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and thirteen contributed papers, which deal with varied topics such as matching logic, static analysis,

interactive and automatic theorem proving, epistemic logics, graph theory, computational algebra, neural

networks, and P-systems.

The members of the Programme Committee for the workshop were:
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Modelling and Search-Based Testing of Robot Controllers
Using Enzymatic Numerical P Systems
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The safety of the systems controlled by software is a very important area in a digitalized society, as
the number of automated processes is increasing. In this paper, we present the results of testing the
accuracy of different lane keeping controllers for an educational robot. In our approach, the robot is
controlled using numerical P systems and enzymatic numerical P systems. For tests generation, we
used an open-source tool implementing a search-based software testing approach.

Keywords: tests generation, numerical P systems, enzymatic numerical P systems, search-based
software testing, cyber-physical systems, membrane computing

1 Introduction

Due to the remarkable technological progress of late years, software applications tend to have a consid-
erable role in solving most problems of everyday life. The medical, financial or automotive fields are
just three of the main areas in which software products are intensively used. Given the importance of
these areas in every individual’s life, ensuring product quality and functionality is an essential step in the
development process. The safety of software systems for large-scale use is ensured by testing. Software
testing aims to validate the fulfillment of the requirements defined for the developed product, as well as
to identify possible unwanted behaviors triggered by simulating certain operational contexts.

In this paper, we propose an approach for testing two different lane keeping controllers designed
to move an educational robot called E-puck [8]. Both controllers are based on numerical P systems,
introduced by G. Păun and R. Păun in [11]. We also provide an equivalent version for the models using
enzymatic numerical P systems, an extension of numerical P systems, defined by A. Pavel et al. in [9].
For this experiment we used some reliable tools which will be introduced in the following sections.

The paper is structured as described: Section 2 presents the P system variants to be used in the paper.
Section 3 introduces the working environment, including the tools used. Section 4 describes the models
and the main differences between them, while Section 5 illustrates the testing approach along with the
results. In the end, Section 6 presents the future work and conclusions.

2 Preliminaries

Membrane computing is a field of research introduced by Gh. Păun in [10, 12]. The computational
paradigm was originally inspired by the structure and functionality of the living cells. Several classes of
membrane systems (P systems) have been later defined and investigated, being classified according to the
structure of the membranes as cell-like, tissue-like and neural-like P systems. Membrane computing has

http://dx.doi.org/10.4204/EPTCS.389.1
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2 Modelling and search-based testing of robot controllers using enzymatic numerical P systems

made significant breakthroughs in the last decades in fields like computer science, economics or biology.
Depending on the requirements, extensions of the main concept were introduced and our experiment
involves two of these types: numerical P systems and enzymatic numerical P systems.

2.1 (Enzymatic) Numerical P System

The (enzymatic) numerical P systems [11, 9] are computational models that only inherit the membrane
structure from the membrane systems, more exactly a cell-like membrane structure. The membranes
contain variables and their values are processed by the programs on every time unit. The whole system
is synchronized by a global clock in discrete time units.

The (enzymatic) numerical P system (EN P system) is defined by the tuple:

Π = (m,H,µ,(Var1,Pr1,Var1(0)), . . . ,(Varm,Prm,Varm(0))) (1)

where:

• m≥ 1 is degree of the system Π (the number of membranes);

• H is an alphabet of labels;

• µ is membrane structure;

• Vari is a set of variables from membrane i,1≤ i≤ m;

• Vari(0) is the initial values of the variables from region i,1≤ i≤ m;

• Pri is the set of programs from membrane i,1≤ i≤ m.

The program Prli,i, 1≤ li ≤ mi has one of the two following forms:

i) non-enzymatic

Fli,i(x1,i, . . . ,xk,i)→ c1,i|v1 + c2,i|v2 + · · ·+ cmi,i|vmi

where Fli,i(x1,i, . . . ,xk,i) is the production function, c1,i|v1 + c2,i|v2 + · · ·+ cmi,i|vmi is the repar-
tition protocol, and x1,i, . . . ,xk,i are variables from Vari. Variables v1,v2 . . .vmi can be from the
region where the programs are located, and to its upper and inner compartments, for a par-
ticular region i. If a compartment contains more than one program, only one will be chosen
in non-deterministically manner.

ii) enzymatic

Fli,i(x1,i, . . . ,xk,i)|ei → c1,i|v1 + c2,i|v2 + · · ·+ cmi,i|vmi

where ei is an enzymatic variable from Vari, ei /∈ {x1,i, . . . ,xk,i,v1, . . . ,vmi}. The program can
be applied at time t only if ei > min(x1,i(t), . . . ,xk,i(t)). The programs that meet this condition
in a region will be applied in parallel.
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When the program is applied by the system at time t ≥ 0, the computed value

qli,i(t) =
Fli,i(x1,i(t), . . . ,xk,i(t))

ni

∑
j=1

cj,i

represents the unitary portion that will be distributed to the variables v1, . . . ,vn, proportional to coef-
ficients c1,i, . . . ,cmi,i, where cj,i ∈ N+ and the received values will be qli,i(t) · c1,i, . . . ,qli,i(t) · cmi,i.

The values of variables, from t−1, present in the production functions are consumed, reset to zero,
and their new value is the sum of the proportions distributed to variable through the repartition protocols,
if they appear in them or remain at the value zero.

3 Experimental environment

In this section we will provide brief descriptions of the tools we integrated in our experiment. Firstly,
we used an open-source software which allows the simulation of numerical P systems and enzymatic
numerical P systems. The simulator is called PeP and will be introduced later in this section. Since we
don’t have the physical education robot involved in this study, we also used a dedicated platform for robot
simulations, called Webots. For tests generation, we used a tool which won the SBST Tool Competition
2022 [4]. We will discuss later in this section the arguments for using a search-based testing tool.

3.1 PeP simulator

PeP simulator [14] is an open-source product developed by A.Florea and C.Buiu, used for simulations
based on numerical P systems and enzymatic numerical P systems. The program is written in Python
and receives numerical P systems as an input file. The input file includes the membrane structure and the
contents of each membrane, being stored in memory and executed.
PeP can be used as a stand-alone tool for simple simulations and run from the command line with some
options, like the number of simulations steps or a csv document generation containing the values at each
step of the simulation. As observed in [14], the tool comes with a set of basic input files examples, both
numerical P systems and enzymatic numerical P systems.

Besides the simplicity of running this tool, another advantage which can be taken into account when
using PeP is that it can be used as an integrated module in complex projects. We used this approach
in our experiment in order to make a controller accepted by the robot simulation platform and able to
receive information from the platform. In our lane keeping experiments, the simulation ends when the
robot drives off the generated lane or when the lane is kept until the end.

3.2 Webots and E-puck

Webots is a robotics simulation software which allows the user to construct a complex environment for
programming, modelling and simulating mobile robots. The environment can include multiple scene
objects with different properties which can be set from the graphic interface or from the generation files
[7]. In addition, the robots can be equiped with a large number of objects called nodes, like sensors,
camera, GPS, LED, light sensor etc.
In our approach, additionally to the original equipments of E-puck, we used a GPS attached to the turret
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slot in order to examine the coordinates at each step of the simulation. The scenes, called ”worlds” in
Webots, are containing the road that the robot will try to follow. The roads are generated with Ambiegen,
a tool that will be described later in this section. Each world is defined by a .wbt file. The objects can be
edited in this file and we used this option in order to place the road object in the scene with coordinates
exported from Ambiegen. Additional functionalities, like sensors or GPS can also be added to the robot
by editing the world file which will be imported in Webots, obtaining the visual representation of the
scene.

As mentioned before, for this experiment we used a robot widely known from educational and re-
search purposes, called E-puck. At the moment, the robot has some capabilities that are not implemented
in Webots, but considering the fact that both hardware and software components of E-puck are open
source, this remains a challenging opportunity [1].

E-puck has eight infrared proximity sensors placed around the body [8]. For lane keeping simulation,
we used just six of them: the two sensors placed in front and the four placed two on each side. This aspect
can be easily adapted by changing the membrane structure and creating new membranes if more sensors
are needed or deleting a few of them if required. Each sensor has a corresponding membrane in the
numerical P system model and the association was made in the controller. The robot has two motors
attached to the body along with two wheels, and the speed value is also changeable from the controller.

3.3 Ambiegen

Ambiegen is an open-source tool that utilizes evolutionary search for the generation of test scenarios for
autonomous systems. It can be used in experiments involving lane keeping assist systems and robots
navigating a room with obstacles [6]. The software is developed in Python and uses evolutionary search
[16] for tests generation. The main goal of Ambiegen in this approach is to generate roads as test cases in
order to challenge E-puck to keep the lane. The tool exports the roads in separate text files as a sequence
of points, representing the road spine. From this points, we can build the road with a proportional size to
E-puck.

Challenging different LKAS (Lane Keeping Assist Systems) involves a large diversity of road topolo-
gies in order to detect the behavior in limit situations, such as narrow curves. Ambiegen figures out the
solution for diversity by using a multi-objective genetic algorithm for search-based test generation, called
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [2]. In Ambiegen implementation, NSGA-II
has two-objectives: to increase the fault revealing power of test cases and to preserve their diversity
[5]. This multi-objective approach, which combines roads generation with a high attention to diversity
along with remarkable results at the competition mentioned above, attracted our curiosity to integrate
Ambiegen with Webots and testing E-puck on the roads resulted.

3.4 Experimental Procedure

Considering the above information, we will detail the way we worked with the presented tools. PeP and
Ambiegen are developed in Python and so is the robot controller.
First of all, we could easily integrate PeP with E-puck controller using the PeP module which allowed
us to parse the numerical P system model as an input file for controller. Achieving this, the model
membranes were associated with controller variables. Names and constant values (e.g., robot cruise
speed) were taken using a text file containing membrane’s values of the variables. The values were
chosen empirically.
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Next is a pseudocode version of the main loop in our controller, which performs the simulation steps.

Algorithm 1 Simulation steps performing algorithm
1: repeat
2: for i=1 to number of sensors do
3: sensor membrane(i)← value(i)
4: run one simulation step
5: read lw, rw from P system
6: leftMotor← lw
7: rightMotor← rw
8: until the end of the road or E-puck goes out of the road

Another challenge for us was to move the robot on the roads exported from Ambiegen with the above
presented approach. Ambiegen exports the roads as .json files along with informations like test outcome,
maximum curvature coefficient etc. We took the road points from the file and wrote them in the world
file.

Webots provides the possibility to extend the set of scene nodes by adding custom nodes created by
users. The mechanism is called PROTO and is described in [13]. After a node is extending with the
PROTO interface, it can be instantiated from the Webots graphic interface.

We used this technique to retrieve the points forming the spines of the roads generated by Ambiegen
and putting them into the wayPoints of the Road node. Using javascript, used as scripting language
by the PROTO, we constructed new nodes illustrating the roads from Ambiegen. Then, in the graphic
interface of Webots, the road is represented in accordance with the road from Ambiegen. With minimal
Python code additions we plotted each generated road with the corresponding spine to confirm that the
shape illustrated in Webots respects the original one.

4 Models

In this section we will present two models used to control the robot, the core of the controller. The con-
troller receives data from proximity sensors, that measure distances to obstacles from the environment,
to determine the direction of movement of a differential two wheeled robot, E-puck, in our case.

The proximity sensor has a range of 4 cm; if the obstacles are further than this limit the sensor returns
the value of 0. The proximity sensors are placed on the left and right side of the robot in the direction of
its movement at different angles.

The first model was taken from [3] and adapted. The equations that calculate the linear and angular
velocity are shown below:

leftSpeed =cruiseSpeed+
n

∑
i=1

weightLefti ·proxi

rightSpeed =cruiseSpeed+
n

∑
i=1

weightRighti ·proxi

The leftSpeed and rightSpeed are the speeds of the two wheels of the robot. The enzymatic numerical
P system described below encapsulates this behavior.
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The first model is defined as follows:

Π M1 = (m,H,µ,(Var1,Pr1,Var1(0)), . . . ,(Varm,Prm,Varm(0)))

where:

• m = k ·3+3,k = 6, where k is the number of proximity sensors;

• H = {s,sc}∪
k⋃

i=1

{ci,si,wi};

• µ = [[[]s1 []w1 ]c1 . . . [[]sk []wk ]ck []sc ]s;

• Vars = {xsl ,xsr},Varsc = {xsc},
Varci = {xci,sl ,xci,sr ,xci,wl ,xci,wr ,eci},1≤ i≤ k,
Varsi = {xsi,i},1≤ i≤ k,
Varwi = {xwi,wl ,xwi,wr ,ewi},1≤ i≤k;

• Vari(0) = 0,1≤ i≤ k;

• Prs = {0 · xsl · xsr → 1|xsl +1|xsr};
Prsc = {3xsc → 1|xsc +1|xsl +1|xsr};
Prci = {xci,sl · xci,wl |eci

→ 1|xsl ,
xci,sr · xci,wr |eci

→ 1|xsr},1≤ i≤ k;
Prsi = {3xsi,i→ 1|xsi,i +1|xci,sl +1|xci,sr},1≤ i≤ k;
Prwi = {2xwi,wl |ewi

→ 1|xwi,wl +1|xci,wl ,
2xwi,wr |ewi

→ 1|xwi,wr +1|xci,wr},1≤ i≤ k;

The meaning of the variables from the model is the following:

◦ xsl and xsr from the region s represent leftSpeed and rightSpeed, the sum of the products are accu-
mulated in s ;

◦ xsc from the compartment sc is cruiseSpeed;

◦ each pair of weights, weightLefti and weightRighti, resides in the regions wi, 1≤ i≤ k;

◦ for each proximity sensor, proxi, a compartment is defined, namely si, containing a single variable,
xsi,i, 1≤ i≤ k;

◦ the products are calculated by two distinct programs, weightLefti ·proxi, and weightRighti ·proxi,
1≤ i≤ k, in the compartments ci.

The second model is an improvement on the first one. First we define the function

f (x) =

{
1, if x = 0
0, otherwise

This function will be used in the equations describing the behavior of the model and in the production
functions from the programs.
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The equations describing the behavior are:

weightLeft =
n

∑
i=1

weightLefti ·proxi

weightRight =
n

∑
i=1

weightRighti ·proxi

leftSpeed =cruiseSpeed ·weightLeft+ f (weightLeft) · cruiseSpeed

rightSpeed =cruiseSpeed ·weightRight+ f (weightRight) · cruiseSpeed

The model is defined as follows:

Π M2 = (m,H,µ,(Var1,Pr1,Var1(0)), . . . ,(Varm,Prm,Varm(0)))

where:

• m = 3k+3,k = 6;

• H = {s,w,sc}∪
k⋃

i=1

{ci,si,wi};

• µ = [[[[]s1 []w1 ]c1 . . . [[]sk []wk ]ck []sc ]w]s;

• Vars = {xsl ,xsr},Varw = {xwl ,xwr ,ew},Varsc = {xsc},
Varci = {xci,sl ,xci,sr ,xci,wl ,xci,wr ,eci},1≤ i≤ k,
Varsi = {xsi,i},1≤ i≤ k,
Varwi = {xwi,wl ,xwi,wr ,ewi},1≤ i≤ k;

• Vari(0) = 0,1≤ i≤ k;

• Prs = {0 · xsl · xsr → 1|xsl +1|xsr};
Prw = {xsc · xwl + f (xwl) · xsc |ew → 1|xsl ,

xsc · xwr + f (xwr) · xsc |ew → 1|xsr};
Prsc = {xsc → 1|xsc};
Prci = {xci,sl · xci,wl |eci

→ 1|xsl ,
xci,sr · xci,wr |eci

→ 1|xsr},1≤ i≤ k;
Prsi = {3xsi,i→ 1|xsi,i +1|xci,sl +1|xci,sr},1≤ i≤ k;
Prwi = {2xwi,wl |ewi

→ 1|xwi,wl +1|xci,wl ,
2xwi,wr |ewi

→ 1|xwi,wr +1|xci,wr},1≤ i≤ k;

As we see from the definition of the Π M1 and its equations, in the proximity of an obstacle, roadside,
the speed of the wheel on the side with the obstacle increases according to the weights. In certain
circumstances, particularly related to the geometry of a tight road curve, the sum between travel speed
and the weights results in a rotation in the opposite direction of the obstacle, but a slight forward motion
still continues, causing the robot to leave the road.

The second model, Π M2 , overcomes this problem by calculating the product of the travel speed
and the sum of the weights. In a similar situation, the second model performs an angular rotation, in the
opposite direction to the obstacle, and when the proximity sensors no longer detect obstacles, it continues
moving forward with a constant velocity. This behavior is modeled by compartment w.

In the next section, it can be seen that the Π M2 model has better behavior in similar situations com-
pared to the first model.
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5 Simulation Results

Having presented the way we integrate the tools along with the models we will detail in this section the
testing stage. Ambiegen offers the possibility to configure the setup for its genetic algorithms, choosing
the values for parameters like population size, number of generations, mutation rate or crossover rate.
Also, aspects like the amount of time allocated for tests generation, map size, out of bound percent from
which the test is considered as failed can be set easily from the command line, when executing the main
Python file used in [4].

Test 1 Test 2

Test 3 Test 4

Figure 1: Illustration of different road tests

After series of trials we kept the default values, so we used the population size 100 with 75 gen-
erations. Mutation rate is 0.4 and crossover rate is 1. These values can be changed from the internal
configuration file of Ambiegen. From the command line we chose the time budget allocated to genera-
tion and execution to be 1800 seconds and the map size to 200x200 meters which is the default value.
For the out of bound percentage we also kept the default value (95%). After each simulation, Ambiegen
exported roads spines coordinates as text files and we also plotted each generated road, as mentioned
before. Then we could easily chose different roads based on the number of curves and their angle as the
main criteria to diversify the tests that were supposed to be given to E-puck controller in Webots.

Next we report some roads along with the simulation results. The road is marked with grey, whilst the
trajectory using the first model is represented with red. The trajectory of the second model (the improved
one) is colored with green.

In Figure 1 we can see the results of different roads tests. We observe that Test 1, being the simplest
test of the above presented, is passed by both models. In the next scenarios, the complexity of the road
increases and only the improved model can pass.

From all the experiments, we noticed that the first model (the one marked with red in results) cannot
pass a huge majority of tests with curves, whilst the improved model performs a rotation movement when
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the road is curved and for this reason it manages to advance until the end of the road. Additional tests
were added to [15].

6 Conclusions and Future Work

In this paper we presented an approach to test different enzymatic numerical P systems models using
modern tools and search-based generated tests. We evaluated our approach on a research and educational
robot called E-puck, virtually represented in Webots simulator. We set up our working environment in-
corporating the tools with different scripts created to ensure a smooth integration between them and also
a better data processing. We formally described each model involved and then showed the differences
between the lane-keeping controllers resulted when using each of them. As future work, we will investi-
gate the possibility to dynamically calculate the values for weights, which are at the moment empirically
assigned. Based on the controller behavior during the previous tests, the weights values will be automat-
ically adapted. Also, we will try to develop a method to generate more complex roads in order to better
challenge the controllers.
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[10] Gheorghe Păun (2002): Membrane computing: an introduction. Springer Science & Business Media,
doi:10.1007/978-3-642-56196-2.

https://doi.org/10.1016/j.robot.2014.05.007
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/ECAI.2017.8166411
https://doi.org/10.1145/3526072.3527538
https://doi.org/10.1145/3526072.3527531
https://doi.org/10.48550/arXiv.2301.01234
https://doi.org/10.5772/5618
https://doi.org/10.1109/BICTA.2010.5645071
https://doi.org/10.1007/978-3-642-56196-2


10 Modelling and search-based testing of robot controllers using enzymatic numerical P systems
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[12] Gheorghe Păun, Grzegorz Rozenberg & Arto Salomaa, editors (2010): The Oxford Handbook of Membrane
Computing. Oxford University Press.

[13] Webots reference manual https://cyberbotics.com/doc/reference/proto.
[14] A. G. Florea and C. Buiu, “PeP - an open-source software simulator of Numerical P systems and Numerical

P systems with Enzymes,” 2017. [Online]. Available: https://github.com/andrei91ro/pep.
[15] Github simulation results folder https://github.com/radubobe/Research/tree/main/Modelling%

20and%20testing%20robot%20controllers%20using%20ENPS/Simulation%20results.
[16] Darrell Whitley, Soraya Rana, John Dzubera & Keith E Mathias (1996): Evaluating evolutionary algorithms.

Artificial intelligence 85(1-2), pp. 245–276, doi:10.1016/0004-3702(95)00124-7.

http://content.iospress.com/articles/fundamenta-informaticae/fi73-1-2-20
http://content.iospress.com/articles/fundamenta-informaticae/fi73-1-2-20
https://cyberbotics.com/doc/reference/proto
https://github.com/radubobe/Research/tree/main/Modelling%20and%20testing%20robot%20controllers%20using%20ENPS/Simulation%20results
https://github.com/radubobe/Research/tree/main/Modelling%20and%20testing%20robot%20controllers%20using%20ENPS/Simulation%20results
https://doi.org/10.1016/0004-3702(95)00124-7
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Linear logic is a substructural logic proposed as a refinement of classical and intuitionistic logics,
with applications in programming languages, game semantics, and quantum physics. We present a
template for Gentzen-style linear logic sequents that supports verification of logic inference rules
using automatic theorem proving. Specifically, we use the Z3 Theorem Prover [8] to check targeted
inference rules based on a set of inference rules that are presumed to be valid. To demonstrate the
approach, we apply it to validate several derived inference rules for two different fragments of linear
logic: MLL+Mix (Multiplicative Linear Logic extended with a Mix rule) and MILL (Multiplicative
Intuitionistic Linear Logic).
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1 Introduction

The Z3 Theorem Prover [8] is a satisfiability modulo theories (SMT) solver targeted at software veri-
fication and program analysis. Besides SMT, the symbolic reasoning engine of Z3 also uses automatic
reasoning, incremental solving, model generation, and other artificial intelligence techniques to deter-
mine satisfiability of a set of rules in a theory and to produce models.

Linear logic [13] is a substructural logic proposed as a refinement of classical and intuitionistic
logics, with applications in programming languages, game semantics, and quantum physics. In [20],
the author makes a functorial connection between arbitrary models of multiplicative linear logic and the
category of presheaves over arbitrary rings. Other far-reaching considerations connected with category
theory are made by the same author in [19]. A more accessible approach to this connection is presented
in [26]. Connections with semantics for higher order quantum computing were studied in [22]. A usual
interpretation of linear logic, already intended by Girard, is that formulas do not hold values as true
and false, but contain information about the availability and use of given resources. In this context, [21]
presents an overview of linear logic programming. The article [4] sketches a unified approach, a “Rosetta
stone”, based on categories as well, for interpreting linear logic in three seemingly unrelated domains:
topology, quantum physics, and lambda calculus. Relations between linear logic and concurrency theory
are an active area of research, for instance in [2]. General presentations of linear logic can be found in:
[10], [9], [14], [17], [27], [28].

Two important fragments of linear logic are multiplicative intuitionistic linear logic (MILL) and
multiplicative linear logic with the Mix-rule (MLL+Mix). MILL is crystallized in [5], where its proof-
theory is studied from a categorical theoretic point of view. A variant of MILL and its proof methods

http://dx.doi.org/10.4204/EPTCS.389.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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are discussed recently in [12]. MLL+Mix is crystallized in [1] as a result of the authors’ game-theoretic
research in linear logic. They considered formulas as games and proofs as winning strategies.

As observed for instance in [6], in linear logic some usual proof steps, such as weakening and con-
traction, are restricted. The proof complexity in general linear logic is Σ1

0-hard. Some fragments are
better behaved, the proof complexity in the multiplicative fragment being NP-complete. Still, proofs in
linear logic are recognized to be computationally difficult.

We propose a template for modeling Gentzen-style sequents that supports verification of logic infer-
ence rules using Z3. Using our template, Z3 checks targeted inference rules based on a set of inference
rules presumed to be valid. If a targeted rule does not hold, Z3 can produce a model assignment which
serves as a counterexample.

We show how to apply our template to validate derived inference rules in two different fragments of
linear logic. We find that this approach can flatten the learning curve when switching from classical logic
to more general types of logic. Such transitions can be confusing. In particular, when concrete problems
involving resource management are encoded in the satisfiability check of linear logic formulas, there is
value added in using a theorem prover to offset the lack of common mathematical intuition.

Theorem provers have been used to assist in generating Gentzen-style proofs, for example Z3 in [18]
and Lean in [23]. However, we are not aware of a previous attempt to generalize the approach using a
template for modeling Gentzen sequents. Our choice for Z3 was motivated by convenience and we hope
it will offer a benchmark for developing Lean tactics for MILL and MLL+Mix as well.

2 Modeling Inference Rules

A multiset is a set with multiplicities: the same element can occur several times in a multiset, and the
number of occurrences is called multiplicity. While the classical multiplicity of some element in a set is
1, in a multiset elements may have as a multiplicity every set-cardinality. As our multisets of formulas
will be later identified with formulas, we will consider only finite multisets. Implicitly, multiplicities are
also finite.

In the sequent notation, Γ, ∆, etc., stand for multisets of formulas. A and B represent formulas. The
turnstile symbol (`, read ‘entails’) separates the context (antecedents) from the conclusion (consequent).
Generally, an inference rule in sequent calculus, including linear logic, takes the following form:

Γ1 ` A1 Γ2 ` A2 . . . Γn ` An

Γ ` A
(Name of Rule)

Above the line, we have the assumptions or premises of the rule, and below the line is the guarantee or
conclusion of the rule, which holds true if all the antecedents are true. Each Γi ` Ai is a sequent, where
the context Γi can be understood as a set of additional assumptions. Such a rule can be stated equivalently
using Boolean logic:

(Γ1 ` A1)∧ (Γ2 ` A2)∧ . . .∧ (Γn ` An)→ (Γ ` A),

where ∧ and→ are logical conjunction and implication, respectively, meaning: "If Γ1 ` A1 and Γ2 ` A2
and . . . and Γn ` An then Γ ` A".

For example, the tensor rule in linear logic often has the following form [4, p.40]:

Γ ` A ∆ ` B
Γ⊗∆ ` A⊗B

(⊗)
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This rule states that if from context Γ we can deduce A, and from context ∆ we can deduce B, then from
the context ‘Γ tensor ∆’ (Γ⊗∆) we can deduce ‘A tensor B’ (A⊗B). The same tensor rule is sometimes
stated in an alternate form [16, p.3]:

Γ,A ∆,B
Γ,∆,A⊗B

(⊗) meaning
` Γ,A ` ∆,B
` Γ,∆,A⊗B

(⊗)

When the antecedent is missing, the turnstile symbol (`), usually read as ‘entails’, can be read as
‘provable’. That is, the consequent is provable from given rules, meaning the consequent is entailed by
an empty context. In such cases, the turnstile can be omitted for legibility.

For the purpose of verification in Z3, we use its Python API to model inference rules as follows.
First, we import the Z3 module and declare several objects used to model inference rules:

• A solver, which will collect all the rules and verify their consistency.
• A sort F for formulas and contexts (i.e. multisets of formulas). Sorts are the Z3 model for types.
• A function ‘entails’ which takes two Fs (formulas or contexts) and returns a Boolean signifying

that the left formula or context entails the right formula or context.
• Two operations of linear logic (‘tensor’ and ‘lollipop’) as functions of Fs returning Fs.
• Three variables (called constants in Z3) of type F.

The relevant code fragment is given below. The complete code for this section is provided in Listing 1.

## Importing the z3 module

from z3 import *

## Declarations

ll = Solver ()

F = DeclareSort('F')

entails = Function('entails ', F, F, BoolSort ())

tensor = Function('tensor ', F, F, F)

lpop = Function('lollipop ', F, F, F)

x, y, z = Consts('x y z', F)

The operators we declared satisfy inference rules. In our model, each inference rule is universally
quantified by the variables in it. Then follows an expression that returns a Boolean. The expression is
in prefix notation, i.e., operator followed by operands. Some expressions use Implies and And; these
operators, predefined in Z3, have Boolean parameters and return values.

Consider a simple example where there are only two given inference rules:

X ` X and (X⊗Y ` Z)↔ (Y ` X ( Z)

These are a subset of the inference rules in MILL, used here for illustration only; we will revisit these
two rules later in Section 4. We add these two rules to our ll solver by invoking its .add method:

## Given rules

ll.add(ForAll ([x], entails(x, x))) # (i)

ll.add(ForAll ([x,y,z], entails(tensor(x,y),z) == entails(y,lpop(x,z)))) # (c)

To prove that a derived inference rule is valid, we add its negation to the existing set of rules and we
check the satisfiability of the expanded set of rules. Unsatisfiability proves that the new rule is valid. In
our template, checking for satisfiability is implemented using the ll.check() method. Upon executing
this check, Z3 prints either `sat' or `unsat' depending on whether a model is found that satisfies the
set of rules, including the negated rule.
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• If Z3 prints `unsat', the proposed rule results from the previously added rules. To see that, let
r1, . . . ,rn be the given rules, and let r be the new rule prior to negation. If the set of rules is
unsatisfiable that means we have

¬(r1∧ r2∧ . . .∧ rn∧¬r)

Therefore, ¬(r1∧ r2∧ . . .∧ rn)∨ r. Thus, (r1∧ r2∧ . . .∧ rn)→ r. In short, if Z3 prints `unsat',
we have (r1∧ r2∧ . . .∧ rn)→ r.

• If Z3 prints `sat', it found a model, an assignment for the variables in the rules, under which
the new rule r is false (its negation is true) while the previously added rules are all true. Thus,
if Z3 prints `sat', we do not have (r1 ∧ r2 ∧ . . .∧ rn)→ r. If Z3 prints `sat', we can also use
ll.print() to obtain the model that caused the satisfiability, that is, under which assignment of
variables did the previous rules and the negation of the new rule hold true.

For example, this is the modus ponens rule in linear logic: x⊗ (x ( y) ` y. To show that this rule
follows from the two given rules, we add its negation to the solver. Running the satisfiability check as
described above, we obtain an `unsat' result, thus proving the derived rule. The relevant code fragment
is:

## Derived rules

ll.add(Not(ForAll ([x,y], entails(tensor(x,lpop(x,y)),y))))

## Verification

print(ll.check ())

print(ll.model ())

It is important to verify consistency of the given inference rules without the new negated rule. An
inconsistent set would produce `unsat' results even without the new negated rule. As a result, the given
set of inference rules, if inconsistent, would imply the new negated rule because false implies anything.
Having commented out the negated modus ponens rule, we verify that the given set of rules is consistent
by running a satisfiability check. The solver produces a `sat' result, indicating that the given set of
rules is indeed consistent.

3 Verifying MLL+Mix Properties

Multiplicative Linear Logic (MLL) [16] is a fragment of linear logic [1] that restricts the linear logic
structure to the multiplicative operators. MLL+Mix is an extension of MLL with the Mix inference rule
[13]. MLL+Mix has been applied to game theory as shown in [1, p.546, Table 1].

For the MLL inference rules we follow the notation in [16]. For each group of formulas in [16, Fig.1
p.3] there is an implicit entails symbol with an empty antecedent context. For example, the conclusion
of formula (ax) is written A,A? representing actually ` A,A?. To represent more easily entails with an
empty antecedent, we define a unary predicate provable on our sort F, that is, a function from F to
Booleans, as follows (for the complete code see Listing 2):

## Declarations

provable = Function('provable ', F, BoolSort ())
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After restoring the entails symbols, the given inference rules of MLL+Mix are rephrased as follows.

` Γ

` Γ,⊥
(⊥)

` 1
(1)

` Γ,A,B
` Γ,A`B

(`)

` Γ,A ` ∆,B
` Γ,∆,A⊗B

(⊗)
` A,A?

(ax)
` Γ,A ` ∆,A?

` Γ,∆
(cut)

For the Mix rule, we use the formula from [1, p.546, Table 1]

` Γ ` ∆

` Γ,∆
(mix)

The given inference rules of MLL+Mix are modeled in Z3 as follows:

## Declarations

comma = Function('comma', F, F, F)

par = Function('par', F, F, F)

tensor = Function('tensor ', F, F, F)

dual = Function('dual', F, F)

g, d, l, a, b, bot , one = Consts('g d l a b bot one', F)

## Axioms for comma (multiset reunion ): associativity and commutativity

ll.add(ForAll ([a, b, g], comma(a,comma(b,g)) == comma(comma(a,b),g)))

ll.add(ForAll ([a, b], comma(a,b) == comma(b,a)))

## Given rules (Heijltjes and Houston page 3)

ll.add(ForAll ([g],Implies(provable(g), provable(comma(g,bot )))))

ll.add(provable(one))

ll.add(ForAll ([g, a, b],Implies(

provable(comma(comma(g,a),b)),

provable(comma(g,par(a, b))))))

ll.add(ForAll ([g, a, d, b],Implies(

And(provable(comma(g,a)), provable(comma(d,b))),

provable(comma(g,comma(d,tensor(a, b)))))))

ll.add(ForAll ([a],provable(comma(a,dual(a)))))

ll.add(ForAll ([g, d, a],Implies(

And(provable(comma(g,a)), provable(comma(d,dual(a)))),

provable(comma(g,d)))))

## Mix rule (https ://www.pls -lab.org/en/Mix_rule)

ll.add(ForAll ([g, d],Implies(And(provable(g), provable(d)),

provable(comma(g,d)))))

We also introduced an additional operator, called ‘comma’, which adjoins two Fs into a new F. It
models the union of multisets of formulas, or multisets and single formulas. For this operator, we define
two additional rules (associativity and commutativity). These rules ensure that contexts (i.e. multisets
of formulas) created using the comma operator are equivalent regardless of the ordering of formulas in
them.

Different authors use different notations for linear logic and its fragments. For example, the same
rule (the⊗ ‘tensor’ rule) is presented differently in [4, p.40] and [16, p.3]. However, the two formulations
can be linked by interpreting ‘comma’ as ‘par’. This link also provides the rationale for our merging the
contexts and formulas in the same sort. As in [4] a context (multiset of formulas) is seen here as the par
of the formulas in that context. Informally, par (`) can be thought of as a parallel composition of devices
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[2]. In what follows, we show that this viewpoint over the meaning of contexts supports the verification
of properties in two different fragments of linear logic, following the notations in [4] and [16].

First, we verify that our model for the rules of MLL+Mix is indeed satisfiable. Indeed, ll.check()
returns `sat' on our model of the rules of MLL+Mix, indicating that our rules are consistent.

As shown in Section 2, we can verify a new inference rule in MLL+Mix by adding its negation to
the solver and verifying the satisfiability of the resulting set of rules. Using this approach, we verified,
one by one, the validity of the following derived rules from [16, Fig. 2 and Fig. 3]:

` 1,⊥
(mix1)

` A⊗B,A?`B?
(mix2)

` Γ,A ` ∆,B ` Λ,A?,B?

` Γ,∆,Λ
(mix3)

The relevant code is as follows:

## Derived rules (Heijltjes and Houston page 4, all "unsat")

# ll.add(Not(provable(comma(one ,bot ))))

# ll.add(Not(ForAll ([a,b],

# provable(comma(tensor(a,b), par(dual(a),dual(b)))))))

# ll.add(Not(ForAll ([a,b,g,d,l],

# Implies(

# And(And(provable(comma(g,a)),provable(comma(d,b))),

# provable(comma(comma(l,dual(a)),dual(b)))),

# provable(comma(comma(g,d),l))))))

We also verify several alternate formulations to the Mix rule in the context of MLL, thought to be
equivalent to Mix. We find that these formulations are not equivalent to Mix. One at a time, we check
the following negated rules are satisfiable in the context of MLL + Mix, indicating that the respective
rules do not hold.

` 1↔⊥ ` (⊥?`1) ` ⊥

The relevant code is:

## Invalid derived rules (all "sat")

# ll.add(Not(one == bot))

# ll.add(Not(provable(par(dual(bot),one ))))

# ll.add(Not(provable(bot)))

To sum up the results of our investigations into MLL+Mix inference rules, we can state the following
Theorem:

Theorem 1. The following sequents (and rule) are provable in MLL+Mix:

` 1,⊥ ` A⊗B,A?`B? ` Γ,A ` ∆,B ` Λ,A?,B?

` Γ,∆,Λ

The following sequents are not provable in MLL+Mix:

` 1↔⊥ `⊥?`1 ` ⊥

The theory MLL+Mix can be substantially improved by adding some other axioms. Consider, as an
example, the following form of Contraction (C):

` 1,A
` A

(C)

We add the Contraction rule (C) to the solver as follows:
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## Contraction (subset) rule and resulting theorem

# ll.add(ForAll ([a, b], Implies(provable(comma(one ,a)),provable(a))))

# ll.add(Not(provable(bot))) # unsat

The new theory MLL+Mix+C proves to be consistent by using Z3. This extension leads to a strictly
stronger theory, as shown by Theorem 2 below:

Theorem 2. The theory MLL+Mix+C proves the sequent:

` ⊥.

Proof. From the rule (1) we get
` 1.

From the rule (⊥), we get
` 1,⊥.

Finally, from the rule (C) we get
` ⊥.

It is however not certain that this extended theory is still a fragment of Linear Logic. Another pos-
sibility is to consider the following axiom, called ( /0), which introduces sequents with empty hypothesis
and empty conclusion:

`
( /0)

It is clear that MLL+Mix+( /0) proves ` ⊥ if one also introduces the convention

∀x Comma( /0,x) = x.

By ( /0) we get the empty sequent ` . By (⊥), we get `,⊥ and applying the convention, this is ` ⊥.
The Z3 implementation of the new rule ( /0) remains to be completed.

4 Verifying MILL Properties

A fragment of Linear Logic called Multiplicative Intuitionistic Linear Logic (MILL) is shown in [4] to
be closely related to models of topology, quantum physics, and lambda calculus. Using the technique in
Section 2, we model MILL in Z3 and we investigate several properties of MILL. The complete code is
provided in Listing 3.

Our starting point is the set of rules (i), (o), (⊗), (a), (l), (r), (b), (c) from [4, p.40].

X ` X
(i)

X ` Y Y ` Z
X ` Z

(o)

W ` X Y ` Z
W ⊗Y ` X⊗Z

(⊗)
W ` (X⊗Y )⊗Z

W ` X⊗ (Y ⊗Z)
(a)

X ` I⊗Y
X ` Y

(l)
X ` Y ⊗ I

X ` Y
(r)

W ` X⊗Y
W ` Y ⊗X

(b)
X⊗Y ` Z
Y ` X ( Z

(c)
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Rule (i) with no premises is modeled in Z3 by simply adding entails(x,x), universally quantified.
There is no need for an Implies in this rule because the empty set of premises means the conjunction
of premises in that set is true. Thus, rule (i) is (true→ (x ` x)), which is equivalent to (¬true∨ (x ` x)),
which is equivalent to just (x ` x). Finally, we model rule (i) by adding to the solver an expression
with no Boolean logic operators. Rule (i), as well as rules (o) and (⊗) are modeled using the approach
described in Section 2. The relevant code is:

## Given rules

ll.add(ForAll ([x], entails(x, x))) # rule (i)

ll.add(ForAll ([x,y,z], Implies(And(

entails(x,y), entails(y,z)), entails(x, z)))) # rule (o)

ll.add(ForAll ([w,x,y,z], Implies(And(

entails(w,x), entails(y,z)), entails(tensor(w, y), tensor(x, z)))))

# rule (tensor)

The double bar represents implication both ways, i.e., logical equivalence. Accordingly, rules (a),
(l), (r), (b), (c) are modeled essentially by the technique in Section 2, except that instead of Implies we
use == for logic equivalence. The relevant code for these rules is:

## Given rules

ll.add(ForAll ([w,x,y,z],

entails(w,tensor(tensor(x,y),z)) == entails(w, tensor(x, tensor(y, z)))))

# rule (a)

ll.add(ForAll ([x,y],

entails(x,tensor(I,y)) == entails(x,y))) # rule (l)

ll.add(ForAll ([x,y],

entails(x,tensor(y,I)) == entails(x,y))) # rule (r)

ll.add(ForAll ([w,x,y],

entails(w,tensor(x,y)) == entails(w,tensor(y,x)))) # rule (b)

ll.add(ForAll ([x,y,z],

entails(tensor(x,y),z) == entails(y,lpop(x,z)))) # rule (c)

After adding to the solver the eight rules of MILL, we attempt to verify several new inference rules.
We start with two properties from [4, p.41]: modus ponens and internal composition. Ther relevant code
for both rules is:

## Derived rules (all "unsat ")

# ll.add(Not(ForAll ([x,y], entails(tensor(x,lpop(x,y)),y)))) # rule (ev)

# ll.add(Not(ForAll ([x,y,z], entails(tensor(lpop(x,y),lpop(y,z)),

# lpop(x,z))))) # internal composition rule

The modus ponens rule is

X⊗ (X ( Y ) ` Y
(ev)

One way to interpret rule (ev) is by taking tensor (⊗) to mean linear conjunction and lollipop (() to
mean linear implication. Therefore, if we have X linear-and X linear-implies Y, we have Y. To verify
rule (ev) we model it using the same technique as for rule (i) above, i.e. by adding its negation to the set
of given rules and checking the satisfiability of the extended set of rules. Since the result is `unsat', we
conclude that rule (ev) holds in MILL.

Next we verify a more complex rule, called internal composition in [4, p.41]:

(X ( Y )⊗ (Y ( Z) ` (X ( Z)
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Informally, taking ⊗ for linear-and and ( for linear-implication, the internal composition rule says
that we can compose chained linear-implications. To verify internal composition in MILL, we add the
internal composition rule, negated. We also comment out the modus ponens rule so it won’t interfere
with the satisfiability check. Running the satisfiability check again, we obtain `unsat', meaning that
the internal composition rule holds in MILL.

Two important operators in linear logic are dual and par, denoted here by ? and `, respectively,
following [16]. Rules (i) through (c) above do not include rules for dual and par, but we can construct
dual and par by new rules as follows:

Dual: X? = X ( I

Par: X `Y = X? ( Y

Here I is a constant which is the unit of tensor; its properties are specified in rules (l) and (r). These rules
are implemented as follows:

## Given rules for dual and par

ll.add(ForAll ([x], dual(x) == lpop(x, I))) # dual

ll.add(ForAll ([x,y], par(x, y) == lpop(dual(x), y))) # par

Now we can verify a few properties of dual and par in MILL by adding the respective negated rules
to the solver, as shown in the code fragment below. We emphasize that these properties are verified one
at a time by un-commenting its corresponding line while commenting all other properties.

## Proving properties of dual and par (all "unsat")

# ll.add(Not(ForAll ([x], entails(x, dual(dual(x)))))) # x |- x dual dual

# ll.add(Not(ForAll ([x,y], entails(par(dual(x), y), lpop(x, y)))))

# # X dual par Y |- X -o Y

# ll.add(Not(ForAll ([x,y],

# entails(par(x, y), dual(tensor(dual(x), dual(y)))))))

# # x par y |- - (- x tensor - y)

#

## out of memory

# ll.add(Not(ForAll ([x], entails(dual(dual(x)), x)))) # x dual dual |- x

# ll.add(Not(ForAll ([x,y], entails(lpop(x, y), par(dual(x), y)))))

# # X -o Y |- X dual par Y

# ll.add(Not(ForAll ([x,y],

# entails(dual(tensor(dual(x), dual(y))), par(x, y)))))

# # - (- x tensor - y) |- x par y

First we want to know to what extent dual is an involution in MILL, so we verify the rules X?? ` X
and X ` X?? by running the solver check method. The solver yields `unsat' for the second rule, proving
that the rule holds in MILL. The solver runs out of memory for the first rule. Details about the hardware
and software used to execute the prover will be given later in the paper.

The next two rules to be checked express relationships between par (`) and linear-implies (():

X?`Y ` X ( Y and X ( Y ` X?`Y

Adding, one at a time, the two negated rules, the solver yielded `unsat' for the first rule and ran out of
memory for the second rule. This means that the first rule holds in MILL and a counterexample could
not be easily found in MILL for the second rule.

Now we verify relationships between par (`) and tensor (⊗):

X `Y ` (X?⊗Y ?)? and (X?⊗Y ?)? ` X `Y
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The first rule holds (the solver yields `unsat'), and for the second rule the solver runs out of memory,
as above.

Finally, we prove that I is self-dual. We also check to what extent I is a neutral element for the par
(`) operator.

I? ` I and I ` I?

X ` I ` X and X ` X ` I

The respective negated rules are implemented as shown in the code below. Three of the four rules hold
(the solver yields `unsat'). For the rule X ` I ` X , the solver runs out of memory, and we cannot prove
anything.

## Proving properties of dual and par (all "unsat")

# ll.add(Not(entails(dual(I),I)))

# ll.add(Not(entails(I,dual(I))))

# ll.add(Not(ForAll ([x],entails(x,par(x,I)))))

#

## out of memory

# ll.add(Not(ForAll ([x],entails(par(x,I),x))))

Recalling the intuitionistic nature of this logic, some of the propositions that we could not prove
or disprove by Z3 are unlikely to be consequences of the theory. It is however remarkable that it is so
difficult for Z3 to construct counterexamples. We believe that some of the propositions that caused Z3 to
run out of memory are actually consistent with the theory MILL.

To sum up the results of our investigations into MILL inference rules, we restate the derived inference
rules by means of a Theorem. We use the (a`) symbol to denote bidirectional entailment.

Theorem 3. The following sequents are provable in MILL:

X⊗ (X ( Y ) ` Y
(X ( Y )⊗ (Y ( Z) ` (X ( Z)

X ` X??

X?`Y ` X ( Y
X `Y ` (X?⊗Y ?)?

X ` X ` I
I? a` I

Finally, a few details of the software and hardware platforms we used. The experiments have been
run on a high performance system with four 10-core Intel Xeon E7-4870 with 2.4 GHz clock, 30 MB
cache, and 1 TB total RAM. The software is Python version 3.9.13 running in a Rocky Linux operating
system, version 8.7. Successful experiments completed in a few seconds. Experiments that ran out of
memory never completed.

5 Conclusions

Beyond the inference rules in MILL and MLL+Mix, our modeling exercise has led us to develop rules
for handling comma (union of multisets) and entails with empty antecedent context.

The exercise has shown that several known properties of MILL and MLL+Mix can be proven, as
expected. It also clarifies that MLL rules are insufficient for several other inference rules to be derived
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from Mix. Several rules that we checked caused Z3 to fill up the available memory and run out of time
as a result.

Following [7], further work may include using Z3 as a tactic in Lean, another theorem prover. Lean
uses different technologies than Z3 and the combination of Lean and Z3 can prove the rules that caused
Z3 to run out of memory.

Successful validation of the derived inference rules suggests that the proposed practical approach has
the potential to be more widely applicable in other formal logic systems, as Linear Temporal Logic (see
e.g. [24], [11]), Reachability Logic (e.g. [25]), IMLL (e.g. [12]) and so on.

