cispa.de/publications/F16.pdf
https://doi.org/10.1007/978-3-642-27940-9_15
https://finkbeiner.groups.cispa.de/publications/lazySynthesis.pdf
https://finkbeiner.groups.cispa.de/publications/lazySynthesis.pdf

68 Window Counting Constraints for the Synthesis of Reactive Systems

[10] Marcin Jurdzinski (2000): Small Progress Measures for Solving Parity Games. In Horst Reichel & So-
phie Tison, editors: STACS 2000, 17th Annual Symposium on Theoretical Aspects of Computer Science,
Lille, France, February 2000, Proceedings, Lecture Notes in Computer Science 1770, Springer, pp. 290–
301, doi:10.1007/3-540-46541-3_24. Available at https://www.dcs.warwick.ac.uk/~mju/Papers/
Jur00-STACS.pdf.

[11] Orna Kupferman & Moshe Y. Vardi (2005): Safraless Decision Procedures. In: 46th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA,
Proceedings, IEEE Computer Society, pp. 531–542, doi:10.1109/SFCS.2005.66.

[12] Oded Maler, Dejan Nickovic & Amir Pnueli (2007): On Synthesizing Controllers from Bounded-Response
Properties. In Werner Damm & Holger Hermanns, editors: Computer Aided Verification, 19th International
Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, Lecture Notes in Computer Science
4590, Springer, pp. 95–107, doi:10.1007/978-3-540-73368-3_12.

[13] Shahar Maoz & Jan Oliver Ringert (2015): GR(1) synthesis for LTL specification patterns. In Elisabetta Di
Nitto, Mark Harman & Patrick Heymans, editors: Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, ACM, pp.
96–106, doi:10.1145/2786805.2786824. Available at https://www.researchgate.net/publication/
299909728_GR1_synthesis_for_LTL_specification_patterns.

[14] Robert McNaughton (1993): Infinite Games Played on Finite Graphs. Ann. Pure Appl. Logic 65(2), pp.
149–184, doi:10.1016/0168-0072(93)90036-D.

[15] Kostas Patroumpas & Timos K. Sellis (2006): Window Specification over Data Streams. In Torsten Grust,
Hagen Höpfner, Arantza Illarramendi, Stefan Jablonski, Marco Mesiti, Sascha Müller, Paula-Lavinia Pa-
tranjan, Kai-Uwe Sattler, Myra Spiliopoulou & Jef Wijsen, editors: Current Trends in Database Tech-
nology - EDBT 2006, EDBT 2006 Workshops PhD, DataX, IIDB, IIHA, ICSNW, QLQP, PIM, PaRMA,
and Reactivity on the Web, Munich, Germany, March 26-31, 2006, Revised Selected Papers, Lecture
Notes in Computer Science 4254, Springer, pp. 445–464, doi:10.1007/11896548_35. Available at https:
//dl.ifip.org/db/conf/edbtw/edbtw2006/PatroumpasS06.pdf.

[16] Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2006): Synthesis of Reactive(1) Designs. In E. Allen Emer-
son & Kedar S. Namjoshi, editors: Verification, Model Checking, and Abstract Interpretation, 7th In-
ternational Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006, Proceedings, Lec-
ture Notes in Computer Science 3855, Springer, pp. 364–380, doi:10.1007/11609773_24. Available at
https://www.wisdom.weizmann.ac.il/~saar/data/synth.pdf.

[17] Amir Pnueli & Roni Rosner (1989): On the Synthesis of an Asynchronous Reactive Module. In Giorgio
Ausiello, Mariangiola Dezani-Ciancaglini & Simona Ronchi Della Rocca, editors: Automata, Languages
and Programming, 16th International Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings,
Lecture Notes in Computer Science 372, Springer, pp. 652–671, doi:10.1007/BFB0035790.

[18] Sven Schewe & Bernd Finkbeiner (2007): Bounded Synthesis. In Kedar S. Namjoshi, Tomohiro Yoneda,
Teruo Higashino & Yoshio Okamura, editors: Automated Technology for Verification and Analysis, 5th
International Symposium, ATVA 2007, Tokyo, Japan, October 22-25, 2007, Proceedings, Lecture Notes in
Computer Science 4762, Springer, pp. 474–488, doi:10.1007/978-3-540-75596-8_33. Available at https:
//link.springer.com/content/pdf/10.1007/s10009-012-0228-z.pdf.

[19] Larry J. Stockmeyer (1974): The complexity of decision problems in automata theory and logic. Ph.D. thesis,
Massachusetts Institute of Technology, USA. Available at http://hdl.handle.net/1721.1/15540.

[20] Wolfgang Thomas (1995): On the Synthesis of Strategies in Infinite Games. In Ernst W. Mayr & Claude
Puech, editors: STACS 95, 12th Annual Symposium on Theoretical Aspects of Computer Science, Mu-
nich, Germany, March 2-4, 1995, Proceedings, Lecture Notes in Computer Science 900, Springer, pp. 1–13,
doi:10.1007/3-540-59042-0_57.

[21] Wolfgang Thomas (2009): Facets of Synthesis: Revisiting Church’s Problem. In Luca de Alfaro, editor:
Foundations of Software Science and Computational Structures, 12th International Conference, FOSSACS
2009, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,

https://doi.org/10.1007/3-540-46541-3_24
https://www.dcs.warwick.ac.uk/~mju/Papers/Jur00-STACS.pdf
https://www.dcs.warwick.ac.uk/~mju/Papers/Jur00-STACS.pdf
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.1007/978-3-540-73368-3_12
https://doi.org/10.1145/2786805.2786824
https://www.researchgate.net/publication/299909728_GR1_synthesis_for_LTL_specification_patterns
https://www.researchgate.net/publication/299909728_GR1_synthesis_for_LTL_specification_patterns
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1007/11896548_35
https://dl.ifip.org/db/conf/edbtw/edbtw2006/PatroumpasS06.pdf
https://dl.ifip.org/db/conf/edbtw/edbtw2006/PatroumpasS06.pdf
https://doi.org/10.1007/11609773_24
https://www.wisdom.weizmann.ac.il/~saar/data/synth.pdf
https://doi.org/10.1007/BFB0035790
https://doi.org/10.1007/978-3-540-75596-8_33
https://link.springer.com/content/pdf/10.1007/s10009-012-0228-z.pdf
https://link.springer.com/content/pdf/10.1007/s10009-012-0228-z.pdf
http://hdl.handle.net/1721.1/15540
https://doi.org/10.1007/3-540-59042-0_57

L. Feeken & M. Fränzle 69

York, UK, March 22-29, 2009. Proceedings, Lecture Notes in Computer Science 5504, Springer, pp. 1–14,
doi:10.1007/978-3-642-00596-1_1.

[22] Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu & Moshe Y. Vardi (2017): A Symbolic Approach to
Safety LTL Synthesis. In Ofer Strichman & Rachel Tzoref-Brill, editors: Hardware and Software: Verification
and Testing - 13th International Haifa Verification Conference, HVC 2017, Haifa, Israel, November 13-15,
2017, Proceedings, Lecture Notes in Computer Science 10629, Springer, pp. 147–162, doi:10.1007/978-3-
319-70389-3_10. Available at https://arxiv.org/abs/1709.07495.

[23] Wieslaw Zielonka (1998): Infinite Games on Finitely Coloured Graphs with Applications to Automata on
Infinite Trees. Theor. Comput. Sci. 200(1-2), pp. 135–183, doi:10.1016/S0304-3975(98)00009-7.

https://doi.org/10.1007/978-3-642-00596-1_1
https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.1007/978-3-319-70389-3_10
https://arxiv.org/abs/1709.07495
https://doi.org/10.1016/S0304-3975(98)00009-7

A. Achilleos and A. Francalanza (Eds.): Fifteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2024).

EPTCS 409, 2024, pp. 70–87, doi:10.4204/EPTCS.409.9

Deterministic Suffix-reading Automata

R Keerthan
Tata Consultancy Services Innovation Labs

Pune, India

Chennai Mathematical Institute, India

keerthan.r@tcs.com

B Srivathsan
Chennai Mathematical Institute, India

CNRS IRL 2000, ReLaX, Chennai, India

sri@cmi.ac.in

R Venkatesh Sagar Verma
Tata Consultancy Services Innovation Labs

Pune, India

r.venky@tcs.com verma.sagar2@tcs.com *

We introduce deterministic suffix-reading automata (DSA), a new automaton model over finite words.

Transitions in a DSA are labeled with words. From a state, a DSA triggers an outgoing transition on

seeing a word ending with the transition’s label. Therefore, rather than moving along an input word

letter by letter, a DSA can jump along blocks of letters, with each block ending in a suitable suffix.

This feature allows DSAs to recognize regular languages more concisely, compared to DFAs. In this

work, we focus on questions around finding a “minimal” DSA for a regular language. The number

of states is not a faithful measure of the size of a DSA, since the transition-labels contain strings of

arbitrary length. Hence, we consider total-size (number of states + number of edges + total length of

transition-labels) as the size measure of DSAs.

We start by formally defining the model and providing a DSA-to-DFA conversion that allows

to compare the expressiveness and succinctness of DSA with related automata models. Our main

technical contribution is a method to derive DSAs from a given DFA: a DFA-to-DSA conversion.

We make a surprising observation that the smallest DSA derived from the canonical DFA of a regular

language L need not be a minimal DSA for L. This observation leads to a fundamental bottleneck in

deriving a minimal DSA for a regular language. In fact, we prove that given a DFA and a number

k ≥ 0, the problem of deciding if there exists an equivalent DSA of total-size ≤ k is NP-complete.

1 Introduction

Deterministic Finite Automata (DFA) are fundamental to many areas in Computer Science. Apart from

being the cornerstone in the study of regular languages, automata have been applied in several contexts:

such as text processing [17], model-checking [4], software verification [2, 1, 9], and formal specifica-

tion languages [12]. A central challenge in the application of automata is the size of the automaton

involved. Non-determinism gives exponential succinctness, however, a deterministic model is useful in

formal specifications and automata implementations. The literature offers different ways to get succinct

representations of DFAs. We recall a few of them below and propose a new solution to this problem.

One of the reasons for large DFAs is the size of the alphabet, for instance, consider the alphabet

of all ASCII characters. Having a transition for each letter from each state blows up the size of the

automata. Symbolic automata [18, 6] have been proposed to handle large alphabets. Letters on the

edges are replaced by formulas, which club together several transitions between a pair of states into one

symbolic transition. Symbolic automata have been implemented in many tools and have been widely

applied (see [5] for a list of tools and applications).

*All authors have contributed equally and are listed in the alphabetical order of last names.

http://dx.doi.org/10.4204/EPTCS.409.9

R. Keerthan, B. Srivathsan, R. Venkatesh & S. Verma 71

s0 s1

s2 s3

else
if

endif

Σ

if

Figure 1: DSA for out-of-context else

Another dimension in reducing the DFA representation is to consider transitions on a block of letters.

Generalized automata (GA) are extensions of non-deterministic finite automata (NFAs) that can contain

strings instead of letters on transitions. A word w is accepted if it can be broken down as w1w2 . . .wk

such that each segment is read by a transition. This model was defined by Eilenberg [7], and later

Hashiguchi [13] proved that for every regular language L there is a minimal GA in which the edge labels

are at most a polynomial function in m, where m is size of the syntactic monoid of L. Giammarresi

et al. [8] considers deterministic generalized automata (DGA) and proposes an algorithm to generate

a minimal DGA (in terms of the number of states) in which the edges have length at most the size of

the minimal DFA. The algorithm uses a method to suppress states and create longer labels. The key

observation is that minimal DGAs can be derived from the canonical DFA by suppressing states.

Our model. In this work, we introduce Deterministic Suffix-reading Automata (DSAs). We continue

to work with strings on transitions, as in DGA. However, the meaning of transitions is different. A

transition q
abba
−−→ q′ is enabled if at q, a word w ending with abba is seen, and moreover no other transition

out of q is enabled at a prefix of w. Intuitively, the automaton tracks a finite set of pattern strings at each

state. It stays in a state until one of them appears as the suffix of the word read so far, and then makes

the appropriate transition. We start with a motivating example. Consider a model for out-of-context

else statements, in relation to if and endif statements in a programming language. Assume a suitable

alphabet Σ of characters. Let Lelse be the set of all strings over the alphabet where (1) there are no

nested if statements, and (2) there is an else which is not between an if and an endif. A DFA for this

language performs string matching to detect the if, else and endif. The DSA is shown in Figure 1: at

s0, it passively reads letters until it first sees an if or an else. If it is an if, the automaton transitions

to s1. For instance, on a word abf4fgif the automaton goes to s1, since it ends with if and there is no

else seen so far. Similarly, at s1 it waits for one of the patterns if or an endif. If it is the former, it

goes to s3 and rejects, otherwise it moves to s0, and so on.

Suffix-reading automata have the ability to wait at a state, reading long words until a matching

pattern is seen. This results in an arguably more readable specification for languages which are “pattern-

intensive”. This representation is orthogonal to the approaches considered so far. Symbolic automata

club together transitions between a pair of states, whereas DSA can do this clubbing across several states

and transitions. DGA have this facility of clubbing across states, but they cannot ignore intermediate

letters, which results in extra states and transitions.

Overview of results. We formally present deterministic suffix-reading automata and its semantics,

quantify its size in comparison to an equivalent DFA, and study an algorithm to construct DSAs starting

from a DFA. This is in the same spirit as in DGAs, where smaller DGAs are obtained by suppressing

states. For automata models with strings on transitions, number of states is not a faithful measure of the

size of a DSA. As described in [8], we consider the total size of a DSA which includes the number of

states, edges, and the sum of label lengths. The key contributions of this paper are:

1. Presentation of a definition of a new kind of automaton - DSA (Section 3).

72 Deterministic Suffix-reading Automata

2. Proof that DSAs accept regular languages, and nothing more. Every complete DFA can be seen

as a DSA. For the converse, we prove that for every DSA of size k, there is a DFA with size at

most 2k · (1+ 2|Σ|), where Σ is the alphabet (Lemma 1, Theorem 1). This answers the question

of how small DSAs can be in comparison to DFAs for a certain language : if n is the size of the

minimal DFA for a language L, minimal DSAs for L cannot be smaller than n
2·(1+2|Σ|) . When the

alphabet is large, one could expect smaller sized DSAs. We describe a family of languages Ln,

with alphabet size n, for which the minimal DFA has size quadratic in n, whereas size of DSAs is

a linear function of n (Lemma 2).

3. We present a method to derive DSAs out of DFAs, a DFA-to-DSA conversion (Section 5). In a

nutshell, the derivation procedure selects subsets of DFA-states, and adds transitions labeled with

(some of) the acyclic paths between them. Our main technical contribution lies in identifying

sufficient conditions on the selected subset of states, so that the derivation procedure preserves the

language (Theorem 9).

4. We remark that minimal DSAs need not be unique, and make a surprising observation: the smallest

DSA that we derive from the canonical DFA of L need not be a minimal DSA. We find this

surprising because (1) firstly, our derivation procedure is surjective: every DSA (satisfying some

natural assumptions) can be derived from some corresponding DFA, and in particular, a minimal

DSA can be derived from some DFA; (2) the observation suggests that one may need to start with

a bigger DFA in order to derive a minimal DSA – so, starting with a bigger DFA may result in a

smaller DSA (Section 6).

5. Finally, we show that given a DFA and a number k, deciding if there exists a DSA of size ≤ k is

NP-complete (Section 7).

Related work. The closest to our work is [8] which introduces DGAs, and gives a procedure to

derive DGAs from DFAs. The focus however is on getting DGAs with as few states as possible. The

ideas presented in Section 6 of our work, also apply for state-minimality: the same example shows that

in order to get fewer states, one may have to start with a bigger DFA. This is in sharp contrast to the

DGA setting, where the derivation procedure of [8] yields a minimal DGA (in the number of states)

when applied on the canonical DFA. The problem of deriving DGAs with minimal total-size was left

open in [8], and continues to remain so, to the best of our knowledge. Expression automata [11] allow

regular expressions as transition labels. This model was already considered in [3] to convert automata

to regular expressions. Every DFA can be converted to a two state expression automaton with a regular

expression connecting them. A model of deterministic Expression automata (DEA) was proposed in [11]

with restrictions that limit the expressive power. An algorithm to convert a DFA to a DEA, by repeated

state elimination, is proposed in [11]. The resulting DEA is minimal in the number of states. The issue

with Expression automata is the high expressivity of the transition condition, that makes states almost

irrelevant. On the other hand, DEA have restrictions that make the model less expressive than DFAs.

Minimization of NFAs was studied in [15] and shown to be hard.Succinctness of models with different

features, like alternation, two-wayness, pebbles, and a notion of concurrency, has been studied in [10].

2 Preliminaries

We fix a finite alphabet Σ. Following standard convention, we write Σ∗ for the set of all words (including

ε) over Σ, and Σ+ = Σ∗ \{ε}. For w ∈ Σ∗, we write |w| for the length of w, with |ε | considered to be 0. A

word u is a prefix of word w if w = uv for some v ∈ Σ∗; it is a proper-prefix if v ∈ Σ+. Observe that ε is a

R. Keerthan, B. Srivathsan, R. Venkatesh & S. Verma 73

q0 q1

a

b

DFA M1 :

q0 abDGA H1 :

q0 q1 q2 q3

b

a a

a

b

a

b

DFA M2 :

q0 q2 q3

b

aa

a

b

aa

b

DGA H2 :

Figure 2: Examples of DFAs and corresponding DGAs, over alphabet {a,b}.

prefix of every word. A set of words W is said to be a prefix-free set if no word in W is a prefix of another

word in W . A word u is a suffix (resp. proper-suffix) of w if w = vu for some v ∈ Σ∗ (resp. v ∈ Σ+).

A Deterministic Finite Automaton (DFA) M is a tuple (Q,Σ,qinit ,δ ,F) where Q is a finite set of states,

qinit ∈ Q is the initial state, F ⊆ Q is a set of accepting states, and δ : Q×Σ → Q is a partial function

describing the transitions. If δ is complete, the automaton is said to be a complete DFA. Else, it is called

a trim DFA. The run of DFA M on a word w = a1a2 . . .an (where ai ∈ Σ) is a sequence of transitions

(q0,a1,q1)(q1,a2,q2) . . . (qn−1,an,qn) where each (qi,ai+1,qi+1) ∈ δ for 0 ≤ i < n, and q0 = qinit , the

initial state of M. The run is accepting if qn ∈ F . If the DFA is complete, every word has a unique run.

On a trim DFA, each word either a has unique run, or it has no run. The language L (M) of DFA M, is

the set of words for which M has an accepting run.

We will now recall some useful facts about minimality of DFAs. Here, by minimality, we mean

DFAs with the least number of states. Every complete DFA M induces an equivalence ∼M over words:

u ∼M v if M reaches the same state on reading both u and v from the initial state. In the case of trim

DFAs, this equivalence can be restricted to set of prefixes of words in L (M). For a regular language L,

we have the Nerode equivalence: u ≈L v if for all w ∈ Σ∗, we have uw ∈ L iff vw ∈ L. By the well-known

Myhill-Nerode theorem (see [14] for more details), there is a canonical DFA ML with the least number of

states for L, and ∼ML
equals the Nerode equivalence ≈L. Furthermore, every DFA M for L is a refinement

of ML: u ∼M v implies u ∼ML
v. If two words reach the same state in M, they reach the same state in ML.

A Deterministic Generalized Automaton (DGA) [8] H is given by (Q,Σ,qinit ,E,F) where Q,qinit ,F
mean the same as in DFA, and E ⊆ Q× Σ+×Q is a finite set of edges labeled with words from Σ+.

For every state q, the set {α | (q,α ,q′) ∈ E} is a prefix-free set. A run of DGA H on a word w is a

sequence of edges (q0,α1,q1)(q1,α2,q2) . . . (qn−1,αn,qn) such that w = α1α2 . . .αn, with q0 being the

initial state. As usual, the run is accepting if qn ∈ F . Due to the property of the set of outgoing labels

being a prefix-free set, there is a atmost one run on every word. The language L (H) is the set of words

with an accepting run. Figure 2 gives examples of DFAs and corresponding DGAs.

It was shown in [8] that there is no unique smallest DGA. The paper defines an operation to suppress

states and create longer labels. A state of a DGA is called superflous if it is neither the initial nor final

state, and it has no self-loop. For example, in Figure 2, in M1 and M2, state q1 is superfluous. Such

states can be removed, and every pair p
α
−→ q and q

β
−→ r can be replaced with p

αβ
−−→ r. This operation is

extended to a set of states: given a DGA H , a set of states S, a DGA S (H,S) is obtained by suppressing

states of S, one after the other, in any arbitrary order. For correctness, there should be no cycle in the

induced subgraph of H restricted to S. The paper proves that minimal DGAs (in number of states) can

be derived by suppressing states, starting from the canonical DFA.

74 Deterministic Suffix-reading Automata

q0 q3
aab

aab

DSA A2 :

Figure 3: DSA A2 accepts L2 = Σ∗aab, with Σ = {a,b}.

q0 q1 q2
ab

bb

b

a

A3 : q0 q1
ab

ba

A4 :

Figure 4: A3 accepts L3 = Σ∗abΣ∗bb and A4 accepts L4 = (b∗ba)∗a∗ab.

3 A new automaton model – DSA

We have seen an example of a deterministic suffix automaton in Figure 1. A DSA consists of a set of

states, and a finite set of outgoing labels at each state. On an input word w, the DSA finds the earliest

prefix which ends with an outgoing label of the initial state, erases this prefix and goes to the target state

of the transition with the matching label. Now, the DSA processes the rest of the word from this new

state in the same manner. In this section, we will formally describe the syntax and semantics of DSA.

We start with some more examples. Figure 3 shows a DSA for L2 = Σ∗aab, the same language as

the automata M2 and H2 of Figure 2. At q0, DSA A2 waits for the first occurrence of aab and as soon as

it sees one, it transitions to q3. Here, it waits for further occurrences of aab. For instance, on the word

abbaabbbaab, it starts from q0 and reads until abbaab to move to q3. Then, it reads the remaining bbaab

to loop back to q3 and accepts. On a word baabaa, the automaton moves to q3 on baab, and continues

reading aa, but having nowhere to move, it makes no transition and rejects the word. Consider another

language L3 = Σ∗abΣ∗bb on the same alphabet Σ. A similar machine (as A2) to accept L3 would look

like A3 depicted in Fig. 4. For example, on the word abbbb, it would read until ab and move from q0

to q1, read further until bb and move to q2, then read b and move back to q2 to accept. We can formally

define such machines as automata that transition on suffixes, or suffix-reading automata.

Definition 1 (DSA). A deterministic suffix-reading automaton (DSA) A is a tuple (Q,Σ,qinit ,∆,F)
where Q is a finite set of states, Σ is a finite alphabet, qinit ∈ Q is the initial state, ∆ ⊆ Q×Σ+×Q is

a finite set of transitions, F ⊆ Q is a set of accepting states. For a state q ∈ Q, we define Out(q) :=
{α | (q,α ,q′) ∈ ∆ for some q′ ∈ Q} for the set of labels present in transitions out of q. No state has two

outgoing transitions with the same label: if (q,α ,q′) ∈ ∆ and (q,α ,q′′) ∈ ∆, then q′ = q′′.

The (total) size |A | of DSA A is defined as the sum of the number of states, the number of transitions,

and the size |Out(q)| for each q ∈ Q, where |Out(q)| := ∑α∈Out(q) |α |.

As mentioned earlier, at a state q the automaton waits for a word that ends with one of its outgoing

labels. If more than one label matches,‘ then the transition with the longest label is taken. For example,

consider the DSA in Figure 1. At state s1 on reading f ghendi f , both the if and endif transitions match.

The longest match is endif and therefore the DSA moves to s0. This gives a deterministic behaviour to

the DSA. More precisely: at a state q, it reads w to fire (q,α ,q′) if α is the longest word in Out(q) which

is a suffix of w, and no proper prefix of w has any label in Out(q) as suffix. We call this a ‘move’ of the

DSA. For example, consider A4 of Figure 4 as a DSA. Let us denote t := (q0,ab,q1) and t ′ := (q0,ba,q1).
We have moves (t,ab), (t,aab), (t,aaab), and (t ′,ba), (t ′,bba), etc. In order to make a move on t, the

word should end with ab and should have neither ab nor ba in any of its proper prefixes.

R. Keerthan, B. Srivathsan, R. Venkatesh & S. Verma 75

Definition 2. A move of DSA A is a pair (t,w) where t = (q,α ,q′) ∈ ∆ is a transition of A and w ∈ Σ+

such that

• α is the longest word in Out(q) which is a suffix of w, and

• no proper prefix of w contains a label in Out(q) as suffix.

A move (t,w) denotes that at state q, transition t gets triggered on reading word w. We will also write

q
w
−−→

α
q′ for the move (t,w).

Whether a word is accepted or rejected is determined by a ‘run’ of the DSA on it. Naturally the set

of words with accepting runs gives the language of the DSA. Moreover, due to our “move” semantics,

there is a unique run for every word.

Definition 3. A run of A on word w, starting from a state q, is a sequence of moves that consume the

word w, until a (possibly empty) suffix of w remains for which there is no move possible: formally, a run

is a sequence q = q0
w0−−→
α0

q1
w1−−→
α1

· · ·
wm−1
−−−−→

αm−1

qm
wm−→ such that w = w0w1 . . .wm−1wm, and qm

wm−→ denotes

that there is no move using any outgoing transition from qm on wm or any of its prefixes. The run is

accepting if qm ∈ F and wm = ε (no dangling letters in the end). The language L (A) of A is the set of

all words that have an accepting run starting from the initial state qinit .

4 Comparison with DFA and DGA

Every complete DFA can be seen as an equivalent DSA — since Out(q)=Σ for every state, the equivalent

DSA is forced to move on each letter, behaving like the DFA that we started off with. For the DSA-to-

DFA direction, we associate a specific DFA to every DSA, as follows. The idea is to replace transitions of

a DSA with a string matching DFA for Out(q) at each state. Figure 5 gives an example. The intermediate

states correspond to proper prefixes of words in Out(q).

Definition 4 (Tracking DFA for a DSA.). For a DSA A = (QA ,Σ,qA
in ,∆

A ,FA), we give a DFA MA ,

called its tracking DFA. For q ∈ QA , let Out(q) be the set of all prefixes of words in Out(q). States of

MA are given by: QM =
⋃

q∈QA {(q,β) | β ∈ Out(q)}∪qcopy.

The initial state is (qA
in ,ε) and final states are {(q,ε) | q ∈ FA }. Transitions are as below: For every

q ∈ QA ,β ∈ Out(q),a ∈ Σ, let β ′ be the longest word in Out(q) s.t β ′ is a suffix of βa.

• (q,β)
a
−→ (q′,ε) if (q,β ′,q′) ∈ ∆A , (q′ may equal q also)

• (q,β)
a
−→ (q,β ′) if β ′ /∈ Out(q) and β ′ 6= ε ,

• (q,β)
a
−→ qcopy if β ′ = ε ,

• qcopy
a
−→ s, if (q,ε)

a
−→ s according to the above (same outgoing transitions).

Intuitively, the tracking DFA implements the transition semantics of DSAs. Starting at (q,ε), the

tracking DFA moves along states marked with q as long as no label of Out(q) is seen as a suffix. For

all such words, the tracking DFA maintains the longest word among Out(q) seen as a suffix so far. For

instance, in Figure 5, at q on reading word aab, the DFA on the right is in state ab (which is the equivalent

of (q,ab) in the tracking DFA definition).

Lemma 1. For every DSA A , the language L (A) equals the language L (MA) of its tracking DFA.

Lemma 1 and the fact that every complete DFA is also a DSA, prove that DSAs recognize regular

languages. We will now compare succinctness of DSA wrt DFA and DGA. We start with a family of

languages for which DSAs are concise.

76 Deterministic Suffix-reading Automata

q q′

abaa

baaa

q

a

b

ab

ba

aba

baa

q′

a

b

b

a

a

a

a

a

b

a

b
b

b

b

Figure 5: A DSA on the left, and the corresponding DFA for matching the strings abaa and baaa.

Lemma 2. Let Σ = {a1,a2, . . . ,an} for some n ≥ 1. Consider the language Ln = Σ∗a1a2 . . .an. There is

a DSA for this language with size 4+2n. Any DFA for Ln has size at least n2.

We now state the final result of this section, which summarizes the size comparison between DSAs,

DFAs, DGAs. For the comparison to DFAs, we use the fact that every DSA of size k can be converted

to its tracking DFA, which has atmost 2k states. Therefore, size of the tracking DFA is bounded by 2k

(states) +2k · |Σ| (edges) +2k · |Σ| (label length), which comes to 2k(1+2|Σ|).

Theorem 1. For a regular language L, let n
cmp
F ,ntrim

F ,ntrim
G ,nS denote the size of the minimal complete

DFA, minimal trim DFA, minimal trim DGA and minimal DSA respectively, where size is counted as the

sum of the number of states, edges and length of edge labels, in all the automata. We have:

1.
n

cmp
F

2(1+2|Σ|)
≤ nS ≤ n

cmp
F

2. no relation between nS and ntrim
F ,ntrim

G : there is a language for which nS is the smallest, and another

language for which nS is the largest of the three.

5 Suffix-tracking sets – obtaining DSA from DFA

For DGAs, a method to derive smaller DGAs by suppressing states was recalled in Section 2. Our goal is

to investigate a similar procedure for DSAs. The DSA model creates new challenges. Suppressing states

may not always lead to smaller automata (in total size). Figure 6 illustrates an example where suppressing

states leads to an exponentially larger automaton, due to the exponentially many paths created. But,

suppressing states may sometimes indeed be useful: in Figure 7, the DFA on the left is performing a

string matching to deduce the pattern ab. On seeing ab, it accepts. Any extension is rejected. This is

succinctly captured by the DSA on the right. Notice that the DSA is obtained by suppressing states q1

and q3. So, suppressing states may sometimes be useful and sometimes not. In [8], the focus was on

getting a DGA with minimal number of states, and hence suppressing states was always useful.

More importantly, when can we suppress states? DGAs cannot “ignore” parts of the word. This in

particular leads to the requirement that a state with a self-loop cannot be suppressed. DSAs have a more

sophisticated transition semantics. Therefore, the procedure to suppress states is not as simple. This is

the subject of this section. We deviate from the DGA setting in two ways: we will select a subset of good

states from which we can construct a DSA (essentially, this means the rest of the states are suppressed);

secondly, our starting point will be complete DFA, on which we make the choice of states (in DGAs,

one could start with any DGA and suppress states). Our procedure can be broken down into two steps:

(1) Start from a complete DFA, select a subset of states and build an induced DSA by connecting states

using acyclic paths between them; (2) Remove some useless transitions.

R. Keerthan, B. Srivathsan, R. Venkatesh & S. Verma 77

q0 q1 q2 q3

a

b

a

b

a

b

q0 q3

aaa,aab,aba,abb

baa,bab,bba,bbb

Figure 6: Suppressing states can add exponentially many labels and increase total size.

q0 q1 q2 q3

Σ\{a}

a

Σ\{a,b}

a

b Σ

Σ

q0 q2
ab

Figure 7: Suppressing states can sometimes reduce total size

Building an induced DSA. We start with an illustrative example. Consider DFA M in Figure 8. The

DSA on the right of the figure shows such an induced DSA obtained by marking states {q0,q2} and

connecting them using simple paths. Notice that the language of the induced DSA and the original DFA

are same in this case. Intuitively, all words that end with an a land in q1. Hence, q1 can be seen to

“track” the suffix a. Now, consider Figure 9. We do the same trick, by marking states {q0,q2} and

inducing a DSA. Observe that the DSA does not accept aba, and hence is not language equivalent.

When does a subset of states induce a language equivalent DSA? Roughly, this is true when the states

that are suppressed track “suitable suffixes” (a reverse engineering of the tracking DFA construction of

Definition 4). As we will see, the suitable suffixes will be the simple paths from the selected states to the

suppressed states. We begin by formalizing these ideas and then present sufficient conditions that ensure

language equivalence of the resulting DSA.

Definition 5 (Simple words). Consider a complete DFA M = (Q,Σ,qinit ,∆,F). Let S ⊆ Q be a subset of

states, and p,q ∈ Q. We define SP(p q,S), the simple words from p to q modulo S, as the set of all

words a1a2 . . .an ∈ Σ+ such that there is a path: p = p0
a1−→ p1

a2−→ ·· · pn−1
an−→ pn = q in M where

• no intermediate state belongs to S: {p1, . . . , pn−1} ⊆ Q\S, and

• there is no intermediate cycle: if pi = p j for some 0 ≤ i < j ≤ n, then pi = p0 and p j = pn.

We write SP(p,S) for
⋃

q∈QSP(p q,S), the set of all simple words modulo S, emanating from p.

For example, in Figure 8, with S = {q0,q2}, we have SP(q0 q1,S) = {a}, SP(q0 q0,S) = {b}
and SP(q0 q2,S) = ab. These are the same in Figure 9, except SP(q0 q2,S) = aa.

Fix a complete DFA M for this section. A DSA can be ‘induced’ from M using S, by fixing states to

be S (initial and final states retained) and transitions to be the simple words modulo S connecting them

i.e. p
σ
−→ q if σ ∈ SP(p q,S) (Figure 8).

Definition 6 (Induced DSA). Given a DFA M and a set S of states in M that contains the initial and final

states, we define the induced DSA of M (using S). The states of the induced DSA are given by S. The

initial and final states are the same as in M. The transitions are given by the simple words modulo S i.e.

p
σ
−→ q if σ ∈ SP(p q,S), for every pair of states p,q ∈ S.

The induced DSA may not be language-equivalent (Figure 9); to ensure that, we need to check some

conditions. Here is a central definition.

Definition 7 (Suffix-compatible transitions). Fix a subset S ⊆ Q. A transition q
a
−→ u is suffix-compatible

w.r.t. S if either of q,u ∈ S OR ∀p ∈ S, and for every σ ∈ SP(p q,S), there is an α ∈ SP(p u,S) s.t.:

78 Deterministic Suffix-reading Automata

q0 q1 q2
a b

b a a,b

M : q0 q2
ab

a,bb

AS :

Figure 8: DFA M and an equivalent DSA AS ‘induced’ with S = {q0,q2}.

q0 q1 q2
a a

b b a,b

M : q0 q2
aa

a,bb

AS :

Figure 9: DFA M and DSA AS ‘induced’ with S = {q0,q2}. Not equivalent.

• α is a suffix of σa, and

• moreover, α is the longest suffix of σa among words in SP(p,S).

Note that a transition q
a
−→ u is trivially suffix-compatible if q ∈ S or u ∈ S. The rest of the condition

only needs to be checked when both of q,u /∈ S. In Figure 9, we find the self-loop at q1 to not be suffix-

compatible: we have S = {q0,q2}, and SP(q0 q1,S) = {a}, SP(q0,S) = {b,a,ab}; the transition

q1
b
−→ q1 is not suffix-compatible since there is no suffix of ab in SP(q0 q1,S). Whereas in Figure 8,

the loop is labeled a instead of b. The transition q1
a
−→ q1 is suffix-compatible, since the longest suffix

of aa among SP(q0,S) is a and it is present in SP(q0 q1,S). Let us take the DFA in the right of

Figure 5, and let S = {q,q′}. Here are some of the simple path sets: SP(q ab,S) = {ab,bab,baab},

SP(q aba,S) = {aba,baba,baaba}. Consider the transition aba
b
−→ ab. It can be verified that for every

σ ∈ SP(q aba,S), the longest suffix of the extension σa, among simple paths out of q, indeed lies in

the state ab. In fact, all transitions satisfy suffix-compatibility w.r.t. the chosen set S.

The suffix-compatibility condition is described using simple paths to states. It requires that every

transition take each simple word reaching its source to the state tracking the longest suffix of its one-

letter extension. This condition on simple paths, transfers to all words, that circle around the suppressed

states. In Figure 5, this property can be verified by considering the word bbabab and its run: q
b
−→ b

b
−→

b
a
−→ ba

b
−→ ab

a
−→ aba

b
−→ ab. At each step, the state reached corresponds to the longest suffix among the

simple words out of q. In the next two lemmas, we prove this claim.

We will use a special notation: for a state p ∈ S, we write Out(p,S) for
⋃

r∈SSP(p r,S); these are

the simple words that start at p and end in some state r of S. Notice that these are the words that appear

as transitions in the induced DSA. In particular, Out(p) in the induced DSA equals Out(p,S).

Lemma 3. Let S be a set of states such that every transition of M is suffix-compatible w.r.t. S. Pick p ∈ S,

and let w ∈ Σ+ be a word with a run p = p0
w1−→ p1

w2−→ p2 . . . pn−1
wn−→ pn such that the intermediate states

p1, . . . , pn−1 belong to Q\S. The state pn may or may not be in S. Then:

• no proper prefix of w contains any word from Out(p,S) as suffix, and

• there is α ∈ SP(p pn,S) such that α is the longest suffix of w among words in SP(p,S).

Lemma 4. Let S be a set of states such that every transition of M is suffix-compatible w.r.t. S. Let p ∈ S,

and w ∈ Σ+ be a word such that no proper prefix of w contains a word in Out(p,S) as suffix. Then:

• The run of M starting from p, is of the form p
w1−→ p1

w2−→ p2 . . . pn−1
wn−→ pn where {p1, . . . , pn−1} ⊆

Q\S (notice that we have not included pn, which may or may not be in S).

R. Keerthan, B. Srivathsan, R. Venkatesh & S. Verma 79

0 1 3

24

a
b

a

b
a

a,b a,b

b

0

24

aba
b

abb

a,b a,b

0

2

3

4

ab
b a

a,b a,b

b

Figure 10: A DFA, a non-equivalent DSA and an equivalent induced DSA.

• the longest suffix of w, among SP(p,S) lies in SP(p pn,S).

Suffix-compatibility alone does not suffice to preserve the language. In Figure 10, consider S =
{0,2,4}. Every transition is suffix-compatible w.r.t. S. The DSA induced using S is shown in the middle.

Notice that it is not language equivalent, due to the word aba for instance. The run of aba looks as

follows: 0
ab
−→ 4

b
−→ 4. The expected run was 0

aba
−−→ 2, but that does not happen since there is a shorter

prefix with a matching transition. Even though, we have suffix-compatibility, we need to ensure that

there are no “conflicts” between outgoing patterns. This leads to the next definition.

Definition 8 (Well-formed set). A set of states S ⊆ Q is well-formed if there is no p ∈ S,q ∈ S and q′ /∈ S,

with a pair of words α ∈ SP(p q,S) (simple word to a state in S) and β ∈ SP(p q′,S) (simple word

to a state not in S) such that α is a suffix of β .

We observe that the set S = {0,2,4} is not well-formed since b ∈ SP(0 4,S),ab ∈ SP(0 3,S)
and b is a suffix of ab. Whereas S′ = {0,2,3,4} is both suffix-tracking, and well-formed, and induces

an equivalent DSA. On the word aba, the run on the DSA would be 0
ab
−→ 3

a
−→ 2. The first move 0

ab
−→

3 applies the longest match criterion, and the transition since ab is a longer suffix than b. This was

not possible before since 3 /∈ S. It turns out that the two conditions — suffix-compatibility and well-

formedness — are sufficient to induce a language equivalent DSA.

Definition 9 (Suffix-tracking sets). A set of states S ⊆ Q is suffix-tracking if it contains the initial and

accepting states, and

1. every transition of M is suffix-compatible w.r.t. S,

2. and S is well-formed.

All these notions lead to the main theorem of this section.

Theorem 2. Let S be a suffix-tracking set of complete DFA M, and let AS be the DSA induced using S.

Then: L (AS) = L (M)

Proof. Pick w ∈ L (M). There is an accepting run q0
w1−→ q1

w2−→ . . .
wn−→ qn of M on w. By Definition 9,

we have q0,qn ∈ S. Let 1 ≤ i ≤ n be the smallest index greater than 0, such that qi ∈ S. Consider the

run segment q0
w1−→ q1

w2−→ . . .
wi−→ qi. By Lemma 3, and by the definition of induced DSA 6, no transition

of AS out of q0 is triggered until w1 . . .wi−1, and then on reading wi, the transition q0
α
−→ qi is triggered,

where α ∈ SP(p q,S), and α is also the longest suffix of w1 . . .wi among SP(p,S). In particular, it is

the longest suffix among outgoing labels from q0 in AS. This shows there is a move q0
w1...wi−−−−→

α
qi in AS.

Repeat this argument on rest of the run qi
wi+1
−−→ qi+1

wi+1
−−→ . . .

wn−→ qn to extend the run of AS on the rest of

the word. This shows w ∈ L (AS).
Pick w ∈ L (AS). There is an accepting run ρ of AS starting at the initial state q0. Consider the

first move q0
w1...wi−−−−→

α
qi of AS on the word. By the semantics of a move (Definition 2) and Lemma 4, we

obtain a run q0
w1−→ q1

w2−→ . . .qi−1
wi−→ qi of M where the intermediate states q1, . . . ,qi−1 lie in Q\S. We

apply this argument for each move ρ in the accepting run of AS to get an accepting run of M.

80 Deterministic Suffix-reading Automata

q0 q1

caba,ba
q0 q1

q2

caba,ba

aba

Figure 11: Illustrating bigger-suffix transitions and when they are useless

Removing some useless transitions. Let us now get back to Figure 5 to see if we can derive the DSA

on the left from the DFA on the right (assuming q is the initial state). As seen earlier, the set S = {q,q′} is

suffix tracking. It is also well formed since baaa is not a suffix of any prefix of abaa and vice-versa. The

DSA AS induced using q and q′ will have the set of words in SP(q q′,S) as transitions between q and

q′. Both abaa and baaa belong to SP(q q′,S). However, there are some additional simple words: for

instance, abbaaa. Notice that baaa is a suffix of abbaaa, and therefore even if we remove the transition

on abbaaa, there will be a move to q′ via q
baaa
−−→ q′. This tempts us to use only the suffix-minimal words

in the transitions of the induced DSA. This is not always safe, as we explain below. We show how to

carefully remove “bigger-suffix-transitions”.

Consider the DSA on the left in Figure 11. If caba is removed, the moves which were using caba can

now be replaced by ba and we still have the same pair of source and target states. Consider the picture

on the right of the same figure. There is an outgoing edge to a different state on aba. Suppose we remove

caba. The word caba would then be matched by the longer suffix aba and move to a different state.

Another kind of useless transitions are some of the self-loops on DSAs. In Figure 8, the self-loop on b at

q0 can be removed, without changing the language. This can be generalized to loops over longer words,

under some conditions.

Definition 10. Let A be a DSA, q,q′ be states of A and t := q
α
−→ q′ be a transition.

We call t a bigger-suffix-transition if there exists another transition (q,β ,q′) with β a suffix of α .

If there is a transition t ′ := q
γ
−→ q′′ (q′′ 6= q′), such that β is a suffix of γ , and γ is a suffix of α , we

call t useful. A bigger-suffix-transition is called useless if it is not useful.

We will say that t is a useless self-loop if q = q′, q is not an accepting state, and no suffix of α is a

prefix of some outgoing label in Out(q).

In Figure 11, for the automaton on the left, the transition on caba is useless. Whereas for the DSA on

the right, caba is a bigger-suffix-transition, but it is useful. The self-loop on q0 in Figure 8 is useless, but

the loop on q0 in Figure 4 is useful. Lemmas 5 and 6 prove correctness of removing useless transitions.

Lemma 5. Let A be a DSA, and let t := q
α
−→ q′ be a useless bigger-suffix-transition. Let A ′ be the DSA

obtained by removing t from A . Then, L(A) = L(A ′).

Proof. To show L(A) ⊆ L(A ′). Let w ∈ L(A) and let q0
w0−→
α0

q1
w1−→
α1

· · ·
wm−1
−−−→
αm−1

qm be an accepting run.

If no (qi,αi,qi+1) equals (q,α ,q′), then the same run is present in S′, and hence w ∈ L(S′). Suppose

(q j,α j,q j+1) = (q,α ,q′) for some j. So, the word w j ends with α . As (q,α ,q′) is a bigger-suffix-

transition, there is another (q,β ,q′) such that β ⊑sf α . Therefore, the word w j also ends with β . Since

there was no transition matching a proper prefix of w j, the same will be true at A ′ as well, since it has

fewer transitions. It remains to show that q j

w j
−→

β
q j+1 is a move. The only way this cannot happen is

if there is a q
γ
−→ q′′ with β ⊑sf γ ⊑sf α . But this is not possible since q

α
−→ q′ is a useless bigger-suffix

transition. Therefore, every move using (q,α ,q′) in A will now be replaced by (q,β ,q′) in A ′. Hence

we get an accepting run in A ′, implying w ∈ L(A ′).

R. Keerthan, B. Srivathsan, R. Venkatesh & S. Verma 81

To show L(A ′)⊆ L(A). Consider w ∈ L(A ′) and an accepting run q0
w0−→
α0

q1
w1−→
α1

· · ·
wm−1
−−−→
αm−1

wm in A ′.

