
EPTCS 411

Proceedings of the

Sixth International Workshop on

Formal Methods for Autonomous Systems

Manchester, UK, 11th and 12th of November 2024

Edited by: Matt Luckcuck and Mengwei Xu

Published: 21st November 2024

DOI: 10.4204/EPTCS.411

ISSN: 2075-2180

Open Publishing Association

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. i–iii, doi:10.4204/EPTCS.411.0

Preface

This EPTCS volume contains the papers from the Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024), which was held between the 11th and 13th of November 2024.
FMAS 2024 was co-located with 19th International Conference on integrated Formal Methods (iFM’24),
hosted by the University of Manchester in the United Kingdom, in the University of Manchester’s Core
Technology Facility.

The goal of the FMAS workshop series is to bring together leading researchers who are using formal
methods to tackle the unique challenges that autonomous systems present, so that they can publish and
discuss their work with a growing community of researchers. Autonomous systems are highly complex
and present unique challenges for the application of formal methods. Autonomous systems act without
human intervention, and are often embedded in a robotic system, so that they can interact with the
real world. As such, they exhibit the properties of safety-critical, cyber-physical, hybrid, and real-time
systems. We are interested in work that uses formal methods to specify, model, or verify autonomous
and/or robotic systems; in whole or in part. We are also interested in successful industrial applications
and potential directions for this emerging application of formal methods.

As in previous years this year’s FMAS was a hybrid event, ensuring that presenters and participants
can be involved in FMAS remotely. During 2020 and 2021, FMAS was held as a fully online event,
due to the restrictions needed to cope with the COVID-19 pandemic, and we have continued as a hybrid
event since 2022. We feel that enabling online participation, while often challenging to organise, makes
FMAS accessible to people not able to travel for the workshop. We hope that the extra effort taken to
support online attendance was a useful option for those presenters and attendees who made use of it.

FMAS 2024 accepted papers in one of four categories: short papers could be either vision papers or
research previews; and long papers could be either experience reports or regular papers. In total, FMAS
2024 received 19 submissions: 10 Regular papers, 4 Experience Reports, 4 Research Previews, and 1
Vision paper. We received submissions from researchers at institutions in: France, Germany, Ireland,
Italy, the Netherlands, Norway, Portugal, Sweden, the United States of America, and the United King-
dom. Though we received fewer submissions than last year, we are encouraged to see the submissions
being sent from a wide range of countries. Each paper was reviewed by three members of our Pro-
gramme Committee; after the reviews we accepted a total of 14 papers: 8 Regular, 3 Experience Reports,
2 Previews, and 1 Vision paper.

FMAS 2024 hosted two invited speakers, sharing one with iFM in a joint session like last year. Dr
Silvia Lizeth Tapia Tarifa, from the University of Oslo (Norway), gave a talk titled ”Self-Adaptation in
Autonomous Systems”; which presented techniques that are suitable for specifying the variability of Self-
Adaptive Systems. Prof. Daniel Kröning from Amazon Web Services and Magdalen College, University
of Oxford, gave the invited talk in our joint session with iFM. The talk, titled ”Proof for Industrial
Systems using Neural Certificates”, which introduces a novel approach to model checking that combines
machine learning and symbolic reasoning.

To celebrate the first five years of FMAS, we arranged a special issue with the Science of Computer
Programming journal called ”Advances in Formal Methods for Autonomous Systems”; inviting exten-
sions of papers from the first five FMAS workshops, and novel work that had not been submitted to the
workshop before. The special issue provides an opportunity for researchers and practitioners to present

https://dx.doi.org/10.4204/EPTCS.411.0

ii Preface

theory, techniques, and applications related to the use of formal methods in the engineering, design, and
analysis of autonomous systems. The special issue’s Guest Editors are Dr Matt Luckcuck, Dr Marie
Farrell, Jun.-Prof. Dr Maike Schwammberger, and Dr Mario Gleirscher. We would like to thank the
Editors-in-Chief, Prof. Andrea De Lucia and Prof. Mohammad Reza Mousavi, for their support with
our first step into journal editing. The first papers from this special issue are appearing online as we
write, with more to follow; an exciting new venue for the Formal Methods for Autonomous Systems
community.

Looking forward, to the next five years of FMAS, we are taking steps to make the workshop even
more useful for our community. This year, we had a fruitful discussion session about the direction of
the topic area, to keep us informed about the community’s needs. This year’s Organising Committee
includes four new members: Mengwei Xu (our Programme Committee chair), Diana Carolina Benjumea
Hernandez, Akhila Bairy, and Simon Kolker. FMAS 2024 introduced two new features for our workshop:
an invited tutorial from Dr Louise A. Dennis, who described the practical uses of the Model-Checking
Agent Programming Languages (MCAPL) framework; and a Best Paper award. We plan to continue
both of these new features in next year’s workshop. Finally, selected papers from FMAS 2024 will be
invited to a journal special issue that we are in the process of organising.

We would like to thank everyone who volunteered to be part of the FMAS 2024 Programme Com-
mittee, both returning reviewers and first-timers alike; their time and effort is what keeps the workshop
running.
We also thank our invited speakers, Dr Silvia Lizeth Tapia Tarifa and Prof. Daniel Kröning (in the joint
session with iFM); Louise A. Dennis for presenting FMAS’s first invited tutorial; the authors who sub-
mitted papers; our EPTCS editor, Prof. Martin Wirsing, for his support during the preparation of these
proceedings; the organisers of iFM – Marie Farrell, Mohammad Reza Mousavi, Laura Kovács, and Niko-
lai Kosmatov – for supporting our workshop; FME for its sponsorship of our student travel grants; and
all of the attendees (both virtual and in-person) of FMAS 2024.

FMAS will return in 2025.

Matt Luckcuck and Mengwei Xu

November 2024

Dr Matt Luckcuck iii

Program Committee

Oana Andrei University of Glasgow (UK)
Marco Autili Università dell’Aquila (Italy)
Akhila Bairy Karlsruhe Institute of Technology (Germany)
Daniela Briola Università degli Studi di Milano-Bicocca (Italy)
Rafael C. Cardoso University of Aberdeen (UK)
Christian Colombo University of Malta (Malta)
Louise A. Dennis University of Manchester (UK)
Marie Farrell University of Manchester (UK)
Angelo Ferrando University of Modena and Reggio Emilia (Italy))
Michael Fisher University of Manchester (UK)
Thomas Flinkow Maynooth University (Ireland)
Mario Gleirscher University of Bremen (Germany)
Mallory S. Graydon NASA Langley Research Center (USA)
Jérémie Guiochet University of Toulouse (France)
Taylor T. Johnson Vanderbilt University (USA)
Verena Klös Technical University of Dresden (Germany)
Livia Lestingi Politecnico di Milano (Italy)
Sven Linker Kernkonzept (Germany)
Matt Luckcuck University of Nottingham (UK)
Anastasia Mavridou NASA Ames Research Center (USA)
Alice Miller University of Glasgow (UK)
Alvaro Miyazawa University of York (UK)
Rosemary Monahan Maynooth University (Ireland)
Yvonne Murray University of Agder (Norway)
Dominique Méry Université de Lorraine (France)
Natasha Neogi NASA Langley Research Center (USA)
Colin Paterson University of York (UK)
Baptiste Pelletier ONERA – The French Aerospace Lab (France)
Andrea Pferscher Graz University of Technology (Austria)
Juliane Päßler University of Oslo (Norway)
Maike Schwammberger Karlsruhe Institute of Technology (Germany)
Paulius Stankaitis University of Stirling
James Stovold Lancaster University Leipzig (Germany)
Silvia Lizeth Tapia Tarifa University of Oslo (Norway)
Elena Troubitsyna KTH Royal Institute of Technology (Sweden)
Gricel Vázquez University of York (UK)
Hao Wu Maynooth University (Ireland)
Mengwei Xu University of Newcastle (UK)

Subreviewers

Samuel Sasaki Vanderbilt University (USA)
Serena Serbinowska Vanderbilt University (USA)

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. iv–iv, doi:10.4204/EPTCS.411.0.1

Invited Talk: Self-Adaptation in Autonomous Systems

Dr Silvia Lizeth Tapia Tarifa
University of Oslo, Norway

Self-adaptation is a crucial feature of autonomous systems that must cope with uncertainties in, e.g.,
their environment and their internal state. A self-adaptive system (SAS) can be realised as a multi-layered
system, e.g., a two-layered systems that have a separation of concerns between the domain-specific func-
tionalities of the system (the managed subsystem) and the adaptation logic (the managing subsystem),
which introduces an external feedback loop for managing adaptation in the system; or as a three-layered
system, where the third layer can implement a feedback loop for architectural self-adaptation, which is
used to reconfigure the second layer (the adaptation logic of the managing subsystem).

In this talk I will present techniques that can capture the SAS’s variability, concretely software prod-
uct lines, where the managing subsystem of an SAS can be modelled as a control layer capable of
dynamically switching between valid configurations of the managed subsystem; and declarative stages
in a lifecycle of a system, where we do not require explicit modelling of the transitions between stages in
the lifecycles of a system; however, characteristics on an stage can be observed, which after observation
may trigger changes in the self-adaptation logic itself.

http://dx.doi.org/10.4204/EPTCS.411.0.1

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. v–v, doi:10.4204/EPTCS.411.0.2

Invited Talk: Proof for Industrial Systems using Neural
Certificates

Prof. Daniel Kröning
Amazon Web Services and Magdalen College, Oxford, UK

We introduce a novel approach to model checking software and hardware that combines machine
learning and symbolic reasoning by using neural networks as formal proof certificates. We train our
neural certificates from randomly generated executions of the system and we then symbolically check
their validity which, upon the affirmative answer, establishes that the system provably satisfies the spec-
ification. We leverage the expressive power of neural networks to represent proof certificates and the
fact that checking a certificate is much simpler than finding one. As a result, our machine learning pro-
cedure is entirely unsupervised, formally sound, and practically effective. We implemented a prototype
and compared the performance of our method with the state-of-the-art academic and commercial model
checkers on a set of Java programs and hardware designs written in SystemVerilog.

http://dx.doi.org/10.4204/EPTCS.411.0.2

vi

Table of Contents

Preface . i

Matt Luckcuck and Mengwei Xu

Invited Talk: Self-Adaptation in Autonomous Systems . iv

Silvia Lizeth Tapia Tarifa

Invited Talk: Proof for Industrial Systems using Neural Certificates . v

Daniel Kröning

Table of Contents . vi

Autonomous System Safety Properties with Multi-Machine Hybrid Event-B . 1

Richard Banach

Formal Simulation and Visualisation of Hybrid Programs . 20

Pedro Mendes, Ricardo Correia, Renato Neves and José Proença

ROSMonitoring 2.0: Extending ROS Runtime Verification to Services and Ordered Topics 38

Maryam Ghaffari Saadat, Angelo Ferrando, Louise A. Dennis and Michael Fisher

Verification of Behavior Trees with Contingency Monitors . 56

Serena S. Serbinowska, Nicholas Potteiger, Anne M. Tumlin and Taylor T. Johnson

RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep? . 73

Andrea Gatti, Viviana Mascardi and Angelo Ferrando

Model Checking and Verification of Synchronisation Properties of Cobot Welding 91

Yvonne Murray, Henrik Nordlie, David A. Anisi, Pedro Ribeiro and Ana Cavalcanti

Synthesising Robust Controllers for Robot Collectives with Recurrent Tasks: A Case Study 109

Till Schnittka and Mario Gleirscher

A Case Study on Numerical Analysis of a Path Computation Algorithm . 126

Grégoire Boussu, Nikolai Kosmatov and Franck Védrine

Cross–layer Formal Verification of Robotic Systems . 143

Sylvain Raïs, Julien Brunel, David Doose and Frédéric Herbreteau

Using Formal Models, Safety Shields and Certified Control to Validate AI-Based Train Systems . . . 151

Jan Gruteser, Jan Roßbach, Fabian Vu and Michael Leuschel

Model Checking for Reinforcement Learning in Autonomous Driving: One Can Do More Than You

Think! . 160

vii

Rong Gu

Creating a Formally Verified Neural Network for Autonomous Navigation: An Experience Report . 178

Syed Ali Asadullah Bukhari, Thomas Flinkow, Medet Inkarbekov, Barak A. Pearlmutter and

Rosemary Monahan

Open Challenges in the Formal Verification of Autonomous Driving. 191

Paolo Burgio, Angelo Ferrando and Marco Villani

Formalizing Stateful Behavior Trees . 201

Serena S. Serbinowska, Preston Robinette, Gabor Karsai and Taylor T. Johnson

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 1–19, doi:10.4204/EPTCS.411.1

© R. Banach
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Autonomous System Safety Properties
with Multi-Machine Hybrid Event-B

Richard Banach
Department of Computer Science,

University of Manchester, Manchester, M13 9PL, UK
richard.banach@manchester.ac.uk

Event-B is a well known methodology for the verified design and development of systems that can
be characterised as discrete transition systems. Hybrid Event-B is a conservative extension that in-
terleaves the discrete transitions of Event-B (assumed to be temporally isolated) with episodes of
continuously varying state change. While a single Hybrid Event-B machine is sufficient for appli-
cations with a single locus of control, it will not do for autonomous systems, which have several
loci of control by default. Multi-machine Hybrid Event-B is designed to allow the specification of
systems with several loci of control. The formalism is succinctly surveyed, pointing out the subtle
semantic issues involved. The multi-machine formalism is then used to specify a relatively simple
incident response system, involving a controller, two drones and three responders, working in a partly
coordinated and partly independent fashion to manage a putative hazardous scenario.

1 Introduction

These days, there is an inexorable drive to automate as many of the tasks that humans engage in to
progress their everyday lives as possible. The motives range from gaining efficiency, to enabling gen-
uinely new activities which would otherwise be impossible. Autonomous systems can be deployed to
achieve both aims. Properly designed, not only can they enable efficiencies in activities traditionally
undertaken by humans (e.g. logistics), but they can also enable activities (e.g. reactor core investigation)
that would be lethal for humans.

Proper design of autonomous systems implies the ability to place great trust in their operation, given
that they act in a manner much less supervised than is the case for conventional systems. If a system
is to be given responsibility for deciding its own course of action (to whatever degree is considered
reasonable), it must be understood how the gamut of its decision making capabilities keep it aligned
with the widest considerations that its behaviour may affect. In other words, the boundary between
the autonomous system and the wider environment needs to be reliably appreciated, and the greater the
creativity that the system is permitted to display in meeting its local challenges, the greater the burden
of understanding that is imposed on system design to ensure that letting the system do its thing will not
jeopardise either itself, or elements of the wider environment.

To try to ensure this, all available techniques for enhancing system assurance may be brought to bear.
As well as the traditional approaches of careful design and testing, more formal approaches, that aim to
strengthen the guarantees that can be given regarding system behaviour, may be used. This highlights
safety properties, the focus of the B-Method.

The significant self-agency of autonomous systems means that they are often cyber-physical systems
[9, 17, 11]. The consequent interaction between discrete and continuous dynamics raises a challenge for
verification [10, 14]. The contribution of this paper is to show that the architecture and capabilities of
multi-machine Hybrid Event-B are suitable for formalising the challenge just described.

http://dx.doi.org/10.4204/EPTCS.411.1
https://creativecommons.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

2 Autonomous System Safety with Multi-Machine Hybrid Event-B

Hybrid Event-B was envisaged as a conservative extension of conventional Event-B that was able to
accommodate continuous and smooth behaviour in a rigorous way. The foundations of the formalism
were investigated in three papers [6, 7, 4], referred to below as PaperI, PaperII, PaperIII. These may be
consulted for full technical details; a less detailed overview appears in [5]. Of particular relevance to
the present work is [7], in which the multi-machine version of the formalism was explored, arriving at
a framework that copes equally comfortably with multi-machine continuous behaviour as it does with
the more familiar discrete behviours more typically used in verification. Given that autonomous sys-
tems perforce exhibit a degree of disconnect between themselves and any environment, a modelling and
verification framework that captures this structural aspect in separate constructs is intrinsically useful.
The main thrust of the present paper is the assertion that these aspects of the multi-machine version of
Hybrid Event-B are particularly expressive and helpful in organising the exploration and verification of
the complex scenarios that arise when autonomous systems are investigated.

The rest of the paper is as follows. Section 2 introduces Hybrid Event-B as a natural extension of
Event-B. Section 3 introduces Hybrid Event-B refinement. Section 4 presents the main features of mul-
tiple cooperating Hybrid Event-B machines. Section 5 applies the multi-machine formalism to present a
simple incident response system, involving a controller, two drones and three responders, working in a
partly coordinated and partly independent fashion to manage a putative hazardous scenario. Each of the
agents mentioned is specified in its own machine, and the architecture of the multi-machine formalism
conveniently captured the cooperation mechanisms needed. Section 6 briefly considers verification for
Hybrid Event-B and of the case study, and Section 7 concludes.

2 From Event-B to Hybrid Event-B

The B-Method [1] and Event-B in particular [3] have, by now, a well established pedigree. By way of
introduction, Fig. 1 shows a simple Event-B machine Nodes. A static node set NSet is defined in the
context NCtx, and a dynamic set nod can add elements of NSet to itself via the guarded event AddNode.
The dynamics of the machine consists of the state transitions that ensue as events are executed one by
one. Each possible sequence of transitions can be collected into a system trace. It is assumed that, in the
real world, some non-empty interval of real world time elapses between each event occurrence.

The restriction to discrete events makes the original Event-B poorly suited for investigating the hybrid
and cyber-physical systems that are prevalent today. But the real-time gap assumed to be present between
discrete event occurrence, makes a convenient opening for interleaving pieces of continuous behaviour
into the time intervals between them, and this was how Hybrid Event-B was designed.

The intuition just described results in there being two kinds of event in Hybrid Event-B. There are
mode events, which specify discrete changes of state —just as in Event-B— and there are pliant events,
which specify episodes of continuous state update. Since we have continuous state update, a number

MACHINE Nodes
SEES NCtx
VARIABLES nod
INVARIANTS

nod ∈ P(NSet)

EVENTS
INITIALISATION

STATUS ordinary
BEGIN

nod :=∅
END

AddNode
STATUS ordinary
ANY n
WHERE n ∈ NSet −nod
THEN nod := nod ∪{n}
END

END

CONTEXT NCtx
SETS NSet
CONSTANTS

aa,bb,cc,dd
AXIOMS

NSet = {aa,bb,cc,dd}
END

Figure 1: A simple Event-B machine, together with its context.

R. Banach 3

MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x,y
VARIABLES u
INVARIANTS

x ∈ R
y ∈ R
u ∈ N

EVENTS
INITIALISATION

STATUS ordinary
WHEN

t = 0
THEN

clk := 1
x := x0
y := y0
u := u0

END

MoEv
STATUS ordinary
ANY i?, l,o!
WHERE

grd(x,y,u, i?, l, t,clk)
THEN

x,y,u,o!,clk : | BApred(
x,y,u, i?, l, t,clk,
x′,y′,u′,o!,clk′)

END

PliEv
STATUS pliant
INIT iv(x,y,u, t,clk)
WHERE grd(u)
ANY i?, l,o!
COMPLY

BDApred(x,y,u,
i?, l,o!, t,clk)

SOLVE
Dx = φ(x,y,u, i?, l, t,clk)
y,o! := E(x,u, i?, l, t,clk)
END

END

Figure 2: A schematic Hybrid Event-B machine.

of technical details have to be handled. Time becomes a crucial entity — all variables now become,
semantically, functions of real time (and not, as in Event-B, functions of an index into a sequence of state
values). We have to have a policy about how wild, or well behaved, the functions of time are permitted to
be, and for that, we demand that these functions have well defined left and right limits everywhere, and
are continuous from the right. We also want to use differential equations (ODEs) to specify behaviour,
so we need to restrict to functions which are piecewise solutions to ODE systems.

Fig. 2 shows a simple Hybrid Event-B machine. After the machine name is the TIME declaration,
which names the variable used to denote real time (if needed). This permits read-only access to time
in the rest of the machine. Time is synchronised (via a WHEN clause) with the start of a run in the
INITIALISATION. Next comes a CLOCK variable clk; these can be reset to some value (but are otherwise
read-only) and allow time to be measured from convenient starting points. Then come the PLIANT and
VARIABLES declarations. The former introduces the pliant variables, while the latter introduces the
mode variables. Next come the INVARIANTS. These are required to hold at all times, so, for example
the invariant ‘x ∈ R’ means that the function of time that is the semantic value of the variable x is a real
valued function of time. A little thought shows that this is the same convention used in Event-B (aside
from time being real rather than an index). Accepting that x ∈ R holds at all times, does not help in
knowing how values of x at ‘nearby’ times are related. To keep things under control, we must insist that
the semantic value of x is, again, at least piecewise, a solution to some ODE system.

The events are next. The mode events (STATUS ordinary) are exactly as in Event-B, and the syntax of
MoEv in Fig. 2 shows which variables can be updated by a mode event, using the generic BApred syntax.
The pliant events (STATUS pliant), such as PliEv, contain novel features and require more care. The
WHERE guard is as in Event-B, imposing enabledness conditions that involve mode variables only. The
INIT guard imposes enabledness conditions that involve the pliant variables (but which can also involve
mode variables, if needed). The actual state update is specified in the COMPLY and SOLVE clauses.
Since the purpose of a pliant event is to specify state update over an extended period of time, some tricky
technical issues arise, which we mostly ignore in this overview. See PaperI for a full discussion.

The SOLVE clause is the easiest to describe. It can contain one or more ODEs (with syntax Dx = φ)
and one or more direct assignments (with syntax y := E). Provided the RHSs of these forms are as well
behaved as stipulated above, no special problems arise. Thus, direct update to something which is already
well behaved poses no problems, and integrating an ODE with well behaved RHS improves the already
acceptable behaviour as regards smoothness. By contrast, the COMPLY clause imposes invariant-like
constraints that must hold during the execution of the pliant event, and are indicated by BDApred, the

4 Autonomous System Safety with Multi-Machine Hybrid Event-B

before-during-after clause (the analogue of Event-B’s BApred). Essentially, the same caveats regarding
time dependent behaviours that we mentioned in the context of invariants must hold for the properties
that comprise BDApred.

As for almost all formal semantics of hybrid system notations, the semantics of Hybrid Event-B is
operational. Starting with the INITIALISATION mode event, mode and pliant event executions alternate
within a run. Each mode event execution must enable at least one pliant event and disable all mode events
— after which a pliant event execution then takes over. Each pliant event execution runs until one of
three things happens. (1) Some mode event becomes enabled. At that moment the pliant event execution
is preempted, and then some enabled mode event execution takes over. (2) The running pliant event
becomes infeasible and the run stops (finite termination). (3) Neither of the preceding options occurs and
the pliant event runs forever (nontermination). Note the language in the immediately preceding remarks.
They indicate that there are choices to be made at mode→pliant handover and pliant→mode handover.
These choices are nondeterministic among all the events that are enabled at the requisite moment. They
must all be of the right kind (either all mode or all pliant), or else the run aborts.

In more concrete terms, a run of a Hybrid Event-B machine looks like the following. Time T
corresponds with a semi-infinite interval of the reals, e.g. T =R≥0. The operational semantics partitions
this into a sequence of non-empty, left-closed, right-open intervals T ≡ ⟨[t0 . . . t1), [t1 . . . t2), . . .⟩. Thus, if
t0 is the initial time point, the state of the machine’s variables at t0 is as specified in the INITIALISATION
mode event. During [t0 . . . t1), i.e. during the set of times t0 ≤ t < t1, the state evolves as specified in the
pliant event chosen to execute immediately after INITIALISATION. This runs until it is preempted by
some mode event which is enabled at time t1. At that moment, the mode event executes, and the state
changes discontinuously. The mode event’s before-state is the left limit of the state evolution at t1, and
the mode event’s after-state is the value at t1 itself. This pattern repeats. So [t1 . . . t2) is the duration of the
next pliant event execution, after which a mode event is executed at t2, followed by the next pliant event
execution. And so on.

To ensure that all executions of a Hybrid Event-B machine take place as described, a (considerable)
number of proof obligations (POs) need to be shown to hold. Some of these, particularly concerning
mode events, closely resemble their Event-B counterparts. Others, particularly concerning pliant events,
contain novel elements. In all cases though, some potentially delicate technicalities connected with
continuous behaviour intrude into the formulation of the POs. We do not have space to discuss these
here, so we refer to PaperI and PaperIII for details.

3 Hybrid Event-B Refinement

As for all dialects of the B-Method, refinement is an important topic for Hybrid Event-B. Given that
Hybrid Event-B pertains to a context in which real world time plays a significant role, there are a number
of ways to formulate a refinement notion. Given further that in refinement there has to be an abstract
machine and a concrete machine, the most urgent question concerns how the notions of ‘real world time’
are related to one another in the two machines. We could allow the two notions to be a bit ‘elastic’ with
respect to one another, using something like a Skorokhod metric to measure how far apart the elasticity
had stretched abstract and concrete time and behaviour. However, this was felt to be technically too
obscure for a formalism like Hybrid Event-B, that was aimed at practical engineering purposes. So,
for Hybrid Event-B, a more conservative approach was taken, and it became a matter of principle, that
Hybrid Event-B preserves the notion of real world time through refinement. In fact, it can be said
that, although it is never stated, this is an assumption that also typically applies to Event-B itself, insofar

R. Banach 5

MoEvA1 MoEvA2
MoEvA3

MoEvC1 MoEvC2 MoEvC3

MoEvC2.1

PliEvA1

PliEvA2

PliEvC1

PliEvC2.1

PliEvC2.2

Figure 3: Illustrating Hybrid Event-B refinement.

as Event-B models are intended to reflect phenomena in the real world. If we add to this principle
the desire that Hybrid Event-B refinement does not disturb the essential structural features of Event-B
refinement, which amounts to saying that Hybrid Event-B refinement of mode events works as does
refinement of events in Event-B, a quite strong set of constraints is generated.

Fig. 3 shows what happens. The closely spaced vertical bars represent the before- and after-states of
mode event executions, while the horizontal lines between them represent the continuous state change
of pliant event executions. For the moment let us forget the occurrences of PliEv___ and pretend that the
horizontal lines just represent the passage of time, i.e. that we are dealing with Event-B refinement in a
situation in which real world time passes between event executions. The traditional Event-B refinement
proof obligations tie together what happens at abstract and concrete levels quite closely. Thus for every
abstract event execution, there is a corresponding concrete event execution of its refinement (by Event-
B relative deadlock freedom). Conversely, for every event execution of the concrete refinement of an
abstract event, there is a corresponding abstract event execution of its abstraction (by Event-B guard
strengthening). Between execution occurrences of abstract event refinements, execution occurrences
of ‘new’ events, freshly introduced at the concrete level, can appear. These must refine abstract skips
(represented by a solid vertical bar in Fig. 3).

Transferring this verbatim to the Hybrid Event-B world says how refinement of mode events works.
Fig. 3 thus shows abstract MoEvA1, MoEvA2, MoEvA3, which are refined to MoEvC1, MoEvC2, MoEvC3,
at the same moments of time as their abstract counterparts. ‘New’ mode event MoEvC2.1 executes at
some point between MoEvC2 and MoEvC3.

Pliant events must fit round this. An immediate consequence is that the durations of abstract pliant
event executions are equal to, or are partitioned by, suitable concrete pliant event execution durations
— the intervals of abstract pliant event executions are related to the intervals of concrete pliant event
executions via an inverse function. Beyond this, the natural extension of the principle that abstract mode
events are refined by corresponding concrete mode events implies that abstract pliant events are refined
by corresponding concrete pliant events too. In Fig. 3 this would imply that PliEvA1 was refined by
PliEvC1 and that PliEvA2 was refined by PliEvC2.1.

Without ‘new’ concrete events, there would be little more to be said, and new mode events cause
little trouble by themselves. It turns out that provided the concrete refinements of abstract events are not

6 Autonomous System Safety with Multi-Machine Hybrid Event-B

constrained to have the same name, there is no possible distinction between old and new pliant events.
Observe that the duration of PliEvC2.1 in Fig. 3 is strictly shorter than the duration of PliEvA2. To close
the gap in time at the concrete level, some pliant event, PliEvC2.2 must execute. There is no alternative
to the fact that PliEvC2.2 must refine PliEvA2 — both events have an extended duration so there is no
counterpart of the ‘refining of skip’ that can apply to mode events. The main attendant issue that arises
is the fact that prior to the execution of MoEvC2.1, PliEvA2 was executing. And while it was not able to
change any mode variables during this period, it certainly was able to change some pliant variables, this
being its main purpose. So, by the time the guards of PliEvC2.2 need to be checked, the abstract state
is, in general, not the same as it was when the execution of PliEvA2 was launched. This, despite the fact
that the only event that the guards of PliEvC2.2 might be checked against is still PliEvA2. The relevant
PO resolves this by making the checking of the iv guard of the corresponding abstract event optional.
Checking of the abstract grd guard works, since grd only involves mode variables, which will not have
changed during the time since PliEvA2 was launched. Whether it makes sense or not to also check the
abstract iv guard is highly dependent on the details of PliEvA2 and of the rest of the abstract machine.

As for machines, a large number of proof obligations need to be discharged to ensure that a refinement
behaves as just described. Again, we do not have space to discuss these here, so we refer to PaperI and
PaperIII for details.

4 Multiple Hybrid Event-B Machines

In today’s engineering landscape, having a design and development methodology that does not cater
for separate development of components, is almost inconceivable. Therefore, since Hybrid Event-B is
certainly intended for realistic formal system development, the implications of separate development, in
the context of all the other constraints that the formalism imposes, must be confronted. Earlier work
on combining and decomposing Event-B machines has yielded a number of schemes, based on shared
variables, shared events and interfaces [2, 12, 13, 8, 15, 16]. The Hybrid Event-B scheme, investigated in
detail in PaperII, is based on ideas from all of these, taking into account the special needs of both mode
and pliant events.

When multiple syntactic constructs have to come together to make a bigger whole, a key issue is
syntactic visibility: which elements of which entities are visible/readable/writable in which other enti-
ties, and what restrictions are in place to control this? This realisation was the key concept behind the
introduction of the INTERFACE construct in Hybrid Event-B. An INTERFACE is a container that can
hold a number of variables, the invariants that they must satisfy, and their initialisations. It is thus rather
like a machine without events (or with one unstated default event simply demanding compliance with
the invariants). A machine can access an interface via a CONNECTS clause or a READS clause. This
allows the machine’s events to inspect (READS) and update (CONNECTS) the interface’s variables.
The interface’s invariants are aggregated with the machine’s during verification. Since more than one
machine can do this, we have a mechanism for sharing variables.

In multi-machine Hybrid Event-B, to prevent a verification free-for-all that would impede separate
working, invariants are restricted to be of two kinds. There are type I invariants (tIi’s) which only men-
tion variables from the construct (MACHINE or INTERFACE) that declares them. By themselves these
are too restrictive to allow sufficiently expressive multi-machine working, so there are also type II invari-
ants (tIIi’s) which are exclusive to interfaces, and are of the form U(u) ⇒ V (v), where u are variables
that belong to one interface (the tIIi’s local variables and interface) and v are variables that belong to a
different interface (the tIIi’s remote variables and interface). Type II invariants are declared in the in-

R. Banach 7

• • •

•••

•

•••

¥ ¥

¥ ¥¥

¥
¥

¥

¥ ¥

¥

¥ ¥ ¥

¥ ¥ ¥

MA MB

Itf1_IF Itf2_IF

MA

MM

MM1 MM2 MM3

ItfM1_IF ItfM2_IF

MAv1

MAinv1

MAev1

MAv2

MAev2 MAev3

MAinv2

Itf1v1 Itf1v2 Itf1v3

Itf1inv2Itf1inv1 Itf2inv2Itf2inv1

Itf1v1 Itf1v2 Itf1v3

Itf1tIIinv

Itf2tIIinv

MBv1

MBv2

MBinv1 MBinv2

MBev1 MBev2

Figure 4: Multiple machines and their interfaces.

terface containing the local variables. The remote interface of a tIIi is mentioned in the local interface
using a READS declaration while the local interface of a tIIi is mentioned in the remote interface using
a REFERS declaration.

We give a small illustration of these principles in Fig. 4. Small black disks represent variables,
while small black squares represent tIi’s. Small rectangles represent events. Events and invariants are
connected to the variables that mention them by thin lines. Interfaces are large rectangles containing the
variables and invariants they encapsulate — there are two in Fig. 4, Itf1_IF and Itf2_IF. Machines are
large rounded rectangles containing their local variables, tIi’s and events — again there are two, MA and
MB in the figure. The very short thin line with one end free from an event in MB, is an I/O variable
connected to the environment. The CONNECTS relationship between a machine and an interface is
depicted by a thick dashed line. Finally, tIIi’s are represented by an arrow from a variable in the local
interface to a variable in the remote interface (these containing the local and remote variable subsets of
the tIIi respectively). The construct that aggregates all the machines and interfaces of a development is
the PROJECT construct, which is not indicated in Fig. 4.

Refinement adds some potential complexity to the above. Additional constraints are needed to con-
tinue to prevent a verification free-for-all that would impede separate working. It is taken as unquestion-
able that machines and interfaces should both be capable of being refined. The restriction imposed on the
refinement process is that the joint invariant that couples concrete variables to their abstract counterparts
in a construct (be it a machine or an interface), should involve only the variables declared in the two
constructs, and cannot involve variables declared in any other interface that either construct has access
to. It is clear that such a restriction ensures that invariants proved at a high level continue to hold, suitably
translated into concrete variables through the joint invariant, at lower levels of abstraction.

In a single Hybrid Event-B machine, mode events and pliant events alternate. Within a single ma-
chine context, once the nuances of continuous/discrete behaviour are appreciated, it is fairly easy to work
out how POs should be designed that can adequately police the alternation. Things are more complicated
in a multi-machine world. We design separate machines on the basis that their activities are expected to
be largely (though obviously not totally) independent. What does the alternation between mode events
and pliant events amount to in such an environment? The answer requires a design decision about the
multi-machine world.

One guiding principle is that every machine, at all times, is executing some event (whether mode or
pliant). Another is that in the purely discrete Event-B world, synchronised execution of events in multiple
machines is a useful feature in some of the formulations cited above. Accordingly, the decision was
taken to permit the synchronised execution of mode events via the introduction of a SYNCHronisation

8 Autonomous System Safety with Multi-Machine Hybrid Event-B

construct that declares that families of mode events across different machines of the same project are to
be scheduled together. Of course the conjunction of the relevant guards has to permit this to be the case.

Synchronised execution of events across multiple machines is of most interest in the context of de-
composition, in which refinement of a single abstract event has made it too unwieldy for it to be con-
sidered as a single indivisible entity any more, and the execution of different parts of it in different
machines makes more sense. Decomposition feels like the converse of composition (which is what the
multi-machine mechanisms are addressing) but it is not — the event scheduling strategies of (Hybrid)
Event-B get in the way. Thus suppose abstract machine M has two mode events EvA and EvB, both
simultaneously enabled. Then, the scheduling strategy of M prevents the simultaneous execution of EvA
and EvB. Now suppose EvA is decomposed into EvAX and EvAY , and EvB is decomposed into EvBX
and EvBY , and the X parts execute in decomposed machine MX, and the Y parts execute in decomposed
machine MY . It is not inconceivable that in a world where the two machines schedule their events in-
dependently, EvAX could be scheduled simultaneously with EvBY , giving the wrong semantics. It is for
that reason that the SYNCH mechanism was introduced in Hybrid Event-B (following analogous mecha-
nisms in Event-B). Decomposition of events requires further thought regarding inputs, outputs and local
parameters. The design in PaperII requires that any input or output of a decomposed event is confined to
one of the components (rather than being itself a synchronised activity). Local parameters are likewise
assigned by one of the components and then shared with the rest, in a conceptually atomic single-writer
multiple-readers rendezvous.

Note that we have said nothing of synchronising or decomposing pliant events. Pliant events raise
their own issues in a multi-machine world. We recall that pliant events executing in a machine typi-
cally get preempted. If there are multiple machines, the preemptions in different machines should be
independent, otherwise the different machines are behaving like a single machine. This presents little
problem in the real world context, but creates technical complexity for a formal operational semantics
which is concerned with constructing a consistent global system trace. At a preemption in machine MA,
the non-preempted other machines must be ‘paused’ and their execution resumed after the scheduling
choices in machine MA have been resolved. And because this is a strange thing to contemplate for the
physical world, the physical world consequences of any such technicalities must be invisible. This af-
fects potential decomposition strategies for pliant events. In the light of these considerations, the strategy
adopted for decomposition of pliant events is that it has to be programmed explicitly by the user. If pliant
events are required to execute simultaneously in two machines, their guards must be arranged to be the
same (and the same as the guards of the parent event if they constitute a decomposition), and to prevent
‘the wrong parts’ of different decompositions from being scheduled simultaneously, no parent events
in the same machine that are to be decomposed can ever be enabled simultaneously. Fortunately, it is
easy enough to impose static restrictions on event guards that can ensure the conditions required. A full
discussion can be found in PaperII.

5 A Small Incident Response Case Study

We illustrate the utility of the multi-machine Hybrid Event-B approach with a small case study. For
lack of space we do not cover all aspects in equal depth, but focus on those structural elements which
particularly contribute to convenient exploration of distributed and autonomous systems.

The case study concerns an incident response system. This consists of a number of largely inde-
pendent agents: a controller, three responders that enter a potentially hazardous area to effect some
appropriate measures, and two drones, that act as communication intermediaries between the controller

R. Banach 9

(which is assumed to be ground based) and the responders (which are assumed to be unable to commu-
nicate with the controller directly). Since the arena of the incident needing the response is assumed to
be hazardous, two drones are provided, and they are expected to keep apart from each other, in case one
of them suffers some disabling mishap. Described in such abstract terms, the case study is applicable to
situations from natural and industrial disasters, through terrorist attacks, to battlefield warfighting.

Each of these agents is modelled using an individual Hybrid Event-B machine, and there are addition-
ally CONTEXTs and INTERFACEs that organise the means by which the various agents can cooperate.
The ability to do this successfully results from the ability to partition the functionality needed into con-
structs that capture convincingly self-contained subsets, and the adequate flexibility of the cooperation
mechanisms, that enables their shared goals to be achieved. These mechanisms have to cope with six
independent but cooperating agents in the complete system, each potentially involving independently
determined smooth state change.

The essential lesson of the case study is that the design of multi-machine Hybrid Event-B permits
the system to be described in such a way that experimentation with different scenarios can be easily
achieved by changing just one machine and one context. These are EnvironmentScenario_Mch and
IncidentResponse_CTX.

In the body of this paper we focus on the machines that capture the behaviours of the agents, rele-
gating the contexts and interfaces that contain the static declarations that support these machines to the
Appendix. Here and there we take some liberties with Event-B syntax for the sake of readability. Next,
we see EnvironmentScenario_Mch.

MACHINE EnvironmentScenario_Mch
SEES IncidentResponse_CTX
CONNECTS IncidentResponse_IF
VARIABLES

schedule
INVARIANTS

schedule : seq(R)
increasing(schedule)

EVENTS
INITIALISATION

STATUS ordinary
BEGIN

schedule := INITSCHED
END

PliTrue
STATUS pliant
COMPLY

INVARIANTS
END

.

.
AddHazard

STATUS ordinary
ANY tg,xx,yy,sz,ht
WHERE

nonempty(schedule) ∧
t = head(schedule) ∧
(tg 7→ xx 7→ yy 7→ sz 7→ ht) /∈ hazards

BEGIN
hazards := hazards∪{tg 7→ xx 7→ yy 7→ sz 7→ ht}
schedule := tail(schedule)

END
TakeHazard

STATUS ordinary
ANY tg,xx,yy,sz,ht
WHERE

nonempty(schedule) ∧
t = head(schedule) ∧
(tg 7→ xx 7→ yy 7→ sz 7→ ht) ∈ hazards

BEGIN
hazards := hazards−{tg 7→ xx 7→ yy 7→ sz 7→ ht}
schedule := tail(schedule)

END
END

The EnvironmentScenario_Mch machine above contains a schedule of interventions into the incident
arena. These are restricted to be the introduction and removal of hazardous areas within the arena,
and the schedule variable is a succession (i.e. sequence) of times at which the interventions take place.
Each hazardous area has either a SQuare footprint or a CY Lindrical shape. So each is specified using
a SQ or CY L tag tg, x and y coordinates, a size sz, and a height ht. The EnvironmentScenario_Mch
machine uses the AddHazard event to introduce a fresh hazard when time reaches the first value in
schedule, with the attributes of the hazard, written in B-Method notation as (tg 7→ xx 7→ yy 7→ sz 7→

10 Autonomous System Safety with Multi-Machine Hybrid Event-B

ht), being taken from the formal model’s environment using the ANY clause. The TakeHazard event
removes an existing hazard from the set of current hazards hazards. The schedule itself is statically
defined in the IncidentResponse_CTX context. Changing the constants in the context, and the details
of the EnvironmentScenario_Mch machine is all one needs to do to experiment with different incident
management scenarios in this world.

