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Matching logic is a logical framework for specifying and reasoning about programs using pattern
matching semantics. A pattern is made up of a number of structural components and constraints.
Structural components are syntactically matched, while constraints need to be satisfied. Having mul-
tiple structural patterns poses a practical problem as it requires multiple matching operations. This is
easily remedied by unification, for which an algorithm has already been defined and proven correct in
a sorted, polyadic variant of matching logic. This paper revisits the subject in the applicative variant
of the language while generalising the unification problem and mechanizing a proven-sound solution
in Coq.

1 Introduction

First-order unification is the process of solving equations between first-order terms (symbolic expres-
sions). In particular, unification of first-order terms t1 and t2 yields a substitution σ such that it makes
the two terms syntactically equal (identical): t1σ = t2σ . Unification plays a crucial role in automatic
theorem proving via first-order resolution as well as in term rewriting.

Matching logic is a general logical framework for specifying and reasoning about programming
languages and programs using pattern matching semantics. In matching logic, formulas (called patterns)
are evaluated to a subset of a domain, and those evaluating to the full set are valid. Matching logic is
the formal meta-language of the K framework [5], hosting programming language semantics in terms of
constrained rewrite systems. Formal reasoning in these theories requires a sound unification algorithm
supporting, amongst others, the reduction of patterns specifying program states.

Despite the fact that matching logic is not an equational logic, syntactic unification has a semantic
counterpart in it, based on the notion of equality derived from other, lower-level operations. Given two
matching logic patterns ϕ1 and ϕ2, their semantic unifier is a pattern ϕ such that ϕ → ϕ1 = ϕ2, where
“=” denotes semantic equality rather than syntactic equality.

In [1] Arusoaie et al. show that in a sorted, polyadic variant of matching logic [9], semantic unifica-
tion can be derived from syntactic unification: tailoring a well-known rule-based unification algorithm,
they obtain the most general unifier substitution σ , from which they trivially construct a semantic unifier
φ σ and then they show that for patterns t1 and t2, t1σ = t2σ implies φ σ ↔ t1 = t2, allowing the equality
pattern to be replaced by the unification pattern due to the congruence rule admitted by matching logic.

Following the footsteps of Arusoaie et al. we adapt the syntactic unification algorithm to the ap-
plicative, unsorted variant of matching logic and derive the semantic unifier from the solution. Similarly
to their work, we assume that the theory specifies a term algebra and the patterns represent constrained
first-order terms (i.e., symbols are injective constructor functions). Furthermore, derived from the sound-
ness of the semantic unification, we show that t1∧ t2 = t1∧φ σ , which allows multiple term patterns to be
merged into a constrained term pattern, enabling more effective pattern matching and utilization of SMT
solvers. The latter is based on the fact that in matching logic, t1∧ t2 is equivalent to t1∧ t1 = t2, that is,
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the conjunction of two term patterns can be replaced by one of the term patterns and the predicate stating
their semantic equality—such patterns are common in automatic theorem proving in the K framework.

However, compared to related work, the novelty of our approach lies in the fact that we prove the
soundness of the unification on a fully syntactical basis, using a sound sequent calculus for matching
logic [11]. Consequently, unlike in the work of Arusoaie et al., we do not need to synthesize proofs for
particular unifications as our constructive soundness proof justifies the derivability of the equivalence
between the unified patterns and the semantic unifier.

In this work we make the following contributions:

• The definition of a generalised, abstract unification problem;

• A rule-based unification algorithm for the unsorted, applicative variant of matching logic;

• Proof of the soundness of the unification algorithm, using a single-conclusion sequent calculus;

• Machine-checked implementation of the above results.

The rest of the paper is structured as follows. In Section 2 we introduce matching logic and the
unification problem for first-order terms. Then in Section 3 we discuss existing solutions to solving
unification and the related work for matching logic in particular. Thereafter, Section 4 defines abstract
unification problems, a rule-based solution, and we present the proof of the soundness of the solution.
Finally, Section 5 summarises the results and concludes.

2 Background

In this section, we provide a general introduction to matching logic [6] and we also recall some theorems
and meta-theorems of matching logic that we will build upon when proving properties of unifier patterns.
At the end of this section, we overview the unification problem for first-order terms in general.

2.1 Matching Logic

This section introduces an applicative variant of matching logic [6, 7] which is the language hosting the
unification problem explained in this paper.

2.1.1 Syntax

Matching logic is a minimal yet expressive language. Its syntax is parametric in the so-called signature,
containing constant symbols and variables.

Definition 1 (Signature). In a simplified setting, a matching logic signature is a pair (EV,Σ), where

• EV is a countably infinite set of element variables (denoted with x,y, . . . );

• Σ is a countable set of constant symbols (denoted with f ,g, . . . ).

Whenever EV is understood from the context, only Σ is used to denote the whole signature.

The only syntactic category of the language is patterns, parametrised by a particular signature.

Definition 2 (Pattern). Given a signature (EV,Σ), the following rules define patterns:

ϕ ::= x | f | ϕ1 ϕ2 | ⊥ | ϕ1→ ϕ2 | ∃x.ϕ
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These constructs are in order: (element) variables, symbols, application of patterns, falsum (bottom)
and the traditional first-order operations (implication and existential quantification). Application is left
associative and binds the tightest. Implication is right associative. The scope of the ∃ binder extends as
far to the right as possible. We use FV(ϕ) to refer to the set of free variables of some pattern ϕ .

Note that the full version of matching logic also contains least-fixpoint (µ) patterns [6], but they are
not relevant for this work, thus for the sake of readability we omit them from the current presentation.
The reason for this is that most of the patterns presented here are term patterns, which do not contain
fixpoints syntactically. We note that the formalisation [8] includes µ-patterns too, but some mechanised
theorems and rules (e.g., (=⊢)) are restricted to work with µ-free patterns currently.

Matching logic is intentionally minimal, but can derive several other, well-known constructs as syn-
tactic sugar. For instance, the following lines define negation, disjunction, conjunction, top, equivalence,
and universal quantification.

¬ϕ
def
= ϕ →⊥ ϕ1∨ϕ2

def
= ¬ϕ1→ ϕ2

ϕ1∧ϕ2
def
= ¬(¬ϕ1∨¬ϕ2) ⊤ def

= ¬⊥

ϕ1↔ ϕ2
def
= (ϕ1→ ϕ2)∧ (ϕ2→ ϕ1) ∀x.ϕ def

= ¬∃x.¬ϕ

We define substitutions on patterns in the usual way.

Definition 3 (Substitution). We denote substitutions as ϕ[ψ/x] to say that we replace every free occur-
rence of x in ϕ with ψ .

Special patterns are pattern contexts and application contexts, which are always used in substitutions.

Definition 4 (Pattern context, application context). A pattern context, denoted with C is a pattern with a
distinguished variable □, called a hole. When substituting ϕ into a hole, we simply write C[ϕ] denoting
C[ϕ/□]. When a context contains only applications from the root to the (only) □, we call it an application
context. Application contexts are defined with the following grammar:

C$ :=□ | ϕ C$ |C$
ϕ

Contexts are useful for defining theorems that are only concerned with a smaller part of a pattern
while the rest is irrelevant. Contexts are used for example to substitute equal patterns inside a bigger
context (see rule (=⊢)). This definition of contexts is slightly different from the definition used in [6, 7],
but the same proofs can be expressed with both variants1.

2.1.2 Semantics

Matching logic semantics is based on pattern matching. Patterns are interpreted as a set of domain
elements that match them.

Definition 5 (Model). A model is a tuple (M,_·_,M f ), where

• M is the non-empty carrier set (domain), which contains all elements a pattern may evaluate to,

• _·_ : M→M→P(M) is a binary function that serves as the interpretation of application,

• M f ⊆M is the (indexed) interpretation of symbols f ∈ Σ.
1This correspondence is proven in the Coq formalisation [8, matching-logic/src/ProofMode/Misc.v].
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We extend the application function to subsets of the domain in a pointwise manner:

A ·B =
⋃
a∈A
b∈B

a ·b

Let us define the semantics of matching logic formulas informally. Given a signature and a model,
we can define interpretations for patterns. Element variables are interpreted as singleton sets, while the
meaning of symbols is given by M f . In the case of application, the meanings of the subpatterns are
combined using the _·_ function. ⊥ is matched by the empty set and the implication ϕ1→ ϕ2 is matched
by elements that match ϕ2 if they match ϕ1. ∃x.ϕ is matched by all instances of ϕ as x ranges over M.
This means, for example, that ∃x.x is matched by M. The semantics of the derived operations follow
from these.

Definition 6 (Semantic consequence). A pattern is validated by a model if the pattern evaluates to the
entire carrier set of the model. A model validates a set of patterns, if it validates all patterns in the set.
In particular, we use Γ ⊨ ϕ to denote that the patterns in Γ (i.e., the set of axioms) validate a pattern ϕ

whenever all models validating Γ also validate ϕ .

Definition 7 (Term patterns and predicate patterns). We distinguish two classes of patterns that will be
important in the later sections of this paper. Specifically, term patterns evaluate to singleton sets (they
behave like terms in first-order logic), and predicate patterns evaluate either to the empty set or to the
full carrier set (they mimic formulas in first-order logic).

2.1.3 Sequent Calculus for Matching Logic

Matching logic has a sound Hilbert-style proof system [6] with a handful of simple rules, and a sequent
calculus [11] which is sound and complete w.r.t. the proof system. In this section, we briefly summarize
this calculus, and we construct our proofs with it in later sections. We denote provability in the Hilbert-
system with Γ ⊢ ϕ , and next we define sequents.

Definition 8 (Sequents). A sequent is a triple Γ ▶ ∆ ⊢S ψ 2, where

• Γ is a (possibly infinite) set of patterns, called a theory;

• ∆ is a finite (comma-separated) list of patterns, called antecedent or local context;

• ψ is a pattern, called succedent or conclusion.

Next, we recall the sequent calculus in Figure 1 and refer to [11] for further details. Essentially,
these rules mimic a standard single-conclusion sequent calculus for first-order logic, except that they
use a concept of local context and do not affect the theory (Γ) directly. Informally, the meaning of the
sequent Γ ▶ ϕ1, . . . ,ϕn ⊢S ψ can be expressed as an expansion to Γ ⊢ ϕ1 → ··· → ϕn → ψ , which al-
lows the premises to be separated from the conclusion without using a deduction theorem. With this
notion in mind, we can see that the rule (⊢→) is not a deduction theorem of matching logic (we refer
to Section 2.1.4 for further details), but in practice it functions as a rule turning implication premises to
hypotheses. The sequent calculus accommodates another rule for the deduction meta-theorem (see DE-
DUCTION), but in the general case (when the fixed-point operator is present in the language) that comes
with technical side conditions [11], making it more difficult to apply.

2Note that ⊢S denotes a derivation in the sequent calculus, whereas ⊢ denotes a derivation in the Hilbert-style proof system.
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Γ ⊢ ψ
INHERIT

Γ ▶ [] ⊢S ψ

Γ ▶ ∆1,∆2 ⊢S ψ
WEAKEN

Γ ▶ ∆1,ϕ,∆2 ⊢S ψ

Γ ▶ ∆1 ⊢S ϕ Γ ▶ ∆1,ϕ,∆2 ⊢S ψ
CUT

Γ ▶ ∆1,∆2 ⊢S ψ

(a) Technical and structural inference rules

HYP
Γ ▶ ∆1,ϕ,∆2 ⊢S ϕ

(⊢ ⊥)
Γ ▶ ∆1,⊥,∆2 ⊢S ψ

Γ ▶ ∆1,∆2 ⊢S ϕ1 Γ ▶ ∆1,ϕ2,∆2 ⊢S ψ
(→⊢)

Γ ▶ ∆1,ϕ1→ ϕ2,∆2 ⊢S ψ

Γ ▶ ∆,ϕ ⊢S ψ
(⊢→)

Γ ▶ ∆ ⊢S ϕ → ψ

Γ ▶ ∆1,ϕ1,ϕ2,∆2 ⊢S ψ
(∧ ⊢)

Γ ▶ ∆1,ϕ1∧ϕ2,∆2 ⊢S ψ

Γ ▶ ∆ ⊢S ψ1 Γ ▶ ∆ ⊢S ψ2
(⊢ ∧)

Γ ▶ ∆ ⊢S ψ1∧ψ2

Γ ▶ ∆1,ϕ1,∆2 ⊢S ψ Γ ▶ ∆1,ϕ2,∆2 ⊢S ψ
(∨ ⊢)

Γ ▶ ∆1,ϕ1∨ϕ2,∆2 ⊢S ψ

Γ ▶ ∆ ⊢S ψ1
(⊢ ∨L)

Γ ▶ ∆ ⊢S ψ1∨ψ2

Γ ▶ ∆ ⊢S ψ2
(⊢ ∨R)

Γ ▶ ∆ ⊢S ψ1∨ψ2

(b) Inference rules for propositional reasoning

Γ ▶ ∆1,ϕ[y/x],∆2 ⊢S ψ
(∀ ⊢)

Γ ▶ ∆1,∀x.ϕ,∆2 ⊢S ψ

Γ ▶ ∆ ⊢S ψ[y/x]
y /∈ FV(∆,∀x.ψ) (⊢ ∀)

Γ ▶ ∆ ⊢S ∀x.ψ

Γ ▶ ∆1,ϕ[y/x],∆2 ⊢S ψ
y /∈ FV(∆,∃x.ϕ,ψ) (∃ ⊢)

Γ ▶ ∆1,∃x.ϕ,∆2 ⊢S ψ

Γ ▶ ∆ ⊢S ψ[y/x]
(⊢ ∃)

Γ ▶ ∆ ⊢S ∃x.ψ
(c) Inference rules for first-order reasoning

Figure 1: Sequent calculus for matching logic (theory-independent rules)

We also highlight the rule INHERIT, which allows us to lift any proofs done with the Hilbert-style
proof system (⊢) into the sequent calculus. In later sections, we use this rule implicitly to lift Hilbert-
style proofs of theorems while presenting a sequent calculus proof (note that with the repeated use of
WEAKEN we can unify the local context of the lifted theorem and the current proof state). We also
note that it is also possible to express all sequent calculus proof in the Hilbert-style proof system too
(Theorem 1). For further insights on the correspondence between the calculus and the proof system, we
refer to the paper on the calculus [11] and its implementation [8, matching-logic/src/ProofMode].

Next, we encode the theory of definedness (also featuring equality) in matching logic, and extend the
sequent calculus with rules using definedness and equality, notably deduction and rewriting.

2.1.4 Definedness

We recall the formal specification for the theory of definedness from [6] in Figure 2. The section “Sym-
bol” includes the new symbols added to the signature, while “Notation” describes the derived notations
used in the theory. Finally, “Axiom” describes the axiom schemas that specify the symbols of the theory.
In the rest of the paper, we will refer to the axiom set of the definedness theory with ΓDEF.



6 Unification in Matching Logic — Revisited

spec DEFINEDNESS
Symbol: ⌈_⌉
Notation:

⌈ϕ⌉ def
= ⌈_⌉ϕ ⌊ϕ⌋ def

= ¬⌈¬ϕ⌉

ϕ1 = ϕ2
def
= ⌊ϕ1↔ ϕ2⌋ ϕ1 ̸= ϕ2

def
= ¬(ϕ1 = ϕ2)

ϕ1 ∈ ϕ2
def
= ⌈ϕ1∧ϕ2⌉ ϕ1 /∈ ϕ2

def
= ¬(ϕ1 ∈ ϕ2)

ϕ1 ⊆ ϕ2
def
= ⌊ϕ1→ ϕ2⌋ ϕ1 ⊈ ϕ2

def
= ¬(ϕ1 ⊆ ϕ2)

Axiom:
(DEFINEDNESS) ⌈x⌉

endspec

Figure 2: Specification of definedness

This theory introduces a symbol ⌈_⌉, a number of notations on top of this symbol, and one axiom
which embodies the meaning of the definedness symbol. The axiom states that all (element) variables
are defined, i.e., the definedness applied to a variable is always satisfied. Intuitively, ⌈ϕ⌉ is satisfied
if ϕ matches at least one element. Based on definedness, we can derive totality (denoted as ⌊ϕ⌋), and
the usual notion of equality, membership and set inclusion. Intuitively, ⌊ϕ⌋ is satisfied if ϕ matches all
elements of the domain. With equality, we can syntactically express when a pattern is a term pattern
(also called functional pattern), or a predicate pattern. We can also show when symbol f behaves like an
n-ary function, or as an n-ary predicate:

∃x.ϕ = x (Functional Pattern)

ϕ =⊥∨ϕ =⊤ (Predicate Pattern)

∀x1. . . .∀xn.∃y. f x1 · · ·xn = y (Function)

∀x1. . . .∀xn.gx1 · · ·xn =⊤∨gx1 · · ·xn =⊥ (Predicate)

For reasoning about equality, we use the rules presented in Figure 3. All rules of the sequent calculus
are proven sound in [11]. Note that both the deduction rule and the rewriting rule (replacing equal
patterns) are based on the deduction theorem and the equality elimination theorem, which in their general
form come with complex technical side conditions intentionally neglected in this presentation; for details
about the technical side conditions, we refer to [7].

Γ∪{ϕ}▶ ∆ ⊢S ψ ‡

DEDUCTION
Γ ▶ ⌊ϕ⌋,∆ ⊢S ψ

(⊢=)
Γ ▶ ∆ ⊢S ψ = ψ

Γ ▶ ∆1,ϕ1 = ϕ2,∆2 ⊢S C[ϕ2]
(=⊢)

Γ ▶ ∆1,ϕ1 = ϕ2,∆2 ⊢S C[ϕ1]

Figure 3: Deduction; and rules about equality. These rules assume that ΓDEF ⊆ Γ.

Next, we state important theorems and meta-theorems of matching logic which we will rely on when
reasoning about the correctness of unification (we refer to [3, 6] for detailed explanations and proofs).

2.1.5 Essential Theorems

First of all, we state the correspondence theorem that allows us to use Hilbert-style proofs and sequent
calculus proofs interchangeably. In particular, this allows us to reason about Hilbert-style provability by
using the sequent calculus.

‡The proof does not use existential generalization on free variables of ψ .
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Theorem 1 (Correspondence). For all theories Γ, and patterns ϕ1, . . . ,ϕk,ψ , the derivability statement
Γ ▶ ϕ1, . . . ,ϕk ⊢S ψ holds if and only if Γ ⊢ ϕ1→ ··· → ϕk→ ψ .

Now we state fundamental (meta-)theorems heavily used in the subsequent sections.

Theorem 2 (Congruence). For all patterns ϕ1,ϕ2, pattern contexts C and theory Γ, if Γ ⊢ ϕ1↔ ϕ2 then
Γ ⊢C[ϕ1]↔C[ϕ2].

Lemma 1. Let Γ be a theory and ϕ a pattern. Then Γ ⊢ ϕ → ⌈ϕ⌉.
Note that Lemma 1 is a consequence of the DEFINEDNESS axiom and existential generalization.

Lemma 2. Let Γ be a theory and ϕ1 and ϕ2 functional patterns. Then Γ ⊢ ϕ1 ∈ ϕ2→ ϕ1 = ϕ2.

The following theorem is used to extract and insert an extra condition into both sides of an equiva-
lence; note that it also holds for ϕ1 on the right side, by the commutativity of conjunction.

Lemma 3. Let Γ be a theory and ϕ1, ϕ2, and ϕ3 be patterns. Then Γ ⊢ (ϕ1∧ϕ2↔ ϕ1∧ϕ3)↔ (ϕ1→
ϕ2↔ ϕ3).

Lemma 3 can be extended to work with equality using deduction:

Lemma 4. For all theories Γ, predicate patterns ϕ1, and patterns ϕ2,ϕ3, Γ ⊢ (ϕ1 ∧ϕ2 = ϕ1 ∧ϕ3)↔
(ϕ1→ ϕ2 = ϕ3) holds.

2.2 Unification

Unification [2] is the process of solving equations between symbolic expressions. The solution of the
unification problem is a substitution that maps variables to expressions, which, when applied to the
symbolic expressions, makes them syntactically equal (identical). In this subsection, we recall some
essential concepts (mainly from [2]) which we will use when discussing unification in matching logic.

The following definitions assume that we work using terms (t) in a term algebra constructed with
function symbols ( f ) and variables (x).

Definition 9 (Substitution in unification). A substitution is a list of bindings σ = {x1 7→ t1, . . . , xn 7→ tn},
mapping variables to terms. This is similar to the one in Definition 3, however, unlike that one, this
version is not limited to a single variable and pattern.

The application of a substitution of a term (tσ ) is defined as usual, in a recursive descent manner on
applications.

Definition 10 (Composition of substitutions). Let σ = {x1 7→ t1, . . . , xn 7→ tn} and η be two substitutions.
The composition of these, written as ση can be defined as ση

def
= {x1 7→ t1η , . . . , xn 7→ tnη}, i.e. we

apply the substitution η to every pattern on the right side of σ .

Next we define how to determine if two substitutions are equal.

Definition 11 (Equality of substitutions). Two substitutions σ and η are equal if they are extensionally
equal: tσ = tη , for all t, that is if their effect is the same when applied to any term.

We can combine these two operations to define when one substitution is more general than another.

Definition 12 (More general substitution). We say that σ is more general than η , written as σ ≤ η if
there is a substitution θ such that σθ = η .

The unification algorithm will produce a substitution that, when applied to the input terms, produces
the same term. We call this substitution a unifier.
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Definition 13 (Unifier, unifiable terms). A substitution σ is called a unifier of two patterns t1 and t2 if
t1σ = t2σ . If there exists a unifier of two terms, we call the terms unifiable.

However, there may be infinitely many unifiers that only differ in some insignificant details. For
example, if the terms are f x and f y, we could replace x and y with any term, but all that matters is that
they need to be the same. To solve this, we introduce the concept of the most general unifier, using the
more general relation from above.

Definition 14 (Most general unifier). A unifier σ is called the most general if for any unifier θ , σ is
more general than θ (σ ≤ θ ).

It follows from the definition of the more general unifier that any other solution may be obtained
from this by instantiation. In this paper we will not consider higher order unification (i.e. variables may
not stand in for functions).

Definition 15 (Predicate of a substitution). It is possible to extract a predicate from a substitution σ ,
denoted φ σ . If σ = {x1 7→ t1, . . . , xn 7→ tn}, then φ σ def

= x1 = t1∧·· ·∧ xn = tn.

In the following sections, we will solve semantic unification by solving syntactic unification, pro-
ducing a most general unifier and turning it into a semantically unifying pattern in matching logic.

3 Related Work

3.1 Rule-based Unification

There are several algorithms for solving unification problems. We will focus on the rule-based approach
that mimics the recursive descent algorithm computing the most general unifier and review the funda-
mental work presented in [2]. In particular, [2] introduces the so-called unification problem, which is
either a set of pairs of term patterns, or a special symbol ⊥, representing an unsolvable problem4.

The algorithm is represented by a unification step relation, denoted as P⇒ P′ for some P and P′

unification problems. This relation is inductively defined by the rules of the algorithm. See Table 1 for
the rules. The reflexive-transitive closure of this relation is written as P⇒∗ P′. It is assumed that the left
side of⇒,⇒∗, and ∪ is not ⊥.

Delete P∪{(t, t)}⇒ P
Decomposition P∪{( f (t1, . . . , tn), f (u1, . . . , un))}⇒ P∪{(t1, u1), . . . , (tn, un)}
Symbol clash P∪{( f (t1, . . . , tn), g(u1, . . . , um))}⇒⊥
Orient P∪{(t, x)}⇒ P∪{(x, t)} if t /∈ EV
Occurs check P∪{(x, t)}⇒⊥ if x ∈ FV (t)
Elimination P∪{(x, t)}⇒ P{x 7→ t}∪{(x, t)} if x /∈ FV (t)

Table 1: Rules of the unification algorithm

Definition 16 (Solved form). A unification problem is considered to be in solved form if it is ⊥ or a set
{(x1, t1), . . . , (xn, tn)}, where xi /∈ t j, for any 1≤ i, j ≤ n (i.e. the first term in the pairs is a variable that
does not appear in the second term of any of the pairs).

4For brevity, from this point on we use ⊥ do denote the failed unification problem instead the falsum pattern.
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A unification problem that is in solved form and is not ⊥ can be seen as a substitution. If we start
with a unification problem with just the two terms we want to unify as a pair, then apply the rules of
the algorithm, we will either end up with ⊥, in which case the terms are not unifiable, or a unification
problem whose corresponding substitution is the most general unifier of the terms. This expresses the
soundness of the algorithm. Note that the opposite of the above statement is also true:
Theorem 3. If σ is the most general unifier of t1 and t2, then there exists a unification problem P such
that {(t1, t2)}⇒∗ P and P is in solved form, with its corresponding substitution being σ .

Let us demonstrate rule-based unification with an example, which we will revisit in later sections for
the sake of comparison.
Example 1. The following is an exhaustive application of the unification rules on the unification problem
constructed with terms f (x, g(1), g(z)) and f (g(y), g(y), g(g(x))).

{( f (x, g(1), g(z)), f (g(y), g(y), g(g(x))))} Decomposition⇒
{(x, g(y)), (g(1), g(y)), (g(z), g(g(x)))} Decomposition⇒

{(x, g(y)), (1, y), (g(z), g(g(x)))} Decomposition⇒
{(x, g(y)), (1, y), (z, g(x))} Orient⇒
{(x, g(y)), (y, 1), (z, g(x))} Elimination⇒
{(x, g(1)), (y, 1), (z, g(x))} Elimination⇒

{(x, g(1)), (y, 1), (z, g(g(1)))}

3.2 Unification in Matching Logic

In matching logic, symbolic expressions are encoded as term patterns that are made with applications of
constructor function symbols. Unification has already been investigated in matching logic; in particular,
Arusoaie et al. [1] adapted the results of [2] to the sorted, polyadic variant of matching logic (where
applications are of form f (x1, . . . , xn)). In this paper, we do a similar adaptation, but to the unsorted,
applicative variant of the logic, where application is a binary operation: ϕ1 ϕ2.

It is to be noted that [1] argues about the soundness of unification on a semantic basis (in terms of
the evaluations of patterns), while our work shows a syntactic proof of soundness, based on the sequent
calculus for the logic, particularly exploiting the rules for deduction and rewriting.

Although the logic language and therefore the unification problems are somewhat different in our
approach, we tried to reuse as much as possible from that of [1]. Specifically, even though we generalise
the original unification problem into an abstract data type, we closely follow the approach of turning
unification problems and substitutions into predicate patterns in matching logic.

4 Unification in an Applicative Matching Logic

As discussed in Section 3, the rule-based unification algorithm relies on a data structure called a unifica-
tion problem. This is a set of pairs in the original presentation [2], but we generalise it to an abstract data
type that is not tied to a specific underlying container.

4.1 Abstract Unification Problem

First of all, we outline the operations that can be abstracted into the constructors of the new type (and
were inherited from set theory and substitution theory in the original definition). The constructors of
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abstract unification problems are as follows (P is a unification problem, t, t1, t2 are term patterns, x is a
variable):

• ⟨t1, t2⟩ creates a new unification problem from a single pair of terms (this method is used to create
the initial problem from the input terms that the algorithm is applied to);

• ⊥ represents a unification problem that “failed” because the initial terms were not unifiable;

• P◁ ⟨t1, t2⟩ is an insert operation that adds a single pair to the data structure;

• P[t/x] transforms the data structure by substituting every occurrence of x in every pair by t.

We chose to define a constructor to create a singleton unification problem, but note that it would
have also been equally correct to allow the creation of an empty problem /0, in which case singleton
could have simply been defined as ⟨t1, t2⟩

def
= /0◁ ⟨t1, t2⟩. Although we rarely need to work with an empty

unification problem, it may be created by the algorithm if the input terms are already the same, therefore
no substitution is needed to unify them.

There is only a single destructor for the data structure, φ P, which generates a pattern out of all the
stored pairs. Intuitively, when the underlying representation uses sets and pairs, the implementation of
decomposition would be defined by the following line:

φ
P def
=

∧
(t1, t2)∈P

t1 = t2

However, abstract unification problems can be instantiated to various concrete representations. In the
following, we provide the specification of the unification problem by determining the behaviour of the
constructor and destructor operations, independent of the representation.

Injectivity. From now on, we suppose that Γ is a theory that contains the theory of definedness and
includes axioms constraining all term constructor symbols to be modelled by injective functions; namely,
we assume instances of the following axiom scheme for all constructor symbols f :

∀x1, . . . , xn, y1, . . . , yn. f (x1, . . . , xn) = f (y1, . . . , yn)→ x1 = y1∧·· ·∧ xn = yn

Now, the following four specification axioms define the behaviour of the operations of abstract uni-
fication problems:

• The first property states that a singleton problem is equivalent to a single equality made from its
constituent pair.

Property 1. Γ ⊢ φ ⟨t1, t2⟩↔ t1 = t2

• The second property says that if a pair is inserted into the problem, its corresponding equality
should appear in the predicate as well.

Property 2. Γ ⊢ φ P◁⟨t1, t2⟩↔ t1 = t2∧φ P

• The third property states that substitution propagates through the predicate creation, that is substi-
tuting the terms in the data structure results in substituting them in the predicate as well.

Property 3. Γ ⊢ φ P[t/x]↔ (φ P)[t/x]

• Finally, the fourth property expresses that if we extend a non-⊥ unification problem, the result will
not be ⊥.

Property 4. Γ ⊢ P ̸=⊥→ P◁ ⟨t1, t2⟩ ̸=⊥
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4.2 Curried Rules for Abstract Unification Problems

While the related work [1] uses the polyadic version of the logic to define the rules of the unification
algorithm, our goal is to create a formalism in the applicative version. Since the latter only has binary
function application, every rule that uses this connective in the former must be rephrased. This is done
by replacing functions with their curried versions, essentially taking the argument list and applying its
elements one at a time:

f (t1, . . . , tn)−→ ((( f t1) . . .) tn)

The rules impacted by this change are Decomposition and Symbol clash. The new ruleset is de-
scribed in Table 2. Notice how, because we always insert one pair in most rules, and two pairs in
Decomposition, the previously used union operations can be easily replaced with simple insertions.

Delete P◁ ⟨t, t⟩ ⇒ P
Decomposition P◁ ⟨t1 t2, u1 u2⟩ ⇒ P◁ ⟨t1, u1⟩◁ ⟨t2, u2⟩
Symbol clash L P◁ ⟨ f , t⟩ ⇒ ⊥ if t ̸= f ∧ t /∈ EV
Symbol clash R P◁ ⟨t, f ⟩ ⇒ ⊥ if t ̸= f ∧ t /∈ EV
Orient P◁ ⟨t, x⟩ ⇒ P◁ ⟨x, t⟩ if t /∈ EV
Occurs check P◁ ⟨x, t⟩ ⇒ ⊥ if x ∈ FV(t)
Elimination P◁ ⟨x, t⟩ ⇒ P[t/x]◁ ⟨x, t⟩ if x /∈ FV(t)

Table 2: The new rules for the unification algorithm.

In the case of Decomposition, it is now necessary to tackle functions one parameter at a time. We
also need to add both sides to the unification problem, as it is no longer guaranteed that the left side is
a function symbol, and it may contain further applications. Note that it is no longer possible to tell if
the function symbols and their arity match until we fully decompose the application, and the symbols
themselves will also be added to the set.

This is not a problem, however, because if the symbols and the arity did match, then the Delete rule
can be used to get rid of the extra pair. If they did not match, we will end up with a symbol and either
a different symbol or an application in the set. These are the two cases that the new Symbol clash rules
solve. We have decided to split this rule because it is easier to state. They no longer deal with function
applications, instead they are specialized to be used at the end of a chain of Decompositions, filtering
out cases that the original Symbol clash would have done in a single step. The t ̸= f condition plays a
dual purpose here. In case the arities of the function symbols matched, but the symbols themselves did
not, t will necessarily be some symbol g, that is different from f , satisfying the condition. If the arities
did not match however, then t will be an application, which obviously will not be equal to a symbol,
therefore satisfying the condition again. However, t may still be some variable x, and we must take care
not to reject this symbol-variable pair using the new rules as those are not erroneous.

We demonstrate in Figure 4 with some small examples how the new rules compare to the old ones
presented and explained in Section 3.

4.3 Soundness

In this section we present supporting lemmas similar to those discussed in [1]; however, we emphasise
that they prove these results semantically, while we construct syntactical proofs. At the end of the section,
we prove the soundness of the rule-based unification.
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{( f (x, a), f (b, y))} Decomposition⇒
{(x, b), (a, y)}y
⟨ f xa, f by⟩ Decomposition⇒

⟨ f x, f b⟩◁ ⟨a, y⟩ Decomposition⇒
⟨ f , f ⟩◁ ⟨x, b⟩◁ ⟨a, y⟩ Delete⇒

⟨x, b⟩◁ ⟨a, y⟩
(a) Same arity and symbol

{( f (x, a), g(b, y))} Symbol clash⇒
⊥y

⟨ f xa, gby⟩ Decomposition⇒
⟨ f x, gb⟩◁ ⟨a, y⟩ Decomposition⇒

⟨ f , g⟩◁ ⟨x, b⟩◁ ⟨a, y⟩ Symbol clash⇒
⊥

(b) Different symbol

{( f (x,a), f (y))} Symbol clash⇒
⊥y

⟨ f xa, f y⟩ Decomposition⇒
⟨ f x, f ⟩◁ ⟨a, y⟩ Symbol clash⇒

⊥
(c) Different arity

Figure 4: Comparison of old and new rules. Notice how (a, y) and (x, b) are not filtered out by either
version of Symbol clash as they are not errors.

Lemma 5. Let ϕ1 and ϕ2 be functional patterns. Then Γ ⊢ ϕ1∧ϕ2↔ ϕ1∧ (ϕ1 = ϕ2).

Proof. First we prove the← direction. Here we simply split the premise and rewrite the goal using (=⊢)
with ϕ1 = ϕ2 to obtain ϕ1∧ϕ1, which is easily solved by the ϕ1 hypothesis.

For the→ direction, we know from Lemma 1that ϕ→⌈ϕ⌉. We apply this to the ϕ1∧ϕ2 hypothesis,
that gives us a defined conjunction, which is the definition of ∈, so our new hypothesis is ϕ1 ∈ ϕ2.

Then, we discharge ϕ1 by using the left hand side of the original hypothesis, and ϕ1 ∈ ϕ2 implies
ϕ1 = ϕ2 as shown in Lemma 2, so we can solve that part as well.

This lemma of utmost practical relevance, since it is used to set up the unification problem by in-
troducing the equality pattern ϕ1 = ϕ2 which can be turned into the unification problem ⟨ϕ1, ϕ2⟩ to
solve.

Lemma 6. Let ϕ and t be patterns, and x be a variable. Then Γ ⊢ x = t→ ϕ[t/x] = ϕ .

Proof. For technical reasons, we do not use the rewrite rule here, but the congruence of equality [7] on
x = t, using the pattern context ϕ[□/x] = ϕ . We can assume that □ is a fresh variable in ϕ . This gives
us ϕ[□/x][x/□] = ϕ ↔ ϕ[□/x][t/□] = ϕ .
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In ϕ[□/x][x/□] we replace all occurrences of x with a fresh variable □, and then immediately replace
all occurrences of that with x. It is clear to see that this operation is the same as ϕ[x/x], which actually
does nothing and so the pattern is equivalent to just ϕ .

We can make a similar argument in the case of ϕ[□/x][t/□], however, this time it is t that we place
back into □, so this pattern is equivalent to ϕ[t/x].

Rewriting the formula with these two equivalences, we get ϕ = ϕ ↔ ϕ[t/x] = ϕ .
As equivalence is just the conjunction of two implications, we can drop the ← direction, keeping

only the→ one.
Finally, ϕ = ϕ is proven by reflexivity, so by modus ponens on the implication, we arrive at our goal

of ϕ[t/x] = ϕ .

The above lemma makes it easier to simplify substitutions using congruence in future proofs.

Lemma 7. Let ϕ be a pattern and σ a substitution. Then Γ ⊢ ϕσ ∧φ σ ↔ ϕ ∧φ σ .

Proof. First we extract the φ σ from both sides of the equivalence using Lemma 3, which yields us
φ σ → ϕσ ↔ ϕ .

Then we do induction on σ with any ϕ . If it is the empty substitution, we can prove ⊤→ ϕ ↔ ϕ

by reflexivity. If it is not, then there is at least one x element variable and t pattern that is part of σ

(σ = {x 7→ t} ∪σ ′), and we also know that x = t is part of φ σ (φ σ = (x = t)∧ φ σ ′). Thus our goal
becomes x = t ∧φ σ ′ → ϕ[t/x]σ ′↔ ϕ .

If we specialize the induction hypothesis with ϕ[t/x] as ϕ , we get φ σ ′ → ϕ[t/x]σ ′↔ ϕ[t/x].
φ σ ′ is part of our hypothesis. Using the transitivity and symmetry of equivalence with this and the

goal, we can reduce the goal to ϕ[t/x]↔ ϕ .
We still have x = t in the hypothesis, and we can use Lemma 6 on it to obtain ϕ[t/x] = ϕ .
Finally, using DEDUCTION we can extract the equivalence from this equality, proving the goal.

This is, in a sense, an extension of Lemma 6 to set-based substitutions, with the added requirement
for the predicate φ σ .

Now we move on to justifying the soundness of single unification steps, and then argue about the
correctness of unification step sequences by using induction.

Lemma 8. Let P and P′ be unification problems. If P⇒ P′ and P′ ̸=⊥ then Γ ⊢ φ P→ φ P′ .

Proof. We do induction on the⇒ relation. In most cases we will use Property 2, which states for every
P unification problem and x, y terms that φ P◁⟨x, y⟩↔ x = y∧φ P.

• Using the property in the Delete case, we get t = t ∧φ P→ φ P which is trivially proven.

• In the case of Decomposition, we use the property three times, ultimately transforming the goal
to f t = gu∧ φ P → t = u∧ f = g∧ φ P. This is the one time where we need to make use of the
injectivity axiom, applying it to f t = gu we obtain f = g∧ t = u. With this now we can easily
prove the goal.

• With Symbol clash L, Symbol clash R, and later Occurs check we actually have a contradiction,
as in both cases P′ = ⊥ and we have a hypothesis that says P′ ̸= ⊥, therefore these cases are
immediately discharged.

• In the Orient case we use the property twice to transform the goal to x = t ∧φ P→ t = x∧φ P and
this is solved using the symmetry of equality.
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• Finally, in the case of Elimination we will once again use the property twice, however, this time
that will not be enough. We can reduce the goal to x = t ∧ φ P → x = t ∧ φ P[x/t] and the x = t
part is solvable like before, but for the other one we need to take advantage of another property,
Property 3. This says that φ P[x/t] ↔ φ P[t/x]. Rewriting with this, we get x = t ∧ φ P → x = t ∧
φ P[t/x]. If we choose σ to be {x 7→ t} and ϕ to be φ P, then this is a direct consequence of
Lemma 7.

We can show that not only single steps but their sequence is correct:

Lemma 9. If P and P′ are unification problems, and P⇒∗ P′, where P′ ̸=⊥, then Γ ⊢ φ P→ φ P′ .

Proof. First we do induction on the⇒∗ relation.
In the reflexive case, we have φ P→ φ P, which is trivially provable.
In the transitive case, we know that there is a P′′ such that P⇒ P′′ and P′′⇒∗ P′. We also have an

inductive hypothesis that if P′ ̸= ⊥, then φ P′′ → φ P′ and from the hypothesis we know that P′ ̸= ⊥. We
need to use these facts to prove that φ P→ φ P′′ .

For this we are going to use Lemma 8 with P⇒ P′′, but in order to do that, we first need to prove
that P′′ ̸=⊥.

For that we are going to do another induction, this time on P′′ ⇒∗ P′. In the reflexive case, when
P′′ = P′, we can once again use the P′ ̸= ⊥ hypothesis to do this. In the transitive case we get that
P′′ ⇒ P′′′, and we know that in every case of ⇒, the left side is an insertion into some unification
problem that is not ⊥. That is, there is some P0, such that P0 ̸= ⊥ and P′′ = P0 ◁ ⟨_, _⟩. But thanks to
Property 4, that said P0 ̸=⊥→ P0 ◁ ⟨_, _⟩ ̸=⊥, we know that P′′ cannot be ⊥.

With this condition satisfied, we can use Lemma 8 to finish the proof.

Corollary 1. If a substitution σ is the most general unifier of two patterns t1 and t2, then Γ⊢ t1 = t2→ φ σ .

Proof. Here we can use Theorem 3 with the most general unifier σ to obtain a P′ unification problem that
is not ⊥ and φ P′ = φ σ . We also know that t1 = t2 is the same as φ ⟨t1, t2⟩, from Property 1. By rewriting
with these equalities, we have transformed the goal to be solvable by Lemma 9.

Lemma 9 extends Lemma 8 to the reflexive-transitive closure of the relation, while Corollary 1
specializes it to the singleton pattern that the algorithm starts with.

Lemma 10. Let σ be a unifier of two terms t1 and t2. Then Γ ⊢ φ σ → t1 = t2.

Proof. First we take the φ σ condition and add it to both sides of the equality using Lemma 4, resulting
in t1∧φ σ = t2∧φ σ .

Next, we rewrite with Lemma 7 on both sides of the equality, which gives us t1σ ∧φ σ = t2σ ∧φ σ .
Now, we can remove the φ σ from both sides by using Lemma 4 again, and the resulting t1σ = t2σ is

exactly the definition of σ being a unifier of t1 and t2, which is in our hypothesis.

This is the same as the above, but in the other direction.

Theorem 4 (Soundness). If a substitution σ is the most general unifier of two patterns t1 and t2, then
Γ ⊢ t1 = t2↔ φ σ .

Proof. This is the conjunction of Corollary 1 and Lemma 10.
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The soundness theorem derives a result that allows us to manipulate conjunction patterns so that the
conjunction of two structural patterns can be turned into the conjunction of a single structural pattern and
a single predicate pattern. This is of practical importance as it allows matching logic provers to extract
predicates to be discharged by external solvers:

Corollary 2. Let σ be the most general unifier of two patterns t1 and t2. Then Γ ⊢ t1∧ t2↔ t1∧φ σ and
Γ ⊢ t1∧ t2↔ t2∧φ σ .

Proof. From Lemma 5 we know that t1∧ t2↔ t1∧ t1 = t2. Using the commutativity of ∧ and symmetry
of =, we can also get t1∧ t2↔ t2∧ t1 = t2 from the same lemma.

We also know from Theorem 4 that t1 = t2↔ φ σ . Rewriting the previous two statements with this
we get the two statements of this theorem.

Finally, we demonstrate the algorithm and its soundness on an example.

Example 2. We present the example shown in Example 1, generate its unifier and prove the first state-
ment of Corollary 2 with its terms (the second may be proven similarly): There exists a σ substitution
such that Γ ⊢ f x(g1)(gz)︸ ︷︷ ︸

t1

∧ f (gy)(gy)(g(gx))︸ ︷︷ ︸
t2

↔ f x(g1)(gz)︸ ︷︷ ︸
t1

∧φ σ .

We use existential quantification on σ because we know that the terms are unifiable (therefore it does
exist) and it can be automatically inferred as we run the algorithm.

Proof. We begin with the→ direction. First we use Lemma 5 to rewrite t1∧ t2 as t1∧ t1 = t2.
Then, we use Lemma 9, since we do not have a proof that σ is the most general unifier (since we do

not even know what σ is yet), we cannot use Corollary 1. For this, we need to prove that there is some
non-⊥ P unification problem, such that ⟨t1, t2⟩ ⇒∗ P. We will also not state what P is ahead of time, as
that too can be inferred.

This proof follows the steps outlined in Example 1, but this time we need to use the applicative
version of the Decomposition rule. We use the transitive constructor of ⇒∗ with each step, and when
we reach the solved form, end with the reflexive constructor. The steps are as follows:

⟨ f x(g1)(gz), f (gy)(gy)(g(gx))⟩ Decomposition⇒
⟨ f x(g1), f (gy)(gy)⟩◁ ⟨gz, g(gx)⟩ Decomposition⇒
⟨ f x, f (gy)⟩◁ ⟨g1, gy⟩◁ ⟨gz, g(gx)⟩ Decomposition⇒

⟨ f , f ⟩◁ ⟨x, gy⟩◁ ⟨g1, gy⟩◁ ⟨gz, g(gx)⟩ Delete⇒
⟨x, gy⟩◁ ⟨g1, gy⟩◁ ⟨gz, g(gx)⟩ Decomposition⇒

⟨x, gy⟩◁ ⟨g, g⟩◁ ⟨1, y⟩◁ ⟨gz, g(gx)⟩ Delete⇒
⟨x, gy⟩◁ ⟨1, y⟩◁ ⟨gz, g(gx)⟩ Decomposition⇒

⟨x, gy⟩◁ ⟨1, y⟩◁ ⟨g, g⟩◁ ⟨z, gx⟩ Delete⇒
⟨x, gy⟩◁ ⟨1, y⟩◁ ⟨z, gx⟩ Orient⇒
⟨x, gy⟩◁ ⟨y, 1⟩◁ ⟨z, gx⟩

We could have used Elimination at the end, however, it will not help us in this proof, so we omitted
those steps of the original example. Now that we have successfully inferred what P is, we can easily
prove that it is not⊥ and we have a hypothesis that says t1 = t2→ x = gy∧y = 1∧ z = gx. We can apply
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this to our hypothesis of t1 = t2. With this, we can actually already solve our goal. The t1 part is trivial,
and the φ σ part is unknown, because σ is uninstantiated, however, because it is a predicate, we know
that it is a chain of conjunctions. If we solve this with the one from above, it will be inferred that σ is
indeed {(x 7→ gy), (y 7→ 1), (z 7→ gx)}. Now that we know this, the← direction can be solved. Here,
the now known φ σ gives us a series of equalities which we can use to repeatedly rewrite subterms in our
goal of t1 ∧ t2 and the t1 hypothesis, until the t1 and t2 in them become the same pattern. From this the
solution is trivial.

We intuitively know that this rewriting is possible, as σ is a unifier of t1 and t2, therefore t1σ = t2σ ,
and although we did not formally prove this, it is easy to manually check in this example. In this manual
proof it is also not necessary to do the substitution fully (i.e. to calculate the actual t1σ and t2σ ), it is
enough to go until the two terms match.

4.4 Mechanization

As part of our work, we mechanized all the above presented results in the Coq proof assistant, based on
an existing formalisation [3] of applicative matching logic. The formalisation uses a locally-nameless
variable representation [4] and deep embedding, which makes the mathematical proofs and the formal
proofs somewhat diverging here and there due to the additional technical complexity in the implementa-
tion stemming from well-formedness constraints. However, the formalisation provides an implementa-
tion of the sequent calculus in terms of an embedded proof mode [11], so our proof descriptions resemble
the actual formal proof scripts [8].

Instances of the abstract unification problem. The abstract unification problem was implemented
as a type class, and an instance of this class has been created for sets containing pairs of well-formed
patterns, wrapped in an option. The optional type allows us to use the None value to represent failed
unification problems. We are using stdpp’s set classes [10], therefore this instance is still generic in the
exact implementation of the set, as long as it has all required methods and properties. In the future, we
plan to instantiate this class for lists and other containers and investigate their non-functional properties.

5 Conclusion

This paper presented a generalisation of the well-known unification problem of symbolic expressions.
We defined abstract unification problems for term patterns in the applicative variant of matching logic,
and following in the footsteps of the related work we defined a rule-based algorithm for solving abstract
unification problems. We instantiated abstract problems to sets and demonstrated their behaviour via
examples. Last but not least, we proved the soundness of the unification algorithm, syntactically, using
a sequent calculus for matching logic. The entire development is supported by a mechanisation of the
formal theory, implemented in the Coq proof assistant.
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We develop denotational and operational semantics designed with continuations for process calculi
based on Milner’s CCS extended with mechanisms offering support for multiparty interactions. We
investigate the abstractness of this continuation semantics. We show that our continuation-based
denotational models are weakly abstract with respect to the corresponding operational models.

1 Introduction

In denotational semantics, continuations have a long tradition, being used to model a large variety of con-
trol mechanisms [20, 11, 12]. However, it is usually considered that continuations do not perform well
enough as a tool for describing concurrent behaviour [16]. In [21, 6], we introduced a technique for de-
notational and operational semantic design named continuation semantics for concurrency (CSC) which
can be used to handle advanced concurrent control mechanisms [9, 10, 22]. The distinctive characteristic
of the CSC technique is the modelling of continuations as structured configurations of computations.

In this paper, we employ the CSC technique in providing denotational and operational seman-
tics for the multiparty interaction mechanisms incorporated in two process calculi, namely CCSn and
CCSn+ [13], both based on the well-known CCS [15] – CCSn and CCSn+ extend CCS with constructs
called joint input and joint prefix, respectively, that can be used to express multiparty synchronous inter-
actions. The semantic models are developed using the methodology of metric semantics [2].

In particular, we investigate the abstractness of continuation semantics. As it is known, the complete-
ness condition of the full abstraction criterion [14] is often difficult to be fulfilled. In models designed
with continuations, the problem may be even more difficult [4, 8]. Therefore, in [8, 22] we introduced
a weak abstractness optimality criterion which preserves the correctness condition, but relaxes the com-
pleteness condition of the classic full abstractness criterion. The weak abstractness criterion comprises a
weaker completeness condition called weak completeness, which is easier to establish because it needs to
be checked only for denotable continuations (that handle only computations denotable by the language
constructs and represent an invariant of the computation). We study the abstractness of continuation se-
mantics based on the weak abstractness criterion. The continuation-based denotational models presented
in this article for the multiparty interaction mechanisms incorporated in CCSn and CCSn+ are weakly
abstract with respect to the corresponding operational models.

Following the approach presented in [2], we start from the language Lsyn given in Chapter 11 of [2].
As it is mentioned in [2], the language Lsyn is “essentially based on CCS”. Then, we consider two
language named LCCSn and LCCSn+ which extend the language Lsyn with constructs for multiparty inter-
actions: LCCSn extends Lsyn with the joint input construct of CCSn, and LCCSn+ extends Lsyn with the
joint prefix construct of CCSn+. We define and relate continuation-based denotational and operational
semantics for LCCSn and LCCSn+ .

http://dx.doi.org/10.4204/EPTCS.410.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Contribution: By using the methodology of metric semantics, we develop original continuation se-
mantics for the multiparty interaction mechanisms incorporated in CCSn and CCSn+. We provide a new
representation of continuations based on a construction presented in Section 2.3. We show that the deno-
tational models presented in this paper are weakly abstract with respect to the corresponding operational
models. A weak abstractness result for CCSn was also presented in [9]; the weak abstractness result
for CCSn+ is new. The weak completeness condition of the weak abstractness principle presented in
[8, 22] should be checked only for denotable continuations. Intuitively, the collection of denotable con-
tinuations have to be an invariant of the computation, in the sense that it is sufficiently large to support
arbitrary computations denotable by program statements. The formal conditions capturing this intuition
are studied initially in [8, 22]. In this article we offer a more general formal framework. We present
the formal conditions which guarantee that the domain of denotable continuations is invariant under the
operators used in the denotational semantics, where the domain of denotable continuations is the metric
completion of the class of denotable continuations.

2 Preliminaries

We assume the reader is familiar with metric spaces, multisets, metric semantics [2], and the λ -calculus
notation. For the used notions and notations, we refer the reader to [5, 6, 7, 8].

The notation (x ∈)X introduces the set X with typical element x ranging over X . We write S ⊆ X to
express that S is a subset of X . |S| is the cardinal number of set S. Let X be a countable set.

The set of all finite multisets over X is represented by using the notation [X ]; the construction [X ]
and the operations on multisets that are specified formally in [7]. By a slight abuse, the cardinal number
of a multiset m ∈ [X ] defined as ∑x∈dom (m) m(x) is also denoted by |m|. Even though the same notation
| · | is used regardless of whether ’·’ is a set or a multiset, it is always evident from the context whether
the argument ’·’ is a set or a multiset. We represent a multiset by stringing its elements between square
brackets ’[’ and ’]’. For instance, the empty multiset is written as [], and [e1,e2,e2] is the multiset with
one and two occurrences of the elements e1 and e2, respectively. If f ∈ X →Y is a function (with domain
X and codomain Y ) and S is a subset of X , S ⊆ X , the notation f↾S denotes the function f restricted to the
domain S, i.e. f ↾S : S → Y , f ↾S(x) = f (x),∀x ∈ S. Also, if f ∈ X →Y is a function, ⟨ f | x 7→ y⟩ : X →Y
is the function defined (for x,x′∈X ,y∈Y ) by: ⟨ f | x 7→ y⟩(x′) = if x′=x then y else f (x′). Given a function
f ∈ X → X , we say that an element x ∈ X is a fixed point of f if f (x) = x, and if this fixed point is unique
we write x = fix( f ).

We present semantic models designed using the mathematical framework of 1-bounded complete
metric spaces [2]. We assume the following notions are known: metric and ultrametric space, isometry
(between metric spaces, denoted by ’∼=’), Cauchy sequence, complete metric space, metric completion,
compact set, and the discrete metric. We use the notion of metric domain as a synonym for the notion
of complete (ultra) metric space. We assume the reader is familiar with the standard metrics for defining
composed metric structures [2]. We use the constructs for 1

2 -identity, disjoint union (+), function space
(→), Cartesian product (×), and the compact powerdomain. Every Cauchy sequence in a complete metric
space M has a limit that is also in M. If (M1,d1) and (M2,d2) are metric spaces, a function f :M1 → M2
is a contraction if ∃c ∈ R, 0 ≤ c < 1, ∀x,y ∈ M1 [d2( f (x), f (x))≤c ·d1(x,y)]. If c = 1 we say that f is
nonexpansive; each nonexpansive function is continuous [2]. The set of all nonexpansive functions from
M1 to M2 is denoted by M1

1→M2. We recall Banach’s theorem.

Theorem 1 (Banach) Let (M,d) be a non-empty complete metric space. Each contraction f : M → M
has a unique fixed point.
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With Pco(·) (Pnco(·)) we denote the power set of compact (non-empty and compact) subsets of ’·’.
Pfin(·) denotes the power set of finite subsets of ’·’ (we always endow Pfin(·) with the discrete metric).

Hereafter, we shall often suppress the metrics part in metric domain definitions. For example, we
write 1

2 ·M and M1 ×M2 instead of (M,d 1
2 ·M

) and (M1 ×M2,dM1×M2), respectively.
Let (M,d),(M′,d′) be metric spaces. We write (M,d)◁(M′,d′), or simply M◁M′, to express that M

is a subspace of M′, i.e, M ⊆ M′ and d′↾M = d (the restriction of metric d′ to M coincides with d).
For compact sets we use Theorem 2 (due to Kuratowski) and the characterization given in Theorem 3.

