
EPTCS 390

Proceedings of the

Fourteenth International Symposium on

Games, Automata, Logics, and Formal

Verification

Udine, Italy, 18-20th September 2023

Edited by: Antonis Achilleos and Dario Della Monica

Published: 30th September 2023

DOI: 10.4204/EPTCS.390

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . iii

Antonis Achilleos and Dario Della Monica

Invited Presentation: Complexity Aspects of Logics in Team Semantics . vi

Juha Kontinen

Invited Presentation: Weighted Automata at the Border of Decidability . vii

Laure Daviaud

Invited Presentation: The Church Synthesis Problem Over Continuous Time . viii

Alexander Rabinovich and Daniel Fattal

Invited Presentation: Strategic Reasoning under Imperfect Information - The Case of Synchronous

Recall . ix

Sophie Pinchinat

A uniform one-dimensional fragment with alternation of quantifiers . 1

Emanuel Kieronski

FMplex: A Novel Method for Solving Linear Real Arithmetic Problems . 16

Jasper Nalbach, Valentin Promies, Erika Ábrahám and Paul Kobialka

Handling of Past and Future with Phenesthe+ . 33

Manolis Pitsikalis, Alexei Lisitsa and Patrick Totzke

On Two- and Three-valued Semantics for Impure Simplicial Complexes . 50

Hans van Ditmarsch, Roman Kuznets and Rojo Randrianomentsoa

Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities 67

Marco Bernardo and Andrea Esposito

TSO Games - On the decidability of safety games under the total store order semantics 82

Stephan Spengler and Sanchari Sil

CGAAL: Distributed On-The-Fly ATL Model Checker with Heuristics . 99

Falke B. Ø. Carlsen, Lars Bo P. Frydenskov, Nicolaj Ø. Jensen, Jener Rasmussen,
Mathias M. Sørensen, Asger G. Weirsøe, Mathias C. Jensen and Kim G. Larsen

(Un)Decidability Bounds of the Synthesis Problem for Petri Games . 115

Paul Hannibal

ii

Counterfactual Causality for Reachability and Safety based on Distance Functions 132

Julie Parreaux, Jakob Piribauer and Christel Baier

Conflict-Aware Active Automata Learning . 150

Tiago Ferreira, Léo Henry, Raquel Fernandes da Silva and Alexandra Silva

The Recursive Arrival Problem . 168

Thomas Webster

On the Descriptive Complexity of Groups without Abelian Normal Subgroups (Extended Abstract) 185

Joshua A. Grochow and Michael Levet

An Objective Improvement Approach to Solving Discounted Payoff Games . 203

Daniele Dell’Erba, Arthur Dumas and Sven Schewe

Strategies Resilient to Delay: Games under Delayed Control vs. Delay Games 220

Martin Fränzle, Sarah Winter and Martin Zimmermann

Fast Algorithms for Energy Games in Special Cases . 236

Sebastian Forster, Antonis Skarlatos and Tijn de Vos

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. iii–v, doi:10.4204/EPTCS.390.0

Preface

This volume contains the proceedings of GandALF 2023, the Fourteenth International Symposium

on Games, Automata, Logics, and Formal Verification. The symposium was held in Udine, Italy, on

September 18-20, 2023.

The GandALF symposium was established by a group of Italian computer scientists to provide an

opportunity for researchers interested in logic for computer science, automata theory, game theory, to

gather and discuss the application of formal methods to the specification, design, and verification of

complex systems. Previous editions of GandALF were held in Madrid, Spain (2022); Padova, Italy

(2021); Brussels, Belgium (2020); Bordeaux, France (2019); Saarbrücken, Germany (2018); Rome, Italy

(2017); Catania, Italy (2016); Genoa, Italy (2015); Verona, Italy (2014); Borca di Cadore, Italy (2013);

Napoli, Italy (2012); and Minori, Italy (2011 and 2010). It is a forum where people from different

areas, and possibly with different backgrounds, can fruitfully interact, with a truly international spirit, as

witnessed by the composition of the program and steering committees and by the country distribution of

the submitted papers.

The program committee selected 15 papers (out of 26 submissions) for presentation at the sympo-

sium. Each paper was reviewed by at least three referees, and the selection was based on originality,

quality, and relevance to the topics of the call for papers. The scientific program included presentations

on automata and automata learning, logics for computer science and verification, computational and

descriptive complexity theory, formal methods and specification languages, concurrency and process se-

mantics, games, strategic reasoning, and synthesis. The program included four invited talks, given by

Laure Daviaud (University of East Anglia, UK), Juha Kontinen (University of Helsinki, Finland), So-

phie Pinchinat (IRISA/University of Rennes, France), and Alexander Rabinovich (Tel Aviv University,

Israel). We are deeply grateful to them for contributing to this year edition of GandALF.

We would like to thank the authors who submitted papers for consideration, the speakers, the program

committee members and the additional reviewers for their excellent work. We also thank EPTCS and

arXiv for hosting the proceedings; in particular, we thank Rob van Glabbeek for the precise and prompt

technical support with issues related with the proceeding publication procedure.

Finally we would like to thank the local organisers: Andrea Brunello, Renato Acampora, Luca Geatti,

Nicola Gigante, Mattia Guiotto, Gabriele Puppis, and Nicola Saccomanno for making sure the event ran

smoothly.

Antonis Achilleos and Dario Della Monica

Program Chairs

• Dario Della Monica, University of Udine (Italy)

• Antonis Achilleos, Reykjavik University (Iceland)

Program Committee

• Parosh Aziz Abdulla, Uppsala University (Sweden)

http://dx.doi.org/10.4204/EPTCS.390.0

iv

• Christel Baier, Technische Universität Dresden (Germany)

• Valentina Castiglioni, Reykjavik University (Iceland)

• Giorgio Delzanno, University of Genova (Italy)

• Léo Exibard, Université Gustave Eiffel (France)

• Gabriele Fici, University of Palermo (Italy)

• Dana Fisman, Ben-Gurion University (Israel)

• Nicola Gigante, Free University of Bozen-Bolzano (Italy)

• Miika Hannula, University of Helsinki (Finland)

• Naoki Kobayashi, The University of Tokyo (Japan)

• Orna Kupferman, Hebrew University (Israel)

• Martin Leucker, University of Lübeck (Germany)

• Jakub Michaliszyn, University of Wrocław (Poland)

• Fabio Mogavero, University of Napoli (Italy)

• Shankara Narayanan Krishna, Indian Institute of Technology, Bombay (India)

• Pawel Parys, University of Warsaw (Poland)

• Guillermo Pérez, University of Antwerp (Belgium)

• Giovanni Pighizzini, University of Milano (Italy)

• Gabriele Puppis, University of Udine (Italy)

• Joshua Sack, California State University Long Beach (USA)

• Ocan Sankur, CNRS/Irisa (France)

• Patrick Totzke, University of Liverpool (UK)

• Jana Wagemaker, Radboud University (Netherlands)

• Matteo Zavatteri, University of Padova (Italy)

• Martin Zimmermann, Aalborg University (Denmark)

Steering Committee

• Luca Aceto, Reykjavik University (Iceland)

• Javier Esparza, University of Munich (Germany)

• Salvatore La Torre, University of Salerno (Italy)

• Angelo Montanari, University of Udine (Italy)

• Mimmo Parente, University of Salerno (Italy)

• Jean-François Raskin, Université libre de Bruxelles (Belgium)

• Martin Zimmermann, Aalborg University (Denmark)

v

External Reviewers

Daniel Thoma, Dylan Bellier, Nikos Tzevelekos, Massimiliano Goldwurm, Luca Prigioniero, Bernd

Gärtner, Masaki Waga, Reijo Jaakkola, Carlo Mereghetti, Riccardo Romanello, Tomoyuki Yamakami,

Anatole Dahan, Daniele Dell’Erba, Lorenzo Clemente, Duligur Ibeling, Martin Sachenbacher, and

William Farmer.

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. vi–vi, doi:10.4204/EPTCS.390.0.1

Complexity Aspects of Logics in Team Semantics

Juha Kontinen (University of Helsinki, Finland)

Team Semantics is the mathematical basis of modern logics for reasoning about dependence, indepen-

dence, and imperfect information. During the past decade research on team semantics has flourished

with interesting connections to fields such as database theory, statistics, formal linguistics, hyperprop-

erties and causality, just to mention a few examples. I will give a short introduction to first-order team

semantics and review the expressivity and complexity of the most prominent logics of the area. I will

also discuss probabilistic variants of these logics and their connections to the existential theory of the

reals.

http://dx.doi.org/10.4204/EPTCS.390.0.1

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. vii–vii, doi:10.4204/EPTCS.390.0.2

Weighted Automata at the Border of Decidability

Laure Daviaud (University of East Anglia, UK)

In this talk I will review some results about weighted automata: what is decidable (or not) when it comes

to describing their behaviour and what are the mathematical tools that are used to prove such results. In

particular, I will describe Simon’s factorisation theorem, how it plays a major role in several of these

results and how it could be used more widely.

http://dx.doi.org/10.4204/EPTCS.390.0.2

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. viii–viii, doi:10.4204/EPTCS.390.0.3

The Church Synthesis Problem Over Continuous Time

Alexander Rabinovich and Daniel Fattal (Tel-Aviv University, Israel)

Church’s Problem asks for the construction of a procedure which, given a logical specification ϕ(I,O)
between input ω-strings I and output ω-strings O, determines whether there exists an operator F that

implements the specification in the sense that ϕ(I,F(I)) holds for all inputs I. Büchi and Landweber

gave a procedure to solve Church’s problem for MSO specifications and operators computable by finite-

state automata. We investigate a generalization of the Church synthesis problem to the continuous time

of the non-negative reals. It turns out that in the continuous time there are phenomena which are very

different from the canonical discrete time domain of the natural numbers.

http://dx.doi.org/10.4204/EPTCS.390.0.3

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. ix–ix, doi:10.4204/EPTCS.390.0.4

Strategic Reasoning under Imperfect Information – The Case of Synchronous

Recall

Sophie Pinchinat (IRISA/University of Rennes, France)

We first briefly survey various formal settings for Strategic Reasoning under Imperfect Information in

multi-player games. From the point of view of automated verification and/or synthesis, we motivate the

assumption of Synchronous Recall, that enforces particular properties on players’ observation capabili-

ties.

Second, with the focus on aforementioned Synchronous Recall assumption, we consider arenas that

arise from Dynamic Epistemic Logic, a modal logic dedicated to specifying information changes in a

multi-player game. Such arenas are described in a symbolic manner, with an initial epistemic state and

rules for player moves to attain new epistemic state, thus reflecting the information change that takes

place.

We then explain how such symbolic arenas denote a possibly infinite first-order structure - reminis-

cent of the trees considered for interpreting Epistemic Temporal Logic. Second, we exploit this angle of

view to go through the current state-of-the-art for reasoning (including planning) about these structures,

and analyse the frontier of this overall setting regarding Strategic Reasoning.

http://dx.doi.org/10.4204/EPTCS.390.0.4

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. 1–15, doi:10.4204/EPTCS.390.1

© E. Kieroński

This work is licensed under the

Creative Commons Attribution License.

A Uniform One-Dimensional Fragment with Alternation of

Quantifiers

Emanuel Kieroński

Institute of Computer Science
University of Wrocław, Poland

emanuel.kieronski@cs.uni.wroc.pl

The uniform one-dimensional fragment of first-order logic was introduced a few years ago as a gen-

eralization of the two-variable fragment of first-order logic to contexts involving relations of arity

greater than two. Quantifiers in this logic are used in blocks, each block consisting only of existen-

tial quantifiers or only of universal quantifiers. In this paper we consider the possibility of mixing

quantifiers in blocks. We identify a non-trivial variation of the logic with mixed blocks of quantifiers

which retains some good properties of the two-variable fragment and of the uniform one-dimensional

fragment: it has the finite (exponential) model property and hence decidable, NEXPTIME-complete

satisfiability problem.

1 Introduction

In this paper we are going to push forward the research on the uniform one-dimensional fragment of

first-order logic. To set up the scene and locate our results in a broader context let us first recall some

facts about the two-variable fragment, FO2. FO2, obtained just by restricting first-order logic so that its

formulas may use only variables x and y, is one of the most important decidable fragments of first-order

logic identified so far. The decidability of its satisfiability problem was shown by Scott [34] in the case

without equality, and by Mortimer [26] in the case with equality. In [26] it is proved that the logic has the

finite model property, that is, its every satisfiable formula has a finite model. Later, Grädel, Kolaitis and

Vardi [11] strengthened that result, by showing that every satisfiable formula has a model of size bounded

exponentially in its length. This exponential model property led to the NEXPTIME upper bound on the

complexity of FO2 satisfiability. The matching lower bound follows from the earlier work by Lewis [24].

An important motivation for studying FO2 is the fact that it embeds, via the so-called standard trans-

lation, basic modal logic and many standard description logics. Thus FO2 constitutes an elegant first-

order framework for those formalisms. However, its simplicity and naturalness make it also an attractive

logic in itself, inheriting potential applications in knowledge representation, artificial intelligence, or

verification of hardware and software from modal and description logics. Plenty of results on FO2, its

extensions and variations have been obtained in the last few decades, e.g., decidability was shown for

FO2 with counting quantifiers [12, 27, 28], one or two equivalence relations [19, 18], counting quantifiers

and equivalence relation [29], betweenness relations [22], its complexity was established on words and

trees, in various scenarios including the presence of data or counting [5, 4, 8, 9, 3], to mention just a few

of them.

However, further applications, e.g., in database theory are limited by the fact that FO2 and its ex-

tensions mentioned above can speak non-trivially only about relations of arity at most two. This is in

contrast to some other decidable fragments studied because of their potential applications in computer

science, like the guarded fragment, GF [1], the unary negation fragment, UNFO [7], the guarded negation

fragment, GNFO [2], or the fluted fragment, FF [32, 31].

https://dx.doi.org/10.4204/EPTCS.390.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 A Uniform One-Dimensional Fragment with Alternation of Quantifiers

A natural question is whether there is an elegant decidable formalism which retains full expressivity

of FO2, but additionally, allows one to speak non-trivially about relations of arity bigger than two. In the

recent literature we can find a few such formalisms.

An interesting idea is for example to combine FO2 with GF. The idea can be traced back already in

Kazakov’s PhD thesis [15], was present in the work by Bourish, Morak and Pieris [6], and found a more

systematic treatment in the paper by Rudolph and Šimkus [33], who formally introduced the triguarded

fragment, TGF. TGF is obtained from GF by allowing quantification for subformulas with at most two

free variables to be unguarded. What we get this way is a logic in which one can speak freely about pairs

of elements, and in a local, guarded way about tuples of bigger arity. TGF turns out to be undecidable

with equality, but becomes decidable when equality is forbidden. The satisfiability problem is then 2-

EXPTIME- or 2-NEXPTIME-complete, depending on whether constants are allowed in signatures [33];

the finite model property is retained [21]. A variation of the idea above is the one-dimensional triguarded

fragment [20], still containing FO2, which becomes decidable even in the presence of equality.

FO2 (or, actually, even its extension with counting quantifiers, C2) was also combined with FF by

Pratt-Hartmann [30]. This logic was shown decidable but the complexity of its satisfiability problem is

non-elementary, as already FF alone has non-elementary complexity [31].

Finally, probably the most canonical extension of FO2 to contexts with relations of arity bigger

than two, capturing the spirit of FO2 more closely than the logics discussed above, is the uniform one-

dimensional fragment, UF1, proposed by Hella and Kuusisto [13]. In this fragment quantifiers are

used in blocks and a single block is built out only of existential or only of universal quantifiers and

leaves at most one variable free; a fragment meeting this condition is called one-dimensional. Imposing

one-dimensionality alone is not sufficient for ensuring the decidability of the satisfiability problem and

thus another restriction, uniformity, is applied which, roughly speaking, allows boolean combinations of

atoms only if the atoms use precisely the same set of variables or use just one variable. In effect, just as

FO2 contains modal logic (or even Boolean modal logic), UF1 contains polyadic modal logic (even with

negations of the accessibility relations) (cf. [23]). In [13] it is shown that UF1 without equality is decid-

able and has the finite model property. In [16] this result is improved by showing that the decidability is

retained even if free use of equalities is allowed (by free use of equalities we mean that they need not obey

the uniformity restriction) and that the logic has exponential model property and NEXPTIME-complete

satisfiability problem, exactly as FO2.

A question arises whether the requirement that the blocks of quantifiers from the definition of UF1

must consist of quantifiers of the same type (all universal or all existential) is necessary for decidabil-

ity, that is what happens if we allow one to mix quantifiers as, e.g., in the formula ∀x∃y∀zR(x,y,z, t).
Let us denote the extension of UF1 allowing to alternate quantifiers in blocks AUF1. The motivations

behind studying AUF1 are multifarious. UF1 lies very close to the borderlines between the decidable

and undecidable, so, firstly and most importantly, analysing its expressive extensions may enhance our

understanding of these borderlines which may be also useful in different scenarios. Secondly, the logics

UF1 and AUF1 can be useful themselves, offering extensions of modal and description logics to con-

texts with relations of arity greater than two, such as databases, orthogonal to other proposals. Thirdly,

though it is of course a matter of taste, we believe that AUF1 is just quite an elegant formalism, which

can be justified by a relative simplicity of its definition and a nice game-theoretic characterization of its

expressivity—natural Ehrenfeucht-style games for UF1 were introduced in [16]; shifting to AUF1 would

probably allow for an even nicer game characterizations (though this topic is not formally studied in this

paper).

The first step to understand AUF1 was done in the companion paper [10], where we show the decid-

ability and the finite model property of the three variable restriction of this logic, AUF3
1; in that paper

E. Kieroński 3

AUF3
1 is then made a basis for obtaining a rich decidable subclass of the three-variable fragment, FO3.

Turning now to our current contribution, we first remark that in this paper we still do not answer the

question whether the whole AUF1 has decidable satisfiability. We however make another step towards

understanding AUF1 by identifying its fragment, AUF−
1 , which contains full FO2 without equality, allows

for mixed blocks of quantifiers of unbounded length, has NEXPTIME-complete satisfiability problem,

and has the exponential model property. Additionally, we observe that if we allow for a free use of

equality in AUF−
1 then we lose the finite model property.

The main restriction of AUF−
1 , compared to full AUF1, is that it admits only blocks of quantifiers

that are purely universal or end with the existential quantifier. Additionally, mostly for the clarity of

presentation, we will define AUF−
1 not as an extension of the version of UF1 originally defined in [13],

but rather as an extension of the strongly uniform one-dimensional fragment, sUF1, introduced in [17].

The definition of AUF−
1 is inspired by the definition of the Maslov class K [25] and, as we will see in a

moment, the decidability of AUF−
1 can be shown by a reduction to conjunctions of sentences in K, whose

decidability was shown by the resolution method by Hustadt and Schmidt [14]. However, this reduction

does not allow us to establish the precise compleixty of AUF−
1 , since, to the best of our knowledge, the

precise complexity of the Maslov class has not been established. It is also not known whether K has the

finite model property.

2 Preliminaries

2.1 Notation and terminology

We assume that the reader is familiar with first-order logic. We work with purely relational signatures

with no constants nor function symbols. We refer to structures using Fraktur capital letters, and to their

domains using the corresponding Roman capitals. Given a structure A and some B ⊆ A we denote by

A↾B the restriction of A to its subdomain B.

We usually use a,b, . . . to denote elements of structures, and x, y, . . . for variables; all of these possibly

with some decorations. For a tuple of variables x we use ψ(x) to denote that the free variables of ψ are

in x.

In the context of uniform logics it is convenient to speak about some partially defined (sub)structures

which we will call pre-(sub)structures. A pre-structure over a signature σ consists of its domain A and a

function specifying the truth-value of every fact P(a), for P ∈ σ and a tuple a of elements of A of length

equal to the arity of P, such that a contains all elements of A or just one of them. The truth values of all

the other facts remain unspecified. We will use Fraktur letters decorated with ∗ to denote pre-structures:

a pre-structure with domain A will be denoted by A∗. If a structure A is fully defined, A∗ denotes its

induced pre-structure. Similarly, if B ⊆ A is a subdomain of some structure A we donote by B∗ the

pre-structure (A↾B)∗ and call it a pre-substructure of A.

An (atomic) 1-type over a signature σ is a maximal consistent set of atomic or negated atomic formu-

las over σ using at most one variable x. We often identify a 1-type with the conjunction of its elements.

We will usually be interested in 1-types over signatures σ consisting of the relation symbols used in

some given formula. Observe that the number of 1-types is bounded by a function which is exponential

in |σ |, and hence also in the length of the formula. This is because a 1-type just corresponds to a subset

of σ .

Let A be a structure, and let a ∈ A. We denote by tpA(a) the unique atomic 1-type realized in A by

the element a, i.e., the 1-type α(x) such that A |= α(a).

4 A Uniform One-Dimensional Fragment with Alternation of Quantifiers

2.2 Satisfiability and finite model property

Let L be a class of first-order formulas (a logic). The (finite) satisfiability problem for L takes as its

input a sentence from L and verifies if it has a (finite) model. L has the finite model property if every

satisfiable sentence in L has a finite model; L has the exponential model property if there is a fixed

exponential function f such that every satisfiable sentence ϕ has a finite model over a domain whose size

if bounded by f (|ϕ |) (where the length of ϕ , |ϕ |, is measured in any reasonable fashion).

2.3 Logics

As the starting point we define the logic sUF1 (without equality), called in [17] the strongly restricted

uniform one-dimensional fragment. Formally, for a relational signature σ , the set of σ -formulas of sUF1

is the smallest set F such that:

• every σ -atom using at most one variable is in F

• F is closed under Boolean connectives

• if ϕ(x0, . . . ,xk) is a Boolean combination of formulas in F with free variables in {x0, . . . ,xk} and

atoms1 built out of precisely all of the variables x0, . . . ,xk (in an arbitrary order, possibly with

repetitions) then ∃x0, . . . ,xkϕ , ∃x1, . . . ,xkϕ , ∀x0, . . . ,xkϕ and ∀x1, . . . ,xkϕ are in F .

Example formulas in sUF1 are:

∀xyz(P(x)∧P(y)∧P(z)→ R(x,y,z)∨¬S(z,z,x,y))

∀x(P(x)→∃yz(¬R(y,z,x)∧ (¬R(x,y,z)∨P(y))))

For interested readers we say that (non-restricted) uniform one-dimensional fragment is defined as

above but in the last point of the definition the non-unary atoms must not necessarily use the whole set

{x0, . . . ,xk} of variables but rather all those atoms use the same subset of this set (see [13]).

By AUF1 we denote the extension of sUF1 without equality with alternation of quantifiers in blocks.

The set of σ -formulas of AUF1 is the smallest set F such that:

• every σ -atom using at most one variable is in F

• F is closed under Boolean connectives

• if ϕ(x0, . . . ,xk) is a Boolean combination of formulas in F with free variables in {x0, . . . ,xk}
and atoms built out of precisely all of the variables x0, . . . ,xk (in an arbitrary order, possibly with

repetitions) then Q0x0 . . .Qkxkϕ and Q1x1 . . .Qkxkϕ are in F , where each Qi is one of ∃,∀.

Finally, we define a subset AUF−
1 of AUF1 by requiring that its formulas are written in negation

normal form NNF (that is negation is used only in front of atomic formulas, and the only other Boolean

connectives are ∨ and ∧), and that every sequence of quantifiers in the last point of the definition either

contains only universal quantifiers or the last quantifier Qk is existential. In AUF−
1 we can write, e.g.:

∀xy∃z(¬P(x)∧¬P(y)∨R(x,y,z))

∀x(P(x)∨∃y∀z∃tS(x,y,z, t))

∀xyz(R(x,y,z)∨∃tT (x, t)∧∃tT (y, t)∧∃tT (z, t))

Observe that AUF−
1 contains the whole sUF1 and hence also FO2. (For example the FO2 sentence

∃x∀yψ(x,y) belongs to sUF1, since one may think that it has two blocks of quantifiers, both of length

one, and indeed one of them is purely universal and the other ends with ∃.)

1Please note that those atoms need not to belong to F .

E. Kieroński 5

2.4 Normal forms and basic decidability result

We introduce normal form for AUF−
1 formulas, generalizing Scott’s normal form for FO2 (cf. [34, 11]).

We start with a version involving 0-ary predicates, called weak normal form, and then explain how

to remove them. In our normal form as well as in some intermediate formulas we allow ourselves to

use implications which are usually not allowed in NNF formulas, but here they are very natural (note

that converting them to disjunctions using the basic law p → q ≡ ¬p∨ q will not affect the blocks of

quantifiers). We say that a AUF−
1 sentence is in weak normal form if it is a conjunction of formulas

having one of the following shapes.

Q1x1 . . .Qkxkψ(x1, . . . ,xk), (1)

E → Q1x1 . . .Qkxkψ(x1, . . . ,xk), (2)

where

• k > 0 is a natural number

• the xi are distinct variables

• ψ is a quantifier-free AUF−
1 formula (Boolean combination of atoms, each of them containing all

the variables x1, . . . ,xk or at most one of them)

• every Qi is a quantifier (universal or existential) and either all the Qi are universal (universal

conjunct) or Qk is existential (existential conjunct)

• E is a 0-ary relation symbol

In particular, in a formula of type (1), k may be equal to 0; in this case ψ is a Boolean combination

of 0-ary predicates.

Lemma 1. Let ϕ be a AUF−
1 sentence. Then there exists a polynomially computable AUF−

1 sentence

ϕ ′ in weak normal form over a signature extending the signature of ϕ by some fresh unary and 0-ary

relation symbols, such that (i) every model of ϕ can be expanded to a model of ϕ ′ and (ii) every model

of ϕ ′ is a model of ϕ .

Proof. (Sketch) Assume that ϕ is in NNF. Take an innermost subformula ψ0 starting with a maximal

block of quantifiers. If it has a free variable, that is, is of the form

Q1x1 . . .Qkxkψ(x1, . . . ,xk,y)

replace it by P(y), for a fresh unary symbol P, and add the following normal form conjunct ϕψ0
(partially)

axiomatising P.

∀yQ1x1 . . .Qkxk(P(y)→ ψ(x1, . . . ,xk,y)).

In other words, ϕ is replaced by ϕ(P(y)/ψ0)∧ϕψ0
.

If ψ0 is a proper subsentence, that is it is of the form

Q1x1 . . .Qkxkψ(x1, . . . ,xk),

then replace it by E , for a fresh 0-ary symbol E and add the conjunct

E → Q1x1 . . .Qkxkψ(x1, . . . ,xk).

Repeat this process as long as possible. Note that we indeed append conjuncts belonging to AUF−
1 .

6 A Uniform One-Dimensional Fragment with Alternation of Quantifiers

The above process is similar to Scott’s reduction of FO2 formulas to their normal form. Besides the

natural modifications needed to deal with sequences of quantifiers rather than with single quantifiers, the

main difference is that in the appended conjuncts axiomatizing the freshly introduced unary and 0-ary

predicates, we write implications in only one direction. This is sound as our initial formula is assumed

to be in NNF. Indeed, consider a single step of the reduction, assuming that the case with a free variable

in ψ0 applies. In this step ϕ ′ = ϕ(P(y)/ψ0)∧ ϕψ0
is produced from ϕ . Assuming that A |= ϕ we

obtain a model A′ of ϕ ′ by making the unary relation P true at all elements a of A such that A |= ψ0[a].
This makes the appended conjunct ϕψ0

true; obviously, also ϕ(P(y)/ψ0) remains true. In the opposite

direction assume A′ |= ϕ ′. It may happen that the subformula ψ0(y) of ϕ is true in A′ in more points

than P(y) is. However, to guarantee that ϕ is true it suffices that it is true at least at those points where

P(y) is, which is ensured by the appended conjunct ϕψ0
; this is because ϕ is assumed to be in NNF and

thus ψ0 appears in ϕ in the scope of no negation symbol. We reason similarly for the case when ψ0 is a

subsentence.

For our purposes, that is showing the finite model property for AUF−
1 and demonstrating that its

satisfiability problem is in NEXPTIME, we can further simplify our formulas, by eliminating 0-ary pred-

icates. What we can do is to guess the truth values for all the 0-ary predicates and replace them by ⊤ or

⊥, in accordance with the guess. In particular, the conjuncts of the form E → Q1x1 . . .Qkxkψ(x1, . . . ,xk)
are eliminated if E is guessed to be ⊥ and replaced just by Q1x1 . . .Qkxkψ(x1, . . . ,xk) if E is guessed to

be ⊤.

It is convenient to split the set of the resulting conjuncts into those whose all quantifiers are universal

and those which end with the existential quantifier. We say that a sentence ϕ is in normal form if it is of

the following shape:

∧

16i6m∃

ϕ
∃
i ∧

∧

16i6m∀

ϕ
∀
i , (3)

where ϕ∃
i = Qi

1x1Qi
2x2 . . .Q

i
ki−1xki−1∃xki

ψ∃
i , ϕ∀

i = ∀x1 . . .xli ψ
∀
i , for Qi

j ∈ {∀,∃}, ψ∃
i = ψ∃

i (x1,x2, . . . ,xki
)

and ψ∀
i = ψ∀

i (x1, . . . ,xli).

The discussion above justifies the following.

Lemma 2. (i) The satisfiability problem for AUF−
1 can be reduced in nondeterministic polynomial time

to the satisfiability problem for normal form AUF−
1 sentences. (ii) If the class of all normal form AUF−

1

sentences has the finite (exponential) model property then also the whole AUF−
1 has the finite (exponen-

tial) model property.

The reduction to normal form described above allows us to easily prove the decidability of the sat-

isfiability problem for AUF−
1 . This can be done by using the results on the Maslov Class K (which is a

dual of the Maslov class K). Full definition of K is quite complicated and can be found, e.g., in [14]. For

our purposes it is sufficient to say that when converted to prenex form K formulas look as follows:

∃y1 . . .∃ym∀x1 . . .∀xkQ1z1 . . .Qlzlψ , (4)

where the Qi are quantifiers, ψ is a quantifier-free formula without equality and every atom of ψ satisfies

one of the following conditions: (i) it contains at most one xi- or zi-variable, (ii) it contains all the xi-

variables and no zi-variables, or (iii) it contains an existentially quantified variable z j and no zi-variables

with i > j.

E. Kieroński 7

Now, one easily observes that every AUF−
1 -normal form conjunct belongs to K. Indeed, every ϕ∀

i -

conjunct is of the form (4) with m = l = 0 and its every atom satisfies either condition (i) or (ii); every

ϕ∃
i -conjunct is of the form (4) with m = k = 0 and every atom satisfying (i) or (iii).

Hence any normal form formula belongs to DK, the class of conjunctions of formulas in K. The

satisfiability problem for K was shown to be decidable in [25]. This result was extended to the class DK

in [14]. This gives us the basic decidability result.

Theorem 3. The satisfiability problem for AUF−
1 is decidable.

We recall that the precise complexity of DK has not been established. It is also not known if DK has

the finite model property and if its finite satisfiability is decidable. The same questions for K are also

open.

3 Finite model property

The following theorem is the main results of this paper. Besides just proving the finite model property

for AUF−
1 , it will also allow us to establish the exact complexity of its satisfiability problem.

Theorem 4. AUF−
1 has the exponential model property.

The rest of this section is devoted to a proof of the above theorem. By Lemma 2 we may restrict

attention to formulas of the form (3).

3.1 Satisfaction forests

In this subsection we introduce satisfaction forests, which are auxiliary structures (partially) describing

some finite models of normal form AUF−
1 sentences. We first explain how to extract a satisfaction forest

from a given finite model B of a normal form sentence ϕ . Then we formally define satisfaction forests

and relate their existence to the existence of finite models of normal form sentences.

3.1.1 Extracting a satisfaction forest from a model

Let ϕ be a normal form AUF−
1 sentence and let B be its finite model. Assume that ϕ is as in (3).

The satisfaction forest will be a collection of labelled trees, one tree for each existential conjunct of ϕ ,

showing how this conjunct is satisfied in B. The labelling function will be denoted L and will assign

elements from B to tree nodes (with the exception of the root, which will be assigned the special empty

label).

Consider a single existential conjunct ϕ∃
i = Qi

1x1Qi
2x2 . . .Q

i
ki−1xki−1∃xki

ψ∃
i . Its satisfaction tree Ti is

built in the following process.

Start with a root labelled with the empty label. The root forms level 0 of the tree. Level j, 0 < j 6 ki

will correspond to the quantifier Qi
j. Assume level j− 1 has been constructed, for 0 < j 6 ki. For each

of its nodes n:

• If Qi
j = ∀ then for each element b ∈ B add a child n′ of n to Ti and set L (n′) := b. Nodes added

in this step are called universal nodes.

• If Qi
j = ∃ then let n1, . . . ,n j−1 = n be the sequence of non-root nodes on the branch of n, ordered

from the child of the root towards n. Choose in B an element b such that

B |= Qi
j+1x j+1 . . .Q

i
ki−1xki−1∃xki

ψ
∃
i (L (n1), . . . ,L (n j−1),b,xk+1, . . . ,xki

).

8 A Uniform One-Dimensional Fragment with Alternation of Quantifiers

It is clear that such an element exists. If j < ki then we call it an intermediate witness for ϕ∃
i , and

if j = ki we call it the final witness for ϕ∃
i . Add a single child n′ of n to Ti and set L (n′) = b. The

added element is called an existential node.

For a branch ♭ of the above-defined tree we denote by Set(♭) the set of labels of the non-root elements of

♭, by Set−(♭) the set of labels of non-root and non-leaf elements of ♭ and by Seq(♭) the sequence of the

non-root elements of ♭, ordered from the child of the root towards the leaf.

We further overload the function L by allowing it to define also labels for branches of the tree (by

a branch we mean here a sequence of elements n1, . . . ,nki
such that n1 is a child of the root, nki

is a leaf,

and each ni+1 is a child of ni). We label each branch ♭ with the pre-substructure of B over Set(♭).
To declare some properties of satisfaction forests we need the following notions. A pre-structure

H∗ is ϕ∀
i -compatible, if for every sequence a1, . . . ,ali of elements of H such that {a1, . . . ,ali} = H we

have H∗ |= ψ∀
i (a1, . . . ,ali). A pre-structure is ϕ∀-compatible if it is ϕ∀

i -compatible for every conjunct ϕ∀
i .

Further, a set of 1-types {α1, . . . ,αk} is ϕ∀-compatible if for a set of distinct elements H = {a1, . . . ,am}
and any assignment f : {a1, . . . ,am}→ {α1, . . . ,αk} one can build a ϕ∀-compatible pre-structure on H in

which, for every i, the 1-type of ai is f (ai).

We now collect some properties of the tree Ti for ϕ∃
i constructed as above.

(T1) for 1 6 j 6 ki, and every node n from level j−1:

(a) if Qi
j = ∀ then n has precisely |B| children, labelled by distinct elements of B (recall that each

of these children is called a universal node)

(b) if Qi
j = ∃ then n has precisely one child (recall that this child is called an existential node)

(T2) for every branch ♭ ∈ Ti, assuming Seq(♭) = (a1, . . . ,aki
), we have L (♭) |= ψ∃

i (a1, . . . ,aki
)

(T3) for every pair of branches ♭1, ♭2 ∈ Ti, for every a ∈ B such that a ∈ Set(♭1) and a ∈ Set(♭2) the

1-types of a in L (♭1) and in L (♭2) are identical

(T4) for every pair of branches ♭1, ♭2 ∈ Ti such that Set(♭1) = Set(♭2) we have that L (♭1) = L (♭2).

(T5) for every branch ♭ ∈ Ti, L (♭) is ϕ∀-compatible

Now we collect some properties of the whole sequence of trees T1, . . . ,Tm∃
constructed for ϕ and

B.

(F1) for every i, Ti is a satisfaction tree over B for ϕ∃
i

(F2) for every pair of branches ♭1 ∈ Ti, ♭2 ∈ T j, i 6= j, for every a ∈ B such that a ∈ Set(♭1) and a ∈
Set(♭2) the 1-types of a in L (♭1) and in L (♭2) are identical

(F3) for every pair of branches ♭1 ∈Ti, ♭2 ∈ T j, i 6= j such that Set(♭1) = Set(♭2) we have that L (♭1) =
L (♭2)

(F4) the set of all 1-types appearing in the pre-structures defined as labels of the branches of the trees

in F is ϕ∀-compatible.

Properties (T3), (T4), (F2) and (F3) will be sometimes called the (forest) consistency conditions.

Claim 5. The sequence of trees T1, . . . ,Tm∃
constructed as above for the structure B and the sentence

ϕ satisfies conditions (T1)-(T5) and (F1)-(F4).

Proof. (Sketch) It is not difficult to see that each of the Ti satisfies (T1)-(T5) and that the whole sequence

satisfies (F1)-(F3). The only non-obvious point is (F4). Let us prove that it is true. Let α1, . . . ,αk be

the list of all 1-types appearing in the pre-structures defined in the whole forest. Let H = {a1, . . . ,am}
be a set of fresh distinct elements and f : {a1, . . . ,am} → {α1, . . . ,αk} an assignment of 1-types to these

E. Kieroński 9

elements. We need to construct a ϕ∀-compatible pre-structure on H in which, for every i, the 1-type of ai

is f (ai). For each i choose an element g(ai)∈ B such that tpB(g(ai)) = f (ai); g need not be injective. Let

us define the pre-structure H∗ on H by setting the 1-type of ai to be f (ai), and for every relation symbol

R, and every sequence c1, . . . ,cl of elements of H such that l is the arity of R and {c1, . . . ,cl} = H ,

setting the truth-value of the atom R(c1, . . . ,cl) to be equal to the truth-value of R(g(c1), . . . ,g(cl)) in B.

We claim that so defined H∗ is ϕ∀-compatible. To see this take any conjunct ϕ∀
i and any sequence of

elements c1, . . . ,cli such that {c1, . . . ,cli} = H and assume to the contrary that H∗ 6|= ψ∀
i (c1, . . . ,cli). But

then B 6|= ψ∀
i (g(c1), . . . ,g(cli)), as the truth-values of the atoms appearing in ψ∀

i in the two considered

structures appropriately coincide by our definition of H∗. Contradiction.

3.1.2 Satisfaction forests and the existence of finite models

Let ϕ be a normal form AUF−
1 sentence (we do not assume that a model of ϕ is known). Formally, a

satisfaction forest for ϕ over a domain B is a sequence of trees T1, . . . ,Tm∃
together with a labelling

function L , assigning elements of B to the nodes of the Ti (with the exception of their roots to which

the special empty label is assigned) and pre-structures to their branches, such that each of the trees Ti

satisfies conditions (T1)-(T5) and the whole sequence satisfies conditions (F1)-(F4).

Lemma 6. A normal form AUF−
1 sentence ϕ has a finite model over a domain B iff it has a satisfaction

forest over B.

Proof. Left-to-right implication is justified by the extraction of a satisfaction forest from a given finite

model of ϕ described in Section 3.1.1, and in particular by Claim 5.

In the opposite direction assume that a satisfaction forest over a finite domain B for ϕ is given. We

construct a model B of ϕ over the domain B. The construction is natural:

Step 1: 1-types. The 1-type of an element b ∈ B is defined as the 1-type of b in the structure L (♭) for an

arbitrarily chosen branch ♭, in an arbitrarily chosen tree Ti, for which b ∈ Set(♭).

Step 2: Witnesses. For every tree Ti and its every branch ♭ of Ti define the pre-structure on Set(♭) in

accordance with L (♭).

Step 3: Completion. For any set of distinct elements {b1, . . . ,bk} whose pre-structure is not yet defined,

choose any ϕ∀-compatible pre-structure which retains the already defined 1-types of the bi.

Properties (T3), (F2), (T4) and (F3) guarantee that Step 1 and Step 2 can be performed without

conflicts and the existence of an appropriate pre-structure in Step 3 is guaranteed by (F4).

It remains to see that B |= ϕ . Consider any existential conjunct of ϕ , that is a conjunct ϕ∃
i =

Qi
1x1Qi

2x2 . . .Q
i
ki−1xki−1∃xki

ψ∃
i . The satisfaction tree Ti witnesses that ϕ∃

i indeed holds: it describes

all possible substitutions for universally quantified variables, and shows how intermediate and final wit-

nesses for existential quantifiers can be chosen. Consider now any universal conjunct ϕ∀
i = ∀x1 . . .xli ψ

∀
i

and let b1, . . . ,bli be any sequence of elements of B (possibly with repetitions). Let H = {b1, . . . ,bli}.

The pre-structure on H has been defined either in Step 2 or in Step 3. In both cases we know that it is

ϕ∀-compatible, in particular it is ϕ∀
i -compatible, so H∗ |= ψ∀

i (b1, . . . ,bli).

3.2 From a model to a satisfaction forest over a small domain

We are ready to present the main construction of this paper in which we show that every satisfiable

formula has a satisfaction forest over a small domain.

10 A Uniform One-Dimensional Fragment with Alternation of Quantifiers

Let A be a (possibly infinite) model of a normal form sentence ϕ of the shape as in (3). We show

how to construct a satisfaction forest over a domain of size bounded exponentially in |ϕ |. By Lemma 6

this will guarantee that ϕ has a finite model over such a bounded domain.

3.2.1 Domain

Let L be the number of 1-types (over the signature of ϕ) realized in A, and let these types be enumerated

as α1, . . . ,αL. Let K = max{ki : 1 6 i 6 m∃}. We define the domain B to be {1, . . . ,2K}×{1, . . . ,m∃}×
{1, . . . ,(K − 1)K−1}×{1, . . . ,L}. Note that K and m∃ are bounded linearly and L is bounded exponen-

tially in |ϕ |, and hence |B| is indeed bounded exponentially in |ϕ |.

For convenience let us split B into the sets Bi = {(i,∗,∗,∗)} (here and in the sequel ∗ will be some-

times used as a wildcard in the tuples denoting elements of the domain). We will sometimes call Bi the

i-th layer of B.

3.2.2 Some simple combinatorics: Extension functions

During the construction of the satisfaction forest we will design a special strategy for assigning labels

to the leaves. To this end we introduce an auxiliary combinatorial tool, which we will call extension

functions.

Let us recall a well known Hall’s marriage theorem. A matching in a bipartite graph (G1,G2,E) is a

partial injective function f : G1 → G2 such that if f (a) = b then (a,b) ∈ E .

Theorem 7 (Hall). Let (G1,G2,E) be a bipartite graph. There exists a matching covering G1 iff for any

set W ⊆ G1 the number of vertices of G2 incident to the edges emitted from W is greater or equal to |W |.

For a natural number n, let [n] denote the set {1, . . . ,n} and for 1 6 l 6 n let [n]l denote the set of all

subsets of [n] of cardinality l.

Lemma 8. For every 0 < l < K there exists a 1−1 function extl : [2K]l → [2K]l+1 such that for any

S ∈ [2K]l we have that S ⊆ extl(S).

Proof. Consider the bipartite graph ([2K]l, [2K]l+1,E) such that (S,S′) ∈ E iff S ⊆ S′. To show that a

desired extl exists it suffices to show the existence of a matching covering entirely the set [2K]l . To this

end we apply Hall’s marriage theorem. In our graph every node from [2K]l has degree 2K − l (given

an l-element subset of [2K] it can be expanded to an l + 1 subset just by adding to it precisely one of

the remaining 2K − l elements) and every node from [2K]l+1 has degree l + 1 (to obtain an l-element

subset of a l + 1-subset one just removes one of the elements of the latter). Take a subset W of [2K]l .
The nodes of this subset are incident to |W | · (2K − l) edges in total. Let us see that the number of nodes

in [2K]l+1 incident to a node from W is greater than or equal to |W |. Indeed, assume to the contrary

that it is not. Then at most |W |−1 nodes absorb |W | · (2K − l) edges emitted by W , but this means that

|W | · (2K − l)6 (|W |−1) · (l +1). Rearranging this inequality we get that |W |(2K −2l−1)+ l+1 6 0.

But using the assumption that 0< l <K we have that (2K−2l−1)> 0 and hence the whole left-hand side

of the last inequality must be greater than 0. Contradiction. Thus our graph satisfies the Hall’s theorem

assumptions which guarantee the existence of a matching from [2K]l to [2K]l+1, covering entirely [2K]l .
This matching can be taken as extl .

Choose an extension function extl for every l and let ext =
⋃K−1

l=1 extl , that is, ext is a function which

takes a non-empty subset of [2K] of size at most K − 1 and returns a superset containing precisely one

new element. Obviously ext remains an injective function.

E. Kieroński 11

3.2.3 Construction of a satisfaction forest

We now describe how to construct a satisfaction forest T1, . . . ,Tm∃
for ϕ over the domain B. It should

be helpful to announce how we are going to take care of the consistency conditions for the whole forest:

• Conditions (F2) and (T3): With every element a = (∗,∗,∗, l) ∈ B we associate the 1-type αl .

Whenever a will be used as a label of a node in a satisfaction tree then its 1-type in the pre-structure

defined for any branch containing a node labelled with a will be set to αl .

• Conditions (F3) and (T4): for a a pair of distinct branches ♭1, ♭2 (either belonging to the same tree

or to two different trees) we will simply have Set(♭1) 6= Set(♭2). This condition will be ensured by

an appropriate use of the extension function. Here it is important that the last quantifier in every

ϕ∃
i -conjunct is existential, and hence the last node of every branch in Ti is also existential, so we

can freely choose its label from B.

Let us explain how to construct a single Ti, a ϕ∃
i -satisfaction tree over B. The general shape of Ti is

determined by ϕ∃
i and B: we know how many nodes we need, we know which of them are existential, and

which are universal, we know the labels of the universal nodes. It remains to assign labels to existential

nodes (elements of B) and to branches (pre-structures on the set of elements formed from the labels of

the nodes on a branch).

We define an auxiliary function pat which for every node of Ti returns a pattern element from A.

We will choose pat(n), so that its 1-type is equal to type of L (n). We remark, that if two nodes from

different branches have the same label then they do not need to have the same pattern element.

Consider a node nk and assume that all its non-root ancestors n1, . . . ,nk−1 have the function pat and

their labels already defined. We proceed as follows

• If nk is universal then its label L (nk) is known

– If L (nk) = L (n j) for some j < k then we set pat(nk) = pat(n j).

– If the label L (nk) is not used by the ancestors of n then choose as pat(n) an arbitrary element

of A of the 1-type assigned to L (nk). (In particular, we may use an element which was used

by one of the ancestors of n)

• If nk is existential then we need to define both L (n) and pat(n). By our construction we have that

A |= ∃xkQi
k+1xk+1 . . .Q

i
ki−1xki−1∃xki

ψ
∃
i (pat(n1), . . . , pat(nk−1),xk,xk+1, . . . ,xki

).

We choose an element w ∈ A witnessing the previous formula, i.e., an element such that

A |= Qi
k+1xk+1 . . .Q

i
ki−1xki−1∃xki

ψ
∃
i (pat(n1), . . . , pat(nk−1),w,xk+1, . . . ,xki

)

and set pat(nk) = w. To define the label of nk we consider two cases:

– If nk is not a leaf then:

* if pat(n j) = w for some j < k then set L (nk) = L (n j)

* otherwise we choose as L (nk) an arbitrary element of B which has assigned the 1-type

tpA(w), not used by the ancestors of nk (there are many copies of each 1-type in B so it

is always possible).

– If nk is a leaf then let ♭ be the branch of nk and let S = { j : nl ∈ B j for some l < k}. Of course,

|S|< k 6 K so ext(S) is defined. Let s be the unique member of ext(S)\S. We take as L (nk)
an element (s, i, t, l) ∈ Bs where l is such that αl = tpA(w), and where t is chosen so that none

12 A Uniform One-Dimensional Fragment with Alternation of Quantifiers

of the branches ♭′ of the current tree for which the labels have been already defined such that

Set−(♭′) = Set−(♭) used (s, i, t, l) as the label of its leaf. We indeed have enough elements

for this, since obviously |Set−(♭)| 6 K − 1 and thus there are at most (K − 1)K−1 different

branches whose nodes from the first K−1 levels are labelled by elements of |Set−(♭)| (recall

that there are (K −1)K−1 possible choices for t).

Take now any branch ♭ of Ti. It remains to define the pre-structure L (♭). For any relational symbol

R of arity m and any sequence ai1 , . . . ,aim of elements of Set(♭) containing all the elements of Set(♭) we

set R(ai1 , . . . ,aim) to be true iff R(pat(ai1), . . . , pat(aim)) is true in A. For every a j its 1-type is set to be

equal to the 1-type of pat(a j). This completes the definition of the pre-structure on Set(♭). Note that this

ensures that this pre-structure satisfies ψ∃
i (Seq(♭)).

3.3 Correctness

Let us now see that the defined satisfaction forest indeed satisfies all the required conditions.

• Conditions (T1), (T2) and (T3) should be clear.

• For (T4) we show that there is no pair of branches ♭, ♭′ in a tree Ti with Set(♭) = Set(♭′). Indeed,

we have chosen as labels of the leaves of ♭ and ♭′ two different elements b = (s, i,x,∗) and b′ =
(s, i,y,∗) of a layer Bs which is not inhabited by the elements of Set−(♭) or Set−(♭′) (due to the use

of the function ext). So b ∈ Set(♭) but b 6∈ Set(♭′) and thus Set(♭) 6= Set(♭′).

• To show that (T5) holds assume to the contrary that for some branch ♭, H∗ = L (♭) is not ϕ∀-

compatible; take i for which it is not ϕ∀
i -compatible. So, for some sequence a1, . . . ,al1 such that

{a1, . . . ,al1}= Set(♭)=H we have H∗ 6|=ψ∀
i (a1, . . . ,ali). But then the definition of the pre-structure

in L (♭) implies that A 6|= ψ∀
i (pat(a1), . . . , pat(ali)), that is A violates ϕ∀

i . Contradiction.

• Conditions (F1), (F2) should be clear.

• For (F3) the argument is similar to the argument for (T4): We show that there is is pair of branches

♭1, ♭2 in a tree Ti, and resp., T j, i 6= j, with Set(♭1) = Set(♭2). Again, this follows from the fact

that we have chosen as labels of the leaves of ♭1 and ♭2 two different elements b and b′ of a layer

Bs which is not inhabited by the elements of Set−(♭1) or Set−(♭2). This time the elements b1 and

b2 are different from each other since b1 = (s, i,∗,∗) and b2 = (s, j,∗,∗).

• For (F4) we reason precisely as in the reasoning for (F4) in the proof of the Claim in Section 3.1

(we just replace the structure B from this proof with the currently considered structure A).

An immediate consequence of Thm. 4 is:

Theorem 9. The satisfiability problem for AUF−
1 is NEXPTIME-complete.

Proof. The lower bound is inherited from the lower bound for FO2 [24]. Let us turn to the upper bound.

By Lemma 2 it suffices to show how to decide satisfiability of a normal form sentence ϕ . By Theorem

4 if ϕ is satisfiable then it has a model with exponentially bounded domain. We guess some natural

description of such a model A. We note that this description is also of exponential size with respect to

|ϕ |: Indeed, we need to describe some number (linearly bounded in |ϕ |) of relations of arity at most |ϕ |,
and it is straightforward, taking into consideration the size of the domain, that a description of a single

such relation is at most exponential in |ϕ |. A verification of a single normal form conjunct in the guessed

structure can be done in an exhaustive way, by considering all possible substitutions for the variables.

Alternatively, instead of guessing a model one could guess a satisfaction forest for ϕ . Again, a

routine inspection reveals that the size of its description can be bounded exponentially in |ϕ |; also the

verification of the properties (T1)-(T5), (F1)-(F4) would not be problematic.

E. Kieroński 13

4 Infinity axiom with free use of equality

In this section we note that allowing for free use of equality in our logic changes the situation signifi-

cantly: we lose the finite model property. We recall that in the case of UF1 free use of equality does not

spoil the decidability and even does not change the complexity.

In the recent paper [10] we note that the fragment with arbitrary blocks of quantifiers AUF1 and with

free use of equality contains infinity axioms (satisfiable formulas without finite models), by constructing

the following three-variable formula:

∃xS(x)∧∀x∃y∀z(¬S(y)∧R(x,y,z)∧ (x = z∨¬R(z,y,x))),

which has no finite models but is satisfied in the model whose universe is the set of natural numbers, S is

true only at 0 and Rxyz is true iff y = x+1.

The above example can be simply adapted to the case of AUF−
1 with free use of equality. We just

add a dummy existentially quantified variable t and require it to be equal to the previous, universally

quantified variable z. To accommodate all the variables we increase the arity of R by 2 (one can think

that the first and the last position of R from the previous example have been doubled):

∃xS(x)∧∀x∃y∀z∃t.(t = z∧¬S(y)∧R(x,x,y,z, t)∧ (x = z∨¬R(z, t,y,x,x))).

5 Conclusions

We identified a non-trivial uniform one-dimensional logic in which a use of mixed blocks of quantifiers

is allowed, strictly extending the two-variable fragment FO2 without equality and the previously defined

fragment sUF1 without equality. We proved that, similarly to FO2 and sUF1, this logic has the finite,

exponential model property and NEXPTIME-complete satisfiability problem.

There are two interesting directions, orthogonal to each other, in which it would be valuable to extend

our work. The first is investigating the decidability, complexity and the status of the finite model property

for full AUF1 without equality, that is to see what happens to our logic if arbitrary blocks of quantifiers,

possibly ending with the universal quantifier, are allowed. As already mentioned, in our recent work [10]

we answered this question for the three variable restriction, AUF3
1, of AUF1 by showing the exponential

model property and NEXPTIME-completeness of its satisfiability problem.

The second idea is to revive the research on Maslov Class K, by attempting to determine the precise

complexity of its satisfiability problem and investigating whether it has the finite model property. When

designing the fragment AUF−
1 we took some inspiration from the definition of K, and indeed we were

able to reduce satisfiability of the former to the latter. We believe that what we have learned working on

AUF−
1 will prove useful in the case of K.

There are also some probably slightly less attractive, but still interesting, a bit more technical ques-

tions that one can try to answer. For example, what happens to our logic if a use of equalities/inequalities

(free or uniform) or constants is allowed.

Acknowledgement

This work is supported by NCN grant No. 2021/41/B/ ST6/00996.

14 A Uniform One-Dimensional Fragment with Alternation of Quantifiers

References

[1] H. Andréka, J. van Benthem & I. Németi (1998): Modal Languages and Bounded Fragments of Predicate

Logic. Journal of Philosophical Logic 27, pp. 217–274, doi:10.1023/A:1004275029985.

[2] V. Bárány, B. ten Cate & L. Segoufin (2015): Guarded Negation. J. ACM 62(3), p. 22, doi:10.1145/

2701414.

[3] S. Benaim, M. Benedikt, W. Charatonik, E. Kieronski, R. Lenhardt, F. Mazowiecki & J. Worrell (2016):

Complexity of Two-Variable Logic on Finite Trees. ACM Trans. Comput. Log. 17(4), pp. 32:1–32:38, doi:10.

1145/2996796.

[4] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick & L. Segoufin (2011): Two-variable logic on data

words. ACM Trans. Comput. Log. 12(4), p. 27, doi:10.1145/1970398.1970403.

[5] M. Bojanczyk, A. Muscholl, T. Schwentick & L. Segoufin (2009): Two-variable logic on data trees and XML

reasoning. J. ACM 56(3), doi:10.1145/1516512.1516515.

[6] P. Bourhis, M. Morak & A. Pieris (2017): Making Cross Products and Guarded Ontology Languages Com-

patible. In: IJCAI 2017, pp. 880–886, doi:10.24963/ijcai.2017/122.

[7] B. ten Cate & L. Segoufin (2013): Unary negation. Logical Methods in Comp. Sc. 9(3), doi:10.2168/

LMCS-9(3:25)2013.

[8] W. Charatonik & P. Witkowski (2013): Two-Variable Logic with Counting and Trees. In: LICS 2013, pp.

73–82, doi:10.1109/LICS.2013.12.

[9] W. Charatonik & P. Witkowski (2015): Two-variable Logic with Counting and a Linear Order. In: CSL

2015, LIPIcs 41, pp. 631–647, doi:10.4230/LIPIcs.CSL.2015.631.

[10] O. Fiuk & E. Kieroński (2023): An excursion to the border of decidability: between two- and three-variable

logic. In: LPAR 2023, EPiC Series in Computing 94, pp. 205–223, doi:10.29007/1xns.

[11] E. Grädel, P. Kolaitis & M. Y. Vardi (1997): On the decision problem for two-variable first-order logic.

Bulletin of Symbolic Logic 3(1), pp. 53–69, doi:10.2307/421196.

[12] E. Grädel, M. Otto & E. Rosen (1997): Two-variable logic with counting is decidable. In: LICS 1997, pp.

306–317, doi:10.1109/LICS.1997.614957.

[13] L. Hella & A. Kuusisto (2014): One-dimensional Fragment of First-order Logic. In: Proceedings of Ad-

vances in Modal Logic, 2014, pp. 274–293. Available at http://www.aiml.net/volumes/volume10/

Hella-Kuusisto.pdf.

[14] U. Hustadt & R. Schmidt (1999): Maslov’s Class K Revisited. In: Automated Deduction — CADE-16, pp.

172–186, doi:10.1007/3-540-48660-7_12.

[15] Y. Kazakov (2006): Saturation-based decision procedures for extensions of the guarded fragment. Ph.D.

thesis, Universität des Saarlandes, Saarbrücken, Germany.

[16] E. Kieronski & A. Kuusisto (2014): Complexity and Expressivity of Uniform One-Dimensional Fragment

with Equality. In: MFCS 2014, Part I, Lecture Notes in Computer Science 8634, pp. 365–376, doi:10.

1007/978-3-662-44522-8_31.

[17] E. Kieronski & A. Kuusisto (2015): Uniform One-Dimensional Fragments with One Equivalence Relation.

In: CSL 2015, LIPIcs 41, pp. 597–615, doi:10.4230/LIPIcs.CSL.2015.597.

[18] E. Kieronski, J. Michaliszyn, I. Pratt-Hartmann & L. Tendera (2014): Two-Variable First-Order Logic with

Equivalence Closure. SIAM J. Comput. 43(3), pp. 1012–1063, doi:10.1137/120900095.

[19] E. Kieroński & M. Otto (2012): Small Substructures and Decidability Issues for First-Order Logic with Two

Variables. Journal of Symbolic Logic 77, pp. 729–765, doi:10.2178/jsl/1344862160.

[20] Emanuel Kieronski (2019): One-Dimensional Guarded Fragments. In: MFCS 2019, LIPIcs 138, pp. 16:1–

16:14, doi:10.4230/LIPIcs.MFCS.2019.16.

[21] Emanuel Kieronski & Sebastian Rudolph (2021): Finite Model Theory of the Triguarded Fragment and

Related Logics. In: LICS 2021, pp. 1–13, doi:10.1109/LICS52264.2021.9470734.

https://doi.org/10.1023/A:1004275029985
https://doi.org/10.1145/2701414
https://doi.org/10.1145/2701414
https://doi.org/10.1145/2996796
https://doi.org/10.1145/2996796
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.24963/ijcai.2017/122
https://doi.org/10.2168/LMCS-9(3:25)2013
https://doi.org/10.2168/LMCS-9(3:25)2013
https://doi.org/10.1109/LICS.2013.12
https://doi.org/10.4230/LIPIcs.CSL.2015.631
https://doi.org/10.29007/1xns
https://doi.org/10.2307/421196
https://doi.org/10.1109/LICS.1997.614957
http://www.aiml.net/volumes/volume10/Hella-Kuusisto.pdf
http://www.aiml.net/volumes/volume10/Hella-Kuusisto.pdf
https://doi.org/10.1007/3-540-48660-7_12
https://doi.org/10.1007/978-3-662-44522-8_31
https://doi.org/10.1007/978-3-662-44522-8_31
https://doi.org/10.4230/LIPIcs.CSL.2015.597
https://doi.org/10.1137/120900095
https://doi.org/10.2178/jsl/1344862160
https://doi.org/10.4230/LIPIcs.MFCS.2019.16
https://doi.org/10.1109/LICS52264.2021.9470734

E. Kieroński 15

[22] Andreas Krebs, Kamal Lodaya, Paritosh K. Pandya & Howard Straubing (2020): Two-variable logics with

some betweenness relations: Expressiveness, satisfiability and membership. Log. Methods Comput. Sci.

16(3), doi:10.23638/LMCS-16(3:16)2020.

[23] Antti Kuusisto (2016): On the Uniform One-dimensional Fragment. In: Description Logics 2016, CEUR

Workshop Proceedings 1577.

[24] H. R. Lewis (1980): Complexity results for classes of quantificational formulas. Journal of Computer and

System Sciences 21(3), pp. 317 – 353, doi:10.1016/0022-0000(80)90027-6.

[25] S. J. Maslov (1971): The inverse method for establishing deducibility for logical calculi. The Calculi of

Symbolic Logic I: Proceedings of the Steklov Institute of Mathematics 98.

[26] M. Mortimer (1975): On languages with two variables. Zeitschrift für Mathematische Logik und Grundlagen

der Mathematik 21, pp. 135–140, doi:10.1002/malq.19750210118.

[27] L. Pacholski, W. Szwast & L. Tendera (1997): Complexity of two-variable logic with counting. In: LICS

1997, pp. 318–327, doi:10.1109/LICS.1997.614958.

[28] I. Pratt-Hartmann (2010): The Two-Variable Fragment with Counting Revisited. In: WoLLIC 2010, pp.

42–54, doi:10.1007/978-3-642-13824-9_4.

[29] Ian Pratt-Hartmann (2015): The two-variable fragment with counting and equivalence. Math. Log. Q. 61(6),

pp. 474–515, doi:10.1002/malq.201400102.

[30] Ian Pratt-Hartmann (2021): Fluted Logic with Counting. In: ICALP 2021, LIPIcs 198, pp. 141:1–141:17,

doi:10.4230/LIPIcs.ICALP.2021.141.

[31] Ian Pratt-Hartmann, Wieslaw Szwast & Lidia Tendera (2019): The Fluted Fragment Revisited. J. Symb. Log.

84(3), pp. 1020–1048, doi:10.1017/jsl.2019.33.

[32] W. V. Quine (1969): On the limits of decision. In: Proceedings of the 14th International Congress of Philos-

ophy, III, pp. 57–62.

[33] Sebastian Rudolph & Mantas Šimkus (2018): The Triguarded Fragment of First-Order Logic. In: LPAR

2018, EPiC Series in Computing 57, pp. 604–619, doi:10.29007/m8ts.

[34] Dana Scott (1962): A decision method for validity of sentences in two variables. Journal Symbolic Logic 27,

p. 477.

https://doi.org/10.23638/LMCS-16(3:16)2020
https://doi.org/10.1016/0022-0000(80)90027-6
https://doi.org/10.1002/malq.19750210118
https://doi.org/10.1109/LICS.1997.614958
https://doi.org/10.1007/978-3-642-13824-9_4
https://doi.org/10.1002/malq.201400102
https://doi.org/10.4230/LIPIcs.ICALP.2021.141
https://doi.org/10.1017/jsl.2019.33
https://doi.org/10.29007/m8ts

A. Achilleos and D. Della Monica (Eds.): Fourteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2023).
EPTCS 390, 2023, pp. 16–32, doi:10.4204/EPTCS.390.2

© J. Nalbach, V. Promies, E. Ábrahám and P. Kobialka
This work is licensed under the
Creative Commons Attribution License.

FMplex: A Novel Method for Solving
Linear Real Arithmetic Problems

Jasper Nalbach*

RWTH Aachen University, Germany

nalbach@cs.rwth-aachen.de

Valentin Promies
RWTH Aachen University, Germany

promies@cs.rwth-aachen.de

Erika Ábrahám
RWTH Aachen University, Germany

abraham@cs.rwth-aachen.de

Paul Kobialka
University of Oslo, Norway

paulkob@ifi.uio.no

In this paper we introduce a novel quantifier elimination method for conjunctions of linear real arith-
metic constraints. Our algorithm is based on the Fourier-Motzkin variable elimination procedure, but
by case splitting we are able to reduce the worst-case complexity from doubly to singly exponential.
The adaption of the procedure for SMT solving has strong correspondence to the simplex algorithm,
therefore we name it FMplex. Besides the theoretical foundations, we provide an experimental eval-
uation in the context of SMT solving.

1 Introduction

Linear real arithmetic (LRA) is a powerful first-order theory with strong practical relevance. We fo-
cus on checking the satisfiability of conjunctions of LRA constraints, which is needed e.g. for solving
quantifier-free LRA formulas using satisfiability modulo theories (SMT) solvers. The problem is known
to be solvable in polynomial worst-case complexity but, surprisingly, the ellipsoid method [13] pro-
posed in 1980 by Khachiyan is still the only available algorithm that implements this bound. However,
this method is seldomly used in practice due to its high average-case effort. Instead, most approaches
employ the simplex algorithm introduced by Dantzig in 1947, which has a singly exponential worst case
complexity, but which is quite efficient in practice. A third available solution is the Fourier-Motzkin vari-
able elimination (FM) method, proposed in 1827 by Fourier [9] and re-discovered in 1936 by Motzkin
[23]. In contrast to the other two approaches, FM admits quantifier elimination, but it has a doubly expo-
nential worst case complexity, even though there have been various efforts to improve its efficiency by
recognizing and avoiding redundant computations (e.g. [11, 12]).

In this paper, we propose a novel method, which is derived from the FM method, but which turns
out to have striking resemblance to the simplex algorithm. This yields interesting theoretical insights
into the relation of the two established methods and the nature of the problem itself. More precisely, our
contributions include:

• The presentation of FMplex, a new variable elimination method based on a divide-and-conquer
approach. We show that it does not contain certain redundancies Fourier-Motzkin might generate
and it lowers the overall complexity from doubly to singly exponential.

• An adaptation of FMplex for SMT solving, including methods to prune the search tree based on
structural observations.

*Jasper Nalbach was supported by the DFG RTG 2236 UnRAVeL.

http://dx.doi.org/10.4204/EPTCS.390.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

J. Nalbach, V. Promies, E. Ábrahám and P. Kobialka 17

• A theorem formalizing connections between FMplex and the simplex algorithm.

• An implementation of the SMT adaptation and its experimental evaluation.
After recalling necessary preliminaries in Section 2, we introduce our novel FMplex method first for
quantifier elimination in Section 3 and then for SMT solving in Section 4. We present related work
and compare FMplex with other methods, first qualitatively in Section 5, and then experimentally in
Section 6. We discuss future work and conclude the paper in Section 7.

An extended version of this paper including more detailed proofs can be found on arXiv [25].

2 Preliminaries

Let R, Q and N denote the set of real, rational respectively natural (0 /∈N) numbers. For k ∈N we define
[k] := {1, . . . ,k}. Throughout this paper, we fix n ∈ N, a set X = {x1, . . . ,xn} and a corresponding vector
xxx = (x1, . . . ,xn)

T of R-valued variables.

Matrices For m ∈ N let E(m) ∈ Qm×m be the identity matrix, and 000(m) = (0 · · · 0)T ∈ Qm×1. The
ith component of fff ∈ Qm×1 ∪Q1×m is denoted by fi and the component-wise comparison to zero by
fff ≥ 0. For A ∈ Qm×n, aaai,- ∈ Q1×n and aaa-,i ∈ Qm×1 denote the ith row respectively column vector of
A. Furthermore, A[I] denotes the sub-matrix of A containing only the rows with indices from some
I ⊆ [m]. For fff ∈ Q1×m, fff A is a linear combination of the rows i ∈ [m] of A with fi 6= 0. We call A
linearly independent if none of its rows is a linear combination of its other rows, and linearly dependent
otherwise. The rank of A rank(A) is the size of a maximal I ⊆ [m] with A[I] linearly independent.

Linear Constraints Let aaa = (a1, . . . ,an) ∈ Q1×n, b ∈ Q and ∼∈ {=,≤,<, 6=} a relation symbol. We
call aaaxxx a linear term and aaaxxx ∼ b a linear constraint, which is weak if ∼∈ {=,≤} and strict otherwise.
A system of linear constraints, or short a system, is a non-empty finite set of linear constraints. For most
of this paper, we only consider constraints of the form aaaxxx≤ b. We can write every system C = {aaai,- xxx≤
bi | i ∈ [m]} of such constraints in matrix representation Axxx ≤ bbb with suitable A ∈ Qm×n and bbb ∈ Qm×1.
Conversely, every row aaai,- xxx ≤ bi, i ∈ [m] of Axxx ≤ bbb is a linear constraint. Thus, the representations are
mostly interchangeable; however, the matrix representation allows redundant rows in contrast to the set
notation. As the latter will play a role later on, we will stick to the matrix representation.

Variable Assignment An assignment is a function α : Y → R with domain dom(α) = Y ⊆ X . The
extension α[xi 7→ r] is the assignment with domain dom(α)∪{xi} such that α[xi 7→ r](x j) = α(x j) for all
x j ∈ dom(α)\{xi} and α[xi 7→ r](xi) = r. For Z ⊆ Y , the restriction α|Z is the assignment with domain
Z such that α|Z(xi) = α(xi) for all xi ∈ Z. We extend these notations to sets of assignments accordingly.

The standard evaluation of a linear term t under α is written α(t). We say that α satisfies (or is a
solution of) a constraint c = (aaaxxx∼ b) if α(a1x1 + . . .anxn)∼ b holds, and denote this fact by α |= c. All
solutions of c build its solution set sol(c). Similarly, α |= (Axxx≤ bbb) denotes that α is a common solution
of all linear constraints in the system Axxx ≤ bbb. A system is satisfiable if it has a common solution, and
unsatisfiable otherwise. Note that each satisfiable system has also a rational-valued solution.

We will also make use of the following two well-known results.
Theorem 1 (Farkas’ Lemma [8]). Let A ∈Qm×n and bbb ∈Qm×1. Then the system Axxx≤ bbb is satisfiable if
and only if for all fff ∈Q1×m with fff ≥ 0 and fff A = (0, . . . ,0) ∈Q1×n it holds fff bbb≥ 0.
Theorem 2 (Fundamental Theorem of Linear Programming, as in [21]). Let A ∈ Qm×n and bbb ∈ Qm×1.
Then Axxx≤ bbb is satisfiable if and only if there exists a subset I ⊆ [m] such that A[I] is linearly independent,
|I|= rank(A), and there exists an assignment α : X → R with α |= (A[I]xxx = bbb[I]) and α |= (Axxx≤ bbb).

18 FMplex: A Novel Method for Solving Linear Real Arithmetic Problems

2.1 Fourier-Motzkin Variable Elimination

The Fourier-Motzkin variable elimination (FM) [9, 23] method allows to eliminate any x j ∈ X from a
system Axxx ≤ bbb by computing A′xxx ≤ bbb′′′ with aaa′′′-, j = 0 and such that an assignment α is a solution of
A′xxx≤ bbb′′′ if and only if there is r ∈Q so that α[x j 7→ r] is a solution of Axxx≤ bbb. Graphically, the solution
set of A′xxx≤ bbb′′′ is the projection of the solutions of Axxx≤ bbb onto X \{x j}.

The idea of the FM method is as follows. For each i ∈ [m] with ai, j 6= 0, the constraint aaai,- xxx≤ bi can
be rewritten as either a lower bound or an upper bound on x j, denoted in both cases as bnd j(aaai,- xxx≤ bi):(

∑
k∈[n]\{ j}

−
ai,k

ai, j
·xk

)
+

bi

ai, j
≤ x j, if ai, j < 0, resp. x j ≤

(
∑

k∈[n]\{ j}
−

ai,k

ai, j
·xk

)
+

bi

ai, j
, if ai, j > 0.

Definition 1. For A ∈Qm×n, we define the index sets

I−j (A) := {i ∈ [m] | ai, j < 0}, I+j (A) := {i ∈ [m] | ai, j > 0}, and I0
j (A) := {i ∈ [m] | ai, j = 0}.

I−j (A), I+j (A) andI0
j (A) indicate the rows of Axxx ≤ bbb which induce lower bounds, upper bounds and no

bounds on x j, respectively. Due to the density of the reals, there exists a value for x j that satisfies all
bounds if and only if each lower bound is less than or equal to each upper bound. However, since in
general the involved bounds are symbolic and thus their values depend on the values of other variables,
we cannot directly check this condition. To express this, we let A′xxx≤ bbb′′′ be defined by the constraint set

{bnd j(aaa`,- xxx≤ b`)≤ bnd j(aaau,- xxx≤ bu) | (`,u) ∈ I−j (A)× I+j (A)} ∪ {aaai,- xxx≤ bi | i ∈ I0
j (A)}.

In matrix representation, the FM method applies the following transformation:
Definition 2 (Fourier-Motzkin Variable Elimination). Let A ∈Qm×n, bbb ∈Qm×1, and j ∈ [n]. Let further
m′ = |I−j (A)| · |I

+
j (A)|+ |I0

j (A)| and F ∈Qm′×m be a matrix consisting of exactly the following rows:1

− 1
a`, j
· eee(m)

`,- +
1

au, j
· eee(m)

u,- for every pair (`,u) ∈ I−j (A)× I+j (A) and eee(m)
i,- for every i ∈ I0

j (A).

Then the Fourier-Motzkin variable elimination FM j(Axxx ≤ bbb) of x j from the system Axxx ≤ bbb is defined as
the system FAxxx≤ Fbbb.

The consistency of Axxx≤ bbb can be checked by successively eliminating variables xn, . . . ,x1, obtaining
intermediate systems A(n−1)xxx≤ bbb(n−1), . . . ,A(0)xxx≤ bbb(0). All entries of the transformation matrix F in the
definition above are positive, and thus for any k∈ {0, . . . ,n−1} and any row i′ in A(k)xxx≤ bbb(k), there exists
0 ≤ fff ∈ Qm×1 s.t. fff A = aaa(k)i′,- and fff bbb = b(k)i′ , or in short: ∑i∈[m] fi · (aaai,- xxx ≤ bi) = (aaa(k)i′,-xxx ≤ b(k)i′). We call

this kind of linear combinations conical combinations. By Farkas’ Lemma (Theorem 1), if A(0)xxx ≤ bbb(0)

is unsatisfiable, then so is Axxx ≤ bbb. If it is satisfiable, then it is satisfied by the empty assignment, which
can be extended successively to a model of A(1)xxx≤ bbb(1), . . . ,A(n−1)xxx≤ bbb(n−1) and Axxx≤ bbb.

A major drawback of the Fourier-Motzkin variable elimination is its doubly exponential complexity
in time and space w.r.t. the number of eliminated variables. Moreover, many of the generated rows are
redundant because they are linear combinations of the other rows, i.e. they could be omitted without
changing the solution set of the system. Redundancies might already be contained in the input system,
or they arise during the projection operation. While removing all redundancies is expensive, there are
efficient methods for removing some redundancies of the latter type, for example Imbert’s acceleration
theorems [10, 11, 12].

1Remember that we use lower case letters for rows of matrices with the respective upper case letter as name. Thus, eee(m)
i,-

denotes the ith column vector of the identity matrix E(m).

J. Nalbach, V. Promies, E. Ábrahám and P. Kobialka 19

Lemma 1 (Redundancy by Construction). Let A ∈ Qm×n,bbb ∈ Qm×1 and F ∈ Qm′×m. Let furthermore
A′ = FA, bbb′′′ = Fbbb and i∈ [m′]. If there exists rrr ∈Q1×m′ with rrr≥ 0, ri = 0 and rrrF = fff i,- (i.e. the ith row of
A′xxx≤ bbb′′′ is a conical combination rrrFAxxx≤ rrrFbbb of the other rows), then that row is redundant in A′xxx≤ bbb′′′,
i.e. the solution set does not change when omitting it: sol(A′xxx≤ bbb′′′) = sol(A′[[m′]\{i}]xxx≤ bbb′′′[[m′]\{i}]).

3 FMplex as Variable Elimination Procedure

The FM method encodes that none of the lower bounds on some variable x j in a system Axxx≤ bbb is larger
than any of its upper bounds. In our FMplex method, instead of considering all lower-upper bound
combinations at once, we split the problem into a set of sub-problems by case distinction either on which
of the lower bounds is the largest or alternatively on which of the upper bounds is the smallest. For
splitting on lower bounds, for each lower bound on x j we consider solutions where this lower bound is
maximal under all lower bounds, and at the same time not larger than any of the upper bounds. The
upper bound case is analogous. Then Axxx ≤ bbb is satisfiable if and only if there exists a solution in one
of these sub-problems. Asymptotically, these sub-problems are significantly smaller than the systems
produced by FM, so that in total our approach produces at most exponentially many constraints after
iterated application, in contrast to the doubly exponential effort of the FM method.

Formally, if there are no upper or no lower bounds on x j, then there is no need for case splitting and
we follow FM using ∃x j. Axxx≤ bbb≡ A[I0

j (A)]xxx≤ bbb[I0
j (A)]. Otherwise, for the sub-problem when designating

i ∈ I−j (A) as largest lower bound, we encode that no other lower bound is larger than the bound induced
by row i, and no upper bound is below this bound. Using the set notation for systems, we obtain

{bnd j(aaai′,- xxx≤ bi′)≤ bnd j(aaai,- xxx≤ bi) | i′ ∈ I−j (A), i′ 6= i}
∪{bnd j(aaai,- xxx≤ bi)≤ bnd j(aaai′,- xxx≤ bi′) | i′ ∈ I+j (A)}∪{aaai′,- xxx≤ bi′ | i′ ∈ I0

j (A)}.

Example 1. We eliminate x2 from the system Axxx ≤ bbb consisting of the lower-bounding constraints c1
and c2, and the upper-bounding c3 and c4, specified below along with a graphical depiction. The lower
bounds I−2 (A) = {1,2} on x2 are blue, the upper bounds I+2 (A) = {3,4} are green. The solution set is the
gray area and the dashed line indicates the split into two sub-problems, namely the cases that c1 resp. c2
is a largest lower bound on x2 and not larger than any upper bound on x2.

c1 −1 −1
c2 0 −2
c3 −2 1
c4 0 1

·

[
x1
x2

]
≤

−4
−2
1
5

x1

x2

c1

c2

c3

c4

The encoding of the c1-case is given by (bnd2(c2)≤ bnd2(c1))∧(bnd2(c1)≤ bnd2(c3))∧(bnd2(c1)≤
bnd2(c4)), which evaluates to (x1 ≤ 3)∧ (−3x1 ≤−3)∧ (−x1 ≤ 1) satisfied by any x1 ∈ [1,3], on the left
of the dashed line. The case for c2 evaluates to (−x1 ≤−3)∧ (−2x1 ≤ 0)∧ (0≤ 4) and is satisfiable on
the right of the dashed line. The disjunction of the two formulas then defines exactly those values for x1
which allow a solution of the initial system.

The construction for the case i ∈ I+j (A) designating i as smallest upper bound is analogous. In matrix
representation, these projections are defined by the following transformation:

20 FMplex: A Novel Method for Solving Linear Real Arithmetic Problems

Definition 3 (Restricted Projection). Let A ∈Qm×n, bbb ∈Qm×1 and j ∈ [n].

• If I−j (A) 6= /0 and I+j (A) 6= /0, then for any i ∈ I−j (A)∪ I+j (A) we fix F ∈ Q(m−1)×m arbitrarily but
deterministically to consist of exactly the following rows:

1
ai, j
· eee(m)

i,- −
1

ai′, j
· eee(m)

i′,- for every i′ ∈ I−j (A)\{i},

− 1
ai, j
· eee(m)

i,- +
1

ai′, j
· eee(m)

i′,- for every i′ ∈ I+j (A)\{i}, and eee(m)
i′,- for every i′ ∈ I0

j (A).

Then the restricted projection Pj,i(Axxx ≤ bbb) of x j w.r.t. the row i from the system Axxx ≤ bbb is defined
as the system FAxxx≤ Fbbb. We call F the projection matrix corresponding to Pj,i(Axxx≤ bbb).

• If I−j (A) = /0 or I+j (A) = /0, then we define the projection matrix F ∈Q|I
0
j (A)|×m to have exactly one

row eee(m)
i′,- for each i′ ∈ I0

j (A), and define Pj,⊥(Axxx≤ bbb) as FAxxx≤ Fbbb.

The following lemma states a crucial result for our method: The solutions of the restricted projections
for all lower (or all upper) bounds of a variable exactly cover the projection of the entire solution set.

Lemma 2. Let A ∈Qm×n, bbb ∈Qm×1, j ∈ [n] and I ∈ {I−j (A), I
+
j (A)}. If I−j (A) 6= /0 and I+j (A) 6= /0, then

sol(Axxx≤ bbb)|X\{x j} =
⋃
i∈I

sol(Pj,i(Axxx≤ bbb)).

Otherwise (I−j (A) = /0 or I+j (A) = /0), it holds sol(Axxx≤ bbb)|X\{x j} = sol(Pj,⊥(Axxx≤ bbb)).

Proof. The case I−j (A) = /0 or I+j (A) = /0 follows from the correctness of FM. Assume I = I−j (A), the
case I = I+j (A) is analogous.

⊇: Let i∈ I−j (A) and α |= Pj,i(Axxx≤ bbb), then for all `∈ I−j (A), u∈ I+j (A) it holds α(bnd j(aaa`,- xxx≤ b`))≤
α(bnd j(aaai,- xxx≤ bi))≤ α(bnd j(aaau,- xxx≤ bu)). Thus, α[x j 7→ α(bnd j(aaai,- xxx≤ bi))] |= Axxx≤ bbb.

⊆: Let α |= Axxx≤ bbb and i = argmax`∈I−j (A)
(α(bnd j(aaa`,- xxx≤ b`))), then for all u ∈ I+j (A) it holds

α(bnd j(aaai,- xxx≤ bi))≤ α(bnd j(aaau,- xxx≤ bu)) and thus α |= Pj,i(Axxx≤ bbb).

Definition 4 (FMplex Variable Elimination). For A∈Qm×n, bbb∈Qm×1, j ∈ [n] and ∗ ∈ {−,+}, we define

FMP∗j(Axxx≤ bbb) =

{
{Pj,i(Axxx≤ bbb) | i ∈ I∗j (A)} if I−j (A) 6= /0 and I+j (A) 6= /0
{Pj,⊥(Axxx≤ bbb)} otherwise.

The FMplex elimination defines a set of restricted projections which can be composed to the full
projection according to Lemma 2. Lifting this from sets to logic naturally results in the following theorem
which demonstrates the usage of our method.

Theorem 3. Let A ∈Qm×n, bbb ∈Qm×1, and j ∈ [n]. Then

∃x j. Axxx≤ bbb ≡
∨

S∈FMP+j (Axxx≤bbb)
S ≡

∨
S∈FMP−j (Axxx≤bbb)

S.

For eliminating multiple variables, we iteratively apply FMP− or FMP+ to each restricted projection
resulting from the previous elimination step. Note that we can choose the next variable to be eliminated
as well as the variant independently in every branch.

J. Nalbach, V. Promies, E. Ábrahám and P. Kobialka 21

Example 2. We continue Example 1, from which we eliminated x2 and now want to eliminate x1:

∃x1. ∃x2. Axxx≤ bbb ≡ ∃x1.
∨

S∈FMP−2 (Axxx≤bbb)
S

≡ ∃x1. (x1 ≤ 3∧−3x1 ≤−3∧−x1 ≤ 1) ∨∃x1. (−x1 ≤−3∧−2x1 ≤ 0∧0≤ 4)

We eliminate the two quantifiers for x1 separately, using

FMP−1 (x1 ≤ 3∧−3x1 ≤−3∧−x1 ≤ 1) = {(0≤ 2∧0≤ 2),(0≤−2∧0≤ 4)} and

FMP−1 (−x1 ≤−3∧−2x1 ≤ 0∧0≤ 4) = {(0≤ 4)}

giving us the final result ∃x1. ∃x2. Axxx≤ bbb ≡ ((0≤ 2∧0≤ 2)∨ (0≤ 4∧0≤−2))∨ (0≤ 4).

We analyze the complexity in terms of the number of new rows (or constraints) that are constructed
during the elimination of all variables:

Theorem 4 (Complexity of FMP). Let A ∈ Qm×n, and bbb ∈ Qm×1. When eliminating n variables from
Axxx≤ bbb, the FMP− method constructs O(n ·mn+1) new rows.

Proof. The number N(m,n) of constructed rows is maximal if the system consists only of lower bounds
and one upper bound. Then, FMP− yields m− 1 new systems of size m− 1, from which n− 1 variables
need to be eliminated; thus N(m,n) ≤ (m− 1) · ((m− 1)+N(m− 1,n− 1)). With k = min(n,m), we

obtain N(m,n)≤
k
∑

i=1
(m− i) ·

i
∏
j=1

(m− j)≤ n ·mn+1.

While still exponential, this bound is considerably better than the theoretical doubly exponential
worst-case complexity of the FM method. Shortly speaking, FMplex trades one exponential step at the
cost of the result being a decomposition into multiple partial projections. However, there are systems for
which FMplex produces strictly more rows than the FM method: In the worst case from the above proof,
FM obtains a single system of the same size as each of the sub-problems computed by FMP−. Although
in this case, we could simply employ FMP+ instead, it is unclear whether there exists a rule for employing
FMP− or FMP+ that never produces more constraints than FM.

Like FM, FMplex keeps redundancies from the input throughout the algorithm, thus there might be
identical rows in the same or across different sub-problems. But in contrast to FM, FMplex does not
introduce any redundancies by construction in the sense of Lemma 1.

Theorem 5. Let A ∈Qm×n, bbb ∈Qm×1 and k ∈ [m]. Assume (A(0)xxx≤ bbb(0)) = (Axxx≤ bbb) and for all j ∈ [k],
let (A(j)xxx≤ bbb(j))∈ FMP−j (A(j−1)xxx≤ bbb(j−1))∪FMP+j (A(j−1)xxx≤ bbb(j−1)). Let F(1), . . . ,F(k) be the respective
projection matrices, and F = F(k) · . . . ·F(1). Then F is linearly independent.

Proof. By definition, the projection matrices are linearly independent, and thus so is their product F .

4 FMplex as Satisfiability Checking Procedure

A formula is satisfiable if and only if eliminating all variables (using any quantifier elimination method
such as FM or FMplex) yields a tautology. However, FMplex computes smaller sub-problems whose
satisfiability implies the satisfiability of the original problem. Therefore, we do not compute the whole
projection at once, but explore the decomposition using a depth-first search. The resulting search tree has
the original system as root, and each node has as children the systems resulting from restricted projec-
tions. The original system is satisfiable if and only if a leaf without any trivially false constraints exists.

22 FMplex: A Novel Method for Solving Linear Real Arithmetic Problems

Axxx≤ bbb
P2,1(Axxx≤ bbb)

(0≤ 2)∧ (0≤ 2) (0≤ 4)∧ (0≤−2)

P2,2(Axxx≤ bbb)

(0≤ 4)

Figure 2: The search tree corresponding to Example 2. The very first leaf (bottom left) is already
satisfiable, meaning that the rest would not need to be computed.

An example is depicted in Figure 2. We start with a basic version of the algorithm and then examine how
the search tree can be pruned, resulting in two variants; all versions are given in Algorithm 1.

An important observation is that we can decide independently for each node of the search tree, which
variable to eliminate next and whether to branch on lower or on upper bounds.

Definition 5 (Branch Choices). The set of branch choices for a system Axxx≤ bbb is

branch_choices(Axxx≤ bbb) ={{(x j, i) | i ∈ I−j (A)} | j ∈ [n]∧ I−j (A) 6= /0∧ I+j (A) 6= /0}
∪{{(x j, i) | i ∈ I+j (A)} | j ∈ [n]∧ I−j (A) 6= /0∧ I+j (A) 6= /0}
∪{{(x j,⊥)} | j ∈ [n]∧ (I−j (A) = /0∨ I+j (A) = /0)}.

For an initial input Âxxx ≤ b̂bb with m̂ rows, we define the depth-first search using the recursive method
FMplex(Âxxx ≤ b̂bb;Axxx ≤ bbb,F) in Algorithm 1a where Axxx ≤ bbb is the currently processed sub-problem in
the recursion tree. We track the relation of Axxx ≤ bbb to Âxxx ≤ b̂bb in terms of linear combinations using the
parameter F . The initial call is defined as FMplex(Âxxx ≤ b̂bb) = FMplex(Âxxx ≤ b̂bb; Âxxx ≤ b̂bb,E(m̂)). We allow
that Axxx ≤ bbb contains identical rows when they are obtained in different ways (which is reflected by F).
We need to keep these duplicates for proving the results of this section.

Solutions If a trivially satisfiable node is found, the algorithm constructs an assignment starting with
the empty assignment and extends it in reverse order in which the variables were eliminated. For every
variable x j, a value is picked above all lower and below all upper bounds on x j evaluated at the underlying
assignment. By the semantics of the projection, the value of the designated (largest lower or smallest
upper) bound on x j is suitable.

Conflicts We distinguish inconsistencies in Axxx≤ bbb by the following notions: We call a row i of Axxx≤ bbb
a conflict if it is of the form aaai,- = 000(n) with bi < 0. We call the conflict global if fff i,- ≥ 0 and local
otherwise. In case of a global conflict, Farkas’ Lemma allows to deduce the unsatisfiability of Âxxx ≤ b̂bb,
thus stopping the search before the whole search tree is generated. Then a set of conflicting rows K of the
input system corresponding to fff i,- is returned. In particular, the set {âaa j,- xxx ≤ b̂ j | fi, j 6= 0} is a minimal
unsatisfiable subset of the constraints in Âxxx≤ b̂bb. In case of a local conflict, we simply continue to explore
the search tree. The algorithm returns PARTIAL-UNSAT to indicate that Axxx ≤ bbb is unsatisfiable, but the
unsatisfiability of Âxxx≤ b̂bb cannot be derived. This approach, formalized in Algorithm 1a, guarantees that
the initial call will never return PARTIAL-UNSAT; we always find either a global conflict or a solution.

The correctness and completeness of FMplex follows from Theorem 3 and Theorem 6.

Theorem 6. Let Â ∈ Qm̂×n, and b̂bb ∈ Qm̂ × 1. Then Âxxx ≤ b̂bb is unsatisfiable if and only if the call
FMplex(Âxxx≤ b̂bb) to Algorithm 1a terminates with a global conflict.

J. Nalbach, V. Promies, E. Ábrahám and P. Kobialka 23

Algorithm 1: FMplex(Âxxx≤ b̂bb;Axxx≤ bbb,F, N , I , lvl,bt_lvl)

Algorithm 1a The base method consists of the plain (unframed and unfilled) parts.

Algorithm 1b Consists of the base method and the framed parts .

Algorithm 1c Consists of the base method, the framed parts and the filled boxes .

Data : Â ∈Qm̂×n, b̂bb ∈Qm̂

Input : A ∈Qm×n, bbb ∈Qm, F ∈Qm×m̂ s.t. FÂ = A and Fb̂bb = bbb, N ⊆ [m̂], I ⊆ [m̂] ,

lvl ∈ [n]∪{0}, and bt_lvl : [m]→ [n]∪{0}
Output: (SAT, α) with α |= Axxx≤ bbb, or (UNSAT, K) where K ⊆ [m̂], or

(PARTIAL-UNSAT, l,K) where l ∈ [n] and K ⊆ [m̂]

1 if A = 0∧bbb≥ 0 then return (SAT, ())
2 if ∃i ∈ [m]. aaai,- = 0∧bi < 0∧ fff i,- ≥ 0 then return (UNSAT,{i′ | fi,i′ 6= 0})
3 if ∃i ∈ [m]. aaai,- = 0∧bi < 0∧ fff i,- � 0 then
4 i := argmini∈[m]{bt_lvl(i) | aaai,- = 0∧bi < 0}
5 return (PARTIAL-UNSAT,bt_lvl(i)−1,{i′ | fi,i′ 6= 0})
6 K = /0

7 choose V ∈ branch_choices(Axxx≤ bbb, {B−1
N ,F(i) | i ∈ I})

8 foreach (x j, i) ∈V do
9 compute A′xxx≤ bbb′′′ := Pj,i(Axxx≤ bbb) with projection matrix F ′ and backtrack levels bt_lvl′

10 N ′ := N ∪{BN ,F(i)} if i 6=⊥ else N

11 switch FMplex (Âxxx≤ b̂bb;A′xxx≤ bbb′′′,F ′F, N ′, I , lvl+1,bt_lvl′) do
12 case (UNSAT,K′) do return (UNSAT,K′)
13 case (SAT,α) do return (SAT,α[x j 7→ r]) for a suitable r ∈Q
14 case (PARTIAL-UNSAT, l,K′) do
15 if l < lvl then return (PARTIAL-UNSAT, l,K′)
16 else K = K∪K′

17 I := I∪{BN ,F(i)}

18 if lvl= 0 then return (UNSAT,K)

19 return (PARTIAL-UNSAT, lvl-1, K)

24 FMplex: A Novel Method for Solving Linear Real Arithmetic Problems

Proof Idea for Theorem 6. If Âxxx≤ b̂bb is unsatisfiable, then there exists a minimal unsatisfiable subset K̂ of
the corresponding constraints. We construct a path in the search tree induced by Algorithm 1a yielding
a conflict that is a linear combination of K̂. As K̂ is minimal, the linear combination is positive, i.e.
the conflict is global. The other direction of the equivalence follows immediately with Farkas’ Lemma.
Consult the extended version for a detailed proof.

4.1 Avoiding Redundant Checks

We observe that each row i in a sub-problem Axxx≤ bbb in the recursion tree of FMplex(Âxxx≤ b̂bb) corresponds
to a row ı̂ in Âxxx ≤ b̂bb in the sense that it is a linear combination of the rows {ı̂}∪N of Âxxx ≤ b̂bb, where
N ⊆ [m̂] corresponds to the lower/upper bounds designated as largest/smallest one to compute Axxx≤ bbb:

Theorem 7. Let Â ∈Qm̂×n and b̂bb ∈Qm̂×1. Let FMplex(Âxxx≤ b̂bb;Axxx≤ b,F) be a call in the recursion tree
of the call FMplex(Âxxx≤ b̂bb) to Algorithm 1a , where A ∈Qm×n and bbb ∈Qm×1 (by construction m≤ m̂).

Then there exists a set N ⊆ [m̂] such that

1. Axxx≤ bbb is satisfiable if and only if (Âxxx≤ b̂bb)∧ (Â[N]xxx = b̂bb[N]) is satisfiable,

2. there exists an injective mapping BN ,F : [m]→ [m̂], i 7→ ı̂ with {ı̂}= {i′ ∈ [m̂] | fi,i′ 6= 0}\N .

Proof Idea. The statement follows with a straight forward induction over the elimination steps, where the
original row corresponding to the chosen bound is added toN , and BN ,F keeps track of which constraint
corresponds to which original row. Consult the extended version for a detailed proof.

We call the above defined set N the non-basis, inspired from the analogies to the simplex algorithm
(discussed in Section 5.1). By the above theorem, the order in which a non-basis is constructed has no
influence on the satisfiability of the induced sub-problem. In particular:

Theorem 8. Let A∈Qm×n, bbb∈Qm×1, j ∈ [n], and let i, i′ ∈ [m] be row indices with ai, j 6= 0 and ai′, j 6= 0.
If Pj,i(Axxx≤ bbb) is unsatisfiable, then Pj,i′(Axxx≤ bbb)∧ (aaai,- xxx = bi) is unsatisfiable.

Proof. By Theorem 7, if Pj,i(Axxx ≤ bbb) is unsatisfiable, then (Axxx ≤ bbb)∧ (aaai,- xxx = bbbiii) is unsatisfiable, and
trivially (A xxx ≤ bbb)∧ (aaai,- xxx = bbbiii)∧ (aaai′,- xxx = bbbi′) is unsatisfiable as well. Using Theorem 7 in the other
direction yields that Pj,i′(Axxx≤ bbb)∧ (aaai,- xxx = bbbiii) is unsatisfiable.

This suggests that if FMplex(Âxxx ≤ b̂bb;Axxx ≤ bbb,F) with non-basis N has a child call for row i which
does not return SAT, then no other call in the recursion tree of FMplex(Âxxx ≤ b̂bb;Axxx ≤ bbb,F) where the
corresponding non-basis contains BN ,F(i) will return SAT either. Hence, we can ignore BN ,F(i) as
designated bound in the remaining recursion tree of FMplex(Âxxx≤ b̂bb;Axxx≤ bbb,F).

Example 3. Consider the system from Example 1, with an additional constraint c5 : (−x2 ≤ 0). If c5 is
tried first as greatest lower bound on x2, then the combination with c2 : (−2x2 ≤ −2) yields the local
conflict 1

2 c2− c5 = (0≤−1). Thus, this branch and, due to Theorem 8, any non-base containing row 5
yields an unsatisfiable system.

Next, we try c1 as greatest lower bound on x2 resulting in the combinations 1
2 c2− c1 = (x1 ≤ 3),

c5− c1 = (x1 ≤ 4), c1 + c3 = (−3x1 ≤−3) and c1 + c4 = (−x1 ≤ 1) and corresponding non-base {1}.
If we now choose (x1 ≤ 4) as smallest upper bound on x1, leading to the non-base {1,5}, another

local conflict occurs: (x1 ≤ 3)− (x1 ≤ 4) = (0≤−1). As 5 is contained in the non-base, we could know
beforehand that this would happen and thus avoid computing this branch.

We update the FMplex algorithm as shown in Algorithm 1b using the following definition:

J. Nalbach, V. Promies, E. Ábrahám and P. Kobialka 25

Definition 6. The set of branch choices for Axxx≤ bbb with m rows w.r.t. I ⊆ [m] is

branch_choices(Axxx≤ bbb, I) = {{(x j, i) | i ∈ I−j (A)\ I} | j ∈ [n]∧ I−j (A) 6= /0∧ I+j (A) 6= /0}
∪ {{(x j, i) | i ∈ I+j (A)\ I} | j ∈ [n]∧ I−j (A) 6= /0∧ I+j (A) 6= /0}
∪ {{(x j,⊥)} | j ∈ [n]∧ (I−j (A) = /0∨ I+j (A) = /0)}.

It is easy to see that this modification prevents visiting non-basis twice in the following sense:

Theorem 9. Let FMplex(Âxxx ≤ b̂bb;Axxx ≤ bbb,_,N ,_) and FMplex(Âxxx ≤ b̂bb;A′xxx ≤ bbb′′′,_,N ′,_) be two calls
in the recursion tree of a call to Algorithm 1b. Then either N 6=N ′ or one of the systems occurs in the
subtree below the other and only unbounded variables are eliminated between them (i.e. one results from
the other by deleting some rows).

Theorem 10 states that, still, Algorithm 1b always terminates with SAT or a global conflict. This
follows by a slight modification of the proof of Theorem 6, presented in the extended version of this
paper.

Theorem 10. Let Â ∈ Qm̂×n, and b̂bb ∈ Qm̂×1. Then Âxxx ≤ b̂bb is unsatisfiable if and only if the call
FMplex(Âxxx≤ b̂bb) to Algorithm 1b terminates with a global conflict.

4.2 Backtracking of Local Conflicts

So far, we ignored local conflicts that witness the unsatisfiability of a given sub-problem. In this section,
we will cut off parts of the search tree based on local conflicts and examine the theoretical implications.

We applied Farkas’ Lemma on conflicting rows in some sub-problem that are positive linear combi-
nations of rows from the input system. We can also apply Farkas’ Lemma to conflicting rows which are
positive linear combinations of some intermediate system to conclude the unsatisfiability of the latter.
Whenever such a conflict occurs, we can backtrack to the parent system of that unsatisfiable system.
Instead of tracking the linear combinations of every row in terms of the rows of each preceding inter-
mediate system, we can do an incomplete check: If a conflicting row was computed only by addition
operations, then it is a positive linear combination of the involved rows. Thus, we assign to every inter-
mediate system a level, representing its depth in the search tree and store for every row the level where
the last subtraction was applied to the row (i.e. a lower (upper) bound was subtracted from another lower
(upper) bound). If a row is conflicting, we can conclude that the intermediate system at this level is
unsatisfiable, thus we can jump back to its parent.

Assume the current system is Axxx≤ bbb at level lvl with m rows whose backtracking levels are stored in
bt_lvl : [m]→ ([n]∪{0}). If lvl= 0, then bt_lvl maps all values to 0. When computing Pj,i(Axxx≤ bbb)
for some x j and i with projection matrix F , the backtracking levels of the rows in the resulting system
FAxxx≤ Fbbb are stored in bt_lvl′ where for each row i′′

bt_lvl′(i′′) :=

{
max{bt_lvl(i),bt_lvl(i′)} if fi′′,i, fi′′,i′ > 0 and fi′′,k = 0, k /∈ {i, i′}
lvl otherwise.

The backtracking scheme is given in Algorithm 1c , which returns additional information in the
PARTIAL-UNSAT case, that is the backtrack level l of the given conflict, and a (possibly non-minimal)
unsatisfiable subset K.

Theorem 11. Let FMplex(_;Axxx ≤ bbb,_,_,_,lvl,_) be a call to Algorithm 1c , and consider a second
call FMplex(_;A′xxx ≤ bbb′′′,_,_,_,_,bt_lvl′) in the recursion tree of the first call. If A′xxx ≤ bbb′′′ has a local
conflict in a row i with bt_lvl′(i) = lvl, then Axxx≤ bbb is unsatisfiable.

26 FMplex: A Novel Method for Solving Linear Real Arithmetic Problems

Proof. By construction of bt_lvl’, aaa′′′i,- xxx≤ b′i is a positive sum of rows from Axxx≤ bbb, i.e. there exists an
fff ∈Q1×m such that (fff Axxx≤ fff bbb) = (aaa′′′i,- xxx≤ b′i). Then by Farkas’ Lemma, Axxx≤ bbb is unsatisfiable.

While it is complete and correct, Algorithm 1c does not always terminate with a global conflict (i.e.
Theorem 6 does not hold any more), even if we do not ignore any rows (i.e. omit Line 17):

Example 4. We use Algorithm 1c to eliminate vari-

0 0 −1
1 −1 −1
1 0 0
−1 1 0
0 −1 1

 ·
 x1

x2
x3

≤

0
0
−1
−1
0

ables with the static order x3,x2,x1 from the system
on the right, always branching on lower bounds. We
first choose row 1 as greatest lower bound on x3.
Rows 3 and 4 are retained as they do not contain x3
and the combination of row 1 with row 5 is positive,
so these constraints have backtrack level 0.
The combination with row 2 has backtrack level 1 because both rows are lower bounds. Using this
constraint as greatest lower bound on x2 and combining it with row 4 leads to a local conflict with
backtrack level 1. This means that the call at level 1 is unsatisfiable and thus we backjump to level 0.

The second branch is visited, leading to the non-basis N = {2,5,1} after three steps, where a local
conflict lets us backjump to level 0 again. As there are no more lower bounds on x3, the algorithm returns
UNSAT without finding a global conflict.

5 Relation to Other Methods

5.1 Simplex Algorithm

The simplex method [6, 18] is an algorithm for linear optimization over the reals and is able to solve
linear programs. The general simplex [7] is an adaption for checking the satisfiability of systems of
linear constraints. We illustrate its idea for the weak case.

Remind that given a system Axxx≤ bbb with m rows, by the fundamental theorem of linear programming
(Theorem 2), Axxx≤ bbb is satisfiable if and only if there exists some maximal subsetN ⊆ [m] such that A[N]

is linearly independent and Axxx≤ bbb∪A[N]xxx= bbb[N] is satisfiable - the latter can be checked algorithmically
using Gaussian elimination, resulting in a system where each variable is replaced by bounds induced by
the rows N . This system along with the information which element in N was used to eliminate which
variable is called a tableau. The idea of the simplex method is to do a local search on the set N (called
non-basis), that is, we replace some i ∈ N (leaving variable) by some i′ ∈ [m] \N (entering variable)
obtaining N ′ :=N ∪{i′} \ {i} such that A[N ′] is still linearly independent. The clou is that the tableau
representing (Axxx≤ bbb)∧ (A[N]xxx = bbb[N]) can be efficiently transformed into (Axxx≤ bbb)∧ (A[N ′]xxx = bbb[N ′])
(called pivot operation), and progress of the local search can be achieved by the choice of i and i′.
These local search steps are performed until a satisfying solution is found, or a conflict is found. These
conflicts are detected using Farkas’ Lemma (Theorem 1), i.e. a row in the tableau induces a trivially false
constraint and is a positive linear combination of some input rows.

As suggested by Theorem 7, there is a strong correspondence between a tableau of the simplex
algorithm and the intermediate systems constructed in FMplex. More precisely, if a non-basis of a
simplex tableau is equal to the non-basis of a leaf system of Algorithm 1a, then the tableau is satisfiable
if and only if the FMplex system is satisfiable. In fact, we could use the same data structure to represent
the algorithmic states. Comparing the two algorithms structurally, FMplex explores the search space in
a tree-like structure using backtracking, while simplex can jump between neighbouring leaves directly.

J. Nalbach, V. Promies, E. Ábrahám and P. Kobialka 27

The idea for Algorithm 1b that excludes visiting the same non-basis in fact arose from the analogies
between the two methods. Further, we observe a potential advantage of FMplex: Simplex has more
non-bases reachable from a given initial state than the leaves of the search tree of FMplex, as FMplex
needs only to explore all lower or all upper bounds of a variable while simplex does local improvements
blindly. Heuristically, simplex cuts off large parts of its search space and we expect it often visits fewer
non-bases than FMplex - however, as the pruning done by FMplex is by construction of the algorithm,
we believe that there might be combinatorially hard instances on which it is more efficient than simplex.

5.2 Virtual Substitution Method

Virtual substitution [20, 27] admits quantifier elimination for real arithmetic formulas. Here, we consider
its application on existentially quantified conjunctions of linear constraints.

The underlying observation is that the satisfaction of a formula changes at the zeros of its constraints
and is invariant between the zeros. Thus, the idea is to collect all symbolic zeros zeros(ϕ) of all con-
straints in some input formula ϕ . If all these constraints are weak, then a variable x j is eliminated by
plugging every zero and an arbitrarily small value −∞ into the formula, i.e. ∃x j. ϕ is equivalent to
ϕ[−∞//x j]∨

∨
ξ∈zeros(ϕ) ϕ[ξ//x j]. The formula ϕ[t//x j] encodes the semantics of substituting the term t

for x j into the formula ϕ (which is a disjunction of conjunctions). As we can pull existential quantifiers
into disjunctions, we can iteratively eliminate multiple variables by handling each case separately.

The resulting algorithm for quantifier elimination is singly exponential; further optimizations ([26]
even proposes to consider only lower or upper bounds for the test candidates) lead to a very similar proce-
dure as the FMplex quantifier elimination: Substituting a test candidate into the formula is equivalent to
computing the restricted projection w.r.t. a variable bound. However, our presentation allows to exploit
the correspondence with the FM method.

Virtual substitution can also be adapted for SMT solving [3] to a depth-first search similar to FMplex.
A conflict-driven search for virtual substitution on conjunctions of weak linear constraints has been
introduced in [15], which tracks intermediate constraints as linear combinations of the input constraints
similarly to FMplex. Their conflict analysis is a direct generalization of the global conflicts in FMplex
and is thus slightly stronger than our notion of local conflicts. However, their method requires storing
and maintaining a lemma database, while FMplex stores all the information for pruning the search tree
locally. The approaches have strong similarities, although they originate from quite different methods.
Further, our presentation shows the similarities to simplex, is easily adaptable for strict constraints, and
naturally extensible to work incrementally.

5.3 Sample-Based Methods

There exist several depth-first search approaches, including McMillan et al. [22], Cotton [5] and Ko-
rovin et al. [16, 17], which maintain and adapt a concrete (partial) variable assignment. They share the
advantage that combinations of constraints are only computed to guide the assignment away from an
encountered conflict, thus avoiding many unnecessary combinations which FM would compute.

Similar to FMplex, these methods perform a search with branching, backtracking and learning from
conflicting choices. However, they branch on variable assignments, with infinitely many possible choices
in each step. Interestingly, the bounds learned from encountered conflicts implicitly partition the search
space into a finite number of regions to be tried, similar to what FMplex does explicitly. In fact, we deem
it possible that [16] or [17] try and exclude assignments from exactly the same regions that FMplex would
visit (even in the same order). However, the sample-based perspective offers different possibilities for

28 FMplex: A Novel Method for Solving Linear Real Arithmetic Problems

heuristic improvements than FMplex: choosing the next assigned value vs. choosing the next lower
bound; deriving constant variable bounds vs. structural exploits using Farkas’ Lemma; possibility of
very quick solutions vs. more control and knowledge about the possible choices.

Moreover, these methods offer no straight-forward adaption for quantifier elimination, while FMplex
does. However, [22] and [5] can handle not only conjunctions, but any quantifier-free LRA formula in
conjunctive normal form.

6 Experimental Evaluation

We implemented several heuristic variants of the FMplex algorithm, as well as the generalized simplex
and the FM methods as non-incremental DPLL(T) theory backends in our SMT-RAT solver [4] and
compared their performance in the context of satisfiability checking. Using the transformation given in
[24] and case splitting as in [2], we extended the method to also handle strict and not-equal-constraints.

The base version of FMplex (Algorithm 1a) was tested with two different heuristics for the choice of
the eliminated variable and for the order in which the branches are checked. These choices may strongly
influence the size of the explored search tree; in the best case, the very first path leads to a satisfiable leaf
or to a global conflict.