Below, we see the project file, IncidentResponse_Prj. Its purpose is to orchestrate all the com-
ponents of the system. Many specific details are curtailed to save space. The first declared item is
the GLOBalINVariantS file IncidentResponse_GI which we discuss at the end. After that there is
a list of contexts, interfaces and machines. The line ‘CONTEXT Drone1_CTX IS’ instantiates the
context as a version of a generic library context for drones, Drone_CTX. After the WITH, there is
a renaming mapping saying how identifiers in Drone_CTX should be replaced to get Drone1_CTX.
This instantiation allows the two contexts Drone1_CTX and Drone2_CTX to have different constants
Vdr1 and Vdr2 for the velocities of the drones Drone1_Mch and Drone2_Mch that SEE the respec-
tive contexts. After the interfaces there are the machines. Controller_Mch is discussed below, while
EnvironmentScenario_Mch was discussed above. After these, there are the two drone instantiations
Drone1_Mch and Drone2_Mch, being instantiations of a generic Drone_Mch. We have suppressed the
details of the instantiations, which amount to adding ‘1’ or ‘2’ to identifiers in the generic machine.

Beyond instantiations, the project file contains SYNCH lines. These specify collections of mode
events across multiple machines that must be scheduled simultaneously (i.e. only when all their guards
are simultaneously true). Thus ‘SYNCH ActivateDrone1’ enforces the simultaneous execution of event

PROJECT IncidentResponse_Prj
GLOBINVS IncidentResponse_GI
CONTEXT IncidentResponse_CTX
CONTEXT Controller_CTX
CONTEXT Drone1_CTX IS

Drone_CTX WITH
V dr →V dr1

END
CONTEXT Drone2_CTX IS

Drone_CTX WITH
V dr →V dr2

END
CONTEXT Responder_CTX
INTERFACE IncidentResponse_IF
INTERFACE ControllerDrones_IF
INTERFACE ControllerResponder_IF
MACHINE Controller_Mch
MACHINE EnvironmentScenario_Mch
MACHINE Drone1_Mch IS

Drone_Mch WITH
•••

END
MACHINE Drone2_Mch IS

Drone_Mch WITH
•••

END
MACHINE Responder1_Mch IS

Responder_Mch WITH
•••

END
MACHINE Responder2_Mch IS

Responder_Mch WITH
•••

END
.

.
MACHINE Responder3_Mch IS

Responder_Mch WITH
•••

END
SYNCH ActivateDrone1

Controller_Mch.LaunchDrone1
Drone1_Mch.Activate1

END
SYNCH UpdateDrone1

Controller_Mch.UpdateDrone1
Drone1_Mch.Update1

END
SYNCH DeActivateDrone1

Controller_Mch.RecallDrone1
Drone1_Mch.DeActivate1

END
SYNCH ••• Drone2
SYNCH ActivateResponder1

Controller_Mch.LaunchResponder1
Responder1_Mch.Activate1

END
SYNCH UpdateResponder1

Controller_Mch.UpdateResponder1
Responder1_Mch.Update1

END
SYNCH DeActivateResponder1

Controller_Mch.RecallResponder1
Responder1_Mch.DeActivate1)

END
SYNCH ••• Responder2
SYNCH ••• Responder3
END

R. Banach 11

LaunchDrone1 in the Controller_Mch machine and of Activate1 in the Drone1_Mch machine. There
are similar synchronisations for Upateing and for DeActivateing the Drone1_Mch machine. The anal-
ogous synchronisations for the Drone2_Mch machine are suppressed. A similar pattern applies to the
responders. The details for the Responder1_Mch machine are given in full, while those for machines
Responder2_Mch and Responder3_Mch are suppressed.

MACHINE Controller_Mch
SEES IncidentResponse_CTX
SEES Controller_CTX
CONNECTS IncidentResponse_IF
CONNECTS ControllerDrone1_IF
CONNECTS ControllerDrone2_IF
CONNECTS ControllerResponder1_IF
CONNECTS ControllerResponder2_IF
CONNECTS ControllerResponder3_IF
VARIABLES

mode
ctrhazards
cyclestart
drones2comd
responders2comd

INVARIANTS
mode : CTRLSTATE
ctrhazards : P(HAZTYPE×R×R×R×R)
cyclestart : R
drones2comd : P({1,2})
responders2comd : P({1,2,3})

EVENTS
INITIALISATION

STATUS ordinary
BEGIN

mode := OFF
ctrhazards := ∅
cyclestart := 0
drones2comd := ∅
resps2comd := ∅

END
PliTrue

STATUS pliant
COMPLY

INVARIANTS
END

ActivateController
STATUS asynch
WHEN

mode = OFF∧0 < t < δ

THEN
mode := DISPATCH
drones2comd := {1,2}
resps2comd := {1,2,3}

END
LaunchDrone1

STATUS asynch
WHEN

mode = DISPATCH∧1 ∈ drones2comd ∧ t < δ

THEN
drhazards := hazards
drones2comd := drones2comd −{1}

END
LaunchDrone2

•••
END

.

.
LaunchResp1

STATUS asynch
WHEN

mode = DISPATCH ∧
1 ∈ resps2comd ∧ t < δ

THEN
resp1hazards := hazards
resps2comd := resps2comd −{1}

END
LaunchResp2

•••
END

LaunchResp3
•••

END
StartMonitoring

STATUS asynch
WHEN

mode = DISPATCH∧ t = δ

THEN
mode := UPDATEHAZ
cyclestart := ∆

END
MonitorHazardsNull

STATUS asynch
WHEN

mode = UPDATEHAZ ∧0 < t − cyclestart < δ/2 ∧
hazards = ctrhazards

THEN
cyclestart := cyclestart +∆

END
MonitorHazardsUpdate

STATUS asynch
WHEN

mode = UPDATEHAZ ∧0 < t − cyclestart < δ/2 ∧
hazards ̸= ctrhazards

THEN
ctrhazards := hazards
drones2comd := {1,2}
resps2comd := {1,2,3}
cyclestart := cyclestart +∆

END
UpdateDrone1

STATUS asynch
WHEN

mode = UPDATEHAZ ∧1 ∈ drones2comd ∧
cyclestart −∆+δ/2 < t < cyclestart −∆+δ

THEN
drhazards := hazards
drones2comd := drones2comd −{1}

END
UpdateDrone2

•••
END

.

12 Autonomous System Safety with Multi-Machine Hybrid Event-B

.
UpdateResp1

STATUS asynch
WHEN

mode = UPDATEHAZ ∧1 ∈ resps2comd ∧
cyclestart −∆+δ/2 < t < cyclestart −∆+δ

THEN
resp1hazards := hazards
resps2comd := resps2comd −{1}

END
UpdateResp2

•••
END

UpdateResp3
•••

END
EndMonitoring

STATUS asynch
WHEN

mode = UPDATEHAZ ∧
DURATION < t < DURATION +δ

THEN
mode := RECALL
drones2comd := {1,2}
resps2comd := {1,2,3}

END
.

.
RecallDrone1

STATUS asynch
WHEN

mode = RECALL∧1 ∈ drones2comd ∧
DURATION < t < DURATION +δ

THEN
drones2comd := drones2comd −{1}

END
RecallDrone2

•••
END

RecallResp1
STATUS asynch
WHEN

mode = RECALL∧1 ∈ resps2comd ∧
DURATION < t < DURATION +δ

THEN
resps2comd := resps2comd −{1}

END
RecallResp2

•••
END

RecallResp3
•••

END
DeActivateController

STATUS asynch
WHEN

mode = RECALL ∧
DURATION +δ < t < DURATION +2δ

THEN
mode := OFF

END
END

Following the project file, there is the most complex machine of the project, the Controller_Mch
machine, occupying the four panels above. Essentially, it is a finite state machine, perfectly expressible
using Event-B alone if need be, except that the availability of real time for scheduling purposes simplifies
the state space that would otherwise be needed.

The main job of the controller, once activated (event ActivateController) is: to send forth the drones
and responders (events LaunchDrone1, LaunchDrone2, LaunchResp1, LaunchResp2, LaunchResp3), to
poll the environment machine to discover changes to the collection of hazards that have been unearthed
(events StartMonitoring, MonitorHazardsNull, MonitorHazardsUpdate) and to advise the drones and re-
sponders of the same (events UpdateDrone1, UpdateDrone2, UpdateResp1, UpdateResp2, UpdateResp3),
and finally to recall the drones and responders when the work has been completed (events RecallDrone1,
RecallDrone2, RecallResp1, RecallResp2, RecallResp3). Once this is done, the controller is deactivated
(event DeActivateController). A default PliTrue pliant event covers the gaps between state change.

In the above, there are clearly groups of similar events that need to take place periodically (launching,
monitoring, updating, recalling) for agents that are largely independent of each other most of the time.
Achieving this using a pure finite state machine would entail either a state explosion to accommodate all
possible interleavings of individual agent events, or an excessive use of sequentialisation to avoid it. The
presence of time as an intrinsic feature in Hybrid Event-B (assumed synchronised across all machines)
permits a more economical approach.

A ‘large’ time window ∆ is defined along with a ‘small’ window δ . Launching is defined to take
place within the first δ of elapsed time, via synchronised events, as described above. Since the main

R. Banach 13

synchronisation mechanism is the time interval of duration δ , arbitrary orderings of the launching events
within that interval are permitted.

The same technique is used for all the other synchronised activities. Monitoring and update take place
repeatedly after the elapse of each period of duration ∆. At t = n∆, the EnvironmentScenario machine
potentially updates the hazards. Within the next δ/2 period, the controller checks whether hazards has
changed since the last check, and if so, schedules updates to the drones and responders to update their
hazard data and to replan if necessary. To keep the model simple, this is accomplished by setting the
drones2comd and resps2comd variables to the IDs of all the drones and responders. This triggers, in
the next δ/2 period, each of them to update it’s local copy of the hazards variable via a synchronised
event such as e.g., the combination of UpdateDrone1 in the controller together with Update in first drone.
Once that has happened, the drone or responder can recalculate its trajectory.

MACHINE Drone_Mch
SEES IncidentResponse_CTX
SEES Drone_CTX
CONNECTS ControllerDrones_IF
VARIABLES

mode
thex , they , thez
tra jectory

INVARIANTS
mode : DRONESTATE
thex , they , thez : R , R , R
tra jectory : seq(R×R×R)

EVENTS
INITIALISATION

STATUS ordinary
BEGIN

mode := OFF
thex , they , thez := 0 , 0 , 0
tra jectory := ⟨⟩

END
PliTrue

STATUS pliant
WHEN

mode = OFF
COMPLY

INVARIANTS
END

Activate
STATUS ordinary
WHEN

mode = OFF
BEGIN

mode := SEEK
thex , they , thez := drx , dry , drz
tra jectory := calcCentAvoidTra j(. . .)

END
Update

STATUS ordinary
WHEN

mode ∈ {SEEK , RETURN}
BEGIN

thex , they , thez := drx , dry , drz
tra jectory := calcCentAvoidTra j(. . .)

END
.

.
Navigate

STATUS pliant
WHEN

mode ∈ {SEEK , RETURN} ∧
tra jectory ̸= ⟨⟩

SOLVE
Ddrx := Vdr× (first(tra jectory)[1]− thex)
Ddry := Vdr× (first(tra jectory)[2]− they)
Ddrz := Vdr× (first(tra jectory)[3]− thez)

END
Waypoint

STATUS ordinary
WHEN

mode ∈ {SEEK , RETURN} ∧
drx = first(tra jectory)[1] ∧
dry = first(tra jectory)[2] ∧
drz = first(tra jectory)[3] ∧
tra jectory ̸= ⟨⟩

BEGIN
thex , they , thez := drx , dry , drz
tra jectory := rest(tra jectory)

END
Hover

STATUS pliant
WHEN

mode ∈ {SEEK , RETURN} ∧
tra jectory = ⟨⟩

COMPLY
INVARIANTS

END
DeActivate

STATUS ordinary
WHEN

mode = SEEK
BEGIN

mode := RETURN
thex , they , thez := drx , dry , drz
tra jectory := calcCentAvoidTra j(. . .)

END
SwitchOff

STATUS ordinary
WHEN

mode = RETURN ∧
drx = dry = drz = 0

BEGIN
mode := OFF

END
END

14 Autonomous System Safety with Multi-Machine Hybrid Event-B

The cycle of updating and recalculating continues until it is time to recall all the drones and re-
sponders. This is achieved by the same synchonisation mechanism. In other words, after DURATION
has elapsed, similar windows of length δ are established and the drones and responders adopt first the
RETURN mode, and after returning home, the OFF mode.

The generic drone machine Drone_Mch appears in the two panels on the previous page. Once a
drone is activated through the synchronised Activate event, it ceases the default PliTrue behaviour and
instead pursues the Navigate behaviour. The preceding mode event occurrence, whether an Activate or
an Update event, caused it to remember its 3D position at that time in variables thex, they, thez, from

MACHINE Responder_Mch
SEES Responder_CTX
CONNECTS ControllerResponder_IF
VARIABLES

mode
thex , they
tra jectory

PLIANT
respx , respy

INVARIANTS
mode : RESPSTATE
thex , they : R , R
respx , respy : R , R
tra jectory : seq(R×R)

EVENTS
INITIALISATION

STATUS ordinary
BEGIN

mode := OFF
thex , they := 0 , 0
respx , respy := 0 , 0
tra jectory := ⟨⟩

END
PliTrue

STATUS pliant
WHEN

mode = OFF
COMPLY

INVARIANTS
END

Activate
STATUS ordinary
WHEN

mode = OFF
BEGIN

mode := SEEK
thex , they := respx , respy
tra jectory := calcTra j(. . .)

END
Update

STATUS ordinary
WHEN

mode ∈ {SEEK , RETURN}
BEGIN

thex , they := respx , respy
tra jectory := calcTra j(. . .)

END
.

.
Navigate

STATUS pliant
WHEN

mode ∈ {SEEK , RETURN} ∧
tra jectory ̸= ⟨⟩

SOLVE
Drespx := Vdr× (first(tra jectory)[1]− thex)
Drespy := Vdr× (first(tra jectory)[2]− they)

END
Waypoint

STATUS ordinary
WHEN

mode ∈ {SEEK , RETURN} ∧
respx = first(tra jectory)[1] ∧
respy = first(tra jectory)[2] ∧
tra jectory ̸= ⟨⟩

BEGIN
thex , they := respx , respy
tra jectory := rest(tra jectory)

END
Arrived

STATUS asynch
WHEN

mode = SEEK ∧ tra jectory = ⟨⟩
BEGIN

mode := ARRIV ED
END

DoSomethingForAWhile
STATUS pliant
WHEN

mode = ARRIV ED
COMPLY

INVARIANTS
END

DeActivate
STATUS ordinary
WHEN

mode = ARRIVED
BEGIN

mode := RETURN
thex , they := respx , respy
tra jectory := calcTra j(. . .)

END
SwitchOff

STATUS ordinary
WHEN

mode = RETURN ∧
respx = respy = respz = 0

BEGIN
mode := OFF

END
END

R. Banach 15

which it can calculate a trajectory towards its goal. The tactic taken is to navigate towards the centroid
of the positions of the controller and responders. The two drones need to ensure that they avoid damage
in a hazardous area, so if they need to fly close to one, they need to take heed of its geometry, including
height. Also, to avoid simultaneous destruction of both the drones though mishap, they need to ensure
that they stay far enough apart from each other. This is all done by the calcCentAvoidTraj(. . .) function
that they use, except that, in this paper, we abstract away from the detailed calculations that would be
needed to achieve this. Evidently, the drones need to share their positions to do all this, so they share a
single interface which declares both, which they can use to exchange positions by communicating with
each other. For reasons of brevity, in this paper we do not cover this aspect in detail either.

All of this missing detail could be handled via a suitable Hybrid Event-B refinement. For simplicity
again, a trajectory calculated by the drone consists of a sequence of line segments between points in three
dimensions, which the drones follow, in order. The traversal of each segment is accomplished within the
Navigate event. This simply increments each of the spatial coordinates, using the drone velocity (which
is statically defined in its context) in proportion to the coordinate difference to be traversed. Once a
segment is completed, the first segment is deleted from the trajectory in the Waypoint event, and the
drone follows the next segment, until there is no trajectory left, at which point the drone stays where it
is, maintaining distance from its partner.

The last big machine of the development is the generic responder machine Responder_Mch which
appears on the previous page. This is similar to the drone machine in most respects, notably the tech-
nique used for synchronisation with the controller, but with a few essential differences. For example,
the responders stay on the ground, so do not need a z coordinate. They are also assumed to not need to
communicate with each other regarding position, so in our model, each responder can have its own inter-
face. They do not need to fly above hazards, so their trajectory calculations will be different, expressed
in the function calcTraj(. . .). And once arrived, they do some work until they, along with the drones, are
recalled by the controller, which is achieved using the customary mechanisms.

6 Verification of Hybrid Event-B Models

The main purpose of the Hybrid Event-B approach is the verification of models expressed within the
formalism, in order to derive increased confidence about their dependability. As for its predecessors in
the classical B-Method and Event-B, the emphasis is on safety properties, expressed within the invariants
declared in the model’s syntactic constructs. In the case of Hybrid Event-B, these can be found inside
machines and interfaces. At the time of writing, there is no tool support for Hybrid Event-B, so a
comprehensive mechanically supported verification exercise cannot be reported on. Nevertheless, the
POs that define correctness in Hybrid Event-B have been investigated in detail in the papers cited earlier,
so an outline of what would be involved can be given.

Two things deserve to be highlighted. The first is that, as indicated earlier, the design of multi-
machine Hybrid Event-B is such that the syntactic scope of all the POs is precisely defined by the rules
of construction that models have to conform to. The second is that, the present model has deliberately
been designed to be so simple, that the overwhelming majority of POs become rather trivial.

One set of POs concerns feasibility: i.e., is there an after-state for every enabled mode event? The
simple assignments to constants in their bodies says yes; likewise for pliant events, which have either
trivial COMPLY INVARIANTS bodies, or merely specify the following of a linear trajectory. Another
major set of POs concerns the preservation of the invariants. Since, by design, these are almost exclu-
sively trivial typing declarations, the answer will again be yes. Such POs can be dealt with by inspection.

16 Autonomous System Safety with Multi-Machine Hybrid Event-B

Slightly more complicated are POs that deal with correct handover: mode/pliant and pliant/mode. This
involves calculating disjunctions of guards, to ensure that when an event completes, an event of the right
kind can succeede it. Again, extreme simplicity makes this a task that can be done by hand. So we can
be confident our model is as it should be, even if mechanical corroboration would be even better.

The preceding remarks prepare the ground for discussing the last construct of the project, the global
invariants IncidentResponse_GI. The global invariants offer the possibility of explicitly stating invari-
ants of the system that are properties of the system as a whole, and not merely of some part of it. Clearly
such a capability is important when safety properties depend on the safe cooperation of all parts of the
system. Global invariants are intended to be derivable from the remaining invariants of a correct model,
but this is not a hard constraint. The intention is that global invariants would be checked in the latter
stages of a development, once the correctness of the constituent parts of the project is established.

GLOBINVS IncidentResponse_GI
SEES IncidentResponse_CTX
CONNECTS IncidentResponse_IF
INVARIANTS

t /∈
⋃
(ii • ii ∈ dom(INITSCHED) | [INITSCHED(ii) . . . INITSCHED(ii)+δ])⇒
((hazards = ctrhazards)∧ (hazards = drhazards) ∧
(hazards = resp1hazards) ∧ (hazards = resp2hazards)∧ (hazards = resp3hazards))

END

The IncidentResponse_GI construct above contains the following rather simple property of this
kind. It states that outside the periods when the individual machines’ perceptions of the hazard configu-
rations are being updated (which are the time intervals of length δ following those integral multiples of
∆ defined in the INITSCHED constant of the IncidentResponse context), they all agree on the hazards.

The conclusion of the invariant is a conjunction of statements each of which is a property of a part
of the system. So it cannot be proved before all the pieces have been successfully constructed. A
technical detail is that, for simplicity, the individual conjuncts (appropriately guarded) were not included
as invariants of the relevant machines above. This itself does not make the global invariant unprovable of
course. Global invariants, in particular, underline the connection between the Hybrid Event-B approach
to system correctness and the reference to safety properties in this paper’s title.

7 Conclusions

In the early part of the paper, we surveyed Hybrid Event-B and how it evolved from Event-B. The
inclusion of real time and smooth state change entails considerable additional technical complexity in
the semantics, and we discussed the details of this to the extent that space permitted. Multi-machine
working brings in a whole raft of additional technical details to worry about, principally concerned with
synchronisations and with the interplay of structure and verification needs. We surveyed this as far as
possible. The multi-machine Hybrid Event-B approach is particularly suited to the formalisation and
verification of autonomous systems, as these systems are seldom isolated, must fend for themselves for
long periods of time while nevertheless communicating, but only intermittently, and are often cyber-
physical. So modelling them naturally partitions into a constellation of cooperating but largely self-
contained Hybrid Event-B machines, supported by suitable syntactic constructs.

The point of all this was to lay the groundwork for a small multi-machine example, to support the
case just made. A simple system of intermittently communicating drones, responders and a controller
was modelled. It is reasonable to say that this illustrated convincingly the capabilities of multi-machine
Hybrid Event-B to fluently capture the kinds of behaviour pattern needed in such systems.

R. Banach 17

References
[1] J.-R. Abrial (1996): The B-Book: Assigning Programs to Meanings. Cambridge University Press,

doi:10.1017/CBO9780511624162.
[2] J.-R. Abrial (2005): Event-B: Structure and Laws. In: Rodin Project Deliverable D7: Event-B Language.

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf.
[3] J.-R. Abrial (2010): Modeling in Event-B: System and Software Engineering. Cambridge University Press,

doi:10.1017/CBO9781139195881.
[4] R. Banach (2024): Core Hybrid Event-B III: Fundamentals of a Reasoning Framework. Sci. Comp. Prog.

231, p. 103002, doi:10.1016/j.scico.2023.103002. 54pp.
[5] R. Banach (2024): Hybrid Event-B. In Mery & Singh, editors: Modelling Software-based Systems, 2 Vols,

ISTE Press. To appear.
[6] R. Banach, M. Butler, S. Qin, N. Verma & H. Zhu (2015): Core Hybrid Event-B I: Single Hybrid Event-B

Machines. Sci. Comp. Prog. 105, pp. 92–123, doi:10.1016/j.scico.2015.02.003.
[7] R. Banach, M. Butler, S. Qin & H. Zhu (2017): Core Hybrid Event-B II: Multiple Cooperating Hybrid

Event-B Machines. Sci. Comp. Prog. 139, pp. 1–35, doi:10.1016/j.scico.2016.12.003.
[8] M. Butler (2009): Decomposition Strategies for Event-B. In Leuschel, Wehrheim, editor: Proc. IFM-09,

5423, Springer, LNCS, pp. 20–38.
[9] L. Carloni, R. Passerone, A. Pinto & A. Sangiovanni-Vincentelli (2006): Languages and Tools for

Hybrid Systems Design. Foundations and Trends in Electronic Design Automation 1, pp. 1–193,
doi:10.1561/1000000001.

[10] P.-L. Garoche (2019): Formal Verification of Control System Software. Princeton University Press,
doi:10.23943/princeton/9780691181301.001.0001.

[11] E. Geisberger & M. Broy (eds.) (2015): Living in a Networked World. Integrated Research Agenda Cyber-
Physical Systems (agendaCPS). http://www.acatech.de/ fileadmin/user_upload/Baumstruktur_nach_Website/
Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS_eng_WEB.pdf.

[12] S. Hallerstede & J.-R. Abrial (2010): Event-B Decomposition for Parallel Programs. In Frappier, Glässer,
Khurshid, Laleau, Reeves, editor: Proc. ABZ-10, 5977, Springer, LNCS, pp. 319–333.

[13] S. Hallerstede & T. Hoang (2012): Refinement by Interface Instantiation. In Derrick, Fitzgerald, Gnesi,
Khurshid, Leuschel, Reeves, Riccobene, editor: Proc. ABZ-12, 7316, Springer, LNCS, pp. 223–237.

[14] R. Sanfelice (2021): Hybrid Feedback Control. Princeton University Press, doi:10.2307/j.ctv131btfx.
[15] R. Silva & M. Butler (2009): Supporting Reuse of Event-B Developments through Generic Instantiation. In

Breitman, Cavalcanti, editor: Proc. ICFEM-09, 5885, Springer, LNCS, pp. 466–484.
[16] R. Silva, C. Pascal, T. Hoang & M. Butler (2011): Decomposition Tool for Event-B. Soft. Prac. Exp. 41, pp.

199–208, doi:10.1002/spe.1002.
[17] P. Tabuada (2009): Verification and Control of Hybrid Systems: A Symbolic Approach. Springer,

doi:10.1007/978-1-4419-0224-5.

https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1016/j.scico.2023.103002
https://doi.org/10.1016/j.scico.2015.02.003
https://doi.org/10.1016/j.scico.2016.12.003
https://doi.org/10.1561/1000000001
https://doi.org/10.23943/princeton/9780691181301.001.0001
https://doi.org/10.2307/j.ctv131btfx
https://doi.org/10.1002/spe.1002
https://doi.org/10.1007/978-1-4419-0224-5

18 Autonomous System Safety with Multi-Machine Hybrid Event-B

A Appendix: Contexts, Interfaces and Instantiated Machine Outlines

CONTEXT IncidentResponse_CTX
CONSTANTS

SQ , CY L
INITSCHED
δ , ∆

DURATION
RESP1dest , RESP2dest , RESP3dest

SETS
HAZTYPE

AXIOMS
partition(HAZTYPE,{SQ},{CY L})
δ : R , δ = 0.1
∆ : R , ∆ = 1

.

.
INITSCHED : seq(R)
INITSCHED = ⟨12,30,55⟩
DURAT ION : R
DURAT ION = 79.7
RESP1dest : R×R
RESP1dest = (12.3 7→ 15.0)
RESP2dest : R×R
RESP2dest = (−11.2 7→ 14.0)
RESP3dest : R×R
RESP3dest = (2.1 7→ 29.0)

THEOREMS
DURATION > last(INITSCHED)

END

INTERFACE IncidentResponse_IF
SEES IncidentResponse_CT X
TIME t
VARIABLES

hazards
.

.
INVARIANTS

hazards : P(HAZTYPE×R×R×R×R)
:— sq/cyl, (x,y) coords, size from (x,y), height

INITIALISATION
t := 0
hazards := ∅

END

CONTEXT Controller_CTX
CONSTANTS

OFF , DISPATCH , RECALL , UPDATEHAZ
SETS

CTRLSTATE
.

.
AXIOMS

partition(CTRLSTATE , {OFF} , {DISPATCH} ,
{UPDATEHAZ} , {RECALL})

END

CONTEXT Drone_CTX
CONSTANTS

OFF , SEEK , RETURN
Vdr

SETS
DRONESTATE

.

.
AXIOMS

partition(DRONESTATE ,
{OFF} , {SEEK} , {RETURN})

V dr : R
END

INTERFACE ControllerDrones_IF
TIME t
VARIABLES

drhazards
PLIANT

dr1x , dr1y , dr1z
dr2x , dr2y , dr2z

.

.
INVARIANTS

drhazards : P(HAZTYPE×R×R×R×R)
dr1x , dr1y , dr1z : R , R , R
dr2x , dr2y , dr2z : R , R , R

INITIALISATION
t := 0
drhazards := ∅
dr1x , dr1y , dr1z := 0 , 0 , 0
dr2x , dr2y , dr2z := 0 , 0 , 0

END

R. Banach 19

CONTEXT Responder_CTX
CONSTANTS

OFF , SEEK , ARRIVED , RETURN
SETS

RESPSTATE
AXIOMS

partition(RESPSTATE , {OFF} ,
{SEEK} , {ARRIVED} , {RETURN})

END

INTERFACE ControllerResponder_IF
TIME t
VARIABLES

resphazards
INVARIANTS

resphazards : P(HAZTYPE×R×R×R×R)
INITIALISATION

t := 0
resphazards := ∅

END

MACHINE Drone1_Mch
•••

END
MACHINE Drone2_Mch
•••

END
.

.
MACHINE Responder1_Mch
•••

END
MACHINE Responder2_Mch
•••

END
MACHINE Responder3_Mch
•••

END

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 20–37, doi:10.4204/EPTCS.411.2

© R. Correia, P. Mendes, R. Neves, J. Proença
This work is licensed under the
Creative Commons Attribution License.

Formal Simulation and Visualisation of Hybrid Programs
An Extension of a Proof-of-Concept Tool

Pedro Mendes
University of Minho, Portugal

pg50685@alunos.uminho.pt

Ricardo Correia
University of Minho, Portugal

pg47607@alunos.uminho.pt

Renato Neves
INESC-TEC & University of Minho, Portugal

nevrenato@di.uminho.pt

José Proença
CISTER, Faculty of Sciences of the University of Porto, Portugal

jose.proenca@fc.up.pt

The design and analysis of systems that combine computational behaviour with physical processes’
continuous dynamics – such as movement, velocity, and voltage – is a famous, challenging task.
Several theoretical results from programming theory emerged in the last decades to tackle the issue;
some of which are the basis of a proof-of-concept tool, called Lince, that aids in the analysis of such
systems, by presenting simulations of their respective behaviours.

However being a proof-of-concept, the tool is quite limited with respect to usability, and when
attempting to apply it to a set of common, concrete problems, involving autonomous driving and
others, it either simply cannot simulate them or fails to provide a satisfactory user-experience.

The current work complements the aforementioned theoretical approaches with a more practical
perspective, by improving Lince along several dimensions: to name a few, richer syntactic constructs,
more operations, more informative plotting systems and errors messages, and a better performance
overall. We illustrate our improvements via a variety of examples that involve both autonomous
driving and electrical systems.

1 Introduction

Motivation and context. This paper concerns the design and analysis of hybrid systems (i.e. those
that combine discrete with continuous behaviour) from a programming-oriented perspective. Such a
view emerged recently in a series of works [24, 21, 11, 15], and revolves around the idea of importing
principles and techniques from programming theory to better handle the behaviour of hybrid systems. In
this context programs combine standard program constructs, such as conditionals and while-loops, with
certain kinds of differential statement meant to express the dynamics of physical processes, such as time,
energy, and motion. Consider the following example of such a program:

p′ = v,v′ = 2 for 1 ; p′ = v,v′ =−2 for 1 (1)Examples

Basic composition Numerical derivative Numerical integral

Cruise control Adaptive cruise control

Automatic braking system AD: fixed AD: constant velocity

AD: constant acceleration AD: with uncertainties

Missile vs. Target Projetc motion without air effect

Damped Harmonic Oscillator Series RLC circuit Water tanks

Traffic lights Avoiding approx. error

Trigonometric computation Naive particle positioning

Landing system Bouncing ball (ED) Fireflies 2x (ED)

Fireflies 3x (ED)

Perturbations up-to (experimental)

all jumpsresampleTrajectories (fast/numerical)

Symbolic Evaluation

More information on the project:
https://github.com/arcalab/lince

0 0.5 1 1.5 2

0

1

2 p

v

p:=0; v:=0;
p' = v, v' = 2 for 1;
p' = v, v' = -2 for 1;

1
2
3

DevelopmentDevelopment PublicationsPublications Back to ArcaToolsBack to ArcaTools

Copyright 2017-2020 – ARCA.di.uminho.pt

Figure 1: Simulation of (1).

In a nutshell, it is a sequential composition (;) of two
programs where each expresses how the position (p) and
velocity (v) of a vehicle evolve over time. The program
on the left (p′ = v,v′ = 2 for 1) is a differential statement
that reads “the vehicle accelerates at the rate of 2 m/s2 for 1
second”. The other program corresponds to a deceleration.
Both position and velocity over time are presented in Fig. 1,
where we see that the vehicle travels 2 meters and then stops.

http://dx.doi.org/10.4204/EPTCS.411.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

R. Correia, P. Mendes, R. Neves, J. Proença 21

Actually there has been a rapid proliferation of such systems, not only in the domain of autonomous
driving but also in the medical industry and industrial infrastructures, among others [24, 12, 19, 21].
This spurred extensive research on languages, semantics, and tools for their design and analysis. An
example is our work [10, 11] on the semantics of hybrid programs – i.e. those that combine program
constructs with differential statements, such as in (1) – from which arises a mathematical basis for reason-
ing about their behaviour, both operationally and denotationally. A proof-of-concept tool, called Lince,
also emerged from this: its engine is a previously developed operational semantics [11] that yields tra-
jectories of hybrid programs, just as we saw in Fig. 1. However because our focus was rather theoretical,
the tool was not developed with usability in mind, and thus lacks basic features for tackling a broad range
of important scenarios. Let us illustrate this problem with a very simple example.

Problem scenario. Suppose that we wish to move a stationary object a distance of dist meters – a basic
task in autonomous driving. For simplicity assume that we have access only to the acceleration rates
a m/s2 and −a m/s2, where a > 0. Our mission can be accomplished by taking the following variation
of Eq. (1),

p′ = v,v′ = a for t ; p′ = v,v′ =−a for t (2)

for a suitable duration t. Then in order to calculate t (i.e. the prescribed duration of each differential
statement) we simply observe that,

dist =
∫ t

0
va(x)dx +

∫ t

0
v−a(x)dx

where va(x) = a ·x and v−a(x) = va(t)+−a ·x are the velocity functions with respect to the time intervals
[0, t] and [t,2 · t] associated with the program’s execution. We now observe, by recalling Fig. 1, that the
value dist corresponds to the area of a triangle with basis 2 · t and height va(t). This geometric shape
yields the equations, {

dist = 1/2 · (2 · t) · va(t) (area)
va(t) = a · t (height)

=⇒ t =

√
dist

a

Finally observe that if dist = 3 and a = 1 then t =
√

3. Unfortunately the previous version of Lince does
not support square root operations which renders our mission impossible to accomplish.

Contributions and outline. As already alluded to, this paper complements our previous theoretical
work on the semantics of hybrid programming [10, 11]. Specifically it improves our proof-of-concept
tool Lince so that it can handle a myriad of important scenarios, whilst maintaining both its simplicity and
theoretical underpinnings. The improvements were made along different dimensions, and we highlight
the most relevant ones next1.

Extension of basic operations. As illustrated before, the previous version of Lince lacked essential arith-
metic operations for handling most basic tasks. Thus as the first main contribution we added standard
arithmetic operations, including divisions, trigonometric functions, and square root extractions. Notably
the fact that many of these operations are partial required us to extend the operational semantics devel-
oped in [11] (the main engine of Lince) with the possibility of failure. The extended semantics is detailed
in Section 2 and it is of course the basis of the new engine behind improved Lince.

1The improved version can be checked online at http://arcatools.org/lince.

http://arcatools.org/lince

22 Formal Simulation and Visualisation of Hybrid Programs

Extension of numerical methods. Again because our focus in previous work was rather theoretical the
previous version of Lince was unable to simulate standard scenarios in hybrid programming. A main rea-
son for this was our method of obtaining solutions of systems of ordinary differential equations (ODEs),
which although exact lacked in scalability. Precisely for this reason we now integrate a complementary,
numerical solver in Lince with the obvious compromise that the solutions obtained for such systems are
no longer exact.

The benefits of the extended language (and respective semantics), the numerical solver, and a number
of quality-of-life features, are summarised in Section 3 and illustrated with a standard, running example
concerning the famous concept of harmonic oscillation.

Extension of visualisation mechanisms. Lince is constituted by two core components: the simulator
which, by recurring to the aforementioned operational semantics, parses a received program and presents
its output with respect to a single time instant. And the visualiser which presents (a sample of) the
trajectory over time respective to the program at hand, by querying the operational semantics for a certain
sequence of time instants. After trying to properly visualise the behaviour of several types of hybrid
program with Lince we identified two major limitations with respect to this architecture. First many real-
world problems involve multiple spatial dimensions and thus the described view of trajectories over time
is often not the best representation of a hybrid program’s behaviour. Second the user is often interested in
observing the overall program behaviour for varying initial conditions, concerning for example position
and velocity. We therefore present in Section 4 an improved visualiser for Lince that precisely addresses
these two issues. We illustrate it via another classical scenario in autonomous driving, viz. manoeuvring
around an obstacle.

In Section 5 we illustrate that, whilst keeping its simplicity, Lince can now handle complex central
problems in the theory of hybrid systems; we focus specifically on the task of one player pursuing
another, e.g. a vehicle, a drone, or simply a projectile. Such pursuit games were discussed for example
in [20, 2, 6, 18], from an (hybrid-)automata, state-chart, and duration calculus perspective. Here we
present a programming-oriented approach. Finally in Section 6 we discuss future work and conclude.

Related work. Several tools for the design and analysis of hybrid systems were already proposed, e.g.
in the areas of deductive verification [24], model checking [3, 8, 4], simulation [16, 9, 15, 11], and
program semantics [24, 15, 11]. But only a few are committed to a programming-oriented approach,
rooted on formal semantics, and with effective simulation capabilities. The only ones we are aware
of are [15] and our own tool Lince [11]. Interestingly both cases adopt complementary approaches as
well: the former harbours a very powerful concurrent language, particularly well-suited for large-scale
distributed systems. The latter, harbouring a sequential while-language, aims at being minimalistic whilst
still capturing a broad range of interesting problems on which to study different aspects of (pure) hybrid
computation at a suitable abstraction level.

Aside from the obvious pedagogical benefit, our minimalistic approach also allows to capitalise
on different programming theories more easily. For example already in [11] we connected our tool to a
compositional, denotational semantics – particularly well-suited to study hybrid program equivalence and
combinations with other paradigms. An analogous concurrent semantics for [15] would be notoriously
more difficult to achieve (cf. [26, 28]). Similarly our language is amenable to algebraic reasoning in
the style of (weak) Kleene algebras [17, 14] whilst the connection between the latter and concurrent
object-oriented programming (as adopted in [15]) is less clear.

R. Correia, P. Mendes, R. Neves, J. Proença 23

2 Lince’s Foundations Extended with the Possibility of Failure

We now extend part of Lince’s foundations with the possibility of failure. Specifically we present an
extension of the language in [11] with partial operations, such as division and square root extraction,
and introduce a corresponding operational semantics. As explained in the introduction, such is necessary
for extending Lince to ‘real-world problems’ whilst preserving its merit of having a firm, mathematical
basis.

Language. First we postulate a finite set X = {x1, . . . ,xn} of variables and a stock of partial functions
f : Rn −⇀ R that contains the usual arithmetic operations. Then we define expressions and boolean
conditions via the following BNF grammars,

e ::= x | f (e, . . . ,e) b ::= e ≤ e | b∧b | b∨b | ¬b | tt | ff

We omit the explanation of these grammars as they are widely used (see e.g. [28, 26]). Next, we qualify
as ‘linear’ those expressions e which aside from the use of variables involve only the operations + and
r · (−) for some r ∈ R. For example the expression 2 · x is linear but the expression x · x is not. The
concept of linearity is key in the grammar of hybrid programs which we present next.

Programs are built according to the following BNF grammars,

a ::= x′1 = ℓ1, . . . ,x′n = ℓn for e | x := e

p ::= a | p ;p | if b then p else p | while b do { p }

where the terms ℓi (1 ≤ i ≤ n) are linear expressions. We qualify as ‘atomic’ those hybrid programs
that are built according to the first grammar. They can be either classical assignments or differential
statements as described in the introduction. The linearity constraint is here imposed merely to ensure
that the latter kind of statement will always have unique solutions, which renders our semantics more
lightweight whilst still being able to treat a broad range of problems (see more details in [11]).