Given a complete metric space (M,d) and a subset X , X ⊆ M, according to Theorem 3, the statement
that X is compact is equivalent to the statement that X is the limit (with respect to Hausdorff metric dH)
of a sequence of finite sets [3]. The proofs of these theorems are also provided in [2].

Theorem 2 [Kuratowski] Let (M,d) be a complete metric space.

(a) If (Xi)i is a Cauchy sequence in (Pnco(M),dH) then

limi Xi = {limi xi | ∀i : xi ∈ Xi,(xi)i is a Cauchy sequence in M}.

(b) If (Xi)i is a Cauchy sequence in (Pco(M),dH) then either, for almost all i, Xi = /0, and limi Xi = /0,
or for almost all i (say for i ≥ n), Xi ̸= /0 and

limi Xi = {limi≥n xi | ∀i ≥ n : xi ∈ Xi,(xi)i is a Cauchy sequence in M}.

(c) (Pco(M),dH) and (Pnco(M),dH) are complete metric spaces.

Theorem 3 Let (M,d) be a complete metric space. A subset X ⊆ M is compact whenever X = limi Xi,
where each Xi is a finite subset of M (the limit is taken with respect to the Hausdorff metric dH).

Remark 1 (a) If M and M′ are metric spaces with subspaces S and S′ (S ◁M and S′ ◁M′), then
S+S′◁M+M′, S×S′◁M×M′, (A→ S)◁(A→M), Pco(S)◁Pco(M) and Pnco(S)◁Pnco(M)
(see [2], chapter 10).

(b) Let (M,d),(M1,d1) and (M2,d2) be metric spaces. It is easy to verify that, if M1 ◁M, M2 ◁M and
M1 ⊆ M2 then M1 ◁M2.

Definition 1 Given a metric space (M,d), a completion of (M,d) is a complete metric space (M,d′)
such that M ◁M and for each element x ∈ M we have: x = lim j x j, with x j ∈ M,∀ j ∈ N (limit is taken
with respect to metric d′).

Each metric space has a completion that is unique up to isometry [2]. For the proof of Remark 2, see [8].

Remark 2 Let (M,d) be a complete metric space, and X be a subset of M, X ⊆ M. We use the notation
co(X |M) for the set co(X |M)

not.
= {x | x ∈ M,x = limi xi,∀i ∈ N : xi ∈ X ,(xi)i is a Cauchy sequence in X},

where limits are taken with respect to d (as (M,d) is complete limi xi ∈ M). If we endow X with dX = d↾X
and co(X |M) with dco(X |M) = d↾co(X |M), then (co(X |M),dco(X |M)) is a metric completion of (X ,dX). It
is easy to see that X ◁ co(X |M) and co(X |M)◁M.

Remark 3 (a) If (M1,d1) and (M2,d2) are complete metric spaces and (xi)i is a Cauchy sequence in
M1+M2, then for almost all i (i.e., for all but a finite number of exceptions) we have that xi = (1,x′i)
or xi = (2,x′i), where (x′i)i is a Cauchy sequence in M1 or M2, respectively (see [2]).

(b) Let (M1,d1) and (M2,d2) be complete metric spaces. If (xi
1,x

i
2)i is a Cauchy sequence in M1×M2,

then (xi
1)i is a Cauchy sequence in M1 and (xi

2)i is a Cauchy sequence in M2. Since M1 and
M2 are complete, there exists x1 ∈ M1 and x2 ∈ M2 such that x1 = limi xi

1 and x2 = limi xi
2, and

limi(xi
1,x

i
2) = (x1,x2) = (limi xi

1, limi xi
2) [2].
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(c) Let (M,d) be a complete metric space. Let (xi)i be a convergent sequence in M with limit x =
limi xi. Then (xi)i has a subsequence (x f (i))i such that

∀n ∀ j ≥ n [d(x f ( j),x)≤ 2−n], (1)

where f :N→N is a strictly monotone mapping, i.e., f (i)< f (i′)whenever i< i′. We obtain such a
subsequence (by imposing the condition that the function f : N→ N is strictly monotone and) by
putting f (0) = 0, and if i > 0 then f (i) = m, where m ∈N is the smallest natural number such that

∀l ≥ m [d(xl,x)≤ 2−i]. (2)

It is easy to see that this subsequence satisfies property (1). Clearly, if n = 0 (which implies
2−n = 1), then (1) holds. If n > 0 and j ≥ n, then property (1) also holds because we infer
(from (2)) that d(x f ( j),x)≤ 2− j ≤ 2−n.

Lemma 1 Let (M,d), (M1,d1) and (M2,d2) be complete metric spaces. Let S,S1 and S2 be subsets of
M, M1 and M2, respectively, S ⊆ M, S1 ⊆ M1 and S2 ⊆ M2. Let A be an arbitrary set. Then

(a) co(S1 +S2|M1 +M2) = co(S1|M1)+ co(S2|M2),

(b) co(S1 ×S2|M1 ×M2) = co(S1|M1)× co(S2|M2),

(c) A → co(S|M) = co(A → S|A → M),

(d) Pco(co(S|M)) = co(Pco(S)|Pco(M)),

(e) Pnco(co(S|M)) = co(Pnco(S)|Pnco(M)).

Proof. Clearly, S1 + S2 ⊆ M1 +M2, S1 × S2 ⊆ M1 ×M2, (A → S) ⊆ (A → M), Pco(S) ⊆ Pco(M) and
Pnco(S)⊆ Pnco(M) (see Remark 1(a)). The proof for part (a) follows by using Remark 3(a). The proof
for part (e) is similar to the proof for part (d). We provide below the proofs for parts (b), (c) and (d).

(b) We have co(S1 ×S2|M1 ×M2) = {(x1,x2) | (x1,x2) ∈ M1 ×M2,(x1,x2) = limi(xi
1,x

i
2),

(xi
1,x

i
2)i is a Cauchy sequence in S1 ×S2} [Remark 3(b)]

= {(x1,x2) | x1 ∈ M1,x1 = limi xi
1,(x

i
1)i is a Cauchy sequence in S1,

x2 ∈ M2,x2 = limi xi
2,(x

i
2)i is a Cauchy sequence in S2}

= {x1 | x1 ∈ M1,x1 = limi xi
1,(x

i
1)i is a Cauchy sequence in S1}×

{x2 | x2 ∈ M2,x2 = limi xi
2,(x

i
2)i is a Cauchy sequence in S2}

= co(S1|M1)× co(S2|M2).

(c) Let f ∈A→ co(S|M) (the space co(S|M) is complete, by Remark 2). We define a Cauchy sequence
( fi)i in A → S ( fi ∈ A → S, for all i ∈ N) as follows: for each a ∈ A, since f (a) ∈ co(S|M), we
consider a Cauchy sequence (xa

i )i in S (xa
i ∈ S for all i ∈ N) such that limi xa

i = f (a). Without loss
of generality, we may assume that ∀i ≥ n [d(xa

i , f (a))≤ 2−n] for any n ∈ N.
For all i ∈ N, we define fi ∈ A → S by fi(a) = xa

i , for each a ∈ A. One can check that ( fi)i is a
Cauchy sequence in A → S and limi fi = f . By remarks 2 and 1(a), A → co(S|M)◁A → M, and
so f ∈ A → M. Therefore, f ∈ co(A → S|A → M). Since f was arbitrarily selected, we obtain
A → co(S|M)⊆ co(A → S|A → M).

Next, let f ∈ co(A → S|A → M). Then f = limi fi, where ( fi)i is a Cauchy sequence in A → S.
It is easy to verify that, since ( fi)i is a Cauchy sequence in A → S, ( fi(a))i is a Cauchy sequence
in S for each a ∈ A. Therefore, since ( fi(a))i is a Cauchy sequence in S, one can check that
limi fi(a) = f (a)∈ M for each a ∈ A. Hence, f ∈A → co(S|M), which means that we have co(A →
S|A → M)⊆ A → co(S|M). We conclude that A → co(S|M) = co(A → S|A → M).
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(d) First, we observe that /0 ∈ Pco(co(S|M)), and also /0 ∈ co(Pco(S)|Pco(M)).
Next, let X ∈ co(Pco(S)|Pco(M)), X ̸= /0. Since X ∈ co(Pco(S)|Pco(M)), then X ∈ Pco(M)

and X = limi Xi, where (Xi)i is a Cauchy sequence with Xi ∈ Pco(S) for all i ∈ N. By Theorem 2
(assuming that Xi ̸= /0 for almost all i, say for i ≥ n), we have

X = limi Xi = {limi≥n xi | ∀i ≥ n : xi ∈ Xi, (xi)
∞
i=n is a Cauchy sequence in S}

= {x | x ∈ M,x = limi≥n xi,∀i ≥ n : xi ∈ Xi, (xi)
∞
i=n is a Cauchy sequence in S}

⊆ {x | x ∈ M,x = limi xi,∀i ∈ N : xi ∈ S, (xi)i is a Cauchy sequence in S}= co(S|M).

Since X is compact and X ⊆ co(S|M), we have X ∈ Pco(co(S|M)).
Therefore, co(Pco(S)|Pco(M))⊆ Pco(co(S|M)).

The proof that Pco(co(S|M))⊆ co(Pco(S)|Pco(M)) follows by using Theorem 3.

□

2.1 Denotable continuations

The completeness condition of the weak abstraction criterion presented in this paper uses a notion of
denotable continuation. The class of denotable continuations represents an invariant of the computation,
and its definition relies on a construction that employs a compliance notion in function spaces (presented
in Definition 2). The class of denotable continuations is introduced formally in Definition 6.

Definition 2 Let (M1,d1) and (M2,d2) be metric spaces. Let S1 and S2 be nonempty subsets of M1 and M2,

respectively, S1 ⊆ M1, and S2 ⊆ M2. We define the metric space (M1⟨S1⟩
1→M2⟨S2⟩,dC) by:

M1⟨S1⟩
1→M2⟨S2⟩= { f | f ∈ M1

1→M2,(∀x ∈ S1 : f (x) ∈ S2)} dC = dF↾M1⟨S1⟩
1→M2⟨S2⟩,

where dF is the standard metric defined on M1
1→M2 [2],1 and dC is the restriction of dF to M1⟨S1⟩

1→M2⟨S2⟩.
We say that (M1⟨S1⟩

1→M2⟨S2⟩,dC) is an S1 → S2 compliant function space.

Clearly, M1⟨S1⟩
1→M2⟨S2⟩ is a subset of M1

1→M2: M1⟨S1⟩
1→M2⟨S2⟩ ⊆M1

1→M2 (M1⟨S1⟩
1→M2⟨S2⟩

contains all nonexpansive functions f ∈M1
1→M2, that in addition satisfy the property: (∀x∈S1 : f (x)∈S2)).

Remark 4 As in Definition 2, let (M1,d1) and (M2,d2) be metric spaces. Let S1 and S2 be nonempty
subsets of M1 and M2, respectively, S1 ⊆ M1, S2 ⊆ M2. One can establish the properties presented below.

(a) (M1⟨S1⟩
1→M2⟨S2⟩,dC) is a subspace of (M1

1→M2,dF)): M1⟨S1⟩
1→M2⟨S2⟩◁M1

1→M2.

(b) If (M1,d1) and (M2,d2) are ultrametric then (M1⟨S1⟩
1→M2⟨S2⟩,dC) is also an ultrametric space.

(c) The sets S1 and S2 can be endowed with the metrics d1↾S1 and d2↾S2, respectively. If the spaces
(M2,d2) and (S2,d2↾S2) are complete then (M1⟨S1⟩

1→M2⟨S2⟩,dC) is also a complete metric space.

Remark 5 Let M1 and M2 be metric spaces, with subspaces S1 and S2 such that S1 ◁M1 and S2 ◁M2.
Then we can construct the S1 → S2 compliant space (M1⟨S1⟩

1→M2⟨S2⟩,dF ↾ M1⟨S1⟩
1→M2⟨S2⟩), and

(since, by Remark 2, co(Si|Mi)◁Mi, for i = 1,2) we can also construct the co(S1|M1)→ co(S2|M2)

compliant function space (M1⟨co(S1|M1)⟩
1→M2⟨co(S2|M2)⟩,dF↾M1⟨co(S1|M1)⟩

1→M2⟨co(S2|M2)⟩.

Lemma 2 Let (M1,d1) and (M2,d2) be complete metric spaces. Let S1 and S2 be nonempty subsets of M1

and M2 such that S1 ⊆M1 and S2 ⊆M2. If f ∈M1⟨S1⟩
1→M2⟨S2⟩, then f ∈M1⟨co(S1|M1)⟩

1→M2⟨co(S2|M2)⟩.
1The metric defined on M1

1→M2 is also presented in [5] (Definition 2.7).



E.N. Todoran & G. Ciobanu 23

Corollary 1 Let (M1,d1) and (M2,d2) be complete metric spaces, and S1 and S2 be nonempty subsets

of M1 and M2 (S1 ⊆ M1, S2 ⊆ M2). Then we have M1⟨S1⟩
1→M2⟨S2⟩◁M1⟨co(S1|M1)⟩

1→M2⟨co(S2|M2)⟩.

Remark 6 In the metric approach [2], a continuation-based denotational semantics D : L → D is a
function which maps elements of a language L to values in a domain D ∼= C 1→R, where D is the domain
of computations (or denotations), C is the domain of continuations and R is a domain of final answers.
Note that D, C and R are metric domains, i.e., complete metric spaces. In general, the domain of
continuations C is given by an equation of the form C = · · ·(1

2 ·D) · · · , i.e., the definition of C depends on
the domain D. In this paper, we consider only denotational semantics designed using domain equations
of the form D ∼= C 1→R that have unique solutions (up to isometry ∼=) [1], and we focus on ultrametric
domains. 2

The semantic operators that are used in the definition of a denotational semantics D : L → D are
nonexpansive functions that receive as arguments and yield as results values of various types, including
(combinations of) the domains D, C and R.

Definition 3 Let D : L→D be a continuation-based denotational semantics, where the semantic domain
D ∼= C 1→R is as in Remark 6. We define two classes of metric domains A tclass and Otclass for D , class
A tclass with typical element A t and class Otclass with typical element Ot:

A t ::= M
∣∣ D

∣∣ C
∣∣A t ×A t

∣∣A t +A t
∣∣ A → A t

∣∣Pco(A t)
∣∣Pnco(A t) ,

Ot ::= A t 1→A t .
An element A t ∈ A tclass is an argument type, an element Ot ∈ Otclass is an operator type.

Here M is an arbitrary metric domain (a complete metric space) that does not depend on either D or C.3

A is an arbitrary set. The composed domains A t ∈ A tclass and Ot ∈ Otclass are endowed with the
standard metrics defined on the product space and the function space, respectively [2].4

Remark 7 Since in Definition 3, M, D and C are complete spaces, any argument type A t ∈ A tclass is a
metric domain (a complete metric space). Also, any operator type Ot∈Otclass is a metric domain [2].5

Note that the (restricted) function space A→A t and the compact and non-empty and compact power-
domain constructions Pco(A t) and Pnco(A t)) 6 are not needed in the approach presented in this paper,
and are rarely used in practice to specify argument types. The compact powerdomain constructions
can be used to specify nondeterministic behaviour by using operators for nondeterministic scheduling 7.
In this paper, the specification of nondeterministic behaviour is given in the definition of the semantic
operators for parallel composition and nondeterministic choice (without the need for nondeterministic
schedulers). However, the class A tclass can be extended with other constructions, including the (re-
stricted) function space A → A t (where A is an arbitrary set), and the compact and non-empty and
compact powerdomain constructions Pco(A t) and Pnco(A t)).

2In the applications presented in this article, the domains D, C and R are complete ultrametric spaces.
3In particular, M could be R, M = R (in case R does not depend on either D or C). In the applications presented in this

paper the final domain R does not depend on either D or C. In general, domain R may depend on D (see chapter 18 of [2]), in
which case R may need to be modelled as a more complex argument type.

4The metrics defined on composed spaces are also presented in [5] (Definition 2.7).
5The completeness properties of composed spaces are also presented in [5] (Remark 2.8).
6Since in practice continuations are finite structures, and since any finite set is compact [2], the compactness requirement is

satisfied naturally in most applications.
7To give an example, for a nature inspired formalism [10], it is presented a denotational semantics that uses a nondeter-

ministic scheduler mapping which yields a collection of schedules, where each schedule is a pair consisting of a denotation
(computation) and a corresponding continuation.
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Definition 4 We consider a continuation-based denotational semantics D : L → D, where the semantic
domain is D ∼= C 1→R as in Definition 3. Let D̃ and C̃ be subspaces of domains D and C such that D̃◁D
and C̃◁C. For any argument type A t ∈ A tclass, we define the metric space A t⟨D̃, C̃⟩ (using induction
on the structure of A t) by:

M⟨D̃, C̃⟩= M D⟨D̃, C̃⟩= D̃ C⟨D̃, C̃⟩= C̃
(A t1 ×A t2)⟨D̃, C̃⟩= (A t1⟨D̃, C̃⟩)× (A t2⟨D̃, C̃⟩).
(A t1 +A t2)⟨D̃, C̃⟩= (A t1⟨D̃, C̃⟩)+(A t2⟨D̃, C̃⟩)

(A → A t)⟨D̃, C̃⟩= A → (A t⟨D̃, C̃⟩)
(Pco(A t))⟨D̃, C̃⟩= Pco(A t⟨D̃, C̃⟩)
(Pnco(A t))⟨D̃, C̃⟩= Pnco(A t⟨D̃, C̃⟩).

We use a similar notation for operator types Ot ∈ Otclass. Namely, if Ot = A t1
1→A t2 (with A t1,A t2 ∈

A tclass), we define the space Ot⟨D̃, C̃⟩ by:

Ot⟨D̃, C̃⟩= (A t1
1→A t2)⟨D̃, C̃⟩= A t1⟨A t1⟨D̃, C̃⟩⟩ 1→A t2⟨A t2⟨D̃, C̃⟩⟩.

For any A t∈A tclass and Ot∈Otclass we have A t⟨D̃, C̃⟩◁A t and Ot⟨D̃, C̃⟩◁Ot (Remark 8), and we
endow the spaces A t⟨D̃, C̃⟩ and Ot⟨D̃, C̃⟩ with the metrics dA t↾A t⟨D̃, C̃⟩ and dOt↾Ot⟨D̃, C̃⟩, respec-
tively.

Remark 8 Let D : L → D with D ∼= C 1→R be a continuation-based denotational semantics, as in Defi-
nition 3. Let D̃ and C̃ be subspaces of domains D and C, respectively, D̃◁D and C̃◁C. Let A t ∈A tclass
and Ot ∈ Otclass.

(a) The spaces A t⟨D̃, C̃⟩ and Ot⟨D̃, C̃⟩ are well-defined, A t⟨D̃, C̃⟩◁A t and Ot⟨D̃, C̃⟩◁Ot.

(b) Assuming that spaces M, D and C are ultrametric in Definition 3, A t⟨D̃, C̃⟩ and Ot⟨D̃, C̃⟩ are also
ultrametric spaces.

(c) Furthermore, if the spaces D̃ and C̃ are complete, then A t⟨D̃, C̃⟩ and Ot⟨D̃, C̃⟩ are also complete
metric spaces.

Lemma 3 Let D : L → D with D ∼= C 1→R be a continuation-based denotational semantics (as in Defi-
nition 3). Let D̃ and C̃ be subspaces of domains D and C such that D̃◁D and C̃◁C.
For all A t ∈ A tclass, we have A t⟨co(D̃|D),co(C̃|C)⟩= co(A t⟨D̃, C̃⟩|A t).

Definition 5 We consider a continuation-based denotational semantics D : L → D, where the semantic
domain is D ∼= C 1→R as in Definition 3. Let D̃ and C̃ be subspaces of domains D and C such that D̃◁D
and C̃◁C. Let Ot be an operator type, Ot ∈ Otclass. Let f ∈ Ot be an operator of type Ot. We say that
the class of continuations C̃ is invariant for D̃ under the operator f iff f ∈ Ot⟨D̃, C̃⟩.

Lemma 4 Let D : L → D with D ∼= C 1→R be a continuation-based denotational semantics (as in Defi-
nition 3). Let D̃ and C̃ be subspaces of domains D and C such that D̃◁D and C̃◁C.

(a) A t⟨D̃, C̃⟩◁A t⟨co(D̃|D),co(C̃|C)⟩ for any A t ∈ A tclass.

(b) Ot⟨D̃, C̃⟩◁Ot⟨co(D̃|D),co(C̃|C)⟩ for any Ot ∈ Otclass.

(c) Let Ot ∈ Otclass be an operator type, and let f ∈ Ot be an operator of type Ot. If C̃ is invariant
for D̃ under the operator f ∈ Ot, then co(C̃|C) is also invariant for co(D̃|D) under operator f .

Definition 6 Let D : L → D with D ∼= C 1→R be a continuation-based metric denotational semantics.
We put DD = {D(s) | s ∈ L}. Since D(s) ∈ D for any s ∈ L, DD ◁D (we endow DD with dD↾DD ). Let
f1 ∈ Ot1, · · · , fn ∈ Otn be all operators used in the definition of the denotational mapping D . If CD is
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a subspace of C, namely CD ◁C, we say that CD is a class of denotable continuations for D iff CD is
invariant for DD under all operators fi (i = 1, . . . ,n) used in defining D . If CD is a class of denotable
continuations for D , the metric domain co(CD |C) is called a domain of denotable continuations for D .

Remark 9 Let D : L → D with D ∼= C 1→R be a continuation-based metric denotational semantics, and
DD = {D(s) | s ∈ L} as in Definition 6. Let f1 ∈ Ot1, · · · , fn ∈ Otn be all operators used in the definition
of the denotational mapping D . If CD is a class of denotable continuations for D and co(CD |C) is
the corresponding metric domain of denotable continuations, by Lemma 4(c), co(CD |C) is invariant for
co(DD |D) under all operators fi (i = 1, . . . ,n) used in the definition of D .

2.2 Weak abstractness criterion

If we compare the classic full abstractness criterion [14] with the weak abstractness criterion [8] em-
ployed in this paper, we emphasize that the correctness condition of the two criteria coincides, but the
weak abstractness criterion relies on a weaker completeness condition called weak completeness, a condi-
tion that should be verified only for denotable continuations. While the classic full abstractness condition
cannot be established in continuation semantics [4, 8], the abstractness of a continuation-based denota-
tional model can be investigated based on the weak abstractness criterion. The terminology used here to
present the abstraction criteria (comprising also the notion of a syntactic context) is taken from [2]. We
recall the completeness condition of the full abstractness criterion for such a continuation-based model8.
For this, we consider a language L, a continuation-based denotational semantics D : L → D (where the
domain D∼=C 1→R is as in Remark 6 and C is the domain of continuations), and an operational semantics
O : L → O. If S ranges over a set of syntactic contexts for L, D is complete with respect to O when

∀x1,x2 ∈ L [(∃γ ∈ C [D(x1)(γ) ̸= D(x2)(γ)])⇒ (∃S [O(S(x1)) ̸= O(S(x2))])].
When the domain of continuations C contains elements which do not correspond to language elements,
this completeness condition may not hold [4, 8]. Definition 7 presents the weak abstractness criterion
which comprises a weaker completeness condition. In Definition 7 and Lemma 5, we assume that (x ∈)L
is a language, D : L → D is a continuation-based denotational semantics where the denotational domain
D ∼= C 1→R is as in Remark 6, (γ ∈)C is the domain of continuations, O : L → O is an operational
semantics for L, and S is a typical element of the set of syntactic contexts for L.

Definition 7 (Weak abstractness for continuation semantics)

(a) D is correct with respect to O iff ∀x1,x2 ∈ L[D(x1) = D(x2)⇒∀S[O(S(x1)) = O(S(x2))]].

(b) If CD is a class of denotable continuations for D and CD
= co(CD |C) is the corresponding domain

of denotable continuations for D , then we say that D is weakly complete w.r.t O and CD
iff

∀x1,x2 ∈ L [(∃γ ∈ CD
[D(x1)γ ̸= D(x2)γ])⇒ (∃S [O(S(x1)) ̸= O(S(x2))])].

We say that D is weakly complete with respect to O iff there exists a class of denotable continu-
ations CD such that D is weakly complete with respect to O and CD

, where CD
= co(CD |C) is

the corresponding domain of denotable continuations.

(c) D is weakly abstract with respect to O iff D is correct and weakly complete with respect to O .

Lemma 5 Let D : L → D be a continuation-based denotational semantics, where the domain D is given
by D ∼= C 1→R and C is the domain of continuations (as in Definition 7). If CD is a class of denotable

8The correctness condition of the two criteria coincides, and is presented in Definition 7(a).
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continuations for D and CD
= co(CD |C) is the corresponding domain of denotable continuations for D ,

then D is weakly complete with respect to O and CD
iff

∀x1,x2 ∈ L [(∃γ ∈ CD [D(x1)γ ̸= D(x2)γ])⇒ (∃S [O(S(x1)) ̸= O(S(x2))])]. (3)

Therefore, if there exists a class of denotable continuations CD for D such that condition (3) is satisfied,
then D is weakly complete with respect to O . The proof of Lemma 5 is provided in [8].

Since Remark 9 and Lemma 5 automatically extend the above properties to the entire domain of
denotable continuations, it is enough to verify the invariance and completeness properties required by
the weak abstraction criterion for the class of denotable continuations.

2.3 Finite bags and the structure of continuations

In this paper, the structure of continuations is defined based on a construction for finite bags ⟨| · |⟩, which
in turn is defined based on a set of identifiers Id. The symbols ; , ∥ and \ occurring in an identifier
α ∈ Id are used to describe the semantics of sequential composition, parallel composition and restriction
operators, respectively.

Definition 8 (Identifiers) In the sequel of the paper we use a set (c ∈)N of names; the set of names N
is assumed to be countable, as in CCS [15]. We introduce a set of identifiers (α ∈)Id given in BNF by:

α ::= •
∣∣ (; •) ∣∣ (α ;)

∣∣ (α\c)
∣∣ (α ∥)

∣∣ (∥ α).
For substituting the hole symbol • occurring in an identifier α with α ′, we use the notation α(α ′) given
by: •(α ′) =α ′, (; •)(α ′) = (; •), (α ;)(α ′) = (α(α ′) ;), (α\c)(α ′) = (α(α ′)\c), (α ∥)(α ′) = (α(α ′) ∥),
and (∥ α)(α ′) = (∥ α(α ′)).

The symbol • is used as a reference to an active computation. Thus, the substitution α(α ′) does not
replace the symbol • when it occurs on the right-hand side of a sequential composition (; •).

In previous works based on the CSC (continuation semantics for concurrency) technique, the set of
identifiers is defined as a collection of finite sequences {1,2}∗ or (N ∪{1,2})∗ endowed with a partial
ordering relation that is used to express the structure of continuations [21, 6] and [9], respectively. In this
paper, we employ a new representation of continuations based on the set of identifiers Id introduced in
Definition 8.

We define and use the predicate matchα : (Id × Id)→ Bool given by:

matchα(•,α) = true, matchα((; •),(; •)) = true,

matchα((α1 ;),(α2 ;)) = matchα((α1 ∥),(α2 ∥)) = matchα((∥ α1),(∥ α2)) = matchα(α1,α2),

matchα((α1\c),(α2\c)) = matchα(α1,α2), and matchα(α1,α2) = false otherwise.

By structural induction on α , one can show that matchα(α,α), matchα(α,α ′)∧matchα(α
′,α ′′) ⇒

matchα(α,α ′′), and matchα(α,α ′)∧matchα(α
′,α)⇒α =α ′, for any α,α ′,α ′′ ∈ Id. Thus, the relation

≤= {(α,α ′) |matchα(α,α ′)}(⊆ Id× Id) is a partial order. We write α ≤α ′ to express that (α,α ′)∈≤.
When we have α ≤ α ′, the identifier α ′ can be obtained from α by a substitution α ′ = α(α ′′) for

some α ′′ ∈ Id. Let (π ∈)Π = Pfin(Id). For any π ∈ Π and α ∈ Id, we use the notation:
π|α = {α ′ | α ′ ∈ π,α ≤ α ′}.

We also define the operators g : (Id× Id)→ Id and ⊖ : (Id × Id)→ (Id ∪{↑}) with ↑/∈ Id (for ⊖ we
use the infix notation), as well as the predicate inα :(N × Id)→Bool by:

g(α,α) = α , g((α1 ;),(α2 ;)) = (g(α1,α2) ;), g((α1\c),(α2\c)) = (g(α1,α2)\c),
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g((α1 ∥),(α2 ∥))= (g(α1,α2) ∥), g((∥α1),(∥α2))= (∥ g(α1,α2)), and g(α1,α2)= • otherwise

α ⊖•= α , (α1 ;)⊖ (α2 ;) = (α1 ∥)⊖ (α2 ∥) = (∥ α1)⊖ (∥ α2) = α1 ⊖α2,

(α1\c)⊖ (α2\c) = α1 ⊖α2, and α1 ⊖α2 =↑ otherwise

inα(c,•) = false, inα(c,(; •)) = false, inα(c,(α\c′)) = if c′ = c then true else inα(c,α),

inα(c,(α ;)) = inα(c,(α ∥)) = inα(c,(∥ α)) = inα(c,α).

One can show that g(α1,α2) is the greatest lower bound of α1 and α2 with respect to ≤.9 For
example, considering the identifiers α1 = ((α ′

1 ∥)\c) and α2 = ((∥ α ′
2)\c), we have g(α1,α2) = (•\c).

Clearly, g(α1,α2) ≤ α1 and g(α1,α2) ≤ α2. Moreover, one can show that, if α ≤ α ′ then α ′⊖α ∈ Id.
For example, ((α ′

1 ∥)\c)⊖ (•\c) = (α ′
1 ∥). inα(c,α) = true if c occurs restricted in α .

We also define the predicate ι2 : ((N × Id)× (N × Id))→ Bool by:

ι2(c1@α1,c2@α2) = let α = g(α1,α2),α
′
1 =⊖(α1,α),α ′

2 =⊖(α2,α)

in (α1 ̸= α2)∧ (c1 = c2)∧¬(inα(c1,α
′
1))∧¬(inα(c2,α

′
2)).

We write a pair (c,α) ∈ N × Id as c@α to express that action c is executed by a process with
identifier α . We model multiparty interactions using the binary interaction predicate ι2(c1@α1,c2@α2);
such an interaction is successful if the two actions are executed by different processes α1 ̸= α2, they use
the same interaction channel c1 = c2, and they are not disabled by restriction operators (·\c).

As in [8, 9], we use the construct ⟨| · |⟩ given below to model finite bags (multisets) of computations.
Let (x ∈)X be a metric domain, i.e. a complete metric space. Let (π ∈)Π=Pfin(Id). We use the notation

⟨|X|⟩ not.
= Π× (Id → X).

Let θ ranges over Id → X. An element of type ⟨|X|⟩ is a pair (π,θ), with π ∈ Π and θ ∈ Id → X.
We define mappings id : ⟨|X|⟩ → Π, (·)(·) : (⟨|X|⟩× Id)→ X, and ⟨· | · 7→ ·⟩ : (⟨|X|⟩× Id ×X)→ ⟨|X|⟩ by:

id(π,θ) = π,
(π,θ)(α) = θ(α),

⟨(π,θ) | α 7→ x⟩ = (π ∪{α},⟨θ | α 7→ x⟩).

Remark 10 When X is a plain set (rather than a metric domain), we use the same notation ⟨|X |⟩ =
Π× (Id→X) (with operators id, (·)(·), ⟨· | · 7→ ·⟩); only in this case ⟨|X |⟩ is not equipped with a metric.

Notation 4 The semantic models given in this paper are presented using a notation for finite tuples (lists
or sequences) similar to the functional programming language Haskell (www.haskell.org) notation for
lists; we use round brackets (rather than square brackets, that we use to represent multisets) to enclose
the elements of a tuple. The elements in a list are separated by commas, and we use the symbol ’:’ as
the cons operation. For example, the empty tuple is written as (), and if (e ∈)S is a set, e1,e2,e3 ∈ S,
then (e1,e2,e3) ∈ S3 (S3 = S×S×S) and (e1,e2,e3) = e1 : (e2,e3) = e1 : e2 : (e3) = e1 : e2 : e3 : (). By
convention, S0 = {()}. This notation is also used for metric domains [2]). For S a set, we denote by S∗

the set of all finite (possibly empty) sequences over S.

3 Continuation semantics for CCSn

We started the semantic investigation of CCSn with the language Lsyn given in [2], based on CCS" (we
only omit the CCS relabelling operator [15] which is not included in neither CCSn nor CCSn+ [13]). In
this section, we consider a language LCCSn which extends Lsyn with the joint input construct of CCSn

9g(α1,α2)≤ α1, g(α1,α2)≤ α2, and if α ≤ α1 and α ≤ α2, then α ≤ g(α1,α2) for any α1,α2,α ∈ Id.
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and with the process algebra operators left merge ⌊⌊ , synchronization merge | and left synchronization
merge ⌊ . We refer the reader to [8, 9, 22] for further explanations regarding these auxiliary operators,
which are essentially needed to make any element of the weakly abstract domain definable [4]. We use a
set (b ∈)IAct of internal actions which contains a distinguished silent action τ , τ ∈ IAct. We also use the
set of names (c ∈)N (see Definition 8) and a corresponding set of co-names (c ∈)N = {c | c ∈ N }.
It is assumed that sets IAct and N ∪N are disjoint: IAct ∩ (N ∪N ) = /0. The approach to recursion
is based on declarations and guarded statements [2], and we use a set (y ∈)Y of procedure variables.
Following [2], we work (without loss of generality) with a fixed declaration D ∈ Decl, and in any context
we refer to such a fixed declaration D.

Definition 9 The syntax of LCCSn is given by the following constructs:

(a) Joint inputs ( j ∈)Jn j ::= c
∣∣ j & j

(b) Elementary actions (a ∈)Act a ::= b
∣∣ c

∣∣ j
∣∣ stop

(c) Statements (x ∈)Stmt, x ::= a
∣∣ y

∣∣ x\c
∣∣ x;x

∣∣ x+ x
∣∣ x ∥ x

∣∣ x | x
∣∣ x⌊⌊ x

∣∣ x⌊ x

(d) Guarded statements (g ∈)GStmt, g ::= a
∣∣ g\c

∣∣ g;x
∣∣ g+g

∣∣ g ∥ g
∣∣ g |g

∣∣ g⌊⌊ x
∣∣ g⌊g

(e) Declarations (D ∈)Decl = Y → GStmt

(f) Programs (ρ ∈)LCCSn = Decl ×Stmt .

The class of elementary actions (a ∈)Act comprises elements of the following types: internal actions
b ∈ IAct, output actions c ∈ N , joint inputs j ∈ Jn and the action stop which denotes deadlock. In
addition, LCCSn provides operators for sequential composition (x; x), nondeterministic choice (x+ x),
restriction x\c, parallel composition or merge (x ∥ x), left merge (x⌊⌊ x), synchronization merge (x | x), and
left synchronization merge (x⌊ x). These operators are known from the classic process algebra theories.
For instance, the restriction operator x\c is used to make the name c private within the scope of x [15].

Remark 11 In LCCSn , a joint input j is a construct j = c1 & · · · &cm, where 1 ≤ m ≤ n.10 The language
LCCSn+ studied in Section 4 provides a more general construct j = l1 & · · · & lm called joint prefix, with
1 ≤ m ≤ n, where l1, . . . , lm ∈ SAct are synchronization actions SAct = N ∪N . For the remainder
of this work, we assume a fixed positive natural number n ∈ N+, such that at most n+ 1 concurrent
components can be involved in any (multiparty) interaction. However, note that n is a parameter of our
formal specifications, and can be chosen to be arbitrarily large. For the language LCCSn we put n = n
(n is the same number that occurs in the name of calculus CCSn, in the name of language LCCSn and in
the name of class Jn). In LCCSn (as in CCSn [13]) m+ 1 actions c1 & · · · &cm, c1, . . . ,cm, executed by
m+1 concurrent processes can synchronize and their interaction is seen abstractly as a silent action τ .

Definition 10 In inductive reasoning, we use a complexity measure wgt : Stmt → N defined as in [2]:
wgt(a) = 1, wgt(y) = 1+wgt(D(y)), wgt(x\c) = 1+wgt(x), wgt(x1;x2)=wgt(x1⌊⌊ x2)= 1+wgt(x1),
and wgt(x1 op x2) = 1+max{wgt(x1),wgt(x2)}, for op ∈ {+, ∥, | , ⌊ }.

Definition 11 (Interaction function for LCCSn) Let (u ∈)U = {u | u ∈ Pfin(Act × Id), |u| ≤ n+1} be the
class of interaction sets. We write a pair (a,α) ∈ Act × Id as a@α . We define the interaction function
ι : U → (IAct ∪{↑}) (where ↑/∈ IAct) by: ι({b@α}) = b, ι({stop@α}) = ι({c@α}) = ι({ j@α}) =↑,
ι({c1@α1, . . . ,cm@αm,c1 & · · · &cm@α)= if ι2(c1@α1,c1@α)∧·· ·∧ ι2(cm@αm,cm@α) then τ else ↑,
and ι(u) =↑ otherwise. The actions in a set u ∈U can interact iff ι(u) ∈ IAct.

10A joint input is written as [c1, . . . ,cm] in CCSn [13]. Since in this paper we use the notation based on square brackets [· · · ]
to represent multisets (as in [7], see Section 2), for a joint input we use the notation c1 & · · · &cm.
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3.1 Final Semantic Domains

We employ (linear time) metric domains (q ∈)QD and (q ∈)QO defined by domain equations [2]:
QD ∼= {ε}+(IAct × 1

2 ·QD),

QO ∼= {ε}+{δ}+(IAct × 1
2 ·QO),

where ε is the empty sequence and δ models deadlock. The elements of QD and QO are finite or infinite
sequences over IAct, and finite QO sequences can be terminated with δ . Instead of (b1,(b2, . . . ,(bn,ε) . . .)),
(b1,(b2, . . . ,(bn,δ ) . . .)) and (b1,(b2, . . .)), we write b1b2 · · ·bn, b1b2 · · ·bnδ and b1b2 · · · , respectively.

The metric domain PD = Pnco(QD) is used as final domain for the denotational models presented
in this paper. For the operational semantics, we use the metric domain PO = Pnco(QO). The elements
of PO and PD are nonempty and compact subsets of QD and QO, respectively. For any b ∈ IAct,q ∈ QO

(q ∈ QD) and p ∈ PO (p ∈ PD), we use the notations b ·q = (x,q) and b · p = {b ·q | q ∈ p}.
By τ i and τ i · q we represent QD sequences defined inductively as follows: τ0 = ε,τ0 · q = q and

τ i+1 = τ · τ i,τ i+1 · q = τ · (τ i · q), for any q ∈ QD and i ≥ 0. Also, for any p ∈ PD and i ≥ 0, we put
τ i · p = {τ i ·q | q ∈ p}.

Silent steps are needed to establish the contractiveness of function Ψ given in Definition 17. Fol-
lowing [9, 10], in the denotational model we use a sequence of the form τnb to represent a successful
interaction (among at most n+1 concurrent processes), namely n silent steps τn followed by an internal
action b, which describes the effect of the interaction. Deadlock is modelled in the denotational model
by a sequence of n silent steps τn (not followed by an internal action).

Definition 12 For any 0 ≤ i ≤ n, we define operators ⊕i : (PD ×PD)
1→PD given by:

p1 ⊕i p2 = let p = {q | q ∈ p1 ∪ p2,q = τn−i ·q,q ̸= ε} in if p = /0 then {τn−i} else p.
The operators ⊕i are well-defined, associative and commutative [9, 10].

3.2 Operational semantics

The operational semantics of LCCSn is defined in the style of [18]. Following [2], we use the term
resumption as an operational counterpart of the term continuation.

Definition 13 (Resumptions and configurations) Let ( f ∈)SRes =
⋃

0≤i≤n Stmt i be the class of syn-
chronous resumptions, where Stmt i = Stmt ×·· ·×Stmt (i times). Let us consider (r ∈)R ::= E

∣∣ x, where
x ∈ Stmt is a statement (Definition 9), and E is a symbol denoting termination. Also, (k ∈)KRes = ⟨|R|⟩
(here ⟨|R|⟩ introduces a plain set, see Remark 10), and (µ ∈)Ids =

⋃
1≤i≤n+1 Idi (Idi = Id × ·· · Id (i

times). An element of the type Ids is a nonempty sequence of identifiers of length at most n+ 1. Let
ARes = Ids×KRes be the class of asynchronous resumptions. We write a pair (µ,k) ∈ ARes as µ · k.
Let α0 ∈ Id, α0 = •, and k0 = ( /0,λα .E). We define the class of resumptions (ρ ∈)Res as the smallest
subset of (SRes×U ×ARes), Res ⊆ (SRes×U ×ARes) (where (u ∈)U is the set of interaction sets pre-
sented in Definition 11) satisfying the following axioms and rules:

((), /0,(α0) · k0) ∈ Res
(x : f ,u,α : µ · k) ∈ Res a ∈ Act |u| ≤ n

( f ,{a@α}∪u,µ · k) ∈ Res
( f ,u,α : µ · k) ∈ Res c ∈ N

( f ,u,α(•\c) : µ · k) ∈ Res
( f ,u,α : µ · k) ∈ Res x ∈ Stmt

( f ,u,α(• ;) : µ · ⟨k | α(; •) 7→ x⟩) ∈ Res

( f ,u,α : µ · k) ∈ Res x ∈ Stmt
( f ,u,α(• ∥) : µ · ⟨k | α(∥ •) 7→ x⟩) ∈ Res

( f ,u,α : µ · k) ∈ Res x ∈ Stmt (len( f )+ |u|)< n
(x : f ,u,α(• ∥) : α(∥ •) : µ · k) ∈ Res

where len( f ) is the length of sequence f ∈ SRes, and |u| is the cardinal number of the u.
We also define the class of configurations (t ∈)Con f by Con f = (Stmt ×Res)∪R.
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Remark 12 If we endow the set N×N with the lexicographic ordering denoted by ≺, we can define
the complexity measure cRes : Res → (N×N) by cRes( f ,u,µ · k) = (|u|,cµ(µ)), where |u| is the cardinal
number of u, and for µ =(α1, . . . ,αm)∈ Ids the mapping cµ(µ) is given by cµ(µ)=∑1≤i≤m cα(αi); here,
cα(α) is the size of the term α (i.e., the number of nodes in the abstract syntax tree of α , cα : Id → N).

One can verify that for any rule
ρ

ρ ′ presented in Definition 13 , we have cRes(ρ) ≺ cRes(ρ
′). Thus, any

derivation tree proving that ρ ∈ Res is finite.

Before introducing the transition relation for LCCSn , we present a mapping ks : (Id×KRes)→ R that
is used to transform an element k of type KRes into a value of type R:

ks(α,k) = let π = id(k) in

if π|α = /0 then E else if π|α = {α} then k(α)

else if π|Nα = {c} then ks(α(•\c),k) \R c

else if α(; •) ∈ π then (ks(α(• ;),k)) ;R (k(α(; •))) else (ks(α(• ∥),k)) ∥ R (ks(α(∥ •),k)),
where the operators \R : (R×N )→ R, ;R , ∥ R : (R×R)→ R are given by: E \R c = E, x \R c = x\c,
E ;R E =E, E ;R x= x, x ;R E = x, x1 ;R x2 = x1 ; x2, E ∥R E =E, E ∥R x=x, x ∥R E=x, x1 ∥ R x2=x1 ∥ x2.
For any π ∈ Π and α ∈ Id we use the notation π|Nα given by:

π|Nα = {c | α ′ ∈ π,matchN
α (α,α ′) = c ∈ N }

matchN
α (•,(α2\c)) = c, matchN

α ((α1\c),(α2\c)) = matchN
α (α1,α2),

matchN
α ((α1 ;),(α2 ;)) = matchN

α ((α1 ∥),(α2 ∥)) = matchN
α ((∥ α1),(∥ α2)) = matchN

α (α1,α2),

and matchα(α1,α2) =↑ otherwise.

The type of mapping matchN
α is matchN

α : (Id × Id)→ (N ∪{↑}), with ↑/∈ N .

The transition relation → for language LCCSn is presented below by using the notation t b−→ t ′ to

expresses that (t,b, t ′)∈→. Like in [2], in Definition 14 we write t1 ↗ t2 as an abbreviation for
t2

b−→ t ′

t1
b−→ t ′

.

Definition 14 The transition relation → for LCCSn is the smallest subset of Con f × IAct ×Con f satis-
fying the rules given below.

(A0) (a,((),u,(α) · k)) b−→ r if |u| ≤ n, ι({a@α}∪u) = b,ks(•,k) = r

(R1) (a,(x : f ,u,α : µ · k)) ↗ (x,( f ,{a@α}∪u,µ · k)) if |u| ≤ n

(R2) (y,( f ,u,α : µ · k)) ↗ (D(y),( f ,u,α : µ · k))

(R3) (x\c,( f ,u,α : µ · k)) ↗ (x,( f ,u,α(•\c) : µ · k))

(R4) (x1 ; x2,( f ,u,α : µ · k)) ↗ (x1,( f ,u,α(• ;) : µ · ⟨k | α(; •) 7→ x2⟩))
(R5) (x1 + x2,( f ,u,α : µ · k)) ↗ (x1,( f ,u,α : µ · k))

(R6) (x1 + x2,( f ,u,α : µ · k)) ↗ (x2,( f ,u,α : µ · k))

(R7) (x1⌊⌊ x2,( f ,u,α : µ · k)) ↗ (x1,( f ,u,α(• ∥) : µ · ⟨k | α(∥ •) 7→ x2⟩))
(R8) (x1⌊ x2,( f ,u,α : µ · k)) ↗ (x1,(x2 : f ,u,α(• ∥) : α(∥ •) : µ · k)) if (len( f )+ |u|)< n

(R9) (x1 | x2,( f ,u,α : µ · k)) ↗ (x1,(x2 : f ,u,α(• ∥) : α(∥ •) : µ · k)) if (len( f )+ |u|)< n

(R10) (x1 | x2,( f ,u,α : µ · k)) ↗ (x2,(x1 : f ,u,α(• ∥) : α(∥ •) : µ · k)) if (len( f )+ |u|)< n
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(R11) (x1 ∥ x2,( f ,u,α : µ · k)) ↗ (x1,( f ,u,α(• ∥) : µ · ⟨k | α(∥ •) 7→ x2⟩))
(R12) (x1 ∥ x2,( f ,u,α : µ · k)) ↗ (x2,( f ,u,α(• ∥) : µ · ⟨k | α(∥ •) 7→ x1⟩))
(R13) (x1 ∥ x2,( f ,u,α : µ · k)) ↗ (x1,(x2 : f ,u,α(• ∥) : α(∥ •) : µ · k)) if (len( f )+ |u|)< n

(R14) (x1 ∥ x2,( f ,u,α : µ · k)) ↗ (x2,(x1 : f ,u,α(• ∥) : α(∥ •) : µ · k)) if (len( f )+ |u|)< n

(R15) x ↗ (x,((), /0,(α0) · k0)) .

In a configuration (x,( f ,u,α : µ · k)), α is the identifier of the active computation x, and the elements
contained in µ are identifiers of the computations contained in the synchronous resumption f . Hence,we
often represent a list of type Ids by highlighting the first element as α : µ , where µ can be the empty list.
To define the behaviour of a restriction operation x\c evaluated in a context given by identifier α , in rule
(R3) a new (local) context is created indicated by the identifier α(•\c) for the evaluation of statement x.
To model multiparty interactions, joint inputs and output actions are added to the interaction set u, and an
inference starts according to rule (R1) searching for a set of actions that could possibly interact. Axiom
(A0) models the transition performed when it is found a set of elementary statements that can interact.

Definition 15 For t ∈ Con f , we write t−→/ to express that there are no b, t ′ such that t b−→ t ′. We say
that t terminates if t = E, and that t blocks if t−→/ and t does not terminate.

Definition 16 (Operational semantics O[[·]] for LCCSn) Let (S ∈)SemO = Con f → PO (PO was defined
in Section 3.1). We define the higher order mapping Ω : SemO → SemO by:

Ω(S)(t) =


{ε} if t terminates
{δ} if t blocks⋃
{b ·S(t ′) | t b−→ t ′} otherwise .

We put O = fix(Ω). We also define O[[·]] : Stmt → PO by O[[x]] = O(x,((), /0,(α0) · k0)).

To justify Definition 16, we note that the mapping Ω is a contraction (it has a unique fixed point, accord-
ing to Banach’s Theorem).

Example 1 Let x1,x2,x3 ∈ Stmt, x1 = (b1 ∥ b2); stop , x2 = ((((b1;(c1 &c2)) ∥ c1)\c1) ∥ c2); (b2 +b3),
and x3 = (((c1 &c2) ∥ c1)\c1) ∥ c2. Considering n = 2, in all the examples presented in this paper we
have at most 3(= n+1) concurrent components interacting in each computing step. We use the function
O[[·]] to compute the operational semantics for each of the three LCCSn programs x1,x2 and x3. One can
check that: O[[x1]] = {b1b2δ ,b2b1δ}, O[[x2]] = {b1τb2,b1τb3}, and O[[x3]] = {τ}.

Implementation: The operational and denotational semantics presented in this paper are available
at http://ftp.utcluj.ro/pub/users/gc/eneia/from24 as executable semantic interpreters imple-
mented in Haskell. All LCCSn and LCCSn+ programs presented in this paper (Example 1, Example 2 and
Example 3) can be tested by using these semantic interpreters.

3.3 Denotational semantics

We define a denotational semantics [[·]] : Stmt → D for LCCSn , where (domain PD is given in Section 3.1):
(φ ∈)D ∼= Cont 1→PD

(γ ∈)Cont = ContS ×U ×ContA (continuations)
(ϕ ∈)ContS = ∑

n
i=0 Semi (synchronous continuations)

ContA = Ids×K (asynchronous continuations)
(κ ∈)K = ⟨|Den|⟩ (φ ∈)Sem = 1

2 ·D (φ ∈)Den = {φE}+ 1
2 ·D.
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The domain equation is given by the isometry ∼= between complete metric spaces. All basic sets (Id,Π,U
and Ids) are equipped with the discrete metric (which is an ultrametric). The construction ⟨|·|⟩ is presented
in Section 2.3. According to [1, 2], this domain equation has a solution which is unique (up to isometry)
and the solutions for D and all other domains presented above are obtained as complete ultrametric
spaces.

We use semantic operators for restriction \ : (D×N )→D, sequential composition ; : (D×D)→ D,
nondeterministic choice ⊕ : (D×D)→ D, parallel composition (or merge) ∥: (D×D)→ D, left merge
⌊⌊:(D×D)→ D, left synchronization merge ⌊:(D×D)→D and synchronization merge | :(D×D)→ D,
defined with the aid of operators on continuations \̃ : (Cont×N )→ Cont, add; : (D×Cont)→ Cont,
add⌊⌊ : (D×Cont)→ Cont and add⌊ : (D×Cont)→ Cont as follows:

φ\c = λγ .φ(γ \̃c), φ1 ; φ2 = λγ .φ1(add;(φ2,γ)), φ1⌊⌊φ2 = λγ .φ1(add⌊⌊ (φ2,γ)),

φ1 ⊕φ2 = λγ .φ1(γ)⊕i φ2(γ), where i = cardu(γ) (operators ⊕i are presented in Section 3.1),

φ1⌊φ2 = if cardγ(γ) then λγ .φ1(add⌊ (φ2,γ)) else {τn−|u|}, φ1 |φ2=φ1⌊φ2 ⊕φ2⌊φ1

φ1 ∥ φ2=φ1⌊⌊φ2 ⊕φ2⌊⌊φ1 ⊕φ1 |φ2, (ϕ,u,α : µ · κ) \̃c = (ϕ,u,α(•\c) : µ · κ),

add;(φ ,(ϕ,u,α : µ · κ)) = (ϕ,u,α(• ;) : µ · ⟨κ | α(; •) 7→ φ⟩),

add⌊⌊ (φ ,(ϕ,u,α : µ · κ)) = (ϕ,u,α(• ∥) : µ · ⟨κ | α(∥ •) 7→ φ⟩), and

add⌊ (φ ,(ϕ,u,α : µ · κ)) = (φ : ϕ,u,α(• ∥) : α(∥ •) : µ · κ).

The mapping cardu :Cont→N is defined by cardu(ϕ,u,α : µ · κ)=|u|, and predicate cardγ :Cont → Bool
is given by cardγ(ϕ,u,α : µ · κ) = ((len(ϕ)+ |u|)< n), where len(ϕ) is the length of sequence ϕ . Since
operators ⊕i are associative and commutative [9, 10], the operator ⊕ is also associative and commutative.
The mapping kd : (Id ×K)→ Den is the semantic counterpart of function ks given in Section 3.2.

kd(α,κ) = let π = id(κ) in

if π|α = /0 then φE else if π|α = {α} then κ(α)

else if π|Nα = {c} then kd(α(•\c),κ) \̂ c

else if α(; •) ∈ π then (kd(α(• ;),κ)) ;̂ (k(α(; •))) else (kd(α(• ∥),κ)) ∥̂ (kd(α(∥ •),κ)).

Here, the operators \̂ : (Den×N ) → Den, ;̂ , ∥̂ : (Den×Den) → Den are given by: φE \̂ c = φE ,
φ \̂ c = φ\c, φE ;̂ φE = φE , φE ;̂ φ = φ ;̂ φE = φ , φ1 ;̂ φ2 = φ1 ; φ2, φE ∥̂ φE = φE , φE ∥̂ φ = φ ∥̂ φE = φ ,
φ1 ∥̂ φ2=φ1 ∥ φ2 – the notation π|Nα is presented in Section 3.2.

Definition 17 (Denotational semantics [[·]]) Let opA : Act → Cont → PD be given by:

opA(a)((),u,(α) · κ)= if |u|≤n then ( if (ι({a@α}∪u)=b ∈ IAct,kd(•,κ)=φE) then {τn−|u| ·
b}

else ( if (ι({a@α}∪u)=b∈ IAct,kd(•,κ)=φ ∈D) then τn−|u| ·b ·φ(γ0) else {τn−|u|}))

opA(a)(φ : ϕ,u,(α) · κ) = if |u|≤n then τ ·φ(ϕ,{a@α}∪u,µ · κ) else {τn−|u| ·b},

where γ0 = ((), /0,(α0) · λα .φE) and α0 = • (as in Definition 13).
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For (S ∈)FD = Stmt → D, we define the higher-order mapping Ψ : FD → FD by
Ψ(S)(a) = λγ .opA(a)(γ)
Ψ(S)(y) = Ψ(S)(D(y))

Ψ(S)(x\c) = Ψ(S)(x)\c
Ψ(S)(x1;x2) = Ψ(S)(x1); S(x2)

Ψ(S)(x1 + x2) = Ψ(S)(x1)⊕Ψ(S)(x2)
Ψ(S)(x1∥x2) = (Ψ(S)(x1)⌊⌊S(x2))⊕ (Ψ(S)(x2)⌊⌊S(x1))⊕

(Ψ(S)(x1)⌊Ψ(S)(x2))⊕ (Ψ(S)(x2)⌊Ψ(S)(x1))
Ψ(S)(x1 | x2) = (Ψ(S)(x1)⌊Ψ(S)(x2))⊕ (Ψ(S)(x2)⌊Ψ(S)(x1))

Ψ(S)(x1⌊⌊ x2) = Ψ(S)(x1)⌊⌊S(x2)
Ψ(S)(x1⌊ x2) = Ψ(S)(x1)⌊Ψ(S)(x2).