Min-Fanout We greedily minimize the number of children: for any Axxx ≤ bbb and I, we choose V ∈
branch_choices(Axxx ≤ bbb, I) such that |V | is minimal; in case that this minimum is 1, we prefer choices
V = {(x j,⊥)} for a j ∈ [n] over the other choices.

We prefer rows with a lower (earlier) backtrack level, motivated by finding a global conflict through
trying positive linear combinations first. Moreover, if backtracking is used then we expect this heuristic
to allow for backtracking further back on average.

Min-Column-Length A state-of-the-art heuristic for simplex in the context of SMT solving is the
minimum column length [14]: we choose the variables for leaving and entering the non-basis such that
the number of necessary row operations is minimized. We resemble this heuristic in FMplex as follows:
we prefer choices {(x j,⊥)} and if there is no such j, we take the j ∈ [n] with minimal |I−j (A)|+ |I

+
j (A)|

and take the smallest choice between I−j (A) and I+j (A).
We first choose the rows which have the least non-zero coefficients (i.e. contain the least variables)

to prefer sparse sub-problems. This can be understood as Min-Row-Length.

We consider the following solver variants: FMplex-a-MFO and FMplex-a-MCL implement Algorithm 1a
with the Min-Fanout and the Min-Column-Length heuristic, respectively. FMplex-a-Rand-1/2 de-
notes two variants of Algorithm 1a where all choices are taken pseudo-randomly with different seeds.
FMplex-b-MFO implements Algorithm 1b and FMplex-c-MFO implements Algorithm 1c , both using
the Min-Fanout heuristic. Our approach is also compared to non-incremental implementations FM and
Simplex. The FMplex variants and FM always first employ Gaussian elimination to handle equalities.

All solvers were tested on the SMT-LIB [1] benchmark set for QF_LRA containing 1753 formulas.
As all evaluated solvers are non-incremental, we also generated conjunctions of constraints by solving
each of these QF_LRA problems using a DPLL(T) SMT solver with an FMplex-c-MFO theory solver
backend, and extracting all conjunctions passed to it. If the solver terminated within the time and memory
limits, we sampled 10 satisfiable and 10 unsatisfiable conjunctions (or gathered all produced conjunctions
if there were fewer than 10). This amounted to 3084 (777 sat, 2307 unsat) additional benchmarks. The
experiments were conducted on identical machines with two Intel Xeon Platinum 8160 CPUs (2.1 GHz,
24 cores). For each formula, the time and memory were limited to 10 minutes and 5 GB.

J. Nalbach, V. Promies, E. Ábrahám and P. Kobialka 29

SMT-LIB Conjunctions
solved sat unsat TO MO solved sat unsat TO MO

Simplex 958 527 431 714 81 3084 777 2307 0 0
FM 860 461 399 577 316 2934 747 2187 107 43
FMplex-a-MFO 814 432 382 840 99 2962 743 2219 122 0
FMplex-a-MCL 820 435 385 830 103 2965 742 2223 119 0
FMplex-a-Rand-1 742 383 359 906 105 2806 668 2138 278 0
FMplex-a-Rand-2 743 383 360 905 105 2823 671 2152 261 0
FMplex-b-MFO 822 434 388 830 101 2988 744 2244 96 0
FMplex-c-MFO 920 499 421 733 100 3084 777 2307 0 0
Virtual-Best 982 532 450 651 120 3084 777 2307 0 0

Table 1: Number of solved instances, timeouts (TO) and memory-outs (MO).

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

Running time of FMplex-c-MFO (s)

R
u
n
n
in
g
ti
m
e
of

F
M
(s
)

(a) Running times in seconds on the SMT-LIB
benchmark set, FMplex vs FM.

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

Running time of FMplex-c-MFO (s)

R
u
n
n
in
g
ti
m
e
of

S
i
m
p
l
e
x
(s
)

(b) Running times in seconds on the SMT-LIB
benchmark set, FMplex vs Simplex.

100 101 102 103 104 105 106

100

101

102

103

104

105

106

107

constraints in FMplex-c-MFO

#
co
n
st
ra
in
ts

in
F
M

(c) Number of generated constraints on the conjunc-
tive benchmark set.

100 101 102 103

100

101

102

103

systems in FMplex-c-MFO

#
p
iv
ot
s
in

S
i
m
p
l
e
x

(d) Number of visited non-bases (intermediate sys-
tems) on the conjunctive benchmark set.

Figure 3: Scatter plots: Each dot represents a single instance. In (a) and (b), instances at the very top or
right exceeded the resource limit. Such instances are not considered in (c) and (d).

30 FMplex: A Novel Method for Solving Linear Real Arithmetic Problems

The results in Table 1 show that Simplex solved the most SMT-LIB instances, followed by our
FMplex-c-MFO and then FM. Interestingly, FM solves fewer conjunctive instances than the base version of
FMplex due to higher memory consumption (43 memory-outs for FM, while the others have none). We see
that a reasonable variable heuristic makes a difference as FMplex-a-Rand-* perform much worse than
FMplex-a-MFO and FMplex-a-MCL. However, between the latter two, there is no significant difference.
While our first optimization used in FMplex-b-MFO has no big impact, the backtracking implemented in
FMplex-c-MFO allows for solving more instances within the given resource limits.

The running times for each individual SMT-LIB instance depicted in Figures 3a and 3b reveal that
FM and FMplex-c-MFO often behave similar, but FM fails on a number of larger instances. We suspect
that the smaller intermediate systems of FMplex are a main factor here. While Simplex is often faster
than FMplex-c-MFO and solves 61 SMT-LIB instances not solved by FMplex-c-MFO, it fails to solve 23
instances on which FMplex-c-MFO succeeds (Of these instances, FM solves 3 respectively 14 instances).
Accordingly, the Virtual-Best of the tested solvers performs significantly better than just Simplex,
indicating potential for a combination of Simplex and FMplex-c-MFO.

Figure 3c compares the number of constraints generated by FM and FMplex-c-MFO on the conjunctive
inputs. Especially on larger instances, FMplex seems to be in the advantage. Motivated by Section 4.1,
Figure 3d compares the number of Simplex pivots to the number of systems in FMplex-c-MFO. We see
that neither is consistently lower than the other, though Simplex seems to be slightly superior. Due
to the log-log scale, not shown are 1305 instances in which either measurement is 0 (920 instances for
Simplex, 981 for FMplex-c-MFO).

The implementation and collected data are available at https://doi.org/10.5281/zenodo.7755862.

7 Conclusion

We introduced a novel method FMplex for quantifier elimination and satisfiability checking for con-
junctions of linear real arithmetic constraints. Structural observations based on Farkas’ Lemma and the
Fundamental Theorem of Linear Programming allowed us to prune the elimination or the search tree.
Although the new method is rooted in the FM method, it has strong similarities with both the virtual
substitution method and the simplex method.

The experimental results in the context of SMT solving show that FMplex is faster than Fourier-
Motzkin and, although simplex is able to solve more instances than FMplex, there is a good amount of
instances which can be solved by FMplex but cannot be solved by simplex.

In future work, we aim to combine the structural savings of FMplex with the efficient heuristic of
simplex, i.e. we transfer ideas from FMplex to simplex and vice-versa. Furthermore, we will investigate
in tweaks and heuristics. For instance, we plan to adapt the perfect elimination ordering from [19] and
work on an incremental adaption for SMT solving. Last but not least, we plan to increase the applicability
of FMplex as a quantifier elimination procedure, including a different handling of strict inequalities,
which is more similar to FM.

References

[1] Clark Barrett, Pascal Fontaine & Cesare Tinelli (2016): The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org.

https://doi.org/10.5281/zenodo.7755862

J. Nalbach, V. Promies, E. Ábrahám and P. Kobialka 31

[2] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras & Cesare Tinelli (2006): Splitting on Demand in SAT
Modulo Theories. In: International Conference on Logic for Programming Artificial Intelligence and Rea-
soning (LPAR’06), Springer, pp. 512–526, doi:10.1007/11916277_35.

[3] Florian Corzilius & Erika Ábrahám (2011): Virtual Substitution for SMT-Solving. In: International Sym-
posium on Fundamentals of Computation Theory (FCT’11), Springer, pp. 360–371, doi:10.1007/978-3-642-
22953-4_31.

[4] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp & Erika Ábrahám (2015): SMT-RAT: An
Open Source C++ Toolbox for Strategic and Parallel SMT Solving. In: International Conference on Theory
and Applications of Satisfiability Testing (SAT’15), Springer, pp. 360–368, doi:10.1007/978-3-319-24318-
4_26.

[5] Scott Cotton (2010): Natural Domain SMT: A Preliminary Assessment. In: International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS’10), Springer, pp. 77–91, doi:10.1007/978-3-
642-15297-9_8.

[6] George Bernard Dantzig (1998): Linear Programming and Extensions. 48, Princeton University Press,
doi:10.1515/9781400884179.

[7] Bruno Dutertre & Leonardo De Moura (2006): Integrating Simplex with DPLL(T). Computer Science Labo-
ratory, SRI International, Tech. Rep. SRI-CSL-06-01.

[8] Julius Farkas (1902): Theorie der einfachen Ungleichungen. Journal für die reine und angewandte Mathe-
matik (Crelles Journal) 1902(124), pp. 1–27, doi:10.1515/crll.1902.124.1.

[9] Jean Baptiste Joseph Fourier (1827): Analyse des travaux de l’Académie Royale des Sciences pendant l’année
1824. Partie mathématique.

[10] Jean-Louis Imbert (1990): About Redundant Inequalities Generated by Fourier’s Algorithm. In: International
Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA’90), Elsevier, pp. 117–
127, doi:10.1016/B978-0-444-88771-9.50019-2.

[11] Jean-Louis Imbert (1993): Fourier’s Elimination: Which to Choose? In: International Conference on Princi-
ples and Practice of Constraint Programming (PPCP’93), 1, Citeseer, pp. 117–129.

[12] Rui-Juan Jing, Marc Moreno-Maza & Delaram Talaashrafi (2020): Complexity Estimates for Fourier-
Motzkin Elimination. In: Computer Algebra in Scientific Computing (CASC’20), Springer, pp. 282–306,
doi:10.1007/978-3-030-60026-6_16.

[13] Leonid Genrikhovich Khachiyan (1980): Polynomial Algorithms in Linear Programming. USSR Computa-
tional Mathematics and Mathematical Physics 20(1), pp. 53–72, doi:10.1016/0041-5553(80)90061-0.

[14] Tim King, Clark Barrett & Bruno Dutertre (2013): Simplex with Sum of Infeasibilities for SMT. In: Formal
Methods in Computer-Aided Design (FMCAD’13), pp. 189–196, doi:10.1109/FMCAD.2013.6679409.

[15] Konstantin Korovin, Marek Kosta & Thomas Sturm (2014): Towards Conflict-driven Learning for Vir-
tual Substitution. In: International Workshop on Computer Algebra in Scientific Computing (CASC’14),
Springer, pp. 256–270, doi:10.1007/978-3-319-10515-4_19.

[16] Konstantin Korovin, Nestan Tsiskaridze & Andrei Voronkov (2009): Conflict Resolution. In: Principles and
Practice of Constraint Programming (CP’09), Springer, pp. 509–523, doi:10.1007/978-3-642-04244-7_41.

[17] Konstantin Korovin & Andrei Voronkov (2011): Solving Systems of Linear Inequalities by Bound Propaga-
tion. In: Conference on Automated Deduction (CADE’23), Springer, pp. 369–383, doi:10.1007/978-3-642-
22438-6_28.

[18] Carlton E. Lemke (1954): The Dual Method of Solving the Linear Programming Problem. Naval Research
Logistics Quarterly 1(1), pp. 36–47, doi:10.1002/nav.3800010107.

[19] Haokun Li, Bican Xia, Huiying Zhang & Tao Zheng (2021): Choosing the Variable Ordering for Cylindrical
Algebraic Decomposition via Exploiting Chordal Structure. In: International Symposium on Symbolic and
Algebraic Computation (ISSAC’21), ACM, pp. 281–288, doi:10.1145/3452143.3465520.

https://doi.org/10.1007/11916277_35
https://doi.org/10.1007/978-3-642-22953-4_31
https://doi.org/10.1007/978-3-642-22953-4_31
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-642-15297-9_8
https://doi.org/10.1007/978-3-642-15297-9_8
https://doi.org/10.1515/9781400884179
https://doi.org/10.1515/crll.1902.124.1
https://doi.org/10.1016/B978-0-444-88771-9.50019-2
https://doi.org/10.1007/978-3-030-60026-6_16
https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1109/FMCAD.2013.6679409
https://doi.org/10.1007/978-3-319-10515-4_19
https://doi.org/10.1007/978-3-642-04244-7_41
https://doi.org/10.1007/978-3-642-22438-6_28
https://doi.org/10.1007/978-3-642-22438-6_28
https://doi.org/10.1002/nav.3800010107
https://doi.org/10.1145/3452143.3465520

32 FMplex: A Novel Method for Solving Linear Real Arithmetic Problems

[20] Rüdiger Loos & Volker Weispfenning (1993): Applying Linear Quantifier Elimination. The Computer Jour-
nal 36(5), pp. 450–462, doi:10.1093/comjnl/36.5.450.

[21] David G Luenberger, Yinyu Ye et al. (1984): Linear and Nonlinear Programming. 2nd edition, Springer,
doi:10.1007/978-3-030-85450-8.

[22] Kenneth L. McMillan, Andreas Kuehlmann & Mooly Sagiv (2009): Generalizing DPLL to Richer Log-
ics. In: International Conference on Computer Aided Verification (CAV’09), Springer, pp. 462–476,
doi:10.1007/978-3-642-02658-4_35.

[23] Theodore Samuel Motzkin (1936): Beiträge zur Theorie der linearen Ungleichungen. Azriel.
[24] Jasper Nalbach, Erika Ábrahám & Gereon Kremer (2021): Extending the Fundamental Theorem of Linear

Programming for Strict Inequalities. In: International Symposium on Symbolic and Algebraic Computation
(ISSAC’21), ACM, pp. 313–320, doi:10.1145/3452143.3465538.

[25] Jasper Nalbach, Valentin Promies, Erika Ábrahám & Paul Kobialka (2023): FMplex: A Novel Method for
Solving Linear Real Arithmetic Problems. arXiv:2309.03138.

[26] Tobias Nipkow (2008): Linear Quantifier Elimination. In: Internation Joint Conference on Automated Rea-
soning (IJCAR’08), Springer, pp. 18–33, doi:10.1007/978-3-540-71070-7_3.

[27] Volker Weispfenning (1997): Quantifier Elimination for Real Algebra—the Quadratic Case and
Beyond. Applicable Algebra in Engineering, Communication and Computing 8(2), pp. 85–101,
doi:10.1007/s002000050055.

https://doi.org/10.1093/comjnl/36.5.450
https://doi.org/10.1007/978-3-030-85450-8
https://doi.org/10.1007/978-3-642-02658-4_35
https://doi.org/10.1145/3452143.3465538
https://arxiv.org/abs/2309.03138
https://doi.org/10.1007/978-3-540-71070-7_3
https://doi.org/10.1007/s002000050055

A. Achilleos and D. Della Monica (Eds.): Fourteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2023).
EPTCS 390, 2023, pp. 33–49, doi:10.4204/EPTCS.390.3

© M. Pitsikalis, A. Lisitsa and P. Totzke
This work is licensed under the
Creative Commons Attribution License.

Handling of Past and Future with Phenesthe+

Manolis Pitsikalis Alexei Lisitsa
Patrick Totzke

Department of Computer Science, University of Liverpool, United Kingdom

{e.pitsikalis, a.lisitsa, totzke}@liverpool.ac.uk

Writing temporal logic formulae for properties that combine instantaneous events with overlapping
temporal phenomena of some duration is difficult in classical temporal logics. To address this issue,
in previous work we introduced a new temporal logic with intuitive temporal modalities specifically
tailored for the representation of both instantaneous and durative phenomena. We also provided an
implementation of a complex event processing system, Phenesthe, based on this logic, that has been
applied and tested on a real maritime surveillance scenario.

In this work, we extend our temporal logic with two extra modalities to increase its expressive
power for handling future formulae. We compare the expressive power of different fragments of our
logic with Linear Temporal Logic and dyadic first-order logic. Furthermore, we define correctness
criteria for stream processors that use our language. Last but not least, we evaluate empirically the
performance of Phenesthe+, our extended implementation, and show that the increased expressive
power does not affect efficiency significantly.

1 Introduction

Temporal logics are widely used in many domains as they allow the formalisation of time dependent
properties. For example in philosophy temporal logics can be used to reason about issues involving
the temporal domain [28], in computer science and specifically, in monitoring, temporal logics are used
to specify and monitor specific properties of a system [21, 6], in complex event processing or recog-
nition [12, 3, 7]—which is the focus of this work—temporal logics are used for specifying temporal
phenomena and detecting them in streams of information. Naturally, each temporal logic comes with its
own focus and limitations.

The starting point for many monitoring systems is Linear Temporal Logic (LTL) [24], where formu-
lae are interpreted over single event sequences. This makes it difficult to incorporate concurrent activities
such as, for instance, those carried out by a chef following some recipe to create a meal (see Figure 1).
They may prepare multiples dishes of the same course in parallel, however the preparation of each dish
happens on different overlapping intervals. This is difficult to formalise with logics that talk about sin-
gle traces of events. Temporal logics that allow the representation of concurrent activities directly are
those of Halpern and Shoham (HS) [16] and Allen’s Algebra [2]. Both logics are interpreted over sets of
(possibly overlapping, discrete) time intervals, and model instantaneous events via point intervals ([t,t]).

In previous work [22], we introduced a temporal logic similar to those of Halpern/Shoham and Allen,
which is interpreted over separate (sets of) time intervals and instantaneous events, which was specifi-
cally designed for a maritime application domain. It allows to easily specify concurrent activities and
related start and endpoints. Deliberately absent in our logics (and related prior ones) are explicit nega-
tions/complements of formulae that hold on overlapping intervals. We implemented an event processing

https://dx.doi.org/10.4204/EPTCS.390.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

34 Handling of Past and Future with Phenesthe+

turnOn/Off

stoveIsOn

preparingDish

t1 t2 t3 t4 t5 t6 t7 t8 t9

T

Figure 1: Example of instantaneous and durative temporal phenomena. turnOn/Off is instantaneous and
true when the stove is turned on/off, stoveIsOn is durative and holds when the stove is on, and finally
preparingDish is also durative and holds when a dish is being prepared.

system1 and evaluated it on a real maritime monitoring scenario [23]—whereby maritime experts au-
thored maritime phenomena of interest—proving that our system is capable of producing phenomena
detections in real time.

In this work, we extend our language with two extra temporal modalities: minimal range (#), and
interval filtering (�lter). The minimal range operator allows to capture durative temporal phenomena that
start at the latest occurrence of a starting condition before the stopping condition, for example, the last
working period of machine since someone operated it until it broke down. Filtering is very important
for specifying the duration constraints of a temporal phenomenon, e.g., a steak is cooked rare if its on
a hot pan for approximately 90 seconds on each side. Both examples are impossible to formalise in the
original version of our temporal logic. It is evident that# has similar semantics to the ‘until’ operator of
LTL. However, formulae that utilise ‘until’ are true on instants of time, while formulae that utilise ‘#’
are true on intervals. While in terms of expressive power the two operators are similar, #, in practice,
allows efficient computations and more concise formulae. Similarly, in the case of filtering, writing
an LTL formula for filtering periods based on some fixed threshold is possible, however the formula
is not trivial and its length depends the threshold. Comparing LTL and our temporal logic, we show
that the fragment of our original language that is comparable with LTL was at most as expressive as
the pure past fragment of LTL, while the same fragment but with the addition of the ‘#’ and ‘�lter’
operators has equal expressive power to LTL. Concerning our full temporal logic, a comparison with
LTL is impossible since the structures on which their respective semantics are based, are incomparable,
however we show that our language is expressible in Dyadic First Order logic (DFO) and is strictly less
expressive. As expected, including temporal modalities that involve the future requires additional steps
for complex event processing. In order to guarantee that our extended implementation, Phenesthe+, is
correct, inspired from runtime monitoring and verification [1, 5], we define criteria for proper stream
processors of our language and discuss how Phenesthe+ conforms to them. Finally, we illustrate through
experimental evaluation that the efficiency of Phenesthe+, is not significantly compromised. Therefore
the contributions of this paper are:

• We extend the expressiveness of our language for representing “look ahead happenings”,

• We formally study the expressive power of the temporal logic introduced in [22] and its extension,

• We define criteria for proper stream processors utilising our temporal logic,

• We showcase that our stream processing engine is capable of performing real-time complex event
processing by adopting a maritime surveillance use-case.

The paper is organised as follows. First in Section 2 we describe our temporal logic. Next, in Section 3 we
illustrate through examples inspired by the maritime domain the usage of the new temporal modalities.

1https://manospits.github.io/Phenesthe/

https://manospits.github.io/Phenesthe/

M. Pitsikalis, A. Lisitsa and P. Totzke 35

In Section 4 we study the expressive power of our temporal logic. Then, in Section 5 we describe
the requirements a stream processor should satisfy for processing formulae of our language, while in
Section 6 we empirically evaluate Phenesthe+. Finally, in Section 7 we present work related to ours,
summarise, and discuss further directions.

2 The Language of Phenesthe

The key components of our language are instantaneous events, durative disjoint states and durative,
possibly non disjoint, dynamic temporal phenomena. In what follows, ‘temporal phenomena’ includes
all of the three aforementioned categories.

Syntax. Formally, our Temporal Phenomena Definition Language (TPhL) is described by the triplet
〈Pesd ,L,Φ〉, where Pesd is a predicate set defined by the union of the event, state or dynamic temporal
phenomenon predicates sets (in symbols Pe/s/d resp.); L is a set defined by the union of the set of the
logical connectives {∧,∨,¬,∈}, the set of temporal operators, {�,#,t,u,\,�lter�} where the ‘�’
symbol may be one of the following symbols {<,≥,=}, the set of temporal relations {before, meets,
overlaps, �nishes, starts, equals, contains} and finally the set of the {start,end} operators; Φ is the set of
formulae defined by the union of the formulae sets Φ

•, Φ− and Φ=. We assume that the set of predicate
symbols includes those with atemporal and fixed semantics, such as arithmetic comparison operators etc.,
however for simplification reasons in what follows we omit their presentation. Formulae of Φ

• describe
instantaneous temporal phenomena, and formulae of Φ− describe durative temporal phenomena that hold
(are true) in disjoint maximal intervals, finally formulae of Φ= describe durative temporal phenomena
that may hold in non-disjoint intervals. Figure 1 shows an example of an event (turnOn/Off), a state
(stoveIsOn) and a dynamic temporal phenomenon (preparingDish).

Therefore given a set of event, state and dynamic phenomena predicates Pesd the formulae of TPhL
are defined as follows:

φ := φ
• | φ− | φ=

φ
• := Pe(a1, ...,ak) | ¬φ

• | φ •
[∧,∨] φ

• | start(φ−) | end(φ−) | φ • ∈ φ
−

φ
− := Ps(a1, ...,ak) |φ •

[�,#] φ
• | φ− [t,u,\] φ

−|φ−�lter n (where n ∈ N∪{∞})
φ
= := Pd(a1, ...,ak) | [φ−,φ=] [meets,overlaps,equals] [φ−,φ=]

| [φ •
,φ−,φ=] [starts,�nishes] [φ−,φ=]

| [φ−,φ=] contains [φ
•
,φ−,φ=]

| [φ •
,φ−,φ=] before [φ

•
,φ−,φ=]

where a1, ...,ak correspond to terms denoting atemporal properties.
Semantics. We assume time is discrete and represented by the natural numbers T =N ordered via the

‘<’ relation. In what follows we assume that for all models discussed in this paper time is represented by
N. For the formulae sets Φ

•,Φ− and Φ= we define the modelM= 〈T, I,<,V •,V−,V=〉 where V • :Pe→
2T , V− :Ps→ 2I , V= :Pd→ 2I are valuations, and I = {[ts, te] : ts< te and ts, te∈ T}∪{[ts,∞) : ts∈ T}
is the set of time intervals of T . Intervals of the form [ts,∞) denote that a phenomenon started being true
at ts, and continues being true forever. Intervals of the form [ts, te] denote that a phenomenon started
being true at ts and stopped being true at te. In what follows, we will use the abbreviated version for
bounded quantifiers, i.e., ∀<z2

>z1x(...) denotes ∀x (x > z1∧ x < z2)→ (...), and ∃<z2
>z1x(...) denotes ∃x (x >

z1∧ x < z2)∧ (...).

36 Handling of Past and Future with Phenesthe+

Given a modelM, the validity of a formula φ ∈ Φ
• at a timepoint t ∈ T (in symbolsM, t |= φ) is

determined by the rules below, starting with the boolean connectives.

• M, t |= Pe(a1, ...,an) iff t ∈ V •(Pe(a1, ...,an)).

• M, t |= ¬φ iffM, t 6|= φ .

• M, t |= φ [∧,∨]ψ iffM, t |= φ [and, or]M, t |= ψ .

Next we define the semantics for start,end and ∈ which allow interaction between formulae of Φ
• and

Φ− via the starting, ending, and intermediate points of intervals at which Φ− formulae hold.

• M, t |= start(φ) iff ∃te.M, [t, te] |= φ orM, [t,∞) |= φ , whereM, [t, te] |= φ denotes the validity
of a formula φ ∈Φ− at an interval [t, te] as defined below.

• M, t |= end(φ) iff ∃ts.M, [ts, t] |= φ .

• M, t |= φ ∈ ψ iffM, t |= φ and ∃≤tts.∃≥tte.M, [ts, te] |= ψ .

Given a model M, the validity of a formula φ ∈ Φ− at a time interval i = [ts, te] ∈ I (in symbols
M, [ts, te] |= φ) is defined as follows. We start with the # and � operators which allow specifying
minimal or maximal intervals between instants where formulae of Φ

• are true.

• M, i |= Ps(a1, ...,an) iff i ∈ V−(Ps(a1, ...,an)).

• M, [ts, te] |= φ#ψ iffM, ts |= φ andM, te |=ψ∧¬φ and ∀<te
>tst.

[
M, t 6|= φ andM, t 6|=ψ∧¬φ

]
.

Therefore, φ # ψ holds for the intervals that start at the latest instant ts at which φ is true and end
at first instant te after ts where ψ ∧¬φ is true.

• M, [ts, te] |= φ � ψ iffM, ts |= φ andM, te |= ψ ∧¬φ and ∀<te
>tst.M, t 6|= ψ ∧¬φ and ∀<tsts′.

M, ts′ |= φ →∃<ts
>ts′te

′.M, te′ |= ψ ∧¬φ .
Essentially, φ�ψ holds for the disjoint maximal intervals that start at the earliest instant ts where
φ is true and end at the earliest instant te where ψ is true and φ is false.

• M, [ts,∞) |= φ � ψ iffM, ts |= φ and ∀>tst.M, t 6|= ψ ∧¬φ and ∀<tsts′.M, ts′ |= φ →∃<ts
>ts′te

′.
M, te |= ψ ∧¬φ .
Therefore a formula φ�ψ may hold indefinitely if there does not exist an instant after ts at which
ψ ∧¬φ is satisfied. For simplification reasons in the semantics below we omit intervals open at
the right to infinity since they can be treated in a similar manner.

We continue with the definition of semantics for t,u and \ which correspond to the usual set operations
but for time intervals.

• M, [ts, te] |= φ t ψ iff2

– exists a sequence of length k > 1 of intervals i1, ..., ik ∈ I where ik = [tsk, tek], ts = ts1 and
te = tek such that:

1. ∀α ∈ [1,k−1]: teα ∈ iα+1, tsα < tsα+1 and teα < teα+1 ,
2. ∀β ∈ [1,k]:M, [tsβ , teβ] |= φ orM, [tsβ , teβ] |= ψ , and
3. @iγ = [tsγ , teγ] ∈ I−{i1, ..., ik} whereM, [tsγ , teγ] |= φ orM, [tsγ , teγ] |= ψ and ts1 ∈ iγ

or tek ∈ iγ
– or,M, [ts, te] |= φ orM, [ts, te] |= ψ and @iγ = [tsγ , teγ] ∈ I−{[ts, te]} whereM, [tsγ , teγ] |=

φ orM, [tsγ , teγ] |= ψ and ts ∈ iγ or te ∈ iγ .

2A first order definition of the semantics of t is possible but more lengthy.

M. Pitsikalis, A. Lisitsa and P. Totzke 37

For a sequence of intervals, conditions (1-2) ensure that intervals, at which φ or ψ are valid,
overlap or touch will coalesce, while condition (3) ensures that the resulting interval is maximal.
In the case of a single interval, the conditions ensure that at the interval [ts, te] φ or ψ is valid,
and that [ts, te] is maximal. In simple terms, the temporal union φ t ψ holds for the intervals
where at least one of φ or ψ hold. The above definition of temporal union follows the definitions
of temporal coalescing presented in [8, 14].

• M, [ts, te] |= φ \ ψ iff ∃[ts′, te′] ∈ I whereM, [ts′, te′] |= φ , [ts, te]⊆ [ts′, te′] (i.e., [ts, te] subinter-
val of [ts′, te′]), ∀[tsψ , teψ] ∈ I whereM, [tsψ , teψ] |= ψ , [ts, te]∩ [tsψ , teψ] =∅ and finally [ts, te]
is maximal. In plain language, the temporal difference of formulae φ ,ψ holds for the maximal
subintervals of the intervals at which φ holds but ψ doesn’t hold.

• M, [ts, te] |= φ u ψ iff ∃[tsφ , teφ], [tsψ , teψ] ∈ I whereM, [tsφ , teφ] |= φ ,M, [tsψ , teψ] |= ψ and
∃[ts, te] ∈ I where [ts, te]⊆ [tsφ , teφ], [ts, te]⊆ [tsψ , teψ] and [ts, te] is maximal. In other words, the
temporal intersection of two formulae of Φ− holds for the intervals at which both formulae hold.

We finish the semantics for formulae of Φ−, with the semantics of the �lter operator, which allows
specifying constraints on the length of intervals at which formulae of Φ− hold.

• M, [ts, te] |= φ �lter{<,≥,=} n iffM, [ts, te] |= φ and te− ts {<,≥,=} n.

Due to space limitations and for this part only we will adopt point intervals to refer to instants. This
will allow us to define the semantics for formulae of Φ= without specifying different rules for involved
sub-formulae of Φ

•. In other words given a φ ∈ Φ
• we will denote the satisfaction relation M, t |= φ

as M, [t, t] |= φ . Given a model M, the validity of a formula φ ∈ Φ= at a time interval [ts, te] ∈ I (in
symbolsM, [ts, te] |= φ) is defined as follows:

• M, [ts, te] |= Pd(a1, ...,an) iff [ts, te] ∈V=(Pd(a1, ...,an)).

• M, [ts, te] |= φ before ψ iff ∃te′.∃>te′ts′.
[
M, [ts, te′] |= φ and M, [ts′, te] |= ψ and ∀ts′′.∀<ts′

>te′te
′′.

M, [ts′′, te′′] 6|= φ and ∀<ts′
>te′ts

′′.∀te′′.M, [ts′′, te′′] 6|= ψ
]
. In our approach the ‘before’ relation holds

only for intervals where the pair of instants or intervals at which the participating formulae are true
or hold, are contiguous. For example, for the intervals [1,2], [1,3] and [5,6] only [1,3] is before

[5,6]. We chose to limit the intervals satisfying the before relation, as in practice it is usually the
case that the interval directly before another one is required for specifying a dynamic phenomenon.

• M, [ts, te] |= φ meets ψ iff ∃t.M, [ts, t] |= φ andM, [t, te] |= ψ .

• M, [ts, te] |= φ overlaps ψ iff ∃<te
>tsts

′.∃<te
>ts′te

′.
[
M, [ts, te′] |= φ andM, [ts′, te] |= ψ

]
.

• M, [ts, te] |= φ �nishes ψ iff ∃≤te
>tsts′.

[
M, [ts′, te] |= φ andM, [ts, te] |= ψ

]
.

• M, [ts, te] |= φ starts ψ iff ∃<te
≥tste

′.
[
M, [ts, te′] |= φ andM, [ts, te] |= ψ

]
.

• M, [ts, te] |= φ equals ψ iffM, [ts, te] |= φ andM, [ts, te] |= ψ .

• M, [ts, te] |= φ contains ψ iffM, [ts, te] |= φ and ∃>tsts′.∃<tete′.M, [ts′, te′] |= ψ .

3 Examples of maritime properties expressed in TPhL

We demonstrate the usability of TPhL and the new temporal modalities by adopting a maritime monitor-
ing scenario. When it comes to maritime surveillance there are several resources available; for example
the Automatic Identification System (AIS) allows the transmission of timestamped positional and ancil-
lary data from vessels, maritime areas in the form of polygons can be used for producing vessel-area

38 Handling of Past and Future with Phenesthe+

relations and so on. Similar to [22], we assume the input consists of AIS messages along with spatial
events relating vessels to areas of interest e.g., port areas, fishing areas and so on. Therefore our task
here involves detecting maritime phenomena of interest i.e., the instants, time periods at which they are
true over a maritime input stream. Below we formalise some maritime temporal phenomena3 that utilise
the new temporal modalities (# and �lter).

Fishing warning. Illegal fishing is a very important issue. Vessels engaged in illegal fishing typically
declare fake ship-types. Consider the formalisation below for detecting suspicious stops in fishing areas.

state_phenomenon fishing_warning(V,F) :

((in_fishing_area(V,F)∧¬vessel_type(V,fishing)) u stopped(V)) �lter≥600.

state_phenomenon is a keyword for declaring the phenomenon type, in_fishing_area is a user defined
state that holds for the time periods a vessel V is within a fishing area F , while stopped is a state that
holds for the time periods a vessel is stopped. Finally, vessel_type(V,T) is an atemporal predicate that
is true when vessel V has type T . Therefore, a vessel performs a fishing_warning, if it is not a fishing
vessel, and it is stopped within a fishing area for a period longer that 10 min (600 sec). Here, filtering is
used for minimising false detections occurring from AIS errors (e.g., zero speed) or normal activities.

Port waiting time. Monitoring the waiting time of vessels since they entered a port and until they
get moored is highly useful for various operational and logistical reasons (e.g., efficient planning of re-
sources). However, some vessels may enter and leave a port without mooring—due to weather conditions
for example. We formalise port waiting time below.

state_phenomenon waiting_time(V,P) :

start(in_port(V,P))# start(moored(V,P)).

in_port is a state that holds when a vessel is in a port, while moored is a state that holds when a vessel
is moored at a port. Note that the left and right arguments of # are formulae of Φ

•, therefore if these
formulae were used in other definitions we could have defined corresponding events. Consequently, the
waiting_time state holds for the minimal periods between the time a vessel enters a port and the time the
vessel starts being moored. Here we are interested in the minimal period, as we want to detect only the
cases where a vessel entered a port and got moored.

4 Expressiveness

In this section we study the expressive power of our language. We consider three syntactic fragments
of TPhL. The first one, denoted as TPhL−o , corresponds to the original version of the language (w/o
#,�lter) and excluding formulae of Φ= (recall that Φ= formulae hold on possibly non-disjoint intervals).
The second is TPhL−, which is the same as TPhL−o but includes # and �lter, while the third, TPhL
corresponds to the complete language. Figure 2 (left) illustrates the syntactic relation between TPhL,
TPhL− and TPhL−o . In more detail, we will show that TPhL−o is equally expressive as pure past LTL,
TPhL− has equal expressive power to LTL, and finally TPhL is strictly less expressive than DFO. The
relations in terms of expressive power between the different language fragments are illustrated in Figure 2
(right).

3The complete set of definitions is available in our online repository https://github.com/manospits/Phenesthe/

tree/future.

https://github.com/manospits/Phenesthe/tree/future
https://github.com/manospits/Phenesthe/tree/future

M. Pitsikalis, A. Lisitsa and P. Totzke 39

TPhL
TPhL-

{filter,↬}Φ= TPhL-o
Φ.∪Φ-/{filter,↬}

TPhL−

TPhL−o

DFO

TPhLLTL[YS]

LTL[XU,YS]

Figure 2: Syntactic relation between the fragments of TPhL (left). Expressive relations between different
fragments of TPhL, LTL and DFO (right). A fragment A is strictly more expressive from a fragment B if
they are connected via A→ B. Double lined edges denote equal expressive power.

4.1 Preliminaries

Before we continue with our analysis, as a reminder we present the syntax of LTL with past, and First
Order Monadic Logic of Order (FOMLO).

LTL. The formulae of LTL[XU,YS], given a set of propositions P are defined as follows:

φ ::= ⊥ | p | ¬φ1 | φ1∧φ2 | Xφ1 | φ1 U φ2 | Yφ1 | φ1 S φ2;

where X, and U stand for the next and until modalities, while Y, and S stand for previous and since. The
formulae of LTL[XU,YS] are interpreted over a discrete, linear model of time, formally represented as
MT L = 〈T,<,V T L〉, where T is equal to N, < is the linear order and V T L : P → 2T is the interpretation
function, mapping each proposition to a set of time instants. The satisfaction relation, i.e., that a formula
φ is true at t, is defined asMT L, t |= φ . The semantics of LTL are defined as usual; more specifically in
what follows we assume the reflexive4 semantics of S and U. We denote the pure past fragment of LTL
i.e., LTL without X and U as LTL[YS].

FOMLO. Given a countable set of variables x,y,z, ..., the formulae of FOMLO over a set of unary
predicate symbols Σ are defined a follows:

atomic ::= x < y | x = y | P(x) (where P ∈ Σ)

φ ::= atomic | ¬φ1 | φ1∨φ2 | φ1∧φ2 | ∃x. φ1 | ∀x. φ1

We interpret FOMLO formulae over structures of the formMFO〈T,<,V FO〉, where T is equal to N, ‘<’
is the linear order while V FO : Σ→ 2T is the interpretation of Σ. MFO, t1, t2, · · · , tn |= φ(x1,x2, · · · ,xn)
denotes the satisfaction of a formula φ with free variables x1,x2, · · · ,xn when they are interpreted as
elements ti of MFO. The semantics of the formulae are defined as usual (see for example [25]). We
also define the FOMLO− fragment of FOMLO. Syntactically a formula with one free variable φ(x), is
a formula of the fragment if any bounded variable in the negated normal form of φ(x) is bounded to be
≤ x. Semantically, this means that for all models a formula φ(x) of FOMLO− satisfies:

∀t MFO, t |= φ(x)↔MFO[0, t], t |= φ(x) (1)

where MFO[0, t] is a finite model starting from 0 and ending up to position t inclusive. Intuitively,
formulae of FOMLO− can talk only about the past and the present. In what follows, given a set of
propositions P = {p1, ..., pk} and a set of predicate symbols Σ = {p1(x), ..., pk(x)} a FOMLO model
MFO is faithful toMT L iff ∀≤k

≥1i.V FO(pi(x)) =V T L(pi).
DFO. Finally, on our expressiveness analysis we will also consider DFO, which in contrast to

FOMLO, uses dyadic predicate symbols e.g., p(x,y).

4As we work with discrete linear orders, this choice makes no difference.

40 Handling of Past and Future with Phenesthe+

4.2 TPhL−o and Pure Past LTL

In this section we will show that TPhL−o is expressively equal to the pure past fragment of LTL, i.e.,
LTL[YS]. The TPhL−o fragment is described by the triplet 〈Pes,L−o ,Φ〉, where Pes is a set defined by the
union of event and state predicate sets (Pe/s); L−o is a set defined by the union of the set of the logical
connectives {∧,∨,¬,∈} and the set of temporal operators {�,t,u,\}. Formulae TPhL−o are evaluated
over M− = 〈T, I,<,V •,V−〉 models which are defined in a similar manner to the models presented in
Section 2.

Given a finite set of event propositions5 Pe = {e1, ...,ek}, and a finite set of state propositions
Ps = {s1, ...,sk} we say the FOMLO− model MFO = 〈T,<,V FO〉 is faithful to the modelM− = 〈T, I,<
,V •,V−〉 of TPhL−o if it has the following properties:

• for any proposition e in Pe, V •(e) =V FO(et), and

• for any proposition s in Ps, V−(s) = ρ(V FO(s+),V FO(s∈),V FO(s−))

where et corresponds to the monadic predicate et(x) and the triplet (s+,s∈,s−) corresponds to the monadic
predicates s+(x), s∈(x), s+(x) which are true on instants corresponding to the start, intermediate, and end
of an interval respectively at which s is true. ρ : 2T ×2T ×2T → 2I is a partial mapping from three set of
points to a set of intervals of I. Given three sets S,B and E, corresponding to starting, intermediate and
ending points resp., ρ is defined as follows:

ρ(S,B,E) =

{
[ts, te] : ts < te∧ ts ∈ S∧ te ∈ E ∧∀<ts

>tst.(t ∈ B∧ t 6∈ S∧ t 6∈ E)
}

∪
{
[ts,∞) : ts ∈ S∧@>tste. te ∈ E ∧∀>tst. t ∈ B

}
For all i ∈ I where a formula φ ∈ Φ− is true ρ is bijective (recall that φ ∈ Φ− formulae always hold on
disjoint intervals). For our expressiveness study, we will use the following theorem.

Theorem 1 (Gabbay et al. 1980 [15]). For every formula of FOMLO− φ(x) we can find an LTL[YS]
formula θ such that ∀t.MT L, t |= φ ↔MFO, t |= θ for allMFO and their faithful modelsMT L.

Proof. Dual proof of Theorem 2.2 in [15].

Theorem 2. For every formula φ of TPhL−o , for all TPhL−o models M− and their faithful FOMLO−

modelsMFO:

1. if φ ∈ Φ
•, there exists a formula φ(t) with one free variable of FOMLO− such thatM−, t |= φ iff

MFO, t |= φ(t).

2. if φ ∈Φ−, there exist formulae φ+/∈/−(t) with one free variable such thatM−, [ts, te] |= φ iff

MFO, ts |= φ
+(ts)∧∀<te

>tst.MFO, t |= φ
∈(t)∧MFO, te |= φ

−(te)

and,M−, [ts,∞) |= φ iffMFO, ts |= φ+(ts)∧∀>tst.MFO, t |= φ∈(t)

Proof. The proof is straightforward by direct translations. We define the translation τ
• from formulae of

Φ
• to FOMLO− formulae as follows:

• τ
•(e,x) = e(x)

• τ
•(¬φ ,x) = ¬τ

•(φ ,x)

5In what follows, for simplicity, we will refer to atomic predicates of TPhL as propositions.

M. Pitsikalis, A. Lisitsa and P. Totzke 41

• τ
•(φ [∧,∨]ψ,x) = τ

•(φ ,x)[∧,∨]τ •(ψ,x)

• τ
•(φ ∈ ψ,x) = τ

•(φ ,x)∧ (τ−+ (ψ,x)∨ τ
−
∈ (ψ,x)∨ τ

−
∈ (ψ,x)) (We define τ

−
+/∈/− below.)

Considering that disjoint intervals can be recreated by their starting points, intermediate and endpoints,
we define the τ

−
+ ,τ

−
∈ ,τ

−
− translation functions respectively, from formulae of Φ− to FOMLO− as follows.

• τ
−
{+,∈,−}(s,x) = s{+,∈,−}(x)

• τ
−
+ (φ � ψ,x) = τ

•(φ ,x)∧∀<xz.
[
τ
•(φ ,z)→∃<t

>zz
′. τ

•(ψ ∧¬φ ,z′)
]

• τ
−
∈ (φ � ψ,x) = ∃<xz.

[
τ
−
+ (φ � ψ,z)∧∀≤x

>zz′. ¬τ
•(ψ ∧¬φ ,z′)

]
• τ
−
− (φ � ψ,x) = τ

•(ψ ∧¬φ ,x)∧∃<xz.
[
τ
−
+ (φ � ψ,z)∧∀≤x

>zz′. ¬τ
•(ψ ∧¬φ ,z′)

]
•

τ
−
+ (φ tψ,x) =

[
τ
−
+ (φ ,x)∧¬τ

−
+ (ψ,x)∧¬τ

−
∈ (ψ,x)∧¬τ

−
− (ψ,x)

]
∨
[
τ
−
+ (φ ,x)∧ τ

−
+ (ψ,x)

]
∨
[
τ
−
+ (ψ,x)∧¬τ

−
+ (φ ,x)∧¬τ

−
∈ (φ ,x)∧¬τ

−
− (φ ,x)

]
•

τ
−
∈ (φ tψ,x) =

[
τ
−
+ (φ ,x)∨ τ

−
∈ (ψ,x)

]
∨
[
τ
−
+ (ψ,x)∨ τ

−
∈ (φ ,x)

]
∨
[
τ
−
+ (φ ,x)∧ τ

−
− (ψ,x)

]
∨
[
τ
−
− (φ ,x)∧ τ

−
+ (ψ,x)

]
•

τ
−
− (φ tψ,x) =

[
τ
−
− (φ ,x)∧¬τ

−
+ (ψ,x)∧¬τ

−
∈ (ψ,x)∧¬τ

−
− (ψ,x)

]
∨
[
τ
−
− (φ ,x)∧ τ

−
− (ψ,x)

]
∨
[
τ
−
− (ψ,x)∧¬τ

−
+ (φ ,x)∧¬τ

−
∈ (φ ,x)∧¬τ

−
− (φ ,x)

]
The remaining translations are similar to the ones already presented and therefore omitted. It is easy to
see that the conditions for an instant to be the starting, intermediate or endpoint of a formula of TPhL−

is described by FOMLO− formulae. Consequently, given a formula φ of Φ
•, M−, t |= φ ↔MFO, t |=

τ
•(φ , t). Given a formula φ of Φ− it holds:

M−, [ts, te] |= φ iffMFO, ts |= τ
−
+ (φ , ts)∧∀<te

>tst.MFO, t |= τ
−
∈ (φ , t)∧MFO, te |= τ

−
∈ (φ , te)

Finally, given a formula φ of Φ− it holds:

M−, [ts,∞) |= φ iffMFO, ts |= τ
−
+ (φ , ts)∧∀>tst.MFO, t |= τ

−
∈ (φ , t)

From, Theorems 1 and 2 we deduct that:
Theorem 3. For every formula φ of TPhL−o , for all modelsM− and their faithful modelsMT L

6:
• if φ ∈Φ

• then there exists a formula φt of LTL[YS] such thatM−, t |= φ iffMT L, t |= φt .

• if φ ∈Φ− then there exist formulae φ
+
t ,φ∈t ,φ

−
t of LTL[YS] such thatM−, [ts, te] |= φ iff:

MT L, ts |= φ
+
t ∧∀<te

>tst.MT L, t |= φ
∈
t ∧MT L, te |= φ

−
t

and,M−, [ts,∞) |= φ iffMT L, ts |= φ
+
t ∧∀>tst.MT L, t |= φ∈t

Now we will show that LTL[YS] is expressible in TPhL−o . We define the translation τr : Φt → Φ
•

where Φt is the set of formulae of LTL[YS] and Φ
• is a subset of TPhL−o formulae, as follows:

• τr(p) = p

• τr(¬φ) = ¬τr(φ)

• τr(φ [∧,∨] ψ) = τr(φ) [∧,∨] τr(ψ)

• τr(Yφ) =
(
τr(φ)∨¬τr(φ)

)
∈
(
τr(φ)� ¬τr(φ)

)
∧¬start

(
τr(φ)� ¬τr(φ)

)
• τr(φ S ψ) =

(
τr(φ)∨¬τr(φ)

)
∈
(
τr(ψ)� ¬τr(φ)

)
Note that in the case of Y and S, τr(φ)∨¬τr(φ) is true everywhere but is restricted via the ∈ modality. It
is clear that, given a finite set of propositions P of LTL[YS], for all modelsMT L and their corresponding
faithful TPhL−o models (for all p ∈ P it holds V T L(p) = V •(pe) where pe is an event proposition), and
for all LTL[YS] formulae φ it holdsMT L, t |= φ iffM−, t |= τr(φ).

6We omit the definition of faithful models of TPhL and LTL as they are defined in a similar manner to TPhL and FOMLO.

42 Handling of Past and Future with Phenesthe+

4.3 TPhL− and LTL[XU,YS]

In this section we will show that TPhL−, the extension of TPhL−o (i.e., with �lter and #), has equal
expressive power with LTL[XU,YS]. Our approach is similar to the previous section, however this time
we will translate formulae of TPhL− to FOMLO (instead of FOMLO−). We will use Kamp’s theorem:

Theorem 4 (Kamp [17]). Given any FOMLO formula φ(x) with one free variable, there is an LTL
formula θ , such that θ ≡ φ(x) for all modelsMFO andMT L.

Consequently, the only thing that remains to prove that TPhL− is expressible in LTL[XU,YS] is to
show that formulae involving the minimal range operator (#) and filtering (�lter) are expressible in
FOMLO. Similar to the proof of Theorem 2, this is straightforward by extending the translation functions
τ
−
+ ,τ

−
∈ ,τ

−
− for supporting ‘#’ and ‘�lter’. We begin with the translation of formulae that involve the

minimal range operator (#):

τ
−
+ (φ # ψ,x) = τ

•
(φ ,x)∧∃>xte.

[
τ
•
(ψ ∧¬φ , te)∧∀<te

>x t.
[
¬τ

•
(φ ,x)∧¬τ

•
(ψ ∧¬φ , t)

]]
τ
−
∈ (φ # ψ,x) = ∃<xts.∃>xte.

[
τ
•
(φ , ts)∧ τ

•
(ψ ∧¬φ , te)∧∀<te

>tst.
[
¬τ

•
(φ , t)∧¬τ

•
(ψ ∧¬φ , t)

]]
τ
−
− (φ # ψ,x) = ∃<xts.

[
τ
•
(φ , ts)∧ τ

•
(ψ ∧¬φ ,x)∧∀<x

>tst.
[
¬τ

•
(φ , t)∧¬τ

•
(ψ ∧¬φ , t)

]]
Essentially, the translation of φ # ψ is similar to the translation of φ � ψ , however in this case it is
clear that there is a need for future FOMLO formulae. Concerning the translation of formulae involving
filtering (�lter), first we define formulae Ck+(x0,φ ,ψ) as follows:

Ck+(x0,φ ,ψ) =∃>x0x1. · · ·∃>xi−1xi. · · ·∃>xk−1xk.@<x1
>x0x0,1.@<xi+1

>xi xi,i+1. · · ·@<xk
>xk−1

xk−1,k.[
φ(x1)∧·· ·∧φ(xk−1)∧ψ(xk)

]
denoting that φ is true from x1 to xk−1, ψ is true at xk, and all xi are contiguous and right of x0. Similar to
Ck+ define the Ck− for the left direction from x0. Here, we will only define the translations for the �lter<
case as the remaining cases can be easily defined in a similar manner.

τ
−
+ (φ �lter< n,x) = τ

−
+ (φ ,x)∧

[
C1+(x,τ−∈ (φ),τ

−
− (φ))∨·· ·∨Cn−1+(x,τ−∈ (φ),τ

−
− (φ))

]
τ
−
∈ (φ �lter< n,x) = τ

−
∈ (φ ,x)∧

[[
C1−(x,τ−∈ (φ),τ

−
+ (φ))∧Cn−2+(x,τ−∈ (φ),τ

−
− (φ))

]
∨
[
C2−(x,τ−∈ (φ),τ

−
+ (φ))∧Cn−3+(x,τ−∈ (φ),τ

−
− (φ))

]
∨·· ·

∨
[
Cn−2−(x,τ−∈ (φ),τ

−
+ (φ))∧C1+(x,τ−∈ (φ),τ

−
− (φ))

]]
τ
−
− (φ �lter< n,x) = τ

−
− (φ ,x)∧

[
C1−(x,τ−∈ (φ),τ

−
+ (φ))∨·· ·∨Cn−1−(x,τ−∈ (φ),τ

−
+ (φ))

]
It can be seen that although a translation of φ �lter<n exists, the size of the translated formula is linear to
n. Note that a translation with smaller size might be possible, however for our expressiveness study it is
not required to find the optimal translation.

Given all of the above, from Theorem 4, it is clear that the analog of Theorem 3 also holds for
TPhL− and LTL[XU,YS]. For the opposite direction, it suffices to show that there are τr translations from
formulae involving the remaining LTL modalities, i.e., X and U, to TPhL− formulae. For convenience we
first define c(φ) = φ � ¬φ where φ ∈ Φ

•. Essentially, c(φ) holds for the maximal intervals [ts, te] or
[ts,∞) for which ∀<te

≥tst.M, t |= φ or ∀≥tst.M, t |= φ respectively. Therefore we define the corresponding

M. Pitsikalis, A. Lisitsa and P. Totzke 43

τr translations as follows.

τ
r(Xφ) = (τr(φ) ∈ c(τr(φ)))∧¬end(c(τr(φ)))) ∨ start(¬τ

r(φ)# end(c(¬τ
r(φ))))

τ
r(φ U ψ) = ((τr(φ)∨¬τ

r(φ)) ∈ (start(c(τr(φ))u c(¬τ
r(ψ)))#

(end(c(τr(φ))u c(¬τ
r(ψ)))∧ τ

r(ψ))))∨ τ
r(ψ)

Concerning the translation of Xφ , the left part of the disjunction holds true for all instants included in an
interval [ts, te) where c(τr(φ))) is true, while the right part is true at the start of an interval [t, t+1] where
¬τr(φ)# end(c(¬τr(φ))) is true. In the case of τr(φ U ψ), the translation can be divided into two parts:
the first part uses the inclusion operator between the tautology τr(φ)∨¬τr(φ) (true everywhere) and the
minimal range formula between (a) the start of a period at which both φ and ¬ψ are true for all points
(excluding the end) and (b) the end of a period [ts, te) at which both φ and ¬ψ are true and ψ holds at te,
thus capturing the cases where φ is true before ψ becomes true; the second part of the translation is the
case of τr(ψ) which captures single instances of ψ . Considering all of the above, we can now say that
the TPhL− fragment of TPhL has equal expressive power with LTL[XU,YS].

4.4 Expressiveness of TPhL

Concerning the complete language TPhL, a comparison with LTL is not possible as the structures on
which semantics is based are incomparable, even for atomic entities. This is because dynamic temporal
phenomena may hold on non-disjoint intervals which by default require the half plane of a 2-dimensional
temporal space for their representation. When compared to DFO, it can be easily seen that for all formu-
lae of TPhL there are equivalent formulae with two free variables of DFO. For example, a dynamic tem-
poral phenomenon proposition p can be represented by a dyadic predicate p(x,y) such thatM, [ts, te] |=
p↔MDFO, ts, te |= p(x,y). In a similar manner to the previous sections, we can define translations from
TPhL to DFO for the remaining formulae—this time however with two free variables corresponding to
starting and ending instants. However, the reverse direction does not hold. This can be shown with the
following example. Consider the DFO formula φ(x,y) = ¬p(x,y), since negation is not included for
formulae7 of Φ= there is no formula φt of TPhL such thatM, [ts, te] |= φt ↔MDFO, ts, te |= ¬p(x,y) for
all models. Therefore TPhL is strictly less expressive than DFO.

5 Stream processing

In this section, we formally present the correctness criteria for stream processing with the TPhL language.
Given a stream, i.e., an arbitrary long sequence of time associated atomic formulae of Φ, the evaluation
at a given instant t, of formulae that refer only to the past (φ of TPhL−o) is an easy task, as their truth
value can be determined for all t ′ ≤ t (see Equation (1)). However, this is not the case for formulae such
as τr(Xp) and τr(p U q) that refer to the future, as their truth value at an instant t may depend on future
information (> t). Consequently, in order to guarantee correctness, monotonicity and punctuality—
we will define these shortly—, the two valued semantics of TPhL, are not sufficient for the evaluation
of formulae on constantly evolving streams. In order to treat the issue of evaluations with unknown
status—i.e., when all required information is not available at current time—, we follow an approach
similar to [6]. We extend the semantics of TPhL for stream processing, to utilise three values: true (>),
false (⊥) and unknown (?). Due to space limitations, we will omit the presentation of the three valued

7We chose to omit negation from formulae of Φ= as it would affect significantly the performance of our implementation.

44 Handling of Past and Future with Phenesthe+

semantics8 in this paper, instead we will focus on formalising the notions of stream, stream processor,
and define the properties of correctness, punctuality and monotonicity for stream processors of TPhL.

A stream, at any instant t can be represented by the finite modelMt = 〈Tt , It ,<,V •,V−,V=〉 where
Tt = {0,1, · · · , t}, It = Tt×Tt∪{[ts,∞) : ts∈ Tt}, and V •,V−,V= are valuation functions defined in similar
manner to Section 2.

A stream processor, in symbols SP t , is defined by the triplet 〈Λ•

t ,Λ
−
t ,Λ

=
t 〉where t ∈ T , Λ

•

t : Φ
•×Tt→

{>,⊥,?}, Λ
−
t : Φ−×(Ic

t ∪ I+T)→{>,⊥,?}, and Λ=
t : Φ=×(Ic

t ∪ I+t)→{>,⊥,?}, are formulae valuation
functions assigning truth values on formulae-instants/intervals pairs and Ic

t = Tt ×Tt and I+t = {[ts, t+] :
ts, t ∈ Tt}. Intervals of Ic

t , (e.g., [ts,te]) denote that a phenomenon started at ts and ended at te, while
intervals of I+t , (e.g., [ts, t+]) denote that a phenomenon started at ts, and continues to be true/unknown
at t but does not end at t. Intervals of I+t are useful for capturing the truth value of valuations that are true
but are still ongoing—see for example the semantics of φ � ψ for intervals open to ∞. We assume that
the input phenomena are ordered and their truth value is never unknown. Now, we define the correctness,
punctuality and monotonicity properties for SP .

Correctness. A stream processor has the correctness property iff given any stream, for all t and for
any φ ∈ Φ evaluation by SP t (i.e., via Λ

•/−/=) that is true (false) at an instant ti or interval i, φ is also
true (false) (i.e., via the semantics of Section 2) at ti or i inMt .

Monotonicity. A stream processor has the motonocity property iff given any stream, for all t and for
φ ∈ Φ evaluation by SP t that is true (false) at an instant ti or interval i, will also be evaluated to be true
(false) at ti or i by all SP t ′ with t ′ > t.

Punctuality. A stream processor has the punctuality property iff given any stream, for any φ , and for
all instants ti or intervals i if there exists minimum t ≥ ti such that φ is true (false) for all t ′ ≥ t in allM′

t
at ti or t then SP t evaluates φ to be true (false) at an instant ti or interval i.

We say that a stream processor for TPhL is proper iff it has all the three aforementioned properties. It
is easy to see that some formulae, given certain streams, can never be true but always stay unknown. For
example, consider the formula τr(Gp), where G is the ‘globally’ LTL operator, and a stream where p is
true at all instants; at any given point t in time, the stream processor is agnostic to the future, therefore in
order to maintain the monotonicity property, τr(Gp) will be evaluated by SP t for all t ′≤ t to be unknown.

Phenesthe+, is a proper stream processor of TPhL. While we will not present a formal proof in this
paper, we will briefly discuss its processing and its implementation. Phenesthe+ is a complex event
processing engine that given an input stream and a set of temporal phenomena definitions, will produce
an output stream of temporal phenomena detections i.e., phenomena associated with a set of instants or
intervals at which they are true. Compared to automata based methods, the phenomena are compiled via
rewriting into an internal Prolog representation which is then later used for processing. This procedure is
linear with respect to the size of the formulae involved. The phenomena definitions can be hierarchical,
and their processing, if possible, can happen in parallel. Phenesthe+ detects phenomena by performing
temporal queries over tumbling temporal windows of size equal to a user defined step (ST) size. A
temporal window contains all the new information that has arrived since the last temporal query, as well
as information from previous windows that has a possible future use. For example, given the formula
φ # ψ , if φ is true in the current window but ψ is not, then φ must be retained. Note that information
from previous windows was also retained in the previous version of Phenesthe for valuations that are true
but ongoing, or involved dynamic temporal phenomena. All information outside the temporal window
that does not have ‘future use’ is discarded. From a practical perspective it is not viable to keep everything

8The complete three valued semantics are available in https://manospits.github.io/files/Three_valued_

semantics.pdf.

https://manospits.github.io/files/Three_valued_semantics.pdf
https://manospits.github.io/files/Three_valued_semantics.pdf

M. Pitsikalis, A. Lisitsa and P. Totzke 45

from the past that can contribute to a future detection. Therefore, we allow setting a maximum limit for
past information (retaining threshold RT). When this threshold is active Phenesthe+ is no longer proper
with respect to the full stream, but remains proper for the part of the stream that is bounded by RT .
Similarly, the punctuality property depends on ST , if ST = 1, then Phenesthe+ is punctual, however if
ST > 1, detections will be produced at the latest ST −1 time units after their punctual time.

In terms of complexity, evaluation of formulae in Phenesthe+ happens via single-scan or in the worst
case, i.e., when overlapping intervals are involved, polynomial algorithms with respect to the size of
the structure (current temporal window). It has to be noted that while TPhL− has equal expressive
power with LTL, it can accomplish efficient processing of phenomena definitions by utilising intervals to
represent set of points. For example an interval [ts, te] produced by the evaluation of the formula φ � ψ

requires only two points for the representation of all the instants included in [ts, te], therefore contributing
significantly to space and processing time economy.

6 Experimental Evaluation

We presented the theoretical basis of TPhL. Now, we will evaluate the efficiency of our extended stream
processing engine on a reproducible9 maritime monitoring scenario.

Experimental setup For our experimental evaluation we use a public dataset containing AIS vessel
data, transmitted over a period of 6 months, from October 1st, 2015 to March 31st, 2016, in the area
of Brest, France [26] along with spatio-temporal events relating vessels with areas (in total ≈ 16M
input events). We run our experiments on machine with an Intel i7-3770 CPU running Ubuntu 20.04.6
LTS. The set of maritime phenomena we detect as well as the input events are summarised in Table 1.
We compare stream processing efficiency when the set of maritime phenomena definitions includes and
does not include phenomena marked with ‡, i.e., phenomena that utilise # and, or �lter or depend on
phenomena that utilise them.

Experimental results The results of our evaluation are illustrated in Figure 3. We perform complex
event processing with ST = 3h, and RT = {2,4,8,16} days. Figure 3 (left) shows the average processing
time for each experiment. The results show that the addition of ‡ phenomena does not affect processing
efficiency significantly, but also that Phenesthe+ is capable of producing detections in less than 2 sec-
onds (multithreaded) when the data retaining threshold is set to 16 days. Note that the performance gain
by running the multithreaded version of Phenesthe+ depends on the dependecies between phenomena
and the computation of the processing order. For example, fishing_warning and waiting_time can be
processed in parallel while fishing_warning and suspicious_trip cannot. In [22] we describe the compu-
tation of the processing order. With the addition of the new temporal phenomena, we limited the number
of phenomena that can be processed in parallel. The results of Figure 3 (left) confirm this. We also
perform complex event processing with ST = 24h, and set RT = ∞ (i.e., keep non-redundant informa-
tion forever)—recall that our dataset involves a 6 month period. Similar to the previous experiments
we compare performance when Phenesthe+ is executed in parallel or serial manner, and with or without
temporal phenomena marked with ‡ (see Table 1). Figure 3 (middle) shows the average processing time
while Figure 3 (right) shows the average number of input entities plus retained instants/ intervals for each
case. The results show, that in terms of processing time, performance is not significantly affected when
including ‡ phenomena in both serial and parallel processing even when Phenesthe+ retains all informa-
tion. In more detail, apart from the input events (on average 90K per temporal query) when we include ‡
phenomena the number of retained instants/intervals increases on average by 20K, therefore bringing the

9https://github.com/manospits/Phenesthe/tree/future

https://github.com/manospits/Phenesthe/tree/future

46 Handling of Past and Future with Phenesthe+

Table 1: Input and output phenomena description. ‘IE’, ‘UE’, ‘US’ and ‘UD’ stand for Input/User
Event/State/Dynamic temporal phenomenon. Phenomena with † have future dependencies while phe-
nomena with ‡ utilise the new temporal modalities or depend on phenomena that utilise them. The last
column lists approximately the number of input or output instants/intervals.

Type Phenomenon Description Number

IE
ais(V,S,C,H) AIS transmitted information (vessel ID, speed, course, heading) 15.8M
enters/leaves{Port,Fishing}(V,A) Vessel enters/leaves port/fishing area. 160K

UE stop_start/end(V) Start/end of a stop. 800K

US

in_{port,fishing}_area(V,A) In fishing/port area. 70K
stopped(V) Stopped vessel. 300K
underway(V) Vessel underway. 132K
moored(V) Moored vessel. 323K
†‡fishing_warning(V,F) Warning: Non fishing vessel possibly engaged in fishing. 7K
†‡waiting_time(V,P) Port waiting time. 42K
†‡long_waiting_time(V, P) Warning: waiting time longer than a threshold. 28K
unusual_stop(V) Warning: vessel performs a stop in an unexpected area. 27K
†‡possible_malfunction(V) Warning: Vessel might have a malfunction. 3K

UD

†trip(V,PA,PB) Vessel trip from PA to PB. 39K
†‡suspicious_trip(V,PA,PB) Trip from PA to PB contained warnings. 3K
†fishing_trip(V,PA,FA,PB) Fishing trip from PA to PB contained fishing in FA. 6K

total number of input+retained entities up to 120K. Even in this setting Phenesthe+, produces detections
in approximately 2 and 4 seconds (serial and parallel respectively).

7 Related work & Discussion

There are several very expressive temporal logics. The HS logic [16] is a very powerful logic for rep-
resenting both instantaneous and durative temporal phenomena. When time is linear and the intervals
homogeneous (therefore non overlapping) the HS logic is equally expressive with LTL but is exponen-
tially more succinct [9]. In its original version, the HS logic does not make any assumptions on the
nature of intervals. In this paper, we showed the TPhL− has equal expressive power to LTL, therefore
concerning the linear HS variant studied in [9], TPhL− is equally expressive. It is well known, that the
chop operator of Venema’s CDT logic [27] is inexpressible in the HS logic [20, 10]. TPhL supports the
chop operator in the form of meets. While a formal expressiveness comparison of TPhL with the HS or
CDT would be desirable, the omission of negation from Φ= formulae makes this a challenging task.

Concerning our criteria for proper stream processors of TPhL, as mentioned earlier, their concepts are
not entirely new. For example “correctness” has a similar notion with “soundness” in run-time verifica-
tion [5] (i.e., the output should be correct with respect to the specification). Likewise, the “monotonicity”
property as we have defined it, in run-time monitoring appears as the irrevocability property respectively
for monitors [1]—a monitor that has the “irrevocability” property is unable to revoke the acceptance or
the rejection of a trace. Finally, the “punctuality” property can be related to the “tightness” property of
monitors [1], under which monitors are restricted to make a choice as soon as there is sufficient informa-
tion available. In this work, we utilise the similar notions from run-time monitoring and verification for
the task of complex event processing.

M. Pitsikalis, A. Lisitsa and P. Totzke 47

2 4 8 16
0

2

4

6

8

Retaining threshold (days)

A
vg

.p
ro

ce
ss

in
g

tim
e

(s
ec

) w/ ‡ - S w/o ‡ - S
w/ ‡ - P w/o ‡ - P

Serial Parallel
0

2

4

6

8

Processing method

A
vg

.p
ro

ce
ss

in
g

tim
e

(s
ec

) w/ ‡ w/o ‡

w/ ‡ w/o ‡
0

50

100

150

200

Version

A
vg

.n
um

be
ro

fi
np

ut
+r

et
ai

ne
d

in
st

an
ts

/in
te

rv
al

s
(×

10
00

)

Input event instants
Retained instants/intervals

Figure 3: Experimental results. Average processing time per query with ST = 3h and RT = {2,4,8,16}
days or ST = 24h and RT = ∞ (left) and (middle) respectively. Average number of input plus retained
instants/ intervals per query when ST = 24h and RT = ∞ (right).

From a complex event processing perspective, LARS is a logic based framework for reasoning over
streams [7]. While the language of LARS is expressible in LTL, the reverse direction does not hold, since
LARS does not support ‘until’. A well known runtime monitoring system with point-based semantics is
LOLA [13]. While LOLA does not allow durative phenomena, we saw in section 4 that formulae that
hold on disjoint intervals can be expressed using point based modalities. It is not possible, however,
to model formulae that hold on overlapping intervals. Furthermore, in the worst case LOLA requires
memory equal to the size of the trace so far, which is not practical for large industrial applications
such as maritime monitoring. In Phenesthe+ we allow the user to choose the retaining threshold. A
complex event recognition framework is RTEC [4]. RTEC is a logic based formalism whereby events
and fluents are expressed with a variant of the Event Calculus [18]. While there isn’t a formal study of
the expressive power of the language of RTEC, its semantics suggest that it has at most equal expressive
power with pure past LTL. Bauer et. al. [6], propose three valued semantics for monitoring LTL formulae.
In our work, we also use three valued semantics, however for a more general case, as our language
allows the representation of temporal phenomena that hold on overlapping intervals, which cannot be
modeled in LTL. Team semantics for LTL [19] or HyperLTL [11] offer a promising direction towards
the representation of concurrent temporal phenomena, however they are limited to a finite number of
concurrent traces. In TPhL a dynamic temporal phenomenon may hold on possibly infinite overlapping
intervals.

Closing, in this paper we presented TPhL and studied the expressive power of its different fragments.
Specifically, we showed that TPhL−o has equal expressive power with pure past LTL while its extension,
TPhL−, has equal expressive power with LTL. Concerning the complete logic TPhL, we showed that it
is strictly less expressive than dyadic first-order logic. Moreover, we defined criteria for proper stream
processors that use our language, and evaluated Phenesthe+, our stream processing implementation on
real maritime data. Our results, show that Phenesthe+ is suitable for the task of maritime monitoring as
it produces results in real-time. While the application of our experiment involved the maritime domain,
Phenesthe+ is generic, and can be applied in other areas.

Regarding future work, we aim to study the expressive power of a theoretical variant of TPhL that
includes negation on formulae of Φ= in comparison with two-dimensional modal logics. Furthermore, as
one of the main motivations for the creation of TPhL was facilitating writing temporal formulae, we plan
to compare succinctness of TPhL− formulae with LTL formulae. Finally, we aim to apply Phenesthe+
for human activity monitoring in smart homes.

48 Handling of Past and Future with Phenesthe+

References

[1] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir & Karoliina Lehtinen (2019): Ad-
ventures in Monitorability: From Branching to Linear Time and Back Again. Proc. ACM Program. Lang.
3(POPL), doi:10.1145/3290365.

[2] James F. Allen (1983): Maintaining knowledge about temporal intervals. Communications of the ACM
26(11), p. 832–843, doi:10.1145/182.358434.

[3] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic & Rudi Studer (2010): A
Rule-Based Language for Complex Event Processing and Reasoning, p. 42–57. Lecture Notes in Computer
Science 6333, Springer Berlin Heidelberg, doi:10.1007/978-3-642-15918-3_5.

[4] Alexander Artikis, Marek Sergot & Georgios Paliouras (2015): An Event Calculus for Event
Recognition. IEEE Transactions on Knowledge and Data Engineering 27(4), pp. 895–908,
doi:10.1109/TKDE.2014.2356476.

[5] Ezio Bartocci & Yliès Falcone, editors (2018): Lectures on Runtime Verification - Introductory and Advanced
Topics. Lecture Notes in Computer Science 10457, Springer, doi:10.1007/978-3-319-75632-5.

[6] Andreas Bauer, Martin Leucker & Christian Schallhart (2011): Runtime Verification for LTL and TLTL. ACM
Trans. Softw. Eng. Methodol. 20(4), doi:10.1145/2000799.2000800.

[7] Harald Beck, Minh Dao-Tran & Thomas Eiter (2018): LARS: A Logic-based framework for Analytic Rea-
soning over Streams. Artificial Intelligence 261, pp. 16–70, doi:10.1016/j.artint.2018.04.003.

[8] Michael H Bohlen, Renato Busatto & Christian S. Jensen (1998): Point-versus interval-based tempo-
ral data models. In: Proceedings 14th International Conference on Data Engineering, pp. 192–200,
doi:10.1109/ICDE.1998.655777.

[9] Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron & Pietro Sala (2018): Interval vs.
Point Temporal Logic Model Checking: An Expressiveness Comparison. ACM Trans. Comput. Logic 20(1),
doi:10.1145/3281028.

[10] Davide Bresolin, Dario Della Monica, Valentin Goranko, Angelo Montanari & Guido Sciavicco (2008):
Decidable and Undecidable Fragments of Halpern and Shoham’s Interval Temporal Logic: Towards a Com-
plete Classification. In Iliano Cervesato, Helmut Veith & Andrei Voronkov, editors: Logic for Program-
ming, Artificial Intelligence, and Reasoning, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 590–604,
doi:10.1007/978-3-540-89439-1_41.

[11] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe & César
Sánchez (2014): Temporal Logics for Hyperproperties. In Martín Abadi & Steve Kremer, editors: Principles
of Security and Trust - Third International Conference, POST 2014, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings,
Lecture Notes in Computer Science 8414, Springer, pp. 265–284, doi:10.1007/978-3-642-54792-8_15.

[12] Gianpaolo Cugola & Alessandro Margara (2010): TESLA: a formally defined event specification language.
In: DEBS ’10, ACM Press, p. 50, doi:10.1145/1827418.1827427.

[13] Ben D’Angelo, Sriram Sankaranarayanan, Cesar Sanchez, Will Robinson, Bernd Finkbeiner, Henny B.
Sipma, Sandeep Mehrotra & Zohar Manna (2005): LOLA: Runtime Monitoring of Synchronous Systems.
In: Proceedings of the 12th International Symposium on Temporal Representation and Reasoning, TIME
’05, IEEE Computer Society, USA, p. 166–174, doi:10.1109/TIME.2005.26.

[14] Andreas Dohr, Christiane Engels & Andreas Behrend (2018): Algebraic Operators for Processing Sets of
Temporal Intervals in Relational Databases. In Natasha Alechina, Kjetil Nørvåg & Wojciech Penczek,
editors: 25th International Symposium on Temporal Representation and Reasoning (TIME 2018), Leibniz
International Proceedings in Informatics (LIPIcs) 120, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, pp. 11:1–11:16, doi:10.4230/LIPIcs.TIME.2018.11.

[15] Dov Gabbay, Amir Pnueli, Saharon Shelah & Jonathan Stavi (1980): On the Temporal Analysis of
Fairness. In: Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

https://doi.org/10.1145/3290365
https://doi.org/10.1145/182.358434
https://doi.org/10.1007/978-3-642-15918-3_5
https://doi.org/10.1109/TKDE.2014.2356476
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1016/j.artint.2018.04.003
https://doi.org/10.1109/ICDE.1998.655777
https://doi.org/10.1145/3281028
https://doi.org/10.1007/978-3-540-89439-1_41
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1145/1827418.1827427
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.4230/LIPIcs.TIME.2018.11

M. Pitsikalis, A. Lisitsa and P. Totzke 49

ming Languages, POPL ’80, Association for Computing Machinery, New York, NY, USA, p. 163–173,
doi:10.1145/567446.567462.

[16] Joseph Y. Halpern & Yoav Shoham (1991): A propositional modal logic of time intervals. Journal of the
ACM 38(4), p. 935–962, doi:10.1145/115234.115351.

[17] Johan Anthony Wilem Kamp (1968): Tense Logic and the Theory of Linear Order. Ph.D. thesis, University
of California, Los Angeles.

[18] Robert Kowalski & Marek Sergot (1986): A logic-based calculus of events. New Generation Computing
4(1), pp. 67–95, doi:10.1007/BF03037383.

[19] Andreas Krebs, Arne Meier, Jonni Virtema & Martin Zimmermann (2018): Team Semantics for the Spec-
ification and Verification of Hyperproperties. In Igor Potapov, Paul G. Spirakis & James Worrell, editors:
43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-
31, 2018, Liverpool, UK, LIPIcs 117, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 10:1–10:16,
doi:10.4230/LIPIcs.MFCS.2018.10.

[20] Kamal Lodaya (2000): Sharpening the Undecidability of Interval Temporal Logic. In Jifeng He & Masahiko
Sato, editors: Advances in Computing Science - ASIAN 2000, 6th Asian Computing Science Conference,
Penang, Malaysia, November 25-27, 2000, Proceedings, Lecture Notes in Computer Science 1961, Springer,
pp. 290–298, doi:10.1007/3-540-44464-5_21.

[21] Corto Mascle, Daniel Neider, Maximilian Schwenger, Paulo Tabuada, Alexander Weinert & Martin Zim-
mermann (2020): From LTL to RLTL Monitoring: Improved Monitorability through Robust Semantics. In:
Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, HSCC ’20,
Association for Computing Machinery, New York, NY, USA, pp. 170–204, doi:10.1145/3365365.3382197.

[22] Manolis Pitsikalis, Alexei Lisitsa & Shan Luo (2021): Representation and Processing of Instantaneous and
Durative Temporal Phenomena. In Emanuele De Angelis & Wim Vanhoof, editors: Logic-Based Program
Synthesis and Transformation - 31st International Symposium, LOPSTR 2021, Tallinn, Estonia, September
7-8, 2021, Proceedings, Lecture Notes in Computer Science 13290, Springer, pp. 135–156, doi:10.1007/978-
3-030-98869-2_8.

[23] Manolis Pitsikalis, Alexei Lisitsa, Patrick Totzke & Simon Lee (2022): Making Sense of Heterogeneous
Maritime Data. In: 2022 23rd IEEE International Conference on Mobile Data Management (MDM), pp.
401–406, doi:10.1109/MDM55031.2022.00089.

[24] Amir Pnueli (1977): The temporal logic of programs. In: 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), IEEE, Providence, RI, USA, p. 46–57, doi:10.1109/SFCS.1977.32.

[25] Alexander Rabinovich (2014): A Proof of Kamp’s theorem. Logical Methods in Computer Science Volume
10, Issue 1, doi:10.2168/LMCS-10(1:14)2014.

[26] Cyril Ray, Richard Dréo, Elena Camossi, Anne-Laure Jousselme & Clément Iphar (2019): Heterogeneous
integrated dataset for Maritime Intelligence, surveillance, and reconnaissance. Data in Brief 25, p. 104141,
doi:10.1016/j.dib.2019.104141.

[27] Yde Venema (1990): Expressiveness and completeness of an interval tense logic. Notre Dame Journal of
Formal Logic 31(4), doi:10.1305/ndjfl/1093635589.

[28] Peter Øhrstrøm & Per Hasle (2006): Modern temporal logic: The philosophical background. In Dov M.
Gabbay & John Woods, editors: Logic and the Modalities in the Twentieth Century, Handbook of the History
of Logic 7, North-Holland, pp. 447–498, doi:10.1016/S1874-5857(06)80032-4.

https://doi.org/10.1145/567446.567462
https://doi.org/10.1145/115234.115351
https://doi.org/10.1007/BF03037383
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.1007/3-540-44464-5_21
https://doi.org/10.1145/3365365.3382197
https://doi.org/10.1007/978-3-030-98869-2_8
https://doi.org/10.1007/978-3-030-98869-2_8
https://doi.org/10.1109/MDM55031.2022.00089
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.2168/LMCS-10(1:14)2014
https://doi.org/10.1016/j.dib.2019.104141
https://doi.org/10.1305/ndjfl/1093635589
https://doi.org/10.1016/S1874-5857(06)80032-4

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. 50–66, doi:10.4204/EPTCS.390.4

On Two- and Three-valued Semantics

for Impure Simplicial Complexes

Hans van Ditmarsch

CNRS, Université de Toulouse, IRIT
Toulouse, France

hans.van-ditmarsch@irit.fr

Roman Kuznets Rojo Randrianomentsoa

TU Wien

Vienna, Austria

{roman.kuznets+rojo.randrianomentsoa}@tuwien.ac.at*

Simplicial complexes are a convenient semantic primitive to reason about processes (agents) com-

municating with each other in synchronous and asynchronous computation. Impure simplicial com-

plexes distinguish active processes from crashed ones, in other words, agents that are alive from

agents that are dead. In order to rule out that dead agents reason about themselves and about other

agents, three-valued epistemic semantics have been proposed where, in addition to the usual values

true and false, the third value stands for undefined: the knowledge of dead agents is undefined and

so are the propositional variables describing their local state. Other semantics for impure complexes

are two-valued where a dead agent knows everything. Different choices in designing a semantics

produce different three-valued semantics, and also different two-valued semantics. In this work, we

categorize the available choices by discounting the bad ones, identifying the equivalent ones, and

connecting the non-equivalent ones via a translation. The main result of the paper is identifying the

main relevant distinction to be the number of truth values and bridging this difference by means of a

novel embedding from three- into two-valued semantics. This translation also enables us to highlight

quite fundamental modeling differences underpinning various two- and three-valued approaches in

this area of combinatorial topology. In particular, pure complexes can be defined as those invariant

under the translation.

1 Introduction

This contribution is on a topic where combinatorial topology and epistemic logic meet, using a categori-

cally motivated duality between simplicial complexes, a structural primitive of a topological nature, and

Kripke models, a structural primitive omnipresent in epistemic logic, and modal logics in general. Such

simplicial complexes are used to describe synchronous and asynchronous computation, and the focus of

our interest is simplicial complexes representing that some processes are alive (active), whereas other

processes are dead (have crashed). Such simplicial complexes are called impure. As we will see, their

properties can be described in a two-valued epistemic semantics, but also in a three-valued epistemic

semantics where the third value means undefined. That represents that formulas cannot be evaluated, as

far as the knowledge or other features of a dead agent are concerned. However, there are also ways to

represent dead agents in a standard truth-valued (two-valued) semantics: namely, by a dead agent know-

ing the false proposition (and, therefore, everything — in Kripke semantics it is common to say that such

agents are mad, or crazy).

In this contribution we compare two-valued and three-valued epistemic semantics for impure com-

plexes, by way of translations capturing the three-valued meaning in a two-valued way while using the

same logical language. We also discuss at length the consequences for truth and validity. These novel

translations allow to highlight the respective advantages of such two- and three-valued approaches.

*Funded by the Austrian Science Fund (FWF) ByzDEL project (P33600).

http://dx.doi.org/10.4204/EPTCS.390.4

H. van Ditmarsch, R. Kuznets & R. Randrianomentsoa 51

In the remainder of this introduction we survey the research area, give detailed informal examples,

and summarize the results that we will achieve.

Survey of the literature Combinatorial topology has been used in distributed computing to model

concurrency and asynchrony since [5, 16, 27], with higher-dimensional topological properties considered

in [24, 23]. The basic structure in combinatorial topology is the simplicial complex, a downward closed

collection of subsets, called simplices, of a set of vertices. Geometric manipulations such as subdivision

have natural combinatorial counterparts.

Epistemic logic investigates knowledge and belief, and change of knowledge and belief, in multi-

agent systems [25]. Knowledge change was extensively modeled in temporal epistemic logics [1, 22,

30, 13] and more recently in dynamic epistemic logics [3, 11, 28], including synchronous [4] and asyn-

chronous [6, 2] interpretations of dynamics. The basic structure in epistemic semantics is the Kripke

model, defined by a set of states (or worlds), a collection of binary indistinguishability relations between

those states, used to interpret knowledge, and a collection of subsets of states, called properties, for

where propositional variables are true.

Fairly recently, an epistemic logic interpreted on simplicial complexes was proposed in [26, 20, 8],

including exact correspondence between simplicial complexes and Kripke models. Also, in those and

other works [29, 33, 9], the action models of [3] are used to model distributed computing tasks and

algorithms, with asynchrony treated as in [6]. Action models, which are like Kripke models, also have

counterparts that are like simplicial complexes [26, 9].

Even more recently, epistemic semantics for impure complexes have been proposed. In impure com-

plexes some processes have crashed, i.e., are dead. This typically represents synchronous computation

(with timeouts), as in asynchronous computation inactive processes can in principle become active again

later [23]. Dead agents — and live agents’ uncertainty about whether those are dead — need some rep-

resentation in a modal logical semantics. Choices occurring in the literature are to consider knowledge

of dead agents either undefined [12] or trivial [21]. When such knowledge is undefined, it is not allowed

to interpret Kaϕ if a is dead. This results in a three-valued semantics [12] and an accompanying S5-like

modal logic [31]. When such knowledge is trivial, we mean that Ka⊥ is true (agents going mad, or crazy;

in epistemic logic, a standard trick coming with an empty accessibility relation [3, 18]), from which we

derive that Kaϕ is true for all formulas ϕ . This remains a two-valued semantics [21], and the accompa-

nying logic is KB4-like. An agent who is dead is not so unlike an agent who is incorrect, as in [17, 7].

The approach of [21] was generalized from individual knowledge to distributed knowledge, and from

simplicial complexes to (semi-)simplicial sets [19].

Informal examples Figure 1 displays some simplicial complexes and, for the benefit of the reader more

familiar with that representation, corresponding Kripke models. In the depictions of Kripke models we

assume reflexivity and symmetry of accessibility relations. The depicted simplicial complexes are for

three agents. The vertices of a simplex are required to be labeled with different agents. A maximum

size simplex, called facet, therefore, consists of three vertices. This is called dimension 2. These are the

triangles in the figure. For two agents we get lines/edges, for four agents we get tetrahedra, etc. A facet

corresponds to a state in a Kripke model. A label like 0a on a vertex represents that it is a vertex for

agent a and that agent a’s local state has value 0, etc. We can see this as the boolean value of a local

proposition where 0 means false and 1 means true. Together these labels determine the valuation in

a corresponding Kripke model, for example in states labeled 0a1b1c agent a’s value is 0, b’s is 1, and

c’s is 1. The single triangle in Fig. 1.iii corresponds to the singleton S5 model below it, in Fig. 1.vi.

52 On Two- and Three-valued Semantics for Impure Simplicial Complexes

With two triangles, if they only intersect in a, as in Fig. 1.i, it means that agent a cannot distinguish

these states, as in Fig. 1.iv, so that a is uncertain about the value of b; whereas if the triangles intersect

in a and c, as in Fig. 1.ii, both a and c are uncertain about the value of b, so in corresponding Fig. 1.v the

two states are indistinguishable for the two agents a and c.

i ii iii

1b 0b

1c1c

0a

1b 0b

1c

0a 0b

1c

0a

Y ′

iv v vi

0a1b1c 0a0b1c
a

0a1b1c 0a0b1c
ac

0a0b1c

vii viii ix

1b 0b

1c

0a

Y
X

1b 0b

1c0c

0a 1b

1c

0a

x xi xii

ab abc

0a1b0c 0a0b1c
a

0a1b0c 0a0b1c
a ab ac

0a1b0c 0a0b1c
a

Figure 1: Examples of pure and impure simplicial complexes and corresponding Kripke models

The current state of the distributed system is represented by a distinguished facet of the simplicial

complex, just as we need a distinguished (actual) state in a Kripke model in order to evaluate propositions.

For example, in the leftmost triangle of Fig. 1.i, as well as in the leftmost state/world of Fig. 1.iv, a is

uncertain whether the value of b is 0 or 1, whereas b knows that its value is 1, and all three agents know

that the value of c is 1. However, any face that is not a facet may just as well be taken as the distinguished

point of evaluation. For example, in the 0a vertex of Fig. 1.i it also holds that a is uncertain about the

value of c, but b’s knowledge is undefined in that vertex. The Kripke model representation in Fig. 1.iv

does not allow us such flexibility.

A complex is impure if the maximal faces do not all have the same maximum dimension. Let us

now consider some impure complexes. Fig. 1.vii consists of two maximal facets, an edge of dimension 1

and a triangle of dimension 2. Therefore, it is impure. Fig. 1.vii represents that agent a is uncertain

whether agent c is alive, and also that agent a is uncertain about the value of agent b. The latter is as in

Fig. 1.i. However, one might say that a is uncertain whether Fig. 1.vii was “originally” Fig. 1.i or 1.viii,

where c’s value is 0 on the left. Another impure complex is Fig. 1.ix, wherein a is uncertain whether b is

dead or whether c is dead. Although all maximal faces of this complex have the same dimension, this

dimension 1 is smaller than 2, the maximum possible for three agents, and that is why this complex is

impure. Below these figures we again have shown their corresponding Kripke models, of which we wish

to highlight two features. The suffixes with the states indicate which agents are alive. This depiction

H. van Ditmarsch, R. Kuznets & R. Randrianomentsoa 53

induces a set of indistinguishability relations: for each agent, the restriction of the domain to the states

where the agent is alive is an equivalence relation. This is known as a partial equivalence relation. These

are symmetric and transitive relations. The other feature is that, for example, value 0 for c in Fig. 1.x

does not correspond to a value for c in edge X in Fig. 1.vii. It is a bogus value. But it does not occur in

Fig. 1.vii, which is therefore a more economical representation of the same information. Similarly, for

Fig. 1.xii versus Fig. 1.ix. Kripke models only play a minor role in this work. Their relation to complexes

is explained in depth in [12].

Finally, we wish to point out a difference, or rather the lack thereof, between Figs. 1.iii and 1.vii.

In the only facet Y ′ of the former, agent a knows that c is alive. In the latter, by contrast, a is uncertain

whether c is alive. In the simplicial semantics of [12] this cannot be expressed in the language, which is a

feature, not a problem: these facets Y and Y ′ contain the same information, they make the same formulas

true, and the same formulas are defined there. In this work, we will also present a richer semantics that

is novel, wherein matters of life and death can be expressed in the language. This is relevant, as these

semantics affect translations to two-valued semantics, and thus relate in different ways to works like [21].

Our results We propose two different logical languages and three-valued epistemic semantics for im-

pure simplicial complexes. The primitive modalities are distributed knowledge modalities, of which in-

dividual knowledge is a special case. The languages extend each other. The extension consists of propo-

sitional variables expressing whether an agent is alive or dead. This cannot be expressed (or defined) in

the more restricted language. The extended semantics is novel. For the semantics, it may a priori seem

to make a difference whether the point of evaluation is a facet (a maximal face) or an arbitrary face. We

show that the validities are the same either way, meaning that the logic is insensitive to this choice, and

that this is the case for both languages. We then define novel translations relating the three-valued seman-

tics to a two-valued semantics for impure complexes. The crucial aspect is that we can translate ‘a for-

mula is defined’ into a much larger formula in the same language but interpreted in a two-valued way,

where ‘a formula is true’ and ‘a formula is false’ more obviously translate to (somewhat shorter) two-

valued correspondents. We finally discuss how our results relate to the literature and to further questions.

Overview Section 2 defines the various logical languages and three-valued semantics, for which we

then show some properties and give examples. Section 3 defines the two-valued semantics, and shows

why similar properties now fail. Section 4 provides translations and proves their adequacy. Examples

are also given. Section 5 reviews our results and compares them to the literature.

2 Three-valued epistemic semantics for impure complexes

We consider a finite set A of agents (or processes) a,b, . . . with |A| > 1 and a set P =
⋃

a∈A Pa of local

propositional variables (or local atoms) where Pa are countable and mutually disjoint sets of local vari-

ables for agent a, denoted pa,qa, p′a,q
′
a, . . . We also view the agent’s name a as a global propositional

variable (or global atom) stating that agent a is alive.

We successively define the logical languages, simplicial complexes, and related structural notions,

and then give the semantics.

Definition 1 (Languages). Language L
gloc

D for distributed knowledge with glocal1 atoms is defined by

ϕ ::= a | pa | ¬ϕ | (ϕ ∧ϕ) | D̂Bϕ (1)

1Glocal is a portmanteau word formed from global+local.

54 On Two- and Three-valued Semantics for Impure Simplicial Complexes

where a ∈ A, B ⊆ A, and pa ∈ Pa. Apart from other propositional connectives expressed via the standard

notational abbreviations, we use DBϕ := ¬D̂B¬ϕ , K̂aϕ := D̂{a}ϕ , and Kaϕ := ¬K̂a¬ϕ . The last two

abbreviations mean that individual knowledge Ka of agent a is naturally expressed in this language as

distributed knowledge D{a} of the singleton group {a}. Language L loc
D for distributed knowledge with

local atoms is obtained from grammar (1) by dropping global atoms a. Language L
gloc

K for individ-

ual knowledge with glocal atoms is the language where sets B ⊆ A are restricted to singleton sets and

Ka and K̂a are used instead of D{a} and D̂{a} respectively. Language L loc
K for individual knowledge with

local atoms is both restricted to individual knowledge and without global atoms.

For DBϕ we read ‘group B of agents have distributed knowledge of ϕ ,’ and for Kaϕ we read ‘agent a

knows ϕ .’

Next, we define our structural primitive, the simplicial model. Other than in the introduction, Kripke

models play no part in this work and will not be defined.

Definition 2 (Simplicial model). A simplicial model C is a triple (C,χ , ℓ) where C is a simplicial com-

plex, χ is a chromatic map, and ℓ is a valuation. Here:

• A (simplicial) complex C 6= ∅ is a collection of simplices that are non-empty finite subsets of a

given set V of vertices such that C is downward closed (i.e., X ∈C and ∅ 6= Y ⊆ X imply Y ∈C).

Simplices represent partial global states of a distributed system. It is required that every vertex

form a simplex by itself, i.e.,
{
{v} | v ∈ V

}
⊆C.

• Vertices represent local states of agents, with a chromatic map χ : V → A assigning each vertex to

one of the agents in such a way that each agent has at most one vertex per simplex, i.e., χ(v)= χ(u)
for some v,u ∈ X ∈ C implies that v = u. For X ∈C, we define χ(X) := {χ(v) | v ∈ X} to be the

set of agents in simplex X .

• A valuation ℓ : V → 2P assigns to each vertex which local variables of the vertex’s owner are true

in it, i.e., ℓ(v) ⊆ Pa whenever χ(v) = a. Variables from Pa \ ℓ(v) are false in vertex v, whereas

variables from P\Pa do not belong to agent a and cannot be evaluated in a’s vertex v. The set of

variables that are true in simplex X ∈C is given by ℓ(X) :=
⋃

v∈X ℓ(v).

If Y ⊆ X for X ,Y ∈C, we say that Y is a face of X . Since each simplex is a face of itself, we use ‘simplex’

and ‘face’ interchangeably. A face X is a facet iff it is a maximal simplex in C, i.e., Y ∈C and Y ⊇ X

imply Y = X . Facets represent global states of the distributed system, and their set is denoted F (C). The

dimension of simplex X is |X |− 1, e.g., vertices are of dimension 0, edges are of dimension 1, etc. The

dimension of a simplicial complex (model) is the largest dimension of its facets. A simplicial complex

(model) is pure iff all facets have dimension n where |A| = n+ 1, i.e., contain vertices for all agents.

Otherwise it is impure. A pointed simplicial model is a pair (C ,X) where X ∈C.

Having defined the logical language and the structures, we now present the three-valued semantics.

We distinguish face-semantics that are interpreted on arbitrary faces of simplicial models from facet-

semantics that are only interpreted on facets (maximal faces). We will later prove that the three-valued

face- and facet-semantics determine the same validities, so that the difference does not matter. However,

subsequently we show that for the two-valued semantics the difference matters a great deal.

Definition 3 (Three-valued definability and satisfaction relations). The definability relation ⊲⊳ and sat-

isfaction relation � are defined by induction on ϕ ∈ L
gloc

D . Let C = (C,χ , ℓ) be a simplicial model and

H. van Ditmarsch, R. Kuznets & R. Randrianomentsoa 55

X ∈C a face.

C ,X ⊲⊳ a iff X ∈ F (C);
C ,X ⊲⊳ pa iff a ∈ χ(X);
C ,X ⊲⊳ ¬ϕ iff C ,X ⊲⊳ ϕ ;

C ,X ⊲⊳ ϕ ∧ψ iff C ,X ⊲⊳ ϕ and C ,X ⊲⊳ ψ ;

C ,X ⊲⊳ D̂Bϕ iff C ,Y ⊲⊳ ϕ for some Y ∈C with B ⊆ χ(X ∩Y).

C ,X � a iff C ,X ⊲⊳ a and a ∈ χ(X);
C ,X � pa iff pa ∈ ℓ(X);
C ,X � ¬ϕ iff C ,X ⊲⊳ ¬ϕ and C ,X �� ϕ ;

C ,X � ϕ ∧ψ iff C ,X � ϕ and C ,X � ψ ;

C ,X � D̂Bϕ iff C ,Y � ϕ for some Y ∈C with B ⊆ χ(X ∩Y).

A formula ϕ ∈ L
gloc

D is valid (and we write � ϕ) iff for any simplicial model C = (C,χ , ℓ) and

face X ∈C, we have that C ,X ⊲⊳ ϕ implies C ,X � ϕ .

The face-semantics for the other three languages can be derived from Definition 3 by restricting the

formulas interpreted correspondingly (see Definition 1).2

The semantics for the dual, box-like modality DB can be derived from the above and is slightly more

complex and less intuitive in this three-valued setting. This is why we use the diamond-like D̂B as a

primitive. Note that, as any ϕ is definable iff ¬ϕ is definable, C ,Y ⊲⊳ DBϕ iff C ,Y ⊲⊳ D̂Bϕ .

C ,X � DBϕ iff C ,Y ⊲⊳ D̂Bϕ and (C ,Y ⊲⊳ ϕ ⇒ C ,Y � ϕ) for all Y ∈C with B ⊆ χ(X ∩Y).

The facet-semantics can be derived from Definition 3 by evaluating formulas on facets only. We

denote such three-valued facet-semantics by writing ⊲⊳F and �
F instead of ⊲⊳ and �. All clauses are

the same, except for X ∈ F (C),

C ,X ⊲⊳F D̂Bϕ iff C ,Y ⊲⊳F
ϕ for some Y ∈ F (C) with B ⊆ χ(X ∩Y); (2)

C ,X �
F D̂Bϕ iff C ,Y�

F
ϕ for some Y ∈ F (C) with B ⊆ χ(X ∩Y). (3)

Validity in the facet-semantics is defined as follows: formula ϕ ∈ L
gloc

D is valid, written �
F ϕ , iff for

any simplicial model C = (C,χ , ℓ) and facet X ∈ F (C), we have C ,X ⊲⊳F ϕ implies C ,X �
F ϕ .

Various results for language L loc
K reported in [12] directly generalize to L loc

D , L
gloc

D , and L
gloc

K .

We, therefore, give those without proof: the semantics of →, ↔, and ∨ are not standardly boolean but

require that both arguments be defined; truth implies definability; and duality is valid:

Lemma 4 ([12]). 1. C ,X � ϕ ∨ψ iff C ,X ⊲⊳ ϕ and C ,X ⊲⊳ ψ and (C ,X � ϕ or C ,X � ψ);

2. C ,X � ϕ → ψ iff C ,X ⊲⊳ ϕ and C ,X ⊲⊳ ψ and (C ,X � ϕ ⇒ C ,X � ψ);

3. C ,X � ϕ ↔ ψ iff C ,X ⊲⊳ ϕ and C ,X ⊲⊳ ψ and (C ,X � ϕ iff C ,X � ψ);

4. C ,X � ϕ ⇒ C ,X ⊲⊳ ϕ;

5. � DBϕ ↔¬D̂B¬ϕ .

The same properties hold for ⊲⊳F and �
F .

2Alternatively to declaring global atoms a definable in facets only, we could have made a definable in facets and in any face

where a is alive. This would not have affected any results we report. We, therefore, chose the conceptually “cleaner” option of

global variables defined only in global states.

56 On Two- and Three-valued Semantics for Impure Simplicial Complexes

Example 5. Consider the following simplicial models C , C ′, and C ′′ for three agents a, b, and c with

their values represented by local variables pa, pb, and pc respectively.

C : 1b 0b

1c

0a

Y
X

C ′ : 0b 0b

1c

0a

Y ′

X ′

C ′′ : 0b

1c

0a

Y ′′

• Atoms and knowledge of dead agents: Illustrating the novel aspects of the semantics, we have that

C ,X 6⊲⊳ pc since c /∈ χ(X). Consequently, C ,X 6⊲⊳ ¬pc, C ,X �� pc, and C ,X �� ¬pc. Besides,

again because c /∈ χ(X), we have that C ,X 6⊲⊳ K̂c¬pa. Therefore, C ,X 6⊲⊳ ¬K̂c¬pa, C ,X �� K̂c¬pa,

and C ,X �� ¬K̂c¬pa.

• Knowledge of a live agent concerning dead agents: Although C ,X 6⊲⊳ pc, after all C ,X � K̂a pc

because a ∈ χ(X ∩Y) and C ,Y � pc: agent a considers it possible that agent c is alive. More

surprisingly, also C ,X �Ka pc because given the two facets X and Y that agent a considers possible

(and all of their faces), as far as a knows, pc is true. This knowledge is defeasible because a may

learn that the actual facet is X and not Y , which she also considers possible.

We further have that C ,X �� Kapc → pc because C ,X 6⊲⊳ pc implies C ,X 6⊲⊳ Kapc → pc. However,

� Kapc → pc because whenever Ka pc → pc is defined, the truth of Kapc implies the truth of pc.

• Individual and distributed knowledge: As expected, we have C ,X � pb ∧¬pa, where the con-

junct C ,X � ¬pa is justified by C ,X ⊲⊳ pa and C ,X �� pa. We also have C ,Y � K̂a pb because

a ∈ χ(X ∩Y) and C ,X � pb. At the same time, C ,Y � D{a,b}¬pb because all faces Z such that

{a,b} ⊆ χ(Z∩Y) share the 0a–0b edge with Y and, hence, have C ,Z � ¬pb.

Considering the global atom c, we have that C ,X �� Ka¬c because a ∈ χ(X ∩Y) and C ,Y �� ¬c.

However, C ,X � D{a,b}¬c. In fact, C ,X � ϕ iff C ,X � D{a,b}ϕ : a and b have distributed omni-

science on edge X .

• Local and glocal languages: All formulas of language L loc
D are undefined/true/false in (C ′,Y ′) iff

they are undefined/true/false in (C ′′,Y ′′) [12]. In other words, it is impossible to express in L loc
D

that a considers it possible that c is dead. By contrast, in language L
gloc

D we have C ′,Y ′
� K̂a¬c

whereas C ′′,Y ′′
�� K̂a¬c. Hence, global atoms make the language more expressive.

Upwards and downwards monotonicity for the face-semantics requires certain care and is, therefore,

given in some detail for the extended languages.

Lemma 6 (Monotonicity). For a simplicial model C = (C,χ , ℓ), faces X ,Y ∈ C with X ⊆ Y , and for-

mula ϕ ∈ L
gloc

D ,

1. C ,X ⊲⊳ ϕ implies C ,Y ⊲⊳ ϕ; (upwards monotonicity of definability)

2. C ,X � ϕ implies C ,Y � ϕ; (upwards monotonicity of truth)

3. C ,Y � ϕ and C ,X ⊲⊳ ϕ imply C ,X � ϕ . (downwards monotonicity of truth modulo definability)

Proof. The proof is by induction on ϕ ∈ L
gloc

D . All cases are as in [12] except the new cases for global

atoms and (dual) distributed knowledge that are shown below:

Case a Whether C ,X ⊲⊳ a or C ,X � a is assumed, X must be a facet, so Y = X is the same facet.

Consequently, C ,X ⊲⊳ ϕ implies C ,Y ⊲⊳ ϕ , C ,X � ϕ implies C ,Y � ϕ , and C ,Y � ϕ and C ,X ⊲⊳
ϕ imply C ,X � ϕ .

H. van Ditmarsch, R. Kuznets & R. Randrianomentsoa 57

Case D̂Bϕ 1. Assume that C ,X ⊲⊳ D̂Bϕ . Then C ,Z ⊲⊳ ϕ for some Z ∈C with B ⊆ χ(X ∩Z). Since

X ⊆ Y , we have X ∩Z ⊆ Y ∩Z and, therefore, B ⊆ χ(Y ∩Z). It follows that C ,Y ⊲⊳ D̂Bϕ .

2. Assume that C ,X � D̂Bϕ . Then C ,Z � ϕ for some Z ∈C with B ⊆ χ(X ∩Z). Since X ⊆Y ,

we have X ∩Z ⊆Y ∩Z and, therefore, B ⊆ χ(Y ∩Z). It follows that C ,Y � D̂Bϕ .

3. Assume that C ,Y � D̂Bϕ and C ,X ⊲⊳ D̂Bϕ . Then C ,Z �ϕ for some Z ∈C with B ⊆ χ(Y ∩Z).
Additionally, B ⊆ χ(X) because C ,X ⊲⊳ D̂Bϕ . Due to χ being chromatic, any vertex v

with χ(v) ∈ B that belongs to Y must belong to X . Hence, B ⊆ χ(X ∩ Z) and, therefore,

C ,X � D̂Bϕ .

Remark 7. Note that this lemma becomes trivial for ⊲⊳F and �
F since X ⊆ Y for facets implies X =Y .

An axiomatization of validities in L loc
K is reported in [31], but none so far for L

gloc
K , which is novel in

this contribution. Axiomatizations of the distributed knowledge versions L loc
D and L

gloc
D should extend

the axiomatizations of distributed knowledge [15, 32, 10] and will likely be related to [19].

Comparing the three-valued face- to facet-semantics We continue by showing that the set of va-

lidities is the same for the three-valued face- and facet-semantics. This (novel) result did not initially

seem obvious to us, and it plays an important role when embedding the three-valued into two-valued

semantics, as the face-semantics is infelicitous in the latter. We show the results for L
gloc

D . The results

for sublanguages L loc
D , L

gloc
K , and L loc

K follow directly.

Lemma 8. C ,X ⊲⊳F ϕ ⇔ C ,X ⊲⊳ ϕ for any C = (C,χ , ℓ), X ∈ F (C), and ϕ ∈ L
gloc

D .

Proof. The proof is by induction on ϕ ∈ L
gloc

D . The two semantics coincide for variables and proposi-

tional connectives (in particular, global variables are defined on all facets and only on them according

to both). The only non-trivial case to consider is D̂Bϕ .

⇐ Assume that C ,X ⊲⊳ D̂Bϕ . Then C ,Y ⊲⊳ ϕ for some face Y ∈ C with B ⊆ χ(X ∩Y). But Y ⊆ Z

for some facet Z ∈ F (C) and we have X ∩Y ⊆ X ∩ Z. Hence, B ⊆ χ(X ∩ Z) and C ,Z ⊲⊳ ϕ by

Lemma 6.1. It follows from IH that C ,Z ⊲⊳F ϕ . Thus, C ,X ⊲⊳F D̂Bϕ .

⇒ Assume C ,X ⊲⊳F D̂Bϕ . This direction is even simpler as here facet Y ∈ F (C) is itself a face.

Lemma 9. C ,X �
F ϕ ⇔ C ,X � ϕ for any C = (C,χ , ℓ), X ∈ F (C), and ϕ ∈ L

gloc
D .

Proof. The proof is by induction on ϕ ∈ L loc
D . Again the two semantics coincide except for D̂Bϕ .

⇐ Assume that C ,X � D̂Bϕ . Then C ,Y � ϕ for some face Y ∈ C with B ⊆ χ(X ∩Y). But Y ⊆ Z

for some facet Z ∈ F (C) and we have X ∩Y ⊆ X ∩ Z. Hence, B ⊆ χ(X ∩ Z) and C ,Z � ϕ by

Lemma 6.2. We can conclude that C ,X �
F D̂Bϕ .

⇒ Again this case is similar but simpler as every facet Y ∈ F (C) is a face.

Theorem 10. �
F ϕ ⇔ � ϕ for any ϕ ∈ L

gloc
D .

Proof. ⇒ Assume that �F ϕ and consider an arbitrary simplicial model C = (C,χ , ℓ) and an arbitrary

face X ∈ C with C ,X ⊲⊳ ϕ . Then, X ⊆ Y for some facet Y ∈ F (C). We have C ,Y ⊲⊳ ϕ by

Lemma 6.1 and C ,Y ⊲⊳F ϕ by Lemma 8. Since �
F ϕ , we have C ,Y �

F ϕ . It follows from

Lemma 9 that C ,Y � ϕ . Hence, C ,X � ϕ by Lemma 6.3. Thus, � ϕ .

⇐ Assume that � ϕ . Then C ,X ⊲⊳ ϕ implies C ,X � ϕ for any face X ∈ C of any simplicial model

C = (C,χ , ℓ). In particular, this is the case for all facets of any simplicial complex C . We can

conclude from Lemmas 8 and 9 that �F ϕ .

58 On Two- and Three-valued Semantics for Impure Simplicial Complexes

Remark 11. Given that the restriction to facets does not affect the logic of the three-valued semantics, it

is worth noting that boolean constants ⊤ and ⊥ are expressible in L
gloc

K and L
gloc

D in the facet- but not

in the face-semantics. Indeed, there is no formula defined in all faces of all simplicial models. Hence, no

formula can be always true as ⊤ or always false as ⊥. By contrast, a∨¬a can serve as ⊤ and a∧¬a as ⊥
for the facet-semantics. Languages L loc

K and L loc
D , on the other hand, cannot express boolean constants

in any three-valued semantics.