Notice that if q
w j
−→

β
q′ is a move in A ′, the same is a move in A when α 6⊑sf w j. When α ⊑sf w j, then

the bigger-suffix-transition q
α
−→ q′ will match and the move q

w j
−→
β

q′ gets replaced by q
w j
−→
α

q′. Hence we

will get the same run, except that some of the moves using q
β
−→ q′ may get replaced with q

α
−→ q′.

For the correctness of removing useless self-loops, we assume that the DFA that we obtain is well-

formed (Definition 12) and has no useless bigger-suffix-transitions. The induced DSA that we obtain

from suffix-tracking sets is indeed well-formed. Starting from this induced DSA, we can first remove all

useless bigger-suffix-transitions, and then remove the useless self-loops.

Lemma 6. Let A be a well-formed DSA that has no removable bigger-suffix-transitions. Let t :=
(q,α ,q) be a removable self-loop. Then the DSA A ′ obtained by removing t from A satisfies L (A) =
L (A ′).

Proof. To show L (A)⊆L (A ′). Let w∈L (A) and let ρ := q0
w0−→ q1

w1−→ ·· ·
wm−1
−−−→ qm be an accepting

run. Suppose t matches the segment q j

w j
−→ q j+1. Hence q j = q j+1 = q. Observe that as q is not accepting,

we have j+1 6= m. Therefore there is a segment q j+1
w j+1
−−→ q j+2 in the run. We claim that if t is removed,

then no transition out of q can match any prefix of w jw j+1.

First we see that no prefix of w j can be matched, including w j itself: if at all there is a match, it should

be at w j, and a β that is smaller than α . By assumption, α is not a removable bigger-suffix-transition.

Therefore, there is a transition q
γ
−→ q′, with β ⊑sf γ ⊑sf α . This contradicts the assumption that α is a

removable self-loop. Therefore there is no match upto w j.

Suppose some (q,β ,q′) matches a prefix w ju such that β = vu, that is, β overlaps both w j and w j+1.

If α ⊑sf v, then it violates well-formedness of S since it would be a suffix of a proper prefix (v) of β .

This shows v ⊑sf α (since both are suffixes of w j) and v ⊑pr β , contradicting the assumption that t is

removable. Therefore, β does not overlap w j. But then, if β is a suffix of a proper prefix of w j+1, we

would not have the segment q j+1
w j+1
−−→ q j+2 in the run ρ . Therefore, the only possibility is that we have a

segment q j

w jw j+1
−−−−→ q j+2. We have fewer occurrences of the removable loop (q,α ,q) in the modified run.

Repeating this argument for every match of (q,α ,q) gives an accepting run of A ′. Hence w ∈ L(A ′).

To show L(A ′)⊆ L(A). Let w ∈ L(A ′) and ρ ′ := q0
w0−→ q1

w1−→ ·· ·
wm−1
−−−→ qm be an accepting run in

A ′. Suppose q j

w j
−→ q j+1 is matched by (q,β ,q′). Let w j = vu with α ⊑sf v. Then the removable-self-

loop (q,α ,q) will match the prefix v. Suppose β overlaps with both v and u, that is β = β ′u. We cannot

have α ⊑sf β ′ due to well-formedness of A . We cannot have β ′ ⊑sf α since this would mean there is a

suffix of α which is a prefix of β , violating the removable-self-loop condition. Therefore, β is entirely

inside u, that is, β ⊑sf u. Hence in A the run will first start with q
v
−→ q. Applying the same argument,

prefixes of the remaining word where t matches will be matched until there is a part of the word where

(q,β ,q′) matches. This applies to every segment, thereby giving us a run in A .

We now get to the core definition of this section, which tells how to derive a DSA from a DFA, using

the methods developed so far.

Definition 11 (DFA-to-DSA derivation). A DSA is said to be derived from DFA M using S ⊆ Q, if it is

identical to an induced DSA of M (using S) with all useless transitions removed.

By Theorem 2 and Lemma 5, we get the following result.

Theorem 3. Every DSA that is derived from a complete DFA is language equivalent to it.

82 Deterministic Suffix-reading Automata

ab a a ba

Figure 12: Minimal DSA is not unique

q0

q1 q2

q4

p

Σ\{a,b}

a

Σ\{a,b}

a

b

Σ\a

a

b b

Σ\{a,b}

a

Σ q0

q2

q4

p

ab

Σ\a

a

b b

Σ\{a,b}

Σ

Figure 13: DFA M∗ on the left and a derived DSA A ∗
S with S = {q0,q2,q4, p} on the right.

6 Minimality, some observations and some challenges

Theorem 1 shows that we can not expect DSAs to be smaller than (trim) DFAs or DGAs in general.

However, Lemma 2 and Figure 1 show that there are cases where DSAs are smaller and more readable.

This motivates us to ask the question of how we can find a minimal DSA, that is, a DSA of the smallest

(total) size. The first observation is that minimal DSAs need not be unique — see Figure 12. The next

simple observation is that a minimal DSA will not have useless transitions since removing them gives an

equivalent DSA with strictly smaller size. In fact, we can assume a certain well-formedness condition on

the minimal DSAs, in the same spirit as the definition of well-formed sets in our derivation procedure: if

there are two transitions q
α
−→ q1 and q

β1αβ2
−−−→ q2, then we can remove the second transition since it will

never get fired.

Definition 12 (Well-formed DSA). A DSA A is well-formed if for every state q, no outgoing label

α ∈ Out(q) is a suffix of some proper prefix β ′ of another outgoing label β ∈ Out(q).

Any transition violating well-formedness can be removed, without changing the language. Therefore,

we can safely assume that minimal DSAs are well-formed. Due to the “well-formedness” property in

suffix-tracking sets, the DSAs induced by suffix-tracking sets are naturally well-formed. Since removing

useless transitions preserves this property, the DSAs that are derived using our DFA-to-DSA procedure

(Definition 11) are well-formed. The next proposition shows that every DSA that is well-formed and

has no useless transitions (and in particular, the minimal DSAs) can be derived from the corresponding

tracking DFAs.

Proposition 1. Every well-formed DSA with no useless transitions can be derived from its tracking DFA.

Proposition 1 says that if we somehow had access to the tracking DFA of a minimal DSA, we will

be able to derive it using our procedure. The challenge however is that this tracking DFA may not

necessarily be the canonical DFA for the language. In fact, we now show that a smallest DSA that can

be derived from the canonical DFA need not be a minimal DSA.

Figure 13 shows a DFA M∗. Observe that M∗ is minimal: every pair of states has a distinguishing

suffix. Let us now look at DSAs that can be derived from M∗. Firstly, any suffix-tracking set on M∗

would contain q0,q4 (since they are initial and accepting states). If p is not picked, the transition p
a
−→ p

is not suffix-compatible. Therefore, p should belong to the selected set. If p is picked, and q2 not picked,

R. Keerthan, B. Srivathsan, R. Venkatesh & S. Verma 83

q0

q1 q2

q4

p′

p

Σ\{a,b}

a

Σ\{a,b}

a

b

Σ\a

a

b

aa

b

b
Σ\{a,b}

Σ\{a,b}

Σ q0 q4

p

aba

bb

ba b

Σ\{a,b}

abb

Σ

Figure 14: DFA M∗∗ on the left and a derived DSA A ∗∗
S with S = {q0,q2,q4, p} on the right.

then the set is not well-formed (see Definition 8): the simple word b from q0 to p is a suffix of the

simple word ab to q2. Therefore, any suffix-tracking set should contain the 4 states q0, p,q2,q4. This

set S = {q0, p,q2,q4} is indeed suffix-tracking, and the DSA derived using S is shown in the right of

Figure 13. The only other suffix-tracking set is the set S′ of all states. The DSA derived using S′ will

have state q1 in addition, and the transitions Σ \{a,b}. If Σ is sufficiently large, this DSA would have

total size bigger than A ∗
S . We deduce A ∗

S to be the smallest DSA that can be derived from M∗.

Figure 14 shows DFA M∗∗ which is obtained from M∗ by duplicating state p to create a new state p′,

which is equivalent to p. So M∗∗ is language equivalent to M∗, but it is not minimal. Here, if we choose

p in a suffix-tracking set, the simple word to p is ba, which is not a suffix of ab (the simple word to q2).

Hence, we are not required to add q2 into the set. Notice that S = {q0, p,q4} is indeed a suffix-tracking

set in M∗∗. The derived DSA A ∗∗
S is shown in the right of the figure. The “heavy” transition on Σ \ a

disappears. There are some extra transition, like q0
bb
−→ q4, but if Σ is large enough, the size of A ∗∗

S

will be smaller than A ∗
S . This shows that starting from a big DFA helps deriving a smaller DSA, and in

particular, the canonical DFA of a regular language may not derive a minimal DSA for the language.

7 Complexity of minimization

The goal of this section is to prove the following theorem.

Theorem 4. Given a DFA M and positive integer k, deciding whether there exists an equivalent DSA of

total size ≤ k equivalent to M is NP-complete.

If k is bigger than the size of the DFA M, then the answer is trivial. Therefore, let us assume that k is

smaller than the DFA size. For the NP upper bound, we guess a DSA of total size k, compute its tracking

DFA in time O(k · |Σ|) and check for its language equivalence with the given DFA M. This can be done

in polynomial-time by minimizing both the DFA and checking for isomorphism.

The rest of the section is devoted to proving the lower bound. We provide a reduction from the

minimum vertex cover problem which is a well-known NP-complete problem [16]. A vertex cover of an

undirected graph G = (V,E) is a subset S ⊆ V of vertices, such that for every edge e ∈ E , at least one

of its end points is in S. The decision problem takes a graph G and a number k′ ≥ 1 as input and asks

whether there is a vertex cover of G with size at most k′. Using the graph G, we will construct a DFA

MG over an alphabet ΣG. We then show that G has a vertex cover of size ≤ k′ iff MG has an equivalent

DSA with total size ≤ k where k = (k′+2)×2∆+(2∆−1). Here, ∆ is a sufficiently large polynomial in

|V |, |E| which we will explain later.

84 Deterministic Suffix-reading Automata

u

v

qinit

qacc

qsink

v′

e

e

u

e′′,V,∆

$

e′

e′

v

qinit

qacc

qsink

v′

ue

ue′

u$

ue′′,uV,u∆

v qacc

qsink

v′

ee′ e′e

e$

ee′′,eV,e∆

ee

Figure 15: Left: Illustration of the neighbourhood of state u in the DFA MG. Middle, Right: Transitions

induced from qinit and v, on removing u.

The alphabet ΣG is given by V ∪ E ∪ {$} ∪ D where D = {1,2, . . . ,∆}. States of MG are V ∪
{qinit ,qsink,qacc}. For simplicity, we use the same notation for v as a vertex in G, v as a letter in ΣG

and v as a state of MG. The actual role of v will be clear from the context. For every edge e = (u,v), there

are two transitions in the automaton: u
e
−→ v and v

e
−→ u. For every v ∈ V , there are transitions qinit v

−→ v

and v
$
−→ qacc. This automaton can be completed by adding all missing transitions to the sink state qsink.

Figure 15 (left) illustrates the neighbourhood of a state u. The notation e′′ stands for any edge that is not

incident on u; there is one transition for every such e′′. Initial and accepting states are respectively qinit

and qacc. Let LG(u) be the set of words that have an accepting run in MG starting from u as the initial

state. If u 6= v, LG(u) = LG(v) implies (u,v) is an edge and there are no other edges outgoing either from

u or v. To avoid this corner case, we restrict the vertex cover problem to connected graphs of 3 or more

vertices. Then we have MG to be a minimal DFA, with no two states equivalent. Here are two main ideas.

Suppressing a state. Suppose state u of MG is suppressed (i.e. u is not in a suffix-tracking set). In

Figure 15, we show the induced transitions from qinit and a vertex v. However, some of them will be

useless transitions: most importantly, the set of transitions qinit u1,u2,...,u∆
−−−−−−→ qsink will be useless bigger-

suffix-transitions due to qinit 1,2,...,∆
−−−−→ qsink. Similarly, v

e1,e2,...,e∆
−−−−−−→ qsink will be removed. There are some

more useless bigger-suffix-transitions, like v
ee′′

−−→ qsink for some e′′ that is not incident on v and u. So

from each v, at most 2|E| transitions are added. But crucially, after removing useless transitions, the ∆

transitions from u no longer appear. If we choose ∆ large enough to compensate for the other transitions,

we get an overall reduction in size by suppressing states.

Two states connected by an edge cannot both be suppressed. Suppose e = (u,v) is an edge. If S is a

set where u,v /∈ S, then the transition v
e
−→ u is not suffix-compatible: the simple word ue from qinit to v,

when extended with e gives the word uee; no suffix of uee is a simple word from qinit to u. We deduce

that suffix-tracking sets in MG correspond to a vertex cover in G, and vice-versa.

These two observations lead to a translation from minimum vertex cover to suffix-tracking sets with

least number of states. Due to our choice of ∆, DSAs with smallest (total) size are indeed obtained from

suffix-tracking sets with the least number of states. Let k = (k′+2)×2∆+(2∆−1).

Vertex cover ≤ k′ implies DSA ≤ k. Assume there is a vertex cover {v1, . . . ,vp} in G with p ≤
k′. Let S be the set of states in MG corresponding to {v1, . . . ,vp}. Observe that S∪ {qinit ,qsink,qacc}

is a suffix-tracking set; every transition is trivially suffix-compatible (∀q
a
−→ u,q ∈ S or u ∈ S). Well-

formedness holds because ∀p,q ∈ S,α ∈ SP(p q,S) we have |α | ≤ 2; this means ∀q′ /∈ S,β ∈ SP(p

q′,S), we have α 6⊑sf β (since |β |= 1). Hence the derived DSA will be equivalent to M.

The derived DSA has p+3 states, and transitions q
1,2,...,∆
−−−−→ qsink from each except for the qsink state.

The transitions on qsink are removable, and hence will be absent. All of this adds (p+2)×2∆ to the total

R. Keerthan, B. Srivathsan, R. Venkatesh & S. Verma 85

size (edges + label lengths). Apart from these, there are transitions with labels of length at most 2, over

the alphabet V ∪E ∪$. From each vertex, v, there are |V | transitions to qsink, one transition to qacc and at

most 2|E| transitions to other states or qsink. We can choose a large enough ∆ (say (|V |+ |E|)4), so that

the size of these extra transitions is at most 2∆−1. Hence, total size is ≤ (p+2)×2∆+(2∆−1).

By assumption, we have p ≤ k′. Therefore, the size of the DSA is ≤ (k′+2)×2∆+(2∆−1) = k.

DSA ≤ k implies vertex cover ≤ k′. Let A be a DSA with size ≤ k. It may not be derived from MG.

However, by Proposition 1 we know A is derived from a DFA M, the tracking DFA for A . Moreover

since MG is the minimal DFA, we know that M will be a refinement of MG (see Section 2 for definition).

Let us consider a pair of states u and v from MG, such that the vertices u,v ∈ G have an edge between

them labeled e. The DFA M will have two sets of states u1,u2, . . . ,ui and v1,v2, . . . ,v j that are language-

equivalent to u and v respectively. Its initial state must have a transition on v to one of v1,v2, . . . ,v j.

Without loss of generality, let it be to v1. Each of v1,v2, . . . ,v j must have a transition on e to one of

u1,u2, . . . ,ui (for equivalence with MG) and vice-versa. Consider the run from the initial state on vei+ j+1.

At least one of the states among u1,u2, . . . ,ui,v1,v2, . . . ,v j must be visited twice; consider the first such

instance. The transition on e that re-visits a state cannot be suffix-compatible w.r.t a set S, if none of

these states are in S. For it to be suffix-compatible, the string vek.e (from initial state to the first repeated

state) must have its longest simple-word suffix go the same state. Since vek.e is not simple by itself, its

longest suffix must consist entirely of e’s. But on any string of e’s, the initial state moves only to the sink

state(s) and not to any of u1,u2, . . . ,ui,v1,v2, . . . ,v j. Hence any suffix-tracking set must contain at least

one of these states, which maps to at least one of u or v in G. Every suffix-tracking set of M therefore

maps to a vertex cover {v1,v2, . . . ,vp}.

Now we show that the size of this vertex cover is ≤ k′. Each of the states picked in the suffix-

tracking set will contribute to atleast 2∆ in the total size, due to the ∆ transitions. We will also have

these ∆ transitions from the initial and accepting states. Therefore, the total size is (p+ 2)× 2∆+ y for

some y > 0. Hence (p+2)×2∆ ≤ k. This implies p ≤ k′: otherwise we will have p ≥ k′+1, and hence

(p+2)×2∆ ≥ (k′+1+2)×2∆ = (k′+2)×2∆+2∆ > k, a contradiction.

8 Conclusion

We have introduced the model of deterministic suffix-reading automata, compared its size with DFAs and

DGAs, proposed a method to derive DSAs from DFAs, and presented the complexity of minimization.

The work on DGAs [8] inspired us to look for methods to derive DSAs from DFAs, and investigate

whether they lead to minimal DSAs for a language. This led to our technique of suffix-tracking sets,

which derives DSAs from DFAs. The technique imposes some natural conditions on subsets of states,

for them to be tracking patterns at each state. However, surprisingly, the smallest DSA that we can derive

from the canonical DFA need not correspond to the minimal DSA of a language. This leads to several

questions about the DSA model, and our derivation methodology.

When does the smallest DSA derived from the canonical DFA correspond to a minimal DSA? Can

we use our techniques to study minimality in terms of number of states? Closure properties of DSAs -

do we perform the union, intersection and complementation operations on DSAs without computing the

entire equivalent DFAs? What about practical studies of using DSAs? To sum up, we believe the DSA

model offers advantages in the specification of systems and in also studying regular languages from a

different angle. The results that we have presented throw light on some of the different aspects in this

model, and lead to many questions both from theoretical and practical perspectives.

86 Deterministic Suffix-reading Automata

References

[1] Ahmed Bouajjani, Peter Habermehl & Tomás Vojnar (2004): Abstract Regular Model Checking. In: Com-
puter Aided Verification, 16th International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004,

Proceedings, pp. 372–386, doi:10.1007/978-3-540-27813-9_29.

[2] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson & Tayssir Touili (2000): Regular Model Checking. In:

Computer Aided Verification, 12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19,
2000, Proceedings, pp. 403–418, doi:10.1007/10722167_31.

[3] Janusz A. Brzozowski & Edward J. McCluskey (1963): Signal Flow Graph Techniques for Sequential Circuit

State Diagrams. IEEE Trans. Electron. Comput. 12(2), pp. 67–76, doi:10.1109/PGEC.1963.263416.

[4] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled & Helmut Veith (2018):

Model checking, 2nd Edition. MIT Press. Available at https://mitpress.mit.edu/books/

model-checking-second-edition.

[5] Loris D’Antoni: Symbolic automata. https://pages.cs.wisc.edu/~loris/symbolicautomata.

html.

[6] Loris D’Antoni & Margus Veanes (2017): The Power of Symbolic Automata and Transducers. In: Computer
Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,

Proceedings, Part I, pp. 47–67, doi:10.1007/978-3-319-63387-9_3.

[7] Samuel Eilenberg (1974): Automata, languages, and machines. A. Pure and applied mathematics, Academic

Press. Available at https://www.worldcat.org/oclc/310535248.

[8] Dora Giammarresi & Rosa Montalbano (1999): Deterministic generalized automata. Theoretical Computer

Science 215(1-2), pp. 191–208, doi:10.1016/S0304-3975(97)00166-7.

[9] D. Giannakopoulou & K. Havelund (2001): Automata-based verification of temporal properties on running

programs. In: Proceedings 16th Annual International Conference on Automated Software Engineering (ASE

2001), pp. 412–416, doi:10.1109/ASE.2001.989841.

[10] Noa Globerman & David Harel (1996): Complexity Results for Two-Way and Multi-Pebble Automata and

their Logics. Theor. Comput. Sci. 169(2), pp. 161–184, doi:10.1016/S0304-3975(96)00119-3.

[11] Yo-Sub Han & Derick Wood (2004): The Generalization of Generalized Automata: Expression Automata. In:

Implementation and Application of Automata, 9th International Conference, CIAA 2004, Kingston, Canada,

July 22-24, 2004, Revised Selected Papers, pp. 156–166, doi:10.1007/978-3-540-30500-2_15.

[12] David Harel (1987): Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Program. 8(3), pp.

231–274, doi:10.1016/0167-6423(87)90035-9.

[13] Kosaburo Hashiguchi (1991): Algorithms for Determining the Smallest Number of Nonterminals (States)

Sufficient for Generating (Accepting) a Regular Language. In: Automata, Languages and Programming, 18th

International Colloquium, ICALP91, Madrid, Spain, July 8-12, 1991, Proceedings, pp. 641–648, doi:10.

1007/3-540-54233-7_170.

[14] John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (2007): Introduction to automata theory, languages,

and computation, 3rd Edition. Pearson international edition, Addison-Wesley.

[15] Tao Jiang & Bala Ravikumar (1993): Minimal NFA Problems are Hard. SIAM J. Comput. 22(6), pp. 1117–

1141, doi:10.1137/0222067.

[16] Richard M. Karp (1972): Reducibility Among Combinatorial Problems. In: Proceedings of a symposium on

the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research

Center, Yorktown Heights, New York, USA, pp. 85–103, doi:10.1007/978-1-4684-2001-2_9.

[17] Mehryar Mohri, Pedro J. Moreno & Eugene Weinstein (2009): General suffix automaton construction al-

gorithm and space bounds. Theor. Comput. Sci. 410(37), pp. 3553–3562, doi:10.1016/j.tcs.2009.03.

034.

https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1007/10722167_31
https://doi.org/10.1109/PGEC.1963.263416
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
https://pages.cs.wisc.edu/~loris/symbolicautomata.html
https://pages.cs.wisc.edu/~loris/symbolicautomata.html
https://doi.org/10.1007/978-3-319-63387-9_3
https://www.worldcat.org/oclc/310535248
https://doi.org/10.1016/S0304-3975(97)00166-7
https://doi.org/10.1109/ASE.2001.989841
https://doi.org/10.1016/S0304-3975(96)00119-3
https://doi.org/10.1007/978-3-540-30500-2_15
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/3-540-54233-7_170
https://doi.org/10.1007/3-540-54233-7_170
https://doi.org/10.1137/0222067
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/j.tcs.2009.03.034
https://doi.org/10.1016/j.tcs.2009.03.034

R. Keerthan, B. Srivathsan, R. Venkatesh & S. Verma 87

[18] Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar & Nikolaj S. Bjørner (2012): Symbolic

finite state transducers: algorithms and applications. In: Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, Jan-

uary 22-28, 2012, pp. 137–150, doi:10.1145/2103656.2103674.

https://doi.org/10.1145/2103656.2103674

A. Achilleos and A. Francalanza (Eds.): Fifteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2024).

EPTCS 409, 2024, pp. 88–102, doi:10.4204/EPTCS.409.10

© M. Lehaut and N. Piterman

This work is licensed under the

Creative Commons Attribution License.

Adding Reconfiguration to Zielonka’s Asynchronous

Automata *

Mathieu Lehaut

University of Gothenburg, Gothenburg, Sweden

lehaut@chalmers.se

Nir Piterman

University of Gothenburg, Gothenburg, Sweden

piterman@chalmers.se

We study an extension of Zielonka’s (fixed) asynchronous automata called reconfigurable asyn-

chronous automata where processes can dynamically change who they communicate with. We

show that reconfigurable asynchronous automata are not more expressive than fixed asynchronous

automata by giving translations from one to the other. However, going from reconfigurable to fixed

comes at the cost of disseminating communication (and knowledge) to all processes in the system.

We then show that this is unavoidable by describing a language accepted by a reconfigurable au-

tomaton such that in every equivalent fixed automaton, every process must either be aware of all

communication or be irrelevant.

1 Introduction

In recent years, computation devices have become so widely available that they are now everywhere.

They are lighter, cheaper, prevalent, and, ultimately, mobile. Sensor networks, multi-agent systems, and

robot teams use mobile and ad-hoc networks. In such networks, participants/agents/processes come and

go and change the communication configuration based on need, location, and various restrictions. These

systems force us to consider how communication changes when participants are numerous, mobile, and

required to collaborate.

We consider a canonical formalism in language theory for distributed systems with a fixed commu-

nication structure – Zielonka’s asynchronous automata. These are a well known model that supports

distribution of language recognition under a fixed communication topology. In this model, a number of

processes are each connected to some fixed set of channels. They can then communicate with others

processes by synchronizing on a channel. During such a communication, all processes involved share

their local states with each other, and then progress to a new state. Another feature of this model is that

a communication can only happen if all processes involved are ready for it; if even a single process does

not accept then the communication is blocked. The model is especially interesting due to Zielonka’s

seminal result on the ability to distribute languages in this model [9]. Zielonka’s result starts from a

given regular language and a target (fixed) distribution of the alphabet. He then shows that if the deter-

ministic automaton for the language satisfies a simple condition about independence of communications

then the language can be distributed and accepted by a distributed team of processes. Zielonka’s quite

involved construction has been revisited and optimized several times, let us cite e.g. [8, 5, 4] for the

general construction and [6] for an example of a simpler construction in a restricted case. This result

lead to several applications notably in synthesis [7], further establishing the usefulness of this model.

The aim of this paper is to extend the power of asynchronous automata by giving them reconfigurabil-

ity. To this end, processes comprising a system are extended with the ability to dynamically connect and

*Supported by the ERC Consolidator grant D-SynMA (No. 772459).

http://dx.doi.org/10.4204/EPTCS.409.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. Lehaut and N. Piterman 89

disconnect from channels after a communication. As before, a communication can only occur on a chan-

nel if all the processes that are connected to the channel agree on it, and otherwise the communication is

blocked. This is the exact notion of communication of asynchronous automata, except that processes can

now connect and disconnect to channels dynamically during an execution. In order to allow more than

mere synchronization on the channel, communications are extended by a data value, which correspond to

the state sharing of asynchronous automata. We call this variant reconfigurable asynchronous automata.

They are inspired by attribute-based communication calculus [2, 1] and channeled transition systems

[3], though they are much simpler than those and adapted to the context of asynchronous automata.

To prevent confusions, we sometimes refer to the base variant as fixed (as opposed to reconfigurable)

asynchronous automata.

With the definition of this new extension, the first natural question is whether reconfigurable asyn-

chronous automata are more expressive than the fixed variant. To this we answer negatively by showing

how to translate from one model to the other. Going from fixed to reconfigurable is easy. We also show

that if the fixed asynchronous automaton has local transitions, i.e. the next state of a process only de-

pends on its own current state and not on the state of others, then it corresponds to a reconfigurable

asynchronous automaton that does not use data values during communications. The other direction is

also relatively easy, however with an important caveat: every process in the fixed automaton partici-

pates in every communication, autonomously deciding which communications to ignore and which to

act upon.

With the two models being equi-expressive, the second natural question is what does adding recon-

figurability actually bring? It is well known that non-deterministic finite automata are as expressive as

deterministic ones, but can be exponentially smaller in size. In the case of fixed versus reconfigurable

asynchronous automata, the gain is not in size, but in the communication structure. As explained just

before, our translation from reconfigurable to fixed asynchronous automata results in essentially sharing

all information to all parts of the system, and letting each process decide whether that information is

actually needed. This is undesirable for many reasons. First, in real systems, each communication takes

time and costs energy to process, so one should not waste resources sending information that would be

useless to some process. Second, for privacy reasons, it is obviously not desirable that every process in

the system has access to every communication; we would rather that a process only receives information

based on its “need-to-know”. Thirdly, it implies that every process is always connected to every other

process in the system, which is not good in systems with a high number of participants that only require

a small number of connections at each time.

We then show that this sharing is, in general, unavoidable. We suggest a language that can be rec-

ognized by reconfigurable asynchronous automata but for which any equivalent fixed asynchronous au-

tomaton has the pitfall described above. In this language, using reconfigurable communication, processes

actively connect and disconnect from channels and keep themselves informed only about crucial infor-

mation. Throughout, processes are connected to a very small number of channels that is independent

of system size. However, some (changing) channels are used for coordination of how to connect and

disconnect from the other channels. We show that for asynchronous automata to recognize the same

language, some processes must be connected to the full set of channels and be informed of everything.

What’s more, every process that is not connected to the full set of channels can be made trivial by accept-

ing unconditionally all possible communication on channels that they are connected to. We also show

that the system contains a subsystem performing the same computation in which the processes that are

not fully connected are completely trivial: the system does not need them at all to perform exactly the

same computation.

The rest of the paper is organized as follows. In Section 2 we recall the definition of Zielonka’s

90 Adding Reconfiguration to Zielonka’s Asynchronous Automata

asynchronous automata and give the definition of reconfigurable asynchronous automata. In Section 3 we

give the translations between the models and show that the data of reconfigurable asynchronous automata

correspond to the global transitions of fixed asynchronous automata. We then show in Section 4 that in

every translation that removes the reconfigurability, all processes either know everything or are trivial.

Finally, we conclude and discuss our results in Section 5.

2 Definitions

2.1 Fixed Communication Structure

2.1.1 Distributed Alphabets

We fix a finite set P of processes. Let Σ be a finite alphabet, and dom : Σ → 2P a domain function

associating each letter with the subset of processes listening to that letter. The pair (Σ,dom) is called

a distributed alphabet. We let dom−1(p) = {a ∈ Σ | p ∈ dom(a)}. It induces an independence binary

relation I in the following way: (a,b) ∈ I ⇔ dom(a)∩ dom(b) = /0. Two words u = u1 . . .un and v =
v1 . . .vn are said to be equivalent, denoted by u ∼ v, if one can start from u, repeatedly switch two

consecutive independent letters, and end up with v. Let us denote by [u] the equivalence class of a word

u. Let A = (Q,Σ,q0,∆,F) be a deterministic automaton over Σ. We say that A is I-diamond if for

all pairs of independent letters (a,b) ∈ I and all states q ∈ Q, we have ∆(q,ab) = ∆(q,ba). If A has

this property, then a word u is accepted by A if and only if all words in [u] are accepted. Zielonka’s

result states that an I-diamond automaton can be distributed to processes who are connected to channels

according to dom [9].

2.1.2 Asynchronous Automata

An asynchronous automaton (in short: AA) [9] over distributed alphabet (Σ,dom) and processes P is a

tuple

B = ((Sp)p∈P,(s
0
p)p∈P,(δa)a∈Σ,Acc)

such that:

• Sp is the finite set of states for process p, and s0
p ∈ Sp is its initial state,

• δa : ∏p∈dom(a) Sp → ∏p∈dom(a) Sp is a partial transition function for letter a that only depends on

the states of processes in dom(a) and leaves those outside unchanged,

• Acc ⊆ ∏p∈P Sp is a set of accepting states.

A global state of the automaton is of the form s = (sp)p∈P, giving the state of each process. For every

such global state and every subset P ⊆ P, we denote by s ↓P= (sp)p∈P the subset of s of states from

processes in P. Then a run of B is a sequence s0a1s1a2 . . .sn where for all 0 < i ≤ n, si ∈ ∏p∈P Sp, ai ∈ Σ,

satisfying s0 = (s0
p)p∈P and the following relation:

si ↓dom(ai)= δai
(si−1 ↓dom(ai)) and si ↓P\dom(ai)= si−1 ↓P\dom(ai)

A run is accepting if sn belongs to Acc. The word a1a2 . . . is accepted by B if such an accepting run

exists (note that automata are deterministic but runs on certain words may not exist). The language of

B, denoted by L (B), is the set of words accepted by B. For the rest of this paper, we will drop the Acc

component as we focus more on the runs themselves over whether they can reach a certain target. That

is, we assume that Acc = ∏p∈P Sp. This restricts the languages that can be recognized by asynchronous

automata but still allows us to prove all our results.

M. Lehaut and N. Piterman 91

s1

p
a,c

s2

t1

q
b,c

t2

u1

r
c

c

a a

c

b b

c

Figure 1: An asynchronous automaton B over three processes.

Example 1. We give an example of an asynchronous automaton B in Figure 1. There are three letters

Σ = {a,b,c} distributed over three processes P = {p,q,r} with the domain: dom(a) = {p},dom(b) =
{q},dom(c) = P. An example of a run is the following sequence:

(s1, t1,u1) a (s2, t1,u1) b (s2, t2,u1) b (s2, t1,u1) a (s1, t1,u1) c (s1, t1,u1)

which gives abbac as a word in L (B). More generally, B accepts all words where all occurrences of

c are such that there are an even number of a’s and an even number of b’s in the prefix before the c

occurrence. That is,

L (B) =

{

v0 . . .vn ∈ {a,b,c}∗
∣

∣

∣

∣

∀i . vi = c implies a♯(v0 . . .vi) =mod2 0

and b♯(v0 . . .vi) =mod2 0

}

,

where σ♯(w) is the number of occurrences of letter σ in word w.

2.1.3 Local Asynchronous Automata

We also define a weaker version of asynchronous automata, called local asynchronous automata (short:

LAA or local AA), in which the transition function is local to each process, and therefore independent

with respect to the states of all other processes. To avoid confusion, we sometimes refer to normal

asynchronous automata as defined earlier as global asynchronous automata (or global AA), though by

default AA refers to global AA.

A local asynchronous automaton over (Σ,dom) and P is a tuple

B = ((Sp)p∈P,(s
0
p)p∈P,(δp)p∈P),

where Sp and s0
p are defined as before, and δp : Sp×dom−1(p)→ Sp is the transition function of process p.

A run of B is a sequence s0a1s1a2 . . . sn where s0 = (s0
p)p∈P and for all 0 < i ≤ n, si = (sp

i)p∈P ∈ ∏p∈P Sp,

ai ∈ Σ, satisfying the following relation:

s
p
i =

{

δp(s
p
i−1,ai) if p ∈ dom(ai),

s
p
i−1 otherwise.

Observe that a local AA is a syntactic restriction of global AA. There are languages recognizable by

global AA that cannot be recognized by local AA, because intuitively it would be impossible to make a

process react differently to the same communication based on differences observed by another process.

For example, take Σ = {a, ā,b,c, c̄} and two processes p,q such that p listens to a, ā,b and q listens to

92 Adding Reconfiguration to Zielonka’s Asynchronous Automata

c, c̄,b. Then take language L = {abc, ābc̄}. One can easily see that L can be recognized by a global AA

but by no local AA.

In particular, Zielonka’s distribution result [9] no longer holds for local AA. Note that the automaton

given in Figure 1 is local.

2.2 Reconfigurable Communication

Let us consider here a model where the communication structure is not fixed, and can be modified dy-

namically during a run. As before, let us fix a finite set P of processes. Let us as well fix a finite set

C of channels, with a role similar to the alphabet Σ of the previous section. Here, the function dom is

replaced by a state-dependent listening function through which processes reconfigure their communica-

tion interfaces depending on their current state. Finally, let T be a finite set of message contents. The

intuition behind T is to abstract the state-sharing part of a communication to allow us to define each

process’ transition function independently of other processes. We emphasize that this has nothing to do

with reconfigurability and is just a way to have nicer definitions.

2.2.1 Reconfigurable Asynchronous Automata

A reconfigurable asynchronous automaton (in short: RAA) over C is a tuple A = (S,s0,∆,L) where:

• S is a set of states, s0 ∈ S being the initial state,

• ∆ : S× (T ×C) → S is the partial transition function, where ∆(s,(t,c)) = s′ means going from

state s to s′ after having a message on channel c with content t. We write (s,(t,c),s′) ∈ ∆ for

∆(s,(t,c)) = s′,

• L : S → 2C is a listening function such that c ∈ L(s) if there is a transition of the form (s,(t,c),s′)∈
∆, i.e. state s must be listening to channel c if there is some transition from s involving a message

on c.

A run of A is a sequence s0m1s1m2 . . . sn starting from the initial state s0 = s0 and where for all 0 < i ≤
n,mi ∈ T ×C and ∆(si−1,mi) = si. The language of A , denoted by L (A), is the set of words over C of

the form c0c1 . . . such that there exists a run of the form s0(t0,c0)s1(t1,c1) . . . , i.e. we focus only on the

sequence of channels where messages are sent, and drop the states and message contents.

Intuitively this definition represents the behavior of a single process, communicating with the outside

on channels from C. In order to be able to reconstruct the whole system, we now define the parallel

composition of RAA.

Given a sequence of RAA (Ap)p∈P with Ap = (Sp,s
0
p,∆p,Lp), one can define their parallel compo-

sition A‖P = (S,s0,∆,L):

• S = ∏p∈P Sp and s0 = (s0
p)p∈P,

• L((sp)p∈P) =
⋃

p∈P Lp(sp),

• ∆((sp)p∈P,(t,c)) = (s′p)p∈P if the following conditions are met:

1. ∃p s.t. c ∈ Lp(sp),

2. ∀p s.t. c ∈ Lp(sp),(sp,(t,c),s
′
p) ∈ ∆p, and

3. ∀p s.t. c /∈ Lp(sp),s
′
p = sp.

M. Lehaut and N. Piterman 93

s1 a

p

s2 a,c

t1 b

q

t2 b,c

u1 c

r

a a b b c

Figure 2: An RAA A over three processes. The listening function is given to the right of each state.

In plain words, there is a transition if all processes listening to the corresponding channel have a transition

with the same message content, with at least one process listening to the channel, whereas those that do

not listen are left unchanged. Note that if some process listens to that channel but does not implement

the transition, then that transition is blocked.

By convention, an RAA over C and P refers to an RAA of the form A‖P as described above.

Example 2. Figure 2 shows an example of RAA over channels C = {a,b,c} and three processes P =
{p,q,r}. Here we take T = {t} as the set of message contents, so for readability purposes it is omitted

from the transitions. Note that when process p is in state s2, it is listening to channel c but no c-transition

is implemented, therefore a communication on c is impossible (similarly for q and t2). So the only way

a communication happens on c is when p and q are in s1 and t1 respectively, which means only process

r listens to c. It is then easy to see that this RAA accepts the same language as the AA given in Figure 1.

Note that it does so without p or q ever taking part in a communication on c, contrary to the previous

example.

3 From Fixed to Reconfigurable and Back

We now focus on comparing the expressive power of these two formalisms. For the rest of this section,

we fix a finite set P of processes.

3.1 Fixed AA to Reconfigurable AA

Let (Σ,dom) be a distributed alphabet, and let B be an AA over it. One can construct an RAA A‖P with

Σ as set of channels that recognizes the same language as B.

The intuition is as follows. The listening function of each process is the same for all states: each

process always listens to the channels that have this process in their domain. The only part that is not

straightforward to emulate is that a transition of an AA depends on the states of all processes in the

domain of the corresponding letter. Therefore each process in the RAA needs to share their states via

message contents to all others when emulating a transition.

Theorem 1. Every language recognized by an AA over (Σ,dom) and P can be recognized by an RAA

with set of channels Σ and processes P.

Proof. Let B = ((Sp)p∈P,(s
0
p)p∈P,(δa)a∈Σ) be an AA as described earlier. For the set of messages, we

take T =
⋃

a∈Σ(∏p∈dom(a) Sp).

Then let Ap = (Sp,s
0
p,∆p,Lp) be a RAA for process p where:

94 Adding Reconfiguration to Zielonka’s Asynchronous Automata

• Lp(s) = {a ∈ Σ | p ∈ dom(a)} for all s ∈ Sp,

• ∆p(sp,(t,a)) = (δa(t))↓{p} if sp = t↓{p}

i.e. an a-transition is possible if and only if the message t is the tuple comprising the current states of all

processes in dom(a), and all processes then update their state according to δa.

By construction, one can show inductively that for each run of B, there is a corresponding run of A‖P

where at each point, the state of each process p is the same in both runs. It follows that L (B)⊆L (A‖P)
and conversely A‖P can only emulate runs of B, showing the reverse inclusion.

Note that the size of the constructed RAA lies almost entirely in the size of T , the message contents

set, which is ∏p∈P Sp.

For local AA the translation is even more straightforward, as no message content is required (i.e. T

can be reduced to a singleton).

Corollary 2. Every language recognized by an LAA over (Σ,dom) can be recognized by an RAA with

set of channels Σ and where |T |= 1.

Proof. In the case of LAA, the transition δp does not depend on the states of other processes. Let T = {t}.

We replace the transition ∆p in the proof of Theorem 1 by ∆p(sp,(t,a)) = δp(sp,a).

3.2 Reconfigurable to Fixed

Let us now focus on the reverse direction. Let (Ap)p∈P be a sequence of RAA over P with set of channels

C, and let A be their parallel composition. Our goal is to create an AA with alphabet C that recognizes

the same language. The question that arises is: what should dom be defined as for the distributed alphabet

(C,dom)?
The solution is to define it as the complete domain function Fdom: Fdom(a) = P for all channels. In

that case, it is simple to build an AA over (C,Fdom) that emulates A , as each process can simply stutter

when they are not supposed to listen to a channel.

Theorem 3. Every language recognized by an RAA over set of channels C and processes P can be

recognized by an AA over (C,Fdom) and the same set of processes.

Proof. Consider (Ap)p∈P, where Ap = (Sp,s
0
p,∆p,Lp), with A = (S,s0,∆,L) being their parallel com-

position over message contents T . We build B = ((Qp)p∈P,(q
0
p)p∈P,(δc)c∈C) as follows:

• for all p ∈ P, Qp = Sp, and q0
p = s0

p

• For channel c ∈C we have δc defined as follows.

δc =















((qp)p∈P,(q
′
p)p∈P)

∣

∣

∣

∣

∣

∣

∣

∣

∃p ∈ P.c ∈ Lp(qp) and

∃t ∈ T.∀p ∈ P.
if c ∈ Lp(qp),(qp′ ,(t,c),q

′
p′) ∈ ∆p′ and

if c /∈ Lp(qp),qp = q′p















Similarly to Theorem 1, the construction makes it so that any run from A has a corresponding run

in B where the state are identical for each process, and the same in the other direction.

Note that having global transitions is necessary to ensure all processes share the same message con-

tent t. However if we assume that T is a singleton, then local transitions suffice. Additionally, notice that

the construction would still work with a set T of infinite size, so we could consider RAA where processes

synchronize by agreeing on, say, an integer.

M. Lehaut and N. Piterman 95

s1 a

p

s2 a,c

t1 b

q

t2 b,c

u1 c

r

a a b b c

s1

p

⇒

a,b,c

s2

t1

q

a,b,c

t2

u1

r
a,b,c

a a b b c

b,c

b

a,c

a

a,b

Figure 3: On the left, the RAA from Example 2. On the right, its translation to an AA.

Corollary 4. Every language recognized by an RAA over C and P, where |T |= 1, can be recognized by

an LAA over (C,Fdom) and P.

We illustrate this construction in Figure 3. Note that for this particular example the general construc-

tion is not optimal. For example, process p is made to listen to b but can never block a communication

on this channel with all states having a self-loop on reading b. Thus, one could safely remove the letter b

from the alphabet of p. By doing similarly on other processes, one can get back the AA from Example 1.

There is an alternative construction that does not require all processes to listen to all channels. If one

process does while also storing the state information of every other processes, then it can simulate the

original automaton by itself; meanwhile every other process can listen to an arbitrary set of channels as

long as they accept every communication. In other words, one process serves as a centralized executor

of the simulation, while others simply need to be non-blocking. With a centralized executor there is no

point in having computation done anywhere but in the centralized executor. By abuse of definition we

still refer to such a domain function as a complete domain.

In the next section we show that there is no hope of finding a transformation that does not require a

complete domain.

4 Trivializable, Fully Listening, and Trivial

The method described above is a general method to transform a reconfigurable asynchronous automaton

into an equivalent fixed asynchronous automaton, with the cost of needing a complete domain function.

It is of course possible that for some particular examples such a heavy construction is not needed, and a

translation with a much smaller domain could be possible. However, we show that there is no better (in

terms of channel domain) general translation by giving an example of an RAA such that every equivalent

AA relies on a complete domain.

The idea is to allow every possible subset of channels to be either fully independent, that is every one

of those channels can be used in parallel, or make them sequentially dependent, that is they can only be

used in a certain order. This status can be switched by a communication on a separate channel (that all

processes listen to), called the switching channel. Moreover, after enough switches, a different channel

will serve as the switching channel. That way, all channels have the opportunity to serve as the switching

channel, given enough switches. Our construction does not use data values during communications.

Thus, already the weakest form of RAA is enough for this example.

96 Adding Reconfiguration to Zielonka’s Asynchronous Automata

4.1 Description of the switching RAA

Let P = {p1, . . . , pn}. We fix C = {c1, . . . ,cn,cn+1}, that is, we have one channel per process and one

additional channel to be used as switching channel (dynamically).