6 Appendix

Listing 1: Python code for modeling inference rules
1 ## Importing the z3 module

2 from z3 import *

3
4 ## Declarations

5 ll = Solver ()

6 F = DeclareSort('F')

7 entails = Function('entails ', F, F, BoolSort ())

8 tensor = Function('tensor ', F, F, F)

9 lpop = Function('lollipop ', F, F, F)

10 x, y, z = Consts('x y z', F)

11
12 ## Given rules

13 ll.add(ForAll ([x], entails(x, x))) # (i)

14 ll.add(ForAll ([x,y,z], entails(tensor(x,y),z) == entails(y,lpop(x,z)))) # (c)

15
16 ## Derived rules

17 ll.add(Not(ForAll ([x,y], entails(tensor(x,lpop(x,y)),y))))

18
19 ## Verification

20 print(ll.check ())

21 print(ll.model ())

Listing 2: Python code for modeling MLL+Mix inference rules
1 ## Importing the z3 module

2 from z3 import *

3
4 ## Declarations

5 ll = Solver ()

6 F = DeclareSort('F')

7 entails = Function('entails ', F, F, BoolSort ())

8 provable = Function('provable ', F, BoolSort ())

9 comma = Function('comma', F, F, F)

10 par = Function('par', F, F, F)

11 tensor = Function('tensor ', F, F, F)

12 dual = Function('dual', F, F)

13 g, d, l, a, b, bot , one = Consts('g d l a b bot one', F)

14
15 ## Axioms for comma (multiset reunion ): associativity and commutativity

16 ll.add(ForAll ([a, b, g], comma(a,comma(b,g)) == comma(comma(a,b),g)))
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17 ll.add(ForAll ([a, b], comma(a,b) == comma(b,a)))

18
19 ## Given rules (Heijltjes and Houston page 3)

20 ll.add(ForAll ([g],Implies(provable(g), provable(comma(g,bot )))))

21 ll.add(provable(one))

22 ll.add(ForAll ([g, a, b],Implies(

23 provable(comma(comma(g,a),b)),

24 provable(comma(g,par(a, b))))))

25 ll.add(ForAll ([g, a, d, b],Implies(

26 And(provable(comma(g,a)), provable(comma(d,b))),

27 provable(comma(g,comma(d,tensor(a, b)))))))

28 ll.add(ForAll ([a],provable(comma(a,dual(a)))))

29 ll.add(ForAll ([g, d, a],Implies(

30 And(provable(comma(g,a)), provable(comma(d,dual(a)))),

31 provable(comma(g,d)))))

32
33 ## Mix rule (https ://www.pls -lab.org/en/Mix_rule)

34 ll.add(ForAll ([g, d],Implies(And(provable(g), provable(d)),

35 provable(comma(g,d)))))

36
37 ## Derived rules (Heijltjes and Houston page 4, all "unsat")

38 # ll.add(Not(provable(comma(one ,bot ))))

39 # ll.add(Not(ForAll ([a,b],

40 # provable(comma(tensor(a,b), par(dual(a),dual(b)))))))

41 # ll.add(Not(ForAll ([a,b,g,d,l],

42 # Implies(

43 # And(And(provable(comma(g,a)),provable(comma(d,b))),

44 # provable(comma(comma(l,dual(a)),dual(b)))),

45 # provable(comma(comma(g,d),l))))))

46
47 ## Invalid derived rules (all "sat")

48 # ll.add(Not(one == bot))

49 # ll.add(Not(provable(par(dual(bot),one ))))

50 # ll.add(Not(provable(bot)))

51
52 ## Contraction (subset) rule and resulting theorem

53 # ll.add(ForAll ([a, b], Implies(provable(comma(one ,a)),provable(a))))

54 # ll.add(Not(provable(bot))) # unsat

55
56 ## Verification

57 print(ll.check ())

58 print(ll.model ())
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Listing 3: Python code for modeling MILL inference rules

1 ## Importing the z3 module

2 from z3 import *

3
4 ## Declarations

5 ll = Solver ()

6 F = DeclareSort('F')

7 entails = Function('entails ', F, F, BoolSort ())

8 par = Function('par', F, F, F)

9 tensor = Function('tensor ', F, F, F)

10 lpop = Function('lollipop ', F, F, F)

11 dual = Function('dual', F, F)

12 x, y, z, w, I = Consts('x y z w I', F)

13
14 ## Given rules

15 ll.add(ForAll ([x], entails(x, x))) # rule (i)

16 ll.add(ForAll ([x,y,z], Implies(And(

17 entails(x,y), entails(y,z)), entails(x, z)))) # rule (o)

18 ll.add(ForAll ([w,x,y,z], Implies(And(

19 entails(w,x), entails(y,z)), entails(tensor(w, y), tensor(x, z)))))

20 # rule (tensor)

21 ll.add(ForAll ([w,x,y,z],

22 entails(w,tensor(tensor(x,y),z)) == entails(w, tensor(x, tensor(y, z)))))

23 # rule (a)

24 ll.add(ForAll ([x,y],

25 entails(x,tensor(I,y)) == entails(x,y))) # rule (l)

26 ll.add(ForAll ([x,y],

27 entails(x,tensor(y,I)) == entails(x,y))) # rule (r)

28 ll.add(ForAll ([w,x,y],

29 entails(w,tensor(x,y)) == entails(w,tensor(y,x)))) # rule (b)

30 ll.add(ForAll ([x,y,z],

31 entails(tensor(x,y),z) == entails(y,lpop(x,z)))) # rule (c)

32
33 ## Derived rules (all "unsat ")

34 # ll.add(Not(ForAll ([x,y], entails(tensor(x,lpop(x,y)),y)))) # rule (ev)

35 # ll.add(Not(ForAll ([x,y,z], entails(tensor(lpop(x,y),lpop(y,z)),

36 # lpop(x,z))))) # internal composition rule

37
38 ## Given rules for dual and par

39 ll.add(ForAll ([x], dual(x) == lpop(x, I))) # dual

40 ll.add(ForAll ([x,y], par(x, y) == lpop(dual(x), y))) # par

41
42 ## Proving properties of dual and par (all "unsat")

43 # ll.add(Not(ForAll ([x], entails(x, dual(dual(x)))))) # x |- x dual dual

44 # ll.add(Not(ForAll ([x,y], entails(par(dual(x), y), lpop(x, y)))))

45 # # X dual par Y |- X -o Y

46 # ll.add(Not(ForAll ([x,y],

47 # entails(par(x, y), dual(tensor(dual(x), dual(y)))))))

48 # # x par y |- - (- x tensor - y)

49 # ll.add(Not(entails(dual(I),I)))

50 # ll.add(Not(entails(I,dual(I))))

51 # ll.add(Not(ForAll ([x],entails(x,par(x,I)))))

52
53 ## out of memory

54 # ll.add(Not(ForAll ([x], entails(dual(dual(x)), x)))) # x dual dual |- x

55 # ll.add(Not(ForAll ([x,y], entails(lpop(x, y), par(dual(x), y)))))
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56 # # X -o Y |- X dual par Y

57 # ll.add(Not(ForAll ([x,y],

58 # entails(dual(tensor(dual(x), dual(y))), par(x, y)))))

59 # # - (- x tensor - y) |- x par y

60 # ll.add(Not(ForAll ([x],entails(par(x,I),x))))

61 # ll.add(Not(ForAll ([x,y,z],

62 # entails(par(tensor(x,y),z), tensor(par(x,z),par(y,z))))))

63 # # distributivity par tensor

64 # ll.add(Not(ForAll ([x,y,z],

65 # entails(tensor(par(x,z),par(y,z)), par(tensor(x,y),z)))))

66 # # distributivity par tensor

67
68 ## Verification

69 print(ll.check ())

70 print(ll.model ())
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We prove lower and upper bounds for the threshold of the following decision problem: given q ∈
(0,1) and c > 0 what is the probability that a random instance of the k-Exact Cover problem [10] has
two solutions of overlap qn±o(n) ?

These results are motivated by the one-step replica symmetry breaking approach of Statistical
Physics, and the hope of using an approach based on that of [13] to prove that for some values of the
order parameter the overlap distribution of k-Exact Cover has discontinuous support.

Keywords: exact cover, overlap, probabilistic method.

1 Introduction

The study of phase transitions in Combinatorial Optimization problems [17], [3] (see also [4, 7, 5,
15]) has recently motivated (and brought to attention) the geometric structure of the solution space of a
combinatorial problem. Methods such as the cavity method and assumptions such as replica symmetry
and one step replica symmetry breaking make significant predictions on the geometry of solution space
that are a source of inspiration (and a challenge) for rigorous work.

A remarkable advance in this area is due to Mézard et al. [13]. This paper has provided rigorous
evidence that for the random k-satisfiability problem (with sufficiently large k) the intuitions concerning
the geometry of the solution space provided by the 1-RSB approach are correct. The evidence is based
the support of the overlap distribution, shown to be discontinuous via a study of threshold properties for
the q-overlap versions of k-SAT.

In this paper we follow an approach based on the same idea, studying the overlap distribution of a
different optimization problem, the random k-Exact Cover problem. The phase transition in this problem
has been studied in [9]. Zdeborová et al. [18],[12] have applied nonrigorous methods from Statistical
Physics (the cavity approach) and have suggested that the 1-step Replica Symmetry Breaking assumption
is valid. This motivates us to study the problem q-overlap k-Exact Cover (defined below), and prove
lower and upper bounds on its satisfiability threshold.

Our ultimate goal would be to show that for a certain range of the order parameter the k-Exact
problem has a discontinuous overlap distribution. However, in this paper we cannot accomplish this
goal, as the upper and lower bounds provided are too crude to guarantee this. Still, we believe that the
insights provided by our partial result may be useful towards eventually obtaining such bounds.

*Corresponding author.
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2 Preliminaries

We assume knowledge of the method of modeling the trajectory algorithms on random inputs using
difference/differential equations using the principle of deferred decision. This is by now a material in
standard textbooks [16] and surveys [1]. We will also assume knowledge of somewhat lesser popular
techniques in this area, such as the ”lazy server” approach [1].

Definition 1. Let D = {0,1, . . . , t − 1}, t ≥ 2 be a fixed set. Consider the set of all 2tk − 1 potential
nonempty binary constraints on k variables X1, . . . ,Xk. We fix a set of constraints C and define the
random model CSP(C ). A random formula from CSPn,m(C ) is specified by the following procedure: (i)
n is the number of variables; (ii) we generate uniformly at random, with replacement, m clauses from
all the instantiations of constraints in C on the n variables.

When all constraints in C are boolean, we write SAT (C ) instead of CSP(C ).

The particular (CSP) problem we are dealing with in this paper is:

Definition 2. An instance Φ of the k-Exact Cover is specified by a set of boolean variables V = {x1, . . . ,xn}
and a family of m ≥ 1 subsets of size k (called clauses) of V . Instance Φ is satisfiable if there is a truth
assignment A of variables in V that makes exactly one variable in each clause evaluate to TRUE.

Definition 3. The Hamming distance between two truth assignments A and B, on n variables is dA,B =
n
2 −

1
2 ∑

n
i=1 A(xi)B(xi). The overlap of truth assignments A and B is the fraction of variables on which the

two assignments coincide, that is

overlap(A,B) =
{i|A(xi) = B(xi)}

n
.

Definition 4. A set of constraints C is interesting if there exist constraints C0,C1 ∈ C with C0(0) =
C1(1) = 0, where 0,1 are the ”all zeros” (”all ones”) assignments. Constraint C2 is an implicate of C1
iff every satisfying assignment for C1 satisfies C2. A boolean constraint C strongly depends on a literal
if it has an unit clause as an implicate. A boolean constraint C strongly depends on a 2-XOR relation if
∃i, j ∈ {1, . . . ,k} such that constraint “xi 6= x j” is an implicate of C.

In the following definition ε(n) is a function whose exact expression is unimportant (in that we get
the same results), as long as n1/2 = o(ε(n)), ε(n) = o(n):

Definition 5. Let D = {0,1, . . . , t− 1}, t ≥ 2 be a fixed set. Let q be a real number in the range [0,1].
The problem q-overlap-CSP(C ) is the decision problem specified as follows: (i) The input is an instance
Φ of CSPn,p(C ); (ii) The decision problem is whether Φ has two satisfying assignments A,B such that
overlap(A,B) ∈ [q− ε(n)n−1,q+ ε(n)n−1]. The random model for q-overlap-CSP(C ) is simply the one
for CSPn,m(C ).

This definition particularizes to our problem as follows:

Definition 6. Let q ∈ (0,1). The q-overlap k-Exact Cover is a decision problem specified as follows:
INPUT: an instance F of k-Exact Cover with n variables.
DECIDE: whether F has two assignments A and B such that

overlap(A,B) ∈ [q− ε(n)n−1,q+ ε(n)n−1]. (1)

We refer to a pair (A,B) as in equation (1) as satisfying assignments of overlap approximately q.

If A,B are two satisfying assignments and i, j ∈ {0,1} we will use notation A = i,B = j (A = B = i,
when i = j) as a shorthand for {x : A(x) = i,B(x) = j}.
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Definition 7. Let l ≥ 1 be an integer and let A,B be two satisfying assignments of an instance Φ of
k Exact Cover. Pair (A,B) is called l-connected if there exists a sequence of satisfying assignments
A0,A1, . . .Al , A0 = A, Al = B, Ai and Ai+1 are at Hamming distance at most l.

Definition 8. For k ≥ 3, q ∈ (0,1) define

qk =

√
(k−1)(k−2)

2+
√
(k−1)(k−2)

, (2)

and

λq,k :=

{
(k−1)q+

√
(k−1)2q2+k(k−2)(k−1)(1−q)2

2k if q ∈ (0,qk),
q otherwise.

(3)

Note that for q < qk the expression for λq,k is the unique positive root of equation

k−2
x

+
(q−2x)

(k−1)(1−q
2 )2 + x(q− x)

= 0, (4)

and is strictly less than q. Also, λq,k > q/2, since, by (3), λq,k >
(k−1)q

k > q/2.

Definition 9. For k ≥ 3, q ∈ (0,1) define Fk,q : (q/2,λq,k)→ (0,∞) by

Fk,q(x) =
ln( x

q−x)

k−2
x + (q−2x)

(k−1)( 1−q
2 )2+x(q−x)

(5)

Note that Fk,q is well defined, monotonically increasing (the numerator is increasing, each term in
the denominator is decreasing), and that limx→q/2 Fk,q(x) = 0, limx→λq,k Fk,q(x) = ∞. Thus function Fk,q
is a bijection. Denote by Gk,q(x) its inverse.

3 Results

We first remark that

Lemma 1. For every k ≥ 3 and q ∈ (0,1) the problem q-overlap k-Exact Cover has a sharp threshold.

Proof. The claim is a simple application of the main result in [6]. Indeed, in [6] we studied the existence
of a sharp threshold for q-overlap versions of random constraint satisfaction problems. Previously in
[5, 2], a characterization of CSP with a sharp threshold was given:

Proposition 1. Consider a generalized satisfiability problem SAT (C ) with C interesting. (i) If some
constraint in C strongly depends on one literal then SAT (C ) has a coarse threshold; (ii) If some con-
straint in C strongly depends on a 2XOR-relation then SAT (C ) has a coarse threshold; (iii) In all other
cases SAT (C ) has a sharp threshold.

The folowing result (Theorem 8 in [6]) shows that under the same conditions as those in [5] the
q-overlap versions also have a sharp threshold:

Proposition 2. Consider a generalized satisfiability problem SAT (C ) such that (i) C is interesting (ii)
No constraint in C strongly depends on a literal; (iii) No constraint in C strongly depends on a 2XOR-
relation. Then for all values q ∈ (0,1] the problem q-overlap-SAT (C ) has a sharp threshold.
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The conditions in Proposition 2 apply to the k-Exact Cover problem, which can be modeled as a CSP
with a single k-ary constraint Ck(x1,x2, . . . ,xk) which requires that exactly one of x1,x2, . . . ,xk be true.
This is because constraint Ck is interesting, does not strongly depend on a literal and, for k ≥ 3, does not
strongly depend on a 2-XOR relation.

Our main result gives lower and upper bounds on the location of this threshold:

Theorem 1. Let k ≥ 3 and let rup(q,k) be the smallest r∗ > 0 such that ∀r > r∗

r ln(Pk(Gk,q(r),(1−q)/2,(1−q)/2,q−Gk,q(r)))−Gk,q(r) ln(Gk,q(r))−
− (q−Gk,q(r)) ln(q−Gk,q(r))− (1−q) ln((1−q)/2)≤ 0.

Also let

rlb(q) =

{
1
6

[
1

(1−q)2 −1
]

for q < 1− 1√
2
,

1
6 otherwise.

(6)

Then:

(a). For r > rup(q,k) a random instance of q-overlap k-Exact Cover with n variables and m = rn
clauses has, with probability 1−o(1), no satisfying assignments of overlap approximately q.

(b). For 0 < r < rlb(q) a random instance of q-overlap 3-Exact Cover with n variables and m = rn
clauses has, with probability 1−o(1), two satisfying assignments of overlap approximately q.

Given the non-explicit nature of rup(q), the only way to interpret the lower and upper bounds given
in Theorem 1 is via symbolic and numeric manipulations of the quantities in the equation(s) defining
rup(q). A Mathematica notebook to this goal is provided as [8]. The conclusion of such an analysis is
that the bounds in Theorem 1 are too crude to imply the existence of a discontinuity in overlap in the
k-Exact Cover problem.

4 Proof of the upper bound (Theorem 1 (a))

Let Φ be a random instance of k-Exact Cover. Our proof relies on the following fundamental observation:

Lemma 2. Let A,B be two satisfying assignments, and let C be a clause of length k in Φ. Denote by
c0,c1,c2,c3 the number of variables of C in the sets A = B = 0, A = 0,B = 1, A = 1,B = 0, A = B = 1
respectively. Clause C is satisfied by both A and B if and only if

c0 = k−2, c1 = c2 = 1, c3 = 0
or

c0 = k−1, c1 = c2 = 0, c3 = 1
(7)

Proof. The conditions that both A and B satisfy C are written as{
c0 + c1 = k−1, c2 + c3 = 1
c0 + c2 = k−1, c1 + c3 = 1,

(8)

a system whose solutions are those from equation (7).
An immediate consequence of Lemma 2 is that the probability that a pair of assignments satisfies a

random instance of k-EC depends only on numbers c0,c1,c2,c3:
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Lemma 3. Let c0,c1,c2,c3 be nonnegative numbers. Then

Pr[A,B |= Φ | |A = B = 0|= c0, . . . |A = B = 1|= c3] = P∗(c0,c1,c2,c3)
rn,

where

P∗(a,b,c,d) =

( a
k−2

)( b
1

)( c
1

)
+
( a

k−1

)( d
1

)
( n

k

) =

( a
k−2

)
( n

k

) [
bc+

(a− k+2)
(k−1)

d
]

(9)

Proof. We will prove that the probability that A,B satisfy a particular clause of Φ is P∗(c0,c1,c2,c3). The
result follows since the formula Φ is obtained by sampling independently, with replacement, rn clauses.

Indeed, the total number of clauses is
(n

k

)
. By Lemma 2, the number of clauses satisfied by both A

and B is
( a

k−2

)
·
(b

1

)
·
(c

1

)
+. The first term represents the number of clauses with k−2 variables in the set

A = B = 0, one in the set A = 0,B = 1 and one in the set A = 1,B = 0 (so that exactly one literal of C is
true in both A and B). The second term counts the second type of favorable clauses.

We will use Lemma 3 to derive an upper bound via the first moment method.
Indeed, let Z = Z(q,F) be a random variable defined as

Z(q,F) = ∑
A,B

δ [|dA,B−nq| ≤ e(n)] ·1S (F)(A) ·1S (F)(B). (10)

where F = Fk(n,rn) is a random formula on n variables over m = rn clauses of size k, the set S (F) is
the set of the EC-assignments to this formula.

Then:

E[Z(q,F)] = ∑
A,B

δ [|dA,B−nq| ≤ e(n)] ·Pr[A,B |= F ]. (11)

For fixed values a,b,c,d there are
( n

a,b,c,d

)
= n!

a!·b!·c!·d! pairs of assignments of type (a,b,c,d). If we

denote λ
not
= a+d = nq± ε(n) and µ

not
= b+ c = n−λ then the system{

a+d = λ

b+ c = n−λ

has at most (λ + 1)(n− λ + 1) solutions in the set of nonnegative integers. Therefore, the number of
quadruples (a,b,c,d) in the sum E[Z] is at most

nq+ε(n)

∑
λ=nq−ε(n)

(λ +1)(n−λ +1) =
1
3
(1+2ε(n))(3− ε(n)− ε(n)2 +3n+3n2q−3n2q2)

de f
= M.

So

P[Z > 0]≤ E[Z]≤M · max
(a,b,c,d)

(
n

a,b,c,d

)
·P∗(a,b,c,d)rn (12)

We will compute the maximum on the right-hand side and derive conditions for which this right-hand
side tends (as n→ ∞) to zero.
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Indeed, denote α = a
n ,β = b

n ,γ = c
n ,δ = d

n . Applying Stirling’s formula n! = (1+o(1)) ·
(n

e

)n√2πn,
and also noting that

P∗(a,b,c,d)≤ (1+
O(1)

n
) ·Pk(α,β ,γ,δ ),

with

Pk(α,β ,γ,δ ) = α
k−2k(k−1)(βγ +

αδ

k−1
) (13)

we get

P[Z > 0]≤M ·θ(1) · max
(α,β ,γ,δ )

·
[( 1

ααβ β γγδ δ

)
·P(α,β ,γ,δ )r]n

Define

gr(α,β ,γ,δ ) =
Pk(α,β ,γ,δ )r

ααβ β γγδ δ

Lemma 4. For any r > 0 we have

max
{

gr(α,β ,γ,δ ) : α +δ = q,β + γ = 1−q,α,β ,γ,δ ≥ 0
}
= gr(α∗,r,β∗,r,γ∗,r,δ∗,r),

with 
α∗,r = Gk,q(r),
β∗,r = γ∗,r = (1−q)/2,
δ∗,r = q−Gk,q(r).

(14)

Proof.
First, it is easy to see that

gr(α,β ,γ,δ )≤ gr

(
α,β∗,r,γ∗,r,δ

)
. (15)

Indeed, function x ln(x) is convex, having the second derivative positive, and ex is increasing so, by
Jensen’s inequality,

β
β

γ
γ = eβ ln(β )+γ ln(γ) ≥ e(β+γ) ln( β+γ

2 ) =
(

β + γ

2

)β+γ

= β
β∗,r
∗ γ

γ∗,r
∗,r .

On the other hand since βγ ≤
(

β+γ

2

)2
= β∗,rγ∗,r, we have P(α,β ,γ,δ ) ≤ P

(
α,β∗,r,γ∗,r,δ

)
and equa-

tion (15) follows.
Also

gr

(
α,β∗,r,γ∗,r,δ

)
≤ gr

(
α∗,r,β∗,r,γ∗,r,δ∗,r

)
(16)

Indeed, replacing δ = q−α , the expression

t(α) = lngr(α,β∗,r,γ∗,r,q−α) =

= r ln
(

Pk(α,β∗,r,γ∗,r,q−α)
)
−α ln(α)− (q−α) ln(q−α)−β∗,r ln(β∗,r)− γ∗,r ln(γ∗,r)

is a function of α whose derivative is

t ′(α) = r
P′k(α,β∗,r,γ∗,r,q−α)

Pk(α,β∗r,γ∗r,q−α)
− ln(α)−1+ ln(q−α)+1 =

= r[
k−2

α
+

q−2α(
1−q

2

)2
+α(q−α)

]+ ln(
q−α

α
).
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so t(α) has a maximum on [0,q] at α∗,r which is a solution of equation

r(k−2)
α

+
r(q−2α)

(k−1)
(

1−q
2

)2
+α(q−α)

= ln(
α

q−α
), (17)

or Fk,q(α∗,r) = r. In other words α∗,r = Gk,q(r) and δ∗,r = q−Gk,q(r).

Formula (14) implies that P[Z > 0] n→∞→ 0 as long as t(α∗,r) < 0. The critical value rup(q,k) is
therefore given by equation t(α∗,r) = 0, that is

r ln(Pk(Gk,q(r),(1−q)/2,(1−q)/2,q−Gk,q(r)))−Gk,q(r) ln(Gk,q(r))−
− (q−Gk,q(r)) ln(q−Gk,q(r))− (1−q) ln((1−q)/2) = 0.

(18)

For k = 3, denoting (for simplicity) α = G3,q(r), we have P3(α,β ,γ,δ ) = 6α(βγ + αδ

2 ), so the
equation (18) becomes

r ln(6α[(
1−q

2
)2 +

α(q−α)

2
])−α ln(α)− (q−α) ln(q−α) = (1−q) ln((1−q)/2)

while equation (17) becomes

r[1+
α(q−2α)

2
(

1−q
2

)2
+α(q−α)

] = α ln(
α

q−α
),

Attempting a substitution of the type α

q−α
= t in this last equation seems to turn the function F3 into a

generalized version of the Lambert function. However, this generalization seems to be different from the
versions already existing in the literature [14], so this attempt does not seem fruitful.

We refer again to the Mathematica notebook provided as [8]. In particular let us remark that the
maximum value of rup(q) is reasonably close to upper bound the threshold for 3-Exact Cover derived
using the first-moment method in [11].

5 Proof of the lower bound (Theorem 1 (b))

We will use a constructive method. Just as in [10], we will derive a lower bound from the probabilis-
tic analysis of an algorithm. However, the algorithm will not be the one from [10]. Instead, we will
investigate (a variant of) the algorithm LARGEST-CLAUSE in Figure 1.

Intuitively, the reason we prefer the algorithm LARGEST-CLAUSE to the one from [10] is simple:
unlike [10], our goal is not to simply solve an instance of k-EXACT COVER, but to create two satisfying
assignments of controlled overlap. We we would like to accomplish that via an algorithm that iteratively
assigns values to variables and is left (at some point) with solving a 2-XOR SAT formula. Our aim is to
keep the number of set variables to a minimum, in order to create satisfying assignments with as large an
overlap as possible. But that means that one must “destroy” all clauses of length different from two as
fast as possible. Instead, the algorithm in [10] is focused on killing clauses of length 2.

The algorithm may seem incompletely specified, as its performance depends on function f (n). As
it will turn out, the precise specification of function f (n) in the algorithm LARGEST-CLAUSE will
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Algorithm LargestClause

INPUT: a formula Φ

if (Φ contains a unit clause)
choose a random unit clause l
set l to TRUE

if this creates a contradiction FAIL
else call the algorithm recursively

else if (Φ contains a clause of length ≥ 3)
choose a random clause C of maximal length
choose a random literal l of C
set l to zero and simplify the formula

else
create a graph G containing an edge (x,y)
for any clause x⊕ y in Φ;
if (G is not bipartite) OR (some connected component has size ≥ f (n))

FAIL
else

choose one variable in each connected component of G
create satisfying assignments A and B
by setting all chosen variables to one (zero)
and then propagating these values to all variables in G.
return (A,B).

Figure 1: Algorithm LARGEST-CLAUSE



34 q-overlaps in Random Exact Cover

C C
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P N

TRUE

False
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False

Figure 2: The dynamics of algorithm LARGEST-CLAUSE.

not matter for our purposes, as long as f is a function that grows asymptotically faster than the size of
the giant component in a certain subcritical Erdős-Rényi random graph, which is with high probability
O(log(n)).

To analyze (versions of) Algorithm LARGEST-CLAUSE, we denote by Ci(t), i ≥ 2, the number of
clauses of length i that are present after t variables have been set. Also define P(t),Nt to be the number
of positive (negative) unit clauses present at stage t. Finally, define functions c1,c2,c3, p,n : (0,1)→R+

by ci(α) =Ci(α ·n)/n, and similar relations for functions p(·),n(·). We will use a standard method, the
principle of deferred decisions to analyze algorithm LARGEST-CLAUSE. See [1] for a tutorial.

It is easy to show by induction that at any stage t, conditional on the four-tuple (P(t),N(t),C2(t),C3(t)),
the remaining formula is uniform.

We divide the algorithm in two phases: in the first phase there exist clauses of length three. In the
second phase only clauses of length one and two exist.

If a variable is set to TRUE then a 1-in-i clause containing that variable is turned into i−1 negative
unit clauses. If a variable is set to FALSE then a 1-in-i clause is turned into a 1-in-(i− 1) clause, in
particular a 1-in-2 clause is turned into a positive unit clasue. The dynamics is displayed in Figure 5.

The different dynamics of the flows in the cases when a positive (negative) literal is set makes the
direct analysis of algorithm LARGEST-CLAUSE difficult. Therefore, we will instead analyze a version
of the algorithm, given in Figure 3, using a “lazy-server” [1] idea. Specifically, instead of always trying
to simplify the unit clauses, we will do so probabilistically (see Figure 3 for details).

Since the problems q-overlap EXACT COVER have a sharp threshold, it is enough to prove, for
r < rlb(q) that the algorithm finds a pair of assignments of overlap r with probability Ω(1). This will be
enough to conclude that with probability 1−o(1) two satisfying assignments of overlap r exist.

Let UP(t),UN(t),U3(t) be 0/1 variables that are one exactly when choice 1 (2,3) is selected, 0
otherwise. We can write the following recurrence relations describing the dynamics of the four-tuple
(P(t),N(t),C2(t),C3(t)):

C3(t +1) =C3(t)−U3(t)−∆3(t),
C2(t +1) =C2(t)−∆2(t)+∆3,2(t),
P(t +1) = P(t)−UP(t)−∆1,P(t)+∆2,P(t),
N(t +1) = N(t)−UN(t)−∆1,N(t)+∆2,N(t)+∆3,N(t),

(19)
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Algorithm LazyLargestClause

INPUT: a formula Φ

if (at least one of the alternatives 1,2,3 below applies)
take one of the following actions with probabilities λ1(t),λ2(t),λ3(t), respectively:
1. if (Φ contains a positive unit clause)

choose a random positive unit clause l
set l to TRUE

if this creates a contradiction FAIL
else

set a random variable to TRUE
2. if (Φ contains a negative unit clause)

choose a random negative unit clause l
set l to FALSE

if this creates a contradiction FAIL
else

set a random variable to FALSE
3. if (Φ contains a clause of length ≥ 3)

choose a random clause C of maximal length
choose a random literal l of C
set l to FALSE

else
run the corresponding bipartite graph construction
of algorithm LARGEST-CLAUSE.

Figure 3: The “lazy-server” version of algorithm LARGEST-CLAUSE
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where 

∆3(t)
d
= Bin

(
C3(t)−U3(t), 3

n−t

)
.

∆2(t) = ∆2,N(t)+∆2,P(t)
d
= Bin

(
C2(t), 2

n−t

)
.

∆3,2(t)
d
=U3(t)+(UN(t)+U3(t)) ·Bin

(
C3(t)−U3(t), 3

n−t

)
∆3,N(t)

d
= 2UP(t) ·Bin

(
C3(t), 3

n−t

)
∆2,P(t)

d
= (UN(t)+U3(t)) ·Bin

(
C2(t), 2

n−t

)
∆2,N(t)

d
=UP(t) ·Bin

(
C2(t), 2

n−t

)
∆1,P(t)

d
= Bin

(
P(t)−UP(t), 1

n−t

)
∆1,N(t)

d
= Bin

(
N(t)−UN(t), 1

n−t

)

(20)

By an analysis completely similar to that of algorithm for random k-SAT (see e.g. [1]), we derive the
following system of equations that describe the average trajectory path of Algorithm LAZY LARGEST-
CLAUSE: {

c′3(t) =−λ3(t)− 3c3(t)
(1−t) .

c′2(t) =−
2c2(t)
(1−t) +

3c3(t)
(1−t) · (λ2(t)+λ3(t)),

(21)

with initial conditions (c2(0),c3(0)) = (0,r).
In this paper we will make the simplest choice

λ1(t) = λ2(t) = λ3(t) = 1/3. (22)

Differential equations (21) describe the dynamics of algorithm LARGEST-CLAUSE only for t ∈
[t3, t2), where t3 = 0 and t2 ∈ (0,1) is the smallest solution of equation c3(t) = 0.

Simple computations lead us to formulas:{
c3(t) = (r+ 1

6)(1− t)3− 1−t
6 ,

c2(t) =
(1−t)2

3 − (1−t)
3 +2(r+ 1

6)t(1− t)2,
(23)

which describe the dynamics of algorithm LARGEST-CLAUSE in range 0≤ t < t2 = 1− 1√
6r+1

.
The average flow into positive unit clauses is

FP
2 (t) :=

2
3
· 2c2(t)

1− t
+

1
3
· 2 ·3c3(t)

1− t
=

=
4
3

[(1− t)2

3
− (1− t)

3
+2(r+

1
6
)t(1− t)

]
+2(r+

1
6
)(1− t)2− 1

3
.

(FP
2 )′(t) =

8r(1−2t)
3

−4(r+
1
6
)(1− t) =

(4r
3
− 2

3

)
(1− t)− 8r

3
< 0,

so FP
2 (t) has a maximum at 0, equal to 2r. For r < 1/6 this is less than 1/3, so it is balanced by being

given the opportunity (with probability 1/3) to consume a positive unit clause, if any.
The average flow into negative unit clauses is

FN
2 (t) =

1
3
· 2c2(t)

1− t
=

2
3
·
[(1− t)

3
− 1

3
+2(r+

1
6
)t(1− t).

]
=

2t
9

[
(6r+1)(1− t)−1

]
.
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The maximum of FN
2 (t) is reached at t = 3r

6r+1 , which is in the interval (t3, t2) for r > 0, and is equal

to 2r2

6r+1 = r
3(1−

1
6r+1), which is definitely less than 1

3 , for r < 1/6.
The conclusion is that for r < 1/6 with probability 1−o(1) both flows into positive and negative unit

clauses can be handled by the lazy server with choice λ1 = λ2 = λ3 = 1/3 without creating contradictory
clauses.

Around stage t2n± o(n) clauses of length three and one run out. We are left with a system of
(c2(t2)+o(1))n 1-in-2 clauses in the remaining n = (1− t2)n variables. Consider graph G corresponding
to these equations, where for every equation x⊕ y = 1 we add edge (x,y) to G.

By the uniformity lemma G can be seen as an Erdős-Renyi random graph G(n, µ

n ), with probability
coefficient

µ = 2c2(t2)/(1− t2) = 3F2(t2).

Our maximum computation shows that for r ∈ (0,1/6), 3F2(t2)< 1. Thus G is a subcritical random
graph, whose connected components are w.h.p. of size O(logn). With constant probability (depending
only on µ), G is a bipartite graph. In this situation giving a value to an arbitrary node uniquely determines
the values of variables in the connected component.

We create two assignments A and B as follows:

1. On variables x set by algorithm LARGEST-CLAUSE, A(x) = B(x), equal to the value given by the
algorithm.

2. On variables in graph G A and B take opposite values. This can be accomplished by giving A,B
different values on a set of fixed variables, one in each connected component of G.

When graph G is bipartite A and B are satisfying assignments. When the connected components of G
are of size O(logn) we can create a path from A to B consisting satisfying assignments by consecutively
flipping values of variables on which A and B are different, one connected component at a time. The
overlap of A and B is equal to 1− 1√

6r+1
.

It follows that for any q ∈ (0,1), the q-overlap Exact Cover is satisfiable w.h.p. for q > 1− 1√
6r+1

,

i.e. 1
6r+1 > (1−q)2, which can be rewritten as r < rlb(q).

6 Remarks

The condition r < 1/6 in Theorem 1 has an easy probabilistic interpretation: it is the location of the
phase transition for the random 3-uniform hypergraph [19]. In this range most connected components
are small and tree-like or unicyclic, so the space of variables breaks down in independent clusters of
size O(logn). Thus we should expect that all overlaps in some range (λ ,1) are satisfied with probability
1−o(1), which is exactly what happens, according to Theorem 1, for λ = 1− 1√

2
.

In fact we can state more: in this regime there is a single cluster of solutions, and the bounds on the
overlap we provide are in fact bounds on the diameter of this cluster.

Theorem 2. Let r < 1/k(k−1). There exists C > 0 such that, with probability 1−o(1) (as n→ ∞), if Φ

is a random instance of k-Exact-Cover with n variables and rn clauses, any two satisfying assignments
of Φ are C log(n) connected.

Proof. Since the formula hypergraph H of Φ is subcritical, there exists [19] C > 0 such that w.h.p. all
connected components of H have size at most C log(n). That means that formula Φ is the decomposition
of several variable-disjoint formulas Φ1, . . . ,Φp. In turn, satisfying assignments for Φ are obtained by
concatenating satisfying assignments for these formulas.
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This argument immediately implies that any two satisfying assignments of Φ are C log(n) connected:
Let A,B be two such satisfying assignments, and let A1,B1, (A2,B2), . . . ,(As,Bs) be the restrictions of A
and B on the components on which they differ.

One can obtain a path from A to B as follows (where variables x such that A(x) = B(x) are ommitted
from representation):

A = (A1,A2, . . . ,As)→ (B1,A2, . . . ,As)→ (B1,B2, . . . ,As)→ . . .→
→ (B1, . . . ,Bs−1,As)→ (B1,B2, . . .Bs) = B.

The intermediate assignments are satisfying assignments since formulas Φ1, . . ., Φp are disjoint.
They are at distance at most C log(n) because of the upper bound on the component size of H.

Using the above result we obtain the following analog of the result proven in [6] for 2-SAT:

Corollary 1. For r < 1/k(k− 1) a random instance of k-Exact Cover has a single cluster of satisfying
assignments and an overlap distribution with continuous support.

The relative weakness of the bound r < 1/k(k−1) comes from our suboptimal choice of parameters
λ1(t),λ2(t),λ3(t). For instance, for k = 3 the bound r < 1/6 comes entirely from handling positive unit
clauses, while we have no problem satisfying negative ones, since the flow FN

2 (t) always stays below
one. This suggests that we are disproportionately often taking care of negative unit literals.

In what follows we sketch an approach for a better choice of these parameters. We were not able
to explicitly calculate λ1(t),λ2(t),λ3(t), so we are unable to offer an improved analysis of the LAZY
LARGEST-CLAUSE algorithm.

First, the algorithm has to be able to satisfy the positive unit flow, so

λ1(t)≥ (λ2(t)+λ3(t)) ·
2c2(t)
1− t

.

Thus
λ1(t)

1−λ1(t)
≥ 2c2(t)

1− t

in other words

λ1(t)≥
2c2(t)

1− t +2c2(t)
.

First, the algorithm has to be able to handle the negative unit flow, so

λ2(t)≥ λ1(t)
6c3(t)+2c2(t)

1− t

We choose 
λ1(t) =

2c2(t)+ε

1−t+2c2(t)

λ2(t) =
(2c2(t)+ε)(6c3(t)+2c2(t)+ε)

(1−t)(1−t+2c2(t))
,

λ3(t) = 1−λ1(t)−λ2(t) =
(2c2(t)+ε)(6c3(t)+2c2(t)+ε)

(1−t)(1−t+2c2(t))
.

(24)

It is an open problem if this approach can be completed to a full analysis.
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7 Conclusions

The obvious question raised by this work is to improve our bounds enough to display the discontinuity
of overlap distribution, a property of k-Exact Cover we believe to be true.

Note that there are obvious candidate approaches to improving our bounds: first, the lower bound
could be improved by trying a rigorous version of the (heuristic) upper bound approach of Knysh et
al. [11]. Or, it could be improved by finding explicit expressions for the parameters in (and explicitly
analyzing) the LAZY LARGEST-CLAUSE algorithm, along the lines described in the previous section.
Neither one of these two approaches looks particularly tractable, though.

As for the upper bound, an obvious candidate is the second moment method. We have attempted such
an approach. The problem is that it seems to require optimizing of a function of 16 variables without
enough obvious symmetries that would make the problem tractable.
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In this paper, we investigate how the initial models and the final models for the polynomial functors
can be uniformly specified in matching logic.

1 Introduction

It is known that many data types used in programming are defined as initial algebra or final coalgebra for
an appropriate functor F ∶C→C, where C is a category of data types. In this paper we assume that C is
the category of sets (see, e.g., [2]). If F is bicontinous, i.e., it preserves the colimits of ω-sequences and
and the limits of ω

op-sequences, then the initial algebra (model) is obtained via colimit of the ω-sequence

0
¡
Ð→ F 0 F ¡

Ð→ F F 0 = F2 0 F2 ¡
ÐÐ→ F3 0 F3 ¡

ÐÐ→⋯ (INI)

where 0 is the initial object in C, and 0
¡
Ð→ X is the unique arrow from the initial object, and the final

coalgebra (model) is the limit of the ω
op-sequence

1 !←Ð F 1 F !←Ð F F 1 = F2 1 F2 !←ÐÐ F3 1 F3 !←ÐÐ⋯ (FIN)

where 1 is the final object in C, and 1 !←Ð X is the unique arrow to the final object [2].
This is a nice abstract framework, but, as we know, the evil is hidden in details. How the elements

of the initial and final models look like for various concrete functors? How could they be handled in
practice?

A possible answer can be obtained by capturing these objects in Matching Logic (ML), the logical
foundation of the K Framework, where the program languages and the properties of their programs can
be specified in a uniform way (see, e.g., [12, 8, 13, 7, 11]). First steps are done in [6], where the initial
algebra semantics is captured in ML, and in [7], where it is shown how examples of inductive/coinductive
data types are fully specified in ML. We say that ML captures a (inductive/coinductive) data type DT if
there is an ML theory ThML(DT) such that:

• from each ThML(DT)-model M we may extract a structure α(M) that is isomorphic to DT , and

• each deduction principle for DT (e.g., induction or coinduction) can be expressed as a theorem
within ML using its proof system.

In this paper, we investigate how data types specified as initial F-algebras or as a final F-coalgebras,
where F is a polynomial functor, can be captured in ML. The polynomial functors can be defined in two
ways:

https://dx.doi.org/10.4204/EPTCS.389.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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1. Using "classical" inductive definition of polynomials (see, e.g., [14]): the polynomial functors is
the smallest class including the constant and the identity functors, and it is closed to sum, product,
and constant-exponent functors.

2. Using unary container functors (see, e.g.,[3]): a polynomial functor is of the form X ↦∑a∶A XB[a],
where a ∶ A ⊢ B[a] is an A-indexed family.

The constant and the identity functors, together with their initial and final models, can be easily
captured in ML. Moreover, if we exclude the exponent functor, then the initial algebra can be captured
using the approach similar to that from [6]. The exponent functor complicates the things. A possible
approach for the classical definition is as follows: supposing that we have captured F1 X and F2 X by the
ML theories (specifications) SPEC(F1 X) and resp. SPEC(F2 X), then use these specifications to build
SPEC(F1 X op F2 X), i,.e., to obtain something like

SPEC(F1 X op F2 X) = SPEC(F1 X) op SPEC(F2 X)

where op reflects op to the level of ML specifications, and it follows to be defined. In order to accomplish
that, we need a "uniform standard" definition for the specifications SPEC(F X).

The container functors already have a uniform standard definition, and therefore they are more tempt-
ing for our investigation. This approach is a work-in-progress, and the results obtained up now show that:

• it is possible to specify unary container functors, together with their initial algebras and final
coalgebras, as ML theories;

• it is possible to derive the induction principle and the coinduction principle as theorems of the
corresponding theories;

• the ML reasoning can be used to understand better the intimate structure of the initial algebra and
the final coalgebra.

The approach is instantiated on the lists example, in order to see the relationship with the classical
approach of these data types, and on that of Moore machines, in order to see the (constant) exponential
functor at work.

The paper is structured as follows. Section 2 recalls the definitions for polynomial functors and
for unary container functors, and the the relationship between them. Section 3 briefly recalls the main
elements of matching logic, together with the theories of the equality and of the sorts. Section 4 includes
the main contribution, showing that how the unary container functors and their related concepts can be
specified in matching logic. The instantiation of the general approach on the examples of lists and Moore
machines are included in Section 5 and Section 6, respectively. The paper ends with some concluding
remarks.

2 Polynomials Functors

This section briefly recalls the definition of the polynomial functors and their (co)algebras. We consider
only the particular case of the functors defined over the category of sets C.

Definition 2.1. [10] Given a functor F ∶ C → C, an F-algebra consists of an object X in C and an
arrow α ∶ F X → X . An algebra morphism (X ,α) → (X ′,α ′) is an arrow h ∶ X → X ′ in C such that
h○α = α

′ ○F h. An initial algebra for the functor F is an initial object in the category of F-algebras and
F-algebra morphisms.
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Example 2.1 (Lists). The lists over a set of elements E can be defined as an L-algebra α ∶ L X →X for the
functor L ∶C→C given by L X = 1+E ×X . Usually, such an algebra is defined by a constant nil ∶ 1→ X
and a binary operation cons ∶ E ×X → X . The initial L-algebra is isomorphic to the finite lists inductively
defined [15] by the grammar

List ∶∶= nil ∣ cons(E,List) (LST)

We use µX . L X or µL to denote the initial model of the functor L.
Definition 2.2. [10] Given a functor F ∶C→C, an F-coalgebra consists of an object X in C and an arrow
γ ∶X →F X . A coalgebra morphism (X ,γ)→ (X ′,γ ′) is an arrow h ∶X →X ′ in C such that h○γ = γ

′ ○F h.
An final coalgebra for the functor F is a final object in the category of F-coalgebras and F-coalgebra
morphisms.
Example 2.2 (Colists). The colists over a set of elements E can be defined as an L-coalgebra γ ∶X → L X ,
where L is the functor used for lists (see Example 2.1). Usually, such a coalgebra is defined by

• a total operation _.? ∶ X → {1,2} such that x.? = if g(x) = ι1(⋆) then 1 else 2 fi, where ⋆ is the
unique element of 1, and

• two partial operations: _. hd ∶ X ⇀ E, and _. tl ∶ X ⇀ X such that x. hd = e and x. tl = x′ iff x.? = 2
and g(x) = ι2(⟨e,x′⟩).

The final coalgebra is isomorphic to the possible infinite lists coinductively defined by the gram-
mar (LST) [15]. We use νX . L X or νL to denote the final model of the functor L.
Example 2.3 (Moore machines). A Moore machine is an M-coalgebra α ∶ X →M X , where M is the
functor M ∶ X → O×X I . Usually, a Moore machine is defined by an output function out ∶ X → O and
a transition function tr ∶ X → X I [14]. The final coalgebra νX . M X is isomorphic to (out, tr) ∶ OI∗ →
O×(OI∗)I , out( f ) = f (ε), tr( f ) = g with g(i)(w) = f (⟨i⟩ ⋅w) for i ∈ I and w ∈ I∗, where f is a function
F ∶ I∗→O, g a function g ∶ I→OI∗ , ε the empty sequence, and ⋅ the concatenation of sequences.
Definition 2.3. [14] The class of polynomial functors is inductively defined as follows:

• the constant functor A (where A is an object in C) is a polynomial functor;

• the identity functor ID is a polynomial functor;

• the sum F1+F2 of two polynomial functors F1 and F2 is a polynomial functor;

• the product F1×F2 of two polynomial functors F1 and F2 is a polynomial functor; and

• the function space functor F(X) = XA, where A is an arbitrary object.
An alternative to define polynomial functors is given by the (unary) container functors [1, 4, 3].

Definition 2.4. An A-indexed family a ∶ A ⊢ B[a] is a family of objects of C indexed by elements of A.
Categorically, it is an object B of C/A and B[a] denotes the elements of B mapped to a.
Definition 2.5. Given an A-indexed family a ∶ A ⊢ B[a], the dependent product ∏a ∶A B[a] is the object
of the dependent functions, which maps an a ∶A into a b ∶B[a]. Set theoretically, we have

∏
a ∶A

B[a] = { f ∈ (⋃
a ∶A

B[a])A∣∀a ∶A. f (a) ∈ B[a]}

The dependent sum∑a ∶A B[a] is the dual of the dependent product and it consists of the pairs ⟨a,b⟩ with
a ∶A and b ∶B[a].
Definition 2.6. A functor F ∶ C→ C is a (unary) container functor iff it is naturally isomorphic to a
functor of the form F X =∑a ∶A XB[a], for some objects A in C and an A-indexed family a ∶A ⊢ B[a].
Remark. An element of∑a ∶A XB[a] is a pair ⟨a, f ⟩, where a ∶A is the shape and f ∶B[a]→X is the function
that labels the positions B[a] with elements from X . Another way to define B is as an object in C/A.



44 Matching-Logic-Based Understanding of of Polynomial Functors

2.1 Polynomial Functors as Container Functors

Here we recall the relationship between polynomial functors and container functors (see, e.g., [1]).

Constant Functor

The main idea is to identify the constant value with the shapes A. Consider B as being a ∶A ⊢ 0 (no
positions of shape a), where 0 denotes the initial object of C. We get ∑a ∶A XB[a] ≊∑a ∶A X0 ≊ A.
Remark. The elements of ∑a ∶A X0 are pairs ⟨a, f ∶ 0→ X⟩, where a ∈ A. Since f ∶ 0→ X is unique, we
obtain ⟨a, f ∶ 0→ X⟩ ≊ a.

Identity Functor

Consider A as being 1 (just one shape) and B as being ⋆∶1 ⊢ 1 (just one position), where ⋆ is the unique
element in 1. It follows that ∑a ∶A XB[a] ≊∑⋆

X1 ≊ X .
Remark. The elements of ∑⋆

X1 are pairs ⟨⋆, f ∶ 1→ X⟩. Since f selects just one element x in X , it
follows that ⟨⋆, f ∶ 1→ X⟩ ≊ x.

Sum

Assume that F X =∑a ∶A XB[a] and F ′ X =∑a′ ∶A′ X
B′[a]′ . Then (F +F ′) X is ∑a′′ ∶A+A′ X

[B,B′][a′′], where
[B,B′][a′′] = B[a] if a′′ = ι1 a, and [B,B′][a′′] = B′[a′] if a′′ = ι2 a′.
Remark. The following commutative diagram may help to understand the definition of a′′ ∶A+A′ ⊢
[B,B′][a′′]:

A+A′

A A′

B B+B′ B′

ι1 ι2

The arrow B+B′ → A+A′ is equivalently written as the A+A′-indexed set a′′ ∶A+A′ ⊢ [B,B′][a′′]. Set
theoretically, ∑a′′ ∶A+A′ X

[B,B′][a′′] is the set of pairs ⟨a′′,[ f , f ′] ∶ [B,B′′] a′′→ X⟩, where
• either a′′ = ι1[a], ⟨a, f ∶ B[a]→ X⟩ in F X , and ∀x ∶B[a]. [ f , f ′] x = f x, or

• a′′ = ι2[a]′, ⟨a′, f ′ ∶ B′[a]′→ X⟩ in F ′ X , and ∀x′ ∶B[a′]. [ f , f ′] x′ = f ′ x′.
In other words, the shape of the sum is the sum of the component shapes, and a labelling function for the
sum is the sum of two corresponding component labelling functions.

Product

We have (F +F ′) X =∑⟨a,a′⟩ ∶A×A′ X
jB,B′o[⟨a,a′⟩], where F X and F ′ X are similar to those from the sum,

and jB,B′o[⟨a,a′⟩] = B[a]+B′[a′] (the positions of the product is the disjoint union of the component
positions).
Remark. We prefer to write jB,B′o[a,a′] for jB,B′o[⟨a,a′⟩]. Set theoretically, ∑⟨a.a′⟩ ∶A×A′ X

jB,B′o[a,a′]

is the set of pairs ⟨⟨a,a′⟩ ,[ f , f ′] ∶ B[a]+B′[a′]→ X⟩, where f ∶ B[a]→ A and f ′ ∶ B′[a′]→ A′. In other
words, the shape of the product is the product of the component shapes and a labelling function for the
product is the sum of two corresponding component labelling functions.
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Exponentiation

Assuming F X =∑a ∶A XB[a], the (constant) exponent functor (F X)C is ∑g∶C→A X∑c ∶C B[g c].

Remark. An element of ∑g∶C→A X∑c ∶C B[g c] is a pair ⟨g, f ⟩ consisting of a function g ∶C → A assigning
shapes to C and a C-indexed function c ∶C ⊢ fc ∶ B[g c]→ X labelling the positions B[g c] for each c in C.

3 Matching Logic (ML)

Matching logic [12, 8, 7] provides a unifying framework for defining semantics of programming lan-
guages. A programming language is defined in matching logic as a logical theory, i.e., a set of axioms.
The key concept in matching logic is that of patterns, which can be matched by certain elements. By
building complex patterns, we can match elements that have complex structures or certain properties, or
both. The presentation of matching logic in this review section follows [7].