The language of hybrid programs p itself is simply the usual while-language [28, 26] extended with
the aforementioned differential statements. It is easy to check that our grammar indeed extends that in
the previous version of Lince [11] where all expressions involved in the assignments and the durations
of differential statements had to be linear. This has of course significant implications in the operational
semantics introduced in [11].

Operational semantics. We need a series of preliminaries. First for simplicity we abbreviate differential
statements x′1 = ℓ1, . . . ,x′n = ℓn for e simply to x⃗′ = ℓ⃗ for e, where x⃗′ and ℓ⃗ abbreviate the corresponding
vectors of variables x′1 . . .x

′
n and linear expressions ℓ1 . . . ℓn. We call functions of the type σ : X → R

environments; they map variables to the respective valuations. We use the notation σ [⃗x 7→ v⃗] to denote
the environment that maps each xi in x⃗ to vi in v⃗ and the remaining variables as in σ . Finally we denote
by φ x⃗′=ℓ⃗

σ : R≥0 →Rn the (unique) solution of a system of differential equations x⃗′ = ℓ⃗ with σ as the initial
condition (recall our previous constraint about linearity which ensures that such solutions indeed exist).
When clear from context, we omit both the superscript and subscript in φ x⃗′=ℓ⃗

σ . Next, for an expression e
the notation JeK(σ) denotes the standard (partial) interpretation of expressions [28, 26] according to σ ,
and analogously for JbK(σ) where b is a boolean expression. For example Jx+1K(σ) = σ(x)+ 1 and
J1/xK(σ) is undefined if σ(x) = 0.

We now present an operational semantics for the language. Following traditions in programming
theory [22, 28, 26], we present it from two different, complementary perspectives, which gives a much
more complete understanding of the language’s features. Specifically we present the semantics in two

24 Formal Simulation and Visualisation of Hybrid Programs

different styles: one formalises the idea of a machine “running” a hybrid program and describes its step-
by-step evolution. The other abstracts away from all intermediate steps of this machine and is therefore
generally more suitable to reason about “input-output behaviours” (although we do not explore such a
feature here). Whilst the former style is the basis of Lince’s new version, the latter style is conceptually
more intuitive and therefore we present it first. The current section concludes with a proof that both
semantics are in fact equivalent. The curious reader can consult for example [28, 26] for a thorough
account on the key differences between the small-step and big-step styles in general program semantics.

Our ‘big-step’ operational semantics is given by an ‘input-output’ relation ⇓ which relates programs
p, environments σ , and time instants t to outputs v. The expression p ,σ , t ⇓ v can be read as “at time
instant t the program p starting from state σ outputs v”. The relation ⇓ is built inductively according to
the rules in Fig. 2. Specifically the first three rules describe how differential statements are evaluated:
first one computes the duration JeK(σ) of the differential statement at hand and an error is raised if
JeK(σ) is undefined; otherwise the output v is the respective modified state (as dictated by the differential
statement) paired with one of the flags stop or skip. Intuitively the flag stop indicates that we ‘reached’
the time instant at which the program needs to be evaluated and therefore the evaluation can stop moving
forward in time, which fact is reflected in rule (seq-stop). The flag skip is simply the negation of stop.
The remaining rules follow analogous principles and therefore we refrain from detailing them – instead
we will briefly show how the semantics works via instructive, concrete examples.

Example 2.1. Let us consider the following very simple program,

x′ =−1 for 1 ; x := 1/x

which continuously decreases the value of variable x during 1 second and then applies the (discrete)
operation x := 1/x. Suppose as well that our initial state is the environment σ defined by x 7→ 1. Then
by an application of rule (diff-stop) one deduces that this program outputs the environment x 7→ 1− t
at every time instant t < 1. On the other hand, by an application of rules (diff-skip), (asg-err), and
(seq-skip) one easily deduces that the evaluation of the program fails at every time instant t ≥ 1, due to
a division by 0.

Notably the fact that failure occurs only at the time instants t ≥ 1 is a fundamental difference with
respect to the famous hybrid programming language detailed in [24]. In the op. cit. the language
was designed in the spirit of Kleene algebra, which in particular forces the previous program to be
indistinguishable from e.g. the program x := x/0. Whilst such a feature could be desirable in some
verification scenarios it is clearly unnatural in a simulation-based environment such as ours.

Let us continue unravelling prominent features of our semantics with another example. Consider the
following hybrid program,

while x ̸= 0 do { x′ =−1 for x/2 } ; x := 1/x

paired with the environment x 7→ 1. This program is an instance of a so-called Zeno loop: viz. the loop
involved unfolds infinitely many times with the duration of each iteration becoming shorter and shorter
(see details e.g. in [11]). In this particular case it is straightforward to check that the duration of the i-th
iteration is given by 1/2i, and thus that the total duration ∑

∞
i=1

1/2i of the loop will be 1. Now, by applying
the operational rules in Fig. 2 one can successfully evaluate the program at every time instant t < 1
(intuitively because every such t is reached in a finite number of iterations). The same is false for time
instant t = 1 since such requires a complete unfolding of the loop which is of course computationally
unfeasible. Thus operationally the potential point of failure x := 1/x in the program above never occurs,
as the Zeno loop makes it impossible to actually reach this command in the evaluation. These infinite

R. Correia, P. Mendes, R. Neves, J. Proença 25

(diff-skip)
JeK(σ) = t

x⃗′ = ℓ⃗ for e ,σ , t ⇓ skip ,σ [⃗x 7→ φ(t)]

(diff-stop)
JeK(σ)> t

x⃗′ = ℓ⃗ for e ,σ , t ⇓ stop ,σ [⃗x 7→ φ(t)]
(diff-err)

JeK(σ) undefined

x⃗′ = ℓ⃗ for e ,σ , t ⇓ err

(asg-skip)
JeK(σ) defined

x := e ,σ ,0 ⇓ skip ,σ [x 7→ JeK(σ)]
(asg-err)

JeK(σ) undefined
x := e ,σ , t ⇓ err

(seq-skip)
p ,σ , t ⇓ skip ,τ q ,τ ,u ⇓ v

p ;q ,σ , t +u ⇓ v

(seq-stop)
p ,σ , t ⇓ stop ,τ
p ;q ,σ , t ⇓ stop ,τ

(seq-err)
p ,σ , t ⇓ err
p ;q ,σ , t ⇓ err

(if-true)
JbK(σ) = tt p ,σ , t ⇓ v

if b then p else q ,σ , t ⇓ v

(if-false)
JbK(σ) = ff q ,σ , t ⇓ v

if b then p else q ,σ , t ⇓ v
(if-err)

JbK(σ) undefined
if b then p else q ,σ , t ⇓ err

(wh-true)
JbK(σ) = tt p ;while b do { p } ,σ , t ⇓ v

while b do { p } ,σ , t ⇓ v

(wh-false)
JbK(σ) = ff

while b do { p } ,σ ,0 ⇓ skip ,σ
(wh-err)

JbK(σ) undefined
while b do { p } ,σ , t ⇓ err

Figure 2: Extension of the big-step operational semantics in [11] with the possibility of failure.

behaviours are bounded in Lince by manually setting limits on the total time and on the number of
unfoldings of while-loops, adjustable for each program.

Next, the semantics in the aforementioned ‘small-step’ style is given in the form of a relation →
that is defined inductively according to the rules in Fig. 3. These rules follow an analogous reasoning to
the ones in Fig. 2 so we refrain from repeating explanations.

As detailed in Corollary 1 our small-step semantics is deterministic. This is of course a key property
in what concerns its implementation and subsequent use in Lince for simulating hybrid programs. The
corollary is based on the following theorem.

Theorem 2.1. For every program p, environment σ , and time instant t there is at most one applicable
reduction rule.

Let →⋆ be the transitive closure of the small-step relation → that was previously presented.
Intuitively →⋆ represents an evaluation of one or more steps according to the small-step semantics. If
p,σ , t →⋆ v we call v ‘non-terminal’ whenever it is of the form p′,σ ′, t ′ for some hybrid program p′,
environment σ ′, and time instant t ′; we call v ‘terminal’ otherwise.

26 Formal Simulation and Visualisation of Hybrid Programs

(asg→) x := e ,σ , t → skip ,σ [x 7→ JeK(σ)] , t (if JeK(σ) defined)

(asg-err→) x := e ,σ , t → err (if JeK(σ) undefined)

(diff-stop→) x⃗′ = ℓ⃗ for e ,σ , t → stop ,σ [⃗x 7→ φ(t)] ,0 (if JeK(σ)> t)

(diff-skip→) x⃗′ = ℓ⃗ for e ,σ , t → skip ,σ [⃗x 7→ σ(t)] , t − JeK(σ) (if JeK(σ)≤ t)

(diff-err→) x⃗′ = ℓ⃗ for e ,σ , t → err (if JeK(σ) undefined)

(if-true→) if b then p else q ,σ , t → p ,σ , t (if JbK(σ) = tt)

(if-false→) if b then p else q ,σ , t → q ,σ , t (if JbK(σ) = ff)

(if-err→) if b then p else q ,σ , t → err (if JbK(σ) undefined)

(wh-true→) while b do { p } ,σ , t → p ;while b do { p } ,σ , t (if JbK(σ) = tt)

(wh-false→) while b do { p } ,σ , t → skip ,σ , t (if JbK(σ) = ff)

(wh-err→) while b do { p } ,σ , t → err (if JbK(σ) undefined)

(seq-stop→)
p ,σ , t → stop ,σ ′ , t ′

p ;q ,σ , t → stop ,σ ′ , t ′
(seq-skip→)

p ,σ , t → skip ,σ ′ , t ′

p ;q ,σ , t → q ,σ ′ , t ′

(seq-err→)
p ,σ , t → err
p ;q ,σ , t → err

(seq→)
p ,σ , t → p′ ,σ ′ , t ′

p ;q ,σ , t → p′;q ,σ ′ , t ′
(if p′ ̸= stop and p′ ̸= skip)

Figure 3: Extension of the small-step operational semantics in [11] with the possibility of failure.

Corollary 1 (Determinism). Consider a program p, an environment σ , and a time instant t. If p ,σ ,
t →⋆ v and p ,σ , t →⋆ u with both v and u terminal then we have v = u.

Proof. Follows by induction on the number of reduction steps and Theorem 2.1.

Next we will show that the small-step semantics and its big-step counterpart are indeed equivalent.
We will use the two following results for this effect.

Lemma 2.1. Given a program p, an environment σ and a time instant t

1. if p ,σ , t → p′ ,σ ′ , t ′ and p′ ,σ ′ , t ′ ⇓ skip ,σ ′′ then p ,σ , t ⇓ skip ,σ ′′;

2. if p ,σ , t → p′ ,σ ′ , t ′ and p′ ,σ ′ , t ′ ⇓ stop ,σ ′′ then p ,σ , t ⇓ stop ,σ ′′;

3. if p ,σ , t → p′,σ ′, t ′ and p′ ,σ ′ , t ′ ⇓ err then p ,σ , t ⇓ err;

Proof. Follows by induction over the rules concerning the small-step relation.

R. Correia, P. Mendes, R. Neves, J. Proença 27

Proposition 1. For all program p and q, environments σ and σ ′, and time instants t, t ′ and s, if p ,σ ,
t → q ,σ ′ , t ′ then p ,σ , t + s → q ,σ ′ , t ′+ s; and if p ,σ , t → skip ,σ ′ , t ′ then p ,σ , t + s → skip ,σ ′ ,
t ′+ s. If p ,σ , t → err then p ,σ , t + s → err

Proof. Follows straightforwardly by induction over the rules concerning the small-step relation and the
algebraic properties of addition.

Theorem 2.2 (Equivalence). The small-step semantics and the big-step semantics are related in the
following manner. Given a program p, an environment σ and a time instant t

1. p ,σ , t ⇓ skip ,σ ′ iff p ,σ , t →⋆ skip ,σ ′ ,0;

2. p ,σ , t ⇓ stop ,σ ′ iff p ,σ , t →⋆ stop ,σ ′ ,0;

3. p ,σ , t ⇓ err iff p ,σ , t →⋆ err.

Proof. The right-to-left direction is obtained by induction over the length of the small-step reduction
sequence using Lemma 2.1. The left-to-right direction follows by induction over the big-step derivations
together with Proposition 1.

3 An Improved Simulator for Hybrid Programs

This section summarises several improvements made to Lince’s simulator of hybrid programs since its
original publication [11]. These include (1) more expressive assignments and durations in differential
statements (by virtue of the results in the preceding section); (2) a more user-friendly program syntax (by
means of syntactic sugar); (3) more informative error messages; and (4) a numerical solver of systems
of ordinary differential equations. In order to render our summary more lively we complement it with
a running example involving an RLC circuit in series with an On-Off source. It is designed to stabilise
voltage across the capacitor in the circuit at a specific value.

Running example: RLC circuits and harmonic oscillation. We present in Fig. 4 the simulation of
an RLC circuit in series (RLCS). This simulation models an electric system composed of a resistor, a
capacitor, an inductor, and a power source connected in series. The power source strategically switches
on and off, as a way to stabilise voltage across the capacitor at a target value (say, 10V). Such systems are
known to yield interesting results that are practically relevant for energy storage voltage control systems,
which help to mitigate voltage imbalances that could otherwise damage electronic equipment. More
details about such circuits and associated differential equations are available for example in [29, 13].
We present in Fig. 4 two variations of an RLCS circuit: one in which the capacitor voltage is in an
underdamped regime – with a resistance rU of 0.5Ω, a capacitance c of 0.047F , and an inductance l of
0.047H – and one in which the capacitor voltage is in an overdamped regime – with a resistance rO of 4Ω

and the same values as before for the capacitance and inductance. The general idea of our program is that
the associated controller will read the voltage across the capacitor (variable under for the underdamped
case, over for the overdamped one) every 0.01 seconds, and set the voltage at the source either to 0 (off)
or 18V (on) depending on the value read.

Improvement’s summary. The program just described is highly problematic for the original version
of Lince. This is due to two fundamental reasons related to the ODEs involved: specifically (1) the
equations used in the ODEs violate the linearity condition presented in Section 2 (they include variable
multiplications); and (2) the original solver of ODEs, mentioned in the introduction, fails to produce

28 Formal Simulation and Visualisation of Hybrid Programs

under := 0; dU := 0; vU := 0; rU := 0.5;
over := 0; dO := 0; vO := 0; rO := 4;
c:= 0.047; l:= 0.047;

while true do {
if (under <10) then vU := 18;

else vU := 0;
if (over <10) then vO := 18;

else vO := 0;
under ’=dU , over ’=dO,
dU ’= -(dU*rU/l)

-under/(l*c)+vU/(l*c),
dO ’= -(dO*rO/l)

-over/(l*c)+vO/(l*c)
for 0.01;

}

Hybrid Program

Examples

Basic composition Numerical derivative Numerical integral Cruise control Adaptive cruise control Automatic braking system

Autonomous driving (AD) with fixed reference AD with constant velocity reference AD with constant acceleration reference

AD with constant acceleration reference and uncertainties Missile vs. Target Projetc motion without air effect Damped Harmonic Oscillator

Series RLC circuit Water tanks Traffic lights Avoiding approx. error Trigonometric computation Naive particle positioning

Landing system Bouncing ball (ED) Fireflies 2x (ED) Fireflies 3x (ED) Cruise control Example 1 Missile vs. Target - Exemple 1

Perturbations up-to (experimental)

Plot length
maxTime:0.6,Axis:[under,over]

all jumpsresample

all jumpsresample

all jumpsresample

all jumpsresample

Trajectories (symbolic)

Trajectories (fast/numerical)

Trajectories Test Daniel (symbolic)

Test Daniel (fast/numerical)

0 0.2 0.4 0.6

0

5

10

15 vU

vO

c

dO

rO

dU

rU

under

over

10

15 t vs under

t vs over

un
de
r/
ov
er

under:=0; dU:=0; vU:=0; rU:=0.5;
over:=0; dO:=0; vO:=0; rO:=4;
c:=0.047;

while true do {
 if (under<10) then vU:=18;
 else vU:=0;
 if (over<10) then vO:=18;
 else vO:=0;
 under'=dU, over'=dO,
 dU'=-(dU*rU/c)
 -under/(c*c)+vU/(c*c),
 dO'=-(dO*rO/c)
 -over/(c*c)+vO/(c*c)
 for 0.01;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

DevelopmentDevelopment PublicationsPublications Back to ArcaToolsBack to ArcaTools

Copyright 2017-2020 – ARCA.di.uminho.pt

Figure 4: Hybrid program (left) and its plot (right) of two variations of an RLC circuit that tries to
maintain the voltage in the capacitor at 10V .

solutions after few iterations, due to the sheer, exponential growth of the involved expressions’ size. We
detail these issues and others next.
Richer expressions. As illustrated in the introduction and in the previous RLCS example, there are
several essential, non-linear operations that are necessary to accomodate if one wishes to employ Lince
in the analysis of diverse, common hybrid scenarios. We therefore now permit non-linear expressions
outside of ODEs, essentially by using as basis the grammar of hybrid programs that was described
in Section 2. Thus expressions outside the ODEs can now include for example the operations: division
and multiplication of variables, more complex mathematical functions (such as square root extraction,
exponentials, logarithms, minimum/maximum, and (co)sine), and mathematical constants (namely pi
and Euler’s constant).

As for expressions inside ODEs, the linearity constraint is kept but the associated parser is much less
rigid. A core feature is that it now tries to convert non-linear expressions into equivalent linear ones via
algebraic laws. For example, it converts the expression x · 5, which syntactically is not a linear expres-
sion, into the linear one 5 · x since multiplication is commutative. Most notably, it converts non-linear
expressions x · y into scalar multiplications s · x or s · y if it can infer that either x or y is a constant with
value s. Such a feature is critical in our RLCS example, where we multiply variables in the respective
ODEs.
More informative error messages. Several errors were undetected at an early stage of the simulation
process, which resulted in unintelligible error messages in many situations. We thus added and improved
the detection and notification of several key errors occurring in typical usages of Lince, including when:
(1) a partial function fails (such as in division by 0); (2) a variable is not properly initialised; (3) the
number of arguments of a function is incorrect; (4) the solver fails to solve a system of ODEs; and (5)
ODEs contain non-linear expressions after de-sugaring. For example, in our RLCS simulation when
defining c to be 0 we now obtain the error “Error: the divisor of the division ’rU/(c)’ is zero.”. In our
experience, this more precise detection and notification of errors drastically improved user experience.
Numerical solver. As already mentioned, several hybrid programs such as our RLCS example cannot be
properly handled by the (exact) solver of ODEs (viz. SageMath [27]) used by Lince. We have therefore
implemented an alternative, numerical solver based on the popular fourth-order Runge-Kutta method.
At the theoretical level, this only required a small adaptation of the operational semantics presented

R. Correia, P. Mendes, R. Neves, J. Proença 29

in Section 2. Specifically we no longer assume that the solution φ x⃗′=ℓ⃗
σ associated to a system of ODEs

x⃗′ = ℓ⃗ and an initial condition σ is exact. At the practical level, this allowed us to keep the size of
expressions involved in computations highly manageable thus allowing Lince to cover a broader range
of examples such as the RLCS.

4 An Improved Visualiser for Hybrid Programs

Many hybrid programs cannot be easily understood by simply plotting values of variables over time. For
example, in some cases one may wish to analyse the movement of a vehicle in a 2D plane, or to analyse
how its behaviour varies due to changes in its initial position and velocity. This section presents an
extension of Lince’s visualisation capabilities in these two directions. In the same spirit of the preceding
section, we complement our description with a running example.

Running example: avoiding and manoeuvring around obstacles. The Automatic Emergency Braking
(AEB) system is an autonomous driving device that after reading its distance to an obstacle and its current
velocity, decides whether to decelerate until stopping [1]. Here we present a more advanced version of
the AEB that after stopping also manoeuvres around the obstacle – clearly a process involving two or
even three spatial dimensions. Such a system is called Automatic Emergency Braking with an Overtaking
Manoeuvre (AEBOM).

The continuous dynamics of the AEBOM (i.e. the differential equations involved) is typically given
by Dubins dynamics which essentially describe the object’s orientation over time (an angle) and its effect
on the object’s velocity along the different spatial dimensions [25]. We adopt this approach as well. For
simplicity we additionally assume that our object is a robot that is able to rotate around itself. The overall
process of our AEBOM is thus as follows: move forward until detecting the obstacle and in which case
decelerate until stopping; then rotate to the left and move forward a prescribed number of meters (that
depends on the obstacle’s size); then rotate right and move forward again a prescribed number of meters;
and finally repeat the last step.

Figure 5 depicts the original visualisation of the AEBOM simulation on the left, and a customised
2D visualisation that uses our extension on the right. The respective implementation of the AEBOM,
included in Lince online, is not relevant to show at this stage, because our focus is at the moment on
describing new visualisation mechanisms and not features concerning code. Observe as well that the
plot on the right provides novel insights with respect to the one on the left: whilst in the right it is clear
that the robot does not collide with the obstacle and performs the overtaking manoeuvre safely, in the
left it is much harder to see that the same occurs. We provide more details about our improved plotting
system next.

Higher-dimensional trajectories and beyond. Our new visualisation framework in Lince uses the
Plotly JavaScript library to display plots2. Among other things, we now support 2D and 3D scatter plots,
and include dedicated markers such as the large circles indicating the start and end points of trajectories.
When hovering over these markers, extra information is displayed, e.g. the respective values, relevant
information about the conditionals involved, and potential warnings. We also exploit the animation
functionality of Plotly in plots that do not include the time component, by moving a highlighting circle
through the trajectories capturing how values vary throughout time. This feature is active by default. To
take all these possiblities into account, Lince allows the user to adjust different settings of the plot under

2http://plotly.com/

http://plotly.com/

30 Formal Simulation and Visualisation of Hybrid Programs

Hybrid Program all jumpsresample

all jumpsresample

all jumpsresample

Trajectories (symbolic)

Trajectories (fast/numerical)

Trajectories Test Daniel (symbolic)

0 10 20 30 40

0

20

40

60

80

100

120

y

theta

yl

detection_d

vy

safety_d

vx

w

distance_traveled

x

−1 −0.8 −0.6 −0.4 −0.2

0

20

40

60

80

100

120

y/
yl

x:=0; y:=0;vx:=0; vy:=10;xl:=0; yl:=120;
detection_d:=100;
safety_d:=5;
a:=4;
theta:=0;
w:=(1/20)*2*pi();

//Obstacle -> 1m by 1m

while (y + vy*0.1-yl > detection_d) do {
y'=vy,vy'= 0 for 0.1;
}

stoping_time:=vy/a;
distance_traveled:=vy * stoping_time + 0.5 * (-a) * stoping_time^2;

while (yl - y > safety_d + distance_traveled) do {
y'=vy,vy'= 0 for 0.1;
}

y'=vy,vy'=-a for stoping_time;
vy:=0;

w:=-w;
theta'=w for (pi()*0.5)/(-w);

x'=vx,vx'=-a for sqrt(1/a);
x'=vx,vx'=a for sqrt(1/a);
vx:=0;

w:=-w;
theta'=w for (pi()*0.5)/w;

while (y<yl) do {
y'=vy,vy'=a for 0.1;
}

stoping_time:=vy/a;
y'=vy,vy'=-a for stoping_time;
vy:=0;

theta'=w for (pi()*0.5)/w;

x'=vx,vx'=a for sqrt(1/a);
x'=vx,vx'=-a for sqrt(1/a);
vx:=0;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

DevelopmentDevelopment PublicationsPublications Back to ArcaToolsBack to ArcaTools

Copyright 2017-2020 – ARCA.di.uminho.pt

Figure 5: Plot of AEBOM using the traditional plotting system in Lince (left), and a new customised 2D
plot (right) relating x with y (the robot’s coordinates) and xl with yl (the obstacle’s coordinates).

analysis so that she can obtain the best possible configuration for her needs. We very briefly detail such
settings next:

• Axis: Allows defining the relationships between variables which will automatically be presented in
the respective plots. For example, by setting [x, y, v], if the graph type is scatter, three separate
graphs will be generated where the vertical axis represents each of the variables x, y, and v, while
the horizontal axis represents time. Choosing which variables to map to the axes is crucial for
proper data analysis, allowing direct visual comparisons between different variables over time or
with each other.

• Max Time: Refers to the duration of the simulation.

• Max Iterations: Specifies the maximum number of iterations (in while-loops) that the simulation
can perform.

• Graph Type: Defines the type of graph to be used for visualising the simulation data, by selecting
from the available types (‘scatter’ or ‘scatter3d’). In a nutshell, a scatter plot is a 2D graph used
to display the relationship between two variables, with data points plotted in the two-dimensional
plane. Scatter3D serves the same purpose but involves three variables, with data points plotted in
the three-dimensional space.

The summarised settings are presented in Fig. 6, where the values there listed are the ones used to
obtain the plot in Fig. 5 on the right.

Figure 6: Input boxes that allow for the configuration of the visualisation.

Variability of initial conditions. As mentioned before, it is highly relevant take into account how the
behaviour of a hybrid program varies due to changes in its initial conditions. In the AEBOM previously
described in particular, it is of fundamental importance to understand how the robot manoeuvres around

R. Correia, P. Mendes, R. Neves, J. Proença 31

an obstacle with respect to different initial positions and velocities – for it is unrealistic to expect that it
moves with well-known, exact conditions. A similar, more general discussion can be consulted in [25].

In order to address this aspect we extended Lince in two steps: first its syntax now allows the listing
of different initial conditions at the same time. Such is illustrated in Fig. 7 on the left, with a snippet of
code used to specify initial values with respect to our robot in the AEBOM example. The latter’s initial
position (x,y) for example, can now be either (0,0), (2,0), or (4,0); and similarly we have different
initial velocities (vy) towards the obstacle, 4, 8, and 12 m/s. Second Lince now pre-processes such listings
in the code and derives all possible combinations of initial conditions, which of course yields several
hybrid programs at once (in the standard syntax). These data is then fed into Lince’s visualiser which
presents multiple simulations overlapped in the same plot. Such is seen in Fig. 7 on the right, again
with our AEBOM example, where we see that our robot behaves in the same way under different initial
conditions.

// Initial Conditions
x := [0,2,4];
y := 0;
vx := 0;
vy := [4,8,12];
xl := [0,2,4];
yl := [120 ,135 ,150];

...

Figure 7: Visualisation of multiple simulations overlapped concerning the AEBOM.

5 Lince at Work: a Showcase of the Overall List of Improvements

This section illustrates the overall list of improvements made to Lince (as described in the preceding
sections) working together in the design and analysis of a complex hybrid scenario – specifically we
focus on a multi-dimensional pursuit game between two players (for example two drones) [20, 2, 6, 18].
Our illustration focuses mainly on two aspects: (1) Lince’s capability tosimulate such scenarios, with
optimally configured 3D plotting systems; and (2) the time that Lince takes to simulate increasingly
larger systems, to provide insights over limitations of the current implementation.
Pursuit Games. Pursuit games are a captivating class of problems involving multiple agents, where
at least one them (the pursuer) aims to capture or reach another (the evader) [20, 2, 6, 18, 25]. Such
games are extensively studied across various disciplines, including mathematics, game theory, robotics,
and computer science, due to their practical and theoretical significance. Indeed they model a wide
range of real-world situations, from military and security operations to animal behaviour and industrial
applications.

In this section we explore a specific 3D pursuit game, where we perceive the pursuer as a drone that
attempts to capture another one in the three-dimensional space. This scenario is particularly challenging,
due to the additional complexity introduced by the third dimension which requires a higher level of
planning and coordination between the drones’ movements. In order to model this problem we base our
game’s continuous dynamics on Dubins dynamics [25], i.e. as in Section 4 but now in three dimensions.

Our overarching strategy for the pursuer is to simply point its orientation to the evader’s position at
every iteration in a certain while-loop. Of course there are other options, such as that of (variations of)

32 Formal Simulation and Visualisation of Hybrid Programs

Dubins paths [25, 5], but our version already suffices to properly illustrate Lince at work. Technically
our approach utilises the angular velocity tensor to perform 3D infinitesimal rotations [7]. Additionally
we use the cross product between the projection of the relative velocity vector and the relative position
vector in each plane to determine the orientation of rotation among the three axes. We do not show
here the coding details of all these processes, since this is unnecessary for our illustration. However
the interested reader can consult details about these in [5, 7], and the complete code of our program is
included in the examples available in Lince online.

We now show the simulation of our game in Lince across different scenarios. In the first case, the
pursuer starts from the position (300,300,600) with a velocity of (-20,-10,0)m/s, while the evader begins
at the position (600,600,500) with a velocity of (10,0,10)m/s. The pursuer’s angular velocity along each
axis is (1/20)*2*pi()rad/s (20 seconds to complete a full rotation); and for the evader (1/40)*2*pi()rad/s

(40 seconds to complete a full rotation). The pursuer is allowed to actuate every 0.1s, and it wins the
game if it reaches a distance of less than one meter with respect to the evader. Finally, for simplicity we
assume a pre-defined set of movements for the latter player. Using these parameters, we simulated the
corresponding program in Lince and generated a 3D scatter plot of the positional variables for both the
pursuer and the evader, resulting in the graphical representation shown in the Fig. 8 after 73 seconds.

Figure 8: Two views of the same plot, where a pursuer (blue) captures an evader (orange).

We can see that the decision strategy for the pursuer adopted in this hybrid program successfully
guided it to the evader, resulting in a capture at the position (691.26,441.92,561.12) after 27.7 seconds.
However if we change the initial velocity of the evader to a higher value, such as (20,0,9)m/s, we no
longer can visualise the capture of the evader within the limits used for this simulation (Fig. 9). Indeed,
Lince supports the customisation of bounds both on the maximal time and on the number of times loops
are unfolded, to avoid infinite computations. In this case, using larger bounds would allow the pursuer to
capture the evader in the plot.

Figure 9: Similar plot to the one in Fig. 8, but using different initial velocities while keeping the same
bounds on the size of the plot; this leaves out the point of the capture.

Finally by taking advantage of the variability results presented in Section 4 we very briefly study the

R. Correia, P. Mendes, R. Neves, J. Proença 33

Figure 10: Two simulations (left and middle) of a pursuit game using different initial velocities
((1/40)*2*pi()rad/s and (1/100)*2*pi(), respectively); the right plot depicts both simulations overlaid.

effects of using different velocities in this pursuit game. Specifically we adjust the angular velocity of
the pursuer along each axis to be either (1/40)*2*pi()rad/s or (1/100)*2*pi()rad/s, whilst keeping all other
aspects. The resulting graphical representation (after 220 seconds) is shown in Fig. 10. From the plots we
observe that the pursuer successfully captures the evader when the angular velocity is (1/40)*2*pi()rad/s

at the position (692.07,415.62,464.63) in 34.8 seconds (left plot). However with an angular velocity
of (1/100)*2*pi()rad/s, the pursuer does not capture the evader in this time frame (middle plot). These
simulations showcase Lince’s ability to model and simulate complex scenarios, thus providing valuable
insights into a system’s behavior.
A brief overview of Lince’s time performance. As shown in the previous example, Lince still has a few
limitations concerning performance. In order to give the reader a more concrete idea of them we provide
next an overview of how Lince fares perfomance-wise against the examples presented in this paper. First
we need to give further context on how Lince operates.

The first main observation is that now that Lince is equipped with an effective numerical solver
(recall Section 3) it can operate in two starkly different ways: one analytical with exact methods that
rely on SageMath’s framework [27], the other numerical, based on progressively closer approximations
as described in Section 3. Both operation modes have significant differences performance-wise: most
notably the former is obviously slower and gives timeouts much more frequently than the latter (recall
our RLCS example in Section 3). Interestingly the bottleneck hinges not only on the employment of a
precise solver, but also on the fact that:

1. this solver is external to Lince, specifically our tool needs to interact with a server, with all the
usual delays that this implies;

2. along the evaluation of a hybrid program, Lince needs to simplify resulting expressions over and
over to make them tractable (due to them being symbolic and not numerical).

We saw first-hand in Section 3 how all these extra tasks running behind the curtains inhibit Lince to
simulate programs such as the RCLS circuit. The numerical solver, on the other hand, avoid these
problems, but at the cost of less precision which may have deep implications if one wishes to have full
guarantees that a simulation is correct, particularly if the system at hand is chaotic [23]. Needless to say,
to find methods that have the virtues of both approaches is a very interesting challenge.

Table 1 lists several execution times of Lince against different variations of the examples presented in
the paper. More specifically, each row represents one of our three examples with varying sampling times
and total number of iterations. The example AEB is a variation of AEBOM, where the vehicle stops
instead of performing an overtaking manoeuvre. All these examples are fully available in our improved
Lince online.

34 Formal Simulation and Visualisation of Hybrid Programs

Table 1: An overview of Lince’s time performance with respect to the examples discussed in this paper.
We consider different sampling times, number of iterations, and both exact and approximate methods.

Sampling
Time

Nº of
Iterations

Time
Symb-Server

Time
Symb-Total

Time
Numerical-Total

RLCS
0.01s 1000 - - 11.46s
0.1s 1000 - - 10.98s
1s 150 - - 1.14s

AEB
0.01s 184 23.56s 23.70s 0.41s
0.1s 19 13.04s 13.08s 0.18s
1s 2 11.90s 11.97s 0.14s

AEBOM
0.01s 1000 - - 8.85s
0.1s 128 - - 0.62s
1s 21 - - 0.35s

Pursuit Games
0.01s 1000 - - 66.60s
0.1s 322 - - 18.26s
1s 150 - - 7.85s

We used a Linux laptop with a Intel quad-core i5 processor and 16GB RAM running both the server
and the client. The columns Sampling time and Nº of Iterations refer respectively to the rate at which
computational tasks need to be performed and the total number of times the while-loop in the program
involved is unfolded. The column Time Symb-Total presents the time since a new program is loaded,
before parsing, until the plot is displayed in the browser. The column Time Symb-Server measures only
the time taken since the launch of a dedicated process running SageMath until it is terminated at the end
of a trajectory. The column Time Numerical-Total measures the time taken since a program is loaded
until its plot is displayed, computed using numerical approximations. Some observations over the values
on Table 1 follow below.

• Most examples, except for AEB, reach a timeout (set in our server) when using the symbolic
analysis, marked in the table with “-”. The feasibility of AEB is mainly due to the smaller number
of required calls to the symbolic engine.

• In the AEB example we observe that, when using exact methods, around 99

• The numerical mechanisms in the AEB example yield simulations significantly faster than in the
exact counterpart.

• The total time taken to numerically simulate the RLCS and AEBOM examples are shorter than
in the Pursuit Games example. This is because these two examples involve fewer computations
and the Pursuit Games use a 3D scatter plot, which is more computationally intensive than the 2D
scatter plot.

• Larger sampling times imply reduced times in generating both the exact and numerical plots, due
to the decreased number of computational operations. Consequently, it takes longer to simulate
controllers with higher precision that actuate on physical processes such as movement, velocity,
and time. However, many critical systems, e.g., in the context of autonomous driving and other
embedded systems, may require such a high precision.

R. Correia, P. Mendes, R. Neves, J. Proença 35

6 Conclusion and Future Work

We presented an improved version of Lince, which can now handle a broader class of hybrid programs
and aims overall at improving user experience. As previously discussed, this required an extension
with the possibility of failure of the operational semantics introduced in [11], the implementation of an
efficient numerical solver, and more informative error messages, among other things.

We believe that our work opens up several research paths that we would like to explore next. For
example, thanks to the numerical solver it is now straightforward to extend our language with non-linear
differential equations, which widens even more the range of programs that Lince can currently tackle.
Another interesting research path is the addition of probabilistic constructs to Lince, such as measure
sampling. We conjecture that this could be handled easily in Lince via a random-number generator and
part of the implemented variability mechanisms that were presented in Section 4.

Yet another interesting research line is to connect Lince to the theorem prover for hybrid programs
KeYmaera X [25] – specifically the connection would consist of a suitable encoding from programs
written in Lince to programs written in KeYmaera X. Such would establish a workflow in which the
engineer first analyses a given hybrid program via simulation mechanisms (provided by Lince) and
subsequently proves properties about this program (e.g. correctness) via KeYmaera X.

Acknowledgments. This work is financed by National Funds through FCT - Fundação para a Ciên-
cia e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within the project IBEX,
with reference 10.54499/PTDC/CCI-COM/4280/2021. This work is also partially supported by Na-
tional Funds through FCT/MCTES, within the CISTER Unit (UIDP/UIDB/04234/2020); and by the EU-
/Next Generation, within the Recovery and Resilience Plan, within project Route 25 (TRB/2022/00061
– C645463824-00000063).

References

[1] Proctor Acura: Technology Guide: What is an Automatic Braking System? https://www.proctoracura.
com/automatic-braking-system-guide.

[2] T. Anderson, R. de Lemos, J. S. Fitzgerald & A. Saeed (1993): On formal support for industrial-scale
requirements analysis. In Robert L. Grossman, Anil Nerode, Anders P. Ravn & Hans Rischel, editors:
Hybrid Systems, Springer Berlin Heidelberg, pp. 426–451, doi:10.1007/3-540-57318-6_39.

[3] Paolo Ballarini, Hilal Djafri, Marie Duflot, Serge Haddad & Nihal Pekergin (2011): COSMOS: A Statistical
Model Checker for the Hybrid Automata Stochastic Logic. In: Eighth International Conference on Quantita-
tive Evaluation of Systems, QEST 2011, IEEE Computer Society, pp. 143–144, doi:10.1109/QEST.2011.24.

[4] Davide Bresolin, Luca Geretti, Tiziano Villa & Pieter Collins (2015): An Introduction to the Verification of
Hybrid Systems Using Ariadne, pp. 339–346. Lecture Notes in Control and Information Sciences, Springer,
doi:10.1007/978-3-319-10407-2_39.

[5] Xuan-Nam Bui, J.-D. Boissonnat, P. Soueres & J.-P. Laumond (1994): Shortest path synthesis for Dubins
non-holonomic robot. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automa-
tion, pp. 2–7 vol.1, doi:10.1109/ROBOT.1994.351019.

[6] Zhou Chaochen, Anders P. Ravn & Michael R. Hansen (1992): An Extended Duration Calculus for Hybrid
Real-Time Systems. In Robert L. Grossman, Anil Nerode, Anders P. Ravn & Hans Rischel, editors: Hybrid
Systems, Lecture Notes in Computer Science 736, Springer, pp. 36–59, doi:10.1007/3-540-57318-6_23.

[7] Garanin Dmitry (2008): Rotational motion of rigid bodies. https://www.lehman.edu/faculty/
dgaranin/Mechanics/Mechanis_of_rigid_bodies.pdf.

https://www.proctoracura.com/automatic-braking-system-guide
https://www.proctoracura.com/automatic-braking-system-guide
https://doi.org/10.1007/3-540-57318-6_39
https://doi.org/10.1109/QEST.2011.24
https://doi.org/10.1007/978-3-319-10407-2_39
https://doi.org/10.1109/ROBOT.1994.351019
https://doi.org/10.1007/3-540-57318-6_23
https://www.lehman.edu/faculty/dgaranin/Mechanics/Mechanis_of_rigid_bodies.pdf
https://www.lehman.edu/faculty/dgaranin/Mechanics/Mechanis_of_rigid_bodies.pdf

36 Formal Simulation and Visualisation of Hybrid Programs

[8] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo
Ripado, Antoine Girard, Thao Dang & Oded Maler (2011): SpaceEx: Scalable Verification of Hybrid Sys-
tems. In Ganesh Gopalakrishnan & Shaz Qadeer, editors: Computer Aided Verification, Springer Berlin
Heidelberg, pp. 379–395, doi:10.1007/978-3-642-22110-1_30.

[9] Peter Fritzson (2014): Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-
physical approach. John Wiley & Sons, doi:10.1002/9781118989166.

[10] Sergey Goncharov & Renato Neves (2019): An Adequate While-Language for Hybrid Computation. In Eka-
terina Komendantskaya, editor: Proceedings of the 21st International Symposium on Principles and Practice
of Programming Languages, PPDP 2019, ACM, pp. 11:1–11:15, doi:10.1145/3354166.3354176.

