
EPTCS 370

Proceedings of the

13th International Symposium on

Games, Automata, Logics and Formal

Verification

Madrid, Spain, September 21-23, 2022

Edited by: Pierre Ganty and Dario Della Monica

Published: 20th September 2022

DOI: 10.4204/EPTCS.370

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . iii

Invited Presentation: Techniques for Unambiguous Systems . v

Wojciech Czerwiński

Invited Presentation: Learning Languages of Infinite Words . vi

Dana Fisman

Invited Presentation: State Complexity of Population Protocols . vii

Javier Esparza

Invited Presentation: Towards Multiset Semantics Database Theory: How I Learned to Stop

Worrying and Love Linear Algebra . viii

Jerzy Marcinkowski

On the Existential Fragments of Local First-Order Logics with Data . 1

Benedikt Bollig, Arnaud Sangnier and Olivier Stietel

Capturing Bisimulation-Invariant Exponential-Time Complexity Classes . 17

Florian Bruse, David Kronenberger and Martin Lange

Complexity through Translations for Modal Logic with Recursion . 34

Luca Aceto, Antonis Achilleos, Elli Anastasiadi, Adrian Francalanza and Anna Ingolfsdottir

Schema-Based Automata Determinization . 49

Joachim Niehren, Momar Sakho and Antonio Al Serhali

Generating Tokenizers with Flat Automata . 66

Hans de Nivelle and Dina Muktubayeva

Analyzing Robustness of Angluin’s L* Algorithm in Presence of Noise . 81

Igor Khmelnitsky, Serge Haddad, Lina Ye, Benoît Barbot, Benedikt Bollig, Martin Leucker,

Daniel Neider and Rajarshi Roy

Parametric Interval Temporal Logic over Infinite Words . 97

Laura Bozzelli and Adriano Peron

Realizable and Context-Free Hyperlanguages . 114

Hadar Frenkel and Sarai Sheinvald

ii

Controller Synthesis for Timeline-based Games . 131

Renato Acampora, Luca Geatti, Nicola Gigante, Angelo Montanari and Valentino Picotti

CryptoSolve: Towards a Tool for the Symbolic Analysis of Cryptographic Algorithms 147

Dalton Chichester, Wei Du, Raymond Kauffman, Hai Lin, Christopher Lynch,

Andrew M. Marshall, Catherine A. Meadows, Paliath Narendran, Veena Ravishankar,

Luis Rovira and Brandon Rozek

Adversarial Formal Semantics of Attack Trees and Related Problems . 162

Thomas Brihaye, Sophie Pinchinat and Alexandre Terefenko

Avoid One’s Doom: Finding Cliff-Edge Configurations in Petri Nets . 178

Giann Karlo Aguirre-Samboní, Stefan Haar, Loïc Paulevé, Stefan Schwoon and

Nick Würdemann

Comparing Channel Restrictions of Communicating State Machines, High-level Message Sequence

Charts, and Multiparty Session Types . 194

Felix Stutz and Damien Zufferey

Characterizing the Decidability of Finite State Automata Team Games with Communication 213

Michael Coulombe and Jayson Lynch

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. iii–iv, doi:10.4204/EPTCS.370.0

Preface

This volume contains the proceedings of GandALF 2022, the Thirteenth International Symposium

on Games, Automata, Logics, and Formal Verification. The symposium was held in Madrid, Spain,

September 21-23, 2022.

The GandALF symposium was established by a group of Italian computer scientists to provide an op-

portunity for researchers interested in logic for computer science, automata theory, game theory, to gather

and discuss the application of formal methods to the specification, design, and verification of complex

systems. Previous editions of GandALF were held in Padova, Italy (2021); Brussels, Belgium (2020);

Bordeaux, France (2019); Saarbrücken, Germany (2018); Rome, Italy (2017); Catania, Italy (2016);

Genoa, Italy (2015); Verona, Italy (2014); Borca di Cadore, Italy (2013); Napoli, Italy (2012); and Mi-

nori, Italy (2011 and 2010). It is a forum where people from different areas, and possibly with different

backgrounds, can fruitfully interact, with a truly international spirit, as witnessed by the composition of

the program and steering committee and by the country distribution of the submitted papers.

The program committee selected 14 papers (out of 20 submissions) for presentation at the sympo-

sium. Each paper was reviewed by at least two referees, and the selection was based on originality,

quality, and relevance to the topics of the call for papers. The scientific program included presentations

on automata, logics for computer science and verification, complexity theory, formal methods and lan-

guages, games, synthesis algorithms and security. The program included four invited talks, given by Woj-

ciech Czerwiński (University of Warsaw, Poland), Javier Esparza (Technische Universität München, Ger-

many), Dana Fisman (Ben-Gurion University, Israel), and Jerzy Marcinkowski (University of Wrocław,

Poland). We are deeply grateful to them for contributing to this year edition of GandALF.

We would like to thank the authors who submitted papers for consideration, the speakers, the program

committee members and the additional reviewers for their excellent work. We also thank Eddie Kohler

for the HotCRP conference review software, EPTCS and arXiv for hosting the proceedings; in particular,

we thank Rob van Glabbeek for the precise and prompt technical support with issues related with the

proceeding publication procedure.

Finally we would like to thank the local organisers, and especially Tania Rodrı́guez and Marı́a Al-

caraz for making sure the event ran smoothly.

Dario Della Monica and Pierre Ganty

Program Chairs

• Dario Della Monica, University of Udine (Italy)

• Pierre Ganty, IMDEA Software Institute, Madrid (Spain)

Program Committee

• Christel Baier, TU Dresden (Germany)

• Suguman Bansal, University of Pennsylvania (USA)

http://dx.doi.org/10.4204/EPTCS.370.0

iv

• Nathalie Bertrand, Inria (France)

• Filippo Bonchi, University of Pisa (Italy)

• Laura Bozzelli, Università degli Studi di Napoli Federico II (Italy)

• Véronique Bruyère, University of Mons (Belgium)

• David de Frutos Escrig, Universidad Complutense de Madrid (Spain)

• Cezara Drăgoi, AWS

• Mohamed Faouzi Atig, Uppsala University (Sweden)

• Adrian Francalanza, University of Malta (Malta)

• Orna Kupferman, The Hebrew University (Israel)

• Konstantinos Mamouras, Rice University (USA)

• Roland Meyer, TU Braunschweig (Germany)

• Fabio Mogavero, Università degli Studi di Napoli Federico II (Italy)

• Paritosh Pandya, IIT Bombay (India)

• Paweł Parys, University of Warsaw (Poland)

• Guillermo Pérez, University of Antwerp (Belgium)

• Pierre-Alain Reynier, LIS, Aix-Marseille University & CNRS (France)

• Andrea Turrini, Institute of Software, Chinese Academy of Sciences (China)

• Georg Zetzsche, Max Planck Institute for Software Systems - MPI-SWS (Germany)

Steering Committee

• Luca Aceto, Reykjavik University (Iceland)

• Javier Esparza, University of Munich (Germany)

• Salvatore La Torre, University of Salerno (Italy)

• Angelo Montanari, University of Udine (Italy)

• Mimmo Parente, University of Salerno (Italy)

• Jean-François Raskin, Université libre de Bruxelles (Belgium)

• Martin Zimmermann, University of Liverpool (UK)

External Reviewers

Adriano Peron, Adrien Pommellet, Antoine Mottet, Bartosz Klin, Eryk Kopczyński, Gaëtan Staquet,

Giannicola Scarpa, Ji Guan, Joseph Lallemand, Loı̈c Hélouët, Moses Ganardi, Ramanathan Srinivasan,

Sylvain Lombardy, and Wanwei Liu.

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. v–v, doi:10.4204/EPTCS.370.0.1

Techniques for Unambiguous Systems

Wojciech Czerwiński (University of Warsaw, Poland)

In recent years it became apparent that many decision problems can be solved efficiently on unambigu-

ous systems (systems in which each word is accepted by at most one run). I will show first a classical

approach for solving language equivalence by weighted automata. Then I will present novel techniques,

which helped us solve the problem for vector addition systems. Finally I plan to advertise an interest-

ing related problem of multiplicity equivalence, which seems to reveal some connections between the

unambiguity problem and other fields of mathematics.

http://dx.doi.org/10.4204/EPTCS.370.0.1

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. vi–vi, doi:10.4204/EPTCS.370.0.2

Learning Languages of Infinite Words

Dana Fisman (Ben-Gurion University, Israel)

The problem of inferring an automaton model of a black box system has found many applications in

formal methods of system design. If the black-box system implements (or can be abstracted as) a regular

language of finite words, it can be inferred in polynomial time using query learning. In this talk we’ll

discuss the problem we face when the black-box system implements a regular language of infinite words

(e.g. the black-box is a reactive system).

While there are automata processing infinite words e.g. (Buechi automata) that have the same struc-

ture as automata on finite words (DFAs), learning them seems to be a harder problem. During the talk

we will get acquainted with the ideas behind learning algorithms for regular languages, the obstacles

in devising learning algorithms for regular languages of infinite words, and state-of-the-art results on

learnability of acceptors of regular languages of infinite words.

http://dx.doi.org/10.4204/EPTCS.370.0.2

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. vii–vii, doi:10.4204/EPTCS.370.0.3

State Complexity of Population Protocols

Javier Esparza (Technische Universität München, Germany)

Population protocols were introduced by Angluin et al. in 2004 to study the theoretical properties of

networks of mobile sensors with very limited computational resources. They have also been proposed as

a natural computing model, with molecules, cells, or microorganisms playing the role of sensors.

In a population protocol an arbitrary number of indistinguishable, finite-state agents interact ran-

domly in pairs to collectively decide if their initial global configuration satisfies a given property. The

property is formalized as a predicate that maps each initial configuration to an output, 0 or 1. Starting

from an initial configuration, the agents eventually agree to the correct output almost surely, and continue

producing it forever. The protocol is said to stabilize to the correct output.

Population protocols can decide exactly the semilinear predicates, or, equivalently, the predicates

expressible in Presburger arithmetic. Current research concentrates on investigating the amount of re-

sources needed to decide a given predicate. The standard resources, time and memory, translate for

population protocols into expected time to stabilization and number of states of each agent. In this talk

we concentrate on the state complexity of population protocols, for which matching upper and lower

bounds have been found in the last few years.

http://dx.doi.org/10.4204/EPTCS.370.0.3

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. viii–viii, doi:10.4204/EPTCS.370.0.4

Towards Multiset Semantics Database Theory: How I Learned to Stop

Worrying and Love Linear Algebra

Jerzy Marcinkowski (University of Wrocław, Poland)

For the last ten years, or maybe more, I have been a Database Theorist.

Like all (or at least most of) the Database Theorists I modelled the real-world-database relations, and

real-world answers to the queries, as sets. If my query was “Exists y Cat(y) and Owns(x,y)”, and my

database happened to contain the tuples “Cat(Tibby)” and “Owns(Andreas, Tibby)” then – clearly – the

constant “Andreas” was an element of the answer set.

I studied this model, using the methodology of mathematics. My toolbox was simple. It comprised

some specific Database Theory concepts (like Chase) and some simple Computation Theory tricks (in-

cluding maybe some automata-based arguments). Using this toolbox I constructed reasonings, which

were occasionally complicated, but always elementary. It was fun.

But then, in early 2021, someone asked me what would happen to my results concerning Query

Determinacy (whatever it is) if I considered a more realistic model, in which database relations, and

answers to the queries, are multisets rather than sets. So, if my database knew that Andreas actually has

six cats, the answer (multi)set would contain the constant “Andreas” with multiplicity six.

We started to think about it (with my very clever students, Jarosław Kwiecień and Piotr Ostropolski-

Nalewaja) and soon we realized that this minor change in the assumptions about the model leads to a

major change in the tools we need to study it. This felt to us like entering a completely new world.

Suddenly the language and the methods from Linear Algebra appear so naturally that it is fair to say that

they impose themselves on the researchers.

Clearly, we were not the first Database Theorists to set foot on this new continent. People have

attempted to re-examine old Database Theory results, in the multiset-semantics scenario, for about 30

years now. But such attempts were few. And this is (I guess) exactly because in order to make any

progress here one needs to learn totally new tools.

To our surprise we learned that this continent had also been visited before by the Mathematicians.

They had constructed a number of structures there, some of them of some use for us. That’s a bit

frustrating, because they use different terms to call some notions, and it is not always straightforward to

understand how to translate their own results to our language.

My talk will be a story by a traveller astonished by what he saw during his first short trip to the little

known continent of Multiset-Semantics Database Theory.

To give you a glimpse of the techniques that appear there I will present some results and argu-

ments from our PODS 2022 paper “Determinacy of Real Conjunctive Queries. The Boolean Case” (with

Kwiecień and Ostropolski-Nalewaja). But I will also mention the adventures of other travellers to this

new land, with particular emphasis on the famous Conjunctive Query Containment Problem.

http://dx.doi.org/10.4204/EPTCS.370.0.4

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. 1–16, doi:10.4204/EPTCS.370.1

© B. Bollig, A. Sangnier & O. Stietel

This work is licensed under the

Creative Commons Attribution License.

On the Existential Fragments of Local First-Order Logics

with Data

Benedikt Bollig

CNRS, LMF, ENS Paris-Saclay
Université Paris-Saclay, France

Arnaud Sangnier

IRIF, Université Paris Cité
CNRS,France

Olivier Stietel

CNRS, LMF, ENS Paris-Saclay
Université Paris-Saclay, France

IRIF, Université Paris Cité
CNRS,France

We study first-order logic over unordered structures whose elements carry a finite number of data

values from an infinite domain which can be compared wrt. equality. As the satisfiability problem

for this logic is undecidable in general, in a previous work, we have introduced a family of local

fragments that restrict quantification to neighbourhoods of a given reference point. We provide here

the precise complexity characterisation of the satisfiability problem for the existential fragments of

this local logic depending on the number of data values carried by each element and the radius of the

considered neighbourhoods.

1 Introduction

First-order data logic has emerged to specify properties involving infinite data domains. Potential appli-

cations include XML reasoning and the specification of concurrent systems and distributed algorithms.

The idea is to extend classic mathematical structures by a mapping that associates with every element of

the universe a value from an infinite domain. When comparing data values only for equality, this view

is equivalent to extending the underlying signature by a binary relation symbol whose interpretation is

restricted to an equivalence relation.

Data logics over word and tree structures were studied in [1, 2]. In particular, the authors showed

that two-variable first-order logic on words has a decidable satisfiability problem. Other types of data

logics allow two data values to be associated with an element [12, 13], though they do not assume a

linearly ordered or tree-like universe. Again, satisfiability turned out to be decidable for the two-variable

fragment of first-order logic. Other notable extensions, either to multiple data values or to totally ordered

data domains, include [5, 11, 15, 17].

When considering an arbitrary number of first-order variables, which we do in this paper, the decid-

ability frontier is quickly crossed without further constraints as soon as the number of allowed data in

gretar then two [10]. One of the restrictions we consider here is locality, an essential concept in first-

order logic. It is well known that first-order logic is only able to express local properties: a first-order

formula can always be written as a combination of properties of elements that have limited, i.e., bounded

by a given radius, distance from some reference points [8, 9]. In the presence of (several) data values,

imposing a corresponding locality restriction on a logic can help ensuring decidability of its satisfiability

problem.

In previous work, we considered a local fragment of first-order data logic over structures whose

elements (i) are unordered (as opposed to, e.g., words or trees), and (ii) each carries two data values.

We showed that the fragment has a decidable satisfiability problem when restricting local properties to

radius 1, while it is undecidable for any radius greater than 1.

http://dx.doi.org/10.4204/EPTCS.370.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 On the Existential Fragments of Local First-Order Logics with Data

In the present paper, we study orthogonal local fragments where global quantification is restricted to

being existential (while quantification inside a local property is still unrestricted). We obtain decidability

for (i) radius 1 and an arbitrary number of data values, and for (ii) radius 2 and two data values. In

all cases, we provide tight complexity upper and lower bounds. Moreover, these results mark the exact

decidability frontier: satisfiability is undecidable as soon as we consider radius 3 in presence of two data

values, or radius 2 together with three data values.

To give a possible application domain of our logic, consider distributed algorithms running on a

cloud of processes. Those algorithms are usually designed to be correct independently of the number

of processes executing them. Every process gets some inputs and produces some outputs, usually from

an infinite domain. These may include process identifiers, nonces, etc. Inputs and outputs together

determine the behavior of a distributed algorithm. A simple example is leader election, where every

process gets a unique id, whereas the output should be the id of the elected leader and so be the same for

all processes. To formalize correctness properties and to define the intended input-output relation, it is

hence essential to have suitable data logics at hand.

Outline. The paper is structured as follows. In Section 2, we recall important notions such as structures

and first-order logic, and we introduce the local fragments considered in this paper. Section 3 presents

the decidable cases, whereas, in Section 4, we show that all remaining cases lead to undecidability.

This work was partly supported by the project ANR FREDDA (ANR-17-CE40-0013).

2 Structures and first-order logic

2.1 Data Structures

We define here the class of models we are interested in. It consists of sets of nodes containing data

values with the assumption that each node is labeled by a set of predicates and carries the same number

of values. We consider hence Σ a finite set of unary relation symbols (sometimes called unary predicates)

and an integer D ≥ 0. A D-data structure over Σ is a tuple A= (A,(Pσ)σ∈Σ, f1, . . . , fD) (in the following,

we simply write (A,(Pσ), f1, . . . , fD)) where A is a nonempty finite set, Pσ ⊆ A for all σ ∈ Σ, and fis are

mappings A → N. Intuitively A represents the set of nodes and fi(a) is the i-th data value carried by a

for each node a ∈ A. For X ⊆ A, we let ValA(X) = { fi(a) | a ∈ X , i ∈ {1, . . . ,D}}. The set of all D-data

structures over Σ is denoted by Data[Σ,D].

While this representation is often very convenient to represent data values, a more standard way

of representing mathematical structures is in terms of binary relations. For every (i, j) ∈ {1, . . . ,D}×
{1, . . . ,D}, the mappings f1, . . . , fD determine a binary relation i∼

A
j ⊆ A ×A as follows: a i∼

A
j b iff

fi(a) = f j(b). We may omit the superscript A if it is clear from the context and if D = 1, as there will be

only one relation, we way may write ∼ for 1∼1.

2.2 First-Order Logic

Let V = {x,y, . . .} be a countably infinite set of variables. The set dFO[Σ,D] of first-order formulas

interpreted over D-data structures over Σ is inductively given by the grammar ϕ ::= σ(x) | x i∼ j y | x =
y | ϕ ∨ϕ | ¬ϕ | ∃x.ϕ , where x and y range over V , σ ranges over Σ, and i, j ∈ {1, . . . ,D}. We use standard

abbreviations such as ∧ for conjunction and ⇒ for implication. We write ϕ(x1, . . . ,xk) to indicate that

the free variables of ϕ are among x1, . . . ,xk. We call ϕ a sentence if it does not contain free variables.

B. Bollig, A. Sangnier & O. Stietel 3

For A = (A,(Pσ), f1, . . . , fD) ∈ Data[Σ,D] and a formula ϕ ∈ dFO[Σ,D], the satisfaction relation

A |=I ϕ is defined wrt. an interpretation function I : V →A. The purpose of I is to assign an interpretation

to every (free) variable of ϕ so that ϕ can be assigned a truth value. For x∈V and a∈A, the interpretation

function I[x/a] maps x to a and coincides with I on all other variables. We then define:

A |=I σ(x) if I(x) ∈ Pσ A |=I ϕ1 ∨ϕ2 if A |=I ϕ1 or A |=I ϕ2

A |=I x i∼ j y if I(x) i∼
A
j I(y) A |=I ¬ϕ if A 6|=I ϕ

A |=I x = y if I(x) = I(y) A |=I ∃x.ϕ if there is a ∈ A s.t. A |=I[x/a] ϕ

Finally, for a data structure A = (A,(Pσ), f1, . . . , fD), a formula ϕ(x1, . . . ,xk) and a1, . . . ,ak ∈ A,

we write A |= ϕ(a1, . . .ak) if there exists an interpretation function I such that A |=I[x1/a1]...[xk/ak] ϕ . In

particular, for a sentence ϕ , we write A |= ϕ if there exists an interpretation function I such that A |=I ϕ .

Example 1 Assume a unary predicate leader ∈ Σ. The following formula from dFO[Σ,2] expresses cor-

rectness of a leader-election algorithm: (i) there is a unique process that has been elected leader, and

(ii) all processes agree, in terms of their output values (their second data), on the identity (the first data)

of the leader: ∃x.(leader(x)∧∀y.
(

leader(y)⇒ y = x)
)

∧∀y.∃x.(leader(x)∧x 1∼2 y).

We are interested here in the satisfiability problem for these logics. Let F denote a generic class of

first-order formulas, parameterized by Σ and D. In particular, for F = dFO, we have that F [Σ,D] is the

class dFO[Σ,D]. The satisfiability problem for F wrt. D-data structures is defined as follows:

DATASAT(F ,D)

Input: A finite set Σ and a sentence ϕ ∈ F [Σ,D].

Question: Is there A ∈ Data[Σ,D] such that A |= ϕ ?

The following negative result (see [10, Theorem 1]) calls for restrictions of the general logic.

Theorem 1 [10] The problem DATASAT(dFO,2) is undecidable, even when we require that Σ = /0 and

we do not use 1∼2 and 2∼1 in the considered formulas.

2.3 Local First-Order Logic and its existential fragment

We are interested in logics combining the advantages of dFO[Σ,D], while preserving decidability. With

this in mind, we have introduced in [3], for the case of two data values, a local restriction, where the

scope of quantification in the presence of free variables is restricted to the view of a given element. We

present now the defintion of such restrictions adapted to the case of many data values.

First, the view of a node a includes all elements whose distance to a is bounded by a given radius. It is

formalized using the notion of a Gaifman graph (for an introduction, see [14]). We use here a variant that

is suitable for our setting and that we call data graph. Given a data structure A= (A,(Pσ), f1, . . . , fD) ∈
Data[Σ,D], we define its data graph G (A) = (VG (A),EG (A)) with set of vertices VG (A) = A×{1, . . . ,D}
and set of edges EG (A) = {((a, i),(b, j)) ∈ VG (A) ×VG (A) | a = b or a i∼ j b}. Figure 1a provides an

example of the graph G (A) for a data structure with 2 data values.

We then define the distance dA((a, i),(b, j)) ∈ N∪{∞} between two elements (a, i) and (b, j) from

A×{1, . . . ,D} as the length of the shortest path from (a, i) to (b, j) in G (A). For a ∈ A and r ∈ N, the

radius-r-ball around a is the set BA
r (a) = {(b, j) ∈ VG (A) | dA((a, i),(b, j)) ≤ r for some i ∈ {1, . . . ,D}}.

This ball contains the elements of VG (A) that can be reached from (a,1), . . . ,(a,D) through a path of

length at most r. On Figure 1a the blue nodes represent BA
2 (a).

4 On the Existential Fragments of Local First-Order Logics with Data

1

2a

1

3

b

3

2 c

5

6

d

4

3

e

2

7

f

(a) A data structure A and G (A).

1

2a

1

3

b

3

2 c

10

11

d

8

9

e

2

7

f

(b) A|2a: the 2 view of a

Figure 1

We now define the r-view of an element a in the D-data structure A. Intuitively it is a D-data structure

with the same elements as A but where the data values which are not in the radius-r-ball around a are

changed with new values all different one from each other. Let fnew : A×{1, . . . ,D} → N\ValA(A) be

an injective mapping. The r-view of a in A is the structure A|ra = (A,(Pσ), f ′1, . . . , f ′n) ∈ Data[Σ,D] where

its universe is the same as the one of A and the unary predicates stay the same and f ′i (b) = fi(b) if

(b, i) ∈ BA
r (a), and f ′i (b) = fnew((b, i)) otherwise. On Figure 1b, the structure A|2a is depicted where the

values of the red nodes, not belonging to BA
2 (a) have been replaced by fresh values not in {1, . . . ,7}.

We are now ready to present the logic r-Loc-dFO[Σ,D], where r ∈N, interpreted over structures from

Data[Σ,D]. It is given by the grammar

ϕ ::= 〈〈ψ〉〉r
x | x = y | ∃x.ϕ | ϕ ∨ϕ | ¬ϕ

where ψ is a formula from dFO[Σ,D] with (at most) one free variable x. This logic uses the local modality

〈〈ψ〉〉r
x to specify that the formula ψ should be interpreted over the r-view of the element associated to

the variable x. For A ∈ Data[Σ,D] and an interpretation function I, we have indeed A |=I 〈〈ψ〉〉r
x iff

A|r
I(x) |=I ψ .

Example 2 We now illustrate what can be specified by formulas in the logic 1-Loc-dFO[Σ,2]. We can

rewrite the formula from Example 1 so that it falls into our fragment as follows: ∃x.(〈〈leader(x)〉〉1
x ∧∀y.

(〈〈leader(y)〉〉1
y ⇒ x = y))∧∀y.〈〈∃x.leader(x)∧y 2∼1 x〉〉1

y . The next formula specifies an algorithm in

which all processes suggest a value and then choose a new value among those that have been suggested

at least twice: ∀x.〈〈∃y.∃z.y 6= z∧x 2∼1 y∧x 2∼1 z〉〉1
x . We can also specify partial renaming, i.e., two

output values agree only if their input values are the same: ∀x.〈〈∀y.(x 2∼2 y ⇒ x 1∼1 y〉〉1
x . Conversely,

the formula ∀x.〈〈∀y.(x 1∼1 y ⇒ x 2∼2 y〉〉1
x specifies partial fusion of equivalences classes.

In [3], we have studied the decidability status of the satisfiability problem for r-Loc-dFO[Σ,2] with

r ≥ 1 and we have shown that DATASAT(2-Loc-dFO,2) is undecidable and that DATASAT(1-Loc-dFO,2)
is decidable when restricting the formulas (and the view of elements) to binary relations belonging to the

set {1∼1,2∼2,1∼2}. Whether DATASAT(1-Loc-dFO,2) in its full generality is decidable or not remains

an open problem.

B. Bollig, A. Sangnier & O. Stietel 5

We wish to study here the existential fragment of r-Loc-dFO[Σ,D] (with r ≥ 1 and D ≥ 1) and

establish when its satisfiability problem is decidable. This fragment, denoted by ∃-r-Loc-dFO[Σ,D], is

given by the grammar

ϕ ::= 〈〈ψ〉〉r
x | x = y | ¬(x = y) | ∃x.ϕ | ϕ ∨ϕ | ϕ ∧ϕ

where ψ is a formula from dFO[Σ,D] with (at most) one free variable x. The quantifier free fragment

qf-r-Loc-dFO[Σ,D] is defined by the grammar ϕ ::= 〈〈ψ〉〉r
x | x = y | ¬(x = y) | ϕ ∨ϕ | ϕ ∧ϕ .

Remark 1 Note that for both these fragments, we do not impose any restrictions on the use of quantifiers

in the formula ψ located under the local modality 〈〈ψ〉〉r
x.

3 Decidability results

We show here decidability of DATASAT(∃-2-Loc-dFO,2) and, for all D≥ 0, DATASAT(∃-1-Loc-dFO,D).

3.1 Preliminary results: 0 and 1 data values

We introduce two preliminary results we shall use in this section to obtain new decidability results. First,

note that formulas in dFO[Σ,0] (i.e. where no data is considered) correspond to first order logic formulas

with a set of predicates and equality test as a unique relation. As mentioned in Chapter 6.2.1 of [4], these

formulas belong to the Löwenheim class with equality also called as the relational monadic formulas,

and their satisfiability problem is in NEXP. Furthermore, thanks to [6] (Theorem 11), we know that this

latter problem is NEXP-hard even if one considers formulas which use only two variables.

Theorem 2 DATASAT(dFO,0) is NEXP-complete.

In [16], the authors study the satisfiability problem for Hybrid logic over Kripke structures where

the transition relation is an equivalence relation, and they show that it is N2EXP-complete. Furthermore

in [7], it is shown that Hybrid logic can be translated to first-order logic in polynomial time and this

holds as well for the converse translation. Since 1-data structures can be interpreted as Kripke structures

with one equivalence relation, altogether this allows us to obtain the following preliminary result about

the satisfiability problem of dFO[Σ,1].

Theorem 3 DATASAT(dFO,1) is N2EXP-complete.

3.2 Two data values and balls of radius 2

In this section, we prove that the satisfiability problem for the existential fragment of local first-order

logic with two data values and balls of radius two is decidable. To obtain this result we provide a re-

duction to the satisfiability problem for first-order logic over 1-data structures. Our reduction is based

on the following intuition. Consider a 2-data structure A= (A,(Pσ), f1, f2) ∈ Data[Σ,2] and an element

a ∈ A. If we take an element b in BA
2 (a), the radius-2-ball around a, we know that either f1(b) or f2(b)

is a common value with a. In fact, if b is at distance 1 of a, this holds by definition and if b is at distance

2 then b shares an element with c at distance 1 of a and this element has to be shared with a as well so

b ends to be at distance 1 of a. The trick consists then in using extra-labels for elements sharing a value

with a that can be forgotten and to keep only the value of b not present in a, this construction leading

to a 1-data structure. It remains to show that we can ensure that a 1-data structure is the fruit of this

6 On the Existential Fragments of Local First-Order Logics with Data

construction in a formula of dFO[Σ′,1] (where Σ′ is obtained from Σ by adding extra predicates).

The first step for our reduction consists in providing a characterisation for the elements located in the

radius-1-ball and the radius-2-ball around another element.

Lemma 1 Let A= (A,(Pσ), f1, f2) ∈ Data[Σ,2] and a,b ∈ A and j ∈ {1,2}. We have:

1. (b, j) ∈ BA
1 (a) iff there is i ∈ {1,2} such that a i∼

A
j b.

2. (b, j) ∈ BA
2 (a) iff there exists i,k ∈ {1,2} such that a i∼

A
k b.

Proof: We show both statements:

1. Since (b, j) ∈ BA
1 (a), by definition we have either b = a and in that case a j∼

A
j b holds, or b 6= a

and necessarily there exists i ∈ {1,2} such that a i∼
A
j b.

2. First, if there exists i,k ∈ {1,2} such that a i∼
A

k b, then (b,k) ∈ BA
1 (a) and (b, j) ∈ BA

2 (a) by defini-

tion. Assume now that (b, j) ∈ BA
2 (a). Hence there exists i ∈ {1,2} such that dA((a, i),(b, j)) ≤ 2.

We perform a case analysis on the value of dA((a, i),(b, j)).

• Case dA((a, i),(b, j)) = 0. In that case a = b and i = j and we have a i∼
A
i b.

• Case dA((a, i),(b, j)) = 1. In that case, ((a, i),(b, j)) is an edge in the data graph G (A) of A

which means that a i∼
A
j b holds.

• Case dA((a, i),(b, j)) = 2. Note that we have by definition a 6= b. Furthermore, in that case,

there is (c,k) ∈ A×{1,2} such that ((a, i),(c,k)) and ((c,k),(b, j)) are edges in G (A). If

c 6= a and c 6= b, this implies that a i∼
A

k c and c k∼
A
j b, so a i∼

A
j b and dA((a, i),(b, j)) = 1

which is a contradiction. If c = a and c 6= b, this implies that a k∼
A
j b. If c 6= a and c = b,

this implies that a i∼
A
k b.

�

We consider a formula ϕ = ∃x1 . . .∃xn.ϕq f (x1, . . . ,xn) of ∃-2-Loc-dFO[Σ,2] in prenex normal form,

i.e., such that ϕq f (x1, . . . ,xn) ∈ qf-2-Loc-dFO[Σ,2]. We know that there is a structure A = (A,(Pσ)σ∈Σ,
f1, f2) in Data[Σ,2] such that A |= ϕ if and only if there are a1, . . . ,an ∈ A such that A |= ϕq f (a1, . . . ,an).

Let A= (A,(Pσ)σ∈Σ, f1, f2) be a structure in Data[Σ,2] and a tuple~a = (a1, . . . ,an) of elements in An.

We shall present the construction of a 1-data structure [[A]]~a in Data[Σ′,1] (with Σ ⊆ Σ′) with the same

set of nodes as A, but where each node carries a single data value. In order to retrieve the data relations

that hold in A while reasoning over [[A]]~a, we introduce extra-predicates in Σ′ to establish whether a node

shares a common value with one of the nodes among a1, . . . ,an in A.

We now explain formally how we build [[A]]~a. Let Γn = {ap[i, j] | p ∈ {1, . . . ,n}, i, j ∈ {1,2}} be a

set of new unary predicates and Σ′ = Σ∪Γn. For every element b ∈ A, the predicates in Γn are used to

keep track of the relation between the data values of b and the one of a1, . . . ,an in A. Formally, we define

Pap[i, j] = {b ∈ A | A |= ap i∼ j b}. We now define a data function f : A →N. We recall for this matter that

ValA(~a) = { f1(a1), f2(a1), . . . , f1(an), f2(an)} and let fnew : A → N\ValA(A) be an injection. For every

b ∈ A, we set:

f (b) =











f2(b) if f1(b) ∈ ValA(~a) and f2(b) /∈ ValA(~a)

f1(b) if f1(b) /∈ ValA(~a) and f2(b) ∈ ValA(~a)

fnew(b) otherwise

Hence depending if f1(b) or f2(b) is in ValA(~a), it splits the elements of A in four categories. If f1(b) and

f2(b) are in ValA(~a), the predicates in Γn allow us to retrieve all the data values of b. Given j ∈ {1,2},

B. Bollig, A. Sangnier & O. Stietel 7

1

2a

1

3

b

3

2 c

5

6

d

4

3

e

2

7

f

(a) A data structure A and G (A).

8
a

3

b

3

c

9

d

10

e

7

f

Pa[1,1] = {a,b}

Pa[2,2] = {a,c}

Pa[1,2] = /0

Pa[2,1] = { f}

(b) [[A]](a).

Figure 2

if f j(b) is in ValA(~a) but f3− j(b) is not, the new predicates will give us the j-th data value of b and we

have to keep track of the (3− j)-th one, so we save it in f (b). Lastly, if neither f1(b) nor f2(b) is in

ValA(~a), we will never be able to see the data values of b in ϕq f
(thanks to Lemma 1), so they do not

matter to us. Finally, we have [[A]]~a = (A,(Pσ)σ∈Σ′ , f). Figure 2b provides an example of ValA(~a) for the

data structures depicted on Figure 2a and~a = (a).
The next lemma formalizes the connection existing between A and [[A]]~a with~a = (a1, . . . ,an).

Lemma 2 Let b,c ∈ A and j,k ∈ {1,2} and p ∈ {1, . . . ,n}. The following statements then hold.

1. If (b, j) ∈ BA
1 (ap) and (c,k) ∈ BA

1 (ap) then A|2ap
|= b j∼k c iff there is i ∈ {1,2} s.t. b ∈ Pap[i, j] and

c ∈ Pap[i,k].

2. If (b, j) ∈ BA
2 (ap)\BA

1 (ap) and (c,k) ∈ BA
1 (ap) then A|2ap

2 b j∼k c

3. If (b, j),(c,k) ∈ BA
2 (ap) \BA

1 (ap) then A|2ap
|= b j∼k c iff either b 1∼

[[A]]~a
1 c or there exists p′ ∈

{1, . . . ,n} and ℓ ∈ {1,2} such that b ∈ Pap′ [ℓ, j]
and c ∈ Pap′ [ℓ,k]

.

4. If (b, j) /∈ BA
2 (ap) and (c,k) ∈ BA

2 (ap) then A|2ap
2 b j∼k c

5. If (b, j) /∈ BA
2 (ap) and (c,k) /∈ BA

2 (ap) then A|2ap
|= b j∼k c iff b = c and j = k.

Proof: We suppose that A|2ap
= (A,(Pσ)σ , f

p
1 , f

p
2).

1. Assume that (b, j) ∈ BA
1 (ap) and (c,k) ∈ BA

1 (ap). It implies that f
p
j (b) = f j(b) and f

p
k (c) = fk(c).

Then assume that A|2ap
|= b j∼k c. As (b, j) ∈ BA

1 (ap), thanks to Lemma 1.1 it means that there is a

i ∈ {1,2} such that ap i∼
A
j b. So we have fk(c) = f

p
k (c) = f

p
j (b) = f j(b) = fi(ap), that is ap i∼

A
k c.

Hence by definition, b ∈ Pap[i, j] and c ∈ Pap[i,k]. Conversely, let i ∈ {1,2} such that b ∈ Pap[i, j] and

c ∈ Pap[i,k]. This means that ap i∼
A
j b and ap i∼

A
k c. So f

p
j (b) = f j(b) = fi(ap) = fk(c) = f

p
k (c),

that is A|2ap
|= b j∼k c.

2. Assume that (b, j) ∈ BA
2 (ap) \ BA

1 (ap) and (c,k) ∈ BA
1 (ap). It implies that f

p
j (b) = f j(b) and

f
p
k (c) = fk(c). Thanks to Lemma 1.1, (c,k) ∈ BA

1 (ap) implies that fk(c) ∈ { f1(ap), f2(ap)} and

(b, j) /∈ BA
1 (ap) implies that f j(b) /∈ { f1(ap), f2(ap)}. So A|2ap

6|= b j∼k c.

8 On the Existential Fragments of Local First-Order Logics with Data

3. Assume that (b, j),(c,k) ∈ BA
2 (ap)\BA

1 (ap). As previously, we have that f j(b) /∈ { f1(ap), f2(ap)}
and fk(c) /∈ { f1(ap), f2(ap)}, and thanks to Lemma 1.2, we have f3− j(b) ∈ { f1(ap), f2(ap)} and

f3−k(b) ∈ { f1(ap), f2(ap)}. There is then two cases:

• Suppose there does not exists p′ ∈ {1, . . . ,n} such that f j(b) ∈ { f1(ap′), f2(ap′)} .This allows

us to deduce that f
p
j (b) = f j(b) = f (b) and f

p
k (c) = fk(c). If A|2ap

|= b j∼k c, then necessarily

there does not exists p′ ∈ {1, . . . ,n} such that fk(c) ∈ { f1(ap′), f2(ap′)} so we have f
p
k (c) =

fk(c) = f (c) and f (b) = f (c), consequently b 1∼
[[A]]~a
1 c. Similarly assume that b 1∼

[[A]]~a
1 c,

this means that f (b) = f (c) and either b = c and k = j or b 6= c and by injectivity of f ,we

have f j(b) = f (b) = fk(c). This allows us to deduce that A|2ap
|= b j∼k c.

• If there exists p′ ∈ {1, . . . ,n} such that f j(b) = fℓ(ap′) for some ℓ ∈ {1,2}. Then we have

b ∈ Pap′ [ℓ, j]
. Consequently, we have A|2ap

|= b j∼k c iff c ∈ Pap′ [ℓ,k]
.

4. We prove the case 4 and 5 at the same time. Assume that (b, j) /∈ BA
2 (ap). It means that in

order to have f
p
j (b) = f

p
k (c), we must have (b, j) = (c,k). So if (c,k) ∈ BA

2 (ap), we can not have

A|2ap
|= b j∼k c which ends case 4. And if (c,k) /∈ BA

2 (ap), we have that A|2ap
|= b j∼k c iff b = c

and j = k.

�

We shall now see how we translate the formula ϕq f (x1, . . . ,xn) into a formula [[ϕq f]](x1, . . . ,xn) in

dFO[Σ′,1] such that A satisfies ϕq f (a1, . . . ,an) if, and only if, [[A]]~a satisfies [[ϕq f]](a1, . . . ,an). Thanks

to the previous lemma we know that if A|2ap
|= b j∼k c then (b, j) and (c,k) must belong to the same set

among BA
1 (ap), BA

2 (ap) \BA
1 (ap) and A\BA

2 (ap) and we can test in [[A]]~a whether (b, j) is a member of

BA
1 (ap) or BA

2 (ap). Indeed, thanks to Lemmas 1.1 and 1.2, we have (b, j) ∈ BA
1 (ap) iff b ∈

⋃

i=1,2 Pap[i, j]

and (b, j) ∈ BA
2 (ap) iff b ∈

⋃ j′=1,2
i=1,2 Pap[i, j′]. This reasoning leads to the following formulas in dFO[Σ′,1]

with p ∈ {1, . . . ,n} and j ∈ {1,2}:

• ϕ
j,B1(ap)

(y) := ap[1, j](y)∨ap[2, j](y) to test if the j-th field of an element belongs to BA
1 (ap)

• ϕ
B2(ap)

(y) := ϕ
1,B1(ap)

(y)∨ϕ
2,B1(ap)

(y) to test if a field of an element belongs to BA
2 (ap)

• ϕ
j,B2(ap)\B1(ap)

(y) := ϕ
B2(ap)

(y)∧¬ϕ
j,B1(ap)

(y) to test that the j-th field of an element belongs to

BA
2 (ap)\BA

1 (ap)

We shall now present how we use these formulas to translate atomic formulas of the form y j∼k z

under some 〈〈−〉〉2
xp

. For this matter, we rely on the three following formulas of dFO[Σ′,1]:

• The first formula asks for (y, j) and (z,k) to be in B1
1(ap) (where here we abuse notations, using

variables for the elements they represent) and for these two data values to coincide with one data

value of ap, it corresponds to Lemma 2.1:

ϕ r=1
j,k,ap

(y,z) := ϕ j,B1(ap)
(y)∧ϕk,B1(ap)

(z)∧
∨

i=1,2
ap[i, j](y)∧ap[i,k](z)

• The second formula asks for (y, j) and (z,k) to be in BA
2 (ap) \BA

1 (ap) and checks either whether

the data values of y and z in [[A]]~a are equal or whether there exist p′ and ℓ such that y belongs to

ap′ [ℓ, j](y) and z belongs to ap′ [ℓ,k](z), it corresponds to Lemma 2.3:

ϕ r=2
j,k,ap

(y,z) :=ϕ j,B2(ap)\B1(ap)
(y)∧ϕk,B2(ap)\B1(ap)

(z)∧
(

y∼ z∨
(
∨n

p′=1

∨2

ℓ=1
ap′ [ℓ, j](y)∧ap′ [ℓ,k](z)

))

B. Bollig, A. Sangnier & O. Stietel 9

• The third formula asks for (y, j) and (z,k) to not belong to BA
2 (ap) and for y = z, it corresponds to

Lemma 2.5:

ϕ r>2
j,k,ap

(y,z) :=

{

¬ϕ
B2(ap)

(y)∧¬ϕ
B2(ap)

(z)∧y = z if j = k

⊥ otherwise

Finally, here is the inductive definition of the translation [[−]] which uses sub transformations [[−]]xp

in order to remember the centre of the ball and leads to the construction of [[ϕq f]](x1, . . . ,xn):

[[ϕ ∨ϕ ′]] = [[ϕ]]∨[[ϕ ′]]
[[xp = x′p]] = xp = x′p

[[¬ϕ]] = ¬[[ϕ]]

[[〈〈ψ〉〉2
xp
]] = [[ψ]]xp

[[y j∼k z]]xp
= ϕ r=1

j,k,ap
(y,z)∨ϕ r=2

j,k,ap
(y,z)∨ϕ r>2

j,k,ap
(y,z)

[[σ(x)]]xp
= σ(x)

[[x = y]]xp
= x = y

[[ϕ ∨ϕ ′]]xp
= [[ϕ]]xp

∨[[ϕ ′]]xp

[[¬ϕ]]xp
= ¬[[ϕ]]xp

[[∃x.ϕ]]xp
= ∃x.[[ϕ]]xp

Lemma 3 We have A |= ϕq f (~a) iff [[A]]~a |= [[ϕq f]](~a).

Proof: Because of the inductive definition of [[ϕ]] and that only the atomic formulas y j∼k z change, we

only have to prove that given b,c ∈ A, we have A|2ap
|= b j∼k c iff [[A]]~a |= [[y j∼k z]]xp

(b,c).

We first suppose that A|2ap
|= b j∼k c. Using Lemma 2, it implies that (b, j) and (c,k) belong to same

set between BA
1 (ap), BA

2 (ap)\BA
1 (ap) and A\BA

2 (ap). We proceed by a case analysis.

• If (b, j),(c,k) ∈ BA
1 (ap) then by lemma 2.1 we have that [[A]]~a |= ϕ r=1

j,k,ap
(b,c) and thus [[A]]~a |=

[[y j∼k z]]xp
(b,c).

• If (b, j),(c,k) ∈ BA
2 (ap) \BA

1 (ap) then by lemma 2.3 we have that [[A]]~a |= ϕ r=2
j,k,ap

(b,c) and thus

[[A]]~a |= [[y j∼k z]]xp
(b,c).

• If (b, j),(c,k) ∈ A\BA
2 (ap) then by lemma 2.5 we have that [[A]]~a |= ϕ r>2

j,k,ap
(b,c) and thus [[A]]~a |=

[[y j∼k z]]xp
(b,c).

We now suppose that [[A]]~a |= [[y j∼k z]]xp
(b,c). It means that [[A]]~a satisfies at least ϕ r=1

j,k,ap
(b,c),

ϕ r=2
j,k,ap

(b,c) or ϕ r>2
j,k,ap

(b,c). If [[A]]~a |= ϕ r=1
j,k,ap

(b,c), it implies that (b, j) and (c,k) are in BA
1 (ap), and we

can then apply lemma 2.1 to deduce that A|2ap
|= b j∼k c. If [[A]]~a |= ϕ r=2

j,k,ap
(b,c), it implies that (b, j)

and (c,k) are in BA
2 (ap) \BA

1 (ap), and we can then apply lemma 2.3 to deduce that A|2ap
|= b j∼k c. If

[[A]]~a |= ϕ r>2
j,k,ap

(b,c), it implies that (b, j) and (c,k) are in A\BA
2 (ap), and we can then apply lemma 2.5

to deduce that A|2ap
|= b j∼k c. �

To provide a reduction from DATASAT(∃-2-Loc-dFO,2) to DATASAT(dFO,1), having the formula

[[ϕq f]](x1, . . . ,xn) is not enough because to use the result of the previous Lemma, we need to ensure that

there exists a model B and a tuple of elements (a1, . . . ,an) such that B |= [[ϕq f]](a1, . . . ,an) and as well

that there exists A ∈ Data[Σ,2] such that B= [[A]]~a. We explain now how we can ensure this last point.

Now, we want to characterize the structures of the form [[A]]~a. Given B=(A,(Pσ)σ∈Σ′ , f)∈Data[Σ′,1]
and ~a ∈ A, we say that (B,~a) is well formed iff there exists a structure A ∈ Data[Σ,2] such that B =

10 On the Existential Fragments of Local First-Order Logics with Data

[[A]]~a. Hence (B,~a) is well formed iff there exist two functions f1, f2 : A → N such that [[A]]~a =
[[(A,(Pσ)σ∈Σ, f1, f2)]]~a. We state three properties on (B,~a), and we will show that they characterize

being well formed.

1. (Transitivity) For all b,c ∈ A, p,q ∈ {1, . . . ,n}, i, j,k, ℓ ∈ {1,2} if b ∈ Pap[i, j], c ∈ Pap[i,ℓ] and b ∈
Paq[k, j] then c ∈ Paq[k,ℓ].

2. (Reflexivity) For all p and i, we have ap ∈ Pap[i,i]

3. (Uniqueness) For all b ∈ A, if b ∈
⋂

j=1,2

⋃i=1,2
p=1,...,n Pap[i, j] or b /∈

⋃

j=1,2

⋃i=1,2
p=1,...,n Pap[i, j] then for any

c ∈ B such that f (c) = f (b) we have c = b.

Each property can be expressed by a first order logic formula, which we respectively name ϕtran, ϕrefl

and ϕuniq and we denote by ϕwf their conjunction:

ϕtran = ∀y∀z.
∧n

p,q=1

∧2
i, j,k,ℓ=1

(

ap[i, j](y)∧ap[i, ℓ](z)∧aq[k, j](y) ⇒ aq[k, ℓ](z)
)

ϕrefl(x1, . . . ,xn) =
∧n

p=1

∧2
i=1 ap[i, i](xp)

ϕuniq = ∀y.
(

∧2
j=1

∨n
p=1

∨2
i=1 ap[i, j](y)∨

∧2
j=1

∧n
p=1

∧2
i=1¬ap[i, j](y)

)

⇒ (∀z.y ∼ z ⇒ y = z)

ϕwf (x1, . . . ,xn) = ϕtran∧ϕrefl(x1, . . . ,xn)∧ϕuniq

The next lemma expresses that the formula ϕwf allows to characterise precisely the 1-data structures

in Data[Σ′,1] which are well-formed.

Lemma 4 Let B ∈ Data[Σ′,1] and a1, . . . ,an elements of B, then (B,~a) is well formed iff B |= ϕwf (~a).

Proof: First, if (B,~a) is well formed, then there there exists A ∈ Data[Σ,2] such that B= [[A]]~a and by

construction we have [[A]]~a |= ϕwf (~a). We now suppose that B = (A,(Pσ)σ∈Σ′ , f) and B |= ϕwf (~a). In

order to define the functions f1, f2 : A → N, we need to introduce some objects.

We first define a function g : {1, . . . ,n}×{1,2} → N\Im(f) (where Im(f) is the image of f in B)

which verifies the following properties:

• for all p ∈ {1, . . . ,n} and i ∈ {1,2}, we have ap ∈ Pap[i,3−i] iff g(p,1) = g(p,2);

• for all p,q ∈ {1, . . . ,n} and i, j ∈ {1,2}, we have aq ∈ Pap[i, j] iff g(p, i) = g(q, j).

We use this function to fix the two data values carried by the elements in {a1, . . . ,am}. We now explain

why this function is well founded, it is due to the fact that B |= ϕtran∧ϕrefl(a1, . . . ,an). In fact, since

B |= ϕrefl(a1, . . . ,an), we have for all p∈ {1, . . . ,n} and i∈ {1,2}, ap ∈Pap[i,i]. Furthermore if ap ∈Pap[i, j]

then ap ∈ Pap[j,i] thanks to the formula ϕtran; indeed since we have ap ∈ Pap[i, j] and ap ∈ Pap[i,i] and

ap ∈ Pap[j, j], we obtain ap ∈ Pap[j,i]. Next, we also have that if aq ∈ Pap[i, j] then ap ∈ Paq[j,i] again thanks

to ϕtran; indeed since we have aq ∈ Pap[i, j] and ap ∈ Pap[i,i] and aq ∈ Paq[j, j], we obtain ap ∈ Paq[j,i].

We also need a natural dout belonging to N\(Im(g)∪ Im(f)). For j ∈ {1,2}, we define f j as follows

for all b ∈ A:

f j(b) =







g(p, i) if for some p, i we have b ∈ Pap[i, j]

f (b) if for all p, i we have b /∈ Pap[i, j] and for some p, i we have b ∈ Pap[i,3− j]

dout if for all p, i, j′, we have b /∈ Pap[i, j′]

Here again, we can show that since B |= ϕtran∧ϕrefl(a1, . . . ,an), the functions f1 and f2 are well

founded. Indeed, assume that b ∈ Pap[i, j]∩Paq[k, j], then we have necessarily that g(p, i) = g(q,k). For this

we need to show that ap ∈ aq[k, i] and we use again the formula ϕtran. This can be obtained because we

have b ∈ Pap[i, j] and ap ∈ Pap[i,i] and b ∈ Paq[k, j].

B. Bollig, A. Sangnier & O. Stietel 11

We then define A as the 2-data-structures (A,(Pσ)σ∈Σ, f1, f2). It remains to prove that B= [[A]]~a.

First, note that for all b ∈ A, p ∈ {1, . . . ,n} and i, j ∈ {1,2}, we have b ∈ Pap[i, j] iff ap i∼
A
j b. Indeed,

we have b∈Pap[i, j], we have that f j(b)= g(p, i) and since ap ∈Pap[i, j] we have as well that fi(ap)= g(p, i),

as a consequence ap i∼
A
j b. In the other direction, if ap i∼

A
j b, it means that f j(b) = fi(ap) = g(p, i) and

thus b ∈ Pap[i, j]. Now to have B= [[A]]~a, one has only to be careful in the choice of function fnew while

building [[A]]~a. We recall that this function is injective and is used to give a value to the elements b ∈ A

such that neither f1(b) ∈ ValA(~a) and f2(b) /∈ ValA(~a) nor f1(b) /∈ ValA(~a) and f2(b) ∈ ValA(~a). For

these elements, we make fnew matches with the function f and the fact that we define an injection is

guaranteed by the formula ϕuniq. �

Using the results of Lemma 3 and 4, we deduce that the formula ϕ = ∃x1 . . .∃xn.ϕq f (x1, . . . ,xn)
of ∃-2-Loc-dFO[Σ,2] is satisfiable iff the formula ψ = ∃x1 . . .∃xn.[[ϕq f]](x1, . . . ,xn)∧ϕwf (x1, . . . ,xn) is

satisfiable. Note that ψ can be built in polynomial time from ϕ and that it belongs to dFO[Σ′,1]. Hence,

thanks to Theorem 3, we obtain that DATASAT(∃-2-Loc-dFO,2) is in N2EXP.

We can as well obtain a matching lower bound thanks to a reduction from DATASAT(dFO,1). For this

matter we rely on two crucial points. First in the formulas of ∃-2-Loc-dFO[Σ,2], there is no restriction on

the use of quantifiers for the formulas located under the scope of the 〈〈·〉〉2
x modality and consequently we

can write inside this modality a formula of dFO[Σ,1] without any modification. Second we can extend

a model dFO[Σ,1] into a 2-data structure such that all elements and their values are located in the same

radius-2-ball by adding everywhere a second data value equal to 0. More formally, let ϕ be a formula in

dFO[Σ,1] and consider the formula ∃x.〈〈ϕ〉〉2
x where we interpret ϕ over 2-data structures (this formula

simply never mentions the values located in the second fields). We have then the following lemma.

Lemma 5 There exists A ∈ Data[Σ,1] such that A |= ϕ if and only if there exists B ∈ Data[Σ,2] such

that B |= ∃x.〈〈ϕ〉〉2
x .

Proof: Assume that there exists A= (A,(Pσ)σ∈Σ, f1) in Data[Σ,1] such that A |= ϕ . Consider the 2-data

structure B = (A,(Pσ)σ∈Σ, f1, f2) such that f2(a) = 0 for all a ∈ A. Let a ∈ A. It is clear that we have

B|2a = B and that B|2a |= ϕ (because A |= ϕ and ϕ never mentions the second values of the elements

since it is a formula in dFO[Σ,1]). Consequently B |= ∃x.〈〈ϕ〉〉2
x .

Assume now that there exists B = (A,(Pσ)σ∈Σ, f1, f2) in Data[Σ,2] such that B |= ∃x.〈〈ϕ〉〉2
x . Hence

there exists a ∈ A such that B|2a |= ϕ , but then by forgetting the second value in B|2a we obtain a model

in Data[Σ,1] which satisfies ϕ . �

Since DATASAT(dFO,1) is N2EXP-hard (see Theorem 3), we obtain the desired lower bound.

Theorem 4 The problem DATASAT(∃-2-Loc-dFO,2) is N2EXP-complete.

3.3 Balls of radius 1 and any number of data values

Let D ≥ 1. We first show that DATASAT(∃-1-Loc-dFO,D) is in NEXP by providing a reduction towards

DATASAT(dFO,0). This reduction uses the characterisation of the radius-1-ball provided by Lemma 1

and is very similar to the reduction provided in the previous section. In fact, for an element b located in

the radius-1-ball of another element a, we use extra unary predicates to explicit which are the values of

b that are common with the values of a. We provide here the main step of this reduction whose proof

follows the same line as the one of Theorem 4.

We consider a formula ϕ = ∃x1 . . .∃xn.ϕq f (x1, . . . ,xn) of ∃-1-Loc-dFO[Σ,D] in prenex normal form,

i.e., such that ϕq f (x1, . . . ,xn) ∈ qf-1-Loc-dFO[Σ,D]. We know that there is a structure A = (A,(Pσ)σ∈Σ,

12 On the Existential Fragments of Local First-Order Logics with Data

f1, f2, . . . , fD) in Data[Σ,D] such that A |= ϕ if and only if there are a1, . . . ,an ∈ A such that A |=
ϕq f (a1, . . . ,an). Let then A = (A,(Pσ)σ∈Σ, f1, f2, . . . , fD) in Data[Σ,D] and a tuple ~a = (a1, . . . ,an) of

elements in An. Let Ωn = {ap[i, j] | p ∈ {1, . . . ,n}, i, j ∈ {1, . . . ,D}} be a set of new unary predicates and

Σ′ = Σ∪Ωn. For every element b ∈ A, the predicates in Ωn are used to keep track of the relation between

the data values of b and the one of a1, . . . ,an in A. Formally, we have Pap[i, j] = {b ∈A |A |= ap i∼ j b}. Fi-

nally, we build the 0-data-structure [[A]]′~a = (A,(Pσ)σ∈Σ′). Similarly to Lemma 2, we have the following

connection between A and [[A]]′~a.

Lemma 6 Let b,c ∈ A and j,k ∈ {1, . . . ,D} and p ∈ {1, . . . ,n}. The following statements hold:

1. If (b, j) ∈ BA
1 (ap) and (c,k) ∈ BA

1 (ap) then A|1ap
|= b j∼k c iff there is i ∈ {1,2} s.t. b ∈ Pap[i, j] and

c ∈ Pap[i,k].

2. If (b, j) /∈ BA
1 (ap) and (c,k) ∈ BA

1 (ap) then A|1ap
2 b j∼k c

3. If (b, j) /∈ BA
1 (ap) and (c,k) /∈ BA

1 (ap) then A|1ap
|= b j∼k c iff b = c and j = k.

We shall now see how we translate the formula ϕq f (x1, . . . ,xn) into a formula [[ϕq f]]
′(x1, . . . ,xn) in

dFO[Σ′,0] such that A satisfies ϕq f (a1, . . . ,an) if, and only if, [[A]]′~a satisfies [[ϕq f]](a1, . . . ,an). As in the

previous section, we introduce the following formula in dFO[Σ′,0] with p∈ {1, . . . ,n} and j ∈ {1, . . . ,D}
to test if the j-th field of an element belongs to BA

1 (ap):

ϕ j,B1(ap)
(y) :=

∨

i∈{1,...,D}

ap[i, j](y)

We now present how we translate atomic formulas of the form y j∼k z under some 〈〈−〉〉1
xp

. For this

matter, we rely on two formulas of dFO[Σ′,0] which can be described as follows:

• The first formula asks for (y, j) and (z,k) to be in B1
1(ap) (here we abuse notations, using variables

for the elements they represent) and for these two data values to coincide with one data value of

ap, it corresponds to Lemma 6.1:

ψr=1
j,k,ap

(y,z) := ϕ j,B1(ap)
(y)∧ϕk,B1(ap)

(z)∧
∨D

i=1
ap[i, j](y)∧ap[i,k](z)

• The second formula asks for (y, j) and (z,k) to not belong to BA
1 (ap) and for y = z, it corresponds

to Lemma 6.3:

ψr>1
j,k,ap

(y,z) :=

{

∧D
i=1(¬ϕ

i,B1(ap)
(y)∧¬ϕ

i,B1(ap)
(z))∧y = z if j = k

⊥ otherwise

Finally, as before we provide an inductive definition of the translation [[−]]′ which uses subtransfor-

mations [[−]]′xp
in order to remember the centre of the ball and leads to the construction of [[ϕq f]]

′(x1, . . . ,xn).
We only detail the case

[[y j∼k z]]′xp
= ψr=1

j,k,ap
(y,z)∨ψr>1

j,k,ap
(y,z)

as the other cases are identical as for the translation [[−]] shown in the previous section. This leads to the

following lemma (which is the pendant of Lemma 3).

Lemma 7 We have A |= ϕq f (~a) iff [[A]]′~a |= [[ϕq f]]
′(~a).

B. Bollig, A. Sangnier & O. Stietel 13

As we had to characterise the well-formed 1-data structure, a similar trick is necessary here. For this

matter, we use the following formulas:

ψtran = ∀y∀z.
∧n

p,q=1

∧D
i, j,k,ℓ=1

(

ap[i, j](y)∧ap[i, ℓ](z)∧aq[k, j](y) ⇒ aq[k, ℓ](z)
)

ψrefl(x1, . . . ,xn) =
∧n

p=1

∧D
i=1 ap[i, i](xp)

ψwf (x1, . . . ,xn) = ψtran ∧ψrefl(x1, . . . ,xn)

Finally with the same reasoning as the one given in the previous section, we can show that the

formula ϕ = ∃x1 . . .∃xn.ϕq f (x1, . . . ,xn) of ∃-1-Loc-dFO[Σ,D] is satisfiable iff the formula ∃x1 . . .∃xn.
[[ϕq f]]

′(x1, . . . ,xn)∧ ψwf (x1, . . . ,xn) is satisfiable. Note that this latter formula can be built in poly-

nomial time from ϕ and that it belongs to dFO[Σ′,0]. Hence, thanks to Theorem 2, we obtain that

DATASAT(∃-1-Loc-dFO,D) is in NEXP. The matching lower bound is as well obtained the same way

by reducing DATASAT(dFO,0) to DATASAT(∃-1-Loc-dFO,D) showing that a formula ϕ in dFO[Σ,0] is

satisfiable iff the formula ∃x.〈〈ϕ〉〉1
x in ∃-D-Loc-dFO[Σ,1] is satisfiable.

Theorem 5 For all D ≥ 1, the problem DATASAT(∃-1-Loc-dFO,D) is NEXP-complete.

4 Undecidability results

We show here DATASAT(∃-3-Loc-dFO,2) and DATASAT(∃-2-Loc-dFO,3) are undecidable. To obtain

this we provide reductions from DATASAT(dFO,2) and we use the fact that any 2-data structure can be

interpreted as a radius-3-ball of a 2-data structure or respectively as a radius-2-ball of a 3-data structure.

4.1 Radius 3 and two data values

In order to reduce DATASAT(dFO,2) to DATASAT(∃-3-Loc-dFO,2), we show that we can transform

slightly any 2-data structure A into an other 2-data structure Age such that Age corresponds to the radius-

3-ball of any element of Age and this transformation has some kind of inverse. Furthermore, given a

formula ϕ ∈ dFO[Σ,2], we transform it into a formula T (ϕ) in ∃-3-Loc-dFO[Σ′,2] such that A satisfies

ϕ iff Age satisfies T (ϕ) . What follows is the formalisation of this reasoning.

Let A = (A,(Pσ)σ , f1, f2) be a 2-data structure in Data[Σ,2] and ge be a fresh unary predicate not in

Σ. From A we build the following 2-data structure Age = (A′,(P′
σ)σ , f ′1, f ′2)∈ Data[Σ∪{ge},2] such that:

• A′ = A⊎ValA(A)×ValA(A),

• for i ∈ {1,2} and a ∈ A, f ′i (a) = fi(a) and for (d1,d2) ∈ ValA(A)×ValA(A), fi((d1,d2)) = di,

• for σ ∈ Σ, P′
σ = Pσ ,

• Pge = ValA(A)×ValA(A).

Hence to build Age from A we have added to the elements of A all pairs of data presented in A and

in order to recognise these new elements in the structure we use the new unary predicate ge. We add

these extra elements to ensure that all the elements of the structure are located in the radius-3-ball of any

element of Age. We have then the following property.

Lemma 8 Age|
3
a =Age for all a ∈ A′.

14 On the Existential Fragments of Local First-Order Logics with Data

Proof: Let b ∈ A′ and i, j ∈ {1,2}. We show that dAge((a, i),(b, j)) ≤ 3. i.e. that there is a path of length

at most 3 from (a, i) to (b, j) in the data graph G (Age). By construction of Age, there is an element c ∈ A′

such that f1(c) = fi(a) and f2(c) = f j(b). So we have the path (a, i),(c,1),(c,2),(b, j) of length at most

3 from (a, i) to (b, j) in G (Age). �

Conversely, to A = (A,(Pσ)σ , f1, f2) ∈ Data[Σ∪{ge},2], we associate A\ge = (A′,(P′
σ)σ , f ′1, f ′2) ∈

Data[Σ,2] where:

• A′ = A\Pge,

• for i ∈ {1,2} and a ∈ A′, f ′i (a) = fi(a),

• for σ ∈ Σ, P′
σ = P′

σ \Pge.

Finally we inductively translate any formula ϕ ∈ dFO[Σ,2] into T (ϕ) ∈ dFO[Σ∪{ge},2] by making

it quantify over elements not labeled with ge: T (σ(x)) = σ(x), T (x i∼ j y) = x i∼ j y, T (x = y) = (x = y),
T (∃x.ϕ) = ∃x.¬ge(x)∧T (ϕ), T (ϕ ∨ϕ ′) = T (ϕ)∨T(ϕ ′) and T (¬ϕ) = ¬T(ϕ).

Lemma 9 Let ϕ be a sentence in dFO[Σ,2], A∈Data[Σ,2] and B∈Data[Σ∪{ge},2]. The two following

properties hold:

• A |= ϕ iff Age |= T (ϕ)

• B\ge |= ϕ iff B |= T (ϕ).

Proof: As for any A∈ Data[Σ,2] we have (Age)\ge =A, it is sufficient to prove the second point. We rea-

son by induction on ϕ . Let A= (A,(Pσ)σ , f1, f2) ∈ Data[Σ∪{ge},2] and let A\ge = (A′,(P′
σ)σ , f ′1, f ′2) ∈

Data[Σ,2]. The inductive hypothesis is that for any formula ϕ ∈ dFO[Σ,2] (closed or not) and any context

interpretation function I : V → A′ we have A\ge |=I ϕ iff A |=I T (ϕ). Note that the inductive hypothesis

is well founded in the sense that the interpretation I always maps variables to elements of the structures.

We prove two cases: when ϕ is a unary predicate and when ϕ starts by an existential quantification,

the other cases being similar. First, assume that ϕ = σ(x) where σ ∈ Σ. A\ge |=I σ(x) holds iff I(x) ∈P′
σ .

As I(x) ∈ A \ Pge, we have I(x) ∈ P′
σ iff I(x) ∈ Pσ , which is equivalent to A |=I T (σ(x)) . Second

assume ϕ = ∃x.ϕ ′. Suppose that A\ge |=I ∃x.ϕ ′. Thus, there is a a ∈ A′ such that A\ge |=I[x/a] ϕ ′.

By inductive hypothesis, we have A |=I[x/a] T (ϕ ′). As a ∈ A′ = A \Pge, we have A |=I[x/a] ¬ge(x), so

A |=I ∃x.¬ge(x)∧T (ϕ ′) as desired. Conversely, suppose that A |=I T (∃x.ϕ ′). It means that there is a

a ∈ A such that A |=I[x/a] ¬ge(x)∧T (ϕ ′). So we have that a ∈ A′ = A \Pge, which means that I[x/a]
takes values in A and we can apply the inductive hypothesis to get that A\ge |=I[x/a] ϕ ′. So we have

A\ge |=I ∃x.ϕ ′. �

From Theorem 1, we know that DATASAT(dFO,2) is undecidable. From a closed formula ϕ ∈
dFO[Σ,2], we build the formula ∃x.〈〈T (ϕ)〉〉3

x ∈ ∃-3-Loc-dFO[Σ∪{ge},2]. Now if ϕ is satisfiable, it

means that there exists A ∈ Data[Σ,2] such that A |= ϕ . By Lemma 9, Age |= T (ϕ). Let a be an

element of A, then thanks to Lemma 8, we have Age|
3
a |= T (ϕ). Finally by definition of our logic,

Age |= ∃x.〈〈T (ϕ)〉〉3
x . So ∃x.〈〈T (ϕ〉〉3

x is satisfiable. Now assume that ∃x.〈〈T (ϕ)〉〉3
x is satisfiable. So

there exist A ∈ Data[Σ∪{ge},2] and an element a of A such that A|3a |= T (ϕ). Using Lemma 9, we

obtain (A|3a)\ge |= ϕ . Hence ϕ is satisfiable. This shows that we can reduce DATASAT(dFO,2) to

DATASAT(∃-3-Loc-dFO,2) .

Theorem 6 The problem DATASAT(∃-3-Loc-dFO,2) is undecidable.

B. Bollig, A. Sangnier & O. Stietel 15

4.2 Radius 2 and three data values

We provide here a reduction from DATASAT(dFO,2) to DATASAT(∃-2-Loc-dFO,3). The idea is similar

to the one used in the proof of Lemma 5 to show that DATASAT(∃-2-Loc-dFO,2) is N2EXP-hard by

reducing DATASAT(dFO,1). Indeed we have the following Lemma.

Lemma 10 Let ϕ be a formula in dFO[Σ,2]. There exists A ∈ Data[Σ,2] such that A |= ϕ if and only if

there exists B ∈ Data[Σ,3] such that B |= ∃x.〈〈ϕ〉〉2
x .

Proof: Assume that there exists A = (A,(Pσ)σ∈Σ, f1, f2) in Data[Σ,2] such that A |= ϕ .Consider the 3-

data structure B= (A,(Pσ)σ∈Σ, f1, f2, f3) such that f3(a) = 0 for all a ∈ A. Let a ∈ A. It is clear that we

have B|2a =B and that B|2a |= ϕ (because A |= ϕ and ϕ never mentions the third values of the elements

since it is a formula in dFO[Σ,1]). Consequently B |= ∃x.〈〈ϕ〉〉2
x .

Assume now that there exists B = (A,(Pσ)σ∈Σ, f1, f2, f3) in Data[Σ,3] such that B |= ∃x.〈〈ϕ〉〉2
x .

Hence there exists a ∈ A such that B|2a |= ϕ , but then by forgetting the third value in B|2a we obtain

a model in Data[Σ,3] which satisfies ϕ . �

Using Theorem 1, we obtain the following result.

Theorem 7 The problem DATASAT(∃-2-Loc-dFO,3) is undecidable.

References

[1] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick & L. Segoufin (2011): Two-variable logic on data

words. ACM Trans. Comput. Log. 12(4), pp. 27:1–27:26, doi:10.1145/1970398.1970403.

[2] M. Bojanczyk, A. Muscholl, T. Schwentick & L. Segoufin (2009): Two-variable logic on data trees and XML

reasoning. J. ACM 56(3), doi:10.1145/1516512.1516515.

[3] Benedikt Bollig, Arnaud Sangnier & Olivier Stietel (2021): Local First-Order Logic with Two Data Values.

In: FSTTCS’21, LIPIcs 213, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 39:1–39:15, doi:10.

4230/LIPIcs.FSTTCS.2021.39.

[4] Egon Börger, Erich Grädel & Yuri Gurevich (1997): The Classical Decision Problem. Perspectives in Math-

ematical Logic, Springer, doi:10.1023/A:1008334715902.

[5] N. Decker, P. Habermehl, M. Leucker & D. Thoma (2014): Ordered Navigation on Multi-attributed Data

Words. In Paolo Baldan & Daniele Gorla, editors: CONCUR’14, Lecture Notes in Computer Science 8704,

Springer, pp. 497–511, doi:10.1007/978-3-662-44584-6_34.

[6] Kousha Etessami, Moshe Y. Vardi & Thomas Wilke (2002): First-Order Logic with Two Variables and Unary

Temporal Logic. Inf. Comput. 179(2), pp. 279–295, doi:10.1006/inco.2001.2953.

[7] Melvin Fitting (2012): Torben Braüner, Hybrid Logic and its Proof-Theory, Applied Logic Series Volume

37, Springer, 2011, pp. XIII+231. ISBN: 978-94-007-0001-7. Stud Logica 100(5), pp. 1051–1053, doi:10.

1007/s11225-012-9439-2.

[8] H. Gaifman (1982): On local and nonlocal properties. In J. Stern, editor: Logic Colloquium ’81, North-

Holland, pp. 105–135, doi:10.1016/S0049-237X(08)71879-2.

[9] W. Hanf (1965): Model-theoretic methods in the study of elementary logic. In J.W. Addison, L. Henkin &

A. Tarski, editors: The Theory of Models, North Holland, pp. 132–145, doi:10.2307/2271017.

[10] A. Janiczak (1953): Undecidability of some simple formalized theories. Fundamenta Mathematicae 40, pp.

131–139, doi:10.2307/2964197.

[11] A. Kara, T. Schwentick & T. Zeume (2010): Temporal Logics on Words with Multiple Data Values. In

Kamal Lodaya & Meena Mahajan, editors: FSTTCS’10, LIPIcs 8, Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, pp. 481–492, doi:10.4230/LIPIcs.FSTTCS.2010.481.

https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.39
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.39
https://doi.org/10.1023/A:1008334715902
https://doi.org/10.1007/978-3-662-44584-6_34
https://doi.org/10.1006/inco.2001.2953
https://doi.org/10.1007/s11225-012-9439-2
https://doi.org/10.1007/s11225-012-9439-2
https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.2307/2271017
https://doi.org/10.2307/2964197
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.481

16 On the Existential Fragments of Local First-Order Logics with Data

[12] E. Kieronski (2005): Results on the Guarded Fragment with Equivalence or Transitive Relations. In C.-

H. Luke Ong, editor: CSL’05, Lecture Notes in Computer Science 3634, Springer, pp. 309–324, doi:10.

1007/11538363_22.

[13] E. Kieronski & L. Tendera (2009): On Finite Satisfiability of Two-Variable First-Order Logic with Equiva-

lence Relations. In: LICS’09, IEEE, pp. 123–132, doi:10.1109/LICS.2009.39.

[14] L. Libkin (2004): Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS

Series, Springer, doi:10.1007/978-3-662-07003-1.

[15] A. Manuel & T. Zeume (2013): Two-Variable Logic on 2-Dimensional Structures. In Simona Ronchi Della

Rocca, editor: CSL’13, LIPIcs 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 484–499, doi:10.

4230/LIPIcs.CSL.2013.484.

[16] Martin Mundhenk & Thomas Schneider (2009): The Complexity of Hybrid Logics over Equivalence Rela-

tions. J. Log. Lang. Inf. 18(4), pp. 493–514, doi:10.1007/s10849-009-9089-6.

[17] T. Tan (2014): Extending two-variable logic on data trees with order on data values and its automata. ACM

Trans. Comput. Log. 15(1), pp. 8:1–8:39, doi:10.1145/2559945.

https://doi.org/10.1007/11538363_22
https://doi.org/10.1007/11538363_22
https://doi.org/10.1109/LICS.2009.39
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.4230/LIPIcs.CSL.2013.484
https://doi.org/10.4230/LIPIcs.CSL.2013.484
https://doi.org/10.1007/s10849-009-9089-6
https://doi.org/10.1145/2559945

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 17–33, doi:10.4204/EPTCS.370.2

© F. Bruse, D. Kronenberger & M. Lange
This work is licensed under the
Creative Commons Attribution License.

Capturing Bisimulation-Invariant Exponential-Time
Complexity Classes

Florian Bruse
University of Kassel

Kassel, Germany
florian.bruse@uni-kassel.de

David Kronenberger
University of Kassel

Kassel, Germany

Martin Lange
University of Kassel

Kassel, Germany
martin.lange@uni-kassel.de

Otto’s Theorem characterises the bisimulation-invariant PTIME queries over graphs as exactly those
that can be formulated in the polyadic µ-calculus, hinging on the Immerman-Vardi Theorem which
characterises PTIME (over ordered structures) by First-Order Logic with least fixpoints. This con-
nection has been extended to characterise bisimulation-invariant EXPTIME by an extension of the
polyadic µ-calculus with functions on predicates, making use of Immerman’s characterisation of
EXPTIME by Second-Order Logic with least fixpoints.

In this paper we show that the bisimulation-invariant versions of all classes in the exponential
time hierarchy have logical counterparts which arise as extensions of the polyadic µ-calculus by
higher-order functions. This makes use of the characterisation of k-EXPTIME by Higher-Order
Logic (of order k+1) with least fixpoints, due to Freire and Martins.

1 Introduction

Descriptive complexity theory aims at characterising complexity classes – usually defined via compu-
tational resources like time or space consumption – by means of logical resources. Its central notion is
that of a complexity class C being captured by a logic L in the sense that the properties which can be
checked in complexity C are exactly those that can be defined in L . This provides a characterisation
of computational complexity that is independent of a machine model. Instead, computational difficulty
is characterised by the need for particular logical resources like k-order quantifiers or fixpoints of a par-
ticular type. It is widely believed that this provides a more promising line of attack for notoriously
difficult problems of separating complexity classes; at least it makes machinery that is traditionally used
for measuring the expressive power of logics available for such tasks.

Here we adopt terminology from database theory as this is traditionally close to descriptive complex-
ity, and speak of queries being answered instead of problems being solved or languages being decided,
different names for the same thing.

Ever since Fagin’s seminal work showing that the complexity class NP is captured by Existential
Second-Order Logic [5], descriptive complexity has provided logical characterisations of many standard
complexity classes. The Abiteboul-Vianu Theorem for instance states that PSPACE is captured by First-
Order Logic with Partial Fixpoint Operators [1]. The proofs of these results rely on the existence of a
total order on the structure at hand. This is not a restriction for characterisations of complexity classes
including and above NP as the resources available there are sufficient to construct such an order.

There is no known way to define or construct such a total order in deterministic polynomial time
which is a major obstacle for capturing the complexity class P. There is some belief that such a logic
should exist, possibly in the form of first-order logic with additional operators like fixpoints, counting
and others, cf. [7]. This is grounded in the characterisation of the complexity class of Ordered Polynomial

http://dx.doi.org/10.4204/EPTCS.370.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

18 Capturing Bisimulation-Invariant Exponential-Time Complexity Classes

Time – i.e. those queries that can be answered in polynomial time on structures that are equipped with a
total order – by First-Order Logic with Least Fixpoints [20, 8].

An interesting result was then found by Otto who considered another restriction of the class P, namely
that of bisimulation-invariant queries (on graphs, naturally). He showed that this class, denoted P/∼ is
captured by the polyadic µ-calculus L ω

µ [17], a generalisation of the well-known modal µ-calculus to
interpretations of formulas not in states but in tuples of states of fixed arity [2]. This is particularly
interesting as it shifts the borderline at which the availability of an order becomes critical, from between
P and NP to between P/∼ and NLOGSPACE/∼.

This opens up the question of further capturing results of bisimulation-invariant complexity classes
by (modal) logics. Indeed, characterisations have been found for EXPTIME/∼ and PSPACE/∼ in terms
an extension of L ω

µ by first-order functions from predicates to predicates [15]. The logic capturing
EXPTIME/∼ is coined PHFL1 – Polyadic Higher-Order Fixpoint Logic of order 1. The higher-order
extension is borrowed from HFL which extends the modal µ-calculus with a simply typed λ -calculus
[21]. A syntactical restriction called tail-recursiveness [4] has been identified that captures PSPACE/∼
[15], and when applying this restriction to L ω

µ or, likewise, PHFL0, one captures NLOGSPACE/∼ (with
the help of a particular partial order only, though) [15].

Considering bisimulation-invariant complexity classes above NP/∼ does not serve the same purpose
as it does for smaller ones as one of the key motivations for moving to the bisimulation-invariant world is
to avoid the need for a total order. On the other hand, for two complexity classes C ,C ′ that have complete
and bisimulation-invariant problems we have C 6= C ′ iff C/∼ 6= C ′/∼. Most of the standard complexity
classes posses such problems, for example (1-letter) NFA universality forNP, resp. PSPACE, unbounded
tree automaton intersection for EXPTIME, etc. Moreover, separating bisimulation-invariant classes may
be easier due to their close connection to modal logics where separating their expressiveness is routinely
done (not for the relatively complex higher-order modal fixpoint logics mentioned here, though).

In this paper we extend the characterisation of bisimulation-invariant time complexity classes to all
the levels of the exponential time hierarchy. We show that k-EXPTIME/∼ is captured by PHFLk, the
polyadic version of the higher-order extension of the modal µ-calculus with functions up to type order k.
We remark that a similar characterisation of the space complexity classes k-EXPSPACE is also possible
[13] but needs to be omitted for lack of space and is therefore left for a future publication.

The paper is organised as follows. In Sect. 2 we recall the necessary preliminaries, mainly about the
logics studied here. In Sect. 3 we provide the easy half of the capturing result by putting together known
results and constructions which witness that any PHFLk query can be answered in k-fold exponential
time. In Sect. 4 we prepare for the more difficult and other half of the capturing result. We rely on
a logical characterisation of k-EXPTIME in terms of Higher-Order Predicate Logic with Fixpoints [6],
and a key step in expressing such (bisimulation-invariant) queries in Higher-Order Modal Fixpoint is the
modelling of higher-order quantification using an enumeration technique. In Sect. 5 we put this to use
for showing that any k-EXPTIME/∼-query is definable in PHFLk. In Sect. 6 we conclude with remarks
on further work etc.

2 Preliminaries

Let P and A be finite sets of propositions, resp. actions. A labelled transition system (LTS) is a tuple
T = (S,{ a−→}a∈A, `) where S is a nonempty set of states, a−→ ⊆ S× S is a transition relation for each
action a ∈ A, and ` : S→ 2P labels the states with those propositions that are true in them. We write
s a−→ t instead of (s, t) ∈ a−→.

F. Bruse, D. Kronenberger & M. Lange 19

For d ≥ 1, a d-pointed LTS is a pair T,(s1, . . . ,sd) of an LTS and a d-tuple of states in it. It is also
simply called pointed when d is clear from the context. Note that in the case of d = 1, this coincides with
the usual notion of a pointed LTS. Given some tuple s = (s1, . . . ,sd) and i≤ d, we write s[t/i] to denote
the tuple (s1, . . . ,si−1, t,si+1, . . . ,sd).

2.1 Polyadic Higher-Order Fixpoint Logic

We assume familiarity with the modal µ-calculus Lµ [12]. Polyadic Higher-Order Fixpoint Logic PHFL
[15] extends Lµ in several ways: (I) HFL [21] adds to it a simply typed λ -calculus; (II) the polyadic
Lµ , L ω

µ [2, 17] is obtained by lifting the interpretation of formulas in states to tuples of states of fixed
arity. Now PHFL merges both extensions. Its introduction requires a few technicalities.

Types. Types are used to govern the syntax of PHFL, especially those parts that denote functions. They
are derived from the grammar

τ ::= • | τv→ τ

where • is a ground type for propositions, v ∈ {+,−,0} are variances denoting whether a function is
monotonically increasing, monotonically decreasing, or constant in its argument. Variances are only
needed to check well-typedness; we often do not display them for the sake of readability.

The order ord of a type is defined via ord(•) = 0 and ord(τ1 → τ2) = max(ord(τ1)+ 1,ord(τ2)).
Types associate to the right whence every type is of the form τ1→ ·· · → τn→•.

Given some LTS T = (S,{ a−→}a∈A, `) and some 0 < d ∈ N, the semantics JτKT of a type τ is a
complete lattice, defined inductively as follows:

J•KT = (2Sd
,⊆) Jτ

v
2 → τ1KT = (Jτ2KT → Jτ1KT ,vτv

2→τ1)

where we tacitly identify a lattice with its domain and where the order vτv
2→τ1 is given by

f vτv
2→τ1 g ⇔ for all x ∈ Jτ2KT we have


f (x)vτ1 g(x), if v =+

g(x)vτ1 f (x), if v =−
f (x) = g(x), if v = 0.

Hence, the semantics of • is the powerset lattice over Sd and τv
2 → τ1 is the lattice of all monotonically

increasing, monotonically decreasing or constant functions from Jτ2KT to Jτ1KT , depending on v. Such a
set together with the above point-wise order forms a complete lattice if Jτ1KT is one. Hence, monotone
functions in such a lattice always have a least and greatest fixpoint due to the Knaster-Tarski-Theorem.
We write

⊔
τv

2→τ1
to denote the join operator in this lattice.

Note that, technically, Jτ1KT is also parameterised in d. However, since d is usually clear from
context, we do not display it to avoid clutter.

Syntax. Let P and A be as above and let F and L be finite sets of fixpoint variables, resp. lambda
variables. We use upper case letters X ,Y, . . . for the former and lower case letters x,y, f ,g for the latter.

Let d ≥ 1. By [d] we denote the set 1, . . . ,d. The set of – potentially non-well-formed – formulas of
the d-adic fragment of PHFL, called PHFLd , is derived via

ϕ ::= pi | ϕ ∨ϕ | ¬ϕ | 〈ai〉ϕ | {σ}ϕ | λ (x : τ). ϕ | x | (ϕ ϕ) | µ(X : τ).ϕ | X

20 Capturing Bisimulation-Invariant Exponential-Time Complexity Classes

Γ ` pi : •
Γ ` ϕ1 : • Γ ` ϕ2 : •

Γ ` ϕ1∨ϕ2 : •
Γ ` ϕ : •

Γ ` ¬ϕ : : •
Γ ` ϕ : •

Γ ` 〈ai〉ϕ : •
Γ ` ϕ : •

Γ ` {σ}ϕ : •

Γ,xv : τ1 ` ϕ : τ2

Γ ` λ (xv : τ1). ϕ : τ
v
1 → τ2

v ∈ {+,0}
Γ , xv : τ ` x : τ

Γ,X+ : τ ` ϕ : τ

Γ ` µ(X : τ). ϕ : τ Γ , X+ : τ ` X : τ

Γ ` ϕ1 : τ
+
2 → τ1 Γ ` ϕ2 : τ2

Γ ` (ϕ1 ϕ2) : τ1

Γ ` ϕ1 : τ
−
2 → τ1 Γ ` ϕ2 : τ2

Γ ` (ϕ1 ϕ2) : τ1

Γ ` ϕ1 : τ
0
2 → τ1 Γ ` ϕ2 : τ2 Γ ` ϕ2 : τ2

Γ ` ϕ1 ϕ2 : τ1

Figure 1: The PHFL typing system.

where x ∈ L, X ∈ F, p ∈ P, a ∈ A, 1 ≤ i ≤ d and σ : [d]→ [d] is a mapping on so-called indices.
We assume that standard connectives such as ff, ∧, [a] and ν(X : τ) are available via the obvious du-
alities if needed. We will also allow ourselves to use more convenient notation for the definition of
(more complex) functions and their applications. For instance, (. . .((ϕ ψ1)ψ2) . . .)ψn is simply written
as ϕ(ψ1, . . . ,ψn), and λ (x1 : τ1).λ (x2 : τ2). . . .λ (xn : τn).ψ is written as λ (x1 : τ1, . . . ,xn : τn).ψ , or even
λ (x1, . . . ,xn : τ).ψ if τ = τi for all 1≤ i≤ n.

The notions of free and bound variables in a formula are as usual, with λ (x : τ).ϕ binding x and with
µ(X : τ). ϕ binding X .

Over an LTS T , a PHFLd formula intuitively defines a set of d-tuples in T , or a function that trans-
forms such a set into such a set, or into a function etc., depending on the formula’s type which will be
explained shortly. Before that we briefly introduce the intuitive meaning of the operators in the syntax.
The first five listed in the grammar above all define a subset of Sd . For example, pi denotes all tuples such
that p holds at their ith state. The operator {σ}ϕ rearranges the positions in tuples in such a subset. The
modality 〈ai〉ϕ expresses that ϕ holds on a tuple after replacing the ith state in it by some a-successor. A
formula of the form λ (x : τv).ϕ defines a function that consumes an argument of type τ and is monoton-
ically increasing, monotonically decreasing, or constant in this argument, depending on v. A formula of
the form (ϕ ψ) denotes the application of the semantics of ϕ to the object defined by ψ . Finally, fixpoints
can now also define higher-order functions.

Obviously, not all formulas that can be derived from the above grammar can be given a semantics in
a meaningful way; consider e.g. (p1 p2), Moreover, as is typical in a situation involving least and greatest
fixpoints, the use of negation has to be restricted, cf. the example µ(X : •). ¬X . Hence, PHFL has a type
system to filter out formulas that cannot be endowed with a proper semantics.

A finite sequence Γ of hypotheses of the form Xv : τ or xv : τ in which each variable occurs at most
once is called a context. The dual context Γ is obtained from Γ by replacing all the hypotheses of the
form X+ : τ by X− : τ and vice versa, and doing the same for lambda variables. We say that ϕ has type
τ in the context Γ if the statement Γ ` ϕ : τ can be derived from the rules in Fig. 1. A formula without
free variables is well-typed if the statement /0 ` ϕ : • can be derived from these rules. We tacitly assume
that each fixpoint variable and each lambda variable is bound at most once in a well-typed formula, and
that no variable occurs both freely and bound in a formula. Hence, each variable has a unique type in the
context of a given, well-formed formula. If the type information is clear from context or not important,

F. Bruse, D. Kronenberger & M. Lange 21

we drop it from binders, simply writing λx.ϕ and µX .ϕ for better readability.
A formula is said to be of order k if the maximal order of the type of any subformula in ϕ is k. By

PHFLk
d we denote the set of well-typed formulas in PHFLd that are of order k. Note that PHFL does

indeed constitute an extension of other known formalisms, namely

• PHFLk
1 is the same as HFLk for any k ≥ 0 and, thus PHFL1 = HFL, and in particular

• PHFL0
1 is just the modal µ-calculus Lµ while

• PHFL0
d is the d-dimensional polyadic µ-calculus.

Semantics. Let T = (S,{ a−→}a∈A, `) be an LTS and let ϕ be a well-typed formula. An environment is a
function η that assigns to each fixpoint variable and each lambda variable of type τ an element of JτKT .

Let d ≥ 1. The semantics Jϕ : τKT
η of a PHFLd formula ϕ of type τ , relative to an LTS T and an

environment η , is an object of JτKT , defined recursively as follows.

JΓ ` pi : •KT
η = {(s1, . . . ,sd ∈ Sd | p ∈ `(si)}

JΓ ` ϕ1∨ϕ2 : •KT
η = JΓ ` ϕ1 : •KT

η ∪ JΓ ` ϕ2 : •KT
η

JΓ ` ¬ϕ : •KT
η = Sd \ JΓ ` ϕ : •KT

η

JΓ ` 〈ai〉ϕ : •KT
η = {(s1, . . . ,sd) ∈ Sd | ex. t s.t.

(s1, . . . ,si1 , t,si+1, . . . ,sd) ∈ JΓ ` ϕ : •KT
η and si

a−→ t}
JΓ ` {σ}ϕ : •KT

η = {(s1, . . . ,sd) ∈ Sd | (sσ(1), . . . ,sσ(d)) ∈ JΓ ` ϕ : •KT
η}

JΓ ` λ (xv : τ2). ϕ : τ
v
2 → τ1KT

η = f ∈ Jτ
v
2 → τ1KT s.t. f.a. y ∈ Jτ2KT . f (y) = JΓ,xv : τ2 ` ϕ : τ1KT

η [x 7→y]

JΓ ` x : τKT
η = η(x)

JΓ ` (ϕ1 ϕ2) : τ1KT
η = JΓ ` ϕ1 : τ

v
2 → τ1KT

η (JΓ ` ϕ2 : τ2KT
η)

JΓ ` µ(X : τ).ϕ : τKT
η =

l

τ→τ

{d ∈ JτKT
η | JΓ,X : τ

+ ` ϕ : τKT
η [X 7→d] vτ d}

JΓ ` X : τKT
η = η(X)

If the type is clear from context, or not important, we simply write JϕKT
η . We write T,(s1, . . . ,sd) |=η ϕ

if ϕ : • and (s1, . . . ,sd) ∈ JϕKT
η . We say that two formulas ϕ and ψ are equivalent, written ϕ ≡ ψ , if for

all T and all η we have JϕKT
η = JψKT

η .
It is well-known that the semantics of HFL and, hence, PHFL is invariant under β -reduction and

admits the fixpoint unfolding principle, i.e. µX .ϕ ≡ ϕ[µX .ϕ/X] where substitution is defined as usual.

Bisimilarity. A bisimulation R on an LTS T = (S,{ a−→}a∈A, `) is a symmetric relation R⊆ S×S satis-
fying the following for all (s, t) ∈ R.

• `(s) = `(t),

• if there is a ∈ A and s′ ∈ S s.t. s a−→s′ then there is t ′ ∈ S with t a−→ t ′ and (s′, t ′) ∈ R,

• if there is a ∈ A and t ′ ∈ S s.t. t a−→ t ′ then there is s′ ∈ S with s a−→s′ and (s′, t ′) ∈ R.

Two states s, t are bisimilar, written s∼ t, if there is a bisimulation R with (s, t) ∈ R.
Let d ≥ 1. A set T ⊆ S is called bisimulation-invariant if for all s̄ = (s1, . . . ,sd), t̄ = (t1, . . . , td) ∈ Sd

such that si ∼ ti for all i ∈ [d], we have s̄ ∈ T iff t̄ ∈ T . The notion of bisimulation-invariance can
straight-forwardly be lifted to objects of type JτKT for types τ 6= •, cf. [21].

22 Capturing Bisimulation-Invariant Exponential-Time Complexity Classes

It is well-known that modal logics cannot distinguish bisimilar models, and it is not surprising that
the extensions beyond pure modal logic that are available in PHFL do not break this property.
Proposition 1 ([21, 15]). Let d ≥ 1, T be an LTS with state set S and ϕ be a closed PHFLd formula of
type •. Then JϕKT ⊆ Sd is bisimulation-invariant.
Example 2 ([17]). A standard example shows that bisimilarity itself is definable in PHFL0

2, provided
that P and A are finite. The PHFL0

2 formula

ϕ∼ := ν(X : •).(
∧
p∈P

p1↔ p2)∧ (
∧

a∈A
[a1]〈a2〉X)∧{1 7→ 2,2 7→ 1}X

is satisfied by a pair (s, t) of some T iff s∼ t. The formula essentially states that (s, t) needs to belong to
the largest set X of states (s′, t ′) that agree on all propositions (first conjunct) and for which t ′ can match
any a-transition out of s′, for any a ∈ A, to a pair (s′′, t ′′) ∈ X (second conjunct). Moreover, X needs to
be a symmetric relation (third conjunct).

To exemplify the use of higher-orderness (here: first-order functions) we can use the definability of
finite-trace equivalence in PHFL1

2.
Example 3. Two states s, t are finite-trace equivalent if whenever there is a sequence s a1−−→s1

a2−−→s2
a3−−→

. . .
an−−→sn then there are t1, . . . , tn s.t. t a1−−→ t1

a2−−→ t2
a3−−→ . . .

an−−→ tn and vice-versa.

ϕfte :=
(
νF(x,y).(x↔ y)∧

∧
a∈A

F(〈a1〉x,〈a2〉y))(tt,tt)

is then satisfied by a pair (s, t) iff s and t are finite-trace equivalent in the sense above. The greatest
fixpoint in the formula expresses an infinite conjunction over all finite paths, these can be thought of
to be built step-wise via fixpoint unfolding; the nth unfolding expresses that all finite traces of length n
are available in the first component of the tuple (and built via 〈a1〉) iff they are available in the second
component (built via 〈a2〉. For better readability we have omitted the types in the formula. The types of
x,y are • and that of F is, consequently, •0→•0→•.

We remark that it is easily possible to extend the formula to also check for matching atomic proposi-
tions along the traces emerging from s and t. Cf. [16] for further examples of how various other process
equivalences and preorders can be expressed in PHFL1.

2.2 Higher-Order Logic with Least Fixpoints

We introduce Higher-Order Logic with Least Fixpoints (HO(LFP)) to make use of the characterisation
of k-EXPTIME over the class of ordered structures as the queries definable in order-(k+ 1) HO(LFP),
due to Immerman and Vardi [8, 20, 9], resp. Freire and Martins [6].

Types. Types for Higher-Order Logic with Least Fixpoints are constructed, similar to those for PHFL,
from a single base type and one constructor: τ ′ ::=� | (τ ′, . . . ,τ ′). Here, however, � is the type of indi-
viduals (like states rather than sets of states), and the tuple type is used to denote (higher-order) relations.
We define the order1 of a type via ord(�) = 1 and ord(τ ′1, . . . ,τ

′
n) = 1+max{ord(τ ′1), . . . ,ord(τ ′n)}.

Let T = (S,{ a−→}a∈A, `) be an LTS. This induces a set-theoretic interpretation of types via J�KT = S
and J(τ ′1, . . . ,τ

′
n)KT = 2Jτ ′1K

T×···×Jτ ′nKT
.

1Note the discrepancy in the traditional ways to assign numerals to orders in the two logics considered here: order 1 in
HO(LFP) refers to, like in “First-Order Logic”, individual elements and order 2 is for relations like sets thereof. In PHFL,
order 1 refers to the order of a function, i.e. one that takes sets of arguments. This explains why PHFLk corresponds to the
fragment of HO(LFP) of order k+1, see also the right column in Fig. 2.

F. Bruse, D. Kronenberger & M. Lange 23

Syntax. Let V = {X , . . .} be a countable set of higher-order variables, each implicitly equipped with
a type. Let P,A be sets of propositions, resp. actions. The syntax of HO(LFP) formulas is derived from
the following grammar:

ϕ ::= p(X) | a(X ,Y) | X(Y1, . . . ,YN) | ¬ϕ | ϕ ∨ϕ | ∃(X : τ
′). ϕ |

(
lfp(X ,Y1, . . . ,YN). ϕ

)
(Z1, . . . ,Zn)

where p ∈ P, a ∈ A and X ,Y1, . . . ,Yn,Z1, . . . ,Zn ∈ V. Again, dual operators such as ∧ and gfp (for
greatest fixpoints) are available via the obvious dualities. The variable X is bound in ∃(X : τ ′). ϕ and
X ,Y1, . . . ,YN are bound in

(
lfp(X ,Y1, . . . ,YN). ϕ

)
(Z1, . . . ,Zn). A formula is well-formed if each variable is

bound at most once, and, moreover, variables occur only in a way that matches their type. For example,
only a variable of type � can occur in a subformula of the form p(X), and if a subformula of the form
X(Y1, . . . ,Yn) occurs, then X has type (τ ′1, . . . ,τ

′
n) for some τ ′1, . . . ,τ

′
n and Yi has type τ ′i for all 1 ≤ i≤ n.

