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Random Generation of Combinatorial Structures.

Polyominoes and Tilings

Foreword

Srečko Brlek

UQAM, Canada

brlek.srecko@uqam.ca

Luca Ferrari

Università di Firenze, Italy

luca.ferrari@unifi.it

This volume contains the proceedings of the 13th edition of the conference GASCom, held at LABRI,

Bordeaux, during the week of June 24-28, 2024.

The very first edition of GASCom took place in Bordeaux on January 18 and 19, 1994, organized

by Dominique Gouyou-Beauchamps and the late Jean-Guy Penaud, in conjunction with “Polyominoes

and Tilings”, organized by Philippe Aigrin in Toulouse on January 20 and 21, 1994. As reported in the

foreword of the dedicated special issue,

“Both meetings investigated the same types of combinatorial objects (polynominoes, paths,

animals) but with different motivations. Counting and enumeration were among the interests

common to both, but GASCom focused on random generation, Polyominoes and Tilings on

the geometrical and topological problems in tiling and the complexity of tiling algorithms.”

(Theoretical Computer Science, 159 (1996) 1–2)

The second GASCom was organized by Jean-Guy-Penaud and Renzo Pinzani in Caen, again in

conjunction with “Polyominoes and Tilings”, organized by Jacques Mazoyer, under the name “Journées

d’hiver à Caen”, on January 30 and February 1, 1997. Again from the foreword, we quote

“They follow on from a previous edition, split between Bordeaux and Toulouse in January

1994, and the size of the audience common to both conferences prompted the organizers

to repeat the experience. Readers of these proceedings will appreciate the wisdom of this

choice” (translated from French, Theoretical Computer Science, 218 vol. 2 (1999) 217–218)

In 2024, GASCom returns to its origins, since it was the Ecole de Combinatoire de Bordeaux that planted

the seeds of these joint conferences, reminding us that the link between the two subjects (combinatorial

generation and polyominoes) is as strong as ever.

The conference features 5 invited talks and 33 contributed talks carefully selected by the members

of the program committee. We warmly thank them for their efforts and dedication in the reviewing

process. We also extend our thanks to the members of the organizing committee, who have worked hard

to organize the conference in a friendly and stimulating atmosphere. Finally, we thank all the speakers,

whose contributions are of course the key ingredients for the success of the conference.

To conclude, we wish to express our sincere gratitude to the staff of EPTCS, whose help and collab-

oration have been invaluable in the preparation of this volume.

http://dx.doi.org/10.4204/EPTCS.403.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Snake Tilings, Skeletons Subshift and Self-Avoiding Walks

Nathalie Aubrun

LISN, Université Paris-Saclay

nathalie.aubrun@lisn.upsaclay.fr

Wang tiles are squares with coloured edges that can be placed side by side as long as two neighbour-

ing tiles have the same colour on their common side. Given a finite set of such tiles, whether it is possible

to create an infinite tiling of the plane is an undecidable problem, known as the domino problem. This

problem has also been studied for about fifteen years for groups of finite type other than Z
2. In this talk

I will focus on a variant of this problem, the snake domino tiling. Instead of looking for a tiling of the

whole plane (or the whole group), we only look for a tiling of an infinite path. This problem remains

undecidable in the Euclidean plane Z
2. I will present recent progress on the snake tiling problem for

groups, and make the connection with self-avoiding paths.

http://dx.doi.org/10.4204/EPTCS.403.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Cutoff for Permuted Markov Chains

Anna Ben-Hamou

Sorbonne Université, France

anna.ben hamou@sorbonne-universite.fr

For a given finite Markov chain with uniform stationary distribution, and a given permutation on

the state-space, we consider the Markov chain which alternates between random jumps according to the

initial chain, and deterministic jumps according to the permutation. In this framework, Chatterjee and

Diaconis (2020) showed that when the permutation satisfies some expansion condition with respect to

the chain, then the mixing time is logarithmic, and that this expansion condition is satisfied by almost

all permutations. We will see that the mixing time can even be characterized much more precisely: for

almost all permutations, the permuted chain has cutoff, at a time which only depends on the entropic rate

of the initial chain.

http://dx.doi.org/10.4204/EPTCS.403.2
https://creativecommons.org
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q, t-Combinatorics and Sandpiles

Michele D’Adderio

Universitá di Pisa, Italy

michele.dadderio@unipi.it

In 1987 Bak, Tang and Wiesenfeld introduced their famous sandpile model as a first system showing

self-organized criticality. In 1988 Macdonald introduced his famous symmetric polynomials. Each of

these two discoveries produced a huge amount of research that is still developing intensely today. But

until recently, these two lines of research went on without any relevant interaction. In this talk we

show how the combinatorics generated by these two important mathematical objects come together in a

surprising way, proving that a synergy between these two topics is inevitable.

http://dx.doi.org/10.4204/EPTCS.403.3
https://creativecommons.org
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Computing Tiling Properties of Polyforms

Craig S. Kaplan

School of Computer Science
University of Waterloo

csk@uwaterloo.ca

Polyforms—shapes constructed by gluing together copies of cells in an underlying grid—are a con-

venient experimental tool with which to probe problems in tiling theory. They are expressive: in practice,

even simple families like polyominoes exhibit many of the tiling-theoretic behaviours we might wish to

study. But unlike the general world of shapes, polyforms can be enumerated exhaustively and the be-

haviour of each one examined using discrete computation. In this way polyforms can provide the raw

data from which we might identify patterns, examples, or counterexamples that drive new insights into

unsolved problems in tiling theory.

I am particularly interested in using polyforms to explore two open problems. The first asks whether

there is a finite upper bound to a shape’s Heesch number, the maximum number of times a non-tiler may

be surrounded by rings of copies of itself and yet still fail to tile the plane. The second asks whether there

is a finite upper bound to a shape’s isohedral number, the minimum number of transitivity classes needed

in any periodic tiling by the shape. I discuss these two problems and the progress made in exploring them

using discrete computation. I also discuss the connections from Heesch numbers and isohedral numbers

to the question of the existence of an aperiodic monotile, a problem that remained open for over sixty

years but that was resolved in 2023 by a polyform called the “hat”.

http://dx.doi.org/10.4204/EPTCS.403.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Random Automata

Cyril Nicaud

Université Gustave Eiffel, Marne-La-Vallée, France

cyril.nicaud@univ-eiffel.fr

We will survey several results concerning random finite state automata, including random generation

and algorithm analysis. We will place special focus on the subset construction, the standard algorithm

for building a deterministic automaton equivalent to a given non-deterministic one.

http://dx.doi.org/10.4204/EPTCS.403.5
https://creativecommons.org
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On the Confluence of Directed Graph Reductions Preserving
Feedback Vertex Set Minimality

Moussa Abdenbi
Université du Québec à Montréal

Québec, Canada
abdenbi.moussa@uqam.ca

Alexandre Blondin Massé
Université du Québec à Montréal

Québec, Canada
blondin_masse.alexandre@uqam.ca

Alain Goupil
Université du Québec À Trois-Rivières

Québec, Canada
alain.goupil@uqtr.cau

Odile Marcotte
Université du Québec à Montréal

Québec, Canada
odile.marcotte@videotron.ca

1 Introduction

In graph theory, the minimum directed feedback vertex set (FVS) problem consists in identifying the
smallest subsets of vertices in a directed graph whose deletion renders the directed graph acyclic. In
other words, a FVS in a directed graph G with vertex set V is a subset of V with a nonempty intersection
with every circuit of G. Computing a minimum cardinality FVS (MFVS) is NP-hard [4, 5]. In this
extended abstract we investigate graph reductions that preserve all or some minimum cardinality FVS
and we focus on their properties, especially the Church-Rosser property, also called confluence. The
Church-Rosser property implies the irrelevance of reduction order, leading to a unique digraph [2]. We
explore graph reductions proposed for solving the MFVS problem, preserving the collection of MFVS
or at least one of them [6, 7, 8]. The study seeks the largest set of reductions with the Church-Rosser
property and explores the adaptability of reductions to meet this criterion. Addressing these questions
is crucial, as it may have algorithmic implications, including potential parallelization and speeding up
sequential algorithms in graph classes with polynomial algorithms [3, 9].

For sake of completeness, we recall some definitions and notation from graph theory.
A directed graph (or digraph) is an ordered pair G = (V,E) where V is a finite set of vertices and

E ⊆ V ×V is a set of arcs. Let G = (V,E) be a digraph, u,v ∈ V and U ⊆ V . We denote N+
G (u) = {s ∈

V | (u,s) ∈ E} and N−
G (u) = {p ∈ V | (p,u) ∈ E} the set of successors and the set of predecessors of u

respectively. For a vertex u ∈ V , G− u denotes the digraph whose set of vertices is V \ {u} and whose
set of arcs is E \ {(x,y) ∈ E | x = u or y = u}. Accordingly, for a given arc (u,v) ∈ E, G− (u,v) is the
digraph where the set of vertices is V and the set of arcs is E \ {(u,v)}. Similarly, the digraph G ◦ u
is the digraph where the set of vertices is V \ {u} and the set of arcs is (E \ {(x,y) ∈ E | x = u or y =
u})∪N−

G (u)×N+
G (u).

For e = (u,v) ∈ E, we say that e is a 2-way arc in G if (v,u) ∈ E. The set of all 2-way arcs of G
is denoted by E↔ = {(u,v) ∈ E | (v,u) ∈ E}. Given a digraph G = (V,E) we distinguish two special
digraphs G↔ = (V,E↔) and G→ = (V,E→) where E→ = E \E↔.

A (directed) path of G is a sequence p = (v1,v2, . . . ,vk) of vertices vi ∈V for i = 1,2, . . . ,k such that
(vi,vi+1)∈ E for i = 1,2, . . . ,k−1. Moreover, a path p is called a circuit if v1 = vk. An arc (u,u) is called
a loop. We say that G is acyclic, if there is no circuit in G. Given U ⊆ V , we say that U is a directed
clique or diclique of G if for each u,v ∈U and u ̸= v, we have (u,v) ∈ E and (u,u) /∈ E.

http://dx.doi.org/10.4204/EPTCS.403.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Figure 1: Illustration of the INDICLIQUE reduction. (a) N−
G (u) is a diclique, so INDICLIQUE(u) is appli-

cable. (b) We remove u and all its incident arcs, and we add the new arcs (pi,s j) for i ∈ {1,2,3} and
j ∈ {1,2}.

A set U ⊆ V is called a feedback vertex set if G′ = (V ′,E ′) where V ′ = V \U and E ′ = E \{(u,v) |
u ∈ U or v ∈ U} is acyclic. The set of all feedback vertex sets of G is denoted by FVS(G). The set
of all minimal feedback vertex sets, in short MFV S(G), is the set of feedback vertex sets with minimal
cardinality.

2 Reductions

Given a digraph G = (V,E), the problem of finding a minimum feedback vertex set is NP-hard [4].
However, in some cases we can use a set of transformations by which the size of the input graph can
be reduced, with the guarantee that at least one minimum feedback vertex set in G could be constructed
from a minimum feedback vertex set in the reduced graph, in polynomial time. These transformations
are called digraph reductions.

In this context, by digraph reduction we mean a transformation of the digraph G = (V,E) into a
digraph G′ = (V ′,E ′) such that (1) either |V ′|< |V |, or |V ′|= |V | and |E ′|< |E|, and (2) an MFVS of G
can be computed in polynomial time from any MFVS of G′.

In the following, we give a brief description of Levy and Low’s [7] simple and straightforward reduc-
tions, followed by a generalization of two of their reductions by Lemaic [6], and additional reductions
from Lin and Jou [8]. Let G = (V,E) be a digraph and u,v ∈V .

• The precondition of the reduction LOOP(u) is (u,u) ∈ E. This reduction transfoms G = (V,E) in
G−u and adds u to the MFVS in construction.

• The precondition of IN0(u) is N−
G (u) = /0. This reduction transfoms G = (V,E) in G−u.

• The precondition of OUT0(u) is N+
G (u) = /0. This reduction transfoms G = (V,E) in G−u.

• The precondition of IN1(u) is (u,u) /∈ E and |N−
G (u)|= 1. The transformation consists of replacing

G by the digraph G ◦ u. This reduction does not necessarily preserve all the FVS of the original
digraph but every MFVS of the reduced digraph is also an MFVS of the original graph.

• The precondition of OUT1(u) is (u,u) /∈ E and |N+
G (u)| = 1. The transformation consists of re-

placing G by the digraph G ◦ u. This reduction does not necessarily preserve all the FVS of the
original digraph but every MFVS of the reduced digraph is also an MFVS of the original digraph.

Lemaic [6] proposed a generalization of IN1 and OUT1 based on the diclique concept.

• The precondition of INDICLIQUE(u) is (u,u) /∈ E and N−
G (u) forms a diclique in G. The transfor-

mation consists of replacing G by G◦u. Similary to IN1(u), this reduction, illustrated in Figure 1,
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a

b

c

d

u

v

w
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u
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v

u v

s1
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Figure 2: Illustration of Lin and Jou reductions preconditions. (a) PIE is applicable on the blue and red
arcs. Indeed, there no circuit going through the blue arcs (b,v) and (a,w) in G, and therefore in G→ and
the same is true for the red arcs (v,w) and (w,u) in G→. Therefore we can remove the blue and red arcs
from G. (b) CORE(u) is applicable since u and its neighbors, {u,u1,u2,u3} form a diclique. So we can
add {u1,u2,u3} to the MFVS and remove them from G. (c) In the top the first case of DOME and in the
bottom the second case. The arc (u,v) is dominated and we can remove it from G.

does not necessarily preserve all the FVS of the original digraph but every MFVS of the reduced
digraph is also an MFVS of the original digraph.

• The precondition of OUTDICLIQUE(u) is (u,u) /∈ E and N+
G (u) forms a diclique in G. The transfor-

mation consists of replacing G by G◦u. This reduction does not necessarily preserve all the FVS
of the original digraph but every MFVS of the reduced digraph is also an MFVS of the original
digraph.

Lin and Jou extended the work of Levy and Low by proposing the following three reductions [7, 8].

• The precondition of PIE(u,v), for an arc (u,v) of G that is not a 2-way arc, is the following: there
is no circuit in the digraph G→ going through arc (u,v). The transformation consists of replacing
G with G− (u,v). This reduction preserves all the FVS of the original digraph.

• The precondition of CORE(u) is {u} ∪ N−
G (u)∪ N+

G (u) is a diclique of G. The transformation
consists of removing all vertices x ∈ N−

G (u)∪N+
G (u) and add them to the MFVS and we replace

G with G− x. This reduction does not necessarily preserve all the FVS of the original digraph but
every MFVS of the reduced digraph is also an MFVS of the original digraph.

• The precondition of DOME(u,v), for an arc (u,v) of G, is N−
G→(u)⊆ N−

G (v) (first case) or N+
G→(v)⊆

N+
G (u) (second case). The transformation consists of replacing G with G− (u,v). This reduction

preserves all the FVS of the original digraph.

See Figure 2 for illustrations of the preconditions of the Lin and Jou reductions.

3 The finite Church-Rosser property

Another way to see digraph reductions is to consider them as binary relations on the set of all digraphs
G . More precisely, a reduction R can be seen as a binary relation R ⊆ G ×G . Hence for G,G′ ∈ G if
we can reduce G to G′ with the reduction R, then we say that (G,G′) ∈ R. For a given reduction relation
R, we say that G ∈ G is R-irreducible (or simply irreducible when the context is clear) if there does not
exist G′ ∈ G such that (G,G′) ∈ R.
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f
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Figure 3: A digraph showing that the reductions in the article by Lin and Jou does not have the
Church-Rosser property. If G = (V,E) denotes the displayed digraph, the equalities N−

G→(c) = {a,b} ⊆
{a,b,c,d} = N−

G (e) and N−
G→(d) = {a,c} ⊆ {a,b,c,d} = N−

G (e) hold. Hence we can reduce G us-
ing DOME(c,e) and DOME(d.e). We can apply DOME(d,e) followed by DOME(c,e). If we first apply
DOME(c,e), however, the precondition of DOME(d,e) is not verified. Indeed, we have N−

G−(c,e)(d) =
{a,c} ̸⊆ {a,b,d}= N−

G−(c,e)(e) and the graph (V,E − (c,e)) cannot be reduced further.

Now, given some G ∈ G , one might wish to reduce G as much as possible by using the following
procedure: (Step 1) if there is no G′ such that (G,G′) ∈ R, then stop; (Step 2) otherwise, pick any
G′ ∈ G such that (G,G′) ∈ R; (Step 3) replace G by G′ and repeat the previous steps. However, there
is no guarantee that the final digraph is unique, since there might be more than one available candidate
for G′ at Step 2). An important property that could be satisfied by a set of reductions is the Church-
Rosser finiteness property [2] also called confluence [1]. According to this property, the order in which a
sequence of reductions is applied does not affect the final reduced graph.

In order to introduce more formally this property, we need some additional definitions. Let R ⊆
S ×S be any binary relation on a set S and write xRy whenever (x,y) ∈ R. The reflexive closure
of R, denoted by RR, is given by RR = R ∪ {(x,x) | x ∈ S }. Its transitive closure is defined by
RT =

⋃
∞
i=1 R i where R i is the composition of R with itself i times. The reflexive-transitive closure

of R is then defined by RRT = RR ∪RT . The completion of R is given by RC = {(x,y) ∈ RRT |
there does not exist z ∈ S such that (y,z) ∈ R}. A pair (S ,R) is called finite if for x,y ∈ S , there is a
constant k such that if xR iy, then i ≤ k.

We say that (S ,R) has the Church-Rosser finiteness property, if (S ,R) is finite and for x,y,z ∈S ,
if (x,y) ∈ RC and (x,z) ∈ RC, then y = z. The following theorem proved in [10] gives a simpler test for
Church-Rosser finiteness property.

Theorem 1 (Sethi [10]). Let R be a relation on a set S . Then (S ,R) is Church-Rosser finite if and
only if (S ,R) is finite and, for all x,y,z ∈S , the conditions xRy and xRz imply that there exists w ∈S
such that yRT w and zRT w.

The Church-Rosser finiteness property has been equivalently called confluence [1]. From now on,
for the sake of making the text shorter, we shall use that word as well.

Levy and Low have shown that the set of reductions {LOOP, IN0, OUT0, IN1, OUT1} is confluent [7],
and Lemaic has shown that the set of reductions {LOOP, INDICLIQUE, OUTDICLIQUE } is also confluent
[6]. However, Lin and Jou in their article [8] did not investigate whether the confluence is preserved if
one includes their three additional reductions (namely, PIE(u,v), CORE(u) and DOME(u,v)) in the family
of reductions.

The digraph displayed in Figure 3 is a counter-example to the (false) claim that the family consisting
of {LOOP, IN0, OUT0, IN1, OUT1, PIE, CORE, DOME} is confluent.
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Moreover, for practical purposes, when proving confluence, it is convenient to exclude the reductions
subsumed by other reductions. For example, IN1 is subsumed by INDICLIQUE which means that if IN1 is
applicable on a given vertex u, then INDICLIQUE is also applicable on u. Therefore, if {INDICLIQUE,R}
is confluent, then {IN1, INDICLIQUE,R} is also confluent. The following proposition formalizes this
property.

Proposition 1. Let S be a set and R1,R2 and R3 three relations on S . If R1 ⊆ R2 and {R2,R3} is
confluent, then {R1,R2,R3} is also confluent.

So according to Propostion 1, proving that {LOOP, INDICLIQUE, OUTDICLIQUE, PIE} is confluent
implies that {LOOP, IN0, OUT0, IN1, OUT1, PIE, CORE, INDICLIQUE, OUTDICLIQUE} is also confluent.
Indeed, Lemaic has proved that IN1 and OUT1 are subsumed by INDICLIQUE and OUTDICLIQUE. The
same is true for IN0 and OUT0 if we consider an empty set as a diclique. For the CORE reduction
we can subsume it with INDICLIQUE/OUTDICLIQUE followed by LOOP. Indeed, if u ∈V is a core, then
N−

G (u)∪N+
G (u)∪{u} forms a diclique. In particular, N−

G (u)∪N+
G (u) = N−

G (u) = N+
G (u) forms a diclique,

so we can apply INDICLIQUE(u) or OUTDICLIQUE(u). Hence, the neighbors of u will all have loops in
G◦u, which means that they have to be added to the minimum FVS which is equivalent to what CORE(u)
should do, except that CORE(u) will isolate u and add its neighbors to the minimum FVS. On the other
hand, INDICLIQUE(u) or OUTDICLIQUE(u) and LOOP will remove u and vertices in N−

G (u)∪N+
G (u) are

added to the minimum FVS.
So in order to prove that {LOOP, INDICLIQUE, OUTDICLIQUE, PIE} is confluent, we use Lemma 1.

Lemma 1. Given a digraph G = (V,E), an arc (u,v) ∈ E, s ∈ N+
G (v) and p ∈ N−

G (u), if (u,v) is acyclic
in G, then (u,s) and (p,v) are also acyclic.

We can now state the following Theorem for the confluence of the set of binary relations
{RLOOP,RINDICLIQUE,ROUTDICLIQUE,RPIE}.

Theorem 2. Let G be the set of all digraphs and R = RLOOP ∪RINDICLIQUE ∪ROUTDICLIQUE ∪RPIE a
binary relation on G . Then, (G ,R) is confluent.

Proof. According to Theorem 1 it is enough to prove that (G ,R) is finite and that for G,G1,G2 ∈
G if (G,G1) ∈ R and (G,G2) ∈ R, then there exist G′ ∈ G such that (G1,G′) ∈ RT and (G2,G′) ∈
RT . Thanks to Proposition 1, it is sufficient to prove this only for RPIE and the other relations, since
{RLOOP,RINDICLIQUE,ROUTDICLIQUE} was proved to be confluent [6].

Let G = (V,E) ∈ G be a digraph, x ∈ V and (u,v) ∈ V . PIE being a reduction, then its successive
application are bounded by |V |2, hence (G ,R) is finite. Now, assume that PIE(u,v) is applicable.

If LOOP(x) is applicable, then it remains applicable after applying PIE(u,v), even if x = u or x = v.
So it is enough to consider G′ = G− x. Otherwise, the two reductions can be applied in any order and
G′ = (G− x)− (u,v).

Thanks to Lemma 1, if INDICLIQUE(x) (resp. OUTDICLIQUE(x)) is applied first, and x = u or x = v,
then PIE(p,v) or PIE(u,s) is applicable, ∀p ∈ N−

G (x = u) or ∀s ∈ N+
G (x = v) (the same goes if we first

apply OUTDICLIQUE(x)). Otherwise, if we apply PIE(u,v) first, the applicability of INDICLIQUE(u)
(resp. OUTDICLIQUE(u)) remains valid. In both cases, we can get the same digraph G′ = (G ◦ x)−
{
⋃

p∈N−
G (x)(p,v)}= (G− (u,v))◦x if x = u, or G′ = (G◦x)−{

⋃
s∈N+

G (x)(u,s)}= (G− (u,v))◦x if x = v.
Obviously, this remains true if x ̸= u and x ̸= v, with G′ = (G◦ x)− (u,v) = (G− (u,v))◦ x.

Finally, it is easy to see that (G− (u,v))− (x,y) = (G− (x,y))− (u,v), if PIE(x,y) is applicable for a
given (x,y) ∈ E. Therefore, we can conclude that (G ,R) is confluent.
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4 Concluding remarks

In this extended abstract we focus on reductions for the minimum feedback vertex set problem, exploring
their properties with an emphasis on confluence. By identifying a subset of reductions with confluence
property and considering their adaptability, this work contributes to the understanding of graph reduc-
tions and their potential impact on algorithmic advancements. The exploration of the confluence property
not only enhances our comprehension of algorithmic strategies but also opens avenues for paralleliza-
tion and speed improvements in sequential algorithms. In future work, we will investigate the DOME

reduction and explore how it can be modified so that it can be included in a confluent set of reductions
considered in this extended abstract.
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In this paper we describe the quotients of several plactic-like monoids by the least congruences
containing the relations aσ(a) = a with σ(a) ≥ 2 for every generator a. The starting point for this
description is the recent paper of Abram and Reutenauer about the so-called stylic monoid which
happens to be the quotient of the plactic monoid by the relations a2 = a for every letter a. The
plactic-like monoids considered are the plactic monoid itself, the Chinese monoid, and the sylvester
monoid. In each case we describe: a set of normal forms, and the idempotents; and obtain formulae
for their size.

1 Introduction

The plactic monoid Plax(A ) over an ordered alphabet (A ,<), can be defined as the quotient of the free
monoid A ∗ on A by identifying words that produce the same Young tableau using Robinson-Schensted
insertion algorithm [9, 10].

Knuth [6] found an explicit presentation as the quotient of A ∗ by the relations:

acb = cab if a≤ b < c and bac = bca if a < b≤ c, with a,b,c ∈A .

For more details see [7], or [8, Chapter 5]. Due to its link with symmetric functions and representation
theory, the plactic monoid is a central object in algebraic combinatorics that has been widely studied in
the literature.

Other monoids, whose relations are delineated in terms of insertion algorithms on certain combina-
torial objects, are often referred to as "plactic-like" monoids. They exhibit a rich combinatorial structure
and have applications in several topics including geometry and representation theory.

Among others, this family contains the Chinese monoid Ch(A ) [3], that has applications on Hecke
atoms and the Bruhat order (see [4]), and the sylvester monoid Sylv(A ) [5], which is related to the
associahedra and the Loday-Ronco algebra of trees.
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Recently, Reutenauer and the first author [1] discovered that the quotient of the plactic monoid by
the relations a2 = a, for every letter a, has several interesting properties. Inspired by their results, we
investigate more general finite quotients of plactic-like monoids. For such monoid M(A ) defined over
an alphabet A and a function σ : A → N≥2, we study the quotients M(A ,σ) by the relations aσ(a) = a
for every a ∈A . It turns out that the monoids are of two different non-disjoint types. For the first type,
that includes the plactic, Chinese, and hypoplactic monoids, M(A ,σ) can be naturally embedded in the
cartesian product of M(A ,2) with the commutative monoid Com(A ,σ). The second type, that includes
the hypoplactic and the sylvester monoids, have words with a particular property in every equivalence
class, that provides a set of normal forms. In both types, M(A ,2) plays an important role in the structure
of M(A ,σ) for any σ . In addition, M(A ,2) has a rich combinatorial structure usually related to the one
of M(A ).

For the first type, our knowledge of the stylic monoid helps us in understanding the structure of
Plax(A ,σ). We then consider another example, namely the Chinese monoid, by studying its 2-quotient,
which involves rich combinatorial objects, and transpose this to the study of its general σ -quotient.

For the second type, we focus on the sylvester monoid and more particularly on its 2-quotient.

2 Words, Monoids and σ -Quotients

Let A be a finite ordered alphabet, A ∗ the free monoid over A , and Com(A ) the free commutative
monoid over A .

For W ∈A ∗, the content of W is the set of distinct letters occurring in W , and is denoted by cont(W ).
We call the natural surjection ev : A ∗→ Com(A ) the evaluation map and say ev(W ) is the evaluation
of the word W , for all W ∈ A ∗. For a word W = w1 · · ·wn ∈ A ∗, an inflation of W is any word of the
form wε1

1 · · ·wεn
n ∈A ∗ for some ε1, . . . ,εn ∈ N≥1.

Let M(A ) be a monoid defined by the presentation ⟨A |R⟩ for some alphabet A and some relations
R ⊆ A ∗×A ∗. If U,V ∈ A ∗ have the same image under the natural surjective homomorphism πM :
A ∗→M, we say that U and V are equivalent in M(A ), and we write U ≡M(A ) V .

If R ⊆ A ∗×A ∗ has the property that ev(U) = ev(V ) for all (U,V ) ∈ R, then we say that the
presentation ⟨A |R⟩ is evaluation-preserving, and, by extension, that M(A ) is an evaluation-preserving
monoid.

Definition 2.1. Let M(A ) be an evaluation preserving monoid and σ : A → N≥2. We define M(A ,σ)
to be the quotient of M(A ) obtained by adding the extra relations (aσ(a),a) for every a ∈ A to the
presentation ⟨A |R⟩. If σ : A → N≥2 is constant with value n, then we write M(A ,n) instead of
M(A ,σ).

Two types of monoids arise from the study of these quotients. These two types are not mutually
exclusive; the hypoplactic monoid is of both types.

3 Monoids of Type 1

Let M(A ) be an evaluation-preserving monoid. For any σ : A → N≥2, let θ : M(A ,σ)→M(A ,2)
and evσ : M(A ,σ)→ Com(A,σ) be the natural surjective morphisms. We let φσ be the product map
θ × evσ .

Definition 3.1. An evaluation-preserving monoid M(A ) is of type 1 if for any σ : A → N≥2, φσ is an
embedding.
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3.1 The σ -Plactic Monoids

In [1], the monoid which we define here as Plax(A ,2) was introduced as the stylic monoid. We recall
some necessary definitions and refer the reader to [1] for more details.

An N-tableau is a semi-standard tableau such that its rows are strictly increasing; and each row is
contained in the row underneath. The row reading of a tableau T is the word R(T ) obtained by reading
each row from left to right and top to bottom. The N-tableaux have an insertion algorithm, denoted
T ←W , called the N-insertion that is similar to the Robinson-Schensted insertion in Young tableaux.

Using these N-tableaux and their insertion algorithm, one can prove that the plactic monoid is of type
1.

Given (T,e) ∈ Plax(A ,σ)×Com(A ,σ) such that cont(T ) = cont(e), we define the row reading
Rσ (T,e)∈A ∗ via the following algorithm starting with R(T ). For every a∈ cont(T ), if α is the number
of occurrences of a in R(T ) and β is the exponent of a in e, then we replace the last occurrence of a
in R(T ) by aγ where γ ∈ N≥0 is the least value such that γ +α = β (mod σ(a)− 1). For example, if
σ(x) = 4 for all x ∈A then

Rσ

(
b
a b

,a1b1
)
= bab3 and Rσ

(
b c
a b c

,a3b2c1
)
= bca3bc3 .

Such a row reading Rσ (T,e) is a preimage of (T,e) under φ ; and these row readings constitute a set of
normal forms for Plax(A ,σ).

3.2 The σ -Chinese Monoids

The Chinese monoid Ch(A ) is defined by the presentation with generating set A and relations [3]: for
a,b,c ∈A ,

cba = cab = bca if a < b < c, aba = baa, bba = bab if a < b.

As for the plactic monoid, the elements of this monoid can be represented using a combinatorial
object, the Chinese staircase, and its insertion algorithm. It has a particular row reading (defined in [3])
which is the shortlex normal form of its class. For a chinese staircase S, one can also associate a Dyck
path Dyck(S) of length 2|cont(S)|; see Fig. 1.

1 a
2 b

3 2 d
3 f

2 1 g
g f d b a

a
1 b

1 d
1 f

1 g
g f d b a

(
a b d f g
a a a d f

)
1 a
1 b
1 d

1 f
1 g

g f d b a

ab2 d3 (da)2( f d)3 g2(g f ) bda f d g f a2 bada f d g f

Figure 1: The left diagram is a Chinese staircase with the associated Dyck path, and its reading below;
the middle its 2-Chinese staircase and reading; and the right its 2-Chinese function, its reading and its
equivalent staircase.

The following result gave us a nice description of the Ch(A ,2)-equivalence.

Theorem 3.2. If S and T are Chinese staircases, then R(S) ≡Ch(A ,2) R(T ) if and only if cont(R(S)) =
cont(R(T )) and Dyck(S) = Dyck(T ).
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Using this, we define two different combinatorial objects, the 2-Chinese staircases and the 2-Chinese
functions, that both represent Ch(A ,2)-classes, in order to have a better understanding of Ch(A ,2).

Let B ⊆A and D be a Dyck path of length 2|B|. The 2-Chinese staircase associated to B and D is
the Chinese staircase S such that Dyck(S) = D, that has 1s in all of the peaks of D and in every boxes of
the diagonal having an empty hook.

If S is a 2-Chinese staircase, then the row reading R(S) of S is simply the row-reading of S as a
Chinese staircase which is also the shortlex normal form of its Ch(A ,2)-class; see Fig. 1.

A 2-Chinese function on A is a function : B → B for some B ⊆ A which for all x,y ∈ B
satisfies: x ≤ y implies (x) ≤ (y); and (x) ≤ x. We denote by the unique function whose
domain is empty.

The insertion of y∈A in a 2-Chinese function is the function ← y whose domain is dom( )∪
{y} and the image of any x is given by ( ← y)(x) :=min{{y}∪ (x̂)}, for x̂=min(z∈ dom( )|z≥ x).
It is routine to verify that ← y is also a 2-Chinese function, as seen in the following example:(

a b c e f
a b c c f

)
← g =

(
a b c e f g
a b c c f g

)
and

(
a b c e f
a b c c f

)
← d =

( a b c d e f
a b c c c d

)
We define the reading word of to be R( ) := a1 (a1) · · ·an (an), where dom( ) = {a1 < a2 <
· · ·< an}.

Using properties of both combinatorial representatives of Ch(A ,2), we proved that the Chinese
monoid is of type 1.

These objects also allowed us prove that Ch(A ,2) is J -trivial. Unlike the stylic monoid, its J -
order is surprisingly not graded.

Similar to the plactic case, we define a set of normal forms the following way: for any ( ,e) ∈
Ch(A ,2)×Com(A ,σ) such that cont( ) = cont(e), we define the row reading Rσ ( ,e) of ( ,e)
by inflating R( ) putting a suitable exponent on the last occurrence of each letter. For example, if

A = {a,b,c} and σ is constant with value 4, then Rσ

[(
a b c e f
a b c c f

)
,a2b3c2e f 3

]
= a2b3c2ec3 f 3.

3.3 Cardinality and Idempotents of Monoids of Type 1

From the definition of a type 1 monoid, one only has to know the combinatorial structure of the 2-quotient
in order to compute the cardinality of the σ -quotient for any σ and to find its idempotents.

Theorem 3.3. Let σ : A → N≥2 be arbitrary. Then the cardinality of M(A ,σ) is given by

|M(A ,σ)|= ∑
B⊆A

(
s|B| ∏

b∈B
(σ(b)−1)

)
(3.1)

where sk is:

(i) the k-th Bell number if M = Plax;

(ii) the k-th Catalan number if M = Ch;

In particular, |M(A ,2)|= ∑
n
k=0
(n

k

)
sk is the binomial transform of the sequence sk in both cases.

Proposition 3.4. The monoids Plax(A ,σ) and Ch(A ,σ) contain exactly 2|A | idempotents, one for each
B = {b1 < b2 < · · ·< bk} ⊆A . These elements are inflations I of, respectively, minJ (Plax(B,2)) and

minJ (Ch(B,2)), such that evσ (I) = ∏
k
i=1 bσ(bi)−1

i .
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Figure 2: On the left, the insertion of 2 in the binary search tree that has reading word 3122 resulting to
the tree having reading word 32122. On the right, the 2-sylvester insertion in its 2-reduced binary search
tree.

4 Monoids of Type 2

Let M(A ) be an evaluation-preserving monoid. We say that W ∈A ∗ is a gathered element if whenever
W ′ ∈A ∗ is such that W ′ ≡M(A ) W , then W ′ = U ′a2V ′ implies W = Ua2V , for some U,V ∈A ∗ where
U and U ′ have the same number of as.

If an ≡M(A )-class contains a gathered element, we refer to the lexicographically largest gathered
word G(W ) in the class as the canonical gathered element.

We define the (a, i)-expansion of W ∈ A∗ to be the word obtained from W where the i-th occurrence
of a is duplicated.

Definition 4.1. An evaluation-preserving monoid M(A ) is of type 2 if:

(a) each ≡M(A )-class has a gathered element; and

(b) the (a, i)-expansion of G(W ) equals the canonical gathered element of the (a, i)-expansion of W.

If W ∈A ∗, then we define Gσ (W ), the σ -reduced word of W , to be the word obtained from G(W )
by repeatedly replacing any factor aσ(a) of G(W ) by a, until there are no such factors remaining. The set
of σ -reduced word constitutes a set of normal forms for M(A ,σ).

4.1 The σ -Sylvester Monoids

The sylvester monoid [5] is the quotient of A ∗ by the following infinite set of relations:

acWb = caWb if a≤ b < c, for all W ∈A ∗.

A binary search tree T = (L,r,R) is a binary tree labelled by A such that the label of each node is
greater than or equal to all labels in its left subtree L and strictly smaller than all labels in its right subtree
R. Binary search trees are endowed with a well-known left insertion a→ T of letters a ∈ A ; see [5].
Given a binary search tree T , denote R(T ) its right to left postfix reading. This word is the lexicographic
largest word in its ≡Sylv(A )-class [5, Proposition 14].

Using this set of normal forms, one can prove that the sylvester monoid is of type 2.
The 2-reduced words are the readings of the binary trees where parents have different label than their

left children. If the number of nodes i, and the number of nodes k having at least one ancestor with the
same label are fixed, then, thanks to [2] and a standard involution among trees, recursive reversal of the
left branch subtrees, one can prove that the number of such trees is Bi−k−1,k, an element of the Borel
triangle (A234950 in [11]).
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Theorem 4.2. Let A be an alphabet of size n ∈ N. Then

|Sylv(A ,2)|= 1+
2n−1

∑
i=1

⌊i/2⌋

∑
k=0

Bi−k−1,k

(
n

i− k

)
. (4.1)

One can easily adapt the enumeration formula for Sylv(A , p) but, not being of type 1 makes the
general formula significantly more complicated.

Proposition 4.3. The monoid Sylv(A ,2) contains exactly ∑
n
k=0
(n

k

)
Sk idempotents, where Sn is the

Schröder numbers (A006318 in [11]), shifted by one: S0 = S1 = 1, S2 = 2, S3 = 6, etc.
These idempotents are the postfix reading of 2-reduced binary search trees T such that, for all x ∈

cont(T ), the deepest node labelled x in T does not have any left subtree; see the rightmost tree of Fig. 2.

Using these trees, one can describe the idempotents of Sylv(A ,σ) for arbitrary σ but the enumera-
tion formula can only be easily adapted for σ constant.
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1 Introduction

A self-descriptive sequence (un)n∈N is an infinite concatenation of finite powers of a letter (usually called
runs) (wn)n∈N such that |wn| = un where |x| denotes the length of the finite word x. The best known
self-descriptive sequence is certainly the Oldenburger word O1,2 = (kn)n∈N [9, 8] defined by u0 = 1,
w2n = 1u2n and w2n+1 = 2u2n+1 for all n ∈ N. Until recently, the Oldenburger word was still called the
Kolakoski word in reference to [8], but actually, it first appeared in [9].

The Oldenburger word is a special case of a self-descriptive sequence. Indeed, the run wn is entirely
determined by knowledge of its index n: its length is equal to un and its single letter is determined by the
parity of n.

In [3], the authors focus on a larger family of self-descriptive sequences where the wn’s are deter-
mined not only by their index n but also by another sequence, namely the directing sequence of u. In
practice, given a sequence t = (tn)n∈N on the alphabet A ∈ {1,2, . . .}, the sequence directed by t is the
sequence u defined by: u = t0

u0t1
u1 · · · tnun · · · For example, the Oldenburger word O1,2 = 1u0 2u1 1u2 2u4 · · ·

is directed by the sequence t = (12)ω .
One of the most fascinating questions about the sequence O1,2 concerns the existence and possible

value of the frequencies of occurrences of each of its letters [7]: Do the letters 1 and 2 have frequencies

of occurrences f1 and f2 in O1,2? If so, does f1 = f2 =
1
2? Recall that the frequency of occurrences of

the letter a in the sequence u is the limit, when n tends to +∞, of the average number of a in the prefix
u0 · · ·un−1 of u.

The notion of self-descriptive sequence is related to that of differentiable word and smooth word
[2, 4]. A sequence over A is differentiable over A if it is the infinite concatenation of runs whose lengths
have values in A . More precisely, a sequence (un)n∈N over a finite alphabet A ⊂ N is differentiable if
there exist two sequences (xn)n∈N and (αn)n∈N over A , such that u = x

α0
0 x

α1
1 x

α2
2 · · · with xn 6= xn+1 and

αn 6= 0 for all n ∈ N. The sequence (αn)n∈N is the derivative sequence of u. Finally, the sequence u is
smooth if it is infinitely differentiable.

The sequence O1,2 is a fixed point for differentiation. It is self-descriptive, differentiable and smooth
over {1,2}. As with the sequence O1,2, the question of the existence of frequencies of occurrences
and their values in smooth words on the alphabet {1,2} is still open. The first significant result on this

http://dx.doi.org/10.4204/EPTCS.403.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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question is due to V. Chvátal [6]: for n large enough,

0.49916 ≤ |k0 · · ·kn−1|1
n

≤ 0.50084,

where |w|1 denotes the number of occurrences of the letter 1 in w. These bounds have been slightly
improved by M. Rao [10] using a method quite similar to Chvátal’s but with greater computing power:

0.49992 ≤ |k0 · · ·kn−1|1
n

≤ 0.50008.

This is the best currently known bound for O1,2 and for the set of smooth words on the alphabet {1,2}.
In other words, neither the existence nor the values of the frequencies of occurrences are known for any
smooth word on the {1,2} alphabet. On the other hand, over the {a,b} alphabets where a and b have the
same parity, it is possible to determine the frequencies of certain smooth words. This is the case at least
for the Oldenburger word O1,3 (resp. O3,1) defined on the alphabet {1,3} directed by (13)ω (resp. by
(31)ω ) [1] and for the extreme smooth words (in the sense of lexicographic order) [5].

Since the work of V. Chvátal [6] and M. Rao [10], it is reasonable to expect that the frequencies
of occurrences of each letter in O1,2 are equal to 1

2 . In other words, it is reasonable to assume that the
frequencies of occurrence in O1,2 and in its directing sequence are identical.

As far as we know, none of the works on smooth words or on the Oldenburger word has shown the
existence or the non-existence of frequencies of occurrences in a non-trivial deterministic self-descriptive
sequence over the alphabet {1,2}.

Similarly, none of these works has proved the existence of a non-trivial deterministic self-descriptive
sequence that shares (resp. does not share) its frequencies of occurrences with its directing sequence.

In the present work, we exhibit a class of self-descriptive sequences that can be explicitly computed
and whose frequencies are known. In particular, as a corollary of our main result, we prove that the
sequence introduced in [3] has the expected frequencies of occurrences.

2 Definitions and basic notions

Let A be a finite alphabet. The set of finite words over A is denoted by A
⋆. If w = w0 · · ·wk ∈A

⋆ is a
finite word over the alphabet A with wi ∈A for i = 0,1, · · · ,k. Let |w| stand for the length of w, that is
the number of letters occurring in w. If w = w0 · · ·wk, then |w|= k+1. In particular, |ε |= 0. Let w ∈A

⋆

and let a ∈A . We set |w|a = #{i ∈ {0,1, . . . , |w|−1}| wi = a}.
Definition 1 (Self-descriptive sequence). Let A ⊂ N

⋆ be a finite alphabet. The infinite sequence u =
(un)n∈N ∈A

N is said to be self-descriptive if there exists a sequence δ = (δn)n∈N over A such that

u = δ
u0
0 δ

u1
1 δ

u2
2 · · ·δ un

n · · · (1)

The sequence δ is called the directing sequence of u and one says that u is directed by x.

In other words, the sequence u is self-descriptive if it is the concatenation of runs of size u0, u1, u2,
. . . respectively. Note that in the definition of self-descriptive sequences, unlike that of differentiable or
smooth words, it is not necessary that xn 6= xn+1. Furthermore, if 0 /∈ A , then the sequence (xn)n∈N is
entirely determined by u. In other words, there exists a canonical bijection between sequences over A

and self-descriptive sequences over A .
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Let u = δ
u0
0 δ

u1
1 δ

u2
2 · · ·δ un

n · · · be a self-descriptive sequence over the alphabet {1,2}. Let (mk)k∈N
(resp. (nk)k∈N) be the increasing sequence over N such that ui = 1 (resp. ui = 2) if and only if there
exists k ∈N such that i = mk (resp. i = nk). In other words, (mk)k∈N (resp. (nk)k∈N) is exactly the ordered
sequences of the indices where u is equal to 1 (resp. 2). Let T1 = (δmk

)k∈{1,2}N and T2 = (δnk
)k∈{1,2}N .

In the present work, since we are only interested in frequencies of letters, we assume, without loss of
generality, that u0 = u1 = 2. The sequence u and its directing sequence δ are then computable from T1

and T2 as follows:

def OK(T1 , T2):

u = [2,2]

delta = [2]

k = 1

while len(T1) > 0 and len(T2) > 0:

if u[k] == 1:

c = T1.pop (0)

u += [c]

else:

c = T2.pop (0)

u += [c] * u[k]

delta += [l]

k += 1

return u,delta

Program 1: Python function computing u and δ from T1 and T2.

One then says that u is also directed by sequences T1 and T2. For instance, if T1 = 121 · · · and T2 = 12 · · ·,
then

u = 22
2
· 11

2
· 1

1
2
1
· 1

1
22
2
· · · (2)

= 22 ·12 ·1121 ·1122 · · · (3)

= 22
2
· 11

w0

· 12
w1

· 122
w2

· · ·= 22 · w0 · w1 · w2 · · · (4)

with wi ∈ {a,b,c,d}∗, for i ∈ N, a = 1, b = 2, c = 1 and d = 1.

3 Main result

The main result of the present work is:

Theorem 1 (Main result). Let u ∈ {1,2}N be a sequence over {1,2} directed by two periodic sequences

T1 = (x1)
ω ∈ {1,2}N and T2 = (x2)

ω ∈ {1,2}N, with x1,x2 ∈ {1,2}∗. Let p1 =
|x1|1
|x1|

and q2 =
|x2|2
|x2|

. One

has

f1 := lim
n→∞

|u0 · · ·un−1|1
n

=
(1−q2)(p1 +2q2 +

√
∆)

2+
√

∆− p1

with ∆ = (p1 +2q2)
2−8(p1 +q2−1).

If δ = (δn)n∈N ∈ {1,2} is directing u, then

lim
n→∞

|δ0 · · ·δn−1|1
n

= p1 f1 + p2(1− f1).



S. Akiyama, D. Jamet, I. Marcovici, M.-L. Trân-Công 21

Sketch of proof. Let us recode T1, T2 and u over {a,b,c,d} as follows: rewrite T1 (resp. T2) as the image
of T1 (resp. T2) by the morphism 1 7→ a, 2 7→ b (resp. 1 7→ c, 2 7→ d). In u, let us substitute a (resp. b) for
isolated 1’s (resp. isolated 2’s) and cc (resp. dd ) for double 1’s (resp. double 2’s).

1. Let u = (un)n∈N = 22 ·w0 ·w1 · · · · ·wn · · · · , where wn+1 is the image of wn by the recoding rule
along T1 and T2 (see (4) for an example).

2. Let Let p2 = 1− p1 and q1 = 1−q2. Let

A =









p1 0 p1 0
p2 0 p2 0
0 2q1 0 2q1

0 2q2 0 2q2









and vn =









|wn|a
|wn|b
|wn|c
|wn|d









=⇒ vn+1 = A · vn + en,

where en is an "error" vector and is bounded.

3. A is primitive with exactly two eigenvalues 0 < |α2| ≤ 1 < α1. By the Perron-Frobenius theo-
rem, there exists a right (resp. left) eigenvector vectors r (resp. ℓ) of A such that: ℓr = 1 and
limn→∞ α

−n
1 An = r · tℓ.

4. One cuts the sequence u into words (gn)n∈N following Algorithm 1 and shows:

• |w0 · · ·wℓn
|= o(|gn|) and lim

n→∞
|gn|=+∞

•
|u0 · · ·un|a
|u0 · · ·un|

=
|w0 · · ·wln−1|a + |gn|a
|w0 · · ·wln−1|+ |gn|

=

|gn|a
|gn| +o(1)

1+o(1)
−→
n→∞

r0

Algorithm 1: Cutting the sequence O into (gn)n∈N
Input: u = w0w1 · · ·wn · · ·= u0u1 · · ·

1 ℓ0← 0 // initial left index

2 for each n ∈N do

3 gn← uℓn
· · ·un // |gn|= (n+1)−|w0 · · ·wℓn−1|

4 if |gn|+1 > |w0 · · ·wℓn
|2 then

5 ℓn+1← ℓn +1 // increment left index

6 else

7 ℓn+1← ℓn // keep left index

As a direct consequence of Theorem 1, we prove the existence of the frequencies in the sequence
introduced in Section 5 of [3]:

Definition 2 (BJM sequence [3]). Let U = (un)n∈N be the self-descriptive sequence U = x
u0
0 x

u1
1 x

u2
2 · · ·

defined by x0 = u0 = u1 = 2, and for all n ∈N
⋆:

i) if un = 1, then xn = 1 (resp. xn = 2) if |u0 · · ·un|1 is odd (resp. even),

ii) if un = 2 then xn = 1.

In other words, the runs of size 2 (except the first one) are filled by 1, and the runs of size 1 are filled
alternatively by 1 and 2. The sequence X = (xn)n∈N is the directed sequence of U .
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In [3], the authors showed that the frequencies of occurrence in U cannot be equal to those of its
directing sequence X . However, the authors did not prove the existence of the frequencies but only that
they cannot be identical... if they exist. Since U is directed by T1 = (12)ω and T2 = 1ω , it directly follows
from Theorem 1 that:

Corollary 1. Let U be the sequence directed by T1 = (12)ω and T2 = 1ω . Then

lim
n→∞

|U0 · · ·Un−1|1
n

=
7−
√

17
4

and lim
n→∞

|X0 · · ·Xn−1|1
n

=
1+
√

17
8

.

Proof. In that present case, p1 = 0.5 and q2 = 0.

4 Conclusion and perspectives

In the present work, we have shown that self-descriptive sequences directed by two periodic sequences
have frequencies. We have also given an explicit expression for these frequencies.

In future work, it will be interesting to extend this result to non-periodic sequences. For example,
Sturmian words, namely the aperiodic sequences with the least number of finite factors, are good candi-
dates for directing sequences.
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Complete non-ambiguous trees (CNATs) are combinatorial objects which appear in various contexts.

Recently, Chen and Ohlig studied the notion of leaf permutation on these objects, and proposed a

series of nice conjectures. Most of them were proved by Selig and Zhu, through a connexion with

the abelian sandpile model. But one conjecture remained open, about the distribution of a natural

statistic named determinant. We prove this conjecture, in a bijective way.

1 Introduction

Non-ambiguous trees (NATs) were first defined in [1] and may be seen as a proper way to draw a binary

tree on a square grid (see Definition 2.1). They were put to light as a special case of tree-like tableaux,

which have been found to have applications in the PASEP model of statistical mechanics [5, 3]. The

initial study of NATs revealed nice properties, mostly in an enumerative context [1, 2]. This includes

enumeration formulas with respect to fixed constraints (hook formula), and new bijective proofs of com-

binatorial identities. When the undelying binary tree is complete, we are led to complete non-ambiguous

trees (CNATs). These objects were first considered in [1], where it was proved that their enumerating

sequence is related to the formal power series of the logarithm of the Bessel function of order 0. To end

this early study of NATs, an extension to higher dimension was proposed in [9].

Recent works have revealed new facets of these objects. In [6], some striking mathematical cross-

connections were obtained, such as a bijection between CNATs and fully-tiered trees of weight 0. In

[7], CNATs were linked to the abelian sandpile model. In the same article, it was noticed that if we

restrict a CNAT to its leaf dots, we obtain a permutation. This link was investigated in [4], were nice

properties were derived, and several conjectures proposed. By using the connection with the abelian

sandpile model, a large number of conjectures were proved very recently [10]. But a conjecture remained

open. It asserts that when considering the set of CNATs of a fixed odd size, the number of them with an

underlying permutation with even and odd determinant (signature) are equal. We give a bijective proof

of this (Theorem 2.7), and include the case of the even size, which was suggested in [4].

In this extended abstract, some technical proofs are omitted.

2 Definitions and statement of the result

We first recall the definition of (complete) non-ambiguous trees, as in [1].

Definition 2.1. A non-ambiguous tree (NAT) T is a filling of an m×n rectangular grid, where each cell

is either dotted or not, satisfying the following conditions:

(Existence of a root) The top-left cell is dotted; we call it the root of T .

(Non ambiguity) Aside from the root, every dotted cell of T has either a dotted cell above it in the same

column, or a dotted cell to its left in the same row, but not both.
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(Minimality) Every row and every column of T contains at least one dotted cell.

Remark 2.2. The use of the word tree to describe these objects comes from the following observation.