For all sc ∈ C (sc stands for switching channel), fix <sc an arbitrary total order over 2C\{sc}, with

the only requirement that /0 be the minimal element. Intuitively, a set in 2C\{sc} will represent the set

of dependent channels, and a switch will go to the next one with respect to <sc. Let us denote by

inc<sc
: 2C\{sc} → 2C\{sc} ∪ {⊥} the function that returns the next set according to <sc or ⊥ for the

maximal element.

Additionally, for every subset D ⊆C, we fix D+ 1 : C →C a function that cycles through all elements

of D and is the identity on C\D. For convenience we write d D+ 1 for D+1(d). We also define D−1 : D → D

the inverse function and use the same notation. Namely, for every d ∈ D we have (d D− 1) D+1 = d and

(d D+ 1) D− 1 = d. We denote by cD ∈ D an arbitrary element of D.

Finally, we set T = {t}, and omit the message content component in transitions.

We build Ap = (Sp,s
0
p,∆p,Lp) for p = pk as follows:

• Sp = {(c,sc,D,d) | c,sc ∈C,D ⊆C \{sc},d ∈ D∪{c}}, and s0
p = (ck,cn+1, /0,ck).

The first component is the channel assigned to this process, initially ck for process pk, but may

change if ck becomes the switching channel. The second component is the current switching

channel, initialized to cn+1 for all processes. Component D represents the set of channels that

are currently dependent, and d is the next channel that Ak is listening to on which it is expecting

communication.

• All processes listen to the switching channel and their assigned channel, plus the previous one if

D contains the assigned channel:

Lp(c,sc,D,d) =

{

{sc,c,c D− 1} if c ∈ D

{sc,c} if c /∈ D

• The transition ∆p is the union of the following sets .

{((c,sc,D,c),c,(c,sc,D,c D− 1))} (1)

{((c,sc,D,c D− 1),c D− 1,(c,sc,D,c)} (2)

The first two kinds of transitions handle the independence of all channels in C \D and the cycling

through the channels of D. If c /∈ D then c = c D− 1. In this case, the first two sets simply say that

a transition on c is always possible. If c ∈ D, then the process awaits until it gets a message on

c D− 1 and then is ready to interact on c. After interaction on c it awaits another interaction on c D− 1.

It follows that all the processes owning the channels in D enforce together the cyclic order on the

messages in D. This part is further illustrated in Figure 4.

Remaining transitions describe what happens when a switch occurs.

{((c,sc,D,d),sc,(c,sc,D′,c)) | D′ = inc<sc
(D) 6=⊥ and c = cD′} (3)

{((c,sc,D,d),sc,(c,sc,D′,c D′
− 1)) | D′ = inc<sc

(D) 6=⊥ and c 6= cD′} (4)

Sets three and four describe what happens when the next set according to <sc is defined. In this

case, the next set becomes the new set of dependent channels D. Set three handles the case of the

process that is in charge of the channel becoming the first channel to communicate on the new set

M. Lehaut and N. Piterman 97

Figure 4: Illustration of how the order on the channels in D is maintained. We consider the case where

D = {1, . . . ,n} and pi is in charge of channel i. The order between the channels is the natural order on

{1, . . . ,n}. The black token indicates the current state for each process. Transitions that are on the same

channel are connected with a dashed line. The system is set up for next communication on channel 1 and

all other channels are blocked. Indeed, both processess listening to channel 1 are ready to interact on 1

(p1 in state (1,n+ 1,D,1) and p2 in state (2,n+ 1,D,1)) and for every other channel i > 2 process i is

awaiting communication on i−1 (pi in state (i,n+1,D, i−1)) so channel i is not enabled.

inc<sc
(D). This process is ready for communication on this first channel. The fourth set handles

the case of all other processes. All other processes are either in charge of channels in D′, in which

case they set themselves to await a communication on the previous in D′ or they are in charge of

channels not in D′ in which case, c and c D′
− 1 = c, and the process is ready to communicate on c.

{((c,sc,D,d),sc,(c,sc C+1, /0,c)) | inc<sc
(D) =⊥ and c 6= sc C+1} (5)

{((c,sc,D,d),sc,(sc,sc C+1, /0,sc)) | inc<sc
(D) =⊥ and c = sc C+1} (6)

Finally, sets five and six describe what happens when the next set according to <sc is undefined.

In this case, the next dependent set becomes /0. Most processes just set the dependent set to /0

and allow communication on “their” channel (set 5). The process that was in charge of the new

switching channel sc C+1 takes over the old switching channel sc and is ready to communicate on

it (set 6). Notice that communications on the switching channel affect all processes. The change

in D and the change of the switching channel is further illustrated in Figure 5.

An illustration of the whole construction for n = 2 (i.e. 2 processes and 3 channels) is given in

Figure 6. There we have processes P= {p,q} and channels C = {1,2,3}. Initially p is assigned channel

1 and q channel 2, while channel 3 is the switching channel. We chose as order for the dependent sets the

following order: /0 <3 {1} <3 {2} <3 {1,2}. The blue states illustrate the moment when the dependent

98 Adding Reconfiguration to Zielonka’s Asynchronous Automata

Figure 5: Illustration of how the set D and the switching channel sc change whenever there is a commu-

nication on sc. We consider the case where there are three processes and four channels. Each column

corresponds to the status after one more communication on sc. Each channel is in turn the switching

channel starting with 4. The channels in D at a certain time/column are marked with a black box. We

cycle through the states in {1, . . . ,4}\{sc} according to set size first and then lexigographically on the

sorted set.

set has two channels that must be used in the correct order (1 → 2 → 1 → ...). The red transitions lead

to a change in the switching channel. At that point, 1 becomes the new switching channel. Thus p gets

a new assigned channel (3, i.e. the previous switching channel), while q keeps its old assigned channel.

After enough changes of the switching channel, the state cycles back to the initial state for both.

Let A be the parallel composition of (Ap). A state for one process keeps track of 3 channels and one

set of channels, so its size is in O(n3.2n). Therefore, the size of the state space of A is in O((n3.2n)n).

4.2 Asynchronous Automata Construction

We show that an AA that recognizes the same language as A has the following property: for each process

p, either p listens to every channel (dom−1(p) = C), or from every reachable state there is a path to a

bottom strongly connected component that is complete w.r.t. dom−1(p). That is, for every state s in this

bottom SCC and for every channel in dom−1(p) the transition δ (s,c) is defined. In the former case, we

call p fully-listening. In the latter case, we say that p is trivializable, as once it is in this bottom SCC it

always includes transitions for all the channels it listens to. Thus, p becomes irrelevant to the rest of the

computation.

Theorem 5. Let B be an AA such that L (B) = L (A). Each process in B is either fully-listening or

trivializable.

Proof. Let B = ((Sp)p∈P,(s
0
p)p∈P,(δa)a∈Σ), and let p ∈ P. Assume that p is not fully-listening, so let

Cp = dom−1(p)(C. In particular, let c ∈C \Cp be a channel that p does not listen to.

Let sp be a reachable state for p in B. Then there is w a computation in L (B) such that p reaches

state sp after w. Consider the same computation in A , and let sc be the current switching channel in A

at the end of w. Let sc · c1 · ... · cn−1 · c be the sequence of channels from sc to c according to the order

from C+1. Then there is a continuation w′ of w of the form sck0 · ck1

1 · ... · c
kn−1

n−1 with k0, . . . ,kn−1 ∈ N such

that:

• ww′ ∈ L (A),

• after w′, c is the current switching channel and the dependent set D is /0.

From this, every continuation w′′ ∈ (C \{c})∗ is still in L (A) and does not change the switching chan-

nel or the dependent set. In particular, every w′′ ∈ (dom−1(p))∗ maintains that w ·w′ ·w′′ is also in

L (A) = L (B). Therefore, from the state reached in B after ww′, there is a path to a strongly con-

nected component that will implement all transitions in dom−1(p), i.e. a complete one.

M. Lehaut and N. Piterman 99

1,3, /0,1

1,3

1,3,{1},1

1,3

1,3,{2},1

p

1,3
1,3,{1,2},1

1,2,3

1,3,{1,2},2

1,2,3

3,1, /0,3

1,3

......

1
3

1

3

1

3

1

2

3 3

3
1

Switching channel = 3

Switching channel = 2 Switching channel = 1

2,3, /0,2

2,3

2,3,{1},2

2,3

2,3,{2},2

q

2,3
2,3,{1,2},1

1,2,3

2,3,{1,2},2

1,2,3

2,1, /0,2

1,2

......

2
3

2

3

2

3

1

2

3 3

2
1

Switching channel = 3

Switching channel = 2 Switching channel = 1

Figure 6: Illustration of the switching RAA for n = 2.

100 Adding Reconfiguration to Zielonka’s Asynchronous Automata

A process that is trivializable may become irrelevant. This means that there are pathological runs

where only fully listening processes are active in the computation while others passively accept every-

thing. However, trivializable processes may still initially participate in the computation. Nevertheless,

for the languages given in this section, we show that there exists an alternative initial configuration of the

system where trivializable processes actually start trivialized. This means that, in essence, all the machin-

ery required for doing the entire computation is present within the remaining fully listening processes

only.

Given a language L and a word w let w\L = {w′ | ww′ ∈ L } and let pref (L) = {w | ∃w′ . ww′ ∈
L }. A language L is repetitive if for every word w∈ pref (L) there exists a word w′ such that ww′\L =
L .

Lemma 6. The language L (A) is repetitive.

Proof. Consider a word w and the configuration of A reachable after reading w. All processes in A

agree on the set D and the channel sc. Every communication on sc increases the set of dependent channels

in the order <sc until reaching the set D′ such that inc<sc
(D′) = ⊥. An additional communication on sc

then leads to the switching channel being updated to sc C+1.

So after at most 2n communications on sc the switching channel becomes sc C+1. Let w0 be the word

that leads to the switching channel changing.

For every channel, ci, when the dependent set is /0 the sequence (ci)
2n

leads to the change of the

switching channel from ci to ci
C+1.

Let sc = c0, c1, . . ., ck be the sequence of switching channels ending ck C+1 = cn+1.

It follows that w0 · (c
1)2n

· · · (ck)2n

leads A to setting the switching channel to cn+1. At that point

all processes in A are in their initial states except for their assigned channel, which is shifted by one.

Namely, process pk ends up in state (ck
(C\{cn−1})− 1,cn+1, /0,ck).

Now let wloop = c2n

n+1 · c2n

1 · · ·c2n

n . Each application of wloop again shifts assigned channels by one.

So after n− 1 applications, each process finishes in its initial state. From this configuration the residue

language is L (A).

Using repetitiveness we can strengthen our result as follows. A process is trivial if its initial state

lies in a bottom strongly connected component that is complete w.r.t. dom−1(p). Given an AA B =
((Sp)p∈P,(s

0
p)p∈P,(δa)a∈Σ) and an alternative initial configuration~t = (t0

p)p∈P we denote by B(~t) the AA

B(~t) = ((Sp)p∈P,(t
0
p)p∈P,(δa)a∈Σ).

Theorem 7. Let B be an AA such that L (B) =L (A). There exists an alternative initial configuration

~t = (t0)p∈P such that L (B(~t)) = L (A) and each process in B(~t) is either fully-listening or trivial.

Proof. Let B be an AA equivalent to A . By Theorem 5 there exists a word w such that after reading w all

processes in B that are not fully listening reached a bottom SCC, where they accept all communications

on all channels they are listening to. By Lemma 6, there exists a word w′ such that ww′\L (B)=L (B).
Let~t = (t0

p)p∈P be the states that processes in B reach after reading ww′. Then L (B(~t)) = L (B). The

theorem follows.

5 Conclusion and Discussion

We study the addition of reconfiguration of communication to asynchronous automata. We show that

in terms of expressiveness, the addition does not change the power of the model: every language rec-

ognized distributively by automata with reconfigurable communication can be recognized essentially by

M. Lehaut and N. Piterman 101

the same automata with fixed communication. For deterministic automata this also means that the two

are bisimilar. The same is (obviously) true in the other direction. However, the cost of conversion is

in disseminating widely all the information and leaving it up to the processes whether to use it or not.

We also show that this total dissemination cannot be avoided. Processes who do not get access to the

full information about the computation become irrelevant and in fact do not participate in the distributed

computation.

The issues of mobile and reconfigurable communication raise a question regarding “how much” com-

munication is performed in a computation. Given a language recognized by an asynchronous automaton

(distributively), the independence relation between letters is fixed by the language. It follows that two

distributed systems in the form of asynchronous automata accepting (distributively) the same language

must have the same independence relation between letters. However, this does not mean that they agree

on the distribution of the alphabet. In case of two different distributed alphabets, what makes one better

than the other? This question becomes even more important with systems with reconfigurable communi-

cation interfaces. Particularly, in reconfigurable asynchronous automata, the connectivity changes from

state to state, which makes comparison even harder. How does one measure (and later reduce or min-

imize) the amount of communication in a system while maintaining the same behavior? We note that

for the system in Section 4, the maximal number of channels a process is connected to is four regardless

of how many channels are in the system. Dually, the asynchronous automaton for the same language

requires every process that participates meaningfully in the interaction to have number of connections

equivalent to the parameter n. Is less connectivity better than more connectivity?

The issues of “who is connected” and “with whom information is shared” also have implications for

security and privacy. Reconfiguration allowed us to share communication only with those who “need

to know”. Fixed topology forced us to disseminate information widely. If we intend to use language

models and models of concurrency in applications that involve security and privacy we need a way

to reason about dissemination of information and comparing formalisms also based on knowledge and

information.

Acknowledgments

We are grateful to Y. Abd Alrahman and L. Di Stefano for fruitful discussions and suggestions.

102 Adding Reconfiguration to Zielonka’s Asynchronous Automata

References

[1] Yehia Abd Alrahman, Rocco De Nicola & Michele Loreti (2019): A calculus for collective-adaptive systems

and its behavioural theory. Information and Computation 268, p. 104457, doi:10.1016/j.ic.2019.104457.

[2] Yehia Abd Alrahman, Rocco De Nicola, Michele Loreti, Francesco Tiezzi & Roberto Vigo (2015): A cal-

culus for attribute-based communication. In: Proceedings of the 30th Annual ACM Symposium on Applied

Computing, pp. 1840–1845, doi:10.1145/2695664.2695668.

[3] Yehia Abd Alrahman & Nir Piterman (2021): Modelling and verification of reconfigurable multi-agent sys-

tems. Auton. Agents Multi Agent Syst. 35(2), p. 47, doi:10.1007/s10458-021-09521-x.

[4] Blaise Genest, Hugo Gimbert, Anca Muscholl & Igor Walukiewicz (2010): Optimal Zielonka-type construc-

tion of deterministic asynchronous automata. In: Automata, Languages and Programming: 37th International

Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II 37, Springer, pp. 52–63,

doi:10.1007/978-3-642-14162-1_5.

[5] Blaise Genest & Anca Muscholl (2006): Constructing exponential-size deterministic Zielonka automata. In:

Automata, Languages and Programming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July

10-14, 2006, Proceedings, Part II 33, Springer, pp. 565–576, doi:10.1007/11787006_48.

[6] Siddharth Krishna & Anca Muscholl (2013): A quadratic construction for Zielonka automata with acyclic

communication structure. Theoretical Computer Science 503, pp. 109–114, doi:10.1016/j.tcs.2013.07.

015.

[7] Madhavan Mukund, K Narayan Kumar & Milind Sohoni (2000): Synthesizing distributed finite-state systems

from MSCs. In: International Conference on Concurrency Theory, Springer, pp. 521–535, doi:10.1007/

3-540-44618-4_37.

[8] Madhavan Mukund & Milind Sohoni (1997): Keeping track of the latest gossip in a distributed system. Dis-

tributed Computing 10, pp. 137–148, doi:10.1007/s004460050031.

[9] Wieslaw Zielonka (1987): Notes on Finite Asynchronous Automata. RAIRO Theor. Informatics Appl. 21(2),

pp. 99–135, doi:10.1051/ita/1987210200991.

https://doi.org/10.1016/j.ic.2019.104457
https://doi.org/10.1145/2695664.2695668
https://doi.org/10.1007/s10458-021-09521-x
https://doi.org/10.1007/978-3-642-14162-1_5
https://doi.org/10.1007/11787006_48
https://doi.org/10.1016/j.tcs.2013.07.015
https://doi.org/10.1016/j.tcs.2013.07.015
https://doi.org/10.1007/3-540-44618-4_37
https://doi.org/10.1007/3-540-44618-4_37
https://doi.org/10.1007/s004460050031
https://doi.org/10.1051/ita/1987210200991

A. Achilleos and A. Francalanza (Eds.): Fifteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2024).
EPTCS 409, 2024, pp. 103–119, doi:10.4204/EPTCS.409.11

© D. Léveillé & J. Jaskolka
This work is licensed under the
Creative Commons Attribution License.

A Game-Theoretic Approach for Security Control Selection*

Dylan Léveillé Jason Jaskolka
Department of Systems and Computer Engineering

Carleton University, Ottawa, ON, Canada
dylan.leveille@carleton.ca jason.jaskolka@carleton.ca

Selecting the combination of security controls that will most effectively protect a system’s assets
is a difficult task. If the wrong controls are selected, the system may be left vulnerable to cyber-
attacks that can impact the confidentiality, integrity and availability of critical data and services. In
practical settings, it is not possible to select and implement every control possible. Instead consider-
ations, such as budget, effectiveness, and dependencies among various controls, must be considered
to choose a combination of security controls that best achieve a set of system security objectives.
In this paper, we propose a game-theoretic approach for selecting effective combinations of security
controls based on expected attacker profiles and a set budget. The control selection problem is set
up as a two-person zero-sum one-shot game. Valid control combinations for selection are generated
using an algebraic formalism to account for dependencies among selected controls. We demonstrate
the proposed approach on an illustrative financial system used in government departments under four
different scenarios. The results illustrate how a security analyst can use the proposed approach to
guide and support decision-making in the control selection activity when developing secure systems.

1 Introduction

With computers becoming more interconnected than ever, there emerges an even greater need to se-
cure computer systems and to effectively manage security risks. Security risks are mitigated by the
implementation of a set of security controls. A security control refers to a safeguard or countermeasure
prescribed for an information system or an organization designed to protect the confidentiality, integrity,
and availability of its information and to meet a set of defined security requirements [28].

Control selection is an activity commonly found as part of a risk management process [10], a systems
engineering process [28], the Risk Management Framework [13], the Cybersecurity Framework [25], or
the Privacy Framework [24]. Control selection involves selecting and documenting the security controls
necessary to protect the information system and organization commensurate with risk to organizational
and system operations and assets, individuals, other organizations, and the nation [13].

During the control selection activity, security analysts typically select security controls from stan-
dardized security control catalogues, such as NIST SP 800-53 [15], ITSG-33 [8], ISO 27002 [11], CIS
Critical Security Controls [4], and MITRE D3FEND™ [16], among others. However, selecting combina-
tions of controls from these catalogues can be difficult for several reasons. First, these control catalogues
are large, and many possible controls could be selected to mitigate the risks identified for a given system.
In practical settings, it is not possible to select and implement every control possible. Considerations
such as budget, effectiveness, and dependencies among various controls, must be considered to choose
a combination of security controls that best achieve a set of system security objectives. Second, control
selection is largely a human-oriented activity. The dynamics between security analysts (defenders) strate-
gizing to protect critical systems and assets and achieve a set of security objectives, and attackers aiming

*Funded in part by the Human-Centric Cybersecurity Partnership under the SSHRC Partnership Grants program.

http://dx.doi.org/10.4204/EPTCS.409.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

104 A Game-Theoretic Approach to Security Control Selection

to impact critical systems and assets and violate those same security objectives must be considered when
deciding on the most effective and cost-efficient combination of security controls. Although numerous
optimization-based solutions are adept at accounting for various properties of the controls themselves,
they fail to capture the human element that is inherently part of the control selection activity.

To address the above mentioned challenges, we propose a game-theoretic approach for security con-
trol selection. The human aspects of the control selection problem, as well as the large space of possible
control combinations, and their dependencies and constraints, lends itself well to an application of game
theory. Specifically, we set up a two-person zero-sum one-shot game which is played by a security ana-
lyst. The analyst selects their strategy based on an attacker profile, characterized by the expected targeted
assets and security objectives. Each analyst strategy corresponds to a combination of security controls
from a chosen control catalogue that are capable of achieving the security objectives. Valid control com-
binations are generated using an algebraic formalism (akin to product family algebra [9]) to account
for dependencies among selected controls. The outcome of the game is a combination of suggested se-
curity controls that can effectively defend against the considered attacker profile. Using an illustrative
governmental finance system, we demonstrate the proposed approach under four different scenarios.

The rest of this paper is organized as follows. Section 2 provides an overview of existing works
on the topic of control selection and of game theory applications in cybersecurity. Section 3 presents
the proposed game-theoretic approach for control selection. Section 4 provides an illustrative example
demonstrating the application of the proposed approach. Section 5 discusses the benefits and potential
difficulties with the proposed approach. Lastly, Section 6 concludes and briefly discusses future work.

2 Related Work

Many existing approaches to support the security control selection activity are based on setting and
solving optimization problems. For example, for each considered control, Yevseyeva et al. [36] assign
a probability of “survival” for each possible threat (i.e., the probability that the threat persists in the
presence of the control). Probabilities are also assigned for the expected loss of successful attacks. The
goal of the proposed approach is to minimize this expected loss, under constraints such as cost and
system resources. Similarly, Almeida and Respício [1] also assign probabilities to controls based on
their expected performance in mitigating certain vulnerabilities. For the proposed approach, the goal is
to find the optimal controls for the system that will minimize an objective function accounting for both
loss and cost. A different approach was proposed by Dewri et al. [5] where systems are modelled as
trees, in which the leaf nodes represent possible attacks. Controls therefore mitigate one or many leaf
nodes. With the attack impact, attack frequency, and cost of each control known, the optimal controls
can be found by optimization. A similar tree-like approach was also proposed by Park and Huh [27].
While optimization-based approaches can account for important considerations and constraints such as
cost and effectiveness, they depend heavily on assumptions about probabilities for threat likelihoods, or
control success rates. Such probabilities are not likely to be accurately known in a practical setting.

Several other approaches for control selection that are not based on optimization have also been
proposed. Bettaieb et al. [2] presented an approach where a machine learning model is trained with
historical data from previous security assessments to make predictions using certain features of interest
from a given security assessment to determine optimal controls. However, using historic data to deter-
mine how to protect a system has several limitations as every system is unique and may operate in widely
different environments. In another work, Kiesling et al. [18] proposed a simulation-based approach to
determine the optimal controls for a system. To do this, expected attacks are simulated on different

D. Léveillé & J. Jaskolka 105

components of the system using different possible control combinations to find the optimal ones. This
approach is noteworthy as it simply uses the properties of the controls and of the current system (such as
different threats) to find the most optimal control combinations and does not depend on any probabilities.

Several works have explored the use of game theory for addressing cybersecurity challenges. For
example, Nassar et al. [23] proposed a technique which focused on evaluating a system’s network security
with the help of a game model. Smith et al. [32] used game theory to verify the security of hardware
designs. Wang et al. [35] presented a network attack-defence game to help secure a computer network.
However, game theory has yet to be utilized for security control selection.

In contrast to existing work, the proposed approach aims to leverage game theory to address the
shortcomings of current control selection approaches by placing a central focus on possible attacker
behaviours, while also taking into account the considerations and constraints that limit the selection of
certain combinations of security controls to effectively mitigate the threats to a system.

3 The Proposed Approach

In this section, we present our proposed game-theoretic approach for security control selection. An
overview of the approach is shown in Figure 1. The approach consists of two main stages shown as
swim lanes and six steps shown in blue. All steps are to be conducted by a security analyst. A detailed
description of each step of the proposed approach is provided in the sections below.

Building the Game Pieces

List of Control
Dependencies

Mandatory
Controls

Control
Catalogue

Identify Applicable
Atomic Controls

Specify and Generate
Valid Control
Combinations

Assign Effectiveness
to Atomic Controls

List of
Atomic

Controls

Effectiveness of
Atomic Controls to

Protect Asset Objectives

Assign Cost to Atomic
Controls Cost of

Atomic Controls

Threat Model

Playing the Game

Repeated Activity:
Establish Attacker Profile

Game
Matrix Play the

Game
Construct the
Game Matrix

Suggested
Control Combinations

Valid Control
Combinations

Figure 1: An overview of the proposed game-theoretic approach for security control selection

3.1 Identify Applicable Atomic Controls

The approach starts with the security analyst identifying applicable atomic controls from a given security
control catalogue. In our context, the atomic controls are the smallest (indivisible) security controls that
can be selected from a control catalogue. We say that a control is applicable to a system if it could
provide any form of protection from the threats to the assets of the system.

We assume that a list of threats and assets are available to the security analyst in the form of a threat
model. A threat model is defined as “a structured representation of all the information that affects the
security of an application” [6]. Threat models typically include identified system threats and their impact
on the assets within the system [6, 22]. The threat model can be obtained by applying a well-known
threat modelling methodology such as STRIDE [21] or PASTA [34].

To determine the applicability of an atomic control, the security analyst must carefully consider each
atomic control from the given control catalogue and decide if the control can mitigate the identified
threats to the assets. Additionally, certain organizational needs or standards and regulations for the
system’s application domain may require that specific security controls be present in the system. The
security analyst must therefore ensure that these mandatory controls are included as part of the set of

106 A Game-Theoretic Approach to Security Control Selection

applicable controls identified. This is a manual process. However, it should be noted that the effort
required for this activity is reasonable as security control catalogues are typically separated by control
families which help guide an analyst in finding suitable controls [29]. Instructions and guidance for
performing this task is well documented by ISO 27005 [12] and NIST SP 800-53B [14].

At the end of this step, the analyst will have a set of applicable atomic controls for the system. Note
that the combination of suggested controls found by applying the proposed approach will be a subset of
the controls gathered in this initial step.

3.2 Assign Effectiveness to Atomic Controls

For each identified atomic control, the analyst proceeds by assigning an effectiveness of the control at
satisfying each security objective on each asset in the system. Security objectives represent the security
needs of the assets on the system, such as confidentiality, integrity, and availability [3]. These objectives
are normally included as part of the threat impacts described in the threat model. It is important to
remember that the goal of the proposed approach is to create a game. In every game, there needs to
be strategies, and payoffs defined for each strategy. Assigning the effectiveness of each atomic control
therefore defines the payoffs of each atomic control in the game.

To perform this step of the approach, the atomic payoff matrix presented in Table 1 must be com-
pleted. The rows represent each atomic control that was identified in the previous step (denoted C1, . . . ,CN).
The columns represent the security objectives for each asset (denoted O1, . . . ,OM). We expect the analyst
to assign a value between 0 and 1 in each cell of this matrix. A value of 0 means that the atomic control
is not effective at satisfying the specified objective for an asset, while a value of 1 means that the atomic
control is completely effective at satisfying the specified objective for an asset. Each payoff value is
therefore normalized. Provided that the rating scheme is selected and used consistently throughout the
approach, the analyst is free to choose any method for assigning the effectiveness values for the atomic
payoff matrix. For example, the analyst may choose to use a quantitative approach as in the Defect De-
tection and Prevention (DDP) risk reduction strategy developed by NASA [7], or they may alternatively
choose to use a qualitative rating mapped to quantitative values as in [19].

Table 1: General form of the atomic payoff matrix
Asset 1 Asset 2 . . . Asset X

O1 . . . OM O1 . . . OM . . . O1 . . . OM
C1
...

CN

At the end of this step, the analyst will have the effectiveness of each applicable atomic control for
satisfying each security objective on each asset in the system.

3.3 Assign Cost to Atomic Controls

In practical settings, cost or time constraints limit how many controls can be part of a system; if there
are too many controls they may exceed a certain budget or cannot be implemented in reasonable time.
In fact, without such constraints, there could technically be no limitations on the number of controls that
can be selected for a system, and the best solution would be to select them all.

D. Léveillé & J. Jaskolka 107

At the same time as assigning effectiveness, the analyst will also need to assign a cost for each
identified atomic control. We expect the analyst to assign a cost from the set of real numbers R. The
units for cost could be represented as dollars, thousands of dollars, or any other form of currency as long
as the same units are consistently used for all cost values. Furthermore, no units could be used if desired.
Without units, costs simply represent an implementation effort.

After this step, the analyst will have the cost associated with each applicable atomic control.

3.4 Specify and Generate Valid Control Combinations

Given a set of applicable atomic controls, the analyst needs to specify and generate the set of valid control
combinations that satisfies their constraints. To formally capture these constraints, we have decided to use
an algebraic specification based on product family algebra [9] to specify and generate valid combinations
of security controls.

Product family algebra extends the mathematical notions of semirings to describe and manipulate
product families. A semiring is an algebraic structure

(
S,+, ·,0,1

)
consisting of a set S with a commu-

tative and associative binary operator + and an associative binary operator ·. An element 0 ∈ S is the
identity element with respect to +, while an element 1 ∈ S is the identity element with respect to ·. Ad-
ditionally, · distributes over + and element 0 annihilates S with respect to ·. A semiring is commutative
if · is commutative and a semiring is idempotent if + is idempotent.

For ease of presentation, we recast the vocabulary of product family engineering into the vocabulary
of security controls by first defining a security control algebra to express families of security control
combinations generated from a set of atomic controls.

Definition 1 (Security Control Algebra) A security control algebra is a commutative idempotent semir-
ing C

def
=
(
C,⊕,⊙,0,1

)
where each element of the semiring c ∈C is a security control family.

In a security control algebra, the operator ⊕ is interpreted as a choice between two security control
families and the operator ⊙ is interpreted as a mandatory composition of two security control families1.
The element 0 represents a non-implementable security control combination that cannot exist and the
element 1 represents the empty security control combination which has no controls. A security control
family is called a security control combination if it is indivisible with regard to the choice operator ⊕.
Additionally, it is called a proper security control combination if c ̸= 0. A security control combination
is an atomic control if is it is indivisible with regard to the mandatory composition operator ⊙. Optional
controls are expressed as a choice between the controls and the empty security control combination 1. A
list of optional controls c1, . . . ,cn is denoted by opt

[
c1, . . . ,cn

]def
=(c1 ⊕1)⊙·· ·⊙ (cn ⊕1).

For two security control families c1 and c2 in a security control algebra, the refinement relation (⊑) is
defined as c1 ⊑ c2

def⇐⇒ ∃(c3 |: c1 ≤ c2⊙c3) where ≤ is the natural semiring order (i.e., c1 ≤ c2
def⇐⇒ c1⊕

c2 = c2). To specify constraints, such as dependencies between controls, we use the requirement relation.

Definition 2 (Requirement Relation [9]) For elements c1,c2,c3,c4 and security control combination x
in a security control algebra, the requirement relation (→) is defined inductively as:

c1
x−→ c2

def⇐⇒ x ⊑ c1 =⇒ x ⊑ c2

c1
c3⊕c4−−−→ c2

def⇐⇒ c1
c3−→ c2 ∧ c1

c4−→ c2

1When the context is clear, we omit the mandatory composition operator ⊙ when specifying security control algebra terms.

108 A Game-Theoretic Approach to Security Control Selection

For elements c1,c2 and x, the requirement relation c1
x−→ c2 can be read as “c1 requires c2 within x.”

With this setting, all security control combinations can be specified algebraically by expressing the
mandatory and optional controls as terms of a security control algebra along with requirement relations
describing control dependencies.

The resulting specification serves as the basis for generating all possible proper security control
combinations. However, not all control combinations are possible as some may exceed our defined
budget. To make this determination we first define how to calculate the cost of a proper security control
combination. In what follows, let P ⊆ C be the set of all proper security control combinations in a
security control algebra C .

Definition 3 (Cost of a Proper Security Control Combination) The cost of a proper security control
combination Cost : P →R is a function defined inductively for any proper security control combinations
a,b ∈ P in a security control algebra C as:

Cost(1) = 0

Cost(a) = G(a) if a is atomic

Cost(a⊙b) = Cost(a)+Cost(b)

where G is a function that returns the cost assigned to an atomic control (see Section 3.3).

Now that we can compute the cost of a proper security control combination, we determine the set
of valid security control combinations. A valid security control combination is a proper security control
combination that does not exceed the prescribed cost budget. The validity of a control combination is
formalized in the following rule.

Definition 4 (Budget Rule) For any p ∈ P and budget B:

Valid(p) ⇐⇒ Cost(p)≤ B

After this step, the analyst will have a set of valid security control combinations that satisfy the
prescribed budget. These valid security control combinations become the strategies that an analyst can
select when playing the game.

3.5 Construct the Game Matrix

In this step, the analyst constructs the game matrix. The general form of the game matrix can be seen
in Table 2. The rows represent the valid security control combinations found from the last step (de-
noted Combo1, . . . ,ComboN). The columns represent the security objectives for each asset (denoted
O1, . . . ,OM). Note that the game matrix is identical in style to that of the atomic payoff matrix (see
Table 1). The game matrix simply has control combinations as rows rather than atomic controls. In the
game, the strategies of the security analyst will be the valid security control combinations, while the
strategies of the attacker will be each security objective that could be violated on every asset.

Each outcome in a game is tied to a payoff [33]. In our game, the payoffs are represented from the
perspective of the analyst and represent the effectiveness of the security control combinations towards
every asset’s security objectives. Just as cost was defined inductively, we can define a proper control
combination’s effectiveness towards an asset’s security objective in a similar manner.

D. Léveillé & J. Jaskolka 109

Table 2: General form of the game matrix
Asset 1 Asset 2 . . . Asset X

O1 . . . OM O1 . . . OM . . . O1 . . . OM
Combo1

...
ComboN

Definition 5 (Effectiveness of a Proper Security Control Combination) The effectiveness of a proper
security control combination towards an asset’s security objective Eff : P → R is a function defined
inductively for any proper security control combinations a,b ∈ P in a security control algebra C as:

Eff (1) = 0

Eff (a) = E(a) if a is atomic

Eff (a⊙b) = 1− (1−Eff (a))(1−Eff (b))

where E is a function that returns the effectiveness assigned to an atomic control for an asset’s security
objective (see Section 3.2).

With Definition 5, the payoff values in the game matrix can be calculated. Note that the calcula-
tion of the effectiveness of a security control combination is inspired from the combined effectiveness
calculation as part of NASA’s DDP approach [7].

After this step, the analyst will have the game matrix so that they can proceed to play the game.

3.6 Play the Game

The game is a two-person zero-sum one-shot game. The game is played by two persons: the security
analyst and the attacker. The attacker may embody one or multiple entities, but acts as a unified adversary.
The goal of the security analyst is to select the security control combination that will best protect the
security objectives for the assets they believe will be targeted by the attacker. Only one security control
combination can be selected, hence it is a one-shot game. On the other hand, the goal of the attacker is to
attack assets and violate corresponding security objectives. An attacker could attack one or many assets
and violate one or more objectives from a series of attacks. Regardless, an attacker will select which
assets and objectives they will target and will commit to attacking the selected assets and objectives. The
attacker will naturally prefer attacking assets which are not properly defended, i.e., those for which there
are minimally effective security controls. The effectiveness values in the game matrix (payoffs) do not
directly correlate to a loss to the attacker. However, it is easy to see that the higher the values, the more
difficult it is for an attacker to conduct a successful attack leading to corresponding security objective
violations. Therefore, what the security analyst gains in effectiveness is what the attacker loses in their
ability to successfully conduct their attack; hence, it is a zero-sum game. Note that this game is strictly
non-cooperative; the analyst and attacker are competing directly and would never want to cooperate.

Using the game matrix, the analyst must select a strategy (i.e., a valid security control combination)
to play that will best protect the system assets and security objectives that they believe are most impor-
tant. To do this, an analyst must establish the expected attacker profile. An attacker profile is an expected
set of the assets and corresponding security objectives targeted by the attacker. One can imagine different
classes of attackers having different capabilities, and different targets, thereby establishing different at-
tacker profiles. In the context of a game, an attacker profile corresponds to guessing the attacker strategy

110 A Game-Theoretic Approach to Security Control Selection

so that it can be defended. This consideration of the dynamics of the analyst and the attacker strategies
in this game is what differentiates it from existing security control selection approaches.

It is impossible to know exactly which security objectives on which assets will be attacked, so as-
sumptions must be made. One way to do this is to determine where most of the critical information flows
in the system and which assets may be prone to more attacks (i.e., have more expected threats). The
combination of these ideas can help localize assets that are more attractive for attacks, and therefore puts
the security objectives of these assets at higher risk of violation. Another way to do this is to consider the
risk to each asset and corresponding security objectives for the identified threats to the system (which we
consider known to the analyst). In this case, prioritizing defence of assets and security objectives targeted
by high risk threats may be a good approach. Regardless, once the attacker profile is determined, then
the suggested strategy (i.e., the most effective security control combination) can be found.

Regardless of the approach taken to establish the attacker profile, it will articulate the objectives that
are expected to be violated by an attacker. For this work, we establish an attacker profile by considering
and prioritizing different attacker objectives. Attacker objectives correspond to a set of security objec-
tives for some assets that are equally expected to be targeted by an attacker. Within an attacker profile,
several attacker objectives may be prioritized according to their perceived likelihood of being targeted by
the attacker to obtain a priority order for the objectives. For example, the security analyst could establish
an attacker profile in which the attacker has two ordered attacker objectives: (1) to target the confidential-
ity of two specific assets equally, and (2) to target the integrity of two other assets equally. The security
analyst may consider as many attacker objectives as they desire when developing an attacker profile. The
suggested analyst strategies for an attacker profile will be those which maximize the total effectiveness
across each attacker objectives (i.e., the sum of the effectiveness returned by Definition 5 for the security
objectives in the attacker objectives is maximized in the priority order). To better understand this con-
cept, an example of the strategies found by playing the game with an attacker profile with two ordered
attacker objectives is visualized in Figure 2.

Maximize
Confidentiality of
the Sensor and

Actuator

Valid Control
Combinations

Combinations Which Maximize the
Confidentiality of the Sensor and Actuator

Previous Combinations Which Maximize the
Integrity of the Sensor and Actuator

Maximize
Integrity of

the Sensor and
Actuator

Figure 2: Finding the suggested controls for an attacker profile with multiple ordered attacker objectives

In this example, there are initially eight valid security control combinations. Each security control
combination has a unique set of controls (denoted by the different coloured dots in the figure). Only
two assets exist in this system; a Sensor and an Actuator. The attacker profile has two ordered attacker
objectives: (1) the confidentiality of the Sensor and the Actuator and then (2) the integrity of the Sensor
and the Actuator. From all valid control combinations, the control combinations which maximize the first
set of attacker objectives is found, yielding five different combinations. From these five combinations,
the combinations which maximize the second set of attacker objectives is found, yielding three control
combinations. As there are no more ordered attacker objectives, the resulting control combinations are all
considered equally valid, and represent the suggested strategies. Note that since the suggested strategies
are derived through a series of maximization problems, it may be possible for more than one strategy to
be the most effective for a given attacker profile.

D. Léveillé & J. Jaskolka 111

At the end of this step, the analyst will obtain at least one strategy that best protects against the
considered attacker profile and that corresponds to the suggested security control combinations to be
implemented in the system. It is important to remember that this approach is a game. Therefore, as with
any game, it is recommended that the game be re-constructed with different maximum budget values and
re-played with different attacker profiles (as illustrated in Figure 1). This can help gauge and compare
the control combinations that should be used for the system under different constraints and goals.

4 Illustrative Example

In this section, we demonstrate how the approach presented in Section 3 could be applied to support the
control selection activity for an illustrative example system. Suppose a security analyst needs to select
a combination of cost-effective security controls to protect a financial system used by the Canadian
government called Firebird . An overview of the system architecture is shown in Figure 3. Firebird
allows financial analysts to enter data about financial transactions and view those transactions through a
user interface. Many identical interfaces may exist. The interfaces communicate over a 5G channel to
a central processing system to process the commands from the analyst. A database stores the financial
transactions data used by the central processing system. Both the processing system and database are
located in an internal government network. The security analyst will apply the proposed game-theoretic
approach for security control selection for the Firebird system as described in the following sections.

User
Interface

Processing
System Database5G Channel

Internal Network

Financial Analyst
 (Employee)

Figure 3: An overview of the Firebird system architecture

4.1 Identify Applicable Atomic Controls

Considering the Firebird system architecture shown in Figure 3, there are four primary assets: the user
interface, the 5G channel, the processing system, and the database. For simplicity and brevity, suppose
that the analyst is primarily focused on addressing threats to the user interface and the database and
threats to the 5G channel and processing system are being handled by another analyst. Also, it has been
pre-determined by the security analyst’s government department that they are primarily concerned with
the confidentiality (C), integrity (I), and availability (A) security objectives for the system assets.

Because Firebird is a Canadian government system, the analyst selects controls from the ITSG-33
control catalogue2. To comply with departmental requirements, it was decided by the security analyst’s
government department that the input validation control (i.e., SI-10 in ITSG-33) must be present in
the system. This is because improper input validation in any system can result in potentially severe
consequences [17, 30, 31].

The analyst is provided with the fragment of the threat model consisting of the assets, threats, and
violated security objectives for the system as shown the first three columns of Table 3. By consulting the
control catalogue, the analyst decides which of the atomic controls are relevant in protecting the system
by referring to the identified threats in the threat model. The applicable atomic controls found for each
threat can also be seen as part of Table 3. Notice that the mandatory control (SI-10: Input Validation) is

2ITSG-33 is the standard control catalogue to assist security practitioners in their efforts to protect information systems in
compliance with applicable Government of Canada legislation, policies, directives, and standards [8].

112 A Game-Theoretic Approach to Security Control Selection

included in the gathered set of atomic controls; the other controls therefore represent optional controls
that may or may not be included as part of the suggested controls of this approach.

Table 3: Threat model and applicable atomic controls for Firebird
Assets Threats Security Objectives

Violated
Applicable Atomic Controls

User
Interface

• Commands received from unknown
sources

• Confidentiality
• Integrity

• AC-4: Information Flow Enforcement

• Improper/malicious commands entered • Confidentiality
• Integrity

• SI-10: Input Validation

• Employee freely accesses and changes
features provided in the interface

• Confidentiality
• Integrity

• AC-3: Access Enforcement
• AC-6: Least Privilege

Database
• SQL injection from an improper

analyst input changes or retrieves data
• Confidentiality
• Integrity

• AC-4: Information Flow Enforcement
• SI-10: Input Validation

• Employee freely inspects data in the
database

• Confidentiality • AC-6: Least Privilege

4.2 Assign Effectiveness to Atomic Controls

The analyst must now assign the effectiveness values for each identified applicable atomic control at
mitigating the threats and protecting the security objectives listed in Table 3. The analyst has elected
to assign qualitative ratings for the effectiveness of each atomic control that are mapped to quantitative
values. The considered ratings and corresponding values are adopted and adapted from the metrics in the
Common Vulnerability Scoring System (CVSS) [20] and include: None (0.0), Low (0.2), Medium (0.5),
High (0.8), and Very High (0.9). No rating was assigned to the value of 1 as it is unrealistic to expect a
single control to fully protect a security objective.

With these metrics, the analyst develops the atomic payoff matrix, as illustrated in Table 4. Note that
none of the identified controls protect asset availability; this is fine as no threats towards availability were
identified in the threat model (see Table 3). Therefore, protecting availability is not required.

Table 4: Atomic payoff matrix for Firebird
Database User Interface

C I A C I A
SI-10: Input Validation Medium Very High None Medium High None
AC-3: Access Enforcement None None None Medium High None
AC-4: Information Flow Enforcement Medium Medium None Medium Low None
AC-6: Least Privilege High None None Medium Low None

4.3 Assign Cost to Atomic Controls

The analyst also assigns a cost for each identified atomic control as shown in Table 5. No units were used
for each cost as it was decided that cost could best be represented as a unit of effort for this particular
system. Additionally, the analyst’s department has allocated a total budget (expressed as effort) of B= 15.

Table 5: Atomic control costs for Firebird
Control Cost

SI-10: Input Validation 5
AC-3: Access Enforcement 6
AC-4: Information Flow Enforcement 4
AC-6: Least Privilege 3

D. Léveillé & J. Jaskolka 113

4.4 Specify and Generate Valid Control Combinations

Next, the analyst must determine the valid security control combinations that could be considered for
the system. To do this, they use security control algebra to specify the security control family from the
mandatory and optional atomic controls identified in the previous steps. Recall that SI-10: Input Valida-
tion is a mandatory control and that AC-3: Access Enforcement, AC-4: Information Flow Enforcement
and AC-6: Least Privilege are optional controls.

Suppose the security analyst has determined that to implement any access enforcement policy (such
as Role-Based Access Control) a least privilege approach to protecting the data in the system must first
be implemented. Therefore there is a dependency between AC-3: Access Enforcement and AC-6: Least
Privilege. The analyst must consider this dependency in the specification of the security control family.

Denoting the security control family as F , the security control family for this example is specified as
the following security control algebra term and requirement relation.