We have shown that three-valued semantics is robust with respect to definability in that the truth value

of a formula does not depend on which of the agents are crashed as long as the formula is defined. In

addition, the monotonicity of definability makes it possible to restrict attention to facets only, in line with

the understanding that only they represent actual global states of the distributed system. The stability of

the three-valued semantics modulo the choice of a partial global state or the restriction to global states

only is, in our view, a strong argument in its favor.

3 Two-valued epistemic semantics for impure complexes

We now present a two-valued semantics for impure complexes. It is inspired by that in [21] (to which

we will compare it in the final Sect. 5), but in this work its role is rather that of a technical tool to enable

us to embed three-valued semantics, and to explain why choices essential in the three-valued setting are

infelicitous or non-existent in the two-valued one.

Without the third truth value “undefined,” definability plays no role: every formula is defined in every

face. We, therefore, need to define only the satisfaction relation. The languages are the same. Further

simplifying the two-valued setting, we will show that the global propositional variables of L
gloc

D are

expressible in the restricted language L loc
D , which therefore suffices.

To distinguish the two-valued from three-valued semantics we write for the former to contrast it

with � that we used for the latter. An astute reader might notice that we use the notation with two

vertical lines for the two-valued semantics and � with three vertical lines for the three-valued one to

make the distinction obvious.

Definition 12 (Two-valued facet satisfaction relation). We define the satisfaction relation
F by induc-

tion on ϕ ∈ L
gloc

D . Let C = (C,χ , ℓ) and X ∈ F (C).

C ,X
F a iff a ∈ χ(X)

C ,X
F pa iff pa ∈ ℓ(X)

C ,X
F ϕ ∧ψ iff C ,X

F ϕ and C ,X
F ψ

C ,X
F ¬ϕ iff C ,X 1F ϕ

C ,X
F D̂Bϕ iff C ,Y

F ϕ for some Y ∈ F (C) with B ⊆ χ(X ∩Y)

As the superscript F suggests, this is a semantics for facets. The reason we give it as the primary in

the two-valued case rather than considering alongside the semantics for arbitrary faces, as we did for

three values, is that the latter is infelicitous, as we show in Prop. 14.

Remark 13. For all four languages, ⊤ := pa ∨¬pa and ⊥ := pa ∧¬pa can serve as boolean constants in

the two-valued semantics.

In contrast to the three-valued semantics �F , the semantics of, for example, implication is now the

standard boolean semantics so that C ,X
F ϕ → ψ iff C ,X

F ϕ implies C ,X
F ψ . It is simply the

version without definability requirements. Similarly, for other propositional connectives and for the dual

distributed knowledge modality:

C ,X
F DBϕ iff C ,Y

F
ϕ for all Y ∈ F (C) with B ⊆ χ(X ∩Y).

H. van Ditmarsch, R. Kuznets & R. Randrianomentsoa 59

One of the important resulting differences is that, in contrast to the three-valued semantics � (see

Lemma 6), the two-valued face-semantics would not enjoy monotonicity. Take, for example, model C ′

from Fig. 1.iii reprinted here, where we give name X ′ to the edge 0a–0b.

0b

1c

0a

Y ′

X ′

Note that C ′,X ′
 ¬pc whereas C ′,Y ′

 pc. This simultaneously shows the lack of upwards and down-

wards monotonicity for all four of the languages we consider.

Unsurprisingly, this infidelity translates to the real logical differences between the two-valued facet-

and face-semantics, in contrast to Theorem 10 above.

Proposition 14. -validity is different from
F -validity.

Proof. Consider the formula ϕ = K̂a⊤→ K̂a¬pb where a,b ∈ A are two distinct agents. We show that

1F ϕ whereas ϕ , distinguishing the two validities.

To show that 1F K̂a⊤→ K̂a¬pb, consider the following model C – with the only facet being X :

C – : 0a 1b
X

Since a ∈ χ(X), we have C –,X
F K̂a⊤. But C –,X 1F ¬pb, meaning that C –,X 1F K̂a¬pb. Thus,

overall, C –,X 1F K̂a⊤→ K̂a¬pb.

On the other hand, K̂a⊤→ K̂a¬pb for the simple reason that any face containing an a-vertex makes

¬pb true in that vertex. Indeed, let X be an arbitrary face of an arbitrary model C = (C,χ , ℓ) such that

C ,X K̂a⊤. Then χ(v) = a for some vertex v ∈ X . Since b /∈ χ(v), we are guaranteed that pb /∈ ℓ(v),
which yields C ,v 1 pb and C ,v ¬pb. Finally, since a ∈ χ(X ∩{v}), we have C ,X K̂a¬pb. Since

(C ,X) was arbitrary, we conclude that K̂a⊤→ K̂a¬pb.

Proposition 14 shows that the two-valued face-semantics is infelicitous for impure complexes. You

really do not want to have K̂a⊤→ K̂a¬pb as a theorem. Especially since it creates an asymmetry of local

truth values in light of 1 K̂a⊤→ K̂a pb (for which a singleton a-colored node is a countermodel).

We will therefore, from here on, for the two-valued case consider only the facet-semantics.

Lemma 15.
F a ↔ K̂a⊤.

Proof. Since all formulas are defined, it is sufficient to show that C ,X
F a iff C ,X

F K̂a⊤ for any

facet X ∈ F (C) of any simplicial model C = (C,χ , ℓ). Given that C ,X
F ⊤, we have the following

equivalences: C ,X
F a iff a ∈ χ(X) and, further,

a ∈ χ(X) ⇐⇒ a ∈ χ(X ∩X) ⇐⇒ a ∈ χ(X ∩X) and C ,X
F ⊤ ⇐⇒ C ,X

F K̂a⊤ (4)

This lemma means that in the two-valued case global atoms are expressible already in L loc
K . Thus, for

the two-valued (facet) semantics
F , we can restrict ourselves to the language L loc

D (or L loc
K) without

the loss of expressivity.3 We will from here on only consider language L loc
D for the two-valued semantics.

3This result is not so unlike redefining a propositional variable correcta, stating that agent a is correct, as ¬Ha⊥ in [7],

where Ha is the hope modality.

60 On Two- and Three-valued Semantics for Impure Simplicial Complexes

Remark 16. Note that �F a ↔ K̂a⊤ also for the three-valued semantics but there ⊤ is only expressible

in the facet-semantics and in presence of global atoms (see Remark 11). Hence, replacing a with K̂a⊤
would not remove global atoms from the language. Indeed, as already mentioned, global atoms are not

three-valued-expressible in L loc
D because no formula of L loc

D is defined in all facets.

4 Translating three-valued into two-valued semantics

We provide a translation from language L
gloc

D into L loc
D . It consists of two parts. For any formula

ϕ ∈ L
gloc

D we define by mutual recursion

• formula ϕ⊲⊳ ∈ L loc
D that determines whether ϕ is defined in some given (C ,X) and

• formula ϕ ♯ ∈ L loc
D that determines whether a defined formula ϕ is true in that (C ,X).

This covers all our tracks in three-valued semantics, as there ϕ may be

• undefined, in which case ϕ⊲⊳ is false and, as we will see, so is ϕ ♯;

• true, in which case both ϕ⊲⊳ and ϕ ♯ must be true;

• false, in which case ϕ⊲⊳ is true but ϕ ♯ is false.

The translation from L
gloc

D to L loc
D also determines one from L loc

D to L loc
D , by removing the

a⊲⊳ and a♯ clauses.

Definition 17 (Translations).

a⊲⊳ := ⊤

p⊲⊳a := K̂a⊤
(¬ϕ)⊲⊳ := ϕ⊲⊳

(ϕ ∧ψ)⊲⊳ := ϕ⊲⊳∧ψ⊲⊳

(D̂Bϕ)⊲⊳ := D̂Bϕ⊲⊳

a♯ := K̂a⊤

p
♯
a := pa

(¬ϕ)♯ := (¬ϕ)⊲⊳∧¬ϕ ♯

(ϕ ∧ψ)♯ := ϕ ♯∧ψ♯

(D̂Bϕ)♯ := D̂Bϕ ♯

The main result to prove here is as follows.

Theorem 18. For any model C = (C,χ , ℓ), facet X ∈ F (C), and formula ϕ ∈ L
gloc

D

C ,X ⊲⊳F
ϕ ⇐⇒ C ,X

F
ϕ
⊲⊳; (5)

C ,X �
F

ϕ ⇐⇒ C ,X
F

ϕ
♯. (6)

Proof. We prove both statements by mutual induction on ϕ ∈ L
gloc

D :

Case a Here a⊲⊳ =⊤ and a♯ = K̂a⊤. For (5), both C ,X ⊲⊳F a and C ,X
F ⊤. For (6),

C ,X �
F a ⇔ a ∈ χ(X)

(4)
⇐⇒ C ,X

F K̂a⊤ ⇔ C ,X
F a♯.

Case pa Here p⊲⊳a = K̂a⊤ and p
♯
a = pa. For (6), the statement is trivial since the three-valued and two-

valued definitions of satisfaction coincide for pa. For (5),

C ,X ⊲⊳F pa ⇔ a ∈ χ(X)
(4)
⇐⇒ C ,X

F K̂a⊤ ⇔ C ,X
F p⊲⊳a .

Case ¬ϕ Here (¬ϕ)⊲⊳ = ϕ⊲⊳ and (¬ϕ)♯ = (¬ϕ)⊲⊳∧¬ϕ ♯. For (5), the statement follows by IH(5) since

C ,X ⊲⊳F ¬ϕ iff C ,X ⊲⊳F ϕ . Using that, for (6),

C ,X �
F ¬ϕ ⇔ C ,X ⊲⊳F ¬ϕ and C ,X ��F

ϕ
(5),IH(6)
⇐====⇒

C ,X
F (¬ϕ)⊲⊳ and C ,X 1F

ϕ
♯ ⇔ C ,X

F (¬ϕ)⊲⊳ and C ,X
F ¬ϕ

♯ ⇔

C ,X
F (¬ϕ)⊲⊳∧¬ϕ

♯ ⇔ C ,X
F (¬ϕ)♯.

H. van Ditmarsch, R. Kuznets & R. Randrianomentsoa 61

Cases ϕ ∧ψ and D̂Bϕ Here (ϕ ∧ ψ)† = ϕ† ∧ ψ† and (D̂Bϕ)† = D̂Bϕ† for † ∈ {⊲⊳,♯}. Because the

⊲⊳- and ♯-translations work the same way in both cases, the arguments for (5) and (6) are analogous.

We present the proof of the former only for ϕ ∧ψ and of the latter only for D̂Bϕ :

C ,X ⊲⊳F
ϕ ∧ψ ⇔ C ,X ⊲⊳F

ϕ and C ,X ⊲⊳F
ψ

IH(5)
⇐==⇒

C ,X
F

ϕ
⊲⊳ and C ,X

F
ψ

⊲⊳ ⇔ C ,X
F

ϕ
⊲⊳∧ψ

⊲⊳ ⇔ C ,X
F (ϕ ∧ψ)⊲⊳;

C ,X �
F D̂Bϕ ⇔ C ,Y �

F
ϕ for some Y ∈ F (C) with B ⊆ χ(X ∩Y)

IH(6)
⇐==⇒

C ,Y
F

ϕ
♯ for some Y ∈ F (C) with B ⊆ χ(X ∩Y) ⇔ C ,X

F D̂Bϕ
♯ ⇔ C ,X

F (D̂Bϕ)♯.

By omitting the first clause in the inductive proof above, we can conclude that Theorem 18 also holds

for the local language L loc
D .

We can also represent the non-standard notion of three-valued validity in two-valued semantics:

Corollary 19. � ϕ ⇔ �
F ϕ ⇔

F ϕ⊲⊳ → ϕ ♯ for any ϕ ∈ L
gloc

D .

Proof. It follows from Def. 3 and Theorems 10 and 18.

It should also be noted that the two- and three-valued semantics coincide on pure simplicial mod-

els. In fact, this agreement can serve as an independent objective distinction between pure and impure

models:

Corollary 20. For any pure simplicial model C = (C,χ , ℓ), we have C ,X ⊲⊳F ϕ and

C ,X �
F

ϕ ⇔ C ,X
F

ϕ for any facet X ∈ F (C) and formula ϕ ∈ L
gloc

D . (7)

Proof. It is easy to show by induction on the construction of ϕ that C ,X
F ϕ⊲⊳. Indeed, for atoms

both ⊤ and a = K̂a⊤ are true in every facet X of the pure complex C ; similarly B ⊆ A = χ(X ∩X)
ensures the modal clause. The first statement now follows from (5). In view of this, a simple induc-

tion argument shows that for pure models the ♯-translation can be pushed through all connectives and

eventually removed completely: C ,X
F ϕ ↔ ϕ ♯. Thus, the second statement follows from (6).

In fact, (7) can be viewed as an alternative, functional definition of pure models.

Theorem 21. A simplicial model C = (C,χ , ℓ) is pure iff (7) holds.

Proof. The only-if-direction is proved in Corollary 20. For the if-direction, by contraposition, assume

C is not pure, i.e., there is a facet X ∈ F (C) and agent a ∈ A such that a /∈ χ(X). We, therefore,

have C ,X ��F ¬pa because C ,X 6⊲⊳F ¬pa while, at the same time, C ,X
F ¬pa because pa /∈ ℓ(X) in

violation of (7).

Example 22. For the simplicial model C in Fig. 1.ix, we have C �
F Ka pb ∧Kapc, while, at the same

time, C
F ¬Kapb ∧¬Kapc. This disagreement of the two semantics is why the model in Fig. 1.ix

should not be considered pure, despite all its facets having the same dimension 1.

To conclude this section, we give some examples of the translation, and a number of derived propo-

sitions that might further throw some intuitive light on this translation (where we note once more that all

these are also valid for the language L loc
D).

62 On Two- and Three-valued Semantics for Impure Simplicial Complexes

Example 23. It is easy to see that (¬pa)
♯ = K̂a⊤∧¬pa and (¬a)♯ =⊤∧¬K̂a⊤, which, modulo abbrevi-

ations and two-valued equivalences, yields F (¬pa)
♯ ↔ a∧¬pa and

F (¬a)♯ ↔¬a.

Consider two agents a,b ∈ A, a simplicial model C = (C,χ , ℓ), and its facet X ∈ F (C).

(Ka pb)
⊲⊳ = (¬K̂a¬pb)

⊲⊳ = (K̂a¬pb)
⊲⊳ = K̂a(¬pb)

⊲⊳ = K̂a p⊲⊳b = K̂aK̂b⊤;

(Ka pb)
♯ = (¬K̂a¬pb)

♯ = (¬K̂a¬pb)
⊲⊳∧¬(K̂a¬pb)

♯ = K̂aK̂b⊤∧¬K̂a(¬pb)
♯ =

K̂aK̂b⊤∧¬K̂a

(
(¬pb)

⊲⊳∧¬p
♯
b

)
= K̂aK̂b⊤∧¬K̂a (p⊲⊳b ∧¬pb) = K̂aK̂b⊤∧¬K̂a

(
K̂b⊤∧¬pb

)
.

Since
F b ↔ K̂b⊤ by Lemma 15 and

F K̂b⊤∧¬pb ↔¬(K̂b⊤→ pb), we conclude that

C ,X �
F Ka pb ⇐⇒ C ,X

F K̂ab∧Ka(b → pb).

This is what we want: for Kapb to be true, a should consider it possible that b is alive, and for all

facets considered possible by a where b is alive, pb should be true. In particular, for Ka pb to be true it is

not necessary that b be actually alive.

From this point on, we will routinely abbreviate K̂b⊤ as b without leaving language L loc
D .

Proposition 24.
F ϕ ♯ → ϕ⊲⊳ for any ϕ ∈ L

gloc
D .

Proof. It is sufficient to prove, by induction on the formula structure, that for all models C = (C,χ , ℓ)
and all facets X ∈ F (C), if C ,X

F ϕ ♯, then C ,X
F ϕ⊲⊳. Since a⊲⊳ = ⊤, the statement is trivial for

global atoms. For local atoms, with p
♯
a = pa and p⊲⊳a = a,

C ,X
F pa ⇔ pa ∈ ℓ(X) ⇒ a ∈ χ(X)

(4)
⇐⇒ C ,X

F a.

For ¬ϕ , the statement follows directly from the definition of ♯. The remaining two cases easily follow

by IH. We only show the case of ϕ ∧ψ :

C ,X
F (ϕ ∧ψ)♯ ⇔ C ,X

F
ϕ
♯∧ψ

♯ ⇔ C ,X
F

ϕ
♯ and C ,X

F
ψ

♯ IH
=⇒

C ,X
F

ϕ
⊲⊳ and C ,X

F
ψ

⊲⊳ ⇔ C ,X
F

ϕ
⊲⊳∧ψ

⊲⊳ ⇔ C ,X
F (ϕ ∧ψ)⊲⊳.

Proposition 25.
F (¬¬ϕ)♯ ↔ ϕ ♯ for any ϕ ∈ L

gloc
D .

Proof. By definition, we have

(¬¬ϕ)♯ = (¬¬ϕ)⊲⊳∧¬(¬ϕ)♯ = (¬ϕ)⊲⊳∧¬((¬ϕ)⊲⊳∧¬ϕ
♯) = ϕ

⊲⊳∧¬(ϕ⊲⊳∧¬ϕ
♯).

By standard propositional reasoning, F
(
ϕ⊲⊳ ∧¬(ϕ⊲⊳∧¬ϕ ♯)

)
↔

(
ϕ⊲⊳ ∧¬¬ϕ ♯

)
. Therefore, we have

F (¬¬ϕ)♯ ↔ ϕ⊲⊳∧ϕ ♯. The desired statement now follows from Prop. 24.

5 Discussion and conclusion

In this paper, we analyzed and compared four different logical languages for impure simplicial complexes

and four semantics for them: two two-valued and two three-valued epistemic semantics. Our main

findings can be summarized as follows:

H. van Ditmarsch, R. Kuznets & R. Randrianomentsoa 63

• The two-valued face-semantics is infelicitous.

• The three-valued facet-semantics �
F and face-semantics � produce the same logic and, hence,

can be used interchangeably.

• We provided a faithful embedding from the three-valued facet semantics �F into the two-valued

facet semantics F .

• Global propositional variables describing whether agents are alive or dead increase the expressivity

of the language in the three-valued case, but not in the two-valued one.

• The two-valued facet-semantics
F and the three-valued facet-semantics �

F coincide on pure

simplicial models.

By relating three-valued semantics to two-valued semantics for impure complexes in a purely techni-

cal way, we hope we have filled a gap between publications like [21, 19] on the one hand and publications

like [12, 31] on the other. Clearly, something different is going on here, but what is it exactly? Concern-

ing the truth values, we provided the answer. However, let us elaborate on the other differences between

such approaches. The most striking of them is that the impure complexes of [21, 19] do not have local

propositional variables for the agents (processes). Valuations do not apply to vertices. Instead, valuations

apply to facets only. This is best explained by an example:

Reconsider Fig. 1. In the approach of [21, 19], the modeler has to choose whether the value of pc

in X of Fig. 1.vii is false or true, and, therefore, whether the “original complex” before process c became

inactive, was Fig. 1.i or viii. In the underlying contribution and in [12, 31] this choice is not made and

left open. One could therefore consider Fig. 1.vii as some kind of quotient of Figs. 1.i and viii following

a crash. The choice made in [21, 19] is essential in order to still allow arbitrary values for processes

and keep it possible that agents have positive knowledge. Their two-valued semantics for knowledge is a

special case of the two-valued semantics given in Def. 12: C ,X
F Kaϕ iff C ,Y

F ϕ for all Y ∈F (C)
with a ∈ χ(X ∩Y). Applied to Fig. 1.vii we can then only justify that C ,X

F Ka pc if C ,X
F pc and

C ,Y
F pc, in other words, if the bogus valuation of pc in X made it true there. Otherwise, a does not

know the value of pc.

As shown, the two-valued face semantics is even infelicitous for pure complexes, already for the

simple reason that an atom pa is false in a face X whenever a is not a color in X , but then ‘becomes’ true

if X is contained in a facet Y where pa labels the a vertex. This may suggest an insuperable problem but,

not surprisingly, there are yet more different two-valued face semantics (that also differ from [21, 19]).

To interpret formulas in faces that are not facets we can also use the multi-pointed semantics of [9,

Sect. ‘Local semantics for simplicial complexes’], wherein it is defined that C ,XXX ϕ for a set XXX of

facets, iff C ,X ϕ for all X ∈ XXX . In particular, now consider the set of facets containing a face X .

For a face X that is not a facet we then have that C ,X ϕ iff C ,Y ϕ for (the set of) all facets Y

containing X . (In general, we can even define for arbitrary faces that C ,X ϕ iff C ,star(X) ϕ , where

star(X) = {Y ∈C | X ⊆ Y}.) Consequently, in such an approach we would have that in the vertex 0a of

Fig. 1.i atom pc is true (because it is true in both facets) whereas in the vertex also named 0a of Fig. 1.viii

atom pc is false. Multi-pointed semantics are common fare in Kripke model settings, in particular for

model checking applications and in dynamics [14].

For further research, we wish to generalize our setting from simplicial complexes to (semi-)simplicial

sets, and, correspondingly, from standard multi-agent Kripke models to Kripke models where each

group B ⊆ A of agents has its own associated equivalence relation ∼B and where the agents in B to-

gether may know more than the agents in B separately, even when merging their knowledge. In other

words, we may then have that ∼B is strictly contained in
⋂

b∈B ∼b. In modal logic, such models seemed a

rather technical tool so far, merely complicating the construction of canonical models, in works as [21].

But in combinatorial topology, scenarios where a whole is more than the sum of its parts are very natural,

64 On Two- and Three-valued Semantics for Impure Simplicial Complexes

as amply shown in [19].

Another direction of further research would be the incorporation of dynamics such as in protocols.

References

[1] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-Time Temporal Logic. Journal

of the ACM 49(5), pp. 672–713, doi:10.1145/585265.585270.

[2] Philippe Balbiani, Hans van Ditmarsch & Saúl Fernández González (2022): Asynchronous Announcements.

ACM Transactions on Computational Logic 23(2):10, doi:10.1145/3481806.

[3] Alexandru Baltag, Lawrence S. Moss & Sławomir Solecki (1998): The Logic of Public Announcements,

Common Knowledge, and Private Suspicions. In Itzhak Gilboa, editor: Theoretical Aspects of Rationality and

Knowledge: Proceedings of the Seventh Conference (TARK 1998), Morgan Kaufmann, pp. 43–56. Available

at http://tark.org/proceedings/tark_jul22_98/p43-baltag.pdf.

[4] Johan van Benthem, Jelle Gerbrandy, Tomohiro Hoshi & Eric Pacuit (2009): Merging Frameworks for Inter-

action. Journal of Philosophical Logic 38(5), pp. 491–526, doi:10.1007/s10992-008-9099-x.

[5] Ofer Biran, Shlomo Moran & Shmuel Zak (1990): A combinatorial characterization of the distributed 1-

solvable tasks. Journal of Algorithms 11(3), pp. 420–440, doi:10.1016/0196-6774(90)90020-F.

[6] Cédric Dégremont, Benedikt Löwe & Andreas Witzel (2011): The Synchronicity of Dynamic Epistemic

Logic. In Krzysztof R. Apt, editor: TARK XIII, Theoretical Aspects of Rationality and Knowledge: Pro-

ceedings of the Thirteenth Conference (TARK 2011), Association for Computing Machinery, pp. 145–152,

doi:10.1145/2000378.2000395.

[7] Hans van Ditmarsch, Krisztina Fruzsa & Roman Kuznets (2022): A New Hope. In David Fernández-Duque,

Alessandra Palmigiano & Sophie Pinchinat, editors: Advances in Modal Logic, 14, College Publications, pp.

349–369.

[8] Hans van Ditmarsch, Éric Goubault, Marijana Lazić, Jérémy Ledent & Sergio Rajsbaum (2021): A dynamic

epistemic logic analysis of equality negation and other epistemic covering tasks. Journal of Logical and

Algebraic Methods in Programming 121:100662, doi:10.1016/j.jlamp.2021.100662.

[9] Hans van Ditmarsch, Éric Goubault, Jérémy Ledent & Sergio Rajsbaum (2022): Knowledge and Simpli-

cial Complexes. In Björn Lundgren & Nancy Abigail Nuñez Hernández, editors: Philosophy of Com-

puting: Themes from IACAP 2019, Philosophical Studies Series 143, Springer, pp. 1–50, doi:10.1007/

978-3-030-75267-5_1.

[10] Hans van Ditmarsch, Joseph Y. Halpern, Wiebe van der Hoek & Barteld Kooi (2015): An Introduction to

Logics of Knowledge and Belief. In Hans van Ditmarsch, Joseph Y. Halpern, Wiebe van der Hoek & Barteld

Kooi, editors: Handbook of Epistemic Logic, College Publications, pp. 1–51.

[11] Hans van Ditmarsch, Wiebe van der Hoek & Barteld Kooi (2007): Dynamic Epistemic Logic. Synthese

Library 337, Springer, doi:10.1007/978-1-4020-5839-4.

[12] Hans van Ditmarsch & Roman Kuznets (2023): Wanted Dead or Alive: Epistemic logic for impure simplicial

complexes. Eprint 2103.03032, arXiv, doi:10.48550/arXiv.2103.03032. Accepted to Journal of Logic

and Computation.

[13] Clare Dixon, Cláudia Nalon & Ram Ramanujam (2015): Knowledge and Time. In Hans van Ditmarsch,

Joseph Y. Halpern, Wiebe van der Hoek & Barteld Kooi, editors: Handbook of Epistemic Logic, College

Publications, pp. 205–259.

[14] Jan van Eijck (2007): DEMO — A Demo of Epistemic Modelling. In Johan van Benthem, Dov Gabbay &

Benedikt Löwe, editors: Interactive Logic: Selected Papers from the 7th Augustus de Morgan Workshop,

London, Texts in Logic and Games 1, Amsterdam University Press, pp. 303–362. Available at https://

www.jstor.org/stable/j.ctt45kdbf.15.

https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/3481806
http://tark.org/proceedings/tark_jul22_98/p43-baltag.pdf
https://doi.org/10.1007/s10992-008-9099-x
https://doi.org/10.1016/0196-6774(90)90020-F
https://doi.org/10.1145/2000378.2000395
https://doi.org/10.1016/j.jlamp.2021.100662
https://doi.org/10.1007/978-3-030-75267-5_1
https://doi.org/10.1007/978-3-030-75267-5_1
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.48550/arXiv.2103.03032
https://www.jstor.org/stable/j.ctt45kdbf.15
https://www.jstor.org/stable/j.ctt45kdbf.15

H. van Ditmarsch, R. Kuznets & R. Randrianomentsoa 65

[15] Ronald Fagin, Joseph Y. Halpern, Yoram Moses & Moshe Y. Vardi (1995): Reasoning About Knowledge.

MIT Press, doi:10.7551/mitpress/5803.001.0001.

[16] Michael J. Fischer, Nancy A. Lynch & Michael S. Paterson (1985): Impossibility of Distributed Consensus

with One Faulty Process. Journal of the ACM 32(2), pp. 374–382, doi:10.1145/3149.214121.

[17] Krisztina Fruzsa, Roman Kuznets & Ulrich Schmid (2021): Fire! In Joseph Halpern & Andrés Perea,

editors: Proceedings Eighteenth Conference on Theoretical Aspects of Rationality and Knowledge, Beijing,

China, June 25–27, 2021, Electronic Proceedings in Theoretical Computer Science 335, Open Publishing

Association, pp. 139–153, doi:10.4204/EPTCS.335.13.

[18] Jelle Gerbrandy & Willem Groeneveld (1997): Reasoning about Information Change. Journal of Logic,

Language, and Information 6(2), pp. 147–169, doi:10.1023/A:1008222603071.

[19] Éric Goubault, Roman Kniazev, Jérémy Ledent & Sergio Rajsbaum (2023): Semi-simplicial Set Models

for Distributed Knowledge. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Sci-

ence (LICS), 26–29 June 2023, Boston, USA, IEEE, doi:10.1109/LICS56636.2023.10175737.

[20] Éric Goubault, Jérémy Ledent & Sergio Rajsbaum (2021): A simplicial complex model for dynamic epistemic

logic to study distributed task computability. Information and Computation 278:104597, doi:10.1016/j.

ic.2020.104597.

[21] Éric Goubault, Jérémy Ledent & Sergio Rajsbaum (2022): A Simplicial Model for KB4n: Epistemic Logic

with Agents That May Die. In Petra Berenbrink & Benjamin Monmege, editors: 39th International Sym-

posium on Theoretical Aspects of Computer Science: STACS 2022, March 15–18, 2022, Marseille, France

(Virtual Conference), Leibniz International Proceedings in Informatics (LIPIcs) 219, Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, pp. 33:1–33:20, doi:10.4230/LIPIcs.STACS.2022.33.

[22] Joseph Y. Halpern & Yoram Moses (1990): Knowledge and Common Knowledge in a Distributed Environ-

ment. Journal of the ACM 37(3), pp. 549–587, doi:10.1145/79147.79161.

[23] Maurice Herlihy, Dmitry Kozlov & Sergio Rajsbaum (2014): Distributed Computing through Combinatorial

Topology. Morgan Kaufmann, doi:10.1016/C2011-0-07032-1.

[24] Maurice Herlihy & Nir Shavit (1999): The Topological Structure of Asynchronous Computability. Journal of

the ACM 46(6), pp. 858–923, doi:10.1145/331524.331529.

[25] Jaakko Hintikka (1962): Knowledge and Belief: An Introduction to the Logic of the Two Notions. Cornell

University Press.

[26] Jérémy Ledent (2019): Geometric semantics for asynchronous computability. Ph.D. thesis, Paris-Saclay

University, Palaiseau, France. Available at https://theses.hal.science/tel-02445180. Prepared at

École polytechnique.

[27] Michael C. Loui & Hosame H. Abu-Amara (1987): Memory Requirements for Agreement among Unreliable

Asynchronous Processes. In Franco P. Preparata, editor: Parallel and Distributed Computing, Advances in

Computing Research: A Research Annual 4, JAI Press, pp. 163–183.

[28] Lawrence S. Moss (2015): Dynamic Epistemic Logic. In Hans van Ditmarsch, Joseph Y. Halpern, Wiebe

van der Hoek & Barteld Kooi, editors: Handbook of Epistemic Logic, College Publications, pp. 261–312.

[29] Daniel Pfleger & Ulrich Schmid (2018): On Knowledge and Communication Complexity in Distributed Sys-

tems. In Zvi Lotker & Boaz Patt-Shamir, editors: Structural Information and Communication Complex-

ity: 25th International Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18–21, 2018, Re-

vised Selected Papers, Lecture Notes in Computer Science 11085, Springer, pp. 312–330, doi:10.1007/

978-3-030-01325-7_27.

[30] Amir Pnueli (1977): The Temporal Logic of Programs. In: 18th Annual Symposium on Foundations of

Computer Science, IEEE, pp. 46–57, doi:10.1109/SFCS.1977.32.

[31] Rojo Randrianomentsoa, Hans van Ditmarsch & Roman Kuznets (2023): Impure Simplicial Complexes:

Complete Axiomatization. Logical Methods in Computer Science, doi:10.48550/arXiv.2211.13543. In

press.

https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1145/3149.214121
https://doi.org/10.4204/EPTCS.335.13
https://doi.org/10.1023/A:1008222603071
https://doi.org/10.1109/LICS56636.2023.10175737
https://doi.org/10.1016/j.ic.2020.104597
https://doi.org/10.1016/j.ic.2020.104597
https://doi.org/10.4230/LIPIcs.STACS.2022.33
https://doi.org/10.1145/79147.79161
https://doi.org/10.1016/C2011-0-07032-1
https://doi.org/10.1145/331524.331529
https://theses.hal.science/tel-02445180
https://doi.org/10.1007/978-3-030-01325-7_27
https://doi.org/10.1007/978-3-030-01325-7_27
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.48550/arXiv.2211.13543

66 On Two- and Three-valued Semantics for Impure Simplicial Complexes

[32] Floris Roelofsen (2007): Distributed knowledge. Journal of Applied Non-Classical Logics 17(2), pp. 255–

273, doi:10.3166/jancl.17.255-273.

[33] Diego A. Velázquez, Armando Castañeda & David A. Rosenblueth (2021): Communication Pattern Models:

An Extension of Action Models for Dynamic-Network Distributed Systems. In Joseph Halpern & Andrés

Perea, editors: Proceedings Eighteenth Conference on Theoretical Aspects of Rationality and Knowledge,

Beijing, China, June 25–27, 2021, Electronic Proceedings in Theoretical Computer Science 335, Open Pub-

lishing Association, pp. 307–321, doi:10.4204/EPTCS.335.29.

https://doi.org/10.3166/jancl.17.255-273
https://doi.org/10.4204/EPTCS.335.29

A. Achilleos and D. Della Monica (Eds.): Fourteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2023).
EPTCS 390, 2023, pp. 67–81, doi:10.4204/EPTCS.390.5

© M. Bernardo, A. Esposito
This work is licensed under the
Creative Commons Attribution License.

Modal Logic Characterizations of
Forward, Reverse, and Forward-Reverse Bisimilarities

Marco Bernardo Andrea Esposito
Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy

Reversible systems feature both forward computations and backward computations, where the latter
undo the effects of the former in a causally consistent manner. The compositionality properties and
equational characterizations of strong and weak variants of forward-reverse bisimilarity as well as of
its two components, i.e., forward bisimilarity and reverse bisimilarity, have been investigated on a
minimal process calculus for nondeterministic reversible systems that are sequential, so as to be neu-
tral with respect to interleaving vs. truly concurrent semantics of parallel composition. In this paper
we provide logical characterizations for the considered bisimilarities based on forward and back-
ward modalities, which reveals that strong and weak reverse bisimilarities respectively correspond
to strong and weak reverse trace equivalences. Moreover, we establish a clear connection between
weak forward-reverse bisimilarity and branching bisimilarity, so that the former inherits two further
logical characterizations from the latter over a specific class of processes.

1 Introduction

Reversibility in computing started to gain attention since the seminal works [13, 2], where it was shown
that reversible computations may achieve low levels of heat dissipation. Nowadays reversible computing
has many applications ranging from computational biochemistry and parallel discrete-event simulation
to robotics, control theory, fault tolerant systems, and concurrent program debugging.

In a reversible system, two directions of computation can be observed: a forward one, coinciding
with the normal way of computing, and a backward one, along which the effects of the forward one are
undone when needed in a causally consistent way, i.e., by returning to a past consistent state. The latter
task is not easy to accomplish in a concurrent system, because the undo procedure necessarily starts from
the last performed action and this may not be unique. The usually adopted strategy is that an action can
be undone provided that all of its consequences, if any, have been undone beforehand [7].

In the process algebra literature, two approaches have been developed to reverse computations based
on keeping track of past actions: the dynamic one of [7] and the static one of [18], later shown to be
equivalent in terms of labeled transition systems isomorphism [14].

The former yields RCCS, a variant of CCS [16] that uses stack-based memories attached to processes
to record all the actions executed by those processes. A single transition relation is defined, while actions
are divided into forward and backward resulting in forward and backward transitions. This approach is
suitable when the operational semantics is given in terms of reduction semantics, like in the case of very
expressive calculi as well as programming languages.

In contrast, the latter proposes a general method, of which CCSK is a result, to reverse calculi, relying
on the idea of retaining within the process syntax all executed actions, which are suitably decorated, and
all dynamic operators, which are thus made static. A forward transition relation and a backward transition
relation are separately defined, which are labeled with actions extended with communication keys so as
to remember who synchronized with whom when going backward. This approach is very handy when it
comes to deal with labeled transition systems and basic process calculi.

http://dx.doi.org/10.4204/EPTCS.390.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

68 Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities

In [18] forward-reverse bisimilarity was introduced too. Unlike standard forward-only bisimilar-
ity [17, 16], it is truly concurrent as it does not satisfy the expansion law of parallel composition into a
choice among all possible action sequencings. The interleaving view can be restored in a reversible set-
ting by employing back-and-forth bisimilarity [8]. This is defined on computation paths instead of states,
thus preserving not only causality but also history as backward moves are constrained to take place along
the path followed when going forward even in the presence of concurrency. In the latter setting, a single
transition relation is considered, which is viewed as bidirectional, and in the bisimulation game the dis-
tinction between going forward or backward is made by matching outgoing or incoming transitions of
the considered processes, respectively.

In [4] forward-reverse bisimilarity and its two components, i.e., forward bisimilarity and reverse
bisimilarity, have been investigated in terms of compositionality properties and equational characteri-
zations, both for nondeterministic processes and Markovian processes. In order to remain neutral with
respect to interleaving view vs. true concurrency, the study has been conducted over a sequential pro-
cesses calculus, in which parallel composition is not admitted so that not even the communication keys
of [18] are needed. Furthermore, like in [8] a single transition relation has been defined and the distinc-
tion between outgoing and incoming transitions has been exploited in the bisimulation game. In [3] the
investigation of compositionality and axiomatizations has been extended to weak variants of forward, re-
verse, and forward-reverse bisimilarities, i.e., variants that are capable of abstracting from unobservable
actions, in the case of nondeterministic processes only.

In this paper we address the logical characterization of the aforementioned strong and weak bisim-
ilarities over nondeterministic reversibile sequential processes. The objective is to single out suitable
modal logics that induce equivalences that turn out to be alternative characterizations of the considered
bisimilarities, so that two processes are bisimilar iff they satisfy the same set of formulas of the corre-
sponding logic. Starting from Hennessy-Milner logic [11], which includes forward modalities whereby
it is possible to characterize the standard forward-only strong and weak bisimilarities of [16], the idea is
to add backward modalities in the spirit of [8] so as to be able to characterize reverse and forward-reverse
strong and weak bisimilarities. Unlike [8], where back-and-forth bisimilarities as well as modality inter-
pretations are defined over computation paths, in our reversible setting both the considered bisimilarities
and the associated modal logic interpretations are defined over states.

Our study reveals that strong and weak reverse bisimilarities do not need conjunction in their logical
characterizations. In other words, they boil down to strong and weak reverse trace equivalences, respec-
tively. Moreover, recalling that branching bisimilarity [10] is known to coincide with weak back-and-
forth bisimilarity defined over computation paths [8], we show that branching bisimilarity also coincides
for a specific class of processes with our weak forward-reverse bisimilarity defined over states. Based on
the results in [9], this opens the way to two further logical characterizations of the latter in addition to the
one based on forward and backward modalities. The first characterization replaces the aforementioned
modalities with an until operator, whilst the second one is given by the temporal logic CTL∗ without the
next operator.

The paper is organized as follows. In Section 2 we recall syntax and semantics for the considered
calculus of nondeterministic reversible sequential processes as well as the strong forward, reverse, and
forward-reverse bisimilarities investigated in [4] and their weak counterparts examined in [3]. In Sec-
tion 3 we provide the modal logic characterizations of all the aforementioned bisimilarities based on
forward and backward modalities interpreted over states. In Section 4 we establish a clear connection
between branching bisimilarity and our weak forward-reverse bisimilarity defined over states. In Sec-
tion 5 we conclude with final remarks and directions for future work.

M. Bernardo, A. Esposito 69

2 Background

2.1 Syntax of Nondeterministic Reversible Sequential Processes

Given a countable set A of actions – ranged over by a,b,c – including an unobservable action denoted
by τ , the syntax of reversible sequential processes is defined as follows [4]:

P ::= 0 | a .P | a†.P | P+P
where:

• 0 is the terminated process.

• a .P is a process that can execute action a and whose forward continuation is P.

• a† .P is a process that executed action a and whose forward continuation is inside P.

• P1 +P2 expresses a nondeterministic choice between P1 and P2 as far as both of them have not
executed any action yet, otherwise only the one that was selected in the past can move.

We syntactically characterize through suitable predicates three classes of processes generated by the
grammar above. Firstly, we have initial processes, i.e., processes in which all the actions are unexecuted:

initial(0)
initial(a .P) ⇐= initial(P)

initial(P1 +P2) ⇐= initial(P1)∧ initial(P2)
Secondly, we have final processes, i.e., processes in which all the actions along a single path have

been executed:
final(0)

final(a†.P) ⇐= final(P)
final(P1 +P2) ⇐= (final(P1)∧ initial(P2))∨

(initial(P1)∧final(P2))
Multiple paths arise only in the presence of alternative compositions. At each occurrence of +, only
the subprocess chosen for execution can move, while the other one, although not selected, is kept as an
initial subprocess within the overall process to support reversibility.

Thirdly, we have the processes that are reachable from an initial one, whose set we denote by P:
reachable(0)

reachable(a .P) ⇐= initial(P)
reachable(a†.P) ⇐= reachable(P)

reachable(P1 +P2) ⇐= (reachable(P1)∧ initial(P2))∨
(initial(P1)∧ reachable(P2))

It is worth noting that:

• 0 is the only process that is both initial and final as well as reachable.

• Any initial or final process is reachable too.

• P also contains processes that are neither initial nor final, like e.g. a†.b .0.

• The relative positions of already executed actions and actions to be executed matter; in particular,
an action of the former kind can never follow one of the latter kind. For instance, a†.b .0 ∈ P
whereas b .a†.0 /∈ P.

70 Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities

(ACTf)
initial(P)

a .P a−→ a†.P
(ACTp)

P b−→P′

a†.P b−→ a†.P′

(CHOl)
P1

a−→P′1 initial(P2)

P1 +P2
a−→P′1 +P2

(CHOr)
P2

a−→P′2 initial(P1)

P1 +P2
a−→P1 +P′2

Table 1: Operational semantic rules for reversible action prefix and choice

2.2 Operational Semantic Rules

According to the approach of [18], dynamic operators such as action prefix and alternative composition
have to be made static by the semantics, so as to retain within the syntax all the information needed to
enable reversibility. For the sake of minimality, unlike [18] we do not generate two distinct transition
relations – a forward one −→ and a backward one − – but a single transition relation, which we
implicitly regard as being symmetric like in [8] to enforce the loop property: every executed action can
be undone and every undone action can be redone.

In our setting, a backward transition from P′ to P (P′
a
− P) is subsumed by the corresponding

forward transition t from P to P′ (P a−→P′). As will become clear with the definition of behavioral
equivalences, like in [8] when going forward we view t as an outgoing transition of P, while when going
backward we view t as an incoming transition of P′. The semantic rules for −→ ⊆ P×A×P are defined
in Table 1 and generate the labeled transition system (P,A,−→) [4].

The first rule for action prefix (ACTf where f stands for forward) applies only if P is initial and
retains the executed action in the target process of the generated forward transition by decorating the
action itself with †. The second rule for action prefix (ACTp where p stands for propagation) propagates
actions executed by inner initial subprocesses.

In both rules for alternative composition (CHOl and CHOr where l stands for left and r stands for
right), the subprocess that has not been selected for execution is retained as an initial subprocess in the
target process of the generated transition. When both subprocesses are initial, both rules for alternative
composition are applicable, otherwise only one of them can be applied and in that case it is the non-initial
subprocess that can move, because the other one has been discarded at the moment of the selection.

Every state corresponding to a non-final process has at least one outgoing transition, while every
state corresponding to a non-initial process has exactly one incoming transition due to the decoration of
executed actions. The labeled transition system underlying an initial process turns out to be a tree, whose
branching points correspond to occurrences of +.

Example 2.1 The labeled transition systems generated by the rules in Table 1 for the two initial pro-
cesses a .0+a .0 and a .0 are depicted below:

0_a .

0_a . 0_a . 0_a . +

0_a . 0_a . +0_a . 0_a . +

a a a

.

As far as the one on the left is concerned, we observe that, in the case of a standard process calcu-
lus, a single a-transition from a .0+ a .0 to 0 would have been generated due to the absence of action
decorations within processes.

M. Bernardo, A. Esposito 71

2.3 Strong Forward, Reverse, and Forward-Reverse Bisimilarities

While forward bisimilarity considers only outgoing transitions [17, 16], reverse bisimilarity considers
only incoming transitions. Forward-reverse bisimilarity [18] considers instead both outgoing transitions
and incoming ones. Here are their strong versions studied in [4], where strong means not abstracting
from τ-actions.

Definition 2.2 We say that P1,P2 ∈ P are forward bisimilar, written P1 ∼FB P2, iff (P1,P2) ∈B for some
forward bisimulation B. A symmetric relation B over P is a forward bisimulation iff for all (P1,P2)∈B
and a ∈ A:

• Whenever P1
a−→P′1, then P2

a−→P′2 with (P′1,P
′
2) ∈B.

Definition 2.3 We say that P1,P2 ∈ P are reverse bisimilar, written P1 ∼RB P2, iff (P1,P2) ∈B for some
reverse bisimulation B. A symmetric relation B over P is a reverse bisimulation iff for all (P1,P2) ∈B
and a ∈ A:

• Whenever P′1
a−→P1, then P′2

a−→P2 with (P′1,P
′
2) ∈B.

Definition 2.4 We say that P1,P2 ∈ P are forward-reverse bisimilar, written P1 ∼FRB P2, iff (P1,P2) ∈B
for some forward-reverse bisimulation B. A symmetric relation B over P is a forward-reverse bisimu-
lation iff for all (P1,P2) ∈B and a ∈ A:

• Whenever P1
a−→P′1, then P2

a−→P′2 with (P′1,P
′
2) ∈B.

• Whenever P′1
a−→P1, then P′2

a−→P2 with (P′1,P
′
2) ∈B.

∼FRB (∼FB ∩ ∼RB with the inclusion being strict because, e.g., the two final processes a†.0 and
a†.0+ c .0 are identified by ∼FB (no outgoing transitions on both sides) and by ∼RB (only an incoming
a-transition on both sides), but distinguished by ∼FRB as in the latter process action c is enabled again
after undoing a (and hence there is an outgoing c-transition in addition to an outgoing a-transition).
Moreover, ∼FB and ∼RB are incomparable because for instance:

a†.0∼FB 0 but a†.0 6∼RB 0
a .0∼RB 0 but a .0 6∼FB 0

Note that that ∼FRB = ∼FB over initial processes, with ∼RB strictly coarser, whilst ∼FRB 6= ∼RB over
final processes because, after going backward, previously discarded subprocesses come into play again
in the forward direction.

Example 2.5 The two processes considered in Example 2.1 are identified by all the three equivalences.
This is witnessed by any bisimulation that contains the pairs (a .0+ a .0,a .0), (a†.0+ a .0,a†.0), and
(a .0+a†.0,a†.0).

As observed in [4], it makes sense that ∼FB identifies processes with a different past and that ∼RB
identifies processes with a different future, in particular with 0 that has neither past nor future. However,
for ∼FB this breaks compositionality with respect to alternative composition. As an example:

a†.b .0 ∼FB b .0
a†.b .0+ c .0 6∼FB b .0+ c .0

because in a†.b .0+ c .0 action c is disabled due to the presence of the already executed action a†, while
in b .0+ c .0 action c is enabled as there are no past actions preventing it from occurring. Note that
a similar phenomenon does not happen with ∼RB as a†.b .0 6∼RB b .0 due to the incoming a-transition
of a†.b .0.

This problem, which does not show up for ∼RB and ∼FRB because these two equivalences cannot
identify an initial process with a non-initial one, leads to the following variant of ∼FB that is sensitive to
the presence of the past.

72 Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities

Definition 2.6 We say that P1,P2 ∈ P are past-sensitive forward bisimilar, written P1 ∼FB:ps P2, iff
(P1,P2)∈B for some past-sensitive forward bisimulation B. A relation B over P is a past-sensitive for-
ward bisimulation iff it is a forward bisimulation such that initial(P1)⇐⇒ initial(P2) for all (P1,P2)∈B.

Now ∼FB:ps is sensitive to the presence of the past:
a†.b .0 6∼FB:ps b .0

but can still identify non-initial processes having a different past:
a†

1 .P ∼FB:ps a†
2 .P

It holds that ∼FRB (∼FB:ps ∩ ∼RB, with ∼FRB=∼FB:ps over initial processes as well as ∼FB:ps and ∼RB
being incomparable because, e.g., for a1 6= a2:

a†
1 .P ∼FB:ps a†

2 .P but a†
1 .P 6∼RB a†

2 .P
a1 .P ∼RB a2 .P but a1 .P 6∼FB:ps a2 .P

In [4] it has been shown that all the considered strong bisimilarities are congruences with respect to
action prefix, while only ∼FB:ps, ∼RB, and ∼FRB are congruences with respect to alternative composition
too, with∼FB:ps being the coarsest congruence with respect to + contained in∼FB. Moreover, sound and
complete equational characterizations have been provided for the three congruences.

2.4 Weak Forward, Reverse, and Forward-Reverse Bisimilarities

In [3] weak variants of forward, reverse, and forward-reverse bisimilarities have been studied, which are
capable of abstracting from τ-actions. In the following definitions, P τ∗

=⇒P′ means that P′ = P or there
exists a nonempty sequence of finitely many τ-transitions such that the target of each of them coincides
with the source of the subsequent one, with the source of the first one being P and the target of the
last one being P′. Moreover, τ∗

=⇒ a−→ τ∗
=⇒ stands for an a-transition possibly preceded and followed by

finitely many τ-transitions. We further let Ā = A\{τ}.

Definition 2.7 We say that P1,P2 ∈ P are weakly forward bisimilar, written P1 ≈FB P2, iff (P1,P2) ∈B
for some weak forward bisimulation B. A symmetric binary relation B over P is a weak forward
bisimulation iff, whenever (P1,P2) ∈B, then:

• Whenever P1
τ−→P′1, then P2

τ∗
=⇒P′2 and (P′1,P

′
2) ∈B.

• Whenever P1
a−→P′1 for a ∈ Ā, then P2

τ∗
=⇒ a−→ τ∗

=⇒P′2 and (P′1,P
′
2) ∈B.

Definition 2.8 We say that P1,P2 ∈ P are weakly reverse bisimilar, written P1 ≈RB P2, iff (P1,P2) ∈B
for some weak reverse bisimulation B. A symmetric binary relation B over P is a weak reverse
bisimulation iff, whenever (P1,P2) ∈B, then:

• Whenever P′1
τ−→P1, then P′2

τ∗
=⇒P2 and (P′1,P

′
2) ∈B.

• Whenever P′1
a−→P1 for a ∈ Ā, then P′2

τ∗
=⇒ a−→ τ∗

=⇒P2 and (P′1,P
′
2) ∈B.

Definition 2.9 We say that P1,P2 ∈ P are weakly forward-reverse bisimilar, written P1 ≈FRB P2, iff
(P1,P2) ∈B for some weak forward-reverse bisimulation B. A symmetric binary relation B over P
is a weak forward-reverse bisimulation iff, whenever (P1,P2) ∈B, then:

• Whenever P1
τ−→P′1, then P2

τ∗
=⇒P′2 and (P′1,P

′
2) ∈B.

M. Bernardo, A. Esposito 73

• Whenever P1
a−→P′1 for a ∈ Ā, then P2

τ∗
=⇒ a−→ τ∗

=⇒P′2 and (P′1,P
′
2) ∈B.

• Whenever P′1
τ−→P1, then P′2

τ∗
=⇒P2 and (P′1,P

′
2) ∈B.

• Whenever P′1
a−→P1 for a ∈ Ā, then P′2

τ∗
=⇒ a−→ τ∗

=⇒P2 and (P′1,P
′
2) ∈B.

Each of the three weak bisimilarities is strictly coarser than the corresponding strong one. Similar
to the strong case, ≈FRB (≈FB ∩ ≈RB with ≈FB and ≈RB being incomparable. Unlike the strong case,
≈FRB 6= ≈FB over initial processes. For instance, τ .a .0+ a .0+ b .0 and τ .a .0+ b .0 are identified
by ≈FB but told apart by ≈FRB: if the former performs a, the latter responds with τ followed by a and
if it subsequently undoes a thus becoming τ†.a .0+ b .0 in which only a is enabled, the latter can only
respond by undoing a thus becoming τ .a .0+a .0+b .0 in which both a and b are enabled. An analogous
counterexample with non-initial τ-actions is given by c .(τ .a .0+a .0+b .0) and c .(τ .a .0+b .0).

As observed in [3], ≈FB suffers from the same compositionality problem with respect to alternative
composition as ∼FB. Moreover, ≈FB and ≈FRB feature the same compositionality problem as weak
bisimilarity for standard forward-only processes [16], i.e., for ≈∈ {≈FB,≈FRB} it holds that:

τ .a .0 ≈ a .0
τ .a .0+b .0 6≈ a .0+b .0

because if τ .a .0+ b .0 performs τ thereby evolving to τ†.a .0+ b .0 where only a is enabled in the
forward direction, then a .0+ b .0 can neither move nor idle in the attempt to evolve in such a way to
match τ†.a .0+b .0.

To solve both problems it is sufficient to redefine the two equivalences by making them sensitive to
the presence of the past, exactly as in the strong case for forward bisimilarity. By so doing, τ .a .0 is no
longer identified with a .0: if the former performs τ thereby evolving to τ†.a .0 and the latter idles, then
τ†.a .0 and a .0 are told apart because they are not both initial or non-initial.

Definition 2.10 We say that P1,P2 ∈ P are weakly past-sensitive forward bisimilar, written P1 ≈FB:ps P2,
iff (P1,P2) ∈B for some weak past-sensitive forward bisimulation B. A binary relation B over P is a
weak past-sensitive forward bisimulation iff it is a weak forward bisimulation such that initial(P1)⇐⇒
initial(P2) for all (P1,P2) ∈B.

Definition 2.11 We say that P1,P2 ∈ P are weakly past-sensitive forward-reverse bisimilar, written
P1 ≈FRB:ps P2, iff (P1,P2) ∈B for some weak past-sensitive forward-reverse bisimulation B. A binary
relation B over P is a weak past-sensitive forward-reverse bisimulation iff it is a weak forward-reverse
bisimulation such that initial(P1)⇐⇒ initial(P2) for all (P1,P2) ∈B.

Like in the non-past-sensitive case,≈FRB:ps 6=≈FB:ps over initial processes, as shown by τ .a .0+a .0
and τ .a .0: if the former performs a, the latter responds with τ followed by a and if it subsequently
undoes a thus becoming the non-initial process τ†.a .0, the latter can only respond by undoing a thus
becoming the initial process τ .a .0+ a .0. An analogous counterexample with non-initial τ-actions is
given again by c .(τ .a .0+a .0+b .0) and c .(τ .a .0+b .0).

Observing that ∼FRB (≈FRB:ps as the former naturally satisfies the initiality condition, in [3] it has
been shown that all the considered weak bisimilarities are congruences with respect to action prefix,
while only ≈FB:ps, ≈RB, and ≈FRB:ps are congruences with respect to alternative composition too, with
≈FB:ps and ≈FRB:ps respectively being the coarsest congruences with respect to + contained in ≈FB and
≈FRB. Sound and complete equational characterizations have been provided for the three congruences.

74 Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities

3 Modal Logic Characterizations

In this section we investigate modal logic characterizations for the three strong bisimilarities ∼FB, ∼RB,
and∼FRB, the three weak bisimilarities≈FB,≈RB, and≈FRB, and the three past-sensitive variants∼FB:ps,
≈FB:ps, and ≈FRB:ps.

We start by introducing a general modal logic L from which we will take nine fragments to char-
acterize the nine aforementioned bisimilarities. It consists of Hennessy-Milner logic [11] extended with
the proposition init, the strong backward modality 〈a†〉, the two weak forward modalities 〈〈τ〉〉 and 〈〈a〉〉,
and the two weak backward modalities 〈〈τ†〉〉 and 〈〈a†〉〉 (where a ∈ Ā within weak modalities):

φ ::= true | init | ¬φ | φ ∧φ | 〈a〉φ | 〈a†〉φ | 〈〈τ〉〉φ | 〈〈a〉〉φ | 〈〈τ†〉〉φ | 〈〈a†〉〉φ
The satisfaction relation |=⊆ P×L is defined by induction on the syntactical structure of the formulas
as follows:

P |= true for all P ∈ P
P |= init iff initial(P)
P |= ¬φ iff P 6|= φ

P |= φ1∧φ2 iff P |= φ1 and P |= φ2

P |= 〈a〉φ iff there exists P′ ∈ P such that P a−→P′ and P′ |= φ

P |= 〈a†〉φ iff there exists P′ ∈ P such that P′ a−→P and P′ |= φ

P |= 〈〈τ〉〉φ iff there exists P′ ∈ P such that P τ∗
=⇒P′ and P′ |= φ

P |= 〈〈a〉〉φ iff there exists P′ ∈ P such that P τ∗
=⇒ a−→ τ∗

=⇒P′ and P′ |= φ

P |= 〈〈τ†〉〉φ iff there exists P′ ∈ P such that P′ τ∗
=⇒P and P′ |= φ

P |= 〈〈a†〉〉φ iff there exists P′ ∈ P such that P′ τ∗
=⇒ a−→ τ∗

=⇒P and P′ |= φ

The use of backward operators is not new in the definition of properties of programs through tem-
poral logics [15] or modal logics [12]. In particular, in the latter work a logic with a past operator was
introduced to capture interesting properties of generalized labeled transition systems where only visible
actions are considered, in which setting it is proved that the equivalence induced by the considered logic
coincides with a generalization of the standard forward-only strong bisimilarity of [16]. This result was
later confirmed in [9] where it is shown that the addition of a strong backward modality (interpreted
over computation paths instead of states) provides no additional discriminating power with respect to the
Hennessy-Milner logic, i.e., the induced equivalence is again strong bisimilarity.

In contrast, in our context – in which all equivalences are defined over states – the strong forward
bisimilarities ∼FB and ∼FB:ps do not coincide with the strong forward-reverse bisimilarity ∼FRB and
this extends to their weak counterparts. In other words, the presence of backward modalities matters.
It is worth noting that our two weak backward modalities are similar to the ones considered in [8, 9]
to characterize weak back-and-forth bisimilarity (defined over computation paths), which is finer than
the standard forward-only weak bisimilarity of [16] and coincides with branching bisimilarity [10].

By taking suitable fragments of L we can characterize all the nine bisimilarities introduced in Sec-
tion 2. For each of the four strong bisimilarities ∼B, where B ∈ {FB,FB:ps,RB,FRB}, we can define
the corresponding logic LB. The same can be done for each of the five weak bisimilarities ≈B, where
B ∈ {FB,FB:ps,RB,FRB,FRB:ps}, to obtain the corresponding logic L τ

B . All the considered fragments
can be found in Table 2, which indicates that the proposition init is needed only for the past-sensitive
bisimilarities. The forthcoming Theorems 3.1 and 3.2 show that each such fragment induces the intended
bisimilarity, in the sense that two processes are bisimilar iff they satisfy the same set of formulas of the
fragment at hand.

M. Bernardo, A. Esposito 75

true init ¬ ∧ 〈a〉 〈a†〉 〈〈τ〉〉 〈〈a〉〉 〈〈τ†〉〉 〈〈a†〉〉
LFB X X X X
LFB:ps X X X X X
LRB X X
LFRB X X X X X

L τ
FB X X X X X

L τ
FB:ps X X X X X X

L τ
RB X X X

L τ
FRB X X X X X X X

L τ
FRB:ps X X X X X X X X

Table 2: Fragments of L characterizing the considered bisimilarities

The technique used to prove the two theorems is inspired by the one employed in [1] to show that
Hennessy-Milner logic characterizes the strong forward-only bisimilarity of [16]. The two implications
of either theorem are demonstrated separately. To prove that any pair of bisimilar processes P1 and P2
satisfy the same formulas of the considered fragment, we assume that P1 |= φ for some formula φ and
then we proceed by induction on the depth of φ to show that P2 |= φ too, where the depth of a formula is
defined by induction on the syntactical structure of the formula itself as follows:

depth(true) = 1
depth(init) = 1
depth(¬φ) = 1+depth(φ)

depth(φ1∧φ2) = 1+max(depth(φ1),depth(φ2))
depth(〈a〉φ) = 1+depth(φ)

depth(〈a†〉φ) = 1+depth(φ)
depth(〈〈τ〉〉φ) = 1+depth(φ)
depth(〈〈a〉〉φ) = 1+depth(φ)

depth(〈〈τ†〉〉φ) = 1+depth(φ)
depth(〈〈a†〉〉φ) = 1+depth(φ)

As for the reverse implication, we show that the relation B formed by all pairs of processes (P1,P2) that
satisfy the same formulas of the considered fragment is a bisimulation. More specifically, starting from
(P1,P2) ∈B we proceed by contradiction by assuming that, whenever P1 has a move to/from P′1 with an
action a, then there is no P′2 such that P2 has a move to/from P′2 with a and (P′1,P

′
2) ∈B. This entails that,

for every P2i forward/backward reachable from P2 by performing a, by definition of B there exists some
formula φi such that P′1 |= φi and P′2i

6|= φi, which leads to a formula with a forward/backward modality
on a followed by

∧
i φi that is satisfied by P1 but not by P2, thereby contradicting (P1,P2) ∈B.

Theorem 3.1 Let P1,P2 ∈ P and B ∈ {FB,FB:ps,RB,FRB}. Then P1 ∼B P2 ⇐⇒ ∀φ ∈LB.P1 |= φ ⇔
P2 |= φ .

Theorem 3.2 Let P1,P2 ∈ P and B ∈ {FB,FB:ps,RB,FRB,FRB:ps}. Then P1 ≈B P2 ⇐⇒ ∀φ ∈ L τ
B .

P1 |= φ ⇔ P2 |= φ .

We conclude with the following observations:

• The fragments that characterize the four forward bisimilarities ∼FB, ∼FB:ps, ≈FB, and ≈FB:ps are
essentially identical to the Hennessy-Milner logic (first two bisimilarities) and its weak variant

76 Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities

(last two bisimilarities). The only difference is the possible presence of the proposition init, which
is needed to distinguish between initial and non-initial processes in the past-sensitive cases.

• The fragments that characterize the two reverse bisimilarities ∼RB and ≈RB only include true and
the backward modalities 〈a†〉 (first bisimilarity) and 〈〈τ†〉〉 and 〈〈a†〉〉 (second bisimilarity). The
absence of conjunction reflects the fact that, when going backward, processes must follow exactly
the sequence of actions they performed in the forward direction and hence no choice is involved,
consistent with every non-initial process having precisely one incoming transition. In other words,
the strong and weak reverse bisimilarities boil down to strong and weak reverse trace equivalences,
respectively, which consider traces obtained when going in the backward direction.

• The fragments that characterize the three forward-reverse bisimilarities ∼FRB, ≈FRB, and ≈FRB:PS
are akin to the logic LBF introduced in [8] to characterize weak back-and-forth bisimilarity and
branching bisimilarity. A crucial distinction between our three fragments and LBF is that the
former are interpreted over states while LBF is interpreted over computation paths. Moreover, as
already mentioned, defining a strong variant of LBF would yield a logic that characterizes strong
bisimilarity, whereas in our setting forward-only bisimilarities are different from forward-reverse
ones and hence different logics are needed.

4 Weak Forward-Reverse Bisimilarity and Branching Bisimilarity

In this section we establish a clear connection between weak forward-reverse bisimilarity and branching
bisimilarity [10]. Unlike the standard forward-only weak bisimilarity of [16], branching bisimilarity
preserves the branching structure of processes even when abstracting from τ-actions.

Definition 4.1 We say that P1,P2 ∈ P are branching bisimilar, written P1 ≈BB P2, iff (P1,P2) ∈B for
some branching bisimulation B. A symmetric binary relation B over P is a branching bisimulation iff,
whenever (P1,P2) ∈B, then for all P1

a−→P′1 it holds that:

• either a = τ and (P′1,P2) ∈B;

• or P2
τ∗
=⇒ P̄2

a−→P′2 with (P1, P̄2) ∈B and (P′1,P
′
2) ∈B.

Branching bisimilarity is known to have some relationships with reversibility. More precisely, in [8]
strong and weak back-and-forth bisimilarities have been introduced over labeled transition systems –
where outgoing transitions are considered in the forward bisimulation game while incoming transitions
are considered in the backward bisimulation game – and respectively shown to coincide with the standard
forward-only strong bisimilarity of [16] and branching bisimilarity.

In the setting of [8], strong and weak back-and-forth bisimilarities have been defined over com-
putation paths rather than states so that, in the presence of concurrency, any backward computation is
constrained to follow the same path as the corresponding forward computation, which is consistent with
an interleaving view of parallel composition. This is quite different from the forward-reverse bisimilarity
over states defined in [18], which accounts for the fact that when going backward the order in which
independent transitions are undone may be different from the order in which they were executed in the
forward direction, thus leading to a truly concurrent semantics.

Since in our setting we consider only sequential processes, hence any backward computation nat-
urally follows the same path as the corresponding forward computation, we are neutral with respect to
interleaving vs. true concurrency. Like in [8] we define a single transition relation and then we distinguish

M. Bernardo, A. Esposito 77

between outgoing transitions and incoming transitions in the bisimulation game. However, unlike [8],
our bisimilarities are defined over states as in [16, 10, 18], not over paths. In the rest of this section
we show that our weak forward-reverse bisimilarity over states coincides with branching bisimilarity
by following the proof strategy adopted in [8] for weak back-and-forth bisimilarity.

First of all, we prove that, like branching bisimilarity, our weak forward-reverse bisimilarity satisfies
the stuttering property [10]. This means that, given a sequence of finitely many τ-transitions, if the
source process of the first transition and the target process of the last transition are equivalent to each
other, then all the intermediate processes are equivalent to them too – see P2

τ∗
=⇒ P̄2 in Definition 4.1

when P1,P2, P̄2 are pairwise related by the maximal branching bisimulation ≈BB. In other words, while
traversing the considered sequence of τ-transitions, we remain in the same equivalence class of processes,
not only in the forward direction but – as we are talking about weak forward-reverse bisimilarity – also
in the backward direction. This property does not hold in the case of the standard forward-only weak
bisimilarity of [16].

Lemma 4.2 Let n ∈ N>0, Pi ∈ P for all 0 ≤ i ≤ n, and Pi
τ−→Pi+1 for all 0 ≤ i ≤ n− 1. If P0 ≈FRB Pn

then Pi ≈FRB P0 for all 0≤ i≤ n.

Proof Consider the reflexive and symmetric binary relation B = ∪i∈NBi over P where:

• B0 = ≈FRB.

• Bi = Bi−1∪{(P,P′),(P′,P) ∈ P×P | ∃P′′ ∈ P.(P,P′′) ∈Bi−1∧P τ∗
=⇒P′ τ−→P′′} for all i ∈ N>0.

We start by proving that B satisfies the stuttering property, i.e., given n∈N>0 and Pi ∈P for all 0≤ i≤ n,
if Pi

τ−→Pi+1 for all 0 ≤ i ≤ n− 1 and (P0,Pn) ∈B, then (Pi,P0) ∈B for all 0 ≤ i ≤ n. We proceed by
induction on n:

• If n = 1 then the considered computation is simply P0
τ−→P1 with (P0,P1) ∈B and hence trivially

(Pi,P0) ∈B for all 0≤ i≤ 1 as B is reflexive – (P0,P0) ∈B – and symmetric – (P1,P0) ∈B.

• Let n > 1. Since (P0,Pn) ∈B, there must exist m ∈N such that (P0,Pn) ∈Bm. Let us consider the
smallest such m. Then (P0,Pn−1) ∈Bm+1 by definition of Bm+1, hence (P0,Pn−1) ∈B. From the
induction hypothesis it follows that (Pi,P0) ∈B for all 0 ≤ i ≤ n− 1, hence (Pi,P0) ∈B for all
0≤ i≤ n because (P0,Pn) ∈B and B is symmetric so that (Pn,P0) ∈B.

We now prove that every symmetric relation Bi is a weak forward-reverse bisimulation. We proceed by
induction on i ∈ N:

• If i = 0 then Bi is the maximal weak forward-reverse bisimulation.

• Let i ≥ 1 and suppose that Bi−1 is a weak forward-reverse bisimulation. Given (P,P′) ∈ Bi,
assume that P a−→Q (resp. Q a−→P) where a ∈ A. There are two cases:

– If (P,P′) ∈ Bi−1 then by the induction hypothesis a = τ and P′ τ∗
=⇒Q′ (resp. Q′ τ∗

=⇒P′)

or a 6= τ and P′ τ∗
=⇒ a−→ τ∗

=⇒Q′ (resp. Q′ τ∗
=⇒ a−→ τ∗

=⇒P′) with (Q,Q′) ∈Bi−1 and hence
(Q,Q′) ∈Bi as Bi−1 ⊆Bi by definition of Bi.

– If instead (P,P′) /∈ Bi−1 then from (P,P′) ∈ Bi it follows that ∃P′′ ∈ P.(P,P′′) ∈ Bi−1 ∧
P τ∗
=⇒P′ τ−→P′′. There are two subcases:

* In the forward case, i.e., P a−→Q, there are two further subcases:

78 Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities

· If (Q,P′′) ∈ Bi−1 and a = τ , then from P′ τ−→P′′ it follows that P′ τ∗
=⇒P′′ with

(Q,P′′) ∈Bi as Bi−1 ⊆Bi.
· Otherwise from (P,P′′) ∈ Bi−1 and the induction hypothesis it follows that

P′′ τ∗
=⇒ a−→ τ∗

=⇒P′′′ with (Q,P′′′)∈Bi−1 so that P′ τ∗
=⇒ a−→ τ∗

=⇒P′′′ with (Q,P′′′)∈
Bi as Bi−1 ⊆Bi.

* In the backward case, i.e., Q a−→P, it suffices to note that from P τ∗
=⇒P′ it follows that

Q a−→ τ∗
=⇒P′.

Since B is the union of countably many weak forward-reverse bisimulations, it holds that B ⊆ ≈FRB.
On the other hand, ≈FRB ⊆B by definition of B0. In conclusion B = ≈FRB – i.e., no relation Bi for
i ∈ N>0 adds further pairs with respect to B0 – and hence ≈FRB satisfies the stuttering property because
so does B.

Note that the lemma above considers ≈FRB, not ≈FRB:PS. Indeed the stuttering property does not
hold for ≈FRB:PS when initial(P0), because in that case a τ-action would be decorated inside P1 and
hence P1 6≈FRB:ps P0. Therefore ≈FRB:PS satisfies the stuttering property only over non-initial processes.

Secondly, we prove that ≈FRB satisfies the cross property [8]. This means that, whenever two pro-
cesses reachable from two ≈FRB-equivalent processes can perform a sequence of finitely many
τ-transitions such that each of the two target processes is ≈FRB-equivalent to the source process of the
other sequence, then the two target processes are ≈FRB-equivalent to each other as well.

Lemma 4.3 Let P1,P2 ∈ P be such that P1 ≈FRB P2. For all P′1,P
′′
1 ∈ P reachable from P1 such that

P′1
τ∗
=⇒P′′1 and for all P′2,P

′′
2 ∈ P reachable from P2 such that P′2

τ∗
=⇒P′′2 , if P′1 ≈FRB P′′2 and P′′1 ≈FRB P′2

then P′′1 ≈FRB P′′2 .

Proof Given P1,P2 ∈P with P1≈FRB P2, consider the symmetric relation B =≈FRB∪{(P′′1 ,P′′2),(P′′2 ,P′′1)
∈ P× P | ∃P′1,P′2 ∈ P resp. reachable from P1,P2. P′1

τ∗
=⇒P′′1 ∧ P′2

τ∗
=⇒P′′2 ∧ P′1 ≈FRB P′′2 ∧ P′′1 ≈FRB P′2}.

The result follows by proving that B is a weak forward-reverse bisimulation, because this implies that
P′′1 ≈FRB P′′2 for every additional pair – i.e., B satisfies the cross property – as well as B = ≈FRB – hence
≈FRB satisfies the cross property too.
Let (P′′1 ,P

′′
2) ∈B \≈FRB to avoid trivial cases. Then there exist P′1,P

′
2 ∈ P respectively reachable from

P1,P2 such that P′1
τ∗
=⇒P′′1 , P′2

τ∗
=⇒P′′2 , P′1 ≈FRB P′′2 , and P′′1 ≈FRB P′2. There are two cases:

• In the forward case, assume that P′′1
a−→P′′′1 , from which it follows that P′1

τ∗
=⇒P′′1

a−→P′′′1 . Since

P′1 ≈FRB P′′2 , we obtain P′′2
τ∗
=⇒ a−→ τ∗

=⇒P′′′2 , or P′′2
τ∗
=⇒P′′′2 when a = τ , with P′′′1 ≈FRB P′′′2 and

hence (P′′′1 ,P′′′2) ∈B. Starting from P′′2
a−→P′′′2 one exploits P′2

τ∗
=⇒P′′2 and P′′1 ≈FRB P′2 instead.

• In the backward case, assume that P′′′1
a−→P′′1 . Since P′′1 ≈FRB P′2, we obtain P′′′2

τ∗
=⇒ a−→ τ∗

=⇒P′2,

so that P′′′2
τ∗
=⇒ a−→ τ∗

=⇒P′′2 , or P′′′2
τ∗
=⇒P′2 when a = τ , so that P′′′2

τ∗
=⇒P′′2 , with P′′′1 ≈FRB P′′′2 and

hence (P′′′1 ,P′′′2) ∈B. Starting from P′′′2
a−→P′′2 one exploits P′1 ≈FRB P′′2 and P′1

τ∗
=⇒P′′1 instead.

We are now in a position of proving that ≈FRB coincides with ≈BB. This only holds over initial
processes though. As an example, a†

1.b .P≈BB a†
2.b .P but a†

1.b .P 6≈FRB a†
2.b .P when a1 6= a2.

Theorem 4.4 Let P1,P2 ∈ P be initial. Then P1 ≈FRB P2 iff P1 ≈BB P2.

Proof Given two initial processes P1,P2 ∈ P, we divide the proof into two parts:

M. Bernardo, A. Esposito 79

• Given a weak forward-reverse bisimulation B witnessing P1 ≈FRB P2 and only containing all the
pairs of≈FRB-equivalent processes reachable from P1 and P2 so that Lemma 4.3 is applicable to B,
we prove that B is a branching bisimulation too. Let (Q1,Q2)∈B, where Q1 is reachable from P1
while Q2 is reachable from P2, and assume that Q1

a−→Q′1. There are two cases:

– Suppose that a = τ and Q2
τ∗
=⇒Q′2 with (Q′1,Q

′
2) ∈B. This means that we have a sequence

of n ≥ 0 transitions of the form Q2,i
τ−→Q2,i+1 for all 0 ≤ i ≤ n− 1 where Q2,0 is Q2 while

Q2,n is Q′2 so that (Q′1,Q2,n) ∈B.
If n = 0 then Q′2 is Q2 and we are done because (Q′1,Q2) ∈B, otherwise from Q2,n we go
back to Q2,n−1 via Q2,n−1

τ−→Q2,n. If Q′1 stays idle so that (Q′1,Q2,n−1) ∈B and n = 1 then
we are done because (Q′1,Q2) ∈B, otherwise we go back to Q2,n−2 via Q2,n−2

τ−→Q2,n−1.
By repeating this procedure, either we get to (Q′1,Q2,0) ∈ B and we are done because
(Q′1,Q2) ∈B, or for some 0 < m ≤ n such that (Q′1,Q2,m) ∈B we have that the incoming

transition Q2,m−1
τ−→Q2,m is matched by Q̄1

τ∗
=⇒Q1

τ−→Q′1 with (Q̄1,Q2,m−1) ∈ B.

In the latter case, since Q̄1
τ∗
=⇒Q1, Q2

τ∗
=⇒Q2,m−1, (Q̄1,Q2,m−1) ∈ B, and (Q1,Q2) ∈ B,

from Lemma 4.3 it follows that (Q1,Q2,m−1) ∈ B. In conclusion Q2
τ∗
=⇒Q2,m−1

τ−→Q2,m
with (Q1,Q2,m−1) ∈B and (Q′1,Q2,m) ∈B.

– Suppose that a 6= τ and Q2
τ∗
=⇒ Q̄2

a−→ Q̄′2
τ∗
=⇒Q′2 with (Q′1,Q

′
2) ∈B.

From Q̄′2
τ∗
=⇒Q′2 and (Q′1,Q

′
2) ∈B it follows that Q̄′1

τ∗
=⇒Q′1 with (Q̄′1, Q̄

′
2) ∈B. Since Q′1

already has an incoming a-transition from Q1 and every non-initial process has exactly one
incoming transition, we derive that Q̄′1 is Q′1 and hence (Q′1, Q̄

′
2) ∈B.

From Q̄2
a−→ Q̄′2 and (Q′1, Q̄

′
2) ∈ B it follows that Q̄1

τ∗
=⇒Q1

a−→Q′1 with (Q̄1, Q̄2) ∈ B.

Since Q̄1
τ∗
=⇒Q1, Q2

τ∗
=⇒ Q̄2, (Q̄1, Q̄2) ∈B, and (Q1,Q2) ∈B, from Lemma 4.3 it follows

that (Q1, Q̄2) ∈B.

In conclusion Q2
τ∗
=⇒ Q̄2

a−→ Q̄′2 with (Q1, Q̄2) ∈B and (Q′1, Q̄
′
2) ∈B.

• Given a branching bisimulation B witnessing P1 ≈BB P2 and only containing all the processes
reachable from P1 and P2, we prove that B is a weak forward-reverse bisimulation too.
Let (Q1,Q2) ∈B with Q1 reachable from P1 and Q2 reachable from P2. There are two cases:

– In the forward case, assume that Q1
a−→Q′1. Then either a = τ and (Q′1,Q2) ∈ B, hence

Q2
τ∗
=⇒Q2 with (Q′1,Q2) ∈B, or Q2

τ∗
=⇒ Q̄2

a−→Q′2 with (Q1, Q̄2) ∈B and (Q′1,Q
′
2) ∈B,

hence Q2
τ∗
=⇒ a−→ τ∗

=⇒Q′2 with (Q′1,Q
′
2) ∈B.

– In the backward case – which cannot be the one of (P1,P2) ∈B as both processes are initial
– assume that Q′1

a−→Q1. There are two subcases:

* Suppose that Q′1 is P1. Then either a = τ and (Q′1,Q2) ∈ B, where Q2 is P2 and

Q2
τ∗
=⇒Q2, or Q′2

τ∗
=⇒ Q̄2

a−→Q2 with (Q′1, Q̄2) ∈B and (Q′1,Q
′
2) ∈B, where Q′2 is P2

and Q′2
τ∗
=⇒ a−→ τ∗

=⇒Q2.
* If Q′1 is not P1, then P1 reaches Q′1 with a sequence of moves that are B-compatible

with those with which P2 reaches some Q′2 such that (Q′1,Q
′
2) ∈B as B only contains

all the processes reachable from P1 and P2. Therefore either a = τ and (Q1,Q′2) ∈B,

where Q′2 is Q2 and Q2
τ∗
=⇒Q2, or Q′2

τ∗
=⇒ Q̄2

a−→Q2 with (Q′1, Q̄2) ∈B in addition to

(Q′1,Q
′
2) ∈B and (Q1,Q2) ∈B, where Q′2

τ∗
=⇒ a−→ τ∗

=⇒Q2.

80 Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities

According to the logical characterizations of branching bisimilarity shown in [9], this result opens the
way to further logical characterizations of ≈FRB over initial processes in addition to the one of Section 3
based on forward and backward modalities:

• The first additional characterization replaces the two aforementioned modalities with an until
operator φ1〈〈a〉〉φ2. This is satisfied by a process P iff either a = τ with P satisfying φ2, or

P τ∗
=⇒ P̄ a−→P′ with every process along P τ∗

=⇒ P̄ satisfying φ1 and P′ satisfying φ2.

• The second additional characterization is given by the temporal logic CTL∗ without the next op-
erator, thanks to a revisitation of the stuttering equivalence of [5] and the bridge between Kripke
structures (in which states are labeled with propositions) and labeled transition systems (in which
transitions are labeled with actions) built in [9].

5 Conclusion

In this paper we have investigated modal logic characterizations of forward, reverse, and forward-reverse
bisimilarities, both strong and weak, over nondeterministic reversible sequential processes. While pre-
vious work [4, 3] has addressed compositionality and axiomatizations of those bisimilarities, here the
focus has been on identifying suitable modal logics, which are essentially variants of the Hennessy-
Milner logic [11], such that two processes are bisimilar iff they satisfy the same set of formulas of the
corresponding modal logic.

The additional backward modalities used in this paper are inspired by those in [8], with the important
difference that bisimilarities and modal interpretations in the former are defined over states – as is usual
– while those in the latter are defined over computation paths. The modal logic characterizations have
revealed that strong and weak reverse bisimilarities respectively boil down to strong and weak reverse
trace equivalences. Moreover, we have shown that weak forward-reverse bisimilarity coincides with
branching bisimilarity [10] over initial processes, thus providing two further logical characterizations for
the former thanks to [9].

The study carried out in this paper can contribute, together with the results in [4, 3], to the devel-
opment of a fully-fledged process algebraic theory of reversible systems. On a more applicative side,
following [6] we also observe that the established modal logic characterizations are useful to provide
diagnostic information because, whenever two processes are not bisimilar, then there exists at least one
formula in the modal logic corresponding to the considered bisimilarity that is satisfied by only one of
the two processes and hence can explain the inequivalence.

Acknowledgments. This research has been supported by the PRIN project NiRvAna – Noninterference
and Reversibility Analysis in Private Blockchains.

References
[1] L. Aceto, A. Ingolfsdottir, K.G. Larsen & J. Srba (2007): Reactive Systems: Modelling, Specification and

Verification. Cambridge University Press, doi:10.1017/CBO9780511814105.
[2] C.H. Bennett (1973): Logical Reversibility of Computation. IBM Journal of Research and Development 17,

pp. 525–532, doi:10.1147/rd.176.0525.
[3] M. Bernardo & A. Esposito (2023): On the Weak Continuation of Reverse Bisimilarity vs. Forward Bisimi-

larity. In: Proc. of the 24th Italian Conf. on Theoretical Computer Science (ICTCS 2023), CEUR-WS. To
appear.

https://doi.org/10.1017/CBO9780511814105
https://doi.org/10.1147/rd.176.0525

M. Bernardo, A. Esposito 81

[4] M. Bernardo & S. Rossi (2023): Reverse Bisimilarity vs. Forward Bisimilarity. In: Proc. of the 26th Int. Conf.
on Foundations of Software Science and Computation Structures (FOSSACS 2023), LNCS 13992, Springer,
pp. 265–284, doi:10.1007/978-3-031-30829-1 13.

[5] M.C. Browne, E.M. Clarke & O. Grümberg (1988): Characterizing Finite Kripke Structures in Propositional
Temporal Logic. Theoretical Computer Science 59, pp. 115–131, doi:10.1016/0304-3975(88)90098-9.

[6] R. Cleaveland (1990): On Automatically Explaining Bisimulation Inequivalence. In: Proc. of the
2nd Int. Workshop on Computer Aided Verification (CAV 1990), LNCS 531, Springer, pp. 364–372,
doi:10.1007/BFb0023750.

[7] V. Danos & J. Krivine (2004): Reversible Communicating Systems. In: Proc. of the 15th Int. Conf. on
Concurrency Theory (CONCUR 2004), LNCS 3170, Springer, pp. 292–307, doi:10.1007/978-3-540-28644-
8 19.

[8] R. De Nicola, U. Montanari & F. Vaandrager (1990): Back and Forth Bisimulations. In: Proc.
of the 1st Int. Conf. on Concurrency Theory (CONCUR 1990), LNCS 458, Springer, pp. 152–165,
doi:10.1007/BFb0039058.

[9] R. De Nicola & F. Vaandrager (1995): Three Logics for Branching Bisimulation. Journal of the ACM 42, pp.
458–487, doi:10.1145/201019.201032.

[10] R.J. van Glabbeek & W.P. Weijland (1996): Branching Time and Abstraction in Bisimulation Semantics.
Journal of the ACM 43, pp. 555–600, doi:10.1145/233551.233556.

[11] M. Hennessy & R. Milner (1985): Algebraic Laws for Nondeterminism and Concurrency. Journal of the
ACM 32, pp. 137–162, doi:10.1145/2455.2460.

[12] M. Hennessy & C. Stirling (1985): The Power of the Future Perfect in Program Logics. Information and
Control 67, pp. 23–52, doi:10.1016/S0019-9958(85)80025-5.

[13] R. Landauer (1961): Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research
and Development 5, pp. 183–191, doi:10.1147/rd.53.0183.

[14] I. Lanese, D. Medić & C.A. Mezzina (2021): Static versus Dynamic Reversibility in CCS. Acta Informatica
58, pp. 1–34, doi:10.1007/s00236-019-00346-6.

[15] O. Lichtenstein, A. Pnueli & L. Zuck (1985): The Glory of the Past. In: Proc. of the Conf. on Logics in
Programs, LNCS 193, Springer, pp. 196–218, doi:10.1007/3-540-15648-8 16.

[16] R. Milner (1989): Communication and Concurrency. Prentice Hall.
[17] D. Park (1981): Concurrency and Automata on Infinite Sequences. In: Proc. of the 5th GI Conf. on Theoret-

ical Computer Science, LNCS 104, Springer, pp. 167–183, doi:10.1007/BFb0017309.
[18] I. Phillips & I. Ulidowski (2007): Reversing Algebraic Process Calculi. Journal of Logic and Algebraic

Programming 73, pp. 70–96, doi:10.1016/j.jlap.2006.11.002.

https://doi.org/10.1007/978-3-031-30829-1_13
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1007/BFb0023750
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/BFb0039058
https://doi.org/10.1145/201019.201032
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/2455.2460
https://doi.org/10.1016/S0019-9958(85)80025-5
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/s00236-019-00346-6
https://doi.org/10.1007/3-540-15648-8_16
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1016/j.jlap.2006.11.002

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. 82–98, doi:10.4204/EPTCS.390.6

© S. Spengler & S. Sil

TSO Games
On the decidability of safety games under the total store order semantics

Stephan Spengler

Uppsala University
Uppsala, Sweden

stephan.spengler@it.uu.se

Sanchari Sil

Chennai Mathematical Institute
Chennai, India

sanchari@cmi.ac.in

We consider an extension of the classical Total Store Order (TSO) semantics by expanding it to

turn-based 2-player safety games. During her turn, a player can select any of the communicating

processes and perform its next transition. We consider different formulations of the safety game

problem depending on whether one player or both of them transfer messages from the process buffers

to the shared memory. We give the complete decidability picture for all the possible alternatives.

1 Introduction

Most modern architectures, such as Intel x86 [21], SPARC [27], IBM’s POWER [20], and ARM [11],

implement several relaxations and optimisations that reduce the latency of memory accesses. This has the

effect of breaking the Sequential Consistency (SC) assumption [22]. SC is the classical strong semantics

for concurrent programs that interleaves the parallel executions of processes while maintaining the order

in which instructions were issued. Programmers usually assume that the execution of programs follows

the SC model. However, this is not true when we consider concurrent programs running on modern

architectures. In fact, even simple programs such as mutual exclusion and producer-consumer protocols,

that are correct under SC, may exhibit erroneous behaviors. This is mainly due to the relaxation of the

execution order of the instructions. For instance, a standard relaxation is to allow the reordering of reads

and writes of the same process if the reads have been issued after the writes and they concern different

memory locations. This relaxation can be implemented using an unbounded perfect FIFO queue/buffer

between each process and the memory. These buffers are used to store delayed writes. The corresponding

model is called Total Store Ordering (TSO) and corresponds to the formalisation of SPARC and Intel x86

[24, 26].

In TSO, an unbounded buffer is associated with each process. When a process executes a write

operation, this write is appended to the end of the buffer of that process. A pending write operation on

the variable x at the head of a buffer can be deleted in a non-deterministic manner. This updates the value

of the shared variable x in the memory. To perform a read operation on a variable x, the process first

checks its buffer for a pending write operation on the variable x. If such a write exists, then the process

reads the value written by the newest pending write operation on x. Otherwise, the process fetches the

value of the variable x from the memory. The verification of programs running under TSO is challenging

due to the unboundedness of the buffers. In fact, the induced state space of a program under TSO maybe

infinite even if the program itself is a finite-state system.

The reachability problem for programs under TSO checks whether a given program state is reachable

during program execution. It is also called safety problem, in case the target state is considered to be

a bad state. It has been shown decidable using different alternative semantics for TSO (e.g., [13, 4,

3]). Furthermore, it has been shown in [13] that lossy channel systems (see e.g., [10, 18, 9, 25]) can

http://dx.doi.org/10.4204/EPTCS.390.6

S. Spengler & S. Sil 83

be simulated by programs running under TSO. This entails that the reachability problem for programs

under TSO is non-primitive recursive and that the repeated reachability problem is undecidable. This is

an immediate consequence of the fact that the reachability problem for lossy channel is non-primitive

recursive [25] and that the repeated reachability problem is undecidable [9]. The termination problem

for programs running under TSO has been shown to be decidable in [12] using the framework of well-

structured transition systems [18, 10].

The authors of [14, 15] consider the robustness problem for programs running under TSO. This

problem consists in checking whether, for any given TSO execution, there is an equivalent SC execution

of the same program. Two executions are declared equivalent by the robustness criterion if they agree

on (1) the order in which instructions are executed within the same process (i.e., program order), (2) the

write instruction from which each read instruction fetches its value (i.e., read-from relation), and (3) the

order in which write instruction on the same variable are committed to memory (i.e., store ordering).

The problem of checking whether a program is robust has been shown to be PSPACE-complete in [14].

A variant of the robustness problem which is called persistence, declares that two runs are equivalent

if (1) they have the same program order and (2) all write instructions reach the memory in the same

order. Checking the persistency of a program under TSO has been shown to be PSPACE-complete in

[6]. Observe that the persistency and robustness problems are stronger than the safety problem (i.e., if a

program is safe under SC and robust/persistent, then it is also safe under TSO).

Due to the non-determinism of the buffer updates, the buffers associated with each process under

TSO appear to exhibit a lossy behaviour. Previously, games on lossy channel systems (and more general

on monotonic systems) were studied in [8]. Unfortunately these results are not applicable / transferable

to programs under TSO whose induced transition systems are not monotone [13].

In this paper, we consider a natural continuation of the works on both the study of the decidabil-

ity/complexity of the formal verification of programs under TSO and the study of games on concurrent

systems. This is further motivated by the fact that formal games provide a framework to reason about a

system’s behaviour, which can be leveraged in control model checking, for example in controller synthe-

sis problems.

In more detail, we consider (safety) games played on the transition systems induced by programs

running under TSO. Given a program under TSO, we construct a game in which two players A and

B take turns in executing instructions of the program. The goal of player B is to reach a given set of

final configurations, while player A tries to avoid this. Thus, it can also be seen as a reachability game

with respect to player B. In this game, the turn determines which player will execute the next program

instruction. However, this definition leaves the control of updates undefined. To address this, we give

the player the possibility to update memory by removing the pending writes from the buffer between the

execution of two instructions.

The control over the buffer updates is shared between the two players in varying ways. We differen-

tiate between multiple scenarios based on when exactly each player is allowed to update. In particular,

for each player A or B we have the following cases: (1) she can never update, (2) she can update after

her own turn, (3) she can update before her own turn, and (4) she can always update, i.e. before and after

her own turn. In total, we obtain an exhaustive collection of 16 different TSO games. We divide these 16

games into four different groups, depending on their decidability results.

• Group I (7 games) can be reduced to TSO games with 2-bounded buffers.

• Group II (1 game) can be reduced to TSO games with bounded buffers.

• Group III (7 games) can simulate perfect channel systems.

• Group IV (1 game) can be reduced to a finite game without buffers.

84 TSO Games

Player A:

always before after never

Player B:

always I (d)

before II (d)

after III (u)

never IV (d)

Figure 1: Groups of TSO games, where players A and B are allowed to update the buffer: always, before

their own move, after their own move, or never. The games in group I, II and IV are decidable (d), the

games in group III are undecidable (u).

This classification is shown in Figure 1. Of these four groups, only Group III is undecidable, the others

each reduce to a finite game and are thus decidable.

Finally, we establish the exact computational complexity for the decidable games. In fact, we show

that the problem is EXPTIME-complete. We prove EXPTIME-hardness by a reduction from the problem

of acceptance of a word by a linearly bounded alternating Turing machine [17]. To prove EXPTIME-

membership, we show that it is possible to compute the set of winning region for player B in exponential

time. These results are surprising given the non-primitive recursive complexity of the reachability prob-

lem for programs under TSO and the undecidability of the repeated reachability problem.

Related Works. In addition to the related work mentioned in the introduction on the decidability / com-

plexity of the verification problems of programs running under TSO, there have been some works on

parameterized verification of programs running under TSO. The problem consists in verifying a concur-

rent program regardless of the number of involved processes (which are identical finite-state systems).

The parameterised reachability problem of programs running under TSO has been shown to be decid-

able in [2, 3]. While this problem for concurrent programs performing only read and writing operations

(no atomic read-write instructions) is PSPACE-complete [7]. This result has been recently extended

to processes manipulating abstract data types over infinite domains [5]. Checking the robustness of a

parameterised concurrent system is decidable and EXPSPACE-hard [14].

As far as we know this is the first work that considers the game problem for programs running

under TSO. The proofs and techniques used in this paper are different from the ones used to prove

decidability / complexity results for the verification of programs under TSO except the undecidability

result which uses some ideas from the reduction from the reachability problem for lossy channel systems

to its corresponding problem for programs under TSO [13]. However, our undecidability proof requires

us to implement a protocol that detects lossiness of messages in order to turn the lossy channel system

into a perfect one (which is the most intricate part of the proof).

2 Preliminaries

2.1 Transition Systems

A (labeled) transition system is a triple 〈C,L,−→〉, where C is a set of configurations, L is a set of

labels, and −→⊆ C×L×C is a transition relation. We usually write c1
label
−−−→c2 if 〈c1, label,c2〉 ∈ −→.

Furthermore, we write c1−→c2 if there exists some label such that c1
label
−−−→c2. A run π of T is a sequence

of transitions c0
label1−−−−→c1

label2−−−−→c2 . . .
labeln−−−−→cn. It is also written as c0

π
−→cn. A configuration c′ is

S. Spengler & S. Sil 85

reachable from a configuration c, if there exists a run from c to c′.

For a configuration c, we defined Pre(c) = {c′ | c′−→c} and Post(c) = {c′ | c−→c′}. We extend these

notions to sets of configurations C′ with Pre(C′) =
⋃

c∈C′ Pre(c) and Post(C′) =
⋃

c∈C′ Post(c).
An unlabeled transition system is a transition system without labels. Formally, it is defined as a TS

with a singleton label set. In this case, we omit the labels.

2.2 Perfect Channel Systems

Given a set of messages M, define the set of channel operations Op = {!m,?m | m ∈M}∪{skip}. A

perfect channel system (PCS) is a triple L= 〈S,M,δ 〉, where S is a set of states, M is a set of messages,

and δ ⊆ S×Op×S is a transition relation. We write s1
op
−−→s2 if 〈s1,op,s2〉 ∈ δ .

Intuitively, a PCS models a finite state automaton that is augmented by a perfect (i.e. non-lossy)

FIFO buffer, called channel. During a send operation !m, the channel system appends m to the tail of the

channel. A transition ?m is called receive operation. It is only enabled if the channel is not empty and m

is its oldest message. When the channel system performs this operation, it removes m from the head of

the channel. Lastly, a skip operation just changes the state, but does not modify the buffer.

The formal semantics of L are defined by a transition system TL = 〈CL,LL,−→L〉, where CL =
S×M∗, LL = Op and the transition relation −→L is the smallest relation given by:

• If s1
!m
−−→s2 and w ∈M∗, then 〈s1,w〉

!m
−−→L〈s2,m ·w〉.

• If s1
?m
−−→s2 and w ∈M∗, then 〈s1,w ·m〉

?m
−−→L〈s2,w〉.

• If s1
skip
−−−→s2 and w ∈M∗, then 〈s1,w〉

skip
−−−→L〈s2,w〉.

A state sF ∈ S is reachable from a configuration c0 ∈ CL, if there exists a configuration cF = 〈sF ,wF〉
such that cF is reachable from c0 in TL. The state reachability problem of PCS is, given a perfect

channel system L, an initial configuration c0 ∈ CL and a final state sF ∈ S, to decide whether sF is

reachable from c0 in TL. It is undecidable [16].

3 Concurrent Programs

3.1 Syntax

Let Dom be a finite data domain and Vars be a finite set of shared variables over Dom. We define the

instruction set Instrs = {rd(x,d),wr(x,d) | x ∈ Vars,d ∈ Dom} ∪ {skip,mf}, which are called read,

write, skip and memory fence, respectively. A process is represented by a finite state labeled transition

system. It is given as the triple Proc= 〈Q, Instrs,δ 〉, where Q is a finite set of local states and δ ⊆ Q×

Instrs×Q is the transition relation. As with transition systems, we write q1
instr
−−−→q2 if 〈q1, instr,q2〉 ∈ δ

and q1−→q2 if there exists some instr such that q1
instr
−−−→q2.

A concurrent program is a tuple of processes P = 〈Procι〉ι∈I , where I is a finite set of process

identifiers. For each ι ∈ I we have Procι = 〈Qι , Instrs,δ ι〉. A global state of P is a function S :

I−→
⋃

ι∈IQ
ι that maps each process to its local state, i.e S(ι) ∈Qι .

3.2 TSO Semantics

Under TSO semantics, the processes of a concurrent program do not interact with the shared memory

directly, but indirectly through a FIFO store buffer instead. When performing a write instruction wr(x,d),

86 TSO Games

read-own-write
q

rd(x,d)
−−−−−→q′ S(ι)=q B(ι)|{x}×Dom=〈x,d〉·w

〈S,B,M〉
rd(x,d)ι−−−−−→P 〈S[ι←q′],B,M〉

read-from-memory
q

rd(x,d)
−−−−−→q′ S(ι)=q B(ι)|{x}×Dom=ε M(x)=d

〈S,B,M〉
rd(x,d)ι−−−−−→P 〈S[ι←q′],B,M〉

write
q

wr(x,d)
−−−−−→q′ S(ι)=q

〈S,B,M〉
wr(x,d)ι−−−−−→P 〈S[ι←q′],B[ι←〈x,d〉·B(ι)],M〉

skip
q

skip
−−−→q′ S(ι)=q

〈S,B,M〉
skipι−−−−→P 〈S[ι←q′],B,M〉

memory-fence
q

mf
−−→q′ S(ι)=q B(ι)=ε

〈S,B,M〉
mfι−−−→P 〈S[ι←q′],B,M〉

update
B(ι)=w·〈x,d〉

〈S,B,M〉
upι−−−→P 〈S,B[ι←w],M[x←d]〉

Figure 2: TSO semantics

the process adds a new message 〈x,d〉 to the tail of its store buffer. A read instruction rd(x,d) works

differently depending on the current buffer content of the process. If the buffer contains a write message

on variable x, the value d must correspond to the value of the most recent such message. Otherwise, the

value is read directly from memory. A skip instruction only changes the local state of the process. The

memory fence instruction is disabled, i.e. it cannot be executed, unless the buffer of the process is empty.

Additionally, at any point during the execution, the process can update the write message at the head of

its buffer to the memory. For example, if the oldest message in the buffer is 〈x,d〉, it will be removed

from the buffer and the memory value of variable x will be updated to contain the value d. This happens

in a non-deterministic manner.

Formally, we introduce a TSO configuration as a tuple c= 〈S,B,M〉, where:

• S : I−→
⋃

ι∈IQ
ι is a global state of P.

• B : I−→(Vars×Dom)∗ represents the buffer state of each process.

• M : Vars−→Dom represents the memory state of each shared variable.

Given a configuration c, we write S(c), B(c) and M(c) for the global program state, buffer state and

memory state of c. The semantics of a concurrent program running under TSO is defined by a transition

system TP = 〈CP ,LP ,−→P〉, where CP is the set of all possible TSO configurations, LP = {instrι |
instr ∈ Instrs, ι ∈ I}∪ {upι | ι ∈ I} is the set of labels. The transition relation −→P is given by the

rules in Figure 2, where we use B(ι)|{x}×Dom to denote the restriction of B(ι) to write messages on the

variable x.

A global state SF is reachable from an initial configuration c0, if there is a configuration cF with

S(cF) = SF such that cF is reachable from c0 in TP . The state reachability problem of TSO is, given a

program P, an initial configuration c0 and a final global state SF , to decide whether SF is reachable from

c0 in TP .

S. Spengler & S. Sil 87

We define up∗ to be the transitive closure of {upι | ι ∈ I}, i.e. c1
up∗

−−−→P c2 if and only if c2 can be

obtained from c1 by some amount of buffer updates.

4 Games

4.1 Definitions

A (safety) game is an unlabeled transition sytem, in which two players A and B take turns making a move

in the transition system, i.e. changing the state of the game from one configuration to an adjacent one.

The goal of player B is to reach a given set of final configurations, while player A tries to avoid this.

Thus, it can also be seen as a reachability game with respect to player B.

Formally, a game is defined as a tuple G = 〈C,CA,CB,−→,CF〉, where C is the set of configurations,

CA and CB form a partition of C, the transition relation is restricted to −→⊆ (CA×CB)∪ (CB×CA), and

CF ⊆ CA is a set of final states. Furthermore, we assume without loss of generality that G is deadlock-

free, i.e. Post(c) 6= /0 for all c ∈ C.

A play P of G is an infinite sequence c0,c1, . . . such that ci−→ci+1 for all i ∈ N. In the context of

safety games, P is winning for player B if there is i ∈ N such that ci ∈ CF . Otherwise, it is winning for

player A. This means that player B tries to force the play into CF , while player A tries to avoid this.

A strategy of player A is a partial function σA : C∗⇀ CB, such that σA(c0, . . . ,cn) is defined if and

only if c0, . . . ,cn is a prefix of a play, cn ∈ CA and σA(c0, . . . ,cn) ∈ Post(cn). A strategy σA is called

positional, if it only depends on cn, i.e. if σA(c0, . . . ,cn) = σA(cn) for all (c0, . . . ,cn) on which σA is

defined. Thus, a positional strategy is usually given as a total function σA : CA−→CB. Given two games

G and G′ and a strategy σA for G, an extension of σA to G′ is a strategy σ ′A of G′ that is also an extension

of σA to the configuration set of G′ in the mathematical sense, i.e. σA(c0, . . . ,cn) = σ ′A(c0, . . . ,cn) for all

(c0, . . . ,cn) on which σA is defined. Conversely, σA is called the restriction of σ ′A to G. For player B,

strategies are defined accordingly.

Two strategies σA and σB together with an initial configuration c0 induce a play P(c0,σA,σB) =
c0,c1, . . . such that ci+1 = σA(c0, . . . ,ci) for all ci ∈ CA and ci+1 = σB(c0, . . . ,ci) for all ci ∈ CB. A

strategy σA is winning from a configuration c, if for all strategies σB it holds that P(σA,σB,c) is a

winning play for player A. A configuration c is winning for player A if she has a strategy that is winning

from c. Equivalent notions exist for player B. The safety problem for a game G and a configuration c is

to decide whether c is winning for player A.

Lemma 1 (Proposition 2.21 in [23]). In safety games, every configuration is winning for exactly one

player. A player with a winning strategy also has a positional winning strategy.

Since we only consider safety games in this paper, strategies will be considered to be positional

unless explicitly stated otherwise. Furthermore, Lemma 1 implies the following:

• cA ∈ CA is winning for player A ⇐⇒ there is cB ∈ Post(cA) that is winning for player A.

• cB ∈ CB is winning for player A ⇐⇒ all cA ∈ Post(cB) are winning for player A.

A finite game is a game with a finite set of configurations. It is rather intuitive that the safety problem

is decidable for finite games, e.g. by applying a backward induction algorithm. In particular, the winning

configurations for each player are computable in linear time:

Lemma 2 (Chapter 2 in [19]). Computing the set of winning configurations for a finite game with n

configurations and m transitions is in O(n+m).

88 TSO Games

4.2 TSO games

A TSO program P = 〈Procι〉ι∈I and a set of final local states QP
F ⊆QP induce a safety game G(P,QP

F)=
〈C,CA,CB,−→,CF〉 as follows. The sets CA and CB are copies of the set CP of TSO configurations, an-

notated by A and B, respectively: CA := {cA | c ∈ CP} and CB := {cB | c ∈ CP}. The set of final config-

urations is defined as CF := {〈S,B,M〉A ∈ CA | ∃ ι ∈ I : S(ι) ∈ QP
F }, i.e. the set of all configurations

where at least one process is in a final state. The transition relation −→ is defined by the following rules:

• For each transition c
instrι−−−−→P c′ where c,c′ ∈ CP , ι ∈ I and instr ∈ Instrs, it holds that cA−→c′B

and cB−→c′A. This means that each player can execute any TSO instruction, but they take turns

alternatingly.

• If player A can update before her own turn: For each transition cA−→c′B introduced by any of the

previous rules, it holds that c̃A−→c′B for all c̃ with c̃
up∗

−−−→P c.

• If player A can update after her own turn: For each transition cA−→c′B introduced by any of the

previous rules, it holds that cA−→ c̃′B for all c̃′ with c′
up∗

−−−→P c̃′.

• The update rules for player B are defined in a similar manner.

From this definition, we obtain 16 different variants of TSO games, which differ in whether each of

the players can update never, before her turn, after her turn, or always (before and after her turn). We

group games with similar decidability and complexity results together. An overview of these four groups

is presented in Figure 1. Each group is described in detail in the following sections.

But first, we present a general result that gives a lower complexity bound for all groups of TSO

games. Unexpectedly, even a single process is enough to show EXPTIME-hardness. We prove this by

reducing the word acceptance problem of linearly bounded alternating Turing machines (ATM) to the

safety problem of a single-process TSO game. The idea is to store the state and head position of the ATM

in the local state of the process, and use a set of variables to save the word on the working tape. Based on

the alternations of the Turing machine, either player A or player B decides which transition the program

will simulate. Interestingly, we can argue that the exact type of TSO game is irrelevant. Moreover, the

construction does not make use of the memory buffers, which implies that the result would even hold

if the program followed SC semantics. The formal proof can be found in Appendix A of the extended

version of this paper [28].

Theorem 3. The safety problem for TSO games is EXPTIME-hard.

5 Group I

All TSO games in this group have the following in common: There is one player that can update messages

after her turn, and the other player can update messages before her turn. Both players might be allowed to

do more than that, but fortunately we do not need to differentiate between those cases. In the following,

we call the player that updates after her turn player X, and the other one player Y. Although the definition

of safety games seems to be of asymmetric nature (player B tries to reach a final configuration, while

player A tries to avoid them), the proof does not rely on the exact identity of player X and Y.

In this section, given a configuration c, we write c̄ to denote the unique configuration obtained from

c after updating all messages to the memory. More formally, c
up∗

−−−→ c̄ and all buffers of c̄ are empty.

Let G = 〈C,CA,CB,−→,CF〉 be a TSO game as described above, currently in some configuration

c0 ∈ C. We first consider the situation where player X has a winning strategy σX from c0. Let σY be an

S. Spengler & S. Sil 89

c c′

c̄′

c′′
σX

σ̄X

up∗

σ̄Y

σY

Figure 3: Commutative diagram of strategies in games of group I.

arbitrary strategy for player Y and define two more strategies σ̄X : c 7→ σX(c) and σ̄Y : c 7→ σY (c̄). That is,

they act like σX and σY , respectively, with the addition that σ̄X empties the buffer after each turn and σ̄Y

empties the buffer before each turn. From the definitions it follows directly that σ̄Y (σX(c)) = σY (σ̄X (c))
for all c ∈ CX . An example can be seen in Figure 3.

We argue that σ̄X is a winning strategy for player X. The intuition behind this is as follows: Using

the notation of Figure 3, if a configuration c′′ is reachable from c̄′, then it is also reachable from c′, since

player Y can empty all buffers at the start of her turn and then proceed as if she started in c̄′. On the other

hand, there might be configurations reachable from c′ but not c̄′, for example a read transition might get

disabled by one of the buffer updates. Thus, player X never gets a disadvantage by emptying the buffers.

Claim 4. σ̄X is a winning strategy from c0.

Proof. Case c0 ∈ CX : Since σ̄Y (σX(c)) = σY (σ̄X(c)) for all c ∈ CX , the plays P1 = P(c0,σX , σ̄Y) and

P2 = P(c0, σ̄X ,σY) agree on every second configuration, i.e. the configurations in CX . Moreover,

the configurations in between (after an odd number of steps) at least share the same global state, i.e.

S(σX(c)) = S(σ̄X(c)). In particular, the sequence of visited global TSO states is the same in both plays.

Since σX is a winning strategy from c0, it means that P1 is winning for player X. This means that P2 is

also winning, because for both players, a winning play is clearly determined by the sequence of visited

global TSO states. Because we chose σY arbitrarily, it follows that σ̄X is a winning strategy.

Case c0 ∈ CY : For the other case, we consider the configurations in Post(c0) instead. We observe that

σX must be a winning strategy for all c ∈ Post(c0). We apply the first case of this proof to each of these

configurations and obtain that σ̄X is a winning strategy for all of them. It follows that σ̄X is a winning

strategy for c0.

Suppose that player X plays her modified strategy as described above. We observe that after at most

two steps, every play induced by her strategy and an arbitrary strategy of the opposing player only visits

configurations with at most one message in the buffers: Player X will empty all buffers at the end of each

of her turns and player Y can only add at most one message to the buffers in between. Hence, they can

play on a finite set of configurations instead.