Given a NAT T , we connect every dot d different from the root to its parent dot p(d), which is the dot

immediately above it in the same column, or to its left in the same row (because of the condition of non

ambiguity, exactly one of these must exist).

A NAT is said to be complete if the underlying tree is complete, i.e. every internal dot has exactly

two children.

Definition 2.3. A complete non-ambiguous tree (CNAT) is a NAT in which every dot has either both a

dot below it in the same column and a dot to its right in the same row (in which case the dot is said to be

an internal dot), or neither of these (in which case the dot is said to be a leaf).

The size of a CNAT is its number of leaf dots, or equivalently one more than its number of internal

dots.

We denote by Tn the set of CNATs of size n and Tn = |Tn|.

Figure 1 gives an example of this notion.

1 2 3 4 5

1

2

3

4

5

Figure 1: A CNAT of size 5. Leaf dots are represented in blue, and internal dots in black.

As in this figure, it will be convenient to label by integers the rows and columns respectively from top

to bottom and from left to right (in such a way that the root appears in the cell (1,1)). Moreover, given a

dot d in a CNAT, we denote by c(d) and r(d) the (label of) its column and row. For a given internal dot,

its child in the same row is called its right child and its child in the same column is called its left child.

Remark 2.4. We may observe that any right leaf l in a CNAT T is the only dot in its column: there is no

dot above l because this would contradict the minimality condition of Definition 2.3, and there is no dot

below l because l is a leaf. In the same way, any left leaf l in T is the only dot in its row.

We may see a CNAT T as a matrix M(T ) where dotted cells are 1’s and undotted cells are 0’s For

example, the CNAT of Figure 1 is encoded matricially as













1 0 1 1 0

1 1 0 0 1

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0













.

The numbers Tn of CNATs of size n appear as the series A002190 in [11]. As proved in [1], these

numbers give a combinatorial interpretation for the developpment of the Bessel function J0.

Let us now introduce the notion of permutation associated to a CNAT.
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Definition 2.5. Let T be a CNAT of size n. It is clear that in any column of T the bottom-most dot of

is a leaf, as well as the right-most dot of any row. Thus every row and every column must have exactly

one leaf dot. As such, the set of leaf dots of a CNAT T of size n forms the graphical representation of an

n-permutation π(T ). We say that π(T ) is the permutation associated with the CNAT T .

For example, the CNAT of Figure 1 has associated permutation π(T ) = 45312.

A careful study of permutations associated to CNATs was initiated in [4], where the following propo-

sition is proved.

Proposition 2.6. Let T be a CNAT. We have:

detM(T ) = sgn π(T ).

Let us denote by T (n;ε) the number of CNATs of size n with determinant equal to ε . We are now in

a position to state the main result of this article.

Theorem 2.7. If n > 1 is odd:

T (n;+1) = T (n;−1) =
Tn

2
. (1)

If n is even (let us set n = 2p):

T (2p;+1) =
T2p +(−1)p

Tp

2
and T (2p;−1) =

T2p − (−1)p
Tp

2
. (2)

The odd case corresponds to Conjecture 2.6 in [4], the even case to Remark 2.7 in the same paper.

3 A bijective proof of Theorem 2.7

This section is devoted to proving our main result. This proof is bijective. More precisely, we shall:

1. introduce a subset A2p ⊂T2p of CNATs of even size, with A2p = Tp, and such that for any T ∈A2p

we know that sgnπ(T ) = (−1)p
;

2. construct an involution Φ on the set of CNATs such that if T is not in any of the sets A2p we have:

sgnπ(Φ(T )) =−sgnπ(T ).

We first introduce a useful notion on the leaves of CNATs.

Definition 3.1. A leaf in a CNAT is said to be short if its parent is in a cell adjacent to it. Otherwise the

leaf is said to be long. Moreover, we denote by An the set of CNATs of size n with only short leaves.

Figures 2 illustrates this notion.

The elements of Ap are designed to be the fixed points of our involution Φ. We treat their case with

two propositions, whose proofs are omitted.

Proposition 3.2. When the size n = 2p+1 is odd, the set A2p+1 is empty. When the size n = 2p is even,

the set A2p is in bijection with Tp.

Proposition 3.3. Let T be an element of A2p, its determinant is given by:

sgn π(T ) = (−1)p
.
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Figure 2: (Left) A CNAT with short leaves in blue and long leaves in red.

(Right) An element of A6.

We now come to the definition of a function Φ on Tn, which is the key construction of this work. We

first introduce the following notion.

Definition 3.4. Let T be a CNAT, and l1 and l2 two leaves in T with respective parent p1 and p2. If l1
and l2 are both left leaves, they are said to be interacting if

r(p1)< r(l2)< r(l1) or r(p2)< r(l1)< r(l2).

The definition is similar for right leaves.

This notion is illustrated by Figure3.

p1

l1

l2

Figure 3: Interacting leaves.

The interest of this notion of interacting leaves is put to light by the following operation.

Definition 3.5. For two interacting left leaves l1 and l2 in a CNAT T , we define the switch of these two

leaves as the exchange of the row labels of l1 and l2. More precisely:

• we erase l1 and we put a new leaf l′1 in the same column, in row r(l2);

• we erase l2 and we put a new leaf l′2 in the same column, in row r(l1).

By doing this, we obtain an object T ′ = S(T, l1, l2).

We have the same operation for right (interacting) leaves.

This notion is illustrated by Figure 4

Proposition 3.6. Let T be in Tn. For two interacting leaves l1 and l2 in T , S(T, l1, l2) is in Tn.

Proof. The only condition in Definition 2.1 that is not trivially satisfied in non ambiguity. This is a direct

consequence of Remark 2.4.
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l1

l2 l′1

l′2

Figure 4: Switching interacting leaves.

The technical part of the construction of Φ now relies on the following lemma, whose proof is

omitted.

Lemma 3.7. Any CNAT with a long leaf has at least two interacting leaves.

Let us now precise the construction of Φ : Tn −→ Tn. First of all, we set that for any T ∈ An,

Φ(T ) = T . This case done, we are reduced to the case where T has at least one long leaf. By Lemma 3.7,

T contains interacting leaves. To define Φ, we want to choose a pair of interacting leaves. Since

the set of interacting leaves may change when we switch leaves, we have to choose in a way such

that we create an involution. If T contains left interacting leaves, we consider the (non-empty) set

{(r(l1),r(l2)); l1 and l2 interacting} and choose l1 and l2 which correspond to the lexicographical max-

imum of this set. Let us call these interacting leaves active. This done, we set Φ(T ) = S(T, l1, l2).
And if T contains only right interacting leaves, we consider the lexicographical maximum of the set

{(c(l1),c(l2)); l1 and l2 interacting} to choose the pair of active leaves.

Proposition 3.8. The function Φ is an involution on Tn. Moreover, if T 6∈ An then

sgn π(Φ(T )) =−sgnπ(T ).

Proof. Omitted.

Figure 5 shows an example of the application of Φ.

Figure 5: A CNAT and its image under Φ. Active leaves appear in red.

We can now conclude the proof of our main result.

Proof of Theorem 2.7. It is a consequence of Propositions 3.2, 3.3 and 3.8.
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We call progressive paths and rushed paths two families of Dyck paths studied by Asinowski and

Jelı́nek, which have the same enumerating sequence (OEIS entry A287709). We present a bijection

proving this fact. Rushed paths turn out to be in bijection with one-sided trees, introduced by Durhuus

and Ünel, which have an asymptotic enumeration involving a stretched exponential. We conclude by

presenting several other classes of related lattice paths and directed animals that may have similar

asymptotic properties.

1 Introduction

Dyck paths—sequences of up and down steps starting and ending at 0 and staying at nonnegative

height—are probably the most famous family of lattice paths, one of the many combinatorial classes

enumerated by the Catalan numbers (OEIS entry A000108). The aim of this article is to study two

families of Dyck paths defined in the OEIS entry A287709 and studied by Asinowski in relation to cer-

tain rectangulation models [1]. We paraphrase their definitions below and illustrate them in Figure 1.

Throughout the paper, we call height of the path P and denote by h(P) the maximum height visited by P.

Definition 1. Let P be a Dyck path of height h. We say that P is progressive if, for i = 2, . . . ,h, it visits

the height i−1 at least twice before the first visit at height i. We say that P is rushed if it starts with h up

steps and then never again visits the height h.

Figure 1: Left: a progressive path of height 4 with the first and second visits at each height marked with

a red and blue dot, respectively. Right: a rushed path of height 4. Note that progressive paths are allowed

to visit their maximal height multiple times, while rushed paths are not.

A rushed path can be described as a run of up steps followed by a right-to-left culminating path,

as defined by Bousquet-Mélou and Ponty [4] (a culminating path is a path that visits only nonnegative

heights and visits its final height only once). This means that the enumeration of rushed paths of a given

height is easily derived from that of culminating paths. The addition of a run of up steps can seem

like a trivial difference; however, when considering paths irrespective of height, it makes a significant

difference in the asymptotic enumeration.

A remarkable fact, due to Asinowski and Jelı́nek and stated in the OEIS entry mentioned above, is

that progressive and rushed paths, when counted according to just length, have the same enumerating

sequence (this is not true when taking height into account). This calls for a bijection, but such a bijection

http://dx.doi.org/10.4204/EPTCS.403.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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has apparently remained elusive. We present such a bijection and explain how it behaves with respect to

the height statistic.

Rushed paths, as it turns out, have already been studied by Durhuus and Ünel in the guise of one-

sided trees, defined as trees with a height equal to the length of their leftmost branch [9]; such trees

map to rushed paths via standard bijections (Figure 2). Their enumerating sequence exhibit a remarkable

asymptotic estimate of the form 4ne−νn1/3

n−5/6. This sort of stretched exponential has attracted recent

attention in many combinatorial contexts [11, 6, 10, 8], but it highly unusual for lattice paths, which

usually have a form µnnγ , with γ normally 0, −1/2 or −3/2 in one dimension [2]. Culminating paths,

for their part, asymptotically number 2n/(4n) [4, Proposition 4.1]. Pushed Dyck paths also have the

stretched exponential, but involve weights on paths rather than being a proper subset (see [11], or [8]

for their tree avatars—remarkably, the asymptotic form is the same as rushed paths when the parameter

is 1/2).

Figure 2: Left: a rushed path of height 4 and semilength 11. Right: the corresponding one-sided tree of

height 3 with 10 edges (the leftmost edge generated by the classical bijection is omitted).

The paper is organized as follows. In Section 2, we describe our bijection between rushed and pro-

gressive paths. In Sections 3 and 4, we give exact and asymptotic enumeration results, respectively.

Finally, in Section 5, we give some perspectives, including classes of directed animals linked to progres-

sive paths.

2 Bijections

In this section, we present our bijection from rushed to progressive paths. First, we need another bi-

jection, which goes from Dyck paths to progressive culminating paths (culminating paths satisfying the

same constraint as progressive paths). Let P be a Dyck path of height h. Decompose it as:

P = A0u · · ·Ah−1u ·Ah ·dBh−1 · · ·dB0 (1)

where the Ai’s and Bi’s are downward Dyck paths of height at most i, possibly empty (the factors A0 and

B0 are always empty in the Dyck setting, but including them makes it easier to describe the bijections

without special cases). Let F(P) be the path:

F(P) = A0u ·dB0uA1u · · ·dBh−1uAhu. (2)

The decompositions of P and F(P) are illustrated in Figure 3.

Theorem 2. The mapping F is a bijection between Dyck paths of length 2n and height h and progressive

culminating paths of length 2n+h+1 and height h+1.

Proof. First, we check that F(P) is a culminating progressive path. By construction, we see that the

factor dBi−2uAi−1u goes from the first visit at height i− 1 to the first visit at height i; it never visits

negative height and visits the height i−1 at least twice, so F(P) is culminating and progressive.
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A1 A2 A3 B2 B1 A1 B1 A2 B2 A3

Figure 3: Left: a Dyck path of height 3 decomposed as in (1). Right: its image by F , a progressive

culminating path of height 4 decomposed as in (2).

Second, the decomposition (2) can be recovered from F(P) by cutting at the first and second visits

at height i, for i = 1, . . . ,h−1, which allows us to rebuild the path P according to (1). This shows that F

is a bijection.

We are now ready to define our main bijection. Let P be a rushed path of height h. Decompose it as:

P = uh ·dA0 · · ·dAh−1 (3)

where the Ai’s are Dyck paths of height at most i. Let m be the maximum height of Ai for i = 0, . . . ,h−1

and let j be the smallest index with h(A j) = m (necessarily, we have j ≥ m). Let G(P) be the path:

G(P) = F(A j) ·A0d · · ·Am−1d ·uAmd · · ·uA j−1d ·d ·uA j+1d · · ·uAh−1d. (4)

The decompositions (3) and (4) are illustrated in Figure 4.

A1 A2 A3 A4 A5 A6 A7 A8 A9

F(A6) A1 A2 A3 A4 A5 A7 A8 A9

Figure 4: Above: a rushed Dyck path of height 10 decomposed as in (3), where m = 4 and j = 6 (so A6

has height exactly 4, while A7, A8 and A9 have height at most 4). Below: its image by G, a progressive

Dyck path of height 5 decomposed as in (4).

Theorem 3. The mapping G is a bijection from rushed paths of length 2n to progressive paths of

length 2n.

Proof. First, we check that G(P) is a progressive path of height m+1 and length 2n. The factor F(Ak) is

a progressive culminating path of height m+1 by Theorem 2; since the factors Ai have height at most i
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for i = 0, . . . ,m− 1, at most m− 1 for i = m, . . . ,k− 1 and at most m for i = k, . . . ,h− 1, the rest of the

path never visits heights above m+1. Finally, the length of G(P) is |P|+ |F(A j)|− |A j|−m−1, which

is 2n by Theorem 2.

Second, the decomposition (4) and thus the path P can be recovered from the path G(P) by cutting

at the first visit at height m+ 1, at the first visit at height i thereafter for i = m, . . . ,2, at every visit at

height 1 thereafter before the first visit at height 0 and at every visit at height 0 thereafter. This shows

that G is a bijection.

3 Enumeration and generating functions

Here we state exact enumeration results for our paths, based on classical results on Dyck paths of

bounded height [7] and culminating paths [4]. In the following, Fh(z) are the Fibonacci polynomials

defined by F0(z) = F1(z) = 1 and Fh(z) = Fh−1(z)− zFh−2(z) for h ≥ 2, while q := q(z) is the series of

Catalan numbers satisfying q = z(1+q)2. The proof will appear in a longer version.

Theorem 4. The generating functions of rushed and progressive paths with height h are:

Rh(z) =
zh

Fh(z)
and Ph(z) =

z2h−1

Fh−1(z)Fh(z)Fh+1(z)
. (5)

The generating function of rushed (or progressive) paths is:

R(z) = P(z) = ∑
h≥0

(

q

1+q

)h
1−q

1−qh+1
. (6)

Finally, the number of rushed paths of semilength n and height h−1 is given by:

rn,h−1 =
4n+1

2hh

⌊h−1
2 ⌋

∑
j=1

(−1) j+1 sin2 jπ

h
cos2n−h jπ

h
. (7)

4 Asymptotics

Below is our result for asymptotic enumeration, stated without proof in this extended abstract.

Theorem 5. The number of rushed (or progressive) Dyck paths of semilength n satisfies, as n tends to

infinity:

rn = pn = λ 4ne−νn1/3

n−5/6
[

1+O
(

n−1/3
)]

(8)

where λ = (4π)5/6(log 2)1/3/
√

3 and ν = 3(π log2/2)2/3.

Moreover, let Rn be a uniformly distributed rushed path of semilength n. The height of Rn, properly

rescaled, tends to a normal law:

h(Rn)−µn1/3

σn1/6

d−→ N (0,1) (9)

where µ = (2π2/ log 2)1/3 and σ = (2π2)1/6/
(

(log2)2/3
√

3
)

. We also have:

h(Rn)−h
(

G(Rn)
) d−→ D where E

[

uD
]

=
1

u

(

1+
u−1

2−u
2

u

2−u
+1
)

. (10)

In particular, the height of a random progressive path of length 2n has the same Gaussian limit law as

h(Rn).
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The estimate (8) and the limit law (9) are directly in [9]. The limit law (10) is also derived using a

local limit law found in the same reference.

5 Perspectives

Many interesting problems remain on this topic. First, classes of Dyck paths similar to progressive paths

may exhibit similar asymptotical behavior: OEIS entry A287776 describes paths one could name doubly

progressive—both left-to-right and right-to-left progressive. The definition of progressive paths also nat-

urally extends to unconstrained paths (not necessarily staying positive or ending at 0): an unconstrained

path is progressive if, before its first visit at every height i 6∈ {0,1}, it visits twice either i− 1 or i+ 1.

There are many possible variations and it would be interesting to see which can be enumerated and if

results like (8) and (9) hold.

Dyck paths are also linked to directed animals on the triangular lattice, via bijections with heaps of

dimers [12, 5]. Adopting the convention that animals grow towards the right side, we say that a directed

animal is acute if, for every site at ordinate y 6= 0, there are at least two sites to the left with ordinate y−1

or y+1. Progressive paths are in bijection with acute half-animals, or acute animals with all sites above

the x-axis (in this case, for every site at ordinate y > 0, there are two sites to the left at ordinate y−1; see

Figure 5). Full acute animals seem harder to enumerate.

Figure 5: Left: a progressive path. Right: the corresponding acute half-animal: for every site not on the

bottom row, there are at least two sites to the left in the row just below.

One may want to go beyond Dyck paths, to Motzkin paths, Schröder paths, m-Dyck paths, or more

general models [2, 3], as well as directed animals on different lattices. It is not clear, however, which of

the many possibilities is the “right” extension of the definition of progressive paths. The adaptation of

the asymptotic results may also prove challenging.

A final problem is the efficient random generation of our paths. Bousquet-Mélou and Ponty gave

several beautiful algorithms for the generation of uniform culminating paths [4], but they are difficult to

adapt to our case, because the distribution of the height is different. Using the recursive method [13] and

several laziness ideas to reduce computation, it is possible to achieve a subquadratic algorithm. Details

will appear in a longer version.
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The Interval poset of a permutation is an effective way of capturing all the intervals of the permutation
and the inclusions between them and was introduced recently by Tenner. Thi paper explores the geo-
metric interpretation of interval posets of permutations. We present a bijection between tree interval
posets and convex polygons with non-crossing diagonals, offering a novel geometric perspective on
this purely combinatorial concept. Additionally, we provide an enumeration of interval posets using
this bijection and demonstrate its application to block-wise simple permutations.

1 Introduction

In [4], Tenner defined the concept of an interval poset of a permutation. This is an effective way of
capturing all the intervals of a permutation and the set of inclusions between them in one glance. Tenner
dealt with structural aspects of the interval poset and characterized the posets𝑃 that can be seen as interval
posets of some permutations.

An interval poset might correspond to more than one permutation. For instance, all simple permu-
tations of a given order 𝑛 share the same interval poset. Tener, in the aforementioned paper, enumerated
binary interval posets and binary tree interval posets but left open the following question:
Question 1.1. How many tree interval posets have 𝑛 minimal elements?

This question was answered by Bouvel, Cioni and Izart in [2]. They also noted that the number of
tree interval posets is equal to the number of ways to place non-crossing diagonals in a convex (𝑛+1)-gon
such that no quadrilaterals are created.

In this work we suggest a simple bijection between the set of tree interval posets and the set of (𝑛+2)-
gons, satisfying the conditions listed above. We use this bijection also for enumerating the whole set of
interval posets by using a broader set of polygons. In [2], the enumeration of the entire set of interval
posets was done in an algebraic way, using generating functions, while our bijection grants a geometric
view to the interval posets.

Another set of interval posets that can be enumerated by polygons is the one corresponding to block-
wise simple permutations, a term that was introduced in a recent paper by the current authors [1].

2 Background

Definition 2.1. Let 𝑛 the symmetric group on 𝑛 elements. Let 𝜋 = 𝑎1⋯𝑎𝑛 ∈ 𝑛. An interval (or block)
of 𝜋 is a non-empty contiguous sequence of entries 𝑎𝑖𝑎𝑖+1⋯𝑎𝑖+𝑘 whose values also form a contiguous
sequence of integers. For 𝑎 < 𝑏, [𝑎,𝑏] denotes the interval of values that range from 𝑎 to 𝑏. Clearly,
[𝑛] ∶= [1,𝑛] is an interval, as well as {𝑖} for each 𝑖 ∈ [𝑛]. These are called trivial intervals. The other
intervals are called proper.
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For example, the permutation 𝜋 = 314297856 has [5,9] = 97856 as a proper interval as well as the
following proper intervals: [1,4], [5,6], [7,8], [7,9], [5,8].

A permutation 𝜋 ∈ 𝑛 is called simple if it does not have proper intervals. For example, the permu-
tation 3517246 is simple.

Following Tenner [4], we define an interval poset for each permutation as follows:
Definition 2.2. The interval poset of a permutation 𝜋 ∈ 𝑛 is the poset 𝑃 (𝜋) whose elements are the
non-empty intervals of 𝜋; the order is defined by set inclusion (see for example Figures 1 and 2). The
minimal elements are the intervals of size 1.

In [4], the interval poset is embedded in the plane so that each node’s direct descendants are increas-
ingly ordered according to the minimum of each interval from left to right. We note that in [2] another
embedding of the same poset was presented.

[1,7]

[1,6] {7}

[1,3]

[1,2] [2,3]

{4} {5} {6}

{1} {2} {3}

Figure 1: Interval poset of the permutations: 5123647, 5321647, 4612357, 4632157, 7463215, 7461235,
7532164, 7512364

If 𝜋 is a simple permutation, the interval poset of 𝜋 comprises the entire interval [1,… ,𝑛] with min-
imal elements {1},… ,{𝑛} as its only descendants. Hence, all simple permutations of a given order 𝑛
share the same interval poset (see for example Figure 2).

[1,4]

{1} {2} {3} {4}

Figure 2: Interval poset of permutations 3142 and 2413.

3 Geometrical view of interval posets

3.1 General interval posets

Bouvel, Cioni and Izart[2], provided a formula for the number of interval posets with 𝑛 minimal elements
and added it to OEIS as sequence A348479 [3].

Here we provide a geometrical view to the interval posets by providing a bijection from the set of
interval posets with 𝑛 minimal elements to a distinguished set of dissections of the convex (𝑛+1)− gon,
which we define below.
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Figure 3: The permutation 𝜋 = 3124576 and its blocks in a graphical way.

We identify a polygon with its set of vertices and denote a diagonal or an outer edge of the polygon
from vertex 𝑖 to vertex 𝑗 by {𝑖, 𝑗}.
Definition 3.1. A dissection of an (𝑛+1)− gon will be called diagonally framed if for each two crossing
diagonals, their vertices are connected to each other. Explicitly, if {𝑎,𝑏} and {𝑐,𝑑} are two crossing
diagonals, then the diagonals or outer edges {𝑎,𝑑},{𝑏,𝑑},{𝑐,𝑏},{𝑐,𝑎} must also exist. See Figure 5 for
an example.

Before we proceed, we have to present two observations which provide some details on the structure
of interval posets and will be used in the sequel.
Observation 3.2. Let 𝜋 ∈ 𝑛. If 𝐼 and 𝐽 are intervals of 𝜋 such that 𝐼 ⊈ 𝐽 and 𝐽 ⊈ 𝐼 and 𝐼 ∩𝐽 ≠ ∅,
then 𝐼 ∩𝐽 , 𝐼 ∪𝐽 , 𝐼 −𝐽 and 𝐽 −𝐼 are intervals of 𝜋.

For example, take 𝜋 = 3124576, then 𝐼 = [1,5] and 𝐽 = [4,7] are intersecting intervals of 𝜋 and thus
𝐼 ∪𝐽 = [1,7], 𝐼 ∩𝐽 = [4,5], 𝐼 −𝐽 = [1,3],𝐽 −𝐼 = [6,7] are also intervals of 𝜋, as can be seen in Figure
3 which depicts the permutation 𝜋 in the common graphical way.
Observation 3.3. If 𝑃 (𝜋) is the interval poset of 𝜋 ∈ 𝑛, then no element of 𝑃 (𝜋) has exactly 3 direct
descendants, since every permutation of order 3 must contain a block of order 2.

Figure 4: Right: the interval poset P. Left: the polygon Φ(𝑃 )

We are ready now to present the main result of this subsection.
Theorem 3.4. The number of interval posets with 𝑛minimal elements is equal to the number of diagonally
framed dissections of the convex (𝑛+1)-gon such that no quadrilaterals are present (see Figure 6 in the
appendix for some examples of the bijection in small values of 𝑛).



38 Interval Posets and Polygon Dissections

Figure 5:

Proof. We define a bijection between the set of interval posets with 𝑛 minimal elements and the set of
diagonally framed dissections of convex (𝑛+1)- gons without quadrilaterals as follows:

Let 𝑃 be the interval poset of some 𝜋 ∈ 𝑛. We set Φ(𝑃 ) to be the convex (𝑛+1)-gon whose set of
diagonals is

{{𝑎,𝑏+1}|[𝑎,𝑏] is an internal node of 𝑃 },
i.e. to each interval of the form [𝑎,𝑏] corresponds a diagonal {𝑎,𝑏+1} in Φ(𝑃 ); note that singletones
intervals correspond to outer edges in the polygon (see Figure 4 for an example).

We claim now that Φ(𝑃 ) must be a diagonally framed (𝑛+1) - gon. Indeed, if {𝑎,𝑐+1} and {𝑏,𝑑+1}
are two crossing diagonals in Φ(𝑃 ), where 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑, then 𝐼 = [𝑎,𝑐] and 𝐽 = [𝑏,𝑑] are intersecting
intervals in 𝑃 and by Observation 3.2 we have that 𝐼 ∪𝐽 = [𝑎,𝑑], 𝐼 ∩𝐽 = [𝑏,𝑐], 𝐼 −𝐽 = [𝑎,𝑏−1] and
𝐽 −𝐼 = [𝑐+1,𝑑] are intervals in 𝑃 corresponding respectively to the diagonals {𝑎,𝑑+1},{𝑏,𝑐+1},{𝑎,𝑏}
and {𝑐+1,𝑑+1}. (See Figure 5 for an illustration).

Moreover, Φ(𝑃 ) must not contain any quadrilateral. Otherwise, if 𝑎 < 𝑏 < 𝑐 < 𝑑 are such that
{𝑎.𝑏,𝑐,𝑑} is a quadrilateral (without any subdivision) then 𝑃 must contain the intervals [𝑎,𝑏−1], [𝑏,𝑐−
1], [𝑐,𝑑−1] and [𝑎,𝑑−1] so we must have that the first three intervals are direct descendants of the fourth
one and they are the only ones. By Observation 3.3, this is impossible.

3.2 Tree interval posets

A tree poset is a poset whose Hasse diagram is a tree.
In [2], the authors calculated the generating function of the number of tree interval posets using gen-

erating functions and mentioned that this is equal to the number of ways to place non-crossing diagonals
in a convex (𝑛+2)-gon such that no quadrilaterals are created (sequence A054515 from OEIS [3]).

Using the function Φ defined above, one can easily produce a combinatorial proof of the following
result.
Theorem 3.5. The number of tree interval posets with 𝑛 minimal elements is equal to the number of non
crossing dissections of the convex (𝑛+1)− gon such that no quadrilaterals are present (see Figure 7 in
the appendix for some examples of the bijection).

Proof. We use the same mapping Φ which was applied in the proof of Theorem 3.4. It is now sufficient
to prove that no crossing diagonals are obtained. This is implied by the fact that intersecting diagonals
stem from intersecting intervals which can not exist in a tree since they cause a circle. (See Figure 1).
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3.3 Interval posets of block-wise simple permutations

In [1], the current authors introduced the notion of block-wise simple permutations. We cite here the
definition:
Definition 3.6. A permutation 𝜋 ∈ 𝑛 is called block-wise simple if it has no interval of the form 𝑝1⊕𝑝2
or 𝑝1⊖𝑝2, where ⊕ and ⊖ stand for direct and skew sums of permutations respectively.

There are no block-wise simple permutations of orders 2 and 3. For 𝑛 ∈ {4,5,6}, a permutation is
block-wise simple, if and only if it is simple. One of the first nontrivial examples of block-wise simple
permutations is 4253716.

In [1], the current authors enumerated the interval posets of block-wise permutations.
The first few values of the sequence of these numbers are 1,1,1,5,10,16,45,109,222,540. This is

sequence A054514 from OEIS [3] which also counts the number of ways to place non-crossing diagonals
in a convex (𝑛+4)-gon such that there are no triangles or quadrilaterals.

The geometrical interpretation of interval posets of block-wise permutations is as follows:
Theorem 3.7. The number of interval posets that represent a block-wise simple permutation of order
𝑛 is equal to the number of ways to place non-crossing diagonals in a convex (𝑛+1)-gon such that no
triangles or quadrilaterals are present (see Figure 8 in the appendix for some examples of the bijection).

Proof. We use again the mapping Φ, defined earlier. In [4] (Theorem 6.1), the author claimed that 𝑃 (𝜎)
is a tree interval poset if and only if 𝜎 contains no interval of the form 𝑝1⊕𝑝2⊕𝑝3 or 𝑝1⊖𝑝2⊖𝑝3. From
here, and by Definition 3.6, it is obvious that an interval poset of a block-wise simple permutation is a
tree. Hence it is sufficient to prove that for an interval poset 𝑃 of a block-wise permutation, Φ(𝑃 ) has no
triangles. This holds due to the fact that if Φ(𝑃 ) contains a triangle with edges {𝑎,𝑏},{𝑏,𝑐},{𝑎,𝑐} with
𝑎 < 𝑏 < 𝑐 then 𝑃 must contain the intervals [𝑎,𝑏−1], [𝑏,𝑐−1] and [𝑎,𝑐−1] and thus [𝑎,𝑐−1] is the direct
parent of [𝑎,𝑏−1] and [𝑏,𝑐−1] which contradicts the definition of block-wise simple permutations.
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4 Appendix

Figure 6: The bijection for small values of 𝑛
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Figure 7: Examples for the bijection of tree intervals for small values of 𝑛
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Figure 8: Examples for the bijection of block-wise simple intervals for small values of 𝑛
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Rota used the functional L to recover old properties and obtain some new formulas for the Bell num-

bers. Tanny used Rota’s functionalL and the celebrated Worpitzky identity to obtain some expression

for the ordered Bell numbers, which can be seen as an evident to the fact that the ordered Bell numbers

are gamma-positive. In this paper, we extend some of Rota’s and Tanny’s results to the framework of

the set partitions of Coxeter type B.

1 Introduction

Rota [12] declares:

“It is the author’s conviction that formula (4), which we derive below, is the natural description of

the exponential numbers. The basic idea is a general one, and can be applied to a variety of other

combinatorial investigations. We shall see that it easily leads to quick derivations of the properties

of the Bn.”

The ‘exponential numbers’ mentioned in the cited paragraph are the obsolete name for what we call

today Bell numbers, which count set partitions of the set [n] = {1,… , n}. Rota’s Formula (4) reads:

Bn =L(un), where L is a linear functional defined on the vector space of polynomials in the indeterminate

u and Bn is the n-th Bell number.

Rota [12] used the functional L to recover old properties and obtain some new formulas for the Bell

numbers. Explicitly, let V = ℝ[u] be the vector space of all real polynomials in the single variable u.

Then any sequence of polynomials of degree 0,1,2,… is a basis for this vector space, in particular the

sequence of the falling factorials (u)0 = 1, (u)1 = u, (u)2 = u(u−1),⋯ is a basis as well. Let L ∶ℝ[u]→ℝ

be the linear functional that is uniquely defined by L((u)j ) = 1, for all j ≥ 0. Rota [12] states the following

theorem:

Theorem 1.1. Let n ≥ 0. Then:

(1) Bn = L(un),

(2) Bn+1 =
n
∑

j=0

(

n

j

)

Bj ,

(3) Bn =
1

e

∑

j≥0

jn

j!
.
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Tanny [14] used Rota’s functional L and the celebrated Worpitzky identity mn =
n
∑

k=0

(

n+m−k

n

)

an,k, to

obtain the following expression for the ordered Bell numbers :

Fn(x) =

n
∑

k=1

an,kx
n−k+1(1+x)k−1,

where Fn(x) is the generating function of the number of ordered set partitions of the set [n] and an,k are

Eulerian numbers, a.k.a. the number of permutations in the symmetric group Sn having k descents, see

[9]. In modern terms, this expression can be seen as an evident to the fact that the ordered Bell numbers

are gamma-positive.

In this paper, we extend some of Rota’s and Tanny’s results to the framework of the set partitions of

Coxeter type B.

In Section 2, we recall the definition of set partitions (and ordered set partitions) of type B and intro-

duce the definition of Bell numbers and Bell polynomials of type B. In Section 3, we extend the first two

parts of Rota’s Theorem 1.1 to Bell numbers of type B. Actually part (2) of that result will be proven both

by Rota’s method and by a counting argument. In Section 4, we use Brenti’s generalization of Worpitzky’s

identity to obtain a gamma-positivity result for the ordered Bell polynomials of type B.

2 Set partitions and Bell numbers of type B

2.1 Set partitions of type B

We now recall the definition of set partitions of type B (see Dolgachev-Lunts [5, p. 755] and Reiner [10,

Section 2]; mentioned implicitly in Dowling [6] and Zaslavsky [16] in the form of signed graphs):

Definition 2.1. Denote: [±n] ∶= {±1,… ,±n}. A set partition of [n] of type B or a signed set partition

is a set partition of the set [±n] such that the following conditions are satisfied:

• If B appears as a block in the set partition, then −B (which is obtained from B by negating all its

elements) also appears in that partition.

• There exists at most one block satisfying −B = B. This block is called the zero block (if it exists, it

is a subset of [±n] of the form {±i ∣ i ∈ C} for some C ⊆ [n]).

For example, the following is a set partition of [6] of type B:

{{1,−1,4,−4},{2,3,−5},{−2,−3,5},{6},{−6}}.

Note that every non-zero block B has a corresponding block −B attached to it. For the sake of

convenience, we write for the pair of blocks B,−B, only the representative block containing the minimal

positive number appearing in B∪−B. For example, the pair of blocks B = {−2,−3,5},−B = {2,3,−5}

will be represented by the single block {2,3,−5}.

Our convention will be to write first the zero block and denote it by B0 if exists and then the non-zero

blocks of a set partition of type B in such a way that the sequence of absolute values of the minimal

elements of the blocks is increasing. We call this the standard presentation.

For example, the following is a set partition of [6] of type B in its standard presentation:

{

B0 = {1,−1,4,−4},B1 = {2,3,−5},B2 = {6}
}

.
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2.2 Stirling numbers and Bell numbers of type B

Definition 2.2. Let SB(n,k) be the number of set partitions of type B having k representative non-zero

blocks. This is known as the Stirling number of type B of the second kind (see sequence A085483 in

OEIS [7]).

It is easy to see that SB(n,n) = SB(n,0) = 1 for each n ≥ 0. The following recursion for SB(n,k) is

well-known ([6, Theorem 7; see the Erratum], [3, Corollary 3], for m = 2, and [15, Equation (1)], for

m = 2, c = 1):

Proposition 2.3. For each 1 ≤ k < n,

SB(n,k) = SB(n−1,k−1)+ (2k+1)SB(n−1,k). (1)

The following result was proved combinatorially in [1] using a ‘balls into urns’ approach:

Theorem 2.4. Let x ∈ ℝ and let n ∈ ℕ. Then we have:

xn =

n
∑

k=0

SB(n,k)(x)B
k
, (2)

where (x)B
k
∶= (x−1)(x−3)⋯ (x−2k+1) and (x)B

0
∶= 1, called the falling factorial of type B.

Remark 2.5. There is a simple connection between the falling factorials of types A and B:

(

x−1

2

)

n
=
(

x−1

2

)(

x−1

2
−1

)

⋯

(

x−1

2
−n+1

)

=
1

2n
(x−1)(x−3)⋯ (x−2n+1) =

1

2n
(x)B

n
,

where the falling factorial of type A is defined as follows: (x)k ∶= x(x−1)(x−2)⋯ (x−k+1).

We define the Bell number of typeB as follows: BB
n
=

n
∑

k=0

SB(n,k). Obviously, the Bell number counts

all the set partitions of the set [n] of type B. A similar definition appears in Mező and Ramírez [8].

We define also the Bell polynomial of type B as follows: BB
n
(u) =

n
∑

k=0

SB(n,k)uk.

Sagan and Swanson [13] discussed ordered set partitions of type B, which are defined as follows:

Definition 2.6. An ordered set partition of [n] of type B having k non-zero blocks is a sequence of sets

(S0,S1,… ,S2k+1) which form a set partition of [n] of type B, such that the following two order conditions

are satisfied:

1. For each 1 ≤ i ≤ n, i ∈ S0 if and only if −i ∈ S0 (i.e. the zero block S0 is always the first block).

2. For each 1 ≤ j ≤ k, we have S2j = −S2j−1.

Similar to the ordinary Bell number of type B, we define the ordered Bell number of type B and its

associated ordered Bell polynomial as follows:

Definition 2.7. BB,o
n

=
n
∑

k=0

2kk!SB(n,k) and BB,o
n

(x) =
n
∑

k=0

2kk!SB(n,k)xk
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3 Type-B analogue of Rota’s result

Let V be the vector space of all polynomials in the variable x. It is easy to see that the set
{

(x)B
k

}

k∈ℤ
is

a basis of V . We use this basis to define a functional L ∶ V → ℝ by L((x)B
k
) = uk for each k ∈ℤ, where

u is a fixed real number.

We will use the following lemma in the proof of Theorem 3.2(2):

Lemma 3.1. Let p(x) be any polynomial. Then: L((x−1)p(x−2)) = u ⋅L(p(x)).

Proof. Since the set of falling factorials of type B

{1, (x−1), (x−1)(x−3),… , (x−1)(x−3)⋯ (x−2n+1)}

is a basis for ℝn[x], we can write any polynomial p(x) as a linear combination of this set as follows:

p(x) = a0+a1(x−1)+a2(x−1)(x−3)+an(x−1)(x−3)⋯ (x−2n+1). (3)

Substituting x−2 for x, we have now:

p(x−2) = a0+a1(x−3)+a2(x−3)(x−5)+⋯+an(x−3)(x−5)⋯ (x−2n+3).

Multiplying the last equality by (x−1) yields:

(x−1)p(x−2) = a0(x−1)+a1(x−1)(x−3)+⋯+an(x−1)⋯ (x−2n+3). (4)

Applying the operator L on Equations (3) and (4), we get the desired result.

We present here the analogue for type B of the celebrated results by Rota [12] (for part (2), see also

Mező and Ramírez [8, p. 258]):

Theorem 3.2. For each n ∈ ℕ, we have:

(1) BB
n
(u) = L(xn).

(2) BB
n+1

(u) = BB
n
(u)+u ⋅

n
∑

j=0

2n−j
(

n

j

)

BB
j
(u).

Proof. (1) By Theorem 2.4, we have xn =
∑

P∈ΠB
n

(x)B
N(P )

, where ΠB
n

is the set of set partitions of the set [n]

of type B and N(P ) is the number of non-zero representative blocks in the set partition P . Now apply

the functional L on both sides of this equation and use the linearity of L to get

L(xn) =
∑

P∈ΠB
n

L

(

(x)B
N(P )

)

=
∑

P∈ΠB
n

uN(P ) =

n
∑

k=0

SB(n,k)uk = BB
n
(u).

(2) For this result, we supply two different proofs: an algebraic one and a combinatorial one for u = 1.

We start with the algebraic proof: Applying Lemma 3.1 to p(x) = (x+2)n, we get:

BB
n+1

(u)−BB
n
(u) = L(xn+1)−L(xn) = L((x−1)xn)

Lemma 3.1
= u ⋅L((x+2)n) =

= u ⋅L

(

n
∑

j=0

(

n

j

)

xj2n−j

)

= u ⋅

n
∑

j=0

(

n

j

)

2n−jL(xj) = u ⋅

n
∑

j=0

(

n

j

)

2n−jBB
j
(u).

The combinatorial proof for u= 1 is as follows: The left hand side counts the total number of set partitions

of the set [n] of type B for any number of non-zero representative blocks. we show that the right hand

side counts the same thing in a different way. We divide in two cases according to the location of n+1:
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1. If n+1 is located in the zero-block, then we have BB
n

possibilities to locate the other elements.

2. Otherwise, n+1 is located in a non-zero block. Then, for each 0 ≤ k ≤ n, assume that n−k is the

number of elements that share a block with n+1. The rest k elements can be located in BB
k

ways.

Finally, we have 2n−k possibilities to sign the elements in the block containing n+1.

4 Gamma-positivity of ordered Bell polynomial of type B

Let V be the vector space of all polynomials in the variable x. It is easy to see that the set
{

(x)B
k

}

k∈ℤ
is

a basis of V . We use this basis to define a new functional Lo ∶ V →ℝ by

Lo((x)B
k
) = 2kk!uk (5)

for each k ∈ ℤ, where u is a fixed real number. By slightly modifying the proof of Theorem 3.2 we get

that Lo(xn) = BB,o
n

(u).

Brenti [4] obtained a Worpitzky-like identity for type B as follows: For each m,n ∈ ℕ, one has

(1+2m)n =
n
∑

k=0

(

n+m−k

n

)

EB
n,k
,

where EB
n,k

are the Eulerian numbers of type B, which counts the number of signed permutations in the

Coxeter group of type B having k descents; this set of numbers constitutes the sequence A060187 in

OEIS [7]. For a combinatorial proof of this identity, see [2].

The following result shows the gamma-positivity of the ordered Bell polynomials of type B:

Proposition 4.1. BB,o
n

(u) =
n
∑

k=0

EB
n,k
uk(1+u)n−k.

Proof. If we write x = 1+2m, then we have:

BB,o
n

(u) = Lo(xn) =

n
∑

k=0

Lo

[(

n+m−k

n

)]

EB
n,k

=

=

n
∑

k=0

Lo

[

(

n+
x−1

2
−k

n

)

]

EB
n,k

=

n
∑

k=0

EB
n,k

n!
Lo

[(

n+
x−1

2
−k

)

n

]

=

(∗)
=

n
∑

k=0

EB
n,k

n!
Lo

[

n
∑

l=0

(

n

l

)

(n−k)n−l

(

x−1

2

)

l

]

=

Rem. 2.5
=

n
∑

k=0

EB
n,k

n!

n
∑

l=0

(

n

l

)

(n−k)n−lL
o

[

(x)B
l

2l

]

=

Eqn. (5)
=

n
∑

k=0

EB
n,k

n
∑

l=0

(

n

l

)

(n−k)n−l

n!
l!ul =

n
∑

k=0

EB
n,k

n
∑

l=0

(

n−k

n−l

)

ul =

=

n
∑

k=0

EB
n,k
uk

n
∑

l=0

(

n−k

l−k

)

ul−k =

n
∑

k=0

EB
n,k
uk(1+u)n−k,

where Equality (∗) is based on the binomial Umbral identity of the falling factorials of type A:

(a+b)n =
n
∑

k=0

(

n

k

)

(a)k(b)n−k, see e.g. Roman [11, p. 29].
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1 Introduction

The q-generalized Fibonacci numbers [5, 7] can be combinatorially interpreted in many different

ways, for q ∈ N+. One of them involves the Dyck paths having height at most two. More precisely, the

subsets of these bounded Dyck paths avoiding q consecutive valleys at height 1 are enumerated according

to their semilength (i.e. the number of steps of the path divided by 2) by the mentioned sequence [1, 2].

The same numbers count the binary strings avoiding q+1 consecutive 1’s, with q ≥ 1, according to their

length [4, 8]. Note that to be exact we should write that the enumerating sequences are the (q+ 1)-
generalized Fibonacci numbers, for q ≥ 1.

Not long ago Baril, Kirgizov, and Vajnovszki [3] introduced the set W
q

n of the q-decreasing strings

which are binary strings of length n where each maximal factor 0a1b, with a > 0, satisfies q · a > b, for

q ≥ 1. Moreover, among other results, the authors give a bijection between W
q

n and the set Bn(1
q+1) of

the binary strings of length n avoiding q+1 consecutive 1’s, for q ≥ 1.

Recently [6], Kirgizov generalized the q-decreasing strings to the case where q is a positive rational

number, q ∈ Q+, and they are enumerated by the numbers called Q-bonacci by the author. In this paper

we provide a class of restricted Dyck paths that result in having the same enumeration (according to their

semilength). More precisely, we consider the Dyck paths having height at most two and introduce some

constraints on the numbers of consecutive valleys at height one which must be followed by a suitable

number of valleys at height zero, depending on the value of q ∈Q+.

2 Preliminaries

In the paper we indicate a Dyck path in linear notation as a string over the alphabet {U,D}, where U

and D replace the up and the down steps of the path, respectively. We figure a Dyck path in a Cartesian

coordinate system, starting from the origin and ending in a point of the x-axis. A valley is a substring

DU , while a peak is a substring UD. The height of a valley is the ordinate reached by the D step. We

refer to a valley at height 1 or at height 0 with 1–valley or 0–valley, respectively. For the peaks, with

1–peak (or 0–peak) we mean a peak UD whose D step reaches the ordinate 1 (or 0).

Since we are going to deal only with Dyck paths having height at most 2, we do not record this

restriction in our notation.

Let D
q
n , with q ≥ 1, denote the set of the Dyck paths having height at most 2, and avoiding q+ 1

consecutive 1–peaks (which is the same as avoiding q consecutive 1–valleys), and having semilength n,

http://dx.doi.org/10.4204/EPTCS.403.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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where n ≥ 0.

Clearly, a Dyck path P ∈ D
q
n starts with one of the factors UD,UUDD,UUDUDD, . . . ,U(UD)qD

(where (UD)q is the string obtained by concatenating UD to itself q times). Then the path P is obtained

by concatenating one of these factors to a path of suitable length, and the set D
q
n can be generated by

D
q
n =











ε , if n = 0;
q
⋃

j=0

U(UD) jD ·D
q
n−1− j, if n ≥ 1.

It is thus enumerated by the sequence of the (q+1)-generalized Fibonacci numbers

f
(k)
n =











1, if n = 0;
k

∑
i=1

f
(k)
n−i, if n ≥ 1 ( f

(k)
ℓ = 0 if ℓ < 0).

Note that for q = 1 we get the classical Fibonacci numbers.

3 Construction in the case q ∈Q+

3.1 The particular case q = 1/s

If P ∈ D
q
n with q ∈ N+, then q consecutive 1–peaks in P are necessarily followed by at least one

0–valley. In the case where q ∈Q+, we require that the number of 0–valleys have some constraints.

We start with the particular value q = 1/s. In this case we impose that each 1–peak of a Dyck path P

must be followed by at least s consecutive 0–valleys if after the 1–peak there is enough space to contain s

consecutive 0–valleys. If a 1–peak occurs near the end of P and there is no space to contain s consecutive

0–valleys, then no other 1–peaks can occur up to the end of P. Summarizing, we give the following

definition.

Definition 3.1 Let D
1/s
n denote the set of Dyck paths P of semilength n having height at most 2, where

either P has no 1–peaks (P = (UD)n) or each 1–peak in P is followed by at least s consecutive 0–valleys,

except the last 1–peak which can be followed by less then s consecutive 0–valleys.

The construction is straightforward: a path P ∈ D
1/s
n starts with one of the UD or UUD(DU)s−1D

factors (or P is a suitable prefix of this last one factor, if n ≤ s), then P is obtained by concatenating one

of these factor to a Dyck path Q ∈ D
1/s

n−1 or Q ∈ D
1/s

n−s−1. In the case P begins with the longer factor,

since Q starts, of course, with an up step U , then really the first 1–peak of P is followed by s consecutive

0-valleys (so that P ∈ D
1/s
n ): the first s−1 ones are the s−1 consecutive 0–valleys of the factor, and the

last one is given by the last step D of the factor and the first U step of Q.

Not considering, for the moment, paths with a semilength less or equal to s, we can write

D
1/s
n =UD ·D

1/s

n−1 ∪ UUD(DU)s−1D ·D
1/s

n−s−1 (for n > s). (1)

Thus, the set D
1/s
n is enumerated by

wn = wn−1 +wn−s−1

omitting at this stage the initial conditions.
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We note that this recurrence relation matches the one enumerating the q-decreasing strings in the

case q = 1/s stated in [6].

As far as the initial conditions are concerned, we observe that prepending the factor UD generates

Dyck paths having semilength starting from 1, so that the empty Dyck path ε must be considered as a

legal path of D
1/s

0 (actually, the only one!).

Prepending the factor UUD(DU)s−1D generates Dyck paths having semilength starting from s+ 1.

For semilengths less or equal to s, we note that the construction described in equation (1) does not

generate the paths UUDD, UUDDUD, . . ., UUD(DU)tD with t = 0,1, . . . ,s−2. These paths are suitable

prefixes of UUD(DU)s−1D which however satisfy Definition 3.1, so that they must be considered among

the initial conditions.

Therefore, the generation of the set D
1/s
n can be completely described as follows:

D
1/s
n =























ε , if n = 0;

UD, if n = 1;

UD ·D
1/s

n−1 ∪ U · pn−1

(

UD(DU)s−1
)

·D, if 2 ≤ n ≤ s+1;

UD ·D
1/s

n−1 ∪ UUD(DU)s−1D ·D
1/s

n−s−1, if n > s+1.

In the above formula pn−1

(

UD(DU)s−1
)

is the prefix of semilength n−1 of UD(DU)s−1.

It is not difficult to see that D
1/s
n is enumerated by

wn =











1, if n = 0;

n, if 1 ≤ n ≤ s+1;

wn−1 +wn−s−1, if n > s+1.

This sequence matches the one enumerating the q-decreasing strings for q = 1/s that can be deduced

from [6].

3.2 The general case q = r/s

Following the outline of the constructions in the cases where q is an integer, and where q= 1/s, in the

general case q = r/s (we suppose r and s to be coprime) we require that a path P avoid r+1 consecutive

1–peaks, and if r consecutive 1–peaks occur in P, then they must be followed by at least s consecutive

0–valleys. Clearly, we have to deal with the case where p consecutive 1–peaks, with p = 1,2, . . . ,r−1,

occur in P. When this happens, we impose that the p consecutive 1–peaks must be followed by a number

v of consecutive 0–valleys such that

p

v
≤

r

s
for p = 1,2, . . . ,r−1. (2)

Moreover, we have to deal with the case where the rightmost block of r consecutive 1–peaks occurs near

the end of P (more precisely, when after this block there is no space to contain s consecutive 0 –valleys).

In this case, no other 1-peaks can occur up to the end of P. Finally, we allow the paths end with a

consecutive block of 1–peaks (clearly, less than r+1). Summarizing, we give the following definition.

Definition 3.2 Let D
r/s
n denote the set of Dyck paths P of semilength n having height at most 2, where

• each block B of r consecutive 1–peaks in P is followed by at least s consecutive 0–valleys, except

the rightmost block B which can be followed by less than s consecutive 0–valleys, and
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• each block C of p consecutive 1–peaks in P, with p = 1,2, . . . ,r − 1, is followed by at least v

consecutive 0–valleys such that p/v ≤ r/s, and

• the path P can end with (UD)tD, with t = 1,2, . . . ,r (in other words, P ends with t consecutive

1–peaks (t ≤ r) followed by a down step).

Clearly, the number v of consecutive 0–valleys, since v is an integer, satisfies our request (2) when

v ≥
⌈

p · s
r

⌉

. Moreover, we note that in the case where p consecutive 1-peaks, with p = 1,2, . . . ,r− 1,

occur near the end of P and there is no enough space to contain v consecutive 0-valleys, then the path

P does not belong to D
r/s
n , according to the second bullet in Definition (3.2). For example, if q = 4/5,

the path P = UUDUDDUDUD is not allowed, since after two consecutive 1–peaks (p = 2) at least

three consecutive 0-valleys (v = 3, according to request (2)) must occur. On the other hand, the path

P =UUDUDUDUDDUDUDUD is allowed.

Also in this (general) case, the construction is straightforward. A path P ∈D
r/s
n starts with one of the

factors UD or U(UD)p(DU)⌈ps/r⌉−1D, with p= 1,2, . . . ,r (or P is a suitable prefix of U(UD)r(DU)s−1D).