Moreover, in a subformula of the form
(
lfp(X ,Y1, . . . ,YN). ϕ

)
(Z1, . . . ,Zn), the variable X occurs only

under an even number of negations in ϕ . For a more detailed introduction into Higher-Order Logic
including formal ways to define well-formedness of formulas, cf. [19]. In a well-formed formula each
variable has a unique type. An HO(LFP) formula ϕ has order k if the order of the highest type of a
variable in ϕ is at most k. We write HOk(LFP) for the set of HO(LFP) formulas of order at most k.

Semantics. Let T = (S,{ a−→}a∈A, `) be an LTS. A variable assignment α is a function that maps each
variable in V of type τ ′ into Jτ ′KT .

Let ϕ be an HO(LFP) formula with free variables in X ,Y1, . . . ,Yn such that X occurs only under an
even number of negations in ϕ and let τ ′ = (τ ′1, . . . ,τ

′
n) be the type of X in ϕ while τ ′i is the type of Yi in

ϕ for 1 ≤ i ≤ n. Then, given some variable assignment α , the formula ϕ defines a monotone function
f : Jτ ′KT → Jτ ′KT via

f (M) 7→ {(m1, . . . ,mn) ∈ JϕKT
α[Y1 7→m′1,...,Yn 7→m′n]

| (m′1, . . . ,m′n) ∈M}.

By the Knaster-Tarski-Theorem [11, 18] this function has a least fixpoint denoted by LFP(X ,Y1, . . . ,Yn)ϕ .
Note that we suppress T and α here since they will always be clear from context.

The satisfaction relation between an LTS T , a variable assignment α and an HO(LFP) formula ϕ is
defined inductively as follows.

T,α |= p(X) iff p ∈ `(α(X))

T,α |= a(X ,Y) iff α(X) a−→α(Y)

T,α |= X(Y1, . . . ,Yn) iff (α(Y1), . . . ,α(Yn)) ∈ α(X)

T,α |= ¬ϕ iff T,α 6|= ϕ

T,α |= ϕ1∨ϕ2 iff T,α |= ϕ1 or T,α |= ϕ2

T,α |= ∃(X : τ
′) iff ex. d ∈ Jτ

′KT s.t. T,α[X 7→ d] |= ϕ

T,α |=
(
lfp(X ,Y1, . . . ,YN). ϕ

)
(Z1, . . . ,Zn) iff (α(Z1), . . . ,α(Zn)) ∈ LFP(X ,Y1, . . . ,Yn)ϕ.

2.3 Descriptive Complexity

A query (of dimension d) is a set Q of pairs (T,(s1, . . . ,sd)) s.t. each T is finite. It is expressed by
the HO(LFP) formula ϕ with free variables X1, . . . ,Xd , if Q = {(T,(s1, . . . ,sd)) | T, [X1 7→ s1, . . . ,Xd 7→
sd] |= ϕ}. Let k ≥ 0. The complexity class k-EXPTIME is defined as DTIME(2nO(1)

k) where 2m
0 := m and

2m
k+1 := 22m

k . Note that 0-EXPTIME equals P.

24 Capturing Bisimulation-Invariant Exponential-Time Complexity Classes

For a complexity class C , a C -query is one that can be decided within the resource bounds given by
C . We write C/∼ for the complexity class of C -queries that are bisimulation-invariant.

We say that a logic L captures a complexity class C if the model checking problem for L is in C
and each C -query can be expressed in L .

The Immerman-Vardi Theorem characterises the P-queries over ordered structures as those express-
ible in HO1(LFP), resp. first-order logic with least fixpoints. It’s generalisation is the following:

Proposition 4 ([8, 20, 9, 6]). For each k ≥ 0, HOk+1(LFP) captures k-EXPTIME over the class of
ordered structures.

The ordering is only important for the case of k = 0 as such an ordering can be defined in second-
order logic, i.e. as soon as k ≥ 1. It is an open problem whether a logic exists that captures P over the
class of all structures (cf. e.g. [7]).

The first capturing result for a bisimulation-invariant class is given by Otto’s Theorem.

Proposition 5 ([17]). The polyadic modal µ-calculus L ω
µ , or, equivalently PHFL0, captures P/∼, or

equivalently, 0−EXPTIME/∼.

We give a quick sketch of its proof in order to prepare for the technical developments in Sects. 4 and
5. The model checking problem for PHFL0 is readily seen to be in P (see also [14]). The interesting part
is to show that every bisimulation-invarariant P query can be expressed in PHFL0. In principle, this could
be done by encoding runs of polynomially time-bounded Turing machines, but it is not immediately clear
how bisimulation-invariance of the query in question can be used. Instead, the proof for this rests on a
key observation: non-bisimilarity of two states can be expressed in PHFL0

2 by a least-fixpoint formula,
since bisimilarity can be defined via the greatest fixpoint formula in Ex. 2. Hence, non-bisimilarity of two
states, as a least fixpoint, has a well-founded reason, i.e. one that can be found in finitely many fixpoint
unfoldings. Ordering the atomic types in an arbitrary way entails a total order on the bisimulation-
equivalence classes, and this order can be defined in PHFL0

2. Hence, the LTS in question is ordered,
and the Immerman-Vardi Theorem is available, whence the problem reduces to showing that every query
defined by a bisimulation-invariant HO1(LFP)-query can be expressed equivalently in PHFL0.

This latter reduction now follows from a rather straightforward translation from HO1(LFP) formu-
las to PHFL0 formulas. Variables of type � are emulated through polyadicity and variables of type
(�, . . . ,�) are represented as order-0 PHFL0-variables. Since, in the bisimulation-invariant setting, one
can always assume that the LTS in question already is its own bisimulation quotient, bisimilarity and
equality coincide. Hence, a subformula of the form a(Xi,X j) can be replaced by the statement that the
ith component of the relation defined has an a-successor that is bisimilar and, hence equal to the jth
component. Moreover, since all states in such a bisimulation quotient of a pointed LTS are reachable
from a distinguished state, existential quantification can be replaced by reachability of a suitable state. It
remains to translate least fixpoints in HO1(LFP) into order-0 fixpoints of PHFL0.

Using reasoning along similar lines, Otto’s Theorem has also been generalised by one order.

Proposition 6 ([15]). PHFL1 captures EXPTIME/∼.

3 Upper Bounds

Capturing a complexity class C , defined by some restricted resource consumption, by a logic L contains
two parts: what is commonly seen as the lower bound consists of showing that every query which can
be evaluated in complexity C can also be defined in the logic L . The upper bound is established by

F. Bruse, D. Kronenberger & M. Lange 25

showing the contrary. This is relatively easy as it suffices to show that queries definable in L can be
evaluated in complexity C , in other words that the model checking problem for L belongs to class C .

Here we do this for the fragments of PHFL of arbitrary but fixed arity d and arbitrary order k, w.r.t.
the classes k-EXPTIME of the exponential time hierarchy. We do so by extending the reduction of the
model checking problem for a polyadic logic to that of its monadic fragment [14]. Note that PHFLk

1
equals HFLk – the fragment of (non-polyadic) Higher-Order Fixpoint Logic of formulas of type order at
most k. The complexity of model checking such fragments is known:

Proposition 7 ([3]). Let k ≥ 1. The model checking problem for HFLk is k-EXPTIME-complete.

The corresponding result for PHFLk
d , first stated without proof in [15], follows via a reduction:

Theorem 8. Let k,d ≥ 1. The model checking problem for PHFLk
d is in k-EXPTIME.

Proof. By a polynomial reduction to the model checking problem for HFL. Let k,d ≥ 1 and an LTS
T = (S,{ a−→}a∈A, `) over A and P be given. We construct its d-product T d over the action set Ad := {ai |
a∈A, i∈ [d]}∪{σ |σ : [d]→ [d]} and atomic propositions Pd := {qi | q∈P, i∈ [d]} as (Sd ,{ x−→}x∈A′d , `

′)
where, for all q ∈ P, i ∈ [d], a ∈ A, s1, . . . ,sd , t1, . . . , td ∈ S we have

• qi ∈ `′(s1, . . . ,sd) iff q ∈ `(si),

• (s1, . . . ,sd)
ai−−→(t1, . . . , td) iff si

a−→ ti and t j = s j for all j 6= i,

• (s1, . . . ,sd)
σ−→(t1, . . . , td) iff t j = σ(s j) for all j ∈ [d].

Next, we translate a PHFLk
d formula ϕ inductively into a PHFL1 formula ϕ̂ as follows. The operation ·̂

acts homomorphically on all operators apart from the following three cases.

{̂σ}ψ := 〈σ〉ψ̂ , 〈̂ai〉ψ := 〈ai〉ψ̂ , p̂i := pi .

The latter two cases may be confusing as ·̂ seems to not change those operators either. However, in e.g.
the second case, 〈ai〉 on the left side is a polyadic modality combining the action a ∈ A with the index
i ∈ [d]. On the right side, 〈ai〉 is a monadic modality over the action ai ∈ Ad . Likewise in the third case.

This equality in syntax for two technically different modal operators, resp. atomic formulas is in-
tended because of the following connection: the d-tuple (s1, . . . ,sd) of states in T satisfies the PHFLd
formula 〈ai〉ψ iff the state (s1, . . . ,sd) of T d satisfies the PHFL1 formula 〈ai〉ψ̂ . A similar statement
can be made for atomic propositions and these can easily be generalised to show by induction on the
syntax of PHFL that for all PHFLd formulas ϕ , all s1, . . . ,sd ∈ S and all environments η we have:
(s1, . . . ,sd) ∈ JϕKT

η iff (s1, . . . ,sd) ∈ Jϕ̂KT d

η .
This establishes correctness of the reduction. Note that ϕ̂ is a PHFLk

1-, i.e. HFLk formula whenever
ϕ ∈ PHFLk

d . Moreover, both T d and ϕ̂ are easily seen to be constructible in polynomial time (for fixed
d). Thus, by Prop. 7 model checking PHFLk

d is also in k-EXPTIME.

4 Higher-Order Quantification

To show that every bisimulation-invariant k-EXPTIME query can be expressed in PHFLk it suffices, due
to Prop. 4, to show that every HOk+1(LFP)-query can be translated into a PHFLk formula. The main
challenge here is to deal with existential quantification, which has no obvious equivalent in PHFL. In
[17], first-order existential quantification is replaced by reachability of a suitable state, which is suffi-
cient in the bisimulation-invariant setting. Higher-order quantification does not have such an obvious

26 Capturing Bisimulation-Invariant Exponential-Time Complexity Classes

correspondent - there is no notion of a set, or a set of sets, etc. being reachable. Moreover, PHFL does
only have a type for sets of tuples of states, not for sets of sets etc. We solve this problem by replacing
higher-order types by a variant of their characteristic function, something that fits quite naturally into the
PHFL world. We then lift the order on the states inherited from [17] to sets of tuples of states and then to
said characteristic functions by ordering them lexicographically. We can enumerate sets, functions and
so on alongside this order, and hence, we can mimic existential quantification over some HO(LFP) type
by an enumeration of corresponding characteristic functions.

The increased complexity of this approach compared to simple reachability requires two adaptations:
first, since we use the order of sets, functions etc. present in the bisimulation-invariant setting, we often
have to compare two such objects w.r.t. this order. Comparing e.g. two sets of d-ary tuples, however,
requires a formula containing types of width 2d. Also, HO(LFP)-formulas can define a query of some
width, yet contain types, resp. quantification over objects of much higher width. Hence, in order to keep
the presentation simple, the formulas we develop subsequently will be of some unspecified, yet generally
quite high arity, i.e. they will be in PHFLk

d for some d that is large compared with the width of the original
query. The exact value of d will be given towards the end of the translation.

Since we have already agreed to blow up the width used in our translated formulas, we can also make
things easier by reserving certain positions in the tuples we work with for special tasks. We generally
use the last two positions in our tuples (those with indices d and d− 1) to compare individual states
w.r.t. the order from [17], and we will use the next r positions from the right, i.e. those with indices
d− r−1, . . . ,d−2 for some r, to keep copies of states such that the whole LTS is reachable from at least
one of these states, in order to keep the pattern for first-order quantification valid. This will be made
formal after we revisit the pattern for existential quantification just below. We then subsequently expand
quantification towards sets and characteristic functions. The final translation is then given in Sec. 5.

Reachable States. In [17], existential quantification of first-order logic was replaced by reachability
of a suitable state in the LTS in question, using the pattern given subsequently. First, we recall the
role of the substitution operator: Let σ i← j be defined by σ i← j(i) = j and σ i← j(i′) = i′ if i′ 6= i. Then
(s ∈ J{σ i← j}ϕKT

η iff s[s j/i] = (s1, . . . ,si−1,s j,si+1, . . . ,sd) ∈ JϕKT
η for all T and η .

Now let A be a set of actions, let d > 2, r ≤ d−2 and i≤ d− r−2. Recall that, for the time being,
we assume that every tuple we work with is such that all states in an LTS are reachable from one of the
states at indices d−r−1, . . . ,d−2 of the tuple and that we reserve the last two positions for comparisons
(see below). Consider the formula

∃iϕ :=
d−2∨

j=d−r−1

{σ i← j}
(
µ(X : •). ϕ ∨

∨
a∈A
〈ai〉X

)
.

for some ϕ ∈ PHFLd . We have the following:

Observation 9. Let T be an LTS over A and let s = (s1, . . . ,sd) such that all states in T are reachable from
at least one state in sd−r−1, . . . ,sd−2. Then T,s |= ∃iϕ iff there is a state t in T such that T,s[t/i] |= ϕ .

As said before, quantification over higher-order types is more complicated, but we can replace reach-
ability by enumeration in lexicographical order for higher-order types. Towards this, note that for all
d ≥ 2 there is some PHFL0

2-formula ϕ< defining a transitive and irreflexive relation < such that, for all
LTS T and d-tuples s = (s1, . . . ,sd) we have that T,s |= ϕ< iff sd−1 < sd . This formula is defined in [17]
using a variant of the negation of the formula from Ex. 2. The actual position of the tuple elements that
are compared is not important, we choose to fix it here for consistency.

F. Bruse, D. Kronenberger & M. Lange 27

A crucial ingredient for the correctness of the quantification pattern above is that every state in
the LTS is reachable from the states in positions d− r− 1, . . . ,d− 2. For the first-order case, this can
be guaranteed by never manipulating the components with the respective indices. In the higher-order
setting, this does not suffice as one deals with arbitrary sets, functions, etc. Hence, for the remainder of
the section all formulas are assumed to have a free lambda variable e of type • that is as follows:
Definition 10. Let T be an LTS and let r be fixed. Then an interpretation η is good if η(e) is a set of the
form M×{sd−r−1}× ·· ·×{sd−2}×S2 such that /0 6= M ⊆ Sd−2−r and each state of T is reachable from
one of the sd−r−1, . . . ,sd−2.

We do not make this free variable explicit, since it is always assumed to be there. We will see in
Sect. 5 how this intended interpretation can be enforced. This stipulation formalises the informal idea
given above. Note that in [17], it was assumed that all states of the LTS in question are reachable from a
singular state, but this is not a necessary requirement for the argument to work.

Finally, let w and d be such that 2w+ r+2≤ d. The intuition here is that, in order to translate from
HO(LFP), we will have to deal with sets and higher-order sets of arity at most w.

Quantification for Sets. We now define a similar pattern to that for the first-order case which allows
us to iterate over all sets of w-tuples in an LTS. This is not the same as enumerating J•KT since w < d.

Let σi be defined via σi(d−1) = i, σi(d) = i+w and σi(j) = j if j < d−1. Then s ∈ J{σi}ϕKT
η iff

s[si/d− 1,si+w/d] ∈ JϕKT
η . The intended use for this substitution is to compare the elements at indices

i and i+w w.r.t. to the order induced by ϕ<. Remember that this formula always compares the last two
elements of the tuple. Moreover, let σ→w be defined by σ→w(i) = w+ i for i ≤ w and σ→w(j) = j for
j > w. Then (s1, . . . ,sd) ∈ J{σ→w}ϕKT

η iff (s1, . . . ,sw,s1, . . . ,sw,s2w+1, . . . ,sd) ∈ JϕKT
η . The intended use

here is to shift the first w elements of a formula to the right to make room for another tuple at the first w
positions such that the two tuples can be compared lexicographically.

Consider the formula ∃(w)x.ϕ :=
(
µ(F : •→ •).λ (x : •).ϕ ∨F(next(w)(x))

)
ff where

ϕ
w
< :=

w∨
i=1

{σi}ϕ<∧
i−1∧
j=1

{σ j}¬ϕ<

ϕ
(w)
< (x,y) := ∃1 . . .∃w. y∧¬x∧{σ→w}

(
∀1 . . .∀w.ϕ

w
<→ x→ y

)
.

next(w)(x) := λ (x : •). e∧¬x∧{σ→w}
(
∀1 . . .∀w. ϕ

w
<→ x

)
∨ e∧ x∧{σ→w}

(
∃1 . . .∃w. ϕ

w
<∧¬x

)
The first formula ϕw

< implements lexicographical comparison of the first w elements in a tuple to the
second w elements. The second formula ϕ

(w)
< lifts the order from tuples to sets of tuples via the lexico-

graphical order induced by the order on the tuples. Finally, the formula next(w) is a predicate transformer
that consumes a set of tuples. It returns a set of tuples that is the lexicographical successor of the input
in the order induced by the order on the first w elements of the individual tuples: the output contains a
tuple iff either the input does contain it, but not all lexicographically smaller tuples, or if the input does
not contain it, but all lexicographically smaller tuples. Also note the role of e that filters out all tuples
that do not adhere to our stipulation that the whole LTS be reachable from one of the states at indices
d− r−1, . . . ,d−2.
Lemma 11. Let T be an LTS with state set S and let η be good. Then T,s |=η ∃(w)x.ϕ iff there is M ⊆ Sw

such that T,s |=η [x 7→M×Sd−w∩η(e)] ϕ .
The proof consists of verifying the informal intuition above. We write ∀(w)x. ϕ to denote ¬∃(w)x. ¬ϕ .

We write ∃(w)x1, . . . ,xn. ϕ for ∃(w)x1 · · ·∃(w)xn. ϕ , and similarly for ∀(w)x. ϕ .

28 Capturing Bisimulation-Invariant Exponential-Time Complexity Classes

Generalised Higher-Order Quantification. We have just seen how existential quantification can be
emulated for individual states in an LTS and, with some restrictions, for sets of w-tuples of an LTS.
For other types that commonly appear in HO(LFP), i.e. relations of higher order, there is no immediate
PHFL equivalent, since all types beyond • are function types. However, we can use these function types
to emulate the HO(LFP) types to a sufficient degree. For the sake of simplicity, we only consider types
of a special form; we argue in Sect. 5 why this is not a restriction.

Let τw,k be inductively defined via τw,0 = • and τw,i+1 = τw,i→ ·· · → τw,i→ • where τw,i is repeated
w many times. Given T , let Jτ◦w,iK

T = Jτw,iKT for i≤ 1 and let

Jτ
◦
w,kK

T = { f ∈ Jτw,kKT | f (f1, . . . , fw) = S or f (f1, . . . , fw) = /0 f.a. f1, . . . , fw ∈ Jτ
◦
w,k−1K

T}

for k ≥ 2. The important distinction here is that Jτ◦w,kK
T is the restriction of Jτw,kKT to those functions

that always return either the full set of states or the empty set, at least on inputs from Jτ◦w,k−1K
T . This is

desirable since we want to use functions in Jτ◦w,kK
T to emulate higher-order variables of a special form.

Given x,x1, . . . ,xw of the appropriate type, the question whether s ∈ Jx(x1, . . . ,xw)KT
η does not depend on

s (as in modal logics), but is uniform over the while LTS. However, since Jτw,kKT also contains functions
that are not uniform starting from PHFL-order 2, we restrict ourselves to functions that are uniform on
the necessary inputs (i.e. those that are themselves sufficiently uniform).

Consider the following formulas for k ≥ 1, where x = x1, . . . ,xw and y = y1, . . . ,yw:

ϕ
w,k−1
< (x1, . . . ,xw,y1, . . . ,yw) :=

w∨
i=1

ϕ
(w),k−1
< (xi,yi)∧

i−1∧
j=1

¬ϕ
(w),k−1
< (x j,y j)

ϕ
(w),k
< (x,y) := ∃w,k−1x. y(x)∧¬x(x)

∧∀w,k−1y. ϕ
w,l
< (y,x)→ x(y)→ y(y)

ff(w),k := λ (x : τw,k−1).ff

nextw,k(x) := λ (x : τw,k). λ (x : τw,k−1).(
¬x(x)∧∀w,ky. ϕ

w,k
< (y,x)→ x(y)

)
∨
(
x(x)∧∃w,ky. ϕ

w,k
< (y,x)∧¬x(y)

)
∃w,k(x). ϕ :=

(
µ(F : τw,k→ τw,k). λ (x : τw,k).ϕ ∨F(nextw,kx)

)
ff(w),k

where ϕ
(w),k−1
< = ϕ

(w)
< in case k = 1 and ∃w,k−1x.ϕ = ∃(w)x.ϕ if k = 1.

Similarly as in the definitions given before Lemma 11, these formulas lift quantification up by one
level on the type hierarchy. The formula ϕ

w,k−1
< compares width-w-tuples of functions of type τ◦w,k−1

lexicographically using the previously defined formula ϕ
(w),k−1
< that compares individual such functions.

The formula ϕ
(w),k
< then lifts this to individual functions of the next type, using existential and universal

quantification. The formula nextw,k again consumes a function of type τ◦w,k and returns the lexicographi-
cally next one using the standard definition of binary incrementation, while ∃w,k implements existential
quantification for τ◦w,k by iterating through all possible candidates using nextw,k.

Lemma 12. Let T be an LTS and let η be good. Then T,s |=η ∃w,kx.ϕ iff there is f ∈ Jτ◦w,kK
T such that

T,s |=η [x 7→ f] ϕ .

The proof follows the same pattern as that of Lemma 11 by verifying that the individual formulas do
what is claimed above.

F. Bruse, D. Kronenberger & M. Lange 29

Lemmas 11 and 12 justify the use of HO(LFP)-style quantification symbols for individual states,
sets of type M×Sd−w∩η(e) for M ⊆ Ss and for τ◦w,k for all k≥ 2. Note that the latter do neither coincide
with HO(LFP) types nor with the respective τw,k.

5 Lower Bounds

Homogeneous Types. In order to simplify the translation from HO(LFP) to PHFL, we restrict the set
of types that can be used in HO(LFP) formulas. Let w≥ 2 be fixed but arbitrary. Define τ ′w,k as τ ′w,1 =�,
τ ′w,i+1 = (τ ′w,i, . . . ,τ

′
w,i) with w many repetitions of τ ′w,i.

Lemma 13. If ϕ ∈ HOk(LFP) defines a query Q, then there is ϕ ′ ∈ HOk(LFP) that defines the same
query, but the only types used in ϕ ′ are τ ′w,0, . . . ,τ

′
w,k for some w.

Proof. There are two principles that are used here: If ϕ contains a type of the form τ ′′ = (τ ′, . . . ,τ ′) with
w′ ≤ w many repetitions of w, we can replace τ ′′ by (τ ′, . . . ,τ ′) with exactly w many repetitions of τ ′

by changing the respective type everywhere in the formula and requiring at quantifiers that, e.g., the last
w−w′ components are equal to the w−w′−1st in every tuple contained in a set. Hence, every type can
be assumed to have width exactly w.

It remains to deal with inhomogeneous types, e.g. those of the form (τ ′,τ ′′, . . .) such that ord(τ ′) 6=
ord(τ ′′). This can be remedied by increasing the type of the lower order by one order, and requiring at
quantification steps that the only tuple in the set be a singleton of the form (M, . . . ,M) of width w. This
procedure needs to be chained if the orders of constituent types diverge by more than one.

Type Correspondence. Now that we can assume w.l.o.g. that all HOk(LFP)-definable queries are de-
fined by an HOk(LFP) formula which uses only the types τ ′w,i for i ≤ k we can observe that these types
are quite similar to the types τw,k defined in the previous section. In fact, we want to emulate the type
τ ′w,k with k > 1 by τ◦w,k−2. The type τ ′s,1 will be handled by polyadicity as in [17].2

Let T be an LTS with state set S and let d ≥ w ≥ 2. For each k ≥ 2, we define a translation
tptrT

k : Jτ ′w,kK
T → Jτ◦w,k−2K

T via tptrT
2 (M) = M×Sd−w and tptrT

i+1(M) = f ∈ Jτw,k−2KT s.t.

f (f1, . . . , fn) =

{
S, if f j = tptrT

i (xi) f.a. 0≤ j ≤ w and (x1, . . . ,xw) ∈M

/0, otherwise.

Hence, a variable assignment α such that all variables are of types τ ′w,2, . . . ,τ
′
w,k induces an environment

ηα with definitions for all those variables of order ≥ 2 via ηα(X) = tptrT
i (X) where i is the order of X .

The Translation. We are now ready to extend the translation given in [17] to HOk(LFP) with k ≥ 2.
Towards this, we present a syntactical translation trans from HOk(LFP) with k ≥ 2 into PHFLd

k−1 for
some d ≥ 2.
Lemma 14. Let ϕ ∈ HOk(LFP) be bisimulation invariant and have free first-order variables X1, . . . ,Xr

and, hence define a query of width r. Moreover, let τ ′w,0, . . . ,τ
′
w,k be the only types in ϕ . W.l.o.g. let 2w≥ r.

Let d = 2w+r+2. Then there is ϕ ′ ∈ PHFLd
k−1 such that, for all LTS T that are a bisimulation quotient,

we have T,α |= ϕ iff T,(α(X1), . . . ,α(Xr)) |=ηα [e7→M] ϕ ′ where /0 6= M′ ⊆ Sr and M = M′× Sd−2r−2×
{α(X1)}× ·· ·×{α(Xr)}×S2.

2It would also be possible to completely eliminate this type from HOk(LFP) for k ≥ 2; cf. similar constructions in the
context of MSO and automata theory.

30 Capturing Bisimulation-Invariant Exponential-Time Complexity Classes

Proof. Let trans be given via

trans(p(Xi)) := pi

trans(a(Xi,X j)) := 〈ai〉{σi, j}ϕ∼
trans(ϕ1∨ϕ2) := trans(ϕ1)∨ trans(ϕ2)

trans(¬ϕ) := ¬trans(ϕ)

trans(∃(Xi : �). ϕ) := ∃i. trans(ϕ)

trans(∃(X : τ
′
w,1).ϕ) := ∃(w)(x). trans(ϕ)

trans(∃(X : τ
′
w,k). ϕ) := ∃w,k(x). trans(ϕ) if k ≥ 2

trans(X(Xi1 , . . . ,Xiw)) := {σ}x if (X : τ
′
w,1)

trans(X(X1, . . . ,Xw)) := x(x1, . . . ,xw) if (X : τ
′
w,k) and k ≥ 2

trans(
(
lfp(X ,Y1, . . . ,Yw). ϕ

)
(Zi1 , . . . ,Ziw)) := {σ}µ(F : •→ •). trans(ϕ) if (X : τw,2)

trans(
(
lfp(X ,Y1, . . . ,Yw). ϕ

)
(Z1, . . . ,Zw)) :=

(
µ(F : τw,k−2→ τw,k−2). λ (y1, . . . ,yw : τw,k−3).

trans(ϕ)
)
(Z1, . . . ,Zw) if (X : τw,k) and k ≥ 3

where σi, j is defined via σi, j(d−1) = i,σi, j(d) = j and σi, j(k) = k for k < d−1, and ϕ∼ is the formula
from Ex. 2, resp. [17] that holds iff the states in positions d− 1 and d are bisimilar, and, finally σ is
defined via σ(j) = i j for 0≤ j ≤ w and σ(k) = k for k ≥ w. The substitions σi, j, resp. σ serve to swap
the elements i and j to positions d− 1 and d, resp. to reorder the elemtents according to the variable
order used on the left side of the translation.̧

The claim now follows by induction over the syntax tree of ϕ . The first five cases are as in [17].
The next four cases are by Lemmas 11 and 12, resp. the definition of ηα . The fixpoint cases are by an
induction over the individual stages of the fixpoint iteration; note that the Knaster-Tarski-based semantics
of the fixpoints in HO(LFP) and PHFL can be equivalently replaced by semantics based on the Kleene
Fixpoint Theorem [10]. This mirrors the proof of the fixpoint case in [17].

Theorem 15. PHFLk captures k-EXPTIME/∼ for all k ≥ 0.

Proof. The cases of k = 0 and k = 1 are of course already known [17, 15]. For k ≥ 2, the upper bound
is shown in Thm. 8. For the lower bound, it suffices, due to Prop. 4, to show that for any bisimulation-
invariant query defined by an HOk+1(LFP) formula there is an equivalent formula in PHFLk. Let ϕ be a
formula defining such a query Q of width r ≥ 1, and w.l.o.g. ϕ contains only the types τw,0, . . . ,τw,k.

Let ϕ ′ be the formula obtained from the translation in Lemma 14 and let σ be defined via σ(d−
r− 2+ i) = i for 1 ≤ i ≤ r, and σ(j) = j for j ≤ d− r− 2 or j ≥ d− 1. Note that σ simply copies
the first r many states in a tuple to the positions d− r−1, . . . ,d−2 where they serve to retain goodness
(cf. Def. 10). Then ψ = (λ (e : •)ϕ){σ}tt defines the query {(T,(s1, . . . ,sd)) | (T,(s1, . . . ,sr)) ∈ Q}.
Towards this, note that J{σ}ttKT = {(s1, . . . ,sd) | si = sd−r−2+i for 1≤ i≤ r}=M. Hence, JψKT = Jϕ ′KT

η

where η = /0[e 7→M]. Since η is good, Lemma 14 is applicable.
What remains is to argue that a query that, on each LTS T , returns all tuples in M× Sd−r where

M ⊆ Sr, is in fact a query that defines tuples of width r. This can either be done formally by expanding
the semantics of the substitution operator {σ} to return tuples in the width of its co-domain, or by simply
considering queries of the above form to be of width r, cf. [17].

F. Bruse, D. Kronenberger & M. Lange 31

P

P/∼

EXPTIME

EXPTIME/∼

2-EXPTIME

2-EXPTIME/∼

3-EXPTIME

3-EXPTIME/∼

...
...

PHFL0 = L ω
µ

HO2(LFP)

PHFL1

HO3(LFP)

PHFL2

HO4(LFP)

PHFL3

...
...

[17]

[15]

Thm. 15

Thm. 15

[9]

[6]

[6]

Computational Complexity Descriptive Complexity

Figure 2: Capturing results for time complexity classes - an overview.

6 Conclusion

We have extended the descriptive complexity of bisimulation-invariant queries, as started by Otto [17]
with the capturing of the class P/∼ with the logic L ω

µ , to further time complexity classes, namely the
classes k-EXPTIME/∼ of bisimulation-invariant queries that can be answered in k-fold exponential time.
These turn out to be exactly those that can be defined in PHFL, the polyadic extension of the higher-order
modal fixpoint logic HFL. This is genuinely an extension as L ω

µ coincides with PHFL0, the fragment
with no higher-order constructs. Moreover, the level in the exponential-time hierarchy corresponds to
the type order used in formulas: k-EXPTIME/∼ = PHFLk.

The resulting picture of descriptive time complexity is shown in Fig. 2. A natural way to extend this
is of course to integrate results about the space complexity classes k-EXPSPACE/∼ sitting in between
k-EXPTIME/∼ and (k + 1)-EXPTIME/∼. Here we can only state that it is possible to capture these
in terms of natural fragments of PHFL as well but the proof requires a few more ingredients than the
time-complexity case. Here we could use the already known characterisation of k-EXPTIME by Higher-
Order Predicate Logics with Least Fixpoints [6]. For the space complexity classes, we need to first
develop such characterisations that extend the Abiteboul-Vianu Theorem. This can be done [13], but due
to space restrictions here its detailed presentation is left for a future publication.

A noteworthy observation for the capturing of k-EXPTIME/∼ with k≥ 1 is that, unlike in the case of
k = 0, the requirement of structures being ordered is not necessary for the invocation of the (generalised)
Immerman-Vardi Theorem. However, starting from k ≥ 1 the order being provided in the bisimulation-
invariant setting plays a crucial role to emulate existential quantification from the HO(LFP) side: the
LTS in question coming with a PHFL0

2-definable order allows us to enumerate sufficiently many sets,
functions, etc. to emulate existential quantification. It remains to see in further detail whether this is an
artifact of the proof strategy or a genuine and inherent part of the correspondence between complexity
classes and logics in the bisimulation-invariant framework.

32 Capturing Bisimulation-Invariant Exponential-Time Complexity Classes

References

[1] S. Abiteboul & V. Vianu (1987): A Transaction Language Complete for Database Update and Specification.
In: Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, San Diego, CA, pp. 260–268,
doi:10.1145/28659.28688.

[2] H. R. Andersen (1994): A Polyadic Modal µ-Calculus. Technical Report ID-TR: 1994-195, Dept. of Com-
puter Science, Technical University of Denmark, Copenhagen, doi:10.1.1.42.1859.

[3] R. Axelsson, M. Lange & R. Somla (2007): The Complexity of Model Checking Higher-Order Fixpoint Logic.
Logical Methods in Computer Science 3, pp. 1–33, doi:10.2168/LMCS-3(2:7)2007.

[4] F. Bruse, M. Lange & É. Lozes (2017): Space-Efficient Fragments of Higher-Order Fixpoint Logic. In:
Proc. 11th Int. Workshop on Reachability Problems, RP’17, LNCS 10506, pp. 26–41, doi:10.1007/978-3-
319-67089-8_3.

[5] R. Fagin (1974): Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. Complexity and
Computation 7, pp. 43–73.

[6] C. M. Freire & A. T. Martins (2011): The Descriptive Complexity of the Deterministic Exponential Time
Hierarchy. In: Proc. 5th Workshop on Logical and Semantic Frameworks with Applications, LSFA’10, 269,
pp. 71–82, doi:10.1016/j.entcs.2011.03.006.

[7] M. Grohe (2008): The Quest for a Logic Capturing PTIME. In: Proc. 23rd Annual IEEE Symp. on Logic in
Computer Science, LICS’08, IEEE Computer Society, pp. 267–271, doi:10.1109/LICS.2008.11.

[8] N. Immerman (1986): Relational Queries Computable in Polynomial Time. Information and Control 68(1-3),
pp. 86–104, doi:10.1016/S0019-9958(86)80029-8.

[9] N. Immerman (1987): Languages That Capture Complexity Classes. SIAM Journal of Computing 16(4), pp.
760–778, doi:10.1137/0216051.

[10] S. C. Kleene (1938): On Notation for Ordinal Numbers. Journal of Symbolic Logic 3(4), pp. 150–155,
doi:10.2307/2267778.

[11] B. Knaster (1928): Un théorèm sur les fonctions d’ensembles. Annals Soc. Pol. Math 6, pp. 133–134.

[12] D. Kozen (1983): Results on the Propositional µ-calculus. Theor. Comp. Sci. 27, pp. 333–354,
doi:10.1016/0304-3975(82)90125-6.

[13] D. Kronenberger (2018): Capturing Bisimulation-Invariant Complexity Classes by Polyadic Higher-Order
Fixpoint Logic. Master’s thesis, University of Kassel.

[14] M. Lange & É. Lozes (2012): Model Checking the Higher-Dimensional Modal µ-Calculus. In: Proc. 8th
Workshop on Fixpoints in Computer Science, FICS’12, Electr. Proc. in Theor. Comp. Sc. 77, pp. 39–46,
doi:10.4204/EPTCS.77.

[15] M. Lange & É. Lozes (2014): Capturing Bisimulation-Invariant Complexity Classes with Higher-Order
Modal Fixpoint Logic. In: Proc. 8th Int. IFIP Conf. on Theoretical Computer Science, TCS’14, LNCS 8705,
Springer, pp. 90–103, doi:10.1007/978-3-662-44602-7.

[16] M. Lange, É. Lozes & M. Vargas Guzmán (2014): Model-Checking Process Equivalences. Theor. Comp.
Sci. 560, pp. 326–347, doi:10.1016/j.tcs.2014.08.020.

[17] M. Otto (1999): Bisimulation-invariant PTIME and higher-dimensional µ-calculus. Theor. Comput. Sci.
224(1-2), pp. 237–265, doi:10.1016/S0304-3975(98)00314-4.

[18] A. Tarski (1955): A Lattice-theoretical Fixpoint Theorem and its Application. Pacific Journal of Mathematics
5, pp. 285–309, doi:10.2140/pjm.1955.5.285.

[19] J. van Benthem & K. Doets (1983): Higher-Order Logic. In D. Gabbay & F. Guenther, editors: Handbook
of Philosophical Logic, Volume I: Elements of Classical Logic, D. Reidel Publishing Co., pp. 275–329,
doi:10.1007/978-94-009-7066-3_4.

https://doi.org/10.1145/28659.28688
https://doi.org/10.1.1.42.1859
https://doi.org/10.2168/LMCS-3(2:7)2007
https://doi.org/10.1007/978-3-319-67089-8_3
https://doi.org/10.1007/978-3-319-67089-8_3
https://doi.org/10.1016/j.entcs.2011.03.006
https://doi.org/10.1109/LICS.2008.11
https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/10.1137/0216051
https://doi.org/10.2307/2267778
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.4204/EPTCS.77
https://doi.org/10.1007/978-3-662-44602-7
https://doi.org/10.1016/j.tcs.2014.08.020
https://doi.org/10.1016/S0304-3975(98)00314-4
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1007/978-94-009-7066-3_4

F. Bruse, D. Kronenberger & M. Lange 33

[20] M. Y. Vardi (1982): The Complexity of Relational Query Languages (Extended Abstract). In: Proc.
14th Symp. on Theory of Computing, STOC’82, ACM, San Francisco, CA, USA, pp. 137–146,
doi:10.1145/800070.

[21] M. Viswanathan & R. Viswanathan (2004): A Higher Order Modal Fixed Point Logic. In: Proc. 15th Int.
Conf. on Concurrency Theory, CONCUR’04, LNCS 3170, Springer, pp. 512–528, doi:10.1007/978-3-540-
28644-8_33.

https://doi.org/10.1145/800070
https://doi.org/10.1007/978-3-540-28644-8_33
https://doi.org/10.1007/978-3-540-28644-8_33

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 34–48, doi:10.4204/EPTCS.370.3

© Aceto et al.

Complexity through Translations for Modal Logic with
Recursion*

Luca Aceto
Department of Computer Science

Reykjavik University
Reykjavik, Iceland

Gran Sasso Science Institute
L’Aquila, Italy
luca@ru.is

Antonis Achilleos
Department of Computer Science

Reykjavik University
Reykjavik, Iceland
antonios@ru.is

Elli Anastasiadi
Department of Computer Science

Reykjavik University
Reykjavik, Iceland
elli19@ru.is

Adrian Francalanza
Department of Computer Science, ICT

University of Malta
Msida, Malta

adrian.francalanza@um.edu.mt

Anna Ingolfsdottir
Department of Computer Science

Reykjavik University
Reykjavik, Iceland
annai@ru.is

This paper studies the complexity of classical modal logics and of their extension with fixed-point
operators, using translations to transfer results across logics. In particular, we show several complex-
ity results for multi-agent logics via translations to and from the µ-calculus and modal logic, which
allow us to transfer known upper and lower bounds. We also use these translations to introduce a
terminating tableau system for the logics we study, based on Kozen’s tableau for the µ-calculus, and
the one of Fitting and Massacci for modal logic.

1 Introduction

We introduce a family of multi-modal logics with fixed-point operators that are interpreted on restricted
classes of Kripke models. One can consider these logics as extensions of the usual multi-agent logics of
knowledge and belief [14] by adding recursion to their syntax or of the µ-calculus [21] by interpreting
formulas on different classes of frames and thus giving an epistemic interpretation to the modalities. We
define translations between these logics, and we demonstrate how one can rely on these translations to
prove finite-model theorems, complexity bounds, and tableau termination for each logic in the family.

Modal logic comes in several variations [5]. Some of these, such as multi-modal logics of knowledge
and belief [14], are of particular interest to Epistemology and other application areas. Semantically, the
classical modal logics used in epistemic (but also other) contexts result from imposing certain restrictions
on their models. On the other hand, the modal µ-calculus [21] can be seen as an extension of the smallest
normal modal logic K with greatest and least fixed-point operators, νX and µX respectively. We explore
the situation where one allows both recursion (i.e. fixed-point) operators in a multi-modal language and
imposes restrictions on the semantic models.

We are interested in the complexity of satisfiability for the resulting logics. Satisfiability for the µ-
calculus is known to be EXP-complete [21], while for the modal logics between K and S5 the problem

*This work has been funded by the projects “Open Problems in the Equational Logic of Processes (OPEL)” (grant
no. 196050), “Epistemic Logic for Distributed Runtime Monitoring” (grant no. 184940), “Mode(l)s of Verification and Moni-
torability” (MoVeMent) (grant no 217987) of the Icelandic Research Fund, and the project “Runtime and Equational Verification
of Concurrent Programs” (ReVoCoP) (grant 222021) of the Reykjavik University Research Fund.

http://dx.doi.org/10.4204/EPTCS.370.3

Aceto et al. 35

is PSPACE-complete or NP-complete, depending on whether they have Negative Introspection [18, 22].
In the multi-modal case, satisfiability for those modal logics becomes PSPACE-complete, and is EXP-
complete with the addition of a common knowledge operator [17].

There is plenty of relevant work on the µ-calculus on restricted frames, mainly in its single-agent
form. Alberucci and Facchini examine the alternation hierarchy of the µ-calculus over reflexive, sym-
metric, and transitive frames in [2]. D’Agostino and Lenzi have studied the µ-calculus on different
classes of frames in great detail. In [11], they reduce the µ-calculus over finite transitive frames to first-
order logic. In [9], they prove that S5µ -satisfiability is NP-complete, and that the two-agent version of
S5µ does not have the finite model property. In [12], they consider finite symmetric frames, and they
prove that Bµ -satisfiability is in 2EXP, and EXP-hard. They also examine planar frames in [10], where
they show that the alternation hierarchy of the µ-calculus over planar frames is infinite.

Our primary method of proving complexity results is through translations to and from the multi-
modal µ-calculus. We show that we can use surprisingly simple translations from modal logics without
recursion to the base modal logic Kn, reproving the PSPACE upper bound for these logics (Theorem 8
and Corollary 9). These translations and our constructions to prove their correctness do not generally
transfer to the corresponding logics with recursion. We present translations from specific logics to the
µ-calculus and back, and we discuss the remaining open cases. We discover, through the properties of
our translations, that several behaviors induced on the transitions do not affect the complexity of the
satisfiability problem. As a result, we prove that all logics with axioms among D, T , and 4, and the least-
fixed-point fragments of logics that also have B, have their satisfiability in EXP, and a matching lower
bound for the logics with axioms from D,T,B (Corollaries 15 and 16). Finally, we present tableaux for
the discussed logics, based on the ones by Kozen for the µ-calculus [21], and by Fitting and Massacci for
modal logic [16,24]. We give tableau-termination conditions for every logic with a finite model property
(Theorem 19).

The addition of recursive operators to modal logic increases expressiveness. An important example
is that of common knowledge or common belief, which can be expressed with a greatest fixed-point thus:
νX .(ϕ ∧

∧
α [α]X). But the combination of epistemic logics and fixed-points can potentially express

more interesting epistemic concepts. For instance, the formula µX .
∨

α([α]ϕ ∨ [α]X), in the context of a
belief interpretation, can be thought to claim that there is a rumour of ϕ . It would be interesting to see
what other meaningful sentences of epistemic interest one can express using recursion. Furthermore, the
family of logics we consider allows each agent to behave according to a different logic. This flexibility
allows one to mix different interpretations of modalities, such as a temporal interpretation for one agent
and an epistemic interpretation for another. Such logics can even resemble hyper-logics [8] if a set of
agents represents different streams, and combinations of epistemic and temporal or hyper-logics have
recently been used to express safety and privacy properties of systems [7].

The paper is organized as follows. Section 2 gives the necessary background and an overview of
current results. Section 3 defines a class of translations that provide us with several upper and lower
bounds, and identifies conditions under which they can be composed. In Section 4 we finally give
tableaux for our multi-modal logics with recursion. We conclude in Section 5 with a set of open questions
and directions. Omitted proofs can be found in the full version of the paper [23].

2 Definitions and Background

This section introduces the logics that we study and the necessary background on the complexity of
modal logic and the µ-calculus.

36 Complexity through Translations for Modal Logic with Recursion

2.1 The Multi-Modal Logics with Recursion

We start by defining the syntax of the logics.

Definition 1. We consider formulas constructed from the following grammar:

ϕ,ψ ∈ L :: = p | ¬p | tt | ff | X | ϕ ∧ψ | ϕ ∨ψ

| 〈α〉ϕ | [α]ϕ | µX .ϕ | νX .ϕ,

where X comes from a countable set of logical (or fixed-point) variables, LVAR, α from a finite set of
agents, AG, and p from a finite set of propositional variables, PVAR. When AG = {α}, �ϕ stands for
[α]ϕ , and ♦ϕ for 〈α〉ϕ . We also write [A]ϕ to mean

∧
α∈A

[α]ϕ and 〈A〉ϕ for
∨

α∈A

〈α〉ϕ .

A formula is closed when every occurrence of a variable X is in the scope of recursive operator νX
or µX . Henceforth we consider only closed formulas, unless we specify otherwise.

Moreover, for recursion-free closed formulas we associate the notion of modal depth, which is the
nesting depth of the modal operators1. The modal depth of ϕ is defined inductively as:

• md(p) = md(¬p) = md(tt) = md(ff) = 0, where p ∈ PVAR,

• md(ϕ ∨ψ) = md(ϕ ∧ψ) = max(md(ϕ),md(ψ)), and

• md([a]ϕ) = md(〈a〉ϕ) = 1+md(ϕ), where a ∈ AG.

We assume that in formulas, each recursion variable X appears in a unique fixed-point formula fx(X),
which is either of the form µX .ϕ or νX .ϕ . If fx(X) is a least-fixed-point (resp. greatest-fixed-point)
formula, then X is called a least-fixed-point (resp. greatest-fixed-point) variable. We can define a partial
order on fixed-point variables, such that X ≤ Y iff fx(X) is a subformula of fx(Y), and X < Y when
X ≤ Y and X 6= Y . If X is ≤-minimal among the free variables of ϕ , then we define the closure of ϕ to
be cl(ϕ) = cl(ϕ[fx(X)/X]), where ϕ[ψ/X] is the usual substitution operation, and if ϕ is closed, then
cl(ϕ) = ϕ .

We define sub(ϕ) as the set of subformulas of ϕ , and |ϕ| = |sub(ϕ)| is bounded by the length of ϕ

as a string of symbols. Negation, ¬ϕ , and implication, ϕ → ψ , can be defined in the usual way. Then,
we define sub(ϕ) = sub(ϕ)∪{¬ψ ∈ L | ψ ∈ sub(ϕ)}.

Semantics We interpret formulas on the states of a Kripke model. A Kripke model, or simply model, is
a quadruple M = (W,R,V) where W is a nonempty set of states, R⊆W ×AG×W is a transition relation,
and V : W → 2PVAR determines on which states a propositional variable is true. (W,R) is called a frame.
We usually write (u,v) ∈ Rα or uRαv instead of (u,α,v) ∈ R, or uRv, when AG is a singleton {α}.

Formulas are evaluated in the context of an environment ρ : LVAR → 2W , which gives values to
the logical variables. For an environment ρ , variable X , and set S ⊆W , we write ρ[X 7→ S] for the
environment that maps X to S and all Y 6= X to ρ(Y). The semantics for our formulas is given through a
function J−KM , defined in Table 1. The semantics of ¬ϕ are constructed as usual, where J¬X ,ρKM =
W\ρ(X).

We sometimes use M ,s |=ρ ϕ for s∈ Jϕ,ρKM , and as the environment has no effect on the semantics
of a closed formula ϕ , we often drop it from the notation and write M ,s |= ϕ or s ∈ JϕKM . If M ,s |= ϕ ,
we say that ϕ is true, or satisfied, in s. When the particular model does not matter, or is clear from the
context, we may omit it.

1The modal depth of recursive formulas can be either zero, or infinite. However, this is not relevant for the spectrum of this
work.

Aceto et al. 37

Jtt,ρK =W, Jff,ρK = /0, Jp,ρK = {s | p ∈V (s)}, J¬p,ρK =W\Jp,ρK,
J[α]ϕ,ρK =

{
s
∣∣ ∀t. sRαt implies t ∈ Jϕ,ρK

}
, Jϕ1∧ϕ2,ρK = Jϕ1,ρK∩ Jϕ2,ρK,

J〈α〉ϕ,ρK =
{

s
∣∣ ∃t. sRαt and t ∈ Jϕ,ρK

}
, Jϕ1∨ϕ2,ρK = Jϕ1,ρK∪ Jϕ2,ρK,

JµX .ϕ,ρK =
⋂{

S
∣∣ S⊇ Jϕ,ρ[X 7→ S]K

}
, JX ,ρK = ρ(X),

JνX .ϕ,ρK =
⋃{

S
∣∣ S⊆ Jϕ,ρ[X 7→ S]K

}
.

Table 1: Semantics of modal formulas on a model M = (W,R,V). We omit M from the notation.

Depending on how we further restrict our syntax and the model, we can describe several logics.
Without further restrictions, the resulting logic is the µ-calculus [21]. The max-fragment (resp. min-
fragment) of the µ-calculus is the fragment that only allows the νX (resp. the µX) recursive operator. If
|AG|= k and we allow no recursive operators (or recursion variables), then we have the basic modal logic
Kk (or K, if k = 1), and further restrictions on the frames can result in a wide variety of modal logics
(see [6]). We give names to the following frame conditions, or frame constraints, for the case where
AG = {α}. These conditions correspond to the usual axioms for normal modal logics — see [5, 6, 14],
which we will revisit in Section 3.

D: R is serial: ∀s.∃t.sRt;

T : R is reflexive: ∀s.sRs;

B: R is symmetric: ∀s, t.(sRt⇒ tRs);

4: R is transitive: ∀s, t,r.(sRtRr⇒ sRr);

5: R is euclidean: ∀s, t,r. if sRt and sRr,
then tRr.

We consider modal logics that are interpreted over models that satisfy a combination of these con-
straints for each agent. D, which we call Consistency, is a special case of T , called Factivity. Constraint
4 is Positive Introspection and 5 is called Negative Introspection.2 Given a logic L and constraint c, L+c
is the logic that is interpreted over all models with frames that satisfy all the constraints of L and c. The
name of a single-agent logic is a combination of the constraints that apply to its frames, including K, if
the constraints are among 4 and 5. Therefore, logic D is K+D, T is K+T , B is K+B, K4 = K+ 4,
D4 = K+D+ 4 = D+ 4, and so on. We use the special names S4 for T4 and S5 for T45. We define
a (multi-agent) logic L on AG as a map from agents to single-agent logics. L is interpreted on Kripke
models of the form (W,R,V), where for every α ∈ AG, (W,Rα) is a frame for L(α).

For a logic L, Lµ is the logic that results from L after we allow recursive operators in the syntax —
in case they were not allowed in L. Furthermore, if for every α ∈ AG, L(α) is the same single-agent
logic L, we write L as Lk, where |AG|= k. Therefore, the µ-calculus is Kµ

k .
From now on, unless we explicitly say otherwise, by a logic, we mean one of the logics we have

defined above. We call a formula satisfiable for a logic L, if it is satisfied in some state of a model for L.

Example 1. For a formula ϕ , we define Inv(ϕ) = νX .(ϕ ∧ [AG]X). Inv(ϕ) asserts that ϕ is true in all
reachable states, or, alternatively, it can be read as an assertion that ϕ is common knowledge. We dually
define Eve(ϕ) = µX .(ϕ ∨〈AG〉X), which asserts that ϕ is true in some reachable state.

2These are names for properties or axioms of a logic. When we refer to these conditions as conditions of a frame or model,
we may refer to them with the name of the corresponding relation condition: seriality, reflexivity, symmetry, transitivity, and
euclidicity.

38 Complexity through Translations for Modal Logic with Recursion

2.2 Known Results

For logic L, the satisfiability problem for L, or L-satisfiability is the problem that asks, given a formula
ϕ , if ϕ is satisfiable. Similarly, the model checking problem for L asks if ϕ is true at a given state of a
given finite model.

Ladner [22] established the classical result of PSPACE-completeness for the satisfiability of K, T, D,
K4, D4, and S4 and NP-completeness for the satisfiability of S5. Halpern and Rêgo later characterized
the NP–PSPACE gap for one-action logics by the presence or absence of Negative Introspection [18],
resulting in Theorem 1. Later, Rybakov and Shkatov [27] proved the PSPACE-completeness of B and
TB. For formulas with fixed-point operators, D’Agostino and Lenzi in [9] show that satisfiability for
single-agent logics with constraint 5 is also NP-complete.

Theorem 1 ([18,22,27]). If L∈{K,T,D,B,TB,K4,D4,S4}, then L-satisfiability is PSPACE-complete;
and L+5-satisfiability and (L+5)µ -satisfiability is NP-complete.

Theorem 2 ([17]). If k > 1 and L has a combination of constraints from D,T,4,5 and no recursive
operators, then Lk-satisfiability is PSPACE-complete.

Remark 1. Note that Halpern and Moses in [17] prove these bounds for the cases of Kk,Tk,S4k,KD45k,
and S5k only. Similarly, D’Agostino and Lenzi in [9] only prove the NP-completeness of satisfiability
for S5µ . However, it is not hard to see that their respective methods also work for the rest of the logics
of Theorems 1 and 2. �

Theorem 3 ([21]). The satisfiability problem for the µ-calculus is EXP-complete.

Theorem 4 ([13]). The model checking problem for the µ-calculus is in NP∩ coNP.3

Finally we have the following initial known results about the complexity of satisfiability, when we
have recursive operators. Theorems 5 and 6 have already been observed in [1].

Theorem 5. The satisfiability problem for the min- and max-fragments of the µ-calculus is EXP-complete,
even when |AG|= 1.

Proof sketch. It is known that satisfiability for the min- and max-fragments of the µ-calculus (on one
or more action) is EXP-complete. It is in EXP due to Theorem 3, and these fragments suffice [26] to
describe the PDL formula that is constructed by the reduction used in [15] to prove EXP-hardness for
PDL. Therefore, that reduction can be adjusted to prove that satisfiability for the min- and max-fragments
of the µ-calculus is EXP-complete.

It is not hard to express in logics with both frame constraints and recursion operators that formula
ϕ is common knowledge, with formula νX .ϕ ∧ [AG]X . Since validity for Lk with common knowledge
(and without recursive operators) and k > 1 is EXP-complete [17]4, Lµ

k is EXP-hard.

Proposition 6. Satisfiability for Lµ

k , where k > 1, is EXP-hard.

3 Complexity through Translations

In this section, we examine L-satisfiability. We use formula translations to reduce the satisfiability of
one logic to the satisfiability of another. We investigate the properties of these translations and how they
compose with each other, and we achieve complexity bounds for several logics.

3In fact, the problem is known to be in UP∩ coUP [20].
4Similarly to Remark 1, [17] does not explicitly cover all these cases, but the techniques can be adjusted.

Aceto et al. 39

4

T B

5

D

Figure 1: The frame property hierarchy

In the context of this paper, a formula translation from logic L1 to logic L2 is a mapping f on formulas
such that each formula ϕ is L1 -satisfiable if and only if f (ϕ) is L2 -satisfiable. We only consider
translations that can be computed in polynomial time, and therefore, our translations are polynomial-
time reductions, transfering complexity bounds between logics.

According to Theorem 3, Kµ

k -satisfiability is EXP-complete, and therefore for each logic L, we aim
to connect Kµ

k and L via a sequence of translations in either direction, to prove complexity bounds for
L-satisfiability.

3.1 Translating Towards Kk

We begin by presenting translations from logics with more to logics with fewer frame conditions. To this
end, we study how taking the closure of a frame under one condition affects any other frame conditions.

3.1.1 Composing Frame Conditions

We now discuss how the conditions for frames affect each other. For example, to construct a transitive
frame, one can take the transitive closure of a possibly non-transitive frame. The resulting frame will
satisfy condition 4. As we see, taking the closure of a frame under condition x may affect whether that
frame maintains condition y, depending on x and y. In the following we observe that one can apply the
frame closures in certain orders that preserve the properties one aquires with each application.

Let F = (W,R) be a frame, α ∈ A ⊆ AG, and x a frame restriction among T,B,4,5. Then, Rα

x is
the closure of Rα under x, Rx,A is defined by Rx,A

β
= Rβ

x, if β ∈ A, and Rx,A
β

= Rβ , otherwise. Then,

Fx,A
= (W,Rx,A

). We make the following observation.

Lemma 7. Let x be a frame restriction among D,T,B,4,5, and y a frame restriction among T,B,4,5,
such that (x,y) 6= (4,B),(5,T),(5,B). Then, for every frame F that satisfies x, Fy also satisfies x.

According to Lemma 7, frame conditions are preserved as seen in Figure 1. In Figure 1, an arrow
from x to y indicates that property x is preserved though the closure of a frame under y. Dotted red arrows
indicate one-way arrows. For convenience, we define FD

= (W,RD
), where RD

= R∪{(a,a) ∈W 2 |6 ∃
(a,b) ∈ R}.
Remark 2. We note that, in general, not all frame conditions are preserved through all closures under
another condition. For example, the accessibility relation {(a,b),(b,b)} is euclidean, but its reflexive
closure {(a,b),(b,b),(a,a)} is not.

40 Complexity through Translations for Modal Logic with Recursion

There is at least one linear ordering of the frame conditions D,T,B,4,5, such that all preceding
conditions are preserved by closures under the following conditions. We call such an order a closure-
preserving order. We use the linear order D,T,B,4,5 in the rest of the paper.

3.1.2 Modal Logics

We start with translations that map logics without recursive operators to logics with fewer constraints. As
mentioned in Subsection 2.2, all of the logics L ∈ {K,T,D,K4,D4,S4} and L+5 with one agent have
known completeness results, and the complexity of modal logic is well-studied for multi-agent modal
logics as well. The missing cases are very few and concern the combination of frame conditions (other
than 5) as well as the multi-agent case. However we take this opportunity to present an intuitive introduc-
tion to our general translation method. In fact, the translations that we use for logics without recursion
are surprisingly straightforward. Each frame condition that we introduced in Section 2 is associated with
an axiom for modal logic, such that whenever a model has the condition, every substitution instance of
the axiom is satisfied in all worlds of the model (see [5, 6, 14]). We give for each frame condition x and
agent α , the axiom axx

α :

axD
α : 〈α〉tt

axT
α : [α]p→ p

axB
α : 〈α〉[α]p→ p

ax4
α : [α]p→ [α][α]p

ax5
α : 〈α〉[α]p→ [α]p

For each formula ϕ and d ≥ 0, let Invd(ϕ) =
∧

i≤d [AG]iϕ . Our first translations are straightforwardly
defined from the above axioms.

Translation 1 (One-step Translation). Let A ⊆ AG and let x be one of the frame conditions. For every
formula ϕ , let d = md(ϕ) if x 6= 4, and d = md(ϕ)|ϕ|, if x = 4. We define:

Fx
A(ϕ) = ϕ ∧ Invd

(∧
ψ∈sub(ϕ)

α∈A

axx
α [ψ/p]

)
.

Theorem 8. Let A ⊆ AG, x be one of the frame conditions, and let L1,L2 be logics without recursion
operators, such that L1(α) = L2(α)+ x when α ∈ A, and L2(α) otherwise, and L2(α) only includes
frame conditions that precede x in the fixed order of frame conditions. Then, ϕ is L1-satisfiable if and
only if Fx

A(ϕ) is L2-satisfiable.

We present here a short proof sketch of this theorem.

Proof sketch. The proof of the “only if” direction is straightforward, as for any agent α with frame
condition x, axx

α is valid in L1. Thus the translation holds on any L1-model that satisfies ϕ .
The other, and more involved direction requires the construction of an L1-model for ϕ from an L2-

model for Fx
A(ϕ). We make use of the observation that no modal logic formula can describe a model

at depth more than the constant d. Therefore, we use the unfolding of the L2-model, to keep track of
the path that one takes to reach a certain state, and that path’s length. We then carefully reapply the
necessary closures on the accessibility relations and we use induction on its subformulas, to prove that
ϕ is true in the constructed model. We do this as a separate case for each axiom. It is worth noting that
we pay special care for the case of x = 4 to account for the fact that the translation does not allow the
modal depth of the relevant subformulas to decrease with each transition during the induction; and that
we needed to include the negations of subformulas of ϕ in the conjunction of Translation 1, only for the
case of x = 5.

Aceto et al. 41

Corollary 9. The satisfiability problem for every logic without fixed-point operators is in PSPACE.

3.1.3 Modal Logics with Recursion

In the remainder of this section we will modify our translations and proof technique, in order to lift our
results to logics with fixed-point operators. It is not clear whether the translations of Subsection 3.1.2
can be extended straightforwardly in the case of logics with recursion, by using unbounded invariance
Inv, instead of the bounded Invd .
Example 2. Let ϕ f = µX .�X , which requires all paths in the model to be finite, and thus it is not
satisfiable in reflexive frames. In Subsection 3.1.2, to translate formulas from reflexive models, we did
not need to add the negations of subformulas as conjuncts. In this case, such a translation would give

ϕt := ϕ f ∧ Inv((�ϕ f → ϕ f)∧ (��ϕ f →�ϕ f)).

Indeed, on reflexive frames, the formulas �ϕ f → ϕ f and ��ϕ f → �ϕ f are valid, and therefore ϕt is
equivalent to ϕ f , which is K-satisfiable. This was not an issue in Subsection 3.1.2, as the finiteness of
the paths in a model cannot be expressed without recursion.

One would then naturally wonder whether conjoining over sub(ϕ f) in the translation would make a
difference. The answer is affirmative, as the tranlation

ϕ f ∧ Inv

(∧
ψ∈sub(ϕ f)

�ψ → ψ

)

would then yield a formula that is not satisfiable. However, our constructions would not work to prove
that such a translation preserves satisfiability. For example, consider µX .�(p→ (r∧ (q→ X))), whose
translation is satisfied on a pointed model that satisfies at the same time p and q. We invite the reader to
verify the details.

The only case where the approach that we used for the logics without recursion can be applied is for
the case of seriality (condition D), as Inv(〈α〉tt) directly ensures the seriality of a model.

Translation 2.
FDµ

A (ϕ) = ϕ ∧ Inv
(∧

α∈A

〈α〉tt
)
.

Theorem 10. Let A ⊆ AG and |AG| = k, and let L be a logic, such that L(α) = D when α ∈ A, and K
otherwise. Then, ϕ is L-satisfiable if and only if FDµ

A (ϕ) is Kµ

k -satisfiable.

For the cases of reflexivity and transitivity, our simple translations substitute the modal subformulas
of a formula to implicitly enforce the corresponding condition.

Translation 3. The operation FT µ

A (−) is defined to be such that

• FT µ

A ([α]ϕ) = [α]FT µ

A (ϕ)∧FT µ

A (ϕ);

• FT µ

A (〈α〉ϕ) = 〈α〉FT µ

A (ϕ)∨FT µ

A (ϕ);

• and it commutes with all other operations.

Theorem 11. Let /0 6= A⊆ AG, and let L1,L2 be logics, such that L1(α) = L2(α)+T when α ∈ A, and
L2(α) otherwise, and L2(α) at most includes frame condition D. Then, ϕ is L1-satisfiable if and only if
FT µ

A (ϕ) is L2-satisfiable.

42 Complexity through Translations for Modal Logic with Recursion

Proof sketch. The “only if” direction is proven by taking the appropriate reflexive closure and showing
by induction that the subformulas of ϕ are preserved.

Translation 4. The operation F4µ

A (−) is defined to be such that

• F4µ

A ([α]ψ) = Inv([α](F4µ

A (ψ)),

• F4µ

A (〈α〉ψ) = Eve(〈α〉(F4µ

A (ψ)),

• F4µ

A (−) commutes with all other operations.

Theorem 12. Let /0 6= A⊆ AG, and let L1,L2 be logics, such that L1(α) = L2(α)+4 when α ∈ A, and
L2(α) otherwise, and L2(α) at most includes frame conditions D,T,B. Then, ϕ is L1-satisfiable if and
only if F4µ

A (ϕ) is L2-satisfiable.

Proof. If F4µ

A (ϕ) is satisfied in a model M = (W,R,V), let M′ = (W,R+,V), where R+
α is the transitive

closure of Rα , if α ∈ A, and R+
α = Rα , otherwise. It is now not hard to use induction on ψ to show that

for every (possibly open) subformula ψ of ϕ , for every environment ρ ,
q

F4µ

A (ψ),ρ
y

M
= Jψ,ρKM ′ . The

other direction is more straightforward.

In order to produce a similar translation for symmetric frames, we needed to use a more intricate
type of construction. Moreover, we only prove the correctness of the following translation for formulas
without least-fixed-point operators.

Translation 5. The operation FBµ

A (−) is defined as

FBµ

A (ϕ) = ϕ ∧ Inv
(
[α]〈α〉p∧

∧
ψ∈sub(ϕ)

(ψ → [α][α](p→ ψ))
)
,

where p is a new propositional variable, not occurring in ϕ .

Theorem 13. Let /0 6= A⊆ AG, and let L1,L2 be logics, such that L1(α) = L2(α)+B when α ∈ A, and
L2(α) otherwise, and L2(α) at most includes frame conditions D,T . Then, a formula ϕ that has no µX
operators is L1-satisfiable if and only if FBµ

A (ϕ) is L2-satisfiable.

Remark 3. A translation for euclidean frames and for the full syntax on symmetric frames would need
different approaches. D’Agostino and Lenzi show in [9] that S5µ

2 does not have a finite model property,
and their result can be easily extended to any logic L with fixed-point operators, where there are at least
two distinct agents α,β , such that L(α) and L(β) have constraint B or 5. Therefore, as our constructions
for the translations to Kµ

k guarantee the finite model property to the corresponding logics, they do not
apply to multimodal logics with B or 5.

3.2 Embedding Kµ
n

In this subsection, we present translations from logics with fewer frame conditions to ones with more
conditions. This will allow us to prove EXP-completeness in the following subsection. Let p,q be
distinguished propositional variables that do not appear in our formulas. We let ~p range over p, ¬p,
p∧q, p∧¬q, and ¬p∧q.

Definition 2 (function next). next(p∧ q) = p∧¬q, next(p∧¬q) = ¬p∧ q, and next(¬p∧ q) = p∧ q;
and next(p) = ¬p and next(¬p) = p.

We use a uniform translation from Kµ

k to any logic with a combination of conditions D,T,B.

Aceto et al. 43

Translation 6. The operation FKµ

A (−) on formulas is defined such that:

• FKµ

A (〈α〉ψ) =
∧
~p(~p→ 〈α〉(next(~p)∧FKµ

A (ψ))), if α ∈ A;

• FKµ

A ([α]ψ) =
∧
~p(~p→ [α](next(~p)→ FKµ

A (ψ))), if α ∈ A;

• FKµ

A (−) commutes with all other operations.

We note that there are simpler translations for the cases of logics with only D ot T as a constraint,
but the FKµ

A (−) is uniform for all the logics that we consider in this subsection.

Theorem 14. Let /0 6= A ⊆ AG, |AG| = k, and let L be such that L(α) includes only frame conditions
from D,T,B when α ∈ A, and L(α) = K otherwise. Then, ϕ is Kµ

k -satisfiable if and only if FKµ

A (ϕ) is
L-satisfiable.

The proof of Theorem 14 can be found in [23]. It is worth noting that the “if” direction uses the
symmetric closure to construct a new model, while the “only if” direction requires the introduction of
new states that behave as each original state in the model.

3.3 Complexity results

We observe that our translations all result in formulas of size at most linear with respect to the original.
The exceptions are Translations 1 and 5, which have a quadratic cost.

Corollary 15. If L only has frame conditions D,T , then its satisfiability problem is EXP-complete; if L
only has frame conditions D,T,4, then its satisfiability problem is in EXP.

Proof. Immediately from Theorems 10, 11, 12, and 14.

Corollary 16. If L only has frame conditions D,T,B, then

1. L-satisfiability is EXP-hard; and

2. the restriction of L-satisfiability on formulas without µX operators is EXP-complete.

Proof. Immediately from Theorems 10, 11, 13, and 14.

4 Tableaux for Lµ

k

We give a sound and complete tableau system for logic L. Furthermore, if L has a finite model property,
then we give terminating conditions for its tableau. The system that we give in this section is based on
Kozen’s tableaux for the µ-calculus [21] and the tableaux of Fitting [16] and Massacci [24] for modal
logic. We can use Kozen’s finite model theorem [21] to help us ensure the termination of the tableau for
some of these logics.

Theorem 17 ([21]). There is a computable κ : N→ N, such that every Kµ

k -satisfiable formula ϕ is
satisfied in a model with at most κ(|ϕ|) states.5

Corollary 18. If L only has frame conditions D,T,4, then there is a computable κ : N→ N, such that
every L-satisfiable formula ϕ is satisfied in a model with at most κ(|ϕ|) states.

5The tableau in [21] yields an upper bound of 22O(n3)
for κ0(n), but that bound is not useful to obtain a “good” decision

procedure. The purpose of this section is not to establish any good upper bound for satisfiability testing, which is done in
Section 3.

44 Complexity through Translations for Modal Logic with Recursion

σ πX .ϕ
(fix)

σ ϕ

σ X (X)
σ fx(X)

σ ϕ ∨ψ
(or)

σ ϕ | σ ψ

σ ϕ ∧ψ
(and)

σ ϕ

σ ψ

σ [α]ϕ
(B)

σ .α〈ψ〉 ϕ

σ 〈α〉ϕ
(D)

σ .α〈ϕ〉 ϕ

σ [α]ϕ
(d)

σ .α〈ϕ〉 ϕ

σ [α]ϕ
(4)

σ .α〈ψ〉 [α]ϕ

where, for rules (B) and (4), σ .α〈ψ〉 has already appeared in the branch; and for (D), σ is not α-flat.

σ .α〈ψ〉 [α]ϕ
(B5)

σ [α]ϕ

σ .α〈ψ〉 〈α〉ϕ
(D5)

σ .α〈ψ〉.α〈ϕ〉 ϕ

σ .α〈ψ〉 [α]ϕ
(b)

σ ϕ

σ [α]ϕ
(t)

σ ϕ

σ .α〈ψ〉 [α]ϕ
(B55)

σ .α〈ψ ′〉 [α]ϕ

σ .α〈ψ〉.α〈ψ ′〉 〈α〉ϕ
(D55)

σ .α〈ψ〉.α〈ϕ〉 ϕ

σ .α〈ψ〉 [α]ϕ
(b4)

σ [α]ϕ

where, for rule (B55), σ .α〈ψ ′〉 has already appeared in the branch; for rule (D5), σ is not α-flat, and
σ 〈α〉ϕ does not appear in the branch; for rule (D55), σ 〈α〉ϕ does not appear in the branch.

Table 2: The tableau rules for L = Lµ
n

Proof. Immediately, from Theorems 17, 10, 11, and 12, and Lemma 7.

Remark 4. We note that not all modal logics with recursion have a finite model property – see Remark 3.
Intuitively, a tableau attempts to build a model that satisfies the given formula. When it needs to

consider two possible cases, it branches, and thus it may generate several branches. Each branch that
satisfies certain consistency conditions, which we define below, represents a corresponding model.

Our tableaux use prefixed formulas, that is, formulas of the form σ ϕ , where σ ∈ (AG× L)∗ and
ϕ ∈ L; σ is the prefix of ϕ in that case, and we say that ϕ is prefixed by σ . We note that we separate
the elements of σ with a dot. We say that the prefix σ is α-flat when α has axiom 5 and σ = σ ′.α〈ψ〉
for some ψ . Each prefix possibly represents a state in a corresponding model, and a prefixed formula
σ ϕ declares that ϕ is satisfied in the state represented by σ . As we will see below, the prefixes from
(AG×L)∗ allow us to keep track of the diamond formula that generates a prefix through the tableau rules.
For agents with condition 5, this allows us to restrict the generation of new prefixes and avoid certain
redundancies, due to the similarity of euclidean binary relations to equivalence relations [18, 25].

The tableau rules that we use appear in Table 2. These include fixed-point and propositional rules,
as well as rules that deal with modalities. Depending on the logic that each agent α is based on, a
different set of rules applies for α: for rule (d), L(α) must have condition D; for rule (t), L(α) must
have condition T ; for rule (4), L(α) must have condition 4; for rule (B5), (D5), and (D55), L(α) must
have condition 5; for (b) L(α) must have condition B; and for (b4) L(α) must have both B and 4. Rule
(or) is the only rule that splits the current tableau branch into two. A tableau branch is propositionally
closed when σ ff or both σ p and σ ¬p appear in the branch for some prefix σ . For each prefix σ that
appears in a fixed tableau branch, let Φ(σ) be the set of formulas prefixed by σ in that branch. We use
the notation σ ≺ σ ′ to mean that σ ′ = σ .σ ′′ for some σ ′′, in which case σ is an ancestor of σ ′.

We define the relation X−→ on prefixed formulas in a tableau branch as χ1
X−→ χ2, if χ1

χ2
is a tableau

rule and χ1 is not of the form σ Y , where X < Y ; then, X−→
+

is the transitive closure of X−→ and X−→
∗

is its
reflexive and transitive closure. We can also extend this relation to prefixes, so that σ

X−→ σ ′, if and only
if σ ψ

X−→ σ ′ ψ ′, for some ψ ∈ Φ(σ) and ψ ′ ∈ Φ(σ ′). If in a branch there is a X−→-sequence where X is

Aceto et al. 45

a least fixed-point and appears infinitely often, then the branch is called fixed-point-closed. A branch is
closed when it is either fixed-point-closed or propositionally closed; if it is not closed, then it is called
open.

Now, assume that there is a κ : N→N, such that every L-satisfiable formula ϕ is satisfied in a model
with at most κ(|ϕ|) states. An open tableau branch is called (resp. locally) maximal when all tableau
rules (resp. the tableau rules that do not produce new prefixes) have been applied. A branch is called
sufficient for ϕ when it is locally maximal and for every σ ψ in the branch, for which a rule can be
applied and has not been applied to σ ψ , |σ | > |AG| ·κ(|ϕ|)|ϕ|2 · 22|ϕ|+1. A tableau is called maximal
when all of its open branches are maximal, and closed when all of its branches are closed. It is called
sufficiently closed for ϕ if it is propositionally closed, or for some least fixed-point variable X , it has
a X−→-path, where X appears at least κ(|ϕ|)+ 1 times. A sufficient branch for ϕ that is not sufficiently
closed is called sufficiently open for ϕ .

A tableau for ϕ starts from ε ϕ and is built using the tableau rules of Table 2. A tableau proof for ϕ

is a closed tableau for the negation of ϕ .

Theorem 19 (Soundness, Completeness, and Termination of Lµ

k -Tableaux). From the following, the first
two are equivalent for any formula ϕ ∈ L and any logic L. Furthermore, if there is a κ : N→ N, such
that every L-satisfiable formula ϕ is satisfied in a model with at most κ(|ϕ|) states, then all the following
are equivallent.

1. ϕ has a maximal L-tableau with an open branch;

2. ϕ is L-satisfiable; and

3. ϕ has an L-tableau with a sufficiently open branch for ϕ .

Proof sketch. The direction from 1 to 2 uses the usual model construction, but where one needs to take
into account the fixed-point formulas; the direction from 2 to 3 uses techniques and results from [21,28],
including Corollary 18; and the direction from 3 to 1 shows how to detect appropriate parts of the branch
to repeat until we safely get a maximal branch.

Corollary 20. L-tableaux are sound and complete for L.

Example 3. Let AG = {a,b} and L be a logic, such that L(a) = Kµ and L(b) = K5µ . Let

ϕ1 = (p∧〈a〉p)∧µX .(¬p∨ [a]X) and ϕ2 = 〈b〉p∧µX .([b]¬p∨ [b])X .

As we see in Figure 2, the tableau for ϕ1 produces an open branch, while the one for ϕ2 has all of its
branches closed, the leftmost one due to an infinite X−→-sequence.

5 Conclusions

We studied multi-modal logics with recursion. These logics mix the frame conditions from epistemic
modal logic, and the recursion of the µ-calculus. We gave simple translations among these logics that
connect their satisfiability problems. This allowed us to offer complexity bounds for satisfiability and to
prove certain finite model results. We also presented a sound and complete tableau that has termination
guarantees, conditional on a logic’s finite model property.

46 Complexity through Translations for Modal Logic with Recursion

ε (p∧〈a〉p)∧µX .(¬p∨ [a]X)

ε µX .(¬p∨ [a]X)

ε p∧〈a〉p
ε p

ε 〈a〉p
(fix)

ε ¬p∨ [a]X
ε [a]X

(D)
a〈p〉 p

(B)
a〈p〉 X

(X)
a〈p〉 µX .(¬p∨ [a]X)

(fix)
a〈p〉 ¬p∨ [a]X

a〈p〉 [a]X a〈p〉 ¬p
x

ε ¬p
x

ε 〈b〉p∧µX .([b]¬p∨ [b]X)

ε µX .([b]¬p∨ [b]X)

ε 〈b〉p
(D)

b〈p〉 p
(fix)

ε [b]¬p∨ [b]X
ε [b]X

(B)
b〈p〉 X

(X)
b〈p〉 µX .([b]¬p∨ [b]X)

(fix)
b〈p〉 [b]¬p∨ [b]X

b〈p〉 [b]X
(B5)

ε [b]X
(B)

b〈p〉 X
(X)

...

b〈p〉 [b]¬p
(B5)

ε [b]¬p
(B)

b〈p〉 ¬p
x

ε [b]¬p
(B)

b〈p〉 ¬p
x

Figure 2: Tableaux for ϕ1 and ϕ2. The dots represent that the tableau keeps repeating as from the identical
node above. The x mark represents a propositionally closed branch.

Conjectures and Future Work We currently do not posses full translations for the cases of symmetric
and euclidean frames. What is interesting is that we also do not have a counterexample to prove that the
translations that we already have, as well as other attempts, are not correct. In the case of symmetric
frames, we have managed to prove that our construction works for formulas without least-fixed-point
operators. A translation for euclidean frames and for the full syntax on symmetric frames is left as future
work. We know that we cannot use the same model constructions that preserve the finiteness of the
model as in Subection 3.1.3 (see Remark 3).

We do not prove the finite model property on all logics. We note that although it is known that
logics with recursion with at least two agents with either B or 5 do not have this property (see 3, [9]), the
situation is unclear if there is only one such agent.

We further conjecture that it is not possible to prove EXP-completenes for all the single-agent cases.
Specifically, we expect K4µ -satisfiability to be in PSPACE, similarly to how K5µ -satisfiability is in
NP [9]. As such, we do not expect Translation 6 to be correct for these cases.

The model checking problem for the µ-calculus is an important open problem. The problem does
not depend on the frame restrictions of the particular logic, though one may wonder whether additional
frame restrictions would help solve the problem more efficiently. We are not aware of a way to use our
translations to solve model checking more efficiently.

As, to the best of our knowledge, most of the logics described in this paper have not been explicitly
defined before, with notable exceptions such as [3, 9, 11], they also lack any axiomatizations and com-
pleteness theorems. We do expect the classical methods from [17,21,22] and others to work out in these
cases as well. However it would be interesting to see if there are any unexpected situations that arise.

Given the importance of common knowledge for epistemic logic and the fact that it has been known
that common knowledge can be thought of as a (greatest) fixed-point already from [4, 19], we consider
the logics that we presented to be natural extensions of modal logic. Besides the examples given in
Section 2, we are interested in exploring what other natural concepts can be defined with this enlarged
language.

Aceto et al. 47

References

[1] Luca Aceto, Antonis Achilleos, Adrian Francalanza & Anna Ingólfsdóttir (2020): The complexity of
identifying characteristic formulae. J. Log. Algebraic Methods Program. 112, p. 100529. Available at
https://doi.org/10.1016/j.jlamp.2020.100529.

[2] Luca Alberucci & Alessandro Facchini (2009): The modal µ-calculus hierarchy over restricted classes of
transition systems. The Journal of Symbolic Logic 74(4), p. 1367–1400, doi:10.2178/jsl/1254748696.

[3] Luca Alberucci & Alessandro Facchini (2009): The modal µ-calculus hierarchy over restricted classes of
transition systems. The Journal of Symbolic Logic 74(4), pp. 1367–1400, doi:10.2178/jsl/1254748696.

[4] Jon Barwise (1988): Three views of common knowledge. In: Proceedings of the 2nd Conference on Theoret-
ical Aspects of Reasoning About Knowledge, TARK ’88, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, pp. 365–379. Available at http://dl.acm.org/citation.cfm?id=1029718.1029753.

[5] Patrick Blackburn, Johan van Benthem & Frank Wolter (2006): Handbook of Modal Logic. Studies in Logic
and Practical Reasoning 3, Elsevier Science.

[6] Patrick Blackburn, Maarten de Rijke & Yde Venema (2001): Modal Logic. Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, doi:10.1017/cbo9781107050884.

[7] Laura Bozzelli, Bastien Maubert & Sophie Pinchinat (2014): Unifying Hyper and Epistemic Temporal Logic.
abs/1409.2711, doi:10.1007/978-3-662-46678-0 11. arXiv:1409.2711.

[8] Michael R. Clarkson & Fred B. Schneider (2010): Hyperproperties. Journal of Computer Security 18(6), p.
1157–1210, doi:10.3233/JCS-2009-0393.

[9] Giovanna D’Agostino & Giacomo Lenzi (2013): On modal µ-calculus in S5 and applications. Fundamenta
Informaticae 124(4), pp. 465–482, doi:10.3233/FI-2013-844.

[10] Giovanna D’Agostino & Giacomo Lenzi (2018): The µ-Calculus Alternation Depth Hierarchy is infinite over
finite planar graphs. Theoretical Computer Science 737, pp. 40–61, doi:10.1016/j.tcs.2018.04.009. Available
at https://www.sciencedirect.com/science/article/pii/S0304397518302317.

[11] Giovanna D’Agostino & Giacomo Lenzi (2010): On the µ-calculus over transitive and finite transitive
frames. Theoretical Computer Science 411(50), pp. 4273–4290, doi:10.1016/j.tcs.2010.09.002. Available
at https://www.sciencedirect.com/science/article/pii/S030439751000469X.

[12] Giovanna D’Agostino & Giacomo Lenzi (2015): On the modal µ-Calculus over finite symmetric graphs.
Mathematica Slovaca 65(4), pp. 731–746, doi:10.1515/ms-2015-0052.

[13] E Allen Emerson, Charanjit S Jutla & A Prasad Sistla (2001): On model checking for the µ-calculus and its
fragments. Theoretical Computer Science 258(1-2), pp. 491–522, doi:10.1016/S0304-3975(00)00034-7.

[14] Ronald Fagin, Joseph Y. Halpern, Yoram Moses & Moshe Y. Vardi (1995): Reasoning About Knowledge.
The MIT Press, doi:10.7551/mitpress/5803.001.0001.

[15] Michael J. Fischer & Richard E. Ladner (1979): Propositional dynamic logic of regular programs. Journal
of computer and system sciences 18(2), pp. 194–211, doi:10.1016/0022-0000(79)90046-1.

[16] Melvin Fitting (1972): Tableau methods of proof for modal logics. Notre Dame Journal of Formal Logic
13(2), pp. 237–247, doi:10.1305/ndjfl/1093894722.

[17] Joseph Y. Halpern & Yoram Moses (1992): A guide to completeness and complexity for modal logics of
knowledge and belief. Artificial Intelligence 54(3), pp. 319–379, doi:10.1016/0004-3702(92)90049-4.

[18] Joseph Y. Halpern & Leandro Chaves Rêgo (2007): Characterizing the NP-PSPACE gap in the
satisfiability problem for modal logic. Journal of Logic and Computation 17(4), pp. 795–806,
doi:10.1093/logcom/exm029.

[19] Gilbert Harman (1977): Review of linguistic behavior by Jonathan Bennett. Language 53, pp. 417–424,
doi:10.1353/lan.1977.0036.

[20] Marcin Jurdziński (1998): Deciding the winner in parity games is in UP ∩ co-UP. Information Processing
Letters 68(3), pp. 119–124, doi:10.1016/S0020-0190(98)00150-1.

https://doi.org/10.1016/j.jlamp.2020.100529
https://doi.org/10.2178/jsl/1254748696
https://doi.org/10.2178/jsl/1254748696
http://dl.acm.org/citation.cfm?id=1029718.1029753
https://doi.org/10.1017/cbo9781107050884
https://doi.org/10.1007/978-3-662-46678-0_11
https://arxiv.org/abs/1409.2711
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/FI-2013-844
https://doi.org/10.1016/j.tcs.2018.04.009
https://www.sciencedirect.com/science/article/pii/S0304397518302317
https://doi.org/10.1016/j.tcs.2010.09.002
https://www.sciencedirect.com/science/article/pii/S030439751000469X
https://doi.org/10.1515/ms-2015-0052
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1305/ndjfl/1093894722
https://doi.org/10.1016/0004-3702(92)90049-4
https://doi.org/10.1093/logcom/exm029
https://doi.org/10.1353/lan.1977.0036
https://doi.org/10.1016/S0020-0190(98)00150-1

48 Complexity through Translations for Modal Logic with Recursion

[21] Dexter Kozen (1983): Results on the propositional µ-calculus. Theoretical Computer Science 27(3), pp.
333–354, doi:10.1016/0304-3975(82)90125-6.

[22] Richard E. Ladner (1977): The computational complexity of provability in systems of modal propositional
logic. SIAM Journal on Computing 6(3), pp. 467–480, doi:10.1137/0206033.

[23] Elli Anastasiadi Adrian Francalanza Anna Ingólfsdóttir Luca Aceto, Antonis Achilleos: Complexity through
Translations for Modal Logic with Recursion. Available at http://icetcs.ru.is/movemnt/papers/
ComplexityTranslationsMLRecFullGand.pdf.

[24] Fabio Massacci (1994): Strongly analytic tableaux for normal modal logics. In: CADE, pp. 723–737,
doi:10.1007/3-540-58156-1 52.

[25] Michael C. Nagle & S. K. Thomason (1985): The extensions of the modal logic K5. Journal of Symbolic
Logic 50(1), pp. 102—-109, doi:10.2307/2273793.

[26] Vaughan R. Pratt (1981): A decidable mu-calculus: Preliminary report. In: 22nd Annual Symposium on
Foundations of Computer Science (SFCS 1981), IEEE, doi:10.1109/sfcs.1981.4.

[27] Mikhail Rybakov & Dmitry Shkatov (2018): Complexity of finite-variable fragments of propositional modal
logics of symmetric frames. Logic Journal of the IGPL 27(1), pp. 60–68, doi:10.1093/jigpal/jzy018.

[28] Wieslaw Zielonka (1998): Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science 200(1-2), pp. 135–183, doi:10.1016/S0304-3975(98)00009-7.

https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1137/0206033
http://icetcs.ru.is/movemnt/papers/ComplexityTranslationsMLRecFullGand.pdf
http://icetcs.ru.is/movemnt/papers/ComplexityTranslationsMLRecFullGand.pdf
https://doi.org/10.1007/3-540-58156-1_52
https://doi.org/10.2307/2273793
https://doi.org/10.1109/sfcs.1981.4
https://doi.org/10.1093/jigpal/jzy018
https://doi.org/10.1016/S0304-3975(98)00009-7

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 49–65, doi:10.4204/EPTCS.370.4

© Niehren, Sakho, and Al Serhali
This work is licensed under the
Creative Commons Attribution License.

Schema-Based Automata Determinization

Joachim Niehren
Inria, France Université de Lille

joachim.niehren@inria.fr

Momar Sakho
Inria, France Université de Lille

momar.sakho@inria.fr

Antonio Al Serhali
Inria, France Université de Lille

antonio.al-serhali@inria.fr

We propose an algorithm for schema-based determinization of finite automata on words and of step-
wise hedge automata on nested words. The idea is to integrate schema-based cleaning directly into
automata determinization. We prove the correctness of our new algorithm and show that it is always
more efficient than standard determinization followed by schema-based cleaning. Our implemen-
tation permits to obtain a small deterministic automaton for an example of an XPath query, where
standard determinization yields a huge stepwise hedge automaton for which schema-based cleaning
runs out of memory.

1 Introduction

Nested words are words enhanced with well-nested parenthesis. They generalize over trees, unranked
trees, and sequences of thereof that are also called hedges or forests. Nested words provide a formal way
to represent semi-structured textual documents of XML and JSON format.

Regular queries for nested words can be defined by finite state automata. We will use stepwise
hedge automata (SHAs) for this purpose [19], which combine finite state automata for words and trees
in a natural manner. SHAs refine previous notions of hedge automata from the sixties [24, 9] in order to
obtain a decent notion of left-to-right and bottom-up determinism. They extend on stepwise tree automata
[8], so that they can not only be applied to unranked trees but also to hedges. Any SHA defines a forest
algebra [5] based on its transition relation. Furthermore, SHAs can always be determinized and have the
same expressiveness as (deterministic) nested word automaton (NWA) [16, 6, 2, 21]. Note, however, that
SHAs do not provide any form of top-down determinism in contrast to NWAs.

Efficient compilers from regular XPATH queries to SHAs exist [19], possibly using NWAs as inter-
mediates [4, 17, 10]. Our main motivation is to determinize the SHAs of regular XPATH queries since
deterministic automata are crucial for various algorithmic querying tasks. In particular, determinism re-
duce the complexity of universality or inclusion checking from EXP-completeness to P-time, both for the
classes of deterministic SHAs or NWAs. In turn, universality checking is relevant for the earliest query
answering of XPath queries on XML streams [14]. Furthermore, determinism is needed for efficient
in-memory answer enumeration of regular queries [22].

Automata determinization may take exponential time in the worst case, so it may not always be
feasible in practice. For SHAs compiled from the XPATH queries of the XPathMark benchmark [12],
however, it was shown to be unproblematic. This changes for the XPATH benchmark collected by Lick
and Schmitz [15]: for 37% of its regular XPATH queries, SHA determinization does require more than
100 seconds, in which case it produces huge deterministic automata [1]. An example is:

(QN7) /a/b//(* | @* | comment() | text())

This XPath query selects all nodes of an XML document that are descendants of a b-element below an
a-element at the root. The nodes may have any XML type: element, attribute, comment, or text. The

http://dx.doi.org/10.4204/EPTCS.370.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

50 Schema-Based Determinization

nondeterministic SHA for QN7 has 145 states and an overall size of 348. Its determinization however
leads to an automaton with 10.005 states and an overall size of 1.634.122.

A kick-off question is how to reduce the size of deterministic automata. One approach beside of
minimization is to apply schema-based cleaning [19], where the schema of a query defines to which
nested words the query can be applied. Schemas are always given by deterministic automata while the
automata for queries may be nondeterministic. The idea of schema-based automaton cleaning is to keep
only those states and transition rules of the automaton, that are needed to recognize some nested word
satisfying the schema. The needed states and rules can be found by building the product of automata
for the query and the schema. For XPATH queries selecting nodes, we have the schema onex that states
that a single node is selected for a fixed variable x by any answer of the query. The second schema
expresses which nested words satisfy the XML data model. With the intersection of these two schemas,
the schema-based cleaning of the deterministic SHA for QN7 indeed has only 74 states and 203 rules.
When applying SHA minimization afterwards, the size of the automaton goes down to 27 states and 71
transition rules. However, our implementation of schema-based cleaning, runs out of memory for larger
automata with say more than 1000 states. Therefore, we cannot compute the schema-based cleaning
from the deterministic SHA obtained from QN7. Neither can we minimize it with our implementation
of deterministic SHA minimization. The question of how to produce small deterministic automaton for
queries as simple as QN7 thus needs a different answer.

Given the relevance of schemas, one naive approach could be to determinize the product of the au-
tomata for the query and schema. This may look questionable at first sight, given that the schema-product
may be bigger than the original automaton, so why could it make determinization more efficient? But
in the case of QN7, the determinization of the schema-product yields a deterministic automata with only
92 states and 325 transition rules, and can be computed efficiently. This observation is very promising,
motivating three general questions:

1. Why are schemas so important for automata determinization?

2. Can this be established by some complexity result?

3. Is there a way to compute the schema-based cleaning of the determinization of an SHA more
efficiently than be schema-based cleaning followed by determinization?

Our main result is a novel algorithm for schema-based determinization of NFAs and SHAs, that integrates
schema-based cleaning directly into the usual determinization algorithm. This algorithm answers ques-
tion 3 positively. Its idea is to keep only those subsets of states of the automaton during the determiniza-
tion, that can be aligned to some state of the schema. In our Theorem 2, we prove that schema-based
determinization always produces the same deterministic automaton than schema-free determinization
followed by schema-based cleaning. By schema-based determinization we could compute the schema-
based cleaning of the determinization of QN7 in less than three seconds. In contrast, the schema-based
cleaning of the determinization does not terminate after a few hours. In the general case, the worst
case complexity of schema-based determinization is lower than schema-less determinization followed
by schema-based cleaning.

We also provide a more precise complexity upper bound in Proposition 13. Given an nondeterministic
SHA A let det(A) be its determinization, and given a deterministic SHA S for the schema, let A× S
the accessible part of the schema-product, and sclS(A) the schema-based cleaning of S with respect to
schema S. We show that the upper bound for the maximal computation time of sclS(det(A)) depends
quadratically on the number of states of S× det(A), which is often way smaller than for det(A) since
S is deterministic. This complexity result shows why the schema is so relevant for determinization

Niehren, Sakho, and Al Serhali 51

(questions 1 and 2), and why computing the schema-based determinization is often more efficient than
determinization followed by schema-based cleaning (question 3).

To see that S×det(A) is often way smaller than det(A) for deterministic S we first note that det(A×
S) = det(A)× S since S is deterministic.1 So for the many states Q = {q1 . . .qn} of det(A) there may
not exist any state s of S such that (Q,s) ∈ det(A)×S, because this requires all states qi can be aligned
to s, i.e. that (qi,s) in A× S for all 1 ≤ i ≤ n. Furthermore, det(A)× S is equal to detS(A)× S, so that
det(A×S) = detS(A)×S. Hence any size bound for the schema-based determinization detS(A) implies a
size bound for the determinization of the schema-product. Also, in our experiments detS(A)×S is almost
by a factor of 2 bigger than detS(A). So the size of the determinization of the schema-product is closely
tied to the size of the schema-based determinization.

We also present a experimental evaluation of our implementation of schema-based determinization
of SHAs. We consider a scalable family of SHAs obtained from a scalable family of XPATH queries. Our
experiments confirm the very large improvement implied by the usage of schemas for determinization.
For this, we implemented the algorithm for schema-based SHA determinization in Scala. Furthermore,
we applied the XSLT compiler from regular forward XPATH queries to SHAs from [19], as well as the
datalog implementations of SHA minimization and schema-based cleaning from there.

A large scale experiment on practical XPATH queries was provided in follow-up work [1] where
schema-based algorithms were applied to the regular XPATH queries collected by Lick and Schmitz [15]
from real word XQuery and XSLT programs. Small deterministic SHAs could be obtained by schema-
based determinization for all regular XPATH queries in this corpus. In contrast, standard determinization
in 37% of the cases fails with a timeout of 100 seconds. Without this timeout, determinization either runs
out of memory or produces very large automata.

Outline. We start with related work on automata for nested words, determinization for XPATH queries
(Section 2). In Section 3, we recall the definition NFAs and discuss how to use them as schemas and
queries on words. In Section 4, we recall schema-based cleaning for NFAs. In Section 5, we contribute
our schema-based determinization algorithm in the case of NFAs and show its correctness. In Section 6,
we recall the notion of SHAs for defining languages of nested words. In Section 7, we lift schema-based
determinization to SHAs. Full proofs can be found in the Appendix of the long version [20].

2 Related Work

We focus on automata for nested words, even though our results are new for NFAs too.
Nested word automata. As recalled in the survey of Okhotin and Salomaa [21], Alur’s et al. [2] NWAs
were first introduced in the eighties under the name of input driven automata by Mehlhorn [16], and
then reinvented several times under different names. In particular, they were called visibly pushdown
automata [3], pushdown forest automata [18], and streaming tree automata [13]. The determinization
algorithm for NWAs was first invented in the eighties by von Braunmühl and Verbeek in the journal
version of [6] and then rediscovered various times later on too.
Determinization algorithms. The usual determinization algorithms for NFAs relies on the well-known
subset construction. The determinization algorithms of bottom-up tree automata and SHAs are straight-
forward extensions thereof. The determinization algorithm for NWAs, in contrast, is more complicated,
since having to deal with pushdowns. Subsets of pairs of states are to be considered there and not

1If {(q1,s1) . . .(qn,sn)} ∈ det(A× S) then there exists a tree that can go into all states q1 . . .qn with A and into all states
s1, . . .sn with S. Since S is deterministic, we have s1 = . . .sn. So there exists a tree going into {q1, . . . ,qn} with det(A) and also
into all si. So ({q1, . . . ,qn},si) is a state of det(A)×S.