To show this, we construct a finite game G′ = 〈C′,C′A,C
′
B,−→

′,C′F〉 as follows. C′Y contains all con-

figurations of CY that have at most one buffer message, i.e. {〈S,B,M〉Y ∈ CY | ∑ι∈I |B(ι)| ≤ 1}. If

c0 ∈ CY , we also add it to C′Y , otherwise to C′X . Lastly, we add Post(C′Y) to C′X , where Post is with respect

to G. −→′ is defined as the restriction of −→ to configurations of G′, and C′F = CF ∩C
′
A. Note that C′X also

contains configurations with two messages. This is needed to account for the case that player Y has a

winning strategy, which is handled later in this proof. Now, let σ̄ ′X be the restriction of σ̄X to C′X (in the

mathematical sense, i.e σ̄ ′X : C′X−→CY and σ̄X(c) = σ̄ ′X(c) for all c ∈ C′X).

Claim 5. σ̄ ′X is a winning strategy for c0 in G′.

90 TSO Games

Proof. Looking at the definitions, we confirm that σ̄ ′X actually is a valid strategy for G′, i.e. σ̄ ′X(c) ∈ C′Y ,

for all c ∈ C′X , since σ̄ ′X(c) has empty buffers. (This makes σ̄ ′X the restriction of σ̄X to G′.) Consider a

strategy σ ′Y for player Y in G′ and an arbitrary extension σY to G. Because σ̄ ′X and σ̄X agree on C′X and

σ̄ ′Y and σ̄Y agree on C′Y , P= P(c0, σ̄
′
X , σ̄Y) and P′ = P(c0, σ̄

′
X , σ̄Y) are in fact the exact same play. Since

σ̄X is a winning strategy, P is a winning play, and thus also P′. Here, note that G and G′ agree on the

final configurations within C′. Since σ ′Y was arbitrary, it follows that σ̄ ′X is a winning strategy from c0 in

G′.

What is left to show is that a winning strategy for G′ induces a winning strategy for G. Suppose σ ′X
is a winning strategy for player X in game G′ for the configuration c0. Let σX be an arbitrary extension

of σ ′X to G.

Claim 6. σX is a winning strategy for c0 in G.

Proof. Let σY be a strategy of player Y in G and σ ′Y the restriction of σY to C′Y (again, in the mathematical

sense). Since the outgoing transitions of every c ∈ C′Y are the same in both G and G′, σ ′Y is a strategy

for G′ (and the restriction of σY to G′). Furthermore, starting from c0, we see that σX and σY induce the

exact same play in G as σ ′X and σ ′Y in G′. Since the former play is winning, so must be the latter one.

Now, we quickly cover the situation where it is player Y that has a winning strategy. We follow the

same arguments as previously, with minor changes. This time, assume σY to be a winning strategy and

let σX be arbitrary. Define σ̄X and σ̄Y as above. Following the beginning of the proof of Claim 4, we

can conclude that the sequence of visited global TSO states is the same in both play P1 and P2. For the

remainder of the proof, we swap the roles of X and Y and obtain that σ̄Y is a winning strategy.

Let σ̄ ′Y be the restriction of σ̄Y to C′Y . Since σ̄ ′Y (C
′
Y) = σ̄Y (C

′
Y) ⊆ Post(C′Y) ⊆ C′X , it follows that

σ̄ ′Y is a strategy of G′ (Post is again with respect to G). Consider a strategy σ ′X for player X in G′ and

an arbitrary extension σX to G. Similar as in Claim 5, we see that P(c0, σ̄
′
X , σ̄Y) = P(c0, σ̄

′
X , σ̄Y) and

conclude that σ̄ ′Y is a winning strategy.

The other direction follows from the proof of Claim 6, with the roles of X and Y swapped.

Theorem 7. The safety problem for games of group I is EXPTIME-complete.

Proof. By Claim 4 and Claim 5, if a configuration c0 is winning for player X in G, then it is also win-

ning in G′. The reverse holds by Claim 6. The equivalent statement for player Y follows from results

outlined above. Thus, the safety problem for G is equivalent to the safety problem for G′. G′ is finite and

has exponentially many configurations. EXPTIME-completeness follows immediately from Lemma 2

(membership) and Theorem 3 (hardness).

Remark 8. In the game where both players are allowed to update the buffer at any time, we can show

an interesting conclusion. By Claim 4 and the equivalent statement for the second player, we can restrict

both players to strategies that empty the buffer after each turn. Thus, the game is played only on configu-

rations with empty buffer, except for the initial configuration which might contain some buffer messages.

This implies that the TSO program that is described by the game implicitly follows SC semantics.

6 Group II

This group contains TSO games where both players are allowed to update the buffer only before their

own move. Let player X be the player that has a winning strategy and player Y her opponent. Note that

S. Spengler & S. Sil 91

c

c̄

c′

c̃′

c′′
σX

instrι

σ̄X

up∗

instrι

up∗

σ̄Y

σY

Figure 4: Commutative diagram of strategies in games of group II, in the case where instrι 6= rd(x,d).

this differs from the previous section, in which the players X and Y were defined based on their updating

capabilties.

Similar to the argumentation for Group I, we want to show that player X also has a winning strategy

where she empties the buffer in each move. But, in contrast to before, this time there is an exception:

Since the player has to update the buffer before her move, by updating a memory variable she might

disable a read transition that she intended to execute. Thus, we do not require her to empty the buffer in

that case.

Formally, let G = 〈C,CX ,CY ,−→,CF〉 be a TSO game where both players are allowed to perform

buffer updates exactly before their own moves. Suppose σX is a winning strategy for player X and some

configuration c0. We construct another strategy σ̄X for player X. Let c ∈ CX , c′ = σX(c) and c̄ as in

the previous section, i.e. the unique configuration such that c
up∗

−−−→P c̄ and the buffers of c are empty.

Suppose that c
instrι−−−−→P c′, where instrι is not a read instruction. Then, starting from c, updating all

buffer messages does not change that the transition from S(c)(ι) to S(c′)(ι) is enabled. Thus, instrι can

also be executed from c̄. We call the resulting configuration c̃′ and observe that c̄−→P c̃′ and c′
up∗

−−−→ c̃′.

We define σ̄X(c) = c̃′. This can be seen in Figure 4. Note that c̃′ may have at most one message in its

buffers. In the other case, where there is no transition from c to c′ other than read instructions, we define

σ̄X(c) = σX(c) = c′.

Claim 9. σ̄X is a winning strategy for c0.

Proof. First, suppose that c0 ∈ CX and let σY be an arbitrary strategy of player Y. We define another

(non-positional) strategy σ̄Y , that depends on the last two configurations, by σ̄Y (c,c
′) = σY (σ̄X(c)). We

observe that for all c ∈ CX , it holds that σ̄Y (c,σX(c)) = σY (σ̄X(c)). It follows that the play P1 induced

by σX and σ̄Y and the play P2 induced by σ̄X and σY agree on every second configuration, i.e. the

configurations in CX . In particular, the sequence of visited global TSO configurations is the same in

both plays. Since σX is winning, it means that P1 is winning for player X and thus also P2 is winning.

Because we chose σY arbitrarily, it follows that σ̄X is a winning strategy.

Otherwise, if c0 ∈ CY , we consider the successors of c0 instead. We note that σ̄X must also be a

winning strategy for each c ∈ Post(c0). But then, we can apply the previous arguments to each of those

configurations and conclude that σ̄X is a winning strategy for all of them. Thus, it is also a winning

strategy for c0.

We conclude that if player X has a winning strategy σX , then she also has a winning strategy σ̄X

where she empties the buffers before every turn in which she does not perform a read operation. By

symmetry, the same holds true for player Y. Thus, we can limit our analysis to this type of strategies.

We see that the number of messages in the buffers is bounded: Suppose that the game is in configuration

92 TSO Games

c ∈ CX . Then, σ̄X either empties the buffer and adds at most one new message, or it performs a transition

due to a read instruction, which does not increase the size of the buffers. The analogous argumentation

holds for player Y. Hence, we can reduce the game to a game on bounded buffers, which is finite state

and thus decidable.

Given the configuration c0 as above, we construct a finite game G′ = 〈C′,C′X ,C
′
Y ,−→

′,C′F〉 as follows.

The set C′X contains all configurations from CX which have at most as many buffer messages than c0

(or at most one message, if c0 has empty buffers): C′X = {c ∈ CX | |B(c)| ≤max{1, |B(c0)|}}, where

|B|= ∑ι∈I |B(ι)|. The set C′Y is defined accordingly. Note that both sets are finite. Lastly, −→′ is defined

as the restriction of −→ to configurations of G′, and C′F = CF ∩C
′
A. We define σ̄ ′X to be the restriction of

σ̄X to C′X . Since σ̄ ′X(c) ∈ C′Y for all c ∈ C′X , σ̄ ′X is indeed a valid strategy for G′. In particular, it is the

restriction of σ̄X to G′.

Claim 10. σ̄ ′X is a winning strategy for c0 in G′.

Proof. First, consider the case where c0 ∈ CX . Let σ ′Y be a strategy for player Y in G′ and let σY be an

arbitrary extension of σ ′Y to G. The play P induced by σ̄X and σY in G is the same as the play P′ induced

by σ̄ ′X and σ ′Y in G′. Since σ̄X is a winning strategy, P is a winning play. It follows that P′ must also be

a winning strategy. Since σ ′Y was arbitrary, it follows that σ̄ ′X is a winning strategy and c0 is winning in

G′.

Theorem 11. The safety problem for games of group II is EXPTIME-complete.

Proof. By Claim 9 and Claim 10, if a configuration c0 is winning for player A in game G, then it is also

winning in G′. The same holds true for player B. Thus, the safety problem for G is equivalent to the safety

problem for G′. Similar to the games of group I, G′ is finite and has exponentially many configurations.

By Lemma 2 and Theorem 3, we can again conclude that the safety problem is EXPTIME-complete.

7 Group III

This group consists of all games where exactly one player has control over the buffer updates, and

additionally the game where both players are allowed to update buffer messages after their own move.

Intuitively, all of them have in common that the TSO program can attribute a buffer update to one specific

player. If only one player can update messages, this is clear. In the other game, the first player who ob-

serves that a buffer message has reached the memory is not the one who has performed the buffer update.

Thus, the program is able to punish misbehaviour, i.e. not following protocols or losing messages.

We will show that the safety problem is undecidable for this group of games. To accomplish that,

we reduce the state reachability problem of PCS to the safety problem of each game. Since the former

problem is undecidable, so is the latter.

The case where player A is allowed to perform buffer updates at any time is called the A-TSO game.

It is explained in detail in the following. The other cases work similar, but require slightly different

program constructions. They are presented in the appendix [28].

Consider the A-TSO game, i.e. the case where player A can update messages at any time, but player

B can never do so. Given a PCS L = 〈S,M,−→L〉 and a final state sF ∈ S, we construct a TSO program

P that simulates L. We design the program such that sF is reachable in L if and only if player B wins

the safety game induced by P. Thus, the construction gives her the initiative to decide which transitions

of L will be simulated. Meanwhile, the task of player A is to take care of the buffer updates.

S. Spengler & S. Sil 93

P consists of three processes Proc1, Proc2 and Proc3, that operate on the variables {xwr,xrd,y} over

the domain M⊎{0,1,⊥}. The first process simulates the control flow and the message channel of the

PCS L. The second process provides a mean to read from the channel. The only task of the third process

is to prevent deadlocks, or rather to make any deadlocked player lose. Proc3 achieves this with four

states: the initial state, an intermediate state, and one winning state for each player, respectively. If one

of the players cannot move in both Proc1 and Proc2, they have to take a transition in Proc3. From the

initial state of this process, there exists only one outgoing transition, which is to the intermediate state.

From there, the other player can move to her respective winning state and the process will only self-loop

from then on. For player A, her state is winning because she can refuse to update any messages, which

will ensure that player B keeps being deadlocked in Proc1 and Proc2. For player B, her state simply is

contained in QP
F . In the following, we will mostly omit Proc3 from the analysis and just assume that both

players avoid reaching a configuration where they cannot take any transition in either Proc1 or Proc2.

As mentioned above, we will construct Proc1 and Proc2 to simulate the perfect channel system in a

way that gives player B the control about which channel operation will be simulated. To achieve this,

each channel operation will need an even number of transitions to be simulated in P. Since player B

starts the game, this means that after every fully completed simulation step, it is again her turn and she

can initiate another simulation step as she pleases. Furthermore, during the simulation of a skip or send

operation, we want to prevent player A from executing Proc2, since this process is only needed for the

receive operation. Suppose that we want to block player A from taking a transition q
instr
−−−→P q′. We add

a new transition q′
skip
−−−→P qF , where qF ∈ S

P
F . Hence, reaching q′ is immediately losing for player A,

since player B can respond by moving to qF .

Next, we will describe how Proc1 and Proc2 simulate the perfect channel system L. For each tran-

sition in L, we construct a sequence of transitions in Proc1 that simulates both the state change and the

channel behaviour of the L-transition. To achieve this, Proc1 uses its buffer to store the messages of

the PCS’s channel. In particular, to simulate a send operation !m, Proc1 adds the message 〈xwr,m〉 to

its buffer. For receive operations, Proc1 cannot read its own oldest buffer message, since it is overshad-

owed by the more recent messages. Thus, the program uses Proc2 to read the message from memory

and copies it to the variable xrd, where it can be read by Proc1. We call the combination of reading a

message m from xwr and writing it to xrd the rotation of m.

While this is sufficient to simulate all behaviours of the PCS, it also allows for additional behaviour

that is not captured by L. More precisely, we need to ensure that each channel message is received once

and only once. Equivalently, we need to prevent the loss and duplication of messages. This can happen

due to multiple reasons.

The first phenomenon that allows the loss of messages is the seeming lossiness of the TSO buffer.

Although it is not strictly lossy, it can appear so: Consider an execution of P that simulates two send op-

erations !m1 and !m2, i.e. Proc1 adds 〈xwr,m1〉 and 〈xwr,m2〉 to its buffer. Assume that player A decides

to update both messages to the memory, without Proc2 performing a message rotation in between. The

first message m1 is overwritten by the second message m2 and is lost beyond recovery.

To prevent this, we extend the construction of Proc1 such that it inserts an auxiliary message 〈y,1〉
into its buffer after the simulation of each send operation. After a message rotation, that is, after Proc2

copied a message from xwr to xrd, the process then resets the value of xwr to its initial value ⊥. Next,

the process checks that y contains the value 0, which indicates that only one message was updated to the

memory. Now, player A is allowed to update exactly one 〈y,1〉 buffer message, after which Proc2 resets

y to 0. To ensure that player A has actually updated only one message in this step, Proc2 then checks

that xwr is still empty. Since player A is exclusively responsible for buffer updates, Proc2 deadlocks her

94 TSO Games

whenever one of these checks fails.

In the next scenario, we discover a different way of message loss. Consider again an execution of

P that simulates two send operations !m1 and !m2. Assume Player A updates m1 to the memory and

Proc2 performs a message rotation. Immediately afterwards, the same happens to m2, without Proc1

simulating a receive operation in between. Again, m1 is overwritten by m2 before being received, thus it

is lost.

Player A is prevented from losing a message in this way by disallowing her to perform a complete

message rotation (including the update of one 〈y,1〉-message and the reset of the variables) entirely on

her own. More precisely, we add a winning transition for player B to Proc2 that she can take if and only

if player A is the one initiating the update of 〈y,1〉. On the other hand, player A can prevent player B

from performing two rotations right after each other by refusing to update the next buffer message until

Proc1 initiates the simulation of a receive operation.

Lastly, we investigate message duplication. This occurs if Proc1 simulates two receive operations

without Proc2 performing a message rotation in between. In this case, the most recently rotated message

is received twice.

The program prevents this by blocking Proc1 from progressing after a receive operation until Proc2

has finished a full rotation. In detail, at the very end of the message rotation and 〈y,1〉-update, Proc2

reset the value of xrd to its initial value ⊥. After simulating a receive operation, Proc1 is blocked until it

can read this value from memory.

This concludes the mechanisms implemented to ensure that each channel message is received once

and only once. Thus, we have constructed an A-TSO game that simulates a perfect channel system. We

summarise our results in the following theorem. The formal proof can be found in Appendix B [28].

Theorem 12. The safety problem for the A-TSO game is undecidable.

8 Group IV

In TSO games where no player is allowed to perform any buffer updates, there is no communication

between the processes at all. A read operation of a process Procι on a variable x either reads the initial

value from the shared memory, or the value of the last write of Procι on x from the buffer, if such a write

operation has happened.

Thus, we are only interested in the transitions that are enabled for each process, but we do not need

to care about the actual buffer content. In particular, the information that we need to capture from the

buffers and the memory is the values that each process can read from the variables, and whether a process

can execute a memory fence instruction or not. Together with the global state of the current configuration,

this completely determines the enabled transitions in the system.

We call this concept the view of the processes on the concurrent system and define it formally as a

tuple v= 〈S,V,F〉, where:

• S : I−→
⋃

ι∈IQ
ι is a global state of P.

• V : I ×Vars−→Dom defines which value each process reads from a variable.

• F : I−→{true, false} represents the possibility to perform a memory fence instruction.

Given a view v= 〈S,V,F〉, we write S(v), V(v) and F(v) for the global program state S , the value state

V and the fence state F of v.

The view of a configuration c is denoted by v(c) and defined in the following way. First, S(v(c)) =
S(c). For all ι ∈ I and x ∈ Vars, if B(c)(ι)|{x}×Dom = 〈x,d〉 ·w, then V(v(c))(ι ,x) = d. Otherwise,

S. Spengler & S. Sil 95

V(v(c))(ι ,x) =M(c)(x). Lastly, F(v(c))(ι) = true if and only if B(c)(ι) = ε . We extend the notation

to sets of configurations in the usual way, i.e. v(C′) = {v(c) | c ∈ C′}.
For c,c′ ∈ CP , if v(c) = v(c′), then we write c≡ c′ and say that c and c′ are view-equivalent. In such

a case, a local process of P cannot differentiate between c and c′ in the sense that the enabled transitions

in both configurations are the same. Lemma 13 captures this idea formally.

Lemma 13. For all c1,c2,c3 ∈ CP , ι ∈ I and instr ∈ Instrs with c1
instrι−−−−→c2 and c1 ≡ c3, there exists a

c4 ∈ CP such that c3
instrι−−−−→c4 and c2 ≡ c4.

Proof. We first show that instrι is enabled at c3. Since c1 ≡ c3, it holds that S(c1) = S(c3). Furthermore,

if instrι = rd(x,d)ι , then V(v(c1))(ι ,x) = V(v(c3))(ι ,x) = d. Also, if instrι = mfι , then F(v(c1))(ι) =
F(v(c3))(ι) = ε . From these considerations and the definition of the TSO semantics (see Figure 2), it

follows that instrι is indeed enabled at c3.

Let c4 be the configuration obtained after performing instrι , i.e. c3
rd(x,d)ι
−−−−−→c4. It holds that S(c4) =

S(c2) = S(c1)[ι ← S(c2)(ι)]. If instrι = wr(x,d)ι , then V(v(c4)) = V(v(c2)) = V(v(c1))[(ι ,x)← d]
and F(v(c4)) = F(v(c2)) = F(v(c1))[ι ← false]. Otherwise, V(v(c4)) = V(v(c2)) = V(v(c1)) and

F(v(c4)) = F(v(c2)) = F(v(c1)). In all cases it follows that c2 ≡ c4.

We define a finite safety game played on TSO views and show that we can restrict our analysis to this

game. Let G = 〈C,CA,CB,−→,CF〉 be a TSO game where neither player can perform any updates. We

define a new game G′ = 〈V,VA,VB,−→
′,VF〉 that is played on the views of G. We define VA = {v(c)A |

cA ∈ CA}, VB = {v(c)B | cB ∈ CB}, V= VA∪VB and VF = {v(c)A | cA ∈ CF}. Lastly, v(c)−→′ v(c′) if and

only if c−→c′. This is well-defined by Lemma 13.

Lemma 14. A configuration c0 ∈C is winning (for player A / B) in G if and only if the view v0 = v(c0)∈V
is winning (for player A / B) in G′.

Proof. To simplify notation, we extend v(c) to configurations of TSO games by v(cA) = v(c)A and

v(cB) = v(c)B for cA ∈ CA and cB ∈ CB. Hence, we can write VA = v(CA) and similar.

Suppose c0 is winning for some player X with (positional) strategy σX and consider the case c0 ∈ CX .

In the following, we will define a (non-positional) strategy σ ′X for G′.
First, we need an auxiliary function f : C×V−→C that fulfills the condition: For all c ∈ C and v ∈ V

such that v(c)−→′ v, it holds that c−→ f (c,v) and v = v(f (c,v)). Intuitively, f selects a successor of c

with view v. Such a function exists by Lemma 13.

For n even and a sequence v0, . . . ,vn, iteratively define c2i−1 = σ(c2i−2) and c2i = f (c2i−1,v2i) for

i = 1, . . . ,n/2. Then, σ ′X(v0, . . . ,vn) = v(σX (cn)). We will show that σ ′X is a winning strategy for v0.

Consider a positional strategy σ ′Y for player Y in G′. We define a positional strategy σY for player Y

in G by σY (c) = f (c,σ ′Y (v(c))). Consider the play P = c0,c1, . . . induced by σX and σY , and the play

P′ = v0,v1, . . . induced by σ ′X and σ ′Y .

We proof by induction over k, that (i) vk = v(ck) and (ii) ck of P coincides with ck as in the definition

of σ ′X . In this context, we refer to the latter with c̄k. For k = 0, v0 = v(c0) and c0 = c̄0 by definition. For

k odd, ck = σX(ck−1) = c̄k by the induction hypothesis. Also,

vk = σ ′X(v0, . . . ,vk−1) = v(σX(c̄k−1)) = v(σX(ck−1)) = v(ck) .

For k > 0 even,

ck = σY (ck−1) = f (ck−1,σ
′
Y (v(ck−1))) = f (c̄k−1,σ

′
Y (vk−1)) = f (c̄k−1,vk) = c̄k .

96 TSO Games

Lastly,

v(ck) = v(σY (ck−1)) = v(f (ck−1,σ
′
Y (v(ck−1)))) = v(f (ck−1,σ

′
Y (vk−1))) = v(f (ck−1,vk)) = vk ,

where the last equality follows from the definition of f .

Since σX is a winning strategy for c0, P is a winning play for player X. From the definition of VF

it follows that P′ is a winning play in G′ and thus v0 is winning for player X. Note that by Lemma 1,

we could have chosen a positional strategy in place of σ ′X . Since we did not put any restrictions on the

identity of player X, this concludes both the if and the only if direction of the proof for the case c0 ∈ CX .

Otherwise, if c0 ∈CY , we consider all configurations of Post(c0) instead. We have the following chain

of equivalences: c0 is winning ⇐⇒ all c ∈ Post(c0) are winning ⇐⇒ all v ∈ v(Post(c0)) are winning

⇐⇒ all v ∈ Post(v(c0)) are winning ⇐⇒ v(c0) is winning. Here, the second equivalence applies the

first case of this proof and the third equivalence uses Post(v(c0)) = v(Post(c0)), which follows from the

definition of G′.

Theorem 15. The safety problem for games in group IV is EXPTIME-complete.

Proof. By Lemma 14, the safety problem for G is equivalent to the safety problem of G′, which is

played on views. Since there exist only exponentially many views, EXPTIME-completeness follows

from Lemma 2 and Theorem 3, similar to Group I and II.

9 Conclusion and Future Work

In this work we have addressed for the first time the game problem for programs running under weak

memory models in general and TSO in particular. Surprisingly, our results show that depending on when

the updates take place, the problem can turn out to be undecidable or decidable. In fact, there is a subtle

difference between the decidable (group I, II and IV) and undecidable (group III) TSO games. For the

former games, when a player is taking a turn, the system does not know who was responsible for the last

update. But for the latter games, the last update can be attributed to a specific player. Another surprising

finding is the complexity of the game problem for the groups I, II and IV which is EXPTIME-complete

in contrast with the non-primitive recursive complexity of the reachability problem for programs running

under TSO and the undecidability of the repeated reachability problem.

In future work, the games where exactly one player has control over the buffer seem to be the most

natural ones to expand on. In particular, the A-TSO game (where player A can update before and after

her move) and the B-TSO game (same, but for player B). On the other hand, the games of groups I, II

and IV seem to be degenerate cases and therefore rather uninteresting. In particular, they do not seem to

be more powerful than games on programs that follow SC semantics.

Another direction for future work is considering other memory models, such as the partial store

ordering semantics, the release-acquire semantics, and the ARM semantics. It is also interesting to define

stochastic games for programs running under TSO as extension of the probabilistic TSO semantics [1].

S. Spengler & S. Sil 97

References

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Raj Aryan Agarwal, Adwait Godbole & Shankara Narayanan

Krishna (2022): Probabilistic Total Store Ordering. In Ilya Sergey, editor: Programming Languages and

Systems - 31st European Symposium on Programming, ESOP 2022, Held as Part of the European Joint Con-

ferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,

Lecture Notes in Computer Science 13240, Springer, pp. 317–345, doi:10.1007/978-3-030-99336-8_12.

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani & Tuan Phong Ngo (2016): The Benefits

of Duality in Verifying Concurrent Programs under TSO. In Josée Desharnais & Radha Jagadeesan, edi-

tors: 27th International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec

City, Canada, LIPIcs 59, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 5:1–5:15, doi:10.4230/

LIPIcs.CONCUR.2016.5.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani & Tuan Phong Ngo (2018): A Load-Buffer

Semantics for Total Store Ordering. Log. Methods Comput. Sci. 14(1), doi:10.23638/LMCS-14(1:9)2018.

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson & Ahmed Rezine (2012):

Counter-Example Guided Fence Insertion under TSO. In Cormac Flanagan & Barbara König, editors: Tools

and Algorithms for the Construction and Analysis of Systems - 18th International Conference, TACAS 2012,

Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,

Estonia, March 24 - April 1, 2012. Proceedings, Lecture Notes in Computer Science 7214, Springer, pp.

204–219, doi:10.1007/978-3-642-28756-5_15.

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Florian Furbach, Adwait Amit Godbole, Yacoub G. Hendi,

Shankara Narayanan Krishna & Stephan Spengler (2023): Parameterized Verification under TSO with Data

Types. In Sriram Sankaranarayanan & Natasha Sharygina, editors: Tools and Algorithms for the Con-

struction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of the Eu-

ropean Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27,

2023, Proceedings, Part I, Lecture Notes in Computer Science 13993, Springer, pp. 588–606, doi:10.1007/

978-3-031-30823-9_30.

[6] Parosh Aziz Abdulla, Mohamed Faouzi Atig & Ngo Tuan Phong (2015): The Best of Both Worlds: Trading

Efficiency and Optimality in Fence Insertion for TSO. In Jan Vitek, editor: Programming Languages and

Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,

Lecture Notes in Computer Science 9032, Springer, pp. 308–332, doi:10.1007/978-3-662-46669-8_13.

[7] Parosh Aziz Abdulla, Mohamed Faouzi Atig & Rojin Rezvan (2020): Parameterized verification under TSO

is PSPACE-complete. Proc. ACM Program. Lang. 4(POPL), pp. 26:1–26:29, doi:10.1145/3371094.

[8] Parosh Aziz Abdulla, Ahmed Bouajjani & Julien d’Orso (2008): Monotonic and Downward Closed Games.

J. Log. Comput. 18(1), pp. 153–169, doi:10.1093/logcom/exm062.

[9] Parosh Aziz Abdulla & Bengt Jonsson (1994): Undecidable Verification Problems for Programs with Unre-

liable Channels. In Serge Abiteboul & Eli Shamir, editors: Automata, Languages and Programming, 21st

International Colloquium, ICALP94, Jerusalem, Israel, July 11-14, 1994, Proceedings, Lecture Notes in

Computer Science 820, Springer, pp. 316–327, doi:10.1007/3-540-58201-0_78.

[10] Parosh Aziz Abdulla & Bengt Jonsson (1996): Verifying Programs with Unreliable Channels. Inf. Comput.

127(2), pp. 91–101, doi:10.1006/inco.1996.0053.

[11] ARM (2014): ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition. Available at https://

developer.arm.com/documentation/ddi0406/latest/.

[12] Mohamed Faouzi Atig (2020): What is decidable under the TSO memory model? ACM SIGLOG News 7(4),

pp. 4–19, doi:10.1145/3458593.3458595.

[13] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt & Madanlal Musuvathi (2010): On the veri-

fication problem for weak memory models. In Manuel V. Hermenegildo & Jens Palsberg, editors: Proceedings

https://doi.org/10.1007/978-3-030-99336-8_12
https://doi.org/10.4230/LIPIcs.CONCUR.2016.5
https://doi.org/10.4230/LIPIcs.CONCUR.2016.5
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.1007/978-3-642-28756-5_15
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1145/3371094
https://doi.org/10.1093/logcom/exm062
https://doi.org/10.1007/3-540-58201-0_78
https://doi.org/10.1006/inco.1996.0053
https://developer.arm.com/documentation/ddi0406/latest/
https://developer.arm.com/documentation/ddi0406/latest/
https://doi.org/10.1145/3458593.3458595

98 TSO Games

of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010,

Madrid, Spain, January 17-23, 2010, ACM, pp. 7–18, doi:10.1145/1706299.1706303.

[14] Ahmed Bouajjani, Egor Derevenetc & Roland Meyer (2013): Checking and Enforcing Robustness against

TSO. In Matthias Felleisen & Philippa Gardner, editors: Programming Languages and Systems - 22nd

European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, Lecture Notes

in Computer Science 7792, Springer, pp. 533–553, doi:10.1007/978-3-642-37036-6_29.

[15] Ahmed Bouajjani, Roland Meyer & Eike Möhlmann (2011): Deciding Robustness against Total Store Order-

ing. In Luca Aceto, Monika Henzinger & Jirı́ Sgall, editors: Automata, Languages and Programming - 38th

International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II, Lecture

Notes in Computer Science 6756, Springer, pp. 428–440, doi:10.1007/978-3-642-22012-8_34.

[16] Daniel Brand & Pitro Zafiropulo (1983): On Communicating Finite-State Machines. J. ACM 30(2), pp.

323–342, doi:10.1145/322374.322380.

[17] Ashok K. Chandra, Dexter Kozen & Larry J. Stockmeyer (1981): Alternation. J. ACM 28(1), pp. 114–133,

doi:10.1145/322234.322243.

[18] Alain Finkel & Philippe Schnoebelen (2001): Well-structured transition systems everywhere! Theor. Comput.

Sci. 256(1-2), pp. 63–92, doi:10.1016/S0304-3975(00)00102-X.

[19] Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors (2002): Automata, Logics, and Infinite Games:

A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001]. Lecture Notes in Computer

Science 2500, Springer, doi:10.1007/3-540-36387-4.

[20] IBM (2021): Power ISA, Version 3.1b. Available at https://files.openpower.foundation/s/

dAYSdGzTfW4j2r2/download/OPF_PowerISA_v3.1B.pdf.

[21] Intel Corporation (2012): Intel 64 and IA-32 Architectures Software Developers Manual. Available at

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.

html.

[22] Leslie Lamport (1979): How to Make a Multiprocessor Computer That Correctly Executes Multiprocess

Programs. IEEE Trans. Computers 28(9), pp. 690–691, doi:10.1109/TC.1979.1675439.

[23] René Mazala (2001): Infinite Games. In Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors: Au-

tomata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February

2001], Lecture Notes in Computer Science 2500, Springer, pp. 23–42, doi:10.1007/3-540-36387-4_2.

[24] Scott Owens, Susmit Sarkar & Peter Sewell (2009): A Better x86 Memory Model: x86-TSO. In Stefan

Berghofer, Tobias Nipkow, Christian Urban & Makarius Wenzel, editors: Theorem Proving in Higher Order

Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings,

Lecture Notes in Computer Science 5674, Springer, pp. 391–407, doi:10.1007/978-3-642-03359-9_27.

[25] Philippe Schnoebelen (2002): Verifying lossy channel systems has nonprimitive recursive complexity. Inf.

Process. Lett. 83(5), pp. 251–261, doi:10.1016/S0020-0190(01)00337-4.

[26] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli & Magnus O. Myreen (2010): x86-

TSO: a rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7), pp. 89–97,

doi:10.1145/1785414.1785443.

[27] SPARC International, Inc. (1994): SPARC Architecture Manual Version 9. Available at https://sparc.

org/wp-content/uploads/2014/01/SPARCV9.pdf.gz.

[28] Stephan Spengler & Sanchari Sil (2023): TSO Games – On the decidability of safety games under the total

store order semantics, doi:10.48550/arXiv.2309.02862.

https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-22012-8_34
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322234.322243
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1007/3-540-36387-4
https://files.openpower.foundation/s/dAYSdGzTfW4j2r2/download/OPF_PowerISA_v3.1B.pdf
https://files.openpower.foundation/s/dAYSdGzTfW4j2r2/download/OPF_PowerISA_v3.1B.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/3-540-36387-4_2
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.1145/1785414.1785443
https://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
https://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
https://doi.org/10.48550/arXiv.2309.02862

A. Achilleos and D. Della Monica (Eds.): Fourteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2023).
EPTCS 390, 2023, pp. 99–114, doi:10.4204/EPTCS.390.7

© F. Carlsen et al.
This work is licensed under the
Creative Commons Attribution License.

CGAAL: Distributed On-The-Fly ATL Model Checker with
Heuristics*

Falke B. Ø. Carlsen
Department of Computer Science,

Aalborg University, Denmark
falkeboc@cs.aau.dk

Lars Bo P. Frydenskov
Department of Computer Science,

Aalborg University, Denmark
larsbopark@gmail.com

Nicolaj Ø. Jensen
Department of Computer Science,

Aalborg University, Denmark
noje@cs.aau.dk

Jener Rasmussen
jener@jener.dk

Mathias M. Sørensen
mathiasmehlsoerensen@gmail.com

Asger G. Weirsøe
asger@weircon.dk

Mathias C. Jensen
Department of Computer Science,

Aalborg University, Denmark
mcje@cs.aau.dk

Kim G. Larsen
Department of Computer Science,

Aalborg University, Denmark
kgl@cs.aau.dk

We present CGAAL, our efficient on-the-fly model checker for alternating-time temporal logic (ATL)
on concurrent game structures (CGS). We present how our tool encodes ATL as extended dependency
graphs with negation edges and employs the distributed on-the-fly algorithm by Dalsgaard et al. Our
tool offers multiple novel search strategies for the algorithm, including DHS which is inspired by
PageRank and uses the in-degree of configurations as a heuristic, IHS which estimates instability
of assignment values, and LPS which estimates the distance to a state satisfying the constituent
property using linear programming. CGS are input using our modelling language LCGS, where
composition and synchronisation are easily described. We prove the correctness of our encoding,
and our experiments show that our tool CGAAL is often one to three orders of magnitude faster
than the popular tool PRISM-games on case studies from PRISM’s documentation and among case
studies we have developed. In our evaluation, we also compare and evaluate our search strategies,
and find that our custom search strategies are often significantly faster than the usual breadth-first
and depth-first search strategies. #fritfit

1 Introduction

Software plays a large role in our everyday lives, making decisions, enabling efficient communication,
ensuring safety, and many more critical tasks. Furthermore, the complexity of the software and the
decisions they have to make are ever-increasing due the to interconnectivity and reactive nature of modern
systems. These software systems mutually depend on, communicate with, and guide each other based on
their collective and internal states. Even a few interconnected systems that are not necessarily themselves
too complex can give rise to an extremely complex system as a whole. Safety-critical software that
operates in contexts where errors could lead to human casualties or significant capital losses requires
methods to verify their correctness. Unfortunately, such methods are difficult to implement due to the
sheer state-space explosion that arises from the inherent parallel composition of systems.

In this paper, we consider systems that can be expressed as discrete multiplayer games in which the
actors can perform actions concurrently. That is, in each configuration of the game, each player simulta-
neously chooses an action they wish to perform and the resulting decision vector then deterministically

*Funded by the VILLUM INVESTIGATOR project S4OS.

http://dx.doi.org/10.4204/EPTCS.390.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

100 CGAAL

results in the next configuration of the game. Such concurrent games are extremely expressive and can be
used to model a variety of complex systems and lends themselves inherently, by their concurrent nature,
to describing multi-actor systems. The properties that we wish to verify on these systems are those that
can be expressed by Alternating-time Temporal Logic (ATL) [1], a game theoretic extension of Compu-
tation Tree Logic (CTL) [2, 3], that like CTL can be used to describe safety and liveness properties. ATL
extends CTL by replacing the existential and universal path quantifiers with so-called coalition quan-
tifiers. These coalition quantifiers describe properties of the game in which a coalition of players can
either enforce some desired outcome or cannot avoid an outcome. Of course, proof of satisfaction of
such property is done by finding a strategy showing that the players can indeed enforce said property or
by showing that no matter what strategy the players follow they cannot avoid said property.

One existing tool that can model check concurrent (stochastic) games is PRISM-games [12], an exten-
sion of the probabilistic model checker PRISM [11]. PRISM excels at stochastic models such as discrete-
and continuous-time Markov chains, Markov decision processes, and (priced) probabilistic timed au-
tomata, for which it can verify various properties described in LTL , CSL, and probabilistic CTL*. There
are multiple verification engines in PRISM, both symbolic and explicit-state. The PRISM-games exten-
sion focuses on stochastic games in which game-theoretic approaches are needed. PRISM-games can
among other things synthesise strategies and reason about equilibria-based properties, where players
may have distinct, but not necessarily conflicting objectives. These properties are typically described
with probabilistic ATL with rewards. In version 3.0 [12], PRISM-games added support for concurrent
stochastic games.

In [14], Liu and Smolka present a global and a local algorithm to compute fixed-point boolean vertex
assignments in dependency graphs with directed hyper-edges representing dependencies between vertex
values. The global algorithm has a better worst-case running time of the two, but the on-the-fly local al-
gorithm only explores the graph as needed to compute the fixed-point assignment. Many problems have
since been encoded as dependency graphs. Notably, model-checking problems for CTL can be encoded
as dependency graphs and the algorithms by Liu and Smolka can be used to compute the satisfaction
relation enabling model-checking using dependency graphs. J. F. Jensen et al. [9] show that weighted
CTL can be encoded in dependency graphs as well and introduce symbolic edges to handle weights
efficiently. In [10], M. C. Jensen et al. introduce symbolic dependency graphs, an encoding of proba-
bilistic weighted CTL, and an implementation of a local and global algorithm. A. Dalsgaard et al. [4]
present a distributed extension to the local algorithm to boost the performance and show how to model
Petri Nets problems using CTL and dependency graphs. Furthermore, they extend dependency graphs by
adding components and negation edges to solve formulae with negations. An abstract dependency graph
framework is presented by S. Enevoldsen et al. in [6] where they generalise the various extensions of
the dependency graphs with a general algorithm for any Noetherian partial order domain. In the closely
related work of [5], S. Enevoldsen et at. uses abstract dependency graphs to model check probabilistic
ATL for weighted stochastic games. In multiple works [4, 10] the local algorithm is found to be faster
more often than the global algorithm in practice.

In this paper, we introduce the tool CGAAL (Concurrent Games AALborg), a model checker imple-
mented in Rust that allows for the verification of ATL properties on concurrent games. CGAAL works
by encoding the model checking problem as an extended dependency graph and by implementing the
on-the-fly local distributed algorithm by Dalsgaard et al. [4]. The concurrent games are described and
inputted to the tool using LCGS, our PRISM-language inspired model language, and for specific ATL
formulae, we can output a strategy describing how to ensure satisfaction given a positive result. Fur-
thermore, CGAAL implements a variety of strategies for searching the problem state space: a heuristic
inspired by PageRank [15] and two heuristic search strategies that exploit the state vector representation

F. Carlsen et al. 101

of our model, alongside the usual breadth-first and depth-first approach. We conduct experiments com-
paring our different search strategies with each other on several case studies and show that having more
available compute threads often leads to speed-ups of 1-2 orders of magnitude. We also perform exper-
iments comparing our tool on a selection of case studies to the state-of-the-art PRISM-games. Though
while PRISM-games is a tool specialised for probabilistic games we find that our implementation often
outperforms PRISM-games and especially whenever we are not required to compute the entire fixed point
in which case we are often 1-3 orders of magnitude faster. Again, we emphasise that PRISM-games is
meant for probabilistic games and as such this is not a completely fair one-to-one comparison.

Outline. This paper is structured as follows. Section 2 introduces the formal definitions of concur-
rent games and alternating-time temporal logic. In Section 3 we present how model checking of ATL
properties in concurrent games can be encoded in extended dependency graphs. We also give a short
explanation of the CERTAINZERO algorithm and our search strategies. In Section 4 we give a short ex-
ample of how to use CGAAL and the LCGS language. An evaluation of our tool and a comparison with
PRISM can be found in Section 5, and we conclude on our findings in Section 6.

2 Definitions

We recall the definitions of concurrent games and alternating-time temporal logic.

Concurrent Games A concurrent game structure (CGS) is a tuple S = ⟨k,Q,Π,π,d,δ ⟩ where:

• k ≥ 1 is a natural number of players. We identify the players with the numbers 1, . . . ,k.
• Q is a finite set of states.
• Π is a finite set of atomic propositions, also called labels.
• A set π(q) ⊆Π of propositions are true at q ∈Q. The function π is called the labelling function.
• For each player a ∈{1, . . . ,k} and each state q ∈Q, a natural number da(q)≥1 of moves are available

to player a at state q. The moves of player a at state q are identified with the numbers 1, . . . ,da(q).
A move vector at q ∈ Q is a tuple v = ⟨ j1, . . . , jk⟩ such that 1 ≤ ja ≤ da(q) for each player a ∈
{1, . . . ,k}. Additionally, given a state q ∈ Q, we write D(q) for the set {1, . . . ,d1(q)} ×⋯×
{1, . . . ,dk(q)} of all move vectors possible at q. The function D is called the move function.

• For each state q ∈ Q and each move vector v = ⟨ j1, . . . , jk⟩ ∈ D(q), we have that δ(q,v) ∈ Q is the
resulting state when each player a ∈ {1, . . . ,k} chooses move ja in the state q. The function δ is
called the transition function.

A state q′ is a successor to q if and only if there exists a transition from q to q′, i.e. there exists a
move vector v ∈ D(q) such that δ(q,v) = q′. A computation is an infinite sequence λ = q0,q1,q2, . . . of
states, such that for all i ≥ 0, the state qi+1 is a successor of qi. Given a computation λ and a position
i ≥ 0, we use the following notations:

λ [i] The ith state of the computation of λ

λ [0, i] The finite prefix q0,q1, . . . ,qi of λ

λ [i,∞] The infinite suffix qi,qi+1,qi+2, . . . of λ

A computation starting in the state q is called a q-computation.

102 CGAAL

Game strategies Consider a concurrent game structure S = ⟨k,Q,Π,π,d,δ ⟩ over the set Σ = {1, . . . ,k}
of players. A strategy for a player a ∈ Σ is a function za ∶Q→N that maps every state q ∈ Q to a natural
number, such that za(q) ≤ da(q). In other words, the strategy za describes how player a chooses their
move in each state. A strategy za for a player a ∈ Σ induces a set of computations that the player a can
enforce. Given a state q ∈ Q, a set A ⊆ Σ of players, and a set ZA = {za}a∈A of strategies, one strategy for
each player in A, we define the outcomes of the strategies ZA from q, denoted out(q,ZA), to be the set of
q-computations that the players of A enforce following the strategies of ZA. That is, a computation λ =
q0,q1,q2, . . . is in out(q,ZA) if q0 = q and for all positions i ≥ 0, there is a move vector v = ⟨ j1, . . . , jk⟩ ∈D
such that

1. ja = za(qi) for all players a ∈ A, and

2. δ(qi,v) = qi+1.

The set ZA = {{za}a∈A ∣ za is a strategy for the player a} contains all sets of strategies, that contain
one strategy for each player in A ⊆ Σ.

Alternating-time Temporal Logic The alternating-time temporal logic (ATL) [1] is defined with re-
spect to a finite set Π of propositions and a finite set Σ = {1, ...,k} of players. An ATL formula is given
by the abstract syntax:

φ ∶∶= p ∣ ¬φ ∣ φ1∨φ2 ∣ ⟪A⟫◯φ ∣ ⟪A⟫(φ1Uφ2) ∣ JAK(φ1Uφ2)

where p ∈ Π is a proposition and A ⊆ Σ is a set of players. The operators ⟪⋅⟫ and J⋅K are path quantifiers.
We will refer to them as "enforce" and "despite", respectively. The ◯ ("next") and U ("until") are
temporal operators. Additional temporal operators like ♦ ("eventually") and � ("invariant") are derived
as usual.

Given a state q of a game structure S, we write q ⊧ φ to indicate that the state q satisfies the property
described by φ . The satisfactory relation ⊧ is defined inductively:

• q ⊧ p iff p ∈ π(q).

• q ⊧ ¬φ iff q /⊧ φ .

• q ⊧ φ1∨φ2 iff q ⊧ φ1 or q ⊧ φ2.

• q⊧⟪A⟫◯φ iff there exists a set ZA ∈ZA of strategies, such that for all computations λ ∈ out(q,ZA),
we have λ [1] ⊧ φ .

• q ⊧ ⟪A⟫(φ1Uφ2) iff there exists a set ZA ∈ ZA of strategies, such that for all computation λ ∈
out(q,ZA) there exists a position i ≥ 0, such that λ [i] ⊧ φ2 and for all positions 0 ≤ j < i, we have
λ [j] ⊧ φ1.

• q ⊧ JAK(φ1Uφ2) iff for all sets ZA ∈ ZA of strategies, we have that there exists a computation
λ ∈ out(q,ZA), such that there exists a position i ≥ 0, such that λ [i] ⊧ φ2 and for all positions
0 ≤ j < i, we have λ [j] ⊧ φ1.

3 Model Checking

In order to check if a CGS satisfies an ATL property, CGAAL encodes the problem as an extended
dependency graph and finds a fixed-point assignment describing the satisfaction relation.

F. Carlsen et al. 103

Extended Dependency Graphs An extended dependency graph (EDG) is a tuple G = ⟨C,E,N⟩ where
C is a finite set of configurations (vertices), E ⊆C×P(C) is a finite set of hyper-edges, and N ⊆C×C is
a finite set of negation edges.

For a hyper-edge e = ⟨c,T ⟩ ∈ E we call c the source configuration and T ⊆C the set of target config-
urations. Similarly, c is called the source configuration of the negation edge ⟨c,c′⟩ ∈ N. We write c→ c′

if there exists an edge ⟨c,T ⟩ ∈ E such that c′ ∈ T and c 99K c′ if ⟨c,c′⟩ ∈ N. Furthermore, we write c c′

if c→ c′ or c 99K c′. An EDG G = ⟨C,E,N⟩ is negation safe if there are no c,c′ ∈C such that c 99K c′

and c′ ∗ c. In what follows, we consider only negation-safe EDGs. Let dist ∶C→N0 be the maximum
number of negation edges throughout all paths starting in a configuration c ∈C, inductively defined as:

dist(c) =max{dist(c′′)+1 ∣ c′,c′′ ∈C and c→∗ c′ 99K c′′} (1)

By convention max∅ = 0. We define the dist(G) of an EDG G as dist(G) =maxc∈C(dist(c)). A compo-
nent Ki of an EDG G, where i ∈N0, is a subgraph induced on G by the sets

• Ci = {c ∈C ∣ dist(c) ≤ i}
• Ei = {⟨c,T ⟩ ∈ E ∣ dist(c) ≤ i}
• Ni = {⟨c,c′⟩ ∈N ∣ dist(c) ≤ i}

denoting the set of configurations, hyper-edges and negation edges respectively in each respective com-
ponent. By definition, the component K0 has no negation edges.

Assignments An assignment α ∶C→ {0,1} is a function that assigns boolean values to configurations
of an EDG G = ⟨C,E,N⟩, where 0 and 1 represent false and true, respectively. We define α0 as the zero
assignment where α0(c) = 0 for all c ∈C. We assume a component-wise ordering ⊑ on assignments such
that we have α ⊑ α

′ whenever α(c) ≤ α
′(c) for all c ∈C. The set of all assignments of an EDG G is

denoted by AG and ⟨AG,⊑⟩ is a complete lattice.
By Knaster and Tarski’s theorem, we can find a minimum fixed point on the complete lattice for any

monotonic function. The minimum fixed-point assignment αmin of an EDG G, denoted as α
G
min =α

Kdist(G)
min

is defined inductively on the components K0,K1, . . . ,Kdist(G) of G. For all 0 ≤ i ≤ dist(G), we define α
Ki
min

to be the minimum fixed-point assignment of the monotonic function Fi ∶ACi →ACi where

Fi(α)(c) = α(c)∨
⎡⎢⎢⎢⎢⎣
⋁

⟨c,T ⟩∈Ei

⋀
c′∈T

α(c′)
⎤⎥⎥⎥⎥⎦
∨
⎡⎢⎢⎢⎢⎣
⋁

⟨c,c′⟩∈Ni

¬α
Ki−1
min (c′)

⎤⎥⎥⎥⎥⎦
(2)

By convention, the conjunction of ∅ is true and the disjunction of ∅ is false. In the component K0
there are no negation edges, which means the last clause in the disjunction is false for K0. We will refer to
the repeated use of the Fi as the global algorithm because it requires building and iterating over the entire
EDG. By Equation (2) each configuration in the EDG is comparable to a boolean formula in disjunctive
normal form where each clause is another configuration or a negation of another configuration. Clearly,
this makes EDGs an expressive structure and we shall now encode ATL model checking in an EDG.

3.1 Encoding of ATL in an EDG

We first establish some definitions related to subsets of move vectors induced by a coalition of players.

104 CGAAL

Partial Moves. Given a CGS S with the set of states Q and k players, we use V1 ×⋯×Vk = V ⊆ D(q)
where q ∈ Q to denote a partial move in q, where zero or more of the players’ moves are fixed, i.e. their
set of possible moves contain a single number. For instance, if V = {2}×{1,2,3} in a 2-player game,
then player 1 has chosen move 2 while player 2 is still free to choose from 1, 2, or 3. Furthermore, we
use the notation V[a↦ j] for a variant V ′ of a partial move V =V1×⋯×Vk where player a chooses move
j. More precisely

V[a↦ j] =V ′
1 ×⋯×V ′

k where 1 ≤ i ≤ k and V ′
i =

⎧⎪⎪⎨⎪⎪⎩

{ j} if i = a
Vi otherwise

(3)

With this notation in mind, we define the function pmoves. The function pmoves gives the set of all
possible partial moves that follow from the players of the set A ⊆ Σ making a combination of moves in
the state q ∈Q:

pmoves(q,A) = {D(q)[a↦ ja][b↦ jb]⋯ ∣ {a,b, . . .} = A and ∀i ∈ A.1 ≤ ji ≤ di(q)} (4)

For instance, if D(q) = {1,2}×{1,2} in a 2-player game and A = {1}. Then pmoves(q,A) = {{1}×
{1,2},{2}×{1,2}} contains two partial moves. One where player 1 chooses action 1, and another where
player 1 chooses action 2. In other words, the pmoves function constructs the partial moves that the set
A of players can choose from when working together in the state q. If A chooses V ∈ pmoves(q,A), then
V contains all move vectors that result from the remaining players Σ/A also making a choice.

We define a partial transition function ∆ that produces a set of possible successor states given a state
q ∈Q and a partial move V . That is

∆(q,V) = {s ∣ v ∈ V and δ(q,v) = s} where V ⊆D(q) (5)

With EDGs, assignments, and partial moves introduced, we can now define how the satisfaction
relation ⊧ can be encoded as an EDG.

Encoding. Given a CGS S, a state q of S, and an ATL state formula φ we now construct an EDG
where every configuration is either a pair of a state and a formula, or a triple of a state, partial move, and
a formula. The triples represent partially evaluated states, where some players’ moves are already set.
Starting from the initial pair ⟨q,φ⟩, the dependency graph is constructed according to Figures 1 to 6. The
figures show which outgoing edges each configuration has and the target configurations of those edges.

Theorem 3.1. Given a CGS S = ⟨k,Q,Π,π,d,δ ⟩, a state q ∈ Q, and an ATL formula φ , let G be the
negation-safe EDG rooted in ⟨q,φ⟩ constructed following Figures 1 to 6. Then α

G
min(⟨q,φ⟩) = 1 if and

only if q ⊧ φ .

The proof of Theorem 3.1 can be found in the extended version of this paper.

Certain Zero In addition to the global algorithm (repeated application of Fi from Equation (2)),
CGAAL also implements a local algorithm heavily inspired by the distributed CERTAINZERO algorithm
by Dalsgaard et al. [4]. A local algorithm specialises in finding the assignment α

G
min(⟨q,φ⟩) of a specific

configuration ⟨q,φ⟩ and not necessarily the assignment of the whole EDG. This allows the algorithm
to terminate early in many cases. For the CERTAINZERO algorithm, Dalsgaard et al. also introduce a

F. Carlsen et al. 105

⟨q,true⟩

∅

⟨q,¬φ⟩

⟨q,φ⟩

⟨q, p⟩

∅

if p ∈ π(q)

⟨q, p⟩ if p ∉ π(q)

Figure 1: EDG encoding of true, negation, and atomic proposition

⟨q,φ1∨φ2⟩

⟨q,φ1⟩ ⟨q,φ2⟩

Figure 2: EDG encoding of disjunction

⟨q,⟪A⟫◯φ⟩

⟨q1,φ⟩ ⋯ ⟨qn,φ⟩ ⋯ ⟨s1,φ⟩ ⋯ ⟨sm,φ⟩

where {{q1, . . . ,qn}, . . . ,{s1, . . . ,sm}} = {∆(q,V) ∣ V ∈ pmoves(q,A)}

Figure 3: EDG encoding of next

⟨q,⟪A⟫(φ1Uφ2)⟩

⟨q,φ2⟩

⟨q,φ1⟩

⟨q1,⟪A⟫(φ1Uφ2)⟩ ⋯ ⟨qn,⟪A⟫(φ1Uφ2)⟩ ⋯ ⟨s1,⟪A⟫(φ1Uφ2)⟩ ⋯ ⟨sm,⟪A⟫(φ1Uφ2)⟩

where {{q1, . . . ,qn}, . . . ,{s1, . . . ,sm}} = {∆(q,V) ∣ V ∈ pmoves(q,A)}

Figure 4: EDG encoding of enforce until

⟨q,JAK(φ1Uφ2)⟩

⟨q,φ2⟩

⟨q,φ1⟩ ⟨q,V1,JAK(φ1Uφ2)⟩ ⋯ ⟨q,Vn,JAK(φ1Uφ2)⟩

where {V1, . . . ,Vn} = pmoves(q,A)

Figure 5: EDG encoding of despite until

⟨q,V,φ⟩

⟨q1,φ⟩ ⋯ ⟨qn,φ⟩

where {v1, . . . ,vn} = V and qi = δ(q,vi) for 1 ≤ i ≤ n

Figure 6: EDG encoding of partially moved despite until

106 CGAAL

�

?

0 1 Figure 7: Ordering of assignment values
for fixed-point computation in the CER-
TAINZERO algorithm. The top values are
more certain.

symbolic assignment with new assignment values. The value � indicates that the configuration is un-
explored. The value ? (unknown) indicates that the configuration is explored, but its final value has yet
to be determined. Lastly, 0 and 1 indicate the final values in the minimum fixed-point assignment α

G
min.

This induces an ordering as seen in the lattice in Figure 7. During the algorithm, the assignments of the
configurations will rise to more and more certain values, and if the assignment of a configuration ever
becomes 0 or 1, we can be certain that its final value is 0 or 1, respectively. This is one of the properties
that lead to improved performance, since in contrast to the global algorithm where all configurations are
initially assigned 0, we can distinguish an initial 0 and a certain 0. Hence, the CERTAINZERO algorithm
can terminate early if the root configuration is ever assigned either 0 or 1. Otherwise, it terminates when
it can no longer raise any assignment values.

3.2 Search Strategies

The CERTAINZERO algorithm is controlled by a search strategy, which determines in which order the
edges are explored and evaluated. Our search strategies for CGAAL include the common breadth-first
search (BFS) and depth-first search (DFS) strategies, as well as multiple search strategies based on
heuristics. Some of these are discussed in the following subsections. Which strategy is best depends
heavily on the shape of the EDG which is determined by the CGS and the ATL formula in question. An
evaluation of the strategies can be found in Section 5. The BFS strategy is the default strategy.

Dependency Heuristic Search (DHS) PageRank [15] is an algorithm that was created to estimate
the importance of a website based on how many other websites have links to it. The idea has since
been used in other areas, such as graph recommendation systems [13] or measuring structural-context
similarity with SimRank [7]. Our dependency heuristic search (DHS) uses a similar idea by assuming
that configurations with many ingoing edges are important. Finding the assignments of these, results
in more back-propagation, bringing us closer to termination. In other words, the heuristic focuses on
the trunk of the EDG where certain assignments are of high value. Specifically, DHS prioritise edges
where the source configuration has a high number of ingoing edges. That is, if e is an edge with source
configuration c then:

priority(e) = indegree(source(e)) = ∣{e′ ∣ (e′ = ⟨c′,T ⟩ ∈ E ∧c ∈ T)∨e′ = ⟨c′,c⟩ ∈N}∣ (6)

Edges with the same priority are subject to FIFO ordering. However, since we do not know the whole
graph in advance, we must continuously update the priority of edges when we explore successors of new
configurations. This is only a small overhead with a priority queue data structure.

Linear Programming Heuristic Search (LPS) In this search strategy, we take advantage of how
LCGS states can be represented as vectors, i.e. Q is a vector space. Given an edge with source config-
uration ⟨q,φ⟩, we transform φ into a set Lφ of linear constraints, each defined as a pair ⟨C,b⟩, where C

F. Carlsen et al. 107

2 4 6 8

2

4

6

8

q

s

distLPS(⟨q,φ⟩)

−x+y ≥ 1
1
2 x+y ≥ 7

Figure 8: The distance distLPS(⟨q,φ⟩) = 7 when q = ⟨7,1⟩ ∈
Q = R2 and Lφ corresponds to the constraints −x+ y ≥ 1 and
1
2 x+y ≥ 7. The state s minimises ∣∣s−q∣∣1 while adhering to the
constraints.

is a matrix and b is a vector. We prioritise edge e if its source configuration ⟨q,φ⟩ has a low estimated
distance to satisfaction as given by:

distLPS(⟨q,φ⟩) =min ∣∣s−q∣∣1 subject to Cs ≥ b where s ∈Q, ⟨C,b⟩ ∈Lφ (7)

where ∣∣ ⋅ ∣∣1 is the 1-norm, i.e. taxicap distance. The following equation is an equivalent linear program-
ming problem:

min∑
i

xi subject to Cs ≥ b and −xi ≤ si−qi ≤ xi ∀i where s ∈Q, ⟨C,b⟩ ∈Lφ (8)

A visualisation of the distance distLPS can be seen on Figure 8, where Q =R2, q = ⟨7,1⟩ ∈Q and

Lφ = {⟨[−1 1
1
2 1

] ,[1
7
]⟩}

Many methods exist for solving linear programming problems. We use a library called minilp1. The
LPS strategy assumes value-wise close states are structurally close and works best when the constituent
variables of states represent non-categorical data. The drawback of this method is the computational
overhead of linear programming amplified by the potential need to solve multiple linear programming
problems for each configuration based on the structure of φ . We reduce some of this overhead by caching
the set Lφ for each φ .

We also support an alternative search strategy involving linear programming. It is called Linear
Representative Search (LRS) and it computes the distance described above for the root configuration
only. The closest satisfying state s is then saved and edges are prioritised based on the 1-norm distance
between s and the state in their source configuration. In other words, we assume that the state s found for
the root represents all satisfied states. As a result this search strategy is cheaper than LPS but risks being
inaccurate.

Instability Heuristic Search (IHS) The Petri Net model checker TAPAAL [8] implements the CER-
TAINZERO algorithm as well. Their configurations consist of a marking (a state) and a property, and
their default search strategy uses a heuristic that estimates the distance between the marking of the con-
figuration and a marking that satisfies the formula of the configuration. Our novel instability heuristic
is inspired by their heuristic, but we differ by acknowledging that since there are negation edges in the
EDG, we may not always be looking for a state that satisfies the formula. That is, if the state already

1minilp crate: https://crates.io/crates/minilp

https://crates.io/crates/minilp

108 CGAAL

satisfies the associated formula, we estimate the distance to a state that does not instead. This guides
the search towards configurations where the assignment is unstable and thus may have a high influence.
Algorithms 1 and 2 find the distIHS described above for an edge. The algorithms use an abstract metric
BiDist which for state-property pairs finds ⟨t̂, f̂ ⟩ where t̂ is the distance to the property being true and f̂
is the distance to the property being false.

Algorithm 1: distIHS

Input : An edge e ∈ E
Output: An estimated distance to a different assignment

1 if e = ⟨c,T ⟩ ∈ E then
2 ⟨t̂, f̂ ⟩ ∶=

d
⟨q,φ⟩∈T BiDist(q,φ);

3 return t̂ if t̂ > 0, otherwise f̂

4 else if e = ⟨c,⟨q,φ⟩⟩ ∈N then
5 ⟨t̂, f̂ ⟩ ∶= BiDist(q,φ);
6 return f̂ if f̂ < 0, otherwise t̂

Algorithm 2: BiDist
Input : A state q and formula φ

Output: A bi-distance ⟨t̂, f̂ ⟩ describing the instability of φ in q
1 if φ = expr1Cexpr2 and v = eval(q,expr1)−eval(q,expr2) then
2 return ⟨v,0⟩ if v > 0, otherwise ⟨0,v⟩
3 else if φ = expr1Bexpr2 and v = eval(q,expr2)−eval(q,expr1) then
4 return ⟨v,0⟩ if v > 0, otherwise ⟨0,v⟩
5 else if φ = ¬φ

′ and ⟨t̂, f̂ ⟩ = BiDist(q,φ ′) then
6 return ⟨ f̂ , t̂⟩
7 else if φ = φ1∧φ2 then
8 return BiDist(q,φ1)⊓BiDist(q,φ2)
9 else if φ = φ1∨φ2 then

10 return BiDist(q,φ1)⊔BiDist(q,φ2)
11 else if φ = ⟪A⟫◯φ

′ then
12 return BiDist(q,φ ′)
13 else if φ = ⟪A⟫(φ1 U φ2) then
14 return BiDist(q,φ1)⊔BiDist(q,φ2)
15 else if φ = JAK(φ1 U φ2) then
16 return BiDist(q,φ1)⊔BiDist(q,φ2)
17 // where C ∈ {<,≤},⟨t̂1, f̂1⟩⊓ ⟨t̂2, f̂2⟩ = ⟨t̂1+ t̂2,min{ f̂1, f̂2}⟩
18 // B ∈ {>,≥},⟨t̂1, f̂1⟩⊔ ⟨t̂2, f̂2⟩ = ⟨min{t̂1, t̂2}, f̂1+ f̂2⟩

4 Tool Overview

CGAAL (https://github.com/d702e20/CGAAL) is written in Rust and consists of a command-line
interface and a verification engine. The primary feature of CGAAL is the verification of ATL properties

https://github.com/d702e20/CGAAL

F. Carlsen et al. 109

for CGSs. Verification is either done with a global algorithm or local algorithm, both of which are
described in Section 3. If requested, a partial strategy witness can also be computed, which instructs how
the given players must play to satisfy the given property. Another feature converts the model into dot

graph format such that it can be visually rendered with Graphviz.2

To model concurrent game structures for CGAAL, we designed a declarative Language for Concurrent
Game Structure, called LCGS. In LCGS a CGS is defined with a series of declarations such that it is
possible to find the successors of any state from the declarations alone. The language acts as an abstract
representation of the CGS and allows us to save memory at the small cost of having to evaluate the
expressions of declarations whenever successors are explored. The syntax of the language is inspired by
PRISM-lang [11] used by the PRISM model checker to model stochastic multi-player games with rewards.
However, LCGS differs in multiple ways. For instance, LCGS has player templates instead of modules,
and templates have no effect unless there exists an instance of it. Additionally, synchronisations affecting
the internal state of a player are much easier to declare.

Example Use As an example, we want to check if a cowboy can guarantee to stay alive in a three-way
Mexican standoff. The standoff is simulated in rounds and in each round a cowboy can choose to wait,
shoot the cowboy to the right, or shoot the cowboy to the left. If a cowboy is hit by two bullets, he dies.

1 const max_health = 2;

2

3 template cowboy

4

5 // How many bullets a cowboy can be hit by before dying

6 health : [0 .. max_health] init max_health;

7 health' = max(health - opp_right.shoot_left - opp_left.shoot_right, 0);

8

9 // A proposition used by ATL formulae

10 label alive = health > 0;

11

12 // The actions available to each cowboy

13 [wait] 1;

14 [shoot_right] health > 0 && opp_right.health > 0;

15 [shoot_left] health > 0 && opp_left.health > 0;

16

17 endtemplate

18

19 // The three cowboys in the Mexican standoff

20 player billy = cowboy [opp_right=clayton, opp_left=jesse];

21 player clayton = cowboy [opp_right=jesse, opp_left=billy];

22 player jesse = cowboy [opp_right=billy, opp_left=clayton];

Listing 1: LCGS implementation of a Mexican standoff

We model this scenario in Listing 1. The cowboy template is declared on lines 3-17. Herein, on line
6, we define that each cowboy can be hit by two bullets before being incapacitated, but we make this
number a constant on line 1 so it is easy to change. Each cowboy has their own health variable and the
combination of the values of these variables makes up a state. Line 7 defines how the health of a cowboy
is updated in each transition. The value of opp_right.shoot_left and opp_left.shoot_right are
1 if this cowboy was shot by the given opponent to the right or left, respectively, otherwise 0. On line 10

2Graphviz: https://graphviz.org/

https://graphviz.org/

110 CGAAL

we define a label called alive, which is a proposition that is true if the cowboy has more than zero health.
Lines 13-15 define the actions of the cowboy template, and the expression to the right of the name is a
condition defining in which states the action is available. As can be seen, a cowboy can always wait, but
only shoot if they and their target are alive. Lastly, we declare three instances of the cowboy template
on lines 20-22. We define the right and left opponent in the relabelling function after the name of the
template. Any identifier in a template can be relabelled to another expression as long as the result is
syntactically and semantically correct.

The ATL formula ⟪billy⟫�billy.alive is satisfied if the cowboy billy has a strategy to stay
alive. We can now run CGAAL with the following command: ./cgaal solver -m standoff.lcgs

-f billy-can-stay-alive.atl, and CGAAL will tell us that the property is not satisfied. Billy has
no strategy that can guarantee his survival.

5 Evaluation

To evaluate our tool, we run several experiments. In our experiments we compare our global algorithm,
our local algorithm using our various search strategies, and the established tool PRISM-games. We use
several different concurrent game case studies. Some of these are PRISM-games case studies adapted to
LCGS for CGAAL and determinised if needed. Others are well-known algorithms and games constructed
during the development of CGAAL. We make the PRISM-lang and LCGS implementations of models as
identical as possible, such that the state spaces are comparable. Some of the concurrent games and related
ATL formulae used in the experiments are presented below. Queries marked with ⊺ (resp. �) are satisfied
(resp. not satisfied), and queries marked with † may terminate early as we are not required to compute
the entire fixed-point:

• Mexican-Standoff: In this model N cowboys stand in a circle, each with a revolver. At each
moment they can choose to shoot another cowboy or do nothing. If a cowboy is hit by B bullets,
they are incapacitated. We run the following queries:

MSB
Nφ

�†
1 = ⟪p1⟫�p1_alive

MSB
Nφ

�
2 = ⟪p1⟫♦¬p1_alive

MSB
Nφ

⊺
3 = ⟪{pi ∈ Σ ∣ 1 ≡ i mod 2}⟫�p1_alive

• Gossiping Girls: In this model, N nodes each know a piece of information. The nodes can ex-
change information by calling each other. Our experiments include both a fully connected network
of nodes and a circular network of nodes. We run the following queries:

GGNφ
⊺†
1 = ⟪Σ⟫(calls ≤ 10 U all_girls_know_all)

GGNφ
⊺†
2 = ⟪Σ⟫(calls ≤ 10 U only_p1_knows_all)

GGNφ
⊺†
3 = ⟪Σ⟫(calls ≤ 10 U p1_knows_all)

GGNφ
⊺†
4 = ⟪Σ⟫♦calls > 10∧all_girls_know_all

GGNφ
⊺†
5 = ⟪∅⟫♦calls > 10

GGNφ
�†
6 = ⟪p1⟫(calls ≤ 10 U p1_knows_all)

GGNφ
⊺†
7 = ⟪Σ∖{p1}⟫♦everyone_except_p1_knows_all

F. Carlsen et al. 111

• Robot Coordination: In this model, four robots move orthogonally on a N by N grid. Each robot
needs to reach the opposite corner of where they start, but crashing into each other is fatal. We run
the following queries:

RCNφ
�
1 = ⟪p1, p2, p3⟫♦p1_at_target ∧ p2_at_target

RCNφ
⊺
2 = all_robots_at_home

RCNφ
⊺†
3 = ⟪p1, p2, p3, p4⟫♦all_robots_at_targets

RCNφ
�
4 = ⟪p1, p3, p4⟫♦p1_at_target ∧¬p1_crashed

Each experiment is run with a time limit of two hours, allocated 128 GB of memory, and has 32 cores
available regardless of how many worker threads CGAAL may spawn. All experiments are run on several
identical AMD EPYC 7642 based servers, allowing only one experiment per node at a time to reduce
noise in the results.

Results Here we provide a select set of experimental results that roughly exemplify our findings in
general. For a more thorough set of results along with all of our experimental data and the Python script
processing it, see the git repository https://github.com/d702e20/evaluation-results/.

We find that the local on-the-fly algorithm is often one order of magnitude faster than the global algo-
rithm regardless of the search strategy. However, the global algorithm can compete with and sometimes
outperforms the local algorithm in cases where the local algorithm cannot terminate early. This matches
observations made by A. Dalsgaard et al. [4] and M. C. Jensen et al. [10].

PRISM-games is a stochastic model checker and checks queries involving both probability and re-
wards, capabilities which are irrelevant in our test cases. Therefore, in many cases, CGAAL’s local
algorithm is two orders of magnitude faster than PRISM-games, typically when the model has many
synchronisations that affect internal states of modules such as in Mexican Standoff and Gossiping Girls
as seen in Figures 9a and 9c. Such synchronisations also require a high amount of PRISM-lang code,
while being easily expressed in LCGS. However, there are a few cases where PRISM-games is faster than
CGAAL, e.g. RCNφ

�
1 and RCNφ

�
4 as seen in Figure 9b. Here the local algorithm cannot terminate early.

The choice of search strategy sometimes has a discernible impact on the performance of the local
algorithm. Which search strategy is best varies from case to case and no definitive best strategy. The
BFS strategy does not work well when the local algorithm can terminate early based on information
found multiple moves into the model, but its low overhead is beneficial when early termination is not
possible. The IHS strategy is often a good choice when early termination is possible. The LPS strategy
is often significantly slower than the others, which is unsurprising given its overhead of solving linear
programming problems. In models where differences in the states correspond to a distance in space, such
as in robot coordination, the LPS strategy performs notably better and is even faster than both BFS and
DFS on RC4φ

⊺†
3 . The lightweight version, LRS, which only solves the linear problem once, matches LPS

in these cases but is also generally better due to its lower overhead.
A general trend in our experiments is that we see an increase in the execution speed of our distributed

implementation as we increase the number of compute threads available. The only times we do not see a
speed-up with an increased number of compute threads are when the models are small enough such that
the overhead of managing the additional threads is significant. Similarly, a single thread performs better
than a few threads in many cases, since there is no communication overhead with only one compute
thread. In general, depending on the search strategy employed, we see an improvement on a scale of one
to two orders of magnitude when increasing the number of compute threads as exemplified in Figure 9d.

https://github.com/d702e20/evaluation-results/

112 CGAAL

(a) Mexican-standoff: horizontal axis is (N,B) tuples
with N being the number of cowboys in the model and
B the number of bullets the cowboys can be hit by.

(b) Robot Coordination: horizontal axis is the size of the
grid the robots are to manoeuvre on.

(c) Gossiping girls in a circular topology: horizontal
axis being the number of girls in the circle.

(d) Gossiping girls with six girls in a circular topology:
horizontal axis being the number of compute threads
used in our distributed algorithm. Note that PRISM was
always run with just one thread.

Figure 9: Select experimental results. CGAAL-results in Figures 9a to 9c show the best result for each
search strategy when varying between 1 and 32 threads.

F. Carlsen et al. 113

6 Conclusion

In this paper, we present CGAAL, our model checker of alternating-time temporal logic properties in
concurrent games. CGAAL checks such properties by encoding the problem as an extended dependency
graph and then computes the satisfaction relation using the distributed local on-the-fly CERTAINZERO

algorithm by Dalsgaard et al. [4]. We provide multiple novel search strategies for the algorithm and allow
concurrent games to be expressed in our language LCGS. Our experiments show that the local on-the-fly
algorithm outperforms the global algorithm in the majority of cases. We also find that CGAAL outper-
forms the state-of-the-art tool PRISM-games by being up to two orders of magnitude faster, especially in
models where synchronisations affect the internal state of modules and whenever we are not required to
compute the entire fixed point. However, this comparison is unfair, since our test only uses a fraction of
PRISM-games feature set.

CGAAL is still in early development and much work is needed before it competes with PRISM in
terms of capabilities. However, dependency graphs have been used for encoding various model-checking
problems, and we intend to incorporate these techniques into CGAAL.

References
[1] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-Time Temporal Logic. J. ACM

49(5), p. 672–713, doi:10.1145/585265.585270.

[2] Edmund M. Clarke & E. Allen Emerson (1982): Design and synthesis of synchronization skeletons using
branching time temporal logic. In Dexter Kozen, editor: Logics of Programs, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 52–71, doi:10.1007/BFb0025774.

[3] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem et al. (2018): Handbook of model
checking. 10, Springer, doi:10.1007/978-3-319-10575-8.

[4] Dalsgaard, Andreas E. and Enevoldsen, Søren and Fogh, Peter and Jensen, Lasse S. and Jepsen, Tobias S. and
Kaufmann, Isabella and Larsen, Kim G. and Nielsen, Søren M. and Olesen, Mads Chr. and Pastva, Samuel
and Srba, Jiří (2017): Extended Dependency Graphs and Efficient Distributed Fixed-Point Computation. In
Wil van der Aalst & Eike Best, editors: Application and Theory of Petri Nets and Concurrency, Springer
International Publishing, Cham, pp. 139–158, doi:10.1007/978-3-319-57861-3_10.

[5] Søren Enevoldsen, Mathias Claus Jensen, Kim Guldstrand Larsen, Anders Mariegaard & Jiří Srba
(2020): Verification of Multiplayer Stochastic Games via Abstract Dependency Graphs. LOPSTR2020,
doi:10.1007/978-3-030-68446-4_13.

[6] Søren Enevoldsen, Kim Guldstrand Larsen & Jirí Srba (2022): Extended abstract dependency graphs. Int. J.
Softw. Tools Technol. Transf. 24(1), pp. 49–65, doi:10.1007/s10009-021-00638-8.

[7] Glen Jeh & Jennifer Widom (2002): SimRank: a measure of structural-context similarity. In: Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26,
2002, Edmonton, Alberta, Canada, ACM, pp. 538–543, doi:10.1145/775047.775126.

[8] Jonas F. Jensen, Thomas Nielsen, Lars K. Oestergaard & Jiří Srba (2016): TAPAAL and Reachability Analysis
of P/T Nets, pp. 307–318. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-662-53401-
4_16.

[9] Jonas Finnemann Jensen, Kim Guldstrand Larsen, Jiri Srba & Lars Kaerlund Østergaard (2016): Efficient
model-checking of weighted CTL with upper-bound constraints. International Journal on Software Tools for
Technology Transfer 18(4), pp. 409–426, doi:10.1007/s10009-014-0359-5.

[10] Mathias Claus Jensen, Anders Mariegaard & Kim Guldstrand Larsen (2019): Symbolic model check-
ing of weighted PCTL using dependency graphs. NASA Formal Methods Symposium, pp. 298–315,
doi:10.1007/978-3-030-20652-9_20.

https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-57861-3_10
https://doi.org/10.1007/978-3-030-68446-4_13
https://doi.org/10.1007/s10009-021-00638-8
https://doi.org/10.1145/775047.775126
https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/s10009-014-0359-5
https://doi.org/10.1007/978-3-030-20652-9_20

114 CGAAL

[11] M. Kwiatkowska, G. Norman & D. Parker (2011): PRISM 4.0: Verification of Probabilistic Real-time Sys-
tems. In G. Gopalakrishnan & S. Qadeer, editors: Proc. 23rd International Conference on Computer Aided
Verification (CAV’11), LNCS 6806, Springer, pp. 585–591, doi:10.1007/978-3-642-22110-1_47.

[12] M. Kwiatkowska, G. Norman, D. Parker & G. Santos (2020): PRISM-games 3.0: Stochastic Game Verifica-
tion with Concurrency, Equilibria and Time. In: Proc. 32nd International Conference on Computer Aided
Verification (CAV’20), LNCS 12225, Springer, pp. 475–487, doi:10.1007/978-3-030-53291-8_25.

[13] Sangkeun Lee, Minsuk Kahng & Sang goo Lee (2015): Constructing compact and effective graphs for
recommender systems via node and edge aggregations. Expert Systems with Applications 42(7), pp. 3396–
3409, doi:10.1016/j.eswa.2014.11.062.

[14] Xinxin Liu & Scott A. Smolka (1998): Simple Linear-Time Algorithms for Minimal Fixed Points (Extended
Abstract). In Kim Guldstrand Larsen, Sven Skyum & Glynn Winskel, editors: Automata, Languages and
Programming, 25th International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings,
Lecture Notes in Computer Science 1443, Springer, pp. 53–66, doi:10.1007/BFb0055040.

[15] Lawrence Page, Sergey Brin, Rajeev Motwani & Terry Winograd (1998): The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report, Stanford Digital Library Technologies Project. Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768.

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1016/j.eswa.2014.11.062
https://doi.org/10.1007/BFb0055040
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. 115–131, doi:10.4204/EPTCS.390.8

© P. Hannibal

This work is licensed under the

Creative Commons Attribution License.

(Un)Decidability Bounds of the Synthesis Problem

for Petri Games

Paul Hannibal

University of Oldenburg,
Lower Saxony, Germany

paul.jonathan.hannibal1@uni-oldenburg.de

Petri games are a multi-player game model for the automatic synthesis of distributed systems, where

the players are represented as tokens on a Petri net and are grouped into environment players and

system players. As long as the players move in independent parts of the net, they do not know of

each other; when they synchronize at a joint transition, each player gets informed of the entire causal

history of the other players.

We show that the synthesis problem for two-player Petri games under a global safety condition

is NP-complete and it can be solved within a non-deterministic exponential upper bound in the case

of up to 4 players. Furthermore, we show the undecidability of the synthesis problem for Petri games

with at least 6 players under a local safety condition.

1 Introduction

A Petri game is a model for distributed, reactive systems. It is played on a Petri net where each place is

either a system place or an environment place. The tokens on system places are system players and they

control which transitions to take next. The tokens on environment places are uncontrollable environment

players. Essential for Petri games is the informedness of the players. As long as the players move in

independent parts of the net, they do not know of each other; when taking a joint transition they exchange

information about their complete causal history.

A winning strategy of the system players reacts to all options of the environment players while

satisfying a winning condition. Thereby, a decision of a system player is based on its causal history,

which grows infinitely in a Petri net with loops. Different causal histories allow different decisions. The

synthesis problem asks whether there is a winning strategy of the system players. There have been several

positive results on deciding the synthesis problem for Petri games, obtained by restricting the number of

players [8, 7] or restricting the concurrent behaviour [13]. Also, an approach to bounded synthesis has

been proposed [6]. These papers considered as winning conditions either local safety conditions where

some ‘bad’ places must be avoided or global safety conditions requiring that some sets of places are

considered as ‘bad’ markings that must not be reached simultaneously.

Petri games are related to the model of control games played by multiple processes on Zielonka

automata. These games are also based on the causal memory of their processes. A control game is

a composition of local processes. The processes communicate via shared actions that are either con-

trollable or uncontrollable. A strategy consists of one local controller for each process that can restrict

controllable actions based on the causal past of the process. As in Petri games, a strategy must take

into account all uncontrollable behaviour in order to win. Unlike Petri games, one of the most common

winning conditions is a local termination condition. A formal relationship of the two models has been

presented in [1], where translations from Petri games into control games and back have been presented

http://dx.doi.org/10.4204/EPTCS.390.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

116 (Un)Decidability Bounds for Petri Games

such that there is a weak bisimulation between the winning strategies of the two models. When trans-

lating a control game into a Petri game, the processes are turned one-by-one into players. These players

switch between system and environment players. The winning condition stays the same. The number of

places (or states) blows up exponentially when a game is translated in either direction.

Decidability results for control games have been obtained by restricting the communication architec-

ture [17, 10] or restricting the concurrent behaviour [15, 16]. Another class of decidable control games

are decomposable games [11] that come with a local termination condition. Decomposable games are

decidable with up to 4 players [11]. In Sec. 3, we show that the synthesis problem for Petri games under

a global safety condition with up to 4 players is decidable within an exponential upper time bound, and

for two-player Petri games this problem is NP-complete.

In [12], it has been shown that the synthesis problem is undecidable for control games with at least 6

processes under a local termination condition. This result, together with the translation into Petri games

in [1], implies that there are 6-player Petri games that are equipped with a local termination condition

for which the synthesis problem is undecidable. In Sec. 4, we show in a direct proof that the synthesis

problem for Petri games with 6 players is also undecidable under a local safety condition.

The synthesis problem is of great interest because it automates the error-prone implementation pro-

cess while delivering implementations that are correct by construction. It was first introduced in [3].

Pnueli and Rosner introduced a setting of synchronous processes that communicate via shared vari-

ables [19]. For a single process, this setting is known to be decidable [2, 18]. For multiple processes,

the setting of Pnueli and Rosner is known to be undecidable [19]. There have been positive decidabil-

ity results on specific architectures with multiple processes, including pipelines [20], rings [14], and

acyclic architectures [9]. However, all the positive results for multiple processes have non-elementary

complexity.

2 Foundations

In this section, we define branching processes and unfoldings as in [4]. Also, we define Petri games and

their winning strategies as in [8].

Some notation: the power set of a set A is denoted by 2A = {B | B ⊆ A}, the set of nonempty finite

subsets of A by 2A
nf = {B | B ⊆ A∧B 6= /0∧B is finite}, and the set of finite subsets of A by 2A

f .

A Petri net or simply net is a structure N = (P,T ,pre,post, In), where P is the (possibly infinite)

set of places, T is the (possibly infinite) set of transitions, pre and post are flow mappings, In ⊆ P is

the initial marking, and the following properties hold: P ∩T = /0, pre : T → 2P
nf , post : T → 2P

f . A

Petri net is called finite if P ∪T is a finite set. The flow mappings pre and post are extended to places

as usual: ∀p ∈ P : pre(p) = {t ∈ T | p ∈ post(t)} and ∀p ∈ P : post(p) = {t ∈ T | p ∈ pre(t)}. A

marking M of a Petri net N is a multiset over P . In particular, In is a marking. By convention, a net

named N has the components (P,T ,pre,post, In), and analogously for net with decorated names like

N0,N1,N2, where the components are equally decorated.

A transition t ∈ T is enabled at marking M if pre(t) ⊆ M. If t is enabled, the transition t can be

fired, such that the new marking is M′ = M−pre(t)+post(t). This is denoted as M|t〉M′. This notation

is extended to sequences of enabled transitions M|t1 . . . tn〉M
′. A marking M is reachable if there exists a

sequence of successively enabled transitions (tk)k∈{1,...,n} and In|t1 . . . tn〉M. This sequence can be empty.

The set of all reachable markings of a net N is denoted as R(N). A Petri net N is called safe, if for all

reachable markings M(p)≤ 1 holds for all p ∈ P . Then, M is a subset of P. All Petri nets considered in

this paper are safe.

P. Hannibal 117

A node x is a place or a transition x ∈ P ∪T . The binary flow relation F on nodes is defined

as follows: xF y if x ∈ pre(y). A node x is a causal predecessor of y, denoted as x ≤ y, if xF+y.

Furthermore, x ≤ x holds for all x ∈ P ∪T . Two nodes x,y ∈ P ∪T are causally related, if x ≤ y or

y ≤ x holds. We say x is a causal successor of y, if y ≤ x holds.

Two nodes x1,x2 ∈ P ∪T are in conflict, denoted x1#x2, if there exist two transitions t1, t2 ∈ T ,

t1 6= t2 with pre(t1)∩ pre(t2) 6= /0 and ti ≤ xi, i = 1,2. A node x ∈ P ∪T is in self-conflict if x#x.

Informally speaking, two nodes are in conflict if two transitions exist that share some place in their

presets and each node is a causal successor of one of those transitions. Two nodes x,y ∈ P ∪T are

concurrent, denoted x||y, if they are neither causally related nor in conflict.

A Petri net N is finitely preceded, if for every node x ∈ P ∪T the set {y ∈ P ∪T | y ≤ x} is finite.

That set is the causal history of a node. A Petri net N is acyclic, if the directed graph (P ∪T ,F) is

acyclic. The following definitions lead to the definition of a branching process.

An occurrence net is a Petri net N with the following properties: N is acyclic, finitely preceded,

∀p ∈ P : |pre(p)| ≤ 1, no transition t ∈ T is in self-conflict, and In = {p ∈ P | pre(p) = /0}.

A homomorphism from one Petri net to another maps each node to a node such that the preset and

postset relations are preserved including the initial marking. Formally, let N1 and N2 be two Petri nets.

Then a homomorphism from N1 to N2 is a mapping h : P1 ∪T1 → P2 ∪T2 with following properties:

h(P1) ⊆ P2 and h(T1) ⊆ T2, for all transitions t ∈ T1, h restricted to pre1(t) is a bijection between

pre1(t) and pre2(h(t)), for all transitions t ∈ T1, h restricted to post1(t) is a bijection between post1(t)
and post2(h(t)), and the restriction of h to In1 is a bijection between In1 and In2. An isomorphism is a

bijective homomorphism.

A run is represented by a (possibly infinite) firing sequence of transitions. A branching process of a

Petri net represents (possibly) multiple runs of the underlying Petri net.

Branching process. A branching process of a net N0 is a pair B = (N,π), where N is an occurrence

net and π a homomorphism from N to N0 such that: (∗) For all t1, t2 ∈ T : if pre(t1) = pre(t2) and

π(t1) = π(t2), then t1 = t2.

An example of a Petri net and a branching process is shown in Fig. 1.

The notion of the set of all reachable markings of a branching process B = (N,π) is extended to

R(B) = R(N). By convention, a branching Process B has the components (NB,πB). Throughout this

paper, B1 and B2 are branching processes of an underlying net N0. The property (∗) of the definition

of a branching process ensures that every run of the Petri net is represented at most once. Informally

speaking, a run only consists of concurrent and causally related nodes and a node can be part of multiple

runs. Nodes that are in conflict, cannot belong to the same run.

Homomorphism on branching processes. A homomorphism from B1 to B2 is a homomorphism h

from N1 to N2 such that π2 ◦h = π1. The branching processes B1 and B2 are isomorphic if there exists an

isomorphism from B1 to B2 which is denoted as B1
∼= B2.

A natural partial order on branching processes is defined in the following.

Subprocess relation of branching processes. B1 approximates B2, denoted by B1 ≤ B2, if there

exists an injective homomorphism from B1 to B2.

Now we define the unfolding of a net as the maximal branching process that contains all (possibly

infinite) runs of a net. Loosely speaking, the unfolding of a net is an acyclic net with the same behaviour

as the original net, but where each place and transition has a unique causal history.

Unfolding. The unfolding unf(N0) of a Petri net N0 is the maximal branching process with respect to

the subprocess relation ≤ of branching processes. This definition is unique up to isomorphism. We refer

to the components of the unfolding as Tunf(N0), Punf(N0), preunf(N0), postunf(N0), and Inunf(N0).

118 (Un)Decidability Bounds for Petri Games

e1t1 e2

t2 t3

e3 e4

N0 : e1
1t1

1
e2

1 e1
2

t1
2t2

2 t1
3

e1
3e2

3 e1
4

•••

B = (N,π) :

Figure 1: A Petri net N0 on the left and a branching process B = (N,π) of N0 on the right. Places are

shown as circles, transitions as boxes and the preset and postset relations as arrows. The initial marking

{e1,e2} is represented by the black dots, the tokens. The homomorphism π from N to N0 is given as

π(ei
j) = e j and π(t i

j) = t j. The transitions t1
1 and t1

2 are in conflict, i.e., t1
1 #t1

2 , and also t2
2 #t1

2 , t1
3 #t1

2 , t2
2 #t1

3 .

In Fig. 1, the branching process B is the unfolding of the Petri net N0 assuming that the dots to the

left of the place e2
1 indicate that the branching process continues infinitely in the same way.

We continue with the definition of a Petri game. A Petri game is played on a finite and safe Petri net.

Tokens may transit from a system place to an environment place and vice versa.

Petri game. A Petri game on an underlying finite and safe Petri net N0 is a tuple G = (PS
0 ,P

E
0 ,T0,

pre0,post0, In0,B), where the set P0 of places of N0 is partitioned into disjoint sets of system places

PS
0 , and environment places PE

0 , and where B ∈ 2P0 is the set of bad markings.

A winning strategy of a Petri game is a branching process of the underlying Petri net of the game. A

strategy must satisfy 4 properties that are reasonable properties of implementations of processes. Beside

a safety property, each process must act deterministically, determinism, and at least one process must

enable a transition if possible, deadlock avoiding. Loosely speaking, the justified refusal property forces

the system players to commit to transitions that are always allowed on their current place. Strategies for

Petri games are obtained by cutting out parts of the unfolding.

Winning strategy A winning strategy σ of a Petri-game G = (PS
0 ,P

E
0 ,T0,pre0,post0, In0,B) with

underlying Petri-net N0 is a branching process σ = (N,π) of N0 satisfying the following properties:

1. Justified refusal: Let C ⊆ P be a set of pairwise concurrent places and t ∈ T0 a transition with

π(C) = pre0(t). If no t ′ ∈ T with π(t ′) = t and pre(t ′) =C exists, then there exists a place p ∈C

with π(p) ∈ PS
0 , such that t /∈ π(post(p)).

2. Safety: For all reachable markings M ∈ R(N) it holds that π(M) /∈ B.

3. Determinism: For all p ∈ P with π(p) ∈ PS
0 and for all reachable markings M in N with p ∈ M

there exists at most one transition t ∈ post(p), which is enabled in M.

4. Deadlock avoiding: For all reachable markings M in N there exists an enabled transition, if a

transition is enabled in π(M) in the underlying Petri-net N0.

We refer to a token on a system place as a system player, and a token on an environment place as

an environment player. The justified refusal property ensures that a system player allows all instances

of an outgoing transition or no instance at all. The global safety property ensures that no bad markings

are reachable. The determinism property ensures that for each system place at most one transition is

enabled in every reachable marking. The deadlock avoiding property ensures that the system allows at

least one transition in every reachable marking if an enabled transition exists in that marking, e.g. the

system players cannot add deadlocks to the existing deadlocks in the Petri net by forbidding transitions.

P. Hannibal 119

The unfolding unf(G) of a Petri game G is like the unfolding unf(N0) = (N,π) of the underlying Petri

net N0 of G, additionally keeping the distinction between system and environment: a place p in N is a

system place if π(p) ∈ PS
0 and an environment place if π(p) ∈ PE

0 . A winning strategy σG of G can be

seen as a subprocess of unf(G).
Fig. 2 shows a Petri game with 4 players modelling the control of a room with two doors that must

not be opened at the same time so that the two places of the bad marking {O1,O2} are not reached

simultaneously. After receiving a request to open door via transition r1 the first system player on place

S12 can decide to proceed with communicating (transition t) or without communicating (transition n1) to

the second system player, then on place S22. On place S13 the system player chooses between opening

the door (o1) or denying the request (d1) for the environment player waiting on W 1. From place S14

the system player can close the door it has opened before (c1). The second system player has the same

options after receiving a request via r2. After that, if both players open their doors the bad marking

{O1,O2} is reached. At least one system player has to deny the request to win the game.

P1p1C1
r1 S11

S12W 1

n1

S13

d1

o1

O1

c1

S14

t

S21

S22

r2 P2 p2 C2

W 2

n2

S23

d2

o2

O2

c2

S24

G:

Figure 2: A Petri game G: the grey places belong to the system players and the white places to the

environment players. There are two doors and two system players taking requests to open the door. After

a request the system players decide whether to communicate and open their door afterwards. The bad

marking {O1,O2} is reached if the system players decide to open both doors simultaneously.

Fig. 3 shows an initial part of the unfolding of the Petri game in Fig. 2. The parts that are not

greyed out are the initial parts of a winning strategy. Here, the system player agree on communicating

via t1. The first player decides to open its door via transition o1
2 while the other door remains closed

via transition d2
2 . After the transition c1

2 the first door is closed again. The following is not shown in

Fig. 3 anymore: after both players have received another opening request via r1
2 and r2

2, respectively,

the winning strategy could continue opening door 2 and keeping door 1 closed since the different causal

histories allow different decisions.

According to the definition of a winning strategy it is also possible that a winning strategy denies all

requests to open a door. The example is chosen with foresight for the content in Section 3.

3 Decidability Results

In this section, we show that the synthesis problem for Petri games with up to 4 players under a global

safety condition is decidable in non-deterministic exponential time (NEXP), and NP-complete in the 2-

player case. In [11], a related result is shown that the synthesis problem for 4-process control games

120 (Un)Decidability Bounds for Petri Games

P1
1p1

1
C1

1 r1
1

S11
1

S12
1

W 1
1

n1
1

S13
1

S13
2

d1
1

o1
1

O1
1

c1
1

S14
1

C1
3 S11

3

S11
2

C1
2

d1
2 o1

2

S11
4C1

4

O1
2

S14
2

c1
2

C1
5

S11
5

t1

S21
1

S22
1

r2
1

P2
1 p2

1
C2

1

W 2
1

n2
1

S23
2 S23

1

d2
1

o2
1

S24
1

O2
1

c2
1

C2
3S21

3

S21
2

C2
2

d2
2o2

2

S21
4 C2

4

O2
2

s24
2

c2
2

C2
5

S21
5

σG = (N,π):

Figure 3: An initial part of the unfolding of the Petri game G in Fig. 2. The nodes that are not greyed out

form an initial part of a winning strategy σG where door 1 gets opened and door 2 remains closed after

the system players have communicated. The homomorphism π is defined analogously to that in Fig. 1.

with a local termination condition is decidable. The translation [1] of this result to Petri games gives

a decidability result for Petri games with 4 players with a local termination condition, without process

generation and deletion. There are no complexity bounds for the 4-player case given in [11], and the

translation to Petri games already generates an exponential blow up in the number of nodes [1].

A Petri game G is called a K-player Petri game, K ∈ N, if and only if for all reachable markings

M ∈ R(G) it holds that |M| ≤ K. Two-player Petri games can be seen as a natural generalisation of

infinite games on graphs with a safety winning condition. NP-hardness is established by a reduction of

the 3-SAT problem to 2-player Petri games.

Lemma 3.1. There exists a polynomial-time reduction of the 3-SAT problem to the synthesis problem of

two-player Petri games.

Proof. Let F = (x1
1 ∨ x1

2 ∨ x1
3)∧ . . .∧ (xn

1 ∨ xn
2 ∨ xn

3) be an instance of the 3-SAT problem in conjunctive

normal form where all clauses consist of exactly three literals and where xi
j, i = 1, . . . ,n and j = 1,2,3,

is a positive or negative (with overline) literal from the set {x1, x̄1, . . .xm, x̄m}. Fig. 4 shows the Petri

game of F . If F is satisfiable, the top system player chooses the transitions according to the boolean

assignment that satisfies F , for example x̄1 if the truth value of x1 is false under the boolean assignment.

The bottom system player chooses the literal that is true under the boolean assignment in each clause,

for example if x1
1 = x̄1, she may choose x1

1 since the top system player chooses it. Both system players

do not know how when the transition of the other player are fired such that it has to be correct for all

possible orders of execution, for example the top player could have chosen the truth value for xn already

before the bottom player chose the literal for the first clause.

Conversely, the top player’s choices yield a boolean assignment that satisfies F if the Petri game

shown has a winning strategy since the bottom player chooses one literal of each clause that must be true

P. Hannibal 121

x1

x̄1
• • •

xn

x̄n

x1
2

x1
1

x1
3

• • •

xn
2

xn
1

xn
3

Figure 4: 3-SAT problem F as a Petri game. The top system player chooses sequentially the truth value

for x1, . . .xn. The bottom system player has to choose a literal for each clause according to the truth

values chosen by the top player. The bad markings are {{xk,x
i
j} | xi

j = x̄k}∪ {{x̄k,x
i
j} | xi

j = xk}. So

every time the bottom player chooses a literal that is not chosen by the top system player a bad marking

is reached, e.g. the top player chooses x1 and the bottom player x1
3 where x1

3 = x̄1.

under the boolean assignment.

Note that the 2-player case is NP-hard even without an environment player. The matching upper

bound is established later, along with the complexity of the 4-player case.

The idea of solving 4-player Petri games is to find game states where a winning strategy can be

repeated and still win. A few definitions are necessary to formalise repeating a part of a winning strategy.

The following definitions about branching processes are equivalent to those in [5].

Cut. The reachable markings in a branching process B are called cuts. A cut is a maximal set of

pairwise concurrent places [7].

Future of a cut. We define the branching process Fut(B,C) of a cut C ⊆ PB as follows: PFut(B,C)∪
TFut(B,C) = {x ∈ PB ∪TB | ∀p ∈C : p ≤ x∨ p||x}, the mappings preset and post are the mappings preB

and postB restricted to TFut(B,C), and InFut(B,C) = C. Generally, the future Fut(B,C) is not a branching

process of the underlying net N0 of B (i.e. πB : TB ∪PB → T0 ∪P0) but it is a branching process of

the net (P0,T0,pre0,post0,πB(C)), i.e. Fut(B,C) is a branching process of N0 if πB(C) = In0. (This

definition is equal to the definition of ⇑Configuration in [5].)

Informally speaking, the definition of the future of a cut coincides with the intuition that it is the

branching process that follows after that cut.

Last known cut and last known marking. The last known cut lkc(t) of a transition t of a branching

process B is defined as lkc(t) = {p ∈ PB | p ≮ t ∧∀t ′ ∈ preB(p) : t ′ ≤ t}. Informally speaking, this cut

is reached by firing all transitions that are causal predecessors of t. The last known marking lkm(t) is

defined as πB(lkc(t)), which is the marking reached in the underlying Petri net. (The lkc is the cut of a

local configuration [5])

A cut and glue operation formalises the process of copying the future of one cut to another cut of

a strategy. Later, the actual requirements for when to copy are defined. In the following, B and B′ are

branching processes of (possibly different) nets.

Cut. B−B′ = (PB \ (PB′ \ InB′),TB \TB′ ,preB ↾TB−B′
,postB ↾TB−B′

, InB)

If B′ is the future of a cut of B, the cut operation removes B′ from B leaving only the initial marking

of B′ in B.

122 (Un)Decidability Bounds for Petri Games

Glue. B+B′=(PB∪PB′,TB∪TB′,preB+B′,postB+B′, InB), where preB+B′(t)=

{

preB(t) t ∈ TB

preB′(t) t ∈ TB′

,

and analogously postB+B′.

If the initial marking of B′ is a cut in B, B′ gets glued to that cut. Generally, B−B′ and B+B′ are not

branching processes. However, if there are two cuts C1,C2 ⊆ PB with πB(C1) = πB(C2) cutting out the

future of C2 and glueing an isomorphic copy (this is just a necessary renaming) of the future of C1 to C2

yields a branching process.

Cut and glued branching process. Let Fut(B,C1)
′
be an isomorphic copy of Fut(B,C1), Fut(B,C1)

′

∼= Fut(B,C1), such that InFut(B,C1)
′ = C2 and (PB ∪TB)∩ (PFut(B,C1)

′ ∪TFut(B,C1)
′) = C2. The cut and

glued branching process BC1→C2
is the branching process BC1→C2

= B−Fut(B,C2)+Fut(B,C1)
′
. This

definition is unique up to isomorphism.

Definition 3.1 (Imitable cuts). Let σ be a winning strategy of a Petri game G. A cut C2 is imitable by a

cut C1 if σC1→C2
is a winning strategy.

Now we define the actual cuts that are imitable. The first kind of these cuts are cuts where a subset of

players take transitions without communicating to the remaining players until all players of this subset

synchronise at a joint transition for the second time. In the following, we fix σ as a winning strategy of

a Petri game G.

Definition 3.2 (Partial repetition cuts). Let t1, t2 ∈ Tσ . The cuts lkc(t1) and lkc(t2) are partial repetition

cuts, denoted prc(t1, t2), if lkm(t1) = lkm(t2)∧ lkc(t1)\post(t1) = lkc(t2)\post(t2). The partial repetitions

cuts prc(t1, t2) are called a loop, denoted prcloop(t1, t2) if t1 < t2.

Lemma 3.2 (Partial repetition cuts are imitable). For transitions t1, t2 ∈Tσ , prc(t1, t2) implies that lkc(t2)
is imitable by lkc(t1) and vice versa.

Proof by contradiction. We show that σlkc(t1)→lkc(t2) = σ −Fut(σ , lkc(t2))+Fut(B, lkc(t1))
′
is a winning

strategy. Suppose that there exists a cut C ⊆ Pσlkc(t1)→lkc(t2)
such that one of the properties of the winning

strategy is violated.

We distinguish two cases: The first case is that there exists a place p ∈ C such that t2 ≤ p. Then,

C ⊆ PFut(σlkc(t1)→lkc(t2)
,lkc(t2)), holds. Since Fut(σlkc(t1)→lkc(t2), lkc(t2)) = Fut(σ , lkc(t1))

′ ∼= Fut(σ , lkc(t1))
it follows directly that σ is not a winning strategy if σlkc(t1)→lkc(t2) is not winning.

The second case is that there exists no place p ∈C such that t2 ≤ p, i.e. ∀p ∈C : p ≤ t2 ∨ p#t2 ∨ p||t2
holds. Since the last known cuts of t1 and t2 are equal except for post(t1) and post(t2) the branching

processes Fut(σ , lkc(t2)) and Fut(σ , lkc(t1)) are isomorphic up to the nodes that are causal successors

of t1 and t2 respectively. This means that all transitions and places that are not causal successors of t2
are only renamed by constructing σlkc(t1)→lkc(t2). Since there is no place in C that is a causal successor of

t2 there is no transition enabled in C that could have been added or removed. It follows that σ is not a

winning strategy, if σlkc(t1)→lkc(t2) is not a winning strategy.

In Fig. 5 is an example of partial repetition cuts. Note that not all of those partial repetition cuts are

loops as the players can reach the same places in the underlying Petri net by taking different transitions.

Partial repetition cuts are defined regardless of the number of players in a Petri game, i.e, these cuts are

imitable in any Petri game.

Maximally repeated strategy. Since the nodes of a branching process are countable we can con-

struct by induction over the partial repetition cuts of a winning strategy σ a winning strategy σ
pr where

prc(t1, t2) implies that Fut(σ pr, t1)∼= Fut(σ pr, t2). σ
pr denotes a maximally repeated strategy of σ .

P. Hannibal 123

S21
1

S22
1

r2
1

P2
1 p2

1
C2

1

W 2
1

n2
1 S23

1

d2
1

C2
2

S21
2

p2
2

P2
2 r2

2
W 2

2

S22
2

S11
1C1

1

lkc(r2
1)

lkc(r2
2)

Figure 5: Example of partial repetition cuts. Assume that this is a part of a winning strategy where the

second system player denies (d2
1) the first request (r2

1) to open the door without communicating with the

other system player via transition t. Here, the last known cuts of r2
1 and r2

2 are lkc(r2
1) = {C1

1 ,S
11
1 ,S22

1 ,W 2
1 }

and lkc(r2
2)= {C1

1 ,S
11
1 ,S22

2 ,W 2
2 }, so lkm(r2

1)= lkm(r2
2). Thus, a partial repetition cut (that is a loop) occurs

prcloop(r
2
1,r

2
2).

The partial repetition cuts have a useful implication for the case with up to 4 players: if two players do

not take any joint transition with one of the two remaining players they will get to a partial repetition cut

eventually. The idea of the following definition of a synchronisation segment is based on this implication.

Informally speaking, a synchronisation segment describes the part starting from the last known cut of a

transition t until all other players are causal successors of this transition or the strategy can be repeated

due to the partial repetition cuts. Here, the idea of when to repeat a strategy is that if all players play

identically starting from the last known cut of transition t until they get to know of transition t the strategy

can be repeated after transition t.

Definition 3.3 (Synchronisation segment). The synchronisation segment Seg(t) of a transition t ∈ TB of

a branching process B is defined as a smallest branching process (with respect to ≤) such that

(1.) Seg(t)≤ Fut(B, lkc(t)) and

(2.) ∀t ′ ∈ TFut(B,lkc(t)) : t ′ /∈ TSeg(t) ⇒ (a) (∀p ∈ preB(t
′) : t ≤ p)∨

(b) (∃t1, t2, t3 ∈ TSeg(t) : prcloop(t1, t2)∧ t3 ≤ t2 ∧prc(t ′, t3))

For a transition t ′ ∈ Fut(B, lkc(t)) that is not in TSeg(t), all places in its preset are causal successors

of t (2.a) or there is a transition t3 with prc(t ′, t3) within a loop (2.b). So, the parts of a winning strategy

that get repeated due to partial repetition cuts are included in the synchronisation segment. An example

of a synchronisation segment is shown in Fig. 6 and Fig. 7. Synchronisation equivalent cuts are those

cuts where the synchronisation segments are isomorphic.

Definition 3.4 (Synchronisation equivalent cuts). Let σ
pr be a maximally repeated winning strategy of a

Petri game G and t1, t2 ∈ Tσ
pr . The cuts lkc(t1) and lkc(t2) are synchronisation equivalent cuts, denoted

sqc(t1, t2), if Seg(t1)∼= Seg(t2). sqc(t1, t2) is called an s-loop, denoted sqcloop, if t1 < t2.

Now, we show that a winning strategy can be repeated after synchronisation equivalent cuts.

Lemma 3.3 (Synchronisation equivalent cuts are imitable). For transitions t1, t2 ∈ Tσ
pr , sqc(t1, t2) im-

plies that lkc(t2) is imitable by lkc(t1) and vice versa.

Proof. We show that σ
pr

lkc(t1)→lkc(t2)
= σ

pr −Fut(σ , lkc(t2))+Fut(σ , lkc(t1))
′
is a winning strategy. Since

Seg(t1) ∼= Seg(t2) the construction is only a renaming for the nodes in the synchronisation segment and

for those that get repeated due to the partial repetition cuts. Thus, only nodes that are causal successors

of t2 may be removed or added. Now, the proof works in the same way as the proof of Lemma 3.2, that

partial repetition cuts are imitable.

124 (Un)Decidability Bounds for Petri Games

P1
1p1

1
C1

1 r1
1

S11
1

S12
1

W 1
1

S13
2

o1
2

O1
2 S14

2

t1

S21
1

S22
1

r2
1

P2
1 p2

1
C2

1

W 2
1

S23
2

d2
2

S21
4 C2

4

Seg(t1)
No more transitions

are added due to 2.a.

Figure 6: A subprocess of σG of Fig. 3 is shown. The nodes inside the dashed, blue box are the nodes of

the synchronisation segment Seg(t1). The initial marking is InSeg(t1) = {W 1
1 ,S

13
2 ,S23

2 ,W 2
1 }. This segment

ends after the transitions o1
2 and d2

2 since t1 < O1
2,S

14
2 ,S21

4 ,C2
4 . So, if σG repeats to open the first door and

keeping the second door closed after taking the transition t the winning strategy could repeat itself due

to synchronisation equivalent cuts.

S21
1

S22
1

r2
1

P2
1 p2

1
C2

1

W 2
1

n2
1 S23

1

d2
1

C2
2

S21
2

p2
2

P2
2 r2

2
W 2

2

S22
2

S11
1r1

1
P1

1p1
1

C1
1

W 1
1 S12

1

No more transitions

are added due to 2.b.

Seg(r1
1)

Figure 7: A branching process of the Petri game G of Fig. 2 is shown. The nodes inside the dashed,

blue box are the nodes of the synchronisation segment Seg(r1
1).

We show that 4-player Petri games can be solved in NEXP with the help of Lemma 3.2 and Lemma

3.3. A winning prefix of sufficient size is guessed from which a winning strategy can be constructed. A

branching process B is a winning prefix if there exists a winning strategy σ with B ≤ σ .

Theorem 3.4. The synthesis problem of 2-player Petri games is NP-complete and in NEXP for 3- and

4-player Petri games.