With an argument similar to the one used in the case where q = 1/s, it is not difficult to get the following

construction:

D
r/s
n =































































































ε , if n = 0;

UD, if n = 1;

UD ·D
r/s

n−1 ∪ U · pn−1

(

(UD)r(DU)s−1
)

·D

∪ U(UD)p(DU)⌈ps/r⌉−1D ·D
r/s

n−p−⌈ps/r⌉, if 2 ≤ n ≤ r+ s

and n− p−⌈ps/r⌉ ≥ 1

with 1 ≤ p ≤ r−1;

UD ·D
r/s

n−1 ∪ U(UD)p(DU)⌈ps/r⌉−1D ·D
r/s

n−p−⌈ps/r⌉, if n > r+ s

and 1 ≤ p ≤ r;

Then we have (in the following χ( f ) = 1 if f is true, and χ( f ) = 0 otherwise)

wn =







































1, if n = 0;

1, if n = 1;

wn−1 +1+
r−1

∑
p=1

χ (n− p−⌈ps/r⌉ ≥ 1)wn−p−⌈ps/r⌉, if 2 ≤ n ≤ r+ s;

wn−1 +
r

∑
p=1

wn−p−⌈ps/r⌉, if n > r+ s.

In order to respect the second bullet in Definition 3.2 we added the factor χ (n− p−⌈ps/r⌉ ≥ 1)
in the case 2 ≤ n ≤ r + s of the definition of wn, and the statement n− p−⌈ps/r⌉ ≥ 1 since at least

⌈ps/r⌉ consecutive 0–valleys must occur after p consecutive 1–peaks, with 1 ≤ p ≤ r − 1 (in order to

have D
r/s

n−p−⌈ps/r⌉ 6= /0).

Also, in this case, the recurrence relations match the ones enumerating the q-decreasing strings in

the case q = r/s founded in [6].
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Let (W,S) be a Coxeter system of affine type D̃, and let TL(W ) the corresponding generalized
Temperley-Lieb algebra. In this extended abstract we define an infinite dimensional associative alge-
bra made of decorated diagrams which is isomorphic to TL(W ). Moreover, we describe an explicit
basis for such an algebra of diagrams which is in bijective correspondence with the classical mono-
mial basis of TL(W ), indexed by the fully commutative elements of W .

1 Introduction

The Temperley-Lieb algebra is a very classical mathematical object studied in algebra, combinatorics,
statistical mechanics and mathematical physics, introduced by Temperley and Lieb in 1971 [13]. Thanks
to Kauffman [11] and Penrose [12], it was showed that the Temperley-Lieb algebra can be realized as a
diagram algebra, that is an associative algebra with a basis given by certain diagrams on the plane. On
the other hand, Jones presented the Temperley-Lieb algebra in terms of abstract generators and relations.
In [10], he also showed that this algebra occurs naturally as a quotient of the Hecke algebra of type A.
The realization of the Temperley-Lieb algebra as a Hecke algebra quotient was generalized by Graham
in [5]. He defined the so-called generalized Temperley Lieb algebra TL(Γ) for any Coxeter system of
type Γ and showed that TL(Γ) has a monomial basis indexed by the fully commutative elements of the
underlying Coxeter group.

s0

s1

s2 s3 sn

sn+1

sn+2

Figure 1: Coxeter graph of type D̃n+2.

During the years, diagrammatic representations for TL(Γ) have been found for each Coxeter system
of finite type but only for two systems of affine type. More precisely, in [7], [9] and [6] Green defined a
diagram calculus in finite Coxeter types B, D, E and H. For affine types, in [4] Fan and Green provided
a realization of TL(Ã) as a diagram algebra on a cylinder and, more recently, in [2, 3] Ernst represented
TL(C̃) as an algebra of decorated diagrams. In this extended abstract, we present a new diagrammatic
representation for TL(D̃n+2). Our method can be extended also to the affine case B̃. Here we recall
the presentation of TL(D̃n+2) given by Green in [8] that we consider as definition: TL(D̃n+2) is the
Z[δ ]-algebra generated by {b0,b1, . . . ,bn+2} with defining relations:

(d1) b2
i = δbi for all i ∈ {0, . . . ,n+2},

(d2) bib j = b jbi if si and s j are not adjacent nodes in the Coxeter graph of type D̃n+2;

http://dx.doi.org/10.4204/EPTCS.403.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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s0
s1
s0

s0s1

s0s1

sjl sjr

s0s1

(ALT) (PZZ) (LRP)

s10

s11

s8s9

s13s14

Figure 2: Some fully commutative heaps.

(d3) bib jbi = bi if si and s j are adjacent nodes in the Coxeter graph of type D̃n+2.

Similarly to Ernst in [2, 3], we define the diagrams for our representation starting from the classical
ones of type A and adding decorations on the edges.

Then, as usual, we define a product of decorated diagrams by concatenation. This operation turns
this set into an infinite dimensional Z[δ ]-algebra, of which we consider a quotient modulo some new
relations. Within this quotient, we consider a specific Z[δ ]-subalgebra called algebra of admissible
diagrams and denoted by D(D̃n+2). The main result of this extended abstract states that D(D̃n+2) and
TL(D̃n+2) are isomorphic Z[δ ]-algebras.

2 Fully commutative elements of Coxeter groups

Let M be a square symmetric matrix indexed by a finite set S, satisfying mss = 1 and, for s ̸= t, mst =mts ∈
{2,3, . . .}∪{∞}. The Coxeter group W associated with the Coxeter matrix M is defined by generators S
and relations (st)mst = 1 if mst < ∞. These relations can be rewritten more explicitly as s2 = 1 for all s,
and

sts · · ·︸ ︷︷ ︸
mst

= tst · · ·︸ ︷︷ ︸
mst

,

where mst < ∞, the latter being called braid relations. When mst = 2, they are simply commutation
relations st = ts. For w ∈W , the length of w, denoted by ℓ(w), is the minimum length l of an expression
s1 · · ·sl of w with si ∈ S. The expressions of length ℓ(w) are called reduced.

Definition 2.1 An element w ∈ W is fully commutative (FC) if any reduced expression of w can be
obtained from any other reduced expression of w using only commutation relations.

The concept of heap helps in studying problems related to full commutativity, for more details see
for instance [1]. Briefly, given a reduced expression of w = si1 · · ·sik ∈W , its heap is a poset on the index
set {1, . . . ,k} together with a labeling map. Heaps can be represented via Hasse diagrams; moreover, if
w ∈ FC, its heap does not depend on its reduced expression. Fully commutative elements heaps of type
D̃n+2 have been classified in [1, §3.2]: they can be split in five disjoint families, depending on the shapes
of their associated heaps, whose elements are respectively called Alternating elements (ALT), Left-Peaks
(LP), Right-Peaks (RP), Left-Right-Peaks (LRP) and Pseudo-Zigzags (PZZ), see Figure 2.

3 Decorated diagrams

A concrete pseudo k-diagram consists of a finite number of disjoint plane curves, called edges, embedded
in a box having k nodes on the top (north) face and k nodes on the bottom (south) face. The nodes are
endpoints of edges and all other embedded edges must be closed (isotopic to circles) and disjoint from
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the box. We refer to a closed edge as a loop. It follows that there cannot exist isolated nodes and from
each node a single edge starts. By {a,b} we mean an edge that joins the node a to the node b.

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′ 6′ 7′

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′ 6′ 7′

Figure 3: Two equivalent concrete pseudo 7-diagrams.

We say that two concrete pseudo k-diagrams are (isotopically) equivalent if one can be obtained
from the other by isotopically deforming the edges such that any intermediate diagram is also a concrete
pseudo k-diagram (Figure 3). We define a pseudo k-diagram as an equivalence class of concrete pseudo
k-diagrams with respect to isotopically equivalence. Given two of these diagrams D,D′, we define the
product D′D as the pseudo k-diagram obtained by placing D′ on top of D so that node i of D coincides
with node i′ of D′ and then rescaling.

Now let D be a concrete pseudo k-diagram. Consider the set Ω = {•,◦} and the monoid Ω∗. Our
goal is to adorn the edges of D with elements of Ω which we call decorations. In particular, • is called
a L-decoration and ◦ is called R-decoration. We call a LR-decorated pseudo k-diagram a pseudo k-
diagram decorated with these decorations up to certain rules that we do not list here. We denote the set
of LR-decorated pseudo k-diagrams by T LR

k (Ω) and define PLR
k (Ω) to be the Z[δ ]-module having the

elements of T LR
k (Ω) as a basis.

As before, we define multiplication in PLR
k (Ω) by concatenating two basis elements and then extend

it bilinearly, see the first equality in Figure 4. We can show that this product gives a structure of Z[δ ]-

= '

Figure 4: Product of two concrete decorated pseudo diagrams and its reduction.

algebra to PLR
k (Ω), which is an infinite dimensional algebra.

Let P̂LR
k (Ω) be the Z[δ ]-quotient algebra of PLR

k (Ω) by the relations in Figure 5. We say that a

7→ 7→ 7→ 7→ 7→ δr1 : r2 : r3 : r4 : r5 :

Figure 5: The defining relations of P̂LR
k (Ω).

LR-decorated diagram is irreducible if there are no relations to apply. Similarly to [2, Proposition 3.4.1],
one can prove that the set of LR-decorated irreducible diagrams forms a basis for P̂LR

k (Ω). An example
of irreducible diagram is in Figure 4, right.

We are particularly interested in a special subset of irreducible diagrams, called the simple diagrams
D0, . . . ,Dn+2, defined as in Figure 6. It is easy to prove that the simple diagrams satisfy the relations (d1)-
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1 2 n+ 2

1′ 2′ (n+ 2)′

. . .

1 i+ 1 n+ 2

1′ (i+ 1)′ (n+ 2)′

. . .

1 n+ 1 n+ 2

1′ (n+ 1)′ (n+ 2)′

. . .

D0 Di, with 1 ≤ i ≤ n+ 1 Dn+2

. . .

i

i′

Figure 6: The simple diagrams.

(d3) of the TL(D̃n+2) generators, defined in Section 1, simply replacing bi by Di. Denote by D(D̃n+2) the
Z[δ ]-subalgebra of P̂LR

n+2(Ω) generated as a unital algebra by the simple diagrams with multiplication
inherited by P̂LR

n+2(Ω).

3.1 Admissible diagrams

We consider a subset of irreducible diagrams called admissible diagrams and denoted by ad(D̃n+2); here
we state some fundamental properties the admissible diagrams must satisfy:

1. the only loop edges that can occur are depicted in Figure 7;

L◦ = L◦• =L• =

Figure 7: Allowable loops in D̃-admissible diagrams.

2. the total number of L ◦
• and of • on non-loop edges must be even, as the total number of L ◦

• and
of ◦ on non-loop edges must be even too;

3. there cannot be a ◦-decoration to the left of a •-decoration and vice versa.

We divide the admissible diagrams in five disjoint families, based on the displacement of the decorations
on the edges (ALT, LP, RP, LRP and PZZ-diagrams). As one can guess, there will be a correspondence
between this diagram classification and the heaps classification in Section 2. Moreover we give a def-
inition of the length of a diagram ℓ(D) that depends on the shape of the edges and on the number of
decorations on them. We use the length of a diagram for the inductive argument of our main result. The
following picture summarizes the several structures introduced above: the main result is described by the
last equality.

T LR
n+2(Ω) PLR

n+2(Ω) P̂LR
n+2(Ω)⊃ D(D̃n+2) = ad(D̃n+2).

4 Cut and paste operation

In this section we present the major combinatorial technique we used to prove the faithfulness of the
diagrammatic representation we just defined.

An edge on the north face e of D ∈ ad(D̃n+2) joining two consecutive edges is called a simple edge
if either (a) e is undecorated, or (b) e = {1,2} and it is decorated by a single •, or (c) e = {n+1,n+2}
and it is decorated by a single ◦.
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We consider a subset of simple edges, called suitable edges, and to each of those, we assign a
neighbor edge which often is a L ◦

• or leaves one of the nodes adjacent to the suitable edge. Now
we can introduce the following procedure, called cut and paste operation, an example is in Figure 8,
right.

cp2,3

i i+ 1 i i+ 1 i i+ 1

i i+ 1 i i+ 1 i i+ 1

Figure 8: Cut and paste operation.

Definition 4.1 (Cut and paste operation) Let D be an admissible diagram with a suitable edge e =
{i, i+1}.

(cp1) Delete the simple edge e.

(cp2) Cut the neighbor of e and join the two free endpoints of the cut edge to the nodes i and i+1 as to
obtain two new non intersecting edges or the edge {i, i+1}, see Figure 8, left.

(cp3) If the neighbor edge of e was decorated, then distribute its decorations on the new edges in an
admissible way.

The importance of this procedure relies in the possibility of finding a unique diagram D′ from another
diagram D that factorizes as D = DiD′ with the property that D′ has length equal to ℓ(D)− 1. Thanks
to this inductive argument, we can prove the results stated in the next section. Moreover, this procedure
provides an algorithm to factorize an admissible diagram into a product of simple diagrams.

5 Main results

Let si1si2 · · ·sik be a reduced expression of w ∈ FC(D̃n+2) and define Dw := Di1Di2 · · ·Dik . Note that Dw

does not depend on the chosen reduced expression of w since w ∈ FC(D̃n+2). Define the Z[δ ]-algebra
homomorphism

θ̃D : TL(D̃n+2)→ D(D̃n+2) such that θ̃D(bi) = Di

for all i = 0, . . . ,n+2. Clearly θ̃D is surjective and maps the monomial basis element bw := bi1bi2 · · ·bik
into the diagram Dw. Our goal is to show that this map is actually an algebra isomorphism. The proof is
based on five steps that are summarized in the next theorem. Point 4) is by induction on the length of an
admissible diagram and it uses the cut and paste algorithm.

Theorem 5.1

1. Let w be a FC element of a certain type, then the image of the basis element bw is a diagram of the
analogous type and vice versa (for instance, w has a heap of type (ALT) if and only if θ̃D(bw) = Dw

is an ALT-diagram, and so on).

2. The lengths of w and Dw are equal.
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s0
s1
s0

s10

s11

θ̃D

w Dw

3. Every admissible diagram D is of the form Dw where w ∈ FC(D̃n+2).

4. The admissible diagrams form a Z[δ ]-algebra that coincides with D(D̃n+2). Moreover, the set of
admissible diagrams is a basis for D(D̃n+2).

5. The map θ̃D is an algebra isomorphism.
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1 Introduction

Tree-like data structures are fundamental in computer science, serving as critical tools for modeling phe-

nomena, testing, and creating diverse and representative datasets that enable effective training of machine

learning frameworks by exposing models to a wide range of possible input scenarios. Recognizing the

necessity for random samplers of these structures, a comprehensive body of work has emerged offering

algorithms for generating simple tree families. These algorithms, ranging from general approaches like

the Recursive method and Boltzmann sampler [2] to specific ones like the BBJ algorithm for binary

trees [1], excel in efficiency and minimal randomness usage. Despite the abundance of techniques for

simple trees, the random generation of increasing trees—a vital component in priority queue manage-

ment—remains underexplored. This gap is attributed to their non-uniform internal structure, challenging

the creation of homogeneous algorithms. Our paper introduces a groundbreaking algorithm for the opti-

mal generation of strictly increasing binary trees, leveraging a novel approach pioneered by Ph. Marchal

[3] that ensures both entropy and time efficiency and we prove here random bit complexity. Addition-

ally, we present an enhanced algorithm that adopts an innovative approximation schema for the recursive

method. This method is tailored for all weighted unary-binary increasing trees, guaranteeing minimal

randomness consumption. This dual approach not only advances the field of random increasing tree gen-

eration but also sets a new standard for algorithmic efficiency and randomness optimization. The next

section is devoted to presenting the first algorithm and evaluating its cost. Section 3 addresses the second

algorithm, which represents an improvement of the recursive method through the use of a Monte Carlo

process. The final section demonstrates how the second method can be adapted to operate within a more

general framework.

2 An Ad Hoc Approach for Sampling Strictly Increasing Trees

Before introducing the first algorithm, let us make a first easy but important observation. Strictly increas-

ing binary trees are intimately related to permutations (this has been known for a long time). Given a
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sequence of distinct real numbers in the interval [0,1], we can derive a permutation based on the relative

order of the sequence, and thus an increasing tree in the following way. Starting with the position of the

smallest number in the sequence, we place a 1 at this position in the permutation (and at the same time,

we create a root for the tree), and continue this process until all the numbers have been placed (in the

permutation and in the binary tree). If the sequence alternates between increasing and decreasing values,

the resulting permutation will also alternate and the tree will be a strictly increasing binary tree. Further-

more, suppose the sequence is chosen randomly and uniformly. In that case, the permutation reflects a

uniform distribution of all possible permutations and the binary tree constructed is uniform among binary

trees of size n. This leads us to look for an algorithm that generates a random, uniform, and alternating

sequence, which in turn allows us to construct a uniform alternating permutation and hence a uniform

strictly increasing binary tree.

Algorithm 1 Generate an Alternating Permutation of Size n

Require: n > 1

1: D,Y ← arrays of size n

2: p← ⌊log2(n)⌋+1

3: while precision on Y is not sufficient do

4: p← p+1

5: while Y is empty do

6: r←U0with p digits.

7: D[0]← 1− sin2
(

π
2

r
)

8: for i← 0 to n−2 do

9: r←Ui+1with p digits.

10: D[i+1] = r2(1−D[i])

11: α ←
√

1−D[n−1]
1−D[0]

12: threshold← 1
α+α−1

13: proba← rand()

14: if proba ≤ threshold then

15: Y ← (1−D[0],D[1],1−D[2], . . .)
16: else if threshold < proba ≤ 2 · threshold then

17: Y ← (1−D[n−1],D[n−2],1−D[n−3], . . .)
18: else

19: restart

20: Sort Y to determine if its elements are strictly ordered

21: return the alternating sequence associated with Y

This algorithm is essentially a rewritten version of Marchal’s algorithm, modified to bypass inef-

ficient trigonometric calculations. More precisely, by making the following change of variable Cn =
sin2

(

π
2

Xn

)

where Xn is the sequence described in [3], we do not alter the properties of the sequence and

we significantly improve the computation. We refer the reader to the initial note by Marchal [3] for the

proof of his algorithm’s validity. A key point is that the algorithm uses a rejection procedure but it is

proved in [3] that the rejection probability is bounded above by 1− 2
3π (which is independent of n).

The remaining issue concerns the random-bit complexity. Naturally, for each uniform i.i.d. random

variable Ui, we aim to generate only enough digits to ensure sufficient precision, thus avoiding any order
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ambiguity in the final sequence.

As a preliminary, the number of strictly increasing binary trees of size n is asymptotically equivalent

to 2
(

2
π

)n+1
n!. Thus, the entropy is n log2(n)+

2n
π + o(n). As we draw n uniform variables, we need at

least log2(n) bits of precision to be coherent with the entropy.

Now, note that D[n] converges when n goes to the infinity to the distribution

Q :=
∞

∑
n=0

(−1)n
n

∏
i=0

U2
i

Indeed, we can derive from the algorithm the following induction: Q =U2(1−V 2Q) where U and

V are i.i.d. uniform distributions on [0,1]. Consequently, the density function d(z) of Q follows the

functional equation:

d(z) =

∫ 1

z

1

2
√

t
· d(1− z/t)

t
dt.

To our knowledge, solving this equation is not straightforward. For that, let us start from the density of

the random variable Q0 =U2(1−V 2), which is:

d(z) :=
arctan

(√
1−z√

z

)

2
√

z
,

from which we can observe that the iteration Qn+1 = U2(1−V 2Qn) generates random variables whose

density is alternatively a polynomial in A := arctan
(√

1−z√
z

)

and in Ā := arctan
( √

z√
1−z

)

, divided by
√

z.

Moreover, the polynomials follow a quite simple recurrence which alternates

Pn+1(Ā) =
∫ π

2

Ā
Pn(A)dA

and

Pn+1(A) =
∫ A

0
Pn(Ā)dĀ.

So, the limiting polynomial follows the functional equation

∫ x

0

(

∫ π
2

x
P(t)dt

)

dx = P(x),

from which we derive that the limiting distribution admits two solutions depending on the parity on n:
2
√

1−z
π
√

z
and

2
√

z

π
√

1−z
. Therefore, we can conclude that the density of the limiting random variable is

ds(z) =

(√
1−z√

z

)

+
( √

z√
1−z

)

π
.

In order to evaluate the required precision, let us assume that all the D[i] are independent and identi-

cally distributed and follow the symmetrized distribution Q of density ds(z) This statement is not strictly

true; however, it is asymptotically acceptable. This acceptability arises because the dependency between

D[i] and D[ j] decreases exponentially fast as the distance | j− i| increases. This property follows directly

from

Q :=
∞

∑
n=0

(−1)n
n

∏
i=0

U2
i
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and is really important because it implies that the errors do not accumulate.

Let δ denote the number of digits of precision (in base 2). Then, the probability Pn,δ that there is no

ambiguity in a calculation of the alternating sequence of size n with δ digits of precision is given by:

Pn,δ := n![zn]
2δ−1

∏
i=1



1+ z
ds
(

i

2δ

)

∑2δ−1
i=1 ds

(

i

2δ

)



 ,

Now, putting N := 2δ and pi,n :=
ds( i

N )
∑N−1

i=1 ds( i
N )

, when n is large, ∑N−1
i=1 ds

(

i
N

)

/N tends to 1, and ∑N−1
i=1 p2

i,n

is asymptotically equivalent to 1
n

∫ 1−1/n

1/n
ds(x)dx, which simplifies to ∑N−1

i=1 p2
i,n ∼

2ln(n)
π2n

. Consequently,

Pn,δ is asymptotically equivalent to 1− N(N−1)
2

2ln(n)
π2n

. Indeed, the extraction [zn] is nothing more than

the PSetn of the B(p) = ∑ pi,n where the pi,n are seen as n− 1 different atoms and it is well known

that PSetn can be expressed as a multivariate polynomial in the B(pi). Moreover the two dominant

contributions are
B(p)n

n!
− B(p2)B(p)n−2

2(n−2)! . Finally, to achieve a probability of rejection ε , we require δ =

2log2(n)+ log2(ln(n))+κ + log2 ε . Thus, the required precision is proportional (factor 2) to the entropy.

It is worth noting that improving the precision by one unit halves the risk of ambiguity.

This algorithm is highly efficient, but it cannot be extended to other types of increasing trees. The

following section introduces a more flexible approach.

3 Toward an Efficient Recursive Methods Without Preliminary Calcula-

tions

We aim at generating a random strictly increasing binary tree with an exact size of n. The generating

function for our combinatorial family satisfies the non-linear differential equation T ′(z) = T 2(z) + 1

and let us denote by tn the number of trees of size n. Utilizing the symbolic method for combinatorial

structures, we derive a recursive method algorithm for our purpose. Our approach is now to avoid the

exact and costly computation of tn by a well-controlled approximation process, which paves the way for

a systematic and efficient algorithm to generate these structures, as shown in Algorithm 2.

Algorithm 2 Generating T of Size n with the recursive method

1: If n = 1 : Return the tree with one leaf labeled 1

2: Intelligently generate M ∈ {0,1, ..,n−1} the size of the left son of T . Note that P(M = m) has to be

proportional to
(

n−1
m

)

tmtn−1−m.

3: Generate recursively T ′ and T ′′ of size m and n−1−m and return T with T ′ as a left son and T ′′ as

a right son with the indexes ”shuffled” among the n−1 remaining atoms.

There are a few problems with this generation scheme: How do we compute the tn’s? The classical

way to do so is to pre-compute all of them but doing so requires at least Ω(n2) in space and even more

in time. Generating M can also be an issue, the classical way to generate M would require computing all

the tn’s and inverting the probability function which can be ineffective.

We describe a way to compute only the necessary bits of precision of tn and a way to generate M

without the exact knowledge of tn, solving the two issues.
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4 Generating M, the size of the left son

4.1 Having a direct expression for tn

The differential equation T ′(z) = T 2(z)+ 1 can be integrated in T (z) = tan(z) because T (0) = 0 (there

is no strictly increasing binary tree of size 0).

We can hence use the tangent development: tan(z) = ∑k≥1
4k(4k−1)|B2k|

(2k)! z2k−1 with |B2k| = 2(2k)!ζ (2k)
(2π)2k

being the absolute value of the Bernoulli numbers, and ζ being the Riemann’s zeta function. So we can

extract the number of strictly increasing binary trees of size n. If n is even, tn = 0 because tan is odd, and

for n = 2k−1, t2k−1 = (2k−1)!2(4k−1)ζ (2k)
π2k .

In the following, we assume that n = 2l−1 is odd since there is nothing to generate if n is even.

Since P(M =m) is proportional to
(

n−1
m

)

tmtn−m−1, so P(M =m)= 0 when m is even. So we can write,

for m = 2k− 1, that P(M = m) is proportional to
(

2l
2k−1

) (2k−1)!2(4k−1)4kζ (2k)
(2π)2k

(2(l−k)−1)!(4l−k−1)4l−kζ (2(l−k))

(2π)2(l−k) .

We can simplify this expression and get rid of the constant terms, we get that P(M = 2k−1) is propor-

tional to fk := (4k−1)ζ (2k)(4l−k−1)ζ (2(l− k)), with k ∈ {1,2, .., l−1}.
Since ζ (2k) = ∑i≥1

1
i2k , by truncating the sum, ζ (2k)≥ 1+ 1

4k . This leads to the following bound on

fk: fk ≥ (4k−1)(1+ 1
4k )(4

n−k−1)(1+ 1
4n−k ), i.e. fk ≥ (4k− 1

4k )(4
n−k− 1

4n−k ). With this lower bound and

the fact that ( fk) are symmetric decreasing from 1 to ⌊ l
2
⌋, we can bound fk.

Lemma 1. For k ∈ {1,2, .., l−1}, f1 ≥ fk ≥ f⌊ l
2
⌋ and

f1

f⌊ l
2
⌋
≤ 4π4

45
≤ 9

This lemma implies a Monte-Carlo method for sampling M.

Algorithm 3 Generate M such that P(M = 2k−1) is proportional to fk

1: Generate X ∈ {1,2, .., l−1}.
2: Test U f1 ≤ fX where U is a uniform random number in [0,1], if true return M = X , else generate

another X and start again.

Lemma 1 implies that Algorithm 3 has a constant reject.

Lemma 2. Algorithm 3 has a running time of O(log(n))

This lemma is not only due to the fact that the reject is constant but also to the fact that it is possible

to compute only the first bits of f1, fk, and U and check whether we can conclude that U f1 ≤ fX or

U f1 > fX . If we cannot conclude, we can add the next bits and recheck until we can accept or reject X

as M.

It is possible to compute only the first bits of fk = (4k− 1)ζ (2k)(4l−k − 1)ζ (2(l− k)) because we

can truncate ζ (2k) = ∑i≥1
1

i2k to a finite order.

With this method of generating M, we can state the complexity of Algorithm 2.

Theorem 1. Algorithm 2 has a running time of O(n log(n)), which is optimal.

The algorithm is optimal because of the Shannon entropic principle: It is not possible to generate a

strictly increasing binary tree of size n (n odd) with less than log2(tn) random bits, so the best sampling

algorithm will run in at least log2(tn) = Ω(n log(n))
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5 Adapting the Algorithm for Different Families of Binary-Increasing

Trees

5.1 Binary Trees

Consider various families of increasing binary trees, each characterized by distinct generating functions;

for instance, non-plane binary trees have T ′(z) = T 2(z)
2

+ 1, leading to T (z) = tan(z/
√

2)√
2

. For all families

of binary-increasing trees with generating functions of the form T ′ = aT 2 + c as described in Algo-

rithm 2, the algorithm remains applicable. This is due to the consistent structure shared by these trees,

characterized by having one more leaf than internal nodes.

5.2 Binary-Unary Trees

For a family with generating function T ′(z) = a(T (z)+α)2 + aγ2, where a,c > 0 and b ≥ 0, we focus

on those written as T ′(z) = a(T (z)+α)2 +aγ2, the case T ′(z) = a(T (z)+α)2−aγ2 being similar. The

algorithm generates trees of size n with tn ∼ n!anγn+1

( π
2
−tan−1( α

γ ))
n+1 , allowing effective recursive generation. And

tn = n!anγn+1

(

∑
k≥0

(−1)n+1

(tan−1(α
γ )−π(k+ 1

2
))n+1

+
(−1)n+1

(tan−1(α
γ )+π(k+ 1

2
))n+1

)

is still computable by truncating its expression.

Algorithm 4 Generating T of Size n for Binary-Unary Trees

1: If n = 1 : Return the tree with one leaf colored in one of the c colors.

2: For n > 1 : The tree can have a unary root with probability
btn−1

tn
or a binary root.

3: Let X be a Bernoulli variable with parameter
btn−1

tn
; if X = 1, call the algorithm recursively with

parameter n−1 and return the tree consisting of a unary root and labeled 1 with T ′ as its only son.

4: Generate M ∈ {0,1, ..,n−1} with P(M = m) proportional to
(

n−1
m

)

tmtn−1−m.

5: Generate recursively T ′ and T ′′ of size m and n−1−m and return T with T ′ as a left son and T ′′ as

a right son with the indexes ”shuffled” among the n−1 remaining axioms.
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Uniform Sampling and Visualization of 3D Reluctant Walks
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A family of walks confined to the first orthant whose defining stepset has drift outside of the region
can be challenging to sample uniformly at random for large lengths. We address this by generalizing
the 2D walk sampler of Lumbroso et al. to handle 3D walks restricted to the first orthant. The sampler
includes a visualizer and means to animate the walks.

1 Introduction

Figure 1: A walk of length 16,778 generated uni-
formly at random from a stepset with drift (-1, -1
-1). Progression of the walk is given by hue, with
the initial position at (0,0,0) in red and the final
position in magenta.

A combinatorial class of lattice walks is a set of walks,
where each step is taken from a finite set of possibili-
ties, and that the walks remain within some region (typ-
ically a cone centered at the origin). The simplicity
of lattice walks contributes to their ubiquity. Indeed,
many families of discrete objects have natural bijec-
tions to lattice walks models. Visualizations of the large
scale behaviour of uniformly generated random walks
can reveal underlying structure of the walks, and con-
sequently, of related objects.

Here, we will focus on the uniform random gener-
ation of 3-D walks confined to the first orthant (Z3

≥0),
in particular models that are said to be reluctant be-
cause the drift of the stepset (the vector sum) is outside
of the cone. The random sampling algorithm naturally
extends the 2D sampling algorithm for reluctant walks
of Lumbroso et al. [13]. Fig. 1 illustrates a visualiza-
tion of a 16,778 step reluctant walk restricted to the first
orthant, (with drift (−1,−1,−1)) taken from the Unity
interface we have developed. We have represented the
walk steps using blocks, and have coloured the walk in
a way to make its evolution clear.

1.1 Motivation

When the stepset has zero drift, naive generation (where steps are drawn at random, and a walk is rejected
once it leaves the region) can be effective. However, when the drift is outside of the region, particularly
when it fits the criterion (defined below) of being reluctant such a strategy is defeated by the very small
proportion of unrestricted walks that remain in the region.

*This work is generously funded by NSERC Discovery Grant (Canada) RGPIN-04157

http://dx.doi.org/10.4204/EPTCS.403.16
https://creativecommons.org
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Some recent asymptotic studies of weighted walk models have provided explicit examples of com-
plete asymptotic formulas in terms of the weights and have pointed to some potential sources of in-
teresting phenomena. For example in both [6], and [14] the authors fix a stepset, and then determine
asymptotic counting formulas as a function of weightings of each allowable step. In both cases, the
exponential growth factor in the dominant term is smooth as a function of the weights, but the sub-
exponential growth is defined piecewise in terms of the drift of the model. That is to say, as the drift
changes the asymptotic growth formula undergoes phase transitions as the drift crosses into different
regions. One of our motivations is to understand how these changes influence a uniformly chosen model
near these critical drift regimes. A robust, easy to use visualizer can be useful to identify phenomena that
may subsequently be established analytically or algebraically.

1.2 Definitions

To describe the algorithm, we first make some notation explicit. We focus on finite stepsets S ⊂ Z3

with the property that the defining set of vectors are not contained in any half-space. A walk starts at
the origin, takes steps in S such that there is no step outside of the first orthant, N3. Although our
random sampler is generic, in this abstract we present various integer weightings of {±e1,±e2,±e3}. In
this context a model is reluctant if the drift has all negative components, that is ∑s∈S s ∈ Z3

<0. We also
consider weightings that result in a drift outside the first orthant.

2 Algorithm

The sampling algorithm we use, like the 2D sampling algorithm of Lumbroso et al. [13] has three key
elements. It is a rejection algorithm, but rather than generating an unrestricted walk, our algorithm gener-
ates walks confined to a judiciously chosen half-space containing the first orthant, and rejects generated
walks if they exit the first orthant. The set of walks confined to a half space is in bijection with a set of
generalized Dyck words, for which a grammar can be made explicit [8]. Given the grammar, uniform
sampling can be effectively accomplished using a Boltzmann sampler. We visualize the walks in Unity to
give access to an interface, and open the possibility to animation. Images and videos demonstrating this
are available to view at https://benbuckleyanimator.wixsite.com/portfolio/randwalkviz.

2.1 A well chosen half-space

From our restriction on S we can deduce that there exists a half space (and possibly many) so that,
asymptotically, the number of walks confined to that half space has the same exponential growth factor
as walks further confined to the first orthant. We say more about this in the example below, but generically
this follows from a result of Garbit and Raschel [11]. This means that the proportion of the walks the
half-space that are not in the first orthant grows sub-exponentially with length.

Since walks confined to a half space only interact with a single boundary, these walks are in bijection
with a one dimensional model. To define this one dimensional model, the stepset S is projected onto
a vector v = (a,b,1) ∈ R3 orthogonal to the hyperplane defining the halfspace to create a 1D stepset.
We can make this set explicit: Av = {ai+ b j + k | (i, j,k) ∈ S }, with steps in R. The exponential
growth of the asymptotic number of walks in the first orthant model is the equal to the minimum value
of the Laurent polynomial S(x,y,z) = ∑(i, j,k)∈S xiy jzk attained in a suitable domain of R3

>0. Suppose the
minimum value is attained at (x∗,y∗,z∗). Provided z∗ ̸= 1, we can show that the 1D model associated
to v = (a,b,1) with a = log(x∗)/ log(z∗), b = log(y∗)/ log(z∗) is such that the exponential growth of the

https://benbuckleyanimator.wixsite.com/portfolio/randwalkviz
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asymptotic number of walks in the model is the same as the orthant model. Remark, that because of
our conditions on S we have x∗y∗z∗ ̸= 0. In the case where z∗ = 1, we can project on to (a,b,0) with
a = log(x∗) and b = log(y∗). If x∗ = y∗ = z∗ = 1, then any halfspace containing the orthant can be used.

2.2 Generalized Dyck words

The previous process yields a one-dimensional stepset with real valued steps. In order to create a gram-
mar for a Boltzmann sampler, we need a stepset with integer valued steps. We find a rational approx-
imation – that is, a stepset with steps in Q sharing a small denominator, typically < 10 for ease of
computation – and then multiply through by the denominators to obtain a stepset with steps in Z. The
closer the approximation, the less the rejection although we will always generate walks in the orthant
uniformly. In our example, the previous step yields integer steps directly.

Given a finite set of integers, the grammar for 1D walks that do not go below 0 is described in [8].
We have applied to this to our running example in Fig. 2 below.

2.3 Boltzmann generation

Given the grammar, the sampling is done using a Boltzmann sampling strategy, following [9], although
any random generating strategy for a grammar could be used in its place. Here we describe only how we
compute some of the required elements.

Given the grammar, we used Maple’s Combstruct library to solve the algebraic equations to obtain
explicit generating function for these 1-dimensional walks. It turns out that this is the most difficult step
for computational reasons: when stepset has large integers, the number of rules in the grammar can grow
quickly, potentially inhibiting the computation of the generating function.

When an explicit generating function is not determined a high order series approximation is used in
the computation.

Given the generating function, we determine its dominant singularity, and in the case of a series ap-
proximation we determine an approximation. Boltzmann sampling uses generating function evaluations
at, or near, this singularity.

Boltzmann sampling can generate objects of any size, but, for a given size the sampling is uniform.
To generate large objects, one uses evaluation points close to or at the dominant singularity, provided it
is not a pole. In these problems, the singularities are branch points, not poles, and so we can evaluate
directly at the dominant singularities.

2.4 Running the algorithm

Thus, in summary, for a given model S , we first have a set up phase to first determine the best half-space,
then generate the corresponding grammar, and do the computational preamble (generating function eval-
uations) for the Boltzmann sampler. To generated a walk, we run the sampler, biject back to a 3D walk,
and eliminate those walks that leave the first orthant. The preamble is done in Maple, but we run the
sampler in Unity.
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P = D ×Paux

Paux = ε +L1 ×Paux

L1 = a1 ×D +a2 ×D +a3 ×D

R1 = b1 ×D +b2 ×D +b3 ×D +b4 ×D +b5 ×D +b6 ×D

D = L1 ×R1 + ε

a1, ...,a3 = Atoms representing +1 steps
b1, ...,b6 = Atoms representing −1 steps

Figure 2: Grammar for 1-dimensional walks with inventory A(u) = 3u+6/u

3 Drawn walks

3.1 The reluctant model in Fig.1

The walk in Fig. 1 is sampled from the set of walks with the stepset {e1,e2,e3,−e1,−e1,−e2,−e2,−e3,−e3}.
Note that this is a multiset with each of the negative steps appearing twice, increasing their proba-
bility. We calculate the drift by taking the vector sum of these steps, and obtaining −e1 − e2 − e3 =
(−1,−1,−1). We note that this model fits in the framework of Theorem 2 in [14], from which we de-
duce that the number of walks of length n grows, up to a constant, like (6

√
2)n n−3. Thus, the exponential

growth factor is 6
√

2.

Find the halfspace The inventory of the stepset is S(x,y,z) = ∑(i, j,k)∈S xiy jzk = x+ 2/x+ y+ 2/y+
z+2/z. A gradient computation shows this function is minimized at

√
2(1,1,1). The optimal vector is

v = (a,b,1) with a = log(x∗)
log(z∗) and b = log(y∗)

log(z∗) , that is, v = (1,1,1). The stepset S is projected onto this
vector to obtain a 1-dimensional stepset with steps in R:

Av = {1,1,1,−1,−1,−1,−1,−1,−1}.

Remark that the inventory of this walk is A(u) = 3u+ 6/u. Because the drift is negative, by Banderier
and Flajolet [1, Theorem 4], the exponential growth factor for the walks that are never negative is A(τ),
where τ is the critical point of A(u). In this case A′(

√
2) = 0 and A(τ) = 2

√
6. Furthermore, we know

that the number of walks of length n, grows like (2
√

6)nn−3/2 (up to a multiplicative constant) We are
assured: This walk has an identical exponential growth factor to the 3D walks. The proportion of these
walks that are images of walks remaining in the first orthant is approximately n−3

n−3/2 = n−3/2, for length n.

Find the grammar As the steps are all integer valued, we can proceed directly to the grammar phase.
We use the formulation of grammars for generalized Dyck words, as described in [8], to obtain a gram-
mar for half-hyperplane walks in our 1-dimensional stepset. Following this specification, we obtain the
grammar in Figure 2.

Boltzmann sampling To generate a walk, we next set up the Boltzmann sampler. This requires gener-
ating functions for each non-terminal in the grammar. The generator requires an evaluation point, which
we take as the dominant singularity 1

6
√

2
. Walks that are deemed too short or outside the target length are
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(a) Drift (0,0,0), approximately 1000 steps (b) Drift (−1,−1,−1), approximately 1000 steps

(c) Drift (0,−1,0), approximately 1000 steps (d) Drift (0,−1,−1), approximately 1000 steps

Figure 3: Randomly generated lattice walks with various stepsets. Images each show 10 walks in the same space.
A translucent sphere with radius 20 is centered at the origin to give a sense of scale.

rejected. The inverse bijection is applied to determine the corresponding 3-dimensional step from which
it was projected. The walk is accepted if it stays in the orthant, and rejected if it exits.

Verification Since there is some computational approximation in the Boltzmann sampler, we did some
tests to convince ourselves that we were achieving uniform generation. We generated 10,000 walks of
length 10, and tallied the number of walks ending at each point. The proportions were compared with the
exact proportion of walks expected to end at each point, calculated using recurrences. As the number of
walks increases, we calculate the root-mean-square error between the discrete distribution generated by
our results, and the distribution implied by exact counting. The root-mean-square error decreases from
≈ 0.00340361673 when generating 10 walks, ≈ 2.815461678×10−6 when generating 1,000,000 walks.
While this isn’t a proof, it does lend confidence that the algorithm generates walks uniformly.
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3.2 Comparative study of models

Some examples of walks in Z3, restricted to the positive octant, can be seen in Fig. 3. Multiple walks are
shown in each image.

The development of a typical walk changes significantly depending on the drift.
For example, note that in Fig. 3(b), when the drift tends towards the XZ plane, the walks tend to form

an arc from the origin towards a point further out on the XZ plane. In contrast, in Fig. 3(d), then the drift
tends towards the origin, a cluster of magenta near the origin and green on the outer regions suggests that
walks tend to venture far away from the origin, not returning until the end of the walk.

Our algorithm makes it possible to generate long reluctant walks with high probability in cases where
a generating a walk of comparable length under the naive scheme is virtually statistically impossible.
Using the approximate number of orthant walks of length n to be (6

√
2)nn−3, we can see that in the

naive scheme a walk of length n has probability on the order of
(

6
√

2
9

)n
n−3 of being generated in a given

run. This is less than .0002% when n = 100, where as the Boltzmann sampler has probability n−3/2,
which is 0.1% for n = 100. Both take strategies take linear time to generate a walk of length n.

To be even more concrete, we generated 10 walks with drift (−1,−1,−1) of length around 100 using
both strategies. With the naive rejection 133,065,405 walks were generated in total in order to find 10
that remained in the positive octant, the rest being rejected. This took approximately 8 minutes and 8.7
seconds. In contrast, when using Boltzmann sampling targeting lengths between 95 and 105 steps, it was
only necessary to generate 202,669 walks to find 10 that were the appropriate length and remained in the
positive octant. This was done in approximately 8.4 seconds. Both computations were done on similar
conditions on a 2020 Macbook Pro with an Apple M1 chip.

4 Future work

Figure 4: The convex hull at step 220
in the progression of 10 walks.

One of the appeals of this project – and one of the reasons we’ve
created it in the game engine Unity – is that the application pro-
vides the user with multiple ways to visualize and understand
walks. The reader is encouraged to visit the site for some ani-
mations associated with reluctant walks.

We have discussed the colour coding already. It is also pos-
sible to animate sets of walks, with each frame showing a simul-
taneous position of every walk in the set. Recently, we’ve made
it possible to view the convex hull of the simultaneous positions
of the walks at a given step, with the convex hull changing as the
walk progresses. (See Figure 4).

Other future plans include tools for generating data to give a sense of how quickly the walks are
generated with different methods, and how many rejections occur. We also plan to create animations
visualizing walks in terms of their bijection with other objects – for example, queues and tableaux. We
also hope to make the Unity interface available in the future.
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We consider sorting procedures for permutations making use of pop stacks with a bypass operation,
and explore the combinatorial properties of the associated algorithms.

1 Introduction

Sorting techniques for permutations constitute a flourishing research area in contemporary combina-
torics. Starting from the stack-sorting procedure introduced by Knuth [7], over 150 articles (many of
which are quite recent) have explored the subject. For example, machines making use of various types
of containers have been studied, as well as networks of the corresponding devices. Typical containers
that are considered in this context include stacks, queues, and deques, as well as their corresponding
“pop" versions. In particular, a pop stack is a stack whose push and pop operations are similar to the
usual ones for stacks, except that a pop operation extracts all the elements from the stack, rather than just
the element on the top. The sorting power of a pop stack was originally studied by Avis and Newborn
[3], who also considered pop stacks in parallel. Concerning pop stacks in series, we mention that the
right-greedy version of pop stacks in series were introduced by Pudwell and Smith [8] and successively
studied by Claesson and Guðmundsson [6].

In this work, we consider a new variant of a pop stack, in which we also allow a bypass operation.
This gives the possibility of sending an element of the input permutation directly into the output, without
necessarily pushing it into the pop stack first. This increases the sorting power of a pop stack, and
inspires interesting combinatorial questions on its properties. We provide a detailed analysis of this
sorting device, specifically our results are the following:

• We characterize the set of sortable permutations in terms of two forbidden patterns; the enumer-
ation of the resulting class of pattern avoiding permutations was already known (odd-indexed
Fibonacci numbers, sequence A001519 in [9]). However, we give an independent proof of this
enumerative result by describing a bijective link with a restricted class of Motzkin paths;

• We describe an algorithm to compute the preimage of a given permutation, and use it to character-
ize and enumerate permutations having exactly 0, 1, and 2 preimages;

• We provide a complete description of the preimages of principal classes of permutations, determine
in which cases the preimages are classes, and in such cases we compute the basis of the resulting
classes;

*Partially supported by INdAM – GNCS group.
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• We characterize the set of sortable permutations for the compositions of our sorting algorithm with
other classical sorting algorithms (the characterization being given in terms of forbidden patterns);

• We consider the device consisting of two pop stacks in parallel with a bypass, and we determine
the basis of the associated class of sortable permutations.

2 Sorting using a pop stack with a bypass: characterization and enumer-
ation of sortable permutations

A pop stack is a container in which elements can be stacked on top of each other, on which two operations
are defined: the PUSH operation, which inserts an element in the stack, and the POP operation, which
extract all the elements from the stack. The difference between a pop stack and a (classical) stack lies
therefore in the way the elements are removed from the stack.

When using a stack or a pop stack to sort a permutation, the elements of the permutation are processed
from left to right, and either the current element of the permutation is pushed into the stack at the top,
or the topmost element (or all the content from top to bottom in the case of a pop stack) of the stack is
popped into the output, where the topmost element is placed to the right of any other elements already
in the output. We now introduce a new kind of pop stack, by allowing an additional BYPASS operation,
which takes the current element of the permutation and places it directly into the output, in the next
available position. More formally, given a permutation π = π1π2 . . .πn, a pop stack with bypass has the
following allowed operations:

PUSH: Insert the current element of the input into the pop stack, on top of all the other elements (if
there are any);

POP: Remove all the elements in the pop stack, from top to bottom, sending them into the output;

BYPASS: Output the current element of the input.
Our goal is to use a pop stack with a bypass to sort permutations. However, not every permutation

can be sorted. Algorithm 1 (see below), called PSB (an acronym for “PopStacksort with Bypass"), is an
optimal sorting algorithm, by which we can sort all sortable permutations.

Specifically, the algorithm PSB maintains elements in the pop stack only when they are consecutive
in value (and increasing from top to bottom), which ensures that a POP operation is not directly respon-
sible of the possible failing of the sorting procedure. Using the algorithm PSB, we can characterize the
class of sortable permutations. Denote by PSB the map associated with the algorithm PSB. Moreover,
given a set of permutations T , we indicate with Avn(T ) the set of permutations of size n avoiding all
patterns of the set T , and we write idn for the identity permutation of size n. As usual, the set of all
permutations of size n is denoted Sn.
Proposition 2.1. Given π ∈ Sn, we have that PSB(π) = idn if and only if π ∈ Avn(231,4213).

The class of permutations sortable using a popstack with a bypass is a superclass of those sortable
using a classical popstack, which is Avn(231,312), as shown in [3]. The sequence (|Avn(231,4213)|)n

is the sequence of odd-indexed Fibonacci numbers, i.e. sequence A001519 in [9], as shown in [1]. It is
possible to give a bijective proof of this enumerative result by providing a link with a class of restricted
Motzkin paths, whose enumeration can be easily carried out by standard techniques. The next proposition
describes which kinds of restrictions on Motzkin paths need to be considered.
Proposition 2.2. The set of permutations of size n sortable using a pop stack with a bypass is in bijection
with the set of Motzkin paths whose total number of up and horizontal steps is n, which have no peaks,
and are such that every maximal sequence of down steps reaches the bottom level.
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1 S := /0;
2 i := 1;
3 while i ≤ n do
4 if S = /0 or πi = TOP(S)−1 then
5 PUSH;

6 else if πi < TOP(S)−1 then
7 BYPASS;

8 else
9 POP;

10 PUSH;

11 i := i+1;

12 POP;

Algorithm 1: PSB (S is the pop stack; TOP(S) is the current top element of the pop stack; opera-
tions PUSH, POP, BYPASS are “Insert into the pop stack", “Pour the whole content of the pop stack
into the output", “Bypass the pop stack", respectively; π = π1 · · ·πn is the input permutation.)

3 Preimages of a permutation

In this section, we investigate the set of permutations PSB−1(σ) of all permutations whose output under
PSB is σ . We remark that the investigation of preimages of permutations under various sorting operators
was initiated for Stacksort in [5], and is now a fertile area of research.

We introduce a recursive algorithm that generates all preimages of a given permutation σ . Notice
that our algorithm is actually defined for any sequence of distinct integers (not only permutations). This
fact allows us to recursively execute it on subsequences of elements of a permutation. Recall that a left-
to-right maximum of a permutation is an element which is larger than all elements to its left. Moreover,
we say that two entries of π are consecutive when their values are consecutive integers, whereas we say
that they are adjacent when their positions are consecutive integers.

Suppose that σ = σ1σ2 · · ·σn = αµk, where µk is the maximum suffix of consecutive left-to-right
maxima of σ (and α is the remaining prefix). For each entry m in µk, construct permutations as follows.
First, remove the suffix of left-to-right maxima starting with m. Then reinsert the removed elements into
the (remaining prefix of the) permutation in all possible ways, according to the following rules:

• The removed elements are reinserted in decreasing order;

• The maximum (i.e. n) is inserted to the immediate right of one of the remaining left-to-right
maxima of σ (i.e. a left-to-right maximum to the left of m in σ ) or at the beginning of σ ;

• The minimum (i.e. m) is inserted somewhere to the right of m−1.

At this point, consider the prefix of all elements strictly before n and (recursively) compute all its
possible preimages.

Using this algorithm we are able to characterize and enumerate permutations having a small number
of preimages.

Given n ≥ 0, let C(k)
n = {σ ∈ Sn | |PSB−1(σ)|= k}, and let c(k)n = |C(k)

n |.
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Proposition 3.1.
C(0)

n = {σ = σ1 · · ·σn | σn ̸= n}

and
c(0)n = (n−1)(n−1)!.

In the subsequent cases, for a given permutation π , we let LT R(π) denote the set of the left-to-right
maxima of π .

Proposition 3.2. For n ≥ 3, the set C(1)
n consists of all permutations of size n ending with n whose

left-to-right maxima are consecutive and nonadjacent. More formally,

C(1)
n = {π = π1 · · ·πn | πn = n , there exists k ≥ 0 such that LT R(π) = {n− k, . . . ,n}

and for every πi, π j ∈ LT R(π), πi ̸= π j, we have | j− i|> 1}.

Moreover

c(1)n =
⌈ n

2 ⌉

∑
k=2

(n− k)!
(

n− k−1
k−2

)
.

The first terms of the sequence c(1)n (starting from n= 1) are 1,0,1,2,8,36,198, . . ., and do not appear
in the OEIS [9].

Proposition 3.3. For n ≥ 4, the set C(2)
n consists of all permutations of size n ending with n whose

left-to-right maxima are consecutive and nonadjacent except for the first one, which is required to be
nonconsecutive with the second one, and can possibly be adjacent to the second one. More formally,

C(2)
n = {π = π1 · · ·πn | πn = n, there exists k ≥ 0 such that LT R(π) = {π1,n− k, . . . ,n},

with π1 ̸= n− k−1, and for every πi, π j ∈ LT R(π), πi ̸= π j, i, j ̸= 1, we have | j− i|> 1}.

Moreover

c(2)n =
n

∑
k=3

n−k

∑
j=1

n− k− j+1
j

(n− k)!
(

n− j− k
k−3

)
. (1)

4 Preimages of classes

Next we consider the preimages of principal classes under PSB, and we completely determine the per-
mutations ρ for which PSB−1(Av(ρ)) is a class. Moreover, in all cases we explicitly describe the basis
of the resulting class. Our results are also useful in the next section, where we will compose PSB with
other sorting algorithms.

We recall that a permutation class (or simply class) is a set C of permutations for which every pattern
contained in a permutation in C is also in C. Every permutation class can be defined by the minimal
permutations which do not lie inside it, its basis. A principal permutation class is a class whose basis
consists of a single permutation.

In order to properly describe our results, we will use the notion of shuffle. Let ρ , σ be two sequences
of distinct integers. Then we say that a sequence τ is a shuffle of ρ and σ if τ contains both ρ and σ as
subsequences, and contains no elements other than those of ρ and σ . We denote the set of all possible
shuffles of ρ and σ with ρ�σ .

Proposition 4.1. Let ρ be a permutation.
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• If ρ = /0,1 or 12, then we have that PSB−1(Av(ρ)) = Av( /0),Av(1), or Av(12,21), respectively.