Definition 3.1. Let us fix two sets EV and SV . The set EV includes element variables x,y, . . . . The set
SV includes set variables X ,Y, . . . . A matching logic signature Σ is a set of (constant) symbols, denoted
σ ,σ1,σ2, . . . . Let us fix a signature Σ. The set of (Σ-)patterns is inductively defined as follows:

ϕ ∶∶= x ∣ X ∣ σ ∣ ϕ1 ϕ2 ∣ � ∣ ϕ1→ ϕ2 ∣ ∃x. ϕ ∣ µX . ϕ

where in µX . ϕ , called a least-fixpoint pattern, we require that ϕ is positive in X , i.e., X does not occur
in an odd number of times of the left-hand sides of implications ϕ1→ ϕ2.

Definition 3.2. A (matching logic) Σ-model M consists of

1. a nonempty carrier set, which we also denote M;

2. an application function _●_∶M×M→ P(M), where P(M) is the powerset of M; and

3. a symbol interpretation σM ⊆M as a subset for σ ∈ Σ.

Definition 3.3. Given M and a variable valuation ρ ∶(EV ∪ SV) → M ∪P(M) such that ρ(x) ∈ M for
x ∈ EV and ρ(X) ⊆M for X ∈ SV , we inductively define pattern valuation ∣ϕ ∣M,ρ as follows:

1. ∣x∣M,ρ = {ρ(x)} for x ∈ EV

2. ∣X ∣M,ρ = ρ(X) for X ∈ SV

3. ∣σ ∣M,ρ = σM for σ ∈ Σ

4. ∣ϕ1 ϕ2∣M,ρ =⋃ai∈∣ϕi∣M,ρ ,i∈{1,2}a1 ●a2; note that a1 ●a2 is a subset of M.

5. ∣�∣M,ρ =∅
6. ∣ϕ1→ ϕ2∣M,ρ =M∖(∣ϕ1∣M,ρ ∖ ∣ϕ2∣M,ρ)
7. ∣∃x. ϕ ∣M,ρ =⋃a∈M ∣ϕ ∣M,ρ[a/x]

8. ∣µX . ϕ ∣M,ρ = lfp(A↦ ∣ϕ ∣M,ρ[A/X]
)

where ρ[a/x] (resp. ρ[A/X]) is the valuation ρ
′ with ρ

′(x) = a (resp. ρ
′(X) =A) and agreeing with ρ on

all the other variables. in EV ∪SV ∖{x} (resp. EV ∪SV ∖{X}). We use lfp(A↦ ∣ϕ ∣M,ρ[A/X]
) to denote

the smallest set A such that A = ∣ϕ ∣M,ρ[A/X]
. The existence of such an A is guaranteed by the requirement

that ϕ is positive in X . We abbreviate ∣ϕ ∣M,ρ as ∣ϕ ∣
ρ

and further as ∣ϕ ∣ if ϕ is closed.

Definition 3.4. We say that ϕ holds in M, written M ⊧ ϕ , if ∣ϕ ∣M,ρ = M for all ρ . For a pattern set Γ, we
write M ⊧ Γ, if M ⊧ψ for all ψ ∈ Γ. We write Γ ⊧ ϕ , if M ⊧ Γ implies M ⊧ ϕ for all M.
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The following common constructs can be defined from the basic pattern syntax as syntactic sugar in
the usual way:

¬ϕ ≡ ϕ → � ϕ1∨ϕ2 ≡ ¬ϕ1→ ϕ2 ϕ1∧ϕ2 ≡ ¬(¬ϕ1∨¬ϕ2)
⊺ ≡ ¬� ∀x. ϕ ≡ ¬∃x. ¬ϕ νX . ϕ ≡ ¬µX . ¬ϕ[¬X/X]

We assume the standard precedence between the above constructs.

Equality

The equality can be defined as a derived construct (see [12, 7]). Two patterns ϕ1 and ϕ2 are equal,
written ϕ1 = ϕ2, iff it is equivalent to ⊺ if the two patterns are matched by the same elements. Otherwise,
it is equivalent to �. To express that in ML, a new symbol def ∈ Σ is introduced, called the definedness
symbol, and specify it with the axiom (Definedness). The resulted theory can be described as follows:
spec EQUALITY

Symbols: def

Notations: ⌈ϕ⌉ ≡ def ϕ

Axioms: (Definedness) ∀x. ⌈x⌉
Notations:

⌊ϕ⌋ ≡ ¬⌈¬ϕ⌉ // totality

ϕ1 = ϕ2 ≡ ⌊ϕ1↔ ϕ2⌋ // equality

ϕ1 ⊆ ϕ2 ≡ ⌊ϕ1→ ϕ2⌋ // set inclusion

x ∈ ϕ ≡ x ⊆ ϕ // membership

endspec

Sorts

Matching logic has no builtin support for sorts. Instead, we define a theory of sorts to support arbitrary
sort structures following the “sort-as-predicate” paradigm. A sort has a name and is associated with a set
of its inhabitants. In matching logic, we use a symbol s ∈ Σ to represent the sort name and use (inh s)
to represent all its inhabitants, where inh ∈ Σ is an ordinary symbol. For better readability, we define the
notation ⊺s ≡ inh s.
spec SORT Imports: EQUALITY

Symbols: inh,Sort
Notations:

⊺s ≡ inh s // inhabitants of sort s
s1 ≤ s2 ≡ ⊺s1 ⊆ ⊺s2 // subsort relation

¬sϕ ≡ (¬ϕ)∧⊺s // negation within sort s
∀x ∶s. ϕ ≡ ∀x. x ∈ ⊺s→ ϕ // ∀ within sort s
∃x ∶s. ϕ ≡ ∃x. x ∈ ⊺s∧ϕ // ∃ within sort s
µX ∶s. ϕ ≡ µX . X ⊆ ⊺s∧ϕ // µ within sort s
νX ∶s. ϕ ≡ νX . X ⊆ ⊺s∧ϕ // ν within sort s
ϕ ∶s ≡ ∃z ∶s. ϕ = z // “typing”
f ∶s1⊗⋯⊗ sn→ s ≡ ∀x1 ∶s1 . . .∀xn ∶sn. ∃y ∶s. f x1 . . .xn = y

// functional

f ∶s1⊗⋯⊗ sn⇀ s ≡ ∀x1 ∶s1 . . .∀xn ∶sn. ∃y ∶s. f x1 . . .xn→ y
// partially functional
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Axioms:

∃x. Sort = x
Sort ∈ ⊺Sort

endspec

The ML specifications for the sum, product, and function sorts are given in [7]. For reader conve-
nience, we recall them in Appendix A.

4 Specifying Initial Algebra and Final Coalgebra for Container Functors
in ML

In this section we show how to specify a unary container functor in ML and how to extract the structures
for their initial algebra and the final coalgebra.

4.1 Capturing Elements from the Category C

• 0 is specified by �;

• 1 = {⋆} is specified by
– a symbol star ∈ Σ;
– a notation: ⋆ ≡ star; and
– an axiom

∃y. ⋆ = y (SINGLETON)

• 0
¡
Ð→ X is specified by

– a symbol iniMor ∈ Σ;
– a notation: ¡ ≡ iniMor; and
– an axiom

∀x. ¡ x = � (CAPTURES 0
¡
Ð→ X)

• 1 !←Ð X is specified by
– a symbol finMor ∈ Σ;
– a notation: ! ≡ finMor; and
– an axiom

∀x. ! x = ⋆ (CAPTURES 1 !←Ð X)

Remark. An alternative way to specify 1 is by ⊺, in which case 1 !←ÐX is the inclusion: ∀x. x ∈X → ! x = x.
This version is used when we compute the greatest fixpoint.

4.2 Expressing Indexed Families in ML

An A-indexed family a ∶A⊢B[a] is specified by a constant symbol depOf ∈Σ, a notation B[a]≡ depOf B a,
and two axioms:

• A is a sort: A ∶Sort (equivalent to A ∈ ⊺Sort), and

• for each a ∶A, B[a] is a sort: ∀a ∶A. B[a] ∶Sort
where we assumed that A and B are specified as functional patterns.
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4.3 Expressing Dependent Products/Sums in ML

A dependent product ∏a ∶A B[a] is specified by a constant symbol DepProd ∈ Σ, a notation ∏a ∶A B[a] ≡
DepProd A B (a plays a local role and its name can be changed1), and by adding the axioms:

• ∏a ∶A B[a] is a sort: ∏a ∶A B[a] ∶Sort

• ⊺
∏a ∶A B[a] is the set of dependent functions:

⊺
∏a ∶A B[a] = ∃ f . f ∧((⌈⊺A⌉∧∀a ∶A. ∃b ∶B[a]. f a = b)∨(¬⌈⊺A⌉∧ f = ¡))

The above axiom distinguishes between two cases: the sort A is non-empty, in which case ⊺
∏a ∶A B[a]

includes the dependent functions that maps an a ∶A into a b ∶B[a], and when the sort A is empty, in
which case ⊺

∏a ∶A B[a] consists of the function given by the initial morphism.
Similarly, a dependent sum ∑a ∶A B[a] is specified by a constant DepSum ∈ Σ, a notation ∑a ∶A B[a] ≡
DepSum A B (again, a plays a local role and its name can be changed), and by adding the axioms:

• ∑a ∶A B[a] is a sort: ∑a ∶A B[a] ∶Sort

• ⊺
∑a ∶A B[a] is the set fo dependent pairs:

⊺
∑a ∶A B[a] = ∃a ∶A. ∃b ∶B[a]. ⟨a,b⟩

4.4 Expressing Unary Container Functors in ML

Let X ↦ F X =∑a ∶A XB[a] be a container functor. Recall that F X is the set of pairs ⟨a, f ⟩ with a ∶A and
f ∶XB[a] (or, equivalently, f ∶B[a]→ X). If X is specified as the set of inhabitants ⊺s of a sort s ∶Sort and
⊺B[a] /= � (that is equivalent to B[a] /≊ 0 in C), then XB[a] is specified by the sort B[a] →© s [7] (see also
Appendix A.3) and the specification of ∑a ∶A XB[a] is a particular case of dependent sum specification.
Otherwise, we have to explicitly specify XB[a] by the notation

XB[a] ≡ ∃ f . f ∧(((⊺B[a] /= �)∧∀b ∶B[a]. ∃x. f b = x∧x ∈ X)∨((⊺B[a] = �)∧ f = ¡))

and use it directly in the specification of ∑a ∶A XB[a]:

∃a ∶A. ∃ f . ⟨a, f ⟩∧ f ∈ XB[a]

which is equivalent to

∃a ∶A. ∃ f . ⟨a, f ⟩∧(((⊺B[a] /= �)∧∀b ∶B[a]. ∃x. f b = x∧x ∈ X)∨((⊺B[a] = �)∧ f = ¡))

Recall that if ⊺B[a] = � (B[a] ≊ 0) then there is just one function 0
¡
Ð→ X specified by ¡ ≡ iniMor.

4.5 Specifying Initial Algebra

Let X ↦ F X =∑a ∶A XB[a] be a container functor. The initial F-algebra is specified by using the charac-
terization given by the "no junk and no confusion" properties for the constructors [7]:

• a constructor cons ∈ Σ specified by the following axioms:
∀a ∶A. ∀ f . f ∈ XB[a]→ ∃x. x ∈ X ∧cons ⟨a, f ⟩ = x (FUNCTIONAL)

∀a,a′ ∶A. ∀ f , f ′. cons ⟨a, f ⟩ = cons ⟨a′, f ′⟩→ a = a′∧ f = f ′ (NO CONFUSION)
• a sort µF with initial semantics:
⊺µF = µX . ∃a ∶A. cons ⟨a,XB[a]⟩ (NO JUNK)

1Actually, Π should be captured as a binder [9], but this is not needed for the purpose of this paper.
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Computing the least fixpoint Let ϕF(X) denote the pattern ∃a ∶A. cons ⟨a,XB[a]⟩. Given a model M
and a valuation ρ , we have ∣µX . ϕF(X)∣M,ρ = lfp(A↦ ∣ϕF(X)∣M,ρ[A/X]

). We also denote by A↦ φF(A)
the function A↦ ∣ϕF(X)∣M,ρ[A/X]

. If φF is continuous, then lfp(φF) =⋃n≥0 φ
n
F(∅) =∅∪φF(∅)∪φ

2
F(∅)∪

⋯. Since φF(∅) = ∣ϕF(�)∣M,ρ) and writing ϕ(ψ) for ϖ[ψ/X], we (informally) obtain that lfp(φF) is the
interpretation of the infinite disjunction

�∨ϕF(�)∨ϕ
2
F(�)∨ϕ

3
F(�)∨⋯ (LFP)

according to M and ρ . We have ϕ
n
F(�)→ ϕ

n+1
F (�) and each ϕ

n
F(�) gives an approximation of ⊺µF ≊

lfp(φF). So, in order to understand how the elements of the initial algebra look like, we have to investi-
gate these ML patterns.
ϕF(�). We have XB[a] = �B[a] /= � iff ⊺B[a] = �, because otherwise we have (∀b ∶B[a]. ∃y. f b = y∧ y ∈

�) = �. It follows that �B[a] consists of the unique function ¡. We obtain

ϕF(�) = ∃a1 ∶A. cons⟨a1,¡⟩∧(⊺B[a1] = �)
i.e., each a1 ∶A, with its corresponding dependent sort B[a1] empty, defines a constant constructor.
If ∀a ∶A. ⊺B[a] /= � then (∃a ∶A. cons ⟨a,⊺B[a]→©n X⟩) = � and hence ⊺µL = �.

ϕ
2
F(�) = ∃a2 ∶A. cons ⟨a2,ϕF(�)B[a2]⟩. If ⊺B[a2] = � then ϕF(�)B[a2] consists of the constant constructor

cons ⟨a2,¡⟩, i.e., ϕF(�)B[a2] = �B[a2]. If ⊺B[a2] /= � then we have

ϕF(�)B[a2] = ∃ f . f ∧∀b ∶B[a2]. ∃a1 ∶A. f b = cons⟨a1,¡⟩∧(⊺B[a1] = �)
We obtain

ϕ
2
F(�) = ϕF(�)∨∃a2 ∶A. cons ⟨a2,ϕF(�)B[a2]⟩∧(⊺B[a2] /= �)

. . .
Remark. The ML pattern (LFP) can be seen as an informal translation in ML of the colimit (INI).

Deriving Induction Principle Once we have seen how the least fixpoint is computed, we may derive
the following Induction Principle:

∀a ∶A. cons ⟨a,ψ⟩→ψ

⊺µF →ψ

The justification for this principle is similar to that for lists given in [7].

4.6 Specifying Final Coalgebra

Let X ↦ F X =∑a ∶A XB[a] be a container functor. The final F-coalgebra is specified by:
• the constructor cons together with its axioms;

• a sort νF with final semantics:
⊺νF = νX . ∃a ∶A. cons ⟨a,XB[a]⟩ (NO REDUNDANCY (COJUNK))

• two destructors out,nxt ∈ Σ together with the notations:
x.out ≡ out x

x.nxt ≡ nxt x
and the axioms:
∀a ∶A. ∀ f . (cons ⟨a, f ⟩).out = a (NO AMBIGUITY (COCONFUSION).1))

∀a ∶A. ∀ f . (cons ⟨a, f ⟩).nxt = f (NO AMBIGUITY (COCONFUSION).2))

∀x ∶νF . (cons ⟨x.out,x.nxt⟩) = x (NO AMBIGUITY (COCONFUSION).3))



50 Matching-Logic-Based Understanding of of Polynomial Functors

Computing the greatest fixpoint Since gfp(φF) =⋂n≥0 φ
n
F(M) =M∩φF(M)∩φ

2
F(M)∩⋯, we have to

investigate the infinite conjunction

⊺∧ϕF(⊺)∧ϕ
2
F(⊺)∧ϕ

3
F(⊺)∧⋯ (GFP)

in order to understand how the elements of the final coalgebra look like.

ϕF(⊺). We have cons ⟨a,⊺B[a]⟩ = ∃x,y. x∧x.out = a∧x.nxt = y.

ϕ
2
F(⊺). We have

ϕ
2
F(⊺) = ∃a ∶A. cons ⟨a,ϕF(⊺)B[a]⟩

= (∃a ∶A. ∃x. ∃y ∶n F ⊺. x∧x.out = a∧x.nxt = y)
= (∃a,a′ ∶A. ∃x,z. ∃y ∶n F ⊺. x∧x.out = a∧x.nxt = y∧y.out = a′∧y.nxt = z)

. . .

Remark. The ML pattern (GFP) can be seen as an ML informal translation of the colimit (FIN).

Deriving Coinduction Principle Once we have seen how the greatest fixpoint is computed, we may
derive the following Conduction Principle:

∀a ∶A. ψ → cons ⟨a,ψ⟩
⊺ψ→νF

The justification for this principle is similar to that for streams given in [7].

5 Case Study: Lists Using Container Functors

First, we express L X = 1+E ×X as a unary container functor, using 1 ≊∑⋆∶1 X0[⋆], E ≊∑e ∶E X0[e], and
X ≊∑⋆∶1 X1[⋆]:

L X =∑
⋆∶1

X0[⋆]+∑
e ∶E

X0[e]×∑
⋆∶1

X1[⋆]

=∑
⋆∶1

X0[⋆]+ ∑
⟨e,⋆⟩ ∶E×1

X0[e]+1[⋆]

= ∑
a ∶1+E×1

X [0,j0,1o][a]

Using the isomorphisms E ×1 ≊ E and j0,1o[⟨e,⋆⟩] = 0[e]+1[⋆] = 0+1 ≊ 1 in the category C, we obtain
the reduced form Lc X =∑a ∶1+E X [0,1][a] of the container functor L. From the definition of the sum of
container functors we deduce that the elements of∑a ∶1+E X [0,1][a] are pairs {⟨⋆, f ⟩ ∣ f ∶ 0→X}⊎{⟨e, f ′⟩ ∣
e ∶ E, f ′ ∶ 1→ X}. The only function 0→ X is ¡, and f ′ ∶ 1→ X ≊ f ′ ∈ X .

The specification in ML of the initial algebra µLc includes:

• a constructor symbol cons and a sort symbol µF ;
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• the axioms:
∃y ∶µLc. cons ⟨⋆,¡⟩ = y (FUNCTIONAL.1)

∀e ∶E. ∀ f ′ ∶µLc. ∃y ∶µLc. cons ⟨e, f ′⟩ = y (FUNCTIONAL.2)

∀e ∶E. ∀ f ′ ∶µLc. cons ⟨⋆,¡⟩ /= cons ⟨e, f ′⟩ (NO CONFUSION.1)

∀e,e′ ∶E. ∀ f , f ′ ∶µL. cons ⟨e, f ⟩ = cons ⟨e, f ′⟩→ e = e′∧ f = f ′ (NO CONFUSION.2)

⊺µLc = µX . (cons ⟨⋆,¡⟩∨cons ⟨E,X⟩) (NO JUNK)
Comparing with the specification from [7], we obviously have the equivalences nil ≊ cons ⟨⋆,¡⟩ and
cons e ` ≊ cons ⟨e,`⟩.

The ML specification of the final coalgebra further includes:
• the destructor symbols out,nxt ∈ Σ;

• the axioms
cons ⟨⋆,¡⟩ . out = ⋆ (NO COCONFUSION.1.1))

∀e ∶E. ∀ f ∶νLc. cons ⟨e, f ⟩ . out = e (NO COCONFUSION.1.2))

cons ⟨⋆,¡⟩ . nxt = ¡ (NO COCONFUSION.2.1))

∀e ∶E. ∀ f ∶νLc. cons ⟨e, f ⟩ . nxt = f (NO COCONFUSION.2.2))

∀x ∶νLc. (cons ⟨x.out,x.nxt⟩) = x (NO COCONFUSION.3))

⊺νLc = νX . (cons ⟨⋆,¡⟩∨cons ⟨E,X⟩) (NO COJUNK)
Comparing with the specification of streams (inifinite lists) from [7], we obviously have the equivalences
`. out ≊ hd ` and `. nxt ≊ tl `. Using nil ≊ cons ⟨⋆,¡⟩, we get hd nil = ⋆ and tl nil = ¡, which is different from
the usual approach, where hd and tl are partial operations.

6 Case Study: Moore Machines

Here we consider an example of (constant) exponential functor, whose ML specification is more tricky.
Moore machines (automata) have the signature given by the functor M X =O×X I , where O is for outputs
and I for inputs.

Capturing Final M-Coalgebra in ML Using Container Functors

We first express M as a unary container functor:

M X =O×X I

≊∑
o ∶O

X0×(∑
⋆∶1

X1)∑i ∶ I X0

=∑
o ∶O

X0× ∑
g ∶ I→1

X∑i ∶ I 1[g i]

= ∑
⟨o,g⟩ ∶(O×(I→1))

X0[o]+∑i ∶ I 1[g i]

≊∑
o ∶O

X∑i ∶ I 1

≊∑
o ∶O

X I

=Mc X
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The instantiation of the ML specification for the final coalgebra is as follows:

• the constructor cons ∈ Σ is specified by the following axioms:
∀o ∶O. ∀ f . f ∈ X I → ∃x. x ∈ X ∧cons ⟨a, f ⟩ = x (FUNCTIONAL)

∀o,o′ ∶O. ∀ f , f ′. cons ⟨a, f ⟩ = cons ⟨a′, f ′⟩→ a = a′∧ f = f ′ (NO CONFUSION)

• the destructors out,nxt ∈ Σ are specified by the axioms:
∀o ∶O. ∀ f . f ∈ X I → (cons ⟨a, f ⟩).out = a (NO COCONFUSION.1))

∀a ∶A. ∀ f . f . f ∈ X I → (cons ⟨a, f ⟩).nxt = f (NO COCONFUSION.2))

∀x ∶νF . (cons ⟨x.out,x.nxt⟩) = x (NO COCONFUSION.3))

• the sort νMc with final semantics:
⊺νMc = νX . ∃o ∶O. cons ⟨o,X I⟩ (NO COJUNK)

We should have
⊺νMc ≊ νX . MC X

Computing ⊺∧ϕM(⊺)∧ϕ
2
M(⊺)∧ϕ

3
M(⊺)∧⋯, where ϕM(X) ≡ ∃o ∶O. cons ⟨o,X I⟩:

ϕM(⊺) = ∃o0 ∶O. cons ⟨o,X I⟩ = ∃o0 ∶O. ∃ f0. cons ⟨o0, f0⟩∧(∀i ∶I. ∃x1. f0 i = x1). When describing a dy-
namic system, the use of destructors is more intuitive:

ϕM(⊺) = ∃x0. ∃o0 ∶O. x0∧(x0.out = o0∧∀i ∶I. ∃y. x0.nxt i = y)

It is easy to see that x0 = cons ⟨o0, f0⟩ and f0 i = x0.nxt i.

ϕ
2
M(⊺) = ∃o1 ∶O. cons ⟨o1,X I⟩ = ∃o1 ∶O. ∃ f1. cons ⟨o1, f1⟩∧(∀i ∶I. ∃x2. f1 i = x2∧x2 ∈ ϕM(⊺)). Again, it

becomes more suggestive using the destructors:

ϕ
2
M(⊺) = ∃x1. ∃o1 ∶O. x1∧(x1.out = o1∧∀i ∶I. ∃x0. x1.nxt i = x0∧x0 ∈ ϕM(⊺))

= ∃x1. ∃o1 ∶O. x1∧(x1.out = o1∧∀i ∶I. ∃x0. ∃o0 ∶O. x0.out = o0∧∀i ∶I. ∃y. x0.nxt i = y)

. . .

We have ⊺νM ∋ x ≊ f ∈OI∗ iff x.out = f ε and ∀i ∶I. x.nxt i = tr( f )(i).

7 Conclusion

The technical experiments reported in this paper show that both the initial models and the final models
for polynomial functors can be fully captured in matching logic (ML) using their representation as unary
container functors. The ML specification of the polynomial functors is possible due to the fact the sum,
product, and function sorts can be specified in ML [7], and these specifications are a part of capturing
the category of sets C in ML.

A functor represented as a "classical" polynomial can be translated into a container functor shape
using the fact the later are closed under sum, product, and exponential. However, the result could be
cumbersome and not easy to handle in matching logic because the construction starts from constant and
identity functors. Therefore it is preferable to simplify it using the isomorphisms in the category of sets.

This result can help in defining in ML programming languages using both inductive data-types and
coinductive data-types. Another advantage is given by a better understanding of the abstract construc-
tions from the category theory. A possibly use is as follows:
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• define in front-end a suitable syntax for data types intended to be defined as initial algebra or final
coalgebra;

• extract the canonical form of the functor underlying the front-end definition;

• generate the corresponding ML theory;

• derive the proof principles needed to soundly handle the defined data type.

Future work will focus on the following aspects of the proposed approach:

• a more formal presentation of the approach;

• how to capture in ML the iteration principle and the primitive recursive principle;

• extending the approach to larger classes of functors admitting initial algebras and final coalge-
bras, e.g., indexed containers [3], the bounded natural functors (BNFs) underlying Isabelle/HOL’s
datatypes [16], or the quotients of polynomial functors, experimentally implemented in Lean [5].
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[7] Xiaohong Chen, Dorel Lucanu & Grigore Roşu (2021): Matching logic explained. Journal of Logical and
Algebraic Methods in Programming 120, pp. 1–36, doi:10.1016/j.jlamp.2021.100638.
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A Capturing Sort Operator in ML

We recall from [7] the ML specifications for the main operators over sorts.

A.1 Sum Sort

Given two sorts s1 and s2, we define a new sort s1⊗s2, called the product (sort) of s1 and s2, as follows:
spec SUMs1,s2

Imports: SORT

Symbols: ⊕,ι1,ι2,ε1,ε2
Notations: s1⊕s2 ≡⊕s1 s2
Axioms:

(Sum Sort)
s1 ∈ ⊺⊺Sort ∧ s2 ∈ ⊺⊺Sort → s1⊕s2 ∈ ⊺⊺Sort

(Inject Left)
ι1 ∶ s1→ s1⊕s2

(Inject Right)
ι2 ∶ s2→ s1⊕s2

(Eject Left)
ε1 ∶ s1⊕s2⇀ s1

(Eject Right)
ε2 ∶ s1⊕s2⇀ s2

(Inverse InjEj1)
∀x ∶si. εi (ιi x) = x, i = 1,2

(Inverse InjEj2)
∀x ∶s3−i. εi (ι3−i x) = �, i = 1,2

(CoProduct)
∀s1,s2 ∶⊺Sort. ⊺s1⊕s2 ⊆ (ι1⊺s1)∨(ι2⊺s2)

endspec

A.2 Pair Sort
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spec PAIRs1,s2 Imports: SORT
Symbols: Pair,pair, fst,snd
Notations: s1⊗ s2 ≡ Pair s1 s2, ⟨ϕ1,ϕ2⟩ ≡ pair ϕ1 ϕ2
Axioms: � all axioms are quantified by �∀s1,s2 ∶⊺Sort�

(Pair Sort) (s1⊗ s2) ∶Sort
(Pair) ∀x1 ∶s1. ∀x2 ∶s2. ⟨x1,x2⟩ ∶(s1⊗ s2)
(Pair Fst) ∀x1 ∶s1. ∀x2 ∶s2. fst ⟨x1,x2⟩ = x1
(Pair Snd) ∀x1 ∶s1. ∀x2 ∶s2. snd ⟨x1,x2⟩ = x2
(Pair Inj) ∀x1,y1 ∶s1. ∀x2,y2 ∶s2.

⟨x1,x2⟩=⟨y1,y2⟩→ x1=x2∧y1=y2
(Pair Domain) ⊺s1⊗s2 = ⟨⊺s1 ,⊺s2⟩
endspec

A.3 Function Sort
spec FUNs1,s2 Imports: SORT
Symbols: Function
Notations: s1 →© s2 ≡ Function s1 s2
Axioms: // all axioms are quantified by �∀s1,s2 ∶⊺Sort�

(Func Sort) (s1 →© s2) ∶Sort
(Func Domain) ⊺s1→©s2 = ∃ f . f ∧∀x ∶s1. ( f x) ∶s2
(Func Ext) ∀ f ,g ∶s1→©s2. (∀x ∶s1. f x = g x)→ f =g
endspec

Remark. Note that we do not explicitly define the constructors of function sorts. Instead, we axiomatize
the behaviors of a function. Indeed, axiom (Func Domain) states that a “function” f of sort s1 →©s2 is one
such that for any x of sort s1, ( f x) has sort s2. Axiom (Func Ext) states that two functions f and g of sort
s1 →© s2 are equal iff they are behavioral equivalent, i.e., they return the same values on all arguments of
sort s1.
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Epistemic protocols represents a current field of interest, with numerous approaches still being stud-

ied. In this paper we formalize parallel sessions of the The Muddy Children Puzzle using Public

Observation Logic, a system that allows epistemic update. We consider agents with roles in multiple

sessions and the information update in all parallel sessions as new information is discovered in any

particular session.

1 Introduction

In this article, we introduce a formalism to analyze the parallel execution of actions in the epistemic

protocol of the Muddy Children Puzzle, previously modeled using public announcement logic in [4]. We

consider agents with roles in multiple sessions and the information update in all parallel sessions as new

information is discovered in any particular session. Although the formalism is specifically tailored to

model this protocol, it can be generalized since its theoretical framework is based on [5], where a logical

system starting from generic actions is defined. Our goal is to investigate how parallel sessions interact

and how agents’ information is modified not only within a single session but also in a parallel setting.

In the second section, we introduce the public observation logic system, based on [5]; in the third sec-

tion, we model the Muddy Children Puzzle protocol using this formalism, starting from the description

in [4]; in the fourth section, we construct the parallel sessions and define a method of information propa-

gation between these sessions to maintain consistency in the main parallel model; in the fifth section, we

provide an example of such a parallel framework where we study the speed of information propagation

and how the number of actions required to reach a result decreases with this update. Finally, we present

some conclusions and future directions for further research.

2 Preliminaries

In this preliminary section, we will present the main results from [5], where a new logical system, public

observation logic, is defined. This system is built upon notions such as observations and expectation

models, which are based on epistemic models. These concepts will be used in the formalism we will

propose later to define a modeling for the Muddy Children Puzzle.

Let AGENT be a finite set of agents, Φ be a set of formulas, with Φ0 ⊆Φ the set of atomic propositions.

http://dx.doi.org/10.4204/EPTCS.389.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
los.cs.unibuc.ro
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Definition 2.1 (Epistemic model). An epistemic model M is M = (W,R,V ), where W is a non-empty

set of worlds, R ⊆ W 2 is a binary accessibility relation, R = {Ra | a ∈ AGENT}, and V : Φ → P(W ) is

the valuation function, assigning to each formula the set of worlds where formula is true.

Additionally, the authors of [5] introduce observation expressions, as regular expressions over a finite

set of actions, named Σ.

Definition 2.2 (Observation expressions). Given a finite set of action symbols Σ, the language Lobs of

observation expressions is defined by:

π ::= δ | ε | π ·π | π +π | π∗ (1)

where δ is the empty action, with a corresponding empty set /0 of observations, the constant ε represents

the empty string, and a ∈ Σ.

Definition 2.3 (Observations). Given an observation expression π , the corresponding set of observations,

that is denoted by L (π) is the set of finite string over Σ, defined as follows:

L (δ ) = /0 L (π1 ·π2) = {vw | v ∈ L (π1) and w ∈ L (π2)}
L (ε) = {ε} L (π1 ∪π2) = L (π1)+L (π2)
L (a) = {a} L (π∗) = {ε}∪

⋃

n>0 L (π;π; . . . ;π
︸ ︷︷ ︸

n times

)

Definition 2.4 (Epistemic expectation model). An epistemic expectation model Mexp is a quadruple

Mexp = (W,R,V,Exp), where (W,R,V ) is an epistemic model, also named the epistemic skeleton of

Mexp, and Exp : W → Lobs is an expected observation function, assigning to each state an observation

expression π , such that L (π) 6= /0.

With these notions defined, there is introduced a new formalism, named Public observation logic,

that is a dynamic logic with knowledge operators, made to reason about knowledge via the matching of

observations and expectations.

Definition 2.5 (Update by observation). Let α be an observation over Σ, and let M = (W,R,V,Exp) be

an epistemic expectation model. The updated model M |α is defined as M |α = (W ′,R′,V ′,Exp′), where

W ′ := {w | L (Exp(w)−α) 6= /0}, R′ = R|W ′2 , V ′ = V |W ′ , and Exp′(w) = Exp(w)−α . Here, π −α is

defined as π −α = {β | αβ ∈ L (π)}, the right residuation with respect to the monoid (Σ∗, ·,ε).

Definition 2.6 (Public observation logic). The formula ϕ of POL (Public Observation Logic) are given

by the following BNF:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ϕ | Kaϕ | [π]ϕ (2)

where p ∈ Φ0 and for any a ∈ AGENT, Ka is the knowledge operator corresponding to agent a.

Definition 2.7 (Truth definition for POL). Given an epistemic expectation model M = (W,R,V,Exp), a

state w ∈W and a POL-formula ϕ , the truth of ϕ at w, denoted by M ,w |= ϕ is defined as follows:

M ,w |= p ⇐⇒ w ∈V (p) (3)

M ,w |= ϕ ∧ψ ⇐⇒ M ,w |= ϕ and M ,w |= ψ (4)

M ,w |= ¬ϕ ⇐⇒ M ,w 6|= ϕ (5)

M ,w |= Kiϕ ⇐⇒ for all v such that (w,v) ∈ Ri it holds M ,v |= ϕ (6)

M ,w |= [π]ϕ ⇐⇒ for all α ∈ L (π), if α ∈ init(Exp(w)), then M |α ,w |= ϕ (7)

where α ∈ init(π) if and only if there is a β ∈ Σ∗ such that αβ ∈ L (π).
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3 Muddy Children Puzzle: formalization in POL

The Muddy Children Puzzle represents a scenario where a group of children who have been playing

outside is called into their house by their father. Some of the children have mud on their foreheads,

others don’t, and none of them know their own state. Knowing that they can all see each other, but don’t

know anything about their own situation, the father initially announces them that at least one child is

muddy, then asks them who is certain that they have mud on their forehead. In this scenario, we assume

that the children reason correctly from a logical point of view and know how to update their information

based on their father’s question. If a solution has not been reached yet, the father does nothing else but

repeat the request until a final resolution is achieved, where all the muddy children are aware of their

own state, so the ones who are not muddy will also know this fact.

We will model the Muddy Children Puzzle starting from the description in [4] (where the problem

was modeled using Public announcement logic), but using the formalism of Public observation logic. In

this case, instead of updating the model based on formulas, we will update it based on certain actions,

and the main action consists of the successive questions that the father addresses.

Let AGENT be a finite set of agents, with |AGENT| = na, that we will denote with the first letters

of the alphabet, a, b, c, . . . during the specification of our protocols. In order to formalize the Muddy

Children Puzzle, we will define one set of formulas Φ, where Φ0 ⊆ Φ is the set of atomic propositions,

and one set of actions Π, with Π0 ⊆ Π contains one atomic action, QF, the father’s question. Each time

when the action is performed, the general knowledge is changed and the agents enrich their individual

knowledge. We will number the father’s questions to be able to update the model sequentially based on

the information obtained at each step.

For any a ∈ AGENT, Φ0 contains one atomic proposition ma, that is true if a is muddy, and false

otherwise.

Definition 3.1. Given a finite set of atomic actions, Π0 = {QF}, we define the LΠ language by the

following BNF grammar:

π ::= λ | QF | π;π | π ∪π | π∗ (8)

where λ stands for the empty action, with a corresponding empty set of actions.

We introduce the notation QFi := QF; . . . ;QF
︸ ︷︷ ︸

i times

Definition 3.2. Given an action π , we define the corresponding set of actions L (π) as follows:

L (λ ) = /0 L (π1;π2) = {vw | v ∈ L (π1) and w ∈ L (π2)}
L (QF) = {QF} L (π1 ∪π2) = L (π1)∪L (π2)

L (π∗) = {λ}∪
⋃

n>0 L (π;π; . . . ;π
︸ ︷︷ ︸

n times

)

In the following, let M = (W,R,V,Exp) be an epistemic expectations model, where the set of pos-

sible worlds W consists of ordered pairs (wa1
, . . . ,wna

) ∈ {0,1}na . Each wai
for ai ∈ AGENT describe

either if ai is muddy or not. We denote that property by the predicate muddy, defined as, for every agent

a and for every pair w, muddy(a,w) = 0 if a is not muddy and muddy(a,w) = 1 if a is muddy.

Definition 3.3 (State property). Let a ∈ AGENT and let w ∈ W , where AGENT = {a1, . . . ,a, . . . ,ana
},

where a is on the p-th position, 0 < p ≤ N. Then muddy(a,w) = projp(w), where proj is the projection

function: for a pair x = (x1, . . . ,xn), proji(x) returns the value of the i-th component xi, 0 < i ≤ n.
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Definition 3.4 (Model property). Let a ∈ AGENT. We define muddy(a) as:

muddy(a) =







0, if
⋂
{muddy(a,w) | w ∈W}= {0}

1, if
⋂
{muddy(a,w) | w ∈W}= {1}

undefined, if
⋂
{muddy(a,w) | w ∈W}= /0

(9)

By abuse of notation, when muddy(a) is defined and there is no risk for confusion, we will use muddy

as a predicate.

This predicate can also be defined as:

muddy(a) = 1 ⇐⇒ for all w ∈W,M ,w |= Kama (10)

muddy(a) = 0 ⇐⇒ for all w ∈W,M ,w |= Ka¬ma (11)

muddy(a) = undefined ⇐⇒ otherwise (12)

Definition 3.5. Let M = (W,R,V ) be an epistemic (Kripke) model, and Exp : W → LΠ an expectation

function that assigns to each state an action π such that L (π) 6= /0. Then, Mexp = (M ,Exp) is an

epistemic expectations model.

Definition 3.6. Let w be an action over Π and let MExp = (W,R,V,Exp) be an expectation model.

The updated model is M |α = (W ′,R′,V ′,Exp′), where W ′ = {v | L (Exp(v)−α) 6= /0}, R′ = R∩W ′2,

V ′ =V |W ′ and for any v ∈W , Exp′(v) = Exp(v)−α .

Each action QFi, i≥ 0, corresponds to the i-th question of the father. For i= 0, we have M |QF0
:=M .

Starting from i = 1, the states are eliminated sequentially. For i = 1, the state (0, . . . ,0) ∈W na is elimi-

nated, as QF1 is the question that announces the existence of at least one muddy child, so
⋃

a∈AGENT ma

is true: M |QF1
= (W ′ := W −{0na},R|W ′2 ,V |W ′ ,Exp), so after the first questions, we have states that

contains at least one component that is 1. If we continue this process, we obtain that for M |QF2
there

are removed all the states containing just one muddy agent. In general, for M |QFi
a set of correspond-

ing worlds with pairs w ∈ Wi such that w contain at least i values of 1: ∑ j proj j(w) ≥ i. This fact is

supported by what happens during the father’s questions: he repeats the questions because the agents

knows whether the other agents are muddy or not, while none knows their own state, which means that

each new question confirms to the agents that there is at least one more muddy agent they must take into

account during the inference process. At this point, we have that

M |QFi
= (W ′ :=W −{v ∈W | ∑

j

proj j(v) < i},R|W ′2 ,V |W ′ ,Exp′) (13)

Formulas are defined by the following BNF grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ϕ | Kaϕ | [π]ϕ (14)

where p ∈ Φ0 is an atomic formula, and a ∈ AGENT.

The interpretation of formulas is as follows:

M ,w |= p ⇐⇒ w ∈V (p) (15)

M ,w |= ϕ ∧ψ ⇐⇒ M ,w |= ϕ and M ,w |= ψ (16)

M ,w |= ¬ϕ ⇐⇒ M ,w 6|= ϕ (17)

M ,w |= Kiϕ ⇐⇒ for all v such that (w,v) ∈ Ri it holds M ,v |= ϕ (18)

M ,w |= [π]ϕ ⇐⇒ for all α ∈ L (π), if exists v such that Exp(v) = α ;π1; . . . ;πn, (19)

then M |α ,w |= ϕ
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The deductive system contains all instances of propositional tautologies, to which are added the

following axioms ( [4], [2]):

(A1) Ka(ϕ → ψ)→ (Kaϕ → Kaψ) distributivity of K

(A2) Kaϕ → ϕ truth

(A3) Kaϕ → KaKaϕ positive introspection

(A4) ¬Kaϕ → Ka¬Kaϕ negative introspection

(A5) [π](ϕ → ψ)→ ([π]ϕ → [π]ψ) distributivity of π

(A6) [π](ϕ ∧ψ)↔ [π]ϕ ∧ [π]ψ distributivity over conjunction

(A7) [π1;π2]ϕ ↔ [π1][π2]ϕ sequential operator

(A8) [π1 ∪π2]ϕ ↔ [π1]ϕ ∧ [π2]ψ choice

(A9) ϕ ∧ [π][π∗]ϕ ↔ [π∗]ϕ Kleene star

(A10) ϕ ∧ [π∗](ϕ → [π]ϕ)→ [π∗]ϕ induction axiom

The deduction rules are: MP
ϕ ϕ→ψ

ψ NEC
ϕ

Kaϕ GEN
ϕ

[π]ϕ

Theorem 1. For n > 1, there are n+1 questions needed to discover n muddy children.

Proof. The proof for this theorem is well-known [1], but we will sketch it for our system.

Let M = (W,R,V,Exp) be an epistemic model for Muddy Children Puzzle and let n be the number

of muddy agents. We want to prove that, after n+1 questions, every agent knows either if it is muddy or

not:

M |QFn+1
|=

∧

a∈AGENT

Kama

We will prove that by induction over n.

• base case (n = 1)⇒ there are 2 father’s questions QF needed to discover one muddy agent. After

the first one, the state 0n is removed. After the second question, there is just one muddy agent am

that sees n− 1 non-muddy other agents, and with the 0n state removed, this agent knows that is

muddy:
∧

a∈AGENT
a6=am

Kam
¬ma ∧Kamam

• induction step ⇒ there are already n asked questions and, based on that, n− 1 identified muddy

agents. We want to prove that if we add a new muddy agent, there will be one additional question.

In this M |QFn
model, where is just one world left, w ∈ Wn, such that there are n− 1 values of 1.

If we have an additional agent, which we will represent as the last component of the pair, without

losing generality, then we will not be able to distinguish between states (w,0) and (w,1). With a

new question, the agent is able to make the inference and to figure wheter it is muddy or not.

4 Muddy Children Puzzle with parallel sessions

In the parallel setup, we consider that the puzzle unfolds simultaneously in multiple sessions. Each ses-

sion is just a regular sequence of actions, so for each group, there is a father who addresses the questions,

and the model updates based on these actions. However, there are agents who can be simultaneously

present in multiple such groups, which makes them agents playing in multiple sessions simultaneously.

In this case, instead of just having a number of independent parallel sessions, the sessions interact with
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each other through the knowledge of agents who play simultaneously in at least two sessions. If an agent

finds out from one session that they are muddy (or not), they actually possess this information in all other

sessions as well.

Let SESSION be a finite set of sessions. For every session s ∈ SESSION, we have a finite set of agents

AGENTs. Given a finite set of atomic actions on sessions, Π0 = {QFs}|s∈SESSION, we define the LΠ

language by the following BNF grammar:

π ::= λ | QFs | π;π | π ∪π | π∗ (20)

where λ stands for the empty action, s ∈ SESSION and a ∈ AGENTs.

Definition 4.1 (Session model). A session model Ms is defined as an expectation model Ms, where

Ms = (Ws,Rs,Vs,Exps) and s ∈ SESSION is a session; Ws is a finite set of worlds on the session s, Rs ⊆
Ws ×Ws is the binary accessibility relation between worlds, Vs : Φ → Ws is the valuation function and

Exps : Ws → LΠ the expectation assignment for states.

Definition 4.2 (Parallel model). A parallel model M is defined as M = Ms1
×Ms2

× ·· · ×Msns
=

×ns

i=1 Msi
, where SESSION = {s1,s2, . . . ,sns

}, and for an arbitrary s ∈ SESSION, Ms = (Ws,Rs,Vs,Exps) is

a session model.

Suppose that we have a parallel model M that consists of ns session models, so M =×i Mi. We

know that, for every model, we have an initial set of worlds Ws = {0,1}|AGENTs|, where 0 means that the

property doesn’t hold (for an agent a, we have that a is not muddy), and 1 means that the property holds

(for an agent a, we have that a is muddy). The (AGENTs)s∈SESSION sets are not mutual disjunctive: for

si,s j ∈ SESSION, si 6= s j, is it possible that AGENTsi
∩AGENTs j

6= /0. In that case, imagine that an action

αsi
occurs in the i-th model, 0 < i ≤ |SESSION| (so we have a formula [β1;β2; . . . ;αsi

; . . . ;βn]ϕ , where

β1, . . . ,βn ∈ Π are also actions that occurs in the i-th model, and ϕ ∈ Φ), that changes the model with

respect to updated model definition; we will have that model updated, so Mi := M |αsi
. But there is the

following problem: imagine that in the new Mi model, we obtained a new set of worlds Wi that, for

an arbitrary agent a, we know whether muddy(a) is either 0 or 1, and that agent also appears in other

session models Mk1
,Mk2

, . . . ,Mkp
. In that case, we have to also update these models with respect to the

new restrictions.

We define propagate(αsi
,Ms j

) = (W ′
j ,R j|W ′2

j
,Vj|W ′

j
,Exp j), where W ′

j contains all the worlds from

Wj, but without the worlds that doesn’t have the same value of the property for the agent a as in Mi|αsi
.

If the position for the agent a is ia and the property value is 0 (1), we will remove from Wj all the worlds

that have 1 (0) on the ia-th position.

Definition 4.3 (Propagate actions). Let si ∈ SESSION and let αsi
be an action that occurs on the i-th

session. We define the propagation on the Ms j
models, (si 6= s j and for any j in this case, s j ∈ SESSION)

by:

propagate(αsi
,Ms j

) = (W ′
j ,R j|W ′2

j
,Vj|W ′

j
,Exp j) (21)

where W ′
j is defined as:

W ′
j :=Wj −

⋃

a∈AGENTsi
∩AGENTs j

muddysi
(a) is defined

{v ∈Wj | muddys j
(a,v) 6= muddysi

(a)} (22)

where muddys j
(a,v) is muddy(a,v) on the j-th session, and muddysi

(a) is muddy(a) on the i-th ses-

sion.



62 A Parallel Dynamic Epistemic Logic

Definition 4.4 (Updated parallel model). Let M be a parallel model, and αsi
an action that occurred on

the i-th session, 0 < i ≤ |SESSION|. Then

M |αsi
=×

j<i

propagate
(
αsi

,Ms j

)
×M |αsi

××
i< j

propagate
(
αsi

,Ms j

)
(23)

is the updated parallel model.

5 Application

In this section, we present a concrete parallel setting, and we study how the session models interact. We

have the following setup:

1. SESSION = {s1,s2,s3};

2. AGENT1 = {a,b}, AGENT2 = {b,c,d} and AGENT3 = {a,d};

3. M = M1 ×M2 ×M3;

4. suppose that the agents a, c and d are muddy, and b is not, so in M holds that muddy(a)∧
¬muddy(b)∧muddy(c)∧muddy(d).

In the following, we represent the models:

(ma=0
mb=0)

(ma=0
mb=1)

(ma=1
mb=0)

(ma=1
mb=1)

Ra

Ra

Rb RbM1

(ma=0
md=0)

(ma=0
md=1)

(ma=1
md=0)

(ma=1
md=1)

Ra

Ra

Rd RdM3

(
mb=0
mc=0
md=0

)

(
mb=0
mc=1
md=0

)

(
mb=1
mc=0
md=0

)

(
mb=1
mc=1
md=0

)

(
mb=0
mc=0
md=1

)

(
mb=0
mc=1
md=1

)

(
mb=1
mc=0
md=1

)

(
mb=1
mc=1
md=1

)

Rb

Rb

Rb

Rb

Rc Rc

Rc Rc

Rd Rd

Rd Rd
M2

Consider the scenario in which we run this models independently, so each agent has its own scope for

every scenario. Using the results of Theorem 1, we know that for the first model are 2 questions needed

(so M1 |= [QF1
2 ](Kama ∧Kb¬mb)), for the second one there are 3, and for the last one also 3 questions

needed. We conclude that if we analyze this scenario in a sequential manner, there are 8 question needed

to solve the puzzle. Our target is to see if the number of questions can be minimised if we run these

models in parallel.
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In the parallel setting, the order of actions is non-deterministic. We will analyze a possible situation.

Suppose that the first actions that occurs are the father’s question for the first model. We already provided

that are only two question needed to solve the puzzle, so

M1|QF2
=

(
{(1,0)}, /0,V1 |{(1,0)},Exp′1

)
(24)

Bearing in mind that we run the model in parallel, instead of just updating the M1 model, we have to

update the entire model, M . In that case, we have to propagate the new states, so M2 and M3 will be

modified by keeping just the states in which ma holds and mb does not.

propagate(QF1,M2) = (W ′
2,R

′
2 := R2|W ′

2
,V ′

2 :=V2|W ′
2
,Exp2)

= (W2 −{v ∈W2 | muddys2
(b,v) 6= 0},R′

2,V
′

2,Exp2)

= (W ′
2 := {(000),(010),(011),(001)},R′

2 ,V
′

2,Exp2)

propagate(QF1,M3) = (W ′
3,R

′
3 := R3|W ′

3
,V ′

3 :=V3|W ′
3
,Exp3)

= (W3 −{v ∈W3 | muddys3
(a,v) 6= 1},R′

3,V
′

3,Exp3)

= ({W ′
3 := (10),(11)},R′

3 ,V
′
3,Exp3)

We represent the new M |QF1
model as:

(ma=1
mb=0)

M1|QF1

(
mb=0
mc=0
md=0

)

(
mb=0
mc=1
md=0

)

(
mb=0
mc=0
md=1

)

(
mb=0
mc=1
md=1

)

Rc

Rc

Rd

Rd

propagate(QF1,M2)

(ma=1
md=0)

(ma=1
md=1)

Rd

propagate(QF1,M3)

Suppose that the next action is father’s question in M3. The agent a already knows that muddy(a)
holds, so by seeing d can answer the question by muddy(a)∧muddy(d). We also have a propagation,

that transforms M2 into a model with two worlds, W2 = {(0,1,1),(0,0,1)}. After the father’s question,

both b and d cand solve the puzzle, by seeing that c is also muddy. In this setting, we only needed four

father’s questions instead of eight.