F = SI-10 ⊙ opt
[
AC-3,AC-4,AC-6

]
such that AC-3 F−→ AC-6

The possible security control combinations are generated by expanding the specification of the secu-
rity control family F subject to the requirement relation. The possible security control combinations for
F along with their costs calculated using Definition 3 are shown in Table 6. Note that the security control
combinations SI-10 AC-3 and SI-10 AC-3 AC-4 are not part of the security control family F because they
do not respect the specified requirement relation.

The analyst now determines the validity of the possible security control combinations according to
the Budget Rule (Definition 4). Recall that the total budget B is 15. Therefore, applying the Budget Rule
for each security control combination, it is easy to see that all control combinations, except for Combo 6,
satisfy the rule and are therefore valid. As a result, Combo 6 is no longer considered.

Table 6: Security control combination costs for Firebird
ID Security Control Combination Cost

Combo 1 SI-10 5
Combo 2 SI-10 AC-4 9
Combo 3 SI-10 AC-6 8
Combo 4 SI-10 AC-3 AC-6 14
Combo 5 SI-10 AC-4 AC-6 12
Combo 6 SI-10 AC-3 AC-4 AC-6 18

4.5 Construct the Game Matrix

Now that the analyst knows all of the valid security control combinations, the game matrix can be con-
structed. The payoff of each valid security control combination for each asset’s security objectives is
found by applying Definition 5. The resulting game matrix is shown in Table 7.

4.6 Play the Game

With the game matrix constructed, the security analyst can now find a suggested security combination to
protect the security objectives of the considered assets for the system. To do this, the security analyst can
play the game considering different attacker profiles captured by the scenarios described below. Table 8
presents the total effectiveness of each strategy in the game for each of the attacker objectives used in
each scenario. Noteworthy effectiveness values are highlighted in bold. For strategies that have been
excluded for specific attacker objectives, the corresponding effectiveness is noted as “N/A”.

114 A Game-Theoretic Approach to Security Control Selection

Table 7: Game matrix for Firebird
Database User Interface

C I A C I A
Combo 1 0.5 0.9 0.0 0.5 0.8 0.0
Combo 2 0.75 0.95 0.0 0.75 0.84 0.0
Combo 3 0.9 0.9 0.0 0.75 0.84 0.0
Combo 4 0.9 0.9 0.0 0.875 0.968 0.0
Combo 5 0.95 0.95 0.0 0.875 0.872 0.0

Table 8: Total effectiveness of game strategies against different attacker objectives for Firebird
Scenario 1 Scenario 2 Scenario 3 Scenario 4

AO1.1 AO2.1 AO3.1 AO3.2 AO4.1 AO4.2
Combo 1 1.0 2.7 0.5 N/A 0.9 N/A
Combo 2 1.50 3.29 0.75 N/A 0.95 1.59
Combo 3 1.65 3.39 0.75 N/A 0.9 N/A
Combo 4 1.775 3.643 0.875 0.968 0.9 N/A
Combo 5 1.825 3.647 0.875 0.872 0.95 1.822

Scenario 1: This scenario considers an attacker profile where the attacker equally targets the con-
fidentiality of the database and the confidentiality of the user interface (AO1.1). By playing the game
against this attacker, the suggested security control combination to implement is Combo 5 because it
has the greatest total effectiveness (1.825) for defending against the attacker objectives. Given that all
identified threats impact the confidentiality of both assets, the suggested combination includes the op-
tional controls which maximize confidentiality across both assets. While AC-3 does not provide any
protection to the confidentiality of the database, both AC-4 and AC-6 protect confidentiality across both
assets. Given that SI-10 is mandatory, Combo 5 is the logical choice. Note that by disregarding AC-3,
the threat related to "employee freely accesses and changes features provided in the interface" on the
user interface is mitigated only through AC-6. Since AC-6 is not as effective as AC-3 for protecting
integrity, the user interface’s integrity is at higher risk of being violated. However, this is an acceptable
risk given that the expected behaviour of the attacker is not interested in violating any integrity objectives.

Scenario 2: This scenario considers an attacker profile where the attacker equally targets all of the
objectives (confidentiality, integrity, and availability) of each asset (database and user interface) (AO2.1).
By playing the game against this attacker, the suggested security control combination to implement is
Combo 5 because it has the greatest total effectiveness (3.647) for defending against the attacker objec-
tives. Given that this attacker profile aims to violate all security objectives on all assets, the suggested
combination includes the optional controls which maximize the confidentiality and integrity across both
assets. AC-4 stands out in this regard, as it effectively safeguards all security objectives unlike AC-3 and
AC-6. While AC-3 is not effective towards any of the database security objectives, AC-6 at least offers
protection towards the confidentiality of the database. Given that SI-10 is mandatory, Combo 5 is again
the logical choice. Note that by disregarding AC-4, the same (acceptable) risk is imposed on the system
as in Scenario 1. Also note that an assumed attacker profile targeting all objectives leads to a strategy
that best balances the security objectives across all assets.

Scenario 3: This scenario considers an attacker profile where the attacker has two ordered attacker
objectives to target: the confidentiality of the user interface (AO3.1) and then the integrity of the user

D. Léveillé & J. Jaskolka 115

interface (AO3.2). By playing the game against this attacker, the suggested security control is deter-
mined by first considering how to best defend against the highest priority attacker objectives. This leaves
Combo 4 and Combo 5 since they each have the greatest total effectiveness (0.875) for protecting the
confidentiality of the user interface. Given that all controls provide the same effectiveness for the confi-
dentiality of the user interface, any valid combination which maximizes this security objective is ideal.
We now consider the next highest priority attacker objective from these possible security control com-
binations. Now, the suggested security control combination to implement is Combo 4 because it has a
greater total effectiveness (0.968 versus 0.872 for Combo 5) for protecting the integrity of the user in-
terface. Given that Combo 4 and Combo 5 differ by only one control, and that AC-3 is more effective
at protecting the integrity of the user interface than AC-4, it follows that Combo 4 is the logical choice.
Note that by disregarding AC-4, the threat related to “commands received from unknown sources” on the
user interface is not addressed. However, this is an acceptable risk given the expected attacker profile.

Scenario 4: This scenario considers an attacker profile where the attacker has two ordered attacker
objectives to target: the integrity of the database (AO4.1) and then equally the confidentiality of the
database and the integrity of the user interface (AO4.2). By playing the game against this attacker,
the suggested security control is determined by first considering how to best defend against the highest
priority attacker objective. This leaves Combo 2 and Combo 5 since they each have the greatest total
effectiveness (0.95) for protecting the integrity of the database. These combinations are logical as AC-4
is the only optional control that protects the integrity of the database. The next highest priority attacker
objective must then be considered for these possible security control combinations. Now, the suggested
security control combination to implement is Combo 5 because it has a greater total effectiveness (1.822
versus 1.59 for Combo 2) for protecting confidentiality of the database and the integrity of the user inter-
face. Given that Combo 5 additionally contains AC-6 which protects against the second set of attacker
objectives, it follows that Combo 5 is the logical choice. Again, as Combo 5 disregards AC-4, the same
risk is imposed on the system as in Scenario 1 and Scenario 2. However, this is an acceptable risk given
the expected attacker profile.

This illustrative example and the corresponding scenarios highlight the fact that security control se-
lection can indeed be seen as a game, and that the suggested controls to use depends greatly on the
expected attacker profiles. The proposed approach considers all the constraints and considerations re-
quired to perform control selection, and in contrast to existing approaches, also takes into consideration
the expected attacker behaviours; an important factor to this problem that helps justify controls of interest
and the risk to leave certain threats unaddressed.

5 Discussion

Approaching security control selection as a game emphasizes the human element in deciding how to
most effectively protect a system’s assets under various considerations such as budgetary constraints.
Selecting controls for a system is indeed a human-centric problem as the large number of potential con-
trols to use from a control catalogue can be overwhelming and could lead to many mistakes in the chosen
combination of security controls selected for the system. To expand on this point, selecting security con-
trols exclusively on technical considerations while overlooking attacker behaviours is a fundamentally
flawed approach in addressing this issue, as ultimately, it is humans which are conducting attacks. Given
that the proposed approach emphasizes the need to reflect on potential attacker behaviours, it prioritizes

116 A Game-Theoretic Approach to Security Control Selection

the human-centric aspect to find its solutions. Additionally, viewing this problem as a game captures the
opposing dynamics of the attacker and analyst, aligning with the real-world motivations of both actors.

Unfortunately, a limitation with many existing game-theoretic approaches from addressing cyber-
security challenges is their heavy reliance on assumptions. Specifically, game theory depends on as-
sumptions on the players, such as the players knowing every strategy available to them, knowing the
probabilities of every move, and knowing the payoff functions [26]. Compared to existing works, the
proposed approach can be used practically as it does not rely on assigning probabilities for the likelihood
of attacks succeeding, and instead focuses on general assumptions about which security objectives could
be violated by the attacker. Security analysts cannot realistically predict exact probabilities of attack, but
they can make informed assumptions regarding which system components might be more attractive to
attackers. These considerations ensure that the proposed approach is systematic, repeatable, and realistic,
thereby minimizing the influence of human bias on the results of the game and eliminating many of the
required assumptions with existing game-theoretic approaches.

While the proposed approach may seem limited by the security analyst’s certainty in the effectiveness
values for each atomic control, a sensitivity analysis was performed on the effectiveness metrics used in
Section 4 and revealed that the results of the approach were not sensitive to these values. The full details
of this analysis are omitted due to space limitations. In any case, to allow the analyst to express their
uncertainty, it is possible to allow them to provide multiple values when assigning the effectiveness for
atomic controls. The modifications to the game under these conditions is left for future work. The
proposed approach also currently requires manual effort on the part of the security analyst. While some
tasks are unavoidably manual (e.g.,, selecting applicable atomic controls and assigning effectiveness and
costs to those controls), the rest of the approach can be supported with automated tools. Lastly, as atomic
controls are considered indivisible components, we assume costs can be independently assigned to each
atomic control. From a business perspective, this assumption may not always hold as the aggregation of
certain controls could result in lower total costs to implement some control combinations. We argue that
this limitation is unlikely to occur unless the controls are provided by third party vendors. In such cases,
the cost function outlined in Definition 3 can be adapted to combine costs in a different manner.

6 Conclusions and Future Work

Ensuring effective security controls are selected for a system can greatly impact its security. In this
work, a game-theoretic approach to security control selection is proposed in which a game is played by
a security analyst to determine security controls which best mitigate expected attacker profiles. To create
the game, the controls which are believed to secure the system must first be gathered. Following this, the
effectiveness and cost of each of these controls is determined. After every possible control combination
is generated, the effectiveness and cost of each combination is calculated and the game matrix can be
constructed. The game can be played with many different expected attacker profiles and will suggest
unique sets of controls for each. The suggested controls can help make a security analyst feel more
confident in their decision to implement some controls over others.

In future work, we aim to extend the approach to consider more than one effectiveness value for
each control to account for uncertainties in the effectiveness values assigned by the analyst. This would
result in the game being played with more than one game matrix. The suggested controls from these
different matrices could be compared to guide a security analyst in selecting the controls for the system.
Additionally, to support the calculation of the game outcomes for large systems with many controls, we
aim to develop software tools to automate aspects of the approach.

D. Léveillé & J. Jaskolka 117

References
[1] Luís Almeida & Ana Respício (2018): Decision support for selecting information security controls. Journal

of Decision Systems 27, pp. 173–180, doi:10.1080/12460125.2018.1468177.
[2] Seifeddine Bettaieb, Seung Yeob Shin, Mehrdad Sabetzadeh, Lionel C. Briand, Michael Garceau & Antoine

Meyers (2020): Using machine learning to assist with the selection of security controls during security
assessment. Empirical Software Engineering 25(4), pp. 2550–2582, doi:10.1007/s10664-020-09814-x.

[3] Jennifer Cawthra, Michael Ekstrom, Lauren Lusty, Julian Sexton & John Sweetnam (2020): Data Integrity:
Detecting and Responding to Ransomware and Other Destructive Events. Special Publication (NIST SP)
1800-26, National Institute of Standards and Technology, doi:10.6028/NIST.SP.1800-26.

[4] Center for Information Security (2021): CIS Critical Security Controls – Version 8. https://www.
cisecurity.org/controls/v8 [Accessed: 2024-06-21].

[5] Rinku Dewri, Nayot Poolsappasit, Indrajit Ray & Darrell Whitley (2007): Optimal security hardening using
multi-objective optimization on attack tree models of networks. In: Proceedings of the 14th ACM Conference
on Computer and Communications Security, Association for Computing Machinery, New York, NY, USA,
pp. 204–213, doi:10.1145/1315245.1315272.

[6] Victoria Drake: Threat Modeling. https://owasp.org/www-community/Threat_Modeling [Accessed:
2023-12-11].

[7] Martin S. Feather, Steven L. Cornford, Kenneth A. Hicks & Kenneth R. Johnson: (2005): Applications of tool
support for risk-informed requirements reasoning. https://www.researchgate.net/publication/
220403935_Applications_of_tool_support_for_risk-informed_requirements_reasoning
[Accessed: 2024-06-21].

[8] Government of Canada (2014): IT Security Risk Management: A Lifecycle Approach – Security Control
Catalogue. https://www.cisecurity.org/controls/v8 [Accessed: 2024-06-21].

[9] Peter Höfner, Ridha Khedri & Bernhard Möller (2011): An Algebra of Product Families. Software and
Systems Modeling 10(2), pp. 161–182, doi:10.1007/s10270-009-0127-2.

[10] International Organization for Standardization (2018): ISO/IEC 31000:2018 Risk Management – Guidelines.
https://www.iso.org/standard/65694.html [Accessed: 2024-06-21].

[11] International Organization for Standardization (2022): ISO/IEC 27002:2022 Information security, cyberse-
curity and privacy protection – Information security controls. https://www.iso.org/standard/75652.
html [Accessed: 2024-06-21].

[12] International Organization for Standardization (2022): ISO/IEC 27005:2022 Information security, cyberse-
curity and privacy protection – Guidance on managing information security risks. https://www.iso.org/
standard/80585.html [Accessed: 2023-12-11].

[13] Joint Task Force Interagency Working Group (2018): Risk Management Framework for Information Systems
and Organizations: A System Life Cycle Approach for Security and Privacy. Special Publication (NIST SP)
800-37 Revision 2, National Institute of Standards and Technology, doi:10.6028/NIST.SP.800-37r2.

[14] Joint Task Force Interagency Working Group (2020): Control Baselines for Information Systems and Or-
ganizations. Special Publication (NIST SP) 800-53B, National Institute of Standards and Technology,
doi:10.6028/nist.sp.800-53b.

[15] Joint Task Force Interagency Working Group (2020): Security and Privacy Controls for Information Systems
and Organizations. Special Publication (NIST SP) 800-53 Revision 5, National Institute of Standards and
Technology, doi:10.6028/NIST.SP.800-53r5.

[16] Peter Kaloroumakis & Michael Smith (2020): Toward a Knowledge Graph of Cybersecurity Countermea-
sures. https://apps.dtic.mil/sti/citations/AD1156977 [Accessed: 2024-06-21].

[17] Osamah Ibrahim Khalaf, Munsif Sokiyna, Youseef Alotaibi, Abdulmajeed Alsufyani & Saleh Alghamdi
(2021): Web Attack Detection Using the Input Validation Method: DPDA Theory. Computers, Materials &
Continua 68(3), doi:10.32604/cmc.2021.016099.

https://doi.org/10.1080/12460125.2018.1468177
https://doi.org/10.1007/s10664-020-09814-x
https://doi.org/10.6028/NIST.SP.1800-26
https://www.cisecurity.org/controls/v8
https://www.cisecurity.org/controls/v8
https://doi.org/10.1145/1315245.1315272
https://owasp.org/www-community/Threat_Modeling
https://www.researchgate.net/publication/220403935_Applications_of_tool_support_for_risk-informed_requirements_reasoning
https://www.researchgate.net/publication/220403935_Applications_of_tool_support_for_risk-informed_requirements_reasoning
https://www.cisecurity.org/controls/v8
https://doi.org/10.1007/s10270-009-0127-2
https://www.iso.org/standard/65694.html
https://www.iso.org/standard/75652.html
https://www.iso.org/standard/75652.html
https://www.iso.org/standard/80585.html
https://www.iso.org/standard/80585.html
https://doi.org/10.6028/NIST.SP.800-37r2
https://doi.org/10.6028/nist.sp.800-53b
https://doi.org/10.6028/NIST.SP.800-53r5
https://apps.dtic.mil/sti/citations/AD1156977
https://doi.org/10.32604/cmc.2021.016099

118 A Game-Theoretic Approach to Security Control Selection

[18] Elmar Kiesling, Andreas Ekelhart, Bernhard Grill, Christine Strauss & Christian Stummer (2016): Selecting
security control portfolios: a multi-objective simulation-optimization approach. EURO Journal on Decision
Processes 4(1-2), pp. 85–117, doi:10.1007/s40070-016-0055-7.

[19] Qixu Liu & Yuqing Zhang (2011): VRSS: A New System for Rating and Scoring Vulnerabilities. Computer
Communications 34, pp. 264–273, doi:10.1016/j.comcom.2010.04.006.

[20] Peter Mell, Karen Scarfone & Sasha Romanosky (2007): The Common Vulnerability Scoring System (CVSS)
and Its Applicability to Federal Agency Systems. NIST Interagency Report 7435, National Institute of Stan-
dards and Technology, doi:10.6028/NIST.IR.7435.

[21] Microsoft (2022): Microsoft Threat Modeling Tool – Threats. https://learn.microsoft.com/en-us/
azure/security/develop/threat-modeling-tool-threats [Accessed: 2024-06-21].

[22] Murugiah Souppaya and Karen Scarfone (2016): Guide to Data-Centric System Threat Modeling. https:
//csrc.nist.gov/pubs/sp/800/154/ipd [Accessed: 2024-06-21].

[23] Mohamed Nassar, Joseph Khoury, Abdelkarim Erradi & Elias Bou-Harb (2021): Game Theoretical Model for
Cybersecurity Risk Assessment of Industrial Control Systems. In: 2021 11th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), pp. 1–7, doi:10.1109/NTMS49979.2021.9432668.

[24] National Institute of Standards and Technology (2020): The NIST Privacy Framework: A Tool for Improving
Privacy through Enterprise Risk Management. Cybersecurity White Papers (CSWP) 10, National Institute
of Standards and Technology, doi:10.6028/nist.cswp.10.

[25] National Institute of Standards and Technology (2024): The NIST Cybersecurity Framework (CSF)
2.0. Cybersecurity White Papers (CSWP) 29, National Institute of Standards and Technology,
doi:10.6028/NIST.CSWP.29.

[26] Guillermo Owen (2015): Game Theory. In James D. Wright, editor: International Encyclopedia of the
Social & Behavioral Sciences (Second Edition), second edition edition, Elsevier, Oxford, pp. 573–581,
doi:10.1016/B978-0-08-097086-8.43045-X.

[27] Jun Young Park & Eui Nam Huh (2020): A cost-optimization scheme using security vulnerability mea-
surement for efficient security enhancement. Journal of Information Processing Systems 16(1), pp. 61–82,
doi:10.3745/JIPS.02.0128.

[28] Ron Ross, Victoria Pillitteri, Richard Graubart, Deborah Bodeau & Rosalie Mcquaid (2021): Developing
Cyber-Resilient Systems: A Systems Security Engineering Approach. Special Publication (NIST SP) 800-160,
Volume 2 Revision 1, National Institute of Standards and Technology, doi:10.6028/NIST.SP.800-160v2r1.

[29] Quentin Rouland, Stojanche Gjorcheski & Jason Jaskolka (2023): Eliciting a Security Architecture Require-
ments Baseline from Standards and Regulations. In: 2023 IEEE 31st International Requirements Engineering
Conference Workshops, REW, Hannover, Germany, pp. 224–229, doi:10.1109/rew57809.2023.00045.

[30] Theodoor Scholte, Davide Balzarotti & Engin Kirda (2012): Have things changed now? An empirical
study on input validation vulnerabilities in web applications. Computers & Security 31(3), pp. 344–356,
doi:10.1016/j.cose.2011.12.013.

[31] Theodoor Scholte, William Robertson, Davide Balzarotti & Engin Kirda (2012): Preventing Input Validation
Vulnerabilities in Web Applications through Automated Type Analysis. In: 2012 IEEE 36th Annual Computer
Software and Applications Conference, pp. 233–243, doi:10.1109/COMPSAC.2012.34.

[32] Andrew M. Smith, Jackson R. Mayo, Vivian Kammler, Robert C. Armstrong & Yevgeniy Vorobeychik
(2017): Using computational game theory to guide verification and security in hardware designs. In:
2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 110–115,
doi:10.1109/HST.2017.7951808.

[33] Philip D. Straffin (1993): Game Theory and Strategy, second edition. The Mathematical Association of
America.

[34] Tony UcedaVélez & Marco M. Morana (2015): Risk Centric Threat Modeling: Process for Attack Simulation
and Threat Analysis, first edition. John Wiley & Sons, doi:10.1002/9781118988374.

https://doi.org/10.1007/s40070-016-0055-7
https://doi.org/10.1016/j.comcom.2010.04.006
https://doi.org/10.6028/NIST.IR.7435
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://csrc.nist.gov/pubs/sp/800/154/ipd
https://csrc.nist.gov/pubs/sp/800/154/ipd
https://doi.org/10.1109/NTMS49979.2021.9432668
https://doi.org/10.6028/nist.cswp.10
https://doi.org/10.6028/NIST.CSWP.29
https://doi.org/10.1016/B978-0-08-097086-8.43045-X
https://doi.org/10.3745/JIPS.02.0128
https://doi.org/10.6028/NIST.SP.800-160v2r1
https://doi.org/10.1109/rew57809.2023.00045
https://doi.org/10.1016/j.cose.2011.12.013
https://doi.org/10.1109/COMPSAC.2012.34
https://doi.org/10.1109/HST.2017.7951808
https://doi.org/10.1002/9781118988374

D. Léveillé & J. Jaskolka 119

[35] Baoyi Wang, Jianqiang Cai, Shaomin Zhang & Jun Li (2010): A network security assessment model based
on attack-defense game theory. In: 2010 International Conference on Computer Application and System
Modeling (ICCASM 2010), 3, pp. V3–639–V3–643, doi:10.1109/ICCASM.2010.5620536.

[36] Iryna Yevseyeva, Vitor Basto-Fernandes, Michael Emmerich & Aad Van Moorsel (2015): Se-
lecting Optimal Subset of Security Controls. Procedia Computer Science 64, pp. 1035–1042,
doi:10.1016/j.procs.2015.08.625.

https://doi.org/10.1109/ICCASM.2010.5620536
https://doi.org/10.1016/j.procs.2015.08.625

A. Achilleos and A. Francalanza (Eds.): Fifteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2024).
EPTCS 409, 2024, pp. 120–137, doi:10.4204/EPTCS.409.12

© Liang and Wáng
This work is licensed under the
Creative Commons Attribution License.

Epistemic Skills
Logical Dynamics of Knowing and Forgetting

Xiaolong Liang
School of Philosophy

Shanxi University
Taiyuan, Shanxi, P.R. China
lianghillon@gmail.com

Yì N. Wáng∗

Department of Philosophy (Zhuhai)
Sun Yat-sen University

Zhuhai, Guangdong, P.R. China
ynw@xixilogic.org

We present a type of epistemic logics that encapsulates both the dynamics of acquiring knowledge
(knowing) and losing information (forgetting), alongside the integration of group knowledge concepts.
Our approach is underpinned by a system of weighted models, which introduces an “epistemic skills”
metric to effectively represent the epistemic abilities associated with knowledge update. In this
framework, the acquisition of knowledge is modeled as a result of upskilling, whereas forgetting is by
downskilling. Additionally, our framework allows us to explore the concept of “knowability,” which
can be defined as the potential to acquire knowledge through upskilling, and facilitates a nuanced
understanding of the distinctions between epistemic de re and de dicto expressions. We study the
computational complexity of model checking problems for these logics, providing insights into both
the theoretical underpinnings and practical implications of our approach.

1 Introduction

The study of epistemic logic has become a prolific area within applied modal logic, since its inception
as a formal methodology in epistemology [34, 21], and its subsequent application in computer science
[16, 27]. A longstanding focus of this field has been to elucidate various forms of group knowledge,
with mutual knowledge (what everyone knows), common knowledge, and distributed knowledge being
particularly well-known concepts.

On top of this has been an exploration of actions that bring about changes in knowledge, such as the
effect of public announcements. This inquiry has given rise to the subfield of dynamic epistemic logic
[13], a discipline that incorporates update modalities into its language to depict knowledge updates, with
Public Announcement Logic [30] and Action Model Logic [7] being popular approaches (the first can be
viewed as a specific instance of the broader framework of the latter). Extensions of Public Announcement
Logic that incorporate the concept of knowability have then garnered significant interest [5, 2]. These
extensions delve into the nuanced understanding of what it means for something to be knowable in a
dynamic informational context.

The literature presents a diverse array of approaches to model the phenomenon of forgetting within
the frameworks of both classical and non-classical logics. Among these approaches, two prominent cate-
gories emerge: syntactical and semantical strategies for representing knowledge contraction. Syntactical
strategies, such as those delineated by the AGM paradigm [3], typically involve the removal of formulas
from an agent’s knowledge base, akin to belief contraction. On the other hand, semantical strategies focus
on the modification of the interpretation of knowledge. This can include various methods such as erasing
the truth values assigned to atomic propositions [26, 22, 12, 36]. Another semantical method involves
updating the set of propositions that an agent is aware of [15].

∗Corresponding author.

http://dx.doi.org/10.4204/EPTCS.409.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Liang and Wáng 121

In this study, we propose a unified logical framework designed to model group knowledge, processes
that may lead to knowledge update and epistemic necessity and possibility. Our approach is based on
weighted modal logic [23, 20]. We extend this foundation by introducing the concept of epistemic skills,
utilizing weights assigned to the edges in our model to represent the specific skills required to distinguish
between pairs of possible worlds. This differentiation introduces a measure of similarity, aligning our
work with recent developments in epistemic logic that employ concepts of similarity or distance[28, 14].

Traditionally understood notions such as mutual and common knowledge are preserved in their clas-
sical interpretations within our framework. Additionally, we incorporate distributed and field knowledge
seamlessly. Our model explicitly defines the skill set each agent possesses, and by leveraging update
modalities, we model the acquisition, loss, revision of knowledge as results of upskilling, downskilling
and reskilling, respectively. By focusing on operations that modify one’s skills, we broaden our analysis
to include the concepts of knowability and forgetfulness. In keeping with the perspectives suggested in
[5], our guiding principles are: the knowable is what becomes known after upskilling, and conversely, the
forgettable is what becomes unknown upon downskilling. This framework also allows for a more nuanced
understanding of the de re and de dicto distinctions in epistemic sentences.

The structure of the paper is as follows: Section 2 is dedicated to presenting the formal syntax and
semantics of our proposed logics. This section also includes a discussion on the use of epistemic de re
and de dicto expressions within our framework. The subsequent section delves into an in-depth analysis
of the computational complexity associated with the model checking problems in these logics. The paper
concludes with Section 4, where we offer our concluding remarks and reflections on the study.

2 Logics

We extend classical epistemic logic [16, 27] with a mechanism of epistemic skills in the models, allowing
us a consistent way of modeling knowing and forgetting, as well as various notions of group knowledge
(such as, distributed knowledge and field knowledge).

We fix three countably infinite sets before the introduction of formal languages. Namely, P for the
set of atomic propositions (atoms for short), A for the set of agents and S for the set of epistemic skills
(capabilities, professions, or privileges). For simplicity, these sets are unchanged throughout the paper,
although it is also possible to treat them as changeable parameters of each of the languages.

2.1 Syntax

The biggest language that we introduce now, named L𝐶𝐷𝐸𝐹+−=≡⊞⊟□, has its grammar given as follows:

𝜑 ::= 𝑝 | ¬𝜑 | (𝜑→ 𝜑) | 𝐾𝑎𝜑 | 𝐶𝐺𝜑 | 𝐷𝐺𝜑 | 𝐸𝐺𝜑 | 𝐹𝐺𝜑 |
(+𝑆)𝑎𝜑 | (−𝑆)𝑎𝜑 | (=𝑆)𝑎𝜑 | (≡𝑏)𝑎𝜑 | ⊞𝑎𝜑 | ⊟𝑎𝜑 | □𝑎𝜑

where 𝑝 ∈ P, 𝑎, 𝑏 ∈ A, 𝐺 ⊆ A is a finite nonempty group, and 𝑆 ⊆ S is a finite nonempty skill set.
As the name shows, we are interested in some of its sublanguages. The basic language L allows a

grammar that builds recursively from atomic propositions with Boolean operators (we choose negation
and implication to be primitives) and the modal operator 𝐾𝑎 (with 𝑎 ∈ A) which is used to characterize
individual knowledge. Namely, L is the formal language for classical multi-agent epistemic logic.

Four types of modalities, 𝐶𝐺 , 𝐷𝐺 , 𝐸𝐺 and 𝐹𝐺 , are introduced for common knowledge, distributed
knowledge, mutual knowledge and field knowledge, respectively. In naming a language that extends the
basic language, we use combinations of the letters 𝐶, 𝐷, 𝐸 and 𝐹 to indicate the inclusion common,

122 Epistemic Skills: Logical Dynamics of Knowing and Forgetting

distributed, mutual or field knowledge operators. For example, L𝐷𝐹 denotes the language that extends
the basic language with distributed and field knowledge.

We consider four update modalities, (+𝑆)𝑎, (−𝑆)𝑎, (=𝑆)𝑎 and (≡𝑏)𝑎, where 𝑎, 𝑏 ∈ A and 𝑆 is a
finite nonempty subset of S, which are intended to mean the action of agent 𝑎’s expansion with skills
𝑆 (upskilling), subtraction of skills 𝑆 (downskilling), assigning skill set 𝑆 (reskilling) and learning from
agent 𝑏, respectively. These operators are self dual, as one can verify after the semantics is introduced.

Another three operators, ⊞𝑎, ⊟𝑎 and □𝑎, are used to mean the action of 𝑎’s addition, subtraction and
modification of an arbitrary skill set, respectively. Their dual operators are written as ⊠𝑎, l

𝑎 and ^𝑎,
respectively, but treated to be non-primitive.

We shall use the symbols +, −, =, ≡, ⊞, ⊟ and □ in subscript to signal the introduction of each of
the update operators or quantifiers. For example, L𝐹+⊞ stands for the language that extends the basic
language with field knowledge and the operators (+𝑆)𝑎 and ⊞𝑎 (for any 𝑎 ∈ A and 𝑆 ⊆ S).

As a result, we reach as many as 211 (= 2048) languages in total, though many of the combinations
may not be of our focus. Other Boolean operators are defined just as in classical logic. When we refer to
a formula, we are indicating an element of one of these languages, and its specific reference will depend
on the context unless otherwise specified.

2.2 Semantics

We introduce a type of models for the interpretation of the languages.

Definition 1. A model is a quadruple (𝑊,𝐸,𝐶, 𝛽) where:

• 𝑊 is a nonempty set of (possible) worlds or states;

• 𝐸 :𝑊 ×𝑊 → ℘(S), an edge function, assigns each pair of worlds a skill set;

• 𝐶 : A→ ℘(S) is a capability function that assigns a skill set to each agent;

• 𝛽 :𝑊 → ℘(P) is a valuation.

and satisfies the following two conditions:

• Positivity: for all 𝑤,𝑢 ∈𝑊 , if 𝐸 (𝑤,𝑢) = S, then 𝑤 = 𝑢;

• Symmetry: for all 𝑤,𝑢 ∈𝑊 , 𝐸 (𝑤,𝑢) = 𝐸 (𝑢,𝑤).
In the above definition, the function 𝐸 assigns a skill set to each edge (a pair of worlds), indicating

that only individuals with skills outside the set can distinguish between the pair of worlds. The criteria
for satisfaction are defined as follows.

Definition 2. Given a formula 𝜑, a model 𝑀 = (𝑊,𝐸,𝐶, 𝛽) and 𝑤 ∈𝑊 , we say 𝜑 is true or satisfied at
𝑤 in 𝑀 , denoted 𝑀,𝑤 |= 𝜑, if the following hold inductively:

𝑀,𝑤 |= 𝑝 ⇔𝑝 ∈ 𝛽(𝑤)
𝑀,𝑤 |= ¬𝜓 ⇔not 𝑀,𝑤 |= 𝜓
𝑀,𝑤 |= (𝜓→𝜒)⇔if 𝑀,𝑤 |= 𝜓 then 𝑀,𝑤 |= 𝜒
𝑀,𝑤 |= 𝐾𝑎𝜓 ⇔for all 𝑢 ∈𝑊 , if 𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) then 𝑀,𝑢 |= 𝜓
𝑀,𝑤 |= 𝐸𝐺𝜓 ⇔𝑀,𝑤 |= 𝐾𝑎𝜓 for all 𝑎 ∈ 𝐺
𝑀,𝑤 |= 𝐶𝐺𝜓 ⇔for all positive integers 𝑛, 𝑀,𝑤 |= 𝐸𝑛

𝐺𝜓, with 𝐸1
𝐺𝜓 := 𝐸𝐺𝜓 and 𝐸𝑛

𝐺𝜓 := 𝐸1
𝐺𝐸

𝑛−1
𝐺 𝜓

𝑀,𝑤 |= 𝐷𝐺𝜓 ⇔for all 𝑢 ∈𝑊 , if
⋃

𝑎∈𝐺𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) then 𝑀,𝑢 |= 𝜓
𝑀,𝑤 |= 𝐹𝐺𝜓 ⇔for all 𝑢 ∈𝑊 , if

⋂
𝑎∈𝐺𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) then 𝑀,𝑢 |= 𝜓

Liang and Wáng 123

𝑀,𝑤 |= (+𝑆)𝑎𝜓⇔(𝑊,𝐸,𝐶𝑎+𝑆 , 𝛽),𝑤 |= 𝜓, with 𝐶𝑎+𝑆 (𝑎) = 𝐶 (𝑎) ∪ 𝑆 and (∀𝑥 ∈ A \ {𝑎}) 𝐶𝑎+𝑆 (𝑥) = 𝐶 (𝑥)
𝑀,𝑤 |= (−𝑆)𝑎𝜓⇔(𝑊,𝐸,𝐶𝑎−𝑆 , 𝛽),𝑤 |= 𝜓, with 𝐶𝑎−𝑆 (𝑎) = 𝐶 (𝑎) \ 𝑆 and (∀𝑥 ∈ A \ {𝑎}) 𝐶𝑎−𝑆 (𝑥) = 𝐶 (𝑥)
𝑀,𝑤 |= (=𝑆)𝑎𝜓⇔(𝑊,𝐸,𝐶𝑎=𝑆 , 𝛽),𝑤 |= 𝜓,with 𝐶𝑎=𝑆 (𝑎) = 𝑆 and (∀𝑥 ∈ A \ {𝑎}) 𝐶𝑎=𝑆 (𝑥) = 𝐶 (𝑥)
𝑀,𝑤 |= (≡𝑏)𝑎𝜓⇔(𝑊,𝐸,𝐶𝑎≡𝑏, 𝛽),𝑤 |= 𝜓,with 𝐶𝑎≡𝑏 (𝑎) = 𝐶 (𝑏) and (∀𝑥 ∈ A \ {𝑎}) 𝐶𝑎≡𝑏 (𝑥) = 𝐶 (𝑥)
𝑀,𝑤 |= ⊞𝑎𝜓 ⇔for all finite nonempty 𝑆 ⊆ S, 𝑀,𝑤 |= (+𝑆)𝑎𝜓
𝑀,𝑤 |= ⊟𝑎𝜓 ⇔for all finite nonempty 𝑆 ⊆ S, 𝑀,𝑤 |= (−𝑆)𝑎𝜓
𝑀,𝑤 |= □𝑎𝜓 ⇔for all finite nonempty 𝑆 ⊆ S, 𝑀,𝑤 |= (=𝑆)𝑎𝜓.

Given that𝐺 is a finite group, it is clear that the formula 𝐸𝐺𝜓 is logically equivalent to the
∧

𝑎∈𝐺 𝐾𝑎𝜓.
However, this equivalence impacts both the succinctness of the language and the complexity of model
checking. Consequently, 𝐸𝐺𝜓 cannot be treated merely as a straightforward rewriting of

∧
𝑎∈𝐺 𝐾𝑎𝜓.

Note that although (=𝑆)𝑎𝜑 is not a legal formula when 𝑆 is the empty set ∅, we can regard it as a
defined formula, i.e., (=∅)𝑎𝜑 := (=𝑆)𝑎 (−𝑆)𝑎𝜑 (for any qualified set 𝑆). In the mean time, it is not hard to
verify that both (+∅)𝑎𝜑 and (−∅)𝑎𝜑, if allowed, are equivalent to 𝜑, so there is no need to worry about
the cases with empty sets.

The logics (i.e., the sets of valid formulas) that are defined by the above semantics and correspond to
our languages will bear the same names, but will be denoted using upright roman typeface, e.g., L, L𝐹+⊞
and L𝐶𝐷𝐸𝐹+−=≡⊞⊟□.

2.3 Representation of a model and truths within it

In this section, we describe an exemplary model and demonstrate several true formulas applicable within
this model. Let 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5 ∈ S represent epistemic skills, and 𝑎, 𝑏, 𝑐 ∈ A denote agents. The model
𝑀 = (𝑊,𝐸,𝐶, 𝛽) is defined as follows:

• 𝑊 = {𝑤1,𝑤2,𝑤3,𝑤4,𝑤5} is the set of possible
worlds.

• 𝐸 :𝑊 ×𝑊→ ℘(S) is the symmetric closure that
satisfies the following:

– 𝐸 (𝑤1,𝑤1) = 𝐸 (𝑤2,𝑤2) = 𝐸 (𝑤3,𝑤3) =

𝐸 (𝑤4,𝑤4) = 𝐸 (𝑤5,𝑤5) = {𝑠1, 𝑠2, 𝑠3, 𝑠4},
– 𝐸 (𝑤1,𝑤2) = 𝐸 (𝑤3,𝑤5) = {𝑠1, 𝑠4},
– 𝐸 (𝑤1,𝑤3) = 𝐸 (𝑤2,𝑤5) = {𝑠1, 𝑠2, 𝑠3},
– 𝐸 (𝑤1,𝑤4) = ∅,
– 𝐸 (𝑤1,𝑤5) = 𝐸 (𝑤2,𝑤3) = {𝑠1},
– 𝐸 (𝑤2,𝑤4) = {𝑠2, 𝑠3},
– 𝐸 (𝑤3,𝑤4) = {𝑠4},
– 𝐸 (𝑤4,𝑤5) = {𝑠2, 𝑠3, 𝑠4}.

• 𝐶 is the capability function that assigns a skill set
to each agent, 𝑎, 𝑏 and 𝑐:

– 𝐶 (𝑎) = {𝑠1, 𝑠2, 𝑠3},
– 𝐶 (𝑏) = {𝑠2, 𝑠3, 𝑠4},
– 𝐶 (𝑐) = {𝑠4}.

• 𝛽 assigns sets of propositions to each world:

– 𝛽(𝑤1) = {𝑝1, 𝑝2}
– 𝛽(𝑤2) = {𝑝1, 𝑝3}
– 𝛽(𝑤3) = {𝑝1, 𝑝2, 𝑝4}
– 𝛽(𝑤4) = {𝑝3, 𝑝4}
– 𝛽(𝑤5) = {𝑝1, 𝑝3, 𝑝4}.

The fact that 𝑀 is a model can be easily verified, and using a diagram to represent 𝑀 is often helpful (see
Figure 1). In the diagram, nodes represent worlds, and undirected edges represent accessibility relations.
Each edge is labeled with the skill set that facilitate accessibility between two worlds. If an edge is labeled
with an empty set, it indicates no accessibility (as between 𝑤1 and 𝑤4), and such edges are not drawn in
the diagram. This helps in visualizing the connections and structure of the model more clearly.

Readers can verify the following logical truths in model 𝑀 = (𝑊,𝐸,𝐶, 𝛽) given above:

124 Epistemic Skills: Logical Dynamics of Knowing and Forgetting

𝑤5
𝑝1, 𝑝3, 𝑝4

𝑠1,𝑠2,𝑠3,𝑠4

𝑤2
𝑝1, 𝑝3

𝑠1,𝑠2,𝑠3,𝑠4

𝑠1

𝑠2,𝑠3

𝑠1,𝑠2,𝑠3

𝑤3
𝑝1, 𝑝2, 𝑝4

𝑠1,𝑠2,𝑠3,𝑠4

𝑠4

𝑠1,𝑠4

𝑤1
𝑝1, 𝑝2

𝑠1,𝑠2,𝑠3,𝑠4

𝑠1,𝑠4

𝑠1,𝑠2,𝑠3

𝑠1

𝑤4
𝑝3, 𝑝4

𝑠1,𝑠2,𝑠3,𝑠4

𝑠2,𝑠3,𝑠4

𝐶 (𝑎) = {𝑠1, 𝑠2, 𝑠3}
𝐶 (𝑏) = {𝑠2, 𝑠3, 𝑠4}
𝐶 (𝑐) = {𝑠4}

𝐶𝑎+{𝑠4} (𝑎) = {𝑠1, 𝑠2, 𝑠3, 𝑠4}
𝐶𝑎−{𝑠2,𝑠3} (𝑎) = {𝑠1}
𝐶𝑐={𝑠2} (𝑐) = {𝑠2}
𝐶𝑏≡𝑐 (𝑏) = {𝑠4}

Figure 1: Illustration of the model 𝑀 .

1. 𝑀,𝑤2 |= 𝐾𝑎𝑝3, indicating that in world 𝑤2, agent 𝑎 knows proposition 𝑝3.
2. 𝑀,𝑤4 |= ¬𝐾𝑏𝑝1∧¬𝐾𝑏¬𝑝1, meaning that in world 𝑤4, agent 𝑏 does not know whether proposition
𝑝1 is true or false.

3. 𝑀,𝑤3 |= 𝐾𝑐 (𝐾𝑎𝑝3 ∨𝐾𝑎¬𝑝3), demonstrating that in world 𝑤3, agent 𝑐 knows whether agent 𝑎
knows proposition 𝑝3.

4. 𝑀,𝑤4 |= 𝐸{𝑎,𝑏} (𝑝3∧ 𝑝4), showing that both agents 𝑎 and 𝑏 know propositions 𝑝3 and 𝑝4 in 𝑤4.
5. 𝑀,𝑤5 |= (¬𝐶{𝑎,𝑐} 𝑝1∧¬𝐶{𝑎,𝑐}¬𝑝1) ∧ (¬𝐶{𝑎,𝑐} 𝑝2∧¬𝐶{𝑎,𝑐}¬𝑝2), indicating that neither the truth

nor the falsity of propositions 𝑝1 and 𝑝2 are common knowledge between 𝑎 and 𝑐 in world 𝑤5.
6. 𝑀,𝑤4 |= 𝐷 {𝑎,𝑏} (¬𝑝1∧ 𝑝4), indicating that in world 𝑤4, the knowledge that proposition 𝑝1 is false

and 𝑝4 is true is distributed between agents 𝑎 and 𝑏.
7. 𝑀,𝑤4 |=¬𝐹{𝑎,𝑏}¬𝑝1∧¬𝐹{𝑎,𝑏} 𝑝4, showing that in world𝑤4, neither¬𝑝1 nor 𝑝4 are field knowledge

for agents 𝑎 and 𝑏.
8. 𝑀,𝑤5 |= ¬𝐾𝑎𝑝4 ∧ (+{𝑠4})𝑎𝐾𝑎𝑝4. Here, in world 𝑤5, agent 𝑎 initially does not know 𝑝4, but can

learn it upon acquiring skill 𝑠4.
9. 𝑀,𝑤2 |= 𝐾𝑎𝑝3∧ (−{𝑠2,𝑠3})𝑎¬𝐾𝑎𝑝3, indicating that in world 𝑤2, agent 𝑎 knows 𝑝3 but would forget

it if she loses skills 𝑠2 and 𝑠3.
10. 𝑀,𝑤1 |= 𝐸{𝑎,𝑏} (¬𝐾𝑐𝑝2 ∧ (={𝑠2})𝑐𝐾𝑐𝑝2)). This means that in world 𝑤1, it is mutual knowledge

between agents 𝑎 and 𝑏 that, 𝑐 does not know 𝑝2, but would know it if her skill set is {𝑠2}.
11. 𝑀,𝑤1 |= (≡𝑐)𝑏

∧
𝑝∈{𝑝1,..., 𝑝4} (𝐹{𝑏,𝑐} 𝑝↔ 𝐾𝑏𝑝). This result suggests that in world 𝑤1, if agent 𝑏

changes her skill set to match that of agent 𝑐, her knowledge will align with the field knowledge
shared between them.

12. 𝑀,𝑤5 |= ⊠𝑎𝐾𝑎𝑝4, indicating that in world 𝑤5, there exists a potential skill upgrade under which
agent 𝑎 can come to know 𝑝4.