• If ρ = nα , for some α ∈ Sn−1, α ̸= /0, then PSB−1(Av(ρ)) = Av(B), where
B = {n(n+1)α}∪{(n+2)nτ |τ ∈ (n+1)�α,τ ̸= (n+1)α}.

• If ρ = (n−1)αn, for some α ∈ Sn−2, α ̸= /0, then PSB−1(Av(ρ)) = Av(B), where
B = {(n−1)nα}∪{(n+1)(n−1)τ |τ ∈ n�α,τ ̸= nα}.

• In all the remaining cases, PSB−1(Av(ρ)) is not a permutation class.

5 Composition with other sorting algorithms

If we execute a sorting algorithm X on a permutation and then execute another sorting algorithm Y on
the output permutation, we get a new sorting algorithm, whose associated map is the composition of the
maps associated with X and Y.

In this section, we investigate permutations which are sortable by a composition of PSB with an-
other sorting algorithm. Specifically, we will consider the algorithms Queuesort, Stacksort, and
Bubblesort, whose associated maps will be denoted Q, S, and B, respectively (recall that the algorithm
Queuesort uses a queue with a bypass). Our results are summarized in the next proposition.

Proposition 5.1. Let π ∈ Sn.

• S◦PSB(π) = idn if and only if π ∈ Av(2341,25314,52314, 45231, 42531,35̄241).

• Q◦PSB(π) = idn if and only if π ∈ Av(3421,53241,53214).

• B◦PSB(π) = idn if and only if π ∈ Av(2341,3421,3241, 25314,52314,53214).

• PSB◦Q(π) = idn if and only if π ∈ Av(4231,2431,54213).

• PSB◦B(π) = idn if and only if π ∈ Av(2341,2431,3241, 4231,45213,54213).

6 Pop stacks in parallel with a bypass

We now consider a sorting machine that consists of two pop stacks in parallel, where an entry can
bypass the pop stacks and instead go directly to the output. Pop stacks in parallel without a bypass were
introduced by Avis and Newborn [3], as already recalled in the Introduction, and later studies include
that of Atkinson and Sack [2] and Smith and Vatter [10].

We now informally describe an algorithm to sort a permutation using the above described device.
Since we are not interested in composing it with other sorting algorithm, our procedure will provide an
output only when the sorting succeeds (otherwise the algorithm just fails).

Let π = πiπ2 · · ·πn be a permutation in the input at the start. Let S1,S2 be the two pop stacks. Suppose
that πi is the next entry in the input.

• If πi is the next entry needed in the output to obtain the identity, push πi to the output (i.e. πi

bypasses the pop stacks).

• Else, if the top entry of S j (for either j = 1 or j = 2) is the next entry needed in the output to obtain
the identity, pop the contents of S j.

• Else, if πk is the top entry in the pop stack S j (for either j = 1 or j = 2) where πi = πki −1, push
πi into S j.

• Else, if one of the pop stacks is empty, push πi into an empty pop stack.
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• Else, the sorting algorithm fails.

It is possible to prove that the above algorithm is optimal, as usual in the sense that it sorts all
permutations sortable by the machine consisting of two pop stacks in parallel with a bypass option. Using
the above procedure, we are able to characterize sortable permutations in terms of forbidden patterns.

Proposition 6.1. The class of permutations sortable by two pop stacks in parallel with a bypass is

Av(2341,25314,42513,42531,45213,45231,52314,642135,642153).

As correctly pointed out by one referee (whom we warmly thank), the inverse of the above class (i.e.
the class whose basis is the set of inverses of the above permutations) has a regular insertion encoding
[11], thus it is possible to automatically deduce its rational generating function [4], which is

(1− x)(1−2x)(1−4x)
1−8x+20x2 −18x3 +3x4 .

The sequence corresponding to the sortable permutations of size n has first terms 1,2,6,23,97,
418,1800,7717,32969,140558, . . . and does not appear in [9] at the time of this writing. There is a
potential match for the simple sortable permutations that we boldly put here as a conjecture:

Conjecture. Let an be the number of simple permutations of size n which are sortable by a machine
consisting of two pop stacks in parallel where entries are allowed to bypass the pop stacks. Then
a0 = a1 = 1, a2 = 2, an = F2n−5 −1 if n ≥ 3 is odd, and an = F2n−5 if n > 3 is even (where Fn is the n-th
Fibonacci number).
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Version Control Systems, such as Git and Mercurial, manage the history of a project as a Directed
Acyclic Graph encoding the various divergences and synchronizations happening in its life cycle. A
popular workflow in the industry, called the feature branch workflow, constrains these graphs to be
of a particular shape: a unique main branch, and non-interfering feature branches.

Here we focus on the uniform random generation of those graphs with n vertices, including
k on the main branch, for which we provide three algorithms, for three different use-cases. The
first, based on rejection, is efficient when aiming for small values of k (more precisely whenever
k = O(

√
n)). The second takes as input any number k of commits in the main branch, but requires

costly precalculation. The last one is a Boltzmann generator and enables us to generate very large
graphs while targeting a constant k/n ratio. All these algorithms are linear in the size of their outputs.

1 Motivation

In software development, Version Control Systems (VCS in short) such as Git or Mercurial are crucial.
They facilitate collaborative work by allowing multiple developers to concurrently contribute to a shared
file system. VCS automatically save all project versions over time, along with the associated changes.

Most VCS offer branching support, allowing developers to diverge from the main line of develop-
ment and continue their work independently without affecting the main project line. These branches can
be subsequently merged, in order to integrate changes from one branch into another, like new features or
bug fixes.

In the abstract, the history of a VCS repository can be seen as a Directed Acyclic Graph (DAG),
where vertices are the different versions of the project (also named commits) and arcs symbolize the
changes between two versions. There are no restrictions on the shape of the graphs you can generate
with a VCS, but many projects follow a workflow, that is a process and a set of conventions that define
how branches are created, and how changes are integrated into the main codebase.

The purpose of this paper is to develop an efficient random sampler for DAGs that respect a particular
workflow.

One benefit of such a sampler would be to integrate property-based tests into VCS development. In
these tests, instead of specifying explicit input values and expected outcomes, we define properties that
should be satisfied for a wide range of repositories, which are generated randomly during the test. By
generating diverse graph structures that adhere to the workflow’s specifications, we ensure a comprehen-
sive examination of the VCS’s behavior according to plausible scenarios. To give a concrete example
based on work by one of the authors [2], a random DAG sampler could experimentally check the effec-
tiveness of git bisect, an algorithm that finds the commit where a bug has been introduced.

http://dx.doi.org/10.4204/EPTCS.403.18
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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In this paper, we will take a look at one of the simplest workflows, but one that is widely used in the
corporate world: the feature branch workflow. In this workflow, the non-main branches do not interfere
with each other, and are simply attached to the (unique) main branch. Here is a more formal definition
of graphs induced by this workflow. (This definition originally comes from [6].)

Definition 1 (Git graph). A Git feature branch graph (or just Git graph) is a DAG that consists of:

• a main branch, that is a directed path of black vertices.

• potentially several feature branches, that are directed paths that start and end on vertices of the
main branch. The set of intermediary vertices is not empty and consists of white vertices. A black
vertex cannot be the end point of several feature branches, just one at most (but it can be the
starting point of several branches).

Figure 1: All Git graphs with 5 vertices including 3 black vertices. Edges are oriented from left to right.
Free vertices are outlined in orange.

The size of a Git graph γ is its number of vertices. By convention, we assume that there exists a
unique Git graph of size 0. Another important parameter is its number of black vertices, and will be
denoted by k(γ). A black vertex is said to be free if there is no feature branch ending on it, i.e. its
indegree is at most 1. All Git graphs γ of size 5 with k(γ) = 3 are listed in Figure 1.

The fact that we forbid merges of multiple feature branches into the main one is not a restriction of
the VCS, but is advisable to maintain a clearer and more understandable project history, reduce the risk
of conflicts, and enhance traceability and maintainability. This restriction is also discussed in [2].

2 The uniform model

2.1 A recursive decomposition

We first describe a recursive decomposition of Git graphs, based on the number of black vertices. Con-
sider the last black vertex vk of a Git graph of size n and with k > 1 black vertices. There are only two
possibilities: either vk is free, or vk is a merge between the main branch and a feature branch (which is
unique, by definition). In the latter case, the feature branch starts with a black vertex, which can be any
vertex of the main branch, but vk. Removing vk and the potential feature branch attached to it leads to a
smaller Git graph.

Git graphGit graph
or or

≥ 1

Git graph

Figure 2: How to decompose a Git graph.
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By this reasoning, illustrated by Figure 2, we obtain the induction formula

gn,k = gn−1,k−1 + ∑
ℓ≥1

(k−1)gn−1−ℓ,k−1, with g0,k =

{
1 if k = 0
0 otherwise

(1)

where gn,k is the number of Git graphs with n vertices, k of them being black.
This induction is sufficient to write a recursive generator (see [7] for the general theory of recursive

samplers and [5] for a more modern point of view in the context of the symbolic method). We do not
extend on this generator as we will present with Algorithm 2 a more efficient sampler1, also based on the
recursive method.

It is straightforward (especially if you are familiar with the symbolic method [4]) to translate For-
mula (1) into a differential equation whose solution is the generating function G(z,u) of Git graphs:

G(z,u) = 1+ zuG(z,u)+
z2u2

1− z
∂G
∂u

(z,u), where G(z,u) := ∑
n≥0

∑
k≥0

gn,kznuk. (2)

Note that G(z,u) is not analytic at z = 0 since the number of Git graphs grows as a factorial (we
have g2k−1,k ≥ (k−1)! by considering a Git graph with only merge commits and feature branches with 1
white node). For this reason, the previous equation does not seem to be usable for Boltzmann sampling.

2.2 Most Git graphs look alike under the uniform distribution

A large random Git graph is with high probability of the same shape: about half of the commits are on
the main branch, and most commits on the main branch are merges of size-1 branches.

Proposition 1. Let u be any real positive number. Consider γn a random Git graph of size n taken with

probability
uk(γn)

∑γ Git graph of size n uk(γ)
. Then the random variable k(γn)

n converges in probability to 1
2 when n

goes to +∞. (Note that u = 1 corresponds to the uniform distribution).

The intuition behind this result is that a large number of branches greatly increases the number of
ways of connecting them to the main branch, hence favoring graphs with many short branches over ones
with fewer but longer branches.

In particular, for any value of u, the average number of commits in the main branch is asymptotically
equivalent to n

2 . This motivates the introduction of a variant of this model which we detail in the next
half of this paper, and which allows more control over the number of commits on the main branch.

2.3 A rejection algorithm

Before delving into the next model, it is worth noting that there is an efficient rejection-based sampling
algorithm for the case where k is small based on the following inclusion. Consider a variation H of
the model where every black vertex but the first one is the endpoint of a feature branch but it is allowed
to have zero commit on a feature branch. Denote by hn,k the number of such graphs with n vertices
including k on the main branch. Then Git graphs can be seen as a subset of these graphs by identifying

1The straightforward recursive algorithm obtained from this recurrence runs in O(nk) time, and requires the precomputation
of O(nk) numbers of size O(n logn), involving O(n2k) operations on big integers in total.
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empty feature branches pointing at the first commit in H with free commits in Git graphs. Moreover,
whenever k ≤ t

√
n, for some constant t > 0, we have that

ct ≤
gn,k

hn,k
≤ 1 for some ct > 0 that depends only on t.

The constant ct is obtained by considering the class of Git graphs with only one free commit as a subset
of Git graphs. Explicit formulas exist for the cardinality of this class and for hn,k and their ratio is Θ(1)
in the regime k ≤ t

√
n. This yields Algorithm 1 for sampling uniform Git graphs with a small main

branch. This algorithm can be implemented so as to perform O(k) array accesses and O(k) RNG calls2

in average.

Algorithm 1 Rejection algorithm for Git graphs with n vertices, k of them being black
1: start with a chain of k black vertices
2: arrange uniformly at random (n− k) white vertices into (k−1) possibly empty chains
3: attach the ends of these chains to the (k−1) last black vertices
4: attach the start of every chain to a previous black vertex, chosen uniformly at random
5: if any of the empty chains is not attached to the root, start over, otherwise return

3 The labeled-main distribution

3.1 Description of the model

Given the disadvantages of the uniform distribution, we propose a new model for random Git graphs that
is easier to sample, gives more varied shapes, and with fine control over the number of black vertices.
The principle is that a Git graph γ will have a probability to be generated proportional to uk(γ)/k(γ)!
where u is a real positive parameter.

More precisely, we set G̃n(u) := ∑
n
k=1 gn,k

uk

k! and G̃(z,u) := ∑n≥0 G̃n(u)zn. Thus G̃ resembles an
exponential generating function, but with a scaling of k! instead of a scaling of n!. Unlike G defined in
the previous section, the function G̃ is analytic at z = 0 (a direct consequence of Theorem 1 below).
Definition 2. The probability under the labeled-main distribution of a Git graph of size n and with k black
vertices is defined as ukzn

k!G̃(z,u)
, where z and u are positive parameters inside the domain of convergence

of G̃.
This is a multivariate Boltzmann model (exponential in u and ordinary in z). A sampler based on this

distribution falls into the category of Boltzmann generators, for which a large number of results have
been established, facilitating the generation of large objects [3].

By using the Borel transform [1] on Equation (2) with respect to the variable u, that is to say the
mapping ∑n,k≥0 an,kznuk 7→ ∑n,k≥0

an,kznuk

k! , we can obtain a differential equation for G̃(z,u):

∂ G̃
∂u

(z,u) = zG̃(z,u)+
z2u

1− z
∂ G̃
∂u

(z,u) and G̃(z,0) = 1. (3)

Solving this differential equation gives a nice formula for G̃.
2In practice, considering an RNG call to be O(1) faithfully reflects the runtime performance of such an algorithm. It is thus

a realistic complexity model, that we use in the rest of this document. It is however important to note that every RNG call needs
to produce about log2(n) random bits here.
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Theorem 1. The function G̃(z,u) = ∑n≥0 ∑
n
k=1 gn,k

znuk

k! is equal to

G̃(z,u) =
(

1− z2u
1− z

)− 1−z
z

.

By a tedious but straightforward application of the transfer theorem [4], we can compute the average
number of black vertices under the labeled-main distribution.

Proposition 2. Let k(γn) be the number of commits in the main branch of a graph γn taken at random
with probability P(γn) =

uk(γn)

k(γn)!
1

G̃n(u)
. The mean and variance of k(γn) are asymptotically equivalent to

E(k(γn))∼
1−ρu

2−ρu
n and V(k(γn))∼

ρu(1−ρu)

(2−ρu)
3 n, where ρu =

√
1+4u−1

2u
.

Remark that the expected value of the k(γ)/n ratio can be any number between 0 and 1/2, depending
on the value of u. This is one of the main benefits of the labeled-main distribution: given any α ∈ (0, 1

2),
we can tune u in order to target Git graphs to have αn black vertices (and the variance is quite tight).

3.2 A bijection with cyclariums

The closed formula for G̃ featured in Theorem 1 calls for a combinatorial interpretation. That is why we
define a new family of combinatorial objects: the cyclariums.

A cyclarium is defined as a set of cycles of k black vertices labeled by {1, . . . ,k} where each vertex
that has not the largest label inside its own cycle carries a non-empty chain of white vertices. See Figure 3
top left to see an illustration of a cyclarium. The set Y of cyclariums has the natural combinatorial
specification

Y = SET (C ) , SEQ ̸=0 (Z )×C = CYC
(
U Z SEQ ̸=0 (Z )

)
(4)

where SET (·), SEQ ̸=0 (·) and CYC (·) are respectively the operators for sets, non-empty sequences and
cycles. Consequently the generating function of cyclariums (scaled by k!) is also given by the formula
of Theorem 1 (for more details on the symbolic method, see [4]).

Proposition 3. The Git graphs with n vertices, k black vertices and f free vertices are in bijection with
the cyclariums with n vertices, k black vertices and f cycles.

4 2 5 6 31 4 2 5 61
3

2 1 5432 13
1

3

2
1

1

12

4 5

3 6 4 < 5 < 6

�4 �5 �6
shift
label

Figure 3: Outline of the bijection between Git graphs and cyclariums
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The bijection is depicted in Figure 3. We give a quick overview of the transformation from cyclariums
to Git graphs. First, we break each cycle just before the vertex with the largest label, so that they are
directed paths. Then we sort these paths according to their largest label, and concatenate them. Now we
process the black vertices from right to left. If a chain of white vertices is attached to the current black
vertex v, then we connect this chain to the black vertex whose position is given by the label of v. If no
chain is attached, we do nothing. Once the vertex has been processed, its label ℓ is deleted and we change
all labels x such that x > ℓ by x−1. We can check that we eventually obtain a Git graph.

Exploiting the fact that the permutations with f cycles are counted by the Stirling numbers of the
first kind, we obtain a closed formula for gn,k.

Corollary 1. The number of Git graphs gn,k of size n and with k black vertices is 1 if k = n and

gn,k =
k−1

∑
f=1

[
k
f

](
n− k−1
k− f −1

)
for k < n, where

[·
·
]

denotes the (unsigned) Stirling number of the first kind.

Algorithm 2 Exact sampler of Git graphs with n vertices and k black vertices
Additional optional input: f , the number of free vertices

1: If f is not given, sample it with probability
[k

f

](n−k−1
k− f−1

)
/gn,k

2: Generate a random permutation of size k with f cycles
3: Generate a composition of n− k into k− f positive terms
4: Form k− f chains of white vertices whose lengths are given by the previous composition
5: Attach them to the permutation to form a cyclarium
6: Use the bijection from cyclariums to Git graphs

The bijection also suggests a sampling algorithm for Git graphs of size n if we fix the number k of
black vertices and optionally the number f of free vertices: see Algorithm 2. It runs in O(n) (with some
optimization) but requires an expensive precomputation of the Stirling numbers of the first kind. This
precomputation is in particular used to generate a uniform permutation of size k with f cycles3. If f must
be sampled, we need to precompute O(k2) numbers of size O(k logk). If f is given, only O( f (k− f )) of
them can be precalculated. We could also sample k to get a random generator of fixed size n. In this case,
the complexity of precomputing the numbers becomes O(n2) and those numbers have size O(n logn).

3.3 A Boltzmann generator

Specification (4) induces a natural Boltzmann generator [3] for cyclariums, and hence by Proposition 3 a
Boltzmann generator for Git graphs under the labeled-main distribution. Rather than simply generating
a cyclarium of size n and applying the bijection, which would result in O(n2) complexity, we can mix
the two approaches and achieve O(n+ f 2) complexity, where f is the number of free vertices (which is
logarithmic in n in average). The details are given in Algorithm 3 and illustrated by Figure 4.

Our implementation of this algorithm in Python easily generates graphs larger than 10 million. We
also recall that we can carefully choose the parameters z and u to target a size n and a ratio α ∈ (0, 1

2),
where αn is the number of black vertices.

3The uniform sampler for permutations with a fixed number of cycles is recursive and comes from [9, page 33] but it might
be improved by sampling a Poisson-Dirichlet distribution [8, Chapter 3] with a well-chosen θ parameter. We leave this as an
open question.
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Algorithm 3 Boltzmann sampler under the labeled-main distribution of parameters z and u
1: f ← POISSON(ln G̃(z,u)) ▷ Poisson distribution
2: cycle_lengths← array of f independent LOGA( uz2

1−z ) ▷ Logarithmic series distribution
3: k← total sum of cycle_lengths
4: g← directed path of k black vertices denoted v[0], . . . ,v[k−1] ▷ skeleton of our Git graph
5: while k > 0 do
6: extract a number x from cycle_lengths with probability x/k
7: mark v[k− x]
8: k← k− x
9: for j from 1 to number of black vertices −1 do

10: if v[ j] is not marked then
11: i← random number between 0 and j−1
12: link v[i] to a directed path of (1+GEOM(z)) white vertices ▷ Geometric distribution
13: link the last vertex of this path to v[ j]
14: return g

[ 3 , 1 , 5 ]cycle lengths =

Poisson

Loga
k = 9

k = 3

P(3) = 1

P(5) = 5
9P(3) = 3

9 P(1) = 1
9

1+Geom
?

P = 1

1+Geom

P=1
2

P=1
2

?

initialization while loop 1st iteration while loop 2nd iteration

while loop 3rd iteration for loop 1st iteration for loop 2nd iteration

k = 4

P(3) = 3
4 P(1) = 1

4

Figure 4: Illustration of the first steps of Algorithm 3.

4 Conclusion

In this work, we have developed three random generators for Git graphs.
A few questions remain unanswered. Firstly, our algorithms are unable to generate graphs for certain

values of k efficiently (more precisely when k is in the window
√

n≪ k ≪ n, and when k ≥ n
2 ). In

addition, it would be interesting to obtain an asymptotic estimate of the numbers gn of Git graphs. The
formula in Corollary 1 seems to be a good start to do so. Moreover, we could study potential phase
transitions as k evolves as a function of n. In particular, we could investigate how the number of free
vertices grows, as well as the gaps between each of them.

Finally, we could study more involved workflows, and enumerate DAGs that adhere to them.
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We present a simplified variant of Biane’s bijection between permutations and 3-colored Motzkin

paths with weight that keeps track of the inversion number, excedance number and a statistic so-

called depth of a permutation. This generalizes a result by Guay-Paquet and Petersen about a con-

tinued fraction of the generating function for depth on the symmetric group Sn of permutations. In

terms of weighted Motzkin path, we establish an involution on Sn that reverses the parities of depth

and excedance numbers simultaneously, which proves that the numbers of permutations with even

and odd depth (excedance numbers, respectively) are equal if n is even and differ by the tangent

number if n is odd. Moreover, we present some interesting sign-imbalance results on permutations

and derangements, refined with respect to depth and excedance numbers.

1 Introduction

1.1 Preliminaries and background

Let Sn be the symmetric group of permutations on [n] := {1,2, . . . ,n}. Given a permutation σ =
σ(1) · · ·σ(n) ∈Sn, an inversion of σ is a pair (i, j) of indices such that 1 ≤ i < j ≤ n and σ(i)> σ( j).
The inversion number of σ , denoted by inv(σ), is defined to be the number of inversions of σ . Petersen

and Tenner [11] presented a statistic called depth for a Coxeter group, which is defined in terms of fac-

torizations of the elements into reflections. In the case of symmetric group, the reflections of Sn are

the transpositions (i j), 1 ≤ i < j ≤ n, and the depth of a permutation σ ∈Sn, denoted by depth(σ), is

defined as

depth(σ) = min

{

k

∑
r=1

( jr − ir) : σ = (i1 j1)(i2 j2) · · · (ik jk)

}

. (1.1)

They obtained a simple formula for the calculation of depth

depth(σ) = ∑
σ(i)>i

(

σ(i)− i
)

, (1.2)

which turns out to be one half of the total displacement of σ [9, Problem 5.1.1.28] (also called Spear-

man’s disarray for Sn in [3]).

http://dx.doi.org/10.4204/EPTCS.403.19
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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For any two sequences {γh}h≥0 and {λh}h≥1, let F(γh,λh) denote the series in z defined by

F(γh,λh) =
1

1− γ0z−
λ1z2

1− γ1z−
λ2z2

1− γ2z−
λ3z2

. . .

(1.3)

These are Jacobi-type continued fractions (also known as J-fractions). Flajolet [6] gave an combinatorial

interpretation of (1.3) as the generating function for weighted Motzkin paths.

A Motzkin path of length n is a lattice path from the origin to the point (n,0) staying weakly above

the x-axis, using the up step (1,1), down step (1,−1) and horizontal step (1,0). Let U , D and H denote

an up step, a down step and a horizontal step, respectively. Let Mn denote the set of Motzkin paths of

length n.

For a Motzkin path µ = x1 · · ·xn ∈ Mn, the height of each step x j is the maximum y-coordinate

achieved by x j. For x ∈ {U,D,H} and a nonnegative integer h, let x(h) denote a step x at height h. The

weight ω(µ) of µ is defined to be the product of the weight ω(x j) of each step x j for all j ∈ [n]. By

the area under µ , denoted by area(µ), we mean the area of the region enclosed by µ and the x-axis.

Guay-Paquet and Petersen [8] defined a weight of µ by setting

ω(xi) =

{

ht(2h−1)/2 if xi =U (h) or D(h);

(2h+1)th if xi = H(h)

and established a surjective map Φ : σ 7→ µ of Sn onto Mn with depth(σ) = area(µ), which yields the

following generating function for permutations with respect to depth:

∑
n≥0

∑
σ∈Sn

tdepth(σ)zn = F(γh,λh) (1.4)

with λh = h2t2h−1 and γh = (2h+1)th, i.e.,

∑
n≥0

∑
σ∈Sn

tdepth(σ)zn =
1

1− z−
tz2

1−3tz−
4t3z2

1−5t2z−
9t5z2

1−7t3z−
16t7z2

1−·· ·

.

Guay-Paquet and Petersen [8] commented that map Φ : Sn → Mn is due to Foata and Zeilberger [7] and

that the statistic depth coincides with a statistic, Edif, studied by Clarke, Steingrı́msson and Zeng [2].

Following [13], a 3-colored Motzkin path is a Motzkin path with three kinds of horizontal steps,

denoted by H1, H2 and H3. Using a double labeling scheme, Biane [1] established a bijection between

permutations and 3-colored Motzkin paths with weight, which keeps track of the number of inversions.

We refer to an alternative version of this bijection given by Sokal and Zeng in [13, Section 6.2]. Elizalde

[5] used this bijection to study the joint distribution of multiple statistics on Sn. Using Biane’s method,

we propose a multivariate weight function on the steps of a 3-colored Motzkin path and turn the surjective

map Φ :Sn →Mn of Guay-Paquet and Petersen into a bijection that gives a generalization of (1.4). (This

resolves a conjecture raised by Petersen in an unpublished note [10].)
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1.2 Main results

Let Wn denote the set of 3-colored Motzkin paths of length n with a weight function ω defined by setting

ω(H
(0)
3 ) = p and







































ω(U (h)) ∈ {st2h−1,st2h−1q, . . . ,st2h−1qh−1};

ω(D(h)) ∈ {q2h−1,q2h, . . . ,q3h−2};

ω(H
(h)
1 ) ∈ {sthqh,sthqh+1, . . . ,sthq2h−1};

ω(H
(h)
2 ) ∈ {thqh, thqh+1, . . . , thq2h−1};

ω(H
(h)
3 ) = pthq2h

(1.5)

for all h ≥ 1.

Let σ = σ(1) · · ·σ(n) ∈Sn. We say that an index i ∈ [n] is an excedance if σ(i)> i and a fixed point

if σ(i) = i. Let exc(σ) and fix(σ) denote the number of excedances and fixed points of σ , respectively.

For all positive integers k, we use the notations for q-integer [k]q = 1+q+ · · ·+qk−1 and [0]q = 0. One

of our main results is the following bijection.

Theorem 1.1. There is a bijection Ψ : Sn → Wn such that a permutation σ ∈ Sn with i inversions, j

fixed points, k excedances and a depth of ℓ is carried to a 3-colored Motzkin path µ ∈ Wn with weight

ω(µ) = qi p jsktℓ. Therefore, we have

∑
n≥0

(

∑
σ∈Sn

qinv(σ)pfix(σ)sexc(σ)tdepth(σ)

)

zn = F(γh,λh) (1.6)

with λh = s[h]2q(qt)2h−1 and γh =
(

(1+ s)[h]q + pqh
)

(qt)h.

Remarks. By the weight given in (1.5), notice that a horizontal step x∈ {H
(h)
2 ,H

(h)
3 } can be distinguished

by the q-factor of ω(x) for each h ≥ 1. That is, if ω(x) contains qh+d then x = H
(h)
2 (H

(h)
3 , respectively)

if 0 ≤ d ≤ h− 1 (d = h, respectively). Thus, the bijection Ψ : Sn → Wn can still be established with

H
(h)
2 ,H

(h)
3 combined and the parameter p omitted.

The classical Euler numbers En, defined by

∑
n≥0

En

zn

n!
= tanz+ sec z

= 1+ z+
z2

2!
+2

z3

3!
+5

z4

4!
+16

z5

5!
+61

z6

6!
+272

z7

7!
+1385

z8

8!
+ · · · ,

count the the number of alternating permutations in Sn, i.e., σ ∈Sn such that σ1 > σ2 < σ3 > · · ·σn.

The numbers E2n are called the secant numbers and the numbers E2n+1 are called the tangent numbers.

Based on the bijection Ψ : Sn → Wn, we shall establish an involution on Sn in terms of weighted

Motzkin paths, which reverses the parities of depth and the number of excedances simultaneously. This

proves that the numbers of permutations with even and odd depth (excedance numbers, respectively) are

equal if n is even and differ by En (En up to sign, respectively) if n is odd.

Theorem 1.2. There is an involution σ 7→ σ ′ on Sn satisfying

depth(σ)−depth(σ ′) = exc(σ)− exc(σ ′) = inv(σ)− inv(σ ′) ∈ {1,0,−1}

and resulting in the following identities
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(i) ∑
σ∈Sn

(−1)depth(σ) =

{

En for n odd

0 for n even.

(ii) ∑
σ∈Sn

(−1)exc(σ) =

{

(−1)
n−1

2 En for n odd

0 for n even.

Note that the identity in Theorem 1.2(ii) is a classical result of Euler. When the fixed points of σ are

ignored, we present some interesting results on the sign imbalances of permutations and derangements,

refined with respect to depth and excedance numbers.

Theorem 1.3. For n ≥ 1, we have

∑
σ∈Sn

(−1)inv(σ)sexc(σ)tdepth(σ) = (1− st)n−1. (1.7)

A derangement of size n is a permutation in Sn that contains no fixed point. Let Dn ⊂Sn be the set

of derangements of size n. Define

Fn = Fn(s, t) = ∑
σ∈Dn

(−1)inv(σ)sexc(σ)tdepth(σ). (1.8)

Several of the initial polynomials Fn(s, t) are listed below:

F1(s, t) = 0,

F2(s, t) =−st,

F3(s, t) = s(1+ s)t2,

F4(s, t) = s2t2 − s(1+ s)2t3,

F5(s, t) =−2s2(1+ s)t3 + s(1+ s)3t4.

Collected in powers of t, the coefficient s-polynomials of Fn(s, t) for 2 ≤ n ≤ 9 are listed in Table 1. We

obtain a neat expression for the sign imbalance of the joint distribution of depth and excedance numbers

over Dn.

Table 1: The s-polynomial coefficients of Fn(s, t) in powers of t for 2 ≤ n ≤ 9.

t t2 t3 t4 t5 t6 t7 t8

F2 −s

F3 s(1+ s)
F4 s2 −s(1+ s)2

F5 −2s2(1+ s) s(1+ s)3

F6 −s3 3s2(1+ s)2 −s(1+ s)4

F7 3s3(1+ s) −4s2(1+ s)3 s(1+ s)5

F8 s4 −6s3(1+ s)2 5s2(1+ s)4 −s(1+ s)6

F9 −4s4(1+ s) 10s3(1+ s)3 −6s2(1+ s)5 s(1+ s)7

Theorem 1.4. We have

∑
n≥1

(

∑
σ∈Dn

(−1)inv(σ)sexc(σ)tdepth(σ)

)

zn = ∑
k≥1

(−1)k

(

k−1

∑
i=0

(

k−1

i

)

s1+i(1+ s)k−1−izk+1+i

)

tk.
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We introduce an elementary transformation called flips on tilings by squares and triangles and con-
jecture that it connects any two tilings of the same region of the Euclidean plane.

1 Introduction

We consider the tilings of a simply-connected bounded region of the Euclidean plane by two tiles: a unit
square and a regular unit triangle (Fig. 1).

Figure 1: Two square-triangle tilings of the same region.

The goal is to introduce an elementary local transformation that allows to travel the space of all the
possible tilings, in order to sample them using mixing times techniques as in, e.g., [2]. To do this, we
shall embed these tilings in a larger set obtained by adding a rhombus tile, and show how these tilings
can be naturally seen as discrete surfaces in 4-dimensional Euclidean space. This is a work-in-progress.

2 Lift

Let j = exp 2iπ
3 and a = exp 2iπ

12 be the third and twelfth roots of the unity, respectively. For k = 0,1,2,
define the complex numbers uk := jk and vk = a · jk , seen as vectors in the Euclidean plane. Without loss
of generality, the edges of the square and triangles tiles are directed by the ui’s and vi’s.

We want to associate with every edge wk ∈ {uk,vk} a vector ŵk in some higher dimensional space R
n

so that, when travelling around a tile, the sum of the vectors associated with the traversed edges (with
negative sign if travelled in backward direction) is zero. This does not yield any restriction for the squares
since each pair of parallel edges are travelled in opposite directions, hence their sum is always zero. The

http://dx.doi.org/10.4204/EPTCS.403.20
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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same holds for any parallelogram (this will be used later). For the triangles, this yields two conditions
(Fig. 2):

û0 + û1 + û2 = 0 and v̂0 + v̂1 + v̂2 = 0.

Figure 2: The vectors which define tiles (left) and the conditions on their lifts.

Since we have 2 constraints on 6 vectors, that is, a linear system of rank 4, it is natural to take
vectors in R

4 (higher dimension is useless, lower dimension will loose generality). We will define them
as vectors in C

2. For example, take

∀i ∈ {0,1,2}, ûk := ( jk
,0) and v̂k := (0, jk).

The condition on the sum of vectors around each tile ensures (by induction) that the sum of the vectors
associated with the traversed edges along every cycle is zero. In particular, if we map an arbitrary vertex
s0 of the tiling to 0 ∈ C

2, then the sum h(s) ∈ C
2 of vectors associated with the edges along a path from

v0 to a vertex s of the tiling does not depend on the path. The vector h(s) is called the height of s. This
allows to see any square-triangle tiling as a sort of “stepped” two-dimensional surface embedded in C

2.
Figure 3 illustrates this.

Figure 3: Square-triangle tilings with the height of every vertex indicated.

Every triangle has edges directed either by three uk’s or by three vk’s. We call it a u-triangle in
the former case, a v-triangle in the latter case. The way the ûk’s have been chosen ensure that, in a
lifted tiling, the vertices of every u-triangle have all the same second coordinate (in C); this common
coordinate defines the elevation of the triangle. These three vertices differ by their first coordinate (in
C). The barycenter of these coordinates is called the position of the triangle. The situation is similar for
v-triangles, with first and second coordinates exchanged.
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3 Flip

In the context of tilings, it is common to introduce elementary transformations on tilings generally called
flips. For example, in the case of tilings by rhombi, a flip denotes the half-turn rotation of a hexagon
formed by three rhombi. Square-triangle tilings lack of such a “natural” flip. However, such a local
transformation has been defined in [3], which features a third tile, namely a rhombus. This flip is depicted
in Figure 4.

Figure 4: A flip.

It may seem strange to involve a new tile that takes us out of the space of square-triangle tilings. But
if we look on this flip in the lifted tiling1, it can be seen as an exchange between the faces of a triangular
prism: the upper triangle and one “square” lateral face are replaced by the lower triangle and the other
two “square” lateral faces (Figure 5). We are arguing here that squares and rhombi play the same role,
differing only in the way they are represented in the Euclidean plane. To emphasize this, we use the
same color for both tiles. We will also still use the term square-triangle tilings even when rhombi are
present, with the special cases of lack of rhombi being called pure square-triangle tilings. The position
and elevation of a triangle are affected as follows by a flip:

• the position does not change;

• the elevation changes by ± jk for some k ∈ {0,1,2}.

Figure 5: A flip seen in the lift.

4 Flip-connectivity

In [3] is defined the zipper move, which is a sequence of flips between two pure square-triangle tilings
(while intermediary tilings may not be pure).

1As for squares, pairs of parallel edges in rhombi do not yield any restriction for the lift.
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Here, we would like to prove that, any two square-triangle tilings of the same region (not necessarily
pure, that is, with possibly rhombus tiles) can be connected by a sequence of flips. This would yield the
above claim as a corollary.

Recall that the position of a triangle is unchanged by a flip, only its elevation. Hence, if flip-
connectivity holds, then for any pair T and T ′ of tilings of the same region, to each triangle of T

corresponds a triangle of T ′ with the same position. Transforming T into T ′ by flips thus amounts to
equal the elevations of pairs of triangles with identical position. In other words, we can “spot” a triangle
in every possible tilings. Figure 6 illustrates this.
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b

c

d

e
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34
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6
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5 5
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e

Figure 6: Every pair of triangles with the same position have the same label.

Hence, the wanted result will follows if we can prove the following result (a similar result have been
proven for rhombus tilings in [1]):

Conjecture 1 If T 6= T ′ are two tilings of the same region, then there is a triangle in T that can be moved

by a flip towards its elevation in T ′, so that no triangle which has already at the same elevation in T and

T ′ is moved.
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Permutations are usually enumerated by size, but new results can be found by enumerating them by

inversions instead, in which case one must restrict one’s attention to indecomposable permutations.

In the style of the seminal paper by Simion and Schmidt [6], we investigate all combinations of

permutation patterns of length at most 3.

1 Introduction

To enumerate permutations by their number of inversions we need the set of permutations with a given

number of inversions to be finite. This is generally not the case, since in many cases one can add a

new maximal element to the end of the permutation to get a new one with equally many inversions. To

get around this we introduce the notion of decomposability. We say that a permutation π = π1 . . .πn is

decomposable if there exists an index i < n such that π1 . . .πi is a permutation of the elements 1, . . . , i. If

we let ρ = π1 . . .πi and τ = (πi+1− i) . . . (πn− i) we denote this π = ρ⊕τ . In the same vein, permutations

that are not decomposable are called indecomposable. With this definition every permutation can be

factored into a set of indecomposable factors, and we call these factors its components.

An inversion in a permutation π = π1 . . .πn is a pair of indices (i, j) such that i < j and πi > π j.

The number of inversions in a permutation π will be denoted inv(π). The following lemma highlights a

relation between these two concepts.

Lemma 1 Let π be a permutation on n elements and c components. Then inv(π)≥ n− c.

Crucially this means that if c = 1 then inv(π)≥ n−1. Thus the set of indecomposable permutations

with k inversions is finite since it is contained in the set of all permutations on k+ 1 elements or fewer.

With this in mind, we define Ik to be the set of all indecomposable permutations with exactly k inversions.

Next we recall some notions related to patterns of permutations. We say two sequences a1, . . . ,am

and b1, . . . ,bm are order-isomorphic if ai < a j holds if and only if bi < b j. For permutations π = π1 . . .πn,

τ = τ1 . . .τm we say that π contains the pattern τ if there exists a set of indices i1, . . . , im such that πi1 . . .πim

is order-isomorphic to τ1 . . .τm. We call such a set of indices an occurrence of the pattern τ . If π has

no occurrence of τ we will say that π avoids the pattern τ . We will denote the subset of Ik containing

the permutations avoiding τ by Ik(τ). Similarly we will denote the subset of Ik containing permutations

avoiding several patterns τ1,τ2, . . . ,τr by Ik(τ1,τ2, . . . ,τr).
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2 Single patterns

As examples we have that Ik(1) and Ik(21) have no non-empty elements and |Ik(12)| is the characteristic

function of the triangular numbers, listed in the OEIS as A010054. The remaining single patterns of

length 3 are then 123,132,213,231,312 and 321. We consider the reverse complement of a permutation:

written out explicitly, this is π1 . . .πn 7→ (n+1−πn)(n+1−πn−1) . . . (n+1−π1). Consider an inversion

on i < j in π . The values πi > π j get mapped to n+1−πi,n+1−π j at indices n+1− i,n+1− j in the

image. Thus the size of the elements is inverted, but so is their order. Therefore the number of inversions

remains constant under reverse complement. We also see that π is decomposable if and only if its reverse

complement is, so the reverse complement is an involution on Ik for every k. It maps the pattern 132 to

the pattern 213, so from this we see that |Ik(213)| = |Ik(132)|, hence we only have to consider one of

these patterns. This is similar to what happens when counting pattern avoiding permutations classically,

however we must compose reversion and complement for the argument to work. Normally this line of

reasoning shows that the number of 132 and 231 avoiding permutations are the same through reversion,

but we will see that this is no longer the case when enumerating by inversions. A similar argument can

be made to show that mapping to the inverse permutation preserves inversions and indecomposability as

well, and in fact the symmetries are generated by these two maps.

This means we only have to consider the patterns 123,132,231 and 321. We will start with 132. To

do this, we make use of a well known bijection on permutations. The inversion table of a permutation

π = π1 . . .πn is the sequence b1b2 . . .bn, where bi is the number of values after πi in π that are smaller

than πi. The image of this bijection is given by the set of all sequences such that the first value is ≤ n−1,

the next ≤ n−2 and so on. We call such sequences subdiagonal. Furthermore, elements in a subdiagonal

sequence that are equal to their maximum possible value are called diagonal elements.

Theorem 2 |Ik(132)| counts partitions on k elements, listed as A000041 on the OEIS.

To work with 231-avoiding permutations we define the skew-sum of two permutations π1 . . .πn and

τ1 . . .τm, as the permutation on n+m elements given by π ⊖ τ = (π1 +m) . . .(πn +m)τ1 . . .τm. We will

say that π is skew-decomposable if it can be written as π = τ1 ⊖ τ2 for non-empty τ1,τ2, and skew-

indecomposable otherwise.

Theorem 3 |Ik(231)| counts fountains on k coins. A fountain of coins is an arrangement of coins in rows

such that the bottom row is full (that is, there are no “holes”), and such that each coin in a higher row

rests on two coins in the row below. This is listed as A005169 on the OEIS.

Enumerating 321-avoiding permutations by size and inversions (allowing decomposable permuta-

tions) has been investigated in [2]. A generating function is derived, but as we need a bijective map from

Ik(321) to our target set for what comes later, we will have to give a different proof.

Theorem 4 |Ik(321)| counts parallelogram polyominoes with k cells, listed as A006958 on the OEIS.

This alternative view on parallelogram polyominoes opens up a formula for efficiently computing

new terms of the series, taking O(k2) time and space to compute |Ik(321)|.

Theorem 5 |Ik(321)| = ak,1 where

an,m =











1 if n = 0

∑n
i=1 an−i,i if m = 1

an,m−1 +∑n
i=m an−i,i otherwise
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Not only can this view help with computing new terms, but it also gives rise to new bijective cor-

respondences. Consider fountains of coins where we only count coins in even rows. We can still place

coins as we like, but when tallying the number we only count those in the bottom row, those 2 rows up, 4

rows up and so on. Such fountains with n counted coins will be called even fountains of size n. In [1] the

problem of mapping parallelogram polyominoes to such fountains is tackled. It is shown that there are

equally many by an algebraic argument, but it is left as an open question at the end whether there is any

bijective proof. Using Ik(321), a bijective proof can be found. Since Theorem 4 is proved by mapping

parallelogram polyominoes bijectively to Ik(321), it suffices to map Ik(321) bijectively to even fountains

of size k.

Theorem 6 Ik(321) maps bijectively to even fountains of size k.

The proof of Theorem 5 is bijective, so it suffices to map the even fountains to the sequences de-

scribed there. We will describe a map taking even fountains to such sequences.

Write out the fountain in the usual manner (see picture), calling coins in even rows red and the ones

in odd rows black for convenience. For each coin in the bottom row, going from left to right, we do the

following procedure repeatedly:

• If we are on a red coin, we remove it and move to the coin above and to the right. If there is no

such coin we stop.

• If we are on a black coin, we remove it and move to the coin above and to the right. If there is no

such coin we move to the coin below and to the right instead.

Once done with a coin in the bottom row, we write down the number of red coins removed during

this procedure. This produces a sequence of numbers, which we then append a single zero to. We claim

this produces a sequence of the desired form.

2 3 3 0 0 1 2 0

This leaves us only with Ik(123), the only single pattern giving rise to a sequence not in the OEIS.

Theorem 7 |Ik(123)| counts indecomposable subdiagonal sequences where non-diagonal elements are

in decreasing order. Let

cn,m,k =











0 if n < 0 or k < 0

1 if n = k = 0

cn−1,m,l−n+1 +∑
min(n−2,m−1)
i=0 cn−1,i,k−i otherwise

Then the total number of permutations with k inversions (including decomposable ones) avoiding 123

can be calculated as ∑k+1
n=0 cn,n,k.

To obtain the number of such permutations that are indecomposable, subtract the k-th coefficient of
(

∑i≥0 xi(i+1)/2
)2

.
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3 Several patterns

We now investigate permutations avoiding several patterns. Some groups of patterns are restrictive

enough to make all supersets of those patterns trivially determined. For example |Ik(123,321)| quickly

decays to zero by the Erdös-Szekeres theorem, making all supersets of 123,321 easy to determine. We

have two more such pairs of patterns.

Theorem 8 |Ik(231,321)| = 1 and the unique permutation with k inversions is k12 . . . (k−1).

Theorem 9 |Ik(231,312)| = |Ik(12)|.
By utilizing the symmetries we have, the only pairs of patterns left to investigate are 123,231 and

pairs containing 132.

Theorem 10 |Ik(123,231)| counts fountains of k coins where the missing coins with respect to a full

triangular fountain form a rectangle (removing no coins counts as a rectangle). The generating function

is given by ∑i≥1 x(
i
2) +∑i≥1 ∑ j≥1 ∑

min(i, j)−1

ℓ=0 x(
i+1

2 )+(
j+1
2 )−(

ℓ+1
2 ).

This leaves us with four pairs, pairing 132 with any of the patterns 123,213,231 and 321. We now

tackle them in that order.

Theorem 11 |Ik(132,123)| enumerates the Pascal triangle with the first column removed, which is listed

as A135278 on the OEIS. It has generating function ∑n≥0 xn(n+3)/2
(

(x+1)n+2 − xn+2
)

.

Our next result involves a kind of partition called a Gorenstein partition. Gorenstein partitions are

partitions whose maximal chains are all of the same size when regarded as order ideals of {1,2, . . .}×
{1,2, . . .}. This definition is rather unwieldy for our purposes, so we first translate this condition.

Lemma 12 A partition ρ is Gorenstein if and only if ρi + i is constant across the indices i that satisfy

ρi 6= ρi+1, letting ρ|ρ | = 0.

Theorem 13 |Ik(132,213)— counts Gorenstein partitions of k. This is listed as A117629 on the OEIS.

Theorem 14 Let µ � s denote that µ is a composition of s. Then |Ik(132,213)| has generating function

∑s≥0 ∑µ�s,|µ |6=1 x(
s
2)−∑m∈µ (m

2). This means |Ik(132,213)| also enumerates finite sequences of positive in-

tegers of length > 1 such that k equals the second elementary symmetric function of the values of the

sequence, as noted in the OEIS entry.

The generating function is not useful for actually computing new terms in the sequence, but we can

use the following recurrence instead. By ignoring all but the first and last
√

n summands in the recurrence

below, as they are zero, we can compute the n-th value in O(n2.5) time and O(n2) space.

Theorem 15 The number of Gorenstein partitions with sum n, and thus also the number of elements in

|In(132,213)|, is given by the sum ∑n
d=0 f (n,d) where

f (n,d) =











0 if n < 0

1 if n = 0

∑d
k=1 f (n− k(d +1− k),d− k) otherwise

Theorem 16 |Ik(132,231)| counts partitions on k elements with distinct parts, this is listed as A000009

on the OEIS.

Theorem 17 |Ik(132,321)| counts partitions on k elements with equal values. This is in turn equal to

the number of divisors of k. This is listed as A000005 on the OEIS.
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4 More than two patterns

Most of the remaining pattern combinations are trivially deduced as some subset of the patterns forces

the sequence to die out or contain only very specific permutations. We consider here the complement of

those cases.

Theorem 18 |Ik(123,132,231)| = 1.

Theorem 19 |Ik(123,132,213)| enumerates the Pascal triangle, read by diagonals, offset by two ele-

ments. This means it reads the binomials
(

n
k

)

in increasing order by the sum n+ k, with each set being

read in increasing order by n, and |I0(123,132,213)| starts at
(

1
1

)

. Furthermore its generating function

can be written as 1+∑d≥3 x(
d−1

2 )∑d
n=2

(

n
d−n

)

xn−2.

Theorem 20 |Ik(132,213,231)| counts the odd divisors of k, which is listed as A001227 on the OEIS.

Theorem 21 |Ik(132,213,321)| = |Ik(132,321)|.
Theorem 22 |Ik(123,132,213,231)| enumerates the Pascal triangle, except all values > 1 are replaced

by 0. This is listed as on A103451 on the OEIS and has the generating function ∑i≥0 xi(i+1)/2+x(i+1)(i+4)/2.
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We give bijective results between several variants of lattice paths of length 2n (or 2n−2) and integer
compositions of n, all enumerated by the seemingly innocuous formula 4n−1. These associations lead
us to make new connections between these objects, such as congruence results.
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1 Introduction

We explore several links between different variants of integer compositions and generalizations of Dyck
paths. Let us first introduce these objects. First, an integer composition of a nonnegative integer n is
a tuple (n1, . . . ,nk) of nonnegative integers such that n = n1 + · · ·+nk. Note that integer partitions are
integer compositions such that n1 ≥ n2 ≥ ·· · ≥ nk, (equivalently, the order of summands is not significant).
Second, a Dyck path is a sequence of steps up u= (1,1) and down d= (1,−1) that starts at the origin,
ends on the x-axis, and never crosses the x-axis. All classes of paths we consider will start at the origin
and consist of steps u and d, but the constraints will differ. Natural classes are Dyck walks that have no
constraints, i.e., they may end anywhere and go below the x-axis, and Dyck bridges (also known as grand
Dyck paths) that have to end on the x-axis but may go below it.

Our results reveal a series of bijections, shown in Figure 1, connecting these structures through a
common enumeration formula

4n−1.

This gives the corresponding integer sequence A000302 in the OEIS1 many new combinatorial interpre-
tations. Additionally, these bijections often map natural statistics onto each other, such as the height of
peaks and the number of crossings of the x-axis.

2 Bijections involving integer compositions

We start with the simple initial bijection, connecting pairs of compositions and Dyck walks.

Proposition 2.1. There exists a natural bijection between pairs of compositions of n and Dyck walks of
length 2n−2.

1The On-Line Encyclopedia of Integer Sequences: http://oeis.org/
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Pairs of
compositions

of n

3-compositions
of n[1]

2-colored
Dyck bridges of

length 2n−2

Unconstrained
Dyck walks

of length 2n−2

Left-to-right max.
in Dyck bridges

of length 2n

Dyck paths with
height-labelled

peaks of length 2n

Prop. 2.2

Prop. 2.1

Prop. 2.3 Prop. 3.3 Prop. 3.4

Figure 1: Bijections proved in this paper of classes of paths and integer compositions that are all
enumerated by 4n−1.

Proof. Let a pair (A,B) of two compositions of n be given. First, we convert each composition to a binary
sequence: for each element k in a composition, append k−1 zeros followed by a 1. By construction, both
of these sequences have to end in 1. So we remove these ones and then concatenate the binary sequences,
with A’s sequence coming first. Finally, after replacing each 0 by an up step u and each 1 by a down
step d the claim follows. For the reverse direction cut the walk in the middle into two parts, and re-add the
ones.

A k-composition is an integer compositions whose parts come in k different colors with the restriction
that the last part of the composition is of the first color; see [1]. We will consider only 3-compositions.

Proposition 2.2. There exists a natural bijection between 3-compositions of n and pairs of compositions
of n.

Proof. By definition, the parts of 3-compositions have three labels 1, 2, and 3. Anticipating the result, we
introduce a notion of left and right: remove the labels of color 1, use label L for color 2, and label R for
color 3.

Now, we describe a map from 3-compositions of n to pairs of compositions of n. First, we create
two identical copies. In the first copy, we remove the labels R and add the parts labeled by L to the next
part. If the next part has also a label L, then the addition continues to the next part, etc. This gives a
composition A without any labels. Similarly, in the second copy, we remove the labels L and add the parts
labeled by R to the next part. Again, if the next part has also a label R, then the addition continues, and
we get a composition B without any labels. Observe that the size of both compositions has not changed.
Therefore, (A,B) is a pair of compositions of n.

To prove that this map is in fact a bijection, let us consider an arbitrary pair (A,B) of compositions of n.
The key statistic to consider is the run of identical parts: Let A = (a1,a2, . . . ,aℓA) and B = (b1,b2, . . . ,bℓB).
A run is a sequence of maximal length such that a1 = b1, a2 = b2, and so on. If a1 ̸= b2 we say the run
has length 0.

For the inverse map, we will describe a recursive algorithm, which reduces the sizes of A and B
in the pair (A,B) step-by-step and builds a 3-composition C. We start with an empty 3-composition C.
Depending on the first parts of A and B we distinguish three cases:
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1. If a1 = b1 then we attach a1 with label 1 to C, remove a1 from A, and remove b1 from B.