Conclusion and Further Work

The formalism for representing parallel models presented in this article, using the Muddy Children Puzzle

as an example, is based on POL (public observation logic [5]) and builds upon the modeling in PAL

(public announcement logic [4]). In POL, observations are seen as strings over an alphabet Σ, which



64 A Parallel Dynamic Epistemic Logic

we replaced in our formalism with actions. For the specific problem we presented, the only actions

considered are represented by the father’s questions QF. Although our aim was to demonstrate how

information can be propagated in parallel sessions for a simple case, this approach can be generalized

and applied to the analysis of security protocols.

In [3], we introduced a formalism for analyzing security protocols that use symmetric key cryp-

tography (called DELP, dynamic epistemic logic for protocols), also starting from POL but providing a

different semantics for actions ([π]ϕ). An idea for future work is to combine DELP with the method of

transmitting information in parallel across multiple sessions to study various types of attacks. This in-

tegration could enable a more comprehensive analysis of security protocols, incorporating the dynamics

of information updates and potential attacks in a parallel setting. By combining the concepts from DELP

and the parallel model, security analysts can investigate how various security protocols perform under

different conditions and explore possible vulnerabilities in a more intricate scenario.
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We address the problem of enumerating all maximal clique-partitions of an undirected graph and

present an algorithm based on the observation that every maximal clique-partition can be produced

from the maximal clique-cover of the graph by assigning the vertices shared among maximal cliques,

to belong to only one clique. This simple algorithm has the following drawbacks: (1) the search

space is very large; (2) it finds some clique-partitions which are not maximal; and (3) some clique-

partitions are found more than once. We propose two criteria to avoid these drawbacks. The outcome

is an algorithm that explores a much smaller search space and guarantees that every maximal clique-

partition is computed only once.

The algorithm can be used in problems such as anti-unification with proximity relations or in

resource allocation tasks when one looks for several alternative ways to allocate resources.
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1 Introduction

In this paper, we are interested in computing all maximal clique-partitions in a graph. The original moti-

vation comes from anti-unification with proximity relations. Anti-unification is a well-known technique

in computational logic. It was introduced in [13, 14] and was quite intensively investigated in the last

years, see, e.g. [1, 2, 11, 10, 6]. Given two first-order logic terms t1 and t2, it aims at computing a least

general generalization of those terms. That means, one is looking for a term s from which t1 and t2 can

be obtained by variable substitutions. Such an s is called a generalization of t1 and t2. Moreover, there

should be no other generalization r of t1 and t2, which can be obtained from s by a substitution. For

instance, if t1 and t2 are the ground terms f (a,a) and f (b,b), then anti-unification computes their least

general generalization f (x,x). Replacing variable x by a (resp. by b) in it, one gets f (a,a) (resp. f (b,b)).
Note that f (x,y) and x are also generalizations of f (a,a) and f (b,b), but they are not least general. Anti-

unification has been successfully used in inductive reasoning, inductive logic programming, reasoning

and programming by analogy, term set compression, software code clone detection, etc.

In many applications, that can be also relevant for anti-unification, one has to deal with imprecise

or vague information. In such circumstances, one tends to consider two objects the same, if they are

“sufficiently close” to each other. However, such a proximity relation is not transitive. Nontransitivity

http://dx.doi.org/10.4204/EPTCS.389.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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has to be dealt with in a special way. Proximity relations (reflexive symmetric fuzzy binary relations)

characterize the notion of ‘being close’ numerically. They become crisp once we fix the threshold from

which on, the distance between the objects can be called ‘close’.

Symbolic constraint solving (for unification, matching, and anti-unification constraints) over prox-

imity relations has been studied recently by various authors, e.g., [11, 12, 1, 7, 8]. The approaches can be

characterized as class-based and block-based. Considering proximity relations as (weighted) undirected

graphs, a proximity class of a vertex is its neighborhood (i.e., the set of vertices to which the current

vertex is connected by an edge), while a proximity block is a clique. In the class-based approach to

proximity constraint solving, two objects are considered proximal if one of them belongs to the proxim-

ity class of another. In the block-based approach, two objects are proximal if they belong to the same

unique maximal proximity block. The block-based approach is one that is closely related to the subject

of this paper. To compute a minimal complete set of generalizations of two first-order logic terms with

this approach, one needs to consider all maximal clique-partitions of the graph induced by the proximity

relation between constants and between function symbols. For instance, if a is close to both b and c,

but b and c are not close to each other, then f (a,a) and f (b,c) have two minimal common generaliza-

tions: f (a,x) and f (x,a). In this example, the proximity graph would be ({a,b,c},{(a,b),(a,c)}). It

has two maximal clique partitions {{a,b},{c}} and {{a,c},{b}} that tell exactly which symbols should

be considered the same. In the first case these are a and b, leading to the generalization f (a,x), and in

the second case they are a and c, giving f (x,a). Also, in the block-based approach to approximate uni-

fication, one would need to maintain maximal clique-partitions of the proximity graph in order to detect

that, e.g., f (x,x) and f (b,c) are not unifiable in the abovementioned proximity relation, see, e.g., [8].

Also, the resource allocation problem, when one looks for several alternative ways to allocate re-

sources, can be an application area of the algorithm considered in this paper.

Whereas the problem of computing all maximal cliques is well studied [4, 16, 15, 5], the problem

of computing all maximal clique-partitions became of interest only recently. To the best our knowledge,

the only previous study of it is the one reported in 2022 by C. Pau her PhD thesis [12, Sect. 3.3.2].

In this paper we provide a more in-depth analysis of the problem and propose another algorithm which

performs better than the one described in [12]. For a given undirected graph G, in order to compute all its

maximal clique-partitions, we use a kind of top-down approach. First, we compute the maximal clique

cover of G, and the list S of all graph vertices which are shared among maximal cliques. By a systematic

enumeration of all possibilities to assign each vertex in S to only one clique where it belongs, we obtain

an algorithm that finds all clique-partitions of G in a tree-like search space starting from the maximal

clique-cover of G. Our algorithm is optimal in the following sense: (1) It computes only maximal clique-

partitions, by avoiding computations below some nodes of the search space which yield non-maximal

clique-partitions, and (2) Each maximal clique-partition is computed only once. Moreover, our algorithm

computes the maximal clique-partitions incrementally, in the following sense: If one does not want to get

all solutions, he/she can stop the algorithm after computing a certain number of solutions. As a result,

the computation of maximal clique-partitions can be streamlined with other operations on them.

The paper is structured as follows. In Section 2 we introduce some preliminary notions, the search

space T
S(G) for maximal clique-partitions of an undirected graph G and its main properties. The follow-

ing two sections describe our main contributions: a criterion to avoid the computation of nonmaximal

clique-partitions (Section 3), and a criterion to avoid the redundant computations of the same maximal

clique-partition (Section 4). In Section 5 we indicate how to combine these two criteria and define an

algorithm to enumerate all maximal clique-partitions of an undirected graph. An analysis of the runtime

complexity of our algorithm is performed in Section 7. In the last section we draw some conclusions.
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2 Preliminaries

We consider undirected graphs G = (V,E) where V is the set of nodes and E is the set of edges. A clique

in G is a nonempty subset of V such that every two vertices of it are incident. A clique C is maximal if

it is not a proper subset of another clique.

A cover of G is a finite family {V1, . . . ,Vm} of nonempty sets of nodes such that
⋃m

i=1Vi = V . A

clique-cover of G is a cover P of V such that every C ∈ P is a clique in G. A partition into cliques,

or shortly clique-partition of G, is a partition P of V such that every C ∈ P is a clique in G. P is

a maximal clique-partition of G if P is a clique-partition of G and P does not contain two different

cliques C,C′ such that C∪C′ is a clique.

A graph may have several maximal clique-partitions. In the literature, a problem that was studied

intensively is to compute a maximal clique-partition with the smallest number of cliques. Tseng’s algo-

rithm [17], introduced to solve this problem, was motivated by its application in the design of processors.

Later, Bhasker and Samad [3] proposed two other algorithms. They also derived the upper bound on the

number of cliques in a partition and showed that there exists a partition containing a maximal clique of

the graph. A problem closely related to clique-partition is the vertex coloring problem, which requires

to color the vertices of a graph in such a way that two adjacent vertices have different colors. In fact,

a clique-partitioning problem of a graph is equivalent to the coloring problem of its complement graph.

Both problems are NP-complete [9].

We write N for the set of natural numbers starting from 1, and N
∗ for the monoid of finite sequences

of numbers from N with the operation of sequence concatenation and neutral element ε . If n ∈ N we

assume that [n] is the set of natural numbers k such that 1 ≤ k ≤ n.

From now on we assume that G = (V,E) is an undirected graph for which we know:

1. An enumeration cfg0 := [C1, . . . ,Cm] of all maximal cliques of G. We denote the maximal cliques

of G with identifiers with an overbar. The value m indicates the number of maximal cliques of

graph G.

2. For every vertex v ∈V and set of nodes C ⊆V we define:

• cliques(v) := {i | v ∈Ci}, and d(v) := |cliques(v)|,

• cliques(C) :=
⋂

v∈C cliques(v) for every set of nodes C ⊆V .

3. An enumeration S := [v1, . . . ,vs] of all nodes v ∈V with d(v) > 1.

4. Rgd := {k ∈ [m] | there is a vertex v ∈V with cliques(v) = {k}}.

cliques(v) is the set of indices of maximal cliques where node v belongs, and cliques(C) is the set

of indices of maximal cliques which contain C. Thus, a nonempty set of nodes C is not a clique iff

cliques(C) = /0. The nodes v ∈ S are those that belong to more than one maximal clique. To transform

the maximal clique cover {C1, . . . ,Cm} into a clique partition, we must assign every node v ∈ S to belong

to only one clique. To formalize this process, we introduce a couple of auxiliary notions.

A configuration is an enumeration [C1, . . . ,Cm] of empty sets or cliques of G, such that
⋃m

k=1Ck =V

and Ci ⊆ Ci for all 1 ≤ i ≤ m. In particular, cfg0 = [C1, . . . ,Cm] is a configuration. Every configuration

cfg = [C1, . . . ,Cm] represents a clique cover denoted by

repr(cfg) := {Ci | 1 ≤ i ≤ m and Ci 6= /0}.

We distinguish two sets of configurations of interest: the set Πcp(G) of configurations cfg for which

repr(cfg) is a clique partition of G; and the set Πmcp(G) is the set of configurations cfg for which repr(cfg)
is a maximal clique partition of G.
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Lemma 1. Every maximal clique-partition of G is represented by a configuration in Πmcp(G).

Proof. Let P be a maximal clique-partition of G. Then for every C ∈ P there exists a maximal clique

ϕ(C) such that C ⊆ ϕ(C). If C1,C2 ∈ P and ϕ(C1) = ϕ(C2) then C1 ∪C2 ⊆ ϕ(C1) is a clique, and the

maximality of P implies C1 =C2. Thus ϕ is injective and we can define cfg = [C1, . . . ,Cm] by

Ck :=

{

C if C ∈ P and ϕ(C) =Ck,

/0 otherwise

for all k ∈ [m]. Then repr(cfg) = P because ϕ is injective. Thus cfg ∈ Πmcp(G).

For every node v ∈V we define the relation [C1, . . . ,Cm]→(v,i) [C
′
1, . . . ,C

′
m] to hold if v ∈Ci for some

1 ≤ i ≤ m, C′
i = Ci and C′

j = C j −{v} for all j ∈ [m]−{i}. This relation corresponds to the decision to

assign node vi to the i-th clique of the configuration.

2.1 The search space T
S(G)

It is easy to see that, if S = [v1,v2, . . . ,vs] and i1 ∈ cliques(v1), i2 ∈ cliques(v2), . . . , is ∈ cliques(vs) then

cfg0 = [C0, . . . ,Cm]→(v1,i1) cfg1 →(v2,i2) . . .→(vs,is) cfgs is a sequence of decision steps that ends with a

configuration whose representation is a partition of G.

We let TS(G) be the tree with root cfg0 and edges cfg →(v,i) cfg′ which correspond to the decision to

keep the shared node v ∈ S in the i-th component of the configuration. We will use T
S(G) as the search

space for maximal clique-partitions, and let Leaf (TS(G)) be the set of leaf configurations in T
S(G).

Example 1. The simple graph G: x4

x5

x1

x2

x6x3

has four maximal cliques: C1 = {x1,x2,x3}, C2 = {x1,x4}, C3 = {x4,x5}, C3 = {x4,x6} and two nodes

shared among maximal cliques: S= [v1,v2] where v1 = x4, v2 = x1. In this example we have cliques(x1)=
{1,2}, cliques(x2) = {2,3,4}. The exhaustive search space for maximal clique partitions is the tree

T
S(G) depicted below:

[C1,C2,C3,C4]

[C1,{x4},C3,C4]

cfg1 cfg2 cfg3 cfg4 cfg5 cfg6

[{x2,x3},C2,C3,C4]

(x1
,2
)

(x1,3)

(x
1 ,4) (x1

,2
)

(x1,3)

(x
1 ,4)

(x
4 ,2)(x4,

1)

where the leaf configurations are

cfg1 = [C1,{x4},{x5},{x6}] with repr(cfg1) = {C1,{x4},{x5},{x6}}.

cfg2 = [C1, /0,C3,{x6}] with repr(cfg2) = {C1,C3,{x6}}.

cfg3 = [C1, /0,{x5},C4] with repr(cfg3) = {C1,{x5},C4}.

cfg4 = [{x2,x3},C2,{x5},{x6}] with repr(cfg4) = {{x2,x3},C2,{x5},{x6}}.

cfg5 = [{x2,x3},{x1},C3,{x6}] with repr(cfg5) = {{x2,x3},{x1},C3,{x6}}.

cfg6 = [{x2,x3},{x1},{x5},C4] with repr(cfg6) = {{x2,x3},{x1},{x5},C4}.
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Only the final configurations cfg2,cfg3,cfg4 represent maximal clique-partitions of G:

P1 = {C1,C3,{x6}}= repr(cfg2),
P2 = {C1,{x5},C4}= repr(cfg3), and

P3 = {{x2,x3},C2,{x5},{x6}}= repr(cfg4).
The other final configurations in T

S(G) represent non-maximal clique-partitions of G.

2.1.1 Properties of the search space T
S(G)

The following are immediate consequences of the definition: if S = [v1,v2, . . . ,vs] is the list of nodes

shared among the maximal cliques of G then

1. T
S(G) has depth s, and all its leaf configurations occur at depth s.

2. Every internal configuration at depth ℓ < s in T
S(G) has d(vℓ) children.

For every configuration cfg in T
S(G) there is a unique path

cfg0 →(v1,i1) cfg1 →(v2,i2) . . .→(vℓ,iℓ) cfg

from the root configuration to cfg. We let δ (cfg) := [i1, . . . , iℓ] be the sequence of assignment decisions

made for the shared nodes v1, . . . ,vℓ ∈ S.

Lemma 2. If cfg ∈ T
S(G) with δ (cfg) = [i1, . . . , iℓ] then all descendants [C1, . . . ,Cm] of cfg in T

S(G),
including cfg, have Ci 6= /0 for every i ∈ Rgd∪{i1, . . . , iℓ}.

Proof. If i = ip ∈ {i1, . . . , il} then the shared node vp ∈ S was assigned to the clique with index i, thus

Ci 6= /0 because vp ∈Ci. If i ∈ Rgd then Ci has a node v with cliques(v) = {i}. Node v persists in the i-th

component of all configurations in T
S(G). In particular, Ci 6= /0 because c ∈Ci.

Lemma 3. Πmcp(G)⊆ Leaf (TS(G)).

Proof. Let C = [C1, . . . ,Cm] ∈ Πmcp(G). For every v ∈ S, there is a unique κ(v) ∈ [m] such that v ∈Cκ(v).

Then cfg0 →(v1,κ(v1)) cfg1 →(v2,κ(v2)) . . .→(vs,κ(vs)) cfgs is a valid sequence of decision steps. Moreover,

cfgs is a final configuration in T
S(G) and repr(cfgs) = P .

Corollary 1. Every maximal clique-partition is represented by a configuration in T
S(G).

Proof. Immediate consequence of Lemmas 1 and 3.

From these preliminary results, we derive the following algorithm to find all clique-partitions of G:

we traverse systematically (e.g., in a depth-first manner) the search space T
S(G), and for every final

configuration cfg in T
S(G) we check if repr(cfg) is a maximal clique-partition of G. This method has the

following drawbacks:

1. The search space can be huge, with many final configurations for non-maximal clique-partitions.

For instance, in Example 1, the final configurations cfg1, cfg6 and cfg6 represent non-maximal

clique partitions.

2. Some maximal clique-partitions may be represented by more than one final configuration.

We wish to prune the search space as much as possible, to eliminate the computation of configurations

for non-maximal clique-partitions, and to ensure the computation of exactly one configuration for every

maximal clique-partition.
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3 Avoiding the computation of nonmaximal clique-partitions

A final configuration [C1, . . . ,Cm] does not represent a maximal clique-partition if there exist 1 ≤ i 6= j ≤
m such that Ci 6= /0 6=C j and Ci ∪C j is a clique. Therefore, it is useful to detect and stop searching below

nodes of TS(G) from where we reach only such final configurations.

Definition 1. We say that a configuration cfg = [C1, . . . ,Cm] ∈ T
S(G) with δ (cfg) = [i1, . . . , iℓ] is a T 1-

node, or that it has property T 1, if either

(a) cliques(Ca)∩Rgd 6= /0 for some clique index a ∈ {i1, . . . , iℓ}−Rgd, or

(b) cliques(Ca)∩ cliques(Cb) 6= /0 for distinct clique indices a,b ∈ {i1, . . . , iℓ}.

We let TS
!(T1)

(G) be the result of pruning from T
S(G) all subtrees whose root is a T 1-node.

Proposition 1. If cfg is a T 1-node of TS(G) then there is no final configuration [C1, . . . ,Cm] below or

equal to cfg such that repr(cfg) is a maximal clique-partition.

Proof. Let [C1, . . . ,Cm] be a final configuration below or equal to cfg in T
S(G).

(a) If cliques(Ca)∩Rgd 6= /0 for some clique index a∈{i1, . . . , iℓ}−Rgd then Ca 6= /0 by Lemma 2, and

there exists b ∈ Rgd such that Ca ⊆Cb. In this case we have: (1) b 6= a because b ∈ Rgd and a 6∈ Rgd; (b)

Cb 6= /0 by Lemma 2; and (3) Ca ∪Cb is a clique included in Cb because Ca ⊆Cb and Cb ⊆Cb. Therefore,

P is not a maximal clique-partition.

(b) If cliques(Ca)∩ cliques(Cb) 6= /0 for distinct a,b ∈ {i1, . . . , iℓ} then Ca 6= /0 6=Cb by Lemma 2, and

there exists p ∈ cliques(Ca)∩ cliques(Cb) such that Ca ⊆ Cp and Cb ⊆ Cp. Thus Ca ∪Cb ⊆ Cp, hence

Ca ∪Cb is a clique and P is not maximal clique-partition.

Corollary 2. Leaf (TS
!(T1)

(G)) = Πmcp(G).

Proof. Immediate consequence of Lemma 3, Proposition 1 and the obvious observation that every cfg ∈
T

S(G) with repr(cfg) non-maximal is not in T
S
!(T1)(G) because it is a T 1-node.

Example 2. An enumeration of the maximal cliques of the undirected graph G:

1
2

3
4

5

6
7

is cfg0 := [C1,C2,C3,C4] where C1 = {1,2,3}, C2 = {2,3,4}, C3 = {4,5,6}, C4 = {5,6,7}. Then

d[1] = d[7] = 1 and d[v] = 2 for all vertices v ∈ {2,3,4,5,6}. Therefore Rgd = {1,4} and we can

choose S = [2,3,4,5,6]. The tree T
S(G) has ∑5

i=1 ∏i
j=1 2 = 62 non-root configurations and 25 = 32 fi-

nal configurations, whereas T
S
!(T1)(G) has 25 non-root configurations, as shown in Fig. 1. The final

configurations in T
S
!(T1)(G) are cfg1,cfg2,cfg3,cfg4,cfg5,cfg7,cfg9,cfg11, and

repr(cfg1) = repr(cfg5) = {{1,2,3},{4,5,6},{7}}, repr(cfg2) = {{1,2,3},{4,5,6},{7}},
repr(cfg3) = {{1,2,3},{4,5},{6,7}}, repr(cfg4) = {{1,2,3},{4,6},{5,7}},
repr(cfg7) = {{1,2},{3,4},{5,6,7}}, repr(cfg9) = {{1,3},{2,4},{5,6,7}},

repr(cfg11) = {{1},{2,3,4},{5,6,7}}.
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[C1,C2,C3,C4]

[C1,{3,4},C3,C4]

[C1,{4},C3,C4]

[C1, /0,C3,C4]

[C1, /0,C3,{6,7}] [C1, /0,{4,6},C4]

cfg4 cfg5

(6,3) (6,4)

cfg2 cfg3

(4,3)

(5,3) (5,4)

(6,3) (6,4)

[C1,{4},{5,6},C4]

[C1,{4},{6},C4]

cfg1

(6,4)

[{1,2},{3,4},C3,C4]

[{1,2},{3,4},{5,6},C4]

[{1,2},{3,4},{6},C4]

cfg7

(6,4)

(5,4)

(4,2)

[{1,3},C2,C3,C4]

[{1,3},{2,4},C3,C4]

[{1,3},{2,4},{5,6},C4]

[{1,3},{2,4},{6},C4]

cfg9

(6,4)

(5,4)

(4,2)

[{1},C2,C3,C4]

[{1},C2,{5,6},C4]

[{1},C2,{6},C4]

cfg11

(5,4)

(6,4)

(4,2)

(3,1) (3,2)

(2,1
)

(3,1
)

(4,2)

(5,4)

(3,2)

(2,2)

where cfg1 = [C1,{4}, /0,C4], cfg2 = [C1, /0,C3,{7}], cfg3 = [C1, /0,{4,5},{6,7}], cfg4 =
[C1, /0,{4,6},{5,7}], cfg5 = [C1, /0,{4},C4], cfg6 = [{1,2},{3},C3,C4], cfg7 = [{1,2},{3,4}, /0,C4], cfg8 =
{{1,3},{2},C3, ,C4}, cfg9 = [{1,3},{2,4}, /0,C4], cfg10 = [{1},{2,3},C3,C4], cfg11 = [{1},C2, /0,C4].

Figure 1: Search tree T
S
1(G) for the undirected graph from Example 2.

4 Avoiding repeated computations of the same maximal clique-partition

In Example 2, the final configurations cfg1 := [C1,{4}, /0,C4] and cfg5 := [C1, /0,{4},C4] represent the same

maximal clique-partition: repr(cfg1) = repr(cfg5) = {{1,2,3},{4},{5,6,7}}. Thus, there are situations

when the search space T
S
!(T1)(G) has the following undesirable feature: different final configurations

represents the same maximal clique-partition. This implies that some computations are redundant: some

maximal clique-partitions will be generated more than once.

Note that, in Example 2, the configurations cfg1 and cfg5 which represent the same maximal clique-

partition P = {C1,{4},C4} have the following property: cfg1 = [C1, . . . ,Cm], cfg5 = [C′
1, . . . ,C

′
m] and

there exist 1 ≤ j 6= i ≤ m such that Ci =C′
j 6= /0 and C′

i = /0 =C j. The following lemma indicates that this

is a general property of configurations which represent the same maximal clique-partition:

Lemma 4. If the distinct final configurations cfg = [C1, . . . ,Cm],cfg′ = [C′
1, . . . ,C

′
m] in T

S
!(T1)(G) have

repr(cfg) = repr(cfg′) then there exist 1 ≤ j 6= i ≤ m such that Ci =C′
j 6= /0 and C′

i =C j = /0.

Proof. Let I := {k | 1 ≤ k ≤ m and Ck 6= /0}. Then repr(cfg) = {Ck | k ∈ I}. Moreover,

• repr(cfg) = repr(cfg′) implies the existence of a permutation π : {1, . . . ,m}→ {1, . . . ,m} such that

C′
k =Cπ(k) for all k ∈ [m],

• cfg 6= cfg′ implies the existence of i ∈ I such that Ci 6=C′
i . This implies i 6= π(i).

Let j = π−1(i). Then j 6= i and Ci =Cπ( j) =C′
j. Since i ∈ I, we have Ci =C′

j 6= /0.

Note that j 6= π( j) because j = π( j) implies j = π(π−1(i)) = i, contradiction.

It remains to prove that C′
i =C j = /0. From /0 6=Ci ⊆Ci and Cπ(i) =C′

i ⊆Ci we learn that Ci ∪Cπ(i) is

a clique included in Ci. We must have C′
i =Cπ(i) = /0 because otherwise Ci and Cπ(i) would be different

cliques of repr(cfg) with C j ∪Cπ( j) a clique, which contradicts the assumption that repr(cfg) is maximal

clique-partition.

From /0 6=C′
j =Cπ( j) ⊆C j and C j ⊆C j we learn that Cπ( j)∪C j is a clique included in C j. We must

have C j = /0 because otherwise C j and Cπ( j) would be different cliques of repr(cfg) with C j ∪Cπ( j) a

clique, which contradicts the assumption that repr(cfg) is maximal clique-partition.
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Lemma 4 allows us to define a criterion to eliminate from T
S
!(T1)(G) the redundant computations of

maximal clique-partitions.

Definition 2. We say that configuration cfg = [C1, . . . ,Cm] ∈ T
S
!(T1)(G) with δ (cfg) = [i1, . . . , iℓ] is a

T 2-node, or that it has property T 2, if there exist 1 ≤ j < i ≤ m such that j ∈ {i1, . . . , iℓ}−Rgd and

i ∈ cliques(C j). We let TS
!(T1,T2)

(G) be be the result of pruning from T
S
!(T1)(G) all subtrees whose root is

a T 2-node.

From now on we write Leaf (T!(T1,T 2)
S(G)) for the set of configurations in T

S
!(T1,T 2)(G) at depth s.

If we let Π!
mcp(G) be the set of configurations [C1, . . . ,Cm] from Πmcp(G) such that

for all 1 ≤ j < i ≤ m, if C j 6= /0 then i 6∈ cliques(C j)

then the following lemmas hold:

Lemma 5. For every maximal clique-partition P of G there is exactly one configuration cfg ∈ Π!
mcp(G)

with repr(cfg) = P .

Proof. For every configuration cfg = [C1, . . . ,Cm] ∈ Leaf (TS
!(T 1)(G)) we define the measure

m(cfg) := ∑
1≤i≤m
Ci= /0

i.

First, we prove that Π!
mcp(G) has at least one configuration whose representation is P . By Lemma 1,

there exists cfg′0 = [C1, . . . ,Cm] ∈ Πmcp(G) with repr(cfg) = P . If cfg ∈ Π!
mcp(G) then we are done.

Otherwise there exists 1 ≤ j < i ≤ m such that /0 6=C j ⊆Ci. Then Ci = /0 because otherwise Ci,C j would

be different components of P with Ci ∪C j ⊆ Ci and this contradicts the assumption that the clique-

partition P is maximal. Thus, we can define the configuration cfg′1 = [C′
1, . . . ,C

′
m] ∈ Πmcp(G) with

C′
k :=







C j if k = i,

/0 if k = j,

Ck otherwise

If follows that m(cfg′0)−m(cfg′1) = i− j > 0. In this way we can build a sequence of configurations

cfg′0,cfg′1, . . . ∈ Πmcp(G) with P = repr(cfg′0) = repr(cfg′1) = . . . and m(cfg′0)> m(cfg′1)> .. . Since the

ordering > on natural numbers is well-founded, this construction will eventually end with a configuration

cfg′p ∈Π!
mcp(G) and repr(cfg′p) =P . Hence Π!

mcp(G) has at least one configuration whose representation

is P .

It remains to show that there are no two configurations cfg = [C1, . . . ,Cm],cfg′ = [C′
1, . . . ,C

′
m] ∈

Π!
mcp(G) with repr(cfg) = repr(cfg′). If this were the case then, by Lemma 4, there exist 1 ≤ j 6= i ≤ m

such that Ci = C′
j 6= /0 and C′

i = C j = /0. If j < i then /0 6= C′
j = Ci ⊆ Ci, which contradicts the as-

sumption that cfg′ ∈ Π!
mcp(G). If j > i then /0 6= Ci = C′

j ⊆ C j, which contradicts the assumption that

cfg ∈ Π!
mcp(G).

Lemma 6. Leaf (TS
!(T 1,T 2)(G)) = Π!

mcp(G).

Proof. First, we prove that Leaf (TS
!(T 1,T2)(G))⊆ Π!

mcp(G). Let cfg = [C1, . . . ,Cm] ∈ Leaf (TS
!(T1,T 2)(G))

with δ (cfg) = [i1, . . . , is]. Since Leaf (TS
!(T 1,T 2)(G)) ⊆ Leaf (TS

!(T1)(G)) = Πmcp(G), we only have to

show that, for all 1 ≤ j < i ≤ m, if C j 6= /0 then i 6∈ cliques(C j). If this were not the case, then there exist
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j ∈ {i1, . . . , is}∪Rgd and j < i ≤ m such that i ∈ cliques(C j). We observe that j 6∈ Rgd because otherwise

cliques(C j) = { j}, which contradicts the assumption i∈ cliques(C j). This implies that [C1, . . . ,Cm] is T 2-

node of TS
!(T1)(G), which contradicts the assumption that [C1, . . . ,Cm] ∈ Leaf (TS

!(T1,T 2)(G)).

To finish the proof, we must show that Π!
mcp(G)⊆ Leaf (TS

!(T1,T 2)(G)). Since

Π!
mcp(G)⊆ Πmcp(G) = Leaf (TS

!(T1)(G)),

it is sufficient to prove that every configuration cfg∈Πmcp(G)−Π!
mcp(G) is below a T 2-node of TS

!(T1)(G).

Let cfg = [C1, . . . ,Cm] with δ (cfg) = [i1, . . . , is]. Then there exist 1 ≤ j < i < m such that /0 6= C j ⊆ Ci.

We observe that j 6∈ Rgd because otherwise the only maximal clique which contains C j is C j. Therefore

we must have j ∈ {i1, . . . , is}−Rgd. This implies that cfg is T 2-node.

The following corollary is an immediate consequence of the previous two lemmas.

Corollary 3. Every maximal clique-partition is produced by a single configuration from Leaf (TS
!(T1,T 2)(G)).

Example 3. The tree T
S
!(T1,T 2)(G) for the graph G from Example 2 is shown in Figure 2.

[C1,{4},{5,6},C4] ∈ T
S
!(T1)(G) is a T 2-node because it is of the form [C1,C2,C3,C4] and there exist

j = 2 < 3 = i such that j ∈ {2,3} −Rgd and C2 ⊆ C3. Compared to T
S
!(T1)(G), the total number of

non-root nodes in T
S
!(T1,T 2)(G) has dropped from 25 to 22, and

Leaf (TS
!(T1,T 2)(G)) = Π!

mcp(G) = {cfg2,cfg3,cfg4,cfg5,cfg7,cfg9,cfg11}.

Every maximal clique-partition is produced by a single final configuration in T
S
!(T1,T 2)(G)):

repr(cfg2) = {{1,2,3},{4,5,6},{7}}, repr(cfg3) = {{1,2,3},{4,5},{6,7}},
repr(cfg4) = {{1,2,3},{4,6},{5,7}}, repr(cfg5) = {{1,2,3},{4,5,6},{7}},
repr(cfg7) = {{1,2},{3,4},{5,6,7}}, repr(cfg9) = {{1,3},{2,4},{5,6,7}},

repr(cfg11) = {{1},{2,3,4},{5,6,7}}.

5 The combined detection of T 1-nodes and T 2-nodes

Let cfg →(vℓ,iℓ) cfg′ be a branch of TS
!(T1,T 2)(G), and δ (cfg′) = [i1, . . . , iℓ]. The only visible change from

cfg to cfg′ is that of the components with indices from the set cliques(vℓ)−{iℓ}. When we are about

to check if cfg′ has property T 1 or T 2, we know that cfg does not have property T 1 or T 2 because it

has already passed this test. Therefore, it is sufficient to consider only the set of clique indices Jℓ :=
cliques(vℓ)∩Iℓ where Iℓ := {i1, . . . , iℓ}−Rgd, and to check if cfg′ is a configuration [C1, . . . ,Cm] which

satisfies one of the following conditions for some j ∈ Jℓ:

1. (a) C j ⊆Ci for an i ∈ Rgd (in this case cfg′ is T 1-node), or (b) i > j (in this case cfg′ is T 2-node);

or

2. there exists i ∈ Iℓ−{ j} such that Ci ∪C j is a clique. In this case cfg′ is T 1-node.

Condition 1.(a) is equivalent with cliques(C j)∩Rgd 6= /0, and condition 2 is equivalent with cliques(Ci)∩
cliques(C j) 6= /0.
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[C1,C2,C3,C4]

[C1,{3,4},C3,C4]

[C1,{4},C3,C4]

[C1, /0,C3,C4]

[C1, /0,C3,{6,7}] [C1, /0,{4,6},C4]

cfg4 cfg5

(6,3) (6,4)

cfg2 cfg3

(4,3)

(5,3) (5,4)

(6,3) (6,4)

[{1,2},{3,4},C3,C4]

[{1,2},{3,4},{5,6},C4]

[{1,2},{3,4},{6},C4]

cfg7

(6,4)

(5,4)

(4,2)

[{1,3},C2,C3,C4]

[{1,3},{2,4},C3,C4]

[{1,3},{2,4},{5,6},C4]

[{1,3},{2,4},{6},C4]

cfg9

(6,4)

(5,4)

(4,2)

[{1},C2,C3,C4]

[{1},C2,{5,6},C4]

[{1},C2,{6},C4]

cfg11

(4,2)

(5,4)

(6,4)

(3,1) (3,2)

(2,1
)

(3,1) (3,2)

(2,2)

The configurations cfgi for 2 ≤ i ≤ 11 are the same as those from Figure 1.

Figure 2: The search tree T
S
!(T1,T 2)(G) for the graph from Example 2.

6 Enumerating all maximal clique-partitions

In this section we describe an algorithm to compute the maximal clique-partitions one-by-one, on request.

The following global data is assumed to be available:

• C1, . . . ,Cm: the maximal cliques of G

• cliques(v) = {k ∈ [m] | v ∈Ck} for all v ∈V

• Rgd = {k | cliques(v) = {k} for some v ∈V}

• S = [v1, . . . ,vs]: an enumeration of all vertices v ∈V with d(v)> 1

During the computation we will keep track of the following information:

• ℓ: the depth of the search in tree T
S
!(T1,T 2)(G)

• cfg[ℓ]: the current configuration of the search in tree T
S
!(T1,T 2)(G)

• choice[i] for 1 ≤ i ≤ ℓ: the index of the clique where vertex vi ∈ S is assigned. If choice[i] == 0

then vertex vi was not yet been assigned to any clique.

PROCEDURE initSearch()

cfg[1] := [C1, . . . ,Cm];
ℓ := 1;

for i := 1 to s do

choice[i] := 0;

findNextClique();

PROCEDURE hasNext()

return cfg[1] 6= null

PROCEDURE next()

if (cfg[1] == null) return null;
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else

result := repr(cfg[ℓ]);
findNextClique();

return result;

PROCEDURE findNextClique()

if s > 0

while ℓ≥ 1

Vℓ := {k ∈ cliques(vℓ) | k > choice[ℓ] and (k ∈ Rgd or cliques(Ck)∩Rgd = /0)};

if Vℓ is empty

choice[ℓ] := 0;

ℓ := ℓ−1;

else

i := minVℓ;

// keep vℓ only in clique with index i

choice[ℓ] := i;

cfg[ℓ] := [C′
1, . . . ,C

′
m] where C′

k :=

{

Ck −{vℓ} if k ∈ cliques(vℓ)−{i},
Ck otherwise

if (isT1OrT2(cfg[ℓ])) continue;

else

if (ℓ== s)
return; // maximal clique-partition detected

else

cfg[ℓ+1] := cfg[ℓ];
ℓ := ℓ+1;

cfg[1] := null;

PROCEDURE isT1orT2([C1, . . . ,Cm])
I := {choice[k] | 1 ≤ k ≤ ℓ}−Rgd;

J := I ∩ cliques(vℓ);
for all j ∈ J

if cliques(C j)∩Rgd 6= /0 or cliques(C j)∩{i | j < i ≤ m} 6= /0

return true;

for all i ∈ I

if i ∈ J

if ( j < i) and cliques(Ci)∩ cliques(C j) 6= /0

return true;

else if cliques(Ci)∩ cliques(C j) 6= /0

return true;

return false;

7 Complexity

Theorem 1. If the set of vertices of G is {v1, . . . ,vn} then the number of maximal clique-partitions of G

is at most ∏n
i=1 d(vi).
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Proof. The result directly follows from the facts that (1) every maximal clique-partition is produced by

some final configuration of TS(G), and (2) TS(G) has ∏n
i=1 d(vi) final configurations.

It is easy to see that this upper bound can be reached. Just consider the graph with two maximal

cliques: C1 = {p1, . . . , pn, true} and C2 = {p1, . . . , pn, false}. The set of all maximal clique-partitions

imitates the truth assignment in propositional logic, containing 2n maximal clique-partitions.

This theorem implies that the algorithm is exponential in the number of vertices shared among mul-

tiple cliques. On the other hand, the length of each branch of the algorithm is polynomially bounded,

since it requires at most as many steps as there are vertices shared among maximal cliques. Therefore,

every single maximal clique-partition can be computed in polynomial time.

Experimental results To test the performance of our algorithm, we implemented it in Java and Mathe-

matica [18], and ran it on a MacBook Air M2 with 8-core CPU and 8 GB RAM. We indicate the runtimes

to enumerate all maximal clique-partitions of some graphs from the following families:

1. Gn, n ≥ 2, obtained by extending the complete graph Kn with n new vertices, and connecting every

vertex of Kn with a distinct new vertex. Examples of graphs Gn are:

•

•

•

•

G2 : G3 : •

•

•

•

•

•

G4 :

•

••

•

•

••

•

G5 : •

•
•

•
•

•

•

•

•

•

Number of Number of maximal

Graph Order vertices in S clique-partitions Runtime

G4 8 4 12 0.002

G5 10 5 27 0.003

G6 12 6 58 0.005

G7 14 7 121 0.007

G8 16 8 248 0.012

G10 20 10 1014 0.270

G20 40 20 1048556 2.462

G25 50 25 33554407 61.706

2. Hn of order 4n (n ≥ 2), with three maximal cliques of order 2n: two are mutually disjoint, and the

third one shares n vertices with each of the other two maximal cliques. For example:

• • • •

• • • •

H2 : •

••

•

• •

•

•

•

•

•

•

H3 :

H4:
0

1

2

3

8

9

10

11

12 13

1415

4 5

67
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Number of Number of maximal

Graph Order vertices in S clique-partitions Runtime

H4 16 8 226 0.018

H5 20 10 962 0.028

H6 24 12 3970 0.057

H7 28 14 16130 0.122

H8 32 16 65026 0.241

H9 36 18 261122 0.723

H10 40 20 1046530 2.280

H11 44 22 2094082 3.944

3. Graphs Gm,n with set of vertices V = {v1,v2, . . . ,vm+n−1} and n maximal cliques C1, . . . ,Cn such

that Ci = {v j | i ≤ j < i+m} for all 1 ≤ i ≤ n. Examples of graphs Gm,n are:

1

0 2

G3,2:

3 1

0 2

G3,3:

3

4

1

0 2

G3,4:

3 5

4

0

2

3

4
1

G4,2:

0

2

3

4
1

5

G4,3:

0

2

3

5

6
4

1
G4,4:

0

2

3

5

6
74

1
G4,5:

G5,2 :

0

1

2

3

4

5

G5,3 :
0

1

2

3

4

5

6

G5,4 :
0

1

2

3

4

5

6

7

Number of Number of maximal

Graph Order vertices in S clique-partitions Runtime

G3,2 4 2 4 0.001

G3,3 5 3 5 0.001

G3,4 6 4 7 0.002

G4,5 8 6 33 0.008

G5,3 7 5 35 0.003

G5,4 8 6 65 0.006

G5,5 9 7 114 0.015

G5,6 10 8 200 0.031

G6,6 11 9 781 0.037

G7,5 11 9 1488 0.032

G7,6 12 10 3135 0.082

G8,6 13 11 12913 0.173

G9,6 14 12 54495 0.408

G11,9 19 17 20899403 121.135

G12,8 19 17 40778092 202.608

The Mathematica implementation is slightly slower, but it enables a graphical visualization of the com-

puted results. Some test examples can be seen online at

staff.fmi.uvt.ro/~mircea.marin/software/MCP.html

https://staff.fmi.uvt.ro/~mircea.marin/software/MCP.html
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8 Conclusion

We developed an algorithm for computing all maximal clique-partitions in an undirected graph. The

algorithm starts from the maximal clique cover of the graph and revises it, reducing the number of ver-

tices shared among cliques by assigning them to one of the cliques they belong to. In this process, we

avoid the computation of undesirable answers by detecting and discarding the search states which pro-

duce only non-maximal clique-partitions or duplicate answers. Our algorithm is optimal in the following

sense: it enumerates all maximal clique-partitions, and each of them is computed only once. The set of

computed partitions can be exponentially large with respect to the number of vertices shared among max-

imal cliques, but every answer can be computed in polynomial time (starting from all maximal cliques).

Besides, the computations of different maximal clique-partitions corresponds to the exploration of dif-

ferent branches of the search tree for solutions, and they can be carried out independently, in parallel

of each other. Our algorithm is iterative in the sense that it enumerates the computed answers one by

one, on demand. This is highly desirable because the total number of maximal clique-partitions can be

exponentially large and we may want to start analyzing and processing them as soon as possible.

In many practical applications, we are not interested to enumerate all maximal clique-partitions.

Often, our algorithm can be easily adjusted to reduce the search space and compute only the preferred

ones. For instance, we can impose the constraint to keep a group of vertices in the same clique by

assigning them simultaneously (whenever possible) to the same single clique originating from a maximal

clique of the graph.

References

[1] Hassan Aı̈t-Kaci & Gabriella Pasi (2020): Fuzzy lattice operations on first-order terms over signatures with

similar constructors: A constraint-based approach. Fuzzy Sets Syst. 391, pp. 1–46, doi:10.1016/j.fss.

2019.03.019.
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The substitution lemma is a renowned theorem within the realm of λ -calculus theory and concerns the
interactional behaviour of the metasubstitution operation. In this work, we augment the λ -calculus’s
grammar with an uninterpreted explicit substitution operator, which allows the use of our frame-
work for different calculi with explicit substitutions. Our primary contribution lies in verifying that,
despite these modifications, the substitution lemma continues to remain valid. This confirmation
was achieved using the Coq proof assistant. Our formalization methodology employs a nominal ap-
proach, which provides a direct implementation of the α-equivalence concept. The strategy involved
in variable renaming within the proofs presents a challenge, specially on ensuring an exploration of
the implications of our extension to the grammar of the λ -calculus.

1 Introduction

In this work, we present a formalization of the substitution lemma [5] in a general framework that extends
the λ -calculus with an explicit substitution operator using the Coq proof assistant [24]. The source code
is publicly available at

https://flaviomoura.info/files/msubst.v

The substitution lemma is an important result concerning the composition of the substitution opera-
tion, and is usually presented as follows in the context of the λ -calculus:

Let t,u and v be λ -terms, x 6= y and x /∈ FV (v), where FV (v) is the set of free variables of v.
Then {y := v}{x := u}t = {x := {y := v}u}{y := v}t.

This is a well known result already formalized in the context of the λ -calculus [7]. Nevertheless,
in the context of λ -calculi with explicit substitutions its formalization is not trivial due to the interac-
tion between the metasubstitution and the explicit substitution operator. Our formalization is done in
a nominal setting that uses the MetaLib1 package of Coq, but no particular explicit substitution calculi
is taken into account because the expected behaviour between the metasubstitution operation with the
explicit substitutition constructor is the same regardless the calculus. The formalization was done with
Coq (platform) version 8.15.2, which already comes with the Metalib package. The novel contributions
of this work are twofold:

1. The formalization is modular in the sense that no particular calculi with explicit substitutions
is taken into account. Therefore, we believe that this formalization could be seen as a generic
framework for proving properties of these calculi that uses the substitution lemma in the nominal
setting [16, 20, 21];

1https://github.com/plclub/metalib

http://dx.doi.org/10.4204/EPTCS.389.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://flaviomoura.info/files/msubst.v
https://github.com/plclub/metalib
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2. A solution to a circularity problem in the proofs is given. It adds an axiom to the formalization
that allow a rewrite step inside a let expression. Such a rewrite step is problematic and does not
seem to have a trivial solution.

2 A syntactic extension of the λ -calculus

In this section, we present the framework of the formalization, which is based on a nominal approach
[12] where variables use names. In the nominal setting, variables are represented by atoms that are
structureless entities with a decidable equality:

Parameter eq_dec : forall x y : atom, {x = y} + {x <> y}.

therefore different names mean different atoms and different variables. The nominal approach is close to
the usual paper and pencil notation used in λ -calculus, whose grammar of terms is given by:

t ::= x | λx.t | t t (1)

where x represents a variable which is taken from an enumerable set, λx.t is an abstraction, and t t is an
application. The abstraction is the only binding operator: in the expression λx.t, x binds in t, called the
scope of the abstraction. This means that all free occurrence of x in t is bound in λx.t. A variable that
is not in the scope of an abstraction is free. A variable in a term is either bound or free, but note that a
varible can occur both bound and free in a term, as in (λy.y) y.

The main rule of the λ -calculus, named β -reduction, is given by:

(λx.t) u →β {x := u}t (2)

where {x := u}t represents the result of substituting all free occurrences of variable x in t with u in
such a way that renaming of bound variable may be done in order to avoid the variable capture of free
variables. We call t the body of the metasubstitution, and u its argument. In other words, {x := u}t
is a metanotation for a capture free substitution. For instance, the λ -term (λxλy.x y) y has both bound
and free occurrences of the variable y, and in order to β -reduce it, one has to replace (or substitute) the
free variable y for all free occurrences of the variable x in the term (λy.x y). But a straight substitution
will capture the free variable y, i.e. this means that the free occurrence of y before the β -reduction will
become bound after the β -reduction step. A renaming of bound variables may be done to avoid such
a capture, so in this example, one can take an α-equivalent2 term, say (λz.x z), and perform the β -step
correctly as (λxλy.x y) y →β λz.y z. Renaming of variables in the nominal setting is done via a name-
swapping, which is formally defined as follows:

((x y))z :=


y, if z = x;
x, if z = y;
z, otherwise.

This notion can be extended to λ -terms in a straightfoward way:

(x y)t :=


((x y))z, if t = z;
λ((x y))z.(x y)t1, if t = λz.t1;
(x y)t1 (x y)t2, if t = t1 t2

(3)

2A formal definition of this notion will be given later in this section.
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In the previous example, one could apply a swap to avoid the variable capture in a way that, a swap
is applied to the body of the abstraction before applying the metasubstitution to it: (λxλy.x y) y →β {x :=
y}((y z)(λy.x y)) = {x := y}(λz.x z) = λz.y z. Could we have used a variable substitution instead of a
swapping in the previous example? Absolutely. We could have done the reduction as (λxλy.x y) y →β

{x := y}({y := z}(λy.x y)) = {x := y}(λz.x z) = λz.y z, but as we will shortly see, variable substitution is
not stable modulo α-equivalence, while the swapping is, thereby rendering it a more fitting choice when
operating with α-classes.

In what follows, we will adopt a mixed-notation approach, intertwining metanotation with the equiv-
alent Coq notation. This strategy aids in elucidating the proof steps of the upcoming lemmas, enabling
a clearer and more detailed comprehension of each stage in the argumentation. The corresponding Coq
code for the swapping of variables, named vswap, is defined as follows:

Definition vswap (x:atom) (y:atom) (z:atom) := if (z == x) then y else if (z == y) then x else z.

therefore, the swap ((x y))z is written in Coq as vswap x y z. As a short example to acquaint ourselves
with the Coq notation, let us show how we will write the proofs:

Lemma vswap id: ∀ x y, vswap x x y = y.
Proof. The proof is by case analysis, and it is straightforward in both cases, when x = y and x 6= y. �

2.1 An explicit substitution operator

The extension of the swap operation to terms require an additional comment because we will not work
with the grammar (1), but rather, we will extend it with an explicit substitution operator:

t ::= x | λx.t | t t | [x := u]t (4)

where [x := u]t represents a term with an operator that will be evaluated with specific rules of a sub-
stitution calculus. The intended meaning of the explicit substitution is that it will simulate the meta-
substitution. This formalization aims to be a generic framework applicable to any calculi with explicit
substitutions using a named notation for variables. Therefore, we will not specify rules about how one
can simulate the metasubstitution, but it is important to be aware that this is not a trivial task as one can
easily lose important properties of the original λ -calculus [18, 14].

Calculi with explicit substitutions are formalisms that deconstruct the metasubstitution operation
into finer-grained steps, thereby functioning as an intermediary between the λ -calculus and its practical
implementations. In other words, these calculi shed light on the execution models of higher-order lan-
guages. In fact, the development of a calculus with explicit substitutions faithful to the λ -calculus, in
the sense of the preservation of some desired properties were the main motivation for such a long list of
calculi with explicit substitutions invented in the last decades [1, 23, 6, 10, 19, 15, 8, 11, 17].