We consider D = fix(Ψ), and define D [[·]] : Stmt → PD by D [[x]] = D(x)(γ0).

Definition 17 can be easily justified by the techniques used in standard metric semantics [2], based
on the observation that the definition of mapping Ψ(S)(x) is structured by induction on the complexity
measure wgt(x) presented in Definition 10).

Example 2 Let x1,x2,x3 ∈ Stmt be as in Example 1. Considering n = 2, one can check that: D [[x1]] =
{τnb1τnb2τn,τnb2τnb1τn}, D [[x2]] = {τnb1τnττnb2,τ

nb1τnττnb3}, and D [[x3]] = {τnτ}. For each xi

(i = 1,2,3), we observe that the result of O[[xi]] (given in Example 1) can be obtained from the yield of
D [[xi]] if we omit the interspersed sequences τn and replace a terminating sequence τn with δ .

4 Continuation semantics for CCSn+

As explained in [13], the joint input construct of CCSn “induces a unidirectional information flow”.
In [13], it is also studied a more general calculus called CCSn+ which can be obtained from CCSn by
replacing outputs and inputs with the joint prefix construct written as [α1, . . . ,αm], where each αi can
be either an input action or an output action. Since we use the symbol α to represent identifiers, and
the notation [. . .] to represent multisets, we employ a different notation. In this section, we consider
a language named LCCSn+ which can be obtained from LCCSn by replacing the output and joint input
constructs with the joint prefix construct. We denote the LCCSn+ joint prefix construct as l1 & · · · & lm,
where l is an element of the set of synchronization actions SAct, (l ∈)SAct = N ∪N . (c ∈)N is the
given set of names and (c ∈)N = {c | c ∈N } is the set of co-names. We use a mapping · : SAct → SAct,
defined such that c = c. The syntax of LCCSn+ is similar to the syntax of LCCSn . Only the classes of joint
prefixes ( j∈)Jn

P and elementary actions (a∈)Act are specific to LCCSn+ , and they are defined as follows:
j ::= l

∣∣ j & j a ::= b
∣∣ j

∣∣ stop .
As in the case of language LCCSn , b is an element of the class of internal actions IAct (which includes
the distinguished element τ), and stop denotes deadlock. In LCCSn+ , the classes of statements (x ∈)Stmt,
guarded statements (g ∈)GStmt and declarations (D ∈)Decl remain as in Definition 9.

In LCCSn+ , a joint prefix is a construct l1 & · · · & lm with 1 ≤ m ≤ n, where n is the number occurring
in the name of the language LCCSn+ and in the name of the syntactic class Jn

P. As in Section 4, we use
the number n introduced in Remark 11 as a parameter of the formal specification of LCCSn+ . However,
in the case of language LCCSn+ we cannot simply put n = n (as we did for LCCSn). The general rule is
that n should be chosen sufficiently large such that at most n+1 concurrent components are involved in
a synchronous (multiparty) interaction in each computation step.

The flexibility provided by the technique of continuations (as a semantic tool) can handle a variety
of complex interaction mechanisms with only minor changes to the formal specifications. Based on
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this flexibility, the continuation semantics for LCCSn+ can be obtained easily from the semantic speci-
fication of LCCSn . Only one modification in the semantic models of LCCSn is necessary to obtain the
corresponding semantic models for LCCSn+ . Namely, we need to provide a new definition for the inter-
action function ι . The interaction function ι : U →(IAct ∪{↑}) for language LCCSn+ is defined by using
msync :U →(IAct ∪{↑}) in the following way:

ι({b@α}) = b, ι({stop@α}) = ι({ j@α}) =↑ and ι(u) = msync(u) otherwise, where
msync(u) = if u = { j1@α1, . . . , jm@αm}, ji ∈ Jn

P for all i = 1, . . . ,n

then let wr = [ j1@α1]
rcv ⊎·· ·⊎ [ j1@α1]

rcv,ws = [ j1@α1]
snd ⊎·· ·⊎ [ j1@α1]

snd

in if (|wr|=|ws|∧∃ϖr∈perm(wr),ϖs∈perm(ws)[match(ϖr,ϖs)]) then τ else ↑

else ↑ .
Neither in LCCSn nor in LCCSn+ we impose the condition that the actions contained in a joint input or

a joint prefix are distinct (these constructions describe multisets of actions). In the definition of msync, we
let w range over the set [SAct × Id] of finite multisets of elements of type SAct × Id, and ⊎ is the multiset
sum operator (the notation for multisets is as in [7]). Also, we let ϖ range over the set (SAct × Id)∗ of
finite sequences over SAct×Id; for the representation sequences we use lists (notation 4). We assume that
perm is a function which computes the permutations of a multiset. If the mapping msync(u) receives
as argument a set u = { j1@α1, . . . , jm@αm} (where ji ∈ Jn

P), then it splits the collection of actions
contained in u into two multisets wr and ws containing input actions and output actions, respectively. For
this purpose, it uses two mappings [·]rcv : (Jn

P × Id)→ [N × Id] and [·]snd : (Jn
P × Id)→ [N × Id]. For

example, if j = c1 &c1 &c2 &c3 then [ j@α]rcv = [c1@α,c1@α] and [ j@α]snd = [c2@α,c3@α]. The
function msync yields τ when it finds a pair of permutations of wr and ws that can match; it uses function
match, which in turn uses the binary interaction mapping ι2 presented in Section 2.3.

[c@α]rcv=[c@α] if c∈N , [c@α]rcv=[] if c∈N , and [( j1 & j2)@α]rcv=[ j1@α]rcv⊎ [ j2@α]rcv

[c@α]snd=[c@α] if c∈N , [c@α]snd=[] if c∈N , and [( j1 & j2)@α]snd=[ j1@α]snd⊎[ j2@α]snd

match((),()) = true

match(cr@αr : ϖr,cs@αs : ϖs) = if ι2(cr@αr,cs@αs) then match(ϖr,ϖs) else false

and match(ϖr,ϖs) = false otherwise.

Apart from this new definition of function ι , all other components of the formal specification of
LCCSn+ (including the semantic domains and all semantic operators) remain as in Section 3, for both the
operational and the denotational semantics. Thus, we define the operational semantics O[[·]] : Stmt → PO

and the denotational semantics D [[·]] : Stmt → PD for LCCSn+ as in Definitions 16 and 17.

Example 3 Let x4 ∈ Stmt, x4 = ((((c1 &c2); b1) ∥ (c1 &c3))\c1 ∥ ((c2 &c3); b2). This LCCSn+ program
is based on a CCSn+ example presented in [13]. Considering n = 2, one can check that we have:
O[[x4]] = {τb1b2,τb2b1}, and D [[x4]] = {τnττnb1τnb2,τ

nττnb2τnb1}.

5 Weak abstractness of continuation semantics

Since the domain of CSC is not fully abstract [8], we study the abstractness of continuation semantics
based on the weak abstractness principle presented in Section 2.2; thus, we show that the denotational
models given in this article are weakly abstract with respect to their corresponding operational models.
The proofs for LCCSn and LCCSn+ are similar. Due to space limitations, we focus on the weak abstractness
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proof for LCCSn , and show that the denotational semantics D : Stmt → D presented in Definition 17 is
weakly abstract with respect to the operational semantics O[[·]] : Stmt → PO presented in Definition 16.

We consider the class of syntactic contexts for LCCSn with typical element S (see Definition 18).

Definition 18 (Syntactic contexts for LCCSn) S ::= ◦
∣∣ a

∣∣ y
∣∣ S\c

∣∣ S;S
∣∣ S+S

∣∣ S ∥ S
∣∣ S |S

∣∣ S⌊⌊S
∣∣ S⌊S.

For a context S and statement x, we denote by S(x) the result of replacing all occurrences of ◦ in S with x.

Definition 19 Let ξQ : QO → QD be the (unique) function [2] satisfying ξQ(ε) = ε , ξQ(δ ) = τn and
ξQ(b ·q) = τn ·b ·ξQ(q). We also define ξP : PO → PD by ξP(p) = {ξQ(q) | q ∈ p}.

We can now relate D [[·]] and O[[·]] for LCCSn . The proof of Proposition 1 can proceed by using
Lemma 5 and the observation that ξP is an injective function. We omit the proofs for Proposition 1 and
Lemma 6; the reader can find similar results in [21].

Lemma 6 ξP(O[[x]]) = D [[x]], for all x ∈ Stmt.

Proposition 1 The denotational semantics D is correct with respect to the operational semantics O[[·]].

Definition 20 Let [[·]]K : Kres → K be given by [[k]]K = (id(k),λα . if k(α) = E then φE else D(k(α))).
We define the mapping [[·]]F : SRes → ContS by [[()]]F = () and [[(x : f )]]F =D(x) : [[ f ]]F . We also define
the mapping [[·]]C : Res → Cont by [[( f ,u,α : µ · k)]]C = ([[ f ]]F ,u,α : µ · [[k]]K), and consider ContD =
{[[( f ,u,α : µ · k)]]C |( f ,u,α : µ · k)∈Res}. Clearly, ContD is a subspace of Cont, i.e. ContD◁Cont.

Lemma 7 ContD is a class of denotable continuations for the denotational semantics D of LCCSn .

Proof. Let DD ={D(s) | s ∈ Stmt}. We must show that ContD is invariant for DD under all operators
used in the definition of D . We only handle operator add⌊ :(D×Cont)→Cont given in Section 3.3. The
other operators can be handled similarly. The semantic operators used in the definition of a denotational
semantics are nonexpansive; this means that we can write add⌊ as add⌊ : (D×Cont) 1→Cont, namely

add⌊ ∈Ot, where Ot=(D×Cont) 1→Cont. We show now that add⌊∈Ot(DD ,ContD), i.e., add⌊(φ ,γ)∈
ContD for any φ ∈DD, γ ∈ContD. Since φ ∈DD and γ ∈ContD, φ =D(x) for some x∈Stmt, and γ =
[[( f ,u,α : µ · k)]]C = ([[ f ]]F ,u,α : µ · [[k]]K) for some ( f ,u,α : µ · k) ∈ Res. Assuming len( f )+ |u|< n,
we get add⌊ (φ ,γ) = add⌊ (D(x),([[ f ]]F ,u,α : µ · [[k]]K)) = (D(x) : [[ f ]]F ,u,α(• ∥) : α(∥ •) : µ · [[k]]K))
= ([[x : f ]]F ,u,α(• ∥) : α(∥ •) : µ · [[k]]K) = [[(x : f ,u,α(• ∥) : α(∥ •) : µ · k)]]C = γ ′. By Definition 13,
since ( f ,u,α : µ · k) ∈ Res, we also have (x : f ,u,α(• ∥) : α(∥ •) : µ · k) ∈ Res. Thus, we infer that
γ ′=[[(x : f ,u,α(• ∥) :α(∥ •) : µ · k)]]C ∈ContD , as required. □

By Remark 9, the domain of denotable continuations co(ContD |Cont) is invariant for co(DD |D)
under all operators used in the definition of D . The proof of Lemma 8 is by induction on the depth of
the inference of ( f ,u,α : µ · k) ∈ Res by using the rules given in Definition 13.

Lemma 8 For any x ∈ Stmt, ( f ,u,α : µ · k) ∈ Res there is an LCCSn syntactic context S such that
τ |u| ·D(x)[[( f ,u,α : µ · k)]]C = D [[S(x)]] = D(S(x))(γ0). Furthermore, S does not depend on x; it only
depends on ( f ,u,α : µ · k). For any x,x′ ∈ Stmt, x ̸= x′, ( f ,u,α : µ · k)∈Res there is a syntactic context S
such that: τ |u| ·D(x)[[( f ,u,α : µ · k)]]C = D [[S(x)]] and τ |u| ·D(x′)[[( f ,u,α : µ · k)]]C = D [[S(x′)]] (the
same S in both equalities). Notice that in general, D [[S(x)]] ̸= D [[S(x′)]].

Theorem 5 The denotational semantics D of LCCSn is weakly abstract with respect to the operational
semantics O[[·]].
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Proof. By Proposition 1, D is correct with respect to O[[·]]. For the weak completeness condition, we
consider the class of denotable continuations ContD for D presented in Definition 20. By Lemma 5,
if we prove that ∀x1,x2 ∈ Stmt[(∃γ ∈ ContD [D(x1)γ ̸= D(x2)γ]) ⇒ (∃S[O(S(x1)) ̸= O(S(x2))])], then
D is also weakly complete with respect to O[[·]]. Let x1,x2 ∈ Stmt and ( f ,u,α : µ · k) ∈ Res be such
that D(x1)[[( f ,u,α : µ · k)]]C ̸=D(x2)[[( f ,u,α : µ · k)]]C which implies τ |u| ·D(x1)[[( f ,u,α : µ · k)]]C ̸=
τ |u| ·D(x2)[[( f ,u,α : µ · k)]]C. By Lemma 8, there is an LCCSn syntactic context S such that D [[S(x1)]] =
τ |u| ·D(x1)[[( f ,u,α : µ · k)]]C ̸= τ |u| ·D(x2)[[( f ,u,α : µ · k)]]C = D [[S(x2)]]. By using Lemma 6, we get
ξP(O[[S(x1)]]) =D [[S(x1)]] ̸= D [[S(x2)]] = ξP(O[[S(x2)]]) which implies O[[S(x1)]] ̸=O[[S(x2)]]. Thus, we
conclude that D is weakly complete, and therefore weakly abstract with respect to O[[·]]. □

In a similar way, one can show that the denotational semantics of LCCSn+ is weakly abstract with
respect to the corresponding operational model.

6 Conclusion

While the classic full abstractness condition cannot be established in continuation semantics [4], the ab-
stractness of a continuation-based denotational model can be investigated based on the weak abstractness
criterion. Compared to the classic full abstractness criterion [14], the weak abstractness criterion used in
this paper relies on a weaker completeness condition that should be verified only for a class of denotable
continuations.

We provide the denotational and operational semantics defined by using continuations for two pro-
cess calculi (based on CCS) able to express multiparty synchronous interactions. We work with metric
semantics and with the continuation semantics for concurrency (a technique introduced by the authors
to handle advanced concurrent control mechanisms). For the multiparty interaction mechanisms incor-
porated in both process calculi, we proved that the continuation-based denotational models are weakly
abstract with respect to their corresponding operational models.

As future work, we intend to investigate the weak abstractness issue for nature-inspired approaches
introduced in the area of membrane computing [17, 19, 10].
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1 Introduction

Reductions are the fundamental tool of computational complexity. They allow classification of compu-

tational problems into families (somewhat resembling those in biology), with problems in the same class

sharing common features (in particular NP-complete problems being isomorphic versions of a single

problem, if we believe that the Berman-Hartmanis conjecture [6] holds).

A significant concern in the literature on complexity-theoretic reductions is to make the theory of

reductions more predictive. This means that we should aim to better connect the structural properties of

the two problems that the given reduction is connecting. For instance the notion of pasimonious reduction

attempts to preserve the total number of solutions between instances. Various attempts (e.g. [12, 5])

have proposed restricting the computational power allowed for computing reductions. (Strongly) local

reductions [23, 22] provide a principled approach that simultaneously relates the complexity of various

versions (decision, counting,etc) of the two problems in the reduction. In another direction, several

logic-based approaches to the complexity of reductions were considered [47, 13]. Finally, motivated by

the connection with local search, a line of research [17], [18] has investigated reductions that attempt

to preserve the structure of solution spaces, by not only translating the instances of the two decision

problems but also the set of solutions.

The geometric structure of solution spaces of combinatorial problems has been brought to attention

by an entirely different field of research: that of phase transitions in combinatorial optimization [44, 38].

It was shown that the predictions of the so-called one-level replica symmetry breaking in Statistical

Physics applies to (and offer predictions for) the complexity of many constraint satisfaction problems.

It is believed [32] that the set of solutions of a constraint satisfaction problem such as k-SAT undergoes

a sequence of phase transitions, culminating in the SAT/UNSAT transition. The first transition is a

clustering transition where the set of satisfying assignments of a typical random formula changes from

a single, connected cluster to an exponential number of clusters that are far apart from eachother. Some

aspects of this solution clustering have been confirmed rigorously (solution clustering [3, 39, 14, 28,

30, 4]). The 1-RSB prediction motivated the development of the celebrated survey propagation (SP)

algorithm [7] that predicts (for large enough k) the location of the phase transition of the random k-SAT

problem [15]. This breakthrough has inspired significant recent progress [10, 19, 20, 8].
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A major weakness of the theory of phase transition is the lack of general results that connect the qual-

itative features such as clustering and 1-RSB to computational complexity. In contrast, Computational

Complexity has developed algebraic classification tools that (at least for the well-behaved class of Con-

straint Satisfaction Problems) provide an understanding of the structural reasons for the (in)tractability

of various CSP [46, 9, 53]. Note, however, that there are some classification results in the area of Phase

Transitions: For instance, one can classify the existence of thresholds for random Constraint Satisfaction

Problems in a manner somewhat reminiscent of the Schaefer Dichotomy Theorem [40, 21, 24, 11, 27].

Intuitively, SAT problems without a sharp threshold qualitatively resemble Horn SAT, a problem whose

(coarse) threshold is well understood [25, 26, 42]. Also, versions of SAT that have a ”second-order

phase transition” [41] seem qualitatively similar to 2-SAT [29]. An example of such a problem which is

NP-complete but ”2-SAT-like” is 1-in-K SAT, k ≥ 3 [1]. Finally, the existence of overlap discontinuities

can be approached in a uniform manner for a large class of random CSP [28]. In spite of all this, the

existence of general classification results does not extend to properties (such as 1-RSB) that concern the

geometric nature of the solution space of random CSP.

In this paper we propose connecting these two directions by the definition of reductions that take

into account the geometric structure of solution spaces. We put forward two such notions:

- the first type of reductions extends the witness-isomorphic reductions of [18] by requiring that the

solution overlap of the target (harder) problem depends predictably on the overlap of the source

(easier) problem. In other words, the cluster structure of the harder problem is essentially the same

as the one of the easier problem.

- for a subclass of NP-search problems, that of constraint satisfaction problems, we define a type

of witness-preserving reductions based on the notion of covers. Covers [35, 31] were defined in

the course of analyzing the seminal survey propagation algorithm of Zecchina et al. [7]. They

are generalizations of (sets of) satisfying assignments for the problem, and allow a geometric

interpretation of this algorithm. Specifically, survey propagation is just belief propagation applied

to the set of covers [35]. Our reduction extend the usual notion of reductions by requiring that not

only solutions of one problem are mapped to solutions, but this is true for covers as well.

The outline of the paper is as follows: in Section 2 we subject the reader to a (rather heavy) barrage of

definitions and concepts. The two kinds of reductions we propose are given in Definitions 12 and 13. In

Section 3 we give four examples of problem reductions (of various naturalness and difficulty) that belong

to at least one of the two classes of reductions that we put forward. The first two are classic examples from

the literature on NP-completeness. The next two are slightly less trivial examples, and are constructed

to be appropriate for one of the two types of reductions (one for each type). Correspondingly, in Section

4 we point out that the natural reduction from 4-SAT to 3-SAT belongs to neither class. An algebraic

perspective on the theory of reductions is called for in Section 5. We end (Section 6) with a number of

musings concerning the merits and pitfalls of our approach, and the road ahead.

We stress the fact that this is primarily a conceptual paper: its added value consists primarily,

we believe, in pointing to the right direction in a problem where nailing the correct concepts is tricky,

thus stimulating further discussion, rather than in coming up with completely appropriate concepts and

proving things about them. Our main goal is to understand and model, not to prove. However, if

”right” definitions exist, they should be compatible with our results.
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2 Preliminaries

We review some notions that we will need in the sequel:

Definition 1. An NP-search problem is specified by

• a polynomial time computable predicate A ⊆ Σ∗. A specifies the set of well-formed instances.

• a polynomial time computable relation R ⊆A×Σ∗ with the property that there exists a polynomial-

time computable (polynomially bounded) function q(·) such that for all pairs (x,y) ∈ A×Σ∗ such

that R(x,y) (y is called a witness for x, and x is called a positive instance), we have |y|= q(|x|)1.

• a polynomial time computable relation N ⊆ A×Σ∗×Σ∗ such that if N(x,y1,y2) then |y1|= |y2|=
q(|x|). Intuitively, N encodes the fact that y1,y2 are ”neighbors”. Note that it is not required that

R(x,y1),R(x,y2), i.e. that y1,y2 are witnesses for x. Instead, y1,y2 are ”candidate witnesses”.

We abuse language and write R instead of (A,R,N). We denote by NPS the class of NP-search

problems. A problem R in NPS belongs to the class PS iff there exists a polynomial time algorithm W s.t.

• For all x ∈ A, if W (x) = ”NO” then for all y ∈ Σ∗, (x,y) 6∈ R.

• For all x ∈ A, if W (x) = y 6= ”NO” then R(x,y).

Definition 2. Given NP-search problem R and positive instance x, define the overlap of two witnesses

y1,y2 for x as

overlap(y1,y2) =
dH(y1,y2)

q(|x|)
(1)

In the previous equation dH denotes, of course, the Hamming distance of two strings.

We will employ a particular kind of NP-search problem that arises from optimization. The particular

class of interest consists of those optimization problems for which determining if a candidate witness is

a local optimum, and finding a better candidate witness otherwise, is tractable:

Definition 3. An NP-search problem R belongs to the class PLS (polynomial local search, see e.g. [52])

if there exist three polynomial time algorithms A, B, C such that

• Given x ∈ Σ∗, A determines if x is a legal instance (as in Definition 1), and, additionally, if this is

indeed the case, it produces some candidate witness s0 ∈ Σq(|x|).

• Given x ∈ A and string s, B computes a cost f (x,s) ∈ N∪{∞}2. s is called a local minimum if

f (x,s) ≤ f (x,s′) for all s′ such that N(x,s,s′). Local maxima are defined similarly.

• Given x ∈ A and string s, C determines whether s is a local optimum and, if it not, it outputs a

string s′ with N(x,s,s′) such that f (x,s′) < f (x,s) (if R is a minimization problem; the relation is

reversed if R is a maximization problem).

In addition we require that R(x,s) (i.e. s is a witness for x) if and only if s is a local optimum for x. That

is, witnesses for an instance x are local optima.

Observation 1. It is known (see e.g. [52]) that PS ⊆ PLS ⊆ NPS.

1normally we require only the inequality |y| ≤ q(|x|), but we pad witnesses y, if needed, to ensure that this condition holds.
2Rather than adding another relation to test whether s is a legal witness candidate for x, we chose to do this implicitly, by

requiring that f (x,s)< ∞
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Example 1. MAX-SAT is the following optimization problem: an instance of MAX-SAT is a CNF formula

Φ whose clauses C1,C2, . . . ,Cm are endowed with a positive weight w1,w2, . . . ,wm, respectively. The set

of witnesses for Φ is the set of assignments of the variables in Φ. Each assignment A comes with a weight

w(A), defined to be the sum of weights of all clauses satisfied by A.

A candidate witness for Φ is a truth assignment of the variables in Φ. Two candidate witnesses

w1,w2 are neighbors if they differ on the value of a single variable.

A witness for Φ is an assignment w(A) which is a local maximum, i.e for all assignments B differing

from A in exactly one position w(B)≤ w(A).
It is clear that (as defined) problem MAX-SAT belongs to class PLS.

Definition 4. Given problem A ∈ PLS, define the NP-search problem A∗ as follows:

• Inputs of A∗ consist of pairs (x,τ ,0d), where x is an input for A, τ is a string in Σ∗ for some finite

alphabet Σ, |τ | ≤ q(|x|), and d ≥ 1 is an integer.

• A witness for pair (x,τ ,0d) is a path τ0,τ1, . . . ,τd′ with d′ ≤ d such that (a). τ0 = τ (b). for every

i ≥ 1 τi−1 and τi are neighbors and f (x,τi−1) < f (x,τi). (c). τd′ is a local optimum in A (such a

path is called an augmenting path).

In other words, given instance (x,τ ,0d) the problem A∗ is to decide whether there exists an augmenting

path of length at most d from τ to a local optimum.

To define cover-preserving reductions we first need witness-isomorphic reductions, a very restric-

tive notion that has been previously studied in the literature [18].

Definition 5. Given NP-decision problems (A,RA) and (B,RB) a witness-isomomorphic reduction of

(A,RA) to (B,RB) is specified by two polynomial time computable and polynomial time invertible func-

tions f ,g with the following properties:

- for all x, x ∈ A ⇔ f (x) ∈ B. That is, f witnesses that A ≤P
m B.

- for all x,y if RA(x,y) then there exists a z such that g(< x,y >) =< f (x),z > and RB( f (x),z).

- for all distinct y1,y2 if R(x,y1) and R(x,y2) then g(< x,y1 >) 6= g(< x,y2 >).

- for all x,w,z if f (x) = w and RB(w,z) then there exists y such that RA(x,y) and g(< x,y >) =<
w,z >.

We will write (A,RA)≤wi (B,RB) when there exists such a witness isomorphic reduction.

A particular well-behaved type of NP-search problem is the class of Constraint Satisfaction Prob-

lems:

Definition 6. The Constraint Satisfaction Problem CSP(C) is specified by

1. A finite domain. Without loss of generality we will consider CSP with domain Dk = {0, . . . ,k−1},

for some k ≥ 2.

2. A finite set C of templates. A template is a finite subset A ⊆ D
(r)
k for some r ≥ 1, called the arity

of template A.

An instance Φ of CSP(C) is a formula obtained as a conjunction of instantiations of templates from

C to tuples of variables from a fixed set x1, . . . ,xn.

Definition 7. [31] A generalized assignment for a boolean CNF formula is a mapping σ from the

variables of F to {0,1,∗}. Given a generalized assignment σ for F, variable x is called a supported

variable under σ if there exists a clause C of F such that x is the only variable of C that is satisfied by σ ,

and all the other literals are assigned FALSE.
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For CSP over general domains the previous definitions need to be generalized:

Definition 8. (see also [49]) A generalized assignment for an instance of CSP(C) over domain Dk =
{0,1, . . . ,k−1} is a mapping σ from the variables of Φ to P(Dk)\{ /0}. σ is simply called an assignment

if |σ(v)| = 1 for all variables v of Φ. Given assignment σ1 and generalized assignment σ2, we say that

σ2 is compatible with σ1 (in symbols σ1 ⊆ σ2) if for every variable v, σ1(v)⊆ σ2(v).

For propositional formulas in CNF the important notions of supported variable and cover were

introduced in [35], [31], [51]:

Definition 9. Assignment σ ∈ {0,1,∗}∗ is a cover of F iff:

1. every clause of F has at least one satisfying literal or at least two literals with value ∗ under σ
(“no unit propagation”), and

2. σ has no unsupported variables assigned 0 or 1.

It is called a true cover (e.g. [31]) if there exists a satisfying assignment τ of F such that τ ⊆ σ . In this

paper we will only deal with true covers.

One extension of the notion of supported variable to general CSP could be:

Definition 10. Given a generalized assignment σ for an instance F of CSP(C), variable x is called

supported by σ if there exists a constraint C of F such that

1. |σ(v)|= 1 for every v ∈C.

2. for every λ 6= σ(x), changing the value of σ(x) to λ results in a generalized assignment that does

not satisfy C.

As for the extension of the notion of cover to general CSP, we have to modify Definition 9 for two

reasons: first, we need more than three symbols to encode all the 2k −1 possible choices in assigning a

variable. Second, in the general case constraints cannot be satisfied by setting a single variable.

Definition 11. A generalized assignment σ ∈ Dn
k of a CSP F is a cover of F iff:

• no constraint of F can further eliminate any values of σ for its variables by consistency (“no unit

propagation”; see also [50]).

• σ has no unsupported variables v (in the sense of Definition 10) s.t. |σ(v)|= 1.

Definition 12. Given NP-decision problems (A,RA) and (B,RB), a witness-isomorphic reduction of

(A,RA) to (B,RB) is called overlap preserving if there is a continuous, monotonically increasing function

h : [0,1] → [0,1] with h(0) = 0,h(1) = 1 such that for all x, |x| = n, and z1 6= z2 such that RA(x,z1) and

RA(x,z2),
overlap(π2

2 ◦g(x,z1),π
2
2 ◦g(x,z2)) = h(overlap(z1 ,z2))+on(1).

In other words given two solutions z1,z2 of the instance x of A, one can map them (via the reduction)

to two solutions w1,w2 of instance f (x) of B such that the overlap of w1,w2 depends predictably on the

overlap of the original instances z1,z2. In particular if x has a single cluster of solutions with a single

overlap (respectively many clusters of solutions with a discontinuous overlap distribution) as predicted

by the 1-RSB ansatz for random k-SAT) then the solution space of f (x) should have a similar geometry.

Definition 13. A wi-reduction ( f ,g) between search problems A and B is called cover-preserving if

there exists a polynomial-time computable mapping g such that

1. g extends g, i.e. if x is an instance and y is a witness for x then g(< x,y >) = g(< x,y >).

2. ( f ,g) is witness isomorphic when seen as a reduction between covers.

3. g is compatible with g. That is, for all x ∈ A, for all y witnesses for x, for all generalized assign-

ments z compatible with y, if z is a cover of x then g(< x,z >) is a cover of f (x) compatible with

g(< x,y >).

We will informally refer to reductions that have both properties as geometry preserving.
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3 Geometry-preserving reductions via local constructions

Our first example of a geometry-preserving reduction is the classical reduction from k-coloring to k-SAT.

The reduction is the usual one: to each vertex we associate three logical variables xi,1,xi,2,xi,3. To each

edge e= (vi,v j) we associate a formula Fe = Fe(xi,1,xi,2,xi,3,x j,1,x j,2,x j,3). The formula Fe codifies three

types of constraints: each vertex is given at least one color; no vertex is given more than one color; finally

adjacent vertices cannot get the same color. That is

Fe = G(xi,1,xi,2,Xi,3)∧G(x j,1,x j,2,x j,3))∧ (∧k 6=l∈{1,2,3}H(xi,1,xi,2)∧H(x j,k,x j,l)) (2)

Theorem 1. The natural reduction from k-COL to k-SAT is cover-preserving and overlap-preserving.

Proof. Let G be an instance of k-COL and ΦG the instance of k-SAT that is the image of G under the

natural reduction. Let c ∈ [k]|V (G)| be a coloring of G and w be a generalized assignment (a.k.a. list

coloring) compatible with c. Under the natural transformation each vertex v is represented by k logical

variables, xv,1,xv,2, . . . ,xv,k, and the constructed formula ensures that only one of them can be true. In

particular one can define f (c) to be the satisfying assignment naturally corresponding to the coloring c.

Now transform a general assignment w of colors to the graph G to a generalized assignment g(G,w)
for the formula by the following rules:

1. if /0 6=Cv ⊆ {1,2, . . . ,k} is a set of allowed colors for vertex v then we set all variables xv,i, i 6∈Cv,

to zero.

2. if |Cv|= 1 then we set the remaining variable xv,i to 1. If, on the other hand, |Cv| ≥ 2, then we set

all variables xv,i, i ∈Cv to ∗.

It is easy to see that w is a cover compatible with c if and only if g(< G,w >) is a cover compatible

with g(< G,c >).

Theorem 2. The natural reduction from 1-in-k SAT to k-SAT, k ≥ 3 is overlap preserving and cover

preserving.

Proof. Remember, clause 1-in-3(x,y,z) is translated as x∨ y∨ z,x∨ y∨ z. Since the reduction does not

add any new variables, the set of satisfying assignments is the same, hence the overlap of the translated

solutions does not change. Similarly, covers correspond naturally (via identity) to covers.

3.1 An(other) example of an overlap-preserving reduction

The purpose of this section is to give an example of a somewhat less trivial witness-isomorphic reduc-

tion that is overlap-preserving. The reduction is one that was already proved to be witness-isomorphic

in the literature. Specifically, Fischer [17] has proved that problem MAX-SAT∗ (see Definition 4) is

NP-complete. Subsequently Fischer, Hemaspaandra and Torenvliet [18] have shown that the reduction

between SAT and MAX −SAT∗ is witness isomorphic.

Theorem 3. One can encode MAX − SAT ∗ as a NP-search problem such that the witness-isomorphic

reduction from (SAT,RSAT ) to (MAX-SAT∗,RMAX−SAT∗) [18] is overlap-preserving.

Proof. First let’s recall the reduction from [18]: let φ be a propositional formula in CNF with n variables

x1, . . . ,xn and m clauses C1, . . . ,Cm. Define

ψ =
m
∧

i=1

(xi ∨bi)
m+1 ∧ (C1 ∨α)∧ . . .∧ (Cm ∨α)
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In this formula b1, . . . ,bm,α are new variables Cm+1 denotes the fact that clause C has weight (m+ 1),
while C∨α denotes the clause obtained by adding α to the disjunction in C. A clause without an upper

index has weight 1. Let

ξ =
n−1
∧

j=1

n
∧

i= j+1

(x j ∨b j ∨ xi)
3m ∧ (x j ∨b j ∨bi)

3m.

Finally, let Ψ = ψ ∧ ξ .

It is easy to see (and was proved explicitly in [17]) that witnesses for instance (Ψ,02n+1,0n) of MAX-

SAT∗ correspond to satisfying assignments A for Φ as follows: we start at τ0 = 02n+1. First we flip either

variable x1 (if A(x1) = 1) or b1 (if A(x1) = 0). Next we flip either variable x2 (if A(x2) = 1) or b2 (if

A(x2) = 0). . . .. Finally, we flip either variable xn (if A(xn) = 1) or bn (if A(xn) = 0). Denote by PA the

path obtained in this way.

Our goal is to encode path PA in such a way that for two assignments A,B, dH(PA,PB) = (2n +
2) · dH(A,B). Since we encode one bit of a satisfying assignment by (2n+ 2) bits of the encoding of

paths, this relation proves that the reduction is overlap preserving. Indeed, overlap(A,B) = dH(A,B)
n

, and

overlap(PA,PB) =
(2n+2)·dH (A,B)

n(2n+2) = overlap(A,B), so we can take h(x) = x in Definition 12.

The idea of the encoding is simple: we use strings z1z2 . . . zd , where each zi has length 2n+ 2 and

contains n+ 1 consecutive ones (including circular wrapping). The idea is that we encode into string zi

the event of flipping the value of the j’th variable in a fixed ordering of variables of Φ (specified below)

by making zi consist of n+1 consecutive ones, starting at position j. To make the encoding preserve the

overlap predictably, make the position of variable b j differ by n+1 (modulo 2n+2) from the position of

variable x j.

Consider now two satisfying assignments A and B. If A and B agree on whether to flip xi or bi

then the corresponding i’th blocks of PA,PB agree. Otherwise the corresponding blocks of PA,PB are

complementary. So indeed we have dH(PA,PB) = (2n+2) ·dH(A,B).

3.2 An(other) example of a cover-preserving reduction

Whereas in the previous section we gave a slightly less trivial reduction that was overlap-preserving,

the goal of this subsection is to give a slightly less trivial example of a cover-preserving reduction. The

problem we are dealing with will not fall in the framework of Definition 6 (and subsequent Definitions

6–12) since it also includes a “global” constraint. Rather than attempting to rewrite many of the previous

definitions in order to construct a more general framework, appropriate to our example, we will be

content to keep things at an intuitive level, adapting the definitions on the spot as needed. We trace the

idea of the construction below to an unpublished, unfinished manuscript [45] that has no realistic chances

of ever being completed, as a (different) analysis of the belief propagation algorithm for graph bisection

using methods from Statistical Physics has been published in the meantime [48]. The adaptation of the

construction to our (rather different) purposes and the statement/proof of the theorem below is, however,

entirely ours.

Definition 14. The Perfect graph bisection (PGB) problem is specified as a search problem as follows:

• Input: A graph G = (V,E).

• Witnesses: A function f :V →{−1,1} such that for all vertices v,w∈V , (v,w)∈E ⇒ f (v)= f (w)
and ∑v∈V f (v) = 0.

We identify solutions f ,g such that f (v) =−g(v) for all v ∈V .
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Definition 15. To define PGB as a local search problem we will work with partitions, defined as functions

f : V → {−1,1}. Two partitions are adjacent if one can be obtained from the other by flipping two

vertices on opposite sides of the partition. Covers are defined as strings over {−1,1,∗}, where again we

identify strings that only differ by permuting labels -1 and 1.

The first step in order to set up PGB as a local search problem subject to cover-preserving reductions

is to represent G as a factor graph [33]. A factor graph is a bipartitite undirected graph containing

two different kinds of nodes: variable nodes, corresponding to vertices vi in G, and function nodes

corresponding to edges ei j in G. A variable node and function node are connected in the factor graph if

the edge represented by the function node is incident on the vertex represented by the variable node. It

is clear that a function node is adjacent to exactly two variable nodes.

The constraint on edges only connecting vertices in the same subset is enforced in an entirely straight-

forward and local manner in the factor graph: a function node requires both its neighboring variable

nodes to be assigned the same value s =+1 or −1. The balance constraint ∑n
i=1 si = 0, however, remains

a global one.

Therefore, the next step is to give a representation of perfect graph bipartition that allows balance to

be enforced in a purely local manner.

Definition 16. Given r variables that can take values {−1,0,1}, the counting constraint CCm(x1, . . . ,xr)
is true if and only if ∑i xi ∈ {±m}.

Definition 17. An instance Ψ of a counting CSP problem consists of n variables connected by a set of

counting constraints CCn−4. The variables can take values {−1,0,1}. A witness for the counting CSP Ψ

is an assignment of values to variables such that all constraints are satisfied.

Theorem 4. There exists a cover-preserving, overlap-preserving reduction from PGB to counting CSP.

Proof. Consider an instance of G of GBP as described above. We translate it into an instance ΨG of

counting CSP by constructing a new factor graph with
(

n
2

)

variable nodes vkl , 1 ≤ k < l ≤ n. Whereas a

function node ei j was previously connected to 2 variable nodes vi and v j, it is now connected to 2n− 4

variable nodes. Taking the case where 2 < i < j−1< n−2, they are: v1,i,v2,i, . . . ,vi−1,i,vi,i+1, . . . , vi, j−1,

vi, j+1, . . . ,vi,n−1,vin and v1 j,v2 j, . . . ,vi−1, j,vi+1, j, . . . ,v j−1, j, v j, j+1, . . . , v j,n−1,v j,n. Other cases ( j > i,

etc.) may be treated similarly: only the labeling details change. Note that variable node vi j is not

connected to function node ei j. The reasons for this will become apparent shortly.

In our new factor graph, assign to each of the
(

n
2

)

variable nodes vkl a value xkl = (sk + sl)/2. Note

that xkl ∈ {−1,0,+1}, depending on whether sk = sl =−1, sk 6= sl , or sk = sl =+1. Next, we will show

how the graph bisection constraints translate into a local constraint on the values of xkl for all variable

nodes connected to a given function node ei j.

We start by providing local conditions in the new factor graph that are necessary for the perfect graph

bisection constraints to be satisfied. We then show that these conditions are not only necessary but also

sufficient.

Consider the sum of the values xkl for all 2n−4 variable nodes connected to a function node ei j:

∑
k,l :}

vkl ∼ei j

xkl =
i−1

∑
m=1

xmi +
n

∑
m=i+1

m 6= j

xim +
j−1

∑
m=1
m 6=i

xm j +
n

∑
m= j+1

x jm =
n

∑
m=1

m 6=i, j

(2sm + si + s j)

2
=

n

∑
m=1

sm +
(n−4)(si + s j)

2
.

For a balanced solution, ∑n
m=1 sm = 0. Furthermore, since vi and v j are connected by an edge ei j,

they must be assigned to the same partition, and so si = s j. Thus, the necessary condition for the graph

bisection constraints to be satisfied is that for all function nodes ei j,
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∑
k,l :vkl ∼ei j

xkl =±(n−4). (3)

The construction of ΨG is now clear: it is the conjunction of counting constraints specified by equa-

tion (3). We identify two solutions of ΨG that can be obtained by multiplying all values by −1.

First we have to show that what we constructed is indeed a reduction. That is, we first show that

except at small n and for a very small number of graphs, the conjunctions of conditions (3) is also a

sufficient condition for the existence of a perfect bipartition in G. Suppose, indeed that (3) are satisfied

but that the graph bisection constraints are not. There are three ways this can happen: 1) there is a

balanced solution with an edge constraint violated, 2) there is an unbalanced solution with no edge

constraints violated, and 3) there is an unbalanced solution with an edge constraint violated.

Consider case 1. If there is a balanced solution with an edge ei j such that si 6= s j, ∑k,l :vkl ∼ei j
xkl = 0.

This is clearly inconsistent with (3) unless n = 4.

Now consider case 2. The only way that (3) can be respected when there is an imbalance and no edge

constraints violated is if ∑n
m=1 sm = ±2(n− 4). Since −n ≤ ∑n

m=1 sm ≤ +n, this is impossible unless

n ≤ 8.

Finally, consider case 3. In this case, (3) could still be respected if ∑n
m=1 sm = ±(n−4). For that to

happen, however, 2 vertices must be assigned to one partition and n−2 vertices to the other, and the all

edges in the graph must be violated. In that case, no edges can be contained within either partition.

Note that solutions f : V → {−1,1} of G naturally correspond to solutions x( f ), x
( f )
k,l = f (k)+ f (l)

2
, of

the corresponding formula ΨG. Now the fact that the reduction is cover-preserving is easy: a cover c for

a solution f consists of specifying for some pairs of vertices of G whether they are always on the same

side of a perfect bipartition, whether they are always on opposite sides of a perfect bipartition, or whether

they can fluctuate between sides. We construct a cover c̃ for x( f ) corresponding to c as follows:

- if two vertices k, l are always on the same side of the partition in any perfect bipartition then the

variable x
( f )
k,l never takes value 0. In this case c̃k,l = 1.

- If they always are on opposite sides then the variable xk,l always takes value 0. So we set c̃k,l = 0.

- Otherwise x
( f )
k,l may take all three values. We set c̃k,l = ∗.

As for overlaps, given two perfect bipartitions f ,g of G, we define

overlap( f ,g) =
1

n
min(dH( f ,g),dH (− f ,g)). (4)

Similarly, given two solutions x,y for ΨG define

overlap(x,y) =
1
(

n
2

)min(dH(x,y),dH (−x,y)). (5)

In equations (4) and (5) we take into account, of course, the factoring of the solution spaces by equiva-

lence. The proportionality factor of (5) is 1

(n
2)

since formula ΨG has that many variables. Now it is easy

to see that

dH(x
( f ),x(g)) =

(

n·dH ( f ,g)
2

)

(

n
2

) = (dH( f ,g))2 +on(1) (6)

and similarly for − f and g, so we can take h(x) = x2. Indeed, if f can be made to coincide on v vertices

with g then x( f ) and x(g) coincide on all pairs x
( f )
k,l and x

(g)
k,l , where k, l range over the set of variables where

k, l coincide. If f ,g differ on one of k, l or both then x
( f )
k,l 6= x

(g)
k,l . So relation (6) is clear.
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4 Reductions that are not geometry-preserving

A basic sanity check is to verify that there are natural reductions between versions of satisfiability that

are not geometry preserving. In this section we give two examples:

Theorem 5. The classical reduction from 4-SAT to 3-SAT is neither cover preserving nor overlap pre-

serving.

Proof. Remember, the idea of simulating a 4-clause x∨ y∨ z∨ t by a 3-CNF formula is to add an extra

variable α and simulate the clause above by the formula x∨ y∨α ,α ∨ z∨ t.

To show that the reduction is not cover preserving it is enough to create a formula such that by the

reduction we create more covers.

We accomplish this as follows: we add to the formula clause C1 = x∨ y∨ z∨ t. Then, informally, we

enforce constraints x∨y and z∨t using 4-clauses. Let us accomplish this for the first one (the second case

is entirely analogous) as follows: we add clauses x∨y∨x1∨x2,x∨y∨x1∨x2,x∨y∨x1∨x2,x∨y∨x1∨x2.

Let Φ1 be the resulting formula and Φ2 be its 3-CNF reduction.

The set of solutions of Φ1 is basically {(x,y)∈{(0,1),(1,0),(1,1)}}×{(z, t)∈{(0,1),(1,0),(1,1)}}.

None of the variables x,y,z, t can be given a 0/1 value in a cover since they are not supported in clause

C1 (as there are at least two true literals in that clause). So the set of covers of Φ1 coincides with the set

of satisfying assignments of Φ, together with the trivial cover ∗∗∗ . . . ∗∗.

On the other hand, in Φ2 auxiliary variable α can be given value ∗. In particular x = 1,z = 1,α = ∗
and all other variables given value ∗ is a nontrivial cover. As all values for α are good, the reduction is

also not witness isomorphic, hence not overlap preserving.

5 Geometry-preserving reductions: an Algebraic Perspective

In this section we advocate for the development of an algebraic approach to reductions, perhaps based

on category theory [34]. The motivations for advocating such an approach are simple:

- One can view each constraint satisfaction problem CSP(S) as a category: its objects are S-formulas.

Given two objects (formulas) Φ1 and Φ2, a morphism is a mapping between variables of Φ1 and

variables of Φ2 that maps clauses of Φ1 to clauses of Φ2.

- CSP’s, together with polynomial time reductions form a category C S P≤P
m
.

- We can view our constructions in Section 3, however simple, in a categorical fashion. The proof of

Theorem 1 shows that the reduction “localizes”: we can interpret the usual gadget-based reduction

(and in particular our cover reduction) as “gluing” local morphisms. Then it is possible to construct

cover-preserving reductions by:

1. Adequately constructing them “locally”.

2. “Gluing” them in a way that preserves covers.

The following result shows that cover-preserving reductions also can act as morphisms:

Theorem 6. The following (simple) properties are true:

1. For any CSP A the identity map is a cover-preserving reduction of A to itself.

2. Cover-preserving reductions compose: if A,B,C are CSP and ≤A,B, ≤B,C are cover-preserving re-

ductions of A to B and B to C, respectively, then ≤A,C:=≤B,C ◦≤A,C is a cover-preserving reduction

of A to C.
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Consequently, constraint satisfaction problems with cover-preserving reductions as morphisms form

a category CS Pcover , indeed a subcategory of C S P≤P
m
.

Similar results hold for overlap-preserving reductions.

Proof. 1. This is trivial.

2. Let x be an instance of A, y be the instance of B that corresponds to x via ≤A,B and z be the instance

of C that corresponds to y via ≤B,C. Further, let a,a1 be strings. a is a cover of a witness a1 for

x, if and only if b :=≤A,B (a) is a cover of witness b1 =≤A,B (a1) of instance y =≤A,B (x). This

last statement happens if and only if c :=≤B,C (b) is a cover of witness c1 :=≤B,C (b1) of instance

z =≤B,C (y).

But z =≤B,C ◦ ≤A,B (x), c1 =≤B,C ◦ ≤A,B (a1) and c =≤B,C ◦ ≤A,B (a), so the composition of

reductions is a reduction and cover preserving. It is clearly specified by a polynomial computable

function.

Similar arguments function for overlap-preserving reductions. Here we use the fact that the compo-

sition of monotonically increasing, continuous functions from [0,1] to [0,1] (such that h(0)=0, h(1)=1)

has the same properties.

Note that there have recently been several attempts to consider ordinary reductions in computational

complexity theory from a structural perspective [36, 43, 37]. What can be done for ordinary reductions

might be interesting, we believe, for (variants of) our reductions as well.

6 Conclusions

Our research clearly has a preliminary character: we see our contribution as a conceptual one, point-

ing in the right direction rather than having provided the definitive definitions for structure-preserving

reductions. Specifically, we believe that one needs to be serious about connecting phase transitions in

Combinatorial Optimization to Computational Complexity Theory, however weak the resulting notions

may turn out to be. ([16] seems to be an intriguing approach in this direction).

It may be that the results in this paper can be redone using a more restrictive notion of reductions

that turns out to be better suited. Whether different variations on the concepts are more appropriate is

left for future research. Also left for further research is the issue of classifying the natural encodings of

constraint satisfaction problems (particularly for NP-complete problems) under these definitions. This

might be difficult, though: our result only shows, for instance, that the natural reduction from 4-SAT to

3-SAT does not have the desired properties, not that there is no such reduction !. Also, one cannot solve

this problem, in principle without understanding the nature of the phase transition in 3-SAT: the 1-RSB

approach predicts the phase transition of k-SAT only for large enough values of k, and it is not clear that

it does for k = 3.

In any case we expect that NP-complete problems split in multiple degrees under (variants of) our

reductions. Reasons for this belief are twofold:

- First, it is actually known that not all NP-complete problems are witness isomorphic. So we cannot

expect to have a single degree under cover-preserving reductions.

- Second of all, we expect that 1-in-k SAT and k-SAT are not equivalent under overlap preserving

reductions, simply because k-SAT displays clustering below the phase transition, whereas we ex-

pect 1-in-k SAT, k ≥ 3, not to. Whether our notions of reductions are appropriate enough to capture

this difference is an open problem.
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The main weakness of any attempt of connecting the geometry of instances of two problems by re-

ductions is the asymptotic nature of the predictions provided by methods from Statistical Physics. Specif-

ically, such predictions (the existence of a sharp SAT/UNSAT threshold, the existence of one/multiple

clusters of solutions, etc.) refer to properties that are true for almost all (rather than all) instances at a

given density. In contrast classical reductions (as well as the ones we give) provide guarantees for all

instances.

Secondly, our definitions have not attempted to map (via the reduction) the precise location of the two

phase transitions, and there is no reasonable expectation that ordinary reductions preserve this location.

A reason is that, for instance, (2+ p)-SAT [41] is NP-complete for p > 0, but the location of the phase

transition in (2+ p)-SAT is determined [41, 2] by the ”easy part”, at least for p < 0.4. So, unless the

reduction classifies such problems as ”easy” (”reducing” an instance Φ of (2 + p)-SAT to its 2-SAT

component via a notion of reduction that may sometimes err, but is otherwise rather trivial) one cannot

simply use ordinary notions of reductions, even restricted as the ones put forward in this paper3.

To conclude: to get the notion of reduction appropriate for dealing with phase transitions we might

need a notion of reduction that is only correct on one class of instances (and errs on a negligible set of

instances at each density). We don’t claim that our reductions accomplish this, and only hope that they

can function as useful guidelines towards the development of this ”correct” notions of reductions. How

to do this (and whether it can be done at all) is intriguing. And open.
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Gonçalves Tavares (2007): Belief Propagation for Graph Bisection. (unpublished manuscript).

[46] T. J. Schaefer (1978): The complexity of satisfiability problems. In: Proceedings of the 13th ACM Symposium

on Theory of Computing (STOC’78), pp. 216–226, doi:10.1145/800133.804350.

[47] Iain A Stewart (1994): On completeness for NP via projection translations. Mathematical Systems Theory

27(2), pp. 125–157, doi:10.1007/BF01195200.
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The ecosystem of Privacy Calculus is a formal framework for privacy comprising (a) the Privacy
Calculus, a Turing-complete language of message-exchanging processes based on the π-calculus, (b)
a privacy policy language, and (c) a type checker that checks adherence of Privacy Calculus terms
to privacy policies. BPMN is a standard for the graphical description of business processes which
aims to be understandable by all business users, from those with no technical background to those
implementing software. This paper presents how (a subset of) BPMN diagrams can be converted to
Privacy Calculus terms, in the hope that it will serve as a small piece of larger workflows for building
privacy-preserving software. The conversion is described mathematically in the paper, but has also
been implemented as a software tool.

1 Introduction

The main motivation of this paper is that it might serve as a first version of a piece of a larger workflow
for building privacy-preserving software.

In order to trust that some piece of software is privacy-preserving, this must somehow be proved
formally; in other words, privacy protection needs to be considered as a formal specification (formalised
privacy policies) complemented by tools able to decide adherence of programs to policies.

The Privacy Calculus ecosystem has been introduced in [10] to tackle these considerations; it was
further developed in [11, 9, 17, 16, 12, 23]. Privacy Calculus is a variation of the π-calculus, a Turing-
complete language describing parallel processes sharing messages. It is accompanied by a privacy policy
language, which gives the ability to grant permissions (read, write, disclose, store, etc.) to users or groups
(forming a hierarchy) for specific purposes1. The ecosystem is completed by a type checker for checking
compliance of Privacy Calculus terms to privacy policies written in the aforementioned formal language.

Although some tools for working with the Privacy Calculus ecosystem have been created [18, 22],
the ecosystem is still quite abstract, far from everyday practice. One way to bridge this gap is to cre-
ate conversions between higher-level frameworks and Privacy Calculus. This is where BPMN might
fruitfully enter the discussion.

The aim of Business Process Model and Notation (BPMN) is to serve as a standard for the graphical
depiction of business processes, enhancing intra- and inter-organisational communication and interoper-
ability. It is high-level enough to be understandable by audiences with minimal technical background,
however it can be quite detailed and (in its full generality) even automatically executable.

This paper is an exploration of how the most basic elements of BPMN can be converted to Privacy
Calculus terms with the hope that eventually, a workflow such as the following could be feasible: (1) de-
scribe a business process in BPMN, (2) convert it to Privacy Calculus, (3) specify a privacy policy, ideally

1The notion of purpose is inherent in privacy protection. This has been argued in the literature regarding privacy, but has
also been acknowledged in practice by legislation: purpose of data processing is a fundamental notion in GDPR.
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by converting it from some high-level framework to the formal privacy policy language, (4) obtain (e.g.
with the Maude tool presented in [18]) a proof that the business process adheres to the policy.

The rest of this paper is organised as follows: Section 2 reviews basic notions of BPMN, Section 3
contains some basic definitions of the Privacy Calculus, and Section 4 discusses how BPMN diagrams
(or rather, a subset of them) can be converted to Privacy Calculus terms and presents a tool that automates
the said conversion; Section 5 contains some concluding remarks.

2 Business Process Model and Notation

BPMN defines, both syntactically and semantically, a multitude of graphical elements. These elements
can be combined into diagrams. Three kinds of diagrams are possible: Collaborations, Processes, and
Choreographies ([14, Section 1.1]); here, only the first two will be considered.

Processes can be public or private. Private Processes model activities within an organisation: they
can be defined at a so high level of detail as to be executable; otherwise, they serve for documentation
purposes. Public Processes are non-executable and show activities of multiple Participants, documenting
their interaction and hiding (parts of) actions internal to Participants [14, Section 7.2.1]. Here, since the
interest lies on data protection among multiple stakeholders (the data subject and at least one data pro-
cessing entity), mostly public Processes will be considered. Figs. 1a and 1b are examples of Processes.