52 Schema-Based Determinization

IA 6= /0

IA ∈ Idet(A) IA ∈Qdet(A)

Q ∈Qdet(A) Q∩FA 6= /0

Q ∈ Fdet(A)

Q ∈Qdet(A) Q′ = {q′ ∈QA | q a−→ q′ ∈ ∆A, q ∈ Q} 6= /0

Q a−→ Q′ ∈ ∆det(A) Q′ ∈Qdet(A)

det(A) = (Σ,Qdet(A),∆det(A), Idet(A),Fdet(A))

Figure 1: The accessible determinization det(A) of NFA A.

only subsets of states as with the usual automata determinization algorithm. We also notice that general
pushdown automata with nonvisible stacks can even not always be determinized.
Application to XPATH. Debarbieux et al. [10] noticed that the determinization algorithm for NWAs
often behaves badly when applied to NWAs obtained from XPath queries as simple as //a/b. Niehren
and Sakho [19] observed more recently that the situation is different for the determinization of SHAs: It
works out nicely for the SHA of //a/b and also for all other SHAs obtained by compilation from forward
navigational XPath queries in the XPathMark benchmark [12]. Even more surprisingly, the same good
behavior could be observed for the determinization algorithm of NWA when restricted to NWAs with the
weak-single entry property.
Weak single-entry NWAs versus SHAs. The weak-single entry property implies that an NFA cannot
memoize anything in its state when moving top-down. So it can only pass information left-to-right and
and bottom-up, similarly to an SHA. This property failed for the NWAs considered by Debarbieux et
al. and the determinization of their NWAs thus required top-down determinization. This quickly led to
the size explosion described above. One the other hand side, the weak single-entry property can always
be established in quadratic time by compiling NWAs to SHAs forth and back. Or else, one can avoid
top-down determinization all over by directly working with SHAs as we do here.

3 Finite Automata on Words, Schemas, and Queries

In this section, we discuss hwo to use NFAs for defining schemas and queries on words.
Let N be the set of natural numbers including 0. The set of words over a finite alphabet Σ is Σ∗ =

∞⋃
n∈N

Σn. A word (a1, . . . ,an) ∈ Σn is written as a1 . . .an. We denote by ε the empty word, i.e., the unique

element of Σ0 and by w1 ·w2 ∈ Σ∗ the concatenation of two words w1,w2 ∈ Σ∗. For example, if Σ = {a,b}
then aa ·bb = aabb = a ·a ·b ·b.

Definition 1. A NFA is a tuple A = (Σ,Q,∆, I,F) such that Q is a finite set of states, the alphabet Σ is a
finite set, I,F ⊆Q are subsets of initial and final states, and ∆⊆Q×Σ×Q is the set of transition rules.

The size of a NFA is |A| = |Q|+ |∆|. A transition rule (q,a,q′) ∈ ∆ is denoted by q a−→ q′ ∈ ∆. We
define transitions q w−→ q′ wrt ∆ for arbitrary words w ∈ Σ∗ by the following inference rules:

q ∈Q

q ε−→ q wrt ∆

q a−→ q′ ∈ ∆

q a−→ q′ wrt ∆

q0
w1−→ q1 wrt ∆ q1

w2−→ q2 wrt ∆

q0
w1·w2−−−→ q2 wrt ∆

The language of words recognized by a NFA then is L (A) = {w ∈ Σ∗ | q w−→ q′ wrt ∆, q ∈ I, q′ ∈ F}.

Niehren, Sakho, and Al Serhali 53

1 fun d e t (A) =
2 l e t Store = hashset.new(/0) and Agenda = list.new() and Rules = hashset.new(/0)
3 i f initA 6= /0 then Agenda.add(initA)
4 whi le Agenda.notEmpty() do
5 l e t Q = Agenda.pop()
6 l e t h be an empty hash t a b l e wi th keys from Σ .
7 / / t h e v a l u e s w i l l be nonempty hash s u b s e t s o f QA

8 f o r q a−→ q′ ∈ ∆A such that q ∈ Q do
9 i f h.get(a) = unde f then h.add(a,hashset.new(/0))

10 (h.get(a)).add(q′)
11 f o r (a,Q′) i n h.tolist() do Rules.add(Q a−→ Q′)
12 i f not Store.member(Q′) then Store.add(Q′) Agenda.push(Q′)
13 l e t initdet(A) = {Q | Q ∈ Store,Q∩ initA 6= /0} and Fdet(A) = {Q | Q ∈ Store,Q∩FA 6= /0}
14 return (Σ,Store.toSet(),Rules.toSet(), initdet(A),Fdet(A))

Figure 2: A program computing the accessible determinization of an NFA A from Figure 1.

Figure 3: The NFA A0 for the regular expression
(x+ ε).(x.a)∗

Figure 4: The accessible determiniza-
tion det(A0) up to the renaming of states
[{2,4}/0,{2,3}/1,{2}/2,{3}/3].

A NFA A is called deterministic or equivalently a DFA, if it has at most one initial state, and for
every pair (q,a) ∈Q×Σ there is at most one state q′ ∈QA such that q a−→ q′ ∈ ∆A. Any NFA A can be
converted into a DFA that recognizes the same language by the usual subset construction. The accessible
determinization det(A) of A = (Σ,QA,∆A, IA,FA) is defined by the inference rules in Figure 1. It works
like the usual subset construction, except that only accessible subsets are created. It is well known
that L (A) = L (det(A)). Since only accessible subsets of states are added, we have Qdet(A) ⊆ 2QA

.
Therefore, the accessible determinization may even reduce the size of the automaton and often avoid the
exponential worst case where Qdet(A) = 2QA

.

Proposition 2 (Folklore). The accessible determinization det(A) of a NFA A can be computed in expected
amortized time O(|Qdet(A)| |∆A|+ |A|).

Proof sketch. The algorithm for accessible determinization with this complexity is somehow folklore.
We sketch it nevertheless, since we need to refined it for schema-based determinization later on. A set
of inference rules for accessible determinization is given in Figure 1, and an algorithm computing the
fixed point of these inference rules is presented in Figure 2. It uses dynamic perfect hashing [11] for
implementing hash sets, so that set inserting and membership can be done in randomized amortized time
O(1). The algorithm has a hash set Store to save all discovered states Qdet(A) and a hash set Rules to
collect all transition rules. Furthermore, it has a stack Agenda to process all new states Q ∈Qdet(A).

As a running example, we consider the NFA A0 for the regular expression (x+ε).(x.a)∗ that is drawn
as a labeled digraph in Figure 3: the nodes of the graph are the states and the labeled edges represent
the transitions rules. The initial states are indicated by an ingoing arrow and the final state are doubly
circled. The graph of the DFA det(A0) obtained by accessible determinization is shown in Figure 4. It is

54 Schema-Based Determinization

Figure 5: The schema-based cleaning of det(A0)
with schema words-onex

Σ
.

Figure 6: Schema words-onex
Σ

with alpha-
bet Σ]{x}.

given up to a renaming of the states that is given in the caption. Note that only 4 out of the 23 = 8 subsets
are accessible, so the size increases only by a single state and two transitions rules in this example.

A regular schema over Σ is a DFA with the alphabet Σ. We next show how to use automata to define
regular queries on words. For this, any word is seen
as a labeled digraph. The labeled digraph of the
word aab, for instance, is drawn to the right. The
set of nodes of the graph is the set of positions of the word pos(w) = {0, . . . ,n} where n is the length of
w. Position 0 is labeled by start, while all other positions are labeled by a single letter in Σ. A monadic
query function on words with alphabet Σ is a total function Q that maps some words w ∈ Σ∗ to a subset
of position Q(w) ⊆ pos(w). We say that a position π ∈ pos(w) is selected by Q if w ∈ dom(Q) and
π ∈Q(w).

Let us fix a single variable x. Given a position π of a word w ∈ Σ∗ let w∗ [π/x] be the word obtained
from w by inserting x after position π . We note that all words of the form w ∗ [π/x] contain a single
occurrence of x. Such words are also called V -structures where V = {x} (see e.g [23]).

The set of all V -structures can be defined by the schema words-onex
Σ

over Σ]{x} in Figure 6. It is
natural to identify any total monadic query function Q with the language of V -structures LQ = {w∗ [π/x] |
w ∈ Σ∗,π ∈ Q(w)}. This view permits us to define a subclass of total monadic query functions by
automata. A (monadic) query automaton over Σ is a NFA A with alphabet Σ]{x}. It defines the unique
total monadic query function Q such that LQ = L (A)∩L (words-onex

Σ
). A position π of a word w ∈ Σ∗

is thus selected by the query Q on w if and only if the V -structure w∗ [π/x] is recognized by A, i.e.:

π ∈Q(w)⇔ w∗ [π/x] ∈L (A)

A query function is called regular if it can be defined by some NFA. It is well-known from the work
of Büchi in the sixties [7] that the same class of regular query functions can be defined equivalently by
monadic second-order logic.

We note that only the words satisfying the schema words-onex
Σ

(the V -structures) are relevant for the
query function Q of a query automaton A. The query automaton A0 in Figure 3 for instance, defines the
query function that selects the start position of the words ε and a and no other positions elsewhere. This
is since the subset of V -structures recognized by A0 is x+ x.a. Note that the words ε and xxa do also
belong to L (A0), but are not V -structures, and thus are irrelevant for the query function Q.

4 Schema-Based Cleaning

Schema-based cleaning was introduced only recently [19] in order to reduce the size of automata on
nested words. The idea is to remove all rules and states from an automaton that are not used to recognize
any word satisfying the schema. Schema-based cleaning can be based on the accessible states of the
product of the automaton with the schema. While this product may be larger than the automaton, the
schema-based cleaning will always be smaller.

Niehren, Sakho, and Al Serhali 55

q ∈ IA s ∈ IS

(q,s) ∈ IA×S (q,s) ∈QA×S

q ∈ FA s ∈ FS (q,s) ∈QA×S

(q,s) ∈ FA×S

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S (q1,s1) ∈QA×S

(q1,s1)
a−→ (q2,s2) ∈ ∆A×S (q2,s2) ∈QA×S

Figure 7: Accessible product A×S = (Σ,QA×S, IA×S,FA×S,∆A×S).

For illustration, the schema-based cleaning of NFA det(A0) in Figure 4 with respect to schema
words-onex

Σ
is given in Figure 5. The only words recognized by both det(A0) and words-onex

Σ
are x

and xa. For recognizing these two words, the automaton det(A0) does not need states 2 and 3, so they
can be removed with all their transitions rules. Thereby, the word xxa violating the schema is no more
recognized after schema-based cleaning, while it was recognized by det(A0). Furthermore, note that the
state 0 needs no more to be final after schema-based cleaning. Therefore the word ε , which is recog-
nized by the automaton but not by the schema, is no more recognized after schema-based cleaning. So
schema-based cleaning may change the language of the automaton but only outside of the schema.

Interestingly, the NFA A0 in Figure 3 is schema-clean for schema words-onex
Σ

too, even though it is
not perfect, in that it recognizes the words ε and xxa which are rejected by the schema. The reason is
that for recognizing the words x and xa, which both satisfy the schema, all 3 states and all 4 transition
rules of A0 are needed. In contrast, we already noticed that the accessible determinization det(A0) in
Figure 4 is not schema-clean for schema words-onex

Σ
. This illustrates that accessible determinization does

not always preserve schema-cleanliness. In other words, schema-based cleaning may have a stronger
cleaning effect after determinization than before.

The schema-based cleaning of an automaton can be defined based on the accessible product of the
automaton with the schema. The accessible product A× S of two NFAs A and S with alphabet Σ is
defined in Figure 7. This is the usual product, except that only accessible states are admitted. Clearly,
L (A×S) = L (A)∩L (S). Let ΠA(A×S) be obtained from the accessible product by projecting away
the second component. The schema-based cleaning of A with respect to schema S is this projection.

Definition 3. sclS(A) = ΠA(A×S).

The fact that A× S is restricted to accessible states matches our intuition that all states of sclS(A)
can be used to read some word in L (A) that satisfies schema S. This can be proven formally under the
condition that all states of A×S are also co-accessible. Clearly, sclS(A) is obtained from A by removing
states, initial states, final states, and transitions rules. So it is smaller or equal in size |sclS(A)| ≤ |A| and
language L (sclS(A))⊆L (A). Still, schema-based cleaning preserves the language within the schema.

Proposition 4 ([19]). L (A)∩L (S) = L (sclS(A))∩L (S).

Schema-clean deterministic automata may still not be perfect, in that they may recognize some words
outside the schema. This happens for DFAs if some state of is reached, both, by a word satisfying the
schema and another word that does not satisfy the schema. An example for a DFA that is schema-clean
but not perfect for words-onex

Σ
is given in Figure 8. It is not perfect since it accepts the non V -structure

xaxa. The problem is that state 1 can be reached by the words a and xa, so one cannot infer from being
in state 1 whether some x was read or not. If one wants to avoid this, one can use the accessible product
of the DFA with the schema instead. In the example, this yields the DFA in Figure 9 that is schema-clean
and perfect for words-onex

Σ
.

56 Schema-Based Determinization

Figure 8: A DFA that is
schema-clean but not perfect
for words-onex

Σ
.

Figure 9: The accessible
product with words-onex

Σ
is

schema-clean and perfect for
words-onex

Σ
.

Figure 10: The dSHA onex
Σ

with alphabet Σ]{x,¬x}.

Proposition 5 (Folklore). For any two DFAs A and S with alphabet Σ the accessible product A×S can
be computed in expected amortized time O(|QA×S||Σ|+ |A|+ |S|).

Proof. An algorithm to compute the fixed points of the inference rules for the accessible product A×S in
Figure 7 can be organized such that only accessible states are considered (similarly to semi-naive datalog
evaluation). This algorithm is presented in Figure 11. It dynamically generates the set of rules Rules by
using perfect dynamic hashing [11]. Testing set membership is in time O(1) and the addition of elements
to the set is in expected amortized time O(1). The algorithm uses a stack, Agenda, to memoize all new
pairs (q1,s1)∈QA×S that need to be processed, and a hash set Store that saves all processed states QA×S.
We aim not to push the same pair more than once in the Agenda. For this, membership to the Store is
checked before an element is pushed to the Agenda. For each pair popped from the stack Agenda, the
algorithm does the following: for each letter a ∈ Σ it computes the sets Q = {q2 | q1

a−→ q2 ∈ ∆A} and
R = {s2 | s1

a−→ s2 ∈ ∆S} and then adds the subset of states of Q×R that were not stored in the hash
set Store to the agenda. Since A and S are deterministic, there is at most one such pair, so the time for
treating one pair on the agenda is in expected amortized time O(|Σ|). The overall number of elements in
the agenda will be |QA×S|. Note that Q and R can be computed in O(1) after preprocessing A and S in
time O(|A|+ |S|). Therefore, we will have a total time of the algorithm in O(|QA×S||Σ|+ |A|+ |S|).

Corollary 6. For any two DFAs A and S with alphabet Σ schema-based cleaning sclS(A) can be computed
in expected amortized time O(|QA×S||Σ|+ |A|+ |S|).

Proof. By Definition 3 it is sufficient to compute the projection of the accessible product A× S. By
Proposition 5 the product can be computed in time O(|QA×S||Σ|+ |A|+ |S|). Its size cannot be larger
than its computation time. The projection can be computed in linear time in the size of A× S, so the
overall time is in O(|QA×S||Σ|+ |A|+ |S|) too.

5 Schema-Based Determinization

Schema-based cleaning after determinization becomes impossible in practice if the automaton obtained
by determinization is too big. We therefore show next how to integrate schema-based cleaning into
automata determinization directly.

The schema-based determinization of A with respect to schema S extends on accessible determiniza-
tion det(A). The idea is to run the schema S in parallel with det(A), in order to keep only those state
Q ∈Qdet(A) that can be aligned to some state s ∈QS. In this case we write Q∼ s.

Niehren, Sakho, and Al Serhali 57

1 fun A×S =
2 l e t Store = hashset.new(/0) and Agenda = list.new() and Rules = hashset.new(/0)
3 i f initA = {q0} and initS = {s0} then Agenda.add((q0,s0))
4 whi le Agenda.notEmpty() do
5 l e t (q1,s1) = Agenda.pop()
6 f o r a ∈ Σ do

7 l e t Q = {q2 | q1
a−→ q2 ∈ ∆A} R = {s2 | s1

a−→ s2 ∈ ∆S}
8 f o r q2 ∈ Q and s2 ∈ R do

9 Rules.add((q1,s1)
a−→ (q2,s2))

10 i f not Store.member((q2,s2))
11 then Store.add((q2,s2)) Agenda.push((q2,s2))

12 l e t initA×S = {(q0,s0) | (q0,s0) ∈ Store} and FA×S = {(q,s) | (q,s) ∈ Store,q ∈ FA,s ∈ FS}
13 return (Σ,Store.toSet(),Rules.toSet(), initA×S,FA×S)

Figure 11: An algorithm computing the accessible product of DFAs A and S.

Q ∈ Idet(A) IS = {s}
Q ∈ IdetS(A) Q∼ s

Q∼ s

Q ∈QdetS(A)

Q ∈ Fdet(A) s ∈ FS Q∼ s

Q ∈ FdetS(A)

Q a−→ Q′ ∈ ∆det(A) Q∼ s s a−→ s′ ∈ ∆S

Q a−→ Q′ ∈ ∆detS(A) Q′ ∼ s′

Figure 12: Schema-based determ. detS(A) = (Σ,QdetS(A),∆detS(A), IdetS(A),FdetS(A)).

The schema-determinization detS(A) is defined in Figure 12. The automaton detS(A) permits to go
from any subset Q ∈Qdet(A) and letter a ∈ Σ to the set of states Q′ = a∆det(A)

(Q), under the condition that
there exists schema states s,s′ ∈QS such that Q∼ s and s a−→ s′. In this case Q′ ∼ s′ is inferred.
Theorem 1 (Correctness). detS(A) = sclS(det(A)) for any NFA A and DFA S with the same alphabet.

The theorem states that schema-based determinization yields the same result as accessible deter-
minization followed by schema-based cleaning.

For the correctness proof we collapse the two systems of inference rules for accessible products and
projection into a single rule system. This yields the rule systems for schema-based cleaning in Figure 13.
The rules there define the automaton ŝclS(A), that we annotate with a hat, in order to distinguish it from

the previous automaton sclS(A). The rules also infer judgements (q,s) ∈QA×̂S that we distinguish by
a hat from the previous judgments (q,s) ∈QA×S of the accessible product. The next proposition shows
that the system of collapsed inference rules indeed redefines the schema-based cleaning.
Proposition 7. For any two NFAs A and S with the same alphabet:

sclS(A) = ŝclS(A) and QA×S = QA×̂S

Proof of Correctness Theorem 1. Instantiating the system of collapsed rules for schema-based cleaning
from Figure 13 with det(A) for A yields the rule system in Figure 15. We can identify the instantiated
collapsed system for ŝclS(det(A)) with that for detS(A) in Figure 12, by identifying the judgements
(Q,s) ∈ Qdet(A)×̂S with judgments Q ∼ s. After renaming the predicates, the inference rules for the
corresponding judgments are the same. Hence ŝclS(det(A)) = detS(A), so that Proposition 7 implies
sclS(det(A)) = detS(A).

58 Schema-Based Determinization

q ∈ IA s ∈ IS

q ∈ I ŝclS(A) (q,s) ∈QA×̂S

q ∈ FA s ∈ FS (q,s) ∈QA×̂S

q ∈ F ŝclS(A)

(q,s) ∈QA×̂S

q ∈QŝclS(A)

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S (q1,s1) ∈QA×̂S

q1
a−→ q2 ∈ ∆ŝclS(A) (q2,s2) ∈QA×̂S

ŝclS(A) = (Σ,QŝclS(A),∆ŝclS(A), I ŝclS(A),F ŝclS(A))

Figure 13: A collapsed rule systems for schema-based cleaning ŝclS(A).

1 fun de tS (A ,S) =
2 l e t Store = hashset.new(/0) and Agenda = list.new() and Rules = hashset.new(/0)
3 i f initA 6= /0 and initS = {s0} then Agenda.add(initA ∼ s0)
4 whi le Agenda.notEmpty() do
5 l e t (Q1 ∼ s1) = Agenda.pop()
6 f o r a ∈ Σ do

7 l e t P = {Q2 | Q1
a−→ Q2 ∈ ∆det(A)} and R = {s2 | s1

a−→ s2 ∈ ∆S}
8 f o r Q2 ∈ P and s2 ∈ R do Rules.add(Q1

a−→ Q2)
9 i f not Store.member(Q2 ∼ s2)

10 then Store.add(Q2 ∼ s2) Agenda.push(Q2 ∼ s2)

11 l e t initdetS(A) = {Q | Q∼ s ∈ Store,Q∩ initA 6= /0} and FdetS(A) = {Q | Q∼ s ∈ Store,Q∩FA 6= /0}
12 return (Σ,Store.toSet(),Rules.toSet(), initdetS(A),FdetS(A))

Figure 14: An algorithm for schema-based determinization detS(A) of an NFA A and a DFA schema S.

Proposition 8. The schema-based determinization detS(A) for a NFA A and a DFA S over Σ can be
computed in expected amortized time O(|Qdet(A)×S||Σ|+ |QdetS(A)||∆A|+ |A|+ |S|).

Proof. An algorithm computing the fixed points of the inference rules of schema-based determinization
from Figure 12 is given in Figure 14. It refines the algorithm computing the accessible product with
on-the-fly determinization and projection.

On the stack Agenda, the algorithm stores alignments Q∼ s such that (Q,s)∈Qdet(A)×S that were not
considered before. Transition rules of detS(A) are collected in hash set Rules, using the dynamic perfect
hashing aforementioned. The alignments Q1 ∼ s1 popped from the agenda are processed as follows: For
any letter a ∈ Σ, the sets R = {Q2 | Q1

a−→ Q2 ∈ ∆det(A)} and P = {s2 | s1
a−→ s2 ∈ ∆S} are computed. One

then pushes all new pairs Q2 ∼ s2 with Q2 ∈ P and s2 ∈ R into the agenda, and adds Q1
a−→ Q2 to the set

Rules. Since S and det(A) are deterministic there is at most one pair (Q,s) ∈ P×R for Q1 and s1. So
the time for treating one pair on the agenda is in O(|Σ|) plus the time for building the needed transition
rules of det(A) from ∆A on the fly. The time for the on the fly computation of transition rules of det(A) is
in time O(|QdetS(A)||∆A|). The overall number of pairs on the agenda is at most |Qdet(A)×S| so the main
while loop of the algorithm requires time in O(|Qdet(A)×S||Σ|) apart from on the fly determinization.

By Proposition 2, computing det(A) requires time O(|Qdet(A)| |∆A|+ |A|). Therefore, with Propo-
sition 5, the accessible product det(A)× S can be computed from A and S in time O(|Qdet(A)×S||Σ|+
|Qdet(A)| |∆A|+ |A|+ |S|). Since QdetS(A)⊆Qdet(A) the proposition shows that schema-based determiniza-
tion is at most as efficient in the worst case as accessible determinization followed by schema-based
cleaning. If |Qdet(A)×S||Σ| < |Qdet(A)||∆A| then it is more efficient, since schema-based determinization

Niehren, Sakho, and Al Serhali 59

Q ∈ Idet(A) s ∈ IS

Q ∈ I ŝclS(det(A)) (Q,s) ∈Qdet(A)×̂S

Q ∈ Fdet(A) s ∈ FS (Q,s) ∈Qdet(A)×S

Q ∈ F ŝclS(det(A))

(Q,s) ∈Qdet(A)×̂S

Q ∈QŝclS(det(A))

Q1
a−→ Q2 ∈ ∆det(A) s1

a−→ s2 ∈ ∆S (Q1,s1) ∈Qdet(A)×S

Q1
a−→ Q2 ∈ ∆ŝclS(det(A)) (Q2,s2) ∈Qdet(A)×̂S

ŝclS(det(A)) = (Σ,QŝclS(det(A)),∆ŝclS(det(A)), I ŝclS(det(A)),F ŝclS(det(A)))

Figure 15: Instantiation of the collapsed rules for schema-based cleaning from Figure 13 with det(A).

avoids the computation of det(A) all over. Instead, it only computes the accessible product det(A)× S,
which may be way smaller, since exponentially many states of det(A) may not be aligned to any state of S.
Sometimes, however, the accessible product may be bigger. In this case, schema-based determinization
may be more costly than pure accessible determinization, not followed by schema-based cleaning.

6 Stepwise Hedge Automata for Nested Words

We next recall SHAs [19] for defining languages of nested words, regular schemas and queries. Nested
words generalize on words by adding parenthesis that must be well-nested. While containing words
natively, they also generalize on unranked trees, and hedges. We restrict ourselves to nested words with
a single pair of opening and closing parenthesis 〈 and 〉. Nested words over a finite alphabet Σ of internal
letters have the following abstract syntax.

w,w′ ∈NΣ ::= ε | a | 〈w〉 | w ·w′ where a ∈ Σ

We assume that concatenation · is associative and that the empty word ε is a neutral
element, that is w · (w′ ·w′′) = (w ·w′) ·w′′ and ε ·w = w = w · ε . Nested words can
be identified with hedges, i.e., words of unranked trees and letters from Σ. Seen as a
graph, the inner nodes are labeled by the tree constructor 〈〉 and the leafs by symbols
in Σ or the tree constructor. For instance 〈a · 〈b〉 ·ε〉 ·c · 〈d · 〈ε〉〉 corresponds to the hed-

〈〉

a 〈〉

b

c 〈〉

d 〈〉

ge on the right. A nested word of type tree has the form 〈h〉. Note that dangling parentheses are ruled
out and that labeled parentheses can be simulated by using internal letters. XML documents are labeled
unranked trees, for instance: 〈a name = “u f f ”〉〈b〉isgaga〈d/〉〈/b〉〈c/〉〈/a〉. Labeled unranked trees
satisfying the XML data model can be represented as nested words over an alphabet that contains the XML
node-types (elem,attr, text, . . .), the XML names of the document (a, . . . ,d,name), and the characters of
the data values, say UTF8. For the above example, we get the nested word 〈elem ·a · 〈attr ·name ·u · f ·
f 〉〈elem ·b · 〈text · i · s ·g ·a ·g ·a〉〈elem ·d〉〉〈elem · c〉〉
Definition 9. A SHA is a tuple A = (Σ,Q,∆, I,F) where ∆ = (∆′,@∆,〈〉∆) such that (Σ,Q,∆′, I,F) is a
NFA, 〈〉∆ ⊆Q is a set of tree initial states and @∆ ⊆Q3 a set of apply rules.

SHAs can be drawn as graphs while extending on the graphs of NFAs. A tree initial state q ∈ 〈〉∆ is

drawn as a node
〈〉−→ q with an incoming tree arrow. An applyrule (q1,q,q2) ∈@∆ is drawn as a blue

edge q1
q−→q2 that is labeled by a state q ∈Q rather than a letter a ∈ Σ. It states that a nested word in

state q1 can be extended by a tree in state q and become a nested word in state q2.
For instance, the SHA onex

Σ
is drawn graphically in Figure 10. It accepts all nested words over

Σ]{x,¬x} that contain exactly one occurrence of letter x. Compared to the NFA words-onex
Σ]{¬x} from

60 Schema-Based Determinization

〈〉∆
A
6= /0

〈〉∆
A
∈Qdet(A)

Q1 ∈Qdet(A) Q2 ∈Qdet(A)

Q′ = {q′ ∈QA | q1@q2→ q′ ∈ ∆A, q1 ∈ Q1,q2 ∈ Q2} 6= /0

Q1@Q2→ Q′ ∈ ∆det(A) Q′ ∈Qdet(A)

Figure 16: Accessible determinization det(A) lifted from NFAs to SHAs.

Figure 6, the SHA onex
Σ

contains three additional apply rules (0,0,0), (0,1,1), (1,0,1) ∈ @∆
onex

Σ for
reading the states assigned to subtrees. The state 0 is chosen as the single tree initial state.

Transitions for NFAs on words can be lifted to transitions for SHAs of the form q w−→ q′ wrt ∆ where
w ∈NΣ and q,q′ ∈Q. For this, we add the following inference rule to the previous rules for NFAs:

q′ ∈ 〈〉∆ q′ w−→ q wrt ∆ (q1,q,q2) ∈@∆

q1
〈w〉−−→ q2 wrt ∆

The rule says that a tree 〈w〉 can transit from a state q1 to a state q2 if there is an apply rule (q1,q,q2)∈@∆

so that w can transit from some tree initial state q′ ∈ 〈〉∆ to q. Otherwise, the language L (A) of nested
words accepted by a SHA A is defined as in the case of NFAs.

Definition 10. A SHA (Σ,Q,∆, I,F) is deterministic or equivalently a dSHA if it satisfies:

• I and 〈〉∆ both contain at most one element,

• a∆ is a partial function from Q to Q for all a ∈ Σ, and

• @∆ is a partial function from Q×Q to Q.

Note that if A is a dSHA and ∆ = (∆′,@∆,〈〉∆) then A′ = (Σ,Q,∆′, I,F) is a DFA. Conversely any
DFA A′ defines a dSHA with @∆ = /0 and I = /0. For instance, the SHA onex

Σ
in Figure 10 contains the

DFA words-onex
Σ]{¬x} from Figure 6 with Σ instantiated by Σ]{x}.

A schema for nested words over Σ is a dSHA over Σ. Note that schemas for nested words generalize
over schemas of words, since dSHAs generalize on DFAs. The rules for the accessible determinization
det(A) of a SHA A in Figure 16 extend on those for NFAs in Figure 1. As for words, det(A) is always
determinstic, recognizes the same language as A, and contains only accessible states. The complexity of
accessible determinization in case of SHA go similarly to DFA, however, the apply rules will introduce
quadratic factor in the number of states.

Proposition 11. The accessible determinization of a SHA can be computed in expected amortized time
O(|Qdet(A)|2 |∆A|+ |A|).

The notions of monadic query functions Q can be lifted from words to nested words, so that it selects
nodes of the graph of a nested word. For this, we have to fix one of manner possible manners to define
identifiers for these nodes. The set of nodes of a nested word w is denoted by nod(w)⊆ N.

For indicating the selection of node π ∈ nod(w), we insert the variable x into the sequence of letters
following the opening parenthesis of π . If we don’t want to select π , we insert the letter ¬x instead. For
any nested word w with alphabet Σ, the nested word w[π/x] obtained by insertion of x or ¬x at a node
π ∈ nod(w) has alphabet Σ]{x,¬x}. As before, we define LQ = {w∗ [π/x] | w ∈NΣ,π ∈Q(w)}.

The notion of a query automata can now be lifted from words to nested words straightforwardly: a
query automaton for nested words over Σ is a SHA A with alphabet Σ∪{x,¬x}. It defines the unique
total query Q such that LQ = L (A)∩L (onex

Σ
).

Niehren, Sakho, and Al Serhali 61

q ∈ 〈〉∆
A

s ∈ 〈〉∆
S

(q,s) ∈ 〈〉∆
A×S

(q,s) ∈QA×S

(q1,s1) ∈QA×S

(q,s) ∈QA×S
q1@q→ q2 ∈ ∆A

s1@s→ s2 ∈ ∆S

(q1,s1)@(q,s)→ (q2,s2) ∈ ∆A×S (q2,s2) ∈QA×S

Figure 17: Lifting accessible products to SHAs.

〈〉∆
S
= {s}

〈〉∆
A
∈ 〈〉∆

detS(A) 〈〉∆
A
∼ s

s1@s2→ s′ ∈ ∆S Q1 ∼ s1 Q2 ∼ s2

Q1@Q2→ Q′ ∈ ∆det(A)

Q1@Q2→ Q′ ∈ ∆detS(A) Q′ ∼ s′

Figure 18: Extension of schema-based determinization to SHAs.

7 Schema-Based Determinization for SHAs

We can lift all previous algorithms from NFAs to SHAs while extending the system of inference rules.
The additional rules concern tree initial states, that work in analogy to initial states, and also apply rules
that works similarly as internal rules. The new inference rules for accessible products A× S are given
in Figure 17 . As before we define sclS(A) = ΠA(A× S). The rules for schema-based determinization
detS(A) are extended in Figure 18. The complexity upper bound, however, now becomes quadratic even
with fixed alphabet:

Proposition 12. If A and S are dSHAs then the accessible product A×S and the schema-based cleaning
sclS(A) can be computed in expected amortized time O(|QA×S|2 + |QA×S||Σ|+ |A|+ |S|).

Theorem 2 (Correctness). detS(A) = sclS(det(A)) for any SHA A and dSHA S with the same alphabet.

Proposition 13. The schema-based determinization detS(A) of a SHA A with respect to a dSHA S can
be computed in expected amortized time O(|Qdet(A)×S|2 + |Qdet(A)×S| |Σ|+ |QdetS(A)|2 |∆A|+ |A|+ |S|).

The proof of Theorem 2 extends on that for NFAs (Theorem 1) in a direct manner. Proposition
13 follows the result in Proposition 8 with an additional quadratic factor in the size of states of the
product det(A)×S and the states of the schema-based determinized automaton. This is always due to the
apply rules of type Q3. By Propositions 11 and 12, computing sclS(det(A)) by schema-based cleaning
after accessible determinization needs time in O(|Qdet(A)×S|2 + |Qdet(A)×S| |Σ|+ |Qdet(A)|2 |∆A|+ |A|+
|S|). This complexity bound is similar to that of schema-based determinization from Proposition 13.
Since QdetS(A) ⊆ Qdet(A), Proposition 13 shows that the worst case time complexity of schema-based
determinization is never worse than for schema-based cleaning after determinization.

8 Experiments

In this section, we present an experimental evaluation of the sizes of the automata produced by the
different determinization methods. For this, we consider a scalable family of SHAs that is compiled from
the following scalable family of XPATH queries where n and m are natural numbers.

(Qn.m) //*[self::a0 or ... or self::an]

[descendant::*[self::b0 or ... or self::bm]]

62 Schema-Based Determinization

Figure 19: A schema for the intersection of XML data model with onex.

Query Qn.m selects all elements of an XML document, that are named by either of a0, . . ., an and have
some descendant element named by either of b1, . . ., bm. We compile those XPATH queries to SHAs
based on the compiler from [19]. As schema S, we chose the product of the dSHA onex with a dSHA for
the XML data model given in Figure 19. Beside the concepts presented above, this SHA also has typed
else rules. Actually, we use a richer class of SHAs in the experiments, which is converted back into the
class of the paper when showing the results (except for else rules and typed else rules).

The results of our experiments are summarized in Table 20. For each automaton we present two
numbers, size(#states), its size and the number of its states. Unless specified otherwise, we use a timeout
of 1000 seconds whenever calling some determinization algorithm. Fields of the table are left blank
if an exception was raised. This happens when the determinization algorithm reached the timeout, the
memory was filled, or the stack overflowed. We conducted all the experiments on a Dell laptop with the
following specs: Intel® Core™ i7-10875H CPU @ 2.30 GHz,16 cores, and 32 GB of RAM.

The first column A of Table 20 reports on the SHAs obtained from the queries Qn.m, by the compiler
from [19] that is written in XSLT. The second column det(A) is obtained from SHA A by accessible
determinization. The blank cell in column det(A) for query Q4.4 was raised by a timeout of the deter-
minization algorithm. As one can see, this happens for all larger pairs (n,m). Furthermore, it appears
that the sizes of the automata det(A) grow exponentially with n+m.

In the third column det(A× S), the determinization of the product is presented. It yields much
smaller automata than with det(A). For Q4.3 for instance, det(A) has size 53550 (2161) while det(A×S)
has size 5412 (438). The computation continues successfully until Q6.4. For the larger queries Q6.5
and Q6.6, our determinizer runs out of memory. The fourth column detS(A) reports on schema-based
determinization. For Q4.3 for instance we obtain 3534 (329). Here and in all given examples, both
measures are always smaller for detS(A) than for det(A× S). While this may not always be the case,
but both approaches yield decent results generally. The numbers for the detS(A) for Q6.6 are marked in
gray, since its computation took around one hour, so we obtain it only when ignoring the timeout. In
contrast to det(A×S), however, the computation of detS(A) did not run out of memory though. The fifth

Niehren, Sakho, and Al Serhali 63

A det(A) det(A×S) detS(A) sclS(mini(det mini(
det(A)) (A×S)) detS(A))

Q2.1 166 (67) 1380 (101) 540 (92) 284 (53) 284 (53) 160 (43) 73 (20)

Q2.2 199 (79) 3635 (214) 1488 (167) 830 (106) 162 (43) 75 (20)

Q2.3 232 (91) 9574 (471) 4174 (334) 2424 (227) 164 (43) 77 (20)

Q2.4 265 (103) 24813 (1052) 11502 (713) 6826 (504) 166 (43) 79 (20)

Q4.1 240 (95) 8020 (435) 710 (116) 418 (75) 164 (43) 77 (20)

Q4.2 287 (111) 20945 (968) 1944 (215) 1220 (152) 166 (43) 79 (20)

Q4.3 334 (127) 53550 (2161) 5412 (438) 3534 (329) 168 (43) 81 (20)

Q4.4 381 (143) 14794 (945) 9856 (734) 170 (43) 83 (20)

Q6.1 314 (123) 48212 (2113) 880 (140) 552 (97) 168 (43) 81 (20)

Q6.2 375 (143) 2400 (263) 1610 (198) 170 (43) 83 (20)

Q6.3 436 (163) 6650 (542) 4644 (431) 172 (43) 85 (20)

Q6.4 497 (183) 18086 (1177) 12886 (964) 87 (20)

Q6.5 558 (203) 34376 (2169)

Q6.6 619 (223) 88666 (4862)

Figure 20: Statistics of automata for XPATH queries: size(#states)

Figure 21: The automaton mini(detS(A)) of the query Q3.4.

column sclS(det(A)) contains the schema-based cleaning of det(A). This automaton is equal to detS(A)
by Correctness Theorem 2. Nevertheless, this cell is left blank in all but the smallest case Q2.1, since our
datalog implementation of schema-based cleaning quickly runs out of memory for automata with many
states. The time in seconds that for determinization in det(A× S) and detS(A) grows in dependence of
the size of the output from 0.9 seconds until passing over the timeout.

In the last two columns for mini(det(A×S)) and mini(detS(A)) we report the sizes of the minimiza-
tion of det(A×S)) and detS(A). It turns out that mini(detS(A)) is always smaller than mini(det(A×S)),
if both can be computed successfully. An example of mini(detS(Q3.4)) is shown in Figure 21.

Conclusion and Future Work

We presented an algorithm for schema-based determinization for SHAs and proved that it always pro-
duces the same results as determinization followed by schema-based cleaning. We argued why schema-
based determinization is often way more efficient than standard determinization, and why it is close in
efficiency to the determinization of the schema-product. The statements are supported by upper com-
plexity bounds and experimental evidence. The experimental results of the present paper are enhanced
by follow up work [1]. They show that one can indeed obtain small deterministic automata based on
schema-based determinization of stepwise hedge automata for all regular XPATH queries in practice. We
hope that these automata are useful in the future for experiments with query answering.

64 Schema-Based Determinization

References

[1] Antonio Al Serhali & Joachim Niehren (2022): A Benchmark Collection of Deterministic Automata for
XPath Queries. In: XML Prague 2022, Prague, Czech Republic. Available at https://hal.inria.fr/
hal-03527888.

[2] Rajeev Alur (2007): Marrying Words and Trees. In: 26th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, ACM-Press, pp. 233–242. Available at http://dx.doi.org/10.1145/
1265530.1265564.

[3] Rajeev Alur & P. Madhusudan (2004): Visibly pushdown languages. In László Babai, editor: Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, ACM,
pp. 202–211, doi:10.1145/1007352.1007390.

[4] Rajeev Alur & P. Madhusudan (2009): Adding nesting structure to words. Journal of the ACM 56(3), pp.
1–43. Available at http://doi.acm.org/10.1145/1516512.1516518.

[5] Mikolaj Bojanczyk & Igor Walukiewicz (2008): Forest algebras. In Jörg Flum, Erich Grädel & Thomas
Wilke, editors: Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas], Texts in
Logic and Games 2, Amsterdam University Press, pp. 107–132.

[6] Burchard von Braunmühl & Rutger Verbeek (1985): Input Driven Languages are Recognized in log n Space.
In Marek Karplnski & Jan van Leeuwen, editors: Topics in the Theory of Computation, North-Holland
Mathematics Studies 102, North-Holland, pp. 1 – 19, doi:10.1016/S0304-0208(08)73072-X.

[7] J. Richard Büchi (1960): Weak Second-Order Arithmetic and Finite Automata.
Mathematical Logic Quarterly 6(1-6), pp. 66–92, doi:10.1002/malq.19600060105.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19600060105.

[8] Julien Carme, Joachim Niehren & Marc Tommasi (2004): Querying Unranked Trees with Stepwise Tree
Automata. In Vincent van Oostrom, editor: Rewriting Techniques and Applications, 15th International Con-
ference, RTA 2004, Aachen, Germany, June 3-5, 2004, Proceedings, Lecture Notes in Computer Science
3091, Springer, pp. 105–118, doi:10.1007/978-3-540-25979-4 8.

[9] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding, Florent Jacquemard, Denis Lugiez, Sophie
Tison & Marc Tommasi (2007): Tree Automata Techniques and Applications. Available online since 1997:
http://tata.gforge.inria.fr.

[10] Denis Debarbieux, Olivier Gauwin, Joachim Niehren, Tom Sebastian & Mohamed Zergaoui (2015): Early
nested word automata for XPath query answering on XML streams. Theor. Comput. Sci. 578, pp. 100–125,
doi:10.1016/j.tcs.2015.01.017.

[11] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans Rohnert &
Robert Endre Tarjan (1994): Dynamic Perfect Hashing: Upper and Lower Bounds. SIAM J. Comput. 23(4),
pp. 738–761, doi:10.1137/S0097539791194094.

[12] Massimo Franceschet: XPathMark Performance Test. https://users.dimi.uniud.it/~massimo.

franceschet/xpathmark/PTbench.html. Accessed: 2020-10-25.

[13] Olivier Gauwin, Joachim Niehren & Yves Roos (2008): Streaming Tree Automata. Information Processing
Letters 109(1), pp. 13–17, doi:10.1016/j.ipl.2008.08.002.

[14] Olivier Gauwin, Joachim Niehren & Sophie Tison (2009): Earliest Query Answering for Deterministic
Nested Word Automata. In: 17th International Symposium on Fundamentals of Computer Theory, Lecture
Notes in Computer Science 5699, Springer Verlag, pp. 121–132, doi:10.1007/978-3-642-03409-1 12.

[15] Anthony Lick & Schmitz Sylvain (Last visited April 13th 2022): XPath Bench-
mark. Available at https://archive.softwareheritage.org/browse/directory/

1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5.

[16] Kurt Mehlhorn (1980): Pebbling Moutain Ranges and its Application of DCFL-Recognition. In J. W.
de Bakker & Jan van Leeuwen, editors: Automata, Languages and Programming, 7th Colloquium, No-

https://hal.inria.fr/hal-03527888
https://hal.inria.fr/hal-03527888
http://dx.doi.org/10.1145/1265530.1265564
http://dx.doi.org/10.1145/1265530.1265564
https://doi.org/10.1145/1007352.1007390
http://doi.acm.org/10.1145/1516512.1516518
https://doi.org/10.1016/S0304-0208(08)73072-X
https://doi.org/10.1002/malq.19600060105
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19600060105
https://doi.org/10.1007/978-3-540-25979-4_8
http://tata.gforge.inria.fr
https://doi.org/10.1016/j.tcs.2015.01.017
https://doi.org/10.1137/S0097539791194094
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://doi.org/10.1016/j.ipl.2008.08.002
https://doi.org/10.1007/978-3-642-03409-1_12
https://archive.softwareheritage.org/browse/directory/1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5
https://archive.softwareheritage.org/browse/directory/1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5

Niehren, Sakho, and Al Serhali 65

ordweijkerhout, The Netherlands, July 14-18, 1980, Proceedings, Lecture Notes in Computer Science 85,
Springer, pp. 422–435, doi:10.1007/3-540-10003-2 89.

[17] Barzan Mozafari, Kai Zeng & Carlo Zaniolo (2012): High-performance complex event processing over XML
streams. In K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, Ariel Fuxman, K. Selçuk
Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano & Ariel Fuxman, editors: SIGMOD Conference,
ACM, pp. 253–264, doi:10.1145/2213836.2213866.

[18] Andreas Neumann & Helmut Seidl (1998): Locating Matches of Tree Patterns in Forests. In: Foundations of
Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science 1530, Springer
Verlag, pp. 134–145, doi:10.1007/978-3-642-03409-1 12.

[19] Joachim Niehren & Momar Sakho (2021): Determinization and Minimization of Automata for Nested Words
Revisited. Algorithms 14(3), p. 68, doi:10.3390/a14030068.

[20] Joachim Niehren, Momar Sakho & Antonio Al Serhali (2022): Schema-Based Automata Determinization.
In: Gandalf. Available at https://hal.inria.fr/hal-03536045.

[21] Alexander Okhotin & Kai Salomaa (2014): Complexity of input-driven pushdown automata. SIGACT News
45(2), pp. 47–67, doi:10.1145/2636805.2636821.

[22] Markus L. Schmid & Nicole Schweikardt (2021): A Purely Regular Approach to Non-Regular Core Spanners.
In Ke Yi & Zhewei Wei, editors: 24th International Conference on Database Theory (ICDT 2021), Leibniz
International Proceedings in Informatics (LIPIcs) 186, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, pp. 4:1–4:19, doi:10.4230/LIPIcs.ICDT.2021.4.

[23] H. Straubing (1994): Finite Automata, Formal Logic, and Circuit Complexity. Progress in Computer Science
and Applied Series, Birkhäuser, doi:10.1007/978-1-4612-0289-9.

[24] J. W. Thatcher (1967): Characterizing derivation trees of context-free grammars through a generaliza-
tion of automata theory. Journal of Computer and System Science 1, pp. 317–322, doi:10.1016/S0022-
0000(67)80022-9.

https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1145/2213836.2213866
https://doi.org/10.1007/978-3-642-03409-1_12
https://doi.org/10.3390/a14030068
https://hal.inria.fr/hal-03536045
https://doi.org/10.1145/2636805.2636821
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://doi.org/10.1007/978-1-4612-0289-9
https://doi.org/10.1016/S0022-0000(67)80022-9
https://doi.org/10.1016/S0022-0000(67)80022-9

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. 66–80, doi:10.4204/EPTCS.370.5

© H. de Nivelle and D. Muktubayeva

This work is licensed under the

Creative Commons Attribution License.

Generating Tokenizers with Flat Automata

Hans de Nivelle

School of Engineering and Digital Sciences,
Nazarbayev University, Nur-Sultan City, Kazakhstan

hans.denivelle@nu.edu.kz

Dina Muktubayeva

School of Engineering and Digital Sciences,
Nazarbayev University, Nur-Sultan City, Kazakhstan

dina.muktubayeva@nu.edu.kz

We introduce flat automata for automatic generation of tokenizers. Flat automata are a simple rep-

resentation of standard finite automata. Using the flat representation, automata can be easily con-

structed, combined and printed. Due to the use of border functions, flat automata are more compact

than standard automata in the case where intervals of characters are attached to transitions, and the

standard algorithms on automata are simpler. We give the standard algorithms for tokenizer construc-

tion with automata, namely construction using regular operations, determinization, and minimization.

We prove their correctness. The algorithms work with intervals of characters, but are not more com-

plicated than their counterparts on single characters. It is easy to generate C++ code from the final

deterministic automaton. All procedures have been implemented in C++ and are publicly available.

The implementation has been used in applications and in teaching.

1 Introduction

This paper is part of a project to obtain a programming language for the implementation of logical

algorithms. Logic is special because its algorithms operate on trees that have many different forms

with different subtypes. Algorithms need to distinguish the form of the tree, and take different actions

dependent on this form. Intended applications of our language are parts of theorem provers, or interactive

verification systems. For the interested reader, we refer to ([11]). Part of this project is to obtain a working

compiler. We have looked at existing tools for the generation of the parser and the tokenizer, but none

of them fulfilled our needs. In particular, there was no bottom-up parser generation tool available that

supports modern C++, and existing tokenizer generation tools are not flexible enough. Existing tokenizer

generators like LEX ([9]) and RE2C ([3]) generate the complete tokenizer, which makes them unsuitable

for our language. Our language uses Python-style indentation, which requires that the tokenizer must

generate a token when the indentation level changes. Detecting a change of indentation level is quite

complicated, and it cannot be represented by regular expressions. Lack of flexibility is a general problem,

for example C and C++ require that the tokenizer has access to type information, so that different tokens

can be generated for identifiers that represent a type name or a template name. C++-11 allows use of

>> to close two template arguments at once (for example in std::vector<std::pair<int,int>>. In

that case, >> must be tokenized as two separate >. In order to do this correctly, the tokenizer needs to

know if the parser is currently parsing a template argument.

In order to obtain the required flexibility, we created a new implementation that does not generate

the complete tokenizer, but which only cuts the input in small chunks, and classifies them by type. We

discuss details of our implementation in Section 8. In this paper, we concentrate on the representation

of finite automata used by our implementation. We use so-called border functions to represent interval-

based transitions. Instead of storing transitions of form ([σ1,σ2],q), (for characters between σ1 and σ2,
go to state q) we store only the points where the behavior of the transition changes, i.e. the borders, so

instead we store (σ1,q),(σ + 2,#), with # denoting ’getting stuck’. For every character, the transition

http://dx.doi.org/10.4204/EPTCS.370.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

H. de Nivelle and D. Muktubayeva 67

is determined by the greatest border that is not greater than the character itself. When implementing

transformations on automata, border functions are much easier to deal with than intervals, because there

is no need to distinguish between the beginning and the end of an interval. All that needs to be looked

at, are the borders.

In addition to the use of border functions, we store the automata in an array (vector) using relative

state references. This removes the need to represent automata as graphs, and the combinations that

correspond to regular operators become trivial. In most cases, the automata can be just concatenated

with the addition of a few ε transitions.

These two modifications result in a representation that is easy to explain and implement, and whose

automata are easy to read. This is useful both for teaching and for debugging. Big automata representing

complete tokenizers tend to be local, and our transformations preserve this locality.

In general, our automaton representation is somewhat more complicated than the standard represen-

tation, some of the correctness proofs become a bit more complicated, but the operations themselves are

equally complicated. The extra effort in defining the automata and proving the operations correct pays

off when the automata are applied: The standard representation must be further adapted in order to make

it work in practice, while ours works without further adaptation. We have implemented flat automata in

C++, and the implementation is available from [12].

In the next section, we will define alphabets and border functions. In Section 3, we define acceptors,

which are automata that can only accept or reject. In Section 4 we explain how to obtain acceptors by

means of regular operations. We do not define regular expressions as separate entities, instead we directly

construct the automata. In Section 5, we define classifiers, which are obtained by pairing acceptors with

token names. In Section 6 we adapt the standard determinization procedure to automata with border

functions. The border functions make it possible to keep the algorithm simple. In Section 7 we adapt

state minimization to our representation of automata. The algorithm can be kept simple (as simple as for

single characters) because of the border functions. We use Hopcroft’s algorithm ([7]) with an adaptation

of a filter from [10]. In Section 8 we draw some conclusions, and sketch possibilities for future work.

2 Preliminaries

We will assume that alphabets are well-ordered sets. In the usual case where the alphabet is finite, it is

sufficient that there exists a total order on the alphabet.

Definition 2.1 An alphabet is a pair (Σ,<), s.t. Σ is a non-empty set, and < is a well-order on Σ. We

define c⊥ = min(Σ). If {c′ ∈ Σ| c < c′} is non-empty, then we write c+1 for min{c′ ∈ Σ | c < c′ }.

As far as we know, all alphabets in use, including ASCII and Unicode ([5]) satisfy the requirements of

Definition 2.1 or can be adapted in such a way that they do.

Our aim is to define automata by means of intervals, because in practice, many tokens (like for

example numbers or identifiers) use intervals in their definitions. Another advantage of use of intervals

is that is becomes possible to use large alphabets, like Unicode.

Dealing with intervals becomes easier if one removes the distinction between start and end of interval.

This can be done by storing only the points where a new value starts, and creating a special value #

denoting ’not in any interval’. For example, when defining identifiers, one may want to define a transition

to some state q, for σ ∈ {A, . . . ,Z}∪ {a, . . . ,z}, because all letters usually behave the same. This can

be represented as {(A,q), (Z +1,#), (a,q), (z+1,#) }. Here A,Z +1,a,z+1 are the borders where the

behavior changes. In order to determine the transition for a given symbol one needs to find the largest

68 Generating Tokenizers with Flat Automata

border that is not greater than the symbol at hand. We will call a function, that is defined in this way, a

border function.

Definition 2.2 Let (Σ,<) be an alphabet, let D be an arbitrary, non-empty set. A border function φ on

(Σ,<) is a partial function from Σ to D, defined for a finite subset of Σ, but at least for c⊥. We write

dom(φ) for the set of symbols for which φ is defined. We call the set D the range of φ . We will write

border functions as sets of ordered pairs, whenever it is convenient.

Definition 2.3 For a given σ ∈ Σ, we first define σ≤ = max{σ ′ ∈ dom(φ) | σ ′ < σ or σ ′ = σ }. After

that, we define φ≤(σ) = φ(σ≤).

It can be easily checked that φ≤(σ) always exists and is uniquely defined, because φ is finite and has c⊥
in its domain.

Definition 2.4 Let φ1 and φ2 be two border functions on the same alphabet (Σ,<). We say that φ1 and

φ2 are equivalent if for all σ ∈ Σ, φ≤
1 (σ) = φ≤

2 (σ).
We call φ minimal if there exists no equivalent φ ′ ⊂ φ . We define the minimization of φ as the ⊆-minimal

border function that is equivalent to φ .

Definition 2.4 uses the fact that border functions can be viewed as sets of ordered pairs. It can be easily

checked that border functions can be minimized. If φ(σ1) = φ(σ2), and there is no σ ′ with σ1 < σ ′ < σ2

in the domain of φ , then φ(σ2) can be removed from φ .
If for example both φ(1) = φ(3) = 4, and 2 is not in the domain of φ , then removing 3 from the

domain will not have effect on φ≤. Assume that Σ = {−100,−99, . . . ,99,100}. Assume that φ(−100) =
−1, φ(−4) = 3, φ(2) = 8, and φ(6) = 4, then φ≤(−100) = φ≤(−3) = −1, φ≤(−4) = φ≤(1) = 3,
φ≤(2) = φ≤(5) = 8, and φ≤(6) = φ≤(100) = 4.

Definition 2.5 Let φ1 and φ2 be two border functions over the same alphabet (Σ,<). Let D1 be the range

of φ1 and let D2 be the range of φ2. We define the product φ1 ×φ2 as the border function

{ (σ ,(φ≤
1 (σ),φ≤

2 (σ))) | σ ∈ dom(φ1)∪dom(φ2) }.

The range of φ1 ×φ2 is D1 ×D2.

Definition 2.6 Let φ be a border function over alphabet (Σ,<). Let D be the range of φ . Let f be a

function from D to some set D′. We define the application of f on φ as the minimization of

{ (σ , f (φ(σ))) | σ ∈ dom(φ) }.

We will write f (φ) for the application of f on Φ.

3 Acceptors

We distinguish two types of automata which we call acceptor and classifier. An acceptor can only

accept or reject a word, while a classifier is able to classify words. A complete tokenizer is a classifier,

while single tokens are defined by acceptors. A classifier is obtained by associating acceptors with token

classes.

Although acceptors can be directly defined in code through initializers, it is inconvenient to do this,

and we will construct them from regular expressions. We do not view regular expressions as indepen-

dently existing objects. Instead we view regular operators as operators that work directly on acceptors.

We have no data structure for regular expressions.

H. de Nivelle and D. Muktubayeva 69

Acceptors are standard finite automata. We represent them in such a way that the regular operations

are easy to present and to implement. In order to obtain this, we use a flat, linear representation which

we will introduce shortly. In the literature, finite automata are traditionally represented by graphs whose

vertices are states and whose edges are labeled with symbols. (See for example [1, 14]). This is imple-

mentable, but we believe that our representation is simpler. There is no problem of memory management,

and printing automata is easy. When we print an automaton, the states are printed absolute instead of

relative.

Definition 3.1 Let (Σ,<) be an alphabet. An acceptor A over Σ is a finite sequence

A = (Λ1,φ1), . . . ,(Λn,φn) (n ≥ 0),

where each Λi ⊆ Z , and each φi is a border function from Σ to Z ∪{#}.
Each Λi denotes the set of epsilon transitions from state i, while each φi represents the set of non

epsilon transitions from state i.
We call A deterministic if all Λi are empty. We often write ‖A ‖ instead of n for the size of A .

We use the following conventions:

• # means that no transition is possible. Note that φ(σ) = # should not be confused with ’φ(σ)
is undefined’. Due to the use of border functions, one has to explicitly state that φ(σ) has no

transition, because otherwise φ≤(σ) would ’inherit’ a transition from a σ ′ < σ .

• The initial state is always 1, and the accepting state is always n+1, just outside of the acceptor.

• State references in a Λi or φi are always relative to i. That means that i itself is represented by 0,
i+1 is represented by 1, while i−1 is represented by −1, etc.

• There are no transitions to states < 2 or states > n+1.

Note that the last condition stipulates that the acceptor cannot return to the first state during a run. Most

of the constructions for combining acceptors become simpler with this condition. Forbidding transitions

to the initial state of an automaton is common in the literature, see for example [8]. An automaton with

this property is usually called committing.

In addition, it is usually required that there is exactly one accepting state, and that there are no transi-

tions going out of the accepting state. These conditions are automatically fulfilled by our representation.

Acceptors can be non-deterministic, but all non-determinism must be inside the Λi, i.e. in the form of

ε-transitions. All acceptors constructed by the regular operations of Section 4 have this form. If one

wants to represent a general non-deterministic automaton, one has to remove transitions from the same

state with overlapping intervals. For example, a state can have transitions to different states for the

intervals [a, . . . ,z], and [a, . . . ,d]. In this case, the original state can be split into two states connected by

an ε-transition. During this process, the number of states and ε-transitions can increase, but it will not

become more than the total number of borders in the step functions of the original automaton.

We will now formally define when A accepts a word w.

Definition 3.2 Let A be an acceptor over alphabet Σ. We define a configuration of A as a pair (z,w),
with 1 ≤ z ≤ ‖A ‖ and w ∈ Σ∗.
We define the transition relation ⊢ between configurations as follows:

• If j ∈ Λi and w ∈ Σ∗, then (i,w) ⊢ (i+ j,w).

• If w ∈ Σ∗, σ ∈ Σ, and φ≤
i (σ) = j with j 6= #, then (i,w) ⊢ (i+ j,wσ), where φ≤

i (σ) is the border

function of state i applied on σ .

70 Generating Tokenizers with Flat Automata

We define ⊢i and ⊢∗ between configurations as usual.

We say that A accepts w ∈ Σ∗ if (1,ε) ⊢∗ (‖A ‖+1,w).
We write L (A) for the language {w ∈ Σ∗ | A accepts w}.

Example 3.3 We give an acceptor that accepts standard identifiers (starting with a letter, followed by

zero or more letters, digits, or underscores). The first column, which numbers the states, is not part of

the automaton.

1 : { } {(c⊥,#), (A,1), (Z
+1,#), (a,1), (z+1,#)}

2 : {1} {(c⊥,#), (0,0), (9
+1,#), (A,0), (Z+1,#), (,0), (+1,#), (a,0), (z+1,#)}

The initial state is 1. From state 2, there is one epsilon transition to state 2+1= 3, which is the accepting

state. If σ ∈ {a, . . . ,z}∪{A, . . . ,Z}∪{ }, there is a transition from state 2 to state 2+0 = 2.

Example 3.4 The following acceptor accepts the reserved word ”while”. The accepting state is 6.

1 : { } {(c⊥,#),(w,1),(w
+1,#)}

2 : { } {(c⊥,#),(h,1),(h
+1 ,#)}

3 : { } {(c⊥,#),(i,1),(i
+1,#)}

4 : { } {(c⊥,#),(l,1),(l
+1,#)}

5 : { } {(c⊥,#),(e,1),(e
+1,#)}

It may seem from Examples 3.3 and 3.4 that acceptors can be easily written by hand, but unfortunately

that is not the case in general, because one needs to know the order of the alphabet. One must remember

that upper case letters come before lower case letters in ASCII, and the relative positions of special

symbols. We initially thought that it would be doable, but it turned out impossible to write non-trivial

acceptors by hand. Despite this, automata are easily readable if one prints the states in transitions as

absolute, and uses the following printing convention: In the transition function, pairs of form (σ ,#)
where σ is the successor of a symbol τ , are printed in the form (τ+1,#). Without this convention, for

example (A,0),(Z+1,#) would be printed as (A,0),([,#), which is a bit hard to read.

4 Obtaining Acceptors by Regular Operations

As explained below Example 3.4, writing down acceptors directly by hand is unpractical. The standard

approach in the literature and in existing systems, is to obtain automata by means of regular expressions

([1, 14]). We follow this approach, but we will not view regular expressions as independently existing

objects. Rather we define a set of regular operators on automata that construct acceptors at once.

Definition 4.1 Let (Σ,<) be an alphabet. In the current definition, we will construct border functions

with range {f, t}. We define φ /0 = {(σ⊥, f)}, and φΣ = {(σ⊥, t)}. We define

φ≥σ = if (σ = σ⊥) then {(σ⊥, t)} else {(σ⊥, f),(σ , t)}.

For σ ∈ Σ, let C>σ = {σ ′ ∈ Σ | σ ′ > σ }, the set of symbols greater than σ . We define

φ≤σ = if (C>σ = /0) then {(σ⊥, t)} else {(σ⊥, t),(min(C>σ), f)}

We define φ1 ∩ φ2 = I(φ1 × φ2), with I((d1,d2)) = if (d1 = t and d2 = t) then t else f, and we define

¬φ = N(φ), with N(d) = if (d = t) then f else t. Other Boolean combinations, like φ1 ∪ φ2, and φ1\φ2

can be defined analogously.

H. de Nivelle and D. Muktubayeva 71

Definition 4.2 We define the following ways of constructing acceptors over Σ :

• The acceptor Aε , which accepts exactly the empty word, is defined as ().

• Let f# be the function defined from f#(f) = #, and f#(t) = 1. Then, if φ is a border function with

range {f, t}, we define A [φ] as the acceptor (({}, f#(φ)). (We are using Definition 2.6.)

A [φ] accepts exactly the symbols (as words) for which φ≤ returns t. Using A [φ], it is easy to construct

acceptors for Boolean combinations of intervals. For example, an acceptor that accepts exactly letters

can be defined as A [(φ≥a ∩ φ≤z)∪ (φ≥A ∩ φ≤Z)]. An acceptor that accepts all letters except X can be

defined as A [φΣ ∩¬(φ≥X ∩φ≤X)]. The acceptor that accepts nothing can be defined as A /0 = A [φ /0].

Definition 4.3 Let A = (Λ1,Φ1), . . . ,(Λn,Φn) and A ′ = (Λ′
1,Φ

′
1), . . . ,(Λ

′
n,Φ

′
n′) be acceptors. We define

the concatenation A ◦A ′ as (Λ1,Φ1), . . . ,(Λn,Φn),(Λ
′
1,Φ

′
1), . . . ,(Λ

′
n′ ,Φ

′
n′).

Operation ◦ simply concatenates acceptors.

Theorem 4.4 Let A1 and A2 be acceptors. L (A1 ◦A2) = {w1w2 | w1 ∈ L (A1) and w2 ∈ L (A2)}.

Proof

Throughout the proof, we define n1 = ‖A1‖ and n2 = ‖A2‖.
Let w ∈ L (A1 ◦A2). By definition, (1,ε) ⊢∗ (n1 + n2 + 1,w). There exists at least one prefix w′ of

w, s.t. (1,ε) ⊢∗ (n′,w′) ⊢∗ (n1 + n2 + 1,w) having n′ > n1 because w itself satisfies this condition. Let

w1 be the smallest such prefix. By the last condition of Definition 3.1, n′ must be equal to n1 +1, hence

w1 ∈ L (A1). Let w2 be the rest of w, so we have w = w1w2. Because (n1 + 1,w1) ⊢
∗ (n1 + n2 + 1,w),

it follows that (n1 + 1,ε) ⊢∗ (n1 + n2 + 1,w2). Note that this sequence still uses A1 ◦A2. Since A2 has

no transitions to states < 2, and all transitions originate from A2, the configurations (n′′,w′′) in the

sequence (n1 + 1,ε) ⊢∗ (n1 + n2 + 1,w2) must have n′′ ≥ n1 + 1. Since transitions are relative, we have

(1,ε) ⊢∗ (n2 +1,w2) in A2.
Now assume that w1 ∈ L (A1) and w2 ∈ L (A2). We have (1,ε) ⊢∗ (n1,w1) in A1, and (1,ε ⊢∗

(n2,w2) in A2. The second sequence can be easily modified into (n1 +1,ε) ⊢∗ (n1 +n2 +1,w2) in A1 ◦
A2, which in turn can be modified into (n1 +1,w1) ⊢

∗ (n1 +n2 +1,w1w2) in A1 ◦A2.

Definition 4.5 We first define an operation that adds ε transitions to an acceptor. Let A = (Λ1,Φ1), . . . ,
(Λn,Φn) be an acceptor. We define A {i →ε j} as (Λ1,Φ1), . . . ,(Λi ∪{ j− i},Φi), . . . ,(Λn,Φn). We add

j− i instead of just j to Λi because transitions are relative.

The union A1 |A2 of A1 and A2 is defined as

(A1 ◦A /0 ◦A2){ 1 →ε ‖A1‖+2, ‖A1‖+1 →ε ‖A1‖+‖A2‖+2 }.

In this definition, we use A /0 as defined below Definition 4.2, namely A /0 = ({},{(c⊥,#)}). We prove

that union behaves as expected:

Theorem 4.6 For every two acceptors A1 and A2, we have L (A1 |A2) = L (A1)∪L (A2).

Proof

As before, we use n1 = ‖A1‖ and n2 = ‖A2‖. Assume that w ∈ L (A1|A2). By definition, (1,ε) ⊢∗

(n1 + n2 + 2,w). If state n1 + 2 does not occur in this sequence, it must be the case that the state n1 + 1

occurs in the sequence, because the accepting state is reachable only from n1 + 1 or from states ≥
n1 +2.. This implies that w ∈L (A1). Similarly, if state n1 +2 occurs in the sequence, then we note that

n1 + 2 originates from the initial state of A2. It follows that w ∈ L (A2). As a consequence, we have

L (A1|A2)⊆ L (A1 ∪A2).

72 Generating Tokenizers with Flat Automata

Now assume that w ∈ L (A1)∪L (A2). If w ∈ L (A1), we have (1,ε) ⊢∗ (n1 + 1,w) in A1. In

A1|A2, this sequence can be extended to (1,ε) ⊢∗ (n1 +1,w) ⊢ (n1 +n2 +2,w).
If w ∈ L (A2), we have (1,ε) ⊢∗ (n1 + 1,w) in A2. In A1|A2, this sequence becomes (1,ε) ⊢

(n1 +2,ε) ⊢∗ (n1 +n2 +2,w). This implies that L (A1 ∪A2)⊆ L (A1|A2).

Definition 4.7 The Kleene star A ∗ of A is defined as

(A /0 ◦A ◦A /0){1 →ε 2, 2 →ε ‖A ‖+3, ‖A ‖+2 →ε 2}.

Theorem 4.8 For every acceptor A , the following holds:

w ∈ L (A ∗) iff there exist w1, . . . ,wk (k ≥ 0), s.t. w = w1w2 · · ·wk and each wi ∈ L (A).

Proof

In this proof, let n = ‖A ‖. First assume that (1,ε) ⊢∗ (n+3,w). By separating out the visits of state 2,
we can write this sequence in the following form:

(1,ε) ⊢ (2,ε) ⊢∗ (2,v1) ⊢
∗ (2,v2) ⊢

∗ · · · ⊢∗ (2,vk−1) ⊢
∗ (2,vk) ⊢

∗ (n+3,w),

where each subsequence ⊢∗ contains no visits to state 2. For simplicity, set v0 = ε . Then, for i with

1 ≤ i ≤ k, the word vi−1 is a prefix of vi. For 1 ≤ i ≤ k, define the difference wi such that vi−1 wi = vi.
By construction of A ∗, state 2 originates from the original acceptor A . Hence (2,vi−1) ⊢

∗ (2,vi)
implies that (2,vi−1) ⊢

∗ (2+n,vi) ⊢ (2,vi). Since the sequence (2,vi−1) ⊢
∗ (2+n,vi) must be completely

within A , it follows that wi ∈L (A). For the final sequence (2,vk) ⊢
∗ (n+3,w), it can be easily checked

that the only transition to n+ 3 is an ε-transition from state 2. Hence, we have (2,vk) ⊢ (n+ 3,w) and

vk = w. Since we have w = w1 · · ·wk, this completes one direction of the proof.

For the other direction, assume we have w1, . . . ,wk, s.t each wi ∈ L (A) for some k ≥ 0. By defini-

tion, we have (1,ε) ⊢∗ (n+ 1,wi) in A , which implies that for every word v′ ∈ Σ∗, we have (1,v′) ⊢∗

(n+1,v′wi) in A .
In A ∗, we have (2,v′) ⊢∗ (n+2,v′wi). By combining and properly instantating the v′, we obtain

(1,ε) ⊢ (2,ε) ⊢∗ (2,w1) ⊢
∗ (2,w1w2) ⊢

∗ · · · ⊢∗ (2,w1w2 · · ·wk) ⊢ (n+3,w1w2 · · ·wk),

which completes the proof.

At this point, we can define all other common regular operations. For example A + can be defined as

A ◦A ∗, and A ? can be defined as A |Aε . Since direct construction results in slightly smaller acceptors,

we still give the following definitions:

Definition 4.9 Let A be an acceptor. We define the non-empty repetition A + as

(A /0 ◦A ◦A /0){ 1 →ε 2, ‖A ‖+2 →ε 2, ‖A ‖+2 →ε ‖A ‖+3 }.

We define the optional expression A ? as A { 1 →ε ‖A ‖+1 }.

The construction of A ? relies on the fact that A is committing.

Theorem 4.10 For every acceptor A , the following holds:

w ∈ L (A +) iff there exist w1, . . . ,wk (k ≥ 1), s.t. w = w1w2 · · ·wk and each wi ∈ L (A).

L (A ?) = L (A)∪{ε}.

Instead of the automaton in example 3.3, we can now write:

A [(φ≥a ∩φ≤z)∪ (φ≥A ∩φ≤Z)]◦A [(φ≥a ∩φ≤z)∪ (φ≥A ∩φ≤Z)∪ (φ≥0 ∩φ≤9)∪ (φ≥ ∩φ≤)]∗.

H. de Nivelle and D. Muktubayeva 73

5 Classifiers

In order to obtain a complete tokenizer, it is not sufficient to accept or reject a given input. Instead one

must classify input into different groups. We call an automata that can classify a classifier. Contrary to

standard text books, like for example [14], we define determinization and minimization on classifiers,

not on acceptors.

Definition 5.1 Let (Σ,<) be an alphabet. Let T be a non-empty set of token classes. A classifier over Σ

into T is a non-empty, finite sequence

C = (Λ1,φ1, t1), . . . ,(Λn,φn, tn) (n ≥ 1),

where each Λi ⊆ Z , each φi is a border function from Σ to Z ∪{#}, and each ti ∈ T. We will often write

‖C ‖ for the size of C . We call C deterministic if all Λi are empty.

For representing transitions, we use the same conventions as for acceptors, namely that transitions are

stored relative, and φi(σ) = # means that no transition is possible. In contrast to acceptors, we allow

transitions to state 1, and we forbid transitions to state n+1. Intuitively, a classifier is a non-deterministic

automaton, which looks for the longest run possible, and classifies as ti when it gets stuck in state i. We

will make this more precise soon.

In order to obtain a classifier, we start with a trivial classifier that classifies every input as error

(actually, this classifier defines what is an error), and add pairs of acceptors and token classes.

We always assume that state 1 defines the error class. This is a reasonable choice, because no

classifier can classify ε as a meaningful token.

Definition 5.2 Let T be a token class. Let e, t ∈ T and let A = (Λ1,φ1), . . . ,(Λn,φn) be an acceptor.

We define A [e, t] as the classifier (Λ1,φ1,e), . . . ,(Λn,φn,e), ({ },{(σ⊥,#)}, t), i.e. as the classifier that

classifies words accepted by A as t, and all other words as e.

Let e ∈ T. We define Ce = ({ },{(σ⊥,0)},e), i.e. as the classifier that classifies every word as e.

For a classifier C with first classification t1, acceptor A , and t ∈ T, we define C [t : A] as

C { 1 →ε ‖C ‖+1 }◦A [t1, t].

Here ◦ denotes concatenation of acceptors.

The construction of C [t : A] appends A to C in such a way that words accepted by A will be classified

as t. Since acceptors accept by falling out of the automaton, we need to add an additional state without

outgoing transitions, which will classify words that are able to reach it as t. We also add an ε transition

from the first state to the added acceptor. Words that cannot reach an accepting state of any of the

acceptors will be classified as t1, because the classification of the first state is used as error classification.

Example 5.3 Assume that we want to construct a classifier that classifies identifiers as I with the excep-

tion of ‘while’, which should be classified as W. Using the acceptors of Examples 3.3 and 3.4, we can

74 Generating Tokenizers with Flat Automata

construct CE [I : Aid, W : Awhile] as

1 : {1,4} { (c⊥,0) } E

2 : /0 {(c⊥,#), (A,1), (Z
+1,#), (a,1), (z+1,#)} E

3 : {1} {(c⊥,#), (0,0), (9
+1,#), (A,0), (Z+1,#),

(,0), (+1,#), (a,0), (z+1,#)} E

4 : /0 {(c⊥,#)} I

5 : /0 {(c⊥,#),(w,1),(w
+1,#)} E

6 : /0 {(c⊥,#),(h,1),(h
+1 ,#)} E

7 : /0 {(c⊥,#),(i,1),(i
+1,#)} E

8 : /0 {(c⊥,#),(l,1),(l
+1,#)} E

9 : /0 {(c⊥,#),(e,1),(e
+1 ,#)} E

10 : /0 {(c⊥,#)} W

Without further restrictions, the classifier above can classify ‘while’ either as I or as W. In order to avoid

such ambiguity, we always take the classification of the maximal (using < on natural numbers) reachable

state that is not an error state. In the current case, after reading ’while’ the reachable states are 1,3,4 and

10. Since 10 is the maximal state and its label is not t1 = E, the classifier classifies as W.

Other solutions for solving ambiguity do not work well. In particular using an order < on T is

unpleasant. If T is an enumeration type, it is difficult to control how T is ordered. If T is a string type,

its order is determined by the lexicographic order, and it is tedious to override it.

Before we can make classification precise, we need to introduce one technical condition. By default, the

first state defines the error state t1. If from the first state it is possible to reach a state i with ti 6= t1, we

could possibly classify the word as non-error. Whenever we encounter such a situation in real, it is due

to a mistake, mostly due to writing A ∗ where A + would have been required. Hence, we will forbid such

automata.

Definition 5.4 A classifier C is well-formed if it does not allow a sequence (1,ε) ⊢∗ (i,ε) with ti 6= ti.

The automaton in Example 5.3 is well-formed. Changing t2 into t2 = I would make it ill-formed.

The following definition makes classification precise:

Definition 5.5 For classifiers, we define configurations as in Definition 3.2. We also define ⊢ and ⊢∗ in

the same way.

We define classification: Classifying a word w ∈ Σ∗ means obtaining a maximal prefix w′ of w that

is not classified as error (t1), together with the preferred classification of w′. Let C be a classifier, let

w ∈ Σ∗. Let w′ be a maximal prefix of w, s.t. there exists a state i of C with (1,ε) ⊢∗ (i,w′) and ti 6= t1.
If no such state i exists, then the classification of w equals (ε , t1).
If such a state exists, assume that i is the largest state for which (1,ε) ⊢∗ (i,w′) and ti 6= t1. In this

case, the classification equals (w′, ti).

6 Determinization

It is possible to run a non-deterministic classifier directly, but it is inefficient in the long run when

many input words need to be classified. As with standard automata, a non-deterministic classifier can

be transformed into an equivalent, deterministic classifier. The construction is almost standard (See for

H. de Nivelle and D. Muktubayeva 75

example [1, 8, 14]), but there are a few differences: We perform the construction on classifiers instead

of acceptors, because that is what will be used in applications, and we get generalization to character

intervals for free, because of the use of border functions. The advantage of border functions is that there

is no need to distinguish between starts and ends of intervals. The only points that need to be looked at

are the borders. As a result the construction is only slightly more complicated than the standard approach,

while at the same time working in practice without adaptation. The following definition is completely

standard:

Definition 6.1 Let C be a classifier. Let S be a subset of its states. We define the closure of S, written as

CLOSC (S) as the smallest set of states S′ with S ⊆ S′, and whenever i ∈ S′ and j ∈ Λi, we have i+ j ∈ S′.

As said before, during determinization one only needs to consider the borders:

Definition 6.2 Let C be a classifier defined over alphabet (Σ,<). Let S be a non-empty set of states of

C . We define

BORDC (S) = {σ ∈ Σ | σ is in the domain of a φi with i ∈ S}.

BORDC (S) is the set of symbols where the border function of one of the states in S has a border. These

are the points where ’something happens’, and which have to be checked when constructing the deter-

ministic classifier. In the classifier of Example 5.3, we have CLOSC ({1}) = {1,2,5} and

BORDC ({1,2,5}) = {c⊥, A, Z+1, a, w, w+1, z+1 }.

Before we describe the determinization procedure, we need a way of extracting classifications from sets

of states:

Definition 6.3 Let C be a classifier. Let S be a subset of its states. We define CLASSC (S) as follows:

If for all i ∈ S, one has ti = t1, then CLASSC (S) = t1. Otherwise, let i be the maximal element in S for

which ti 6= t1. We define CLASSC (S) = ti.

In example 5.3, CLASSC (/0) = CLASSC ({1,2,3,5,6,7,8,9}) = E, CLASSC ({4,6,7}) = I, and

CLASSC ({3,4,10}) =W.
Now we are ready to define the determinization procedure. It constructs a deterministic classifier

Cdet from C .

Definition 6.4 The determinization procedure maintains a map H that maps subsets of states of C that

we have discovered into natural numbers. It also maintains a map Si that is the inverse of H, so we

always have SH(S) = S.

1. Start by setting H(CLOSC ({1})) = 1, and by setting S1 = CLOSC({1}).

2. Set Cdet = ().

3. As long as ‖Cdet‖< ‖H‖, repeat the following steps:

4. Let i = ‖Cdet‖+1. Append ({},{},CLASSC (Si)) to Cdet.

5. For every σ ∈ BORDC (Si), do the following:

• Let S′ = {s+φ≤
s (σ) | s ∈ S and φ≤

s (σ) 6= #}. (φs is the border function of state s.)

• If S′ = /0, then extend φi by setting φi(σ) = #. Skip the remaining steps.

• Set S′′ = CLOSC (S
′).

• If S′′ is not in the domain of H, then add H(S′′) = ‖H‖+1 to H, and set S‖H‖+1 = S′′.

• At this point, we are sure that H(S′′) is defined. Extend φi by setting φi(σ) = H(S′′).

76 Generating Tokenizers with Flat Automata

As usual, H and S can be discarded when the construction of Cdet is complete. It is easily checked that

C is deterministic, because all its Λi are empty.

Theorem 6.5 Let C be a classifier that is well-formed, and Cdet be the classifier constructed from C by

using the determinization procedure of Definition 6.4. For every word w ∈ Σ∗, if C classifies w as (w′, t ′),
and Cdet classifies w as (w′′, t ′′), then w′ = w′′ and t ′ = t ′′.

Proof

The proof is mostly standard, and we sketch only the points where it differs from the standard proof.

Because C is well-formed, we have t1 = tdet ,1, which means that both classifiers will use the same token

class as error class.

For every word w ∈ Σ∗, define the set Rw = {r ∈ {1, . . . ,‖C ‖} | (1,ε) ⊢∗ (w,r)}. These are the set of

states that classifier C can reach while reading w.
Also define the relation δdet(w, i) as (ε ,1) ⊢∗ (w, i). (Classifier Cdet reaches state i while reading w.)
It can be proven by induction, that

1. if Rw 6= /0, then δdet(w, i) implies i = H(Rw). If Rw = /0, then there is no i, s.t. δdet(w, i).

2. if Rw 6= /0, then δdet(w, i) implies tdet,i = CLASS(Rw).

Now we can look at the classification of an arbitrary word w ∈ Σ∗. If for all prefixes w′ of w, we have

CLASS(Rw′) = t1, then C will classify w as (/0, t1). If for some prefix there exists an i′, s.t. δdet(w
′, i′)

holds, we have tdet ,i′ = CLASS(Rw′) = t1 by (2), so that CLASS(Rw′) = tdet,1. It follows that Cdet also

classifies w as (/0, t1).
If there exists a prefix w′ of w for which CLASS(Rw′) 6= t1, then let w′ be the largest such prefix.

There exists exactly one i′, s.t. δdet(w
′, i′) holds, and by (2) again, we have tdet,i′ = CLASS(Rw′), which

is not equal to tdet,1.
Because w′ was chosen maximal, it follows that for all words w′′ 6= w′ s.t. w′ is a prefix of w′′

and w′′ is a prefix of w, either we have Rw′′ = /0 or CLASS(Rw′′) = t1. In both cases, there is no i′′, s.t.

(1,ε) ⊢ (i′′,w′′) and tdet,i′′ in classifier Cdet . In the former case, no i′′ exists exists at all, and in the latter

case, δdet(w
′′, i′′) holds, and we have tdet ,i′′ = CLASS(Rw′′) = t1.

As a consequence, both C and Cdet will classify w as (w′,CLASS(Rw′)).

7 State Minimization

It is well-known that for every regular language there exists a unique deterministic automaton with mini-

mal number of states (See [1] Section 3.9, or [8] Section 4.4.3). The minimal automaton can be obtained

in time O(n. log(n)) from any deterministic automaton by means of Hopcroft’s algorithm ([7]).

Altough it probably has minimal impact on performance, minimization has a suprising effect on the

size of the classifier. It turns out that on classifiers obtained from realistic programming languages, the

number of states decreases by 30/40%.
It is straightforward to adapt Hopcroft’s algorithm to classifiers. We sketch the implementation

below. The algorithm takes a deterministic classifier C as input, and constructs the smallest (in terms

of equivalence classes) partition on the states of C , s.t. i ≡ j implies ti = t j and for every σ ∈ Σ,
i+ φ≤

i (σ) ≡ j+ φ≤
j (σ). (We are implicitly assuming that # ≡ # and # 6= i.) Once one has the partition,

the automaton can be minimized by selecting one state from each partition.

Definition 7.1 We use an array (P1, . . . ,Pp) for storing the current state partition. We have
⋃

1≤i≤p Pi =
{1, . . . ,‖C ‖} and i 6= j ⇒ Pi ∩Pj = /0.

H. de Nivelle and D. Muktubayeva 77

In addition to the partition (P1, . . . ,Pp), we use an index map I that maps states to their partition, i.e.

for every state i(1 ≤ i ≤ ‖C ‖), we have i ∈ PIi
.

The initial partition is obtained from a function f with domain {1, . . . ,‖C ‖} and arbitrary range.

States i and j are put in the same class iff f (i) = f (j).

We tried two initialization strategies: The first strategy is simply taking f (r) = tr, which means

that two states will be equivalent if they have the same classification. The second is an adaptation of a

heuristic in [10] that takes paths to possible future classifications into account. We discuss it in more

detail shortly.

Due to the use of border functions instead of intervals, Hopcroft’s algorithm needs only minor adap-

tation for classifiers in our representation. We give the algorithm:

Definition 7.2 First create an array B of back transitions. For every state i with 1 ≤ i ≤ ‖C ‖, B(i) is

the set of states that have a transition into i, i.e.

B(s) = { j | 1 ≤ j ≤ ‖C ‖ s.t. there exists a σ ∈ Σ∗, s.t. φ j(σ) 6= # and j+φ j(σ) = i}.
Construct the initial partition P = (P1, . . . ,Pp) from the chosen initialization function f . Initialize the

index array I from P. Create a stack U =(1, . . . , p) of indices. The variable name U stands for unchecked.

1. As long as U is non-empty, pop an element from U, call it u, and do the following:

2. Construct S =
⋃

i∈Pu
B(i). This is the set of states that have a transition into a state i ∈ Pu.

3. For every σ ∈ BORDC (S) do: Construct Fσ = { i ∈ S | φ≤
i (σ) 6= # and i+ φ≤

i (σ) ∈ Pu}. Refine

P, I,U with Fσ .

(Fσ is the set of states whose σ -transition goes into a state in Pu)

The refinement operation is defined as follows: Assume that we want to refine P, I,U by a set of states F.
For every Pi, s.t. Pi ∩F 6= /0 and Pi 6⊆ F, do the following:

1. Construct N = Pi\F and replace Pi by Pi ∩F.

2. If this results in ‖Pi‖< ‖N‖, then exhange N and Pi.

3. Append N to (P1, . . . ,Pi, . . . ,Pp), and assign I(i) = p+1, for i ∈ N. Add (p+1) to U.

The intuition of refinement is the fact that if some Pi partially lies inside F and partially outside F, then

Pi needs to be split.

When the final partition (P1, . . . ,Pp) has been obtained, it is trivial to construct the quotient classifier

Q = C /(P1, . . . ,Pp).
It is essential that 1 ∈ P1 because Definition 5.1 and Definition 5.5 treat t1 as the error state. This

can be easily obtained by sorting (P1, . . . ,Pp) by their minimal element before constructing the quotient

classifier. An additional advantage of sorting is that it improves readability, because it preserves more of

the structure of the original classifier.

Both [2] and [13] agree that U should be implemented as stack, as opposed to a queue.

Although Hopcroft’s algorithm is theoretically optimal, it can be improved by a preprocessing stage.

In the early stage of the algorithm, all states that classify as error will be in a single equivalence class.

This equivalence class is gradually refined into smaller classes dependent on possible computations orig-

inating from these classes. Although the number of steps is limited by the number of states in the class,

it may still be costly because the initial class is big.

The initial refinements can be removed by using a preprocessing stage. In [10], a filter for simple,

deterministic automata is proposed that marks states with the shortest distance towards an accepting

state. This can be done in linear time. In order to adapt this approach to classifiers, one has to include

the accepted token in the markings.

78 Generating Tokenizers with Flat Automata

Definition 7.3 Let C be a classifier from alphabet (Σ,<) into token set T. A reachability function ρ is a

total function from {1, . . . ,‖C } to partial functions from T to N .

Intuitively, ρ(i)(t) = n means that there exists a path of length n from i to a state j with t j = t.
Although theoretically, the total size of ρ could be quadratic in the size of C , in all cases that we

encountered, all states except for the initial state, can reach only a few token classes.

Our goal is to compute the optimal reachability function and use it to initialize the first partition. This

can be done with Dijkstra’s algorithm.

Definition 7.4 Start by setting ρ(i) = {(ti,0)}, for every state i that has ti 6= t1. (Every state can reach

its own classification in 0 steps.) Set ρ(i) = {} for the remaining states (that classify as error).

Create a stack U = (1, . . . ,‖C ‖) of unchecked states.

• While U is not empty, pick and remove a state from U, call it u, and do the following:

• For every i ∈ B(u), for every (t,n) ∈ ρ(u) do the following: If ρ(i)(t) is undefined, insert (t,n+1)
to ρ(i). Otherwise, if ρ(i)(t) = n′, set ρ(i)(t) = min(n′,n+1).

If this results in a change of ρ(i), then add i to U.

Using ρ to initialize the partition in Definition 7.2 works well in practice. In most cases, the first partition

is also the final partition. We end the section with an example of a reachability function for a simple

classifier that classifies identifiers and the reserved word ’for’:

Example 7.5 Consider the following deterministic classifier that classifies identifiers (for simplicity only

lower case and digits), and the reserved word ’for’:

1 : /0 {(c⊥,#), (a,1), (f ,2), (g,1), (z+1,#)} E

2 : /0 {(c⊥,#), (0,2), (9
+1,#), (a,3), (z+1,#)} I

3 : /0 {(c⊥,#), (0,1), (9
+1,#), (a,2), (o,3), (p,2), (z+1,#)} I

4 : /0 {(c⊥,#), (0,0), (9
+1,#), (a,1), (z+1,#)} I

5 : /0 {(c⊥,#), (0,−1), (9+1,#), (a,0), (z+1,#)} I

6 : /0 {(c⊥,#), (0,−2), (9+1,#), (a,−1), (r,1), (s,−1), (z+1,#)} I

7 : /0 {(c⊥,#), (0,−3), (9+1,#), (a,−2), (z+1,#)} F

This classifier was constructed by the determinization procedure. If one initializes the partition with

f (i) = ti, the initial partition will be ({1},{2,3,4,5,6},{7}). The optimal reachability function has

ρ(1) = { (I,1), (F,3)}
ρ(2) = ρ(4) = ρ(5) = {(I,0)}
ρ(3) = {(I,1), (F,2)}
ρ(6) = {(I,1), (F,1)}
ρ(7) = {(I,1), (F,0)}

The minimal classifier has 5 states, so the initial partition based on ρ is already the final partition.

8 Conclusions and Future Work

We have introduced a way of representing finite automata which uses relative state references and border

functions. Border functions make it possible to concisely represent interval-based transition functions.

Our representation is more complicated than the standard representation in text books (like [1, 14])

H. de Nivelle and D. Muktubayeva 79

and the proofs are slightly harder, but the algorithms are not, and the representation can be used in

practice without further adaptation. We have implemented our representation and used it in practice. We

gave a presentation about it, together with our parser generation tool, at the C++ Now conference. The

implementation is available from [12].

On the practical level, we make the threshold for using our automated tools as low as possible. In the

simplest case, one compiles the library, defines a classifier in code by means of regular expressions, and

calls a default function for classification. Constructing classifiers in code has the advantage that the user

does not need to learn a dedicated syntax, and that construction of classifiers has full flexibility.

Our implementation does not construct a complete tokenizer. This is important, because in our

experience this is the obstacle that stopped us from using an existing tokenizer generator tool. There

is always something in the language that cannot be handled by an automatically generated tokenizer.

Therefore, in our implementation, we automated only the classification process, and leave all remaining

implementation to the user. In practice, not much additional code needs to be written. If one needs

efficiency, one can create an executable classifier in C++. Both the default classifier and the C++ classifier

can be compiled with any input source which satisfies a small set of interface requirements.

In the future, we plan to look into full Boolean operations (extend regular expressions with intersec-

tion and negation), or more advanced matching techniques, as specified by POSIX.

The final point that needs consideration is the use of compile time computation. Compile time com-

putation was introduced in C++-11 with the aim of allowing more general functions in declarations,

primarily for the computation of the size of a fixed-size array. Since then, the restrictions on compile

time computation have gradually been relaxed, and nowadays, it is possible to convert a regular expres-

sion represented as an array of characters into a table-based DFA at compile-time. This was implemented

in the CTRE library ([6]). We did not try to make our implementation suitable for compile time com-

putation, because it would result in reduced expressivity in the code that constructs the acceptors. In

addition, the experiments with RE2C imply that directly coded automata are an order of magnitude

faster than table-based automata ([4]).

9 Acknowledgements

This work gained from comments by Witold Charatonik and Cláudia Nalon. We thank Nazarbayev

University for supporting this research through the Faculty Development Competitive Research Grant

Program (FDCRGP) number 021220FD1651.

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi & Jeffrey D. Ullman (2007): Compilers (Principles, Techniques

and Tools). Pearson, Addison Wesley.

[2] Manuel Baclet & Claire Pagetti (2006): Around Hopcroft’s Algorithm. In Oscar Ibarra & Hsu-Chun

Yen, editors: Implementation and Application of Automata, LNCS, Springer Verlag, pp. 114–125,

doi:10.1007/11812128 12.

[3] Markus Boerger, Peter Bumbulis, Dan Nuffer, Ulya Trofimovich & Brian Young (2003-2021): re2c System.

https://re2c.org/.

[4] Klaus Brouwer, Wolfgang Gellerich & Erhard Ploederer (1998): Myths and Facts about the Efficient Imple-

mentation of Finite Automata and Lexical Analysis. In K. Koskimies, editor: Compiler Construction (CC

1998), LNCS 1383, Springer, pp. 1–15, doi:10.1007/BFb0026419.

https://doi.org/10.1007/11812128_12
https://doi.org/10.1007/BFb0026419

80 Generating Tokenizers with Flat Automata

[5] The Unicode Consortium: Unicode. https://home.unicode.org/.

[6] Hana Dusı́ková (2019-): CTRE (Compile-Time Regular Expressions) Library.

https://compile-time.re/.

[7] John E. Hopcroft (1971): An n.log(n) algorithm for minimizing the states in a finite automaton. The theory

of machines and computations 43, pp. 189–196, doi:10.1016/B978-0-12-417750-5.50022-1.

[8] John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (2006): Introduction to Automata Theory, Lan-

guages, and Computation, 3d edition. Pearson, Addison Wesley.

[9] Michael E Lesk & Eric Schmidt (1975): Lex: A lexical analyzer generator.

[10] Desheng Liu, Zhiping Huang, Yimeng Zhang, Xiaojun Guo & Shaojing Su (2016): Efficient Determinis-

tic Finite Automata Minimization Based on Backward Depth Information. PLOS ONE 11(11), pp. 59–78,

doi:10.1371/journal.pone.0165864.

[11] Hans de Nivelle (2021): A Recursive Inclusion Checker for Recursively Defined Subtypes. Modeling and

Analysis of Information Systems 28(4), pp. 414–433, doi:10.18255/1818-1015-2021-4-414-433. Available

at https://www.mais-journal.ru/jour/article/view/1568.

[12] Hans de Nivelle & Dina Muktubayeva (2021): Tokenizer Generation. http://www.compiler-tools.eu/.

[13] Andrei Păun, Mihaela Păun & Alfonso Rodrı́guez-Páton (2009): On the Hopcroft’s minimization technique

for DFA and DFCA. theoretical computer science, pp. 2424–2430, doi:10.1016/j.tcs.2009.02.034.

[14] Michael Sipser (2013): Introduction to the Theory of Computation (Third Edition). CENGAGE Learning.

https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1371/journal.pone.0165864
https://doi.org/10.18255/1818-1015-2021-4-414-433
https://www.mais-journal.ru/jour/article/view/1568
https://doi.org/10.1016/j.tcs.2009.02.034

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 81–96, doi:10.4204/EPTCS.370.6

© I. Khmelnitsky et al.
This work is licensed under the
Creative Commons Attribution License.

Analyzing Robustness of Angluin’s L∗ Algorithm
in Presence of Noise

Igor Khmelnitsky
Université Paris-Saclay

CNRS, ENS Paris-Saclay
INRIA, LMF, France

igor.khme@gmail.com

Serge Haddad
Université Paris-Saclay

CNRS, ENS Paris-Saclay
INRIA, LMF, France
haddad@lsv.fr

Lina Ye
Université Paris-Saclay

CNRS, ENS Paris-Saclay
CentraleSupélec, LMF, France

lina.ye@centralesupelec.fr

Benoît Barbot
Université Paris-Est Créteil

France
benoit.barbot@u-pec.fr

Benedikt Bollig
Université Paris-Saclay

CNRS, ENS Paris-Saclay, LMF, France
bollig@lsv.fr

Martin Leucker
Institute for Software Engineering and

Programming Languages
Universität zu Lübeck, Germany

leucker@isp.uni-luebeck.de

Daniel Neider
Carl von Ossietzky

University of Oldenburg
Germany

daniel.neider@uol.de

Rajarshi Roy
Max Planck Institute
for Software Systems

Kaiserslautern, Germany
rajarshi@mpi-sws.org

Angluin’s L∗ algorithm learns the minimal (complete) deterministic finite automaton (DFA) of a
regular language using membership and equivalence queries. Its probabilistic approximatively correct
(PAC) version substitutes an equivalence query by a large enough set of random membership queries
to get a high level confidence to the answer. Thus it can be applied to any kind of (also non-regular)
device and may be viewed as an algorithm for synthesizing an automaton abstracting the behavior of
the device based on observations. Here we are interested on how Angluin’s PAC learning algorithm
behaves for devices which are obtained from a DFA by introducing some noise. More precisely we
study whether Angluin’s algorithm reduces the noise and produces a DFA closer to the original one
than the noisy device. We propose several ways to introduce the noise: (1) the noisy device inverts
the classification of words w.r.t. the DFA with a small probability, (2) the noisy device modifies with
a small probability the letters of the word before asking its classification w.r.t. the DFA, and (3) the
noisy device combines the classification of a word w.r.t. the DFA and its classification w.r.t. a counter
automaton. Our experiments were performed on several hundred DFAs.