The following inductive definition corresponds to the grammar (4), where the explicit substitution
constructor, named n sub, has a special notation. Instead of writing n sub t x u, we will write [x := u] t
similarly to (4). Accordingly, n sexp denotes the set of nominal λ -expressions equipped with an explicit
substitution operator, which, for simplicity, we will refer to as just “terms”.

Inductive n sexp : Set :=
| n var (x:atom)
| n abs (x:atom) (t:n sexp)
| n app (t1:n sexp) (t2:n sexp)
| n sub (t1:n sexp) (x:atom) (t2:n sexp).
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The size of a term, also written as |t|, and the set fv nom of the free variables of a term are defined
as usual:

Fixpoint size (t : n sexp) : nat :=
match t with
| n var x ⇒ 1
| n abs x t ⇒ 1 + size t
| n app t1 t2 ⇒ 1 + size t1 + size t2
| n sub t1 x t2 ⇒ 1 + size t1 + size t2
end.

Fixpoint fv nom (t : n sexp) : atoms :=
match t with
| n var x ⇒ {{x}}
| n abs x t1 ⇒ remove x (fv nom t1)
| n app t1 t2 ⇒ fv nom t1 ‘union‘ fv nom t2
| n sub t1 x t2 ⇒ (remove x (fv nom t1)) ‘union‘ fv nom t2
end.

The action of a permutation on a term, written (x y)t, is inductively defined as in (3) with the addi-
tional case for the explicit substitution operator:

(x y)t :=


((x y))v, if t is the variable v;
λ((x y))z.(x y)t1, if t = λz.t1;
(x y)t1 (x y)t2, if t = t1 t2;
[((x y))z := (x y)t2](x y)t1, if t = [z := t2]t1.

The corresponding Coq definition is given by the following recursive function:

Fixpoint swap (x:atom) (y:atom) (t:n sexp) : n sexp :=
match t with
| n var z ⇒ n var (vswap x y z)
| n abs z t1 ⇒ n abs (vswap x y z) (swap x y t1)
| n app t1 t2 ⇒ n app (swap x y t1) (swap x y t2)
| n sub t1 z t2 ⇒ n sub (swap x y t1) (vswap x y z) (swap x y t2)
end.

The swap function has many interesting properties, but we will focus on the ones that are more
relevant to the proofs related to the substitution lemma. Nevertheless, all lemmas can be found in the
source code of the formalization3. The next lemmas are simple properties that are all proved by induction
on the structure of term t:

Lemma swap neq: ∀ x y z w, z 6= w → vswap x y z 6= vswap x y w.

Lemma swap size eq : ∀ x y t, size (swap x y t) = size t.

Lemma swap symmetric : ∀ t x y, swap x y t = swap y x t.

Lemma swap involutive : ∀ t x y, swap x y (swap x y t) = t.

3https://flaviomoura.info/files/msubst.v

https://flaviomoura.info/files/msubst.v
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Lemma shuffle swap : ∀ w y z t, w 6= z → y 6= z → (swap w y (swap y z t)) = (swap w z (swap w y t)).

Lemma swap equivariance : ∀ t x y z w, swap x y (swap z w t) = swap (vswap x y z) (vswap x y w) (swap
x y t).

Lemma fv nom swap : ∀ z y t, z ‘notin‘ fv nom t → y ‘notin‘ fv nom (swap y z t).

The standard proof strategy used so far is induction on the structure of terms. Nevertheless, the
builtin induction principle automatically generated in Coq for the inductive definition n sexp is not strong
enough due to swappings:

forall P :n_sexp -> Prop,

(forall x:atom, P(n_var x)) ->

(forall (x:atom) (t:n_sexp), P t -> P(n_abs x t)) ->

(forall t1:n_sexp, P t1 -> forall t2:n_sexp, P t2 -> P(n_app t1 t2)) ->

(forall t1:n_sexp, P t1 -> forall (x:atom) (t2:n_sexp), P t2 -> P([x:=t2]t1)) ->

forall t:n_sexp, P t

In fact, in general, the induction hypothesis in the abstraction case (resp. explicit substitution case)
refers to the body t of the abstraction (resp. t1 of the explicit substitution), while the goal involves a swap
acting on the body of the abstraction (resp. explicit substitution). In order to circunvet this problem, we
defined a customized induction principle based on the size of terms:

Lemma n sexp induction: ∀ P : n sexp → Prop, (∀ x, P (n var x)) →
(∀ t1 z, (∀ t2 x y, size t2 = size t1 → P (swap x y t2)) → P (n abs z t1)) →
(∀ t1 t2, P t1 → P t2 → P (n app t1 t2)) →
(∀ t1 t3 z, P t3 → (∀ t2 x y, size t2 = size t1 → P (swap x y t2)) → P (n sub t1 z t3)) → (∀ t, P t).

which states that in order to conclude that a certain property P holds for all terms, we need to prove that:

1. P must hold for any variable;

2. If P holds for the term (x y)t2, where t1 and t2 have the same size, then it also holds for the
abstraction λz.t1,∀x,y,z, t1 and t2;

3. If P holds for the terms t1 and t2 the it also holds for the application t1 t2;

4. If P holds for the term t3 and for the term (x y)t2, where t1 and t2 have the same size, then it also
holds for the explicit substitution [z := t3]t1,∀x,y,z, t1, t2 and t3.

The following lemma is a first example of the use of the n sexp induction principle:

Lemma notin fv nom equivariance: ∀ t x’ x y, x’ ‘notin‘ fv nom t → vswap x y x’ ‘notin‘ fv nom (swap
x y t).
Proof. Note that in the paper and pencil notation, this lemma states that:

If x′ /∈ f v nom(t) then ((x y))x′ /∈ f v nom((x y)t).

The proof is by induction on the size of the term t.

1. If t is a variable, say z, then x′ 6= z by hypothesis, and we need to prove that ((x y))x′ 6= ((x y))z. We
conclude by lemma swap neq.
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2. If is an abstraction, say t = λz.t1, then we have by induction hypothesis that if x′ /∈ (x y)t2 then
((x0 y0))x′ /∈ (x0 y0)(x y)t2 for any term t2 with the same size as t1, and any variables x,y,x0 and
y0. At this point is important to notice that an structural induction would generate an induction
hypothesis with t1 only, which is not strong enough to prove the goal ((x y))x′ /∈ f v nom((x y)λz.t1)
that has (x y)t1 (and not t1 alone!) after the propagation of the swap. In addition, we have by
hypothesis that x′ /∈ f v nom(t1)\{z}. This means that either x′ = z or x′ /∈ f v nom(t1), and there
are two subcases:

(a) If x′ = z then the goal is ((x y))z /∈ f v nom((x y)λz.t1)⇔ ((x y))z /∈ f v nom(λ((x y))z.(x y)t1)⇔
((x y))z /∈ f v nom((x y)t1)\{((x y))z} we are done by lemma notin remove 3.4

(b) Otherwise, x′ /∈ f v nom(t1), and we conclude using the induction hypothesis taking x0 = x,
y0 = y and the universally quantified variables x and y of the internal swap as the same
variable (it does not matter which one).

3. The application case is straightforward from the induction hypothesis.

4. The case of the explicit substitution, i.e. when t = [z := t2]t1, we have to prove that ((x y))x′ /∈
f v nom((x y)([z := t2]t1)). We then propagate the swap over the explicit substitution operator and
show, by the definition of f v nom, we have to prove that both ((x y))x′ /∈ ( f v nom((x y)t1))\{((x y))z}
and ((x y))x′ /∈ f v nom((x y)t2).

(a) In the former case, the hypothesis x′ /∈ f v nom(t1)\{z} generates two subcases, either x′ = z
or x′ /∈ f v nom(t1), and we conclude with the same strategy of the abstraction case.

(b) The later case is straightforward by the induction hypothesis. �

The other direction is also true, but we skip the proof that is also by induction on the size of term t:

Lemma notin fv nom remove swap: ∀ t x’ x y, vswap x y x’ ‘notin‘ fv nom (swap x y t) → x’ ‘notin‘
fv nom t.

2.2 α-equivalence

As usual in the standard presentations of the λ -calculus, we work with terms modulo α-equivalence.
This means that λ -terms are identified up to renaming of bound variables. For instance, all terms λx.x,
λy.y and λz.z are seen as the same term which corresponds to the identity function. Formally, the notion
of α-equivalence is defined by the following inference rules:

x =α x
(aeq var)

t1 =α t2
λx.t1 =α λx.t2

(aeq abs same)

x 6= y x /∈ f v(t2) t1 =α (y x)t2
λx.t1 =α λy.t2

(aeq abs diff)

t1 =α t ′1 t2 =α t ′2
t1 t2 =α t ′1 t ′2

(aeq app)
t1 =α t ′1 t2 =α t ′2

[x := t2]t1 =α [x := t ′2]t
′
1

(aeq sub same)

4This is a lemma from Metalib library and it states that forall (x y : atom) (s : atoms), x = y -> y

`notin` remove x s.
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t2 =α t ′2 x 6= y x /∈ f v(t ′1) t1 =α (y x)t ′1
[x := t2]t1 =α [y := t ′2]t

′
1

(aeq sub diff)

Each of these rules correspond to a constructor in the aeq inductive definition below:

Inductive aeq : n sexp → n sexp → Prop :=
| aeq var : ∀ x, aeq (n var x) (n var x)
| aeq abs same : ∀ x t1 t2, aeq t1 t2 → aeq (n abs x t1)(n abs x t2)
| aeq abs diff : ∀ x y t1 t2, x 6= y → x ‘notin‘ fv nom t2 → aeq t1 (swap y x t2) →

aeq (n abs x t1) (n abs y t2)
| aeq app : ∀ t1 t2 t1’ t2’, aeq t1 t1’ → aeq t2 t2’ → aeq (n app t1 t2) (n app t1’ t2’)
| aeq sub same : ∀ t1 t2 t1’ t2’ x, aeq t1 t1’ → aeq t2 t2’ → aeq ([x := t2] t1) ([x := t2’] t1’)
| aeq sub diff : ∀ t1 t2 t1’ t2’ x y, aeq t2 t2’ → x 6= y → x ‘notin‘ fv nom t1’ → aeq t1 (swap y x t1’) →

aeq ([x := t2] t1) ([y := t2’] t1’).

In what follows, we use a infix notation for α-equivalence in the Coq code. Therefore, we write t
=a u instead of aeq t u. The above notion defines an equivalence relation over the set n sexp of nominal
expressions with explicit substitutions, i.e. the aeq relation is reflexive, symmetric and transitive (proofs
in the source file5). In addition, α-equivalent terms have the same size, and the same set of free variables:

Lemma aeq size: ∀ t1 t2, t1 =a t2 → size t1 = size t2.

Lemma aeq fv nom : ∀ t1 t2, t1 =a t2 → fv nom t1 [=] fv nom t2.

The key point of the nominal approach is that the swap operation is stable under α-equivalence in
the sense that, t1 =α t2 if, and only if (x y)t1 =α (x y)t2,∀t1, t2,x,y. Note that this is not true for renaming
substitutions: in fact, λx.z =α λy.z, but {z := x}(λx.z) = λx.x 6=α {z := x}λy.x(λy.z), assuming that x 6= y.
This stability result is formalized as follows:

Corollary aeq swap: ∀ t1 t2 x y, t1 =a t2 ↔ (swap x y t1) =a (swap x y t2).

When both variables in a swap do not occur free in a term, it eventually renames only bound variables,
i.e. the action of this swap results in a term that is α-equivalent to the original term. This is the content
of the following lemma:

Lemma swap reduction: ∀ t x y, x ‘notin‘ fv nom t → y ‘notin‘ fv nom t → (swap x y t) =a t.

There are several other interesting auxiliary properties that need to be proved before achieving the
substitution lemma. In what follows, we refer only to the tricky or challenging ones, but the interested
reader can have a detailed look in the source file. Note that, swaps are introduced in proofs by the rules
aeq abs diff and aeq sub diff. As we will see, the proof steps involving these rules are trick because a
naïve strategy can easily get blocked in a branch without proof. We conclude this section, with a lemma
that gives the conditions for two swaps with a common variable to be merged:

Lemma aeq swap swap: ∀ t x y z, z ‘notin‘ fv nom t → x ‘notin‘ fv nom t → (swap z x (swap x y t)) =a
(swap z y t).
Proof. Before commenting this proof, we state the lemma with the pencil and paper (meta)notation:

5https://flaviomoura.info/files/msubst.v

https://flaviomoura.info/files/msubst.v
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If z /∈ f v nom(t) and x /∈ f v nom(t) then (z x)(x y)t =α (z y)t.

Initially, observe the similarity of the left hand side (LHS) of the α-equation with the lemma shuf-
fle swap:

∀w y z t,w 6= z → y 6= z → (w y)((y z)t) = (w z)((w y)t)

In order to use it, we need to have that both z 6= y and x 6= y. We start comparing z and y:

1. If z = y then the right hand side (RHS) reduces to t because the swap is trivial, and the LHS also
reduces to t since swap is involutive.

2. When z 6= y then we proceed by comparing x and y:

(a) If x = y then both sides of the α-equation reduces to (z y)t, and we are done.

(b) Finally, when x 6= y, we can apply the lemma shu f f le swap, and use lemma aeq swap to
reduce the current goal to (z x)t =α t, and we conclude by lemma swap reduction since both
z and x are not in the set of free variables of the term t. �

3 The metasubstitution operation of the λ -calculus

As presented in Section 2, the main operation of the λ -calculus is the β -reduction (2) that expresses how
to evaluate a function applied to an argument. The β -contractum {x := u}t represents a capture free in
the sense that no free variable becomes bound by the application of the metasubstitution. This operation
is in the meta level because it is outside the grammar of the λ -calculus (and hence its name). In [5],
Barendregt defines it as follows:

{x := u}t =


u, if t = x;
y, if t = y and x 6= y;
{x := u}t1 {x := u}t2, if t = t1 t2;
λy.({x := u}t1), if t = λy.t1.

where it is assumed the so called “Barendregt’s variable convention”:

If t1, t2, . . . , tn occur in a certain mathematical context (e.g. definition, proof), then in these
terms all bound variables are chosen to be different from the free variables.

This means that we are assumming that both x 6= y and y /∈ f v(u) in the case t = λy.t1. This approach
is very convenient in informal proofs because it avoids having to rename bound variables. In order to
formalize the capture free substitution, i.e. the metasubstitution, there are different possible approaches.
In our case, we perform a renaming of bound variables whenever the metasubstitution is propagated
inside a binder. In our case, there are two binders: abstractions and explicit substitutions.

Let t and u be terms, and x a variable. The result of substituting u for the free ocurrences of x in t,
written {x := u}t is defined as follows:
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{x := u}t =



u, if t = x;
y, if t = y (x 6= y);
{x := u}t1 {x := u}t2, if t = t1 t2;
λx.t1, if t = λx.t1;
λz.({x := u}((y z)t1)), if t = λy.t1,x 6= y,z /∈ f v(t)∪ f v(u)∪{x};
[x := {x := u}t2]t1, if t = [x := t2]t1;
[z := {x := u}t2]{x := u}((y z)t1), if t = [y := t2]t1,x 6= y,z /∈ f v(t)∪ f v(u)∪{x}.

(5)

and the corresponding Coq code is as follows:

Function subst rec fun (t:n sexp) (u :n sexp) (x:atom) {measure size t} : n sexp :=
match t with
| n var y ⇒ if (x == y) then u else t
| n abs y t1 ⇒ if (x == y) then t else let (z, ) :=

atom fresh (fv nom u ‘union‘ fv nom t ‘union‘ {{x}}) in n abs z (subst rec fun (swap y z t1) u x)
| n app t1 t2 ⇒ n app (subst rec fun t1 u x) (subst rec fun t2 u x)
| n sub t1 y t2 ⇒ if (x == y) then n sub t1 y (subst rec fun t2 u x) else let (z, ) :=

atom fresh (fv nom u ‘union‘ fv nom t ‘union‘ {{x}}) in
n sub (subst rec fun (swap y z t1) u x) z (subst rec fun t2 u x) end.

Note that this function is not structurally recursive due to the swaps in the recursive calls, and that’s
why we need to provide the size of the term t as the measure parameter. Alternatively, a structurally
recursive version of the function subst rec fun can be found in the file nominal.v of the Metalib library6.
It has the size of the term as an explicit parameter in which the substitution will be performed, and hence
one has to deal with the size of the term in each recursive call. We write {x:=u}t instead of subst rec fun
t u x, and refer to it just as “metasubstitution”.

The following lemma states that if x /∈ f v(t) then {x := u}t =α t. In informal proofs the conclusion
of this lemma is usually stated as a syntactic equality, ı.e. {x := u}t = t instead of the α-equivalence, but
the function subst rec fun renames bound variables whenever the metasubstitution is propagated inside
an abstraction or an explicit substitution, even in the case that the metasubstitution has no effect in the
subterm it is propagated, as long as the variables of the metasubstitution and the binder (abstraction or
explicit substitution) are different of each other. That’s why the syntactic equality does not hold here.

Lemma m subst notin: ∀ t u x, x ‘notin‘ fv nom t → {x := u}t =a t.
Proof. The proof is done by induction on the size of the term t using n sexp induction defined above.
The interesting cases are the abstraction and the explicit substituion. We focus in the abstraction case,
i.e. when t = λy.t1, where the goal to be proven is {x := u}(λy.t1) =α λy.t1. We consider two cases:

1. If x = y the result is trivial because both LHS and RHS are equal to λy.t1

2. If x 6= y , we have to prove that λz.{x := u}(y z)t1 =α λy.t1, where z is a fresh name not in the
set f v nom(u)∪ f v nom(λy.t1)∪{x}. The induction hypothesis express the fact that every term
with the same size as the body t1 of the abstraction satisfies the property to be proven: ∀t ′, |t ′| =
|t1| → ∀u x′ x0 y0,x′ /∈ f v((x0 y0)t ′) → {x′ := u}((x0 y0)t ′) =α (x y)t ′. Therefore, according to
the definition of the metasubstitution (function [subst_rec_fun]), the variable y will be renamed
to z, and the metasubstitution is propagated inside the abstraction resulting in the following goal:

6https://github.com/plclub/metalib

https://github.com/plclub/metalib
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λz.{x := u}((z y)t1) =α λy.t1. Since z /∈ f v nom(λy.t1) = f v nom(t1)\{y}, there are two cases to
consider, either z = y or z ∈ f v(t1):

(a) z = y: In this case, we are done by the induction hypothesis taking x0 = y0 = y, for instance.
(b) z 6= y: In this case, we can apply the rule aeq abs diff, resulting in the goal {x := u}((y z)t1)=α

(y z)t1 which holds by the induction hypothesis, since |(z y)t1|= |t1| and x /∈ f v nom((y z)t1)
because x 6= z, x 6= y and x /∈ f v nom(t1).

The explicit substitution case is also interesting, i.e. if t = [y := t2]t1, but it follows a similar strategy
used in the abstraction case for t1. For t2 the result follows from the induction hypothesis. �

The following lemmas concern the expected behaviour of the metasubstitution when the metasubsti-
tution’s variable is equal to the abstraction’s variable. Their proofs are straightforward from the definition
subst rec fun. The corresponding version when the metasubstitution’s variable is different from the ab-
straction’s variable will be presented later.

Lemma m subst abs eq: ∀ u x t, {x := u}(n abs x t) = n abs x t.

Lemma m subst sub eq: ∀ u x t1 t2, {x := u}(n sub t1 x t2) = n sub t1 x ({x := u}t2).

We will now prove some stability results for the metasubstitution w.r.t. α-equivalence. More pre-
cisely, we will prove that if t =α t ′ and u =α u′ then {x := u}t =α {x := u′}t ′, where x is a variable and
t, t ′,u and u′ are terms. This proof is split in two cases: firstly, we prove that if u =α u′ then {x := u}t =α

{x := u′}t,∀x, t,u,u′; secondly, we prove that if t =α t ′ then {x := u}t =α {x := u}t ′,∀x, t, t ′,u. These
two cases are then combined through the transitivity of the α-equivalence relation. Nevertheless, this
task was not straighforward. Let’s follow the steps of our first trial.

Lemma aeq m subst in trial: ∀ t u u’ x, u =a u’ → ({x := u}t) =a ({x := u’}t).
Proof. The proof is done by induction on the size of term t, and we will focus on the abstraction case,
i.e. t = λy.t1. The goal in this case is {x := u}(λy.t1) =α {x := u′}(λy.t1).

1. If x = y then the result is trivial by lemma m subst abs eq.

2. If x 6= y then we need two fresh names in order to propagate the metasubstitution inside the ab-
stractions on each side of the α-equation. Let x0 be a fresh name not in the set f v nom(u)∪
f v nom(λy.t1)∪{x}, and x1 be a fresh name not in the set f v nom(u′)∪ f v nom(λy.t1)∪{x}.
After propagating the metasubstitution we need to prove λx0 .{x := u}((y x0)t1) =α λx1 .{x :=
u′}((y x1)t1), and we proceed by comparing x0 and x1:

(a) If x0 = x1 then we are done by the induction hypothesis.
(b) Otherwise, we need to apply the rule aeq abs di f f and the goal is {x := u}((y x0)t1) =α

(x0 x1)({x := u′}((y x1)t1)). But in order to proceed we need to know how to propagate the
swap inside the metasubstitution, which is the content of the following lemma:

Lemma swap m subst: ∀ t u x y z, swap y z ({x := u}t) =a ({(vswap y z x) := (swap y z u)}(swap y z t)).
Proof. We write the statement of the lemma in metanotation before starting the proof:

∀t u x y z,(y z)({x := u}t) =α {((y z))x := (y z)u}(y z)t

The proof is by induction on the size of the term t, and again we will focus only on the abstraction
case, i.e. when t = λw.t1. The goal in this case is (y z)({x := u}(λw.t1))=α {((y z))x :=(y z)u}((y z)λw.t1),
and we proceed by comparing x and w.
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1. If x = w the α-equality is trivial.

2. If x 6= w then we need a fresh name, say w0, to be able to propagate the metasubstitution inside
the abstraction on the LHS of the α-equation. The variable w0 is taken such that it is not in the
set f v nom(u)∪ f v nom(λw.t1)∪{x}, and we get the goal λ((y z))w0 .(y z)({x := u}(w w0)t1) =α

{((y z))x := (y z)u}(λ((y z))w.(y z)t1). Now we propagate the metasubstitution over the abstraction in
the RHS of the goal. Since x 6=w implies ((y z))x 6=((y z))w, we need another fresh name, say w1, not
in the set f v nom((y z)u)∪ f v nom(λ((y z))w.(y z)t1)∪{((y z))x}, and after the propagation we need
to prove that λ((y z))w0 .(y z)({x := u}(w w0)t1) =α λw1 .{((y z))x := (y z)u}((w1 ((y z))w)((y z)t1)).
We consider two cases: either w1 = ((y z))w0 or w1 6= ((y z))w0. In the former case, we apply the rule
aeq abs same and we are done by the induction hypothesis. When w1 6= ((y z))w0, the application
of the rule aeq abs diff generates the goal

(w1 ((y z))w0)(y z)({x := u}(w w0)t1) =α {((y z))x := (y z)u}((w1 ((y z))w)((y z)t1)) (6)

We can use the induction hypothesis to propagate the swap inside the metasubstitution, and then
we get an α-equality with metasubstitution as main operation on both sides, whose corresponding
components are α-equivalent. In a more abstract way, we have to prove an α-equality of the form
{x := u}t =α {x := u′}t ′, where t =α t ′ and u =α u′, but this is exactly what we were trying to
prove in the previous lemma.

Therefore, we are in a circular problem because both aeq m subst in trial and swap m subst depend
on each other to be proved!

Our solution to this problem consists in taking advantage of the fact that α-equivalent terms have
the same set of free variables (see lemma aeq fv nom), and noting that the external swap in the LHS
of (6) was generated by the application of the rule aeq abs diff because the abstractions have different
bindings. Let’s go back to the proof of lemma aeq m subst in: Lemma aeq m subst in: ∀ t u u’ x, u
=a u’ → ({x := u}t) =a ({x := u’}t).
Proof. We go directly to the abstraction case. When t = λy.t1, the goal is {x := u}(λy.t1) =α {x :=
u′}(λy.t1). If x 6= y then the fresh name needed for the LHS must not belong to the set f v nom(u)∪
f v nom(λy.t1)∪{x}, while the fresh name for the RHS must not belong to f v nom(u′)∪ f v nom(λy.t1)∪
{x}. These sets differ only by the subsets f v nom(u) and f v nom(u′). Nevertheless, these subsets are
equal because u and u′ are α-equivalent (see lemma aeq fv nom). Concretely, the current goal is as
follows:

(let (z, _) := atom_fresh (union (fv_nom u) (union (fv_nom (n_abs y t1))

(singleton x))) in n_abs z (subst_rec_fun (swap y z t1) u x)) =a

(let (z, _) := atom_fresh (union (fv_nom u') (union (fv_nom (n_abs y t1))

(singleton x))) in n_abs z (subst_rec_fun (swap y z t1) u' x))

where the sets f v nom(u) and f v nom(u′) appear in different let expressions, each one is responsi-
ble for generating one fresh name. But since these sets are equal, if one could replace f v nom(u) by
f v nom(u′) (or vice-versa) then only one fresh name is generated after evaluating the atom fresh func-
tion. Nevertheless, the only way that we managed to do such replacement was by adding the following
axiom:

Axiom Eq_implies_equality: forall t1 t2, t1 =a t2 -> fv_nom t1 = fv_nom t2.
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This axiom is similar to lemma aeq fv nom where the set equality [=] was replaced by the syntactic
(Leibniz) equality =. Now, we can generate just one fresh name and propagate the metasubstitution on
both sides of the goal, and we are done by the induction hypothesis. The case of the explicit substitution
is similar, and with this strategy we avoid both the rules aeq abs diff and aeq sub diff that introduce
swappings. �

The next lemma, named aeq m subst out will benefit the strategy used in the previous proof, but it
is not straightfoward.

Lemma aeq m subst out: ∀ t t’ u x, t =a t’ → ({x := u}t) =a ({x := u}t’).
Proof. The proof is by induction on the size of the term t. Note that induction on the hypothesis t =a t’
does not work due to a similar problem involving swaps that appears when structural induction on t is
used. The abstraction and the explicit substitution are the interesting cases.

In the abstraction case, we need to prove that {x := u}(λy.t1) =α {x := u}t ′, where λy.t1 =α t ′ by
hypothesis. Therefore, t ′ must be an abstraction, and according to our definition of α-equivalence there
are two possible subcases:

1. In the first subcase, t ′ = λy.t2, where t1 =α t2, and hence the current goal is {x := u}(λy.t1) =α

{x := u}(λy.t2). We proceed by comparing x and y:

(a) If x = y then, we are done by using twice lemma m subst abs eq.

(b) When x 6= y, then we need to propagate the metasubstitution on both sides of the goal. On the
LHS, we need a fresh name that is not in the set f v(u)∪ f v(λy.t1)∪{x}, while for the RHS,
the fresh name cannot belong to the set f v(u)∪ f v(λy.t2)∪{x}. From the hypothesis t1 =α

t2, we know, by lemma aeq f v nom, that the sets f v nom(t1) and f v nom(t2) are equal.
Therefore, we can take just one fresh name, say z, and propagate both metasubstitutions over
abstractions with the same binding, and we conclude with the induction hypothesis.

2. In the second subcase, t ′ = λy0 .t2, where t1 =α (y0 y)t2 and y 6= y0. The current goal is

{x := u}(λy.t1) =α {x := u}(λy0 .t2)

and we proceed by comparing x and y:

(a) If x = y then the goal simplifies to λy.t1 =α {x := u}(λy0 .t2) by lemma m subst abs eq,
and we pick a fresh name x, that is not in the set f v nom(u)∪ f v nom(λy0 .t2)∪{y}, and
propagate the metasubstitution on the RHS of the goal, resulting in the new goal λy.t1 =α

λx.{y := u}((y0 x)t2). Note that the metasubstitution on the RHS has no effect in the term
(y0 x)t2 because y 6= y0, y 6= x and y does not occur free in t2 and we conclude by hypothesis.

(b) If x 6= y then we proceed by comparing x and y0 on the RHS, and the proof, when x = y0, is
analogous to the previous subcase. When both x 6= y and x 6= y0 then we need to propagate the
metasubstitution on both sides of the goal {x := u}(λy.t1) =α {x := u}(λy0 .t2). We have that
λy.t1 =α λy0 .t2 and hence the sets f v nom(λy.t1) and f v nom(λy0 .t2) are equal. Therefore,
only one fresh name, say x0, that is not in the set x0 /∈ f v nom(u)∪ f v nom(λy0 .t2)∪{x}
is enough to fulfill the conditions for propagating the metasubstitutions on both sides of the
goal, and we are done by the induction hypothesis.

3. The explicit substitution operation is also interesting, but we will not comment because we are
running out of space. �
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As a corollary, one can join the lemmas aeq m subst in and aeq m subst out as follows:

Corollary aeq m subst eq: ∀ t t’ u u’ x, t =a t’ → u =a u’ → ({x := u}t) =a ({x := u’}t’).

Now, we show how to propagate a swap inside metasubstitutions using the decomposition of the
metasubstitution provided by the corollary aeq m subst eq.

Lemma swap subst rec fun: ∀ x y z t u, swap x y ({z := u}t) =a ({(vswap x y z) := (swap x y u)}(swap x
y t)).
Proof. Firstly, we write the lemma in metanotation: ∀x y z t u,(x y){z := u}t =α {((x y))z := (x y)u}(x y)t.
Next, we compare x and y, since the case x = y is trivial. When x 6= y, the proof proceeds by induction
on the size of the term t. The tricky cases are the abstraction and explicit substitution, and we com-
ment just the former case. If t = λy′ .t1 then we must prove that (x y){z := u}(λy′ .t1) =α {((x y))z :=
(x y)u}(x y)(λy′.t1). Firstly, we compare the variables y′ and z according to the definition of the meta-
substitution:

1. When y′ = z the metasubstitution is erased according to the definition (5) on both sides of the goal
and we are done.

2. When y′ 6= z then the metasubstitutions on both sides of the goal need to be propagated inside the
corresponding abstractions. In order to do so, a new name need to be created. Note that in this
case, it is not possible to create a unique name for both sides because the two sets are different. In
fact, in the LHS the fresh name cannot belong to the set f v nom(λ ′

y.t1)∪ f v nom(u)∪{z}, while
the name of the RHS cannot belong to the set f v nom((x y)λ ′

y.t1)∪ f v nom((x y)u)∪{((x y))z}.
Let x0 be a fresh name that is not in the set f v nom(λ ′

y.t1)∪ f v nom(u)∪{z}, and x1 a fresh name
that is not in the set f v nom((x y)λ ′

y.t1)∪ f v nom((x y)u)∪{((x y))z}. After the propagation of the
metasubstitutions, we have to prove that λ((x y))x0.((x y)({z := u}((y′ x0)t1)) =α λx1 .({((x y))z :=
(x y)u}((((x y))y′) x1)((x y)t1)). We proceed by comparing x1 with ((x y))x0.

(a) If x1 = ((x y))x0 then we use the induction hypothesis to propagate the swap inside the
metasubstitution in the LHS, and we get the goal {((x y))z := (x y)u}((x y)((y′ x0)t1)) =α

{((x y))z := (x y)u}(((((x y))y′) (((x y))x0))((x y)t1)) that is proved by the swap equivariance
lemma swap equivariance.

(b) If x1 6= ((x y))x0 then by the rule aeq abs di f f we have to prove that the variable ((x y))x0
is not in the set of free variables of the term {((x y))z := (x y)u}((((x y))y′ x1)(x y)t1) and
that (x y)({z := u}((y′ x0)t1)) =α (x1 (((x y))x0))({((x y))z := (x y)u}(((((x y))y′) x1)((x y)t1)).
The former condition is routine. The later condition is proved using the induction hypothesis
twice to propagate the swaps inside the metasubstitutions on each side of the α-equality.
This swap has no effect on the variable z of the metasubstitution because x1 is different from
((x y))z, and x0 is different from z. Therefore we can apply lemma aeq m subst eq, and each
generated case is proved by routine manipulation of swaps.

�

The following two lemmas toghether with lemmas m subst abs eq and m subst sub eq are essen-
tial in simplifying the propagations of metasubstitution. They are presented here because they depend on
lemma swap subst rec fun.

Lemma m subst abs neq: ∀ t u x y z, x 6= y → z ‘notin‘ fv nom u ‘union‘ fv nom (n abs y t) ‘union‘
{{x}} → {x := u}(n abs y t) =a n abs z ({x := u}(swap y z t)).
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Lemma m subst sub neq : ∀ t1 t2 u x y z, x 6= y → z ‘notin‘ fv nom u ‘union‘ fv nom ([y := t2]t1) ‘union‘
{{x}} → {x := u}([y := t2]t1) =a ([z := ({x := u}t2)]({x := u}(swap y z t1))).

In the pure λ -calculus, the substitution lemma is probably the first non trivial property. In our frame-
work, we have defined two different substitution operators, namely, the metasubstitution denoted by
{x := u}t and the explicit substitution, written as [x := u]t. In what follows, we present the main steps of
our proof of the substitution lemma for n sexp terms, i.e. for nominal terms with explicit substitutions.

Lemma m subst lemma: ∀ t1 t2 t3 x y, x 6= y → x ‘notin‘ (fv nom t3) →
({y := t3}({x := t2}t1)) =a ({x := ({y := t3}t2)}({y := t3}t1)).

Proof. The proof is by induction on the size of t1. The interesting cases are the abstraction and the
explicit substitution. We focus on the former, i.e. t1 = λz.t ′1, whose initial goal is

{y := t3}({x := t2}(λz.t ′1)) =α {x := {y := t3}t2}({y := t3}(λz.t ′1))
assuming that x 6= y and x /∈ f v nom(t3). The induction hypothesis generated by this case states that the
lemma holds for any term of the size of t ′1, i.e. any term with the same size of the body of the abstraction.
We start comparing z with x aiming to apply the definition of the metasubstitution on the LHS of the
goal.

1. When z = x, the subterm {x := t2}λx.t ′1 reduces to λx.t ′1 by lemma m subst abs eq, and then the
LHS reduces to {y := t3}λx.t ′1. The RHS {x := {y := t3}t2}{y := t3}λx.t ′1 also reduces to it because
x does not occur free neither in λx.t ′1 nor in t3, and we are done.

2. When z 6= x, then we compare y with z.

(a) When y= z, the subterm {y := t3}(λz.t ′1) can be simplified to λz.t ′1, by lemma m subst abs eq.
On the LHS, we propagate the internal metasubstitution over the abstraction taking a fresh
name w not in the set f v nom(λz.t ′1)∪ f v nom(t3)∪ f v nom(t2)∪ {x}, where the goal is
{z := t3}(λw.({x := t2}(z w)t ′1)) =α {x := {z := t3}t2}(λz.t ′1). We proceed by comparing z
and w:

i. If z = w then the current goal simplifies to
{w := t3}(λw.({x := t2}t ′1)) =α {x := {w := t3}t2}(λw.t ′1)
We can propagate the metasubstitution on the RHS and there is no need for a fresh
name since the variable w fullfil the condition required by lemma m subst abs neq.
We conclude with lemmas aeq m subst in and m subst notin.

ii. If z 6= w then we can propagate the metasubstitutions on both sides of the goal taking
w as the fresh name that fullfil the conditions of lemma m subst abs neq. We proceed
with aeq abs same, and conclude by the induction hypothesis.

(b) If y 6= z then we follow a similar strategy that avoids unnecessary generation of fresh names.
In this way, we take a fresh w that is not in the set f v nom(t3)∪ f v nom(t2)∪ f v nom(λz.t ′1)∪
{x} ∪ {y}, and propagate the metasubstitution inside the abstraction resulting in the goal
λw.({y := t3}({x := t2}(z w)t ′1) =α λw.({x := {y := t3}t2}({y := t3}(z w)t ′1). We conclude
by the induction hypothesis. �
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4 Conclusion and Future work

In this work, we presented a formalization of the substitution lemma in a framework that extends
the λ -calculus with an explicit substitution operator. Calculi with explicit substitutions are important
frameworks to study properties of the λ -calculus and have been extensively studied in the last decades
[1, 2, 3, 4, 9].

The formalization is modular in the sense that the explicit substitution operator is generic and could
be instantiated with any calculi with explicit substitutions in a nominal setting. Despite the fact that our
definition of metasubstitution, called subst rec f un, performs a renaming with a fresh name whenever it
is propagated inside a binding structure (either an abstraction or an explicit substitution in our case), we
showed how to avoid unnecessary generation of fresh names that could result in a circular problem in the
proofs. Several auxiliary (minor) results were not included in this document, but they are numerous and
can be found in the source file of the formalization that is publicly available at https://flaviomoura.
info/files/msubst.v

As future work, we intend to get rid of the axiom Eq implies equality. The natural candidate for
this would be the use of generalized rewriting, i.e. setoid rewriting, but it not clear whether generalized
rewriting allows a rewrite step in a let expression. Another possibility is the implementation of the
metasubstitution using recursors [22, 13]. In addition, we plan to integrate this formalization with another
one related to the Z property7 to prove confluence of calculi with explicit substitutions [20, 21], as well
as other properties in the nominal framework [16].
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While Loops in Coq

David Nowak, CNRS* Vlad Rusu, Inria†

While loops are present in virtually all imperative programming languages. They are important
both for practical reasons (performing a number of iterations not known in advance) and theoretical
reasons (achieving Turing completeness). In this paper we propose an approach for incorporating
while loops in an imperative language shallowly embedded in the Coq proof assistant. The main
difficulty is that proving the termination of while loops is nontrivial, or impossible in the case of non-
termination, whereas Coq only accepts programs endowed with termination proofs. Our solution is
based on a new, general method for defining possibly non-terminating recursive functions in Coq. We
illustrate the approach by proving termination and partial correctness of a program on linked lists.

1 Introduction

The definition of recursive functions in the Coq proof assistant [4] is subject to certain restrictions to
ensure their termination, which is essential for the consistency of Coq’s underlying logic. Specifically,
recursive calls must be made on strict subterms, effectively ensuring that the computation eventually
reaches a base case. Alternatively, users have the option to prove that a specific quantity strictly decreases
according to a well-founded order. In such cases, Coq can automatically transform the recursive calls
into strict subterm calls, using a so-called accessibility proof to guarantee termination. Adhering to these
constraints eliminates the risk of infinitely many calls, thereby ensuring that functions terminate.

An alternative, somewhat ad-hoc strategy is to introduce an additional natural-number argument
called the fuel. The fuel’s value is decremented with each recursive call, thereby guaranteeing finitely
many recursive calls, hence, termination. However, a crucial concern arises as one must supply enough
fuel so that termination does not disrupt the intended computation of the program by occurring too early.

In this paper we present a novel approach to defining possibly partial recursive functions in Coq while
achieving separation of concerns: write the program first, and prove its properties (including termination)
later. In broad terms our technique consists in providing an infinite amount of fuel for recursive functions.
By doing so the function can proceed with its computations without risk of exhausting its fuel.

As a result, this approach empowers developers to focus on the core logic of the recursive func-
tion, separate from the termination concern, streamlining the development process and enhancing the
modularity and readability of the code.

A key property guaranteed by our technique is that, given the functional of the recursive function
under definition (i.e., an abstract description of the function’s body), the resulting function is the least
fixpoint of its functional. We prove this general result under mild constraints on the functional - it must
be monotonic and, in some sense described precisely in the paper, must preserve continuity.

The method is applied to while loops in an imperative shallowly embedded in Coq. By proving
that the functional of while loops is monotonic and continuity-preserving we obtain while loops as least
fixpoints of their functionals. This enables programmers to construct imperative programs featuring
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arbitrary while loops and provides them with tools for reasoning about loops. Specifically, the least-
fixpoint property is used for proving that a while loop terminates if and only if there exists some finite
amount of fuel for which it returns the desired result; hence, a termination proof can proceed by induction
on the fuel value, once an adequate instantiation for this known-to-exists value is chosen.

Subsequently, we proceed to establish a Hoare logic system, which serves as a formal tool for prov-
ing the partial correctness of programs. In essence the Hoare logic provides a systematic and rigorous
approach to program verification, where one defines preconditions and postconditions that govern the
state of the program before and after its execution. Through these assertions one can verify that the
program’s execution leads to the desired outcomes, establishing its partial correctness. Here, again, the
property of being a fixpoint is used for proving the soundness of the while loop’s Hoare triple.

Finally, the least-fixpoint property of the partial functions being defined ensures that the functions,
defined abstractly using order theory, are, as mathematical functions, the same as the ones that Coq would
have generated, had it not been constrained by its logic into rejecting the functions as partial.

Outline In Section 2 we introduce the reader, termination, and state monads, which serve the purpose
of writing imperative programs in the Coq proof assistant. Moving forward to Section 3 we present our
method for defining possibly nonterminating recursive functions and demonstrate its application to the
definition of while loops. In Section 4 we define a monadic Hoare logic and illustrate its effectiveness
by applying it to a program that computes the length of a linked list. In Section 5 we address the issue of
proving termination. We compare with related work in Section 6 and conclude in Section 7.

The Coq development corresponding to this paper is available at https://tinyurl.com/2p93uwdj.

2 Monads for Possibly Nonterminating Stateful Computation

We consider a subset of Gallina (the programming language of Coq) expressive enough for shallowly
embedding possibly nonterminating imperative programs. In purely functional languages such as Gallina
the usual approach is to encode imperative features with monads [11]. We use a combination of the
termination, state, and reader monads. The first one is used for possibly nonterminating computations,
the second one for stateful computations where the state may change, and the third one for state-aware
computations that do not change the state, such as checking the condition of while loops.

A monad consists of a type constructor equipped with an operation usually called ret for trivial
computation, and another one, usually called bind, for sequencing computations. Each particular monad
also comes with specific operations. Assume a context where a type T is declared. The type constructor
for the reader monad is defined as follows:

Definition reader (A: Type): Type := T -> A.

where A is a type for values returned by a computation. Intuitively, reader is a side-effect free function
from states to computed values. Unlike the state monad, shown below, it only reads from states, without
modifying them; hence the monad’s name reader.

Trivial computation ret consists in ignoring the state:

Definition ret {A: Type}(a: A) : reader A := fun _ => a.

Placing the parameter A between curly brackets marks it as implicit - its value can therafter be automati-
cally inferred, relieving users from the burden of having to instantiate it.

Sequencing of computations consists in passing the result of the first computation to the second one:

https://tinyurl.com/2p93uwdj
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Definition rbind {A B: Type}(m: reader A)(f: A -> reader B): reader B :=
fun s => f (m s) s.

Finally, the reader monad is equipped with a primitive for reading the state:

Definition get: reader T := fun s => s.

The other monad used in the shallow embedding of an imperative language in Coq is a combination of
termination and state monads, for which we use the option type constructor:

Inductive option (X: Type): Type := None: option X | Some: X -> option X.

where None encodes nontermination. Termination state monads are the programs of our imperative
language, which is reflected in the name of its type constructor:

Definition program (A: Type): Type := T -> option (A * T).

The reader monad is a special case of the termination state monad. Thus we introduce a coercion that
enables Coq to automatically convert a reader monad into a termination state monad when needed:

Coercion reader_to_program {A: Type}(m: reader A): program A :=
fun s => Some (m s, s).

The ret and the get primitive of the reader monad are thus automatically converted. But the sequencing
of computations needs to be redefined in order the take into account the fact that the first of the sequenced
computations might change the state, or might not terminate:

Definition bind {A B: Type}(m: program A)(f: A -> program B): program B :=
fun s => match m s with None => None | Some (a, s’) => f a s’ end.

The termination state monad comes with an additional primitive to change the state:

Definition put (s: T) : program unit := fun _ => Some (tt, s).

The unit type (inhabited by one term - the constant tt) is used in our functional-laaguage setting for
modelling imperative programs that do not return anything, encoded by returning the dummy constant tt.

As a running example we consider an imperative program that computes the length of a linked list.
First we need to specify the State on which the program works. We assume a machine with two positive
integer registers and an unbounded memory whose adresses and stored values are also positive integers:

Record State: Type := {reg1: nat; reg2: nat; memory: nat -> nat}.

Then, using the primitives of our monad we write operations to read/write in registers and memory:

• read_reg1, write_reg1 for reading, resp. writing in the first register, and similar functions for
reading/writing in the second register. The second register is increased by one using incr_reg2;

• do next <- read_addr curr assigns to next the content of the address curr in memory. More
generally, reading operations return a value that can be bound to an identifier using the standard
"do" notation of monads, i.e., do x <- m; f x is a shortcut for rbind m (fun x => f x);

• operations are sequenced by double semicolons: m;;f is a notation for bind m (fun _ => f).
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This almost allows us to write a program computing the length of a linked list. Not completely, because
the program uses a while loop, which is not defined until later in the paper:

Definition length (addr: nat): program State nat :=
write_reg1 addr;;
write_reg2 0;;
while (do curr <- read_reg1; ret (curr != 0))
(
incr_reg2;;
do curr <- read_reg1;
do next <- read_addr curr;
write_reg1 next
);;

do res <- read_reg2; ret res.

It is assumed that the linked list1 of interest starts in memory at address addr. This address is written
into the first register, then the second register (which is to contain the length of the list) is initialized to
zero. Next, while the current address of the first register is not null (also encoded by zero), the second
register is incremented and the first register is updated to point to the next element of the linked list.
Finally, at the end of the while loop (if the end is ever reached), the value in the second register is the
length of the list of interest, hence, it is the value returned by our function whenever it terminates.

What is still missing is, of course, the definition of the while loop. A first attempt uses recursion:

Fixpoint
while{T: Type}(cond: reader T bool)(body: program T unit): program T unit:=
do c <- cond;if c then body;;while cond body else reader_to_program (ret tt)

That is, a recursive function (introduced by the keyword Fixpoint) attempts to define a while loop
(with condition cond and body body of appropriate types) by first checking the condition, and if the
condition holds, executing the body then recursively the while loop; otherwise, doing nothing (which is
encoded by reader_to_program (ret tt)). However, this function does not always terminate. For
example, if the while loop is used to navigate a linked list, like in the case of the length function above,
and the list is badly linked, i.e., it contains a loop, then the while loop does not terminate. Coq rejects
this definition attempt, as it rejects any recursive function whose termination it cannot infer.

In the rest of the paper we show how possibly infinite while loops (and, in general, partial recursive
function) can be accepted by Coq by encoding nontermination as evaluation to a special value.

3 Partial Recursive Functions in Coq

The while loop is a particular case of a partial recursive function. We first sketch how partial recursive
functions can be encoded in Coq before providing details.

1For simplicity we consider linked lists where each element only contains the next element’s address.
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3.1 Outline of the Approach

Assume we want to define a partial recursive function f from type A to type B. A natural way to proceed is
to give f the type A -> option B, where for any a:A, f a = None encodes the fact that f is undefined
for the input a. In order to define a function we further need its functional, an abstract representation of
the body of the function being defined. Let F : (A -> option B)-> A -> option B be the func-
tional for f. We say that f := F f is the fixpoint definition of f. The interesting case we here solve is
when fixpoint definitions are not accepted by Coq - just like in the case of the while function above.

We proceed as follows. We define an auxiliary function f_fuel : nat -> A -> option B with
an additional natural-number parameter called the fuel, as the following recursive function, which is
accepted by Coq because Coq “sees” that the fuel parameter strictly decreases at each recursive call:

Fixpoint f_fuel (fuel: nat) (a: A) : option B:=
match fuel with
|S fuel’ => F(f_fuel fuel’) a

(*S is the successor function on natural numbers*)
|0 => None
end

If the functional F is monotonic then, based on results in order theory explained later in this section, the
function f_fuel can be lifted to a continuous function in conat -> option B where conat is the type

Inductive conat: Type:= finite: nat -> conat | infinity

That is, the inhabitants of conat are natural numbers wrapped with the finite constructor, together
with the constant infinity. Putting back the parameter a:A in the type we obtain a function f_inf of
the type conat -> A -> option B. The results later in the section also ensure that, under an additional
condition on F (preservation of continuity), the function (f_inf infinity) is the least fixpoint of F.

Recapitulating, we started with the intention of defining a function f : A -> option B, using
its functional F : (A -> option B)-> A -> option B, via the fixpoint definition f := F f. We
have assumed this is rejected by Coq. Per the results below we define f:= f_inf infinity and prove
that is the least solution of the fixpoint equation f = F f - precisely the solution that Coq would have
constructed had it accepted the definition f := F f - with the advantage that our definition is accepted.

3.2 Elements of Order Theory

The results in this subsection have been adapted from the textbook [2]. We have formalized them in
Coq, hence, hereafter proofs are only sketched or omitted altogether. The examples are not only used for
illustration purposes: they also serve as building blocks in our approach to partial recursive functions.

Definition 1 A pointed partial order (PPO) (S ,�,⊥) is a partially ordered set (S ,�) together with a
distinguished element ⊥ ∈ S such that for all s ∈ S , ⊥ � s.

Example 1 The triple (N,≤,0) consisting of natural numbers N, their usual order ≤, and the least natural
number 0 form a PPO.

Example 2 For any set A, the triple (A∪ {⊥},�,⊥) with ⊥ < A, and � being defined as the smallest
relation on A∪{⊥} such that ⊥ � a and a � a for all a ∈ A, is a PPO called the flat PPO of A.

In Coq the flat PPO of a type A is encoded using the type option A where None plays the role of ⊥.
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Definition 2 Given a PPO (S ,�,⊥), a set S ′ ⊆ S is directed if S , ∅ and for all x,y ∈ S there exists z ∈ S
such that x,y ≤ z.