A Collaboration contains two or more Participants and its purpose is to depict the interactions among
them [14, Section 7.2.1]. Each Participant is depicted as a Pool which may be empty or contain a Process
diagram [14, Table 7.1] (at most one process can be private, in which case it may be drawn outside of
a Pool [14, Section 9.3]). Pools can also be divided in Lanes and/or have multiple instances, but these
features will not be considered here. Fig. 2 is an example of a Collaboration with two Pools.

There are five categories of graphical elements [14, Section 7.3]: flow objects (Events, Activities,
Gateways), data (Data Objects, Data Stores), connecting objects (Sequence Flows, Message Flows,
Associations, Data Associations), swimlanes (Pools, Lanes), and artifacts (Text Annotations, element
Groups). Here, only flow objects, Flows, and Pools will be considered; the main characteristics of
Events, Activities, Gateways, and Flows will be presented in Sections 2.1 to 2.4. Data Objects and Data
Stores will not be considered, since the version of Privacy Calculus employed here cannot deal with them
properly. Messages will only be considered indirectly, because they are not supported by the bpmn.io
diagram editor; when needed, they will be considered as available externally to the BPMN modelling.

In order to understand how control flows within a diagram, the concept of tokens is employed in
lieu of semantics; in the words of [14, Section 7.2], “A token is a theoretical concept that is used as an
aid to define the behavior of a Process that is being performed. The behavior of Process elements can
be defined by describing how they interact with a token as it ‘traverses’ the structure of the Process.”.
In short (and with many details omitted), Start Events generate tokens, End Events consume them, and
the other elements redirect, multiply, or merge them appropriately. Tokens will be instrumental for the
conversion to Privacy Calculus.

2.1 Events

There are three types of Events2 based on when they affect the flow of a process: Start, Intermediate, and
End. There are also multiple types of events depending on how the affect the flow: here, only Message
Events (and Start/End events with no information as to how they affect the flow) will be considered.

2BPMN also defines Events at the boundaries of Activities [14, Section 10.5.4], but these will not be considered here.

https://bpmn.io
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Every Event either catches or throws (but not both): Start Events always catch, End Events always
throw, Intermediate Message Events may do either. [14, Section 7.3.2]

Contrary to [14, Section 10.5.2 and Section 7.2.1], which allow leaving Start/End events implicit
for simplicity, this paper requires that Processes (and Sub-Processes) must always start with one or more
Start Events and that each path of a Process (or Sub-Process) must terminate at an End Event. This affects
expressiveness only minimally; moreover, in future treatments, “phantom” Start/End Events, connected
to the “initial” and “final” Flow Nodes, could be added if none are provided.

Naturally, Start Events have no incoming Sequence Flows and End Events have no outgoing Se-
quence Flows. In order to accommodate implicit Start/End Events, BPMN ([14, Section 10.5.2]) allows
this for other Flow Nodes as well. Here, the only Flow Nodes that will be permitted not to have an
incoming Sequence Flow are Start Events; dually, the only Flow Nodes that will be permitted not to have
an outgoing Sequence Flow are End Events and Sub-processes.

(a) A Process with only Message Events as Flow Nodes. From start to end, it contains a Message Start Event, a
Message Intermediate Catch Event, a Message Intermediate Throw Event, and a Message End Event.

(b) A Process with some Conditional Flows (recognised by the diamond symbol at their start). The Start Event is
followed by a Receive Task. Depending on the conditions, one or both of the following two Abstract Tasks are
triggered; here, it is assumed that the conditions are such that only one can be fulfilled. An Exclusive Gateway
combines the two alternative paths and channels the flow to the End Event.

Figure 1: Two diagrams of BPMN Processes.

2.2 Activities

Activities are divided into Tasks and Sub-Processes. Tasks are atomic (as far as the modelling is con-
cerned), while Sub-Processes are compound [14, Section 7.3.2].

Tasks: A Task is an Activity which represents some action not broken down to more detail, hence
considered atomic (in fact, it might be cancelled in mid-execution through the Compensation or other
mechanisms of BPMN, but this is not considered here). There are many types of Tasks, including a
generic one (Abstract Tasks). Apart from Abstract Tasks, this paper is mainly interested in Send Tasks
(e.g. “Send confirmation receipt” in Fig. 2), which send Messages to other Participants, and Receive
Tasks (e.g. “Listen for confirmation” in Fig. 2), which receive Messages from other Participants. Among
the rest types of Tasks are User Tasks (e.g. “Receive notification” in Fig. 2), which are executed by
humans with the aid of automated systems, and Manual Tasks, which are executed by humans manually
(e.g. “Send response” in Fig. 2; imagine that the response is sent via traditional mail).



56 Converting BPMN Diagrams to Privacy Calculus

Some simplifying conventions (limiting the expressiveness of our tool) will be made. Contrary to [14,
Section 10.3], here it will be assumed that every Task has at most (hence, exactly) one incoming Sequence
Flow, at most one incoming Message Flow, and at most one outgoing Message Flow. Also, looping and
multiplicity of Tasks will not be considered here.

Sub-Processes: BPMN defines some special types of Sub-Processes; here, however, we will only be
interested in those that are just Processes within Processes (Embedded Sub-Processes). Examples can be
seen in Fig. 2. Sub-Processes may have parallel multiplicity, i.e. multiple copies of a Sub-Process may
run in parallel (looping or sequential multiplicity are also options in BPMN, but will not be considered
here). Recall that here we require Sub-Processes to always contain at least one Start and one End Event.
As for Tasks, contrary to [14, Section 10.3], here it will be assumed that every Sub-Process has at most
(hence, exactly) one incoming Sequence Flow.

Figure 2: A BPMN diagram depicting a Collaboration. Here, the “Service” Pool has two Sub-Processes.
These Sub-Processes have multiple (parallel) instances, indicated by the parallel lines at their bottom.

2.3 Flows

Flows are drawn as arrows. There are two kinds of flows: Sequence Flows (solid arrows) and Message
Flows (dashed arrows).

Sequence Flows: Sequence Flows model the flow of control within a Process.
An Uncontrolled Flow (i.e. a Normal Flow not connected to some Gateway and not affected by

Conditions) is the most basic kind of Flow, representing the order of execution of the elements it connects.
Conditional Flows (examples can be seen in Fig. 1b) are only activated if their corresponding Con-

dition is met. Here, Conditional Flows will be considered only when they are outgoing from a Receive
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Task (their Condition shall then pertain to the received message). Default Flows will not be considered.
Non-Normal Sequence Flows (pertaining to Exceptions and Compensations), as well as looping via

“backwards” sequence flows, will not be considered here.
Of course, the restrictions on Flows heavily impact the expressiveness of the diagrams our tool can

handle. However, the supported elements are already expressive enough to be considered in this version.

Message Flows: Message Flows depict the flow of messages between Participants in a Collabora-
tion [14, Section 7.3.2] (see Fig. 2). According to [14, Chapter 10], “All Message Flows must connect
two separate Pools. They may connect to the Pool boundary or to Flow Objects within the Pool bound-
ary.”. In this paper, each Message Flow must have a Flow Object as either source or target. Contrary
to [14, Section 7.6.2], here it will be assumed that Sub-Processes per se have neither incoming nor out-
going Message Flows. Flow Nodes within a Sub-Process will support Message Flows as usual.

2.4 Gateways

Gateways control the convergence and divergence of Sequence Flows. Here, only Parallel and Exclusive
Gateways will be considered (the latter only in their converging form). A Gateway must have multi-
ple incoming Sequence Flows or multiple outgoing Sequence Flows (or multiple of both, which is not
recommended) [14, Section 10.6]; recall that here it is also required to have at least one of each. “Gate-
ways do not represent ‘work’ being done and they are considered to have zero effect on the operational
measures of the Process being executed (cost, time, etc.).” [14, Section 10.6]

Parallel Gateways (e.g. the one synchronising the Tasks “Send confirmation receipt” and “Send
response” in Fig. 2) create and synchronise parallel paths: that is, when multiple Flows are outgoing from
a Parallel Gateway, all of them will be executed in parallel; dually, when multiple Flows are incoming to
a Parallel Gateway, it will wait until all of them are executed before activating its output Flows.

According to [14, Section 10.6.2], “A converging Exclusive Gateway [i.e. one with multiple incom-
ing Sequence Flows and one outgoing Sequence Flow] is used to merge alternative paths. Each incoming
Sequence Flow token is routed to the outgoing Sequence Flow without synchronization.”. Here, we will
only consider cases where the incoming Sequence Flows to the Exclusive Gateway are alternative, i.e.
that at most one of them can be triggered. An example of an Exclusive Gateway can be seen in Fig. 1b.

3 Privacy Calculus

The Privacy Calculus is a typed variant of the π-calculus introduced in [10] and further developed in [11,
9, 17, 16, 12, 23]. The version of the Privacy Calculus presented here is the one of [18], with the addition
of the Choice and Silent operators which are standard in π-calculus and can be introduced in the tool
of [18] with minimal effort (amounting to the addition of two transition rules, i.e. (Choice) and (Silent)
of Fig. 3, and two simple typing rules).

Assume the following basic sets of entities: (1) an infinitely countable set of channel names (ranged
over by x, y, z, a, b), (2) a set of basic types, (3) a set of purposes (ranged over by u), (4) a set of groups,
(ranged over by G), split into a set of users, (ranged over by U) and a set of roles (ranged over by R); for
any two groups G1,G2, their union G1 ∪G2 is also a group (notice that privacy policies support group
hierarchies), (5) a set of context variables X , where each X ∈ X has a finite domain DX of possible
values ranged over by vX ; v ranges over the union

⋃
X DX .

The following can then be defined: (1) a set of names N containing channel names and all the
values of context variables, (2) a set of types T (ranged over by T ), containing all basic types, all
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context variables, and every element of the form G [T ] (the intuition being that a name of type G [T ] can
be used by processes that “belong” to group G in order to exchange messages of type T ).

Terms of the Privacy Calculus are defined in two levels, processes and systems:

Process P ::= 0 Empty
| x(x : T ).P Input
| x⟨x⟩.P Output
| τ.P Silent
| (ν x : T )P Create channel
| P | P Parallel
| P+P Choice
| [x= v] (P ; P) Conditional
| !P Replication

System S ::= 0 Empty
| (ν x : T )S Create channel
| S∥S Parallel
| R [S] Bind group
| G : u [P] Process lift

Processes are standard in π-calculus: the empty process does nothing, the input x(y : T ).P receives
y of type T via the channel x (binding the name y in P) and continues as P, the output x⟨y⟩.P sends y
via the channel x and continues as P, the silent process τ.P does some unspecified internal work and
then continues as P, the process (ν x : T )P creates a channel x of type T (and binds the name x) in
P, the parallel composition P1 | P2 combines the two processes so that both run in parallel, the choice
composition P1+P2 combines the two processes so that only one will run, the conditional [x= v] (P1 ; P2)
checks whether x is equal to v and if so continues as P1, otherwise as P2, and the replication !P behaves
as P | !P. For brevity, define [x = v]P as [x= v] (P ; 0), [x ̸= v]P as [x= v] (0 ; P), ∏

n
i=1 Pi as P1 | . . . | Pn,

and ∑
n
i=1 Pi as P1 + . . .+Pn.

Systems annotate processes with high-level privacy information. The system G : u [P] declares that
the process P runs on behalf of group G for the purpose u, the system R [S] declares that the system S
runs for the role R (in addition to any other groups declared in S), while the empty, name binding, and
parallel systems are similar to the respective processes. For brevity, define ∏

n
i=1 Si as S1 ∥ . . .∥Sn.

For the unambiguous treatment of bound names, CINNI [21] is employed: it adds indices to names,
so that, for example, the term (ν x : T )x⟨y⟩.(ν x : T )x⟨y⟩.0 is actually interpreted as (ν x1 : T )x1⟨y⟩.(ν x0 :
T )x0⟨y⟩.0. Thus, name substitution [a :=b] (substitute all free occurrences of a with b) can be de-
fined elegantly. For technical reasons, CINNI defines some operators that convert indices, such that
[shiftdownaX ], which decreases the indices of every a in X by 1 (not going below 0). In this paper,
CINNI will be ignored, i.e. indices of channel names will always be omitted and the index 0 will be
assumed for all channel names.

Two processes/systems that differ only in the selection of their bound names are called α-equivalent.
Structural congruence (i.e. behavioural equivalence) of processes/systems, denoted ≡, is defined as
follows: (1) α-equivalent terms are congruent, (2) parallel/choice terms that differ only in the order
of their operands are congruent (i.e. parallel and choice operators are associative and commutative),
(3) repetitions of operands in choice is irrelevant (i.e. the choice operator is idempotent), (4) P | 0 ≡ P,
S∥0 ≡ S, !0 ≡ 0, (ν x : T )0 ≡ 0 (both for processes and systems), G [0]≡ 0, G : u [0]≡ 0.

The operational semantics of the Privacy Calculus is defined in Fig. 3. It is a late labelled transition

semantics comprising four kinds of labels: (1) silent, τ−→, (2) input,
x(y)−−→, (3) output,

x⟨y⟩−−→, (4) bound

output
(ν y:T )x⟨y⟩−−−−−−→. Notice that the π-calculus, and hence Privacy Calculus, is non-deterministic: multiple

execution steps might be possible for a given term, in which case any one of them might be selected
arbitrarily as the next to be executed.
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x(a : T ).P
x(a)−−→ P (In) x⟨y⟩.P x⟨y⟩−−→ P (Out) τ.P τ−→ P (Silent)

P l−→ P′

!P l−→ P′ | !P
(Repl)

P1
l−→ P′

1

P1 +P2
l−→ P′

1

(Choice)

P l−→ P′

[x= x] (P ; Q)
l−→ P′

(CondT) Q l−→ Q′ x ̸= y

[x= y] (P ; Q)
l−→ Q′

(CondF)

S l−→ S′

R [S] l−→ R [S′]
(ResGS) P l−→ P′

G : u [P] l−→ G : u [P′]
(ResGP)

F
x⟨a0⟩−−−→ F ′

(ν a : T )F
(ν a0:T )x⟨a0⟩−−−−−−−→ F ′

(Open)
F l−→ F ′ a0 /∈ fn(l)

(ν a : T )F
[shiftdownal]−−−−−−−−→ (ν a : T )F ′

(ResN)

F1
x(a)−−→ F ′

1 F2
x⟨z⟩−−→ F ′

2

F1 | F2
τ−→ ([a := z]F ′

1) | F ′
2

(Comm) F1
x(a)−−→ F ′

1 F2
(ν bn:T )x⟨bn⟩−−−−−−−→ F ′

2

F1 | F2
τ−→ (ν b : T )(([a :=bn]F ′

1) | F ′
2)

(Close)

F1
l−→ F ′

1 bn(l)∩ fn(F2) = /0

F1 | F2
l−→ F ′

1 | F2

(Par) F1 ≡ F2 F2
l−→ F

F1
l−→ F

(Congr)

Figure 3: The rules of labelled transition semantics of the Privacy Calculus. fn(X) is the set of free names
of the term X , while bn(X) is the set of its bound names. Rules that contain the variable F are applicable
both to processes and systems.

4 Converting BPMN to Privacy Calculus

4.1 Main considerations regarding conversion

In the spirit of [19, 20, 1], a BPMN Process will be converted to a Privacy Calculus term consisting of
the concatenation of terms corresponding to every Flow Node (i.e. Event, Activity, or Gateway) within
the Process. Flows will be converted to channels that serve for communication between processes:
Sequence Flows will carry tokens, while Message Flows will carry messages (possibly containing data
important to privacy policies). Every Privacy Calculus process corresponding to a Flow Node will then
have (roughly)3 the following structure:

(1) begin with receiving tokens via its incoming Sequence Flows,

(2) continue with receiving Messages via its incoming Message Flows,

(3) do any work specific to its type,

3As [19, Section 4] points out, “The description given applies only to basic control flow structures. Advanced structures
require slightly different approaches.”; in fact, various of the patterns presented in [19, 20] and in Section 4.3 of this paper
diverge (slightly or more radically) from the rough structure above. Moreover, “if a process representing [a Flow Node] can be
triggered more than once, the replication operator must be used” and “a [conditional] prefix [after receiving the triggers] can be
used to model global constraints like testing a cancellation flag” (the latter is in fact taken into account in the basic description
given in [19], but is left out here).
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(4) send messages via its outgoing Message Flows,

(5) pass token(s) to its outgoing Sequence Flow(s); some outgoing Sequence Flows might be affected
by conditions, hence only be triggered conditionally.

This design choice is influenced by [19]: “A generic process can have m incoming triggers [. . .] and o
outgoing triggers. [. . .] After the input prefixes have been triggered [. . .] First, the functional perspective
of the activity is represented as an unobservable action. Second, the process can trigger other processes
by output prefixes.” [19, Section 4]. Here, we have “unfolded” a small part of the unobservable action
so as to accommodate Message Flows and considered that some outgoing Sequence Flows are only
conditionally triggered.

In order to accommodate Sequence Flows, the set T of types is presumed to contain a special type
Token of tokens. For simplicity, values of this type will always be denoted by t, assuming that this name
is not used for any other element.

Notice that “a token does not traverse a Message Flow since it is a Message that is passed down a
Message Flow (as the name implies)” [14, Section 7.2]. Hence, for every Message Flow, the name and
type (as an element of T ) of the Message needs to be known; types of Messages are not a part of BPMN
and, as stressed in Section 2, names of Messages will need to be provided externally to BPMN.

4.2 Flow patterns

In [19, 20], various patterns common to business processes are identified and their conversion to π-
calculus processes is discussed. We will review a few here (Sequence, Parallel split, Exclusive choice,
Synchronisation, N–out–of–M–join) and present some variations of them (Choice, n–out–of–n synchro-
nisation, m–out–of–n synchronisation).

While discussing flow patterns, the following notation will be adopted: (1) Instead of BPMN Flow
Nodes and Flows, arbitrary nodes and edges (in the graph theoretic sense) will be considered. (2) The
conversion of a node X into a Privacy Calculus term will be denoted ∥X∥. (3) Since only the initial
and/or final behaviour of X will be of interest, there will be a part of ∥X∥ that will be irrelevant to this
discussion (in fact, it will depend on what kind of BPMN element X is); this will be denoted by X ′.

Sequence: The simplest pattern, defined in [19, Section 4.1].
Suppose that node A has a unique outgoing edge f . Then, A, when it has finished its work, needs

only trigger the next node by sending a token via f , i.e. ∥A∥ := A′. f ⟨t⟩.0.
Similarly, suppose that node B has a unique incoming edge f . Then, B waits until it receives the

token and then starts its own work, i.e. ∥B∥ := f (t : Token).B′.

4.2.1 Outgoing

Suppose that node A has multiple outgoing edges f1, . . . , fn (n ≥ 2) to other nodes.

Parallel split: In this pattern, defined in [19, Section 4.1], A triggers all of its outgoing edges in
parallel. For n = 2, this can be achieved with ∥A∥ := A′.( f1⟨t⟩.0 | f2⟨t⟩.0). This can be generalised to
∥A∥ := A′.∏n

i=1 fi⟨t⟩.0 .

Exclusive choice: In this pattern, defined in [19, Section 4.1], A triggers exactly one of its outgoing
edges. For n = 2, this can be achieved with ∥A∥ := A′.( f1⟨t⟩.0+ f2⟨t⟩.0). This can be generalised to
∥A∥ := A′.∑n

i=1 fi⟨t⟩.0 .
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4.2.2 Incoming

Suppose that node B has multiple incoming edges f1, . . . , fn (n ≥ 2) from other nodes.

Choice: In this pattern, B waits for any of its incoming edges to be triggered and then starts. Input from
the rest of the edges is disregarded. For n = 2, this can be achieved with ∥B∥ := f1(t : Token).B′+ f2(t :
Token).B′. This can be generalised to ∑

n
i=1 fi(t : Token).B′.

If multiple incoming edges can be activated, then the choice pattern will process only one of them,
leaving the rest “hanging”. Depending on the situation at hand, this might be alleviated (if needed)
either by creating a new copy of B for each incoming trigger (similarly to the Multi-merge pattern of [19,
Section 4.2]) or by the 1-out-of-n synchronisation pattern below.

Synchronisation: In this pattern, defined in [19, Section 4.1], B waits for all of its incoming edges
to be triggered—in a predefined order, however—before it starts. For n = 2, this can be achieved with
∥B∥ := f1(t : Token). f2(t : Token).B′. This can be generalised to f1(t : Token). . . . fn(t : Token).B′.

We will not use this pattern in Section 4.3, opting for the n-out-of-n and m-out-of-n variants below.
The reason is twofold. First, notice that, in general, this pattern might create deadlock issues; for instance,
consider A triggering both C and B (via f2) and C triggering B (via f1): if the outgoing pattern used by A
waits for f2 to be consumed before triggering C, then B will never be executed. Moreover, even if such
deadlocks are guaranteed to be impossible, ∥B∥ will be behaviourally different depending on the order
the fi are written; this asymmetry might be undesired in applications such as the one of Section 4.4 (e.g.
it might complicate unit testing, since a single input will have multiple non-equivalent correct outputs).

n–out–of–n synchronisation: In this pattern (similar to N-out-of-M-join of [19, Section 4.2]), B (run
on behalf of group G) waits for all of its incoming edges to be triggered before it starts, consuming every
trigger as it arrives. For n = 2, this can be achieved with

∥B∥ := (ν h : G[Token])h(t : Token).h(t : Token).B′ | f1(t : Token).h⟨t⟩.0 | f2(t : Token).h⟨t⟩.0,

where h must not be free in B′. This can be generalised to

∥B∥ := (ν h : G[Token])h(t : Token). . . .h(t : Token).︸ ︷︷ ︸
n times

B′ |
n

∏
i=1

fi(t : Token).h⟨t⟩.0 .

The drawback of this pattern is that it creates a fresh name. Applications such as the one of Section 4.4
need to select a name not among the free names of B′. Moreover, it might complicate unit testing: either
the selected name must be known when writing tests or α-equivalence must be tested instead of equality.

m–out–of–n synchronisation: In this pattern, generalising the previous one, B (run on behalf of group
G) waits for exactly m ≤ n of its incoming edges to be triggered before it starts, consuming however all
n triggers as they arrive. For n = 2 and m = 1, this can be achieved with

∥B∥ :=(ν h : G[Token])(ν r : G[Token])

r(t : Token).B′ | f1(t : Token).h⟨t⟩.0 | f2(t : Token).h⟨t⟩.0 | h(t : Token).r⟨t⟩.h(t : Token).0,

where h and r must not be free in B′. This can be generalised to

∥B∥ :=(ν h : G[Token])(ν r : G[Token])r(t : Token).B′ |
n

∏
i=1

fi(t : Token).h⟨t⟩.0 |

h(t : Token). . . .h(t : Token).︸ ︷︷ ︸
m times

r⟨t⟩.h(t : Token). . . .h(t : Token).︸ ︷︷ ︸
n−m times

0 .
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The drawback of this pattern, as with the previous one, is that it creates fresh names. This pat-
tern might be useful for the conversion of some kinds of Complex Gateways [14, Section 10.6.5] (e.g.
those operating on the rule that “three out of five incoming Sequence Flows are needed to activate
the Gateway”), which however are not considered here. [19, Section 4.2] defines the similar pattern
N–out–of–M–join, which recursively restarts ∥B∥ after having consumed all of the n input triggers.

4.3 Conversion of diagram elements

This section is the gist of this paper. In Sections 4.3.1 to 4.3.10, the conversion of every supported kind of
BPMN element to Privacy Calculus is discussed. For any BPMN element N, the corresponding Privacy
Calculus term will be denoted ∥N∥.

4.3.1 Start Events

The most generic form of a Start Event N is for it to have (1) no incoming Sequence Flows, (2) multiple
outgoing Sequence Flows f1, . . . , fk, 1 ≤ k, and (3) (if it is a Message Start Event) multiple incoming
Message Flows E1, . . . ,El , 1 ≤ l, each carrying a message mi of type Ti.

According to [14, Section 10.5.2], each Message Flow targeting a Start Event represents an instanti-
ation mechanism (a trigger) for the Process; only one of the triggers is required to start a new Process.
Thus, ∥N∥ shall start with a Choice pattern among the Message Flows. Also, according to [14, Sec-
tion 10.5.2], if multiple Sequence Flows originate at a Start Event, then they are considered as parallel
paths; thus the Parallel split pattern shall be used. Hence, ∥N∥ will be

l

∑
i=1

(
Ei(mi : Ti).(ν t : Token)

k

∏
j=1

f j⟨t⟩.0

)
,

that is, N waits for any Ei to pass a message and then, being a Start Event, generates a token. It has no
further internal work to do, so it triggers all of its outgoing Sequence Flows in parallel using the Parallel
split pattern. Of course, in case there are no incoming Message Flows (i.e. the Start Event is not a
Message Event), ∥N∥ can be simplified to (ν t : Token)∏

k
j=1 f j⟨t⟩.0.

In case that a Message Start Event is part of a single Process (i.e. not in a Collaboration) or the
modeller has failed to provide Message Flows, one “phantom” Message Flow can be assumed and the
conversion can then still proceed as above.

4.3.2 End Events

The most generic form of an End Event N is for it to have (1) multiple incoming Sequence Flows
e1, . . . ,ek, 1≤ k, (2) no outgoing Sequence Flows, and (3) (if it is a Message End Event) multiple outgoing
Message Flows F1, . . . ,Fl , 1 ≤ l, each carrying a message mi of type Ti; it is assumed here that the
messages are generated within the Event. Suppose that the Process containing N runs for group G.

Contrary to [14, Section 10.5.3], if multiple Sequence Flows converge into an End Event, they will
be required to be parts of parallel paths; then, according to [14, Section 10.5.3], “the tokens will be con-
sumed as they arrive”. Hence, the End Event starts with a k-out-of-k synchronisation pattern. Afterwards,
“Each Message Flow leaving the End Event will have a Message sent when the Event is triggered.” [14,
Section 10.5.3], which indicates a Parallel split of Message Flows. Hence, for k > 1, ∥N∥ will be

(ν h : G [Token])h(t : Token). . . .h(t : Token).︸ ︷︷ ︸
k times

D |
k

∏
i=1

ei(t : Token).h⟨t⟩.0,
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where D is ∏
l
j=1(ν m j : Tj)Fj⟨m j⟩.0 for Message End Events and 0 otherwise. For k = 1, ∥N∥ can be

simplified to e1(t : Token).D (a Sequence pattern). If the End Event is part of a Sub-Process, the 0 at the
end of D is replaced by a Parallel split pattern of the Sequence Flow(s) outgoing from the Sub-Process.

In case that a Message End Event is part of a single Process (i.e. not in a Collaboration) or the
modeller has failed to provide Message Flows, one “phantom” Message Flow can be assumed and the
conversion can then still proceed as above.

4.3.3 Intermediate Events

Recall that only Message Intermediate Events are considered in this paper.
Every Message Intermediate Event can be the source or target (depending on whether the Event is

catching or throwing) of at most one Message Flow [14, Section 10.5.4]. Moreover, contrary to [14,
Section 10.5.4], here it will be assumed that every Intermediate Event has at most (hence, exactly) one
incoming Sequence Flow. The most generic form of a Message Intermediate Event N is hence for it to
have (1) one incoming Sequence Flow e1, (2) multiple outgoing Sequence Flows f1, . . . , fn, 1 ≤ n, and
(3) (if it is a Message Intermediate Catch Event) one incoming Message Flow E, carrying a message m
of type T , (4) (if it is a Message Intermediate Throw Event) one outgoing Message Flow F , carrying a
message m of type T ; it is assumed here that the outgoing message is generated within the Event.

According to [14, Section 10.5.4], if multiple Sequence Flows originate at an Intermediate Event,
then they are considered as parallel paths. Hence the event can use the Sequence (for incoming) and
Parallel split (for outgoing) patterns and ∥N∥ is

e1(t : Token).E(m : T ).
n

∏
j=1

fi⟨t⟩.0 for Catch Events,

e1(t : Token).(ν m : T )F⟨m⟩.
n

∏
j=1

fi⟨t⟩.0 for Throw Events.

Notice that this is a simplified conversion. In fact, “if another token arrives from the same path
or another path, then a separate instance of the Event will be created” [14, Section 10.5.4]. However,
multiple instances of Events will not be tackled here, since that would be quite more complicated (as
[19, Section 4.2] points out, “by using the replication operator to create multiple copies of a process D,
all processes that are triggered by D must also support replication and so on. This also refers to all other
patterns that create multiple copies by replication.”) and of minimal interest regarding privacy protection.

In case that a Message Intermediate Event is part of a single Process (i.e. not in a Collaboration) or
the modeller has failed to provide a Message Flow for the Event, one “phantom” Message Flow can be
assumed and the conversion can then still proceed as above.

4.3.4 Parallel Gateways

Every Parallel Gateway N has (1) 1 ≤ k incoming Sequence Flows e1, . . . ,ek, and (2) 1 ≤ n outgoing Se-
quence Flows f1, . . . , fn. Since Gateways have no internal operation, Parallel Gateways can be modelled
using only the k-out-of-k synchronisation and Parallel split patterns, i.e. for k > 1, ∥N∥ will be

(ν h : G [Token])h(t : Token). . . .h(t : Token).︸ ︷︷ ︸
k times

(
n

∏
i=1

fi⟨t⟩.0

)
|

k

∏
i=1

ei(t : Token).h⟨t⟩.0,

and for k = 1 it will be simplified to e1(t : Token).
(
∏

n
i=1 fi⟨t⟩.0

)
.
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4.3.5 Exclusive Gateways

Under the simplifying conventions introduced in Section 2.4, an Exclusive Gateway N can only have the
following form: (1) multiple incoming Sequence Flows e1, . . . ,ek, 2 ≤ k, at most one of which will be
triggered, and (2) one outgoing Sequence Flow f1. Hence, a Choice pattern for input and a Sequence
pattern for output shall be adequate and ∥N∥ can be ∑

k
i=1 ei(t : Token). f1⟨t⟩.0 .

4.3.6 Tasks

Under the simplifying conventions introduced in Sections 2.2 and 2.3, the most generic form of a Task
N is for it to have (1) one incoming Sequence Flow e1, (2) 0 or 1 incoming Message Flows E (1 in
case the Task is a Receive Task), carrying a message mE of type TE , (3) multiple outgoing Sequence
Flows f1, . . . , fn, 1 ≤ n, where, if the Task is a Receive Task, each fi might have a condition ci attached
(ci compares mE to some constant value vi via oi, where oi can be either = or ̸=), (4) 0 or 1 outgoing
Message Flows F (1 in case the Task is a Send Task), carrying a message mF of type TF ; it is assumed
here that the outgoing message is generated within the Task.

Outgoing Sequence Flows of Tasks need a Parallel split pattern, since “if there are multiple outgoing
Sequence Flows, then this means that a separate parallel path is being created for each Sequence Flow”
[14, Section 10.3]. For each other Flow kind, since at most one item exists, the Sequence pattern suffices.

In [19, Section 4], it is argued that “a process that represents an activity must have a functional part
represented by τ”; recall that the τ. prefix in Privacy Calculus encodes that some unspecified internal
work is performed. This is indeed compatible with the fact that Tasks are used in BPMN “when the work
[. . .] is not broken down to a finer level of [. . .] detail” [14, Section 7.3.2].

Hence, ∥N∥ will be

e1(t : Token).E(mE : TE).τ.(ν mF : TF)F⟨mF⟩.
n

∏
i=1

[mE oi vi] fi⟨t⟩.0

where E(m : T ). shall be omitted if there is no E, (ν m : T )F⟨m⟩. shall be omitted if there is no F , and
[mE oi vi] shall be omitted if there is no ci. For a Send/Receive Task, the τ. shall be omitted, since there
is no internal work other than sending/receiving the Message ([14, Section 10.3.3] stresses that once the
Message has been sent/received, the Task is completed).

Notice that this is a simplified conversion. In fact, similarly to Intermediate Events, “if another token
arrives from the same path or another path, then a separate instance of the Activity will be created” [14,
Section 10.3]. This will not be considered here, with a same rationale as for Intermediate Events.

In case that a Receive/Send Task is part of a single Process (i.e. not in a Collaboration) or the
modeller has failed to provide a Message Flow for the Task, one “phantom” Message Flow (incoming
for Receive, outgoing for Send) can be assumed and the conversion can then still proceed as above.

4.3.7 Processes

As already mentioned in Section 4.1, a BPMN Process will be converted to a Privacy Calculus term
consisting of the concatenation of Privacy Calculus subprocesses corresponding to every Flow Node
within the Process. In fact, since we are interested in privacy protection, a top-level Process (i.e. not part
of a Collaboration and not a Sub-Process) must be decorated with a group G that runs the Process and a
purpose u for which it is run, so that it can be checked for compliance to privacy policies.
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Notice that “each Start Event is an independent Event” [14, Section 10.5.2], hence in case of mul-
tiple Start Events in the same Process (something permitted but not recommended in BPMN [14, Sec-
tion 10.5.2]), the first one to be triggered invalidates (for the Process instance that is created) the rest.

Consider a Process N. Let EN be the set of Start Events of N. For every Start Event E ∈ EN , let AE

be the set of Flow Nodes (including itself) that are accessible (in the graph-theoretic sense) via Sequence
Flows from E. Let also S be the set of m Sequence Flows which connect the nodes of

⋃
E∈EN

AE ; N must
bind the names of the channels corresponding to the Flows in order to prevent usage from the outside.

Given the considerations above, ∥N∥ will be the Privacy Calculus system

G : u

(ν f1 : G [Token]) . . .(ν fm : G [Token])︸ ︷︷ ︸
for all fi ∈ S, i = 1, . . . ,m

∑
E∈EN

∏
A∈AE

∥A∥

 .
4.3.8 Sub-Processes

Under the conventions of Sections 2.2 and 2.3, the most generic form of a Sub-Process N is for it to
have (1) one incoming Sequence Flow e1, (2) multiple outgoing Sequence Flows f1, . . . , fn, 1 ≤ n, (3) a
non-empty set M of Flow Nodes and Flows within it.

Let F be the process ∏
n
i=1 fi⟨t⟩.0 (Parallel split of the outgoing Sequence Flows). Then ∥N∥ will be

e1(t : Token).∥M∥, where M is converted as a Process (Section 4.3.7), with the exceptions that (1) as
noted in Section 4.3.2, End Events of Sub-Processes are converted in a special manner: as their final
step, instead of a plain 0, they contain F , thus shifting flow control back to the process that contains N,
(2) a Sub-Process is not decorated with group/purpose information: it is considered to run for the same
group and purpose as the Process containing it. If N is a multi-instance (parallel) Sub-Process, then ∥N∥
is e1(t : Token).!∥M∥.

4.3.9 Participants

A Participant N has, in general, one of the two following structures:

• It is either a Process M with the (optional) information of a group/user G that runs it. If we make
this information required and also require a purpose u, then ∥N∥ can be the Privacy Calculus
system G : u [∥M∥],

• Or it is just a group/user G (again, the name is optional) depicted as a “black box”. In this case,
we can use a variable PG for the Privacy Calculus process, require a group and a purpose, and set
∥N∥ to be the Privacy Calculus system G : u [PG].

4.3.10 Collaborations

A Collaboration N is a non-empty collection of Participants M1, . . . ,Mn, 1 ≤ n, of groups G1, . . .Gn,
along with some Message Flows F1, . . . ,Fk, 0 ≤ k, each Fi carrying a Message of type Ti between two
Participants pertaining to groups Gi,1 and Gi,2. In addition to containing Participants, the converted term
of the Collaboration needs to bind the Message Flows (for exactly the same reasons as Process binds
Sequence Flows) and declare the group combinations in use. Thus, ∥N∥ is

G1,1 ∪G1,2

[
. . .Gk,1 ∪Gk,2

[
(ν F1 : G1,1 ∪G1,2 [T1]) . . .(ν Fk : Gk,1 ∪Gk,2 [Tk])

n

∏
i=1

∥Mi∥
]]

.
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4.4 A tool that automates the conversion

An open source tool that automates the conversion has been implemented and its source code is available
at [15]. It is a simple web application written in HTML and Javascript (ES2022 dialect), which can run
in modern web browsers. A screenshot of the app in use is shown in Fig. 4.

Figure 4: A screenshot of the web app presented in Section 4.4. At the left, the imported diagram is
shown and a new one can be uploaded. The middle part contains the extra information that the user
needs to fill; for ease of use, the relevant Flow Nodes are highlighted when the user selects a question.
The right part contains the Maude module created by the app (or the latest error that occurred).

First, a BPMN XML diagram is imported. It must adhere to the assumptions mentioned in this paper.
The tool uses the open source library bpmn-js to parse BPMN XML diagrams4.

Afterwards, the app asks for any extra info needed. It always requests the names to be used as (1) the
type of tokens, (2) the value of tokens, (3) prefix of fresh names; this avoids using predefined values.
Moreover, it asks for purposes and missing groups of Processes/Participants, and details (name, type,
and, if “phantom”, channel) of Messages carried by (actual or “phantom”) Message Flows.

Finally, a Maude module compatible with [18] is created. It contains a Privacy Calculus system S
built using the conversions defined in Section 4. In order for Maude to parse it correctly, all groups, types,
purposes, values of user data types, and process/system variables used in S are first defined as terms of
the module. For technical reasons having to do with the type checking algorithm of Privacy Calculus,
the module also contains the context of S, i.e. a formal term specifying the types of free names of S. The
Maude module can then be saved to a file and imported in the tool of [18] for further processing.

5 Conclusion and future work

We have presented how some basic elements of BPMN diagrams can be converted into Privacy Calcu-
lus and have provided a tool which can perform the conversion automatically and export it in a form
compatible with the Maude formalisation of Privacy Calculus in [18].

4The authors of bpmn-js have also created the app bpmn.io that can be used for creating and editing BPMN XML diagrams.

https://github.com/bpmn-io/bpmn-js
https://bpmn.io
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As detailed in the previous sections, a significant subset of BPMN was not considered in this paper
(and in the tool), but is required for detailed modelling of business processes. It is a matter of future
work to integrate more aspects of BPMN. For instance, supporting BPMN Data Objects and Data Stores
would significantly boost the level of expressiveness; this can be achieved by taking advantage of some
versions of Privacy Calculus that contain operators for data storage and retrieval [12, 22].

A more accurate conversion of some Events and Activities could be achieved by carefully converting
Flow Nodes to account for re-triggering. This might not be quite important as far as privacy is con-
cerned5, since a business process is compliant iff every path is compliant, hence re-triggering a path or
triggering another one is irrelevant. Of course, sound conversion6 is important for other reasons.

The toolchain of Privacy Calculus can (and should) also be complemented with more tools. For
instance, a workflow for proving compliance of programs to policies would require tools that aid in the
declaration of privacy policies, either by offering GUIs for the policy language of Privacy Calculus or by
converting from more user-friendly frameworks.
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Petri Nets (PN) are extensively used as a robust formalism to model concurrent and distributed sys-
tems; however, they encounter difficulties in accurately modeling adaptive systems. To address this
issue, we defined rewritable PT nets (RwPT) using Maude, a declarative language that ensures con-
sistent rewriting logic semantics. Recently, we proposed a modular approach that employs algebraic
operators to build extensive RwPT models. This methodology uses composite node labeling to main-
tain hierarchical organization through net rewrites and has been shown to be effective. Once stochas-
tic parameters are integrated into the formalism, we introduce an automated procedure to derive a
lumped CTMC from the quotient graph generated by a modular RwPT model. To demonstrate the
effectiveness of our method, we present a fault-tolerant manufacturing system as a case study.

1 Introduction

Despite their potential, traditional formalisms such as Petri Nets, Automata, and Process Algebra do not
easily allow designers to define dynamic changes in systems or assess their performance impact. As a
result, many extensions to these classical models have been proposed, such as the π-calculus and the
Nets-within-Nets paradigm, although they often lack adequate analysis techniques.

Rewritable PT nets (RwPT) were introduced in [7] as a versatile formalism for the modeling and
analysis of adaptive distributed systems. The RwPT procedures were defined using the declarative lan-
guage Maude, which leverages Rewriting Logic to offer both operational and mathematical semantics,
thereby enabling a scalable framework for self-adapting PT nets. Unlike comparable methods ([2, 12]),
which convert a simpler type of PNs into Maude, the RwPT formalism simplifies data abstraction, is
concise and effective, and circumvents the limitations imposed by the pushout mechanism common in
Graph Transformation Systems. RwPT extends GTS. It is vital to consider graph isomorphism (GI) in
recognizing equivalent states within the model dynamics. This consideration is particularly advantageous
for scaling up the model’s size or degree of parallelism, especially when integrating a Stochastic Process
into the model’s state space. Recent research has demonstrated that GI has a quasi-polynomial complex-
ity [1]. Graph canonization (GC), which is at least as complex as GI, involves determining a canonical
form for any graph such that for any two graphs G and G′, G ≃ G′ ⇔ can(G) = can(G′). We have
developed a general canonization method [6] for use with RwPT, integrated into Maude. This method
is effective for irregular models, but it is less efficient for more realistic models that contain numerous
similar components organized in a nested structure.

In [8], we introduced a method for developing extensive RwPT models using algebraic operators.
Our approach is simple: Exploiting the modular features of the models during analysis. Using composite
node labeling, we identify symmetries and maintain hierarchical organization through net rewrites. A
case study (used as benchmark) demonstrates the success of our method, showing performance benefits
over somewhat related approaches. In this paper, we present an automated technique to derive a Lumped

http://dx.doi.org/10.4204/EPTCS.410.5
https://creativecommons.org
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Continuous-Time Markov Chain (CTMC) from the quotient graph generated by an RwPT model after
embedding stochastic parameters into the framework.

Background information is provided in Section 2, and our example is described in Section 3. The
modular RwPT formalism, now with stochastic parameters, is explained in Section 4. In Section 5, we
detail the method for deriving a lumped CTMC from an RwPT model and present experimental evidence
of its effectiveness. We conclude by discussing ongoing work.

2 Background: (Stochastic) PT Nets and Maude

This section provides a concise overview of the (stochastic) PT formalism and emphasizes the key aspects
of the Maude framework. For exhaustive information, we direct readers to the reference papers.

A multiset (bag) b in a nonempty set D is a map b : D → N, where b(d) is the multiplicity of d in b.
A multiset is empty if all of its multiplicities are zero. We denote by Bag[D] the set of multisets in D.
Standard relational and arithmetic operations can be applied to multisets on a component-by-component
basis. In particular, let b,b′ ∈ Bag[D]:

b+b′ ∈ Bag[D] is b+b′(d) = b(d)+b′(d), ∀d ∈ D.
b < b′ = true ⇔ ∀d ∈ D b(d)< b′(d).
b−b′ ∈ Bag[D] is defined if b′ ≤ b: b−b′(d) = b(d)−b′(d), ∀d ∈ D.

A stochastic PT (or SPN) net [13, 10] is a 6-tuple (P,T, I,O,H,λ ), where: P, T are finite, non-empty,
disjoint sets holding the net’s nodes (places and transitions, respectively); I,O,H : T → Bag[P] represent
the transitions’ input, output, and inhibitor incidence matrices, respectively; λ : T → R+ assigns each
transition a negative exponential firing rate. A PT net marking is a multiset m ∈ Bag[P].

The PT net dynamics is defined by the firing rule: t ∈ T is enabled in marking m if and only if:

I(t)≤ m∧∀p ∈ P : H(t)(p)> 0 ⇒ m(p)< H(t)(p)

If t is enabled m it may fire, leading to marking

m′ = m− I(t)+O(t)

The notation m[t⟩m′ means that t is enabled in m and its firing leads to m′.
A PT-system is a pair (N,m0), where N is a PT net and m0 is a marking of N. The interleaving

semantics of (N,m0) is specified by the reachability graph (RG): the RG is an edge-labelled, directed
graph (V,E) whose nodes are markings. It is defined inductively: m0 ∈ V ; if m ∈ V and m[t⟩m′ then
m′ ∈V , m t−→ m′ ∈ E.

The timed semantics of a stochastic PT system is a CTMC isomorphic to the RG. For any two
mi,m j ∈ V , the transition rate from mi to m j is ri, j := ∑t:mi[t⟩m j λ (t). The CTMC infinitesimal generator
is a |V |× |V | matrix Q such that Q[i, j] = ri, j if i ̸= j, Q[i, i] = 1−∑ j, j ̸=i ri, j.

In Generalized Stochastic Petri Nets (GSPN) [10] transitions can be assigned a priority (the firing rule
is extended accordingly): transitions with a priority greater than zero occur instantly, and the associated
stochastic parameters (denoted by the function λ ) are used to resolve potential conflicts probabilisti-
cally. Consequently, their timed semantics leads to a Continuous-Time Markov Chain (CTMC) that is
isomorphic to the "reduced" RG, obtained by eliminating nonobservable markings. This paper focuses
on Stochastic Petri Nets (SPN) even though our specification encompasses GSPN.
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The Maude system Maude [11] is a highly expressive, purely declarative language characterized by a
rewriting logic semantics [4]. Statements consist of (conditional) equations and rules. Each side of a
rule or equation represents terms of a specific kind that might include variables. The semantics of rules
and equations involve straightforward rewriting, where instances of the left-hand side are substituted by
corresponding instances of the right-hand side. The expressivity of Maude is realized through the use
of matching modulo operator equational attributes, sub-typing, partiality, generic types, and reflection.
A Maude functional module comprises only equations and functions as a functional program defining
one or more operations through equations, utilized as simplification rules. A functional module details
an equational theory within membership equational logic [3]. Formally, such a theory is a tuple (Σ,E ∪
A), with Σ representing the signature, which includes the declaration of all sorts, subsorts, kinds1, and
operators; E being the set of equations and membership axioms; and A as the set of operator equational
attributes (e.g., assoc). The model of (Σ,E ∪A) is the initial algebra TΣ/E∪A, which mathematically
corresponds to the quotient of the ground-term algebra TΣ. Provided that E and A satisfy nonrestrictive
conditions, the final (or canonical) values of ground terms form an algebra isomorphic to the initial
algebra, ensuring that the mathematical and rewriting semantics are identical.

A Maude system module includes rewrite rules and, potentially, equations. These rules illustrate local
transitions in a concurrent system. In formal language, a system module outlines a generalized rewrite
theory [4], symbolized as a four-tuple R = (Σ,E ∪A,φ ,R), where (Σ,E ∪A) constitutes a membership
equational theory; φ identifies the frozen arguments for each operator in Σ; and R contains a set of rewrite
rules 2. This rewrite theory models a concurrent system. (Σ,E ∪A) establishes the algebraic structure of
the states, while R and φ define the concurrent transitions of the system. The initial model of R assigns to
each kind k a labeled transition system (TS) where the states are the elements of TΣ/E∪A,k, and transitions

occur as [t]
[α]→ [t ′], with [α] representing equivalent rewrites. The property of coherence guarantees that

a strategy that reduces terms to their canonical forms before applying the rules is sound and complete. A
Maude system module is also an executable specification of distributed systems. Given finite reachability,
it enables the verification of invariant properties and the discovery of counterexamples. Moreover, it
supports the verification of LTL formulas. When the TS generated by a ground term becomes excessively
large or infinite, bounded searches or abstractions might be employed.

3 Gracefully Degrading Production System

The illustrative example in this paper depicts a distributed production system that degrades gracefully,
whose base configuration is shown by the two PT systems in Figure 1. The upper net represents a
Production Line (denoted PL) which is divided into K branches (robots) that handle raw materials (a
multiple of K). These branches ({wi, lni,ai}, i : 0 . . .K − 1) are fully interchangeable. An assembly
component (transition as) converts the processed materials K into an artifact. A loader (ld) collects K
items from a storage facility (place s) on the K lines of the PL. In this study, K = 2. The initial count
of pieces (tokens) in s is K ·M, where M ∈ N+ is another parameter of the model. For each artifact
produced, fresh items K are introduced. A branch might fail (transitions f ti). When that occurs, the PL
restructures to continue functioning, but with reduced capacity. Simple static analysis can show that the
PL system reaches a deadlock after a failure.

1Kinds are implicit equivalence classes defined by connected components of sorts (as per subsort partial order). Terms in a
kind without a specific sort are error terms.

2Rewrite rules do not apply to frozen arguments.
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The net at the bottom of Figure 1 shows the transformation of the PL after a fault happens (consid-
ering scenario K = 2). This process involves moving items from the faulted branch to the remaining
branch(es) to maintain the production cycle. Traditional PN frameworks (including High-Level PN vari-
ants) are unable to model this operation. Items left on the faulty line (represented as place w1 here) are
transferred to the remaining functional line (w0): The marking of the PT net at the bottom demonstrates
the state after adaptation. We assume that a PL that fails twice is beyond repair.

⇓

Figure 1: Production Line (PL) and adaptation following a fault.

We will examine a more complex scenario in which N PL replicas function simultaneously and
degrade in a regulated fashion. Figure 2 demonstrates one potential evolution of a system starting with
two PLs: This scenario can be extended to a system that incorporates N PLs, each operating K parallel
robots, that handles K ·M raw items, denoted by the term NPLsys(N, K, M). The graceful degradation
of the system proceeds in two phases:

s1 When a fault impacts a robot (line) of a PL, the PL autonomously adjusts to continue functioning
in a diminished capacity (for simplicity, we here consider a two-lines scenario)

s2 When a second fault occurs in a degraded PL, the PL is disconnected from the entire system (see
the final step in Figure 2): The leftover items are then relocated to the warehouse.
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⇒ ⇒

⇒ ⇒

Figure 2: One of the possible paths of the Gracefully Degrading Production System.
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4 Modular Rewritable Stochastic PN

This section introduces the concept of rewritable stochastic PT nets (RwSPT). These expand on the
modular rewritable PT nets described in [8] by incorporating transitions with priorities and stochastic
parameters. An RwSPT serves as an algebraic model of a Generalized Stochastic PN [10], combining
rewrite rules with the PT firing mechanism. In this study, we concentrate on stochastic PN consisting of
zero-priority transitions accompanied by an exponential firing rate.

The definition of RwSPT includes a hierarchy of Maude modules (e.g., BAG, PT-NET, PT-SYSTEM)
most of which described in [8]. The Maude sources can be found in https://github.com/lgcapra/rewpt/
tree/main/modSPT.

The RwSPT definition uses structured annotations to underline the model’s symmetry. It features a
concise place-based encoding to aid in state canonization and is based on the functional module BAG{X},
which introduces multisets as a complex data type. Specifically, the commutative and associative _+_ op-
erator provides an intuitive way to describe a multiset as a weighted sum, for instance, 3 . a + 1 . b.
The sort Pbag contains multisets of places.

Each place label (a term of sort Plab) is a non-empty list of pairs built of String and a Nat. Places
are uniquely identified by their labels. These pairs represent a symmetric component within a nested
hierarchy. Compositional operators annotate places incrementally from right to left: The label suffix
represents the root of a hierarchy. For example, the ’assembly’ place of line 1 in Production Line 2
would be encoded as:

p(< "a"; 0 > < "L"; 1 >).

We implicitly describe net transitions (Tran terms) through their incidence matrix (a 3-tuple of Pbag
terms) and associated tags. A tag includes a String, a Nat (indicating a priority) and a Float (inter-
preted as a firing rate or a probabilistic weight, depending on whether the priority is zero or greater)..

[I,O,H] |-> « S, P, R »

When using the associative composition operator _;_ and the subsort relation Tran < Net, it be-
comes easy to construct nets in a modular way. For example, we can depict the subnet containing
transitions ld and ln0 in Figure 1 (top) as the Net term in the listing 1 (the zero-arity operator nilP
represents an empty multi-set).

Listing 1: A (sub)net

[2 . p(< "s" ; 0 >), 1 . p(< "w" ; 0 >) + 1 . p(< "w" ; 1 >), nilP] |−> << "ld", 0, 0.5 >> ;
[1 . p(< "w" ; 0 >), 1 . p(< "a" ; 0 >), 1 . p(< "f" ; 0 > ] |−> << "ln", 0, 0.1 >>

A System term is the empty juxtaposition (__) of a Net and a Pbag (representing the net’s marking).
The conditional rewrite rule firing specifies the PT firing rule 3, as shown in the listing 2.

Listing 2: PT Firing Rule

vars N N’ : Net .
vars T : Tran .
var M : Pbag .
crl [firing] : N M => N fire(T, M) if T ; N’ := N /\ enabled(T, N M) .

3Notice the use of a matching equation: The free variables T, N’, are matched (:=) against the canonical ground term bound
to the variable N.

https://github.com/lgcapra/rewpt/tree/main/modSPT
https://github.com/lgcapra/rewpt/tree/main/modSPT
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The predicate enabled takes priority into account and relies on hasConcession, which determines
the ’topological’ aspect of the enabling condition:

Listing 3: PT Firing operators

vars I O H M : Pbag . var L : Tlab .
op hasConcession : Tran Pbag −> Bool .
eq hasConcession([I,O,H] |−> L, M) = I <= M and−then H > B .
op fire : Tran Pbag −> Pbag .
eq fire([I,O,H] |−> L, M) = M − I + O .

A RwSPT is defined by a system module that contains two constant operators, used as aliases:
op net : -> Net
op m0 : -> Pbag.

Two equations define their bindings to concrete terms. This module includes System rewrite rules R
incorporating firing. In this paper, we adopt full non-determinism (interleaving semantics): Rewrites
take the same priority and have an exponential rate (specified in the rule label but for firing rule), so
that for the state transition system it holds (⊆ means subgraph):

T S(net m0, {firing})⊆ T S(net m0, R).

Transitioning between the Maude encoding of PT systems and the PNML format adopted by many
PN tools is straightforward and reversible.

4.1 Modularity, symmetries, and lumpability

We have provided net-algebra and net-rewriting operators [8] with a twofold intent: to ease the modeler’s
task and to enable the construction and modification of large-scale models with nested components by
implicitly highlighting their symmetry. A compact quotient TS is built using simple manipulation of
node labels. This approach outperforms similar ones, including ours integrated into Maude [6] and based
on traditional graph canonization.

In a context where nets have a mutable structure, identifying behavioral equivalences reduces to a
graph morphism. PT system morphism must maintain the edges and the marking: In our encoding, a
morphism between PT systems (N m) and (N’ m’) is a bijection φ : places(N) → places(N’) such
that, considering the homomorphic extension of φ on multisets, φ(N) = N’ and φ(m) = m’. Moreover,
φ must retain the textual annotations of the place labels and the transition tags. If N’ = N we speak of
automorphism, in which case φ is a permutation in the set of places.

We refer to a normal form that principally involves identifying sets of automorphic (permutable)
places: Two markings m, m’ of a net N are said automorphic if there is an automorphism φ in N that maps
m into m’. We denote this m ∼= m’. The equivalence relation ∼= is a congruence, that is, it preserves the
transition firings and rates. The next definition helps us simplify the process.

Definition 4.1 (Symmetric Labeling). A Net term is symmetrically labeled if any two maximal sets of
places whose labels have the same suffix (possibly empty), which is preceded by pairs with the same tag,
are permutable. A System term is symmetrically labeled if its Net subterm is.