[11] Sergey Goncharov, Renato Neves & José Proença (2020): Implementing Hybrid Semantics: From Functional
to Imperative. In Violet Ka I Pun, Volker Stolz & Adenilso Simão, editors: Theoretical Aspects of Computing
- ICTAC 2020 - 17th International Colloquium, Macau, China, November 30 - December 4, 2020, Proceed-
ings, Lecture Notes in Computer Science 12545, Springer, pp. 262–282, doi:10.1007/978-3-030-64276-1_14.

[12] Volkan Gunes, Steffen Peter, Tony Givargis & Frank Vahid (2014): A Survey on Concepts, Applications,
and Challenges in Cyber-Physical Systems. Transactions on Internet and Information Systems 8(12), pp.
4242–4268, doi:10.3837/TIIS.2014.12.001.

[13] Ahammodullah Hasan, Md Abdul Halim & MA Meia (2019): Application of linear differential equation in
an analysis transient and steady response for second order RLC closed series circuit. American Journal of
Circuits, Systems and Signal Processing 5(1), pp. 1–8.

[14] Peter Höfner (2009): Algebraic calculi for hybrid systems. Ph.D. thesis, University of Augsburg. Available
at http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1481/.

[15] Eduard Kamburjan, Stefan Mitsch & Reiner Hähnle (2022): A Hybrid Programming Language for Formal
Modeling and Verification of Hybrid Systems. Leibniz Transactions on Embedded Systems 8(2), pp. 04:1–
04:34, doi:10.4230/LITES.8.2.4.

[16] Harold Klee (2007): Simulation of Dynamic Systems with MATLAB and Simulink. CRC Press, Inc., USA.

[17] Dexter Kozen (1997): Kleene algebra with tests 19(3), p. 427–443. doi:10.1145/256167.256195.

[18] Tomas Krilavicius (2006): Hybrid Techniques for Hybrid Systems. Ph.D. thesis, University of Twente, En-
schede, Netherlands. Available at http://eprints.eemcs.utwente.nl/9609/.

[19] Edward A. Lee & Sanjit A. Seshia (2016): Introduction to embedded systems: A cyber-physical systems
approach. MIT Press.

[20] Zohar Manna & Amir Pnueli (1992): Verifying Hybrid Systems. In Robert L. Grossman, Anil Nerode,
Anders P. Ravn & Hans Rischel, editors: Hybrid Systems, Lecture Notes in Computer Science 736, Springer,
pp. 4–35, doi:10.1007/3-540-57318-6_22.

[21] Renato Neves (2018): Hybrid programs. Ph.D. thesis, University of Minho. Available at https:
//repositorium.sdum.uminho.pt/handle/1822/56808.

[22] E-R Olderog (1992): Nets, terms and formulas: three views of concurrent processes and their relationship.
Cambridge University Press.

[23] Lawrence Perko (2013): Differential equations and dynamical systems. 7, Springer Science & Business
Media, doi:10.1007/978-1-4613-0003-8.

[24] André Platzer (2010): Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics.
Springer, doi:10.1007/978-3-642-14509-4.

[25] André Platzer (2018): Logical Foundations of Cyber-Physical Systems. Springer, doi:10.1007/978-3-319-
63588-0.

[26] John C Reynolds (1998): Theories of programming languages. Cambridge University Press,
doi:10.1017/CBO9780511626364.

[27] W. A. Stein et al. (2015): Sage Mathematics Software (Version 6.4.1). The Sage Development Team.
http://www.sagemath.org.

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1002/9781118989166
https://doi.org/10.1145/3354166.3354176
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.3837/TIIS.2014.12.001
http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1481/
https://doi.org/10.4230/LITES.8.2.4
https://doi.org/10.1145/256167.256195
http://eprints.eemcs.utwente.nl/9609/
https://doi.org/10.1007/3-540-57318-6_22
https://repositorium.sdum.uminho.pt/handle/1822/56808
https://repositorium.sdum.uminho.pt/handle/1822/56808
https://doi.org/10.1007/978-1-4613-0003-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1017/CBO9780511626364

R. Correia, P. Mendes, R. Neves, J. Proença 37

[28] Glynn Winskel (1993): The formal semantics of programming languages - an introduction. Foundation of
computing series, MIT Press, doi:10.7551/mitpress/3054.001.0001.

[29] Yue Zhang & Anurag Srivastava (2021): Voltage Control Strategy for Energy Storage System in Sustainable
Distribution System Operation. Energies 14(4), doi:10.3390/en14040832.

https://doi.org/10.7551/mitpress/3054.001.0001
https://doi.org/10.3390/en14040832

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 38–55, doi:10.4204/EPTCS.411.3

© M. G. Saadat, A. Ferrando, L. A. Dennis, & M. Fisher
This work is licensed under the
Creative Commons Attribution License.

ROSMonitoring 2.0: Extending ROS Runtime Verification to
Services and Ordered Topics

Maryam Ghaffari Saadat
University of Manchester

Manchester, United Kingdom
maryam.ghaffarisaadat@manchester.ac.uk

Angelo Ferrando
University of Modena and Reggio Emilia

Modena, Italy
angelo.ferrando@unimore.it

Louise A. Dennis
University of Manchester

Manchester, United Kingdom
louise.dennis@manchester.ac.uk

Michael Fisher
University of Manchester

Manchester, United Kingdom
michael.fisher@manchester.ac.uk

Formal verification of robotic applications presents challenges due to their hybrid nature and dis-
tributed architecture. This paper introduces ROSMonitoring 2.0, an extension of ROSMonitoring
designed to facilitate the monitoring of both topics and services while considering the order in which
messages are published and received. The framework has been enhanced to support these novel fea-
tures for ROS1 – and partially ROS2 environments – offering improved real-time support, security,
scalability, and interoperability. We discuss the modifications made to accommodate these advance-
ments and present results obtained from a case study involving the runtime monitoring of specific
components of a fire-fighting Uncrewed Aerial Vehicle (UAV).

1 Introduction

The formal verification of robotic applications is a challenging task. Due to their heterogeneous and
component-based nature, establishing the correctness of robotic systems can be particularly difficult.
Various approaches exist to tackle this problem, ranging from testing methods [8, 21, 9] to static [16, 14]
or dynamic [19, 15] formal verification. In this work, we focus on the latter approach to verification,
specifically the extension of ROSMonitoring [15], a Runtime Verification (RV) framework developed
for monitoring robotic systems deployed in the Robot Operating System (ROS) [2]. ROS is widely
used, providing a de facto standard for robotic components. ROS encourages component-based develop-
ment of robotic systems where individual components run in parallel, may be distributed across several
processors, and communicate via messages. We tackle ROSMonitoring because it is a novel, formalism-
agnostic, and widely used framework for the runtime monitoring of ROS applications. ROSMonitoring
allows the specification of formal properties externally to ROS, without imposing any constraints on the
formalism to be used. The properties that can typically be monitored in ROSMonitoring concern mes-
sages exchanged between different ROS components, called nodes. Such message communication is
achieved through a publish-subscribe mechanism, where some nodes (referred to as publishers) publish
messages on a topic and other nodes (referred to as subscribers) subscribe to these topics to listen for the
published messages. Through ROSMonitoring, it is possible to specify the communication flow on such
topics. For instance, one can determine which messages are allowed in the current state of the system,
the correct order amongst them, and other relevant criteria.

Unfortunately, not all aspects of verifying ROS applications are based solely on message communi-
cation. In fact, when developing ROS systems, other communication mechanisms can also be utilised,

http://dx.doi.org/10.4204/EPTCS.411.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. G. Saadat, A. Ferrando, L. A. Dennis, & M. Fisher 39

such as services. Unlike the publish-subscribe mechanism used with topics, services provide a way for
nodes in ROS to directly offer functionalities to each other. While topics are typically used to transmit
data from sensors, services serve as an interface that enables nodes to offer specific functionalities to
others within the ROS system. Unlike topics, services are commonly synchronous, meaning that when
a node calls a service, it waits for a response from the receiving node. This is in contrast to topics,
where subscription is non-blocking, and the subscriber node is simply notified whenever a new message
is published on the topic, without any waiting involved. Services are not supported in ROSMonitoring,
restricting the framework’s functionality to solely monitoring messages.

Another current limitation of ROSMonitoring pertains to the handling of message order. The frame-
work orders messages based on the chronological order in which they are received by subscriber nodes.
However, this approach only considers the viewpoint of subscribers, which may not always be suitable.
In some scenarios, it may be necessary to consider the order of messages based on when they were sent.
For instance, if one message was sent before another, the former should be analysed before the latter by
the monitor, appearing earlier in the resulting trace of events. Unfortunately, ROSMonitoring does not
currently provide a representation of the order in which messages are published and received. Generally,
messages on a single topic are received by subscribers in the order they were published. However, if a
property needs to monitor several topics, then it is unusual for the messages from more than one topic
to be received in the order they were published. Reordering messages according to publication time is
necessary if checking conditional actions that respond to specific event patterns.

In this paper, we introduce ROSMonitoring 2.0, an extension of ROSMonitoring designed to facili-
tate the monitoring of both topics and services while also considering the order in which messages are
published and received. The framework has been enhanced to support these novel features for ROS.
Some of these features, i.e., service monitoring, have also been ported to ROS21 environment as well.
We discuss the modifications made to accommodate these advancements and present results obtained
from a case study involving the runtime monitoring of specific components of a fire-fighting Uncrewed
Aerial Vehicle (UAV).

2 Preliminaries

In this section, we briefly introduce Runtime Verification and the ROSMonitoring framework. We em-
phasise the primary distinction between RV and static verification techniques. Additionally, we provide
an overview of the ROSMonitoring framework and briefly outline its main features.

2.1 Runtime Verification

Runtime Verification (RV) is a lightweight formal verification technique that checks the behaviour of
a system while it is running [23]. Unlike model checking, RV does not suffer from the state space
explosion problem typical in static verification methods and is therefore much more scalable [11]. RV is
particularly suitable for robotic applications due to resource limitations and system complexity that make
full verification at design-time challenging. While static verification techniques focus on abstracting
system components, RV checks system behaviour directly. RV addresses the word inclusion problem [5],
determining if a given event trace belongs to the set of traces denoted by a formal property (referred to as
the property’s language). This verification process is polynomial in time relative to the trace length. In

1ROS2 is the upgraded version of ROS1, providing improved real-time support, security, scalability, and enhanced interop-
erability with multiple communication middleware options.

40 ROSMonitoring 2.0: Extending ROS RV to Services and Ordered Topics

contrast, model checking exhaustively verifies if a system satisfies or violates a property by analysing all
possible system executions, tackling the language inclusion problem, and is typically PSPACE-complete
for non-deterministic finite automata [31]. RV commonly employs runtime monitors, automatically
synthesised from formal properties, often expressed using Linear-time Temporal Logic (LTL) [28]. These
monitors gather information from system execution traces and conclude whether the system satisfies or
violates the property. A monitor returns ⊤ if the trace satisfies the property, ⊥ if it violates it, and ? if
there is insufficient information. Depending on the property’s formalism, ? may further split into ?⊤ or
?⊥ indicating partial satisfaction or partial violation, respectively.

2.2 ROSMonitoring

ROSMonitoring [15] is a framework for performing RV on ROS applications. ROSMonitoring allows the
user to add monitors to ROS applications, which intercept the messages exchanged between components,
called “ROS nodes”2, and check whether the relevant messages conform to a given formal property. In
the following we describe these three different aspects in more detail.

instrument

config.yaml

nodes

monitor.py

ROS

log.txt

oracle
spec

online
offline

Figure 1: High-level overview of ROSMonitoring [15].

2.2.1 Instrumentation

ROSMonitoring starts with a YAML configuration file to guide the instrumentation process required
to generate the monitors. Within this file, the user can specify the communication channels, called
“ROS topics”, to be intercepted by each monitor. In particular, the user indicates the name of the topic,
the ROS message type expected in that topic, and the type of action that the monitor should perform.
After preferences have been configured in config.yaml, the last step is to run the generator script to
automatically generate the monitors and instrument the required ROS launch files.

2ROS is node-based, each robot can be composed of multiple nodes.

M. G. Saadat, A. Ferrando, L. A. Dennis, & M. Fisher 41

2.2.2 Oracle

ROSMonitoring decouples the message interception (monitor) and the formal verification aspects (ora-
cle) and so is highly customizable. Different formalisms can be used to represent the properties to be
verified, including Past MTL, Past STL, and Past LTL (MTL [22], STL [24], and LTL [28] with past-time
operators, respectively). Using the formalism of choice, an external entity can be created to handle the
trace of events reported by the monitors in ROS (generated through instrumentation). ROSMonitoring
requires very few constraints for adding a new oracle. It uses JSON3 (JavaScript Object Notation) as
a data-interchange format for serialising the messages that are observed by the ROS monitor. JSON is
commonly used for transmitting data between a server and a web application. In JSON, data is repre-
sented as key-value pairs enclosed in curly braces, making it a popular choice for APIs and data storage.
An oracle will parse the JSON messages, check whether they satisfy or violate the formal property, and
report back to the ROS monitor.

2.2.3 ROS monitor

The instrumentation process generates monitors to intercept the messages of interest. Each monitor
is automatically generated as a ROS node in Python, which is a native language supported in ROS.
ROSMonitoring provides two types of monitors: 1) offline monitors which simply log the intercepted
events in a specified file to be parsed by the Oracle later to determine whether they satisfy a given set
of properties, and 2) online monitors which query the Oracle in real time about whether the intercepted
messages satisfy the given properties. While offline monitors only log the observed messages, online
monitors could either log messages along with the Oracle verdict updated after each message or filter
messages that the Oracle deems have violated the given properties. To clarify the difference, in the case of
logging without filtering, if the online monitor finds a violation of the property under analysis, it publishes
a warning message containing as much information as possible about the violated property. This warning
message can be used by the system to handle the violation and to react appropriately. However, the
monitor does not stop the message from propagating further in the system. In contrast, if filtering is
enabled, since monitors can be placed between the communication of different nodes, ROSMonitoring
monitors enforces the property under analysis by not propagating messages that represent a property
violation. This is achieved by directing communication on the monitored topics to pass through the
monitors.

3 Motivating example

In this section, we explain the rationale behind extending the ROSMonitoring framework. We use, as
an example, a Battery Supervisor system 4 designed for a UAV (Uncrewed Aerial Vehicle) with three
essential components depicted in Figure 2: the Battery, the Battery Supervisor, and the LED Panel. The
Battery periodically reports the remaining battery percentage. The Battery Supervisor is responsible for
checking the battery level and reporting its status. It subscribes to the battery percentage updates and
analyses them. If the battery percentage is above 40%, it signals a ‘healthy’ status. If it is between 30%
and 40%, it flags a ‘warning’ status. And if it falls below 30%, it indicates a ‘critical’ status. The LED
Panel reflects the battery status through coloured LED lights. The Battery Supervisor is connected to the
LED Panel and whenever it detects a change in the battery status, it sends a signal to the LED Panel to

3https://www.json.org/
4Full code for this example is available in the Git Repository for ROSMonitoring 2.0 Case Study.

https://www.json.org/
https://github.com/LilithMary/ROSMonitoring2.0-Case-Study.git

42 ROSMonitoring 2.0: Extending ROS RV to Services and Ordered Topics

adjust the lights accordingly. For instance, if the battery is in a critical state, the red light might flash to
indicate urgency5.

Battery

\battery percentage Battery Supervisor \battery status

LED Panel \LED Panel

\SetLED invocation

Figure 2: Motivating example with three components: Battery, Battery Supervisor, and LED Panel.
Battery publishes on topic /battery_percentage; Battery Supervisor subscribes to /battery_percentage,
publishes on topic /battery_status, and invokes service /SetLED; LED Panel publishes on topic
/LED_Panel and responds to /SetLED service requests.

In this example, we are interested in ensuring that the messages exchanged between different com-
ponents correspond correctly. For instance, that every status update provided by the Battery Supervisor
accurately reflects the current battery percentage received from the Battery. However, while messages
published on a single topic generally arrive at the subscribers according to their publication order, mes-
sages on different topics can arrive out of order. As a result, a battery status message could be observed
before its corresponding battery percentage. Therefore, we need additional mechanisms to account for
this before sending the messages to the Oracle for verification. This motivates our extension to reorder
the messages according to their publication time.

Beyond message correspondence, we are also interested in verifying the interaction between the
Battery Supervisor and the LED Panel service. We would like to confirm that every time the LED lights
are adjusted based on the battery status, it is triggered by a legitimate status update. Conversely, we
would like to check that every change in battery status is promptly followed by a request to adjust the
LED lights, maintaining synchronisation between the visual feedback and the actual battery condition.
However, services are not supported by the ROSMonitoring framework. This motivates our extension
to support services. Since some of the properties we are interested in monitoring include both topics
and services, we have also developed support for reordering service requests and responses according to
publication time as well.

4 ROSMonitoring 2.0

ROSMonitoring 2.0 is fully available6 for ROS1, while only partially available7 for ROS2 (service moni-
toring has been added but not message reordering). In this section, we present two novel aspects of ROS-
Monitoring 2.0. Firstly, in Section 4.1, we detail the mechanism enabling monitoring of ROS services.
Secondly, in Section 4.2, we introduce an algorithm for reordering messages based on their publication
time, demonstrating its correctness under the assumption that messages on each topic arrive sequentially.
Notably, such reordering mechanism is extended to support services in addition to topics.

5This case study was inspired by the example for RS services in the Robotics Back-End Tutorial as well as a solution to
Challenge 3 of the MBZIRC Challenge competition 2020 [1].

6https://github.com/autonomy-and-verification-uol/ROSMonitoring/tree/master
7https://github.com/autonomy-and-verification-uol/ROSMonitoring/tree/ros2

https://roboticsbackend.com/what-is-a-ros-service/
https://github.com/autonomy-and-verification-uol/ROSMonitoring/tree/master
https://github.com/autonomy-and-verification-uol/ROSMonitoring/tree/ros2

M. G. Saadat, A. Ferrando, L. A. Dennis, & M. Fisher 43

4.1 Service extension

While ROS topics excel in broadcasting data streams or events asynchronously to multiple nodes, ROS
services are designed for synchronous, point-to-point communication to request specific actions or ser-
vices from other nodes in the system. Consequently, when monitoring services, our monitor node must
directly intervene in the communication between the server and client. The monitor node then assumes
the role of a server for the client, and conversely acts as a client for the server. The sequence diagram in
Figure 3 illustrates the service verification process in ROSMonitoring 2.0 where message filtering is en-
abled (which subsumes the non-filtering scenario). The scenario begins with the Client sending a service
request callService(req,res) to the Monitor. Subsequently, the Monitor forwards the request to the Ora-
cle for verification via a callback mechanism specific to the service. If the Oracle identifies the request
as inconsistent with the defined property, it responds with a negative verdict (i.e. either ?⊥ or ⊥)). In
response, the Monitor publishes an error message and notifies the client of the discrepancy, bypassing the
service invocation. Conversely, if the Oracle confirms the consistency of the request with the property,
it returns a positive verdict (i.e., either ?⊤ or ⊤). The Monitor proceeds to invoke the service and awaits
a response from the server. Upon receiving the response, the Monitor relays it back to the Oracle for
evaluation. Should the Oracle determine the response to be erroneous (i.e., the returned verdict is either
?⊥ or ⊥), the Monitor again publishes an error message and notifies the client accordingly. Otherwise, it
delivers the response to the client as expected.

In contrast to the standard ROSMonitoring behaviour, handling services necessitates additional veri-
fication steps. The Monitor must check both the service request and its corresponding response with the
Oracle. Verifying the request is crucial to prevent invoking the service in case of a violation. Moreover,
the Monitor must act as an intermediary between the client and server. This mechanism mirrors ROS-
Monitoring’s behaviour when topic filtering is enabled, albeit with an extension in the case of services to
invoke the actual service upon successful request verification.

4.2 Ordered topics extension

To recover the publication order of messages in real time, ROSMonitoring 2.0 adds timestamps to each
message. These timestamps are then utilised in Algorithm 1 to propagate messages to the Oracle in their
original publication order. Moreover, this approach is based on the following assumption.

Assumption 1. Messages on each single topic arrive at subscribers in the order of publication.

In order to use the reordering feature in the ROS monitor, in the callback function for every topic,
instead of propagating the message (msg) directly to the Oracle, Algorithm 1 calls addToBuffer(msg, t).
Such a procedure accumulates messages from each topic into their respective buffers. Message release
is withheld until all buffers contain at least one message, at which point the message with the earliest
publication timestamp is released and sent to the Oracle. To prevent more than one thread to change the
buffers simultaneously, we use locks to block write-access for a single thread.

Lemma 1. In Algorithm 1, messages in each buffer maintain the order of publication timestamps.

Proof. Suppose there is a topic t such that its corresponding list in dictionary buffers is out of order.
Without loss of generality, assume there are two messages m1 and m2 on topic t with m1 published
before m2 but stored in buffers[t] in reverse order, i.e. [..,m2,m1, ..]. Due to Assumption 1, since both

44 ROSMonitoring 2.0: Extending ROS RV to Services and Ordered Topics

ROSMonitor OracleClient Node Service Node

callService(req, res) callbackService(req, res)

sendRequest(req)

verdictOn(req)

alt if violation

otherwise

error on callService
publishError()

callService(req, res)

response(res)

sendResponse(res)

verdictOn(res)

alt if violation

otherwise

publishError()
error on callService

response(res)

check request

check response

Figure 3: Service verification in ROSMonitoring 2.0 when filtering is enabled.

m1 and m2 are on the same topic, they are received by the ROS monitor in the correct order. Therefore,
addToBuffer(m1, t) is called before addToBuffer(m2, t). Consequently, m1 is appended to the list buffers[t]
before m2. This contradicts our assumption that m2 is stored before m1 in buffers[t]. Thus, it follows, by
contradiction, that Lemma 1 holds.

Theorem 1. Algorithm 1 propagates messages to the Oracle in the order of their publication.

Proof. In order to prove that Algorithm 1 is correct, we assume the opposite, namely that two messages,
m1 and m2, were propagated to the Oracle in reverse order of their publication timestamps. Without loss
of generality suppose m1 was published earlier than m2 but was propagated to the Oracle after m2.

If the messages are on the same topic then, due to Assumption 1, we reach a contradiction which
means our assumption is incorrect and the proof is complete. Otherwise, the messages are on distinct
topics. Hence, by construction, they are stored in separate lists in buffers. Furthermore, the algorithm
only sends messages to the Oracle if the buffers for all topics are non-empty. Therefore, both m1 and
m2 must be present in their corresponding buffers at the time m2 is propagated to the Oracle. But the
algorithm, by construction, always chooses the message with the smallest timestamp to propagate to the
Oracle next. This contradicts our assumption that m2 is propagated before m1 despite having a larger
timestamp. Consequently, we can conclude, by contradiction, that Algorithm 1 is correct.

A successful application of the ordering mechanism necessitates careful consideration to mitigate the

M. G. Saadat, A. Ferrando, L. A. Dennis, & M. Fisher 45

Algorithm 1: Algorithm for propagating messages to the Oracle in the order they were pub-
lished

Input :
msg: a ROS message received by the moni-

tor on a topic t
ws: a global websocket
buffer: a global dictionary mapping each topic

to a list of timestamps of unprocessed
messages published on that topic

messages: a global dictionary mapping publica-
tion timestamp to corresponding mes-
sage

Output: Verdict published by Oracle based on messages in the order of publication time

1 Function sendEarliestMessageToOracle():
2 using buffer and messages

3

min_time_stamp = minimum timestamp in messages dic-
tionary

message = messages[min_time_stamp]
send message to Oracle

4 verdict = Oracle’s response
5 remove min_time_stamp from buffer
6 remove message from messages
7 Publish verdict

8 Function addToBuffer(msg, t):
9 using ws, buffer, and messages

10 time_stamp_of _msg = getTime(msg)
11 add time_stamp_of _msg to buffer[t]
12 messages[time_stamp_of _msg] = msg
13 lock websocket ws
14 while no topic has an empty buffer do
15 sendEarliestMessageToOracle ()
16 end
17 unlock websocket ws

risk of deadlocks. Specifically, when a topic t undergoes filtering by the monitor, and another topic or
service x relies on it, both t and x should not be concurrently included in the ordering process. Otherwise,
the buffering of a message m1 on topic t can lead to a deadlock scenario, as it cannot be released until
an x message is buffered. Conversely, an x message cannot be generated until a t message is published,
which, in turn, cannot occur until m1 is released from the buffer. Furthermore, it is essential to carefully
evaluate dependencies between topics and services when determining which should be ordered based on
their publication times.

46 ROSMonitoring 2.0: Extending ROS RV to Services and Ordered Topics

5 Experimental evaluation

In our case study, we illustrate the practical implementation of ROSMonitoring 2.0 through a scenario
involving a Battery Supervisor system for a UAV. We developed an online ROS monitor which runs
alongside the system and checks its behaviour against a set of properties in real time. The experiments
were conducted using ROS1 Noetic distribution. As shown in Figure 2, our case study comprises
three interconnected nodes: the Battery, responsible for publishing the remaining battery percentage; the
Battery Supervisor, which subscribes to the battery percentage topic and publishes status updates based
on predefined thresholds; and the LED Panel, which reflects the battery status through LED lights.

The Battery node periodically broadcasts the battery percentage on the /battery_percentage topic.
Meanwhile, the Battery Supervisor node, operating at a slower rate than the Battery, subscribes to this
topic and publishes status updates on the /battery_status topic. These status updates indicate the battery
status as follows: status 1 for a percentage higher than 40%, status 2 for a percentage between 30% and
40%, and status 3 for a percentage between 0% and 30%. Since the Battery Supervisor has a slower
publication rate, it may not report the status for every percentage published by the Battery. This is
intentional to ensure that while the battery status is reported regularly, energy usage and communications
are optimised.

As shown in Figure 4, to facilitate monitoring system behaviour, supplementary topics and a ser-
vice are added to the original example in Figure 2. For instance, to ensure synchronisation between
the Battery and the Battery Supervisor, an additional topic /input_accepted is introduced. This topic
tracks which battery percentage messages have been processed by the Battery Supervisor. Further-
more, the Battery Supervisor publishes a message on topic /status_change if the battery status changes.
The Battery Supervisor node subscribes to the /status_change topic itself to separate the processing of
/battery_percentage messages from the invocation of service call to /SetLED . As explained further
below, this is a workaround to prevent deadlocks when using the ordering mechanism. Upon detect-
ing a change in status by comparing the current status with the previous one, the Battery Supervisor
publishes a /status_change message. Once the Battery Supervisor receives a /status_change message,
it calls the /SetLED_mon service to update the LED lights on the LED Panel accordingly. After re-
ceiving a /SetLED_mon service request, the ROS monitor checks that the request is valid and it calls
the /SetLED service. Upon receiving a service call, the LED Panel publishes a message on the
/status_accepted topic to record which status update was acknowledged, followed by a message on
the /LED_panel topic reporting the current state of the LED lights (green, yellow, and red). The LED
Panel also sends a response to the ROS monitor which is relayed back to the Battery Supervisor.

Subscribing to the /status_change topic may appear peculiar for the Battery Supervisor, which pub-
lishes it. While it might seem more straightforward to invoke the /SetLED service where the status
calculation occurs based on received /battery_percentage messages, such an approach risks deadlock.
The reason is that the buffer is unable to release a service request message until accepting the next per-
centage message. But no further percentage messages can be accepted until a service response is received
and that can only happen if the service request is released. To resolve this, we separated the publication
of topics from the function which initiates service requests so that the service does not block the receipt
of messages needed for producing a response.

The properties we selected to verify are as follows with formal definitions in Table 1:

1. Topic only: Correspondence of /battery_status with /battery_percentage and /input_accepted :

(a) Every /battery_status message corresponds to a /input_accepted message and correctly re-
ports the status based on its corresponding

https://wiki.ros.org/noetic

M. G. Saadat, A. Ferrando, L. A. Dennis, & M. Fisher 47

Battery

\battery percentage Battery Supervisor

\input accepted

\battery status

\status change

ROS Monitor

LED Panel

\LED Panel

\verdict

\status accepted

\SetLED mon invocation

\SetLED invocation

Figure 4: Case study with ROS Monitor and additional topics /input_accepted, /status_accepted,
/status_change, /verdict and service /SetLED_mon.

/battery_percentage message.
(b) Every /input_accepted message is followed by a /battery_status message within 100 time

steps.

2. Topic and Service: Correspondence of /SetLED service request with
/battery_status :

(a) Every /SetLED service request corresponds to a /battery_status message and a change in
battery status.

(b) Every change of status reported via /battery_status messages is followed by a /SetLED ser-
vice request within 100 time steps.

3. Service only: Correspondence of /SetLED service request and response:

(a) Every /SetLED service response corresponds to a /SetLED service request.
(b) Every /SetLED service request is followed by a /SetLED service request within 100 time

steps.

Formalisation of these properties requires definition of predicates, summarised in Table 2, based on the
JSON messages sent to the Oracle. For topics, generic predicates topic and id are defined. Addition-
ally, for the /battery_percentage topic, predicate percentage is defined, taking values 1 for percentages
between 40% and 100%, 2 for percentages between 30% and 40%, 3 for percentages between 0% and
30%, and ‘INVALID’ for other values. Consistently, the percentage and status predicates share values
to enable referencing, as seen in Property 1a. For the /battery_status topic, predicate status holds the
String version of message status, with ‘INVALID’ assigned if the status is not 1, 2, or 3. Addition-
ally, predicate status_change is defined to be ‘True’ if the corresponding field in the message is ‘true’.
Note that the monitor is not subscribed to the /status_change topic which is used to trigger an LED
Panel response. The reason for this redundancy is deadlock prevention. If the /status_change topic
was ordered, then its release would be contingent on a service request joining the buffers which cannot
happen unless the /status_change message is released. Our solution to this potential deadlock was to
keep the /status_change topic unordered and add a field status_change to the battery_status topic for the
Oracle to determine if the LED panel is responding correctly. Such redundancies could be considered
as a general technique to prevent deadlocks. For the /SetLED service, predicates request and response

48 ROSMonitoring 2.0: Extending ROS RV to Services and Ordered Topics

Property ID Property formal specification
1a forall[i]. (forall[s]. {topic: “/battery_status”, id: *i, status: *s}

→ once({topic: “/input_accepted”, id: *i}) and
once({topic: “/battery_percentage”, id: *i, percentage: *s}))

1b forall[i]. not ({topic: “/battery_status”, id: *i})
→ once[1:]{topic: “/battery_status”, id: *i} or not (once[100:]({topic: “/input_accepted”, id: *i}))

2a forall[i]. (forall[s]. {service: “/SetLED”, req_id: *i, req_status: *s}
→ once({topic: “/battery_status”, id: *i, status: *s, status_change: True})

2b forall[i]. not ({service: “/SetLED”, req_id: *i, req_status: *s})
→ once[1:] {service: “/SetLED”, req_id: *i, req_status: *s}

or not (once[100:]({topic: “/battery_status”, id: *i, status: *s, status_change: True})
3a forall[i]. {service: “/SetLED”, response: True, res_id: *i}

→ once({service: “/SetLED”, request: True, req_id: *i})
3b forall[i]. not ({service: “/SetLED”, response: True, res_id: *i})

→ once[1:] {service: “/SetLED”, response: True, res_id: *i}
or not (once[100:]({service: “/SetLED”, request: True, req_id: *i}))

Table 1: Properties in Past Metric Temporal Logic (Past MTL) according to the Reelay Expression
Format (https://doganulus.github.io/reelay/rye/).

Message Type Predicate Description
/battery_percentage topic Topic of the message, i.e. /battery_percentage

id Unique sequentially assigned ID for the message
percentage ‘1’ if percentage > 40 and percentage ≤ 100

‘2’ if percentage > 30 and percentage ≤ 40
‘3’ if percentage ≤ 30 and percentage ≥ 0
‘INVALID’ if percentage < 0 or percentage > 100

/battery_status topic Topic of the message, i.e. /battery_status
id The ID of the corresponding percentage message
status ’0’ if status is 0

‘1’ if status is 1
‘2’ if status is 2
‘3’ if status is 3
‘INVALID’ if status is not 0, 1, 2, or 3

status_change ‘True’ if and only if the corresponding field is ‘true’
/SetLED request ‘True’ if and only if the message is a service request for /SetLED

req_id ID of the corresponding /battery_status message
req_status Status of the corresponding /battery_status message
response ‘True’ if and only if the message is a service response for /SetLED

Table 2: Predicates construction based upon JSON messages sent to Oracle.

indicate message type. For /SetLED service request messages, predicates req_id and req_status store ad-
ditional information used in Properties 2a and 2b to verify legitimate requests triggered by corresponding
/battery_status messages.

A significant concern associated with the implementation of runtime verification is its potential ad-
verse effect on overall system performance. To gauge the extent of overhead induced by monitoring
services, we modified the client node to measure the time elapsed between dispatching a /SetLED ser-
vice request and receiving the corresponding response. All experiments shown in Figures 5, 6, and 7
were conducted over 10 runs, with the results averaged. Each run was terminated once the battery per-
centage reached zero. Frequencies for the Battery, Battery Supervisor, and LED Panel were set to 25,
10, and 35 Hertz respectively. The mean and standard deviation are reported for each experiment. As
illustrated in Figure 6, the overhead incurred by monitoring /SetLED without ordering appears negligi-
ble, but the introduction of ordering substantially delays the process, particularly noticeable during the
last status change. To approximate the overhead attributed to the ordering mechanism, we adapted the

https://doganulus.github.io/reelay/rye/

M. G. Saadat, A. Ferrando, L. A. Dennis, & M. Fisher 49

monitor code to record the time difference between message buffering and transmission to the Oracle
(reported in Figure 7). The results depicted in Figure 5 exhibit a similar trend, wherein the release time
deviates from the buffering time until the second service request, after which the waiting time stabilises
at a minimised level. This is because after the initial service request and response at the beginning
of the execution, messages keep accumulating in the buffers since the /SetLED service buffer remains
empty until the second service request is triggered by battery percentage reaching 40%. This threshold
is reached when the message with ID 60 is sent. With a service request in the corresponding buffer, the
algorithm proceeds to release messages from buffers in the order of publication. Since the next service
request is triggered when the battery percentage reaches 30%, i.e. message ID 70, the service buffer will
not be empty for long. This explains the minimal waiting time between buffering and transmission after
the 60th message. Once the battery percentage reaches 0, the execution is interrupted. This allows the
remaining messages in the buffers to be released in the order of publication without requiring all buffers
to be nonempty. Moreover, as shown in Figure 7, the waiting time for /SetLED service requests escalates
over time, whereas response messages appear to be promptly released from the buffer. This is because at
the time that a service request is buffered, a number of messages have accumulated in the other buffers
which need to be released before the service request. In contrast, since the service response is buffered
shortly after the corresponding service request is released, there are only a few messages buffered in
between which need to be released before the service response.

With regards to verification accuracy, monitoring with ordering consistently yielded accurate ver-
dicts without any incorrect assessments. Conversely, in cases where monitoring excluded ordering,
/battery_status messages often reached the monitor prior to their corresponding /battery_percentage or
/input_accepted signals. Similarly, service request and response messages consistently preceded the cor-
responding /status_change signals. These out-of-order message arrivals led to frequent false negative
verdicts in each run. Hence, in weighing the trade-off between performance and accuracy, it becomes
evident that monitoring with ordering is most suitable for safety-critical systems where time sensitivity is
not paramount. On the other hand, monitoring without ordering may offer enhanced performance at the
expense of accuracy, making it more suitable for scenarios where real-time constraints are less stringent.

Figure 6: Mean and standard deviation of time (nanoseconds) taken for /SetLED service request to
receive a response (reported on three service calls). Data shown for 10 runs without monitoring, with
monitoring excluding ordering, and with monitoring including ordering.

50 ROSMonitoring 2.0: Extending ROS RV to Services and Ordered Topics

Figure 5: Mean and standard deviation of time (nanoseconds) taken for monitor with ordering to buffer
and release messages on /battery_percentage (top), /input_accepted (middle), ans /battery_status (bot-
tom) topics since publication. Data shown for 10 runs.

6 Related Work

In this section, we discuss the most recent approaches to RV of ROS and position them in relation to
ROSMonitoring 2.0.

ROSRV [19] shares similarities with our framework in achieving automatic RV of applications in
ROS. Both tools utilise monitors not only to passively observe but also to intercept and handle incor-
rect behaviours in message exchanges among nodes. The main difference lies in how they integrate
the monitor into the system. ROSRV replaces the ROS Master node with RVMaster, directing all node
communication through it and establishing peer-to-peer communication with the monitor as the inter-
mediary. In contrast, ROSMonitoring adds the monitor through node instrumentation without altering

M. G. Saadat, A. Ferrando, L. A. Dennis, & M. Fisher 51

Figure 7: Mean and standard deviation of time (nanoseconds) taken for monitor with ordering to buffer
and release /SetLED request (left) and response (right) messages since generation. Time for buffering
and releasing overlap for response messages in the right plot. Data shown for 10 runs.

the ROS Master node. Additionally, the new and extended version ROSMonitoring 2.0 presented in
this paper further differentiates the two frameworks, as ROSRV does not support the verification of ser-
vices or the customisation of the order of topics. HAROS [30] is a framework dedicated to ensuring
the quality of ROS systems. Although HAROS primarily focuses on static analysis, it possesses the
capability to generate runtime monitors and conduct property-based testing. Differently from ROSMon-
itoring 2.0, HAROS does not support ROS2 (not even partially). Furthermore, one notable distinction
between ROSMonitoring 2.0 and HAROS is that our specifications do not incorporate ROS-specific de-
tails, and the process for generating monitors does not rely on understanding the topology of the ROS
graph. DeROS [4] is a domain-specific language and monitoring system tailored for ROS. Although
DeRoS’s language incorporates explicit topic notions, it lacks native support for reordering or service
handling. Moreover, it is exclusively compatible with ROS. An extension of Ogma supports the runtime
monitoring of ROS2 applications [27]. It outlines a formal approach to generate runtime monitors for
autonomous robots from structured natural language requirements, expressed in FRET [17]. This exten-
sion integrates FRET and Copilot [26] via Ogma to translate requirements into temporal logic formulas
and generate monitor specifications. Unlike ROSMonitoring 2.0, which focuses on monitoring and po-
tentially filtering topics and services, this extension is limited to detecting and reporting violations only.
Nonetheless, [17] provides a lightweight verification solution for complex ROS2 applications, ensuring
safe operation. MARVer [13] is an integrated runtime verification system designed to ensure the safety
and security of industrial robotic systems. It offers a lightweight yet effective approach to monitoring the
behaviour of robotic systems in real-time, enabling the detection of security attacks and potential safety
hazards. By being based on ROSMonitoring, MARVer can leverage the new features introduced in this
work.

The work in [7] introduces TeSSLa-ROS-Bridge, a RV system designed for robotic systems built
in ROS. Unlike other RV approaches, TeSSLa-ROS-Bridge utilises Stream-based Runtime Verification

52 ROSMonitoring 2.0: Extending ROS RV to Services and Ordered Topics

(SRV), which specifies stream transformations to detect errors and control system behaviour (currently
supported in ROSMonitoring as well). The system allows TeSSLa monitors to run alongside ROS-
based robotic systems, enabling real-time monitoring. Compared to ROSMonitoring, which focuses on
monitoring and filtering topics and services, TeSSLa-ROS-Bridge offers a different approach by lever-
aging stream-based runtime verification to monitor and control robotic systems. RTAMT is an online
monitoring library for Signal Temporal Logic (STL), supporting both discrete and dense-time inter-
pretations. In [25], RTAMT4ROS is introduced, integrating RTAMT with ROS. This integration en-
ables specification-based RV methods in robotic applications, enhancing safety assurance in complex
autonomous systems. However, similar to other RV frameworks, RTAMT4ROS solely supports topics
monitoring and relies exclusively on ROS. Alternative runtime monitoring systems such as Lola [12],
Java-MOP [10], detectEr [3], Hydra [29], DejaVu [18], LamaConv [20], and TraceContract [6] could
potentially be applied to robotics applications. However, these systems are not explicitly designed for
ROS, and integrating them into ROS would require additional development effort and potentially incur
runtime costs.