2. If a1 > b1 then we attach b1 with color 2 to C, replace a1 in A by a1 −b1, and remove b1 from B.

3. If a1 < b1 then we attach a1 with color 3 to C, remove a1 from A, and replace b1 in B by b1 −a1.

We repeat this process with the new values of A, B, and C. As the sizes of A and B decrease in each step
by at least one, this process terminates. Moreover, note that in each step both parts decrease by the same
size. Hence, in the last step the process ends with case one where both parts are equal, and therefore the
final part gets label 1, as required in the definition of 3-compositions.

Example 2.3. Consider the 3-composition 61+12+43+21
of n = 13. First, we remove the labels of color 1, use
label L for color 2, and label R for color 3. Second, we
create two identical copies. In the first copy, we remove
the labels R and add the parts labeled by L to the next part.
If the next part has also a label L, then the addition to the
next part continues, etc. Similarly, in the second copy, we
remove the labels L and add the parts labeled by R to the
next part. This gives a pair of compositions of n without
any labels, and we have shown in Proposition 2.2 that this
is in fact a bijection.

61 +12 +43 +21

(6+1L +4R +2), (6+1L +4R +2)

(6+1L +4+2), (6+1+4R +2)

(6,1L +4,2), (6,1,4R +2)

(6,5,2), (6,1,6)

3 Bijections involving Dyck paths

Let us now consider more complicated classes of Dyck paths. All of them use the concept of a peak,
which is a consecutive pattern ud. The first class we consider are Dyck paths with a marked peak, which
are classical Dyck paths enriched by a marker on a distinguished peak. Two such paths are different, if
the underlying paths differ, or, if the paths are the same then two different peaks are marked. Therefore,
the number of these paths is equal to the number of peaks in all Dyck paths, whose enumeration is
well-known; see, e.g., [3, Section 6.1].

Theorem 3.1. There is an explicit bijection between Dyck paths with a marked peak of height h and
Dyck bridges starting with a d step and h−1 crossings of the x-axis preserving the length. Therefore, the
number of peaks in all Dyck paths of length 2n is equal to

(2n−1
n

)
; see A001700.

Proof. Let D be a Dyck path with marked peak at height h. Using this peak, we decompose the path D
into a left part L from the origin to this peak and a right part R from this peak to the end: D = LR such
that L ends with u and R starts with d. In L we perform a last-passage decomposition, cutting at the u

leaving a certain altitude for the last time; while in R we perform a first-passage decomposition, cutting at
the d bringing us down to a new altitude for the first time; see Figure 2. More formally, we have

L = L1uL2u . . .uLhu, R = dRhdRh−1d . . .dR1, (1)

where Li and Ri for i = 1, . . . ,h are Dyck paths. Now, we pair the paths Liu and dRi with the same index
and map them as follows to non-empty Dyck paths:

Di = uLidRi.

http://oeis.org/A001700
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x

y

L R

x

y

Figure 2: A Dyck path with a marked peak (red dot) at height 6 and its image under the bijection from
Theorem 3.1 given by a Dyck bridge starting with a d step and 5 = 6−1 crossings (red dots). The black
steps are used in the last-passage (resp., first-passage) decomposition in the proof.

Then we concatenate these parts, after mapping each part with odd index to its image obtained by any
fixed bijection ϕ between Dyck paths and negative Dyck paths. This gives the Dyck bridge

ϕ(D1)D2ϕ(D3)D4 . . .ϕ(Dh−1)Dh (2)

when h is even. For odd h it ends with ϕ(Dh). This bridge starts with a down step d and crosses the
x-axis h−1 times, as claimed. Second, let a Dyck bridge starting with a d step be given. We cut at each
crossing of the x-axis and recover the components Di and ϕ(Di). Hence, it is straightforward to recover
the components Li and Ri and to rebuild the Dyck path D with marked peak.

Finally, bridges of length 2n are counted by
(2n

n

)
, as there is an equal number of up and down steps.

Since half of them start with a down step, we get

1
2

(
2n
n

)
=

(
2n−1

n

)
.

We return now to the bijections of Figure 1 and we connect our results with 2-colored bridges;
see [2, Section 6.4]. They are defined as the concatenation of two bridges such that the first bridge is
colored in color 1 and the second one in color 2. Note that contrary to [2], we allow each part to be
empty. Hence, it is easy to see that its generating function is equal to the square of the generating function
B(z) = 1√

1−4z2 of bridges:

B(z)2 =
1

1−4z2 .

Proposition 3.2. There is an explicit bijection between 2-colored Dyck bridges and unconstrained Dyck
walks of the same length 2n.

Proof. Recall the classical notion of a Dyck meander, which is defined as the prefix of a Dyck path, i.e.,
a path that starts at 0, never goes below the x-axis, but does not necessarily end on the x-axis. We will
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use repeatedly that there is an explicit bijection between Dyck bridges and Dyck meanders of the same
length 2n; see [6]. Sometimes, it will be necessary to transform a meander further into a negative meander,
by flipping all steps, i.e., exchanging u by d and vice versa.

We distinguish four cases. First, the first and second bridges are non-empty. The idea is that the
change in color corresponds to the last crossing of the x-axis. For this purpose we transform the second
bridge into a meander or negative meander and attach it to the first bridge such that the attached meander
continues on the other side of the x-axis. We can easily reverse this procedure by cutting at the last
crossing of the x-axis. All the other cases will have no crossings. Second, if the first bridge is non-empty
and the second one is empty, we transform the first bridge into a meander. Third, if the first bridge is
empty and the second on is non-empty, we transform the second bridge into a negative meander. Finally,
if both bridges are empty, we map them to the empty walk.

We continue, with Dyck bridges with marked strict left-to-right maximum. A strict left-to-right
maximum is any peak ud that has a greater height than all peaks to its left. We called it marked in the
previous sense, when it is attached with a distinguished marker.

Proposition 3.3. There is an explicit bijection between Dyck bridges of length 2n with marked strict
left-to-right maximum at height h and 2-colored Dyck bridges of length 2n−2 with h−1 crossings of the
x-axis in color 1.

Proof. Let us start with a Dyck bridge with marked strict left-to-right maximum of length 2n. Then, we
cut the bridge at the first return to the x-axis after this maximum. The second part to the right is a bridge,
which we give color 2. Onto the first part we apply a similar idea as in the bijection of Theorem 3.1. As
before, we cut the path at the marked left-to-right maximum into a left and right part given by LR, such
that L ends with u and R starts with d. Now, we decompose it similar to (1) into

L = ϕ(L1)uϕ(L2)u . . .uϕ(Lh)u,

R = dRhdRh−1d . . .R2d,

where h is the height of the peak, and Li and Ri are Dyck paths. Note that in this case R ends with a d step
and contains only h−1 Dyck paths Ri. As in the proof of Theorem 3.1 we form Dyck paths Di = uLidRi

for i = 2, . . . ,h. Finally, we remove the two steps of the marked peaks, and get the following bridges with
two steps less (compare with Equation (2)):

ϕ(L1)D2ϕ(D3)D4 . . .ϕ(Dh−1)Dh,

when h is even. For odd h it ends with ϕ(Dh).
The mapping may be reversed by repeating the aforementioned steps in reverse order.

We end the bijections shown in Figure 1 by the following link to Dyck paths with height-labeled peak
that are Dyck paths in which one peak is associated with a label from {1,2, . . . ,h}, where h is the height
of the specific peak.
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x

y

L R

x

y

Figure 3: A Dyck path with a height-labeled peak (red dot) with label 4 at height 6 and its image under
the bijection from Proposition 3.4 given by a Dyck bridge with marked strict left-to-right maximum (red
dot) at height 4 and 2 = 6−4 crossings (red squares).

Proposition 3.4. There is an explicit bijection between Dyck paths with height-labeled peak with label µ

at height h and Dyck bridges of the same length with marked strict left-to-right maximum at height µ and
h−µ crossings of the x-axis after this maximum.

Proof. This bijection follows directly from the one described in the proof of Theorem 3.1, whose notation
we will use here. The difference is that here we concatenate the (positive and negative) Dyck paths
differently; see Figure 3.

Let a Dyck path with height-labeled peak be given. Let h be the height of this peak and µ ∈ {1, . . . ,h}
be its label. First, we apply the bijection ϕ onto all parts Li in (1). From that we get the following bridge
in which the height-labeled peak is now a left-to-right maximum (underlined):

ϕ(L1)uϕ(L2)u . . .uϕ(Lh)udRhdRh−1d . . .dR1.

Next, we transform this bridge, such that in the end the height-label µ constitutes the height of the left-
to-right maximum. For this purpose, we create and concatenate the paths Di and ϕ(Di) in an alternating
fashion at the end:

ϕ(L1)uϕ(L2)u . . .uϕ(Lµ)udRµdRµ−1d . . .dR1 ϕ(Dµ+1)Dµ+2ϕ(Dµ+3) . . .Dh, (3)

when h−µ is even. Otherwise, the last Dh is replaced by ϕ(Dh).
For the reverse direction, let a Dyck bridge with marked left-to-right maximum be given. It is

then straightforward to decompose it into (3) and to reverse the steps above to build a Dyck path. The
left-to-right maximum becomes the height-labeled peak, labeled by its current height. Observe that the
height-labeled peak is lifted by the number of crossings of the x-axis to the left of this peak.
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4 Conclusion and Outlook

Having established links between the internal structures of Dyck paths and integer compositions, it is only
natural to ask whether important theorems from one subject can be transported to the other. When we talk
about integer compositions or partitions we are keen to see arithmetic properties in those structures. In the
long version of this work [4], we give further bijective links and we show that such arithmetic results also
exist in lattice paths. In particular, we are pleased to note that:

Theorem 4.1 ([4, Theorem 3.8]). Let Dr(n) be the number of Dyck paths with semi-length n and with
exactly r peaks for every reached height. Then Dr(n)≡ 0 (mod r+1) for n > r.

In the opposite direction we also want to see if important theorems in integer compositions and
partitions can “generate” theorems in the world of lattice paths. In 2020, Kim, Kim, and Lovejoy [5]
observed the phenomenon of parity bias in partitions, where they showed that: if po(n) denotes the
number of partitions of n with more odd parts than even parts and if pe(n) denotes the number of partitions
of n with more even parts than odd parts, then po(n)> pe(n).

In a subsequent article we will show that the analogous theorem is true even for integer compositions.
Furthermore, we will demonstrate that even for Dyck paths a similar result holds, when segregating paths
with respect to whether they have more peaks at odd or even heights.
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We investigate the existence of greedy Gray codes, based on the choice of the first element in the

code, for two classes of binary words: generalized Fibonacci words and generalized Dyck words.

1 Introduction

1.1 Constrained binary words

1’s run constrained binary words

Let n, p ∈N, p ≥ 2, and Fn(p) be the set of length n binary words with no p consecutive 1’s. Fn(2) is

counted by the Fibonacci numbers fn, and in general, Fn(p) is counted by the p-order Fibonacci numbers

f
(p)
n . Now let k ∈ N, and Fn(p,k) be the subset of words in Fn(p) of weight k (i.e., with exactly k 1’s).

Fn(p,k) is counted by the univariate p-nomial coefficient.

Prefix constrained binary words

Let k,n, p ∈ N with (p+ 1)k ≤ n, and Cn(p,k) be the set of length n binary words of weight k with the

property that any prefix contains at least p times as many 0’s as 1’s. In particular:

• Cn(0,k) is the set of length n binary words of weight k (combinations in binary word representa-

tion),

• C2n(1,n) is the set of length 2n Dyck words, and it is counted by the Catalan numbers
(

2n
n

)

−
(

2n
n−1

)

= 1
n+1

(

2n
n

)

,

• C3n(2,n) is in bijection with size 3n ternary trees (see A001764 in [4]).

More generally, C(p+1)n(p,n) is counted by 1
pn+1

(

(p+1)n
n

)

, known as the Pfaff–Fuss–Catalan numbers,

and the cardinality of Cn(p,k) is established for instance in [5, Equation (2)], using generating functions:

|Cn(p,k)| =

(

n

k

)

− p

(

n

k−1

)

. (1)

http://dx.doi.org/10.4204/EPTCS.403.23
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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1.2 Gray codes and greedy algorithms

A Gray code for a class of combinatorial objects is a list that contains each object from the class exactly

once such that any two consecutive objects in the list differ only by a ‘small change’ [3]. In this paper we

restrict ourselves to Gray codes for restricted classes of same length and same weight binary words (the

weight of a binary word being its number of 1’s). The ‘small changes’ we consider here are homogeneous

transpositions: two binary words differ by a homogeneous transposition if one can be obtained from the

other by transposing a 1 with a 0, and there are no 1’s between the transposed bits. A Gray code is called

homogeneous if consecutive words differ in a such a way. A list of words is suffix partitioned if words

with the same suffix are consecutive in the list.

The next definition of the greedy Gray code algorithm is a specialisation of that introduced in [6] to

particular cases of binary words, see also [7].

Definition 1.1. For a set S of same length and same weight binary words the greedy Gray code algorithm

to obtain a Gray code list L for the set S is:

1. Initialize L with a particular word in S.

2. For the last word in L , homogeneously transposes the leftmost possible 1 with the leftmost pos-

sible 0, such that the obtained word is in S but not in L .

3. If at point 2. a new word is obtained, then append it to the list L and return to point 2.

In the following we will say that the list L is obtained by applying the greedy algorithm for S to α ,

where α is the initial word of L . Depending on the choice of α , it can happen that the obtained list L

is not an exhaustive one for S.

2 Tail partitioned lists

The tail of a binary word is its unique suffix of the form 011 · · ·1, and the only words with no tail have

the form 11 · · ·1. Note that 0 is also a tail, for the words ending by 0.

A list of binary words is increasing (decreasing) tail partitioned if words with tails of length ℓ appear

before (after) words with tail of length ℓ+1, for any ℓ≥ 1.

Definition 2.1. A list L of same length binary words is recursive tail partitioned if it is empty, or

• it is increasing or decreasing tail partitioned, and

• for any tail t, the list obtained by: (i) considering the sublist of L of words with tail t, then (ii)

erasing the tail t in each word of this sublist, is in turn recursive tail partitioned.

In the following · denotes the concatenation (of two words, or of each word in a list with a word) and

the comma appends lists. With this notation, L is a recursive tail partitioned list if it is empty or has the

form

L = L1 ·01u,L2 ·01u+1,L3 ·01u+2, · · · ,Lℓ+1 ·01u+ℓ (2)

or the form

L = L1 ·01u+ℓ,L2 ·01u+ℓ−1,L3 ·01u+ℓ−2, · · · ,Lℓ+1 ·01u (3)

for some u, ℓ≥ 0, and each list Li, is in turn recursive tail partitioned.

We remark that the list in (2) is not necessarily the reverse of that in (3). Clearly, a recursive tail

partitioned list (r-t partitioned list for short) is a suffix partitioned list.

Theorem 2.2. If the list L is a homogeneous and suffix partitioned Gray code for a set of (same length

and same weight) binary words, then L is an r-t partitioned list.
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3 Main results

3.1 Fibonacci words Fn(2,k)

In this subsection we show that for any α ∈ Fn(2,k), by applying the greedy algorithm for Fn(2,k) to

α , a suffix partitioned list is obtained, and we characterize the words α such that the greedy algorithm

yields an exhaustive list for Fn(2,k). Moreover, for every α ∈ Fn(2,k) we characterize the last word in

the obtained list.

For n < 2k−1, Fn(2,k) is empty and in two particular cases Fn(2,k) is a singleton set.

Fact 3.1. If k = 0, then Fn(2,k) = {0n}, and if n = 2k−1, then Fn(2,k) = {1(01)k−1}.

For α ∈ Fn(2,k) we denote by F (α) the list obtained by applying the greedy algorithm for Fn(2,k)
to α .

For n,k with n ≥ 2k, let α i
n,k = 0i1(01)k−10n−2k+1−i, for 0 ≤ i ≤ n−2k+1. Furthermore, let γn,k :=

αn−2k+1
n,k = 0n−2k(01)k . We denote by GenF(n,k) the set of words α ∈ Fn(2,k) such that F (α) is a

homogeneous Gray code for Fn(2,k). Equivalently, α ∈ GenF(n,k) if and only if F (α) contains every

word of Fn(2,k).

Theorem 3.2. Let n ∈ N
⋆. Then for all k with n ≥ 2k, we have

1. α i
n,k ∈ GenF(n,k) for all 0 ≤ i ≤ n− 2k, and F (α i

n,k) is a suffix partitioned list, with γn,k as last

word.

2. γn,k ∈ GenF(n,k), F (γn,k) is a suffix partitioned list and its last word is

(i) α0
n,k if k is even,

(ii) αn−2k
n,k if k is odd.

In the next lemma, we extend the result of 1. in Theorem 3.2 concerning the last element of F (α)
to each α ∈ Fn(2,k).

Lemma 3.3. Let n ≥ 2k. For any α ∈ Fn(2,k) with α 6= γn,k, the last word of F (α) is γn,k.

Now we generalise the property for F (α) to be suffix partitioned to each word of Fn(2,n).

Lemma 3.4. Let n ≥ 2k−1. For any α ∈ Fn(2,k), F (α) is a suffix partitioned list.

Now we are able to completely describe the set GenF(n,k).

Proposition 3.5. Let n ≥ 2k−1. Then

GenF(n,k) = {0i1(01)k−10n−2k+1−i | 0 ≤ i ≤ n−2k+1}.

In particular, |GenF(n,k)| = n−2k+2.

3.2 Cn(p,k)

For n, p,k such that n ≥ (p+1)k and α ∈Cn(p,k), we denote by Dp(α) the list obtained by applying the

greedy algorithm for Cn(p,k) to α . Let also Genp(n,k) be the set of words α ∈Cn(p,k) such that Dp(α)
is a homogeneous Gray code for Cn(p,k). Equivalently, α ∈ Genp(n,k) if and only if Dp(α) contains

every word of Cn(p,k). Since the situation is a bit more complicated than the one for Fibonacci words,

for clarity we first investigate the case p ∈ N, explaining every details of the proofs. Then we explain

how the results are generalised to any p ∈ R, not necessarily describing each proof.
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3.2.1 p ∈ N

We start by investigating the case p ∈ N. We fix such a p throughout this section. For n ≥ (p+1)k, let

α
i, j

n,k := 0p j−i1 j−10i1(0p1)k− j0n−(p+1)k (resp. αn,k = 1k0n−k) for i = 0, . . . , p−1 and j = 1, . . . ,k if p ≥ 1

(resp. if p = 0), and β i
n,k := 0i1k0n−i−k for i = pk+1, . . . ,n− k. Because it plays a special role, we will

use different notation for β n−k
n,k , so we set γn,k := β n−k

n,k = 0n−k1k.

Theorem 3.6. Let n ≥ (p+1)k, with k ≥ 1.

1. For all 0 ≤ i ≤ p− 1 and 1 ≤ j ≤ k, we have α
i, j
n,k ∈ Genp(n,k) (resp. αn,k ∈ Gen0(n,k)), and

Dp(α
i, j
n,k) (resp. D0(αn,k)) is a suffix partitioned list with γn,k as last word.

2. For all j, pk+ 1 ≤ j ≤ n− k− 1, we have β
j

n,k ∈ Genp(n,k), and Dp(β
j

n,k) is a suffix partitioned

list with γn,k as last word.

3. γn,k ∈ Genp(n,k), Dp(γn,k) is a suffix partitioned list and its last word is

(i) 0p1 if (n,k) = (p+1,1),

(ii) β n−k−1
n,k = 0n−k−11k0 if k is odd and n 6= (p+1)k,

(iii) α1,k−1
n,k = 0(k−1)p−11k−2010p1 if k ≥ 3 is odd and n = (p+1)k (resp. αn,k = 1k if p = 0),

(iv) α
1,k
n,k = 0kp−11k−1010n−(p+1)k if k is even (resp. αn,k = 1k0n−k if p = 0).

Lemma 3.7. Let n ≥ (p+1)k. For all α ∈Cn(p,k), with α 6= γn,k, Dp(α) ends with γn,k.

Lemma 3.8. Let n ≥ 1. Then for all k with n ≥ (p+ 1)k, and for each α ∈ Cn(p,k), Dp(α) is a suffix

partitioned list.

Proposition 3.9. Let n ≥ (p+1)k. If p ≥ 1 then

Genp(n,k) =
k
⋃

j=1

{0p j−i1 j−10i1(0p1)k− j0n−(p+1)k | 0 ≤ i ≤ p−1}

∪{0i1k0n−i−k | pk+1 ≤ i ≤ n− k}.

If p = 0 then Gen0(n,k) = {0i1k0n−i−k | 0 ≤ i ≤ n− k}. In particular,

|Genp(n,k)|= n− k+1− p.

Remark 3.10. Propositions 3.5 and 3.9 highlight the fact that the choice of the first element for the

greedy algorithm is crucial. Indeed, only a few elements will produce a Gray code for Fn(2,k) or Cn(p,k)
with this algorithm.

3.2.2 p ∈ R+

The previous results can be generalized to Cn(p,k) for any p ∈ R+. In particular we have the following

result:

Theorem 3.11. Let p ∈ R+ and n ≥ (p+1)k. Then

|Genp(n,k)| = n− k+1−⌈p⌉.
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3.3 Algorithmic considerations

Building on the previous results, the last part presents CAT algorithms that greedily generate Gray code

for Cn(p,k) and Fn(2,k), which we omit in this abstract.
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In this work we recall Pansiot’s result on the complexity of pure morphic sequences and we use the

tools developed by Devyatov for morphic sequences to prove the decidability of the complexity class

of pure morphic sequences.

1 Introduction

In symbolic dynamics, a natural way to generate right infinite words (indexed by N = {0,1,2...}) on a

finite alphabet A is to iterate a morphism ϕ : A∗ → A∗ on a letter a, a process which converges to a fixed

point of ϕ . We call such a word a pure morphic sequence and we denote it by ϕ∞(a). More gener-

ally, applying a coding ψ , that is a letter-to-letter morphism, to a pure morphic word gives a morphic

sequence denoted by ψ(ϕ∞(a)).
A major tool of symbolic dynamics is the factor complexity: the function Pα : N→ N counting the

number of rows (factors) of length n appearing in the sequence α . An important result linking complexity

and the structure of sequences is the following:

Theorem 1.1 (Morse-Hedlund, 1938). A sequence α is ultimately periodic if and only if Pα(n) ≤ n for

some n ∈ N
∗ if and only if Pα(n) is bounded.

In this work we study the characterization of the complexity of pure morphic sequences. For example,

with D0L-systems, Ehrenfeucht, Lee et Rozenberg showed in 1975 that the complexity of pure morphic

sequences is O(n2). Other lower and upper bounds were obtained in particular cases until Pansiot gave

the complete classification in [5] using criteria on the morphism:

Theorem 1.2 (J.J. Pansiot, 1984). The complexity of pure morphic sequences belongs to one of the five

classes:

Θ(1) , Θ(n) , Θ(n log logn) , Θ(n log n) , Θ(n2).

Applying a coding will either permute letters or merge some of them, which can only decrease the

complexity. Doing so, new complexity classes appear:

Proposition 1.3 (J.J. Pansiot, 1985). For every k ∈ N
∗, there exists a morphic sequence α such that

Pα(n) = Θ(n1+1/k).

This result is stated in [6], and the example of a pure morphic sequence of complexity Θ(n1+1/k) is

detailed in [1]:

• A = {a,b0,b1, ...bk}

• ϕ(a) = abk, ϕ(b0) = b0 and ϕ(bi) = bibi−1 for i ∈ J1,kK

• ψ(a) = 0, ψ(bi) = 0 for i ∈ J0,k−1K and ψ(bk) = 1

In [2], Devyatov shows that they are the only classes between Θ(n log n) et Θ(n2):

Theorem 1.4 (R. Devyatov, 2015). The complexity of morphic sequences is either:

Θ(n1+1/k) for some k ∈ N
∗ or O(n log n).

http://dx.doi.org/10.4204/EPTCS.403.24
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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2 Result

In [6], Pansiot mentions the following decidability problem:

PMClass: Input: A pure morphic sequence α = ϕ∞(a)

Question: What is the complexity class of α ?

Theorem 1.2 states that there are five possible answers and its proof exhibits criteria for each com-

plexity class, which we will formulate in an algorithm. By deciding every criterion, we prove the follow-

ing result:

Theorem 2.1. PMClass is decidable.

To achieve that, we use the detailed proof of Theorem 1.2 in [1] and a decidability result from Pansiot

[7] and Harju-Linna [4], and we adapt some parts of Devyatov’s proof.

3 Sketch of the proof

3.1 Growth of morphism

If a ∈ A is a letter, the growth rate of a is the function associated to the asymptotic behaviour of |ϕk(a)|
when k tends to ∞. The following theorem stated in [8] gives its precise form:

Theorem 3.1 (A. Salomaa, M. Soittola). For each morphism ϕ : A∗ → A∗ and each letter a ∈ A, there

exist (β ,α) ∈ (R≥1 ×N)∪{(0,0)} such that

|ϕk(a)|= Θ(kα β k).

We say a letter is bounded if its growth rate is bounded ((βa,αa) ∈ {(0,0),(1,0)}), and growing in

the other case. We denote by B the set of bounded letters and C the set of growing letters. If every letter

is growing, ϕ is said to be growing. The case (βa,αa) = (0,0) means that ϕ erases the letter a (ϕ(a) = ε

the empty word).

We say ϕ is quasi-uniform if every letter has the same rate of the form β k with β > 1.We say ϕ is

polynomially divergent if every letter a has a rate of the form kαaβ k with β > 1, and at least one of the

αa is not 0. We say ϕ is exponentially divergent if there are two letters a and b of rate kαaβ k
a et kαbβ k

b

with 1 < βa < βb and βc > 1 for all c ∈ A.

These three classes of morphisms are mutually exclusive, and a morphism is growing if and only if

it belongs to one of them.

3.2 Pansiot criteria

Given a finite alphaet A, a morphism ϕ : A∗ → A∗ and a pure morphic sequence, the proof of Theorem 1.2

gives the criteria to determine its complexity class.

In particular, the case where ϕ is not growing and the factors of α in B∗ have bounded length boils

down to computing the complexity of another pure morphic sequence:

Proposition 3.2. If ϕ is not growing and the factors of α in B∗ have bounded length, one can explicitly

compute an alphabet Σ, a growing morphism σ : Σ∗ → Σ∗, a letter b ∈ Σ and a non-erasing morphism

ψ : Σ∗ → A∗ such that

α = ψ(σ ∞(b)).

Moreover α and σ ∞(b) are in the same complexity class.
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We formulate the classification with the following algorithm:

PMClass(α = ϕ∞(a)):

if α is eventually periodic:

return ”Θ(1)”

if ϕ is growing:

if ϕ is quasi-uniform:

return ”Θ(n)”

if ϕ is polynomially divergent:

return ”Θ(n log logn)”

if ϕ is exponentially divergent:

return ”Θ(n log n)”

else:

if the factors of α in B∗ have bounded length:

compute Σ,σ ,ψ et b such that α = ψ(σ ∞(b))

return PMClass(σ ∞(b))

else:

return ”Θ(n2)”

When ϕ is not growing and the factors of α in B∗ have bounded length, the algorithm is recursive but

the new morphism σ is growing so there is only one more iteration. Each complexity class is non-empty,

here are examples for each one:

• Θ(1): with ϕ : a 7→ ab,b 7→ c,c 7→ b, ϕ∞(a) = abcbcbcbc... is eventually periodic.

• Θ(n): with the Thue-Morse morphism ϕ : a 7→ ab,b 7→ ba, |ϕk(a)|= |ϕk(b)| = 2k, ϕ is quasi-uniform

and ϕ∞(a) = abbabaabbaababba....

• Θ(n log log n): with ϕ : a 7→ aba,b 7→ bb, |ϕk(b)| = 2k and |ϕk(a)| = k2k−1 + 2k, ϕ is polynomially

divergent and ϕ∞(a) = ababbababbbbababbaba....

• Θ(n log n) : with ϕ : a 7→ abc,b 7→ bb,c 7→ ccc, |ϕk(b)|= 2k, |ϕk(c)|= 3k and |ϕk(a)|= 2k+(3k−1)/2,

ϕ is exponentially divergent and ϕ∞(a) = abcbbcccbbbbccccccccc....

• Θ(n2): with ϕ : a 7→ ab,b 7→ bc,c 7→ c, B = {c}, ϕ∞(a) = abc1bc2bc3... and for all i ci
⊏ α .

• Θ(n) in two iterations: with ϕ : a 7→ acb,b 7→ bca,c 7→ c, B = {c} but the only factors of α in

B∗ are ε and c. Actually ϕ∞(a) = ψ(σ ∞(a)) with σ being the Thue-Morse morphism on {a,b} and

ψ : a 7→ ac,b 7→ bc.

4 Decidability

We prove that each condition of the algorithm is decidable.
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4.1 α is eventually periodic

Pansiot and Harju-Linna proved simultaneously in [7] and [4] that the eventual periodicity can be reduced

to properties on factors and prove the decidability:

Theorem 4.1. The eventual periodicity of pure morphic sequences is decidable.

4.2 ϕ is growing

Deciding if ϕ is growing, quasi-uniform, polynomially or exponentially divergent can be done by algo-

rithmically computing and comparing eigenvalues of integer matrices.

4.3 ϕ is not growing

In order to decide if the factors of α in B∗ have bounded length, we prove that it is equivalent to a

constructive property on the images of letters. Let us remark that this property appears with a non-

constructive form in [5] (proof of Theorem 4.1) and in [3] (Lemma 3.15). To achieve that we use the

notion of k-blocks developed by Devyatov in [2]:

An occurence of α is a factor associated to the position of its letters in α , denoted αi... j . A 1-block

is an occurence of α in B∗ surrounded by two growing letters that we call the left border and the right

border. Then α can be split into an alternation of (possibly empty) 1-blocks and growing letters.

If u is a 1-block, then ϕ(u) is an occurence of α containing only bounded letters so it is contained in

a unique 1-block that we call the descendant of u and we denote it by Dc1(u).
Also if there exists a 1-block v such that Dc1(v) = u, then v is unique, we call it the ancestor of u

and we denote it by Dc−1
1 (u). If a 1-block has no ancester, which is equivalent to the fact that the 1-block

and its borders are contained in the image of a letter under ϕ , we say it is an origin.

An evolution of 1-blocks is a sequence E of 1-blocks such that E0 is an origin and, for every integer

l, El = Dcl
1(E0). In particular every 1-block belongs to an evolution of 1-blocks.

For every word u containing a growing letter, LB(u) (resp. RB(u)) denotes the longest prefix (resp.

suffix) of u in B∗, and LC(u) (resp. RC(u)) denotes the first (resp. last) growing letter in u. With these

notations we get a first idea of the structure of 1-blocks.

Lemma 4.2. Let α = ϕ∞(a) a pure morphic sequence, El a 1-block of index l in its evolution E and

αi,α j the borders of E0. Then

El = RB(ϕ l(αi)) ϕ l(E0) LB(ϕ l(α j)).

For every growing letter c , we also define the following objects:

LE(c) = ϕ(LB(ϕ(c))) RE(c) = ϕ(RB(ϕ(c))))

LK(c) = LB(ϕ(LC(ϕ(c)))) RK(c) = RB(ϕ(RC(ϕ(c))))

LP(c) = ϕ(LK(c)) RP(c) = ϕ(RK(c))

In order to refine the structure, we replace ϕ by a large enough power of itself, which does not modify

α nor the properties of the morphism, so that the morphism is strongly 1-periodic. We must note that

this power can be bounded using the size of A, which makes this process effective.

Lemma 4.3. Let ϕ a strongly 1-periodic morphism. Then for every growing letter c and for every l ≥ 2

LB(ϕ l(c)) = LE(c) LP(c)l−2 LK(c)

RB(ϕ l(c)) = RK(c) RP(c)l−2 RE(c)
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These two lemmas lead us to state an equivalent condition which is clearly decidable:

Proposition 4.4. Let ϕ a strongly 1-periodic morphism and α = ϕ∞(a) a non-eventually-periodic pure

morphic sequence. Then the factors of α in B∗ have bounded length if and only if

for every c ∈C, LP(c) = RP(c) = ε .
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I show how to express the question of whether a polyform tiles the plane isohedrally as a Boolean

formula that can be tested using a SAT solver. This approach is adaptable to a wide range of poly-

forms, requires no special-case code for different isohedral tiling types, and integrates seamlessly

with existing software for computing Heesch numbers of polyforms.

1 Introduction

The study of algorithms for computing tiling-theoretic properties of shapes is a rich and fascinating

branch of computational geometry. Implementations of these algorithms can also serve as useful tools

in the experimental side of tiling theory, as part of the search for new shapes with interesting properties.

For example, Myers systematically computed isohedral numbers (the minimum number of transitivity

classes in any tiling by a given shape) for many simple polyforms [7]. Building on Myers’s work, I

computed Heesch numbers (the maximum number of times that a non-tiling shape can be surrounded

by layers of copies of itself) for simple polyforms [4]. Our tools did not contribute to Smith’s initial

discovery of the “hat” aperiodic monotile, but they played a central role in our subsequent analysis of the

hat and our proof (with Goodman-Strauss) of its aperiodicity [9].

An isohedral tiling is a tiling by congruent copies of some prototile T , such that for any two tiles T1

and T2 there exists a symmetry of the tiling mapping T1 to T2. Isohedral tilings are some of the simplest

periodic tilings, in that all tiles belong to a single transitivity class relative to the symmetries of the tiling.

A complete theory of isohedral tilings, including their classification into 81 tiling types with unmarked

tiles, was worked out by Grünbaum and Shephard [3, Chapter 6].

Given a simple shape such as a polyform, does it admit any isohedral tilings? This question offers

interesting opportunities for the development of new algorithms. It is also of practical interest as part

of any software for computing the tiling-theoretic properties of shapes. Myers’s software [7] can detect

isohedral prototiles quickly, but formal questions of computational complexity are more or less peripheral

to his work. The current state of the art, at least for the special case of polyominoes, is the quasilinear-

time algorithm by Langerman and Winslow [5].

In this paper I present a new technique for checking whether a polyform tiles isohedrally. The

algorithm is based on expressing the question as a Boolean formula that can be checked by a SAT solver,

and was motivated by my desire to integrate such a test into my existing SAT-based framework for

computing Heesch numbers [4]. I will explain the mathematical basis for this approach (Section 2),

followed by its expression in Boolean logic (Section 3), and then conclude with a few final observations

(Section 4).
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2 Identifying prototiles based on surrounds

In order to determine whether a shape admits any isohedral tilings of the plane, it suffices to examine

the ways that the shape can be surrounded by copies of itself. That is, if there exists a surround with a

particular structure that will be explained here, then the shape is guaranteed to tile isohedrally.

Let T be a shape, which in full generality can be any topological disk, but which for my purposes

is typically a polygon. Without loss of generality, I assume here that T is asymmetric. (A symmetric

shape can always be decorated with an asymmetric marking, with the meaning of congruence expanded

to preserve markings.)

A patch is a finite collection of congruent copies of T , with pairwise disjoint interiors, whose union

is a topological disk. In particular, if exactly one copy of T lies in the interior of the patch, then we refer

to the patch as a 1-patch, to the interior tile as the patch’s centre, and to the remaining tiles as a surround

of T .

The fact that every two tiles in an isohedral tiling are related by a symmetry of the tiling implies

that every tile is the centre of a congruent 1-patch, or more loosely that tiles have congruent surrounds.

Grünbaum and Shephard use this fact to develop a complete enumeration of isohedral tiling types, based

on an “incidence symbol” that expresses a prototile’s relationships to its neighbours [3]. In fact, the

converse holds as well: Dolbilin and Schattschneider showed that if the tiles in a tiling have congruent

surrounds, then the tiling must be isohedral [2].

Let S = {T1, . . . ,Tn} be a surround of a shape T . The surround is made up of congruent copies of T ,

meaning that each Ti = gi(T ) for some rigid motion gi. Fix one shape Ti in the surround, and construct

Si = {gi ◦g j(T )}n
j=1, a congruent copy of S placed around Ti. I call Ti extendable if this transformed

surround does not “conflict” with Ti’s neighbours in the original 1-patch centred at T . More precisely,

Ti is extendable if for every A ∈ {T,T1, . . . ,Tn} and every B ∈ Si, either A = B or A and B have disjoint

interiors.

Suppose that T has a surround in which every Ti is extendable. The transformed surrounds Si must

all be compatible with the 1-patch around T and with each other, meaning that their union will surround

S with a second layer of tiles. In this manner we can continue outward layer by layer, each time

completing the surrounds of the tiles along the boundary of the growing patch. (This construction is

similar to one used by Grünbaum and Shephard [3, Theorem 6.1.1].) In the limit we obtain a tiling of

the plane in which every tile has a congruent surround, which must therefore be isohedral by The Local

Theorem of Dolbilin and Schattschneider [2]. I summarize this argument with a proposition.

Proposition 1 A shape T admits an isohedral tiling if and only if T has a surround S = {T1, . . . ,Tn} in

which every Ti is extendable (in which case every tile in the tiling is surrounded by a congruent copy of

S ).

3 SAT formulation

In previous work I showed how to use a SAT solver to compute Heesch numbers of simple polyforms [4].

My software constructs a sequence of Boolean formulas equivalent to the questions “Can T be sur-

rounded at least once?”, “Can T be surrounded at least twice?”, and so on, and passes them to a SAT

solver. It halts as soon as one of these questions is false (or after a predetermined maximum number of

levels, to avoid looping forever when given a shape that tiles).

Here I show that it is possible to incorporate the mathematical ideas of the previous section into

my Heesch number computation, by interposing the question “Can T tile isohedrally?” immediately
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after “Can T be surrounded at least once?”. Indeed, the new question is a simple restriction of the

surroundability formula already being used, taking the form “Can T be surrounded at least once, in a

way that witnesses its ability to tile isohedrally?”.

Let T be a tiling of the plane. A poly-T -tile is a shape created by gluing together a finite connected

set of tiles from T . Informally, I refer to a poly-T -tile as a “polyform”, to T as “the grid”, and to the

tiles of T as “cells”. In any patch or tiling by a polyform, I will also require that every tile be a union of

cells from the grid; that is, every tile must be “aligned” to the grid.

Let T be a poly-T -tile. Define the halo of T to be all grid cells not in T that are neighbours of

cells in T . Compute the set {T1, . . . ,Tn} of all transformed copies of T that can be neighbours of T in a

surround. Each Ti will have the form gi(T ) for a rigid motion gi. Any legal surround must be a subset

of the Ti that collectively occupy every halo cell without overlapping each other. We can express these

criteria using a Boolean formula, a simplified version of the one I used for Heesch number computation.

Abusing notation slightly, create Boolean variables T1, . . . ,Tn for each potential member of the surround.

Now construct a formula with the following clauses:

• For every cell in the halo, a conjunction of all the Ti that use that cell (every cell in the halo must

be occupied);

• For every pair Ti and Tj that overlap in one or more cells, a clause of the form (¬Ti ∨¬Tj) (over-

lapping tiles are mutually exclusive).

If a satisfying assignment is found for this formula, then a candidate surround will correspond to the

subset of variables set to true. It is possible, however, for the resulting set of tiles to enclose holes; if

a hole is detected, then a clause is added to suppress this solution and the SAT solver is restarted. This

process iterates until either a simply connected solution is found, or no more candidate surrounds remain.

If T is surroundable, we can check whether it tiles isohedrally before trying to surround it with more

layers. I do so by augmenting the formula above with new clauses. Let Ti = gi(T ) and Tj = g j(T ) be two

neighbours of T that are also themselves neighbours. If Ti and Tj are used together in a surround S , then

they must both be extendable by that surround. Note that gi(Tj) = gi ◦g j(T ) will be one of the shapes

in Si, the copy of S surrounding Ti, and must therefore avoid conflicts with the shapes in S . We can

enforce this condition by finding the member Tk = gi ◦g j(T ), if it exists, and adding a clause of the form

(¬Ti ∨¬Tj ∨Tk) (if Ti and Tj are both used in a surround, then Tk must be used too). By symmetry, we

perform the same steps for g j ◦gi.

We can add clauses to this formula that further restrict the space of possible solutions the SAT solver

must explore, potentially improving performance. Suppose Ti = gi(T ) is part of an isohedral surround,

and gi is not an involution. Then because T is a neighbour of gi(T ), it follows that g−1
i (T ) is a neighbour

of T , meaning that it must also appear in the surround. We therefore find Tk = g−1
i (T ) and add a clause

of the form (¬Ti ∨Tk), which forces Tk to be used if Ti is. Similarly, in the joint cases above we also add

clauses for gi ◦g−1
j and g j ◦g−1

i , if those transformations correspond to neighbours of T .

This augmented formula has a satisfying assignment if and only if it corresponds to a surround of

T for which every Ti in the surround is extendable, or in other words, if and only if T tiles the plane

isohedrally.

4 Discussion

I implemented the augmented Boolean formula described above within the framework of my existing

software for computing Heesch numbers of polyforms [4]. In my implementation, transformed copies of
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a polyform T are represented via their affine transformation matrices (and not their boundaries or cells).

A matrix effectively also serves as an asymmetric marker, thereby preventing any issues from arising

with symmetric shapes.

As a simple validation, my software produces counts of isohedral polyforms that agree with the

figures tabulated by Myers [7], up to the size limits I tested (12-ominoes, 12-hexes, 13-iamonds, and

12-kites).

When resigning oneself to the black box of a SAT solver, questions of asymptotic complexity become

largely moot. Therefore, a theoretical comparison with, say, the quasilinear-time time algorithm of

Langerman and Winslow [5] is not particularly meaningful. My approach is slower than what would

be possible with an efficient implementation of their algorithm, and is certainly slower than Myers’s

lightning-fast hand-optimized C code. In the context of my software, the extra time required for checking

isohedral tilability as part of computing Heesch numbers is minimal. Furthermore, this approach is

remarkably convenient—the original program for computing Heesch numbers required a few thousand

lines of C++ code, and fewer than 100 lines were added for this enhancement. It is also quite general: it

adapts seamlessly to arbitrary polyform grids, and does not require any special-purpose code for different

isohedral tiling types (in fact, it uses the definition of isohedral tiling directly, and does not rely on any

information about tiling types at all).

My enhanced implementation still cannot resolve the tiling-theoretic status of every polyform. In

particular, it is unable to compute the isohedral number of any k-anisohedral polyform (which admits

only tilings containing at least k transitivity classes of tile) for k ≥ 2. It would be interesting to explore

further methods based on discrete optimization that can expand to cover these more complex, but equally

important shapes. And of course, no software can currently detect aperiodic monotiles, for which no

general procedures are known.
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Motivated by the theory of trapezoidal words, whose sequences of cardinality of factors by length

are symmetric, we introduce a bivariate variant of this symmetry. We show that this symmetry

characterizes Christoffel words, and prove other related results.

1 Introduction

Trapezoidal words were considered by Aldo de Luca in [10]; for such a word, w say, of length n, the

graph of the discrete function {0,1, . . . ,n} → N, giving the number of factors of length k of w is an

isosceles trapezoid, with successive values 1,2, . . . ,J,J + 1, . . . ,J + 1,J, . . . ,2,1. He showed that Stur-

mians words are trapezoidal, but the converse does not necessarily hold. The terminology “trapezoidal”

was introduced by Flavio d’Alessandro in [7], who studied these words, giving in particular a condition

for which a trapezoidal word is Sturmian. In [4], Michelangelo Bucci, Alessandro De Luca and Gabriele

Fici gave many equivalent conditions for a word to be trapezoidal; one of them is that the number of

factors of length k is at most k + 1 (also see the work of Florence Levé and Patrice Séébold [9], and

that of Mira-Cristiana Anisiu and Julien Cassaigne [1]). Remind that a factor of a word is a contiguous

subword.

A remarkable property of trapezoidal words is, as mentioned above, that the sequence of the lengths

of the factors of these words, from length 0 to length n, is symmetric. We may call such a word factor-

symmetric.

In the present work, we present a generalization of this symmetry property. Let w be a word over

the alphabet {a,b}, with p occurrences of the letter a and q occurrences of the letter b; in other words,

the Parikh image of w is (p,q). We say that w is strongly factor-symmetric if for any i, j, w has as many

distinct factors with Parikh image (i, j) as distinct factors of Parikh image (p− i,q− j). Note that in that

case, the notion of symmetry does not necessarily mean invariant under reversal.

We show that each Christoffel word is strongly factor-symmetric (Theorem 3.1). Conversely, each

finite primitive Sturmian word which is strongly factor-symmetric is a Christoffel word (Theorem 3.2).

Note that aabb is strongly factor-symmetric, so that the hypothesis “Sturmian” is not superfluous.

These results are interesting, in part because one obtain a characterization of Christoffel words among

all Sturmian words. Indeed, in the literature there exist many characterizations of conjugate of Christoffel

words ([6, 11, 3, 13, 12, 14]), which do not distinguish between Christoffel words and their conjugates.

However, another notable charaterization of Christoffel words is that a Sturmian word is a Christoffel

word if and only if it is a Lyndon word [2], if and only if it is unbordered [5] (see also [8]).

Concerning nonprimitive words, we show that if w is a nontrivial power of a primitive word u, then

w is strongly factor-symmetric if and only if u is a Christoffel word (Theorem 3.3). The hypothesis

“Sturmian” is not necessary here. In particular, (aabb)2 is not strongly factor-symmetric.
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As a byproduct, we obtain that, with the notation of the previous paragraph, that w is factor-symmetric

if and only if u is the conjugate of some Christoffel word (Theorem 4.3).

Concerning the strong factor symmetry of a Christoffel word w, we give an explicit bijection between

the factors of w of Parikh image (i, j) and those of Parikh image (p− i,q− j) (Theorem 4.1); it relies

on the notion of attractor and circular attractor [12]. Moreover, the support of the function of pairs of

integers that counts the numbers of factors of w for each Parikh image, which is a subset of the discrete

plane, is the set of integer points on the two paths defined by w and its reversal w̃, and between them

(Theorem 4.2): see, for example (1) and Figure 1.

This work was partially supported by NSERC, Canada.

2 Christoffel words and Sturmian words

Among several equivalent definitions of Christoffel words, we choose the following: a Christoffel word

on the alphabet {a,b} is either a or b, or a word of the form amb or bma, such that m is a palindrome, and

w is a product of two palindromes. For other characterizations, see for example the book of the second

author [13]. Christoffel words are primitive, that is, are not equal to a nontrivial power of another word.

It is known that the factorization into two palindromes is unique, and it is called the palindromic

factorization.

Given a word w, we define the function δw : N2 → N by δw(i, j) = the number of factors of w whose

Parikh image is (i, j). We say that a word w of Parikh image (p,q) is strongly factor-symmetric if

for any i, j, δw(i, j) = δw(p− i,q− j). For example, the distinct factors of the Christoffel word aabab

are 1,a,b,aa,ab,ba,aab,aba,bab,aaba,abab,aabab so that δw is represented by the array whose i, j-

coordinate is δw(i, j) (coordinates are as in the Cartesian plane, and this array is embedded in the plane):

0 1 1 1

1 2 2 1

1 1 1 0

(1)

This array has a central symmetry, which means that w is strongly factor-symmetric. We call this array

the factor array of w.

A word w is called factor-symmetric if the sequence of length of factors, which turns out to be

∑i+ j=k δw(i, j), k = 0, . . . , |w| is symmetric; in other words, w has as many factors of length i as factors

of length n− i, for all i, with n = |w|. Clearly, a strongly factor-symmetric word is factor-symmetric.

Trapezoidal words are factor-symmetric words ([10] Proposition 4.7, [4] Definition 2.5); and con-

versely, each factor-symmetric word w is trapezoidal: indeed, if |w|= n, then w has n− i+1 occurrences

of factors of length i, so that it has at most n− i+1 such factors; but the factor symmetry implies that it

has at most n− i+1 factors of length n− i, and hence it is trapezoidal by the cited proposition.

3 Main results

Theorem 3.1. Each Christoffel word is strongly factor-symmetric.

We have a converse. Note that a Sturmian word is a factor of a Christoffel word.

Theorem 3.2. If the support of δw is symmetric (and in particular, if w is strongly factor-symmetric) and

if w is primitive and Sturmian, then w is a Christoffel word.
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Note that the factor array of the word aabb is

1 1 1

1 1 1

1 1 1

which has a central symmetry, so that aabb is strongly factor-symmetric; this word is not a Christoffel

word, but is not Sturmian either, since aa and bb cannot be both factors of a Sturmian word.

Theorem 3.3. Let w = uk, u primitive, k ≥ 2. Then w is strongly factor-symmetric if and only if u is a

Christoffel word.

Here, the hypothesis “factor-symmetric” suffices for the “only if” part. And the hypothesis “Stur-

mian” is no more necessary.

4 Byproducts

An attractor of a word w = w1 · · ·wn, with wi letters of the alphabet, is a subset K of {1, · · · ,n} such

that every factors of w has an occurrence that meets one of the letters indexed by one of the numbers in

K. A circular attractor is defined similarly, but with the notion of circular factors, that is factors of a

conjugate of w. Using theses concepts, we have a bijection that explains Theorem 3.1.

Theorem 4.1. Let w = uv be a Christoffel word of length n with its palindromic factorization. Suppose

k,0 ≤ k ≤ n. Consider all factors of length k of w that intersect the cut of the factorization, and order

them from left to right: f1, f2, . . . , fr. Consider all factors of length n− k of w that intersect this cut, and

order them from right to left: g1,g2, . . . ,gs. Then r = s, the words fi are distinct, the words gi are distinct,

and the mapping fi 7→ gi is a bijection from the set of factors of length k of w to the set of factors of length

n− k of w, which complements the Parikh image γ(w) of w; that is: γ( fi)+ γ(gi) = γ(w).

An example: let w = aababab, u · v = aa · babab, k = 4, f1 = aaba, f2 = abab, f3 = baba, g1 =
bab,g2 = aba,g3 = aab.

In the following, with each word on the alphabet {a,b}, we associate the path in the discrete plane

starting from the origin, where a represents an horizontal step towards East, and b a vertical step towards

North.

Theorem 4.2. Let w be a lower Christoffel word, w̃ the corresponding upper Christoffel word, and Sw

the set of integer points on the paths corresponding to w and w̃. Then Sw is the support of the function

δw.

See for example Figure 1.

Theorem 4.3. Let w = uk, u primitive, k ≥ 2. Then w is factor-symmetric if and only if u is the conjugate

of some Christoffel word.

Open question: which primitive trapezoidal words are strongly factor-symmetric? We know that if

a word is primitive, Sturmian, and strongly factor-symmetric, it must be a Christoffel word. Hence

the question is really: which primitive trapezoidal words, that are not Sturmian, are strongly factor-

symmetric? An example is the word aabb. The work of [7] might help.
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Figure 1: Paths of lower and upper Christoffel words w = aabaabaabab and w̃ and the function δw

5 Sketch of proofs

Proving Theorem 3.1 amounts to proving that the bivariate (commutative) polynomial ∑i, j δw(i, j)aib j ∈
N[a,b] is reciprocal, with an appropriate (but evident) definition of “reciprocal”. One shows that this

property is preserved by product. Then one shows, using the notion of attractor and circular attractor

[12] that the factors of w, which intersect the cut in the palindromic factorization uv of w, are all the

factors of w; moreover they are distinct [3]. Hence the set of factors is the unambiguous product of the

set of suffixes of u by the set of prefixes of v. Making the letters commute, the previous polynomial is

the product of two polynomials; these are reciprocal, by palindromicity of u and v.

To prove Theorem 3.2, it is enough to prove that w is unbordered. One show that w has a nontrivial

period p if and only if the intersection of the support of δw and of the line of equation x+ y = p is a

singleton. Hence, by symmetry of the support, if w has this period, w also has the period n− p, hence is

not primitive, by a Fine-Wilf lemma.

Let us sketch the proof of Theorem 3.3. Suppose that u is a Christoffel word. Clearly, all circular

factors of u are factors of w. An ad hoc construction then allows one to enumerate all factors of w,

relating them to the circular factors of u, and implying that δw has the required symmetry.

Conversely, one shows that the hypothesis implies that u has at most k+1 circular factors of length

k, for k = 0,1, . . . , |u|−1; being primitive, it must have exactly k+1 factors. Hence u is the conjugate of

a Christoffel word. We conclude the result using periodicity as above.

For Theorem 4.1, a closer look at the combinatorics behind the algebraic proof using polynomials

gives the bijection.