Example 3 Any nonempty set of natural numbers in the PPO (N,≤,0) is directed.

The above example is a consequence of the more general fact that any nonempty sequence, i.e., totally
ordered subset of elements in a PPO, is directed. Indeed, directed sets are generalizations of sequences.

Example 4 In a flat PPO (A∪{⊥},�,⊥), the directed sets are exactly: the singletons {x} with x ∈ A∪{⊥},
and the pairs of elements of the form {a,⊥} with a ∈ A.

Definition 3 A Complete Partial Order (CPO) is a PPO (S ,�,⊥) with the additional property that any
directed set T ⊆ S has a least upper bound, denoted by lubT .

Least upper bounds of directed sets are generalizations of limits of sequences.

Example 5 Consider the PPO (N∪ {∞},≤,0) with the order ≤ on natural numbers extended such that
∞ ≤ ∞ and n ≤ ∞ for all n ∈ N. Then, (N∪ {∞},≤,0) is a CPO. Indeed, in this totally ordered set all
subsets T ⊆ N∪{∞} are directed, and lubT is either:

• the maximum of T , if it exists

• ∞, if the maximum of T does not exist.

In Coq the set N∪{∞} shall be encoded as the type conat seen earlier in this section.

Example 6 In a PPO (A∪ {⊥},�,⊥), the least upper bound of a singleton {x} is x and the least upper
bound of a pair {⊥,a} is a. Those are the only directed sets in this PPO; hence, (A∪{⊥},�,⊥) is a CPO.

Informally, the notion of compactness below captures what it means for an element to be finite.

Definition 4 In a CPO (S ,�,⊥), an element s◦ ∈ S is compact whenever for all directed sets T ⊆ S , if
s◦ � lubT then there exists t ∈ T such that s◦ � t.

Example 7 In the CPO (N∪{∞},≤,0) the compact elements are exactly the (finite) natural numbers.

Example 8 In the CPO (A∪{⊥},�,⊥) all the elements are compact.

Some CPOs are, in the following sense, completely determined by their compact elements:

Definition 5 A CPO (S ,�,⊥) having the set S ◦ ⊆ S of compacts is algebraic if for all s ∈ S , the set
{s◦ ∈ S ◦ | s◦ � s} is directed, and s = lub {s◦ ∈ S ◦ | s◦ � s}.

Example 9 The CPO (N∪{∞},≤,0) is algebraic. Indeed, for all n ∈N∪{∞}, the set of compacts (natural
numbers) {m ∈ N | m ≤ n} is directed (as is any nonempty subset of N∪{∞}). Moreover,

• if n =∞, then the set {m ∈ N | m ≤ n} coincides with N, and lubN =∞;

• if n ∈ N, then lub {m ∈ N | m ≤ n} = n.

Example 10 The flat CPO (A∪{⊥},�,⊥) is algebraic. Indeed:

• for all a ∈ A, the set {⊥,a} of compacts in the � relation with a is directed, and a = lub {⊥,a}

• the set {⊥} of compacts in the � relation with ⊥ is directed and lub {⊥} = ⊥.

We shall use the following notion, which relates a PPO to the compact elements of an algebraic CPO:
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Definition 6 Consider a PPO (S◦,�◦,⊥◦) and an algebraic CPO (T,�,⊥) whose set of compacts is T ◦.
We say that (T,�,⊥) is an embedding of (S◦,�◦,⊥◦) if there exists an injection ι : S◦→ T such that:

• ι⊥◦ = ⊥;

• ι is monotonic;

• ι maps S ◦ to T ◦, written ιS◦ = T ◦.

The embedding, including the injection involved in it, is denoted by ι : (S◦,�◦,⊥◦)→ (T,�,⊥).

Example 11 The embedding κ : (N,≤,0)→ (N∪{∞},≤,0) is induced by the canonical inclusion κ of N
into N∪{∞}. The embedding of (A∪{⊥},�,⊥) into itself is also induced by the canonical inclusion.

Remark: not all embeddings are induced by canonical inclusions. In Coq, in general, they are not. This
is because Coq is based on type theory, hence, one cannot just add a new element to a type; to do this one
must create a new type and wrap the old type in a constructor (which, in Coq, is always an injection). An
example of this is the representation of N∪ {∞} as the type conat with a constructor finite : nat
-> conat. With the appropriate order and bottom element, conat is an embedding of nat induced by
the constructor finite. The only situations when canonical inclusion induces an embedding in Coq is
when it coincides with the identity function, like in the embedding of (A∪{⊥},�,⊥) into itself.

Definition 7 Assume an embedding ι : (S◦,�◦,⊥◦)→ (T,�,⊥). We denote by ι−1 : T → S◦ the (unique)
function such that ι−1 (ι s◦) = s◦ for all s◦ ∈ S◦, and ι−1 t = ⊥◦ for t ∈ T \ (ιS◦).

Hence ι−1 is the inverse of ι on the compacts ιS◦ of T , and elsewhere it is given the (arbitrary) value ⊥.
The next theorem is our main ingredient for defining and reasoning about partial recursive functions.

It uses the following notion of continuity:

Definition 8 Given two CPOs (T,�,⊥) and (T ′,�′,⊥′), a function f : T → T ′ is continuous if for any
directed set S ⊆ T, its image ( f S ) ⊆ T ′ is directed, and f (lub S ) = lub( f S ).

Theorem 1 Assume two embeddings ι1 : (S◦1,�
◦
1,⊥
◦
1)→ (T1,�1,⊥1) and ι2 : (S◦2,�

◦
2,⊥
◦
2)→ (T2,�2,⊥2)

and a monotonic function f ◦ : S◦1→ S◦2. Then there exists a unique continuous function f : T1→ T2 such
that f = ι2 ◦ f ◦ ◦ ι−1

1 — where ◦ is the standard notation for function composition.

If the embeddings in Theorem 1 are canonical inclusions we have a simpler version of the above result:

Corollary 1 Assume two embeddings ι1 : (S◦1,�
◦
1,⊥
◦
1)→ (T1,�1,⊥1) and ι2 : (S◦2,�

◦
2,⊥
◦
2)→ (T2,�2,⊥2)

where ι1, ι2 are canonical inclusions. Then, for any any monotonic function f ◦ : S◦1→ S◦2 there exists a
unique continuous function f : T1→ T2 such that for all s◦ ∈ S◦1, f s◦ = f ◦s◦.

3.3 Application to Partial Recursive Functions

We use the existence part of Theorem 1 in order to define partial recursive functions and the uniqueness
part in order to prove that the defined functions are least fixpoints of their respective fixpoint equations.

The method has been formalized in Coq; we sketch it below in mathematical notation. Assume that
we want to define a partial function f : A→ (B∪ {⊥}). We have have at our disposal the functional
F : (A→ (B∪{⊥}))→ A→ (B∪{⊥}). The following assumptions on F are required:

• monotonicity: for all f , f ′ : A→ (B∪{⊥}), if for all a ∈ A, f a� f ′a then for all a ∈ A, F f a� F f ′a,
where � is the flat order on (B∪{⊥}).
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• preservation of continuity: assume an arbitary function g : (N∪ {∞})→ A→ (B∪ {⊥}). If, for
each a ∈ A, the function λn→ g n a is continuous (as a function between (N∪{∞}) and (B∪{⊥})
organized as CPOs) then, for each a′ ∈ A the function λn→ F (g n) a′ is continuous as well.

The method proceeds as a series of steps, grounded in the results from the previous subsection:

1. A function f ◦ : N→ A→ (B∪⊥) is recursively defined by the equations: for all a ∈ A and m ∈ N,
f ◦ 0 a =⊥ and f ◦ (m+1) a = F ( f ◦ m) a; intuitively, for all m ∈N, ( f ◦m) constitute approximations
of the function that we want to define, constrained by the finite amount of fuel m ∈ N;

2. the monotonicity requirement on F ensures that, for all a ∈ A, the function f ◦a = λn→ ( f ◦ n a) is
monotonic as a function between N and (B∪{⊥}) organized as PPOs;

3. the existence result of Theorem 1 ensures that, for all a ∈ A that there exists a continuous function
fa : (N∪{∞})→ (B∪{⊥}), satisfying fa m = f ◦m a for all m ∈ N; here, we have used the fact that,
in the embeddings involved in our application of Theorem 1, the injections are the canonical inclu-
sions (cf. Example 11), hence, one can apply the simpler version of the theorem — Corollary 1;

4. using the uniqueness result of the corollary, for all a ∈ A, any continuous function f ′a : (N∪{∞})→
(B∪{⊥}) satisfying f ′a m = f ◦ (m + 1) a for all m ∈ N, also satisfies f ′a = fa ◦ (λn→ n + 1); here we
have used the fact that the function λ n→ n+1 : (N∪{∞})→ (N∪{∞}) is continuous, and that the
composition of continuous functions is a continuous function as well;

5. for all a ∈ A, let f ′a : (N∪{∞})→ (B∪{⊥}) be defined by f ′a = λn→ F (λ (x : A)→ fx n) a. Using
the continuity preservation requirement on F, the continuity of f ′a reduces to the continuity of
λn→ (λ (x : A)→ fx n) a = λn → fa n = fa; since fa is continuous, f ′a is continuous as well;

6. moreover, using the definitions of f ◦ (first item in this list), of fa (item 2), and of f ′a (item 5): for
all m ∈ N, f ′a m = F (λx→ fx m) a = F(λ x→ f ◦m x) a = F ( f ◦m) a = f ◦ (m + 1) a; hence, (cf.
item 4), f ′a = fa ◦ (λn→ n + 1). This implies that for all n ∈ (N∪{∞}), fa (n + 1) = F (λx→ fx n) ;

7. let now f : A→ (B∪{⊥}) defined, for all a ∈ A, by f a = fa ∞. Then, using item 6 and∞ =∞+ 1:
for all a ∈ A, f a = fa ∞ = fa (∞+1) = F (λ x→ fx ∞) a = F (λ x→ f x) a = F f a; that is, we have
obtained the fixpoint equation f = F f . What remains to be proved is that f is its least solution;

8. for this, we inductively define a sequence of functions in A→ (B∪{⊥}) by F0 = λ x→⊥ and, for all
m ∈ N, Fm+1 = F(Fm). Using the definition of f we prove the equality f = lub {Fn | n ∈ N}, where
the least upper bound is taken in the CPO of functions A→ (B∪ {⊥}) ordered pointwise. Finally,
we use a result that says that if F is monotonic on a CPO (it is, in our case, by the monotonicity
assumption) and lub {Fn | n ∈ N} is a fixpoint of F (it is, in our case, since lub {Fn | n ∈ N} = f and
f = F f ) then lub {Fn | n ∈ N} is the least fixpoint of F; i.e., f is the least fixpoint of F.

A comparison between the proposed approach for defining partial recursive functions and the standard
one based on Kleene’s fixpoint theorem is discussed in Section 6 dedicated to related works.

3.4 Instantiation to While Loops

The results from the previous subsection are now instantiated to while loops.
Recall from subsection 3.1 the failed attempt at defining while loops in Coq, and notice their type:

Fixpoint while{T:Type}(cond:reader T bool)(body:program T unit):program T unit:=
do c <- cond; if c then body ;; while cond body else reader_to_program (ret tt)
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In order to instantiate the method described in the previous subsection to while loops we first need to
change their type to A->option B for appropriate A, B. Remembering that program T unit is defined
as T->option(unit*T), once the implicit parameter T is chosen, the type of while becomes

(reader T bool) -> (program T unit) -> T -> option(unit*T)

In order to obtain a type of the form A->option B we uncurry the above type to

((reader T bool)*(program T unit)*T) -> option(unit*T)

where * builds products between types. Next, we define a function while’:A->option B where
A=(reader T bool)*(program T unit)*T and B=unit*T. For this we first write the functional for
the while’ function as follows

Definition While’{T:Type}(W:((reader T bool)*(program T unit)*T)->option unit*T)
(p:(reader T bool)*(program T unit)*T): option unit*T :=

let (cond,body,s) := decompose p in
(
do c <- cond;
if c then
body;;(fun (s’:T)=>W (cond, body, s’)) (*after ;; a function on T is expected*)
else reader_to_program (ret tt)
) s

(Notice how the parameter p was decomposed into three components.) After proving that While’ is
monotonic and preserves continuity, we obtain using the method in Subsection 3.3 the function while’:
(reader T bool)*(program T unit)*T -> option unit*T as the least fixpoint of While’.

What remains to be done is to curry the type (reader T bool)*(program T unit)*T->option
unit*T to the expected type of the while function. When this is done, we obtain while{T:Type}:
(reader T bool)->(program T unit)->T->option unit*T as the least fixpoint of the functional

Definition While{T:Type}(W:(reader T bool)->(program T unit)->T->option unit*T)
(cond :(reader T bool))(body : (program T unit))(s :T)) : option unit*T :=

(do c <- cond; if c then body;;(W cond body) else reader_to_program (ret tt)) s

which concludes our construction of while loops in Coq. The next step is to provide users with means to
reason about programs that contain such loops. This is the object of the next two sections. They shall be
using the two following facts, which are consequences of while being the least fixpoint of its functional:

• an unfolding lemma, which is just another form of the fixpoint equation:

Lemma while_unfold{T:Type}: forall(c: reader T bool)(b: program T unit),
while c b =

(do c’ <- c; if c’ then b;;while c b else reader_to_program (ret tt))

• a lemma stating that the while loop evaluates to Some x in a state if and only if there exists a
fuel-constrained version of the loop that also evaluates to the same Some x in the same state:

Lemma while_iff_while_fuel{T:Type}:
forall (c:reader T bool)(b:program T unit)(s:T)(x:unit*T),
while c b s = Some x <-> exists (fuel:nat), while_fuel fuel c b s = Some x.

Since evaluation to Some xmodels termination, the lemma can also be read as“if a loop terminates,
then it terminates in finitely many steps” - where the number of steps is upper-bounded by fuel.



D. Nowak & V. Rusu 105

4 Partial Correctness

In this section we define a monadic Hoare logic for partial correctness [7, 14]. Roughly speaking, partial
correctness expresses the fact that a program returns the right answer whenever it terminates. In this pa-
per, a program is a monadic computation. Remembering that Prop is the Coq type for logical statements,
one writes the Hoare triple {{P}} m {{Q}} for the proposition hoare_triple P m Q defined in Coq by

Definition hoare_triple
{T A : Type} (P : T -> Prop) (m : program T A) (Q : A -> T -> Prop) : Prop :=

forall s s’ a, P s -> m s = Some (a, s’) -> Q a s’.

That is, if the program m: (program T A) is in a state s: T such that the pre-condition P: T -> Prop
holds for s, if the program terminates (encoded by the fact that the program returns Some (a, s’)) then
the pair (a, s’) satisfies the postcondition Q: A -> T -> Prop.

There are Hoare triples for all monadic instructions, but the triple of interest is this paper is the one
for the while loops. It states that: if the body of the loop preserves an invariant I as long as the condition
cond of the loop is true, then the loop preserves the invariant whenever it terminates.

Lemma while_triple
{T: Type}(cond: reader T bool)(body: program T unit)(I: T -> Prop):

{{ fun s => I s /\ cond s = true }} body {{ fun _ s’ => I s’ }} ->
{{ I }} while cond body {{ fun _ s’ => cond s’ = false /\ I s’ }}.

In order to prove while_triple we first prove a triple for fuel-constrained loops by induction on fuel:

Lemma while_fuel_triple
{T:Type}(fuel:nat)(cond: reader T bool)(body: program T unit)(I: T -> Prop):
{{ fun s => I s /\ cond s = true }}body{{ fun _ s’ => I s’ }} ->
{{ I }} while_fuel fuel cond body {{ fun _ s’ => cond s’ = false /\ I s’ }}.

The lemma while_fuel_triple is used in the proof of while_triple, together with the lemmas
while_iff_while_fuel and while_unfold shown at the end of the previous subsection.

Then, while_triple is used to prove the weakest precondition triple for our running example:

Lemma length_wp (addr: nat)(P: nat -> State -> Prop):
{{ fun s => forall len,

Length s addr len ->
P len {| reg1 := 0; reg2 := len; memory := s.(memory) |} }}

length addr
{{ P }}.

where Length is an inductively defined relation that says that in a state s, the list starting at address addr
has length len. Having this predicate gives us an abstract manner of defining a linked list’s length:

Inductive Length (s:State): nat -> nat -> Prop :=
| length_nil : forall addr, addr = 0 -> Length s addr 0
| length_cons :
forall addr len,
addr <> 0 -> Length s (s.(memory) addr) len -> Length s addr (S len).
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In accordance to the laws of weakest precondition, length_wp says that the postcondition P must hold
in the precondition when applied to the expected return value upon termination (the length len) and to
the expected state upon termination {|reg1 := 0; reg2 := len; memory := s.(memory)|}.

As usual with Hoare logic, the crux of the proof is to find the right loop invariant to be fed to the
lemma while_triple. Here, it is a generalization of the precondition in length_wp:

fun _ s => forall len,
Length s s.(reg1) len ->
P (len+s.(reg2)) {| reg1:= 0; reg2:= len + s.(reg2) ; memory:= s.(memory) |}).

With this choice of invariant the proof of length_wp is just a matter of unfolding definitions.
The interest of having proved a weakest precondition lies in its generality. As immediate corollaries

of length_wp we obtain a first lemma that states that whenever length addr terminates, the register
reg2 contains the length of the linked list starting at address addr:

Lemma length_correct1 (s0: State)(addr: nat) :
{{ fun s => s = s0 }} length addr {{ fun _ s’ => Length s0 addr s’.(reg2) }}.

And another lemma stating that: if the linked list starting at address addr has length len, then this is the
value that will be returned by length addr whenever it terminates.

Lemma length_correct2 (len: nat)(addr: nat) :
{{ fun s => Length s addr len }} length addr {{ fun n _ => n = len }}.

5 Termination

In our approach, termination is modeled by evaluation to Some value. In order to succesfully prove
termination we need to specify quite precisely the value to which a program evaluates. The key for the
termination of the length program is the termination of its while loop, which is expressed as follows:

Lemma while_terminates:
forall len s addr, Length s addr len ->
forall n,
while do curr <- read_reg1; ret (curr != 0)
(incr_reg2;; do curr <- read_reg1; do next <- read_addr curr; write_reg1 next)
{| reg1 := addr; reg2 := n; memory := s.(memory) |} =
Some (tt, {| reg1 := 0; reg2 := n + len; memory := s.(memory) |}).

That is, when called in a state where the first register reg1 points to the beginning of the list and the
second register reg2 is initialized with some value n, the while loop ends in a state where the first
register is null and the second register contains n plus the length of the list. The memory field of
the state remains unchanged because the loop does not write in it. The return value tt is the unique
inhabitant of unit and encodes the fact that while loops do not actually return anything relevant.

Lemma while_terminates is proved by induction on n and uses the lemma while_unfold to
unfold the loop in the inductive step. It is then used to prove the termination of the length program:
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Lemma length_terminates:
forall s len addr,
Length s addr len ->
length addr s =
Some (len,{|reg1 := 0; reg2 := len; memory := s.(memory)|}).

This says that the function call length addr s terminates with value len whenever, according to the
inductive relation Length, the state s has a memory field where there is a well-formed linked list of
length len starting at address addr. If the list were not well-formed, i.e. its links would form a loop,
then the function would evaluate to None, which, in our method denotes non-termination.

6 Related Work

In domain theory [15] partial recursive functions are typically defined as least fixpoints of their func-
tionals using Kleene’s fixpoint theorem, which states that a functional has a least fixpoint whenever it is
continuous, and that the least fixpoint is obtained by infinitely many iterations of the functional starting
from a function defined nowhere. This theorem is very elegant and easy to prove. Our own version of
a fixpoint theorem (perhaps less elegant than Kleene’s theorem, and definitely harder to prove) has the
same conclusion but requires that the functional be monotonic and continuity-preserving, which roughly
means that, given a certain continuous function, the functional produces a continuous function. From
our own experience and that of other authors (e.g., [3]) it appears that using Kleene’s theorem, which
requires proving continuity, is difficult in practice, even in the simplest cases. For example, it took us
hundreds of lines of Coq code just to prove the continuity of the successor function on natural numbers
extended with infinity. By contrast, using our version of the theorem requires a proof of preservation of
continuity, which appear to be more manageable - for while-loops in a shallow embedding of an imper-
ative programming language in Coq the proof of continuity-preservation is remarkably simple: ten lines
of Coq code. One possible reason for why continuity-preservation is easier to prove for functionals than
continuity is that that the latter refers to the higher-order functional itself, whereas the former concerns
the argument of the functional, which is a simpler function, one order below the order of the functional.

Other authors have explored partial recursive functions in Coq. In [5] a partial recursive function’s
codomain is a thunk - a parameterized coinductive type that "promises" an answer as a value of its
parameter, but may postpone this answer forever, yielding nontermination. However, the functions being
defined now become corecursive functions, which are restricted in the Coq proof assistant. As a result,
only tail-recursive functions can be defined with this approach. This was also noted in [6, Chapter 7.3].

The same author [6, Chapter 7.2] proposes an alternative for the codomain of a partial function: a
computation is a type that associates to a natural-number approximation level an approximation of the
intended function. Like us the author uses the Coq option type, where None stands for nontermination
and Some for termination with a return value; and a monad of computations is designed so that com-
putations can encode imperative features. However, [6, Chapter 7.2] requires that the functional of the
function being defined be continuous, for a definition of continuity equivalent to that employed in domain
theory; hence this approach is subject to the general difficulty of proving continuity of functionals.

Regarding the embedding of imperative languages in proof assistants for the purpose of program
verification, an alternative to the shallow embedding that we here use is deep embedding, which consist
in defining the syntax, operational semantics [9, 10], and program logic for the guest language in the logic
of the host. Among the many projects we here cite the Iris project [1], a rich environment built around a
concurrent programming language and the corresponding program logic - concurrent separation logic.
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7 Conclusion and Future Work

Recursive functions in Coq need to terminate for the underlying logic to be sound. Coq typically ensures
termination via an automatically-checkable structural decreasing of terms to which recursive calls apply.
In more complex cases Coq can be helped by the user with termination proofs. The termination proof
becomes a part of a function definition; a function is not defined until the termination proof is completed.

For various reasons falling under the general notion of separation of concerns it is desirable to sep-
arate function definitions from termination proofs. It is also useful to have functions that do not ter-
minate on some inputs. This paper proposes a new approach that achieves these desirable features.
Non-termination is simulated as evaluation to a special value interpreted as "undefined". Under mild
conditions on the function’s body encoded as a higher-order functional, a possibly non-terminating func-
tion is defined and proved to be the least fixpoint of its functional according to a certain definition order.

We instantiate the general approach to while-loops in an imperative language shallowly embedded
in Coq. The shallow embedding is based on a combination of monads. The least-fixpoint property of the
resulting while loops is a key property enabling termination and partial-correctness proofs on imperative
programs containing them. The practicality of the approach is illustrated by proving partial correctness
and termination properties on a program computing the length of linked lists. Partial correctness is
expressed in Hoare logic and is proved in the standard manner, by having users provide a strong-enough
invariant; and termination is proved by having users provide an upper bound for the number of iterations.

Future Work A promising line of future work is to extend our approach to defining partial corecursive
function in Coq. The idea is that codomains of such functions would be encodings of coinductive types
organized as algebraic CPOs, generalizing the option types that we here used for recursive functions.
Initial experiments with defining some difficult corecursive functions that go beyond Coq’s builtin core-
cursion mechanisms (a filter function on streams, a mirror function on Rose trees) are promising.

The function-definition mechanism presented in this paper critically depends on functionals preserv-
ing continuity. A deeper understanding of the relationship between continuity-preservation and continu-
ity, and of the perimeter where the continuity-preservation property holds, is also left for future work.

A more practical future work direction is to apply the instance of our approach to imperative-program
definition and verification. Our intention is to build on our experience with proving low-level programs
manipulating linked lists [8]. An interesting logic to consider in this setting is separation logic [12],
perhaps by drawing inspiration from the shallow embedding of separation logic in Coq presented in [13].
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Spiking Neural P systems are a class of membrane computing models inspired directly by biologi-
cal neurons. Besides the theoretical progress made in this new computational model, there are also
numerous applications of P systems in fields like formal verification, artificial intelligence, or cryp-
tography. Motivated by all the use cases of SN P systems, in this paper, we present a new privacy-
preserving protocol that enables a client to compute a linear function using an SN P system hosted
on a remote server. Our protocol allows the client to use the server to evaluate functions of the form
t1k+ t2 without revealing t1, t2 or k and without the server knowing the result. We also present an SN
P system to implement any linear function over natural numbers and some security considerations of
our protocol in the honest-but-curious security model.

1 Introduction

Membrane computing (or P systems) is a new model of computation inspired by how membranes work
and interact in living cells [17]. There are several variants of the model e.g. neural P systems, cell P
systems, tissue P systems, etc., [29, 15, 12]. P systems have generated new perspectives on the P vs NP
problem, being used to efficiently solve hard problems [27, 3, 7, 28]. There are also multiple applications
of P systems in various fields like formal verification, artificial intelligence, or cryptography [30].

In this work we used a special type of P systems called Spiking Neural P systems (SN P systems for
short) [12]. SN P systems are inspired by biological neurons. There are also numerous variants of SN
P systems: SN P systems with astrocytes, SN P systems with communication on request, SN P systems
with polarization, SN P systems with colored spikes, etc., [16, 14, 25, 23].

Although there are many theoretical aspects and simulations in the literature, to gain the maximum
efficiency of these systems, they must be implemented on dedicated hardware [1]. If these systems are
implemented at a large scale, they will have to be accessed remotely in the cloud. This raises privacy
concerns about data uploaded to the server that hosts the P system. This paper approaches the problem
of confidentiality in SN P systems by describing a protocol that allows a client to perform a simple linear
computation using an SN P system that is served remotely without revealing private information.

http://dx.doi.org/10.4204/EPTCS.389.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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1.1 Related work

Besides the theoretical work, there are also many applications of P systems. In [22] the authors propose a
new key agreement protocol based on SN P systems. In [8, 10, 11] the authors describe how to implement
the RSA algorithm in the framework of membrane computing. One ingenious way of applying P systems
is shown in [24] which presents an algorithm to break the RSA encryption. There are also applications
in artificial intelligence. In [2] the authors present a survey of the learning aspects in SN P systems.
Clustering algorithms have also been developed in the framework of membrane computing [21, 20, 19].
Image processing is another common application of P systems [4, 26, 5].

1.2 Our contribution

In this paper, we present a protocol that allows a client to perform a linear computation using an SN
P system hosted on a server without revealing any private data. The SN P system computes functions
of the form t1k + t2 over natural numbers. The client must retrieve from the server the result of the
computation without the server knowing t1, t2 or k. Also, the server must not learn the value t1k+ t2.
To enable privacy-preserving computations on the server side, we use the ElGamal cryptosystem and its
homomorphic properties [6]. We also provide an SN P system that computes any linear function over
natural numbers and some security considerations of our protocol. The paper is organized as follows:
in Section 2 we present the background on the SN P system and homomorphic encryption. In Section
3, we show an SN P system that computes linear functions over the natural numbers. In Section 4, we
introduce our protocol and some security considerations. Section 5 is left for the conclusions and further
directions.

2 Preliminaries

In this section, we briefly present the Spiking Neural P systems (SN P systems) and the cryptographic
algorithm used in our protocol. We stress some useful properties of the encryption scheme.

2.1 Spiking Neural P systems

A Spiking Neural P system (SN P system) of degree m≥ 1 is defined as the following construct:

Definition 2.1. Π = (O,σ1,σ2, . . . ,σm,syn, i0) where:

• O = {a} is the alphabet. The symbol a denotes a spike.

• σi, 1 ≤ i ≤ m represents a neuron. Each neuron is characterized by the initial number of spikes
denoted by ni ≥ 0 and the finite set of rules denoted by Ri: σi = (ni,Ri).

• Each rule can be of the following two forms:

1. E/ar→ a; t where E is a regular expression over the alphabet O, r ∈N∗ represents the current
number of spikes in the neuron and t ≥ 0 is the refractory period. This type of rule is called
a firing rule.

2. as→ λ where s≥ 1 is the current number of spikes in the neuron and λ is a special symbol
that denotes an empty set of spikes. This type of rule is called a forgetting rule.

• syn ⊆ {1,2, . . . ,m}×{1,2, . . . ,m} is the set of synapses between neurons. No neuron can have a
synapse to it i.e. (i, i) /∈ syn ∀ 1≤ i≤ m.
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• i0 represents the output neuron.

A neuron can fire using the firing rule E/ar → a; t only if it contains n spikes such that an ∈ L(E)
and n≥ r where L(E) is a language defined in the following way:

• L(λ ) = {λ}

• L(a) = {a} ∀a ∈ O

• L((E1)∪ (E2)) = L(E1)∪L(E2)

• L((E1)(E2)) = L(E1)L(E2)

• L
(
(E1)

+)= L(E1)
+

for all regular expressions over the alphabet O.
After firing, r spikes are consumed. A firing rule that is applied when the neuron contains exactly r

spikes i.e. L(E) = {ar}, is simply denoted as ar→ a; t.
At the neuron level, all rules are applied sequentially, but the system as a whole evolves with maxi-

mum parallelism i.e. if a rule can be applied in a neuron then that rule will be applied.
At a certain point, a neuron can be firing, spiking, or closed. If a neuron applies the firing rule

E/ar→ a; t at moment q then the neuron will send a spike to all the neurons to which it is connected by
synapses at moment q+ t. At times q+ 1,q+ 2, . . .q+ t− 1 the neuron will be in the refractory period
i.e. the neuron will not receive or send any spikes. When neuron σi is spiking, the spikes are replicated
in such a way that each neuron σ j with (i, j) ∈ syn receives one spike although the number of spikes
consumed by σi is exactly r.

When a forgetting rule as → λ is applied in a neuron, s spikes are removed from that neuron. A
neuron can apply a forgetting rule only if the number of spikes is exactly s.

There are several ways in which we can record the output of an SN P system:

• The moments of time at which the output neuron i0 sends a spike i.e. if the neuron i0 releases
spikes at the moments q1,q2 . . . then the output of Π is the sequence q1,q2 . . ..

• The interval between the moments at which the output neuron i0 sends a spike i.e. if the neuron i0
releases spikes at the moments q1,q2 . . . then the output of Π is the sequence q2−q1,q3−q2, . . .

An SN P system is constructed using the principle of minimal determinism i.e. at a certain moment
in time, either a firing or a forgetting rule is applied without being able to choose which of the two types
of rules is applied [12].

2.2 Homomorphic encryption

In this work, we use the ElGamal cryptosystem [6]. The security of the encryption scheme is based on
the computational Diffie-Hellman assumption (CDH). Moreover, the scheme achieves semantic security
based on the decisional Diffie-Hellman assumption (DDH) i.e. the scheme is randomized. Randomiza-
tion implies that when encrypting the same message multiple times, each resulting ciphertext will be
different. A consequence of this property is the fact that an attacker cannot distinguish two plaintexts by
analyzing the corresponding ciphertext with non-negligible probability. The scheme works over a group
G of order q with a generator g. We now proceed to the description of the cryptosystem:

• The key generation algorithm denoted by KeyGen generates a key pair i.e. a private key and the
corresponding public key. The algorithm takes the following steps:
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1. Generate a random integer x ∈ {1,2, . . .q−1}.
2. Compute h := gx.

3. Output the public key h and the corresponding private key x.

• The encryption algorithm denoted by Ency
h encrypts a plaintext m ∈ G using the public key h and

a random number y ∈ {1,2, . . . ,q−1}. The algorithm performs the following steps:

1. Computes s := hy.

2. Computes c1 := gy and c2 := m · s.

3. Outputs the ciphertext c := (c1,c2).

• The decryption algorithm denoted by Decx takes as input a ciphertext c = (c1,c2) and decrypts it
under the private key x. The algorithm is composed of the following steps:

1. Computes s := cx
1.

2. Computes s−1, the inverse of s in the group G.

3. Computes the plaintext m := c2 · s−1.

4. Outputs the plaintext m.

The proof of correctness is straightforward:

c2 · s−1 = c2 · c−x
1 = m ·hy ·g−xy = m ·g−xy ·gxy = m (1)

The encryption of a message m ∈ G can be summarized by the following two equations:

c1 = gy (2)

c2 = m ·hy (3)

The scheme is homomorphic with respect to multiplication. Let c = (c1,c2) and c′ = (c′1,c
′
2) be the

encryptions of two plaintexts m and m′ under the same public key h i.e. c = Ency
h (m) and c′ = Ency

h (m
′).

We define the following two operations:

1. Let c� c′ = (c1 · c′1,c2 · c′2) be the multiplication of two ciphertexts. The result of this operation is
another ciphertext that encrypts the sum between m and m′:

c1 · c′1 = gy ·gy′ = gy+y′ (4)

c2 · c′2 = m · s ·m′ · s′ = m ·m′ ·hy ·hy′ = m ·m′ ·hy+y′ (5)

From 4 and 5 we can see that c� c′ = (c1 · c′1,c2 · c′2) is a ciphertext that encrypts m ·m′ under the
public key h.

2. Let c⊗ k = (c1,c2 · k) be the multiplication between a ciphertext and a constant k. The result of
this operation is a ciphertext that encrypts the product between m and k as it can be seen from 6
and 7:

c1 = gy (6)

c2 · k = m · s · k = (m · k) · s = (m · k)hy (7)
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3. When c1 = c′1 i.e. y = y′, we can also define the addition between two ciphertexts as follows:
c⊕ c′ = (c1,c2 + c′2). The result of this operation is a ciphertext that encrypts the sum between m
and m′:

c1 = gy (8)

c2 + c′2 = m · s+m′ · s =
(
m+m′

)
· s =

(
m+m′

)
·hy (9)

It is important to notice that when y = y′ the scheme is no longer semantically secure. Although an
attacker who observes the two ciphertexts c and c′ could not recover any of the plaintexts, it could
determine additional information about them e.g. whether they are different. In many scenarios,
this is not acceptable but in this work, we will use the ⊕ operation. All the messages encrypted
with the same random y are not critical i.e. the impact of the lack of semantic security does not
affect the security of the protocol in which the encryption scheme is used.

3 SN P system to compute linear functions

In this section, we describe an SN P system that computes functions of the form t1k+ t2 over natural
numbers.

a2k−1

a+/a→ a; t1−1

σ1

a
a→ a;0

σ2

ak→ a; t2−1

σ3

Figure 1: SN P system to compute linear functions

Let ΠAdd (t1, t2,k) = {{a},σ1,σ2,σ3,synadd ,σ2} be the SN P system that computes the linear func-
tion t1k+ t2, t1, t2 ∈ N with the following components:

• The alphabet is made from a single symbol {a} that denotes a spike.

• There are three neurons: σ1,σ2 and σ3 with the following firing rules:

1. For σ1 the firing rule is a+/a→ a; t1−1.
2. For σ2 the firing rule is a→ a;0.
3. For σ3 the firing rule is ak→ a; t2−1.

• The set of synapses synadd is the set {(1,3) ,(3,2)}.
• The output neuron is σ2.

Initially σ1 has 2k−1 spikes, σ2 has 1 spike and σ3 has no spikes. Since σ2 has no refractory time
and one spike, it will release it in the first step of the computation. During the first step, σ1 will be firing.
Since its refractory period is t1− 1 during the time steps 2,3, . . . t1− 1 the neuron will be closed i.e. it
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will not receive or send any spikes. In step t1 the neuron will send one spike to σ3 and fire again. Thus
σ1 fires every t1 steps consuming one spike and sending one spike to σ3. σ3 will fire when it acumulates
k spikes from neuron σ1. Since σ1 fires one spikes every t1 steps, at time step, k · t1 σ3 will receive the
kth spike. At the moment t1 · k+1, σ3 will fire. The refractory period of this neuron is t2−1 thus at the
steps t1 · k+2, t1 · k+3, . . . , t1 · k+ t2−1 it will be closed and it will release one spike to σ2 at t1 · k+ t2.
Since σ3 has no refractory period, it will release the spike at the moment t1 · k+ t2 +1. At this point, the
number of spikes left in σ1 is k−1 because it already sent k spikes to neuron σ3 and the initial number
of spikes was 2k− 1. The neuron will continue to send spikes to σ3 at the appropriate time steps until
the spikes run out. The neuron σ3 will never fire again since it can no longer accumulate k spikes. σ2
will never fire again either since it will no longer receive the spike from σ3. Thus, after σ1 exhausts all
the spikes, the computation will stop. There are two moments when the output neuron σ2 fires: 1 and
t1 ·k+ t2 +1. Thus, the result of the computation i.e. the difference between the time points at which the
output neuron fires, is t1 · k+ t2. The ΠAdd (t1, t2,k) system is depicted in Figure 1.

4 Privacy-preserving computations in SN P systems

In this section, we describe our protocol which enables the running of an SN P system to compute linear
functions in a privacy-preserving way. We also make some remarks regarding security.

4.1 The protocol

There are two actors in the protocol:

1. The Server: it can instantiate and run an SN P system of the form ΠAdd (t1, t2,k) for any integers
t1, t2 and k.

2. The Client: it wants to evaluate the linear function t1 · k+ t2 using the system hosted by the Server
without revealing any of inputs t1, t2 or k.

The protocol uses the holomorphic properties of the ElGamal cryptosystem to allow the client to use
the server without revealing the inputs of the SN P system. There are 7 steps:

1. The Client will use the KeyGen algorithm to generate a key pair: h and x.

2. The Client will use the encryption algorithm Ency
h to encrypt t1, t2 and k. We denote by ct1 =(

ct1
1 ,c

t1
2

)
,ct2 =

(
ct2

1 ,c
t2
2

)
and ck =

(
ctk

1 ,c
k
2

)
the encryptions of t1, t2 and k:

• ct1 =
(
ct1

1 ,c
t1
2

)
= Ency1

h (t1)
• ck =

(
ck

1,c
k
2

)
= Ency2

h (k)

• ct2 =
(
ct2

1 ,c
t2
2

)
= Ency1+y2

h (t2)

3. The Client will store locally ct1
1 ,c

t2
1 and ck

1 and send to the server ct1
2 ,c

t2
2 and ck

2.

4. The Server will instantiate and run an SN P system of the form ΠAdd
(
ct1

2 ,c
t2
2 ,c

k
2

)
.

5. After the computation stops, the Server will return to the client the result of the computation i.e.
c2 = ct1

2 · ck
2 + ct2

2 .

6. The Client will compose a new ciphertext c = (c1,c2) where c1 = ct1
1 · ck

1.

7. The Client will decrypt the ciphertext c using the algorithm Decx and retrived the result of the
computation i.e. t1 · k+ t2.



116 On Privacy in Spiking Neural P Systems

We now prove that the ciphertext computed in step 6 of the protocol is a valid ElGamal ciphertext that
correctly decrypts to the final result of the computation i.e. t1 · k+ t2. Let c′ be the following ciphertext:

c′ =
(

c1,c
t1
2 · c

k
2

)
(10)

Since c1 = ct1
1 · ck

1 we can write c′ as:

c′ =
(

ct1
1 · c

k
1,c

t1
2 · c

k
2

)
(11)

The ciphertext c′ represents the multiplication between the ciphertexts ct1 and ck:

c′ = ct1� ck (12)

Since c and c′ use the same randomess i.e. c1, we can write c as the sum between the ciphertext c′

and ct2 :
c = c′⊕ ct2 (13)

In conclusion, we can express c as a composition of valid ElGamal ciphertexts which is also a valid
ElGamal ciphertext:

c =
(

ct1� ck
)
⊕ ct2 (14)

The ciphertext
(
ct1� ck

)
represents the encryption of t1 · k. When we add this ciphertext with ct2

using the ⊕ operation, the resulting ciphertext will be the encryption of t1 · k+ t2 which is the result of
the computation performed over plaintext data. Figure 2 depicts our protocol.

Since the SN P system works over natural numbers, we can use G = Zq for a large prime q.

4.2 Security considerations

We analyze our protocol in the honest-but-curious security model [18]. In this model, we assume that
the adversary is the Server. There are two properties of the adversary:

1. Curious: the Server will try to find information about the underlying plaintexts. In our case, these
are the parameters of the SN P system: t1, t2, and k.

2. Honest: the Server will respect the protocol and it will complete every step. It will not modify in
any way the messages received or sent to the Client.

The underlying encryption scheme i.e. the ElGamal cryptosystem is semantically secure given the
DDH assumption as long as each ciphertext is generated using different randomness [9]. The security of
the scheme can be illustrated using the following game. We suppose that the attacker runs in probabilistic
polynomial time and has access to an encryption oracle that receives as input a plaintext and returns the
corresponding ciphertext:

• The attacker chooses as many plaintexts as it wants and encrypts them using the oracle. For each
ciphertext, the attacker knows the corresponding plaintext.

• The attacker chooses two plaintext m0 and m1 and send them to the oracle.

• The oracle will generate a random bit b and return the encryption of mb.

• The attacker outputs the bit b.
The scheme is secure as long as the attacker cannot output the correct bit with non-negligible probability.

Given the fact that the Client encrypts each parameter of the SN P system using the ElGamal cryp-
tosystem with different randomness, the Server cannot learn any information about them with non-
negligible probability.
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Public parameters:
G,g,q

Client

KeyGen

ct1 ,ct2 ,ck

c = (c1,c2)

Decx (c)

Server

ΠAdd
(
ct1

2 ,c
t2
2 ,c

k
2

)
c2 = ct1

2 · ck
2 + ct2

2

ct1
2 ,c

t2
2 ,c

k
2

c2

Figure 2: Privacy-preserving linear function computation using SN P systems

5 Conclusions and further directions of research

In this paper, we presented a protocol for performing privacy-preserving computation over SN P systems.
There are two actors involved: the client and the server. The server hosts an SN P system that computes
linear function over natural numbers i.e. t1k+ t2. The client uses the protocol to retrieve the result of the
computation without revealing t1, t2 or k and without the server knowing the result of the calculation. We
presented an SN P system that computes any linear function over natural numbers and also some security
considerations about our protocol which is based on the ElGamal cryptosystem.

There are several directions of research. The first one is to give formal proof of the security of the
protocol. Although the protocol is secure at first sight, we must prove it by reducing the security of it
to the security of the underlying cryptosystem. The second direction of research is to enable complex
computation on SN P systems in a privacy-preserving way. The third direction is to use dedicated cryp-
tosystems e.g. fully homomorphic encryption schemes which are created to enable privacy-preserving
computations [13]. The challenge here is to map the operations performed over encrypted data to the
operations performed by the SN P system. We should also consider using other privacy-enhancing tech-
nologies e.g. secure multi-party computation or differential privacy to enable private computations over
SN P systems. Another direction of research is to implement the protocol and perform the appropriate
benchmarking to study its efficiency and communication overhead in practice.
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7th Symposium on Working Formal Methods (FROM 2023)
EPTCS 389, 2023, pp. 120–130, doi:10.4204/EPTCS.389.10

© Postovan & Eraşcu
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Traffic signs play a critical role in road safety and traffic management for autonomous driving sys-
tems. Accurate traffic sign classification is essential but challenging due to real-world complexities
like adversarial examples and occlusions. To address these issues, binary neural networks offer
promise in constructing classifiers suitable for resource-constrained devices.

In our previous work, we proposed high-accuracy BNN models for traffic sign recognition, focus-
ing on compact size for limited computation and energy resources. To evaluate their local robustness,
this paper introduces a set of benchmark problems featuring layers that challenge state-of-the-art ver-
ification tools. These layers include binarized convolutions, max pooling, batch normalization, fully
connected. The difficulty of the verification problem is given by the high number of network param-
eters (905k - 1.7 M), of the input dimension (2.7k-12k), and of the number of regions (43) as well by
the fact that the neural networks are not sparse.

The proposed BNN models and local robustness properties can be checked at https://github.
com/ChristopherBrix/vnncomp2023_benchmarks/tree/main/benchmarks/traffic_signs_

recognition.
The results of the 4th International Verification of Neural Networks Competition (VNN-COMP’23)

revealed the fact that 4, out of 7, solvers can handle many of our benchmarks randomly selected
(minimum is 6, maximum is 36, out of 45). Surprisingly, tools output also wrong results or missing
counterexample (ranging from 1 to 4). Currently, our focus lies in exploring the possibility of achiev-
ing a greater count of solved instances by extending the allotted time (previously set at 8 minutes).
Furthermore, we are intrigued by the reasons behind the erroneous outcomes provided by the tools
for certain benchmarks.

1 Introduction

Traffic signs play a crucial role in ensuring road safety and managing traffic flow, both in urban and
highway driving. For autonomous driving systems, the accurate recognition and classification of traffic
signs, known as traffic sign classification (recognition), are essential components. This process involves
two main tasks: firstly, isolating the traffic sign within a bounding box, and secondly, classifying the sign
into a specific traffic category. The focus of this work lies on the latter task.

Creating a robust traffic sign classifier is challenging due to the complexity of real-world traffic
scenes. Common issues faced by classifiers include a lack of robustness against adversarial exam-
ples [19] and occlusions [21]. Adversarial examples are inputs that cause classifiers to produce erro-
neous outputs, and occlusions occur naturally due to various factors like weather conditions, lighting,
and aging, which make traffic scenes unique and diverse.

To address the lack of robustness, one approach is to formally verify that the trained classifier can
handle both adversarial and occluded examples. Binary neural networks (BNNs) have shown promise

http://dx.doi.org/10.4204/EPTCS.389.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/ChristopherBrix/vnncomp2023_benchmarks/tree/main/benchmarks/traffic_signs_recognition
https://github.com/ChristopherBrix/vnncomp2023_benchmarks/tree/main/benchmarks/traffic_signs_recognition
https://github.com/ChristopherBrix/vnncomp2023_benchmarks/tree/main/benchmarks/traffic_signs_recognition
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in constructing traffic sign classifiers, even in devices with limited computational resources and en-
ergy constraints, often encountered in autonomous driving systems. BNNs are neural networks (NNs)
with binarized weights and/or activations constrained to ±1, reducing model size and simplifying image
recognition tasks.

The long-term goal of this work is to provide formal guarantees of specific properties, like robust-
ness, that hold for a trained classifier. This objective leads to the formulation of the verification problem:
given a trained model and a property to be verified, does the model satisfy that property? The verifi-
cation problem is translated into a constrained satisfaction problem, and existing verification tools can
be employed to solve it. However, due to its NP-complete nature [14], this problem is experimentally
challenging for state-of-the-art tools.

In our previous work [16], we proposed high-accuracy BNN models explicitly for traffic sign recog-
nition, with a thorough exploration of accuracy, model size, and parameter variations for the produced
architectures. The focus was on BNNs with high accuracy and compact model size, making them suitable
for devices with limited computation and energy resources, while also reducing the number of param-
eters to facilitate the verification task. The German Traffic Sign Recognition Benchmark (GTSRB) [5]
was used for training, and testing involved similar images from GTSRB, as well as Belgian [1] and Chi-
nese [4] datasets. This paper builds upon the models with the best accuracy from the previous study [16]
and presents a set of benchmark problems to verify local robustness properties of these models.

The novelty of the proposed benchmarks lies in the fact that traffic signs recognition is done using
binarized neural networks. To the best of our knowledge this was not done before [8, 18]. Compared
to existing benchmarks. The types of layers used determine a complex verification problem and include
binarized convolution layers to capture advanced features from the image dataset, max pooling layers
for model size reduction while retaining relevant features, batch normalization layers for scaling, and
fully connected (dense) layers. The difficulty of the verification problem is given by the high number of
network parameters (905k - 1.7 M), of the input dimension (2.7k-12k), and of the number of regions (42)
as well by the fact that the neural networks are not sparse. Discussions with organizers and competitors
in the Verification of Neural Network Competition (VNN-COMP)1 revealed that no tool competing in
2022 could handle the proposed benchmark. Additionally, in VNN-COMP 2023 [3], the benchmark was
considered fairly complex by the main developer of the winning solver α,β -CROWN2.

We publicly released our bechmark in May 2023. In the VNN-COMP 2023, which took place in
July 2023, our benchmark was used in scoring, being nominated by at least 2 competing tools. 4, out of
7, tools were able to find an answer for the randomly generated instances. Most instances were solved
by α,β -CROWN (39 out of 45) but it received penalties for 3 results due to either incorrect answer
or missing counterexample. Most correct answers were given by Marabou3 (18) with only 1 incorrect
answer.

Currently, we are investigating the reasons why the tools were not able to solve all instances and
why incorrect answers were given. Additionally, more tests will be performed on randomly generated
answers and we will examine the particularities of the input images and of the trained networks which
can not be handled by solvers due to timeout or incorrect answer.

The rest of the paper is organized as follows. In Section 2 we present related work focusing on
comparing the proposed benchmark with others competing in VNN-COMP. Section 3 briefly describes
deep neural networks, binarized neural networks and formulates the robustness property. In Section 4 we

1https://github.com/stanleybak/vnncomp2023/issues/2
2https://github.com/Verified-Intelligence/alpha-beta-CROWN
3https://github.com/NeuralNetworkVerification/Marabou
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describe the anatomy of the trained neural networks whose local robustness is checked. In Section 5.1
we introduce the verification problem and its canonical representation (VNN-LIB and ONNX formats).
Section 6 presents the methodology for benchmarks generation and the results of the VNN-COMP 2023.

2 Related Work

There exist many approaches for the verification of neural networks, see [20] for a survey, however few
are tackling the verification of binarized neural networks.

Verifying properties using boolean encoding [15] is an alternative approach to validate characteristics
of a specific category of neural networks, known as binarized neural networks. These networks possess
binary weights and activations. The proposed technique involves reducing the verification problem from
a mixed integer linear programming problem to a Boolean satisfiability. By encoding the problem in
Boolean logic, they exploit the capabilities of modern SAT solvers, combined with a counterexample-
guided search method, to verify various properties of these networks. A primary focus of their research is
assessing the networks’ resilience against adversarial perturbations. The experimental outcomes demon-
strate the scalability of this approach when applied to medium-sized deep neural networks employed in
image classification tasks. However their neural networks do not have convolution layers and can handle
only a simple dataset like MNIST where images are black and white and there are just 10 classes to
classify. Also, no tool implementing the approach was realeased to be tested.