Our main contributions, bluntly stated, consist in showing that: (1) Angluin’s algorithm behaves
well whenever the noisy device is produced by a random process, (2) but poorly with a structured noise,
and, that (3) almost surely randomness yields systems with non-recursively enumerable languages.

1 Introduction

Discrete-event systems and their languages. Discrete-event systems [5] form a large class of dynamic
systems that, given some internal state, evolve from one state to another one due to the occurrence of
an event. For instance, discrete-event systems can represent a cyber-physical process whose events are
triggered by a controller or the environment, or, a business process whose events are triggered by human
activities or software executions. Often, the behaviors of such systems are classified as safe (aka correct,
representative, etc.) or unsafe. Since a behavior may be identified by its sequence of occurred events, this
leads to the notion of a language.

http://dx.doi.org/10.4204/EPTCS.370.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

82 Analyzing Robustness of Angluin’s L* Algorithm in Presence of Noise

Analysis versus synthesis. There are numerous formalisms to specify (languages of) discrete-event
systems. From a designer’s perpective, the simpler it is the better its analysis will be. So finite automata
and their languages (regular languages) are good candidates for the specification. However, even when the
system is specified by an automaton, its implementation may slightly differ due to several reasons (bugs,
unplanned human activities, unpredictable environment, etc.). Thus, one generally checks whether the
implementation conforms to the specification. However, in many contexts, the system has already been
implemented and the original specification (if any) is lost, as for instance in the framework of process
mining [1]. Thus, by observing and interacting with the system, one aims to recover a specification close
to the system at hand but that is robust with respect to its pathologic behaviors.

Language learning. The problem of learning a language from finite samples of strings by discovering
the corresponding grammar is known as grammatical inference. Its significance was initially stated in [11]
and an overview of very first results can be found in [4]. As it may not always be possible to infer
a grammar that exactly identifies a language, approximate language learning was introduced in [13],
where a grammar is selected from a solution space whose language approximates the target language
with a specified degree of accuracy. To provide a deeper insight into language learning, the problem of
identifying a (minimal) deterministic finite automaton (DFA) that is consistent with a given sample has
attracted substantial attention in the literature since several decades [6, 2, 12]. An understanding of regular
language learning is very valuable for a generalization to other more complex classes of languages.

Angluin’s L∗ algorithm. Angluin’s L∗ algorithm learns the minimal DFA of a regular language using
membership and equivalence queries. Thus, one could try to adapt it to the synthesis task described above.
However, for most black box systems, it is almost impossible to implement the equivalence query. Thus,
its probabilistic approximatively correct (PAC) version substitutes an equivalence query with a large
enough set of random membership queries. However, one needs to define and evaluate the accuracy of
such an approach. Thus, here we are interested in how PAC Angluin’s algorithm behaves for devices
which are obtained from a DFA by introducing some noise.

Noisy learning. Most learning algorithms in the literature assume the correctness of the training data,
including the example data such as attributes as well as classification results. However, sometimes noise-
free datasets are not available. [10] carried out an experimental study of the noise effects on the learning
performance. The results showed that generally the classification noise had more negative impact than the
attribute one, i.e., errors in the values of attributes. [3] studied how to compensate for randomly introduced
noise and discovered a theorem giving a bound on the smaple size that is sufficient for PAC-identification
in the presence of classification noise when the concept classes are finite. Michael Kearns formalized
another related learning model from statistical queries by extending Valiant’s learning model [8]. One
main result shows that any class of functions learnable from this statistical query model is also learnable
with classification noise in Valiant’s model.

Our contribution. In this paper, we study against which kinds of noise Angluin’s algorithm1 is robust.
To the best of our knowledge, this is the very first attempt of noise analysis in the automata learning
setting. More precisely, we consider the following setting (cf. Figure 1): Assume that a regular device
A is given, typically as a black box. Due to some noise N , the system A is pertubed resulting in a

1In this work by “Angluin’s algorithm” we refer to the optimized version from [9].

I. Khmelnitsky et al. 83

not necessarily regular system MN . This one is consulted by the PAC version of L∗ to obtain a regular
system AE . The question studied in this paper is whether AE is closer to A than MN , or, in other words,
to which extent learning via L∗ is robust against the noise N . To this end, we introduce three kinds of

Extract
DFA
Noise

DFA

Noisy
Model DFA

Figure 1: The experimental setup and the studied distances

noisy devices obtained from the DFA A : (1) the noisy device is obtained by a random process from a
given DFA by inverting the classification of words with a small probability, which corresponds to the
classification noise in the classical learning setting, (2) the noisy device is obtained by a random process
that, with a small probability, replaces each letter of a word by one chosen uniformly from the alphabet
and then determines its classification based on the DFA, which corresponds to the attribute noise in the
classical setting, and (3) the noisy DFA combines the classification of a word w.r.t. the DFA and its status
w.r.t. a counter automaton. Our studies are based on the distribution over words that is used for generating
words associated with membership queries and defining (and statistically measuring) the distance between
two devices as the probability that they differ on word acceptance. We have performed experiments over
several hundreds random DFA. We have pursued several goals along our experiments, expressed by the
following questions:

• What is the threshold (in terms of distance) between pertubating the DFA or producing a device
that is no more “similar to” the DFA?

• What is the impact of the nature of noise on the robustness of Angluin’s algorithm?

• What is the impact of the words distribution on the robustness of Angluin’s algorithm?

Due to the approximating nature of the PAC version of L∗, we had to consider the question of how to
choose the accuracy of the approximate equivalence query to get a good trade-off between accuracy and
efficiency. Moreover, since in most cases, Angluin’s algorithm may perform a huge number of refinement
rounds before a possible termination, we considered what a “good” number of rounds to stop the algorithm
avoiding underfitting and overfitting is.

We experimentally show that w.r.t. the random noise, i.e., the noise introduced with a small probability
in different ways, Angluin’s algorithm behaves quite well, i.e., the learned DFA (AE) is very often closer
to the original one (A) than the noisy random device (MN). When the noise is obtained using the counter
automaton, Angluin’s algorithm is not robust. Instead, the device AE is closer to the noisy device MN .

84 Analyzing Robustness of Angluin’s L* Algorithm in Presence of Noise

Moreover, we establish that the expectation of the length of a random word should be large enough to
cover a relevant part of the set of words in order for Angluin’s algorithms to be robust.

In order to understand why Angluin’s algorithm is robust w.r.t. random noise we have undertaken
a theoretical study establishing that almost surely the language of the noisy device (MN) for case (1)
and, with a further weak assumption, also for case (2) is not recursively enumerable. Considering non-
recursively enumerable languages as unstructured, this means that due to the noise, the (regular) structure
of A vanishes. This is not the case for the counter automaton setting. Altogether, to put it bluntly: the
less structure the noisy device has, the better Angluin’s algorithm works.

Organization. In Section 2, we introduce the technical background required for the robustness analysis.
In Section 3, we detail the goals and the settings of our analysis. In Section 4, we provide and discuss the
experimental results. In Section 5, we discuss randomness versus structure. Finally in Section 6, we draw
our the conclusions and identify future work.

2 Preliminaries

Here we provide the technical background required for the robustness analysis.

Languages. Let Σ be an alphabet, i.e., a nonempty finite set, whose elements are called letters. A word
w over Σ is a finite sequence over Σ, whose length is denoted by |w|. The unique word of length 0 is
called the empty word and denoted by λ . As usual, Σ∗ is the set of all words over Σ, and Σ+ = Σ∗ \{λ} is
the set of words of positive length. A language (over Σ) is any set L⊆ Σ∗. The symmetric difference of
languages L1,L2 ⊆ Σ∗ is defined as L1∆L2 = (L1 \L2)∪ (L2 \L1).

Words distribution and measure of a language. A distribution D over Σ∗ is defined by a mapping
PrD from Σ∗ to [0,1] such that ∑w∈Σ∗ PrD(w) = 1. Let L be a language. Its probabilistic measure w.r.t. D,
PrD(L) is defined by PrD(L) = ∑w∈L PrD(w).

Our analysis requires that we are able to efficiently sample a word according to some D. Thus we
only consider distributions Dµ with µ ∈]0,1[, that are defined for a word w = a1 . . .an ∈ Σ∗ by

PrDµ
(w) = µ

(
1−µ

|Σ|

)n

.

To sample a random word according to Dµ in practice, we start with the empty word and iteratively we flip
a biased coin with probability 1−µ to add a letter (and µ to return the current word) and then uniformly
select the letter in Σ.

Language distance. Given languages L1 and L2, their distance w.r.t. a distribution D, dD(L1,L2), is
defined by dD(L1,L2) = PrD(L1∆L2). Computing the distance between languages is in most of the
cases impossible. Fortunately whenever the membership problem for L1 and L2 is decidable, then using
Chernoff-Hoeffding bounds [7], this distance can be statistically approximated as follows. Let α,γ > 0 be
an error parameter and a confidence level, respectively. Let S be a set of words sampled independently
according to D, called a sampling, such that |S| ≥ log(2/γ)

2α2 . Let dist = |S∩(L1∆L2)|
|S| . Then, we have

PrD(|dD(L1,L2)−dist|> α) < γ .

I. Khmelnitsky et al. 85

Since we will not simultaneously discuss about multiple distributions, we omit the subscript D almost
everywhere.

Finite Automata. A (complete) deterministic finite automaton (DFA) over Σ is a tuple A = (Q,σ ,q0,F)
where Q is a finite set of states, q0 ∈Q is the initial state, F ⊆Q is the set of final states, and σ : Q×Σ→Q
is the transition function. The transition function is inductively extended over words by σ(q,λ) = q
and σ(q,wa) = σ(σ(q,w),a). The language of A is defined as L (A) = {w ∈ Σ∗ | σ(q0,w) ∈ F}. A
language L⊆ Σ∗ is called regular if L = L (A) for some DFA A .

PAC version of Angluin’s L∗ algorithm. Given a regular language L, Angluin’s L∗ algorithm learns
the unique mimimal DFA A such that L (A) = L using only membership queries ‘Does w belong to
L?’ and equivalence queries ‘Does L (AE) = L? and if not provide a word w ∈ L∆L (AE)’. An abstract
version of this algorithm is depicted by Algorithm 1. The main features of this algorithm are: a data
structure Data from which Synthetize(Data) returns an automaton AE and such that given a word
w ∈ L∆L (AE), Update(Data,w) updates Data. The number of states of AE is incremented by one
after each round and so the algorithm terminates after its number of states is equal to the (unknown)
number of states of A .

The Probably Approximately Correct (PAC) version of Angluin’s L∗ algorithm takes as input an error
parameter ε and a confidence level δ , and replaces the equivalence query by a number of membership
queries ‘w∈ L∆L (A)?’ where the words are sampled from some distribution D unknown to the algorithm.
Thus this algorithm can stop too early when all answers are negative while L 6= L (A). However due to
the number of such queries which depends on the current round r (i.e., d log(1/δ)+(r+1) log(2)

ε
e) this algorithm

ensures that

PrD(dD(L,L (A))> ε) < δ .

A key observation is that this algorithm could be used for every language L for which the membership
problem is decidable. However since L is not necessarily a regular language, the algorithm might never
stop and thus our adaptation includes a parameter maxround that ensures termination.

3 Robustness Analysis

3.1 Principle and goals of the analysis

Principle of the analysis. Figure 1 illustrates the whole process of our analysis. First we set the
qualitative and quantitative nature of the noise (N). Then we generate a set of random DFA (A).
Combining A and N , one gets a noisy model MN . More precisely, depending on whether the noise is
random or not, MN is either generated off-line (deterministic noise) or on-line (random noise) when a
membership query is asked during Angluin’s L∗ algorithm. Finally we compare (1) the distances between
A and MN , and (2) between A and AE , the automaton returned by the algorithm. The aim of this
comparison is to establish whether AE is closer to A than MN . In order to get a quantitative measure,
we define the information gain as:

Information gain =
d(L (A),L (MN))

d(L (A),L (AE))

86 Analyzing Robustness of Angluin’s L* Algorithm in Presence of Noise

Algorithm 1: Angluin’s L∗ algorithm
Input: L, a language unknown to the algorithm
Input: an integer maxround ensuring termination

Angluin()

Data: an integer r, a boolean b and a data structure Data
Output: a DFA AE

Initialize(Data)
r← 0

// The control of maxround is unnecessary when L is regular
while r < maxround do

AE ← Synthetize(Data)
(b,w)← IsEquivalent(AE)
if b then return AE

Update(Data,w)
r← r+1

end
return Synthesize(Data)

We consider a low information gain to be in [0,0.9), a medium information gain to be in [0.9,1.5), and a
high information gain to be in [1.5,∞). To make high information gain more evident, we set its threshold
value as 1.5.

In addition, we also evaluate the distance between AE and MN in order to study in which cases the
algorithm learns in fact the noisy device instead of the original DFA.

Goals of the analysis.

• Quantitative analysis. The information gain highly depends on the ‘quantity’ of the noise, i.e.,
error rate. So we analyze the information gain depending of the distance between the original DFA
and the noisy device and want to identify a threshold (if any) where the information gain starts to
significantly increase.

• Qualitative analysis. Another important criterion of the information gain is the ‘nature’ of the
noise. So we analyze the information gain w.r.t. the three noisy devices that we have introduced.

• Impact of word distribution. Finally, the robustness of the L∗ algorithm with respect to word
distribution is also analyzed.

In order to perform relevant experiments, one needs to tune two critical parameters of Angluin’s L∗

algorithm. Since the running time of the algorithm quadratically depends on the number of rounds (i.e.
iterations of the loop), selecting an appropriate maximal number of rounds is a critical issue. We vary this
maximal number of rounds and analyze how the information gain decreases w.r.t. this number. As an
equivalence query is replaced with a set of membership queries whose number depends on the current
round and the pair (ε,δ), it is thus interesting to study (1) what is the effect of accuracy of the approximate
equivalence queries, i.e., the values of (ε,δ) on the ratio of executions that reach the maximal number
of rounds and (2) compare the information gain for executions that stop before reaching this maximal
number and the same execution when letting it run up to this maximal number.

I. Khmelnitsky et al. 87

3.2 Noise

A random language R⊆ Σ∗ is determined by a random process: for each w ∈ Σ∗, membership w ∈ R is
determined independently at random, once and for all, according to some probability Pr(w ∈ R) ∈ [0,1].
The probability Pr(w ∈ R) may depend on some parameters such as w itself and a given DFA.

We now describe the three kinds of noise that we analyze in this paper. Each type adds noise to a given
DFA A in form of a random language R. For the first two types, noise with output and noise with input,
the probability Pr(w ∈ R) of including w ∈ Σ∗ in R depends on w itself, L (A), and some parameter
0 < p < 1. The third kind of noise, counter DFA, is actually deterministic, i.e., Pr(w ∈ R) ∈ {0,1} for all
w ∈ Σ∗. In that case, the given DFA A determines a unique “noisy” language. Let us be more precise:

DFA with noisy output. Given a DFA A over the alphabet Σ and 0 < p < 1, the random language
L (A →p) flips the classification of words w.r.t. L (A) with probability p. More formally, for all w ∈ Σ∗,

Pr(w ∈L (A →p)) = (1− p)1w∈L (A)+ p1w6∈L (A)

where 1C is 1 if condition C holds, and 0 otherwise. Observe that the expected value of the distance
d(L (A),L (A →p)) is p. Moreover, in our experiments, we observe that

∣∣∣d(L (A),L (A →p))−p
p

∣∣∣< 5 ·10−2

for all the generated languages.

DFA with noisy input. Given a DFA A over the alphabet Σ (with |Σ|> 1) and 0 < p < 1, the random
language L (A ←p) changes every letter of the word with probability p uniformly to another letter and
then returns the classification of the new word w.r.t. L (A). More formally, for w = a1 . . .an ∈ Σ∗,

Pr(w ∈L (A ←p)) = ∑
w′=b1...bn∈L (A)

s.t. |w|=|w′|

∏
1≤i≤n

(
(1− p)1ai=bi +

p
|Σ|−1

1ai 6=bi

)
.

Counter DFA. Let A be a DFA over the alphabet Σ and c : Σ∪{λ}→ Z be a function. We inductively
define the function c : Σ∗→ Z by

c(λ) = c(λ) and c(wa) = c(w)+ c(a) .

The counter language L (Ac) is now given as

L (Ac) = L (A)∪{w ∈ Σ
∗ | c(w)≤ 0} .

4 Experimental Evaluation

In order to empirically evaluate our ideas, we have implemented a prototype and benchmarks in Python,
using the NumPy library. They are available on GitHub2. All evaluations were performed on a computer
equipped by Intel i5-8250U CPU with 4 cores, 16GB of memory and Ubuntu Linux 18.03.

2https://github.com/LeaRNNify/Noisy_Learning

https://github.com/LeaRNNify/Noisy_Learning

88 Analyzing Robustness of Angluin’s L* Algorithm in Presence of Noise

4.1 Generating DFAs

We now describe the settings of the experiments we made with three different types of noises. We choose
µ = 10−2 for the parameter of the word distribution so that the average length of a random word is 99.
All the statistic distances were computed using the Chernoff-Hoeffding bound [7] with α = 5 ·10−4 as
error parameter and γ = 10−3 as confidence level.

The benchmarks were performed on DFA randomly generated using the following procedure. Let
Mq = 50 and Ma = 20 be two parameters, which impose upper bounds on the number of states and of the
alphabet, that could be tuned in future experiments. The DFA A = (Q,σ ,q0,F) on Σ is generated as
follows:

• Uniformly choose nq ∈ [10,Mq] and na ∈ [3,Ma];

• Set Q = [0,nq] and Σ = [0,na];

• Uniformly choose n f ∈ [0,nq−1] and let F = [0,n f];

• Uniformly choose q0 in Q;

• For all (q,a) ∈ Q×Σ, choose the target state σ(q,a) uniformly among all states.

The choice of Mq and Ma was inspired by observing that these values often occur when modeling realistic
processes like in business process management.

4.2 Tunings

Before launching our experiments, we first tune two key parameters for both efficiency and accuracy
purposes: the maximal number of rounds of the algorithm and the accuracy of the approximate equivalence
query. This tuning is based on experiments over the DFA with the noisy output since the expected distance
between the DFA and the noisy device is known (p), thus simplifying the tuning.

Maximal number of rounds. In order to specify a maximal number of rounds that lead to the
good performances of the Angluin’s Algorithm, we took a DFA with noisy output A →p for p ∈
{0.005,0.0025,0.0015,0.001}. We ran the learning algorithm, stopping every 20 rounds to estimate
the distance between the current DFA AE to the original DFA A . Figure 2 shows the evolution graphs
of d(L (A),L (AE)) w.r.t. the number of rounds according to the different values of p each of them
summarizing five runs on five different DFAs. The vertical axis corresponds to the distance to original DFA
A , and the horizontal axis corresponds to the number of rounds. The red line is the distance with A →p,
and the blue line is the distance with AE . We observe that after about 250 rounds d(L (A),L (AE)) is
stabilizing except some rare peaks, which are worth further investigation. Therefore, from now on all the
experiments are made with a maximum of 250 rounds. Of course this number depends on the size of A
but for the variable size that we have chosen (between 10 and 50 states) it seems to be a good choice.

Accuracy of the approximate equivalence query. We have generated thirty-five DFA and for each of
them we generated five A →p with different values of p. Table 1 summarizes our results with different
ε and δ for the approximate equivalence query. The rows correspond to the value of the noise p, the
columns correspond to the values of ε and δ (where we always choose ε = δ) and each cell shows the
average information gain. Looking at this table, ε = δ = 0.01 and ε = δ = 0.005 seem to be optimal
values. We decided to fix ε = δ = 0.005 for all our experiments.

I. Khmelnitsky et al. 89

Number of rounds

D
is

ta
nc

e
fro

m
 th

e
D

FA

0.00

0.05

0.10

0.15

0.20

0.25

100 200 300 400 500 600

Hypothesis Distance Original Distance p = 0.005

Number of rounds

D
is

ta
nc

e
fro

m
 th

e
D

FA

0.000

0.025

0.050

0.075

0.100

100 200 300 400 500 600

Hypothesis Distance Original Distance p = 0.0025

Number of rounds

D
is

ta
nc

e
fro

m
 th

e
D

FA

0.0000

0.0025

0.0050

0.0075

0.0100

100 200 300 400 500 600

Hypothesis Distance Original Distance p = 0.0015

Number of rounds
D

is
ta

nc
e

fro
m

 th
e

D
FA

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

100 200 300 400 500 600

Hypothesis Distance Original Distance p = 0.001

Figure 2: Number of rounds analysis

4.3 Qualitative and Quantitative analysis

For the three types of noise we have generated numerous DFA (as described shortly above), and for each
DFA we have generated several noisy devices depending on the ‘quantity’ of noise. By computing the
(average) information gain for all these experiments, we have been able to get conclusions about the effect
of the nature and the quantity of the noise on the performance of Angluin’s algorithm.

When Angluin’s algorithm is applied to a noisy device, a corresponding random language is generated
on-the-fly: once membership of a word in the target language has been determined (e.g., through a
membership query), the corresponding truth value is stored and not changed anymore.

DFA with noisy output. We have generated fifty DFA, and for each such DFA A , we have generated
random languages with noisy output L (A →p) with five values for p between 0.01 and 0.001. Table 2

PPPPPPPPPp
ε = δ

0.05 0.01 0.005 0.001 0.0005

0.01 0.081 0.054 0.047 0.048 0.050

0.005 0.086 0.087 0.072 0.070 0.094

0.0025 0.867 0.292 0.591 0.321 0.748

0.0015 1.401 2.933 3.082 0.980 0.710

0.001 5.334 4.524 3.594 1.811 6.440

Table 1: Evaluation of the impact of ε and δ .

90 Analyzing Robustness of Angluin’s L* Algorithm in Presence of Noise

summarizes the results. Recall that the expected value of d(L (A),L (A →p)) is p. We have identified
a threshold for p between 0.0015 and 0.0025: if the noise is above 0.0025 the resulting DFA AE has a
bigger distance to the original one A than A →p, and smaller if the noise is under 0.0015. Moreover, once
we cross the threshold the robustness of the algorithm increases very quickly. We have also included a
column that represents the standard deviation of the random variable d(L (A),L (AE)) to assess that
our conclusions are robust w.r.t. the probabilistic feature.

p d(L (A),L (AE)) d(L (A →p),L (AE)) gain standard deviation

0.01 0.12625 0.13320 0.07432 0.04102

0.005 0.04420 0.04827 0.11312 0.03366

0.0025 0.00333 0.00568 0.75031 0.00523

0.0015 0.00027 0.00174 5.52999 0.00047

0.001 0.00006 0.00103 15.75817 0.00007

Table 2: Evaluation of the algorithm w.r.t. the noisy output.

DFA with noisy input. We have generated forty-five random DFA, and for each such DFA A , we
have generated random languages L (A ←p) with p ∈ {10−4,5 · 10−4,10−3,5 · 10−3}. Contrary to the
case of noisy output, p does not correspond to the expected value of d(L (A),L (A ←p). Thus we have
evaluated this distance for every pair of the experiments and we have gathered the pairs whose distances
belong to intervals that are described in the first column of Table 3. The second column of this table
reports the number of pairs in the interval while the third one reports the average value of this distance for
these pairs. Again we identify a threshold for d(L (A),L (A ←p)) between 0.001 and 0.005 and once
we cross the threshold the robustness of the algorithm increases very quickly.

Range # d(L (A),L (A ←p)) d(L (A),L (AE)) d(L A ←p),L (AE)) gain standard deviation

[0.025,1] 36 0.04027 0.21513 0.22658 0.18 0.05279

[0.005,0.025] 53 0.00924 0.05416 0.06077 0.17 0.04172

[0.002,0.005] 33 0.00378 0.01260 0.01611 0.30 0.01783

[0.001,0.002] 11 0.00123 0.00030 0.00154 4.1 0.00058

[0.0005,0.001] 25 0.00079 0.00002 0.00082 39.5 0.00007

Table 3: Evaluation of the algorithm w.r.t. the noisy input.

Counter DFA. We have randomly generated the counter function as follows: We have uniformly chosen
c(λ) in [0, |Σ|]. Then, for all a ∈ Σ, Pr(c(a) =−1) = 1

4 and for all 0≤ i≤ 6, Pr(c(a) = i) = 3
28 .

We have generated 160 DFA. For each of them, we have generated a counter automaton (as described
before). The results of our experiments are given in Table 4. Here whatever the quantity of noise the
Angluin’s algorithm is unable to get closer to the original DFA. Moreover the extracted DFA AE is very
often closer to the counter automaton Ac than the original DFA A .

Thus we conjecture that when the noise is ‘unstructured’ and the quantity is small enough such that
the word noise is still meaningful, then Angluin’s algorithm is robust. On the contrary when the noise is
structured, then Angluin’s algorithm ‘tries to learn’ the noisy device whatever the quantity of noise. In

I. Khmelnitsky et al. 91

Range # d(L (A),L (Ac)) d(L (A),L (AE)) d(L (Ac),L (AE)) gain standard deviation

[0.005,0.025] 14 0.01238 0.02586 0.02053 0.47886 0.01898

[0.002,0.005] 57 0.00245 0.00396 0.00262 0.61765 0.00298

[0.001,0.002] 22 0.00143 0.00209 0.00121 0.68156 0.00126

[0.0005,0.001] 20 0.00079 0.00108 0.00064 0.72481 0.00065

[0.0001,0.0005] 44 0.00025 0.00035 0.00021 0.71054 0.00021

Table 4: Evaluation of the algorithm w.r.t. the ‘noisy’ counter.

Section 5, we will strengthen this conjecture establishing that in some sense noise produced by random
process implies unstructured noise.

4.4 Words distribution

We now discuss the impact of word distribution on the robustness of the Angluin algorithm. The parameter
µ determines the average length of a random word (1

µ
− 1). Table 5 summarizes experimental results

with values of µ indicated on the first row. The other rows correspond to different values of the noise
p for A →p. The cells (at the intersection of a pair (p,µ)) contain the (average) information gain where
experiments have been done over twenty-two DFA always eliminating the worst and best cases to avoid
that the pathological cases perturb the average values. For values of p that matter (i.e., when the gain is
greater than 1), there is clear tendency for the gain to first increase w.r.t. µ , reaching a maximum about
µ = 0.01 the value that we have chosen and then decrease. A possible explanation would be the following:
too short words (i.e., big µ) does not help to discriminate between languages while too long words (i.e.,
small µ) lead to overfitting and does not reduce the noise.

HH
HHHHp

µ
0.001 0.005 0.01 0.05 0.1

0.01 0.059 0.067 0.078 0.184 0.317

0.005 0.078 0.130 0.134 0.559 0.966

0.0025 0.165 0.298 0.398 1.246 0.823

0.0015 0.465 0.671 2.267 2.074 1.651

0.001 1.801 10.94 8.907 3.753 2.341

Table 5: Analysis of different distributions on Σ∗

5 Random languages versus structured languages

Recall that in the precedent section, from the experimental results, we conjecture that Angluin’s algorithm
is robust, when the noise is random, i.e., unstructured, and its quantity is small enough, such as for DFA
with noisy output and with noisy input. This is however not the case for structured counter DFA, for
which Angluin’s algorithm learns the noisy device itself instead of the original one whatever the quantity
of noise.

In this section, we want to theoretically establish that the main factor of the robustness of the Angluin’s
L∗ algorithm w.r.t. random noise is that almost surely randomness, in most cases, yields the perturbated

92 Analyzing Robustness of Angluin’s L* Algorithm in Presence of Noise

language that is unstructured. We consider a language as structured if it can be produced by some general
device. Thus we identify the family of structured languages with the family of recursively enumerable
languages. More precisely, we show that almost surely DFA with noisy output leads to a language that is
not recursively enumerable. We then demonstrate further that with a mind condition, almost surely DFA
with noisy input yields also non-recursively enumerable language. As for the counter DFA, by definition,
it is clearly recursively enumerable, thus not being studied further.

The following lemma gives a simple means to establish that almost surely a random language is not
recursively enumerable.

Lemma 1 Let R be a random language over Σ. Let (wn)n∈N be a sequence of words of Σ∗. Let Wn =
{wi}i<n and ρn = maxW⊆Wn Pr(R∩Wn =W). Assume that limn→∞ ρn = 0. Then, for all countable families
of languages F , almost surely R /∈F . In particular, almost surely R is not a recursively enumerable
language.

Proof Let us consider an arbitrary language L. Then, for all n, Pr(R = L)≤ Pr(R∩Wn = L∩Wn)≤ ρn.
Thus, Pr(R = L) = 0 and Pr(R ∈F) = ∑L∈F Pr(R = L) = 0. �

From Lemma 1, we immediately obtain that almost surely the noisy output perturbation of any
language is not recursively enumerable. The proofs of the two next theorems use the same notations as
those given in Lemma 1.

Theorem 1 Let L be a language and 0 < p < 1. Then almost surely L→p is not a recursively enumerable
language.

Proof Consider any enumeration (wn)n∈N of Σ∗ and any W ⊆Wn. The probability that L→p∩Wn is equal
to W is bounded by max(p,1− p)n. Thus, ρn ≤max(p,1− p)n and limn→∞ ρn = 0. �

We cannot get a similar result for the noisy input perturbation. Indeed consider the language Σ∗,
whatever the kind of noise brought to the input, the obtained language is still Σ∗. With the kind of input
noise that we study, consider the language that accepts words of odd length (see the automaton A ′ of
Figure 3). Then the perturbed language is unchanged.

However given a DFA A , we establish a mild condition on A ensuring that almost surely the random
language L (A ←p) is not recursively enumerable. We abbreviate bottom strongly connected components
(of A viewed as a graph) by BSCC.

Definition 1 Let A = (Q,F,σ ,q0) be a DFA. We call A equal-length-distinguishing if there exist (possi-
bly identical) BSCC C ,C ′ of A , q1 ∈ C ∩F, q′1 ∈ C ′ \F, and w,w′ ∈ Σ∗ such that we have q1 = σ(q0,w),
q′1 = σ(q0,w′), and |w|= |w′|.

Theorem 2 Let Σ be an alphabet with |Σ|> 1. Let A = (Q,F,σ ,q0) be a DFA over Σ, 0 < p < 1 and
C ,C ′ some BSCC of A (possibly equal). Assume that A is equal-length-distinguishing. Then almost
surely L (A ←p) is not a recursively enumerable language.

Proof Let us denote `= |w| and m (resp. m′) the periodicity of C (resp. C ′). Moreover, let a ∈ Σ. We
build a Markov chain M from C as follows: every transition q a−→ q′ has probability 1− p and for all
b 6= a, every transition q b−→ q′ has probability p

|Σ|−1 . We proceed similarly from C ′ to build M ′.
Let us denote αn (resp. α ′n) the probability in M (resp. M ′) that starting from q1 (resp. q′1), the

current state at time n is q1 (resp. q′1). Since M and M ′ are irreducible, limn→∞ αmn (resp. limn→∞ α ′m′n)
exists and is positive. Let us denote α (resp. α ′) this limit. There exists n0 such that for all n ≥ n0,
αmn ≥ α

2 and α ′m′n ≥
α ′

2 .

I. Khmelnitsky et al. 93

Define wn = wamm′(n+n0) for all n ∈ N. The probability that wn is accepted by L (A)←p is lower
bounded by the probability that the prefix w is unchanged (thus reaching q1) and that after mm′(n+n0)
steps the current state in M is q1. So a lower bound is: min(p,1− p)` α

2 .
The probability that wn is rejected by L (A)←p is lower bounded by the probability that the prefix w

is changed into w′ (thus reaching q′1) and that after mm′(n+n0) steps the current state in M ′ is q′1. So a
lower bound is: min(p,1− p)` α ′

2 .
Let W ⊆Wn. The probability that L←p∩Wn is equal to W is upper bounded by:(

1−min(p,1− p)`
min(α,α ′)

2

)n

Thus ρn ≤
(

1−min(p,1− p)` min(α,α ′)
2

)n
and limn→∞ ρn = 0. �

The DFA A of Figure 3 that represents the formula ‘a Until b’ of temporal logic LTL is equal-length-
distinguishing. The corresponding pair of states consists of the accepting state and the leftmost one.
Checking the hypotheses of this theorem can be done in quadratic time by first building a graph whose
set of vertices is Q×Q and there is an edge (q1,q2)→ (q′1,q

′
2) if there are some transitions q1

a1−→ q′1 and
q2

a2−→ q′2 and then looking for a vertex (q1,q2) in some BSCC with q1 ∈ F and q2 /∈ F reachable from
(q0,q0).

Figure 3: Two DFA

We have that the property of being equal-length-distinguishing is a sufficient condition for ensuring
that almost surely L (A ←p) is not a recursively enumerable language. So we want to investigate whether
it is a necessary condition. The next proposition shows a particular case when this condition is necessary.

Proposition 1 Let Σ be an alphabet with |Σ| > 1. Let A = (Q,F,σ ,q0) be a DFA that is not equal-
length-distinguishing and such that every circuit of A belongs to a BSCC. Then, for every sampling L′ of
L (A ←p), L′ is regular.

Proof Pick some n0 ∈ N such that for all w with |w| ≥ n0 and q0
w−→ q implies that q belongs to some

BSCC. Observe now that, since A is not equal-length-distinguishing, for words w,w′ with |w|= |w′| ≥ n0,
w ∈ L iff w′ ∈ L. Thus, for every sampling L′ of L (A ←p), L′ = (L′∩Σ<n0)∪ (L∩Σ≥n0) implying that L′

is regular. �

Observe that we establish the next proposition using a generalization of Lemma 1.

Proposition 2 Let A be the DFA of Figure 4. Then, A is not equal-length-distinguishing. Moreover,
almost surely L (A ← 2

3) is not recursively enumerable.

94 Analyzing Robustness of Angluin’s L* Algorithm in Presence of Noise

q0 q fqr

a

b

ab

c c

Σ

Figure 4: A DFA A with L (A) = (a+b)∗a

Proof There is a single BSCC with a single state {qr}. So A is not equal-length-distinguishing. Let
w 6= λ be a word with |w|= n and denote w̃ the random word obtained by the noisy perturbation. Observe
that every letter of w̃ is uniformly distributed over Σ. So the probability that w̃ does not contain a c is (2

3)
n

and the conditional probability that w̃ belongs to L (A ← 2
3) knowing that it does not contain a c is 1

2 .

Fix some 0< ρ < 1. The probability that for all words w∈Σn, w̃ contains a c is equal to (1−(2
3)

n)3n ≤ e−2n
.

Pick an increasing sequence (nk)k∈N such ∑k∈N e−2nk ≤ 1−ρ . Then with probability at least ρ , for all k,
there is a word wk ∈ Σnk such that w̃k does not contain a c. Letting ρ go to 1, almost surely there is an
infinite number of words w such that w̃ ∈ (a+b)+.

Let us consider an arbitrary language L′ and (wn)n∈N be an enumeration of Σ+. Then almost surely there
is an infinite number of wn such that w̃n belong to (a+b)+. Recall that for such a word, the probability
that it belongs to L (A ← 2

3) is equal to 1
2 . Let Wn be the random set of the first nth such words. Then for

all n, Pr(L′ = L (A ← 2
3))≤ Pr(L′∩Wn = L (A ← 2

3)∩Wn) = 2−n.

Thus Pr(L′ = L (A ← 2
3)) = 0 and Pr(L (A ← 2

3) ∈F) = ∑L′∈F Pr(L′ = L (A ← 2
3)) = 0 for F a

countable family of languages. �

To show the soundness of the structural criterion in Theorem 2 with experiments and comparisons,
we have refined our experiments on DFA with noisy inputs partitioning the randomly generated DFA
depending on whether they are equal-length-distinguishing.

We have chosen |Σ|= 3 since with greater size, it was difficult to generate DFAs that do not satisfy
the hypotheses. Tables 6 and 7 summarize these experiments. The last rows of the tables (where the
information gain is greater than one) confirm our conjecture.

Range # d(L (A),L (A ←p)) d(L (A),L (AE)) d(L (A ←p)),L (AE)) gain

[0.005,0.025] 85 0.01114 0.03604 0.04345 0.30902

[0.002,0.005] 81 0.00338 0.00421 0.00747 0.80443

[0.001,0.002] 25 0.00142 0.00035 0.00174 4.09784

[0.0005,0.001] 16 0.00071 0.00006 0.00077 11.08439

Table 6: Experiments on equal-length-distinguishing DFA

I. Khmelnitsky et al. 95

Range # d(L (A),L (A ←p)) d(L (A),L (AE)) d(L (A ←p),L (AE)) gain

[0.005,0.025] 36 0.01089 0.02598 0.03410 0.41905

[0.002,0.005] 49 0.00308 0.00387 0.00646 0.79628

[0.001,0.002] 35 0.00136 0.00057 0.00182 2.39863

[0.0005,0.001] 36 0.00075 0.00063 0.00130 1.18583

Table 7: Experiments on non equal-length-distinguishing DFA

6 Conclusion

We have studied how the PAC-version of Angluin’s algorithm behaves for devices which are obtained from
a DFA by introducing noise. More precisely, we have investigated whether Angluin’s algorithm reduces
the noise producing a DFA closer to the original one than the noisy device. We have considered three
kinds of noise belonging either to random noise or to structured noise. We have shown that, on average,
Angluin’s algorithm behaves well for random noise but not for structured noise. We have completed our
study by establishing that almost surely the random noisy devices produce a non recursively enumerable
language confirming the relevance of the structural criterion for robustness of Angluin’s algorithm.

There are several directions for future work. First the algorithm could be tuned in a more precise
way. In addition to stop when the maximal number of rounds is reached or the current automaton is
declared equivalent, we could add early stopping when after some stage with distance decreasing the
distance stabilizes. This would produce smaller DFA possibly closer to the original DFA. At longer term,
Angluin’s algorithm has no information about the original DFA. It would be interesting to introduce a
priori knowledge and design more efficient algorithms. For instance, the algorithm could take as input
the maximal size of the original DFA or a regular language that is a superset of the original language.
In our setting the noise resulted in a noisy device which, once obtained, answers membership queries
deterministically. A completely different form of noise would be that the answer to a query is randomly
noisy meaning that for the same repeated query, different answers could occur.

References

[1] Wil M. P. van der Aalst (2012): Process mining. CACM 55(8), pp. 76–83, doi:10.1145/2240236.2240257.

[2] Dana Angluin (1987): Learning Regular Sets from Queries and Counterexamples. Inf. Comput. 75(2), pp.
87–106, doi:10.1016/0890-5401(87)90052-6.

[3] Dana Angluin & Philip D. Laird (1987): Learning From Noisy Examples. Mach. Learn. 2(4), pp. 343–370,
doi:10.1023/A:1022873112823.

[4] Alan W. Biermann & Jerome A. Feldman (1972): A survey of results in grammatical inference. In S. Watanabe,
editor: Frontiers of Pattern Recognition, Academic Press, New York, pp. 31–54, doi:10.1016/B978-0-12-
737140-5.50007-5.

[5] Christos G. Cassandras & Stephane Lafortune (2010): Introduction to Discrete Event Systems. Springer
Publishing Company, Incorporated, doi:10.1007/978-0-387-68612-7.

[6] E Mark Gold (1978): Complexity of automaton identification from given data. Information and Control 37(3),
pp. 302 – 320, doi:10.1016/S0019-9958(78)90562-4.

[7] Wassily Hoeffding (1963): Probability Inequalities for Sums of Bounded Random Variables. Journal of the
American Statistical Association 58(301), pp. 13–30, doi:10.2307/2282952.

https://doi.org/10.1145/2240236.2240257
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1023/A:1022873112823
https://doi.org/10.1016/B978-0-12-737140-5.50007-5
https://doi.org/10.1016/B978-0-12-737140-5.50007-5
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.2307/2282952

96 Analyzing Robustness of Angluin’s L* Algorithm in Presence of Noise

[8] Michael J. Kearns (1998): Efficient Noise-Tolerant Learning from Statistical Queries. J. ACM 45(6), pp.
983–1006, doi:10.1145/293347.293351.

[9] Michael J. Kearns & Umesh V. Vazirani (1994): An Introduction to Computational Learning Theory. MIT
Press, doi:10.7551/mitpress/3897.001.0001.

[10] J. R. Quinlan (1986): The Effect of Noise on Concept Learning. In: Machine Learning, An Artificial
Intelligence Approach Volume II, chapter 6, Morgan Kaufmann, pp. 149–166.

[11] Ray J. Solomonoff (1964): A Formal Theory of Inductive Inference. Inf. Control. 7(1, 2), pp. 1–22, 224–254,
doi:10.1016/S0019-9958(64)90223-2.

[12] Leslie G. Valiant (1984): A Theory of the Learnable. Commun. ACM 27(11), pp. 1134–1142,
doi:10.1145/1968.1972.

[13] R. M. Wharton (1974): Approximate language identification. Information and Control 26(3), pp. 236 – 255,
doi:10.1016/S0019-9958(74)91369-2.

https://doi.org/10.1145/293347.293351
https://doi.org/10.7551/mitpress/3897.001.0001
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1145/1968.1972
https://doi.org/10.1016/S0019-9958(74)91369-2

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. 97–113, doi:10.4204/EPTCS.370.7

© L. Bozzelli & A. Peron

This work is licensed under the

Creative Commons Attribution License.

Parametric Interval Temporal Logic over Infinite Words

Laura Bozzelli
University of Napoli “Federico II”, Napoli, Italy

laura.bozzelli@unina.it

Adriano Peron
University of Napoli “Federico II”, Napoli, Italy

adrperon@unina.it

Model checking for Halpern and Shoham’s interval temporal logic HS has been recently investigated

in a systematic way, and it is known to be decidable under three distinct semantics. Here, we focus

on the trace-based semantics, where the infinite execution paths (traces) of the given (finite) Kripke

structure are the main semantic entities. In this setting, each finite infix of a trace is interpreted as

an interval, and a proposition holds over an interval if and only if it holds over each component state

(homogeneity assumption). In this paper, we introduce a quantitative extension of HS over traces,

called parametric HS (PHS). The novel logic allows to express parametric timing constraints on the

duration (length) of the intervals. We show that checking the existence of a parameter valuation for

which a Kripke structure satisfies a PHS formula (model checking), or a PHS formula admits a trace

as a model under the homogeneity assumption (satisfiability) is decidable. Moreover, we identify a

fragment of PHS which subsumes parametric LTL and for which model checking and satisfiability

are shown to be EXPSPACE-complete.

1 Introduction

Interval temporal logic HS. Point-based Temporal Logics (PTLs), such as the linear-time temporal

logic LTL [33] and the branching-time temporal logics CTL and CTL∗ [16] provide a standard frame-

work for the specification of the dynamic behavior of reactive systems that makes it possible to describe

how a system evolves state-by-state (“point-wise” view). PTLs have been successfully employed in

model checking (MC) [15, 35] for the automatic verification of complex finite-state systems modeled as

finite propositional Kripke structures. Interval Temporal Logics (ITLs) provide an alternative setting for

reasoning about time [20, 32, 38]. They assume intervals, instead of points, as their primitive temporal

entities allowing one to specify temporal properties that involve, e.g., actions with duration, accomplish-

ments, and temporal aggregations, which are inherently “interval-based”, and thus cannot be naturally

expressed by PTLs. ITLs find applications in a variety of computer science fields, including artificial

intelligence (reasoning about action and change, qualitative reasoning, planning, and natural language

processing), theoretical computer science (specification and verification of programs), and temporal and

spatio-temporal databases (see, e.g., [32, 25, 34]).

The most prominent example of ITLs is Halpern and Shoham’s modal logic of time intervals (HS) [20]

which features one modality for each of the 13 possible ordering relations between pairs of intervals (the

so-called Allen’s relations [1]), apart from equality. The satisfiability problem for HS turns out to be

highly undecidable for all interesting (classes of) linear orders [20]. The same happens with most of its

fragments [13, 24, 28] with some meaningful exceptions like the logic of temporal neighbourhood AA,

over all relevant (classes of) linear orders [14], and the logic of sub-intervals D, over the class of dense

linear orders [31].

Model checking of (finite) Kripke structures against HS has been investigated only recently [25, 26,

27, 29, 30, 6, 7, 4, 9]. The idea is to interpret each finite path of a Kripke structure as an interval, whose

labelling is defined on the basis of the labelling of the component states, that is, a proposition letter holds

http://dx.doi.org/10.4204/EPTCS.370.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

98 Parametric Interval Temporal Logic over Infinite Words

over an interval if and only if it holds over each component state (homogeneity assumption [36]). Most

of the results have been obtained by adopting the so-called state-based semantics [29]: intervals/paths

are “forgetful” of the history leading to their starting state, and time branches both in the future and

in the past. In this setting, MC of full HS is decidable: the problem is at least EXPSPACE-hard [5],

while the only known upper bound is non-elementary [29]. The known complexity bounds for full HS

coincide with those for the linear-time fragment BE of HS which features modalities 〈B〉 and 〈E〉 for

prefixes and suffixes. These complexity bounds easily transfer to finite satisfiability, that is, satisfiability

over finite linear orders, of BE under the homogeneity assumption. Whether or not these problems

can be solved elementarily is a difficult open question. On the other hand, in the state-based setting,

the exact complexity of MC for many meaningful (linear-time or branching-time) syntactic fragments

of HS, which ranges from co−NP to PNP, PSPACE, and beyond, has been determined in a series of

papers [30, 6, 8, 10, 12, 9].

The expressiveness of HS with the state-based semantics has been studied in [7], together with other

two decidable variants: the computation-tree-based semantics variant and the traces-based one. For

the first variant, past is linear: each interval may have several possible futures, but only a unique past.

Moreover, past is finite and cumulative, and is never forgotten. The trace-based approach instead relies

on a linear-time setting, where the infinite paths (traces) of the given Kripke structure are the main

semantic entities. It is known that the computation-tree-based variant of HS is expressively equivalent

to finitary CTL∗ (the variant of CTL∗ with quantification over finite paths), while the trace-based variant

is equivalent to LTL. The state-based variant is more expressive than the computation-tree-based variant

and expressively incomparable with both LTL and CTL∗. To the best of our knowledge, complexity

issues about MC and the satisfiability problem of HS and its syntactic fragments under the trace-based

semantics have not been investigated so far.

Parametric extensions of point-based temporal logics. Traditional PTLs such as standard LTL [33]

allow only to express qualitative requirements on the temporal ordering of events. For example, in

expressing a typical request-response temporal requirement, it is not possible to specify a bound on the

amount of time for which a request is granted. A simple way to overcome this drawback is to consider

quantitative extensions of PTLs where temporal modalities are equipped with timing constraints for

allowing the specification of constant bounds on the delays among events. A well-known representative

of such logics is Metric Temporal Logic (MTL) [22]. However this approach is not practical in the

first stages of a design, when not much is known about the system under development, and is useful

for designers to use parameters instead of specific constants. Parametric extensions of traditional PTLs,

where time bounds can be expressed by means of parameters, have been investigated in many papers.

Relevant examples include parametric LTL [2], Prompt LTL [23], and parametric MTL [19].

Our contribution. In this paper we introduce a parametric extension of the interval temporal logic

HS under the trace-based semantics, called parametric HS (PHS). The extension is obtained by means of

inequality constraints on the temporal modalities of HS which allow to specify parametric lower/upper

bounds on the duration (length) of the interval selected by the temporal modality. Similarly to parametric

LTL [2], we impose that a parameter can be exclusively used either as upper bound or as lower bound

in the timing constraints. We address the decision problems of checking the existence of a parameter

valuation such that (1) a given PHS formula is satisfiable, and (2) a given Kripke structure satisfies a given

PHS formula (MC). By adapting the alternating color technique for Prompt LTL [23] and by exploiting

known results on linear-time hybrid logic HL [18, 37, 3], we show that the considered problems are

decidable. Additionally, we consider the syntactic fragment P(ABB) of PHS which allows only temporal

modalities for the Allen’s relations meets RA, started-by RB and its inverse RB. We show that P(ABB)

L. Bozzelli & A. Peron 99

subsumes parametric LTL, and its flat fragment ABB is exponentially more succinct than LTL + past.

Moreover, we establish that satisfiability and MC of P(ABB) are EXPSPACE-complete, and we provide

tight bounds on optimal parameter values for both problems.

2 Preliminaries

We fix the following notation. Let Z be the set of integers, N the set of natural numbers, and N+
def
=

N\{0}. Let Σ be an alphabet and w be a non-empty finite or infinite word over Σ. We denote by |w| the

length of w (|w| = ∞ if w is infinite). For all i, j ∈ N, with i ≤ j < |w|, w(i) is the (i+ 1)-th letter of w,

while w[i, j] is the infix of w given by w(i) · · ·w(j).
We fix a finite set AP of atomic propositions. A trace is an infinite word over 2AP. For a logic F

interpreted over traces and a formula ϕ ∈F, L (ϕ) denotes the set of traces satisfying ϕ . The satisfiability

problem for F is checking for a given formula ϕ ∈ F, whether L (ϕ) 6= /0.

Kripke Structures. In the context of model-checking, finite state systems are usually modelled as finite

Kripke structures over a finite set AP of atomic propositions which represent predicates over the states

of the system. A (finite) Kripke structure over AP is a tuple K = (AP,S,E,Lab,s0), where S is a finite

set of states, E ⊆ S× S is a left-total transition relation, Lab : S 7→ 2AP is a labelling function assigning

to each state s the set of propositions that hold over it, and s0 ∈ S is the initial state. An infinite path π

of K is an infinite word over S such that π(0) = s0 and (π(i),π(i+ 1)) ∈ E for all i ≥ 0. A finite path

of K is a non-empty infix of some infinite path of K . An infinite path π induces the trace given by

Lab(π(0))Lab(π(1)) We denote by L (K) the set of traces associated with the infinite paths of K .

Given a logic F interpreted over traces, the (linear-time) model checking problem against F is checking

for a given Kripke structure K and a formula ϕ ∈ F, whether L (K)⊆ L (ϕ).

Büchi nondeterministic automata. A Büchi nondeterministic finite automaton over infinite words

(Büchi NFA for short) is a tuple A = (Σ,Q,q0,δ ,F), where Σ is a finite input alphabet, Q is a finite

set of states, q0 ∈ Q is the initial state, δ : Q×Σ 7→ 2Q is the transition relation, and F ⊆ Q is a set of

accepting states. Given an infinite word w over Σ, a run π of A over w is a an infinite sequence π of

states such that π(0) = q0 and π(i+1) ∈ δ (π(i),w(i)) for all i ≥ 0. The run is accepting if for infinitely

many i ≥ 0, π(i) ∈ F . The language L (A) accepted by A is the set of infinite words w over Σ such that

there is an accepting run of A over w.

2.1 Allen’s relations and Interval Temporal Logic HS

An interval algebra to reason about intervals and their relative orders was proposed by Allen in [1],

while a systematic logical study of interval representation and reasoning was done a few years later by

Halpern and Shoham, who introduced the interval temporal logic HS featuring one modality for each

Allen relation, but equality [20].

Let U= (Pt,<) be a linear order over the nonempty set Pt 6= /0, and ≤ be the reflexive closure of <.

Given two elements x,y ∈ Pt such that x ≤ y, we denote by [x,y] the (non-empty closed) interval over Pt

given by the set of elements z ∈ Pt such that x ≤ z and z ≤ y. We denote the set of all intervals over U by

I(U). We now recall the Allen’s relations over intervals of the linear order U= (Pt,<):
1. the meet relation RA, defined by [x,y]RA [v,z] if y = v (i.e., the start-point of the second interval

coincides with the end-point of the first interval);

2. the before relation RL, defined by [x,y]RL [v,z] if y < v (i.e., the start-point of the second interval

strictly follows the end-point of the first interval);

100 Parametric Interval Temporal Logic over Infinite Words

Table 1: Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example

x y
v z

v z
v z

v z
v z

v z

MEETS 〈A〉 [x,y]RA [v,z] ⇐⇒ y = v

BEFORE 〈L〉 [x,y]RL [v,z] ⇐⇒ y < v

STARTED-BY 〈B〉 [x,y]RB [v,z] ⇐⇒ x = v∧ z < y

FINISHED-BY 〈E〉 [x,y]RE [v,z] ⇐⇒ y = z∧ x < v

CONTAINS 〈D〉 [x,y]RD [v,z] ⇐⇒ x < v∧ z < y

OVERLAPS 〈O〉 [x,y]RO [v,z] ⇐⇒ x < v < y < z

3. the started-by relation RB, defined by [x,y]RB [v,z] if x = v and z < y (i.e., the second interval is a

proper prefix of the first interval);

4. the finished-by relation RE , defined by [x,y]RE [v,z] if y = z and x < v (i.e., the second interval is

a proper suffix of the first interval);

5. the contains relation RD, defined by [x,y]RD [v,z] if x < v and z < y (i.e., the second interval is

contained in the internal of the first interval);

6. the overlaps relation RO, defined by [x,y]RO [v,z] if x< v< y< z (i.e., the second interval overlaps

at the right the first interval);

7. for each X ∈ {A,L,B,E,D,O} the relation RX , defined as the inverse of RX , i.e. [x,y]RX [v,z] if

[v,z]RX [x,y].

Table 1 gives a graphical representation of the Allen’s relations RA, RL, RB, RE , RD, and RO

together with the corresponding HS (existential) modalities.

Syntax and semantics of HS. HS formulas ϕ over AP are defined as follows:

ϕ ::=⊤ | p | ¬ϕ | ϕ ∧ϕ | 〈X〉ϕ

where p∈AP and 〈X〉 is the existential temporal modality for the (non-trivial) Allen’s relation RX , where

X ∈ {A,L,B,E,D,O,A,L,B,E,D,O}. The size |ϕ | of a formula ϕ is the number of distinct subformulas

of ϕ . We also exploit the standard logical connectives ∨ (disjunction) and → (implication) as abbrevia-

tions, and for any temporal modality 〈X〉, the dual universal modality [X] defined as: [X]ψ
def
= ¬〈X〉¬ψ .

Moreover, we will also use the reflexive closure of the Allen’s relation RB (resp., RE) and the associated

temporal modalities 〈Bw〉 and [Bw] (resp., 〈Ew〉 and [Ew]) where 〈Bw〉ϕ corresponds to ϕ ∨ 〈B〉ϕ and

〈Ew〉ϕ corresponds to ϕ ∨ 〈E〉ϕ . Given any subset of Allen’s relations {RX1
, ..,RXn

}, we denote by

X1 · · ·Xn the HS fragment featuring temporal modalities for RX1
, ..,RXn

only.

The logic HS is interpreted on interval structures S = (AP,U,Lab), which are linear orders U

equipped with a labelling function Lab : I(U) → 2AP assigning to each interval the set of propositions

that hold over it. Given an HS formula ϕ and an interval I ∈ I(U), the satisfaction relation I |=S ϕ ,

meaning that ϕ holds at the interval I of S , is inductively defined as follows (we omit the semantics of

the Boolean connectives which is standard):

I |=S p ⇔ p ∈ Lab(I);
I |=S 〈X〉ϕ ⇔ there is an interval J ∈ I(U) such that I RX J and J |=S ϕ .

It is worth noting that we assume the non-strict semantics of HS, which admits intervals consisting of

a single point. Under such an assumption, all HS-temporal modalities can be expressed in terms of

L. Bozzelli & A. Peron 101

〈B〉,〈E〉,〈B〉, and 〈E〉 (see [38]). As an example, 〈D〉ϕ can be expressed in terms of 〈B〉 and 〈E〉 as

〈B〉 〈E〉ϕ , while 〈A〉ϕ can be expressed in terms of 〈E〉 and 〈B〉 as

([E] ¬⊤∧ (ϕ ∨〈B〉ϕ))∨〈E〉([E] ¬⊤∧ (ϕ ∨〈B〉ϕ)).

Interpretation of HS over traces. In this paper, we focus on interval structures S = (AP,(N,<),Lab)
over the standard linear order on N (N-interval structures for short) satisfying the homogeneity principle:

a proposition holds over an interval if and only if it holds over all its subintervals. Formally, S is

homogeneous if for every interval [i, j] over N and every p ∈ AP, it holds that p ∈ Lab([i, j]) if and only

if p ∈ Lab([h,h]) for every h ∈ [i, j]. Note that homogeneous N-interval structures over AP correspond to

traces where, intuitively, each interval is mapped to an infix of the trace. Formally, each trace w induces

the homogeneous N-interval structure S (w) whose labeling function Labw is defined as follows: for all

i, j ∈ N with i ≤ j and p ∈ AP, p ∈ Labw([i, j]) if and only if p ∈ w(h) for all h ∈ [i, j]. For the given

finite set AP of atomic propositions, this mapping from traces to homogeneous N-interval structures is

evidently a bijection. For a trace w, an interval I over N, and an HS formula ϕ , we write I |=w ϕ to mean

that I |=S (w) ϕ . The trace w satisfies ϕ , written w |= ϕ , if [0,0] |=w ϕ .

Expressiveness completeness and succinctness of the fragment AB over traces. It is known that HS

over traces has the same expressiveness as standard LTL [7], where the latter is expressively complete for

standard first-order logic FO over traces [21]. In particular, the fragment AB of HS is sufficient for cap-

turing full LTL [7]: given an LTL formula, one can construct in linear-time an equivalent AB formula [7].

Note that when interpreted on infinite words w, modality 〈B〉 allows to select proper non-empty prefixes

of the current infix subword of w, while modality 〈A〉 allows to select subwords whose first position

coincides with the last position of the current interval. Here, we show that AB is exponentially more

succinct than LTL + past. For each k ≥ 1, we denote by lenk the B formula capturing the intervals of

length k: lenk
def
= (〈B〉 . . . 〈B〉

︸ ︷︷ ︸

k−1 times

⊤)∧ ([B] . . . [B]
︸ ︷︷ ︸

k times

¬⊤).

For each n ≥ 1, let APn = {p0, . . . , pn} and Ln be the ω-language consisting of the infinite words

over 2APn such that any two positions that agree on the truth value of propositions p1, . . . , pn also agree

on the truth value of p0. It is known that any Büchi NFA accepting Ln needs at least 22n

states [17].

Thus, since any formula ϕ of LTL + past can be translated into an equivalent Büchi NFA with a single

exponential blow-up, it follows that any formula of LTL + past capturing Ln has size at least single

exponential in n. On the other hand, the language Ln is captured by the following AB formula having

size linear in n:

[A] [A]
(
(

∧

i∈[1,n]

θ(pi))→ θ(p0)
)

θ(p)
def
= 〈B〉(len1 ∧ p)↔ 〈A〉(len1 ∧ p)

Hence, we obtain the following result.

Theorem 1. AB (over traces) is exponentially more succinct than LTL + past.

3 Parametric Interval Temporal Logic

In this section, we introduce a parametric extension of the interval temporal logic HS over traces, called

parametric HS (PHS for short). The extension is obtained by means of inequality constraints on the

temporal modalities of HS which allow to compare the length of the interval selected by the temporal

modality with an integer parameter. Like parametric LTL [2], the parameterized operators are monotone

102 Parametric Interval Temporal Logic over Infinite Words

(either upward or downward) and a parameter is upward (resp., downward) if it is the subscript of some

upward (resp., downward) modality.

Syntax and semantics of PHS Let PU be a finite set of upward parameter variables u and PL be a finite

set of downward parameter variables ℓ such that PU and PL are disjunct. The syntax of PHS formulas ϕ

over AP and the set PU ∪PL of parameter variables is given in positive normal form as follows:

ϕ ::=⊤ | p | ¬p | ϕ ∨ϕ | ϕ ∧ϕ | 〈X〉ϕ | 〈X〉≺u ϕ | 〈X〉≻ℓϕ | [X]ϕ | [X]≺ℓϕ | [X]≻u ϕ

where p ∈ AP, X ∈ {A,L,B,E,D,O,A,L,B,Bw,Ew,D,O}, ≺∈ {<,≤}, ≻∈ {>,≥}, u ∈ PU , and ℓ ∈ PL.

We denote by PromptHS the fragment of PHS where the unique parameterized temporal modalities

are of the form 〈X〉≺u. Moreover, given any subset of Allen’s relations {RX1
, ..,RXn

}, we denote by

P(X1 . . .Xn) (resp., Prompt(X1 . . .Xn)) the PHS (resp., PromptHS) fragment featuring temporal modal-

ities for RX1
, ..,RXn

only. We will focus on PHS and the fragment P(ABBBw).
For an interval I = [i, j] over N, we denote by |I| the length of I, given by j− i+1. The semantics of

a PHS formula ϕ is inductively defined with respect to a trace w, an interval I over N, and a parameter

valuation α : PU ∪PL 7→N+ assigning to each parameter variable a positive integer. We write (I,α) |=w ϕ

to mean that ϕ holds at the interval I of w under the valuation α . The interpretation of all temporal

operators of HS and connectives is identical to their HS interpretations. The parameterized operators are

interpreted as follows, where ℘∈ PU ∪PL and ∼∈ {<,≤,>,≥}:

(I,α) |=w 〈X〉∼℘ϕ ⇔ there is some interval J such that I RX J, |J| ∼ α(℘), and J,α |=w ϕ ;

(I,α) |=w [X]∼℘ϕ ⇔ for each interval J such that I RX J and |J| ∼ α(℘): J,α |=w ϕ .

We say that the trace w is a model of formula ϕ under the parameter valuation α , written (w,α) |= ϕ , if

([0,0],α) |=w ϕ . For a PHS formula ϕ and a Kripke structure K over AP, we consider:

(i) the set V (K ,ϕ) consisting of the parameter valuations α such that for each trace w ∈ L (K) of

K , (w,α) |= ϕ , and

(ii) the set S(ϕ) consisting of the valuations α such that (w,α) |= ϕ for some trace w.

The (linear-time) model-checking problem against PHS is checking for a given Kripke structure K and

PHS formula ϕ whether V (K ,ϕ) 6= /0. The satisfiability problem against PHS is checking for a given

PHS formula ϕ whether S(ϕ) 6= /0.

Given two valuations α and β , we write α ≤ β to mean that α(℘) ≤ β (℘) for all ℘∈ PL ∪PU .

A parameterized operator Θ is upward-monotone (resp., downward-monotone) if for all formulas ϕ ,

valuations α and β such that α ≤ β , I,α |=w Θϕ entails that I,β |=w Θϕ (resp., I,β |=w Θϕ entails that

I,α |=w Θϕ). By construction, all the parameterized operators are monotone. In particular, being PL and

PU disjunct, by increasing (resp., decreasing) the values of upward (resp., downward) parameters, the

satisfaction relation is preserved.

Proposition 1. • The operators in PHS parameterized by variables in PU are upward-closed, while

those parameterized by variables in PL are downward-closed.

• Let ϕ be a PHS formula and let α and β be variable valuations satisfying β (u)≥ α(u) for every

u ∈ PU and β (ℓ)≤ α(ℓ) for every ℓ ∈ PL. Then (w,α) |= ϕ entails that (w,β) |= ϕ .

Note that if we also allow for all ℓ ∈ PL and u ∈ PU , the parameterized modalities 〈X〉≻u, 〈X〉≺ℓ,

[X]≻ℓ, and [X]≺u, then the modalities 〈X〉∼℘and [X]∼℘, for ℘∈ PU ∪PL and ∼∈ {<,≤,>,≥} are dual

and have opposite kind of monotonicity. It easily follows that the logic is indeed closed under negation.

Proposition 2. Given a PHS formula ϕ with upward (resp., downward) parameters in PU (resp., PL), one

can construct in linear time a PHS formula ϕ with upward (resp., downward) parameters in PL (resp.,

L. Bozzelli & A. Peron 103

PU) corresponding to the negation of ϕ , i.e. such that for each parameter valuation α and trace w over

2AP, (w,α) |= ϕ iff (w,α) 6|= ϕ .

We now show that parametric LTL (PLTL) [2] can be easily expressed in P(AB). Recall that PLTL

formulas ϕ over AP and the set of parameters PU ∪PL are defined as:

ϕ ::=⊤ | p | ¬p | ϕ ∨ϕ | ϕ ∧ϕ | Xϕ | ϕUϕ | Gϕ | F≤uϕ | G≤ℓϕ

where p∈AP, u∈PU , ℓ∈PL, X, U, and G are the standard next, until, and always modalities, respectively,

and F≤u and G≤ℓ are parameterized versions of the always and eventually modalities. Other parameter-

ized modalities such as F>ℓ or G>u can be easily expressed in the considered logic [2]. For a PLTL

formula ϕ , a trace w, a parameter valuation α , and a position i ≥ 0, the satisfaction relation (w, i,α) |= ϕ

is defined by induction as follows (we omit the semantics of LTL constructs which is standard):

(w, i,α) |= F≤uϕ ⇔ there is some k ≤ α(u) such that (w, i+ k,α) |= ϕ ;

(w, i,α) |= G≤ℓϕ ⇔ for each k ≤ α(ℓ): (w, i+ k,α) |= ϕ .

Proposition 3. For a PLTL formula ϕ , one can build in linear time a P(AB) formula f (ϕ) such that for

all traces w, i ≥ 0, and parameter valuations α , (w, i,α) |= ϕ iff ([i, i],α) |=w f (ϕ).

Proof. The mapping f :PLTL 7→ P(AB), homomorphic with respect to atomic propositions and Boolean

connectives, is defined as follows:

f (Xϕ)
def
= 〈A〉(len2 ∧〈A〉(len1 ∧ϕ));

f (ϕUϕ2)
def
= 〈A〉

(
〈A〉(len1 ∧ f (ϕ2))∧ [B]〈A〉(len1 ∧ f (ϕ1))

)
;

f (Gϕ)
def
= [A]〈A〉(len1 ∧ϕ);

f (F≤uϕ)
def
= 〈A〉≤u 〈A〉(len1 ∧ϕ);

f (G≤ℓϕ)
def
= [A]≤ℓ 〈A〉(len1 ∧ϕ).

Note that by Proposition 3 and the results in [2], the relaxation of the assumption PU ∩PL = /0 or

the adding of parameterized operators of the form 〈X〉=℘ would lead to an undecidable model-checking

problem already for the parameterized extension of AB by just one parameter.

Expressively complete fragments. Two PHS formulas ϕ and ψ are strongly equivalent, denoted by

ϕ ≡ ψ , if for all traces, intervals I over N, and parameter valuations α , we have that (I,α) |=w ϕ iff

(I,α) |=w ψ . We show that the fragment consisting of P(BBBwEEEw) formulas with no occurrences of

parameterized operators [X]≻u is sufficient to capture the full logic PHS.

Proposition 4. Given a PHS formula ϕ , one can build in linear time a strongly equivalent P(BBBwEEEw)
formula ψ with no occurrences of the parameterized operators [X]≻u.

Proof. We first show that the fragment P(BBBwEEEw) is expressively complete for PHS. The strong

equivalences exploited for expressing all the HS modalities in terms of the modalities in the fragment

BBEE can be trivially adapted to the parameterized setting. Here, we illustrate the equivalences for the

104 Parametric Interval Temporal Logic over Infinite Words

existential parameterized operators where ∼∈ {<,≤,>,≥} and ℘∈ PU ∪PL:

〈A〉∼℘ϕ ≡ (len1 ∧〈B〉∼℘ϕ)∨〈E〉(len1 ∧〈B〉∼℘ϕ);

〈A〉∼℘ϕ ≡ (len1 ∧〈E〉∼℘ϕ)∨〈B〉(len1 ∧〈E〉∼℘ϕ);

〈L〉∼℘ϕ ≡ 〈B〉〈E〉(len1 ∧〈B〉∼℘ϕ);

〈L〉∼℘ϕ ≡ 〈E〉〈B〉(len1 ∧〈E〉∼℘ϕ);

〈D〉∼℘ϕ ≡ 〈B〉〈E〉∼℘ϕ ;

〈D〉∼℘ϕ ≡ 〈B〉〈E〉∼℘ϕ ;

〈O〉∼℘ϕ ≡ 〈E〉(¬len1 ∧〈B〉∼℘ϕ);

〈O〉∼℘ϕ ≡ 〈B〉(¬len1 ∧〈E〉∼℘ϕ).

It remains to show that for the fragment P(BBBwEEEw), the universal upward parameterized opera-

tors can be expressed in terms of the other modalities. One can easily show that the following strong

equivalences hold, where ≺ is < (resp., ≺ is ≤) and ≻ is ≥ (resp., ≻ is >). Hence, the result follows.

[B]≻u ϕ ≡ [B](ϕ ∨〈Bw〉≺u⊤);
[E]≻u ϕ ≡ [E](ϕ ∨〈Ew〉≺u⊤);
[B]≻u ϕ ≡ 〈B〉≺u([B]ϕ)∨ [B]ϕ ;

[E]≻u ϕ ≡ 〈E〉≺u([E]ϕ)∨ [E]ϕ ;

[Bw]≻u ϕ ≡ 〈Bw〉≺u([B]ϕ)∨ [Bw]ϕ ;

[Ew]≻u ϕ ≡ 〈Ew〉≺u([E]ϕ)∨ [Ew]ϕ .

For the logic P(ABBBw), we obtain a similar result.

Proposition 5. Given a P(ABBBw) formula ϕ , one can build in linear time a strongly equivalent

P(ABBBw) formula ψ with no occurrences of the parameterized operators [X]≻u.

Proof. The result directly follows from the strong equivalences provided in the proof of Proposition 4 and

the following one, where ≺ is < (resp., ≺ is ≤) and ≻ is ≥ (resp., ≻ is >): [A]≻u ϕ ≡ 〈A〉≺u [B]ϕ .

By the monotonicity of the parameterized modalities and Propositions 4 and 5, we can eliminate

all the parameterized modalities, but the existential upward ones, for solving the model-checking and

satisfiability problems against PHS (resp., P(ABBBw)).

Lemma 1. Model checking PHS (resp., P(ABBBw)) can be reduced in linear time to model checking

PromptHS (resp., Prompt(ABBBw)). Similarly, satisfiability of PHS (resp., P(ABBBw)) can be reduced

in linear time to satisfiability of PromptHS (resp., Prompt(ABBBw)).

Proof. Let ϕ be a PHS (resp., P(ABBBw)) formula. By Propositions 4 and 5, we can assume that ϕ

does not contain occurrences of parameterized operators of the form [X]≻u. Let f (ϕ) be the PromptHS

(resp., Prompt(ABBBw)) formula intuitively obtained from ϕ by replacing each occurrence of a down-

ward parameter ℓ with the constant 1. Formally, f (ϕ) is homomorphic w.r.t. all the constructs but the

downward parameterized modalities and:

• f (〈X〉≥ℓ ϕ)
def
= 〈X〉 f (ϕ);

• f (〈X〉>ℓ ϕ)
def
= 〈X〉(¬len1 ∧ f (ϕ));

• f ([X]≤ℓϕ)
def
= [X](¬len1 ∨ f (ϕ));

• f ([X]<ℓϕ)
def
= ⊤.

L. Bozzelli & A. Peron 105

As for the model checking problem, we show that V (K ,ϕ) 6= /0 iff V (K , f (ϕ)) 6= /0 for each Kripke

structure K . Let α1 be a parameter valuation such that α1(ℓ) = 1 for each downward parameter ℓ ∈ L.

By construction, for all traces w, (w,α1) |= ϕ iff (w,α1) |= f (ϕ). Hence, V (K , f (ϕ)) 6= /0 implies that

V (K ,ϕ) 6= /0. On the other hand, if V (K ,ϕ) 6= /0, there is a parameter valuation α such that for each

trace w of K , (w,α) |= ϕ . Let α1 be defined as: α1(u) = α(u) for each u ∈ U , and α1(ℓ) = 1 for

each ℓ ∈ L. By Proposition 1, it follows that for each trace w of K , (w,α1) |= ϕ . Thus, we obtain

that V (K , f (ϕ)) 6= /0 as well, and the result for the model-checking problem follows. The result for the

satisfiability problem is similar.

4 Decision procedures for PHS

In this section, we first provide a translation of HS formulas into equivalent Büchi NFA (asymptotically

optimal for ABBBw formulas), by exploiting as an intermediate step a translation of HS formulas into

equivalent formulas of linear-time hybrid logic HL [18, 37, 3] (Subsection 4.1). Then, in Subsection 4.2,

we apply the results of Subsection 4.1 and the alternating color technique for Prompt LTL [23] in order

to solve satisfiability and model checking against PHS and P(ABBBw). In particular, for the logic

P(ABBBw), we show that the considered problems are EXPSPACE-complete.

4.1 Translation of HS in linear-time Hybrid Logic

In this section, we recall the linear-time hybrid logic HL [18, 37, 3], which extends standard LTL + past

by first-order concepts. We show that while HS can be translated into the two-variable fragment of HL,

for the logic ABBBw, it suffices to consider the one-variable fragment HL1 of HL. Thus, by exploiting

known results on HL1 [37, 3], we obtain an asymptotically optimal automata-theoretic approach for

ABBBw of elementary complexity.

Syntax and semantics of HL. Given a set X of (position) variables, the set of HL formulas ϕ over AP

and X is defined by the following syntax:

ϕ
def
= ⊤ | p | x | ¬ϕ | ϕ ∧ ϕ | Xϕ | Yϕ | Fϕ | Pϕ | ↓x.ϕ

p ∈ AP, x ∈ X , Y and P are the past counterparts of the next modality X and the eventually modality F,

respectively, and ↓x is the downarrow binder operator which assigns the variable name x to the current

position. We denote by HL1 (resp., HL2) the one-variable (resp., two-variable) fragment of HL. An HL

sentence is a formula where each variable x is not free (i.e., occurs in the scope of a binder modality ↓x).

The size |ϕ | of an HL formula ϕ is the number of distinct subformulas of ϕ .

HL is interpreted over traces w. A valuation g is a mapping assigning to each variable a position i≥ 0.

The satisfaction relation (w, i,g) |= ϕ , meaning that ϕ holds at position i along w w.r.t. the valuation g,

is inductively defined as follows (we omit the semantics of LTL constructs which is standard):

(w, i,g) |= x ⇔ i = g(x)
(w, i,g) |= ↓x.ϕ ⇔ (w, i,g[x 7→ i]) |= ϕ

where g[x 7→ i](x) = i and g[x 7→ i](y) = g(y) for y 6= x. Thus, ↓x binds the variable x to the current

position. Note that the satisfaction relation depends only on the values assigned to the variables occurring

free in the given formula ϕ . We write (w, i) |= ϕ to mean that (w, i,g0) |= ϕ , where g0 maps each variable

to position 0, and w |= ϕ to mean that (w,0) |= ϕ . Note that HL formulas can be trivially translated into

106 Parametric Interval Temporal Logic over Infinite Words

equivalent formulas of first-order logic FO over traces and LTL formulas can be trivially translated into

equivalent HL formulas. Thus, by the first-order expressiveness completeness of LTL, HL and LTL have

the same expressiveness [18].

Translation of HS into HL. We establish the following result.

Proposition 6. Given an HS (resp., ABBBw) formula ϕ , one can construct in linear-time a two-variable

(resp., one-variable) sentence HL ϕ ′ such that L (ϕ) = L (ϕ ′).

Proof. We first consider full HS. We can restrict ourselves to consider the fragment BBEE of HS since

all temporal modalities in HS can be expressed in BBEE by a linear-time translation. Fix two distinct

variables xL and xR. We define a mapping f : BBEE 7→ HL2 assigning to each BBEE formula ϕ a HL2

formula f (ϕ) with variables xL and xR which occur free in f (ϕ). Intuitively, in the translation, xL and xR

refer to the left and right endpoints of the current interval in N, while the current position corresponds

to the left endpoint of the current interval. Formally, the mapping f is homomorphic w.r.t. the Boolean

connectives and is inductively defined as follows:

• f (p)
def
= G(Fxr → p);

• f (〈B〉ϕ)
def
= F(XFxR ∧↓xR.P(xL ∧ f (ϕ)));

• f (〈B〉ϕ)
def
= F(xR ∧XF↓xR.P(xL ∧ f (ϕ)));

• f (〈E〉ϕ)
def
= XF(FxR ∧↓xL. f (ϕ));

• f (〈E〉ϕ)
def
= XP↓xL. f (ϕ).

By a straightforward induction on ϕ , we obtain that given a trace w, an interval [i, j], a valuation g

such that g(xL) = i and g(xR) = j, it holds that [i, j] |=w ϕ if and only if (w, i,g) |= f (ϕ). The desired

HL2 sentence ϕ ′ equivalent to ϕ is then defined as follows: ϕ ′ def
= ↓xL.↓xR. f (ϕ).

We now consider the logic ABBBw. We can restrict ourselves to consider the fragment ABB of HS

since the modality 〈Bw〉 can be trivially expressed in terms of 〈B〉. Fix a variable x. We define a mapping

h :ABB 7→HL1 assigning to each ABB formula ϕ an HL1 formula h(ϕ) with one variable x, which occurs

free in h(ϕ). Intuitively, in the translation, x refers to the left endpoint of the current interval in N, while

the current position corresponds to the right endpoint of the current interval. Formally, the mapping h is

homomorphic w.r.t. the Boolean connectives and is inductively defined as follows:

• h(p)
def
= ¬P(Px∧¬p);

• h(〈A〉)
def
= ↓x.Fh(ϕ);

• h(〈B〉ϕ)
def
= YP(h(ϕ)∧Px);

• h(〈B〉ϕ)
def
= XFh(ϕ).

By a straightforward induction on ϕ , we can prove that given a trace w, an interval [i, j], a valuation

g such that g(x) = i, it holds that [i, j] |=w ϕ if and only if (w, j,g) |= h(ϕ). The desired HL1 sentence ϕ ′

equivalent to ϕ is then defined as follows: ϕ ′ def
= ↓x.h(ϕ).

It is known that HL2 is already non-elementarily decidable [37] and for an HL formula ϕ , one can

construct a Büchi NFA accepting L (ϕ) whose size is a tower of exponentials having height equal to the

nesting depth of the binder modality plus one [3]. For the one-variable fragment HL1 of HL, one can do

much better [3]: the size of the Büchi NFA equivalent to a HL1 formula ϕ has size doubly exponential in

the size of ϕ . Hence, by Proposition 6, we obtain the following result.

Proposition 7. Given an HS formula ϕ , one can build a Büchi NFA Aϕ accepting L (ϕ). Moreover, if

ϕ is a ABBBw formula, then Aϕ has size doubly exponential in the size of ϕ .

L. Bozzelli & A. Peron 107

Note that by [3], the Büchi NFA equivalent to a HL1 formula can be built on the fly. Recall that non-

emptiness of Büchi NFA is NLOGSPACE-complete, and the standard model checking algorithm consists

in checking emptiness of the Büchi NFA resulting from the synchronous product of the given finite Kripke

structure with the Büchi NFA associated with the negation of the fixed formula. Thus, by Proposition 7,

we obtain algorithms for satisfiability and model-checking of ABBBw which run in non-deterministic

single exponential space. In [11], it is shown that satisfiability and model checking of AB over finite

words is already EXPSPACE-hard. The EXPSPACE-hardness proof in [11] can be trivially adapted to

handle AB over infinite words. Thus, since EXPSPACE = NEXPSPACE, we obtain the following result.

Corollary 1. Model checking and satisfiability problems for ABBBw are both EXPSPACE-complete.

4.2 Solving satisfiability and model checking of PHS

In this section, we provide an automata-theoretic approach for solving satisfiability and model check-

ing of PromptHS and Prompt(ABBBw) based on Proposition 7 and the alternating color technique for

Prompt LTL [23]. By Lemma 1, we devise algorithms for solving satisfiability and model checking

against PHS and P(ABBBw) as well, which for the case of P(ABBBw) are asymptotically optimal.

Alternating color technique [23]. We fix a fresh proposition c /∈ AP. Let us consider a trace w. A

c-coloring of w is a trace w′ over AP∪{c} such that w and w′ agree at every position on all the truth

values of the propositions in AP, i.e. w′(i)∩AP = w(i) for all i ≥ 0. A position i ≥ 0 is a c-change point

in w′ if either i = 0, or the colors of i and i−1 are different, i.e. c ∈ w′(i) iff c /∈ w′(i−1). A c-block of

w′ is a maximal interval [i, j] which has exactly one c-change point in w′, and this change point is at the

first position i of [i, j]. Given k ≥ 1, we say that w′ is k-bounded if each c-block of w′ has length at most

k, which implies that w′ has infinitely many c-change points. Dually, we say that w′ is k-spaced if w′ has

infinitely many c-change points and every c-block has length at least k.

We apply the alternating color technique [23] for replacing a parameterized modality 〈X〉≺u ψ in

PromptHS with a non-parameterized one requiring that the selected interval where ψ holds has at most

one c-change point. Formally, let relc : PromptHS 7→ HS be the mapping associating to each PromptHS

formula a HS formula, homomorphic w.r.t. propositions, connectives, and non-parameterized modalities,

and defined as follows on parameterized formulas 〈X〉≺u ψ :

relc(〈X〉≺u ψ)
def
= 〈X〉(relc(ψ)∧ (θc ∨θ¬c)).

where for each d ∈ {c,¬c}, θd is an AB formula requiring that the current interval has at most one

c-change point and the right endpoint is a d-colored position:

θd
def
= 〈A〉(len1 ∧d)∧ [B](〈A〉(len1 ∧¬d)→ [B]〈A〉(len1 ∧¬d)).

For a PromptHS formula ϕ , let c(ϕ) be the HS formula defined as follows:

c(ϕ)
def
= relc(ϕ)∧altc altc

def
= [A]〈A〉 〈A〉(len1 ∧ c)∧ [A]〈A〉〈A〉(len1 ∧¬c)

Note that c(ϕ) is a ABBBw formula if ϕ is a Prompt(ABBBw) formula. Moreover, the AB formula altc

requires that there are infinitely many c-change points. Thus, c(ϕ) forces a c-coloring of the given trace

w to be partitioned into infinitely many blocks such that each parameterized modality selects an interval

with at most one c-change point. Like Prompt LTL [23], there is a weak equivalence between ϕ and c(ϕ)
on k-bounded and k-spaced c-coloring of w. The following lemma rephrases Lemma 2.1 in [23] and can

be proved in a similar way.

108 Parametric Interval Temporal Logic over Infinite Words

Lemma 2. Let ϕ be a PromptHS formula and w be a trace.

1. If (w,α) |= ϕ , then w′ |= c(ϕ) for each k-spaced c-coloring w′ of w with k = maxu∈PU
α(u).

2. Let k ≥ 1. If w′ is a k-bounded c-coloring of w with w′ |= c(ϕ), then (w,α) |= ϕ , where α(u) = 2k

for each u ∈ PU .

Solving satisfiability. Let ϕ be a PromptHS formula and Ac be the Büchi NFA of Proposition 7 accept-

ing the models of the HS formula c(ϕ). By Lemma 2, we deduce that S(ϕ) 6= /0 if and only if there is

k ≥ 1 and some k-bounded c-coloring w′ accepted by Ac. Indeed, if S(ϕ) 6= /0, then there is a parameter

valuation α and a trace w such that (w,α) |= ϕ . Let k = maxu∈PU
α(u) and w′ be the c-coloring of w

whose c-blocks have length exactly k. Note that w′ is both k-spaced and k-bounded. By Lemma 2(1),

w′ |= c(ϕ), hence, w′ is accepted by Ac. Vice versa, if there is a trace w and a k-bounded c-coloring

w′ of w accepted by Ac, then, by Lemma 2(2), (w,α) |= ϕ , where α(u) = 2k for each u ∈ PU . Hence,

S(ϕ) 6= /0.

Let Nc be the number of Ac states. Assume that there is k-bounded c-coloring w′ accepted by Ac for

some k ≥ 1. We claim that there is also a 2NC + 1-bounded c-coloring accepted by Ac. If k ≤ 2Nc + 1,

the result is obvious. Otherwise, let π be an accepting run of Ac over w′, and let us consider the infixes

ν of π associated with the c-blocks of w′ greater than 2NC + 1. We replace ν with an infix of length at

most 2NC +1 as follows:

• If ν does not visits accepting states, we remove from ν the maximal cycles (but the first states of

such cycles) by obtaining a finite path of length at most Nc.

• If ν visits some accepting state, then ν can be written in the form ν = ν1 · qa ·ν2, where qa is an

accepting state. We remove the maximal cycles from ν1 and ν2 (but the first states of such cycles)

by obtaining a finite path of length at most 2Nc +1.

In this way, we obtain an accepting run of Ac over a 2Nc + 1-bounded c-coloring, and the result

follows. Then, starting from Ac, one can easily construct in time polynomial in the size of Ac, a Büchi

NFA A ′
c accepting the 2Nc +1-bounded colorings which are accepted by Ac. A ′

c keeps track in its state

of the current state of Ac and the binary encoding of the value of a counter modulo 2Nc + 1, where the

latter is reset whenever a c-change point occurs. Note that if ϕ is a Prompt(ABBBw) formula, then

c(ϕ) is a ABBBw formula, and by Proposition 7, the size of Ac is doubly exponential in the size of ϕ .

By the previous observations, it follows that if S(ϕ) 6= /0, then there is a parameter valuation α ∈ S(ϕ)
which is bounded doubly exponentially in |ϕ |. Thus, since non-emptiness of Büchi NFA is NLOGSPACE-

complete, by Lemma 1 and Proposition 7, we obtain the following result.

Theorem 2. Satisfiability of PHS is decidable. Moreover, satisfiability of P(ABBBw) is EXPSPACE-

complete and given a P(ABBBw) formula ϕ , in case S(ϕ) 6= /0, there is a parameter valuation in S(ϕ)
which is bounded doubly exponentially in |ϕ |.

We now show that the double exponential upper bound on the values of the parameters in Theorem 2

for satisfiable P(ABBBw) formulas cannot be in general improved. Indeed, we provide a matching lower

bound by defining for each n ≥ 1, a P(AB) formula of size polynomial in n which encodes a yardstick

of length (n+ 1) ∗ 2n ∗ 22n

. This is done by using a 2n-bit counter for expressing integers in the range

[0,22n

−1] and an n-bit counter for keeping track of the position (index) i ∈ [0,2n −1] of the (i+1)th-bit

of each valuation v of the 2n-bit counter. In particular, such a valuation v ∈ [0,22n

− 1] is encoded by

a sequence, called n-block, of 2n sub-blocks of length n+ 1 where for each i ∈ [0,2n − 1], the (i+ 1)th

sub-block encodes both the value and the index of the (i+1)th-bit in the binary representation of v.

Formally, let AP
def
= {#1,#2,$,0,1}. Fix n ≥ 1. An n-sub-block is a finite word ν over 2AP of length

n+ 1 of the form ν = {#1, p,bit}{bit1}, . . . ,{bitn} where bit,bit1, . . . ,bitn ∈ {0,1} and p ∈ {#1,#2}. If

L. Bozzelli & A. Peron 109

p = #2, we say that ν is marked. The content of ν is bit, and the index of ν is the number in [0,2n − 1]
whose binary code is bit1, . . . ,bitn. An n-block is a finite word ν of length (n+ 1) ∗ 2n of the form

ν = ν0 . . .ν2n−1, where ν0 is a marked n-sub-block of index 0, and for each i ∈ [1,2n − 1], νi is an

unmarked n-sub-block having index i. The index of i is the natural number in [0,22n

− 1] whose binary

code is bit0, . . . ,bit2n−1, where biti is the content of the sub-block νi for each i ∈ [0,2n −1]. The yardstick

of length (n+ 1) ∗2n ∗22n

is then encoded by the trace, called n-trace, given by bl0 · . . . · bl22n−1 · {$}ω

where bli is the n-block having index i for each i ∈ [0,22n

−1]. We first show the following result.

Lemma 3. For each n ≥ 1, one can construct in time polynomial in n a satisfiable AB formula ψn whose

unique model is the n-trace.

Proof. Fix n ≥ 1. The AB formula ψn is defined as ψn
def
= ψbl ∧ψinc. The conjunct ψbl captures the traces

w over AP = {#1,#2,$,0,1} having the form bl0 · . . . ·blk · {$}ω , for some k ≥ 1, such that the following

conditions are satisfied:

• bl0, . . . ,blk are n-blocks;

• bl0 is the n-block of index 0 (i.e., each n-sub-block of bl0 has content 0);

• blk is the n-block of index 22n

−1 (i.e., each n-sub-block of bl0 has content 1).

One can easily construct an LTL formula of size polynomial in n characterizing the traces satisfying the

previous requirements. Thus, since an LTL formula can be translated in linear time into an equivalent

AB formula [7], we omit the details of the construction of the AB formula ψbl .

The conjunct ψinc additionally ensures that k = 22n

−1 and for each i ∈ [1,22n

−2], bli is the n-block

of index i. To this purpose, it suffices to guarantee that in moving from a non-last n-block bl to the next

one bl′, the 2n-counter is incremented. This is equivalent to require that there is an n-sub-block sbl0 of bl

whose content is 0 such that for each n-sub-block sbl of bl, denoted by sbl′ the n-sub-block of bl′ having

the same index as sbl, the following holds: (i) if sbl precedes sbl0, then the content of sbl (resp., sbl′) is

1 (resp., 0), (ii) if sbl corresponds to sbl0, then the content of sbl′ is 1, and (iii) if sbl follows sbl0, then

there is b ∈ {0,1} such that the content of both sbl and sbl′ is b. In order to express these conditions, we

define auxiliary AB formulas. Recall that proposition #1 marks the first position of an n-sub-block, while

#2 marks the first position of an n-block bl (corresponding to the first position of the first n-sub-block

of bl). For each AB formula ϕ , the AB formula right(ϕ) requires that ϕ holds at the singleton interval

corresponding to the right endpoint of the current interval:

right(ϕ)
def
= 〈A〉(len1 ∧ϕ)

The AB formula ψone(#2) ensures that proposition #2 occurs exactly once in the current interval, while

ψnot(#2) ensures that #2 does not occur in the current interval. We focus on the definition of ψone(#2)
(the definition of ψnot(#2) being similar).

ψone(#2)
def
= [right(#2)∨〈B〉right(#2)]∧¬〈B〉[right(#2)∧〈B〉right(#2)]∧¬[right(#2)∧〈B〉right(#2)]

Moreover, we define the AB formulas ψ=(b,b
′) where b,b′ ∈ {0,1}. Formula ψ=(b,b

′) holds at a sin-

gleton interval [h,h] (along the given trace) iff whenever h corresponds to the beginning of a n-sub-block

sbl of an n-block bl, then (i) the content of sbl is b, (ii) the n-block bl is followed by an n-block bl′, and

(iii) the n-sub-block of bl′ having the same index as sbl has content b′.

ψ=(b,b
′)

def
= #1 →

[
b∧〈A〉

(
len2 ∧〈A〉(ψone(#2)∧θ=∧ right(b′∧#1))

)]

θ=
def
=

n∧

h=1

∨

b∈{0,1}

[
〈B〉(lenh ∧ right(b))∧〈A〉(lenh+1 ∧ right(b))

]

110 Parametric Interval Temporal Logic over Infinite Words

Finally, the conjunct ψinc in the definition of ψn is given by

ψinc
def
= [A]

(
[right(#2)∧〈A〉(¬len1 ∧ right(#2))]−→ 〈A〉[ψone(#2)∧ right(#1 ∧ψ=(0,1))∧ψL ∧ψR]

)

ψL
def
= [B](right(#1)→ right(ψ=(1,0)))

ψR
def
= 〈A〉

(

len2 ∧ [A]
[
(ψnot(#2)∧ right(#1))→

∨

b∈{0,1}

right(ψ=(b,b))
])

This concludes the proof of Lemma 3.

Fix n ≥ 1 and let ψn be the AB formula in Lemma 3. We consider the P(AB) formula ϕn with just

one parameter given by ϕn
def
= ψn ∧〈A〉≤u 〈A〉(len1 ∧$). By Lemma 3, the smallest value for parameter

u for which ϕn has a model is greater than (n+1)∗2n ∗22n

. Hence, we obtain the following result.

Proposition 8. There is a finite set AP of atomic propositions and a family {ϕn}n≥1 of satisfiable P(AB)
formulas over AP with just one parameter such that for each n ≥ 1, ϕn has size polynomial in n and the

smallest parameter valuation in S(ϕn) is doubly exponential in n.

Solving model checking. A fair Kripke structure K f is a Kripke structure equipped with a set S f of

accepting states. An infinite path of K f is fair if it visits infinitely many times states in S f . Assume that

K f is over the set of atomic propositions given by AP∪{c}, and let Labc be the associated propositional

labeling. A c-pumpable fair path of K f is a fair infinite path π of K f such that each infix of π associated

to a c-block of the trace Labc(π) visits some state at least twice. Let K = (AP,S,E,Lab,s0) be a

Kripke structure over AP, ϕ a PromptHS formula, and A¬c = (2AP∪{c},Q,q0,δ ,F) be the Büchi NFA of

Proposition 7 accepting the models of the HS formula ¬relc(ϕ)∧altc (note that we consider the negation

of relc(ϕ)). We define the fair Kripke structure

K ×A¬c = (AP∪{c},S×Q×2{c},(s0,q0, /0),Ec,Labc,S×F ×2{c})

where (i) ((s,q,C),(s′,q′,C′)) ∈ Ec iff (s,s′) ∈ E and q′ ∈ δ (q,C ∪ Lab(s)), and (ii) Labc(s,q,C) =
Lab(s)∪C. By construction, the traces associated to the fair infinite paths of K ×A¬c correspond to

the c-colorings w′ of the traces of K which are accepted by A¬c such that c /∈ w′(0). The following

lemma is similar to Lemma 4.2 in [23] and provides a characterization of emptiness of the set V (K ,ϕ)
of parameter valuations.

Lemma 4. K does not satisfy ϕ (i.e., V (K ,ϕ) = /0) iff K ×Ac has a c-pumpable fair path.

Proof. For the right implication, assume that V (K ,ϕ) = /0. We need to show that K ×Ac has a c-

pumpable fair path. Let k = |Q||S|+1 and α be the parameter valuation defined by α(u) = 2k for each

u ∈ U . Since V (K ,ϕ) = /0, there is a trace w of K such that (w,α) 6|= ϕ . Let w′ be the k-bounded

c-coloring of w such that each c-block of w′ has length exactly k and c /∈ w′(0). Since w′ |= altc and

c(ϕ) = relc(ϕ)∧altc, by Lemma 2(2), it follows that w′ |= ¬relc(ϕ)∧altc. Hence, w′ is accepted by the

Büchi automaton A¬c, and by construction there is a fair path π of K ×A¬c whose trace is w′. Now,

each infix of π associated to a c-block of w′ has length k = |Q||S|+ 1. Moreover, by construction, the

third component C of the states (s,q,C) ∈ S×Q×2c along such an infix does not change. It follows that

such an infix visits one state at least twice. Thus, π is a c-pumpable fair path of K ×A¬c.

For the left implication, assume that K ×Ac has a c-pumpable fair path ρ . Let α be an arbitrary

parameter valuation and k = maxu∈U α(u). We need to show that there is a trace w of K such that

L. Bozzelli & A. Peron 111

(w,α) 6|= ϕ . Since ρ is a c-pumpable fair path, each infix of ρ associated to a c-block of the trace

Labc(ρ) visits some state at least twice. The corresponding cycle in the infix can be pumped k-times. It

follows that there is a c-pumpable fair path ρ ′ of K ×A¬c such that the c-blocks of the associated trace

w′ have length at least k. By construction, w′ is the c-coloring of some trace w of K and w′ is accepted

by A¬c, i.e. w′ |= ¬relc(ϕ)∧altc. Hence, w′ is a k-spaced coloring of w and w′ 6|= c(ϕ). By Lemma 2(1),

it follows that (w,α) 6|= ϕ , and the result follows.

By Lemma 4, we deduce that if V (K ,ϕ) 6= /0, then for the parameter valuation α such that α(u) =
2(|Q||S|+ 1) for each u ∈ PU , it holds that α ∈ V (K ,ϕ). Indeed if α /∈ V (K ,ϕ), by the first part of

the proof of Lemma 4, there is a c-pumpable fair path of K ×A¬c, which leads to the contradiction

V (K ,ϕ) = /0. It is known that checking the existence of a c-pumpable fair path in a fair Kripke structure

is NLOGSPACE-complete [23]. Recall that if ϕ is a Prompt(ABBBw) formula, then c(ϕ) is a ABBBw

formula, and by Proposition 7, the size of A¬c is doubly exponential in the size of ϕ . Thus, since both

A¬c and K ×A¬c can be built on the fly, by Lemma 1, Proposition 7, and Lemma 4, we obtain the

following result.

Theorem 3. Model checking against PHS is decidable. Moreover, model checking a Kripke structure K

against a P(ABBBw) formula ϕ is EXPSPACE-complete and, in case V (K ,ϕ) 6= /0, there is a parameter

valuation in V (K ,ϕ) which is bounded doubly exponentially in |ϕ | and linearly in the number of K -

states.