7 Conclusions and Future Work

This paper introduces ROSMonitoring 2.0, an extension of the ROSMonitoring framework designed to
enable the Runtime Verification of robotic applications developed in ROS. ROSMonitoring 2.0 expands
upon its predecessor by facilitating the verification of services, in addition to topics, and by accommo-
dating ordered topics, rather than solely unordered ones. Notably, the new features of ROSMonitoring
2.0 do not necessitate changes to the compositional and formalism-agnostic aspects of ROSMonitoring;
only the synthesis of ROS monitors is adjusted. This approach not only leverages all existing features
in ROSMonitoring but also ensures full backward compatibility with existing ROS applications based
on ROSMonitoring. Furthermore, the proposed ordering algorithm and service interception process hold
applicability beyond the scope of ROSMonitoring 2.0, potentially benefiting other systems as well.

It is also worth noting that the introduction of ordering messages according to the order they are
published does not mutually exclude the standard ROSMonitoring topic checking, based on the order the
messages are received. In this sense, in ROSMonitoring 2.0 it is also possible to combine both ordering
features to monitor both the publish and receive order of messages. This becomes relevant in scenarios
where it is necessary to identify which exact node is the faulty one, rather than being only interested in
checking the presence of a property violation (which could be relevant in other scenarios instead).

As a future direction, we aim to formally verify that our case study is deadlock-free and establish
design principles for ensuring deadlock-freeness. Additionally, threading will be explored as an alter-
native solution to address potential deadlock issues. We also plan to extend our research to additional
case studies in the robotics domain, focusing on complex systems involving multiple services with strong
interdependencies across services, topics, and interfaces.

Moreover, we intend to expand the framework to support ROS actions. ROS actions allow robots
to execute complex, asynchronous tasks by setting goals, providing feedback, and retrieving results,
thus facilitating modular and scalable behaviours for navigation, manipulation, and planning. Although
actions are asynchronous and non-blocking, which reduces the monitoring burden compared to services,
they introduce challenges in tracking progress against runtime goals.

In parallel, we plan to enhance our message ordering algorithm by introducing timeouts, preventing
messages from waiting indefinitely, particularly in unreliable communication scenarios. However, care-
ful consideration is required, as timeouts may disrupt the message order when delays occur, rather than

M. G. Saadat, A. Ferrando, L. A. Dennis, & M. Fisher 53

message loss. This could be especially important for scenarios with strict timing requirements, where a
balance must be struck between message order and timely delivery.

Furthermore, a comprehensive performance evaluation of ROSMonitoring 2.0 will be a critical focus.
We aim to assess key metrics such as execution time, resource usage, and system overhead, bench-
marking our approach against existing alternatives. Such an evaluation will provide deeper insights into
the framework’s efficiency and scalability and guide further optimisations.

Lastly, our goal is to port all the features presented in this paper to ROS2, which currently only
supports service monitoring and lacks message reordering functionality. This migration will proceed
once additional evaluations and testing have been completed on the ROS1 version of ROSMonitoring
2.0.

References

[1] MBZIRC 2020: The Mohamed Bin Zayed International Robotics Challenge. https://rsl.ethz.ch/
research/challenges-competitions/mbzirc2020.html. Accessed on April 8th, 2024.

[2] ROS: Robot Operating System. https://www.ros.org/. Accessed on April 8th, 2024.

[3] Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza & Anna Ingólfsdóttir
(2024): A Monitoring Tool for Linear-Time µHML. Sci. Comput. Program. 232, p. 103031. Available at
https://doi.org/10.1016/j.scico.2023.103031.

[4] Sorin Adam, Morten Larsen, Kjeld Jensen & Ulrik Pagh Schultz (2014): Towards Rule-Based Dynamic
Safety Monitoring for Mobile Robots. In Davide Brugali, Jan F. Broenink, Torsten Kroeger & Bruce A.
MacDonald, editors: Proc. 4th International Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), Lecture Notes in Computer Science 8810, Springer, pp. 207–218. Available
at https://doi.org/10.1007/978-3-319-11900-7_18.

[5] Davide Ancona, Luca Franceschini, Angelo Ferrando & Viviana Mascardi (2021): RML: Theory and
practice of a domain specific language for runtime verification. Sci. Comput. Program. 205, p. 102610,
doi:10.1016/J.SCICO.2021.102610.

[6] Howard Barringer & Klaus Havelund (2011): TraceContract: A Scala DSL for Trace Analysis. In Michael J.
Butler & Wolfram Schulte, editors: Proc. 17th International Symposium on Formal Methods (FM), Lec-
ture Notes in Computer Science 6664, Springer, pp. 57–72. Available at https://doi.org/10.1007/
978-3-642-21437-0_7.

[7] Marian Johannes Begemann, Hannes Kallwies, Martin Leucker & Malte Schmitz (2023): TeSSLa-ROS-
Bridge - Runtime Verification of Robotic Systems. In Erika Ábrahám, Clemens Dubslaff & Silvia Lizeth Tapia
Tarifa, editors: Proc. 20th International Colloquium on Theoretical Aspects of Computing (ICTAC), Lec-
ture Notes in Computer Science 14446, Springer, pp. 388–398. Available at https://doi.org/10.1007/
978-3-031-47963-2_23.

[8] Guido Breitenhuber (2020): Towards Application Level Testing of ROS Networks. In: Proc. Fourth IEEE
International Conference on Robotic Computing (IRC), IEEE, pp. 436–442. Available at https://doi.
org/10.1109/IRC.2020.00081.

[9] Maria A. S. Brito, Simone R. S. Souza & Paulo S. L. Souza (2022): Integration testing for robotic systems.
Softw. Qual. J. 30(1), pp. 3–35. Available at https://doi.org/10.1007/s11219-020-09535-w.

[10] Feng Chen & Grigore Rosu (2005): Java-MOP: A Monitoring Oriented Programming Environment for Java.
In Nicolas Halbwachs & Lenore D. Zuck, editors: Proc. 11th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), held as Part of the Joint European Confer-
ences on Theory and Practice of Software (ETAPS), Lecture Notes in Computer Science 3440, Springer, pp.
546–550. Available at https://doi.org/10.1007/978-3-540-31980-1_36.

https://rsl.ethz.ch/research/challenges-competitions/mbzirc2020.html
https://rsl.ethz.ch/research/challenges-competitions/mbzirc2020.html
https://www.ros.org/
https://doi.org/10.1016/j.scico.2023.103031
https://doi.org/10.1007/978-3-319-11900-7_18
https://doi.org/10.1016/J.SCICO.2021.102610
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-031-47963-2_23
https://doi.org/10.1007/978-3-031-47963-2_23
https://doi.org/10.1109/IRC.2020.00081
https://doi.org/10.1109/IRC.2020.00081
https://doi.org/10.1007/s11219-020-09535-w
https://doi.org/10.1007/978-3-540-31980-1_36

54 ROSMonitoring 2.0: Extending ROS RV to Services and Ordered Topics

[11] Edmund M. Clarke, Orna Grumberg & Doron A. Peled (2001): Model checking. MIT
Press, doi:10.1016/B978-044450813-3/50026-6. Available at http://books.google.de/books?id=
Nmc4wEaLXFEC.

[12] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner, Henny B.
Sipma, Sandeep Mehrotra & Zohar Manna (2005): LOLA: Runtime Monitoring of Synchronous Systems. In:
Proc. 12th International Symposium on Temporal Representation and Reasoning (TIME), IEEE Computer
Society, pp. 166–174. Available at https://doi.org/10.1109/TIME.2005.26.

[13] Elif Degirmenci, Yunus Sabri Kirca, Özlem Örnek, Mert Bulut, Serhat Kahraman, Metin Ozkan & Ahmet
Yazici (2023): Developing an Integrated Runtime Verification for Safety and Security of Industrial Robot
Inspection System. In Fumiya Iida, Perla Maiolino, Arsen Abdulali & Mingfeng Wang, editors: Proc. 24th
Annual Conference on Towards Autonomous Robotic Systems (TAROS), Lecture Notes in Computer Science
14136, Springer, pp. 126–137. Available at https://doi.org/10.1007/978-3-031-43360-3_11.

[14] Ankush Desai, Tommaso Dreossi & Sanjit A. Seshia (2017): Combining Model Checking and Runtime Veri-
fication for Safe Robotics. In Shuvendu K. Lahiri & Giles Reger, editors: Proc. 17th International Conference
on Runtime Verification (RV), Lecture Notes in Computer Science 10548, Springer, pp. 172–189. Available
at https://doi.org/10.1007/978-3-319-67531-2_11.

[15] Angelo Ferrando, Rafael C. Cardoso, Michael Fisher, Davide Ancona, Luca Franceschini & Viviana Mas-
cardi (2020): ROSMonitoring: A Runtime Verification Framework for ROS. In Abdelkhalick Mohammad,
Xin Dong & Matteo Russo, editors: Proc. 21st Annual Conference on Towards Autonomous Robotic Sys-
tems (TAROS), Lecture Notes in Computer Science 12228, Springer, pp. 387–399. Available at https:
//doi.org/10.1007/978-3-030-63486-5_40.

[16] Mohammed Foughali, Bernard Berthomieu, Silvano Dal-Zilio, Félix Ingrand & Anthony Mallet (2016):
Model Checking Real-Time Properties on the Functional Layer of Autonomous Robots. In Kazuhiro Ogata,
Mark Lawford & Shaoying Liu, editors: Formal Methods and Software Engineering - 18th International
Conference on Formal Engineering Methods, ICFEM 2016, Tokyo, Japan, November 14-18, 2016, Proceed-
ings, Lecture Notes in Computer Science 10009, pp. 383–399. Available at https://doi.org/10.1007/
978-3-319-47846-3_24.

[17] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Julian Rhein, Johann Schumann & Nija
Shi (2020): Formal Requirements Elicitation with FRET. In Mehrdad Sabetzadeh, Andreas Vogelsang, Sal-
lam Abualhaija, Markus Borg, Fabiano Dalpiaz, Maya Daneva, Nelly Condori-Fernández, Xavier Franch,
Davide Fucci, Vincenzo Gervasi, Eduard C. Groen, Renata S. S. Guizzardi, Andrea Herrmann, Jennifer
Horkoff, Luisa Mich, Anna Perini & Angelo Susi, editors: Joint Proceedings of REFSQ-2020 Workshops,
Doctoral Symposium, Live Studies Track, and Poster Track co-located with the 26th International Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ 2020), CEUR Workshop
Proceedings 2584, CEUR-WS.org. Available at https://ceur-ws.org/Vol-2584/PT-paper4.pdf.

[18] Klaus Havelund, Doron Peled & Dogan Ulus (2018): DejaVu: A Monitoring Tool for First-Order Temporal
Logic. In: Proc. 3rd Workshop on Monitoring and Testing of Cyber-Physical Systems, MT@CPSWeek 2018,
IEEE, pp. 12–13. Available at https://doi.org/10.1109/MT-CPS.2018.00013.

[19] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon M. Moore, Qingzhou Luo, Aravind Sundaresan & Grigore
Rosu (2014): ROSRV: Runtime Verification for Robots. In Borzoo Bonakdarpour & Scott A. Smolka, editors:
Proc. 5th International Conference on Runtime Verification (RV), Lecture Notes in Computer Science 8734,
Springer, pp. 247–254, doi:10.1007/978-3-319-11164-3_20.

[20] Institute for Software Engineering and Programming Languages: LamaConv - Logics and Automata Con-
verter Library. www.isp.uni-luebeck.de/lamaconv.

[21] Gert Kanter & Jüri Vain (2020): Model-based testing of autonomous robots using TestIt. J. Reliab. Intell.
Environ. 6(1), pp. 15–30. Available at https://doi.org/10.1007/s40860-019-00095-w.

[22] Ron Koymans (1990): Specifying Real-Time Properties with Metric Temporal Logic. Real Time Syst. 2(4),
pp. 255–299, doi:10.1007/BF01995674.

https://doi.org/10.1016/B978-044450813-3/50026-6
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-031-43360-3_11
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-030-63486-5_40
https://doi.org/10.1007/978-3-030-63486-5_40
https://doi.org/10.1007/978-3-319-47846-3_24
https://doi.org/10.1007/978-3-319-47846-3_24
https://ceur-ws.org/Vol-2584/PT-paper4.pdf
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1007/978-3-319-11164-3_20
www.isp.uni-luebeck.de/lamaconv
https://doi.org/10.1007/s40860-019-00095-w
https://doi.org/10.1007/BF01995674

M. G. Saadat, A. Ferrando, L. A. Dennis, & M. Fisher 55

[23] Martin Leucker & Christian Schallhart (2009): A Brief Account of Runtime Verification. J. Log. Algebraic
Methods Program. 78(5), pp. 293–303. Available at https://doi.org/10.1016/j.jlap.2008.08.004.

[24] Oded Maler & Dejan Nickovic (2004): Monitoring Temporal Properties of Continuous Signals. In Yassine
Lakhnech & Sergio Yovine, editors: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, Joint International Conferences on Formal Modelling and Analysis of Timed Systems, FORMATS
2004 and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France,
September 22-24, 2004, Proceedings, Lecture Notes in Computer Science 3253, Springer, pp. 152–166,
doi:10.1007/978-3-540-30206-3_12.

[25] Dejan Nickovic & Tomoya Yamaguchi (2020): RTAMT: Online Robustness Monitors from STL. In Dang Van
Hung & Oleg Sokolsky, editors: Proc. 18th International Symposium on Automated Technology for Verifi-
cation and Analysis (ATVA), Lecture Notes in Computer Science 12302, Springer, pp. 564–571. Available
at https://doi.org/10.1007/978-3-030-59152-6_34.

[26] Ivan Perez & Alwyn Goodloe (2020): Copilot 3. Technical Report, doi:10.13140/RG.2.2.35163.80163.
[27] Ivan Perez, Anastasia Mavridou, Thomas Pressburger, Alexander Will & Patrick J. Martin (2022): Mon-

itoring ROS2: from Requirements to Autonomous Robots. In Matt Luckcuck & Marie Farrell, editors:
Proceedings Fourth International Workshop on Formal Methods for Autonomous Systems (FMAS) and
Fourth International Workshop on Automated and verifiable Software sYstem DEvelopment (ASYDE),
FMAS/ASYDE@SEFM 2022, EPTCS 371, pp. 208–216, doi:10.4204/EPTCS.371.15.

[28] Amir Pnueli (1977): The Temporal Logic of Programs. In: Proc. 18th Annual Symposium on Foundations of
Computer Science, IEEE Computer Society, pp. 46–57. Available at https://doi.org/10.1109/SFCS.
1977.32.

[29] Martin Raszyk, David A. Basin & Dmitriy Traytel (2020): Multi-head Monitoring of Metric Dynamic Logic.
In Dang Van Hung & Oleg Sokolsky, editors: Proc. 18th International Symposium on Automated Technology
for Verification and Analysis (ATVA), Lecture Notes in Computer Science 12302, Springer, pp. 233–250.
Available at https://doi.org/10.1007/978-3-030-59152-6_13.

[30] André Santos, Alcino Cunha, Nuno Macedo & Cláudio Lourenço (2016): A framework for quality assessment
of ROS repositories. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, pp. 4491–4496. Available at https://doi.org/10.1109/IROS.2016.7759661.

[31] A. Prasad Sistla & Edmund M. Clarke (1985): The Complexity of Propositional Linear Temporal Logics. J.
ACM 32(3), pp. 733–749. Available at https://doi.org/10.1145/3828.3837.

https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.13140/RG.2.2.35163.80163
https://doi.org/10.4204/EPTCS.371.15
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-030-59152-6_13
https://doi.org/10.1109/IROS.2016.7759661
https://doi.org/10.1145/3828.3837

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 56–72, doi:10.4204/EPTCS.411.4

Verification of Behavior Trees with Contingency Monitors

Serena S. Serbinowska
0000-0002-9259-1586
Vanderbilt University
Nashville TN, USA

serena.serbinowska@vanderbilt.edu

Nicholas Potteiger
0009-0005-0406-0355
Vanderbilt University
Nashville TN, USA

nicholas.potteiger@vanderbilt.edu

Anne M. Tumlin
0009-0000-1635-8793
Vanderbilt University
Nashville TN, USA

anne.m.tumlin@vanderbilt.edu

Taylor T. Johnson
0000-0001-8021-9923
Vanderbilt University
Nashville TN, USA

taylor.johnson@vanderbilt.edu

Behavior Trees (BTs) are high level controllers that have found use in a wide range of robotics tasks.
As they grow in popularity and usage, it is crucial to ensure that the appropriate tools and methods are
available for ensuring they work as intended. To that end, we created a new methodology by which to
create Runtime Monitors for BTs. These monitors can be used by the BT to correct when undesirable
behavior is detected and are capable of handling LTL specifications. We demonstrate that in terms of
runtime, the generated monitors are on par with monitors generated by existing tools and highlight
certain features that make our method more desirable in various situations. We note that our method
allows for our monitors to be swapped out with alternate monitors with fairly minimal user effort.
Finally, our method ties in with our existing tool, BehaVerify, allowing for the verification of BTs with
monitors.

1 Introduction

A Behavior Tree (BT) is a high-level tree-structured controller with leaf nodes that interact with the
environment and interior nodes that control which branches of the tree are executed. The tree-structure
means that BTs are often more intuitive than equivalent finite state machines, but are also powerful
tools capable of being used in many environments. Furthermore, the inherently recursive nature of tree
structures allows for adaptability, modularity, and reuse.

BTs originated in video games and were used for Non Playable Characters (NPCs). NPCs are, in
essence, virtual agents in a digital environment. As time progressed, NPCs needed to respond to more
complex environments. The video game industry responded to this by creating BTs: designer friendly
controllers for complex systems. In light of this, it is unsurprising that the controllers subsequently
made the jump to areas such as robotics and drone control. Bipedal locomotion for robots [18], vision
measurement systems of road users [26], and swarms of agents have all utilized BTs. A recent survey [21]
provides even more examples of BTs in action.

It is clear that BTs are continuing to grow in popularity and usage. As they expand into new domains,
especially real-world safety-critical domains, it is imperative to be able to provide guarantees about
their correctness. Two methods for providing such guarantees are runtime monitoring and design time
verification. Runtime monitoring can be used to alert the BT if there is danger of a violation occurring,
allowing the tree to self-correct, while design time verification can be used to ensure the model is correct.

At present, tools already exist for the creation of runtime monitors, such as NASA’s Copilot [24] and
NuRV [7], though they are not designed for BTs specifically. However, it is important that the tools not
only exist, but be compatible with the BT , and that the BT reacts correctly to these tools. After all, if the

http://dx.doi.org/10.4204/EPTCS.411.4

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 57

monitor correctly indicates a dangerous situation is occurring but the BT ignores this warning, then the
danger has not been averted.

The primary contributions of this work are the following:

1. We provide a formal definition for BTs with Monitors (BT M).

2. We expand the Domain Specific Language (DSL) of BehaVerify [27], allowing it to describe BT Ms.
BehaVerify was originally created for design time verification on BTs.

3. We present software for converting Linear Temporal Logic (LTL) specifications written in the DSL
into input for the existing tool LTL2BA [16].

(a) We then translate the output of LTL2BA back into the DSL. This enables BehaVerify to
generate nuXmv [6] models, allowing us to use Design Time Verification to confirm that the
BT M works as intended.

(b) Additionally, we can translate the output of LTL2BA directly into a C or Python monitor, for
use with code generated by BehaVerify.

(c) Furthermore, we compare the generated C monitors to monitors generated by Copilot [24] and
demonstrate our monitors are on par in terms of performance and offer certain improvements
in terms of correctness.

2 Related Work

There is a broad body of work utilizing behavior trees for planning purposes in robotic systems [5, 9–
11, 22, 31, 35, 36], illustrating their broad usage in safety-critical systems. There are several practical
implementations of BTs (such as PyTrees [32] and its Robotic Operating System (ROS) extension
PyTreesRos, BehaviorTree.cpp [1], and Unreal Engine [13]). Each of these feature a Blackboard (shared
memory between nodes). For a variety of practical reasons, our tool targets the implementation of BTs
presented in PyTrees, though we hope to target BehaviorTree.cpp in the future as well.

There are several existing works that develop and apply formal verification for BTs. There are
several tools for model verification of BTs: [4], BehaVerify [27], BTCompiler, ArcadeBT [19], and
MoVe4BT [23]. Prior to this work, however, none of these tools supported Runtime Verification of
BTs. [8] does runtime verification for a fragment of Timed Propositional Temporal Logic (TPTL) for BTs,
but failed to configure our examples to work with it.

The authors in [25] utilized the runtime verification framework NASA Copilot [24] to ensure that a
flying aircraft maintains an airspeed above a threshold using natural language and Past Linear Temporal
Logic (PLTL). Similarly, stream runtime verification (SRV) monitors were generated using HLola [17]
in [34] to seamlessly integrate with a UAV hybrid navigation controller for post decision making and
online remediation actions. Furthermore, the authors in [33] develop an architecture that allows for
construction of runtime monitors that can be integrated into an Urban Air Mobility (UAM) System.
They demonstrate that runtime monitors are built using NASA OGMA [25] and NASA FRET [25] for
battery monitoring of a UAV simulated in Microsoft AirSim [30]. Runtime monitoring instrumentation
frameworks for ROS specifically also have been developed [14]. Our approach generally differs from
these works because we are interested in creating monitors for BTs specifically. However, our approach
also clearly has overlap with several of these methods; we too seek to enable remediation actions for
the models being monitored. Furthermore, while we create our own monitors, our general framework
is compatible with alternative monitors. In light of this, we compare our monitors to those created by
Copilot in Section 5.

58 Verification of BT with Monitors

Another related aspect is that of the Simplex architecture [2, 28, 29]. The Simplex architecture
describes control switching logic swaps between multiple controllers depending on the current state of the
system. Our work differs from this approach in two main methods: first our approach is focused explicitly
on BTs, and second our approach does not utilize multiple controllers. Instead, we utilize the structure of
BTs to integrate the ‘switch’ into the BT itself.

The work that is most closely related to ours is [8]. This work is about BTs equipped with runtime
monitors based on Timed Propositional Temporal Logic (TPTL) and provides a formal definition of the
setup. However, unlike our work, the monitors are not meant to be interacted with; the BT has no way
of reacting to a violation. In terms of generating monitors by transforming temporal logic specifications
to automata, our approach is similar to that of ltl2mon and LamaConv [3, 12, 15], but differs in that we
consider BTs. We further differentiate our work through the design time verification aspect. Our method
allows us to prove that a BT equipped with a monitor and its contingency response for detected violations
is guaranteed to satisfy a specification.

3 Preliminaries

This section provides a formal definition for Linear Temporal Logic and Buchi Automata. This is followed
by an intuitive overview of BTs and a formal definition.

3.1 Linear Temporal Logic

A Linear Temporal Logic (LTL) formula is evaluated on a trace. A trace is a sequence of states Tr ≜
[n0,n1,...]. Here n0 is the state at time 0, n1 is the state at time 1, etc. The grammar of an LTL formula is
presented in Grammar 1.

⟨LTL⟩ ::= ⟨a⟩ #First Order Logic Formula
| ¬⟨LTL⟩ | ⟨LTL⟩∨⟨LTL⟩ #Minimal Boolean operators
| ⃝(⟨LTL⟩) |(⟨LTL⟩)U (⟨LTL⟩) #Temporal operators next and until

Grammar 1: Minimal LTL Grammar.

We assume the reader is familiar with Boolean logic, so we will not describe them here. ⃝(φ) is true at
time t if φ is true at time t+1. φ1U φ2 is true at time t if ∃t ′′ such that t ≤ t ′′ and φ2 is true at t ′′ and ∀t ′

such that t≤ t ′< t ′′, φ1 is true at t ′.
In addition to the grammar presented in Grammar 1, we also utilize □(φ) (globally) and ♢(φ) (finally).

These do not increase the expressiveness of LTL, but make writing formulas easier. □(φ) is true at time t
if ∀t ′ such that t≤ t ′, φ is true at time t ′. ♢(φ) is true at time t if ∃t ′ such that t≤ t ′, φ is true at time t ′.

Finally, we say that φ is true for the entire trace if it is true at time 0. Notationally, we will write
Tr⊨φ to mean that φ is true for the entire trace Tr, Tr[i, j]⊨φ if we are looking at the segment of the trace
[ni,ni+1,...n j], and utilize ̸⊨ in the same way but to mean not true.

3.2 Buchi Automata

A Buchi Automaton (BA) is a tuple (Q,Σ,∆,q0,F).

1. Q is a finite set representing the states BA can be in.

2. Σ is a finite set representing the possible inputs.

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 59

3. ∆ is a function from Q×Σ 7→ 2Q. Here 2Q is the power set of Q. This function describes the
nondeterministic transitions available from a given state-input combination.

4. q0 is an element of Q. This is the initial state.

5. F is a finite set such that F ⊆Q. This is the set of accepting states.

Then, BA accepts a given sequence of inputs [a0,a1,...] if and only if there exists a sequence [q0,q1,...]
such that

1. ∀ j∈Z s.t. j≥0,q j+1∈∆(q j,a j)

2. ∀ j∈Z,∃k∈Z s.t. j<k∧ak∈F

Thus we accept if we begin in the initial state, take valid transitions, and enter accepting states an infinite
number of times. We accept if any such trace is possible; thus a single trace can be used to prove that the
input is accepted but it cannot be used to prove that the input is not accepted.

3.3 Behavior Tree Overview

BTs are rooted trees with parent-child relationships. Each node has one parent, except the root which has
no parent. When executing, a BT starts from the root and follows a Depth First Traversal. Nodes can
change this traversal order and leave certain branches unexplored based on what their children return.
This process is started by an external activation signal called a tick. In practice, trees are often structured
recursively and parents propagate this signal to their children, but for this paper a tick will only be used to
refer to the root receiving the external signal. Note that BTs are inactive until they receive a tick. In the
interest of conciseness, we will omit these periods of inactivity from various diagrams. We assume that a
tick will only arrive while the tree in inactive.

Each node is always in one of four states: Success (S), Failure (F), Running (R), or Invalid (I). We
will use active and executing to describe where we are in the execution of the tree. When a new tick
arrives, each node is set to I and the root becomes both active and executing. Until the root finishes
executing, exactly one node will be active at all times but more than one node can be executing. A node
that is executing is similar to a function that has been called but has not yet turned. A node that is active is
similar to a function that is currently being stepped through. When a node finishes executing it returns S,
R, or F.

In addition to ticks, we use timestep or t to track each time the active node changes. Both tick and
timestep will be enumerated sequentially starting from 1. Refer to Figure 2 for an example.

Nodes can be grouped into three categories: leaf, decorator, and composite.

Leaf Nodes Leaf nodes do not have children. It is common to categorize leaf nodes as checks/guards
(e.g. at boundary?) and actions (e.g. go forward). Checks evaluate a boolean condition and return S if true
and F otherwise. Consider Subfigure (a) of Figure 1; if there is an apple on the table, the check will return
S. If there is not, F will be returned. Either way, the status will be returned to the root which will proceed
accordingly. It is important to note that checks only check a condition and return the appropriate status;
they do not set variables or take any sort of action.. By contrast, actions can execute actions, for lack of a
better word. For instance, in Subfigure (b) of Figure 1, the action executes the action of moving left. It is
important to note that actions are also not restricted in what status they return. While Subfigure (b) of
Figure 1 shows F being returned, it would be valid to create a version of this action that always return S,
or it could return R because it hasn’t finished, or it could return F based on some sort of conditional logic.

60 Verification of BT with Monitors

Check

Is the apple on
the table?

Root

tick Return=S
1 2

Action

Move left

Root

tick Return=F
1 2

Check

Is the apple on
the table?

Root

Invert

tick1 Return=S 2

Return=F 3 Return
inverted

(a) Check Node (Leaf) (b) Action Node (Leaf) (c) Inverter Node (Decorator)

Figure 1: Example Leaf and Decorator Nodes.

Node a

Node d

x :=x+2
S

Node c

(x≤2)?S:F

Node b

x :=x+1
S

Tick 1 1 1 1 1 1 1 2 2 2 2 2

t 1 2 3 4 5 6 7 8 9 10 11 12

Active a b a c a d a a b a c a

Returns - S - S - S S - S - F F

x 0 1 1 1 1 3 3 3 4 4 4 4

Figure 2: A BT consisting of a sequence node (a) with two actions (b, d) and a check (c). We use the
ternary operator i? j : k to mean if i then j else k. Tick indicates the number of times the tree has been
ticked. At each timestep t, the variable x is updated based on the active node. If a node is finished, then it
returns one of S, F, or R.

Decorator Nodes Decorator nodes ‘decorate’ their children, allowing for easy adjustments to be made.
A decorator node will always have exactly one child, but that child can have children of its own. An
inverter (decorator that swaps S and F) is in Subfigure (c) of Figure 1.

Composite Nodes Composite nodes control the traversal of the tree. Changing a composite node
will change the conditions under which branches of the tree are activated. The three primary types of
composite nodes are selector, sequence, and parallel nodes. The children of composite nodes are ordered
and are activated according to the order, which we will treat as being left-to-right, both visually and in our
language.

1. Recall our notation of Success (S), Running (R), and Failure (F).

2. Selector Nodes: Selector/Fallback nodes activate their children from left-to-right until one of them
returns S or R, at which point the selector itself returns S or R. If a child node returns F, the selector
activates the next child. Selectors can be used to prioritize behaviors, ordering them from most
preferable at the left to least preferable at the right. Another way to think of these nodes as providing
a series of fallbacks in case the intended action fails.

3. Sequence Nodes: Sequence nodes activate their children in a left-to-right order, requiring each
child to return S before moving on to the next. The sequence returns S only if all its children
return S. It returns F or R as soon as one of its children does. This is ideal for defining a series of
actions that must be performed in a specific order to achieve a goal. Figure 2 shows an example
sequence node with two actions and one check. The figure clearly demonstrates the order in which
the children become active. Additionally, it showcases how composite nodes control the flow of

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 61

logic in a BT; during tick 1, all three children are active at some point. However, during tick 2 node
(d) never becomes active because node (c) returned F.

4. Parallel Nodes: For the purpose of this paper, we do not consider truly parallel nodes (i.e., nodes
that activate all their children simultaneously). Instead, our parallel nodes activate nodes one at
a time in a left-to-right order. However, unlike selector and sequence nodes, a parallel node will
always tick all of its children. Once the last child returns, the parallel node uses a policy that
considers what all of the children returned. The two most common policies are Success on All,
which requires that all children return S for S to be returned, and Success on One, which requires
only one child to return S for S to be returned. This is consistent with [32]. It is possible to define
more complex policies, but this is beyond the scope of this paper.

3.4 Formal Definition of Behavior Trees

A Behavior Tree (BT) is a tuple (S,V,ΣT ,∆T ,s0,v0).

1. S is a finite set that describes the state of the tree itself (which node is active, what nodes have
returned so far, etc).

2. V is a finite set that describes the state of the Blackboard variables (the persistent memory of the
tree).

3. ΣT is a finite set of all possible ‘inputs’ to the tree (e.g., environmental factors).

4. ∆T is a function S×V×ΣT 7→S×V . This function takes the current state of the tree, the variables,
and environmental factors and produces a new tree state and new variable values.

5. s0 is an element of S that describes the initial state of the tree.

6. v0 is an element of V that describes the initial state of the Blackboard variables.

This definition does not allow for nondeterminism, though it could be simulated through a ‘seed’ variable.
Furthermore, this definition is slightly too permissive; additional restrictions would need to be placed on
∆T to enforce the tree structure. We omit these details as we believe that they would complicate the issue
without providing additional insight.

For a given sequence of inputs [a0,a1,...], the corresponding BT trace is a sequence [(s0,v0),(s1,v1),...]
such that

∀ j∈Z s.t. j≥0,∆T (s j,v j,a j)=(s j+1,v j+1)

4 Problem Statement and Methodology

While we have defined BTs, we have not defined Behavior Trees with Monitors (BT Ms). In this section
we will first define BT M, then formally state the problem we are addressing, and finally present our
method for addressing the issue.

4.1 Formal Definition of Behavior Trees with Monitors

A BT M is a tuple (S,V,M,ΣT ,∆M,s0,v0,m0).

1. S, V , ΣT , s0, and v0 are unchanged from BT .

2. M is a finite set describing the state of the monitor.

62 Verification of BT with Monitors

3. ∆M is a function S×V×ΣT ×M 7→S×V×M. This function takes the current state of the tree, the
variables, environmental factors, and the state of the monitor and produces a new tree state, new
variables state, and a new monitor state.

4. m0 is an element of M and describes the initial state of the monitor.

For a given sequence of inputs [a0,a1,...], the corresponding BT M trace is a sequence [(s0,v0,m0),
(s1,v1,m1), ...] such that

∀ j∈Z s.t. j≥0,∆T (s j,v j,a j,m j)=(s j+1,v j+1,m j+1)

4.2 Problem Statement

Our problem statement follows. Given a BT and a φ , create a BT M that monitors φ such that BT M is
capable of reacting to a violation of φ . To demonstrate the utiltity of this process, we will also consider
φ1, a second specification that holds for BT M but not for BT .

To accomplish this goal we modified the Domain Specific Language (DSL) of BehaVerify (outlined
below) to allow the use of monitors within BTs. We utilize the tool LTL2BA [16] and specifically the
implementation at 1 to translate an LTL formula into a monitor in the form of a BA. Then we create an
implementation of that BA for use with the BT . Finally, to verify that BT M satisfies the property, we
also convert the output of LTL2BA into an implementation of the monitor within the DSL and utilize
BehaVerify to create a nuXmv model that proves φ1 is true for BT M but false for BT .

4.3 BehaVerify

BehaVerify uses a Domain Specific Language (DSL) that allows the user to specify a BT . As the DSL
itself 2 is complex, we will provide an overview here.

The user defines a finite set of typed variables that will be used by the BT . The user also defines a
finite set of leaf nodes. Each leaf node is a finite sequence of statements, exactly one of which is a return
statement while the rest are variable statements. A variable statement consists of the variable whose value
is being updated and a sequence of ‘if statements’ that determines the new value. Nondeterminism is
allowed in variable statements. The return statement is similar, but is used to determined what status
the node will return. Note that the node does not stop execution when the return statement is executed;
it is only used to determine the return status, not to ‘return’ from the node. Finally, the user creates a
finite tree consisting of composite (selector, sequence, and parallel), decorator (inverter and X_is_Y), and
user-defined leaf nodes.

Monitors We add special syntax to our DSL for the creation and use of monitors. The user provides an
LTL specification that is to be monitored. Furthermore, the user specifies where in the tree the monitor
should be used, and how the tree should react to the possible outputs of the monitor. We describe the
details of transforming the monitor in Subsection 4.4.

We present two pipelines for making monitors. The first is for generating a Python implementation
of a BT and either Python or C code for the monitor(s). The second pipeline is for generating a nuXmv
model of a BT and its monitor(s).

1https://github.com/utwente-fmt/ltl2ba
2https://github.com/verivital/behaverify/blob/main/metamodel/behaverify.tx

https://github.com/utwente-fmt/ltl2ba
https://github.com/verivital/behaverify/blob/main/metamodel/behaverify.tx

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 63

DSL

Python Code

Commands for LTL2BA

Spin Never Claim

Python/C MonitorsPython BT M

BehaVerify LTL2BA

Figure 3: Diagram of how BehaVerify
generates Python code for BTs with mon-
itors. LTL2BA is a tool for converting
an LTL specification to a BA. Spin is a
model checker, and a Never Claim can
be checked using Spin. Solid blue arrows
mark new contributions.

4.4 Generating Implementations

We utilize the following process to generate a BT M using BehaVerify.

1. The user creates a DSL file specifying the BT and any monitors it uses.

2. BehaVerify creates a Python implementation for BT , ignoring the monitors.

3. For each monitor in the DSL file, BehaVerify creates a command for use with LTL2BA.

4. For each command, LTL2BA creates a Buchi Automaton (BA). The output is in the form of a ‘never
claim’ for use with the Spin [20] model checker.

5. For each BA, BehaVerify creates a corresponding Python implementation.

6. The monitors are combined with the generated Python code.

This process can be seen in Figure 3. Below we provide some additional details.

Command Creation LTL2BA commands can contain temporal operators (e.g. ‘globally’), boolean
operators (e.g. ‘and’), boolean constants (‘true’ and ‘false’), and lowercase alphanumeric strings repre-
senting boolean variables. Our conversion process prioritizes making the resulting LTL formula as small
as possible. Thus the formula □(a∨b) (here □ means globally) would be converted to □p0, where p0 is
boolean predicate representing a∨b.

Monitor We provide a quick refresher on BA. For details, see Subsection 3.2. A BA is a nondeterministic
automaton with transition guards. Thus from a given state, BA can transition to any other state provided a
transition to that state exists and the associated guard condition is true. Within the formal definition, these
guards are encoded into the transition function. Some of the states in the BA are ‘accepting’ states. The
BA accepts a trace if there exists a sequence where the BA is infinitely often in an accepting state.

To mimic this behavior, the monitor takes as input a set of states that the BA could be in along with
the current model state. The current model state provides all the necessary information to determine if a
transition guard is true. This, combined with the possible states, is used to create a new set of possible
states. If there are no possible states, then there is no longer any way for the specification to be true,
meaning it must be false. If there is a possible state that is an accepting state with a transition to itself
and the guard is always true, then the specification is guaranteed to be true. Otherwise, the specification
could still prove to be true or false (unknown). The monitor returns both the new set of possible states
and the verdict to the user. If a violation occurs, the monitor can be ‘reset’. This is important as we want
our monitor to be repeatably usable; without a reset it would have to continuously report that a violation
occurred.

64 Verification of BT with Monitors

DSL

Modified DSL

Commands for LTL2BA

Spin Never Claim

.smv model of BT M

LTL2BA

BehaVerify

Figure 4: Diagram of how BehaVerify
generates .smv files for BTs with mon-
itors that can be verified using nuXmv.
LTL2BA is a tool for converting an
LTL specification to a BA. Spin is a
model checker, and a Never Claim can
be checked using Spin. Solid blue arrows
mark new contributions.

4.5 nuXmv Model Generation

The nuXmv pipeline is very similar to the Python pipeline, and as such we will avoid going into the inner
workings of this pipeline. The main difference is that we create a monitor using the DSL of BehaVerify
allowing BehaVerify to create a .smv model for use with nuXmv.

5 Monitor Comparison

We created two scaling scenarios and ran timing comparisons for the generated monitors created by
BehaVerify and Copilot. We planned to compare two monitors generated by NuRV, but did not ultimately
do so (see Subsection 5.5 for details). Additionally, we utilized the generated Python code with monitors
to generate example traces. While these example traces are not conclusive proof, they were sufficient
to demonstrate some differences in the generated monitors. The results demonstrate that the monitors
generated by BehaVerify are not outclassed by existing tools and in some cases are preferable from a
correctness standpoint. Furthermore, this demonstrates the versatility of our setup; it is fairly painless to
bring in outside monitors should the need arise.

The rest of this section will describe the scaling scenarios, present the results, and then reason about
the results.

5.1 Scenarios

For our scenarios, a drone navigates a grid and tries to reach a destination. Once the destination is reached,
a new destination is randomly generated. We generated grids from size 10 by 10 to 50 by 50 in two styles:
dense fixed and sparse random. The dense fixed grids start with a 5 by 5 grid and copies this layout to fill
the entire grid. The sparse random grids are randomly generated. See Figure 5 for details.

At each time step, the drone attempts to move towards the target according to the control logic. We
want the drone to satisfy the following specifications

φS=□(∀(xo,yo)∈Obs,(xd ,yd) ̸=(xo,yo))

φL=□(♢((xd ,yd)=(xg,yg)∨∃(xo,yo)∈Obs s.t. (xg,yg)=(xo,yo)))

Here Obs is a predetermined finite set of obstacles. φS is a safety specification that states that the drone’s
position (xd ,yd) is never equal to the position of an obstacle (xo,yo). φL is a liveness specification that
states that the drone’s position is eventually equal to the destination (xg,yg), or the destination is an
obstacle. We utilize the quantifiers ∀,∃ (for all and exists, respectively) for convenience here; in practice
we write out each individual obstacle.