Proof. Structure of this proof: from the 2-player case over the 3-player case to the 4-player case the size

of a winning prefix is determined to guarantee that a winning strategy can be constructed by repeating

the futures of imitable cuts. A prefix of appropriate size is guessed and it is checked if it is winning. The

prefix does not contain any causal successors of transitions t2 if ∃t1 : prcloop(t1, t2)∨ sqcloop(t1, t2). Also,

it does not contain causal successors of transitions t4, if ∃t1, t2, t3 : t3 ≤ t2 ∧ ((prc(t3, t4)∧prcloop(t1, t2))∨
(sqc(t2, t3)∧ sqcloop(t1, t2))). Let T be the number of transitions of the Petri game.

If a player does not take any joint transition she eventually repeats a place she lays on, i.e. she reaches

a partial repetition cut. This occurs after at most T transitions. Otherwise, the two players take a joint

transition after at most T transitions. Since there are at most T different joint transitions, a winning prefix

from which a winning strategy can be constructed is at most of size O(T 2). To check if the guessed prefix

P. Hannibal 125

is winning, we have to check all reachable markings for the winning properties. In a safe Petri net with

T 2 transitions and at most two tokens there are at most T 4 reachable markings. Thus, guessing a winning

prefix and checking if it is winning takes time in O(|T |4), which shows together with Lemma 3.1 that

the synthesis problem for two-player Petri games is NP-complete.

In the 3-player case, it holds for the same reasons as in the 2-player case that each pair of two

players reaches partial repetition cuts after at most T 2 transitions without taking a joint transition with the

remaining third player. The remaining third player can take up to T transitions herself before reaching

a partial repetition cut or taking a joint transition. Therefore, a synchronisation segment has at most

T 2 +T transitions resulting in at most 2(T
2+T)2

non-isomorphic synchronisation segments. Therefore, a

synchronisation equivalent cut is always reached after at most 2(T
2+T)2

transitions such that the winning

prefix can be extended step by step by reaching synchronisation equivalent cuts again and again. Thus,

the size of a winning prefix is in O(2T 4

). To check if the prefix is winning takes polynomial time in its

size and it follows that the 3-player case is decidable in NEXP.

In a 4-player Petri game, it also holds that each pair of two players reaches partial repetition cuts

after at most T 2 transitions without taking a joint transition with one of the two remaining players. So,

there are two pairs of players that can take T 2 transitions until they reach partial repetition cuts or one

player of each pair communicate with each other. This leaves the other two players until they reach

partial repetition cuts or take a joint transition again after T 2 transitions. Thus, there are at most 23T 2

non-isomorphic synchronisation segments. Therefore, the size of a winning prefix of a 4-player Petri

game that needs to be checked if it is winning is in O(26T 2

). So the bound is in NEXP. Note that if more

than 2 players take a joint transition the size of the synchronisation segments decreases.

This construction does not work for the 5-player case. The problem that occurs is tricky to see.

Assume there is a group of 3 players and a group of 2 players that take joint transitions repeatedly within

their group, only two players participating at a time. The group of 2 players get to partial repetition

cuts or one of them takes a joint transition with one player of the other group, while the group of 3

players might not get to partial repetition cuts. After two players, one from each group, have taken a

joint transition the problem occurs: the remaining 3 players that did not participate in that joint transition

might form a new group of 3 players that do not reach partial repetition cuts. This cannot occur in the

4-player case since there is only a pair of players left.

4 Undecidability Result

In this section, a tiling problem is reduced to the synthesis problem of a 6-player Petri game with a global

safety condition. The tiling problem used here is the ω bipartite colouring problem (ω-BCP). The un-

decidable ω Post correspondence problem (ω-PCP) is reducible to the ω-BCP. Later, the undecidability

result can be simplified to local safety as a winning condition. The reduction is similar to the work in

[12], where the (normal) Post correspondence problem is reduced to a colouring problem followed by

a reduction to the synthesis problem of 6-process control games with local termination as a winning

condition.

Employing the translation of control games into Petri games in [1], the 6-process control games

yield 6-player Petri games (with exponentially many additional nodes) for local termination as a winning

condition. In the obtained Petri game, all players alternate in their roles as environment and system

players. Instead, we present a direct construction of 6-player Petri games with at most 3 simultaneous

system players. Later, we show that the number of system players can be even further reduced to 2.

126 (Un)Decidability Bounds for Petri Games

Definition 4.1 (ω bipartite colourings). Let C be a finite set of colours. An ω bipartite colouring is a

mapping f : N2 7→ C. The initial colour is f (1,1). We define three subsets of C2 called the patterns

induced by f :

• the diagonal patterns of f are all pairs {(f (x,y), f (x+1,y+1)) | (x,y) ∈ N2)}

• the horizontal patterns of f are all pairs {(f (x,y), f (x+1,y)) | (x,y) ∈ N2)}

• the vertical patterns of f are all pairs {(f (x,y), f (x,y+1)) | (x,y) ∈ N2)}

We define a colouring constraint as a 4-tuple (Ci,DP,HP,VP), where Ci is the set of initial colours, DP

a set of diagonal patterns, VP a set of vertical patterns and HP a set of horizontal patterns. DP, VP and

HP are called forbidden patterns. A colouring f satisfies a colouring constraint if its initial colour is in

Ci and no diagonal pattern of f is in DP, no vertical pattern of f is in VP and no horizontal pattern of f

is in HP.

ω-BCP. Given a finite set of colours C and colouring constraints (Ci,DP, VP,HP), decide whether

there exists an ω bipartite colouring that satisfies the colouring constraints. This problem is a variation

of the standard tiling problem and it is also undecidable. In the following we define a Petri game for

which a winning strategy exists if and only if a given ω-BCP has a solution. In this Petri game shown

in Fig. 8, there are two identical parts, a top part and a bottom part, each consisting of 3 players. The

idea is that the number of rounds played in the lower and upper parts refer to the x and y coordinates of

a tile, respectively, so that the system players choose a colour for each tile. Each colour choice requires

one player from each part of the Petri game, so there can be a maximum of 3 colour choices in one run

of the Petri game. If the colours chosen refer to a forbidden pattern a bad marking is reached. As the

bad markings have to be defined on the Petri net and not on the unfolding, we define when two system

players are in the same round or when a player is one round ahead or one round behind to be able to

check for forbidden patterns.

Compared rounds of two players. In the Petri net NCP of Fig. 8, we compare the rounds of two

players a and b, both from the same part. We say a,b ∈ {0,1,2} are in the same round if and only if for

their places eX
a j and eX

bk, X ∈ {T,B}, j,k ∈ {0,1,2} or j,k ∈ {3,4} or j,k ∈ {5,2} holds. We say that a is

one round ahead of b (or b is one round behind of a) if and only if (j ∈ {3} and k ∈ {2}) or (j ∈ {5} and

k ∈ {4}) . Other combinations of indices are not possible.

Definition 4.2 (Petri game of an ω Bipartite colouring Problem). Let CP be an ω-BCP with colours

C and constraints Ci, DP, VP and HP. The components of the Petri net of the Petri game GCP are the

components of NCP from Fig. 8. The bad markings of the Petri game GCP are defined as follows:

B = BSame ∪BDP∪BHP∪BVP∪Binit, where

BSame = {{eaT j−aB j′ ,ebT k−bBk′ ,(cu,a),(cv,b)} |
aT and bT are in the same round and aB and bB are in same the round ,cu 6= cv},

BDP = {{eaT j−aB j′ ,ebT k−bBk′ ,(cu,a),(cv,b) |
aT and aB are one round ahead of bT and bB respectively ,(cv,cu) ∈ DP},

BVP = {{{eaT j−aB j′ ,ebT k−bBk′ ,(cu,a),(cv,b)} |
aT is a round ahead of bT and aB and bB are in the same round ,(cv,cu) ∈ VP}},

BHP = {{{eaT j−aB j′ ,ebT k−bBk′ ,(cu,a),(cv,b)} |
aB is a round ahead of bB and aT and bB are in the same round ,(cv,cu) ∈ HP}},

Binit = {{eaT j−aB j′ ,(cu,a)} | j, j′ ∈ {0,1},cu /∈ Ci}.

In addition to the colouring constraints, the bad markings contain the set BSame to ensure that system

players must choose the same colour for two checks whenever the checks occur in the same round for

P. Hannibal 127

eT
00 eT

01 eT
02 eT

03 eT
04 eT

05 eT
02

eT
10

eT
11 eT

12 eT
13 eT

14 eT
15

eT
12

eT
20

eT
21 eT

22 eT
23 eT

24 eT
25

eT
22

eB
00

eB
01 eB

02 eB
03 eB

04 eB
05

eB
02

eB
10

eB
11 eB

12 eB
13 eB

14 eB
15

eB
12

eB
20 eB

21 eB
22 eB

23 eB
24 eB

25 eB
22

ta j−ak

ea j−ak

sa

tac1

tacm

(c1,a)

(cm,a)

••

eT
a j

•

••

eB
ak

•

•
•
•

Round 1 Round 2 Round 3

NCP:

Figure 8: Petri net NCP of the Petri game GCP of an ω-BCP. We have two structurally identical parts

consisting of 3 environment players, a top part and a bottom part. Two of the players synchronise at each

transition in these parts. After firing 3 such transitions, each player has synchronised with the other two

players in its part. We define such a block of 3 transitions as a round. Each part has 3 rounds. After the

third round the players return to the places they were in before the second round. This means that we

have an initial round and then the players alternate between the second and third rounds. As the game

progresses, the nodes have exact information in the unfolding about how many rounds they have played.

In the middle part, the environment players can take a check transition ta j−ak, where a ∈ {0,1,2} and

j,k ∈ {0, . . . ,5} and pre(ta j−ak) = {eT
a j,e

B
ak}. After that, the system player on place sa has to choose a

colour. Based on the number of rounds x and y played in the lower part and upper part, respectively, the

system player has to determine the colour f (x,y) of the given ω-BCP.

128 (Un)Decidability Bounds for Petri Games

both players. To define a colouring from a strategy of the Petri game, we define the number of rounds

played in the unfolding.

Number of rounds. Let unf(GCP) be the unfolding of GCP of Fig. 8. The number of rounds

played in part X , X ∈ {T,B} in a place p ∈ Punf(GCP) is defined as rX(p) = max(⌈|{t ∈ TunfCP
| t ≤

p and t is a transition in part X}|/3⌉,1)

This means that the number of rounds is incremented after a player has taken two transitions, starting

from round 1. The divisor is 3 because the players also get the knowledge of the synchronisation of the

other two players in their part. The number of rounds is not increased after a check transition.

Theorem 4.1 (Characterization of ω-BCP as a Petri game). The ω-BCP is reducible to the synthesis

Problem of 6-player Petri games.

Proof. Let CP be a colouring problem and GCP be the Petri game from Def. 4.2. We show that there

exists a solution for CP if and only if there exists a winning strategy for GCP.

We start by assuming that there is a solution f : N×N 7→ C for the colouring problem CP. After

the environment player has chosen a check transition the system player must choose a colour in place sa,

a ∈ {0,1,2}. Since the system player knows the entire causal history, she knows the number of rounds

played in the top and the bottom part of the Petri game. Let rT (sa) = y denote the number of rounds in

the top part and rB(sa) = x the number of rounds in the bottom part. Then, the winning strategy for the

system players is to choose the colour f (x,y). This way no bad marking is reachable. The bad markings

in BSame are avoided because f (x,y) is unique. The bad markings in BDP,BVP and BHP are avoided

because f avoids all forbidden patterns. Finally, the bad markings Binit are avoided because f (1,1) is an

initial colour.

Now, we assume that there is a winning strategy for the Petri game GCP. We define the colouring

f : N×N 7→ C derived from the winning strategy as follows: f (x,y) = c if there exists a system place

sa ∈ Punf(NCP) with rB(sa) = x and rT (sa) = y and tac ∈ post(sa).

We show that for every colour that a system player has to choose, there are sequences of checks

such that all colouring constraints are met. In these sequences of checks, any two consecutive checks

can be carried out concurrently while the system players do not know whether the other check is the

previous check or the next check, so the winning strategy must play correctly for both checks. Informally

speaking, this leads to infinite sequences of dependencies as a check depends on the choice of the colour

of the previous check and again that check depends on its previous check and so on.

In Fig. 9, it is crucial to see that there are concurrent places between different rounds such that we

can always find at least one suitable check for all diagonal, vertical and horizontal patterns. To check the

horizontal pattern of (f (1,1), f (2,1)) for example, the checks t00−03 and t20−22 are fired. The places in

the upper part are eT
00 and eT

20 respectively, which are both in the first round. The places in the lower part

are eB
03 and eB

22 respectively, where eB
03 is in the second round and eB

22 in the first round. These two checks

can be performed concurrently since eT
00 and eT

20 are concurrent, as are eB
22 and eB

03. For the initial colour

we have the extra initial round which does not get repeated.

The colouring f is well-defined as the set of bad markings BSame ensures that every two colours

chosen when both top rounds and both bottom rounds are the same the colours chosen also must be the

same in a winning strategy. This can be seen with the help of Fig. 9, too. There, we can find a sequence

of checks throughout one round such that the colour chosen at the beginning of that round (e.g. eB
03) is

still the same colour as chosen at the end of that round (e.g eB
04) (assuming that the top round does not

change too).

It is easy to see that the Petri game presented here performs at most 3 checks in every possible

P. Hannibal 129

eX
00 eX

10 eX
20 eX

01 eX
11 eX

21 eX
02 eX

12 eX
22 eX

03 eX
13 eX

23 eX
04 eX

14 eX
24

eX
00 || ||

eX
10 || ||

eX
20 || || || ||

eX
01 || || || ||

eX
11 || ||

eX
21 || ||

eX
02 || ||

eX
12 || || || ||

eX
22 || || || ||

eX
03 || || || ||

eX
13 || ||

eX
23 || ||

eX
04 || ||

eX
14 || || ||

eX
24 || ||

Figure 9: Table of concurrent places of the first two rounds in the unfolding of the Petri game GCP.

Empty cells denote that the places are causally related. Filled cells denote that the places are concurrent.

The pattern continues identically. With the help of this table we can see the sequences of checks to

ensure that no bad markings are reached in the Petri game. For example, to check that the initial colour

chosen after the transition t00−00 and after t22−00 is the same, we can perform the following sequence of

checks of the indices of the places in the upper part: 00− 20− 01− 12− 22. The indices of the place

in the lower part remain 00 here. To carry out two consecutive checks in the same play they need to be

concurrent. We can check this in the table by going in a row from 00 to 20, then in the column from 20

to 01, then again checking in the row and so on. Note that the place of the bottom player can also change

in these sequences.

sequence of transitions. Therefore this Petri game has at most 3 system players. For the undecidability

result it is sufficient to have 2 concurrent checks. Therefore, the number of system players can be further

reduced to 2 by adapting the Petri game. This could be done by adding two environment players that are

consumed performing a check. Furthermore, by adding a transition for each bad marking to a bad place,

the set of bad markings can be simplified to a set of bad places, the local safety condition.

5 Conclusions

Our contribution to the synthesis problem of distributed systems is that this problem is undecidable for

6-player Petri games under a local safety condition and that two system processes are sufficient to obtain

undecidability. This adds neatly to the result in [7], where Petri games with one system player are solved

in exponential time. Furthermore, the synthesis problem for 2-player Petri games belongs to the class of

NP-complete problems, and we provide a non-deterministic exponential upper bound for this problem

for Petri games with a variable number of players up to 4 under a global safety condition. This is a new

class of Petri games for which the synthesis problem is decidable. The case of 5 players remains open.

References

[1] Raven Beutner, Bernd Finkbeiner & Jesko Hecking-Harbusch (2019): Translating Asynchronous Games for

Distributed Synthesis. In Wan J. Fokkink & Rob van Glabbeek, editors: 30th International Conference on

130 (Un)Decidability Bounds for Petri Games

Concurrency Theory, CONCUR 2019, LIPIcs 140, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.

26:1–26:16, doi:10.4230/LIPIcs.CONCUR.2019.26.

[2] Roderick Bloem, Sven Schewe & Ayrat Khalimov (2017): CTL* synthesis via LTL synthesis. In Dana Fisman

& Swen Jacobs, editors: Proceedings Sixth Workshop on Synthesis, SYNT@CAV 2017, EPTCS 260, pp. 4–

22, doi:10.4204/EPTCS.260.4.

[3] Alonzo Church (1957): Applications of recursive arithmetic to the problem of circuit synthesis. Summaries

of the Summer Institute of Symbolic Logic 1, pp. 3–50.

[4] Joost Engelfriet (1991): Branching Processes of Petri Nets. Acta Inf. 28(6), pp. 575–591, doi:10.1007/

BF01463946.

[5] Javier Esparza, Stefan Römer & Walter Vogler (2002): An Improvement of McMillan’s Unfolding Algorithm.

Formal Methods Syst. Des. 20(3), pp. 285–310, doi:10.1023/A:1014746130920.

[6] Bernd Finkbeiner (2015): Bounded Synthesis for Petri Games. In Roland Meyer, André Platzer & Heike

Wehrheim, editors: Correct System Design - Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion

of His 60th Birthday, Proceedings, Lecture Notes in Computer Science 9360, Springer, pp. 223–237, doi:10.

1007/978-3-319-23506-6_15.

[7] Bernd Finkbeiner & Paul Gölz (2018): Synthesis in Distributed Environments. In Satya Lokam & R. Ra-

manujam, editors: 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS 2017), Leibniz International Proceedings in Informatics (LIPIcs) 93, Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 28:1–28:14, doi:10.4230/LIPIcs.

FSTTCS.2017.28.

[8] Bernd Finkbeiner & Ernst-Rüdiger Olderog (2017): Petri games: Synthesis of distributed systems with causal

memory. Information and Computation 253, pp. 181–203, doi:10.1016/j.ic.2016.07.006. GandALF

2014.

[9] Bernd Finkbeiner & Sven Schewe (2005): Uniform Distributed Synthesis. In: 20th IEEE Symposium on

Logic in Computer Science (LICS 2005), Proceedings, pp. 321–330, doi:10.1109/LICS.2005.53.

[10] Blaise Genest, Hugo Gimbert, Anca Muscholl & Igor Walukiewicz (2013): Asynchronous Games over Tree

Architectures. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska & David Peleg, editors: Au-

tomata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Proceedings, Part II,

Lecture Notes in Computer Science 7966, Springer, pp. 275–286, doi:10.1007/978-3-642-39212-2_26.

[11] Hugo Gimbert (2017): On the Control of Asynchronous Automata. In Satya V. Lokam & R. Ramanujam,

editors: 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer

Science, FSTTCS 2017, India, LIPIcs 93, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 30:1–

30:15, doi:10.4230/LIPIcs.FSTTCS.2017.30.

[12] Hugo Gimbert (2022): Distributed Asynchronous Games With Causal Memory are Undecidable. Log. Meth-

ods Comput. Sci. 18(3), doi:10.46298/lmcs-18(3:30)2022.

[13] Paul Hannibal & Ernst-Rüdiger Olderog (2022): The Synthesis Problem for Repeatedly Communicating

Petri Games. In Luca Bernardinello & Laure Petrucci, editors: Application and Theory of Petri Nets and

Concurrency - 43rd International Conference, PETRI NETS 2022, Proceedings, Lecture Notes in Computer

Science 13288, Springer, pp. 236–257, doi:10.1007/978-3-031-06653-5_13.

[14] O. Kupferman & M.Y. Vardi (2001): Synthesizing distributed systems. Proceedings - Symposium on Logic

in Computer Science, pp. 389–398, doi:10.1109/LICS.2001.932514.

[15] P. Madhusudan & P. S. Thiagarajan (2002): A Decidable Class of Asynchronous Distributed Controllers.

In Lubos Brim, Petr Jancar, Mojmı́r Kretı́nský & Antonı́n Kucera, editors: CONCUR 2002 - Concurrency

Theory, 13th International Conference, Proceedings, Lecture Notes in Computer Science 2421, Springer, pp.

145–160, doi:10.1007/3-540-45694-5_11.

[16] P. Madhusudan, P. S. Thiagarajan & Shaofa Yang (2005): The MSO Theory of Connectedly Communicating

Processes. In Ramaswamy Ramanujam & Sandeep Sen, editors: FSTTCS 2005: Foundations of Software

https://doi.org/10.4230/LIPIcs.CONCUR.2019.26
https://doi.org/10.4204/EPTCS.260.4
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/BF01463946
https://doi.org/10.1023/A:1014746130920
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.28
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.28
https://doi.org/10.1016/j.ic.2016.07.006
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1007/978-3-642-39212-2_26
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.30
https://doi.org/10.46298/lmcs-18(3:30)2022
https://doi.org/10.1007/978-3-031-06653-5_13
https://doi.org/10.1109/LICS.2001.932514
https://doi.org/10.1007/3-540-45694-5_11

P. Hannibal 131

Technology and Theoretical Computer Science, 25th International Conference, Proceedings, Lecture Notes

in Computer Science 3821, Springer, pp. 201–212, doi:10.1007/11590156_16.

[17] Anca Muscholl (2015): Automated Synthesis of Distributed Controllers. In Magnús M. Halldórsson, Kazuo

Iwama, Naoki Kobayashi & Bettina Speckmann, editors: Automata, Languages, and Programming - 42nd

International Colloquium, ICALP 2015, Proceedings, Part II, Lecture Notes in Computer Science 9135,

Springer, pp. 11–27, doi:10.1007/978-3-662-47666-6_2.

[18] Amir Pnueli & Roni Rosner (1989): On the Synthesis of an Asynchronous Reactive Module. In Giorgio

Ausiello, Mariangiola Dezani-Ciancaglini & Simona Ronchi Della Rocca, editors: Automata, Languages and

Programming, 16th International Colloquium, ICALP89, Proceedings, Lecture Notes in Computer Science

372, Springer, pp. 652–671, doi:10.1007/BFb0035790.

[19] Amir Pnueli & Roni Rosner (1990): Distributed Reactive Systems Are Hard to Synthesize. In: 31st An-

nual Symposium on Foundations of Computer Science, Volume II, pp. 746–757, doi:10.1109/FSCS.1990.

89597.

[20] R. Rosner (1992): Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Institute of Science,

Rehovot, Israel.

https://doi.org/10.1007/11590156_16
https://doi.org/10.1007/978-3-662-47666-6_2
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597

A. Achilleos and D. Della Monica (Eds.): Fourteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2023).
EPTCS 390, 2023, pp. 132–149, doi:10.4204/EPTCS.390.9

© J. Parreaux, J. Piribauer, and C. Baier
This work is licensed under the
Creative Commons Attribution License.

Counterfactual Causality for Reachability and Safety based
on Distance Functions

Julie Parreaux
Aix Marseille Univ, CNRS, LIS, Marseille, France

julie.parreaux@univ-amu.fr

Jakob Piribauer
Technische Universität Dresden, Germany
Technische Universität München, Germany

jakob.piribauer@tu-dresden.de

Christel Baier
Technische Universität Dresden, Germany

christel.baier@tu-dresden.de

Investigations of causality in operational systems aim at providing human-understandable explana-
tions of why a system behaves as it does. There is, in particular, a demand to explain what went wrong
on a given counterexample execution that shows that a system does not satisfy a given specification.
To this end, this paper investigates a notion of counterfactual causality in transition systems based
on Stalnaker’s and Lewis’ semantics of counterfactuals in terms of most similar possible worlds
and introduces a novel corresponding notion of counterfactual causality in two-player games. Using
distance functions between paths in transition systems to capture the similarity of executions, this
notion defines whether reaching a certain set of states is a cause for the fact that a given execution of
a system satisfies an undesirable reachability or safety property. Similarly, using distance functions
between memoryless strategies in reachability and safety games, it is defined whether reaching a set
of states is a cause for the fact that a given strategy for the player under investigation is losing.

The contribution of the paper is two-fold: In transition systems, it is shown that counterfactual
causality can be checked in polynomial time for three prominent distance functions between paths.
In two-player games, the introduced notion of counterfactual causality is shown to be checkable in
polynomial time for two natural distance functions between memoryless strategies. Further, a notion
of explanation that can be extracted from a counterfactual cause and that pinpoints changes to be
made to the given strategy in order to transform it into a winning strategy is defined. For the two
distance functions under consideration, the problem to decide whether such an explanation imposes
only minimal necessary changes to the given strategy with respect to the used distance function
turns out to be coNP-complete and not to be solvable in polynomial time if P is not equal to NP,
respectively.

1 Introduction

Modern software and hardware systems have reached a level of complexity that makes it impossible for
humans to assess whether a system behaves as intended without tools tailored for this task. To tackle this
problem, automated verification techniques have been developed. Model checking is one prominent such
technique: A model-checking algorithm takes a mathematical model of the system under investigation
and a formal specification of the intended behavior and determines whether all possible executions of the
model satisfy the specification. While the results of a model-checking algorithm provide guarantees on

Funding: This work was partly funded by DFG Grant 389792660 as part of TRR 248 (Foundations of Perspicuous
Software Systems), the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence
Strategy), and the DFG projects BA-1679/11-1 and BA-1679/12-1, and the ANR project Ticktac (ANR-18-CE40-0015).

https://dx.doi.org/10.4204/EPTCS.390.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

J. Parreaux, J. Piribauer, and C. Baier 133

the correctness of a system or affirm the presence of an error, their usefulness is, nevertheless, limited as
they do not provide a human-understandable explanation of the behavior of the system.

To provide additional information on why the system behaves as it does, certificates witnessing the
result of the model-checking procedure, in particular counterexample traces in case of a negative result,
have been studied extensively (see, e.g., [10, 29, 9, 30]). Due to the potentially still enormous size of
counterexample traces and other certificates, a line of research has emerged that tries to distill compre-
hensible explications of what causes the system to behave as it does using formalizations of causality
(see, e.g., [32, 33, 2]).

Forward- and backward-looking causality There are two fundamentally different types of notions
of causality: forward-looking and backward-looking notions [34]. In the context of operational system
models, forward-looking causality describes general causal relations between events that might happen
along some possible executions. Backward-looking causality, on the other hand, addresses the causal
relation between events along a given execution of the system model. This distinction is captured in more
general contexts by the distinction between type-level causality addressing general causal dependencies
between events that might happen when looking forward in a world model, and token-level or actual
causality, corresponding to the backward view, that addresses causes for a particular event that actually
happened (see, e.g., [16]).

Notions of necessary causality are typically forward-looking: A necessary cause C for an effect E is
an event that occurs on every execution that exhibits the effect E (see, e.g., [3], and for a philosophical
analysis of necessity in causes [28]). The backward view naturally arises when the task is to explain what
went wrong after an undesired effect has been observed. In the verification context, the backward view is
natural for explaining counterexamples, see e.g. [42, 6, 15, 35, 38, 39]. Most of these techniques rely on
the counterfactuality principle, which has been originally studied in philosophy [20, 21, 37, 26, 27] and
formalized mathematically by Halpern and Pearl [17, 18, 19, 16]. Intuitively, counterfactual causality
requires that the effect would not have happened, if the cause had not occurred, in combination with
some minimality constraints for causes. The most prominent account for the semantics of the involved
counterfactual implication is provided by Stalnaker and Lewis [37, 26, 27] in terms of closest, i.e., most
similar, possible worlds. The statement “if the cause C had not occurred, then the effect E would not
have occurred” holds true if in the worlds that are most similar to the actual world and in which C did
not occur, E also did not occur. Interpreting executions of a system as possible worlds, the actual world
is an execution π where both the effect E and its counterfactual cause C occur, while the effect E does
not occur in alternative executions that are as similar as possible to π and that do not exhibit C.

For a more detailed discussion on the distinction between forward- and backward looking causality
and related concepts for responsibility, we refer the reader, e.g., to [34, 40, 41, 4, 2].

Defining counterfactual causality in transition systems and reachability games To define our back-
ward-looking notion of counterfactual causality in transition systems, we follow an approach similar
to the one by Groce et al [14] who presented a Stalnaker-Lewis-style formalization of counterfactual
dependence of events using distance functions. We consider the case where effects are reachability
or safety properties and causes are sets of states. To illustrate the idea, let T be a transition system
and let E and C be disjoint sets of states of T indicating a reachability effect and a potential cause,
respectively. Consider an execution π that reaches the effect set and the potential cause set. We employ
the counterfactual reading of causality by Stalnaker and Lewis by viewing executions as possible worlds
using a similarity metric d on paths: Reaching C was a cause for π to reach E if all paths ζ , that do not

134 Counterfactual Causality for Reachability and Safety

highway: N

highway: N

highway: N

exit A: E

exit B: E

exit C: E

E E

N S

E access A: E

E E E

S N

access B: E

E E E access C: E

highway: E

a

b b

c a

d d

c

d

cause

effect

Figure 1: On the left: example transition system modelling a traffic grid (Ex. 1). On the right: Example
of a dHamm-counterfactual cause that is not a dpref -counterfactual cause (Ex. 3).

reach C and that are most similar to π according to d among all paths with this property, satisfy ζ �2¬E,
i.e., they do not reach E. So, we first determine the minimal similarity-distance dmin = min{d(π,ζ) | ζ �
2¬C} from π to a path ζ that does not reach C. Then, we check whether all paths that do not reach C and
have similarity-distance dmin to π do not reach E: Do all ζ ∈ {ζ ′ | d(π,ζ ′) = dmin and ζ ′ �2¬C} satisfy
2¬E? If the answer is yes, it is the case that “if C had not occurred, then E would not have occurred”
and so C is a counterfactual cause for E on π .

Example 1. Consider the following distance function on paths in a labeled transition system T with
states S and a labeling function L : S→A for a set of labels A : For paths π = s0,s1, . . . and π ′= t0, t1, . . . ,
we define dist(π,π ′) = |{n ∈N | L(sn) 6= L(tn)}|. So, paths are more similar if their traces differ at fewer
positions. To determine whether C is a cause for E on π , we first determine what the least number nmin
of changes to the state labels of π is to obtain a path ζ that does not reach C. Then, we have to check
whether all paths differing from π in nmin labels and not reaching C do not reach E. If this is the case, C
is a counterfactual cause for E on π with respect to dist.

Now, consider the example transition system T modelling a road system with a highway going north
that has three exits into a small town which can be left again on a highway heading east depicted in Fig.
1. Each state is labeled with N, E, or S for north, east, and south as indicated in Fig. 1 depending on
the direction the cars move on the respective road. Say, an agent traverses the system via the path π with
trace NNEω , i.e., by taking exit B from the first highway and then going eastwards straight through the
town. Assume that there is a traffic jam on access B while the other access roads are free. The question
is now whether taking exit B was a cause for being stuck in slow traffic later on, i.e., for the effect
{access B}. First, note here that the set {exit B} is not a forward-looking necessary cause for reaching
{access B}. There are paths through the system that avoid {exit B}, but reach {access B}.

However, given the fact that the agent traversed the town by going straight eastwards, it is reasonable
to say that the agent would have reached a different access road if she had taken a different exit from the
first highway. This is reflected in the counterfactual definition using dist: There are two paths that do not
reach exit B and whose traces differ from π at only one position, namely the paths with trace NEω and
NNNEω . These paths do also not reach access B. So, {exit B} is a counterfactual cause for {access B}
on π; if the agent had taken exit A or C, she would not have hit the low traffic flow at access B. y

In the context of two-player reachability games, causality has been used as a tool to solve games [1].
In our work, we focus on explaining why a certain strategy does not allow the player to win. More pre-
cisely, in reachability games between players with a safety and the complementing reachability objective,
respectively, we consider the situation where one of the players Π has a winning strategy, but loses the
game using a strategy σ . We introduce a notion of counterfactual causality that aims to provide insights
into what is wrong with strategy σ by transferring the counterfactual definition using distance functions

J. Parreaux, J. Piribauer, and C. Baier 135

distance d causality

prefix
in P

(Thm. 4)

Hamming
in P

(Thm. 5)

Levenshtein
in P

(Thm. 8)

distance d causality explanations
Hausdorff lifting dH

pref in P
of the prefix distance (Thm. 12)

Hamming strategy in P in acyclic games coNP-complete
distance ds

Hamm (Thm. 13) (Cor. 21)
Hausdorff-inspired not in P if P6=NP

distance d∗ (Cor. 21)

Table 1: Overview of the complexity results. On the left, the complexities of checking d-counterfactual
causality in transition systems, and on the right, the complexities of checking d-counterfactual causality
and d-minimality of explanations in reachability games.

d on memoryless strategies. A set of states C is said to be a d-counterfactual cause for the fact that σ is
losing if all memoryless strategies τ , that make sure that C is not reached and have minimal d-distance
to σ among all such strategies, are winning. Furthermore, we introduce counterfactual explanations that
specify minimally invasive changes of σ ’s decisions required to turn σ into a winning strategy.

Contributions

• We show that d-counterfactual causal relationships in transition systems (defined as in [14]) can
be checked in polynomial time for the following three distance metrics d (Sec. 3.2):

1. the prefix distance: paths are more similar if their traces share a longer prefix.
2. the Hamming distance that counts the positions at which traces of paths differ.
3. the Levenshtein distance that counts how many insertions, deletions, and substitutions are

necessary to transform the trace of one path to the trace of another path.

Furthermore, we show that the notion of d-counterfactual causality for the Hamming distance is
consistent with Halpern and Pearl’s but-for causes [18, 19].

• In reachability games, we provide a generalization of this notion using similarity metrics on mem-
oryless deterministic strategies. We show that for the Hausdorff lifting of the prefix distance on
paths to a distance function on memoryless deterministic strategies, the resulting notion can be
checked in polynomial time (Sec. 4.1).

• We introduce a notion of counterfactual explanation that can be computed from a counterfactual
cause (Sec. 4.2). An explanation specifies where a non-winning strategy needs to be changed. Of
particular interest are D-minimal explanations that enforce only minimal necessary changes with
respect to a distance function D on strategies. For two distance functions related to the Hamming
distance, we show that checking whether an explanation is minimal is coNP-complete and not in
P if P 6=NP, respectively.

An overview of the complexity results can be found in Table 1.

Related work Ways to pinpoint the problematic steps in a counterexample trace by localizing errors
have widely been studied [42, 6, 15, 35, 38, 39]. For counterfactuality in transition systems, we follow
the approach of [14] with distance metrics. In contrast to the causes in this paper, causes in [14] are
formulas in an expressive logic that can precisely talk about the valuation of variables after a certain
number of steps. Further [14] is not concerned with checking causality, but with finding causes, which,

136 Counterfactual Causality for Reachability and Safety

due to the expressive type of causes, algorithmically boils down to finding executions avoiding the effect
with a minimal distance to the given one.

Based on counterfactuality, Halpern and Pearl [18, 19, 16] provided an influential formalization of
causality using structural equation models, which has served as the basis for various notions of causality
in the verification context (see,e.g., [7, 24]). A key ingredient is the notion of intervention to provide
a semantics for the counterfactual implication in Hume’s definition of causality. An intervention in a
structural equation model sets a variable to a certain value by force, ignoring its dependencies on other
variables, and evaluates the effects of this enforced change. In a sense, a minimal set of interventions
to avoid a cause then leads to a most similar execution avoiding the cause. We will discuss the relations
between our definition and the Halpern-Pearl definition in more detail in Section 3.3. In [7], interventions
are employed to counterexample traces in transition systems by allowing to flip atomic propositions
along a trace. In contrast to our notion of counterfactual causes, this is tailored for complex linear time
properties, but does not provide insights for reachability and safety. Furthermore, the flipping of atomic
propositions can be seen as a change in the transition system while our definition considers alternative
executions without manipulating the system. In [11], the Halpern-Pearl approach is applied to provide
a counterfactual definition of causality in reactive systems. A distance partial order, namely the subset
relation on sets of positions at which traces differ, is used to describe which interventions are acceptable
as they constitute minimal changes necessary to avoid the cause. Checking causality is shown to be
decidable by a formulation as a hyperlogic model-checking problem. Furthermore, notions of necessary
and sufficient causes as sets of states in transition systems have been considered [3]. These do not rely
on the counterfactuality principle and are of forward-looking nature.

We are not aware of formalisations of causality in game structures. The related concept of responsi-
bility, has been investigated in multi-agent models [40, 41]. Notions of forward and backward responsi-
bility of players in multi-player game structures with acyclic tree-like arena have been studied [4].

For a detailed overview of work on causality and related concepts in operational models, we refer the
reader to the survey articles [8, 2].

2 Preliminaries

We briefly present notions we use and our notation. For details, see [5, 13].
Transition systems. A transition system is a tuple T = (S,sinit,→,L) where S is a finite set of states,
sinit ∈ S is an initial state,→⊆ S×S is a transition relation and L : S→ 2AP is a labeling function where
AP is a set of atomic propositions. A path in a transition system is a finite or infinite sequence of
states s0s1 . . . such that s0 = sinit and, for all suitable indices i, there is a transition from si to si+1, i.e.,
(si,si+1) ∈→. Given a path π = s0s1 . . . , we denote its trace L(s0)L(s1) . . . by L(π). If there are no
outgoing transitions from a state, we call the state terminal.
Computation tree logic (CTL). The branching-time logic CTL consists of state formulas that are evaluated
at states in a transition system formed by Φ ::=> | a |Φ∧Φ | ¬Φ | ∃ϕ | ∀ϕ where a ∈ AP is an atomic
proposition and path formulas evaluated on paths formed by ϕ ::=©Φ | ΦUΦ. The semantics of the
temporal operators in path formulas is as usual. We use the abbreviations ♦Φ for>UΦ and 2Φ=¬♦¬Φ

and also allow sets of states T in the place of state formulas. The semantics of ∃ϕ are that there exists a
path starting in the state at which the formula is evaluated that satisfies ϕ; ∀ϕ is defined dually to that as
usual. Model checking of CTL-formulas can be done in polynomial time. For details, see [5].
Reachability games. A reachability game is a tuple G = (V,vi,∆) where V = VReach]VSafe]VEff is the
set of vertices shared between players Reach and Safe, and some target vertices VEff (Eff for effect).

J. Parreaux, J. Piribauer, and C. Baier 137

vi ∈ V \VEff is the initial vertex and ∆ ⊆ V ×V is the set of edges. We denote by ∆(v) the set of edges
from v. W.l.o.g., we assume that target vertices are terminal states, i.e. for all vertices v ∈VEff, ∆(v) = /0.
A finite play is a finite sequence of vertices π = v0v1 · · ·vk ∈V ∗ such that for all 0≤ i < k, (vi,vi+1) ∈ ∆.
A play is either a finite play ending in a target vertex, or an infinite sequence of vertices such that every
finite prefix is a finite play. Transition systems can be viewed as one-player games.

A strategy for Reach in a reachability game G is a mapping σ : V ∗VReach→V . A play or finite play
π = v0v1 · · · is a σ -play if for all k with vk ∈VReach, we have σ(v0 · · ·vk) = vk+1. A strategy σ is an MD-
strategy (for memoryless deterministic) if for all finite plays ξ and ξ ′ with the same last vertex, we have
that σ(ξ) = σ(ξ ′). In this paper, we mainly use MD-strategies and write σ(vk) instead of σ(v0 · · ·vk)
for MD-strategies σ . Moreover, under a (partial) MD-strategy σ , we define the reachability game under
σ , denoted by G σ = (V,vi,∆

σ), by removing edges not chosen by σ , i.e., ∆σ = ∆ \ {(v,v′) ∈ ∆ | v ∈
VReach and σ(v) is defined and σ(v) 6= (v,v′)}. When σ is completely defined, G σ is a transition system.
Finally, a strategy is winning if all σ -plays starting in vi end in a target vertex. Analogous definitions
apply to Safe. In reachability games, either Reach or Safe wins with an MD-strategy. This winning
strategy can be computed in polynomial time (see, e.g., [13]).
Distance function. A distance function on a set A is a function d : A×A→R≥0∪{∞} such that d(x,x)= 0
for all x ∈ A and d(x,y) = d(y,x) for all x,y ∈ A. It is called a pseudo-metric if additionally d(x,y)+
d(y,z)≥ d(x,z) for all x,y,z ∈ A, and a metric if further d(x,y) = 0 holds iff x = y for all x,y ∈ A.

3 Counterfactual causes in transition systems

In this section, we introduce the backward-looking notion of counterfactual causes in transition systems
using distance functions (Section 3.1). Afterwards, we prove that the definition can be checked in poly-
nomial time for three well-known distance functions (Section 3.2). Finally, we illustrate similarities
between our notion of counterfactual causality to the definition of causality by Halpern and Pearl (Sec
3.3). Proofs omitted here can be found in the extended version [31].

3.1 Definition

The effects we consider are reachability or safety properties Φ = ♦E or Φ = 2¬E for a set of states E.
As the behavior of the system after E has been seen is not relevant for these properties, we assume that
E consists of terminal states.
Definition 2 (d-counterfactual cause in transition systems). Let T be a transition system and let d be a
distance function on the set of maximal paths of T . Let E be a set of terminal states and let C be a set of
states disjoint from E. Let Φ = ♦E or Φ = 2¬E. Given a maximal path π that visits C and satisfies Φ

in T , we say that C is a d-counterfactual cause for Φ on π if
1. there is a maximal path ρ in T that does not visit C, and

2. all maximal paths ρ with ρ � 2¬C with minimal distance to π do not satisfy Φ. In other words,
all maximal paths ρ with ρ � 2¬C such that d(π,ρ) ≤ d(π,ρ ′) for all ρ ′ with ρ ′ � 2¬C satisfy
ρ � ¬Φ.

The choice of the similarity distance d of course heavily influences the notion of d-counterfactual
cause. In this paper, we will instantiate the definition with three distance functions that are among the
most prominent distance functions between traces (or words). An experimental investigation to clarify
in which situations what kind of distance functions leads to a desirable notion of causality, however,
remains as future work.

138 Counterfactual Causality for Reachability and Safety

Prefix metrics dAP
pref and dpref : given two paths π and ρ , let n(π,ρ) be the length of the longest common

prefix of their traces L(π) and L(ρ). Then, dAP
pref (π,ρ)

def
= 2−n(π,ρ). We can also define the distance on

paths instead of traces, which will be used later on: dpref (π,ρ)
def
= 2−m(π,ρ) where m(π,ρ) is the length of

the longest common prefix of π and ρ as paths. This can be seen as a special case of dAP
pref if we assume

that all states have a unique label.

The prefix metric measures similarity in a temporal way saying that executions are more similar if
they initially agree for a longer period of time. If no further structure of the transition system or meaning
of the labels is known, this distance function might be a reasonable choice for counterfactual causality.

Hamming distance dHamm: Given two words w = w0 . . .wn and v = v0 . . .vn of the same length, we
define dHamm(w,v)

def
= |{0 ≤ i ≤ n | wi 6= vi}|. For two maximal paths π and ρ of the same length in

a transition system T with labeling function L, we define dHamm(π,ρ)
def
= dHamm(L(π),L(ρ)). So, the

distance between two paths is the Hamming distance of their traces.

The Hamming distance seems to be a reasonable measure if a system naturally proceeds through
different layers, e.g., if a counter is increased in each step. Then, traces are viewed to be more similar if
they agree on more layers. The temporal order of these layers, however, does not play a role.

Levenshtein distance dLev [25]: Given two words w = w0 . . .wn and v = v0 . . .vm, the Levenshtein dis-
tance is defined as the minimal number of editing operations needed to produce v from w where the
allowed operations are insertion of a letter, deletion of a letter, and substitution of a letter by a different
letter. Formally, we define dLev in terms of edit sequences. Let Σ be an alphabet and v,w ∈ Σ∗ ∪Σω be
two words over Σ. The edit alphabet for Σ is defined as Γ

def
= (Σ∪{ε})2 \ {(ε,ε)} where ε is a fresh

symbol. An edit sequence for v and w is now a word γ ∈ Γ∗ ∪Γω such that the projection of γ onto
the first component results in v when all εs are removed and the projection of γ onto the second com-
ponent results in w when all εs are removed. E.g., let Σ = {a,b,c}, v = abbc and w = accbc. One edit
sequence is γ = (a,a)(b,c)(ε,c)(b,b)(c,c). The weight of an edit sequence γ = γ1γ2 . . . is defined as
wgt(γ) = |{i | γi 6= (σ ,σ) for all σ ∈ Σ}|. Then, for all words v ∈ Σ∗ ∪Σω and w ∈ Σ∗ ∪Σω , we define
dLev(v,w) = min{wgt(γ) | γ is an edit sequence for v and w}. Again, we obtain a pseudo-metric on paths
via the Levenshtein metric on traces.

The Levenshtein distance might be particularly useful if labels model actions that are taken. Two
executions that are obtained by sequences of actions that only differ by inserting or leaving out some
actions, but otherwise using the same actions, are considered to be similar in this case.

Example 3. Let us illustrate counterfactual causality for the prefix metric dpref and the Hamming distance
dHamm. Consider the transition system depicted in Figure 1. A path π as indicated by the bold arrows on
the right via the potential cause to the effect has been taken: This is not a dpref -counterfactual cause on
π: The most similar paths to π that do not reach cause are both paths that move to the left initially. As
one of these paths reaches effect, the set cause is not a dpref -counterfactual cause for reaching effect.

Considering the distance function dHamm with the labels of the states as in Figure 1, we get a different
result: The trace of π is abcd. The paths that avoid the potential cause have traces abcd and abad, re-
spectively. So, the most similar path avoiding cause is the path on the left with trace abcd that also avoids
effect. So, cause is a dHamm-counterfactual cause on π for ♦effect. Intuitively, this can be understood as
saying if the system had avoided cause but otherwise behaved (as similar as possible to) as it did in terms
of the produced trace, the effect would not have occurred. In particular, if labels represent actions that
have been chosen, this is a reasonable reading of causality. y

J. Parreaux, J. Piribauer, and C. Baier 139

3.2 Checking counterfactual causality in transition systems

In this section, we provide algorithms to check d-counterfactual causality for the three distance functions
dAP

pref , dHamm, and dLev. For these algorithms, a maximal execution π of the system has to be given. We
assume that π is a finite path ending in a terminal state. The problem to find causes that are small or
satisfy other desirable properties is not addressed in this paper and remains as future work. We will
briefly come back to this in the conclusions.

Prefix distance. First, we consider dAP
pref -counterfactual causality and hence dpref -counterfactual causal-

ity as a special case.

Theorem 4. Let T = (S,sinit,→,L) be a transition system, E a set of terminal states, C a set of states
disjoint from E, and Φ = ♦E or Φ = 2¬E. Let π = s0 . . .sn be an execution reaching C and satisfying
Φ. It is decidable in polynomial time whether C is a dAP

pref -counterfactual cause for Φ on π .

Proof sketch. The following algorithm solves the problem in polynomial time: First, we determine the
last index i s.t. C is not reached on any path with trace L(s0), . . . ,L(si) and s.t. C is avoidable from some
state that is reachable via a path with trace L(s0), . . . ,L(si). In order to that, we recursively construct sets
Tj+1 of states that are reachable via paths with trace L(s0), . . . ,L(s j+1) and check for all states t ∈ Tj+1
whether t � ∃2¬C. If no such state exists, we have found the first index j+1 such that C is not avoidable
anymore after trace L(s0), . . . ,L(s j+1); so we have found i = j. Now, we check whether t � ∀(Φ→ ♦C)
for all t ∈ Ti. If this is the case, C is a dAP

pref -counterfactual cause for E on π; otherwise, it is not.

Hamming distance. The Hamming distance is only defined for words of the same length. We will
hence first consider only transition systems in which all maximal paths have the same length. We can
think of such transition systems as being structured in layers with indices 1 to k for some k. Transitions
can then only move from a state on layer i < k to a state on layer i+1. Afterwards, we consider a simple
generalization of the Hamming distance to words of different lengths.
Original Hamming distance. Let T = (S,sinit,→,L) be a transition system in which all maximal paths
have the same length k. We annotate all states with the layer they are on: For each state s ∈ S, there is
a unique length n ≤ k of all paths from sinit to s. We will say that state s lies on layer n in this case. By
our assumption that effect states are terminal, the states E are all located on the last layer k. We assume
furthermore that all effect states have the same labels.

Theorem 5. Let T = (S,sinit,→,L) be a transition system in which all maximal paths have the same
length k. Let E be a set of terminal states and let C ⊆ S be a set of states disjoint from E. Let Φ = ♦E or
Φ = 2¬E. Let π = s0 . . .sn be an execution reaching C and satisfying Φ. It is decidable in polynomial
time whether C is a dHamm-counterfactual cause for Φ on π .

Proof sketch. We sketch the proof for the case that Φ = ♦E. We equip the states in S with a weight
function wgt : S→{0,1} such that the dHamm-distance of a path to π is equal to the accumulated weight
of that path. A state t on layer i gets weight 1 if its label is different to L(si). Otherwise, it gets weight
0. Now, we can check whether C is a dHamm-counterfactual cause, as follows: We remove all states in
C and compute a shortest (i.e., weight-minimal) path ζ to E and a shortest path ξ to any terminal state.
If the weight of ξ is lower than the weight of ζ , the paths avoiding C that are dHamm-closest to π do not
reach E and C is a dHamm-counterfactual cause for ♦E on π; otherwise, it is not.

140 Counterfactual Causality for Reachability and Safety

Remark 6. The Hamming distance between paths could easily be extended to account for different
levels of similarities between labels: Given a similarity metric d on the set of labels, one could define the
distance between two paths π = s1 . . .sk and ρ = t1 . . . tk as d′Hamm(π,ρ)

def
= ∑

k
i=1 d(si, ti). The algorithm

in the proof of Theorem 5 can now easily be adapted to this modified Hamming distance by defining the
weight function on the transition system in the obvious way.

Generalized Hamming distance. The assumption in the previous section that all paths in a transition
system have the same length is quite restrictive. Hence, we now consider the following generalized
version dgHamm of the Hamming distance: For words w = w1 . . .wn and v = v1 . . .vm, we define

dgHamm(w,v)
def
=

{
dHamm(w,v[1:n])+(m−n) if n≤ m,
dHamm(w[1:m],v)+(n−m) otherwise.

So dgHamm takes a prefix of the longer word of the same length as the shorter word, computes the Ham-
ming distance of the prefix and the shorter word, and adds the difference in length of the two words.

Theorem 7. Let T = (S,sinit,→,L) be a transition system, E a set of terminal states, and C a set of
states disjoint from E. Let Φ = ♦E or Φ = 2¬E. Let π = s0 . . .sn be an execution reaching C and
satisfying Φ. It is decidable in polynomial time whether C is a dgHamm-counterfactual cause for Φ on π .

Proof sketch. We adapt the proof of Theorem 5: We take |π|-many copies of the state space S an let
transitions lead from one copy to the next. In the ith copy states with the same label as si get weight
0 and all other states get weight 1. Furthermore, we add transitions with weight |π| − i from terminal
states in a copy i < |π| to the same state in the last copy to account for path that are shorter than π .
The weight |π|− i corresponds to the value added in the generalized Hamming distance when paths of
different length are compared. To account for paths longer than π , we furthermore allow transitions with
weight 1 within the last copy. These transitions are then taken until a terminal state is reached. With
these adaptations, the proof can be carried out analogously to the proof of Theorem 5.

Levenshtein distance. The idea to check dLev-counterfactual causality is to construct a weighted tran-
sition system to check causality via the computation of shortest paths as for the Hamming distance. So,
let T = (S,→,sinit,L) be a transition system labeled by L with symbols from Σ = 2AP. Let E be a set
of terminal states and C a set of states disjoint from E. Let Φ = ♦E or Φ = 2¬E. Let π = s1 . . .sn be a
maximal path reaching C and satisfying Φ. The transition system we construct contains transitions cor-
responding directly to the edit operations insertion, deletion and substitution. A path in the constructed
transition system then corresponds to an edit sequence between the trace of π and the trace of another
path in T . This construction shares some similarities with the construction of Levenshtein automata [36]
that accept all words with a Levenshtein distance below a given constant c from a fixed word w.

Now, we formally construct the new weighted transition system T π
dLev

: The state space of this transi-
tion system is S×{1, . . . ,n} with the initial state (sinit,1). The labeling function is not used. In T π

dLev
, we

allow the following transitions labelled with letters from the edit alphabet Γ:

1. a transition from (s, i) to (t, i+1) labeled with (L(si+1),L(t)) for each (s, t) ∈→ and i < n,

2. a transition from (s, i) to (t, i) labeled with (ε,L(t)) for each (s, t) ∈→ and i≤ n,

3. a transition from (s, i) to (s, i+1) labeled with (L(si+1),ε) for each s ∈ S and i < n.

Note that the terminal states in T π
dLev

are all contained in S×{n}. Any maximal path in T π
dLev

corresponds
to a maximal path ρ in T . This path ρ is obtained by moving from a state s to a state t in T whenever a

J. Parreaux, J. Piribauer, and C. Baier 141

corresponding transition of type 1 or 2 is taken in T π
dLev

. Transitions of type 3 do not correspond to a step
in T and stay in the same state.

Furthermore, given a finite path τ in T π
dLev

and the corresponding path ρ = t1 . . . tk in T , the labels
of the transitions of τ form an edit sequence for the words L(s2) . . .L(sn) and L(t2) . . .L(tk). To see this,
observe that, for each i > 1, whenever the copy S×{i} is entered in T π

dLev
, the label of the transition

contains L(si) in the first component; if a transition stays in a copy S×{i}, the label contains ε in the
first component. So, the projection onto the first component of the labels of the transitions of τ is indeed
L(s2) . . .L(sn), potentially with εs in between. In the second component, whenever a transition of type
1 or 2 is taken, the label is simply the label of the corresponding state in ρ . Transitions of type 3 have
ε in the second component of their label. Note here that ρ and π both start in sinit and that we could
hence add (L(sinit),L(sinit)) to the beginning of the edit sequence to obtain an edit sequence for the full
traces of τ and ρ . Note that also for infinite paths τ = t1t2 . . . in T π

dLev
the transition labels provide an edit

sequence for the words L(s2) . . .L(sn) and L(t2)L(t3) Vice versa, a finite maximal path ρ = t1 . . . tk
in T together with an edit sequence γ for L(s2) . . .L(sn) and L(t2) . . .L(tk) provides a maximal path τ in
T π

dLev
: The occurrences of ε in γ dictate which type of transition to take while the path ρ tells us which

state to move to. As γ projected to the first component contains L(s2) . . .L(sn) enriched with εs exactly
n− 1 transitions of type 1 or 3 are taken in τ obtained in this way and we indeed reach the last copy
T ×{n}. As ρ ends in a terminal state tk, we furthermore reach the terminal state (tk,n). Analogously,
an infinite path ρ in T together with an edit sequence γ for L(π) and L(ρ) yields an infinite path in T π

dLev
.

Based on these observations, we equip T π
dLev

with a weight function wgt on transitions: Transitions
labeled with (σ ,σ) for a σ ∈ Σ get weight 0, the remaining transitions get weight 1.

Theorem 8. Let T = (S,sinit,→,L) be a transition system, E a set of terminal states, and C a set of
states disjoint from E. Let Φ = ♦E or Φ = 2¬E. Let π = s0 . . .sn be an execution reaching C and
satisfying Φ. It is decidable in polynomial time whether C is a dLev-counterfactual cause for Φ on π .

Proof sketch. With the construction of the weighted transition system T π
dLev

above, the check can be done
via the computation of shortest paths as for the Hamming distance above.

3.3 Relation to Halpern-Pearl causality

In the sequel, we want to demonstrate how our definition of counterfactual causality relates to Halpern-
Pearl-style definitions of causality in structural equation models [18, 19, 16]. A structural equation model
consists of variables X1, . . . ,Xn with finite domains that are governed by equations Xi = fi(X1, . . . ,Xi−1,C)
for all i ≤ n. Here, fi is an arbitrary function for each i and C is an input parameter for the context. For
our consideration, the context C does not play a role and we will hence omit it in the sequel. So, the
value of variable Xi depends on the value of (some of) the variables with lower index and the dependency
is captured by the function fi. Halpern and Pearl use interventions to define causality for an effect E,
which is a set of valuations of X1, . . . ,Xn. An intervention puts the value of a variable Xi to some α that
is different from fi(X1, . . . ,Xi−1), i.e., disregarding the equation fi. Afterwards, the subsequent variables
are evaluated as usual or by further interventions. Halpern and Pearl define:

Definition 9. Let f1, . . . , fn over variables X1, . . . ,Xn be a structural equation model as above and let E
be an effect set of valuations such that the valuation of X1, . . . ,Xn obtained by the structural equation
model belongs to E. A but-for-cause is a minimal subset X ⊆ {X1, . . . ,Xn} with the following property:
There are values αx for x ∈ X such that putting variables x ∈ X to αx by intervention leads to a valuation
of X1, . . . ,Xn not exhibiting the effect E. More precisely, letting ti be the valuation [X1 = w1, . . . ,Xi−1 =
wi−1], where wi = fi(w1, . . . ,wi−1) if Xi 6∈ X , and wi = αXi if Xi ∈ X , we get that tn+1 6∈ E.

142 Counterfactual Causality for Reachability and Safety

In order to compare this to our notion of counterfactual causes, we view structural equation models
as tree-like transition system T : The nodes at level i are valuations for the variables X1, . . . ,Xi−1. At
each node s at level i, two actions are available: The action default moves to the state on level i+1 where
the valuation in s is extended by setting Xi to the value fi(X1, . . . ,Xi−1) where the values for X1, . . . ,Xi−1
are taken from the valuation in s. The action intervention extends the valuation of s by setting Xi to any
other value than the action default. The labelling in T assigns the label {intervention} to all states that
are reached by the action intervention. The remaining states and the initial state with the empty valuation
get the label /0. Given an effect E as a set of valuations, we interpret this as the corresponding set of leaf
states in T . The default path π that always chooses the action default corresponds to evaluating the
equations in the structural equation model without interventions. We can now capture but-for-causality
with dHamm-counterfactual causality along the default path π if all variables are Boolean:

Proposition 10. Let f1, . . . , fn over Boolean variables X1, . . . ,Xn be a structural equation model and
let E be an effect set of valuations. Let X be a but-for-cause for E. Let CX be the set of all nodes in
the transition system T which are reached by a default-transition for a variable x ∈ X. Then, CX is a
dHamm-counterfactual cause for E in T on the default path π .

For non-Boolean variables, the definitions of but-for-causes and of dHamm-counterfactual causes have
one significant difference: A but-for-cause X merely requires the existence of values to assign to the
variables in X by intervention such that the effect is avoided. A dHamm-counterfactual cause C in T
requires that for all possible interventions on the variables in X , the effect is avoided. This universal
quantification originates from the universal quantification over most similar worlds in the Stalnaker-
Lewis semantics of counterfactual causality.

The minimality requirement of but-for-causes does not have a counterpart in the definition of d-
counterfactual causes. This allows us to assert that a candidate set of states C is a d-counterfactual cause
for an effect even if it contains redundancies. When trying to find d-counterfactual causes for a given
effect, on the other hand, of course trying to find (cardinality-)minimal causes is a reasonable option.

Besides but-for causality, we can also capture actual causality as in [16] in our framework in the case
of Boolean structural equation models. This is demonstrated in the extended version [31].

4 Counterfactual causality in reachability games

The counterfactual notion of causality introduced and investigated in the previous section can be applied
to reachability games G : We take the perspective of a player Π. Given a strategy σ for the opponent
and a play in which Π lost, we apply the definition to the transition system obtained from σ and G
and the given play. This allows us to analyze whether avoiding a certain set of states while playing
against strategy σ as similarly as possible to the given play would have allowed Π to win. Depending
on whether we take the perspective of Reach or Safe, the effect that the player loses the game is a safety
or reachability property, which we considered as effects in transition systems. The need to be given a
strategy for the opponent, however, constitutes a major restriction to the usefulness of this approach. All
proofs omitted in this section can be found in the extended version [31].

4.1 D-counterfactual causality

We provide a definition of counterfactual causality in reachability games in the sequel in which we only
need the strategy σ with which the player Π played and are interested in why the strategy σ allows the

J. Parreaux, J. Piribauer, and C. Baier 143

opponent to win the game. Since both players have optimal MD-strategies in a reachability game, we
restrict ourselves to MD-strategies in the definition.
Definition 11. Let G be a reachability game with target set VEff. Let Π be one of the two players and
let σ be a MD-strategy for player Π. Let C be a set of locations disjoint from VEff. Let D be a distance
function on MD-strategies. We say that C is a D-counterfactual cause for the fact that Π loses using σ if

1. there are σ -plays that reach C on which Π loses,

2. there is an MD-strategy τ for player Π that avoids C (i.e., there is no τ-play reaching C),

3. all MD-strategies τ for player Π, that avoid C and that have minimal D-distance to σ among the
strategies avoiding C, are winning for Π.

If we take the perspective of player Π in game G where the opponent Π̄ does not control any loca-
tions, MD-strategies for Π satisfying condition 1 of the definition are essentially simple paths satisfying
a safety or reachability effect property (with additional information on the states that are not visited by
the path). To some extent, the definition can now be seen as a generalization of the definition for tran-
sition systems for suitable distance functions D: We say a strategy distance function D generalizes a
path distance function d if in games where Π̄ does not control any location, for all strategies σ ,τ for
Π, we have D(σ ,τ) = d(πσ ,πτ) where πσ and πτ are the unique σ - and τ-plays. The definition that C
is a D-counterfactual cause for σ losing the game agrees with the definition that C is a d-counterfactual
cause on πσ for ♦VEff or 2¬VEff in acyclic games in this case. In cyclic games, there is one caveat:
The definition for games quantifies only over MD-strategies which induce a play that is a simple path or
simple lasso. The definition for transition systems quantifies over more complicated paths as well.

Hausdorff distance dH
pref based on the prefix metric dpref . A way to obtain a strategy distance function

generalizing a given path distance function is the use of the Hausdorff distance on the set of plays of the
strategies [12, Section 6.2.2]: Let τ and σ be two MD-strategies, and d be a distance function over plays.
The Hausdorff distance dH based on d is defined by

dH(σ ,τ) = max

{
sup

σ -plays π

inf
τ-plays ρ

d(π,ρ), sup
τ-plays ρ

inf
σ -plays π

d(π,ρ)

}
.

Let us consider the Hausdorff distance dH
pref based on the prefix metric dpref assuming that all states have

a unique label. For two strategies σ and τ for Safe, the distance dH
pref (σ ,τ) is 2−n where n is the least

natural number such that there is a prefix of length n of a τ-play that is not a prefix of a σ -play, or vice
versa. In order to find strategies that are as similar as possible to a given strategy σ , we hence have to
consider strategies that follow σ for as many steps as possible. This leads to an algorithm for checking
dH

pref -counterfactual causality in reachability games that shares some similarities with the algorithm for
checking dAP

pref -counterfactual causality in transition systems.
Theorem 12. Let G = (V,vi,∆) where V = VReach]VSafe]VEff be a reachability game with target set
VEff and σ a MD-strategy for player Π. Let C be a set of locations disjoint from VEff. We can check in
polynomial time whether C is a dH

pref -counterfactual cause for the fact that Π is losing using σ in G .
For the Hausdorff lifting of dHamm or dLev, the resulting notion of counterfactual causes in games is

more complicated. If we try to adapt the approach used in transition systems, we need a way to capture
the minimum distance of a given strategy to the closest winning strategies. However, shortest path
games (as extension of the weighted transition systems used for dHamm- and dLev-counterfactual causes
in transition systems) cannot be employed in an obvious way. In this paper, we now instead consider two
further distance functions related to the Hamming distance for which we can provide algorithmic results.

144 Counterfactual Causality for Reachability and Safety

Hamming strategy distance. Let σ and τ be two MD-strategies for Π in G , we define the Hamming
strategy distance by ds

Hamm(σ ,τ) = |{v ∈ V | σ(v) 6= τ(v)}|. As the Hamming distance on paths counts
positions at which traces differ, the Hamming strategy distance counts positions at which two MD-
strategies differ. Using a similar proof using shortest-path games [23] as for Theorem 5, we obtain the
following polynomial-time result in the case of aperiodic games.

Theorem 13. Let G = (V,vi,∆) be an acyclic reachability game with target set VEff and σ a MD-strategy
for player Π. Let C be a set of locations disjoint from VEff. We can check in polynomial time whether C
is a ds

Hamm-counterfactual cause for the fact that Π is losing using σ in G .

Hausdorff-inspired distance d∗. The distance function d∗ computes the number of vertices where
two MD-strategies make distinct choices along each play of both MD-strategies. It hence has some
similarity to a Hausdorff-lifting of the Hamming distance on paths. This Hausdorff-lifting, however,
counts the number of occurrences of vertices at which two paths differ (in their label). Instead, for a play
ρ = v0v1 . . . and a strategy σ for Π, we define the distance between σ and ρ dist(ρ,σ) as the number
of vertices v ∈VΠ (i.e., not the number of occurrences) such that there exists i ∈ N with v = vi in ρ , and
σ(vi) 6= (vi,vi+1).We define d∗ for two strategies τ,σ by

d∗(τ,σ) = max
(

sup
ρ|τ-play

dist(ρ,σ), sup
π|σ -play

dist(π,τ)
)
.

To simplify the notation, we define dτ(σ) = supρ|τ-play dist(ρ,σ). We prove that the threshold problem
for d∗ is NP-complete via a reduction from the longest simple path problem:

Proposition 14. Let G be a reachability game, σ , τ be two MD-strategies for Π, and k ∈ N be a thresh-
old. Then deciding if d∗(τ,σ)≥ k is NP-complete.

The proposition explains why understanding d∗-counterfactual causes is complex. We leave a further
investigation of such notions for future work. As a first step toward a better understanding, we turn our
attention to a conceptually simpler notion, the explanation induced by a counterfactual cause.

Example 15. Let us illustrate counterfactual causes according to distances on strategies. We consider
the reachability game depicted in the left of Figure 2 and the non-winning strategy σ for Reach depicted
in green. Under dH

pref or d∗, the counterfactual cause for Reach is {v2,v3}. Indeed, there exists one play
that reaches v3 and loses for Reach, and there exists a unique strategy that avoids {v2,v3} by changing
the choice of σ in v1. Moreover, this counterfactual cause is minimal since {v3} is not a cause. Indeed,
the (losing) strategy that differs from σ in v0 and v1 avoids {v3} with a minimal distance to σ , i.e. 2−2

for dH
pref and 1 for d∗. Under ds

Hamm, the counterfactual cause for Reach is {v3}. Indeed, two strategies
exist with a distance of 1 to σ according to the vertex where Reach changes its decision. In these two
strategies, only one avoids {v3}: the strategy where Reach change its decision in v1. y

4.2 D-counterfactual explanation

Given a D-counterfactual cause, we want to explain what is wrong in the losing strategy for Π. In
particular, we are interested in sets of locations C such that Π could have won the game if she had not
made the decisions of σ in the locations in C.

Definition 16. Let G be a reachability game and σ be a non-winning MD-strategy for Π. Let E ⊆ VΠ.
We call E an explanation in G under σ if there exists a winning MD-strategy τ such that for all vertices
v ∈VΠ, τ(v) = σ(v) iff v /∈ E. We call such a τ an E-distinct σ -strategy.

J. Parreaux, J. Piribauer, and C. Baier 145

v0 v1

v2

vEff

v3

vEff

σ σ

v0

v1 v2

vEff

δ0

δ1

δ2

δ4

σ

σ

v0

v1 v2

vEff

w0

w1

w2

vEff σ ′

σ ′

σ ′

σ ′

Figure 2: On the left and in the middle, two reachability games with initial vertex v0 and strategy σ for
Reach (depicted in green). On the right, the reachability game obtained by reduction of Corollary 21
from the game depicted in the middle with initial vertex w0 and σ ′ be a non winning strategy for Reach.

We note that the definition of an explanation does not refer to a distance function. However, given a
D-counterfactual cause, we can compute an explanation no matter which distance D is used.

Proposition 17. Let G = (V,vi,∆) be a reachability game, D a distance function on strategies and σ

be a non-winning MD-strategy for Π. Let C ⊆ V be a D-counterfactual cause. We can compute an
explanation E (from C) in polynomial time.

Proof. Let G ′ = (V \C,vi,∆) be the reachability game. Since D is a D-counterfactual cause, we know
that there exists a winning strategy τ in G ′. We can compute this strategy in time polynomial in the size
of G ′ with the attractor method and we define E = {v | σ(v) 6= τ(v)}.

A winning strategy differing from σ in E might not have much in common with σ . For this reason,
explanations that point out changes in the decisions of σ in E that enforce only the minimal necessary
change to obtain a winning strategy τ from σ are of particular interest. We can use a distance function
D to quantify how much a strategy needs to be changed.

Definition 18. Let G be a reachability game and σ be a non-winning MD-strategy for Π. For a distance
function D for MD-strategies, we call a explanation E a D-minimal explanation, if there exists a winning
E-distinct σ -strategy τ with d(τ,σ) = min{d(µ,σ) | µ is a winning MD-strategy for Π}.

For a strategy σ and an explanation E, the distance ds
Hamm(σ ,τ) for an E-distinct σ -strategy τ is

precisely |E|. So, ds
Hamm-minimal explanations are cardinality-minimal explanations.

Example 19. Let us illustrate explanations and D-minimal explanations. We consider the reachability
game G where Reach wins depicted in the left of Figure 2 with σ , a non-winning MD-strategy for Reach,
depicted in green. We note that E = {v1,v2} is an explanation in G under σ . A winning E-distinct σ -
strategy τ for Reach is given by τ(v1) = δ1 and τ(v2) = δ4. However, E is not a d∗-minimal explanation
or ds

Hamm-minimal explanation. Clearly, ds
Hamm(τ,σ) = 2. Further, also d∗(τ,σ) = 2 as the σ -play v0v2vω

1
visits two states, namely v2 and v1 at which σ and τ make different decisions. The set E ′= {v1}, however
is a d∗-minimal explanation and ds

Hamm-minimal explanation: the E ′-distinct σ -strategy τ ′ choosing δ1
in v1 and behaving like σ in v2 wins and has ds

Hamm- and d∗-distance 1 to σ . As any winning strategy has
at least distance 1 to σ , E ′ is hence a D-minimal explanation for both distance functions. y

For D-minimal explanations, it is central to find a winning MD-strategy that minimises the distance
D to the given losing strategy σ . We take a look at this problem from the point of view of Reach and
prove that for ds

Hamm and d∗ the associated threshold problems are not in P if P6=NP.

Theorem 20. Given a game G , a losing strategy σ for Reach, and k ∈ N, deciding if there exists a
winning MD-strategy τ for Reach such that ds

Hamm(τ,σ) ≤ k is NP-complete. Further, the problem
whether there is a winning MD-strategy τ with d∗(τ,σ)≤ k is not in P if P6=NP.

146 Counterfactual Causality for Reachability and Safety

Proof sketch. To establish the NP upper bound for ds
Hamm, we can guess a MD-strategy τ for Reach and

check in polynomial time whether it is winning and whether ds
Hamm(τ,σ) ≤ k. For the NP-hardness for

ds
Hamm, we provide a polynomial-time many-one reduction from the NP-complete decision version of the

feedback vertex set [22]. Given a cyclic (directed) graph G, this problem asks whether there is a set S of
size at most k such that if we remove this set, G\S becomes acyclic. For the problem for d∗, we provide
a polynomial-time Turing reduction from the same problem. A detailed proof is given in [31].

We deduce that checking D-minimality of an explanation cannot be done in polynomial time if P 6=NP.
Corollary 21. Let G be a reachability game, σ be a non-winning MD-strategy for Reach, and E ⊆ V .
The problem to check if E is a ds

Hamm-minimal explanation in G for σ is coNP-complete. The problem to
check if E is a d∗-minimal explanation in G for σ is not in P if P6=NP.

Despite the hardness in the general case, if G σ is acyclic, we prove that we can compute the winning
MD-strategy that minimises the d∗-distance to σ in polynomial time. From this strategy, a d∗-minimal
explanation can then be computed as in Proposition 17. The proof of Theorem 22 (in the extended
version [31]) constructs a shortest-path game [23] without negative weights in which an optimal strategy,
that leads to the desired winning strategy in the original game, can be computed in polynomial time.
Theorem 22. Let G be reachability game where Reach wins, and σ be a non-winning MD-strategy
for Reach such that G σ is acyclic. Then, we can compute a winning MD-strategy τ that minimizes the
distance d∗ to σ in polynomial time.

5 Conclusion and Outlook

The notion of d-counterfactual cause for a distance function d in transition systems turned out to be
checkable in polynomial time for the distance functions dpref , dHamm, and dLev and so it has the potential
to be employed in efficient tools to provide understandable explanations of the behavior of a system. In
our algorithmic results for safety effects Φ, one caveat remains: we only considered finite executions
reaching a cause candidate C and satisfying Φ. Allowing also finitely representable, e.g., ultimately
periodic paths, constitutes a natural extension, which requires adjustments in the provided algorithms.

The problem of finding good causes remains as future work: Whenever causality can be checked in
polynomial time, there is an obvious non-deterministic polynomial-time upper bound on the problem to
decide whether there are causes below a given size, but the precise complexities are unclear. A further
idea is to use the distance function to assess how good a cause is by considering the distance from the
actual execution to the closest executions avoiding a cause. For reachability effects and the prefix and
Hamming distance, the set of direct predecessors optimizes this distance. For other distance functions or
safety causes, this measure could, nevertheless, be more useful. The search for similar measures for the
quality of causes constitutes an interesting direction for future work.

In reachability games, we saw that the analogous definition of D-counterfactual causes can be checked
in polynomial time for the Hausdorff-lifting dH

pref of the prefix metric, as well. For other distance func-
tions, the definition seems to lead to complicated notions due to the involved quantification over all
MD-strategies avoiding the cause and having a minimal distance to a given strategy. A closer investiga-
tion of these notions might, nevertheless, be a fruitful subject for future research. However, our analysis
of the conceptually simpler D-minimal explanations provides insights into the complications one might
encounter here. For the Hausdorff-inspired distance function d∗, we showed that already the threshold
problem for the distance between two given MD-strategies is NP-hard. Furthermore, for the relatively
simple distance function ds

Hamm, checking the ds
Hamm-minimality of an explanation is in coNP-complete.

For the Hausdorff-inspired distance function d∗, checking d∗-minimality is not in P unless P=NP.

J. Parreaux, J. Piribauer, and C. Baier 147

References

[1] Christel Baier, Norine Coenen, Bernd Finkbeiner, Florian Funke, Simon Jantsch & Julian Siber (2021):
Causality-based game solving. In: International Conference on Computer Aided Verification, Springer, pp.
894–917, doi:10.1007/978-3-030-81685-8_42.

[2] Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob Piribauer & Robin
Ziemek (2021): From Verification to Causality-Based Explications (Invited Talk). In Nikhil Bansal, Emanuela
Merelli & James Worrell, editors: 48th International Colloquium on Automata, Languages, and Program-
ming, (ICALP), LIPIcs 198, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 1:1–1:20. Available at
https://doi.org/10.4230/LIPIcs.ICALP.2021.1.

[3] Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Jakob Piribauer & Robin Ziemek (2022):
Operational Causality – Necessarily Sufficient and Sufficiently Necessary. In Nils Jansen, Mariëlle Stoelinga
& Petra van den Bos, editors: A Journey from Process Algebra via Timed Automata to Model Learning :
Essays Dedicated to Frits Vaandrager on the Occasion of His 60th Birthday, Springer Nature Switzerland,
Cham, pp. 27–45, doi:10.1007/978-3-031-15629-8_2.

[4] Christel Baier, Florian Funke & Rupak Majumdar (2021): A Game-Theoretic Account of Responsibility
Allocation. In Zhi-Hua Zhou, editor: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, International Joint Conferences on Artificial Intelligence Organization, pp. 1773–
1779, doi:10.24963/ijcai.2021/244. Main Track.

[5] Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking. MIT Press.

[6] Thomas Ball, Mayur Naik & Sriram K. Rajamani (2003): From Symptom to Cause: Localizing Errors in
Counterexample Traces. SIGPLAN Not. 38(1), pp. 97–105, doi:10.1145/640128.604140.

[7] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni & Richard J. Trefler (2012): Explaining coun-
terexamples using causality. Formal Methods in System Design 40(1), pp. 20–40, doi:10.1007/s10703-011-
0132-2.

[8] Hana Chockler (2016): Causality and Responsibility for Formal Verification and Beyond. In Gregor Gößler &
Oleg Sokolsky, editors: Proceedings First Workshop on Causal Reasoning for Embedded and safety-critical
Systems Technologies, CREST@ETAPS 2016, Eindhoven, The Netherlands, 8th April 2016, EPTCS 224,
pp. 1–8, doi:10.4204/EPTCS.224.1.

[9] E. M. Clarke, O. Grumberg & D. Peled (1999): Model Checking. MIT Press.

[10] Edmund M. Clarke, Orna Grumberg, Kenneth L. McMillan & Xudong Zhao (1995): Efficient Generation
of Counterexamples and Witnesses in Symbolic Model Checking. In: Proc. of the 32nd Annual ACM/IEEE
Design Automation Conf. (DAC), ACM, New York, NY, USA, pp. 427–432, doi:10.1145/217474.217565.

[11] Norine Coenen, Bernd Finkbeiner, Hadar Frenkel, Christopher Hahn, Niklas Metzger & Julian Siber (2022):
Temporal Causality in Reactive Systems. In: 20th International Symposium on Automated Technology for
Verification and Analysis, ATVA, pp. 25–28, doi:10.1007/978-3-031-19992-9_13.

[12] M.C. Delfour & J.P. Zolesio (2011): Shapes and Geometries: Metrics, Analysis, Differential Calculus, and
Optimization, Second Edition. Advances in Design and Control, Society for Industrial and Applied Mathe-
matics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), doi:10.1137/1.9780898719826. Avail-
able at https://books.google.fr/books?id=fjjvX9a9cxUC.

[13] Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors (2002): Automata Logics, and Infinite Games: A
Guide to Current Research. Springer-Verlag, Berlin, Heidelberg.

[14] Alex Groce, Sagar Chaki, Daniel Kroening & Ofer Strichman (2006): Error explanation with distance met-
rics. International Journal on Software Tools for Technology Transfer 8(3), pp. 229–247, doi:10.1007/978-
3-540-24730-2_8.

[15] Alex Groce & Willem Visser (2003): What Went Wrong: Explaining Counterexamples. In Thomas Ball &
Sriram K. Rajamani, editors: Model Checking Software, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
121–136, doi:10.1007/3-540-44829-2_8.

https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://doi.org/10.1007/978-3-031-15629-8_2
https://doi.org/10.24963/ijcai.2021/244
https://doi.org/10.1145/640128.604140
https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.4204/EPTCS.224.1
https://doi.org/10.1145/217474.217565
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1137/1.9780898719826
https://books.google.fr/books?id=fjjvX9a9cxUC
https://doi.org/10.1007/978-3-540-24730-2_8
https://doi.org/10.1007/978-3-540-24730-2_8
https://doi.org/10.1007/3-540-44829-2_8

148 Counterfactual Causality for Reachability and Safety

[16] Joseph Y. Halpern (2015): A Modification of the Halpern-Pearl Definition of Causality. In: Proc. of the 24th
Intern. Joint Conf. on AI (IJCAI), AAAI Press, pp. 3022–3033.

[17] Joseph Y. Halpern & Judea Pearl (2001): Causes and Explanations: A Structural-Model Approach: Part
i: Causes. In: Proc. of the 17th Conf. on Uncertainty in AI (UAI), Morgan Kaufmann Publishers Inc., pp.
194–202, doi:10.1093/bjps/axi147.

[18] Joseph Y. Halpern & Judea Pearl (2005): Causes and Explanations: A Structural-Model Approach. Part I:
Causes. The British Journal for the Philosophy of Science 56(4), pp. 843–887, doi:10.1093/bjps/axi147.

[19] Joseph Y. Halpern & Judea Pearl (2005): Causes and Explanations: A Structural-Model Approach.
Part II: Explanations. The British Journal for the Philosophy of Science 56(4), pp. 889–911,
doi:10.1093/bjps/axi148.

[20] David Hume (1739): A Treatise of Human Nature. John Noon, doi:10.1093/oseo/instance.00032872.

[21] David Hume (1748): An Enquiry Concerning Human Understanding. London.

[22] Richard M. Karp (1972): Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston,
MA, doi:10.1007/978-1-4684-2001-2_9.

[23] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gurvich, Gabor Rudolf & Jihui
Zhao (2007): On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction. Theory of
Computing Systems, doi:10.1007/s00224-007-9090-x.

[24] Florian Leitner-Fischer & Stefan Leue (2013): Causality Checking for Complex System Models. In: Proc. of
the 14th Intern. Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI), pp. 248–267,
doi:10.1007/978-3-642-35873-9_16.

[25] Vladimir I. Levenshtein (1966): Binary codes capable of correcting deletions, insertions, and reversals.
Soviet physics doklady 10(8), pp. 707–710.

[26] David Lewis (1973): Causation. Journal of Philosophy 70(17), pp. 556–567, doi:10.2307/2025310.

[27] David K. Lewis (1973): Counterfactuals. Cambridge, MA, USA: Blackwell.

[28] J. L. Mackie (1965): Causes and Conditions. American Philosophical Quarterly 2(4), pp. 245–264. Available
at http://www.jstor.org/stable/20009173.

[29] Z. Manna & A. Pnueli (1995): The Temporal Logic of Reactive and Concurrent Systems: Safety. Springer-
Verlag.

[30] Kedar S. Namjoshi (2001): Certifying Model Checkers. In: 13th International Conference on Computer
Aided Verification (CAV), Lecture Notes in Computer Science 2102, Springer, pp. 2–13. Available at https:
//doi.org/10.1007/3-540-44585-4_2.

[31] Julie Parreaux, Jakob Piribauer & Christel Baier (2023): Counterfactual Causality for Reachability and
Safety based on Distance Functions. arXiv:2308.11385. ArXiv preprint: arxiv.org/abs/2308.11385.

[32] Judea Pearl (2009): Causality, 2 edition. Cambridge University Press, doi:10.1017/CBO9780511803161.

[33] Jonas Peters, Dominik Janzing & Bernhard Schölkopf (2017): Elements of Causal Inference: Foundations
and Learning Algorithms. MIT Press, Cambridge, MA, USA.

[34] Ibo van de Poel (2011): The Relation Between Forward-Looking and Backward-Looking Responsibility, pp.
37–52. Springer Netherlands, Dordrecht, doi:10.1007/978-94-007-1878-4_3.

[35] Manos Renieres & Steven P. Reiss (2003): Fault localization with nearest neighbor queries. In:
Proc. of the 18th IEEE Intern. Conf. on Automated Software Engineering (ASE), pp. 30–39,
doi:10.1109/ASE.2003.1240292.

[36] Klaus U Schulz & Stoyan Mihov (2002): Fast string correction with Levenshtein automata. International
Journal on Document Analysis and Recognition 5(1), pp. 67–85, doi:10.1007/s10032-002-0082-8.

[37] Robert C. Stalnaker (1968): A Theory of Conditionals. In William L. Harper, Robert Stalnaker & Glenn
Pearce, editors: IFS. The University of Western Ontario Series in Philosophy of Science, 15, Springer, Dor-
drecht, pp. 41–55, doi:10.1007/978-94-009-9117-0_2.

https://doi.org/10.1093/bjps/axi147
https://doi.org/10.1093/bjps/axi147
https://doi.org/10.1093/bjps/axi148
https://doi.org/10.1093/oseo/instance.00032872
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s00224-007-9090-x
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.2307/2025310
http://www.jstor.org/stable/20009173
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-44585-4_2
https://arxiv.org/abs/2308.11385
arxiv.org/abs/2308.11385
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1007/978-94-007-1878-4_3
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1007/s10032-002-0082-8
https://doi.org/10.1007/978-94-009-9117-0_2

J. Parreaux, J. Piribauer, and C. Baier 149

[38] Chao Wang, Zijiang Yang, Franjo Ivancic & Aarti Gupta (2006): Whodunit? Causal Analysis for Counterex-
amples. In: Proc. of the 4th Intern. Symp. on Automated Technology for Verification and Analysis (ATVA),
pp. 82–95, doi:10.1007/11901914_9.

[39] Shaohui Wang, Anaheed Ayoub, BaekGyu Kim, Gregor Gößler, Oleg Sokolsky & Insup Lee (2013): A
Causality Analysis Framework for Component-Based Real-Time Systems. In: Proceedings of the 4th Interna-
tional Conference on Runtime Verification (RV), pp. 285–303, doi:10.1007/978-3-642-40787-1_17.

[40] Vahid Yazdanpanah & Mehdi Dastani (2016): Distant Group Responsibility in Multi-agent Systems. In Mat-
teo Baldoni, Amit K. Chopra, Tran Cao Son, Katsutoshi Hirayama & Paolo Torroni, editors: PRIMA 2016:
Princiles and Practice of Multi-Agent Systems - 19th International Conference, Phuket, Thailand, August 22-
26, 2016, Proceedings, Lecture Notes in Computer Science 9862, Springer, pp. 261–278, doi:10.1007/978-
3-319-44832-9_16.

[41] Vahid Yazdanpanah, Mehdi Dastani, Wojciech Jamroga, Natasha Alechina & Brian Logan (2019): Strategic
Responsibility Under Imperfect Information. In Edith Elkind, Manuela Veloso, Noa Agmon & Matthew E.
Taylor, editors: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019, International Foundation for Autonomous
Agents and Multiagent Systems, pp. 592–600. Available at http://dl.acm.org/citation.cfm?id=
3331745.

[42] Andreas Zeller (2002): Isolating Cause-Effect Chains from Computer Programs. In: Proc. of the 10th ACM
SIGSOFT Symp. on Foundations of Software Engineering (FSE), ACM, New York, NY, USA, pp. 1–10,
doi:10.1145/587051.587053.

https://doi.org/10.1007/11901914_9
https://doi.org/10.1007/978-3-642-40787-1_17
https://doi.org/10.1007/978-3-319-44832-9_16
https://doi.org/10.1007/978-3-319-44832-9_16
http://dl.acm.org/citation.cfm?id=3331745
http://dl.acm.org/citation.cfm?id=3331745
https://doi.org/10.1145/587051.587053

A. Achilleos and D. Della Monica (Eds.): Fourteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2023).
EPTCS 390, 2023, pp. 150–167, doi:10.4204/EPTCS.390.10

© T. Ferreira, L. Henry, R. Fernandes da Silva, A. Silva
This work is licensed under the
Creative Commons Attribution License.

Conflict-Aware Active Automata Learning

Tiago Ferreira Léo Henry Raquel Fernandes da Silva
University College London

London, UK
{t.ferreira,leo.henry,raquel.silva.20}@ucl.ac.uk

Alexandra Silva
Cornell University
Ithaca, NY, USA

alexandra.silva@cornell.edu

Active automata learning algorithms cannot easily handle conflict in the observation data (different
outputs observed for the same inputs). This inherent inability to recover after a conflict impairs their
effective applicability in scenarios where noise is present or the system under learning is mutating.

We propose the Conflict-Aware Active Automata Learning (C 3AL) framework to enable han-
dling conflicting information during the learning process. The core idea is to consider the so-called
observation tree as a first-class citizen in the learning process. Though this idea is explored in recent
work, we take it to its full effect by enabling its use with any existing learner and minimizing the
number of tests performed on the system under learning, specially in the face of conflicts. We eval-
uate C 3AL in a large set of benchmarks, covering over 30 different realistic targets, and over 18,000
different scenarios. The results of the evaluation show that C 3AL is a suitable alternative framework
for closed-box learning that can better handle noise and mutations.

1 Introduction

Formal methods have a long history of success in the analysis of critical systems through abstract models.
These methods are rapidly expanding their range of applications and recent years saw an increase in
industrial teams applying them to (large-scale) software [6, 9, 10, 12, 13, 25]. The applicability of such
methods is limited by the availability of good models, which require time and expert knowledge to be
hand-crafted and updated. To overcome this issue, a research area on automatic inference of models,
called model learning [32], has gained popularity. Broadly, there are two classes of model learning:
passive learning, which attempts to infer a formal model from a static log, and active learning, where
interaction with the system is allowed to refine knowledge during the inference.

In this paper, we focus on active learning, motivated by its successful use in verification tasks, e.g. in
analyzing network protocol implementations, as TCP [18], SSH [19], and QUIC [15], or understanding
the timing behavior of modern CPUs [34]. Current state-of-the-art active learning algorithms rely on
the Minimally Adequate Teacher (MAT) framework [4], which formalizes a process with two agents: a
learner and a teacher. The learner tries to infer a formal model of a system, and the teacher is omniscient
of the system, being able to answer queries on potential behaviors and the correctness of the learned
model. MAT assumes that the interactions between both agents are perfect and deterministic.

Learning In Practice Interactions with the System Under Learning (SUL) are often non-deterministic
in some way, e.g. the communications can be noisy (i.e. query answers do not only reflect the actual
system output, but are instead a consequence of its interaction with the environment), or the SUL itself
can change during learning. This can lead to conflicts, which we define in the following way:

A conflict appears when a query’s answer formally contradicts a previous query in a way that
cannot be expressed by a model of the target class.

https://dx.doi.org/10.4204/EPTCS.390.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

T. Ferreira, L. Henry, R. Fernandes da Silva, A. Silva 151

Current MAT Learners cannot handle the conflicts that arise during learning. Thus, when used in
practice, MAT learner implementations use artifacts to circumvent conflicting observations.

For example, in the case of noise, each interaction has a chance of diverging from its usual behavior.
To handle this, MAT learners repeat each query n times and majority-vote the result. They aim to guess
an n sufficiently large to prevent any noisy observation from reaching the learner, but small enough to let
the computation finish before timeout. As a consequence, noise threatens both efficiency and correctness
of learning. We provide a framework alleviating this issue without tailoring it to specific MAT learners.

Irrespective of the nature of the conflicts detected, dealing with them requires the ability to backtrack
certain decisions that were made based on what is now considered incorrect information. This pinpoints
the issue with current MAT learners: there is no notion of information storage other than the internal data
structure that the learners use to build the model, which is not easily updatable in the face of conflict.
This structure in fact needs to be fully rebuilt if a conflict is found, generating many superfluous (and
expensive!) queries to the SUL. Separating the learning process from the information gathered through
the queries allows us to retain all the previous non-conflicting information. This alleviates the main cost
of conflict handling: the unnecessary repetition of tests on the system. The Learner then only needs to
rebuild its data structure based on the information already available.

Contribution Based on the ideas above, this paper proposes the Conflict Aware Active Automata
Learning (C 3AL, pronounced seal) framework. Any existing MAT learner can be used in C 3AL. When
a conflict arises, we provide a method for updating the learner’s internal state — without making assump-
tions on its data-structure — so that it remains conflict-free while removing only inconsistent information.

In a nutshell, this paper aims to provide classic MAT learners with a way to recover from conflicts
caused by either noise or potential mutations of the system.

At the heart of C 3AL is the use of an observation tree, a data structure (external to the learner)
used to store information gathered from the SUL. It can be efficiently updated and used by the learner
to construct its own internal data structure. When a conflict appears, we update the observation tree
to reflect our knowledge, while the learner’s data structure is pruned to a conflict-free point and then
expanded from the observation tree. Crucially, the learner uses the observations already stored in the
tree without requiring tests on the SUL for already observed behaviors. C 3AL’s main features are:

• The SUL is a first-class citizen, instead of being abstracted. C 3AL notably does not rely on equivalence
queries, replacing them with either a check of the stored knowledge (when sufficient) or an equivalence
test, using an m-complete testing algorithm (e.g. the Wp-method [20] or Hybrid-ADS [26, 29]).

• The information obtained through tests on the SUL is stored in an observation tree managed by a new
Reviser agent that is responsible for handling the conflicts and answering the learner’s queries like a
teacher. Providing a teacher interface is an important aspect as it enables the use of any MAT-based
algorithm seamlessly, only requiring the ability to restart a classic MAT learner.

• The Reviser alone interacts with the SUL by means of tests meant to expand its observation tree.

Crucially, C 3AL is less abstract than MAT, representing directly the objects and challenges of practical
active learning, while still allowing the design of Learners to enjoy the simplifying abstraction of MAT.

After some preliminaries in Section 2 we formalize and prove the above claims in Section 3. We
evaluate C 3AL in Section 4 using a broad range of experiments [27]. We compare several state-of-the-
art algorithms (namely L? [4], KV [24], TTT [22] and L# [33]) for targets of different sizes and different
levels of noise, while varying the controllable parameters for both MAT and C 3AL. The experimental

152 Conflict-Aware Active Automata Learning

Learner Teacher

Membership query: i ∈ Σ∗

M ∗(i) ∈ Γ∗

Equivalence Query: H correct?

Yes / (No + cex)

Figure 1: The Minimally Adequate Teacher framework.

results show that in the case of noise, C 3AL allows us to drastically reduce the number of repeats required
to learn correct models by handling some conflicts in the information it gathers from the system. This
allows C 3AL to achieve a success rate of 95.5% compared to MAT’s 79.5% in our experiments.

A long version of this paper, complete with the appendices presenting the proofs, some more formal-
ization, extensive experimental results and some more discussion can be found in [16]. References are
given when it can be useful.

2 Preliminaries

In this section, we recall Mealy machines and MAT. Fix an alphabet A (a finite set of symbols). The set
of finite words is denoted A∗, the empty word ε , and the set of non-empty words by A+. The length of a
word w ∈ A∗ is denoted |w|, its sets of prefixes by prefixes(w), its k-th element by w[k] and the subword
from the i-th to the j-th element by w[i, j]. The concatenation of word w with symbol a is denoted by wa.

Mealy Machines For the rest of the paper, we fix an input and output alphabet pair (Σ,Γ). A Mealy
machine over alphabets (Σ,Γ) is a tuple M = (Q,q0,δ ,λ) where Q is a finite set of states, q0 ∈ Q is the
initial state, δ : Q×Σ→Q is a transition function and λ : Q×Σ→ Γ an output function. Mealy machines
assign output words (o ∈ Γ∗) to input words (i ∈ Σ∗) — one reads input letters using δ and collects all
output letters given by λ . This is achieved using inductive extensions of δ and λ :

δ
∗ : Q×Σ

∗→ Q δ
∗(q,ε) = q δ

∗(q, ia) = δ (δ ∗(q, i),a)

λ
+ : Q×Σ

+→ Γ λ
+(q, ia) = λ (δ ∗(q, i),a)

We now build the semantics function M ∗ : Σ∗→ Γ∗ given by

M ∗(a1 · · ·a j) = b1 · · ·b j where bk = λ
+(q0,a1 · · ·ak), for all k = 1, . . . , j.

Note the preservation of length of input words in output. When the functions δ and λ are partial we call
the Mealy machine M partial. A partial tree-shaped Mealy machine is called an observation tree.

Example 1. On the left below is the tree representing the tests {(aaa,aab),(aab,aaa),(ab,ab)} and on
the right the tree representing {(aaa,abb),(ab,ab)}.

a/a a/a

b/b

a/b

b/a

a/a a/b

b/b

a/b

Active Model Learning Active learning is a process in which a learner can interact with an omniscient
teacher to build a model of an unknown system. Formally, this type of learning uses the Minimally
Adequate Teacher (MAT) framework [4] (see Fig. 1). The teacher is supposed to have enough knowledge
about the target machine M to be able to answer two types of queries:

Membership The learner sends an input word i to the teacher, who answers with the output word M ∗(i).

T. Ferreira, L. Henry, R. Fernandes da Silva, A. Silva 153

Equivalence The learner proposes a hypothesis model H . The teacher either confirms the model as
correct or provides a counterexample cex ∈ Σ∗ such that H ∗(cex) 6= M ∗(cex).

The MAT framework is an interesting abstraction to design algorithms and conduct proofs, and has
been the basis for active model learning since its introduction (see e.g. L? [4], KV [24], TTT [22] or
L# [33]). The teacher abstracts the system under learning (SUL), which complicates discussions on the
practical interfaces between the learner and the SUL during applications. MAT does not separate the
learner’s core features (i.e. choosing the queries to be made and building hypotheses) from the storage
of observations. This has led the community to resort to caches, often implemented through observation
trees, to access observations directly. Being mostly tricks to avoid repeating queries, caches are rarely
discussed in the literature (although used during experiments), which had so far delayed a discussion on
the practical implications of a proper handling of observations. This paper addresses this.

Noise on communications The term noise is usually used to described a wide range (if not any form)
of perturbations that can happen between the designed agent (in our case the Learner) and the SUL. In
the case of this study we are primarily interested in the classification between input and output noise.

Output noise We call output noise a perturbation that only affects what our agent sees from the world,
i.e. the outputs of the SUL. Formally, this kind of noise can be represented as a non-deterministic
function of M ∗(i) returning a different output word of same size.

Input noise This kind of noise instead affects the query i inputted into the SUL, so that a different input
word i′ of same size is processed instead.

Noise can have different levels of structure, being generated by different kinds of models or proba-
bility distributions. As this paper strives for a generic approach, no assumption is made on the structure
of noise. Furthermore, experiments will use generic noise that has a fixed probability for each symbol
of the word, taken in sequence, to replace it with a random one according to a uniform distribution.
One notable restriction of our approach is that it does not target adversarial modifications — such as an
attacker trying to change the Learner’s hypotheses.

Remark 1. We do not further formalize noise, as it stems for very practical considerations that may re-
quire a wide array of different formalizations. The method we propose is generic and aims to demonstrate
that paying attention to noise and conflicts allows significant efficiency gains without any specialization
towards a specific model of noise.

3 Conflict Aware Active Automata Learning

We now introduce our alternative to MAT in practice — the Conflict-Aware Active Automata Learning
(C 3AL) framework. C 3AL’s main features are as follows:

• The SUL is a first class citizen, allowing for clearer practical discussions and modularity.

• The information obtained through tests on the SUL is stored in a new Reviser agent that handles
the conflicts and answers the learner’s queries like a teacher.

• The Reviser alone interacts with the SUL by means of tests meant to expand its observation tree.
The learner’s queries are answered from the observation tree.

154 Conflict-Aware Active Automata Learning

Learner Reviser System

MQ

output
EQ

CE

input

output

Prune

Figure 2: Simplified view of the C 3AL framework. See Fig. 4 and 5 for more detail.

3.1 Framework Overview

C 3AL (Fig. 2) is centered around three agents — the Learner, the System (SUL), and the Reviser — and
the interfaces between them. The Learner plays the same general role as in MAT. Crucially, any MAT
learner can be used in C 3AL (e.g. L?, KV, TTT, L#). The Learner does not have to store the information
obtained from tests on the system. It focuses on the questions “What is the next query to make?” and
“How is the hypothesis built?”. The System is the System Under Learning, together with its environment
(e.g. noise). The Reviser handles knowledge and conflicts. It answers the question “What do we know
about the system?”. It is set between the Learner and the System with interfaces to both of them.

C 3AL is designed to improve the practical learning of reactive systems like Mealy machines. As
such, it makes use of features that are core to such models, like causality and closure under inputs and
outputs. However, the main ideas behind C 3AL’s philosophy and separation of concerns can be adapted
to learn other types of automata, such as acceptors like DFAs.

Remark 2. The Reviser acts as a MAT teacher w.r.t. the Learner, answering membership and equiva-
lence queries, with the added ability to Prune the learner to place it in a state coherent with the Reviser’s
information. On the System’s view, the Reviser acts as a tester, providing input sequences (tests) and
recording the system output. The outside views of the learner and system in C 3AL are illustrated below.

Learner
System

Reviser

Teacher
MQ

EQ

(a) Learner’s view

Learner
System

Reviser

Tester
input

output

(b) System’s view

Figure 3: Reviser’s interfaces

The interfaces on the Learner side are similar to MAT: the Learner can perform membership queries
(MQ) and equivalence queries (EQ) on the Reviser, with the latter potentially resulting in a counterex-
ample (CE). Note that the queries are sent to the Reviser and not directly to the SUL: a crucial design
choice. This allows us to control the information that the Learner obtains, and reuse the information in
the Reviser with no new tests. Formally, C 3AL provides the following functions as module interfaces:

• MQ : Σ∗→ (Γ∗∪{Prune}) the membership query of the learner that the Reviser has to implement.
It varies from the MAT function as the Reviser may return a command to prune the learner’s state
instead of an output.

• EQ : Mealy→ ((Σ∗×Γ∗)∪{Prune}) the equivalence query of the learner that the Reviser has to
implement. It may return “Prune ” instead of “Yes”.

• System : Σ∗→ (Σ∗×Γ∗) is a call to the system for a specific test. The system returns the corre-
sponding behavior (input and output), with the effect of noise applied.

T. Ferreira, L. Henry, R. Fernandes da Silva, A. Silva 155

In the interface mentioned above, an EQ can never return “Yes” as in MAT. This work is left to the Reviser,
that will halt the learning process according to the termination criterion chosen (see Section 3.2). The
Prune signal does not require us to modify the code of a MAT Learner, as it can be implemented by
restarting the Learner without requiring further access to the Learner’s internals. The Reviser’s caching
of observations ensures that this operation does not add to the query complexity of the process.
Remark 3. The main cost of learning comes from unit interactions with the system — each individual
symbol that is inputted into or outputted by the system — as these tests are generally costly to perform
and that cost cannot be compensated.

3.2 The Reviser

The Reviser agent is the core of the C 3AL framework. It concretizes its main idea: taking the storage and
handling of observations out of the Learner’s prerogatives. Its task is to update the observation tree T
on which a Learner is trained. We will assume the following interface is made available to the Reviser:
Definition 1 (Operations on observation trees). Given an observation tree T , we define the following
functions to access and modify T :

• LOOKUPT : Σ∗→ (Γ∗∪{NULL}) receives an input word i and returns output o if (i,o) is present
in the observation tree T . Otherwise, NULL is returned.

• UPDATET : (Σ∗×Γ∗)→ 2 updates the observation tree T to take into account a new query pair,
revoking conflicting information if necessary. Returns > if the new information conflicts with T .

Note that the function UPDATE is the only one that alters the tree and handles conflicts. Implemen-
tations of these functions are given in [16, Appendix A]. Using these functions, we can now define the
language of an observation tree as the set of observations that it can transmit to a Learner, and provide a
formal definition of a conflict as a non-additive change to the language of T .
Definition 2. Given an observation tree T , we call language of T the following set

LT = {(i,LOOKUPT (i)) ∈ Σ
∗×Γ

∗ | LOOKUPT (i) ∈ Γ
∗} .

Definition 3. An observation (i,o) conflicts with an observation tree T when the tree U obtained
by calling UPDATET (i,o) satisfies ∃(i′,o′) ∈ LT , o′ 6= LOOKUPU (i′). Two observations (i,o) and
(i′,o′) conflict, written (i,o) E(i′,o′), when there is an input word i′′ ∈ prefixes(i)∩prefixes(i′) such that
o[|i′′|] 6= o′[|i′′|].

Note that a conflict appears not between the System and the Reviser, but signifies that the Reviser
wants to update its answer to some information previously given to the Learner.
Definition 4 (Reviser). The Reviser contains an observation tree T and implements four operations:

1 APPLYT : (Σ∗×Γ∗)→ (Γ∗∪{Prune}) updates T with the observation gained from a system test.
It then either returns the query output or prunes the learner if a conflict is detected.

2 READT : Σ∗→ (Γ∗ ∪{Prune}) looks in T for a query answer and either returns it or tests the
system if necessary. Note that if a test is performed, then T is updated accordingly.

Algorithm 1: APPLYT (i,o)
Data: (i,o) trace from the SUL.
if UPDATET (i,o) then

return Prune;
return o;

Algorithm 2: READT (i)
Data: The queried string i.
o← LOOKUPT (i);
if o 6= NULL then return o ;
return APPLYT (System(i));

156 Conflict-Aware Active Automata Learning

3 CHECKT : Mealy→ ((Σ∗×Γ∗)∪{NULL}) performs a consistency check of a given Mealy ma-
chine hypothesis against the observation tree T . Returns a counterexample if found or NULL if
no divergences are found.

4 TESTT : Mealy→ ((Σ∗×Γ∗)∪{Prune}) is the function used to look for counterexamples in the
System. It takes a hypothesis proposed by the learner and coherent with the observation tree, and
tests the SUL until a counterexample or a conflict is found. The tests are taken from sampleWord

which is instantiated by an off-the-shelf test suite generating algorithm (e.g. the Wp-method [20]
or Hybrid-ADS [26, 29]) in practice.

Algorithm 3: CHECKT (H)

Data: Hypothesis H
for (i,o) ∈T do

if H ∗(i) 6= o then
return (i,o);

return NULL;

Algorithm 4: TESTT (H)

Data: A hypothesis H coherent with T .
while > do

w← sampleWord();
(i,o)← System(w);
if APPLYT (i,o) = Prune then return
Prune ;

if H (i) 6= o then return (i,o) ;

Crucially, the above functions rely on the observation tree’s interface to handle the conflict as they
arise, forwarding the Prune command to the Learner when needed.

Update Strategies At the core of dealing with conflicts is the idea of identifying information that will
be sacrificed for the sake of cohesion. The way this is achieved depends largely on the type of conflict,
and the meaning of observing such a conflict. We propose two ways to resolving conflicts in C 3AL:

1 Most Recent: When a conflict is identified, the most recently observed (freshest) query information
is committed to the observation tree, and the previous one suppressed, if needed. This approach makes
sense, for example if the target system has mutated and we are only interested in capturing the most up-
to-date behavior, or as a base default strategy. We define prefixes(i,o) = {(i[1,n],o[1,n]) | 0≤ n≤ |i|}.

Proposition 1. In the case of the Most Recent update strategy, given a stream of tests ((ik,ok)k∈N), at
any step K ∈ N: LT = {prefixes(ik,ok) | 0≤ k ≤ K ∧ 6 ∃k < l ≤ K, s.t. (ik,ok) E(il,ol)}.

Example 2. In Example 1, the right-hand tree is the result of observing (aaa,abb) starting from the
left-hand tree. Notice that the sets prefixes of the sets of observations in Example 1 verify Proposition 1.

2 Most Frequent: When two possible output sequences conflict for a given input sequence, the most
frequently observed one is returned to the Learner. This information can be obtained passively by keeping
track of naturally occurring repetitions of queries, or actively by specifying a sample size on which the
frequency is estimated. This approach makes sense for example for conflicts that are due to unwanted
statistical noise in the observations.

We define Count(i,o) = |{k | (i,o) ∈P(prefixes)({(ik,ok)k∈K})}| as the number of observations of
which (i,o) is a prefix in an observation stream (ik,ok)k∈N considered at step K.

Proposition 2. In the case of the Most Frequent update strategy, given a stream of tests ((ik,ok)k∈N),
at any step K ∈ N:

mf ((ik,ok),(il,ol)), Count(ik,ok)< Count(il,ol) ∨ (Count(ik,ok) = Count(il,ol) ∧ k < l)

LT = {prefixes(ik,ok) | k ≤ K ∧ 6 ∃k < l ≤ K, s.t. (ik,ok) E(il,ol) ∧mf ((ik,ok),(il,ol))}

T. Ferreira, L. Henry, R. Fernandes da Silva, A. Silva 157

We present implementations of UPDATE and LOOKUP fitting these two strategies in [16, Appendix
A], and proofs of the above properties in [16, Appendix B].

Remark 4. An observation (i,o) conflicting with an observation tree T implies that (i,o) E(i′,o′) for
some (i′,o′) ∈ LT . The other implication is not always true, e.g. for the Most Frequent update
strategy.

Termination The termination criteria of C 3AL are the same as those used in MAT in practice: in our
experiment, we terminate when our currently selected hypothesis has survived for a fixed number of tests
that is deemed sufficient, or if a predefined limit number of queries is reached.

Hypothesis Selection Active automata learning involves the production of a sequence of hypotheses
that are refined over time, with the goal of converging towards a correct one. As such, a key characteristic
of different approaches to automata learning is how a final model is to be selected, out of the many
hypotheses. In the case of MAT this is simple: Learning produces a sequence of ever more accurate
models, until termination occurs with a positive equivalence query. It is then logical to pick the most
recently produced hypothesis as the final model. However, when dealing with conflicts and different
update strategies, this is no longer necessarily the case for C 3AL. In particular, when it comes to electing
a model out of a sequence of hypothesis, C 3AL has two options:

• Most Recent: This hypothesis selection strategy is the one known classically: the most recently
produced hypothesis is the one to be elected as final. This strategy is sensible in the case of learning
with no noise, or in the case of learning targets that evolve over time.

• Most Frequent: In this selection strategy, the sequence of hypotheses is analyzed to elect a final
model. We count the frequency of each unique model (up to language equivalence) over the sequence,
and elect the most frequently occurring one. This strategy makes sense when dealing with noise, as we
may be producing (rarely) hypotheses that capture noisy behavior that is fixed over time. As such, we
want to select not the latest model produced, but the one that is the most stable. This strategy can be
implemented efficiently in practice (using hash fingerprints and counters, for example) and on-the-fly
during learning, allowing us to not have to store the whole sequence of hypotheses as it is produced.

3.3 Interface Implementation

We now explain how to build the interface described in Sec. 3.1 using the Reviser. This mostly amounts
to implementing membership and equivalence queries, as the testing interface is simply composed of
calls to System. Membership queries can be defined, for i ∈ Σ∗, as MQ(i) = READT (i). When T
does not have the answer to this particular query, READT sends it through to the SUL (with the call to
System) and the result is applied in T . This process is illustrated in Fig. 4.