In other words, if a Net term N meets definition 4.1, then for any two maximal subsets of places matching:
P := {p(L’ < w ; i > L)}, P′ := {p(L’’ < w ; j > L)},
where L, L’, L’’ : Plab, w: String, i, j : Nat
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there exists an automorphism (permutation) φ such that φ(P) = P′, φ(P′) = P, which is extended as an
identity to the rest of places4.

If a System term adheres to the previous definition, it can be transformed into a ’normal’ form by
merely swapping indices on the place labels (e.g., i ↔ j), while still complying with definition 4.1. This
normal form is the most minimal according to a lexicographic order within the automorphism class (∼=)
implicitly defined by 4.1. However, in contrast to general graph canonization, there is no need for any
pruning strategy or backtracking. In simple terms, a monotone procedure is used where the sequence of
index swaps does not matter (see [8] for full details). Efficiency is achieved as the normalized form of
the subterm of type Net is derived through basic “name abstraction“, where at each hierarchical level the
indices in the structured place labels continuously span from 0 to k, k ∈ N.

The strategy involves providing a concise set of operators that preserve nets’ symmetric labelling.
This set includes compositional operators (influenced by process algebra) and operators for manipulating
nets, such as adding/removing components. Rewrite rules require these operators to manipulate System
terms defined in a modular manner. Additionally, rules must adhere to parametricity conditions (here
omitted) that limit the use of non-variable terms in them. We denote this kind of rules as symmetric [8].

Lumpability Under these assumptions, we get a quotient TS from a System term that retains reacha-
bility and meets strong bisimulation.

Let t, t ′,u,u′ be (final) ground terms of sort System, and let r be a System type rule r : s =⇒ s′. The

notation t
r(σ)
=⇒ t ′ means that t is rewritten into t ′ by r, that is, there exists a ground substitution σ of r’s

variables such that σ(s) = t and σ(s′) = t ′.

Property 4.1. Let t meet Definition 4.1 and r be a symmetric rule.

If t
r(σ)
=⇒ t ′ then ∀u,φ , t ∼=φ u: u

r(φ(σ))
=⇒ u′, t ′ ∼= u′ (u′, t ′ meet the definition 4.1)

The TS quotient produced by a term t̂ (pre-normalized) is achieved by applying the overloaded op-
erator normalize to the right-hand side of the rewriting rules:

op normalize : System -> System .
op normalize : Pbag -> Pbag .
When a System is rewritten using the rule firing, only the marking subterm is needed. This implies

applying the overloaded operator normalize to the subterm fire(T, M) in Listing 1.2.
According to property 4.1, because the morphism (index exchange) φ preserves the transition rates

and we assume that the rules are parameterized, it is feasible to map the TS quotient of t̂ onto an isomor-
phic "lumped" CTMC: In a Markov process’s state space, an equivalence relation is considered "strong
lumpability" if the cumulative transition rates between any two states within a class to any other class
remain consistent. Despite the possibility of establishing a more stringent condition matching strong-
bisimulation, that is "exact lumpabability" [5], our attention is focused on the aggregated probability.

Example To demonstrate the aforementioned concepts, we will outline the compositional RwPT model
of a distributed production system with graceful degradation (Section 3). Initially, this system is com-
posed of N Production Lines (PL) that share raw materials, with each PL split into K interchangeable
branches (listing 4). We start by defining the net transitions. Then we build a Production Line using the
repl&share operator: The term PL(K) represents a Production Line (PL) with K symmetric branches,
similar to the one shown in Figure 1 (top). The structure of the submodel is expressed by adding a pair

4According to the definition of PT morphism, the prefixes L’ and L” are consistent in the textual component.
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with the tag "L" to the place labels. For example, p(< "w" ; 0 > < "L" ; 1 >) describes the "work-
ing" place of robot (line) 1 of the PL. We can also choose to exclude places to share among replicas: In
this case, we exclude those representing the "warehouse" (tag "s") and faults (tag "o"). Additionally, we
can indicate transitions to share: For instance, "load" and "assembly" are shared.

Listing 4: Modular Specification of a Fault Tolerant Production System
fmod FTPL is
pr NET−OP{SPTlab} .
ops PL PLA nomPL faultyPL NfaultyPL : NzNat −> Net .
op faultySys : NzNat −> System .
op NPL : NzNat NzNat −> Net [memo].
op NPLsys : NzNat NzNat NzNat −> System .
ops loadLab asLab failLab workLab : −> Tlab [memo] .
eq loadLab = << "ld",0, 0.5 >> .
eq asLab = << "as",0, 2.0 >> .
eq workLab = << "ln",0, 0.1 >> .
eq failLab = << "ft",0, 0.001 >> .
var I : Nat .
vars N K M : NzNat .
eq line = [1 . p(< "w" ; 0 >),1 . p(< "a" ; 0 >),1 . p(< "f" ; 0 >) ] |−> workLab .
eq fault = [1 . p(< "o" ; 0 >) , 1 . p(< "f" ; 0 >), nilP ] |−> failLab .
eq load = [1 . p(< "s" ; 0 >) , 1 . p(< "w" ; 0 >) , nilP ] |−> loadLab .
eq ass = [1 . p(< "a" ; 0 >) , 1 . p(< "s" ; 0 >) , nilP ] |−> asLab .
eq cycle = load ; line ; ass ; fault .
eq PL(K) = repl&share(cycle, K, "L", p (< "o" ; 0 >) U p(< "s" ; 0 >), asLab U loadLab) .
eq NPL(N, K) = repl&share(PL(K), N, "PL", p(< "s" ; 0 >), emptyStlab) .
eq NPLsys(N, K, M) = setMark(setMark(NPL(N, K), "o" "PL", 1), "s", K * M) .
...

endfm

The term NPL(N, K) of type Net consists of N PLs, each of which contains K branches. This net
was generated using the repl&share operator, which adds the "PL" tag to place labels to indicate an
additional nesting level. The sharing mechanism ensures each PL gathers K raw pieces. The PT net
represented by NPL(2,2) can be seen in Figure 2, top-right. Furthermore, the term NPLsys (N, K, M)
of type System is a PT system that holds K*M tokens in the "warehouse" place, with a single token in
each place tagged with "o" to trigger fault occurrences within a PL. We can build an identical model
using the "symmetric" version of the process algebra ALT operator.

The System term generated using the above operators possesses symmetrical labeling (refer to def-
inition 4.1), and its Net subterm has already been normalized. Consider, e.g., NPLsys(2, 2, 1). By
triggering the conflicting transitions "load", which are initially enabled, the following two markings (es-
sentially, subterms of the System terms) can be obtained:

m1 : p(< "o"; 0 > < "PL"; 0 >) + p(< "o"; 0 > < "PL"; 1 >) +
p(< "w"; 0 > < "L"; 0 > < "PL"; 1 >) + p(< "w"; 0 > < "L"; 1 > < "PL"; 1 >)

m2 : p(< "o"; 0 > < "PL"; 0 >) + p(< "o"; 0 > < "PL"; 1 >) +
p(< "w"; 0 > < "L"; 0 > < "PL"; 0 >) + p(< "w"; 0 > < "L"; 1 > < "PL"; 0 >).
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These are automorphic (one can be converted into the other by interchanging < "PL"; 1 > ↔
< "PL"; 0 >), but the second marking is the smallest in lexicographic order and hence corresponds
to the normalized form.

The following rewrite rule (see the listing 5) encapsulates the self-adjustment of a PL with K = 2 in
response to a fault, enabling it to function in a diminished capacity (refer to figure 2). This rule deviates
slightly from [8], as it is locally activated by a breakdown, leading to a significantly larger TS. Skipping
technical details, we point out that the rule meets the parameterity and only employs operators that uphold
the definition 4.1, such as join , detach , setMark . Therefore, it retains the symmetrical PT
labeling (definition 4.1). The label of the rule contains the exponential rewrite rate as meta-information.
There is another rule, not discussed here, that eliminates a faulty and degraded PL from the system.

Listing 5: Rewrite rule of a PL (the label contains the rule’s exponential rate)

vars S S’ S’’ : Pbag . vars I J : Nat .
var Sys Sys’ : System . var L : Lab .
crl [r1−0.005] : N S => normalize(join(Sys, setMark(setMark(Sys’, "w" "fPL", | match(S’, "w") |),

"a" "fPL", | match(S’, "a") |)))
if S’’ + 1 . p(< "f" ; J > L < "PL" ; I >) := S /\ N’ := nomPL(I) /\ dead (N’ S) /\ S’ := subag(S’’, < "PL" ;

I >) /\ Sys := detache(N, N’) S’’ − S’ /\ Sys’ := faultySys(notIn(N, "fPL")) .

With the model-checking facilities of Maude (in this case, the search command), it is possible to
formally demonstrate that for any given N, the quotient transition system has two absorbing states: Every
state comprises a deteriorated PL that contains all 2 ·M materials (unprocessed, except possibly one).
This is equivalent to the command below, which yields the same results as its unconditioned counterpart.

search NPLsys(N,2,M) =>! F:System such that
net(F:System) == faultyPL /\ B:Pbag := marking(F:System) /\
| match(B:Pbag, "w") | + | match(B:Pbag, "a") | == 2 * M .

5 Obtaining the Lumped CTMC generator from an RwSPT

The CTMC generator entry Q[i, j] is defined as: ∑r∈R λr · |Sr
i, j|, where λr ∈ ℜ+ is a given rate, and

Sr
i, j = {σ | t̂i

r(σ)
=⇒ t j, t j ∼= t̂ j} represents the matches of r resulting in equivalent states. Therefore, to obtain

the CTMC infinitesimal generator, it is necessary to quantify instances that correspond to a specific state
transition. Our solution uses two operators: the first identifies potential matches for each rule based on
the subset of independent variables involved, and the second simulates the rewriting process. These two
operators can be "mechanically" defined from the syntax of a rule.

To gain a clearer understanding of the concept, let us examine a simplified scenario that encompasses
the vast majority of cases and to which any case can be reduced. We suppose that for every rule r ∈ R:

1. r is "injective", that is, if t
r(σ)
=⇒ t ′∧ t

r(σ ′)
=⇒ t ′ then σ = σ ′,

2. if r is a conditional rule (r : s=⇒ s′ i f cond) the condition does not contain any rewrite expressions
(taking the concrete form u =⇒ u′).

Given these assumptions, it is possible to automatically expand a stochastic RwPT specification to pro-
duce a quotient TS. The states in this TS encompass all the information required to build the infinitesimal
generator of the lumped CTMC, which is isomorphic to the TS.
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Listing 6, which is related to the running example, describes a general pattern. To avoid overly
technical details of Maude syntax, we outline an operator, rule, which encodes any rewriting rules
except for firing (handled separately for efficiency). This operator defines a partial mapping where,
given a label (defined using a Tlab) and a System term, it determines the corresponding term-rewriting
if feasible: each rewrite rule is tied to an equation. The operator ruleApp builds upon rule: it computes
all potential outcomes of rewriting that term using the rule. It does not execute term normalization. As is
typical in Maude, the ruleApp definition is optimized via tail-recursion. Lastly, ruleExe, which extends
ruleApp, partitions the results of a rule application to a term into "equivalence classes" (sort Rset)
through normalization: each class is represented by a pair System <-| Float, that is the aggregate rate
towards a normalized state. The operator ruleApp serves as the bulk form of ruleExe.

Listing 6: rule encoding for the lumped CTMC

vars N N’ N’’ : Net . vars S S’ S’’ : Pbag . vars I Imin J : Nat .
vars Sys Sys’ : System . var L : Lab . var Sp : Pset . var TL : Tlab .

op rule : Tlab System −> [System] . *** one equation for rule
ceq rule(<< "r1",0, 0.005 >>, N S) = join(Sys, setMark(setMark(Sys’, "w" "fPL", | match(S’, "w")

|), "a" "fPL", | match(S’, "a") |))
if S’’ + 1 . p(< "f" ; J > L < "PL" ; I >) := S /\ N’ := nomPL(I) /\ dead (N’ S) /\
S’ := subag(S’’, < "PL" ; I >) /\ Sys := detache(N, N’) S’’ − S’ /\
Sys’ := faultySys(minNotIn(N, "fPL")) .

ceq rule(<< "r2",0, 0.01 >> , N S) = N’’ set(S’’ − S’, p(< "s" ; 0 >), S[p(< "s" ; 0 >)] + | S’ |)
if S’’ + 1 . p(< "f" ; J > L < "fPL" ; I >) := S /\ N’ := faultyPL(I) /\ dead(N’ S) /\
N’’ := detache(N, N’) /\ N’’ =/= emptyN /\ S’ := subag(S’’, < "fPL" ; I >) .

*** "rule application" (without normalization)
var SS : Set{System} . var TS : [System] . vars R F : Float .
ops ruleApp : Tlab System −> Set{System} .
eq ruleApp(TL, Sys) = $ruleApp(TL, Sys, emptySS) .
op $ruleApp : Tlab System Set{System} −> Set{System} .
ceq $ruleApp(TL, Sys, SS) = $ruleApp(TL, Sys, SS U TS) if TS := rule(TL, Sys) /\ TS :: System /\

not(TS in SS) .
eq $ruleApp(TL, Sys, SS) = SS [owise] .

*** "aggregate" rates calculation (with normalization)
op rulexe : Tlab System −> Rset .
eq rulexe(TL, Sys) = $rulexe(rate(TL), ruleApp(TL, Sys), emptyRset) .
op $rulexe : Float Set{System} Rset −> Rset .
eq $rulexe(F, emptySS, RS) = RS .
ceq $rulexe(F, Sys U SS, RS ; Sys’ <−| R) = $rulexe(F, SS, RS ; Sys’ <−| R + F ) if Sys’ :=

normalize(Sys) .
eq $rulexe(F, Sys U SS, RS) = $rulexe(F, SS, RS ; normalize(Sys) <−| F)

[owise] .
op allRew : System −> Rset [memo] . *** bulk application
eq allRew(Sys) = rulexe(labr1, Sys) U rulexe(labr2, Sys) .
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The excerpt in Listing 7 illustrates the augmented state representation which contains detailed in-
formation on the (normalized) state transition. The state structure defined by the mixfix constructor
StateTranSys comprises four fields. The initial pair describes the PT system, while the remaining
two fields detail the state transitions caused by the firing rule and other rewrites, in that order. As
explained, we collect state transitions (rule applications) that share the normalized target for calculating
the aggregated rates.

Now, let us examine the firing rule (Listing 2): we rephrase it using two related operators, specifi-
cally enabSet, which determines the set of transitions enabled in a specific marking (or more broadly, the
rule’s matches), and fire, which identifies the resulting markings (the rule’s outcomes for all matches),
each linked to its respective cumulative rate. The method applied for the firing rule can be generalized
to any rule, including those that are not injective.

The function toStateTran transforms the traditional state representation into a structured format
that emphasizes cumulative transition rates. The actual implementation of the firing rule and other trans-
formation rules is simple, as their effects are immediately apparent in the enhanced state information.

Listing 7: TS encoding for the lumped CTMC
vars B B’ M M’ : Pbag . var N : Net . var TS : TagSet . var FS : Fset . var RS : Rset .
var R : Float .
*** description of a system pointing out (aggregate) state−transition rates
op NET:_ M:_ FIRING:_REW:_ : Net Pbag Fset Rset −> StateTranSys [ctor] .
op toStateTran : System −> StateTranSys .
eq toStateTran(N M) = NET: N M: M FIRING: fire(enabSet(N M), M) REW: allRew(N M) .
*** caculates the cumulative firing effect of a net (that is, a set of transitions)
op fire : Net Pbag −> Fset .
*** definition of fire
***
*** implementation of rewrite rules
rl [firing] : NET: N M: B FIRING: (B’ <−| R ; FS) REW: RS => toStateTranSPN(N B’) .
*** net rewrites
rl [rew] : NET: N M: B FIRING: FS REW: (Sys <−| R ; RS) => toStateTranSPN(Sys) .

When considering toStateTran(NPLsys(2,2,2)), which aligns with the PT net at the top of Fig-
ure 2, the resulting quotient TS comprises 295 states compared to the 779 states in the standard TS. The
quotient graph’s state transitions often correspond to multiple matches. For instance, the initial state (the
term above) includes two ’load’ instances and four ’fault’ instances that lead to markings with identical
normal forms. Consequently, the combined rates are 2 ·0.5 and 4 ·0.001. Equivalent rewrites of the net
structure are observed when N > 2.

5.1 Experimental Evidence

We conclude by showcasing the experimental validation of the method alongside a straightforward
demonstration for calculating standard performance metrics. The results of the final-state location com-
mand are shown in Table 1 (above). This was carried out using Linux WSL on an 11th-gen Intel Core
i5 with 40GB RAM. The state spaces align with those of the corresponding lumped CTMC. It is evident
that analysis of large models is achievable by leveraging the model’s symmetry. Note that the number
of absorbing states in the TS quotient remains unchanged with N. Even though a redundant state repre-
sentation was used to construct the lumped CTMC directly, the efficiency of the Maude rewriting engine
allowed us to estimate a time overhead of no more than 80%.
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Table 1: Ordinary vs Quotient TS of NPLsys(N,2,2) † search timed out after 10 h
Ordinary Quotient

N states(final) time (sec) states(final) time (sec)
1 60(2) 0 42(2) 0
2 779(4) 0.1 295(2) 0.1
3 6101(6) 4.8 1059(2) 0.9
4 37934(8) 69 2764(2) 3.6
5 204362(10) 818 5970(2) 10
6 1000187(12) 13930 11367(2) 27
7 - † 19775(2) 65
8 - † 32144(2) 186
9 - † 49554(2) 569
10 - † 73215(2) 2450

According to [8], the performance of modular RwPT was evaluated against symmetric nets (SN,
previously referred to as well-formed nets) [9], which are colored Petri nets that produce a symbolic
reachability graph (SRG) comparable (in its stochastic extension) to a lumped CTMC. As N and K
values rise, the state aggregation level in modular RwPT drastically surpasses that of SN. For example,
with N=10, K=3, and M=3, the state aggregation level is around 45 times greater than SN, and with
N=10, K=4, and M=3, it is approximately 200 times greater than SN. You can replicate the experiments
following the guidelines at https://github.com/lgcapra/rewpt/tree/main/modSPT/readme.

Figure 3 shows the system throughput, while 4 shows its reliability as a time function. As expected,
both metrics decrease with time; additionally, the scenario that involves more replicas demonstrates
increased throughput and enhanced reliability. To evaluate the system’s performance, Figure 5 shows
the throughput while the system is operational, which is the ratio between the graphs in Figures 3 and
4. It can be seen that the throughput is close to that of a single line, which, given the parameters, is
1/202.5 = 4.98E − 03. The inflection point at around time 800 in both curves represents the system’s
reconfiguration time. The increased execution time of the job is a result of a system failure.

The overall trend is also noticeable when we look at larger values of N. As N increases, both reliability
and throughput curves show significant improvements. However, we observe an asymptotic trend when
N is greater than 6. Our interpretation is that beyond a certain point, the benefit of using a higher number
of replicas is outweighed by the higher fault rate and the increased configuration overhead.

6 Conclusion and Future Work

We have created a Lumped Markov process for modular, rewritable stochastic Petri nets (RwPT), which
serves as a robust model for analyzing adaptive distributed systems encoded in Maude. RwPT models,
assembled and manipulated through a compact set of (algebraic) operators, display structural symmetries
leading to an efficient quotient state transition graph. By providing an example of a gracefully degrading
system, we have demonstrated a semi-automatic method for deriving the CTMC infinitesimal generator
from the RwPT quotient graph. Future work will, on one hand, delve into exploring orthogonal structured
solutions and, on the other, focus on fully implementing the process and integrating it with graphical tools
such as DrawNET (https://www.draw-net.com/). At the same time, we aim to expand the approach: firstly,
to derive a lumped Markov process from rewritable GSPN, and secondly, to extract the infinitesimal
CTMC generator from any Maude system module.

https://github.com/lgcapra/rewpt/tree/main/modSPT/readme
https://www.draw-net.com/
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Software Defined Networking (SDN) has become a new paradigm in computer networking, introduc-
ing a decoupled architecture that separates the network into the data plane and the control plane. The
control plane acts as the centralized brain, managing configuration updates and network management
tasks, while the data plane handles traffic based on the configurations provided by the control plane.
Given its asynchronous distributed nature, SDN can experience data races due to message passing
between the control and data planes. This paper presents Tracer, a tool designed to automatically
detect and explain the occurrence of data races in DyNetKAT SDN models. DyNetKAT is a for-
mal framework for modeling and analyzing SDN behaviors, with robust operational semantics and
a complete axiomatization implemented in Maude. Built on NetKAT, a language leveraging Kleene
Algebra with Tests to express data plane forwarding behavior, DyNetKAT extends these capabili-
ties by adding primitives for communication between the control and data planes. Tracer exploits
the DyNetKAT axiomatization and enables race detection in SDNs based on Lamport vector clocks.
Tracer is a publicly available tool.

1 Introduction

Traditional network devices have been called “the last bastion of mainframe computing” [7]. Since the
1970s, network design principles have remained fundamentally unchanged, maintaining their core struc-
ture for nearly four decades. One of such fundamentals is the handling of the data and control planes.
Intuitively, the data plane is a distinct functional layer in networking responsible for the forwarding
of data packets between network devices. The control plane is another layer responsible for network
control including policy enforcing and routing configuration. In a traditional network, each switch au-
tonomously manages its interpretation of the control plane as illustrated in Figure 1. This architectural
rigidity increases complexity in network maintainability due to the necessity of configuring each switch
individually.

In response, the concept of software-defined networking (SDN) has emerged. The main difference
is the separation of the data and control planes and consolidation of the management over the control
plane in a centralized location as illustrated in Figure 2. SDN architectures comprise central controllers
and programmable switches that communicate via standardized protocols. The former respond to net-
work events such as new connections from hosts, topology changes, and shifts in traffic load, by re-
programming the switches accordingly (as indicated by the orange dotted arrows in the figure). Such an
approach enhances network controllability and adaptability in real-time scenarios. SDN is being adopted
across various leading tech companies and cloud service providers to enhance the agility, efficiency, and
scalability of their data center networks. For instance, Google’s B4 that connects Google’s data centers
across the world uses a centralised SDN controller that manages the entire network. Microsoft has also

http://dx.doi.org/10.4204/EPTCS.410.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Figure 1: Traditional network setup

Figure 2: Software-defined network setup

implemented SDN extensively in its Azure cloud infrastructure. Amazon employs SDN to support its
scalable and flexible cloud services.

SDNs are highly concurrent systems, designed to handle numerous simultaneous operations. Conse-
quently, they are prone to data races. The latter can lead to undesired outcomes/behaviours of the SDN,
especially if the races correspond to concurrency between the data and the control planes.

Let us consider Figure 3 (inspired from [4]), illustrating a basic example of an SDN consisting
of: (i) a switch with two ports (1 and 2), (ii) one controller communicating with the switch, and (iii)
two hosts (Host 1 and Host 2) that can send/receive packets to/from the switch via the aforementioned
ports. Assume the following over-simplified scenario: The switch is configured to allow any traffic from
port 1 to port 2. When the switch encounters a “blocking” flag, it notifies the controller and continues
forwarding subsequent packets until a new forwarding policy (“drop everything”, in this case) is received
from the controller. If Host 1 sends a packet flagged “blocking” to the switch, a data race may occur.
The race arises because the outcome for a new packet depends on the timing. The new packet will either
be forwarded according to the existing forwarding policy installed in the switch, if it arrives before the
blocking rule from the controller, or it will be dropped if the blocking rule is in place first.

In this paper, we propose Tracer [1], a tool for the automated detection of data races in SDNs. Tracer
builds around DyNetKAT [5], a formal framework for the rigorous modelling and analysis of SDNs.
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Figure 3: Running example inspired from [10]

DyNetKAT can encode and simulate packet forwarding within SDNs, together with the actual commu-
nication between the control and data planes (or, dynamic network reconfigurations). The DyNetKAT
language is supported by a rigorous operational semantics and a sound and complete axiomatisation
enabling reasoning about equivalence of DyNetKAT programs, and associated packet forwarding be-
haviour in a fully automated fashion. Intuitively, Tracer takes as input DyNetKAT models and checks
whether data races between the control and data planes occur, by following the symbolic approach in [4].
Furthermore, Tracer provides explanations of how such races can be enabled via (minimal) sequences
of packets fed to the network. Such explanations can serve as a great debugging aid for the network
administrators.

As mentioned in [4], several methods have been developed to detect race conditions in SDNs, includ-
ing ConGuard [13] and SDNRacer [6]. These tools identify race condition vulnerabilities by analyzing
dynamically generated log files to construct an event graph where happens-before edges connect events,
and race conditions manifest as partially ordered events. The Spin model checker, as discussed in [12],
has also been employed to detect race conditions through runtime monitoring of events in SDNs. In con-
trast, this paper is based on a static approach to identify races in SDNs, eliminating the need for dynamic
log generation from a network.

Our contributions: As previously mentioned, in this paper we introduce Tracer [1], a tool for the
automated detection of races in SDN models encoded in DyNetKAT, based on the theoretical framework
in [4]. In short, Tracer exploits the symbolic semantics of DyNetKAT in [4] and uses Lamport vector
clocks for detecting races entailed by the concurrent message passing between the SDN control and data
planes as in [4]. Furthermore, Tracer provides explanations of how such races are enabled by computing
minimal sets of network packets that lead to not well-behaved communication scenarios. The instructions
for installing and running Tracer are publicly available in [1].

Structure of paper: In Section 2, we briefly recall (Dy)NetKAT and introduce our running example.
In Section 3, we present the idea behind vector clocks for race detection in distributed systems. The
symbolic semantics of DyNetKAT enriched with vector clocks is recalled in Section 4. Our tool, Tracer,
is introduced in Section 5. We draw the conclusions and provide pointers to future work in Section 6.
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2 Overview of DyNetKAT

DyNetKAT [5] serves as a framework for representing and analyzing the behaviors of SDNs, such as
packet forwarding and the interaction between the control and data planes. DyNetKAT is an extension
of NetKAT [2], which is a language based on Kleene Algebra with Tests [8], tailored for modeling and
analyzing data plane forwarding. DyNetKAT introduces concurrency to NetKAT, in order to support
dynamic reconfigurations of the data plane, such as the installation of new forwarding rules, in line with
control plane protocols.

Figure 4 illustrates the syntax and semantics of the NetKAT language. Network packets are en-
coded in (Dy)NetKAT as collections of fields, and associated values ranging over finite domains: { f1 =
v1, . . . , fn = vn}. For instance, a packet σ of type SSH residing at port 1 of switch SWA, with destination
Host1, can be conveniently denoted as σ ≜ {type = SSH, pt = 1,SW = SWA,dst = Host1}. The main
syntactic elements of NetKAT include primitives (Pr) for dropping incoming packets (0) and accepting
incoming packets without further processing (1). NetKAT primitives can filter out packets based on tests
( f = n) and their disjunction (+), conjunction (·) and negation (¬). NetKAT policies (N) can also be
used for packet fields modifications ( f ← n), or to express packet multicasting (+), composition of poli-
cies (·) and iteration (∗). The operator dup is designed for building histories of packets processed by an
SDN dataplane encoded in NetKAT. The denotational semantics of NetKAT is defined over sets of packet
histories as in Figure 4; an intuitive description of its operators has been provided earlier. Furthermore,
NetKAT has a sound and complete axiomatization that has been effectively used to reason about packet
reachability within NetKAT models.

NetKAT Syntax:
Pr ::= 0 | 1 | f = n | Pr+Pr | Pr ·Pr | ¬Pr
N ::= Pr | f ← n | N +N | N ·N | N∗ | dup

NetKAT Semantics:
J1K(h) ≜ {h}
J0K(h) ≜ {}

J f = nK (σ ::h) ≜

{
{σ ::h} if σ( f ) = n
{} otherwise

J¬aK (h) ≜ {h}\ JaK (h)
J f ← nK (σ ::h) ≜ {σ [ f := n]::h}

Jp+qK (h) ≜ JpK (h)∪ JqK (h)

Jp ·qK (h) ≜ (JpK• JqK) (h)
Jp∗K (h) ≜

⋃
i∈N F i (h)

F0 (h) ≜ {h}
F i+1 (h) ≜ (JpK•F i) (h)
( f •g)(x) ≜

⋃
{g(y) | y ∈ f (x)}

JdupK (σ ::h) ≜ {σ ::(σ ::h)}

Figure 4: NetKAT: Syntax and Semantics [2]

The syntax of DyNetKAT is defined on top of the dup-free fragment of NetKAT as in (1). The con-
stant⊥ denotes a DyNetKAT process without behaviour. Sequential composition of DyNetKAT policies
D is denoted by ; . The operator || encodes concurrent behaviours of DyNetKAT policies, whereas ⊕
stands for non-deterministic choice. (A)synchronous communication in DyNetKAT is modeled in an
ACP [3]-style via message sending operators x!N ;D and receiving operators x?N ;D. Intuitively, mes-
sages N (e.g., NetKAT flow tables) can be exchanged via channels x as a result of the communication
between the control and data planes. As soon as such a new forwarding policy N is received via x,
the continuation D can update its behaviour according to N. This would correspond to installing a new
forwarding policy N in the dataplane. Variables X enable defining recursive DyNetKAT policies.
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(cpol✓_;)
σ ′ ∈ JpK(σ ::⟨⟩)

(p;q,σ :: H,H ′)
(σ ,σ ′)−−−→ (q,H,σ ′ :: H ′)

(cpolX)
(p,H0,H1)

γ−→ (p′,H ′0,H
′
1)

(X ,H0,H1)
γ−→ (p′,H ′0,H

′
1)

X ≜ p

(cpol_⊕)
(p,H0,H ′0)

γ−→ (p′,H1,H ′1)

(p⊕q,H0,H ′0)
γ−→ (p′,H1,H ′1)

(cpol_||)
(p,H0,H ′0)

γ−→ (p′,H1,H ′1)

(p||q,H0,H ′0)
γ−→ (p′||q,H1,H ′1)

(cpol•)
(x • p;q,H,H ′)

x•p−−→ (q,H,H ′)
• ∈ {?, !}

(cpol♣♠)
(q,H,H ′)

x♣ p−−→ (q′,H,H ′) (s,H,H ′)
x♠ p−−→ (s′,H,H ′)

(q||s,H,H ′)
rcfg(x,p)−−−−−→ (q′||s′,H,H ′)

♣=? ♠=!
or

♣=! ♠=?

γ ::= (σ ,σ ′) | x!q | x?q | rcfg(x,q)

Figure 5: DyNetKAT: Operational Semantics (relevant excerpt)

N ::= NetKAT−dup

D ::= ⊥ | N ;D | x?N ;D | x!N ;D | D ||D | D⊕D | X
X ≜ D

(1)

The operational semantics of DyNetKAT is given in Fig. 5, over tuples of shape (D,H,H ′), where
D is a DyNetKAT policy, H is the list of packets waiting to be processed by the network, and H ′ is the
history of packets being processed according to the forwarding rules in the data plane. Rule (cpol✓_;)
in Fig. 5, for instance, processes the current packet σ (at the top of the waiting list) according to the
NetKAT flow table encoded by p. The possibly modified packet is σ ′, and a corresponding transition
(σ ,σ ′)−−−→ can be observed in the behaviour Labelled Transition System (LTS) of the DyNetKAT model.
σ ′ is added to the history H ′, and the execution of the model proceeds with the continuation q and the
remaining waiting packets in H. Rule (cpol♣♠), for instance, encodes synchronous communication in
DyNetKAT: a new forwarding rule or NetKAT policy p is communicated via channel x in a handshake
between two parallel SDN components q ||s (e.g., one controller q and one switch s). The handshake

entails an execution
rcfg(x,p)−−−−−→ within the DyNetKAT model. Rules (cpol_⊕) and (cpol_||) and their sym-

metric counterparts define non-deterministic choice and parallel composition, respectively, in a standard
fashion. Rule (cpolX) simply replaces recursive variables with their definitions. Rule (cpol•) encodes
the axioms for asynchronous communication. Furthermore, DyNetKAT has an ACP-like sound and
complete axiomatisation for LTS bisimilarity. A complete and thorough presentation of the DyNetKAT
formal framework can be found in [5].
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2.1 Running Example

Next, we illustrate the DyNetKAT framework by means of an example. Consider the scenario in Figure 3.
A possible encoding in DyNetKAT is given in (2), as follows.

SW ≜ ( f lag = regular) · (pt = 1) · (pt← 2);SW ⊕
( f lag = blocking) · (pt = 1);((Hel p ! 1);SW ) ⊕
(U p ? 1);SW ′

SW ′ ≜ 0;⊥
C ≜ (Hel p ? 1);((U p ! 1);C)

(2)

We write ( f lag = regular) for packets not of the blocking type. Whenever such a packet arrives at
port 1 (pt = 1) of the switch (SW ), it gets forwarded to port 2 (pt ← 2). Then, the switch continues
recursively (denoted by ;SW ). Alternatively (denoted by ⊕), we write ( f lag = blocking) to encode
matching of packets of blocking type. Whenever such a packet arrives at port 1, the switch informs the
controller that a new forwarding rule needs to be installed (denoted by sending the message Hel p!1).
The new blocking behaviour is announced to the switch via U p!1. Upon receiving the message U p?1,
the forwarding table of SW is updated to SW ′. The latter drops any incoming packet (0) and irreversibly
stops from processing packets (⊥). The controller (C) repeatedly listens on channel Hel p? for requests
from the switch, and instructs the switch to install the blocking behaviour SW ′ via U p!1.

3 Vector Clocks

SDN is a paradigm that falls under the definition of a distributed system [11]. In this case, the compo-
nents are controllers and switches, and the whole network represents a distributed system. In distributed
systems like SDNs, a data race means that switches and controllers perform actions concurrently, possi-
bly leading to undesired behaviours. As illustrated in the introduction, for instance, there might be the
case that due to concurrency, the network still forwards unsafe packets in between a new forwarding
policy request, and the actual installation of the new forwarding rules. We call these data races between
the control and data planes. One possible approach to detecting data races is the use of vector clocks [9].
Each such clock is associated with a component in the distributed system, and it consists of a vector of
size equal with the number of components in the system. Each vector entry in a clock counts actions
performed by a distinct component. (In the context of DyNetKAT models, for instance, actions stand
for packet forwarding or reconfigurations between the control and data planes.) Each component in the
system has its own copy of a vector clock as illustrated in Figure 6.

As shown in Figure 6, in step 0 all three clocks are initialized with zeros. When a component
performs an individual action (i.e., no message-passing involved), it increments its own index in its local
copy of the vector clock. The rest of the entries in the clock, as well as the clocks of the other components,
are unchanged (see, e.g., step 1⃝ or 5⃝ of component A). Both steps 2⃝ and 3⃝ correspond to a similar
scenario, but within component C.

Synchronous communication is handled as follows: Once a component sends a message, it first in-
crements its clock, and then sends it along with the message, creating a timestamped message (step 4⃝.1).
Upon its arrival, the receiver updates the rest of the clock entries in the local copy if the corresponding
entries in the message timestamp are greater, and then it increments its clock entry (step 4⃝.2). Note that
step 4 consists of two parts capturing the synchronous sending and receiving of a message in one time
frame (i.e., caputers a handshake communication).
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Figure 6: Vector clocks in a system with three parallel components A, B and C

To understand how vector clocks help detect data races we first need to know what does it mean for
two vector clocks to be comparable. Consider two vector clocks Vi and Vj of size k. The clocks are
comparable if:

Vi[x]≤Vj[x] ∀x ∈ {1, . . . ,k}

or
Vi[x]≥Vj[x] ∀x ∈ {1, . . . ,k}

Such comparable pair of vector clocks indicates that the associated components did not run concurrently.
If there exist x, y ∈ {1, . . . ,k} with x ̸= y such that:

(Vi[x] ̸≤Vj[x] ∧ Vi[y] ̸≥Vj[y])

then we conclude that components associated with Vi and Vj operate concurrently, implying a data race.
Steps 5⃝ and 4⃝.2 for instance, witness concurrent behaviour between A and B. Similarly for 5⃝ and 2⃝,
etc.

4 Overview of Symbolic DyNetKAT

In this section, we briefly recall the contribution in [4] that introduces a symbolic operational semantics
of DyNetKAT, enriched with vector clocks for detecting races between the control and data planes. The
most important idea behind the symbolic DyNetKAT reduces to exploiting the so-called DyNetKAT head
normal forms that enable simulating packet processing within SDN models in a purely syntactic fashion,
without actual packets being “fed” to the network.

The idea is as follows: each (guarded) DyNetKAT policy d can be equivalently expressed (based
on its complete axiomatisation in [5]) as a sum ( ⊕ ) of DyNetKAT policies of shape α · π ;d′ or
rcfg(x,n) ;d′. Here, α stands for a so-called complete test ( f1 = v1) · . . . · ( fn = vn) encoding all the
conditions an incoming packet has to match within a flow table, in order to be forwarded accordingly.
Each packet passing a complete test as before is, in fact, a packet of shape σα ≜ { f1 = v1, . . . , fn = vn};
so, a complete test encodes an incoming packet. A complete assignment π as before, is a policy ( f1←
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v′1) · . . . · ( fn← v′n) encoding how the packet matching the complete test is processed by the data plane.
Basically, a complete assignment encodes a forwarded/processed packet σπ ≜ { f1 = v′1, . . . , fn = v′n}. It
is, therefore, easy to understand that the symbolic semantics of DyNetKAT can be defined based on such

normal forms which entail transitions of shape
(σα ,σπ )−−−−→ and

rcfg(x,n)−−−−−→, respectively, without the need of
actual packets.

In [4], each SDN encoding a set of parallel switches (Si) and controllers (C j)

S1 || . . . ||Sn ||C1 || . . . ||Cm (3)

is enriched with vector clocks c⃗k associated with each component

S1c⃗1 || . . . ||Cmc⃗m (4)

entailing DyNetKAT symbolic operational rules. For instance:

(Symb✓)
pi ∈ NetKAT−dup n. f .(pi) = Σαi·πi∈A αi ·πi

(pi;qi)c⃗i ||Π 1≤ j ≤ n
j ̸= i

d j c⃗ j

(σαi ,σπi )−−−−−→ (qi)c⃗i[i]++ ||Π 1≤ j ≤ n
j ̸= i

d j c⃗ j

is the symbolic counterpart of (cpol✓_;), where the vector clock c⃗i of the “evolving” component pi ;qi is
incremented in accordance with the semantics of the vector clocks in Section 3, and the input packet σαi

and the processed packet σπi defining this step
(σαi ,σπi )−−−−−→ are entailed based on the normal form of pi (note

that normal forms exist for NetKAT as well [2]).
Here we write:

Pic⃗i ||Π 1≤ j ≤ k
j ̸= i

Pj c⃗ j

to denote
P1c⃗1 || . . . ||Pkc⃗k

The symbolic rule for handshake (i.e., the counterpart of (cpol_||)) is defined is a similar fashion,
where both vector clocks of the communicating SDN components are updated, and the transition step is

marked as
rcfg(x,p)−−−−−→:

(Symb||)
h.n. f (qi)≜ x!q;di⊕ ri h.n. f (qk)≜ x?q;dk⊕ rk

(q1)c⃗1 || . . . ||(qi)c⃗i || . . . ||(qk)c⃗k || . . . ||(qn)c⃗n
rcfg(x,q)−−−−−→

(q1)c⃗1 || . . . ||(di)c⃗i[i]++ || . . . ||(dk)(max(⃗ci[i]++,c⃗k))[k]++ || . . . ||(qn)c⃗n

Figure 7 illustrates the symbolic execution of the SDN in (2). For brevity of notation, we write:
σB,1 to denote a packet { f lag = blocking, pt = 1}, σR,1 to encode a packet { f lag = regular, pt = 1} and
σR,2 in lieu of { f lag = regular, pt = 2}. As intuitively explained in Section 1: if Host 1 starts sending
blocking traffic to the switch on port 1, a data race may occur. The race arises because the outcome
for a new packet depends on the timing. The new packet will either be (i) forwarded according to the
existing forwarding policy installed in the switch, if it arrives before the blocking rule from the controller,
or (ii) it will be dropped if the blocking rule is in place first. Case (i) matches the symbolic execution
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Sw<0,0> ∥C<0,0>

n0

(H!1;Sw)<1,0> ∥C<0,0>

n1

Sw<2,0> ∥ (U p!1;C)<2,1>

n2

Sw′<3,2> ∥C<2,2>

n3

Sw<3,0> ∥ (U p!1;C)<2,1>

n6

Sw<1,0> ∥C<0,0>

n8

· · ·

Sw<3,0> ∥ (U p!1;C)<2,1>

n4

Sw′<4,2> ∥C<2,2>

n5

(σR,1,σR,2) (σB,1,σB,1)

rcfg(H,1)

(σR,1,σR,2) rcfg(Up,1)
(σB,1,σB1)

rcfg(Up, ft)

Figure 7: Symbolic execution of the SDN in (2); excerpt

n0→ n1→ n2→ n4: instead of immediately installing the “drop everything” policy in SW ′, the network
first forwards a regular packet from port 1 to port 2. The race is detected by the incomparable clocks
⟨3,0⟩ and ⟨2,1⟩ in n4. Furthermore, the sequence associated packets σB,1 and σR,1 can be seen as the
(minimal) explanation of the race. A similar reasoning holds for the race in n0→ n1→ n2→ n6. Case (ii)
corresponds to the symbolic execution n0→ n1→ n2→ n3. Note that all vector clocks can be compared
along this execution, so no data race is identified.

5 Tracer

Tracer [1] is the tool developed in this work. It exploits the symbolic semantics of DyNetKAT as de-
scribed in Section 4, and computes minimal sets of packets that enable races between the control and
data planes of an inputted SDN encoded in DyNetKAT. In this section we provide the algorithm behind
Tracer, instructions on how to install and run the tool, and one example of using Tracer.

We define a race detection function rd(SDN,k) in (5) that identifies minimal symbolic executions of
SDN witnessing races up to a given depth k in the execution tree of SDN (as illustrated in Section 4).
Furthermore, the function returns the network packets enabling these races, as explanations. The traced
packets are encoded as α i in (5).(d). Recall that every complete test αi = ( f1 = v1) · . . . ·( fm = vm) entails
a unique packet { f1 = v1, . . . , fm = vm}. The Tracer Algorithm 1 implements the rd(−) function based
on an interplay behind Python and Maude. Invoking Maude is for deriving DyNetKAT policies in head
normal forms according to the DyNetKAT complete axiomatization in [5]. These head normal forms
(denoted by hn f (di) and hn f (d j) in (5).(d) and in (5).(e)) are further exploited for identifying packet
forwarding steps within the analysed SDN (α i ·πα i in (5).(d)), or communication steps between the data
and control planes (rcfg(X,p) based on Xγ i!pγ i and Xγ j ?pγ j in (5).(e)). Observe that vector clocks are
updated in accordance with the clocks of the symbolic rules: (5).(d) complies to (Symb✓) and (5).(e)
complies to (Symb||), respectively. The function not-race(C⃗1, . . . ,C⃗n) returns true whenever any two
vector clocks C⃗i and C⃗ j are incomparable, and false otherwise.
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(a) rd(Π1≤i≤ndiC⃗i
,0)≜ /0

(b) rd(Π1≤i≤ndiC⃗i
,k+1)≜

(c) if not-race(C⃗1, . . . ,C⃗n) then return
(d)

⋃
1≤i≤n

(α i∈Ai)∧(α i·π
αi ;d

αi∈hn f (di))

α i :: rd(dα i
C⃗i [i]++

||Π1≤ j≤n
j ̸=i

d jC⃗ j
,k)

(e)
⋃

1≤i ̸= j≤n
(γ i∈Γi)∧(X

γi !p
γi ;d

γi∈hn f (di))

(γ j∈Γ j)∧(X
γ j ?p

γ j ;d
γ j∈hn f (d j))

(X
γi==X

γ j==X)∧(p
γi==p

γ j==p)

rcfg(X,p) :: rd(dγ i
C⃗i [i]++

||dγ j
max(C⃗i [i]++,C⃗ j)[ j]++

||Π1≤ j≤n
j ̸=i

d jC⃗ j
,k)

( f ) else return ↓
(5)

We use ↓ in (5).(f) as a marker symbol indicating that rd(−) identified a race witnessing trace. Every
trace ending with ↓ returned by rd(SDN,k) encodes a set of packets witnessing concurrent behaviour
within the SDN. We use :: in (5) as a constructor (concatenation) for such witnesses.

From an algorithmic perspective: (5).(d) is handled in lines 13−21 of Algorithm 1, whereas (5).(e)
is handled in lines 22−31. Note that the aforementioned head normal forms in (5) are computed using
the DyNetKAT axiomatization implemented in Maude [5]: lines 8,15,24 and 25 in Algorithm 1. Line 8
invokes the application of a Maude-defined “projection” operator pi{m} that unfolds the given expression
Ni up to depth m. Checking for deadlock in line 12 of Algorithm 1 is a stopping condition based on
whether all parallel components in curr are either ⊥ or start with communication actions that cannot be
matched by any other component. Lines 33−34 extract the race witnessing packets, in a post-processing
step.

Tracer at Work. Tracer is publicly available at [1]. A complete installation guide can be found in
README.md. Requirements for running Tracer include a Linux operating system, specifically Ubuntu
20.041 with Python (version > 3.10.12). The tool also uses Maude 3.1, that is included in the installation
of Tracer. To use it, run the command in the following form:

> python tracer\_runner.py <path_to_maude> <path_to_model_in_maude>

The command has several optional parameters as given in Table 1. Note that the parameters with values
should be inputted without the space between the parameter and the value. For example, write -grace
to produce only graphs and traces witnessing data races in the provided model.

Table 1: Tracer command line

Parameter Value Explanation
-c - output text with color
-t - show tracing steps
-u int unfold depth
-g ‘race’ or ‘full’ types of trees and traces to generate (race witnesses only, or full trees/traces)
-f string set a name for text output file (copy of console output)

SDN Encoding in Tracer: Example. The DyNetKAT encoding in (2) is provided as input for Tracer
in a Maude-compatible format as shown in Listing 1. The DyNetKAT recursive variables SW,SW ′ and

1Other Linux distributions might work, however, the development and testing were done on the specified version of Ubuntu.
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1: Input: SDN with k components as a DyNetKAT model (N1 ∥ N2 ∥ . . . ∥ Nk)
2: Input: Depth m of the search
3: Output: The smallest sets of network packets enabling races in the SDN
4: for i ∈ {1, . . . ,k} do
5: Initialize vector clocks Ci = ⟨0, . . . ,0⟩ of size k
6: end for
7: for i ∈ {1, . . . ,k} do
8: Let pmNi be the result of invoking Maude > reduce pi{m}(Ni)
9: end for

10: Initialize curr with (pmN1,C1) ∥ (pmN2,C2) ∥ . . . ∥ (pmNk,Ck)
11: Initialize symb-traces with /0
12: if not-deadlock(curr) then
13: for each element (Ni,Ci) at position i in curr do
14: if (complete-test-assignment;di) is a summand of Ni then
15: Let rdi be the result of invoking Maude > reduce di

16: Set curr to (N1,C1) ∥ . . . ∥ (rdi,C′i) ∥ . . . ∥ (Nk,Ck)
17: where C′i is Ci incremented at position i
18: Append (complete-test,(C1, . . . ,C′i , . . . ,Ck)) to symb-traces
19: go to step 12
20: end if
21: end for
22: for all pairs of elements (Ni,Ci) and (N j,C j) at positions i and j in curr do
23: if (X!p;di) is a summand of Ci and (X?p;d j) is a summand of C j then
24: Let rdi be the result of invoking Maude > reduce di

25: Let rd j be the result of invoking Maude > reduce d j

26: Set curr to (N1,C1) ∥ . . . ∥ (rdi,C′i) ∥ . . . ∥ (rd j,C′j) ∥ . . . ∥ (Nk,Ck)
27: where C′i is Ci incremented at position i, and C′j is max(C′i ,C j) incremented at position j
28: Append (rcfg(X , p),(C1, . . . ,C′i , . . . ,C

′
j, . . . ,Ck)) to symb-traces

29: go to step 12
30: end if
31: end for
32: end if
33: Let races be a set of sets of packets, initialized with /0
34: for all symb-trace in symb-traces do
35: if a prefix s-tr’ of symb-trace ends with incomparable vector clocks (C1, . . . ,Ck) then
36: Extract all packets pkt based on every max-test in s-tr’
37: Add the set of packets pkt to races
38: end if
39: end for
40: return races

Algorithm 1: Detecting races in SDN using DyNetKAT models
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C in (2) are declared as the constants SW,SWP and C of Recursive type in Listing 1. The operator
getRecPol(...) is a syntactic wrapper around these recursive operators. The actual definitions of
the switch and controller follow closely the syntax in (2). The communication channels Hel p and U p
translate to the constants Help and Up of type Channel in Maude. The DyNetKAT non-deterministic
choice⊕ translates to o+ in Maude. The DyNetKAT constants 0 and⊥ are mapped to zero and bot. The
entire SDN consisting of the switch SW and controller C as in Figure 3 is defined by the constant Init
of type DNA in Maude. Note that the NetKAT expressions encoding the forwarding policies are provided
as strings in Maude; e.g., "(flag = regular).(pt = 1).(pt <- 2)". The model in Listing 1 along
with the depth k of the analysis are provided as input to Tracer.

fmod MODEL is
[...]

ops Init : -> DNA .
ops SW, SWP , C : -> Recursive .
ops Help , Up : -> Channel .

eq getRecPol(SW) =
"(flag = regular) . (pt = 1) . (pt <- 2)" ; SW o+
"(flag = blocking) . (pt = 1) . 1" ;( (Help ! "one") ; SW ) o+
(Up ? "one") ; SWP .

eq SWP = zero ; bot .
eq getRecPol(C) = (Help ? "one") ; ( (Up ! "one") ; C ) .

eq Init = C || SW .
endfm

Listing 1: Maude encoding of the SDN in (2)

Tracer Output: Example. Figure 8 showcases the output races as identified by Tracer, in a graphical
format. (We use f l,B and R as shorthand for f lag,blocking and regular, respectively.) The sequence of
nodes 0→ 1→ 3→ 5 corresponds to the symbolic execution n0→ n1→ n2→ n4 in Figure 7, encoding
a race. The sequence of nodes 0→ 1→ 3→ 6 in Figure 8 corresponds to the symbolic execution
n0→ n1→ n2→ n6 Figure 7, encoding a race as well. Furthermore, the labels along these executions are
minimal explanations of how the races can be enabled. Note how the corresponding clocks in Figure 8
match their counterparts in Figure 7.



96 Tracer

0
C⟨0,0⟩ ||SW⟨0,0⟩

1
C⟨0,0⟩ ||SW⟨0,1⟩

3
C⟨1,2⟩ ||SW⟨0,2⟩

5
C⟨1,2⟩ ||SW⟨0,3⟩

6
C⟨1,2⟩ ||SW⟨0,3⟩

({
fl
=

B
,p

t=
1}
,{

fl
=

B
,p

t=
1}

)

rc
fg
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,1
)

({fl=B, pt=1},{fl=B, pt=1})

({fl
=R, p

t=1}
,{fl

=R, p
t=2}

)

Figure 8: Races in SW ||C up to depth 3

Tracer outputs the witnesses of data races in a textual format as well, as illustrated in Figure 9. These
traces can be in short form, encoding the input packets and/or reconfiguration steps within symbolic
executions without vector clocks. Traces in long form show the action performer (switch SW, controller
C or a handshake between the switch and the controller SW -> C), the vector clocks ([0, 0], . . . ), and
the corresponding node ID in the graph as well.

6 Conclusions

In this paper, we introduced Tracer [1], a tool for detecting and explaining data races in SDNs as defined
in [4]. These systems exhibit concurrent behavior due to the interaction between data plane processing,
and dynamic reconfigurations between the data and control planes. Tracer focuses on pin-pointing data
races in SDN models encoded within the DyNetKAT [5] framework. In addition, Tracer provides expla-
nations of how these data races can be enabled by identifying sequences of packets which, whenever fed
to the SDN under analysis, lead to concurrency between the data and control planes. The tool is built on
top of the DyNetKAT axiomatisation implemented in Maude. In the future, we plan to analyze Tracer’s
performance on benchmarks with larger SDN models. Additionally, we aim to implement a parallelized
version of Tracer to improve its efficiency.

Acknowledgements. This work was supported by the project ZORRO, no. KICH1.ST02.21.003 of the
research programme Key Enabling Technologies (KIC) which is (partly) financed by the Dutch Research
Council (NWO).
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1 RACE SHORT TRACES
2 Trace 0:
3 "(flag = blocking) . (pt = 1) "; rcfg(’Help ’, ’"one"’);
4 "(flag = blocking) . (pt = 1)"
5

6 Trace 1:
7 "(flag = blocking) . (pt = 1) . 1"; rcfg(’Help ’, ’"one"’);
8 "(flag = regular) . (pt = 1)"
9

10

11

12 RACE LONG TRACES
13 Trace 0:
14 {C[0, 0] || SW[0, 0]} nid :0;
15 [SW] "(flag = blocking) . (pt = 1) " {C[0, 0] || SW[0, 1]} nid :1;
16 [SW -> C] rcfg(’Help ’, ’"one"’) {C[1, 2] || SW[0, 2]} nid:3;
17 [SW] "(flag = blocking) . (pt = 1)" {C[1, 2] || SW[0, 3]} nid:5;
18

19

20 Trace 1:
21 {C[0, 0] || SW[0, 0]} nid :0;
22 [SW] "(flag = blocking) . (pt = 1) " {C[0, 0] || SW[0, 1]} nid :1;
23 [SW -> C] rcfg(’Help ’, ’"one"’) {C[1, 2] || SW[0, 2]} nid:3;
24 [SW] "(flag = regular) . (pt = 1) " {C[1, 2] || SW[0, 3]} nid :6;

Figure 9: Race traces of SW ||C with unfold 3
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8th Symposium on Working Formal Methods (FROM 2024)
EPTCS 410, 2024, pp. 99–115, doi:10.4204/EPTCS.410.7

© Vlad-Alexandru Teodorescu & Dorel Lucanu
This work is licensed under the
Creative Commons Attribution License.