For Theorem 4.2, one notes that since w is balanced, there at most two points in the intersection of

the support of δw and the line of equation x+y = p. One of them is given by the intersection of the lower

path and the line, and corresponds to the prefix of length p of w. The other to the suffix of length p of w,

since w = amb, m palindrome.

Finally, if w = uk is factor symmetric, then one shows as above that u is the conjugate of a Christoffel

word. Conversely, each power of a conjugate of a Christoffel word is Sturmian, hence trapezoidal, hence

factor-symmetric. This proves Theorem 4.3.
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[10] Aldo de Luca (1999): On the combinatorics of finite words. Theoret. Comput. Sci. 218(1), pp. 13–39, doi:10.

1016/S0304-3975(98)00248-5. WORDS (Rouen, 1997).

[11] S. Mantaci, A. Restivo & M. Sciortino (2003): Burrows-Wheeler transform and Sturmian words. Inform.

Process. Lett. 86(5), pp. 241–246, doi:10.1016/S0020-0190(02)00512-4.

[12] Sabrina Mantaci, Antonio Restivo, Giuseppe Romana, Giovanna Rosone & Marinella Sciortino (2021): A

combinatorial view on string attractors. Theoret. Comput. Sci. 850, pp. 236–248, doi:10.1016/j.tcs.

2020.11.006.

[13] Christophe Reutenauer (2019): From Christoffel words to Markoff numbers. Oxford University Press, Ox-

ford.

[14] Christophe Reutenauer (2021): Christoffel words and weak Markoff theory. Adv. in Appl. Math. 127, pp.

Paper No. 102179, 15, doi:10.1016/j.aam.2021.102179.

https://doi.org/10.33993/jnaat332-767
https://doi.org/10.1016/S0304-3975(96)00101-6
https://doi.org/10.1051/ita:2005038
https://doi.org/10.1016/j.tcs.2012.11.007
https://doi.org/10.1016/S0304-3975(98)00104-2
https://doi.org/10.1016/S0304-3975(97)00239-9
https://doi.org/10.1016/S0304-3975(00)00431-X
https://doi.org/10.1142/S0129054104002467
https://doi.org/10.36045/bbms/1102714173
http://projecteuclid.org/euclid.bbms/1102714173
http://projecteuclid.org/euclid.bbms/1102714173
https://doi.org/10.1016/S0304-3975(98)00248-5
https://doi.org/10.1016/S0304-3975(98)00248-5
https://doi.org/10.1016/S0020-0190(02)00512-4
https://doi.org/10.1016/j.tcs.2020.11.006
https://doi.org/10.1016/j.tcs.2020.11.006
https://doi.org/10.1016/j.aam.2021.102179


S. Brlek and L. Ferrari (Eds.): GASCom 2024
EPTCS 403, 2024, pp. 128–133, doi:10.4204/EPTCS.403.27

© D. Laplace Mermoud & P. Popoli
This work is licensed under the
Creative Commons Attribution License.

Combinatorics on Social Configurations

Dylan Laplace Mermoud
UMA, ENSTA Paris, Institut Polytechnique de Paris,

Paris, France.
dylan.laplace@ensta-paris.fr

Pierre Popoli
Department of Mathematics, ULiège

Liège, Belgium.
Pierre.Popoli@uliege.be

In cooperative game theory, the social configurations of players are modeled by balanced collec-
tions [2, 3]. A balanced collection is a set system defined on the set N of players in the game, together
with a system of weights such that each player belongs to coalitions whose weights sum to 1. The
Bondareva–Shapley theorem, perhaps the most fundamental theorem in cooperative game theory, char-
acterizes the existence of solutions to the game that benefit everyone using balanced collections. Roughly
speaking, if the trivial set system {N} is one of the most efficient balanced collections for the game, then
the set of solutions from which each coalition benefits, the so-called core, is non-empty.

In the following, we discuss some interactions between combinatorics and cooperative game theory
that are still relatively unexplored. First, we study the similarities between balanced collections on the
one hand and regular or uniform hypergraphs on the other. Second, we present some results leading to
the construction of the combinatorial species of structures of uniform hypergraphs, from which we aim to
construct the species of regular hypergraphs by duality. Finally, we investigate the possibility of express-
ing some “minimality” properties of regular or uniform hypergraphs in the language of combinatorial
species, hoping to obtain new properties of minimal balanced collections.

1 Cooperative Game Theory

Cooperative game theory aims to study the emergence of cooperative behavior between rational players
whose actions affect each other’s well-being. It was introduced in the seminal book Theory of Games
and Economic Behavior by von Neumann and Morgenstern [6], written during the Second World War,
motivated by von Neumann’s desire to study the stability of social organizations.

Definition 1 (von Neumann and Morgenstern [6]). A cooperative game with transferable utility, here-
after called game, is an ordered pair (N,v) where

• N is a non-empty finite set of players, called the grand coalition,
• v is a set function v : 2N → R such that v( /0) = 0.

The non-empty subsets of N are called coalitions, and their set is denoted by N . For each coalition
S ∈ N , the number v(S), called the worth of S, can be interpreted as the amount of utility or satisfaction
that the players forming S can obtain through full cooperation. When a coalition is formed, a non-trivial
task is to allocate among its players the utility acquired by the coalition among its players. To prevent
the coalition from splitting, the allocation of each of its subcoalitions must at least pay off its value,
otherwise the coalitions would defect to obtain more utility. A necessary condition for the formation of
the grand coalition is therefore that the following set

C(v) =

{
x ∈ RN

∣∣∣ ∑
i∈N

xi = v(N), and ∑
i∈S

xi ≥ v(S),∀S ∈ N

}

http://dx.doi.org/10.4204/EPTCS.403.27
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is not empty. The set C(v) is called the core of the game and is one of the essential objects studied in
cooperative game theory. Each vector x ∈ RN represents a payment to the players when player i ∈ N
receives a payment from xi. The payment of a coalition is the sum of the payments of its players. Thus,
the vectors in the core are exactly the payments that allocate the utility acquired by the large coalition in
such a way that each coalition is satisfied with its payment.

A closely related object is the balanced collection. Formally, a balanced collection B is a set of
coalitions such that there exists a map λ : B → R>0 satisfying ∑S∈B,S∋i λ (S) = 1 for each player i ∈ N.
For example, the set partitions of N are balanced collections with unit weights. We measure the efficiency
of a balanced collection B by taking the weighted sum of the worths of the coalitions in B, that is
∑S∈B λ (S)v(S).

Theorem 1 (Bondareva [2], Shapley [3]). The core of a game is nonempty if and only if {N} belongs to
the set of maximally efficient balanced collections.

The Bondareva-Shapley theorem provides a useful characterization of the core nonemptiness, from
which the first author, Grabisch and Sudhölter [5] developed an algorithm. This algorithm is based on
an improved characterization of core nonemptiness, often called the sharp Bondareva-Shapley theorem,
which differs from the previously mentioned theorem only in that the balanced collections are replaced
by the minimal balanced collections. The minimal balanced collections are the balanced collections
for which no proper subcoalitions are balanced. Moreover, the set of minimal balanced collections
is the minimal, with respect to inclusion, set of balanced collections for which the Bondareva-Shapley
theorem holds. In the same paper, the first author, Grabisch and Sudhölter [5] have generated the minimal
balanced collections up to 7 players. The sequence of the numbers of the minimal balanced collections
is stored as A355042 in the Online Encyclopedia of Integer Sequences [7]. The method used in the
aforementioned paper is inefficient when the number of players is greater than 7, and this work aims to
find another way to generate it.

n 2 3 4 5 6 7

k 2 6 42 1,292 200,214 132,422,036

Table 1: Number k of minimal balanced collections according to the number n of players.

2 Hypergraphs

The cornerstone of this work is the striking similarity between the balanced collections and the regular
hypergraphs. An (undirected) hypergraph H is a pair H = (N,E), where N is a set of nodes and E is a
spanning collection of non-empty subsets of N, called hyperedges or simply edges.

A hypergraph H is called k-regular if for each node x,∈ N the degree of x is k, i.e. δ (x) := |{e ∈ E |
e ∋ x}|= k. The underlying set of the multiset of edges of a regular hypergraph is a balanced collection.
Indeed, the weight of a given coalition is the multiplicity of the edge in the collection E divided by the
regularity of the hypergraph. If each edge has cardinality d, the hypergraph is said to be d-uniform.
Therefore, the dual of a d-regular hypergraph is d-uniform and vice versa.

One of the main interests of uniform hypergraphs lies in the fact that writing a program that generates
uniform hypergraphs of a certain size, i.e. with a certain number of edges, is extremely simple. It is
sufficient to take arbitrary sets of equal cardinality and relabel their elements so that they fit into the
notation N = {1, . . . ,n}. If an edge needs to be added to the hypergraph, any set of nodes with the

https://oeis.org/A355042
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appropriate cardinality can be used. However, if we want to add a node in a regular hypergraph, it is not
easy to add it while maintaining regularity. Note that adding an edge to a uniform hypergraph is the same
operation as adding a node to its dual regular hypergraph.

We believe that this approach is a possible route to a more efficient method for generating minimal
balanced collections. Let H = (N,E) be a hypergraph, let A⊆N and X ⊆E. The hypergraph denoted by
HA and defined by HA = (A,{S∩A | S ∈ E}) is the subhypergraph of H induced by A. The hypergraph
H X =(N,X) is the partial hypergraph of H induced by X . Note that the subhypergraph of a hypergraph
corresponds to a partial hypergraph of its dual.

Similarly to minimal balanced collections, we say that a hypergraph is minimally uniform if it is
uniform and no proper subhypergraph is uniform, and we say that a hypergraph is minimally regular if it
is regular and no proper partial hypergraph is regular.
Proposition 1. The dual of a minimally uniform hypergraph is minimally regular and vice versa.

Note that our definition of a subhypergraph does not eliminate the edges that become empty when
taking the intersection with the subset of nodes. This definition is not common in the literature, but it is
a natural one in our context, and the proposition above illustrates this fact.

3 Species of structures

Our goal now is to generate the objects we mentioned. To do this, we use the theory of species of
structures and the corresponding operations on formal power series developed by Joyal [4].

A species of structures is a rule F that assigns to each finite set U a finite set F[U ] that is “independent
of the nature” of the elements of U . The members of F[U ], called F-structures, are interpreted as com-
binatorial structures on the set U given by the rule F. The fact that the rule is independent of the nature
of the elements of U is expressed by the invariance under relabeling. More precisely, to any bijection
σ : U → V the rule F associates a bijection F[σ ] : F[U ] → F[V ] that transforms each F-structures on U
into an (isomorphic) F structure on V .

Each species is associated with a formal power series, which refers to the enumeration of F structures
and is denoted by F(x). There are a myriad of operations on species of structures such as addition,
multiplication, functorial and partitional composite, see [1] for more details and further operations. The
main interest of these operations is to provide a new description of a species of structures and to extract
formulas over the generating series.
Example 1. Let ℘ denote the species of subsets associating to each finite set U the set of subsets of U ,
and ℘[2] the species of the 2-subsets, or unordered pairs, defined similarly. Their generating series are,
respectively, ℘[2](x) = ∑n≥0

(n
2

) xn

n! and ℘(x) = ∑n≥0 2n xn

n! = e2x. Thanks to these two species and the
composition of species, we have the following combinatorial identity

GR =℘□℘
[2] (1)

where GR is the species of simple graphs. From this formula, we obtain the generating series of simple
graph, namely GR(x) = ∑n≥0 2(

n
2) xn

n! . An illustration of this identity is pictured in Figure 1.
Let us denote E the species of sets and ς [p] the species of k-subsets. Similarly to the combinatorial

identity (1), we have proved the following formula.
Theorem 2. The species of k-uniform hypergraphs of size p, which we denote by UNIk,p, satisfies the
following combinatorial equation:

E ·UNIk,p = ς
[p]

□℘
[k].
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(a) A typical element of ℘[2]. (b) A typical element of ℘□℘[2].

Figure 1: Construction of the species GR of simple graphs.

Let us denote np = n(n+1) · · ·(n+ p). Using the formalism of virtual species, see [1] again for more
details, we have the following corollary.

Corollary 1. The generating series of the species UNIk,p is

UNIk,p(x) = ∑
n≥0

(
n

∑
i=0

(−1)n−i
(

n
i

)( i
k

)p

p!

)
xn

n!
.

Example 2. Let us count the 2-uniform hypergraphs of size 3, with no more than three nodes. Since the
hypergraphs are 2-uniform, n only goes from 2 to 3. Note that the number of hypergraphs is not counted
up to an isomorphism. The number we are looking for is therefore

3

∑
n=2

(
n

∑
i=2

(−1)n−i
(

n
i

)( i
2

)p

p!

)
= (−1)0

(
2
2

)(2
2

)3

3!
+(−1)1

(
3
2

)(2
2

)3

3!
+(−1)0

(
3
3

)(3
2

)3

3!

= 1−3+10 = 8.

We represent them in the following. Notice that among these 8 uniform hypergraphs, only one is
minimal, that is the triangle.

Figure 2: All 2-uniform hypergraphs of size 3 with no more than 3 nodes.

One can define the species of minimal balanced collections which are the underlying sets of the
multisets of edges of minimally regular hypergraphs, which we construct from the minimally uniform
hypergraphs, thanks to Proposition 1. For now, we simply have constructed the species of uniform
hypergraphs.

Problem 1. Express minimality in terms of species of structures.
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4 Decompositions in minimally uniform hypergraphs

Our first approach to study Problem 1 was based on the idea that minimally uniform hypergraphs (resp.
minimally regular hypergraphs) are the building blocks of uniform hypergraphs (resp. regular hyper-
graphs). In this work, we also assume that the number of edges remains the same since the goal is that
they represent the number of players, and this should be fixed. The following proposition states that a
uniform hypergraph can be partitioned into smaller minimally uniform hypergraph.

Proposition 2. Let H = (N,E) be a uniform hypergraph of size p. Then there exists a partition π of N
such that for each element B ∈ π the subhypergraph HB is minimally uniform of size p.

One can expect that the aforementioned partition is unique, up to a permutation, and therefore leads to
a combinatorial identity via structures of species. However, the next example shows that such a partition
is not unique.

Example 3. Let us consider H the 4-uniform hypergraph of order 7 and size 4 defined by

H =
(
{v1, . . . ,v7},

{
{v1,v2,v3,v4},{v1,v5,v6,v7},{v3,v4,v5,v6},{v3,v4,v6,v7}

})
.

The hypergraph H can be partitioned in the two following ways

v1 v2 v3 v4

v5 v6 v7

v1 v3

v6

v2 v4

v5 v7

v2

v6

v1 v3 v4

v5 v7

Figure 3: Example of a non-unique partition.

We can easily verify that

• The two hypergraphs on the left side H1 =
(
{v1,v3,v6},

{
{v1,v3},{v1,v6},{v3,v6},{v3,v6}

})
and H2 =

(
{v2,v4,v5,v7},

{
{v2,v4},{v4,v5},{v4,v7},{v5,v7}

})
are minimally 2-uniform hyper-

graphs that will merge to H .

• The hypergraphs on the right side H ′
1 =

(
{v2,v6},

{
{v2},{v6},{v6},{v6}

})
and H ′

2 =(
{v1,v3,v4,v5,v7},

{
{v1,v3,v4},{v1,v5,v7},{v3,v4,v5},{v3,v4,v7}

})
are respectively minimally

1-uniform and minimally 3-uniform hypergraphs that will merge to H .

Therefore, such a decomposition in the state cannot lead to a combinatorial identity such as Theo-
rem 2, which contains the species of minimally uniform hypergraph.
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Recently, a new characterization of Lyndon words that are also perfectly clustering was proposed

by Lapointe and Reutenauer (2024). A word over a ternary alphabet {a,b,c} is called perfectly

clustering Lyndon if and only if it is the product of two palindromes and it can be written as aπ1bπ2c

where π1 and π2 are palindromes. We study the properties of palindromes appearing as factors π1

and π2 and their links with iterated palindromes over a ternary alphabet.

1 Introduction

The Burrows-Wheeler transform of a word w, denoted bw(w), is obtained from w by first listing the

conjugates of w in lexicographic order, then concatenating the final letters of the conjugates in this order.

For example, the Burrows-Wheeler transform of apartment is t pmteaanr. It was introduced in [2] as a

tool in data compression. After applying the Burrows-Wheeler transform to a word, the occurrence of a

given letter tend to occur in clusters. This clustering effect is optimal when all occurrences of each letter

are group together. Words showing that optimal properties are thus called π-clustering. The permutation

π represent the order in which the cluster of similar letters appear. The word aluminium, for example, is

451623-clustering since bw(aluminium) = mmnauuiil. A word w is perfectly clustering if its Burrows-

Wheeler transform is a decreasing word, i.e., the clusters of letters appear from highest to lowest with

respect to the alphabet order. This terminology was introduced by Ferenczi and Zamboni [4].

Perfectly clustering words were proposed in [11, 4] as a generalization of Christoffel words. Re-

cently, Reutenauer and the first author [6] showed that a primitive word w is a perfectly clustering Lyn-

don word if and only if it is a product of two palindromes and has a palindromic special factorization,

i.e., w = a1π1a2π2 · · ·πk−1ak, where the letters in w are in {a1 < a2 < · · · < ak} and π1,π2, . . . ,πk are

palindromes. This is also a generalization of characterization of Christoffel word due to de Luca and

Mignosi [8]; a binary word amb is a Christoffel word if and only if the word amb is a product of two

palindromes and m is also a palindrome called a central word. Hence, the palindromic special factoriza-

tion of a Christoffel word in {a,b}∗ is simply amb where m is a palindrome. Central words have many

properties (see [1, 10] for more information). We recall only one of them: a central word is the image of

a mapping called iterated palindromization [7].

In this extended abstract, we discuss results about the palindromes in the palindromic special fac-

torization of perfectly clustering Lyndon words over ternary alphabet. In Section 2, we recall some

definitions about these words. In Section 3, we explore some relationships between the palindromes

appearing in the special factorization. In Section 4, we describe the iterated palindromes that are factors

of this factorization of perfectly clustering Lyndon words.
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2 Definition

2.1 Words

For the rest of the paper, let A = {a,b,c} be a totally ordered alphabet, where a < b < c. Let w =
w1w2 · · ·wn be a word in the free monoid generated by A. The length of w = w1 · · ·wn (with wi ∈ A),

denoted by |w|, is n. The number of occurrences of a letter x in w is denoted by |w|x. The Parikh vector

of w is the integer vector (|w|a, |w|b, |w|c). The function Alph is defined by Alph(w) = {x ∈ A | |w|x ≥ 1}.

A word w is called primitive if it is not the power of another word; that is, for any word z such that

w = zn, one has n = 1. The conjugates of a word w are the words wi · · ·wnw1 · · ·wi−1. In other words, two

words u,v ∈ A∗ are conjugate if for some words x,y ∈ A∗, one has u = xy and v = yx. The conjugation

class of a word is the set of its conjugates. If a word w of length n is primitive, then it has exactly n

distinct conjugates. A word w is called a Lyndon word if it is primitive, and it is the minimal word in

lexicographic order among its conjugates.

The reversal of w=w1 · · ·wn, denoted by R(w), is the word R(w)=wn · · ·w1. A palindrome is a word

w such that w = R(w). A word u is a factor of w if there exists two words x,y ∈ A∗ such that w = xuy.

The set of factors of w is denoted by Fact(w) and Factk(w) denotes the set of factors of length k of w.

2.2 Perfectly Clustering Lyndon Words

The special factorization of a word w over A is a factorization of w of the form w = aπ1bπ2c, where

π1,π2 ∈ A∗. If π1 and π2 are both palindromes, then the special factorization is called palindromic.

A perfectly clustering Lyndon words on A∗ is a word w such that w is a product of two palindromes

and has a palindromic special factorization. For example, the word acbcbbcbc is a perfectly clustering

Lyndon word since it is the product of the palindromes a and cbcbbcbc and it has the palindromic special

factorization a · cbc · b · bcb · c. Moreover, the palindromic special factorization of a perfectly clustering

Lyndon word is unique [6].

This is not the original definition of perfectly clustering words, but of a characterization of perfectly

clustering Lyndon word given in [6]. Usually, a word w is called perfectly clustering if its Burrows-

Wheeler transform is c|w|c b|w|b a|w|a (see [11] for a complete definition). If a primitive word is perfectly

clustering, then all its conjugates are. Consequently, there is no loss of generality in studying only

perfectly clustering Lyndon words. The set of perfectly clustering Lyndon words is denoted by P .

It was proved by Mantaci, Restivo and Sciortino [9, Theorem 9] that perfectly clustering words on

a binary alphabet are Christoffel words and their conjugates. Let recall the following lemma describing

the possible sets of factors of length 2 of a perfectly clustering word.

Lemma 1 ([11]). Let w be a perfectly clustering word in {a,b,c}∗. Then Fact2(w) is a subset of one of

the sets below:

• {ab,ac,ba,bb,ca}

• {aa,ab,ac,ba,ca}

• {ac,bb,bc,ca,cb}

• {ac,bc,ca,cb,cc}

2.3 Iterated Palindromes

The (right) palindromic closure of w, denoted by w(+), is the shortest unique palindrome having w as a

prefix, i.e., if w = ps where s is the longest palindromic suffix of w, then w(+) = psR(p). We define the

mapping Pal(w) from a free monoid to itself, called iterated palindromization, as follows: Pal(ε) = ε and



136 Perfectly Clustering Words and Iterated Palindromes

for each letter x, Pal(ux) = (Pal(u)x)(+). A word w such that w = Pal(u) is called an iterated palindrome

and u is called the directive word of w. For example, the word ababaababa is an iterated palindrome and

its directive word is abba. A word amb is a Christoffel word if and only if m is an iterated palindrome

on a binary alphabet [7]. Therefore, iterated palindromes on a binary alphabet are the only palindromes

in the palindromic special factorization of Christoffel words.

3 Sets of palindromes

From the set P , let define two sets of words P1 and P2 as follows.

P1 = {π1 | aπ1bπ2c ∈ P}

P2 = {π2 | aπ1bπ2c ∈ P}.

By definition, we know that all the words in P1 and P2 are palindromes. However, these sets are not

equal, as shown in the next proposition.

Proposition 2. P1 6= P2

Proof. One can check that a · cbc · b · bcb · c is a perfectly clustering Lyndon word with the given palin-

dromic special factorization. Hence, the palindrome bcb ∈ P2.

It is sufficient to show that bcb 6∈ P1, i.e., that for any word u ∈A∗, the word a ·bcb ·b ·u ·c is not a per-

fectly clustering Lyndon word. The set of factors {ab,bc,cb,bb} ⊆ Fact2(abcbbuc) but {ab,bc,cb,bb}
is not a subset of the one of the set in Lemma1. Thus, the word a ·bcb ·b ·u ·c is not a perfectly clustering

Lyndon word and bcb 6∈ P1. This means that P1 6= P2.

Some palindromes are in both sets. For example, the words a · cac · b · c and a · c · b · cac · c are both

perfectly clustering Lyndon words. Thus, cac ∈ P1 ∩P2. The intersection between P1 and P2 is discussed

in Section 4.

There is a relationship between P1 and P2. Let θ be the morphism exchanging the letter a and c

defined by θ(a) = c, θ(b) = b, θ(c) = a. The antimorphism, ω defined as ω = R◦θ , send perfectly

clustering Lyndon word to perfectly clustering Lyndon word [5].

Lemma 3. P1 = θ(P2)

Proof. Let p ∈ P1 be an arbitrary palindrome. There exist a perfectly clustering Lyndon word w and a

palindrome u ∈ A∗ such that w = apbuc. Then

ω(w) = (R◦θ)(apbuc) = R(cθ(p)bθ(u)a) = a(R◦θ)(u)b(R◦θ)(p)c.

The word ω(w) is a perfectly clustering Lyndon word with the given palindromic special factorization.

Since p is a palindrome, (R◦θ)(p) = θ(p) and θ(p)∈P2. Similarly, we show that θ(P2)⊆P1. Therefore

P1 = θ(P2).

4 Iterated palindromes in the previous sets

Some iterated palindromes appears in P1 and P2, but those sets also contain words which are not iterated

palindromes. For example, bacab is a palindrome in P1 which is not an iterated palindrome since the

word a ·bacab ·b ·a · c is a perfectly clustering Lyndon word.
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Proposition 4. Let u ∈ A∗ be a word. The iterated palindrome Pal(u) ∈ P1 if and only if u ∈ {a,c}∗ ·
{a,b}∗.

The proof of Proposition 4 uses induction and the construction of perfectly clustering Lyndon word

proposed in [5]. We defined four automorphisms of the free group F(A) by λa(a) = a, λa(b) = ab

and λa(c) = ac; λb(a) = ab−1, λb(b) = b and λb(c) = bc; ρb(a) = ab, ρb(b) = b and ρb(c) = b−1c

and ρc(a) = ac, ρc(b) = bc and ρc(c) = c. It was proved in [5] that for each perfectly clustering word

w ∈ A∗ of length at least 3, there exists a shorter perfectly clustering word u ∈ A∗ and an automorphism

f ∈ {λa,λb,ρb,ρc} such that w = f (u). Since the word abac is a perfectly clustering Lyndon word,

we only need to show that f (aεbac) = aPal(u)bqc where f = fx1
◦ fx2

◦ · · · ◦ fxn
, fxi

∈ {λa,ρb,ρc},

u = x1x2 · · ·xn and q ∈ P2. Moreover, the following lemma means that no other iterated palindrome can

be in P1.

Lemma 5. Let u ∈ A∗ be a word such that Alph(u) = A. The iterated palindrome Pal(bu) is not in P1,

nor in P2.

Proof. Let xv ∈ A∗ be a word. In [3], it is shown that the first letter of a directive word is separating

for Pal(xv), i.e., the letter x appears in each factor of length 2 of Pal(xv). Hence, the letter b appears

in each factor of length 2 of Pal(xv) and ac 6∈ Fact2(Pal(bu)). However, ac is a factor in each set given

in Lemma 1. Thus, Fact2(Pal(bu)) cannot be a factor of a perfectly clustering word.

Using Lemma 3 and Proposition 4, one may describe the iterated palindromes which are elements of

P2.

Proposition 6. Let u ∈ A∗ be a word. The iterated palindrome Pal(u) ∈ P2 if and only if u ∈ {a,c}∗ ·
{b,c}∗.

From the previous proposition one may deduce which iterated palindrome ares in P1 ∩P2.

Proposition 7. Let u ∈ A∗ be a word. The iterated palindrome Pal(u) ∈ P1 ∩ P2 if and only if u ∈
{a,c}∗ ·b∗.

Following computer exploration, we believe that the conjecture below is valid.

Conjecture 8. A word w ∈ P1 ∩P2 if and only if Pal(u) = w and u ∈ {a,c}∗ ·b∗.

Iterated palindromes represent a small subset of the palindromes in P1 and P2. Those results are a

step in the characterization of these sets that the authors intend to pursue. A more general questions is

to characterize the palindromes in the special factorization of perfectly clustering Lyndon words on any

alphabets.
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The partial sums of integer sequences that count the occurrences of a specific pattern in the binary

expansion of positive integers have been investigated by different authors since the 1950s. In this

note, we introduce generalized pattern sequences, which count the occurrences of a finite number of

different patterns in the expansion of positive integers in any integer base, and analyze their partial

sums.

1 Introduction, definitions and notation

Let b be a positive integer larger than 1. Define [[b]] = {0,1,2, · · · ,b−1} and [[b]]∗ as the set of finite

words composed of letters from [[b]]. A finite weighted subset S of [[b]]∗ is a set of the form

{(nS,w,w)|nS,w ∈ R,w ∈ [[b]]∗},

such that |{w| nS,w 6= 0}|< ∞. For any w ∈ [[b]]∗ \ [[1]]∗ and any non-negative integer n, let eb,w(n) denote

the total number of occurrences of the word w in the b-expansion of n. In this article, by b-expansion of

integers, we mean the canonical b-expansion of integers with infinitely many leading zeros. For example,

e2,0011(6) = 1, e2,0011(51) = 2. For any weighted subset S of [[b]]∗ and any non-negative integer n, define

eb,S(n) = ∑
(nS,w,w)∈S

nS,web,w(n).

For any positive integer m larger than 1, define ab,m,w(n) = exp
2πieb,w(n)

m
and ab,m,S(n) = exp

2πieb,S(n)
m

for

all non-negative n. Both sequences (ab,m,S(n))n∈N and (eb,m,S(n))n∈N are well studied in the literature.

The sequences (eb,w(n))n∈N are called block-counting sequences and (eb,S(n))n∈N are called digital se-

quences from [5, Chapter 3.3]. The analytical and combinatorial properties of these sequences in the

case of b = n = 2 have been well studied since Thue. The sequences (a2,2,S(n))n∈N are called pattern

sequences in [15, 11, 16]. For some special examples, the ±1-Thue-Morse sequence can be defined

as (a2,2,1(n))n∈N (see, for example, [5, P. 15], the sequence defined there is actually the {0,1}-Thue-

Morse sequence, the sequence (a2,2,1(n))n∈N can be obtained by changing 0 to 1 and 1 to −1 from

the previous sequence) and the ±1-Rudin-Shapiro sequence can also be defined as (a2,2,11(n))n∈N (see,

for example,[5, Example 3.3.1]). The asymptotic and combinatorial properties of (a2,2,S(n))n∈N and

(e2,2,S(n))n∈N are studied in [2, 12, 8, 3, 4, 6].

Let ( fn)n∈N and (gn)n∈N be two real sequences. They are orthogonal if

lim
N→∞

1

N

N

∑
n=0

fngn = 0.

http://dx.doi.org/10.4204/EPTCS.403.29
https://creativecommons.org
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The orthogonality between (a2,2,w(n))n∈N and periodic sequences was first studied by Rudin and Shapiro;

they proved separately in [13] and [14] that

max
0≤θ<1

| 1

N

N

∑
n=0

a2,2,11(n)e
2πinθ | ≤C

√
N,N ≥ 1.

A similar result involving (a2,2,1(n))n∈N was obtained by Gelfond in [10]. Moreover, from [7, Proposi-

tion 3.1] and [5, Theorem 16.1.5], the sequences of the form (a2,2,S(n))n∈N are actually in the class of

automatic sequences (see [5]) and the sequences of the form (e2πinθ )n∈N are multiplicative sequences

(see [9]). The orthogonality between automatic sequences and multiplicative sequences was studied

in [9]. In a series of recent articles [15, 11, 16], the correlations of (a2,2,S(n))n∈N were studied from a

viewpoint of dynamical systems. The focus of this paper is two-fold. First, we study the orthogonal-

ity among the sequences of the form (ab,m,S(n))n∈N. We later prove that it amounts to study the partial

sums of (ab,m,S(n))n∈N. Second, we generalize the result in [8] concerning the sequences (a2,2,w(n))n∈N

to (ab,m,S(n))n∈N for arbitrary b, m and S by using a recent result on the combinatorial structure of

(ab,m,w(n))n∈N introduced in [1]. We give a necessary and sufficient condition for

lim
N→∞

1

N

N

∑
n=0

ab,m,S(n) = 0. (⋆)

The main results are announced in Theorem 3 and Theorem 5.

2 Window functions and (ab,m,S(n))n∈N

A finite weighted subset S of [[b]]∗ is called proper if nS,w 6= 0 implies w does not have leading zeros. For

any two finite weighted subsets S1,S2 of [[b]]∗, define

S1 ⊕S2 = {(nS1 ,w +nS2,w,w)| w ∈ [[b]]∗}.

Any finite word w in [[b]]∗ is written w = w[1]w[2] · · ·w[|w|] where |w| is its length. For later use we

denote w′ = w[2]w[3] · · ·w[|w|], and (w)b = ∑
|w|
i=1 w[i]b|w|−i.

Let exp [[b]] = {e
2πin

b | n ∈ [[b]]} and exp [[b]]∗ = {e
2πin

b | n ∈ [[b]]}∗ be the set of finite words composed

of letters from exp [[b]].

Let us generalize the definition of the window function in [1]. For any integers b,m larger than 1 and

any w ∈ [[b]]∗, let α1
w = (w′)b

b|w|−1 and α2
w = (w′)b+1

b|w|−1 . The window function φb,m,w : exp [[b]]∗ → exp [[b]]∗ is such

that for any v ∈ exp [[b]]∗:

φb,m,w(v)[ j] =

{

e
2πi
m v[ j], if α1

w|v|< j ≤ α2
w|v|;

v[ j], otherwise.

It is extended to finite weighted subset S of [[b]]∗, by setting

φb,m,S = ∏
(nS,w,w)∈S

(φb,m,w)
nS,n .
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Proposition 1 Let b,m be two integers larger than 1 and let S1,S2 be two finite weighted subsets of [[b]]∗.

For any non-negative integer n, one has

ab,m,S1
(n)ab,m,S2

(n) = ab,m,S1⊕S2
(n).

As a corollary, the orthogonality of two generalized pattern sequences is equivalent to the (⋆) prop-

erty of some generalized pattern sequence.

Proposition 2 Let b,m be two integers larger than 1 and let S be a finite weighted subset of [[b]]∗.

There exists a finite proper weighted subset S′ of [[b]]∗ such that for any non-negative integer n, one

has ab,m,S(n) = ab,m,S′(n).

An analog of Proposition 3 in [1] is stated in our first claimed result:

Theorem 3 Let b,m be two integers larger than 1 and let S be a finite weighted subset of [[b]]∗. Let

l = max{|w| | nS,w 6= 0}. There exist k−1 proper weighted subset S1,S2, . . . ,Sb−1 of [[b]]∗ and a sequence

(ut)t∈N in exp [[b]]∗ such that:

1. |u0|= bl;

2. ut+1 = utφb,m,S1
(ut)φb,m,S2

(ut) · · ·φb,m,Sp−1
(ut) for all t ≥ 0;

3. (ab,m,S(n))n∈N = limt→∞ ut .

3 Application

From Theorem 3, one can associate a generalized pattern sequence (ab,m,S(n))n∈N to a matrix Mb,m,S in

the following way:

1. let S1,S2, . . . ,Sb−1 and l be the same as in Theorem 3;

2. let V0 be the constant sequence of 1 with a length of pl , and let Vk = φb,m,Sk
(V0) for all k ∈

{1,2, · · · ,b−1};

3. let Mb,m,S ∈ Mpl×pl (C) such that for any integers 1 ≤ r ≤ bl−1, 0 ≤ s ≤ b−1 and 1 ≤ t ≤ b,

Mb,m,S(x,y) =

{

Vs[(r−1)b+ t], if (x,y) = (sbl−1 + r,(r−1)b+ t);

0, otherwise.

Theorem 4 Let b,m be two integers larger than 1, let S be a finite weighted subset of [[b]]∗ and let

(ab,m,S(n))n∈N and Mb,m,S be respectively the associated generalized pattern sequence and the matrix.

Let (Ab,m,S(m))m∈N be a sequence of column vectors of dimension pl such that for any integers t ≥ 0 and

1 ≤ j ≤ pl ,

Ab,m,S(t)( j) =
jpt−1

∑
n=( j−1)pt

ab,m,S(n).

Then for any integer t ≥ 0, one has

Ab,m,S(t +1) = Mb,m,SAb,m,S(t).

And we have our second claimed result.
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Theorem 5 Let b,m be two integers larger than 1, let S be a finite weighted subset of [[b]]∗. The sequence

(ab,m,S(n))n∈N satisfies the property (⋆) if and only if at least one of the following conditions holds:

1. b is not an eigenvalue of Mb,m,S;

2. Mb−1
b,m,SAb,m,S(0) = 0, where Ab,m,S(0) is as the same as in Theorem 4.

Example 6 Let b = m = 3 and let S = {(nS,w,w)|nS,w ∈ R,w ∈ {0,1}∗} satisfying

nS,w =











1, if w = 1,10,12;

2, if w = 11,22;

0, otherwise.

From Proposition 3 in [1], the window functions associated to w = 1,10,12,11,22 are respectively:

φ3,3,1(v)[ j] = e
2πi
q v[ j], φ3,3,12(v)[ j] =

{

e
2πi
q v[ j], if 2

3
|v|< j ≤ |v|;

v[ j], otherwise.
,

φ3,3,10(v)[ j] =

{

e
2πi
q v[ j], if 0 < j ≤ 1

3
|v|;

v[ j], otherwise.
φ3,3,11(v)[ j] =

{

e
4πi
q v[ j], if 1

3
|v|< j ≤ 2

3
|v|;

v[ j], otherwise.
,

φ3,3,22(v)[ j] =

{

e
4πi
q v[ j], if 2

3
|v|< j ≤ |v|;

v[ j], otherwise.
.

From Theorem 3, one can find S1,S2 satisfying

nS1,w =











1, if w = 1,10,12;

2, if w = 11;

0, otherwise.

nS2,w =

{

2, if w = 22;

0, otherwise.

Thus,

φ3,3,S1
(v)[ j] =

{

e
2πi
q v[ j], if 1

3
|v|< j ≤ 2

3
|v|;

e
4πi
q v[ j], otherwise.

φ3,3,S2
(v)[ j] =

{

e
4πi
q v[ j], if 2

3
|v|< j ≤ |v|;

v[ j], otherwise.
.

From Theorem 3, set u0 = 1,1,1,e
4πi

3 ,1,e
4πi
3 ,1,1,e

4πi
3 , and define a sequence of words (un)n∈N such

that um+1 = umφ3,3,S1
(um)φ3,3,S2

(um) for all integers m ≥ 0, then (a3,3,S(n))n∈N = limm→∞ um. Moreover,

the associated matrix

M3,3,S =



































1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

e
4πi
q e

4πi
q e

4πi
q 0 0 0 0 0 0

0 0 0 e
2πi
q e

2πi
q e

2πi
q 0 0 0

0 0 0 0 0 0 e
4πi
q e

4πi
q e

4πi
q

e
2πi
q e

2πi
q e

2πi
q 0 0 0 0 0 0

0 0 0 e
2πi
q e

2πi
q e

2πi
q 0 0 0

0 0 0 0 0 0 e
4πi
q e

4πi
q e

4πi
q





































S. Li 143

Since 3 is not an eigenvalue of M3,3,S, we have

lim
N→∞

1

N

N

∑
n=0

a3,3,S(n) = 0.

Example 7 Let b = m = 2 and let U be a finite weighted subset of {0,1}∗ satisfying

nU,w =

{

1, if w = 1,10,11;

0, otherwise.

The associated matrix

M2,2,U =









1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1









.

One can easily verify that 2 is an eigenvalue of M2,2,U . However, since A2,2,U (0) = (1,−1,1,−1)t , and

M2,2,U A2,2,U (0) = 0, one has

lim
N→∞

1

N

N

∑
n=0

a2,2,U (n) = 0.

In fact, one can verify (a2,2,U (n))n∈N is the (1,−1)-periodic sequence.

Example 8 Let us consider (a3,3,002(n))n∈N. One has, for any non-negative integer n,

e3,3,002(n) = e3,3,02(n)− e3,3,102(n)− e3,3,202(n)

= e3,3,2(n)− e3,3,12(n)− e3,3,22(n)− e3,3,102(n)− e3,3,202(n).

Thus,

a3,3,002(n) = a3,3,2(n)(a3,3,12(n)a3,3,22(n)a3,3,102(n)a3,3,202(n))
−1

.

Define two finite weighted subsets P,Q of {0,1,2}∗ such that

nP,w =

{

−1, if w = 12,102;

0, otherwise.
nQ,w =











1, if w = 2;

−1, if w = 22,202;

0, otherwise.

From Theorem 3, set u0 = a3,3,002(0),a3,3,002(1), · · · ,a3,3,002(26), and define a sequence of words (un)n∈N

such that um+1 = umφ3,3,P(um)φ3,3,Q(um) for all integer m ≥ 0, then (a3,3,002(n))n∈N = limm→∞ um.
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1 Introduction

The problem of enumerating polyominoes is known to be a difficult problem since their introduction by

Golomb [2] and so far, only exhaustive generation computer programs are providing numerical answers.

Nevertheless, restricted classes of these objects have been successfully enumerated [1, 4].

We focus on the problem of counting polyominoes inscribed in a rectangle of size b×h. By inscribed,

we mean a polyomino that is included in a rectangle of size b×h and that has at least one cell touching

each side of the rectangle. If we fix b and increase h, the number of inscribed polyominoes satisfies

a linear recurrence. The sequences for b = 2,3,4 are registered on the Online Encyclopedia of Integer

Sequences (OEIS) (A034182 [3], A034184 [3] and A034187 [3], respectively). The values for 5≤ b≤ 12

and h = 24−b are also available (A292357 [3]).

The recurrence for b = 2 is known (A034182 [3]) and can be proved using simple combinatorial

argument.

G2 =
2x3 +3x2 −2x+1

(x−1) (x2 +2x−1)

Where Gb is the generating function for the number of polyominoes in a rectangle of size b×h. Recur-

rences for b = 3,4 have been discovered empirically but, to the best of our knowledge, no proof seems

to be available.

In this extended abstract, we show how we obtained the formulas for b = 3,4,5,6 and we design a

method for obtaining the formulas for any b. To do so, we adapt methods described in previous works

by Zeilberger [4] and by Bousquet-Mélou and Brak [1] in order to build an automaton Ab recognizing

exactly the polyominoes inscribed in a rectangle of fixed width b and any height h.

2 Building Ab

A polyomino P is a set of edge-connected cells in the square lattice. If P is inscribed in a rectangle of size

b×h, it can equivalently be described as a stack of h rows of b cells, where each cell is either selected or

not and the selected cells are edge-connected.

Each possible configuration in a row can be encoded by a unique word u ∈ {0,1}b, |u|1 > 0, a 0

represents an empty cell, a 1 represents a selected cell, and |u|1 denotes the number of 1’s occurring in

the word u. A stack of height h of such words encodes a unique polyomino [1]. In the next paragraphs,

we use the expressions stack of words and stack of rows interchangeably.

We wish to build an automaton Ab having the property that, given a stack of words, Ab accepts the

stack if and only if it encodes a valid polyomino. Without loss of generality, we can assume that the
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automaton Ab operates by reading the stack of words from top to bottom. In order to accept only valid

stacks, Ab needs to keep track of the connexity with each of its states. If we extend the alphabet of the

words u to {0,1, ...,⌈b/2⌉}, we can label each cell of the row with a 0 if the cell is empty and with the

value i ∈ {1, ...,⌈b/2⌉} if the cell belongs to the ith connected component of the polyomino, where the

connected components are labeled with increasing values from left to right.

We also want each state to encode whether the stack read so far has yet touched the left side or the

right side of the rectangle. For this purpose, we introduce two boolean variables l and r that have value

T if the leftmost (resp. rightmost) column has at least one selected cell, and F otherwise.

From these conventions, we have that each state is of the form:

(w, l,r) with w = w1 · · ·wb ∈ {0,1, ...,⌈b/2⌉}b, l,r ∈ {T, F}.

However, not every triplet of this form can suitably represent a valid polyomino row-configuration. We

introduce the following additional conditions such that only the necessary triplets are kept:

Empty row: If w = 0b, then l = F and r = F. This row is forbidden in a polyomino but it is convenient

to use this encoding as an initial state.

Inscription: If w1 6= 0, then l = T, and if wb 6= 0, then r = T. This means that P is adjacent to the left

(resp. right) side of the bounding rectangle.

Separation: If wi 6= 0, then wi−1,wi+1 ∈ {0,wi}. In other words, if the ith cell of the current row is

in P, each of its adjacent cells wi−1 and wi+1 is either empty or belongs to the same connected

component, in virtue of the edge-connectedness requirement.

Non-crossing: Let i, j,k, l ∈ {1,2, ...,⌈b/2⌉} with i < k < j < l. Then the conditions wi = w j and

wk = wl imply wi = wk = w j = wl . This condition comes from the fact that two distinct connected

components cannot have crossed earlier in P.

We denote by Tb the set of triplets (w, l,r) that meet those conditions.

Now, we still have the possibility that two distinct words in Tb represent the same row-configuration

in P. For example the words 10201 and 20102 both represent the state where the first cell is connected

above to the fifth cell, the third is in P but disconnected from the first and fifth cells while the second and

fourth cells are empty.

To ensure injectivity, we introduce an equivalence relation. Let w = w1w2...wb ∈ Ab be a word on the

alphabet A. For a ∈ A, we denote by Posa(w) the set of all indices i such that wi = a. Then w and w′ are

called equivalent, and we write w ≡ w′, if the following two conditions are verified:

(i) Pos0(w) = Pos0(w′)

(ii) There exists σ ∈S⌈b/2⌉ such that Posi(w) = Posσ(i)(w′), for i ∈ {1,2, ...,⌈b/2⌉}.

where S⌈b/2⌉ is the symmetric group on ⌈b/2⌉ elements. For each equivalence class of ≡, we choose as

representative the minimum element with respect to the lexicographic order, denoted by [w].
We are now ready to define our automaton. More formally, let Ab = (Σb,Qb,q0,b,Fb,δb), where

(1) Σb = {u ∈ {0,1}b : |u|1 > 0} is the set of possible words in a stack;

(2) Qb = {([w], l,r) : [w] ∈ Tb/≡} is the set of states;

(3) q0,b = (0b,F,F) is the initial state;

(4) Fb = {([w], l,r) ∈ Tb : w ∈ {0,1}b, l = r = T} is the set of accepting states and

(5) δb : Qb ×Σb ⇀ Qb is the transition function described in the next paragraphs.
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Observe that a state ([w], l,r) ∈ Qb is also element of Fb (i.e. is an accepting state) if and only if it

has a single connected component (i.e. w ∈ {0,1}b) and is inscribed in the rectangle (i.e. l = r = T).

The transition function δb is defined only on the pairs (([w], l,r),u), with ([w], l,r) ∈ Qb, u ∈ Σb, such

that, for all a ∈ {1,2, . . . ,⌈b/2⌉}, |Posa(w)|> 0 implies Posa(w)∩Pos1(u) 6= /0. This ensures that, in the

polyomino P, no connected component is “lost”. Since u represents the configuration of the next row of

the polyomino, Pos0(u) = Pos0([w
′]), and

δb(([w], l,r),u) = ([w′], l′,r′),

where w′ is obtained by adding a row subject to the following constraints:

Vertical connexity: From left to right, we read u and write a new word x.

If ui = 0 then xi = 0. If ui = 1 and wi 6= 0, then xi = wi. If ui = 1 and wi = 0, then xi = N + 1

where N = max{w1,w2, ...,wb,x1,x2, ...,xi−1}. This step keeps the connexity between the cells in

the next row and the cells in the current row that are directly above them. For the cells in the next

row with no cells directly above them in the current row, we create new connected components for

each of them. Observe that x does not meet the separation condition.

Horizontal connexity: From x, we create w′.

We first obtain every factor of x that is between 0’s together with the largest prefix of x that

has no 0’s and the largest suffix of x that has no 0’s. We call these factors the horizontally

connected components of the new row. We say that two horizontally connected components c

and c′ are directly linked if they share a letter and indirectly linked if there exists a set E =
{ei | ei is a horizontally connected component} such that c = e0, c′ = ek and ei is directly linked

to ei+1 for all 0 ≤ i ≤ n−1 (i.e. there exists a chain of directly linked connected components that

links c to c′). The components c and c′ are said to be linked if they are either directly linked or

indirectly linked.

The second step in the construction of w′ consists in collecting every linked horizontally connected

components into different sets. In other words, we take the transitive closure of the “is linked to”

relation. Each set receives a letter in {1,2, ...,⌈b/2⌉}. The letters {1,2, ...,⌈b/2⌉} are assigned

incrementally in increasing order to the set that contains the left-most horizontally connected com-

ponent among the sets that have not yet been assigned a letter.

Finally, we obtain w′ from x by looking at every horizontally connected component c in x and

replacing each letter of c by the letter assigned to the set to which c belongs.

Adjacency: The values l′ and r′ are obtained by the computations l′ = l ∨u1 and r′ = r∨ub.

Example 1. Let

w = 10203020104 and u = 10111011101.

The first step yields the word x = 10253026104. The horizontally connected components are 1, 253,

261 and 4. The linked horizontally connected components are then joined together, forming the sets

{1,253,261} and {4}. The letters are associated with each set in order with the mapping

1 →{1,253,261}, 2 →{4}.

Finally, w′ is obtained by replacing each letter in every horizontally connected components by the as-

signed letter, yielding w′ = 10111011102.
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Observe that every step in the construction of Ab is automatic and δb is unambiguous. Ab is thus

deterministic.

Theorem 1. The set of stacks of size h of words recognized by Ab is in bijection with the set of polyomi-

noes inscribed in a rectangle of size b×h.

As an example, Figure 1 shows a stack of length 9 recognized by A5 and the associated polyomino.

(a) Polyomino in a 5×9 rectangle

11101

10101

11111

01001

11101

10101

10101

00001

01111

(b) Stack recognized by A5

(11101,T,T)

(10101,T,T)

(11111,T,T)

(01002,T,T)

(11102,T,T)

(10203,T,T)

(10203,T,T)

(00001,F,T)

(01111,F,T)

(00000,F,F)

(c) States visited by A5

Figure 1: Example of a word recognized by A5 and the associated polyomino

3 Generating the automaton Ab.

We can manually compute the automata A2, A3 and, with a bit of courage, A4, A5 and A6. Using the

Maple software, we were able to compute the generating functions for values of b up to 6. However, for

b ≥ 7, we need to turn to computers with more power, as the number of states grows rapidly. Thankfully,

every step in the building of Ab can be automatized easily.

With these methods, we computed the generating functions Gb for b = 3,4,5,6. We also could

compute G′
b for b = 3,4 where G′

b is the generating function for the number of polyominoes of area n

inscribed in a rectangle of size b× h. The rational expression of those generating functions are of too

large degree to include in this paper. Indeed, G3 is of degree 9, G4 is of degree 20, G5 is of degree 49

and G6 is of degree 112.

The case b = 7 was generated but the calculations to produce the generating function still need to be

done. We are still working on the implementation to obtain the automata for greater values of b. The

challenge comes from the fact that the systems grow exponentially in the number of states. Indeed, the

number of states of Ab can be computed from the formula

# of states of Ab = 1+
2b−1

∑
k=1

C f (k) ·2
Jk≡0 mod 2K ·2Jk<2b−1K, (1)

where Cm is the mth Catalan number, f (k) is the number of runs of 1’s in the binary expansion of k

(A069010 [3]) and JpK is the indicator function taking value 1 if p is true and 0 otherwise. Surprisingly,

the sequence of the number of states of Ab for increasing b is not registered on OEIS. However, the

sequence A140662 [3], also counting states in an automaton recognizing polyominoes, has been reported.

Avenues for immediate improvement include using a higher efficiency programming language and using

a more suitable data type to store the states of the automaton.
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b 0 1 2 3 4 5 6 7 8 9 10 11

number of states in Ab 1 2 6 16 40 99 247 625 1605 4178 11006 29292

Figure 2: Number of states in Ab for b = 0, . . . ,11
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We show that coefficients in unicellular LLT polynomials are evaluations of Hecke algebra traces at

Kazhdan–Lusztig basis elements. We express these in terms of traditional trace bases, induction, and

Kazhdan–Lusztig R-polynomials.

1 Introduction

The study of proper colorings of a graph G is a fundamental topic in discrete mathematics. Stanley

[9] defined the chromatic symmetric function XG,q which is a symmetric function generalization of the

chromatic polynomial. This function was generalized by Shareshian and Wachs [8]: for a graph G =
(V,E) let XG,q := ∑κ qasc(κ)xκ(1)xκ(2) · · · , where the sum is over all proper colorings κ : V (G) → N of

G and asc(κ) denotes the number of ascents of κ , pairs (i, j) with i < j such that κ(i) < κ( j). When

G = inc(P) is an incomparability graph of a unit interval order P, XG,q is a symmetric function. There are

important positivity conjectures about Xinc(P),q like the e-positivity conjecture of Stanley–Stembridge–

Shareshian–Wachs.

In another context, the functions Xinc(P),q appeared in the study of the space of diagonal harmon-

ics. Let LLTinc(P),q := ∑κ qasc(κ)xκ(1)xκ(2) · · · , where the sum is over arbitrary vertex colorings of inc(P).
This is also a symmetric function called a unicellular LLT polynomial, a special case of a family of sym-

metric functions introduced by Lascoux–Leclerc–Thibon in 1997 in a different context. These functions

LLTinc(P),q appear in the Shuffle conjecture of diagonal harmonics [6] proved by Carlsson–Mellit [2].

In their proof of the shuffle conjecture, they show that both these symmetric functions are related by a

plethystic substitution:

Xinc(P),q[X ] = (q−1)−nLLTinc(P),q[(q−1)X ],

where n is the size of P. From work of Grojnowski and Haiman [5], LLTinc(P) are Schur positive and it

is an open question to find a combinatorial interpretation for this expansion.