13. 𝑀,𝑤3 |= l
𝑏

∧
𝑝∈{𝑝1,..., 𝑝4} (¬𝐶{𝑎,𝑏} 𝑝 ∧¬𝐶{𝑎,𝑏}¬𝑝), highlighting that in world 𝑤3, it is possible

through some downskilling for agent 𝑏 to reach a state where no propositions 𝑝1 through 𝑝4 are
common knowledge between agents 𝑎 and 𝑏.

14. 𝑀,𝑤2 |= 𝐾𝑐𝑝1∧¬𝐾𝑐𝑝3∧^𝑐 (¬𝐾𝑐𝑝1∧𝐾𝑐𝑝3), indicating that in world 𝑤2, it is currently the case
that agent 𝑐 knows 𝑝1 and does not know 𝑝3, but there is a possible skill update which would make
agent 𝑐 unaware of 𝑝1 while becoming aware of 𝑝3.

Liang and Wáng 125

2.4 Epistemic de re and de dicto

The distinction between epistemic de re and de dicto modalities was already discussed in [34], with
de re modalities concerning whether a specific thing possesses or lacks a certain property, and de
dicto modalities concerning whether a proposition is true or false. Subsequently, as [31] suggests, this
distinction becomes more apparent in a formal language when quantifiers over terms are utilized. In the
realm of epistemic logic, a de re sentence can be expressed as, “There exists a term 𝑥 such that an entity
knows that 𝑥 possesses or lacks a certain property.” Conversely, a de dicto sentence can be formulated
as, “An entity knows that there exists a term which possesses or lacks a certain property.”

In the logics introduced in this paper, we are not only able to distinguish between de re and de dicto
modalities, but can also delineate two specific types of de re sentences (compare with the case in Group
Announcement Logic [2, Section 6]):

• Knowing de dicto: “Agent 𝑎 knows (with her current skills) that there exists a set 𝑆 of skills such
that, with 𝑆, she can achieve 𝜑 in world 𝑤 of model (𝑊,𝐸,𝐶, 𝛽).”
Formally, this is expressed as: (∀𝑢 ∈𝑊) [𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) ⇒ (∃𝑆 ⊆ S) (𝑊,𝐸,𝐶𝑎+𝑆 , 𝛽), 𝑢 |= 𝜑].

• Explicitly knowing de re: “There exists a set 𝑆 of skills such that agent 𝑎 knows with her current
skill set, that with 𝑆 in addition, she can achieve 𝜑 in world 𝑤 of model (𝑊,𝐸,𝐶, 𝛽).”
Formally, this is represented as: (∃𝑆 ⊆ S) (∀𝑢 ∈𝑊) [𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) ⇒ (𝑊,𝐸,𝐶𝑎+𝑆 , 𝛽), 𝑢 |= 𝜑].

• Implicitly knowing de re: “There exists a set 𝑆 of skills such that agent 𝑎 knows, with the addition
of 𝑆 to her skill set, that she can achieve 𝜑 in world 𝑤 of model (𝑊,𝐸,𝐶, 𝛽).”
Formally, this is depicted as: (∃𝑆 ⊆ S) (∀𝑢 ∈𝑊) [𝐶𝑎+𝑆 (𝑎) ⊆ 𝐸 (𝑤,𝑢) ⇒ (𝑊,𝐸,𝐶𝑎+𝑆 , 𝛽), 𝑢 |= 𝜑].

Although the distinction between de dicto and de re knowledge remains clear, the nuanced difference
between implicit and explicit de re knowledge hinges on whether the skills from the skill set 𝑆 are included
for the agent to formulate her knowledge.

These distinctions elucidate the complex interplay between knowledge and capabilities in dynamic
epistemic scenarios, highlighting subtle differences in how agents process information depending on their
skill sets and the nature of their knowledge. All three types of knowledge are expressible using the formal
languages we have introduced. Here is how each type is represented:

Proposition 3.

1. Knowledge de dicto is expressed by the formula 𝐾𝑎 ⊠𝑎𝜑.

2. Explicit knowledge de re is expressed by the formula (≡𝑎)𝑐 ⊠𝑐𝐾𝑎 (≡𝑐)𝑎𝜑 (where 𝑐 is not in 𝜑).

3. Implicit knowledge de re is expressed by the formula ⊠𝑎𝐾𝑎𝜑.

Proof. Clauses 1 and 3 are straightforwardly validated by the semantics. We focus here on clause 2,
where 𝑐 is any agent not appearing in 𝜑:

(∃𝑆 ⊆ S) (∀𝑢 ∈𝑊) 𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) ⇒ (𝑊,𝐸,𝐶𝑎+𝑆 , 𝛽), 𝑢 |= 𝜑
⇐⇒ (∃𝑆 ⊆ S) (∀𝑢 ∈𝑊) 𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) ⇒ (𝑊,𝐸, ((𝐶𝑐≡𝑎)𝑐+𝑆)𝑎≡𝑐, 𝛽), 𝑢 |= 𝜑
⇐⇒ (∃𝑆 ⊆ S) (∀𝑢 ∈𝑊) 𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) ⇒ (𝑊,𝐸, (𝐶𝑐≡𝑎)𝑐+𝑆 , 𝛽), 𝑢 |= (≡𝑐)𝑎𝜑
⇐⇒ (∃𝑆 ⊆ S) (𝑊,𝐸, (𝐶𝑐≡𝑎)𝑐+𝑆 , 𝛽),𝑤 |= 𝐾𝑎 (≡𝑐)𝑎𝜑
⇐⇒ (𝑊,𝐸,𝐶𝑐≡𝑎, 𝛽),𝑤 |= ⊠𝑐𝐾𝑎 (≡𝑐)𝑎𝜑
⇐⇒ (𝑊,𝐸,𝐶, 𝛽),𝑤 |= (≡𝑎)𝑐 ⊠𝑐𝐾𝑎 (≡𝑐)𝑎𝜑.

126 Epistemic Skills: Logical Dynamics of Knowing and Forgetting

Examples of different types of knowledge expressed by formulas The formula 𝐷𝐺 ⊠𝑎 l𝑏𝜑 says that,
“It is group 𝐺’s distributed knowledge that, with the addition of certain skills by agent 𝑎, it becomes
achievable that, even with the loss of certain skills by agent 𝑏, 𝜑 can still be achieved.” This use pertains
to be de dicto. The formula (≡𝑎)𝑐^𝑐𝐾𝑎 (≡𝑐)𝑎𝜑 (where 𝑐 does not appear in 𝜑) expresses that, “There
exists a skill set such that agent 𝑎 knows that, with exactly this skill set, 𝑎 can achieve 𝜑.” This use is
explicitly de re. The formula ^𝑎𝐾𝑎𝜑 says that, “There is an update of agent 𝑎’s skill set through which
𝑎 knows she can make 𝜑 true.” This is implicitly de re.

Remark 1. For simplicity, the initial definitions of knowledge de dicto, explicit and implict knowledge
de re have been presented primarily for individual knowledge using the operator 𝐾𝑎 and the actions of
knowing represented by the quantifier ⊞𝑎. These concepts can be readily extended to include:

• Group knowledge, utilizing operators such as 𝐶𝐺 , 𝐷𝐺 , 𝐸𝐺 and 𝐹𝐺 ,

• Quantifiers over actions of downskilling and reskilling, represented by ⊟𝑎 and □𝑎 respectively,

• Nested actions and dynamic changes among agents.

For example, the formula 𝐹𝐺 l
𝑎1 ⊠𝑎2^𝑎3

l
𝑎4𝜑 represents an epistemic de dicto statement involving field

knowledge and multiple actions (upskilling, downskilling and reskilling) among different agents. The
expression (≡𝑑1)𝑐1 ⊠𝑐1 (≡𝑑2)𝑐2 ⊠𝑐2 (≡𝑑3)𝑐3 ⊠𝑐3𝐸𝐼 (≡𝑐1)𝑑1 (≡𝑐2)𝑑2 (≡𝑐3)𝑑3𝜑 captures explicit knowledge de
re involving nested contexts and multiple agents, linked to mutual knowledge. Similarly, the formula
⊠𝑏1^𝑏2

l
𝑏3𝐷𝐻𝜑 illustrates implicit knowledge de re involving a sequence of updates and distributed

knowledge. In these examples, the agents 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2, 𝑐3, 𝑑1, 𝑑2, 𝑑3 are not specifically
restricted to being within or outside the groups 𝐺, 𝐻 or 𝐼. This flexibility allows for a broad application
of the concepts across various contexts and group dynamics.

In dynamic epistemic logic, the distinction between knowing de dicto and knowing de re is enriched
through the use of quantifiers for updates, closely aligning with the philosophical inquiries into knowing
that versus knowing how. While previous solutions such as those presented in [5, 2, 6] primarily adopt
a syntactical approach, our logic introduces a semantical perspective, providing an alternative to the
topological semantics discussed by [33, 9].

3 Complexity of Model Checking

In this section, we study the computational complexity of the model checking problem for the logics
introduced in the preceding sections. The model checking problem for a logic involves verifying whether
a specified formula 𝜑, within a given finite model 𝑀 and at a particular world 𝑤 in the model, holds true;
formally, whether 𝑀,𝑤 |= 𝜑.

3.1 The input

We define the measure of the input. The length of a formula 𝜑, denoted |𝜑 |, is defined to be the number
of symbols that occur in 𝜑 (including the symbols for brackets), just as in [16, Section 3.1]; or more
precisely defined inductively by the structure of 𝜑, i.e., when 𝜑 is:

• An atomic formula 𝑝: |𝑝 | = 1;

• Negation ¬𝜓: |¬𝜓 | = |𝜓 | +1;

• Implication (𝜓→ 𝜒): | (𝜓→ 𝜒) | = |𝜓 | + |𝜒 | +3;

Liang and Wáng 127

• Individual knowledge 𝐾𝑎𝜓: |𝐾𝑎𝜓 | = |𝜓 | +2;
• Group knowledge: |𝐶𝐺𝜓 | = |𝜓 | + 2|𝐺 | + 2, and similarly for 𝐷𝐺𝜓, 𝐸𝐺𝜓 and 𝐹𝐺𝜓; e.g., | (𝑝→
𝐶{𝑎,𝑏,𝑐}𝑞) | = 13;

• An update modality: | (+𝑆)𝑎𝜓 | = 2|𝑆 | + |𝜓 | +5, similarly for (−𝑆)𝑎𝜓 and (=𝑆)𝑎𝜓, and | (≡𝑏)𝑎𝜓 | =
|𝜓 | +5;

• A quantifier: |⊞𝑎 𝜓 | = |𝜓 | +2, and also for ⊟𝑎𝜓 and □𝑎𝜓.
The size of a model𝑀 = (𝑊,𝐸,𝐶, 𝛽), denoted |𝑀 |, is defined as the sum of the following components:
• |𝑊 |: the size of the domain; 1

• |𝐸 |: since 𝐸 consists of triples (𝑤,𝑢, 𝑆) where 𝑤,𝑢 ∈𝑊 and 𝑆 ⊆ S, the size of 𝐸 is determined by
the number of the symbols used to denote this set;

• |𝐶 | with respect to a given set 𝐴 of agents: 𝐶 is composed pairs (𝑎, 𝑆) where 𝑎 ∈ 𝐴 and 𝑆 ⊆ S; the
size of 𝐶 is the count of all symbols used for its representation; 2

• |𝛽 |: the function 𝛽 consists of pairs (𝑤,Φ) where 𝑤 ∈𝑊 and Φ ⊆ P; the size of 𝛽 is the number of
the symbols used to represent this set.

Finally, for formula 𝜑 and model 𝑀 (with a designated world 𝑤), the size of the input is |𝜑 | + |𝑀 | +1.

3.2 Model checking for logics without quantifiers: in P

We commence by presenting a polynomial-time algorithm designed to ascertain the truth of classical
epistemic formulas in a specified world within a given model, addressing the model checking problem for
L. Subsequently, we enhance the algorithm to incorporate group knowledge modalities. This extension
allows us to establish that the model checking problem for L𝐶𝐷𝐸𝐹 fall within the complexity class P. We
then proceed to further broaden our results to encompass update modalities, achieving the results for the
model checking problems for L𝐶𝐷𝐸𝐹+−=≡ and all of its sublolgics.

3.2.1 Model checking in L

Given a model 𝑀 = (𝑊,𝐸,𝐶, 𝛽), a world 𝑤 ∈𝑊 and a formula 𝜑, we decide whether 𝑀,𝑤 |= 𝜑. In order
to do so, we present an algorithm (Algorithm 1) for calculating 𝑉𝑎𝑙 (𝑀,𝜑), the truth set of 𝜑 in 𝑀 , i.e.,
{𝑥 ∈ 𝑊 | 𝑀,𝑥 |= 𝜑}. The question about whether 𝑀,𝑤 |= 𝜑 holds is thus reduced to the membership
testing in𝑉𝑎𝑙 (𝑀,𝜑), which takes at most |𝑊 | steps in addition to the time costs on computing𝑉𝑎𝑙 (𝑀,𝜑).

It is not hard to verify that𝑉𝑎𝑙 (𝑀,𝜑) is indeed the set of worlds of 𝑀 at which 𝜑 is true. In particular,
in the case for the 𝐾𝑎 operator,

𝑀,𝑤 |= 𝐾𝑎𝜓 ⇐⇒ ∀𝑦 ∈𝑊 : 𝐶 (𝑎) ⊆ 𝐸 (𝑤, 𝑦) ⇒ 𝑀, 𝑦 |= 𝜓
⇐⇒ ∀𝑦 ∈𝑊 : 𝐶 (𝑎) ⊆ 𝐸 (𝑤, 𝑦) ⇒ 𝑦 ∈ 𝑉𝑎𝑙 (𝑀,𝜓) (IH)
⇐⇒ 𝑤 ∈ {𝑥 ∈𝑊 | ∀𝑦 ∈𝑊 : 𝐶 (𝑎) ⊆ 𝐸 (𝑥, 𝑦) ⇒ 𝑦 ∈ 𝑉𝑎𝑙 (𝑀,𝜓)}

The cost for computing 𝑉𝑎𝑙 (𝑀,𝜑) is in polynomial time. In the case for 𝐾𝑎𝜓—the most time-
consuming case here—there are two while-loops over 𝑊 , and checking 𝐶 (𝑎) ⊆ 𝐸 (𝑥, 𝑦) costs at most

1Model checking is typically impractical for infinite sets due to computational limitations; therefore, we restrict our analysis
to finite sets. This is consistently applied in the following discussions as well.

2Theoretically, the function 𝐶 maps each agent (from an infinite set) to a specific skill set. This mapping is not feasible with
finite input, but in practical scenarios, we limit the number of agents. It is essential to ensure that the set 𝐴 includes all agents
relevant to the formula being checked.

128 Epistemic Skills: Logical Dynamics of Knowing and Forgetting

Algorithm 1 Function 𝑉𝑎𝑙 (𝑀,𝜑): computing the truth set for basic formulas

Input: model 𝑀 = (𝑊,𝐸,𝐶, 𝛽) and formula 𝜑
Output: {𝑥 | 𝑀,𝑥 |= 𝜑}
1: Initialize: 𝑡𝑚𝑝𝑉𝑎𝑙← ∅
2: if 𝜑 = 𝑝 then return {𝑥 ∈𝑊 | 𝑝 ∈ 𝛽(𝑥)}
3: else if 𝜑 = ¬𝜓 then return𝑊 \𝑉𝑎𝑙 (𝑀,𝜓)
4: else if 𝜑 = 𝜓→ 𝜒 then
5: return (𝑊 \𝑉𝑎𝑙 (𝑀,𝜓)) ∪𝑉𝑎𝑙 (𝑀, 𝜒)
6: else if 𝜑 = 𝐾𝑎𝜓 then

7: for all 𝑥 ∈𝑊 do
8: Initialize: 𝑛← true
9: for all 𝑦 ∈𝑊 do

10: if 𝐶 (𝑎) ⊆ 𝐸 (𝑥, 𝑦) and 𝑦 ∉𝑉𝑎𝑙 (𝑀,𝜓) then
𝑛← false

11: if 𝑛 = true then 𝑡𝑚𝑝𝑉𝑎𝑙← 𝑡𝑚𝑝𝑉𝑎𝑙 ∪ {𝑥}
12: return 𝑡𝑚𝑝𝑉𝑎𝑙 ⊲ This returns {𝑥 ∈𝑊 | ∀𝑦 ∈𝑊 :

𝐶 (𝑎) ⊆ 𝐸 (𝑥, 𝑦) ⇒ 𝑦 ∈ 𝑉𝑎𝑙 (𝑀,𝜓)}

|𝐶 | · |𝐸 | steps, and the membership checking 𝑦 ∉𝑉𝑎𝑙 (𝑀,𝜓) (when𝑉𝑎𝑙 (𝑀,𝜓) is at hand) takes at most |𝑊 |
steps; so this case costs at most |𝑊 |2 · (|𝐶 | · |𝐸 | + |𝑊 |). Moreover, the algorithm for computing𝑉𝑎𝑙 (𝑀,𝜑)
calls itself recursively, but only for a subformula of 𝜑, and the maximum number of recursion is bounded
by |𝜑 |, i.e., the length of 𝜑. So the total time cost for computing 𝑉𝑎𝑙 (𝑀,𝜑) is |𝑊 |2 · (|𝐶 | · |𝐸 | + |𝑊 |) · |𝜑|.
Considering the input size, we find that the total time cost is within𝑂 (𝑛5). So the following lemma holds.
Lemma 4. The model checking problem for L is in P.

3.2.2 Model checking group knowledge

Building on the previous result, we now aim to encompass scenarios that include group knowledge. To
facilitate this extension, we will first introduce a definition and a couple of lemmas that underpin it.
Definition 5. For a formula 𝜑, let 𝐴𝜑 = {𝐺 | “𝐸𝐺” or “𝐶𝐺” appears in 𝜑}. For a model𝑀 = (𝑊,𝐸,𝐶, 𝛽),

• For all worlds 𝑤,𝑢 ∈𝑊 , 𝐸𝜑 (𝑤,𝑢) = 𝐸 (𝑤,𝑢) ∪ {𝐺 ∈ 𝐴𝜑 | (∃𝑎 ∈ 𝐺) 𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢)},
• For all worlds 𝑤,𝑢 ∈ 𝑊 , 𝐸+𝜑 (𝑤,𝑢) = 𝐸𝜑 (𝑤,𝑢) ∪ {𝐺 ∈ 𝐴𝜑 | (∃𝑛 ≥ 1) (∃𝑤0, . . . ,𝑤𝑛 ∈ 𝑊) 𝑤0 =

𝑤 and 𝑤𝑛 = 𝑢 and 𝐺 ∈⋂0≤𝑖<𝑛 𝐸𝜑 (𝑤𝑖 ,𝑤𝑖+1)},
where without loss of generality we assume that 𝐴𝜑 ∩A = ∅. For short, we write 𝑀+𝜑 for (𝑊,𝐸+𝜑 ,𝐶, 𝛽).

It should be noted that the above definition involves an abuse of notation by treating groups of agents
as skills. To ensure formal correctness, a one-to-one mapping can be defined from each group to a new
skill in S.
Proposition 6. For any model 𝑀 and any formula 𝜑, 𝑀+𝜑 is a model.
Lemma 7. Given formulas 𝜑 and 𝜒, a group 𝐺, a model 𝑀 and a world 𝑤 of 𝑀:

1. 𝑀,𝑤 |= 𝜑 iff 𝑀+𝜒,𝑤 |= 𝜑;
2. If “𝐶𝐺” appears in 𝜒, then 𝑀,𝑤 |= 𝐶𝐺𝜑 iff 𝑀,𝑢 |= 𝜑 for any world 𝑢 such that 𝐺 ∈ 𝐸+𝜒 (𝑤,𝑢).

Proof. 1. For any agent 𝑎, formula 𝜒 and world 𝑤,𝑢, we have 𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) iff 𝐶 (𝑎) ⊆ 𝐸𝜒 (𝑤,𝑢) iff
𝐶 (𝑎) ⊆ 𝐸+𝜒 (𝑤,𝑢). Thus it is easy to verify that (𝑀,𝑤) and (𝑀+𝜒,𝑤) satisfy exactly the same formulas.

2. We first verify the base case for 𝐶𝐺𝜑:

𝑀,𝑤 |= 𝐸𝐺𝜑 ⇐⇒ for any 𝑎 ∈ 𝐺, 𝑀,𝑤 |= 𝐾𝑎𝜑

⇐⇒ for any 𝑎 ∈ 𝐺 and 𝑢 ∈𝑊 , 𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) implies 𝑀,𝑢 |= 𝜑
⇐⇒ for any 𝑢 ∈𝑊 and 𝑎 ∈ 𝐺, 𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) implies 𝑀,𝑢 |= 𝜑
⇐⇒ for any 𝑢 ∈𝑊 , 𝑀,𝑢 |= 𝜑 if 𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢) for some 𝑎 ∈ 𝐺
⇐⇒ for any 𝑢 ∈𝑊 , 𝐺 ∈ 𝐸𝜒 (𝑤,𝑢) implies 𝑀,𝑢 |= 𝜑
⇐⇒ 𝑀,𝑢 |= 𝜑 for any world 𝑢 such that 𝐺 ∈ 𝐸𝜒 (𝑤,𝑢)

and so 𝑀,𝑤 |= 𝐶𝐺𝜑 ⇐⇒ 𝑀,𝑤 |= 𝐸 𝑘
𝐺
𝜑 for all 𝑘 ∈ N+

⇐⇒ 𝑀,𝑢 |= 𝜑 for any world 𝑢 such that 𝐺 ∈ 𝐸+𝜒 (𝑤,𝑢) (∗)

Liang and Wáng 129

where (∗) can be shown as follows: Suppose 𝑀,𝑤 ̸ |= 𝐸𝑛
𝐺
𝜑 for some 𝑛 ∈ N+, then by induction on 𝑛, we

have 𝑤1, . . . ,𝑤𝑛 ∈𝑊 such that 𝑀,𝑤𝑛 ̸ |= 𝜑 and 𝐺 ∈ 𝐸𝜒 (𝑤,𝑤1) ∩
⋂

1≤𝑖<𝑛 𝐸𝜒 (𝑤𝑖 ,𝑤𝑖+1). Hence 𝑀,𝑤𝑛 ̸ |= 𝜑
and 𝐺 ∈ 𝐸+𝜒 (𝑤,𝑤𝑛). Suppose 𝑀,𝑢 ̸ |= 𝜑 for a world 𝑢 such that 𝐺 ∈ 𝐸+𝜒 (𝑤,𝑢), w.l.o.g, assume that there
exist 𝑤0, . . . ,𝑤𝑛 ∈𝑊 such that 𝑤0 = 𝑤, 𝑤𝑛 = 𝑢, 𝐺 ∈⋂0≤𝑖<𝑛 𝐸𝜒 (𝑤𝑖 ,𝑤𝑖+1) and 𝑀,𝑤𝑛 ̸ |= 𝜑. Thus using the
above result 𝑛 times we have 𝑀,𝑤 ̸ |= 𝐸𝑛

𝐺
𝜑.

Lemma 8. The model checking problem for L𝐶𝐷𝐸𝐹 (hence for all of its sublogics) is in P.

Proof. It suffices to provide a polynomial algorithm for the types of formulas𝐶𝐺𝜓, 𝐷𝐺𝜓, 𝐸𝐺𝜓 and 𝐹𝐺𝜓.
The details are given in Algorithm 2. As in the proof of Lemma 4, checking 𝐶 (𝑎) ⊆ 𝐸 (𝑡, 𝑢) costs at most

Algorithm 2 Function 𝑉𝑎𝑙 (𝑀,𝜑) extended: cases with group knowledge operators

1: Initialize: 𝑡𝑒𝑚𝑉𝑎𝑙← ∅
2: if ... then ... ⊲ Same as in Algorithm 1
3: else if 𝜑 = 𝐶𝐺𝜓 then
4: for all 𝑥 ∈𝑊 do
5: Initialize: 𝑛← true
6: for all 𝑦 ∈𝑊 do
7: if 𝐺 ∈ 𝐸+𝜑 (𝑥, 𝑦) and 𝑦 ∉𝑉𝑎𝑙 (𝑀,𝜓) then
8: 𝑛← false
9: if 𝑛 = true then

10: 𝑡𝑚𝑝𝑉𝑎𝑙← 𝑡𝑚𝑝𝑉𝑎𝑙 ∪ {𝑥}
11: return 𝑡𝑚𝑝𝑉𝑎𝑙 ⊲ Returns {𝑥 ∈𝑊 | ∀𝑦 ∈𝑊 :

𝐺 ∈ 𝐸+𝜑 (𝑥, 𝑦) ⇒ 𝑦 ∈ 𝑉𝑎𝑙 (𝑀,𝜓)}
12: else if 𝜑 = 𝐷𝐺𝜓 then
13: for all 𝑥 ∈𝑊 do
14: Initialize: 𝑛← true
15: for all 𝑦 ∈𝑊 do
16: if

⋃
𝑎∈𝐺𝐶 (𝑎) ⊆ 𝐸 (𝑥, 𝑦) and

𝑦 ∉𝑉𝑎𝑙 (𝑀,𝜓) then
17: 𝑛← false
18: if 𝑛 = true then
19: 𝑡𝑚𝑝𝑉𝑎𝑙← 𝑡𝑚𝑝𝑉𝑎𝑙 ∪ {𝑥}

20: return 𝑡𝑚𝑝𝑉𝑎𝑙 ⊲ Returns {𝑥 ∈𝑊 | ∀𝑦 ∈𝑊 :⋃
𝑎∈𝐺𝐶 (𝑎) ⊆ 𝐸 (𝑥, 𝑦) ⇒ 𝑦 ∈ 𝑉𝑎𝑙 (𝑀,𝜓)}

21: else if 𝜑 = 𝐸𝐺𝜓 then
22: for all 𝑥 ∈𝑊 do
23: initialize 𝑛← true
24: for all 𝑦 ∈𝑊 do
25: if 𝐺 ∈ 𝐸𝜑 (𝑥, 𝑦) and 𝑦 ∉𝑉𝑎𝑙 (𝑀,𝜓) then
26: 𝑛← false
27: if 𝑛 = true then 𝑡𝑚𝑝𝑉𝑎𝑙← 𝑡𝑚𝑝𝑉𝑎𝑙 ∪ {𝑥}
28: return 𝑡𝑚𝑝𝑉𝑎𝑙 ⊲ Returns {𝑡 ∈𝑊 | ∀𝑢 ∈𝑊 :

𝐺 ∈ 𝐸𝜑 (𝑡, 𝑢) ⇒ 𝑢 ∈ 𝑉𝑎𝑙 (𝑀,𝜓)}
29: else if 𝜑 = 𝐹𝐺𝜓 then
30: for all 𝑥 ∈𝑊 do
31: Initialize: 𝑛← true
32: for all 𝑦 ∈𝑊 do
33: if

⋂
𝑎∈𝐺𝐶 (𝑎) ⊆ 𝐸 (𝑥, 𝑦) and

𝑦 ∉𝑉𝑎𝑙 (𝑀,𝜓) then
34: 𝑛← false
35: if 𝑛 = true then 𝑡𝑚𝑝𝑉𝑎𝑙← 𝑡𝑚𝑝𝑉𝑎𝑙 ∪ {𝑥}
36: return 𝑡𝑚𝑝𝑉𝑎𝑙 ⊲ Returns {𝑥 ∈𝑊 | ∀𝑦 ∈𝑊 :⋂

𝑎∈𝐺𝐶 (𝑎) ⊆ 𝐸 (𝑥, 𝑦) ⇒ 𝑦 ∈ 𝑉𝑎𝑙 (𝑀,𝜓)}

|𝐶 | · |𝐸 | steps, here we furthermore need to calculate the cost caused by group knowledge operators.
For 𝐷𝐺 and 𝐹𝐺 , notice that the number of agents in any group 𝐺 that appears in 𝜑 is less than |𝜑 |, so

checking
⋃

𝑎∈𝐺𝐶 (𝑎) ⊆ 𝐸 (𝑡, 𝑢) and
⋂

𝑎∈𝐺𝐶 (𝑎) ⊆ 𝐸 (𝑡, 𝑢) costs at most |𝐶 | · |𝐸 | · |𝜑| steps. Thus for the
logics extended with these operators, the complexity for model checking would not go beyond P.

For 𝐸𝐺 and 𝐶𝐺 , we need to ensure that there is a polynomial-time algorithm for computing 𝐸𝜑 (𝑤,𝑢)
and 𝐸+𝜑 (𝑤,𝑢) and checking whether 𝐺 is an element of them. By Definition 5 and Lemma 7, computing
the set 𝐴𝜑 costs at most |𝜑 | steps, since there are at most |𝜑 | modalities appearing in 𝜑; moreover, the
size of 𝐺 is at most |𝜑 |. To compute 𝐸𝜑 (𝑤,𝑢) for any given 𝑤 and 𝑢, it costs at most |𝐸 | steps to
compute 𝐸 (𝑤,𝑢) and at most |𝜑 |2 · |𝐶 | · |𝐸 | steps to check for every 𝐺 ∈ 𝐴𝜑 whether there exists 𝑎 ∈ 𝐺
such that 𝐶 (𝑎) ⊆ 𝐸 (𝑤,𝑢). So the cost of computing the whole function 𝐸𝜑 can be finished in at most
|𝑊 |2 · (|𝐸 | + |𝜑 |2 · |𝐶 | · |𝐸 |) steps. Now we consider the computation of 𝐸+𝜑 . Assume that we have a string
that describes 𝐸𝜑 , then we check for all pairs (𝑥, 𝑦), (𝑦, 𝑧) ∈𝑊2 whether there exists a “𝐺” appearing in
𝜑 such that 𝐺 ∈ 𝐸𝜑 (𝑥, 𝑦) ∩𝐸𝜑 (𝑦, 𝑧); if it is, we add 𝐺 as a member of 𝐸𝜑 (𝑥, 𝑧). Keep doing this until 𝐸𝜑

does not change any more. Every round of checking takes at most 2|𝜑 |2 · |𝑊 |3 steps, and it will be stable

130 Epistemic Skills: Logical Dynamics of Knowing and Forgetting

in at most |𝜑 | · |𝑊 |2 rounds. Then we obtain the function 𝐸+𝜑 as we want. Every membership checking
for 𝐺 ∈ 𝐸+𝜑 (𝑤,𝑣) is finished in polynomial steps. So the whole process is still in P.

3.2.3 Model checking formulas with update modalities

As we address the case involving update modalities, let us consider a model 𝑀 = (𝑊,𝐸,𝐶, 𝛽) and a world
𝑤 ∈𝑊 , and examine the formulas (+𝑆)𝑎𝜓, (−𝑆)𝑎𝜓, (=𝑆)𝑎𝜓 and (≡𝑏)𝑎𝜓. According to the semantics
provided in Definition 2,

𝑀,𝑤 |= (+𝑆)𝑎𝜓 ⇐⇒ 𝑀𝑎+𝑆 ,𝑤 |= 𝜓

where 𝑀𝑎+𝑆 = (𝑊,𝐸,𝐶𝑎+𝑆 , 𝛽) is defined such that

𝐶𝑎+𝑆 (𝑥) =
{
𝐶 (𝑥), if 𝑥 ≠ 𝑎
𝐶 (𝑎) ∪ 𝑆, if 𝑥 = 𝑎

From this, we deduce that verifying whether 𝑀,𝑤 |= (+𝑆)𝑎𝜓 is reducible to checking if 𝑀𝑎+𝑆 ,𝑤 |= 𝜓,
effectively eliminating the leftmost update modality from consideration. An algorithm that invokes the
model checking algorithm on the latter can be executed in linear time since it involves generating the
updated model 𝑀𝑎+𝑆 directly from the original model 𝑀 and considering the new formula 𝜓, which is a
substring of the original formula. Hence, the complete algorithm, including the invocation of the model
checking, will conclude within polynomial time.

The cases with (−𝑆)𝑎𝜓, (=𝑆)𝑎𝜓 and (≡𝑏)𝑎𝜓 follow a similar process, with the distinction that each
involves a different modification to the model. Nonetheless, the computational cost remains within P for
both scenarios. This leads us to the following theorem:

Theorem 9. The model checking problems for L𝐶𝐷𝐸𝐹+−=≡ and all of its sublogics are in P.

3.3 Model checking quantified formulas: PSPACE complete

We demonstrate the PSPACE hardness by reducing, in polynomial time, the problem of undirected edge
geography (UEG) – a variant of the generalized geography [32, 25] – to the model checking problem
for any of L⊞, L⊟ or L□, since UEG is a game for which determining a winning strategy is known to be
PSPACE complete [17]. The PSPACE upper bound is established using a polynomial space algorithm
that builds upon the algorithms introduced earlier.

Let 𝐺 = (𝐷, 𝑅) be an undirected graph; i.e., 𝐷 is a finite nonempty set, and 𝑅 is a symmetric and
irreflexive relation on 𝐷. Given a node 𝑑 ∈ 𝐷, the pair (𝐺,𝑑) is referred to as a rooted undirected graph.
The undirected edge geography (UEG) game on (𝐺,𝑑) involves two players, and unfolds as follows.

1. Player I’s Move: Player I starts by selecting edge {𝑑, 𝑑1} ∈ 𝑅. If no such edge exists, the game ends
and Player II wins as Player I cannot make a valid move.

2. Player II’s Move: After Player I”s move selecting an edge {𝑑𝑖 , 𝑑𝑖+1}, Player II must choose an edge
{𝑑𝑖+1, 𝑑𝑖+2} that has not been chosen in previous moves. If Player II cannot make such a move, the
game ends and Player I wins.

3. Alternating Turns: After Player II’s move selecting an edge {𝑑 𝑗 , 𝑑 𝑗+1}, it is Player I’s turn again to
choose an edge {𝑑 𝑗+1, 𝑑 𝑗+2} not previously chosen. If Player I cannot make such a move, the game
ends and Player II wins.

4. Repeat Step 2: The game continues by alternating turns following the process described in step 2.

Liang and Wáng 131

Alternatively, UEG game on (𝐺,𝑑) can be recursively defined by modifying the graph after each move:

• The current player chooses an edge {𝑑, 𝑑′} ∈ 𝑅; if this is impossible, he loses, and the game ends.

• The game then proceeds with the opposing player starting a new game on (𝐺′, 𝑑′) where 𝐺′ =
(𝐷, 𝑅 \ {{𝑑, 𝑑′}}).

The UEG problem, based on a rooted undirected graph, aims to determine whether Player I possesses a
winning strategy.

Definition 10 (induced model). Let𝐺 = (𝐷, 𝑅) represent an undirected graph. For each edge {𝑥, 𝑦} ∈ 𝑅,
assign a unique epistemic skill 𝑠{𝑥,𝑦} ∈ S (ensuring that 𝑠{𝑥′ ,𝑦′ } ≠ 𝑠{𝑥′′ ,𝑦′′ } for any distinct unordered pairs
{𝑥′, 𝑦′} and {𝑥′′, 𝑦′′}), and for each node 𝑥 ∈ 𝐷, assign a unique atomic proposition 𝑝𝑥 ∈ P (ensuring
that 𝑝𝑥′ ≠ 𝑝𝑥′′ for any distinct nodes 𝑥′ and 𝑥′′).

Define the induced model 𝑀𝐺 as the tuple (𝐷,𝐸,𝐶, 𝛽) where:

• 𝐸: For every 𝑥, 𝑦 ∈ 𝐷, if {𝑥, 𝑦} ∈ 𝑅, then 𝐸 (𝑥, 𝑦) = {𝑠{𝑥,𝑦}}; otherwise, 𝐸 (𝑥, 𝑦) = ∅;
• 𝐶: For all agents 𝑎, 𝐶 (𝑎) = ∅;
• 𝛽: For each node 𝑥 ∈ 𝐷, 𝛽(𝑥) = {𝑝𝑥}.
This model 𝑀𝐺 is well-defined and compactly represents the relationships and properties within the

graph 𝐺. The size of 𝐸 is 𝑂 (|𝐷 |2) due to the pairwise relationship between nodes, while the size of 𝛽 is
𝑂 (|𝐷 |), reflecting the unique property assignment per node. The size of 𝐶 remains 𝑂 (|𝐷 |), given that
only a limited number of agents are actually be utilized, as confirmed by the following definition and the
definition of the size of the input.

Definition 11 (induced formula). Let𝐺 = (𝐷, 𝑅) be an undirected graph. Consider 𝑛 agents 𝑎1, . . . , 𝑎𝑛 ∈
A, where 𝑛 is the smallest positive even number greater than or equal to |𝑅 |. For each 𝑖 where 1 ≤ 𝑖 ≤ 𝑛
(for 𝜑𝑖 , only consider even numbers 𝑖), define:

𝜓𝑖 := ¬𝐾𝑎𝑖⊥∧
∨

𝑥∈𝐷 𝐾𝑎𝑖 𝑝𝑥

𝜒𝑖 :=
∨

𝑥,𝑦∈𝐷 with 𝑥≠𝑦,1≤ 𝑗<𝑖 (𝑝𝑥 ∧ 𝐾̂𝑎 𝑗
𝑝𝑦 ∧𝐾𝑎𝑖 𝑝𝑦)

𝜑𝑖 := ⊠𝑎1 (𝜓1∧¬𝜒1∧𝐾𝑎1 ⊞𝑎2 (¬𝜓2∨ 𝜒2∨
𝐾̂𝑎2 ⊠𝑎3 (𝜓3∧¬𝜒3∧𝐾𝑎3 ⊞𝑎4 (¬𝜓4∨ 𝜒4∨

𝐾̂𝑎4 ⊠𝑎5 (𝜓5∧¬𝜒5∧𝐾𝑎5 ⊞𝑎6 (¬𝜓6∨ 𝜒6∨
. . .

𝐾̂𝑎𝑖−2 ⊠𝑎𝑖−1 (𝜓𝑖−1∧¬𝜒𝑖−1∧𝐾𝑎𝑖−1 ⊞𝑎𝑖 (¬𝜓𝑖 ∨ 𝜒𝑖)) · · ·)))))).

In the above, 𝐾̂𝑎 is the dual of 𝐾𝑎. The induced formula 𝜑𝐺 for the graph 𝐺 is defined as 𝜑𝑛.

Let us try to understand the induced formula. In a game, each agent 𝑎𝑖 plays in the 𝑖-th move. The
formulas 𝜓𝑖 represents the condition where the player 𝑎𝑖 at the 𝑖-th move chooses exactly one edge from
the current node. The formula 𝜒𝑖 captures the scenario where the edge chosen by player 𝑎𝑖 at the 𝑖-th
move has been selected in a previous move, thus representing an invalid game move under the new edge
rule. The conjunction 𝜓𝑖 ∧¬𝜒𝑖 ensures that each move in the game involves selecting a new, unvisited
edge. As for complexity, the length of 𝜓𝑖 is in 𝑂 (|𝐷 |), as it involves a disjunction over each node in 𝐷.
The length of 𝜒𝑖 is in 𝑂 (|𝐷 |2 · |𝑅 |). The overall formula 𝜑𝐺 thus has its length in 𝑂 (|𝐷 |2 · |𝑅 |2).

The formula 𝜑𝐺 constructs a logical framework that mirrors the gameplay in an undirected graph:

• ⊠𝑎1 : Indicates the potential for player 𝑎1 to make a valid move by upskilling.

• 𝜓1∧¬𝜒1: Ensures that 𝑎1’s choice is a new edge (valid move).

132 Epistemic Skills: Logical Dynamics of Knowing and Forgetting

• 𝐾𝑎1⊞𝑎2 : Player 𝑎1 ensures that no matter how player 𝑎2 responds (upskills), the game’s next state
must be described by the formula that follows. And that formula describes that either 𝑎2 does not
find a new edge to choose (leading to the end the game), or, if 𝑎2 chooses a new edge, then the
formula starting with 𝐾̂𝑎3 ⊠𝑎3 must hold, indicating a situation similar to the first clause above (but
for 𝑎3).

This recursive and intertwined structure of 𝜑𝐺 effectively captures the strategic progression of the game,
with each player’s move affecting the possible moves of the next player, all within the framework of an
undirected graph where each node represents a game state or choice.

We now introduce a lemma that establishes a connection between the undirected edge geography
problem and the logics we have developed.

Lemma 12. For any rooted undirected graph (𝐺,𝑑), Player I has a wining strategy in the undirected
edge geography game on (𝐺,𝑑), if and only if 𝑀𝐺 , 𝑑 |= 𝜑𝐺 .

Proof. We show the lemma by induction on |𝑅 |. Base case |𝑅 | = 0, 𝑛 = 2. For any 𝑥, 𝑦 ∈ 𝐷, {𝑥, 𝑦} ∉ 𝑅.
Player I loses in this case. Let 𝑀𝐺 = (𝐷,𝐸,𝐶, 𝛽) be the induced model. Then 𝐸 (𝑥, 𝑦) = ∅ for any 𝑥, 𝑦 ∈ 𝐷.
We need to show 𝑀𝐺 , 𝑑 ̸ |= 𝜑𝐺 . For any finite non-empty 𝑆 ⊆ S, consider the model 𝑀 ′ = (𝐷,𝐸,𝐶𝑎1+𝑆 , 𝛽).
Since 𝜑𝐺 = 𝜑2 = ⊠𝑎1 (𝜓1∧¬𝜒1∧𝐾𝑎1 ⊞𝑎2 (¬𝜓2∨ 𝜒2)), where 𝜓1 = ¬𝐾𝑎1⊥∧

∨
𝑥∈𝐷 𝐾𝑎1 𝑝𝑥 , 𝜒1 = ⊥, 𝜓2 =

¬𝐾𝑎2⊥∧
∨

𝑥∈𝐷 𝐾𝑎2 𝑝𝑥 , and 𝜒2 =
∨

𝑥≠𝑦∈𝐷 (𝑝𝑥 ∧ 𝐾̂𝑎1 𝑝𝑦 ∧ 𝐾𝑎2 𝑝𝑦). It is clear that 𝑀 ′, 𝑑 ̸ |= 𝜓1, since
𝑀 ′, 𝑑 |= 𝐾𝑎1⊥. It follows that 𝑀 ′, 𝑑 ̸ |= 𝜓1 ∧¬𝜒1 ∧𝐾𝑎1 ⊞𝑎2 (¬𝜓2 ∨ 𝜒2). Since 𝑆 is arbitrary, we have
𝑀𝐺 , 𝑑 ̸ |= 𝜑𝐺 .

Base case |𝑅 | = 1, and so 𝑛 = 2. Let {𝑑, 𝑑′} be the unique edge in 𝑅. Let 𝑀𝐺 = (𝐷,𝐸,𝐶, 𝛽) be
the induced model. 𝐸 (𝑑, 𝑑′) = 𝐸 (𝑑′, 𝑑) = {𝑠{𝑑,𝑑′ }}, and 𝐸 (𝑥, 𝑦) = ∅ otherwise. Player I has a winning
strategy in this case, and we show that 𝑀𝐺 , 𝑑 |= 𝜑𝐺 . Consider 𝑆 = {𝑠{𝑑,𝑑′ }}. Let 𝑀 ′ = (𝐷,𝐸,𝐶𝑎1+𝑆 , 𝛽),
with 𝜑𝐺 = 𝜑2 = ⊠𝑎1 (𝜓1∧¬𝜒1∧𝐾𝑎1 ⊞𝑎2 (¬𝜓2∨ 𝜒2)), where:

• 𝜓1 = ¬𝐾𝑎1⊥∧
∨

𝑥∈𝐷 𝐾𝑎1 𝑝𝑥 (𝑀 ′, 𝑑 |= 𝜓1, for 𝑀 ′, 𝑑 |= ¬𝐾𝑎1⊥∧𝐾𝑎1 𝑝𝑑′)

• 𝜒1 = ⊥ (𝑀 ′, 𝑑 |= ¬𝜒1)

• 𝜓2 = ¬𝐾𝑎2⊥∧
∨

𝑥∈𝐷 𝐾𝑎2 𝑝𝑥

• 𝜒2 = (𝑝𝑑 ∧ 𝐾̂𝑎1 𝑝𝑑′ ∧𝐾𝑎2 𝑝𝑑′) ∨ (𝑝𝑑′ ∧ 𝐾̂𝑎1 𝑝𝑑 ∧𝐾𝑎2 𝑝𝑑) ∨
∨

𝑥≠𝑦∈𝐷\{𝑑,𝑑′ } (𝑝𝑥 ∧ 𝐾̂𝑎1 𝑝𝑦 ∧𝐾𝑎2 𝑝𝑦).