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 65

Figure 5: Images representing some of the grids used for the scaling experiments. The upper grids are
sparse and were randomly generated. The lower grids are dense and were created by copying a 5 by 5 grid
repeatedly. The left grids are 10 by 10 and the right grids are 50 by 50. Black squares are obstacles, the
blue square is the drone, and the green square is the destination.

Then the specifications we monitor are

φS1=□(∀(xo,yo)∈Obs,(xd+(x∆∗s),yd+(y∆∗s)) ̸=(xo,yo))

φL1=□

(x∆,y∆)=(1,0) =⇒⃝((x∆,y∆) ̸=(−1,0))∧
(x∆,y∆)=(−1,0) =⇒⃝((x∆,y∆) ̸=(1,0))∧
(x∆,y∆)=(0,1) =⇒⃝((x∆,y∆) ̸=(0,−1))∧
(x∆,y∆)=(0,−1) =⇒⃝((x∆,y∆) ̸=(0,1))

66 Verification of BT with Monitors

Figure 6: Pictures are ordered left to right. The drone (blue) is trying to reach the destination (green)
while avoiding obstacles (black). In the left image, the control logic tells the drone to go down. Because
neither monitor reported a violation, the drone moved 2 squares and is now in the situation shown in the
middle image. The control logic now tells the drone to go up. The liveness monitor reports a violation; if
we go up two squares, the drone will be stuck in a loop. Therefore, the drone only goes up one square
and is now in the situation shown in the right image. If the drone has not been equipped with the liveness
monitor, it would have gone back to the state shown in the left image, then middle, then left, etc.

(xd ,yd) is the current location of the drone, (x∆,y∆) is one of (1,0), (−1,0), (0,1), (0,−1), (0,0), describing
the possible directions the drone moves in, and s is the speed of the drone (either 1 or 2). Thus the safety
specification monitor is violated if we are on a collision course and the liveness specification monitor is
violated if we do a 180 turn. We note that both specifications being monitored are safety specifications;
however, we will refer to the second as a liveness specification as it is being used to ensure the liveness
specification is not violated. Please note the following: we are not claiming that by monitoring these
conditions any BT will satisfy the desired specifications; rather, the purpose is to demonstrate that the
monitors can be used to correct specific flaws in a BT . Furthermore, it is possible to design and insert
these monitors into the BT without the use of a special tool; however, such a task may prove more complex
then writing an LTL specification and utilizing our tool.

By default, the drone will try to move 2 squares; if either the safety monitor or liveness monitor are
triggered, it will only move one square. The safety monitor ensures that the drone does not move into
obstacles. The liveness monitor ensures that the drone escapes potential loops, as seen in Figure 6. Thus
both monitors are necessary for the drone to function as intended. Note that this example is not meant to
illustrate good programming practice for drone controllers; there are no doubt better methods by which to
control a drone. Rather, the purpose of this example is to demonstrate how one can use the monitors to
ensure a system functions correctly.

5.2 Motivation

We were originally creating a controller for a drone in virtual neighborhood simulated using AirSim (see
Figure 7). The drone would fly at a fixed height and knew where obstacles were before hand. We created
a grid-world abstraction of the problem and created a controller that we were able to verify navigated
correctly under certain assumptions. One of the assumptions was that the drone would always move
at most one tile at a time. While it is simple to ensure that this is the case, it requires flying the drone
slowly at all times, which is not desirable. Flying the drone at faster speeds, however, created both safety

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 67

Figure 7: A screenshot of the drone flying in AirSim and a grid visualization.

and liveness violations. Thus by equipping our BT with the described monitors, we were able to safely
increase speed without compromising safety. Finally, we were able to utilize nuXmv to verify that the
BT M is safe (see Section 6 for details).

5.3 Results

All results (Figure 8) were generated on a computer with a 24 core 13th Gen Intel(R) Core(TM) i7-13700K
and 64GB of DDR5 RAM. Results were run in a quiet environment when no other user run processes
were active. The code for the experiments is available at 3.

5.4 Analysis

Timing We ran 10000 simulation runs with 1000 iterations (number of times the drone tried to move)
and took the median for both Copilot and BehaVerify. To ensure that we are comparing only the monitors,
we also ran a version of the code with no monitor with the same settings. This monitorless value was then
subtracted out from the timing results for both BehaVerify and Copilot. We believe that the timing results
demonstrate that the monitors generated by BehaVerify and Copilot are reasonably close. As expected,
the dense fixed grid pattern produces a far more linear timing relation than the sparse random grid. This is
because the number of obstacles in the dense fixed grid is always greatly increasing, while the number of
obstacles in the sparse random setup is random, and it is the number of obstacles that is largely responsible
for the complexity of monitoring the specifications.

3https://github.com/verivital/behaverify/tree/main/REPRODUCIBILITY/2024_FMAS_BTM

https://github.com/verivital/behaverify/tree/main/REPRODUCIBILITY/2024_FMAS_BTM

68 Verification of BT with Monitors

Figure 8: Top left: file sizes of safety monitors for dense fixed. Top right: file sizes of safety monitors for
sparse random. Bottom left: median time (in seconds) for safety and liveness monitors on dense fixed.
Bottom right: median time (in seconds) for safety and liveness monitors on sparse random. We did not
include the size of liveness monitors as it did not change with the size of the grid. The timing results are
the median of 10000 runs. Each run had 1000 iterations (number of times the drone tried to move). We
subtracted how long it took to run the code without a monitor.

File Size We measured the file size as an indicator of the complexity of the monitoring algorithm. While
BehaVerify clearly generates larger files than Copilot, we do not believe that the difference is sufficient to
prefer Copilot’s Monitors. This is in contrast to NuRV, which is discussed below in Subsection 5.5.

Correctness The safety monitors that Copilot generated worked as intended, but the liveness monitor
had an issue: it would report a violation with a one-step delay. Specifically, if a violation occurred in the
ith state, then Copilot would report it in the i+1th step. This behavior is documented in the Copilot tutorial
in example 7 4. By contrast, both the safety and liveness monitors generated by BehaVerify worked as
intended, ensuring the drone functioned as intended.

This brings us to an important note about how our process is laid out. While BehaVerify is capable of
generating monitors, the generated Python code can utilize any provided monitor. Indeed, we confirmed
that it is possible to utilize Copilot for the safety monitor and BehaVerify for the liveness monitor and that

4https://copilot-language.github.io/downloads/copilot_tutorial.pdf

https://copilot-language.github.io/downloads/copilot_tutorial.pdf

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 69

Figure 9: The graph shows the time (in seconds)
to verify that the BT M is safe (does not crash into
obstacles). The verification was done with nuXmv.
Liveness specifications are considerably harder to
verify, with the 9 by 9 sparse grid taking about 25
minutes to verify. As this is the easiest grid we have
for this task, we did not complete liveness verification
for any other grids.

this works as intended.

5.5 NuRV

Because BehaVerify creates .smv files, we originally tried using the output of BehaVerify as input to
NuRV. Unfortunately, a variety of issues prevented this from being feasible. For instance, NuRV monitors
are aware of the transition system. This enable NuRV monitors to potentially detect violations well in
advance or to verify liveness conditions, but it also means the files are much larger. To combat this, we
created simplified .smv models with much simpler transition systems. This proved ineffective; the smallest
file generated by NuRV was 26.04 MB, while the largest file generated by BehaVerify was 582 KB.

6 Design Time Verification

BehaVerify was originally created for Design Time Verification. As such, when approaching the topic
of Runtime Verification, we were interested if we could use Design Time Verification for the Runtime
Monitors. As such, we translated the monitors that were created by BehaVerify back into the DSL for
BehaVerify and then utilized nuXmv to verify that the BT with monitors satisfied both the safety and
liveness specification. While we created such translations for each combination of grid type and grid
size presented in Section 5, some of the resulting models proved to complex for liveness analysis in
nuXmv. The results for safety verification can be seen in Figure 9. As you can see, it is entirely feasible
to use design time verification to confirm that the safety monitors are correct and ensure the system works
as intended. If the safety monitor is removed, nuXmv will demonstrate that the system is not safe by
providing a counter example trace resulting in a crash. If the liveness monitor is removed, nuXmv will
demonstrate that the system can get stuck in a loop by providing a counter example trace.

The liveness situation is somewhat trickier, as the specifications are substantially harder to verify.
However, considering the fact that the same liveness monitor is used for all grids and that we verified it for
one grid, even this limited verification process can provide some evidence to indicate that the monitor is
correct. As with the safety monitor, the removal of the liveness monitor results in a specification violation
that nuXmv detects. In this case, nuXmv returns a counterexample where the drone becomes stuck in a
loop, going back and forth between two points without reaching the destination.

70 Verification of BT with Monitors

7 Conclusions and Future Work

We presented a formal problem statement for incorporating contingency monitors within BTs, thus creating
BT Ms. On the implementation side, we expanded the DSL of BehaVerify to incorporate these monitors,
and demonstrated that our code is capable of generating implementations of the monitors that are on par
with existing tools. However, our overall approach also brings the advantage of Design Time Verification
for the entire BT M. We subsequently hope to expand the target range of BehaVerify, specifically to create
.cpp implementations that make use of BehaviorTrees.cpp.

Acknowledgements

The material presented in this paper is based upon work supported by the National Science Foundation
(NSF) through grant numbers 2220426 and 2220401, the Defense Advanced Research Projects Agency
(DARPA) under contract number FA8750-23-C-0518, and the Air Force Office of Scientific Research
(AFOSR) under contract numbers FA9550-22-1-0019 and FA9550-23-1-0135. Any opinions, findings,
and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily
reflect the views of AFOSR, DARPA, or NSF.

References

[1] Auryn Robotics: Tutorial 02: Blackboard and Ports. Available at https://www.behaviortree.dev/docs/tutorial
-basics/tutorial_02_basic_ports.

[2] Stanley Bak, Deepti K. Chivukula, Olugbemiga Adekunle, Mu Sun, Marco Caccamo & Lui Sha (2009): The
System-Level Simplex Architecture for Improved Real-Time Embedded System Safety. In: 2009 15th IEEE
Real-Time and Embedded Technology and Applications Symposium, pp. 99–107, doi:10.1109/RTAS.2009.20.

[3] Andreas Bauer, Martin Leucker & Christian Schallhart (2011): Runtime Verification for LTL and TLTL. ACM
Trans. Softw. Eng. Methodol. 20(4), doi:10.1145/2000799.2000800.

[4] Oliver Biggar & Mohammad Zamani (2020): A Framework for Formal Verification of Behavior
Trees With Linear Temporal Logic. IEEE Robotics and Automation Letters 5(2), pp. 2341–2348,
doi:10.1109/LRA.2020.2970634.

[5] Oliver Biggar, Mohammad Zamani & Iman Shames (2021): An Expressiveness Hierarchy of Behav-
ior Trees and Related Architectures. IEEE Robotics and Automation Letters 6(3), pp. 5397–5404,
doi:10.1109/lra.2021.3074337.

[6] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea
Micheli, Sergio Mover, Marco Roveri & Stefano Tonetta (2014): The nuXmv Symbolic Model Checker. In:
CAV, pp. 334–342. Available at http://dx.doi.org/10.1007/978-3-319-08867-9_22.

[7] Alessandro Cimatti, Chun Tian & Stefano Tonetta (2019): NuRV: A nuXmv Extension for Runtime Verification.
In Bernd Finkbeiner & Leonardo Mariani, editors: Runtime Verification, Springer International Publishing,
Cham, pp. 382–392, doi:10.1007/978-3-030-32079-9_23.

[8] Michele Colledanchise, Giuseppe Cicala, Daniele E. Domenichelli, Lorenzo Natale & Armando Tacchella
(2021): Formalizing the Execution Context of Behavior Trees for Runtime Verification of Deliberative Policies.
In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE Press, pp.
9841–9848, doi:10.1109/IROS51168.2021.9636129.

[9] Michele Colledanchise & Petter Ögren (2014): How Behavior Trees modularize robustness and safety in hybrid
systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1482–1488,
doi:10.1109/IROS.2014.6942752.

https://www.behaviortree.dev/docs/tutorial-basics/tutorial_02_basic_ports
https://www.behaviortree.dev/docs/tutorial-basics/tutorial_02_basic_ports
https://doi.org/10.1109/RTAS.2009.20
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1109/LRA.2020.2970634
https://doi.org/10.1109/lra.2021.3074337
http://dx.doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-030-32079-9_23
https://doi.org/10.1109/IROS51168.2021.9636129
https://doi.org/10.1109/IROS.2014.6942752

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 71

[10] Michele Colledanchise & Petter Ögren (2016): How Behavior Trees generalize the Teleo-Reactive paradigm
and And-Or-Trees. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 424–429, doi:10.1109/IROS.2016.7759089.

[11] Michele Colledanchise & Petter Ögren (2017): How Behavior Trees Modularize Hybrid Control Systems
and Generalize Sequential Behavior Compositions, the Subsumption Architecture, and Decision Trees. IEEE
Transactions on Robotics 33(2), pp. 372–389, doi:10.1109/TRO.2016.2633567.

[12] Antoine El-Hokayem & Yliès Falcone (2018): Bringing Runtime Verification Home. In Christian Colombo
& Martin Leucker, editors: Runtime Verification, Springer International Publishing, Cham, pp. 222–240,
doi:10.1007/978-3-030-03769-7_13.

[13] EpicGames (2021): Behavior tree overview. Available at https://docs.unrealengine.com/4.27/en-US/Interactiv
eExperiences/\ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/.

[14] Angelo Ferrando, Rafael C. Cardoso, Michael Fisher, Davide Ancona, Luca Franceschini & Viviana Mascardi
(2020): ROSMonitoring: A Runtime Verification Framework for ROS. In Abdelkhalick Mohammad, Xin Dong
& Matteo Russo, editors: Towards Autonomous Robotic Systems, Springer International Publishing, Cham,
pp. 387–399, doi:10.1007/978-3-030-63486-5_40.

[15] Angelo Ferrando & Vadim Malvone (2022): Towards the Combination of Model Checking and Runtime
Verification on Multi-agent Systems. In Frank Dignum, Philippe Mathieu, Juan Manuel Corchado & Fer-
nando De La Prieta, editors: Advances in Practical Applications of Agents, Multi-Agent Systems, and
Complex Systems Simulation. The PAAMS Collection, Springer International Publishing, Cham, pp. 140–152,
doi:10.1007/978-3-031-18192-4_12.

[16] Paul Gastin & Denis Oddoux (2001): Fast LTL to Büchi Automata Translation. In Gérard Berry, Hubert
Comon & Alain Finkel, editors: Computer Aided Verification, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 53–65, doi:10.1007/3-540-44585-4_6.

[17] Felipe Gorostiaga & César Sánchez (2021): HLola: a Very Functional Tool for Extensible Stream Runtime
Verification. In Jan Friso Groote & Kim Guldstrand Larsen, editors: Tools and Algorithms for the Construction
and Analysis of Systems, Springer International Publishing, Cham, pp. 349–356, doi:10.1007/978-3-030-
72013-1_18.

[18] Zhaoyuan Gu, Nathan Boyd & Ye Zhao (2022): Reactive Locomotion Decision-Making and Robust Motion
Planning for Real-Time Perturbation Recovery. In: 2022 International Conference on Robotics and Automation
(ICRA), pp. 1896–1902, doi:10.1109/ICRA46639.2022.9812068.

[19] Thomas Henn, Marcus Völker, Stefan Kowalewski, Minh Trinh, Oliver Petrovic & Christian Brecher (2022):
Verification of Behavior Trees using Linear Constrained Horn Clauses. In Jan Friso Groote & Marieke
Huisman, editors: Formal Methods for Industrial Critical Systems, Springer International Publishing, Cham,
pp. 211–225, doi:10.1007/978-3-031-15008-1_14.

[20] G.J. Holzmann (1997): The model checker SPIN. IEEE Transactions on Software Engineering 23(5), pp.
279–295, doi:10.1109/32.588521.

[21] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ögren & Christian Smith (2022): A survey of Behavior
Trees in robotics and AI. Robotics and Autonomous Systems 154, p. 104096, doi:10.1016/j.robot.2022.104096.

[22] Alejandro Marzinotto, Michele Colledanchise, Christian Smith & Petter Ögren (2014): Towards a unified
behavior trees framework for robot control. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5420–5427, doi:10.1109/ICRA.2014.6907656.

[23] Huang Peishan, Hong Weijiang, Chen Zhenbang & Wang Ji: MoVe4BT: Modeling & Verification For BT.
Available at https://move4bt.github.io/. Accessed: 2023-12-14.

[24] Ivan Perez, Frank Dedden & Alwyn Goodloe (2020): Copilot 3. Technical Report Technical Report NASA/TM-
2020-220587, NASA.

[25] Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe & Dimitra Giannakopoulou (2022):
Automated Translation of Natural Language Requirements to Runtime Monitors. In Dana Fisman & Grigore

https://doi.org/10.1109/IROS.2016.7759089
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1007/978-3-030-03769-7_13
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/\ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/\ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/
https://doi.org/10.1007/978-3-030-63486-5_40
https://doi.org/10.1007/978-3-031-18192-4_12
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1109/ICRA46639.2022.9812068
https://doi.org/10.1007/978-3-031-15008-1_14
https://doi.org/10.1109/32.588521
https://doi.org/10.1016/j.robot.2022.104096
https://doi.org/10.1109/ICRA.2014.6907656
https://move4bt.github.io/

72 Verification of BT with Monitors

Rosu, editors: Tools and Algorithms for the Construction and Analysis of Systems, Springer International
Publishing, Cham, pp. 387–395, doi:10.1007/978-3-030-99524-9_21.

[26] Fangbo Qin, De Xu, Blake Hannaford & Tiantian Hao (2023): Object-Agnostic Vision Measurement Frame-
work Based on One-Shot Learning and Behavior Tree. IEEE Transactions on Cybernetics 53(8), pp. 5202–5215,
doi:10.1109/TCYB.2022.3181054.

[27] Serena S. Serbinowska & Taylor T. Johnson (2022): BehaVerify: Verifying Temporal Logic Specifications For
Behavior Trees. In: Software Engineering and Formal Methods: 20th International Conference, SEFM 2022,
Berlin, Germany, September 26-30, 2022, Proceedings, Springer-Verlag, Berlin, Heidelberg, pp. 307–323,
doi:10.1007/978-3-031-17108-6_19.

[28] D. Seto, B. Krogh, L. Sha & A. Chutinan (1998): The Simplex architecture for safe online control system
upgrades. In: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 6,
pp. 3504–3508 vol.6, doi:10.1109/ACC.1998.703255.

[29] D. Seto & L. Sha (1999): A Case Study on Analytical Analysis of the Inverted Pendulum Real-Time Control
System. Technical Report, DTIC and NTIS. 10.21236/ADA373286.

[30] Shital Shah, Debadeepta Dey, Chris Lovett & Ashish Kapoor (2018): AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles. In Marco Hutter & Roland Siegwart, editors: Field and Service
Robotics, Springer International Publishing, Cham, pp. 621–635, doi:10.1007/978-3-319-67361-5_40.

[31] Christopher I. Sprague & Petter Ögren (2022): Continuous-Time Behavior Trees as Discontinuous Dynamical
Systems. IEEE Control Systems Letters 6, pp. 1891–1896, doi:10.1109/LCSYS.2021.3134453.

[32] Daniel Stonier: PyTrees Module API. Available at https://py-trees.readthedocs.io/en/devel/modules.html.
Accessed: 2023-12-14.

[33] Alexander Will, Aidan Collins, Robert Grizzard, Smitha Gautham, Patrick Martin, Evan Dill & Carl Elks
(2023): An Integrated Runtime Verification and Simulation Testbed for UAM Hazard Assessment. In: 2023
53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental
Volume (DSN-S), pp. 42–48, doi:10.1109/DSN-S58398.2023.00023.

[34] Sebastián Zudaire, Felipe Gorostiaga, César Sánchez, Gerardo Schneider & Sebastián Uchitel
(2021): Assumption Monitoring Using Runtime Verification for UAV Temporal Task Plan Execu-
tions. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6824–6830,
doi:10.1109/ICRA48506.2021.9561671.

[35] Petter Ögren (2020): Convergence Analysis of Hybrid Control Systems in the Form of Backward Chained
Behavior Trees. IEEE Robotics and Automation Letters 5(4), pp. 6073–6080, doi:10.1109/LRA.2020.3010747.

[36] Petter Ögren & Christopher I. Sprague (2022): Behavior Trees in Robot Control Systems. Annual Review of
Control, Robotics, and Autonomous Systems 5(Volume 5, 2022), pp. 81–107, doi:10.1146/annurev-control-
042920-095314.

https://doi.org/10.1007/978-3-030-99524-9_21
https://doi.org/10.1109/TCYB.2022.3181054
https://doi.org/10.1007/978-3-031-17108-6_19
https://doi.org/10.1109/ACC.1998.703255
https://doi.org/10.1007/978-3-319-67361-5_40
https://doi.org/10.1109/LCSYS.2021.3134453
https://py-trees.readthedocs.io/en/devel/modules.html
https://doi.org/10.1109/DSN-S58398.2023.00023
https://doi.org/10.1109/ICRA48506.2021.9561671
https://doi.org/10.1109/LRA.2020.3010747
https://doi.org/10.1146/annurev-control-042920-095314
https://doi.org/10.1146/annurev-control-042920-095314

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 73–90, doi:10.4204/EPTCS.411.5

© A. Gatti, V. Mascardi & A. Ferrando
This work is licensed under the
Creative Commons Attribution License.

RV4Chatbot: Are Chatbots Allowed
to Dream of Electric Sheep?

Andrea Gatti Viviana Mascardi
Department of Informatics, Bioengineering,

Robotics and Systems Engineering
University of Genoa

Genoa, Italy
forename.surname@unige.it

Angelo Ferrando
Department of Physics, Informatics

and Mathematics
University of Modena and Reggio Emilia

Modena, Italy
angelo.ferrando@unimore.it

Chatbots have become integral to various application domains, including those with safety-critical
considerations. As a result, there is a pressing need for methods that ensure chatbots consistently
adhere to expected, safe behaviours. In this paper, we introduce RV4Chatbot, a Runtime Verification
framework designed to monitor deviations in chatbot behaviour. We formalise expected behaviours
as interaction protocols between the user and the chatbot. We present the RV4Chatbot design and
describe two implementations that instantiate it: RV4Rasa, for monitoring chatbots created with the
Rasa framework, and RV4Dialogflow, for monitoring Dialogflow chatbots. Additionally, we detail
experiments conducted in a factory automation scenario using both RV4Rasa and RV4Dialogflow.

1 Introduction

On November 30th, 2022, ChatGPT was unveiled [40] deeply shaking the industry and academic worlds.
The impression, at that time, was that ChatGPT and chatbots based on Large Language Models (LLM)
would have irreversibly changed the way chatbots were designed and built, wiping away any pre-existing
technology.

After almost two years, a more balanced view on the future is emerging, with the shared feeling that
there is still room for chatbots that do not rely on generative AI techniques.

There are many ways to classify chatbots based for example on the knowledge domain, the service
provided, the goals, the response generation method [2], the locus of control (chatbot- or user-driven)
and duration of the interaction (short or long) [23], or their affordances and disaffordances [32, 35]. For
the purposes of this paper, the simplest and most suitable classification of text-based chatbots divides
them into conversational AI and generative AI ones [18].

DialogFlow [28, 42], Rasa [11, 41], Wit.ai [38, 39], just to name a few, are text-based conversational
AI chatbots, also referred to as intent-based chatbots. They can understand the users questions, no matter
how they are phrased, thanks to Natural Language Understanding (NLU) capabilities that allow them
to detect the user’s intent and further contextual information. The NLU component exploits machine
learning techniques for the intent classification and performs well even with a small amount of training
sentences. The answer to be provided to the user is not autonomously generated by the chatbot, but is
designed by the chatbot’s developer. Conversational AI chatbots can remember conversations with users
and incorporate contextual information into their interactions.

ChatGPT, Gemini [29], Jasper Chat [31] are examples of generative AI chatbots. They go far beyond
conversational AI chatbots thanks to their capability of generating new content as their answer in form
of high-quality text, images and sound based on LLMs they are trained on. This impressive power,

http://dx.doi.org/10.4204/EPTCS.411.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

74 RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep?

however, does not come without pitfalls. Besides religious bias [1], gender bias and stereotypes [33],
and hallucinations [48], major privacy concerns are associated with LLMs.

In March 2023, Italy’s data regulator imposed a temporary ban on ChatGPT due to concerns related
to data security. During its development, in November 2023, an open letter was signed by nine Italian
scientific associations including the Italian Association for AI and the Italian Association for Computer
Vision, Pattern Recognition and Machine Learning, and by around 500 scientists, asking the Italian
government to guarantee that strict rules for the use of generative AI were included in the European AI
Act [21].

Scientific studies on LLM privacy leakage are so recent to be still unpublished at the time of writing,
but many pre-prints by academic scholars show that the problem is real [17,46,47]. Personal Identifiable
Information (PII) protection can only be complied with by organisations able to have a private installation
of a LLM within a private cloud or on premise [30]. The resources needed to implement this solution
make it not affordable for most companies and universities.

The global LLM market size (that includes the generative AI chatbot market plus a wide range of
other applications) is projected to reach 259,886 Million USD revenue by 2029 [26], while the conver-
sational AI market is expected to reach 29,800 Million USD by 2028 [37]: the market forecasts and the
privacy, ethical, and economical issues of LLM suggest that traditional conversational AI chatbots will
still be needed and used by many players in the next few years.

Although more controllable than their generative evolution, the behaviour of conversational AI chat-
bots can also be unsafe. In a factory automation scenario, where an intent-based chatbot provides a
natural language interface between the user and a virtual representation of a factory, a conversation be-
comes unsafe if the user requests to position an object where another object has already been placed, or
if the distance between objects is insufficient. Similarly, a conversation is unsafe if the chatbot provides
the coordinates of an object that the user never inserted.

To cope with safety issues in conversational AI chatbots, we present an approach to verify at runtime
the conversation between the user and the chatbot. Runtime Verification (RV) [8] is a formal verification
technique used to analyse the runtime behaviour of software and hardware systems concerning specific
formal properties. A RV monitor emits boolean verdicts that state whether the property is satisfied or
not by the currently observed events. The default functioning is to state that something went wrong
when it just went wrong, and trigger recovery actions. In some cases, the monitor may intervene before
the wrong event is generated or the unsafe action is done, hence allowing for prevention. With respect
to other formal verification techniques, such as Model Checking [19] and Theorem Provers [36], RV
is more dynamic and lightweight and shares some similarities with software testing, being focused on
checking how the system behaves while it is running.

To perform RV of chatbots, we have designed a general and formalism-agnostic framework named
RV4Chatbot. We show RV4Chatbot versatility by instantiating it for RV of chatbots created with Rasa,
widely used to develop chatbots in local environments, and Dialogflow, used in cloud-based applications.
We demonstrate how our engineering decisions render RV4Chatbot a highly practical methodology and
how it can seamlessly integrate with existing chatbot frameworks. It is essential to note that our utilisation
of Rasa and DialogFlow serves only to illustrate potential applications of our approach. Our ultimate aim
is to encompass any chatbot development framework.

The paper is structured as follows. After overviewing the related work in Section 2, Section 3 intro-
duces one example that motivates the need of RV4Chatbot. After that, Section 4 describes the architec-
ture and the data and control flow of RV4Chatbot. Sections 5 and 6 describe, respectively, RV4Rasa
and RV4Dialogflow, the two concrete instantiations of the RV4Chatbot logical architecture. Section 7
discusses the formalisation of some relevant safety properties in the motivating scenario, using a highly

A. Gatti, V. Mascardi & A. Ferrando 75

expressive RV language, and the experiments we carried out to verify those properties with RV4Rasa
and RV4Dialogflow. Section 8 concludes the paper and highlights the possible future directions.

2 Related Work

RV of interaction protocols attracted the attention of researchers starting from the beginning of the mil-
lennium. The first interaction protocols to be verified at runtime involved web services [34], cloud
applications [44], cryptography [9]. RV of interactions among autonomous software agents followed
soon [3, 7]1.

Despite the large interest in RV of interactions and the pressing need to monitor what chatbots say
and do, to the best of our knowledge no studies on RV of human-chatbot interactions exist, if we exclude
the very recent works where we were involved.

Apart from [22] which serves as the foundation for this paper but is tailored for a specific chatbot
framework, the only other work in the literature that deals with the formal verification of chatbot systems
is [20], introducing a framework known as RV4JaCa. In that work we integrated RV within the multiagent
system (MAS) domain and demonstrated how to monitor agent interaction protocols within that context.
The focus there was not on the chatbot itself, but on the software agents interacting with it. The main
contribution was hence in the MAS domain, although applied in a scenario where messages for agents
are generated by a chatbot.

Expanding the boundaries of our investigation, we can mention a recent proposal that approaches
formal verification of chatbots from a static perspective, instead of at runtime as we do. In [25] the
authors introduce a strategy for verifying chatbot conversational flows during the design phase using the
UPPAAL tool [10], a well-known model checker. The approach is tested by designing a hotel booking
chatbot and receiving feedback from developers. The strategy is found to have an acceptable learning
curve and potential for improving chatbot development. In contrast to our approach, the work presented
in [25] focuses on abstracting the chatbot using a model and subsequently verifying it through model
checking. Due to the distinct inherent natures of these two verification approaches, we envision the
possibility of integrating them to harness their respective strengths. Specifically, our technique could
enhance the visibility of [25] by providing information that is only available at runtime. Conversely,
the exhaustiveness of [25] could be leveraged by our approach to simplify the properties for monitoring,
thanks to prior knowledge of the chatbot’s behavioural model.

If we further expand our search and give up formality, hence resorting to software testing of chatbots,
some works from J. Bozic’s research group can be mentioned. The paper [14] introduces a planning-
based testing approach for chatbots, focusing on functional testing, specifically in the context of tourism
chatbots for hotel reservations. Planning is used to generate test scenarios, and a testing framework
automates the execution of test cases. The results show success in testing chatbots, but some issues,
such as intent recognition errors, need further attention. Metamorphic testing is illustrated in [15], where
metamorphic relations are used instead of traditional test oracles due to the unpredictable nature of AI
systems. On a similar line of research, the work [13] introduces an approach that leverages ontologies to
generate test cases and addresses the absence of a test oracle by using a metamorphic testing approach.
The method is demonstrated on a real tourism chatbot.

A methodology that automates the generation of coherence, sturdiness, and precision tests for chat-
bots and leverages the test results to enhance their precision is presented in [16]. The methodology is

1Starting from 2012, a large share of the scientific production of the authors dealt with RV of agent interaction protocols,
see https://rmlatdibris.github.io/biblio.html. We limit ourselves to cite the most relevant works among these.

https://rmlatdibris.github.io/biblio.html

76 RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep?

implemented in a tool called Charm, which uses Botium [12] for automated test execution. The paper
also presents experiments conducted to improve third-party-built DialogFlow chatbots.

While these works share similarities with ours in that they focus on the actual, runtime execution of
the chatbot rather than its abstraction, none is based on a rigorous and formal specification that guides
the correctness checks.

To conclude, we emphasise that our goal is to assess the overall correctness of a conversation between
a user and a chatbot as a coherent whole, rather than focusing on how individual message utterances
are generated by the chatbot itself. This distinction is pivotal and sets our work apart from existing
literature on the formal verification of Machine Learning models, as surveyed in [43]. In such literature,
the emphasis is generally on verifying the Machine Learning model. In contrast, in RV4Chatbot, our
focus is not on whether the model correctly produces or classifies individual messages, but rather on
the consistency of these messages within a conversation. In this sense, RV4Chatbot delves deeper into
the conversational semantics of the messages exchanged with or generated by the chatbot, rather than
attempting to dissect the chatbot to understand its internal behaviour, which is often treated as a black-
box.

3 Motivating Example

Chatbots can be exploited for achieving three main goals: providing specific information stored in a
fixed source (information chatbots); holding a natural conversation with the user (chat-based chatbots);
and understanding the tasks that the user wants to perform, hence executing functions to perform them
(task-based chatbots) [2].

Usually, information chatbots provide an answer to one questions and go back to a state – the only
state they can be – where they are ready to answer a new question. There is no need for them to keep
memory of what the user already asked or said, and to carry out a coherent and fluent conversation. The
correctness of the chatbot is related with the correctness of the search engine in its backend. Given that
we aim at verifying the conversation flow rather than the quality of the retrieved information, RV of
information chatbots following our approach is out of our scope.

Chat-based and task-based chatbots, on the other hand, engage into conversations that should evolve
in different ways depending on what the user utters. For example, a chat-based chatbot may show
different reactions to the very same request from the user, depending on how much the user insists upon
it. In a task-based chatbot, the possibility for the user to ask for some task to be performed may depend
on the fact that some prerequisite task had been asked, and hence performed, before.

Without loss of generality, the following motivating example focuses on a task-based chatbot. The
application of RV4Chatbot to chat-based chatbots is left for future work, as it would mainly require
adapting the types of properties to be verified, rather than altering the verification methodology. In
essence, RV4Chatbot is not restricted to task-based chatbots; its architecture is sufficiently flexible to
support the verification of any intent-based chatbot.

A Task-based Chatbot in the Factory Automation Domain. This example, presented in the VOR-
TEX 2023 workshop [22] and briefly summarised here, is set in the field of robotics and involves the
development of a task-based chatbot assisting in the creation of a simulated factory work floor. The
chatbot’s role is to guide users through this process, taking into account both the users’ requirements
and the factory regulations2 concerning what can or cannot be added or removed from the factory work

2See ISO 10218-1:2011 standard on Robots and robotic devices - Safety requirements for industrial robots [45].

A. Gatti, V. Mascardi & A. Ferrando 77

floor for safety reasons. The user interacts with the chatbot by requesting to add a robot to a specific
position on the factory work floor, removing a robot, or relocating a previously added robot to a different
position. For example, properties verified at runtime might include ensuring that objects are not added to
an already occupied position on the factory floor, confirming that each removal request corresponds to an
object that actually exists in the current state, and enforcing spacing rules between objects as defined by
safety regulations. The validity of these actions depends on the state of the simulated work floor, which
evolves as the user-chatbot conversation progresses. RV4Chatbot checks these properties dynamically to
detect and prevent any violations that could compromise the safety or coherence of the conversation.

4 RV4Chatbot: The Foundation

Figure 1: RV4Chatbot architecture.

Figure 1 illustrates the operation of an intent-based chatbot. RV4Chatbot specifically focuses on
verifying intent-based chatbots, leaving the verification of non-intent-based chatbots for future work, as
mentioned in both the introduction and conclusion sections.

A human user, or more generally, a sentence generator, produces a sentence in natural language (1).
This sentence is categorised by a classifier based on its intent, and its parameters are extracted. The
intent classifier is responsible for Natural Language Understanding (NLU). The recognised intent, along
with its parameters (2), is then passed to a decision maker that determines the chatbot’s response (7)
to the input sentence. This decision-making process is typically hard-coded and integrated directly into
the chatbot framework. Finally, the chatbot generates the response to be delivered to the user (8). The
module responsible for this generation process is termed the ‘actuator’.

RV4Chatbot introduces a decision wrapper, depicted in red with right angles inside the chatbot ar-
chitecture, to manage actions numbered (3) to (6) on the right side of the figure. The decision wrapper
extends the decision maker to allow the data characterising a chatbot’s lifecycle—user’s intents and chat-
bot’s actions, both with optional parameters—to be sent to an external monitor where Runtime Verifica-
tion (RV) occurs. Depending on the chatbot’s framework and its modularity, implementing the decision

78 RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep?

wrapper may vary in complexity and intrusiveness. The decision wrapper instruments the ‘System Under
Scrutiny’ (the chatbot in this application), using standard RV terminology. In RV4Chatbot, instrumenta-
tion is confined solely to this module.

The decision wrapper sends the recognised intents and parameters (3) to the monitor. Regardless
of its implementation and the language used for modeling properties to verify, the monitor observes one
event at a time and emits a boolean verdict indicating whether the event complies with the property (4). If
the verdict is true (or inconclusive3), control returns to the decision maker, which decides the subsequent
action. Before executing the action, the decision wrapper sends it to the monitor (5), which again verifies
its compliance with the property and emits a verdict (6).

A true (or inconclusive) verdict from the monitor does not alter the chatbot’s standard execution
flow. A false verdict—whether originating from an unexpected user intent or a disallowed action by the
chatbot—returns the chatbot to a listening state, displaying a message explaining the failure to the user.
In both cases, no unsafe actions are performed.

Numerous intent-based chatbot frameworks are documented in the literature. Although their imple-
mentations may vary significantly, their main components and functionalities are accurately represented
in Figure 1. Similarly, many RV monitors exist. Regardless of the monitor used, it must at least be able
to observe events from the System Under Scrutiny and output a verdict that is either true, false, or incon-
clusive. This is the only assumption we make regarding the RV monitor’s function, and it is satisfied by
the definition of a monitor. Thus, the RV4Chatbot logical architecture is parametric in both the chatbot
framework and the monitor.

To automate the experiments presented in Section 7.3, we developed a piece of software capable of
reading natural language sentences from a file and sending them to the chatbot using the APIs provided
by the chatbot frameworks considered in this paper. Although our primary interest lies in RV, we soon
realised that the files of simulated user sentences could be seen as test cases, and that the software
component named ‘sentence generator’ in Figure 1 (left side) could be used to run batches of tests. We
re-engineered this component and elevated it to the status of one of the RV4Chatbot components. This
approach allows testing the chatbot during its development by exploiting the monitor as an offline test
engine. The advantage of this method is that once the chatbot has been tested offline and then deployed,
the monitor can continue to function at runtime, in line with its primary objective. No code changes are
required in the monitor or the instrumented chatbot when switching from offline testing to RV; only the
source of sentences changes, becoming a human user in the latter case.

Now that we have completed the introduction of RV4Chatbot, we can focus on its two instantiations
for the RV of Rasa and Dialogflow chatbots.

5 RV4Rasa

5.1 Rasa

“Rasa Open Source is an open source conversational AI platform allowing developers to understand and
hold conversations, and connect to messaging channels and third party systems through a set of APIs."4

Rasa [11] is composed by two different tools: Rasa NLU and Rasa Core. When a message is received
from the user, Rasa NLU extracts the intent and the entities (namely, structured pieces of information

3We remind the reader that in RV, it is common to have at least a third outcome indicating that the monitor does not yet have
sufficient information to determine whether the property under analysis is satisfied or violated.

4https://rasa.com/docs/rasa/

https://rasa.com/docs/rasa/

A. Gatti, V. Mascardi & A. Ferrando 79

inside a user message) from it. The structured information is then passed to the Tracker object. This
object is used to store the dialogue state. The tracker object is then passed to the policies. Each policy
has a ranking and can return a list containing one score for every possible action to perform next. Rasa
Core will perform the action with the best score provided by the highest ranked policy. The action server
executes the action, the tracker object is updated and then passed again to the policies. When no more
actions to be performed are available, the policies return the ‘listen’ action, waiting for a user input.

Rasa NLU and policies use three files for training:

• nlu.yml, containing all the example sentences uses to train the intent classification and the entities
extraction;

• stories.yml, containing all the paths that a conversation can follow;

• rules.yml, containing stricter conversation patterns and actions that must take place if triggered.

Rasa Core employs two main files for the flow control and configuration:

• domain.yml, containing all the information on what Rasa NLU can extract (intents and entities),
definition of slots (stored values), available actions and responses;

• config.yml, containing the pipeline for the Rasa NLU training and the policies definition.

Rasa actions can be defined either as strings to answer or as complete Python classes to be executed when
called.

Figure 2: The RV4Rasa instantiation of RV4Chatbot.

5.2 The RV4Rasa instantiation of RV4Chatbot

The Rasa architecture aligns closely with that of RV4Chatbot, as shown in Figure 2. Each element of the
RV4Chatbot architecture maps directly to a specific component in the RV4Rasa instantiation, without
requiring any modifications to Rasa’s original design.

The Sentence Generator can be either the human user using the shell provided by Rasa or a script
that sends messages as POST requests to the Rasa server provided by Rasa. The Intent Classifier is the

80 RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep?

Rasa NLU that extracts intent and entities. The Decision Wrapper in Rasa is managed by the policies.
In particular, for this module it is necessary to add a policy (monitorPolicy) that sends an event to the
monitor for each action executed. The Actuator overlaps with the Rasa Actions that can perform any
piece of provided Python code.