Learner

Reviser
READT

APPLYT

Systemo

i

Prune

i

(i,o)

Figure 4: Implementation of Membership Queries (MQ) in the Reviser.

Equivalence queries are handled in two steps. First, the hypothesis given by the learner is checked
against the observation tree using CHECKT . If a counterexample is found, it is returned. Otherwise, the

158 Conflict-Aware Active Automata Learning

Reviser tests the System to discover new information and update the tree. If a counterexample is found,
either it is returned to the learner or, if a conflict arose, the learner is pruned. (Fig. 5).

Learner

Reviser
CHECKT

APPLYT T
E

S
T

T

System(i,o)

H

Prune

i

(i,o)

Figure 5: Implementation of Equivalence Queries (EQ) in the Reviser.

Remark 5 (Modularity). We present C 3AL in the case of black-box learning where we do not have
access to any information from the system but can interact with it. However, the framework is fully
modular, as can be seen from the high-level functions presented in Section 3.2: one can interface any
model-checking (or other) method before the calls to system in TESTT and READT when related models
(specifications, parts of the System. . .) are available, allowing C 3AL to perform gray-box or even white-
box learning. C 3AL focuses on the storage of information, without restrictions on its acquisition.

Correctness Proposition 1 and Proposition 2 characterize the language of the Reviser, and the fol-
lowing results describe its interactions with the Learner and the System (as proved in [16, Appendix
B]).

Lemma 1. During an execution of C 3AL, all tests on the System are integrated in T through UPDATET ,
and the Learner queries are answered according to LT .

Proposition 3. Prune is sent to the Learner exactly when a new observation conflicts with T .

3.4 Optimizations

C 3AL allows us to implement two main optimizations, both in the framework and its algorithms.

Query Caching One of the direct benefits of the presence of the Reviser is that the learner does not
have to cache membership queries to avoid repeating them, as it obtains knowledge through the
Reviser’s data structure. It especially offers a good basis to discuss algorithms that are based on
the observation tree themselves [30, 33], for which the Learner’s data structure is very limited.

Specialized Pruning In order to fully support the simplistic interface of a classic MAT learner, we
restart it — at no extra query cost (see Section 3.1) — when the Prune signal is sent. For specific
Learner data structures, the time-complexity of this operation can be enhanced by suppressing only
the part of the data structure that is impacted by the conflict (instead of restarting it completely).
This optimization, however, will be specific to each learning algorithm. In the same way as the
Learner can read the Reviser’ observation tree, a C 3AL-specific Learner could compute its internal
data-structure directly from it after a pruning without requiring restarts.

4 Evaluation

We introduced C 3AL to extend the power of classic MAT learners into environments that may cause
conflicts, for instance caused by noise. In practice, each symbol inputted in or outputted by the SUL can
be noisy, making longer queries more likely to have noisy results overall. Recall that poorly guessing
the number n of query repetitions can lead to a learning failure (if noise is integrated in the system), or a

T. Ferreira, L. Henry, R. Fernandes da Silva, A. Silva 159

timeout (if too many repetitions are made). Hence noise does not only affect the efficiency, but also the
success rate of the learning, i.e., the proportion of runs that end with a correct hypothesis.

It is then important to measure how well C 3AL can avert these negative effects. In particular, we are
interested in testing if C 3AL’s approach is sufficient to allow for an improvement of learning environ-
ments plagued by noise1. We evaluate this through the following research question:

Across different realistic model learning targets, types of noise, and noise levels, does C 3AL
provide a better learning environment in terms of both success rates and number of tests issued
when compared to the state-of-the-art MAT-based approaches?

4.1 Experiments

We first present the experimental setup and the outlines of the experimental results. We focus on the
difference between uncontrollable parameters, i.e., that are part of the target and its environment and
can’t be altered by the learning setup, and the controllable ones, that are chosen when designing a
learning session. Uncontrollable parameters are related to the SUL and its environment.

Realistic Targets We run our experiments over a range of 36 Mealy machines representing real world
systems from previous successful model learning applications [27]. These range in size between 4
and 66 states, with alphabet sizes between 7 and 22 input symbols.

Different Types of Noise We run the targets on different types of realistic simulated noise, namely input
and output noise as described above.

Different Levels of Noise We run the above mentioned noise types over 3 different levels: 0.01, 0.05,
and 0.1. These indicate the probability that each symbol has of being noisy.

Given the above constraints, we aim to reach the best performing learning session by manipulating the
following controllable parameters:

Framework We run each experiment under both MAT and C 3AL.

Algorithm We run each experiment under L#, TTT, KV, and L?. We use the implementations of these
algorithms provided in LearnLib [23]. Notably, L? is implemented with Rivest & Schapire’s im-
provements [28] and we re-implemented L# completely to incorporate it into the LearnLib library.

Number of Repeats We compare different numbers of repeats used in majority voting test results to
remove noise in MAT, or in sampling frequencies for the update strategy in C 3AL. We use one of
3 different levels of repeats, in pairs of (min repeats,max repeats): (5,10),(10,20),(20,30)2.

Each experiment uses the following settings to enhance its learning, independent of the above men-
tioned variables. Firstly, caching of previously observed queries is done wherever possible in MAT, and
the Most Recent update and Most Frequent hypothesis selection strategies are used in C 3AL, for
simplicity. Secondly, the Hybrid-ADS [26] equivalence testing algorithm is used for all runs as we found
it to be the best performing for our experiments. Thirdly, each independent experiment is performed with
100 runs, and its results averaged for consistency. And finally, each run is allowed to use up to 10 million
queries before an unsuccessful timeout is declared.

1We compare success rates and number of tests issued instead of running times as to make hardware-agnostic benchmarks
that capture the main factors in both efficiency and correctness.

2Each test is repeated min repeats times and then if at least 80% of the queries agree the result is returned. Else, the query
is repeated until it is the case or max repeats is reached at which point the majority answer is returned.

160 Conflict-Aware Active Automata Learning

Due to the vast number of variables considered, we are unable to fully describe the result of the over
18,000 distinct experiments, and close to 2 million runs that we have performed. However this is not
required to rigorously answer our research question. What we have to consider is, for each combination
of our independent variables (target, noise type, and noise level), which framework allows for the most
efficient learning configuration.

The graphs below (Figs. 6 - 11) summarize, for each target and for all levels and types of noise, the
success rates and number of symbols tested of the best controllable parameter profile for both MAT and
C 3AL. We have also included all the data used, as well as conclusions in [16, Appendix C].

4.2 Analysis

We now analyze the results of these experiments to draw some high-level conclusions about how MAT
and C 3AL compare and answer our research question.

Success Rates First and foremost, we discuss the impact of different parameters on the success rates
of the experiments. We can see from the graphs (Figs. 6a - 11a) that, as expected, while the exact type
of noise does not have a significant impact on success rates and test counts, the level of noise does. In
particular, at a very low level of 0.01% (Figs. 6a, 9a) both frameworks are capable of maintaining perfect
success rates. However, once the level increases to 0.05% (Figs. 7a, 10a), MAT’s success rate starts to
fluctuate, more so in bigger targets. C 3AL too seems to be slightly affected by an increase in noise, but
overall maintains a success rate close to 100%. Once the noise is increased to its highest level, 0.1%
(Figs. 8a, 11a), we can see that MAT’s success rates reduce significantly, while C 3AL’s tend to stay high
for a great number of targets, until they inevitably decrease when faced with massive targets at this level
of noise. C 3AL manages to stay consistently reliable in the face of these large alphabets.

Efficiency Let us now turn our attention to the system test count graphs (Figs. 6b - 11b). Overall we
see an expected picture: Larger systems require more tests to be learned. A particular caveat to notice
however, is that while MAT appears to have quite efficient runs on large noisy targets, their respective
success rates are considerably lower. Although efficiency of learning is certainly important, it is of low
use if at the end the reported hypothesis is not correct. This result is expected: If a learning run fails due
to, for example, high noise not being fully filtered out, the MAT learner will collapse before it finishes
running. This leaves a final test count that is quite low, but also gives us an incorrect hypothesis.

Overall Results Perhaps most importantly, C 3AL provides the most efficient correct configuration
in 70% of the experiments, having a better success rate than MAT or the same with a lower average
number of tests used. We provide this result for each individual experiment in [16, Appendix C]. In
particular, in every experiment C 3AL performs with a success rate that is at least as high as MAT’s, often
outperforming it. In addition to this, experiments ran with C 3AL had an overall success rate of 95.5%
compared to MAT’s 79.5% success rate. This alone has allowed C 3AL to perform successful runs that
no configuration of MAT was able to perform, namely learning moderate to large targets at 0.1% noise.

We found that a lot of the improvements provided by C 3AL are commonly a consequence of it being
more successful when running at a lower number of repeats when compared to the ones required by MAT.
This solidifies our initial hypothesis of there being a benefit in reducing the number of repeats used when
learning noisy targets. The above provides enough supporting evidence to answer our research question
positively: C 3AL provides a better learning environment in terms of both success rates and number
of tests issued when compared to the state-of-the-art MAT-based approaches.

T. Ferreira, L. Henry, R. Fernandes da Silva, A. Silva 161

0

20

40

60

80

100

Target System (increasing size)

Su
cc

es
s

R
at

e
(%

)

C 3AL
MAT

(a) Success rate (higher is better)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·107

Target System (increasing size)

N
um

be
ro

fS
ys

te
m

Te
st

s

C 3AL
MAT

(b) Average test use (lower is better)

Figure 6: INPUT noise at 0.01%.

0

20

40

60

80

100

Target System (increasing size)

Su
cc

es
s

R
at

e
(%

)

C 3AL
MAT

(a) Success rate (higher is better)

0

1

2

3

4

5

6

7

·107

Target System (increasing size)

N
um

be
ro

fS
ys

te
m

Te
st

s
C 3AL
MAT

(b) Average test use (lower is better)

Figure 7: INPUT noise at 0.05%.

0

20

40

60

80

100

Target System (increasing size)

Su
cc

es
s

R
at

e
(%

)

C 3AL
MAT

(a) Success rate (higher is better)

0

1

2

3

4

·107

Target System (increasing size)

N
um

be
ro

fS
ys

te
m

Te
st

s

C 3AL
MAT

(b) Average test use (lower is better)

Figure 8: INPUT noise at 0.1%.

162 Conflict-Aware Active Automata Learning

0

20

40

60

80

100

Target System (increasing size)

Su
cc

es
s

R
at

e
(%

)

C 3AL
MAT

(a) Success rate (higher is better)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·107

Target System (increasing size)

N
um

be
ro

fS
ys

te
m

Te
st

s

C 3AL
MAT

(b) Average test use (lower is better)

Figure 9: OUTPUT noise at 0.01%.

0

20

40

60

80

100

Target System (increasing size)

Su
cc

es
s

R
at

e
(%

)

C 3AL
MAT

(a) Success rate (higher is better)

0

2

4

6

8

·107

Target System (increasing size)

N
um

be
ro

fS
ys

te
m

Te
st

s
C 3AL
MAT

(b) Average test use (lower is better)

Figure 10: OUTPUT noise at 0.05%.

0

20

40

60

80

100

Target System (increasing size)

Su
cc

es
s

R
at

e
(%

)

C 3AL
MAT

(a) Success rate (higher is better)

0

0.5

1

1.5

2

2.5

·107

Target System (increasing size)

N
um

be
ro

fS
ys

te
m

Te
st

s

C 3AL
MAT

(b) Average test use (lower is better)

Figure 11: OUTPUT noise at 0.1%.

T. Ferreira, L. Henry, R. Fernandes da Silva, A. Silva 163

Other Findings We report on other interesting findings in [16, Appendix D]. Two results, however,
are of particular significance: As already accepted by the community [5], we can confirm that indeed
most of the tests spent in learning are used to realize equivalence queries. In particular, we found that
equivalence tests account for 89.1% of tests in MAT, 59.8% in C 3AL, and 66.3% on average.

Perhaps more surprisingly, the commonly accepted ordering of Learner efficiencies did not surface
in our experiments. From theoretically most performant to least we have L#, TTT, KV, and L?, based on
complexity analyses in MAT. Through our experiments we have found that, at least in our particular case
of black-box learning (i.e. learning from SUL tests only) of Mealy machines with noise and randomized
testing algorithms, this ordering cannot be seen in the results. The best configurations for each framework
were not consistent on which algorithm performed the best. Not only was there no clear ”winning”
algorithm, we found no pattern based on noise, target and alphabet size, or number of repeats that had a
strong enough correlation to the better performance of any one algorithm.

We believe that this is not a flaw of the complexity analyses themselves. It is simply that complexity
analyses in MAT abstract away the biggest cost of learning: equivalence tests. It may be that more recent
algorithms have a theoretical (and membership query based) advantage over classic algorithms, however
the nature of randomized equivalence oracles seems to be a bigger agent of chaos, and a good or bad run
of the equivalence oracle quickly overshadows the small advantage that some algorithms may have.

5 Related Work

There has been extensive work on finding ways of applying classic learning algorithms like L? [4],
KV [24], TTT [22], and L# [33] to real world systems such as passports [2], network protocol imple-
mentations [15, 18, 19], and bank cards [1]. All these works rely on ad-hoc implementations of noise
handling which is inefficient and not formalized in the MAT framework. One of the goals of our frame-
work, which replaces the teacher with the SUL and the Reviser, is to discuss how noise can be dealt
with in the learning process, independently of the type of Learner being used. The LearnLib library [23]
provides caches that can be placed in the learning environment to avoid the repetition of queries, much
like observation trees. Note that our Reviser agent goes further than LearnLib as it provides the ability to
act as membership and equivalence oracles, test the system, and act on conflicts by pruning the learner’s
data structure in an efficient (query-wise) and correct manner.

There has also been previous work in improving the efficiency of model learning strategies for mutat-
ing targets by reusing previously learned behavior, using adaptive learning algorithms [11,14,17,21,35].
These algorithms work by being able to start learning with pre-seeded information of previous runs that
has been confirmed to still apply in the current target, or by being able to filter this information them-
selves if it is found to no longer apply. Additionally, there has been some work on Lifelong Learning [7],
where model learning and model checking are used together to run over the development lifecycle of a
system. This allows for the quick discovery of bugs in the development cycle. However, when these are
found and corrected, learning needs to be manually restarted.

Our model learning framework improves on these two lines of work, being able to autonomously
correct itself when faced with conflicts. It can do so without any notification of mutations in the system,
allowing it to be applied to complete closed-box systems, unlike the current state-of-the-art adaptive
algorithm [17]. Additionally, it is capable of continuously checking for changes in the system, much like
Lifelong Learning, but requiring no human interaction on system changes. These characteristics make it
resilient to real world noise, allowing the learner to correct itself as it identifies the correct behavior.

Our work participates in the current trend trying to link learning to testing, which spans communities,

164 Conflict-Aware Active Automata Learning

e.g. formal approaches [3], genetic approaches [31], and fuzzing [36]. In this context, C 3AL provides a
modular framework upon which other techniques can be added. In active model learning, this trend also
matches the interest in observation-tree based algorithms [30, 33], which we instantiate in C 3AL. The
role of observation structures in learning and testing is a long-standing lore [8] that can be leveraged to
enhance the learning approach and its modularity with testing methods.

6 Conclusion and Future Work

This paper explores efficient ways to handle conflicts during active learning. We build on the idea that
recovering from conflicts is best done by splitting information collection and the construction of the
Learner’s data structure, two operations that are conflated in MAT.

We introduce the Conflict Aware Active Automata Learning (C 3AL) framework as an alternative
to MAT. C 3AL directly represents the SUL and introduces a Reviser tasked with testing it, storing and
curating the observations. C 3AL provides a way to accept some conflicts to reach the Learner and to
recover from them without requiring to test the SUL anew.

To test the efficiency of C 3AL, we conducted a large body of experiments on real targets using several
state-of-the-art algorithms. We found that not only does C 3AL always improves on MAT in terms of
success rates, obtaining an overall success rate of 95,5% against MAT’s 79,5% it most importantly
enables the learning of previously un-learnable SULs, typically complex systems plagued with a high
level of noise. Our experiments further put into light the impact of equivalence tests, both in terms of
variability of the results and sheer cost, with an average of 66.3% of testing cost spent on equivalence.

In the future, we would like to explore the use and design of testing algorithms for active learning,
as their efficiency seems to be able to overshadow the difference between learning algorithms. C 3AL’s
modular nature also allows us to seamlessly build a gray-box environment i.e. to gain information from
different sources in the Reviser (e.g. specifications, access to source code). This would offset the cost of
equivalence queries by using cheaper sources of observations when searching for counterexamples.

Assessing the efficiency of C 3AL on a real case of mutating targets would be of interest, as an
evaluation, as an opportunity to fine-tune the framework for such task, and as a demonstration of the
improved reach of active learning. Similarly, testing the Most Frequent update strategy in practice
against high noise levels would be of interest.

Acknowledgements

This work was partially supported by the EPSRC Standard Grant CLeVer (EP/S028641/1), ERC grant
Autoprobe (no. 101002697), and a Royal Society Wolfson Fellowship. The authors would like to also
thank Denis Timm and the TSG and HPC groups at UCL Computer Science department for their support
in running the experiments in this paper.

T. Ferreira, L. Henry, R. Fernandes da Silva, A. Silva 165

References

[1] F. Aarts, J. De Ruiter, and E. Poll. Formal Models of Bank Cards for Free. In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops, pages 461–468, March 2013. doi:
10.1109/ICSTW.2013.60.

[2] Fides Aarts, Julien Schmaltz, and Frits Vaandrager. Inference and Abstraction of the Biometric Passport. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification,
and Validation, Lecture Notes in Computer Science, pages 673–686, Berlin, Heidelberg, 2010. Springer.
doi:10.1007/978-3-642-16558-0_54.

[3] Bernhard K. Aichernig, Wojciech Mostowski, Mohammad Reza Mousavi, Martin Tappler, and Masoumeh
Taromirad. Model Learning and Model-Based Testing, pages 74 – 100. Lecture Notes in Computer Science.
Springer Nature, 7 2018. doi:10.1007/978-3-319-96562-8_3.

[4] Dana Angluin. Learning regular sets from queries and counterexamples. Information and Computa-
tion, 75(2):87–106, November 1987. URL: http://www.sciencedirect.com/science/article/pii/
0890540187900526, doi:10.1016/0890-5401(87)90052-6.

[5] Kousar Aslam, Loek Cleophas, Ramon Schiffelers, and Mark van den Brand. Interface protocol inference to
aid understanding legacy software components. Software and Systems Modeling, 19(6):1519–1540, Novem-
ber 2020. doi:10.1007/s10270-020-00809-2.

[6] John Backes, Byron Cook, Andrew Gacek, Neha Rungta, and Michael W. Whalen. One-click
formal methods. In ICST 2020, 2019. URL: https://www.amazon.science/publications/

one-click-formal-methods.

[7] Alexander Bainczyk, Bernhard Steffen, and Falk Howar. Lifelong Learning of Reactive Systems in Practice.
In Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, and Einar Broch Johnsen, editors, The Logic of
Software. A Tasting Menu of Formal Methods, volume 13360, pages 38–53. Springer International Publishing,
Cham, 2022. Series Title: Lecture Notes in Computer Science. doi:10.1007/978-3-031-08166-8_3.

[8] Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker, Harald Raffelt, and Bernhard Steffen. On the
correspondence between conformance testing and regular inference. In Maura Cerioli, editor, Fundamental
Approaches to Software Engineering, pages 175–189, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
doi:978-3-540-31984-9_14.

[9] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl, Seth Markle, Kyle Sauri,
Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. Using Lightweight
Formal Methods to Validate a Key-Value Storage Node in Amazon S3. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles CD-ROM, pages 836–850, Virtual Event Germany, Octo-
ber 2021. ACM. doi:10.1145/3477132.3483540.

[10] Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli.
Applying formal verification to microkernel IPC at meta. In Andrei Popescu and Steve Zdancewic, editors,
CPP ’22: 11th ACM SIGPLAN International Conference on Certified Programs and Proofs, Philadelphia,
PA, USA, January 17 - 18, 2022, pages 116–129. ACM, 2022. doi:10.1145/3497775.3503681.

[11] Sagar Chaki, Edmund Clarke, Natasha Sharygina, and Nishant Sinha. Verification of evolving software via
component substitutability analysis. Formal Methods in System Design, 32(3):235–266, June 2008. doi:

10.1007/s10703-008-0053-x.

[12] Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huffman, Colm MacCárthaigh, Stephen
Magill, Eric Mertens, Eric Mullen, Serdar Tasiran, Aaron Tomb, and Eddy Westbrook. Continuous formal
verification of amazon s2n. In Hana Chockler and Georg Weissenbacher, editors, Computer Aided Verifica-
tion, pages 430–446, Cham, 2018. Springer International Publishing. doi:10.1007/9783319961422_26.

[13] Byron Cook, Kareem Khazem, Daniel Kroening, Serdar Tasiran, Michael Tautschnig, and Mark R. Tuttle.
Model checking boot code from aws data centers. In CAV 2018, 2018. URL: https://www.amazon.
science/publications/model-checking-boot-code-from-aws-data-centers.

https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-319-96562-8_3
http://www.sciencedirect.com/science/article/pii/0890540187900526
http://www.sciencedirect.com/science/article/pii/0890540187900526
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/s10270-020-00809-2
https://www.amazon.science/publications/one-click-formal-methods
https://www.amazon.science/publications/one-click-formal-methods
https://doi.org/10.1007/978-3-031-08166-8_3
https://doi.org/978-3-540-31984-9_14
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3497775.3503681
https://doi.org/10.1007/s10703-008-0053-x
https://doi.org/10.1007/s10703-008-0053-x
https://doi.org/10.1007/9783319961422_26
https://www.amazon.science/publications/model-checking-boot-code-from-aws-data-centers
https://www.amazon.science/publications/model-checking-boot-code-from-aws-data-centers

166 Conflict-Aware Active Automata Learning

[14] Carlos Diego Nascimento Damasceno, Mohammad Reza Mousavi, and Adenilso da Silva Simão. Learning
to Reuse: Adaptive Model Learning for Evolving Systems. In IFM, volume 11918 of LNCS, pages 138–156.
Springer, 2019. doi:10.1007/978-3-030-34968-4_8.

[15] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and Alexandra Silva. Prognosis: closed-box analysis of
network protocol implementations. In SIGCOMM, pages 762–774. ACM, 2021. doi:10.1145/3452296.
3472938.

[16] Tiago Ferreira, Léo Henry, Raquel Fernandes da Silva, and Alexandra Silva. Conflict-aware active automata
learning, 2023. arXiv:2308.14781.

[17] Tiago Ferreira, Gerco van Heerdt, and Alexandra Silva. Tree-Based Adaptive Model Learning, pages 164–
179. Springer Nature Switzerland, Cham, 2022. doi:10.1007/978-3-031-15629-8_10.

[18] Paul Fiterau-Brostean, Ramon Janssen, and Frits W. Vaandrager. Combining Model Learning and Model
Checking to Analyze TCP Implementations. In CAV, volume 9780 of LNCS, pages 454–471. Springer, 2016.
doi:10.1007/978-3-319-41540-6_25.

[19] Paul Fiterau-Brostean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits W. Vaandrager, and Patrick Verleg.
Model learning and model checking of SSH implementations. In SPIN, pages 142–151. ACM, 2017. doi:
10.1145/3092282.3092289.

[20] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test selection based on finite state
models. IEEE Transactions on Software Engineering, 17(6):591–603, 1991. doi:10.1109/32.87284.

[21] David Huistra, Jeroen Meijer, and Jaco van de Pol. Adaptive Learning for Learn-Based Regression Testing.
In Falk Howar and Jiřı́ Barnat, editors, Formal Methods for Industrial Critical Systems, volume 11119, pages
162–177. Springer International Publishing, Cham, 2018. Series Title: Lecture Notes in Computer Science.
doi:10.1007/978-3-030-00244-2_11.

[22] Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT Algorithm: A Redundancy-Free Approach to
Active Automata Learning. In Borzoo Bonakdarpour and Scott A. Smolka, editors, Runtime Verification,
volume 8734, pages 307–322. Springer International Publishing, Cham, 2014. Series Title: Lecture Notes in
Computer Science. doi:10.1007/978-3-319-11164-3_26.

[23] Malte Isberner, Falk Howar, and Bernhard Steffen. The Open-Source LearnLib. In CAV, volume 9206 of
LNCS, pages 487–495, 2015. doi:10.1007/978-3-319-21690-4_32.

[24] Michael J. Kearns and Umesh Virkumar Vazirani. An introduction to computational learning theory. MIT
Press, Cambridge, Mass, 1994. doi:10.7551/mitpress/3897.001.0001.

[25] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. Finding
real bugs in big programs with incorrectness logic. Proc. ACM Program. Lang., 6(OOPSLA1), apr 2022.
doi:10.1145/3527325.

[26] D. Lee and M. Yannakakis. Testing finite-state machines: state identification and verification. IEEE Trans-
actions on Computers, 43(3):306–320, 1994. doi:10.1109/12.272431.

[27] Daniel Neider, Rick Smetsers, Frits Vaandrager, and Harco Kuppens. Benchmarks for Automata Learn-
ing and Conformance Testing. In Tiziana Margaria, Susanne Graf, and Kim G. Larsen, editors, Mod-
els, Mindsets, Meta: The What, the How, and the Why Not? Essays Dedicated to Bernhard Steffen
on the Occasion of His 60th Birthday, pages 390–416. Springer International Publishing, Cham, 2019.
doi:10.1007/978-3-030-22348-9_23.

[28] Ronald L. Rivest and Robert E. Schapire. Inference of Finite Automata Using Homing Sequences. Inf.
Comput., 103:299–347, 1993. doi:10.1006/inco.1993.1021.

[29] Wouter Smeenk, Joshua Moerman, Frits Vaandrager, and David N. Jansen. Applying automata learning to
embedded control software. In Michael Butler, Sylvain Conchon, and Fatiha Zaı̈di, editors, Formal Methods
and Software Engineering, pages 67–83, Cham, 2015. Springer International Publishing. doi:10.1007/

978-3-319-25423-4_5.
[30] Michal Soucha and Kirill Bogdanov. Observation Tree Approach: Active Learning Relying on Testing. The

Computer Journal, 63(9):1298–1310, 07 2019. doi:10.1093/comjnl/bxz056.

https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1145/3452296.3472938
https://doi.org/10.1145/3452296.3472938
https://arxiv.org/abs/2308.14781
https://doi.org/10.1007/978-3-031-15629-8_10
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1109/32.87284
https://doi.org/10.1007/978-3-030-00244-2_11
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.7551/mitpress/3897.001.0001
https://doi.org/10.1145/3527325
https://doi.org/10.1109/12.272431
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1093/comjnl/bxz056

T. Ferreira, L. Henry, R. Fernandes da Silva, A. Silva 167

[31] Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian Lorber. Time to learn - learning
timed automata from tests. In Étienne André and Mariëlle Stoelinga, editors, Formal Modeling and Analysis
of Timed Systems - 17th International Conference, FORMATS 2019, Amsterdam, The Netherlands, August
27-29, 2019, Proceedings, volume 11750 of Lecture Notes in Computer Science, pages 216–235. Springer,
2019. doi:10.1007/978-3-030-29662-9_13.

[32] Frits W. Vaandrager. Model learning. Commun. ACM, 60:86–95, 2017. doi:10.1145/2967606.
[33] Frits W. Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wißmann. A New Approach for Active

Automata Learning Based on Apartness. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture Notes in Computer Science, pages 223–243.
Springer, 2022. doi:10.1007/978-3-030-99524-9_12.

[34] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. CacheQuery: Learning Replacement Policies
from Hardware Caches. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2020, pages 519–532, New York, NY, USA, 2020. Association for Com-
puting Machinery. event-place: London, UK. doi:10.1145/3385412.3386008.

[35] Stephan Windmüller, Johannes Neubauer, Bernhard Steffen, Falk Howar, and Oliver Bauer. Active Continu-
ous Quality Control. In Proceedings of the 16th International ACM Sigsoft Symposium on Component-Based
Software Engineering, CBSE ’13, pages 111–120, New York, NY, USA, 2013. Association for Computing
Machinery. event-place: Vancouver, British Columbia, Canada. doi:10.1145/2465449.2465469.

[36] Andreas Zeller. Learning the language of failure. 2020 CASA Disinguished Lecture, 2020. URL: https:
//andreas-zeller.info/assets/CASA-2020-Learning-the-Language-of-Failure.pdf.

https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1145/3385412.3386008
https://doi.org/10.1145/2465449.2465469
https://andreas-zeller.info/assets/CASA-2020-Learning-the-Language-of-Failure.pdf
https://andreas-zeller.info/assets/CASA-2020-Learning-the-Language-of-Failure.pdf

A. Achilleos and D. Della Monica (Eds.): Fourteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2023).
EPTCS 390, 2023, pp. 168–184, doi:10.4204/EPTCS.390.11

© T. Webster
This work is licensed under the
Creative Commons Attribution License.

The Recursive Arrival Problem

Thomas Webster
University of Edinburgh, UK

Thomas.Webster@ed.ac.uk

We study an extension of the Arrival problem, called Recursive Arrival, inspired by Recursive
State Machines, which allows for a family of switching graphs that can call each other in a recursive
way. We study the computational complexity of deciding whether a Recursive Arrival instance ter-
minates at a given target vertex. We show this problem is contained in NP∩coNP, and we show that
a search version of the problem lies in UEOPL, and hence in EOPL = PLS∩PPAD. Furthermore,
we show P-hardness of the Recursive Arrival decision problem. By contrast, the current best-known
hardness result for Arrival is PL-hardness.

1 Introduction

Arrival is a simply described decision problem defined by Dohrau, Gärtner, Kohler, Matous̆ek and
Welzl [5]. Informally, it asks whether a train moving along the vertices of a given directed graph, with n
vertices, will eventually reach a given target vertex, starting at a given start vertex. At each vertex, v, there
are (without loss of generality) two outgoing edges and the train moves deterministically, alternately
taking the first out-edge, then the second, switching between them if and when it revisits that vertex
repeatedly. This process is known as “switching” and can be viewed as a deterministic simulation of a
random walk on the directed graph. It can also be viewed as a natural model of a state transition system
where a local deterministic cyclic scheduler is provided for repeated transitions out of each state.

Dohrau et al. showed that this Arrival decision problem lies in the complexity class NP∩ coNP,
but it is not known to be in P. There has been much recent work showing that a search version of
the Arrival problem lies in subclasses of TFNP including PLS [17], CLS [13], and UEOPL [12], as
well as showing that Arrival is in UP∩ coUP [13]. There has also been progress on lower bounds,
including PL hardness and CC hardness [18]. Further, another recent result by Gärtner et al. [14] gives
an algorithm for Arrival with running time 2O(

√
n log(n)), the first known sub-exponential algorithm. In

addition, they give a polynomial-time algorithm for “almost acyclic” instances. Auger et al. also give a
polynomial-time algorithm for instances on a “tree-like multigraph” [2].

The complexity of Arrival is particularly interesting in the context of other games on graphs. For
instance, Condon’s simple stochastic games, mean-payoff games, and parity games [4, 20, 16], where
the two-player variants are known to be in NP∩coNP and the one-player variants have polynomial time
algorithms. Arrival, however, is a zero-player game that has no known polynomial time algorithm and,
furthermore, Fearnley et al. [11] that a one-player generalisation of Arrival is, in fact, NP-complete, in
stark contrast to these two-player graph games.

We introduce and consider a new generalisation of Arrival that we call Recursive Arrival, in
which we are given a finite collection of Arrival instances (“components”) with the ability to, from
certain nodes, invoke each other in a potentially recursive way. Each component has a set of entries and
a set of exits, and we study the complexity of deciding whether the run starting from a given entry of
a given component reaches a given exit of that component, which may involve recursive calls to other
components.

http://dx.doi.org/10.4204/EPTCS.390.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

T. Webster 169

Our model is inspired by work on recursive transition systems started by Alur et al. [1] with Recursive
State Machines (RSMs) modelling sequential imperative programming. These inspired further work
on Recursive Markov Chains (RMCs), Recursive Markov Decision Processes (RMDPs), and Recursive
Simple Stochastic Games (RSSGs) by Etessami and Yannakakis [8, 9, 10]. RSMs (and RMCs) are
essentially “equivalent” (see [9]) to (probabilistic) pushdown systems [3, 6] and have applications in
model-checking of procedural programs with recursion.

There is previous work on Arrival generalisations including a variant we call Succinct Arrival,
where at a vertex v the alternation takes the first outgoing edge of v on the first Av visits and then the
second edge the next Bv visits, repeating this sequence indefinitely. The numbers Av and Bv are given
succinctly in binary as input, and hence may be exponentially larger than the bit encoding size of the
instance. Fearnley et al. showed that Succinct Arrival is P-hard and in NP∩ coNP [11]. However,
we do not know any inter-reducibility between Recursive Arrival and Succinct Arrival variants.
In [19], we also defined and studied a generalisation of Arrival that allows both switching nodes as well
as randomised nodes, and we showed that this results in PP-hardness and containment in PSPACE for
(quantitative) reachability problems.

In this paper, we show that the Recursive Arrival problem lies in NP∩ coNP, like Arrival, by
giving a generalised witness scheme that efficiently categorises both terminating and non-terminating
instances. We also show that the natural search version of Recursive Arrival is in both PLS and
PPAD and in fact in UEOPL, by giving a reduction to a canonical UEOPL problem. We also show
P-hardness for the Recursive Arrival problem by reduction from the Circuit Value Problem. This
contrasts with the current best-known hardness result for Arrival, which is PL-hardness ([18]).

Due to space limitations, many proofs are relegated to the full version of the paper.

2 Preliminaries

Let N= {0,1, . . .} denote the natural numbers, and let N∞ = N∪{∞}. We assume the usual ordering on
elements of N∞. For j ∈ N and k ∈ N∞, we use the notion [j . . .k] = {i ∈ N | j ≤ i ≤ k}, and we define
[k] = [1 . . .k]. All propositions of this section follow directly from the cited prior works.

Definition 2.1. A switch graph is given by a tuple G := (V,s0,s1) where, for each σ ∈ {0,1}, sσ : V →V
is a function from vertices to vertices.

Given a Switch Graph G, we define its directed edges to be the set E := {(v,s0(v)) | v ∈ V} ∪
{(v,s1(v)) | v ∈ V}, with self-loops allowed. We write Eσ := {(v,sσ (v)) | v ∈ V} for σ ∈ {0,1} to
refer to edges arising specifically from transitions sσ (v), for each vertex v.

Given a switch graph, G := (V,s0,s1), we say q : V → {0,1} is a switch position on V . We let Q
be the set of all switch positions on V and define q0 ∈ Q by q0(v) = 0 for all v ∈ V as the initial switch
position. Given a switch graph, we say a state of the graph is an ordered pair (v,q) ∈ V ×Q and we
let Γ = V ×Q be the state space. We define the “flip action”, flip : V ×Q→ Q, of a vertex on a switch
position, as follows: flip(v,q)(u) = q(u) for all u ∈ V \ {v} and flip(v,q)(v) = 1− q(v), i.e., this action
flips the function value of q at v only. We can then define a transition function δ : Γ→ Γ on a switch
graph as δ ((v,q)) = (sq(v)(v),flip(v,q)).

We define the run of a switch graph G with initial state γ0 :=(v0,q0) to be the unique infinite sequence
over Γ, RUN∞(G,γ0) := (γi)

∞
i=0 satisfying γi+1 := δ (γi) for i ≥ 0. For a vertex v ∈ V , we say a run

terminates at v if ∃t ∈ N such that ∀i ≥ t ∃qi ∈ Q with γi = (v,qi). We call T ∈ N∞ the termination
time defined by T := inf{t | ∀i ≥ t, vi = vt}, where inf /0 = ∞. We denote by RUN(G,γ0) := (γi)

T
i=0 the

170 The Recursive Arrival Problem

subsequence of RUN∞(G,γ0) up to the termination time T . We say a run hits a vertex v ∈ V if ∃t ∈ N
and ∃qt ∈ Q such that γt = (v,qt).

We note that in order to terminate at a vertex, v ∈V , we must have that v = s0(v) = s1(v). We define
the set of “Dead Ends” in the instance as DE := {v ∈ V | s0(v) = s1(v) = v}. From this definition, it is
obvious that we either terminate at some unique vertex v ∈ DE, or we never terminate. We may now
define the Arrival Decision problem:

Arrival

Instance: A Switch Graph G := (V,s0,s1) and vertices o,d ∈V .
Problem: Decide whether or not the run of switch graph G with initial state (o,q0) terminates at vertex

d.

Given a switch graph G with directed edges, E, we define the relations→∗,→+⊆ V ×V as follows
u→∗ v (resp. →+) for u,v ∈V if and only if there is a directed path w0, . . . ,wk ∈V with (wi,wi+1) ∈ E
for i ∈ [k− 1], with w0 = u and wk = v for k ≥ 0 (resp. k ≥ 1) from u to v in (V,E). We write u 6→∗ v
(resp. 6→+) whenever we do not have u→∗ v (resp. u→+ v).

We note that we can view the sequence of vertices visited on a run as a directed path in (V,E), thus if
the run with initial state (v,q) hits w then we can conclude v→∗ w and, contrapositively, if v 6→∗ w then
for all (v,q) ∈ Q the run starting at (v,q) does not hit w.

We let I{a = b} be the indicator function of a = b, which is equal to 1 if a = b and is equal to 0
otherwise. We now define a switching flow, rephrasing Definition 2 of Dohrau et al. [5]:

Definition 2.2 ([5, Definition 2]). Let G := (V,s0,s1) be a switch graph, and let o,d ∈V be vertices. We
define a switching flow on G from o to d as a vector xxx := (xe | e∈ E) where xe ∈N such that the following
family of conditions hold for each v ∈V :

Flow Conservation :

(
∑

e=(u,v)∈E
xe

)
−

(
∑

e=(v,w)∈E
xe

)
= I{v = d}− I{v = o}, ∀v ∈V,

Parity Condition : x(v,s1(v)) ≤ x(v,s0(v)) ≤ x(v,s1(v))+1, ∀v ∈V.

We note that given G, o and a switching flow xxx from o to some, unknown, vertex d ∈ V , we can
compute exactly which d by verifying the equalities. We refer to d as the current-vertex of the switching
flow. If o ∈ V is an initial vertex and t ∈ N a time, we let RUN(G,(o,q0)) := ((vi,qi))

∞
i=0 be the run,

and define the Run Profile to time t to be the vector rrruuunnn(o, t) := (|{i ∈ [t] | (vi−1,vi) = e}| | e ∈ E). It
follows that for any o ∈ V and t ∈ N that rrruuunnn(o, t) is a switching flow from o to some vertex d ∈ V [5,
Observation 1]. We say a switching flow xxx is run-like if there exists some t ∈ N such that xxx = rrruuunnn(o, t).

It follows directly from the results of Dohrau et al.[5] and Gartner et al.[13] that:

Proposition 2.3 ([5, 13]). There exists a polynomial function p : N→ N such that for all Switch Graphs
G := (V,s0,s1) and all vertices o,d ∈V with o 6= d and d ∈ DE the following are equivalent:

• The run on G from initial state (o,q0) terminates at d.

• There exists a run-like switching flow xxx on G from o to d satisfying ∀e ∈ E, that log2(xe)≤ p(|G|).
Furthermore, for the same polynomial p, the following are equivalent:

• The run on G from initial state (o,q0) does not terminate.

• There exists a vertex d′ ∈ V \DE, a run-like switching flow xxx on G from o to d′, and an edge
e′ = (u,d′) ∈ E which satisfies for all e ∈ E \{e′} that log2(xe)≤ p(|G|) and that xe′ = 2p(|G|)+1.

T. Webster 171

It follows from these results that Arrival is in NP∩ coNP, as we may non-deterministically guess
a vector, xxx, whose coordinate entries are bounded by 2p(|G|)+ 1, and then verify whether or not xxx is a
run-like switching flow. Using [13, Lemma 11] we may verify the run-like condition in polynomial time,
on which we will elaborate subsequently. If we find a run-like switching flow to some dead end d′ ∈ DE
we may conclude G terminates at d′ and by the first part of Proposition 2.3 we can find such a flow within
these bounds. This may be either a flow to the given dead-end d in our input, or to some other dead-end,
certifying non-termination at d. The last case of Proposition 2.3 says that when G does not terminate
anywhere, we may also find a flow certifying this within our bounds, namely with some coordinate value
of the guessed vector xxx being exactly2p(|G|)+ 1 . In fact, it was shown by [13] that this argument also
shows containment of Arrival in UP∩coUP, by showing there is a unique witness xxx satisfying just one
of these conditions.

Let G := (V,s0,s1) be a Switch Graph and let xxx be a switching flow on G between some vertices
o,d ∈V . We define the last-used-edge graph G∗xxx := (V,E∗xxx) with the following set of edges:

E∗xxx :={(v,s0(v)) | v ∈V and x(v,s0(v)) 6= x(v,s1(v))}∪{(v,s1(v)) | v ∈V and x(v,s0(v)) = x(v,s1(v)) > 0}

This graph contains at most one of the edges (v,s0(v)) or (v,s1(v)). If x(v,s0(v)) + x(v,s1(v)) > 0, then
assuming there exists some run on which we visit vertex v a total of x(v,s0(v))+x(v,s1(v)) times, E∗xxx contains
the edge out of v that our switching order would use the last time v was visited on such a run. If on the
other hand x(v,s0(v))+ x(v,s1(v)) = 0, then E∗xxx contains neither edge.

Proposition 2.4 ([13]). Let G := (V,s0,s1) be a Switch Graph and let xxx be a switching flow on G from
o ∈V to d ∈V , then there exists a unique t ∈N such that xxx = rrruuunnn(o, t), if and only if one of the following
two (mutually exclusive) conditions hold:

• The graph G∗xxx is acyclic,

• The graph G∗xxx contains exactly one cycle and d is on this cycle,

Furthermore, given G and any such xxx whether or not one of these conditions hold can be checked in
polynomial time in the size of G and xxx.

Proposition 2.5 ([13, Lemma 16]). Let G := (V,s0,s1) be a Switch Graph and let t ∈ N with rrruuunnn(o, t)
the run profile up to time t, which is a switching flow on G from o ∈ V to some vertex d ∈ V . Then at
least one of the following two conditions hold:

• There is a unique edge (u,d) ∈ E∗rrruuunnn(o,t) incoming to d in the graph G∗rrruuunnn(o,t).

• The graph G∗rrruuunnn(o,t) contains exactly one cycle, and that cycle contains exactly one edge of the form
(u,d) ∈ E∗rrruuunnn(o,t) on the cycle.

Moreover, the edge (u,d) was the edge traversed at time t in the run (i.e., if RUN∞(G,(o,q0)) =
((vi,qi))

∞
i=0 then vt−1 = u and vt = d). Furthermore, this uniquely determined edge can be computed

given G and rrruuunnn(o, t) in time polynomial in the size of G and rrruuunnn(o, t).

Using these results, we are able to efficiently (in P-time) compute a function LUE which takes a
switching flow of the form rrruuunnn(o, t) and returns the “last-used-edge”, namely the unique edge (u,d) ∈ E
guaranteed by Proposition 2.5, where (u,d) is the edge which was traversed at time t.

172 The Recursive Arrival Problem

2.1 The Recursive Arrival Problem

We consider a recursive generalisation of Arrival in the spirit of Recursive State Machines, etc. ([1, 9,
10]). A Recursive Arrival instance is defined as follows:

Definition 2.6. A Recursive Arrival graph is given by a tuple, (G1, . . . ,Gk), where each component
Gi := (Ni∪Bi,Yi,Eni,Exi,δi) consists of the following pieces:

• A set Ni of nodes and a (disjoint) set Bi of boxes.

• A labelling Yi : Bi→{1, . . . ,k} that assigns every box an index of one of the components G1, . . . ,Gk.

• A set of entry nodes Eni ⊆ Ni and a set of exit nodes Exi ⊆ Ni.

• To each box b ∈ Bi, for all i ∈ [k], we associate a set of call ports, Callb,i = {(b,o) | o ∈ EnYi(b)}
corresponding to the entries of the corresponding component, and a set of return ports, Returnb,i =
{(b,d) | d ∈ ExYi(b)} corresponding to the exits of the corresponding component. We define the
sets Calli = ∪b∈BiCallb,i and Returni = ∪b∈BiReturnb,i. We will use the term ports of Gi to refer
to the set Porti = Calli∪Returni, of all call ports and return ports associated with all boxes b ∈ Bi

that occur within the component Gi.

• A transition relation, δi, where transitions are of the form (u,σ ,v) where:

1. The source u is either a node in Ni \Exi or a return port (b,x) in Returni. We define Sori =
Ni \Exi∪Returni to be the set of all source vertices.

2. The label σ is either 0 or 1.
3. The destination v is either a node in Ni \Eni or a call port (b,e) where b is a box in Bi and e

is an entry node in En j for j = Yi(b); we call this the set Desti of destination vertices.

and we require that the relation δi has the following properties:

1. For every vertex u ∈ Sori and each σ ∈ {0,1} there is a unique vertex v ∈ Desti with
(u,σ ,v) ∈ δi. Thus, for each i ∈ [k] and σ ∈ {0,1}, we can define total functions sσ

i : Sori→
Desti by the property that (u,σ ,sσ

i (u)) ∈ δi, for all u ∈ Sori.

We will use the term vertices of Gi, which we denote by Vi to refer to the union Vi = Ni ∪Porti

of its set of nodes and its set of ports. For σ ∈ {0,1}, we let Eσ
i = {(u,v) | (u,σ ,v) ∈ δi} be the set

of underlying edges of δi with label σ , and we define Ei := E0
i ∪E1

i . We will often alternatively view
components as being equivalently specified by the pair of functions (s0

i ,s
1
i), which define the transition

function δi := {(u,σ ,sσ
i (u)) | u ∈ Sori,σ ∈ {0,1}}.

We can view a box as a “call” to other components, and, as such, it is natural to ask which components
“call” other components. Given an instance of Recursive Arrival, (G1, . . . ,Gk), we define its Call Graph
to be the following directed graph, C = ([k],EC). Our vertices are component indices and for all (i, j) ∈
[k]× [k] let (i, j) ∈ EC if and only if there exists some b ∈ Bi with j = Yi(b) (i.e., a component Gi can
make a call to component G j). We allow self-loop edges in this directed graph, which correspond to a
component making a call to itself.

We are also able to lift some definitions from non-recursive Arrival to analogous definitions about
Recursive Arrival instances. Firstly, we define the sets DEi := {v ∈ Sori | s0

i (v) = s1
i (v) = v}∪Exi, of

dead-ends of each component. This contains both vertices v ∈ Sori where both outgoing transitions are
to itself and all the exits of the component.

In a given component, Gi, we define a switch position on Gi as a function q : Sori→ {0,1}. We let
Qi be the set of all switch position functions on Gi. We let q0

i ∈ Qi be the function q0
i (v) = 0 for all

T. Webster 173

v ∈ Sori and call this the initial switch position. We define the action flipi : Sori×Qi→ Qi analogously
to non-recursive Arrival, which flips the bit corresponding to a given vertex in a given switch position.

A state of a Recursive Arrival graph (G1, . . . ,Gk) is given by a tuple γ := ((b1,q1) . . .(br,qr),(v,q))
where the call stack β := (b1,q1) . . .(br,qr) is a string of pairs (bi,qi) with each bi ∈ ∪kBk a box, qi is a
switch position on some component Gci (i.e. qi ∈ Qci), and the current position is the pair (v,q) where
v ∈ Vcr+1 is a vertex in some component Gcr+1 and q ∈ Qcr+1 is a switch position on Gcr+1 . We call the
sequence (c1, . . . ,cr,cr+1) the component call-stack of the state. We say that a state is well-formed if:

• For all i ∈ [r] we have bi ∈ Bci .

• The sequence satisfies Yci(bi) = ci+1 for i ∈ [r].

We let Γ be the set of all well-formed states and ΓS := {β : ∃(v,q), (β ,(v,q)) ∈ Γ} be the set of well-
formed stacks β appearing in some state of Γ.

We define the transition function δ : Γ→ Γ on a well-formed state γ := ((b1,q1) . . .(br,qr),(v,q)) as:

1. If v ∈ Sor j is a source vertex then we let v′ := sq(v)(v) and then we define
δ (γ) := ((b1,q1), . . . ,(br,qr),(v′,flip j(v,q)));

2. If v = (b,e) ∈ Call j then e ∈ En j′ for j′ =Yj(b). We let q0
j′ be the initial switch position on G j′ and

define δ (γ) := ((b1,q1) . . .(br,qr)(b,q),(e,q0
j′));

3. If v ∈ Ex j and r ≥ 1 then we define δ (γ) := ((b1,q1) . . .(br−1,qr−1),((br,v),qr));

4. If v ∈ Ex j and r = 0 then δ (γ) := γ;

The function δ : Γ→ Γ defines a deterministic transition system on well-formed states. We call the
run of a Recursive Arrival graph from an initial component index j∈ [k], an initial switch position q0 ∈Q j

and a start entrance o∈ En j the (infinite) sequence RUN∞(G,(o,q0)) := (γi)
∞
i=0 given by γ0 := (ε,(o,q0))

and γi+1 := δ (γi). We say a run terminates at an exit d ∈Ex j if there ∃t ∈N such that ∀i≥ t there ∃qi ∈Q j

such that γi = (ε,(d,qi)). We call T ∈ N∞ the termination time defined by T := inf{t | ∀i≥ t, vi ∈ Ex j},
where inf(/0) = ∞. We denote by RUN(G,(o,q)) := (γi)

T
i=0 the subsequence up to termination. We say a

run hits a vertex v ∈V if there ∃t ∈ N, ∃qt ∈ Q and ∃β ∈ ΓS with γt = (β ,(v,qt)).
Our decision problem can then be stated as:

Recursive Arrival

Instance: A Recursive Arrival graph (G1, . . . ,Gk), with |En j| = 1 for all j ∈ [k], and a target exit
d ∈ Ex1

Problem: Does the run from initial state (ε,(o1,q0
1)) terminate at exit d? (Where o1 ∈ En1 is the

unique entry of G1 and q0
1 ∈ Q1 is the initial switch position.)

This decision problem covers in full generality any termination decision problem on Recursive Ar-
rival instances, as we may accomplish a change of initial state by renumbering components and rela-
belling transitions. Also, restricting to models with |Eni| = 1 is without loss of generality, because we
can efficiently convert the model into an “equivalent” one where each component has a single entry,
by making copies of components (and boxes) with multiple entries, each copy associated with a single
entry (single, call port, respectively). This is analogous to the same fact for Recursive Markov Chains,
which was noted by Etessami and Yannakakis in [9, p. 16]. Thus, we may assume that in the Recursive
Arrival problem all components of the instance have a unique entry, i.e., for i ∈ [k] that Eni = {oi},
and, unless stated otherwise, the run on G refers to the run starting in the state (ε,(o1,q0

1)), writing
RUN(G) := RUN(G,(o1,q0

1)).

174 The Recursive Arrival Problem

(a) G1, the constant “true” component. (b) G2, the constant “false” component.

Figure 1: Initial components corresponding to constant gates “true" and “false".

(a) Component for the AND of gates g j and gk. (b) Component for the OR of gates g j and gk.

Figure 2: Component Gi, where j, j′ ∈ [i−1] are the indices of the two inputs to the gate gi. All edges
correspond to both s0 and s1 transitions.

While, in such an instance, we may make an exponential number of calls to other functions, it turns
out we are able to give a polynomial bound on the maximum recursion depth before we can conclude an
instance must loop infinitely.

Lemma 2.7. Let G := (G1, . . . ,Gk) be an instance of Recursive Arrival and assume the run on G hits
some state (β ,(v,q)), with |β | ≥ k. Then the run on G does not terminate.

3 P-Hardness of Recursive Arrival

Manuell [18] has shown the Arrival problem to be PL-hard, which trivially provides the same hardness
result for Recursive Arrival. This is currently the strongest hardness result known for the Arrival

problem. By contrast, we now show that the Recursive Arrival problem is in fact P-hard.

Theorem 3.1. The 2-exit Recursive Arrival problem is P-hard.

Proof (Sketch). We show this by reduction from the P-complete Monotone Circuit Value Problem (see
e.g., [15]). We construct one component corresponding to each gate of an input boolean circuit. Each
component will have two exits, which we refer to as “top”, >, and “bottom”, ⊥, (located accordingly in
our figures) and we will view these exits as encoding the outputs, “true” and “false” respectively.

Firstly, we show in Figure 1 two components for a constant true and constant false gate of the circuit.
Depicted in Figure 2 are two cases corresponding to AND or OR gates. These perform a lazy evaluation
of the AND or OR of components G j and Gk. This process produces a polynomially sized Recursive

Arrival instance for an input boolean circuit where each component G j can be shown inductively to
reach exit > j if and only if it’s corresponding gate, g j, outputs true.

4 Recursive Arrival is in NP∩ coNP and UEOPL

Recall the notion of Switching Flow for an Arrival instance. For Recursive Arrival, we generalise the
notion of a Switching Flow to a tuple of vectors (xxx1, . . . ,xxxk), one for each component of the Recursive
Arrival instance. We define for each component Gi, i ∈ [k], and each box b ∈ Bi the set of potential
edges Fb,i := Callb,i×Returnb,i, representing the potential ways of crossing the box b, assuming that the

T. Webster 175

box is eventually returned from. We define the sets Fi := ∪b∈BiFb,i. We recall that the set of internal
edges of a component Gi is given by Ei := {(u,v) | u,v ∈ Vi, ∃σ ∈ {0,1},(u,σ ,v) ∈ δi}. We say the
Flow Space for component Gi is the set of vectors Fi := N|Ei∪Fi| := {(xi

e ∈ N | e ∈ Ei∪Fi)}, where we
identify coordinates of these vectors with edges in Ei∪Fi. We define the Flow Space of G to be the set
F := Πk

i=1Fi, a tuple of k vectors, with the i’th vector in the flow space of component Gi. We denote
specifically by 000i ∈Fi the all zero vector, which has 000i

e = 0 for all e ∈ Ei ∪Fi, and 000 ∈F the all zero
tuple, 000 := (0001, . . . ,000k). We refer to elements of F (resp. Fi) as flows on G (resp. Gi).

Firstly, we define a switching flow on each component. For a Recursive Arrival instance G :=
(G1, . . . ,Gk) and for l ∈ [k], we call a vector xxxl ∈Fl to be a component switching flow if the following
conditions hold. Firstly, by definition, the all-zero vector 000l is always considered a component switching
flow. Furthermore, by definition, a non-zero vector xxxl ∈Fl \{000l} is called a component switching flow
if there exists some current-vertex dl

xxxl ∈Vl \{ol} (which, as we will see, is always uniquely determined
when it exists), such that for ol the unique entry of Gl , xxxl satisfies the following family of conditions:

Flow Conservation

(
∑e=(u,v)∈El∪Fl

xl
e
)
−
(
∑e=(v,w)∈El∪Fl

xl
e
)
= 1, for v = dl

xxxl ,

+
(
∑e=(v,w)∈El∪Fl

xl
e
)
= 1, for v = ol,(

∑e=(u,v)∈El∪Fl
xl

e
)
−
(
∑e=(v,w)∈El∪Fl

xl
e
)
= 0, ∀v ∈Vl \{ol,dl

xxxl},

Switching Parity Condition x(v,s1(v)) ≤ x(v,s0(v)) ≤ x(v,s1(v))+1, ∀v ∈ Sorl,

Box Condition ∃ fb ∈ Fb,l such that ∀ f ∈ (Fb,l \{ fb}) xl
f = 0, ∀b ∈ Bl

Importantly, note that for any such component switching flow, xxxl , the current-vertex node dl
xl is

uniquely determined. This follows from the fact that the left-hand sides of the Flow Conservation equal-
ities for nodes v ∈ Vl \ {ol} are identical and independent of the specific node v. Hence, if a vector xxxl

satisfies all of those equalities, there can only be one vertex v ∈ Vl \ {ol} for which the corresponding
linear expression on the left-hand side, evaluated over the coordinates of the vector xxxl , equals 1.

In the case where xxxl = 000l , i.e., the all zero-vector, we define the current-vertex of the all-zero com-
ponent switching flow to be dl

000l := ol . We say a component switching flow xxxl ∈Fl is complete if its
current vertex dl

xxxl is an exit vertex in Exl . These conditions follow the same structure as for non-recursive
switching flows, with the additional “Box Condition” only allowing at most one potential edge across
each box (i.e., an edge in Fb,l) to be used.

Next, we extend our component switching flows by adding conditions that relate the flows on dif-
ferent components. Consider a tuple XXX := (xxx1, . . . ,xxxk) ∈F of vectors, one for each component, such
that each xxxi ∈Fi is a component switching flow for component Gi. We sometimes write di

XXX instead of
di

xxxi . Let KXXX = {i ∈ [k] | xxxi is complete} be the subset of indices corresponding to complete component
switching flows. We then say the tuple XXX ∈F is a recursive switching flow if for every l ∈ [k], b ∈ Bl
and f ∈ Fb,l , the following holds:

• xxxl ∈Fl is a component switching flow for component Gl , and

• if xl
f > 0 then Yl(b) ∈ KXXX , and

• if xl
f > 0, then letting dYl(b)

XXX ∈ ExYl(b) be the current vertex of xxxYl(b), we must have that f =

((b,oYl(b)),(b,d
Yl(b)
XXX)).

We define R ⊂F to be the set of all recursive switching flows. These conditions ensure “consistency”
in the following way; if we use an edge f ∈ Fb,l then we have a component switching flow on component

176 The Recursive Arrival Problem

(a) Initial component G1. (b) Component G2.

Figure 3: A Recursive Arrival instance G on which there exists a recursive switching flow (xxx1,xxx2) on G
whose current vertex is in G1 is d1 however the run on G does not terminate, or even hit the exit d1.

GYl(b) which is complete and reaches the exit matching the edge f , and we are taking that same edge
across all boxes with the same label. We note our definition implies 000 ∈R, thus there is always at least
one recursive switching flow. These conditions can be verified in polynomial time.

We will view recursive switching flows as hypothetical partial “runs” on each component, where an
edge e ∈ El ∪Fl is used xl

e times along this “run”. It may well be the case no such run actually exists.
However, unlike the case of non-recursive switching flows in Arrival, it is no longer the case that any
recursive switching flow where the current vertex is d1

XXX in component G1, and where d1
XXX ∈ Ex1 is an

exit, necessarily certifies termination at d1
XXX . It need not do so. For example, in the instance depicted

in Figure 3 we may give the following flow on G: xxx1 = (1,1,1) , xxx2 = (1,1,1). The instance depicted
obviously loops infinitely, alternating calls between components G1 and G2, but neither ever reaching
an exit. However, the given (xxx1,xxx2) corresponds to a recursive switching flow for this instance, both of
whose component switching flows have an exit as their current vertex.

We need a way to determine whether the recursive switching flow avoids such pathologies. To do
this, we need some additional definitions. We describe a component switch flow xxxl as call-pending if its
current vertex dl

xxxl ∈ Calll is a call port, we let JXXX ⊆ [k] be the set of all call-pending components and we
let rXXX := |J|. From a recursive switching flow XXX := (xxx1, . . . ,xxxk) we can compute the pending-call graph
CPen

XXX := ([k],EPen
XXX) where we have edge (i, j)∈ EPen

XXX if and only if i∈ JXXX , di
XXX = (b,o)∈ Calli is the current

vertex of xxxi and j =Yi(b). We can also compute the completed-call graph, CCom
XXX := ([k],ECom

XXX), where we
have an edge (i, j) ∈ ECom

XXX if and only if ∃b ∈ Bi, ∃ f ∈ Fi,b with xi
f > 0 and Yi(b) = j. The pending-call

graph represents, from the perspective of an imagined “run” corresponding to the recursive switching
flow XXX , which components Gi are currently “paused” at a call port and waiting for component G j to
reach an exit to determine the return port they should move to next. The completed-call graph represents
the dependencies in the calls already made in such an imagined run, where an edge from component Gi

to component G j means that inside component Gi the imagined run is making a call to a box labelled
by G j and “using” the fact that component G j, once called upon, reaches a specific exit. In turn, in
order to G j to reach its exit the imagined run might be “using” the completion of other components to
which there are outgoing edges from G j in the completed-call graph. Thus, any cycle in the completed-
call graph represents a series of circular (and hence not well-founded) assumptions about the imagined
“run” corresponding to the recursive switching flow XXX . For example, in the case of a 2-cycle between
components Gi and G j, these are: “If Gi reaches exit di

XXX then G j reaches exit d j
XXX ”; and “If G j reaches

exit d j
XXX then Gi reaches exit di

XXX ” (c.f. Figure 3).
Let G be an instance of recursive arrival and let RUN∞(G,o1,q0

1) := (βt ,(vt ,qt))
∞
t=0 be the run starting

at (o1,q0
1). We define the times Sl := inf{t | vt = ol} and Tl := inf{t | vt ∈ Exl} for each component index

l ∈ [k], with these values being ∞ if the set is empty. If Sl <∞ we define the stack β l := βSl . We define the
component run to be the (potentially finite) subsequence t l

1, t
l
2, . . . of times which are precisely all times

T. Webster 177

t l
j ∈ [Sl, . . . ,Tl] where βt j

l
= β l . We define the Recursive Run Profile of G up to time t as the sequence of

vectors, RRRuuunnn(G, t) := (rrruuunnn(G1, t), . . . ,rrruuunnn(Gk, t)), where for each l ∈ [k], rrruuunnn(Gl, t) := (|{ j ∈N | t l
j+1 ≤

t ∧ (vt l
j
,vt l

j+1
) = e}| | e ∈ El ∪Fl).

In other words, rrruuunnn(Gl, t) is a vector that provides counts of how many times each edge in component
Gl has been crossed, up to time t, during one “visit” to component Gl , with some particular call stack.
(The specific call stack doesn’t matter. This sequence does not depend on the specific calling context βl
in which Gl was initially called.) We note that rrruuunnn(Gl,0) = 000l .

Similarly to the non-recursive case, we can define the last-used-edge graph for each component Gl

as, G∗l,xxxl := (Vl,E∗l,xxxl) who’s edge set is defined as:

E∗l,xxxl :={(v,s0(v)) | v ∈ Sorl and xl
(v,s0(v)) 6= xl

(v,s1(v))}∪

{(v,s1(v)) | v ∈ Sorl and xl
(v,s0(v)) = xl

(v,s1(v)) > 0} ∪ { f ∈ Fl | xl
f > 0}

We note that for the all-zero vector we have E∗
l,000l = /0, and if xxxl 6= 000l is non-zero then the current

vertex dl
xxxl must have at least one incoming edge in E∗l,xxxl , and thus the set E∗l,xxxl isn’t empty.

Depending on how our run evolves, there are three possible cases:

• For all l ∈ [k], if Sl < ∞ then Tl < ∞. This case corresponds to reaching some exit of G1, i.e.,
terminating there.

• There exists some l ∈ [k] with Sl < ∞ and yet with Tl = ∞, however, where for all such l ∈ [k]
the subsequence t l

1, t
l
2, . . . is of finite length. This case corresponds to blowing up the call stack to

arbitrarily large sizes, and as we shall describe, we can detect it by looking for a cycle in CPen
XXX .

• There exists l ∈ [k] with Sl < ∞ and Tl = ∞, where the subsequence t l
1, t

l
2, . . . is of infinite length.

This case corresponds to getting stuck inside component Gl , and infinitely often revisiting a vertex
in a loop with the same call stack. As we shall see, we can detect this case by looking for a
sufficiently large entry in some coordinate of xxxl .

Let G be a Recursive Arrival instance and let XXX := (xxx1, . . . ,xxxk) ∈R be a recursive switching flow on
G, we say XXX is run-like if it satisfies the following conditions:

• For each component index l ∈ [k] one of the following two conditions hold:

– The graph G∗l,xxxl is acyclic,

– The graph G∗l,xxxl contains exactly one cycle and dl
xxxl is on this cycle.

• If the set of call-pending component indexes JXXX is non-empty, then 1 ∈ JXXX and there is some total
ordering j1, . . . , jrXXX of the set JXXX , with j1 = 1, and a unique j(rXXX+1) ∈ [k] such that the edges of the
pending-call graph are given by EPen

XXX = {(ji, ji+1) | i ∈ [rXXX]}. Note that we may have j(rXXX+1) = jm
for some m∈ {1, . . . ,rXXX}, in which case EPen

XXX forms not a directed line graph but a “lasso” meaning
a directed line ending in one directed cycle. When JXXX = /0 we say that rxxx := 0 and that j1 := 1, thus
the sequence is defined for all XXX .

• For any l ∈ [k] either: l ∈ JXXX ∪KXXX , or xxxl = (0, . . . ,0), or l = j(rXXX+1).

• The completed-call graph CCom
XXX := ([k],ECom

XXX) is acyclic.

• For any l ∈ [k], if xxxl 6= 000l , then in the graph ([k],EPen
XXX ∪ECom

XXX) we must have 1→∗ l, i.e., there must
be a path in this graph from component 1 to all components l for which xxxl is non-zero.

178 The Recursive Arrival Problem

We denote by X ⊂R the set of all run-like recursive switching flows on G. We note for any G that we
always have 000 ∈X . We can show XXX ∈F is run-like if and only if ∃t ∈ N, XXX = RRRuuunnn(G, t).

We now introduce “unit vectors” for this space, we write uuul
e ∈Fl for the vector where ul

e = 1 and
for all other e′ ∈ El ∪Fl with e′ 6= e that ul

e = 0. We then write UUU i,e ∈F for the sequence of k vectors
(0001, . . . ,000i−1,uuui

e,000
i+1, . . . ,000k) where the i’th vector is uuui

e and for i 6= j ∈ [k] that the j’th vector is the
all-zero 000 j. We may naturally define the notion of addition on F and we define the notion of subtraction
XXX −UUU i,e in the natural way whenever xi

e > 0, i.e., the result of the subtraction remains in N for every
coordinate, subtraction is undefined where this isn’t the case. We write U := {UUU i,e | i ∈ [k],e ∈ Ei∪Fi}
for the set of all unit vectors.

Given a run-like recursive switching flow, XXX := (xxx1, . . . ,xxxk) ∈X , we say that XXX is complete if it is
the case that 1 ∈ KXXX , i.e., the current vertex d1

xxx1 of xxx1 is an exit of G1. We say XXX is lassoed when EPen
XXX

forms a “lasso”, meaning a directed line ending in one directed cycle, as described earlier. We note that
being complete and lassoed are mutually exclusive, because either 1 ∈ KXXX or 1 ∈ JXXX , but not both.

Lemma 4.1. Let G be an instance of Recursive Arrival, and let XXX ∈X be a run-like recursive switching
flow on G. Then if XXX is neither complete nor lassoed, then there exists exactly one UUU i,e ∈ U such that
(XXX +UUU i,e) is a run-like recursive switching flow. Otherwise, if XXX is either complete or lassoed, then there
exists no such UUU i,e.

Proof (Sketch). We shall show that for any XXX which is neither complete nor lassoed, we are able to give
unique i and e as a function of XXX . Viewing XXX as a “hypothetical run” to some time we use JXXX as our “call
stack” at this time and use that to determine the edge to increment.

1. If d
j(rXXX+1)

XXX ∈ Sor j(rXXX+1) , then the “current component” is at a switching node and we take the edge

given by our switching order. We note that this includes the case where d
j(rXXX+1)

XXX = o j(rXXX+1) , i.e. there
is a call pending to a new component.

2. If j(rXXX+1) ∈KXXX , then we can resolve the pending call in component jrXXX and increment the summary

edge in FjrXXX
corresponding to exit d(jXXX+1)

XXX .

We can show that this is the unique choice in these cases through elimination, making use of the defini-
tions of component, recursive, and run-like switching flows.

We define the completed call count as the function CC : F × [k]→ N which counts how many times
a given component has been crossed in a given flow, defined for XXX ∈F and l ∈ [k] as follows:

CC(XXX , l) := ∑
i∈[k]

∑
{b∈Bi|Yi(b)=l}

∑
f∈Fb,i

xi
f

Lemma 4.2. Let G be an instance of Recursive Arrival, and let XXX ∈X be a run-like recursive switching
flow on G. If XXX is non-zero then there exists a unique UUU i,e ∈U such that (XXX −UUU i,e) ∈X is a run-like
recursive switching flow. Otherwise, if XXX is all-zero, then no such UUU i,e exists.

Proof (Sketch). We shall show for non-zero XXX the following choice is the unique value for i, and then
e can be determined using the last-used-edge graph in component i, as is the case for non-recursive
switching flows. Viewing XXX as a “hypothetical run” to some time we use JXXX as our “call stack” at this
time and use that to determine the edge to decrement.

• If xxx j(rXXX+1) > 000 j(rXXX+1) and CC(XXX , j(rXXX+1)) = 0 then we decrement inside the “current component” as
the pending-call in component jrXXX is the only call made.

T. Webster 179

• Otherwise, we take i= jrXXX . Where, since we have either CC(XXX , j(rXXX+1))≥ 1 or xxx j(rXXX+1) = 000 j(rXXX+1) the
current call from jrXXX to j(rXXX+1) is either made elsewhere and thus we cannot alter the component
flow in j(rXXX+1) without affecting the edge traversed on these other calls or the flow in j(rXXX+1) is
zero, in which case we step back from the final pending-call to it.

This can be shown to be the unique choice in each case through elimination.

We define the function Val : F →N as: Val((xxx1, . . . ,xxxk)) := ∑i∈[k] ∑e∈Ei∪Fi xi
e. This function sums all

values across all vectors of the tuple. We note that for any flow XXX ∈F and any i ∈ [k] and e ∈ Ei∪Fi that
we have Val(XXX +UUU i,e) =Val(XXX)+1 and that when defined (i.e. xi

e > 0) that Val(XXX−UUU i,e) =Val(XXX)−1.
Recall Proposition 2.3 regarding non-recursive Arrival switching graphs, and in particular the fixed

polynomial p which that proposition asserts the existence of. We say a recursive switching flow XXX :=
(xxx1, . . . ,xxxk) ∈X is finished if it satisfies one of the following conditions:

1. XXX is complete, i.e, 1 ∈ KXXX , or, the current vertex d1
XXX of xxx1 is an exit in Ex1.

2. XXX is lassoed, i.e., 1 6∈ KXXX and j(rXXX+1) ∈ JXXX , or, the edges of EPen
XXX form a lasso.

3. XXX is just-overflowing, which we define as follows: 1 6∈ KXXX , and there exists some unique l ∈ [k],
and unique e = (u,dl

XXX) ∈ El ∪Fl with xl
e = 2p(|Vl |)+1, i.e., there is some unique component, l, and

edge, e, incoming to its current vertex, dl
XXX , with a “just-excessively large” value in the flow XXX .

We say the flow is post-overflowing if 1 6∈ KXXX , and there exists some l ∈ [k], with dl
XXX the current-vertex

of xxxl , and some e = (u,v) ∈ El ∪Fl satisfying at least one of: A) xl
e = 2p(|Vl |)+ 1 and v 6= dl

XXX ; B) xl
e >

2p(|Vl |) + 1. We note that by repeatedly applying Lemma 4.2 to a post-overflowing run-like recursive
switching flow we must eventually find some finished just-overflowing run-like recursive switching flow.

We introduce the notation F N ⊆ F to be the restriction to tuples in which in every vector each
coordinate is less than or equal to some N ∈ N. Thus F N is finite, and any element XXX ∈ F N can
be represented using at most (∑k

i=1|Ei ∪Fi|) · log2(N) bits. For all our subsequent results taking N :=
2p(maxl |Vl |)+ 1 will be sufficient, noting this means elements of F N are represented using a polynomial
number of bits in our input size.

Theorem 4.3. The Recursive Arrival problem is in NP∩ coNP and UP∩ coUP.

Proof (Sketch). The proof follows from a series of lemmas given in the full version. These show:

• For any instance of Recursive Arrival, G, there is a (unique) XXX ∈ F N which is a finished
run-like recursive switching flow;

• Given any XXX ∈F N we can verify whether or not XXX is a finished run-like recursive switching flow
in P-time;

• Given any XXX ∈F N which is a finished run-like recursive switching flow, we can determine whether
or not G terminates and if it does terminate at which exit in Ex1 it does so.

4.1 Containment in UEOPL

Given the previous results, we may consider a search version of Recursive Arrival as follows:

Search Recursive Arrival

Instance: A Recursive Arrival graph (G1, . . . ,Gk)
Problem: Compute the unique finished run-like recursive switching flow (xxx1, . . . ,xxxk) ∈F on G

180 The Recursive Arrival Problem

In the appendix, we show that this problem is total and hence lies in TFNP. We show containment in
the total search complexity class UEOPL defined by Fearnley et al. [12], as problems polynomial time
many-one search reducible to UniqueEOPL, which is defined as follows:

UniqueEOPL [12]

Instance: Given boolean circuits S,P : {0,1}n→ {0,1}n such that P(0n) = 0n 6= S(0n) and a boolean
circuit V : {0,1}n→{0,1, . . . ,2m−1} such that V (0n) = 0

Problem: Compute one of the following:

(U1) A point x ∈ {0,1}n such that P(S(x)) 6= x.

(UV1) A point x ∈ {0,1}n such that x 6= S(x), P(S(x)) = x, and V (S(x))≤V (x).

(UV2) A point x ∈ {0,1}n such that S(P(x)) 6= x 6= 0n.

(UV3) Two points x,y ∈ {0,1}n, such that x 6= y, x 6= S(x), y 6= S(y), and either V (x) =V (y)
or V (x)<V (y)<V (S(x)).

We may interpret an instance of UniqueEOPL as describing an exponentially large directed graph in which
our vertices are points x ∈ {0,1}n and each vertex has both in-degree and out-degree bounded by at most
one. Edges are described by the circuits S,P, for a fixed vertex x∈ {0,1}n there is an outgoing edge from
x to S(x) if and only if P(S(x)) = x and an incoming edge to x from P(x) if and only if S(P(x)) = x. We
are given that 0n is a point with an outgoing edge but no incoming edge or the “start of the line”. We also
have an “odometer” function, V , which has a minimal value at 0n. We assume our graph has the set-up
of a single line 0n,S(0n),S(S(0n)), . . . along which the function V strictly increases, with some “isolated
points” where x = S(x) = P(x). There are four types of solutions that can be returned, representing:

(U1) a point which is an “end of the line”, with an incoming edge but no outgoing edge.

(UV1) a violation of the assumption that valuation V strictly increases along a line, since V (x) 6<V (S(x)).

(UV2) a violation of the assumption there is a single line, since x is the start of a line, but it is not 0n, thus
it starts a distinct line.

(UV3) a violation of one of the assumptions, however, in a more nuanced way. We can assume that
P(S(x)) = x and P(S(y)) = y, else they’d constitute a (UV1) example too, thus neither x nor
y is isolated and both have an outgoing edge. If x and y were on the same line, then either
S(. . .S(S(x))) = y or S(. . .S(y)) = x by doing this iteration we’d eventually find some z ∈ {0,1}n

where V (z) 6<V (S(z)), violating (UV1). However, if x and y are on different lines, then that would
imply the existence of two distinct lines, violating (UV2). Thus, a (UV3) violation is a short proof
of existence of a (UV1) or (UV2) violation elsewhere in the instance.

For our reduction, our space will be made up of all possible flows (xxx1, . . . ,xxxk) ∈F N and our line will
be made up of those arising from distinct RRRuuunnn(G, t)’s, each step increasing in t until we reach a finished
flow, with all other vectors being isolated. A type (U1) solution will correspond to a finished run-like
recursive switching flow, and we will show our instance has no (UV1-3) solutions, thus our computed
solution to UniqueEOPL will be a solution to Search Recursive Arrival.

Given any flow XXX ∈F we can verify whether or not XXX is a run-like recursive switching flow (i.e.
XXX ∈X ⊂F). We will use this fact in our definitions of functions Adv : F →F and Prev : F →F .

Our function Adv on some value XXX := (xxx1, . . . ,xxxk) ∈F is defined by the following sequence:

1. If XXX 6∈X then we take Adv(XXX) = XXX .

T. Webster 181

2. Else if XXX ∈X is either finished or post-overflowing then we take Adv(XXX) = XXX .

3. Otherwise, take Adv(XXX) = XXX +UUU i,e, for the unique UUU i,e ∈U such that XXX +UUU i,e ∈X (Lemma 4.1).

We note by this process that if Adv(XXX) 6= XXX , then Val(Adv(XXX)) =Val(XXX)+1, since we have incremented
exactly one edge in exactly one vector. Hence, this is consistent with our odometer. We may also define
the operation Prev : F →F analogously on some value XXX := (xxx1, . . . ,xxxk) ∈F . Taking Prev(XXX) = XXX
whenever: XXX 6∈X ; XXX = 000, or; XXX is post-overflowing. Otherwise, taking Prev(XXX) = XXX −UUU i,e, for the
unique UUU i,e ∈ U such that XXX −UUU i,e ∈X (Lemma 4.2). Observe that, for any non-zero XXX ∈X , that
Adv(Prev(XXX)) = XXX , and, for any XXX ∈X , if we have Prev(Adv(XXX)) 6= XXX , then XXX must be finished.

Theorem 4.4. The Search-Recursive Arrival is in UEOPL.

Proof (Sketch). We will give a polynomial-time search reduction from Search Recursive Arrival to
the UniqueEOPL problem. We compute boolean circuits S,P and V which will be given by the restriction
of the functions Adv, Prev, and Val to the domain F N . This process involves computing membership
of X and then computing the unique values i and e given by Lemmas 4.1 and 4.2 for Adv and Prev
respectively. We can then show that the only UEOPL solution is of type (U1) and is a run-like recursive
switching flow, which is a solution we are looking for.

5 Conclusions

We have shown that Recursive Arrival is contained in many of the same classes as the standard
Arrival problem. While we have shown P-hardness for Recursive Arrival, whether or not Arrival
is P-hard remains open.

Let us note that the way we have chosen to generalise Arrival to the recursive setting uses one of
two possible natural choices for its semantics. Namely, it assumes a “local” semantics, meaning that
the current switch position for each component on the call stack is maintained as part of the current
state. An alternative “global” semantics would instead consider the switch position of each component
as a “global variable”. In such a model all switch positions would start in an initial position, and as the
run progresses the switch positions would persist between, and be updated during, different calls to the
same component. It is possible to show (a result we have not included in this paper) that such a “global"
formulation immediately results in PSPACE-hardness of reachability and termination problems.

As mentioned in the introduction, a stochastic version of Arrival, in which some nodes are switch-
ing nodes whereas other nodes are chance (probabilistic) nodes with probabilities on outgoing transitions,
has already been studied in [19], building on the work of [12] which generalises Arrival by allowing
switching and player-controlled nodes. There is extensive prior work on RMCs and RMDPs, with many
known decidability/complexity results (see, e.g., [9, 10]). It would be natural to ask similar computa-
tional questions for the generalisation of RMCs and RMDPs to a recursive Arrival model combining
switching nodes with chance (probabilistic) nodes and controlled/player nodes.

Finally, we note that Fearnley et al. also defined a P-hard generalisation of Arrival in [12] which
uses “succinct switching orders” to succinctly encode an exponentially larger switch graph. We will refer
to this problem as Succinct Arrival. We don’t know whether there are any P-time reduction, in either
direction, between Recursive Arrival and Succinct Arrival. It has been observed1 that the results
of [14] imply that both Arrival and Succinct Arrival are P-time reducible to the Tarski problem

1Personal communication from Kousha Etessami and Mihalis Yannakakis.

182 The Recursive Arrival Problem

defined in [7]. Succinct Arrival is also contained in UEOPL by the same arguments as for Arrival.
We do not currently know whether Recursive Arrival is P-time reducible to Tarski.

Acknowledgements. Thanks to my PhD supervisor Kousha Etessami for his support.

T. Webster 183

References

[1] Rajeev Alur, Kousha Etessami & Mihalis Yannakakis (2001): Analysis of Recursive State Machines. In
Gérard Berry, Hubert Comon & Alain Finkel, editors: Computer Aided Verification, Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 207–220, doi:10.5555/647770.734260.

[2] David Auger, Pierre Coucheney & Loric Duhaze (2022): Polynomial Time Algorithm for ARRIVAL on
Tree-like Multigraphs. In: International Symposium on Mathematical Foundations of Computer Science,
doi:10.48550/arXiv.2204.13151.

[3] Ahmed Bouajjani, Javier Esparza & Oded Maler (1997): Reachability analysis of pushdown automata: Ap-
plication to model-checking. In Antoni Mazurkiewicz & Józef Winkowski, editors: CONCUR ’97: Concur-
rency Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 135–150, doi:10.1007/3-540-63141-0_10.

[4] Anne Condon (1992): The Complexity of Stochastic Games. Inf. Comput. 96(2), pp. 203–224,
doi:10.1016/0890-5401(92)90048-K.

[5] Jérôme Dohrau, Bernd Gärtner, Manuel Kohler, Jíri Matoušek & Emo Welzl (2017): A Journey through
Discrete Mathematics: A Tribute to Jiri Matousek, chapter Arrival: A zero-player graph game in NP∩coNP,
pp. 367–374. Springer, doi:10.1007/978-3-319-44479-6_14.

[6] Javier Esparza, Antonin Kucera & Richard Mayr (2006): Model Checking Probabilistic Pushdown Automata.
Logical Methods in Computer Science Volume 2, Issue 1, doi:10.2168/LMCS-2(1:2)2006.

[7] Kousha Etessami, Christos H. Papadimitriou, Aviad Rubinstein & Mihalis Yannakakis (2020): Tarski’s The-
orem, Supermodular Games, and the Complexity of Equilibria. In Thomas Vidick, editor: 11th Innovations
in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA,
LIPIcs 151, pp. 18:1–18:19, doi:10.4230/LIPIcs.ITCS.2020.18.

[8] Kousha Etessami & Mihalis Yannakakis (2008): Recursive Concurrent Stochastic Games. CoRR
abs/0810.3581, doi:10.48550/arXiv.0810.3581. arXiv:0810.3581.

[9] Kousha Etessami & Mihalis Yannakakis (2009): Recursive Markov chains, stochastic grammars, and mono-
tone systems of nonlinear equations. J. ACM 56(1), pp. 1:1–1:66, doi:10.1145/1462153.1462154.

[10] Kousha Etessami & Mihalis Yannakakis (2015): Recursive Markov Decision Processes and Recursive
Stochastic Games. J. ACM 62(2), pp. 11:1–11:69, doi:10.1145/2699431.

[11] John Fearnley, Martin Gairing, Matthias Mnich & Rahul Savani (2021): Reachability Switching Games. Log.
Methods Comput. Sci. 17(2), doi:10.23638/LMCS-17(2:10)2021.

[12] John Fearnley, Spencer Gordon, Ruta Mehta & Rahul Savani (2019): Unique End of Potential Line. In:
46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), LIPIcs 132, pp.
56:1–56:15, doi:10.4230/LIPIcs.ICALP.2019.56.

[13] Bernd Gärtner, Thomas Dueholm Hansen, Pavel Hubácek, Karel Král, Hagar Mosaad & Veronika Slívová
(2018): ARRIVAL: Next Stop in CLS. In: 45th International Colloquium on Automata, Languages, and
Programming, LIPIcs 107, pp. 60:1–60:13, doi:10.4230/LIPIcs.ICALP.2018.60.

[14] Bernd Gärtner, Sebastian Haslebacher & Hung P. Hoang (2021): A Subexponential Algorithm for ARRIVAL.
In: 48th International Colloquium on Automata, Languages, and Programming, LIPIcs 198, pp. 69:1–69:14,
doi:10.4230/LIPIcs.ICALP.2021.69.

[15] Raymond Greenlaw, H. James Hoover & Walter L. Ruzzo (1995): Limits to Parallel Computation. Oxford
University Press, doi:10.1093/oso/9780195085914.001.0001.

[16] Marcin Jurdzinski (1998): Deciding the Winner in Parity Games is in UP∩ coUP. Inf. Process. Lett. 68(3),
pp. 119–124, doi:10.1016/S0020-0190(98)00150-1.

[17] C. S. Karthik (2017): Did the train reach its destination: The complexity of finding a witness. Information
Processing Letters 121, pp. 17–21, doi:10.1016/j.ip1.2017.01.004.

[18] Graham Manuell (2021): A simple lower bound for ARRIVAL. CoRR abs/2108.06273,
doi:10.48550/arXiv.2108.06273.

https://doi.org/10.5555/647770.734260
https://doi.org/10.48550/arXiv.2204.13151
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1007/978-3-319-44479-6_14
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.4230/LIPIcs.ITCS.2020.18
https://doi.org/10.48550/arXiv.0810.3581
https://arxiv.org/abs/0810.3581
https://doi.org/10.1145/1462153.1462154
https://doi.org/10.1145/2699431
https://doi.org/10.23638/LMCS-17(2:10)2021
https://doi.org/10.4230/LIPIcs.ICALP.2019.56
https://doi.org/10.4230/LIPIcs.ICALP.2018.60
https://doi.org/10.4230/LIPIcs.ICALP.2021.69
https://doi.org/10.1093/oso/9780195085914.001.0001
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1016/j.ip1.2017.01.004
https://doi.org/10.48550/arXiv.2108.06273

184 The Recursive Arrival Problem

[19] Thomas Webster (2022): The Stochastic Arrival Problem. In Anthony W. Lin, Georg Zetzsche & Igor
Potapov, editors: Reachability Problems, Springer, pp. 93–107, doi:10.1007/978-3-031-19135-0_7.

[20] Uri Zwick & Mike Paterson (1996): The Complexity of Mean Payoff Games on Graphs. Theor. Comput. Sci.
158(1&2), pp. 343–359, doi:10.1016/0304-3975(95)00188-3.

https://doi.org/10.1007/978-3-031-19135-0_7
https://doi.org/10.1016/0304-3975(95)00188-3

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. 185–202, doi:10.4204/EPTCS.390.12

© J.A. Grochow & M. Levet

This work is licensed under the

Creative Commons Attribution License.

On the Descriptive Complexity of Groups without Abelian

Normal Subgroups

(Extended Abstract)

Joshua A. Grochow

Department of Computer Science University of Colorado Boulder, CO USA

Department of Mathematics University of Colorado Boulder, CO USA

jgrochow@colorado.edu

Michael Levet

Department of Computer Science, College of Charleston, SC USA

levetm@cofc.edu

In this paper, we explore the descriptive complexity theory of finite groups by examining the power

of the second Ehrenfeucht–Fraı̈ssé bijective pebble game in Hella’s (Ann. Pure Appl. Log., 1989)

hierarchy. This is a Spoiler–Duplicator game in which Spoiler can place up to two pebbles each

round. While it trivially solves graph isomorphism, it may be nontrivial for finite groups, and other

ternary relational structures. We first provide a novel generalization of Weisfeiler–Leman (WL)

coloring, which we call 2-ary WL. We then show that the 2-ary WL is equivalent to the second

Ehrenfeucht–Fraı̈ssé bijective pebble game in Hella’s hierarchy.

Our main result is that, in the pebble game characterization, only O(1) pebbles and O(1) rounds

are sufficient to identify all groups without Abelian normal subgroups (a class of groups for which

isomorphism testing is known to be in P; Babai, Codenotti, & Qiao, ICALP 2012). In particular, we

show that within the first few rounds, Spoiler can force Duplicator to select an isomorphism between

two such groups at each subsequent round. By Hella’s results (ibid.), this is equivalent to saying that

these groups are identified by formulas in first-order logic with generalized 2-ary quantifiers, using

only O(1) variables and O(1) quantifier depth.

1 Introduction

Descriptive complexity theory studies the relationship between the complexity of describing a given

problem in some logic, and the complexity of solving the problem by an algorithm. When the problems

involved are isomorphism problems, Immerman and Lander [44] showed that complexity of a logical

sentence describing the isomorphism type of a graph was essentially the same as the Weisfeiler–Leman

coloring dimension of that graph, and the complexity of an Ehrenfeucht–Fraı̈ssé pebble game (see also

[17]).

It is a well-known open question whether there is a logic that exactly captures the complexity class

P on unordered (unlabeled) structures; on ordered structures such a logic was given by Immerman [43]

and Vardi [67]. The difference between these two settings is essentially the GRAPH CANONIZATION

problem, whose solution allows one to turn an unordered graph into an ordered graph in an isomorphism-

preserving way.

One natural approach in trying to capture P on unordered structures is thus to attempt to extend first-

order logic FO by generalized quantifiers (c.f., Mostowski [60] and Lindstrom [57]) in the hopes that

the augmented logics can characterize finite graphs up to isomorphism, thus reducing the unordered case

http://dx.doi.org/10.4204/EPTCS.390.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

186 On the Descriptive Complexity of Groups without Abelian Normal Subgroups

to the previously solved ordered case. A now-classical approach, initiated by Immerman [43], was to

augment fixed-point logic with counting quantifiers, which can be analyzed in terms of an equivalence

induced by (variable confined) fragments of first-order logic with counting. However, Cai, Fürer, &

Immerman [17] showed that FO+LFP plus counting does not capture P on finite graphs. More generally,

Flum & Grohe have characterized when FO plus counting captures P on unordered structures [26].

The approach of Cai, Fürer, & Immerman (ibid., see also [44]) was to prove a three-way equiva-

lence: between (1) counting logics, (2) the higher-dimensional Weisfeiler–Leman coloring procedure,

and (3) Ehrenfeucht–Fraı̈ssé pebble games. Ehrenfeucht–Fraı̈ssé pebble games [24, 27] have long been

an important tool in proving the inexpressibility of certain properties in various logics; in this case, they

used such games to show that the logics could not express the difference between certain pairs of non-

isomorphic graphs. Consequently, Cai, Fürer, & Immerman ruled out the Weisfeiler–Leman algorithm

as a polynomial-time isomorphism test for graphs, which resolved a long-standing open question in iso-

morphism testing. Nonetheless, the Weisfeiler–Leman coloring procedure is a key subroutine in many

algorithms for GRAPH ISOMORPHISM, including Babai’s quasi-polynomial-time algorithm [4]. It is thus

interesting to study its properties and its distinguishing power.

While the result of Cai, Fürer, & Immerman ruled out Weisfeiler–Leman as a polynomial-time iso-

morphism test for graphs, for groups it remains an interesting open question. The general WL procedure

for groups was introduced by Brachter & Schweitzer [12] and has been studied in several papers since

then [13, 30]. Outside the scope of WL, it is known that GROUP ISOMORPHISM is AC
0-reducible to

GRAPH ISOMORPHISM, and there is no AC
0 reduction in the opposite direction [19]. For this and other

reasons, group isomorphism is believed to be the easier of the two problems, so it is possible that WL—

and more generally, tools from descriptive complexity—could yield stronger results for groups than for

graphs.

On graphs, which are binary relational structures, if Spoiler is allowed to pebble two elements per

turn, then Spoiler can win on any pair of non-isomorphic graphs. However, groups are ternary relational

structures (the relation is {(a,b,c) : ab = c}), so such a game may yield nontrivial insights into the

descriptive complexity of finite groups. Hella [41, 42] introduced such games in a more general context,

and showed that allowing Spoiler to pebble q elements per round corresponded to the generalized q-ary

quantifiers of Mostowski [60] and Lindstrom [57]. When q = 1, Hella shows that this pebble game is

equivalent in power to the FO plus counting logics mentioned above. Our focus in this paper is to study

the power of the q = 2-ary game for identifying finite groups.

Main Results. In this paper, we initiate the study of Hella’s 2-ary Ehrenfeucht–Fraı̈ssé-style pebble

game, in the setting of groups. Our main result is that this pebble game efficiently characterizes iso-

morphism in a class of groups for which isomorphism testing is known to be in P, but only by quite a

nontrivial algorithm (see remark below). The full version of this paper appears on arXiv [29].

Theorem 1.1. Let G be a group with no Abelian normal subgroups (a.k.a. Fitting-free or semisimple),

and let H be arbitrary. If G 6∼= H, then Spoiler has a winning strategy in the Ehrenfeucht–Fraı̈ssé game

at the second level of Hella’s hierarchy, using 9 pebbles and O(1) rounds.

In proving Thm. 1.1, we show that with the use of only a few pebbles, Spoiler can effectively force

Duplicator to select an isomorphism of G and H . We contrast this with the setting of Weisfeiler–Leman

(which is equivalent to the 1-ary pebble game), for which the best upper bound we have on the WL-

dimension is the trivial bound of logn. Furthermore, we do not have any lower bounds on the WL-

dimension for semisimple groups.

Remark 1.2. Every group G can be written as an extension of its solvable radical Rad(G) by the quotient

J.A. Grochow & M. Levet 187

G/Rad(G), which does not have Abelian normal subgroups. As such, the latter class of groups is quite

natural, both group-theoretically and computationally. Computationally, it has been used in algorithms

for general finite groups both in theory (e.g., [5, 6]) and in practice (e.g., [18]). Isomorphism testing in

this family of groups can be solved efficiently in practice [18], and is known to be in P through a series

of two papers [7, 8].

In Section 3 we also complete the picture by giving a Weisfeiler–Leman-style coloring procedure

and showing that it corresponds precisely to Hella’s q-ary pebble games and q-ary generalized Lindstrom

quantifiers [57]. When the groups are given by their multiplication tables, this procedure runs in time

nΘ(log2 n) by reduction to GRAPH ISOMORPHISM. We note that Hella’s results deal with infinitary logics

[41, 42]. However, as we are dealing with finite groups, the infinitary quantifiers and connectives are not

necessary (see the discussion in [42], right above Theorem 5.3).

Further Related Work. Despite the fact that Weisfeiler–Leman is insufficient to place GRAPH ISOMOR-

PHISM (GI) into PTIME, it remains an active area of research. For instance, Weisfeiler–Leman is a key

subroutine in Babai’s quasipolynomial-time GI algorithm [4]. Furthermore, Weisfeiler–Leman has led to

advances in simultaneously developing both efficient isomorphism tests and the descriptive complexity

theory for finite graphs- see for instance, [32, 38, 49, 50, 34, 36, 35, 51, 1, 2, 64]. Weisfeiler–Leman also

has close connections to the Sherali–Adams hierarchy in linear programming [37].

The complexity of the GROUP ISOMORPHISM (GPI) problem is a well-known open question. In the

Cayley (multiplication) table model, GPI belongs to NP∩ coAM. The generator-enumerator algorithm,

attributed to Tarjan in 1978 [59], has time complexity nlogp(n)+O(1), where n is the order of the group

and p is the smallest prime dividing n. This bound has escaped largely unscathed: Rosenbaum [63] (see

[55, Sec. 2.2]) improved this to n(1/4) logp(n)+O(1). And even the impressive body of work on practical

algorithms for this problem, led by Eick, Holt, Leedham-Green and O’Brien (e. g., [11, 25, 10, 18]) still

results in an nΘ(log n)-time algorithm in the general case (see [70, Page 2]). In the past several years, there

have been significant advances on algorithms with worst-case guarantees on the serial runtime for special

cases of this problem including Abelian groups [47, 68, 65], direct product decompositions [69, 48],

groups with no Abelian normal subgroups [7, 8], coprime and tame group extensions [54, 62, 9, 31],

low-genus p-groups and their quotients [56, 15], Hamiltonian groups [20], and groups of almost all

orders [23].

Key motivation for GPI is due to its close relation to GI. In the Cayley (verbose) model, GPI reduces

to GI [71], while GI reduces to the succinct GPI problem [40, 58] (recently simplified [39]). In light of

Babai’s breakthrough result that GI is quasipolynomial-time solvable [4], GPI in the Cayley model is a

key barrier to improving the complexity of GI. Both verbose GPI and GI are considered to be candidate

NP-intermediate problems, that is, problems that belong to NP, but are neither in P nor NP-complete

[53]. There is considerable evidence suggesting that GI is not NP-complete [66, 16, 45, 4, 52, 3]. As

verbose GPI reduces to GI, this evidence also suggests that GPI is not NP-complete. It is also known

that GI is strictly harder than GPI under AC0 reductions [19].

While the descriptive complexity of graphs has been extensively studied, the work on the descriptive

complexity of groups is scant compared to the algorithmic literature on GROUP ISOMORPHISM (GPI).

There has been work relating first order logics and groups [61], as well as work examining the descrip-

tive complexity of finite abelian groups [28]. Recently, Brachter & Schweitzer [12] introduced three

variants of Weisfeiler–Leman for groups, including corresponding logics and pebble games. These peb-

ble games correspond to the first level of Hella’s hierarchy [41, 42]. In particular, Brachter & Schweitzer

showed that 3-dimensional Weisfeiler–Leman can distinguish p-groups arising from the CFI graphs [17]

188 On the Descriptive Complexity of Groups without Abelian Normal Subgroups

via Mekler’s construction [58], suggesting that FO+ LFP+C may indeed capture PTIME on groups.

Determining whether even o(log n)-dimensional Weisfeiler–Leman can resolve GPI is an open question.

The use on Weisfeiler–Leman for groups is quite new. To the best of our knowledge, using Weisfeiler–

Leman for GROUP ISOMORPHISM testing was first attempted by Brooksbank, Grochow, Li, Qiao, &

Wilson [14]. Brachter & Schweitzer [12] subsequently introduced three variants of Weisfeiler–Leman

for groups that more closely resemble that of graphs. In particular, Brachter & Schweitzer [12] char-

acterized their algorithms in terms of logics and Ehrenfeucht–Fraı̈ssé pebble games. The relationship

between the works of Brachter & Schweitzer and Brooksbank, Grochow, Li, Qiao, & Wilson [14] is an

interesting question.

In subsequent work, Brachter & Schweitzer [13] further developed the descriptive complexity of

finite groups. They showed in particular that low-dimensional Weisfeiler–Leman can detect key group-

theoretic invariants such as composition series, radicals, and quotient structure. Furthermore, they also

showed that Weisfeiler–Leman can identify direct products in polynomial-time, provided it can also iden-

tify the indecomposable direct factors in polynomial-time. Grochow & Levet [30] extended this result

to show that Weisfeiler–Leman can compute direct products in parallel, provided it can identify each

of the indecomposable direct factors in parallel. Additionally, Grochow & Levet showed that constant-

dimensional Weisfeiler–Leman can in a constant number of rounds identify coprime extensions H ⋉N,

where the normal Hall subgroup N is Abelian and the complement H is O(1)-generated. This placed iso-

morphism testing into L; the previous bound for isomorphism testing in this family was P [62]. Grochow

& Levet also ruled out FO+LFP as a candidate logic for capturing PTIME on finite groups, by showing

that the count-free Weisfeiler–Leman algorithm cannot even identify Abelian groups in polynomial-time.

2 Preliminaries

We recall the bijective pebble game of Hella [41, 42], in the context of WL on graphs as that is likely

more familiar to more readers. This game is often used to show that two graphs X and Y cannot be distin-

guished by k-WL. The game is an Ehrenfeucht–Fraı̈ssé game, with two players: Spoiler and Duplicator.

Each graph begins with k+1 pebbles, p1, . . . , pk+1 for X and p′1, . . . , p′k+1 for Y , which are placed beside

the graphs. Each round proceeds as follows.

1. Spoiler chooses i ∈ [k+1], and picks up pebbles pi, p′i.

2. We check the winning condition, which will be formalized later.1

3. Duplicator chooses a bijection f : V (X)→V (Y).

4. Spoiler places pi on some vertex v ∈V (X). Then p′i is placed on f (v).

In a given round, let v1, . . . ,vm be the vertices of X pebbled at the end of step 1 (in the list above),

and let v′1, . . . ,v
′
m be the corresponding pebbled vertices of Y . Spoiler wins precisely if the map vℓ 7→ v′ℓ

is not an isomorphism of the induced subgraphs X [{v1, . . . ,vm}] and Y [{v′1, . . . ,v
′
m}]. Otherwise, at that

point, Duplicator wins the game. Spoiler wins, by definition, at round 0 if X and Y do not have the same

number of vertices. We note that X and Y are not distinguished by the first r rounds of k-WL if and only

if Duplicator wins the first r rounds of the (k+1)-pebble game [41, 42, 17].

1In the literature, some authors check the winning condition at this point, and others check the winning condition at the end

of each round. The choice merely has the effect of changing the number of required pebbles by at most 1 in ordinary WL, or at

most q in the q-ary version, and changing the number of rounds by at most 1. We have chosen this convention for consistency

with other works on WL specific to groups [12, 13, 30].

J.A. Grochow & M. Levet 189

Hella [41, 42] exhibited a hierarchy of pebble games where, for q ≥ 1, Spoiler could pebble a se-

quence of 1≤ j ≤ q elements (v1, . . . ,v j) 7→ (f (v1), . . . , f (v j)) in a single round; more formally, follow-

ing the description above, in step 1, Spoiler picks up q pebbles pi1 , . . . , piq and their partners p′i1 , . . . , p′iq ,

with step 4 changed accordingly. The case of q = 1 corresponds to the case of Weisfeiler–Leman. As

remarked by Hella [42, p. 6, just before §4], the q-ary game immediately identifies all relational struc-

tures of arity ≤ q. For example, the q = 2 game on graphs solves GI: for if two graphs X and Y are

non-isomorphic, then any bijection f : V (X)→ V (Y) that Duplicator selects must map an adjacent pair

of vertices u,v in X to a non-adjacent pair f (u), f (v) in Y or vice-versa. Spoiler immediately wins by

pebbling (u,v) 7→ (f (u), f (v)). However, as groups are ternary relational structures (the relation being

{(a,b,c) : a,b,c ∈ G,ab = c}), the q = 2 case can, at least in principle, be non-trivial on groups.

Brachter & Schweitzer [12] adapted Hella’s [41, 42] pebble games in the q = 1 case to the setting

of groups, obtaining three different versions. Their Version III involves reducing to graphs and playing

the pebble game on graphs, so we don’t consider it further here. Versions I and II are both played on the

groups G and H directly.

Both versions are played identically as for graphs, with the only difference being the winning condi-

tion. We recall the following standard definitions in order to describe these winning conditions.

Definition 2.1. Let G,H be two groups. Given k-tuples g = (g1, . . . ,gk) ∈Gk and h = (h1, . . . ,hk) ∈Hk,

we say (g,h) ...

1. ...gives a well-defined map if gi = g j⇔ hi = h j for all i 6= j;

2. ...are partially isomorphic or give a partial isomorphism if they give a well-defined map, and for

all i, j,k we have gig j = gk⇔ hih j = hk;

3. ...are marked isomorphic or give a marked isomorphism if it gives a well-defined map, and the

map extends to an isomorphism 〈g1, . . . ,gk〉 → 〈h1, . . . ,hk〉.

Let v1, . . . ,vm be the group elements of G pebbled at the end of step 1, and let v′1, . . . ,v
′
m be the

corresponding pebbled vertices of H . In Version I, Spoiler wins precisely if (v,v′) does not give a partial

isomorphism, and in Version II Spoiler wins precisely if (v,v′) does not give a marked isomorphism.

Both Versions I and II may be generalized to allow Spoiler to pebble up to q group elements at a

single round, for some q ≥ 1. Mimicking the proof above for q = 2 for graphs, we have that q = 3 is

sufficient to solve GPI in a single round. The distinguishing power, however, of the q= 2 game for groups

remains unclear, and is the main subject of this paper. As we are interested in the round complexity, we

introduce the following notation.

Definition 2.2 (Notation for pebbles, rounds, arity, and WL version). Let k ≥ 2,r ≥ 1, q ≥ 1, and J ∈
{I, II}. Denote (k,r)-WL

q
J to be the k-pebble, r-round, q-ary Version J pebble game.

We refer to q as the arity of the pebble game, as it corresponds to the arity of generalized quantifiers2

in a logic whose distinguishing power is equivalent to that of the game:

Remark 2.3 (Equivalence with logics with generalized 2-ary quantifiers). Hella [41] describes the game

(essentially the same as our description, but with no restriction on number of pebbles, and a transfinite

number of rounds) for general q at the bottom of p. 245, for arbitrary relational structures. We restrict to

the case of q = 2, a finite number of pebbles and rounds, and the (relational) language of groups. Hella

proves that this game is equivalent to first-order logic with arbitrary q-ary equantifiers in [41, Thm. 2.5].

2As our focus in this paper is not on the viewpoint of generalized quantifiers, we refer the reader to [41] for details.

190 On the Descriptive Complexity of Groups without Abelian Normal Subgroups

Observation 2.4. In the 2-ary pebble game, we may assume that Duplicator selects bijections that

preserve inverses.

Proof. Suppose not. First, Duplicator must select bijections that preserve the identity, for if not, Spoiler

pebbles 1G 7→ f (1) 6= 1H and wins immediately. Next, let f : G→ H be a bijection such that f (g−1) 6=
f (g)−1. Spoiler pebbles (g,g−1) 7→ (f (g), f (g−1)). Now gg−1 = 1, while f (g) f (g−1) 6= 1. So Spoiler

wins.

We frequently use this observation without mention.

3 Higher-arity Weisfeiler-Leman-style coloring corresponding to higher

arity pebble games

Given a k-tuple x = (x1, . . . ,xk) ∈Gk, a pair of distinct indices i, j ∈ [k], and a pair of group elements y,z,

we define x(i, j)←(y,z) to be the k-tuple x′ that agrees with x on all indices besides i, j, and with x′i = y,x′j = z.

If i = j, we require y = z, and we denote this xi←y.

Finally, two graphs Γ1,Γ2, with edge-colorings ci : E(Γi)→C to some color set C (for i = 1,2) are

color isomorphic if there is a graph isomorphism ϕ : V (Γ1)→ V (Γ2) that also preserves colors, in the

sense that c1((u,v)) = c2((ϕ(u),ϕ(v)) for all edges (u,v) ∈ E(Γ1).

Definition 3.1 (2-ary k-dimensional Weisfeiler-Leman coloring). Let G,H be two groups of the same

order, let k ≥ 1. For all k-tuples x,y ∈Gk∪Hk:

• (Initial coloring, Version I) χ2,I
0 (x) = χ2,I

0 (y) iff x,y are partially isomorphic.

• (Initial coloring, Version II) χ2,II
0 (x) = χ2,II

0 (y) iff x,y have the same marked isomorphism type.

• (Color refinement) Given a coloring χ : Gk ∪Hk→ C, the color refinement operator R defines a

new coloring R(χ) as follows. For each k-tuple x ∈ Gk (resp., Hk), we define an edge-colored

graph Γx,χ ,i, j . If i = j, it is the graph on vertex set V (Γx,χ ,i,i) = G (resp., H) with all self-loops

and no other edges, where the color of each self-loop (g,g) is χ(xi←g). If i 6= j, it is the complete

directed graph with self-loops on vertex set G (resp., H), where the color of each edge (y,z) is

χ(x(i, j)←(y,z)). For an edge-colored graph Γ, we use [Γ] to denote its edge-colored isomorphism

class. We then define

R(χ)(x) =
(

χ(x); [Γx,χ ,1,1], [Γx,χ ,1,2], . . . , [Γx,χ ,k−1,k], [Γx,χ ,k,k]
)

.

That is, the new color consists of the old color, as well as the tuple of
(

k+1
2

)

edge-colored isomor-

phism types of the graphs Γx,χ ,i, j .

The refinement operator may be iterated: Rt(χ) := R(Rt−1(χ)), and we define the stable refinement of χ

as Rt(χ) where the partition induced by Rt(χ) on Gk ∪Hk is the same as that induced by Rt+1(χ). We

denote the stable refinement by R∞(χ).
Finally, for J ∈ {I, II} and all r ≥ 0, we define χ2,J

r+1 = R(χ2,J
r), and χ2,J

∞ := R∞(χ2,J
0).

Remark 3.2. Brachter & Schweitzer [12] introduced Versions I and II of 1-ary WL, which are equivalent

up to a small additive constant in the WL-dimension [12] and O(logn) rounds [30]. For the purpose of

comparison, we introduce Versions I and II of 2-ary WL. We will see later that only one additional round

suffices in the 2-ary case (see Thm. 3.7). The differences in Versions I and II of WL (both the 1-ary and

2-ary variants) arise from whether the group is viewed as a structure with a ternary relational structure

(Version I) or as a structure with a binary function (Version II).

J.A. Grochow & M. Levet 191

Remark 3.3. Since it was one of our stumbling blocks in coming up with this generalized coloring, we

clarify here how this indeed generalizes the usual 1-ary WL coloring procedure. In the 1-ary “oblivious”

k-WL procedure (see [33, §5], equivalent to ordinary WL), the color of a k-tuple x is refined using its old

color, together with a k-tuple of multisets

({{χ(x1←y) : y ∈G}},{{χ(x2←y) : y ∈ G}}, . . . ,{{χ(xk←y) : y ∈ G}}).

For each i, note that two multisets {{χ(xi←y) : y ∈ G}} and {{χ(x′i←y) : y ∈ G}} are equal iff the graphs

Γx,χ ,i,i and Γx′,χ ,i,i are color-isomorphic. That is, edge-colored graphs with only self-loops and no other

edges are essentially the same, up to isomorphism, as multisets. Our procedure generalizes this by also

considering graphs with other edges, which (as we’ll see in the proof of equivalence, which will appear

in the full version) are used to encode the choice of 2 simultaneous pebbles by Spoiler in each move of

the game.