For any finite nonempty 𝑆′ ⊆ S, let 𝑀 ′′ = (𝐷,𝐸, (𝐶𝑎1+𝑆)𝑎2+𝑆′ , 𝛽), we have one of the following cases:

(1) 𝑆′ ⊈ 𝑆, then ∀𝑥 ∈ 𝐷, (𝐶𝑎1+𝑆)𝑎2+𝑆′ (𝑎2) ⊈ 𝐸 (𝑑,𝑥), hence 𝑀 ′′, 𝑑′ |= ¬𝜓2, for 𝑀 ′′, 𝑑′ |= 𝐾𝑎2⊥.

(2) 𝑆′ ⊆ 𝑆, then 𝑀 ′′, 𝑑′ |= 𝑝𝑑′ ∧ 𝐾̂𝑎1 𝑝𝑑 ∧𝐾𝑎2 𝑝𝑑 . Thus, 𝑀 ′′, 𝑑′ |= 𝜒2 for its right disjunct is satisfied.

In both case𝑀 ′′, 𝑑′ |=¬𝜓2∨ 𝜒2, and so𝑀 ′, 𝑑′ |=⊞𝑎2 (¬𝜓2∨ 𝜒2), and𝑀 ′, 𝑑 |=𝐾𝑎2⊞𝑎2 (¬𝜓2∨ 𝜒2). Together
with the verifications above, we have 𝑀𝐺 , 𝑑 |= 𝜑𝐺 .

The case |𝑅 | = 𝑘 . The direction from left to right. Suppose that Player I has a winning strategy, by
which she chooses in the first move {𝑑, 𝑑′}. Let 𝑀𝐺 = (𝐷,𝐸,𝐶, 𝛽) be the induced model. We need to
show that 𝑀𝐺 , 𝑑 |= 𝜑𝐺 , where 𝜑𝐺 = ⊠𝑎1 (𝜓1∧¬𝜒1∧𝐾𝑎1𝜑𝐺,⊞𝑎2

), in which 𝜑𝐺,⊞𝑎2
is the subformula of

𝜑𝐺 beginning with ⊞𝑎2 (see Def. 11). Consider 𝑆 = {𝑠{𝑑,𝑑′ }}, and let 𝑀 ′ = (𝐷,𝐸,𝐶𝑎1+𝑆 , 𝛽):

• 𝜓1 = ¬𝐾𝑎1⊥∧
∨

𝑥∈𝐷 𝐾𝑎1 𝑝𝑥 (𝑀 ′, 𝑑 |= 𝜓1, for 𝑀 ′, 𝑑 |= ¬𝐾𝑎1⊥∧𝐾𝑎1 𝑝𝑑′)

• 𝜒1 = ⊥ (𝑀 ′, 𝑑 |= ¬𝜒1)

Liang and Wáng 133

Now we show 𝑀 ′, 𝑑 |= 𝐾𝑎1𝜑𝐺,⊞𝑎2
; namely, 𝑀 ′, 𝑑′ |= 𝜑𝐺,⊞𝑎2

, where 𝜑𝐺,⊞𝑎2
= ⊞𝑎2 (¬𝜓2∨ 𝜒2∨ 𝐾̂𝑎2𝜑𝐺, ⊠𝑎3

)
in which 𝜑𝐺, ⊠𝑎3

is the subformula of 𝜑𝐺 beginning wtih ⊠𝑎3 . For any finite nonempty 𝑆′ ⊆ S, let
𝑀 ′′ = (𝐷,𝐸, (𝐶𝑎1+𝑆)𝑎2+𝑆′ , 𝛽), and it suffices to show that

𝑀 ′′, 𝑑′ |= ¬𝜓2∨ 𝜒2∨ 𝐾̂𝑎2𝜑𝐺, ⊠𝑎3
, (†)

where 𝜓2 = ¬𝐾𝑎2⊥∧
∨

𝑥∈𝐷 𝐾𝑎2 𝑝𝑥 and 𝜒2 =
∨

𝑥≠𝑦∈𝐷 (𝑝𝑥 ∧ 𝐾̂𝑎1 𝑝𝑦∧𝐾𝑎2 𝑝𝑦). Consider the possible cases:
(1) There does not exist 𝑥 ∈ 𝐷 such that 𝑆′ ⊆ 𝐸 (𝑑′, 𝑥), or

(2) There exists 𝑑′′ ∈ 𝐷 such that 𝑆′ ⊆ 𝐸 (𝑑′, 𝑑′′) (note that 𝑆′ must be singleton).
In case (1), 𝑀 ′′, 𝑑′ |= 𝐾𝑎2⊥, so 𝑀 ′′, 𝑑′ |= ¬𝜓2, hence (†) holds. In case (2), Player I has a winning
strategy in the continued game on (𝐺2, 𝑑

′′) with 𝐺2 = (𝐷, 𝑅 \ {{𝑑, 𝑑′}, {𝑑′, 𝑑′′}}) (note that 𝑑′′ cannot
be 𝑑 or 𝑑′). It suffices to show the following result:

𝑀 ′′, 𝑑′′ |= 𝜑𝐺, ⊠𝑎3
⇐⇒ 𝑀𝐺2 , 𝑑

′′ |= 𝜑𝐺2 . (‡)

Since 𝑀𝐺2 , 𝑑
′′ |= 𝜑𝐺2 holds by the induction hypothesis, by (‡), we have 𝑀 ′′, 𝑑′′ |= 𝜑𝐺, ⊠𝑎3

. This makes
the rightmost disjunct of (†) true in 𝑀 ′′, 𝑑′, and completes the whole proof.

Let 𝑀𝐺2 = (𝐷,𝐸2,𝐶, 𝛽). To see (‡), 𝑀 ′′, 𝑑′′ |= 𝜑𝐺, ⊠𝑎3
, i.e., (𝐷,𝐸, (𝐶𝑎1+𝑆)𝑎2+𝑆′ , 𝛽), 𝑑′′ |= 𝜑𝐺, ⊠𝑎3

⇐⇒ (𝐷,𝐸2, (𝐶𝑎1+𝑆)𝑎2+𝑆′ , 𝛽), 𝑑′′ |= 𝜑′
𝐺, ⊠𝑎3

, where 𝜑′
𝐺, ⊠𝑎3

is adapted from 𝜑𝐺, ⊠𝑎3
by the following:

• Delete all occurrences of
∨

𝑥≠𝑦∈𝐷 (𝑝𝑥 ∧ 𝐾̂𝑎1 𝑝𝑦 ∧𝐾𝑎𝑖 𝑝𝑦) from 𝜑𝐺, ⊠𝑎3

• Delete all occurrences of
∨

𝑥≠𝑦∈𝐷 (𝑝𝑥 ∧ 𝐾̂𝑎2 𝑝𝑦 ∧𝐾𝑎𝑖 𝑝𝑦) from 𝜑𝐺, ⊠𝑎3

(This equivalence holds since 𝐸 (𝑑, 𝑑′) = 𝐸 (𝑑′, 𝑑) = ∅, which implies that any formulas 𝐾̂𝑎1𝜑 and
𝐾̂𝑎2𝜑 are false in any world 𝑥 of model (𝐷,𝐸2,𝐶

′, 𝛽), where 𝐶′ is any capability function updated
from (𝐶𝑎1+𝑆)𝑎2+𝑆′ without changing the capabilities of 𝑎1 and 𝑎2.)

⇐⇒ (𝐷,𝐸2,𝐶, 𝛽), 𝑑′′ |= 𝜑′′𝐺, ⊠𝑎3
, where 𝜑′′

𝐺, ⊠𝑎3
a variant of 𝜑′

𝐺, ⊠𝑎3
by replacing any 𝑎𝑖+2 with 𝑎𝑖 ,

(This holds since (𝐶𝑎1+𝑆)𝑎2+𝑆2 (𝑎𝑖+2) = 𝐶 (𝑎𝑖) = ∅; note that 𝑎1 and 𝑎2 does not exist in 𝜑′
𝐺, ⊠𝑎3

.)

⇐⇒ 𝑀𝐺2 , 𝑑
′′ |= 𝜑𝐺2 , i.e., (𝐷,𝐸2,𝐶, 𝛽), 𝑑′′ |= 𝜑𝐺2 (since 𝜑𝐺2 = 𝜑

′′
𝐺, ⊠𝑎3

)

From right to left. If Player I does not have a winning strategy, we must show that 𝑀𝐺 , 𝑑 ̸ |= 𝜑𝐺 . Let
the induced model 𝑀𝐺 be (𝐷,𝐸,𝐶, 𝛽). Since Player I does not have a winning strategy, then:

(a) There is no 𝑥 ∈ 𝐷 such that {𝑑,𝑥} ∈ 𝑅, and Player I loses in this case; or

(b) Player I does not have a winning strategy by choosing in the first move any 𝑥 ∈ 𝐷 \ {𝑑} such that
{𝑑,𝑥} ∈ 𝑅.

For case (a): Since 𝐸 (𝑑,𝑥) = ∅ for any 𝑥, we get 𝑀𝐺 , 𝑑 ̸ |= 𝜑𝐺 similarly to the case when |𝑅 | = 0.
For case (b): Consider an arbitrary finite nonempty 𝑆 ⊆ S. Then:

(1) For all 𝑥 ∈ 𝐷, 𝑆 ⊈ 𝐸 (𝑑,𝑥); or

(2) Theres exists 𝑑′ ∈ 𝐷 such that 𝑆 ⊆ 𝐸 (𝑑, 𝑑′) (note that 𝑑′ cannot be 𝑑).
We need to show 𝑀𝐺 , 𝑑 ̸ |= 𝜑𝐺 where 𝜑𝐺 is given in Def. 11. Let 𝑀 ′ = (𝐷,𝐸,𝐶𝑎1+𝑆 , 𝛽). In case (1),
since 𝑀 ′, 𝑑 |= 𝐾𝑎1⊥, 𝑀 ′, 𝑑 ̸ |= 𝜓1 (with 𝜓1 = ¬𝐾𝑎1⊥∧

∨
𝑥∈𝐷 𝐾𝑎1 𝑝𝑥), and so 𝑀,𝑑 ̸ |= 𝜑𝐺 .

In case (2) (under the case (b)), there must exist 𝑑′′ ∈ 𝐷 \ {𝑑, 𝑑′} such that Player I does not have a
winning strategy in the game on (𝐺2, 𝑑

′′) where 𝐺2 = (𝐷, 𝑅 \ {{𝑑, 𝑑′}, {𝑑′, 𝑑′′}}); for otherwise Player I

134 Epistemic Skills: Logical Dynamics of Knowing and Forgetting

has a winning strategy (this is also the case when there is no such a 𝑑′′), leading to a contradiction. Let
𝑆′ = {𝑠{𝑑′ ,𝑑′′ }}, then 𝑆′ ⊆ 𝐸 (𝑑′, 𝑑′′). Let 𝑀 ′′ = (𝐷,𝐸, (𝐶𝑎1+𝑆)𝑎2+𝑆′ , 𝛽). It suffices to show that

𝑀 ′′, 𝑑′ ̸ |= ¬𝜓2∨ 𝜒2∨ 𝐾̂𝑎2𝜑𝐺, ⊠𝑎3
, (*)

Consider 𝜓2 = ¬𝐾𝑎2⊥∧
∨

𝑥∈𝐷 𝐾𝑎2 𝑝𝑥 . Since 𝑀 ′′, 𝑑′ |= ¬𝐾𝑎2⊥∧𝐾𝑎2 𝑝𝑑′′ , we have 𝑀 ′′, 𝑑′ ̸ |= ¬𝜓2. As for
𝜒2 =

∨
𝑥≠𝑦∈𝐷 (𝑝𝑥 ∧ 𝐾̂𝑎1 𝑝𝑦 ∧𝐾𝑎2 𝑝𝑦), since 𝑀 ′′, 𝑑′ |= 𝐾̂𝑎1 𝑝𝑦 ∧𝐾𝑎2 𝑝𝑦 implies 𝑦 = 𝑑 ≠ 𝑑′′ = 𝑦, we have

𝑀 ′′, 𝑑′ ̸ |= 𝜒2. Finally we show that 𝑀 ′′, 𝑑′ ̸ |= 𝐾̂𝑎2𝜑𝐺, ⊠𝑎3
. Since there is exact one 𝑥 ∈ 𝐷 (which must be

𝑑′′ by the definition of 𝑆′) such that 𝑆′ ⊆ 𝐸 (𝑑′, 𝑥), it suffices to prove 𝑀 ′′, 𝑑′′ ̸ |= 𝜑𝐺, ⊠𝑎3
. Note that (‡)

from the proof of the converse direction can also be shown here, it suffices to show that 𝑀𝐺2 , 𝑑
′′ ̸ |= 𝜑𝐺2 ,

and this holds by the induction hypothesis.

Corollary 13. Undirected edge geography is polynomial time reducible to the model checking problem
for L⊞.

Remark 2. It is important to note that the reduction discussed previously utilizes only the modalities
⊞ and ⊠. However, we can also perform a reduction using exclusively the modalities □ and ^. This
alternative reduction is structurally similar to the original, with the primary modification being the
replacement of ⊞ with □. Additionally, a reduction that employs only the modalities ⊟ and lis also
feasible. In this case, we replace ⊞ with ⊟. Furthermore, there is a requirement to modify the skill set
𝐶 (𝑎𝑖) to {𝑠{𝑤,𝑣} | 𝑤,𝑣 ∈ 𝐷}. The model checking problems for any logics that include at least one of the
modalities – ⊞, ⊟, □, ⊠, lor ^ – remain PSPACE hard. This complexity assertion holds even in the
absence of additional modalities such as 𝐶𝐺 , 𝐷𝐺 , 𝐸𝐺 , 𝐹𝐺 , (+𝑆)𝑎, (−𝑆)𝑎, (=𝑆)𝑎, and (≡𝑆)𝑎.

Lemma 14. The model checking problem for L𝐶𝐷𝐸𝐹+−=≡⊞⊟□ is in PSPACE.

Proof. With the presence of Algorithm 2, it suffices to provide a polynomial space algorithm for the
types of formulas ⊞𝑎𝜑, □𝑎𝜑 and ⊟𝑎𝜑. The details are given in Algorithm 3.

Algorithm 3 Function 𝑉𝑎𝑙 ((𝑊,𝐸,𝐶, 𝛽), 𝜑) extended: cases with quantifiers

Here we furthermore need to check the space cost caused by the new modalities. But notice that
all the space cost of checking 𝑉𝑎𝑙 ((𝑊,𝐸,𝐶, 𝛽), 𝜑) is in 𝑂 (|𝑀 |). So the space cost of the algorithm is
immediately linear. So the model checking problem for L𝐶𝐷𝐸𝐹+−=≡⊞⊟□ is in PSPACE.

Liang and Wáng 135

We reach the following result from Corollary 13 (considering that UEG is PSPACE complete) and
Lemma 14.
Theorem 15. The model checking problems for all logics with quantifiers (i.e., at least one of ⊞, ⊟ and
□) that extends the base logic L is PSPACE complete.

4 Discussion

We have developed a variety of logics that incorporate individual and group knowledge, actions such
as knowing, forgetting, revising, and learning, as well as the necessity and possibility of these actions.
These logics are highly expressive, yet the computational cost for model checking remains manageable.
Specifically:

• For logics devoid of quantifiers, the complexity of model checking falls within the class P, aligning
with many traditional epistemic logics.

• For logics that include quantifiers, the complexity is PSPACE complete. This matches the com-
plexity found in similar types of logics, such as Group Announcement Logic [2], Coalition An-
nouncement Logic [29, 19, 4], and Subset Space Arbitrary Announcement Logic [6]. 3

Logicians are deeply interested in the decidability of validity/satisfiability problems for logics that
include quantifiers over updates. Known complexities, such as the undecidability of Arbitrary Public An-
nouncement Logic (APAL) and Group Announcement Logic [18, 1], have spurred ongoing research into
decidable alternatives [18, 11, 10]. Even the development of variants that are recursively axiomatizable
represents an advancement [35, 8], especially given that APAL is not likely to have this feature.

Our research also aims to explore the decidability and computational complexity of satisfiability and
validity problems within our logics. Although our ongoing efforts have yielded PSPACE completeness
and EXPTIME completeness results for many of our less complex logics (for example, the satisfiability
problems for logics devoid of common knowledge, update modalities, and quantifiers are PSPACE com-
plete, whereas those lacking update modalities and quantifiers but incorporating common knowledge are
EXPTIME complete), a definitive result for the full logic L𝐶𝐷𝐸𝐹+−=≡⊞⊟□ remains elusive. Additionally,
while we have successfully axiomatized some of our logics in previous studies [24], an axiomatic system
for the full logic is not yet developed. These areas are designated for future exploration and development.

We have introduced a new update modality for learning, (≡𝑏)𝑎, which denotes the action where agent
𝑎 learns the skills of agent 𝑏. This operator essentially replaces 𝑎’s skill set with that of 𝑏. However, we
can also devise variants that facilitate skill set modification through incremental learning (e.g., (∪𝑏)𝑎)
or decremental learning (e.g., (∩𝑏)𝑎 “retaining only beneficial skills from 𝑏”, or (\𝑏)𝑎 “eliminating
undesirable skills of 𝑏”). Additionally, the concept of “deskilling,” derived from the richness of natural
language, refers to a reduction in the skills required to perform a task. This could be modeled as an
update action that modifies the edge function, thereby requiring fewer skills to distinguish between worlds,
potentially leading to knowledge acquisition. Incorporating these diverse learning modalities does not
increase the complexity of the model checking problem, though it may add complexity to the validity
problem. The exploration of quantifiers over learning operators presents another intriguing area of study.

Acknowledgements We express our gratitude to the anonymous reviewers for their invaluable comments
and suggestions. We acknowledge the financial support by the MOE Project of Humanities and Social
Sciences (No. 24YJA72040002) and the National Social Science Fund of China (Grant No. 20&ZD047).

3It is worth noting that model checking in Arbitrary Public Announcement Logic is also believed to be PSPACE complete
[5]. However, a detailed validation of this claim has not yet been found by us.

136 Epistemic Skills: Logical Dynamics of Knowing and Forgetting

References
[1] T. Ågotnes, H. van Ditmarsch & T. French (2016): The Undecidability of Quantified Announcements. Studia

Logica 104(4), pp. 597–640, doi:10.1007/s11225-016-9657-0.
[2] Thomas Ågotnes, Philippe Balbiani, Hans van Ditmarsch & Pablo Seban (2010): Group Announcement

Logic. Journal of Applied Logic 8(1), pp. 62–81, doi:10.1016/j.jal.2008.12.002.
[3] Carlos E. Alchourrón, Peter Gärdenfors & David Makinson (1985): On the Logic of Theory Change:

Partial Meet Contraction and Revision Functions. The Journal of Symbolic Logic 50, pp. 510–530,
doi:10.2307/2274239.

[4] Natasha Alechina, Hans van Ditmarsch, Rustam Galimullin & Tuo Wang (2021): Verification and Strategy
Synthesis for Coalition Announcement Logic. Journal of Logic, Language and Information 30(4), pp. 671–700,
doi:10.1007/s10849-021-09339-6.

[5] Philippe Balbiani, Alexandru Baltag, Hans van Ditmarsch, Andreas Herzig, Tomohiro Hoshi & Tiago de Lima
(2008): ‘Knowable’ as ‘Known after an Announcement’. The Review of Symbolic Logic 1(3), pp. 305–334,
doi:10.1017/S1755020308080210.

[6] Philippe Balbiani, Hans van Ditmarsch & Andrey Kudinov (2013): Subset Space Logic with Arbitrary
Announcements. In: Proceedings of ICLA 2013, pp. 233–244, doi:10.1007/978-3-642-36039-8_21.

[7] Alexandru Baltag, Lawrence S. Moss & SLawomir Solecki (1998): The Logic of Public Announcements,
Common Knowledge, and Private Suspicions. In I. Gilboa, editor: Proceedings of the 7th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK 98), pp. 43–56, doi:10.5555/645876.671885.

[8] Alexandru Baltag, Aybüke Özgün & Ana Lucia Vargas Sandoval (2023): Arbitrary Public Announcement
Logic with Memory. Journal of Philosophical Logic 52(1), pp. 53–110, doi:10.1007/s10992-022-09664-6.

[9] Alexandru Baltag, Aybüke Özgün & Ana Lucia Vargas Sandoval (2017): Topo-Logic as a Dynamic-Epistemic
Logic. In Alexandru Baltag, Jeremy Seligman & Tomoyuki Yamada, editors: Logic, Rationality, and
Interaction, Springer Berlin Heidelberg, pp. 330–346, doi:10.1007/978-3-662-55665-8_23.

[10] Hans van Ditmarsch & Tim French (2022): Quantifying over Boolean announcements. Logical Methods in
Computer Science 18(1), doi:10.46298/lmcs-18(1:20)2022.

[11] Hans van Ditmarsch, Tim French & Sophie Pinchinat (2010): Future Event Logic – Axioms and Complexity.
In Lev D. Beklemishev, Valentin Goranko & Valentin B. Shehtman, editors: Advances in Modal Logic 8,
papers from the eighth conference on "Advances in Modal Logic," held in Moscow, Russia, 24-27 August
2010, College Publications, pp. 77–99.

[12] Hans van Ditmarsch, Andreas Herzig, Jérôme Lang & Pierre Marquis (2009): Introspective Forgetting.
Synthese 169(2), pp. 405–423, doi:10.1007/s11229-009-9554-4.

[13] Hans van Ditmarsch, Wiebe van der Hoek & Barteld Kooi (2008): Dynamic Epistemic Logic. Synthese
Library 337, Springer Netherlands, doi:10.1007/978-1-4020-5839-4.

[14] Huimin Dong, Xu Li & Yì N. Wáng (2021): Weighted Modal Logic in Epistemic and Deontic Contexts.
In Sujata Ghosh & Thomas Icard, editors: Proceedings of the Eighth International Conference on Logic,
Rationality and Interaction (LORI 2021), Lecture Notes of Theoretical Computer Science 13039, Springer,
pp. 73–87, doi:10.1007/978-3-030-88708-7_6.

[15] Ronald Fagin & Joseph Y. Halpern (1988): Belief, Awareness, and Limited Reasoning. Artificial Intelligence
34(1), pp. 39–76, doi:10.1016/0004-3702(87)90003-8.

[16] Ronald Fagin, Joseph Y. Halpern, Yoram Moses & Moshe Y. Vardi (1995): Reasoning about Knowledge. The
MIT Press, doi:10.7551/mitpress/5803.001.0001.

[17] Aviezri S Fraenkel, Edward R Scheinerman & Daniel Ullman (1993): Undirected Edge Geography. Theoret-
ical Computer Science 112(2), pp. 371–381, doi:10.1016/0304-3975(93)90026-P.

[18] Tim French & Hans van Ditmarsch (2008): Undecidability for Arbitrary Public Announcement Logic. In
Carlos Areces & Robert Goldblatt, editors: Advances in Modal Logic, 7, College Publications, pp. 23–42.

https://doi.org/10.1007/s11225-016-9657-0
https://doi.org/10.1016/j.jal.2008.12.002
https://doi.org/10.2307/2274239
https://doi.org/10.1007/s10849-021-09339-6
https://doi.org/10.1017/S1755020308080210
https://doi.org/10.1007/978-3-642-36039-8_21
https://doi.org/10.5555/645876.671885
https://doi.org/10.1007/s10992-022-09664-6
https://doi.org/10.1007/978-3-662-55665-8_23
https://doi.org/10.46298/lmcs-18(1:20)2022
https://doi.org/10.1007/s11229-009-9554-4
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-3-030-88708-7_6
https://doi.org/10.1016/0004-3702(87)90003-8
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1016/0304-3975(93)90026-P

Liang and Wáng 137

[19] Rustam Galimullin, Natasha Alechina & Hans van Ditmarsch (2018): Model Checking for Coalition An-
nouncement Logic. In Frank Trollmann & Anni-Yasmin Turhan, editors: KI 2018: Advances in Artificial
Intelligence, Springer International Publishing, Cham, pp. 11–23, doi:10.1007/978-3-030-00111-7_2.

[20] Mikkel Hansen, Kim Guldstrand Larsen, Radu Mardare & Mathias Ruggaard Pedersen (2018): Reasoning
about Bounds in Weighted Transition Systems. Logical Methods in Computer Science 14(4), pp. 1–32,
doi:10.23638/LMCS-14(4:19)2018.

[21] Jaakko Hintikka (1962): Knowledge and Belief: An Introduction to the Logic of Two Notions. Cornell
University Press, Ithaca, New York.

[22] Jôme Lang, Paolo Liberatore & Pierre Marquis (2003): Propositional Independence: Formula-
Variable Independence and Forgetting. Journal of Artificial Intelligence Research 18(1), pp. 391–443,
doi:10.5555/1622420.1622431.

[23] Kim G. Larsen & Radu Mardare (2014): Complete Proof Systems for Weighted Modal Logic. Theoretical
Computer Science 546(12), pp. 164–175, doi:10.1016/j.tcs.2014.03.007.

[24] Xiaolong Liang & Yì N. Wáng (2022): Epistemic Logic over Weighted Graphs. In: Proceedings of the
Second International Workshop on Logics for New-Generation AI, College Publications, pp. 43–58.

[25] David Lichtenstein & Michael Sipser (1980): GO Is Polynomial-Space Hard. Journal of the ACM 27(2), pp.
393–401, doi:10.1145/322186.322201.

[26] Fangzhen Lin & Ray Reiter (1994): Forget It! In: Working Notes of AAAI Fall Symposium on Relevance, pp.
154–159.

[27] John-Jules Ch. Meyer & Wiebe van der Hoek (1995): Epistemic Logic for AI and Computer Science.
Cambridge University Press, doi:10.1017/CBO9780511569852.

[28] Pavel Naumov & Jia Tao (2015): Logic of Confidence. Synthese 192, pp. 1821–1838, doi:10.1007/s11229-
014-0655-3.

[29] Marc Pauly (2002): A Modal Logic for Coalition Power in Games. Journal of Logic Computation 12(1), pp.
149–166, doi:10.1093/logcom/12.1.149.

[30] Jan A. Plaza (1989): Logics of Public Communications. In M. L. Emrich, M. S. Pfeifer, M. Hadzikadic &
Z. W. Ras, editors: Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems
(ISMIS ’89), Oak Ridge National Laboratory, pp. 201–216.

[31] W. V. Quine (1956): Quantifiers and Propositional Attitudes. The Journal of Philosophy 53(5), pp. 177–187,
doi:10.2307/2022451.

[32] Thomas J. Schaefer (1978): On the Complexity of Some Two-Person Perfect-Information Games. Journal of
Computer and System Sciences 16(2), pp. 185–225, doi:10.1016/0022-0000(78)90045-4.

[33] Yì N. Wáng & Thomas Ågotnes (2013): Subset Space Public Announcement Logic. In Kamal Lodaya, editor:
Proceedings of ICLA, Lecture Notes in Computer Science 7750, Springer, pp. 245–257, doi:10.1007/978-3-
642-36039-8_22.

[34] Georg H. von Wright (1951): An Essay in Modal Logic. Studies in Logic and the Foundations of Mathematics,
North-Holland Publishing Company.

[35] Kang Xu & Yì N. Wáng (2018): Group Simple Announcement Logic. Studies in Logic 11(1), pp. 1–22.
[36] Yan Zhang & Yi Zhou (2009): Knowledge forgetting: Properties and applications. Artificial Intelligence

173(16), pp. 1525–1537, doi:10.1016/j.artint.2009.07.005.

https://doi.org/10.1007/978-3-030-00111-7_2
https://doi.org/10.23638/LMCS-14(4:19)2018
https://doi.org/10.5555/1622420.1622431
https://doi.org/10.1016/j.tcs.2014.03.007
https://doi.org/10.1145/322186.322201
https://doi.org/10.1017/CBO9780511569852
https://doi.org/10.1007/s11229-014-0655-3
https://doi.org/10.1007/s11229-014-0655-3
https://doi.org/10.1093/logcom/12.1.149
https://doi.org/10.2307/2022451
https://doi.org/10.1016/0022-0000(78)90045-4
https://doi.org/10.1007/978-3-642-36039-8_22
https://doi.org/10.1007/978-3-642-36039-8_22
https://doi.org/10.1016/j.artint.2009.07.005

A. Achilleos and A. Francalanza (Eds.): Fifteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2024).

EPTCS 409, 2024, pp. 138–153, doi:10.4204/EPTCS.409.13

© J.J.M. Martens & A.J. Wijs

This work is licensed under the

Creative Commons Attribution License.

An Evaluation of Massively Parallel Algorithms for DFA

Minimization

Jan Martens

Leiden University
The Netherlands

j.j.m.martens@liacs.leidenuniv.nl

Anton Wijs

Eindhoven University of Technology
The Netherlands

a.j.wijs@tue.nl

We study parallel algorithms for the minimization of Deterministic Finite Automata (DFAs). In par-

ticular, we implement four different massively parallel algorithms for DFA minimization on Graphics

Processing Units (GPUs). Our results confirm the expectations that the algorithm with the theoret-

ically best time complexity is not practically suitable to run on GPUs due to the large amount of

resources needed. We empirically verify that parallel partition refinement algorithms from the liter-

ature perform better in practice, even though their time complexity is worse. Lastly, we introduce a

novel algorithm based on partition refinement with an extra parallel partial transitive closure step and

show that on specific benchmarks it has better run-time complexity and performs better in practice.

1 Introduction

In contrast to sequential chips, the processing power of parallel devices keeps increasing. Graphics Pro-

cessing Units, or GPUs, are examples of such devices. Originating from the need to do simple computa-

tions for many (independent) pixels to generate graphics, GPUs have also shown useful as computational

powerhouses, and led to general-purpose computing on GPUs (GPGPU). Most convincingly, GPUs have

become indispensable in training models for artificial intelligence. Because of the enormous potential of

GPUs, it is important to investigate how computational problem solving can be accelerated with them.

Deterministic Finite Automata (DFAs) are one of the simplest computational formalisms. The nat-

ural problem of computing a minimal machine that is equivalent to a given machine w.r.t. the input is

omnipresent in the field of theoretical computer science. In the case of DFAs the problem has a rich

history. The first method that computes a minimal DFA dates back to Moore’s framework [13], and is a

partition refinement algorithm. Later, this algorithm was adapted by Hopcroft [8] to a quasi-linear time

algorithm.

The complexity class known as Nick’s Class (NC) consists of the problems that can be solved in

polylogarithmic time with a parallel machine using a polynomial number of parallel processors. It is

an open question whether NC
?
= P, but it is widely believed that this is not the case. Similar to the

assumption that decision problems not in P are inherently difficult (known as Cobham’s thesis), we can

think of P-complete problems as being inherently sequential.

The problem of minimizing DFAs is known to be in NC [4], which intuitively means it can be

efficiently computed in parallel. In contrast, the problem of computing bisimilarity on non-deterministic

structures is known to be P-complete [1]. Interestingly, the most efficient sequential algorithms for these

two problems, i.e., Hopcroft’s algorithm [8] and an algorithm based on Paige-Tarjan [14], respectively,

are very similar. In particular, these algorithms are both partition refinement algorithms.

The parallel algorithms studied for computing bisimilarity on non-deterministic structures and DFA

minimization are also partition refinement algorithms [12, 16, 18, 21]. Since DFA minimization is in

http://dx.doi.org/10.4204/EPTCS.409.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

J.J.M. Martens & A.J. Wijs 139

NC, there is a parallel sublinear time algorithm. However, none of these partition refinement algorithms

studied have a sublinear run-time. A linear lower bound for the parallel run-time was proven in [6] for

any parallel partition refinement algorithm deciding bisimilarity, and this result also directly applies to

deterministic structures such as DFA minimization. This means that no partition refinement algorithm

can achieve the theoretically optimal run-time on parallel machines. It is therefore interesting to inves-

tigate whether there is an algorithm that is not a partition refinement algorithm that performs better in

parallel than partition refinement algorithms.

The algorithm introduced in [4] runs in logarithmic time. However, the work is mainly theoretical

and the large amount of parallel processors and memory required makes it unlikely to scale well in

practice. The main constraint here is the need to compute the transitive closure for the underlying graph

of the DFA. It seems hard to find a significant improvement in the number of parallel processors needed.

In this paper we compare implementations of different parallel algorithms for DFA minimization on

GPUs, using the various parallel algorithms proposed in the literature as a basis. We establish that the

logarithmic runtime complexity with the construction from [4] is not feasible due to the large amount

of processors needed. Additionally, we find that on our benchmarks the partition refinement algorithm

that uses sorting in each iteration performs better than the naive splitting strategy on the more diverse

benchmarks from the VLTS benchmark set,1 but worse for benchmarks that are known to be hard for

partition refinement algorithms. Finally, we show a method of adding a partial transitive closure as a

preprocessing step that can significantly increase the performance on benchmarks with a very specific

shape.

2 Preliminaries

We write B = {true,false} for the set of booleans, N for the set of natural numbers, and for numbers

i, j ∈ N we define [i, j] = {c ∈ N | i ≤ c ≤ j} ⊆ N, the closed interval from i to j. Given an alphabet Σ,

a sequence a1a2 . . .an of symbols from Σ is called a word. We write Σ∗ for the set containing all finite

sequences of letters in Σ. The empty-sequence consisting of no symbols is written as ε .

Definition 1. (Deterministic Finite Automaton) A deterministic finite automaton (DFA) A=(Q,Σ,δ ,F,q0)
is a five-tuple consisting of:

• a finite set of states Q,

• a finite alphabet Σ,

• a transition function δ : Q×Σ → Q,

• a set of accepting states F ⊆ Q, and

• an initial state q0 ∈ Q.

We sometimes write q
a
−→ q′ if δ (q,a) = q′. The function δ ∗ : Q× Σ∗ → Q extends the transition

function to words and is defined inductively for all words in Σ∗ as follows:

δ ∗(q,ε) = q

δ ∗(q,aw) = δ ∗(δ (q,a),w)

Given a DFA A = (Q,Σ,δ ,F,q0), a word w ∈ Σ∗ is accepted iff δ ∗(q0,w) ∈ F . The language of a

DFA A, notation L (A), is the set of all words w ∈ Σ∗ that are accepted by A.

1https://cadp.inria.fr/resources/vlts (visited on: 19-04-2024).

140 An Evaluation of Massively Parallel Algorithms for DFA Minimization

We consider the problem of computing the minimal DFA, i.e., given a DFA A, identifying the DFA

A′ with the smallest number of states such that L (A′) = L (A).

Minimizing DFAs consists of combining undistinguishable states and deleting unreachable states.

The main part of the problem consists of combining states, and removing unreachable states can be seen

as a simple pre-processsing step. For the remainder of the paper, we assume that all the states in a DFA

are reachable from its initial state. The algorithms can be seen as computing bisimilarity, or the coarsest

set partition problem, without the preprocessing step that removes unreachable states.

Representation. For an input automaton A = (Q,Σ,δ ,F,q0), we assume that the states in Q and letters

in Σ are represented by unique indices, i.e., Q = {0, . . . , |Q|} and Σ = {0, . . . |Σ|}. The transition function

δ is represented by |Σ| arrays of length |Q|, such that for state q ∈ Q and letter a ∈ Σ, δ [a][q] = δ (q,a).

The PRAM Model. The complexities we mention assume the model of the Parallel Random Access

Machine (PRAM). The PRAM is a natural extension of the RAM model, where parallel processors have

access to a shared memory. A PRAM consists of a sequence of processors P0,P1, . . . and a function P

that given the size of the input defines a bound on the number of processors used.

Each processor Pi has the natural instructions of a normal RAM and in addition has an instruction to

retrieve its unique index i. All processors run the same program in lock-step, using their index to identify

the data they need to access. This parallel processing is called single-instruction multiple data (SIMD).

There are many different ways to handle data-races. We assume the concurrent read, concurrent

write (CRCW) model following [17], where processors are allowed to read from and write to the same

memory location concurrently. After multiple concurrent writes to the same memory location, that loca-

tion contains the result of one of those writes.

GPUs. While in reality, no device completely adheres to the PRAM model, recent hardware advance-

ments has led to devices that are getting better and better at approximating this model. The GPU, in

particular, is a very suitable target platform for PRAM algorithms, as it has been specifically designed

for SIMD processing. The performance of GPU programs typically relies on launching tens to hundreds

of thousands of threads, as the performance of these programs is often memory-bound: accessing the

input data in the GPU’s global memory, in NVIDIA CUDA terminology, is relatively slow. This latency

can be hidden by a GPU via fast context switching between threads. As one thread is waiting for data

to be retrieved, another thread is executed in the meantime on the same processor. It is this fast context

switching between threads that allows GPUs, typically equipped with several thousands of cores, to vir-

tually execute hundreds of thousands of threads concurrently. In the current work, we employ NVIDIA

GPUs, programs for which can be written in CUDA C++.

3 The algorithms

3.1 Transitive closure

The first algorithm we discuss has theoretical polylogarithmic runtime [4]. However, the large amount of

memory and parallel processors it uses makes it unlikely to work in practice. Here we confirm this fact.

The idea is rather simple; build a graph with nodes V =Q×Q and edges E containing (q,q′)→ (p, p′)
iff there is a letter a ∈ Σ such that δ (q,a) = p and δ (q′,a) = p′. Initially, in the array Apart we label the

nodes (q,q′) ∈V to be inequivalent if q1 ∈ F ⇐⇒ q2 6∈ F . Any two states q1,q2 ∈ Q are not equivalent

iff they were initially labelled in Apart or there is a path to a labelled node. Computing this reachability

of false nodes can be seen as computing the transitive closure in the directed graph (V,E) containing n2

J.J.M. Martens & A.J. Wijs 141

Algorithm 1 Transitive DFA minimization trans.

Input: A DFA A = (Q,Σ,δ ,F,q0) where |Q|= n

Output: The minimal quotient automaton represented in the matrix Apart

1: V :: Q×Q ⊲ Nodes of graph consisting of pair of states

2: Apart :: Array[n2] of type B

3: Reach :: Array[n2][n2] of type B ⊲ Represents reachability in V , initially false

4: do in parallel for (q,q′) ∈V ⊲ Initializes data structures in parallel.

5: Apart[(q,q′)] := (q ∈ F ⇐⇒ q′ 6∈ F) ⊲ State initially unequal

6: for all a ∈ Σ do

7: Reach[(q,q′)][(δ (q,a),δ (q′ ,a))] := true

8: stable := false

9: while ¬stable do

10: stable := true

11: do in parallel for s, t,u ∈V

12: if Reach[s][t] and Reach[t][u] and ¬Reach[s][u] then

13: Reach[s][u] := true

14: do in parallel for s, t ∈V

15: if Reach[s][t] and Apart[t] and ¬Apart[s] then

16: Apart[s] := true

17: stable := false

nodes. In parallel this computation can be done in polylogarithmic running time using O(|V |3) parallel

processors [9, Chapter 5.5.].

Algorithm 1, which we refer to as trans, implements this idea. First, at lines 4–7 (l.4–7), the graph is

constructed, inequivalent nodes labelled in the Apart data structure and the edges stored in the adjacency

matrix Reach. Next, the parallel transitive closure of Reach is computed and Apart updated accordingly.

If in an iteration there is no new pair of states labelled Apart the algorithm is finished. The minimal

automaton is represented in the graph where states q,q′ ∈ Q can be combined if ¬Apart(q,q′).

Computing the transitive closure for a directed graph in logarithmic time requires many processors.

Our naive implementation requires |V |3 parallel processors. Given a DFA with n states, this means that

since |V |= n2, we require n6 processors. Theoretically, more efficient methods are known for computing

the transitive closure, which uses matrix multiplication. Matrix multiplication can be computed with

O(nω) operations, where currently ω ≤ 2.372 . . . , this means we can compute our transitive closure

with O(|V |ω) processors. Since these algorithms are non-trivial and already |V | = n2, we believe these

improvements would not significantly change the results mentioned here.

3.2 Naive partition refinement

The next algorithm, naivePR, is an adaptation of the parallel algorithm for bisimilarity checking of

Kripke structures from [12]. The program runs on a PRAM with max(n,m) processes, where n is the

number of states and m = |Σ| ∗n is the number of transitions in the input DFA.

The algorithm applies partition refinement: states are initially partitioned into blocks, and the algo-

rithm repeatedly splits blocks into smaller blocks until a fix-point is reached. Once this has happened,

each block represents one state of the minimized DFA.

When splitting blocks in parallel, one particular challenge is how to identify newly created blocks,

142 An Evaluation of Massively Parallel Algorithms for DFA Minimization

as each new block requires a unique identifier. Algorithm 2 does this by means of a leader election

procedure: for each block, one of its states is elected leader, meaning that it is used as an identifier to

refer to the block. In this way each iteration of the algorithm takes constant time if performed on a

parallel machine that has concurrent writes.

In Algorithm 2, at l.1, an array block is initialized that defines for every state in Q its current block

(as represented by a leader in Q). An array new leader is defined at l.2 that is used to elect new leaders.

At l.3, the initial leaders are selected: one state q f ∈ F for the block consisting of all the accepting states

q ∈F , and one state qn ∈Q\F for all the non-accepting states q′ ∈ Q\F . The array block is subsequently

initialised using these leaders (l.4–5).

Next, partition refinement is applied inside the while-loop at l.7. The variable stable is used to

monitor whether a fix-point has been reached, which has happened as soon as no blocks can be split

any further. At the start of each iteration through the while-loop, stable is set to true (l.8). Next, all

transitions of the DFA are processed in parallel (l.9), and for each transition q
a
−→ q′, it is checked whether

block[q′] differs from the block that the leader block[q] can reach via an a-transition. If it does, then q

should be separated from its leader. At l.11, q is assigned to new leader[block[q]], the latter being the

position where the leader for the new block will be elected. Here, the result of concurrent writes, as

allowed by the PRAM CRCW model, is used for leader election.

Subsequently, when l.12 is reached, new leader contains the newly elected leaders: specifically, at

new leader[block[q]], the leader for the new block created by splitting off states from block[q] is stored.

In the parallel loop of l.12, the transitions are once more processed in parallel, and whenever a state turns

out to differ from its leader regarding block reachability (l.13), the leader of that state is updated (l.14).

Finally, since a block has been split, stable is set to false at l.15.

The largest difference between Algorithm 2 and the original algorithm [12] is that Algorithm 2 splits

blocks directly w.r.t. the leader, as opposed to first selecting one particular block as splitter, and splitting

those blocks in which some states differ w.r.t. their leader concerning the ability to reach the splitter. The

reason for this difference is that for DFAs, comparing the outgoing transitions of two states is much more

straightforward, as each state has exactly one outgoing transition for every a ∈ Σ. In the setting of LTSs,

due to non-determinism it is not possible to directly compare the behaviour of a state with the leader

state, and hence a fixed splitter is chosen before.

In Algorithm 2, leader election is performed in two phases: in the first phase (l.9–11), states are

written to new leader to elect new leaders, and the results are subsequently read at l.12–15. One could

argue that this is inefficient, and that it would perhaps be better to combine these two phases. This is

possible, but it requires the use of atomic compare-and-swap (CAS) operations. This is illustrated in

Algorithm 3. In the single loop at l.11–17, new leaders are written to and read from new leader. At

l.14–15, the use of a compare-and-swap operation is described: in one atomic operation, the current

value stored at new leader[leader] is stored in new block, and it is checked whether new leader[leader]
is equal to the initial value ⊥, and if it is, it is set to q. Next, at l.16, if new block is equal to ⊥, it means

q has been elected as leader. Otherwise, new block indicates which state is the new leader. Note that for

this to work, after execution of the loop at l.11, the values of new leader have to be reset to ⊥.

In practice, we experienced that a GPU implementation (in CUDA 12.2) of Algorithm 3 exhibits

similar runtimes compared to a GPU implementation of Algorithm 2. The benefit of merging the loops

seems to be negated by the use of atomic operations. For this reason, when discussing the experiments

in Section 4.2, we do not involve Algorithm 3.

J.J.M. Martens & A.J. Wijs 143

Algorithm 2 Parallel leader-election-based algorithm naivePR.

Input: A DFA A = (Q,Σ,δ ,F,q0) where |Q|= n

Output: The minimal quotient automaton represented in the array block

1: block :: Array[n] of type Q

2: new leader :: Array[n] of type Q

3: Select initial leader states q f ∈ F and qn ∈ Q\F

4: do in parallel for q ∈ Q

5: block[q] := (q ∈ F ? q f : qn) ⊲ Initialize

6: stable := false

7: while ¬stable do

8: stable := true

9: do in parallel for q,a ∈ Q×Σ

10: if block[δ (q,a)] 6= block[δ (block[q],a)] then

11: new leader[block[q]] := q ⊲ Leader election

12: do in parallel for q,a ∈ Q×Σ

13: if block[δ (q,a)] 6= block[δ (block[q],a)] then

14: block[q] := new leader[block[q]] ⊲ Split from leader

15: stable := false

Algorithm 3 Parallel leader-election based naivePR with atomics.