Static Analysis Framework for Detecting Use-After-Free Bugs
in C++

Vlad-Alexandru Teodorescu
Faculty of Computer Science

Alexandru Ioan Cuza University of Iasi, Romania
teodorescu.vlad@yahoo.com

Dorel Lucanu
Faculty of Computer Science

Alexandru Ioan Cuza University of Iasi, Romania
dorel.lucanu@gmail.com

Pointers are a powerful, but dangerous feature provided by the C and C++ programming languages,
and incorrect use of pointers is a common source of bugs and security vulnerabilities. Making secure
software is crucial, as vulnerabilities exploited by malicious actors not only lead to monetary losses,
but possibly loss of human lives. Fixing these vulnerabilities is costly if they are found at the end of
development, and the cost will be even higher if found after deployment. That is why it is desirable
to find the bugs as early in the development process as possible. We propose a framework that
can statically find use-after-free bugs at compile-time and report the errors to the users. It works
by tracking the lifetime of objects and memory locations pointers might point to and, using this
information, a possibly invalid dereferencing of a pointer can be detected. The framework was tested
on over 100 handwritten small tests, as well as 5 real-world projects, and has shown good results
detecting errors, while at the same time highlighting some scenarios where false positive reports may
occur. Based on the results, it was concluded that our framework achieved its goals, as it is able to
detect multiple patterns of use-after-free bugs, and correctly report the errors to the programmer.

1 Introduction

Pointers are a powerful, but dangerous feature provided by the C and C++ programming languages,
and incorrect use of pointers is a common source of bugs and security vulnerabilities. Most new lan-
guages lack pointers or severely restrict their capabilities, thus eliminating these problems and providing
memory safety. Nonetheless, many C & C++ programs work with pointers safely and they are still con-
sidered a very useful feature of the language. Programmers who safely work with pointers maintain an
internal model of when memory accessed through those pointers should be allocated and subsequently
freed. Commonly applied models include garbage collection, Resource Acquisition Is Initialization
(RAII), and smart pointers.

However, because the chosen model is frequently not documented in the program, it might not be
well understood when modifying the source code, and errors can appear. These can lead to various
problems such as program crashes, unpredictable behavior, or security vulnerabilities. Some infamous
examples of critical vulnerabilities caused by memory bugs are:

• Heartbleed (CVE-2014-0160) [7] - exposed secrets in the popular OpenSSL library. It affected
over 66% of the active sites on the Internet.

• BlueKeep (CVE-2019-0708) [5] - Remote Code Execution in Microsoft’s RDP. It affected all
unpatched Windows versions.

• EternalBlue (CVE-2017-0144) [6] - Remove Code Execution in Windows Microsoft’s SMB. It
affected all unpatched Windows versions. It was used to carry out cyber attacks which caused
major damage, like WannaCry [14] or NotPetya [13]

http://dx.doi.org/10.4204/EPTCS.410.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Making secure software is crucial, as vulnerabilities exploited by malicious actors not only lead to
monetary losses, but possibly loss of human lives [20]. Fixing these vulnerabilities is costly if they are
found at the end of development, and the cost will be even higher if found after deployment. That is why
it is desirable to find the bugs as early in the development process as possible. One class of tools that
can help programmers identify software defects early is static analysis tools. These tools analyze source
code without executing it, and can even point out bugs while the programmer is still writing the code.

One common bug in C++ that can cause vulnerabilities is the use-after-free pattern. They occur when
a program continues to use a pointer after the memory it points to has been freed. This usually causes
program crashes, but in the worst cases, it may lead to critical vulnerabilities such as those mentioned
earlier.

Identifying this type of bug is not trivial, as C++ is a complex language that gives the programmer a
lot of control over memory, without many constraints. Access to on-demand allocation and deallocation
of memory, combined with pointer arithmetic and the existence of functions that can affect memory
outside of their scope make tracking pointer operations at compile time difficult, and sometimes even
impossible. In addition to the difficulty of identification by static analyzers, this type of bugs are also
very hard to identify during code reviews, even by experienced programmers.

Contribution This paper proposes a framework intended to provide sound static analysis by using se-
mantic information that can be inferred from the source code and some information explicitly provided
by the programmer. In particular, the framework aims to track the lifetime of all memory regions ref-
erenced by pointers during the program’s execution and ensure that dereferenced pointers’ pointed-to
memory is valid.

Firstly, a simplified model is extracted from the target program to facilitate the analysis. Types and
instructions are separated into multiple categories depending on their properties and possible effects on
memory. Then, the identification of errors is done through dataflow analysis on the control flow graph of
the simplified program. The use of tools from the Clang ecosystem facilitates all these steps.

Paper Structure This paper is split into 4 sections, each describing theoretical aspects or implementa-
tion details of the framework. Section 2 describes other approaches for detecting memory bugs. Section
3 presents all the steps of the analysis process used for detecting and reporting the errors. Section 4 de-
scribes some of the implementation details of the steps presented in the previous section and the results
of several experiments conducted to evaluate the framework’s performance.

2 Related Work

Since software security is crucial, there have been many projects that try to detect and prevent vul-
nerabilities before they are available to the public and can be exploited. The classes of bugs detected
and the concepts used to detect them differ from project to project, but most of them fall under 3 main
categories: static analyzers, dynamic analyzers, and hybrid approaches

2.1 Static Analyzers

Static analyzers are tools that check different properties of programs by only looking at their source
code, without the need to execute them.
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Herb Sutter describes in [11] an approach to identify use-after-free bugs in C++ through static anal-
ysis and is the main inspiration for this framework and paper.

Multiple other tools aim to find different types of memory bugs through static analysis. The Clang
static analyzer supplements the built-in warnings of the compiler with the same name with over 100
powerful checkers [3] that try to detect both general C++ bugs, as well as application-specific ones. The
other 2 main C++ compilers, GNU GCC and Microsoft Visual C++ have similar static analysis tools.

In addition to the warnings produced by the compilers, IDEs have their own tools looking for errors.
Jetbrains CLion provides tens of different warnings [4] and also integrates with other static analysis
tools in order to have as much coverage as possible when looking for bugs. Other popular IDEs such as
Microsoft Visual Studio or XCode have similar approaches.

2.2 Dynamic Analyzers

Dynamic analysis is the process of evaluating a program by executing it and observing its behavior. In
the case of C++ this usually involves tracking memory management and access, as well as concurrency,
to ensure no errors are present.

Valgrind [16] is a powerful tool suite that is primarily used for detecting memory management and
threading bugs in C++ applications. It includes various tools that can identify memory leaks, invalid
memory access or mismanagement of memory. Valgrind emulates the execution of programs, so it has
complete control over the low-level operations. Because of this, it is able to provide detailed information
about potential errors in the program, as well as their causes.

Address Sanitizer [18] is another popular dynamic analyzer that can detect memory errors. It em-
ploys a specialized memory allocator and code instrumentation to accurately detect bugs at their point of
occurrence. It is currently the most widely used tool due to it having the smallest performance impact,
while still being accurate. It is also integrated in all major C++ compilers.

2.3 Hybrid Approaches

There are a few tools that take a hybrid approach by combining both static and dynamic analysis, and
one of the most popular and efficient uses of this is fuzz testing [19]. A fuzzer uses both static analysis
to look at the source code, and dynamic analysis to observe the flow of execution in order to generate
sets of inputs that cover as many branches as possible. One of the more popular fuzzers is AFL++ [9].
Then, these inputs are fed to the program, and dynamic analyzers are used to find possible errors during
the execution. The wide coverage of inputs generated by the fuzzer helps find errors that happen very
rarely, which may not be caught when using a hand-written set of tests.

3 The Proposed Framework

The analysis process consists of several steps that will be described in this section. Firstly, the lan-
guage used to describe the model extracted from the input C++ program is defined. Next, the operations
that transform a C++ program into the form used by the framework are presented. Finally, we describe
the analysis process, what information it uses, and how it is obtained.
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3.1 The Language

The first step to facilitate the static analysis is to extract from a C++ program a model expressing
how the program interacts with memory. The language we will use is based on C++ [12], with some
modifications to the operations that manipulate memory. The additional syntax needed to manipulate the
object’s lifetime is described in Figure 1.

⟨instructions⟩ ::= . . .
| ⟨var⟩= allocate(⟨exp⟩); allocation
| ⟨var⟩= [⟨exp⟩]; lookup
| [⟨exp⟩] = ⟨exp⟩; mutation
| deallocate(⟨exp⟩); deallocation
| create(⟨var⟩,⟨type⟩); variable creation
| destroy(⟨var⟩); variable destruction

⟨type⟩ ::= Owner
| Pointer
| Value

Figure 1: Additional syntax for handling the lifetime of objects
The computational state contains two components: a store, which maps variables into addresses, and

the memory, which maps addresses into values.

Values = Integers∪Atoms∪Addresses

Memory =
⋃

A⊆Addresses

(A → Values)

null ∈ Atoms

StoresV = V → Addresses

StatesV = StoresV ×Memory

where V is a finite set of variables.
The behavior of the new instructions is defined by a transition relation ⇝ between configurations,

which can be:

• nonterminal: an instruction-state pair ⟨i,(s,m)⟩, where (s,m) is a State, FV (i) ⊆ dom(s) (FV (i)
is the set of free variables in instruction i);

• terminal: a state (s,m) or error.

The semantics of the new instructions is defined below. Here [ f |x : y] denotes the function that maps x
into y and all other x′ ∈ dom( f ) into f (x′). The notation f |S means the restriction of the function f to the
domain S. dom( f ) is the domain of the function f and val(e) is the value of expression e.

• Allocation:
⟨v = allocate(e),(s,m)⟩⇝ (s, [m|s(v) : a|a : null|a+1 : null| . . . |a+ val(e)−1 : null])
where a,a+1, . . . ,a+ val(e)−1 ∈ Addresses−dom(m)

• Lookup:
⟨v = [e],(s,m)⟩⇝ (s, [m|s(v) : m(val(e))]) if val(e) ∈ dom(m)

⟨v = [e],(s,m)⟩⇝ error if val(e) /∈ dom(m)
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• Mutation:
⟨[e] = e′,(s,m)⟩⇝ (s, [m|val(e) : val(e′)]) if val(e) ∈ dom(m)

⟨[e] = e′,(s,m)⟩⇝ error if val(e) /∈ dom(m)

• Deallocation:
⟨deallocate(e),(s,m)⟩⇝ (s,m|dom(m)−A)

if val(e) is the first address in a set of addresses returned by an allocate instruction
before the call to deallocate and val(e) ∈ dom(m)
⟨deallocate(e),(s,m)⟩⇝ error otherwise

where A is the set of Addresses returned by the allocate instruction.

• Variable Creation:
⟨create(v, t),(s,m)⟩⇝ ([s|v : a], [m|a : null])
where a ∈ Addresses−dom(m);

• Variable Destruction:
⟨destroy(v),(s,m)⟩⇝ (s|dom(s)−v,m|dom(m)−s(v)

The allocation instruction activates and initializes the required cells in the heap. The only require-
ment for these cells is that they were previously inactive and are consecutive. The starting address is
unspecified.

The Lookup, Mutation, and Deallocation operations cause memory errors (indicated by the terminal
configuration error) whenever an invalid address is dereferenced or deallocated. This would correspond
to a crash when running a C++ program.

The create and destroy instructions are used to emulate the behavior of stack variable allocation
and deallocation when entering or exiting a scope in C++.

Types There are 3 classes of types based on their properties: Owner, Pointer, Value.
An Owner is a variable that owns a zone of memory. This means it can use all four memory man-

agement functions from our language on the memory it owns. During the variable’s creation, it allocates
some memory and during its destruction it deallocates it. Some functions may alter the Owner, thus
changing the memory zone managed by the variable to another one. Dereferencing an Owner is always
valid. (for example, a type classified as Owner is std::vector)

A Pointer is a variable that points to some memory it does not own. It does not allocate or deallocate
any memory. This means it can only use the Lookup and Mutate instructions on the memory it points
to. All use-after-free errors happen when dereferencing this class of variables, as they can still point to
a memory zone that has already been deallocated by an Owner. A Pointer that produces an error when
dereferenced is called invalid.

A variable is classified as a Value if it is neither an Owner, nor a Pointer. All variables that do not
interact with heap memory fall into this category.

Annotations In addition to the modifications to instructions, we also extend the function definition
syntax to be able to make annotations that represent preconditions about the lifetime of the input or
output parameters of the function and postconditions about the lifetime of its outputs.

We define the lifetime of a memory zone as the sequence of instructions in the program during which
it is valid to dereference it. Formally, the address a is alive if none of its lookup, mutation, or deallocation
transition to the error configuration.

The lifetime of a memory zone begins when the allocate instruction activates the corresponding
memory addresses and ends when the deallocate instruction deactivates them.
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The syntax of the annotations is:

⟨annotated_func⟩ ::= ⟨annotation⟩⟨func_definition⟩
⟨annotation⟩ ::= pre((⟨var⟩,{⟨lifetime⟩∗})+) precondition

| post((⟨var⟩,{⟨lifetime⟩∗})+) postcondition
⟨lifetime⟩ ::= ⟨var⟩

| null
| global
| invalid

Let p be a function parameter with the precondition pre(p,S) attached. This means that p must have
the same lifetime as at least one element in S when the function is called. For example, when calling
the function defined in listing 1, the lifetime of the parameter z has to be equal to either that of x or y,
otherwise, an error is raised.

To attach a postcondition to the return value of a function, we will use the function’s name. Let f
be a function with postcondition post( f ,S). This means that the return value of f must have the same
lifetime as at least one element in S. For example, the value returned by the function defined in listing 2
has to have a lifetime equal to that of x, or be null.

Listing 1: A function with a precondition

p r e ( z , { x , y } )
P o i n t e r f ( P o i n t e r x , P o i n t e r y ,
P o i n t e r z )
{
. . .
}

Listing 2: A function with a postcondition

p o s t ( g , {x , n u l l } )
P o i n t e r g ( P o i n t e r x )
{
. . .
}

3.2 Transforming a C++ Program

We define a set of rules that will help the framework transform the input C++ program into our
proposed simplified language.

3.2.1 Variable Types

A variable is classified as an Owner if its type satisfies any of the following conditions:

• it satisfies the standard Container requirements and has a user-provided destructor - for example,
std::vector;

• it provides the dereference operator and has a user-provided destructor - for example, std::unique_-
ptr;

• it has a data member or base class of type Owner.

A variable is classified as a Pointer if its type is not an Owner and satisfies any of the following
conditions:

• it satisfies the standard Iterator requirements;

• Is trivially copyable, is copy constructible and assignable, and provides the dereference operator.
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• it has a data member or base class of type Pointer;

• it is a capture by reference inside a lambda function.

A variable is classified as a Value if it is neither an Owner nor a Pointer. All variables that do not
interact with heap memory fall into this category.

3.2.2 Instructions

Control-flow instructions, assignments, expressions, and most other instructions remain unchanged.
The only cases where explicit transformations are needed are memory-related instructions.

Raw pointer arithmetic makes static tracking of memory zones variables are pointing to very difficult,
sometimes even impossible. That is why our framework forbids it, as the analysis may give imprecise,
or even wrong results because of these instructions.

Manual memory allocation through new is considered a special case of creating a global Owner
variable. Manual memory deallocation through delete corresponds to the destruction of this variable.

p = new int; −→
create (global_owner, Owner);
global_owner = allocate (4);
p = global_owner;

delete p; −→ destroy (global_owner);
deallocate (global_owner);

In C++, when a scope begins, all local variables are implicitly allocated on the stack. In a similar manner,
when a scope ends, all local variables are implicitly deallocated. In our programming language, this is
done explicitly.

{
int x;
...

}

−→

{
create (x, Value);
. . .
destroy (x);

}

3.2.3 Functions

Functions can be explicitly annotated by the programmer with preconditions and postconditions
about the lifetime of their Pointer parameters. If these are not explicitly mentioned, then the following
default conditions will be enforced:

Precondition No Pointer arguments can point to a non-const global Owner or a local Owner being
passed by a non-const reference to the same function call. Also, no two Pointer arguments
should point to the same non-const Owner.

Postcondition If the function returns a Pointer variable, its lifetime should be at least as long as one
of the arguments.
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Example program

Following the rules above, an example transformation of a section of a program is presented in
listings 3 and 4.

Listing 3: Example C++ program

i n t x ;
i n t * p ;
. . .
i f ( x == 2) p = &x ;
e l s e {

i n t y ;
p = &y ;

}
*p = 3 ;

Listing 4: Transformed C++ program

c r e a t e ( x , Value ) ;
c r e a t e ( p , P o i n t e r ) ;
. . .
i f ( x == 2) p = &x ;
e l s e {

c r e a t e ( y , Value ) ;
p = &y ;
d e s t r o y ( y ) ;

}
*p = 3 ;

3.3 Analysis

After the steps above, the framework will perform static intraprocedural analysis, on each function
definition, to enforce the following rules:

1. It is an error to dereference an invalid Pointer.

2. It is an error to dereference an Owner that was moved from (transferred ownership to another
variable).

3. It is an error to use raw pointer arithmetic.

4. It is an error to pass a Pointer as a function argument if it is invalid, or violates the preconditions
of the function.

5. It is an error to return a Pointer from a function that is invalid or violates the postconditions of
the function.

To enforce rule 3., we will always report a possible error when pointer arithmetic is present in the
analyzed program. Let p be a pointer and v another variable. The following expressions will produce an
error:

• p+v

• v+p

• p++

• ++p

• p-v

• v-p

• p- -

• - -p

• p+=v

• p-=v

• p[x]

• x[p]

While rule 3. can be easily enforced through the analysis of the AST of the program and the types
of variables, the rest of the rules need more complex, path-sensitive analysis. They all result in the same
behavior of the program: reaching the error configuration after a Lookup of Mutate instruction.

A way to enforce these rules is by maintaining all possible locations a pointer might point to, and
whether they are valid or not. We will use the notions of points-to-map (pmap) and points-to-set (pset)
to maintain this information.

The points-to-set of a variable v at instruction i in the program is the set of all possible memory zones
it may point to at this moment during the execution of the program. This set can contain any of these
elements:
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var - this means that v currently points to the address of local variable;

global - v currently refers to a static variable or a memory owned by a const static Owner;

o’ - v points to the address of an object owned by Owner o;

o” (etc.) - v refers to an object owned by an object owned by o. This is used in the case of hierarchies
of Owner objects;

null - v currently is null;

invalid - v points to invalid memory.

The points-to-map at instruction i is a mapping between local variables that exist at the current
moment in execution and their psets.

A variable v is considered invalid at instruction i if invalid ∈ pmapi(v). (see for example p on the
last line in listings 3 and 4)

We have chosen to calculate pmapi for all instructions using Dataflow Analysis, as some form of
path-sensitive analysis is required to correctly determine the points-to-sets.

3.4 Instantiation of the Dataflow Analysis Framework

Let F = (V ,E ,e) be the control flow graph of the program we want to analyze. To calculate all the
points-to-maps at each node in the graph, we will solve the following dataflow system [17]:

• L = V . The program labels are the labels of the nodes.

• E = e. We will start the analysis from the initial nodes of the CFG.

• F = E . The flow of the analysis is determined by the edges in the graph.

• D = Variables ⇀ 2PsetEntries is the analysis domain, where PsetEntries = Variables∪Variables’∪
{null, invalid,global} , and Variables’ = {v′,v′′, . . . |v ∈ Variables}.
The information we maintain is the points-to-map at each node.

• ⊑ is the partial order defined as follows: f ⊑ g iff dom( f ) ⊆ dom(g) and for all v ∈ dom( f ),
f (v)⊆ g(v).

• ⊥= /0 is the smallest element, and the initial value associated with e is ι = /0.

The transfer function is the most important part of this system and affects the pmap in different ways
depending on the instruction in the node.

ϕi is the transfer function corresponding to instruction i and takes as input d which is the union of all
pmaps of predecessor nodes in the CFG and produces a new pmap after the effects of instruction i.

At different moments during the analysis, pmap entries will be invalidated. We define the invalidation
of a set of variables S as

invalidS(d) = [d|x : (d(x)−{v,v′, . . .})∪{invalid}]
where x such that d(x)∩{v,v′, . . .} ̸= /0 for all v ∈ S.

Variable creation - when creating a variable, a new entry is added to the pmap. Let i be the instruction
create(v, t). Then,

ϕi(d) =


[d|v : {v′}] if t = Owner

[d|v : {invalid}] if t = Pointer

d if t = Value
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Variable destruction - when destroying a variable, its entry is removed, and all other psets that may
refer to it are invalidated. Let i be the instruction destroy(v). Then,

ϕi(d) = invalidv(d|dom(d)−{v})

Mutation of owner - when a non-const use of a local Owner occurs, we will invalidate all pointers to it,
making the conservative assumption that any use might cause reallocation. Let i be f (o). Then,

ϕi(d) = invalido(d)

Copying - when a copy happens, all the entries in the destination’s pset will be replaced by all the en-
tries in the source’s set. Let i be the instruction be v = u. Then,

ϕi(d) = [d|v : d(u)]

Moving - when a move happens, all the entries in the destination’s pset will be replaced by all the entries
in the source’s set. In addition to this, the source’s pset will be invalidated. Let i be the instruction
be v = std :: move(u). Then,

ϕi(d) = [d|v : d(u)|u : {invalid}]
Address-of operator - when the address-of (&) operator is used, it creates a temporary variable that

points to the operand of &. Let i be &v. Then,

ϕi(d) =

{
[d|tmp : {v}] if v is a local variable
[d|tmp : {global}] if v is a global variable

Pointer dereferencing - when we dereference a Pointer, a temporary variable may be created if the
result is not a value. This is useful for cases when Pointer to Pointer types are used. Let i be
∗v. Then,

ϕi(d) =

{
d if ∗ v is a Value
[d|tmp : d(d(v))}] otherwise

Memory allocation - when memory is allocated, a new Owner is created to represent the memory zone
returned by the allocate statement. Let i be allocate(x). Then,

ϕi(d) = [d|allocx : alloc′x]

Memory deallocation - when memory is deallocated through a pointer p, all owners in its pset are in-
validated. Let i be deallocate(p). Then,

ϕi(d) = invalidd(p)(d)

Function calls - when analyzing function calls, we assume that the annotated postconditions are true,
and use them as the pset of the function output. Let i = p = f () and the postcondition post( f ,S).
Then,

ϕi(d) = [d|v : S]

Function definitions - when analyzing function bodies, we assume that the annotated preconditions are
true, and use them as the psets of the function parameters. Let f (x) be a function annotated with
pre(x,S), Then,

ϕi(d) = [d|x : S]

All other instructions - all other instructions that do not affect memory, there are no changes to the
pmap. So for all other i,

ϕi(d) = d
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Figure 2: Example CFG analysis

After analyzing the whole CFG and calculating the fixpoint solution of the dataflow system, we have
access to the pmap of all nodes and can enforce the rules presented above in the following way:

• It is an error to dereference an invalid pointer. If i is ∗p and invalid ∈ d(p), then we report the
error.

• It is an error to dereference an Owner that was moved from. If i is ∗o and invalid ∈ d(o), then
we report the error.

• It is an error to pass a Pointer as a function argument if it is invalid, or violates the preconditions
of the function. Let f be a function annotated with pre(p,S). At every function call i = f (p), if
invalid∈ d(p), an error will be reported. In addition, if there is no p′ ∈ S such that d(p) = d(p′),
then the precondition is violated and an error will be reported.

• It is an error to return a Pointer from a function that is invalid or violates the postconditions
of the function. Let f be a function annotated with post( f ,S). At every statement that returns,
i = return p, if invalid ∈ d(p), an error will be reported. In addition, if there is no p′ ∈ S such
that d(P) = d(p′), then the postcondition is violated and an error will be reported

Figure 2 shows an example analysis of the program in listing 4 annotated with the relevant changes
in the pmap entry of p.

4 Implementation and Evaluation

4.1 Implementation

The implementation of the framework consists of three main components:
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• Parsing and processing a C++ source file received as input in order to transform it into the pro-
gramming language used during the analysis.

• Creating the control flow graph and solving the dataflow system in order to calculate the pmap at
each node.

• Using the pmaps obtained after the previous step, identify and report any errors.

In addition to this, additional work has been done to improve error messages and help identify the
source of errors faster. The main feature created with this purpose is the ability to track the moments
when pointers are invalidated, and include these locations when an error is reported.

Because the main interest of our framework is not parsing the language, but performing static analysis
on it, choosing an already implemented solution for this would be the best choice. Not only does this save
resources because we do not need to implement a parser from scratch, but also it provides a well-tested,
maintained, and well-documented parser which we can take advantage of.

The tool we chose for parsing the source files is Clang [2]. Clang is an open-source project that
provides a language front-end and tooling infrastructure for languages in the C family. It is considered
one of the three main C++ compilers and is widely used to build production-quality applications [8].

4.2 Evaluation

During each stage of development of the framework, several tests were run to evaluate the perfor-
mance and accuracy of each component. Both handwritten, specific tests for certain functionalities, and
real-world snippets and projects have been used to be able to accurately evaluate the framework.

Type classification tests

Being one of the first steps of the analysis, type classification plays an important role and any mis-
classification will influence all further steps in the analysis, possibly leading to erroneous reporting of
bugs. This is why we considered it necessary during development to keep a 100% pass rate of tests in
this category, as any errors here would make the evaluation of other features impossible. This also meant
that the quality of the test had to be high, covering as many cases as possible

The test set consists of 30 tests and was created to cover every rule specified in Section 3.2.1, using
multiple approaches. Both user-created and standard library types were used in the tests, in as many
combinations as possible.

The framework passes all 30 tests, and the distribution of tests is presented in Table 1.

Table 1: Type classification tests
Type classification 1 Total tests User types Std types Both types Pass rate

Owner 14 6 5 3 100%
Pointer 10 3 5 2 100%
Value 6 3 2 1 100%

Error detection tests

To evaluate the accuracy of the framework, we categorized the results of each error detection test as
true positive, false positive, true negative, and false negative.
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The most important metric to take into consideration is the number of false negatives. Our goal is to
minimize this number, so that as few errors are missed as possible. The next priority is minimizing the
number of false positives, as flooding the user with reports of inexistent errors might make them miss a
true positive report.

The test set constructed for this evaluation aims to cover both erroneous as well as error-free code.
The errors present should follow as many different patterns as possible. One important aspect is that
different people write code in different manners, depending on their skills, experience, influences, and
time invested. We included three different styles of writing code to try to emulate real-world codebases:

Advanced - this style of code is compliant with modern C++ best practices (see for example [1]), heavily
uses the standard library, and designs clean and correct code. This would correspond to code
written by a very experienced programmer who rarely makes mistakes.

Regular - this style of code uses only the most well-known parts of the standard library while imple-
menting other algorithms and data structures from scratch. This style would be the most common
in real-world projects, corresponding to an experienced programmer, that knows and applies most
best practices.

Basic - this style of code barely uses the standard library, while possibly using C++ anti-patterns that
may cause bugs in some situations. This style would be common among inexperienced program-
mers, or old codebases that have not been modernized.

The test suite consists of 102 tests and the results of the evaluation can be seen in Table 2.

Table 2: Error detection tests
Code style Total tests False Negative False Positive Accuracy
Advanced 33 0 1 96.96%
Regular 35 3 2 85.7%
Basic 34 6 10 52.94%

From the results, it can be concluded that the accuracy of error detection increases the more modern
the code is. One cause of this is that by aligning with modern standards and writing code with best
practices in mind, like const-correctness, using the standard library when possible, or designing classes
with intuitive interfaces, the static analyzer can infer much more information about the context of the
program. While the programmer can deduce most information from context, patterns or naming con-
ventions, the compiler has no way doing this. Some examples of failed tests and potential solutions are
presented below.

Analyzing Real-World Code

In addition to evaluating the framework on small snippets of code, it is important to test its behavior
in a real-world use case, on code bases of different sizes. We have chosen 5 projects of sizes from a few
hundred lines to over 100000, and ran the analysis of them, checking the number of errors and validating
whether they were correctly identified.

Project A is a small application written as a helper tool. It contains approximately 500 lines of modern
C++ and implements simple functionalities like reading and writing files on the disk and manipulating
strings.

Project B is a project that is currently in development and has around 4000 lines of code. It imple-
ments medium-complexity functionalities for filtering and grouping data from multiple sources.
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Project C is a production application that is used as an interpreter for a domain-specific language. It
is a medium-size code base of around 15 thousand lines of modern C++.

Project D is a complex application, containing over 40 thousand lines of code, written over a few
years. Its features are of high complexity and include parsing data streams, extracting and correlating
information, and using it to generate reports.

Project E is a very old code base, comprised of over 100 thousand lines of mostly C and C++98. It
contains multiple modules, with very complex features and multiple interactions with operating system
interfaces.

The results and the evaluation can be found in Table 3 and Table 4.

Table 3: Error detection tests
Project Coding style Errors False Positives FP rate

A Advanced 0 0 0%
B Regular 6 5 83.33%
C Advanced 4 1 25%
D Regular 105 105 100%
E Basic 1038 ?? ??%

Table 4: Compilation speed tests
Project Compilation Compilation + Analysis Delta Slowdown

A 53 ms 68 ms 13 ms 24.5%
B 6272 ms 9057 ms 2785 ms 44.4%
C 54 s 76 s 22 s 40.7%
D 106 s 139 s 33 s 31.1%
E 583 s 721 s 139 s 23.8%

It can be seen that the more modern and well-maintained the code is, the better the framework
behaves. Although project C has almost 4 times as many lines of code as project B, the false positive rate
is much lower. This may be attributed to the more modern design of the code and the much heavier use
of standard library functionalities that enable the analysis to accurately infer the needed information.

The results of project D also bring up a potentially important issue: all 105 reported errors were false
positives, having the same root cause: not annotating functions and variables as const when needed.

Project E generated so many errors caused by a variety of anti-patterns, legacy code, and lack of
refactorization when needed, that it was impossible to manually validate each one. This may raise a
problem when the framework has to analyze huge, legacy code bases: flooding the user with errors,
most of which are false positives, caused mostly by legacy code, which would require a significant time
investment to solve.

Discussion

The evaluation of the framework showed good results, but at the same time, the false positives and
false negatives show that there are more improvements to be made. The main causes of test failures we
have been able to identify are:

• User-defined types that behave like an Owner, but don’t fully follow the specification in our frame-
work.
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• Types that have shared-ownership behaviour (for example std :: sharedptr.

• Functions that have no side-effects, but are not annotated const.

Further improvements of type classification rules and program analysis are needed to reduce these
failures.

5 Conclusions and Future Work

Conclusions The goal when the development of the framework started was to be able to prevent some
exploits from ever becoming available to the public by detecting the errors that would cause the vulner-
ability during the development process, and warning the programmer so that it can be fixed.

The framework we developed is able to take any C++ source file as input, using even the most
recently standardized features, facilitated by Clang’s parser and AST. Then, it will transform the AST
into a control flow graph, adapting the original program to the language used during the analysis, by
transforming its types, instructions and functions. After the creation of the CFG, a dataflow system
is defined and solved for each function in the program, to extract the necessary information about the
points-to maps at each node. Finally, using this information, a set of rules is enforced, and errors are
reported to the programmer through intuitive messages, that contain the location of the bug, in addition
to potential previous instructions that may cause it.

Multiple tests were performed in order to evaluate the accuracy and speed of the framework. While
most tests were successful, some of them showed some potential problems when analyzing big code-
bases. The main one is that for human programmers, it may be easy to understand information from the
context of the code, without the need of explicit annotations, while for static analyzers that is impossible.

It can be concluded that our framework achieved its goals, as it is able to detect multiple patterns of
use-after-free bugs, and correctly report the errors to the programmer.

Future Work While we can say that the framework was able to achieve its goals, there are many
improvements that can be made. Some of the most important are:

• Modifying the type classification rules to be able to recognise shared ownership semantics. Some
cases of false positives are caused by types that have the behavior of a shared Owner, which inval-
idate all Pointers when a single Owner is destroyed, while in reality the Pointers remain valid.

• Improve type classification to be able to identify types which represent Owners, but don’t fall into
any of the categories mentioned in our rules.

• Implement mechanisms that are able to deduce some information without it being explicitly men-
tioned. One good example is being able to identify whether a variable or function can be considered
const.

• Research interprocedural analysis to be able to detect much more patterns of errors.

References

[1] C++ Core Guidelines. Available at https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines. https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines last visited in June 2024.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines


114 Static Analysis Framework for Detecting Use-After-Free Bugs in C++

[2] Clang ecosystem. Available at https://clang.llvm.org/. https://clang.llvm.org/ last
visited in June 2024.

[3] Clang static analyzer checkers. Available at https://clang.llvm.org/docs/analyzer/
checkers.html. https://clang.llvm.org/docs/analyzer/checkers.html last visited in
June 2024.

[4] CLion warnings. Available at https://www.jetbrains.com/help/clion/
list-of-c-cpp-inspections.html. https://www.jetbrains.com/help/clion/
list-of-c-cpp-inspections.html last visited in June 2024.

[5] The Bluekeep bug. Available at https://en.wikipedia.org/wiki/BlueKeep. https://en.
wikipedia.org/wiki/BlueKeep last visited in June 2024.

[6] The EternalBlue bug. Available at https://en.wikipedia.org/wiki/EternalBlue. https:
//en.wikipedia.org/wiki/EternalBlue last visited in June 2024.

[7] The Heartbleed bug. Available at https://heartbleed.com/. https://heartbleed.com/ last
visited in June 2024.

[8] The State of Developer Ecosystem 2023 - Jetbrains. Available at https://www.jetbrains.com/
lp/devecosystem-2023/cpp/. https://www.jetbrains.com/lp/devecosystem-2023/
cpp/ last visited in June 2024.

[9] Andrea Fioraldi, Dominik Christian Maier, Heiko Eißfeldt & Marc Heuse (2020): AFL++ : Com-
bining Incremental Steps of Fuzzing Research. In Yuval Yarom & Sarah Zennou, editors: 14th
USENIX Workshop on Offensive Technologies, WOOT 2020, August 11, 2020, USENIX Asso-
ciation, doi:10.5555/3488877.3488887. Available at https://www.usenix.org/conference/
woot20/presentation/fioraldi.

[10] Dick Grune, Henri E. Bal, Ceriel J. H. Jacobs & Koen Langendoen (2002): Modern Compiler
Design. John Wiley.

[11] Herb Sutter: Lifetime safety: Preventing common dangling. Available at https://github.com/
isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf. https://github.com/
isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf last visited in June 2024.

[12] International Organization for Standardization (2020): Programming Languages - C++, 5th edi-
tion. ISO/IEC 14882:2020, International Organization for Standardization, Geneva, Switzerland.

[13] Csaba Krasznay (2020): Case Study: The NotPetya Campaign, pp. 485–499.

[14] M. Satheesh Kumar, Jalel Ben-Othman & K. G. Srinivasagan (2018): An Investigation on Wannacry
Ransomware and its Detection. In: 2018 IEEE Symposium on Computers and Communications,
ISCC 2018, Natal, Brazil, June 25-28, 2018, IEEE, pp. 1–6, doi:10.1109/ISCC.2018.8538354.

[15] John R. Levine (2009): flex and bison - Unix text processing tools. O’Reilly. Available at http:
//www.oreilly.de/catalog/9780596155971/index.html.

[16] Nicholas Nethercote & Julian Seward (2007): Valgrind: a framework for heavyweight dynamic
binary instrumentation. In Jeanne Ferrante & Kathryn S. McKinley, editors: Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation, San
Diego, California, USA, June 10-13, 2007, ACM, pp. 89–100, doi:10.1145/1250734.1250746.

[17] Flemming Nielson, Hanne Riis Nielson & Chris Hankin (1999): Principles of program analysis.
Springer, doi:10.1007/978-3-662-03811-6.

https://clang.llvm.org/
https://clang.llvm.org/
https://clang.llvm.org/docs/analyzer/checkers.html
https://clang.llvm.org/docs/analyzer/checkers.html
https://clang.llvm.org/docs/analyzer/checkers.html
https://www.jetbrains.com/help/clion/list-of-c-cpp-inspections.html
https://www.jetbrains.com/help/clion/list-of-c-cpp-inspections.html
https://www.jetbrains.com/help/clion/list-of-c-cpp-inspections.html
https://www.jetbrains.com/help/clion/list-of-c-cpp-inspections.html
https://en.wikipedia.org/wiki/BlueKeep
https://en.wikipedia.org/wiki/BlueKeep
https://en.wikipedia.org/wiki/BlueKeep
https://en.wikipedia.org/wiki/EternalBlue
https://en.wikipedia.org/wiki/EternalBlue
https://en.wikipedia.org/wiki/EternalBlue
https://heartbleed.com/
https://heartbleed.com/
https://www.jetbrains.com/lp/devecosystem-2023/cpp/
https://www.jetbrains.com/lp/devecosystem-2023/cpp/
https://www.jetbrains.com/lp/devecosystem-2023/cpp/
https://www.jetbrains.com/lp/devecosystem-2023/cpp/
https://doi.org/10.5555/3488877.3488887
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
https://doi.org/10.1109/ISCC.2018.8538354
http://www.oreilly.de/catalog/9780596155971/index.html
http://www.oreilly.de/catalog/9780596155971/index.html
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1007/978-3-662-03811-6


Vlad-Alexandru Teodorescu & Dorel Lucanu 115

[18] Konstantin Serebryany, Derek Bruening, Alexander Potapenko & Dmitriy Vyukov (2012): Ad-
dressSanitizer: A Fast Address Sanity Checker. In Gernot Heiser & Wilson C. Hsieh, editors: 2012
USENIX Annual Technical Conference, Boston, MA, USA, June 13-15, 2012, USENIX Asso-
ciation, pp. 309–318, doi:10.5555/2342821.2342849. Available at https://www.usenix.org/
conference/atc12/technical-sessions/presentation/serebryany.

[19] Kosta Serebryany (2016): Continuous Fuzzing with libFuzzer and AddressSanitizer. In: 2016 IEEE
Cybersecurity Development (SecDev), pp. 157–157, doi:10.1109/SecDev.2016.043.

[20] W. Eric Wong, Vidroha Debroy, Adithya Surampudi, HyeonJeong Kim & Michael F. Siok (2010):
Recent Catastrophic Accidents: Investigating How Software was Responsible. In: Fourth Inter-
national Conference on Secure Software Integration and Reliability Improvement, SSIRI 2010,
Singapore, June 9-11, 2010, IEEE Computer Society, pp. 14–22, doi:10.1109/SSIRI.2010.38.

https://doi.org/10.5555/2342821.2342849
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1109/SecDev.2016.043
https://doi.org/10.1109/SSIRI.2010.38


M. Marin, L. Leuştean (Eds.):
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ReScript is a strongly typed language that targets JavaScript, as an alternative to gradually typed

languages, such as TypeScript. In this paper, we present a sound type system for data-flow analysis

for a subset of the ReScript language, more specifically for a λ -calculus with mutability and pattern

matching. The type system is a local analysis that collects information about variables that are used

at each program point as well as alias information.

1 Introduction

The goal of data-flow analysis is to provide a static analysis of the flow information in a program that

can be used in compiler optimizations and for register allocation. The original approach is to build a

system of flow equations based on a graph representation of the program and to compute a solution using

an iterative algorithm [3, 8]. Other graph-free approaches have also been considered [6]. A challenge in

this setting is how to deal with the aliasing that imperative language constructs introduce.

Type systems have often been used to provide static analyses of programs in order to characterize

specific run-time errors, including ones caused by aliasing. In [9] Smith et al. present a notion of alias

types that allows functions to specify the shape of a store and to track the flow of pointers through a

computation. The language is a simple location-based language. Other type systems are substructural.

Ahmed et al. [7] use a language based on a linear λ -calculus to give an alternative formulation of alias

types. The type system crucially relies on linearity, and every well-typed program terminates.

In this paper we present a type system for data flow analysis in the presence of aliasing for a non-

trivial fragment of the programming language ReScript which is meant as an alternative to other typed

languages that target JavaScript. ReScript is based on OCaml with a JavaScript-inspired syntax and

a type system based on that of OCaml[1]. ReScript is imperative and allows for mutability through

reference constructs for creation, reading, and writing.

The fragment that we study incorporates both functional and imperative features. We show that the

type system is sound in the sense that it correctly overapproximates the set of occurrences on which

any given occurrence depends. Moreover, the dependency information that the type system provides

can also be used to reason about information flow properties such as non-interference. Furthermore, an

implementation for the type system has been made to demonstrate the type system. The full version of

our paper is available at [5].

2 A fragment of ReScript

In this paper we consider a fragment of ReScript that contains a λ -calculus with pattern matching, local

declarations that can be recursive and a notion of mutable references.

http://dx.doi.org/10.4204/EPTCS.410.8
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2.1 Syntax

In a data-flow analysis we must record information of where variables are used. Therefore, the language

presented is extended with a notion of program points taken from a countably infinite set P. Every

subexpression is labelled with a unique program point. Occurrences o ∈ Occ are labelled expressions

ep where e ∈ Exp and p ∈ P. We let ℓ range over a countably infinite, totally ordered set of locations

Loc and x, f range over the set of variables Var. An occurrence is atomic if it is of the form up where

u ∈ Var∪Loc. If up is atomic, we call any other occurrence uq a u-occurrence.

When given a syntactic category C, we let CP denote the pair C×P, so that e.g. ExpP = Exp×P.

This means that Occ = ExpP.

The formation rules of our abstract syntax are shown below.

o ::= ep

e ::= x | c | o1 o2 | λx.o | c o1 o2

| let f o1 o2 | let rec f o1 o2 | case o1 ~π ~o | ref o | o1 := o2 | !o

π ::= n | b | x | _ | (s1, · · · ,sn)

An abstraction λ x.o has a parameter x and body o. Constants c are either natural numbers n, boolean

values b, unit value (), or functional constants, such as the arithmetic operations and the Boolean con-

nectives.

An application is written o1 o2 , and c o1 o2 denotes a functional application where c is a functional

constant and o1, o2 are its arguments.

Local declarations let f o1 o2 associate the variable f with the value o1 within o2, and let rec f o1 o2

allows us to define a recursive function f where f may occur in o1. ReScript is an imperative language

due to the presence of the reference construct ref o which creates a reference in the form of a location

and allows for binding locations to local declarations. We can read from a reference o by writing !o and

write to a reference using the assignment construct o1 := o2.

The pattern matching construct case o1 ~π ~o matches an occurrence with the ordered set, ~π , of patterns.

We denote the size of the tuple pattern π by |~π | and the size of a tuple occurrence by |~o|, requiring that

|~π |= |~o| such that for each pattern in ~π there is a clause in ~o.

The notions of free and bound variables are defined as expected. We assume that all binding occur-

rences involve distinct names; this can be ensured by means of α-conversion.

Example 1. Consider

( l e t x ( r e f 4840001 ) 2

( l e t y ( l e t z (5 3 ) 4

( x5 := z7 ) 8 ) 9 ( ! x ) 10 ) 11 ) 12

This creates a reference to the constant 3 and binds the reference to x (so x is an alias of this reference).

Next a binding of z is made to the constant 5 before writing to the reference, that x is bound to, to the

value that z is bound to. Then a binding for y is made to the unit value, as the assignment evaluates to the

unit value. Lastly the reference, that x is bound to, is read.

2.2 The binding model

Our binding model uses an environment env that keeps track of the bindings of variables to values. Values

are given by the formation rules

v ::= c | ℓ | () | 〈x,ep′ ,env〉 | 〈x, f ,ep′′ ,env〉
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Constants c, locations ℓ, and unit () are values, as are closures, 〈x,ep′ ,env〉 and recursive closures,

〈x, f ,ep′′ ,env〉.
An environment env ∈ Env is a partial function env : Var ⇀ Values and we let env−1(v) = {x ∈

dom(env) | env(x) = v}. A store sto ∈ Sto is a partial function Sto = Loc∪{next}⇀ Values where next

is a pointer to the next unused location – this information is needed when new locations are needed.

Moreover, we assume a function new : Loc→Loc, which given, a location, gives us the next location.

For any function f we let f [u 7→ w] denote the function f ′ such that f (u′) = f (u) for u 6= u′ and

f ′(u′) = w.

2.3 Keeping track of dependencies

The semantics that follows will collect the semantic dependencies in a computation. An occurrence up

semantically depends upon a set of occurrences S if the value of up can be found using at most the values

of the occurrences in S. To determine semantic dependencies we use a dependency function that will tell

us for each variable and location occurrence what other, previous occurrences they depend upon.

Definition 1 (Dependency function). A dependency function w is a partial functions from atomic occur-

rences to a pair of dependencies:

w : LocP ∪VarP ⇀ P(LocP)×P(VarP)

For a dependency function w and a up ∈ LocP ∪VarP, the clause

w(up) = (L,V )

tells us that the element up is bound to a pair of location and variable occurrences where L is a set of

location occurrences L = {ℓp1

1 , · · · , ℓpn
n } and a set of variable occurrences V = {x

p′1
1 , · · · ,x

p′m
m }, meaning

that the value of the element up depends on the occurrences found in L and in V .

Example 2. Consider the occurrence from Example 1, where we can infer the following bindings for a

dependency function wex over this occurrence:

wex =
[x2 7→ ( /0, /0),z4 7→ ( /0, /0),y9 7→ ( /0,{x5}),
ℓ2 7→ ( /0, /0), ℓ8 7→ ( /0,{z7})]

where ℓ is the location created from the reference construct. The variable bindings are distinct, as the

location ℓ is bound multiple times, for the program points 2 and 8.

When we read an occurrence bound in wex, we must also know its program point, as there can exists

multiple bindings for the same variable or location.

By considering Example 2, we would like to read the information from the location, that x is an

alias to. As it is visible from the occurrence in Example 1, we know that we should read from ℓ8, since

we wrote to that reference at the program point 8. From wex alone it is not possible to know which

occurrence to read, since there is no order defined between the bindings. We therefore introduce a notion

of ordering in the form of a binary relation over program points.

Definition 2 (Occurring program points). Let O be a set of occurrences, then points(O) is given by:

points(O) = {p ∈ P | ∃ep.ep ∈ O}

For a pair (L,V ) we let points(L,V ) = points(L)∪points(V ).
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Any dependency function induces an ordering on program points as follows.

Definition 3. Let w ∈ W be a dependency function. Then the induced order ⊏w is given by

⊏w= {(p, p′) | p ∈ points(dom(w)), p′ ∈ points(w(p))}

We say that w is a partial order if its equality closure ⊏w is a partial order.

Example 3. Consider the example from Example 2. Assume a binary relation over the dependency

function wex given by

⊏wex
= {(2,4),(2,9),(5,9),(2,8),(7,8)}

From this ordering, it is easy to see the ordering of the elements. The ordering we present also respects

the flow the occurrence from Example 1 would evaluate to. We then know that the dependencies for the

reference (that x is an alias to) is for the largest binding of ℓ.

The immediate predecessor IP(u,S) of an element up wrt. a set of occurrences S is the most recent

u-element in S seen before u.

Definition 4 (Immediate predecessor). Let u be an element, let ⊏ be an ordering on program points and

S be a set of occurrences, then IP(u,S) is given by

IP(up,S) = sup{uq ∈ S | q ⊏ p}

Based on Definition 4, we can present an instantiation of the function for the dependency function w

and an order over w, ⊏w:

Definition 5. Let w be a dependency function, ⊏w be the induced order, and u be an element, then IP⊏w

is given by:

IP⊏w
(u,w) = sup{up ∈ dom(w) | uq ∈ dom(w).q ⊏w p}

Example 4. As a continuation of Example 3, we can now find the greatest element for an element, e.g.,

a variable or location. As we were interested in finding the greatest bindings a location is bound to in

wex, we use the function IP⊏w
:

IP⊏wex
(ℓ,wex) = sup{ℓp ∈ dom(w) | ℓq ∈ dom(w).q ⊏wex p}

where the set we get for ℓ is {ℓ2, ℓ8}. From this, we find the greatest element:

ℓ8 = sup{ℓ2, ℓ8}

As we can see, from the IPwex function, we got ℓ8 which were the occurrence we wanted.

2.4 Collecting semantics

The semantics for our language that collects dependency information is a big-step semantics with transi-

tions of the form

env ⊢
〈

ep′ ,sto,(w,⊏w), p
〉

→
〈

v,sto′,(w′,⊏′
w),(L,V ), p′′

〉

This should be read as: Given the store sto, a dependency function w, a relation over w, and the previous

program point p, the occurrence ep′ evaluates to a value v, an updated store sto′, an updated dependency



120 A Type System for Data Flow and Alias Analysis in ReScript

function w′, a relation over w′, the dependency pair (L,V ), and the program point p′′ reached after

evaluating ep′ , given the bindings in the environment env.

A selection of the rules for → can be found in Table 1.

The (VAR) rule uses the environment to get the value x is bound to and uses dependency function w

to get its dependencies. To lookup the dependencies, the function IP⊏w
is used to get the greatest binding

a variable is bound to, in respect to the ordering ⊏w. Since the occurrence of x is used, it is added to the

set of variable occurrences we got from the lookup of the dependencies for x.

The (LET) rule for the occurrence [let x e
p1

1 e
p2

2 ]p
′
, creates a local binding that can be used in e

p2

2 . The

(LET) rule evaluate e
p1

1 , to get the value v, that x will be bound to in the environment for e
p2

2 , and the

dependencies used to evaluate e
p1

1 are bound in the dependency function. As we reach the program point

p1 after evaluating e
p1

1 , and it is also the program point before evaluating e
p2

2 , the binding of x in w is to

the program points p1.

The (REF) rule, for the occurrence [ref ep′ ]p
′′
, creates a new location and binds it in the store sto,

to the value evaluated from ep′ . We record the dependencies from evaluating the body ep′ in w at the

program point p′′.

(REF-READ) evaluates the body ep1 to a value which must be a location ℓ, and reads the value of

ℓ in the store. The (REF-READ) rule looks up the dependencies for ℓ in w. As there could be multiple

bindings for ℓ, in w, at different program points, we use the IP⊏w′
function to get greatest binding of ℓ

with respect to the ordering ⊏w′ , and we also add the location occurrence ℓp′ to the set of locations.

Finally (REF-WRITE) tells us that we must evaluate e
p1

1 to a location ℓ and e
p2

2 to a value v, and bind ℓ
in the store sto to the value v. We pass the program point p′ and the dependency function is also updated

with a new binding for ℓ.

3 A type system for data-flow analysis

The type system for data-flow analysis that we now present is an overapproximation of the big-step

semantics.

3.1 An overview of the type system

The system assigns types, presented in Section 3.2, to occurrences given a type environment (presented

in Section 3.4) and a so-called basis (presented in Section 3.3).

As presented, the language contains local information as bindings and global information as loca-

tions. Since locations are a semantic notion, and references do not need to be bound to variables, we use

the notion of internal variables to represent locations. Internal variables are denoted by νx,νy,νz . . . ∈
IVar. We use a partition of IVar∪Var to represent aliasing. Whenever variables or internal variables

belong to the same subset in a partition, the intention is that they share the same location.

In this paper, we will not introduce polymorphism into the type system. For this reason we require

that references cannot be bound to abstractions and that every abstraction is used at most used once.

3.2 Types

The set of types Types is defined by the formation rules

T ::= (δ ,κ) | T1 → T2
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(VAR)

env ⊢
〈

xp′ ,sto,(w,⊏w), p
〉

→
〈

v,sto,(w,⊏w),(L,V ∪{xp′}), p′
〉

where env(x) = v, xp′′ = IP⊏w
(x,w), and w(xp′′) = (L,V )

(LET)

env ⊢
〈

e
p1

1 ,sto,(w,⊏w), p
〉

→
〈

v1,sto1,(w1,⊏
1
w),(L1,V1), p1

〉

env[x 7→ v1] ⊢
〈

e
p2

2 ,sto1,(w2,⊏
1
w), p1

〉

→ 〈v,sto′,(w′,⊏′
w),(L,V ), p2〉

env ⊢
〈

[

let x e
p1

1 e
p2

2

]p′

,sto,(w,⊏w), p
〉

→ 〈v,sto′,(w′,⊏′
w),(L,V ), p′〉

where w2 = w1[x
p1 7→ (L,V )]

(REF)

env ⊢
〈

ep′ ,sto,(w,⊏w), p
〉

→ 〈v,sto′,(w′,⊏′
w),(L,V ), p′〉

env ⊢

〈

[

ref ep′
]p′′

,sto,(w,⊏w), p

〉

→ 〈ℓ,sto′′,(w′′,⊏′
w),( /0, /0), p′′〉

where ℓ= next, sto′′ = sto′[next 7→ new(ℓ), ℓ 7→ v], and

w′′ = w′[ℓp′ 7→ (L,V )]

(REF-READ)

env ⊢ 〈ep1 ,sto,(w,⊏w), p〉 → 〈ℓ,sto′,(w′,⊏′
w),(L1,V1), p1〉

env ⊢
〈

[!ep1 ]p
′

,sto,(w,⊏w), p
〉

→
〈

v,sto′,(w′,⊏′
w),(L∪L1 ∪{ℓp′′},V ∪V1), p′

〉

where sto′(ℓ) = v, ℓp′′ = IP⊏′
w
(ℓ,w′), and w′(ℓp′′) = (L,V )

(REF-WRITE)

env ⊢
〈

e
p1

1 ,sto,(w,⊏w), p
〉

→
〈

ℓ,sto1,(w1,⊏
1
w),(L1,V1), p1

〉

env ⊢
〈

e
p2

2 ,sto1,(w1,⊏
1
w), p1

〉

→
〈

v,sto2,(w2,⊏
2
w),(L2,V2), p2

〉

env ⊢
〈

[

e
p1

1 := e
p2

2

]p′

,sto,(w,⊏w), p
〉

→ 〈(),sto′,(w′,⊏′
w),(L1,V1), p′〉

where sto′ = sto2[ℓ 7→ v], ℓp′ = in f
⊏2

w
ℓ,w,

w′ = w2[ℓ
p′ 7→ (L2,V2)], and ⊏

′
w=⊏

2
w ∪(p′′, p′)

Table 1: Selected rules from the semantics
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If an occurrence o has the base type (δ ,κ), the set δ is the set of occurrences that the value of o can

depend on, and κ represents alias information in the form of the set of variables and internal variables

upon which the value of o may depend. If o has type κ 6= /0, the occurrence must therefore represent a

location.

Definition 6 (Type base for aliasing). For an occurrence o, let Varo be the set of all variables found in

o and IVaro be the set of all internal variables found in o. The type base κ0 = {κ0
1 , · · · ,κ

0
n} is then a

partition of Varo ∪ IVaro, where κ0
i ∩κ0

j = /0 for all i 6= j.

For a variable, x to be an alias of an internal variable, νy, there must exist a κ0
i where x ∈ κ0

i and

νy ∈ κ0
i . This means that there can only be more than one variable in a κ0

i , if there also exists an internal

variable in κ0
i .

The arrow type is introduced to type abstractions. If either T1 or T2 in an arrow type T1 → T2 is a base

type where κ 6= /0, then the abstraction must either take a reference as input or return a reference.

Since the type system approximates the occurrences used to evaluate an occurrence, we need a notion

of combining types.

Definition 7. Let T1 and T2 be two types, then their union is defined as

T1 ∪T2 =



















































(δ ∪δ ′,κ ∪κ ′)
T1 = (δ ,κ)

T2 = (δ ′,κ ′)

(T ′
1 ∪T ′

2)→ (T ′′
1 ∪T ′′

2 )
T1 = T ′

1 → T ′′
1

;T2 = T ′
2 → T ′′

2

(δ ′∪δ ,κ ∪κ ′)
T1 = (δ ′,κ ′)

T2 = (δ ,κ)

undefined otherwise

3.3 The binding model of the type system

The semantics will let us find dependency information, and the type system must approximate these

semantic notions.