Similarly to the satisfiability problem for P(ABBBw), for each n ≥ 1, we provide a lower bound of

22n

on the minimal parameter valuation for which a fixed Kripke structure satisfies a P(AB) formula by

using a P(AB) formula of size polynomial in n. For each n ≥ 1, let ψn be the AB formula over AP =
{#1,#2,$,0,1} in Lemma 3 whose unique model is the n-trace. One can trivially define a Kripke structure

K over AP whose set of traces consists of the traces whose first position has label {#1,#2,0}. Let us

consider the P(AB) formula ϕn with just one parameter given by ϕn
def
= ψn −→ 〈A〉≤u 〈A〉(len1 ∧ $).

Evidently, by Lemma 3, V (K ,ϕn) is not empty and the minimal parameter valuation in V (K ,ϕn) is

doubly exponential in n. Hence, we obtain the following result.

Proposition 9. There is a Kripke structure K over a set AP of atomic propositions and a family {ϕn}n≥1

of P(AB) formulas over AP with just one parameter such that for each n ≥ 1, ϕn has size polynomial in

n, V (K ,ϕn) 6= /0, and the smallest parameter valuation in V (K ,ϕn) is doubly exponential in n.

5 Conclusion

We have introduced parametric HS (PHS), a parametric extension of the interval temporal logic HS

under the trace-based semantics. The novel logic allows to express parametric timing constraints on

the duration of the intervals. We have shown that the satisfiability and model checking problems for

the whole logic are decidable, and for the fragment P(ABB) of PHS, the problems are EXPSPACE-

complete. Moreover, for the fragment P(ABB), we gave tight bounds on optimal parameter values for the

considered problems. An intriguing open question is the expressiveness of P(ABB) (or more in general

PHS) versus parametric LTL (PLTL). We have shown that P(ABB) subsumes PLTL. In particular, given

a PLTL formula ϕ , it is possible to construct in linear time a P(ABB) on the same set of parameters

which is equivalent to ϕ for each parameter valuation. Is P(ABB) more expressive than PLTL? Another

problem left open is whether PromptHS is strictly less expressive than full PHS.

112 Parametric Interval Temporal Logic over Infinite Words

References

[1] J.F. Allen (1983): Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11),

pp. 832–843, doi:10.1145/182.358434.

[2] R. Alur, K. Etessami, S. La Torre & D.A.. Peled (2001): Parametric temporal logic for ”model measuring”.

ACM Trans. Comput. Log. 2(3), pp. 388–407, doi:10.1145/377978.377990.

[3] L. Bozzelli & R. Lanotte (2010): Complexity and succinctness issues for linear-time hybrid logics. Theor.

Comput. Sci. 411(2), pp. 454–469, doi:10.1016/j.tcs.2009.08.009.

[4] L. Bozzelli, A. Molinari, A. Montanari & A. Peron (2020): Model checking interval temporal logics with

regular expressions. Information and Computation 272, p. 104498, doi:10.1016/j.ic.2019.104498.

[5] L. Bozzelli, A. Molinari, A. Montanari, A. Peron & P. Sala (2016): Interval Temporal Logic Model Checking:

the Border Between Good and Bad HS Fragments. In: Proc. 8th IJCAR, LNAI 9706, Springer, pp. 389–405,

doi:10.1007/978-3-319-40229-1_27.

[6] L. Bozzelli, A. Molinari, A. Montanari, A. Peron & P. Sala (2018): Model checking for fragments of the

interval temporal logic HS at the low levels of the polynomial time hierarchy. Information and Computation

262(Part), pp. 241–264, doi:10.1016/j.ic.2018.09.006.

[7] L. Bozzelli, A. Molinari, A. Montanari, A. Peron & P. Sala (2019): Interval vs. Point Temporal Logic Model

Checking: An Expressiveness Comparison. ACM Trans. Comput. Log. 20(1), pp. 4:1–4:31, doi:10.1145/

3281028.

[8] L. Bozzelli, A. Molinari, A. Montanari, A. Peron & P. Sala (2019): Which fragments of the interval temporal

logic HS are tractable in model checking? Theor. Comput. Sci. 764, pp. 125–144, doi:10.1016/j.tcs.

2018.04.011.

[9] L. Bozzelli, A. Molinari, A. Montanari, A. Peron & P. Sala (2022): Satisfiability and Model Checking for

the Logic of Sub-Intervals under the Homogeneity Assumption. Log. Methods Comput. Sci. 18(1), doi:10.

46298/lmcs-18(1:24)2022.

[10] L. Bozzelli, A. Montanari & A. Peron (2021): Complexity analysis of a unifying algorithm for model checking

interval temporal logic. Inf. Comput. 280, p. 104640, doi:10.1016/j.ic.2020.104640.

[11] L. Bozzelli, A. Montanari, A. Peron & P. Sala (2021): Adding the Relation Meets to the Temporal Logic of

Prefixes and Infixes makes it EXPSPACE-Complete. In: Proc. 12th GandALF, EPTCS 346, pp. 179–194,

doi:10.4204/EPTCS.346.12.

[12] L. Bozzelli, A. Montanari, A. Peron & P. Sala (2021): Pspace-Completeness of the Temporal Logic of Sub-

Intervals and Suffixes. In: Proc. 28th TIME, LIPIcs 206, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

pp. 9:1–9:19, doi:10.4230/LIPIcs.TIME.2021.9.

[13] D. Bresolin, D. Della Monica, V. Goranko, A. Montanari & G. Sciavicco (2014): The dark side of interval

temporal logic: marking the undecidability border. Annals of Mathematics and Artificial Intelligence 71(1-

3), pp. 41–83, doi:10.1007/s10472-013-9376-4.

[14] D. Bresolin, A. Montanari, P. Sala & G. Sciavicco (2011): Optimal Tableau Systems for Propositional Neigh-

borhood Logic over All, Dense, and Discrete Linear Orders. In: Proc. 20th TABLEAUX, LNCS 6973,

Springer, pp. 73–87, doi:10.1007/978-3-642-22119-4_8.

[15] E.M. Clarke & E.A. Emerson (1981): Design and Synthesis of Synchronization Skeletons Using Branching

Time Temporal Logic. In: Proc. Logics of Programs, LNCS 131, pp. 52–71, doi:10.1007/BFb0025774.

[16] E. A. Emerson & J. Y. Halpern (1986): “Sometimes” and “not never” revisited: on branching versus linear

time temporal logic. Journal of the ACM 33(1), pp. 151–178, doi:10.1145/4904.4999.

[17] K. Etessami, M.Y. Vardi & T. Wilke (2002): First-Order Logic with Two Variables and Unary Temporal

Logic. Inf. Comput. 179(2), pp. 279–295, doi:10.1006/inco.2001.2953.

http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1145/377978.377990
http://dx.doi.org/10.1016/j.tcs.2009.08.009
http://dx.doi.org/10.1016/j.ic.2019.104498
http://dx.doi.org/10.1007/978-3-319-40229-1_27
http://dx.doi.org/10.1016/j.ic.2018.09.006
http://dx.doi.org/10.1145/3281028
http://dx.doi.org/10.1145/3281028
http://dx.doi.org/10.1016/j.tcs.2018.04.011
http://dx.doi.org/10.1016/j.tcs.2018.04.011
http://dx.doi.org/10.46298/lmcs-18(1:24)2022
http://dx.doi.org/10.46298/lmcs-18(1:24)2022
http://dx.doi.org/10.1016/j.ic.2020.104640
http://dx.doi.org/10.4204/EPTCS.346.12
http://dx.doi.org/10.4230/LIPIcs.TIME.2021.9
http://dx.doi.org/10.1007/s10472-013-9376-4
http://dx.doi.org/10.1007/978-3-642-22119-4_8
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1145/4904.4999
http://dx.doi.org/10.1006/inco.2001.2953

L. Bozzelli & A. Peron 113

[18] M. Franceschet, M. de Rijke & B.H. Schlingloff (2003): Hybrid Logics on Linear Structures: Expressivity

and Complexity. In: Proc. 10th TIME-ICTL, IEEE Computer Society, pp. 166–173, doi:10.1109/TIME.

2003.1214893.

[19] B. Di Giampaolo, S. La Torre & M. Napoli (2010): Parametric Metric Interval Temporal Logic. In: Proc.
4th LATA, LNCS 6031, Springer, pp. 249–260, doi:10.1007/978-3-642-13089-2_21.

[20] J.Y. Halpern & Y. Shoham (1991): A Propositional Modal Logic of Time Intervals. Journal of the ACM
38(4), pp. 935–962, doi:10.1145/115234.115351.

[21] J.A.W. Kamp (1968): Tense logic and the theory of linear order. University of California, Los Angeles.

[22] R. Koymans (1990): Specifying Real-Time Properties with Metric Temporal Logic. Real Time Syst. 2(4), pp.

255–299, doi:10.1007/BF01995674.

[23] O. Kupferman, N. Piterman & M.Y. Vardi (2009): From liveness to promptness. Formal Methods Syst. Des.
34(2), pp. 83–103, doi:10.1007/s10703-009-0067-z.

[24] K. Lodaya (2000): Sharpening the Undecidability of Interval Temporal Logic. In: Proc. 6th ASIAN, LNCS

1961, Springer, pp. 290–298, doi:10.1007/3-540-44464-5_21.

[25] A. Lomuscio & J. Michaliszyn (2013): An Epistemic Halpern-Shoham Logic. In: Proc. 23rd IJCAI, IJ-

CAI/AAAI, pp. 1010–1016.

[26] A. Lomuscio & J. Michaliszyn (2014): Decidability of model checking multi-agent systems against a class of

EHS specifications. In: Proc. 21st ECAI, IOS Press, pp. 543–548, doi:10.3233/978-1-61499-419-0-543.

[27] A. Lomuscio & J. Michaliszyn (2016): Model Checking Multi-Agent Systems against Epistemic HS Specifi-

cations with Regular Expressions. In: Proc. 15th KR, AAAI Press, pp. 298–308. Available at http://www.

aaai.org/ocs/index.php/KR/KR16/paper/view/12823.

[28] J. Marcinkowski & J. Michaliszyn (2014): The Undecidability of the Logic of Subintervals. Fundamenta

Informaticae 131(2), pp. 217–240, doi:10.3233/FI-2014-1011.

[29] A. Molinari, A. Montanari, A. Murano, G. Perelli & A. Peron (2016): Checking interval properties of com-

putations. Acta Informatica 53(6-8), pp. 587–619, doi:10.1007/s00236-015-0250-1.

[30] Alberto Molinari, Angelo Montanari, Adriano Peron & Pietro Sala (2016): Model Checking Well-Behaved

Fragments of HS: The (Almost) Final Picture. In Chitta Baral, James P. Delgrande & Frank Wolter, ed-

itors: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International
Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016, AAAI Press, pp. 473–483. Available at

http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12792.

[31] A. Montanari, G. Puppis & P. Sala (2015): A decidable weakening of Compass Logic based on cone-shaped

cardinal directions. Logical Methods in Computer Science 11(4), doi:10.2168/LMCS-11(4:7)2015.

[32] B. Moszkowski (1983): Reasoning About Digital Circuits. Ph.D. thesis, Dept. of Computer Science, Stanford

University, Stanford, CA.

[33] A. Pnueli (1977): The temporal logic of programs. In: Proc. 18th FOCS, IEEE Computer Society, pp. 46–57,

doi:10.1109/SFCS.1977.32.

[34] I. Pratt-Hartmann (2005): Temporal propositions and their logic. Artificial Intelligence 166(1-2), pp. 1–36,

doi:10.1016/j.artint.2005.04.003.

[35] J.P. Queille & J. Sifakis (1982): Specification and verification of concurrent programs in CESAR. In: Proc.

5th SP, LNCS 137, Springer, pp. 337–351, doi:10.1007/3-540-11494-7_22.

[36] P. Roeper (1980): Intervals and Tenses. Journal of Philosophical Logic 9, pp. 451–469.

[37] T. Schwentick & V. Weber (2007): Bounded-Variable Fragments of Hybrid Logics. In: Proc. 24th STACS,

LNCS 4393 4393, Springer, pp. 561–572, doi:10.1007/978-3-540-70918-3_48.

[38] Y. Venema (1990): Expressiveness and Completeness of an Interval Tense Logic. Notre Dame Journal of

Formal Logic 31(4), pp. 529–547, doi:10.1305/ndjfl/1093635589.

http://dx.doi.org/10.1109/TIME.2003.1214893
http://dx.doi.org/10.1109/TIME.2003.1214893
http://dx.doi.org/10.1007/978-3-642-13089-2_21
http://dx.doi.org/10.1145/115234.115351
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/3-540-44464-5_21
http://dx.doi.org/10.3233/978-1-61499-419-0-543
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12823
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12823
http://dx.doi.org/10.3233/FI-2014-1011
http://dx.doi.org/10.1007/s00236-015-0250-1
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12792
http://dx.doi.org/10.2168/LMCS-11(4:7)2015
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1016/j.artint.2005.04.003
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/978-3-540-70918-3_48
http://dx.doi.org/10.1305/ndjfl/1093635589

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 114–130, doi:10.4204/EPTCS.370.8

Realizable and Context-Free Hyperlanguages

Hadar Frenkel
CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

hadar.frenkel@cispa.de

Sarai Sheinvald
Department of Software Engineering, Braude College of Engineering, Karmiel, Israel

sarai@braude.ac.il

Hyperproperties lift conventional trace-based languages from a set of execution traces to a set of
sets of executions. From a formal-language perspective, these are sets of sets of words, namely
hyperlanguages. Hyperautomata are based on classical automata models that are lifted to handle
hyperlanguages. Finite hyperautomata (NFH) have been suggested to express regular hyperproper-
ties. We study the realizability problem for regular hyperlanguages: given a set of languages, can
it be precisely described by an NFH? We show that the problem is complex already for singleton
hyperlanguages. We then go beyond regular hyperlanguages, and study context-free hyperlanguages.
We show that the natural extension to context-free hypergrammars is highly undecidable. We then
suggest a refined model, namely synchronous hypergrammars, which enables describing interesting
non-regular hyperproperties, while retaining many decidable properties of context-free grammars.

1 Introduction

Hyperproperties [10] generalize traditional trace properties [1] to system properties, i.e., from sets of
traces to sets of sets of traces. A hyperproperty dictates how a system should behave in its entirety and
not just based on its individual executions. Hyperproperties have been shown to be a powerful tool for
expressing and reasoning about information-flow security policies [10] and important properties of cyber-
physical systems [23] such as sensitivity and robustness, as well as consistency conditions in distributed
computing such as linearizability [4]. Different types of logics, such as HyperLTL, HyperCTL∗ [9],
HyperQPTL [19] and HyperQCTL∗ [11] have been suggested for expressing hyperproperties.

In the automata-theoretic approach both the system and the specification are modeled as automata
whose language is the sets of execution traces of the system, and the set of executions that satisfy the
specification [21, 20]. Then, problems such as model-checking [8] (“Does the system satisfy the prop-
erty?”) and satisfiability (“Is there a system that satisfies the property?”) are reduced to decision prob-
lems for automata, such as containment (“Is the language of an automaton A contained in the language
of automaton B?”) and nonemptiness (“Is there a word that the automaton accepts?”). Finite-word and
ω-regular automata are used for modeling trace specifications [22]. Hyperautomata, introduced in [5],
generalize word automata to automata that run on sets of words. Just as hyperproperties describe a
system in its entirety, the hyperlanguages of hyperautomata describe the language in its entirety.

The work in [5] focuses on nondeterministic finite-word hyperautomata (NFH), that are able to model
regular hyperlanguages. An NFH A uses word variables that are assigned words from a language L,
as well as a quantification condition over the variables, which describes the existential (∃) and global
(∀) requirements from L. The underlying NFA of A runs on the set of words assigned to the word
variables, all at the same time. The hyperlanguage of A is then the set of all languages that satisfy the

http://dx.doi.org/10.4204/EPTCS.370.8

H. Frenkel & S. Sheinvald 115

Type of language Quantification Type Realizability

Finite
∃∗, ∀∗ unrealizable (T.5)
∀∃ polynomial (T.6)

Infinite ∃∗, ∀∗, ∃∗∀∗ unrealizable (T.5)
Ordered ∃∀∃ polynomial (T. 8)

partially Ordered ∃∗∀∃∗ exponential (T.10)
Prefix-Closed Regular ∃∀∃∗ polynomial (T.11)

Regular ∃∗∀∃∗ doubly exponential (T.12)1

Table 1: Summary of realizability results for singleton hyperlanguages.

quantification condition. The decidability of the different decision problems for NFH heavily depends
on the quantification condition. For example, nonemptiness of NFH is decidable for the conditions ∀∗
(a sequence of ∀-quantifiers), ∃∗ and ∃∗∀∗, but is undecidable for ∀∃. In [15] NFH are used to specify
multi-properties, which express the behaviour of several models that run in parallel.

A natural problem for a model M for languages is realizability: given a language L, can it be de-
scribed by M? For finite-word automata, for example, the answer relies on the number of equivalence
classes of the Myhill-Nerode relation for L. For hyperlanguages, we ask whether we can formulate a
hyperproperty that precisely describes a given set of languages. We study this problem for NFH: given
a set L of languages, can we construct an NFH whose hyperlanguage is L? We can ask the question
generally, or for specific quantification conditions. We focus on a simple case of this problem, where L
consists of a single language, (that is, L= {L} for some language L), which turns out to be non-trivial.
In [12], the authors present automata constructions for safety regular hyperproperties. As such, they are
strictly restricted only to ∀∗-conditions.

We show that for the simplest quantification conditions, ∃∗ and ∀∗, no singleton hyperlanguage is re-
alizable, and that single alternation does not suffice for a singleton hyperlanguage consisting of an infinite
language. We show that when L is finite, then {L} is realizable with a ∀∃ quantification condition.

We then define ordered languages. These are languages that can be enumerated by a function f that
can be described by an automaton that reads pairs of words: a word w, and f (w). We show that for an
ordered language L, the hyperlanguage {L} is realizable with a quantification condition of ∃∀∃. We then
generalize this notion to partially ordered languages, which are enumerated by a relation rather than a
function. We show that for this case, {L} is realizable with a quantification condition of ∃∗∀∃∗.

Finally, we use ordered languages to realize singleton hyperlanguages consisting of regular lan-
guages: we show that when L is a prefix-closed regular language, then it is partially ordered, and that
an NFH construction for {L} is polynomial in the size of a finite automaton for L. We then show that
every regular language is partially ordered. Therefore, when L is regular, then {L} is realizable with a
quantification condition of ∃∗∀∃∗. The summary of our results is listed in Table 1.

In the second part of the paper, we go beyond regular hyperlanguages, and study context-free hyper-
languages. To model this class, we generalize context-free grammars (CFG) to context-free hypergram-
mars (CFHG), similarly to the generalization of finite-word automata to NFH: we use an underlying CFG
that derives the sets of words that are assigned to the word variables in the CFHG G. The quantification
condition of G defines the existential and global requirements from these assignments.

The motivation for context-free hyperlanguages is clear: they allow expressing more interesting hy-
perproperties. As a simple example, consider a robot which we want to return to its charging area before
its battery is empty. This can be easily expressed with a CFHG with a ∀-condition, as we demonstrate in

1See remark 2.

116 Realizable and Context-Free Hyperlanguages

Problem syncCFHGs General CFHGs

Emptiness

∃∗ polynomial (T.15) polynomial (T.15)
∀∗, ∃∀∗ polynomial (T.23) undecidable (T.18)
∃∗∀∗ undecidable (T.25) undecidable (T.18)

Finite Membership ∗ exponential (R.4) exponential (T.17)

Regular Membership
∃∗ exponential (R.5) exponential (T.16)
∀∗ undecidable (T.24) undecidable (T.24)

Table 2: Summary of decidability results for synchronous and general CFHGs.

Section 4, Example 3. Note that since the underlying property – charging time is larger than action time
– is non-regular, NFH cannot capture this specification. Extending this example, using an ∃∀-condition
we can express the property that all such executions of the robot are bounded, so that the robot cannot
charge and act unboundedly.

Some aspects regarding context-free languages in the context of model-checking have been studied.
In [13, 18] the authors explore model-checking of HyperLTL properties with respect to context-free
models. There, the systems are context-free, but not the specifications. The work of [6] studies the
verification of non-regular temporal properties, and [14] studies the synthesis problem of context-free
specifications. These do not handle context-free hyperproperties.

While most natural decision problems are decidable for regular languages, this is not the case for
CFG. For example, the universality (“Does the CFG derive all possible words?”) and containment prob-
lems for context-free languages are undecidable. The same therefore holds also for CFHG. However, the
nonemptiness and membership (“Does the CFG derive the word w”?) problems are decidable for CFG.

We study the various decision problems for CFHG. Specifically, We explore the nonemptiness prob-
lem (“Is there a language that the CFHG derives?”); and the membership problem (“Does the CFHG
derive the language L”?). These problems correspond to the satisfiability and model-checking problems,
respecitively. We show that for general CFHG, most of these problems soon become undecidable (see
Table 2). Some of the undecidability results are inherent to CFG. Some, however, are due to the asyn-
chronous nature of CFHG: when the underlying CFG of a CFHG derives a set of words that are assigned
to the word variables, it does not necessarily do so synchronously. For example, in one derivation step
one word in the set may be added 2 letters, and another 1 letter. NFH read one letter at a time from every
word in the set, and are hence naturally synchronous. In [3], the authors study asynchronous hyperLTL,
which suffers from the same phenomenon.

We therefore define synchronous context-free hyperlanguages, which require synchronous reading
of the set of words assigned to the word variables. We also define synchronous CFHG (syncCFHG),
a fragment of CFHG in which the structure of the underlying CFG is limited in a way that ensures
synchronous behavior. We prove that syncCFHG precisely captures the class of synchronous context-
free hyperlanguages. Further, we show that some of the undecidable problems for CFHG, such as the
nonemptiness problem for the ∀∗- and ∃∀∗-fragments, become decidable for syncCFHG.

2 Preliminaries

Hyperautomata We assume that the reader is familiar with the definitions of deterministic finite au-
tomata (DFA) and non-deterministic finite automata (NFA).

Definition 1. Let Σ be an alphabet. A hyperlanguage L over Σ is a set of languages over Σ, that is,
L ∈ 22Σ∗

. A nondeterministic finite-word hyperautomaton (NFH) is a tuple A = 〈Σ,X ,Q,Q0,F,δ ,α〉,

H. Frenkel & S. Sheinvald 117

{𝑎𝑥, 𝑎𝑦}

{#𝑥, 𝑎𝑦}

{#𝑥, 𝑎𝑦}

∀𝑥∃𝑦 {𝑏𝑥 , 𝑎𝑦}

{#𝑥, 𝑎𝑦}

{𝑏𝑥, 𝑎𝑦}{𝑎𝑥, 𝑏𝑦}
{𝑎𝑥, 𝑏𝑦}

{#𝑥, 𝑎𝑦}

𝐴𝑓A

Figure 1: The NFH A (left), whose hyperlanguage is the set of infinite languages over {a}, and the NFA A f that
computes f (right).

where X is a finite set of word variables, and α = Q1x1 · · ·Qkxk is a quantification condition, where
Qi ∈ {∃,∀} for every i ∈ [1,k], and 〈Σ̂,Q,Q0,F,δ 〉 forms an underlying NFA over Σ̂ = (Σ∪{#})X .

Let L be a language. We represent an assignment v : X → L as a word assignment wv, which is a
word over the alphabet (Σ∪{#})X (that is, assignments from X to (Σ∪{#})∗), where the i’th letter of wv

represents the k i’th letters of the words v(x1), . . . ,v(xk) (in case that the words are not of equal length, we
“pad” the end of the shorter words with #-symbols). We represent these k i’th letters as an assignment
denoted {σ1x1 ,σ2x2 , . . . ,σkxk}, where x j is assigned σ j. For example, the assignment v(x1) = aa and
v(x2) = abb is represented by the word assignment wv = {ax1 ,ax2}{ax1 ,bx2}{#x1 ,bx2}.

The acceptance condition for NFH is defined with respect to a language L, the underlying NFA Â,
the quantification condition α , and an assignment v : X →L.

• For α = ε , define L `v (α,Â) if wv ∈ L(Â).

• For α = ∃x.α ′, define L `v (α,Â) if there exists w ∈ L s.t. L `v[x 7→w] (α
′,Â).

• For α = ∀x.α ′, define L `v (α,Â) if L `v[x 7→w] (α
′, Â) for every w ∈ L .2

When α includes all of X , then membership is independent of the assignment, and we say that A
accepts L, and denote L ∈ L(A).

Definition 2. Let A be an NFH. The hyperlanguage of A, denoted L(A), is the set of all languages that
A accepts. When the quantification condition α of an NFH A is Q1x1.Q2x2 · · ·Qkxk, we denote A as
being a Q1Q2 . . .Qk-NFH (or, sometimes, as an α-NFH).

Example 1. Consider the NFH A depicted in Figure 1, over the alphabet {a}. The quantification con-
dition ∀x.∃y requires that in a language L accepted by A, for every word u1 that is assigned to x, there
exists a word u2 that is assigned to y such that the joint run of u1,u2 is accepted by the underlying NFA
Â of A. The NFA Â requires that the word assigned to y is longer than the word assigned to x: once the
word assigned to x ends (and the padding # begins), the word assigned to y must still read at least one
more a. Therefore, A requests that for every word in L, there exists a longer word in L. This holds iff L
is infinite. Therefore, the hyperlanguage of A is the set of all infinite languages over {a}.

Context-Free Grammars

Definition 3. A context-free grammar (CFG) is a tuple G = 〈Σ,V,V0,P〉, where Σ is an alphabet, V is a
set of grammar variables, V0 ∈V is an initial variable, and P⊆V × (V ∪Σ)∗ is a set of grammar rules.

We say that w is a terminal word if w ∈ Σ∗. Let v ∈V and α,β ∈ (V ∪Σ)∗.

2In case that α begins with ∀, membership holds vacuously with the empty language. We restrict the discussion to satisfac-
tion by nonempty languages.

118 Realizable and Context-Free Hyperlanguages

• We say that v derives α if (v,α) ∈ P. We then denote v→ α .
• We denote α ⇒ β if there exist v ∈V and α1,α2,β

′ ∈ (V ∪Σ)∗ such that v→ β ′, α = α1vα2 and
β = α1β ′α2.

• We say that α derives β , or that β is derived by α , if there exists n ∈ N and α1, . . .αn ∈ (V ∪Σ)∗

such that α1 = α , αn = β and ∀1≤ i < n : αi⇒ αi+1. We then denote α ⇒∗ β .
The language of a CFG G is the set of all terminal words that are derived by the initial variable. That

is, L(G) = {w ∈ Σ∗ | V0⇒∗ w}.

3 Realizability of Regular Hyperlanguages

Every NFH A defines a set of languages L. In the realizability problem for NFH, we are given a hyper-
language L, and ask whether there exists an NFH A such that L(A) = L. The answer may depend on
the quantification condition that we allow using. In this section we study the realizability problem for
singleton hyperlanguages, which turns out to be non-trivial. We show that while for finite languages we
can construct a ∀∃-NFH, such a condition cannot suffice for infinite languages. Further, we show that a
general regular language requires a complex construction and quantification condition.
Definition 4. Let L be a hyperlanguage. For a sequence of quantifiers α = Q1 . . .Qk, we say that L is
α-realizable if there exists an NFH A with a quantification condition Q1x1 . . .Qkxk such that L(A) = L.

We first define some operations and notations on the underlying NFA of NFH we use in our proofs.
For a word w, the NFA Aw is an NFA for {w}.
Let A1,A2 be NFA, and let A1 ↑#= 〈Σ,Q,q0,δ1,F1〉 and A2 ↑#= 〈Σ,P, p0,δ2,F2〉, where Ai ↑# is an

NFA for the language L(Ai) · #∗. We define the composition A1⊗A2 of A1 and A2 to be an NFA over
Σ2 = (Σ∪{#}){x,y}, defined as A1⊗A2 = 〈Σ2,Q×P,(q0, p0),δ ,F1×F2〉, where for every (q,σ ,q′) ∈ δ1,
(p,τ, p′) ∈ δ2, we have ((q, p),{σx,τy},(q′, p′)) ∈ δ . That is, A1⊗A2 is the composition of A1 and A2,
which follows both automata simultaneously on two words (adding padding by # when necessary). A
word assignment {x 7→ w1,y 7→ w2} is accepted by A1⊗A2 iff w1 ∈ L(A1) and w2 ∈ L(A2) (excluding
the #-padding).

We also define A1⊕A2 of A1 and A2 in a similar way, but the transitions are restricted to equally
labeled letters. That is, for every (q,σ ,q′) ∈ δ1, (p,σ , p′) ∈ δ2, we have ((q, p),{σx,σy},(q′, p′)) ∈ δ . A
run of the restricted composition then describes the run of A1 and A2 on the same word.

We generalize the definition of both types of compositions to a sequence of k NFA A1,A2, . . .Ak,
forming NFA

⊗k
i=1 Ai and

⊕k
=1 Ai over (Σ∪ #){x1,x2,...xk}, in the natural way. When all NFA are equal

to A, we denote this composition by A⊗k (or A⊕k). When we want to explicitly name the variables
x1,x2, . . .xk in the compositions, we denote

⊗k
i=1 Ai[x1, . . .xk] (or

⊕k
i=1 Ai[x1, . . .xk]).

We also generalize the notion of composition to NFA over (Σ∪{#})X in the natural way. That is, for
NFA A1 and A2 with sets of variables X and Y , respectively, the NFA A1⊗A2 is over X ∪Y , and follows
both NFA simultaneously on both assignments (if X ∩Y 6= /0, we rename the variables).

We study the realizability problem for the case of singleton hyperlanguages, that is, hyperlanguages
of the type {L}. We begin with a few observations on unrealizability of this problem, and show that
general singleton hyperlanguages cannot be realized using simple quantification conditions.

3.1 Unrealizability

For the homogeneous quantification conditions, we have that a ∀-NFH A accepts a language L iff A
accepts every L′ ⊆ L. Therefore, a hyperlanguage {L} is not ∀-realizable for every L that is not a

H. Frenkel & S. Sheinvald 119

singleton. The same holds for every ∀∗-NFH.
An ∃-NFH A accepts a language L iff L contains some word that is accepted by Â. Thus if A is

nonempty, its hyperlanguage is infinite, and clearly not a singleton. The same holds for every ∃∗-NFH.
Now, consider an ∃k∀m-NFHA. As shown in [5],A is nonempty iff it accepts a language whose size

is at most k. Therefore, {L} is not ∃k∀m-realizable for every L such that |L|> k.
As we show in Theorem 6, if L is finite then {L} is ∀∃-realizable. We now show that if L is infinite,

then {L} is not ∀∃-realizable. Assume otherwise by contradiction, and letA be a ∀x.∃y-NFH that accepts
{L}. Then for every w ∈ L there exists u ∈ L such that w[x 7→w][y7→u] ∈ L(Â). Let w1 be some word in L.
We construct an infinite sequence w1,w2, . . . of words in L, as follows. For every wi, let wi+1 be a word
in L such that w[x 7→wi][y7→wi+1] ∈ L(Â). If wi = w j for some i < j, then the language {wi,wi+1, . . . ,w j} is
accepted by A, and so L is not the only language that A accepts. Otherwise, all words in the sequence
are distinct. Then, the language Li = {wi,wi+1, . . .} is accepted by A for every i > 1, and Li ⊂ L. In
both cases, L is not the only language that A accepts, and so {L} is not ∀∃-realizable.

To conclude, we have the following.
Theorem 5. If L contains more than one word, then {L} is not ∀∗-realizable and not ∃∗-realizable. If
L contains more than k words then {L} is not ∃k∀∗-realizable. If L is infinite then {L} is not ∃∗∀∗-
realizable and not ∀∃-realizable.

For positive realizability results, we first consider a simple case of a hyperlanguage consisting of a
single finite language.
Theorem 6. Let L be a finite language. Then {L} is ∀∃-realizable.

Proof. Let L= {w1,w2, . . .wk}. We construct a ∀∃-NFHA for L, whose underlying NFA Â is the union
of all NFA Awi⊗Awi+1(mod k). Let L′ ∈ L(A). Since Â can only accept words in L, we have that L′ ⊆L.
Since A requires, for every wi ∈ L′, the existence of wi+1(mod k), and since L′ 6= /0, we have that by
induction, wi ∈ L′ implies wi+ j(mod k) ∈ L′ for every 1≤ j ≤ k. Therefore, L ⊆ L′.

3.2 Realizability of Ordered Languages

Since every language is countable, we can always order its words. We show that for an ordering of a
language L that is regular, that is, can be computed by an NFA, {L} can be realized by an ∃∀∃-NFH.
Definition 7. Let L be a language. We say that a function f : L→L is L-regular if there exists an NFA
A f over (Σ∪{#}){x,y} such that for every w ∈ L, it holds that f (w) = u iff w[x 7→w][y 7→u] ∈ L(A f). We then
say that A f computes f .

We say that a language L is ordered if the words in L can be arranged in a sequence w1,w2, . . . such
that there exists an L-regular function such that f (wi) = wi+1 for every i≥ 0.
Example 2. Consider the language {a2i,b2i|i ∈ N}, and a function ∀i ∈ N : f (a2i) = b2i, f (b2i) = a2i+2,
which matches the sequence ε,a2,b2,a4,b4, The function f can be computed by the NFA A f depicted
in Figure 1, which has two components: one that reads a2i on x and b2i on y, and one that reads b2i on x
and a2i+2 on y.
Theorem 8. Let L be an ordered language. Then {L} is ∃∀∃-realizable.

Proof. Let L = {w1,w2, . . .} be an ordered language via a regular function f , and let A f be an NFA
that computes f . We construct an ∃x1∀x2∃x3-NFH A for {L} by setting its underlying NFA to be
Â= Aw1 ⊗A f [x1,x2,x3]. Intuitively, A creates a “chain-reaction”: Aw1 requires the existence of w1, and
A f requires the existence of wi+1 for every wi. By the definition of f , only words in L may be assigned
to x2. Therefore, L(A) = {L}.

120 Realizable and Context-Free Hyperlanguages

We now generalize the definition of ordered languages, by allowing several minimal words instead
of one, and allowing each word to have several successors. The computation of such a language then
matches a relation over the words, rather than a function.

Definition 9. We say that a language L is m,k-ordered, if there exists a relation R⊆ L×L such that:

• There exist exactly m words w ∈ L such that (u,w) /∈ R for every u 6= w ∈ L (that is, there are m
minimal words).

• R⊆ S for a total order S of L with a minimal element.

• For every w ∈ L there exist 1≤ i≤ k successor words: words u such that (w,u) ∈ R.

• There exists an NFA AR over (Σ∪{#}){x,y} such that for every u,v ∈ L, it holds that R(u,v) iff
w[x 7→u][y 7→v] ∈ L(AR).

We then say that AR computesL. We callL partially ordered if there exist m,k such thatL is m,k-ordered.

Theorem 10. Let L be m,k-ordered. Then {L} is ∃m∀∃k-realizable.

Proof. Let AR = 〈(Σ∪{#}){x,y},Q,q0,δ ,F〉 be a DFA that computes L. We construct an ∃m∀∃k-NFH A
for L, as follows. The quantification condition of A is ∃x1 · · ·∃xm∀z∃y1 · · ·∃yk. The x-variables are to be
assigned u1, . . .um, the m minimal words of R. We set AU =

⊗m
i=1 Aui [x1, . . .xm].

The underlying NFA Â of A comprises of an NFA Ai for every 1≤ i≤ k. Let Li be the set of words
in L that have exactly i successors. Intuitively, Ai requires, for every word w ∈ Li that is assigned to z,
the existence of the i successors of w.

To do so, we construct an NFA Bi over z,y1, . . .yi that accepts w[z7→w][y1 7→w1]...[yi 7→wi], for every word
w and its successors w1, . . .wi. The construction of Bi requires that: (1) all assignment to y-variables are
successors of the assignment to z, by basing Bi on a composition of AR, and (2) y1, . . .yi are all assigned
different words. This is done by keeping track of the pairs of assignments to y-variables that at some
point read different letters. The run may accept only once all pairs are listed. We finally set Ai = AU⊗Bi,
and require yi+1 . . .yk to be equally assigned to z.

Since R⊆ S and R has minimal elements, for every word w ∈ L there exists a sequence w0,w1, . . .wt

such that wt = w, and w0 is minimal, and R(w j,w j+1) for every j ∈ [0, t−1]. The NFH A then requires
w0 (via Au), and for every w j, requires the existence of all of its successors, according to their number,
and in particular, the existence of w j+1 (via Ai). Therefore, A requires the existence of wt . On the other
hand, by construction, every word that is assigned to z is in L. Therefore, L(A) = {L}.

The size of AU is linear in |U |, and the size of Ai is exponential in k and in |A|.

3.3 Realizability of Regular Languages

We now show that every regular language L is partially ordered. To present the idea more clearly,
we begin with a simpler case of prefix-closed regular languages, and then proceed to general regular
languages. A prefix-closed regular language L has a DFA A in which every accepting state is only
reachable by accepting states. We use the structure of A to define a relation that partially orders L.

Theorem 11. Let L be a non-empty prefix-closed regular language. Then L is partially ordered.

Proof. Let A = 〈Σ,Q,q0,δ ,F〉 be a DFA for L. Then for every p,q ∈Q, if q ∈ F and q is reachable from
p, then p∈ F . Let k be the maximal number of transitions from a state q∈ F to its neighboring accepting
states. We show that L is 1,k-ordered. We define a relation R as follows. Since L is prefix-closed, we
have that ε ∈ L. We set it to be the minimal element in R.

H. Frenkel & S. Sheinvald 121

Let q∈Q, and let {(q,σ1, p1), . . .(q,σm, pm)} be the set of transitions in δ from q to accepting states.
For every word w ∈ L that reaches q, we set (w,wσ1), . . .(w,wσm) ∈ R. For every word w ∈ L that
reaches a state q from which there are no transitions to accepting states, we set (w,w) ∈ R.

It holds that the number of successors for every w ∈ L is between 1 and k. Further, R ⊆ S for the
length-lexicographic order S of L.

We construct an NFA AR for R by replacing every transition labeled σ with {σx,σy} and adding a
state p′, which is the only accepting state. For every q ∈ F , we add a transition (q,{#x,σy}, p′) for every
(q,σ , p)∈ δ such that p∈ F . If q has no transitions to accepting states in A, then we add (q,{#x,#y}, p′).
AR then runs on word assignments w[x 7→w][y 7→u] such that u = wσ for some σ , such that w,u ∈ L, or
w[x 7→w][y 7→w] if w cannot be extended to a longer word in L. Therefore, AR computes L.

Remark 1. The construction in the proof of Theorem 10 is exponential, due to the composition of several
automata. In the case of prefix-closed languages, the successors of a word w ∈ L are all of the type wσ .
Therefore, it suffices to extend every transition in A to {σx1 ,σx2 , . . .σxk}, and to add a transition from
every q ∈ F to a new accepting state with all letters leading from q to an accepting state. Composed with
a single-state DFA for ε , we get an ∃∀∃k-NFH for {L}, whose size is polynomial in |A|.

We now turn to prove the realizability of {L} for every regular language L. The proof relies on a
similar technique to that of Theorem 11: a relation that computes {L} requires, for every word w ∈ L,
the existence of a longer word w′ ∈ L. Here, w′ is not simply the extension of w by a single letter, but a
pumping of w by a single cycle in a DFA for L.

Theorem 12. Let L be a regular language. Then {L} is partially ordered.

Proof. Let A = 〈Σ,Q,q0,δ ,F〉 be a DFA for L. We mark by P the set of words that reach accepting
states from q0 along a simple path. For a state q ∈ Q, we mark by Cq the set of words that reach q from
q along a simple cycle. Note that P and Cq are finite for every q ∈ Q. Let n = |P|, and let m = Σq∈Q|Cq|.
We show that L is n,m-ordered, by defining an appropriate relation R.

The set of minimal words in R is P. The successors of a word w ∈ L are w itself (that is, R is
reflexive), and every possible pumping of w by a single simple cycle that precedes all other cycles within
the run of A on w. That is, for a state q that is reached by a prefix u of w along a simple path, and for a
word c read along a simple cycle from q to itself, the word ucv is a successor of w in R, where w = uv.

To see that the only minimal words in R are P, let w = σ1σ2 · · ·σk ∈ L, and let r = (q0,q1, . . .qk) be
the accepting run of A on w. If all states in r are unique, then w ∈ P. Otherwise, we set wt = w, and
repeatedly remove simple cycles from r: let j be a minimal index for which there exists j′ > j such that
q j = q j′ and such that q j+1, . . .q j′ are unique. We define wi−1 = w1 · · ·w jw j′+1 · · ·wk. We repeat this
process until we reach a run in which all states are unique, which matches a word w0 ∈ P. The sequence
of words wt ,wt−1, . . .w0 we obtain is such that (wi,wi+1) ∈ R for every i ∈ [0, t−1].

It is easy to see that R⊆ S for the length-lexicographical order S of L. Additionally, every w ∈ L has
between 1 and m successors. We now construct an NFA AR for R.

AR is the union of several components, described next. Let Aq be the DFA obtained from A by setting
its only accepting state to be q. For every p ∈ Q and for every c ∈Cp, we construct an NFA Bc,q, which
pumps a word read along a run that reaches q and traverses p, by c. The NFA Bc,q comprises two copies
A1,A2 of A, where the copy q2 of q in A2 is the only accepting state. The word c is read between A1 to
A2, from p1 and p2.

We construct an NFA Ac,q by composing Bc,q and Aq, and making sure that Bc,q reads the same word
as Aq, pumped by c. That is, if Aq reads a word uv, where u reaches p, then Bc,q reads ucv. To this end,
while Bc,q is in A1, the DFA Aq and Bc,q both advance on the same letters. When Bc,q leaves A1 to read c

122 Realizable and Context-Free Hyperlanguages

followed by the suffix v in A2, the composition remembers, via states, the previous (up to) |c| letters read
by Aq, to make sure that once Bc,q finishes reading uc, it reads the same suffix v as Aq did. The NFA AR

is then the union of Ac,q for every q ∈ Q,c ∈
⋃

p∈QCp. To accept the reflexive pairs as well, we union all
the components with an additional component A⊕A.

The size of every Ac,q is exponential in c, due to the need to remember the previous c letters. There are
exponentially many simple paths and cycles in A. Therefore, we have that the size of AR is exponential
in |A|. Combined with the exponential blow-up involved in the proof of Theorem 10, we have that an
NFH for {L} is doubly-exponential in the |A|.

Remark 2. Using automatic structures [17] and relying on the length-lexicographical order S, one can
prove the existence of an ∃∀∃-NFH A for {L}, which is smaller and simpler than the one we present
in Theorem 12. Indeed, one can phrase the direct successor relation in L with respect to S using the
First Order Logic (FOL) formula ϕ(x,y) = L(x)∧L(y)∧S(x,y)∧∀(z).(z 6= y)→ (¬(S(x,z)∧S(z,y))).
Since S is NFA-realizable, and since every relation expressible by FOL over an automatic structure is
regular [17], we have that ϕ is NFA-realizable. We can then construct A, requiring the existence of a
minimal word in L with respect to S, together with the requirement of the existence of a successor for
every w ∈ L.

While this construction is polynomial, it does not directly rely on the structure of A. Since in this
paper we wish to lay the ground for richer realizable fragments, in which relying on the underlying graph
structures may be useful, we present it here.

4 Context-Free Hypergrammars

We now go beyond regular hyperlanguages, and define and study context-free hyperlanguages. We begin
with a natural definition for context-free hypergrammars (CFHG), based on the definition of NFH, and
then identify a more decidable fragment of CFHG, namely synchronized CFHG.

Definition 13. A context-free hypergrammar (CFHG) is a tuple 〈Σ,X ,V,V0,P,α〉, where X and α are as
in NFH, and where Ĝ = 〈Σ̂,V,V0,P〉 is a CFG over the alphabet Σ̂ = (Σ∪{#})X .

Definition 1 defines word assignments for NFH, where the #-symbol may only appear at the end of
a word. This is naturally enforced by the nature of the underlying NFA. For the most general case of
hypergrammars, we consider words in which # can appear anywhere in the word. In Section 4.1 we allow
to occur only at the end of the word. For a word w ∈ Σ∗ we define the set of words w ↑# to be the set of
all words that are obtained from w by adding #-symbols in arbitrary locations in w. For w ∈ (Σ∪{#})∗,
we define the word w ↓# to be the word obtained from w by removing all occurrences of #.

The acceptance condition for CFHG is defined with respect to a language L, the underlying CFG Ĝ,
the quantification condition α , and an assignment u : X →L.

1. For α = ε , define L `v (α, Ĝ) if wu ∈ L(Ĝ).

2. For α = ∃x.α ′, define L `u (α, Ĝ) if there exist w ∈ L and w# ∈ w ↑# s.t. L `u[x 7→w#] (α
′, Ĝ).

3. For α = ∀x.α ′, define L `u (α, Ĝ) if for every w ∈ L there exists w# ∈ w ↑# s.t. L `u[x 7→w#] (α
′, Ĝ).

When α includes all of X , we say that G derives L (or that G accepts L), and denote L ∈ L(G).

Definition 14. Let G be a CFHG. The hyperlanguage of G, denoted L(G), is the set of all languages that
G derives. We denote G as being a Q1Q2 . . .Qk-CFHG similarly as with NFH.

H. Frenkel & S. Sheinvald 123

Henceforth we assume that (1) the underlying grammar Ĝ does not contain variables and rules that
derive no terminal words (these can be removed); and (2) there are no rules of the form v→ ε except for
possibly V0→ ε . Every CFG can be converted to a CFG that satisfies these conditions [16].
Example 3. Consider the robot scenario described in Section 1, and the ∀x-CFHG G1 with the rules

P1 :=V0→{cx}V0{ax} | {cx}V1

V1→{cx}V1 | {cx}

The letters a and c correspond to action and charge, respectively. Then, L(G1) is the set of all languages
in which the robot has enough battery to act.

Consider now the CFHG G2 = 〈{a,c},{x1,x2},{V0,V1},V0,P2,∃x1∀x2〉 where

P2 :=V0→{cx1 ,cx2}V0{ax1 ,ax2} | {cx1 ,cx2}V1{ax1 ,#x2} | {cx1 ,cx2}V1{ax1 ,ax2}
V1→{cx1 ,#x2}V1{ax1 ,#x2} | {cx1 ,#x2} | {cx1 ,cx2}

We now require that the robot only has one additional unit of charging (unlike in G1). In addition, we
require an upper bound (assigned to x1) on the charging and action times. All other words in the language
(assigned to x2) correspond to shorter computations.

We now study the nonemptiness and membership problems for CFHGs. When regarding a CFHG as
a specification, these correspond to the model-checking and satisfiability problems.

Theorem 15. The nonemptiness problem for ∃∗-CFHG is in P.

Proof. According to the semantics of the ∃-requirement, an ∃∗-CFHG G derives a language L if Ĝ
accepts a word assignment that corresponds to words in L. Therefore, it is easy to see that G is nonempty
iff Ĝ is nonempty. Since the nonemptiness of CFG is in P [16], we are done.

Theorem 16. The membership problem for a regular language in an ∃∗-CFHG is in EXPTIME.

Proof. Let A = 〈Σ,Q,Q0,δ ,F〉 be an NFA and let G be a CFHG with α = ∃x1 · · ·∃xk. In order to check
whether L(A) ∈ L(G), we need to check whether there exists a subset of L(A) of size k or less, that can
be accepted as a word assignment by Ĝ. Since Ĝ derives words over Σ∪{#}, we first construct the NFA
A ↑ #, that accepts all #-paddings of words in L(A). We can do so easily by adding a self-loop labeled #
to every state in A. We then compute (A ↑ #)⊗k to allow different paddings for different words (an expo-
nential construction), intersect the resulting automaton with Ĝ and test the intersection for nonemptiness.
Context-free languages are closed under intersection with regular languages via a polynomial construc-
tion. In addition, if the grammar is given in Chomsky Normal Form [7], then checking the emptiness
of the intersection is polynomial in the sizes of the grammar and automaton. As the conversation to
Chomsky normal form is also polynomial, we get that the entire procedure is exponential, due to the size
of (A ↑ #)⊗k.

Theorem 17. The membership problem for a finite language in a CFHG is in EXPTIME.

Proof. Let L be a finite language and let G be a CFHG with variables {x1, . . .xk}. Since L is finite,
we can construct every assignment of words in L to the variables in G, and check if it is accepted by
Ĝ. Similarly to the proof of Theorem 16, to do so, we use an NFA Aw whose language is the set w ↑#,
for every w ∈ L. For an assignment v = [x1 7→ w1] . . . [xk 7→ wk], we construct

⊗k
i=1 Awi , and check the

nonemptiness of its intersection with Ĝ. As in Theorem 16, this procedure is exponential in the length

124 Realizable and Context-Free Hyperlanguages

of the words in L and in |G|. Since we can finitely enumerate all assignments, we can check whether
the quantification condition α of G is satisfied. Enumerating all assignments amounts to traversing the
decision tree dictated by α , which is exponential in |α|. Therefore, the entire procedure can be done in
exponential time in |G| and L.

Theorem 18. The emptiness problem for ∀∗-CFHG and ∃∀-CFHG is undecidable.

Proof. We show reductions from the Post correspondence problem (PCP).A PCP instance is a set of pairs
of the form [a1,b1], . . . , [an,bn] where ai,bi ∈ {a,b}∗. The problem is then to decide whether there exists
a sequence of indices i1 · · · im, i j ∈ [1,n], such that ai1ai2 · · ·aim = bi1bi2 · · ·bim . For example, consider
the instance {[a,baa]1, [ab,aa]2, [bba,bb]3}. Then, a solution to the PCP is the sequence 3,2,3,1 since
a3a2a3a1 = bba ·ab ·bba ·a and b3b2b3b1 = bb ·aa ·bb ·baa.

Let T = {[a1,b1], . . . , [an,bn]} be a PCP instance. Let G = 〈{a,b},{x1,x2},{V0},V0,P,∀x1∀x2〉 be a
∀∗-CFHG defined as follows. For every pair [ai,bi] ∈ T we define the words Ai,Bi ∈ (Σ∪{#})∗ obtained
from ai,bi by padding the shorter of ai,bi with #-symbols so that Ai,Bi are of equal length. We define P
as follows.

P :=V0→{A1x1 ,B1x2}V0 | · · · | {Anx1 ,Bnx2}V0 | {A1x1 ,B1x2} | · · · | {Anx1 ,Bnx2}

For a language L ∈ L(G), it must hold that w[x1 7→u][x2 7→v] ∈ L(Ĝ) for every u,v ∈ L, due to the ∀∀-
condition. Let u ∈ L. Then, in particular, w[x1 7→u][x2 7→u] ∈ L(Ĝ). Notice that in this case, u is a solution
to T . In the other direction, a solution to T induces a word u = ai1ai2 · · ·aim such that {u} ∈ L(G). The
same reduction holds also for the case of ∃∀, since according to the ∀ requirement, one of the word
assignments must assign the same word to both variables.

Note that the proof of Theorem 18 compares between two words in order to simulate PCP. For a
single ∀-quantifier, the nonemptiness problem is equivalent to that of CFG, and is therefore in P.

The underlying CFG we use in the proof of Theorem 18 is linear, and so the result follows also to
asynchronous NFH, that allow #-symbols arbitrarily. This is in line with the results in [3], which shows
that the model-checking problem for asynchronous hyperLTL is undecidable.

4.1 Synchronous Hypergrammars

As we show in Section 4, the asynchronicity of general CFHG leads to undecidability of most decision
problems for them, already for simple quantification conditions. We now introduce ranked CFHG, a
fragment of CFHG that ensures synchronous behavior. We then prove that ranked CFHG capture ex-
actly the set of synchronous hyperlanguages. Intuitively, synchronous hyperlanguages are derived from
grammars in which # only appears at the end of the word, similarly to NFH (we say that such a word
assignment is synchronous). Since CFHG may use non-linear rules, in order to characterize the grammar
rules that derive synchronous hyperlanguages, we need to reason about structural properties of the gram-
mar. To this end, we define a rank for each variable v, which, intuitively, corresponds to word variables
for which v derives #-symbols.
Remark 3. Before we turn to the definition of ranks of variables and ranked grammars we note on the
difference between a definition of grammars which their hyperlanguages are synchronous, as we do in
the rest of this section; and the problem of, given some hypergrammar G, finding the hyperlanguage
L(Gs) ⊆ L(G) that corresponds to the synchronous sub-hyperlanguage of G. Assume that G is over
Σ and has k quantifiers. Then, the latter can be done by constructing an NFA As over (Σ∪{#})k that

H. Frenkel & S. Sheinvald 125

Figure 2: The MSSC graph GR for the grammar and PCP instance of Example 4 and the Proof of Theorem 18.
Blue edges are bidirectional, and the rectangle represents an MSCC.

accepts all words in which # appears only at the end of words. The intersection of As and G results in the
grammar Gs, whose language is a subset of that of G. We approach a different problem, namely defining
a fragment of grammars that accept exactly the class of synchronous hyperlanguages.

In order to define the ranks of variables, we use the rule graph G, defined as follows. The set of
vertices of G is V ∪W , where W = {γ ∈ (Σ̂∪V)∗ | ∃v ∈V.v→ γ ∈ P} is the set of sequences appearing
on the right side of one of the grammar rules. The set of edges E of G is E = EL∪ER where

EL = {〈v,w〉 | v→ w ∈ P}∪{〈w,v〉 | w = vγ}
ER = {〈v,w〉 | v→ w ∈ P}∪{〈w,v〉 | w = γv}

We partition G into maximal strongly connected components (MSCCs) with respect to each type of edges
(EL and ER), resulting in two directed a-cyclic graphs GL and GR. The vertices of Gd for d ∈ {L,R} are
the MSCCs according to Ed , and there is an edge Cd

1 → Cd
2 iff there exist u,u′ ∈ (V ∪W) such that

u ∈Cd
1 ,u
′ ∈Cd

2 and 〈u,u′〉 ∈ Ed . Note that every terminal word is a singleton MSCC in both graphs.

Example 4. Figure 2 presents GR for G of the proof of Theorem 18, and the PCP instance {[a,baa]1, [ab,aa]2,
[bba,bb]3}, with the concrete derivation rules:

V0→{a##x1 ,baax2}V0 | {abx1 ,aax2}V0 | {baax1 ,bb#x2}V0 |
{a##x1 ,baax2} | {abx1 ,aax2} | {baax1 ,bb#x2}

We now define the left ranks and right ranks of synchronous words, variables and sequences.

1. Ranks of terminal synchronous words. The rank of a letter σ̂ = {σ1x1
, . . .σnxn

} ∈ Σ̂ is t(σ̂) =
{xi | σixi

= #}. The left rank of ŵ is L(ŵ) = t(σ̂1), and its right rank is R(ŵ) = t(σ̂n), where σ̂1
and σ̂n are the first and last letters of ŵ, respectively.

2. Inductive definition for variables and sequences. Let d ∈ {L,R}, and let Cd
1 → Cd

2 in Gd such
that d(u′) is defined for every u′ ∈Cd

2 and d ∈ {L,R}. Let γ ∈ (Σ̂∪V)∗, σ ∈ Σ̂, and v ∈V .

• For u ∈Cd
1 ∈ Gd such that u = σγ we define L(u) = l(u) = L(σ).

• For u ∈Cd
1 ∈ Gd such that u = γσ we define R(u) = r(u) = R(σ).

• For u ∈CL
1 ∈ GL such that u = vγ we define l(u) =

⋃
CL

1→CL
2

⋂
u′∈CL

2
L(u′).

• For u ∈CR
1 ∈ GR such that u = γv we define r(u) =

⋃
CR

1→CR
2

⋃
u′∈CR

2
R(u′).

Now, for each u = vγ ∈ CL
1 we define L(u) =

⋂
u′∈CL

1
l(u′), and for each u = γv ∈ CR

1 we define
R(u) =

⋃
u′∈CR

1
r(u′).

126 Realizable and Context-Free Hyperlanguages

Note that this process is guaranteed to terminate, since we traverse both graphs in reverse topological
order. Therefore, at the end of the process, L(u) and R(u) are defined for every u ∈V ∪W .

We define ranked CFGs to be CFGs in which for every rule v→ γ1 · · ·γn for γi ∈ (Σ̂∪V), it holds that
R(γi)⊆ L(γi+1). Intuitively, this means that γi may not produce # to its right, if γi+1 can produce σ 6= #
to its left, leading to unsynchronous derivation. A CFHG G is ranked if Ĝ is ranked.
Example 5. Consider G of Example 4 and GR of Figure 2. The graph GL is similar to GR, with no edges
back to V0, (and thus without the rectangle MSCC). We compute some of the ranks for G:

L({a##x1 ,baax2}) = L({baax1 ,bb#x2}) = L({abx1 ,aax2}) = /0 L(V0) = /0

R({a##x1 ,baax2}) = {x1} R({baax1 ,bb#x2}) = {x2} R({abx1 ,aax2}) = /0 R(V0) = {x1,x2}

G is not ranked, since for the rule V0→{a##x1 ,baax2}V0, it holds that R({a##x1 ,baax2}) 6⊆ L(V0).
Example 6. The following CFHG Gr = 〈{a,b},{x1,x2},{V0,V1},V0,P,∀x1∃x2〉 is ranked, where P is:

P :=V0→V1V2

V1→{ax1 ,ax2}V1{bx1 ,bx2} | {abx1 ,abx2}
V2→V2{#x1 ,bx2} | {#x1 ,bx2}

Gr accepts all languages in which for every word of the type anbn there exits a word with more b’s, that
is, there exists anbm for m > n.

The ranks of Gr, as shown below, demonstrate that Gr is indeed ranked.

L({#x1 ,bx2}) = R({#x1 ,bx2}) = {x1} L({abx1 ,abx2}) = R({abx1 ,abx2}) = /0

L({ax1 ,ax2}V1{bx1 ,bx2}) = R({ax1 ,ax2}V1{bx1 ,bx2}) = R(V1) = L(V1) = /0

R(V2{#x1 ,bx2}) = L(V2{#x1 ,bx2}) = R(V2) = L(V2) = {x1}
R(V0) = /0 L(V0) = {x1}

Definition 19. L is a synchronous context-free hyperlanguage if there exists a CFHG G for L in which
Ĝ only derives synchronous word assignments.

Theorem 20. A hyperlanguage L is derived by a ranked CFHG iff L is synchronous context-free.

In order to prove Theorem 20, we use the following claims.

Claim 21. Let G = 〈Σ,X ,V,V0,P,α〉 be a ranked CFHG. Then, for every word γ = γ1 · · ·γn ∈ (Σ̂∪V)∗,
if there exists v ∈V such that v⇒∗ γ , then R(γi)⊆ L(γi+1) for all i ∈ [1,n−1].

Claim 22. Let G = 〈Σ,X ,V,V0,P,α〉 be a (possibly not ranked) CFHG with |X |= k, and let v ∈V .

1. For every j ∈ [1,k]\L(v) there exists w ∈ Σ̂∗ such that v⇒∗ w and j /∈ L(w).

2. For every j ∈ R(v) there exists w ∈ Σ̂∗ such that v⇒∗ w and j ∈ R(w).

Proof of Theorem 20. Let L be a context-free language that is accepted by a ranked grammar G. Accord-
ing to Claim 21, for every word w = w1 · · ·wn ∈ Σ̂∗ such that V0⇒∗ w, it holds that R(wi)⊆ L(wi+1)) for
i ∈ [1,n−1]. That is, # is allowed to only appear at the end of words, and so Ĝ only derives synchronous
word assignments.

For the other direction, let L be a synchronous context-free hyperlanguage, and let G be a CFHG for L
that only derives synchronous word assignments. Assume by way of contradiction that G is not ranked.
Then, there exists some rule v→ γ1 · · ·γn ∈ P where γi ∈ (Σ̂∪V) such that R(γi) 6⊆ L(γi+1) for some

H. Frenkel & S. Sheinvald 127

i ∈ [1,n]. Recall that we assume that all rules are reachable and that every variable can derive a terminal
word. Consider a derivation sequence V0⇒∗ βvβ ′⇒ βγ1 · · ·γnβ ′. Then, there exist w,wi,wi+1,w′ ∈ Σ̂∗

such that γi⇒∗ wi, γi+1⇒∗ wi+1 and V0⇒∗ wwiwi+1w′; and due to claim 22, for some j ∈R(γi)\L(γi+1),
it holds that j ∈ R(wi)\L(wi+1). Hence, wi ends with # in some location which is followed by a letter
in wi+1, and so the word assignment wwiwi+1w′ is not synchronous, a contradiction.

We therefore term ranked grammars syncCFHG. Given a CFHG G, deciding whether it is ranked
amounts to constructing the graph G and traversing the topological sorting of its MSCC graph in reverse
order in order to compute all ranks, and finally checking that all grammar rules of G comply to the
rank rules. All these steps can be computed in polynomial time. We now show that syncCFHG is more
decidabile than CFHG.

Theorem 23. The nonemptiness problem for ∀∗-syncCFHG and ∃∀∗-syncCFHG is in P.

Proof. Let G be a syncCFHG. Since universal quantification is closed under subsets, it holds that if L ∈
L(G), then L′ ∈L(G) for every L′ ⊆L. Therefore, it suffices to check whether there exists a singleton L
such that L ∈ L(G). Therefore, we consider only word assignments of the form w = w[x1 7→w]···[xk 7→w] for
some w ∈ (Σ∪{#})∗. Notice that w has a single representation, since # may not appear arbitrarily. We
construct a syncCFHG G′ by restricting Ĝ to the alphabet

⋃
σ∈Σ{σ}X , that is, all variables are assigned

the same letter. All rules over other alphabet letters are eliminated. Since elimination of rules cannot
induce asynchronization, G′ is synchronous.

Now, for a singleton language {w}, we have {w} ∈ L(G) iff {w} ∈ L(G′). Therefore, it suffices to
check the nonemptiness of L(G′), which amounts to checking the nonemptiness of Ĝ′.

The proof holds also for the case of ∃∀∗-syncCFHG. Indeed, an ∃∀∗-syncCFHG G is nonempty iff
it derives a singleton hyperlanguage. This, since in a language derived by G, a word w that is assigned
to the variable under ∃ must also be assigned to all variables under ∀ in one of the word assignments
derived by Ĝ, which in turn fulfills the requirements for deriving {w}. Since G is synchronous, it suffices
to restrict the alphabet to homogeneous letters and check for nonemptiness, as with ∀∗.

In the regular membership problem, we ask whether a regular language L can be derived by a
synchCFHG G. This problem is decidable for NFH [5]. For L = Σ∗ and a ∀-CFHG G, the question
amounts to checking the universality of Ĝ, which is undecidable [2]. Therefore, we have the following.

Theorem 24. The regular membership problem for ∀∗-syncCFHG grammars is undecidable.

Remark 4. Membership of a finite language L in a CFHG with any quantification condition is decidable
already for general CFHG (Theorem 17), with exponential complexity. For syncCFHG, we can reduce
the complexity by checking membership of word assignments instead. This, since we only need to con-
sider synchronous words, which have a single representation. Since checking membership is polynomial
in the size of the word (for a grammar of fixed size) [16], every such test is then polynomial. Since we
may still need to traverse all possible word assignment, the complexity is exponential in the length of the
quantification condition, but is polynomial in |G| and the size of the words in L.

Remark 5. For regular languages and ∃∗-CFHG, synchronization does not avoid the composition of
automata, and we use a construction similar to the one of Theorem 16.

We now show that synchronicity does not suffice for deciding nonemptiness of ∃∗∀∗-syncCFHG.

Theorem 25. The nonemptiness problem for ∃∗∀∗-syncCFHG is undecidable.

128 Realizable and Context-Free Hyperlanguages

Proof. We reduce from PCP. Let T = {[a1,b1], . . . , [an,bn]} be a PCP instance over {a,b}, and let

G = 〈{a,b,c}∪ [1,n],{x1,x2,x3},{V0,V1,V2},V0,P,∃x1∃x2∀x3〉

be a CFHG where P is defined as follows.

P :=V0→V1 | V2

V1→{aix1 ,c
|ai|

x2 ,aix3}V1{ix1 ,cx2 , ix3} | {aix1 ,c
|ai|

x2 ,aix3}{ix1 ,cx2 , ix3} ∀i ∈ [1,n]

V2→{bix1 ,c
|bi|

x2 ,c
|bi|

x3}V2{ix1 ,cx2 ,cx3} | {bix1 ,c
|bi|

x2 ,c
|bi|

x3}{ix1 ,cx2 ,cx3} ∀i ∈ [1,n]

Since none of the rules include the #-symbol, G is indeed a syncCFHG. Now, if there exists L ∈ L(G),
then there exist w ∈ {a,b}∗ · [1,n]∗ and wc ∈ {c}∗ both in L, such that for every w′ ∈ L, we have
V0 ⇒∗ w[x1 7→w][x1 7→wc][x3 7→w′]. In particular, for w′ = w, we have V0 ⇒∗ w[x1 7→w][x1 7→wc][x3 7→w]. Since V2

only derives words of the form ck in x3, the derivation of w[x1 7→w][x2 7→wc][x3 7→w] is of the form V0⇒V1⇒∗
w[x1 7→w][x2 7→wc][x3 7→w]. In addition, all words in {c}∗ can only be assigned to x3 if derived from V2, thus we
have V0⇒ V2⇒∗ w[x1 7→w][x2 7→wc][x3 7→wc]. Denote w = w1w2 where w1 ∈ {a,b}∗,w2 ∈ [1,n]. Then, w en-
codes a solution to T , where w1 is the string obtained from ai (and bi), and w2 is the sequence of indices.

For the other direction, a solution to T encoded by a string w1 and sequence of indices w2 corresponds
to the language {w1w2,c|w1w2|} that is accepted by G.

The nonemptiness problem for ∀∗∃∗-NFH is undecidable [5]. Therefore, this is also the case for
syncCFHG, and for general CFHG.

5 Discussion and Future Work

We have studied the realizability problem for regular hyperlanguages, focusing on the case of singleton
hyperlanguages. We have shown that simple quantification conditions cannot realize this case. We
have defined ordered and partially-ordered languages, for which we can construct hyperautomata that
enumerate the language by order. We have shown that all regular languages are partially ordered. Since
regular hyperlanguages are closed under union [5], the result extends to a finite hyperlanguage containing
regular languages. Naturally, there are richer cases one can consider. For an infinite hyperlanguage L,
some characterization on the elements of L would need to be defined in order to explore its realizability.
We plan on pursuing this direction as future work. Another related direction is finding techniques for
proving unrealizability for certain quantification conditions, for various types of hyperlanguages.

In the second part of the paper we have studied the natural extension of context-free grammars to
handle context-free hyperlanguages. Here, we have shown that beyond the inherent undecidability of
some decision problems for hypergrammars, some undecidability properties stem from the asynchronous
nature of these hypergrammars. We have then defined a synchronous fragment of context-free hyperlan-
guages, and defined a fragment of context-free grammars which exactly captures this fragment. The
result retains some of the decidability properties of context-free grammars. As a future direction, we
plan to study the realizability problem for CFHG and syncCFHG. Due to the limited closure proper-
ties of CFG, this is expected to be more challenging than for NFH. Another possible future direction is
studying the entire Chomsky hierarchy for hyperlanguages, and finding fragments of the extensions to
hyperlanguages that conserve the properties of these models for standard languages.

Acknowledgements. We thank the anonymous reviewer for suggesting the elegant construction men-
tioned in Remark 2.

H. Frenkel & S. Sheinvald 129

References

[1] B. Alpern & F.B. Schneider (1985): Defining Liveness. Information Processing Letters, pp. 181–185,
doi:10.1016/0020-0190(85)90056-0.

[2] Brenda S. Baker & Ronald V. Book (1974): Reversal-Bounded Multipushdown Machines. J. Comput. Syst.
Sci. 8(3), pp. 315–332, doi:10.1016/S0022-0000(74)80027-9.

[3] Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner & César Sánchez (2021): A Tem-
poral Logic for Asynchronous Hyperproperties. In Alexandra Silva & K. Rustan M. Leino, editors: Computer
Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part I, Lecture Notes in Computer Science 12759, Springer, pp. 694–717, doi:10.1007/978-3-030-81685-
8 33.

[4] Borzoo Bonakdarpour, César Sánchez & Gerardo Schneider (2018): Monitoring Hyperproperties by Combin-
ing Static Analysis and Runtime Verification. In Tiziana Margaria & Bernhard Steffen, editors: Leveraging
Applications of Formal Methods, Verification and Validation. Verification - 8th International Symposium,
ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part II, Lecture Notes in Computer Sci-
ence 11245, Springer, pp. 8–27, doi:10.1007/978-3-030-03421-4 2.

[5] Borzoo Bonakdarpour & Sarai Sheinvald (2021): Finite-Word Hyperlanguages. In Alberto Leporati, Carlos
Martı́n-Vide, Dana Shapira & Claudio Zandron, editors: Language and Automata Theory and Applications
- 15th International Conference, LATA 2021, Milan, Italy, March 1-5, 2021, Proceedings, Lecture Notes in
Computer Science 12638, Springer, pp. 173–186, doi:10.1007/978-3-030-68195-1 17.

[6] Ahmed Bouajjani, Rachid Echahed & Riadh Robbana (1994): Verification of Nonregular Temporal Proper-
ties for Context-Free Processes. In Bengt Jonsson & Joachim Parrow, editors: CONCUR ’94, Concurrency
Theory, 5th International Conference, Uppsala, Sweden, August 22-25, 1994, Proceedings, Lecture Notes in
Computer Science 836, Springer, pp. 81–97, doi:10.1007/978-3-540-48654-1 8.

[7] Noam Chomsky (1959): On Certain Formal Properties of Grammars. Inf. Control. 2(2), pp. 137–167,
doi:10.1016/S0019-9958(59)90362-6.

[8] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled & Helmut Veith (2018):
Model checking, 2nd Edition. MIT Press. Available at https://mitpress.mit.edu/books/
model-checking-second-edition.

[9] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe & César
Sánchez (2014): Temporal Logics for Hyperproperties. In Martı́n Abadi & Steve Kremer, editors: Principles
of Security and Trust - Third International Conference, POST 2014, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings,
Lecture Notes in Computer Science 8414, Springer, pp. 265–284, doi:10.1007/978-3-642-54792-8 15.

[10] Michael R. Clarkson & Fred B. Schneider (2010): Hyperproperties. J. Comput. Secur. 18(6), pp. 1157–1210,
doi:10.3233/JCS-2009-0393.

[11] Norine Coenen, Bernd Finkbeiner, Christopher Hahn & Jana Hofmann (2019): The Hierarchy of Hyperlogics.
In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada,
June 24-27, 2019, IEEE, pp. 1–13, doi:10.1109/LICS.2019.8785713.

[12] Bernd Finkbeiner, Lennart Haas & Hazem Torfah (2019): Canonical Representations of k-Safety Hyperprop-
erties. In: 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June
25-28, 2019, IEEE, pp. 17–31, doi:10.1109/CSF.2019.00009.

[13] Bernd Finkbeiner & Martin Zimmermann (2017): The First-Order Logic of Hyperproperties. In Heribert
Vollmer & Brigitte Vallée, editors: 34th Symposium on Theoretical Aspects of Computer Science, STACS
2017, March 8-11, 2017, Hannover, Germany, LIPIcs 66, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
pp. 30:1–30:14, doi:10.4230/LIPIcs.STACS.2017.30.

[14] Wladimir Fridman & Bernd Puchala (2014): Distributed Synthesis for Regular and Contextfree Specifica-
tions. Acta Informatica 51(3-4), pp. 221–260, doi:10.1007/s00236-014-0194-x.

http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1016/S0022-0000(74)80027-9
http://dx.doi.org/10.1007/978-3-030-81685-8_33
http://dx.doi.org/10.1007/978-3-030-81685-8_33
http://dx.doi.org/10.1007/978-3-030-03421-4_2
http://dx.doi.org/10.1007/978-3-030-68195-1_17
http://dx.doi.org/10.1007/978-3-540-48654-1_8
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.1109/LICS.2019.8785713
http://dx.doi.org/10.1109/CSF.2019.00009
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.30
http://dx.doi.org/10.1007/s00236-014-0194-x

130 Realizable and Context-Free Hyperlanguages

[15] Ohad Goudsmid, Orna Grumberg & Sarai Sheinvald (2021): Compositional Model Checking for Multi-
properties. In Fritz Henglein, Sharon Shoham & Yakir Vizel, editors: Verification, Model Checking, and
Abstract Interpretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark, January 17-
19, 2021, Proceedings, Lecture Notes in Computer Science 12597, Springer, pp. 55–80, doi:10.1007/978-3-
030-67067-2 4.

[16] John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (2001): Introduction to Automata Theory, Lan-
guages, and Computation, 2nd Edition. Addison-Wesley series in computer science, Addison-Wesley-
Longman.

[17] Bakhadyr Khoussainov & Anil Nerode (1994): Automatic Presentations of Structures. In Daniel Leivant,
editor: Logical and Computational Complexity. Selected Papers. Logic and Computational Complexity, In-
ternational Workshop LCC ’94, Indianapolis, Indiana, USA, 13-16 October 1994, Lecture Notes in Computer
Science 960, Springer, pp. 367–392, doi:10.1007/3-540-60178-3 93.

[18] Adrien Pommellet & Tayssir Touili (2018): Model-Checking HyperLTL for Pushdown Systems. In Marı́a-
del-Mar Gallardo & Pedro Merino, editors: Model Checking Software - 25th International Symposium, SPIN
2018, Malaga, Spain, June 20-22, 2018, Proceedings, Lecture Notes in Computer Science 10869, Springer,
pp. 133–152, doi:10.1007/978-3-319-94111-0 8.

[19] Markus N. Rabe (2016): A Temporal Logic Approach to Information-flow Control. Ph.D. thesis, Saarland
University. Available at http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/.

[20] Moshe Y. Vardi (1995): An Automata-Theoretic Approach to Linear Temporal Logic. In Faron Moller &
Graham M. Birtwistle, editors: Logics for Concurrency - Structure versus Automata (8th Banff Higher Order
Workshop, Banff, Canada, August 27 - September 3, 1995, Proceedings), Lecture Notes in Computer Science
1043, Springer, pp. 238–266, doi:10.1007/3-540-60915-6 6.

[21] Moshe Y. Vardi & Pierre Wolper (1986): An Automata-Theoretic Approach to Automatic Program Verifica-
tion (Preliminary Report). In: Proceedings of the Symposium on Logic in Computer Science (LICS ’86),
Cambridge, Massachusetts, USA, June 16-18, 1986, IEEE Computer Society, pp. 332–344.

[22] Moshe Y. Vardi & Pierre Wolper (1994): Reasoning About Infinite Computations. Inf. Comput. 115(1), pp.
1–37, doi:10.1006/inco.1994.1092.

[23] Yu Wang, Mojtaba Zarei, Borzoo Bonakdarpour & Miroslav Pajic (2019): Statistical Verification of Hy-
perproperties for Cyber-Physical Systems. ACM Trans. Embed. Comput. Syst. 18(5s), pp. 92:1–92:23,
doi:10.1145/3358232.

http://dx.doi.org/10.1007/978-3-030-67067-2_4
http://dx.doi.org/10.1007/978-3-030-67067-2_4
http://dx.doi.org/10.1007/3-540-60178-3_93
http://dx.doi.org/10.1007/978-3-319-94111-0_8
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
http://dx.doi.org/10.1007/3-540-60915-6_6
http://dx.doi.org/10.1006/inco.1994.1092
http://dx.doi.org/10.1145/3358232

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. 131–146, doi:10.4204/EPTCS.370.9

© Acampora et al.

This work is licensed under the

Creative Commons Attribution License.

Controller Synthesis for Timeline-based Games

Renato Acampora

University of Udine, Italy

acampora.renato@spes.uniud.it

Luca Geatti Nicola Gigante

Free University of Bozen-Bolzano

{geatti,gigante}@inf.unibz.it

Angelo Montanari

University of Udine, Italy

angelo.montanari@uniud.it

Valentino Picotti

University of Southern Denmark

picotti@imada.sdu.dk

In the timeline-based approach to planning, originally born in the space sector, the evolution over

time of a set of state variables (the timelines) is governed by a set of temporal constraints. Traditional

timeline-based planning systems excel at the integration of planning with execution by handling tem-

poral uncertainty. In order to handle general nondeterminism as well, the concept of timeline-based

games has been recently introduced. It has been proved that finding whether a winning strategy ex-

ists for such games is 2EXPTIME-complete. However, a concrete approach to synthesize controllers

implementing such strategies is missing. This paper fills this gap, outlining an approach to controller

synthesis for timeline-based games.

1 Introduction

In the timeline-based approach to planning, the world is viewed as a system made of a set of independent

but interacting components whose behaviour over time (the timelines) is governed by a set of temporal

constraints, called synchronization rules. Timeline-based planning has been originally introduced in the

space industry [19], with timeline-based planners developed and used by space agencies on both sides of

the Atlantic [5, 4, 13, 2, 6], both for short- to long-term mission planning [7] and on-board autonomy [14].

While successful in practice, only recently timeline-based planning has been studied from a theo-

retical perspective. The formalism has been at first compared with traditional action-based languages à

la STRIPS, proving that they can be expressed by means of timeline-based languages [16]. Then, the

complexity of the timeline-based plan existence problem has been studied: the problem is EXPSPACE-

complete [17] over discrete time in the general case, and PSPACE-complete with qualitative constraints

[11]. On dense time, the problem goes from being NP-complete to undecidable, depending on the syn-

tactic restrictions applied [3]. The expressiveness of timeline-based languages has also been studied from

a logical perspective [10], and an automata-theoretic point of view [9].

Traditional timeline-based planning systems excel at the integration of planning with execution by

treating explicitly the concept of temporal uncertainty: the exact timings of the events under control of

the environment need not to be precisely known in advance. However, general nondeterminism, where

the environment can also decide what to do (instead of only when to do it) is usually not handled by

these systems. To overcome this limitation, the concept of timeline-based games has been recently intro-

duced [18]. In these games, the state variables are partitioned between the controller and the environment,

and the latter has the freedom to play arbitrarily as long as a set of domain rules, that define the game

arena, are satisfied. The controller plays to satisfy his set of system rules. A strategy for controller is

winning if it allows him/her to win independently from the choices of the environment.

Establishing whether a winning strategy exists for these games has been proved to be 2EXPTIME-

complete [18]. However, no concrete way to synthesize a controller implementing such strategies is

http://dx.doi.org/10.4204/EPTCS.370.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

132 Controller Synthesis for Timeline-based Games

known. The proof technique of the aforementioned complexity result involves the construction of a huge

(doubly exponential) concurrent game structure, which is used to model check some Alternating-time

Temporal Logic (ATL) formulas [1]. While this structure is deterministic and can be in principle used as

an arena to solve a reachability game and synthesize a controller, its construction is based on theoretical

nondeterministic procedures which have no hope to be ever concretely implemented. On the other hand,

the automata-theoretic approach by Della Monica et al. [9] provides a concrete and effective construction

of an automaton that accepts a word if and only if the original planning problem has a solution plan.

However, the automaton is nondeterministic and already doubly exponential, and the determinization

needed to use it as an arena would result into a further blow up and a non-optimal procedure.

In this paper, we provide a concrete and computationally optimal approach to controller synthesis for

timeline-based games. We overcome the limitations of both the above-mentioned approaches by devising

a direct construction for a deterministic finite-state automaton that recognizes solution plans, which is

doubly exponential in size (thus not requiring the determinization of a nondeterministic automaton).

This automaton is then used as the arena of a reachability game for which plenty of controller synthesis

techniques are known in the literature.

The paper is structured as follows. In Section 2 we introduce the needed background on timeline-

based planning and timeline-based games. Then, Section 3 provides the core technical contribution of the

paper, namely the construction of the deterministic automaton recognizing solution plans. Section 4 uses

this automaton as the game arena to solve the controller synthesis problem. Last, Section 5 summarizes

the main contributions of the work and discuss future developments.

2 Timeline-based games

In this section, we introduce timeline-based games, as defined in [18].

2.1 State variables, event sequences, synchronization rules

The first basic concept is that of state variable.

Definition 1 (State variable). A state variable is a tuple x = (Vx,Tx,Dx,γ), where:

• Vx is the finite domain of x;

• Tx : Vx → 2Vx is the value transition function of x, which maps each value v ∈Vx to the set of values

that can immediately follow it;

• Dx : Vx → N×N is the duration function of x, mapping each value v ∈ Vx to a pair (dx=v
min ,d

x=v
max)

specifying respectively the minimum and maximum duration of any interval where x = v;

• γ :Vx →{c,u} is the controllability tag, that, for each value v∈Vx, specifies whether it controllable

(γ(v) = c) or uncontrollable (γ(v) = u).

Intuitively, a state variable x takes a value from a finite domain and represents a simple finite-state

machine, whose transition function is Tx. The behaviour over time of a set of state variables SV is defined

by a set of timelines, one for each variable. Instead of reasoning about timelines directly, though, in this

paper we follow the approach outlined in [18] and represent the whole execution of a system, modeled

by means of a set of state variables, with a single word, called event sequence.

Definition 2 (Event sequence [18]). Let SV be a set of state variables. Let ASV be the set of all the terms,

called actions, of the form start(x,v) or end(x,v), where x ∈ SV and v ∈Vx.

Acampora et al. 133

An event sequence over SV is a sequence µ = 〈µ1, . . . ,µn〉 of pairs µi = (Ai,δi), called events, where

Ai ⊆ ASV is a set of actions, and δi ∈ N+, such that, for any x ∈ SV:

1. for all 1 ≤ i ≤ n, if start(x,v) ∈ Ai, for some v ∈Vx, then there is no start(x,v′) in any µ j before the

closest µk, with k > i, such that end(x,v) ∈ Ak (if any);

2. for all 1 ≤ i ≤ n, if end(x,v) ∈ Ai, for some v ∈ Vx, then there is no end(x,v′) in any µ j after the

closest µk, with k < i, such that start(x,v) ∈ Ak (if any);

3. for all 1 ≤ i < n, if end(x,v) ∈ Ai, for some v ∈Vx, then start(x,v′) ∈ Ai, for some v′ ∈Vx;

4. for all 1 < i ≤ n, if start(x,v) ∈ Ai, for some v ∈Vx, then end(x,v′) ∈ Ai, for some v′ ∈Vx.

Intuitively, an event sequence represents the evolution over time of the state variables of the system

by representing the start and the end of tokens, i.e., a sequence of adjacent intervals where a given

variable takes a given value. An event µi = (Ai,δi) consists of a set Ai of actions describing the start or

the end of some tokens, happening δi time steps after the previous one. In an event sequence, events are

collected to describe a whole plan.

Definition 2 intentionally implies that a started token is not required to end before the end of the

sequence, and a token can end without the corresponding starting action to have ever appeared before.

In this case we say the event sequence is open (on the right or on the left, respectively). Otherwise, it

is said to be closed. An event sequence closed on the left and open on the right is also called a partial

plan. Note that the empty event sequence is closed on both sides for any variable. Moreover, on closed

event sequences, the first event only contains start(x,v) actions and the last event only contains end(x,v)
actions, one for each variable x. Given an event sequence µ = 〈µ1, . . . ,µn〉 over a set of state variables

SV, with µi = (Ai,δi), we define δ (µ) = ∑1<i≤n δi, that is, δ (µ) is the time elapsed from the start to the

end of the sequence (its duration). The amount of time spanning a subsequence, written as δi, j when µ

is clear from context, is then δ (µ i, j) = ∑i<k≤ j δk. Finally, given an event sequence µ = 〈µ1, . . . ,µn〉, for

each 1 < i ≤ n, we define µ<i as 〈µ1, . . . ,µi−1〉.

In timeline-based games, the controller plays to satisfy a set of synchronization rules, which describe

the desired behavior of the system. Synchronization rules relate tokens, possibly belonging to different

timelines, through temporal relations among token endpoints. Let SV be a set of state variables and

N= {a,b, . . .} be an arbitrary set of token names. Moreover, let an atomic temporal relation, or simply

atom, be an expression of the form 〈term〉 ≤l,u 〈term〉, where l ∈ N, u ∈ N∪{∞}, and a term is either

start(a) or end(a), for some a ∈ N. A synchronisation rule R takes the following form:

R := a0[x0 = v0]→ E1 ∨E2 ∨ ·· ·∨Ek where

Ei := ∃a1[x1 = v1]a2[x2 = v2] . . .an[xn = vn] . Ci

where a0, . . . ,an ∈ N, x0, . . . ,xn ∈ SV, v0, . . . ,vn are such that vi ∈ Vxi
, for all 0 ≤ i ≤ n, and Ci is a

conjunction of atomic temporal relations (a clause). The elements ai[xi = vi] are called quantifiers and

the quantifier a0[v0 = x0] is called the trigger. The disjuncts in the body are called existential statements.

We say that a token τ = (x,v,d) satisfies a quantifier ai[xi = vi] if x = xi and v = vi. The semantics

of a synchronisation rule R states that for every token satisfying the trigger, at least one of the existential

statements is satisfied. Each existential statement Ei requires the existence of some tokens, satisfying the

quantifiers in its prefix, such that the clause Ci is satisfied. When a token satisfies the trigger of a rule, it

is said to trigger such a rule.

For space concerns, we do not provide all the details of the semantics of synchronization rules. The

reader can find them in [18]. Intuitively, each time there is a token that satisfies the trigger of a rule,

134 Controller Synthesis for Timeline-based Games

one of its existential statements must be satisfied as well. The existential statements in turn assert the

existence of other tokens that satisfy a conjunction of atoms.

If a and b are two token names, then examples of atomic relations are start(a) ≤3,7 end(b) and

start(a) ≤0,+∞ start(b). Intuitively, a token name a refers to a specific token, that is, a pair of start(x,v)
and end(x,v) actions in an event sequence, and start(a) and end(a) to its endpoints. Then, an atom

such as start(a) ≤l,u end(b) constrains a to start before the end of b, with the distance between the two

endpoints to be comprised between the lower and upper bounds l and u.

Examples of synchronization rules are the following, where the relations = and ≤ are respectively

syntactic sugar for ≤0,0 and ≤0,+∞:

a[xs = Comm]→∃b[xg = Available] . start(b)≤ start(a)∧ end(a)≤ end(b)

a[xs = Science]→∃b[xs = Slewing]c[xs = Earth]d[xs = Comm] .

end(a) = start(b)∧ end(b) = start(c)∧ end(c) = start(d)

where the variables xs and xg represent respectively the state of a spacecraft and the visibility of the com-

munication ground station. The first rule requires the satellite and the ground station to synchronise their

communications, so that when the satellite is transmitting the ground station is available for reception.

The second rule instructs the system to transmit data back to Earth after every measurement session,

interleaved by the required slewing operation. A rule whose trigger is empty (⊤), called triggerless rule,

can be used to state the goal of the system. As an example, they allow one to force the spacecraft to

perform some scientific measurement at all:

⊤→ ∃a[xs = Science]

Triggerless rules have a trivial universal quantification, which means they only demand the existence

of some tokens, as specified by the existential statements. Although triggerless rules are meant to specify

the goals of a planning problem, they can be regarded as syntactic sugar on top of the syntax described

above. Indeed, triggerless rules can be translated into triggered rules [18], and thus we do not consider

them from here onwards.

Finally, even though our focus is on timeline-based games, we conclude the section by formally

defining timeline-based planning problems.

Definition 3 (Timeline-based planning problem). A timeline-based planning problem is a pair P =
(SV,S), where SV is a set of state variables and S is a set of synchronization rules over SV. An event

sequence µ over SV is a solution plan for P if all the rules in S are satisfied by µ .

2.2 The game arena

We are now ready to introduce timeline-based games. Their definition is quite involved, as their structure

has been designed with the goal of being strictly more general than timeline-based planning with uncer-

tainty [8] while being able to capture its semantics precisely. For space concerns, we keep the exposition

quite terse, but the reader can refer to [18] for details.

Definition 4 (Timeline-based game). A timeline-based game is a tuple G = (SVC,SVE ,S,D), where

SVC and SVE are the sets of controlled and external variables, respectively, and S and D are the sets of

system and domain synchronisation rules, respectively, both involving variables from SVC and SVE .

A partial plan for G is a partial plan over the state variables SVC ∪SVE . Let ΠG be the set of all

possible partial plans for G, simply Π when there is no ambiguity.

Acampora et al. 135

Since ε is a closed event sequence and δ (ε) = 0, the empty partial plan ε is a good starting point

for the game. Players incrementally build a richer partial plan, starting from ε , by playing actions that

specify which tokens to start and/or to end, adding an event that extends the event sequence, or comple-

menting the existing last event of the sequence. We partition all the available actions into those that are

playable by either of the two players.

Definition 5 (Partition of player actions). Let SV = SVC ∪SVE . The set A of available actions over SV

is partitioned into the sets AC of Charlie’s actions and AE of Eve’s actions, which are defined as follows:

AC = {start(x,v) | x ∈ SVC, v ∈Vx }
︸ ︷︷ ︸

start tokens on Charlie’s timelines

∪ {end(x,v) | x ∈ SV, v ∈Vx, γx(v) = c}
︸ ︷︷ ︸

end controllable tokens

(1)

AE = {start(x,v) | x ∈ SVE , v ∈Vx }
︸ ︷︷ ︸

start tokens on Eve’s timelines

∪ {end(x,v) | x ∈ SV, v ∈Vx, γx(v) = u}
︸ ︷︷ ︸

end uncontrollable tokens

(2)

Hence, players can start tokens for the variables that they own, and end the tokens that hold values

that they control. Actions are combined into moves that can start/end multiple tokens at once.

Definition 6 (Moves). A move µC for Charlie is a term of the form wait(δC) or play(AC), where δC ∈N
+

and ∅ 6= AC ⊆ AC is either a set of starting actions or a set of ending actions.

A move µE for Eve is a term of the form play(AE) or play(δE ,AE), where δE ∈ N
+ and AE ⊆ AE is

either a set of starting actions or a set of ending actions.

We denote by MC and ME the set of moves playable by Charlie and Eve, respectively. Moves such

as play(AC) and play(δE ,AE) can play either start(x,v) actions only or end(x,v) actions only. A move

of the former kind is called a starting move, while a move of the latter kind is called an ending move.

We consider wait moves as ending moves. Moreover, Starting and ending moves have to be alternated

during the game.

Definition 7 (Round). A round ρ is a pair (µC,µE) ∈MC ×ME of moves such that:

1. µC and µE are either both starting or both ending moves;

2. either ρ = (play(AC),play(AE)), or ρ = (wait(δC),play(δE ,AE)), with δE ≤ δC;

A starting (ending) round is one made of starting (ending) moves. Note that since Charlie cannot

play empty moves and wait moves are considered ending moves, each round is unambiguously either a

starting or an ending round. Also note that since play(δE ,AE) moves are played only in rounds together

with wait(δC), and wait(δC) is always an ending move, then any play(δE ,AE) must be an ending move.

We can now define how a round is applied to the current partial plan to obtain the new one. The game

always starts with a single starting round.

Definition 8 (Outcome of rounds). Let µ = 〈µ1, . . . ,µn〉 be an event sequence, with µn = (An,δn) or

µn = (∅,0) if µ = ε . Let ρ = (µC,µE) be a round, let δE and δC be the time increments of the moves,

with δC = δE = 1 for play(A) moves, and let AE and AC be the set of actions of the two moves (AC is

empty if µC is a wait move).

The outcome of ρ on µ is the event sequence ρ(µ) defined as follows:

1. if ρ is a starting round, then ρ(µ) = µ<nµ ′
n, where µ ′

n = (An ∪AC ∪AE,δn);

2. if ρ is an ending round, then ρ(µ) = µµ ′, where µ ′ = (AC ∪AE,δE);

We say that ρ is applicable to µ if:

a) the above construction is well-defined, i.e., ρ(µ) is a valid event sequence by Definition 2;

136 Controller Synthesis for Timeline-based Games

b) ρ is an ending round if and only if µ is open for all variables.

We say that a single move by either player is applicable to µ if there is a move for the other player

such that the resulting round is applicable to µ .

The game starts from the empty partial plan ε , and players play in turn, composing a round from the

move of each one, which is applied to the current partial plan to obtain the new one.

It is now time to define the notion of strategy for each player, and of winning strategy for Charlie.

Definition 9 (Strategies). A strategy for Charlie is a function σC : Π →MC that maps any given partial

plan µ to a move µC applicable to µ . A strategy for Eve is a function σE : Π×MC →ME that maps a

partial plan µ and a move µC ∈MC applicable to µ , to a µE such that ρ = (µC,µE) is applicable to µ .

A sequence ρ = 〈ρ0, . . . ,ρn〉 of rounds is called a play of the game. A play is said to be played

according to some strategy σC for Charlie, if, starting from the initial partial plan µ0 = ε , it holds that

ρi = (σC(Πi−1),µ
i
E), for some µ i

E , for all 0 < i ≤ n, and to be played according to some strategy σE for

Eve if ρi = (µ i
C,σE(Πi−1,µ

i
C)), for all 0 < i ≤ n. It can be seen that for any pair of strategies (σC,σE)

and any n ≥ 0, there is a unique run ρn(σC,σE) of length n played according both to σC and σE .

Then, we say that a partial plan µ , and the play ρ such that µ = ρ(ε), are admissible, if the partial

plan satisfies the domain rules, and are successful if the partial plan satisfies the system rules.

Definition 10 (Admissible strategy for Eve). A strategy σE for Eve is admissible if for each strategy σC

for Charlie, there is k ≥ 0 such that the play ρk(σC,σE) is admissible.

Charlie wins if, assuming domain rules are respected, he manages to satisfy the system rules no

matter how Eve plays.

Definition 11 (Winning strategy for Charlie). Let σC be a strategy for Charlie. We say that σC is a

winning strategy for Charlie if for any admissible strategy σE for Eve, there exists n ≥ 0 such that the

play ρn(σC,σE) is successful.

We say that Charlie wins the game G if he has a winning strategy, while Eve wins the game if a

winning strategy for Charlie does not exist.

3 A deterministic automaton for timeline-based planning

In this section we encode a timeline-based planning problem into a deterministic finite state automaton

(DFA) that recognises all and only those event sequences that represent solution plans for such problem.

This automaton will form the basis for the game arena solved in the next section. The words accepted by

the automaton are event sequences representing solution plans.

Let P = (SV,S) be a timeline-based planning problem. To get a finite alphabet, we define d =
max(L,U)+ 1, where L and U are in turn the maximum lower and (finite) upper bounds appearing in

any rule of P, and we account only for event sequences such that the distance between two consecutive

events is at most d. It can be easily seen that this assumption does not loose generality (for a proof, see

Lemma 4.8 in [15]). Hence, the symbols of the alphabet Σ are events of the form µ = (A,δ), where

A ⊆ ASV and 1 ≤ δ ≤ d. Formally, Σ = 2ASV × [d], where [d] = {1, . . . ,d }. Note that the size of Σ

is exponential in the size of the problem. Moreover, we define the amount window(P) as the product

of all the non-zero coefficients appearing as upper bounds in rules of P. Intuitively, window(P) is the

maximum amount of time a rule of P can count far away from the occurrence of the quantified tokens.

For example, consider the following rule:

a0[x0 = v0]→∃a1[x1 = v1]a2[x2 = v2]a3[x3 = v3] .

start(a1)≤[4,14] end(a0)∧ end(a0)≤[0,+∞] end(a2)∧ start(a2)≤[0,3] end(a3)

Acampora et al. 137

start(a0) end(a0) start(a1) end(a1) start(a2) end(a2) start(a3) end(a3)

start(a0)
end(a0) −4

start(a1) 14

end(a1)
start(a2) 3

end(a2) 0

start(a3)
end(a3) 0

Figure 1: DBM of an example synchronization rule. Missing entries are intended to be +∞.

In this case, window(P) (assuming this is the only rule of the problem), would be 3 · 14 = 42. This

means the rule can precisely account for what happens at most 42 time point from the occurrence of

its quantified tokens. For example, if the token a1 appears at a given distance from a0, it has to be at

less than 42 time points (less than 14, in particular), and any modification of the plan that changes such

distance has the potential to break the satisfaction of the rule. Instead, what happens further away from

a0 only affects the satisfaction of the rule qualitatively. Suppose the tokens a2 and a3 lie at 100 time

points from a0 (at most 3 time steps from each other). Changing this distance (while maintaining the

qualitative order between tokens) cannot ever break the satisfaction of the rule. See [15] for a precise

account of the properties of window(P).
A key observation underlying our construction is that every atomic temporal relation T ≤l,u T ′ can

be rewritten as the conjunction of two inequalities T ′ − T ≤ u and T − T ′ ≤ −l, and that the clause C

of an existential statement E can be rewritten as a system of difference constraints ν(C) of the form

T −T ′ ≤ n, with n ∈ Z+∞. Then, the system ν(C) can be conveniently represented by a squared matrix

D indexed by terms, where the entry associated with D[T,T ′] gives the upper bound on T − T ′. Such

matrices, which take the name of Difference Bound Matrices (DBMs) [12, 20], can be conveniently

updated as the plan evolves to keep track of the satisfaction of the atomic temporal relations among

terms. In building a DBM for the system of constraints ν(C), we augment the system with constraints

of kind start(ai)− end(ai)≤−d
xi=vi

min and end(ai)− start(ai)≤ d
xi=vi

max , for any quantified token ai[xi = vi]
of E. Moreover, if two different bounds T − T ′ ≤ n and T − T ′ ≤ n′ with n′ < n belong to ν(C), we

keep only T − T ′ ≤ n′. As an example, the DBM for the existential graph of the rule above is the one

in Fig. 1. Note that, when the bounds of the temporal relations are translated into a DBM, there is no

longer a distinction between lower and upper bounds. However, for some of the entries we can retrieve

their original meaning. Indeed, if D[T,T ′]< 0, then such entry is the lower bound of a temporal relation

T ≤l,u T ′, whereas, if D[T,T ′]> 0, it is the upper bound of a relation T ′ ≤l,u T .