Notice that the policies predict the next action based on the previous ones so the monitorPolicy
can only stop the chatbot immediately after the wrong action has been executed. This paves the way to
recovery from wrong actions, but not to prevention. However, by exploiting Rasa policies the developer
only needs to add the monitorPolicy to them, without any other change to the chatbot; RV will be
performed automatically thanks to the monitorPolicy. The simplicity and the minimal invasiveness of
‘injecting’ RV capabilities into Rasa this way, motivates our decision to give up prevention, and accept
that the monitor realizes that something went wrong, after this already happened. Actually, ex-post
notification is a standard operating way in RV.

5.3 Challenges in the RV4Rasa design and development

The main effort required by the RV4Rasa development was understanding how policies work, and im-
plementing the monitorPolicy. In fact, whereas Rasa’s documentation is extensive and well-assorted
for a basic usage, it is almost completely absent when policies come into play. The policy is added in the
config file as follows:

policies:
...

- name: policies.monitorPolicy.MonitorPolicy
priority: 6
error_action: "utter_error_message"

In its implementation the main class, monitorPolicy, inherits Rasa’s Policy class; in particular, it
inherits and redefines:

• __init__, the initialisation method, here the error action provided by the user is saved or set to a
default value if needed;

• predict_action_probabilities, called every time the policy runs and returning the list of
probabilities. This method may also return no value at all, and this is exactly the way we use it, to
keep the conversation flowing as if no RV were performed, if no errors occur.

Note that, the priority assigned to the policy is user-defined and ensures that Rasa gives precedence to
the monitorPolicy over other custom policies. This higher priority is crucial since the monitorPolicy
addresses safety aspects, which must take precedence in the chatbot’s decision-making process.

5.4 Source Code

To instantiate RV4Rasa there are only two additions to be made in the chatbot:

1. monitor_policy.py: 150 lines of code;

2. config.yml: 3 further lines should be added to the configuration file, to turn Rasa into RV4Rasa.

The code of RV4Rasa is available at https://github.com/driacats/RV4Chat/tree/main/Rasa.

https://github.com/driacats/RV4Chat/tree/main/Rasa

A. Gatti, V. Mascardi & A. Ferrando 81

6 RV4Dialogflow

6.1 Dialogflow

Dialogflow [27] is a lifelike conversational AI platform developed by Google that enables users to create
virtual agents equipped with intents, entities (similar to those in Rasa), and fulfillment. Fulfillment
refers to the capability of these agents to interact with external systems or APIs to retrieve dynamic
responses, process data, or execute specific actions based on the user’s input, going beyond pre-defined
static responses.

Dialogflow performs NLU using intents, defined via a name and a set of training example sentences.
Dialogflow trains a model able to identify, for each user message sent on the chat, the nearest intent and
the confidence score. Training sentences may also contain entities, namely pieces of information that
may be significant for the conversation and that should be extracted from the text. For each intent, a
bunch of possible answers may be displayed. However, some messages cannot be answered from inside
Dialogflow, as they require to process data or execute operations. In this case, users can use the fulfillment
for sending a message to an external server that will execute the correct actions, and provide an answer
back.

Figure 3: The RV4Dialogflow instantiation of RV4Chatbot.

6.2 The RV4Dialogflow instantiation of RV4Chatbot

RV4Dialogflow is structured as shown in Figure 3. To instantiate RV4Chatbot in Dialogflow, we had to
add a brand new component to the Dialogflow architecture. This made the design and implementation of
RV4Dialogflow much more complex than the RV4Rasa one.

This additional component can be generated directly from an exported Dialogflow agent using an
instrumentation script that we developed. We call this brand new component policy, for analogy with
RV4Rasa.

The instrumentation script has two outputs: a .zip file containing the new Dialogflow agent, and the
policy python script. In the new Dialogflow agent, every message is forwarded to the policy that controls

82 RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep?

the flow. The policy maintains the original agent’s flow, forwarding only the necessary messages back to
DialogFlow through a webhook5. Additionally, for each message and action performed, the policy sends
a message to the monitor.

6.3 Challenges in the RV4Dialogflow design and development

Figure 4: RV4Dialogflow policy flow.

The RV4Dialogflow policy works with events as shown in Figure 4 (reported as ev). There are two
main types of events: user and bot events.

The policy can receive messages both from the user or the bot. When it receives a message it creates
an event. An event in this domain can be of five main types: (1) a user message with all its features; (2)
a bot message with all its features; (3) a plain answer to be sent as answer; (4) an action to be performed
by the webhook; (5) the error action.

The event is then consumed: it is sent to the monitor and then if it is a plain answer it is sent on
the chat, if it is an action it is performed. Obviously, if the monitor claims an error the action is set
immediately to the error one.

When the event is consumed the policy computes the next one. For examples, if the event is a user
message the next event is the answer. The policy consumes and computes next event until the next event
is None, in this case it listens for new inputs.

6.4 Source Code

To instantiate RV4Dialogflow the needed files are:

1. instrumenter.py: 190 lines of code;

2. policy.py: (generated by the instrumenter) from 150 lines of code;

The code of RV4Dialogflow is available at http://github.com/driacats/RV4Chat/tree/main/
Dialogflow.

7 Experiments

The formalism we use to model properties to be verified at runtime is named Runtime Monitoring Lan-
guage (RML) and has been selected for its high expressive power that goes beyond Linear Temporal

5Which is the mechanism used in DialogFlow to communicate to DialogFlow from an external service, that in
RV4Dialogflow is the policy.

http://github.com/driacats/RV4Chat/tree/main/Dialogflow
http://github.com/driacats/RV4Chat/tree/main/Dialogflow

A. Gatti, V. Mascardi & A. Ferrando 83

Logic (LTL) [5] and the familiarity of the authors. As explained in Section 4, the RV4Chatbot frame-
work is meant to be instantiated with any conversational chatbot framework and any RV language and
tool. RML is one among the many existing RV languages and its adoption is only functional to run
experiments with RV4Rasa and RV4Dialogflow.

In this section, we briefly introduce RML and illustrate the RML properties that capture safety re-
quirements in the factory automation case study, providing the RML encoding of one of the properties
verified in that scenario (the complete encoding can be found in [22]). All these properties are correctly
verified by the monitor, so we do not allocate space to the qualitative experiments we conducted, as they
can be summarised by stating that “the monitor always works as expected”. Instead, we present perfor-
mance experiments, demonstrating that the addition of the monitor to the chatbot introduces negligible
overhead.

7.1 Runtime Monitoring Language

The Runtime Monitoring Language (RML [4, 6]) is a Domain-Specific Language (DSL) for specifying
highly expressive properties in RV such as non context-free ones. We chose to use RML in this work
because of its support of parametric specifications and its native use for defining interaction protocols.

Since RML is just a means for our purposes, we only provide a condensed view of its syntax and
denotational semantics in terms of the represented traces of events. A detailed explanation of some of its
operators is provided in Section 7.2 where RML specifications are provided. The complete presentation
can be found in [6].

In RML, a property is expressed as a tuple ⟨t,ETs⟩, with t a term and ETs = { ET1, . . . ,ETn } a set
of event types. An event type ET is represented as a set of pairs { k1 : v1, . . . ,kn : vn }, where each
pair identifies a specific piece of information (ki) and its value (vi). An event Ev is denoted as a set
of pairs { k′1 : v′1, . . . ,k

′
m : v′m }. Given an event type ET , an event Ev matches ET if ET ⊆ Ev, which

means ∀(ki : vi) ∈ ET · ∃(k j : v j) ∈ Ev · ki = k j ∧ vi = v j. In other words, an event type ET specifies the
requirements that an event Ev has to satisfy to be considered valid.

An RML term t, with t1, t2 and t ′ as other RML terms, can be:

• ET , denoting a set of singleton traces containing the events Ev s.t. ET ⊆ Ev;

• t1 t2, denoting the sequential composition of two sets of traces;

• t1 | t2, denoting the unordered composition of two sets of traces (also called shuffle or interleaving);

• t1 ∧ t2, denoting the intersection of two sets of traces;

• t1 ∨ t2, denoting the union of two sets of traces;

• { let x; t ′ }, denoting the set of traces t ′ where the variable x can be used (i.e., the variable x can
appear in event types in t ′, and can be unified with values);

• t ′∗, denoting the set of chains of concatenations of traces in t ′.

Event types can contain variables (we use the terms argument and variable interchangeably). In
RML, recursion is modelled by syntactic equations involving RML terms, such as t = ET1 t ∨ ET2,
modeling a finite (possibly empty) sequence of events matching the event type ET1 ended by one event
matching ET2, or the infinite trace including only events matching ET1.

84 RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep?

7.2 Factory Automation Domain properties

The three properties to be verified in the factory automation domain have been presented in the VORTEX
2023 paper [22]. We report one of them to better clarify the use of RML and the kind of protocols we
are interested in verifying at runtime.

The first property aims at ensuring that the user does not add an object in an already taken position.
The corresponding RML specification is reported in the following (as in [22]).

AddOb ject = { let x, y;

(msg_user_to_bot ∧ add_ob ject(x,y))

(msg_bot_to_user ∧ ob ject_added)

(not_add_ob ject(x,y)∗ ∧ AddOb ject) }
ET s = { msg_user_to_bot,

msg_bot_to_user,add_ob ject(x,y),

ob ject_added }
msg_user_to_bot = { sender : “user”, receiver : “bot” }
msg_bot_to_user = { sender : “bot”, receiver : “user” }
add_ob ject(x,y) = { intent : { name : “add_ob ject” },

slots : { horizontal : x,vertical : y } }
ob ject_added = { last_action : “utter_add_ob ject” }

As an example, the user’s request “Add a robot in position (3, 5)” is safe only if the position (3, 5) is
empty. But, the position is empty if the user did not already ask to put objects there. Hence, the history
of the previous interactions must be taken into account, to verify the feasibility of a new object addition.
The property is parametric w.r.t. coordinates and is defined recursively; it involves the definition of four
event types and exploits the let, ∧, and ∗ RML operators.

Figure 5 presents screenshots of the simulated environment in which the Rasa (and Dialogflow)
chatbots operate. These screenshots specifically demonstrate how, by interacting with the chatbot, the
user can add new objects to the simulated factory floor. This interaction occurs under the scrutiny of the
RML monitor, which checks, among other things, the previously mentioned property.

The second property, whose RML encoding is more complex than the previous one, deals with the
addition of an object in a position which is relative to another object in the simulation. The user’s request
may be “Add a robot on the left of Robot3”. In order to be a safe request, Robot3 should have been
previously positioned somewhere, hence previous messages involving added and removed objects, their
name, and their position in the simulation must be taken into account. The property is parametric w.r.t.
coordinates and objects names, and defined recursively; it involves eight event types and exploits the
| and ∨ RML operators, besides let, ∧, and ∗. The | operator is used, for example, to cope with the
interleaving of future additions relative to the currently added object and additions of objects that are
not relative to the newly added one. Disjunction is used to discriminate between the situation where one
added object is then removed, and hence no further references to it are allowed, and the situation where
no removal takes place, and references are safe.

The third property exploits the RML feature of constraining values in event types. It checks that any
observed message has the value associated with its confidence field – as returned by the NLU component
of the chatbot – greater than 60%.

A. Gatti, V. Mascardi & A. Ferrando 85

Figure 5: Initial scenario of the simulated factory floor (above) and the result after further iterations of
adding new objects in the scene (below) taken from [24].

7.3 Performance Evaluation

All the experiments can be tested using the code provided here https://github.com/driacats/
RV4Chat/tree/main/Examples. In particular there are three important scripts for each experiment:

• start_service.py: this script allows the user to select the platform (Rasa, Dialogflow), the
monitor (no monitor, dummy monitor, real monitor), and the scenario (factory automation), and
starts the service;

• run_test.py: this script launches the test conversation. The input messages are stored in the
test_input.txt file, and the conversation is iterated a certain number of times for each combi-
nation of platform and monitor. For each iteration, a file is created to store the response times for
each message sent;

• chat.py: this script provides a chat interface to test the chatbot. It takes as argument the platform
and manages the connection automatically. To test the program it is sufficient to start the service
and then launch the chat with the same platform.

The tests have been performed using RV4Rasa and RV4Dialogflow with three different monitoring levels:

1. without a monitor;

https://github.com/driacats/RV4Chat/tree/main/Examples
https://github.com/driacats/RV4Chat/tree/main/Examples

86 RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep?

2. with a dummy monitor that replies always True;

3. with a real monitor that checks the properties discussed in the previous sections.

For this experiment the chatbot can identify three intents and five entities. The three intents are
(1) add an object (2) add a object with a reference to another object (3) remove an object, while the
entities are (1) object to add or remove (2) vertical position (3) horizontal position (4) relative position
(5) reference object.

The Dialogflow WebHook in this case is more complex and manages the addition and the removal
of objects inside a real virtual environment. The implementation of this experiment in Rasa, with a real
Virtual Environment in the backend and a Multi-Agent System in the middle, has been presented in [22].
For the tests presented here, the API calls that in [22] accessed the virtual environment are instead sent
to a dummy script that provides a terminal based representation of a virtual space and simulates the
execution. No virtual environment implementation is involved in this experiment, which is aimed at
testing the performance of the RV mechanism.

Figure 6: Factory Automation Domain times on a test conversation of 12 messages. Messages for the
test are: (1) Add a table (2) Add a box right of table1 (3) Add a robot in front on the left (4) Add a robot in
front on the right (5) Remove box0 (6) Remove robot1 (7) Add a table behind on the left (8) Add a robot
behind on the right (9) Remove table1 (10) Remove table2 (11) Remove robot2 (12) Remove robot3.

As shown in Figure 6, the monitor does not affect the execution time of the chatbot. The first message
exhibits a significant time delay compared to the subsequent messages when using Rasa. This behaviour
is due to Rasa itself: the Rasa Tracker object and all necessary instances for the conversation are ini-

A. Gatti, V. Mascardi & A. Ferrando 87

tialised with the first message rather than at the server launch, resulting in a significantly higher time
required to process the first message compared to the others.

8 Conclusions and Future Work

This paper introduces RV4Chatbot, a framework for verifying the behaviour of conversational AI chat-
bots. RV4Chatbot achieves this in a versatile manner, imposing minimal constraints on both the chatbot
creation framework and the monitors deployed at runtime for formal verification. To demonstrate its
efficacy, this paper presents two implementations of RV4Chatbot: RV4Rasa and RV4Dialogflow. The
engineering and experimental outcomes of these implementations are detailed, particularly when applied
to safety-critical case studies in domains such as factory automation.

The experimental findings underscore RV4Chatbot’s generality, efficiency, and lightweight nature in
terms of the overhead introduced by its monitoring components.

Looking ahead, our plans involve further exploration and experimentation with RV4Chatbot, includ-
ing its application to more complex case studies that can better challenge the framework’s robustness
and performance. This will allow us to assess how the performance overhead of RV4Chatbot is im-
pacted when applied to larger, real-world conversational systems with increased message volumes, more
complex dialogue flows, and higher interaction frequencies. Additionally, while our current focus is on
conversational AI chatbots, we plan to evaluate the scalability of RV4Chatbot to understand how it per-
forms as the number of monitored properties, intents, and concurrent conversations grows. Preliminary
intuition suggests that the framework’s modularity may support scaling to moderately large applications,
but this hypothesis needs to be tested empirically.

Furthermore, the insights and experiences gained from this work may facilitate future developments
for handling generative chatbots. In such scenarios, where intents may be unavailable and decision-
making is based on machine learning techniques, we aim to refine and expand RV4Chatbot to integrate
more dynamic monitoring approaches that can accommodate the unpredictability and complexity of
generative AI.

References

[1] Abubakar Abid, Maheen Farooqi & James Zou (2021): Persistent Anti-Muslim Bias in Large Language
Models. In: AIES, ACM, pp. 298–306, doi:10.1145/3461702.3462624.

[2] Eleni Adamopoulou & Lefteris Moussiades (2020): Chatbots: History, technology, and applications. Ma-
chine Learning with Applications 2, p. 100006, doi:10.1016/j.mlwa.2020.100006.

[3] Hind Alotaibi & Hussein Zedan (2010): Runtime verification of safety properties in multi-agents systems. In:
10th International Conference on Intelligent Systems Design and Applications, ISDA 2010, November 29 -
December 1, 2010, Cairo, Egypt, IEEE, pp. 356–362, doi:10.1109/ISDA.2010.5687238.

[4] Davide Ancona, Angelo Ferrando, Luca Franceschini & Viviana Mascardi: RML web site. Available at
https://rmlatdibris.github.io/. Accessed on November 16, 2024.

[5] Davide Ancona, Angelo Ferrando & Viviana Mascardi (2016): Comparing Trace Expressions and Linear
Temporal Logic for Runtime Verification. In: Theory and Practice of Formal Methods, LNCS 9660, Springer,
pp. 47–64, doi:10.1007/978-3-319-30734-3_6.

[6] Davide Ancona, Luca Franceschini, Angelo Ferrando & Viviana Mascardi (2021): RML: Theory and
practice of a domain specific language for runtime verification. Sci. Comput. Program. 205, p. 102610,
doi:10.1016/j.scico.2021.102610.

https://doi.org/10.1145/3461702.3462624
https://doi.org/10.1016/j.mlwa.2020.100006
https://doi.org/10.1109/ISDA.2010.5687238
https://rmlatdibris.github.io/
https://doi.org/10.1007/978-3-319-30734-3_6
https://doi.org/10.1016/j.scico.2021.102610

88 RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep?

[7] Najwa Abu Bakar & Ali Selamat (2013): Runtime Verification of Multi-agent Systems Interaction Quality.
In: Intelligent Information and Database Systems - 5th Asian Conf., ACIIDS 2013, LNCS 7802, Springer,
Berlin, Heidelberg, pp. 435–444, doi:10.1007/978-3-642-36546-1_45.

[8] Ezio Bartocci, Yliès Falcone, Adrian Francalanza & Giles Reger (2018): Introduction to Runtime Verification.
In: Lectures on Runtime Verification - Introductory and Advanced Topics, LNCS 10457, Springer, pp. 1–33,
doi:10.1007/978-3-319-75632-5_1.

[9] Andreas Bauer & Jan Jürjens (2010): Runtime verification of cryptographic protocols. computers & security
29(3), pp. 315–330, doi:10.1016/j.cose.2009.09.003.

[10] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson & Wang Yi (1995): UPPAAL -
a Tool Suite for Automatic Verification of Real-Time Systems. In: DIMACS/SYCON WS on Verification and
Control of Hybrid Systems, LNCS 1066, Springer, pp. 232–243, doi:10.1007/BFB0020949.

[11] Tom Bocklisch, Joey Faulkner, Nick Pawlowski & Alan Nichol (2017): Rasa: Open Source Lan-
guage Understanding and Dialogue Management. CoRR abs/1712.05181, doi:10.48550/arXiv.1712.05181.
arXiv:1712.05181.

[12] Botium: Bots Testing Bots. Available at https://botium-docs.readthedocs.io/en/latest/. Ac-
cessed on November 16, 2024.

[13] Josip Bozic (2022): Ontology-based metamorphic testing for chatbots. Softw. Qual. J. 30(1), pp. 227–251,
doi:10.1007/s11219-020-09544-9.

[14] Josip Bozic, Oliver A. Tazl & Franz Wotawa (2019): Chatbot Testing Using AI Planning. In: IEEE Int. Conf.
On Artificial Intelligence Testing, AITest 2019, IEEE, pp. 37–44, doi:10.1109/AITest.2019.00-10.

[15] Josip Bozic & Franz Wotawa (2019): Testing Chatbots Using Metamorphic Relations. In: Testing Software
and Systems - 31st IFIP WG 6.1 Int. Conf., ICTSS 2019, LNCS 11812, Springer, pp. 41–55, doi:10.1007/978-
3-030-31280-0_3.

[16] Sergio Bravo-Santos, Esther Guerra & Juan de Lara (2020): Testing Chatbots with Charm. In: Quality of
Information and Communications Technology - 13th Int. Conf., QUATIC 2020, CCIS 1266, Springer, pp.
426–438, doi:10.1007/978-3-030-58793-2_34.

[17] Xiaoyi Chen, Siyuan Tang, Rui Zhu, Shijun Yan, Lei Jin, Zihao Wang, Liya Su, XiaoFeng Wang & Haixu
Tang (2023): The Janus Interface: How Fine-Tuning in Large Language Models Amplifies the Privacy Risks.
CoRR abs/2310.15469, doi:10.48550/ARXIV.2310.15469. arXiv:2310.15469.

[18] Bella Church (2023): 5 types of chatbot and how to choose the right one for your business. Available at
https://www.ibm.com/blog/chatbot-types/. Accessed on November 16, 2024.

[19] Edmund M Clarke (1997): Model checking. In: Int. Conf. on Foundations of Software Technology and
Theoretical Computer Science, Springer, pp. 54–56, doi:10.1007/BFb0058022.

[20] Debora C Engelmann, Angelo Ferrando, Alison R Panisson, Davide Ancona, Rafael H Bordini & Viviana
Mascardi (2023): RV4JaCa — Towards Runtime Verification of Multi-Agent Systems and Robotic Applica-
tions. Robotics 12(2), p. 49, doi:10.3390/robotics12020049.

[21] European Parliament (2023): Artificial Intelligence Act. Available at
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/
artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai. Ac-
cessed on November 16, 2024.

[22] Angelo Ferrando, Andrea Gatti & Viviana Mascardi (2023): RV4Rasa: A Formalism-Agnostic Runtime Ver-
ification Framework for Verifying ChatBots in Rasa. In: 6th Int. WS on Verification and Monitoring at
Runtime Execution, VORTEX 2023, ACM, pp. 1–8, doi:10.1145/3605159.3605855.

[23] Asbjørn Følstad, Marita Skjuve & Petter Bae Brandtzæg (2018): Different Chatbots for Different Purposes:
Towards a Typology of Chatbots to Understand Interaction Design. In Svetlana S. Bodrunova, Olessia
Koltsova, Asbjørn Følstad, Harry Halpin, Polina Kolozaridi, Leonid Yuldashev, Anna S. Smoliarova & Heiko

https://doi.org/10.1007/978-3-642-36546-1_45
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1016/j.cose.2009.09.003
https://doi.org/10.1007/BFB0020949
https://doi.org/10.48550/arXiv.1712.05181
https://arxiv.org/abs/1712.05181
https://botium-docs.readthedocs.io/en/latest/
https://doi.org/10.1007/s11219-020-09544-9
https://doi.org/10.1109/AITest.2019.00-10
https://doi.org/10.1007/978-3-030-31280-0_3
https://doi.org/10.1007/978-3-030-31280-0_3
https://doi.org/10.1007/978-3-030-58793-2_34
https://doi.org/10.48550/ARXIV.2310.15469
https://arxiv.org/abs/2310.15469
https://www.ibm.com/blog/chatbot-types/
https://doi.org/10.1007/BFb0058022
https://doi.org/10.3390/robotics12020049
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://doi.org/10.1145/3605159.3605855

A. Gatti, V. Mascardi & A. Ferrando 89

Niedermayer, editors: Internet Science - INSCI 2018 International Workshops, St. Petersburg, Russia, Octo-
ber 24-26, 2018, Revised Selected Papers, Lecture Notes in Computer Science 11551, Springer, pp. 145–156,
doi:10.1007/978-3-030-17705-8_13.

[24] Andrea Gatti & Viviana Mascardi (2023): VEsNA, a Framework for Virtual Environments via
Natural Language Agents and Its Application to Factory Automation. Robotics 12(2), p. 46,
doi:10.3390/ROBOTICS12020046.

[25] Sousa S. Geovana Ramos, Nunes R. Genaína & Dias C. Edna (2023): A Modeling Strategy for the Verification
of Context-Oriented Chatbot Conversational Flows via Model Checking. Journal of Universal Computer
Science 29(7), pp. 805–835, doi:10.3897/jucs.91311.

[26] Global Information, Inc. – GII (2024): Global Large Language Model (LLM)
Market Research Report. Available at https://www.giiresearch.com/report/
qyr1384359-global-large-language-model-llm-market-research.html. Accessed on November
16, 2024.

[27] Google: DialogFlow: Online Resource, https: // cloud. google. com/ dialogflow/ . Available at
https://cloud.google.com/dialogflow/.

[28] Google: Dialogflow web site. Available at https://cloud.google.com/dialogflow. Accessed on
November 16, 2024.

[29] Google: Gemini web site. Available at https://gemini.google.com/. Accessed on November 16, 2024.

[30] Cobus Greyling (2023): Conversational UIs & LLMs. Available at https://cobusgreyling.medium.
com/large-language-model-llm-disruption-of-chatbots-8115fffadc22. Accessed on Novem-
ber 16, 2024.

[31] Jasper AI: Jasper web site. Available at https://www.jasper.ai/chat. Accessed on November 16, 2024.

[32] Jaeho Jeon, Seongyong Lee & Hohsung Choe (2023): Beyond ChatGPT: A conceptual framework and
systematic review of speech-recognition chatbots for language learning. Comput. Educ. 206, p. 104898,
doi:10.1016/j.compedu.2023.104898.

[33] Hadas Kotek, Rikker Dockum & David Q. Sun (2023): Gender bias and stereotypes in Large Language Mod-
els. In: The ACM Collective Intelligence Conf., CI 2023, ACM, pp. 12–24, doi:10.1145/3582269.3615599.

[34] Zheng Li, Yan Jin & Jun Han (2006): A runtime monitoring and validation framework for web
service interactions. In: Australian Software Engineering Conf. (ASWEC’06), IEEE, pp. 10–pp,
doi:10.1109/ASWEC.2006.6.

[35] Xiaolin Lin, Bin Shao & Xuequn Wang (2022): Employees’ perceptions of chatbots in B2B
marketing: Affordances vs. disaffordances. Industrial Marketing Management 101, pp. 45–56,
doi:10.1016/j.indmarman.2021.11.016. Available at https://www.sciencedirect.com/science/
article/pii/S001985012100242X.

[36] Donald W. Loveland (1978): Automated theorem proving: a logical basis. Fundamental studies in computer
science 6, North-Holland.

[37] MarketsandMarkets (2023): Conversational AI Market. Available at https://www.marketsandmarkets.
com/Market-Reports/conversational-ai-market-49043506.html. Accessed on November 16,
2024.

[38] Meta: Wit.ai web site. Available at https://wit.ai/. Accessed on November 16, 2024.

[39] Martin Mitrevski (2018): Getting started with wit.ai, doi:10.1007/978-1-4842-3396-2_5.

[40] Open AI (2022): Introducing ChatGPT. Available at https://openai.com/blog/chatgpt. Accessed on
November 16, 2024.

[41] Rasa technologies: Rasa web site. Available at https://rasa.com/. Accessed on November 16, 2024.

[42] Navin Sabharwal, Amit Agrawal, Navin Sabharwal & Amit Agrawal (2020): Introduction to Google Di-
alogflow.

https://doi.org/10.1007/978-3-030-17705-8_13
https://doi.org/10.3390/ROBOTICS12020046
https://doi.org/10.3897/jucs.91311
https://www.giiresearch.com/report/qyr1384359-global-large-language-model-llm-market-research.html
https://www.giiresearch.com/report/qyr1384359-global-large-language-model-llm-market-research.html
https://cloud.google.com/dialogflow/
https://cloud.google.com/dialogflow/
https://cloud.google.com/dialogflow
https://gemini.google.com/
https://cobusgreyling.medium.com/large-language-model-llm-disruption-of-chatbots-8115fffadc22
https://cobusgreyling.medium.com/large-language-model-llm-disruption-of-chatbots-8115fffadc22
https://www.jasper.ai/chat
https://doi.org/10.1016/j.compedu.2023.104898
https://doi.org/10.1145/3582269.3615599
https://doi.org/10.1109/ASWEC.2006.6
https://doi.org/10.1016/j.indmarman.2021.11.016
https://www.sciencedirect.com/science/article/pii/S001985012100242X
https://www.sciencedirect.com/science/article/pii/S001985012100242X
https://www.marketsandmarkets.com/Market-Reports/conversational-ai-market-49043506.html
https://www.marketsandmarkets.com/Market-Reports/conversational-ai-market-49043506.html
https://wit.ai/
https://doi.org/10.1007/978-1-4842-3396-2_5
https://openai.com/blog/chatgpt
https://rasa.com/

90 RV4Chatbot: Are Chatbots Allowed to Dream of Electric Sheep?

[43] Sanjit A. Seshia, Ankush Desai, Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim,
Sumukh Shivakumar, Marcell Vazquez-Chanlatte & Xiangyu Yue (2018): Formal Specification for Deep
Neural Networks. In: Automated Technology for Verification and Analysis - 16th Int. Symposium, ATVA
2018, LNCS 11138, Springer, pp. 20–34, doi:10.1007/978-3-030-01090-4_2.

[44] Jin Shao, Hao Wei, Qianxiang Wang & Hong Mei (2010): A Runtime Model Based Monitoring Approach for
Cloud. In: IEEE International Conference on Cloud Computing, CLOUD 2010, Miami, FL, USA, 5-10 July,
2010, IEEE Computer Society, pp. 313–320, doi:10.1109/CLOUD.2010.31.

[45] Technical Committee:ISO/TC 299 Robotics (2011): Robots and robotic devices – Safety requirements for
industrial robots. Standard.

[46] Xianjun Yang, Xiao Wang, Qi Zhang, Linda R. Petzold, William Yang Wang, Xun Zhao & Dahua Lin (2023):
Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models. CoRR abs/2310.02949,
doi:10.48550/ARXIV.2310.02949. arXiv:2310.02949.

[47] Zheng Xin Yong, Cristina Menghini & Stephen H. Bach (2023): Low-Resource Languages Jailbreak GPT-4.
CoRR abs/2310.02446, doi:10.48550/ARXIV.2310.02446. arXiv:2310.02446.

[48] Yue Zhang, Yafu Li, Leyang Cui & et al. (2023): Siren’s Song in the AI Ocean: A Survey on Hallucination
in Large Language Models. arXiv:2309.01219.

https://doi.org/10.1007/978-3-030-01090-4_2
https://doi.org/10.1109/CLOUD.2010.31
https://doi.org/10.48550/ARXIV.2310.02949
https://arxiv.org/abs/2310.02949
https://doi.org/10.48550/ARXIV.2310.02446
https://arxiv.org/abs/2310.02446
https://arxiv.org/abs/2309.01219

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 91–108, doi:10.4204/EPTCS.411.6

© Y. Murray, H. Nordlie, D.A. Anisi, P. Ribeiro & A. Cavalcanti
This work is licensed under the
Creative Commons Attribution License.

Model Checking and Verification of
Synchronisation Properties of Cobot Welding

Yvonne Murray
Pioneer Robotics AS

Dept. of Mechatronics, University of Agder
Norway

ym@pioneer-robotics.no

Henrik Nordlie
Robotics Group, Faculty of Science & Technology
Norwegian University of Life Sciences (NMBU)

Norway

David A. Anisi
Dept. of Mechatronics, University of Agder

Robotics Group, Faculty of Science & Technology
Norwegian University of Life Sciences (NMBU)

Norway

Pedro Ribeiro
Dept. of Computer Science

University of York
UK

Ana Cavalcanti
Dept. of Computer Science

University of York
UK

This paper describes use of model checking to verify synchronisation properties of an industrial weld-
ing system consisting of a cobot arm and an external turntable. The robots must move synchronously,
but sometimes get out of synchronisation, giving rise to unsatisfactory weld qualities in problem ar-
eas, such as around corners. These mistakes are costly, since time is lost both in the robotic welding
and in manual repairs needed to improve the weld. Verification of the synchronisation properties has
shown that they are fulfilled as long as assumptions of correctness made about parts outside the scope
of the model hold, indicating limitations in the hardware. These results have indicated the source of
the problem, and motivated a re-calibration of the real-life system. This has drastically improved the
welding results, and is a demonstration of how formal methods can be useful in an industrial setting.

1 Introduction

Robotic welding is commonly used in industrial workshops to increase efficiency and repeatability, and
reduce dangerous and ergonomically straining work for human welders [12]. To address the needs of
small and medium-sized enterprises (SMEs), which produce a large variety of products in small quanti-
ties, the welding system must be easy and fast to re-program, and highly flexible. To this end, Pioneer
Robotics have developed the IntelliWelder M06 [17], a flexible and light-weight welding system consist-
ing of a Universal Robots (UR) UR10e cobot [8] equipped with a welding torch and a Carpano FIVE
MOT turntable serving as an external axis (EXAX). Fig. 1 shows the components of the IntelliWelder.

The main challenge in the operation of the IntelliWelder M06 has been to get a high quality, continuous
weld in difficult areas, such as around corners. To get the best results, it is important that the welding
robot and the turntable move continuously in a synchronous fashion. By using synchronous welding, it
is possible to achieve a continuous weld of high quality, ensuring the weld is not jagged and interrupted.
When the synchronisation does not work properly, the welding gun does not move forward in an even
motion, and can move too fast or too slow. Moving too fast does not give the metal and filler enough
time to heat up and weld together, while moving too slow results in build-up of filler material. Both of
these problems can be seen in the weld depicted in Fig. 2.

This experience report describes how we have addressed some challenges faced when the UR robot
and the EXAX move synchronously while welding. Relevant parts of the system have been modelled in

http://dx.doi.org/10.4204/EPTCS.411.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

92 Model Checking and Verification of Synchronisation Properties of Cobot Welding

Figure 1: The IntelliWelder system with the different components marked by number [16].

Figure 2: Typical welding issue where there is buildup of filler material (A) and coverage is not sufficient (B),
creating an irregular and weakened weld.

RoboChart [14], a domain-specific language for modelling and verification of robotic systems. Using our
RoboChart model, key synchronisation properties have been verified using the refinement model checker
FDR [25]. Details omitted here are in [16]; the work demonstrates how formal verification can be used
in industry, and how the results can be used to localise the error source, leading to system improvements.

Previous research on multi-robot welding include [20], which focuses on nominal trajectory planning and
self-coordination, and [27], which studies trajectory smoothing in a dual-robot collaborative welding sys-
tem. Neither of these lines of work use formal methods or model checking. Closer to our research, the
work in [19] combines graphic and formal methods to analyse collaborative behaviour such as deadlock
and equivalence properties. None of these works, however, consider the issue of correct time synchroni-
sation during multi-robot execution like we do in our case study.

The rest of this paper is organised as follows. In Section 2, we motivate our use of formal methods and
model checking. In Section 3, we detail the system architecture and requirements, before the model is
presented in Section 4. In Section 5, we present the verification results and their practical implications.
Finally, in Section 6, we conclude, describe ongoing work, and suggest further work.

Y. Murray, H. Nordlie, D.A. Anisi, P. Ribeiro & A. Cavalcanti 93

2 Formal Verification and Model Checking

To find and mitigate faults and undesired behaviour in robotic systems, they are traditionally subject to
testing, including simulation before deployment. For real-world, complex robotic systems, however, it
is impossible to test every possible scenario and input sequence. Moreover, even if a fault is discovered,
error source localisation remains a challenge. In this setting, formal verification methods are a useful
supplement. Model checking [1, 7] is a formal method to verify that given properties are fulfilled,
regardless of inputs. If a property does not hold, model checking provides a counterexample that can
pinpoint the cause of error. Adopting such methods is valuable in the design of real, industrial systems.

RoboTool [14] is a suite of plugins for the Eclipse IDE supporting use of the RoboStar framework [5].
Our previous work on verification of an industrial control system [15] using RoboStar has shown its
proficiency and strengths. In RoboStar, a key artefact is a RoboChart [13] model that reflects the real
system design. Once this model is created, assertions for the selected properties can be written and
verified using the CSP process algebra and its model checker, FDR [10].

As our use case considers an already existing IntelliWelder system, we need to alter the idealised work-
flow of RoboStar [5] by effectively "reverse engineering" the RoboChart model from the existing system.

3 IntelliWelder and Synchronous Welding

In this section, we describe our case study: its architecture (Section 3.1), software (Section 3.2), and
requirements (Section 3.3), identifying the problem we are addressing with model checking.

3.1 System Architecture

An illustration of the IntelliWelder’s architecture can be seen in Fig. 3. To realise synchronous welding,
Delfoi offline robot programming software from Visual Components [26] is used for creating waypoints
and welds in a 3D layout consisting of the UR10e [22], the Carpano FIVE turntable, and the workpiece
to be welded. Welds are created simply by selecting an edge on the workpiece CAD model. Delfoi then
creates waypoints for both the UR robot and the Carpano turntable, so that each waypoint for the robot
has a corresponding waypoint for the turntable, creating nominally synchronised movements.

Figure 3: System architecture of the IntelliWelder. The blue dotted line indicates the scope of the RoboChart
model: part of the Industrial PC (IPC), the Real-Time Data Exchange (RTDE) for the UR robot, and the URScript.

The waypoint paths generated in Delfoi are transferred to the Industrial PC (IPC). The waypoints are
then processed to convert them into trajectories based on the desired forward welding speed and other

94 Model Checking and Verification of Synchronisation Properties of Cobot Welding

welding parameters. The waypoints for the external axis remain unchanged and are converted into a
trajectory, while the waypoints for the UR robot are sampled at a higher resolution before being turned
into its trajectory. Consequently, the UR robot has more waypoints to process than the Carpano FIVE.
Once the trajectories are generated, the IPC sends them as movement requests for the system to execute.

The Carpano FIVE is controlled by a Programmable Logic Controller (PLC) that receives movement
commands from the IPC. These commands can be based on position and velocity, or just velocity. The
PLC then regulates movement using a PID. The Real-Time Data Exchange (RTDE) synchronises external
applications with the UR robot [23]. It relays messages from the IPC to the UR robot via a TCP/IP
connection. The UR robot controller executes URScript applications and manages movement via a PID.

3.2 Existing URScript code

In the current implementation, every time a movement request for the UR robot arrives, the URScript
code runs on the UR controller. Required variables are read from the registers, updated by the RTDE,
and the code checks if the target time for the next waypoint has already passed (that is, the robot is behind
schedule). If so, the code logs a warning and continues to the next target.

Next, the URScript decides which movement type is preferable to reach the next waypoint, based on
variables like blend radius, offset, joint velocities, and whether the next movement involves a sharp
turn. The script selects between MoveJ, MoveL and MoveP, which are standard UR robot movements
described in the user manual [24]. However, if none of the standard movement types are suitable, a
custom-made function called MoveL_with_t is used for the movement. The custom URScript function
MoveL_with_t uses the standard MoveL command with the next target pose and next target time as
arguments. In that way, the UR robot can calculate the necessary velocity to reach the next target within
the target time, using maximum acceleration. The reason for this being a fallback solution, only used
when the standard movements are not feasible, is that it does not include a blend radius.

With a blend radius, we ensure that when the UR robot is within a given distance of the waypoint, it starts
moving towards the next waypoint instead of completely finishing the move to the current waypoint. So
instead of coming to a brief stop at the waypoint, it keeps moving towards the next, giving a smoother
transition. Lack of a blend radius results in a jagged movement that is not ideal for welding.

The next section describes the requirements that the design just presented is expected to satisfy.

3.3 Requirements

We present here both system requirements (in Section 3.3.1), and requirements specifically for the com-
ponents that we model as described in Figure 3 (in Section 3.3.2).

3.3.1 System-Wide Requirements

There are several requirements for the IntelliWelder system as a whole, discussed in detail in [16]. The
most important of these requirements are the following two:

1. The welding torch must always stay in an area defined by a maximum deviation from the weld
frame. This includes both position and orientation.

Y. Murray, H. Nordlie, D.A. Anisi, P. Ribeiro & A. Cavalcanti 95

2. The welding torch must always move forward in the weld frame with a speed that is within a given
maximum deviation of the desired forward weld speed.

These requirements need to be refined into specific requirements for Delfoi, the IPC planner, the calcula-
tion of arguments for the robot commands, and the execution of movements. Additionally, they expand
to include requirements related to information communication and code execution time.

3.3.2 Model Requirements

With the system wide requirements in mind, the following requirements for the modelled component (see
Figure 3) can be obtained, as described in detail in [16]:

R1 The component should detect events that imply that the system is out of sync.