Theorem 3.4. Let G,H be two groups of order n, with x ∈Gk,y ∈ Hk. Starting from the initial pebbling

xi 7→ yi for all i= 1, . . . ,k, Spoiler has a winning strategy in the k-pebble, r-round, 2-ary Version J pebble

game (for J ∈ {I, II}) iff χ2,J
r (x) 6= χ2,J

r (y).

Proof. To appear in the full version.

Corollary 3.5. For two groups G,H of the same order and any k ≥ 1, the following are equivalent:

1. The 2-ary k-pebble game does not distinguish two groups G,H

2. The multisets of stable colors on Gk and Hk are the same, that is, {{χ2,J
∞ (x) : x∈Gk}}= {{χ2,J

∞ (y) :

y ∈ Hk}}

3. χ2,J
∞ ((1G,1G, . . . ,1G)) = χ2,J

∞ ((1H , . . . ,1H)).

The analogous result holds in the q = 1 case, going back to [12].

Proof. To appear in the full version.

Remark 3.6. For arbitrary relational structures with relations of arity a+1, the a-order pebble game may

still be nontrivial, as pointed out in Hella [42, p. 6, just before §4]. Our coloring procedure generalizes

in the following way to this more general setting, and the proof of the equivalence between the coloring

procedure and Hella’s pebble game is the same as the above, mutatis mutandis. The main change is that

for an a-th order pebble game, instead of just considering a graph on edges of size 1 (when i = j) or 2

(when i 6= j), we consider an a′-uniform directed hypergraph, where each hyperedge consists of a list of

a′ vertices, for all 1≤ a′ ≤ a. This gives a coloring equivalent of the logical and game characterizations

provided by Hella; this trifecta is partly why we feel it is justified to call this a “higher-arity Weisfeiler–

Leman” coloring procedure.

We note that there has been some work on equivalences with specific binary and higher-arity quan-

tifiers: see for instance, the invertible map game of Dawar & Holm [21] which generalizes rank logic,

in which Spoiler can place multiple pebbles, but the bijections Duplicator selects must satisfy additional

structure. Subsequently, Dawar & Vagnozzi [22] provided a generalization of Weisfeiler–Leman that

further subsumes the invertible map game. We note that Dawar & Vagnozzi’s “W Lk,r”, although it looks

superficially like our r-ary k-WL, is in fact quite different: in particular, their refinement step “flattens” a

multiset of multisets into its multiset union, which loses information compared to our 2-ary (resp., r-ary)

game; indeed, they show that their WL∗,r is equivalent to ordinary (1-ary) WL for any fixed r, whereas

already 2-ary WL can solve GI. In general, the relationship between Hella’s 2-ary game and the works

of Dawar & Holm and Dawar & Vagnozzi remains open.

192 On the Descriptive Complexity of Groups without Abelian Normal Subgroups

3.1 Equivalence between 2-ary (k,r)-WL Versions I and II

In this section we show that, up to additive constants in the number of pebbles and rounds, 2-ary WL

Versions I and II are equivalent in their distinguishing power. For two different WL versions W,W ′, we

write W �W ′ to mean that if W distinguishes two groups G and H , then so does W ′.

Theorem 3.7. Let k ≥ 2,r ≥ 1. We have that:

(k,r)-WL2
I � (k,r)-WL2

II � (k+2,r+1)-WL2
I .

Proof. To appear in the full version.

4 Descriptive Complexity of Semisimple Groups

In this section, we show that the (O(1),O(1))-WL2
II pebble game can identify groups with no Abelian

normal subgroups,3 also known as semisimple groups. We begin with some preliminaries.

4.1 Preliminaries

Semisimple groups are motivated by the following characteristic filtration:

1≤ Rad(G)≤ Soc∗(G)≤ PKer(G)≤ G,

which arises in the computational complexity community where it is known as the Babai–Beals filtration

[5], as well as in the development of practical algorithms for computer algebra systems (c.f., [18]). We

now explain the terms of this chain. Here, Rad(G) is the solvable radical, which is the unique maximal

solvable normal subgroup of G; recall that a group N is solvable if the sequence N(0) := N, N(i) =
[N(i−1),N(i−1)] terminates in the trivial group after finitely many steps, and [A,B] denotes the subgroup

generated by {aba−1b−1 : a∈A,b∈B}. The socle of a group, denoted Soc(G), is the subgroup generated

by all the minimal normal subgroups of G. Soc∗(G) is the preimage of the socle Soc(G/Rad(G)) under

the natural projection map π : G→ G/Rad(G). To define PKer, we start by examining the action on

Soc(G/Rad(G))∼= Soc∗(G)/Rad(G) that is induced by the action of G on Soc∗(G) by conjugation. As

Soc∗(G)/Rad(G)∼=Soc(G/Rad(G)) is the direct product of finite, non-Abelian simple groups T1, . . . ,Tk,

this action permutes the k simple factors, yielding a homomorphism ϕ : G→ Sk. The kernel of this action

is denoted PKer(G).
When Rad(G) is trivial, G has no Abelian normal subgroups (and vice versa). We refer to such

groups as semisimple (following [7, 8]) or trivial-Fitting (following [18]). As a semisimple group G has

no Abelian normal subgroups, we have that Soc(G) is the direct product of non-Abelian simple groups.

As the conjugation action of G on Soc(G) permutes the direct factors of Soc(G), there exists a faithful

permutation representation α : G→ G∗ ≤ Aut(Soc(G)). G is determined by Soc(G) and the action α .

Let H be a semisimple group with the associated action β : H → Aut(Soc(H)). We have that G ∼= H

precisely if Soc(G)∼= Soc(H) via an isomorphism that makes α equivalent to β in the sense introduced

next.

We now introduce the notion of permutational isomorphism, which is our notion of equivalence for

α and β . Let A and B be finite sets, and let π : A→ B be a bijection. For σ ∈ Sym(A), let σ π ∈ Sym(B)

3In many places, we will use O(1) for number of pebbles or rounds; we believe all of these can be replaced with particular

numbers by a straightforward, if tedious, analysis of our proofs. However, since our focus is on the fact that these numbers are

constant rather than on the exact values, we use the O(1) notation.

J.A. Grochow & M. Levet 193

be defined by σ π := π−1σπ . For a set Σ⊆ Sym(A), denote Σπ := {σ π : σ ∈ Σ}. Let K ≤ Sym(A) and

L ≤ Sym(B) be permutation groups. A bijection π : A→ B is a permutational isomorphism K → L if

Kπ = L.

The following lemma, applied with R = Soc(G) and S = Soc(H), gives a precise characterization of

semisimple groups in terms of the associated actions.

Lemma 4.1 ([7, Lemma 3.1], cf. [18, §3]). Let G and H be groups, with R ⊳G and S ⊳H groups with

trivial centralizers. Let α : G→ Aut(R) and β : H → Aut(S) be faithful permutation representations

of G and H via the conjugation action on R and S, respectively. Let f : R→ S be an isomorphism.

Then f extends to an isomorphism f̂ : G→ H if and only if f is a permutational isomorphism between

G∗ = Im(α) and H∗ = Im(β); and if so, f̂ = α f ∗β−1, where f ∗ : G∗→ H∗ is the isomorphism induced

by f .

We also need the following standard group-theoretic lemmas. The first provides a key condition for

identifying whether a non-Abelian simple group belongs to the socle. Namely, if S1
∼= S2 are non-Abelian

simple groups where S1 is in the socle and S2 is not in the socle, then the normal closures of S1 and S2 are

non-isomorphic. In particular, the normal closure of S1 is a direct product of non-Abelian simple groups,

while the normal closure of S2 is not a direct product of non-Abelian simple groups. We will apply this

condition later when S1 is a simple direct factor of Soc(G); in which case, the normal closure of S1 is of

the form Sk
1.

Lemma 4.2 (c.f. [30, Lemma 6.5]). Let G be a finite semisimple group. A subgroup S ≤ G is contained

in Soc(G) if and only if the normal closure of S is a direct product of nonabelian simple groups.

Lemma 4.3 (c.f. [30, Lemma 6.6]). Let S1, . . . ,Sk ≤G be nonabelian simple subgroups such that for all

distinct i, j ∈ [k] we have [Si,S j] = 1. Then 〈S1, . . . ,Sk〉= S1S2 · · ·Sk = S1×·· ·×Sk.

4.2 Main Results

We show that the second Ehrenfeucht–Fraı̈ssé game in Hella’s hierarchy can identify both Soc(G) and

the conjugation action when G is semisimple. We first show that this pebble game can identify whether

a group is semisimple. Namely, if G is semisimple and H is not semisimple, then Spoiler can distinguish

G from H .

Proposition 4.4. Let G be a semisimple group of order n, and let H be an arbitrary group of order n. If

H is not semisimple, then Spoiler can win in the (4,2)-WL2
II game.

Proof. To appear in the full version.

We now apply Lemma 4.2 to show that Duplicator must map the direct factors of Soc(G) to isomor-

phic direct factors of Soc(H).

Lemma 4.5. Let G,H be finite groups of order n. Let Fac(Soc(G)) denote the set of simple direct factors

of Soc(G). Let S ∈ Fac(Soc(G)) be a non-Abelian simple group, with S = 〈x,y〉. If Duplicator selects a

bijection f : G→ H such that:

(a) S 6∼= 〈 f (x), f (y)〉, then Spoiler can win in the (2,1)-WL2
II game; or

(b) f (S) 6= 〈 f (x), f (y)〉, then Spoiler can win in the (4,2)-WL2
II pebble game.

Note that the lemma does not require f |S : S→ f (S) to actually be an isomorphism, only that S and f (S)
are isomorphic.

194 On the Descriptive Complexity of Groups without Abelian Normal Subgroups

Proof. To appear in the full version.

Proposition 4.6. Let G be a semisimple group of order n, and let H be an arbitrary group of order n.

Let f : G→ H be the bijection Duplicator selects. If there exists S ∈ Fac(Soc(G)) such that f (S) /∈
Fac(Soc(H)) or f (S) 6∼= S, then Spoiler can win in the (4,2)-WL2

II pebble game.

Proof. To appear in the full version.

Lemma 4.7. Let G,H be groups of order n, let S be a nonabelian simple group in Fac(Soc(G)). Let

f , f ′ : G→ H be two bijections selected by Duplicator at two different rounds. If f (S)∩ f ′(S) 6= 1, then

f (S) = f ′(S), or Spoiler can win in the (4,2)-WL2
II pebble game.

Proof. By Prop. 4.6, both f (S) and f ′(S) must be simple normal subgroups of Soc(H) (or Spoiler wins

with 4 pebbles and 2 rounds). Since they intersect nontrivially, but distinct simple normal subgroups of

Soc(H) intersect trivially, the two must be equal.

We next introduce the notion of weight.

Definition 4.8. Let Soc(G) = S1×·· ·× Sk where each Si is a simple normal subgroup of Soc(G). For

any s ∈ Soc(G), write s = s1s2 · · · sk where each si ∈ Si, and define the weight of s, denote wt(s), as the

number of i’s such that si 6= 1.

Note that the definition of weight is well-defined since the Si are the unique subsets of Soc(G) that

are simple normal subgroup of Soc(G), so the decomposition s = s1s2 . . . sk is unique up to the order of

the factors. (This is essentially a particular instance of the “rank lemma” from [30], which intuitively

states that WL detects in O(logn) rounds the set of elements for a given subgroup provided that it also

identifies the generators. As we are now in the setting of 2-ary WL we give the full proof, which also has

tighter bounds on the number of rounds.)

Lemma 4.9 (Weight Lemma). Let G,H be semisimple groups of order n. If Duplicator selects a bijection

f : G→ H that does not map Soc(G) bijectively to Soc(H), or does not preserve the weight of every

element in Soc(G), then Spoiler can win in the (4,3)-WL2
II game.

Proof. To appear in the full version.

Lemma 4.10. Let G and H be semisimple groups with isomorphic socles. Let S1,S2 ∈ Fac(Soc(G))
be distinct. Let f : G → H be the bijection that Duplicator selects. If there exist xi ∈ Si such that

f (x1x2) 6= f (x1) f (x2), then Spoiler can win in the (4,3)-WL2
II pebble game.

Proof. By Lem. 4.9, we may assume that wt(s) = wt(f (s)) for all s ∈ Soc(G); otherwise, Spoiler wins

with at most 4 pebbles and 3 rounds. As f (x1x2) has weight 2, f (x1x2) belongs to the direct product of

two simple factors in Fac(Soc(H)), so it can be written f (x1x2) = y1y2 with each yi in distinct simple

factors in Fac(Soc(H)). Without loss of generality suppose that y1 6= f (x1). Spoiler pebbles (x1,x1x2) 7→
(f (x1), f (x1x2)). Now wt(x−1

1 · x1x2) = 1, while wt(f (x1)
−1 · f (x1x2)) ≥ 2. (Note that we cannot quite

yet directly apply Lem. 4.9, because we have not yet identified a single element x such that wt(x) 6=
wt(f (x)).)

On the next round, Duplicator selects another bijection f ′. Spoiler now pebbles x2 7→ f ′(x2). Because

wt(x−1
1 · x1x2) = 1 but wt(f (x1)

−1 f (x1x2)) ≥ 2, and f ′ preserves weight by Lem. 4.9, we have f ′(x2) 6=
f ′(x1)

−1 f ′(x1x2). Thus, the pebbled map (x1,x2,x1x2) 7→ (f ′(x1), f (x2), f (x1x2)) does not extend to an

isomorphism, and so Spoiler wins with 3 pebbles and 2 rounds.

J.A. Grochow & M. Levet 195

Recall that if G is semisimple, then G≤Aut(Soc(G)). Now each minimal normal subgroup N E G is

of the form N = Sk, where S is a non-Abelian simple group. So Aut(N) = Aut(S) ≀Sym(k). In particular,

G≤ ∏
NEG

N is minimal normal

Aut(N).

So if g ∈ G, then the conjugation action of g on Soc(G) acts by (i) automorphism on each simple

direct factor of Soc(G), and (ii) by permuting the direct factors of Soc(G). Provided generators of

the direct factors of the socle are pebbled, Spoiler can detect inconsistencies of the automorphism action.

However, doing so directly would be too expensive as there could be Θ(log |G|) generators, so we employ

a more subtle approach with a similar outcome. By Lem. 4.9, Duplicator must select bijections f : G→H

that preserve weight. That is, if s ∈ Soc(G), then wt(s) = wt(f (s)). We use Lem. 4.9 in tandem with the

fact that the direct factors of the socle commute to effectively pebble the set of all the generators at once.

Namely, suppose that Fac(Soc(G)) = {S1, . . . ,Sk}, where Si = 〈xi,yi〉. Let x := x1 · · ·xk and y := y1 · · ·yk.

We will show that it suffices for Spoiler to pebble (x,y) rather than individually pebbling generators for

each Si (this will still allow the factors to be permuted, but that is all).

Lemma 4.11. Let G and H be semisimple groups with isomorphic socles, and write Fac(Soc(G)) =
{S1, . . . ,Sm}, with Si = 〈xi,yi〉. Let f : G→ H be the bijection that Duplicator selects, and suppose that

(i) for all i, f (Si)∼= Si (though f |Si
need not be an isomorphism) and f (Si) ∈ Fac(Soc(H)), (ii) for every

s ∈ Soc(G), wt(s) = wt(f (s)), and (iii) for all i, f (Si) = 〈 f (x), f (y)〉.

Now suppose that Spoiler pebbles (x1 · · ·xm,y1 · · ·ym) 7→ (f (x1 · · ·xm), f (y1 · · ·ym)). As f preserves

weight, we may write f (x1 · · ·xm) = h1 · · ·hm and f (y1 · · ·ym) = z1 · · · zm with hi,zi ∈ f (Si) for all i.

Let f ′ : G→ H be the bijection that Duplicator selects at any subsequent round in which the pebble

used above has not moved. If any of the following hold, then Spoiler can win in the WL2
II pebble game

with 5 additional pebbles and 5 additional rounds:

(a) f ′ does not satisfy conditions (i)–(iii),

(b) there exists an i ∈ [m] such that f ′(xi) /∈ {h1, . . . ,hm} or f ′(yi) /∈ {z1, . . . ,zm}

(c) f ′|Si
is not an isomorphism

(d) there exists g ∈ G and i ∈ [m] such that gSig
−1 = Si and for some x ∈ Si, the following holds:

f ′(gxg−1) 6= f ′(g) f ′(x) f ′(g)−1.

Proof. To appear in the full version.

Lem. 4.11 provides enough to establish that Spoiler can force Duplicator to select at each round a

bijection that restricts to an isomorphism on the socles.

Proposition 4.12. (Same assumptions as Lem. 4.11.) Let G and H be semisimple groups with isomor-

phic socles, with Fac(Soc(G)) = {S1, . . . ,Sm}, with Si = 〈xi,yi〉. Let f0 : G→ H be the bijection that

Duplicator selects, and suppose that (i) for all i, f0(Si) ∼= Si (though f0|Si
need not be an isomorphism)

and f0(Si) ∈ Fac(Soc(H)), (ii) for every s ∈ Soc(G), wt(s) = wt(f0(s)), and (iii) for all i, f0(Si) =
〈 f0(x), f0(y)〉. Now suppose that Spoiler pebbles (x1 · · ·xm,y1 · · ·ym) 7→ (f0(x1 · · ·xm), f0(y1 · · ·ym)).

Let f ′ : G→H be the bijection that Duplicator selects at any subsequent round in which the pebbles

used above have not moved. Then f ′|Soc(G) : Soc(G)→ Soc(H) must be an isomorphism, or Spoiler can

win in 4 more rounds using at most 6 more pebbles (for a total of 7 pebbles and 5 rounds) in the WL2
II

pebble game.

196 On the Descriptive Complexity of Groups without Abelian Normal Subgroups

Proof. To appear in the full version.

Remark 4.13. Brachter & Schweitzer [13, Lemma 5.22] previously showed that (1-ary) Weisfeiler–

Leman can decide whether two groups have isomorphic socles. However, their results did not solve the

search problem; that is, they did not show Duplicator must select bijections that restrict to an isomor-

phism on the socle even in the case for semisimple groups. This contrasts with Lem. 4.12, where we

show that 2-ary WL effectively solves the search problem. This is an important ingredient in our proof

that the (7,O(1))-WL2
II pebble game solves isomorphism for semisimple groups.

We obtain as a corollary of Lem. 4.11 and Lem. 4.12 that if G and H are semisimple, then Duplicator

must select bijections that restrict to isomorphisms of PKer(G) and PKer(H).

Corollary 4.14. Let G and H be semisimple groups of order n. Let Fac(Soc(G)) := {S1, . . . ,Sm}, and

suppose that Si = 〈xi,yi〉. Let x := x1 · · ·xm and y := y1 · · ·ym. and Let f : G→ H be the bijection that

Duplicator selects. Spoiler begins by pebbling (x,y) 7→ (f (x), f (y)). Let f ′ : G→ H be the bijection

that Duplicator selects at the next round. If f ′|PKer(G) : PKer(G)→ PKer(H) is not an isomorphism, then

Spoiler can win with 5 additional pebbles and 5 additional rounds in the WL2
II pebble game.

Proof. To appear in the full version.

We now show that if G and H are not permutationally equivalent, then Spoiler can win.

Lemma 4.15. (Same assumptions as Lem. 4.11.) Let G and H be semisimple groups with isomorphic so-

cles, with Fac(Soc(G)) = {S1, . . . ,Sm}, with Si = 〈xi,yi〉. Let f0 : G→H be the bijection that Duplicator

selects, and suppose that (i) for all i, f0(Si)∼= Si (though f0|Si
need not be an isomorphism) and f0(Si) ∈

Fac(Soc(H)), (ii) for every s ∈ Soc(G), wt(s) = wt(f0(s)), and (iii) for all i, f0(Si) = 〈 f0(x), f0(y)〉. Now

suppose that Spoiler pebbles (x1 · · ·xm,y1 · · ·ym) 7→ (f0(x1 · · ·xm), f0(y1 · · ·ym)).

Let f ′ : G→ H be the bijection that Duplicator selects at the next round. Suppose that there exist

g ∈ G and i ∈ [m] such that f ′(gSig
−1) = f ′(S j), but f ′(g) f ′(Si) f ′(g)−1 = f ′(Sk) for some k 6= j. Then

Spoiler can win with 4 additional pebbles and 4 additional rounds in the WL2
II pebble game.

Proof. To appear in the full version.

Theorem 4.16. Let G be a semisimple group and H an arbitrary group of order n, not isomorphic to G.

Then Spoiler has a winning strategy in the (9,O(1))-WL2
II pebble game.

Proof. If H is not semisimple, then by Prop. 4.4, Spoiler wins with 4 pebbles and 2 rounds. So we now

suppose H is semisimple.

Let Fac(Soc(G)) = {S1, . . . ,Sk}, and let xi,yi be generators of Si for each i. Let f be the bijection

chosen by Duplicator. Spoiler pebbles (x1x2 · · ·xk,y1y2, . . . ,yk) 7→ (f (x1 · · ·xk), f (y1 · · ·yk)). On subse-

quent rounds, we thus have satisfied the hypotheses of Lem. 4.11 and Prop. 4.12. Spoiler will never move

this pebble, and thus all subsequent bijections chosen by Duplicator must restrict to isomorphisms on the

socle (or Spoiler wins with at most 7 pebbles and O(1) rounds).

Recall from Lem. 4.1 that G ∼= H iff there is an isomorphism µ : Soc(G)→ Soc(H) that induces a

permutational isomorphism µ∗ : G∗→H∗. Thus, since G 6∼= H , there must be some g∈G and s∈ Soc(G)
such that f (gsg−1) 6= f (g) f (s) f (g)−1 . Write s = s1 · · · sk with each si ∈ Si (not necessarily nontrivial).

J.A. Grochow & M. Levet 197

We claim that there exists some i such that f (gsig
−1) 6= f (g) f (si) f (g)−1. For suppose not, then we have

f (gsg−1) = f (gs1g−1gs2g−1 · · ·gskg−1)

= f (gs1g−1) f (gs2g−1) · · · f (gskg−1)

= f (g) f (s1) f (g)−1 f (g) f (s2) f (g)−1 · · · f (g) f (sk) f (g)−1

= f (g) f (s1 · · · sk) f (g)−1 = f (g) f (s) f (g)−1 ,

a contradiction. For simplicity of notation, without loss of generality we may assume i = 1, so we now

have f (gs1g)−1 6= f (g) f (s1) f (g)−1.

We break the argument into cases:

1. If gs1g−1 ∈ S1, then we have gS1g−1 = S1 (any two distinct simple normal factors of the socle

intersect trivially), we have by Lem. 4.11 (d) that Spoiler can win with at most 5 additional pebbles

(for a total of 7 pebbles) and 5 additional rounds (for a total of 6 rounds).

2. If gs1g−1 ∈ S j for j 6= 1 and f (g) f (s1) f (g)−1 /∈ f (S j), we have by Lem. 4.15 that Spoiler can win

with at most 4 additional pebbles (for a total of 6 pebbles) and 4 additional rounds (for a total of 5

rounds).

3. Suppose now that gs1g−1 ∈ S j for some j 6= 1 and f (g) f (s1) f (g)−1 ∈ f (S j). Spoiler begins by

pebbling (g,gs1g−1) 7→ (f (g), f (gs1g−1)). Let f ′ : G→ H be the bijection that Duplicator selects

at the next round. As gs1g−1 ∈ S j is pebbled, we have that f ′(S j) = f (S j) by Lem. 4.7 (or Spoiler

wins with 4 additional pebbles and 2 additional rounds). Now by assumption, gS1g−1 = S j and

f (g) f (S1) f (g)−1 = f (S j). So as g 7→ f (g) is pebbled, we claim that we may assume f ′(S1) =
f (S1). For suppose not; then we have g−1S jg = S1 but f ′(g)−1 f ′(S j) f ′(g) = f (g)−1 f (S j) f (g) =
f (S1) 6= f ′(S1). But then Spoiler can with win with 4 additional pebbles (for a total of 8 pebbles)

and 4 additional rounds (for a total of 7 rounds) by Lem. 4.15. Thus we have f ′(S1) = f (S1).

In particular, we have that f ′(x1) = f (x1) and f ′(y1) = f (y1), by the same argument as in the proof

of Lem. 4.11 (c). As S1 = 〈x1,y1〉, we have that f ′(s1) = f (s1), since they are both isomorphisms

on the socle by Prop. 4.12. Spoiler now pebbles (x1,y1) 7→ (f ′(x1), f ′(y1)). As the pebbled map

(g,x1,y1,gs1g−1) 7→ (f (g), f ′(x1), f ′(y1), f ′(gs1g−1)) does not extend to an isomorphism, Spoiler

wins. In this case, Spoiler used at most 8 pebbles and 7 rounds.

Note that the ninth pebble is the one we pick up prior to checking the winning condition.

5 Conclusion

We exhibited a novel Weisfeiler–Leman algorithm that provides an algorithmic characterization of the

second Ehrenfeucht–Fraı̈ssé game in Hella’s [41, 42] hierarchy. We also showed that this Ehrenfeucht–

Fraı̈ssé game can identify groups without Abelian normal subgroups using O(1) pebbles and O(1)
rounds. In particular, within the first few rounds, Spoiler can force Duplicator to select an isomorphism at

each subsequent round. This effectively solves the search problem in the pebble game characterization.

Our work leaves several directions for further research.

Question 5.1. Can the constant-dimensional 2-ary Wesifeiler–Leman algorithm be implemented in time

no(log n)?

Question 5.2. What is the (1-ary) Weisfeiler–Leman dimension of groups without Abelian normal sub-

groups?

198 On the Descriptive Complexity of Groups without Abelian Normal Subgroups

Question 5.3. Show that the second Ehrenfeucht–Fraı̈ssé game in Hella’s hierarchy can identify coprime

extensions of the form H⋉N with both H,N Abelian (the analogue of [62]). More generally, an analogue

of Babai–Qiao [9] would be to show that when |H|, |N| are coprime and N is Abelian, that Spoiler can

distinguish H ⋉N from any non-isomorphic group using a constant number of pebbles that is no more

than that which is required to identify H (or the maximum of that of H and a constant independent of

N,H).

Question 5.4. Let p > 2 be prime, and let G be a p-group with bounded genus. Show that in the second

Ehrenfeucht–Fraı̈ssé game in Hella’s hierarchy, Spoiler has a winning strategy using a constant number

of pebbles. This is a descriptive complexity analogue of [15, 46]. It would even be of interest to start

with the case where G has bounded genus over a field extension K/Fp of bounded degree.

In the setting of groups, Hella’s hierarchy collapses to some q ≤ 3, since 3-ary WL can identify

all ternary relational structures, including groups. It remains open to determine whether this hierarchy

collapses further to either q = 1 or q = 2. Even if it does not collapse, it would also be of interest

to determine whether the 1-ary and 2-ary games are equivalent. Algorithmically, this is equivalent to

determining whether 1-ary and 2-ary WL are have the same distinguishing power.

Question 5.5. Does there exist an infinite family of non-isomorphic pairs of groups {(Gn,Hn)} for which

Spoiler requires ω(1) pebbles to distinguish Gn from Hn? We ask this question for the Ehrenfeucht–

Fraı̈ssé games at both the first and second levels of Hella’s hierarchy.

Recall that the game at the first level of Hella’s hierarchy is equivalent to Weisfeiler–Leman [17,

41, 42], and so a lower bound against either of these games provides a lower bound against Weisfeiler–

Leman. More generally, it would also be of interest to investigate Hella’s hierarchy on higher arity

structures. For a q-ary relational structure, the q-ary pebble game suffices to decide isomorphism. Are

there interesting, natural classes of higher arity structures for which Hella’s hierarchy collapses further

to some level q′ < q?

Acknowledgment

The authors would like to thank Pascal Schweitzer and the anonymous referees for feedback on earlier

versions of some of the results in this paper, as well as discussions more directly relevant to the paper.

JAG would like to thank Martin Grohe for helpful correspondence about WL versus “oblivious WL.”

JAG was partially supported by NSF award DMS-1750319 and NSF CAREER award CCF-2047756 and

during this work. ML was partially supported by J. Grochow startup funds, NSF award CISE-2047756,

and a Summer Research Fellowship through the Department of Computer Science at the University of

Colorado Boulder.

References

[1] Miklos Ajtai & Ronald Fagin (1990): Reachability is harder for directed than for undirected finite graphs.

Journal of Symbolic Logic 55(1), p. 113–150, doi:10.2307/2274958.

[2] Sanjeev Arora & Ronald Fagin (1997): On winning strategies in Ehrenfeucht–Fraı̈ssé games. Theoretical

Computer Science 174(1), pp. 97–121, doi:10.1016/S0304-3975(96)00015-1.

[3] V. Arvind & Piyush P. Kurur (2006): Graph Isomorphism is in SPP. Information and Computation 204(5),

pp. 835–852, doi:10.1016/j.ic.2006.02.002.

https://doi.org/10.2307/2274958
https://doi.org/10.1016/S0304-3975(96)00015-1
https://doi.org/10.1016/j.ic.2006.02.002

J.A. Grochow & M. Levet 199

[4] László Babai (2016): Graph isomorphism in quasipolynomial time [extended abstract]. In: STOC’16—

Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, pp.

684–697, doi:10.1145/2897518.2897542. Preprint of full version at arXiv:1512.03547v2 [cs.DS].

[5] László Babai & Robert Beals (1999): A polynomial-time theory of black box groups I. In: Groups St Andrews

1997 in Bath, I, doi:10.1017/CBO9781107360228.004.

[6] László Babai, Robert Beals & Ákos Seress (2009): Polynomial-Time Theory of Matrix Groups. In: Pro-

ceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09, Association for

Computing Machinery, p. 55–64, doi:10.1145/1536414.1536425.

[7] László Babai, Paolo Codenotti, Joshua A. Grochow & Youming Qiao (2011): Code equivalence and group

isomorphism. In: Proceedings of the Twenty-Second Annual ACM–SIAM Symposium on Discrete Algo-

rithms (SODA11), SIAM, Philadelphia, PA, pp. 1395–1408, doi:10.1137/1.9781611973082.107.

[8] László Babai, Paolo Codenotti & Youming Qiao (2012): Polynomial-Time Isomorphism Test for Groups with

No Abelian Normal Subgroups - (Extended Abstract). In: International Colloquium on Automata, Languages,

and Programming (ICALP), pp. 51–62, doi:10.1007/978-3-642-31594-7_5.

[9] László Babai & Youming Qiao (2012): Polynomial-time Isomorphism Test for Groups with Abelian Sylow

Towers. In: 29th STACS, Springer LNCS 6651, pp. 453 – 464, doi:10.4230/LIPIcs.STACS.2012.453.

[10] Hans Ulrich Besche & Bettina Eick (1999): Construction of finite groups. J. Symb. Comput. 27(4), pp.

387–404, doi:10.1006/jsco.1998.0258.

[11] Hans Ulrich Besche, Bettina Eick & E.A. O’Brien (2002): A Millennium Project: Constructing Small

Groups. Intern. J. Alg. and Comput 12, pp. 623–644, doi:10.1142/S0218196702001115.

[12] Jendrik Brachter & Pascal Schweitzer (2020): On the Weisfeiler–Leman Dimension of Finite Groups. In

Holger Hermanns, Lijun Zhang, Naoki Kobayashi & Dale Miller, editors: LICS ’20: 35th Annual ACM/IEEE

Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, ACM, pp. 287–300,

doi:10.1145/3373718.3394786.

[13] Jendrik Brachter & Pascal Schweitzer (2021): A Systematic Study of Isomorphism Invariants of Finite Groups

via the Weisfeiler–Leman Dimension. arXiv:2111.11908 [math.GR].

[14] Peter A. Brooksbank, Joshua A. Grochow, Yinan Li, Youming Qiao & James B. Wilson (2019): Incorporat-

ing Weisfeiler–Leman into algorithms for group isomorphism. arXiv:1905.02518 [cs.CC].

[15] Peter A. Brooksbank, Joshua Maglione & James B. Wilson (2017): A fast isomorphism test for groups whose

Lie algebra has genus 2. Journal of Algebra 473, pp. 545–590, doi:10.1016/j.jalgebra.2016.12.007.

[16] Harry Buhrman & Steven Homer (1992): Superpolynomial Circuits, Almost Sparse Oracles and the Expo-

nential Hierarchy. In R. K. Shyamasundar, editor: Foundations of Software Technology and Theoretical

Computer Science, 12th Conference, New Delhi, India, December 18-20, 1992, Proceedings, Lecture Notes

in Computer Science 652, Springer, pp. 116–127, doi:10.1007/3-540-56287-7_99.

[17] Jin-Yi Cai, Martin Fürer & Neil Immerman (1992): An optimal lower bound on the number of variables for

graph identification. Combinatorica 12(4), pp. 389–410, doi:10.1007/BF01305232. Originally appeared in

SFCS ’89.

[18] John J. Cannon & Derek F. Holt (2003): Automorphism group computation and isomorphism testing in finite

groups. J. Symb. Comput. 35, pp. 241–267, doi:10.1016/S0747-7171(02)00133-5.

[19] Arkadev Chattopadhyay, Jacobo Torán & Fabian Wagner (2013): Graph isomorphism is not AC0-reducible to

group isomorphism. ACM Trans. Comput. Theory 5(4), pp. Art. 13, 13, doi:10.1145/2540088. Preliminary

version appeared in FSTTCS ’10; ECCC Tech. Report TR10-117.

[20] Bireswar Das & Shivdutt Sharma (2019): Nearly Linear Time Isomorphism Algorithms for Some Nonabelian

Group Classes. In René van Bevern & Gregory Kucherov, editors: Computer Science – Theory and Appli-

cations, Springer International Publishing, Cham, pp. 80–92, doi:10.1007/s00224-020-10010-z.

https://doi.org/10.1145/2897518.2897542
https://arxiv.org/abs/1512.03547v2
https://doi.org/10.1017/CBO9781107360228.004
https://doi.org/10.1145/1536414.1536425
https://doi.org/10.1137/1.9781611973082.107
https://doi.org/10.1007/978-3-642-31594-7_5
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.1006/jsco.1998.0258
https://doi.org/10.1142/S0218196702001115
https://doi.org/10.1145/3373718.3394786
https://arxiv.org/abs/2111.11908
https://arxiv.org/abs/1905.02518
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.1007/3-540-56287-7_99
https://doi.org/10.1007/BF01305232
https://doi.org/10.1016/S0747-7171(02)00133-5
https://doi.org/10.1145/2540088
https://doi.org/10.1007/s00224-020-10010-z

200 On the Descriptive Complexity of Groups without Abelian Normal Subgroups

[21] Anuj Dawar & Bjarki Holm (2012): Pebble Games with Algebraic Rules. In Artur Czumaj, Kurt Mehlhorn,

Andrew Pitts & Roger Wattenhofer, editors: Automata, Languages, and Programming, Springer Berlin Hei-

delberg, Berlin, Heidelberg, pp. 251–262, doi:10.1007/978-3-642-31585-5_25.

[22] Anuj Dawar & Danny Vagnozzi (2020): Generalizations of k-dimensional Weisfeiler–Leman stabilization.

Moscow Journal of Combinatorics and Number Theory 9, pp. 229–252, doi:10.2140/moscow.2020.9.

229.

[23] Heiko Dietrich & James B. Wilson (2022): Polynomial-time isomorphism testing for groups of most finite

orders, doi:10.1109/FOCS52979.2021.00053.

[24] A. Ehrenfeucht (1960/61): An application of games to the completeness problem for formalized theories.

Fund. Math. 49, pp. 129–141, doi:10.4064/fm-49-2-129-141.

[25] Bettina Eick, C. R. Leedham-Green & E. A. O’Brien (2002): Constructing automorphism groups of p-groups.

Comm. Algebra 30(5), pp. 2271–2295, doi:10.1081/AGB-120003468.

[26] Jörg Flum & Martin Grohe (2000): On Fixed-Point Logic with Counting. The Journal of Symbolic Logic

65(2), pp. 777–787, doi:10.2307/2586569.

[27] Roland Fraı̈ssé (1954): Sur quelques classifications des systèmes de relations. Publ. Sci. Univ. Alger. Sér. A

1, pp. 35–182 (1955).

[28] Walid Gomaa (2010): Descriptive Complexity of Finite Abelian Groups. IJAC 20, pp. 1087–1116, doi:10.

1142/S0218196710006047.

[29] Joshua A. Grochow & Michael Levet (2022): On the Descriptive Complexity of Groups without Abelian

Normal Subgroups. arXiv:2209.13725.

[30] Joshua A. Grochow & Michael Levet (2022): On the parallel complexity of Group Isomorphism and canon-

ization via Weisfeiler–Leman. arXiv:2112.11487 [cs.DS].

[31] Joshua A. Grochow & Youming Qiao (2015): Polynomial-Time Isomorphism Test of Groups that are

Tame Extensions - (Extended Abstract). In: Algorithms and Computation - 26th International Sympo-

sium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pp. 578–589, doi:10.1007/

978-3-662-48971-0_49.

[32] Martin Grohe (2017): Descriptive complexity, canonisation, and definable graph structure theory. Lecture

Notes in Logic 47, Association for Symbolic Logic, Ithaca, NY; Cambridge University Press, Cambridge,

doi:10.1017/9781139028868.

[33] Martin Grohe (2021): The logic of graph neural networks. In: LICS ’21: Proceedings of the 36th Annual

ACM/IEEE Symposium on Logic in Computer Science, doi:10.1109/LICS52264.2021.9470677. Preprint

arXiv:2104.14624 [cs.LG].

[34] Martin Grohe & Sandra Kiefer (2019): A Linear Upper Bound on the Weisfeiler–Leman Dimension of Graphs

of Bounded Genus. arXiv:1904.07216.

[35] Martin Grohe & Sandra Kiefer (2021): Logarithmic Weisfeiler–Leman Identifies All Planar Graphs.

arXiv:2106.16218.

[36] Martin Grohe & Daniel Neuen (2019): Canonisation and Definability for Graphs of Bounded Rank Width.

arXiv:1901.10330.

[37] Martin Grohe & Martin Otto (2015): Pebble Games and linear equations. J. Symb. Log. 80(3), pp. 797–844,

doi:10.1017/jsl.2015.28.

[38] Martin Grohe & Oleg Verbitsky (2006): Testing Graph Isomorphism in Parallel by Playing a Game. In

Michele Bugliesi, Bart Preneel, Vladimiro Sassone & Ingo Wegener, editors: Automata, Languages and

Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings,

Part I, Lecture Notes in Computer Science 4051, Springer, pp. 3–14, doi:10.1007/11786986_2.

[39] Xiaoyu He & Youming Qiao (2021): On the Baer–Lovász–Tutte construction of groups from graphs: Iso-

morphism types and homomorphism notions. Eur. J. Combin. 98, p. 103404, doi:10.1016/j.ejc.2021.

103404.

https://doi.org/10.1007/978-3-642-31585-5_25
https://doi.org/10.2140/moscow.2020.9.229
https://doi.org/10.2140/moscow.2020.9.229
https://doi.org/10.1109/FOCS52979.2021.00053
https://doi.org/10.4064/fm-49-2-129-141
https://doi.org/10.1081/AGB-120003468
https://doi.org/10.2307/2586569
https://doi.org/10.1142/S0218196710006047
https://doi.org/10.1142/S0218196710006047
https://arxiv.org/abs/2209.13725
https://arxiv.org/abs/2112.11487
https://doi.org/10.1007/978-3-662-48971-0_49
https://doi.org/10.1007/978-3-662-48971-0_49
https://doi.org/10.1017/9781139028868
https://doi.org/10.1109/LICS52264.2021.9470677
https://arxiv.org/abs/1904.07216
https://arxiv.org/abs/2106.16218
https://arxiv.org/abs/1901.10330
https://doi.org/10.1017/jsl.2015.28
https://doi.org/10.1007/11786986_2
https://doi.org/10.1016/j.ejc.2021.103404
https://doi.org/10.1016/j.ejc.2021.103404

J.A. Grochow & M. Levet 201

[40] Hermann Heineken & Hans Liebeck (1974): The occurrence of finite groups in the automorphism group of

nilpotent groups of class 2. Arch. Math. (Basel) 25, pp. 8–16, doi:10.1007/BF01238631.

[41] Lauri Hella (1989): Definability hierarchies of generalized quantifiers. Annals of Pure and Applied Logic

43(3), pp. 235 – 271, doi:10.1016/0168-0072(89)90070-5.

[42] Lauri Hella (1996): Logical Hierarchies in PTIME. Information and Computation 129(1), pp. 1–19, doi:10.

1006/inco.1996.0070.

[43] Neil Immerman (1986): Relational Queries Computable in Polynomial Time. Inf. Control. 68(1-3), pp. 86–

104, doi:10.1016/S0019-9958(86)80029-8.

[44] Neil Immerman & Eric Lander (1990): Describing Graphs: A First-Order Approach to Graph Canonization.

In Alan L. Selman, editor: Complexity Theory Retrospective: In Honor of Juris Hartmanis on the Occa-

sion of His Sixtieth Birthday, July 5, 1988, Springer New York, New York, NY, pp. 59–81, doi:10.1007/

978-1-4612-4478-3_5.

[45] Russell Impagliazzo, Ramamohan Paturi & Francis Zane (2001): Which Problems Have Strongly Exponential

Complexity? Journal of Computer and System Sciences 63(4), pp. 512–530, doi:10.1006/jcss.2001.

1774.

[46] Gábor Ivanyos & Youming Qiao (2019): Algorithms Based on *-Algebras, and Their Applications to Iso-

morphism of Polynomials with One Secret, Group Isomorphism, and Polynomial Identity Testing. SIAM J.

Comput. 48(3), pp. 926–963, doi:10.1137/18M1165682.

[47] T. Kavitha (2007): Linear time algorithms for Abelian group isomorphism and related problems. Journal of

Computer and System Sciences 73(6), pp. 986 – 996, doi:10.1016/j.jcss.2007.03.013.

[48] Neeraj Kayal & Timur Nezhmetdinov (2009): Factoring Groups Efficiently. In Susanne Albers, Alberto

Marchetti-Spaccamela, Yossi Matias, Sotiris Nikoletseas & Wolfgang Thomas, editors: Automata, Lan-

guages and Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 585–596, doi:10.1007/

978-3-642-02927-1_49.

[49] Sandra Kiefer & Brendan D. McKay (2020): The Iteration Number of Colour Refinement. In Artur Czumaj,

Anuj Dawar & Emanuela Merelli, editors: 47th International Colloquium on Automata, Languages, and Pro-

gramming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), LIPIcs 168, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, pp. 73:1–73:19, doi:10.4230/LIPIcs.ICALP.2020.73.

[50] Sandra Kiefer, Ilia Ponomarenko & Pascal Schweitzer (2019): The Weisfeiler–Leman Dimension of Planar

Graphs Is at Most 3. J. ACM 66(6), doi:10.1145/3333003.

[51] Sandra Kiefer, Pascal Schweitzer & Erkal Selman (2022): Graphs Identified by Logics with Counting. ACM

Trans. Comput. Log. 23(1), pp. 1:1–1:31, doi:10.1145/3417515.

[52] Johannes Köbler, Uwe Schöning & Jacobo Torán (1992): Graph Isomorphism is Low for PP. Comput.

Complex. 2, pp. 301–330, doi:10.1007/BF01200427.

[53] Richard E. Ladner (1975): On the Structure of Polynomial Time Reducibility. J. ACM 22(1), p. 155–171,

doi:10.1145/321864.321877.

[54] François Le Gall (2009): Efficient Isomorphism Testing for a Class of Group Extensions. In: Proc. 26th

STACS, pp. 625–636, doi:10.4230/LIPIcs.STACS.2009.1830.

[55] François Le Gall & David J. Rosenbaum (2016): On the Group and Color Isomorphism Problems.

arXiv:1609.08253 [cs.CC].

[56] Mark L. Lewis & James B. Wilson (2012): Isomorphism in expanding families of indistinguishable groups.

Groups - Complexity - Cryptology 4(1), pp. 73–110, doi:10.1515/gcc-2012-0008.

[57] P. Lindstrom (1966): First Order Predicate Logic with Generalized Quantifiers. Theoria 32(3), pp. 186–195,

doi:10.1111/j.1755-2567.1966.tb00600.x.

[58] Alan H. Mekler (1981): Stability of Nilpotent Groups of Class 2 and Prime Exponent. The Journal of Sym-

bolic Logic 46(4), pp. 781–788, doi:10.2307/2273227. Available at http://www.jstor.org/stable/

2273227.

https://doi.org/10.1007/BF01238631
https://doi.org/10.1016/0168-0072(89)90070-5
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/18M1165682
https://doi.org/10.1016/j.jcss.2007.03.013
https://doi.org/10.1007/978-3-642-02927-1_49
https://doi.org/10.1007/978-3-642-02927-1_49
https://doi.org/10.4230/LIPIcs.ICALP.2020.73
https://doi.org/10.1145/3333003
https://doi.org/10.1145/3417515
https://doi.org/10.1007/BF01200427
https://doi.org/10.1145/321864.321877
https://doi.org/10.4230/LIPIcs.STACS.2009.1830
https://arxiv.org/abs/1609.08253
https://doi.org/10.1515/gcc-2012-0008
https://doi.org/10.1111/j.1755-2567.1966.tb00600.x
https://doi.org/10.2307/2273227
http://www.jstor.org/stable/2273227
http://www.jstor.org/stable/2273227

202 On the Descriptive Complexity of Groups without Abelian Normal Subgroups

[59] Gary L. Miller (1978): On the nlogn Isomorphism Technique (A Preliminary Report). In: Proceedings of the

Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, Association for Computing Machinery,

New York, NY, USA, pp. 51–58, doi:10.1145/800133.804331.

[60] Andrzej Mostowski (1957): On a generalization of quantifiers. Fundamenta Mathematicae 44(1), pp. 12–36,

doi:10.4064/fm-44-1-12-36. Available at http://eudml.org/doc/213418.

[61] André Nies & Katrin Tent (2017): Describing finite groups by short first-order sentences. Israel J. Math.

221(1), pp. 85–115, doi:10.1007/s11856-017-1563-2.

[62] Youming Qiao, Jayalal M. N. Sarma & Bangsheng Tang (2011): On Isomorphism Testing of Groups with

Normal Hall Subgroups. In: Proc. 28th STACS, pp. 567–578, doi:10.4230/LIPIcs.STACS.2011.567.

[63] David J. Rosenbaum (2013): Bidirectional Collision Detection and Faster Deterministic Isomorphism Test-

ing. arXiv:1304.3935 [cs.DS].

[64] Benjamin Rossman (2009): Ehrenfeucht–Fraı̈ssé Games on Random Structures. In Hiroakira Ono, Makoto

Kanazawa & Ruy J. G. B. de Queiroz, editors: Logic, Language, Information and Computation, 16th Interna-

tional Workshop, WoLLIC 2009, Tokyo, Japan, June 21-24, 2009. Proceedings, Lecture Notes in Computer

Science 5514, Springer, pp. 350–364, doi:10.1007/978-3-642-02261-6_28.

[65] C. Savage (1980): An O(n2) Algorithm for Abelian Group Isomorphism. Technical Report, North Carolina

State University.

[66] Uwe Schöning (1988): Graph isomorphism is in the low hierarchy. Journal of Computer and System Sciences

37(3), pp. 312 – 323, doi:10.1016/0022-0000(88)90010-4.

[67] Moshe Y. Vardi (1982): The Complexity of Relational Query Languages (Extended Abstract). In Harry R.

Lewis, Barbara B. Simons, Walter A. Burkhard & Lawrence H. Landweber, editors: Proceedings of the 14th

Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, ACM,

pp. 137–146, doi:10.1145/800070.802186.

[68] Narayan Vikas (1996): An O(n) Algorithm for Abelian p-Group Isomorphism and an O(n logn) Algorithm

for Abelian Group Isomorphism. Journal of Computer and System Sciences 53(1), pp. 1–9, doi:10.1006/

jcss.1996.0045.

[69] James B. Wilson (2012): Existence, algorithms, and asymptotics of direct product decompositions, I. Groups

- Complexity - Cryptology 4(1), doi:10.1515/gcc-2012-0007.

[70] James B. Wilson (2019): The Threshold for Subgroup Profiles to Agree is Logarithmic. Theory of Computing

15(19), pp. 1–25, doi:10.4086/toc.2019.v015a019.

[71] V. N. Zemlyachenko, N. M. Korneenko & R. I. Tyshkevich (1985): Graph isomorphism problem. J. Soviet

Math. 29(4), pp. 1426–1481, doi:10.1007/BF02104746.

https://doi.org/10.1145/800133.804331
https://doi.org/10.4064/fm-44-1-12-36
http://eudml.org/doc/213418
https://doi.org/10.1007/s11856-017-1563-2
https://doi.org/10.4230/LIPIcs.STACS.2011.567
https://arxiv.org/abs/1304.3935
https://doi.org/10.1007/978-3-642-02261-6_28
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.1145/800070.802186
https://doi.org/10.1006/jcss.1996.0045
https://doi.org/10.1006/jcss.1996.0045
https://doi.org/10.1515/gcc-2012-0007
https://doi.org/10.4086/toc.2019.v015a019
https://doi.org/10.1007/BF02104746

A. Achilleos and D. Della Monica (Eds.): Fourteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2023).
EPTCS 390, 2023, pp. 203–219, doi:10.4204/EPTCS.390.13

© D. Dell’Erba, A. Dumas & S. Schewe
This work is licensed under the
Creative Commons Attribution License.

An Objective Improvement Approach
to Solving Discounted Payoff Games

Daniele Dell’Erba
University of Liverpool,

United Kingdom
daniele.dell-erba@liverpool.ac.uk

Arthur Dumas
ENS Rennes,

France
arthur.dumas@ens.rennes.fr

Sven Schewe
University of Liverpool,

United Kingdom
sven.schewe@liverpool.ac.uk

While discounted payoff games and classic games that reduce to them, like parity and mean-payoff
games, are symmetric, their solutions are not. We have taken a fresh view on the constraints that
optimal solutions need to satisfy, and devised a novel way to converge to them, which is entirely
symmetric. It also challenges the gospel that methods for solving payoff games are either based on
strategy improvement or on value iteration.

1 Introduction

We study turn-based zero sum games played between two players on directed graphs. The two players
take turns to move a token along the vertices of finite labelled graph with the goal to optimise their
adversarial objectives.

Various classes of graph games are characterised by the objective of the players, for instance in parity
games the objective is to optimise the parity of the dominating colour occurring infinitely often, while
in discounted and mean-payoff games the objective of the players is to minimise resp. maximise the
discounted and limit-average sum of the colours.

Solving graph games is the central and most expensive step in many model checking [22, 12, 36,
1, 2, 31], satisfiability checking [36, 22, 34], and synthesis [28, 32] algorithms. Progress in algorithms
for solving graph games will therefore allow for the development of more efficient model checkers and
contribute to bringing synthesis techniques to practice.

There is a hierarchy among the graph games mentioned earlier, with simple and well known reduc-
tions from parity games to mean payoff games, from mean-payoff games to discounted payoff games,
and from discounted payoff games to simple stochastic games like the ones from [38], while no reduc-
tions are known in the other direction. Therefore, one can solve instances of all these games by using
an algorithm for stochastic games. All of these games are in UP and co-UP [17], while no tractable
algorithm is known.

Most research has focused on parity games: as the most special class of games, algorithms have the
option to use the special structure of their problems, and they are most directly linked to the synthesis and
verification problems mentioned earlier. Parity games have thus enjoyed a special status among graph
games and the quest for efficient algorithms [13, 11, 26, 38, 7, 37, 27, 4, 3] for solving them has been
an active field of research during the last decades, which has received further boost with the arrival of
quasi-polynomial techniques [8, 18, 15, 23, 24, 10].

Interestingly, the one class of efficient techniques for solving parity games that does not (yet) have
a quasi-polynomial approach is strategy improvement algorithms [25, 29, 35, 6, 30, 14, 33], a class of
algorithms closely related to the Simplex for linear programming, known to perform well in practice.
Most of these algorithms reduce to mean [6, 30, 33, 5] or discounted [25, 29, 16, 21] payoff games.

204 An Objective Improvement Approach to Solving Discounted Payoff Games

With the exception of the case in which the fixed-point of discounted payoff games is explicitly
computed [38], all these algorithms share a disappointing feature: they are inherently non-symmetric
approaches for solving an inherently symmetric problem. However, some of these approaches have a
degree of symmetry. Recursive approaches treat even and odd colours symmetrically, one at a time,
but they treat the two players very differently for a given colour. Symmetric strategy improvement [33]
runs a strategy improvement algorithms for both players in parallel, using the intermediate results of
each of them to inform the updates of the other, but at heart, these are still two intertwined strategy
improvement algorithms that, individually, are not symmetric. This is in due to the fact that applying
strategy improvement itself symmetrically can lead to cycles [9].

The key contribution of this paper is to devise a new class of algorithms to solve discounted payoff
games, which is entirely symmetric. Like strategy improvement algorithms, it seeks to find co-optimal
strategies, and improves strategies while they are not optimal. In order to do so, however, it does not dis-
tinguish between the strategies of the two players. This seems surprising, as maximising and minimising
appear to pull in opposing directions.

Similar to strategy improvement approaches, the new objective improvement approach turns the
edges of a game into constraints (here called inequations), and minimises an objective function. However,
while strategy improvement algorithms take only the edges in the strategy of one player (and all edges
of the other player) into account and then finds the optimal response by solving the resulting one player
game, objective improvement always takes all edges into account. The strategies under consideration
then form a subset of the inequations, and the goal would be to make them sharp (i.e. as equations),
which only works when both strategies are optimal. When they are not, then there is some offset for each
of the inequations, and the objective is to reduce this offset in every improvement step.

This treats the strategies of both players completely symmetrically.

Organisation of the Paper. The rest of the paper is organised as follows. After the preliminaries (Section
2), we start by outlining our method and use a simple game to explain it (Section 3). We then formally
introduce our objective improvement algorithm in Section 4, keeping the question of how to choose a
better strategies abstract. Section 5 then discusses how to find better strategies. We finally wrap up with
a discussion of our results in Section 6.

2 Preliminaries

A discounted payoff game (DPG) is a tuple G = (Vmin,Vmax,E,w,λ), where V = Vmin ∪Vmax are the
vertices of the game, partitioned into two disjoint sets Vmin and Vmax, such that the pair (V,E) is a finite
directed graph without sinks. The vertices in Vmax (resp, Vmin) are controlled by Player Max or maximiser
(resp, Player Min or minimiser) and E ⊆V ×V is the edge relation. Every edge has a weight represented
by the function w : E → R, and a discount factor represented by the function λ : E → [0,1). When the
discount factor is uniform, i.e. the same for every edge, it is represented by a constant value λ ∈ [0,1).
For ease of notation, we write we and λe instead of w(e) and λ (e). A play on G from a vertex v is an
infinite path, which can be represented as a sequence of edges ρ = e0e1e2 . . . such that, for every i ∈ N∗,
ei = (vi,v′i) ∈ E, and, for all i ∈ N,vi+1 = v′i and v0 = v. By ρi we refer to the i-th edge of the play. The
outcome of a discounted game G = (Vmin,Vmax,E,w,λ) for a play ρ is out(ρ) = ∑

∞
i=0 wei ∏

i−1
j=0 λe j . For

games with a constant discount factor, this simplifies in out(ρ) = ∑
∞
i=0 weiλ

i.
A positional strategy for Max is a function σmax : Vmax→ V that maps each Max vertex to a vertex

according to the set of edges, i.e. (v,σmax(v))∈ E. Positional Min strategies are defined accordingly, and
we call the set of positional Min and Max strategies Σmin and Σmax, respectively.

D. Dell’Erba, A. Dumas & S. Schewe 205

A pair of strategies σmin and σmax, one for each player, defines a unique run ρ(v,σmin,σmax) from
each vertex v ∈V . Discounted payoff games are positionally determined [38]:

sup
σmax∈Σmax

inf
σmin∈Σmin

out(ρ(v,σmin,σmax)) = inf
σmin∈Σmin

sup
σmax∈Σmax

out(ρ(v,σmin,σmax))

holds for all v∈V , and neither the value, nor the optimal strategy for which it is taken, changes when
we allow more powerful classes of strategies that allow for using memory and/or randomisation for one
or both players.

The resulting value of G , denoted by val(G) : V →R, is defined as

val(G) : v 7→ sup
σmax∈Σmax

inf
σmin∈Σmin

out(ρ(v,σmin,σmax)) .

The solution to a discounted payoff game is a valuation val = val(G) of G for the vertices such that,
for every edge e = (v,v′), it holds that1

• val(v)≤ we +λeval(v′) if v is a minimiser vertex and

• val(v)≥ we +λeval(v′) if v is a maximiser vertex.

A positional maximiser (resp. minimiser) strategy σ is optimal if, and only if, val(v) = w(v,σ(v))+
λ(v,σ(v))val(σ(v)) holds for all maximiser (resp. minimiser) positions.

Likewise, we define the value of a pair of strategies σmin and σmax, denoted val(σmin,σmax) : V →R,
as val(σmin,σmax) : v 7→ out(ρ(v,σmin,σmax)).

As we treat both players symmetrically in this paper, we define a pair of strategies σ : V 7→V whose
restriction to Vmin and Vmax are a minimiser strategy σmin and a maximiser strategy σmax, respectively.
We then write ρ(v,σ) instead of ρ(v,σmin,σmax) and val(σ) instead of val(σmin,σmax).

If both of these strategies are optimal, we call σ a joint co-optimal strategy. This is the case if, and
only if, val(G) = val(σ) holds.

Note that we are interested in the value of each vertex, not merely if the value is greater or equal than
a given threshold value.

3 Outline and Motivation Example

b a

0

0 1

Figure 1: A discounted Payoff Game.
Maximiser vertices are marked by a cir-
cle, minimizer ones by a square.

We start with considering the simple discounted payoff game
of Figure 1, assuming that it has some uniform discount
factor λ ∈ [0,1). In this game, the minimiser (who owns
the right vertex, a, marked by a square), has only one op-
tion: she always has to use the self-loop, which earns her
an immediate reward of 1. The overall reward the min-
imiser reaps for a run that starts in her vertex is therefore
1+λ +λ 2 + . . .= 1

1−λ
.

The maximiser (who owns the left vertex, b, marked by
a circle) can choose to either use the self-loop, or to move to
the minimiser vertex (marked by a square), both yielding no
immediate reward.

1These are the constraints represented in H in Section 4.

206 An Objective Improvement Approach to Solving Discounted Payoff Games

If the maximiser decides to stay forever in his vertex (using the self-loop), his overall reward in the
play that starts at (and, due to his choice, always stays in) his vertex, is 0. If he decides to move on to the
minimiser vertex the nth-time, then the reward is λ n

1−λ
.

The optimal decision of the maximiser is therefore to move on the first time, which yields him the
maximal reward of λ

1−λ
. Every vertex v has some outgoing edge(s) e = (v,v′) where val(v) = we +

λeval(v′) holds [38]; these edges correspond to the optimal decisions for the respective player.
For our running example game of Figure 1 with a fixed discount factor λ ∈ [0,1), the inequations are

1. val(a)≤ 1+λ val(a) for the self-loop of the minimiser vertex;

2. val(b)≥ λ val(b) for the self-loop of the maximiser vertex; and

3. val(b)≥ λ val(a) for the transition from the maximiser to the minimiser vertex.

The unique valuation that satisfies these inequations and produces a sharp inequation (i.e. satisfied as
equation) for some outgoing edge of each vertex assigns val(a) = 1

1−λ
and val(b) = λ

1−λ
. This valuation

also defines the optimal strategies of the players (to stay for the minimiser, and to move on for the
maximiser).

Solving a discounted payoff game means finding this valuation and/or these strategies.
We discuss a symmetric approach to find this unique valuation. Our approach adjusts linear program-

ming in a natural way that treats both players symmetrically: we maintain the set of inequations for the
complete time, while approximating the goal of “one equality per vertex” by the objective function. To
do that, we initially fix an arbitrary outgoing edge for every vertex (a strategy), and minimise the sum of
the distances between the left and right side of the inequations defined by these edges, which we call the
offset of this edge. This means, for an edge e = (v,v′), to minimise the difference of val(v) (left side of
the inequation) and we +λeval(v′) (right side).

To make this clear, we consider again the example of Figure 1 and use both self loops as the strategies
for the players fixed at the beginning in our running example. The offset for the selected outgoing edge
of the minimiser vertex a is equal to 1− (1−λ)val(a), while the offset for the selected outgoing edge of
the maximiser vertex b is equal to (1−λ)val(b). The resulting overall objective consists, therefore, in
minimising the value 1− (1−λ)val(a)+(1−λ)val(b).

This term is always non-negative, since it corresponds to the sum of the edges contributions that are
all non-negative. Moreover, when only optimal strategies are selected to form this objective function, the
value 0 can be taken, and where it is taken, it defines the correct valuation.

As the maximiser’s choice to take the self-loop is not optimal, the resulting objective function the
strategies define, that is 1− (1−λ)val(a)+(1−λ)val(b), cannot reach 0. But let us take a look at what
an optimal solution w.r.t. this objective function looks like.

Optimal solutions can be taken from the corners of the polytope defined by the inequations. In this
case, the optimal solution (w.r.t. this initial objective function) is defined by making inequations (1) and
(3) sharp: this provides the values val(a) = 1

1−λ
and val(b) = λ

1−λ
; the objective function takes the value

λ at this point.
For comparison, in the other corner of the polytope, defined by making inequations (2) and (3) sharp,

we obtain the values val(a) = val(b) = 0; the objective function takes the value 1 at this point. Finally,
if we consider the last combination, making (1) and (2) sharp provides the values val(a) = 1

1−λ
and

val(b) = 0, so that inequation (3) is not satisfied; this is therefore not a corner of the polytope.
Thus, in this toy example, while selecting the wrong edge cannot result in the objective function

taking the value 0, we still found the optimal solution. In general, we might need to update the objective
function. To update the objective function, we change the outgoing edges of some (or all) vertices, such

D. Dell’Erba, A. Dumas & S. Schewe 207

that the overall value of the objective function goes down. Note that this can be done not only when the
linear program returns an optimal solution, but also during its computation. For example, when using a
simplex method, updating the objective function can be used as an alternative pivoting rule at any point
of the traversal of the polytope.

Unfortunately, the case in which the valuation returned as solution is computed using an objective
function based on non-optimal strategies, is not the general case. The simplest way of seeing this is to
use different discount factors for the game of Figure 12, let’s say 1

3 for the self-loop of the maximiser
vertex and 2

3 for the other two transitions, so that the three equations are: (1) val(a) ≤ 1+ 2
3 val(a), (2)

val(b)≥ 2
3 val(b), and (3) val(b)≥ 1

3 val(a). Making the adjusted inequations (2) and (3) sharp still results
in the values val(a) = val(b) = 0, and the objective function still takes the value of 1. While making
inequations (1) and (3) sharp provides the values val(a) = 3 and val(b) = 2; the objective function takes
the value 4

3 at this point. Finally, if we consider the last combination, making (1) and (2) sharp still
conflicts with inequation (3).

Thus, val(a) = val(b) = 0 would be the optimal solution for the given objective function, which is
not the valuation of the game. We will then update the candidate strategies so that the sum of the offsets
goes down.

3.1 Comparison to strategy improvement

The closest relative to our new approach are strategy improvement algorithms. Classic strategy im-
provement approaches solve this problem of finding the valuation of a game (and usually also co-optimal
strategies) by (1) fixing a strategy for one of the players (we assume w.l.o.g. that this is the maximiser), (2)
finding a valuation function for the one player game that results from fixing this strategy (often together
with an optimal counter strategy for their opponent), and (3) updating the strategy of the maximiser by
applying local improvements. This is repeated until no local improvements are available, which entails
that the constraint system is satisfied.

For Step (2) of this approach, we can use linear programming, which does invite a comparison to
our technique. The linear program for solving Step (2) would not use all inequations: it would, instead,
replace the inequations defined by the currently selected edges of the maximiser by equations, while
dropping the inequations defined by the other maximiser transitions. The objective function would then
be to minimise the values of all vertices while still complying with the remaining (in)equations.

Thus, while in our novel symmetric approach the constraints remain while the objective is updated,
in strategy improvement the objective remains, while the constraints are updated.

Moreover, the players and their strategies are treated quite differently in strategy improvement algo-
rithms: while the candidate strategy of the maximiser results in making the inequations of the selected
edges sharp (and dropping all other inequations of maximiser edges), the optimal counter strategy is
found by minimising the objective. This is again in contrast to our novel symmetric approach, which
treats both players equally.

A small further difference is in the valuations that can be taken: the valuations that strategy improve-
ment algorithms can take are the valuations of strategies, while the valuations our objective improvement
algorithm can take on the way are the corners of the polytope defined by the inequations. Except for the
only intersection point between the two (the valuation of the game), these corners of the polytope do not
relate to the value of strategies. Table 1 summarises these observations.

2Note that we can also replace the transitions with a smaller discount factor by multiple transitions with a larger discount
factor. This would allow for keeping the discount factor uniform, but needlessly complicate the discussion and inflate the size
of the example.

208 An Objective Improvement Approach to Solving Discounted Payoff Games

Objective Improvement Strategy Improvement

players symmetric treatment asymmetric treatment

constraints remain the same: change:
one inequation per edge one inequation for each edge

defined by the current strategy for
the strategy player, one inequation
for every edge of their opponent

objective minimise errors for selected edges maximise values

update objective: strategy:
one edge for each vertex one edge for each vertex

of the strategy player

valuations corners of polytope defined by strategies

Table 1: A comparison of the novel objective improvement with classic strategy improvement.

4 General Objective Improvement

In this section, we present the approach outlined in the previous section more formally, while keeping
the most complex step – updating the candidate strategy to one which is better in that it defines an
optimisation function that can take a smaller value – abstract. (We will turn back to the question of how
to find better strategies in Section 5.) This allows for discussing the principal properties more clearly.

A general outline of our objective improvement approach is based on this algorithm:

Algorithm 1: Objective Improvement
input : A discounted payoff game

G = (Vmin,Vmax,E,w,λ)
output: The valuation val of G

1 H← Inequations(G)
2 σ ← ChooseInitialStrategies(G)
3 while true do
4 fσ ← ObjectiveFunction(G ,σ)
5 val← LinearProgramming(H, fσ)
6 if fσ (val) = 0 then

return val
end

7 σ ← ChooseBetterStrategies(G ,σ)

end

Before describing the procedures called by the
algorithm, we first outline the principle.

When running on a discounted payoff game G =
(Vmin,Vmax,E,w,λ), the algorithm uses a set of in-
equations defined by the edges of the game and the
owner of the source of each edge. This set of in-
equations denoted by H contains one inequation for
each edge and (different to strategy improvement
approaches whose set of inequations is a subset of
H) H never changes.

The inequations from H are computed by a func-
tion called Inequations that, given the discounted
game G , returns the set made of one inequation per
edge e = (v,v′) ∈ E, defined as follows:

Ie =

{
val(v)≥ we +λeval(v′) if v ∈Vmax

val(v)≤ we +λeval(v′) otherwise .

The set H = {Ie | e ∈ E} is defined as the set of all inequations for the edges of the game.
The algorithm also handles strategies for both players, treated as a single strategy σ . They are

initialised (for example randomly) by the function ChooseInitialStrategies.
This joint strategy is used to define an objective function fσ by calling function ObjectiveFunction,

whose value on an evaluation val is: fσ (val) = ∑v∈V fσ (val,v) with the following objective function

D. Dell’Erba, A. Dumas & S. Schewe 209

components:

fσ (val,v) = offset(val,(v,σ(v))) ,

where the offset of an edge (v,v′) for a valuation is defined as follows:

offset(val,(v,v′)) =

{
val(v)− (w(v,v′)+λ(v,v′)val(v′)) if v ∈Vmax

(w(v,v′)+λ(v,v′)val(v′))−val(v) otherwise

This objective function fσ is given to a linear programming algorithm, alongside with the inequations
set H. We underline that, due to the inequation to I(v,v′), the value of offset(val,(v,v′)) is non-negative for
all (v,v′) ∈ E in any valuation val (optimal or not) that satisfies the system of inequations H. We put a
further restriction on val in that we require it to be the solution to a basis b in H. Such a basis consists of
|V | inequations that are satisfied sharply (i.e. as equations), such that these |V | equations uniquely define
the values of all vertices. We refer to this valuation as the evaluation of b, denoted val(b).

The call LinearProgramming(H, fσ) to some linear programming algorithm then returns a valuation
val of the vertices that minimise fσ while satisfying H, and for convenience require this valuation to also
be val(b) for some base b of H. (Note that the simplex algorithm, for example, only uses valuations of
this form in every step.) We call this valuation a valuation associated to σ .

Observation 1. At Line 6 of Algorithm 1, the value of fσ (val) is non-negative.

We say that a valuation val defines strategies of both players if, for every vertex v ∈V , the inequation
of (at least) one of the outgoing edges of v is sharp. These are the strategies defined by using, for every
vertex v ∈ V , an outgoing edge for which the inequation is sharp. Note that there can be more than one
of these inequations for some of the vertices.

Observation 2. If, for a solution val of H, fσ (val) = 0 holds, then, for every vertex v ∈V , the inequation
I(v,σ(v)) for the edge (v,σ(v)) is sharp, and val therefore defines strategies for both players, those defined
by σ , for example.

We can use, alternatively, fσ (val) = 0 as a termination condition, as shown in Algorithm 1, since in
this case σ must define co-optimal strategies.

Theorem 1. If σ describes co-optimal strategies, then fσ (val) = 0 holds at Line 6 of Algorithm 1. If val
defines strategies for both players joint in σ at Line 6 of Algorithm 1, then σ is co-optimal and val is the
valuation of G .

Proof. The valuation val = val(G) of the game is the unique solution of H for which, for all vertices v,
the inequation to (at least) one of the outgoing edges of v is sharp, and the edges for which they are sharp
describe co-optimal strategies. The valuation of the game is thus the only valuation that defines strategies
for both players, which shows the second claim.

Moreover, if σ describes co-optimal strategies, then fσ (val) = 0 holds for val = val(G) (and for this
valuation only), which establishes the first claim.

The theorem above ensures that, in case the condition at Line 6 holds, the algorithm terminates and
provides the value of the game that then allows us to infer optimal strategies of both players. Otherwise
we have to improve the objective function and make another iteration of the while loop. At Line 7,
ChooseBetterStrategies can be any procedure that, for fσ (val) 6= 0, provides a pair of strategy σ ′ better
than σ as defined in the following subsection.

210 An Objective Improvement Approach to Solving Discounted Payoff Games

Better strategies A strategy σ ′ for both players is better than a strategy σ if, and only if, the minimal
value of the objective function fσ ′ (computed by LinearProgramming(H, fσ ′)) is strictly lower than the
minimal value of the objective function for fσ (computed by LinearProgramming(H, fσ)). Formally,
fσ ′(val′)< fσ (val).

While we discuss how to implement this key function in the next section, we observe here that
the algorithm terminates with a correct result with any implementation that chooses a better objective
function in each round: correctness is due to it only terminating when val defines strategies for both
players, which implies (cf. Theorem 1) that val is the valuation of G (val = val(G)) and all strategies
defined by val are co-optimal. Termination is obtained by a finite number of positional strategies: by
Observation 1, the value of the objective function of all of them is non-negative, while the objective
function of an optimal solution to co-optimal strategies is 0 (cf. Theorem 1), which meets the termination
condition of Line 6 (cf. Observation 2).

Corollary 1. Algorithm 1 always terminates with the correct value.

5 Choosing Better Strategies

In this section, we will discuss sufficient criteria for efficiently finding a procedure that implements
ChooseBetterStrategies. For this, we make four observations described in the next subsections:

1. All local improvements can be applied. A strategy σ ′ is a local improvement to a strategy σ if
fσ ′(val)< fσ (val) holds for the current valuation val (Section 5.1).

2. If the current valuation val does not define a pair of strategies σ for both players and has no local
improvements, then a better strategy σ ′ can be found by applying only switches from and to edges
that already have offset 0 (Section 5.2).

3. The improvement mentioned in the previous point can be found for special games (the sharp and
improving games defined in Section 5.3) by trying a single edge switch.

4. Games can almost surely be made sharp and improving by adding random noise that retains opti-
mal strategies (Section 5.4).

Together, these four points provide efficient means for finding increasingly better strategies, and thus
to find the co-optimal strategies and the valuation of the discounted payoff game.

As a small side observation, when using a simplex based technique to implement LinearProgramming
at Line 5 of Algorithm 1, then the pivoting of the objective function from point (1.) and the pivoting of
the base can be mixed (this will be discussed in Section 5.5).

5.1 Local Improvements

The simplest (and most common) case of creating better strategies σ ′ from a valuation for the objec-
tive fσ for a strategy σ is to consider local improvements. Much like local improvements in strategy
iteration approaches, local improvements consider, for each vertex v, a successor v′ 6= σ(v), such that
offset(val,(v,v′)) < offset(val,(v,σ(v)) for the current valuation val, which is optimal for the objective
function fσ .

To be more general, our approach does not necessarily requires to select only local improvements, but
it can work with global improvements, though we cannot see any practical use of choosing differently.
For instance, if we treat the function as a global improvement approach, we can update the value for a

D. Dell’Erba, A. Dumas & S. Schewe 211

vertex v such that it increases by 1 and update the value of another vertex v′ such that it decreases by 2.
The overall value of the function will decrease, even if locally some components increased their value.
Interestingly, this cannot be done with a strategy improvement approach, as it requires to always locally
improve the value of each vertex when updating.

Lemma 1. If val is an optimal valuation for the linear programming problem at Line 5 of Algorithm 1
and fσ ′(val)< fσ (val), then σ ′ is better than σ .

Proof. The valuation val is, being an optimal solution for the objective fσ , a solution to the system of
inequations H. For a solution val′ which is optimal for fσ ′ , we thus have fσ ′(val′)≤ fσ ′(val)< fσ (val),
which implies that σ ′ is better than σ accordingly to notion of better strategy provided at the end of
Section 4.

5.2 No Local Improvements

The absence of local improvements means that, for all vertices v ∈V and all outgoing edges (v,v′) ∈ E,
offset(val,(v,v′))≥ offset(val,(v,σ(v))).

We define for a valuation val optimal for a fσ (like the val produced in line 5 of Algorithm 1):

• Sσ

val = {(v,v′) ∈ E | offset(val,(v,v′)) = offset(val,(v,σ(v)))} as the set of stale edges; naturally,
every vertex has at least one outgoing stale edge: the one defined by σ ;

• Eval = {(v,v′) ∈ E | offset(val,(v,v′)) = 0} as the set of edges, for which the inequation for val is
sharp; in particular, all edges in the base of H that defines val are sharp (and stale); and

• Eσ

val as any set of edges between Eval and Sσ

val (i.e. Eval ⊆ Eσ

val ⊆ Sσ

val) such that Eσ

val contains an
outgoing edge for every vertex v ∈ V ; we are interested to deal with sets that retain the game
property that every vertex has a successor, we can do that by adding (non sharp) stale edges to
Eval.

Note that Sσ

val is such a set, hence, an adequate set is easy to identify. We might, however, be
interested in keeping the set small, and choosing the edges defined by Eval plus one outgoing edge for
every vertex v that does not have an outgoing edge in Eval. The most natural solutions is to choose the
edge (v,σ(v)) ∈ Eσ

val defined by σ for each such vertex v.

Observation 3. If G = (Vmin,Vmax,E,w,λ) is a DPG and σ a strategy for both players such that val is
an optimal solution for the objective fσ to the system of inequations H, then G ′ = (Vmin,Vmax,Eσ

val,w,λ)
is also a DPG.

This simply holds because every vertex v ∈V retains at least one outgoing transition.

Lemma 2. Let G = (Vmin,Vmax,E,w,λ) be a DPG, σ a strategy for both players, val an optimal solution
returned at Line 5 of Algorithm 1 for fσ , and let there be no local improvements of σ for val. If val
does not define strategies of both players, then there is a better strategy σ ′ such that, for all v ∈ V ,
(v,σ ′(v)) ∈ Eσ

val.

Proof. By Observation 3, G ′ = (Vmin,Vmax,Eσ

val,w,λ) is a DPG. Let val′ be the valuation of G ′, and σ ′

be the strategies for the two players defined by it.
If val′ is also a valuation of G , then we are done. However, this need not be the case, as the system

of inequations H ′ for G ′ is smaller than the set of inequations H for G , so val′ might violate some of the
inequations that are in H, but not in H ′. Given that val′ is a valuation for G ′, it satisfies all inequations in

212 An Objective Improvement Approach to Solving Discounted Payoff Games

H ′. Moreover, since val also satisfies all inequations of H ′, it follows that the same inequations hold for
every convex combination of val and val′.

We now note that the inequations of H that are not in H ′ are not sharp for val. Thus, there is an
ε ∈ (0,1] such that the convex combination valε = ε ·val′+(1− ε)val is a solution to those inequations.

We now have fσ ′(val) = fσ (val) > 0 and fσ ′(val′) = 0. For an optimal solution val′′ of H for the
objective fσ ′ , this provides fσ ′(val′′)≤ fσ ′(valε)< fσ (val).

Therefore σ ′ is better than σ .

When using the most natural choice, Eσ

val = Eval ∪{(v,σ(v)) | v ∈ V}, this translates in keeping all
transitions, for which the offset is not 0, while changing some of those, for which the offset already is 0.
This is a slightly surprising choice, since to progress one has to improve on the transitions whose offset
is positive, and ignore those with offset 0.

5.3 Games with Efficient Objective Improvement

In this subsection, we consider sufficient conditions for finding better strategies efficiently. Note that we
only have to consider cases where the termination condition (Line 6 of Algorithm 1) is not met.

The simplest condition for efficiently finding better strategies is the existence of local improvements.
(In particular, it is easy to find, for a given valuation val, strategies σ ′ for both players such that fσ ′(val)≤
fσ ′′(val) holds for all strategies σ ′′). When there are local improvements, we can obtain a better strategy
simply by applying them.

This leaves the case in which there are no local improvements, but where val also does not define
strategies for the two players. We have seen that we can obtain a better strategy by only swapping edges,
for which the inequations are sharp (Lemma 2).

We will now describe two conditions that, when both met, will allow us to efficiently find better
strategies: that games are sharp and improving.

Sharp games. To do this efficiently, it helps if there are always |V | inequations that are sharp: there
must be at least |V | of them for a solution returned by the simplex method, as it is the solution defined by
making |V | inequations sharp (they are called the base), and requiring that there are exactly |V | many of
them means that the valuation we obtain defines a base. We call such a set of inequations H, and games
that define them sharp DPGs.

Improving games. The second condition, which will allow us to identify better strategies efficiently, is
to assume that, for every strategy σ for both players, if a valuation val defined by a base is not optimal
for fσ under the constraints H, then there is a single base change that improves it. We call such sharp
DPGs improving.

We call a valuation val′ whose base can be obtained from that of val by a single change to the base of
val a neighbouring valuation to val. We will show that, for improving games, we can sharpen the result
of Lemma 2 so that the better strategy σ ′ also guarantees fσ ′(val′) < fσ (val) for some neighbouring
valuation val′ to val.

This allows us to consider O(|E|) base changes and, where they define a valuation, to seek optimal
strategies for a given valuation. Finding an optimal strategy for a given valuation is straightforward.

Theorem 2. Let G = (Vmin,Vmax,E,w,λ) be an improving DPG, σ a strategy for both players, val an
optimal solution returned at Line 5 of Algorithm 1 for fσ , and let there be no local improvements of σ

for val. Then there is (at least) one neighbouring valuation val′′ to val such that there is a better strategy
σ ′ that satisfies fσ ′(val′′)< fσ (val).

D. Dell’Erba, A. Dumas & S. Schewe 213

Such a strategy σ ′ is better than σ , and it can be selected in a way that (v,σ ′(v)) ∈ Eσ

val holds for all
v ∈V for a given set Eσ

val.

Proof. We apply Lemma 2 for Eσ

val = Eval∪{(v,σ(v) | v ∈V} and use the resulting better strategy σ ′ for
this set Eσ

val. Let val′ be the optimal solution for fσ ′ that satisfies the constraints H defined by G . Note
that since σ ′ is better than σ by Lemma 2, we have that fσ ′(val′)< fσ (val) and fσ (val)≤ fσ (val′).

We now consider an arbitrary sequence of evaluations val = val0,val1, . . . ,valn = val′ along the edges
of the simplex from val to val′, such that the value of the new objective function fσ ′ only decreases. Note
that such a path must exist, as the simplex algorithm would pick it.

The sharpness of G implies that val1 6= val0, and considering that G is improving provides fσ ′(val1)<
fσ ′(val0).

Thus, when only applying a single base change, we move to a fresh value, val1, such that fσ ′(val1)<
fσ (val) for some σ ′.

Note that σ ′ was supplied by Lemma 2, so that (v,σ ′(v)) ∈ Eσ

val holds.

While we can restrict the selection of σ ′ to those that comply with the restriction (v,σ ′(v)) ∈ Eσ

val,
there is no particular reason for doing so; as soon as we have a neighbouring valuation val′, we can
identify a pair of strategies σ ′ for which fσ ′(val′) is minimal, and select σ ′ if fσ ′(val′)< fσ (val) holds.

5.4 Making Games Sharp and Improving

Naturally, not every game is improving, or even sharp. In this subsection, we first discuss how to almost
surely make games sharp by adding sufficiently small random noise to the edge weights, and then discuss
how to treat games that are not improving by assigning randomly chosen factors, with which the offsets
of edges are weighted. Note that these are ‘global’ adjustments of the game that only need to be applied
once, as it is the game that becomes sharp and improving, respectively.

Starting with the small noise to add on the edge weights, we first create notation for expressing how
much we can change edge weights, such that joint co-optimal strategies of the resulting game are joint
co-optimal strategies in the original game. To this end, we define the gap of a game.

Gap of a game. For a DPG G = (Vmin,Vmax,E,w,λ), we call λ ∗ = max{λe | e ∈ E} its contraction. For
a joint strategy σ that is not co-optimal, we call γσ =−min{offset(val(σ),e) | e ∈ E}; note that γσ > 0
holds. We call the minimal3 such value γ the gap of G .

Note that val(σ) is the valuation of the joint strategy σ , not the outcome of the optimisation problem.
This is because we use the gap of the game to argue that a non-co-optimal strategy remains non-co-
optimal after a small distortion of the edge weights, so that the value of the joint strategy itself is useful.
(It is much easier to access than the result of optimisation.) This also implies that the offsets can be
negative.

We now use the gap of a game γ to define the magnitude of a change to all weights, such that all
strategies that used to have a gap still have one.

Lemma 3. Let G = (Vmin,Vmax,E,w,λ) be a DPG with contraction λ ∗ and gap γ , and let
G ′ = (Vmin,Vmax,E,w′,λ) differ from G only in the edge weights such that, for all e ∈ E, |we−w′e| ≤
1−λ ∗

3 γ holds. Then a joint co-optimal strategy from G ′ is also co-optimal for G .

3This skips over the case where all strategies are co-optimal, but that case is trivial to check and such games are trivial to
solve, so that we ignore this case in this subsection.

214 An Objective Improvement Approach to Solving Discounted Payoff Games

Proof. The small weight disturbance, |we−w′e| ≤ 1−λ ∗

3 γ for all e ∈ E, immediately provides a small
difference in the valuation: for all joint strategies σ , we have for val = val(σ) on G , and val′ = val(σ)
on G ′, that |val(v)−val′(v)| ≤ 1

1−λ ∗
1−λ ∗

3 γ = γ

3 , using the definition of val(σ) and triangulation.
More precisely, as σ defines a run ρ = e0e1e2 . . ., and we have val(v) = out(ρ) = ∑

∞
i=0 wei ∏

i−1
j=0 λe j

and val′(v) = ∑
∞
i=0 w′ei ∏

i−1
j=0 λe j . This provides

|val(v)−val′(v)| ≤
∞

∑
i=0
|wei−w′ei

|
i−1

∏
j=0

λe j <
1−λ ∗

3
γ

∞

∑
i=0

i−1

∏
j=0

λe j ≤
1−λ ∗

3
γ

∞

∑
i=0

(λ ∗)i =
γ

3
.

If σ is not co-optimal for G , we have an edge e with−offset(val,e) = γσ ≥ γ . Triangulation provides

|offset(val′,e)−offset(val,e)|< 1+λ ∗

3
γ

and (using offset′ to indicate the use of w′e for G ′ instead of we for G),

|offset′(val′,e)−offset(val,e)| ≤ 2+λ ∗

3
γ < γ ≤ γσ ,

which, together with the fact that −offset(val,e)≥ γ , provides offset′(val′,e)< 0.
Thus, σ is not co-optimal for G ′.

Lemma 4. Given a DPGs G = (Vmin,Vmax,E,w,λ), the DPG G ′ = (Vmin,Vmax,E,w′,λ) resulting from
G by adding independently uniformly at random drawn values from an interval (−ε,ε) to every edge
weight, will almost surely result in a sharp game.

Proof. There are only finitely many bases, and it suffices to compare two arbitrary but fixed ones, say b1
and b2.

As they are different, there will be one edge e = (v,v′) that occurs in b1, but not in b2. As all weight
disturbances are drawn independently, we assume without loss of generality that the weight disturbance
to this edge is drawn last.

Now, the valuation val2 defined by b1 does not depend on this final draw. For val2, there is a value
w′e = val2(v)−λeval2(v′) that defines the weight w′e e would need to have such that the inequation for e
is sharp.

For the valuation val1 defined by b1 to be equal to val2, the weight for the edge e (after adding the
drawn distortion) needs to be exactly w′e. There is at most one value for the disturbance that would
provide for this, and this disturbance for weight of e is sampled with a likelihood of 0.

Putting these two results together, we get:

Corollary 2. Given a pair of DPGs G = (Vmin,Vmax,E,w,λ) with contraction λ ∗ and gap γ , and G ′ =
(Vmin,Vmax,E,w′,λ) obtained from G by adding independently uniformly at random drawn values from
an interval (−ε,ε) to every edge weight, for some ε ≤ 1−λ ∗

3 γ , then, a joint co-optimal strategy from G ′

is also co-optimal for G , and G ′ is almost surely sharp.

Note that we can estimate the gap cheaply when all coefficients in G are rational. The gap is defined
as the minimum of γσ over non-co-optimal joint strategies σ , and we start by fixing such a joint strategy.

For a given v ∈ V , σ defines a run ρ = e0e1e2 . . . in the form of a ”lasso path”, which consists of a
(possibly empty) initial path e0, . . . ,ek, followed by an infinitely often repeated cycle e′0, . . . ,e

′
`, where

D. Dell’Erba, A. Dumas & S. Schewe 215

the only vertex that occurs twice on the path e0, . . . ,ek,e′0, . . . ,e
′
` is the vertex reached before e′0 and after

e′`, while all other vertices occur only once.
In this run, an edge ei occurs only once and contributes ∏

i−1
j=0 λe j wei to the value of this run, while an

edge e′i occurs infinitely often and contributes the value
∏

k
j=0 λe j ·∏

i−1
j=0 λe′j

1−∏
`
j=0 λe′j

we′i to the value of the run.

Now all we need to do is to find a common denominator. To do this, let denom(r) be the denominator
of a rational number r. It is easy to see that

common = ∏
v∈V

denom(λ(v,σ(v)))
2 ·denom(w(v,σ(v)))

is a common denominator of the contributions of all of these weights, and thus a denominator that can
be used for the sum.

Looking at an edge e that defines γσ , then γσ can be written with the denominator

common ·denom(λewe) .

Obviously, the nominator is at least 1.
Estimating γ can thus be done by using the highest possible denominators available in G . The

representation of the resulting estimate γ is polynomial in the size of G .

Biased sum of offsets. We modify sharp games that are not improving. This can be done by redefining
the function offset as follows:

offset′(val,(v,v′)) = α(v,v′) ·offset(val,(v,v′))

Such offset are defined for every edge e = (v,v′), where all αe are positive numbers, which we call the
offset factor. Based on this change, we re-define all offset definitions and the objective function with a
primed version that uses these positive factors.

Theorem 3. Let G = (Vmin,Vmax,E,w,λ) be an improving DPG for a given set of positive numbers
{αe > 0 | e ∈ E}, σ a strategy for both players, val an optimal solution returned at Line 5 of Algorithm
1 for the adjusted function f ′σ , and let there be no local improvements of σ for val. Then there is
neighbouring valuation val′′ to val such that there is a better strategy σ ′ that satisfies fσ ′(val′′)< fσ (val).

Such a strategy σ ′ is better than σ , and it can be selected in a way that (v,σ ′(v)) ∈ Eσ

val holds for all
v ∈V for a given set Eσ

val.

Proof. All proofs can be repeated verbatim with the new offset definition.

Theorem 4. If each offset factor αe is selected independently uniformly at random from a bounded
interval of positive numbers4, then a sharp DPG G = (Vmin,Vmax,E,w,λ) is almost surely improving for
a sampled set of positive numbers {αe > 0 | e ∈ E}.

Proof. We show the claim for two arbitrary but fixed valuations val1 and val2 defined by two different
bases, b1 and b2, respectively, that satisfy the inequations in H, and an arbitrary but fixed adjusted fσ . As
there are finitely many bases and finitely many joint strategies, satisfying the requirement almost surely
for them entails that the requirement is satisfied almost surely for the game.

As G is sharp, we have val1 6= val2.

4or from any other distribution over positive numbers that has 0 weight for all individual points

216 An Objective Improvement Approach to Solving Discounted Payoff Games

We first assume for contradiction that offset(val1,(v,σ(v))) = offset(val2,(v,σ(v))) holds for all v ∈
V . We pick a vertex v such that |val1(v)−val2(v)|> 0 is maximal, such a vertex exists since val1 6= val2.
For this v, offset(val1,(v,σ(v))) = offset(val2,(v,σ(v))) entails val1(v)−val2(v) = λ(v,σ(v))(val1(σ(v))−
val2(σ(v))). Using λe ∈ [0,1), we get |val1(σ(v))−val2(σ(v))|> |val1(v)−val2(v)|> 0, which contra-
dicts the maximality of v. Note that neither λe, nor the difference of val1(σ(v)) and val2(σ(v)) can be
equal to 0 since val1(v) 6= val2(v). Hence the contradiction.

We therefore have that offset(val1,(v,σ(v))) 6= offset(val2,(v,σ(v))) holds for some v ∈ V . As the
αe are drawn independently, we can assume w.l.o.g. that α(v,σ(v)) is drawn last. There is at most one
value α ′(v,σ(v)) for which the condition

∑
v∈V

offset′(val1,(v,σ(v))) 6= ∑
v∈V

offset′(val2,(v,σ(v)))

is not satisfied.
It therefore holds almost surely for all strategies that all base-induced valuations have a pairwise

distinct image by the objective function associated to the strategy. This immediately implies that the
game is improving.

Thus, we can almost surely obtain sharpness by adding small noise to the weights, and almost surely
make games improving by considering the offsets of the individual edges with a randomly chosen positive
weight. This guarantees cheap progress for the case where there are no local improvements.

5.5 Mixing Pivoting on the Simplex and of the Objective

When using a simplex based technique to implement LinearProgramming (Line 5 of Algorithm 1), then
the algorithm mixes three approaches that stepwise reduce the value of fσ (val):

1. The simplex algorithm updates the base, changing val (while retaining the objective function fσ).

2. Local updates, who change the objective function fσ (through updating σ) and retain val.

3. Non-local updates.

Non-local updates are more complex than the other two, and the correctness proofs make use of
the non-existence of the other two improvements. For both reasons, it seems natural to take non-local
updates as a last resort.

The other two updates, however, can be freely mixed, as they both bring down the value of fσ (val)
by applying local changes. That the improvements from (1) are given preference in the algorithm is a
choice made to keep the implementation of the algorithm for using linear programs open, allowing, for
example, to use ellipsoid methods [20] or inner point methods [19] to keep this step tractable.

6 Discussion

There is widespread belief that mean payoff and discounted payoff games have two types of algorith-
mic solutions: value iteration [16, 21] and strategy improvement [25, 29, 6, 30, 33]. We have added a
third method, which is structurally different and opens a new class of algorithms to attack these games.
Moreover, our new symmetric approach has the same proximity to linear programming as strategy im-
provement algorithms, which is an indicator of efficiency.

Naturally, a fresh approach opens the door to much follow-up research. A first target for such research
is the questions on how to arrange the selection of better strategies to obtain fewer updates, either proven

D. Dell’Erba, A. Dumas & S. Schewe 217

on benchmarks, or theoretically in worst, average, or smoothed analysis. In particular, it would be
interesting to establish non-trivial upper or lower bounds for various pivoting rules. Without such a
study, a trivial bound for the proposed approach is provided by the number of strategies (exponential).
Moreover, the lack of a benchmarking framework for existing algorithms prevents us from testing and
compare an eventual implementation.

A second question is whether this method as whole can be turned into an inner point method. If so,
this could be a first step on showing tractability of discounted payoff games – which would immediately
extend to mean-payoff and parity games.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 101032464. It was supported by the
EPSRC through the projects EP/X017796/1 (Below the Branches of Universal Trees) and EP/X03688X/1
(TRUSTED: SecuriTy SummaRies for SecUre SofTwarE Development).

References

[1] L. de Alfaro, T.A. Henzinger & R. Majumdar (2001): From Verification to Control: Dynamic Programs
for Omega-Regular Objectives. In: Logic in Computer Science’01, IEEE Computer Society, pp. 279–290.
Available at https://doi.org/10.1109/LICS.2001.932504.

[2] R. Alur, T.A. Henzinger & O. Kupferman (2002): Alternating-Time Temporal Logic. Journal of the ACM
49(5), pp. 672–713. Available at https://doi.org/10.1145/585265.585270.

[3] M. Benerecetti, D. Dell’Erba & F. Mogavero (2016): Improving Priority Promotion for Parity Games. In:
Haifa Verification Conference16, LNCS 10028, Springer, pp. 1–17. Available at https://doi.org/10.
1007/978-3-319-49052-6_8.

[4] M. Benerecetti, D. Dell’Erba & F. Mogavero (2018): A Delayed Promotion Policy for Parity Games. Infor-
mation and Computation 262(2), pp. 221–240. Available at https://doi.org/10.1016/j.ic.2018.09.
005.

[5] M. Benerecetti, D. Dell’Erba & F. Mogavero (2020): Solving Mean-Payoff Games via Quasi Dominions. In:
Tools and Algorithms for the Construction and Analysis of Systems’20, LNCS 12079, Springer, pp. 289–306.
Available at https://doi.org/10.1007/978-3-030-45237-7_18.

[6] H. Björklund & S.G. Vorobyov (2007): A Combinatorial Strongly Subexponential Strategy Improvement Al-
gorithm for Mean-Payoff Games. Discrete Applied Mathematics 155(2), pp. 210–229. Available at https://
doi.org/10.1016/j.dam.2006.04.029.

[7] A. Browne, E.M. Clarke, S. Jha, D.E. Long & W.R. Marrero (1997): An Improved Algorithm for the Evalua-
tion of Fixpoint Expressions. Theoretical Computer Science 178(1-2), pp. 237–255. Available at https://
doi.org/10.1016/S0304-3975(96)00228-9.

[8] C. S. Calude, S. Jain, B. Khoussainov, W .Li & F .Stephan (2022): Deciding Parity Games in Quasi-
polynomial Time. SIAM Journal on Computing 51(2), pp. 17–152. Available at https://doi.org/10.
1137/17M1145288.

[9] Anne Condon (1993): On Algorithms for Simple Stochastic Games. In: Advances in Computational Com-
plexity Theory, 13, American Mathematical Society, pp. 51–73. Available at https://doi.org/10.1090/
dimacs/013/04.

[10] D. Dell’Erba & S. Schewe (2022): Smaller progress measures and separating automata for parity games.
Frontiers in Computer Science 4. Available at https://doi.org/10.3389/fcomp.2022.936903.

218 An Objective Improvement Approach to Solving Discounted Payoff Games

[11] E.A. Emerson & C.S. Jutla (1991): Tree Automata, muCalculus, and Determinacy. In: Foundation of Com-
puter Science’91, IEEE Computer Society, pp. 368–377. Available at https://doi.org/10.1109/SFCS.
1991.185392.

[12] E.A. Emerson, C.S. Jutla & A.P. Sistla (1993): On Model-Checking for Fragments of muCalculus. In:
Computer Aided Verification’93, LNCS 697, Springer, pp. 385–396. Available at https://doi.org/10.
1007/3-540-56922-7_32.

[13] E.A. Emerson & C.-L. Lei (1986): Efficient Model Checking in Fragments of the Propositional muCalculus.
In: Logic in Computer Science’86, IEEE Computer Society, pp. 267–278.

[14] J. Fearnley (2010): Non-Oblivious Strategy Improvement. In: Logic for Programming Artificial Intelli-
gence and Reasoning’10, LNCS 6355, Springer, pp. 212–230. Available at https://doi.org/10.1007/
978-3-642-17511-4_13.

[15] J. Fearnley, S. Jain, B. de Keijzer, S. Schewe, F. Stephan & D. Wojtczak (2019): An Ordered Approach to
Solving Parity Games in Quasi Polynomial Time and Quasi Linear Space. Software Tools for Technology
Transfer 21(3), pp. 325–349. Available at https://doi.org/10.1007/s10009-019-00509-3.

[16] N. Fijalkow, P. Gawrychowski & P. Ohlmann (2020): Value Iteration Using Universal Graphs and the Com-
plexity of Mean Payoff Games. In: Mathematical Foundations of Computer Science’20, LIPIcs 170, Leibniz-
Zentrum fuer Informatik, pp. 1–15. Available at https://doi.org/10.4230/LIPIcs.MFCS.2020.34.

[17] M. Jurdziński (1998): Deciding the Winner in Parity Games is in UP ∩ co-UP. Information Processing
Letters 68(3), pp. 119–124. Available at https://doi.org/10.1016/S0020-0190(98)00150-1.

[18] M. Jurdziński & R. Lazic (2017): Succinct Progress Measures for Solving Parity Games. In: Logic in
Computer Science’17, Association for Computing Machinery, pp. 1–9. Available at https://doi.org/
10.1109/LICS.2017.8005092.

[19] N. Karmarkar (1984): A new polynomial-time algorithm for linear programming. In: Symposium on Theory
of Computing’84, Association for Computing Machinery, pp. 302–311. Available at https://doi.org/
10.1007/BF02579150.

[20] L. G. Khachian (1979): A Polynomial Algorithm in Linear Programming. USSR Computational Math-
ematics and Mathematical Physics 244, pp. 1093–1096. Available at https://doi.org/10.1016/

0041-5553(80)90061-0.

[21] A. Kozachinskiy (2021): Polyhedral Value Iteration for Discounted Games and Energy Games. In: Sym-
posium on Discrete Algorithms’21, SIAM, p. 600–616. Available at https://doi.org/10.1137/1.
9781611976465.37.

[22] D. Kozen (1983): Results on the Propositional muCalculus. Theoretical Computer Science 27(3), pp. 333–
354. Available at https://doi.org/10.1016/0304-3975(82)90125-6.

[23] K. Lehtinen & U. Boker (2020): Register Games. Logical Methods in Computer Science 16(2). Available at
https://doi.org/10.23638/LMCS-16(2:6)2020.

[24] K. Lehtinen, P. Parys, S. Schewe & D. Wojtczak (20220): A Recursive Approach to Solving Parity Games in
Quasipolynomial Time. Logical Methods in Computer Science 18(1). Available at https://doi.org/10.
46298/lmcs-18(1:8)2022.

[25] W. Ludwig (1995): A Subexponential Randomized Algorithm for the Simple Stochastic Game Problem. In-
formation and Computation 117(1), pp. 151–155. Available at https://doi.org/10.1006/inco.1995.
1035.

[26] R. McNaughton (1993): Infinite Games Played on Finite Graphs. Annals of Pure and Applied Logic 65, pp.
149–184. Available at https://doi.org/10.1016/0168-0072(93)90036-D.

[27] J. Obdrzálek (2003): Fast Mu-Calculus Model Checking when Tree-Width Is Bounded. In: Computer
Aided Verification’03, LNCS 2725, Springer, pp. 80–92. Available at https://doi.org/10.1007/

978-3-540-45069-6_7.

D. Dell’Erba, A. Dumas & S. Schewe 219

[28] N. Piterman (2006): From Nondeterministic Buchi and Streett Automata to Deterministic Parity Automata.
In: Logic in Computer Science’06, IEEE Computer Society, pp. 255–264. Available at https://doi.org/
10.2168/LMCS-3(3:5)2007.

[29] A. Puri (1995): Theory of Hybrid Systems and Discrete Event Systems. Ph.D. thesis, University of
California, Berkeley, USA. Available at https://www2.eecs.berkeley.edu/Pubs/TechRpts/1995/
ERL-95-113.pdf.

[30] S. Schewe (2008): An Optimal Strategy Improvement Algorithm for Solving Parity and Payoff Games. In:
Computer Science Logic’08, LNCS 5213, Springer, pp. 369–384. Available at https://doi.org/10.
1007/978-3-540-87531-4_27.

[31] S. Schewe & B. Finkbeiner (2006): Satisfiability and Finite Model Property for the Alternating-Time muCal-
culus. In: Computer Science Logic’06, LNCS 6247, Springer, pp. 591–605. Available at https://doi.
org/10.1007/11874683_39.

[32] S. Schewe & B. Finkbeiner (2006): Synthesis of Asynchronous Systems. In: Symposium on Logic-based
Program Synthesis and Transformation’06, LNCS 4407, Springer, pp. 127–142. Available at https://doi.
org/10.1007/978-3-540-71410-1_10.

[33] S. Schewe, A. Trivedi & T. Varghese (2015): Symmetric Strategy Improvement. In: International Colloquium
on Automata, Languages, and Programming’15, LNCS 9135, Springer, pp. 388–400. Available at https://
doi.org/10.1007/978-3-662-47666-6_31.

[34] M.Y. Vardi (1998): Reasoning about The Past with Two-Way Automata. In: International Colloquium on
Automata, Languages, and Programming’98, LNCS 1443, Springer, pp. 628–641. Available at https://
doi.org/10.1007/BFb0055090.

[35] J. Vöge & M. Jurdziński (2000): A Discrete Strategy Improvement Algorithm for Solving Parity Games. In:
Computer Aided Verification’00, LNCS 1855, Springer, pp. 202–215. Available at https://doi.org/10.
1007/10722167_18.

[36] T. Wilke (2001): Alternating Tree Automata, Parity Games, and Modal muCalculus. Bulletin of the Belgian
Mathematical Society 8(2), pp. 359–391. Available at https://doi.org/10.36045/bbms/1102714178.

[37] W. Zielonka (1998): Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite
Trees. Theoretical Computer Science 200(1-2), pp. 135–183. Available at https://doi.org/10.1016/
S0304-3975(98)00009-7.

[38] U. Zwick & M. Paterson (1996): The Complexity of Mean Payoff Games on Graphs. Theoretical Computer
Science 158(1-2), pp. 343–359. Available at https://doi.org/10.1016/0304-3975(95)00188-3.

A. Achilleos and D. Della Monica (Eds.): Fourteenth
International Symposium on Games, Automata, Logics,
and Formal Verification (GandALF 2023).
EPTCS 390, 2023, pp. 220–235, doi:10.4204/EPTCS.390.14

© M. Fränzle, S. Winter & M. Zimmermann
This work is licensed under the
Creative Commons Attribution License.

Strategies Resilient to Delay:
Games under Delayed Control vs. Delay Games

Martin Fränzle
Carl v. Ossietzky Universität

Oldenburg, Germany
martin.fraenzle@uol.de

Sarah Winter
Université libre de Bruxelles

Brussels, Belgium
swinter@ulb.ac.be

Martin Zimmermann
Aalborg University
Aalborg, Denmark
mzi@cs.aau.dk

We compare games under delayed control and delay games, two types of infinite games modelling
asynchronicity in reactive synthesis. Our main result, the interreducibility of the existence of sure
winning strategies for the protagonist, allows to transfer known complexity results and bounds on
the delay from delay games to games under delayed control, for which no such results had been
known. We furthermore analyze existence of randomized strategies that win almost surely, where
this correspondence between the two types of games breaks down.

1 Introduction

Two-player zero-sum games of infinite duration are a standard model for the synthesis of reactive con-
trollers, i.e., correct-by-construction controllers that satisfy their specification even in the presence of a
malicious environment. In such games, the interaction between the controller and the environment is
captured by the rules of the game and the specification on the controller induces the winning condition
of the game. Then, computing a correct controller boils down to computing a winning strategy.

Often, it is convenient to express the rules in terms of a graph capturing the state-space such that
moves correspond to transitions between these states. The interaction between the controller and the
environment then corresponds to a path through the graph and the winning condition is a language of
such paths, containing those that correspond to interactions that satisfy the specification on the controller.

In other settings, it is more convenient to consider a slightly more abstract setting without game
graphs, so-called Gale-Stewart games [4]. In such games, the players alternatingly pick a sequence of
letters, thereby constructing an infinite word. The winning condition is a language over infinite words,
containing the winning words for one player. To capture the synthesis problem, the winning condition has
to encode both the specification on the controller as well as the rules of interaction. It is straightforward
to transform a graph-based game into a Gale-Stewart game and a Gale-Stewart game into a graph-based
game such that the existence of winning strategies for both players is preserved.

In the most basic setting of synthesis, both the controller and the environment are fully informed
about the current state of the game (complete information). However, this scenario is not always realistic.
Thus, much effort has been poured into studying games under incomplete information where the players
are only partially informed about the current state of the game. Here, we are concerned with a special
type of partial information designed to capture delays in perception and action. Such delays either render
the most recent moves of the opponent invisible to a player or induce a time lag between the selection
and the implementation of an own move, respectively.

As a motivating example, consider the domain of cooperative driving: Here, the exchange of informa-
tion between cars is limited (and therefore delayed) by communication protocols that have to manage the
available bandwidth to transfer information between cars. Other delaying factors include, e.g., complex

http://dx.doi.org/10.4204/EPTCS.390.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. Fränzle, S. Winter & M. Zimmermann 221

signal processing chains based on computer vision to detect the locations of obstacles. Thus, decisions
have to be made based on incomplete information, which only arrives after some delay.

Games under Delayed Control. Chen et al. [2] introduced (graph) games under delayed control
to capture this type of incomplete information. Intuitively, assume the players so far have constructed a
finite path v0 · · ·vk through the graph. Then, the controller has to base her decision on a visible proper
prefix v0 · · ·vk−δ , where δ is the amount of delay. Hence, the suffix vk−δ+1 · · ·vk is not yet available to
base the decision on, although the decision to be made is to be applied at the last state vk in the sequence.

They showed that solving games under delayed control with safety conditions and with respect to
a given delay is decidable: They presented two algorithms, an exponential one based on a reduction to
delay-free safety games using a queue of length δ , and a more practical incremental algorithm synthe-
sizing a series of controllers handling increasing delays and reducing game-graph size in between. They
showed that even a naïve implementation of this algorithm outperforms the reduction-based one, even
when the latter is used with state-of-the-art solvers for delay-free games. However, the exact complexity
of the incremental algorithm and that of solving games under delayed control remained open.

Note that asking whether there is some delay δ that allows controller to win reduces to solving
standard, i.e., delay-free games, as they correspond to the case δ = 0. The reason is monotonicity in the
delay: if the controller can win for delay δ then also for any δ ′ < δ . More interesting is the question
whether controller wins with respect to every possible delay. Chen et al. conjectured that there is some
exponential δ such that if the controller wins under delay δ , then also under every δ ′.

Delay Games. There is also a variant of Gale-Stewart games modelling delayed interaction between
the players [7]. Here, the player representing the environment (often called Player I) has to provide a
lookahead on her moves, i.e., the player representing the controller (accordingly called Player O) has
access to the first n+ k letters picked by Player I when picking her n-th letter. So, k is the amount of
lookahead that Player I has to grant Player O. Note that the lookahead benefits Player O (representing
the controller) while the delay in a game under delayed control disadvantages the controller.

Only three years after the seminal Büchi-Landweber theorem showing that delay-free games with ω-
regular winning conditions are decidable [1], Hosch and Landweber showed that it is decidable whether
there is a k such that Player O wins a given Gale-Stewart game with lookahead k [7]. Forty years later,
Holtmann, Kaiser, and Thomas [6] revisited these games (and dubbed them delay games). They proved
that if Player O wins a delay game then she wins it already with at most doubly-exponential lookahead (in
the size of a given deterministic parity automaton recognizing the winning condition). Thus, unbounded
lookahead does not offer any advantage over doubly-exponential lookahead in games with ω-regular
winning conditions. Furthermore, they presented an algorithm with doubly-exponential running time
solving delay games with ω-regular winning conditions conditions, i.e., determining whether there exists
a k such that Player O wins a given delay game (with its winning condition again given by a deterministic
parity automaton) with lookahead k.