On top of DBMs, we define the concept of matching structure, a data structure that allows us to

manipulate and reason about partially matched existential statements, i.e., existential statements of which

only a part of the requests has already been satisfied by the part of the word already read, while the rest

can be still potentially matched in the future.

Definition 12 (Matching Structure). Let E≡ ∃a1[x1 = v1] . . .am[xm = vm] .C be the existential statement

of a synchronisation rule R≡ a0[x0 = v0]→ E1 ∨ ·· ·∨Ek over the set of state variables SV.

The matching structure for E is a tuple ME = (V,D,M, t) where:

138 Controller Synthesis for Timeline-based Games

• V is the set of terms start(a) and end(a) for a ∈ {a0, . . . ,am };

• D ∈ Z
|V |2

+∞ is a DBM indexed by terms of V where D[T,T ′] = n if (T −T ′ ≤ n) ∈ ν(C), D[T,T ′] = 0

if T = T ′, and D[T,T ′] = +∞ otherwise;

• M ⊆V and 0 ≤ t ≤ window(P).

The set M contains the terms of V that the matching structure has correctly matched over the event

sequence read so far. With M =V \M we denote the actions that we have yet to see. Then, we say that

a matching structure M is closed if M = V , it is initial if M = ∅ and it is active if it is not closed and

start(a0) ∈ M. Intuitively, a matching structure is active if its trigger has been matched over the word the

automaton is reading. Then, when all the terms have been matched over the word, the matching structure

becomes closed. The component t is the time elapsed since start(a0) has been matched. When time

flows, a matching structure can then be updated as follows.

Definition 13 (Time shifting). Let δ > 0 be a positive amount of time, and M= (V,D,M, t) be a matching

structure. The result of shifting M by δ time units, written M+ δ , is the matching structure M′ =
(V,D′,M, t ′) where:

• for all T,T ′ ∈V :

D′[T,T ′] =







D[T,T ′]+δ if T ∈ M and T ′ ∈ M

D[T,T ′]−δ if T ∈ M and T ′ ∈ M

D[T,T ′] otherwise

• and

t ′ =

{

t +δ if M is active

t otherwise

Definition 14 (Matching). Let M=(V,D,M, t) be a matching structure and I ⊆M a set of matched terms.

A matching structure M′ = (V,D,M′, t) is the result of matching the set I, written M∪ I, if M′ = M∪ I.

Beside updating the reference t to the trigger occurrence of an active matching structure, Defini-

tion 13 dictates how to update the entries of the DBM. In particular, the distance bounds between any

pair of terms T and T ′ where one is in M and the other is not are tighten by the elapsing of time:

when T ∈ M and T ′ ∈ M, D[T,T ′] is a lower bound loosen by adding the elapsed time δ , when T ∈ M

and T ′ ∈ M, D[T,T ′] is an upper bound tighten by subtracting δ . For example, consider the DBM in

Fig. 1 and consider the pair of terms start(a1) and end(a0). D[start(a1),end(a0)] = −4, meaning that

end(a0)− start(a1) ≤ 4 must hold. Suppose start(a1) ∈ M (i.e., it has been matched), and end(a0) 6∈ M

(it still has to). Now, if 1 time point passes, the entry in the DBM is incremented and updated to

−4+ 1 = −3, which corresponds to the constraint end(a0)− start(a1) ≤ 3. This reflects the fact that

to be able to satisfy the constraint, end(a0) has now only 3 time steps left before it is too late. Defini-

tion 14 tells us how to update the set M of a matching structure.

To correctly match an existential statement while reading an event sequence, a matching structure

is updated only as long as no violations of temporal constraints are witnessed. As such, an event is

classified from the standpoint of a matching structure as admissible or not.

Definition 15 (Admissible Event). An event µ = (A,δ) is admissible for a matching structure ME =
(V,D,M, t) if and only if, for every T ∈ M and T ′ ∈ M, δ ≤ D[T ′,T], i.e., the elapsing of δ time units

does not exceed the upper bound of some term T ′ not yet matched by ME.

Acampora et al. 139

Each admissible event µ read from the word can be matched with a subset of the terms of the match-

ing structure. There are usually more than one way to match events and terms. The following definition

makes this choice explicit.

Definition 16 (I-match Event). Let ME = (V,D,M, t) be a matching structure and I ⊆ M. An I-match

event is an admissible event µ = (A,δ) for ME such that:

1. for all token names a ∈ N quantified as a[x = v] in E we have that:

(a) if start(a) ∈ I, then start(x,v) ∈ A;

(b) end(a) ∈ I if and only if start(a) ∈ M and end(x,v) ∈ A;

2. and for all T ∈ I it holds that:

(a) for every other term T ′ ∈V , if D[T ′,T]≤ 0, then T ′ ∈ M∪ I;

(b) for all T ′ ∈ M, δ ≥−D[T ′,T], i.e., all the lower bounds on T are satisfied;

(c) for each other term T ′ ∈ I, either D[T ′,T] = 0, D[T,T ′] = 0, or D[T ′,T] = D[T,T ′] = +∞.

Intuitively, an event is an I-match event if the actions in the event correctly match the terms in I.

Item 1 ensures that each term is correctly matched over an action it represents and, most importantly,

that the endpoints of a quantified token correctly identify the endpoints of a token in the event sequence.

Item 2 ensures that matching the terms in I does not violate any atomic temporal relation. In particular,

Item 2a deals with the qualitative aspect of an “happens before” relation, while Items 2b and 2c deal with

the quantitative aspects of the lower bounds of these relations. Note that an ∅-event is admitted.

Let MP be the set of all the matching structures for a planning problem P. By Definition 16, a

single event can represent several I-match events for a matching structure, hence a matching structure

can evolve into several matching structures, one for each I-match event. Such evolution is defined as

a ternary relation S ⊆ MP × Σ×MP such that (M,(A,δ),M′) ∈ S if and only if (A,δ) is an I-match

event for M and M′ = (M+ δ)∪ I. To deal with the nondeterministic nature of this relation, states of

the automaton will comprise sets of matching structures collecting all the possible outcomes of S, so that

suitable notation for working with sets of matching structures, denoted by ϒ hereafter, is introduced. We

define ϒR
t ⊆ ϒ as the set of all the active matching structures M ∈ ϒ with timestamp t, associated with

any existential statement of R. Intuitively, matching structures in ϒR
t contribute to the fulfilment of the

same triggering event for the rule R (because they have the same timestamp), regardless of the existential

statement they represent. We also define ϒ⊥ ⊆ ϒ as the set of non active matching structures of ϒ. A set

ϒ is closed if there exists M ∈ ϒ such that M is closed. Lastly, a function stepµ extends the relation S to

sets of matching structures: stepµ(ϒ) = {M′ | (M,µ ,M′) ∈ S, for some M ∈ ϒ}.

We are now ready to define the automaton. If E is an existential statement, let EE be the set of all

the existential statements of the same rule of E. Let FP be the set of functions mapping each existential

statement of P to a set of existential statements, and let DP be the set of functions mapping each existential

statement to a set of matching structures. A simple automaton TP that checks the transition function and

duration functions of the variables is easy to define. Then, given a timeline-based planning problem

P = (SV,S), the corresponding automaton is AP = TP ∩ SP where SP, the automaton that checks the

satisfaction of the synchronization rules, is defined as SP = (Q,Σ,q0,F,τ), where:

1. Q = 2M ×D×F∪ {⊥} is the finite set of states, i.e., states are tuples of the form 〈ϒ,∆,Φ〉 ∈
2M×D×F, plus a sink state ⊥;

2. Σ is the input alphabet defined above;

3. the initial state q0 = 〈ϒ0,∆0,Φ0〉 is such that ϒ0 is the set of initial matching structures of the

existential statements of P and, for all existential statements E of P, we have ∆0(E) = ∅ and

Φ0(E) = EE;

140 Controller Synthesis for Timeline-based Games

4. F ⊆ Q is the set of final states defined as:

F =

{

〈ϒ,∆,Φ〉 ∈ Q

∣
∣
∣
∣
∣

M is not active for all M ∈ ϒ

and ∆(E) =∅ for all E of P

}

5. τ : Q×Σ → Q is the transition function that given a state q = 〈ϒ,∆,Φ〉 and a symbol µ = (A,δ)
computes the new state τ(q,µ). Let stepEµ(ϒ

R
t) = {ME |ME ∈ stepµ(ϒ

R
t)}. Moreover, let ΨR

t =

{E |ME ∈ stepµ(ϒ
R
t)}. Then, the updated components of the state are based on what follows,

where W = window(P):

ϒ′ = stepµ(ϒ⊥)∪
⋃{

stepµ(ϒ
R
t)

∣
∣
∣ t <W −δ and stepµ(ϒ

R
t) is not closed

}

∆′(E) =

{

stepEµ(ϒ
R
t) where t is the minimum such that t ≥W −δ and stepEµ(ϒ

R
t) 6=∅

stepµ(∆(E)) if such t does not exist

Φ′(E) =

{

EE if E ∈ Ψ(E′) for some E′ such that ∆′(E′) is closed

Φ(E)\{E′ | ∃t ≥W −δ . E′ ∈ ΨR
t ∧E 6∈ ΨR

t } otherwise

Let ∆′′(E) = ∆′(E) unless there is an E′ with E ∈ Φ′(E′) such that ∆′(E′) is closed, in which case

∆′′(E) =∅. Then, τ(q,µ) = 〈ϒ′,∆′′,Φ′〉 if the following holds:

(a) for every ϒR
t , stepµ(ϒ

R
t) 6=∅, and

(b) for every synchronisation rule R≡ a0[x0 = v0]→ E1 ∨ ·· · ∨En in S, if start(x0,v0) ∈ A, then

there exists MEi
= (V,D,M,0) ∈ ϒ′, with i ∈ {1 . . .n}, such that start(a0) ∈ M;

Otherwise, τ(q,µ) =⊥.

Let us explain what is going on. The first component ϒ of an automaton state q = (ϒ,∆,Φ) is a set of

matching structures that keeps track of what have been tracked so far. Intuitively, the automaton precisely

keeps track of what happened to the last window(P) time points, and only summarizes what happened

before that window, which is what allows us to keep the size under control. Any matching structure in ϒ

has t < window(P). Matching structures in ϒ evolve following the step function, until they are closed or

the t component reaches window(P). Matching structures that reach window(P) are promoted to a new

role. Their new task is to record the pieces of existential statements that still have to be matched in order

to satisfy all the trigger events of R that no longer fit into the recent history of the event sequence (i.e., the

last window(P) time points). These matching structures are not stored in ϒ though, they are summarized

by the function ∆ that maps each existential statement E of a rule R to the set of matching structures for

E with t = window(P).
When a set ϒR

t exceeds the bound window(P), the ∆ function must be updated by merging the in-

formation of ϒR
t to the information already present in ∆. Now, it has to be noted that, by closing a set

∆(E), we can not conclude that every event that triggered R actually satisfies R. Indeed, there can be sets

∆(E) and ∆(E′) that are in charge of the satisfaction of the same rule R, but for different trigger events,

and closing ∆(E) does not imply that R has been satisfied. The opposite case may also arise, in which

∆(E) and ∆(E′) contribute to the fulfilment of the same trigger events and closing either set suffices to

satisfy R. To overcome the information lost when a set of matching structures gets added to the ∆ func-

tion, the Φ function (the third component of the automaton states) maps each existential statement E to

the set of existential statements E′ such that ∆(E′) tracks the fulfilment of the same trigger events of the

set ∆(E). We use Φ as follows: when a set ∆(E) gets closed, we can discard its matching structures and

all the matching structures of the sets ∆(E′), with E′ ∈ Φ(E).
One can prove the soundness and completeness of our construction.

Acampora et al. 141

Theorem 1. (Soundness and completeness) Let P = (SV,S) be a timeline-based planning problem and

let AP be the associated automaton. Then, any event sequence µ is a solution plan for P if and only if µ

is accepted by AP.

Recall that we assumed the timestamp of each event of event sequences to be bounded, but since

events can have an empty set of actions, Theorem 1 can actually deal with arbitrary event sequences, after

adding suitable empty events. Now, let us look at the size of the automaton. Let E be the overall number

of existential statements in P, which is linear in the size of P. It can be seen that |DP| ∈ O((2|MP |)
E
) =

O(2E·|MP|), i.e., the number of ∆ functions is doubly exponential in the size of P. Then, observe that

|FP| ∈ O((2E)
E
) = O(2E2

). Then, |SP| ∈ O(|Σ| · 2|MP|), that is, the size of SP is at most exponential in

the number of possible matching structures. To bound this number, let N be the largest finite constant

appearing in P as bound in any atom or value duration function and let L be the length of the largest

existential prefix of an existential statement occurring inside a rule of P. Notice that N is exponential in

the size of P, since constants are expressed in binary, while L ∈ O(|P|). Then, the entries of a DBM for

P, of which there is a number quadratic in L, are constrained to take values within the interval [−N,N]
(excluding the infinitary value +∞), whose size is linear in N. By Definition 12, it follows that, for the

planning problem P, |MP| ∈ O(NL2

·2L ·window(P)), i.e., the number of matching structures is at most

exponential in the size of P. Hence, we proved the following:

Theorem 2 (Size of the automaton). Let P = (SV,S) be a timeline-based planning problem and let AP

be the associated automaton. Then, the size of AP is at most doubly-exponential in the size of P.

Note that this is the same size as the automaton built by Della Monica et al. [9], but their automaton

was nondeterministic, while ours is by construction deterministic, essential for its use as a game arena.

4 Controller synthesis

In this section we use the deterministic automaton constructed above to obtain a deterministic arena

where we can solve a simple reachability game for checking the existence of (and, in this case, to syn-

thesize) a controller for the corresponding timeline-based game.

4.1 From the automaton to the arena

Let G = (SVC,SVE ,S,D) be a timeline-based game. We use the construction of the automaton explained

in the previous section in order to obtain a game arena. However, the automaton construction considers a

planning problem with a single set of synchronization rules, while here we have to account for the roles

of both S and D.

To do that, let AS and AD be the deterministic automata built over the timeline-based planning

problem PS = (SVC ∪ SVE ,S) and PD = (SVC ∪ SVE ,D), respectively. We define the automaton AG

as AD∪AS, i.e., the union of AS with the complement of AD. Note that these are all standard automata-

theoretic constructions over DFAs. Any accepting run of AG represents either a plan that violates the

domain rules or a plan that satisfies both the domain and the system rules, in conformance with Defini-

tion 11. Note that AG is deterministic and can be built from AD and AS with only a polynomial increase

in size.

Now, the AG automaton is still not suitable as a game arena, because the moves of the timeline-

based game are not directly visible in the labels of the transitions. In other words, the AG automaton

reads events, while we need an automaton that reads game moves. In particular, a single transition in

142 Controller Synthesis for Timeline-based Games

µ
=
({

en
d(

x,
v)
} ,

5)

µ ′ = (∅,4)

µ
′′=

({
en

d
(x
,v)

}
,1)

q

w

µ = ({end(x
,v1),

end(y
,w1),

start(x
,v2),

start(y
,w2)

} ,5
)

wait(5)

wait(6)

wait(7)

wait(10)

play

(

5,

{

end(x,v1)end(y,w1)

})

play

(
5,

{ en
d(

x,
v1
)

en
d(

y,
w1
)

}
)

play({start(x,v2)})

p
lay

({
start(y

,w
2)})

Figure 2: On the left, the removal of transitions µ = (A,δ) with δ > 1 and ending actions of controllable

tokens in A. On the right, the transformation of a transition of the AG into a sequence of transitions in

Aa
G, with x ∈ SVC, y ∈ SVE , and γx(v1) = γy(w1) = u.

the automaton can correspond to different combinations of rounds, since the presence of wait(δ) moves

is not explicit in the transition. For example, an event µ = (A,5) can be the result of a wait(5) move

by Charlie followed by a play(5,A) move by Eve, or by any wait(δ) move with δ > 5 followed by

play(5,A). Hence, we need to further adapt AG to obtain a suitable arena.

Let AG = (Q,Σ,q0,F,τ) be the automaton built as described before. Let µ = (A,δ) be an event. If

δ > 1, this transition must have resulted from Charlie playing a wait(δ ′) move with δ ′ ≥ δ . However,

if A contains any end(x,v) action with x ∈ SVC, this is for sure the result of more than one pair of start-

ing/closing rounds. In order to simplify the construction below, we remove this possibility beforehand.

More formally, we define a slightly different automaton A′
G = (Q,Σ,q0,F,τ

′) where τ ′ is now a partial

transition function (i.e., the automaton becomes incomplete) that agrees with τ on everything excepting

that transitions τ(q,(A,δ)) is undefined if δ > 1 and A contains any end(x,v) action with x ∈ SVC. You

can see an example of this operation in Fig. 2, on the left. Note that this removal does not change the

plans accepted by the automaton because for each transition τ(q,(A,δ)) = q′ with δ > 1 there are two

transitions τ(q,(∅,δ −1)) = q′′ and τ(q′′,(A,1)) = q′.

Now we can transform the automaton in order to make the game rounds, and especially wait(δ)
moves, explicit. Intuively, each transition of the automaton is split into four transitions explicitating

the four moves of the two rounds. Given the automaton A′
G = (Q,Σ,q0,F,τ

′), we define the automaton

Aa
G = (Qa,Σa,qa

0,F
a,τa), which will be the arena of our game, as follows:

1. Qa = Q∪{qδ | 1 ≤ δ ≤ d }∪{qδ ,A | 1 ≤ δ ≤ d,A ⊆ A} is the set of states;

2. Σa =MC ∪ME , i.e., the alphabet is turned into the set of moves of the two players;

3. qa
0 = q0 and Fa = F , i.e., initial and final states do not change;

4. the (partial) transition function τa is defined as follows. Let w = τ(q,µ) with µ = (A,δ). We

distinguish the case where δ = 1 or δ > 1.

Acampora et al. 143

(a) if δ = 1, let AC ⊆ A and AE ⊆ A be the set of actions in A playable by Charlie and by Eve,

respectively. Then:

i. τ(q,play(Ae
C)) = q1,Ae

C
, where Ae

C is the set of ending actions in AC;

ii. τ(q1,Ae
C
,play(Ae

E)) = q1,Ae
C∪A

e
E
, where Ae

E is the set of ending actions in AE ;

iii. τ(q1,Ae
C∪A

e
E
,play(As

C)) = q1,Ae
C∪A

e
E∪A

s
C
, where As

C is the set of starting actions in AC;

iv. τ(q1,Ae
C∪A

e
E∪A

s
C
,play(As

E)) = w, where As
E is the set of starting actions in AE ;

where the mentioned states are added to Qa as needed.

(b) if δ > 1, let AC ⊆ A and AE ⊆ A be the set of actions in A playable by Charlie and by Eve,

respectively. Note that by construction, AC only contains starting actions. Then:

i. τ(q,wait(δC)) = qδC
for all δ ≤ δC ≤ d;

ii. τ(qδC
,play(δ ,Ae

E)) = qδ ,Ae
E

where Ae
E is the set of ending actions in AE ;

iii. τ(qδ ,Ae
E
,play(AC)) = qδ ,Ae

E∪AC
;

iv. τ(qδ ,Ae
E∪AC

,play(As
E)) = w where As

E is the set of starting actions in AE ;

where the mentioned states are added to Qa as needed.

All the transitions not explicitly defined above are undefined.

A graphical example of the above construction can be seen in Fig. 2, on the right. Note that the

structure of the original AG automaton is preserved by Aa
G. In particular, one can see that for each q ∈ Q

and event µ = (A,δ), any sequence of moves whose outcome would append µ to the partial plan (see

Definition 8) reach from q the same state w in Aa
G that is reached in AG by reading µ . Hence, one can

consider Aa
G to also being able to read event sequences, even though its alphabet is different. We denote

as [µ] the state q ∈ Qa reached by reading µ in Aa
G.

Moreover, note that, with a minimal abuse of notation, any play ρ for the game G can be seen as a

word readable by the automaton Aa
G. Hence, we can prove the following.

Theorem 3. If G is a timeline-based game, for any play ρ for G, ρ is successful if and only if it is

accepted by Aa
G.

4.2 Computing the Winning Strategy

Once built the arena, we can focus on computing the winning region WC for Charlie, that is, the set of

states of the arena from which Charlie can force the play to reach a final state of Aa
G, no matter of the

strategy of Eve. These games are called reachability games [21]. If the winning region WC is not empty,

a winning strategy of Charlie can be simply derived from WC. As a consequence of Theorems 1 and 3,

the computed winning strategy σC for Aa
G respects Definition 11.

As stated in [21, Theorem 4.1], rechability games are determined, and the winning region WC along

with the corresponding positional winning strategy s are computable. Let Aa
G = (Qa,Σa,qa

0,F
a,τa)

be the automaton built from G as described in the previous section. Note that, by construction, in

any state q ∈ Qa only one of the players has available moves. Let Qa
C ⊆ Qa be the set of states be-

longing to Charlie, i.e., states from which Charlie can move, and let Qa
E = Qa \ Qa

C. Moreover, let

E = {(q,q′) ∈ Qa ×Qa | ∃µ . τa(q,µ) = q′ }, i.e., the set of all the edges of Aa
G.

Now, for each i ≥ 0, we can compute the i-th attractor of Fa, written Attri
C(F

a), that is, the set of

144 Controller Synthesis for Timeline-based Games

states from which Charlie can win in at most i steps. Attri
C(F

a) is defined as follows:

Attr0
C(F

a) = Fa

Attri+1
C (Fa) = Attri

C(F
a)

∪{qa ∈ Qa
C | ∃r

(
(qa

,r) ∈ E ∧ r ∈ Attri
C(F

a)
)
}

∪{qa ∈ Qa
E | ∀r

(
(qa

,r) ∈ E → r ∈ Attri
C(F

a)
)
}

As remarked in [21], the sequence Attr0
C(F

a) ⊆ Attr1
C(F

a) ⊆ Attr2
C(F

a) ⊆ . . . becomes stationary for

some index k ≤ |Qa|. Thus, we define AttrC(F
a) =

⋃|Qa|
i=0 Attri

C(F
a). In order to prove that WC =

AttrC(F
a), it suffices to use the proof of [21, Theorem 4.1] for showing that AttrC(F

a) ⊆ WC and

WC ⊆ AttrC(F
a).

To compute a winning strategy for Charlie in the case that qa
0 ∈WC, it is sufficient to define s(q) = µ

for any µ such that τa(q,µ) = q′ with q,q′ ∈ WC (which is guaranteed to exist by construction of the

attractor). Then, the strategy σC for Charlie in G (see Definition 11) is defined as σC(µ) = s([µ]).

Theorem 4. Given Aa
G = (Qa,Σa,qa

0,F
a,τa), qa

0 ∈ WC if and only if Charlie has a winning strategy σC

for G.

Proof. We first prove soundness, that is, qa
0 ∈WC implies that Charlie has a winning strategy σC for G.

If qa
0 ∈WC, then it means that there exists a positional winning strategy s for Charlie for the reachability

game over the arena Aa
G. By Theorem 3 and by the definition of reachability game, we know that each

play generated by s corresponds to a successful play for game G. Let σC(µ) = s([µ]) be the winning

strategy for Charlie in game G as defined above. By construction of σC and by Definition 11, this means

that σC is a winning strategy of Charlie for G.

To prove completeness (i.e., if Charlie has a winning strategy σC for G then qa
0 ∈ WC), we proceed

as follows. From Definition 11 we know that a winning strategy σC for Charlie is a strategy such that

for every admissible strategy σE for Eve, there exists n ≥ 0 such that the play ρn(σC,σE) is successful.

From Theorem 3, we know that ρn(σC,σE) is accepted by Aa
G. Therefore, ρn(σC,σE) reaches a state in

the set Fa starting from qa
0. By definition of reachability game, this means that qa

0 ∈WC.

5 Conclusions

In this paper, we completed the picture about timeline-based games by providing an effective procedure

for controller synthesis, whereas before only a proof of the complexity of the strategy existence problem

was known. Previous approaches either provided a deterministic concurrent game structure which was

however not built effectively, or an effectively built automata which was, however, nondeterministic

and thus unsuitable for use as a game arena without a costly determinization. Our approach surpasses

the limits of both previous ones by providing a deterministic construction, of optimal asymptotic size,

suitable to be used as a game arena. Then, we solve the reachability game on the arena with standard

methods to effectively compute the winning strategy for the game, if it exists.

This work paves the way to interesting future developments. On the one hand, the effective proce-

dure shown here can be finally implemented, bringing timeline-based games from theory to practice. On

the other hand, developing an effective system based on such games requires to answer many interesting

questions, from which concrete modeling language to adopt, to which algorithmic improvements are

needed to make the approach feasible. For example, it can be foreseen that, to solve the fixpoint com-

putation that leads to the strategy with reasonable performance, the application of symbolic techniques

would be needed.

Acampora et al. 145

Acknowledgements

Nicola Gigante and Luca Geatti acknowledge the support of the Free University of Bozen-Bolzano,

Faculty of Computer Science, by means of the projects TOTA (Temporal Ontologies and Tableaux Algo-

rithms) and STAGE (Synthesis of Timeline-based Planning Games).

References

[1] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. J. ACM

49(5), pp. 672–713, doi:10.1145/585265.585270.

[2] Sara Bernardini & David E. Smith (2007): Developing Domain-Independent Search Control for Europa2. In:

Proceedings of the ICAPS 2007 Workshop on Heuristics for Domain-Independent Planning.

[3] Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron & Gerhard J. Woeginger (2020):

Timeline-based planning over dense temporal domains. Theor. Comput. Sci. 813, pp. 305–326, doi:10.

1016/j.tcs.2019.12.030.

[4] Amedeo Cesta, Gabriella Cortellessa, Michel Denis, Alessandro Donati, Simone Fratini, Angelo Oddi,

Nicola Policella, Erhard Rabenau & Jonathan Schulster (2007): Mexar2: AI Solves Mission Planner Prob-

lems. IEEE Intelligent Systems 22(4), pp. 12–19, doi:10.1109/MIS.2007.75.

[5] Amedeo Cesta, Gabriella Cortellessa, Simone Fratini, Angelo Oddi & Nicola Policella (2006): Software

Companion: The Mexar2 Support to Space Mission Planners. In Gerhard Brewka, Silvia Coradeschi, Anna

Perini & Paolo Traverso, editors: Proceedings of the 17th European Conference on Artificial Intelligence,

Frontiers in Artificial Intelligence and Applications 141, IOS Press, pp. 622–626.

[6] S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher,

T. Barrett, G. Stebbins & D. Tran (2000): ASPEN - Automating Space Mission Operations using Automated

Planning and Scheduling. In: Proceedings of the International Conference on Space Operations.

[7] Steve A. Chien, Gregg Rabideau, Daniel Tran, Martina Troesch, Joshua Doubleday, Federico Nespoli,

Miguel Perez Ayucar, Marc Costa Sitja, Claire Vallat, Bernhard Geiger, Nico Altobelli, Manuel Fernandez,

Fran Vallejo, Rafael Andres & Michael Kueppers (2015): Activity-Based Scheduling of Science Campaigns

for the Rosetta Orbiter. In Qiang Yang & Michael Wooldridge, editors: Proceedings of the 24th International

Joint Conference on Artificial Intelligence, AAAI Press, pp. 4416–4422. Available at http://ijcai.org/

Abstract/15/655.

[8] Marta Cialdea Mayer, Andrea Orlandini & Alessandro Umbrico (2016): Planning and execution with flexible

timelines: a formal account. Acta Informatica 53(6-8), pp. 649–680, doi:10.1007/s00236-015-0252-z.

[9] Dario Della Monica, Nicola Gigante, Angelo Montanari & Pietro Sala (2018): A Novel Automata-Theoretic

Approach to Timeline-Based Planning. In Michael Thielscher, Francesca Toni & Frank Wolter, editors:

Proceedings of the 16th International Conference on Principles of Knowledge Representation and Reasoning,

AAAI Press, pp. 541–550. Available at https://aaai.org/ocs/index.php/KR/KR18/paper/view/

18024.

[10] Dario Della Monica, Nicola Gigante, Angelo Montanari, Pietro Sala & Guido Sciavicco (2017): Bounded

Timed Propositional Temporal Logic with Past Captures Timeline-based Planning with Bounded Constraints.

In Carles Sierra, editor: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp.

1008–1014, doi:10.24963/ijcai.2017/140.

[11] Dario Della Monica, Nicola Gigante, Salvatore La Torre & Angelo Montanari (2020): Complexity of Quali-

tative Timeline-Based Planning. In: Proceedings of the 27th International Symposium on Temporal Repre-

sentation and Reasoning, LIPIcs 178, pp. 16:1–16:13, doi:10.4230/LIPIcs.TIME.2020.16.

[12] David L. Dill (1989): Timing Assumptions and Verification of Finite-State Concurrent Systems. In Joseph

Sifakis, editor: Proceedings of the International Workshop on Automatic Verification Methods for Finite State

http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1016/j.tcs.2019.12.030
http://dx.doi.org/10.1016/j.tcs.2019.12.030
http://dx.doi.org/10.1109/MIS.2007.75
http://ijcai.org/Abstract/15/655
http://ijcai.org/Abstract/15/655
http://dx.doi.org/10.1007/s00236-015-0252-z
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024
http://dx.doi.org/10.24963/ijcai.2017/140
http://dx.doi.org/10.4230/LIPIcs.TIME.2020.16

146 Controller Synthesis for Timeline-based Games

Systems, Lecture Notes in Computer Science 407, Springer, pp. 197–212, doi:10.1007/3-540-52148-8_

17.

[13] Jeremy Frank & Ari K. Jónsson (2003): Constraint-Based Attribute and Interval Planning. Constraints 8(4),

pp. 339–364, doi:10.1023/A:1025842019552.

[14] Simone Fratini, Amedeo Cesta, Andrea Orlandini, Riccardo Rasconi & Riccardo De Benedictis (2011):

APSI-based Deliberation in Goal Oriented Autonomous Controllers. In: ASTRA 2011, 11, ESA.

[15] Nicola Gigante (2019): Timeline-based Planning: Expressiveness and Complexity. Ph.D. thesis, University

of Udine, Italy. Available on arXiv at: https://arxiv.org/abs/1902.06123.

[16] Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer & Andrea Orlandini (2016): Timelines Are Ex-

pressive Enough to Capture Action-Based Temporal Planning. In Curtis E. Dyreson, Michael R. Hansen &

Luke Hunsberger, editors: Proceedings of the 23rd International Symposium on Temporal Representation

and Reasoning, IEEE Computer Society, pp. 100–109, doi:10.1109/TIME.2016.18.

[17] Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer & Andrea Orlandini (2017): Complexity of

Timeline-Based Planning. In Laura Barbulescu, Jeremy Frank, Mausam & Stephen F. Smith, editors: Pro-

ceedings of the 27th International Conference on Automated Planning and Scheduling, AAAI Press, pp.

116–124. Available at https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758.

[18] Nicola Gigante, Angelo Montanari, Andrea Orlandini, Marta Cialdea Mayer & Mark Reynolds (2020): On

timeline-based games and their complexity. Theor. Comput. Sci. 815, pp. 247–269, doi:10.1016/j.tcs.

2020.02.011.

[19] Nicola Muscettola (1994): HSTS: Integrating Planning and Scheduling. In Monte Zweben & Mark S. Fox,

editors: Intelligent Scheduling, chapter 6, Morgan Kaufmann, pp. 169–212.

[20] Mathias Péron & Nicolas Halbwachs (2007): An abstract domain extending difference-bound matrices with

disequality constraints. In: International Workshop on Verification, Model Checking, and Abstract Interpre-

tation, Springer, pp. 268–282, doi:10.1007/978-3-540-69738-1_20.

[21] Wolfgang Thomas (2008): Solution of Church’s Problem: A tutorial. New Perspectives on Games and

Interaction. Texts on Logic and Games 5.

http://dx.doi.org/10.1007/3-540-52148-8_17
http://dx.doi.org/10.1007/3-540-52148-8_17
http://dx.doi.org/10.1023/A:1025842019552
https://arxiv.org/abs/1902.06123
http://dx.doi.org/10.1109/TIME.2016.18
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758
http://dx.doi.org/10.1016/j.tcs.2020.02.011
http://dx.doi.org/10.1016/j.tcs.2020.02.011
http://dx.doi.org/10.1007/978-3-540-69738-1_20

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 147–161, doi:10.4204/EPTCS.370.10

© Chichester, et al.
This work is licensed under the
Creative Commons Attribution License.

CryptoSolve: Towards a Tool for the Symbolic Analysis of
Cryptographic Algorithms

Dalton Chichester
University of Mary Washington, Fredericksburg, VA, USA

dchiches@mail.umw.edu

Wei Du
University at Albany–SUNY, Albany, NY, USA[0000−0002−9149−6229]

wdu2@albany.edu

Raymond Kauffman
University of Mary Washington, Fredericksburg, VA, USA

rkauffma@mail.umw.edu

Hai Lin
Clarkson University, Potsdam, NY, USA[0000−0001−8658−9634]

hlin@clarkson.edu

Christopher Lynch
Clarkson University, Potsdam, NY, USA[0000−0003−1141−0665]

clynch@clarkson.edu

Andrew M. Marshall
University of Mary Washington, Fredericksburg, VA, USA[0000−0002−0522−8384]

amarsha2@umw.edu

Catherine A. Meadows
Naval Research Laboratory, Washington, DC, USA

catherine.meadows@nrl.navy.mil

Paliath Narendran
University at Albany–SUNY, Albany, NY, USA[0000−0003−4521−5892]

pnarendran@albany.edu

Veena Ravishankar
University of Mary Washington, Fredericksburg, VA, USA[0000−0003−3498−4039]

vravisha@umw.edu

Luis Rovira
University of Mary Washington, Fredericksburg, VA, USA

lrovira@umw.edu

Brandon Rozek
Rensselaer Polytechnic Institute, Troy NY, USA[0000−0002−4537−559X]

rozekb@rpi.edu

http://dx.doi.org/10.4204/EPTCS.370.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

148 CryptoSolve

Recently, interest has been emerging in the application of symbolic techniques to the specification
and analysis of cryptosystems. These techniques, when accompanied by suitable proofs of sound-
ness/completeness, can be used both to identify insecure cryptosystems and prove sound ones secure.
But although a number of such symbolic algorithms have been developed and implemented, they re-
main scattered throughout the literature. In this paper, we present a tool, CryptoSolve, which provides
a common basis for specification and implementation of these algorithms, CryptoSolve includes li-
braries that provide the term algebras used to express symbolic cryptographic systems, as well as
implementations of useful algorithms, such as unification and variant generation. In its current initial
iteration, it features several algorithms for the generation and analysis of cryptographic modes of
operation, which allow one to use block ciphers to encrypt messages more than one block long. The
goal of our work is to continue expanding the tool in order to consider additional cryptosystems and
security questions, as well as extend the symbolic libraries to increase their applicability.

1 Introduction

Although security properties of cryptographic algorithms are generally proved using a computational
model in which probabilities of events are explicitly quantified, there are often advantages to using a
more easily automated abstract symbolic model. This is particularly the case when one is looking for
cryptosystems that obey some non-cryptographic constraints, e.g. parallelizability, or even non-technical
constraints, such as absence of intellectual property restrictions. One can use automated both methods
to generate a large number of candidate cryptosystems, and to verify the security in the symbolic model.
If the symbolic model is computationally sound (that is if the symbolic analogue of a particular security
property holds) it is possible to use this technique to identify secure cryptosystems. Even the symbolic
model is not computationally sound, but is computationally complete, it is possible to use the technique
to weed out insecure constructions. A growing body of work, e.g. [3, 5, 7, 14]], shows how this can be
applied to the construction of new cryptosystems. Symbolic methods can also be useful by themselves,
even without automatic generation. For example, in [21] Venema and Alpár use symbolic methods to
find security flaws in recently proposed attribute-based encryption schemes, in [8] Hollengberg, Rosulek,
and Roy and in [16] Meadows respectively find different symbolic criteria guaranteeing the security of
blockcipher cryptographic modes of operation under different usage assunmptions, and in [15] McQuoid,
Swope, and Rosulek develop a polynomial-time algorithm for checking security properties of a class of
hash functions.

However, the symbolic problems we encounter often come with constraints tied to the properties
of the cryptosystem, such as, requiring that any substitutions be constructible from terms and function
symbols available to an adversary, or that the adversary may not be able to perform certain operations,
such encryption with a key that is not available to it. Hence specialized algorithms or tools may be
necessary.

In this paper we present an overview of an initial version of such a tool, CryptoSolve,1 that has been
designed to generate and analyze specifications of cryptosystems. This in turn allows for the automatic
generation and symbolic analysis of certain cryptographic algorithms. The goal of this new tool is broad,
to develop not only a usable analysis tool for an extensive family of cryptographic algorithms but to also
develop the underlying libraries which could be used in analysis of additional algorithms, properties, and
within other symbolic analysis tools.

Our initial version of CryptoSolve provides algorithms for reasoning about the security and function-
ality of a class of cryptosystems known as cryptographic modes of operation. These modes use fixed

1The current version of the tool can be found here: https://symcollab.github.io/CryptoSolve/.

https://symcollab.github.io/CryptoSolve/

Chichester, et al. 149

CryptoSolve

Symbolic Library
MOO Program

Generation

Symbolic Se-
curity Check

Invertibility
Checking

Authentication

Term Library

Term Rewrite
Library

Unification

Custom MOO
Definition

Custom Sched-
ule Definition
Automated
MOO Con-
struction

Quick Syntac-
tic Checks

Collision Check

Ciphertext In-
vertibility

MOO-Program
Invertibility

Bounded Au-
thentication
Check

Figure 1: Tool modules and dependencies

length block ciphers to encrypt messages more than one block long. The key property of a mode is to
protect the secrecy of the encrypted data, but it may also be used to provide integrity and authentica-
tion. In addition, the mode must be invertible by anyone who possesses the decryption key. CryptoSolve
supports both the automated and manual generation of modes. It also features algorithms for checking
secrecy (in the sense of indistinguishability of ciphertext from random), authenticity, and invertibility.

In the sections that follow we explain each of the above properties and detail how the tool works
for every case. The algorithms implemented in CryptoSolve are supported by a set of base libraries for
critical symbolic capabilities such as term representation, term rewriting, unification, and more. Cur-
rently the modules available in the tool and a simplified representation of their relation to each other is
described in Figure 1.

Outline In the remainder of the paper we cover the current state and capabilities of the tool without
focusing on the theory behind it, which can be found in [10–12, 16]. Where necessary, we provide a
brief theoretical background and indicate aspects on which the tool is based. The rest of the paper is
organized as follows. We provide a discussion of related work in Section 2. A brief review of necessary
background material is covered in Section 3. An overview of the security modules, their use, capabilities,
and pointers to the theory behind these methods are given in sections 4 and 5. The invertibility checking
module is covered in Section 6, the bounded authentication checking module is covered in Section 7.
We provide preliminary experimental results in Section 8. Finally, the conclusions and future work are
discussed in Section 9.

2 Related Work

Publicly available tools for the generation and testing of security property of cryptographic algorithms
(e.g. [3,5,7,14]) are the most closely related work to ours. Perhaps the first of these is the work by Barthe
et al. [3]. This paper describes a tool, ZooCrypt, designed for the analysis of chosen plaintext and chosen
ciphertext security public-key encryption schemes built from trapdoor permutations and hash functions.
A ZooCrypt analysis of a cryptosystem consists of two stages. In the first stage a symbolic analysis tool
is used to search for attacks on the cryptosystem. If none are found, the analysis enters the second stage,
in which an automated theorem prover is used to search for a security proof in the computational model.

150 CryptoSolve

Later work looked at applying symbolic techniques and incorporates computational soundness re-
sults to prove computational security. For example, Malozemoff et al. [14] provide a symbolic algorithm
whose successful termination implies adaptive chosen plaintext security of cryptographic modes of op-
eration using the message-wise schedule. These results are extended by Hoang et al. in [7] to symbolic
techniques for proving adaptive chosen ciphertext security of modes. Both papers also include software
that implements symbolic algorithms for generating cryptosystems and proving their security. Other
work by Carmer et al. [5] gives a symbolic algorithm for deciding security of garbled circuit schemes,
and includes a tool, Linisynth, that generates such schemes and verifies their security using the algorithm.

All these tools have one thing in common: they only implement the algorithms described in the
paper they accompany, and thus are intended mainly as proofs of concept, not as general tools for the
generation and analysis of algorithms. The goal of CryptoSolve, however, is to serve as a tool for
designing and experimenting with multiple types of cryptosystems, security properties, and algorithms.
Thus, for example, it includes libraries for techniques that may prove useful in application to more
than one cryptosystem, such as unification, variant generation, and the automatic generation of recursive
functions. It is also extensible, allowing more libraries and algorithms to be added as necessary, and
it includes an optional graphical user interface to make interactions with it easier. Currently, it can be
applied to three different properties (static equivalence to random, invertibility, and authenticity, using
five different algorithms) of cryptographic modes of operation.

There is also a large amount of related research in formulating and proving indistinguishability prop-
erties for the symbolic analysis of cryptographic protocols. These properties are analogous to the com-
putational indistinguishability properties used in cryptography. The main differences are that symbolic
indistinguishability does not always imply computational security (see, for example Unruh [20]), and 2)
the symbolic algorithms are optimized for protocols, not crypto-algorithms, so applying them directly is
not always advisable. Even so, the approaches used in symbolic protocol analysis can be helpful. For
example an undecidability result in Lin et al. [12] is based on an undecidability result for cryptographic
protocols analysis due to Küsters and Truderung [9]. To facilitate this interaction between symbolic
protocol analysis and symbolic cryptography, we use a formal model and specification language, due to
Baudet et al. [4], that is based on the the concept of frames used by the applied pi calculus [1], one of the
most popular formal languages used by tools for the formal analysis of cryptographic protocols.

3 Preliminaries

We first need to briefly review some background material both on MOOs and symbolic security, and also
on the underlying term rewriting theory used in the tool. We begin with with term rewriting and related
concepts. Please note, additional background material on equational theories, rewriting, and unification
can be found here [2].

3.1 Terms, Substitutions, and Equational Theories

Given a first-order signature Σ, a countable set N of variables bound by the symbol ν , and a countable set
of variables X (s.t. X ∩N = /0), the set of terms constructed from X , N, and Σ, is denoted by T (Σ,N∪X).
Note that since N is a set of bound variables we can often treat these as constants in the first-order
theory and thus won’t apply substitutions to these bound variables. A substitution σ is an endomorphism
of T (Σ,N ∪ X) with only finitely many variables not mapped to themselves, denoted by σ = {x1 7→
t1, . . . ,xm 7→ tm}. Application of a substitution σ to a term t is written tσ .

Chichester, et al. 151

m1

Ek

C1

m2

Ek

C2

m3

Ek

C3

m4

Ek

C4

m5

Ek

C5IV

M

C

Figure 2: An example block cipher to be modeled by a symbolic history

Given a set E of Σ-axioms (i.e., pairs of Σ-terms, denoted by l = r), the equational theory =E is
the congruence closure of E under the law of substitutivity. Since Σ∩N = /0, the Σ-equalities in E do
not contain any bound variables in N. An E-unification problem with bound variables in N is a set of
Σ∪N-equations P = {s1 =? t1, . . . ,sm =? tm}. A solution to P, called an E-unifier, is a substitution σ

such that siσ =E tiσ for all 1≤ i≤ m.
The primary equational theory implemented in the tool is the theory of xor, denoted as Exor. This

theory can be represented as a combination of a rewrite system, R⊕, and an associative and commutative
(AC) equational theory, E⊕. Exor = R⊕∪E⊕: R⊕ = {x⊕ x→ 0, x⊕0→ x}, E⊕ = AC(⊕), over the sig-
nature Σ⊕ = {⊕/2, f/1,0/0}. We will often denote this as the MOO⊕ algebra and modes of operations
defined in this algebra as MOOs⊕.

3.2 Modes of Operation and Symbolic Security

Before detailing the features of the tool we need to consider a few critical background notions such as
Modes of Operation, Symbolic Security, and Authenticity. We do that in this section.

3.2.1 Modes and Their Security

A cryptographic mode of operation can be described at a high level as follows. The plaintext message M
is first broken into fixed sized blocks. Each block mi is processed using the block encryption function Ek
along with some additional operations to produce a ciphertext block Ci. Typically, the previous ciphertext
is used in the computation of the current block, and an initialization vector IV is used to add randomness
to the first block. The final ciphertext is the sequence of ciphertexts thus produced. Figure 2 illustrates
this process for Cipher Block Chaining (CBC) mode.

In order to model these modes so that they can be checked via symbolic methods, we use symbolic
histories (defined in [16]). These describe interactions between the adversary and the oracle, in which
the adversary sends blocks of plaintext to be encrypted, and the oracle sends back blocks of ciphertext
according to some fixed schedule defined by the mode. E.g., in a block-wise schedule a ciphertext block
is sent immediately after it is generated by the mode. In a message-wise schedule, the ciphertext blocks
are not sent until after the entire message is encrypted.

The symbolic definition of security we use is based on the computational security property IND$-
CPA introduced by Rogaway in [18]. This is defined in terms of a game in which a challenger first
chooses one of two oracles with probability 1/2. The first is an encryption oracle that returns ciphertext
when given plaintext, and the second is a random bits oracle that returns a string of random bits that

152 CryptoSolve

is as long as the ciphertext would have been. The adversary interacts with the oracle by sending it
plaintexts and receiving the oracle’s response. At any time it can stop the game and guess which oracle it
is interacting with. Its advantage is defined to be | .5− p |, where p is the probability that the adversary
guesses correctly. A mode is IND$-CPA-secure if its advantage is negligible in some security parameter
η , where a function g is said to be negligible if for every polynomial q there is an integer ηq such that
g(η) < f rac1q(η) for all η > ηq. In the case of modes of operation, the security parameter is the
maximum of the block size and the key size. The motivation for a definition of this sort is that if the
adversary cannot distinguish the output of the cryptosystem from random noise, then it learns nothing
about the plaintext. This form of security, in which the security of a cryptosystem is quantified in terms
of the adversary’s inability to distinguish between the output of an encryption oracle and the output of
an oracle that does not use the content of the plaintext in its calculations, is common in cryptography.

We note that if the adversary can create plaintexts that consistently cause a set of ciphertexts to
exclusive-or to zero, then it can distinguish between the real and random case with overwhelming prob-
ability. If such an equality holds for the case in which the substitution is the identity, we say that the
mode is degenerate. In all other cases it is necessary but not sufficient that the adversary must be able
to consistently cause at least one given pair of f -rooted terms to be equal, known as a collision. We
describe the symbolic model below, and then describe the unification problem that is associated with it.

3.2.2 The Symbolic Model and Symbolic Security

The blocks sent between the adversary and the oracle are modeled by terms in the MOO⊕ algebra.
These MOO⊕-terms consist of free variables representing plaintext blocks, bound variables representing
a bitsting, and terms built up using these variables and the signature Σ = {⊕/2,0/0, f/1}, under the Xor
equational theory, where f is the encryption function for some fixed key K, i.e., enc(K,) = f (). Note
that f is not computable by the adversary.

A symbolic history of the adversary’s interaction with the oracle is modeled by a list of MOO⊕-terms
of the form [t1, t2, . . . , tn]. All MOO⊕-terms are listed in the order that they are sent. For example,
the following symbolic history models the Cipher Block Chaining (CBC) mode of operation with three
ciphertexts using the block-wise schedule: νIV [IV,x1, f (IV ⊕ x1),x2, f (x2⊕ f (IV ⊕ x1))]. Here IV is
a bound variable representing an initialization vector. Each xi models a plaintext block sent by the
adversary and each f -rooted term is a ciphertext returned by the oracle according to the definition of the
mode. For example, in CBC the ith ciphertext Ci is modeled by f (Ci−1⊕ xi), where xi is the ith plaintext.

Each symbolic history models the interleaving of one or more sessions between the adversary and
oracle, where a session is a history that encrypts a single message consisting of a sequence of plaintext
blocks. In this case the initial nonces, the IV s, will be fresh for each session.

The notions of computable substitutions and symbolic security are defined by Lin et al. in [12]. Let
P be a symbolic history. A substitution σ is computable w.r.t. P if σ maps each variable xi to a term built
up using the operators 0 and ⊕ only on terms returned by the oracle prior to receiving xi in P. A mode of
operation M is symbolically secure if there is no symbolic history P of M such that there is a non-empty
set of terms S returned by the encryptor in P where

⊕
t∈S tσ =⊕ 0, and σ is computable substitution w.r.t.

P. It is shown in [12] that a mode of operation M is symbolically secure if and only if M is statically
equivalent to random; static equivalence [1] is a symbolic definition of indistinguishability commonly
used in symbolic protocol analysis.

We note that if a mode satisfies IND$-CPA, then it must be symbolically secure, because if the
adversary could make a substitution to the plaintext such that it always satisfies the same equation by the
ciphertext, then it could easily distinguish the ciphertext from random with overwhelming probability. A

Chichester, et al. 153

(a) Image before ECB encryption (b) Image after ECB encryption

Figure 3: ECB encryption with AES 128 ECB

stronger condition has been shown by Meadows in [16] to imply IND$-CPA security. It has two parts.
The first is non-degeneracy, which requires that symbolic security hold for the trivial case in which the
computable substitution σ is the identity. The second is the condition that no two different f -rooted
terms have a computable unifier, whether or not it leads to a violation of symbolic security. This does
not necessarily mean that symbolically secure modes that fail to satisfy the second condition are not
IND$-CPA secure, simply that more work may be required to prove them so.

3.2.3 Checking Symbolic Security: Examples

Let’s consider several examples of symbolic histories and checking for symbolic security. We start with
the classic example of an insecure mode: the Electronic Code Book (ECB) mode. In ECB, each block is
encrypted separately, so plaintext x1, . . . ,xn yields ciphertext f (x1), . . . , f (xn). Notice that after applying
ECB, the image in Figure 3 is still not completely scrambled and some information from the original
picture can still be deduced. This is because whenever two plaintext blocks are identical they produce
the same ciphertext blocks. Thus, any substitution unifying any two free variables is computable and
leads to a violation of symbolic security.

Other MOOs may be symbolically secure or insecure depending on the schedule. For example,
consider a symbolic history of CBC with three ciphertext blocks: P2 = νIV [IV,x1, f (x1⊕ IV),x2, f (x2⊕
f (x1 ⊕ IV))]. We consider two schedules: the block-wise schedule, where each ciphertext block is
returned to the adversary as soon as it can be computed, and the message-wise schedule, where they are
returned all together at the end. Note that in the block-wise schedule there is a computable unifier of
f (x1⊕ IV) and f (x2⊕ f (x1⊕ IV)), namely σ = {x1 7→ IV,x2 7→ f (0)}, but this is not computable in the
message-wise schedule, which can be shown to be symbolically secure and IND$-CPA secure.

Finally, we consider one additional MOO, Output Feedback Mode (OFB). OFB starts with an ini-
tialization vector, IV, each consecutive block, Ci+1, is computed as Ci+1 = Ti+1⊕ xi+1, where xi is the ith

plaintext block, and Ti = f (Ti−1) (T0 being IV). For example, the first block would be C1 = f (IV)⊕ x1,
and the second is C2 = f (f (IV))⊕ x2. Consider an OFB history with three ciphertext blocks: P3 =
νIV [IV,x1, f (IV)⊕ x1,x2, f (f (IV))⊕ x2]. Note that, in order to unify f (IV)⊕ x1 and f (f (IV))⊕ x2, the
adversary would have to set σx2 = x1⊕ f (IV)⊕ f (f (IV)), which it cannot do no matter what schedule
is used, because it does not learn f (f (IV)) until after it has computed x2. OFB is also both symbolically
secure and IND$-CPA secure. Notice that when generating the ciphertexts for differing MOOs such
as CBC and OFB, the root symbol of the ciphertexts could differ and this will impact the unification
algorithm required.

154 CryptoSolve

4 MOO Representation

The tool contains a library implementation which allows for the representation and generation of MOO⊕-
Programs. The library currently allows MOO⊕-Programs that are constructed over the signature Σ =
{⊕/2,0/0, f/1} and represented as a simple recursive function. Once a MOO⊕-Program has been de-
fined, the library can then apply a number of operations on that MOO⊕-Program, including: generating
terms in a run of the MOO⊕-Program, checking symbolic security of the program, and checking invert-
ibility.

4.1 Standard and Custom MOO⊕-Programs

Currently there are several well-known cryptosystems implemented to serve as examples for users when
they are initially learning the tool. They also provide syntax examples for those wanting to add custom
MOOs. For example, the ciphertext chaining cryptosystem is defined below:

Code

from symcollab.moe import MOO

@MOO.register(’cipher_block_chaining’)

def cipher_block_chaining(iteration, nonces, P, C):

f = Function("f", 1)

i = iteration - 1

if i == 0:

return f(xor(P[0], nonces[0]))

return f(xor(P[i], C[i-1]))

Notice that this provides a relatively simple example of the type of recursive cryptosystems built
over an xor-theory that are currently supported. Here the base ciphertext is defined as f (P0⊕nonces(0)),
where P0 is the initial plaintext sent by the adversary, and nonces[0] is a bound variable representing the
initialization vector. Then the recursive case is Ci = f (Pi⊕Ci−1). The underlying libraries have been
constructed to allow the encoded version of the system definition to closely match the theoretical one.

Similarly, a user can create their own custom mode of operation by adding the recursive definition to
the MOO library.

4.2 User defined schedule

In addition to the block-wise and message-wise schedules (as described in Section 3.2), the user can
define their own schedules based on the iteration number. For example, this is a custom schedule that
has the oracle only return ciphertexts on even iterations.

Code

from symcollab.moe import MOO_Schedule

@MOO_Schedule.register(’even’)

def even_schedule(iteration: int) -> bool:

return iteration % 2 == 0

Chichester, et al. 155

MOOs generated via Automatic Generation
1 C0 = IV,Ci = f (f (P[i])⊕P[i−1])
2 C0 = IV,Ci = f (f (P[i]))⊕P[i−1]⊕ r
3 C0 = IV,Ci = f (f (P[i])⊕C[i−1])⊕C[i−1]
4 C0 = IV,Ci = f (f (P[i])⊕C[i−1])⊕ f (f (P[i])⊕ f (C[i−1]))

Table 1: Examples of MOOs generated by the automatic MOO generator

4.3 Automatically Generated Singly Recursive MOO⊕-Definitions

A user can ask the library to generate a recursive definition of a modes of operation. Currently there
is one method in the tool library to automatically generate MOOs. It works by recursively generating
MOOs starting with the base components (IV, variables) and building singly recursive definitions using
the xor and f function, and recursive references to prior ciphertexts. The current method has some
limitations. For example only one nonce is used, the signature is limited to Σ = {⊕/2,0/0, f/1}, only
single recursion is used, and the base case is fixed to the initialization vector. Thus, the current method
won’t generate all possible MOO⊕s. For example, a MOO that uses two nonces in its recursive definition
won’t be generated. We plan to expand this functionality in future versions of the tool allowing a user
to automatically generate more classes of MOOs. Note, this doesn’t limit the possible MOOs that a user
can analyze by using the custom module. The user can also filter the recursive definitions by properties
such as availability of the initialization vector, if it requires chaining, or if the number of calls to the
encryption function f is less than a specified bound. A mode of operation has the chaining property if it
incorporates a previous ciphertext into its recursive definition.

After creating the recursive MOO⊕ definition, we can then pass it to the class CustomMOO. By default,
this creates a MOO⊕ program with the specified recursive definition and a new nonce for each base case.

4.4 Interactions with MOO⊕-Programs

Once a mode of operation and schedule have been defined, the tool can do several things with the def-
inition. The first and simplest is to generate the terms corresponding to the symbolic representation of
the ciphertexts. The user can also ask for the tool to evaluate the symbolic security of the MOO and/or
the invertibility. We consider these options in the following sections. Before we move to security let’s
consider an example.

Examples The example MOOs in Table 1 showcases ones that were generated by the tool using the
automatic generation feature. Note that these are just a few examples. In fact, one could allow the
automatic generation to run as long as one wanted.

From these examples, the first two MOOs are not symbolically secure, they can be discovered and
discarded by the method covered in the next section. The final MOO is symbolically secure, however it
is still useless since it doesn’t have the invertibility property! This can also be checked via the method
detailed below. The third MOO, passes both the security and invertibility check and could be a candidate
MOO for some secure application.

156 CryptoSolve

5 Checking Symbolic Security Properties

This part of the tool is based on the work developed in [12,17]. Those papers define a method for check-
ing symbolic security which in turn can be used to synthesize secure cryptographic modes of operation.
See Section 3.2 for more background details. We give an overview of each of the components developed
for checking symbolic security beginning with the MOO⊕-Programs.

5.1 Checking Symbolic Security

The tool can check for symbolic security in several ways. The first, and most exhaustive, is via the
local unification approach. In this approach ciphertexts of the MOO⊕-program under consideration are
generated and the appropriate local unification algorithm is used to see if any blocks sum to 0, see [16]
for the full details of this approach.

The difficulty with this approach is that it can be time consuming in practice. However, a second
approach has been developed in [12]. The approach doesn’t require the generation of ciphertexts and
works directly with the initial MOO⊕-program definition. This approach is not complete, but it works
for many cases and has the advantage of being much more efficient. Therefore, we have implemented it
as a first pass symbolic security check for the tool. If the first pass cannot decide symbolic security, then,
the full security check requiring block generation will be used.

Examples Continuing With the MOOs from Table 1, let’s consider just the first MOO. We can check
for security using the MOO check method:

Code

moo_check(moo_name = ’table1.1’, schedule_name = ’every’,

unif_algo = p_syntactic, length_bound = 10, knows_iv = True,

invert_check=True)

The tool would return the first collision it finds, which violates the symbolic security property, for
this example:

Output

Here is the problem:

f(xor(f(x1), IV)) = f(xor(f(x2), x2))

6 Invertibility and Recovering the Plaintext

A cryptographic algorithm is invertible if given a ciphertext and a decryption key, the original plaintext
can be retrieved. This is not a given for any MOO⊕-program, even a secure one. Therefore, in the
automatic generated setting we will need methods for checking if the invertibility property holds for any
particular MOO⊕-program. Currently the tool is able to check invertibility for a large class of recursively
defined MOOs. This class includes the well known MOOs, such as CBC, ECB, and CFB. More detailed
information on theory and method for checking invertibility has been presented in [12].

The invertibility checker is built into the MOO security check functionality in the tool and can be
requested simply by setting the “invert check” flag (which is the last flag) in the moo check function.

Chichester, et al. 157

(a) An Insecure Scheme (b) A Secure Scheme

Figure 4: Two Authenticated Encryption Schemes

See Example 1.

Example 1

Code

from symcollab.moe.check import moo_check

from symcollab.Unification.p_unif import p_unif

result = moo_check(’cipher_block_chaining’, "every", p_unif, 2, True, True)

print(result.invert_result) # prints True

7 Authentication

An authenticated encryption scheme [6,19] satisfies the authenticity property if an adversary cannot forge
any new valid ciphertext message after observing any number of valid ciphertext messages. In [11], the
authors proposed two algorithms for checking authenticity. The first algorithm works for a simplified
case, where only messages of fixed length can be handled. The second algorithm works for the general
case, where messages of arbitrary length can be handled.

We use M1,M2, to denote plaintext blocks, and use C1,C2, to denote ciphertext blocks.
EK(T, ·) denotes a tweakable block cipher [13], where K is some key and T is some tweak. The idea is
that each key and tweak produce an independent pseudorandom permutation. DK(T, ·) is the inverse of
EK(T, ·). n(T) produces another tweak, given a tweak T . We use nk(T) as a shorthand for applying n
to T for k times. The idea is that the same key can be used for multiple blocks, as long as the tweaks
are different for each different block. In order to achieve authenticity, a tag is attached to each ciphertext
message. Each scheme is associated with a verification condition, which refers to the ciphertext blocks
and the tag. A ciphertext message is valid, if the verification condition holds for that ciphertext message.

Figure 4 shows two authenticated encryption schemes, both of which handle messages of two blocks.
The verification condition of the scheme in Figure 4a is EK(n2(T),C1⊕C2)= Tag. The authenticity prop-
erty is violated. The reason is that if (C1,C2,Tag) is a valid ciphertext message, (C1⊕C2,0,Tag) is also a
valid ciphertext message. The verification condition of the scheme in Figure 4b is EK(n2(T),DK(T,C1)⊕
DK(n(T),C2)) = Tag, the authenticity property is satisfied. The intuition is that the adversary does not
know any way of modifying C1 and C2 in such a way that M1⊕M2 remains the same.

Here are some other possible verification conditions for authenticated encryption schemes, which
handle two message blocks. The first three verification conditions satisfy the authenticity property, and
the last two do not.

158 CryptoSolve

Secure MOOs Found via Automatic Generation and Testing
1 C0 = IV,Ci = f (f (f (P[i−1])⊕ r)⊕C[i−1])
2 C0 = IV,Ci = f (f (f (P[i]))⊕C[i−1]⊕ r)
3 C0 = IV,Ci = f (f (P[i])⊕C[i−1])⊕C[i−1]
4 C0 = IV,Ci = f (f (f (P[i])⊕ r⊕C[i−1]))
5 C0 = IV,Ci = f (f (P[i])⊕C[i−1])⊕ f (C[i−1])

Table 2: Examples of secure MOOs found using the MOO generator

• EK(n2(T),DK(n(T),DK(T,C1)⊕C2)) = Tag

• EK(n2(T),DK(T,DK(n(T),C2)⊕C1)) = Tag

• EK(n2(T),DK(T,C1)⊕DK(n(T),C2)) = Tag

• EK(n2(T),DK(T,C1)) = Tag

• EK(n2(T),DK(n(T),C2)) = Tag

Given a verification condition of some authenticated encryption scheme, our tool can automatically
check if the authenticity property is satisfied.

Code

from symcollab.Unification.constrained.authenticity import *

t = e(n(n(T)), xor(C1, d(n(T), C2)))

check_security(t)

Output

The authenticity

property is

satisfied.

8 Experiments

A benefit of the tool design is that it is easy to integrate the above described functions into a script which
can then be used to run experiments. For example, we have included a script, located in the experiments
directory of the tool, that allows the user to run longer experiments and can handle restarts. In this
script, we generate new candidate MOOs one at a time and test them for security. The output of moo_-
check is the data structure called MOOCheckResult. This has the following fields: collisions (set
of computable substitutions that cause a collision to occur), invert_result (whether or not the MOO
is invertible), iterations_needed (number of iterations before a collision was found), and whether or
not the MOO satisfies symbolic security up to the bound checked.

Initial Experimental Results A sample of some of the secure MOOs found during early experiments
are listed in Table 2. All of these MOOs were created automatically by the currently implemented
recursive MOOGenerator. As a future work, we plan to create additional generators that the user can
select and allow for user defined generators.

Experiments can also be done without the MOOGenerator, where MOOs are generated via hand or
a custom script and then checked for security. This is an attractive option because it allows the user to
easily customize the type of MOOs they are considering. Table 3 includes some example secure MOOs
that were created by hand and then tested for security using the tool. Note, that although all three MOOs

Chichester, et al. 159

Secure MOOs Found via Custom Generation and Testing
1 C0 = IV,Ci = f (P[i]⊕ f (C[i−1]))⊕ f (C[i−1])
2 C0 = IV,Ci = f (P[i]⊕ f (C[i−1])⊕ f (P[i]))
3 C0 = IV,Ci = f (f (P[i])⊕C[i−1])⊕ f (f (P[i])⊕ f (C[i−1]))

Table 3: Examples of secure MOOs found using a custom generator

are secure only the first MOO can be shown by the tool to be invertible (via the method developed
in [12])! Thus, secure but useless MOOs can also be discarded.

Based on the initial experimentation with the tool there are some interesting early questions: Can
the set of secure MOOs be closed under some operation such as applying the encryption symbol f on
top? Are there cases where we can place a bound on the number of iterations to check security? We’re
particularly motivated by the second question, due to the complexity of our saturation based decision
procedures. For some of the MOOs we tested, it took in the order of days in order for the algorithm to
find a collision.

9 Conclusion and Future Work

In this paper we presented a new tool for the symbolic analysis of cryptosystems with the ultimate goal
of providing support for multiple types of algorithms and representations. Although at present it only
supports modes of operation, the tool provides a widely applicable symbolic foundation based on that
of Baudet et al. [4]. Not only can this symbolic foundation represent multiple types of cryptosystems,
the symbolic foundation is also amenable to proofs of computational soundness and completeness. The
tool also includes libraries that support useful algorithms for checking symbolic security, including uni-
fication and variant generation. There are limitations to the currently supported modes of operation.
Currently, only modes which can be modeled using the above Xor theory are supported with the needed
specialized unification algorithms. For example, modes requiring primitives such as hash functions, suc-
cessor, or full abelian groups are currently not supported. However, we hope to add, if possible, support
for as many of these structures as possible in future versions of the tool.

One avenue of interest to us is to investigate other work on symbolic cryptography to determine
whether it can be fit into our framework and its algorithms implemented in our tool. We expect previous
work on modes [7,14] to fit in well, since, although their models are not expressed as symbolic algebras,
they are still compatible with the algebra used in CryptoSolve. Other work, such as Linicrypt [5, 15]
and Zoocrypt [3] also follow the paradigm of representing cryptographic primitives as function symbols
obeying equational theories. In the cases in which soundness and completeness results are provided,
we expect them to carry over into the symbolic model. When computational soundness of a symbolic
language is not known (e.g. Zoocrypt), it may be possible to ensure it by limiting its expressiveness.

More generally, our tool is intended to be extensible to cryptosystems that may not yet have been
studied from the symbolic point of view. Although only a few function symbols have been implemented
in CryptoSolve as of now, it is designed to be extensible. The best choice, for this seems to be cryptosys-
tems that can be expressed in terms of combinations of primitives, including randomly chosen bitstrings,
each of which has a clearly defined security property. The combinators should be operations that can
characterized in a symbolic way. These include not only finite field and group operations, which are
commonly used in cryptography, and can be found in all the work cited in this paper, but concatenation,
which is used in [3, 8, 15]. Many cryptosystems are defined using these techniques of building complex

160 CryptoSolve

systems from basic components, so we expect the are of application to be wide.

References

[1] Martı́n Abadi & Cédric Fournet (2001): Mobile Values, New Names, and Secure Communication. In:
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’01, ACM, New York, NY, USA, pp. 104–115. Available at http://doi.acm.org/10.1145/

360204.360213.

[2] Franz Baader & Tobias Nipkow (1998): Term rewriting and all that. Cambridge University Press, New York,
NY, USA. Available at https://doi.org/10.1017/CBO9781139172752.

[3] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine Lakhnech, Benedikt Schmidt
& Santiago Zanella Béguelin (2013): Fully automated analysis of padding-based encryption in the com-
putational model. In Ahmad-Reza Sadeghi, Virgil D. Gligor & Moti Yung, editors: 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
ACM, pp. 1247–1260. Available at https://doi.org/10.1145/2508859.2516663.

[4] Mathieu Baudet, Véronique Cortier & Steve Kremer (2005): Computationally sound implementations of
equational theories against passive adversaries. In: Automata, Languages and Programming, Springer, pp.
652–663. Available at https://doi.org/10.1007/11523468_53.

[5] Brent Carmer & Mike Rosulek (2016): Linicrypt: A Model for Practical Cryptography. In: Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part III, pp. 416–445. Available at http://dx.doi.org/10.1007/
978-3-662-53015-3_15.

[6] Virgil D. Gligor & Pompiliu Donescu (2002): Fast encryption and authentication: XCBC encryption and
XECB authentication modes. In: Fast Software Encryption (FSE) 2001, pp. 92–108, doi:10.1007/3-540-
45473-X 8.

[7] Viet Tung Hoang, Jonathan Katz & Alex J. Malozemoff (2015): Automated Analysis and Synthesis of Au-
thenticated Encryption Schemes. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Association for Computing Machinery, New York, NY, USA, pp. 84–95. Avail-
able at https://doi.org/10.1145/2810103.2813636.

[8] Tommy Hollenberg, Mike Rosulek & Lawrence Roy (2022): A Complete Characterization of Security for
Linicrypt Block Cipher Modes. In: 2022 IEEE 35th Computer Security Foundations Symposium (CSF), pp.
423–438, doi:10.1109/CSF54842.2022.00028.

[9] Ralf Küsters & Tomasz Truderung (2007): On the Automatic Analysis of Recursive Security Protocols with
XOR. In: STACS 2007, 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen,
Germany, February 22-24, 2007, Proceedings, pp. 646–657. Available at https://doi.org/10.1007/
978-3-540-70918-3_55.

[10] Hai Lin & Christopher Lynch (2020): Local XOR Unification: Definitions, Algorithms and Application to
Cryptography. IACR Cryptol. ePrint Arch. 2020, p. 929. Available at https://eprint.iacr.org/2020/
929.

[11] Hai Lin & Christopher Lynch (2021): Formal Analysis of Symbolic Authenticity. In Boris Konev & Giles
Reger, editors: Frontiers of Combining Systems - 13th International Symposium, FroCoS 2021, Birmingham,
UK, September 8-10, 2021, Proceedings, Lecture Notes in Computer Science 12941, Springer, pp. 271–286.
Available at https://doi.org/10.1007/978-3-030-86205-3_15.

[12] Hai Lin, Christopher Lynch, Andrew M. Marshall, Catherine A. Meadows, Paliath Narendran, Veena
Ravishankar & Brandon Rozek (2021): Algorithmic Problems in the Symbolic Approach to the Verifi-
cation of Automatically Synthesized Cryptosystems. In Boris Konev & Giles Reger, editors: Frontiers

http://doi.acm.org/10.1145/360204.360213
http://doi.acm.org/10.1145/360204.360213
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/2508859.2516663
https://doi.org/10.1007/11523468_53
http://dx.doi.org/10.1007/978-3-662-53015-3_15
http://dx.doi.org/10.1007/978-3-662-53015-3_15
http://dx.doi.org/10.1007/3-540-45473-X_8
http://dx.doi.org/10.1007/3-540-45473-X_8
https://doi.org/10.1145/2810103.2813636
http://dx.doi.org/10.1109/CSF54842.2022.00028
https://doi.org/10.1007/978-3-540-70918-3_55
https://doi.org/10.1007/978-3-540-70918-3_55
https://eprint.iacr.org/2020/929
https://eprint.iacr.org/2020/929
https://doi.org/10.1007/978-3-030-86205-3_15

Chichester, et al. 161

of Combining Systems - 13th International Symposium, FroCoS 2021, Birmingham, UK, September 8-
10, 2021, Proceedings, Lecture Notes in Computer Science 12941, Springer, pp. 253–270. Available at
https://doi.org/10.1007/978-3-030-86205-3_14.

[13] Moses Liskov, Ronald L. Rivest & David Wagner (2002): Tweakable block ciphers. In: Advances in
Cryptology-Crypto 2002, pp. 31–46, doi:10.1007/3-540-45708-9 3.

[14] Alex J. Malozemoff, Jonathan Katz & Matthew D. Green (2014): Automated Analysis and Synthesis of
Block-Cipher Modes of Operation. In: IEEE 27th Computer Security Foundations Symposium, CSF 2014,
Vienna, Austria, 19-22 July, 2014, IEEE Computer Society, pp. 140–152. Available at https://doi.org/
10.1109/CSF.2014.18.

[15] Ian McQuoid, Trevor Swope & Mike Rosulek (2019): Characterizing Collision and Second-Preimage Re-
sistance in Linicrypt. In Dennis Hofheinz & Alon Rosen, editors: Theory of Cryptography - 17th Inter-
national Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part I, Lecture
Notes in Computer Science 11891, Springer, pp. 451–470. Available at https://doi.org/10.1007/
978-3-030-36030-6_18.

[16] Catherine Meadows (2021): Moving the Bar on Computationally Sound Exclusive-Or. In Elisa Bertino,
Haya Shulman & Michael Waidner, editors: Computer Security – ESORICS 2021, Springer International
Publishing, Cham, pp. 275–295. Available at https://doi.org/10.1007/978-3-030-88428-4_14.

[17] Catherine A. Meadows (2020): Symbolic and Computational Reasoning About Cryptographic Modes of
Operation. IACR Cryptol. ePrint Arch. 2020, p. 794. Available at https://eprint.iacr.org/2020/794.

[18] Phillip Rogaway (2004): Nonce-Based Symmetric Encryption. In: Fast Software Encryption, 11th Interna-
tional Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, pp. 348–359. Available at
https://doi.org/10.1007/978-3-540-25937-4_22.

[19] Phillip Rogaway, Mihir Bellare, John Black & Ted Krovetz (2001): OCB: A block-cipher mode of operation
for efficient authenticated encryption. In: 8th ACM Conference on Computer and Communications Security
(CCS), pp. 196–205, doi:10.1145/937527.937529.

[20] Dominique Unruh (2010): The impossibility of computationally sound XOR. IACR Cryptology ePrint
Archive 2010, p. 389. Available at http://eprint.iacr.org/2010/389.

[21] Marloes Venema & Greg Alpár (2021): A Bunch of Broken Schemes: A Simple yet Powerful Linear Approach
to Analyzing Security of Attribute-Based Encryption. In Kenneth G. Paterson, editor: Topics in Cryptology
- CT-RSA 2021 - Cryptographers’ Track at the RSA Conference 2021, Virtual Event, May 17-20, 2021,
Proceedings, Lecture Notes in Computer Science 12704, Springer, pp. 100–125. Available at https://
doi.org/10.1007/978-3-030-75539-3_5.

https://doi.org/10.1007/978-3-030-86205-3_14
http://dx.doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1109/CSF.2014.18
https://doi.org/10.1109/CSF.2014.18
https://doi.org/10.1007/978-3-030-36030-6_18
https://doi.org/10.1007/978-3-030-36030-6_18
https://doi.org/10.1007/978-3-030-88428-4_14
https://eprint.iacr.org/2020/794
https://doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1145/937527.937529
http://eprint.iacr.org/2010/389
https://doi.org/10.1007/978-3-030-75539-3_5
https://doi.org/10.1007/978-3-030-75539-3_5

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 162–177, doi:10.4204/EPTCS.370.11

© T. Brihaye, S. Pinchinat & A. Terefenko
This work is licensed under the
Creative Commons Attribution License.

Adversarial Formal Semantics of Attack Trees and Related
Problems

Thomas Brihaye
University of Mons

Mons, Belgium
thomas.brihaye@umons.ac.be

Sophie Pinchinat
Université de Rennes, IRISA

Rennes, France
sophie.pinchinat@irisa.fr

Alexandre Terefenko
Université de Rennes, IRISA

Rennes, France
University of Mons

Mons, Belgium
alexandre.terefenko@irisa.fr

Security is a subject of increasing attention in our actual society in order to protect critical resources
from information disclosure, theft or damage. The informal model of attack trees introduced by
Schneier, and widespread in the industry, is advocated in the 2008 NATO report to govern the evalua-
tion of the threat in risk analysis. Attack-defense trees have since been the subject of many theoretical
works addressing different formal approaches.

In 2017, M. Audinot et al. introduced a path semantics over a transition system for attack trees.
Inspired by the latter, we propose a two-player interpretation of the attack-tree formalism. To do
so, we replace transition systems by concurrent game arenas and our associated semantics consist
of strategies. We then show that the emptiness problem, known to be NP-complete for the path
semantics, is now PSPACE-complete. Additionally, we show that the membership problem is CONP-
complete for our two-player interpretation while it collapses to P in the path semantics.

1 Introduction

Security is a subject of increasing attention in our actual society in order to protect critical resources
from information disclosure, theft or damage. The informal model of attack trees was first introduced by
Schneier [15] to schematically model possible threats one could execute against an information system.
Attack trees have then been widespread in the industry and are advocated in the 2008 NATO report to
govern the evaluation of the threat in risk analysis. The attack tree model is also a subject of increasing
attention in the community of formal methods with a lot of different formal approaches [10, 8, 7, 6, 5,
12, 1] (see the survey [16]).

The first formal model of attack trees introduced in [15] aimed at describing a possible attack over a
system by refining the main attack goal into sub-goals using either an operator OR or an operator AND
to coordinate those refinements. The analysis conducted over those trees is "static" in the sense that the
attacked system does not evolve during the attack. As such, there is no concept of a goal happening
before or after another. In [6], the authors introduce a first formal semantics that can be qualified as
"dynamic" by allowing a new operator, operator SAND (for sequential AND), to specify that sub-goals
must be attained in a given order. Considering that the SAND operator is now commonly accepted, the
authors of [1] propose a path semantics for attack trees over a transition system.

In this paper, our goal is to present a new semantics for attack trees in order to be able to model
more realistic scenarios: we want our attacker to be able to adapt her actions according to the behavior
of the environment – typically, a defender who tries to protect the system. This setting naturally yields
a two-player semantics. Our approach is inspired by [1] where we generalize the path semantics to a
game-theoretic framework, yielding a strategy semantics for attack trees, without changing their syntax.

http://dx.doi.org/10.4204/EPTCS.370.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

T. Brihaye, S. Pinchinat & A. Terefenko 163

While the path semantics from [1] is compositional in a natural way, it turns out that the strategy
semantics does not have such a nice property. Indeed, although composition of strategies is possible (see
for example [11]), there is no immediate solution to compose two strategies in order to get a strategy that
achieves the disjunction of what the formers achieve. This situation makes it difficult to design a com-
positional strategy semantics for attack trees. We therefore develop a non-trivial strategy semantics that
is not compositionally obtained per se, but that makes use of the former compositional path semantics.

To our knowledge, our proposal is the first game-theoretic semantics for attack trees, and should not
be mixed-up with the multi-player setting induced by the so-called classic model of attack-defense trees
in the literature (see [9]): attack-defense trees are attack trees equipped with a new operator to express
that some defender could use a countermeasure to prevent attacker from achieving her goal. Although
well-understood in a "static" framework, we are not aware of any formal semantics of attack-defense
trees for the “dynamic” one, i.e., over transition systems. This missing piece of work makes it difficult
to conduct a comparison with our contribution, but, from the fact that the defender in our setting is fully
formalized, as an opponent in the game arena, while the defender in attack-defense trees takes the form
of an abstract entity, it seems that those two formalisms are not expressing the same kind of problems.

Our contribution in this paper is twofold.
We first develop a clean mathematical setting to obtain a formal strategy semantics for attack trees.

For pedagogical reasons, we choose to consider a simplified version of the attack trees of [1] where
atomic goals (at the leaves of the trees) are reachability goals with no preconditions. However, at the
price of tedious definitions, the strategy semantics we propose can be adapted to atomic goals with
preconditions. Regarding the design of this semantics, we heavily rely on the older one of [1] based
on paths, and we justify our approach by providing evidence that a compositional strategy semantics is
hopeless.

Second, we exploit the attack tree semantics to address and study the complexity of two decision
problems: the non-emptiness problem and the membership problem. The former consists in determining
if the semantics of an input tree is non-empty, while the latter consists in determining if an input element
belongs to the semantics of an input tree. Our results are summarized in Table 1, where we distinguish
between the path semantics and the strategy semantics.

Table 1: Complexity results

Paths semantics Strategy semantics
Non-Emptiness Problem NP-complete PSPACE-complete

Membership Problem P CONP-complete

Importantly, both decision problems have a practical counterpart. The non-emptiness of the path
semantics of a tree reflects a situation where there exists a favorable scenario for attacker to perform
her attack, while the non-emptiness of the strategy semantics reflects an intrinsic vulnerability of an
information system. Regarding the membership problem for the path semantics, we are interested in
knowing whether a log file of some information system execution makes evidence of an attack, while for
the strategy semantics, we wonder if an attack policy is successful.

The paper is organized as follows. We start in Section 2 with an introductory example explaining
informally the difference between path semantics and strategy semantics. After some background work
in Section 3, we introduce in Section 4 the formal model of attack trees and define the path semantics in-
spired by [1] as well as our new strategy semantics. We then study the complexity of the Non-Emptiness
and the Membership problems in Section 5.

164 Adversarial Formal Semantics of Attack Trees and Related Problems

2 Introductory example

Consider a thief (the attacker) who wants to steal some document inside a safe of a building without
being seen. The building is composed of two rooms. The first room has two entrance doors (called door
1 and door 2) from the street. There is a guard keeping the entrance doors, but he can only control the
bypassing of one of the two entrance doors at a time. The first room has also another door that leads
to the second room. This door is locked but the key to unlock it is in the first room. There is also a
camera in the first room monitoring the door to the second room. The second room contains a safe with
the document that the thief wants to steal. Therefore, in order for the thief to attain his goal, he needs
to enter the first room (by either door that is not currently controlled by the guard), then deactivate the
camera and collect the key (in whichever order he wants) and finally unlock and go through the door
leading to the second room. The thief can be seen by the guard if they appen to be in front of the same
door or by the camera if activated when he is in front of the door to room 2. Figure 1a gives a picture of
the situation where the thief is still outside of the building and the guard controls the second door.

Key

Locked door

Door 1

Guard

Camera

Thief

Safe

Door 2

(a) Building plan

(o,m)

(o,d1)

(o,d2)

(d2,d1)

(d2,d2)

(d2,m)

(d1,d1)

(d1,d2)

(d1,m)

{D2}

{D2}

{D2, seen}{D1}

{D1}

{D1, seen}

(b) Graph representation of the possibles positions of the thief and the guard at the
entrance of the building.

Figure 1: Introductory example building

In security, it is common to use an attack tree to model the goal of the attacker. An attack tree is a
tree where each node describes a goal and the children of a node describe a refinement into sub-goals of
the parent goal. To model those refinements, it is common to use three operators:

• OR operator means that at least one sub-goal needs be achieved to have the goal accomplished,

• SAND operator, read "sequential and", means that the sub-goals need be achieved in the left-to-
right order to have the goal accomplished,

• AND operator means that the sub-goals need be achieved (in whatever order) to have the goal
accomplished.

T. Brihaye, S. Pinchinat & A. Terefenko 165

enter

room 2

cross first

door unseen

cross second

door unseen

deactivate

camera
find key

Figure 2: An attack tree to model the goal of our thief.

In Figure 2, we describe the goal of the thief by means of an attack tree. To distinguish the different
types of nodes, we draw a curved line below an AND operator, a curved arrow below a SAND operator
and nothing below an OR operator.

We focus our attention on the very first part of our problem, that is, the sub-goal of the thief to enter
the building. We start by fixing a set of proposition Prop = {D1,D2,seen} where D1 holds when the
thief is in front of the first door, D2 holds when the thief is in front of the second door and seen holds
when the guard sees the thief because they meet in front of the same door. The goal "crossing the first
door unseen" of the thief can be modelled by the formula D1∧¬seen and the goal "crossing the second
door unseen" is modelled by the formula D2∧¬seen. If we assume that the guard can switch door
whenever he wants but leaves the two doors unguarded for a brief amount of time during his motion,
we can model the situation using the graph of Figure 1b where each state consists of a pair in the set
{o,d1,d2}×{m,d1,d2}. For a pair (a,b), element a determines the position of the thief (o means that he
is still outside the building, while di indicates he is at door i) and element b determines the position of
the guard (m means that he is currently in motion between the two doors, leaving them both unguarded).
We write next to each state which propositions hold in it.

In a path semantics, a successful attack for goal D1∧¬seen consists of a sequence of states (i.e., a
word) such that the valuation of the last state of this sequence satisfies formula D1∧¬seen. In particular,
the sequence (o,m),(d1,d2) is a successful attack. Now, if we want to consider a successful attack for
the attack tree consisting of the "OR" operator of objective D1∧¬seen and D2∧¬seen, it is enough to
consider the union of the set of all attacks for objective D1∧¬seen with the set of all attacks for objective
D2∧¬seen.

However, in the strategy semantics we introduce in this paper, we consider that an attack is successful
if the attacker has a strategy that grants him to reach the states he needs to attain, independently of the
environment. In our example, we can see that the thief has no strategy starting at position (o,m) to
achieve goal D1∧¬seen. Indeed, if the first move of the guard consists on going to door 1 and he then
does not move any more, there is no way for the thief to cross the first door while unseen. Similarly, there
is no strategy starting at position (o,m) to achieve goal D2∧¬seen. However, if we consider the "OR"
operator of the two goals D1∧¬seen and D2∧¬seen, the strategy of the thief consisting in waiting for
the guard to go to one of the two doors and then going to door 1 if the guard is at door 2 and vice versa is
a successful strategy. Later, we will use similar a similar example to show that a compositional definition
for a strategy semantics cannot be achieved.

166 Adversarial Formal Semantics of Attack Trees and Related Problems

3 Preliminary notions

Formal languages Given an alphabet (i.e., a finite set of symbols) Σ, notation Σ∗ represents the set of
finite words (i.e., sequences of symbols) over the alphabet Σ, with typical element w = `1 . . . `n ∈ Σ∗; the
empty word is written ε . On the other hand, the set of infinite words is denoted by Σω . A subset L⊆ Σ∗ is
a language. Given a word w = `1 . . . `n ∈ Σ∗, its set of prefixes is the language Prefixes(w) = {`1...`i|i≤
n}∪{ε}, and we write w′ C w whenever w′ ∈ Prefixes(w). A language L is prefix-closed if w∈ L implies
w′ ∈ L for every w′ C w. The concatenation of a word w = `1 . . . `n with another word w′ = `′1 . . . `

′
m is the

word ww′ = `1 . . . `n`
′
1 . . . `

′
m. The concatenation of a word with a language is defined in the usual way:

for w ∈ Σ∗ and L⊆ Σ∗, we let wL := {ww′|w′ ∈ L}.

Game theory and game arena To formalize a strategy semantics for attack trees, we need standard
two-player, zero-sum, perfect information games that we recall here.

A game arena is a finite graph on which two players play a game of unbounded duration. We choose
to consider concurrent games, meaning that, at each round, each player makes an action. To define it
properly, we consider two players called Player 1 and Player 2 and a finite set of propositions Prop.

Definition 3.1. A two-player game arena is a tuple G = (Pos,Act,δ ,val) where:

• Pos = {v, ...} is a finite set of positions.

• Act = Act1×Act2 is a finite set of actions, as a product of the sets of actions of each player.

• δ : Pos×Act→ Pos is a transition function,

• val : Pos→P(Prop) is a valuation function.

In our introductory example of Section 2, if we consider the set of actions for the thief: {wait,
go-to-Door-1, go-to-Door-2} and the following set of actions for the defender: {stay-at-current-door,
leave-current-door, go-to-Door-1, go-to-Door-2}, then it is easy to see that the graph drawn in Figure 1b
forms a game arena.

For the rest of this paper, we fix a game arena G = (Pos,Act,δ ,val).
For a game position v ∈ Pos, we define Post(v) = {v′ ∈ Pos| δ (v,a) = v′ for some a ∈ Act} the set of

all positions reachable from v in one step. For convenience, we assume that each player j can play every
action a in Act j at each position of the game arena, so that for each position v∈ Pos, we have Post(v) 6= /0.
A play ρ is an infinite sequence of positions of the form v0v1v2.... ∈ Posω such that for each i ∈ N, there
is a ∈ Act such that δ (vi,a) = vi+1. For i ∈ N, we let ρi = vi be the ith position of play ρ . The set of
all plays is denoted by Plays(G). Each non-empty prefix h of a play is called a history and the set of all
histories is denoted by Hist(G). For a history h ∈ Hist(G), we define last(h) as the last position of h.
For v ∈ Pos, we also use the notations Plays(G ,v) and Hist(G ,v) to denote the set of all plays starting
from v (i.e., ρ0 = v) and the set of all histories starting from v, respectively.

Winning plays for Player 1 are obtained from a distinguished subset Γ1 ⊆ Plays(G). As we consider
zero-sum games, all plays in Γ1\Plays(G) are winning for Player 2.

Classically, we introduce the notion of strategy, as a map prescribing how a player plays depending
on the current history: a strategy µ j for the Player j is a map µ j : Hist(G)→ Acti. The set of all strategies
for the Player j is denoted as Strat j.

A history h = v0v1...vm is consistent with a strategy µ j if for each 1 ≤ i ≤ m, there exists a =
(a1,a2) ∈ Act such that we have δ (vi,a) = vi+1 and µ j(v0v1...vi) = a j. We say that a play ρ is consistent
with a strategy µ j if all prefixes of ρ are histories consistent with µ j. The set of all plays consistent
with µ j is denoted by Outcomes(µ j). From a game position v we say that a strategy is winning if all

T. Brihaye, S. Pinchinat & A. Terefenko 167

R2

D1∧¬seen D2∧¬seen C K

Figure 3: Formal version of the attack tree in Figure 2.

outcomes starting at v are winning. In other words, for a strategy of say Player 1, a strategy µ is winning
if Outcomes(µ)∩Plays(G ,v)⊆ Γ1.

A classic kind of concurrent games are the reachability games. In such games, a player wants to
reach some positions while the other player tries to prevent it from happening. These games are clearly
zero-sum. More formally, we say that a game is a reachability game for Player 1 if there exists W1 ⊆ Pos
such that Γ1 = {ρ ∈ Plays(G)|ρi ∈W1 for some i ∈ N}.

In a game arena, we says that a position v satisfies the formula φ if its valuation val(()) satisfies
the formula in classic propositional logic, denoted by v |= φ . Note that a Boolean formula φ over Prop
describes the reachability game (G ,W1) where W1 = {v ∈ Pos|v |= φ}.

4 Attack trees and their semantics

In this section, we start with the formal definition of attack tree used in this paper. Then we develop two
semantics for attack trees: the path semantics and the strategy semantics.

4.1 Syntax of attack trees

To formalize attack trees, we start by fixing a set of propositions Prop.

Definition 4.1. An attack tree τ over Prop is:

• either a leaf composed of a unique Boolean formula φ over Prop,

• or an expression OP(τ1, ...,τn) where OP ranges over OR, AND and SAND and τ1, ...,τn are attack
trees.

We define the size of an attack tree τ , noted |τ|, by the number of its nodes.

Example 4.2. We will formalise the example introduced in Section 2. To represent the situation, we use
the following set of propositions: Prop = {D1,D2,seen,C,K,R2}. We have that D1 holds when the thief
has crossed the first door, D2 holds when the thief has crossed the second door, seen holds when the
guard sees the thief, C holds when the camera is on, K holds when the thief has the key and finally R2

holds when the thief is in the second room.
We can now propose a formal definition for the attack tree in Figure 2: τ =

SAND(OR(D1∧¬seen,D2∧¬seen),AND(C, K),R2) to model the objective of the attacker. The graph
representation of τ is given by Figure 3.

168 Adversarial Formal Semantics of Attack Trees and Related Problems

Let us notice that the attack trees used in [1] are in fact slightly different: the leaves of the attack trees
of that paper are of the form < φ1,φ2 > with φ1 and φ2 two Boolean formulas. Formula φ1 describes a
precondition for the objective to begin with and formula φ2 describes the postcondition for the objective
to be granted. However, in this paper, we never consider preconditions. So a leaf φ of our attack trees
can be seen as a leaf < true,φ > of attack trees introduced in [1]. Although the semantics defined in this
paper could also be defined for attack trees with preconditions, not considering them makes the setting
more pedagogical.

The first semantics for attack trees we introduce is a path semantics inspired by [1]. Informally, in
the path semantics, we consider all sequences of events that lead to a successful attack. The idea is to
determine which scenarios are favourable for the attacker. One could also say that an attack can occur if
the attacker is lucky.

The second semantics is our main contribution, and is named the strategy semantics for attack trees.
In this approach, the attacker should not rely on an opportunity offered by the environment but should
be able to find the right sequence of actions whatever the environment does. Otherwise said, an attack is
not a favourable scenario anymore but a winning strategy for attacker in some two-player game arena.

4.2 Path semantics for attack trees

To give a path semantics over our trees, we first need to fix a transition system to model which ac-
tions/sequences of actions can be executed by the attacker in the system. A transition system is composed
of a finite set of states together with a transition relation between pairs of states. We decided not to label
every transition with an action as we only consider perfect information here. We also provide a valuation
function to our transition system, informing which propositions of Prop holds in a state of the transition
system.

Definition 4.3. A transition system over Prop is a triplet S = (S,δ ,val) where:

• S is a finite set of states,

• δ ⊆ S×S is a relation of transitions,

• val : S→P(Prop) is a valuation function.

The size of S , noted |S |, is defined by its number of states.
We can see from Definition 4.3 that a transition system is a notion close to a game arena. Indeed,

it is easy to associate a transition system with a game arena G = (Pos,Act,δ ,val), by merging the two
players into a single one in the following way: SG = (Pos,{(v,v′) ∈ Pos×Pos| there exists a ∈ Act such
that δ (v,a) = v′},val). Later, we denote SG by G when it is clear from the context.

For the rest of this section, we fix a transition system S = (S,δ ,val) over Prop. A path in a transition
system is a finite non-empty sequence of states π = s0s1...sn such that, for each 0≤ i < n, (si,si+1) ∈ δ .
The size of a path is its number of states. We denote the set of all paths in S by ΠS .

In order to define the path semantics we need to introduce operators over paths.

Definition 4.4. Let π = s0s1...sn and π ′ = s′0s′1...s
′
m be two paths in S with n,m≥ 0. The synchronised

concatenation of π1 and π2 is defined only if sn = s′0 and is given by t π ·π ′ = s0s1...sns′1...s
′
m.

We lift this operations to sets of paths the following way: if Π1 and Π2 are two sets of paths, then
Π1 ·Π2 = {π1 ·π2|π1 ∈Π1 and π2 ∈Π2}.

The authors of [1] introduce the operator of parallel composition of paths. However, our definition
of attack trees grants us the possibility to use a simpler operator.

T. Brihaye, S. Pinchinat & A. Terefenko 169

Definition 4.5. Let Π1, Π2 be two sets of paths of S . The merge of Π1 and Π2 is the set of paths
Π14Π2 = {π1 ∈Π1| there exists π2 ∈Π2 such that π2 C π1}∪{π2 ∈Π2| there exists π1 ∈Π1 such that
π1 C π2}

Unlike the parallel composition of [1], thanks to the transitivity of the prefix relation, the merge
operator is associative.

We can now define our path semantics.

Definition 4.6. Let τ be a attack tree over Prop. The path semantics of τ over S is the set of paths
PathsS (τ) inductively defined as follow:

• PathsS (φ) = {s0s1...sn ∈ΠS |sn |= φ}
• PathsS (OR(τ1, ...,τn)) = PathsS (τ1)∪ ...∪PathsS (τn)

• PathsS (SAND(τ1, ...,τn)) = PathsS (τ1) · ... ·PathsS (τn)

• PathsS (AND(τ1, ...,τn)) = PathsS (τ1)4...4PathsS (τn)

It is easy to verify that the semantics of Definition 4.6 is equivalent to the one introduced in [1] if we
restrict to the attack trees whose leaves are of the form < true,φ >.

Remark that, in our framework, for φ1 and φ2 two formulas over Prop, the interpretation of SAND(φ1,φ2)
is that φ1 must hold at some point and φ2 must hold at some point afterwards. This requirement does not
prevent φ2 from holding before φ1.

We also want to point out that our semantics consider that the simultaneity of objectives is always
successful: for φ1 and φ2 two formulas over Prop, if φ1, φ2 ∈ val(s), then s ∈ PathsS (SAND(φ1,φ2))
and s ∈ PathsS (AND(φ1,φ2)).

Example 4.7. If we consider the game arena G given in Figure 1b, we have that (d1,d2) |= D1∧¬seen,
thus the path (o,m)(d1,d2) ∈ PathsG (D1∧¬seen). This gives us also (o,m)(d1,d2) ∈ PathsG (OR(D1∧
¬seen,D2∧¬seen)).

4.3 Strategy semantics for attack trees

We start this section by formally defining strategic trees as well as some handful operators over them.
We use a definition of a tree really close to the one made from prefix-closed languages (for example in
[3, p. 15]) except that we fix a letter to represent the root.

Definition 4.8. A strategic tree (written s-tree for short) over an alphabet Σ is a language T of the form
`L with ` ∈ Σ and L is a prefix-closed language over Σ.

For an s-tree T = `L, ` is called the root. For a word w ∈ T , if there exists no w′ ∈ T such that w C w′

then we call w a leaf. The set of all leaves of T is denoted by Leaves(T). For two words w,w′ ∈ T such
that w C w′, if there exist no w′′ ∈ T such that w C w′′ C w′, then we says that w is the parent of w′ and w′

is a child of w. The set of all children of a word w in a s-tree T is denoted by ChildrenT (w). The depth
of an s-tree is the size of the longest word in it.