Input: A DFA A = (Q,Σ,δ ,F,q0), where |Q|= n

Output: The minimal quotient automaton represented in the array block

1: block :: Array[n] of type Q

2: new block :: Q

3: leader :: Q

4: new leader :: Array[n] of type Q

5: Select initial leader states q f ∈ F and qn ∈ Q\F

6: do in parallel for q ∈ Q

7: new leader[q] :=⊥ ⊲ Initialize

8: block[q] := (q ∈ F ? q f : qn)

9: while ¬stable do

10: stable := true

11: do in parallel for q,a ∈ Q×Σ

12: leader := block[q]
13: if block[δ (q,a)] 6= block[δ (leader,a)] then

14: {new block := new leader[leader]; ⊲ Leader election with CAS

15: new leader[leader] =⊥ ? new leader[leader] := q}
16: block[q] := new block =⊥ ? q : new block ⊲ Split from leader

17: stable := false

18: do in parallel for q ∈ Q

19: new leader[q] :=⊥

144 An Evaluation of Massively Parallel Algorithms for DFA Minimization

3.3 Sorting arrays

The next algorithm is an algorithm inspired by [16, 18]. Similar to Algorithm 2, this algorithm also

performs partition refinement, but instead of doing so using leader elections, it repeatedly computes a

signature for every state, and sorts the states w.r.t. their signatures. This method allows splitting a block

in more than two subblocks with the downside that each iteration takes more than constant parallel time.

The algorithm from [18] uses hashing to construct and compare signatures. Since sorting arrays is a

very native operation on GPUs, we follow [16] and use a sorting approach to construct the new blocks.

Algorithm 4 presents this approach as sortPR. Again, an array block is created (l.1). In addition, an

array state is used for sorting the states (l.2). The signature of a state consists of a list of block IDs, one

for each a ∈ Σ: signature[q][a] is equal to q′ iff q
a
−→ q′′ and block[q′′] = q′.

The array new block is used to store the results of assigning new blocks to states (l.4). Finally, the

current number of blocks is stored at l.5 in num blocks.

Next, at l.6–8, block and state are initialised. The block consisting of all accepting states is given ID

0, while the other states are assigned to block 1 (l.7). All the states are added to state at l.8.

In the loop at l.9–19, the partition refinement is performed until a fix-point has been reached, i.e., the

number of blocks has not increased (l.19). In each iteration of this loop, the following is performed. First,

in parallel, the signatures are updated (l.11–12). After that, state is sorted in parallel, using signature

to compare states. The comparison function is given at l.20–26. First, states are compared based on

the block they reside in. If they reside in the same block, then the blocks they can reach via outgoing

transitions are compared. Note that the for loop starting in (l.23) is sequential and requires iterating over

the alphabet letters in a fixed order.

Once state has been sorted, the parallel adjacent difference is computed and stored in new block. The

result of this is that new block[0] = state[0] and for all 0 < i< n, new block[i] = are neq(state[i],state[i−
1]), with are neq as defined at l.27–31. Once new block[0] has been reset to 0 (l.15), new block contains

only 0’s and 1’s, with each 1 identifying the start of a new block. At l.16, an inclusive scan is performed in

parallel, resulting in new block having been updated in such a way that for each 0 ≤ i< n, new block[i] =

∑0≤ j≤i new block′[j], with new block′ referring to new block at the start of executing l.16.

Now, for all 0 ≤ i < n, new block[i] contains the new block of state state[i]. At l.17–18, block is

updated in parallel to reflect this. As the largest new block ID can be found at new block[n− 1], this

location can be used to determine the new number of blocks at l.19.

In [16] it is shown that on average this algorithm has polylogarithmic run-time complexity. The

argument given uses the fact that on uniformly sampled DFAs almost all pairs of states have a shortest

distinguishing word of polylogarithmic depth. This fact is attributed to [19]. Although this is true for

uniformly sampled DFAs, we like to stress that for many use cases and real-life applications this bound

does not apply. For example, in the Fibonacci automata presented in Section 4.2 this is not the case. In

the automaton Fibi containing n states, there is a pair of states for which the shortest distinguishing word,

and thus also the number of iterations, has length n−2.

3.4 Partition refinement using partial transitive closure

In this section, we present a new algorithm transPR. The main idea of the algorithm is to perform

partition refinement like the algorithms before, but in the initialization compute the transitive closure on

each distinct letter. After this initialization step, we use naivePR to complete the minimization.

This approach is presented in Algorithm 5. This is done in a data-parallel way which is also used for

prefix sum and finding the end of a linked list [7]. On some DFAs, with a rather specific structure, this

J.J.M. Martens & A.J. Wijs 145

Algorithm 4 Parallel sorting-based algorithm sortPR

Input: A DFA A = (Q,Σ,δ ,F,q0), where |Q|= n and |Σ|= k

Output: The minimal quotient automaton represented in the array block

1: block :: Array[n] of type N

2: state :: Array[n] of type Q

3: signature :: Array[n][k] of type Q

4: new block :: Array[n] of type N

5: num blocks := 2

6: do in parallel for q ∈ Q

7: block[q] := (q ∈ F ? 0 : 1) ⊲ Initialize

8: state[q] := q

9: repeat

10: num blocks := new block[n−1]+1 ⊲ Number of blocks before iteration

11: do in parallel for q,a ∈ Q×Σ

12: signature[q][a] := block[δ (q,a)]

13: sort(state,COMPARE)
14: new block := adjacent diff(state,ARE NEQ) ⊲ Place 1 for each change

15: new block[0] := 0

16: new block := inclusive scan(new block) ⊲ Compute new block labels

17: do in parallel for q ∈ Q

18: block[state[q]] = new block[q]

19: until new block[n−1] +1 = num blocks

20: function COMPARE(q1, q2)

21: if block[q1]> block[q2] then return false

22: if block[q1]< block[q2] then return true

23: for all a ∈ Σ do

24: if signature[q1][a]> signature[q2][a] then return false

25: if signature[q1][a]< signature[q2][a] then return true

26: return false

27: function ARE NEQ(q1, q2)

28: if block[q1] 6= block[q2] then return true

29: for all a ∈ Σ do

30: if signature[q1][a] 6= signature[q2][a] then return true

31: return false

146 An Evaluation of Massively Parallel Algorithms for DFA Minimization

method exponentially improves the runtime compared to the other partition refinement algorithms.

Algorithm 5 Parallel partition refinement with transitive closure transPR

1: ΣT := {a2i

| a ∈ Σ, i ∈ [0,⌊log n⌋]}
2: δ T :: Q×ΣT 7→ Q

3: δ T (q,a) := δ (q,a) for all a ∈ Σ

4: for all i ∈ [1,⌊log n⌋] do

5: for all a ∈ Σ do

6: do in parallel for q ∈ Q

7: δ T (q,a2i

) := δ T (δ T (q,a2i−1

),a2i−1

)

8: Perform naivePR on the DFA A′ = (Q,ΣT ,δ T ,F,q0)

The algorithm works by adding letters for increasingly large words of the same letters. Given an

input DFA A = (Q,Σ,δ ,F,q0), we construct a DFA A′ = (Q,ΣT ,δ T ,F,q0) which has the same set of

states and final states, but a larger alphabet ΣT . The alphabet contains the letters a20

,a21

, . . . ,a2⌊log n⌋
for

each original letter a ∈ Σ. The transition function is computed such that for each new symbol ak ∈ ΣT

the transition function δ T (q1,a
k) = qk if in the original DFA Q there are states q1, . . .qk ∈ Q such that

δ (qi,a) = qi+1 for each i ∈ [1,k]. This can be computed in a logarithmic number of parallel steps, by

using the previously computed transitions, as is done at l.7 of Algorithm 5.

The correctness of this algorithm relies on the fact that equality on states is invariant under the partial

closure that is added. Indeed, we can see that the DFA A′ obtained in Algorithm 5 is language equivalent

to the input DFA A if we consider the alphabet letters added as words. If δ T (q,aT) = q′ for some aT ∈ ΣT ,

then aT = a2 j

for some a ∈ Σ and j ∈ [0,⌊log n⌋]. By construction there is a sequence q0, . . .qk such that

q0 = q, qi+1 = δ (qi,a) and qk = q′.

This approach helps in the case of long paths with the same letter. Consider the DFA A from Figure 1.

This DFA accepts all words a j with j > 8. Any parallel partition refinement algorithm would need at least

8 iterations to conclude that q0 is not the same as q1. However, building the partial transitive closure only

requires a logarithmic number of parallel iterations. With this partial transitive closure added, a partition

refinement algorithm can in the first iteration conclude that q0 is different from q1 since the transition

with a8 leads to different states.

4 Experiments

In this section, we discuss the results of our implementations. We benchmarked the implementations

with respect to three families of DFAs: Fibonacci DFAs from [3], bit-splitters Bk derived from [6], and

DFAs derived from a subset of the VLTS benchmark set.

4.1 Benchmarks

Fibonacci DFAs: The first family of DFAs we use for benchmarking consists of so-called Fibonacci

automata. These are simple automata with only a unary alphabet. However, they exhibit very particular

behaviour. As witnessed in [3], these automata are notoriously hard for partition refinement and the

number of iterations of any partition refinement algorithm is n. The automata are called Fibonacci

automata due to the close correspondence with Fibonacci words over the binary alphabet, which are

J.J.M. Martens & A.J. Wijs 147

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9
a a a a a a a a a

a

a2

a4

a8

Figure 1: The DFA A = ({q0, . . . ,q9},{a},δ ,{q9},q0) with the extra partial transitive closure from q0

added in dashed arrows.

defined inductively as follows: the base cases are w0 = 1, and w1 = 0, and for every i∈N, wn+1 =wnwn−1.

This gives the following sequence:

w2 = 01

w3 = 010

w4 = 01001

w5 = 01001010

. . .

For every n ∈ N, we define the automaton Fibn = (Q,{a},δ ,q0,F) as follows, with wn[i] referring

to the i-th bit in the bit sequence wn:

• the set of states is Q = {qi | i ∈ [0, |wn|]};

• the transition function is δ (qi,a) = qi+1 mod |wn|;

• the set of final states is F = {qi | qi ∈ Q and wn[i] = 1}.

Bit-splitters: The second family of automata consists of the so-called bit-splitters Bn. For n ∈ N, the

bit-splitter Bn is a deterministic automaton with 2n states and an alphabet consisting of n−1 symbols.

By construction, during partition refinement, every time a block can be split, it is split in two blocks of

equal size. This property makes the family inherently hard for partition refinement algorithms. However,

the parallel algorithm requires only a logarithmic number of iterations to compute the minimal DFA. The

bit splitter B3 is given in Figure 2.

The family does not contain an initial state, and comes from the setting of Labelled Transition Sys-

tems (LTSs). An LTS is a graph structure with a finite number of states and transitions between states,

with each transition having an action label.

Since it is a hard example for partition refinement, we use it for this purpose and allow the absence

of an initial state. In the following, states σ represent bit sequences of length n, i.e., σ ∈ {0,1}n. We

define B1 = (Q1,Σ1,δ1,F1), where Q1 = {0,1}, Σ1 = /0 and F1 = {1}. Given the automaton Bn =
(Qn,Σn,δn,Fn) for some n ∈ N, we define Bn+1 = (Qn+1,Σn+1,δn+1,Fn+1), such that:

• The set of states contains two copies of Qn, i.e., Qn+1 = {0σ ,1σ | σ ∈ Qn},

148 An Evaluation of Massively Parallel Algorithms for DFA Minimization

q0 q1

q2

q3

q4q5

q6

q7

a

a

a

a

a

a

a

a

000 001 010 011

100 101 110 111

a1,a2 a2

a1

a2

a1

a2

a1

a1,a2

a1

a2

a2

a1

a2

a1

Figure 2: The DFA Fib5 on the left, and the DFA B3 on the right.

• One fresh symbol an 6∈ Σn is added to the alphabet: Σn+1 = Σn ∪{an},

• The transition function δn+1 is defined such that for each am ∈ Σn, and state bσ ∈Qn+1, it maintains

the behaviour of Bn, i.e., δn+1(am,bσ) = bδn(am,σ). For the fresh symbol an ∈ Σn+1 \Σn, δn+1 is

extended as follows, with b̄ being the bit flipped version of b, i.e., b= 0 ⇐⇒ b̄= 1:

δn+1(bσ ,an) =

{

b̄0n If σ [0] = 1,

bσ otherwise.

• the set of accepting states is Fn+1 = {1σ | σ ∈ Qn}.

As previously mentioned, bit-splitter DFAs are constructed in such a way that they are inherently

hard to minimize by partition refinement. Each bit-splitter Bn+1 combines two copies of the bit-splitter

Bn, with the transition function defined in such a way that each possible split divides an existing block

in two blocks of the same size. This results in a DFA in which the amount of required work for splitting

is large, since each split involves moving many states to the new block. However, because in each split a

block is split in two parts of the same size, the number of sequential splits needed is smaller than for the

Fibonacci automata.

VLTSs: Lastly, we benchmark our implementations against the VLTS benchmark suite.2 The VLTS

acronym stands for Very Large Transition Systems. This suite consists of LTSs that originate from mod-

elling protocols and concurrent systems. Some of the benchmarks are from case studies from industrial

systems.

The transition relation of an LTS does not need to be deterministic, nor complete. We turn an LTS

into a DFA by first making the LTS deterministic such that each state has at most one outgoing transition

for every label, using the powerset construction algorithm [15]. To convert the deterministic LTS to a

DFA, we need to complete the transition function and define which states are accepting. We define all

the states as accepting and add one new non-accepting state ⊥. For each state q and label a for which

there exists no transition with that label from q, we add a new transition labelled a to ⊥, i.e. δ (q,a) =⊥.

2https://cadp.inria.fr/resources/vlts (visited on: 04-2024).

https://cadp.inria.fr/resources/vlts

J.J.M. Martens & A.J. Wijs 149

Name N Iterations Time (ms) Memory(Mb) #threads

Fib4 8 3 0.3 0 589,824

Fib5 13 4 0.7 0 6,230,016

Fib6 21 5 7.8 0 88,510,464

Fib7 34 5 159.9 0 1,620,545,536

Fib8 55 6 3,034.9 10 27,955,840,000

Fib9 89 7 66,846.7 60 498,865,340,416

Fib10 144 t/o t/o 412 8,943,640,510,464

Table 1: Results of running the algorithm trans on the Fibonacci automata.

This completes the transition function and creates a DFA accepting all the words corresponding with a

path through the original LTS.

Due to state-space explosion we were not able to make all VLTS benchmarks deterministic. We used

all benchmarks for which the computation to make them deterministic took less than ten minutes.

4.2 Results

The algorithms were implemented in CUDA C++ and compiled using the CUDA toolkit 12.2, with the

implementation of sortPR using the Thrust library for sorting and computing the adjacent differences

and inclusive scans [2]. Experiments were conducted on a device running Linux Mint 20, equipped with

an NVIDIA TITAN RTX GPU with 24 GB of memory and 4,608 cores. Such a GPU can manage trillions

of light-weight threads. Thanks to fast context switching between threads, a GPU can typically handle a

few hundred thousand threads as if they execute in parallel.

The reported times are the average of five separate runs. Benchmarks that did not finish within five

minutes were aborted, in which case we registered a timeout ‘t/o’. Benchmarks for which there was not

enough memory are indicated by ‘OoM’.

Transitive approach: The results of running Algorithm 1 on the Fibonacci automata are given in

Table 1. As expected, the number of threads used to compute the transitive closure in parallel grows

very quickly. Although the number of iterations of the algorithm is indeed logarithmic, the available

parallelism is not sufficient to lead to logarithmic run times. We only use this set of small Fibonacci

automata for this algorithm. It already suggests that for a relatively small amount of states (∼ 100),

obtaining the required resources is already infeasible. The other benchmarks are almost completely out

of range of the algorithm.

Partition refinement algorithms: The results of running the parallel partition refinement algorithms,

naivePR (Algorithm 2), sortPR (Algorithm 4), and transPR (Algorithm 5) are given in Table 2 and

Table 3 for the different benchmarks.

First, we observe in Table 2 that on the Fibonacci automata the naivePR performs better than sortPR.

This can be explained by the fact that the number of iterations is n for both algorithms, while each itera-

tion in sortPR is slower than in naivePR. Another interesting observation here is that for all benchmarks

Fib18, . . . ,Fib28 the run time of the algorithm naivePR scales linearly with the number of states n. Since

the number of parallel iterations is n−2 for all these benchmarks, each parallel iteration processing up

to ∼ 500k states took a similar amount of time. In other words, the GPU was able to run around 500k

threads as if they ran in parallel. This confirms the statement about fast context switching at the beginning

of Section 4.2.

150 An Evaluation of Massively Parallel Algorithms for DFA Minimization

Benchmark metrics Times (ms) Iterations

Name N |Σ| Size output naivePR sortPR transPR naivePR sortPR transPR

Fib20 17,711 1 17,711 308.8 3,909.2 1.7 17,710 17,710 14

Fib21 28,657 1 28,657 494.2 6,374.2 2.4 28,656 28,656 25

Fib22 46,368 1 46,368 778.7 11,712.1 4.1 46,367 46,367 61

Fib23 75,025 1 75,025 1,241.3 21,366.6 8.0 75,024 75,024 101

Fib24 121,393 1 121,393 2,006.7 34,793.1 12.5 121,392 121,392 104

Fib25 196,418 1 196,418 3,251.3 64,411.7 18.3 196,417 196,417 138

Fib26 317,811 1 317,811 5,277.8 178,367.4 49.8 317,810 317,810 102

Fib27 514,229 1 514,229 8,607.7 t/o 96.1 514,228 t/o 268

Fib28 832,040 1 832,040 22,723.0 t/o 178.4 832,039 t/o 299

Fib29 1,346,269 1 1,346,269 59,510.8 t/o 726.9 1,346,268 t/o 755

Fib30 2,178,309 1 2,178,309 141,601.0 t/o 1,109.3 2,178,308 t/o 914

B15 32,768 14 32,768 0.8 25.8 1.7 14 14 2

B16 65,536 15 65,536 1.4 29.7 3.7 15 15 2

B17 131,072 16 131,072 2.6 54.3 9.4 16 16 2

B18 262,144 17 262,144 5.0 107.2 25.6 17 17 2

B19 524,288 18 524,288 9.6 235.7 60.9 18 18 2

B20 1,048,576 19 1,048,576 19.3 520.2 139.8 19 19 2

B21 2,097,152 20 2,097,152 39.8 1,148.6 312.2 20 20 2

B22 4,194,304 21 4,194,304 82.6 2,538.5 728.7 21 21 2

B23 8,388,608 22 8,388,608 170.3 5,612.7 1,612.1 22 22 2

B24 16,777,216 23 16,777,216 352.6 12,351.8 OoM 23 23 OoM

B25 33,554,432 24 33,554,432 737.4 27,092.2 OoM 24 24 OoM

B26 67,108,864 25 67,108,864 1,541.5 59,203.8 OoM 25 25 OoM

Table 2: Results of running the partition refinement algorithms on the Fib and B benchmark set.

Finally, for the Fibonacci automata, we see that transPR performs significantly better on this bench-

mark. This can be explained by the fact that the partial transitive closure reduces the number of iterations

of the algorithm significantly.

The results on the bit-splitter automata in Table 2 show that the improvement of transPR does not

work on all automata. The high number of alphabet letters together with the structure of the automata

make the transitive closure less effective, making naivePR much faster.

For the VLTS benchmark set we see the power of sortPR in Table 3. In some benchmarks, like

‘vasy 69 520’ the algorithm performs significantly better. In these examples, it helps that in sortPR, in

each iteration a block can be split into many subblocks, which is not the case in the other algorithms.

Since the VLTS benchmarks originate from communication protocols and concurrent systems, the

success of sortPR suggests that for DFAs that represent ‘real’ systems, this algorithm is a solid choice

for efficient DFA minimization. However, the experiments with the Fibonacci and bit-splitter families of

DFAs demonstrate room for improvement.

5 Conclusions & Future work

We implemented and compared different parallel algorithms for DFA minimization on GPUs. We find

that the NC algorithm trans with parallel logarithmic run-time does not scale well because of the large

number of resources needed. Instead, we find that the partition refinement algorithms perform better.

J.J.M. Martens & A.J. Wijs 151

Benchmark metrics Times (ms) Iterations

Name N |Σ| Size output naivePR sortPR transPR naivePR sortPR transPR

cwi 1 2 4,448 26 2,416 5.4 66.7 25.1 308 38 621

cwi 2416 17605 503 15 58 0.8 38.2 0.4 40 40 8

cwi 3 14 63 2 63 1.2 9.1 0.4 61 61 8

vasy 0 1 92 2 10 0.2 3.9 0.4 6 5 5

vasy 1 4 6,087 6 29 0.4 8.5 0.9 15 7 20

vasy 10 56 10,850 12 2113 8.7 40.2 30.9 519 33 791

vasy 1112 5290 1,112,491 23 266 135.4 386.8 2,049.2 246 4 231

vasy 157 297 157,605 235 4,290 455.1 1,736.3 11,312.0 1,049 27 1,306

vasy 164 1619 109,911 37 1,025 69.9 50.5 823.4 770 4 766

vasy 166 651 393,147 211 392,175 159,265.6 1,070.6 t/o 175,764 19 t/o

vasy 18 73 419,664 17 31,952 1,586.1 305.2 34,055.2 13,343 27 18,444

vasy 25 25 25,218 25,216 25,218 262,878.6 3,502.7 t/o 25,217 2 t/o

vasy 386 1171 355,790 73 114 36.9 489.4 766.0 58 8 113

vasy 40 60 40,007 3 40,007 331.6 8,391.5 845.2 20,004 20002 20,004

vasy 5 9 5,088 31 138 2.2 14.3 7.0 113 5 124

vasy 574 13561 574,058 141 3,578 2,332.2 976.5 64,312.6 2,351 5 2,634

vasy 6120 11031 3,190,785 125 5,216 13,186.6 21,886.0 t/o 2,373 21 t/o

vasy 65 2621 65,538 72 65,537 2,591.8 38.3 47,568.0 36,575 4 38,999

vasy 66 1302 209,791 81 208,419 42,864.9 96.0 t/o 179,861 8 t/o

vasy 69 520 74,958 135 74,958 7,223.0 124.2 181,611.4 49,723 12 74,667

vasy 720 390 87,741 49 3,279 176.0 57.1 2,961.7 2,936 5 2,950

vasy 8 24 20,306 11 560 5.9 26.8 22.1 282 17 348

vasy 8 38 8,922 81 220 5.7 44.1 31.5 174 5 215

vasy 83 325 393,147 211 392,175 162,495.0 1,074.4 t/o 173,218 19 t/o

Table 3: Results of running the partition refinement algorithms on the VLTS benchmark set.

This might be seen as contradictory since these partition refinement algorithms have inherently linear

parallel run-times.

When comparing the different partition refinement algorithms, the structure of the input DFA is of

high influence. The trade-off is that in sortPR each iteration takes more time than in naivePR, but in

sortPR, an iteration has the potential to lead to a block being split into more than two subblocks. When

this happens sufficiently often, fewer iterations are needed. This leads to sortPR being slower in cases

where the number of iterations is high. In other benchmarks, it leads to fewer iterations and thereby a

significant speed-up.

Finally, we showed a way to incorporate a partial transitive closure in partition refinement algorithms.

We showed that for a specific class of DFAs this approach leads to logarithmic run-times, where every

partition refinement algorithm is inherently linear.

As future work it would be interesting to further investigate sublinear time parallel algorithms for

DFA minimization. Specifically, there are two key questions that come to mind. The first question

is: what is a reasonable number of parallel processes necessary for a poly-logarithmic time parallel

algorithm? It seems feasible to use a similar argument as in [11] to get a superlinear lower bound.

However, the gap between the O(n2ω) processors3 used in Algorithm 1 remains large. The second

question is: can a method such as the one presented in this paper using the partial transitive closure be

implemented in such a way that the run time will be sublinear with high probability, i.e. any parallel run-

time O(n1−ε) for some ε ≥ 0. A good starting point would be the recent work on parallel reachability

algorithms [20, 5, 10].

3If matrix multiplication can be computed in time O(nω), currently best known bounds ω ≤ 2.372

152 An Evaluation of Massively Parallel Algorithms for DFA Minimization

References

[1] J. Balcázar, J. Gabarro & M. Santha (1992): Deciding bisimilarity is P-complete. Formal aspects of comput-

ing 4(1), pp. 638–648, doi:10.1007/BF03180566.

[2] N. Bell & J. Hoberock (2012): Thrust: A Productivity-Oriented Library for CUDA. In: GPU Com-

puting Gems Jade Edition, chapter 26, Morgan Kaufmann Publishers Inc., pp. 359–371, doi:10.1016/

C2010-0-68654-8.

[3] G. Castiglione, A. Restivo & M. Sciortino (2008): Hopcroft’s Algorithm and Cyclic Automata. In C. Martı́n-

Vide, F. Otto & H. Fernau, editors: Proc. of LATA 2008, LNCS 5196, Springer, pp. 172–183, doi:10.1007/

978-3-540-88282-4_17.

[4] S. Cho & D.T. Huynh (1992): The parallel complexity of coarsest set partition problems. Information

Processing Letters 42(2), pp. 89–94, doi:10.1016/0020-0190(92)90095-D.

[5] J.T. Fineman (2018): Nearly Work-Efficient Parallel Algorithm for Digraph Reachability. In: Proc. of STOC

2018, ACM, p. 457–470, doi:10.1145/3188745.3188926.

[6] J.F. Groote, J.J.M. Martens & E.P. de Vink (2023): Lowerbounds for bisimulation by partition refinement.

Logical Methods in Computer Science Volume 19, Issue 2, doi:10.46298/lmcs-19(2:10)2023.

[7] W.D. Hillis & G.L. Steele Jr. (1986): Data Parallel Algorithms. Communications of the ACM 29(12), pp.

1170–1183, doi:10.1145/7902.7903.

[8] J. Hopcroft (1971): An n logn algorithm for minimizing states in a finite automaton. In Z. Kohavi &

A. Paz, editors: Theory of Machines and Computations, Academic Press, pp. 189–196, doi:10.1016/

b978-0-12-417750-5.50022-1.

[9] J. JáJá (1992): An introduction to parallel algorithms. Addison Wesley Longman Publishing Co., Inc., USA.

[10] A. Jambulapati, Y.P. Liu & A. Sidford (2019): Parallel reachability in almost linear work and square root

depth. In: Proc. of FOCS 2019, IEEE, pp. 1664–1686, doi:10.1109/FOCS.2019.00098.

[11] S. Khuller & U. Vishkin (1994): On the parallel complexity of digraph reachability. Information Processing

Letters 52(5), pp. 239–241, doi:10.1016/0020-0190(94)00153-7.

[12] J.J.M. Martens, J.F. Groote, L.B. Haak, P. Hijma & A.J. Wijs (2022): Linear parallel algorithms to

compute strong and branching bisimilarity. Software and Systems Modeling, pp. 1–25, doi:10.1007/

s10270-022-01060-7.

[13] E.F. Moore (1956): Gedanken-Experiments on Sequential Machines. In Claude Shannon & John Mc-

Carthy, editors: Automata Studies, Princeton University Press, Princeton, NJ, pp. 129–153, doi:10.1515/

9781400882618-006.

[14] R. Paige & R. E. Tarjan (1987): Three partition refinement algorithms. SIAM Journal on Computing 16(6),

pp. 973–989, doi:10.1137/0216062.

[15] M.O. Rabin & D. Scott (1959): Finite automata and their decision problems. IBM Journal of Research and

Development 3(2), pp. 114–125, doi:10.1147/rd.32.0114.

[16] B. Ravikumar & X. Xiong (1996): A Parallel Algorithm for Minimization of Finite Automata. In: Proceedings

of the 10th International Parallel Processing Symposium, IPPS ’96, IEEE Computer Society, USA, pp. 187–

191, doi:10.1109/IPPS.1996.508056.

[17] L. Stockmeyer & U. Vishkin (1984): Simulation of parallel random access machines by circuits. SIAM

Journal on Computing 13(2), pp. 409–422, doi:10.1137/0213027.

[18] A. Tewari, U. Srivastava & P. Gupta (2002): A Parallel DFA Minimization Algorithm. In: Proc. of HiPC,

LNCS 2552, Springer, pp. 34–40, doi:10.1007/3-540-36265-7_4.

[19] B.A. Trakhtenbrot & J.M. Barzdin (1973): Finite automata: behavior and synthesis. North-Holland Publish-

ing.

[20] J. Ullman & M. Yannakakis (1990): High-Probability Parallel Transitive Closure Algorithms. In: Proc. of

SPAA 1990, pp. 200–209, doi:10.1145/97444.97686.

https://doi.org/10.1007/BF03180566
https://doi.org/10.1016/C2010-0-68654-8
https://doi.org/10.1016/C2010-0-68654-8
https://doi.org/10.1007/978-3-540-88282-4_17
https://doi.org/10.1007/978-3-540-88282-4_17
https://doi.org/10.1016/0020-0190(92)90095-D
https://doi.org/10.1145/3188745.3188926
https://doi.org/10.46298/lmcs-19(2:10)2023
https://doi.org/10.1145/7902.7903
https://doi.org/10.1016/b978-0-12-417750-5.50022-1
https://doi.org/10.1016/b978-0-12-417750-5.50022-1
https://doi.org/10.1109/FOCS.2019.00098
https://doi.org/10.1016/0020-0190(94)00153-7
https://doi.org/10.1007/s10270-022-01060-7
https://doi.org/10.1007/s10270-022-01060-7
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.1137/0216062
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1109/IPPS.1996.508056
https://doi.org/10.1137/0213027
https://doi.org/10.1007/3-540-36265-7_4
https://doi.org/10.1145/97444.97686

J.J.M. Martens & A.J. Wijs 153

[21] A.J. Wijs (2015): GPU Accelerated Strong and Branching Bisimilarity Checking. In C. Baier & C. Tinelli,

editors: Proc. of TACAS, LNCS 9035, Springer, pp. 368–383, doi:10.1007/978-3-662-46681-0_29.

https://doi.org/10.1007/978-3-662-46681-0_29

A. Achilleos and A. Francalanza (Eds.): Fifteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2024).

EPTCS 409, 2024, pp. 154–171, doi:10.4204/EPTCS.409.14

© S. Spengler

Reachability and Safety Games under TSO Semantics

Stephan Spengler

Uppsala University
Uppsala, Sweden

stephan.spengler@it.uu.se

We consider games played on the transition graph of concurrent programs running under the Total

Store Order (TSO) weak memory model. Games are frequently used to model the interaction between

a system and its environment, in this case between the concurrent processes and the nondeterministic

TSO buffer updates. In our formulation, the game is played by two players, who alternatingly make

a move: The process player can execute any enabled instruction of the processes, while the update

player takes care of updating the messages in the buffers that are between each process and the

shared memory. We show that the reachability and safety problem of this game reduce to the analysis

of single-process (non-concurrent) programs. In particular, they exhibit only finite-state behaviour.

Because of this, we introduce different notions of fairness, which force the two players to behave in

a more realistic way. Both the reachability and safety problem then become undecidable.

1 Introduction

In concurrent programs, different processes interact with each other through the use of shared memory.

Programmers usually unconsciously assume that the semantics adhere to the Sequential Consistency

(SC) memory model [17]. In SC, the execution of processes can be interleaved, but write instructions are

visible in the memory in the exact order in which they were issued. However, most modern architectures,

such as Intel x86 [16], SPARC [22], IBM’s POWER [15], and ARM [6], implement several relaxations

and optimisations that improve memory access latency but break SC assumptions. A standard model

that is weaker than SC allows the reordering of reads and writes of the same process, as long as it

maintains the appearance of SC from the perspective of each individual process. The implementation of

this optimisation adds an unbounded first-in-first-out write buffer between each process and the shared

memory. The buffer is used to delay write operations. This model is called Total Store Ordering (TSO)

and is a faithful formalisation of SPARC and Intel x86 [19, 21].

Verification under TSO semantics is difficult due to the unboundedness of the buffers. Even if each

process can be modelled as a finite-state system, the program itself has a state space of infinite size. The

reachability problem for programs running under TSO semantics is to decide whether a target program

state is reachable from a given initial state during program execution. If the target state is considered to

be a bad state, it is also called the safety problem. Solving reachability and safety helps in deciding if

a program is correct, i.e. if it adheres to a specification or if it can avoid states of undefined behaviour.

Using alternative but equivalent semantics, it has been shown that the reachability problem is decidable

[9, 2, 1]. Furthermore, lossy channel system [4, 14, 3, 20] can be simulated by programs running under

TSO semantics [9]. This implies that the reachability problem is non-primitive recursive [20] and the

repeated reachability problem is undecidable [3]. Additionally, the termination problem has been shown

to be decidable [8] using the framework of well-structured transition systems [14, 4].

In this paper, we consider games played on the transition graph of concurrent programs running

under TSO semantics. Formal games provide a framework to reason about the behaviour of a system and

http://dx.doi.org/10.4204/EPTCS.409.14

S. Spengler 155

the interaction between the system and its environment. In particular, they have been extensively used

in controller synthesis problems [7, 10, 12, 11, 5]. A previous paper introduces safety games in which

two players alternatingly execute instructions of a concurrent program [24]. Motivated by this work, we

propose a game setting that more closely models the interplay between a system and the environment:

The first player controls the execution of the program instructions, while the second player handles the

nondeterministic updates of the store buffers to the shared memory. This model sees the process and

the update mechanism as antagonistic, and allows us to reason about the correctness of the program

regardless of the update behaviour.

We consider two types of game objectives: In a reachability game, the process player tries to reach

a given set of target states, while the update player tries to avoid this; In a safety game, these two roles

are reversed. We show that in both cases finding the winner of the game reduces to the analysis of

games being played on a program with just one process. Furthermore, we show that these games are

bisimilar to finite-state games and thus decidable. In particular, the reachability and safety problem are

PSPACE-complete. The reason that the concurrent programs exhibit a finite-state character lies in the

optimal behaviour of the two players. If the player that controls the processes has a winning strategy,

then she can win by playing in only one process, ignoring all the other processes of the program. On the

other hand, if the player controlling the buffer is able to win, she can do so by never letting any write

operation reach the memory. In both cases, there is no concurrency in the sense that the processes do

not interact or communicate with each other. This is not realistic, since we should be able to assume that

if the program runs a sufficiently long duration (1) every process will be executed and (2) every write

stored in the buffer will be updated to the memory.

We rectify this issue by introducing two fairness conditions. First, in an infinite run the process player

must execute each enabled process infinitely many times. Second, the update player must make sure that

each write operation reaches the memory after finitely many steps. We show that both the reachability

and safety problem become undecidable with these restrictions. To do so, we use a reduction from perfect

channel systems adapted from [24].

Finally, we investigate an alternative TSO semantics in our game setting. The authors of [1] propose a

load-buffer semantics for TSO which reverts the direction of the information flow between the processes

and the shared memory. In their model, the buffer is filled with values from the memory which can later

be read by the process. Using well-structured transition systems, they showed that it is equivalent to the

classical TSO semantics with respect to state reachability. We explore whether the equivalence also holds

in the two-player game, but come to the conclusion that this is not the case. In particular, we construct

a concurrent program that is won by the update player under store-buffer semantics but by the process

player under load-buffer semantics.

2 Preliminaries

Transition Systems A (labelled) transition system is a triple T = 〈C,L,−→〉, where C is a set of con-

figurations, L is a set of labels, and −→⊆ C×L×C is a transition relation. We usually write c1
label
−−−→c2

if 〈c1, label,c2〉 ∈ −→. Furthermore, we write c1−→c2 if there exists some label such that c1
label
−−−→c2. A

run π of T is a sequence of transitions c0
label1−−−−→c1

label2−−−−→c2 . . .
labeln−−−−→cn. It is also written as c0

π
−→cn.

A configuration c′ is reachable from a configuration c, if there exists a run from c to c′.

For a configuration c, we define Pre(c) = {c′ | c′−→c} and Post(c) = {c′ | c−→c′}. We extend these

notions to sets of configurations C′ with Pre(C′) =
⋃

c∈C′ Pre(c) and Post(C′) =
⋃

c∈C′ Post(c).

156 Reachability and Safety Games under TSO Semantics

An unlabelled transition system is a transition system without labels. Formally, it is defined as a

transition system with a singleton label set. In this case, we omit the labels.

Perfect Channel Systems Given a set of messages M, define the set of channel operations Op =
{!m,?m | m ∈ M}∪ {skip}. A perfect channel system (PCS) is a triple L = 〈S,M,δ 〉, where S is a

set of states, M is a set of messages, and δ ⊆ S×Op×S is a transition relation. We write s1
op
−−→s2 if

〈s1,op,s2〉 ∈ δ .

Intuitively, a PCS models a finite state automaton that is augmented by a perfect (i.e. non-lossy)

FIFO buffer, called channel. During a send operation !m, the channel system appends m to the tail of the

channel. A transition ?m is called receive operation. It is only enabled if the channel is not empty and m

is its oldest message. When the channel system performs this operation, it removes m from the head of

the channel. Lastly, a skip operation just changes the state, but does not modify the buffer.

The formal semantics of L are defined by a transition system TL = 〈CL,LL,−→L〉, where CL =
S×M∗, LL = Op and the transition relation −→L is the smallest relation given by:

• If s1
!m
−−→s2 and w ∈M∗, then 〈s1,w〉

!m
−−→L〈s2,m ·w〉.

• If s1
?m
−−→s2 and w ∈M∗, then 〈s1,w ·m〉

?m
−−→L〈s2,w〉.

• If s1
skip
−−−→s2 and w ∈M∗, then 〈s1,w〉

skip
−−−→L〈s2,w〉.

A state sF ∈ S is reachable from a configuration c0 ∈ CL, if there exists a configuration cF = 〈sF ,wF〉
such that cF is reachable from c0 in TL. The state reachability problem of PCS is, given a perfect

channel system L, an initial configuration c0 ∈ CL and a final state sF ∈ S, to decide whether sF is

reachable from c0 in TL. It is undecidable [13].

3 Concurrent Programs

Syntax Let Dom be a finite data domain and Vars be a finite set of shared variables over Dom. We

define the instruction set Instrs= {rd(x,d),wr(x,d) | x∈Vars,d∈Dom}∪{skip,mf}, which are called

read, write, skip and memory fence, respectively. A process is represented by a finite state labelled

transition system. It is given as the triple Proc = 〈Q, Instrs,δ 〉, where Q is a finite set of local states

and δ ⊆ Q× Instrs×Q is the transition relation. As with transition systems, we write q1
instr
−−−→q2 if

〈q1, instr,q2〉 ∈ δ and q1−→q2 if there exists some instr such that q1
instr
−−−→q2.

A concurrent program is a tuple of processes P = 〈Procι〉ι∈I , where I is a finite set of process

identifiers. For each ι ∈ I we have Procι = 〈Qι
, Instrs,δ ι〉. A global state of P is a function S :

I−→
⋃

ι∈IQ
ι that maps each process to its local state, i.e S(ι) ∈Qι .

TSO Semantics Under TSO semantics, the processes of a concurrent program do not interact with the

shared memory directly, but indirectly through a FIFO store buffer instead. When performing a write

instruction wr(x,d), the process adds a new message 〈x,d〉 to the tail of its store buffer. A read instruction

rd(x,d) works differently depending on the current buffer content of the process. If the buffer contains a

write message on variable x, the value d must correspond to the value of the most recent such message.

Otherwise, the value is read directly from memory. A skip instruction only changes the local state of

the process. The memory fence instruction is disabled, i.e. it cannot be executed, unless the buffer of

the process is empty. Additionally, at any point during the execution, the process can update the write

S. Spengler 157

read-own-write
q

rd(x,d)
−−−−−→q′ S(ι)=q B(ι)|{x}×Dom=〈x,d〉·w

〈S,B,M〉
rd(x,d)ι−−−−−→P 〈S[ι←q′],B,M〉

read-from-memory
q

rd(x,d)
−−−−−→q′ S(ι)=q B(ι)|{x}×Dom=ε M(x)=d

〈S,B,M〉
rd(x,d)ι−−−−−→P 〈S[ι←q′],B,M〉

write
q

wr(x,d)
−−−−−→q′ S(ι)=q

〈S,B,M〉
wr(x,d)ι−−−−−→P 〈S[ι←q′],B[ι←〈x,d〉·B(ι)],M〉

skip
q

skip
−−−→q′ S(ι)=q

〈S,B,M〉
skipι−−−−→P 〈S[ι←q′],B,M〉

memory-fence
q

mf
−−→q′ S(ι)=q B(ι)=ε

〈S,B,M〉
mfι−−−→P 〈S[ι←q′],B,M〉

update
B(ι)=w·〈x,d〉

〈S,B,M〉
upι−−−→P 〈S,B[ι←w],M[x←d]〉

Figure 1: TSO semantics

message at the head of its buffer to the memory. For example, if the oldest message in the buffer is 〈x,d〉,
it will be removed from the buffer and the memory value of variable x will be updated to contain the

value d. This happens in a nondeterministic manner.

Formally, we introduce a TSO configuration as a tuple c= 〈S,B,M〉, where:

• S : I−→
⋃

ι∈IQ
ι is a global state of P.

• B : I−→(Vars×Dom)∗ represents the buffer state of each process.

• M : Vars−→Dom represents the memory state of each shared variable.

Given a configuration c, we write S(c), B(c) and M(c) for the global program state, buffer state and

memory state of c. The semantics of a concurrent program running under TSO is defined by a transition

system TP = 〈CP ,LP ,−→P〉, where CP is the set of all possible TSO configurations and LP = {instrι |
instr∈ Instrs, ι ∈I}∪{upι | ι ∈I} is the set of labels. The transition relation−→P is given by the rules in

Figure 1, where we use B(ι)|{x}×Dom to denote the restriction of B(ι) to write messages on the variable

x. Furthermore, we define up∗ to be the transitive closure of {upι | ι ∈ I}, i.e. c1
up∗

−−−→P c2 if and only if

c2 can be obtained from c1 by some amount of buffer updates.

A global state SF is reachable from an initial configuration c0, if there is a configuration cF with

S(cF) = SF such that cF is reachable from c0 in TP . The state reachability problem of TSO is, given a

program P, an initial configuration c0 and a final global state SF , to decide whether SF is reachable from

c0 in TP .

4 Games

A game is an unlabelled transition system, in which two players A and B take turns making a move in

the transition system, i.e. changing the state of the game from one configuration to an adjacent one. In

158 Reachability and Safety Games under TSO Semantics

a reachability game, the goal of player A is to reach a given set of target states, while player B tries to

avoid this. In a safety game, the roles are swapped.

Formally, a game is defined as a tuple G = 〈C,CA,CB,−→〉, where C is the set of configurations, CA

and CB form a partition of C, and −→ is a transition relation on C. For the games considered in this paper,

the relation will always be restricted to −→⊆ (CA×CB)∪ (CB×CA), which means that the two players

take turns alternatingly.

Plays and Winning Conditions An infinite play P of G is an infinite sequence c0,c1, . . . such that

ci−→ci+1 for all i ∈ N. Similarly, a finite play is a finite sequence c0,c1, . . . ,cn such that ci−→ci+1 for all

i ∈ [0, . . . ,n−1] and Post(cn) = /0, i.e. the play ends in a deadlock. A winning condition W is a subset of

all infinite plays. We say that player A is the winner of a play, if either the play is infinite and an element

of W, or if it is finite and ends in a deadlock for player B, i.e. cn ∈ CB. Otherwise, player B wins the

play.

In this work, we will consider two types of winning conditions. A reachability condition is given

by a set CR ⊆ C which induces the winning condition WR = {P = c0,c1, · · · | ∃i ∈ N : ci ∈ CR}, i.e. the

set of all plays that visit a configuration in CR. Accordingly, a safety condition is given by a set CS ⊆ C

which induces the winning condition WS = {P= c0,c1, · · · | ∀i∈N : ci 6∈ CS}, i.e. the set of all plays that

never visit a configuration in CS. Reachability games and safety games are dual to each other in the sense

that a reachability game with winning condition CR can be seen as a safety game with winning condition

CS = C\CR, where the roles of players A and B are swapped.

Strategies A strategy of player A is a partial function σA : C∗⇀ CB, such that σA(c0, . . . ,cn) is defined

if and only if c0, . . . ,cn is a prefix of a play, cn ∈ CA and σA(c0, . . . ,cn) ∈ Post(cn). A strategy σA is

called positional, if it only depends on cn, i.e. if σA(c0, . . . ,cn) = σA(cn) for all (c0, . . . ,cn) on which σA

is defined. Thus, a positional strategy is usually given as a total function σA : CA−→CB. For player B,

strategies are defined accordingly.

Two strategies σA and σB together with an initial configuration c0 induce a finite or infinite play

P(c0,σA,σB) = c0,c1, . . . such that ci+1 = σA(c0, . . . ,ci) for all ci ∈ CA and ci+1 = σB(c0, . . . ,ci) for

all ci ∈ CB. Given a winning condition W, a strategy σA is winning from a configuration c0, if for all

strategies σB it holds that player A wins the play P(c0,σA,σB). That is, for each σB, either P(c0,σA,σB)∈
W or the play is finite and ends in a deadlock of player B. A configuration c0 is winning for player A

if she has a strategy that is winning from c0. Equivalent notions exist for player B. Given a reachability

condition WR / a safety condition WS, the reachability problem / safety problem for a game G and a

configuration c0 is to decide whether c0 is winning for player A.