Paper [6] focuses on verification of binarized neural network, extended the Marabou [14] tool to
support Sign Constrains and verified a network that uses both binarized and non-binarized layers. For
testing they used Fashion-MNIST dataset which was trained using XNOR-NET architecture and ob-
tained the accuracy of only 70.97%. This extension could not be used in our case due to the fact that we
have binarized convolution layers which the tool can not handle.

In the verification of neural networks competition (VNN-COMP), in 2022, there are various bench-
marks subject to verification [2], however, there is none involving traffic signs. To the best of our knowl-
edge there is only one paper which deals with traffic signs datasets [11] that is GTSRB. However, they
considered only subsets of the dataset and their trained models consist of only fully connected (FC) lay-
ers with ReLU activation functions, not convolutions, ranging from 70 to 1300 neurons. Furthermore
they do not mention the accuracy of their trained models to be able to compare it with ours. Moreover,
the benchmarks from VNN-COMP 2022 [?] used for image classification tasks have are in Table 1. As
one could observe, no benchmarks use binarized convolutions and batch normalization layers. Discus-
sions with competition organizers revealed the fact that no tool from 2022 competition could handle our
benchmark4.

Table 1: Benchmarks proposed in the VNN-COMP 2022 for image classification tasks

Category Benchmark Network Types #Neurons Input Dimension

CNN & ResNet

Cifar Bias Field Conv. + ReLU 45k 16
Large ResNets ResNet (Conv. + ReLU) 55k - 286k 3.1k - 12k

Oval21 Conv. + ReLU 3.1k - 6.2k 3.1k
SRI ResNet A/B ResNet (Conv. + ReLU) 11k 3.1k

VGGNet16 Conv. + ReLU + MaxPool 13.6M 1 - 95k
Fully-Connected MNIST FC FC. + ReLU 512 - 1.5k 784

The report of this year neural networks verification competition (VNN-COMP 2023) is in the draft
version, but we present here the differences between our benchmark and the others. Table 2 taken

4See https://github.com/stanleybak/vnncomp2023/issues/2 intervention from user stanleybak on May 17, 2023
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from the draft report presents all the scored benchmarks, i.e. benchmarks which were nominated by
at least 2 competing tools and are used in their ranking. The column Network Type presents the types of
layers of the trained neural network, the column # of Params represent the number of parameters of the
trained neural network, the column Input Dimension represents the dimension of the input (for example,
for an image with dimension 30x30 pixels and RGB channel the dimension is 30x30x3 which means
that the verification problem contains 30x30x3 variables), the Sparsity column represents the degree of
sparsity of the trained neural network and, finally, the column # of Regions represents the number of
regions determined by the verification problem (for example, for our German Traffic Sign Recognition
Benchmark there are 43 traffic signs classes). Our proposed benchmark, Traffic Signs Recognition, is
more complex as the others as it involves cumulatively a high number of parameters, input dimension,
number of regious and no sparsity.

Table 2: Benchmarks proposed in the VNN-COMP 2023

Name Network Type # of Params Input
Dimension Sparsity # of Regions

nn4sys Conv, FC, Residual + ReLU, Sigmoid 33k - 37M 1-308 0-66% 1 - 11k
VGGNet16 Conv + ReLU + MaxPool 138M 150k 0-99% 1

Collins Rul CNN Conv + ReLU, Dropout 60k - 262k 400-800 50-99% 2
TLL Verify Bench FC + ReLU 17k - 67M 2 0% 1

Acas XU FC + ReLU 13k 5 0-20% 1-4

cGAN
FC, Conv, ConvTranspose,

Residual + ReLU, BatchNorm, AvgPool 500k-68M 5 0-40% 2

Dist Shift FC + ReLU, Sigmoid 342k-855k 792 98.9% 1
ml4acopf FC, Residual + ReLU, Sigmoid 4k-680k 22-402 0-7% 1-600

Traffic Signs Recogn Conv+Sign+MaxPool+BatchNorm, FC, 905k-1.7M 2.7k-12k 0% 43
ViT Conv, FC, Residual + ReLU, Softmax, BatchNorm 68k-76k 3072 0% 9

3 Theoretical Background

3.1 Deep Neural Networks

Neural networks, inspired by the human brain, are computational models composed of interconnected
nodes called artificial neurons. These networks have gained attention for their ability to learn and perform
complex tasks. The nodes compute outputs using activation functions, and synaptic weights determine
the strength of connections between nodes. Training is achieved through optimization algorithms, such
as backpropagation, which adjust the weights iteratively to minimize the network’s error.

A deep neural network (DNN) [6] can be conceptualized as a directed graph, where the nodes, also
known as neurons, are organized in layers. The input layer is responsible for receiving initial values,
such as pixel intensities in the case of image inputs, while the output layer generates the final predictions
or results. Hidden layers, positioned between the input and output layers, play a crucial role in extracting
and transforming information. During the evaluation or inference process, the input values propagate
through the network, layer by layer, using connections between neurons. Each neuron applies a specific
mathematical operation to the inputs it receives, followed by the activation function that introduces non-
linearity to the network. The activation function determines the neuron’s output based on the weighted
sum of its inputs and an optional bias term.

Different layer types are employed in neural networks to compute the values of neurons based on the
preceding layer’s neuron values. Those relevant for our work are introduced in Section 3.2.
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Figure 1: A fully connected DNN with 4 input nodes, 3 output nodes and 3 hidden layers

3.2 Binarized Neural Networks

A BNN [12] is a feedforward network where weights and activations are mainly binary. [15] describes
BNNs as sequential composition of blocks, each block consisting of linear and non-linear transforma-
tions. One could distinguish between internal and output blocks.

There are typically several internal blocks. The layers of the blocks are chosen in such a way that
the resulting architecture fulfills the requirements of accuracy, model size, number of parameters, for
example. Typical layers in an internal block are: 1) linear transformation (LIN) 2) binarization (BIN)
3) max pooling (MP) 4) batch normalization (BN). A linear transformation of the input vector can be
based on a fully connected layer or a convolutional layer. In our case is a convolution layer since our
experiments have shown that a fully connected layer can not synthesize well the features of traffic signs,
therefore, the accuracy is low. The linear transformation is followed either by a binarization or a max
pooling operation. Max pooling helps in reducing the number of parameters. One can swap binarization
with max pooling, the result would be the same. We use this sequence as Larq [9], the library we used
in our experiments, implements convolution and binarization in the same function. Finally, scaling is
performed with a batch normalization operation [13].

There is one output block which produces the predictions for a given image. It consists of a dense
layer that maps its input to a vector of integers, one for each output label class. It is followed by function
which outputs the index of the largest entry in this vector as the predicted label.

We make the observation that, if the MP and BN layers are omitted, then the input and output of the
internal blocks are binary, in which case, also the input to the output block. The input of the first block
is never binarized as it drops down drastically the accuracy.

3.3 Properties of (Binarized) Neural Networks: Robustness

Robustness is a fundamental property of neural networks that refers to their ability to maintain stable and
accurate outputs in the presence of perturbations or adversarial inputs. Adversarial inputs are intention-
ally crafted inputs designed to deceive or mislead the network’s predictions.

As defined by [15], local robustness ensures that for a given input x from a set χ , the neural network
F remains unchanged within a specified perturbation radius ε , implying that small variations in the input
space do not result in different outputs. The output for the input x is represented by its label lx. We
consider L∞ norm defined as ||x||∞ = sup

n
|xn|, but also other norms can be used, e.g. L0 [17].

Definition 3.1 (Local robustness.). A feedforward neural network F is locally ε-robust for an input
x,x ∈ χ , if there does not exist τ, ||τ||∞ ≤ ε , such that F(x+ τ) 6= lx.
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Global robustness [15] is an extension of the local robustness and it is defined as the expected maxi-
mum safe radius over a given test dataset, representing a collection of inputs.

Definition 3.2 (Global robustness.). A feed-forward neural network F is globally ε-robust if for any
x,x ∈ χ , and τ, ||τ||∞ ≤ ε , we have that F(x+ τ) = lx.

The definitions above can not be used in a computational setting. Hence, [14] proposes Definition 3.3
for local robustness which is equivalent to Definition 3.1.

Definition 3.3 (Local robustness.). A network is ε-locally robust in the input x if for every x′, such that
||x− x′||∞ ≤ ε , the network assigns the same label to x and x′.

For our setting, the input is an image represented as a vector with values represented by the pixels.
Hence, the inputs are the vector x and the perturbation ε .

This formula can also be applied to all inputs simultaneously (all images from test set of the dataset),
in that case global robustness is addressed. However, the number of parameters involved in checking
global robustness property increases enormously. Hence, in this paper, the benchmarks propose verifica-
tion of local robustness only.

4 Anatomy of the Binarized Neural Networks

For benchmarking, we propose the two BNNs architectures for which we obtained the best accuracy [16],
as well an additional one. More precisely, the best accuracy for GTSRB and Belgium datasets is 96,45%
and 88,17%, respectively, and was obtained for the architecture from Figure 2, with input size 64×64
(see Table 3). The number of parameters is almost 2M and the model size 225,67 KiB (for the binary
model) compared to 6932,48 KiB (for the Float-32 equivalent). The best accuracy for Chinese dataset

Figure 2: Accuracy Efficient Architecture for GTSRB and Belgium dataset

Table 3: Best results for the architecture from Figure 2. Dataset for train: GTSRB.

Input size #Neur Accuracy #Params Model Size (in KiB)
German China Belgium Binary Real Total Binary Float-32

64px × 64px 1024 96.45 81.50 88.17 1772896 2368 1775264 225.67 6932.48

(83,9%) is obtained by another architecture, namely from Figure 3, with input size 48×48 (see Table 4).
This architecture is more efficient from the point of view of computationally limited devices and formal
verification having 900k parameters and 113,64 KiB (for the binary model) and 3532,8 KiB (for the
Float-32 equivalent). Also, the second architecture gave the best average accuracy and the decrease in
accuracy for GTSRB and Belgium is small, namely 1,17% and 0,39%, respectively.

One could observe that the best architectures were obtained for input size images 48x48 and 64x64
pixels with max pooling and batch normalization layers which reduce the number of neurons, namely
perform scaling which leads to good accuracy. We also propose for benchmarking an XNOR architecture,
i.e. containing only binary parameters, (Figure 4) for which we obtained the best results for input size
images 30x30 pixels and GTSRB (see Table 5).
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Figure 3: Accuracy Efficient Architecture for Chinese dataset

Table 4: Best results for the architecture from Figure 3. Dataset for train: GTSRB.

Input size #Neur Accuracy #Params Model Size (in KiB)
German China Belgium Binary Real Total Binary Float-32

48px × 48px 256 95.28 83.90 87.78 904288 832 905120 113.64 3532.80

5 Model and Property Specification: VNN-LIB and ONNX Formats

The VNN-LIB (Verified Neural Network Library) format [10] is a widely used representation for en-
coding and exchanging information related to the verification of neural networks. It serves as a stan-
dardized format that facilitates the communication and interoperability of different tools and frameworks
employed in the verification of neural networks.

The VNN-LIB format typically consists of two files that provide a detailed specification of the
neural network model (see Section 5.1), along with relevant properties and constraints (see Section 5.2).
These files encapsulate important information, including the network architecture, weights and biases,
input and output ranges, and properties to be verified.

5.1 Model Representation

In machine learning, the representation of models plays a vital role in facilitating their deployment and
interoperability across various frameworks and platforms. One commonly used format is the H5 format,
which is an abbreviation for Hierarchical Data Format version 5. The H5 format provides a structured
and efficient means of storing and organizing large amounts of data, including the parameters and archi-
tecture of machine learning models. It is widely supported by popular deep learning frameworks, such
as TensorFlow and Keras, allowing models to be saved, loaded, and shared in a standardized manner.

However, while the H5 format serves as a convenient model representation for specific frameworks,
it may lack compatibility when transferring models between different frameworks or performing model
verification. This is where the Open Neural Network Exchange (ONNX) format comes into play. ONNX
offers a vendor-neutral, open-source alternative that allows models to be represented in a standardized
format, enabling seamless exchange and collaboration across multiple deep learning frameworks.

The VNN-LIB format, which is used for the formal verification of neural network models, leverages
ONNX as its underlying model representation.

5.2 Property specification

For property specification, VNN-LIB standard uses the SMT-LIB format. The SMT-LIB (Satisfiability
Modulo Theories-LIBrary) language [7] is a widely recognized formal language utilized for the formal-
ization of Satisfiability Modulo Theories (SMT) problems.

A VNN-LIB file is structured as follows5 and the elements involved have the following semantics for

5See, e.g. https://github.com/apostovan21/vnncomp2023/blob/master/vnnlib/model_30_idx_1678_eps_1.
00000.vnnlib

https://github.com/apostovan21/vnncomp2023/blob/master/vnnlib/model_30_idx_1678_eps_1.00000.vnnlib
https://github.com/apostovan21/vnncomp2023/blob/master/vnnlib/model_30_idx_1678_eps_1.00000.vnnlib
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Figure 4: XNOR(QConv) architecture

Table 5: XNOR(QCONV) architecture. Image size: 30px × 30px. Dataset for train and test: GTSRB.

Model description Acc #Binary
Params

Model Size (in KiB)
Binary Float-32

QConv(16, 3×3), QConv(32, 2×2), D(43) 81.54 1005584 122.75 3932.16

the considered image classification task:

1. definition of input variables representing the values of the pixels Xi (i = 1,P, where P is the di-
mension of the input image: N×M×3 pixels). For the file above, there are 2700 variables as the
image has dimension 30×30 and the channel used is RGB.

2. definition of the output variables representing the values Yj ( j = 1,L, where L is the number of
classes of the images in the dataset). For the file above, there are 43 variables as the GTSRB
categorises the traffic signs images into 43 classes.

3. bounding constraints for the variables input variables. Definition 5.1 is used for generating the
property taking into account that vector x (its elements are the values of the pixels of the image)
and ε (perturbation) are known. For example, if ε = 10 and the value of the pixel X ′2699 of the
image with index 1678 from GTSRB is 24, the generated constraints for finding the values of the
perturbed by ε pixel X2699 for which the predicted label still holds is:

(assert (<= X_2699 34.00000000))

(assert (>= X_2699 14.00000000))

4. constraints involving the output variables assessing the value of the output label. For example,
if the verification problem is formulated as: Given the image with index 1678, the perturbation
ε = 10 and the trained model, find if the perturbed images are in class 38, the generated con-
straints are as follows which actually represents the negation of the property to be checked:

(assert (or (>= Y_0 Y_38)

...

(>= Y_37 Y_38)

(>= Y_39 Y_38)

...

(>= Y_42 Y_38)))

6 Benchmarks Proposal and Experimental Results of the VNN-COMP
2023

To meet the requirements of the VNN-COMP 2023, the benchmark datasets must conform to the ONNX
format for defining the neural networks, while the problem specifications are expected to adhere to the
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VNN-LIB format. Therefore, we have prepared a benchmark set comprising the BNNs introduced in
Section 4 that have been encoded in the ONNX format. In order to assess the adversarial robustness of
these networks, the problem specifications encompassed perturbations within the infinity norm around
zero, with radius denoted as ε = {1,3,5,10,15}. To achieve this, we randomly selected three distinct
images from the test set of the GTSRB dataset for each model and have generated the VNNLIB files for
each epsilon in the set, in the way we ended up having 45 VNNLIB files in total. We were constrained to
generate the small benchmark which includes just 45 VNNLIB files because of the total timeout which
should not exceed 6 hour, this is the maximum timeout for a solver to address all instances, consequently
a timeout of 480 seconds was allocated for each instance. For checking the generated VNNLIB speci-
fication files for submitted in the VNNCOMP 2023 as specified above as well as to generate new ones
you can check https://github.com/apostovan21/vnncomp2023.

Our benchmark was used for scoring the competing tools. The results for our benchmark, as pre-
sented by the VNN-COMP 2023 organizers, are presented in Table 6.

Table 6: VNN-COMP 2023 Results for Traffic Signs Recognition Benchmark

# Tool Verified Falsified Fastest Penalty Score Percent
1 Marabou 0 18 0 1 30 100%
2 PyRAT 0 7 0 1 -80 0%
3 NeuralSAT 0 31 0 4 -290 0%
4 alpha-beta-CROWN 0 39 0 3 -60 0%

The meaning of the columns is as follows. Verified is number of instances that were UNSAT (no
counterexample) and proven by the tool. Falsifieid is number that were SAT (counterexample was found)
and reported by the tool. Fastest is the number where the tool was fastest (this did not impact the scoring
in this year competition). Penalty is the number where the tool gave the incorrect result or did not
produce a valid counterexample. Score is the sum of scores (10 points for each correct answer and −150
for incorrect ones). Percent is the score of the tool divided by the best score for the benchmark (so the
tool with the highest score for each benchmark gets 100) and was used to determine final scores across
all benchmarks.

Currently, we are investigating if the number of solved instances could be higher if the time is in-
creased (the deadline used was 8 minutes). Also, it is interesting why the tools gave incorrect results for
some benchmarks.

7 Conclusions

Building upon our prior study that introduced precise binarized neural network models for traffic sign
recognition, this study presents standardized challenges to gauge the resilience of these networks to local
variations. These challenges were entered into the VNN-COMP 2023 evaluation, where 4 out of 7 tools
produced results. Our current emphasis is on investigating the potential for solving more instances by
extending the time limit (formerly set at 8 minutes). Additionally, we are keen to comprehend the factors
contributing to incorrect outputs from the tools on specific benchmark tasks.
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7th Symposium on Working Formal Methods (FROM 2023)

EPTCS 389, 2023, pp. 131–143, doi:10.4204/EPTCS.389.11

© Mihai Prunescu

This work is licensed under the

Creative Commons Attribution License.

Symmetric Functions over Finite Fields

Mihai Prunescu

Research Center for Logic, Optimization and Security (LOS),
Faculty of Mathematics and Computer Science,

University of Bucharest, Academiei 14, 010014 Bucharest, Romania

and Simion Stoilow Institute of Mathematics of the Romanian Academy,
Research unit 5, P. O. Box 1-764, RO-014700 Bucharest, Romania.

mihai.prunescu@imar.ro, mihai.prunescu@gmail.com

The number of linear independent algebraic relations among elementary symmetric polynomial func-

tions over finite fields is computed. An algorithm able to find all such relations is described. It is

proved that the basis of the ideal of algebraic relations found by the algorithm consists of polynomials

having coefficients in the prime field Fp.

A.M.S.-Classification: 14-04, 15A03.

1 Introduction

The interpolation problem for symmetric functions over finite fields does not have a unique solution in

terms of elementary symmetric polynomials. That is why it is useful to know more about the set of

solutions, as sometimes we need a solution which is easier to express or faster to evaluate. The general

situation will be described in the lines below. Some steps are detailed in the following sections.

Let Fq be a finite field of characteristic p, a prime number. Let Fq[X1, . . . ,Xn] be the Fq-algebra of

polynomials in variables X1, . . . ,Xn over Fq. The symmetric group Sn acts on Fq[X1, . . . ,Xn] as a group of

automorphisms of Fq-algebras and the subalgebra Q of fixed points is usually called the ring of symmetric

polynomials. The algebra Q is again a polynomial ring freely generated by the elementary symmetric

polynomials

ei = ∑
1≤ j1< j2<···< ji≤n

X j1 . . .X ji

for i = 1, . . . ,n. So Q = Fq[e1, . . . ,en].

The vector space Q has a basis given by the monomial symmetric functions e
k1

1 . . .ekn
n .

There is an obvious homomorphism of Fq-algebras from Fq[X1, . . . ,Xn] to the Fq-algebra F (q,n) of

functions from F
n
q to Fq. Considering the natural action of Sn on F (q,n) one can easily see that this

homomorphism is Sn-equivariant, i. e. it commutes with the action of Sn. From this it follows that Q

maps to the subring S (q,n) of the symmetric functions in F (q,n).

Since xq = x for all x ∈ Fq, it is clear that the above homomorphism factors through the quotient:

Fq{X1, . . . ,Xn}= Fq[X1, . . . ,Xn]/ < X
q
1 −X1, . . . ,X

q
n −Xn >,

whose basis consists of those monomials whose exponents are smaller than q. So Fq{X1, . . . ,Xn} is finite

of dimension qn and has qqn

elements. By using interpolation, one can deduce that the above homomor-

phism gives an isomorphism Fq{X1, . . . ,Xn} ≃ F (q,n). This will follow by a cardinality argument.

http://dx.doi.org/10.4204/EPTCS.389.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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The ideal I =< X
q
1 −X1, . . . ,X

q
n −Xn > is obviously stable under the action of Sn. Hence Fq{X1, . . . ,Xn}

is an Sn-module for the previously given action and that the isomorphism Fq{X1, . . . ,Xn} ≃ F (q,n) is

an isomorphism of Sn-modules. Under this map we see that the basis of Q made of monomial symmetric

functions is mapped to a basis of the symmetric function algebra S (q,n) so that the image of Q in

Fq{x1, . . . ,xn} is isomorphic to S (q,n).

If E1, . . . ,En are new variables, one can also consider the quotient

Fq{E1, . . . ,En}= Fq[E1, . . . ,En]/ < E
q
1 −E1, . . . ,E

q
n −En >,

which is again finite of dimension qn over Fq. Consider the embedding

Fq[E1, . . . ,En]→ Fq[X1, . . . ,Xn]

generated by the substitutions Ek ❀ ek(X1, . . . ,Xn). This embedding descends to a homomorphism

Ψ : Fq{E1, . . . ,En}→ Fq{X1, . . . ,Xn} ≃ F (q,n),

because the embedding transports J =< E
q
1 −E1, . . . ,E

q
n −En > inside I.

Let ~X denote the tuple of variables (X1, . . . ,Xn). By diagram chasing one checks that Ψ(Fq{E1, . . . ,En})
is the image of Fq[e1(~X), . . . ,en(~X)] under the natural projection Fq[X1, . . . ,Xn] → Fq{X1, . . . ,Xn}. By

standard combinatorics one knows that the dimension of the space of the symmetric functions S (q,n)
is:

(

n+q−1

n

)

.

Summarising we have that Ψ(Fq{E1, . . . ,En}) is isomorphic with the ring of symmetric functions S (q,n)
and therefore the dimension of the kernel of Ψ is:

qn −

(

n+q−1

n

)

.

We call this kernel I (q,n). This kernel can be seen as the set of all algebraic relations between elemen-

tary symmetric functions over a finite field. For example, if we consider the symmetric functions with

two variables e1 = X1 +X2 and e2 = X1X2 as polynomial functions F2 → F2, then:

e1e2 = (X1 +X2)X1X2 = X2
1 X2 +X1X2

2 = 2X1X2 = 0,

so those functions fulfill the algebraic identity e1e2 = 0. This doesn’t happens when those symmetric

functions are considered over C, because it is known that there the corresponding functions are alge-

braically independent.

The scope of this article is to show an algorithm that computes a basis of the kernel I (q,n) as Fq-vector

space. The general Buchberger-Möller algorithm, see [2], finds a basis of the ideal in the sense of ring

theory. The algorithm presented here finds a basis as a vector space. In practical applications, if someone

finds an interpolation formula for some symmetric function, and looks for a shorter definition, the basis

as a vector space is more useful. Moreover, the algorithm given here for this particular problem works

faster then Buchberger-Möller algorithm.
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2 Definitions and notations

Consider a finite field Fq of characteristic p. The elements of Fq are ordered in some way, and this order

is fixed. For the rest of the paper we fix a natural number n ≥ 1 and two sets of variables: E1, . . . , En and

X1, . . . , Xn.

Definition 2.1 The set Mon(q,n) is the set of all monomials E
α1

1 E
α2

2 . . .Eαn
n with 0 ≤ αi < q. There are

qn many such monomials.

Definition 2.2 Let Fq{E1, . . . ,En} be the vector space over Fq freely generated by Mon(q,n).

Fq{E1, . . . ,En} has dimension qn over Fq. It has also a canonical structure of finite ring induced by the

epimorphism:

s : Fq[E1, . . . ,En]−→ Fq{E1, . . . ,En}

with Ker(s) = (Eq
1 −E1, . . . ,E

q
n −En) as ideal in Fq[E1, . . . ,En]. Observe that Fq |= ∀x xq = x.

Definition 2.3 For f : Fn
q → Fq and a permutation σ ∈ Sn we define f σ (~X) = f (σ(~X)) where σ(~X) =

(Xσ(1), . . . ,Xσ(n)). The function f is called symmetric if for all σ ∈ Sn, f = f σ .

Definition 2.4 Let F (q,n) denote the set of all functions f : Fn
q → Fq and S (q,n)⊂ F (q,n) the subset

of all symmetric functions. Both sets equipped with the point-wise operations are finite rings and finite

vector spaces over Fq.

Definition 2.5 For every F ∈ Fq[X1, . . . ,Xn] and σ ∈ Sn we define Fσ (~X) = F(σ(~X)), where σ(~X) =
(Xσ(1), . . . ,Xσ(n)). F is called symmetric if for all σ ∈ Sn, Fσ = F .

Definition 2.6 For 0 ≤ k ≤ n denote by Pn
k be the set of k-element subsets of {1, . . . ,n}. Recall that the

elementary symmetric polynomials ek(X1, . . . ,Xn) are defined as:

ek(X1, . . . ,Xn) = ∑
J∈Pn

k

∏
i∈J

Xi.

Definition 2.7 Consider the function

Φ : Fq{E1, . . . ,En} −→ S (q,n)

defined such that

∀~a ∈ F
n
q Φ( f )(~a) = f (e1(~a), . . . ,en(~a)),

where f ∈ Fq{E1, . . . ,En}. Here we understand Ek as a symbol for the elementary symmetric polynomial

ek. Φ is a well defined homomorphism of finite rings and finite Fq-vector spaces.

Definition 2.8 The ideal I (q,n) = Ker(Φ) ⊂ Fq{E1, . . . ,En} is the ideal of algebraic relations be-

tween elementary symmetric functions over Fq.

I (q,n) is also a vector subspace of Fq{e1, . . . ,en}.

We also consider the following chain of homomorphisms:

Fq{E1, . . . ,En}
Ψ
−→ Fq{X1, . . . ,Xn}

Γ
−→ F (q,n),

where Ψ(P) = P(~e(~X)) is the substitution homomorphism and Γ is the homomorphism associating to

every polynomial Q its polynomial function. Of course Φ = Γ◦Ψ.
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3 The number of algebraic relations

Definition 3.1 Let WM(q,n) be the set of all weakly monotone increasing tuples (a1, . . . ,an) in Fq

according to the fixed order. Denote by wm(q,n) the cardinality of the set WM(q,n).

Lemma 3.2

dimFq
S (q,n) = wm(q,n) =

(

n+q−1

n

)

.

Proof: In order to define an f ∈ S (q,n), it is enough to define its values for every~ι ∈ WM(q,n). This

number of sequences is the same as the number of possibilities to put n unsigned balls in q numbered

urns, see [1]. As done there, the q urns can be represented by q+ 1 vertical bars and the n balls as n

circles. A possible distribution as it follows:

| ◦ || ◦ ◦||

Because the first and the last symbols in distribution must be bars, we have to distribute n circles in

n+q−1 positions and to complete the remaining positions with bars. There are

(

n+q−1

n

)

possibilities to do so. ✷

Definition 3.3 Consider the following matrix M(q,n) ∈M (wm(q,n)×qn,Fq). The rows of M(q,n) are

indexed using the tuples~ι ∈ WM(q,n), the columns are indexed using the monomials m ∈ Mon(q,n),
and if M(q,n) = (a(~ι ,m) |~ι ∈ WM(q,n),m ∈ Mon(q,n)),

a(~ι ,m) = [Φ(m)](~ι) = e
α1

1 (~ι) . . .eαn
n (~ι),

where m = E
α1

1 . . .Eαn
n .

Lemma 3.4 The morphism Φ : Fq{E1, . . . ,En} → S (q,n) with Ker Φ = I (q,n) is surjective.

Proof: The proof consists of two steps.

Step 1: Let f : Fn
q → Fq be some function, for the moment not necessarily symmetric. For a ∈ Fq define

the polynomial ha ∈ Fq[X ]:

ha(X) = ∏
λ∈Fq\{a}

X −λ

a−λ
.

Observe that ha(a) = 1 and ha(Fq \{a}) = 0. For a tuple ~a ∈ F
n
q define h~a ∈ Fq[X1, . . . ,Xn]:

h~a(~X) = ha1
(X1) . . .han

(Xn).

A polynomial interpolating f is:

H(~X) = ∑
~a∈Fn

q

h~a(~X) f (~a).
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We observe that for all σ ∈ Sn, (h~a)
σ = hσ−1(~a). If the function f is symmetric, then f σ = f and it

follows:

Hσ(~X) = ∑
~a∈Fn

q

hσ
~a (~X) f (~a) = ∑

σ−1(~a)∈Fn
q

hσ−1(~a)(~X) f (σ−1(~a)) = H(~X).

We proved that the interpolation algorithm applied to a symmetric function leads to a symmetric polyno-

mial. Observe also that all exponents occurring in H are < q.

Step 2: We repeat the argument that a symmetric polynomial is a polynomial in elementary symmetric

polynomials as given in [6] and reformulated in [5]. The following total order is defined over the set

of monomials in ~X : X
α1

1 . . .Xαn
n < X

β1

1 . . .X
βn
n if and only if ∑αi < ∑βi or ∑αi = ∑βi but (αi) < (βi)

lexicographically. This is the graded lexicographic order. For a polynomial H(~X) ∈ Fq[~X ] define Init(H)
to be the maximal monomial occurring in H , according to this order. It follows from symmetry that

Init(H) has the form cX
γ1

1 . . .X
γn
n with γ1 ≥ γ2 ≥ ·· · ≥ γn with c ∈ Fq \{0}. Consider the polynomial:

H1(~X) = H(~X)− ce1(~X)γ1−γ2e2(~X)γ2−γ3 . . .en−1(~X)γn−1−γnen(~X)γn .

Observe that Init(H1) < Init(H). Continue by constructing in the same way a polynomial H2 with

Init(H2) < Init(H1), and so on. This process ends in finitely many steps. Adding the Si-monomials

defined during the process, one gets a polynomial F ∈ Fq[e1, . . . ,en] with the property that for all ~a ∈ F
n
q,

F(e1(~a), . . . ,en(~a)) = f (~a). Finally, observe that all exponents occurring in F are again < q, so F ∈
Fq{e1, . . . ,en} and Φ(F) = f .

✷

Theorem 3.5 The rank of the matrix M(q,n) is maximal:

rank M(q,n) = wm(q,n) =

(

n+q−1

n

)

.

The dimension of the ideal I (q,n) of algebraic relations as a vector space over Fq is:

dimFq
I (q,n) = qn −wm(q,n) = qn −

(

n+q−1

n

)

.

Proof: Follows directly from Lemma 3.2 and the Lemma 3.4. ✷

Remark 3.6 If q is kept constant and n → ∞,

dimFq
I (q,n)

dimFq
Fq{S1, . . . ,Sn}

−→ 1.

If n is kept constant and q → ∞,

dimFq
I (q,n)

dimFq
Fq{S1, . . . ,Sn}

−→ 1−
1

n!
.

Indeed, if q is kept constant and n → ∞,

qn −
(

n+q−1
n

)

qn
= 1−

1

(q−1)!

(n+1) . . . (n+q−1)

qn
−→ 1.
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If n is kept constant and q → ∞,

qn −
(

n+q−1
n

)

qn
= 1−

1

n!

q(q+1) . . . (q+n−1)

qn
−→ 1−

1

n!
.

Remark 3.7 Define the set of non-monotone tuples NM(q, p) as the set of tuples (a1, . . . ,an)with ai ∈Fq

such that there are 1 ≤ i < j ≤ n with ai > a j according to the order fixed on Fq. Let nm(q,n) be the

cardinality of the set NM(q,n). According to Theorem 3.5, I (q,n) has dimension nm(q,n). But is there

any natural correspondence between NM(q,n) and a basis of the vector space I (q,n)? As far I know,

this problem is open.

Remark 3.8 Recall the chain of homomorphisms:

Fq{E1, . . . ,En}
Ψ
−→ Fq{X1, . . . ,Xn}

Γ
−→ F (q,n),

where Ψ(P) = P(~e(~X)) is the substitution homomorphism and Γ is the homomorphism associating to

every polynomial Q its polynomial function, and Φ = Γ ◦Ψ. Using the interpolation part of the proof

of Lemma 3.4 one sees that Γ is an isomorphism of rings and vector spaces. Indeed, Γ is a surjective

homomorphism and both rings have qqn

elements.

Corollary 3.9 KerΨ = I (q,n) and ImΨ = Γ−1(S (q,n)). Consequently, the subring of symmetric

polynomials in Fq{X1, . . . ,Xn} is a vector space of dimension wm(q,n) over Fq.

4 Deduction procedure

Before presenting the specific algorithm that generates a basis of the ideal of algebraic identities, I briefly

recall the Gauss Algorithm over some field K.

Gauss Algorithm: Consider the extended matrix M of a system of e many linear equations in v un-

knowns. The matrix has e rows and v+1 columns. The algorithm finds out if the system is solvable. It

also finds out on how many parameters the solution depends and generates a parametric solution of the

system.

At the beginning one completes an array π with the values π(0) = 0, . . . , π(v− 1) = v− 1. This array

will accumulate the total permutation of lines, produced by the algorithm.

Let r be a variable in which the algorithm computes the rank of the restricted matrix of the system. Let

m = min(e,v). The Gauss Algorithm is a repetition of Gauss Steps according to a variable s running from

0 to m−1 inclusively. If the Gauss Step returns false at step s, the loop is broken. If not, r is increased

by 1 and the corresponding Gauss Step is performed.

The Gauss Step of s works as follows. In every column c with s ≤ c < v one looks for a row w with

s ≤ w < e such that M(w,c) 6= 0. If no such an element is found, the Gauss Step returns false and stops.

Once such an element is found: if c 6= s, the columns c and s are inter-changed and also, the values of π(s)
and π(c) are inter-changed. Further, if s 6= w, the rows w and s are inter-changed. Let now a = M(s,s).
Then the row s is divided by a. Further, from all the rows d with d > s is subtracted the row s times a

field value b, where b = M(d,r). Because of this, all elements of the column s which are below M(s,s)
become 0. Finally, the Gauss Step returns true.
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The decision on the number of solutions is made as follows. If the restricted rank r is equal with the

number of unknowns v, there is only one solution. If r < e, there are two possibilities: (1) there are ele-

ments M(v, i) 6= 0 with i ≥ r. In this case there are no solutions. Or (2), there are no such elements. Then

the unknowns which corresponds now, after all permutations of columns (unknowns), to the columns r,

r+1, . . . , v, are independent parameters. The other unknowns are computed successively, started to the

unknown corresponding to column v−1 after the permutation, continuing to the unknown corresponding

to the column v−2, and finally ending with the unknown corresponding to the column 0.

✷

The following algorithm is able to find a basis over Fq for the vector space I (q,n) of algebraic relations

between elementary symmetric functions over Fq.

1. Consider qn many new unknowns Ym indexed using the set Mon(q,n), and the following homoge-

nous system Σ of wm(q,n) many linear equations indexed using the set WM(q,n):

(~ι) : ∑
m∈Mon(q,n)

[Φ(m)](~ι)Ym = 0.

The matrix of this linear homogenous system is the matrix M(q,n) defined in the previous section.

One sees that for any polynomial P ∈ Fq{e1, . . . ,en} following holds:

P(~e) = ∑
m∈Mon(q,n)

ym m(~e) ∈ I (q,n) ⇔ (ym) ∈ (Fq)
qn

satisfies Σ.

2. Using Gauss’ Algorithm over Fq transform M(q,n) in an upper triangular matrix. Recall that

M(q,n) has maximal rank equal with wm(q,n).

3. Introduce a tuple~t of qn −wm(q,n) many new parameters and compute the parametric solution of

Σ, consisting of linear functions in~t:

(Ym(~t))m∈Mon(q,n).

4. Using the equivalence from (1) one has that:

I (q,n) =
{

∑
m∈Mon(q,n)

Ym(~t) m |~t ∈ (Fq)
qn−wm(q,n)

}

.

For i = 1, . . . ,qn −wm(q,n) set the parameter tuple ~ti = (0,0, . . . , ti = 1,0, . . . ,0) in the general

form

P~t = ∑
m∈Mon(q,n)

Ym(~t)m

and call the result of the substitution Pi = P~ti . The mapping~t ❀ P~t is an isomorphism of vector

spaces over Fq because it is a surjective linear mapping between vector spaces of equal dimensions.

As an isomorphism, this mapping transports basis to basis, so {Pi | i = 1, . . . ,qn −wm(q,n)} is a

basis of the vector space I (q,n) over Fq.

The fact that this algorithm finds a basis of the ideal of identities of symmetric polynomials follows

directly from the theory developed above and from its description. It remains to show only that the
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coefficients of the basis polynomials always belong to the base field. This shall be shown in the next

Section. Here some examples will be given.

Example. F2[X1,X2]: dimF2
I (2,2) = 22− wn(2,2) = 4− 3 = 1. The monomial basis of the vector

space F2{E1,E2} is the set {1,E1,E2,E1E2}. The matrix M(2,2) is the following:

1 e1 e2 e1e2

00 1 0 0 0

01 1 1 0 0

11 1 0 1 0

Linear variables {Y1,Y2,Y3,Y4} are associated to the columns. The linear system of equations over F2:

Y1 = 0,

Y1 +Y2 = 0,

Y1 +Y3 = 0,

has the parametric solution (Y1,Y2,Y3,Y4) = (0,0,0, t), where t ∈ F2 is a parameter. It follows that:

I (2,2) = {te1e2 | t ∈ F2}= {0,e1e2}.

The only one nontrivial algebraic relation between elementary symmetric functions is in this case the

following:

e1e2 = 0.

We verified in the introduction that e1e2 = 0 as a function.

Example. F2[X1,X2,X3]: dimF2
I (2,3) = 23− wn(2,3) = 8− 4 = 4. The monomial basis of the vec-

tor space F2{E1,E2,E3} is the set {1,E1,E2,E3,E1E2,E1E3,E2E3,E1E2E3}. The matrix M(2,3) is the

following:

1 e1 e2 e3 e1e2 e1e3 e2e3 e1e2e3

000 1 0 0 0 0 0 0 0

001 1 1 0 0 0 0 0 0

011 1 0 1 0 0 0 0 0

111 1 1 1 1 1 1 1 1

Gauss’ Algorithm produces the following matrix:

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 1 1 1

Linear variables {Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8} are associated to the columns. The linear system of equations

over F2 has the parametric solution:

(Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8) = (0,0,0, t1 + t2 + t3 + t4, t1, t2, t3, t4),
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where t1, t2, t3, t4 ∈ F2 are parameters. It follows that:

I (2,3) = {(t1 + t2 + t3 + t4)e3 + t1e1e2 + t2e1e3 + t3e2e3 + t4e1e2e3 | t1, t2, t3, t4 ∈ F2}.

By replacing the parameter vector (t1, t2, t3, t4) with the unit vectors (1,0,0,0), . . . , (0,0,0,1), following

basis of linear independent algebraic relations is found:

e3 + e2e3 = 0

e3 + e1e3 = 0

e3 + e1e2 = 0

e3 + e1e2e3 = 0

Remark 4.1 In this algorithm, we can skip the line corresponding to the tuple (0,0, . . . ,0) and the col-

umn corresponding to the monomial 1. This does not change the result.

Remark 4.2 If n = 1, the monomials are {1,X ,X2, . . . ,Xq−1} and the tuples are the q elements of Fq.

It follows that the matrix M(q,1) is nothing but the Vandermonde matrix over the field Fq. The ideal

I (q,1) is always 0.

5 Coefficients in Fp

Theorem 5.1 Let Fq be some finite field, p = char Fq and n ≥ 2. Then the algorithm presented above

finds a basis of I (q,n) consisting of polynomials with coefficients in the prime field Fp. In particular,

such a basis always exists.

Before proving the Theorem 5.1, we must fix some notations concerning Gauss’ Algorithm.

Definition: For i < j we define:

A(i, j) means that the equation i multiplied with an apropriate element is added to equation j. The

element is chosen such that the first non-zero coefficient in the equation j becomes 0.

L(i, j) means that equations (lines) i and j are inter-changed.

C(i, j) means that the columns i and j are inter-changed.

Definition: Here is the step number i of the deterministic Gauss’ Algorithm. If ai,i = 0 and the whole

line i consists only of zeros, find the first j > i such that the line j contains non-zero elements, and apply

L(i, j). If ai,i continues to be zero, find the first k > i such that ai,k 6= 0 and apply C(i,k). Now, for each

r > i; if the element ar,i 6= 0 below ai,i, apply A(i,r).

Definition: Let K be some field and S, S′ two systems of linear equations over K; both of them con-

sisting of e equations with u unknowns. We say that Gauss’ Algorithm works in parallel for systems S

and S′ if the application of Gauss’ Algorithm on the systems leads to the same sequence of operations

O1,O2, . . . ,Os in the above notation. (For example, O1 = A(1,2), . . . , Os = L(3,4), Os+1 =C(3,5), . .

. and so on.)

Lemma 5.2 Let K be a field and S, S′ two homogenous systems of linear equations over K, satisfying

the following conditions:
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1. S and S′ have both e equations and u unknowns, k = u− e ≥ 0 and rank S = e.

2. S′ has been obtained from S by some permutation of lines (equations).

3. Gauss’ Algorithm works in parallel over S and S′.

In this situation, Gauss’ Algorithm independently applied for the systems S and S′ computes the same

parametrization of the common space of solutions:

∀ i = 1, . . . ,u Yi(~t) = Y ′
i (~t),

where~t = (t1, t2, . . . , tk) is the tuple of parameters.

Proof: Let M~Y =~0 be the system S of linear equations as in the statement. Running Gauss’ Algo-

rithm forth and back, we find that columns with indexes i1, . . . , ie build a non-singular e× e minor A.

Let j1, . . . jk be the indexes of the left columns. For s = 1, . . . ,k, we set Yjs = ts, where t1, . . . , ts are

independent parameters.

The parametric solution is obtained from:

A







Yi1
...

Yie






=−

k

∑
s=1

~c jsts,

where~c js are the column of M left outside A. The parametric solution has the form:







Yi1
...

Yie






=

k

∑
s=1

~d js ts,

completed with the k many Yjs = ts already done. Here the column vector ~d js is the unique solution of

the system of linear equations:

A







Yi1
...

Yie






=−~c js .

Now consider the system S′ of linear equations M′~Y =~0. As Gauss’ Algorithm works in parallel for

the systems S and S′, by running it forth and back, we find the same columns i1, . . . , ie to build a non-

singular minor A′. But the matrix M′ consists of the same lines as M in a permuted order, and the same

permutation is used to get A′ from A and ~c′js from ~c js . The parametric solution is again:







Yi1
...

Yie






=

k

∑
s=1

~d js ts,

completed with the k many Yjs = ts, where the column vector ~d js is the unique solution of the system of

linear equations:

A′







Yi1
...

Yie






=−~c′js .
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This system is the same system as previous one, up to the order in which the equations are displayed, and

we know that permuting the equation in a system with unique solution, does not change this solution. ✷

Proof of the Theorem 5.1: If Fq = Fp there is nothing to prove. Consider some automorphism ϕ ∈
Gal(Fq/Fp). The fact that ϕ is a power of Frobenius’ Automorphism is not relevant here. Consider the

system Σ used in the algorithm given above and the system Σ′ = ϕ(Σ).

Claim 1: Σ′ can be obtained from Σ by some permutation of equations. Indeed, the elements of the

matrix ϕ(M(q,n)) are ϕ(a(~ι ,m)) = ϕ([Φ(m)](~ι)) = [Φ(m)]( ~ϕ(ι)). The automorphism ϕ is a permuta-

tion of Fq. Consequently, the line formerly indexed~ι shall be found in Σ′ at the index obtained by the

weakly monotone reordering of the tuple ϕ(~ι). As the coefficients of the system are values of symmetric

functions for this tuple, the order inside the tuple does not matter.

Claim 2: Gauss’ Algorithm works in parallel over Σ and Σ′. The coefficients in Σ′ are images of corre-

sponding coefficients in Σ by ϕ . This situation remains true after every computation step done by Gauss

Algorithm. In particular, at every step one has in both systems Σ and Σ′ the same situation concerning

coefficients (matrix entries) which are zero or not. So after every step, the same decision concerning the

next step shall be taken: an A(i, j) or a C(i, j).

So all conditions requested by Lemma 5.2 are satisfied, and Gauss’ Algorithm computes the same

parametrization (Yi(~t)) for both systems Σ and ϕ(Σ). So for all i, Yi(~t) = ϕ(Yi(~t)); and this takes place

for all automorphisms ϕ ∈ Gal(Fq/Fp). It follows that the linear functions Yi(~t) have coefficients in Fp,

and the same is true for the basis of I (q,n) found by the algorithm. ✷

6 Further examples

This algorithm has been implemented by the author using the language C# on Visual Studio, and ran for

the fields Fq with q ∈ {2,3,4,5,7,8,9,11,16,25,27,49,81} and values of n ≤ 5. The implementation

uses the fact that the elementary symmetric polynomials in x1, . . . ,xn can be computed all at a time in

quadratic time and linear space. We show here only some examples.

F3[x1,x2]. dimF3
I (3,2) = 32− wn(3,2) = 9−6 = 3. Following basis has been found:

2e1e2 + e1e2
2 = 0

e2 + e2
2 + e2

1e2 = 0

e2 + e2
2 + e2

1e2
2 = 0

F3[x1,x2,x3]. dimF3
I (3,3) = 33− wn(3,3) = 27−10 = 17. Following basis has been found:
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2e2e2
3 + e1e3 = 0

2e2e3 + e1e2
3 = 0

e2e2
3 + e2

2e2
3 = 0

e2e2
3 + e1e2e3 = 0

e2e3 + e1e2e2
3 = 0

e2e3 +2e1e2 + e1e2
2 = 0

2e2e2
3 + e1e2

2e3 = 0

2e2e3 + e1e2
2e2

3 = 0

e2e3 + e2
2e3 = 0

e2e3 + e2
1e3 = 0

e2e2
3 + e2

1e2
3 = 0

e2 +2e2e2
3 + e2

2 + e2
1e2 = 0

2e2e3 + e2
1e2e3 = 0

2e2e2
3 + e2

1e2e2
3 = 0

e2 + e2e2
3 + e2

2 + e2
1e2

2 = 0

e2e3 + e2
1e2

2e3 = 0

e2e2
3 + e2

1e2
2e2

3 = 0

F4[x1,x2]: The field F4 has been realized using the polynomial X2+X +1 over F2. dimF4
I (4,2) = 42−

wn(4,2) = 16−10 = 6. The found basis has coefficients in F2:

e1e2 + e2
1e2

2 = 0

e1e2
2 + e2

1e3
2 = 0

e1e3
2 + e2

1e2 = 0

e1e2
2 + e3

1e2 = 0

e1e3
2 + e3

1e2
2 = 0

e1e2 + e3
1e3

2 = 0

F5[x1, . . . ,x5]: dimF5
I (5,5) = 55− wn(5,5) = 3125−126 = 2999. The first identity found was:

4e2
4e5 + e4

4e5 +3e3e4e2
5 +4e3e3

4e2
5 +3e3e4

4e2
5 +4e2

3e4e3
5 + e2

3e4
4e3

5 = 0.

F7[x1, . . . ,x4]: dimF7
I (7,4) = 74− wn(7,4) = 2401−210 = 2191. The first identity found was:

e4 +6e4
4 +6e6

3e4 + e6
3e4

4 +5e2e2
4 +2e2e5

4 +5e2e2
3e2

4 +2e2e2
3e5

4 +5e2e4
3e2

4+

+2e2e4
3e5

4 +6e2
2e3

4 + e2
2e6

4 +6e2
2e2

3e3
4 + e2

2e2
3e6

4 +6e2
2e4

3e3
4 + e2

2e4
3e6

4 = 0.
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This paper serves as a progress report on our research, specifically focusing on utilizing interval
analysis, an existing static analysis method, for detecting vulnerabilities in smart contracts. We
present a selection of motivating examples featuring vulnerable smart contracts and share the results
from our experiments conducted with various existing detection tools. Our findings reveal that these
tools were unable to detect the vulnerabilities in our examples. To enhance detection capabilities,
we implement interval analysis on top of Slither [3], an existing detection tool, and demonstrate its
effectiveness in identifying certain vulnerabilities that other tools fail to detect.

1 Introduction

The term “smart contract” was originally used to describe automated legal contracts, whose content
cannot be negotiated or changed. Nowadays, the term is most commonly known as programs that are
executed by special nodes in a decentralised network or a blockchain. Indeed, the blockchain technology
captures the initial meaning of the term: contracts are encoded as an immutable piece of code, and the
terms of the contract are predetermined and automatically enforced by the contract itself.

This immutability property also implies more effort on the contract developers side: they have to be
very careful about what gets deployed because that code is (1) public and anyone can see it and (2) it
cannot be changed/updated as an ordinary program. Ethereum1 is a very popular blockchain platform
which has been affected by the most significant attacks based on vulnerabilities in the deployed code.
For instance, “The DAO attack” 2 was based on the fact that a smart contract could be interrupted in the
middle of its execution and then called again. This is known as the reentrancy vulnerability. An attacker
noticed that in a withdrawal function of the smart contract, the transfer of digital assets was performed
before updating the balance (i.e., decrementing the balance with the withdrawn amount) of a contract
party. The attacker first deposited cryptocurrency into the smart contract. Then, by creating a scenario
where the withdrawal function called itself just before updating its own balance, the attacker managed to
drain the funds of the smart contract as long as its balance exceeded the amount withdrawn.