Example 4.9. Figure 4 shows an s-tree over the alphabet Pos, the set of positions of the game arena of
Figure 1b.

As in Example 4.9, for the particular case where alphabet Σ is the set of positions on some game
arena, we develop several notions on s-trees and show that strategies can be presented as s-trees.

For the rest of this section we fix a game arena G = (Pos,Act,δ ,val).
The next lemma asserts that all histories consistent with a strategy and starting from a given position

form an s-tree.

170 Adversarial Formal Semantics of Attack Trees and Related Problems

(o;d1)

(o;d1)(o;m)

(o;d1)(o;m)(o;d1)

...(d2;d1) ...(d2;m)

(o;d1)(o;m)(o;d2)

...(d1;d2) ...(d1;m)

(o;d1)(o;d1)

(o;d1)(o;d1)(d2;d1) (o;d1)(o;d1)(d2;m)

Figure 4: strategic tree T µ

(o,d1)

Lemma 4.10. Let µ be a strategy for some player and v ∈ Pos be a game position. The language T µ
v =

Pre f ixes(Outcomes(µ))∩Hist(G ,v) is an s-tree over alphabet Pos, and is called the s-tree associated
with µ from position v.

The proof is straightforward from the definition of T µ
v .

By Lemma 4.10, each branch of T µ
v is the succession of all prefixes (in terms of words) of a play

consistent with µ . Reciprocally, each play consistent with µ and starting from position v is represented
by a branch of T µ

v . Therefore T µ
v fully describes the strategy µ starting from position v.

Example 4.11. Consider the game arena G given in Figure 1b and the strategy µ for the thief consisting
in waiting one unit of time, then, if the guard is at some door, going to the other door and if the guard is
currently in motion, waiting another unit of time before going to the door where the guard will not be. If
we call this strategy µ , the strategic tree T µ

(o,d1)
is given in Figure 4.

As we put the focus on attack trees, we take the convention that, in the game arena, Player 1 is
called Attacker and Player 2 is called Defender. In this setting, Attacker tries to achieve an attack that is
described by some attack tree τ , while Defender tries to prevent it from happening. In other words, the
winning plays for the Attacker are given as ΓA = PathsG (τ). Our strategy semantics consists of the set
of winning strategies for this game.

We start by motivating a construction only for a leaf attack tree. The strategy semantics for an attack
tree φ is the set of all strategies that are winning for the reachability game defined by φ . Remark that for
the case of reachability games, once a winning position is reached, the continuation of the play does not
matter. Therefore, for reachability games, the s-tree corresponding to a winning strategy can be cut as a
finite tree: this cut consists in removing all children of a node describing a history ending in a position
where φ holds. This way of cutting motivates the definition of prefix of s-trees as follows:

Definition 4.12. Let T be an s-tree over Σ∗. An s-tree T ′ is a prefix of T if root(T ′) = root(T), and
T ′ ⊆ T , and for every w ∈ T ′ \Leaves(T ′), we have ChildrenT ′(w) = ChildrenT (w).

Example 4.13. For the s-tree T µ

(o,d1)
of Figure 4 and the two trees given in Figure 5, we have Ta is a prefix

of T µ

(o,d1)
, but Tb is not because ChildrenT µ

(o,d1)
(o,d1) = {(o,d1)(o,m),(o,d1)(o,d1)} 6= ChildrenTb(o,d1)

= {(o,d1)(o,d1)}.
With this notion of prefix, it is immediate to characterise attack trees that witness a strategy.

Definition 4.14. Consider a leaf attack tree φ , and write φ ⊆ Pos for the set of positions where φ holds.
Consider µ a strategy for Attacker in the reachability game (G ,φ) and T µ

v the associated s-tree from
position v. A finite s-tree T is a witness of µ from position v if T is a finite prefix of T µ

v , and Leaves(T)⊆
Pos∗φ .

T. Brihaye, S. Pinchinat & A. Terefenko 171

(o;d1)

(o;d1)(o;m) (o;d1)(o;d1)

(o;d1)(o;d1)(d2;d1) (o;d1)(o;d1)(d2;m)

(o;d1)

(o;d1)(o;d1)

(o;d1)(o;d1)(d2;d1) (o;d1)(o;d1)(d2;m)

Figure 5: two s-trees: Ta (left) and Tb (right)

Definition 4.14 can be generalised to an arbitrary reachability condition W1 ⊆ Pos as follows: T is a
witness of µ from position v if T is a finite prefix of T µ

v and h ∈ Leaves(T) implies last(h) ∈W1.

Example 4.15. In the game arena of Figure 1b, if we consider the reachability condition W1 = {(o,m),
(d2,m),(d2,d1)}, then the attack tree Ta of Figure 5 is a witness for the s-tree T µ

(o,d1)
drawn in Figure 4.

Definition 4.14 leads us to the following intuitive lemma.

Lemma 4.16. Let µ be a strategy for Attacker and W1 be a winning condition. Then µ is a winning
strategy for (G ,W1) from position v ∈ Pos if, and only if, there exists a witness T of µ from v.

The proof relies on the König’s Lemma.
Thus, for a leaf φ , the strategy semantics is all witnesses that can be constructed from a winning

strategy over the reachability game defined by φ . Moreover, an s-tree is in the semantics of a leaf attack
tree if it is a prefix of some strategy and if all its leaves are in the path semantics of the attack tree. The
former condition guarantees that our s-tree has the shape of a strategy, while the latter guarantees that
the strategy is winning. As we will see below, those are the two conditions we use to define the strategy
semantics of arbitrary attack trees.

For the first condition, we say that an s-tree T is well-formed if there exists a strategy µ and a position
v such that T is a prefix of T µ

v . For the second condition, we use the following definition:

Definition 4.17. Let τ be an attack tree. A τ-s-tree is a finite s-tree T over Pos such that Leaves(T) ⊆
PathsG (τ).

Since for a leaf attack tree φ , we have PathsG (φ) = Pos∗φ , a witness T (Definition 4.14) is a φ -s-tree.
We now have all the material to define the strategy semantics of an attack tree.

Definition 4.18. Let τ be an attack tree. The strategy semantics associated with τ , written StratG (τ) is
the set of all well-formed τ-s-trees.

In particular, StratG (φ) is the set of all witnesses in the reachability game (G ,φ).
We can see that the idea is far from the one of attack-defence trees in [8]. In attack-defence trees, the

countermeasure is a structure similar to an attack tree whose semantics describes paths that prevent an
attack from succeeding, and by no means a strategy of the attacker’s opponent in the arena.

Now that we defined our semantics, we might want to know if it can be obtained in a composi-
tional manner ? Namely, if the semantics of a compound tree can be defined in terms of the semantics
of its subtrees: More formally.. can we define StratG (OP(τ1, ...,τn)) on the basis of StratG (τ1), ...,
StratG (τn)? Sadly, the answer is no:

Example 4.19. Consider the game arena defined in Figure 1b. Obviously, our attacker here will be the
thief while the guard will do the defender role. We also consider a new proposition: Start which only
holds at position {o,m}. We have that the semantics of SAND(start,D1∧¬seen) is empty. Indeed,
the guard can choose to only keep door 1 and thus, the thief will not be able to attain D1 while remain-
ing unseen. Similarly, StratG (SAND(start,D2∧¬seen)) is empty. However, the strategy consisting on

172 Adversarial Formal Semantics of Attack Trees and Related Problems

waiting one unit of time then going through the door not controlled by the guard is a winning strat-
egy, it is easy to construct a witness for that strategy that attains the objective of OR(SAND(start,D1∧
¬seen),SAND(start,D2∧¬seen)) and thus is in its strategy semantics.

The previous example showcases an empty semantics for τ1 and τ2 but a non-empty one for OR(
τ1,τ2). This is because, for φ1 and φ2 two propositional formulas over Prop, there are more strategies to
achieve φ1 ∨φ2 than strategies only achieving φ1 or only achieving φ2. We can for example consider a
strategy that, depending on the move of the opponent, chooses whether it prefers to attain φ1 or to attain
φ2.

Remark that, using the "merge" operator of [11] provides us a compositional semantics for attack
trees with SAND-only operators. However, we have already argues that the OR operator have some
problems just as the AND operator for more elaborate examples. Still, it is possible to tune the semantics
so that it becomes compositional for the AND operator, at the price of loosing clarity, but more regrettably
without solving the hopeless case of the OR operator.

5 Decision Problems over attack trees

In this section, we discuss two common decision problems over semantics of attack trees and determine
their complexities with respect to the path semantics and the strategy semantics. The first problem we
consider is the Non-Emptiness problem. This problem consists of, given an attack tree and a game arena,
deciding whether its semantics is not empty:

Definition 5.1. The Non-Emptiness problem is the following decision problem for a fixed semantics J·KG

of attack trees:
Input: G , a game arena, τ , an attack tree.
Output: Yes if JτKG 6= /0, No otherwise.

The Non-Emptiness problem for the path semantics is denoted by PNE while the Non-Emptiness
problem for the strategy semantics is denoted SNE. A positive instance of PNE tells us that Attacker has
a favourable scenario to attack. A positive instance of SNE tells us that Attacker has a strategy (it is
possible for him to attack successfully the system independently of the defender/environment comport-
ment).

We now turn to the Membership problem.

Definition 5.2. The Membership problem is the following decision problem for a fixed attack tree se-
mantics J·KG of of type X :
Input: G , a game arena, τ , an attack tree and x ∈ X .
Output: Yes if x ∈ JτKG , No otherwise.

The Membership problem for the path semantics is denoted by PM while the Membership problem
for the strategy semantics is denoted SM. PM consists of determining whether a path is an attack or not.
It can be really useful if we have an attack tree describing an attack goal over an information system
and a log file of that system. Determining if the system has been attacked is equivalent to determining
whether the path described by the log file is in the path semantics of the attack tree or not. The idea
behind SM is different: it is useful to determine whether a strategy is winning or not for a given attack
objective. We start to analyse the complexity of PM and take advantage of it for the proofs of the other
results. We then consider SNE. After that, PNE is easily determined as a particular case of SNE and we
finish by SM whose proof uses similar and simpler constructions than the one for SNE.

T. Brihaye, S. Pinchinat & A. Terefenko 173

If we use attack trees with preconditions, the problem PM is NP-hard; this comes from the fact that
the packed interval covering problem, which can be easily captured by the parallel composition (see
[13]), is NP-complete (see [14]). However, PM becomes simpler if we discard preconditions:

Theorem 5.3. PM is in P.

For a polynomial algorithm, we use the fact that a word is in the semantics of an attack tree, then
adding an arbitrary prefix to it keeps it in the semantics. As a consequence, we do not need to recompute
which sub-goals of the attack tree are satisfied whenever we add a position in front of a path. Thus, the
shape of the problem is well-suited for a backward induction over the input path. Moreover, determining
if a given input path satisfies an attack tree knowing whether it satisfies the sub-trees can be done in
linear time over the size of the attack tree.

We now turn to the complexity of SNE.

Theorem 5.4. SNE is PSPACE-complete.

For the membership, we construct an alternating algorithm (see [2]) solving the problem that can be
executed in polynomial time. This algorithm consists of synthesizing a history over the game arena and
then verifying that this history is an attack (by Theorem 5.3, this verification is doable in polynomial
time). To construct this history, we finitely iterate first to make a non-deterministic existential guess for
the action of Attacker and then a non-deterministic universal guess for the action of Defender. We then
show that the resulting history is in the path semantics of the input attack tree τ if, and only if, the strategy
semantics of τ is not empty. We guarantee a polynomial time execution, namely that the resulting history
need not be too long with the following lemma.

Lemma 5.5. Let G = (Pos,Act,δ ,val) be a game arena and τ be an attack tree with n leaves. If
StratG (τ) 6= /0, then there exists T ∈ StratG (τ) of depth d ≤ |Pos|×n.

The basic idea behind to prove Lemma 5.5 is that, memoryless strategies suffice in reachability games
(see [4]).

We design Algorithm 1 to solve SNE whose idea is explained above and show that it belongs to
PSPACE.

Algorithm 1 SNE(G ,τ)
Input: G a game arena and τ an attack tree with n leaves
Output: True if StratG (τ) 6= /0, False otherwise.

1: h← empty list
2: v← [∃]guess position in Pos
3: h.append(v)
4: while size(h)< |Pos|×n do
5: [∃]guess break or not
6: a1← [∃]guess action in ActA

7: a2← [∀]guess action in ActD

8: h.append(δ (last(h),(a1,a2)))
9: end while

10: return h ∈ PathsG (τ)

Lemma 5.6. Algorithm 1 is an alternating polynomial-time algorithm and solves SNE.

174 Adversarial Formal Semantics of Attack Trees and Related Problems

Proof. We start by showing the complexity of the algorithm, then we show its correctness.
From the loop at Line 4, it is executed polynomially many times in the size of the input attack tree

and of the game arena. We also know (Theorem 5.3) that the condition h ∈ PathsG (τ) at Line 10 can be
evaluated in polynomial, therefore, Algorithm 1 is polynomial-time alternating.

Assume Algorithm 1 returns True, then, for each choice made by universal guess, there exists a
choice made by existential guess guaranteeing that the obtained history is in PathsG (τ). As a conse-
quence, the choices made by the existential guesses reflect a strategy in the game arena that satisfies τ

so, StratG (τ) 6= /0. Conversely, if StratG (τ) 6= /0, then there exists (by Lemma 5.5) an s-tree T of depth
≤ |Pos|× n. Thus the existential guesses can simply follow the strategy given by T and then choose to
go out from the main loop by the "break" command at Line 5 of Algorithm 1 whenever the sequence of
choices (existential and universal) in the execution is reflected by a full branch of the s-tree T .

For the PSPACE-hardness of SNE, our construction is inspired by the one in [1]: the authors reduce (in
polynomial time) the SAT problem to the PNE problem with attack trees (using preconditions). In fact,
even if in that paper, authors use attack trees with preconditions, we can adapt it without preconditions.
We can even cast the approach to QBF that we first recall:

Definition 5.7. The quantified Boolean formula (QBF) is the following decision problem:
Input: a formula of the form Q1x1, ...,Qnxnψ(x1, ...,xn) with Qi ∈ {∃,∀} and ψ a Boolean formula in
conjunctive normal form over propositions x1, ...,xn.
Output: Yes if the input formula is true, No otherwise.

Lemma 5.8. The QBF problem can be reduced to SNE in polynomial time.

It is easy to understand the reduction principle on an example.

Example 5.9. Consider the formula ψ = ∃x1∀x2∃x3,x1 ∧ (x2 ∨ x3)∧ (¬x2 ∨ x3). Let C1 = x1, C2 =
(x2∨ x3) and C3 = (¬x2∨ x3) be the three clauses in ψ . The game arena G associated with this formula
is drawn in Figure 6: for each position vi (resp. ¬vi), the proposition pi holds if vi ∈Ci (resp. ¬vi ∈Ci).
Remark that this game arena is a special case of game arena called turn-based game arena: only one
player makes an action in each position, we say that a position belongs to the player who can play on
it. We decide classically which position belongs to each player based on quantifiers of ψ (see the proof
of Lemma 5.8 for further explanations). We represent Attacker positions with a circle and Defender
positions with a square (position v3 and position ¬pos3 have only one successor position, therefore, it
does not matter which player makes the move; by convention, we say they belong to the attacker). Then,
ψ holds if, and only if, StratG (SAND(start,AND(p1, p2, p3))) 6= /0.

We now start the proof of lemma 5.8:

Proof. Let Q1x1, ...,Qnxnψ(x1, ...,xn) with Qi ∈ {∃,∀} and with ψ a Boolean formula over variables
x1, ...,xn be an instance of the QBF problem. Since ψ is in conjunctive normal form, we can write it
as ψ = ψ1 ∧ ...∧ψk with ψi denoting disjunctive clauses containing literals of the form x j or ¬x j with
xi ∈ {x1, ...,xn}.

We consider the set of propositions Prop = {Start, p1, ..., pk} with the following game arena:
G = (Pos,Act,δ ,val), where Pos = {Start}∪{vi|1 ≤ i ≤ n}∪{¬vi|1 ≤ i ≤ n}, ActA = ActD = {True,
False}. If Q0 = ∃, then position Start is an Attacker position, otherwise, it’s a defender position. More-
over, playing action True at position start leads to position v1 while playing False leads to position
¬pos1. Similarly, for each 2 ≤ i ≤ n, if Qi = ∃ then vi−1 and ¬vi−1 are Attacker positions, otherwise,
they are Defender positions. Furthermore, playing True at position vi−1 or ¬vi−1 leads to position vi

T. Brihaye, S. Pinchinat & A. Terefenko 175

Start

v1

¬v1

v2

¬v2

v3

¬v3

{start}

{p1}

/0

{p2}

{p3}

{p2, p3}

/0

start

p1 p2 p3

Figure 6: Game arena and attack tree associated to the formula given in Example 5.9

while playing False leads to ¬vi. Positions vn and ¬vn are Attacker positions, moreover, the transitions
over those two positions are self loops.

We define val(Start) = {Start} and for each i ≤ i ≤ n, val(vi) = {p j|xi ∈ ψ j} and val(¬vi) =
{p j|¬xi ∈ ψ j}. From this definition, if we consider that the attacker tries to satisfy the input QBF
formula and the defender tries to prevent it, we have a classic game. We then only need to show that
the objective of the attacker can be well described using an attack tree, which is the case by consid-
ering τ = SAND(Start,AND(p1, ..., pn)). Indeed, if there exists a strategy to satisfy the input QBF
formula, then this strategy satisfies ψ1, ...,ψk and thus, can be executed in the constructed game arena to
achieve AND(p1, ..., pn) while starting at position Start, therefore, that strategy is in τ . Conversely, if
StratG (τ) 6= /0, then one of such strategies assures that we satisfy the input QBF instance.

By Lemma 5.8 , SNE is PSPACE-hard, which achieves the proof of Theorem 5.4.
We now turn to PNE.

Theorem 5.10. PNE is NP-complete.

For the NP-membership, since our problem is a particular case of the problem discussed in [1], it
is at least as easy. For the NP-hardness we reduce SAT: if we apply the same construction as in the
proof of Lemma 5.8, since we cannot leave any choice for the defender in a transition system and the
path semantics is defined over a transition system and not a game arena, we can reduce formulas of
QBF only using ∃ operators. In other words, we can reduce SAT. In fact, by doing so, we are doing the
exact construction of the proof in [1]. Moreover the attack tree with preconditions AND(< start,φ1 >
,...,< start,φn >) used in that paper is completely equivalent to SAND(start,AND(φ1, ...,φn)) in our
formalism. Thus the proof in [1] can be well adapted for our problem.

Lastly, we study SM.

Theorem 5.11. SM is CONP-complete.

For the membership, we can use the same idea as for the membership of the SNE except that, now,
we already know the strategy of the attacker, we thus do not need to use any existential guess for the
action of Attacker. In other words, it is equivalent to simply considering Defender choosing a branch of
the attack tree and then verifying if it forms an attack or not. Therefore, we use a variant of Algorithm 1
without existential choices, this gives us a CONP algorithm.

For the hardness, we still use the idea of the construction behind the SNE, but now, we consider that
only the actions of Defender matter in the progress of the game arena. This way, we can reduce the
UNSAT problem, known to be CONP-complete, to SM. The UNSAT problem is nothing less than the
sub-problem of the QBF problem where an instance of the problem only uses "∀" quantifiers.

176 Adversarial Formal Semantics of Attack Trees and Related Problems

This concludes the discussion over decision problems; our results are summarised in Table 1.

6 Future work

In this paper, we proposed a strategy semantics for attack trees, useful to tackle some practical questions
(SNE and SM) not expressible with standard semantics provided by the literature. The price to pay is to
renounce a compositional semantics of attack trees. One way to regain it might be to consider a strategy
semantics based on a tree automata: we associate with each attack tree a tree automaton recognising its
strategy semantics. This is currently work. Moreover, being able to consider automata recognising the
strategy semantics allows us to model attack scenarios with constraints, for example, considering that the
attacker cannot perform a given action more than a certain amount of time.

Moreover, we are currently exploring the possibility to expand the path and the strategy semantics to
attack-defense trees. The main idea is to consider a counter operator in attack trees. This generalisation
could lead to a better understanding of the differences between the strategy semantics and the attack-
defence tree formalism.

References

[1] Maxime Audinot, Sophie Pinchinat & Barbara Kordy (2017): Is my attack tree correct? In: European
Symposium on Research in Computer Security, Springer, pp. 83–102, doi:10.1007/978-3-319-66402-6_7.

[2] Ashok K Chandra & Larry J Stockmeyer (1976): Alternation. In: 17th Annual Symposium on Foundations
of Computer Science (sfcs 1976), IEEE, pp. 98–108, doi:10.1109/SFCS.1976.4.

[3] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof Löding, Sophie
Tison & Marc Tommasi (2008): Tree automata techniques and applications.

[4] Luca De Alfaro, Thomas A Henzinger & Orna Kupferman (2007): Concurrent reachability games. Theoret-
ical computer science 386(3), pp. 188–217, doi:10.1016/j.tcs.2007.07.008.

[5] Ross Horne, Sjouke Mauw & Alwen Tiu (2017): Semantics for specialising attack trees based on linear
logic. Fundamenta Informaticae 153(1-2), pp. 57–86, doi:10.3233/FI-2017-1531.

[6] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Saša Radomirović & Rolando Trujillo-Rasua (2015): Attack trees
with sequential conjunction. In: IFIP International Information Security and Privacy Conference, Springer,
pp. 339–353, doi:10.1007/978-3-319-18467-8_23.

[7] Aivo Jürgenson & Jan Willemson (2008): Computing exact outcomes of multi-parameter attack trees. In:
OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", Springer, pp.
1036–1051, doi:10.1007/978-3-540-88873-4_8.

[8] Barbara Kordy, Sjouke Mauw, Saša Radomirović & Patrick Schweitzer (2010): Foundations of attack–
defense trees. In: International Workshop on Formal Aspects in Security and Trust, Springer, pp. 80–95,
doi:10.1007/978-3-642-19751-2_6.

[9] Barbara Kordy, Sjouke Mauw, Saša Radomirović & Patrick Schweitzer (2014): Attack–defense trees. Journal
of Logic and Computation 24(1), pp. 55–87, doi:10.1093/logcom/exs029.

[10] Sjouke Mauw & Martijn Oostdijk (2005): Foundations of attack trees. In: International Conference on
Information Security and Cryptology, Springer, pp. 186–198, doi:10.1007/11734727_17.

[11] Soumya Paul, Ramaswamy Ramanujam & Sunil Simon (2015): Automata and compositional strategies in
extensive form games. In: Models of Strategic Reasoning, Springer, pp. 174–201, doi:10.1007/978-3-662-
48540-8_6.

https://doi.org/10.1007/978-3-319-66402-6_7
https://doi.org/10.1109/SFCS.1976.4
https://doi.org/10.1016/j.tcs.2007.07.008
https://doi.org/10.3233/FI-2017-1531
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-540-88873-4_8
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1093/logcom/exs029
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/978-3-662-48540-8_6
https://doi.org/10.1007/978-3-662-48540-8_6

T. Brihaye, S. Pinchinat & A. Terefenko 177

[12] Sophie Pinchinat, Barbara Fila, Florence Wacheux & Yann Thierry-Mieg (2019): Attack trees: a notion
of missing attacks. In: International Workshop on Graphical Models for Security, Springer, pp. 23–49,
doi:10.1007/978-3-030-36537-0_3.

[13] Sophie Pinchinat, François Schwarzentruber & Sébastien Lê Cong (2020): Library-Based Attack Tree Syn-
thesis. In: International Workshop on Graphical Models for Security, Springer, pp. 24–44, doi:10.1007/978-
3-030-62230-5_2.

[14] Abdallah Saffidine, Sébastien Lê Cong, Sophie Pinchinat & François Schwarzentruber (2019): The Packed
Interval Covering Problem is NP-complete. arXiv preprint arXiv:1906.03676.

[15] Bruce Schneier (1999): Attack trees. Dr. Dobb’s journal 24(12), pp. 21–29,
doi:10.1002/9781119183631.ch21.

[16] Wojciech Wideł, Maxime Audinot, Barbara Fila & Sophie Pinchinat (2019): Beyond 2014: Formal
Methods for Attack Tree–based Security Modeling. ACM Computing Surveys (CSUR) 52(4), pp. 1–36,
doi:10.1145/3331524.

https://doi.org/10.1007/978-3-030-36537-0_3
https://doi.org/10.1007/978-3-030-62230-5_2
https://doi.org/10.1007/978-3-030-62230-5_2
https://doi.org/10.1002/9781119183631.ch21
https://doi.org/10.1145/3331524

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. 178–193, doi:10.4204/EPTCS.370.12

© Aguirre-Sambonı́ et al.

This work is licensed under the

Creative Commons Attribution License.

Avoid One’s Doom: Finding Cliff-Edge Configurations in

Petri Nets

Giann Karlo Aguirre-Sambonı́*1 Stefan Haar*1 Loı̈c Paulevé*2

Stefan Schwoon*1 Nick Würdemann*3

1INRIA and LMF, CNRS and ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
{giann-karlo.aguirre-samboni,stefan.haar,stefan.schwoon}@inria.fr

2Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, Talence, France
loic.pauleve@labri.fr

3Department of Computing Science, University of Oldenburg, Oldenburg, Germany
wuerdemann@informatik.uni-oldenburg.de

A crucial question in analyzing a concurrent system is to determine its long-run behaviour, and in

particular, whether there are irreversible choices in its evolution, leading into parts of the reachability

space from which there is no return to other parts. Casting this problem in the unifying framework

of safe Petri nets, our previous work [3] has provided techniques for identifying attractors, i.e. ter-

minal strongly connected components of the reachability space, whose attraction basins we wish to

determine. Here, we provide a solution for the case of safe Petri nets. Our algorithm uses net un-

foldings and provides a map of all of the system’s configurations (concurrent executions) that act as

cliff-edges, i.e. any maximal extension for those configurations lies in some basin that is considered

fatal. The computation turns out to require only a relatively small prefix of the unfolding, just twice

the depth of Esparza’s complete prefix.

1 Introduction

Unfoldings of Petri nets [6], which are essentially event structures in the sense of Winskel et al. [18] with

additional information about states, are an acyclic representation of the possible sequences of transitions,

akin to Mazurkiewicz traces but enriched with branching information.

Many reachability-related verification problems for concurrent systems have been successfully ad-

dressed by Petri-net unfolding methods over the past decades, see [15, 7, 6]. However, questions of long-

term behaviour and stabilization have received relatively little attention. With the growing interest in for-

mal methods for biology, the key feature of multistability of systems [30, 24, 20, 23] comes into focus. It

has been studied in other qualitative models such as Boolean and multivalued networks [29, 28, 26]. Mul-

tistability characterizes many fundamental biological processes, such as cellular differentiation, cellular

reprogramming, and cell-fate decision; in fact, stabilization of a cell regulatory network corresponds

to reaching one of the - possibly many - phenotypes of the cell, thus explaining the important role of

multistability in cell biology. However, multistability emerges also in many other branches of the life

sciences; our own motivation is the qualitative analysis of the fate of ecosystems, see [25].

Multistability can be succinctly described as the presence of several attractors in the system under

study. Attractors characterize the stable behaviours, given as the smallest subsets of states from which the

system cannot escape; in other words, they are terminal strongly connected components of the associated

*We gratefully acknowledge the fruitful exchanges with Cédric Gaucherel and Franck Pommereau. This work was supported

by the DIGICOSME grant ESCAPE, DIGICOSME RD 242-ESCAPE-15203, and by the French Agence Nationale pour la

Recherche (ANR) in the scope of the project “BNeDiction” (grant number ANR-20-CE45-0001).

http://dx.doi.org/10.4204/EPTCS.370.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Aguirre-Sambonı́ et al. 179

transition system. In the long run, the system will enter one of its attractors and remain inside; multi-

stability arises when there is more than one such attractor. The basin of attractor A consists of the states

from which the system inevitably reaches A.

The basin includes the attractor itself, and possibly one or several transient states [14].

We aim at finding the tipping points in which the system switches from an undetermined or free state

into some basin; while interesting beyond that domain, this is a recurrent question in the analysis of

signalling and gene regulatory networks [5, 16]. In [8], the authors provide a method for identifying, in

a boolean network model, the states in which one transition leads to losing the reachability of a given

attractor (called bifurcation transitions there; we prefer to speak of tipping points instead). However,

enumerating the states in which the identified transitions make the system branch away from the attractor

can be highly combinatorial and hinders a fine understanding of the branching. Thus, the challenge

resides in identifying the specific contexts and sequences of transitions leading to a strong basin.

Using a bounded unfolding prefix, all reachable attractors [3] can be extracted. Also, we have exhib-

ited ([11]) the particular shape of basins that are visible in a concurrent model.

In the present paper, we build on this previous analyses; the point of view taken here is that all

attractors correspond to the end of the system’s free behaviour, in other words to its doom. We will give

characterizations of basin boundaries (called cliff-edges below), and of those behaviours that remain free,

in terms of properties of the unfolding, reporting also on practical experiments with an implementation of

the algorithms derived. We finally introduce a novel type of quantitative measure, called protectedness,

to indicate how far away (or close) a system is from doom, in a state that is still free per se. General

discussions and outlook will conclude this paper.

2 Petri Nets and Unfoldings

We begin now by recalling the basic definitions needed below. A Petri net is a bipartite directed graph

whose nodes are either places or transitions, and places may carry tokens. In this paper, we consider

only safe Petri nets where a place carries either one or no token in any reachable marking. The set of

currently active places form the state, or marking, of the net.

Note. Some remarks are in order concerning our use of Petri nets versus that of boolean networks,

which are more widely used in systems biology. Safe (or 1-bounded) Petri nets [17] are close to Boolean

and multivalued networks [4], yet enable a more fine-grained specification of the conditions for trigger-

ing value changes. Focussing on safe PNs entails no limitation of generality of the model, as two-way

behaviour-preserving translations between Boolean and multivalued models exist (see [4] and the ap-

pendix of [3] for discussion). We are thus entitled to move between these models without loss of expres-

siveness; however, Petri nets provide more convenient ways to develop and present the theory and the

algorithms here.

Formally, a net is a tuple N = 〈P,T,F〉, where T is a finite set of transitions, P a finite set of places,

and F ⊆ (P× T)∪ (T × P) is a flow relation whose elements are called arcs. In figures, places are

represented by circles and the transitions by boxes (each one with a label identifying it).

For any node x ∈ P∪ T , we call pre-set of x the set •x = {y ∈ P∪ T | 〈y,x〉 ∈ F} and post-set of x

the set x• = {y ∈ P∪T | 〈x,y〉 ∈ F}. A subset M ⊆ P of the places is called a marking. A Petri net is a

tuple N = 〈P,T,F,M0〉, with M0 ⊆ P an initial marking. Markings are represented by dots (or tokens)

in the marked places. A transition t ∈ T is enabled at a marking M, denoted M
t
→, if and only if •t ⊆M.

An enabled transition t can fire, leading to the new marking M′ = (M \ •t)∪ t•;1 in that case we write

1This definition does not correspond to the standard semantics of Petri nets, but is equivalent for safe Petri nets, and we

180 Finding Minimal Doomed Configurations

M
t
→M′. A firing sequence from a marking M′0 is a (finite or infinite) sequence w = t1t2t3 . . . over T such

that there exist markings M′1,M
′
2, . . . with M′0

t1→M′1
t2→M′2

t3→ If w is finite and of length n, we write

M′0
w
→M′n, and we say that M′n is reachable from M′0, also simply written M′0→M′n. We denote the set of

markings reachable from some marking M in a net N by RN(M). A Petri net 〈N,M0〉 is considered safe

if every marking in M ∈ RN(M0) and every transition t enabled in M satisfy (M∩ t•)⊆ •t. In this paper,

we assume that all our Petri nets are safe.

From an initial marking of the net, one can recursively derive all possible transitions and reachable

markings, resulting in a marking graph (Def. 1).

Definition 1 Let N = 〈P,T,F〉 be a net and M a set of markings. The marking graph induced by M

is a directed graph 〈M ,E 〉 such that E ⊆M ×M contains 〈M,M′〉 iff M
t
→ M′ for some t ∈ T; the

arc 〈M,M′〉 is then labeled by t. The reachability graph of a Petri net 〈N,M0〉 is the graph induced by

RN(M0).

The reachability graph is always finite for safe Petri nets.

•p1 •p2

p3 p4 p5 p6

p7p8

α β

ξ

γ δ

θ

κ

ηζ

(a) {p1, p2}

{p4, p2}{p3, p2} {p1, p5} {p1, p6}

{p3, p5} {p4, p6} {p3, p6} {p4, p5}

{p8} {p7}

α β γ δ

ξ η θ ζ

κ

(b)

Figure 1: Petri net example from [11] in (a), and its reachability graph in (b).

Figure 1b shows the reachability graph for our running example 1a.

Unfoldings. Roughly speaking, the unfolding of a Petri net N is an acyclic Petri net (with particu-

lar structural properties), U , that reproduces exactly the same behaviours as N .

We now give some technical definitions to introduce unfoldings formally. A more extensive treatment

can be found, e.g., in [7, 6].

Definition 2 (Causality, conflict, concurrency) Let N = 〈P,T,F〉 be a net and x,y ∈ P∪ T two nodes

of N. We say that x is a causal predecessor of y, noted x < y, if there exists a non-empty path of arcs from

x to y. We note x ≤ y if x < y or x = y. If x ≤ y or y ≤ x, then x and y are said to be causally related.

Transitions u and v are in direct conflict, noted u #δ v, iff •u∩ •v 6= /0; nodes x and y are in conflict, noted

x # y, if there exist u,v ∈ T such that u 6= v, u ≤ x, v ≤ y, and u #δ v. We call x and y concurrent, noted

x co y, if they are neither causally related nor in conflict. A set of concurrent places is called a co-set.

Definition 3 (Occurrence net) Let O = 〈B,E,G,c0〉 be a Petri net. We say that O is an occurrence net

if it satisfies the following properties:

prefer it for the sake of simplicity.

Aguirre-Sambonı́ et al. 181

1. The causality relation < is acyclic;

2. |•b| ≤ 1 for all places b ∈ B, and b ∈ c0 iff |•b|= 0;

3. For every transition e ∈ E, e # e does not hold, and {x | x≤ e} is finite.

Following the convention in the unfolding literature, we refer to the places of an occurrence net

as conditions and to its transitions as events. Due to the structural constraints, the firing sequences of

occurrence nets have special properties: if some condition b is marked during a run, then the token on b

was either present initially or produced by one particular event (the single event in •b); moreover, once

the token on b is consumed, it can never be replaced by another token, due to acyclicity of <.

Definition 4 (Configurations, cuts) Let O = 〈B,E,G,c0〉 be an occurrence net. A set C ⊆ E is called a

configuration of O if (i) C is causally closed, i.e. e′ < e and e ∈C imply e′ ∈C; and (ii) C is conflict-free,

i.e. if e,e′ ∈C, then ¬(e # e′). In particular, for any e∈ E, [e]
△
= {e′ ∈ E : e′ 6 e} and 〈e〉

△
= {e′ ∈ E : e′ <

e} are configurations, called the cone and stump of e, respectively; any C such that ∃ e ∈ E : C = [e] is

called a prime configuration. Denote the set of all configurations of O as C (O), and its subset containing

all finite configurations as C f(O), where we drop the reference to O if no confusion can arise. The cut

of a finite C, denoted cut(C), is the set of conditions (c0 ∪C•) \ •C. A run is a maximal element of

C (O) w.r.t. set inclusion; denote the set of O’s runs as Ω = Ω(O), and its elements generically by ω . If

C ∈C f, let the crest of C be the set crest(C)
△
= max<(C) of its maximal events. We say that configuration

C enables event e, written C
e
 , iff i) e 6∈ C and ii) C∪{e} is a configuration. Configurations C1,C2 are

in conflict, written C1 # C2, iff (C1∪C2) 6∈ C or, equivalently, iff there exist e1 ∈ C1 and e2 ∈ C2 such

that e1 # e2.2

Intuitively, a configuration is a set of events that can fire during a firing sequence of N , and its cut is

the set of conditions marked after that firing sequence. Note that /0 is a configuration, that crest(/0) = /0,

and that c0 is the cut of the configuration /0. The crest of a prime configuration [e] is {e}. In Figure 2, the

b1
1 b1

2

b1 b2b2
1 b2

2

b3 b4 b5 b6

b1
7 b2

7

b1
8

b2
8

α1 β1

ξ1

γ1 δ1

θ1

κ2κ1

ζ1 η1

Figure 2: A prefix of the unfolding for the Petri net of Figure 1a.

initial cut is c0 = {b
1
1,b

1
2}; we have prime configurations, e.g., {α1}, {β1}, {ξ1}, {ζ1} etc, and non-prime

configurations {α1,γ1}, {α1,δ1} etc.

2The use of the same symbol # is motivated by the fact that C1 = [e1] and C2 = [e2] implies C1 # C2⇔ e1 # e2.

182 Finding Minimal Doomed Configurations

Definition of Unfoldings. Let N = 〈P,T,F,M0〉 be a safe Petri net. The unfolding U = 〈B,E,G,c0〉
of N is an occurrence net (equipped with a mapping π) such that the firing sequences and reachable

markings of U are exactly the firing sequences and reachable markings of N (modulo π), see below.

U may be infinite; it can be inductively constructed as follows:

1. The condition set B is a subset of (E∪{⊥})×P. For a condition b = 〈e,p〉, we will have e = ⊥
iff b ∈ c0; otherwise e is the singleton event in •b. Moreover, π(b) = p. The initial cut c0 contains

exactly one condition 〈⊥,p〉 for each initially marked place p ∈M0 of N .

2. The events of E are a subset of 2B×T . More precisely, for every co-set B′⊆ B such that π(B′) = •t,
we have an event e = 〈B′, t〉. In this case, we add edges 〈b,e〉 for each b ∈ B′ (i.e. •e = B′), we set

π(e) = t, and for each p ∈ t•, we add to B a condition b = 〈e,p〉 connected by an edge 〈e,b〉.

Intuitively, a condition 〈e,p〉 represents the possibility of putting a token onto place p through a particular

set of events, while an event 〈B′,e〉 represents a possibility of firing transition e in a particular context.

Configurations and Markings. The following fact from the literature will be used below:

Lemma 1 (see e.g. [7]) Fix a safe Petri net N = 〈P,T,F,M0〉 and its unfolding U = 〈B,E,G,c0,π〉.
Then for any two conditions (events) b,b′ (e,e′) such that b co b′ (e co e′), one has π(b) 6= π(b′) (π(e) 6=
π(e′)). Moreover, every finite configuration C of U represents a possible firing sequence whose resulting

marking corresponds, due to the construction of U , to a reachable marking of N . This marking is

defined as Mark(C)
△
= {π(b) | b ∈ cut(C)}.

This means, informally speaking, that any configuration of the system can be split into consecutive parts

in such a way that each part is itself a configuration obtained by unfolding the Petri net ‘renewed’ with

the marking reached by the previous configuration. The following definition formalizes this.

Definition 5 Let O = 〈B,E,G,c0〉 be an occurrence net. For any finite configuration C ∈ C f(O), denote

by OC
△
=U (〈N,Mark(C)〉) the shift of O by C. C is the concatenation of C1 and C2, written C =C1⊕C2,

iff one has

1. C1 ∈ C f(O) and C1 ⊆ C,

2. C2 ∈ C f(OC1
) and C2 = C\C1.

Clearly, the empty configuration /0 satisfies C⊕ /0 = /0⊕C = C. If C = C1⊕C2, write C1 = C⊖C2 and

C2 = C⊘C1. Moreover, write

C =
n

⊕

i=1

Ci iff C = C1⊕ . . .⊕Cn.

In figure 2, setting C1
△
= {β1,γ1} , C2

△
= {ζ1,κ1} and C3

△
= {β1,γ1,ζ1,κ1}, one has C3 = C1⊕C2 and

consequently C1 = C3⊖C2 and C2 = C3⊘C1.

Complete Prefix. In general, U is an infinite net, but if N is safe, then it is possible to compute a

finite prefix Π of U that is “complete” in the sense that every reachable marking of N has a reachable

counterpart in Π, and vice versa.

Definition 6 (complete prefix, see [15, 7, 6]) Let N = 〈N,M0〉 be a safe Petri net and U = 〈B,E,G,c0〉
its unfolding. A finite occurrence net Π = 〈B′,E′,G′,c0〉 is said to be a prefix of U if E′ ⊆ E is causally

closed, B′ = c0∪E′
•
, and G′ is the restriction of G to B′ and E′. A prefix Π is said to be complete if for

every reachable marking M of N there exists a configuration C of Π such that (i) Mark(C) = M, and

(ii) for each transition t ∈ T enabled in M, there is an event 〈B′′, t〉 ∈ E′ enabled in cut(C).

Aguirre-Sambonı́ et al. 183

We shall write Π0 = Π0(N) to denote an arbitrary complete prefix of the unfolding of N . It is

known ([15, 7]) that the construction of such a complete prefix is indeed possible, and efficient tools

such as MOLE ([27]) exist for this purpose. While the precise details of this construction are out of scope

for this paper; some ingredients of it will play a role below, so we sketch them here.

Complete prefix scheme. The unfolding is stopped on each branch when some cutoff event is added.

The criterion for classifying an event e as cutoff is given by Marking equivalence: the marking Mark([e])
that e ‘discovers’ has already been discovered by a smaller configuration. Now, the ordering relation ≺
to compare two configurations must be an adequate order, i.e. C1 ⊆ C2 must imply C1 ≺ C2, to ensure

the completeness of the prefix obtained. As shown in [7], for some choices of≺, the obtained prefix may

be bigger than the reachability graph for some safe nets; however, if ≺ is a total order, the number of

non-cutoff events of the prefix Π0 thus obtained never exceeds the size of the reachability graph.

We will assume throughout this paper that complete prefixes are computed according to some ade-

quate total order, as is done in particular in the MOLE tool [27]. Below, we will propose a new such order

relation that underlies a novel concept of distance between markings.

The nested family (Πn)n≥0 of finite prefixes. Denote the complete prefix for N obtained according

to definition 6 as Π0; we extend Π0 to increasing prefixes Π1,Π1, . . . as follows. Starting at n = 0,

• let C n △= max(C (Πn)),

• set Mn
△
= {M ∈ 2P : ∃ C ∈ C n : M = Mark(C)},

• for all M ∈Mn, compute a complete prefix �M of 〈N,M〉;

• obtain Πn+1 by appending, to every C ∈ C n, a copy of �Mark(C) to every C ∈ C n.

3 Doomed configurations, and how to avoid them

3.1 Bad, Free and Doomed Configurations and Markings.

In this section, we present an algorithm that identifies precisely those configurations of a Petri net un-

folding from which one can no longer avoid reaching a certain long-term behaviour, its theoretical foun-

dations, and some experimental results. The formal setting here contains and extends the one established

in [10], specialized to the 1-safe case. We assume that we are given a set of bad markings Z ⊆ 2P. Since

we are interested in long-term behaviours, we assume that Z is reachability-closed, i.e. M ∈ Z and

M→M′ imply M′ ∈Z .

Define B
△
= {C ∈ C f : Mark(C) ∈ Z } as the set of bad configurations, and let B0 be the set of

configurations in B that are contained in Π0. B ⊆ C is absorbing or upward closed, that is, for all

C1 ∈B and C2 ∈ C f such that C1 ⊆ C2, one must have C2 ∈B.

For any C ∈ C , let ΩC
△
= {ω ∈Ω : C ⊆ ω} denote the maximal runs into which C can evolve. We

are interested in those finite configurations all of whose maximal extensions are ‘bad’, where we consider

infinite configurations as bad if they contain a bad finite configuration. We will call such configurations

doomed, since from them, the system cannot avoid entering a bad marking sooner or later (and from then

on, all reachable markings are bad).

Definition 7 Configuration C ∈ C f is doomed iff

∀ ω ∈ΩC : ∃ C′ ∈ C
f :

{

C ⊆ C′ ⊆ ω
∧ Mark(C′) ∈Z

(1)

184 Finding Minimal Doomed Configurations

The set of doomed configurations is denoted D; denote the set of minimal elements in D by Ď . If C is not

doomed, it has at least one maximal extension that never reaches bad markings. We call configurations

that are not doomed free, and denote the set of free configurations by F .

All reachable markings are represented by at least one configuration. Moreover, since the future

evolution of N depends only on the current marking, Mark(C1) = Mark(C2) for two configurations C1

and C2 implies that either both C1 and C2 are free, or both are doomed. Therefore, by extension, we call

Mark(C) free or doomed whenever C is.

Running Example. In the context of Figures 1a and 2, we consider Z the singleton set containing the

marking M8 = {P8}. Clearly, C1
△
= {α1,γ1,ξ1} and C2 = {β1,δ1,η1} satisfy Mark(C1) = Mark(C2) =

M8 and therefore C1,C2 ∈B. But note that C′1
△
= {α1,γ1} and C′2 = {β1,δ1} produce markings outside

Z , but they are doomed since any extension of these configurations leads into Z . Therefore, C′1,C
′
2 ∈B.

On the other hand, /0 is free, as well as {β1,γ1}, {α1,δ1}, etc. We note in passing that the Petri net in

Fig 1a allows to refine the understanding of the ‘tipping point’ by showing that doom is not brought about

by a single transition but rather the combined effect of two independent choices; this fact is obscured, or

at least far from obvious, in the state graph shown in Figure 1b.

Identifying free and doomed configurations belongs to the core objectives of this paper. In a first

step towards that, Theorem 1 below uses a similar proof idea as Lemma 8 in [12] in the context of fault

diagnosis. Let us first recall the notion of spoilers, introduced in [12]:

Definition 8 A spoiler of transition t (or event e) is any t′ ∈ T (e′ ∈E) such that •t′∩•t 6= /0 (•e∩•e′ 6= /0).

We write spoil(t) (spoil(e)) for the set of t′s (e’s) spoilers.

Note that t ∈ spoil(t) for all t ∈ T . The spoilers of t are characterized by the fact that their firing cancels

any enabling of t; that is, by being either in conflict with t, or identical with t.

Theorem 1 A configuration C ∈ C f is free iff either a) there exists a finite maximal configuration C′

such that C ⊆ C′ 6∈B, or b) there exist configurations C1,C2 ∈ C f such that

1. C ⊆ C1 ⊆ C2 /∈B;

2. Mark(C1) = Mark(C2);

3. for all events e ∈ E such that C1
e
 , one has spoil(e)∩C2 6= /0.

Some comments are in order before giving the proof of Theorem 1. First of all, the requirement to check

whether C2 6∈B can be met by checking whether Mark(C2) ∈ Z . Second, the spoiling condition (3)

ensures that the process that takes C1 to C2 forms a loop whose iteration yields a run.

Proof: In the following, let M := Mark(C1). We first prove the right-to-left implication. Case a)

is obvious, so assume that b) holds. Let C2 = C1⊕ Ĉ; then by 2., we can append Ĉ to C2, yielding

a strictly increasing sequence of configurations (Cn)n∈N such that Cn+1 = Cn⊕ Ĉ, and Mark(Cn) = M

for all n. By property 3, we know that Ĉ contains spoilers for all its initially enabled events , hence no

transition remains enabled forever, and ω
△
=

⋃

n∈N Cn is a maximal configuration. It remains to show

that ω contains no bad configuration: Suppose that there is C′ ⊆ ω with C′ ∈B. Since C′ is finite, we

have C′ ⊆Cn for some n. But then, M = Mark(Cn) is reachable from Mark(C′) ∈Z , contradicting our

assumptions. Thus ω never enters a bad state, and C is free.

For the forward implication, assume that C is free. Then there exists ω ∈ ΩC such that C′ /∈B for

all finite C′ ⊆ ω . If this ω can be chosen finite, then a) holds and we are done; so assume henceforth

that ω must be chosen infinite. Clearly, there must exist a reachable marking M that is visited an infinite

number of times by a family of nested finite configurations (Cn)n∈N such that
⋃

n∈N Cn = ω . Let C1
△
= C1

Aguirre-Sambonı́ et al. 185

and E ′ := {e : C1
e
 }. Let K be the smallest index such that for all e ∈ E ′, one has spoil(e)∩CK 6= /0;

such a K must exist since ω is maximal. Then C1 and C2
△
= CK have the required properties. �

Notice that the proof could be restructured by observing that case a) of Theorem 1 is indeed a special

instance of case b). In fact, taking C1
△
= C2

△
= C′ with C′ according to case a), conditions 1 and 2 of part

b) are obviously satisfied, and condition 3 holds vacuously since no event is enabled in C1 = C′. We note

in passeing that this observation is helpful in simplifying the implementation used for the experiments

below.

The interest of Theorem 1 lies in the following fact:

Lemma 2 For C ∈C f, checking whether C is free can be done using finite prefix Π1 of U (N,Mark(C)).

Proof: If C is free, let C1 and C2 be the configurations witnessing this fact from Theorem 1, and let

M := Mark(C1) = Mark(C2). If such configurations exist, then C1 can be chosen from the complete

prefix Π0, and C2 can be chosen from Π1, notably in the copy of ΠMark(C1) appended after C1.

Checking whether the configuration C2 thus found is in B is immediate, since it suffices to check

whether its marking is in Z , using the fact that Z is reachability-closed. To check the spoiler condition

(3) of Theorem 1, it suffices to check whether the conditions of the cut of C1 that are not consumed by

C2 enable some event. �

3.2 Finding Minimally Doomed Configurations: Algorithm MINDOO

Shaving and Rubbing. Let us start by observing that B, an upward closed set by construction, also has

some downward closure properties, meaning one can restrict control to act on ‘small’ configurations.

Definition 9 An event e is unchallenged iff there is no e′ such that e #δ e′, i.e. (•e)• = {e}.

Lemma 3 Let C ∈ C f and e ∈ crest(C) unchallenged; set C′
△
= C\{e}. Then C′ ∈ C f, and ΩC = ΩC′ .

Proof: C′ ∈ C f holds by construction. Also, ΩC ⊆ ΩC′ follows from C′ ⊆ C; it remains to show the

reverse inclusion. Assume there exists ω ∈ ΩC′\ΩC; then C\ω = {e}, and 〈e〉 ⊆ ω . By maximality, ω
must contain some e′ such that e # e′. Then by definition, there are events u 6= v, u≤ e, v≤ e′, and u #δ v.

In particular, u # e′, and since {e′}∪〈e〉 ⊆ω , this implies u = e. But e is unchallenged, so v cannot exist,

and neither can ω .

�

Definition 10 A configuration C ∈ C f such that crest(C) contains no unchallenged event is called

shaved.

Clearly, every C ∈ C f contains a unique maximal shaved configuration, which we call shave(C); it can

be obtained from C by recursively ‘shaving away’ any unchallenged e ∈ crest(C), and then continuing

with the new crest, until no unchallenged events remain.

Example. In the context of Figure 3, for C1 = {x,y,z} and C2 =C1∪{β ,γ ,u}, one has shave(C1) = /0

since x, y, and z are unchallenged, and shave(C2) = C1∪{β ,γ} since u is unchallenged but neither β
nor γ are. Note that in the unfolding of the running example shown in Figure 2, the κ-labeled events are

the only unchallenged ones.

As a consequence of Lemma 3, any C ∈ C f is in B iff shave(C) is. Still, it may be possible that such

a shave(C) can still be reduced further by removing some of its crest events. This would be the case,

e.g., if two conflicting events both lead to a bad state. Thus, given a crest event e, we test whether C\{e}
is free (e.g. because some event in conflict with e may allow to move away from doom) or still doomed.

186 Finding Minimal Doomed Configurations

b1

b2 b3

b4 b5

b6 b7 b8 b9

b10

x

y z

α β γ δ

u

Figure 3: An occurrence net. With C
△
= {x,y,z,β ,γ} and C′

△
= C∪{u}, suppose Z = {Mark(C′)} =

π({b10}). Then shave(C′) = C, and C is doomed. Moreover, C ∈ Ď since both C4
△
= C\{β} and

C5
△
= C\{γ} are free.

If the latter is the case, then C was not minimally doomed, and analysis continues with C\{e} (we say

that we ‘rub away’ e). If C\{e} is free, we leave e in place and test the remaining events from crest(C).
A configuration that is shaved and from which no event can be rubbed away is minimally doomed.

Algorithm 1 uses a ‘worklist’ set wl of doomed, shaved configurations to be explored; wl is modified

when a configuration is replaced by a set of rubbed (and again, shaved) versions of itself, or when a

configuration C is identified as minimally doomed, in which case it is removed from wl and added to D.

Every branch stops when a minimally doomed configuration is reached, i.e., a doomed configuration

C such by rubbing off any crest event e from C makes it free, i.e. C\{e} is free for all e∈ crest(C). When

the worklist is empty, all minimally doomed configurations have been collected in D. Note that if /0 ∈ wl

at any stage during the execution of Algorithm MINDOO, then /0 will be added to D, since MINDOO

will not enter the second foreach-loop in that case. In fact, if this situation arises, every configuration is

doomed, and thus /0 is the unique minimally doomed configuration.

The configurations produced in the course of the search strictly decrease w.r.t both size and inclusion.

Moreover, an upper bound on the prefixes explored at each step is given by B, itself strictly contained

in the complete finite prefix used to find all bad markings. According to [7], this prefix can be chosen of

size equal or smaller (typically: considerably smaller) than the reachability graph of N .

Theorem 2 For any safe Petri net N = 〈N,M0〉 and bad states set Z ⊆ RN(M0), Algorithm MINDOO

terminates, with output set D containing exactly all minimal doomed configurations, i.e. D= Ď .

Proof: Termination follows from the finiteness of min⊆(B0), since in each round of MINDOO there is

one configuration C that is either replaced by a set of strict prefixes or removed from wl. Therefore, after

a finite number of steps wl is empty. According to Lemma 2, the status (doomed or free) of a given finite

configuration can effectively be checked on a fixed finite prefix of U . Assume that after termination

of MINDOO, one has C ∈ D; we need to show C ∈ Ď . Clearly, when C was added to D, it had been

Aguirre-Sambonı́ et al. 187

Algorithm 1: Algorithm MINDOO

Data: Safe Petri Net N = 〈P,T,F,M0〉 and Z ⊆ 2P

Result: The set D of N ′s ⊆-minimal doomed configurations

D← /0; wl← /0;

foreach C ∈min⊆(B0) do

C′← shave(C);
wl← wl∪{C′};

end

while wl 6= /0 do

Pick C ∈ wl; add← true;

if (C\crest(C)) is doomed then

add← false;

C′← shave(C\crest(C));
wl← wl∪{C′};

else

foreach e ∈ crest(C) do

if (C\{e}) is doomed then

add← false;

C′← shave(C\{e});
wl← wl∪{C′};

end

end

end

wl← wl\{C};
if add then

D←D∪{C};
end

end

return D

detected as doomed; it remains to show that C is also minimal with this property. Assume that there is

C′ (C that as doomed as well. But in that case there exists e ∈ crest(C) such that C′ ⊆ (C\{e}) (C,

which implies that this (C\{e}) is doomed as well. But then add has been set to false in the second

foreach-loop, before C could have been added to D.

Conversely, let C ∈ Ď . Then (C\{e}) is free for all e∈ crest(C); the variable add remains thus at the

value true because no round of the second foreach-loop can flip it. Thus C is added to D, from which

MINDOO never removes any configuration. �

3.3 Implementation and Experiments.

A prototype implementation of MINDOO is available at [21]. It takes as input a safe Petri net in the PEP

format and relies on MOLE [27] for computing the initial finite prefix Π0 and its extensions. Algorithm 1

is implemented in Python, where the identification of maximal configurations, bad configurations, as

well as the verification of doomed status of a configuration is performed in Answer-Set Programming

188 Finding Minimal Doomed Configurations

Table 1: Statistics of Algorithm 1 on Petri net models of biological systems. The size of Π0 and Π1

is the number of their events; “# min doomed cfg” is the number of minimally doomed configurations;

“# doom checks” is the number of SAT checks for doom status of a configuration. “time” is the total

computation time on a 1.8Ghz CPU

Model size Π0 size Π1 # min doomed cfg # doom checks time

Lambda switch 126 1,060 10 29 1s

Cell death receptor 791 19,262 57 407 37s

Budding yeast cell cycle 1,413 184,363 114 837 8m3s

(ASP) employing the CLINGO solver [9], a logic programming technology close to SAT solving.

We illustrate in Table 1 the behavior of the implementation on different instances of Petri nets mod-

eling biological processes. In each case, we report the size (number of events) of prefixes Π0 and Π1

(including cut-off events), the number of minimally doomed configurations, and the number of configura-

tions which have been tested for being doomed. The purpose of the conducted experiments was to study

the tractability of our approach on literature models of biological systems for which the study of doomed

configuration was relevant. As exhibited in [3], one of the first potential bottleneck is the tractability of

the computation of the finite complete prefix Π0 and the enumeration of maximal configurations, which

is required for computing Π1. Then, our experiments have focused on assessing how evolved the number

of minimally doomed configurations, the number of candidate configurations screened by Algorithm 1,

and the overall computation time, with different sizes of prefixes Π1.

We selected 3 models published as Boolean networks, which can be translated as safe Petri nets us-

ing the encoding described in [3] implemented in the tool PINT [22]. The “Lambda switch” model [28]

comprises 11 places and 41 transitions, and possesses two limit behaviors, one being a deadlock, marked

as a bad marking. The “Cell death receptor” model [2] comprises 22 places and 33 transitions, and repro-

duces a bifurcation process into different cell fates, one of which has been declared as bad (apoptosis). In

these two cases, the minimally doomed configurations identify configurations in which a decisive event

has just taken place, committing the system to the attractor marked as bad. The “Budding yeast cell

cycle” model [19] comprises 18 places and 32 transitions, and represents the oscillation of gene activity

during the cell cycle. In this model, the cycle can exit and eventually reach a marking corresponding to all

genes being inactive, which is our bad marking. In this later case, the minimally doomed configurations

identify precisely when the system exits its oscillatory behavior.

It appears that the computation time for identifying minimally doomed configurations seems mostly

affected by the size of Π1 for the verification of the doom property of a configuration by ASP solving, im-

plementing the conditions of Theorem 1. In each case, the number of minimally doomed configurations

is a fraction of the size of the finite complete prefix Π0. Future work may explore compact representa-

tions of the set of minimally doomed configurations, as they typically share a large amount of events,

and may ease biological interpretations.

4 Protectedness

4.1 Cliff-Edges and Ridges.

From the minimal doomed configurations, we derive the critical ‘points’ at which a run becomes doomed:

Definition 11 An event set γ ⊆ E is called a cliff-edge iff there exists a minimally doomed configuration

Aguirre-Sambonı́ et al. 189

C ∈ Ď such that γ = crest(C). The set of cliff-edges is denoted Γ. The folding χ
△
= π(γ) ⊆ T of a

cliff-edge γ is called a ridge.

To complete the map of the evolutional landscape for N , it is important to find, in a bounded prefix

of the unfolding, all ridges that determine the viability of a trajectory. Notice that the completeness of

prefix Π0 only guarantees that all reachable markings of N are represented by at least one configuration

of Π0; this does not extend to a guarantee that all concurrent steps that lead into a doomed marking can

be found in Π0 as well. Fortunately, one has:

Lemma 4 For every ridge χ of N there is a witness in Π0, i.e. there exists a minimally doomed config-

uration C in Π1 such that π(crest(C)) = χ .

Proof: Fix χ , and let Cχ be any configuration such that π(crest(Cχ)) = χ ; set MC △= Mark(Cχ), and let

MC
χ the unique reachable marking such that MC

χ
χ
→MC. Then any such MC

χ is represented by some Cχ

in Π0. By construction, there exists a cliff-edge γ such that Cχ γ
 and π(γ) = χ . Then C

△
= Cχ ∪ γ is a

minimally doomed configuration that lies within Π1. �

4.2 Measuring the Distance from Doom

With the above, we have the tools to draw a map of the ‘landscape’ in which the system evolves, with

doomed zones and cliff-edges highlighted. What we wish to add now is to assist navigation in this

landscape: we intend to give a meaningful measure of how well, or badly, a current system state is

protected against falling from a cliff-edge. We chose to measure this distance not in terms of the length

of paths, or similar notions, but rather in terms of the choices that are made by the system in following a

particular path.

Consider a configuration C and the nonsequential process that it represents. Some of the events in

C can be seen as representing a decision, in the sense that their occurrence took place in conflict with

some event that was enabled by some prefix of C. The number of such events gives a measure of the

information contained in C, in terms of the decisions necessary to obtain C:

Definition 12 Let C ∈ C f, and define

dech(C)
△
=

∣

∣

{

e ∈ C : ∃ e′ ∈ E : e #C
σ e′

}
∣

∣ ,

where #σ is the strict C-conflict relation defined, for all e ∈ C, by

e #C
σ e′

△
⇐⇒ e #δ e′ ∧ 〈e′〉 ⊆ C.

dech(C) is called the decisional height of C.

In Figure 2, the configuration C1 = {ξ1,α1,γ1} satisfies dech(C1) = 2, whereas for C0 = {β1}, one has

dech(C0) = 1.

Note that #C
σ is more restrictive than direct conflict #δ ; it is also more restrictive than the immedi-

ate conflict in the literature (e.g. [1]). It is closely dependent on the configuration C under study, and

describes precisely those events against which the process had to decide in performing C.

Now, for any free marking M (or, equivalently, any free configuration C such that Mark(C) = M),

we wish to measure the threat represented by doomed markings reachable from M: how far away from

doom is the system when it is in M ? Using the decisional height introduced above, we can define a

height difference in terms of the conflicts that lead from one marking to another:

190 Finding Minimal Doomed Configurations

b1 b2

b3 b4 b5

b6 b7 b8

x y z

α β γ

Figure 4: Illustration of direct conflict.

Definition 13 For C ∈ C f, let

ĎC
△
=

{

{C′ ∈ Ď : C ⊆ C′} : C ∈F

{C} : C ∈B
(2)

The protectedness of C is then

prot(C)
△
= min

C′∈ĎC

{

dech(C′⊘C)
}

(3)

In Figure 3, with the definitions introduced there, prot(C)= prot(C′)= 0. Setting C1
△
= {x}, C2

△
= {x,y},

C3
△
= {x,z}, C4

△
= C2∪C3, C5

△
= C4∪{β}, and C6

△
= C4∪{γ}, one further has

prot(C1) = prot(C2) = prot(C3) = 2

prot(C4) = prot(C5) = 1.

Returning to Figure 4, suppose that C′ = {x,y,β} is the only minimally doomed configuration. Then for

C = {x,z,α} as above, we have prot(C) = 1, because the only direct conflict here is the one between z

and y.

Note that the definition of protectedness is parametrized by the choice of conflict relation in com-

puting dech(•). Using direct conflict instead of strict conflict would increase dech(•) and lead to an

overevaluation of protectedness.

To see the point, consider the occurrence net in Figure 4. Let Cα = {x,z,α}, Cβ = {x,y,β} and

Cγ = {x,y,α ,γ}. We have dech(Cα) = 1, dech(Cβ) = 3 and dech(Cγ) = 2. Were #σ replaced by #δ

in the computation of dech(•), these values would not change except for Cα where it would change to

2. As a result, if C ∈ Ď , the protectedness of the empty configuration would be evaluated as 2, whereas

by our definition prot(/0) = 1. Indeed, /0 is just one wrong decision away from doom, and this is what

protectness is meant to express.

4.3 Computing Protectedness is Feasible

Computation of prot(•) does not require any larger data structure than those already required for com-

puting Ď according to Lemma 2:

Aguirre-Sambonı́ et al. 191

Lemma 5 There is a complete prefix scheme producing a complete prefix Π0 whose size is bounded

by the number of reachable markings, and such that for every finite configuration C, prot(C) can be

computed on Π0(Mark(C)).

Proof: If Ď ∩C (Π0) = /0, then all extensions of C are free, and we are done. Otherwise, the crucial

step is to find an adequate total order ≺ on finite configurations, that ensures that Π0 contains at least

one minimally doomed configuration that minimizes dech(•) over all minimally doomed configurations

in U (Mark(C)). The following order ≺ is obtained by modifying the total order ≺F introduced in [7],

Def. 6.2.: For C1,C2 ∈ C f, write C1 ≺ C2 iff either

• dech(C1)< dech(C2), or

• dech(C1) = dech(C2) and C1≪ C2, or

• dech(C1) = dech(C2) and C1 ≡ C2, and FC(C1)≪ FC(C2),

where≪ (≡) denote lexicographic ordering (lexicographic equivalence) wrt some total ordering of the

transition set T , and FC denotes Cartier-Foata normal form. The proof of Theorem 6.4. of [7] extends

immediately, proving that ≺ is an adequate total order; therefore, Lemma 5.3. of [7] applies, hence any

complete prefix Π≺0 obtained via the scheme using ≺ is bounded in size by the reachability graph. Now,

let C ∗ be the set of configurations from Ď(Mark(C)) that minimize dech(•); by construction of ≺, one

has C ∗∩C (Π≺0) 6= /0. �

5 Discussion

The results presented here give a toolkit for the analysis of tipping situations in a safe Petri net, i.e. when

and how a basin boundary is crossed; an algorithmic method for finding minimally doomed configuration

has been developed, implemented and tested.

Moreover, we have introduced a measure of protectedness that indicates the number of decisions that

separate a free state from doom. It uses an intrinsic notion of decisional height that allows to warn about

impending dangerous scenarios; at the same time, this height is also ’natural’ for unfoldings, in the sense

that it induces an adequate linear order that allows to compute complete prefixes of bounded size.

On a more general level, the results here are part of a broader effort to provide a discrete, Petri-net

based framework for dynamical systems analysis in the life sciences. The applications that we target lie

in systems biology and ecology.

Future work will investigate possibilities for Doom Avoidance Control, i.e. devising strategies that

allow to steer away from doom; we expect to complement the existing approaches via structural methods

of e.g. Antsaklis et al [13], and also the unfolding construction of Giua and Xie [10]. A crucial question

is the knowledge that any control player can be assumed to have, as a basis for chosing control actions.

We believe the protectedness measure is a valid candidate for coding this information, so that a controller

may take action when the system is too close to doom (wrt some thresholds to be calibrated) but there

still remain decisns that can be taken to avoid it. Evaluating this option, along with other approaches,

must, however, be left to future work.

References

[1] Samy Abbes & Albert Benveniste (2006): Probabilistic models for true-concurrency: branching cells

and distributed probabilities for event structures. Information and Computation 204(2), pp. 231–274,

doi:10.1016/j.ic.2005.10.001.

https://doi.org/10.1016/j.ic.2005.10.001

192 Finding Minimal Doomed Configurations

[2] Laurence Calzone, Laurent Tournier, Simon Fourquet, Denis Thieffry, Boris Zhivotovsky, Emmanuel Barillot

& Andrei Zinovyev (2010): Mathematical Modelling of Cell-Fate Decision in Response to Death Receptor

Engagement. PLOS Computational Biology 6(3), p. e1000702, doi:10.1371/journal.pcbi.1000702.

[3] Thomas Chatain, Stefan Haar, Loı̈g Jezequel, Loı̈c Paulevé & Stefan Schwoon (2014): Characterization

of Reachable Attractors Using Petri Net Unfoldings. In Pedro Mendes, editor: Proceedings of the 12th

Conference on Computational Methods in System Biology (CMSB’14), Lecture Notes in Bioinformatics

8859, Springer-Verlag, Manchester, UK, pp. 129–142, doi:10.1007/978-3-319-12982-2 10.

[4] Thomas Chatain, Stefan Haar, Juraj Kolcák, Loı̈c Paulevé & Aalok Thakkar (2020): Concurrency in Boolean

networks. Nat. Comput. 19(1), pp. 91–109, doi:10.1007/s11047-019-09748-4.

[5] David P. A. Cohen, Loredana Martignetti, Sylvie Robine, Emmanuel Barillot, Andrei Zinovyev & Laurence

Calzone (2015): Mathematical Modelling of Molecular Pathways Enabling Tumour Cell Invasion and Mi-

gration. PLoS Comput Biol 11(11), p. e1004571, doi:10.1371/journal.pcbi.1004571.

[6] J. Esparza & K. Heljanko (2008): Unfoldings – A Partial-Order Approach to Model Checking. Springer.

ISBN: 978-3-540-77426-6.

[7] J. Esparza, S. Römer & W. Vogler (2002): An Improvement of McMillan’s Unfolding Algorithm. FMSD 20,

pp. 285–310, doi:10.1023/A:1014746130920.

[8] Louis Fippo Fitime, Olivier Roux, Carito Guziolowski & Loı̈c Paulevé (2017): Identification of bifurcation

transitions in biological regulatory networks using Answer-Set Programming. Algorithms for Molecular

Biology 12(1), p. 19, doi:10.1186/s13015-017-0110-3.

[9] Martin Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2014): Clingo = ASP + Control:

Preliminary Report. CoRR abs/1405.3694, doi:10.48550/arXiv.1405.3694.

[10] A. Giua & X. Xie (2005): Control of safe ordinary Petri nets using unfolding. Discrete Event Dynamic

Systems 15(4), pp. 349–373, doi:10.1007/s10626-005-4057-z.

[11] Stefan Haar, Loı̈c Paulevé & Stefan Schwoon (2020): Drawing the Line: Basin Boundaries in Safe Petri

Nets. In Alessandro Abate, Tatjana Petrov & Verena Wolf, editors: Proc.18th Conf. on Computational

Methods in System Biology (CMSB’20), Lecture Notes in Bioinformatics 12314, Springer, pp. 321–336,

doi:10.1007/978-3-030-60327-4 17.

[12] Stefan Haar, César Rodrı́guez & Stefan Schwoon (2013): Reveal Your Faults: It’s Only Fair! In Marta

Pietkiewicz-Koutny & Mihai Teodor Lazarescu, editors: Proc. 13th Int. Conf. on Application of Con-

currency to System Design (ACSD’13), IEEE Computer Society Press, Barcelona, Spain, pp. 120–129,

doi:10.1109/ACSD.2013.15.

[13] Marian V. Iordache & Panos J. Antsaklis (2006): Supervisory Control of Concurrent Systems: A Petri Net

Structural Approach. Birkhäuser, Boston, Basel, Berlin.

[14] H. Klarner, H. Siebert, S. Nee & F. Heinitz (2018): Basins of Attraction, Commitment Sets and Phe-

notypes of Boolean Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics,

doi:10.1109/TCBB.2018.2879097.

[15] K. L. McMillan (1992): Using Unfoldings to Avoid the State Explosion Problem in the Verification of Asyn-

chronous Circuits. In: CAV, pp. 164–177, doi:10.1007/3-540-56496-9 14.

[16] Nuno D. Mendes, Rui Henriques, Elisabeth Remy, Jorge Carneiro, Pedro T. Monteiro & Claudine Chaouiya

(2018): Estimating Attractor Reachability in Asynchronous Logical Models. Frontiers in Physiology 9,

doi:10.3389/fphys.2018.01161.

[17] T. Murata (1989): Petri nets: Properties, analysis and applications. Proc. of the IEEE 77(4), pp. 541–580,

doi:10.1109/5.24143.

[18] M. Nielsen, G. D. Plotkin & G. Winskel (1979): Petri Nets, Event Structures and Domains. In: SCC, pp.

266–284, doi:10.1016/0304-3975(81)90112-2.

https://doi.org/10.1371/journal.pcbi.1000702
https://doi.org/10.1007/978-3-319-12982-2_10
https://doi.org/10.1007/s11047-019-09748-4
https://doi.org/10.1371/journal.pcbi.1004571
https://doi.org/10.1023/A:1014746130920
https://doi.org/10.1186/s13015-017-0110-3
https://doi.org/10.48550/arXiv.1405.3694
https://doi.org/10.1007/s10626-005-4057-z
https://doi.org/10.1007/978-3-030-60327-4_17
https://doi.org/10.1109/ACSD.2013.15
https://doi.org/10.1109/TCBB.2018.2879097
https://doi.org/10.1007/3-540-56496-9_14
https://doi.org/10.3389/fphys.2018.01161
https://doi.org/10.1109/5.24143
https://doi.org/10.1016/0304-3975(81)90112-2

Aguirre-Sambonı́ et al. 193

[19] David A. Orlando, Charles Y. Lin, Allister Bernard, Jean Y. Wang, Joshua E. S. Socolar, Edwin S. Iversen,

Alexander J. Hartemink & Steven B. Haase (2008): Global control of cell-cycle transcription by coupled

CDK and network oscillators. Nature 453(7197), pp. 944–947, doi:10.1038/nature06955.

[20] Ertugrul M. Ozbudak, Mukund Thattai, Han N. Lim, Boris I. Shraiman & Alexander van Oudenaarden

(2004): Multistability in the lactose utilization network of Escherichia coli. Nature 427(6976), pp. 737–740,

doi:10.1038/nature02298.

[21] Loı̈c Paulevé: Implementation of the search for minimal doomed configurations. Available at

https://gitub.u-bordeaux.fr/lpauleve/doomed-configurations.

[22] Loı̈c Paulevé (2017): Pint: a static analyzer for transient dynamics of qualitative networks with

IPython interface. In: CMSB 2017 - 15th conference on Computational Methods for Systems Bi-

ology, Lecture Notes in Computer Science 10545, Springer International Publishing, pp. 309–316,

doi:10.1007/978-3-319-67471-1 20.

[23] Alexander N. Pisarchik & Ulrike Feudel (2014): Control of multistability. Physics Reports 540(4), pp. 167–

218, doi:10.1016/j.physrep.2014.02.007.

[24] Erik Plahte, Thomas Mestl & Stig W. Omholt (1995): Feedback Loops, Stability and Multistationarity in

Dynamical Systems. J. Biol. Syst. 03(02), pp. 409–413, doi:10.1142/s0218339095000381.

[25] Franck Pommereau, Colin Thomas & Cédric Gaucherel (2022): Petri Nets Semantics of Reaction Rules (RR),

a Language for Ecosystems Modelling. In: Proc. 43rd Int. Conf. on Application and Theory of Petri Nets and

Concurrency, Bergen, Norway, pp. 1–20, doi:10.1007/978-3-031-06653-5 10.

[26] Adrien Richard (2019): Positive and negative cycles in Boolean networks. Journal of Theoretical Biology

463, pp. 67–76, doi:10.1016/j.jtbi.2018.11.028.

[27] S. Schwoon (2014): The MOLE Tool. URL: http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/.

[28] Denis Thieffry & René Thomas (1995): Dynamical behaviour of biological regulatory networks—II.

Immunity control in bacteriophage lambda. Bulletin of Mathematical Biology 57, pp. 277–297,

doi:10.1007/BF02460619.

[29] R. Thomas (1980): On the relation between the logical structure of systems and their ability to gen-

erate multiple steady states or sustained oscillations. Springer Series in Synergies 9, pp. 180–193,

doi:10.1007/978-3-642-81703-8 24.

[30] René Thomas & Richard d’Ari (1990): Biological Feedback. CRC Press, Boca Raton, Florida, USA.

https://doi.org/10.1038/nature06955
https://doi.org/10.1038/nature02298
https://gitub.u-bordeaux.fr/lpauleve/doomed-configurations
https://doi.org/10.1007/978-3-319-67471-1_20
https://doi.org/10.1016/j.physrep.2014.02.007
https://doi.org/10.1142/s0218339095000381
https://doi.org/10.1007/978-3-031-06653-5_10
https://doi.org/10.1016/j.jtbi.2018.11.028
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
https://doi.org/10.1007/BF02460619
https://doi.org/10.1007/978-3-642-81703-8_24

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 194–212, doi:10.4204/EPTCS.370.13

© Felix Stutz and Damien Zufferey
This work is licensed under the
Creative Commons Attribution License.

Comparing Channel Restrictions of
Communicating State Machines,

High-level Message Sequence Charts,
and Multiparty Session Types

Felix Stutz Damien Zufferey
MPI-SWS, Kaiserslautern, Germany

{fstutz,zufferey}@mpi-sws.org

Communicating state machines provide a formal foundation for distributed computation. Unfor-
tunately, they are Turing-complete and, thus, challenging to analyse. In this paper, we classify
restrictions on channels which have been proposed to work around the undecidability of verification
questions. We compare half-duplex communication, existential B-boundedness, and k-synchroni-
sability. These restrictions do not prevent the communication channels from growing arbitrarily
large but still restrict the power of the model. Each restriction gives rise to a set of languages so,
for every pair of restrictions, we check whether one subsumes the other or if they are incomparable.
We investigate their relationship in two different contexts: first, the one of communicating state
machines, and, second, the one of communication protocol specifications using high-level mes-
sage sequence charts. Surprisingly, these two contexts yield different conclusions. In addition,
we integrate multiparty session types, another approach to specify communication protocols, into
our classification. We show that multiparty session type languages are half-duplex, existentially
1-bounded, and 1-synchronisable. To show this result, we provide the first formal embedding of
multiparty session types into high-level message sequence charts.

Acknowledgements and Funding. The authors would like to thank Emanuele D’Osualdo, Georg
Zetzsche and the anonymous reviewers for their feedback and suggestions. This research was funded
in part by the Deutsche Forschungsgemeinschaft project 389792660-TRR 248.

Extended Version: http://arxiv.org/abs/2208.05559

1 Introduction

Communicating state machines (CSMs) are one of the foundational models of message-passing con-
currency. Unfortunately, the combination of multiple processes and unbounded FIFO channels yields
a Turing-complete model of computation even when the processes are finite-state [14]. The commu-
nication channels can be used as memory and, therefore, most verification questions for CSMs are not
algorithmically solvable. To regain decidability, one needs to exploit properties of specific systems. For
instance, if all the runs of some communicating state machine use finite memory, it is possible to verify
this system. This restriction, known as universal boundedness [24], admits only systems with finitely
many reachable states.

In this paper, we compare three channel restrictions which allow infinite state systems while making
interesting verification questions decidable. We compare half-duplex communication [17], existential
B-boundedness [24], and k-synchronisability [13, 28].

http://dx.doi.org/10.4204/EPTCS.370.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2208.05559

Felix Stutz and Damien Zufferey 195

Q!cons

Q!nil Q?ack

P?cons

P?nil P!ack

(a) Communicating state machine: one state
machine for P (top) and one for Q (bottom)

P Q
cons

nil

ack

(b) High-level message
sequence chart

µt.+

{
P→Q :cons. t
P→Q :nil.Q→P :ack.0

(c) Multiparty session type

Figure 1: Sending a list expressed in different formalisms. The left part is an implementation of the
protocol specified in the middle and right parts.

We explain all three restrictions with the CSM in Fig. 1a. There, a process P sends a list, element by
element, to a process Q. After receiving the list’s end, Q sends an acknowledgement back to P.

Half-duplex communication requires that, at all times, at least one of both channels between two
processes is empty. While P sends the list, the channel can grow arbitrarily large. However, Q always
receives all the messages until nil before replying. When Q replies, the channel from P to Q is empty.
Hence, the CSM is half-duplex.

Existential B-boundedness means that, for every execution, we can reorder the sends and receptions
such that the channels carry at most B messages. This CSM is existentially 1-bounded. Each reception
is possible directly after the send.

k-synchronisability requires that every execution can be reordered and split into phases where up
to k messages are first sent and then received. This CSM is 1-synchronisable because every message can
be received directly after it was sent.

The original definitions of channel restrictions are phrased in terms of executions of a CSM. We
present a characterisation for each restriction which only considers the generated language. This also
allows us to reason about languages specified or generated in different ways. We consider languages
given by protocol specifications and implementations. For implementations, we consider CSM-definable
languages, i.e., languages which can be generated by a CSM.

Interestingly, for CSMs, these channel restrictions have not yet been compared thoroughly. In
this paper, we close this gap and provide a classification of channel restrictions for CSM-definable
languages. For instance, this answers a question for the FIFO point-to-point setting which has been
posed for the mailbox setting by Bouajjani et al. [13] as we prove that existential B-boundedness and
k-synchronisability are incomparable for CSM-definable languages. Overall, we give examples for every
possible intersection and, thus, prove that none of the restrictions subsumes another one in this context.
Our results for CSM-definable languages are summarised in Fig. 2a. In fact, we disprove one of the three
known results from the literature [35, Thm. 7.1] which has been cited recently as part of a summary [12,
Prop. 41]. This indicates that, despite their simplicity, these definitions hide some subtleties. Our classi-
fication provides a careful treatment — giving minimal examples for the sake of understandability.

Such a classification is interesting as focusing on languages or systems adhering to one of the chan-
nel restrictions can be key for solving verification problems algorithmically. For instance, control-state
reachability and model checking LCPDL (propositional dynamic logic with loop and converse) formulas
are decidable for k-synchronisable systems [28, 12]. Later, we highlight the impact of channel restric-
tions on verification questions and whether one can check if a system adheres to a restriction.

196 Comparing Channel Restrictions of CSMs, HMSCs, and MSTs

∃B-bounded

C3

half-duplex
C7

k-synch-
ronisable

C5

C2

C4

C6
C1

CSM-definable

C8

(a) CSM-definable Languages

∃B-bounded

HMSC-definable

H1

k-synchronisable
H2 H3

half-duplex

H4

1 sync.

H5

H6

H7
MST
-def.

H8

(b) HMSC-definable Languages

Figure 2: Comparing half-duplex, existential B-bounded, and k-synchronisable systems. The results are
known results, results are new, and the result disproves an existing result. Hypotheses with rounded
corners indicate inclusions while pointed corners indicate incomparability results.

Protocol Specifications. Instead of considering arbitrary CSMs, it is possible to start with a global
description written in a dedicated protocol specification formalism such as High-level Message Sequence
Charts (HMSCs) [6, 26], Multiparty Session Types (MSTs) [32, 33], or Choreography Automata (CA) [7].
A protocol is a global specification of all the processes’ actions together while an implementation only
gives the local actions of each process. Fig. 1 shows, along the CSM, two protocol specifications. The key
difference between a protocol specification and an implementation is that the protocol specification expli-
citly connects a send event to the corresponding receive event. In the HMSC (Fig. 1b), the arrows connect
sends to receptions. The MST1 (Fig. 1c) specifies communication by sender→receiver :message. The
CSM (Fig. 1a) does not specify this connection upfront and it may not exist. This makes CSMs strictly
more general than protocols. For instance, an incorrect implementation of the protocol could have P
terminate before receiving the acknowledgement.

The CSM, HMSC, and MST all have the same language. Thus, our observations on channel restric-
tions also hold for the HMSC and the MST. We also say that the CSM implements the protocol specified
by the HMSC (or the MST) as they accept the same language and the CSM is deadlock free. In general,
there are several approaches to obtain a CSM which implements a protocol (if one exists). For instance,
a protocol specification can be projected on to each process. In this paper, we do not consider this
problem. A protocol specification gives rise to a language, i.e., the protocol. We only need the protocol
as our definitions for channel restrictions apply to languages, e.g., HMSC- and MST-definable languages.

For protocols, the classification of channel restrictions was less studied than for CSMs. Fig. 2b sum-
marises our results. It was only known that each HMSC-definable language is existentially B-bounded
for some B [24]. Surprisingly, the classification changes in the context of protocols. For restrictions
which differ (H2 to H5 , and H7), we give distinguishing examples. When one restriction subsumes
another one (H1 , H6 , and H8), we prove it. For instance, H6 proves that 1-synchronisability entails
half-duplex communication while H5 is an example which is half-duplex, existentially B-bounded,
k-synchronisable but not 1-synchronisable.

Embedding MSTs into HMSCs. In addition to our results about CSM- and HMSC-definable languages,
we provide the first formal embedding from MSTs into HMSCs. The contribution is two-fold. First,
we situate MSTs in the picture of common channel restrictions and prove that languages specified by

1 We actually present a global type in an MST framework here but only use the term after its formal introduction in Section 5

Felix Stutz and Damien Zufferey 197

multiparty session types are half-duplex, existentially 1-bounded, and 1-synchronisable. This sheds a
new light on why MSTs are effectively analysable. Second, we did recently show that using insights
from the domain of HMSCs in the domain of MSTs is a promising research direction as we made the
effective MST verification techniques applicable to patterns from distributed computing [38]. Hence,
our formal embedding can act as a crucial building block for further advances which are facilitated by
insights from both domains.

Contributions. In this paper, we make three main contributions. (1) We provide an exhaustive classifi-
cation of channel restrictions for CSM-definable languages. In this process, we disprove a recent result
from the literature. (2) We provide an exhaustive classification of channel restrictions for HMSC- and
MST-definable languages. (3) We give the first formal embedding of MSTs into HMSCs.

Outline. After providing some preliminary definitions in Section 2, we define the channel restrictions
formally in Section 3 and summarise their impact on the decidability of verification questions. Subse-
quently, we establish our results on HMSCs (Section 4), MSTs (Section 5), and CSMs (Section 6). We
discuss related work in Section 7.

2 Preliminaries

Finite and Infinite Words. For an alphabet Σ, the set of finite words over Σ is denoted by Σ∗, the set of
infinite words by Σω , while we write Σ∞ = Σ∗∪Σω for their union. For two strings u∈ Σ∗ and v∈ Σ∞, u is
said to be a prefix of v, denoted by u≤ v, if there is some w ∈ Σ∞ such that u ·w = v. For two alphabets
Σ and ∆ with ∆⊆ Σ, the projection of w ∈ Σ∞ on to ∆, denoted by w⇓∆, is the word which is obtained by
omitting every letter in w that does not belong to ∆.

Message Alphabet. P is a finite set of processes, ranged over by P,Q,R, . . ., and V a finite set of
messages. For a process P, we define the alphabet ΣP = {P.Q!m,P/Q?m | Q ∈P, m ∈ V } of events.
The event P.Q!m denotes process P sending a message m to Q, and P/Q?m denotes process P receiving
a message m from Q. Note that the process performing the action is always the first one, e.g., the
receiver P in P /Q?m. The alphabet Σ =

⋃
P∈P ΣP denotes all send and receive events while Σsync =

{P→Q : m | P,Q ∈P and m ∈ V } is the set where sending and receiving a message is specified at the
same time. We fix P , V , Σ, and Σsync in the rest of the paper. We write w⇓P.Q! to select all send
events in w where P sends a message to Q and V (w) to project the send and receive events to their
message values.

Distributed Executions. We use these specialised alphabets to model specifications in which multiple
distributed processes communicate by exchanging messages. Furthermore, these executions cannot be
any word but need to comply with conditions that correspond to the asynchronous communication over
reliable FIFO channels. We call such words channel-compliant.

Definition 1 ([38]) A protocol is a set of complete channel-compliant words where:

1. Channel-compliant: A word w ∈ Σ∞ is channel-compliant if messages are received after they are
sent and, between two processes, the reception order is the same as the send order. Formally, for
each prefix w′ of w, we require V (w′⇓Q/P?) to be a prefix of V (w′⇓P.Q!), for every P,Q ∈P .

2. Complete: A channel-compliant word w ∈ Σ∞ is complete if it is infinite or the send and receive
events match: if w ∈ Σ∗, then V (w⇓P.Q!) = V (w⇓Q/P?) for every P,Q ∈P .

To pinpoint the corresponding send and receive events, we define a notion of matching.

198 Comparing Channel Restrictions of CSMs, HMSCs, and MSTs

Definition 2 (Matching Sends and Receptions) In a word w = e1 . . . ∈ Σ∞, a send event ei = P .Q!m
is matched by a receive event e j = Q / P?m, denoted by ei à e j, if i < j and V ((e1 . . .ei)⇓P.Q!) =
V ((e1 . . .e j)⇓Q/P?). A send event ei is unmatched if there is no such receive event e j.

If a sequence of events is channel-compliant, it is trivial that for each channel between two processes,
either all send events are matched or there is an index from which all send events are unmatched.

In this paper, we consider protocols that can be specified with high-level messages sequence charts.
We define prefix message sequence charts to allow unmatched send events, inspired by the work of
Genest et al. [24, Def. 3.1]. The definition of a (prefix) MSC can look intimidating. In Fig. 3, we show
pictorially what each component corresponds to.

Definition 3 ((Prefix) Message Sequence Charts) A prefix message sequence chart is a 5-tuple
M = (N, p, f , l,(≤P)P∈P) where

• N is a set of send (S) and receive (R) event nodes (N = S]R),

• p : N→P maps each event node to the process acting on it,

• f : S ⇀ R is an injective partial function linking
corresponding send and receive event nodes,

• l : N→ Σ labels every event node with an event, and

• (≤P)P∈P is a family of total orders for the
event nodes of each process: ≤P ⊆ p−1(P)× p−1(P).

P Q
P ▷ Q!m

Q ◁ P ?m

Figure 3: Highlighting the
elements of a (prefix) MSC:
(N, p, f , l,(≤P)P∈P)

A prefix MSC M induces a partial order ≤M on N that is defined co-inductively2:

e≤P e′

e≤M e′
PROC

s ∈ S

s≤M f (s)
SND-RCV

e≤M e
REFL

e≤M e′ e′ ≤M e′′

e≤M e′′
TRANS

The labelling function l respects the function f between S and R: for every pair of event nodes e,e′ ∈ N
with f (e) = e′, we have l(e) = p(e). p(e′)!m and l(e′) = p(e′)/ p(e)?m for some m ∈ V and for every
e where f (e) is undefined, we have l(e) = p(e).P!m for some P 6= p(e) according to its destination.

We say that M is degenerate if there is some P and Q such that there are e1,e2 ∈ p−1(P) with e1 6= e2,
l(e1) = l(e2), e1 ≤P e2 and f (e2) ≤Q f (e1). We say that M respects FIFO order if M is not degenerate
and for every pair of processes P, Q, and for every two event nodes e1 ≤M e2 with l(ei) = P .Q! for
i ∈ {1,2}, it holds that f (e2) is undefined if f (e1) is undefined as well as that it holds that V (wP) =
V (f (wP)) where wP is the (unique) linearisation of p−1(P).

In this paper, we do only consider prefix message sequence charts that respect FIFO order.
If f is total, we omit the term prefix and call M a message sequence chart (MSC). If N is finite for

an MSC M, we call M a basic MSC (BMSC). We denote the set of BMSCs by M . When M is clear
from context, we simply write ≤ instead of ≤M. For a prefix MSC M, the language L (M) contains a
sequence l(w) for each linearisation w of N compatible with ≤M. When unambiguous, we may refer to
event nodes or sequences thereof by their (event) labels or omit the label function l.

A prefix MSC, in contrast to an MSC, allows send event nodes for any channel to be unmatched
from some point on. The concatenation M1 ·M2, or simply M1M2, of an MSC M1 and a prefix MSC M2 is

2Note that we cannot use the standard reflexive and transitive closure since we consider infinite sequences of events. Co-
induction lifts the reflexive, transitive closure of the union of the send-receive relation and all process orders, i.e., ({(s, f (s)) |
s ∈ S} ∪

⋃
P∈P ≤P)

∗, to infinite sets of event nodes.

Felix Stutz and Damien Zufferey 199

defined as expected (see the technical report [45] for the formal definition). The concatenation requires
that, for any individual process, all event nodes in M1 happen before the event nodes in M2. However,
the induced partial order on N may permit linearisations in which an event node from M2 of one process
occurs before an event node from M1 of another process.

For every channel-compliant word w, one can construct a unique prefix MSC M such that w is a
linearisation of M.
Lemma 1 (msc(-) ([24], Section 3.1)) Let w ∈ Σ∞ be a channel-compliant word. Then, there is unique
prefix MSC, denoted by msc(w), such that w is a linearisation of msc(w). In case the above conditions
are not satisfied, msc(w) is undefined.

All sequences of events we consider in this work are channel-compliant. For sequences from MSCs
(considered in Section 4), this trivially holds, while for sequences from execution prefixes of CSMs
(considered in Section 6), we prove this in the technical report [45].

3 Channel Restrictions

In this section, we present different channel restrictions and their implications on decidability of inter-
esting verification questions. Their application is discussed subsequently: for HMSCs in Section 4.1, for
MSTs in Section 5.3, and for CSMs in Section 6.1.

3.1 Definitions

3.1.1 Half-duplex Communication

Cécé and Finkel [17, Def. 8] introduced the restriction of half-duplex communication which intuitively
requires that, for any two processes P and Q, the channel from P to Q is empty before Q sends a message
to P. We define the restriction of half-duplex on sequences of events and show that it is equivalent to the
original definition in the technical report [45].
Definition 4 (Half-duplex) A sequence of events w is called half-duplex if for every prefix w′ of w and
pair of processes P and Q, one of the following holds: V (w′⇓P.Q!) = V (w′⇓Q/P?) or V (w′⇓Q.P!) =
V (w′⇓P/Q?). A language L⊆ Σ∞ is half-duplex if every word w ∈ L is.

3.1.2 Existential B-boundedness

While the previous property restricts the channel for at least one direction to be empty, one can also
bound the size of channels and consider linearisations that are possible adhering to such bounds. On
the one hand, one can consider a universal bound that applies for every linearisation. However, this
yields finite-state systems [24] and disallows very simple protocols, e.g., the example in Fig. 1. On the
other hand, one can consider an existential bound on the channels which solely asks that there is one
linearisation of the distributed execution for which the channels are bounded. This allows infinite-state
systems and admits the earlier example.
Definition 5 (B-bounded [24]) Let B ∈ N be a natural number. A word w is B-bounded if for every
prefix w′ of w and pair of processes P and Q, it holds that |w′⇓P.Q! |− |w′⇓Q/P? | ≤ B.
Definition 6 (Existentially B-bounded [24]) Let B ∈ N. A prefix MSC M is existentially B-bounded if
there is a B-bounded linearisation for M. A sequence of events w is existentially B-bounded if msc(w) is
defined and existentially B-bounded. A language L is existentially B-bounded if every word w ∈ L is. We
may use not existentially bounded as abbreviation for not existentially B-bounded for any B.

200 Comparing Channel Restrictions of CSMs, HMSCs, and MSTs

3.1.3 k-synchronisability

The restriction of k-synchronisability was introduced for mailbox communication [13] and later refined
and adapted to the point-to-point setting [28]. We define k-synchronisability following definitions by
Giusto et al. [28, Defs. 6 and 7]. The definition of k-synchronisability builds upon the notion when a
prefix MSC is k-synchronous. Its first condition requires that there is some linearisation of the prefix
MSC while its second condition requires causal delivery to hold. In contrast to the mailbox setting, the
first condition always entails the second condition for the point-to-point setting.

Point-to-point Communication implies Causal Delivery. We first adapt the definition of causal deliv-
ery [28, Def. 4] for point-to-point FIFO channels [28, Section 6]. Unfortunately, this discussion leaves
room for interpreting what causal delivery exactly is for point-to-point systems. Based on the description
that a process P can receive messages from two distinct processes Q and R in any order, regardless of the
dependency between the corresponding send events, we decided to literally adapt the definition of causal
delivery as follows.

Definition 7 (Causal delivery) Let M = (N, p, f , l,(≤P)P∈P) be an MSC. We say that M satisfies causal
delivery if there is a linearisation w = e1 . . . of N such that for any two events ei ≤M e j with ei = P.Q!
and e j = P.Q! , either e j is unmatched in w or there are ei′ ≤M e j′ such that ei à ei′ and e j à e j′ in w.

We show that msc(w) for every w (if defined) satisfies causal delivery (as proven in the technical
report [45]).

Lemma 2 Let w ∈ Σ∞ such that msc(w) is defined. Then, msc(w) satisfies causal delivery.

In combination with the fact that, given a linearisation w of a prefix MSC M, msc(w) is isomorphic
to M, this yields that causal delivery is satisfied if there is a linearisation.

Corollary 1 Every prefix MSC with a linearisation satisfies causal delivery.

With this, we can simplify the definition by omitting the second condition without changing its
meaning. In addition, we extend it to apply for MSCs with infinite sets of event nodes.

Definition 8 (k-synchronous and k-synchronisable) Let k ∈ N be a positive natural number. We say
that a prefix MSC M = (N, p, f , l,(≤P)P∈P) is k-synchronous if

1. there is a linearisation of event nodes w compliant with ≤M which can be split into a sequence of
k-exchanges (also called message exchange if k not given or clear from context), i.e., w = w1 . . .
such that for all i, it holds that l(wi) ∈ S≤k ·R≤k; and

2. for all e, e′ in w such that e à e′, there is some i with e, e′ in wi.3

A linearisation w is k-synchronisable4 if msc(w) is k-synchronous. A language L is k-synchronisable if
every word w ∈ L is. We may use not synchronisable as abbreviation for not k-synchronisable for any k.

3This is equivalent to the following: for all e and f (e) in w, there is some i with e, f (e) in wi.
4One could distinguish between universal and existential k-synchronisability, i.e., to distinguish the existence of a k-

synchronisable linearisation rather than all linearisations being k-synchronisable. However, the universal version does not
make much sense in practice. Thus, we omit the term existential.

Felix Stutz and Damien Zufferey 201

3.2 Algorithmic Verification and Channel Restrictions

It is important to note that we use the term restriction as a property of a system which occurs naturally
and not something that is imposed on its semantics. However, both have a tight connection: a system
naturally satisfies a restriction if imposing the restriction does not change its possible behaviours. If this
is the case, one can exploit this for algorithmic verification and only check behaviours that satisfy the
restriction without harming correctness.