Both upper bounds were improved and matching lower bounds were later proven by Klein and Zim-
mermann [9]: Solving delay games is EXPTIME-complete and exponential lookahead is both necessary
to win some games and sufficient to win all games that can be won. Both lower bounds already hold for
winning conditions specified by deterministic safety automata while the upper bounds hold for determin-
istic parity automata. The special case of solving games with conditions given as reachability automata
is PSPACE-complete, but exponential lookahead is still necessary and sufficient. Thus, there are tight
complexity results for delay games, unlike for games under delayed control.

Our Contributions. In this work, we exhibit a tight relation between controller in a game under
delayed control and Player I in a delay game (recall that these are the players that are disadvantaged by
delay and lookahead, respectively). Note that winning conditions in games under delayed control are

222 Strategies Resilient to Delay

always given from the perspective of controller (i.e., she has to avoid unsafe states in a safety game)
while winning conditions in delay games are always given from the perspective of Player O. Hence, as
we relate controller and Player I, we always have to complement winning conditions.

More precisely, we show that one can transform a safety game under delayed control in polynomial
time into a delay game with a reachability condition for Player O (i.e., with a safety condition for Player I)
such that controller wins the game under delayed control with delay δ if and only if Player I wins the
resulting delay game with lookahead of size δ

2 . Dually, we show that one can transform a delay game
with safety condition for Player I in polynomial time into a reachability game under delayed control
such that Player I wins the delay game with lookahead of size δ if and only if controller wins the
resulting game under delayed control with delay 2δ . Thus, we can transfer both upper and lower bound
results on complexity and on (necessary and sufficient) lookahead from delay games to delayed control.
In particular, determining whether controller wins a given safety game under delayed control for every
possible delay is PSPACE-complete. Our reductions also prove the conjecture by Chen et al. on the delays
that allow controller to win such games. Furthermore, we generalize our translation from games with
safety conditions to games with parity conditions and games with winning conditions given by formulas
of Linear Temporal Logic (LTL) [12], again allowing us to transfer known results for delay games to
games under delayed control.

Note that we have only claimed that the existence of winning strategies for the controller in the
game under delayed control and Player I in the delay game coincides. This is no accident! In fact,
the analogous result for relating environment and Player O fails. This follows immediately from the
fact that delay games are determined while games under delayed control are undetermined, even with
safety conditions. The reason is that the latter games are truly incomplete information games (which are
typically undetermined) while delay games are perfect information games.

We conclude by a detailed comparison between environment and Player O in both the setting with
deterministic as well as in the setting with randomized strategies. The latter setting increases power for
both the controller and the environment, making them win (almost surely) games under delayed control
that remain undetermined in the deterministic setting, but it also breaks the correspondence between
controller and Player I observed in the deterministic setting: there are games that controller wins almost
surely while Player I surely looses them.

All proofs which are omitted due to space restrictions can be found in the full version [3].

2 Preliminaries

We denote the non-negative integers by N. An alphabet Σ is a non-empty finite set of letters. A word
over Σ is a finite or infinite sequence of letters of Σ: The set of finite words (non-empty finite words,
infinite words) over Σ is denoted by Σ∗ (Σ+, Σω). The empty word is denoted by ε , the length of a
finite word w is denoted by |w|. Given two infinite words α ∈ (Σ0)

ω and β ∈ (Σ1)
ω , we define

(
α

β

)
=(

α(0)
β (0)

)(
α(1)
β (1)

)(
α(2)
β (2)

)
· · · ∈ (Σ0×Σ1)

ω .

2.1 Games under Delayed Control

Games under delayed control are played between two players, controller and environment. For pronomial
convenience [11], we refer to controller as she and environment as he.

A game G = (S,s0,Sc,Se,Σc,Σe,→,Win) consists of a finite set S of states partitioned into the
states Sc ⊆ S of the controller and the states Se ⊆ S of the environment, an initial state s0 ∈ Sc, the sets of

M. Fränzle, S. Winter & M. Zimmermann 223

actions Σc for the controller and Σe for the environment, a transition function→ : (Sc×Σc)∪(Se×Σe)→
S such that s ∈ Sc and σ ∈ Σc implies→(s,σ) ∈ Se and vice versa, and a winning condition Win ⊆ Sω .
We write s σ−→ s′ as shorthand for s′ =→(s,σ).

A play in G is an infinite sequence π = π0σ0π1σ1π2σ2 · · · satisfying π0 = s0 and πn
σn−→ πn+1 for

all n ≥ 0. We say that controller wins π if π0π1π2 · · · ∈Win; otherwise, we say that environment wins
π . The play prefix of π of length n is defined as π[n] = π0σ0 · · ·σn−1πn, i.e., n is the number of actions
(equivalently, the number of transitions). We denote by Pref(G) the set of play prefixes of all plays in G ,
which is partitioned into the sets Prefc(G) and Prefe(G) of play prefixes ending in Sc and Se, respectively.
Due to our alternation assumption, play prefixes of even (odd) length are in Prefc(G) (Prefe(G)).

Fix some even δ ≥ 0. A strategy for the controller in G under delay δ is a pair (α,τc) where
α ∈ (Σc)

δ

2 and τc : Prefc(G) → Σc maps play prefixes ending in Sc to actions of the controller. A
play π0σ0π1σ1π2σ2 · · · is consistent with (α,τc) if σ0σ2 · · ·σδ−4σδ−2 = α and σ2n = τc(π[2n− δ]) for
all 2n > δ−2, i.e., controller has access to environment’s actions with a delay of δ . In particular, her first
δ

2 +1 actions are independent of environment’s actions and, in general, her n-th action σ2n only depends
on the actions σ1, . . . ,σ(2n−δ)−1 picked by environment, but not on the actions σ(2n−δ)+1, . . . ,σ2n−1. The
strategy (α,τc) is winning under delay δ if every play that is consistent with it is winning for controller.
Controller wins G under delay δ if she has a winning strategy under delay δ for G .

Remark 1.

1. The notion of winning strategy for controller under delay 0 is the classical one for delay-free
games (cf. [5]).

2. If controller wins G under delay δ , then also under every delay δ ′ < δ [2].

A strategy for environment is a mapping τe : Prefe(G)→ Σe. A play π0σ0π1σ1π2σ2 · · · is consistent
with τe if σ2n+1 = τe(π0σ0 · · ·σ2n−1π2n+1) for all n ≥ 0, i.e., environment has access to the full play
prefix when picking his next action. The strategy τe is winning, if every play that is consistent with it is
winning for the environment (i.e., the sequence of states is not in Win). Further, we say that environment
wins G , if he has a winning strategy for G . Note that the two definitions of strategies are in general not
dual, e.g., the one for environment is not defined with respect to a delay δ .

Remark 2. The notion of winning strategy for environment is the classical one for delay-free games
(cf. [5]).

We say that a game under delayed control G is determined under delay δ , if either controller wins
G under delay δ or environment wins G . Let us stress that determinacy is defined with respect to some
fixed δ and that G may be determined for some δ , but undetermined for some other δ ′ (due to the non-
dual definition of strategies). Remark 9 shows an undetermined safety (!) game under delayed control.

Example 1. Consider the game G = (S,sI,Sc,Se,Σc,Σe,→,Win) depicted in Fig. 1 where Win contains
all plays that do not visit the black vertex. Note that this is a safety condition. In particular, if controller
does not pick action b at c2 and does not pick action a at c3, then the vertex e3 is never reached. This is
straightforward without delay, but we claim that controller can also win G under delay 2.

To gain some intuition, consider a play prefix π0σ0π1 · · ·πn−1σn−1πn with n ≥ 4 and πn ∈ Sc. Then,
controller has to pick an action σn to continue the prefix. However, due to the delayed control, she has
to do so based on the prefix π0σ0π1 · · ·πn−3σn−3πn−2.

If πn−2 is c2, then πn is either c3 or c1. Hence, picking σn = b is the only safe choice. Dually, if πn−2
is c3, then πn is either c2 or c1. Hence, picking σn = a is the only safe choice.

224 Strategies Resilient to Delay

C E C E

c1

e1

e2

c2

c3

e4

e3

e5

a

b

u,u′

u,u′

a
b

a
b

u,u′

u

u′

u

u′

Figure 1: The game for Example 1. Controller wins all plays that never visit the black vertex. Note that
we have Σc = {a,b} and Σe = {u,u′}.

Finally, assume πn−2 is c1. Then, πn is either c2 or c3. In the former case, picking σn = a is the only
safe choice, in the latter case, picking σn = b is the only safe choice. So, controller needs to distinguish
these two cases, although she has no access to πn.

But she can do so by inspecting πn−3 (which she has access to): As a predecessor of πn−2 = c1, it
can either be e4, e5, or e3. In the latter case, the play is already losing. Thus, we disregard this case, as
we construct a winning strategy. So, assume we have πn−3 = e4 (the case πn−3 = e5 is dual). Then, we
must have πn−4 = c2 (the only predecessor of e4) and, by our analysis of the safe moves above, controller
must have picked σn−2 = b (based, due to delay, on the prefix ending in σn−4 = c2). From this we can
conclude πn−1 = e2 and thus πn = c3 (the only successor of e2). Thus, she can safely pick σn = b.

This intuition, and the necessary initialization, is implemented by the strategy (α,τc) with α = a and

τc(π0σ0π1 · · ·πn−3σn−3πn−2) =

a n = 2 and π0 = c1,
b n > 2, πn−2 = c1, and πn−3 = e4,
a n > 2, πn−2 = c1, and πn−3 = e5,
b πn−2 = c2,
a πn−2 = c3.

An induction over the play length shows that (α,τc) is winning for controller under delay 2.

Remark 3. Our definition of games under delayed control differs in three aspects from the original
definition of Chen et al. [2].

• We allow arbitrary winning conditions while Chen et al. focused on safety conditions.

• The original definition allows nondeterministic strategies (a strategy that returns a nonempty set
of actions, each one of which can be taken), while we restrict ourselves here to deterministic
strategies (a strategy that returns a single action to be taken). The motivation for their use of
nondeterministic strategies is the fact that they can be refined if additional constraints are imposed,
which Chen et al.’s algorithm computing a winning strategy relies on.
Here, on the other hand, we are just interested in the existence of winning strategies. In this
context, it is sufficient to consider deterministic strategies, as controller has a nondeterministic
winning strategy if and only if she has a deterministic winning strategy. Also, strategies in delay
games are deterministic, so the transformation between games under delayed control and delay
games can be formulated more naturally for deterministic strategies.

M. Fränzle, S. Winter & M. Zimmermann 225

• The original definition also allowed odd delays δ while we only allow even delays. As we will
see in Section 3, the transformation of games under delayed control to delay games is naturally
formulated for even delays. This choice also simplifies definitions, as accounting for odd delays
imposes an additional notational burden.

2.2 Delay Games

Delay games are played between two players, Player I (she) and Player O (he). A delay game Γk(L)
(with constant lookahead) consists of a lookahead k ∈ N and a winning condition L ⊆ (ΣI ×ΣO)

ω for
some alphabets ΣI and ΣO. Such a game is played in rounds n = 0,1,2, . . . as follows: in round 0, first
Player I picks a word x0 ∈ Σ

k+1
I , then Player O picks a letter y0 ∈ ΣO. In round n > 0, Player I picks a

letter xn ∈ ΣI , then Player O picks a letter yn ∈ ΣO. Player O wins a play (x0,y0)(x1,y1)(x2,y2) · · · if the
outcome

(x0x1x2···
y0y1y2···

)
is in L; otherwise, Player I wins.

A strategy for Player I in Γk(L) is a mapping τI : Σ∗O→ Σ∗I satisfying |τI(ε)|= k+1 and |τI(w)|= 1
for all w ∈ Σ

+
O . A strategy for Player O is a mapping τO : Σ

+
I → ΣO. A play (x0,y0)(x1,y1)(x2,y2) · · · is

consistent with τI if xn = τI(y0 · · ·yn−1) for all n≥ 0, and it is consistent with τO if yn = τO(x0 · · ·xn) for
all n≥ 0. So, strategies are dual in delay games, i.e., Player I has to grant some lookahead on her moves
that Player O has access to. A strategy for Player P ∈ {I,O} is winning, if every play that is consistent
with the strategy is won by Player P. We say that Player P ∈ {I,O} wins a game Γk(L) if Player P has a
winning strategy in Γk(L).

Remark 4.
• If Player O wins Γk(L), then he also wins Γk′(L) for every k′ > k.

• If Player I wins Γk(L), then she also wins Γk′(L) for every k′ < k.

Unlike games under delayed control, delay games with Borel winning conditions are determined [9],
i.e., each delay game Γk(L) with Borel L and fixed k is won by one of the players.

Example 2. Consider L=
{(a0

b0

)(a1
b1

)(a2
b2

)
· · · | b0 /∈ {a0,a1,a2}

}
over the alphabets ΣI =ΣO = {1,2,3,4}.

Player I wins Γk(L) for k = 1 with the following strategy τI: τI(ε) = 12 and τI(b0) = b0, and τI(w)
arbitrary for all w ∈ Σ

+
O with |w|> 1: In round 0, after Player I has picked a0a1 = 12, Player O has to

pick some b0. In order to not loose immediately, he has to pick b0 /∈ {1,2}. Then, in round 1, Player I
picks a2 = b0 and thereby ensures b0 ∈ {a0,a1,a2}. Hence, the play is not won by Player O (it’s outcome
is not in L), therefore it is winning for Player I.

However, Player O wins Γk(L) for k = 2 with the following strategy τO: τO(a0a1a2) is a letter in the
nonempty set ΣO \{a0,a1,a2} and τO(w) arbitrary for all w ∈ Σ∗I with |w| 6= 3. In round 0, after Player I
has picked a0a1a2, Player O picks b0 /∈ {a0,a1,a2} and thus ensures that the outcome is in L.

Remark 5. We restrict ourselves here to the setting of constant lookahead, i.e., in a delay game Γk(L)
in round n when Player O picks her n-th letter, Player I has already picked k+ n+ 1 letters (note that
we start in round 0 with the zeroth letter). Delay games have also been studied with respect to growing
lookahead, i.e., the lookahead increases during a play [6]. However, it is known that constant lookahead
is sufficient for all ω-regular winning conditions: if Player O wins for any lookahead (no matter how
fast it is growing), then she also wins with respect to constant lookahead, which can even be bounded
exponentially in the size of a deterministic parity automaton recognizing the winning condition [9].
Stated differently, growing lookahead does not allow to win any more games than constant lookahead.
Finally, the setting of constant lookahead in delay games considered here is the natural counterpart to
games under delayed control, where the delay is fixed during a play.

226 Strategies Resilient to Delay

2.3 ω-Automata

A deterministic reachability automaton A = (Q,Σ,qI,δA ,F) consists of a finite set Q of states contain-
ing the initial state qI ∈ Q and the set of accepting states F ⊆ Q, an alphabet Σ, and a transition func-
tion δA : Q×Σ→ Q. The size of A is defined as |A | = |Q|. Let w = w0w1w2 · · · ∈ Σω . The run of A
on w is the sequence q0q1q2 · · · such that q0 = qI and qn+1 = δA (qn,wn) for all n≥ 0. A run q0q1q2 · · · is
(reachability) accepting if qn ∈ F for some n≥ 0. The language (reachability) recognized by A , denoted
by L(A), is the set of infinite words over Σ such that the run of A on w is (reachability) accepting.

A deterministic safety automaton has the form A = (Q,Σ,qI,δA ,U) where Q,Σ,qI,δA are as in a
deterministic reachability automaton and where U ⊆ Q is a set of unsafe states. The notions of size and
runs are defined as for reachability automata, too. A run q0q1q2 · · · is (safety) accepting if qn /∈U for all
n≥ 0. The language (safety) recognized by A , again denoted by L(A), is the set of infinite words over
Σ such that the run of A on w is (safety) accepting.

A deterministic parity automaton has the form A = (Q,Σ,qI,δA ,Ω) where Q,Σ,qI,δA are as in a
deterministic reachability automaton and where Ω : Q→ N is a coloring of the states. The notions of
size and runs are defined as for reachability automata, too. A run q0q1q2 · · · is (parity) accepting if the
maximal color appearing infinitely often in the sequence Ω(q0)Ω(q1)Ω(q2) · · · is even. The language
(parity) recognized by A , again denoted by L(A), is the set of infinite words over Σ such that the run of
A on w is (parity) accepting.

Reachability and safety automata are dual while parity automata are self-dual.

Remark 6.

1. Let A = (Q,Σ,qI,δA ,F) be a deterministic reachability automaton and let A be the deterministic
safety automaton (Q,Σ,qI,δA ,Q\F). Then, L(A) = L(A).

2. Let A = (Q,Σ,qI,δA ,Ω) be a deterministic parity automaton and let A be the deterministic
parity automaton (Q,Σ,qI,δA ,q 7→Ω(q)+1). Then, L(A) = L(A).

3 From Games under Delayed Control to Delay Games and Back

In this section, we exhibit a tight correspondence between controller in games under delayed control
and Player I in delay games. Recall that in a game under delayed control, it is the controller whose
control is delayed, i.e., she is at a disadvantage as she only gets delayed access to the action picked by
environment. In a delay game, it is Player I who is at a disadvantage as she has to grant a lookahead
on her moves to Player O. Thus, when simulating a game under delayed control by a delay game, it is
natural to let Player I take the role of controller and let Player O take the role of environment. Also recall
that the winning condition Win in a game under delayed control is formulated from controller’s point-
of-view: the winning condition requires her to enforce a play in Win. On the other hand, the winning
condition L of a delay game is formulated from the point-of-view of Player O: Player O has to enforce
a play whose outcome is in L. Thus, as Player I takes the role of controller, we need to complement the
winning condition to reflect this change in perspective: The set of winning outcomes for Player I in the
simulating delay game is the complement of Win.

In the remainder of this section, we show how to simulate a game under delayed control by a delay
game and then the converse, i.e., how to simulate a delay game by a game under delayed control.

Transformation 1. First, we transform a game under delayed control into a delay game. In the re-
sulting delay game, the players simulate a play in the game under delayed control by picking actions,

M. Fränzle, S. Winter & M. Zimmermann 227

which uniquely induce such a play. To formalize this, we need to introduce some notation. Fix a
game G = (S,s0,Sc,Se,Σc,Σe,→,Win). Note that a sequence σ0σ1σ2 · · · ∈ (ΣcΣe)

ω induces a unique
play play(σ0σ1σ2 · · ·) = π0σ0π1σ1π2σ2 · · · in G which is defined as follows: π0 = s0 and πn+1 =→
(πn,σn) for all n ≥ 0. Likewise, a finite sequence σ0σ1 · · ·σn ∈ (ΣcΣe)

∗(Σc + ε) induces a unique play
prefix play(σ0σ1 · · ·σn) which is defined analogously.

Now, we define the language L(G) ⊆ (Σc× Σe)
ω such that

(
σ0
σ1

)(
σ2
σ3

)(
σ4
σ5

)
· · · ∈ L(G) if and only if

play(σ0σ1σ2 · · ·) is winning for controller.

Now, we prove the correspondence between G and Γk(L(G)). The winning condition of the delay
game is the complement of L(G), which implements the switch of perspective described above.

Lemma 1. Let G be a game and δ ≥ 0 even. Controller wins G under delay δ if and only if Player I
wins Γk(L(G)) for k = δ

2 .

Now, we consider the converse and transform a delay game into a game under delayed control.

Transformation 2. Fix a delay game Γk(L). We construct a game under delayed control to simulate
Γk(L) as follows: The actions of controller are the letters in ΣI , and the actions of environment are the
letters in ΣO. Thus, by picking actions, controller and environment construct the outcome of a play of
Γk(L). As winning conditions of games under delayed control only refer to states visited by a play, but
not the actions picked by the players, we reflect the action picked by a player in the state reached by
picking that action. Here, we have to require without loss of generality that ΣI and ΣO are disjoint.

Formally, we define G (L) = (S,s0,Sc,Se,Σc,Σe,→,Win) with S = Sc ∪ Se, Sc = {s0}∪ΣO, Se = ΣI ,
Σc = ΣI , Σe = ΣO, →(s,a) = a for all s ∈ Sc and a ∈ ΣI , and →(s,b) = b for all s ∈ Se and b ∈ ΣO.
Finally, we define Win = {s0s1s2 · · · |

(s0
s1

)(s2
s3

)(s4
s5

)
· · · ∈ L}.

The following remark states that the two transformations are inverses of each other, which simplifies
the proof of correctness of the second transformation. It follows by a careful inspection of the definitions.

Remark 7. Let L⊆ (ΣI×ΣO)
ω . Then, L = L(G (L)).

Now, we show that the second transformation is correct, again using complementation to implement
the perspective switch.

Lemma 2. Let L⊆ (ΣI×ΣO)
ω and k ≥ 0. Player I wins Γk(L) if and only if controller wins G (L) under

delay 2k.

4 Results

Lemma 1 and Lemma 2 allow us to transfer results from delay games to games under delayed control.
Due to the definitions of strategies in games under delayed control not being dual, we consider both
players independently, controller in Section 4.1 and environment in Section 4.2.

Recall that delay that allows controller to win satisfies a monotonicity property (see Remark 1.2): if
controller wins a game under delay δ , then also under every delay δ ′ < δ . Thus, the set of delays for
which controller wins is downward-closed, i.e., it is either a finite set {0,2,4 . . . ,δmax} or it is equal to
the set 2N of even numbers. In the following, we study the complexity of determining whether controller
wins under all possible delays, whether she wins under a given delay, and determine bounds on δmax.

Note that winning for environment is independent of delay and boils down to the classical notion
of winning delay-free games [5], which is a well-studied problem. Hence, we disregard this problem.
However, we do discuss the relation between environment in a game under delayed control and Player O
in the simulating delay game constructed in the previous section.

228 Strategies Resilient to Delay

4.1 Controller’s View

Before we present our results, we need to specify how to measure the size of games and delay games,
especially how winning conditions are represented (recall that, so far, they are just ω-languages). In the
following, we only consider ω-regular winning conditions specified by ω-automata (see Section 2.3) or
formulas of Linear Temporal Logic (LTL) [12], which subsume the typical specification languages for
winning conditions. Hence, the size of a game (S,s0,Sc,Se,Σc,Σe,→,Win) under delayed control is given
by the sum |S|+ |Σc|+ |Σe|+ |Win|, where |Win| is the size of an automaton or LTL formula (measured
in the number of distinct subformulas) representing Win. Analogously, for a delay game Γk(L), we define
the size of L as the size of an automaton or LTL formula (measured in the number of distinct subformulas)
representing L. The bound k is encoded in binary, if necessary.

Safety. A game G = (S,s0,Sc,Se,Σc,Σe,→,Win) with winning condition Win is a safety game if Win
is accepted by a deterministic safety automaton.

Remark 8. When Chen et al. introduced safety games under delayed control, they did not use automata
to specify their winning plays, but instead equipped the game with a set of unsafe states and declared all
those plays winning for controller that never visit an unsafe state. It is straightforward to see that our
definition is equivalent, as their definition is captured by a deterministic safety automaton with two states.
Conversely, taking the product of a game and a deterministic safety automaton yields an equivalent game
with a state-based safety condition.

Our results rely on the following two bounds on the transformations presented in Section 3, which
are obtained by applying Remark 6:

1. If the winning condition Win for a game G under delayed control is given by a deterministic
safety automaton with n states, then the winning condition L(G) is recognized by a deterministic
reachability automaton with n states.

2. Dually, if the winning condition L ⊆ (ΣI × ΣO)
ω of a delay game is given by a deterministic

reachability automaton with n states, then the winning condition of the game G (L) under delayed
action is recognized by a deterministic safety automaton with O(n · |ΣI|) states.

We begin by settling the complexity of determining whether controller wins a given safety game
under every delay, which follows from the PSPACE-completeness of determining whether there is a
lookahead that allows Player O to win a given delay game with reachability winning condition [9].

Theorem 1. The following problem is PSPACE-complete: Given a safety game G , does controller win
G under every delay δ?

Next, we give a lower bound on the complexity of determining whether controller wins a given
safety game under a given delay, which is derived from a lower bound for delay games with reachability
winning conditions.

Theorem 2. The following problem is PSPACE-hard: Given a safety game G and δ (encoded in binary),
does controller win G under delay δ .

Note that we do not claim any upper bound on the problem considered in Theorem 2. There is a
trivial 2EXPTIME upper bound obtained by hardcoding the delay into the graph of the safety game,
thereby obtaining a classical delay-free safety game. It is open whether the complexity can be improved.
Let us remark though that, via the correspondence to delay games presented in Section 3, improvements
here would also yield improvements on the analogous problem for delay games, which is open too [15].

M. Fränzle, S. Winter & M. Zimmermann 229

Next, we turn our attention to bounds on the delay for which controller wins. Recall that due to
monotonicity, the set of delays for which controller wins is downward-closed, i.e., it is either a finite
set {0,2,4 . . . ,δmax} or it is equal to 2N. In the following, we present tight bounds on the value δmax.

As a consequence, we settle a conjecture by Chen et al.: They conjectured that there is some delay δt

(exponential in |G |), such that if controller wins G under delay δt , then she wins under every delay. Note
that this conjecture implies that δmax is at most exponential.

The following theorem proves Chen et al.’s conjecture, while Theorem 4 shows that δt must necessar-
ily be exponential. For δmax this means it is at most exponential for every game, and can be exponential
for some games.

The following two results are again obtained from similar bounds for delay games with reachability
winning conditions.

Theorem 3. Let G be a safety game. There is a δt ∈O(2|G |) such that if controller wins G under delay δt ,
then she wins G under every δ .

Finally, we show that the exponential upper bound on δmax is tight.

Theorem 4. For every n > 1, there is a safety game Gn of size O(n) such that controller wins G under
delay 2n, but not under delay 2n +2.

Parity. Next, we consider the case of ω-regular winning conditions, given by deterministic parity
automata. Applying Remark 6 yields the following two bounds on the transformations from Section 3:

1. If the winning condition Win for a game G under delayed control is given by a deterministic parity
automaton with n states, then the winning condition L(G) is recognized by a deterministic parity
automaton with n states.

2. Dually, if the winning condition L⊆ (ΣI×ΣO)
ω of a delay game is given by a deterministic parity

automaton with n states, then the winning condition of the game G (L) under delayed action is
recognized by a deterministic parity automaton with O(n · |ΣI|) states.

Exponential lookahead is both sufficient to win all ω-regular delay games that can be won and required
to win some of these games [9]. Furthermore, determining whether there is some lookahead that allows
Player O to win a given ω-regular delay game is EXPTIME-complete [9]. As in the case of safety games,
we can transfer these results to games under delayed control with ω-regular winning conditions.

Theorem 5.

1. The following problem is EXPTIME-complete: Given a game G with ω-regular winning condition
specified by a deterministic parity automaton, does controller win G under every delay δ?

2. Let G be a game with ω-regular winning condition specified by a deterministic parity automaton
with n states. There is a δt ∈ O(2n2

) such that if controller wins G under delay δt , then she wins
G under every δ .

3. For every n > 1, there is a game Gn of size O(n2) with ω-regular winning condition specified by
a two-state deterministic parity automaton An such that controller wins G under delay 2n, but not
under delay 2n +2.

Note that the lower bound on δt is just a restatement of Theorem 4, as safety games have ω-regular
winning conditions.

230 Strategies Resilient to Delay

Linear Temporal Logic. Finally, one can also transfer the triply-exponential upper and lower bounds
on the necessary lookahead in delay games with LTL winning conditions as well as the 3EXPTIME-
completeness of determining whether Player O wins such a delay game with respect to some looka-
head [10] to games under delayed control with LTL winning conditions. Here, we exploit the following
facts:

1. If the winning condition Win for a game G under delayed control is given by an LTL formula ϕ ,
then the winning condition L(G) is given by an LTL formula of size O(|ϕ|).

2. Dually, if the winning condition L ⊆ (ΣI ×ΣO)
ω of a delay game is given by an LTL formula ϕ ,

then the winning condition of the game G (L) under given action is given by an LTL formula of
size O(|ϕ|).

Theorem 6.

1. The following problem is 3EXPTIME-complete: Given a game G with winning condition specified
by an LTL formula ϕ , does controller win G under every delay δ?

2. Let G be a game with ω-regular winning condition specified by an LTL formula ϕ . There is a

δt ∈ O(222|ϕ|+|G |
) such that if controller wins G under delay δt , then she wins G under every δ .

3. For every n > 1, there is a game Gn of size O(n2) with winning condition specified by an LTL
formula ϕn of size O(n2) such that controller wins G under delay 222n

, but not under delay 222n

+2.

To conclude, let us just remark that the results presented here also allow us to transfer results obtained
for delay games with quantitative winning conditions [10, 13, 14] to games under delayed control with
quantitative winning conditions. In fact, our result works for any winning condition, as long as the two
transformations described in Section 3 are effective.

4.2 Environment’s View

In Section 3, we proved a tight correspondence between controller in a game under delayed control and
Player I in a delay game. Thus, it is natural to ask whether environment and Player O also share such
a tight correspondence. A first indication that this is not the case can be obtained by considering the
determinacy of these games: While delay games with Borel winning conditions are determined [8], even
safety games under delayed action are not necessarily determined [2].

Upon closer inspection, this is not surprising, as the strategies in games under delayed control are not
dual between the players: controller is at a disadvantage as she only gets delayed access to the actions
picked by environment while environment does not benefit from this disadvantage. He does not get
access to the actions picked by controller in advance. In a delay game however, the strategy definitions
are completely dual: Player I has to grant lookahead on her moves which Player O gets access to. Thus,
environment is in a weaker position than Player O.1

In this section, we study the correspondence between environment and Player O in detail by formally
proving that environment is weaker than Player O.

Lemma 3. Let G be a safety game. If environment wins G then Player O wins Γk(L(G)) for every k.

Now, we show that the converse direction fails.

1The difference can be formalized in terms of the information the players have access to: safety games under delay are
incomplete-information games while delay games are complete-information games. Although interesting, we do not pursue
this angle any further.

M. Fränzle, S. Winter & M. Zimmermann 231

C E C E C

h, t h

t
h
t

h
t

h, t h, t

h, t h, t

Figure 2: A safety game that environment does not win, but Player O wins the associated delay game.
The initial state is marked by an arrow and the unsafe vertices are black. Note that both players have the
actions h and t available.

Lemma 4. There is a safety game G such that Player O wins Γk(L(G)) for some k, but environment does
not win G .

Proof. Let G be the safety game depicted in Fig. 2. With each move, the players place a coin (by
either picking heads or tails) and environment wins a play by correctly predicting the second action of
controller with his first action. Clearly, environment has no winning strategy in G because he has no
access to future moves of controller. Stated differently, if environment picks h (t) in his first move, then
the play in which the second action of controller is t (h) is winning for controller.2

Now, we consider the delay game Γk(L(G)) for k = 1. Recall that the winning condition L(G)
contains the winning plays for Player O, i.e., we have

(
σ0σ2σ4···
σ1σ3σ5···

)
∈ L(G) if and only if σ1 6= σ2. It is easy

to see that Player O has a winning strategy in Γk(L(G)) by simply flipping the second letter picked by
Player I. This is possible since Player I has to provide two letters during the first round.

Remark 9. The safety game G depicted in Fig. 2 is in fact undetermined under every delay δ > 0. In
the proof of Lemma 4, we have already established that environment does not win G . Now, under every
delay δ > 0, controller has to fix at least two actions before getting access to the first action picked
by environment. This implies that there is, for every strategy for controller under delay δ , at least one
consistent play that is losing for her, i.e., a play in which environment picks h (t) if the second move fixed
by controller is t (h). Thus, no strategy is winning for controller under delay δ .

Let us remark that, according to our definition of environment strategies, he is not able to enforce a
losing play for controller (the game is undetermined after all), as he does not get access to the second
action fixed by controller. Also, this is again the difference to delay games: Player O has access to these
first two actions when making his first move, and is thereby able to win.

The full relation between games under delayed control and delay games is depicted in Fig. 3, re-
stricted to Borel winning conditions (note that both transformations described in Section 3 preserve
Borelness). The equivalence between controller winning the game under delayed control and Player I
winning the corresponding delay game has been shown in Lemma 1 and Lemma 2. Also, Lemma 2 and
Remark 7 imply that undetermined safety games under delayed control and those won by environment
get transformed into delay games that are won by Player O. Finally, Lemma 1 and Remark 7 imply that
delay games won by Player O get transformed into undetermined safety games under delayed control or
to ones that are won by environment.

2Note that under any delay δ > 0, controller cannot do this strategically, as she has to fix her first two actions in advance.
But, as environment has no access to these fixed actions, he cannot react to them strategically.

232 Strategies Resilient to Delay

undeterminedC wins E wins

I wins O wins

Games under
delayed control

Delay games

Figure 3: The relation between games under delayed control and delay games with Borel winning con-
ditions. The upper ellipsis contains pairs (G ,δ) consisting of a game G under delayed control and a
fixed delay δ ; the lower one contains delay games Γk(L) for some fixed k. The arrows represent the two
transformations described in Section 3.

5 Refining the Correspondence: Sure Winning and Almost Sure Winning

It should be noted that the above transformations of games under delayed control into delay games
and vice versa hinge on the fact that environment in the game under delayed control could, though
lacking recent state information to do so strategically, by mere chance play the very same actions that
the informed Player O in the delay game plays in his optimal adversarial strategy. That this constitutes
a fundamental difference becomes apparent if we consider almost sure winning instead of sure winning.
Almost sure winning calls for the existence of a mixed strategy that wins with probability 1, i.e., may
fail on a set of plays with measure 0. This is different from sure winning in the sense of the definition of
winning strategies for games under delayed control in Section 2.1, which calls for a strategy that never
fails.

Remark 10. We introduce mixed strategies for games under delayed control only, as delay games (with
Borel winning conditions) are determined, which means that mixed strategies do not offer any advantage
over pure strategies as introduced in Section 2.2.

Given an even δ ≥ 0, a mixed strategy for controller in G under delay δ is a pair (α,τc) where
α ∈P

(
(Σc)

δ

2

)
is a probability distribution over (Σc)

δ

2 and τc : Prefc(G)→P (Σc) maps play prefixes
ending in Sc to probability distributions over actions of controller. A mixed strategy for environment is a
mapping τe : Prefe(G)→P (Σe).

The notion of consistency of a play with a strategy simply carries over, now inducing a Markov chain
due to the probabilistic nature of the strategies. We say that a mixed strategy for controller (environment)
wins almost surely if and only if it wins against any strategy of its opponent environment (controller) with
probability 1, i.e., if and only if the winning condition is satisfied with probability 1 over the Markov
chain induced by the game and the particular strategy combination. In this section, we write sure winning
for winning as defined in Section 2, as is usual for games with randomized strategies.

The notion of almost sure winning alters chances for the players substantially by excluding the possi-
bility of reliably playing an optimal strategy though lacking the information for doing so due to delayed
observation. This can be seen from the following lemma, stating a fundamental difference between con-
troller’s power in games under delayed control and Player I’s power in the corresponding delay games.

Lemma 5. There is a game G under delayed control such that controller wins G almost surely under
some delay δ while Player O (not Player I, which is the player corresponding to controller) wins the
corresponding delay game Γk(L(G)) for k = δ

2 , and surely so.

M. Fränzle, S. Winter & M. Zimmermann 233

C E C E

h, t
h

t

h

t
h

t

t

h

Figure 4: A reachability game that, under any positive delay, is won by controller almost surely via the
simple randomized strategy of coin tossing (thus randomly generating head and tail events h and t), but
won by player O surely if interpreted as a delay game due to the lookahead on Player I’s actions granted
to Player O. The initial state is marked by an arrow and controller wins if and only if the black vertex is
visited at least once.

Proof. Consider the reachability game in Fig. 4 under delay 2 (or any larger delay). Intuitively, the
players place a coin in each round (by picking either heads to tails with each move) and controller wins
a play if the black state is visited, which happens if she selects a different coin placement than chosen by
environment in the previous move.

Under any even (by definition) positive delay, controller wins this game with probability 1, i.e., al-
most surely, by a simple randomized strategy of coin tossing: by in each step randomly selecting action h
or t with positive probability each, an eventual visit of the black state is guaranteed with probability 1,
irrespective of being uninformed about environment’s preceding move due to the delay.

The corresponding delay game Γk(L(G)) for k = δ

2 , however, is easily won by Player O, because in
delay games, the delayed Player I grants a lookahead to Player O. Hence, Player O can, due to the delay,
already see the next move of Player I such that he can simply copy the next coin placement by Player I,
safely staying in the non-black states and thereby win.

Note that Lemma 5 implies that the previously observed correspondence between Player I and con-
troller breaks down when considering almost sure winning strategies instead of just sure winning strate-
gies: Games under delayed control for which Player O wins the corresponding delay game, are no longer
either undetermined or won by environment, but may well be won by controller almost surely.

This consequently refines the correspondence between games under delayed control and delay games
shown in Fig. 3 as follows.

Theorem 7. Given a game G and an even δ ≥ 2, the following correspondences between G and the
corresponding delay game Γk(L(G)) for k = δ

2 hold:

1. Controller surely wins G under delay δ if and only if Player I surely wins Γk(L(G)).

2. If controller almost surely wins G under delay δ but cannot surely win G under delay δ then
Player O surely wins Γk(L(G)).

3. If environment surely or almost surely wins G under delay δ then Player O wins Γk(L(G)).

4. If G is undetermined under delay δ with respect to almost sure winning strategies then Player O
wins Γk(L(G)).

5. All the aforementioned classes are non-empty, i.e., there exist games under delayed control where
controller wins, where controller wins almost surely (but not surely), where environment wins
surely, where environment wins almost surely (but not surely), and games which are undetermined
with respect to almost-sure winning strategies.

234 Strategies Resilient to Delay

undeter-
mined

C wins
surely

E wins
surely

C wins
almost surely

E wins
almost surely

I wins O wins

Games under
delayed control

Delay games

Figure 5: The relation between safety games under delayed control and delay games with Borel winning
conditions. The upper ellipsis contains pairs (G ,δ) consisting of a game G under delayed control and a
fixed delay δ ; the lower one contains delay games Γk(L) for some fixed k. The arrows represent the two
transformations described in Section 3.

The above correspondences are depicted in Fig. 5.

Item 2. of the above lemma is of particular interest, as it expresses a delay-related strengthening of
controller relative to Player I, letting controller win almost surely where Player I looses for sure. The
correspondence between controller and Player I observed in the deterministic setting thus breaks down
when almost sure winning is considered and mixed strategies are permitted.

Remark 11. In contrast to games under delayed control, where mixed strategies provide additional
power to both the controller and the environment, the notions of sure winning and almost sure winning
coincide for delay games (with Borel winning conditions) due to their determinacy [8]. Admitting mixed
strategies (and almost sure winning) does not provide additional power to either of the two players in a
delay game, as the determinacy result always implies existence of an infallible pure strategy for one of
the players.

6 Conclusion

We have compared delay games [9] and games under delayed control [2], two types of infinite games
aiming to model asynchronicity in reactive synthesis, and have exhibited the differences in definitions
and charted the relation between them with respect to both deterministic and randomized strategies: One
can efficiently transform a game under delayed control into a delay game such that controller wins the
game under delayed control with delay δ by a deterministic strategy if and only if Player I wins the
resulting delay game with lookahead of size δ

2 . Dually, one can efficiently transform a delay game into a
game under delayed control such that Player I wins the delay game with lookahead of size δ if and only
if controller wins the resulting game under delayed control with delay 2δ by a deterministic strategy.
These results allow us to transfer known complexity results and bounds on the amount of delay from
delay games to games under delayed control, for which no such results were known, when considering
deterministic strategies. We also proved that the analogous results fail in the setting of randomized strate-
gies and almost sure winning conditions, as well as for the relation between environment and Player O,
both under deterministic and randomized strategies.

Acknowledgements: Martin Fränzle has been supported by Deutsche Forschungsgemeinschaft un-
der grant no. DFG FR 2715/5-1 “Konfliktresolution und kausale Inferenz mittels integrierter sozio-
technischer Modellbildung”. Sarah Winter is a postdoctoral researcher at F.R.S.-FNRS. Martin Zim-
mermann has been supported by DIREC – Digital Research Centre Denmark.

M. Fränzle, S. Winter & M. Zimmermann 235

References
[1] J. Richard Büchi & Lawrence H. Landweber (1969): Solving Sequential Conditions by Finite-State Strategies.

Trans. Amer. Math. Soc. 138, pp. pp. 295–311, doi:10.2307/1994916.
[2] Mingshuai Chen, Martin Fränzle, Yangjia Li, Peter Nazier Mosaad & Naijun Zhan (2021): Indecision and

delays are the parents of failure - taming them algorithmically by synthesizing delay-resilient control. Acta
Informatica 58(5), pp. 497–528, doi:10.1007/s00236-020-00374-7.

[3] Martin Fränzle, Sarah Winter & Martin Zimmermann (2023): Strategies Resilient to Delay: Games under
Delayed Control vs. Delay Games. arXiv 2305.19985, doi:10.48550/arXiv.2305.19985.

[4] David Gale & Frank M. Stewart (1953): Infinite games with perfect information. Annals of Mathematics 28,
pp. 245–266, doi:10.1515/9781400881970-014.

[5] Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors (2002): Automata, Logics, and Infinite Games: A
Guide to Current Research. LNCS 2500, Springer, doi:10.1007/3-540-36387-4.

[6] Michael Holtmann, Lukasz Kaiser & Wolfgang Thomas (2012): Degrees of Lookahead in Regular Infinite
Games. Log. Methods Comput. Sci. 8(3), doi:10.2168/LMCS-8(3:24)2012.

[7] Frederick A. Hosch & Lawrence H. Landweber (1972): Finite Delay Solutions for Sequential Conditions. In
Maurice Nivat, editor: ICALP 1972, North-Holland, Amsterdam, pp. 45–60.

[8] Felix Klein & Martin Zimmermann (2015): What are Strategies in Delay Games? Borel Determinacy for
Games with Lookahead. In Stephan Kreutzer, editor: CSL 2015, LIPIcs 41, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, pp. 519–533, doi:10.4230/LIPIcs.CSL.2015.519.

[9] Felix Klein & Martin Zimmermann (2016): How Much Lookahead is Needed to Win Infinite Games? Log.
Methods Comput. Sci. 12(3), doi:10.2168/LMCS-12(3:4)2016.

[10] Felix Klein & Martin Zimmermann (2016): Prompt Delay. In Akash Lal, S. Akshay, Saket Saurabh &
Sandeep Sen, editors: FSTTCS 2016, LIPIcs 65, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.
43:1–43:14, doi:10.4230/LIPIcs.FSTTCS.2016.43.

[11] Robert McNaughton (2000): Playing Infinite Games in Finite Time. In Arto Salomaa, Derick Wood & Sheng
Yu, editors: A Half-Century of Automata Theory: Celebration and Inspiration, World Scientific, pp. 73–91.

[12] Amir Pnueli (1977): The Temporal Logic of Programs. In: FOCS 1977, IEEE Computer Society, pp. 46–57,
doi:10.1109/SFCS.1977.32.

[13] Martin Zimmermann (2016): Delay Games with WMSO+U Winning Conditions. RAIRO Theor. Informatics
Appl. 50(2), pp. 145–165, doi:10.1051/ita/2016018.

[14] Martin Zimmermann (2017): Games with costs and delays. In: LICS 2017, IEEE Computer Society, pp.
1–12, doi:10.1109/LICS.2017.8005125.

[15] Martin Zimmermann (2022): Approximating the minimal lookahead needed to win infinite games. Informa-
tion Processing Letters 177, p. 106264, doi:10.1016/j.ipl.2022.106264.

https://doi.org/10.2307/1994916
https://doi.org/10.1007/s00236-020-00374-7
https://doi.org/10.48550/arXiv.2305.19985
https://doi.org/10.1515/9781400881970-014
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.2168/LMCS-8(3:24)2012
https://doi.org/10.4230/LIPIcs.CSL.2015.519
https://doi.org/10.2168/LMCS-12(3:4)2016
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.43
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1051/ita/2016018
https://doi.org/10.1109/LICS.2017.8005125
https://doi.org/10.1016/j.ipl.2022.106264

A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. 236–252, doi:10.4204/EPTCS.390.15

© S. Forster, A. Skarlatos & T. de Vos

This work is licensed under the

Creative Commons Attribution License.

Fast Algorithms for Energy Games in Special Cases*

Sebastian Forster

Department of Computer Science
University of Salzburg, Austria

sebastian.forster@plus.ac.at

Antonis Skarlatos

Department of Computer Science
University of Salzburg, Austria

antonis.skarlatos@plus.ac.at

Tijn de Vos

Department of Computer Science
University of Salzburg, Austria

tijn.devos@plus.ac.at

In this paper, we study algorithms for special cases of energy games, a class of turn-based games on

graphs that show up in the quantitative analysis of reactive systems. In an energy game, the vertices

of a weighted directed graph belong either to Alice or to Bob. A token is moved to a next vertex by

the player controlling its current location, and its energy is changed by the weight of the edge. Given

a fixed starting vertex and initial energy, Alice wins the game if the energy of the token remains

nonnegative at every moment. If the energy goes below zero at some point, then Bob wins. The

problem of determining the winner in an energy game lies in NP∩ coNP. It is a long standing open

problem whether a polynomial time algorithm for this problem exists.

We devise new algorithms for three special cases of the problem. The first two results focus on

the single-player version, where either Alice or Bob controls the whole game graph. We develop

an Õ(nωW ω) time algorithm for a game graph controlled by Alice, by providing a reduction to the

All-Pairs Nonnegative Prefix Paths problem (APNP), where W is the maximum absolute value of

any edge weight and ω is the best exponent for matrix multiplication. Thus we study the APNP

problem separately, for which we develop an Õ(nωW ω) time algorithm. For both problems, we

improve over the state of the art of Õ(mn) for small W . For the APNP problem, we also provide a

conditional lower bound which states that there is no O(n3−ε) time algorithm for any ε > 0, unless the

APSP Hypothesis fails. For a game graph controlled by Bob, we obtain a near-linear time algorithm.

Regarding our third result, we present a variant of the value iteration algorithm, and we prove that it

gives an O(mn) time algorithm for game graphs without negative cycles, which improves a previous

upper bound. The all-Bob algorithm is randomized, all other algorithms are deterministic.

1 Introduction

Energy games belong to a class of turn-based games on graphs that show up in the quantitative analysis

of reactive systems. A game graph can possibly represent a scheduling problem, where vertices are the

configurations of the system and edges carry positive or negative values representing the evolution of

resources. Thus, in this model resources can be consumed or produced. The energy games problem has

been introduced in the early 2000s [13, 6], but also have been implicitly studied before due to its ties to

mean-payoff games [21]. Energy games have applications in, among others, computer aided verification

and automata theory [13, 5, 12], and in online and streaming problems [31]. From its computational

perspective, the problem of determining the winner in an energy game lies in NP∩ coNP. It is an

intriguing open problem whether a polynomial time algorithm for this problem exists.

An energy game is played by two players, say Alice and Bob, on a game graph, which is a weighted

directed graph such that each vertex is either controlled by Alice or Bob. The game starts by placing a

token with an initial energy on a starting vertex. The game is played in rounds, and every time the token

*This work is supported by the Austrian Science Fund (FWF): P 32863-N. This project has received funding from the

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant

agreement No 947702). A full version is available at https://arxiv.org/abs/2307.08442.

http://dx.doi.org/10.4204/EPTCS.390.15
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2307.08442

S. Forster, A. Skarlatos & T. de Vos 237

is located at a vertex controlled by Alice, then Alice chooses the next location of the token among the

outgoing edges, otherwise Bob chooses the next move. The token has an energy level (in the beginning

this is equal to the initial energy) and every time it traverses an edge, the weight of the edge is added to

the energy level (a negative weight amounts to a reduction of the energy level). The objectives of the

players are as follows: Alice wants to minimize the initial energy that is necessary to keep the energy

level nonnegative at all times, whereas Bob wants to maximize this value (and possibly drive it to ∞).

The computational problem is to determine for each vertex the minimum initial energy such that Alice

can guarantee against all choices of Bob that the energy level always stays nonnegative.

Energy games are a generalization of parity games [24, 9], polynomial-time equivalent to mean-

payoff games [6, 9], and a special case of simple stochastic games [31]. Recent progress on parity

games yielded several quasipolynomial time algorithms [11], but the corresponding techniques seem to

not carry over to energy and mean-payoff games [20]. Consequently, the complexity of energy games

is still “stuck” at pseudopolynomial [9] or subexponential time [4]. Hence, in this paper we focus on

interesting special cases (which are non-trivial problems) that admit fast algorithms. Two of these cases

are game graphs where all vertices are controlled by one player, and the third case are game graphs with

no negative cycles.

All-Pairs Nonnegative Prefix Paths. We also study another reachability problem with energy con-

straints [22, 17], the All-Pairs Nonnegative Prefix Paths (APNP) problem. In this problem, the goal is

to find for every pair of vertices whether there exists a path π such that the weight of each prefix of π

is nonnegative. We use this problem to obtain the result for the special case where Alice controls the

whole game graph, since the two problems are closely related. Dorfman, Kaplan, Tarjan, and Zwick [17]

solve the more general problem, where for each pair of vertices the goal is to find the path π of maximum

weight among all options. This problem naturally generalizes APSP, and they solve it in O(mn+n2 logn)
time.

Energy Games. The state-of-the-art algorithms for the energy games are either deterministic with

running time O
(

min(mnW,mn2n/2 logW)
)

[9, 18] or randomized with subexponential running time

2O(
√

n log n) [4]. Special cases of the energy games have been studied by Chatterjee, Henzinger, Krin-

ninger, and Nanongkai [15]. They present a variant of the value iteration algorithm of [9] with running

time O(m|A|), where A is a sorted list containing all possible minimum energy values. This does not

improve the general case, as A in the worst case is the list {0,1, . . . ,nW,∞}. However, it does give a

faster running time if the weights adhere to certain restrictions. Moreover, they develop a scaling algo-

rithm with running time O(mn logW (log W
P
+1)+mnW

P
), where P ∈ {1

n
, . . . ,W} is a lower bound on the

penalty of the game.

For the special case where there are no negative cycles in the game graph, the penalty can be set

to W , and the scaling algorithms of [15] solves the problem in O(mn logW) time. For another special

case where the whole game graph is controlled by Alice, Brim and Chaloupka [8] provided an Õ(mn)1

running time algorithm as a subroutine for the two-players version.

Mean-Payoff Games. In a mean-payoff game, the objective of Alice is to maximize the average of the

weights of edges traversed so far, whereas Bob’s objective is to minimize this mean payoff. It is well

known that any energy games instance can be solved by solving O(n log(nW)) mean-payoff games [6],

1We write Õ(f) for O(f poly log f).

238 Fast Algorithms for Energy Games in Special Cases

and any mean-payoff game instance can be solved by solving O(log(nW)) energy games with maximal

weight nW [9]2. Thus, any of the aforementioned algorithms for solving energy games also yields an

algorithm for solving mean-payoff games at the expense of at most an additional factor of O(n log(nW))
in the running time. Zwick and Paterson [31] provided the first pseudopolynomial time algorithm that

computes all the mean-payoff values, with O(mn3W) running time. Later, the running time was improved

by Brim, Chaloupka, Doyen, Gentiline, and Raskin [9] to O(mn2W log(nW)), using their reduction to

energy games. The state-of-the-art algorithm for solving a mean-payoff game is due to Comin and

Rizzi [16] which runs in O(mn2W) time.

1.1 Our Results and Techniques

All-Pairs Nonnegative Prefix Paths. The version of All-Pairs Nonnegative Prefix Paths (APNP) prob-

lem where we want to find the path of maximum weight [17], naturally generalizes the All-Pairs Shortest

Paths (APSP) problem. The APSP Hypothesis states that there is no O(n3−ε) time algorithm for the

APSP, for any ε > 0. However, this version of APNP is more than what is necessary for the application

of energy games. We show that the weaker version which only computes reachability (as APNP has been

defined), also does not allow for a O(n3−ε) time algorithm for any ε > 0, under the APSP Hypothesis.

Theorem 1.1. Unless the APSP Hypothesis fails, there is no O(n3−ε) time algorithm that solves the

All-Pairs Nonnegative Prefix Paths problem, for any ε > 0.

We parameterize the maximum absolute value of any edge weight W , and we obtain an algorithm

with a faster running time for small values of W .

Theorem 1.2. There exists a deterministic algorithm that, given a graph G = (V,E,w) with edge weights

in the interval [−W,W], solves the All-Pairs Nonnegative Prefix Paths problem in Õ(nωW ω) time.

All-Alice. Our first contribution regarding the special cases of energy games, concerns the all-Alice

case in which all vertices are controlled by Alice. Note that if we fix a strategy for Bob in any game

graph, this can be seen as an all-Alice instance.

Theorem 1.3. There exists a deterministic algorithm that, given a game graph G = (V,E,w) in which

all vertices are controlled by Alice, computes the minimum sufficient energy of all vertices in Õ(nωW ω)
time.

Note that the aforementioned reduction from energy games to mean-payoff games always introduces

Bob vertices. Thus, algorithms for the all-Alice mean-payoff decision problem cannot be leveraged by

this reduction to compute the minimum energies in the all-Alice case.

Our approach for the all-Alice case consists of two steps. In the first step, we identify all vertices Z

such that minimum initial energy 0 suffices, by using Theorem 1.2. In the second step, we compute the

paths of least energy reaching any vertex in Z. For small values of W , this improves on the state-of-the-art

Õ(mn) algorithm [8].

All-Bob. Our second contribution regarding the special cases of energy games, is a faster algorithm for

the all-Bob case in which all vertices are controlled by Bob. Note that if we fix a strategy for Alice in

any game graph, this can be seen as an all-Bob instance.

2Unless stated otherwise, we always consider the versions of the games where we compute the mean-payoff value/minimum

initial energy for all vertices.

S. Forster, A. Skarlatos & T. de Vos 239

Theorem 1.4. There exists a randomized (Las Vegas) algorithm that, given a game graph G = (V,E,w)
in which all vertices are controlled by Bob, computes the minimum sufficient energy of all vertices, and

with high probability the algorithm takes O(m log2 n log nW log logn) time.

To the best of our knowledge, the fastest known algorithm for the all-Bob case is implied by the

reduction to the mean-payoff decision problem and has a running time of Õ(mn log2W). This comes

from Õ(n logW) calls to the state-of-the-art negative-cycle detection algorithm [3, 10].

Our approach for the all-Bob case consists of two steps. In the first step, we run a negative-cycle

detection algorithm to remove all vertices reaching a negative cycle. In the second step, we add an

artificial sink to the graph with an edge from every vertex to the sink, and we compute the shortest

path of every vertex to the sink using a single-source shortest paths (SSSP) algorithm. Note that this

construction is very close to Johnson’s method for computing suitable vertex potentials [23]. Further note

that, since energy games are not symmetric for Alice and Bob, our near-linear time all-Bob algorithm

has no implications for the all-Alice case.

No Negative Cycles. Finally, we give an improved algorithm for the special case where there are no

negative cycles.

Theorem 1.5. There exists a deterministic algorithm that, given a grame graph G = (V,E) without

negative cycles, computes the minimum sufficient energy of all vertices in O(mn) time.

To the best of our knowledge, the fastest known algorithm for this special case has a running time

of O(mn logW) by running the above mentioned algorithm of Chatterjee, Henzinger, Krinninger, and

Nanongkai [15] with penalty P = W . We use a new variant of the value iteration algorithm where the

energy function after i steps corresponds to the minimum energy function in an i-round game. A similar

variant has been used by Chatterjee, Doyen, Randour, and Raskin [14] for the Mean-Payoff games. We

adapt this algorithm and provide the necessary analysis to use it for energy games.

An i-round game is a finite version of the energy game, where a token is passed for only i rounds.

In this version, the goal is to find the initial energy that Alice needs, in order to keep the energy level

nonnegative for these i-rounds. Then we show that in graphs without negative cycle, the infinite game is

equivalent to the n-round game.

Structure of the paper. In the next section, we provide some preliminaries, including the formal def-

inition of an energy game. In Section 3, we study the All-Pairs Nonnegative Prefix Paths problem, and

we present an algorithm for the special case that the edge weights are in {−1,0,+1}, an algorithm for

general edge weights, and a lower bound. Next in Section 4, we consider the all-Alice case by reducing

this problem to the All-Pairs Nonnegative Prefix Paths problem. In Section 5, we consider the all-Bob

case, and finally in Section 6, we consider game graphs without negative cycles.

2 Preliminaries

Graphs. Given a directed graph G= (V,E,w), we denote by n= |V | the number of vertices, by m= |E|
the number of edges, and by W the maximum absolute value of any edge weight. Also, we denote N+(v)
for the out-neighborhood of v, i.e., N+(v) := {u ∈ V : (v,u) ∈ E}. Further, we denote deg+(v) for the

out-degree of v, i.e., deg+(v) := |N+(v)|. Similarly, N−(v) and deg−(v) denote the in-neighborhood and

in-degree respectively.

240 Fast Algorithms for Energy Games in Special Cases

A path P is a sequence of vertices u0u1 · · · such that (ui,ui+1) ∈ E for every i ≥ 0. We say a path is

finite if it contains a finite number of vertices (counted with multiplicity). We say a path is simple if each

vertex appears at most once. A lasso is a path of the form u0u1 · · ·u jui, where the vertices u0, . . . ,u j are

disjoint and i < j. In other words, it is a simple path leading to a cycle. A nonnegative prefix path is a

path P = u0u1 · · · such that ∑
i−1
j=0 w(u j,u j+1) ≥ 0 for all 1 ≤ i ≤ |P|. Further, we denote the weight of a

path P = u0u1 · · · by w(P) := ∑
|P|−1
j=0 w(u j,u j+1). For a fixed path P = u0u1 · · · , the energy level e(ui) of

a vertex ui in P is equal to ∑
i−1
j=0 w(u j,u j+1). That is, the sum of all the weights along P until ui.

Let G = (V,E,w) be a directed graph with edge weights −1 and +1, and let s, t ∈V be two vertices

of G. Then, a Dyck path from s to t is a nonnegative prefix path from s to t of total weight zero [7]. For a

graph H , we refer to the corresponding functions by using H as subscript (e.g., we use the notation wH(·)
for the weight function of H).

Energy Games. An energy game is an infinite duration game played by two players, Alice and Bob.

The game is played on a game graph which a weighted directed graph G = (V,E,w), where each vertex

has at least one outgoing edge. The weights are integers and lie in the range {−W,−W + 1, . . . ,W −
1,W}. The set of vertices is partitioned in two sets VA and VB, controlled by Alice and Bob respectively.

Furthermore, we are given a starting vertex s∈V , and initial energy e0 ≥ 0. We start with position v0 = s.

After the ith round, we are at a position vi ∈V and have energy ei. In the ith round, if vi−1 ∈VA (vi−1 ∈VB)

then Alice (Bob) chooses a next vertex vi ∈ N+(vi−1) and the energy changes to ei = ei−1 +w(vi−1,vi).
The game ends when ei < 0, in which case we say that Bob wins. If the game never ends, namely, ei ≥ 0

for all i ≥ 0, we say that Alice wins. The goal is to find out the minimum initial energy e0 ≥ 0 such

that Alice wins when both players play optimally. Note that allowing e0 = ∞ means that such an energy

always exist.

To make this goal more formal, we have to introduce strategies. A strategy for Alice (Bob) tells us

given the current point vi ∈ VA (vi ∈ VB) and the history of the game, v0, . . . ,vi, where to move next. It

turns out that we can restrict ourselves to positional strategies [19, 6], which are deterministic and do

not depend on the history of the game. We denote a positional strategy of Alice by σ : VA → V where

σ(v) ∈ N+(v) for v ∈VA, and a positional strategy of Bob by τ : VB→V where τ(v) ∈ N+(v) for v ∈VB.

For any pair of strategies (σ ,τ) we define G(σ ,τ) to be the subgraph (V,E ′) corresponding to these

strategies, where E ′ = {(v,σ(v)) : v ∈VA}∪{(v,τ(v)) : v ∈VB}. Note that in this graph each vertex has

exactly one out-neighbor. Let Pi be the unique path s= u0,u1, . . . ,ui in G(σ ,τ) of length i originating at s.

Then at vertex s with initial energy e0 and with these strategies, Alice wins if e0 +w(Pi)≥ 0 for all i≥ 0,

and Bob wins if e0 +w(Pi) < 0 for at least one i ≥ 0. The minimum sufficient energy at s with respect

to σ and τ is the minimum energy such that Alice wins, namely eG(σ ,τ)(s) := max{0,− infi≥0 w(Pi)}.
Finally, we define the minimum sufficient energy at s as follows:

e∗G(s) := min
σ

max
τ

eG(σ ,τ)(s),

where the minimization and the maximization are over all the positional strategies σ of Alice and τ

of Bob, respectively. We omit the subscript G, and use eσ ,τ (s) instead of eG(σ ,τ)(s), whenever this

is clear from the context. By Martin’s determinacy theorem [26], we have that minσ maxτ eσ ,τ (s) =
maxτ minσ eσ ,τ(s), thus the outcome is independent of the order in which the players pick their strategy.

Now we can define optimal strategies as follows. A strategy σ ∗ is an optimal strategy for Alice, if

eσ∗,τ(s)≤ e∗(s) for any strategy τ of Bob. Similarly, τ∗ is an optimal strategy for Bob, if eσ ,τ∗(s)≥ e∗(s)
for any strategy σ of Alice. An energy function is a function e : V → Z≥0∪{∞}. The function e∗G(·) (or

e∗(·)) as defined above, is the minimum sufficient energy function.

S. Forster, A. Skarlatos & T. de Vos 241

3 All-Pairs Nonnegative Prefix Paths Problem

In this section, we study the All-Pairs Nonnegative Prefix Paths (APNP) problem. The goal of this

problem is to find for every pair of vertices whether there exists a nonnegative prefix path between them.

A similar problem is the All-Pairs Dyck-Reachability problem, where the goal is to find for every pair of

vertices whether there exists a Dyck path between them (given that the edge weights are in {−1,+1}).
Furthermore, another standard problem is the transitive closure problem, which asks to find for every

pair of vertices whether there exists a path between them.

Bradford [7] provided an Õ(nω) time algorithm for the All-Pairs Dyck-Reachability problem. More-

over, the transitive closure problem admits an Õ(nω) algorithm [1].

Theorem 3.1. There exists a deterministic algorithm that, given a graph G = (V,E,w) with edge weights

in {−1,1}, solves the All-Pairs Dyck-Reachability problem in Õ(nω) time.

Our approach for the APNP problem consists of two stages. At first, we solve the APNP problem for

the special case where the edge weights are from the set {−1,0,+1}, by exploiting the algorithm of [7]

for the All-Pairs Dyck-Reachability problem. Afterwards, we extend our algorithm to work with general

weights, by showing that a reduction used in [2] preserves the properties we need.

In the end of the section, we also present a conditional lower bound for the APNP problem under the

APSP Hypothesis, which is one of the main hypotheses in fine-grained complexity.

3.1 All-Pairs Nonnegative Prefix Paths with edge weights in {−1,0,+1}
Consider a graph G = (V,E) with edge weights −1 and +1. By definition, we have that any Dyck path

is also a nonnegative prefix path. However, the opposite is not necessarily true. Recall that nonnegative

prefix paths allow the energy level of their last vertex to be a strictly positive value, while in Dyck paths

this value must be zero. This implies that an All-Pairs Dyck-Reachability algorithm does not trivially

gives us an All-Pairs Nonnegative Prefix Paths algorithm. Nevertheless, we show how to overcome this

issue and we use an All-Pairs Dyck-Reachability algorithm as a subroutine in order to solve the All-Pairs

Nonnegative Prefix Paths problem.

Algorithm for the {−1,0,+1} case. Consider a directed graph G = (V,E,w), with edge weights in

{−1,0,+1}. In the beginning of the algorithm, we construct a graph G2 as follows.

1. Initially, we create a new graph G1 = (V1,E1,w) by replacing every edge of zero weight with an

edge of weight +1 and an edge of weight −1. Specifically, for each vertex u with at least one

outgoing edge (u,v) ∈ E with w(u,v) = 0, we add a new vertex u′, and add an edge (u,u′) with

w(u,u′) = +1. Next, for each edge (u,v) ∈ E with w(u,v) = 0, we remove the edge (u,v), and add

the edge (u′,v) with weight −1.3

2. Next, we run on G1 the algorithm of Theorem 3.1, which solves the All-Pairs Dyck-Reachability

in time Õ(nω) for edge weights in {−1,+1}.
3. Finally, we create another new graph G2 = (V,E2) with the original vertex set and an edge set E2

defined as follows. The set E2 contains an edge (u,v) ∈V ×V if and only if there is a Dyck path

from u to v in G1 or w(u,v) = 1 in G, if (u,v) ∈ E .

3Note that by doing the naive thing which is to replace each edge of zero weight by two edges, one with weight +1 and one

with weight −1, potentially blows up the number of vertices to Ω(m). In turn, since the running time depends on the number

of vertices, this translates to a blow up of the running time.

242 Fast Algorithms for Energy Games in Special Cases

In the end, we run on G2 a transitive closure algorithm, and we return that there is a nonnegative

prefix path in G if and only if there is a path in G2. Notice that graphs G and G1 are weighted, while G2

is unweighted.

Analysis of the algorithm. The following observation shows that the replacement of zero weight edges

is valid, in the sense that nonnegative prefix paths of total weight zero4 in G correspond to Dyck paths in

G1 and vice versa. Moreover, we prove the claim that the transitive closure problem in G2 is equivalent

to the All-Pairs Nonnegative Prefix Paths problem in G.

Observation 3.2. For every pair of vertices u,v∈V , there exists a nonnegative prefix path of total weight

zero from u to v in G if and only if there exists a Dyck path from u to v in G1.

Lemma 3.3. For every pair of vertices u,v ∈V , there exists a nonnegative prefix path from u to v in G if

and only if there exists a path from u to v in G2.

Proof. Assume that there exists a nonnegative prefix path π from u to v in G. Let a be the first vertex

after u along π with a minimum energy level. Initially, we show that the edge (u,a) appears in G2. Since

π is a nonnegative prefix path, we have that e(u) ≤ e(a). If e(u) < e(a), then there must be an edge

(u,a) in G with weight +1. Also if e(u) = e(a), then the subpath of π from u to a is a nonnegative prefix

path of total weight zero. Then by Observation 3.2, the subpath of π from u to a is a Dyck path in G1.

Therefore, in both cases we have added the edge (u,a) in G2. As the vertex a has a minimum energy

level, we can apply the same argument iteratively starting from a, to conclude that there exists a path

from u to v in G2.

Assume now that there exists a path π from u to v in G2. By construction, the edges of π correspond

either to edges in G with weight +1 or to Dyck paths in G1. By Observation 3.2, these Dyck paths in

G1 correspond to nonnegative prefix paths of total weight zero in G. Since positive edges increase the

energy level and nonnegative prefix paths at least maintain the energy level, we conclude that there exists

a nonnegative prefix path from u to v in G.

Lemma 3.4. There exists a deterministic algorithm that, given a graph G = (V,E,w) with edge weights

in {−1,0,+1}, solves the All-Pairs Nonnegative Prefix Paths problem in Õ(nω) time.

Proof. The number of vertices of G1 is O(n) by construction, where n is the initial number of vertices in

G. Hence, the construction of G2 runs in Õ(nω). Moreover, the transitive closure problem in G2 can be

solved in Õ(nω) time as well [1]. Thus by Lemma 3.3, the claim follows.

3.2 All-Pairs Nonnegative Prefix Paths with general edge weights

We extend now Lemma 3.4 for graphs with general edge weights, in the cost of an extra factor W ω in the

running time. The idea is to use the reduction by Alon, Galil, and Margalit [2], who reduce the All-Pairs

Shortest Paths (APSP) problem with general edge weights to the special case where the edge weights are

in {−1,0,+1}. We present the reduction for completeness, and we prove that the same reduction also

preserves the properties that we need for the All-Pairs Nonnegative Prefix Paths problem.

4Observe that a Dyck path is a nonnegative prefix path of total weight zero consisting only of edges −1 and +1. Thus, we

avoid to use the term Dyck path for G because it may contains edges of weight zero.

S. Forster, A. Skarlatos & T. de Vos 243

Reduction from general weights to {−1,0,+1} [2]. Given a graph G = (V,E,w) with weights in the

interval [−W,W], we create another graph G′ with weights only in {−1,0,+1}, as follows. For every

vertex v ∈ V in G, we create 2W + 1 vertices {vi}Wi=−W in G′. We say that vertex v0 of G′ is the origin

of vertex v. Then, we add in G′ an edge (vi+1,vi) of weight −1, for every −W ≤ i ≤ −1, and an edge

(vi−1,vi) of weight 1, for every 1 ≤ i ≤W . Moreover, for every edge (u,v) of weight k in G, we add an

edge (uk,v0) of zero weight in G′.

Theorem 1.2. There exists a deterministic algorithm that, given a graph G = (V,E,w) with edge weights

in the interval [−W,W], solves the All-Pairs Nonnegative Prefix Paths problem in Õ(nωW ω) time.

Proof. The idea is to apply the reduction mentioned above and use the algorithm of Lemma 3.4 in G′.
Then, we claim that there exists a nonnegative prefix path from u to v in G if and only if there exists a

nonnegative prefix path from u0 to v0 in G′.
Regarding the running time, since the number of vertices of the new graph G′ after the reduction be-

comes Θ(nW), the running time of the algorithm becomes Õ((nW)ω). It remains to prove the correctness

of the algorithm.

Let π be a nonnegative prefix path from u to v in G. We construct a path π ′ from u0 to v0 in G′ as

follows. For every edge (a,b) ∈ π of weight k, we add to π ′ the unique subpath from a0 to b0 of weight

k in G′, which exists by construction. Since π is a nonnegative prefix path in G, and every subpath we

add to π ′ consists either only of edges with weight in {−1,0} or only of edges with weight in {0,+1},
we can infer that π ′ is a nonnegative prefix path from u0 to v0 in G′.

For the other direction, let π ′ be a nonnegative prefix path from u0 to v0 in G′. We construct a path π

from u to v in G as follows. Let a0 be the first vertex after u0 along π ′ such that, a0 is the origin vertex

of a different vertex than u (i.e., a0 is the origin of a vertex a 6= u). By construction, there exists an edge

(u,a) of weight k in G, where k is the weight of the subpath from u0 to a0 in π ′. We add the edge (u,a)
in π , and continue with the construction of π by applying the same argument iteratively starting from a0

until we reach v0. Since π ′ is a nonnegative prefix path in G′, and each prefix of π corresponds to a prefix

in π ′, we can infer that π is a nonnegative prefix path from u to v in G.

Therefore, the pair of vertices {u0,v0} in G′ contains the information for the pair of vertices {u,v} in

G, and so the claim follows.

3.3 Lower bound for All-Pairs Nonnegative Prefix Paths

We prove a lower bound on the running time of All-Pairs Nonnegative Prefix Paths problem under the

APSP Hypothesis. The APSP Hypothesis is an assertions that the All-Pairs Shortest Paths (APSP) prob-

lem cannot be solved in truly subcubic O(n3−ε) time, for any ε > 0. Vassilevska Williams and Williams

[29] proved that APSP and Negative Triangle are equivalent under subcubic reductions. The Negative

Triangle problem is defined as follows. Given a graph G = (V,E,w), the goal is to find three vertices

a,b,c such that w(a,b)+w(b,c)+w(c,a) < 0, that is, the vertices a,b,c form a negative weight cycle.

Recently, a reduction from the Negative Triangle problem to the h-hop-bounded s-t path problem

was given by Polak and Kociumaka [25], in order to prove a hardness result for the latter. Motivated by

this reduction, we also reduce the Negative Triangle problem to the All-Pairs Nonnegative Prefix Paths

problem to obtain a hardness result for the All-Pairs Nonnegative Prefix Paths problem, as shown in

Theorem 1.1.

We first provide an auxiliary lemma, which we also use later in Lemma 4.1.

244 Fast Algorithms for Energy Games in Special Cases

Lemma 3.5. Given a graph G = (V,E,w), let C be a nonnegative weight cycle in G (i.e., w(C) ≥ 0).

Then, there is a vertex u ∈C in the cycle, such that there exists a nonnegative prefix path in G from u to

itself along C.

Proof. Let Q ⊆ C be a subpath of C with the most negative total weight, and Q′ be the rest of C (i.e.,

Q∪Q′ = C). Notice that the weight of all prefixes in Q′ must be nonnegative, otherwise this negative

weight prefix could be merged with Q, contradicting the fact that Q is the subpath of C with the most

negative total weight. Moreover, as w(C) ≥ 0 we have that w(Q′) ≥ −w(Q). Since by definition of Q,

there is no prefix of Q with more negative total weight, it holds that Q′∪Q is a nonnegative prefix path

from the first vertex of Q′ to itself along C.

Theorem 1.1. Unless the APSP Hypothesis fails, there is no O(n3−ε) time algorithm that solves the

All-Pairs Nonnegative Prefix Paths problem, for any ε > 0.

Proof. Consider a Negative Triangle instance G = (V,E). We create a directed graph G1 = (V1,E1)
as follows. The vertex set V1 of G1 consists of five copies of all vertices, i.e., V1 := {vi : v ∈ V, i ∈
{1,2,3,4,5}}. For every edge (u,v) ∈ E of weight w(u,v), we add an edge (ui,vi+1) to E1 with weight

−w(u,v), for 1≤ i < 4. Also for each vertex v ∈V , we add an edge (v4,v5) of weight wmin =−1.

We claim that there exists a negative weight triangle in G if and only if there is a vertex v ∈V such

that there exists a nonnegative prefix path from v1 to v5 in G1. In this case, since the reduction is subcubic

and the time to check all vertices in G1 is O(n), an O(n3−ε) time algorithm for the All-Pairs Nonnegative

Prefix Paths problem would imply an O(n3−ε) time algorithm for the Negative Triangle problem, for any

ε > 0, contradicting the APSP Hypothesis.

We proceed with the proof of the claim. Suppose that there are three vertices a,b,c that form a

negative weight cycle C in G, and let G2 be the graph G after flipping the sign of the weights. Then

we have that wG2
(C) > 0 in G2, and based on Lemma 3.5 there is a vertex v ∈C, such that there exists

a nonnegative prefix path in G2 from v to itself along C. Notice that v can be either a,b or c, and

by construction, the paths a1b2c3a4a5, b1c2a3b4b5, and c1a2b3c4c5 exist in G1. Thus without loss of

generality, we can assume that v is a and we use the path a1b2c3a4a5 in G1. By construction, it holds that

wG1
(a1,b2) = wG2

(a,b),wG1
(b2,c3) = wG2

(b,c), wG1
(c3,a4) = wG2

(c,a) and wG1
(a4,a5) = wmin. The

path abca is a nonnegative prefix path in G2, and so the path a1b2c3a4 is a nonnegative prefix path in G1

as well. Moreover since wG2
(C)> 0, we have that wG2

(C)≥−wmin, which implies that:

wG1
(a1,b2)+wG1

(b2,c3)+wG1
(c3,a4)≥−wmin.

Thus, we can conclude that the path a1b2c3a4a5 is a nonnegative prefix path in G1.

For the other direction, let a1b2c3a4a5 be a nonnegative prefix path in G1. By construction of G1 and

the fact that G does not contain self-loops, it must be the case that the corresponding vertices a,b,c must

be pairwise different in G. By definition of a nonnegative prefix path, it holds that:

wG1
(a1,b2)+wG1

(b2,c3)+wG1
(c3,a4)≥−wmin > 0.

By construction, we have that w(a,b)=−wG1
(a1,b2),w(b,c)=−wG1

(b2,c3) and w(c,a)=−wG1
(c3,a4).

Therefore, it is true that w(a,b)+w(b,c)+w(c,a) < 0, and the vertices a,b,c form a negative weight

cycle in G.

S. Forster, A. Skarlatos & T. de Vos 245

4 The All-Alice Case

In this section, we develop an algorithm that computes the minimum sufficient energies of all vertices

for game graphs controlled by Alice. In particular, we obtain the following result.

Theorem 1.3. There exists a deterministic algorithm that, given a game graph G = (V,E,w) in which

all vertices are controlled by Alice, computes the minimum sufficient energy of all vertices in Õ(nωW ω)
time.

The idea is to use the algorithm of Theorem 1.2 for the All-Pairs Nonnegative Prefix Paths problem.

Hélouët, Markey, and Raha [22] provide a relevant reduction from the problem of whether zero energy

suffices to the problem of whether there exists a nonnegative prefix path. Hence, one idea would be

to apply this reduction and run the algorithm of Theorem 1.2. Unfortunately this reduction affects the

weights, and the maximum weight of the new instance can be as big as mW , which in turn affects the

running time of the algorithm.

To that end, we present another way to use the All-Pairs Nonnegative Prefix Paths algorithm of

Theorem 1.2 without affecting the maximum weight of the graph. The algorithm consists of two phases.

In the first phase, we detect all the vertices such that initial zero energy suffices, and in the second phase

we compute the minimum sufficient energy for the rest of the vertices.

In the first phase of the algorithm, initially we run the All-Pairs Nonnegative Prefix Paths algorithm

of Theorem 1.2 on the game graph G = (V,E,w). Hence, we retrieve the information of whether there

exists a nonnegative prefix path from a vertex u to a vertex v, for any two vertices u,v ∈V ×V . Then for

each vertex v ∈V , we check whether there is a vertex u (including v) such that there exists a nonnegative

prefix path from v to u and from u to u. If this is the case, then we add this vertex to a set Z. The next

lemma shows that the set Z is actually the set of all vertices such that initial energy zero suffices.

Lemma 4.1. The set Z is the same as the set {v ∈V : e∗(v) = 0}, and is computed in Õ(nωW ω) time.

Proof. Suppose that the algorithm adds a vertex v to Z. Then, there must be a vertex u (possibly u = v)

such that there exists a nonnegative prefix path from v to u and from u to u. By merging then these two

paths, and by definition of minimum sufficient energy, we can conclude that e∗(v) = 0.

Suppose now that the minimum sufficient energy of a vertex v ∈ V is zero (i.e., e∗(v) = 0). By

definition of minimum sufficient energy, there must exist a nonnegative prefix lasso P which contains a

nonnegative cycle C. Also by Lemma 3.5, there is a vertex u ∈ C in the cycle, such that there exists a

nonnegative prefix path from u to itself. As a result, the algorithm finds these vertices v and u and adds v

to Z.

The running time of this process is dominated by the running time of the All-Pairs Nonnegative Prefix

Paths algorithm, which is Õ(nωW ω) based on Theorem 1.2.

The set Z can be seen as the set of possible vertices to ‘end’ in. Any optimal strategy would still have

to define how to move from such a vertex v ∈ Z, but since we know that e∗(v) = 0, there has to be a path

such that from this vertex no initial energy is necessary. So the goal of the second phase, is to find for

each vertex v ∈V \Z the best way to hit a vertex in Z. The following lemma shows that this comes down

to a shortest path computation. Brim and Chaloupka [8] use a similar idea inside their subroutine for the

Mean-Payoff games.

Lemma 4.2. Given a game graph G = (V,E,w) where all vertices belong to Alice and the set Z := {v ∈
V : e∗(v) = 0} is known, we can compute the remaining minimum sufficient energies through a single

SSSP computation in G.

246 Fast Algorithms for Energy Games in Special Cases

For the proof we refer to the full version of the paper. Together, Lemma 4.1 and Lemma 4.2 prove

Theorem 1.3, by using also the fact that we can compute SSSP deterministically in Õ(nωW) time [27,

30].

5 The All-Bob Case

In this section, we restrict ourselves to the case where all vertices belong to Bob. We show that this special

case admits a near-linear time algorithm, by essentially reducing the problem to detecting negative cycles

and computing shortest paths. We obtain the following result.

Theorem 1.4. There exists a randomized (Las Vegas) algorithm that, given a game graph G = (V,E,w)
in which all vertices are controlled by Bob, computes the minimum sufficient energy of all vertices, and

with high probability the algorithm takes O(m log2 n log nW log logn) time.

Proof. We split the algorithm and proof in two parts, depending on who wins the game in a particular

vertex. The first part of the algorithm consists of identifying the vertices with infinite energy (namely, the

vertices where Bob wins), and the second part consists of calculating the finite energies of the remaining

vertices (namely, the vertices where Bob loses).

Vertices where Bob wins. First, we identify the vertices where Bob wins, i.e., the vertices v with

e∗(v) = ∞. Hereto, we decompose G in to strongly connected components C1, . . . ,Cr, for some r≥ 1. On

each Ci, we run a negative cycle detection algorithm. If there is a negative cycle, we set e(v) = ∞ for all

v ∈Ci. Next we find the vertices that can reach these cycles. Let A := {v ∈V : e(v) = ∞} be the union

of the strongly connected components with a negative cycle. Then from A we run an inward reachability

algorithm (e.g., DFS, BFS) towards each vertex v and if there is a path from v to A, we set e(v) = ∞. In

the correctness proof, we show that e(v) = ∞ if and only if Bob wins at v.

Correctness. For any vertex v ∈V , Bob wins if and only if there is a path from v to a negative cycle.

Let v be a vertex where Bob wins, and let C(v) be the negative cycle reachable from v. If v belongs to the

strongly connected component of C(v), then our algorithm outputs e(v) = ∞. If v belongs to a different

connected component, then the path to the negative cycle is detected in the inward reachability algorithm

and we also output e(v) = ∞.

Suppose we output e(v) = ∞. If we do this because v belongs to a strongly connected in which we

detected a negative cycle, then clearly there is path from v to the negative cycle, and hence Bob wins at

v. If we set e(v) = ∞ because there is a path from v to A, then there is a path from v towards a strongly

connected component containing a negative cycle, and hence to a negative cycle itself. So again Bob

wins at v.

Running time. We can decompose G in to strongly connected components in O(m) time [28].

On each connected component Ci, we can detect whether there is a negative cycle in the graph in

O(|E(Ci)| log2 n log nW log log n) time w.h.p. [10], thus the total time is O(m log2 n log nW log logn) w.h.p.

The inward reachability algorithm can be implemented by a simple DFS or BFS in O(m) time. Hence in

total we obtain w.h.p a running time of O(m log2 n log nW log logn) for this part.

Vertices where Bob loses. Second, we compute the correct value for the vertices where Bob loses,

i.e., the vertices v with e(v) < ∞. Note that for this part we can restrict ourselves to the subgraph where

we omit all vertices with e(v) = ∞. We also add a new sink vertex t to the graph, and for every v ∈V we

insert an edge (v, t) with w(v, t) = 0. Now for each vertex v, we compute the minimum distance d(v, t)
from v to t, and we set e(v) = max{−d(v, t),0}. In the correctness proof, we show that e∗(v) = e(v) for

each v ∈V with e(v) < ∞.

S. Forster, A. Skarlatos & T. de Vos 247

Correctness. Consider now a vertex v such that e(v)<∞. First we show that e∗(v)≥ e(v). Let u be the

last vertex (excluding t itself) on the shortest path from v to t, and Pv,u be the corresponding prefix from

v to u. Then Bob can choose to move along the path Pv,u forcing Alice to use at least max{−w(Pv,u),0}
initial energy. As d(v, t) = w(Pv,u)+w(u, t) = w(Pv,u)+0= w(Pv,u), we conclude that Alice needs at least

max{−d(v, t),0} = e(v) initial energy.

It remains to show e∗(v) ≤ e(v). Since there are no negative cycles, by definition we have that

e∗(v) = max{−minu∈V w(Pu),0}, where the minimization is over all the simple paths from v to u. Also

for all u ∈V , it holds that d(v,u) ≤ w(Pu) and d(v, t) ≤ d(v,u)+w(u, t) = d(v,u)+0 = d(v,u). Thus we

get that e∗(v) = max{−minu∈V w(Pu),0} ≤max{−minu∈V d(v, t),0} = max{−d(v, t),0} = e(v).
Running time. To compute the shortest paths from v to t, we flip the direction of all the edges and we

compute the minimum distances from t to v in the new graph. This clearly corresponds to the minimum

distances from v to t in the original graph. Since this computation is the negative weight single source

shortest path problem, it can be done in O(m log2 n log nW log log n) time w.h.p. [10].

6 Game Graphs Without Negative Cycles

In this section, we provide an O(mn) time algorithm for the special case where the game graph has no

negative cycles. We do this in three steps: first, we introduce a finite duration energy game, where a

token is passed for i rounds. The goal is to compute for each vertex, the minimum initial energy that

Alice needs in order to keep the energy nonnegative for those i rounds. Second, we provide an algorithm

that computes this value in O(mi) time. Finally, we show that for graphs with no negative cycles, it

suffices to find this minimum initial energy for a game of n rounds.

6.1 Finite Duration Games

We introduce a version of the energy game that lasts i rounds. We define strategies and energy functions

analogous to the infinite duration game, as in Section 2. A strategy for Alice is a function σi : V ∗VA→V ,

such that for all finite paths u0u1 · · ·u j with j < i and u j ∈VA, we have that σi(u0u1 · · ·u j) = v for some

edge (u j,v) ∈ E . Similarly we define a strategy τi for Bob by replacing VA with VB. A path u0u1 · · ·u j

of length j is consistent with respect to strategies σi and τi, if σi(u0u1 · · ·uk) = uk+1 for all uk ∈ VA

and τi(u0u1 · · ·uk) = uk+1 for all uk ∈ VB, where 0 ≤ k < j ≤ i. The minimum sufficient energy at a

vertex u corresponding to strategies σi and τi is defined as eσi,τi
(u) := max{−minw(P),0}, where the

minimization is over all the consistent paths P with respect to σi and τi of length at most i originating at

u. The minimum sufficient energy at a vertex u is defined as follows:

e∗i (u) := min
σi

max
τi

eσi,τi
(u),

where we minimize over all strategies σi for Alice and maximize over all strategies τi for Bob. As for

the infinite duration game, we know by Martin’s determinacy theorem [26] that minσi
maxτi

eσi,τi
(u) =

maxτi
minσi

eσi,τi
(u). Now we define optimal strategies as follows. A strategy σ ∗i is an optimal strategy

for Alice at a vertex u, if for any strategy τi for Bob it holds that eσ∗i ,τi
(u)≤ e∗i (u). Likewise a strategy τ∗i

is an optimal strategy for Bob at a vertex u, if for any strategy σi for Alice it holds that eσi,τ∗i (u)≥ e∗i (u).
A value e(u) is a sufficient energy at a vertex u, if there exists a strategy σi such that for any strategy τi,

it holds that eσi,τi
(u) ≤ e(u). In this case, observe that the following is true:

e∗i (u) = max
τi

eσ∗i ,τi
(u)≤max

τi

eσi,τi
(u) ≤ e(u).

248 Fast Algorithms for Energy Games in Special Cases

Next, we show the following lemma about the minimum energy function, a similar version has also

been used for the infinite duration game in [9] and [15]. For the proof, see the full version of the paper.

Lemma 6.1. Given a game of i rounds and a vertex u ∈ V , the energy e∗i (u) satisfies the following

properties:

if u ∈VA then ∃v ∈ N+(u) : e∗i (u)+w(u,v)≥ e∗i−1(v) (1)

if u ∈VB then ∀v ∈ N+(u) : e∗i (u)+w(u,v)≥ e∗i−1(v) (2)

6.2 A Value Iteration Algorithm for Finite Duration Games

In this section, we present Algorithm 1, a value iteration algorithm for a game lasting i rounds that

computes for each vertex u ∈ V the value e∗i (u). We note that Algorithm 1 consists of i steps, where at

every step each edge is scanned at most once. Clearly this means the algorithm takes O(mi) time.

Algorithm 1 Value iteration algorithm for an i-round game

Input: A game graph G = (V,E,w,〈VA,VB〉), a number of iterations i

Output: The minimum sufficient energy ei(u) of each u ∈V , in order to play the game for i rounds

1 ∀u ∈V : e0(u)← 0

2 for j = 1 to i do

3 foreach u ∈V do

4 if u ∈VA then

5 e j(u)←max{min(u,v)∈E{e j−1(v)−w(u,v)},0}
6 end

7 if u ∈VB then

8 e j(u)←max{max(u,v)∈E{e j−1(v)−w(u,v)},0}
9 end

10 end

11 end

12 return ei

Lemma 6.2. Let ei(·) be the function returned by Algorithm 1, then ei(u) = e∗i (u) for all u ∈V .

Proof. We prove the claim by induction on i, which is both the number of steps of the algorithm and the

duration of the game.

Base case: For i = 0 steps, the algorithm sets for each u ∈V : e0(u) = 0 = e∗0(u).
Inductive Step: We assume that after i− 1 steps ei−1(u) = e∗i−1(u), and we prove that after i steps

ei(u) = e∗i (u) as well. We first show that ei(u)≥ e∗i (u).
Consider the case that u ∈ VA. Let v′ be the neighbor that minimizes the relation in the ith step in

Line 5. Then it holds that ei(u)+w(u,v′) ≥ ei−1(v
′). Using the edge (u,v′) with initial energy ei(u),

Alice can move to v′ with remaining energy at least ei−1(v
′). By the inductive hypothesis it holds that

ei−1(v
′) = e∗i−1(v

′), so there exists an optimal strategy σ ∗i−1 such that for any strategy τi−1, we have that

eσ∗i−1,τi−1
(v′) ≤ ei−1(v

′). Define the strategy σi in the following way: ∀x ∈ V ∗VA : σi(ux) = σ ∗i−1(x) and

σi(u) = v′. Then we get a strategy σi such that for any strategy τi, it holds that eσi,τi
(u) ≤ ei(u). This

implies that ei(u) is a sufficient energy at vertex u, and so ei(u)≥ e∗i (u).
Consider the case that u ∈VB. Due to the ith step in Line 8, it holds that ei(u)+w(u,v)≥ ei−1(v), for

all v∈N+(u). Hence for any choice of a neighboring edge (u,v) with initial energy ei(u), Bob moves to a

S. Forster, A. Skarlatos & T. de Vos 249

neighbor v with remaining energy at least ei−1(v). By the inductive hypothesis, for all v ∈ N+(u) it holds

that ei−1(v) = e∗i−1(v), so there exists an optimal strategy σ ∗i−1 such that for any strategy τi−1, we have

that eσ∗i−1,τi−1
(v) ≤ ei−1(v). Define the strategy σi in the following way: ∀x ∈ V ∗VA : σi(ux) = σ ∗i−1(x).

Then we get a strategy σi such that for any strategy τi, it holds that eσi,τi
(u) ≤ ei(u). This implies that

ei(u) is a sufficient energy at vertex u, and so ei(u)≥ e∗i (u).
It remains to show that ei(u)≤ e∗i (u). Consider the case that u ∈VA. If ei(u) = 0 then the claim holds

trivially. If ei(u)> 0, then based on Line 5, we have that ei(u)+w(u,v)≤ ei−1(v) for all v ∈ N+(u). By

Lemma 6.1, there exists v′ ∈ N+(u) such that e∗i (u)+w(u,v′)≥ e∗i−1(v
′), which means that:

ei(u)+w(u,v′)≤ ei−1(v
′) = e∗i−1(v

′)≤ e∗i (u)+w(u,v′) ⇒ ei(u)≤ e∗i (u),

where the equality holds by the inductive hypothesis.

Consider the case that u ∈VB. If ei(u) = 0 then the claim holds trivially. Otherwise based on Line 8,

there exists v′ ∈ N+(u) such that ei(u) + w(u,v′) = ei−1(v
′). By Lemma 6.1, we have that e∗i (u) +

w(u,v) ≥ e∗i−1(v) for all v ∈ N+(u), which means that:

ei(u)+w(u,v′) = ei−1(v
′) = e∗i−1(v

′)≤ e∗i (u)+w(u,v′) ⇒ ei(u)≤ e∗i (u),

where the equality holds by the inductive hypothesis.

6.3 No Negative Cycles

The goal of this section is to show that for graphs with no negative cycles, it holds that e∗n(u) = e∗(u), for

all u∈V . Hereto, we show in Lemma 6.4 that as in the infinite duration game, positional strategies suffice

when no negative cycles are present. In the proof, we use the following alternative characterization of

eσi,τi
(u).

Let σi and τi be strategies for Alice and Bob respectively, and let u ∈ V be a vertex. Moreover, let

u0u1 · · ·u j be the consistent path of length j with respect to σi and τi, where u0 = u. Then given an initial

energy einit, the energy level at vertex u j is equal to the value einit +∑
j−1
k=0 w(uk,uk+1). We denote e∗init(u)

for the minimum nonnegative initial energy such that the energy level at each vertex of the corresponding

consistent path of length i, is nonnegative. The following lemma shows that eσi,τi
(u) = e∗init(u) (for the

proof, see the full version of the paper).

Lemma 6.3. For a vertex u and two fixed strategies σi and τi, let P be the consistent path with respect

to σi and τi of length i originating at u. Then it holds that eσi,τi
(u) = e∗init(u).

Now we are ready to show that positional strategies suffice in graphs without negative cycles. For

the proof see the full version of the paper.

Lemma 6.4. Consider a graph with no negative cycles and a game of i rounds. Then for the minimum

sufficient energy e∗i (u) at a vertex u ∈V , it suffices for both players to play positional strategies.

We use this fact to show that a game of n rounds is equivalent to a game of infinite duration for a

game graph without negative cycles.

Lemma 6.5. Consider a graph with no negative cycles. Then for each vertex u ∈ V , the minimum

sufficient energy needed at u for a game of n rounds, is equal to the minimum sufficient energy needed at

u for a game of infinite rounds. In other words, e∗n(u) = e∗∞(u) = e∗(u) for all u ∈V .

250 Fast Algorithms for Energy Games in Special Cases

Proof. Let σ and τ be two arbitrary positional strategies for the infinite duration game. By definition,

we have that eσ ,τ (u) = max{−minw(P),0}, where the minimization is over all the consistent paths with

respect to σ and τ originating at u. Since the graph contains only nonnegative cycles and the strategies

are positional, the path that minimizes the relation is a simple path, and so, its length is at most n. Hence

it follows that eσ ,τ (u) =max{−min|P|≤n w(P),0}. In turn, this is equivalent to using positional strategies

for a game of n rounds. Hence it holds that eσ ,τ (u) = eσn,τn
(u), where σn and τn are the strategies σ and

τ respectively, restricted to the first n rounds. This implies that e∗(u) = minσn
maxτn

eσn,τn
(u), where σn

and τn are positional strategies for a game of n rounds. By Lemma 6.4, this equals e∗n(u) and the claim

follows.

Together, Lemma 6.2 and Lemma 6.5 prove Theorem 1.5.

References

[1] Alfred V. Aho, John E. Hopcroft & Jeffrey D. Ullman (1974): The Design and Analysis of Computer Algo-

rithms. Addison-Wesley.

[2] Noga Alon, Zvi Galil & Oded Margalit (1997): On the Exponent of the All Pairs Shortest Path Problem. J.

Comput. Syst. Sci. 54(2), pp. 255–262, doi:10.1006/jcss.1997.1388.

[3] Aaron Bernstein, Danupon Nanongkai & Christian Wulff-Nilsen (2022): Negative-Weight Single-Source

Shortest Paths in Near-linear Time. In: 63rd IEEE Annual Symposium on Foundations of Computer Sci-

ence, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, IEEE, pp. 600–611, doi:10.1109/

FOCS54457.2022.00063.

[4] Henrik Björklund & Sergei G. Vorobyov (2007): A combinatorial strongly subexponential strategy improve-

ment algorithm for mean payoff games. Discrete Applied Mathematics 155(2), pp. 210–229, doi:10.1016/

j.dam.2006.04.029. Announced at MFCS 2004.

[5] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger & Barbara Jobstmann (2009): Better Quality

in Synthesis through Quantitative Objectives. In: Proc. of the 21st International Conference on Computer

Aided Verification (CAV 2009), Lecture Notes in Computer Science 5643, Springer, pp. 140–156, doi:10.

1007/978-3-642-02658-4_14. arXiv:0904.2638.

[6] Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey & Jirı́ Srba (2008): Infinite

Runs in Weighted Timed Automata with Energy Constraints. In Franck Cassez & Claude Jard, editors: Proc.

of the 6th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS 2008),

Lecture Notes in Computer Science 5215, Springer, pp. 33–47, doi:10.1007/978-3-540-85778-5_4.

[7] Phillip G. Bradford (2017): Efficient exact paths for dyck and semi-dyck labeled path reachability (extended

abstract). In: Proc. of the 8th IEEE Annual Conference on Ubiquitous Computing, Electronics and Mobile

Communication (UEMCON 2017), IEEE, pp. 247–253, doi:10.1109/UEMCON.2017.8249039.

[8] Luboš Brim & Jakub Chaloupka (2012): Using strategy improvement to stay alive. International Journal of

Foundations of Computer Science 23(03), pp. 585–608, doi:10.1142/S0129054112400291.

[9] Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gentilini & Jean-François Raskin (2011): Faster

algorithms for mean-payoff games. Formal Methods in System Design 38(2), pp. 97–118, doi:10.1007/

s10703-010-0105-x. Announced at MEMICS 2009 and GAMES 2009.

[10] Karl Bringmann, Alejandro Cassis & Nick Fischer (2023): Negative-Weight Single-Source Shortest Paths in

Near-Linear Time: Now Faster! arXiv preprint arXiv:2304.05279, doi:10.48550/arXiv.2304.05279.

[11] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li & Frank Stephan (2022): Deciding Par-

ity Games in Quasi-polynomial Time. SIAM Journal on Computing 51(2), pp. 17–152, doi:10.1137/

17m1145288. Announced at STOC 2017.

https://doi.org/10.1006/jcss.1997.1388
https://doi.org/10.1109/FOCS54457.2022.00063
https://doi.org/10.1109/FOCS54457.2022.00063
https://doi.org/10.1016/j.dam.2006.04.029
https://doi.org/10.1016/j.dam.2006.04.029
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://arxiv.org/abs/0904.2638
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1109/UEMCON.2017.8249039
https://doi.org/10.1142/S0129054112400291
https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.48550/arXiv.2304.05279
https://doi.org/10.1137/17m1145288
https://doi.org/10.1137/17m1145288

S. Forster, A. Skarlatos & T. de Vos 251

[12] Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna & Rohit Singh (2011):

Quantitative Synthesis for Concurrent Programs. In: Proc. of the 23rd International Conference on Computer

Aided Verification (CAV 2011), Lecture Notes in Computer Science 6806, Springer, pp. 243–259, doi:10.

1007/978-3-642-22110-1_20. arXiv:1104.4306.

[13] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger & Mariëlle Stoelinga (2003): Resource In-

terfaces. In Rajeev Alur & Insup Lee, editors: Proc. of the Third International Conference on Embedded

Software (EMSOFT 2003), Lecture Notes in Computer Science 2855, Springer, pp. 117–133, doi:10.1007/

978-3-540-45212-6_9.

[14] Krishnendu Chatterjee, Laurent Doyen, Mickael Randour & Jean-François Raskin (2015): Looking at mean-

payoff and total-payoff through windows. Inf. Comput. 242, pp. 25–52, doi:10.1016/j.ic.2015.03.010.

[15] Krishnendu Chatterjee, Monika Henzinger, Sebastian Krinninger & Danupon Nanongkai (2014):

Polynomial-Time Algorithms for Energy Games with Special Weight Structures. Algorithmica 70(3), pp.

457–492, doi:10.1007/s00453-013-9843-7. arXiv:1604.08234. Announced at ESA 2012.

[16] Carlo Comin & Romeo Rizzi (2017): Improved Pseudo-polynomial Bound for the Value Problem and

Optimal Strategy Synthesis in Mean Payoff Games. Algorithmica 77(4), pp. 995–1021, doi:10.1007/

s00453-016-0123-1.

[17] Dani Dorfman, Haim Kaplan, Robert E. Tarjan & Uri Zwick (2023): Optimal Energetic Paths for Electric

Cars. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi & Grzegorz Herman, editors: 31st Annual

European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, LIPIcs

274, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 42:1–42:17, doi:10.4230/LIPIcs.ESA.2023.

42.

[18] Dani Dorfman, Haim Kaplan & Uri Zwick (2019): A Faster Deterministic Exponential Time Algorithm

for Energy Games and Mean Payoff Games. In: Proc. of the 46th International Colloquium on Automata,

Languages, and Programming (ICALP 2019), 132, pp. 114:1–114:14, doi:10.4230/LIPIcs.ICALP.2019.

114.

[19] Andrzej Ehrenfeucht & Jan Mycielski (1979): Positional strategies for mean payoff games. International

Journal of Game Theory 8(2), pp. 109–113, doi:10.1007/BF01768705.

[20] Nathanaël Fijalkow, Paweł Gawrychowski & Pierre Ohlmann (2020): Value Iteration Using Universal

Graphs and the Complexity of Mean Payoff Games. In: Proc. of the 45th International Symposium on Mathe-

matical Foundations of Computer Science (MFCS 2020), 170, pp. 34:1–34:15, doi:10.4230/LIPIcs.MFCS.

2020.34.

[21] Vladimir A. Gurvich, Alexander V. Karzanov & L. G. Khachivan (1988): Cyclic games and an algorithm to

find minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical Physics

28(5), pp. 85–91, doi:10.1016/0041-5553(88)90012-2.

[22] Loı̈c Hélouët, Nicolas Markey & Ritam Raha (2019): Reachability Games with Relaxed Energy Constraints.

In: Proceedings Tenth International Symposium on Games, Automata, Logics, and Formal Verification, Gan-

dALF 2019, Bordeaux, France, 2-3rd September 2019, EPTCS 305, pp. 17–33, doi:10.4204/EPTCS.305.

2.

[23] Donald B. Johnson (1977): Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM 24(1), pp.

1–13, doi:10.1145/321992.321993.

[24] Marcin Jurdziński (1998): Deciding the winner in parity games is in UP∩ co-UP. Information Processing

Letters 68(3), pp. 119–124, doi:10.1016/S0020-0190(98)00150-1.

[25] Tomasz Kociumaka & Adam Polak (2023): Bellman-Ford Is Optimal for Shortest Hop-Bounded Paths. In

Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi & Grzegorz Herman, editors: 31st Annual European

Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, LIPIcs 274,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 72:1–72:10, doi:10.4230/LIPIcs.ESA.2023.72.

arXiv:2211.07325.

https://doi.org/10.1007/978-3-642-22110-1_20
https://doi.org/10.1007/978-3-642-22110-1_20
https://arxiv.org/abs/1104.4306
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1007/s00453-013-9843-7
https://arxiv.org/abs/1604.08234
https://doi.org/10.1007/s00453-016-0123-1
https://doi.org/10.1007/s00453-016-0123-1
https://doi.org/10.4230/LIPIcs.ESA.2023.42
https://doi.org/10.4230/LIPIcs.ESA.2023.42
https://doi.org/10.4230/LIPIcs.ICALP.2019.114
https://doi.org/10.4230/LIPIcs.ICALP.2019.114
https://doi.org/10.1007/BF01768705
https://doi.org/10.4230/LIPIcs.MFCS.2020.34
https://doi.org/10.4230/LIPIcs.MFCS.2020.34
https://doi.org/10.1016/0041-5553(88)90012-2
https://doi.org/10.4204/EPTCS.305.2
https://doi.org/10.4204/EPTCS.305.2
https://doi.org/10.1145/321992.321993
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.4230/LIPIcs.ESA.2023.72
https://arxiv.org/abs/2211.07325

252 Fast Algorithms for Energy Games in Special Cases

[26] Donald A. Martin (1975): Borel determinacy. Annals of Mathematics 102(2), pp. 363–371, doi:10.2307/

1971035.

[27] Piotr Sankowski (2005): Shortest Paths in Matrix Multiplication Time. In Gerth Stølting Brodal & Stefano

Leonardi, editors: Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain,

October 3-6, 2005, Proceedings, Lecture Notes in Computer Science 3669, Springer, pp. 770–778, doi:10.

1007/11561071_68.

[28] Robert E. Tarjan (1972): Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2), pp.

146–160, doi:10.1137/0201010.

[29] Virginia Vassilevska Williams & R. Ryan Williams (2018): Subcubic Equivalences Between Path, Matrix,

and Triangle Problems. J. ACM 65(5), pp. 27:1–27:38, doi:10.1145/3186893. Announced at FOCS 2010.

[30] Raphael Yuster & Uri Zwick (2005): Answering distance queries in directed graphs using fast matrix mul-

tiplication. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25

October 2005, Pittsburgh, PA, USA, Proceedings, IEEE Computer Society, pp. 389–396, doi:10.1109/

SFCS.2005.20.

[31] Uri Zwick & Mike Paterson (1996): The complexity of mean payoff games on graphs. Theoretical Computer

Science 158(1-2), pp. 343–359, doi:10.1016/0304-3975(95)00188-3.

https://doi.org/10.2307/1971035
https://doi.org/10.2307/1971035
https://doi.org/10.1007/11561071_68
https://doi.org/10.1007/11561071_68
https://doi.org/10.1137/0201010
https://doi.org/10.1145/3186893
https://doi.org/10.1109/SFCS.2005.20
https://doi.org/10.1109/SFCS.2005.20
https://doi.org/10.1016/0304-3975(95)00188-3

	Introduction
	Preliminaries
	Notation and terminology
	Satisfiability and finite model property
	Logics
	Normal forms and basic decidability result

	Finite model property
	Satisfaction forests
	Extracting a satisfaction forest from a model
	Satisfaction forests and the existence of finite models

	From a model to a satisfaction forest over a small domain
	Domain
	Some simple combinatorics: Extension functions
	Construction of a satisfaction forest

	Correctness

	Infinity axiom with free use of equality
	Conclusions
	Introduction
	Preliminaries
	Fourier-Motzkin Variable Elimination

	FMplex as Variable Elimination Procedure
	FMplex as Satisfiability Checking Procedure
	Avoiding Redundant Checks
	Backtracking of Local Conflicts

	Relation to Other Methods
	Simplex Algorithm
	Virtual Substitution Method
	Sample-Based Methods

	Experimental Evaluation
	Conclusion
	1 Introduction
	2 The Language of Phenesthe
	3 Examples of maritime properties expressed in TPhL
	4 Expressiveness
	4.1 Preliminaries
	4.2 TPhL_o- and Pure Past LTL
	4.3 TPhL- and LTL[XU,YS]
	4.4 Expressiveness of TPhL

	5 Stream processing
	6 Experimental Evaluation
	7 Related work & Discussion
	Introduction
	Three-valued epistemic semantics for impure complexes
	Two-valued epistemic semantics for impure complexes
	Translating three-valued into two-valued semantics
	Discussion and conclusion
	Introduction
	Background
	Syntax of Nondeterministic Reversible Sequential Processes
	Operational Semantic Rules
	Strong Forward, Reverse, and Forward-Reverse Bisimilarities
	Weak Forward, Reverse, and Forward-Reverse Bisimilarities

	Modal Logic Characterizations
	Weak Forward-Reverse Bisimilarity and Branching Bisimilarity
	Conclusion
	Introduction
	Preliminaries
	Transition Systems
	Perfect Channel Systems

	Concurrent Programs
	Syntax
	TSO Semantics

	Games
	Definitions
	TSO games

	Group I
	Group II
	Group III
	Group IV
	Conclusion and Future Work
	Introduction
	Definitions
	Model Checking
	Encoding of ATL in an EDG
	Search Strategies

	Tool Overview
	Evaluation
	Conclusion
	Introduction
	Foundations
	Decidability Results
	Undecidability Result
	Conclusions
	Introduction
	Preliminaries
	Counterfactual causes in transition systems
	Definition
	Checking counterfactual causality in transition systems
	Relation to Halpern-Pearl causality

	Counterfactual causality in reachability games
	D-counterfactual causality
	D-counterfactual explanation

	Conclusion and Outlook
	Introduction
	Preliminaries
	Conflict Aware Active Automata Learning
	Framework Overview
	The Reviser
	Interface Implementation
	Optimizations

	Evaluation
	Experiments
	Analysis

	Related Work
	Conclusion and Future Work
	Introduction
	Preliminaries
	The Recursive Arrival Problem

	¶-Hardness of Recursive Arrival
	Recursive Arrival is in NPcoNP and UEOPL
	Containment in UEOPL

	Conclusions
	Introduction
	Preliminaries
	Higher-arity Weisfeiler-Leman-style coloring corresponding to higher arity pebble games
	Equivalence between 2-ary (k,r)-WL Versions I and II

	Descriptive Complexity of Semisimple Groups
	Preliminaries
	Main Results

	Conclusion
	Introduction
	Preliminaries
	Games under Delayed Control
	Delay Games
	omega-Automata

	From Games under Delayed Control to Delay Games and Back
	Results
	Controller's View
	Environment's View

	Refining the Correspondence: Sure Winning and Almost Sure Winning
	Conclusion
	Introduction
	Our Results and Techniques

	Preliminaries
	All-Pairs Nonnegative Prefix Paths Problem
	All-Pairs Nonnegative Prefix Paths with edge weights in -1,0,+1
	All-Pairs Nonnegative Prefix Paths with general edge weights
	Lower bound for All-Pairs Nonnegative Prefix Paths

	The All-Alice Case
	The All-Bob Case
	Game Graphs Without Negative Cycles
	Finite Duration Games
	A Value Iteration Algorithm for Finite Duration Games
	No Negative Cycles