An important basis of the Hecke algebra Hn(q) is the (modified, signless) Kazhdan–Lusztig basis

defined by C̃w(q) := q
ℓ(w)

2 C′
w(q) = ∑u≤v Pu,w(q)Tw, where {Tw | w ∈ Sn} is the natural basis of Hn(q),

Pv,w(q) are the Kazhdan–Lusztig polynomials and ≤ denotes the Bruhat order of Sn. It is known [3] that

the various expansions of the chromatic quasi-symmetric function Xinc(P),q can be viewed as evaluations

of traces at {C̃w(q) | w avoiding 312}, when P = P(w) is a unit interval order corresponding to w,

Xinc(P(w)),q = ∑
λ⊢n

ελ
q (C̃w(q))mλ = ∑

λ⊢n

ηλ
q (C̃w(q)) fλ = ∑

λ⊢n

χλ⊤

q (C̃w(q))sλ = · · · ,
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where ελ
q , ηλ

q , χλ⊤
q are induced sign, induced trivial, and irreducible characters of Hn(q). In this context,

the e-positivity conjecture of Xinc(P),q is part of a more general conjecture of Haiman [7] for symmetric

functions associated to C̃w(q) for any w in the context of immanants. In [1, §11.3], Abreu and Nigro used

the plethystic relation to define analogs of unicellular LLT polynomials for all permutations.

The coefficients of various expansions of LLT polynomials can also be viewed as evaluations of

traces at {C̃w(q) | w avoiding 312}.

LLTinc(P),q = ∑
λ

ελ
q,LLT (C̃w(q))mλ ,

where ελ
q,LLT (C̃w(q)) is a certain LLT-analog of the trace ελ

q .

We describe similar analogs of induced trivial characters ηλ
q,LLT and power sum traces ψλ

q,LLT. The

evaluations at C̃w(q) were known as expansions of the LLT but now we obtain evaluations at the natural

basis Tw, which were not known before.

We also give change of basis equations between ψn
q,LLT, εn

q,LLT, and ηn
q,LLT and known traces that

resemble the Cauchy identity of symmetric functions after a principal specialization.

2 Background

Symmetric functions. We mostly use the notation from [10, Ch. 7]. We denote by Λn the ring of

symmetric functions of degree n and mλ , eλ , hλ , pλ , sλ , fλ denote the monomial, elementary, complete,

power sum, Schur, and forgotten symmetric functions. Also ω denotes the standard involution in Λn.

Hecke algebra and traces. The Hecke algebra Hn(q) is a noncommutative Z[q
1
2 ,q¯1

2 ]-algebra generated

by natural generators {Tsi
|1 ≤ i ≤ n−1} subject to the relations

T 2
si
= (q−1)Tsi

+q, for i = 1, . . . ,n−1,

Tsi
Ts j

Tsi
= Ts j

Tsi
Ts j

, if |i− j|= 1,

Tsi
Ts j

= Ts j
Tsi

, if |i− j| ≥ 2.

Specializing Hn(q) at q
1
2 = 1, we obtain the classical group algebra Z[Sn] of the symmetric group.

Let T (Hn(q)) be the Z[q
1
2 ,q¯1

2 ]-module of Hn(q)-traces, linear functionals θq : Hn(q) → Z[q
1
2 ,q¯1

2 ]
satisfying θq(DD′) = θq(D

′D) for all D,D′ ∈ Hn(q). For any trace θq : Tw 7→ a(q) in T (Hn(q)), the

q
1
2 = 1 specialization θ : w 7→ a(1) belongs to the space T (Sn) := T (Hn(1)) of Z[Sn]-traces from

Z[Sn]→ Z (Sn-class functions). Like the Z-module Λn of homogeneous degree-n symmetric functions,

the trace spaces T (Hn(q)) and T (Sn) have dimension equal to the number of integer partitions of n,

the weakly decreasing positive integer sequences λ = (λ1, . . . ,λr) satisfying λ1 + · · ·+λr = n.

It can be useful to record trace evaluations in a symmetric generating function. In particular, for

D ∈Q(q)⊗Hn(q), we record induced sign character evaluations by defining

Yq(D) := ∑
λ⊢n

ελ
q (D)mλ ∈Q(q)⊗Λn. (2.1)

This symmetric generating function in fact gives us all of the standard trace evaluations.

Proposition 2.1. The symmetric function Yq(D) is equal to

∑
λ⊢n

ηλ
q (D) fλ = ∑

λ⊢n

sgn(λ )ψλ
q (D)

zλ
pλ = ∑

λ⊢n

χλ⊤

q (D)sλ = ∑
λ⊢n

φλ
q (D)eλ = ∑

λ⊢n

γλ
q (D)hλ ,
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where sgn(λ ) := (−1)n−ℓ(λ); equivalently, ωYq(D) is equal to

∑
λ⊢n

ελ
q (D) fλ = ∑

λ⊢n

ηλ
q (D)mλ = ∑

λ⊢n

ψλ
q (D)

zλ
pλ = ∑

λ⊢n

χλ
q (D)sλ = ∑

λ⊢n

φλ
q (D)hλ = ∑

λ⊢n

γλ
q (D)eλ .

Quantum matrix bialgebra and immanants. An important computational tool in the evaluation of

Hn(q)-traces is the quantum matrix bialgebra An(q), the noncommutative ring generated as a Z[q
1
2 ,q¯1

2 ]-
algebra by the n2 variables t = (ti, j)i, j∈[n] subject to relations

ti,ℓti,k = q
1
2 ti,kti,ℓ, t j,kti,ℓ = ti,ℓt j,k

t j,kti,k = q
1
2 ti,kt j,k t j,ℓti,k = ti,kt j,ℓ+(q

1
2 −q¯1

2 )ti,ℓt j,k,
(2.2)

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < ℓ ≤ n. As a Z[q
1
2 ,q¯1

2 ]-module, An(q) has a natural basis of

monomials tℓ1,m1
· · · tℓr,mr

in which index pairs appear in lexicographic order. The relations (2.2) allow

one to express other monomials in terms of this natural basis.

To state immanant generating functions for Hn(q)-traces, it will be convenient to express monomials

in An(q) as follows. Given u = u1 · · ·un, v = v1 · · ·vn ∈Sn, define

tu,v := tu1,v1
· · · tun,vn

.

For any linear function θq : Hn(q)→ Z[q
1
2 ,q¯1

2 ], define the θq-immanant in An(q) to be

Immθq
(t) = ∑

w∈Sn

q¯
ℓ(w)

2 θq(Tw)t
e,w.

Proposition 2.2. Given Hecke algebra traces

θ1 ∈ T (Hk(q)), θ2 ∈ T (Hn−k(q)), θ = (θ1 ⊗θ2)
xHn(q)

Hk(q)×Hn−k(q)
∈ T (Hn(q)),

we have

Immθ (t) = ∑
I where |I|=k

Immθ1
(tI,I)Immθ2

(tI,I).

Since Hecke algebra traces are determined by the values on minimum length representatives (see [4,

Cor. 8.2.6]), then the following result will be useful.

Lemma 2.3. Let w ∈Sn be of minimum length in its conjugacy class, then w avoids the patterns 3412

and 4231. Furthermore, each v ≤ w also avoids the patterns 3412 and 4231, and also is of minimum

length in its conjugacy class.

3 Plethystically defined characters

Suppose that a certain plethystic substitution transforms symmetric functions written {Yq(D) |D∈Hn(q)}
into symmetric functions {Zq(D) |D ∈ Hn(q)}, i.e.

Zq(D) := r(q)Yq(D)[s(q)X ] (3.1)

for some rational functions r(q) and s(q). This substitution yields a transformation of Hn(q) traces

θq 7→ θq,Z as well. Namely, we define ελ
q,Z to be the Hn(q)-trace that maps D to the coefficient of mλ in

the monomial expansion of Zq(D),

Zq(D) = ∑
λ⊢n

ελ
q,Z(D)mλ . (3.2)
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Then we extend linearly over Z[q
1
2 ,q¯1

2 ], mapping

θq = ∑
λ⊢n

bλ ελ
q 7→ θq,Z := ∑

λ⊢n

bλ ελ
q,Z . (3.3)

Observation 3.1. The symmetric function Zq(D) is equal to

∑
λ⊢n

ηλ
q,Z(D) fλ = ∑

λ⊢n

sgn(λ )ψλ
q,Z(D)

zλ
pλ = ∑

λ⊢n

χλ⊤

q,Z(D)sλ = ∑
λ⊢n

φλ
q,Z(D)eλ = ∑

λ⊢n

γλ
q,Z(D)hλ .

Proposition 3.2. For any plethystically defined map Y 7→ Z (3.1) of symmetric functions, if θq is a trace

function, then so is θq,Z .

Furthermore by (3.3), the change of basis matrix which relates two symmetric function bases (and

necessarily the traces which correspond by the Frobenius map), also relates the Z-analogs of those traces.

For example when Z = LLTinc(P),q and w = w(P) avoiding the patterns 3412 and 4231, we have

εn
q,LLT(C̃w(q)) = 1. (3.4)

This is because by Prop. 3.4 there is only one column-strict Young tableau U of shape 1n, the tableau

consisting one column with entries 1,2, . . . ,n in order, with INVP(U) = 0 where P = P(w).
It is possible to describe LLT analogs of induced sign characters, induced trivial characters, and

power sum traces in terms of character induction.

LLT analogs of power sum traces The LLT analogs of the power sum trace can be expressed simply in

terms of the ordinary power sum trace.

Proposition 3.3. We have

ψλ
q,LLT = (q−1)n ∏

i

1

qλi −1
·ψλ

q .

Proof. Omitted.

LLT analogs of induced sign characters and induced trivial characters The evaluations of ελ
q,LLT and

ηλ
q,LLT at {C̃w(q) | w avoiding 312} have simple combinatorial interpretations.

Proposition 3.4. Fix w ∈Sn avoiding the pattern 312, and let P = P(w). For all λ ⊢ n we have

ελ
q,LLT(C̃w(q)) = ∑

U

qINVP(U),

where the sum is over all column-strict Young tableaux U of shape λ⊤, and

ηλ
q,LLT(C̃w(q)) = ∑

U

qINVP((U1◦···◦Ur)
R),

where the sum is over all row-strict Young tableaux U of shape λ and (U1 ◦ · · · ◦Ur)
R is the reversal of

the concatenation of rows in U.

Proof. Omitted.

This leads to the following generating functions for ελ
q,LLT and ηλ

q,LLT.
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Theorem 3.5. For λ = (λ1, . . . ,λr) ⊢ n we have

Immελ
q,LLT

(t) = ∑
(I1,...,Ir)

(tI1,I1
)e,e · · · (tIr ,Ir

)e,e, (3.5)

where the sum is over all ordered set partitions (I1, . . . , Ir) of type λ , and e is the identity permutation in

the appropriate subgroup of Sn. And

Immηλ
q,LLT

(t) = ∑
(I1,...,Ir)

(tIr ,Ir
)w0,w0 · · · (tI1,I1

)w0,w0 , (3.6)

where the sum is over all ordered set partitions of type λ and w0 is the longest permutation in the

appropriate subgroup of Sn.

Proof. Omitted.

Equivalently, we have the following.

Theorem 3.6. We have

ελ
q,LLT = (ελ1

q,LLT ⊗·· ·⊗ ελr

q,LLT)
xHn(q)

Hλ (q)
, where εn

q,LLT(Tw) =

{
1 if w = e,

0 otherwise.

And

ηλ
q,LLT = (ηλ1

q,LLT ⊗·· ·⊗ηλr

q,LLT)
xHn(q)

Hλ (q)
, where ηn

q,LLT(Tw) = Re,w(q).

Proof. By Theorem 3.5 and Proposition 2.2, we have Immεn
q,LLT

(t) = t1,1 · · · tn,n.

Also, we have tw0,w0 = ∑
w∈Sn

Re,w(q)q
− ℓ(w)

2 te,w, and ηn
q,LLT(T̃w) = Re,w(q)q

− ℓ(w)
2 .

We can express εn
q,LLT and ηn

q,LLT in terms of ordinary Hn(q)-characters and principal specialization

of symmetric functions.

Corollary 3.7.

εn
q,LLT

(1−q)n
= ∑

λ

1

zλ
∏

i

1

1−qλi
ψλ

q = ∑
λ

qb(λ)

∏u∈λ (1−qh(u))
χλ

q

= ∑
λ

∏
i

1

(1−q)(1−q2) · · · (1−qλi)
φλ

q = ∑
λ

∏
i

q(
λi
2)

(1−q)(1−q2) · · · (1−qλi)
γλ

q ,

and

ηn
q,LLT

(1−q)n
= ∑

λ

sgn(λ )

zλ
∏

i

1

1−qλi
ψλ

q = ∑
λ

qb(λ ′)

∏u∈λ ′(1−qh(u))
χλ

q ,

= ∑
λ

∏
i

q(
λi
2)

(1−q)(1−q2) · · · (1−qλi)
φλ

q = ∑
λ

∏
i

1

(1−q)(1−q2) · · · (1−qλi)
γλ

q ,

where h(u) is the hook-length of u and b(λ ) = ∑i(i−1) ·λi = ∑i

(λ ′
i

2

)
.

Proof. Omitted.
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HBS Tilings Extended:
State of the Art and Novel Observations
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Université du Québec à Montréal, Canada
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Penrose tilings are the most famous aperiodic tilings since Gardner described them [2], and they
have been studied extensively [3, 11, 1]. It is thus surprising that one can still discover something new
about them, even if it is not completely new. Indeed, patterns composed with hexagons H, boats B and
stars S (HBS tiles, Fig. 1a) were soon exhibited and aroused interest among physicists. As serendipity
works, we rediscovered HBS shapes but with different decorations (Figure 1b) and forcing rules, while
working on a combinatorial optimization problem on graphs defined by kites-and-darts Penrose tilings
(type P2), as described in [9]. Additionally, we distinguished three types of P2-stars depending on their
surrounding, and as we labeled the HBS-vertices according to these types it appeared that most vertices
of a given shape always had the same label, with an exception for the star. We thus called Star tileset the
five shapes with labeled vertices, before knowing about the existence of HBS tiles – even though they
first appeared in Henley’s 1986 paper [5].

(a) HBS tiles (Hexagon-Boat-Star). (b) Star tileset with small kites and darts decorations.

Figure 1: Usual HBS tiles and their new, enriched version.

As we found it difficult to know whether some of our findings had already been published and if so,
including which information, it seemed a state of the art would be useful to us and might be for others
too. But most of all, we have new findings which we rely on for an article to come [10].

1 Penrose tilings and mutual local derivability

A tiling of R2 is a countable family of non-empty closed sets (Ti)i∈I called tiles such that
⋃

i∈I Ti = R2

and T̊i ∩ T̊j = /0 for all i ̸= j in I. The prototiles of a tiling are the equivalence classes of its tiles up to
congruence (in the present context). A set of prototiles is called a tileset, and oftentimes many tilings can
be composed with copies of the same prototiles. The three types of Penrose tilings, denoted P1, P2 and
P3 in [3], were described by Roger Penrose himself [8]. The corresponding tilesets are shown in Figure
2. Uncountably many tilings can be composed with each, but none of them is periodic: they have no
translations among their symmetries. The tiles must be arranged according to specific assembly rules, for
instance using notches and bumps to assemble the tiles like puzzle pieces (P1 tiles, Fig. 2a) or markings
on the tiles which can be of different kinds. For P2, we use two colors which must match on the corners
of the tiles (Fig. 2b), forming a full black or blank disk at each vertex of a tiling. Such a marking would
not be sufficient for P3 tiles so we use arrows on the edges (Fig. 2c), which must superimpose exactly

http://dx.doi.org/10.4204/EPTCS.403.32
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(a) Tiny diamond, boat, star and pentagons (P1) (b) Kite and dart (P2) (c) Rhombuses (P3)

Figure 2: Penrose tilesets.

(same number of arrows, in the same direction). This marking is also the most convenient in this article,
in relation with HBS tiles. For the same further purposes, an additional arrow is added on the diagonal
of the kite, which corresponds to the single arrow on the edges of rhombuses when a P2 tiling is derived
from a P3 tiling. The sides of rhombuses have length 1, which is also the length of the kite’s diagonal.
Hence for kites and darts the longer side has length 1 and the shorter ϕ−1 where ϕ = (1+

√
5)/2 is the

golden ratio. There are only seven vertex configurations, that is seven ways in which kites and darts can
be arranged around a vertex of the tiling (Figure 3).

Ace Deuce Jack Queen King Star Sun

Figure 3: The seven vertex configurations in a Penrose tiling by kites and darts.

Any Penrose tiling (of any type) can be composed or decomposed into another Penrose tiling, of the
same or another type, using a local mapping: those tilings are mutually locally derivable (MLD). For
instance, Penrose rhombs can be decomposed into kites and darts, which can in turn be decomposed into
smaller rhombs. An inflation (in the case of Penrose tilings) is a decomposition into tiles of the same
type as the original ones, followed with a ϕ : 1 scaling, so that the new tiles have the same shapes and
sizes as the original ones.

2 HBS tilings summarized

HBS tilings are MLD with Penrose tilings of the three types. We first illustrate the local mappings to and
from HBS and Penrose tilings. From HBS to Penrose, simply decorate HBS tiles with (parts of) Penrose
tiles of the chosen type, always in the same way. When the Penrose rhombs are marked with arrows as in
Figure 2c, each HBS tile is obtained by composing the rhombs as explained in Figure 4a. HBS tiles are a
composition of darts and half-kites as described in Figure 4b, with edges of length 1. With the stars and
boats, the resemblance between HBS and P1 tilings is obvious, but the local mapping will be presented
further, along with a few additional observations.

Henley’s paper was cited more than 300 times, but mostly by physicists who experimented different
arrangements of atoms based on decorations on HBS shapes – and not always with the same assembly
rules. Steurer authored a consistent survey of structure research in quasicrystals [13] comparing such
studies, followed with a book on quasicrystals with Deloudi including a lot more theoretical content
[15]. In particular, Fig. 1.7 page 24 illustrates the decorations of HBS tiles by Ammann line segments
as in Figure 5a and give the relative vertex frequencies of P3 tilings, including the configurations which
transform into HBS tiles. The ratio of hexagons to boats to stars is

√
5ϕ :

√
5 : 1, so that the frequencies
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(a) HBS and P3 Penrose tilings superimposed. (b) HBS and P2 Penrose tilings superimposed.

Figure 4: (a) From a P3 tiling, remove all edges with a double arrow and the vertices they point to. (b)
From a P2 tiling, trace the axis of symmetry of each kite, with an arrow pointing to the wide angle, then
erase all edges of kites and darts.

of the tiles, as computed by Olamy and Kléman [7], are

fH = 7−4ϕ =
√

5ϕ
−3 ≃ 52,8% , fB = 7ϕ −11 =

√
5ϕ

−4 ≃ 32,6% , fS = 5−3ϕ = ϕ
−4 ≃ 14,6%.

Gummelt [4] also gives the ϕ2-composition of HBS tilings, drawn in Figure 5b with the arrows. She
came up with a decagon covering model, equivalent to the HBS tiling model, as did Lück earlier [6].
Their models were recently compared by Steurer [14].

(a) HBS tiles with Ammann bar decorations. (b) ϕ2-composition of HBS tiles.

Figure 5: HBS tiles with (a) Ammann segments (arrows are omitted) and (b) their ϕ2-decomposition.

3 The Star tileset

The tileset in Figure 1b yields the same tilings as the HBS tiles once the decorations are removed. It was
derived from P2 tilings, but not in the same way as in Figure 4b. The construction is still quite simple and
in addition to the ϕ2-composition mentioned above, we have a ϕ-composition, which is what interested
us for the construction in [10]. Vertex colors are strongly related to vertex configurations in P2, hence to
vertex configurations in HBS tilings when you look at the compositions.

As can be seen in Figure 4b and considering the local rules of P2 tilings, the shortest distance be-
tween the centers of two stars1 is 3+ 2ϕ−1 = ϕ3, which occurs when two HBS-stars are incident to
the same HBS-edge (or kite of the underlying PT). If you join the centers of the stars, the HBS shapes
appear again but larger, composed with many kites (or half-kites) and darts as in Figure 6. The vertices

1“Star” vertex configurations in a P2 tiling or stars in a HBS tiling.
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Figure 6: P2 and Star tilings superimposed.

are colored according to their degree, which corresponds to the type of P2-star they lie on: the star can
be tangent to either 0 (red), 1 (green) or 2 (blue) suns. If you put on each edge an arrow pointing to the
greatest number (among the endpoints), you get exactly the HBS tiles as in Figure 1a. Yet here there is
more information encoded in the vertices, hence more local constraints. The hexagons and boats all have
exactly the same decorations but the stars come in three versions in what we call the Star tileset.

Obviously, the Ammann bar decorations of HBS tiles are still valid for the same shapes in the Star
tileset. Each vertex of the star tiling lies inside a small polygon formed by n Ammann bars. The label
of the vertex is then 5− n (or the corresponding color). Since the vertices of the HBS tiling are the
stars of the P2 tiling, and a star is obtained by inflating a sun, joining the suns which are at distance
2+ϕ−1 = ϕ2 (the minimum) as in Figure 6 (magenta dashed lines) yields the same HBS tiling as first
inflating once the P2 tiling and then joining the stars. The vertex colors are then given by the number of
queen configurations intersecting with the sun. The resulting ϕ-decomposition of each tile is resumed
in Figure 7. Apply it twice to get the ϕ2-decomposition mentioned above. Now if you apply the ϕ-

Figure 7: Star tileset decomposition.

decomposition a third time and decorate the smaller shapes as in Figure 4b (usual decoration of HBS
tiles with half-kites and darts), the initial Star tiles will have the same decorations as in Figure 1b.
Equivalently, from an HBS tiling with the tiles decorated as in Figure 4b you can keep the HBS shapes
as is, apply three ϕ-decompositions to kites and darts, and then appropriately place the vertex colors
on hexagons and boats. Actually, you can even place the colors from the start, considering how vertex
configurations in P2 tilings substitute. As for the substitution with P1, the label of a pentagon is the
number of HBS-arrows pointing to it. Thus each type of pentagon from the original P1 tileset can simply
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(a) HBS and P1 Penrose tilings superimposed. (b) Star and P1 Penrose tilings superimposed.

Figure 8: Each P1-star is inside a HBS-star, each P1-boat inside a HBS-boat, and each P1-diamond
inside a HBS-hexagon, while all pentagons are decorated with the edges of HBS tiles. In the Star tiling,
pentagons are colored according to their type (Figure 9b).

(a) Star tileset with P1 decorations. (b) P1 with colored pentagons.

Figure 9: Duality between P1 and Star tilesets.

get the corresponding color, as illustrated in Figures 8b and 9, and if we add the arrows on P1 tiles then
the corresponding HBS tiling appears on any P1 tiling.

HBS vertex configurations are given in Figure 10. The main difference between HBS and Star tilings
is the amount of information which can be deduced from a local configuration. As you can see in Figure
7, each vertex color in a Star tiling decomposes into an hexagon, a boat or a star according to its color.
Hence the ratio of blue to green to red is the same as hexagons to boats to stars, that is

√
5ϕ :

√
5 : 1.

Since the frequency of stars in HBS tilings is fS = ϕ−4, we have

fH =
√

5ϕ
−3 , fB =

√
5ϕ

−4 , f2 =
√

5ϕ
−7 ≃ 7,7% , f1 =

√
5ϕ

−8 ≃ 4,76% , f0 = ϕ
−8 ≃ 2,13%

where fi is the frequency of the star Si with i red vertices. These frequencies can also be computed using
those of vertex configurations in Penrose tilings.

Figure 10: Vertex neighborhoods in HBS and Star tilings, with different possible colors on some vertices
of the stars. When stars, boats and hexagons are decomposed, we obtain one of those centered on a red
vertex (from left to right), which we call respectively bellflower, orchid and pansy.



C. Porrier 161

(a) Kingdom of the bellflower. (b) Kingdom of the orchid.

(c) Kingdom of S0. (d) Kingdom of S1. (e) Kingdom of S2.

Figure 12: Kingdoms of the bellflower, the orchid and the 3 stars.

As in Penrose tilings, each vertex configuration can force a whole set of tiles (in the tiling) which is
called empire. This means that anytime a given vertex configuration appears in any tiling of the same
type, all the tiles forming the empire are placed exactly in the same way relatively to it. Since several
empires are disconnected and can even contain infinitely many tiles, we only represent here the largest
connected component, which includes the vertex configuration. We call it kingdom (or local empire).
For the bellflower and the orchid, since they contain no stars, vertex colors could be omitted (as in HBS
tilings), but when a vertex configuration includes a star, the colors have a significant impact, as you can
see in Figure 12. In particular, the star S1 forces a star S0 above and two stars S2 below. These three
kingdoms resemble those of respectively the star, the king and the queen in P2 tilings.

4 Gemstones tileset

The Star tileset can be modified to get convex tiles with only two labels at their vertices, observing that
a blue vertex of an hexagon, a boat or a star is actually not a vertex of the Star tiling. Thus we obtain the
Gemstones tileset in Figure 13. On Figure 15, one can see how HBS tiles are deformed to get gemstones.
Substitution from P3 is also quite simple. Trace the long diagonal of each thin rhomb. For each Q
configuration (hexagon), compose the fat rhomb with its two adjacent half thin rhombs. Everywhere
else just erase all edges of the P3 tiling. Conversely, Gemstones are easily decorated with rhombuses
(including arrows or other matching rules). As for P2, the suns and jacks are vertices of Gemstones:
trace a (short) segment between those vertices whenever they share a kite, and a (long) segment when
they are separated by two kites which share a short edge.
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Figure 13: Gemstones tileset: sapphire, ruby and topazes. Edges have length 1 and 2sin 2π

5 . The inter-
section point of the dashed lines is the “center” of the ruby for the ϕ-composition in Figure 14.

Figure 14: ϕ-decomposition of Gemstones.

Figure 15: Gemstones and HBS tilings superimposed, along with the ϕ2-composition in green.
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In this paper, we explore some generalizations of a counting problem related to tilings in grids of size

2×n, which was originally posed as a question on Mathematics Stack Exchange (Question 3972905).

In particular, we consider this problem for the product of two graphs G and Pn, where Pn is the path

graph of n vertices. We give explicit bivariate generating functions for some specific cases.

1 Introduction

Question 3972905 in Mathematics Stack Exchange asks for the number of ways to partition a tile 2×n

into s parts. That is the number of different configurations (tilings) in a grid of size 2×n with exactly s

polyominoes using 2 colors. For example, if n= 4 we have 12 configurations with exactly 4 polyominoes,

see Figure 1.

Figure 1: Configurations of a grid 2×3 with exactly 4 polyominoes.

In [4], we study this problem for a general grid of size m× n and k colors. We employ generating

functions to provide a partial solution to this problem for the cases m = 1,2,3. Specifically, if c(n, i)
represents the number of different tilings of a 2× n grid with exactly i polyominoes and using two

colors, then

∑
n,i≥1

c(n, i)xnyi =
2xy(1+ y− x(1− y)(1−2y))

1− x(2+ y+ y2)+ x2(1− y)(1−5y2 −2y(1−2y))

= (2y+2y2)x+(2y+12y2 +2y4)x2 +(2y+30y2 +18y3 +111222yyy444 +2y6)x3

+(2y+56y2 +102y3 +56y4 +24y5 +14y6 +2y8)x4 +O(x5).

Figure 1 shows the colored tilings corresponding to the bold coefficient in the above series.

This counting problem was explored by Richey [5] in 2014. Specifically, he showed that

limn,m→∞ e(m,n)/mn exists and is finite, where e(m,n) is the expected number of polyominoes on the

m× n grid. Mansour [3] considers this problem for bicolored tilings (k = 2) for m = 1,2,3 using au-

tomata. A related problem was addressed by Bodini during GASCOM 2022, referred to as rectangular

shape partitions [1].

http://dx.doi.org/10.4204/EPTCS.403.33
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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2 Colored Tilings of Grids

Let T
(k)

m,n denote the set of tilings of an m× n grid with polyominoes colored with one of k colors, such

that adjacent polyominoes are colored with different colors. An element of T
(k)

m,n is called a k-colored

tiling. Given a k-colored tiling T in T
(k)

m,n , we use ρ(T ) to denote the number of polyominoes in T . For

fixed positive integers m and k, we define the bivariate generating function

C
(k)
m (x,y) := ∑

n≥1

xn ∑
T∈T

(k)
m,n

yρ(T ). (1)

Note that the coefficient of xnyi in C
(k)
m (x,y) is the number of k-colored tilings of an m× n grid with

exactly i polyominoes. Let cm,k(n, i) denote the coefficient of xnyi in the generating function C
(k)
m (x,y).

In [4], we derive explicit generating functions for the cases m = 1,2,3. Additionally, we introduce a

variation of this problem for hexagonal grids.

The combinatorial problem can be described in terms of graphs. Let G1 = (V1,E1) and G2 = (V2,E2)
be two undirected graphs. The product of G1 and G2 is defined as G1 ×G2 = (V1 ×V2,EG1×G2

), where

EG1×G2
= {{(v1,v2),(w1,w2)} : (v1 = w1 and {v2,w2} ∈ E2) or (v2 = w2 and {v1,w1} ∈ E1)}.

Let Pn be a path graph, that is a simple graph with n vertices arranged in a linear sequence in such a way

that two vertices are adjacent if they are consecutive in the sequence, and are non-adjacent otherwise. A

grid graph of size m×n is defined as the product Pm ×Pn, and it is denoted by Lm,n.

Let G = (V,E) be an undirected graph. Two non-empty disjoint subsets V1,V2 ⊆V are neighbors if

there is an edge (v1,v2) ∈ E such that v1 ∈V1 and v2 ∈V2. A k-colored partition of size s of the vertices

V of G is a partition of the set V =
⋃s

i=1Vi such that for each Vi, the induced graph is connected, all

vertices in Vi are colored with exactly one of k colors, and any pair Vi and Vj of neighbors are colored

with different colors.

For example, Figure 2 (left) shows a 3-colored partition of size 7 of the grid graph L3,8, and the

Figure 2 (right) shows the corresponding tiling in T
(3)

3,8 .

Figure 2: A 3-colored partition of size 7 of L3,8.

Let G be an undirected graph. We denote by T
(k)

n (G) the set of k-colored partitions of G×Pn. Given

a k-colored partition T in T
(k)

n (G), we use ρ(T ) to denote the size of the partition. For fixed positive

integers m and k, we define the bivariate generating function

C
(k)
G (x,y) := ∑

n≥1

xn ∑
T∈T

(k)
n (G)

yρ(T ).

It is clear that C
(k)
m (x,y) =C

(k)
Pm
(x,y).
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3 The complete graph case.

In this section we analyze the case when G=Km, where Km is the complete graph of size m. For example,

Figure 3 shows a 2-colored partition of size 4 of the graph K5 ×P4.

Figure 3: A 2-colored partition of size 4 of K5 ×P4.

3.1 The case m = 3.

In this section we give the explicit bivariate generating function for the 2-colored partitions of K3 ×Pn

for all n ≥ 1.

Theorem 3.1. The bivariate generating function T (x,y) =C
(2)
K3

(x,y) is given by

T (x,y) =
2xy(1+3y− x(3−7y+4y2))

1− x(4+3y+ y2)+ x2(3−7y+3y2 + y3)
.

Moreover, [xn]T (x,1) = 8n.

Proof. Let An and Bn denote the sets of colored tilings in T
(2)

n (K3), such that in the first case the last

triangle is colored with only one color, while in Bn, the last triangle is colored with the two colors.

Now, we define the bivariate generating functions:

T1(x,y) := ∑
n≥1

xn ∑
T∈An

yρ(T ) and T2(x,y) := ∑
n≥1

xn ∑
T∈Bn

yρ(T ).

It is clear that T (x,y) = T1(x,y)+T2(x,y).

Let T be a 2-colored partition in An. If n = 1, then T = K3, and its contribution to the generating

function is the term 2xy because it has to be monochromatic. If n > 1, then T may be decomposed as

either T1K3 or T2K3, where T1 ∈ An−1, and T2 ∈ Bn−1. Depending on whether the colors of the last two

triangles coincide or not, we obtain the cases given in Table 1.

From this decomposition, we obtain the functional equation

T1(x,y) = 2xy+ xT1(x,y)+ xyT1(x,y)+ xT2(x,y)+ xT2(x,y).

For the colored tilings in Bn we obtain the different decompositions given in Table 2. From this decom-

position we obtain the functional equation:

T2(x,y) = 6xy2 +3xyT1(x,y)+3xyT1(x,y)+3xT2(x,y)+ xy2T2(x,y)+2xyT2(x,y).
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xT1(x,y) xyT1(x,y)

xT2(x,y) xT2(x,y)

Table 1: Cases for the generating function T1(x,y).

3xyT1(x,y) 3xyT1(x,y)

xT2(x,y) xy2T2(x,y) xyT2(x,y)

xT2(x,y) xyT2(x,y) xT2(x,y)

Table 2: Cases for the generating function T2(x,y).

Since T (x,y) = T1(x,y)+T2(x,y), we have a system of three linear equations with three unknowns

T (x,y),T1(x,y), and T2(x,y). Solving the system for T (x,y) we obtain the desired result.

As a series expansion, the generating function T (x,y) begins with

T (x,y) = (2y+6y2)x+(2y+44y2 +12y3 +6y4)x2 +(2y+178y2 +218y3 +84y4 +24y5 +666yyy666)x3

+(2y+600y2 +1674y3 +1100y4 +528y5 +150y6 +36y7 +6y8)x4 +O(x5).

Figure 4 shows the 2-colored partitions corresponding to the bold coefficient in the above series.

×2 ×2 ×2

Figure 4: All 2-colored partitions in T
(2)

3 (K3).

Corollary 3.2. The expected number for the size of the partition when the colors assigned to each vertex

are selected uniformly in T
(2)

3 (K3) is given by

23n−5(37+19n)

23n
.
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We present a novel bijection between stacked directed polyominoes and Motzkin paths with alternative
catastrophes. Further, we show how this new connection can be used in order to obtain a better
understanding of certain parameters of stacked directed animals.
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1 Stacked directed animals and heaps of dimers

The motivation behind the enumeration of lattice animals or polyominoes can be found in the study of
branched polymers [5] and percolation [3]. Even though these combinatorial objects have been studied
for more than 40 years, exact enumeration results for general polyominoes are still rare. Thus, one of the
main research directions focuses on the investigation of large subclasses of polyominoes that are exactly
enumerable. This is also the motivating force behind the class of stacked directed animals that we will
define in this section.

Definition 1.1 (Lattice animals). A polyomino of area n is a connected union of n cells on a lattice. The
corresponding lattice animal then lives on the dual lattice obtained by taking the center of each cell.

The polyominoes we are interested in have square cells, as illustrated in Figure 2. We start now with
the definition of a subclass of polyominoes that has already been exactly enumerated by Dhar in [4].

Definition 1.2 (Directed animals). A directed animal on the square grid is a lattice animal, where one
vertex has been designated the source and all other vertices are connected to the source via a directed
path consisting only of N- and E-steps, and visiting only vertices belonging to the animal.

We are interested in so called stacked directed animals, which can be informally described as a
sequence of directed animals. However, the easiest description for this class does not build directly upon
the above definition. Instead, it defines them indirectly via a one-to-one correspondence to a natural
class of heaps of dimers, which were first introduced by Viennot [9]. This approach greatly simplifies
the derivation of their generating functions and also serves as an intermediary step for our bijection to
Motzkin excursions with alternative catastrophes.
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https://orcid.org/0009-0009-3923-051X
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(a) A general heap. (b) A strict heap. (c) A pyramid. (d) A half-pyramid.

Figure 1: Different types of heaps of dimers.

Definition 1.3 (Heaps of dimers). A dimer consists of two adjacent vertices on a lattice. A heap of dimers
is obtained by dropping a finite number of dimers towards a horizontal axis, where each dimer falls until
it either touches the horizontal axis or another dimer; see Figure 1. The width of a heap is the number of
non-empty columns. The dimers that touch the x-axis are called minimal. A heap is called

• strict, if no dimer has another dimer directly above it;

• connected, if its orthogonal projection on the horizontal axis is connected;

• a pyramid, if it has only one minimal dimer;

• a half-pyramid, if its only minimal dimer lies in the rightmost non-empty column.

The right/left width of a pyramid is the number of non-empty columns to the right/left of the minimal
dimer.

Now we will describe a construction from [2, p. 240] that maps directed animals on the square lattice
to strict pyramids of dimers.

Definition 1.4 (Mapping from directed animals to heaps). Let D denote the set of directed lattice animals
on the square grid, P denote the set of strict pyramids and D ∈ D . We define a mapping V : D → P as
follows:

1. Rotate D by 45◦ degrees counter-clockwise.

2. Replace each individual cell in D by a dimer.

This results in a pyramid that we call V (D), with the source of the lattice animal being the only minimal
dimer.

Remark 1.5. It was observed by Viennot in [9] that this mapping induces a bijection between directed
animals on the square lattice and strict pyramids of dimers and we denote the inverse mapping by V . This
can be easily verified by recalling that any vertex in D lies on a directed path consisting only of N and E
steps from the source, visiting only other vertices in D. Hence, the corresponding dimer in V (D) lies on a
directed path of dimers lying diagonally to the left or the right above each other. As the next definition
will show, it only takes a small adaptation to extend this mapping to general lattice animals.
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Figure 2: Constructing the connected heap V (A) from an animal A on the square grid.

Definition 1.6 (Mapping from lattice animals to heaps). Let A denote the set of lattice animals on the
square lattice, H the set of connected heaps, and A ∈ A . We define a mapping V : A → H as follows:

1. Rotate A by 45◦ degrees counter-clockwise.

2. Replace each individual cell in A by a dimer.

3. Let the dimers fall.
We call the resulting heap V (A); see Figure 2 for an example of this procedure.

Thus, V maps square lattice animals to connected heaps that are not necessarily strict. However,
clearly not every connected heap can be obtained in this way. Hence, we restrict our attention to strict,
connected heaps and define a class of lattice animals that stand in one-to-one correspondence with strict,
connected heaps via V .

Definition 1.7 (Multi-directed animals). Let H be a strict, connected heap. We now construct an extension
of V to connected heaps via induction over the number of minimal dimers k of H:

• For k = 1, the heap H reduces to a simple pyramid. Thus, by Remark 1.5, V (H) is already
well-defined.

• If instead H has k > 1 minimal dimers, we push the (k−1) leftmost pyramids upwards, producing
a connected heap H ′ with k−1 minimal dimers, placed far above the remaining pyramid Pk. Now,
recursively replace H ′ by V (H ′) and Pk by V (Pk).

• Finalize the construction by pushing V (H ′) downwards until it connects to V (Pk).
We define V (H) as the resulting animal and call the class of square lattice animals obtainable in this way
square multi-directed animals.

Now we are ready to define stacked directed animals as a subclass of multi-directed animals.
Definition 1.8 (Stacked directed animals). Take a connected heap H with k minimal dimers. Let us denote
by P1,P2, . . . ,Pk, from left to right, the corresponding pyramidal factors of H from the construction in
Definition 1.7. Let us call stacked pyramids the connected heaps such that for 2 ≤ i ≤ k, the horizontal
projection of Pi intersects the horizontal projection of Pi−1. Then, stacked directed animals are defined as
the image of the set of stacked pyramids under V . The right width of a stacked pyramid is the right width
of its rightmost pyramidal factor.

These lattice animals are easier to enumerate due to their recursive description, visualized in Figure 3.
This description yields algebraic equations for their generating functions. It will also prove crucial in
constructing our correspondence to Motzkin excursions with alternative catastrophes that we introduce in
the next section.
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P1
P2

P3

P4
P5

P1

P2

P3

P4 P5

P6

Figure 3: The schematic structure of stacked directed animals (left) and multi-directed animals (right)
from Definitions 1.8 and 1.7, respectively [2, Figure 9]. Each triangle represents a directed animal from
Definition 1.2.

2 Lattice paths with alternative catastrophes

Definition 2.1 (Lattice paths). Let S ⊆ Z be a finite set of integers called steps. A lattice path is a
sequence (s1,s2, . . . ,sn)∈S n of steps with a fixed starting point y0.1 We set y0 = 0 and define yk = ∑

k
i=1 si

as the altitude of the path after k steps. Furthermore, we distinguish different classes of paths:

• An unconstrained path is called a walk.

• A walk ending on the x-axis (i.e., yn = 0) is called a bridge.

• A walk that may never cross the x-axis (i.e., yk ≥ 0) is called a meander.

• A walk that is at the same time a bridge and a meander is called an excursion.

Dyck paths are probably the most ubiquitous class of paths, which are excursions associated with the
steps S = {−1,1} and famously enumerated by the Catalan numbers. In our bijections we will encounter
the nearly equally famous Motzkin paths, which are excursions associated with S = {−1,0,1}. We will
call them Motzkin excursions (resp. Motzkin meanders), when they use the step set of Motzkin paths and
are excursions (resp. meanders). Moreover, we will need 2-Motzkin paths, which are associated with the
colored step set S = {−1,01,02,1}, which means that the flat step 0 comes in two different colors. We
will now enrich these models by a new type of step that takes a path immediately down to the x-axis.

Definition 2.2 (Catastrophe). For s > 0 a catastrophe is a step −s, with −s /∈S allowed only at altitude s.

Dyck meanders with catastrophes were first introduced in 2005 by Krinik et al. [6] as a model for
the classical single server queueing system M/M/1/H with a finite capacity, with a constant catastrophe
rate γ . In addition, catastrophe queues also arise as simple, natural models of the evolution of stock
markets [8], or under the name of random walks with resetting in the field of probability theory and
statistical mechanics [7]. Later, Banderier and Wallner [1] studied enumerative properties and derived
limit laws for several parameters, such as the total number of catastrophes.

Note that catastrophes never coincide with regular jumps. As we will see, it also makes sense to allow
such catastrophes as well as catastrophes at height zero. This conveniently leads to a model that is easier
to handle and simplifies some of the more tedious calculations. To distinguish these two models, we will
refer to catastrophes of the second kind as alternative catastrophes.

Definition 2.3 (Alternative catastrophe). For s ≥ 0, an alternative catastrophe is a step of the form −s,
allowed only at altitude s, that takes the path immediately down to the x-axis; see Figure 4.

1In the literature this model is called simple and directed.
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Figure 4: Example of a Dyck excursion with alternative catastrophes marked in red; see Definition 2.3.
The first and last catastrophe are not classical catastrophes in the sense of Definition 2.2. Note that a step
from altitude 1 to 0 can either be an alternative catastrophe (red) or a step −1 from the step set S (black).

3 Bijection to Motzkin excursions with alternative catastrophes

We are now ready to link Motzkin excursions with alternative catastrophes to stacked directed animals,
respectively, strict heaps. The following bijection is introduced in three steps, always linking more and
more complicated objects. We start with a bijection between strict half-pyramids and classical Motzkin
paths, both of which are enumerated by A001006 in the OEIS2.
Lemma 3.1. The set of strict half-pyramids of size n+1 is in bijection with the set of Motzkin excursions
of length n.

Proof (Sketch). Observe that both classes satisfy a structurally equivalent decomposition as shown in
Figure 5. Thus, it is straightforward to build an explicit bijection.

Figure 5: The factorizations of half-pyramids and Motzkin excursions.

Building on this result, we present a bijection from strict pyramids to a subclass of 2-Motzkin paths.
Lemma 3.2. The set of strict pyramids of size n+1 is in bijection with the set of 2-Motzkin excursions of
length n (with black and red E-steps), such that no red E-step occurs at positive height h > 0. Equivalently,
we could describe it as the set of Motzkin excursions of length n with catastrophes only occurring at
height h = 0.

Proof (Sketch). As shown in Figure 6, both structures satisfy structurally equivalent decompositions.

Finally, we are now able to present our main result, again, building on the previous results. The
corresponding integer sequence is A059712.

2The On-Line Encyclopedia of Integer Sequences: http://oeis.org/

http://oeis.org/A001006
http://oeis.org/A059712
http://oeis.org/
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Figure 6: The factorizations of strict pyramids and Motzkin excursions with only horizontal catastrophes.

Theorem 3.3. The set of Motzkin excursions with alternative catastrophes of length n is in bijection with
the set of stacked directed animals of size n+1 on the square grid.

Proof (Sketch). Let H be the connected heap of dimers representing a stacked directed animal on the
square grid and denote by P1,P2, . . . ,Pk the corresponding pyramidal factors of H. Using Figure 7 as a
visual aid, it is easy to see that the rightmost pyramid Pk corresponds to the excursion C0,1 in the lattice
path. The horizontal distance between the minimal dimer of Pk−1 and the leftmost dimer of Pk then
determines the height ℓ of the catastrophe at the end of E1. To offset the height lost with the catastrophe,
we mark the start of Pk−1 with a NE-step and, in addition, for the first ℓ−1 pyramids in the factorisation
of Pk−1, we replace the horizontal catastrophe used to mark the beginning of P′ by a NE-step.

For the reverse direction, let M be a Motzkin excursion with alternative catastrophes. Firstly, we split
M into a sequence of excursions E1, . . . ,Ek, each one ending with their first non-horizontal catastrophe.
For each excursion, we point out ℓ NE-step, with ℓ being the respective height of the final catastrophe
by a last passage decomposition: At every height i = 0, . . . , ℓ−1 we point out the last step to leave this
particular altitude. These NE-steps then mark the start of the half-pyramids Qk−1,i each.

Figure 7: The recursive construction of stacked pyramids and Motzkin excursions with alternative
catastrophes.
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Figure 8 shows how the bijection transforms an explicit stacked directed animal into a Motzkin path
with alternative catastrophes.

(a) Stacked directed animal of size 18.
0

21

3

4

5

6

7

98

14

10

11

12

13

15

16

17

(b) Corresponding stacked pyramids of size 18.

(c) Motzkin excursion with alternative catastrophes (marked in red) of length 17.

Figure 8: A stacked directed animal and its corresponding Motzkin excursion with alternative catastrophes.
The dimers are numbered according to the order of their corresponding steps in the lattice path.

4 Conclusion and outlook

One advantage that is gained by viewing stacked directed animals as lattice paths comes with the
reinterpretation of parameters in the language of lattice paths. In particular, we can use the cumulative
size of all catastrophes to obtain the improved asymptotic lower bound 9

28 n on the width of the connected
heap associated with the animal compared to 3

28 n from [2, Proposition 2].

Theorem 4.1. Let M be a Motzkin excursion with alternative catastrophes of length n, let c1, . . . ,ck denote
the heights of all non-horizontal catastrophes and let H be the associated strict, connected heap obtained
by Theorem 3.3. Then we have the following:

1. The number of minimal dimers in H is asymptotically equal to 3
28 n.

2. The cumulative size of all catastrophes plus the number of minimal dimers is asymptotically equal
to 9

28 n.
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Proof (Sketch).

1. The number of minimal dimers in H is equal to k+1. Using [1, Theorem 4.12] we get that this
number is asymptotically equivalent to 3

28 n, where we recover the asymptotics from [2, Proposi-
tion 2].

2. Since the height of a non-horizontal catastrophe models the distance between a minimal dimer
and the left-most dimer of an adjacent pyramidal factor, it serves as a lower bound on the distance
between two minimal dimers. Hence, 1+∑

k
ℓ=1(cℓ+ 1) yields a lower bound on the width of H.

Using [1, Theorem 4.18] we get that the cumulative size of all catastrophes is asymptotically
equivalent to 3

14 n. Therefore, 9
28 n gives a lower bound on the width of stacked directed animals.

This result improves the previous best asymptotic lower bound on the width by a factor of three.

In the long version of this paper, we will study lattice paths with alternative catastrophes in more
detail, as well as more statistics between them and stacked directed animals.
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We introduce a natural Boltzmann measure over polyominoes induced by boundary avalanches in the
Abelian Sandpile Model. Through the study of a suitable associated process, we give an argument
suggesting that the probability distribution of the avalnche sizes has a power-law decay with expo-
nent 3

2 , in contrast with the present understanding of bulk avalanches in the model (which has some
exponent between 1 and 5

4 ), and to the ordinary generating function of polyominoes (which is con-
jectured to have a logarithmic singularity, i.e. exponent 1). We provide some numerical evidence for
our claims, and evaluate some other statistical observables on our process, most notably the density
of triple points.

1 Non-uniform measures on polyominoes from Statistical Mechanics

Given a periodic tiling of the plane, a (general) polyomino is a finite connected geometric structure
formed by joining one or more cells of the tiling edge to edge. The name polyomino is typically as-
sociated to the square grid, while for the triangular and hexagonal grids the names polyiamonds and
polyhexes (respectively) are sometimes used [30, 37, 38].

The history in the study of polyominoes started within recreational mathematics more than one cen-
tury ago [15, 16, 18]. In a modern vision, they form a challenging problem in Combinatorics and Statis-
tical Mechanics (see e.g. [19, sec. 10.8] or [17]), somewhat in analogy with the study of Self-Avoiding
Walks: despite allowing for an elementary and natural definition, very little is known rigorously from
a mathematical perspective, although mathematicians and physicists have provided numerous conjec-
tures that are believed to be true and are strongly supported by numerical simulations. A reason for this
difficulty is that, within the field of exactly-solvable models in Statistical Mechanics, we know more
about locally-homogeneous random systems, than about finite compact random structures embedded in
Euclidean space.

Given a polyomino P, define n(P), the size of P, as the number of faces contained in P. The ex-
haustive generation of polyominoes, or their enumeration, at any finite size n, is a finite problem, and the
problem of decreasing the computational cost of the associated algorithms has been studied by several
authors [4,5,9,14,22,23,39]. That is, calling AL

n the number of polyominoes of size n on a given lattice
L , the problem of determining the first N values {AL

1 , . . . ,AL
N }, with the smallest possible asymptotic

growth of the complexity as a function of N (and the largest possible value of N given the present technol-
ogy), is an interesting problem in the theory of algorithms, and also a topic appropriated for GASCom,
but it is not our subject today.
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Determining the asymptotic of AL
n as a function of n is a very interesting subject. Padé approximants

can be used on the list of the first few values, so that the previous question is important also for this goal,
but also other insights can give access to this information, mostly coming from Statistical Physics. It is
believed that AL

n ∼ cL λ n
L /n, [22], where the overall constant cL and the growth rate λL are expected

to depend on the lattice (for the square lattice it is known that 4.00253 ≤ λ□ ≤ 4.5252 and the best
estimates are c□ ≃ 0.3169 and λ□ ≃ 4.0626 [23]), while, crucially, the exponent −1 of the algebraic
correction is an exact rational, and it is expected to be universal (in the sense of universality for Critical
Phenomena [41]), and is a critical exponent, i.e., among its various properties of robustness, it shall be
the same for all two-dimensional lattices.

Finally, it is of interest to determine the asymptotics for large n of statistical observables of large
random polyominoes, taken with the uniform measure. Some examples of interesting observables are
the perimeter, that is, the number of edges on the boundary, and the gyration radius, that is, the radius of
the smallest disk that contains the polyomino. The average of both these quantities is expected to scale
algebraically with n, again with some critical exponents expected to be the same for all lattices.

An interesting subclass of polyominoes consists of simply-connected polyominoes, that is, polyomi-
noes such that the boundary consists of a single cycle (or, in simple words, “polyominoes with no holes”),
see for example [17]. The same questions as above (determination of the An’s, asymptotics, critical ex-
ponents for observables like the perimeter and the radius of gyration,. . . ) apply to this subfamily, and
involve in principle a different set of critical exponents.

The point of this paper is that one can consider some measure of interest µn(P) over polyominoes P of
size n, instead that the uniform one. Of course, for such a measure to be interesting, it shall relate to some
relevant probabilistic process. Again, this connects to the notion of universality of critical phenomena,
where modifying the measure in such a way would correspond to “couple” the first model to a second
one, and tune again the parameters such that the system becomes critical (of which a signal would be
the fact that the natural “Boltzmann” series, i.e., the grand-canonical partition function, has an algebraic
singularity at z = 1). An example of such a philosophy comes from random planar maps. On one
side, there is an overwhelming evidence that critical exponents associated to maps (asymptotics in the
enumeration, scaling of distances, etc.) are universal, that is do not depend on the precise local structure
of the map (for example, are the same for random triangulations, or for quadrangulations, or for all maps
altogether). Furthermore, if one consider maps “with matter” (that is, coupled with a critical Statistical
Mechanics model, such as the Ising Model, the Potts Model, the O(n) Loop Model, etc.), the critical
exponents change, again in a universal way, that depends only on the type of matter introduced, and not
on the local structure of the map. In some rare cases, the introduction of matter may even simplify the
problem (for example, the enumeration of maps is much simpler if they are equipped with a spanning
tree, which is the limit q → 0 of the q-colour Potts Model).