For each channel restriction, we recall known results about checking membership and which verifi-
cation problems become decidable.
Half-duplex Communication. For CSMs with two processes, membership is decidable [17, Thm. 31].
The set of reachable configurations is computable in polynomial time which renders many verification
questions like the unspecified reception problem decidable (see [17, Thm. 16] for a detailed list of verifi-
cation problems) while model checking PLTL or CTL is still undecidable. Half-duplex CSMs with more
than two processes are Turing-powerful [17, Thm. 38] so verification becomes undecidable and checking
membership is of little interest.
Existential B-boundedness. For CSMs, membership is undecidable, unless CSMs are known to be
deadlock free and B is given [24, Fig. 3]. For protocols, we will see that they are always existentially B-
bounded for some B and thus a correct implementation of a protocol also is. It is quite straightforward that
control-state reachability is decidable but not typically studied for these systems [12]. Intuitively, it can
be solved by exhaustively enumerating the reachability graph of the CSM while pruning configurations
exceeding the bound B. For HMSCs, model checking is undecidable for LTL [6, Thm. 3] and decidable
for MSO [37, Thm. 1].
k-synchronisability. For CSMs, membership for a given k is decidable in EXPTIME [12, Rem. 30], orig-
inally shown decidable by Di Giusto et al. [28], while it is undecidable if k is not given [12, Thm. 22].
For HMSCs, both questions are decidable in polynomial time, while we show that MSTs are always
1-synchronisable. Model checking for k-synchronisable systems is decidable and in EXPTIME when for-
mulas are represented in LCPDL. This follows from combining that such systems have bounded (special)
tree-width [12, Prop. 28] and results by Bollig and Finkel [11]. Control-state reachability was shown to
be decidable for k-synchronisable systems [28, Thm. 6].

4 High-level Message Sequence Charts

Message sequence charts have been used as compact representation for executions of CSMs. The (prefix)
message sequence charts obtained from different executions of CSMs can be analysed to determine which
channel restriction is satisfied [24, 28]. In addition, we do also use message sequence charts as building
blocks for high-level message sequence charts [39, 48] which specify protocols.

We define these following the presentation by Alur et al. [4, 5]. A BMSC corresponds to “straight line
code” in which each process follows a single sequence of event nodes. A high-level message sequence
chart (HMSC) adds a regular control structure (branching and loops).

Definition 9 (High-Level Message Sequence Charts) A high-level message sequence chart (HMSC) is
a structure (V,E,vI,V T,µ) where V is a finite set of vertices, E ⊆V ×V is a set of directed edges, vI ∈V
is an initial vertex, V T ⊆ V is a set of terminal vertices, and µ : V →M is a function mapping every
vertex to a BMSC.

To obtain the language of an HMSC, we start with initial paths through the HMSC. As usual, we
are interested only in maximal paths, i.e., either infinite or ending in a terminal vertex. We can expand

202 Comparing Channel Restrictions of CSMs, HMSCs, and MSTs

P Q

(a) ∃1-bounded,
2-synchronisable,

and not half-duplex

P Q R

(b) ∃1-bounded, not
half-duplex, and not

synchronisable

P Q R

(c) half-duplex,
∃1-bounded, and

not synchronisable

P Q R

(d) half-duplex, ∃1-bounded,
not 1- or 2-synchronisable but

3-synchronisable

Figure 4: BMSCs which satisfy different channels restrictions

each such path into a sequence of BMSCs, concatenate this sequence of BMSCs, and take the language
of the resulting MSC. The language of the HMSC is the union of the languages of the MSCs generated
by all its initial paths – see the technical report [45] for the formal definition. For simplicity, we assume
every vertex in an HMSC is reachable from the initial vertex and every initial non-maximal path can be
completed to a maximal one.

Example 1 Figure 1b shows an HMSC composed of two BMSCs. MSCs of the HMSC are obtained by
following the control structure and concatenating the corresponding BMSCs. The language contains all
linearisations of these MSCs.

4.1 Channel Restrictions of HMSCs

We say that an HMSC is half-duplex, existentially B-bounded or k-synchronisable respectively if its
language is. It is straightforward that checking an HMSC for k-synchronisability amounts to checking
its BMSCs.

Proposition 1 An HMSC H is k-synchronisable iff all BMSCs of H are k-synchronous.

For the presentation of our results, we follow the numbering laid out in Fig. 2b. Note that any BMSC
can always be turned into a HMSC with a single initial and terminal vertex. Therefore, it is trivial that
all BMSC examples also apply to HMSCs.

Lemma 3 ([24], Prop. 3.1) H1 : Any HMSC H is existentially B-bounded for some B.

We prove this result in a slightly different way in the technical report [45]. Basically, one computes the
bound for the BMSC of every vertex in H and takes the maximum. This works since every MSC of H is
a concatenation of individual BMSCs which can be scheduled in a way that the channels are empty after
each BMSC.

Example 2 H2 : ∃B-bounded, k-synchronisable, and not half-duplex. Consider the BMSC in Fig. 4a.
It is existentially 1-bounded as there is one message per channel, 2-synchronisable since the message
exchange can be split into one phase of two sends and two subsequent receives and not half-duplex
because both messages can traverse their channel at the same time.

Example 3 H3 : ∃B-bounded, not half-duplex, and not synchronisable. It is obvious that the BMSC M
in Fig. 4b is not half-duplex. We show that M is not k-synchronous for any k. Let us denote the event
nodes for each process P with p1, . . . as ordered by the total process order. It is straightforward that one
of p1 and q1 has to be part of the first k-exchange. However, since the respective corresponding reception

Felix Stutz and Damien Zufferey 203

happens after the other’s event node, both have to be a part of the first k-exchange. Since these receive
event nodes (transitively) depend on all other event nodes, all event nodes have to be part of a single
k-exchange for M. However, R first has to receive from Q in order to send back to it and therefore, there
is no single k-exchange for M and M is not k-synchronous for any k.

Example 4 H4 : half-duplex, ∃B-bounded, and not synchronisable. Let us consider the BMSC in
Fig. 4c. It is straightforward that it is half-duplex and existentially 1-bounded. However, it is not
k-synchronisable for any k. In particular, the first and last event node (of any total order induced by the
BMSC) must belong to the same message exchange but two more linearly dependent message exchanges
need to happen in between.

Example 5 H5 : half-duplex, ∃B-bounded, k-synchronisable but not 1-synchronisable. Consider the
BMSC in Fig. 4d. It is easy to see that it is not 1- or 2-synchronisable but 3-synchronisable, half-duplex
and existentially 1-bounded. Note that it is straightforward to amend the example such that it is still
half-duplex but the parameters B and k need to be increased.

Lemma 4 H6 : Every 1-synchronisable HMSC is half-duplex.

Intuitively, in any BMSC of an HMSC, every send event node has a corresponding receive event node.
Therefore, a message that has been sent needs to have been received directly afterwards and the per-
process order is total so any process has to receive a message before it sends a message back. The full
proof can be found in the technical report [45].

5 Multiparty Session Types

In this section, we recall global types from Multiparty Session Types (MSTs) as a way to specify proto-
cols. We present an embedding for MSTs into HMSCs, prove it correct, and use it to show that MSTs
are half-duplex, existentially 1-bounded, and 1-synchronisable.

5.1 Specifying Protocols with Global Types

We now define global types in the framework of MSTs as a syntax for protocol specifications. The syntax
of global types is defined following classical MST frameworks [44, Def. 3.2]. The calculus focuses
on the core message-passing primitives of asynchronous MSTs and does not incorporate features like
subsessions or delegation. However, it does incorporate a recent generalisation that allow a sender to
send to different receivers upon branching [38].

Definition 10 (Syntax of Global Types [38]) Global types for MSTs are defined by the grammar:

G ::= 0 | ∑
i∈I

P→Qi :mi.Gi | µt.G | t

An expression P→Q:m stands for a send and receive event: P.Q!m and Q/P?m. Since global types
always specify send and the receive events together, they specify complete channel-compliant sequences
of events. For a choice, the sender process decides which branch to take and each branch of a choice
needs to be uniquely distinguishable (∀i, j ∈ I. i 6= j⇒Qi 6= Q j∨mi 6= m j). If there is a single alternative
(and no actual choice), we omit writing the sum operator. Loops are encoded by the least fixed point
operator and recursion must be guarded, i.e., there is at least one message between µt and t. We assume,
without loss of generality, that all occurrences of recursion variables t are bound and every variable t

204 Comparing Channel Restrictions of CSMs, HMSCs, and MSTs

is distinct. Recursion only happens at the tail (and there is no additional parameter) and, therefore, the
language of a global type can be defined with an automaton – as expected by following the structure of a
global type, splitting the message exchanges into send and receive events while not only accounting for
finite but also infinite executions. We give one language as example and refer to the technical report [45]
for a formal definition.

Example 6 The type language for the global type in Fig. 1c, µt. (P→Q : cons. t + P→Q : nil.Q→P :
ack.0), is the union of a set of finite executions and infinite executions:(
P.Q!cons.Q/P?cons

)∗
. P.Q!nil.Q/P?nil.Q.P!ack.P/Q?ack and

(
P.Q!cons.Q/P?cons

)ω

Remark 1 For readers familiar with MSTs, it may be strange that we do not define local types. In fact,
one correctness criterion for local types requires that their composition generates the same language as
the original global type. All channel restrictions are defined using languages, so it suffices to consider
global types for our purposes.

Example 7 Consider the global type: P→Q : m1.R→S : m2. The type language for this type contains
only the word P.Q!m1.Q/P?m1.R.S!m2.S/R?m2. On the other hand, if we want to describe the same
protocol with a HMSC, it always allows any permutation of the events where P .Q!m1 occurs before
Q/P?m1 and R.S!m2 before S/R?m2.

Intuitively, some events in a distributed setting shall not be ordered since they are independent, e.g.,
happen on different processes as in the previous example. To this end, we recall an indistinguishability
relation ∼ that captures the reordering allowed by CSMs with FIFO channels (which will be defined in
Definition 12). In MSTs, similar reordering rules are applied (e.g., [33, Def. 3.2 and 5.3]).
Definition 11 (Indistinguishability relation ∼ [38]) Let ∼i ⊆ Σ∗×Σ∗, for i ≥ 0, be a family of indis-
tinguishability relations. For all w ∈ Σ∗, we have w∼0 w. For i = 1, we define:

(1) If P 6= R, then w.P.Q!m.R.S!m′.u ∼1 w.R.S!m′.P.Q!m.u.

(2) If Q 6= S, then w.Q/P?m.S/R?m′.u ∼1 w.S/R?m′.Q/P?m.u.

(3) If P 6= S∧ (P 6= R∨Q 6= S), then w.P.Q!m.S/R?m′.u ∼1 w.S/R?m′.P.Q!m.u.

(4) If |w⇓P.Q! |> |w⇓Q/P? |, then w.P.Q!m.Q/P?m′.u ∼1 w.Q/P?m′.P.Q!m.u.

Let w,w′,w′′ be sequences of events such that w∼1 w′ and w′ ∼i w′′ for some i. Then, w∼i+1 w′′. We
define w∼ u if there is n such that w∼n u.

This formalises how messages can be swapped for finite executions of protocols. The infinite case
requires special technical treatment for which we refer to the work by Majumdar et al. [38].

The relation is lifted to languages as expected. For a language L, we have:

C∼(L) =
{

w′ |
∨ w′ ∈ Σ∗∧∃w ∈ Σ∗. w ∈ L and w′ ∼ w

w′ ∈ Σω ∧∃w ∈ Σω . w ∈ L and w′ �ω
∼ w

}
.

The indistinguishability relation ∼ does not change the order of send and receive events of a sin-
gle process. The relation ∼ captures all reorderings which naturally appear when global types from
MSTs are implemented with CSMs. For a global type G, its semantics is given by its execution lan-
guage C∼(L (G)). Furthermore, the indistinguishability relation captures exactly the events that are
independent in any HMSC. Phrased differently, HMSC include these reorderings by design.

Lemma 5 Let H be any HMSC. Then, L (H) = C∼(L (H)).

We prove this in the technical report [45]. A similar result for CSMs has been proven [38, Lemma 21].

Theorem 1 For channel-compliant words, the indistinguishability relation ∼ preserves satisfaction of
half-duplex communication, existential B-boundedness, and k-synchronisability.

The proof can be found in the technical report [45].

Felix Stutz and Damien Zufferey 205

5.2 Encoding Global Types from MSTs into HMSCs

Global types from MSTs can be turned into HMSCs while preserving the protocol they specify. In this
step, we account for the orders than can and cannot be enforced in an asynchronous point-to-point setting
with the indistinguishability relation ∼. The main difference between the automata-based semantics of
global types from MSTs and the semantics of HMSCs is that an automaton carries the events on the edges
and an HMSC carries events as labels of the event nodes in the BMSCs associated with the vertices.

In the translation, we use the following notation. M/0 is the empty BMSC (N = /0) and M(P→Q :m)
is the BMSC with two event nodes: e1, e2 such that f (e1) = e2, l(e1) = P.Q!m, and l(e2) = Q/P?m .

From a global type G, we construct an HMSC H(G) = (V,E,vI,V T ,µ,λ) with
V = {G′ | G′ is a subterm of G} ∪ {(∑i∈I P→Qi :mi.Gi, j) | ∑i∈I P→Qi :mi.Gi occurs in G∧ j ∈ I}

E = {(µt.G′,G′) | µt.G′ occurs in G} ∪ {(t,µt.G′) | t,µt.G′ occurs in G}
∪ {(∑i∈I P→Qi :mi.Gi,(∑i∈I P→Qi :mi.Gi, j)) | (∑i∈I P→Qi :mi.Gi, j) ∈V}
∪ {((∑i∈I P→Qi :mi.Gi, j),G j) | (∑i∈I P→Qi :mi.Gi, j) ∈V}

vI = G V T = {0} µ(v) =

{
M(P→Qi :m j) if v = (∑i∈I P→Qi :mi.Gi}, j)
M/0 otherwise

This translation does not yield the HMSC with the least number of vertices since vertices with a
single successor could be merged to form larger BMSCs. Here, every BMSC contains at most one
message exchange. We obtain the following correctness statement for the embedding:

Theorem 2 For any global type G, it holds that L (G)⊆L (H(G)) and C∼(L (G)) =C∼(L (H(G))).

We provide the technical developments to show Theorem 2 the technical report [45].

Remark 2 The first part of Theorem 2 uses ⊆ instead of = as HMSCs do not order indistinguishable
events and we consider the type language of G. Example 7 shows that using the execution language
rather than the type language in the second part is inevitable for equality and does not weaken the claim.

5.3 Channel Restrictions of Global Types

Example 8 H7 : half-duplex, ∃1-bounded, 1-synchronisable but not in MSTs. P Q R

m
m

m
m

l r

Figure 5: half-duplex,
∃1-bounded, and
1-synchronisable but
not expressible in MSTs

Consider the HMSC in Fig. 5. It is straightforward that it is half-duplex, exis-
tentially 1-bounded, and 1-synchronisable. Both P and Q send the same mes-
sage to R independently in each branch. Intuitively, R chooses which branch
to take by the order it decides to receive both messages. Subsequently, it noti-
fies Q about this choice. Such a communication pattern cannot be expressed
in the MST framework. If one tried to model it with R actually choosing the
branch, l and r would always occur before the receptions so the languages
are different.

We show that protocols specified as global types satisfy all discussed channel restrictions (with the
minimal reasonable parameter).

Theorem 3 H8 : The execution language C∼(L (G)) is half-duplex, existentially 1-bounded, and
1-synchronisable for any global type G.

The proof uses the embedding to obtain an HMSC built of BMSCs with at most one message exchange
and exploits previously shown properties about HMSCs. Details can be found in the technical report [45].

206 Comparing Channel Restrictions of CSMs, HMSCs, and MSTs

Remark 3 (Choreography automata are half-duplex, ∃1-bounded, and 1-synchronisable)
In this section, we looked at MSTs which are rooted in process algebra. With choreography automata [7],
a similar concept has been studied from automata theory perspective. Basically, a protocol specification
is an automaton whose transitions are labelled by P→Q : m. In contrast to global types from MSTs,
they do not impose constraints on choice, i.e., there does not need to be a unique process chooses which
branch to take next and do not employ an indistinguishability relation but require to explicitly spell out
all possible reorderings. This feature can lead to complications w.r.t. implementing such protocols but
does not change the satisfaction of channel restrictions. In fact, protocols specified by choreography
automata are also half-duplex, existentially 1-bounded, and 1-synchronisable.

6 Communicating State Machines

In this section, we first present communicating state machines (CSMs) as formal model for distributed
processes which communicate messages asynchronously via reliable point-to-point FIFO channels. If
a CSM implements a protocol specification, both languages are the same – modulo ∼ which does not
alter satisfaction of channel restrictions. This entails that CSMs implementing protocol specifications
satisfy the same channel restrictions as presented in previous sections. Here, we investigate the channel
restrictions of general CSMs which might not implement a protocol specified as global type or HMSC.

Definition 12 (Communicating state machines) A state machine A= (Q,∆,δ ,q0,F) is a 5-tuple where
Q is a finite set of states, ∆ is an alphabet, δ ⊆ Q× (Σ∪{ε})×Q is a transition relation, q0 ∈ Q is an
initial state, and F ⊆Q is a set of final states. We write q a−→ q′ for (q,a,q′) ∈ δ . A run of A is a sequence
ρ = q0

w0−→ q1
w1−→ . . ., with qi ∈ Q and wi ∈ ∆∪{ε} for i ≥ 0, such that q0 is the initial state, and for

each i≥ 0, it holds that (qi,wi,qi+1) ∈ δ . The trace of the run is the finite or infinite word w0w1 . . . ∈ Σ∞.
The path of the run is the finite or infinite sequence q0q1 . . . ∈ Q∞. A run is called maximal if it is infinite
or ends at a final state. Accordingly, the corresponding trace and path are called maximal. The language
L (A) of A is the set of its maximal traces.

We call A = {{AP}}P∈P a communicating state machine (CSM) over P and V if AP is a finite state
machine with alphabet ΣP for every P ∈P . The state machine for P is denoted by (QP,ΣP,δP,q0,P,FP).
Intuitively, a CSM allows a set of state machines, one for each process in P , to communicate by sending
and receiving messages. For this, each pair of processes P,Q ∈P , P 6= Q, is connected by two directed

message channels. A transition qP
P.Q!m−−−−→ q′P in the state machine of P denotes that P sends message m to

Q if P is in the state q and changes its local state to q′. The channel 〈P,Q〉 is appended by message m. For

receptions, a transition qQ
Q/P?m−−−−→ q′Q in the state machine of Q corresponds to Q retrieving the message

m from the head of the channel when its local state is q̂ which is updated to q̂′. The run of a CSM always
starts with empty channels and each finite state machine is its respective initial state. The formalisation
of this intuition is standard and can be found in the technical report [45].

As for HMSCs, the language of a CSM is closed under ∼.
Lemma 6 ([38], Lemma 21) Let A be a CSM. Then L (A) = C∼(L (A)).

Implementing Protocol Specifications. Given a protocol specification, one can try to generate an imple-
mentation which admits the same language. This problem is known as implementability or realisability
in the HMSC setting [27, 5, 36]. In the MST setting [32], this is done in two steps. First, the global type
is projected on to local types. Second, a type system ensures that the implementations follow the local
types, i.e., a refinement check. However, one can design CSMs from scratch that yield systems which
cannot be captured by protocol specifications like HMSCs or global types from MSTs.

Felix Stutz and Damien Zufferey 207

6.1 Channel Restrictions of CSMs

We say that an CSM is half-duplex, existentially B-bounded, or k-synchronisable respectively if its lan-
guage is. Again, we follow the outline presented in Fig. 2a.

Example 9 C1 : half-duplex, ∃B-bounded, and k-synchronisable. The CSM in Fig. 1a is ∃1-bounded,
1-synchronisable, and half-duplex.

Any BMSC can easily be implemented with an CSM by simple letting each process follow its linear
trajectory of eventnodes. We call this projection. Therefore, we can use three of the BMSCs presented
in Fig. 4 to show the hypotheses for CSMs:

Example 10 For, C2 , the projection of Fig. 4c (used to show H4) is half-duplex, ∃B-bounded, and
not synchronisable. For C3 , the projection of Fig. 4b (used to show H3) is ∃B-bounded, not half-
duplex, and not synchronisable. For C4 , the projection of Fig. 4a (used to show H2) is ∃B-bounded,
k-synchronisable, and not half-duplex.

Example 11 C5 : k-synchronisable, not half-duplex and not ∃-bounded;
C6 : k-synchronisable, half-duplex and not ∃-bounded.

qastart

P.Q!m

qbstart

Q.P!m

Figure 6: CSM with FSMs
for P (left) and for Q (right)

We consider two CSMs constructed from the state machines in Fig. 6.
For C5 , we consider the CSM consisting of both state machines. It is
1-synchronisable but not existentially bounded and not half-duplex. It is
1-synchronisable because every linearisation can be split into single send
events that constitute 1-exchanges. It is neither existentially B-bounded
for any B nor half-duplex since none of the messages will be received so
both channels can grow arbitrarily. For C6 , it can easily be turned into
a half-duplex CSM by removing one of the send events. Then, the CSM is
1-synchronisable and half-duplex but not existentially bounded.

This example disproves a result from the literature [35, Thm. 7.1], which states that every k-synchro-
nisable system is existentially B-bounded for some B and has been cited recently as part of a sum-
mary [12, Prop. 41]. In the proof, it is neglected that unreceived messages remain in the channels after
a message exchange. Our example satisfies their assumption that CSMs do not have states with mixed
choice, i.e., each state either is final, has send options to choose from, or receive options to choose from.
We do not impose any assumptions on mixed choice in this work. Still, all the presented examples do
not have states with mixed choice so the presented relationships also hold for this subset of CSMs.

Corollary 2 Existential B-boundedness and k-synchronisability for CSMs are incomparable.

The previous result follows immediately from the CSMs constructed in Example 11. Our result considers
the point-to-point FIFO setting. For the mailbox setting, the analogous question is an open problem [13].

Turing-powerful Encodings. On the one hand, it is well-known that CSMs are Turing-complete [14]
and Cécé and Finkel [17, Thm. 36] showed that half-duplex communication does not impair expressive-
ness of CSMs with more than two processes. On the other hand, each of existential B-boundedness and
k-synchronisability render some verification questions decidable. Therefore, the encodings of Turing-
completeness [14, 17] are examples for CSMs which are not existentially B-bounded for any B nor
k-synchronisable for any k and either half-duplex (C7) or not half-duplex (C8).

208 Comparing Channel Restrictions of CSMs, HMSCs, and MSTs

7 Related Work

We now cover related work which is not already cited in the earlier sections.
The origins of MSTs date back to 1993 when Honda et al. [31] proposed a binary version for typing

communication in the domain of process algebra. In 2008, Honda et al. [32] generalised the idea to
multiparty systems. While the connection of MSTs and CSMs has been studied soon after MSTs had
been proposed [16, 19], we provide, to the best of our knowledge, the first formal connection of MSTs
to HMSCs, even though HMSC-like visualisations have been used in the community of session types,
e.g. [15, Fig. 1], [33, Figs. 1 and 2]. For binary session types, it is known how to compute the bound B
of universally B-bounded types [20, 22]. Lange et al. [35] proposed k-multiparty consistency (k-MC) for
CSMs as extension of multiparty consistency for MSTs. We did not consider k-MC in this work for two
reasons. First, they assume an existential bound (of k) on channels. Second, as an extension of multiparty
consistency, k-MC focuses on implementability rather than channel restrictions.

HMSCs and variants thereof have been extensively studied [26, 25, 23, 43].The connection to CSMs
has been investigated in particular for different forms of implementability [27, 5, 36], also called real-
isability [5], which is undecidable in general [26, 5], and implied scenarios [41, 40] which arise when
implementing HMSCs with CSMs. Several restrictions to check implementability adopted a limited form
of choice [8, 29, 41, 40, 18] which is similar to the one in global types from MSTs. For more details, we
refer to work by Majumdar et al. [38].

While we consider finite state machines as model for processes, research has also been conducted on
communicating systems where processes are given more computational power, e.g., pushdown automata
[30, 47, 3]. However, as noted before, our setting is already Turing-powerful. In Section 3.2, we surveyed
how channel restrictions can yield decidability. Incomplete approaches consider subclasses which enable
the effective computation of symbolic representations (of channel contents) for reachable states [9, 34].
Other approaches change the semantics of channels, e.g., by making them lossy [2, 1, 34], input-bounded
[10], or by restricting the communication topology [42, 46].

While we build on the most recent definitions of synchronisability [28], we refer to the work by
Finkel and Lozes [21] and Bouajjani et al. [13] for earlier work on synchronisability. Bollig et. al [12]
studied the connection of different notions of synchronisability for MSCs and MSO logic which yields
interesting decidability results. We refer to their work for more details but briefly point to the slightly
different use of terminology: k-synchronisability is called weak (k-)synchronisability by Bollig where
the omission of k indicates a system is synchronisable for some k; while strong (k-)synchronisability
does solely apply to the mailbox setting.

8 Conclusion

We presented a comprehensive comparison of half-duplex, existential B-bounded, and k-synchronisable
communication. We showed that the three restrictions are different for CSMs. For HMSCs, the half-
duplex restriction and k-synchronisability are different and included in existential B-boundedness. Fur-
thermore, all 1-synchronisable HMSC-definable languages are half-duplex. This subclass contains global
types from MSTs which are also existentially 1-bounded. We established the first formal embedding
of global types from MSTs into HMSCs which can be used to combine insights from both domains for
further advances on implementing protocol specifications.

Felix Stutz and Damien Zufferey 209

References

[1] Parosh Aziz Abdulla, C. Aiswarya & Mohamed Faouzi Atig (2016): Data Communicating Processes with
Unreliable Channels. In Martin Grohe, Eric Koskinen & Natarajan Shankar, editors: Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8,
2016, ACM, pp. 166–175, doi:10.1145/2933575.2934535.

[2] Parosh Aziz Abdulla, Ahmed Bouajjani & Bengt Jonsson (1998): On-the-Fly Analysis of Systems with Un-
bounded, Lossy FIFO Channels. In Alan J. Hu & Moshe Y. Vardi, editors: Computer Aided Verification,
10th International Conference, CAV’98, Vancouver, BC, Canada, June 28 - July 2, 1998, Proceedings, Lec-
ture Notes in Computer Science 1427, Springer, pp. 305–318, doi:10.1007/BFb0028754.

[3] C. Aiswarya, Paul Gastin & K. Narayan Kumar (2014): Verifying Communicating Multi-pushdown Systems
via Split-Width. In Franck Cassez & Jean-François Raskin, editors: Automated Technology for Verification
and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014,
Proceedings, Lecture Notes in Computer Science 8837, Springer, pp. 1–17, doi:10.1007/978-3-319-11936-
6 1.

[4] Rajeev Alur, Kousha Etessami & Mihalis Yannakakis (2003): Inference of Message Sequence Charts. IEEE
Trans. Software Eng. 29(7), pp. 623–633, doi:10.1109/TSE.2003.1214326.

[5] Rajeev Alur, Kousha Etessami & Mihalis Yannakakis (2005): Realizability and verification of MSC graphs.
Theor. Comput. Sci. 331(1), pp. 97–114, doi:10.1016/j.tcs.2004.09.034.

[6] Rajeev Alur & Mihalis Yannakakis (1999): Model Checking of Message Sequence Charts. In Jos C. M.
Baeten & Sjouke Mauw, editors: CONCUR ’99: Concurrency Theory, 10th International Conference,
Eindhoven, The Netherlands, August 24-27, 1999, Proceedings, Lecture Notes in Computer Science 1664,
Springer, pp. 114–129, doi:10.1007/3-540-48320-9 10.

[7] Franco Barbanera, Ivan Lanese & Emilio Tuosto (2020): Choreography Automata. In Simon Bliudze &
Laura Bocchi, editors: Coordination Models and Languages - 22nd IFIP WG 6.1 International Conference,
COORDINATION 2020, Held as Part of the 15th International Federated Conference on Distributed Comput-
ing Techniques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings, Lecture Notes in Computer
Science 12134, Springer, pp. 86–106, doi:10.1007/978-3-030-50029-0 6.

[8] Hanêne Ben-Abdallah & Stefan Leue (1997): Syntactic Detection of Process Divergence and Non-
local Choice inMessage Sequence Charts. In Ed Brinksma, editor: Tools and Algorithms for Con-
struction and Analysis of Systems, Third International Workshop, TACAS ’97, Enschede, The Nether-
lands, April 2-4, 1997, Proceedings, Lecture Notes in Computer Science 1217, Springer, pp. 259–274,
doi:10.1007/BFb0035393.

[9] Bernard Boigelot, Patrice Godefroid, Bernard Willems & Pierre Wolper (1997): The Power of QDDs (Ex-
tended Abstract). In Pascal Van Hentenryck, editor: Static Analysis, 4th International Symposium, SAS ’97,
Paris, France, September 8-10, 1997, Proceedings, Lecture Notes in Computer Science 1302, Springer, pp.
172–186, doi:10.1007/BFb0032741.

[10] Benedikt Bollig, Alain Finkel & Amrita Suresh (2020): Bounded Reachability Problems Are Decidable in
FIFO Machines. In Igor Konnov & Laura Kovács, editors: 31st International Conference on Concurrency
Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), LIPIcs 171, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 49:1–49:17, doi:10.4230/LIPIcs.CONCUR.2020.49.

[11] Benedikt Bollig & Paul Gastin (2019): Non-Sequential Theory of Distributed Systems. CoRR
abs/1904.06942, doi:10.48550/arXiv.1904.06942. arXiv:1904.06942.

[12] Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Étienne Lozes & Amrita Suresh
(2021): A Unifying Framework for Deciding Synchronizability. In Serge Haddad & Daniele Varacca,
editors: 32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021,
Virtual Conference, LIPIcs 203, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 14:1–14:18,
doi:10.4230/LIPIcs.CONCUR.2021.14.

https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/978-3-319-11936-6_1
https://doi.org/10.1007/978-3-319-11936-6_1
https://doi.org/10.1109/TSE.2003.1214326
https://doi.org/10.1016/j.tcs.2004.09.034
https://doi.org/10.1007/3-540-48320-9_10
https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1007/BFb0035393
https://doi.org/10.1007/BFb0032741
https://doi.org/10.4230/LIPIcs.CONCUR.2020.49
https://doi.org/10.48550/arXiv.1904.06942
https://arxiv.org/abs/1904.06942
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14

210 Comparing Channel Restrictions of CSMs, HMSCs, and MSTs

[13] Ahmed Bouajjani, Constantin Enea, Kailiang Ji & Shaz Qadeer (2018): On the Completeness of Verifying
Message Passing Programs Under Bounded Asynchrony. In Hana Chockler & Georg Weissenbacher, editors:
Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, Lecture Notes in Computer
Science 10982, Springer, pp. 372–391, doi:10.1007/978-3-319-96142-2 23.

[14] Daniel Brand & Pitro Zafiropulo (1983): On Communicating Finite-State Machines. J. ACM 30(2), pp.
323–342, doi:10.1145/322374.322380.

[15] Marco Carbone, Kohei Honda, N. Yoshida, R. Milner, G. Brown & Steve Ross-Talbot (2005): A Theoretical
Basis of Communication-Centred Concurrent Programming.

[16] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini & Luca Padovani (2012): On Global Types and Multi-
Party Session. Log. Methods Comput. Sci. 8(1), doi:10.2168/LMCS-8(1:24)2012.

[17] Gérard Cécé & Alain Finkel (2005): Verification of programs with half-duplex communication. Inf. Comput.
202(2), pp. 166–190, doi:10.1016/j.ic.2005.05.006.

[18] Haitao Dan, Robert M. Hierons & Steve Counsell (2010): Non-local Choice and Implied Scenarios. In
José Luiz Fiadeiro, Stefania Gnesi & Andrea Maggiolo-Schettini, editors: 8th IEEE International Confer-
ence on Software Engineering and Formal Methods, SEFM 2010, Pisa, Italy, 13-18 September 2010, IEEE
Computer Society, pp. 53–62, doi:10.1109/SEFM.2010.14.

[19] Pierre-Malo Deniélou & Nobuko Yoshida (2012): Multiparty Session Types Meet Communicating Automata.
In Helmut Seidl, editor: Programming Languages and Systems - 21st European Symposium on Programming,
ESOP 2012, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, Lecture Notes in Computer Science 7211,
Springer, pp. 194–213, doi:10.1007/978-3-642-28869-2 10.

[20] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt, James R. Larus & Steven
Levi (2006): Language support for fast and reliable message-based communication in singularity OS. In
Yolande Berbers & Willy Zwaenepoel, editors: Proceedings of the 2006 EuroSys Conference, Leuven, Bel-
gium, April 18-21, 2006, ACM, pp. 177–190, doi:10.1145/1217935.1217953.

[21] Alain Finkel & Étienne Lozes (2017): Synchronizability of Communicating Finite State Machines is not
Decidable. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn & Anca Muscholl, editors: 44th In-
ternational Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, LIPIcs 80, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 122:1–122:14,
doi:10.4230/LIPIcs.ICALP.2017.122.

[22] Simon J. Gay & Vasco Thudichum Vasconcelos (2010): Linear type theory for asynchronous session types.
J. Funct. Program. 20(1), pp. 19–50, doi:10.1017/S0956796809990268.

[23] Thomas Gazagnaire, Blaise Genest, Loı̈c Hélouët, P. S. Thiagarajan & Shaofa Yang (2007): Causal Message
Sequence Charts. In Luı́s Caires & Vasco Thudichum Vasconcelos, editors: CONCUR 2007 - Concurrency
Theory, 18th International Conference, CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceed-
ings, Lecture Notes in Computer Science 4703, Springer, pp. 166–180, doi:10.1007/978-3-540-74407-8 12.

[24] Blaise Genest, Dietrich Kuske & Anca Muscholl (2007): On Communicating Automata with Bounded Chan-
nels. Fundam. Inform. 80(1-3), pp. 147–167. Available at http://content.iospress.com/articles/
fundamenta-informaticae/fi80-1-3-09.

[25] Blaise Genest & Anca Muscholl (2005): Message Sequence Charts: A Survey. In: Fifth International Con-
ference on Application of Concurrency to System Design (ACSD 2005), 6-9 June 2005, St. Malo, France,
IEEE Computer Society, pp. 2–4, doi:10.1109/ACSD.2005.25.

[26] Blaise Genest, Anca Muscholl & Doron A. Peled (2003): Message Sequence Charts. In Jörg Desel, Wolfgang
Reisig & Grzegorz Rozenberg, editors: Lectures on Concurrency and Petri Nets, Advances in Petri Nets
[This tutorial volume originates from the 4th Advanced Course on Petri Nets, ACPN 2003, held in Eichstätt,
Germany in September 2003. In addition to lectures given at ACPN 2003, additional chapters have been

https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1145/322374.322380
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1109/SEFM.2010.14
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1007/978-3-540-74407-8_12
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1109/ACSD.2005.25

Felix Stutz and Damien Zufferey 211

commissioned], Lecture Notes in Computer Science 3098, Springer, pp. 537–558, doi:10.1007/978-3-540-
27755-2 15.

[27] Blaise Genest, Anca Muscholl, Helmut Seidl & Marc Zeitoun (2006): Infinite-state high-level MSCs: Model-
checking and realizability. J. Comput. Syst. Sci. 72(4), pp. 617–647, doi:10.1016/j.jcss.2005.09.007.

[28] Cinzia Di Giusto, Laetitia Laversa & Étienne Lozes (2020): On the k-synchronizability of Systems. In Jean
Goubault-Larrecq & Barbara König, editors: Foundations of Software Science and Computation Structures -
23rd International Conference, FOSSACS 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Lecture Notes in
Computer Science 12077, Springer, pp. 157–176, doi:10.1007/978-3-030-45231-5 9.

[29] Loı̈c Hélouët & Claude Jard (2000): Conditions for synthesis of communicating automata from HMSCs. In:
In 5th International Workshop on Formal Methods for Industrial Critical Systems (FMICS).

[30] Alexander Heußner, Jérôme Leroux, Anca Muscholl & Grégoire Sutre (2012): Reachability Analysis of
Communicating Pushdown Systems. Log. Methods Comput. Sci. 8(3), doi:10.2168/LMCS-8(3:23)2012.

[31] Kohei Honda (1993): Types for Dyadic Interaction. In Eike Best, editor: CONCUR ’93, 4th International
Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993, Proceedings, Lecture Notes
in Computer Science 715, Springer, pp. 509–523, doi:10.1007/3-540-57208-2 35.

[32] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty asynchronous session types. In
George C. Necula & Philip Wadler, editors: Proceedings of the 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12,
2008, ACM, pp. 273–284, doi:10.1145/1328438.1328472.

[33] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asynchronous Session Types. J. ACM
63(1), pp. 9:1–9:67, doi:10.1145/2827695.

[34] Chris Köcher (2021): Reachability Problems on Reliable and Lossy Queue Automata. Theory Comput. Syst.
65(8), pp. 1211–1242, doi:10.1007/s00224-021-10031-2.

[35] Julien Lange & Nobuko Yoshida (2019): Verifying Asynchronous Interactions via Communicating Session
Automata. In Isil Dillig & Serdar Tasiran, editors: Computer Aided Verification - 31st International Confer-
ence, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I, Lecture Notes in Computer
Science 11561, Springer, pp. 97–117, doi:10.1007/978-3-030-25540-4 6.

[36] Markus Lohrey (2003): Realizability of high-level message sequence charts: closing the gaps. Theor. Com-
put. Sci. 309(1-3), pp. 529–554, doi:10.1016/j.tcs.2003.08.002.

[37] P. Madhusudan (2001): Reasoning about Sequential and Branching Behaviours of Message Sequence
Graphs. In Fernando Orejas, Paul G. Spirakis & Jan van Leeuwen, editors: Automata, Languages and
Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings,
Lecture Notes in Computer Science 2076, Springer, pp. 809–820, doi:10.1007/3-540-48224-5 66.

[38] Rupak Majumdar, Madhavan Mukund, Felix Stutz & Damien Zufferey (2021): Generalising Projection in
Asynchronous Multiparty Session Types. In Serge Haddad & Daniele Varacca, editors: 32nd International
Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference, LIPIcs 203,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 35:1–35:24, doi:10.4230/LIPIcs.CONCUR.2021.35.

[39] Sjouke Mauw & Michel A. Reniers (1997): High-level message sequence charts. In Ana R. Cavalli &
Amardeo Sarma, editors: SDL ’97 Time for Testing, SDL, MSC and Trends - 8th International SDL Forum,
Evry, France, 23-29 September 1997, Proceedings, Elsevier, pp. 291–306.

[40] Arjan J. Mooij, Nicolae Goga & Judi Romijn (2005): Non-local Choice and Beyond: Intricacies of MSC
Choice Nodes. In Maura Cerioli, editor: Fundamental Approaches to Software Engineering, 8th International
Conference, FASE 2005, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, Lecture Notes in Computer Science 3442,
Springer, pp. 273–288, doi:10.1007/978-3-540-31984-9 21.

[41] Henry Muccini (2003): Detecting Implied Scenarios Analyzing Non-local Branching Choices. In Mauro
Pezzè, editor: Fundamental Approaches to Software Engineering, 6th International Conference, FASE 2003,

https://doi.org/10.1007/978-3-540-27755-2_15
https://doi.org/10.1007/978-3-540-27755-2_15
https://doi.org/10.1016/j.jcss.2005.09.007
https://doi.org/10.1007/978-3-030-45231-5_9
https://doi.org/10.2168/LMCS-8(3:23)2012
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/s00224-021-10031-2
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1016/j.tcs.2003.08.002
https://doi.org/10.1007/3-540-48224-5_66
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.1007/978-3-540-31984-9_21

212 Comparing Channel Restrictions of CSMs, HMSCs, and MSTs

Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw,
Poland, April 7-11, 2003, Proceedings, Lecture Notes in Computer Science 2621, Springer, pp. 372–386,
doi:10.1007/3-540-36578-8 26.

[42] Wuxu Peng & S. Purushothaman (1992): Analysis of a Class of Communicating Finite State Machines. Acta
Informatica 29(6/7), pp. 499–522, doi:10.1007/BF01185558.

[43] Abhik Roychoudhury, Ankit Goel & Bikram Sengupta (2012): Symbolic Message Sequence Charts. ACM
Trans. Softw. Eng. Methodol. 21(2), pp. 12:1–12:44, doi:10.1145/2089116.2089122.

[44] Alceste Scalas & Nobuko Yoshida (2019): Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), pp. 30:1–30:29, doi:10.1145/3290343.

[45] Felix Stutz & Damien Zufferey (2022): Comparing Channel Restrictions of Communicating State Ma-
chines, High-level Message Sequence Charts, and Multiparty Session Types. CoRR abs/2208.05559,
doi:10.48550/arXiv.2208.05559. arXiv:2208.05559.

[46] Salvatore La Torre, P. Madhusudan & Gennaro Parlato (2008): Context-Bounded Analysis of Concurrent
Queue Systems. In C. R. Ramakrishnan & Jakob Rehof, editors: Tools and Algorithms for the Construc-
tion and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April
6, 2008. Proceedings, Lecture Notes in Computer Science 4963, Springer, pp. 299–314, doi:10.1007/978-3-
540-78800-3 21.

[47] Tayssir Touili & Mohamed Faouzi Atig (2010): Verifying parallel programs with dynamic communication
structures. Theor. Comput. Sci. 411(38-39), pp. 3460–3468, doi:10.1016/j.tcs.2010.05.028.

[48] International Telecommunication Union (1996): Z.120: Message Sequence Chart. Technical Report, Inter-
national Telecommunication Union. Available at https://www.itu.int/rec/T-REC-Z.120.

https://doi.org/10.1007/3-540-36578-8_26
https://doi.org/10.1007/BF01185558
https://doi.org/10.1145/2089116.2089122
https://doi.org/10.1145/3290343
https://doi.org/10.48550/arXiv.2208.05559
https://arxiv.org/abs/2208.05559
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1016/j.tcs.2010.05.028
https://www.itu.int/rec/T-REC-Z.120

D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 213–228, doi:10.4204/EPTCS.370.14

© M. Coulombe, J. Lynch
This work is licensed under the
Creative Commons Attribution License.

Characterizing the Decidability of Finite State Automata
Team Games with Communication

Michael Coulombe
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA

mcoulomb@mit.edu

Jayson Lynch
Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

jayson.lynch@uwaterloo.ca

In this paper we define a new model of limited communication for multiplayer team games of imper-
fect information. We prove that the Team DFA Game and Team Formula Game, which have bounded
state, remain undecidable when players have a rate of communication which is less than the rate at
which they make moves in the game. We also show that meeting this communication threshold
causes these games to be decidable.

1 Introduction

Deciding optimal play in multiplayer games of incomplete information is known to be an undecidable
problem [11, 10]. This includes games where the state space is bounded, a surprising result first shown
of a collection of abstract computation games [6] that has been extended to generalized versions of real
games, like Team Fortress 2 and Super Smash Bros [5]. However, past work has relied on the complete
inability of teammates to communicate during the game, which is often not a realistic assumption. In
this paper we study deterministic models of communication between players in two of these computation
games, the Team DFA Game and the Team Formula Game, and show a sharp change in computational
complexity based on whether players are able to eventually communicate all of their moves or only able
to communicate a constant fraction.

One motivation for this model is a better understanding of real world games. Many team games
played in-person naturally permit free form communication between teammates to coordinate their ac-
tions, and online multiplayer video games often provide communication channels such as voice-chat,
text, and emotes to simulate this in-person environment. These include many FPS games such as Team
Fortress and Left4Dead, MOBAs such as DOTA2 and League of Legends, and RTS games such as Star-
craft and Age of Empires. Some of these examples have drawn research interest in AI/ML [14, 3] as well
as computational complexity[13, 5]. The real-time nature of these games ensures that communication
channels are bounded; however, modeling free form communication, as well as efficiently implementing
meaningful player choices in a real-time setting, makes it difficult to analyze these games with these
communication features enabled.

Outside of the team setting, communication is a central aspect of many other games. For example, in
the cooperative card game Hanabi players are unable to see their own hands of cards, but this information
is visible to everyone else. In addition, players are not allowed to communicate except through actions
in the game, one of which allows players to reveal partial information about what is in another players
hand. A perfect information version of Hanabi was shown to be NP-complete [1]. The Crew: Quest for

http://dx.doi.org/10.4204/EPTCS.370.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

214 Decidability of Finite Automata Team Games with Communication

Planet Nine is a cooperative trick taking card game which uses limited communication between players
as a core mechanic. The complexity of this game was also studied in the perfect information setting [12].
Under the limited information setting, containment in NP for both of these games is not obvious, and we
see a need for models of player communication in games. Other examples of cooperative boardgames
with limited communication channels between players include Mysterium, The Mind, and Magic Maze.

Other games may limit communication simply with time pressure in the game. Examples of fully
cooperative games with imperfect information that use time pressure to limit coordination and commu-
nication include Space Alert, 5-Minute Dungeon, Keep Talking and Nobody Explodes, and Spaceteam.

Multi-agent, imperfect information games are also a topic of interest in Reinforcement Learning.
In [4] algorithms are developed to address team extensive form games of imperfect information where
communication is allowed at certain points during gameplay, with Bridge and collusion among some
players between hands in poker being the motivating examples. Other work considers Sequential Social
Dilemmas, a type of iterated economic game where in any given instant a player is incentivized towards
non-cooperative behavior, but cooperative strategies can obtain higher payoff over the game as a whole.
Learning algorithms for these models both with and without explicit bounded communication channels
were studied in [8]. Purely cooperative settings have also been of interest [7].

One major achievement was human level performance on a limited version of DOTA2, a MOBA-
style video game [3]. These are real-time, team games with partially observable state. Although both
text and voice chat are typically allowed in professional play, the AI system did not utilize these explicit
communication mechanisms. The board game Diplomacy, while not explicitly a team game, features
coordination and temporary alliances between players as a core game dynamic. This game has also seen
interest as a new challenge in the AI community, but focusing on No-Press Diplomacy which does not
allow explicit communication between players [9, 2].

These examples of both AI and computational complexity research which considers games with
cooperation and communication motivate, but frequently ignore the important role of communication in
these games, motivates this paper.

Paper Organization. In Section 1.2 we formally define our model of communication for the Team
DFA Game. In Section 2 we prove undecidability for a few simple communication patterns to help build
intuition for the techniques used in the next section. In Section 3 we prove our main undecidability
result for Team DFA Games with Communication. In Section 4 we prove the game becomes decidable
when either both players can communicate all information about their moves, or one player receives
no information but can communicate all of their moves to their teammate. In Section 5 we show that
analogous algorithms and undecidability results hold for Team Formula Games.

1.1 Team DFA Game

The Team DFA Game is a bounded state, two-vs-one multiplayer game, defined by [5] as a simplification
of the undecidable Team Computation Game [6]. It involves a team of two players, the ∃ players, and
an adversary, the ∀ player, who take turns sending a bit to a deterministic finite automaton (DFA). Each
team’s goal is to put the DFA into any of a set of winning final states for their team. The ∀ player knows
the moves of the ∃ players and thus the state of the DFA; however the ∃ players do not know each other’s
moves, which they must make after learning only one of ∀’s moves each turn.
Definition 1. The Team DFA Game (TDG) is a two-versus-one team game. An instance of the game is
a DFA D = ({0,1},Q,q0,δ ,F = F∃∪F∀). The existential team {∃0,∃1} competes against the universal
team {∀}. The game starts with D in state q0 and each round proceeds as follows:

M. Coulombe, J. Lynch 215

1. If D’s state q ∈ F∃ then team existential wins. If q ∈ F∀ then team universal wins.

2. ∀ learns the state q of D then inputs two bits b0,b1 into D.

3. ∃0 learns b0 then inputs one bit m0 into D. ∀ learns m0.

4. ∃1 learns b1 then inputs one bit m1 into D. ∀ learns m1.
The problem we consider in this paper is: given an instance of the game, does a particular team

have a forced win? More formally, does there exist a strategy function si for each player i on the team,
specifying on each turn which move to make based on any information they have learned so far, that
when followed will guarantee that this team will win? In this paper, we define the complexity of a game
as the complexity of whether a specified team has a forced win in the game, such as in the following:
Theorem 1 (previous work [5]). The Team DFA Game is undecidable.

A number of variations of this game, all undecidable in the general case, exist. These include Team
Computation Game where players give inputs to a Turing machine on a bounded tape [11], Team Con-
straint Logic Game where players make moves in a partially observable constraint logic graph [6]; and
Team Formula Game where players flip the values of Boolean variables trying to satisfy different formu-
las [10, 6].

1.2 Communication Model

We model communication in the Team DFA Game with a policy that specifies the bandwidth of a dy-
namic information channel, as one might have due to natural factors (e.g. playing a real-time game with
voice chat) or intentional game design (e.g. Hanabi’s card-revealing moves) allowing a predictable but
bounded amount of player-to-player communication between moves. Specifically, a policy P is a DFA
over a unary alphabet with functions PMID,PEND over its states. In a round of the game in policy state p,
PMID(p) is the number of bits which are exchanged simultaneously between ∃0 and ∃1 after (b0,b1) are
revealed but before (m0,m1) must be determined, and similarly PEND(p) is the number of bits to exchange
after (m0,m1) are submitted but before the next round starts.
Definition 2. The Team DFA Game with Communication (TDGC) is a game of the existential team
{∃0,∃1} versus the universal team {∀}, extending the Team DFA Game. An instance of the game is
a pair of a game DFA D = ({0,1},Q,q0,δ ,F∃ ∪F∀) and a policy P, which consists of a policy DFA
({1},Π, p0,π, /0) and functions PMID,PEND : Π→N×N. The game starts with D in state q0 and the policy
DFA in state p0, and each round proceeds with added communication steps as illustrated in Figure 1.

...

b0

b1

t0,MID

t1,MID

m0

m1

∀
......q

t0,END

t1,END
∃1∃1

∃0 ∃0

∀

∃1

∃0

...

∃1

∃0

Figure 1: Information flow graph of one round of the Team DFA Game with Communication, including
from the previous round and into the next round. New to this game are the mid-round transmissions,
t0,MID and t1,MID, and the end-of-round transmissions, t0,END and t1,END, which have sizes determined by
PMID and PEND applied to the policy state.

216 Decidability of Finite Automata Team Games with Communication

There are two beneficial aspects of studying policies as DFAs on unary alphabets: bounding the state
space allows for the policy to be computable by the mechanics of a bounded-state game (such as the DFA
in the Team DFA Game), and giving every state exactly one next state (for the next round of the game)
means the bandwidth every round will be known in advance when building our constructions, rather
than being dependent on player actions. As a result of this choice, it is important to note that the shape
of its state transition graph will always have the form: from the start state, there is an initial chain of
unique states (possibly of length zero) that leads to a cycle of periodically-repeating states. Also shown
in Figure 2.

...

...

Initial chain Periodic cycle

Figure 2: General form of a policy DFA: an initial chain followed by a cycle.

2 Undecidability of Simple Communication Games

In this section, we will explore some basic classes of policies that preserve the undecidability of the
Team DFA Game with Communication. Our proof technique is to reduce from the zero-communication
Team DFA Game, where we compensate for the message passing by “clogging the channel” with the
forced transmission of garbage bits that do not facilitate information sharing. Section 3 builds upon
these examples to obtain more general results, however proving the special cases in this section allows
us to introduce ideas needed in the full proof and discuss some of the techniques more concretely.

For each class of policies P below, we will show that given any policy P ∈P and DFA D for
playing TDG, we can produce a DFA D′ for playing TDGC under P such that the ∃ team has a forced
win on D with no channel iff they have a forced win on D′ given a channel following policy P. As TDG
is undecidable, so will be TDGC under any policy P∈P . For simplicity, we consider policies with DFA
Cr, a length-r cycle of states Π = {0,1, . . . ,r−1} with no initial chain, for arbitrary values of r.

Theorem 2. TDGC is undecidable with a 1 bit mid-round exchange every r≥ 2 rounds: policies P where
PMID(p) = (1,1) if p≡ 0 mod r, PMID(p) = (0,0) otherwise, and PEND(p) = (0,0).

Proof. We construct a DFA D′ by first augmenting the state q of D with the state p of Cr. When p 6≡ 0
mod r, D′ simply simulates D for one round. However, when p ≡ 0 mod r, D′ instead takes the inputs
(b0,b1,m0,m1) and tests b0 = m1∧b1 = m0. If the test fails, then D′ enters a final state for ∀.

How D′ clogs the channel is diagrammed in Figure 3. By tracking the round number, it knows exactly
when ∃0 and ∃1 will exchange bits, and in that round D′ expects ∃0 to guess b1, a bit that ∃0 does not learn
by the game procedure, and vice-versa. ∃0 and ∃1 are forced to spend their single bit of communication
on exchanging b0 and b1 to their teammate, in order to guarantee survival against any ∀ strategy for
choosing b0 and b1.

M. Coulombe, J. Lynch 217

b0

b1

t0,MID

t1,MID

m0

m1

∀
q

∃1∃1

∃0 ∃0

b0=m1

b1=m0 q

Figure 3: Mid-round 1-bit channel clogging technique. Values with the same color must be equal, namely
ti = bi = m1−i, or else the DFA permanently enters F∀.

Since ∃0 and ∃1 do not learn anything from each other or alter the simulated D’s state in the rounds
with communication, they have a winning strategy on D′ playing TDGC under P if and only if they have
a strategy for the non-exchanging rounds (which happen infinitely-often since r ≥ 2) that would give a
winning strategy on D playing TDG.

Theorem 3. TDGC is undecidable with n rounds of 1-bit mid-round exchanges across r > n rounds:
policies P where PMID(p) ∈ {(0,0),(1,1)} with pre-image size |P−1

MID((1,1))|= n and PEND(p) = (0,0).

Proof. We generalize Theorem 2 by constructing a DFA D′ which clogs the channel on any round p
(mod r) in which PMID(p) = (1,1) and simulates D in the other r−n > 0 out of r rounds. By the same
argument, this prevents communication between ∃0 and ∃1 while playing TDGC beyond the correspond-
ing play of TDG taking place during non-exchanging rounds, and thus preserves forced win-ability.

3 Undecidability of General Communication Games

This section proves our main result: that a broad class of policies with sufficiently low communication
rate remain undecidable for the Team DFA game. We now define this more general notion.

Definition 3. A policy is (r,x0,x1,N)-rate-limited if, after a fixed number of rounds N, the rate of
transmission from player ∃i to ∃1−i is xi during every period of r rounds. Specifically, it must satisfy

xi =
k0+r−1

∑
k=k0

PMID(pk)[i]+PEND(pk)[i] for k0 = N + `r, where ` ∈ N and pk is the policy state on round k.

This now allows us to state the main theorem.

Theorem 4. TDGC is undecidable under all (r,x0,x1,N)-rate-limited policies where x0,x1 < r.

3.1 Properties of Rate-Limited Policies

Before proceeding to the proof of Theorem 4, we will establish useful lemmas about rate-limited policies.
First, we have the following two simple observations:

Lemma 1. Any policy implemented as a unary-alphabet DFA with n > 1 states is (r,x0,x1,N)-rate-
limited for some 1 < r ≤ n and some initial segment of length N ≤ n.

Lemma 2. Any (r,x0,x1,N)-rate-limited policy is also (2r,2x0,2x1,N)-rate-limited if r > 1.

218 Decidability of Finite Automata Team Games with Communication

Next, we will need the following property bounding the partial sums of certain repeated finite se-
quences for analyzing the transmission rates in each part of a round across a period.

Definition 4. Let a be any sequence of 2n natural numbers (a0,a1, . . . ,a2n−1) with sum at most n− 1,
and let i be an index into a. ROTATE-BOUNDED(a, i) is the predicate that holds when the infinite sequence

b(i)j = a(i+ j mod 2n) with partial sums B(i)
j =

j−1
∑

k=0
b(i)k satisfies ∀ j > 0. B(i)

j < j
2 .

Lemma 3. For any such a, ROTATE-BOUNDED(a, i) holds for some even index i.

Proof. Let C(i)
j = B(i)

j −
j
2 . Let us find an even index i such that C(i)

j < 0 for all j > 0, and consider

the largest length j∗ < 2n which maximizes C(0)
j∗ . If C(0)

j∗ < 0 then i = 0 satisfies the claim, so suppose

C(0)
j∗ ≥ 0.

Because the sum of a is at most n− 1, notice that for any j, j + 2n in the next period satisfies
C(0)

j+2n = B(i)
j+2n −

j+2n
2 <

(
B(i)

j +n
)
−
(

j
2 +n

)
= C(0)

j . Since j∗ is the largest maximizer in the first
period, for all j > j∗:

0 >C(0)
j −C(0)

j∗ =

(
B(0)

j −
j
2

)
−
(

B(0)
j∗ −

j∗

2

)
= B(j∗)

j− j∗−
j− j∗

2
=C(j∗)

j− j∗

and therefore ∀ j > 0.C(j∗)
j < 0, thus i = j∗ is an index for which a is rotate bounded. If j∗ is even we are

done. If j∗ is odd, then we know that j∗ < 2n−2 because we supposed that C(0)
j∗ ≥ 0 whereas C(0)

2n−1 < 0:

C(0)
2n−1 = B(0)

2n−1−
2n−1

2
≤ (n−1−a2n−1)−

(
n− 1

2

)
=−a2n−1−

1
2
< 0

Thus, consider the even j∗+ 1 and let j′ ∈ [j∗+ 1,2n) be the maximum length such that C(0)
j′ = C(0)

j∗+1.

0 > C(0)
j∗+1 −C(0)

j∗ = C(j∗)
1 = b(j∗)

0 − 1
2 therefore b(j∗)

0 = 0 and C(0)
j′ = C(0)

j∗+1 = C(0)
j∗ −

1
2 . Since B(0)

j∗ is

an integer and j∗ is odd, j′ must also be even, and by similar arguments ∀ j > j′. C(0)
j′ > C(0)

j , thus

∀ j > 0. C(j′)
j < 0, so i = j′ satisfies the claim.

Corollary 1. For any such a, ROTATE-BOUNDED(a, i) holds for some odd index i.

Proof. Consider a′ = (a1,a2, . . . ,a2n−1,a0). By Lemma 3, there is an even index i′ which satisfies
ROTATE-BOUNDED(a′, i′). Thus i≡ i′+1 is an odd index such that ROTATE-BOUNDED(a, i).

3.2 Construction Outline

First, we introduce our reduction from the Team DFA Game to the Team DFA Game with Communi-
cation. Given an (r,x0,x1,N)-rate-limited policy P and an underlying DFA D, we create a DFA D′ for
playing the TDGC under P which simulates playing the TDG on D while completely clogging the com-
munication between the ∃ team to nullify any advantage such communication could bring. This lets us
conclude that a winning strategy for TDGC on D′ exists exactly when a winning strategy exists for TDG
on D.

The reduction applies when each xi < r, meaning the communication rate defined by P is eventually
below an average of one bit per round. We also assume r > 1 and each xi > 0: if there is no communi-
cation at all then TDGC is identical to TDG, and if communication only occurs in one direction then the

M. Coulombe, J. Lynch 219

aspects of the construction that deal with the silent direction may be omitted. Lastly, by Lemma 2, we
take period length r to be even without loss of generality.

The code for D′ is fully shown in Algorithm 1. The behavior of D′ is designed around what we call
the honest strategy for the ∃ team. We will show that it is the only strategy that guarantees the ∃ team
will pass validation checks by D′, but also that it requires using all available transmission bits, resulting
in no information transfer between players for their additional benefit in the simulated TDG.

Along with the current state of D in the TDG, D′ maintains two queues X0,X1 of clogging bits that
have been given to each ∃ player by the adversary ∀ in specific rounds. These bits are expected to be
submitted by the opposite ∃ player to D′ for validation in later rounds in order to avoid losing the game, so
the players are forced to use transmission bandwidth to exchange this information. The honest ∃i player
sends these bits directly and as soon as possible to ∃1−i, who maintains a “knowledge” queue K1−i of all
bits sent from ∃i but not yet validated by D′. We note that Xi \K1−i is thus the set of yet-to-be-transmitted
private bits known only to ∃i.

3.3 Build-up Phase

D′ begins the build-up phase after N rounds, once P has started to repeat its policy states. This phase
lasts for exactly r2 rounds, or r periods of P’s cycle. D′ starts with empty X0 and X1, and every round D′

simply enqueues b0 and b1 into the appropriate queues.
During these rounds, ∀ can send one bit per round to ∃i, who can transmit those bits to ∃1−i, for

each i ∈ {0,1}. Because the rate of transmission can vary above or below one bit per round, there is
some maximum amount x′i ≤ xi out of r bits that can reach ∃1−i in the first r rounds. Each subsequent
r rounds, xi out of the r new bits can be sent (by the rate-limitedness of P), thus after r2 rounds at most
x′i +(r− 1)xi ≤ rxi < r(r− 1) bits in Xi can be sent to ∃1−i and thus at least r are not known. By this
argument, at the end of the build-up phase we can say that an honest player’s knowledge queue has size
|Ki|= x′1−i +(r−1)x1−i ∈ [r−1,r(r−1)], since we assume x1−i ≥ 1.

3.4 Clogging Phase

In the clogging phase, D′ simulates playing TDG on D while clogging the transmissions between ∃ play-
ers at a steady rate to keep |Xi| and |Ki| constant on period boundaries. In the last round of every period of
r rounds, D′ alternates between (1) having ∀,∃0,∃1 play one round of TDG, and (2) forcing ∀ to tell the
∃ team if they have won in the TDG yet and therefore if D′ is going to start the next phase: the tear-down
phase.

In the first r− 1 rounds of each period in this phase, D′ clogs the transmissions between ∃ players
by requiring that bits given to ∃i by ∀ (placed into queue Xi) are sent to ∃1−i. This is done by dequeuing
the oldest bit b from Xi and checking for ∃1−i to submit m1−i = b, otherwise they will lose the game.
Specifically, to preserve the size of Xi and keep up with the rates at which the ∃ players can transmit
information to each other, D′ will do ENQ(Xi,bi) then validate DEQ(Xi) = m1−i for the first xi rounds of
each period.

Across the whole period, Ki will gain x1−i new bits transmitted from ∃1−i (by the rate-limitedness of
P). New available bits always exist because the number of private bits available to be sent is |X1−i \Ki| ≥
r > x1−i at the start of the period. Additionally, across the first x1−i rounds of the period, Ki will lose x1−i

bits submitted by ∃i to D′, which are always known because |Ki| ≥ (r−1)x1−i≥ x1−i at the start. Overall,
this means |Ki| is preserved on period boundaries and honest players will always be able to submit the
correct bit and pass the validation.

220 Decidability of Finite Automata Team Games with Communication

Labeling the first clogging period with index 0, at the end of every odd-indexed period, D′ will
simulate TDG by forwarding the inputs of all players directly to D. However, at the end of even-indexed
periods, D′ will ignore ∃0,∃1 and expect both ∀ bits to state whether or not the ∃ team has won in TDG,
specifically requiring that b0 = b1 = [q ∈ F∃]. If this validation fails, then D′ will halt with a ∃ team
victory, so the ∀ player must give the correct information to both ∃ players to avoid losing, which it is
always able to do.

Assuming validation never fails, which is achieved by the honest strategy, the clogging phase con-
tinues until the simulated Team DFA Game ends. If the ∃ players lose in the simulation, they lose
immediately, otherwise after the even-indexed period when the ∃ players learn they have won, D′ moves
onto the tear-down phase to perform the final validation checks.

3.5 Tear-down Phase

The tear-down phase starts at the beginning of a period, so by the previous arguments for queue size
preservation, it starts with |Xi| = r2 and |K1−i| = x′i +(r− 1)xi. In order to ensure the ∃ team’s trans-
missions have been completely clogged all the way until the simulated victory, D′ must validate that the
remaining bits in Ki have actually been sent by this point.

This phase is split into two parts, with a boosting sub-phase to adjust the size of Xi and K1−i for the
following draining sub-phase that empties them. Once each queue has been drained and all validation
checks have been passed, then D′ will halt with an ∃ team victory. We will need the following fact:

Lemma 4. There exists a kend such that, in every round up to the kth
end round of a period, the cumulative

number of bits ∃0 will transmit to ∃1 before ∃1 submits a bit to D′ in the kth
end round is always upper-

bounded by the cumulative number of bits ∃1 will submit to D′ in that time (from round N onwards).

Proof. Say the period begins in round m≥ N, and recall that we can assume the period length r is even.
Consider the sequence ak of the number of bits transmitted from ∃0 to ∃1 in the k half-rounds starting
in round m, so ak = PMID(pm+k/2)[0] when k is even and ak = PEND(pm+(k−1)/2)[0] when k is odd. Since
policy states repeat, ∀k ≥ 0. ak+r = ak, and a0 + . . .+ar−1 = x0 < r, so we can apply Corollary 1 to the
reversed sequence (ar−1, . . . ,a0) to get an odd index i such that ∀ j > 0. B(i)

j < j
2 .

Since B(i)
j is the cumulative number of bits transmitted from ∃0 to ∃1 across the j half-rounds ending

when ∃1 submits a bit to D′ in round m+ r−1−i
2 , and d j+1

2 e ≥
j
2 is the cumulative number of bits ∃1

submits to D′ across the same set of j half-rounds, then round offset kend =
r−i−1

2 satisfies Lemma 4.

Draining Sub-Phase Given kend from Lemma 4 (by symmetry, the lemma applies in both directions),
let tend ≤ kend be the total number of bits transmitted from the beginning of a period until the bit sub-
mission in the kth

end round. If a period starts with |Xi| ≤ kend and |Xi \K1−i| = tend , then we can have D′

validate bits in the |Xi| rounds before the kth
end round and reach |Xi| = |K1−i| = 0 where each of the tend

transmitted bits are clogging bits from Xi \K1−i with no room for extra communication from ∃i to ∃1−i.
In order to ensure some period starts with |Xi| ≤ kend and |Xi \K1−i| = tend we use some ni periods

beforehand to drain each queue appropriately. Since in each period there are xi transmission bits (fixed)
and up to r validated bits (based on D′), it suffices to have |Xi| ≤ nir+ kend and |Xi \K1−i|= nixi + tend .

Boosting Sub-Phase The tear-down phase must start with |Xi \K1−i|= r2−(x′i+(r−1)xi)≥ r−1, but
this may not be nixi + tend for any ni, so before ni + 1 draining periods, we will have additional periods

M. Coulombe, J. Lynch 221

to increase the number of private bits by δi = (nixi + tend)− (r2− (x′i +(r−1)xi)). So for δi ≥ 0, we can
choose any sufficiently-large ni.

After one period where ∀ gives ci new clogging bits to ∃i and D′ validates v1−i bits from ∃1−i, we
would have ∆|Xi| = ci− v1−i and ∆|K1−i| = xi− v1−i (given that ∃i initially has |Xi \K1−i| ≥ xi private
bits to transmit to ∃1−i), thus ∆|Xi \K1−i|= ci−xi. Therefore, if we set ci = xi+1≤ r and v1−i = xi, then
we get ∆|Xi|=+1, ∆|K1−i|= 0, and ∆|Xi \K1−i|=+1. If δi < δ1−i, then to delay we also need “filler”
rounds with no change to the sizes of any queues, which can be achieved by setting ci = v1−i = xi.

To ensure δi is positive and |Xi| ≤ nir+kend at the end of this sub-phase, we need to choose an ni that
satisfies the following constraints at the start of the tear-down phase:

0≤ δi = (nixi + tend)−|Xi \K1−i|
ni ≥ (|Xi \K1−i|− tend)/xi

and
nir+ kend ≥ r2 +δi

nir+ kend ≥ |Xi|+(nixi + tend)−|Xi \K1−i|= |K1−i|+(nixi + tend)

ni ≥ (|K1−i|+ tend− kend)/(r− xi)

We pick ni to be the smallest natural number satisfying both lower bounds:

ni =

⌈
max

{
|Xi \K1−i|− tend

xi
,
|K1−i|+ tend− kend

r− xi

}⌉
=

⌈
max

{
r2− (x′i +(r−1)xi)− tend

xi
,
(x′i +(r−1)xi)+ tend− kend

r− xi

}⌉
Since 0≤ x′i ≤ xi < r and 0≤ tend ≤ kend < r, we can upper bound ni = O(r2).

Putting it all together At the beginning of the tear-down period, D′ will run a set of δi periods where
∀ produces xi + 1 new bits and D′ validates xi bits, followed by max{δ0,δ1}− δi periods of xi new and
validated bits. After δmax = max{δ0,δ1} rounds, we will have |Xi|= r2 +δi and |Xi \K1−i|= nixi + tend ,
preserving |K1−i|= x′i +(r−1)xi. D′ will then run ni periods plus kend rounds ignoring ∀ and validating
the remainder of Xi (starting |Xi| rounds before the end).

3.6 Proof of Undecidability

Theorem 4. TDGC is undecidable under all (r,x0,x1,N)-rate-limited policies where x0,x1 < r.

Proof. We reduce from the Team DFA Game. For any (r,x0,x1,N)-rate-limited policy P where x0,x1 < r,
given an input DFA D for playing the TDG, we construct the DFA D′ described in Algorithm 1 for playing
the TDGC under policy P. Since determining whether or not the ∃ team has a forced win in the TDG is
undecidable, this reduction will show that the same question of the TDGC under policy P is undecidable
as well.

Given the analysis of D′ from the previous sections, we first note that D′ is indeed a finite automaton:
the waiting counter takes on N values; each queue Xi has maximum size r2+δi bits, where ni = O(r2) so
δi = O(r3); the state q of D has |Q| possible values; and the various other counters require O(logr) bits
each. From beginning to end, the maximum memory requirement is O

(
max

{
logN,r2 + log |Q|,r3

})
bits, summarizing Table 3.6.

222 Decidability of Finite Automata Team Games with Communication

State Category Space Needed (bits)
HALT(winner) Θ(1)
WAITING(w) Θ(logN)

BUILD-UP(X0, X1) Θ(r2)

CLOG(X0, X1, q, p, k, c01, c10) Θ(r2 + log |Q|)
BOOST(X0, X1, d01, d10, k, c01, c10) Θ(r2 +δmax)

DRAIN(X0, X1, c01, c10) Θ(r2 +δmax)

Table 1: Memory Requirements of D′ over the course of the TDGC.

If there is a winning strategy S for the ∃ team on D in the TDG, then the corresponding honest
strategy described above that plays the simulated TDG using S will be a winning strategy for the ∃ team
on D′ in the TDGC under policy P.

If there is a winning strategy for the ∃ team on D′ in the TDGC under policy P, then consider any
winning execution γ . Since winning requires termination, let C be the number of periods in the clogging
phase.

If γ reaches HALT(∃) in the clogging phase because ∀ did not correctly tell the ∃ team whether or not
q ∈ F∃, then ∀ did not play optimally. Since ∀ has perfect information and is allowed to give either 0 or
1 by the game rules, there is an alternate execution γ ′ where ∀ gives the correct answer instead and the
game continues, so no ∃ team strategy can force a win in this way.

The only other way for the ∃ team to win is for γ to reach HALT(∃) at the end of the draining phase,
which means they must pass all of the validation checks by D′.

Phase ENQ(Xi) Count DEQ(Xi) Count Information ∃i→∃1−i

Build-up r2 0 x′i +(r−1)× xi

Clogging C× xi C× xi C× xi

Boosting δmax× xi +δi δmax× xi δmax× xi

Draining 0 r2 +δi ni× xi + tendi

Table 2: Accounting of ENQ(Xi), DEQ(Xi), and Information Transfer between players in each phase

Table 2 details the value of three quantities in each phase of the game: the number of bits enqueued
into Xi, the number of bits dequeued from Xi, and the amount of meaningful bits of information that can
be transmitted from ∃i to ∃1−i. By the definition of δi and some algebra, it can be seen that each column
has the same sum; let I be this total quantity of bits.

Because D′ validates the value of each dequeued bit, in order for ∃i to guarantee they pass all valida-
tion checks, they must send I bits of information to ∃1−i. However, because I is the maximum amount
of information ∃i can send to ∃1−i, no further information can be sent, which means that in every round
in which D′ simulates the TDG on D′, ∃i has the same amount of information about the state q of D as
it would when actually playing TDG on D. Therefore, if the ∃ team has a winning strategy for playing
TDGC on D′ under policy P, within it is a winning sub-strategy for them to play the TDG on D.

M. Coulombe, J. Lynch 223

Algorithm 1 Pseudocode for the D′ internal update function per round
1: q′← WAITING(1) . Initial state
2: function DFA-ROUND-UPDATE(q′, b0, b1, m0, m1)
3: switch q′

4: case HALT(winner) . Game is over, with q′ ∈ F ′winner
5: return HALT(winner)
6: case WAITING(w) . Waiting Phase, delaying until policy starts repeating
7: if w < N then return WAITING(w+1)
8: return BUILD-UP([], [])
9: case BUILD-UP(X0, X1) . Build-up Phase, filling up Xi queues

10: ENQ(X0, b0)
11: ENQ(X1, b1)
12: if LENGTH(X0)< r2 then return BUILD-UP(X0, X1)
13: return CLOG(X0, X1, q0, EVEN, r, x0, x1)
14: case CLOG(X0, X1, q, p, k, c01, c10) given k > 1 . Clogging Phase, boosting
15: for all i ∈ {0,1}
16: if ci,1−i > 0 then
17: ENQ(Xi, bi)
18: if DEQ(Xi) 6= m1−i then return HALT(∀)
19: ci,1−i← ci,1−i−1
20: return CLOG(X0, X1, q, p, k−1, c01, c10)
21: case CLOG(X0, X1, q, ODD, 1, 0, 0) . Clogging Phase, simulating D
22: q← δ (δ (δ (δ (q,b0),b1),m0),m1)
23: return CLOG(X0, X1, q, EVEN, r, x0, x1)
24: case CLOG(X0, X1, q, EVEN, 1, 0, 0) . Clogging Phase, testing for ∃ win
25: if ¬(b0 = b1 = [q ∈ F∃]) then return HALT(∃)
26: if q ∈ F∃ then return BOOST(X0, X1, δ0, δ1, r, x0, x1)
27: if q ∈ F∀ then return HALT(∀)
28: return CLOG(X0, X1, q, ODD, r, x0, x1)
29: case BOOST(X0, X1, d01, d10, k, c01, c10) given k > 1 . Boost Phase, clogging
30: for all i ∈ {0,1}
31: if ci,1−i > 0 then
32: ENQ(Xi, bi)
33: if DEQ(Xi) 6= m1−i then return HALT(∀) . Return from caller
34: ci,1−i← ci,1−i−1
35: return BOOST(X0, X1, d01, d10, k−1, c01, c10)
36: case BOOST(X0, X1, d01, d10, 1, 0, 0) . Boost Phase, new boost bits
37: for all i ∈ {0,1}
38: if di,1−i > 0 then
39: ENQ(Xi, bi)
40: di,1−i← di,1−i−1
41: if d01 +d10 > 0 then return BOOST(X0, X1, d01, d10, r, x0, x1)
42: return DRAIN(X0, X1, r×n0 + kend0 , r×n1 + kend1)
43: case DRAIN(X0, X1, c01, c10) given c01 + c10 > 0 . Drain Phase, emptying queues
44: for all i ∈ {0,1}
45: if ci,1−i1 > 0 then
46: if |Xi|= ci,1−i∧DEQ(Xi) 6= m1−i then return HALT(∀)
47: ci,1−i1← ci,1−i1−1
48: return DRAIN(X0, X1, c01, c10)
49: case DRAIN([], [], 0, 0) . Drain Phase, finished!
50: return HALT(∃)

224 Decidability of Finite Automata Team Games with Communication

4 Decidability

We show that our general construction from the previous section is tight with respect to the transmission
rate between ∃ players.

For our precise bounds, we assume the straightforward encoding of the input DFA D with n states as
a table for δ containing 2n states, a state q0, and the states in F∃ and F∀, thus the input size is Θ(|Q|).

First, we demonstrate (r,r,r,0)-rate-limited policies under which the Team DFA Game with Com-
munication is not only decidable but in PSPACE. Later we will show more restrictive communication
patterns are in EXPSPACE. Recall (r,r,r,0)-rate-limited policies are the case where both players are
allowed to exchange r bits over the course of a period of length r.

Theorem 5. TDGC is decidable in PSPACE with a 1-bit, mid-round exchange in both directions every
round: policies P with PMID(p) = (1,1) and PEND(p) = (0,0) for all p ∈Π.

Proof. Under such a policy, TDGC becomes a perfect information game. In each round of the game, the
optimal play for ∃i is to send bi to ∃1−i immediately after receiving it, meaning ∃1−i will know both b0
and b1 before it chooses m1−i. Since the ∃ team knows the initial state q0 of D, we can consider strategy
functions s : (q,b0,b1) 7→ (m0,m1), which both players can use to decide their own next move and know
what move their teammate will perform as well, letting them use δ to learn the state q of D in the next
round and beyond.

Note that it suffices for the ∃ team to have a memoryless strategy because the policy P is constant
per round, DFA transitions do not depend on the history of the game, and the adversarial ∀ player’s
choices are not bound by the history either. It also suffices to have a deterministic strategy: if there
exists a non-deterministic winning strategy s′, then we can fix s(q,b0,b0) to be some (m0,m1) with
Pr[s′(q,b0,b1) = (m0,m1)]> 0 because all game executions in which the ∃ team plays with deterministic
strategy s are possible executions when playing with strategy s′, thus must also be winning.

We show that deciding whether or not the ∃ team has a forced win in TDGC under policy P is in
PSPACE by giving a brute-force search algorithm. For every strategy s among the 44|Q| possible strategy
functions, we construct a game graph Gs where each state q∈Q\F∃ is a vertex and for all b0,b1 ∈ {0,1},
q has an edge to q′ = δ (δ (δ (δ (q,b0),b1),m0),m1) where (m0,m1) = s(q,b0,b1) as long as q′ /∈ F∃. This
means s is a winning strategy if and only if all q∈ F∀ and all cycles are not reachable from q0 in Gs, since
otherwise the traversal corresponds to a losing execution or the start of a potentially non-terminating
execution of the game that the ∀ player can force to occur. We can thus perform an exhaustive depth-first
search from q0 for a counterexample (of length at most |Q|) to decide whether or not s is a winning
strategy. Since we only need Θ(|Q|) space to store the current s, Gs, and depth-first search stack, this
algorithm runs in PSPACE.

Since it is sufficient to send only one bit of useful information mid-round, we can extend Theorem 5
to higher transmission rates.

Corollary 2. TDGC is decidable in PSPACE with at least a 1-bit, mid-round exchange in both directions
every round: policies P with PMID(p)[i]≥ 1 for all p ∈Π and each i ∈ {0,1}.

Next, we consider the decidability of TDGC under (r,r,0,0)-rate-limited policies, which is tight
given the undecidability of (r,r−1,0,0)-rate-limited policies. This shows that only one member of the
team needs to have perfect information.

Theorem 6. TDGC is decidable in EXPSPACE with a 1-bit, mid-round exchange every round from ∃0 to
∃1, but none from ∃1 to ∃0: policies P with PMID(p) = (1,0) and PEND(p) = (0,0) for all p ∈Π.

M. Coulombe, J. Lynch 225

Proof. As described in the proof of Theorem 5, ∃0 can and should send b0 to ∃1 each round to give
∃1 perfect information, but ∃0 themself can learn nothing about b1. Using the terminology from [11],
this asymmetry makes TDGC under P a hierarchical team game. To decide the existence of a winning

strategy, we adapt ideas from the proof of Theorem 4 in the same paper that shows DTIME
(

222cS(n))
⊇

MPA2-SPACE(S(n)), the languages decided by hierarchical 2-vs-1 private alternation Turing machines
in S(n) space.

Consider the set of all possible mid-round configurations (q,b0,b1) of the game, which are fully
known to ∀ and ∃1. Define C be the set of possible configurations (b0,u) of ∃0’s mid-round knowledge:
the known b0 and the set u ∈P(Q×{b0}×{0,1}) of possible mid-round configurations given the his-
tory of the game thus far. Since two game states with the same c ∈C are strategically equivalent from
the perspective of ∃0 (and thus ∃1 too), a winning strategy only needs to account for the |C| = 22|Q|+1

knowledge configurations in its decision-making.
Given this, we can do a brute-force search as in Theorem 5 over the space of deterministic ∃ team

strategies s : c ∈C 7→ (m0,m1) of size 4|C|. For each s, we construct the game graph Gs, where c ∈C has
an outgoing edge representing the outcome of each b0,b1 choice of ∀ after the ∃ players use s to make
their moves and ∃0 updates their knowledge, and then search for counter-example game executions with
length up to |C| to decide whether s is a winning strategy. Therefore, TDGC under P is decidable in
Θ(|C|) space, which is exponential in |Q|.

As before, Theorem 5 extends to higher transmission rates from ∃0 to ∃1 (or vice versa), as long as
the receiver stays silent.

Corollary 3. TDGC is decidable in PSPACE with at least a 1-bit, mid-round exchange in one direc-
tion every round, but none in the other direction: policies P with PMID(p)[i] ≥ 1 and PMID(p)[1− i] =
PEND(p)[1− i] = 0 for all p ∈Π and some i ∈ {0,1}.

5 Team Formula Games with Communication

Formula games model many types of games. The Team Formula Game was defined and proven unde-
cidable in [6]. We define a communication version of this game and prove results analogous to the ones
for TDGC.

Definition 5. A Team Formula Game (TFG) instance consists of sets of Boolean variables X , X ′, Y1, Y2
and their initial values; variables h0,h1 ∈ X ; and Boolean formulas F(X ,X ′,Y0,Y1), F ′(X ,X ′), and G(X)
such that F implies ¬F ′. The TFG problem asks whether {W0,W1}, team White, has a forced win against
{B}, team Black, in the game that repeats the following steps in order ad infinitum:

1. B sets X to any values. If F and G are true, then Black wins. If F is false, White wins.

2. B sets X ′ to any values. If F ′ is false, then White wins.

3. W0 sets Y1 to any values.

4. W1 sets Y2 to any values.

where B has perfect information but Wi can only see the values of Yi and hi.

Definition 6. Team Formula Game with Communication (TFGC) is TFG along with a policy P which
specifies a number of bits to be transmitted between W0 and W1 mid-round (before each step 3) and at
the end of the round (after each step 4)

226 Decidability of Finite Automata Team Games with Communication

Theorem 7. TFGC is undecidable under all (r,x0,x1,N)-rate-limited policies where x0,x1 < r.

Proof. For any such policy P, we reduce from the Team DFA Game with Communication under the
same policy P, adapting the reduction done in Theorem 8 of [6] from the Team Computation Game to
the Team Formula Game. In the reduction, the White team plays as the ∃ team and B plays as ∀ while
also facilitating the simulation of TDGC in TFGC.

Given a DFA D to play TDGC under P, we first augment D so it will be suitable for the simulation.

To each state, we add a 3-value counter to eliminate any four-edge cycles in the transition graph (t δ−→
(t+1) δ−→ (t+2) δ−→ t δ−→ (t+1) 6= t). Also, we add four new states in a path q0

δ−→ q(1)0
δ−→ q(2)0

δ−→ q(3)0
δ−→ q(4)0

from a new initial state q0 to the original initial state q(4)0 in order to delay the first meaningful state
transitions until the start of the second round, which is when the first set of player inputs are available.

In the instance of TFGC, we will have (1) variables hi = bi ∈X and b′i ∈X ′, representing the ∀ player’s
chosen bits in the current and previous round; (2) Yi = {mi}, containing the ∃i player’s message bit each
round; (3) sets of Θ(log |Q|) variables 〈q′〉 ⊂ X ′ and 〈q〉 ⊂ X that encode the previous state q′ and current
state q; (4) and two parity bits p ∈ X and p′ ∈ X ′ which B will be required to flip each round. We also
choose the initial value of q′ to be q0 so that in step 1 of the first round B will be forced to set q to q(4)0 ;
other initial values are arbitrary.

In step 1, formula F holds if B sets X so q = δ (δ (δ (δ (q′,b′0),b
′
1),m0),m1), q /∈ F∃, and p′ 6= p.

Formula G will be true if the current state q ∈ F∀. Thus, when F and G are both true, then in the TDGC
the state transition function was correctly implemented and led to a final state where ∀ has won, and thus
Black wins the TFGC. On the other hand, if F is false, then either B violated the simulation or the TDGC
led to a final state where ∃ team has won, and thus White wins the TFGC.

In step 2, formula F ′ will be true if B sets X ′ such that q′ = q and p′ = p, updating the previous state
for the next round to the new state. If F ′ is false, then B violated the simulation, and thus White wins the
TFGC. Additionally, the parity bit checks guarantee that F implies ¬F ′.

Since this is a faithful simulation where each round of TFGC corresponds exactly to one round of
TDGC, and by Theorem 4 it is undecidable whether or not there exists a winning strategy for the ∃ team
playing TDGC under P, it is also undecidable whether or not there exists a winning strategy for White
playing TFGC under the same policy P.

The strategy for proving decidability results of Team DFA Game with Communication also be used
to give the following tight decidability results on the Team Formula Game with Communication.

Theorem 8. TFGC is decidable in 2-EXPSPACE with a 1-bit, mid-round exchange in both directions
every round: policies P with PMID(p) = (1,1) and PEND(p) = (0,0) for all p ∈Π.

Theorem 9. TFGC is decidable in 3-EXPSPACE with a 1-bit, mid-round exchange every round from W0
to W1, but none from W1 to W0: policies P with PMID(p) = (1,0) and PEND(p) = (0,0) for all p ∈Π.

6 Open Problems

One exciting question is whether we can prove computational complexity results about real games with
communication. It seems plausible that TDGC may be sufficient for applications to games with highly
structured communication. We present a number of questions that we think may help strengthen results
to allow their application to more real world scenarios or questions we find particularly interesting for
their own sake.

M. Coulombe, J. Lynch 227

One of the main technical questions left open by this work is the complexity for rate-limited policies
with x0 ≥ r and r > x1 > 0. We conjecture this case is decidable but our current arguments rely on both
players either having full information or no information.

Looking further, there are many interesting variations and extensions of this model to study. Our
arguments rely heavily on communication policies having some bounded period which is useful both for
algorithms to bound the uncertainty in the game and for undecidability to allow for constructions that
simulate a step in a zero information game after a bounded number of rounds. What happens if our policy
is described by something more general than a DFA, such as a sequence recognizable by a pushdown
automaton?

Similarly, some of our arguments rely on the fact that the game is played on something with bounded
state, such as a DFA or Boolean Formula. What happens with team games on more general systems,
such as a pushdown automaton or a bounded space Turing Machine?

Many realistic scenarios have noisy communication channels. How does the computational com-
plexity change under different models of noise? We conjecture that there will again be a cutoff based
on whether the information capacity of the channel is sufficiently high. However, it is also possible that
the small probability of error will compound over these games of unbounded length resulting in differ-
ent behavior. It would also be interesting to understand what happens when other sources of inherent
randomness are introduced to these games.

It is also often the case that one’s ability to communicate depends on the state of the environment
and potentially the actions of the people involved. Thus having communication policies that depend on
player actions or the game state would be another interesting generalization.

We also only consider two players on the Existential Team. We believe that when more players
are added, undecidability will emerge if at least two players have imperfect information. However, this
should be verified and the details around more complex communication patterns may lead to richer
behavior.

Finally, there is an issue when trying to apply these results to real games or real world problems.
Our characterization in some sense relies on communication being high or low compared to critical or
meaningful choices in the games. Many natural scenarios have a much larger action space than commu-
nication rate, however many of those choices may be essentially equivalent or strategically inadvisable.
Undecidability proofs such as those for Team Fortress 2 [5] have very inefficient reductions and require
significant numbers of in-game actions to simulate one move in the DFA game. This makes a direct
application of our results difficult.

Acknowledgements

We would like to thank Erik Demaine and other participants in the class 6.892 Algorithmic Lower
Bounds: Fun with Hardness Proofs (Spring 2019) for useful discussion and the suggestion of poten-
tial applications. Thanks to Sophie Monahan for editing assistance.

References

[1] Jean-François Baffier, Man-Kwun Chiu, Yago Diez, Matias Korman, Valia Mitsou, André van Renssen,
Marcel Roeloffzen & Yushi Uno (2017): Hanabi is NP-hard, even for cheaters who look at their cards. 675,
pp. 43–55, doi:10.1016/j.tcs.2017.02.024.

[2] Anton Bakhtin, David J. Wu, Adam Lerer & Noam Brown (2021): No-Press Diplomacy
from Scratch. Advances in Neural Information Processing Systems 34: Annual Conference

https://doi.org/10.1016/j.tcs.2017.02.024

228 Decidability of Finite Automata Team Games with Communication

on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pp. 18063–18074. Available at https://proceedings.neurips.cc/paper/2021/hash/

95f2b84de5660ddf45c8a34933a2e66f-Abstract.html.
[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dȩbiak, Christy Dennison,

David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse et al. (2019): Dota 2 with large scale deep rein-
forcement learning. arXiv:1912.06680.

[4] Andrea Celli, Marco Ciccone, Raffaele Bongo & Nicola Gatti (2019): Coordination in adversarial sequential
team games via multi-agent deep reinforcement learning. arXiv:1912.07712.

[5] Michael J. Coulombe & Jayson Lynch (2018): Cooperating in Video Games? Impossible! Undecidability
of Team Multiplayer Games. 9th International Conference on Fun with Algorithms (FUN 2018) 100, pp.
14:1–14:16, doi:10.4230/LIPIcs.FUN.2018.14.

[6] Erik D. Demaine & Robert A. Hearn (2008): Constraint logic: A uniform framework for modeling computa-
tion as games. In: 2008 23rd Annual IEEE Conference on Computational Complexity, IEEE, College Park,
MD, USA, pp. 149–162, doi:10.1109/CCC.2008.35.

[7] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas & Shimon Whiteson (2016): Learning to Com-
municate with Deep Multi-Agent Reinforcement Learning. Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 2137–2145. Available at https://proceedings.neurips.cc/paper/2016/hash/
c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html.

[8] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, Dj Strouse, Joel Z.
Leibo & Nando De Freitas (2019): Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforce-
ment Learning. Proceedings of the 36th International Conference on Machine Learning 97, pp. 3040–3049.
Available at https://proceedings.mlr.press/v97/jaques19a.html.

[9] Philip Paquette, Yuchen Lu, Steven Bocco, Max O. Smith, Satya Ortiz-Gagne, Jonathan K. Kum-
merfeld, Joelle Pineau, Satinder Singh & Aaron C. Courville (2019): No-Press Diplomacy: Model-
ing Multi-Agent Gameplay. Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 4476–4487. Available at https://proceedings.neurips.cc/paper/2019/hash/

84b20b1f5a0d103f5710bb67a043cd78-Abstract.html.
[10] Gary Peterson, John Reif & Salman Azhar (2001): Lower bounds for multiplayer noncooperative

games of incomplete information. Computers & Mathematics with Applications 41(7-8), pp. 957–992,
doi:10.1016/S0898-1221(00)00333-3.

[11] Gary L. Peterson & John H. Reif (1979): Multiple-person alternation. In: 20th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1979), IEEE, San Juan, Puerto Rico, pp. 348–363,
doi:10.1109/SFCS.1979.25.

[12] Frederick Reiber (2021): The Crew: The Quest for Planet Nine is NP-Complete. CoRR. arXiv:2110.11758.
[13] Giovanni Viglietta (2014): Gaming is a hard job, but someone has to do it! Theory of Computing Systems

54(4), pp. 595–621, doi:10.1007/s00224-013-9497-5.
[14] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wojtek Czarnecki, An-

drew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo Ewalds, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin Dalibard, David Choi, Laurent Sifre, Yury Sul-
sky, Sasha Vezhnevets, James Molloy, Trevor Cai, David Budden, Tom Paine, Caglar Gulcehre, Ziyu
Wang, Tobias Pfaff, Toby Pohlen, Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis Hassabis & David Silver (2019):
AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/

alphastar-mastering-real-time-strategy-game-starcraft-ii/.

https://proceedings.neurips.cc/paper/2021/hash/95f2b84de5660ddf45c8a34933a2e66f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/95f2b84de5660ddf45c8a34933a2e66f-Abstract.html
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.07712
https://doi.org/10.4230/LIPIcs.FUN.2018.14
https://doi.org/10.1109/CCC.2008.35
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.mlr.press/v97/jaques19a.html
https://proceedings.neurips.cc/paper/2019/hash/84b20b1f5a0d103f5710bb67a043cd78-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/84b20b1f5a0d103f5710bb67a043cd78-Abstract.html
https://doi.org/10.1016/S0898-1221(00)00333-3
https://doi.org/10.1109/SFCS.1979.25
https://arxiv.org/abs/2110.11758
https://doi.org/10.1007/s00224-013-9497-5
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

	Introduction
	Structures and first-order logic
	Data Structures
	First-Order Logic
	Local First-Order Logic and its existential fragment

	Decidability results
	Preliminary results: 0 and 1 data values
	Two data values and balls of radius 2
	Balls of radius 1 and any number of data values

	Undecidability results
	Radius 3 and two data values
	Radius 2 and three data values

	Introduction
	Preliminaries
	Polyadic Higher-Order Fixpoint Logic
	Higher-Order Logic with Least Fixpoints
	Descriptive Complexity

	Upper Bounds
	Higher-Order Quantification
	Lower Bounds
	Conclusion
	Introduction
	Definitions and Background
	The Multi-Modal Logics with Recursion
	Known Results

	Complexity through Translations
	Translating Towards K k
	Composing Frame Conditions
	Modal Logics
	Modal Logics with Recursion

	Embedding K n
	Complexity results

	Tableaux for L k
	Conclusions
	Introduction
	Related Work
	Finite Automata on Words, Schemas, and Queries
	Schema-Based Cleaning
	Schema-Based Determinization
	Stepwise Hedge Automata for Nested Words
	Schema-Based Determinization for SHAs
	Experiments
	Introduction
	Preliminaries
	Acceptors
	Obtaining Acceptors by Regular Operations
	Classifiers
	Determinization
	State Minimization
	Conclusions and Future Work
	Acknowledgements
	Introduction
	Preliminaries
	Robustness Analysis
	Principle and goals of the analysis
	Noise

	Experimental Evaluation
	Generating DFAs
	Tunings
	Qualitative and Quantitative analysis
	Words distribution

	Random languages versus structured languages
	Conclusion
	Introduction
	Preliminaries
	Allen's relations and Interval Temporal Logic HS

	Parametric Interval Temporal Logic
	Decision procedures for PHS
	Translation of HS in linear-time Hybrid Logic
	Solving satisfiability and model checking of PHS

	Conclusion
	Introduction
	Preliminaries
	Realizability of Regular Hyperlanguages
	Unrealizability
	Realizability of Ordered Languages
	Realizability of Regular Languages

	Context-Free Hypergrammars
	Synchronous Hypergrammars

	Discussion and Future Work
	Introduction
	Timeline-based games
	State variables, event sequences, synchronization rules
	The game arena

	A deterministic automaton for timeline-based planning
	Controller synthesis
	From the automaton to the arena
	Computing the Winning Strategy

	Conclusions
	Introduction
	Related Work
	Preliminaries
	Terms, Substitutions, and Equational Theories
	Modes of Operation and Symbolic Security
	Modes and Their Security
	The Symbolic Model and Symbolic Security
	Checking Symbolic Security: Examples

	MOO Representation
	Standard and Custom MOO_-Programs
	User defined schedule
	Automatically Generated Singly Recursive MOO_-Definitions
	Interactions with MOO_-Programs

	Checking Symbolic Security Properties
	Checking Symbolic Security

	Invertibility and Recovering the Plaintext
	Authentication
	Experiments
	Conclusion and Future Work
	Introduction
	Introductory example
	Preliminary notions
	Attack trees and their semantics
	Syntax of attack trees
	Path semantics for attack trees
	Strategy semantics for attack trees

	Decision Problems over attack trees
	Future work
	Introduction
	Petri Nets and Unfoldings
	Doomed configurations, and how to avoid them
	Bad, Free and Doomed Configurations and Markings.
	Finding Minimally Doomed Configurations: Algorithm Mindoo
	Implementation and Experiments.

	Protectedness
	Cliff-Edges and Ridges.
	Measuring the Distance from Doom
	Computing Protectedness is Feasible

	Discussion
	Introduction
	Preliminaries
	Channel Restrictions
	Definitions
	Half-duplex Communication
	Existential B-boundedness
	k-synchronisability

	Algorithmic Verification and Channel Restrictions

	High-level Message Sequence Charts
	Channel Restrictions of HMSCs

	Multiparty Session Types
	Specifying Protocols with Global Types
	Encoding Global Types from MSTs into HMSCs
	Channel Restrictions of Global Types

	Communicating State Machines
	Channel Restrictions of CSMs

	Related Work
	Conclusion
	Introduction
	Team DFA Game
	Communication Model

	Undecidability of Simple Communication Games
	Undecidability of General Communication Games
	Properties of Rate-Limited Policies
	Construction Outline
	Build-up Phase
	Clogging Phase
	Tear-down Phase
	Proof of Undecidability

	Decidability
	Team Formula Games with Communication
	Open Problems