A type environment tells us the types of elements.

Definition 8 (Type Environment). A type environment Γ is a partial function Γ : VarP∪ IVarP ⇀ Types

Definition 9 (Updating a type environment). Let Γ be a type environment, let up be an element and let

T be a type. We write Γ[up : T ] to denote the type environment Γ′ where:

Γ′(yp′) =

{

Γ(yp′) if yp′ 6= up

T if yp′ = up

We also assume an ordering of program points at type level.

Definition 10 (Approximated order of program points). An approximated order of program points Π is

a pair

Π = (P,⊏Π)

where

• P is the set of program points in an occurrence,
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• ⊏Π⊆ P×P

We say that Π is a partial order if ⊏Π is a partial order.

The notion of the immediate predecessor of a u ∈ IVar∪Var at the type level is relative to a type

environment Γ and the approximated order Π.

Definition 11 (Immediate predecessor at type level).

IP⊏Π
(u,Γ) = sup{up ∈ dom(Γ) | uq ∈ dom(Γ).q ⊏Π p}

A lookup of variable up in the semantics is straightforward as its value will be unique. In the type

system, however, we need to approximate over all possible branches in an occurrence. To this end,

we consider chains wrt. our approximate order. A p-chain describes the history, or a single possible

evalution, behind an occurrence up. A set of p-chains can thus be used to describe what an internal

variable depends on.

Definition 12 (p-chains). A p-chain, denoted as Π∗
p, is a maximal chain wrt. ⊏Π whose maximal element

is p. We write Π∗
p ∈ Π, if Π∗

p is a Π-chain. For any p, we let ϒp denote the set of all p-chains in Π.

We can now define the immediate predecesor for the type system wrt. the set of p-chains. This is

done by taking the union of all p-chains for an occurrence up.

Definition 13. Let u ∈ Var∪ IVar, be either a variable or internal variable, Γ be a type environment, and

ϒp be a set of p-chains, then IPϒp
is given by:

IPϒp
(u,Γ) =

⋃

Π∗
p∈ϒp

IPΠ∗
p
(u,Γ)

3.4 The type system

We will now present the judgement and type rules for the language, that is, how we assign types to

occurrences.

Type judgements have the format

Γ,Π ⊢ ep : T

and should be read as: the occurrence ep has type T , given the dependency bindings Γ and the approxi-

mated order of program points Π.

A highlight of type rules can be found in Table 2.

(T-VAR) rule, for occurrence xp, looks up the type for x in the type environment, by finding the greatest

binding using Definition 11, and adding the occurrence xp to the type.

(T-LET-1) rule, for occurrence [let x e
p1

1 e
p2

2 ]p, creates a local binding for an internal variable, with the

type of e
p1

1 that can be used in e
p2

2 . As such, the rule assumes that the type of e
p1

1 is a base type with

alias information, i.e., κ 6= /0. The other cases, when e
p1

1 is not a base type with alias information,

are handled by the (T-LET-2) rule.

(T-CASE) rule, for occurrence [case ep ~π ~o]p
′
, is an over-approximation of all cases in the pattern match-

ing expression, by taking an union of the type of each case. Since the type of ep is used to evaluate

the pattern matching, we also add this type to the type of the pattern matching.

(T-REF-READ) rule, for occurrence [!ep]p
′
, is used to retrieve the type of references, where ep must

be a base type with alias information. Since the language contains pattern matching, there can be

multiple internal variables in κ and multiple occurrences to read from. To do the lookup, we use

IPϒp′
to look up all the p′-chains.
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(T-VAR)
Γ,Π ⊢ xp : T ⊔ ({xp}, /0)

where xp′ = u f⊏Π
(x,Γ), and Γ(xp′) = T

(T-LET-1)

Γ,Π ⊢ e
p1

1 : (δ ,κ)
Γ′,Π ⊢ e

p2

2 : T2

Γ,Π ⊢ [let x e
p1

1 e
p2

2 ]p : T2

where Γ′ = Γ[xp : (δ ,κ ∪{x})] and κ 6= /0

(T-CASE)

Γ,Π ⊢ ep : (δ ,κ)
Γ′,Π ⊢ e

pi

i : Ti (1 ≤ i ≤ |~π |)

Γ,Π ⊢ [case ep ~π ~o]p
′
: T ⊔ (δ ,κ)

where e
pi

i ∈~o and si ∈ ~π T =
⋃|~π |

i=1 Ti, and

Γ′ = Γ[xp : (δ ,κ)] if si = x

(T-REF-READ)

Γ,Π ⊢ ep : (δ ,κ)

Γ,Π ⊢ [!ep]p
′
: T ∪ (δ ∪δ ′, /0)

where



























κ 6= /0, δ ′ = {νxp′ | νx ∈ κ}, νx1, · · · ,νxn ∈ κ

{νx
p1

1 , · · · ,νx
pm

1 }= u fϒp′
(νx1,Γ), · · · ,

{νx
p′1
n , · · · ,νx

p′s
n }= u fϒp′

(νxn,Γ)

T = Γ(νx
p1

1 )∪ ·· ·∪Γ(νx
pm

1 )∪ ·· ·∪

Γ(νx
p′1
n )∪ ·· ·∪Γ(νx

p′s
n )



























Table 2: Selected rules from the type system

4 Soundness

The type system is sound in that the type of an occurrence correspond to the dependencies and the alias

information from the semantics. To show this, we will first introduce the type rules for values and then

describe relation between the semantics and the type system.

4.1 Type rules for values

In our soundness theorem and its proof, values are mentioned. We therefore state a collection of type

rules for the values presented int Section 2.2. The type rules are given in Table 3. We describe the central

ones here.

(CONSTANT) differs from the rule (T-CONST), since most occurrences can evaluate to a constant and

as such we know that its type should be a base type. Constants can depend on other occurrences;

we know that δ can be non-empty, but since constants are not locations, we also know that it

cannot contain alias information, and as such κ should be empty.

(LOCATION) types locations, and their type must be a base type. Since locations can depend on other
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(CONSTANT)
Γ,Π ⊢ c : (δ , /0)

(LOCATION)
Γ,Π ⊢ ℓ : (δ ,κ)

Where κ 6= /0

(CLOSURE)

Γ,Π ⊢ env

Γ[xp : T1],Π ⊢ ep′ : T2

Γ,Π ⊢
〈

xp,ep′ ,env
〉p′′

: T1 → T2

Table 3: Type rules for values

occurrences, we know that δ can be non-empty. As locations can contains alias information, and

that a location is considered to always be an alias to itself, we know that κ can never be empty, as

it should always contain an internal variable.

(CLOSURE) type rule represents abstraction, and as such we know that it should have the abstraction

type, T1 → T2, where we need to make an assumption about the argument type T1. Since a closure

contains the parameter, body, and the environment for an abstraction from when it were declared,

we also need to handle those part in the type rule.

The components of the closure are handled in the premises, where the environment must be well-

typed. We also type the body of the abstraction in a type environment updated with the type T1 of

its parameter.

As closures and recursive closures contain an environment, we also need to define what it means to

be a well-typed environment env wrt. a type environment: Every variable bound in env is bound to a

value that is well-typed wrt. Γ.

Definition 14 (Well-typed environments). Let v1, · · · ,vn be values such that Γ,Π ⊢ vi : Ti, for 1 ≤ i ≤ n.

Let env be an environment given by env = [x1 7→ v1, · · · ,xn 7→ vn], Γ be a type environment, and Π be the

approximated order of program points. We say that:

Γ,Π ⊢ env

iff

• For all xi ∈ dom(env) then ∃x
p
i ∈ dom(Γ) where Γ(xp

i ) = Ti then

Γ,Π ⊢ env(xi) : Ti

4.2 Notions of agreement

As our soundness theorem relates the type system to the semantics, we must define what it means for

instances of the binding models of the semantics and the type system to agree.

First we define what it means for a set of occurrences δ to faithfully represent the information from

a dependency pair (L,V ) wrt. a environment env.
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Definition 15 (Dependency agreement). We say that:

(env,(L,V )) |= δ

if

• V ⊆ δ ,

• For all ℓp ∈ L where envℓ 6= /0, we then have env−1ℓ⊆ κ0
i for some κ0

i ∈ δ

• For all ℓp ∈ L where envℓ = /0 then there exists a κ0
i ∈ δ such that κ0

i ⊆ IVar

Since types can contain alias information κ , we also need to define what it means for the information

in κ to be known to an environment env. If there exists alias information in env, then there exists an alias

base κ0
i ∈ κ0 such that the alias information known to env is included in that of κ0

i , and there exists a

νx ∈ κ , such that νx ∈ κ0
i . If there is no currently known alias information, we simply check that there

exists a corresponding internal variable, that is part of an alias base.

Definition 16 (Alias agreement). We say that

(env,(w,⊏w), ℓ) |= (Γ,κ)

if

• ∃ℓp ∈ dom(w).νxp ∈ dom(Γ)⇒ νx ∈ κ

• env−1(ℓ) 6= /0.∃κ0
i ∈ κ0 ⇒ (env−1(ℓ)⊆ κ0

i )∧ (∃ℓp ∈ dom(w).νxp ∈ dom(Γ)⇒ νx ∈ κ0
i ∧νx ∈ κ)

• env−1(ℓ) = /0.∃κ0
i ∈ κ0 ⇒ (∃ℓp ∈ dom(w).νxp ∈ dom(Γ)⇒ νx ∈ κ0

i ∧νx ∈ κ)

If a value v is a location, then we check that both the set of occurrences agrees with the dependency

pair, presented in Definition 15, and check if the alias information agrees with the semantics, Defini-

tion 16. If the value v is not a location, then its type can either be an abstraction type or a base type.

For the base type, we check that the agreement between the set of occurrences and the dependency pair

agrees. If the type is an abstraction, then we check that T2 agrees with the binding model. We are only

concerned about the return type T2 for abstractions, since if the argument parameter is used in the body

of the abstraction, then the dependencies would already be part of the return type.

Definition 17 (Type agreement). We say that

(env,v,(w,⊏w),(L,V )) |= (Γ,T )

iff

• v 6= ℓ and T = T1 → T2:

– (env,v,(w,⊏w),(L,V )) |= (Γ,T2)

• v 6= ℓ and T = (δ ,κ):

– (env,(L,V )) |= δ

• v = ℓ then T = (δ ,κ) where:

– (env,(L,V )) |= δ

– (env,(w,⊏w),v) |= (Γ,κ)

Definition 18 (Environment agreement). We say that (env,sto,(w,⊏w)) |= (Γ,Π) if
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1. ∀x ∈ dom(env).(∃xp ∈ dom(w))∧ (xp ∈ dom(w)⇒∃xp ∈ dom(Γ))

2. ∀xp ∈ dom(w).xp ∈ dom(Γ)⇒ env(x) = v∧w(xp) = (L,V )∧Γ(xp) = T.
(env,v,(w,⊏w),(L,V )) |= (Γ,T )

3. ∀ℓ ∈ dom(sto).(∃ℓp ∈ dom(w))∧ (∃νx.∀p ∈ {p′ | ℓp′ ∈ dom(w)} ⇒
νxp ∈ dom(Γ))

4. ∀ℓp ∈ dom(w).∃νxp ∈ dom(Γ)⇒ w(ℓp) = (L,V )∧Γ(νxp) =
T.(env, ℓ,(w,⊏w),(L,V )) |= T

5. if p1 ⊏w p2 then p1 ⊏Π p2

6. ∀ℓp ∈ dom(w).∃νxp ∈ dom(Γ)⇒∃p′ ∈ P.IP⊏w
(ℓ,w) ∈ IPϒp′

(νx,Γ)

• The agreement for local information only relates the information currently known by env, and that

the information known by w and Γ agrees, in respect to Definition 17. This is ensured by (1) and

(2).

• We similarly handle agreement for the global information known, which is ensured by (3) and (4).

Since Γ contains the global information for references, we require that there exists a corresponding

internal variable to the currently known locations, by comparing them by program points. We

also ensure that the dependency information for a location occurrence agrees with the type of a

corresponding internal variable occurrence as given by Definition 17.

• We also need to ensure that Π is a good approximation of the order ⊏w and the greatest binding

function for p-chains ensures that we always get the necessary reference occurrences. (5) ensures

that the ordering information ⊏w agrees with that of Π.

• We finally need to ensure that for every location known, there exists a corresponding internal

variable where, getting the greatest binding of this occurrence, ℓp, there exists a program point

p′, such that looking up all greatest bindings for the p′-chain, there exists an internal variable

occurrence that corresponds to ℓp. This is captured by (6).

Lemma 1 (History). Suppose ep is an occurrence, that

env ⊢
〈

ep,sto,(w,⊏w), p′
〉

→
〈

v,sto′,(w′,⊏′
w),(L,V ), p′′

〉

and xp1 ∈ dom(w′)\dom(w). Then x /∈ f v(ep)

Lemma 2 (Strengthening). If Γ[xp′ : T ′],Π ⊢ ep : T and x /∈ f v(ep), then Γ,Π ⊢ ep : T

4.3 The soundness theorem

We can now present the soundness theorem for our type system.

Theorem 1 (Soundness). Suppose ep′ is an occurrence where

• env ⊢
〈

ep′ ,sto,(w,⊏w), p
〉

→ 〈v,sto′,(w′,⊏′
w),(L,V ), p′′〉,

• Γ,Π ⊢ ep′ : T

• Γ,Π ⊢ env

• (env,sto,(w,⊏w)) |= (Γ,Π)

Then we have that
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• Γ,Π ⊢ v : T

• (env,sto′,(w′,⊏′
w)) |= (Γ,Π)

• (env,(w′,⊏′
w),v,(L,V )) |= (Γ,T )

Proof. (Outline) The proof proceeds by induction on the height of the derivation tree for

env ⊢
〈

ep′ ,sto,ψ , p
〉

→
〈

v,sto′,ψ ′,(L,V ), p′′
〉

We will only show the proof of four rules here, for (VAR), (CASE), (REF), and (REF-WRITE).

(VAR) Here ep′ = xp′ , where

(VAR)

env ⊢
〈

xp′ ,sto,(w,⊑w), p
〉

→
〈

v,sto,(w,⊑w),(L,V ∪{xp′}), p′
〉

Where env(x) = v, xp′′ = u f⊑w
(x,w), and w(xp′′) = (L,V )

And from our assumptions, we have:

• Γ,Π ⊢ xp′ : T

• Γ,Π ⊢ env

• (env,sto,(w,⊑w)) |= (Γ,Π)

To type the occurrence xp′ we use the rule (T-VAR):

(T-VAR)

Γ,Π ⊢ xp : T ⊔ ({xp}, /0)

Where xp′′ = u f⊑Π
(x,Γ), Γ(xp′′) = T .

We need to show that 1) Γ,Π ⊢ c : T , 2) (env,sto′ ,(w′,⊑′
w)) |= (Γ,Π), and

3) (env,v,(w′ ,⊑′
w),(L,V )) |= (Γ,T ).

1) Since, from our assumption, we know that Γ,Π ⊢ env, we can then conclude that Γ,Π ⊢ v : T

2) Since there are no updates to sto and (w,⊑w), we then know that (env,sto,(w,⊑w)) |= (Γ,Π)
holds after an evaluation.

3) Since there are no updates to sto′ and (w′,⊑′
w), since (L,V ) = w(xp′′) and since T = Γ(xp′′), we

then know that (env,v,(w′,⊑′
w),(L,V )) |= (Γ,T ). Due to Definition 17 we can conclude that:

(env,v,(w′ ,⊑′
w),(L,V ∪{xp′′})) |= (Γ,T ⊔{xp′′})

(CASE) Here ep′ =
[

case ep′′ π̃ õ
]p′

, where
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(CASE)

env ⊢
〈

ep′′ ,sto,(w,⊑w), p
〉

→ 〈ve,sto
′′,(w′′,⊑′′

w),(L
′′,V ′′), p′′〉

env[env′ ] ⊢
〈

e
p j

j ,sto
′′,(w′′′,⊑′′

w), p′′
〉

→ 〈v,sto′,(w′,⊑′
w),(L

′,V ′), pi〉

env ⊢

〈

[

case ep′′ π̃ õ
]p′

,sto,(w,⊑w), p

〉

→ 〈v,sto′,(w′,⊑′
w),(L,V ), p′〉

Where match(ve,si) =⊥ for all 1 ≤ u < j ≤ |π̃|, match(ve,s j) = env′, and

w′′′ = w′′[x 7→ (L′′,V ′′)] if env′ = [x 7→ ve] else w′′′ = w′′

And from our assumptions, we have that:

• Γ,Π ⊢
[

case ep′′ π̃ õ
]p′

: T ,

• Γ,Π ⊢ env

• (env,sto,(w,⊑w)) |= (Γ,Π),

To type [case ep′′ π̃ õ]p
′

we need to use the (T-CASE) rule, where we have:

(T-CASE)

Γ,Π ⊢ ep : (δ ,κ)
Γ′,Π ⊢ e

pi

i : Ti (1 ≤ i ≤ |π̃ |)

Γ,Π ⊢ [case ep π̃ õ]p
′
: T

Where T = T ′⊔ (δ ,κ), T ′ =
⋃|π̃ |

i=1 Ti, e
pi

i ∈ õ and si ∈ π̃ , and Γ′ = Γ[xp : (δ ,κ)] if si = x.

We must show that 1) Γ,Π ⊢ v : T , 2) (env,sto′ ,(w′,⊑′
w)) |= (Γ,Π), and

3) (env,v,(w′ ,⊑′
w),(L,V )) |= (Γ,T ).

To conclude, we first need to show for the premises, where due to our assumption and from the

first premise, we can use the induction hypothesis to get:

• Γ,Π ⊢ ve : (δ ,κ),

• (env,sto′′ ,(w′′,⊑′′
w)) |= (Γ,Π),

• (env,v,(w′′,⊑′′
w),(L,V )) |= (Γ,(δ ,κ))

Since in the rule (T-CASE) we take the union of all patterns, we can then from the second premise:

• Γ,Π ⊢ v : Tj,

• (env,sto′,(w′,⊑′
w)) |= (Γ,Π),

• (env,v,(w′,⊑′
w),(L,V )) |= (Γ,Tj)

If we have a) Γ′,Π ⊢ env[env′ ] and b) (env[env′ ],sto′′,(w′′′,⊏′′
w)) |= (Γ′,Π), we can then conclude

the second premise by our induction hypothesis.

a) We know that either we have Γ′ = Γ[x 7→ (δ ,κ)] and env[x 7→ ve] if s j = x, or Γ′ = Γ and env if

s j 6= x.

• if s j 6= x: Then we have Γ,Π ⊢ env

• if s j = x: Then we have Γ[x 7→ (δ ,κ)],Π ⊢ env[x 7→ ve], which hold due to the first

premise.

b) We know that either we have Γ′ = Γ[x 7→ (δ ,κ)] and env[x 7→ ve] if s j = x, or Γ′ = Γ and env if

s j 6= x.
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• if s j 6= x: then we have (env,sto′′ ,(w′′,⊏′′
w)) |= (Γ,Π).

• if s j = x: then (env[x 7→ ve],sto
′′,(w′′′,⊏′′

w)) |= (Γ[x 7→ (δ ,κ)],Π), since we know that

(env,sto′′ ,(w′′,⊏′′
w)) |= (Γ,Π), we only need to show for x. Since we have x ∈ dom(env),

xp j ∈ dom(w′′′) and xp j ∈ dom(Γ′) and due to the first premise, we know that (env[x 7→
ve],sto

′′,(w′′′,⊏′′
w)) |= (Γ[x 7→ (δ ,κ)],Π).

Based on a) and b) we can then conclude:

1) Since Γ′,Π⊢ v : Tj, then we also must have Γ′,Π⊢ v : T , since T only contains more information

than Tj.

2) By the second premise, Lemma 1, and Lemma 2, we can then get

(env,sto′ ,(w′,⊑′
w)) |= (Γ,Π)

3) Due to 1), 2), a), and b) we can then conclude that

(env,v,(w′ ,⊑′
w),(L,V )) |= (Γ,T )

(REF-READ) Here ep′ = [!ep1

1 ]p
′
, where

(REF-READ)

env ⊢ 〈ep1 ,sto,(w,⊑w), p〉 → 〈ℓ,sto′,(w′,⊑′
w),(L1,V1), p1〉

env ⊢
〈

[!ep1 ]p
′

,sto,(w,⊑w), p
〉

→
〈

v,sto′,(w′,⊑′
w),(L∪L1 ∪{ℓp′′},V ∪V1), p′

〉

Where sto′(ℓ) = v, ℓp′′ = u f⊑′
w
(ℓ,w′), and w′(ℓp′′) = (L,V )

And from our assumptions, we have that:

• Γ,Π ⊢ [!ep1

1 ]p
′
: T ,

• Γ;Π ⊢ env

• (env,sto,(w,⊑w)) |= (Γ,Π),

To type [!ep1

1 ]p
′

we need to use the (T-REF-READ) rule, where we have:

(T-REF-READ)

Γ,Π ⊢ ep : (δ ,κ)

Γ,Π ⊢ [!ep]p
′
: T ⊔ (δ ∪δ ′, /0)

Where κ 6= /0, δ ′ = {νxp′ | νx ∈ κ}, νx1, · · · ,νxn ∈ κ .

{νx
p1

1 , · · · ,νx
pm

1 }= u fϒp′
(νx1,Γ), · · · ,{νx

p′1
n , · · · ,νx

p′s
n }= u fϒp′

(νxn,Γ), and

T = Γ(νx
p1

1 )∪ ·· ·∪Γ(νx
pm

1 )∪ ·· ·∪Γ(νx
p′1
n )∪ ·· ·∪Γ(νx

p′s
n ).

We must show that (1) Γ,Π ⊢ v : T , (2) (env,sto′ ,(w′,⊑′
w)) |= (Γ,Π), and

(3) (env,v,(w′ ,⊑′
w),(L,V )) |= (Γ,T ).

To conclude, we first need to show for the premises, where due to our assumption and from the

premise, we can use the induction hypothesis to get:

• Γ,Π ⊢ ℓ : (δ ,κ),

• (env,sto′,(w′,⊑′
w)) |= (Γ,Π),
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• (env,v,(w′,⊑′
w),(L,V )) |= (Γ,(δ ′,κ ′))

Due to (env,sto′ ,(w′,⊑′
w)) |= (Γ,Π) and (env,v,(w′,⊑′

w),(L,V )) |= (Γ,(δ ′,κ ′)), and due to our

assumptions, we can conclude that:

(1) Γ,Π ⊢ v : T ,

(2) (env,sto′ ,(w′,⊑′
w)) |= (Γ,Π),

(3) (env,v,(w′ ,⊑′
w),(L∪{ℓp′′},V )) |= (Γ,T ⊔ (δ ∪δ ′, /0))

5 An implementation

We have made an implementation in the Rust programming language. It includes a parser, and evaluator,

a type checker, and an approximator for an order of programs points. The approximator is based on

the given type system, where it is derived from the structure of the type system. The implementation is

hosted on Github and can be found at [4].

6 Conclusion

We have introduced a type system for local data-flow analysis for a subset of ReScript that includes

functional as well as imperative feature, notably that of references.

The type system provides a safe approximation of the data flow in an expression. This also allows us

to reason about security properties. In particular, the notion of non-interference introduced by Goguen

and Meseguer [2] and studied in information-flow analysis can be understood in this setting. A program

satisfies the non-interference property if the variables classified as low cannot be affected by variables

classified as high. This corresponds to the absence of chains in Π in which low occurrences appear below

high occurrences. A topic of further work is to understand the relative expressive power of our system

wrt. the systems of Volpano and Smith [11, 10].

On the other hand, the system contains slack. In particular, the type system is monomorphic. This

means that a locally declared abstraction cannot be used at multiple places, even though this may be safe,

as this would mean it would contain occurrences at multiple program points. Moreover, abstractions

cannot be bound to references.

Polymorphism for the base type (δ ,κ) would allow abstractions to be used multiple times in an

occurrence. Consider as an example

( l e t x ( λ y . y1 ) 2 ( x3 ( x4 15 ) 6 ) 7 ) 8

Occurrences such as this would now become typable, since when typing the applications, the type of

the argument changes, as the occurrence x4 is present in the second application.

The way references are defined currently in the type system, they cannot be bound to abstractions. If

this should be introduced a couple of questions need to be evaluated. First there should be looked into

base type polymorphism, the second would be to look into type polymorphism, i.e., allow a reference to

be bound to an arrow type at one point and a base type at another.

A next step is to devise a type inference algorithm for the type system. An inference algorithm must

compute an approximated order of program points, a proper κ0 and the types for abstractions, that is,

find all the places where the parameter of an abstraction should be bound. We conjecture that such a type

inference algorithm for our system will be able to compute the information found in an interative data

flow analysis.



132 A Type System for Data Flow and Alias Analysis in ReScript

References

[1] ReScript Association (2020): BuckleScript and Reason Rebranding. Available at

https://rescript-lang.org/blog/bucklescript-is-rebranding.

[2] J. A. Goguen & J. Meseguer (1982): Security Policies and Security Models. In: 1982 IEEE Symposium on

Security and Privacy, pp. 11–11, doi:10.1109/SP.1982.10014.

[3] Gary A. Kildall (1973): A unified approach to global program optimization. In: Proceedings of the 1st Annual

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’73, Association for

Computing Machinery, New York, NY, USA, p. 194–206, doi:10.1145/512927.512945.

[4] Nicky Ask Lund (2023): Implementation of dataflow analysis. Available at

https://github.com/loevendallund/dataflow.

[5] Nicky Ask Lund & Hans Hüttel (2024): A type system for data flow and alias analysis in ReScript. Technical

Report, Aalborg University. Available at http://arxiv.org/abs/2408.11954.

[6] Markus Mohnen (2002): A Graph-Free Approach to Data-Flow Analysis. In: Proceedings of the 11th In-

ternational Conference on Compiler Construction, CC ’02, Springer-Verlag, Berlin, Heidelberg, p. 46–61.

Available at https://doi.org/10.1007/3-540-45937-5_6.

[7] Greg Morrisett, Amal J. Ahmed & Matthew Fluet (2005): L3: A Linear Language with Locations. In Pawel

Urzyczyn, editor: Typed Lambda Calculi and Applications, 7th International Conference, TLCA 2005, Nara,

Japan, April 21-23, 2005, Proceedings, Lecture Notes in Computer Science 3461, Springer, pp. 293–307,

doi:10.1007/11417170_22.

[8] Barbara G. Ryder & Marvin C. Paull (1988): Incremental data-flow analysis algorithms. ACM Trans. Pro-

gram. Lang. Syst. 10(1), p. 1–50, doi:10.1145/42192.42193.

[9] Frederick Smith, David Walker & Greg Morrisett (2000): Alias Types. In Gert Smolka, editor:

Programming Languages and Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 366–381,

doi:10.1007/3-540-46425-5_24.

[10] D. Volpano & G. Smith (1997): Eliminating covert flows with minimum typings. In: Proceedings 10th

Computer Security Foundations Workshop, pp. 156–168, doi:10.1109/CSFW.1997.596807.

[11] Dennis M. Volpano & Geoffrey Smith (1997): A Type-Based Approach to Program Security. In:

Proceedings of the 7th International Joint Conference CAAP/FASE on Theory and Practice of Soft-

ware Development, TAPSOFT ’97, Springer-Verlag, Berlin, Heidelberg, p. 607–621. Available at

https://doi.org/10.1007/BFb0030629.

https://rescript-lang.org/blog/bucklescript-is-rebranding
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/512927.512945
https://github.com/loevendallund/dataflow
http://arxiv.org/abs/2408.11954
https://doi.org/10.1007/3-540-45937-5_6
https://doi.org/10.1007/11417170_22
https://doi.org/10.1145/42192.42193
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1109/CSFW.1997.596807
https://doi.org/10.1007/BFb0030629


M. Marin, L. Leuştean (Eds.):
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In this paper we present a formalization of Intuitionistic Propositional Logic in the Lean proof assis-

tant. Our approach focuses on verifying two completeness proofs for the studied logical system, as

well as exploring the relation between the two analyzed semantical paradigms - Kripke and algebraic.

In addition, we prove a large number of theorems and derived deduction rules.

1 Introduction

We formalize Intuitionistic Propositional Logic (IPL) using the Lean interactive theorem prover [4]. Our

main goal is verifying the soundness and the strong completeness of IPL, with respect to both the Kripke

and the Heyting algebras semantics. The language we work with has falsity, conjunction, disjunction and

implication as primitive connectives and for syntactical inference we use the Hilbert-style proof system

introduced by Gödel in [9].

For the formalization we present in this paper, we chose the Lean proof assistant [4]. An evidence

of Lean’s proving power and versatility is the Mathlib library [1], maintained by the Lean community.

This work aligns with the effort of the Mathlib community to encode mathematical knowledge, and

particularly logical systems, in Lean. The underlying theory of Lean is based on a version of dependent

type theory, known as the calculus of inductive constructions [3]. Thus, type-checking is the mechanism

which assists the user in their approach to prove mathematical statements, either by directly constructing

proof terms or by using Lean’s so-called tactic-mode.

In the following, we describe the main stages of the implementation and motivate our main design

choices. Sections 3.1 and 3.2 describe the formalization of the language and proof-system of IPL. The

Kripke completeness proof is based on the so-called canonical model, whose construction relies on the

notion of disjunctive theory. Some results about consistent and complete pairs, presented in Section 3.3,

are also essential in the flow of this first completeness theorem. In the upcoming Section 3.4, we intro-

duce the Kripke semantics, then in Section 3.5 we present the main steps of the completeness formalized

proof with respect to it. Similarly, Section 3.6 proceeds by defining the necessary Heyting algebras no-

tions, establishes the algebraic semantics and concludes by proving the second completeness theorem

and establishing the equivalence between the validity notions. Our presentation is inspired by the text-

books of Mints [11], Fitting [5] and Troelstra [2], and the lecture notes of Kuznetsov[10] and Georgescu

[7, 6]. All the detailed proofs can be found in my Bachelor’s thesis, which is available online at [13].

To the best of our knowledge, the only proof of completeness for IPL formally-verified in Lean is

due to Guo, Chen and Bentzen [8]. However, the novelty of our approach consists in:

(i) using a different Hilbert-style proof system;

(ii) proving a large collection of theorems and derived deduction rules;

(iii) formalizing the algebraic semantics of IPL and proving a second completeness theorem, with

respect to it;

http://dx.doi.org/10.4204/EPTCS.410.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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(iv) implementing a semantic proof of the equivalence between algebraic and Kripke validity;

(v) the manner we dealt with the countability of the set of formulas, which we consider simpler than

the method in [8].

2 On the formalization

The Lean code is structured in 8 files, which we briefly describe in the following. First, we have the

Formula.lean file, which contains the definition of the language (Section 3.1), as well as the proof of the

countability of the Formula type (Section 3.3). Then, the Syntax.lean file proceeds by formalizing the

definition of Proo f (Section 3.2). It includes a large collection of theorems and derived deduction rules,

as well as the deduction theorem and some utilitary lemmas. The Semantics.lean file contains the defini-

tion of the Kripke model, and the semantical definitions we detail in Section 3.4. In the Soundness.lean
file, the interested reader can find the formalization of the soundness theorem (whose statement we men-

tion in Section 3.5.1), along with an auxiliary lemma used in its proof. Then, CompletenessListUtils.lean
groups together some utilitary lemmas about Finsets of formulas, which are useful when proving some

completeness-related theorems. The Kripke completeness theorem, presented in Section 3.5.2, preceded

by the definitions and results from Section 3.3, are formalized in the Completeness.lean file. Finally,

the Heyting algebras notions and necessary results are formalized in the HeytingAlgebraUtils.lean file,

while the algebraic semantics, culminating with its associated completeness theorem and the equivalence

between the validity notions can be found in HeytingAlgebraSemantics.lean.

Fragments of Lean proofs will be included in the presentation only if we consider they contain worth-

mentioning technical aspects, or, in some cases, in order to sketch the key proof-steps. The full source

code is almost 3300 lines long and is available online in [14].

3 Intuitionistic Propositional Logic

In this section, we proceed to describe the main aspects of our formalization. For full theoretical details

of the results and proofs, the interested reader may refer to [13].

3.1 Language

We first formalize the countable set of propositional variables, as a wrapper over the Nat type. Structures

are used to define non-recursive inductive data types, containing only one constructor. And this is also

the case here: we can identify any propositional variable with a natural number, so it is convenient to

define the Var type as a structure with a single field, specifying the index of the variable:

structure Var where

val : Nat

We work with a language containing falsity (⊥), conjunction (∧), disjunction (∨) and implication (→)

as primitive logical connectives. Thus, it is natural to define formulas by means of an inductive type, in

which the first non-recursive constructor uses the above defined structure type and simply encapsulates

it in a Formula term, the second is meant to construct falsity, while the following recursive constructors

correspond each to one of the primitive connectives:

inductive Formula where

| var : Var → Formula
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| bottom : Formula

| and : Formula → Formula → Formula

| or : Formula → Formula → Formula

| implication : Formula → Formula → Formula

For readability reasons, we introduce the standard Unicode symbol for falsity and define infix notations

for the binary connectives, which are much more convenient to use than the S-expressions in which Lean

displays the constructors by default. Additionally, we define the derived connectives for equivalence,

negation and truth, along with their standard notations:

notation "⊥" => bottom

infixl:60 " ∧∧ " => and

infixl:60 " ∨∨ " => or

infixr:50 (priority := high) " ⇒ " => implication

def equivalence (ϕ ψ : Formula) := (ϕ ⇒ ψ) ∧∧ (ψ ⇒ ϕ)
infix:40 " ⇔ " => equivalence

def negation (ϕ : Formula) : Formula := ϕ ⇒ ⊥
prefix:70 " ∼ " => negation

def top : Formula := ∼⊥
notation " ⊤ " => top

3.2 Proof system

In this formalization, we adhere to the Hilbert-style proof system for IPL introduced by Gödel in [9]. We

define this using again an inductive type, with constructors for each axiom and deduction rule:

inductive Proof (Γ : Set Formula) : Formula → Type where

| premise {ϕ} : ϕ ∈ Γ → Proof Γ ϕ
| contractionDisj {ϕ} : Proof Γ (ϕ ∨∨ ϕ ⇒ ϕ)
| contractionConj {ϕ} : Proof Γ (ϕ ⇒ ϕ ∧∧ ϕ)
| weakeningDisj {ϕ ψ} : Proof Γ (ϕ ⇒ ϕ ∨∨ ψ)

| weakeningConj {ϕ ψ} : Proof Γ (ϕ ∧∧ ψ ⇒ ϕ)
| permutationDisj {ϕ ψ} : Proof Γ (ϕ ∨∨ ψ ⇒ ψ ∨∨ ϕ)
| permutationConj {ϕ ψ} : Proof Γ (ϕ ∧∧ ψ ⇒ ψ ∧∧ ϕ)
| exfalso {ϕ} : Proof Γ (⊥ ⇒ ϕ)
| modusPonens {ϕ ψ} : Proof Γ ϕ → Proof Γ (ϕ ⇒ ψ) → Proof Γ ψ
| syllogism {ϕ ψ χ} : Proof Γ(ϕ ⇒ ψ) → Proof Γ(ψ ⇒ χ) → Proof Γ(ϕ ⇒ χ)
| exportation {ϕ ψ χ} : Proof Γ (ϕ ∧∧ ψ ⇒ χ) → Proof Γ (ϕ ⇒ ψ ⇒ χ)
| importation {ϕ ψ χ} : Proof Γ (ϕ ⇒ ψ ⇒ χ) → Proof Γ (ϕ ∧∧ ψ ⇒ χ)
| expansion {ϕ ψ χ} : Proof Γ (ϕ ⇒ ψ) → Proof Γ (χ ∨∨ ϕ ⇒ χ ∨∨ ψ)

The notion of Γ-theorem is defined as usual and we denote this by Γ ⊢ ϕ . In Lean, we introduce this

notation, as follows:

infix:25 " ⊢ " => Proof

The above definition of Proo f generates an elimination rule for this type, which provides us with the

formalized mechanisms of the recursion and induction principles on proof terms.

Below we provide an example of how a pen-and-paper formal proof of a derived deduction rule can be
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transposed into a mechanized Lean proof:

(1) Γ ⊢ ϕ ∧ψ→ ϕ (WEAKENING)

(2) Γ ⊢ ϕ → ϕ ∨ γ (WEAKENING)

(3) Γ ⊢ ϕ ∧ψ→ ϕ ∨ γ (SYLLOGISM): (1), (2)

def disjOfAndElimLeft : Γ ⊢ ϕ ∧∧ ψ ⇒ ϕ ∨∨ γ :=

syllogism weakeningConj weakeningDisj

Note that, in the reverse-Hilbert formalized proof, we don’t need to pass them explicitly, when construct-

ing the proof term, as the arguments of the constructors in the Proo f type are implicit, so the Lean kernel

will synthesize them from the context.

3.3 Disjunctive theories, consistent and complete pairs

These notions of disjunctive theories, consistent and complete pairs, and some results regarding them

are essential in the Kripke completeness proof for IPL, as we will see in Section 3.5.2. Let us recall the

definitions of these notions, which can be consulted in [10]. A set of formulas is said to be a disjunctive

theory if it is deductively closed (Γ ⊢ ϕ implies ϕ ∈ Γ), consistent (Γ 0 ⊥) and disjunctive (Γ ⊢ ϕ ∨ψ

implies Γ ⊢ ϕ or Γ ⊢ ψ). Then, a pair of sets of formulas (Γ,∆) is called consistent if there are no

G1, . . . ,Gn ∈ Γ and D1, . . . ,Dm ∈ ∆, such that ⊢ G1 ∧ . . .∧Gn → D1 ∨ . . .∨Dm. Finally, we say that a

consistent pair is complete, if it is a partition of the set of formulas.

def dedClosed {Γ : Set Formula} := ∀ (ϕ : Formula), Γ ⊢ ϕ → ϕ ∈ Γ

def consistent {Γ : Set Formula} := Γ ⊢ ⊥ → False

def disjunctive {Γ : Set Formula} :=

∀ (ϕ ψ : Formula), Γ ⊢ ϕ ∨∨ ψ → Sum (Γ ⊢ ϕ) (Γ ⊢ ψ)

def disjunctiveTheory {Γ : Set Formula} :=

@dedClosed Γ /\ @consistent Γ /\ Nonempty (@disjunctive Γ)

def consistentPair {Γ ∆ : Set Formula} :=

∀ (Φ Ω : Finset Formula), Φ.toSet ⊆ Γ → Ω.toSet ⊆ ∆ →
( /0 ⊢ Φ.toList.foldr Formula.and (∼⊥) ⇒ Ω.toList.foldr Formula.or ⊥ →
False)

def completePair {Γ ∆ : Set Formula} :=

@consistentPair Γ ∆ /\ ∀ (ϕ : Formula),(ϕ ∈ Γ /\ ϕ /∈ ∆) ∨ (ϕ ∈ ∆ /\

ϕ /∈ Γ)

Below we give the formalized statement of the lemma claiming that given a consistent pair, any formula

can be added to one of the sets in the pair, preserving the consistency:

lemma add_preserves_cons :

@consistentPair Γ ∆ → ∀ (ϕ : Formula), @consistentPair ({ϕ} ∪ Γ) ∆ ∨
@consistentPair Γ ({ϕ} ∪ ∆)

The proof of the above lemma follows by reductio ad absurdum and it requires a syntactical derivation,

but it doesn’t give rise to any technical difficulties, so we do not present it here.
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Then, to prove the essential consistent_incl_complete lemma, stating that any consistent pair can be

component-wise included in a complete one, we define an indexed family of formula-set pairs, thus:

def family (nf : Nat → Formula) (n : Nat) : Set Formula × Set Formula :=

match n with

| .zero => @add_formula_to_pair Γ ∆ (nf 0)

| .succ n => @add_formula_to_pair (family nf n).fst (family nf n).snd

(nf (n + 1))

To have access to an enumeration of formulas, we pass as the first argument a function which assigns, to

any natural number, a formula. Then, we inductively build the family, by adding the formulas to one of

the sets in the pair, whilst preserving the consistency. Without loss of generality, we define the function

to add the formula to the first set in the pair, if possible:

def add_formula_to_pair (ϕ : Formula) : Set Formula × Set Formula :=

if @consistentPair ({ϕ} ∪ Γ) ∆ then (({ϕ} ∪ Γ), ∆)

else (Γ, {ϕ} ∪ ∆)

By the add_preserves_cons lemma previously presented, it follows easily that applying the above de-

fined add_ f ormula_to_pair function repeatedly, starting from a consistent pair, we preserve the consis-

tency of the obtained pairs.

The enumeration of formulas is not required to be bijective, a surjection from Nat to Formula is sufficient

in this case, as we don’t have any restriction for adding the formulas only once. Classically, the existence

of an injective function from a type α to a type β gives evidence that there is a surjection from β to α .

Hence, we define an injective function from Formula to Nat.
To construct the injection, we use Cantor’s pairing function, which we multiply by two, for ease of

formalization. For a theretical presentation of Cantor’s encoding, refer to Section 1.3.9 in [2].

def pairing (x y : N) := (x + y) * (x + y + 1) + 2 * x

Then, we associate a numerical identifier to any connective symbol and encode formulas into natural

numbers by recursively applying the pairing function on the structure of the formula, as follows:

def encode_form : Formula → N

| var v => pairing 0 (v.val + 1)

| bottom => 0

| ϕ ∧∧ ψ => pairing (pairing (encode_form ϕ) 1) (encode_form ψ)

| ϕ ∨∨ ψ => pairing (pairing (encode_form ϕ) 2) (encode_form ψ)

| ϕ ⇒ ψ => pairing (pairing (encode_form ϕ) 3) (encode_form ψ)

After proving the injectivity of our encoding function, we are able to define an instance of Countable for

our Formula type. The Mathlib definition of the Countable type-class is as follows:

class Countable (α : Sort u) : Prop where

exists_injective_nat’ : ∃ f : α → N, Injective f

So we immediately define the Countable instance for the Formula type, based on the proof of the en-

coding’s injectivity:

instance : Countable Formula := inject_Form.countable

Now, having the surjective enumeration at hand, we can get a step closer to the final construction of the

complete pair which includes the initial consistent pair component-wise. We prove that any formula ϕ is
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contained in one of the sets of the pair with index f n(ϕ), where by f n we denote the injective encoding

of formulas into natural numbers:

lemma vp_in_Γi∆i (ϕ : Formula) (fn : Formula → Nat) (fn_inj : fn.Injective)

(nf : Nat → Formula) (nf_inv : nf = fn.invFun) :

ϕ ∈ (@family Γ ∆ nf (fn ϕ)).fst \/ ϕ ∈ (@family Γ ∆ nf (fn ϕ)).snd

In Mathlib, the inverse of a function is noncomputably defined as follows:

noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) :

β → α :=

fun y 7→ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α

So this is why we can count on this inverse for any function, regardless of its bijectivity. Notice also that

the injectivity of f n gives evidence of invFun being the so-called le f t− inverse.

It is also crucial to prove that the family we defined is increasing:

lemma increasing_family {nf : Nat → Formula} (i j : Nat) : i <= j →
(@family Γ ∆ nf i).fst ⊆ (@family Γ ∆ nf j).fst /\

(@family Γ ∆ nf i).snd ⊆ (@family Γ ∆ nf j).snd

Next, we define the component-wise union of the indexed pair-family:

def consistent_family_union (_ : @consistentPair Γ ∆) (nf : Nat → Formula) :

Set Formula × Set Formula :=

({ϕ | ∃ i : Nat, ϕ ∈ (@family Γ ∆ nf i).fst},

{ϕ | ∃ i : Nat, ϕ ∈ (@family Γ ∆ nf i).snd})

This is finally the witness we make use of when proving the existence of a complete pair, component-

wise including our initial consistent one. Of course, before using the family union this way, we have to

give evidence that it is indeed a partition of the set of formulas. The increasing property is crucial in

achieving this last-mentioned goal.

Finally, we present the formalized statement of the consistent_incl_complete lemma:

lemma consistent_incl_complete :

@consistentPair Γ ∆ → (∃ (Γ’ ∆’ : Set Formula), Γ ⊆ Γ’ ∧ ∆ ⊆ ∆’ ∧
@completePair Γ’ ∆’)

This will be useful when proving the completeness of IPL with respect to the Kripke semantics, which

will be subsequently presented.

3.4 Kripke semantics

In the sequel, we define the Kripke semantics. The first definition we need is, of course, that of a Kripke

model. We first state this informally, then provide its corresponding formalization. An intuitionistic

propositional Kripke model is a tuple (W,R,V ), where W is a non-empty set, R is a reflexive and transitive

binary relation on W and V : Var×W → {0,1} is a function assigning truth values to variables. V is

assumed to be monotone with respect to R, thus V (p,w) = 1 and Rww′ implies V (p,w′) = 1.

structure KripkeModel (W : Type) where

R : W → W → Prop

V : Var → W → Prop

refl (w : W) : R w w

trans (w1 w2 w3 : W) : R w1 w2 → R w2 w3 → R w1 w3

monotonicity (v : Var) (w1 w2 : W) : R w1 w2 → V v w1 → V v w2
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We formalize the Kripke model as a parameterized structure, where the parameter W represents the space

of worlds. Thus, the worlds of a model are in Lean terms of type W. The first field of the structure models

the accessibility binary relation R over terms of type W and V is the valuation function, which takes two

arguments - a variable and an inhabitant of type W. Then, the last three fields are meant to formalize the

properties of the relation R (reflexivity and transitivity) and the monotonicity of the valuation.

The extended valuation function (on formulas) is defined as follows:

def val {W : Type} (M : KripkeModel W) (w : W) : Formula → Prop

| Formula.var p => M.V p w

| ⊥ => False

| ϕ ∧∧ ψ => val M w ϕ /\ val M w ψ
| ϕ ∨∨ ψ => val M w ϕ \/ val M w ψ
| ϕ ⇒ ψ => ∀ (w’ : W), M.R w w’ /\ val M w’ ϕ → val M w’ ψ

We say that a formula ϕ is true at a world w of a model M, if V (ϕ ,w) = 1 and we denote this by M,w� ϕ .

Then, ϕ is said to be valid in a model M := (W,R,V ), if M,w � ϕ , for all w ∈W . And finally, ϕ is valid,

if it is valid in all the Kripke models. We denote this by � ϕ .

Below, we present the formalization of these notions:

def true_in_world {W : Type} (M : KripkeModel W) (w : W) (ϕ : Formula): Prop :=

val M w ϕ

def valid_in_model {W : Type} (M : KripkeModel W) (ϕ : Formula) : Prop :=

∀ (w : W), val M w Φ

def valid (ϕ : Formula) : Prop :=

∀ (W : Type) (M : KripkeModel W), valid_in_model M Φ

We say that M,w forces Γ (and denote it by M,w � Γ), if M,w � ϕ , for all ϕ ∈ Γ.

def model_sat_set {W : Type}(M : KripkeModel W)(Γ : Set Formula)(w : W):Prop:=

∀ (ϕ : Formula), ϕ ∈ Γ → val M w ϕ

Another essential notion is that of local semantic consequence. We say that a formula ϕ is a local

semantic consequence of a set Γ, if for all models M, and all worlds w in M, we have that M,w � Γ

implies M,w � ϕ . We denote this by Γ � ϕ .

def sem_conseq (Γ : Set Formula) (ϕ : Formula) : Prop :=

∀ (W : Type) (M : KripkeModel W) (w : W),

model_sat_set M Γ w → val M w ϕ
infix:50 " � " => sem_conseq

Then, a set ∆ is forced by Γ, if Γ � ϕ , for all ϕ in ∆.

def set_forces_set (Γ ∆ : Set Formula) : Prop :=

∀ (ϕ : Formula), ϕ ∈ ∆ → Γ � ϕ

3.5 Kripke completeness theorem

3.5.1 Soundness

The soundness theorem claims that any Γ-theorem is a local semantic consequence of Γ (Γ ⊢ ϕ implies

Γ � ϕ), for any set of formulas Γ and any formula ϕ .
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In Lean, this statement transposes to:

theorem soundness (Γ : Set Formula) (ϕ : Formula) : Γ ⊢ ϕ → Γ � ϕ

The proof is straightforward, so we briefly sketch it here. For full detail, the interested reader shall

consult the formalization.

We proceed by induction on Proo f . For all the axiom cases, we apply an auxiliary lemma asserting that

any axiom is valid:

lemma axioms_valid (ϕ : Formula) (ax : Axiom ϕ) : valid ϕ

Worth-mentioning is also the use of the monotonicity property of the valuation function, in the exportation
case. We prove this result in Semantics.lean and mention here only its formalized claim:

lemma monotonicity_val (W : Type) (M : KripkeModel W) (w1 w2 : W) (ϕ : Formula):

M.R w1 w2 → val M w1 ϕ → val M w2 ϕ

3.5.2 Completeness

Theorem. (completeness theorem) For any set of formulas Γ and any formula ϕ :

Γ ⊢ ϕ iff Γ � ϕ .

The left implication is the soundness theorem, which was already proved in Section 3.5.1. For the reverse

implication in the completeness theorem, we appeal to nonconstructive reasoning, proceeding by con-

traposition. More precisely, we assume by reductio ad absurdum that Γ 0 ϕ and then construct a Kripke

model (the so-called canonical model), which satisfies Γ, but does not satisfy ϕ . Hence, we get that ϕ

is not a local semantic consequence of Γ, which contradicts our assumption. Our approach follows the

Henkin-style completeness proof presented in [10].

We first describe the construction of the canonical model. The domain is set to the type of the disjunctive

theories. This setDis jT h type is defined as a subtype of the Set Formula type, as follows:

abbrev setDisjTh := {Γ // @disjunctiveTheory Γ}

For the re f l, trans, and monotonicity fields of the structure, we have to pass proofs of the set inclusion

relation satisfying these properties. These proofs are easily completed, using the corresponding Mathlib

theorems. Putting this all together, we have:

def canonicalModel : KripkeModel (setDisjTh) :=

{

R := fun (Γ ∆) => Γ.1 ⊆ ∆.1,

V := fun (v Γ) => Formula.var v ∈ Γ.1,
refl := fun (Γ) => Set.Subset.rfl

trans := fun (Γ ∆ Φ) => Set.Subset.trans

monotonicity := fun (v Γ ∆) => by intros; apply Set.mem_of_mem_of_subset

assumption’

}

Apart from lemma consistent_incl_complete we have already presented in Section 3.3, the Kripke com-

pleteness proof requires also the so-called main semantic lemma. This lemma states that the property of

the valuation in the definition of the canonical model, holds also for the extended valuation function on

formulas. Thus, it claims that M0,Γ � ϕ if and only if ϕ ∈ Γ, for any disjunctive theory Γ and formula ϕ :
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lemma main_sem_lemma (Γ : setDisjTh) (ϕ : Formula) :

val canonicalModel Γ ϕ ↔ ϕ ∈ Γ.1

It is worth mentioning that the two implications in this lemma cannot be formalized as independent

lemmas, because of the implication case, where the proof of the left implication depends on the right

implication in the induction hypothesis, and vice versa.

Now we have all the necessary ingredients for the completenss contraposition proof informally presented

at the beginning of this section. The formalized completeness statement is the following:

theorem completeness {ϕ : Formula} {Γ : Set Formula} :

Γ � ϕ ↔ Nonempty(Γ ⊢ ϕ)

3.6 Algebraic semantics and completeness theorem

Our approach in the current section is based on the exposition in the textbook [12] and the lecture notes

[6, 7]. After establishing the Heyting algebras necessary premises, we move on to defining the algebraic

models of IPL and the Lindenbaum-Tarski algebra. Finally, we provide a second completeness proof,

with respect to the algebraic semantics and prove the equivalence between the Kripke and algebraic

validity.

3.6.1 Heyting algebras

First of all, we shall recall the definition of a Heyting algebra. A Heyting algebra (or pseudo-boolean

algebra) is a structure (H,∨,∧,→) such that H is a bounded lattice and the following residuation property

holds: a≤ b→ c if and only if a∧b≤ c. Conventionally, we denote a Heyting algebra by H .

We start by formalizing the general definitions on Heyting algebras. Mathlib contains a definition of the

HeytingAlgebra type class, which encompasses the conditions a type has to satisfy, in order to have the

structure of a Heyting algebra. However, we have to formalize and prove the necessary definitions and

results about filters.

We consider a type α for which there is an instance of the Mathlib HeytingAlgebra class:

variable {α : Type u} [HeytingAlgebra α]

Then, we formalize the following main definitions, using the above α type-variable, to represent the

domain of the Heyting algebra.

A filter is a nonempty set F , satisfying two conditions: (i) for any x,y ∈ F , x∧ y ∈ F , (ii) for any x ∈ F
and y≥ x, we have that y ∈ F .

def filter (F : Set α) := (Set.Nonempty F) ∧ (∀ (x y : α), x ∈ F → y ∈ F →
x ⊓ y ∈ F) ∧ (∀ (x y : α), x ∈ F → x ≤ y → y∈F)

The filter generated by a set X is the intersection of all the filters which include X .

abbrev X_filters (X : Set α) := {F // filter F ∧ X ⊆ F}

def X_gen_filter (X : Set α) := {x | ∀ (F : X_filters X), x ∈ F.1}

A filter is called proper, if it doesn’t contains the first element of the lattice.

def proper_filter (F : Set α) := filter F ∧ ⊥ /∈ F

Additionally, a proper filter F is said to be prime, if for all x,y ∈ H , if x∨ y ∈ F , then x ∈ F or y ∈ F .
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def prime_filter {α : Type} [HeytingAlgebra α] (F : Set α) :=

proper_filter F ∧ (∀ (x y : α), x ⊔ y ∈ F → x ∈ F ∨ y ∈ F)

Next, we present the central Heyting algebras result, which will be used in a subsequent section, when

transiting from an algebraic model to the corresponding Kripke one. It asserts that, given a filter F and

an element x which is not in F, there exists a prime filter P including the initial filter, such that x is neither

an element of P:

lemma super_prime_filter (x : α) (F : Set α) (Hfilter : @filter α _ F)

(Hnotin : x /∈ F) :

∃ (P : Set α), @prime_filter α _ P /\ F ⊆ P /\ x /∈ P

In the following, we informally sketch the proof of the above lemma and present key-fragments of its

formalization. First of all, we show that the set of all the prime filters not containing x has an upper

bound:

have Hzorn : ∃ F’ ∈ X_filters_not_cont_x x, F ⊆ F’ ∧
∀ (F’’ : Set α), F’’ ∈ X_filters_not_cont_x x → F’ ⊆ F’’ →

F’’ = F’

This is achieved by applying Zorn’s lemma, which is formalized in Mathlib as follows :

theorem zorn_subset_nonempty (S : Set (Set α))

(H : ∀ (c) (_ : c ⊆ S), IsChain (· ⊆ ·) c → c.Nonempty →
∃ ub ∈ S, ∀ s ∈ c, s ⊆ ub) (x)

(hx : x ∈ S) : ∃ m ∈ S, x ⊆ m ∧ ∀ a ∈ S, m ⊆ a → a = m

where isChain is a Prop deciding whether a given set is totally ordered. The upper bound we are looking

for is the union of all the chain’s elements. In the rest of the proof, our goal is to prove that this upper

bound is a prime filter, and we proceed by contraposition, in doing so. We consider two elements y,z such

that y /∈ P and z /∈ P. Then, the first step is showing that P⊂ [P∪{y}) and its analogous P ⊂ [P∪{z}).
Using these auxiliary hypotheses and the maximality of P, we prove that x ∈ [P∪{y}) and x ∈ [P∪{z}).
Now, having also this hypothesis at hand, the proof concludes by applying a few well-known Heyting

algebras properties, as already shown in the theoretical proof.