Lemma 1 (Proposition 2.21 in [18]). In reachability and safety games, every configuration is winning

for exactly one player. A player with a winning strategy also has a positional winning strategy.

Since we only consider reachability and safety games in this paper, all strategies will be positional.

5 Reachability and Safety Games under TSO Semantics

We model the execution of a TSO program as a game between two players: The process player A takes

the role of the program and decides at each execution step which instruction to execute. The update

player B is in charge of the buffer message updates in between.

Formally, a TSO program P = 〈Procι〉ι∈I induces a game G(P) = 〈C,CA,CB,−→〉 as follows. The

sets CA and CB are copies of the set CP of TSO configurations, annotated by A and B, respectively:

S. Spengler 159

CA := {cA | c ∈ CP} and CB := {cB | c ∈ CP}. The transition relation −→ is defined by the following

rules:

• Program For each transition c
instrι−−−−→P c′ where c,c′ ∈ CP , ι ∈ I and instr ∈ Instrs, it holds that

cA
instrι−−−−→c′B. This means that the process player can execute any program instruction.

• Update For each transition cB ∈ CB, it holds that cB
up∗

−−−→c′A for all c′ with c
up∗

−−−→P c′. This

means that the update player can update any amount of buffer messages (including zero) between

each of the turns of the process player.

In the remainder of this work, we will consider reachability or safety winning conditions induced by

a set of local states QP
W ⊂ QP . The corresponding set of configurations is CW = {c= 〈S,B,M〉X | X ∈

{A,B}∧∃ι : S(ι) ∈ QP
W}, that is, the set of all configurations where at least one process is in a state of

QP
W. The set CW can then induce either a reachability or safety winning condition. In the following, we

will assume that the initial configuration (usually named c0) is not contained in CW, since otherwise the

game is decided immediately. Furthermore, we desire that the process player immediately wins when

reaching a target state in a reachability game, that is, we do not care whether the play can be extended

infinitely or not. Formally, we require that in a reachability game, a process cannot deadlock from a

target state, implying that the process player cannot lose after reaching it.

Games on Single-Process Programs This section introduces games on single-process programs which

will help us analysing the general case. Given a game induced by a concurrent program P, we compare it

to the game on just one of the processes of P. We show that if the process player wins the single-process

game, then she also wins the original game. The main idea is that she achieves this by executing exactly

the same instructions in both games.

For the remainder of this section, fix a program P = 〈Procι〉ι∈I and a process index ι ∈ I . Let

P ι = 〈Procι〉, i.e. the restriction of P to only the process Procι . Define G = G(P) and Gι = G(P ι),
that is, the games induced by P and P ι , respectively. Let QW induce a reachability or safety winning

condition for G and define the winning condition for Gι through Qι
W = QW∩Q

ι .

Now, fix a configuration c0 ∈ C \CW with empty buffers (i.e. B(c0) = 〈ε〉ι∈I). For X ∈ {A,B}
and a configuration c = 〈S,B,M〉X ∈ CX , let c ↓ι= 〈S(ι),B(ι),M〉X ∈ Cι

X , which can be understood

as the projection of c onto the process Procι . Conversely, for a configuration cι ∈ Cι
X of Gι , define

cι ↑P= 〈S(c0)[ι ← S(c
ι)],B(c0)[ι ← B(c

ι)],M(cι)〉X ∈ CX , that is, the configuration of G which is

like cι for the process Procι , but the local states and buffers of all other processes are as in the initial

configuration c0. Note that for all cι of Gι , it holds that (cι ↑P) ↓
ι= cι . On the other hand, (c ↓ι) ↑P= c

only holds for some c of G.

Lemma 2. If the process player wins Gι starting from the configuration cι
0 = c0 ↓

ι , then she also wins G
starting from c0.

Proof idea. Given a winning strategy σ ι
A for the process player in Gι , define a strategy in G by σA(c) =

σ ι
A(c ↓

ι) ↑P . We can show by induction over the number of moves that both strategies force the play to

visit the same sequence of local states. Since winning the game is defined in terms of which local states

are visited, it follows that σA must be a winning strategy. The full proof can be found in the extended

version of this paper [23].

It is easy to see that the converse statement of Lemma 2 cannot hold for all ι ∈ I . Rather, we only

show that under certain conditions the process player is able to visit the same local states of a process

160 Reachability and Safety Games under TSO Semantics

Proc1 in both G and Gι . The strategy to do so will take a specific play in G and mimic all instructions

that have been played in Procι , similar as in the previous proof.

Fix ι ∈ I . Let σA be a winning strategy for the process player and let σB be the strategy of the update

player where she never updates any buffer messages to the memory. Consider the play P(c0,σA,σB) in

G. For k = 1,2, . . . , let c̄k−→ck be the k-th time in this play where either the local state or the buffer

of Procι changes. This transition is due to some unique instruction S(c̄k)(ι)
instrk−−−−→S(ck)(ι) in Procι .

In particular, it cannot be due to a memory update, since σB was chosen that way. Note that there

does not necessarily need to be an infinite amount of k with this property. We define the strategy σ ι
A as

follows: Whenever Gι is in the k-th round, the local state of the process is S(c̄k)(ι) and instrk is enabled,

execute this instruction to move to the unique configuration with local state S(ck)(ι). Otherwise, make

an arbitrary move. Let σ ι
B be an arbitrary strategy of the update player for Gι . After the k-th round of

P(cι
0,σ

ι
A,σ

ι
B), the game is in some position cι

k.

Claim 3. For all k ∈ N for which ck is defined, it holds that ck ↓
ι up∗

−−−→cι
k.

Proof idea. First, we show by induction over k that instrk is enabled at cι
k−1. Let c̃ι

k be such that

cι
k−1

instrk−−−−→ c̃ι
k. We compare the buffer and memory of ck and c̃ι

k to conclude ck ↓
ι up∗

−−−→ c̃ι
k. The claim

follows from c̃ι
k

up∗

−−−→cι
k. The full proof is again in the extended version [23].

Concurrent Games We combine the results for single-process games to obtain the following theorem.

Theorem 4. The process player wins G starting from a configuration c0 if and only if she also wins Gι

starting from configuration c0 ↓
ι for at least one ι ∈ I .

Proof. By Lemma 2, if the process player wins Gι for at least one ι ∈ I , then she also wins G. For the

other direction, consider the strategies as defined above. What is left to show is that σ ι
A is winning for at

least one ι ∈ I .

If the process player has a reachability objective, P(c0,σA,σB) visits at least one target state in some

process Procι . Note again that the update player cannot be deadlocked and therefore the play must be

infinite. From Claim 3 it follows that P(cι
0,σ

ι
A,σ

ι
B) visits the same local states of Procι than P(c0,σA,σB)

and in particular, it visits the same target state. Since σ ι
B was chosen arbitrarily, it means that σ ι

A is a

winning strategy. Otherwise, if the process player has a safety objective, P(c0,σA,σB) executes an infinite

amount of instructions in at least one process Procι , but never visits any of its target states. Using the

same arguments as previously, it follows that P(cι
0,σ

ι
A,σ

ι
B) is also a winning play and σ ι

A is a winning

strategy.

Theorem 4 reduces the reachability problem for games on concurrent programs to the single-process

case. Although the game Gι still has an infinite amount of configurations, many of them are indistin-

guishable in the sense that they have the same local state and allow the same sequences of instructions

to be executed. Section 6 formally constructs a finite game that is a so-called bisimulation of Gι . This

shows that the reachability and safety problems for TSO games are decidable. In fact, they are PSPACE-

complete.

Fairness Conditions In the previous section we have seen that the game played under TSO semantics

reduces to the analysis of games on single-process programs. This is somewhat unsatisfying, since those

games do not exhibit any concurrent behaviour that arises from the communication between multiple

S. Spengler 161

processes. The underlying reason is the structure of the optimal strategies of the two players: If the

process player wins, it is because she only plays in one single process. Otherwise, the update player wins

by never updating any buffer messages. Both of these behaviours are not natural in the sense that they

will not occur in any reasonable program environment: We should be able to assume that eventually (1)

every buffer message will be updated to the memory and (2) every process will execute an instruction.

In Section 7 and Section 8 we will impose additional restrictions on the two players to enforce this

behaviour.

6 Decidability of Single-Process Games

TSO Views In the single-process program P ι , there is no communication between different processes.

A read operation of the process Procι on a variable x either reads the initial value from the (shared)

memory, or the value of the last write on x done by Procι , if such a write operation has happened. In the

latter case, the value of the read operation can come from either the buffer of Procι or directly from the

memory. But a single process cannot distinguish between these two cases. To be exact, the information

that the process can obtain from the buffer and the memory is the value that Procι can read from each

variable, and whether the process can execute a memory fence instruction or not. Together with the local

state of Procι at the current configuration, this completely determines the enabled transitions for the

process.

We call this concept the view of the process on the (concurrent) system and define it formally as a

tuple v= 〈S,V,F〉, where:

• S ∈Qι is the local state of Procι .

• V : Vars−→Dom defines which value Procι reads from each variable.

• F ∈ {true, false} represents the possibility to perform a memory fence instruction.

Given a view v= 〈S,V,F〉, we write S(v), V(v) and F(v) for the local state S , the value state V and the

fence state F of v, respectively. The view of a configuration c ∈ Cι is denoted by v(c) and defined in the

following way. First, S(v(c)) = S(c). For all x∈ Vars, if B(c)|{x}×Dom = 〈x,d〉 ·w, then V(v(c))(x) = d.

Otherwise, V(v(c))(x) =M(c)(x). Lastly, F(v(c)) = true if and only if B(c) = ε .

For c1,c2 ∈ C, if v(c1) = v(c2), then we write c1 ≡ c2. In such a case, the process Procι cannot

differentiate between c1 and c2 in the sense that the enabled transitions in both configurations are the

same. This is shown in Figure 2 and formally captured in Lemma 5.

c1 c3

c2 ∃ c4

label

label

≡ ≡

Figure 2: The configurations of Lemma 5.

Lemma 5. For all c1,c3,c2 ∈ Cι and label ∈ Instrs∪{up∗} with c1 ≡ c2 and c1
label
−−−→c3, there exists a

c4 ∈ Cι such that c3 ≡ c4 and c2
label
−−−→c4.

162 Reachability and Safety Games under TSO Semantics

Proof. If label= up∗, this clearly holds for c4 = c2. Otherwise, we first show that label∈ Instrs is enabled

at c2. Since c1 ≡ c2, it holds that S(c1) = S(c2). Furthermore, if label = rd(x,d), then V(v(c1))(x) =
V(v(c2))(x) = d. Also, if label= mf, then B(v(c1)) = ε and since F(v(c1)) =F(v(c2)) = true it follows

that B(v(c2)) = ε . From these considerations and the definition of the TSO semantics (see Figure 1), it

follows that label is indeed enabled at c2.

Let c4 be the unique configuration obtained after executing the transition S(c1)
label
−−−→S(c3) at c2,

i.e. c2
label
−−−→c4 and S(c4) = S(c3). If label= wr(x,d), then V(v(c4)) = V(v(c3)) = V(v(c1))[x← d] and

F(v(c4)) =F(v(c3)) = false. Otherwise, V(v(c4)) = V(v(c3)) = V(v(c1)) and F(v(c4)) = F(v(c3)) =
F(v(c1)). In all cases it follows that c3 ≡ c4.

Bisimulations A colouring of a game G is a function λ : C−→C from the set of configurations into

some set of colours C. Consider two games G and G′ with colouring functions λ and λ ′, respectively. A

bisimulation (also called zig-zag relation) between G and G′ is a relation Z⊆ C×C′ such that for all pair

of related configurations (c1,c2) ∈ Z it holds that:

• c1 and c2 agree on their colour: λ (c1) = λ ′(c2)

• (zig) for each transition c1
label
−−−→c3 there is a transition c2

label
−−−→c4 such that (c3,c4) ∈ Z.

• (zag) for each transition c2
label
−−−→c4 there is a transition c1

label
−−−→c3 such that (c3,c4) ∈ Z.

We say that two related configurations c1 and c2 are bisimilar and write c≈ c′. We call G and G′ bisimilar

if there is a bisimulation between them.

It is common knowledge in game theory that winning strategies are preserved under bisimulations if

the colourings are a refinement of the winning condition in the following sense. Consider two bisimilar

games G and G′ with winning conditions given by CW and C′W, respectively. Let λ be a colouring function

for G such that the configurations in CW have different colours than the rest of the configurations, i.e.

λ−1(λ (CW)) = CW. Define λ ′ as a colouring function for G′ accordingly.

Lemma 6. Given two bisimilar configurations c0 ∈ C and c′0 ∈ C′, it holds that c0 is a winning configu-

ration in G if and only if c′0 is a winning configuration in G′.

We define a game on views GV = 〈V,VA,VB,−→v〉 that is bisimilar to the single-process game Gι . Let

VX = {v(c)X | c∈ C
ι} for X ∈ {A,B} and V=VA∪VB. We extend the notation of the function v to game

configurations by v(cX) = v(c)X for X ∈ {A,B} and c∈ Cι . Now, we can define−→v by v(c)
label
−−−→v v(c

′)

if and only if c
label
−−−→c′ for some c,c′ ∈ Cι .

Theorem 7. The relation Z= {(c,v(c)) | c ∈ Cι} ⊂ Cι ×CV is a bisimulation between Gι and GV with

colouring functions λ ι : Cι−→V,c 7→ v(c) and λV = idV, respectively.

Proof. From the definition it follows directly that related configurations agree on their colour and that

GV can simulate Gι . What is left to show is that Gι can also simulate GV, i.e. that for all c ≈ v and

v
label
−−−→v ṽ there is c

label
−−−→ c̃ with c̃ ≈ ṽ. The transition v

label
−−−→v ṽ is due to a transition d

label
−−−→ d̃ for

some d, d̃ ∈ Cι with d ≈ v and d̃ ≈ ṽ. Since v(c) = v = v(d), it follows that c ≡ d. Apply Lemma 5 to

c1 = d, c2 = c and c3 = d̃ to obtain a configuration c̃= c4 with the desired properties.

Since CV is finite, it is rather evident that the reachability and safety problem are decidable, e.g. by

applying a backward induction algorithm. In fact, both problems are PSPACE-complete. Intuitively, this

makes sense since each variable can be seen as a single cell of a bounded Turing machine. The extended

S. Spengler 163

version of this paper [23] gives a polynomial-space algorithm to show the upper complexity bound and

constructs a reduction from TQBF for the lower bound. These results then immediately translate to the

single-process TSO game Gι , since it is bisimilar to GV.

7 Update Fairness in Reachability Games

In this section, we introduce update fairness, which we require the update player to satisfy. The core idea

of update fairness is that eventually, each buffer message will be updated to the shared memory. This

means that the process player can in some sense wait for the buffer messages to arrive in the memory. In

safety games, delaying the run indefinitely favours the process player. Thus, we will focus on reachability

games in this section.

We implement update fairness as follows. Whenever the program is in a configuration at which

no program instruction is enabled (a deadlock), the system waits for the update player to update buffer

messages to the memory, until the program exits the deadlock (or all buffers are empty). To simplify

the formalisation, we will assume that the update player does so in her very next turn. This idea can be

equivalently expressed by saying that if it is the process player’s turn and the system is deadlocked, then

it follows that all buffers must be empty.

Let P = 〈Procι〉ι∈I be a TSO program with induced game G(P). We define WU as the set of all

plays P= c0,c1, . . . in G(P) that satisfy update fairness:

P ∈WU ⇐⇒ ∀ k ∈N,ck ∈ CA : (Post(ck) = /0 =⇒ ∀ ι ∈ I : B(ck)(ι) = ε)

For a reachability condition WR, let the set WRU =WR ∪WU = {P | P ∈WR ∨P 6∈WU} be the set of

winning plays for the process player, i.e. the set of all plays that either reach a target state or that do

not admit update fairness. The remainder of this section will be dedicated to show that the reachability

problem under update fairness is undecidable. We will achieve this by reducing the state reachability

problem of perfect channel systems, which is undecidable, to the reachability problem of G(P) with

respect to WRU . The main ideas of the reduction are similar to those in [24].

Given a perfect channel system L= 〈S,M,δ 〉, we construct a TSO program P that simulates L. The

process player will decide which transitions of the PCS to simulate, while the update player only takes

care of the buffer updates. The program consists of two processes Proc1 and Proc2, which are shown in

Figure 3 and Figure 4, respectively.

The first process keeps track of the configuration of the channel system and simulates the control

flow. For each transition in L, we construct a sequence of transitions in Proc1 that simulates both the

state change and the channel behaviour of the L-transition. To achieve this, Proc1 uses its buffer to

store the messages of the PCS’s channel. In particular, to simulate a send operation !m, Proc1 adds the

message 〈xwr,m〉 to its buffer. For receive operations, Proc1 cannot read its own oldest buffer message,

since it is overshadowed by the more recent messages. Thus, the program uses the second process Proc2

to read the message from memory and copies it to the variable xrd, where it can be read by Proc1. We

call the combination of reading a message m from xwr and writing it to xrd the rotation of m.

While this is sufficient to simulate all behaviours of the PCS, it also allows for additional behaviour

that is not captured by L. More precisely, we need to ensure that each channel message is received once

and only once. Equivalently, we need to prevent the loss and duplication of messages. This can happen

due to multiple reasons.

First, the update player might choose to lose a channel message by updating more than one message

during a rotation. Consider an execution of P that simulates two send operations !m1 and !m2, i.e.

164 Reachability and Safety Games under TSO Semantics

s

s′

skip

(a) skip operation s
skip
−−−→L s

′

s

h1

s′

wr(xwr,m)

wr(y,1)

(b) send operation s
!m
−−→L s

′

s

h1

h2

s′

skip

rd(xrd,m)

rd(xrd,⊥)

(c) receive operation s
?m
−−→L s

′

Figure 3: Proc1 of the reduction from PCS.

q1

qm

q3

q4

q5

q6

q7

q8

q9

q10

q11

q1

rd(xwr,m)

wr(xrd,m)

wr(xwr,⊥)

mf

rd(y,0)

rd(y,1)

wr(y,0)

mf

rd(xwr,⊥)

wr(xrd,⊥)

mf

qF

rd(y,1)

qF

rd(y,0)

qF

rd(xwr,m)

for all m ∈M

Figure 4: Proc2 of the reduction from PCS.

Proc1 adds 〈xwr,m1〉 and 〈xwr,m2〉 to its buffer. Now, if the process player wants to simulate a receive

operation and initiates a message rotation, the update player can update both messages 〈xwr,m1〉 and

〈xwr,m2〉 to the memory before Proc2 reads from xwr. Thus, the first message m1 is overwritten by the

second message m2 and is lost without ever being received. To prevent this, we implement a protocol

that ensures that in each message rotation, exactly one channel message is being updated.

We extend the construction of Proc1 such that it inserts an auxiliary message 〈y,1〉 into its buffer after

the simulation of each send operation. After a message rotation, that is, after Proc2 copied a message

from xwr to xrd, the process then resets the value of xwr to its initial value ⊥. Next, the process checks

that y contains the value 0, which indicates that only one message was updated to the memory. Now, the

update player is allowed to update exactly one 〈y,1〉 buffer message, after which Proc2 resets y to 0. To

ensure that the update player has actually updated only one message in this step, Proc2 then checks that

xwr is still empty. If this protocol is violated at any point, Proc2 enables the process player to immediately

move to a winning state.

Although we have established that during each message rotation exactly one channel message will be

rotated, we also need to ensure that for each rotation, Proc1 will simulate exactly one receive operation.

This is achieved by another protocol between Proc1 and Proc2, which gives the update player the tools to

S. Spengler 165

enforce correct behaviour. To begin, the process player needs to initiate the simulation of a receive oper-

ation by moving to the first auxiliary state h1 shown in Figure 3c. Only then is the program in a deadlock

and the update player is forced to perform a message update. When reaching the first memory fence in

Proc2, the system is deadlocked again. Of course, the update player will not update the next message

in the buffer of Proc1, since it will lead to the process player immediately winning later on. Thus, she

updates the message 〈xrd,m〉 to the memory, which enables both processes to continue. The next time

that the update player is forced to update is when Proc1 reaches the second auxiliary state h2 and Proc2

reaches the second memory fence. Only emptying the buffer of Proc2 allows the program to continue.

After three more instructions, Proc2 will reach the third memory fence. Again, the update player needs

to empty the buffer of Proc2 which updates 〈xrd,⊥〉 and enables Proc1 to finish the simulation of the

receive operation.

This concludes the mechanisms implemented to ensure that each channel message is received once

and only once. We have constructed a TSO game with update fairness that simulates a perfect channel

system. The winning condition of the game will be the reachability condition induced by the final states

of the PCS together with the update fairness condition. We summarise our results in the following

theorem.

Theorem 8. The reachability problem for TSO games with update fairness is undecidable.

8 Process Fairness in Safety Games

In the previous section, we have limited the behaviour of the update player. Now, we introduce process

fairness, which will impact the capabilities of the process player. Process fairness means that for each

process that is enabled infinitely many times during a run, the process player executes an instruction in

that process infinitely often. In reachability games, this is no real restriction to the process player: If she

can reach the set of winning states, then she can do so in finitely many moves. Thus, any finite prefix of

a play that reaches a winning state can then trivially be extended to an infinite play that admits process

fairness. Because of this, we will target our attention only towards safety games, where the process

player cannot win in a finite amount of moves.

We formalise process fairness as follows. Let P = 〈Procι〉ι∈I be a TSO program with induced game

G(P). We define WP as the set of all plays P= c0,c1, . . . in G(P) that satisfy process fairness:

P ∈WP ⇐⇒ ∀ ι ∈ I :

(

∃∞ k ∈ N,ck ∈ CA : ck
instrι−−−−→c′ =⇒ ∃∞ k′ ∈N,ck′ ∈ CA : ck′

instr′ι−−−−→ck′+1

)

Given a safety condition WS, the intersection WSP = WS ∩WP defines the set of winning plays that

admit process fairness. In the remainder of this section we will show that the safety problem under

process fairness is undecidable. To do so, we use a construction very similar to the one from the previous

section to reduce the state reachability problem of perfect channel systems, to the safety problem of

G(P). Before, it was the process player who decided which transition of the channel system to simulate.

This time, it will be the update player who has this task.

Consider again a perfect channel system L= 〈S,M,δ 〉. We modify the construction from the previ-

ous section. First, we introduce another shared variable z. Then, for each transition e ∈ δ of the perfect

channel system, we add an auxiliary process Proce. It consists of exactly one state qe and one looping

transition qe
wr(z,e)
−−−−−→qe. Furthermore, we prepend the gadget of process Proc1 that simulates e with a

transition rd(z,e). The result of this is shown in Figure 5. Process Proc2 is taken from the previous

construction without any changes and can be found in Figure 4.

166 Reachability and Safety Games under TSO Semantics

s

s′

s

rd(z,e)

(a) skip operation

e= s
skip
−−−→L s

′ ∈ δ

s

h1

h2

s′

rd(z,e)

wr(xwr,m)

wr(y,1)

(b) send operation

e= s
!m
−−→L s

′ ∈ δ

s

h1

h2

s′

rd(z,e)

rd(xrd,m)

rd(xrd,⊥)

(c) receive operation

e= s
?m
−−→L s

′ ∈ δ

Figure 5: Proc1 of the reduction from PCS to a TSO game with process fairness.

The main idea of these modifications is that the update player can use the variable z to control which

channel operation will be simulated. At the start of the run, both z and xwr contain the initial value ⊥,

which means that neither Proc1 nor Proc2 are enabled. Thus, the process player needs to begin playing

in some process Proce, writing the message 〈z,e〉 to its buffer. This will continue until the update player

decides to update one of these messages. But, due to process fairness, the process player is forced to

eventually play in all enabled processes. In particular, she has to do so infinitely many times during

any infinite play. This means that the update player can simply wait until each transition e ∈ δ was

sufficiently many times added to the buffer of Proce to simulate a run of the PCS that reaches a final

state. At that point, the update player starts updating the messages 〈z,e〉 one by one, each time waiting

until the process player has finished simulating the unique operation that is enabled in Proc1.

In more detail, to simulate the execution of a channel operation e ∈ δ , the update player updates the

buffer message 〈z,e〉 to the memory. Due to process fairness, we know that the process player eventually

has to play in Proc1, since it is now enabled. She takes the transition rd(z,e) and then proceeds (although

not necessarily immediately) with simulating e as was presented for the reachability case in the previous

section. If e is a receive operation, the update player has to update a 〈xwr,m〉 buffer message at some

point to enable Proc2 and start a message rotation. Again, process fairness forces the process player to

eventually finish the rotation protocol. In any case, the simulation of the channel operation is guaranteed

to terminate after finitely many steps. Now, the update player starts the next simulation by updating the

corresponding buffer message.

Also in this construction we need to ensure that we do not introduce any behaviour that does not

correspond exactly to what the PCS can do. Message loss due to updating two messages without rotation

in between is handled in the same way as previously, using the auxiliary variable y. The same goes

for message duplication, which is covered by the protocol between Proc1 and Proc2. What is left is

message loss due to performing two rotations without simulating a receive operation. In the previous

section, this could only happen if the process player decides to do so, since she was the one controlling

the simulation. This is still prevented by the aforementioned protocol: The update player is not forced to

let Proc2 proceed beyond the second and third memory fences before Proc1 keeps up with the protocol.

But in this construction, the roles and capabilities of the two players have changed slightly and allow

for additional behaviour: Without enabling a receive operation in Proc1, the update player could update

a message 〈xwr,m〉, which enables Proc2 instead. Due to process fairness, the process player would

eventually have to perform a full message rotation.

S. Spengler 167

We prevent this by adding for every channel message m a transition q
rd(xrd,m)
−−−−−−→qF to every state q

of Proc1 except the states h1 and h2 (cf. Figure 5c) of the receive operations of message m. Here, qF

is a sink state which is safe for the process player and blocks the update player from winning the game.

The idea of this transition is that during a message rotation, the value of xrd in the memory is m. Thus,

the update player is not immediately losing only if Proc1 is currently in one of the intermediate states

of a receive operation. In particular, the process player can now move to h2. Then, after the rotation

has finished with the third memory fence, the variable xrd contains the value ⊥ again, which means that

Proc1 is enabled and the process player can finish the simulation of the receive operation. We conclude

that she can prevent the update player from performing a rotation without simulating a receive operation.

In summary, we have shown again that each channel message is read once and only once. The

winning condition of the TSO game is given by the safety condition induced by the final states of the

PCS together with the process fairness condition. This gives rise to the following theorem.

Theorem 9. The safety problem for TSO games with process fairness is undecidable.

9 Load Buffer Semantics in TSO Games

In [1], the authors introduced an alternative semantics for TSO, called load buffer semantics. It is equiv-

alent to the traditional store buffer semantics in the sense that a global state S of the system is reachable

under load-buffer semantics if and only if it is reachable under store buffer semantics. The alternative

semantics have been proven to be useful in efficiently performing algorithmic verification or presenting

simpler decidability proofs of safety properties. A natural question in the context of this paper is to ask

whether these results transfer to the game setting. In particular, we want to know if a game is won by the

same player when played under both semantics. Unfortunately, it turns out that this is not the case.

Load Buffer Semantics Under the new semantics, the store buffer between each process and the shared

memory is replaced by a load buffer instead. This means that the information flow reverses its direction:

Instead of write operations, the buffer now contains potential read operations that might be performed

by the process. Each buffer message is either a pair 〈x,d〉 or a triple 〈x,d,own〉, where the latter is called

an own-message.

At any point during the run, the system can nondeterministically choose a variable x and its cor-

responding value d from the memory and add a message 〈x,d〉 to the tail of the buffer of one of the

processes. This is called read propagation and speculates on a future read operation on x. Conversely,

a delete operation removes the oldest message at the head of the buffer of some process and is also

performed nondeterministically at any time.

A write instruction wr(x,d) of a process Proc immediately updates the value d of the variable x in

the memory. Then, it adds the own-message 〈x,d,own〉 to the buffer of Proc. The behaviour of a read

instruction rd(x,d) depends on the contents of the buffer. If there is an own-message on the variable x,

then the most recent one must correspond to the value d. Otherwise, if there is no such message, the

head of the buffer must be a message 〈x,d〉. If this is not the case, the read instruction is disabled. The

last two instructions, which are skip and memory fence, work exactly as in the classical TSO semantics:

They only change the local state but not the memory or buffer, and the fence is only enabled if its buffer

is empty.

For a formal definition of the semantics and the configurations of the induced transition system, we

refer to [1].

168 Reachability and Safety Games under TSO Semantics

q1

q2

q

wr(x,1)

(a) Proc1

q1

q2

q

wr(x,2)

(b) Proc2

q1

q2 q3

q4 q5

qF

skip skip

rd(x,0)
rd(x,2)

rd(x,0)
rd(x,1)

rd(x,1) rd(x,2)

rd(x,1) rd(x,2)

rd(x,2) rd(x,1)

(c) Proc3

Figure 6: A concurrent program consisting of three processes.

Games Comparing the alternative to the classical TSO semantics, we see that the order in which the

variables in the memory are updated, now depends directly on the order of execution of the corresponding

write instructions, and not on the update order of the buffer messages. Conversely, the buffer does not

delay the time when a write operation arrives at the memory, but instead delays when the change in the

memory is visible to each process. Intuitively, we can already guess that the two semantics differ in the

game setting, since the information available to the two players during the execution is different in both

cases.

In the plain TSO game without fairness, there is actually no change. Since both reachability and

safety games degenerate to single-process games with no communication between processes, the exact

update semantics do not matter.

This is not the case if we add fairness conditions. Consider the safety game with process fairness

played on the program shown in Figure 6. The target state is qF in Proc3 and the initial value of x is 0.

Since the process player cannot be deadlocked in any other state of Proc3, the only way for the update

player to win is to force the play into qF . In our classical game setting under store buffer semantics, the

update player is able to achieve this. We describe a winning strategy for her.

Due to process fairness, the process player needs to eventually play in all three processes. The update

player waits until processes Proc1 and Proc2 are in their respective q2, and Proc3 is in either q2 or q3.

In the first case, if Proc3 is in state q2, she updates the buffer message of Proc1, which writes the value

1 to the memory for variable x. The only enabled instruction for the process player is to move from q2

to q4 in Proc3. Now, the update player updates the message from the buffer of Proc2, which forces the

process player to move to the target state and lose. In the other case, the update player performs the two

update operations in the reverse order, which again forces the process player to enter the target state after

two moves.

Next, consider the same game but under load buffer semantics. We have not yet formally defined

how they should work, but this is not necessary for our argument. Assume that the process player as

usual controls the program instructions and the update player in some way controls the nondeterministic

S. Spengler 169

buffer behaviour. We will outline how the process player wins this game.

First, she plays in Proc1, then in Proc2. At this point, the value of x in the memory is 2, but the buffer

of Proc3 might already contain messages of the form 〈x,1〉 and 〈x,2〉. Note that it is only possible to

have them in this exact order, i.e. it cannot be that there is some message 〈x,2〉 that is older than another

message 〈x,1〉. Furthermore, since the program has no other reachable write instructions, any message

that will be added in the future must be 〈x,2〉. Now, the process player plays in Proc3 and moves to q3.

The update player needs the process player to eventually move to q5, which means she has to enable the

instruction rd(x,2). To do so, she deletes messages at the head of the buffer of Proc3 until it reaches a

message 〈x,2〉. But due to the order of the messages in the buffer, this means that it lost all messages

〈x,1〉 and also, as said previously, cannot add any more of them. It follows that the process can never

execute the next instruction rd(x,1) and is thus stuck in q5. Since this is not a deadlock for the process

player, it results in a winning play for her.

We conclude that TSO safety games with process fairness do not have the same winning configura-

tions under store buffer semantics and load buffer semantics, respectively. The same can be shown for

reachability games with update fairness. Since it does not yield any additional insights, we do not present

the argument here.

10 Conclusion and Future Work

In this paper, we continue the work on two-player games played on programs running under TSO seman-

tics. We present a game model where one player controls the instructions of the program and the other

player controls the buffer updates. Our results show that both the reachability problem and the safety

problem for these games reduce to the analysis of games on single-process programs. Moreover, we

show a bisimilarity to a game with a finite amount of configurations and use it to prove that the problems

are in fact PSPACE-complete.

The reduced complexity comes from the optimal behaviour of the two players. The process player

can always win by playing in only one single process, while the best strategy of the update player is to

stay passive and not perform any buffer updates. We rectify this by introducing fairness conditions for

both players. In reachability games, the update player is required to update each message eventually.

This allows the process player to wait for a write instruction to arrive in the memory. In safety games,

during an infinite run the process player has to perform instructions in all enabled processes infinitely

often. Both restrictions lead to the respective problems being undecidable.

Finally, we connect the game model to the alternative load buffer semantics of TSO. We show that

the equivalence between load buffer and store buffer that exists for classical TSO reachability does not

carry over to the game setting.

This work analyses the basic winning conditions reachability and safety. Future work may expand the

focus to more expressive winning conditions, like Büchi (i.e. repeated reachability), Co-Büchi, Parity,

Rabin, Streett or Muller. Another way to expand is to look at other fairness conditions for the two players,

for example transition fairness. These two directions of research are not orthogonal to each other since

Muller or even Streett conditions might be able to encode some forms of fairness conditions.

170 Reachability and Safety Games under TSO Semantics

References

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani & Tuan Phong Ngo (2018): A Load-Buffer

Semantics for Total Store Ordering. Log. Methods Comput. Sci. 14(1), doi:10.23638/LMCS-14(1:9)2018.

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson & Ahmed Rezine (2012):

Counter-Example Guided Fence Insertion under TSO. In Cormac Flanagan & Barbara König, editors: Tools

and Algorithms for the Construction and Analysis of Systems - 18th International Conference, TACAS 2012,

Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,

Estonia, March 24 - April 1, 2012. Proceedings, Lecture Notes in Computer Science 7214, Springer, pp.

204–219, doi:10.1007/978-3-642-28756-5_15.

[3] Parosh Aziz Abdulla & Bengt Jonsson (1994): Undecidable Verification Problems for Programs with Unre-

liable Channels. In Serge Abiteboul & Eli Shamir, editors: Automata, Languages and Programming, 21st

International Colloquium, ICALP94, Jerusalem, Israel, July 11-14, 1994, Proceedings, Lecture Notes in

Computer Science 820, Springer, pp. 316–327, doi:10.1007/3-540-58201-0_78.

[4] Parosh Aziz Abdulla & Bengt Jonsson (1996): Verifying Programs with Unreliable Channels. Inf. Comput.

127(2), pp. 91–101, doi:10.1006/inco.1996.0053.

[5] Renato Acampora, Luca Geatti, Nicola Gigante, Angelo Montanari & Valentino Picotti (2022): Controller

Synthesis for Timeline-based Games. In Pierre Ganty & Dario Della Monica, editors: Proceedings of the 13th

International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2022, Madrid,

Spain, September 21-23, 2022, EPTCS 370, pp. 131–146, doi:10.4204/EPTCS.370.9.

[6] ARM (2014): ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition. Available at https://

developer.arm.com/documentation/ddi0406/latest/.

[7] André Arnold, Aymeric Vincent & Igor Walukiewicz (2003): Games for synthesis of controllers with partial

observation. Theor. Comput. Sci. 303(1), pp. 7–34, doi:10.1016/S0304-3975(02)00442-5.

[8] Mohamed Faouzi Atig (2020): What is decidable under the TSO memory model? ACM SIGLOG News 7(4),

pp. 4–19, doi:10.1145/3458593.3458595.

[9] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt & Madanlal Musuvathi (2010): On the veri-

fication problem for weak memory models. In Manuel V. Hermenegildo & Jens Palsberg, editors: Proceedings

of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010,

Madrid, Spain, January 17-23, 2010, ACM, pp. 7–18, doi:10.1145/1706299.1706303.

[10] Ralph-Johan Back & Cristina Cerschi Seceleanu (2004): Contracts and Games in Controller Synthesis for

Discrete Systems. In: 11th IEEE International Conference on the Engineering of Computer-Based Systems

(ECBS 2004), 24-27 May 2004, Brno, Czech Republic, IEEE Computer Society, pp. 307–315, doi:10.1109/

ECBS.2004.1316713.

[11] Ayca Balkan, Moshe Y. Vardi & Paulo Tabuada (2015): Controller Synthesis for Mode-Target Games. In

Magnus Egerstedt & Yorai Wardi, editors: 5th IFAC Conference on Analysis and Design of Hybrid Sys-

tems, ADHS 2015, Atlanta, GA, USA, October 14-16, 2015, IFAC-PapersOnLine 48, Elsevier, pp. 343–350,

doi:10.1016/J.IFACOL.2015.11.198.

[12] Nicolas Basset, Marta Z. Kwiatkowska & Clemens Wiltsche (2014): Compositional Controller Synthesis for

Stochastic Games. In Paolo Baldan & Daniele Gorla, editors: CONCUR 2014 - Concurrency Theory - 25th

International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings, Lecture Notes in

Computer Science 8704, Springer, pp. 173–187, doi:10.1007/978-3-662-44584-6_13.

[13] Daniel Brand & Pitro Zafiropulo (1983): On Communicating Finite-State Machines. J. ACM 30(2), pp.

323–342, doi:10.1145/322374.322380.

[14] Alain Finkel & Philippe Schnoebelen (2001): Well-structured transition systems everywhere! Theor. Comput.

Sci. 256(1-2), pp. 63–92, doi:10.1016/S0304-3975(00)00102-X.

[15] IBM (2021): Power ISA, Version 3.1b. Available at https://files.openpower.foundation/s/

dAYSdGzTfW4j2r2/download/OPF_PowerISA_v3.1B.pdf.

https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.1007/978-3-642-28756-5_15
https://doi.org/10.1007/3-540-58201-0_78
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.4204/EPTCS.370.9
https://developer.arm.com/documentation/ddi0406/latest/
https://developer.arm.com/documentation/ddi0406/latest/
https://doi.org/10.1016/S0304-3975(02)00442-5
https://doi.org/10.1145/3458593.3458595
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1109/ECBS.2004.1316713
https://doi.org/10.1109/ECBS.2004.1316713
https://doi.org/10.1016/J.IFACOL.2015.11.198
https://doi.org/10.1007/978-3-662-44584-6_13
https://doi.org/10.1145/322374.322380
https://doi.org/10.1016/S0304-3975(00)00102-X
https://files.openpower.foundation/s/dAYSdGzTfW4j2r2/download/OPF_PowerISA_v3.1B.pdf
https://files.openpower.foundation/s/dAYSdGzTfW4j2r2/download/OPF_PowerISA_v3.1B.pdf

S. Spengler 171

[16] Intel Corporation (2012): Intel 64 and IA-32 Architectures Software Developers Manual. Available at

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.

html.

[17] Leslie Lamport (1979): How to Make a Multiprocessor Computer That Correctly Executes Multiprocess

Programs. IEEE Trans. Computers 28(9), pp. 690–691, doi:10.1109/TC.1979.1675439.

[18] René Mazala (2001): Infinite Games. In Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors: Au-

tomata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February

2001], Lecture Notes in Computer Science 2500, Springer, pp. 23–42, doi:10.1007/3-540-36387-4_2.

[19] Scott Owens, Susmit Sarkar & Peter Sewell (2009): A Better x86 Memory Model: x86-TSO. In Stefan

Berghofer, Tobias Nipkow, Christian Urban & Makarius Wenzel, editors: Theorem Proving in Higher Order

Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings,

Lecture Notes in Computer Science 5674, Springer, pp. 391–407, doi:10.1007/978-3-642-03359-9_27.

[20] Philippe Schnoebelen (2002): Verifying lossy channel systems has nonprimitive recursive complexity. Inf.

Process. Lett. 83(5), pp. 251–261, doi:10.1016/S0020-0190(01)00337-4.

[21] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli & Magnus O. Myreen (2010): x86-

TSO: a rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7), pp. 89–97,

doi:10.1145/1785414.1785443.

[22] SPARC International, Inc. (1994): SPARC Architecture Manual Version 9. Available at https://sparc.

org/wp-content/uploads/2014/01/SPARCV9.pdf.gz.

[23] Stephan Spengler (2024): Reachability and Safety Games under TSO Semantics (Extended Version).

arXiv:2405.20804.

[24] Stephan Spengler & Sanchari Sil (2023): TSO Games - On the decidability of safety games under the total

store order semantics. In Antonis Achilleos & Dario Della Monica, editors: Proceedings of the Fourteenth

International Symposium on Games, Automata, Logics, and Formal Verification, GandALF 2023, Udine,

Italy, 18-20th September 2023, EPTCS 390, pp. 82–98, doi:10.4204/EPTCS.390.6.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/3-540-36387-4_2
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.1145/1785414.1785443
https://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
https://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
https://arxiv.org/abs/2405.20804
https://doi.org/10.4204/EPTCS.390.6

	Introduction
	Background
	Timeline-Based Planning

	A Well-Behaved Fragment
	From Plans to Finite Words and Vice Versa
	DFA Accepting Plans
	DFA Accepting Solution Plans
	Blueprints, Snapshots, and Viewpoints
	States, Initial State, and Final States of AP
	Transition Function of AP

	A Maximal Subset of Allen's Relations
	Conclusions
	Introduction
	Preliminaries and Definitions
	Quantitative Semantics for JFAs
	The Semantics
	Quantitative Decision Problems

	The Absolute-Distance Semantics
	Decidability of Boundedness Problems for abs
	PSPACE-Hardness of Boundedness for abs

	The Reversal Semantics
	Decidability of Boundedness Problems for rev
	PSPACE-Hardness of Boundedness for rev

	The Hamming Semantics
	Interplay Between the Semantics
	Discussion and Future Work
	1 Introduction
	2 Related work
	3 BPMN+CPI: Processes with Choices, Probabilities, and Impacts
	3.1 Motivating Example
	3.2 Problem Formulation
	3.3 Dealing with Loops

	4 Computational Complexity
	5 Synthesizing Strategies
	5.1 A k-cost Reachability Game
	5.2 From BPMN+CPI to k-cost Reachability Game

	6 Conclusion
	Introduction
	Related Work
	Games with Counting Constraints
	Iterated Synthesis with Counting Constraints
	Discussion and Future Work
	Conclusion
	Introduction
	Preliminaries
	A new automaton model – DSA
	Comparison with DFA and DGA
	Suffix-tracking sets – obtaining DSA from DFA
	Minimality, some observations and some challenges
	Complexity of minimization
	Conclusion
	Introduction
	Definitions
	Fixed Communication Structure
	Distributed Alphabets
	Asynchronous Automata
	Local Asynchronous Automata

	Reconfigurable Communication
	Reconfigurable Asynchronous Automata

	From Fixed to Reconfigurable and Back
	Fixed AA to Reconfigurable AA
	Reconfigurable to Fixed

	Trivializable, Fully Listening, and Trivial
	Description of the switching RAA
	Asynchronous Automata Construction

	Conclusion and Discussion
	Introduction
	Related Work
	The Proposed Approach
	Identify Applicable Atomic Controls
	Assign Effectiveness to Atomic Controls
	Assign Cost to Atomic Controls
	Specify and Generate Valid Control Combinations
	Construct the Game Matrix
	Play the Game

	Illustrative Example
	Identify Applicable Atomic Controls
	Assign Effectiveness to Atomic Controls
	Assign Cost to Atomic Controls
	Specify and Generate Valid Control Combinations
	Construct the Game Matrix
	Play the Game

	Discussion
	Conclusions and Future Work
	1 Introduction
	2 Logics
	2.1 Syntax
	2.2 Semantics
	2.3 Representation of a model and truths within it
	2.4 Epistemic de re and de dicto

	3 Complexity of Model Checking
	3.1 The input
	3.2 Model checking for logics without quantifiers: in P
	3.2.1 Model checking in L
	3.2.2 Model checking group knowledge
	3.2.3 Model checking formulas with update modalities

	3.3 Model checking quantified formulas: PSPACE complete

	4 Discussion
	1 Introduction
	2 Preliminaries
	3 The algorithms
	3.1 Transitive closure
	3.2 Naive partition refinement
	3.3 Sorting arrays
	3.4 Partition refinement using partial transitive closure

	4 Experiments
	4.1 Benchmarks
	4.2 Results

	5 Conclusions & Future work
	Introduction
	Preliminaries
	Concurrent Programs
	Games
	Reachability and Safety Games under TSO Semantics
	Decidability of Single-Process Games
	Update Fairness in Reachability Games
	Process Fairness in Safety Games
	Load Buffer Semantics in TSO Games
	Conclusion and Future Work