Such mistakes are unfortunate and researchers and practitioners started to propose methods and tools
for detecting them. For example, Slither [3] is an easy to use static analysis tool for smart contracts
written in Solidity 3; Mythril4 is a security analysis tool for EVM bytecode based on symbolic execution;

1Vitalik Buterin, A Next-Generation Smart Contract and Decentralized Application Platform, 2014, URL: https://
ethereum.org/en/whitepaper/

2David Siegel, 2016: Understanding The DAO Attack. URL:https://www.coindesk.com/learn/2016/06/25/
understanding-the-dao-attack/

3Solidity, version 0.8.20: https://docs.soliditylang.org/en/v0.8.20/control-structures.html
4Mythril docs: https://mythril-classic.readthedocs.io/en/develop/
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Solhint5 is a linter for Solidity code. The list of tools is long and it was explored in various papers
(e.g., [5, 7, 6, 1, 4]). These tools are indeed very useful, but in the same time they are not perfect and
they can fail to detect problematic situations in smart contracts code.

In this paper we provide several examples of smart contracts which contain vulnerabilities and we
find that vulnerability detection tools are not as precise as we expect, and they fail to detect vulnera-
bilities in our examples. We attempt to enhance one of them (Slither) with an existing static analysis
method called interval analysis. This method allows us to better approximate the values interval for each
program variable. Based on the experiments that we performed, interval analysis proves to be very useful
in detecting problematic situations in smart contracts. For example, integer division in Solidity ignores
the reminder. In a situation where an amount of cryptocurrency must be divided and transferred to a
number of recipients, a division where the remainder is ignored could lead to funds that remain locked
in the smart contract. Another example is related to uninitialised variables: such variables are initialised
with default values and it may be the case that the default value is not suitable for the purpose of that
variable. By keeping track of all the possible values for each program variable, interval analysis allows
us to signal such situations in smart contracts.

Summary of contributions.

1. We provide several examples of vulnerable smart contracts, in which the vulnerabilities prove to
be challenging to detect using state-of-the-art detection tools.

2. We implement an existing analysis technique called interval analysis on top of Slither.
3. We evaluate our implementation.

Paper organisation. In Section 2 we present several examples of smart contract vulnerabilities. In
Section 3 we show how state-of-the-art tools behave on these examples. The interval analysis technique
is presented in Section 4 together with our implementation. We conclude in Section 5.

2 Vulnerabilities in Smart Contracts

This section contains several examples of smart contracts vulnerabilities written in Solidity. These were
selected from a larger taxonomy [6]. The whole classification includes 55 vulnerabilities split among 10
categories. Both literature and existing community taxonomies were taken into account when selecting
these defects. We selected these vulnerabilities because state of the art tools are not able to detect most
of them and could be detectable using interval analysis.

2.1 Tautologies or Contradictions in assert or require Statements

The Solidity statements assert and require are typically used to validate boolean conditions. Accord-
ing to the Solidity documentation6, assert is meant for checking internal errors, while require should
be used to test conditions that cannot be determined until runtime. Both statements throw exceptions and
revert the corresponding transactions. In their intended use, the conditions in assert should never be
false as it signals contract level errors while the conditions in require can be false as they signal input
errors. No matter what level of error a statement specifies, it is an issue if the conditions that they contain
are tautologies or contradictions. These make the statement useless in the case of tautologies and make
the transaction impossible to complete in the case of contradictions as illustrated by the following code:

5Solhint official website: https://protofire.github.io/solhint/
6Solidity docs: https://docs.soliditylang.org/en/v0.8.20/control-structures.html
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1: function notGonnaExecute(uint parameter) external pure returns(uint)

2: {

3: require(parameter<0); // uint cannot be < 0

4: return parameter;

5: }

1: function uselessAssertUint(uint parameter) external pure returns(uint)

2: {

3: require(parameter>=0); // uint is always >= 0

4: return parameter;

5: }

2.2 Division by Zero
This is a classic arithmetic issue that is common among most programming languages. The Solidity
compiler does not allow direct division by zero. However, the compiler cannot detect situations when the
denominator could evaluate to zero. The following code snippet contains an example. The length of the
recipients array is not checked before computing the amount that should be sent to each recipient (line 4):
1: function split(address[] calldata recipients) external payable

2: {

3: require(msg.value > 0,"Please provide currency to be split among recipients");

4: uint amount = msg.value / recipients.length; // problem here if length is 0

5: for(uint index = 0; index < recipients.length; index++)

6: {

7: (bool success,) = payable(recipients[index]).callvalue:amount("");

8: require(success,"Could not send ether to recipient");

9: }

10: }

2.3 Integer Division Remainder

This is another arithmetic issue that is common among many programming languages. Solidity performs
integer division which means that the result of the division operation is truncated. This could lead to
situations where ignoring the remainder of the division could lead to logic errors. The snippet below
contains an example: if the provided amount does not exactly divide by the number of recipients then
that amount of cryptocurrency could remain locked in the contract.
1: function split(address[] calldata recipients) external payable

2: {

3: require(recipients.length > 0,"Empty recipients list");

4: uint amountPerRecipient = msg.value / recipients.length; // remainder ???

5: require(amountPerRecipient > 0,"Amount must be positive");

6: for(uint index = 0; index < recipients.length; index++)

7: {

8: payable(recipients[index]).transfer(amountPerRecipient);

9: }

10: }

2.4 Uninitialised Variable

Uninitialized variables could lead to logical errors or exceptions. If a variable is not initialised, there is
a great chance that the default value assigned to the variable (according to its type) is not suitable for
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the purpose of that variable. The following code contains an access modifier which relies on the owner

state variable. The variable is private, and thus, it cannot be accessed or assigned outside the contract.
Also, there is no explicit initialisation of owner within a constructor. This makes the variable stuck to
the default value, and thus, all the functions marked with the onlyOwner modifier cannot be executed.

1: address private owner;

2:

3: modifier onlyOwner() {

4: require(msg.sender == owner, "Only the owner of the contract has access");

5: _;

6: }

2.5 User Input Validation
Parameter validation or “sanitisation” is a process that must be implemented at the beginning of every
method. This ensures that the method will always execute as expected. End users should not be trusted
to always provide valid parameters. If validation is missing and the end user is unaware, or worse,
malicious, it could cause critical errors that produce unexpected results or halt contract execution all
together. The following example contains a getter method for an internal array. The user can provide an
index that is not validated, thus having the possibility of going out of bounds.

1: uint256[] private _array= [10, 20, 30, 40, 50];

2:

3: function getArrayElement(uint256 index) external view returns (uint256)

4: {

5: return _array[index];

6: }

2.6 Unmatched Type
In Solidity, enums are stored as unsigned integers. Thus, they can be compared and assigned with
variables of type uint. Situations like these can become tricky since the value domain of an enum is
likely to be much smaller than the value domain of unsigned integers. If a variable with a greater value
than the range of the enum is assigned to an enum variable, than the transaction will be reverted. While it
is true that reverting the transaction is considered safe, such situations signal a faulty logic in the contract
code and it is preferable to be avoided.

1: contract UnmatchedType {

2: enum Options { Candidate1, Candidate2, Candidate3 }

3: mapping(address => Options) private _votes;

4: mapping(Options => uint) private _votesCount;

5: function vote(uint option) external {

6: _votes[msg.sender] = Options(option);

7: _votesCount[Options(option)]++;

8: }

9: function getStatisticsForOption(uint option) external view returns(uint) {

10: return _votesCount[Options(option)];

11: }

12: }

3 Detecting Vulnerabilities Using Dedicated Analysis Instruments

This section briefly presents the results of some experiments that we performed. Basically, we used a
few tools for analysing smart contracts in order to check how they behave on our examples presented in
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Examples Slither Solhint Remix Mythril
Tautologies/Contradictions 3 7 7 7

Division by zero 7 7 7 7

Integer division 7 7 7 7

Uninitialised variable 3 7 7 7

User input validation 7 7 7 7

Unmatched type 7 7 7 7

Table 1: A summary of the evaluation of the tools when executed on our examples (Section 2).

Section 2. The tools that we selected are presented below. It is worth noting that we picked tools which
implement different techniques (e.g., static analysis, symbolic execution, linter). For a tool to be eligible
for our study, it has to be open source, active and compatible with the latest version of Solidity.

Slither is a static analysis tool written in Python. It provides vulnerability detection and code op-
timization advice. It features many detectors that target different issues. Its analysis runtime is very
low compared to the other tools. It analyses Solidity code by transforming the EVM bytecode into an
intermediary representation called SlithIR. Being an open source project, it allows anyone to contribute
and improve it, being the foundation for our implementation (discussed later in Section 4). Slither was
able to detect uninitialized variables as well as trivial tautologies and contradictions in our examples.

Solhint is a linter for Solidity code. An open source project, it is able to detect possible vulnerabili-
ties, optimization opportunities and abidance to style conventions. The tool also features a customisable
set of detection rules that can be employed, along with predefined configurations. The user can define its
own configurations and decide which issue wants to target. Unfortunately, Solhint was not able to detect
any of the issues in our examples.

Remix7 also features a static analysis plugin. We were unable to find any information about the
analysis process performed by this tool. Moreover, it was unable to detect any problems in our examples.

Mythril is a tool that leverages symbolic execution to simulate multiple runs of a contract’s methods.
It has a fairly long runtime compared to the others. We even encountered executions that took more than
a few hours. Mythril was unable to detect any of the issues presented above.

In Table 1, we present a summary of the results that we obtained. The results indicate that nearly all
tools fail to detect the vulnerabilities in our examples. This does not mean that these tools are not useful
or very bad at signaling issues in smart contract code. The way we interpret these results is that these
tools need to be enhanced with more powerful techniques that could increase their detection capabilities.

4 Interval Analysis for Vulnerability Detection

4.1 Interval Analysis

Interval Analysis [8] is a static analysis technique that approximates the values interval for every variable
in a program for a certain instruction. The technique is not limited to predicting the values interval of a
variable, it can also be used to predict certain properties that can be derived from the value of the variable.
For instance, instead of working with integer intervals, an analysis can target the parity of variables and
work only with 2-valued intervals (even, odd).

7Remix Docs: https://remix-ide.readthedocs.io/en/latest/

https://remix-ide.readthedocs.io/en/latest/
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Statements option _votes[msg.sender]

1 [0, max] [0, max]
2 [0, max] [0, 2]
End [0, max] [0, 2]

Table 2: Interval analysis for the vote function.

We present interval analysis via the Unmatched Type example from Section 2.6. Moreover, we show
how interval analysis can help us detect a problem in this example, more precisely in the vote function:

5: function vote(uint option) external {

6: _votes[msg.sender] = Options(option); //Statement 1

7: _votesCount[Options(option)]++; //Statement 2

8: }

The function registers the vote of an user and increases the total vote count for its option. The problem
is at line 2: the input is of type uint and it could easily be outside the values range [0,1,2] of the enum.

Interval analysis provides an approximation of the values interval for every program variable at each
program location. In Table 2 we show how these intervals are computed for our example. Each line of
the table presents the intervals for the program variables (displayed in columns) before the execution of
each statement in the first column. For example, before the execution of Statement 1, we do not have
any information about the option variable, so its range of values will correspond to the values domain
for uint. For _votes[msg.sender], the value interval changes before Statement 2 in case of normal
execution (otherwise, the transaction is reverted) to [0,2], that is, the only possible range for Option.
Interval analysis performs this calculation using the Worklist Algorithm, an algorithm which traverses
the program control flow graph, and updates the intervals for these variables until a fixpoint is reached.
This algorithm is shown in Section 4.2.

Recall that the problem we are trying to detect using interval analysis is a mismatch of domains
between the variable assigned and the variable whose value is assigned. Since interval analysis computes
the interval for option and _votes[msg.sender], a close inspection of the difference between the
intervals is sufficient to reveal the problem. A require statement that checks upfront the values for the
option parameter would solve the problem. Also, our detection technique would not signal an issue.

4.2 An Implementation of Interval Analysis on Top of Slither

We built our implementation using Python modules provided by Slither. These are the same modules that
are used internally by Slither for its own detectors. During execution, Slither fills some of its internal
data structures with useful information, such as contract CFG (control flow graph), an intermediary SSA
(single statement assignment) representation of the code, and information about each variable (e.g., type,
scope and name). We use the information in these data structures to implement interval analysis.

The Worklist Algorithm shown in Figure 1 works by processing every edge in the contract CFG.
These edges are added into a list (the "worklist"). It is an iterative algorithm that processes existing
elements until the list is empty. When new information is added to the current state, new edges are also
added to the worklist. The algorithm stops when no more new information can be discovered.

We implemented a modular Worklist algorithm. Essential information such as extreme labels8, order

8The program nodes where the analysis begins.
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Values← InitialValues(G)
Worklist← RootSet(G)
while HasMoreNodes(Worklist) do

ni← NextNode(Worklist)
while HasMoreEdges(ni) do

e← nextEdge(ni)
t← type(e)
n j← f arNode(e,ni)
v′j← F(t,vi,v j)
if MonotonicChange(v′j,v j) then

v j← v′j
AddToWorklist(Worklist,n j)

end if
end while

end while
return V

Figure 1: The Worklist Algorithm.

function9 and flow function10 are all provided as parameters to the Worklist algorithm. This allow us to
perform multiple types of analysis using the same base implementation. Our implementation leverages
the CFG provided by Slither to split the code of a function into multiple parts. Each node is then split
even further into SlithIR SSA [2]lines that are analyzed individually. Along with basic types such as uint
and bool, our implementation is able to model complex types such as arrays, mappings and structs.

We defined our own data type to encapsulate information about a variable such as type, scope, name
and, most importantly, values interval. The program state is represented as a dictionary having variable
names as keys and an object of our own defined type as values. Complex types are defined as recursive
dictionaries, for example, the interval for a struct is modeled as a dictionary containing intervals for each
of its fields or even other dictionaries if the structs are nested.

Current status. Our implementation is now able to successfully analyze programs containing assign-
ments and arithmetic expressions for both elementary and complex types. It takes into consideration
state variables, function parameters, and local variables. We are now capable of detecting issues such as:

• Arithmetic issues including Division By Zero and Integer Division Remainder;
• Issues related to variables initialization;
• Issues related to parameter validation.

5 Conclusions

In this paper we identified some vulnerabilities that are not handled by state of the art tools for smart
contract analysis. These vulnerabilities vary in their severity, but no matter the impact, defects and
potential errors should be identified as soon as possible. We attempt to improve Slither with a more
powerful technique called interval analysis. We explain why this technique is a good fit for detecting
these issues and how it could detect them. We built a custom interval analysis on top of Slither, leveraging

9A function that receives two elements of the same domain and determines the greater one.
10A function determining the edges in the flow graph or the reverse of those edges depending on the type of analysis.
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the information that Slither already provides about a contract, its attributes, methods, method parameters,
program flow and many more. Currently, our implementation detects vulnerabilities that other tools miss.

5.1 Future Work

We are now handling only on a subset of expressions in the Solidity programming language, which cov-
ers expressions including integers, booleans, arrays, structures, and mappings. However, more elaborate
work needs to be done to tackle addresses and operations over addresses, more complex loops or condi-
tional statements, etc. Right now, our code can be executed on every smart contract written in Solidity,
but it will perform interval analysis only for the subset that we cover.

Intraprocedural analysis would significantly improve the precision of our analysis. An example of a
vulnerability that we are not yet able to detect is Short Address. This could be detected by monitoring the
length attribute of the payload. Another example is Tautologies and Contradictions in Assert or Require
Statements: it could be detected by approximating the result of the boolean expression and checking if
the interval contains only one value: true for tautologies and false for contradictions.

Being able to handle more complex conditional statements and loops would also be of great help
in obtaining a more accurate monitoring of the program state by interpreting the semantics of boolean
expressions. Once we identify multiple possible states based on conditional branches, we can leverage
unifying techniques such as Trace Partitioning. Additionally, monitoring implicit state variables that
are contract-level or function-level, like balance or msg.sender, would be beneficial in identifying
balance-related issues and user interaction problems.
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In this work-in-progress paper we explore using the recently introduced VLSM formalism to define

and reason about the dynamics of agent-based systems. To this aim we use VLSMs to formally

present several possible approaches to modeling the interactions in the Muddy Children Puzzle as

protocols that reach consensus asynchronously.

1 Introduction

Formally modeling and reasoning about distributed systems with faults is a challenging task [2]. We

recently proposed the theory of Validating Labeled State transition and Message production systems

(VLSMs) [9] as a general approach to modeling and verifying distributed protocols executing in the

presence of faults.

The theory of VLSMs has its roots in the work on verification of the CBC Casper protocol [10, 5] and

follows the correct-by-construction methodology for design and development. Even though the theory

of VLSMs was primarily designed for applications in faulty distributed systems, and in blockchains in

particular, the framework is general and flexible enough to capture various types of problems in dis-

tributed systems. As an illustration, in this paper we show how we can use VLSMs to model and solve

(an asynchronous variant of) the epistemic Muddy Children Puzzle [1].

2 Classical Muddy Children Puzzle

Let us begin by recalling the statement of the Muddy Children Puzzle and a classical epistemic logic

approach to solving it [1].

There are n children playing together. It happens during their play that k of the children get mud on their

foreheads. Their father comes and says: ”At least one of you has mud on your forehead.” (if k > 1, thus

expresses a fact known to each of them before he spoke). The father then asks the following question,

repeatedly: ”Does any of you know whether you have mud on your own forehead?”.

The initial assumptions are expressed in terms of common knowledge. Hence, we shall assume that it is

common knowledge that the father is truthful, that all the children can and do hear the father, that all the

http://dx.doi.org/10.4204/EPTCS.389.13
https://creativecommons.org
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children can and do see which of the other children besides themselves have muddy foreheads and that

all the children are truthful and intelligent enough to make all the necessary deductions during the game.

The solution Let’s consider first the situation before the father speaks. We model the problem by a

Kripke structure M = (S, |=,K1, . . . ,Kn) over Φ, where:

• Φ = {pi, . . . , pn, p} (pi = ”child i has a muddy forehead” and p = ”at least one child has a muddy

forehead”). Note that p could be obtained as the disjunction of all pi’s; however, for simplicity

one can consider it a primitive (albeit non-atomic) predicate.

• S is a set of 2n states (corresponding to all the possible configurations of clean and muddy children,

represented as binary tuples)

• (M,(x1, . . . ,xn)) |= pi iff xi = 1

(M,(x1, . . . ,xn)) |= p iff xi = 1 for some i

• (s, t) ∈ Ki if s and t are identical in all components except eventually the ith one.

It’s crucial to remark that, in the absence of the father’s initial announcement, the fact that ”there is at

least one muddy child” is not common knowledge and the state of knowledge never changes, no matter

how many rounds we take into account. Indeed, after the first question, all the children will certainly

answer ”No”, since they all consider possible the situation in which they themselves do not have mud on

their forehead. No information is gained from this round and the situation remains the same after each

of the following ones, because each child considers possible a state in which they are clean.

Now let’s analyze how the epistemic context changes after the father speaks: as mentioned above, the

common knowledge is now larger (even though in the case with k ≥ 2 muddy children, p was already

common knowledge), because of the public nature of the announcement. Let’s consider how the children

reason after all of them answered ”No” in the first round: it is obvious that all of them eliminate the states

containing one muddy child, since the others could not have all answered ”No” otherwise. Continuing

inductively, we obtain that after k rounds in which all the children answer ”No”, we can eliminate from

the problem graph all the nodes corresponding to states with at most k muddy children. An immediate

consequence of this is that after k− 1 rounds, it becomes common knowledge that there are at least k

muddy children. Hence, the muddy children, who each only see k−1 muddy children will conclude that

they are muddy and answer ”Yes”.

There are multiple formalizations of this puzzle in the literature [8, 4, 6, 7, 3]; indeed it seems that each

new formalism reasoning about knowledge includes a modeling of this puzzle as a basic example of the

expressiveness of the formalism.

3 VLSMs – basic notions

We give a high-level presentation of the theory of VLSMs. More details can be found in [9].

Definition 1 (VLSM). A Validating Labeled State transition and Message production system (VLSM,

for short) is a structure of the form V = (L,S,S0,M,M0,τ ,β ), where L is a set of labels, (S0 ⊆) S is a

non-empty set of (initial) states, (M0 ⊆) M is a set of (initial) messages, τ : L× S×M? → S×M? is a
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transition function which takes as arguments a label, a state, and possibly a message, and outputs a state

and possibly a message, while β is a validity constraint on the inputs of the transition function.1

The transition function in a VLSM is total; however, it indirectly becomes a partial function since the

validity constraint can filter out some of its inputs. The set of labels in a VLSM can be used to model

non-determinism: it is possible to have multiple parallel transitions from a state using the same input

message, each with its own label.

Validity. A transition is called constrained if the validity constraint holds on its input. We denote a

constrained transition τ(l,s,m) = (s′,m′) by s
l

−−−−−→
m → m′

s′. A constrained trace is a sequence of con-

strained transitions that starts in an initial state. A valid trace is inductively defined as a constrained trace

in which the input of each transition can be emitted from a valid trace. A state is constrained/valid if

there is a constrained/valid trace leading to it. Similarly, a message is constrained/valid if it is produced

on a constrained/valid trace (we also consider the no-message to be valid). A transition is called valid if

it is a constrained transition that uses only valid states and messages; thus a valid trace is a sequence of

valid transitions starting in an initial state.

Equivocation. In the literature concerning fault-tolerance in distributed systems, equivocation models

the fact that certain agents can claim to be in different states to different parties. VLSMs allow modeling

such behavior, by specifying that in a valid trace the valid input messages can be produced on different

(though still valid) traces.

Composition. A single VLSM can represent the local point of view of a component in a distributed

system. We can obtain the global point of view by composing multiple VLSMs and lifting the local

validity constraint of each component. Designers of systems can impose additional restrictions, which

are stronger than the ones that can be specified locally on individual components because they can be

stated in terms of the global composite state. We capture this phenomenon by the notion of composition

constraint.

Definition 2 (Composition). Let {Vi}
n
i=1 be an indexed set of VLSMs over the same set of messages

M. The constrained composition under a composition constraint ϕ is the VLSM V =
(

∑n
i=1Vi

)
∣

∣

∣

ϕ
=

(L,S,S0,M,M0,τ ,β ∧ϕ) where L is the disjoint union of labels, the (initial) states are the product of

(initial) states of the components, the transition function τ and the constraint predicate β are defined

component-wise, while the composition constraint ϕ ⊆ L×S×M? is an additional predicate that filters

the inputs for the transition function.

When a composition constraint is trivial, i.e., it is the set L×S×M?, we refer to the composition as the

free composition and drop the subscript ϕ in the notation.

No Equivocation constraint. As mentioned above, VLSMs implicitly allow equivocation. Neverthe-

less, a truthful behavior of the agents in a composition can still be enforced by means of a no equivo-

cation constraint, which does not allow receiving in a (composite) state a message from a component if

that component could not have emitted the message in a trace leading to the current state.

1For any set M of messages, let M? = M∪{ } be the extension of M with , where stands for no-message.
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4 Asynchronous Muddy Children Puzzle as a VLSM — take 1

We would like to model the Muddy Children Puzzle as a collective effort of a group of agents (the

children) to reach a common goal (knowing whether they are muddy or not) by exchanging messages

which reveal as little as possible of their personal (initial) knowledge about the problem (a.k.a., which

children they see as muddy). To this aim, there are several characteristics which will be common to both

our presented models:

• Each child needs to know (at all times) which of the other children are muddy (the child’s initial

knowledge);

• Every message needs to have a sender;

• Every message has to report on the epistemic status of its sender at the time the message was sent;

• Decisions are final: once a child has decided upon their own status (clean/muddy), they will not

receive additional messages, as these would not bring new knowledge.

In our models we choose to index the children with natural numbers and to represent a child’s initial

knowledge as a set of indices of the muddy children they see (note that the index of the child cannot

appear in this set). We will also use these indices to identify the sender of a message. For the epistemic

status, we will use three possible values:

• u stands for “child doesn’t known their status”;

• m stands for “child knows they have mud on their forehead”;

• c stands for “child knows they don’t have mud on their forehead”.

For our first modeling attempt, we let the children maintain and communicate a number reflecting “the

round number” (from the original solution) at which they perceive themselves to be.

Let us start formalizing this setting using VLSMs. We represent each child as a VLSM of the form

Ci = (Li,Si,S0,i,M,M0,i,τi,βi). The states of Ci are either initial states of the form 〈Obs〉 where Obs

represents the children seen as muddy by child i, or running states of the form 〈Obs,r,status〉, where

additionally r is the round perceived by child i, and status represents the epistemic status of child i.

• Li = {init,emit,receive} reflects the three types of transitions (initialization, corresponding to the

father’s announcement and emitting/receiving messages)

• Mi = {〈 j, r, status〉 | j ∈ {1, . . . ,n}, r ∈ N, status ∈ {u,m,c}} — messages also communicate the

round number

• M0,i = /0

• Si = {〈Obs〉 | Obs ⊆ {1, . . .,n}}∪{〈Obs, s, r〉 | Obs ⊆ {1, . . .,n}, s ∈ {u,m,c}, r ∈ N}

• S0,i = {〈Obs〉 | Obs ⊆ {1, . . .,n}},

The invariant we would like to maintain is that a child at round r knows (from the messages exchanged

with its peers) that there are more than r muddy children.
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Assuming that such an invariant holds for all accessible states, then when a child (say i) sends a message

containing their round number (say k) and the fact that they still cannot determine their status, a child

receiving such a message (say j) can derive from it that i knows that there are more than k muddy

children except themselves (since otherwise i would know their status). Moreover, since the receiving

child knows whether the sender is muddy or not, if j sees i as muddy, j can infer that there are actually

more than k+1 muddy children. If the current round of j is smaller than the number inferred (either k,

if i is clean, or k+1, if i is muddy), then j can update their current round to that number.

If that happened, say r is the new current round number, if r is less than the number of muddy children

that j sees, then the information provided by r is not yet useful enough to draw a conclusion about the

status, so the status will stay unknown. However, if r ever becomes equal to the number of muddy

children that j sees, then the child knows that there are more than r muddy children, and since they can

only see r muddy children, they will conclude they have to be muddy.

An interesting fact holds for clean children. Note first that they see all the children who are muddy (say

N), so for them the number of muddy children they see is larger by 1 than the number of muddy children

seen by any muddy child. Hence, they cannot infer their status using the reasoning above, because for

that they would have to receive a message from a muddy child, say i with an unknown status at round

N −1, but that is precisely the number of muddy children that child i sees, so at that round child i would

already be able to infer their status. Let’s assume a child i is clean. If there are enough muddy children,

i can receive a message from a muddy child with round N − 2, and update their round to N − 1 (using

the reasoning above) while maintaining their status as unknown (since the child still sees more muddy

children). Note that N − 1 is its maximal round according to the invariant proposed above. But, at the

same time, one of the other muddy children, say j can receive the same message and update their round

to N−1, which coincides to the number of muddy children they see, so they would change their status to

knowing that they are muddy. Now if j sends a message with their new round and status and i receives

it, then i would know they must be clean, but the question is: what would happen with the child’s round?

If i keeps the same round (as to not violate the invariant), then they would have two statuses at the same

round. To avoid that, we decide to break the invariant in this case and let a clean child advance to round

N when they infer they are clean, thus staying in sync with the traditional solution to the puzzle.

Thus we can rephrase the first invariant as: ”a message 〈 j, r, status〉 with status different than clean

guarantees that j knows that there are more than r muddy children”, and add a second property, saying

that a message 〈 j, r, status〉 with status different than unknown guarantees that j sees precisely r muddy

children.

In the sequel, we propose a transition function (and constraint predicate) to help us realize the proposal

above.

Init From the initial state, each child takes one (silent) transition, analyzing their current knowledge and

initializing the dynamic part of the state accordingly.

• The round number is initialized with 0

• If the set of muddy children the child sees is empty, then the knowledge flag is set to muddy

(since at least one must be muddy); otherwise to unknown

τi(init,〈Obs〉, ) = (〈Obs,0,u〉, ), if Obs 6= /0

τi(init,〈Obs〉, ) = (〈Obs,0,m〉, ), if Obs = /0

βi(init,〈Obs〉,m) = (m = )
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τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r,status〉, ), if status ∈ {m,c}

(〈Obs,r′,c〉, ), if status = u and status′ = c

and j /∈ Obs and r′ = |Obs|

(〈Obs,r′−1,m〉, ), if status = u and status′ = c

and j /∈ Obs and r′ = |Obs|+1

(〈Obs,r′,m〉, ), if status = u and status′ = m

and j ∈ Obs and r′ = |Obs|

(〈Obs,r′+1,c〉, ), if status = u and status′ = m

and j ∈ Obs and r′ = |Obs|−1

(〈Obs,r,status〉, ), if status = u and status′ = u

and j ∈ Obs and r′ < r

(〈Obs,r′+1,status〉, ), if status = u and status′ = u

and j ∈ Obs and r ≤ r′ < |Obs|−1

(〈Obs,r′+1,m〉, ), if status = u and status′ = u

and j ∈ Obs and r′ = |Obs|−1

(〈Obs,r,status〉, ), if status = u and status′ = u

and j /∈ Obs and r′ ≤ r

(〈Obs,r′,status〉, ), if status = u and status′ = u

and j /∈ Obs and r < r′ < |Obs|

(〈Obs,r′,m〉, ), if status = u and status′ = u

and j /∈ Obs and r′ = |Obs|

〈Obs,r,status〉, ), for the cases not treated above

Figure 1: The transition function for the receive label

Emit From any non-initial state, a child can emit a message consisting of their identifier, current round

number and epistemic status, without changing state.

τi(emit,〈Obs,r,status〉, ) = (〈Obs,r,status〉,〈i, r, status〉)
βi(emit,〈Obs,r,status〉,m) = (m = )

Receive To update their state, whenever receiving a message 〈 j,r′,status′〉 in a state 〈Obs,r,status〉, the

child does the following:

• If their current status is not u, they ignore the message (decisions are final).

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r,status〉, ), if status ∈ {m,c}

• Otherwise:

– If message status (status′) is c, and j is not known to be muddy ( j 6∈ Obs), then from the

property above r′ must represent the actual number of muddy children. Hence:
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* If r′ = |Obs|, then child i can update their round to the received message’s round

and then conclude that they are clean.

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r′,c〉, )

* If r′ = |Obs|+ 1, then child i can update their round to the round before received

message’s round and then conclude that they are muddy.

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r′−1,m〉, )

– If message status (status′) is m then it must be that j is known as muddy ( j ∈ Obs); then,

from the property above, r′ + 1 must represent the actual number of muddy children.

Hence:

* If r′ = |Obs|, then child i can update their round to the received message’s round

and then conclude that they are muddy.

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r′,m〉, )

* If r′ = |Obs| − 1, then child i can update their round to round after the received

message’s round and then conclude that they are clean.

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r′+1,c〉, )

– If message status (status′) is u, and j is known as muddy ( j ∈ Obs), then i can infer that

j knows that there are more than r′ muddy children, and therefore infers that there are

more than r′+1 muddy children. Hence:

* If r′ < r, then child i can ignore the message (it brings nothing new).

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r,status〉, )

* If r ≤ r′ < |Obs| − 1, then child i can update their round to r′+ 1, but their status

will remain unknown (they already know there are at least |Obs| muddy children).

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r′+1,status〉, )

* If r′ = |Obs|− 1, then child j sees at least |Obs| muddy children. Since the sender

is known as muddy, there are at least |Obs|+1 muddy children. On the other hand,

child i knows there are at most |Obs|+ 1 muddy children. Combining the two in-

equalities, we get that there are precisely |Obs|+ 1 muddy children, so child i can

advance to round r′+1 and knows they are muddy.

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r′+1,m〉, )

– If message status (status′) is unknown, and j is not known as muddy ( j /∈ Obs), then i

can infer that j knows that there are more than r′ muddy children, and therefore infers

(only) that there are more than r′ muddy children. Hence:

* If r′ ≤ r, then child i can ignore the message.

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r,status〉, )
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* If r < r′ < |Obs|, then child i can update its round to r′, but its status will remain

unknown (it already knows there are at least |Obs| muddy children).

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r′,status〉, )

* If r′ = |Obs|, we reason analogous to the similar above case: child j knows that

there are at least |Obs|+1 muddy children and. Adding the fact that child i knows

there are at most |Obs|+1 muddy children, we get that there are precisely |Obs|+1

muddy children, so child i knows they are muddy.

τi(receive,〈Obs,r,status〉,〈 j, r′, status′〉) = (〈Obs,r′,m〉, )

Composition. Note that the notion of VLSM composition in general allows arbitrary initial states for

the components. However, in this setting, we need to ensure that the sets of children known by each child

to be muddy are consistent. Formally, given a child-state s, let Obs(s) be the observation-set associated

to s. Then, for any composite state σ = 〈σ1, . . . ,σn〉, let consistent(σ) be the predicate defined by

• M 6= /0 (there should be at least one muddy child)

• Obs(σi) = M \{i}, for any i (each child sees all other muddy children)

where M =
⋃n

i=1 Obs(σi).

Finally, the game flow can be formalized as a constrained VLSM composition.

M uddyPuzzle =
(

C1 + . . .+Cn

)
∣

∣

∣

ϕ

where ϕ specifies the following composition constraint:

init At the first transition from an initial state we check that the observation sets corresponding to each

component are consistent

ϕ((i, init),(〈Obs1〉, . . . ,〈Obsn〉),m) = consistent(〈Obs1〉, . . . ,〈Obsn〉)

receive We must enforce a no-equivocation constraint to ensure the truthfulness of the participants

ϕ(〈i,receive〉,〈σ1, . . . ,σn〉,〈 j, r′, status′〉) = (status′ = status j ∧ r′ = r j)∨ (status′ = u∧ r′ < r j),
where σ j = 〈Obs,r j,status j〉.

4.1 Correctness of the protocol

In the following, we give a justification of the fact that the above described protocol is correct in the sense

that it converges to a solution. The valid states of the protocol (SV ) correspond to the composite states

which are VLSM-valid in the constrained composition described above. We define the set of non-initial

valid states S∗V = SV \S0 and the set of final states SF = {〈σi . . .σn〉 ∈ SV | ∀i∈ {1, . . . ,n},status(σi) 6= u}.

It can be easily checked that the consistency predicate holds for any σ ∈ S∗V :

Remark 1. For each σ ∈ S∗V , consistent(σ) holds.

Another VLSM-related property, which we state without proof is the fact that the constraint for receive

transitions is indeed a no-equivocation constraint:
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Remark 2 (No Equivocation). For any valid trace tr leading from an initial state σ0 to a state σ ∈ S∗v
and for any input message m which is valid for σ there exists a valid trace starting in σ0, of length less

than that of tr which emits m.

Let us now show that the invariant that we stated about the dynamics of the protocol is indeed preserved

during a (valid) protocol run.

Lemma 1 (Invariant Preservation). For any σ ∈ SV , if σ 6∈ S0, then:

For any component i of σ of the form σi = 〈Obsi,ri,statusi〉:

• If statusi = u, then ri < |Obsi| (and |Obsi| ≤ N)

• If statusi = m, then ri = N −1 = |Obsi|

• If statusi = c, then ri = N = |Obsi|

Proof. Note that it is common knowledge that |Obsi| ≤ N ≤ |Obsi|+1 for any i.

We prove the invariant by induction on the length of a valid trace leading to σ . The property trivially

holds for σ ∈ S0. For the induction case, we consider the final (valid) transition leading to σ , say

σ ′ (i,l)
−−−−−→

m → m′
σ , and we assume that the invariant holds for σ ′. We proceed by case analysis on the label

of the transition.

l = init: This transition obviously preserves the invariant, because of the father’s statement.

l = emit: In case of a emit transition, the conclusion is also immediate, since the state remains un-

changed.

l = receive: From Remark 2 there is a composite valid state from which the input message can be emitted

which has the same observation sets as σ ′ (since they both are reachable from the same initial state)

and for which we can apply the induction hypothesis and thus assume that the invariant holds.

• τi(receive,〈Obsi,r,m〉,〈 j, r′, status′〉): the message is ignored and the state remains unchanged,

so the conclusion is immediate.

• τi(receive,〈Obsi,r,c〉,〈 j, r′, status′〉): we proceed analogous to the previous case.

• τi(receive,〈Obsi,r,u〉,〈 j, r′, c〉) and j /∈ Obsi and r′ = |Obsi|:
By applying the induction hypothesis to the state from which the message is obtained, we

have r′ = N = |Obs j|.
The resulting state 〈Obsi,r

′,c〉 preserves the invariant, because r′ = N = |Obsi|.

• τi(receive,〈Obsi,r,u〉,〈 j, r′, c〉) and j /∈ Obsi and r′ = |Obsi|+1:

By applying the induction hypothesis to the state from which the message is obtained, we

have r′ = N = |Obs j|.
The resulting state 〈Obsi,r

′−1,m〉 preserves the invariant, because r′−1 = N −1 = |Obsi|.

• τi(receive,〈Obsi,r,u〉,〈 j, r′, m〉) and j ∈ Obsi and r′ = |Obsi|:
By applying the induction hypothesis to the state from which the message is obtained, we

have r′ = N −1 = |Obs j|.
The resulting state 〈Obsi,r

′,m〉 preserves the invariant, because r′ = N −1 = |Obsi|.
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• τi(receive,〈Obsi,r,u〉,〈 j, r′, m〉) and j ∈ Obsi and r′ = |Obsi|−1:

By applying the induction hypothesis to the state from which the message is obtained, we

have r′ = N −1 = |Obs j|.
The resulting state 〈Obsi,r

′+1,c〉 preserves the invariant, because r′+1 = N = |Obsi|.

• τi(receive,〈Obsi,r,u〉,〈 j, r′, u〉) and j ∈ Obsi and r′ < r:

The state after applying the transition remains unchanged, so the conclusion is immediate.

• τi(receive,〈Obsi,r,u〉,〈 j, r′, u〉) and j ∈ Obsi and r ≤ r′ < |Obsi|−1:

The resulting state 〈Obsi,r
′+1,u〉 obviously preserves the invariant, since r′+1 < |Obsi|.

• τi(receive,〈Obsi,r,u〉,〈 j, r′, u〉) and j ∈ Obsi and r′ = |Obsi|−1:

We have r′+1 = |Obsi| ≥ N −1, so r′ ≥ N −2.

On the other hand, applying the induction hypothesis, we have that r′ < |Obs j| and since

child j is muddy, |Obs j| = N − 1, and combining these we get r′ < |Obs j| = N − 1, which

implies r′ ≤ N −2.

We can conclude that r′ =N−2, so the resulting state 〈Obsi,r
′+1,m〉 preserves the invariant,

because r′+1 = |Obsi|= N −1.

• τi(receive,〈Obsi,r,u〉,〈 j, r′, u〉) and j /∈ Obsi and r′ <= r:

The state after applying the transition remains unchanged, so the conclusion is immediate.

• τi(receive,〈Obsi,r,u〉,〈 j, r′, u〉) and j /∈ Obs and r < r′ < |Obsi|:
The resulting state 〈Obsi,r

′,status〉 preserves the invariant, since r′ < |Obsi|.

• τi(receive,〈Obsi,r,u〉,〈 j, r′, u〉) and j /∈ Obsi and r′ = |Obsi|:
By applying the induction hypothesis to the state from which the message is obtained, we

have r′ < |Obs j| and since child j is clean, |Obs j|= N so we get r′ < N and combining this

with the last condition in the transition, we immediately obtain that |Obsi|< N.

But since it is common knowledge that |Obsi| ≥ N−1 it must be that |Obsi|= N−1. We can

conclude that r′ = |Obsi|= N −1, so the resulting state 〈Obsi,r
′,m〉 preserves the invariant.

• For all the cases not treated above, the child’s β predicate does not hold, so there cannot be

any transition.

Theorem 1. From any initial consistent state, there is a path leading to a final state in which each child’s

status is consistent with the instance of the problem.

Proof sketch. The result can be obtained from the following properties:

Progress From any valid non-final state σ , there is a valid transition leading to a state σ ′ on some

component i, such that round(σ ′
i )> round(σi), where we let round(〈Obs〉) be −1.

If there are any component initial states left, we advance one of them. If there are any children

which already know their status, we advance to the final state any of the others (there must be at

least one child with unknown status since the state is not final). If no child knows their status yet,

then there must be at least two muddy children. Then take the one among them with minimum

round number (if their round numbers are equal, take any of them) and receive the message corre-

sponding to the current state of the other. This will surely increase their current round number.
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Invariant Preservation The invariant from Lemma 1 holds.

In particular, if a final state is reached, each child’s status will be consistent with the current

instance of the problem.

Termination No child can increase their round number past the number of muddy children they see.

Easy to prove by induction and analysis on the cases of the transition function.

4.2 Possible optimization

If we analyze the dynamics of the solution proposed above, we notice that the only relevant exchange of

messages happens in the final stages of the protocol. Indeed, assuming a child sees n muddy children,

they know that any other child sees at least n− 1 muddy children; therefore no message it would send

with round less than n− 1 can help any other child determine their status. Hence, the child can ”jump”

during the initialization phase directly to the round n−1. Formally, we add a new label jump and replace

the Init transition with the following:

From any state with status unknown, a child can take one (silent) transition ”jumping” to

a future state it knows it can reach based on existing knowledge, where the round number

becomes the number preceding the number of muddy children the child sees and the child’s

knowledge flag remains unknown.

τi(jump,〈Obs,r,status〉,m) = (〈Obs, |Obs|−1,u〉, )
βi(jump,〈Obs,r,status〉,m) = (status = u)∧ (m = )∧ (r < |Obs|−1)

After such a jump one can find a very short path to a solution:

1. a child sends a message after the jump with the unknown status

2. another (muddy) child receives that message and discovers they are muddy and sends a message

with this discovery

3. all other children (including the first) receive this second message and discover their status

4.3 Discussion

The above proposed solution seems to satisfy our initial guidelines for a good asynchronous solution.

Nevertheless, it is far from being perfect, as illustrated by the following example.

Example 1 (Information leak). Assume there are 5 children, 4 of whom are muddy and one is not. Then

a muddy child (say, child 1) can discover that they are muddy by only exchanging messages with the

clean child (say, child 5) with the following scenario:

1. 1 at round 0 sends message m1
0 that they do not know

2. 5 at round 0 receives message m1
0, advances to round 1, and sends message m5

1 that they do not

know

3. 1 at round 0 receives the message m5
1, advances to round 1, and sends message m1

1 that they do not

know
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4. 5 at round 1 receives message m1
1, advances to round 2, and sends message m5

2 that they do not

know

5. 1 at round 1 receives the message m5
2, advances to round 2, and sends message m1

2 that they do not

know

6. 5 at round 2 receives message m1
2, advances to round 3, and sends message m5

3 that they do not

know

7. 1 at round 2 receives the message m5
3, advances to round 3 which equals the number of muddy

children they see and changes their status to knowing they are muddy (and sends message m1
3 with

status muddy)

Moreover, once 1 knows they are muddy and sends a message about it, upon receiving that message all

the other children will know their status.

There are at least two issues about the above example: (1) that a muddy child needs no information from

other muddy children to discover that they are muddy; and (2) that once a child knows their status, all

other children immediately know their status, even if they have not taken part in the conversation so far.

It thus seems that, although sharing the perceived round as part of the message helps with making the

discovery process asynchronous, it also alters it more than expected in terms of what becomes inferable

during an exchange of information. The following section proposes a solution we believe to be closer to

the original formulation and intended dynamics, while staying asynchronous.

5 Solving the puzzle by extracting information from messages

To alleviate the issues identified with the solution in Section 4, we propose a new solution, which follows

more closely an epistemic logic point of view, in the sense that the messages exchanged between children

only carry information that the child has previously seen. This guarantees that deduction can only be done

according to information that is (was) publicly available.

To do that, we define the child i as the following VLSM, resembling the previous encoding, but using

message histories (lists of messages previously received) instead of round numbers:

• Li = {init,emit,receive}

• M = {〈 j, s, h〉 | j ∈ {1, . . .,n}, s ∈ {u,m,c}, h ∈ M∗}

• M0,i = /0

• Si = {〈Obs〉 | Obs ⊆ {1, . . .,n}}∪{〈Obs, s, h〉 | Obs ⊆ {1, . . .,n}, s ∈ {u,m,c}, h ∈ M∗}

• S0,i = {〈Obs〉 | Obs ⊆ {1, . . .,n}},

Let us now describe the dynamics of a child’s interaction with the others.

Init The initialization phase will remain basically the same as for the previous solution, except that,

instead of round 0, now the children will have the empty history:
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τi(init,〈Obs〉, ) =

{

(〈Obs, u, []〉, ), if Obs 6= /0

(〈Obs, m, []〉, ), if Obs = /0

βi(init,〈Obs〉,msg) = (msg = )

Emit Similarly, the emit phase is basically the same, except that, instead of sending their round number,

the children will now send their current history:

τi(emit,〈Obs, s, h〉, ) = (〈Obs,s,h〉, 〈i, s, h〉)
βi(emit,〈Obs, s, h〉,msg) = (msg = )

Receive Upon receiving a message (in a not yet known status) the child will aggregate the message

received with the information they already had (append it to its history) and compute its new status

based on its Observation set and its new history.

τi(receive,〈Obs, s, h〉,〈 j, s j, h j〉) =

{

(〈Obs, s, h〉, ), if s ∈ {c,m}
(〈Obs, compute(Obs,h ++[〈 j,s j,h j〉]), h ++[〈 j, s j, h j〉]〉, ), if s = u

// we compute the new status

compute(Obs,h) =







m, if mink∈Obs |groupSimilar i(unknownk(flatten(h)))| ≥ |Obs|
c, if the first rule didn’t apply and |muddy(flatten(h))|= |Obs|
u, otherwise

// we unfold all the messages contained (in depth) in the history

flatten(h ++[〈 j, s j, h j〉]) = flatten(h) ∪ flatten(h j) ∪ {〈 j, s j, h j〉} ∪ extra(〈 j, s j, h j〉)

// we extract extra information from a message about messages which could have been emitted by

its sender (e.g. in all prefixes of the history in which the sender didn’t know their status)

extra(〈 j, s j, h j〉) = {〈 j,u,h′j〉 | h′j ⊳ h j}
2

// we select messages belonging to a given child and having an unknown status

unknownk(h) = {m | m ∈ h∧m = 〈k,u,h′〉 for some h’}

// we group messages that carry the same information relative to child i

groupSimilari(h) = h\{〈 j, u, h′ ++[〈i, , 〉]〉 for some h’}

// we construct the set of all children who know they are muddy in a history

muddy(h) = { j | 〈 j,m,h j〉 ∈ h}

Finally, the game can be formalized as a constrained VLSM composition.

M uddyPuzzle =
(

C1 +C2 +C3

)∣

∣

∣

ϕ

where

2We denote by h1 ⊳h2 the fact that h1 is a strict prefix of h2.
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// consistency

ϕ((i, init),(〈Obs1〉,〈Obs2〉,〈Obs3〉),m) = consistent(〈Obs1〉,〈Obs2〉,〈Obs3〉),

// no equivocation

ϕ((i,receive),〈σ1,σ2,σ3〉,〈 j,s j,h j〉) =

(s j = status(σ j) ∧ h j = history(σ j)) ∨ (s j = u ∧ h j ⊳ history(σ j)),

where for a state σ = 〈Obs,s,h〉, we define status(σ) = s and history(σ) = h.

It is relatively easy to see that the kind of reasoning described in the (counter-)Example 1 is no longer

possible, because after the first exchange of messages, child 1 cannot really infer anything, because all

they see is a message from child 5 containing a message from themselves.

We argue that the information contained in a message represents the epistemic knowledge of its sender

about the status of the other children at the time the message was sent, thus making this solution much

closer to the standard solution (using synchronous rounds and public announcements).

First, let N be the total number of muddy children, and let us observe that if a child knows N, then

they also know their status (by comparing N with the number of muddy visible children). On the other

hand, telling the others that they know N (without actually telling them the value) is no different than

telling them that their status can be inferred. Let K1, . . . ,Kn be the epistemic operators assigned to each

child, with the intuitive meaning of Kiψ that i can infer that ψ holds, based on the commonly available

information, and on the private information that i has. Let also q1, . . . ,qn be primitive propositions, qi

meaning that i knows the value of N.

Then, we can recursively encode a message m as a formula E(m), as follows:

E(〈 j,s j,h j〉) =







(K j

∧

m∈h j
E(m))∧K j

(

∧

m∈h j
E(m)→ q j

)

if s j 6= u

(K j

∧

m∈h j
E(m))∧¬K j

(

∧

m∈h j
E(m)→ q j

)

if s j = u

One important observation is that the formulas corresponding to all additional messages introduced by

flatten(h) are directly deducible from the formulas of h.

Discussion. Our preliminary exploration of the interactions possible within the model seems to hint

that a solution is reachable from any initial state for the case of three children. Nevertheless, our current

definition of groupSimilar was engineered for the case of three children and we know it doesn’t scale to

more children as-is. We believe that for the general case it should be replaced by factoring the messages

through an equivalence relation grouping messages which carry the similar amount of information as

perceived by the child receiving these messages.

6 Conclusion and Future Work

In this paper we have shown that compositions of VLSMs seem like a useful tool to model the dynamics

of distributed agents, allowing independent description of their behavior, but also enabling the specifica-

tion of global constraints (e.g., truthfulness, fairness, etc.).
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Regarding the models proposed for the Muddy Children Puzzle, for the first model we were able to

show that it achieves the goal of converging towards a solution, but also showed that it might leak more

information than intended through communication. We believe the second model to be promising and

more faithful to our modeling goals and plan to further explore its possible generalizations to an arbitrary

number of children.
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