The following lemma provides a useful characterization of the filter generated by a set X :

lemma gen_filter_prop (X : Set α) :

X_gen_filter X = {a | ∃ (l : List α), l.toFinset.toSet ⊆ X∧inf_list l≤a}

We use this form of the generated filter to obtain an auxiliary result which is necessary for the proof of

the above super_prime_ f ilter lemma:

lemma mem_gen_ins_filter (F : Set α) (Hfilter : filter F) :

y ∈ X_gen_filter (F ∪ {x}) → ∃ (z : α), z ∈ F /\ x ⊓ z ≤ y

Applying this last lemma, the residuation property and a few basic properties of Heyting algebras and

filters, we obtain another important result, which will be used when constructing the valuation function

of the Kripke model associated to an algebraic one:

lemma himp_not_mem (F : Set α) (Hfilter : filter F) (Himp_not_mem : x ⇒ y/∈F) :

y /∈ X_gen_filter (F ∪ {x})
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The super_prime_ f ilter lemma has also a couple of corollaries. The first one states that given an element

x different from the last element of the algebra, there exists a prime filter P such that x /∈ P:

lemma super_prime_filter_cor1 (x : α) (Hnottop : x 6= ⊤) :

∃ (P : Set α), @prime_filter α _ P /\ x /∈ P

To prove this, we trivially show first that {⊤} is a filter and then, using the super_prime_ f ilter lemma,

we obtain the necessary witness.

The second corollary follows immediately from the first one. It claims that intersecting all the prime

filters, we obtain the set {⊤}:

lemma super_prime_filter_cor2 : Set.sInter (@prime_filters α _) = {⊤} :=

This is proved by double inclusion and will be of great importance in an upcoming section, when estab-

lishing the connection between the two semantical paradigms.

3.6.2 Algebraic models

An algebraic interpretation in H is a function h : Form→H satisfying the following conditions: h(⊥) = 0

and, for all ϕ ,ψ ∈ Form, h(ϕ ∧ψ) = h(ϕ)∧ h(ψ), h(ϕ ∨ψ) = h(ϕ)∨ h(ψ) and h(ϕ → ψ) = h(ϕ)→
h(ψ).
We formalize the notion of algebraic interpretation as follows:

def AlgInterpretation (I : Var → α) : Formula → α
| Formula.var p => I p

| Formula.bottom => ⊥
| ϕ ∧∧ ψ => AlgInterpretation I ϕ ⊓ AlgInterpretation I ψ
| ϕ ∨∨ ψ => AlgInterpretation I ϕ ⊔ AlgInterpretation I ψ
| ϕ ⇒ ψ => AlgInterpretation I ϕ ⇒ AlgInterpretation I ψ

An algebraic model is a tuple (H,h).
We’ve chosen not to explicitly define the notion of algebraic model in Lean, since it would have implied

to adjoin the above defined interpretation function to the type. We considered this redundant, since an

algebraic model is uniquely determined by the variable-interpretation function.

A formula ϕ is true in an algebraic model (H,h), if h(ϕ) = 1. We denote this by (H,h) �alg ϕ . We say

that ϕ is algebraically valid in H , if (H,h) �alg ϕ , for any algebraic model (H,h). Finally, ϕ is called

algebraically valid, if ϕ is algebraically valid in any Heyting algebra H . This is denoted by �alg ϕ .

def true_in_alg_model (I : Var → α) (ϕ : Formula) : Prop :=

AlgInterpretation I ϕ = Top.Top

def valid_in_alg (ϕ : Formula) : Prop :=

∀ (I : Var → α), true_in_alg_model I ϕ

def alg_valid (ϕ : Formula) : Prop :=

∀ (α : Type) [HeytingAlgebra α], @valid_in_alg α _ ϕ

A set of formulas Γ is true in an algebraic model, if (H,h) �alg ϕ for any ϕ ∈ Γ. We denote this by

(H,h) �alg Γ. We say that Γ is algebraically valid in H , if (H,h) �alg Γ, for any algebraic model (H,h).
A set Γ is algebraically valid, if it is algebraically valid in any Heyting algebra H . This is denoted by

�alg Γ.
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def set_true_in_alg_model (I : Var → α) (Γ : Set Formula) : Prop :=

∀ (ϕ : Formula), ϕ ∈ Γ → AlgInterpretation I ϕ = Top.top

def set_valid_in_alg (Γ : Set Formula) : Prop :=

∀ (I : Var → α), set_true_in_alg_model I Γ

def set_alg_valid (Γ : Set Formula) : Prop :=

∀ (α : Type) [HeytingAlgebra α], @set_valid_in_alg α _ Γ

We say that ϕ is an algebraic semantic consequence of Γ, if for any algebraic model (H,h), (H,h) �alg Γ

implies (H,h) �alg ϕ . We denote this by Γ �alg ϕ .

def alg_sem_conseq (Γ : Set Formula) (ϕ : Formula) : Prop :=

∀ (α : Type)[HeytingAlgebra α](I : Var → α), set_true_in_alg_model I Γ →
true_in_alg_model I ϕ

infix:50 " �a " => alg_sem_conseq

3.6.3 Lindenbaum-Tarksi algebra

We define the following equivalence relation on formulas, with respect to a set Γ:

ϕ ∼Γ ψ iff Γ ⊢ ϕ↔ ψ

Let Form/ ∼Γ be the quotient set. We denote the equivalence class of a formula ϕ by ϕ̂Γ. The order

relation on Form/∼Γ is defined as follows: ϕ̂Γ ≤Γ ψ̂Γ iff Γ ⊢ ϕ → ψ .

Then, the quotient set Form/ ∼Γ is a Heyting algebra (called the Lindenbaum-Tarksi algebra), where:

ϕ̂Γ∨ ψ̂Γ = ϕ̂ ∨ψΓ, ϕ̂Γ∧ ψ̂Γ = ϕ̂ ∧ψΓ, ϕ̂Γ→ ψ̂Γ = ϕ̂ → ψΓ, ⊥̂Γ is the first element and ¬̂⊥Γ is the last

element.

First of all, we formalize the equivalence relation on formulas with respect to Γ, along with its standard

infix notation:

def equiv (ϕ ψ : Formula) := Nonempty (Γ ⊢ ϕ ⇔ ψ)

infix:50 "∼" => equiv

Next, we define a setoid instance for our Formula type, by providing a proof of the above defined relation

being indeed an equivalence relation and then we can move to defining the ≤,∧,∨,→ operations on

quotients of this setoid. To define quotient conjunction, disjunction and implication, we make use of the

built-in li f t2 function, which lifts the corresponding binary functions on formulas, to a quotient on both

arguments. We give below only the formalization of quotient conjunction. The other quotient operations

are defined in a similar manner.

def Formula.and_quot (ϕ ψ : Formula) := Quotient.mk setoid_formula (ϕ ∧∧ ψ)

def and_quot (ϕ ψ : Quotient setoid_formula) : Quotient setoid_formula :=

Quotient.lift2 Formula.and_quot and_quot_preserves_equiv ϕ ψ

Notice the fact that we have to pass as the second argument of li f t2 a proof of our binary operation

preserving equivalence. The statement of the corresponding lemma is as follows:

lemma and_quot_preserves_equiv (ϕ ψ ϕ’ ψ’ : Formula) : ϕ ∼ ϕ’ → ψ ∼ ψ’ →
(Formula.and_quot ϕ ψ = Formula.and_quot ϕ’ ψ’)
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Having these operations defined, we can prove that the quotient type associated to the ∼ equivalence

relation is a Heyting algebra. We do so by defining a Heyting algebra instance for this type:

instance lt_heyting : HeytingAlgebra (Quotient (@setoid_formula Γ))

We don’t provide the full definition of this instance here, but all the proofs we need to complete its fields

are rather trivial.

We define the mapping which associates to a formula its corresponding quotient:

def h_quot_var (v : Var) : Quotient (@setoid_formula Γ) :=

Quotient.mk setoid_formula (Formula.var v)

def h_quot (ϕ : Formula) : Quotient (@setoid_formula Γ) :=

Quotient.mk setoid_formula ϕ

The h_quot_var function will be passed as an argument to AlgInterpretation, when proving that h_quot
satisfies the conditions of an algebraic interpretation. The statement of this lemma is as follows:

lemma h_quot_interpretation : ∀ (ϕ : Formula), h_quot ϕ = (@AlgInterpretation

(Quotient (@setoid_formula Γ)) _ h_quot_var ϕ)

Then, we are able to prove the two results about the Lindenbaum-Tarski algebra, which will be crucial

in the proof of the algebraic completeness theorem. The first one asserts that a set Γ is true at the

algebraic model generated by itself, whilst the second claims that a formula ϕ is true at the algebraic

model induced by Γ, if and only if ϕ is a Γ-theorem. We mention only their statements below, as the

proofs do not contain any technical difficulties:

lemma set_true_in_lt :

@set_true_in_alg_model (Quotient (@setoid_formula Γ)) _ h_quot_var Γ

lemma true_in_lt (ϕ : Formula) :

@true_in_alg_model (Quotient (@setoid_formula Γ)) _ h_quot_var ϕ ↔
Nonempty (Γ ⊢ ϕ)

3.6.4 Algebraic completeness theorem

Theorem. [algebraic completeness] For any set of formulas Γ and any formula ϕ ,

Γ ⊢ ϕ iff Γ �alg ϕ .

The soundness implication follows immediately, by a straightforward induction. We mention only its

formalized statement here:

theorem soundness_alg (ϕ : Formula) : Nonempty (Γ ⊢ ϕ) → alg_sem_conseq Γ ϕ

Moving now to the reverse implication, the proof is based on the two results mentioned at the end of

Section 3.6.3. Below, we present the full formalization of the algebraic completeness theorem:

theorem completeness_alg (ϕ : Formula) :

alg_sem_conseq Γ ϕ ↔ Nonempty (Γ ⊢ ϕ) :=

by

apply Iff.intro

· intro Halg

rw [←true_in_lt]

exact Halg (Quotient (@setoid_formula Γ)) h_quot_var set_true_in_lt

· exact soundness_alg ϕ
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3.6.5 Kripke models and algebraic models

The central result in this last section is the equivalence between the two validity notions:

� ϕ iff �alg ϕ

We follow the approach in [5] and hence give a pure semantical proof of the above mentioned result,

wihtout using the completeness theorems of the two semantics. We start by establishing a connection

from Kripke models to algebraic models. In doing so, we have to define first the notions of closed set,

and the Heyting algebra structure which can be built on top of the set of all the closed sets.

Thus, the following Prop decides whether a domain set of a Kripke model is closed:

def closed {W : Type} (M : KripkeModel W) (A : Set W) : Prop :=

∀ (w w’ : W), w ∈ A → M.R w w’ → w’ ∈ A

We formalize the set of all closed subsets as a subtype of the Set W type, as follows:

def all_closed {W : Type} (M : KripkeModel W) := {A // @closed W M A}

For the implication operation on closed subsets, we first define the set of all closed sets contained in

W \A∪B, where by A,B we denote the two implication operands. Then, the union of the elements in

this set is the greatest closed set satisfying our condition:

def all_closed_subset {W : Type} (M : KripkeModel W) (A B : all_closed M) :=

{X | @closed W M X /\ X ⊆ ((@Set.univ W) \ A.1) ∪ B.1}

def himp_closed {W : Type} {M : KripkeModel W} (A B : all_closed M) :=

Set.sUnion (@all_closed_subset W M A B)

We define the corresponding Heyting algebra instance, as follows:

instance {W : Type} (M : KripkeModel W) : HeytingAlgebra (all_closed M) :=

{ sup := λ X Y => {val := X.1 ∪ Y.1, property := union_preserves_closed X Y}

le := λ X Y => X.1 ⊆ Y.1

le_refl := λ _ => Set.Subset.rfl

le_trans := λ _ _ _ => Set.Subset.trans

le_antisymm := λ _ _ => by rw [Subtype.ext_iff]; apply Set.Subset.antisymm

le_sup_left := λ X Y => Set.subset_union_left X.1 Y.1

le_sup_right := λ X Y => Set.subset_union_right X.1 Y.1

sup_le := λ _ _ _ => Set.union_subset

inf := λ X Y => {val := X.1 ∩ Y.1, property := inter_preserves_closed X Y}

inf_le_left := λ X Y => Set.inter_subset_left X.1 Y.1

inf_le_right := λ X Y => Set.inter_subset_right X.1 Y.1

le_inf := λ _ _ _ => Set.subset_inter

top := {val := @Set.univ W, property := univ_closed}

le_top := λ X => Set.subset_univ X.1

himp := λ X Y => {val := himp_closed X Y, property := himp_is_closed X Y}

le_himp_iff := λ X Y Z => himp_closed_prop Y Z X

bot := {val := /0, property := empty_closed}

bot_le := λ X => Set.empty_subset X.1

compl := λ X => {val := himp_closed X {val := /0, property := empty_closed},

property := himp_is_closed X {val := /0,

property := empty_closed}}

himp_bot := by simp }
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The next step is proving that the following function is an algebraic interpretation:

def h {W : Type} {M : KripkeModel W} (ϕ : Formula) : all_closed M :=

{val := {w | val M w ϕ}, property := by intro w w’ Hwin Hr

apply monotonicity_val

assumption’}

Except for the implication case, the proof is trivial. We present here the main steps of this last interesting

case. The proof is by double inclusion, but before succeeding in doing so, we need to prove an additional

statement, which holds only for closed subsets:

have Haux : ∀ (A : all_closed M),

A.1 ⊆ (@h W M (ψ ⇒ χ)).1 ↔ A.1 ∩ (@h W M ψ).1 ⊆ (@h W M χ).1

By this point, we can formalize the first central result of the section, which provides a method of con-

structing an algebraic model corresponding to a given Kripke model:

lemma kripke_alg {W : Type} {M : KripkeModel W} (ϕ : Formula) :

valid_in_model M ϕ ↔ @true_in_alg_model (all_closed M) _ h_var ϕ

In the sequel, we aim to formalize also the reverse direction, namely the switch from an algebraic model

to a corresponding Kripke one. We first define the Kripke frame based on the set of all prime filters. The

accessibility relation is given by inclusion and a variable is said to be true at a world of a prime filter F ,

if it is an element of F:

def prime_filters_frame (I : Var → α) :

KripkeModel (@prime_filters α _) :=

{

R := λ (F1 F2) => F1.1 ⊆ F2.1,

V := λ (v F) => I v ∈ F.1,

refl := λ (F) => Set.Subset.rfl,

trans := λ (F1 F2 Φ) => Set.Subset.trans,

monotonicity := λ (v F1 F2) => by intros

apply Set.mem_of_mem_of_subset

assumption’

}

and prove that the function given by:

def Vh (ϕ : Formula) (F : @prime_filters α _) (I : Var → α) : Prop :=

AlgInterpretation I ϕ ∈ F.1

is a valuation function for this frame.

Now, we can state and prove the second relation between algebraic and Kripke models:

lemma alg_kripke (I : Var → α) (ϕ : Formula) :

true_in_alg_model I ϕ ↔ valid_in_model (prime_filters_frame I) ϕ

Finally, having this auxiliary results at hand, we can immediately prove the equivalence between Kripke

and algebraic validity:

theorem alg_kripke_valid_equiv (ϕ : Formula) :

alg_valid ϕ ↔ valid ϕ :=

by

apply Iff.intro
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· intro Halg _ _

rw [kripke_alg]; apply Halg

· intro Hvalid _ _ _

rw [alg_kripke]; apply Hvalid

4 Conclusion and future work

We have used the Lean proof assistant to formally verify the completeness of IPL. After defining the

language, we formalized the Hilbert-style proof system and used it to establish a collection of syntactic

theorems and derived deduction rules. The next crucial step was formally specifying the two studied

semantics: Kripke and algebraic. For the proof of the completeness theorem with respect to the Kripke

semantics, we defined the so-called canonical model, and used it in order to complete the proof by con-

traposition. On the other hand, for the algebraic completeness proof, we made use of the Lindenbaum-

Tarski algebra and some of its specific properties.

As future work, we aim to extend the current formalization to express Intuitionistic First-Order Logic

and also provide a completeness proof for this more complex system. Furthermore, we intend to imple-

ment in Lean formal systems for intuitionistic arithmetical analysis and associated proof interpretations,

as the ones presented in [2].
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Even though much progress has been made in identifying and mitigating smart contract vulnerabili-
ties, we often hear about coding or design issues leading to great financial losses. This paper presents
our progress toward finding defects that are sometimes not detected or completely detected by state-
of-the-art analysis tools. Although it is still in its incipient phase, we developed a working solution
built on top of Slither that uses interval analysis to evaluate the contract state during the execution of
each instruction. To improve the accuracy of our results, we extend interval analysis by also consid-
ering the constraints imposed by specific instructions. We present the current solution architecture in
detail and show how it could be extended to other static analysis techniques, including how it can be
integrated with other third-party tools. Our current benchmarks contain examples of smart contracts
that highlight the potential of this approach to detect certain code defects.

1 Introduction

In the aftermath of the 2008 financial crisis, the population started losing faith in banks, financial gov-
erning authorities, and fiat currencies. This was the perfect context for introducing Bitcoin[19], the first
cryptocurrency and the first practical implementation and use case for Blockchain technology. It was in
complete opposition with the traditional financial instruments, promising transparency, decentralization,
and immutability.

Unlike Bitcoin, which was a purely financial implementation of blockchain, Ethereum [7] also sup-
ported deploying programs on its network, making it a Blockchain Software Platform. These programs
are known as smart contracts. As the name suggests, smart contracts contain a digital form of an agree-
ment made between two or more parties. In contrast to traditional contracts, due to their automatic
enforcement of terms, they do not require any trust between the involved parties. Along with the au-
tomation capabilities specific to conventional software products, the immutability, transparency, and
decentralization of the blockchain make smart contracts the perfect fit for such a use case. The most
popular programming language for implementing such contracts is Solidity 1.

As with any incipient technology, Solidity and smart contracts in general had many faults when first
introduced. These defects were quickly exploited by malicious users. These issues mainly came from
the language design. Two such example are “The DAO Hack“[18] and “Parity Wallet Multisig Bug“[21]
Incidents such as these motivated researchers and other people in the community to start discovering
and classifying the types of vulnerabilities that can appear in smart contracts. These defects include
the ones common among “classic“ programming languages such as Division by zero or Integer

1Solidity, version 0.8.26: https://docs.soliditylang.org/en/v0.8.26/

http://dx.doi.org/10.4204/EPTCS.410.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://docs.soliditylang.org/en/v0.8.26/
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Underflow/Overflow, as well as bugs that are specific to the Solidity language and the Blockchain
environment, such as Reentrancy and Transaction State Dependency. Taxonomies such as the
one presented in [22] were created with the purpose of offering a better understanding of what bugs
might appear. Community-maintained taxonomies such as SWC Registry2 and DASP Top 103 must also
be mentioned as notable efforts in this area.

In addition to classifying the most common issues, a lot of effort was also put into starting to man-
ually audit smart contracts and developing tools capable of automatically detecting bugs. These tools
implement a variety of approaches to signal code defects, such as symbolic execution and static pro-
gram analysis. Such implementations include Slither[12], a tool that implements a variety of detec-
tors, Securify[27], a static analysis tool that models good and bad coding patterns as logic formulas;
Solhint[2], a linter for the Solidity language; Mythril[25], a symbolic execution approach that analyzes
EVM (Ethereum Virtual Machine) Bytecode. Even though not an analysis tool in itself, we must also
mention the static analysis plugin that Remix 4, the most popular IDE for Ethereum development, offers.
During a previous study we conducted[5], Slither emerged as the overall best-performing tool. Even
though it had the highest overall score, there were still a considerable amount of vulnerabilities that were
not detected by it or any other tool included in our study. This made us analyze the way it is implemented
in greater detail and research methods to aid it in providing more robust detections.

In this paper, we present our current progress in implementing a new analysis tool that is built on top
of Slither and leverages the information provided by it after parsing the contract. Our current approach is
based on interval analysis, with the possibility of being extended in the future. Using this technique, we
can approximate the range of values of each variable during each program point, regardless of whether
it is a state variable, parameter, local variable, or built-in variable. Having these approximations, we
are then able to detect possible coding or design defects based on program state and constraints. A
good example of such issues is an unreachable program statement; if a require statement contains a
condition that can never be fulfilled, then all the instructions after that will not be executed. This also
applies to unreachable if branches or loop bodies. Even though our tool is able to approximate the
program state for a Solidity function with a reasonable degree of accuracy, it has certain limitations. One
such limitation lies in the fact it is not yet able to interpret every instruction in Solidity. Currently, our
tool only supports intraprocedural analysis. Another, more specific to interval analysis, is the limited
accuracy of the approximation without user input.

Summary of contributions

1. We provide an in-depth explanation of how Slither can be extended and its main modules.

2. We present the architecture that we implemented and the means used to connect with external
modules.

3. We provide a collection of smart contracts that our tool can run against and evaluate our solution.

Paper organisation Section 2 contains a summary of our previous work in this area as well as a short
presentation of other state-of-the-art analysis tools. Section 3 a briefing of the Static Program Analysis
theories that serve as the building blocks of our work. In Section 4, we describe how Slither can be used
in a custom implementation and describe the main modules and data types included. We present our

2SWC Registry:https://swcregistry.io/
3DAPS Top 10 https://dasp.co/
4Remix IDE: https://remix-project.org/

https://swcregistry.io/
https://dasp.co/
https://remix-project.org/
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solution architecture in Section 5. We evaluate our solution in Section 6 and present its limitations in
Section 7. The paper concludes with Section 8.

2 Related work

We already presented the fundamentals of our approach in our initial progress report [26]. It serves
as the building blocks of our current implementation. Even though we are still facing some of the
limitations outlined during our previous report, we managed to overcome a few important limitations,
such as handling conditional, repetitive, and the most widely used builtin statements. In addition, our
current implementation is considerably more robust and easy to extend.

There are a number of remarkable tools, besides Slither, that perform static analysis while imple-
menting different approaches, among them, we must mention:

1. Securify[27] is a smart contract security scanner that heavily relies on First Order Logic concepts
and formulas to detect issues. It defines multiple patterns as logical formulas and checks program
statements to see if any of them match. There are compliance and violation patterns. If a program
section matches a compliance pattern, it is not flagged as a defect. If it matches a violation pattern,
it is marked as an error with a high degree of certainty. If none of the previous situations apply, it
is marked as a warning.

2. Solhint[2] is an open-source linter for the Solidity language. It can be installed via npm while
also being available as a plugin for numerous IDEs. Its behaviour relies on detection rules set by
the user. These guidelines include Security Rules, Style Guide Rules and Best Practices Rules.
It requires a configuration file that declares which detection rules must be employed. A default
configuration can be generated using a npm command.

3. Remix[1] is a dedicated IDE for developing DApps (Decentralized applications). It provides many
useful features that can aid in implementing such applications. Besides the compiler whose version
can be selected by the user, it also features an emulated version of the Ethereum network. By
default, there are 10 available addresses, each holding 100 Ether, any of these addresses can be
used to deploy the contracts. After deployment, any address can be used to call functions located
in those contracts. Besides integration with Solhint and Slither, it also features its own static
analysis plugin. We were unable to find any details regarding the techniques employed in its
implementations. During a previous benchmark that we conducted on a number of analysis tools,
we found that the static analysis plugin for Remix yielded notable results compared to most tools.

Although it relies more on symbolic and concrete execution, Hevm[11] also aims to detect reachable
and unreachable final states for a smart contract function. This solution determines the final states from
symbolic inputs. The final states are statically determined to be unreachable or marked as potentially
reachable. For the former, SMT queries are generated and passed to a solver. An approach similar in the
use of a solver to check the satisfiability of states using contracts is also featured in our solution. Hevm
can also check the equivalence of two different implementations for the same functionality by checking
the equivalence of final states.

We must also mention Simbolik5. Even though it is a debugging tool that uses symbolic execution,
not a static analysis code defect detection tool, it needs to be mentioned due to its capabilities of approx-
imating the program state for any step. Leveraging the capabilities of K Framework[23], it can be used
for debugging, symbolic testing, and detecting path conditions.

5Simbolik is available at https://simbolik.runtimeverification.com/

https://simbolik.runtimeverification.com/
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3 Background

3.1 Dataflow Analysis

Dataflow Analysis[4] is a program analysis paradigm that was developed in the context of optimizations
performed by compilers and it remains one of its most prominent use cases [15]. Being a static analysis
technique, it aims to simulate the behaviour of a program at runtime without executing it. As the name
suggests, it analyzes the flow of information through the control flow graph of a program by collecting
data about the possible values and states of variables and expressions at various points of a program.

We should clearly differentiate it from control-flow-analysis[3]. It clearly determines the order of
instructions that are executed in an algorithm given a certain context. They are different in their purpose,
but they rely on each other’s findings. To properly determine the flow of data, the order of operations is
needed as it influences the concrete values at concrete program locations. On the other hand, to determine
the order of operations when runtime decisions are present, an approximation of data state is necessary.

Based on different characteristics, data-flow analysis techniques can be divided into different cate-
gories. Some of the classification criteria are the following[20]:

• Depending on the direction of flow: top-down (forward) analysis that follows the actual execu-
tion flow of the program, or bottom-up (backward) analysis that does the opposite,

• Depending on the scope: intraprocedural analysis that only considers a single function and in-
terprocedural analysis that takes into consideration the interaction between functions,

• Depending on program flow consideration: flow-sensitive analysis that considers program flow
and flow-insensitive analysis that does not take it into consideration,

• Depending on how execution paths intersection is treated: may analysis that performs program
state union and must analysis that performs intersection.

Examples of data-flow analysis techniques include, but are not limited to, Live Variables, Available
Expressions, Constant Propagation, etc. described in more detail in [24]. A data-flow analysis instance
can be formalized as a system containing the following elements:

Given a program P, let G(P) = (V,E,cmd) be the control flow graph of P where:

• V is the set of vertex from the graph,

• E ⊆V ×V is the set of edges from the graph,

• cmd is the set of statements from P.

A data-flow system S = (Lab,Ext,Flw,(D,⊑),ε,ϕ)

• A set of program labels Lab = V in G(P). For example, the numerical labels attributed to each
vertex of the control flow graph,

• A subset of extremal labels, Ext, the labels where the program starts or where it ends depending on
the flow. The nodes marked with extreme labels either have only outbound or only inbound edges,

• A flow relation between labels, a function that models the transition between the program points.
Flw: Flw = E for forward analysis and Flw = E−1 for backward analysis,

• A complete lattice[14] (D,⊑) containing all the possible state values, this will serve as the domain
of analysis information values. It must contain ⊥ (bottom) and ⊤ (top) values. These elements are
the greatest-lower and least-upper bounds of D,
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• An extremal value ε ∈ D for extremal labels,

• A collection of transfer functions ϕℓ : D → D, ℓ ∈ Lab. These functions reflect the changes in a
program’s state produced by a statement.

Even though the analysis information is not the same for all analysis types, it can be represented as
key-value pairs, where the key is the label of the program point and the value is the state representa-
tion relevant to that type of analysis. In other words, the analysis information for the whole program
contains a collection of representations for each statement/node, which in turn contains a collection of
representations for each variable.

This type of static analysis works by presenting the program state as a system of equations and trying
to calculate the least fixed points[17]. To accomplish this, several algorithms have been developed,
including the MOP ( Meet Over all Paths) [16] and the Worklist [20]. We will focus on the latter since it
is also the one that our solution implements.

It works by iterating over the control flow graph until no changes occur in the program state. The
worklist is initialized with the extremal labels and checks adjacent nodes according to the flow function.
Initially, the algorithm could run for an infinite number of iterations for some programs, especially the
ones containing loops. This happens when the complete lattice in the data-flow system does not satisfy
ACC (Ascending Chain Condition).

We consider that a complete lattice (D,⊑) satisfies ACC if the sequence d0 ⊑ d1 ⊑ d2 ⊑ ·· · ⊆ dn

eventually stabilizes. The chain stabilises if dn = dn+1 = · · · for some n ≥ 0. Knowing this, we can
certainly say that the algorithm will complete after |Lab| ∗ n iteration at most. Non satisfying ACC
domains do not grant this certainty and the algorithm might run indefinitely.

This issue was addressed by using widening operators[8]. Even though they provided an over-
approximation, their use made sure that the algorithm runs over a finite number of iterations. To ob-
tain a more precise solution, narrowing operators have been employed. Using them, a more precise
approximation can be obtained.

3.2 Interval Analysis

Interval analysis[13][9] is a technique of static analysis that aims to approximate the value of each pro-
gram variable using intervals. The classic approach to interval analysis uses numeric intervals to repre-
sent the range of values of variables at each point in the program.

It is an instance of abstract interpretation[10][6]. It abstracts precise numerical values into intervals.
With a simplified domain and operations, this technique can be used to effectively reason a program’s
potential behavior without necessitating concrete execution and exact values.

A data-flow system S = (Lab,Ext,Flw,(D,⊑),ε,ϕ) for interval analysis using numeric intervals,
where Varis the set of variables from the program and Int is the set of numeric intervals, is the following:

• Lab : Lab=V in G(P),

• Ext: Ext={V | ∄Vi,Vi →V ∈ Edges} (program starting point, forward analysis),

• Flw: Flw = Edges (forward analysis),

• (D,⊑): D={AI | AI : Var → Int}, AI1 ⊑ AI2 iff AI1(x) ⊆ AI2(x) for every x ∈ Var. The analysis
information for a program point contains the variables that are accessible from the scope of that
statement. It maps each variable to a numeric interval. This domain only contains all possible
values for int and bool. To be able to handle a program with more complex types, this domain
must be extended,
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• ε = [−∞,∞]. This is the most general approximation for variables that hold numerical values. In
practice, depending on the data type, this interval can be narrowed down. For example, ε = [0,∞]
for unsigned data types and ε = [0( f alse),1(true)] for boolean values,

• the transfer function:

ϕℓ =

{
AI if ℓ does not modify state
AI[xi = [v,v]] if ℓ modifies the variable xi with the value v

To further improve the accuracy of our approximations, we can make use of constraints imposed by
certain statements. Such instructions are common among most programming languages, such as the if
statement through its conditional branches and loops via their invariant condition. We must also mention
that Solidity has two built-in instructions that impose constraints: require and assert.

In the domain defined below, Val holds the variables state and Con is the set of constraints for that
point in the program.

To be able to handle complex types, we must extend the codomain of Val, we will note it as IntExt.
In addition to numeric intervals, we must also add mappings between collection indexes or struct fields
and numerical intervals. This means that we need to define IntExt recursively.

Considering a variable v that has a data type Type, we define Val(v) as follows:
The possible values for Type are a subset of the data types included in Solidity 6..
Type = int | bool | Struct[ f 1 : Type1, ..., f n : Typen] | Array[Type] | Map[Type1,Type2].

• Val(int) = Int,

• Val(bool) = {[0,0], [1,1], [01]},

• Val({ f1 : T1, . . . , fn : Tn}) = {{{ f1 : v1, . . . , fn : vn} | vi ∈ Val(Ti), i = 1,n} where f1, ..., fn are all
the fields defined in the structure,

• Val(Array[T ]) = {(i1 : v1, . . . , in : vn) | i j ∈ Val(int),v j ∈ Val(T ), j = 1,n,n ≥ 1} and n is the
length of the array. If the array has been declared without a size and has not been initialized, we
consider n=0,

• Val(Map[T1,T2]) = {(k1 : v1, . . . ,kn : vn) | k j ∈Val(T1),v j ∈Val(T2), j = 1,n,n≥ 1} where k1, ..,kn

are the keys that have been assigned a value up to that point of the program.

For reference types that contain fields of various data types, Val is recursively applied to each field
according to it’s data type. We must also extend ⊆(inclusion), ∪(reunion) and ∩(intersection) for our
new domain. For complex types, these operators will be applied in two steps. First, on the keys, and then
on the underlying values.
We will consider K as the set of keys for a complex data structure. For example, K(s) if s has the data
type of Struct is the set of all fields declared in that struct. For mapping and arrays, the result of K is
the set of keys/indexes that have been initialized up to that point. In addition, for arrays of fixed length,
the result of K will
The behavior for these extended operations is the following:

• Val(x1)⊆Val(x2) if K(x1)⊆ K(x2) and Val(x1)[ki]⊆Val(x2)[ki]∀ki ∈ K(x1)

• Val(x1)∩Val(x2) = {ki : Val(x1)[ki]∩Val(x2)[ki]}∀ki ∈ K(x1)∩K(x2)

6Solidity 0.8.26 data types: https://docs.soliditylang.org/en/v0.8.26/types.html

https://docs.soliditylang.org/en/v0.8.26/types.html
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• Val(x1)∪Val(x2) = {ki : Val(x1)[ki]∪Val(x2)[ki]}∀ki ∈ K(x1)∪K(x2). If ki is not included in
K(x1) and is included in K(x2) then only the value Val(x2)[ki] will be considered when computing
the result and vice-versa.

Considering BExp as the set of boolean expressions present in the program, our domain becomes the
following:

D={AI = (Val,Con) |Val : Var → IntExt,C ⊆ BExp},
AI1 ⊑ AI2 iff Val1(x)⊆Val2(x) for every x ∈Var,Con1 =⇒ Con2.

AI1 ∪AI2 = (Val1 ∪Val2,Con1 ∪Con2)

The constraints are defined over symbolic variables. They are propagated only downward when
traversing the CFG. Currently, Solidity does not feature a Goto instruction or any other jump statement.
Due to this, the only possible cycles that can be present in the CFG are the ones created by loops. To
mediate cases where a node can be reached from multiple paths, we only impose constraints on the
starting point of the loop that come from the initial path of execution, we do not add the constraints
imposed during the loop body or the loop invariant. We consider that this approach is the most suitable
for our use case since it ensures termination when the program includes loops. Although it might lead to
a loss of precision because fewer constraints are added, it is the most stable approach.

If we take this optimization into consideration, the ϕ function becomes the following:
We consider the analysis information for the current node as AI = (Val,Con). The

ϕℓ =


(Val,Con) if ℓ does not modify state and does not impose or remove constraints
(Val[xi = [v,v]],Con) if ℓ modifies the variable xi with the value v
(Val,Con∪C1) if ℓ imposes the constraint C1 and Lab(source) < Lab(destination)
(Val,Con\C1) if C1 was enforced and ℓ invalidates it or if the scope of C1 ends

The constraints are required to check whether the current state is satisfiable. We make use of an SMT
solver to perform this check. Our solution is designed to support a variety of solvers in a plugin approach.
At the time of writing, only integration with Z3 was implemented. This interaction is explained in further
detail in the following sections of this paper.

To highlight how this analysis technique approximates the state of a program, we provide the follow-
ing example:

1 function magicNumber(uint x) pure external returns(uint){
2 uint index =0; // statement 1
3 uint value=x; // statement 2
4 require(x<15); // statement 3
5 while(index <x) // statement 4
6 {
7 if(index \%2==0) // statement 5
8 {
9 value=value *2; // statement 6

10 }
11 else
12 {
13 value=value *3; // statement 7
14 }
15 x=x+1; // statement 8
16 }
17 return value; // statement 9
18 }

The approximations of state for each program point are displayed in Table 1.
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Statements x index value Constraints

1 [0,∞] /0 /0 {}
2 [0,∞] [0,0] /0 {}
3 [0,∞] [0,0] [0,∞] {}
4 [0,∞] [0,∞] [0,∞] {x<15}
5 [0,∞] [0,∞] [0,∞] {x<15 && index<x}
6 [0,∞] [0,∞] [0,∞] {x<15 && index<x && index%2==0}
7 [0,∞] [0,∞] [0,∞] {x<15 && index<x && index%2!=0}
8 [0,∞] [0,∞] [0,∞] {x<15}
9 [0,∞] [0,∞] [0,∞] {x<15}

End Data 9.2 [0,∞] [0,∞] {x<15}

Table 1: Interval analysis with constraints for the magicNumber function.

4 Slither

4.1 Overview

Slither[12] is a static analysis tool that offers security and good practices advice for smart contracts.
Compared to other analysis tools, it runs remarkably fast. The tool obtains information by using the
Solidity compiler and converting EVM bytecode into a proprietary intermediate representation called
SlithIR. This new representation can be visualized using a printer, it also has an SSA (Static Single
Assignment) variant. Before converting the initial code to SlithIR, it uses the information provided by
the compiler to construct the CFG, Inheritance Graph. This is achieved by parsing the AST (Abstract
Syntax Tree) resulting from contract compilation.

At the time of writing, Slither features 93 detectors7. These detectors are self-contained plugins that
process the information compiled independently. Being an open-source tool, any user can contribute
with new detectors. To do so, the contributor needs to extend an abstract class that defines the common
behaviour among all detectors: processing contract information (i.e., detecting the bug); displaying the
result; and attributes regarding the detector documentation (severity, confidence, etc).

In addition to detection purposes, the contract information can also be displayed using ‘printers‘.
They display contract information internally gathered by Slither in a human-readable format. In the
official documentation, the printers are divided into two categories: ‘Quick Review Printers‘ and ‘In-
Depth Review Printers‘. The printers that we consider offer the most useful insights are the following:
human-summary; contract-summary; loc (lines of code); cfg (control-flow-graph) and function summary.

Besides detecting issues and printing contract information, Slither also has many other capabilities.
These features include: generating reports; generating code, extracting an interface from an existing
contract; correcting code, either reformatting the contract, fixing simple vulnerabilities automatically
or flattening the codebase; code checks, and checking compatibility with well-known standards or with
newer features of Solidity.

The tool needs to be installed as a Python module via pip8. After the installation is performed, the
user has access to the command line tool and the Python modules that can be included in a custom

7A detailed list is available on the Slither GitHub repository:https://github.com/crytic/slither
8https://pypi.org/project/slither-analyzer/

https://github.com/crytic/slither
https://pypi.org/project/slither-analyzer/
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implementation. The GitHub page features a generous developer documentation9. The main entry point
for a new implementation is a class called ‘Slither‘. An object of this type needs to be initialized by
providing the path to the Solidity files that contain the targeted contract(s). After obtaining an instance
of that class, the developer has access to many useful details that can be used to implement a new analysis
tool or add a new detector to Slither. This information is presented as nested objects. The main object
contains a list of contracts, each contract contains a list of functions, each function contains a list of
nodes, and so on. Besides the children list, each object that models a contract element holds specific
information, such as state variables for contracts and parameters for functions.

4.2 Limitations

To our best knowledge, Slither does not include the possibility of querying the contract state for each
statement of a function, or at least at the start and end of execution. It does not implement interval
analysis or other techniques capable of approximating the contract state. We consider that such a feature
could be integrated into one of Slithers printers, aid in identifying code defects that are currently not
detected, or improve the detection rate for issues that are already detected.

In addition to that, it appears that Slither does not take into consideration constraints imposed by
previous statements. Constraints are added either by traditional conditional statements such as an if
statement, or by instructions such as assert or require. Due to this, Slither is not always able to
identify unreachable conditional branches. The unreachable branches could be an if/else block, the body
of a loop with a contradiction acting as its condition, or even whole function sections if they are preceded
by an assert or require statement that will never pass.

We present the following example:

1 pragma solidity 0.8.23;
2
3 contract BidContract {
4 mapping(uint=>uint) public bidders;
5 function bid(uint bidderNumber) public payable {
6 require(msg.value >10);
7 uint newBid=bidders[bidderNumber ]+msg.value;
8 if(newBid >10)
9 {

10 //Since msg.value >10 implies that newBid >10,
11 //this brach will always execute
12 bidders[bidderNumber ]= newBid;
13 }
14 else
15 {
16 //Since the "then" branch is based on a tautology ,
17 //this branch will never execute
18 revert("Inssuficient bid");
19 }
20 }
21 }

Obs: Since we are working with unsigned integers, the variables cannot contain negative values.
If used on the contract above, Slither will signal some issues that are indeed present. The first issue

relates to the fact that the version of Solidity that was used to compile it is too recent to be used. The
other problem detected by Slither targets the absence of a function that allows the user to withdraw ether,

9Slither API documentation:https://crytic.github.io/slither/slither.html

https://crytic.github.io/slither/slither.html
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we did not provide one in this contract because it is not relevant to our example. None of these defects
are related to the problem that we present using this contract.

However, it will not address the fact that the else branch is unreachable.
Currently, our efforts are focused on this area. We aim to provide an implementation capable of

approximating the program state as precisely as possible and identify issues based on the analysis in-
formation that we gather. In addition to that, we implemented a constraint system. Using a third-party
solver, we can find code blocks that will never execute because they are on unreachable conditional
branches.

Observation: We must also highlight an issue in Slithers parsing of the above contract that we
discovered during our solutions development. If the then block of an if statement is empty and the
else block is not, Slither will treat the latter as the "true" branch and the statement after the conditional
statement as the "false" branch. To obtain a correct result, the truth values should be reversed. Bug
encountered in version 0.10.0 of the Slither pip package.

5 Solution architecture

Our architecture can be implemented using any language that offers support for the Object Oriented
programming paradigm as long as the necessary third-party integrations are available. In the following
presentation and diagrams, we use Slither as the contract parser and Z3 for the constraint solving com-
ponent. These are the integrations that we implemented so far, but our architecture is easily extensible
to other third-party solutions that fulfill similar roles. Currently, we are able to analyze the SSA (Static
single-assignment) version of a program, as well as its Non-SSA form. We found the SSA variant to be
more convenient since SlitherIR also has a SSA version.

In Figure 1, we present how our system receives input data, the interaction with the components that
it depends on and how it produces the output data. The flow of execution is the following:

1. The user provides the path to a Solidity file along with the names of a contract and a function;

2. Use Slither to parse the contract;

3. Extract the information that it needs from the parsing result;

4. Run the least fixed point algorithm. Currently, only the worklist algorithm is implemented;

5. Translate constraints and program state into a representation compatible with the solver and call it;

6. Write the program state for each statement of the function into a file;

7. The user can manually analyze the program state generated by our solution.

Even though our solution currently only supports interval analysis and is integrated only with Z3 and
Slither, we designed it to be extensible from the beginning. We achieved this by leveraging well-known
software design principles and design patterns such as Adapter, Composite and Template Method. We
make use of abstractions to define the general behavior, input and output that we expect a static analysis
implementation to have. The same principle applies to external integrations, we define the data that we
expect to extract from a contract parser. Figure 2 provides a diagram that contains the most important
modules of our implementation. All modules currently contain an abstract definition as well as concrete
implementations for Slither and Z3.

The labels, extremal labels and flow relation between nodes are computed in a similar fashion to the
one described in Subsection 3.2. We determine the extremal labels and flow relation via graph search
algorithms that run on the CFG data structure provided by Slither.
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Figure 1: System context diagram of AIDA

We defined our own data structure to store information about a program variable. Along with the
interval, we also store other useful information such as its name, type, scope, declaring node, if it is a
reference type variable or not, etc. There are some special cases where some variables might require
more information to be stored than others. For this case, we also defined an "additional_information"
field as a dictionary. The volume of information in this field depends on the type of variable and its
usage. For example, boolean variables that are used in constraints require more information about them
to be stored for a proper interpretation of that constraint.

Since our domain does not satisfy ACC, we needed to implement widening operators. This is nec-
essary to ensure termination when the program contains loops. Our implementation for the least upper
bound for two simple numeric intervals is presented in the code snippet below:

1 def get_least_upper_bound_numeric_interval(first_element:
NumericIntervalApproxValue , second_element: NumericIntervalApproxValue):

2 if len(first_element) == 0:
3 return second_element
4 if len(second_element) == 0:
5 return first_element
6 lower_bound = first_element [0] if first_element [0] <= second_element [0] else

float(
7 "-inf")
8 upper_bound = first_element [1] if first_element [1] >= second_element [1] else

float(
9 "inf")

10 return NumericIntervalApproxValue (( lower_bound , upper_bound))

Our implementation also supports complex types, such as arrays, mappings, and structures. Unlike
scalar variables where the intervals can be simply represented as a pair of two numeric values, complex
types require a different type of representation. Due to this, we modeled the intervals for complex types
as dictionaries. This approach offers us a great deal of flexibility, we can use numerical indexes as keys
for arrays or the field names for structs for example. For mappings, this representation comes naturally.

Even though our implementation supports nested complex types, these are not seen often. Since
Ethereum requires a gas fee to run smart contracts, the code must be as resource efficient as possible,
this is especially true for execution time and the amount of storage required. This mechanism heavily
discourages developers from implementing complex scenarios and data structures

The way we designed our representation of program state for interval analysis is very similar to the
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Figure 2: Modules of AIDA

one described in Section 2. The only difference lies in the fact that the information for a node does not
contain a single collection of intervals corresponding to each variable. The information is distributed in
the following categories: numeric variables, boolean variables and constraints. Grouping them together
was not optimal for our use case since boolean variables and numeric variables have different intervals
and properties that concern us during our analysis. This allows us to have a clear separation of arithmetic
and boolean expressions. This matches perfectly with the way SlithIR represents conditional structures,
the truth value of the condition is first stored in a temporary variable. After that, the ‘CONDITION‘
SlithIR instruction is called and receives that temporary variable as its only parameter. Boolean variables
that are subject to such calls have a special flag set in our representation of analysis information.

To integrate with Z3, we make use of the ‘exec‘ builtin from Python. In this way, we can dynamically
execute code that adds variables and constraints to the Z3 solver. Although the adapter implemented for
Z3 will not work with any other solver without adjustments, only the code that is generated and executed
dynamically needs to be changed. Due to our use of abstract classes and polymorphism, the current
adapter can easily be changed with the newly implemented one. The flow of constraint checking will
stay the same.

The flow of using a solver is the following:

1. Query analysis information to obtain all numeric variables that are present in boolean expressions
with ‘condition‘ flag set;

2. Query analysis information to obtain all boolean expressions that are marked as conditions;

3. Declare all numeric variables in solver;

4. Add interval constraints for all numeric variables that do not have the default interval for their
type;

5. Add boolean expressions to the solver;

6. Check state satisfiability;

7. Decide if the current node is reachable or not from the current path.
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An example of output that can be further investigated by the user is presented in the following sections.
To reach this state of implementation, we faced many challenges. Besides deciding the architecture

and overall solution organization, being able to translate from the Slither representation to our represen-
tation and then to a representation that is compatible with the solver was particularly challenging. This
required a considerable amount of empirical study of how Slither models different types of statements,
variables, and data types. Due to the fact that we want our implementation to be easily extensible, we did
not model our program state with any particular solver or other integration in mind. We chose the best
overall approach to model program state. This makes it compatible with any integration, but extra steps
must be taken to achieve it.

Another particularly challenging aspect was correctly identifying the constraints for each program
point. Accumulating constraints as we iterate through the CFG seems like a natural approach. This
solution is not semantically correct, since the CFG representation of a loop contains an edge from the
end point of the loop to its start point. If we only accumulated constraints as we searched the CFG, that
would have led to incorrect constraint representations for programs that contain loops.

We had to define a more complex constraint flow. Constraints can only flow downward in the control-
flow graph. When processing an edge that has the end of a loop as it’s source edge and the start of a loop
as it’s destination label, constraints are not carried over. We consider this to be the most stable approach
since the start point of a loop is also reached from the initial flow of a program without the loop invariant.

6 Evaluating our solution

Our implementation is currently able to provide a state representation for each statement of a function.
This representation is written in a text file and it is presented in a human-readable format. The constraint
system that we implemented is currently the strong point of our implementation when compared to
other static analysis tools. We evaluated our solution on a number of functions that contain arithmetic
expressions, boolean expressions, loops, conditionals, and builtin functions (require, assert, send,
transfer, call). A contract test suite, as well as an executable build of our tool will be available at
https://github.com/CDU55/FROM2024VulnerableSmartContracts.

A good example that highlights the strength of our tool is the following

1 pragma solidity 0.8.23;
2
3 contract DepositContract {
4
5 mapping(address=>uint) public deposits;
6 function deposit () public payable {
7 require(msg.value > 0);
8 deposits[msg.sender ]= deposits[msg.sender ]+msg.value;
9 }

10
11 function withdraw () public payable {
12 require(deposits[msg.sender] > 0);
13 payable(msg.sender).transfer(deposits[msg.sender ]);
14 // MISSING: set deposits[msg.sender] to 0
15 //this assert statement will always revert
16 //and the users cannot withdraw ether
17 assert(deposits[msg.sender] == 0);
18 }
19 }

https://github.com/CDU55/FROM2024VulnerableSmartContracts
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We focus mainly on the ‘withdraw‘ function. Our constraint-based approach can correctly identify
the fact that the endpoint of the function is not reachable. This is due to two contradictory constraints.
Having both ‘deposits[msg.sender] > 0‘ as a constraint at the start of the contract means that the caller’s
balance will always be positive, a usual condition for such functions. Since ‘deposits[msg.sender]‘ is not
altered during execution, the constraint is still valid. When reaching the assert statement, the contract
is led into an invalid state. The balance of a user cannot be greater than 0 and equal to 0 at the same
time. This leads to a ‘Locked Ether‘ vulnerability case. Users can deposit currency and cannot withdraw
it later.

The program state computed by our tool for the statement on line 15 in the example above is displayed
in Figure 3.

Node 3:EXPRESSION assert(bool)(deposits[msg.sender] == 0)
{

Numeric variables:{’block.timestamp’: block.timestamp uint (1,inf)
, ’block.difficulty’: block.difficulty uint (1,inf)
, ’block.number’: block.number uint (1,inf)
, ’msg.sender’: msg.sender uint (1,inf)
, ’msg.value’: msg.value uint (1,inf)
, ’deposits’: deposits:
},
Booleans variables:{’TMP_3’: TMP_3 bool deposits[msg.sender] > 0 assert/require
},
Constraints:[(’TMP_3’, True)]
}

Figure 3: Example of state output for a program node

The summary provided by our tool highlights the fact that the constraint imposed by the assert state-
ment contradicts an already existing constraint. This becomes clear when reviewing the code of the
withdraw function along with the approximated program state.

Currently, our solution is not able to automatically signal issues, the only defect that it is able to
automatically find is ‘Unreachable code‘. Thus, it can only be used as a helper tool for smart contract
auditors at the moment. Automatic fault detection will be implemented in the future. The methodology
that we implemented for evaluation was to run the tool, obtain the program state, and check if the targeted
issue could easily be identified by the user when checking the output file.

Issues that could be identified by checking the output of our program are the following:

1. Array out of bounds

2. Division by zero

3. Unreachable code (Tautologies and contradictions in conditional instructions)

4. Missing validation for parameters and state variables

Table 2 displays how our tool performed compared to Slither on our contract collection. The contracts
range from one-line functions that only contain the issue to more complex scenarios. If the issue can be
reasonably deduced from the program state computed by our solution, then we consider it able to help in
detecting that issue. We do not make any claim that our collection is an exhaustive one. However, these
contracts highlight scenarios where Slither does not perform ideally.
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Our solution Slither Contract Function Issue
✓ ✗ BidContract bid Unreachable code
✓ ✗ DepositContract withdraw Locked Ether
✓ ✗ DivideByZeroMinimal divide Possible division by 0
✓ ✗ ImproperDataValidation participate No parameter validation
✓ ✗ OutOfBoundsArrayMinimal getArrayElement Array out of bounds
✓ ✗ DivisionByZeroArray getSomeResult Possible division by 0

Table 2: The results of our evaluation

7 Current limitations

Even though we made significant progress towards a working solution, it still has limitations and we al-
ready theorized ways in which they could be mitigated. We have identified two categories of limitations:
current implementation limitations and interval analysis limitations.

The first major limitation that our tool currently has is tied to the complexity of the contracts that
it can process. Even though Solidity is smaller in the size of its instruction set than other well-known
programming languages such as C, it still has plenty of features that must be interpreted. Since we
implemented our own processors for the semantics of each instruction type, there is still work to be
done. The common instructions among most programming languages are currently implemented, as
well as the most used builtin functions and variables that are specific to Solidity. There is still work to do
regarding other language-specific features such as ‘abi.encode()‘ and ‘readInt8()‘. This problem
will be mitigated by adding semantics for elements of Solidity that are currently missing.

Another feature that is currently missing from our tool is interprocedural analysis. Out implemen-
tation that does not yet support calls between functions that are not Solidity builtins, meaning that it is
limited to intraprocedural analysis. This issue will be mitigated by implementing a recursive approach
to our current analysis algorithm.

We must also mention the limitations that interval analysis imposes. This is mostly related to the
precision of approximation for the interval of each variable. If the intervals are not precise enough, an
issue could only be signaled as "potentially present", not as "certainly present". Increasing precision by
altering the ⊤ and ⊥ values, which are used as the default values for variables could make the implemen-
tation more prone to mistakes. This issue could be mitigated by receiving more precise default intervals
from the user via annotations or a configuration file. Another way that this issue could be mitigated is by
adding more types of static analysis to help the already existing one.

8 Conclusions

In this progress report, we present our latest developments towards a new analysis tool that aims to find
issues that are not currently detected by state-of-the-art tools. We provide a detailed presentation of how
Slither runs and a set of instructions regarding how to build a new solution by leveraging the modules
that it provides. We describe in detail how our tool is designed and how it interacts with third-party
systems. Our implementation of interval analysis is the solution’s strong point currently, but it can easily
be extended to other methods of static analysis and other third-party components. At the moment of
writing, our tool can provide a summary of a program’s states. This summary allows the user to easily
identify issues currently not detected by other similar tools, two such defects are described in this paper.
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We also highlight our current limitations and present our plans to overcome them.
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[23] Grigore Ros, u & Traian Florin S, erbănută (2010): An overview of the K semantic framework. The Journal of

Logic and Algebraic Programming 79(6), pp. 397–434, doi:10.1016/j.jlap.2010.03.012.
[24] Michael I Schwartzbach (2008): Lecture notes on static analysis. Basic Research in Computer Science,

University of Aarhus, Denmark.
[25] Nipun Sharma & Swati Sharma (2022): A survey of Mythril, a smart contract security analysis tool for EVM

bytecode. Indian J Natural Sci 13, p. 75.
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