In the case of polyominoes, a simple example in this direction is the measure induced by critical site
percolation (that is, the q-state Potts model in the limit q → 1), e.g. on the triangular lattice (which is
the simplest case, as, by simple symmetry arguments, it is known that the critical parameter is qc =

1
2 ).

Interestingly, this measure is much simpler to study than the original problem, and is quite explicit:
calling b(P) the number of faces not in P, and adjacent to P, we have µ

perc
n (P) = 2−n−b(P)+1/n for

polyominoes P of size n. Also, in this case, exact sampling in polynomial time can be perfomed quite
easily: one should just explore the percolation cluster containing the origin, repeating the algorithm up to
have the desired size, and perform anticipated rejection on small clusters. The peculiar factor 1/n has a
trivial explanation in this case: when the underlying lattice is face-transitive (as is the case for the square,
hexagonal and triangular lattices, for example), without loss of generality we can consider polyominoes
rooted at one face, as there is a 1-to-n correspondence between unrooted and rooted objects. In particular
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the corresponding enumeration series is just nAL
n , and all statistical averages remain the same.

The measure induced by percolation is a simple illustration of how modifications of the uniform
measure induced by a Statistical Mechanics model on the whole plane, although apparently more com-
plicated, may be more accessible than the uniform measure. Exploring one certain class of examples
within this framework, namely the ones induced by the Abelian Sandpile Model (ASM) of Statistical
Mechanics [12] (which is related to Uniform Spanning Trees, that is, the q-state Potts model in the limit
q → 0), is the topic of this paper. Contrarily to the model of percolation (and, more generally, of critical
q-colour Potts Model), this model induces measures on polyominoes supported on the simply-connected
ones, that is, our (grand canonical) measures µ(P) will be non-zero if and only if the polyomino P has
no holes.

Other natural measures on lattice animals, with a large literature, that we do not mention at length
in this paper are for example the Diffusion-Limited Aggregation model (DLA) or the Eden Model [3, 13,
29, 40]. These models are, yet again, simpler versions of the uniform measure over polyominoes, but,
contrarily to the point stressed here, the simplification does not come from the fact that the measure is
defined in terms of a Statistical Mechanics model, but rather from the fact that the configurations can be
generated by iteratively adding the unit elements one by one, with some growth rule.

2 Avalanches in the Abelian Sandpile Model and polyominoes

The Abelian Sandpile Model [1] is a lattice automaton in the class of out-of-equlibrium models in Sta-
tistical Mechanics. Pictorially, it is a model in which some “sand” arrives in the system, according to
some protocol, and then the local instabilities are relaxed through some “sand avalanches”, which are
possibly large, so that the sand can ultimately leave the system through its boundary. When a single grain
of sand is added, provided that an avalanche occurs, every site has performed either a positive number of
topplings, or none, and the set of sites which have performed at least one toppling is connected, and thus
constitutes a non-empty polyomino. Here we shall give a short introduction to the formalism, following
in part the notations of [6, 12].

By the celebrated work of Dhar and collaborators [11,12,26,27], it is known that, under the protocol
in which the sand is added randomly and uniformly, the steady-state probability distribution of the sand
configurations is supported on the so-called “recurrent configurations”, and is uniform. Also, the uniform
measure is stable under addition of any given configuration, followed by relaxation. These configurations
are characterised by the avoidance of an infinite list of “forbidden subconfigurations” (FSC), and are in
bijection with the spanning trees of the lattice, rooted at the boundary, through a (slightly non-canonical1)
algorithm called “burning test”. The relation between configurations and spanning trees is valid if we
consider the boundary as a single site. If instead we prefer to keep a visual notation induced by the
lattice, and do not connect the boundary edges among themselves, it is more precise to say that the
relation is with rooted spanning forests, where each component of the forest is rooted at a boundary
edge. Yet another characterisation of recurrent configurations is that, by adding a “frame identity” to the
configuration and performing the resulting avalanches, the system goes back to the original configuration,
and the avalanche consists in exactly one toppling per site (the frame identity Idf is the configuration such
that Idf(v) is the number of boundary edges incident on v).

It is useful to recall the main ideas of the Propp and Wilson LERW algorithm [33] for the exact
sampling of rooted spanning trees, or more generally rooted spanning forests. The algorithm, for a

1The bijection is described in terms of an auxiliary data structure: for each site, one shall choose a total ordering of the
incident edges.
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generic graph with boundary edges, goes as follows. Choose any ordering of the sites of the domain
(excluding the boundary). Initialise the absorbing set to the boundary. Then, for every site, if it is not
already in the absorbing set, start a random walk from the site (with rates associated to the Laplacian
matrix of the graph), up to reaching the absorbing set, and add to the absorbing set the loop-erasure of
this walk (performed in the time ordering of the walk). At the end of the algorithm we have a rooted
spanning forest, with roots on the initial absorbing set, uniformly sampled, and in bijection with recurrent
configurations through the burning test.

From the point of view of Statistical Mechanics, the most natural measure on sand configurations
is the uniform measure on recurrent configurations. From this point onward, our constructions will be
tacitly assumed to be performed over sand configurations sampled with this measure.

Some reflection shows that, for an avalanche to produce a non-simply-connected polyomino, it shall
surround a FSC, thus the measure on polyminoes induced by avalanches on uniform random recurrent
configurations is supported on the simply-connected subfamily. This remark is implicit in the work of
Dhar, and appears explicitly for example in [34].

In general, avalanches may involve more than one toppling on certain sites, a well-known fact which
has led to the definition of “waves of avalanches”, in [21]. The characterisation of recurrent configu-
rations has an implication on the wave decomposition. Indeed, for any recurrent configuration z, the
relaxation of z+ Idf gives again z, through an avalanche that makes each site topple exactly once. As
a result, for every portion of the frame identity, 0 ≺ u ≺ Idf, the relaxation of z+ u must produce an
avalanche that makes each site topple either one or zero times, and the support of sites which have not
toppled must remain accessible from the boundary, as they will be toppling if we now add Idf − u to
the configuration and relax. In other words, if we add the amount of sand described by 0 ≺ u ≺ Idf,
the resulting avalanche will contain no more than a single wave. We shall call boundary avalanche an
avalanche induced by a u of this form.

The study of the probability distribution of avalanches, and possibly of the single waves, has been
performed since the early days of the model, but has proven difficult and controversial, and also compli-
cated to analyse on numerical experiments, because of strong finite-size corrections [2,21,24,28,31,32].
Part of the complicancy is due to the interplay among the different waves (cf. in particular [31]). It is
thus conceivable that the study of boundary avalanches does not suffer of the same pathologies as for
generic avalanches.

For definiteness, let us describe a process consisting of single-site boundary avalanches, that we shall
call the permutation boundary avalanche process. Let us call V the number of sites in the domain (i.e.
its “volume”), B ⊂ E the set of boundary edges, and B = |B| = |Idf| the number of boundary edges
(which is also the number of sand grains in the frame identity). Let σ ∈SB be a random permutation of
the boundary edges. We can add the grains of sand constituting Idf one by one, in the order given by σ ,
and register the B (possibly empty) avalanches. By the abelianity properties of the ASM, the collection
of all the B supports of the avalanches (i.e., the B polyominoes) coincides with the avalanche due to the
addition of the whole frame identity, and thus constitutes a partition of the domain. By the stability of
the uniform measure on recurrent configuration under addition of deterministic configurations, for every
1 ≤ k ≤ B, the probability distribution over the polyomino associated to bk, the k-th boundary edge in
the order of σ , is only a function of the boundary edge itself, and not of the position it occupies in the
ordering σ . In particular, if vb is the average size of the polyomino associated to a boundary avalanche
due to the boundary edge b, we must have ∑b vb =V (again, regardless of the choice of σ ). In particular,
on a lattice in which the boundary edges are all equivalent (i.e., on “boundary-edge-transitive graphs”2),

2That is, graphs G with an outer boundary B s.t., for all b1,b2 ∈ B, there exists g ∈ Aut(G) s.t. g(b1) = b2.
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we must have vb =V/B for all b.

A strongly related process, that we shall call the BT boundary avalanche process, is more directly
related to the burning test, and the Propp and Wilson algorithm for generating uniform rooted spanning
trees [33]. In this case, for each site v we shall choose, once and for all, a total ordering O of the set
of incident edges. We shall now add the whole Idf, and perform the relaxation in parallel. The sand
grains of Idf are “coloured” in B different colours. Each site v will become unstable at some moment
of the avalanche, that is, it will have a height h+ c, where k is the maximal allowed stable height, and
1 ≤ c ≤ d(v). The colour of the site v is inherited from the colour of the site u which has donated the
c-th grain of sand among those which have been donated to v at the present stage of the avalanche, where
“the c-th” neighbour is defined according to the given ordering O . We can visualise the process of colour
inheritance by drawing an oriented edge (uv) in this case. The overall set of oriented edges added in this
way describes the rooted spanning forest which, through the burning test, is in bijection with the given
recurrent configuration. And, as we have mentioned, the partition of the domain into polyominoes can
be studied in terms of the components of the forest obtained through the Propp and Wilson algorithm.

We must have some values v′b (in principle different from the vb’s) for the average size of the poly-
omino associated to the tree rooted on the boundary edge b, with ∑b v′b =V . The independence of the set
of spanning forests form the choice of ordering O implies that the vb’s do not depend on O , and thus, in
particular, on a boundary-edge-transitive graph, we have v′b =V/B for all b.

A crucial non-trivial fact is that the permutation boundary avalanche process and the BT boundary
avalanche process are in fact the same probabilistic process. A way of seeing this is to realise that in the
permutation boundary avalanche process, for any given σ , we can construct some trees on the various
avalanches, following the rules of the burning test. Conditioning the sand configuration z to have some
avalanche support P = Pb1 for the boundary avalanche associated to the boundary edge b1 corresponds
to say that z|P is recurrent for an ASM model defined on a suitable restriction of the domain to G∖P,
with appropriate boundary conditions, and that the heights in the sites adjacents to P are such that, after
the topplings on P have been performed, no site has reached its critical height value (this condition can
be rephrased by a shift of both the height values and the critical height values at these sites). We can
use this argument repeatedly, for all b in B in the order given by σ , to deduce that the spanning forests
constructed from the permutation boundary avalanche process for the given σ , applied to the list of all
recurrent configurations, produce the list of all spanning forests on the domain, with no repetitions. In
particular, v′b = vb for all b, and more generally we can calculate any observable for one process using
the defining properties of the other process (we will use this argument several times in the following
sections). See Figure 1 for an illustration.

A typical example of boundary-edge-transitive domain is a Lx ×Ly cylinder, in which (say) Lx is the
periodicity and Ly is the distance between the two portions of the boundary. In this case V/B = Ly/2,
and thus is a divergent quantity if we perform the thermodynamic limit V → ∞ by keeping the aspect
ratio fixed. We shall call this case the cylinder geometry. A variant of this geometry is again a Lx ×Ly

cylinder, but now, instead of having two open boundaries, we have an open boundary and a “folded”
boundary, that is, a toppling at (i, j) on this boundary leaves one particle at (i, j), and gives out three
particles, in the directions W,S,E. We shall call this case the folded cylinder geometry. Note that the
folded geometry can be interpreted as an ordinary geometry Lx×2Ly, where we restrict to configurations
which are symmetric under horizontal reflection (and add the sand to the system accordingly).

Some examples of realisations of this process are given in Figure 4 at the end of this paper.
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(3,0) (3,0) (2,1) (2,1) (1,2) (0,3) (0,3)

z 221 220 211 210 201 121 021
σ =
[1,2]

(3,0) (2,1) (3,0) (2,1) (1,2) (0,3) (0,3)

σ =
[2,1]

(0,3) (3,0) (2,1) (3,0) (2,1) (0,3) (1,2)

Figure 1: An example of the correspondence between the BT boundary avalanche process and the per-
mutation boundary avalanche processes for the possible choices of σ , for the small graph with V = 3
and B = 2 depicted on the top-left corner. Top: the list of the 7 spanning forests, and the corresponding
list of (|T1|, |T2|). Bottom: the 7 recurrent configurations, and the associated lists of (|P1|, |P2|) for the
2 permutations of the boundary edges. The three unordered lists are the same (namely, (3,0), (2,1),
(1,2) and (0,3) are repeated 2,2,1,2 times, respectively), this being the consequence, for this graph, of
the statement that the permutation boundary avalanche process and the BT boundary avalanche process
on the uniform measure over recurrent configurations are the same probabilistic process.

3 Some accessible observables in the Boundary Avalanche Process

In this section we want to evaluate some statistical observables in the Boundary Avalanche Process.
The key idea is that we can use the bijection between the implementation of the burning test and the
construction of spanning forests rooted at the boundary edges. Then, we can use either the implications of
the Propp and Wilson LERW algorithm [33], or also, more directly, the Kirchhoff Matrix-Tree Theorem,
by evaluating determinants of suitable Laplacian matrices. Not surprisingly, these probabilities will turn
out to be ratios of determinants of very similar matrices, so that in fact, by the Jacobi’s theorem on
complementary minors, through “small” determinants involving the inverse of the Laplacian matrix (that
is, the Green’s function).

Note however that not all the potentially useful observables can be calculated directly by this method.
For reasons reminiscent of the Lindström–Gessel–Viennot lemma, or the Kasteleyn solution of the Dimer
Model on bipartite planar graphs, probabilities of events are accessible only if some topological property
of the event guarantees that the signs appearing in the determinant are controlled.

A useful formalism goes through Grassmann calculus, that is, a representation of determinants (and
determinants of minors) as formal Gaussian integrals over complex scalar non-commuting variables, as
described in detail in [8,20]. In this case, the roots R = {ri} of the forests are described by factors ψ̄riψri

in the integrand, while the factor ψ̄u1ψv1 · · · ψ̄uk ψvk implements the fact that the vertices in some ordered
list U = (u1, . . . ,uk) are connected pairwise to the vertices in the list V = (v1, . . . ,vk) (according to some
permutation σ ∈Sk, that is, u j is in the same component than vσ( j), and is not in the same component
of any other ui, or vi, or ri). However, such an event comes with a sign equal to the signature of σ . That
is, for the three lists R = {r1, . . . ,rh}, U = (u1, . . . ,uk) and V = (v1, . . . ,vk), we will consider Grassmann
integrals of the form

ZR,U,V =
∫

D(ψ, ψ̄)
(

∏
r∈R

ψ̄rψr

)
ψ̄u1ψv1 · · · ψ̄uk ψvk eψ̄Lψ . (1)
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The consequence of the Kirchhoff Theorem is that these expressions count (with signs) certain h+ k-
component spanning forests of the graph,

ZR,U,V = ∑
F={T1,T2,...,Th+k}⊆G

ri∈Ti for 1≤i≤k
ui,vσ(i)∈Tk+i for 1≤i≤h

ε(σ) . (2)

The explicit calculations on a generic weighted digraph G (with a boundary), such that the sum of the
weights of the outgoing edges of a vertex is the same for all vertices, involve the graph Green’s functions
G(u,v), identified by the defining equation LuG(u,v) = δu,v, where Lu f (u) = ∑(uu′) w(uu′)( f (u′)− f (u))
is the graph (weighted) Laplacian (w.r.t. position u). The collection of the “boundary Green’s functions”
G(u,v), for v on the boundary of G , corresponds to the probabilities that a random walk, starting at u,
diffusing with the weights we and absorbed at the boundary, terminates in v. Thus, in particular,

∑
v∈∂G

G(u,v) = 1 ∀ u . (3)

These remarks are of interest here because, as we will see, most of the interesting choices of (R,U,V ) in
(2) are such that (say) U ∪R = ∂G , so that the relevant Green’s functions in the evaluation of ZR,U,V are
indeed boundary Green’s functions in the sense above.

The calculations are more explicit on portions of regular lattices, and involve lattice sums on certain
lattice Green functions on the domain, which, when the domain allows for the use of the “method of im-
ages”, can be constructed in terms of the lattice Green function of the infinite lattice under investigation
(most notably, the square, triangular or hexagonal lattice). The theoretical investigation of lattice Green
function has a long history, of which a breakthrough result is due to Lüscher and Weisz [25] (where an
important ingredient is an observation of Vohwinkel unpublished elsewhere), which, for the square and
triangular lattice, has been implemented in [35, 36] and in [10], respectively (recall that, as polyomi-
noes are defined on the faces of the lattice, the Green function of the triangular lattice in fact relates to
polyhexes). See also [7] for further details.

In order to calculate the algebraic asymptotic decay of probabilities of events, however, it is enough
to use the asymptotic Green function, which for all lattices, once that the lattice spacing is rescaled in
order to have unit density, is universally G(⃗x1, x⃗2) =

1
4π

ln |⃗x1 − x⃗2|2. However, in the special case of a
straigth boundary, the method of images implies that (say, for the square lattice) we have to consider
the combination G(⃗x1, x⃗2)−G(⃗x1, x⃗2 − 2êy), that scales as Gbd(x,y) = 1

π

y
x2+y2 for x2 + y2 ≫ 1 (for the

triangular lattice with unit density, we have a correction factor α = 2
1
2 3−

1
4 ).

A first warm-up example of observable can be the explicit check of the simple fact that any site must
be in some tree of the forest. So we must have the identity

ZB,∅,∅ = ∑
b∈B

ZB\b,(b),(s) ∀ s . (4)

On a generic graph G , and using the Kirchhoff Matrix-Tree Theorem and Jacobi minor formula, this
is rephrased into the statement (3) above (and indeed the random walk defining the boundary Green’s
function can be interpreted as the support for the first LERW in Propp and Wilson’s algorithm, when s is
chosen to be the first vertex in the ordering).

It is instructive to check that, for the specific case of the square lattice and in a limit of y ≫ 1,
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Lx,Ly ≫ y,3 the combinatorial statement above is in agreement with the identity

∑
x∈Z

1
π

y
x2 + y2 ≃

∫
∞

−∞

dx
1
π

y
x2 + y2 = 1 ∀ y , (5)

(for the triangular lattice, a factor α−1 for the density of sites along a row cancels out with the scaling
factor α in the Green’s function).

A more interesting calculation consists (for example, in the case of hexagonal cells) in determining
the probability that the vertex in (x,y) is a triple point of the process, that is, its three adjacent hexagonal
faces are in three different polyominoes. The fact that 3 is an odd number, that the set U is on the outer
boundary and the set V consists of adjacent faces implies that the annoying signs are in fact protected,
that is, of the six possible permutations, only the three connectivity patterns with equal signature are
allowed. For y ≫ 1 the probability that (x,y) is a triple point, and the three adjacent polyominoes are
rooted on the points (x1,x2,x3), is given (up to a simple scaling factor for the lattice spacings, and in a
limit Lx,Ly ≫ x,y,x1,x2,x3) by the determinant of the matrix

M[x,y,(x1,x2,x3)] =

(
y

(xi − x)2 + y2 ,
∂

∂x
y

(xi − x)2 + y2 ,
∂

∂y
y

(xi − x)2 + y2

)
i=1,2,3

(6)

Integrating over x and y gives the overall probability that the polyominoes rooted on the real axis at
coordinates (x1,x2,x3) share a triple point. A calculation shows that this probability is proportional to
the inverse of the Vandermonde factor,∫

∞

−∞

dx
∫

∞

0
dy detM[x,y,(x1,x2,x3)] ∝

1
(x3 − x2)(x3 − x1)(x2 − x1)

. (7)

Integrating over the xi’s, at x = 0, gives the overall probability that (0,y) is a triple point, which is, for y
large enough, ∫

−∞≤x1≤x2≤x3≤∞

dx1dx2dx3 detM[0,y,(x1,x2,x3)] =
1

2πy2 . (8)

Indeed, the algebraic decay 1/y2 is integrable at infinity, a fact in agreement with the deterministic
information that there are exactly Lx − 2 triple points in a configuration on a folded cylinder, that is,
asymptotically on average one triple point per column.

Now we calculate an observable in which the role of the signs is more subtle. Consider a realisation of
the boundary avalanche process, in a limit Lx,Ly →∞, so that the boundary vertices can be totally ordered
along Z. For i< j, if the polyominoes Pi and Pj share a boundary, then they have exactly two triple points,
with some polyominoes Pkint(i, j) and Pkext(i, j). A peculiar fact is that, of these two vertices, only one will
be in the range {i+ 1, . . . , j − 1} (we will set it to be kint(i, j)). So we can define unambiguously the
vector v⃗i j = ti, j,kext(i, j)− ti, j,kint(i, j), where ti, j,l is the triple point between the polyominoes Pi, Pj and Pl ,
and set v⃗i j = 0 if Pi and Pj do not share a boundary. Now, given two adjacent faces v1, v2, consider
ZB∖{ui,u j},{ui,u j},{v1,v2}. This quantity gives the probability that v1 ∈ Pi and v2 ∈ Pj, minus the probability
that v1 ∈ Pj and v2 ∈ Pi. Call e′v1,v2

= (v′1,v
′
2) the oriented dual edge associated to the oriented edge

(v1,v2). Remark that
∑

(v1,v2)

e′v1,v2
ZB∖{ui,u j},{ui,u j},{v1,v2} = E v⃗i j . (9)

3In this limit we can use the asymptotic form of the boundary Green’s function given above, and, as it will be useful only
later on, trade lattice derivatives with ordinary derivatives.
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Indeed, the boundary between Pi and Pj is a polygonal curve resulting from the concatenation of dual
edges (in either orientation), going from ti, j,kint(i, j) to ti, j,kext(i, j).

Similar arguments give, for a region Ω,

∑
(v1,v2):v′1∈Ω,v′2 ̸∈Ω

ZB∖{ui,u j},{ui,u j},{v1,v2}=P(ti, j,kint(i, j) ∈Ω, ti, j,kext(i, j) ̸∈Ω)−P(ti, j,kext(i, j) ∈Ω, ti, j,kint(i, j) ̸∈Ω) .

(10)
Calculations of the asymptotic behaviour of observables of this form rely on the evaluation of the quan-
tities ZB∖{ui,u j},{ui,u j},{v1,v2}, which are related to the evaluation of the determinant of a matrix of the
form

M′[x,y,(x1,x2)] =

(
y

(xi − x)2 + y2 ,
∂

∂x
y

(xi − x)2 + y2

)
i=1,2

. (11)

In particular, taking as Ω the half-plane above height y, and summing over all pairs i < j, we have

1
Lx

∑
i< j

(
P(ti, j,kint(i, j) ∈ Ω, ti, j,kext(i, j) ̸∈ Ω)−P(ti, j,kext(i, j) ∈ Ω, ti, j,kint(i, j) ̸∈ Ω)

)
=

∫
−∞≤x1≤x2≤∞

dx1dx2dx3 detM′[0,y,(x1,x2)] =
1

πy
. (12)

Now the algebraic decay 1/y is not integrable at infinity, and gives a sensible information on the fractal
properties of the process. We discuss the implications of this calculation in the next section.

4 A scaling argument

We shall try to give a prediction for the asymptotic behaviour of the tail of the probability distribution
for the boundary avalanches. Say that we are in a cylinder with aspect ratio of order 1. Let us suppose
that, on some length scales much larger than the lattice spacing, and much smaller than the size of the
domain, the process of boundary avalanches is approximatively scale invariant. Then, the distribution of
the sizes of the avalanches must be a power law for the range 1 ≪ n ≪ L2, and then must be truncated
by the finiteness of the domain, i.e.

pL(n)∼
{

n−γ n ≪ L2

0 n ≫ L2 (13)

The value of γ , unknown up to this point, can now be determined: indeed we know that ∑n npL(n)∼ L,
and such a behaviour is compatible with a single value of γ , namely γ = 3

2 . In other words, we expect
that PL(n(P)> n)∼ n−

1
2 for 1 ≪ n ≪ L2.

This sketchy prediction seems numerically verified, but somewhat “for the wrong reasons”. A more
detailed description of the truly scale-invariant process of boundary avalanches should be given in a
regime in which the geometry of the cylinder does not introduce a new finite parameter in the model, that
is, in a regime Ly ≫ L≫ 1 (in this section it is convenient to adopt the notation Lx = L). In this case we do
not see anymore the effect of the top boundary of the cylinder, or a difference between the cylinder and
the folded-cylinder geometries, and we shall expect that there exists almost surely one “giant avalanche”,
occupying a fraction 1−O(L/Ly) of the volume, so that the probability distribution may take the form
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Figure 2: Averages of the k-th largest polyomino in a process (except the giant one), multiplied by k2,
and rescaled so that the first value is 1, on the data presented in Figure 3. A far-fetching conjecture based
on the formula (12) would suggest that this function is 1, up to values of k ≪ Lx.

(calling V = LLy the volume)

pL(n)∼


n−γ n ≪ L2

o(n−γ) L2 ≪ n ≪V
p′L(n) n =V −O(L2)
0 n >V

(14)

where ∑n p′L(n) = 1/L, and again we must have γ > 1. This implies for the average

V
L
= E(|P|) = V −Θ(L2)

L
+

∫ L2

dx x1−γ =
V
L
−Θ(L)+Θ((L2)2−γ) (15)

which requires
1 = 2(2− γ) (16)

that is, again γ = 3/2.
It is not completely evident that, except for the trivial giant avalanche, the process of boundary

avalanches occupies a height of order L of the domain, and that the second largest avalanche is on a
scale ∼ L2. However, this can be established through the calculation, performed in (12), of the average
number of interfaces between pairs of polyominoes that reach height y, which scales as L/(πy). So, this
average goes from ≫ 1 to ≪ 1 when y goes from much smaller than L/π to much larger than L/π . As
avalanches have possibly fractal boundaries, but their interior has Hausdorff dimension 2, we deduce that
the second largest avalanche must have a volume on the scale ∼ L2. Then, as the appearence of each
further avalanche approximately adds one to the number of interfaces, from the behaviour in L/y of our
observable we may deduce that the average sizes of avalanches listed in decreasing order (and excluding
the giant one) may form a sequence not too far from the series CL2/k2, for some constant C, up to values
of k so that the avalanches have macroscopic sizes. It is remarkable that such a far-fetching prediction is
vaguely in accordance with the numerics, even at relatively small sizes (cf. Figure 2).
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Figure 3: Left: plot of the ordered list of 104 avalanche sizes, for a folded-cylinder geometry on the
square lattice, of size 101× 158. We adopt a log-log plot, with a superposed red line of slope −1/2,
which highlights the validity of the ansatz in equation (14) in this case. Right: plot of the ordered list of
Lx ×102 = 10100 avalanche sizes, for 100 realisations of the permutation process.

Note that, as yet another consequence of the properties of the ASM, the probability distribution for
the avalanche process, shown in the bottom of Figure 3, and for the single-site boundary avalanches,
shown in the top of the same figure, are essentially coincident (except for the fact that the fraction of
giant avalanches in the first case is exactly equal to 1/L, while in the second case it is only approxi-
matively equal to this value, with Gaussian fluctuations on a scale compatible with an approximation of
independent events). Indeed, as explained above, the coincidence of these two distributions is implied by
the principles of the Abelian Sandpile Model, while the scaling ansatz only concerns the determination
of the qualitative properties of this function.

Arguments of this type have been a leitmotif of this paper: the relation between apparently different
boundary avalanche processes has allowed us to deduce fine statistical properties for each of them (and
in particular for the most basic procedure, of a single-site boundary avalanche), by using each time the
most convenient formulation. Without using this multiplicity of definitions, we wouldn’t have been able
to perform most of our calculations.
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We give a construction in a column of a one-dimensional cellular automaton of the Minkowski sum

of two sets which can themselves occur in columns of cellular automata. It enables us to obtain

another construction of the set of integers that are sums of three squares, answering a question by the

same author in [8].

1 Introduction

A one-dimensional cellular automaton (CA) is a dynamical system (A Z,F), where A is a finite set,

and where the map F : A
Z → A

Z is defined by a local rule acting uniformly and synchronously on the

configuration space. More precisely, there exists an integer r ≥ 0 called the radius of the CA, and a local

rule f : A
2r+1 → A such that

F(x)k = f ((xk+i)−r≤i≤r), for all x ∈ A
Z, and for all k ∈ Z.

By the Curtis-Hedlund-Lyndon theorem, a map F : A
Z → A

Z is a CA if and only if it is continuous

with respect to the product topology, and it commutes with the shift map σ defined by

σ(x)k = xk−1, for all x ∈ A
Z, and for all k ∈ Z.

A cellular automaton can be visualized by using a spacetime diagram consisting of a 2-dimensional grid

where each cell contains an element of A and is represented by a space and time coordinate.

The problem of representing a word (a sequence over a finite alphabet) in a column of the spacetime

diagram of a cellular automaton is an interesting one but relatively unexplored. One of the oldest results

on the subject is the construction of the characteristic function of prime numbers by Fischer in 1965,

using a cellular automaton with more than 30,000 states [3]. The number of states was considerably

reduced by Korec in 1997 who provided another construction with only 11 states [4]. Following on from

Fischer’s work, Mazoyer and Terrier have established various results on words that can be realized as a

column of a CA, which they call Fisher’s constructible function [6] (I think Fischer’s name is misspelled

as Fisher throughout their article, including when they cite [3] in the bibliography.)

Afterwards, several widely known words have been obtained as column of a CA. In 2015, Rowland

and Yassawi, established an effective construction for all p-automatic sequences, for any prime number

p, as column of a CA by using generating series and the theory of finite fields [7]. In 2022, Dolce

and Tahay [2] obtained a construction for all Sturmian words having quadratic slope using the directive

sequences and their ultimate periodicity. Other constructions have been obtained by Marcovici, Stoll and

Tahay in 2018 [5], such as the characterisitic function of any polynomial P ∈Q[X ] of degree d ≥ 1 with

P(N)⊂ N.

In this paper we establish the constructibility as a column of a CA of the Minkowski sum of two

constructible sets. This generalizes the method used by the author for constructing the characteristic

function of the set of integers that are sums of two squares from the construction of the characteristic

function of the squares [8].

http://dx.doi.org/10.4204/EPTCS.403.36
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


192 Construction of Minkowski Sums by Cellular Automata

2 Signals in cellular automata

In their paper [6], Mazoyer and Terrier give some constructions such as the sum of two constructible

functions, the linear combination of constructible functions, or constant-recursive sequences. They use

signals to obtain their various constructions.

vertical signal slope 1 slope −3 slope 1/2

Figure 1: some instances of signals

In the spacetime diagram of a CA, signals are a way to transmit information between two cells, by

connecting two cells (m,n) and (m′,n+ t). The slope of the signal is the number t
m′−m

.

3 Minkowski sums

Let A and B be two sets. Recall that the Minkowski sum of A and B is

A+B = {a+b | a ∈ A,b ∈ B.}

Definition 1. A set A is called constructible by a CA if the characteristic sequence 1A of A is obtained as

a column of a CA.

Theorem 2. Let A and B be two sets constructible by some cellular automata. Then the set A+B is also

constructible by a cellular automaton.

Proof. Let us call G the cellular automaton that will build 1A+B. Let us call F the cellular automaton

that constructs A in the left column of the CA. We compute the cellular automaton σ ◦F and a signal

of slope 1 in the diagonal of the spacetime diagram of G, so that we can mark the elements of A on

the diagonal. From these marked cells, we send vertical signals. Now we compute the set B in the left

column of G. From each element b of B in this left column we send a signal of slope 1/2. When this

signal meets a vertical signal in a column of rank a far any a ∈ A we define a signal of slope −1/2. When

this signal meets the left column we are on the line of rank b+a. Since

A+B =
⋃

a∈A

{a+b, b ∈ B},
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the final set obtained in the left column is therefore A+B.

Note that signals with slope 1/2 can meet columns of rank a, with a ∈ A below the vertical signal,

in which case some elements a+ b could be missing. If there is only a finite number of these, then we

define the first lines of the cellular automaton as initial conditions. If there is an infinite number of these,

we change the signals of slopes 1/2 and −1/2 by signals of slopes 1 and −1. Thus, we build en element

of the form b+ 2a with b ∈ B and a ∈ A, but we can recover the elements of the form a+ b with a ∈ A

and b ∈ B by using the cellular automaton G2.

4 Examples

Let S be the set of squares, i.e. S = {n2,n∈N}. So S+S is the set of integers that are sums of two squares

and S+(S+S) the set of the integers that are sums of three squares. We recall below the constructions

of S and S+S obtained in [8].
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Figure 2: CA for S (left) and S+S (right)

The construction of S (see Figure 2) is due to Delacourt, Poupet, Sablik and Theyssier [1]. From a

cell containing a 1 in the left column, we send a signal of slope 1. When this signal meets a wall (vertical

signal in green) we send a signal of slope −1 and the wall is shifted one cell to the right and continues to

spread vertically. The signal of slope −1 marks the next square when it meets the left column.

For S+ S (see Figure 2), we recall the construction previously obtained by the author in [8]. The

principle is to start by constructing integers which are sums of two squares of the form n2 + 02 and

n2 + 12 by using the same construction as for the squares. For the other elements of S+ S we mark the

columns whose horizontal coordinate is a perfect square by using a method developped by Marcovici,
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Stoll and Tahay [5] for the polynomial sequences. From each marked column we define a blue wall and

from each perfect square in the left column we send a signal of slope 1/2. When these signals meet a

blue wall, we define a new signal a slope −1/2 which marks an element of S+S when he meets the left

column.

From these two constructions and Theorem 2 we give a new construction of S+(S+S) in Figure 3

using signals which answers the second open question in [8]. Note that in the figure, the first five lines

are initial conditions.
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Figure 3: Construction of S+(S+S) by a cellular automaton
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In this work we establish local limit theorems for q-multinomial and multiple Heine distributions.
Specifically, the pointwise convergence of the q-multinomial distribution of the first kind, as well as
for its discrete limit, the multiple Heine distribution, to a multivariate Stieltjes-Wigert type distribu-
tion, are provided.

1 Brief Introduction

Recently, Vamvakari [8] introduced multivariate discrete q-distributions. Specifically, she derived a mul-
tivariate absorption distribution as a conditional distribution of a Heine process at a finite sequence of
q-points in a time interval which had been defined by Kyriakoussis and Vamvakari [6]. Also, she deduced
a multivariate q-hypergeometric distribution, as a conditional distribution of the multivariate absorption
distribution.
Afterwards, Charalambides [2, 3] introduced in detail q-multinomial, negative q-multinomial, multivari-
ate q–Pólya and inverse q–Pólya distributions and also examined their limiting discrete distributions.
Analytically, he considered a stochastic model of a sequence of independent Bernoulli trials with chain-
composite successes (or failures), where the odds of success of a certain kind at a trial is assumed to
vary geometrically, with rate q, with the number of previous trials and introduced the q-multinomial and
negative q-multinomial distributions of the first kind as well as their discrete limit, multivariate Heine
distribution. Also, he considered a stochastic model of a sequence of independent Bernoulli trials with
chain-composite successes (or failures), where the probability of success of a certain kind at a trial varies
geometrically, with rate q, with the number of previous successes and introduced the q-multinomial and
negative q-multinomial distributions of the second kind kind as well as their discrete limit, multivariate
Euler distribution.
Kyriakoussis and Vamvakari [4, 5, 7] studied the continuous limiting behaviour of the univariate discrete
q-distributions. Analytically, they established the pointwise convergence of the q-binomial and the nega-
tive q-binomial distributions of the first kind, as well as of the Heine distribution, to a deformed Stieltjes
Wigert continuous one. Moreover, they proved the pointwise convergence of the q-binomial and the
negative q-binomial distributions of the second kind, as well as of the Euler distribution, to a deformed
Gaussian one.
Vamvakari [9] initiated the study of continuous limiting behaviour of multivariate discrete q-distributions
inspired by the limiting behaviour of the univariate ones. Specifically, she studied the asymptotic behav-
ior of the univariate, bivariate and multivariate absorption discrete q-distributions. The pointwise conver-
gence of the univariate absorption distribution to a deformed Gaussian one and that of the bivariate and
multivariate absorptions to a bivariate and multivariate deformed Gaussian ones, have been provided.
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The aim of this work is to study further the continuous limiting behaviour of multivariate discrete q-
distributions. Local limit theorems for the q-multinomial and multiple Heine distributions are estab-
lished. Specifically, the pointwise convergence of the q-multinomial and its discrete limit, the multiple
Heine distribution, to a multivariate Stieltjes-Wigert type distribution are provided.

2 Preliminaries

Charalambides [1] had studied in details the q-binomial distribution of the first kind and its discrete limit,
the Heine Distribution with probability functions (p.f.) given by

f B
X (x) =

(
n
x

)
q
q(

x
2)θ x

n

∏
j=1

(1+θq j−1)−1, x = 0,1, . . . ,n, (1)

where θ > 0 and 0 < q < 1 and

f H
X (x) = eq(−λ )

q(
x
2)λ x

[x]q!
, x = 0,1,2, . . . , 0 < q < 1, 0 < λ < ∞, (2)

where

eq(z) :=
∞

∑
n=0

(1−q)nzn

(q;q)n
=

∞

∑
n=0

zn

[n]q!
=

1
((1−q)z;q)∞

, |z|< 1, (3)

and

[n]q! = [1]q[2]q · · · [n]q =
n

∏
k=1

1−qk

(1−q)n =
(q;q)n

(1−q)n , 0 < q < 1, [t]q =
1−qt

1−q
. (4)

Kyriakoussis and Vamvakari [4, 5] proved limit theorems among others for the q-Binomial distribution
of the first kind and Heine distribution for constant q, by using pointwise convergence in a “q-analogous
sense” of the classical de Moivre–Laplace limit theorem. Specifically for the needs of their study they es-
tablished a q-Stirling formula for n→∞ of the q-factorial of order n, defined by relation (4). Analytically,
for 0 < q < 1 constant, it was proved that,

[n]q! =
q−1/8(2π(1−q))1/2

(q logq−1)1/2

q(
n
2)q−n/2[n]n+1/2

1/q

∏
∞
j=1(1+(q−n −1)q j−1)

(
1+O(n−1)

)
. (5)

Next, the pointwise convergence of the q-Binomial distribution of the first kind to a deformed continuous
Stieltjes–Wigert distribution was established. The continuous Stieltjes–Wigert distribution has probabil-
ity density function

vSW
W (w) =

q1/8√
2π logq−1 w

e
(logw)2
2logq , w > 0, (6)

with mean value µSW = q−1 and standard deviation σSW = q−3/2(1−q)1/2.
Transferred from the random variable X of the q-Binomial distribution (1) to the equal-distributed de-
formed random variable Y = [X ]1/q and for n → ∞, the q-Binomial distribution of the first kind was
approximated by a deformed standardized continuous Stieltjes–Wigert distribution as follows:

f B
X (x)∼=

q−7/8

σq(2π)1/2

(
logq−1

q−1 −1

)1/2(
q−3/2(1−q)1/2 [x]1/q −µq

σq
+q−1

)−1/2

q−x

· exp
(

1
2logq

log2
(

q−3/2(1−q)1/2 [x]1/q −µq

σq
+q−1

))
, x ≥ 0, (7)
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where θ = θn, for n = 0,1,2, . . ., such that θn = q−αn with 0 < a < 1 constant and µq and σ2
q the mean

value and variance of the random variable Y, respectively. A similar asymptotic result has been provided
for the Heine distribution when λ → ∞.

3 Main Results

Let X j be the number of successes of a jth kind in a sequence of n independent Bernoulli trials with
chain composite failures, where the probability of success of the jth kind at the ith trial is given by

p j,i =
θ jqi−1

1+θ jqi−1 , 0 < θ j < ∞, j = 1,2, . . . , i = 1,2, . . . , 0 < q < 1 or 1 < q < ∞.

Then the joint probability function of the random vector X = (X1,X2, . . . ,Xk) is given by

f B
X (x1,x2, . . . ,xk) = P(X1 = x1,X2 = x2, . . . ,Xk = xk) =

(
n

x1,x2, . . . ,xk

)
q

k

∏
j=1

θ
x j
j q(

x j
2 )

∏
n−s j−1
i=1 (1+θ jqi−1)

(8)

x j = 0,1,2, . . . ,n, ∑
k
j=1 x j ≤ n, s j = ∑

j
i=1 xi, 0 < θ j < 1, j = 1,2, . . . ,k, and 0 < q < 1 or 1 < q < ∞. This

discrete q-distribution is known as a q-multinomial distribution (see Charalambides [2]).
The discrete limit of the joint p.f. of the q-multinomial distribution of the 1st kind, as n → ∞, is the joint
p.f. of the multiple Heine distribution,

lim
n→∞

(
n

x1,x2, . . . ,xk

)
q

k

∏
j=1

θ
x j
j q(

x j
2 )

∏
n−s j−1
i=1 (1+θ jqi−1)

=
k

∏
j=1

q(
x j
2 )λ j

x

[x j]q!

∞

∏
i=1

(1+λ j(1−q)qi−1)−1 (9)

x j = 0,1,2, . . . , λ j > 0, 0 < q < 1, λ j = θ j/(1−q), j = 1,2, . . . ,k (see Charalambides [2]).
Next we will study the continuous limiting behaviour of the q-trinomial distribution. Let (X1,X2) be the
discrete bivariate random variable with joint probability function

f B
X1,X2

(x1,x2) = P(X1,X2) =

(
n

x1,x2

)
q

θ
x1
1 θ

x2
2 q(

x1
2 )+(

x2
2 )

∏
n
i=1(1+θ1qi−1)∏

n−x1
i=1 (1+θ2qi−1)

(10)

x j = 0,1,2, . . . ,n, j = 1,2, x1 + x2 ≤ n, 0 < θ1,θ2 < 1 and 0 < q < 1 or 1 < q < ∞. The distribution of
the bivariate random variable (X1,X2) is known as a q-trinomial distribution.
The marginal probability function of the random variable X1, is distributed according to the q-binomial
of the 1st kind with probability function

f B
X1
(x1) =

(
n
x1

)
q

θ
x1
1 q(

x1
2 )

∏
n
i=1(1+θ1qi−1)

, x1 = 0,1,2, . . . ,n.

The mean and the variance of the deformed variable [X1]1/q are given by

µ[X1]1/q
= E

(
[X1]1/q

)
= [n]q

θ1

1+θ1qn−1

and (11)

(σ[X1]1/q
)2 = V

(
[X1]1/q

)
=

1−q
q

[n]2q
θ 2

1
(1+θ1qn−1)2(1+θ1qn−2)

+ [n]q
θ1

(1+θ1qn−1)(1+θ1qn−2)
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respectively.
The conditional random variable X2|X1, is distributed according to the univariate q-binomial of the 1st
kind with probability function

f B
X2|X1

(x2|x1) =

(
n− x1

x2

)
q

θ
x2
2 q(

x2
2 )

∏
n−x1
i=1 (1+θ2qi−1)

, x2 = 0,1,2, . . . ,n− x1.

The conditional mean and conditional variance of the deformed variable [X2]1/q given X1 = x1, are given
by

µ[X2]1/q|X1 = E
(
[X2]1/q|X1

)
= [n− x1]q

θ2

1+θ2qn−x1−1 ,

and (12)

(σ[X2]1/q|X1)
2 = V

(
[X2]1/q|X1

)
=

1−q
q

[n− x1]
2
q

θ 2
2

(1+θ2qn−x1−1)2(1+θ2qn−x1−2)

+[n− x1]q
θ2

(1+θ2qn−x1−1)(1+θ2qn−x1−2)
,

respectively.

Note 1. The conditional q-mean, µ[X2]1/q|X1 , can be interpreted as a q-regression curve.

Let us now consider the deformed random variables [X1]1/q and [X2]1/q as well as the q-standardized

random variables Z =
[X1]1/q−µ[X1 ]1/q

σ[X1]q
and W =

[X2]1/q−µ[X2 ]1/q |X1

σ[X2 ]1/q |X1
with µ[X1]1/q

,σ[X1]1/q
and µ[X2]1/q|X1 , σ[X2]1/q|X1

given by (11) and (12), respectively. Then, we apply pointwise convergence techniques to the joint
probability function (10), by using suitably the q-Stirling type (5), and we obtain the following theorem
concerning the asymptotic behaviour of the q-trinomial distribution.

Theorem 2. Let θ1 = θ1,n = q−α1n and θ2 = θ2,n = q−α2n with 0 < a1, a2 < 1 constants and 0 < q < 1.
Then, for n→∞, the q-trinomial distribution of the first kind is approximated by a deformed standardized
bivariate continuous Stieltjes-Wigert distribution as follows:

f B
X1,X2

(x1,x2) ∼=
q−7/4logq−1

2π(q−1 −1)σ[X1]1/q
σ[X2]1/q|X1

q−(x1+x2)

(
q−3/2(1−q)1/2

[x1]1/q −µ[X1]1/q

σ[X1]1/q

+q−1

)−1/2

·

(
q−3/2(1−q)1/2

[x2]q −µ[X2]1/q|X1

σ[X2]1/q|X1

+q−1

)−1/2

·exp

(
1

2logq

(
log2

(
q−3/2(1−q)1/2

[x1]1/q −µ[X1]1/q

σ[X1]1/q

+q−1

)))

·exp

(
1

2logq
log2

(
q−3/2(1−q)1/2

[x2]q −µ[X2]1/q|X1

σ[X2]1/q|X1

+q−1

))
, x1, x2 ≥ 0, (13)

where µ[X1]1/q
and σ2

[X1]1/q
, given in (11), are the mean value and the variance of the random variable

[X1]1/q while µ[X2]1/q|X1 and σ2
[X2]1/q|X1

, given in (12), are the conditional mean value and the conditional
variance of the random variable [X2]1/q given X1 = x1.
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Next we expand our study on the asymptotic behaviour of the q-multinomial distribution with joint
p.f. (8).
The marginal probability function of the random variable X1, is distributed according to the q-binomial
of the 1st kind with probability function

f B
X1
(x1) =

(
n
x1

)
q

θ
x1
1 q(

x1
2 )

∏
n
i=1(1+θ1qi−1)

, x1 = 0,1,2, . . . ,n.

The mean and the variance of the deformed variable [X1]1/q are given by

µ[X1]1/q
= E

(
[X1]1/q

)
= [n]q

θ1

1+θ1qn−1

and (14)

(σ[X1]1/q
)2 = V

(
[X1]1/q

)
=

1−q
q

[n]2q
θ 2

1
(1+θ1qn−1)2(1+θ1qn−2)

+ [n]q
θ1

(1+θ1qn−1)(1+θ1qn−2)

respectively.
The conditional random variables X2|X1,X3|(X1,X2), . . . ,Xk|(X1, . . . ,Xk−1) are distributed according to
univariate q-binomial distributions of the 1st kind with probability functions

f B
Xk|(X1,...,Xk−1)

(xk|x1,x2, . . . ,xk−1) =

(
n−∑

k−1
j=1 x j

xk

)
q

θ
xk
k q(

xk
2 )

∏
n−∑

k−1
j=1 x j

i=1 (1+θkqi−1)

,

xk = 0,1, . . . ,
k−1

∑
j=1

x j, k ≥ 2.

The conditional mean and conditional variance of the deformed variables [X j]1/q given X1 = x1, . . . ,
X j−1 = x j−1, j = 2, . . . ,k, k ≥ 2, are given respectively by

µ[X j]1/q|(X1,...,X j−1) = E
(
[X j]1/q|(X1, . . . ,X j−1)

)
= [n− s j−1]q

θ j

1+θ jqn−s j−1−1

and (15)

σ
2
[X j]1/q|(X1,...,X j−1)

= V
(
[[X j]1/q|(X1, . . . ,X j−1)

)
=

1−q
q

[n− s j−1]
2
q

θ 2
j

(1+θ jqn−s j−1−1)2(1+θ jqn−s j−1−2)

+[n− s j−1]q
θ j

(1+θ jqn−s j−1−1)(1+θ jqn−s j−1−2)
,

where s j−1 = ∑
j−1
i=1 xi, j = 2, . . . ,k, k ≥ 2.

Note 3. It should be noted that the conditional q-means, µ[X j]1/q|(X1,...,X j−1), 3 ≤ j ≤ k, k ≥ 3, can be
interpreted as q-regression hyperplanes.

Let us now consider the deformed random variables

[X j]1/q, j = 1, . . . ,k, k ≥ 1
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and the q-standardized random variables

Z1 =
[X1]1/q −µ[X1]1/q

σ[X1]q

, Z j =
[X j]1/q −µ[X j]1/q|(X1,...,X j−1)

σ[X j]1/q|(X1,...,X j−1)
, j = 2, . . . ,k, k ≥ 3,

with µ[X1]1/q
,σ[X1]1/q

and µ[X j]1/q|(X1,...,X j−1), σ[X j]1/q|(X1,...,X j−1) given by (14) and (15), respectively. Then,
we apply pointwise convergence techniques to the joint probability function (8), by using suitably the
q-Stirling type (5), and we obtain the following theorem concerning the asymptotic behaviour of the
q-multinomial distribution.

Theorem 4. Let θ j = θ j,n = q−α jn with 0 < a j < 1, j = 1,2, . . . ,k constants and 0 < q < 1. Then,
for n → ∞, the q-multinomial distribution is approximated by a deformed multivariate standardized
continuous Stieltjes-Wigert distribution distribution as follows:

f B
X (x1,x2, . . . ,xk)∼=

(
q−7/8(logq−1)

1/2

(2π)1/2(q−1 −1)1/2

)k
q−∑

k
j=1 x j

σ[X1]1/q ∏
k
j=2 σ[X j ]1/q|(X1,...,X j−1)

·

(
q−3/2(1−q)1/2

[x1]1/q −µ[X1]1/q

σ[X1]1/q

+q−1

)−1/2

·
k

∏
j=2

(
q−3/2(1−q)1/2

[x j]1/q −µ[X j ]1/q|(X1,...,X j−1)

σ[X j ]1/q|(X1,...,X j−1)
+q−1

)−1/2

·exp

(
1

2logq

(
log2

(
(1−q)1/2

q3/2

[x1]1/q −µ[X1]1/q

σ[X1]1/q

+q−1

)))

·exp

(
1

2logq

k

∑
j=2

log2

(
(1−q)1/2

q3/2

[x j]1/q −µ[X j ]1/q|(X1,...,X j−1)

σ[X j ]1/q|(X1,...,X j−1)
+q−1

))
,

x j ≥ 0, j = 1,2, . . . ,k,k ≥ 2, (16)

where µ[X1]1/q
and σ2

[X1]1/q
, given in (14), are the mean value and the variance of the random variable

[X1]1/q, while µ[X j]1/q|(X1,...,X j−1) and σ2
[X j]1/q|(X1,...,X j−1)

, given in (15), are the conditional mean values and
the conditional variances of the random variables [X j]1/q given X1 = x1, . . . ,X j−1 = x j−1, j = 2, . . . ,k,
k ≥ 2.

Remark 5. Let X = (X1,X2, . . . ,Xk) be a random vector that follows the multiple Heine distribution,
defined in (9). Then the joint p.f. the multiple Heine distribution is given by

f H
X (x1,x2, . . . ,xk) =

k

∏
j=1

q(
x j
2 )λ j

x

[x j]q!

∞

∏
i=1

(1+λ j(1−q)qi−1)−1,

where x j = 0,1,2, . . . , λ j > 0, 0 < q < 1, λ j = θ j/(1−q), j = 1,2, . . . ,k, k ≥ 2.
Since the random variables X j, j = 1,2, . . . ,k, k ≥ 2, are independent, we easily derive that, for λ j → ∞,
j = 1,2, . . . ,k, the multiple Heine distribution is approximated by a deformed multivariate standardized
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continuous Stieltjes-Wigert distribution distribution as follows:

f H
X (x1,x2, . . . ,xk) ∼=

(
q−7/8(logq−1)

1/2

(2π)1/2(q−1 −1)1/2

)k
q−∑

k
j=1 x j

∏
k
j=1 σ[X j ]1/q

·
k

∏
j=1

(
q−3/2(1−q)1/2

[x j]1/q −µ[X j ]1/q

σ[X j ]1/q

+q−1

)−1/2

·exp

(
1

2logq

(
k

∑
j=1

log2 (1−q)1/2

q3/2

[x j]1/q −µ[X j ]1/q

σ[X j ]1/q

))
,

x j ≥ 0, j = 1, . . . ,k,k ≥ 2, (17)

where µ[X j]1/q
= λ j and σ2

[X j]1/q
= λ jq−1(1−q)+λ j, j = 1,2, . . . ,k, are respectively the mean values and

the variances of the random variables [X j]1/q, j = 1,2, . . . ,k.
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