R2 For each movement request received from the IPC, the corresponding robot should receive a move-
ment command unless the system is out of sync.

The requirements R1 and R2 above are the properties we verify using model checking. If some of the
assertions fail, it can help to pinpoint existing mistakes in the software. If all assertions pass, it indicates
that some of the assumptions made on the component’s context and the hardware are invalid.

To check the hardware, two different cases are evaluated: one where it is impossible for the robot to
receive a waypoint that is already in the past (nominal case), and one where that is possible (realistic
case). If the model checking results vary between the two, for example, if the assertions pass in the
nominal case (which assumes the hardware is able to keep to the planned trajectory) but fail in the
more realistic case, it is an indication that assumptions about velocities, accelerations, and perfect move
execution, made on the real-life system, are inaccurate. We recall that the system does present a problem.
So, if the problem is not present when the hardware executes the planned trajectory, then we can conclude
that our assumptions about the hardware are not satisfied, and so, inaccurate.

In the next section, we present the RoboChart model we use to carry out our verification.

4 Modelling in RoboChart

Our RoboChart model reflects the system architecture already described, and the existing code and spec-
ifications. Any possible communication delays are assumed to be handled separately and are hence
negligible for our purposes here. The components modelled receive movement requests as inputs. Thus,
trajectory planning is outside of the model’s scope and the feasibility of planned trajectories is assumed.

As previously noted, the number of waypoints differs for the UR robot and the Carpano FIVE, so both
are expected to receive and execute commands concurrently and independently. In terms of control flow,
the model’s scope extends until the point where these movement commands are initiated for the Carpano
FIVE and the UR robot. From that point, they handle the execution of movements. We expect and
assume that the actual execution of movement commands by the UR robot and Carpano FIVE is correct
and, therefore, that is also beyond the model’s scope.

The definition of the model’s scope reflects the fact that our goal is to check that our use of the Carpano
FIVE and UR robot commands is appropriate. Therefore, in the RoboChart model, these commands are
captured as services of the robotic platform, which we do not further specify.

96 Model Checking and Verification of Synchronisation Properties of Cobot Welding

The component modelled is responsible for selecting the most appropriate movement type for each re-
quest. It also detects if the system is out of sync, meaning the target time for a movement request has
already passed, resulting in a negative time budget. In the model, this is indicated by the occurrence of
an out-of-sync event, and is considered a critical failure.

Next, we justify the abstractions and simplifications made in the RoboChart model (Section 4.1), and
then present the RoboChart model itself (Section 4.2).

4.1 Abstractions and Simplifications

It is well-known that model checking eventually encounters state-explosion problems. To keep the com-
plexity and verification time at bay, the following abstractions and simplifications have been made.

Reduction of number of joints: The Carpano FIVE turntable has two joints, one for tilting and one
for turning. The IntelliWelder, however, only uses the turning axis during the synchronous welding.
Thus, this is the only axis that is considered in the model. The UR robot has six rotational joints, but it
is modelled with only two. Although this selection can be made arbitrarily, selecting one from the first
three joints (to represent position) and the other from the last three joints (to represent orientation) is
advocated. By modelling two axes, the model still captures potential problems related to multiple joint
values. Extending the model to include six axes affects the computational complexity of the model, as
it would lead to additional parameters of operations (explained in the next section). These operations,
however, are not further specified as they represent services that are out of the scope of our verification.
So, additional parameters are not relevant for the verification, but just the fact that they are available.

Limited value ranges: To decrease the computation time and complexity, the value ranges of the
variables of type real, recording distance, are limited. To cover both negative, positive, and zero-values,
the integer range [-1..1] has been chosen. Similarly, the int variables recording discrete time are limited
to the two ranges [0..2] and [-1..1]. With the first range, with only positive values, the assumption is that
the UR robot and EXAX are never so late that the next waypoint is already in the past. When a negative
value -1 is included, we can check whether the goal time for the next waypoint has passed. Lastly, the
variables recording the current waypoint for the UR robot and the turntable, of datatype nat, are limited
to the ranges [0..3] and [0..1], respectively. So, the maximum number of waypoints for the UR robot are
4 and for the turntable 2, capturing that the number of waypoints can vary in the real system.

Omitted variables: Some variables defined in the URScript are not used in the model to minimize the
number of variables. For instance, current and target positions are not included if they are only used to
calculate a distance. Instead, the distance is input directly. Adopting a similar approach, other variables
are omitted or given a boolean rather than a numerical type to reduce the state space.

4.2 RoboChart Model

In writing a RoboChart model, a key decision is the definition of events and operations that capture
services of the robotic platform. The previous section describes our assumptions, some of which are
reflected in these definitions. These services are not further specified and establish the interface of the
model. Properties are described in terms of interaction with the modelled component via these services.

Y. Murray, H. Nordlie, D.A. Anisi, P. Ribeiro & A. Cavalcanti 97

Fig. 4 shows the robotic platform of our model (on the right), with three input events (start_system,
next_UR_move and next_EXAX_move) and the five operations that can be called (four operations
in ur_ops and one in exax_ops). The events, declared in the events interface, are used to initiate the
system and send new move requests as previous moves are completed. The operations are defined in
two separate interfaces: ur_ops and exax_ops, corresponding to the move commands that are executed
by the UR robot and the Carpano FIVE. Although the model declares one robotic platform, it captures
services of both the robot and the turntable used by the software.

Figure 4: Robotic platform with its defined events, provided operations and custom record types to represent move
commands.

Module A RoboChart model is defined by a module block, including the robotic platform and, in
our case, one controller block, as shown in Fig. 5. Our module is called main, and the behaviour of
our controller is defined by five parallel state machines, acting over the events and operations of the
robotic platform as declared in three required interfaces and reflected in connections between the robotic
platform and the controller (arrows between the blocks annotated with async).

A RoboChart controller defines how the events of the robotic platform connect to its state machines. In
our example, start_system is used by the machine called System. The other two events are used by the
machine state_check. A controller also defines how its state machines are connected to each other, via
their events, to exchange information and synchronise their behaviour. In Fig. 5, the Controller block
includes five blocks, each a reference to one of its state machines, as indicated by the keyword ref. In
what follows, we present the definition of these machines.

The System state machine Its definition is shown in Fig. 6. In each state of System, a shared variable
sys_state is updated to record the current state of the system. This variable is used in the state_check
machine presented later to decide whether or not a movement request should be forwarded to the EXAX
or to the UR state machine, that is to the turntable or to the UR robot.

The initial junction, a black circle with an i, indicates wait_for_start as the initial state of System,
where it waits for the event start_system. When start_system happens, System moves to the working
state, where it stays until either the UR robot or the EXAX finishes all of their waypoints, as indicated

98 Model Checking and Verification of Synchronisation Properties of Cobot Welding

Figure 5: Main module including the Controller with all state machines and the robotic platform.

by events UR_done and EXAX_done, or an out_of_sync event occurs. An out_of_sync event, from
any of the states working, UR_finished or EXAX_finished, results in a transition to the final state: white
circle with an F. This means that the System state machine cannot progress further.

If both UR_done and EXAX_done occur, regardless of in which order, System goes through either the
state UR_finished (if the UR robot finishes first) or EXAX_finished (if the EXAX finishes first), before
going back to wait_for_start. This is the end of a welding operation.

The EXAX state machine Its definition, shown in Fig. 7, captures the behaviour of the turntable.
EXAX starts in the wait_for_move state, waiting for a move command. The variable curr_waypoint
is initialised to 0, and with the constant n_waypoints defined as 1, as in Fig. 7, the turntable goes
through two waypoints. When EXAX receives a move event, it stores the requested distance and time to
move in a variable exax_move. In the junction (dark circle), it is checked if the time of the movement
request (exax_move.time) is strictly negative. If it is, an out_of_sync event is triggered and EXAX
terminates. Otherwise, EXAX moves to a state by_position, where the operation go_to_pos is called
using as arguments the values in exax_move. If curr_waypoint is greater or equal to n_waypoints,
curr_waypoint is reset and the done event is triggered. This is then relayed, by the controller, to the

Y. Murray, H. Nordlie, D.A. Anisi, P. Ribeiro & A. Cavalcanti 99

Figure 6: System state machine.

System state machine via its event EXAX_done. (System then transitions to its state EXAX_finished).

The UR state machine It is defined in Fig. 8 to model the behaviour of the UR robot, and is similar
to EXAX (Fig. 7). The same method of counting and incrementing waypoints is used, and the done
and out_of_sync events are used in the same way. The UR robot, however, chooses the most suitable
movement type, so choose_cmd is more complex than the by_position state of EXAX.

Upon entering the choose_cmd state, the boolean variable choosing is set to true. This ensures that
a move command must be chosen before leaving the state, since the only transition out of the state
choose_cmd has a guard that requires the value of choosing to be false.

Which move command is chosen depends on whether or not the move request includes blending, a large
offset from the ideal path (set to 0.8mm in our use case), or a sharp corner. The first junction checks
whether the move request includes a blend radius or not, that is, whether ur_move.blending is true or
false, where the variable ur_move records the data associated with the move request as defined in the
transition out of wait_for_move. If it does include a blend radius, the next junction checks whether the
move request includes a large offset (ur_move.large_offset).

If the offset is smaller than the threshold, moveJ is chosen: UR transitions to the moveJ state, where the
operation of the same name is called and the variable choosing is set to false in the exit action. With

100 Model Checking and Verification of Synchronisation Properties of Cobot Welding

Figure 7: EXAX state machine

that choose_cmd is exited. If the offset is large, the next junction checks whether the move request
contains a sharp corner or not (ur_move.sharp_corner). If it does not, moveP is suitable, but if it does,
it is necessary to use moveL_with_t. In each case, like for moveJ, the entry action of a state calls the
right operation and the exit action updates choosing. If the move command does not include blending,
the system enters the big_dist_check state after the very first junction. In the entry action of that state,
the check_big_dist function checks if the absolute value of either of the joint distances is larger than a
given value (in the example, 1), since the distance determines if moveL is sufficient. If the distance is
short, a moveL_with_t command is issued in the state of the same name.

The out_of_sync Relay state machine It is simple and omitted here; it relays the out_of_sync event
from the EXAX and UR to System. This is necessary just because RoboChart prohibits connecting two
different events to the same input of another machine. Full details can be found in [16].

The state_check state machine It is defined in Fig. 9 and has a single state checker with two self-
transitions. They are triggered by events that accept and record a move command in local variables
ur_move or exax_move depending on whether the UR or the EXAX received a move request (whether
an input event ur_move_in or exax_move_in happens).

The guards of the transitions ensure that these inputs are accepted only if the system is in a state where
the move command should be forwarded to the UR or EXAX machines. There are only two states
where they should move: states working or EXAX_finished, for the event ur_move_in, and working or
UR_finished, for exax_move_in. In the actions of the transitions, if a move request for the UR robot
arrives, it is forwarded to the UR state machine. Similarly, a move request for EXAX is forwarded to
the EXAX state machine. With the guards in the transitions, the state_check machine ensures that no
move operations can be executed before the system has started, and that once a robot has reached all its
waypoints, no further move operations can be executed until the system is reset and restarted.

Y. Murray, H. Nordlie, D.A. Anisi, P. Ribeiro & A. Cavalcanti 101

Figure 8: UR state machine.

5 Model Checking

In this section, we describe the model checking and its results: the defined properties and assertions (Sec-
tion 5.1), the results from FDR (Section 5.2), and their implications for the real-life system (Section 5.3).

5.1 Verification of Selected Properties

Based on the requirements from Section 3.3, assertions can be formulated in natural language, and later
defined in tock-CSP, which is a dialect of the process algebra CSP where the event tock marks the passage
of discrete time. To this end, the following properties are to be validated through model checking [16]:

• Every time an EXAX_move or UR_move input event is triggered by the robotic platform, the
corresponding movement operation for EXAX or UR, respectively, is called. This is captured in
assertion A1 and A2 for EXAX , and in assertion A3 and A4 for UR.

• The EXAX state machine and the UR state machine do not terminate. This is captured in assertion
A5 and in assertion A6, respectively.

• If no out_of_sync event occurs in the System state machine, the state machine does not terminate.
This is captured in assertion A7.

102 Model Checking and Verification of Synchronisation Properties of Cobot Welding

Figure 9: State machine responsible for relaying the move commands of the UR and EXAX only if System is in a
state where those state machines should receive commands.

All the assertions described above are detailed next.

Assertion A1 We present in Listing 1 the RoboTool script defining assertion A1. With that, RoboTool
can use FDR to check whether the assertion holds or not. FDR uses tock-CSP processes that define the
semantics of the state machines presented in the previous section. These tock-CSP processes are auto-
matically calculated by RoboTool. The scripts are written in a mixture of natural language and CSP.

As defined in Listing 1, assertion A1 requires that EXAX refines SpecA1 in the traces model,
on line 8. This means that assertion A1 requires the traces of the process EXAX for the machine of the
same name to be also traces of the process SpecA1 defined in lines 1-7.

1 timed csp SpecA1 csp-begin
2 Timed (OneStep) {
3 SpecA1 = let
4 Def = (CHAOS(Events) [| {|EXAX::move.in|} |>
5 ADeadline({|EXAX::go_to_posCall|}, 0)); Def
6 within timed_priority(Def) }
7 csp-end
8 timed assertion A1: EXAX refines SpecA1 in the traces model.

Listing 1: Definition of SpecA1 and assertion A1.

SpecA1 is defined directly in CSP, as indicated in lines 1 and 7. Moreover, it is defined within a Timed

section (line 2). So, it is a tock-CSP process. It is given by the equation in line 3.

Y. Murray, H. Nordlie, D.A. Anisi, P. Ribeiro & A. Cavalcanti 103

The definition of SpecA1 uses a let-within construct. In the let clause, a process Def (lines 4-5) is
defined. In the within clause, it is used to define SpecA1 using a timed_priority function. This is
just a technicality of FDR: timed_priority enforces the understanding of tock as a special event that
marks the passage of time. So, the behaviour of SpecA1 is really that of Def.

The behaviour of Def is initially that of CHAOS(Events), a process that allows any event to occur. It can,
however, be interrupted (operator [| ... |>]) by the CSP event EXAX::move.in, which represents the
input move. Upon interruption, the behaviour of Def is give by ADeadline. This is a parameterised CSP
process defined in the RoboTool tock-CSP mechanisation [2] that takes a set of events and a deadline,
given as a number of tock events, as arguments. It requires that one of the events in the provided set,
in this case only EXAX::go_to_posCall, the CSP process representing a a call to go_to_pos, occurs
within the deadline, which here is set to 0. Thus, the call to the go_to_pos operation is required to
happen immediately when the EXAX::move_in event occurs.

Assertion A2 For assertion A1 to be meaningful, it is necessary to ensure that the EXAX state
machine is timelock-free, due to the trivial case where the process refuses the event tock. This is checked
with assertion A2. Listing 2 shows the definition of A2, where EXAX2 on line 3 is defined as a version
of EXAX in whose traces the events EXAX::go_to_posCall are ignored (using the hidden operator: \).
This is done because the machine can timelock in the call to that operation, that is, refuse the tock event.
This is because that call, being in an entry action, is urgent, and deadlines create potential timelocks. In
tock-CSP, when a deadline is reached, tock is refused. For the EXAX::D__ process (line 3), two arguments
(0, 1) are needed due to technicalities of the CSP model of RoboChart. The first argument is an ID-value,
and the second is the value of n_waypoints, which is not fixed in the model of a machine.

1 timed csp EXAX2 csp-begin
2 Timed(OneStep) {
3 EXAX2 = EXAX::D__(0, 1) \ {| EXAX::go_to_posCall |}
4 }
5 csp-end
6 assertion A2: EXAX2 is timelock-free.

Listing 2: Definition of EXAX2 and assertion A2.

Assertion A3 The definition of assertion A3 and SpecA3 can be seen in Listing 3. This is the UR
equivalent to assertion A1 and SpecA1. This assertion ensures that for each move event, one of the
four move operation calls must be made before any time is allowed to pass.

1 timed csp SpecA3 csp-begin
2 Timed(OneStep) {
3 SpecA3 = let
4 Def = (CHAOS(Events) [| {|UR::move.in|} |> ADeadline(
5 {|UR::moveJCall,UR::movePCall,UR::moveLCall, UR::moveL_with_tCall|},0));
6 Def
7 within timed_priority(Def) }
8 csp-end
9 timed assertion A3: UR refines SpecA3 in the traces model.

Listing 3: Definition of SpecA3 and assertion A3

104 Model Checking and Verification of Synchronisation Properties of Cobot Welding

Assertion A4 Also for the UR STM it is important to ensure timelock-freedom, and this is done in
assertion A4, which is the UR equivalent to assertion A2 and omitted here.

Assertions A5 and A6 They are defined in Listing 4; they require that the EXAX and UR state ma-
chines, respectively, do not terminate. These assertions are expected to pass given that no out_of_sync
occurs.

1 assertion A5: EXAX does not terminate.
2 assertion A6: UR does not terminate.

Listing 4: Definition of assertion A5 and assertion A6.

Assertion A7 Listing 5 shows the definition of SysTerminates, as well as the definition of a pro-
cess Stop, and assertion A7. The process SysTerminates (line 3) is based on another process
(SysConstrained from line 2) which is a version of the system where out_of_sync events are skipped.
So, the SysTerminates process on line 3 only takes into account the termination event of the System
state machine. This is done by hiding all events except System::terminate using the |\ operator. If
System terminates despite the out_of_sync event being ignored, the assertion should fail, and this is
captured by comparing SysTerminates to the process Stop (line 6-8). Stop is equivalent to the CSP
process STOP, which is a deadlock. This means that the Stop process can never perform any events be-
fore terminating, and so by demanding that SysTerminates refines Stop in the traces model,
it can be ensured that this process never performs System::terminate, and thus never terminates. The
assertion is expected to always pass since the out_of_sync event is being ignored. Still, it shows that in
the cases where it does not occur, the System state machine does not terminate.

1 timed csp Systerminates associated to System csp-begin
2 SysConstrained = (System::D__(0) [| {| System::out_of_sync |} |] SKIP)
3 SysTerminates = (SysConstrained ; System::terminate -> SKIP) |\ {| System::

terminate |}
4 csp-end
5
6 csp Stop csp-begin
7 Stop = STOP
8 csp-end
9

10 assertion A7: SysTerminates refines Stop in the traces model.

Listing 5: Definition of SysTerminates, Stop and assertion A7.

5.2 Results from Checking the Assertions

As previously mentioned, the assertions have been run with two different value ranges for the time
variable, core_int. The range [0..2] implies that it is not possible to receive negative time budgets for
the movements, meaning that the movements are always performed in accordance with nominal plans.
The range [-1..1] implies that negative time budgets can occur, signifying either an infeasible plan from
Delfoi or incorrect execution of movements by either the UR robot or the turntable. The assertions have
been checked on a computer with an AMD Dual EPYC 7501 (2*32 cores) processor and 2TiB of RAM.

Y. Murray, H. Nordlie, D.A. Anisi, P. Ribeiro & A. Cavalcanti 105

Assertion Result Elapsed Time Complexity
Compilation Verification Total States Transitions

A1 ✓ 10.79s 0.34s 11.13s 228 713
A2 ✓ 11.10s 0.32s 11.42s 228 713
A3 ✓ 14.42s 0.51s 14.93s 5,060 17,001
A4 ✓ 14.15s 0.57s 15.72s 5,060 17,001
A5 ✓ 0.12s 0.39s 0.51s 228 713
A6 ✓ 0.12s 0.60s 0.72s 5,060 17,001
A7 ✓ 0.64s 0.55s 1.19s 32 197

Table 1: Results of model-checking all assertions in FDR with core_int = [0..2].

Assertion Result Elapsed Time Complexity
Compilation Verification Total States Transitions

A1 X 11.16s 0.26s 11.42s 11 87
A2 X 10.94s 0.28s 11.22s 99 388
A3 X 15.23s 0.26s 15.49s 75 1,235
A4 X 14.19s 0.35s 14.54s 931 4,412
A5 X 0.10s 0.40s 0.50s 153 554
A6 X 0.12s 0.48s 0.60s 1,497 6,329
A7 ✓ 0.70s 0.58s 1.28s 32 197

Table 2: Results of model-checking all assertions in FDR with core_int = [-1..1].

Nominal case with only positive time budgets, [0..2] As summarized in Table 1, all assertions pass.
This outcome is desirable for verifying the synchronisation properties. Since A1 and A3 pass, it can be
concluded that a movement operation is always called for each movement request received. Relating
back to the requirements in Section 3.3, it indicates that R2 is satisfied.

Realistic case with possibility of negative time budget, [-1..1] As summarised in Table 2, the only
assertion that passes is A7. Fig. 10 shows an example of a trace related to the failed assertion A5. It shows
an out_of_sync event, which should lead to termination due to EXAX_move having a negative value
for the time variable. The counterexample, given at the bottom in Fig. 10, shows that the system does
not terminate. Since out_of_sync events are possible, it shows that R1 from Section 3.3 is satisfied.

Figure 10: Trace showing a counterexample to assertion A5 - EXAX does not terminate.

106 Model Checking and Verification of Synchronisation Properties of Cobot Welding

5.3 Implications and Real-Life System Improvements

The fact that all assertions in the nominal case (core_int = [0..2]) pass, and all assertions apart from one
in the realistic case (core_int = [-1..1]) fail, indicates that the robots are unable to follow the nominal
plans. This could be, for instance, due to hardware limitations, like insufficient maximum speed or
acceleration, or inaccuracy in their trajectory following. To minimise errors, a full re-calibration of the
real-life system has been done. Since the programming is offline in Delfoi, it is crucial that the physical
system is calibrated precisely so the digital CAD model is correctly positioned and orientated. The
resulting weld after the calibration, as seen in Fig. 11, shows a significant improvement in quality.

Figure 11: A corner of the workpiece showing significantly improved welding quality after system re-calibration.

6 Conclusion and Further Work

Applying model checking to an already existing industrial robotic system with known weaknesses has
proved to be both challenging and useful. The main challenge lies in ensuring that the model catches the
essential characteristics of the real-life system. Abstractions and assumptions need to be made to keep
the computational complexity at a reasonable level. However, it is crucial that they are not so limiting
that the model fails to capture the behaviour and possible errors. Keeping an eye on this so-called “reality
gap” between the model and the real system is vital.

Even though improvements have been made on the real-life system based on the findings from the model
checking, there is still room for improvement. An interesting path for further work is to verify the
assumptions made on the hardware, to achieve a co-verification similar to that in [15]. It is also beneficial
to verify the offline programming in Delfoi, and set requirements for the generation of waypoints. This
will ensure the feasibility of the planned trajectories.

Further work will use the model further along the RoboStar workflow in [5]. The next step is to automat-
ically generate a simulation model RoboSim [3]. The RoboStar team is also working on model-based
testing, so we can generate forbidden traces from RoboChart models. They are specifications of tests
that can then be run against the real-life software. This is an interesting way to address the reality gap.

Acknowledgements

David Anisi has received partial funding from the Norwegian Research Council (RCN) RoboFarmer,
project number 336712. Ana Cavalcanti and Pedro Ribeiro are funded by the Royal Academy of
Engineering (Grant No CiET1718/45), and the UKRI (UK Research and Innovation Council), Grants
No EP/R025479/1 and EP/V026801/1.

Y. Murray, H. Nordlie, D.A. Anisi, P. Ribeiro & A. Cavalcanti 107

References
[1] Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. MIT Press.

[2] J. Baxter, P. Ribeiro & A. L. C. Cavalcanti (2022): Sound reasoning in tock-CSP. Acta Informatica 59, pp.
125–162, doi:10.1007/s00236-020-00394-3.

[3] A. L. C. Cavalcanti, A. C. A. Sampaio, A. Miyazawa, P. Ribeiro, M. Conserva Filho, A. Didier, W. Li
& J. Timmis (2019): Verified simulation for robotics. Science of Computer Programming 174, pp. 1–37,
doi:10.1016/j.scico.2019.01.004. Available at papers/CSMRCD19.pdf.

[4] Ana Cavalcanti, Will Barnett, James Baxter, Gustavo Carvalho, Madiel Conserva Filho, Alvaro Miyazawa,
Pedro Ribeiro & Augusto Sampaio (2021): RoboStar Technology: A Roboticist’s Toolbox for Combined
Proof, Simulation, and Testing. Springer International Publishing, doi:10.1007/978-3-030-66494-7_9.

[5] Ana Cavalcanti, Will Barnett, James Baxter, Gustavo Carvalho, Madiel Conserva Filho, Alvaro Miyazawa,
Pedro Ribeiro & Augusto Sampaio (2021): RoboStar Technology: A Roboticist’s Toolbox for Combined
Proof, Simulation, and Testing. In: Software Engineering for Robotics, Springer, doi:10.1007/978-3-030-
66494-7_9. Available at https://link.springer.com/10.1007/978-3-030-66494-7_9.

[6] HeeSun Choi, Cindy Crump, Christian Duriez, Asher Elmquist, Gregory Hager, David Han, Frank Hearl,
Jessica Hodgins, Abhinandan Jain, Frederick Leve et al. (2021): On the use of simulation in robotics: Oppor-
tunities, challenges, and suggestions for moving forward. Proceedings of the National Academy of Sciences
118, doi:10.1073/pnas.1907856118.

[7] Edmund M. Clarke (1997): Model checking. In: Foundations of Software Technology and Theoreti-
cal Computer Science, 1346, Springer Berlin Heidelberg, doi:10.1007/BFb0058022. Available at http:
//link.springer.com/10.1007/BFb0058022.

[8] J Edward Colgate, Witaya Wannasuphoprasit & Michael A Peshkin (1996): Cobots: Robots for collaboration
with human operators. In: ASME international mechanical engineering congress and exposition, 15281,
American Society of Mechanical Engineers, doi:10.1115/IMECE1996-0367.

[9] Eclipse Foundation (visited August 5, 2024): Eclipse website. Available at http://www.eclipse.org/.

[10] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov & Andrew W. Roscoe (2014): FDR3
— A Modern Refinement Checker for CSP. In: Tools and Algorithms for the Construction and Analysis of
Systems, Springer Berlin Heidelberg, doi:10.1007/978-3-642-54862-8_13.

[11] C. A. R. Hoare (1978): Communicating sequential processes. Communications of the ACM 21,
doi:10.1145/359576.359585. Available at https://dl.acm.org/doi/10.1145/359576.359585.

[12] P Kah, M Shrestha, E Hiltunen & J Martikainen (2015): Robotic arc welding sensors and programming in in-
dustrial applications. International journal of mechanical and materials engineering 10, doi:10.1186/s40712-
015-0042-y.

[13] A. Miyazawa, P. Ribeiro, W. Li, A. L. C. Cavalcanti, J. Timmis & J. C. P. Woodcock (2019): RoboChart:
modelling and verification of the functional behaviour of robotic applications. Software & Systems Modeling
18(5), pp. 3097–3149, doi:10.1007/s10270-018-00710-z.

[14] Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, Jon Timmis & Jim Woodcock (2019): RoboChart:
modelling and verification of the functional behaviour of robotic applications. Software & Systems
Modeling 18, doi:10.1007/s10270-018-00710-z. Available at http://link.springer.com/10.1007/
s10270-018-00710-z.

[15] Yvonne Murray, Martin Sirevåg, Pedro Ribeiro, David A. Anisi & Morten Mossige (2022): Safety assur-
ance of an industrial robotic control system using hardware/software co-verification. Science of Computer
Programming 216, doi:10.1016/j.scico.2021.102766. Available at https://linkinghub.elsevier.com/
retrieve/pii/S0167642321001593.

[16] Henrik Nordlie (2024): Formal verification of synchronization properties of a multi-robot welding system.
Master’s thesis, Norwegian University of Life Sciences, Ås, Norway.

https://doi.org/10.1007/s00236-020-00394-3
https://doi.org/10.1016/j.scico.2019.01.004
papers/CSMRCD19.pdf
https://doi.org/10.1007/978-3-030-66494-7_9
https://doi.org/10.1007/978-3-030-66494-7_9
https://doi.org/10.1007/978-3-030-66494-7_9
https://link.springer.com/10.1007/978-3-030-66494-7_9
https://doi.org/10.1073/pnas.1907856118
https://doi.org/10.1007/BFb0058022
http://link.springer.com/10.1007/BFb0058022
http://link.springer.com/10.1007/BFb0058022
https://doi.org/10.1115/IMECE1996-0367
http://www.eclipse.org/
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1145/359576.359585
https://dl.acm.org/doi/10.1145/359576.359585
https://doi.org/10.1186/s40712-015-0042-y
https://doi.org/10.1186/s40712-015-0042-y
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/s10270-018-00710-z
http://link.springer.com/10.1007/s10270-018-00710-z
http://link.springer.com/10.1007/s10270-018-00710-z
https://doi.org/10.1016/j.scico.2021.102766
https://linkinghub.elsevier.com/retrieve/pii/S0167642321001593
https://linkinghub.elsevier.com/retrieve/pii/S0167642321001593

108 Model Checking and Verification of Synchronisation Properties of Cobot Welding

[17] Pioneer Robotics AS (visited August 15, 2024): IntelliWelder - UR+ certified product. Available at https:
//www.pioneer-robotics.no/cobot/intelliwelder/.

[18] J Norberto Pires, Altino Loureiro & Gunnar Bölmsjo (2006): Welding robots: technology, system issues and
application. Springer Science & Business Media, doi:10.1007/1-84628-191-1.

[19] Gang Ren, Qingsong Hua, Pan Deng, Chao Yang & Jianwei Zhang (2017): A Multi-Perspective Method
for Analysis of Cooperative Behaviors Among Industrial Devices of Smart Factory. IEEE Access 5,
doi:10.1109/ACCESS.2017.2708127.

[20] Günther Starke, Daniel Hahn, Diana G. Pedroza Yanez & Luz M. Ugalde Leal (2016): Self-organization and
self-coordination in welding automation with collaborating teams of industrial robots. Machines (Basel) 4,
doi:10.3390/machines4040023.

[21] THG Automation (visited August 19, 2024): In Sync: The Benefits of Coordinated Motion. Available at
https://thgautomation.com/2024/06/27/in-sync-the-benefits-of-coordinated-motion/.

[22] Universal Robots (visited August 5, 2024): Universal Robots - UR10e Website. Available at https://www.
universal-robots.com/products/ur10-robot/.

[23] Universal Robots (visited August 8, 2024): Real-Time Data Exchange Guide. Avail-
able at https://www.universal-robots.com/articles/ur/interface-communication/
real-time-data-exchange-rtde-guide/.

[24] Universal Robots (visited July 23, 2024): Universal Robots e-Series User Manual. Avail-
able at https://www.universal-robots.com/download/manuals-e-seriesur20ur30/user/ur10e/
59/user-manual-ur10e-e-series-sw-59-english-international-en/.

[25] University of Oxford (visited August 15, 2024): FDR4 - The CSP Refinement Checker. https://cocotec.
io/fdr/. Available at https://cocotec.io/fdr/.

[26] Visual Components (visited August 15, 2024): Robot Offline Programming. Available at https://www.
visualcomponents.com/products/robot-offline-programming/.

[27] Jiahao Xiong, Zhongtao Fu, Miao Li, Zhicheng Gao, Xiaozhi Zhang & Xubing Chen (2021): Trajectory-
Smooth Optimization and Simulation of Dual-Robot Collaborative Welding. In: Intelligent Robotics and
Applications, 13014, Springer, doi:10.1007/978-3-030-89098-8_66.

https://www.pioneer-robotics.no/cobot/intelliwelder/
https://www.pioneer-robotics.no/cobot/intelliwelder/
https://doi.org/10.1007/1-84628-191-1
https://doi.org/10.1109/ACCESS.2017.2708127
https://doi.org/10.3390/machines4040023
https://thgautomation.com/2024/06/27/in-sync-the-benefits-of-coordinated-motion/
https://www.universal-robots.com/products/ur10-robot/
https://www.universal-robots.com/products/ur10-robot/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/download/manuals-e-seriesur20ur30/user/ur10e/59/user-manual-ur10e-e-series-sw-59-english-international-en/
https://www.universal-robots.com/download/manuals-e-seriesur20ur30/user/ur10e/59/user-manual-ur10e-e-series-sw-59-english-international-en/
https://cocotec.io/fdr/
https://cocotec.io/fdr/
https://cocotec.io/fdr/
https://www.visualcomponents.com/products/robot-offline-programming/
https://www.visualcomponents.com/products/robot-offline-programming/
https://doi.org/10.1007/978-3-030-89098-8_66

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 109–125, doi:10.4204/EPTCS.411.7

© Till Schnittka and Mario Gleirscher
This work is licensed under the
Creative Commons Attribution License.

Synthesising Robust Controllers for Robot Collectives
with Recurrent Tasks: A Case Study

Till Schnittka and Mario Gleirscher
University of Bremen, Germany

{schnitti,gleirsch}@uni-bremen.de

When designing correct-by-construction controllers for autonomous collectives, three key challenges
are the task specification, the modelling, and its use at practical scale. In this paper, we focus on a
simple yet useful abstraction for high-level controller synthesis for robot collectives with optimisation
goals (e.g., maximum cleanliness, minimum energy consumption) and recurrence (e.g., re-establish
contamination and charge thresholds) and safety (e.g., avoid full discharge, mutually exclusive room
occupation) constraints. Due to technical limitations (related to scalability and using constraints
in the synthesis), we simplify our graph-based setting from a stochastic two-player game into a
single-player game on a partially observable Markov decision process (POMDP). Robustness against
environmental uncertainty is encoded via partial observability. Linear-time correctness properties
are verified separately after synthesising the POMDP strategy. We contribute at-scale guidance on
POMDP modelling and controller synthesis for tasked robot collectives exemplified by the scenario
of battery-driven robots responsible for cleaning public buildings with utilisation constraints.

1 Introduction

Hygiene in public buildings has been hotly debated ever since the increased safety requirements during
the coronavirus pandemic. Autonomous robot collectives can help to relieve cleaning staff and keep
highly frequented buildings (e.g., hospitals, schools) clean. However, commercially available solutions
have their limitations, for example, a need for manual task programming or a lack of online adaptability.
In contrast to domestic homes, there are strict regulations (e.g., [8] for schools) that stipulate which
areas must be cleaned and at what intervals. Changing operational conditions (e.g., room occupation,
equipment reconfiguration, cleaning profile, regulations) create the need for an automatic generation of
cleaning schedules for robot collectives and for proving their compliance with hygiene requirements.
This scenario is an instance of a multi-faceted recurrent scheduling problem discussed below.

Cleaning Buildings as a Running Example. When planning the cleaning of a building (e.g., a school),
we can use its layout in the form of a room plan (Figure 1a). Apart from a set of m rooms R =
{R1, . . . ,Rm} with an assigned area, such plans include the connections between rooms and the locations
of n charging stations C = {C1, . . . ,Cn}. A collective of k ≤ n robots B = {B1, . . . ,Bk} is responsible for
cleaning R. B is tasked to keep R clean while charging its batteries using C. Each robot has a limited
battery size and a charging point in C as an assigned resting position. Additionally, there is a room util-
isation plan (Figure 1b) containing the times when the rooms are in use, which can change on a daily
basis. While a room is in use, no cleaning robot may be inside and, thus, cannot clean it.

The task is to create a cleaning strategy (or schedule) for B, constrained by the utilisation plan and
charging needs. Moreover, this strategy should keep the rooms clean enough, while minimising battery
consumption. To specify this task adequately, we define cleanliness in terms of contamination. Since

http://dx.doi.org/10.4204/EPTCS.411.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

110 Robustly Recurrent Strategies for Robot Collectives

(a) Room plan

Room Time of use

R1 8:00 – 10:00
R2 12:00 – 14:00
R3 10:00 – 12:00
R4 15:00 – 16:00

(b) Room utilisation plan

Figure 1: Examples of a room plan and the per-room utilisation

we are dealing with floor cleaning robots, we limit our definition to floor surfaces. For example, hygiene
guidelines for schools [8] and the associated standard DIN 77400 [3] recommend cleaning intervals for
floor surfaces. We reflect this recommendation in our definition by contamination rates and thresholds.
Each room has a certain contamination rate. Over time, total contamination accumulates in a room and
can be reset by cleaning. Clearly, the total contamination of a room should not exceed a certain threshold.

Approach. We propose a quantitative stochastic approach to synthesise strategies for robot collectives
with recurrent tasks, such that the strategies are robustly (i.e., under uncertainty) compliant to recurrence
and safety constraints and optimisation goals. We consider (i) weighted stochastic models and strategy
synthesis for (ii) optimally coordinating robot collectives while (iii) providing guarantees (e.g., recur-
rence, safety) on the resulting strategies (iv) under uncertainty (e.g., partial observability). We select
POMDPs, a generalisation of Markov decision processes (MDPs), for our problem.

Related Work. Among the works employing POMDPs for optimal planning, Macindoe et al. [11]
show strategy synthesis for human-robot cooperative pursuit games with robots and humans acting in
turns. Moreover, Thomas et al. [16] combine PDDL-based high-level task scheduling and POMDP-
based low-level navigation. They use a Kalman filter to predict the distribution of the POMDP’s belief
state based on discretised robot dynamics.

Using the PRISM model checker, Giaquinta et al. [4] show the synthesis of minimal-energy strategies
for robots finding fixed objects. Object finding as an instance of navigation can be solved with memory-
less strategies, that is, functions of the current state (here, positions of robot and object). Lacerda et
al. [9] propose multi-objective synthesis of MDP policies satisfying bounded co-safe LTL properties
using PRISM. Illustrated by a care robot, they employ a timed MDP and filter irrelevant transitions and
states, resulting in a reduced MDP where time as a state variable preserves bounded properties. Basile
et al. [2] use stochastic priced timed games and reinforcement learning (RL)-enhanced statistical model
checking (with UPPAAL Stratego) to synthesise safe, goal-reaching, and minimal-arrival-time strategies
for a single autonomous train operated under moving-block signalling.

El Mqirmi et al. [12] combine multi-agent RL and verification to coordinate robot collectives. An
abstract MDP is generated from expert knowledge for optimal synthesis of a joint abstract strategy (using
PRISM, STORM) under PCTL (safety) constraints. RL identifies a concrete strategy within these con-
straints by using shielding (i.e., only choosing actions compliant with the abstract strategy). Gu et al. [7]
tackle state space reduction via RL to synthesise optimal navigation and task schedules for collectives
(e.g., a quarry with autonomous vehicles) and timed games (in a UPPAAL Stratego extension) to check
timed CTL properties (e.g., liveness, safety, reachability) of the synthesised strategies.

Till Schnittka and Mario Gleirscher 111

Vázquez et al. [17] developed a domain-specific language (DSL) for specifying tasks for collec-
tives. Task allocation constraints are solved by ALLOY and plain MDPs are employed (via PRISM,
EVOCHECKER) to synthesise goal-reaching, minimum-travel-time schedules.

Contributions. Our approach enhances works in optimal planning [11, 16] by a step of strategy verifi-
cation against stochastic temporal properties. Object finding [4] corresponds to a reachability property,
whereas continuous contamination and its removal to a response property. Moreover, object finding dif-
fers from recurrent scheduling in that it is static and can be realised with a simpler reward function and a
smaller state space. Our problem involves a dynamic goal with robots operating 24 hours a day, having
to coordinate their work continuously. Beyond bounded co-safe LTL [9], our approach supports bounded
response properties G(φ → F≤T ψ). The above works [9, 2, 12, 7] underpin the usefulness of stochastic
abstractions for synthesis in various domains. Our use of POMDPs to hide parts of the stochastic process
(e.g., contamination) and explicit concurrency (e.g., for many simultaneous robot movements) offers
an alternative to obtaining small models for multi-agent synthesis under limited resources (e.g., time
constraints to clean rooms). Additionally, we argue how the model of our case study—a collection of
cleaning robots subjected to hygiene requirements—, while kept simple for illustrative purposes, scales
and generalises to a range of similar scenarios in other application domains. Apart from our focus on
recurrence and model reduction, a DSL [17] can wrap our approach into a practical workflow.

Overview. After giving key definitions in Section 2, we present our approach in Section 3. In the Sec-
tions 3.1 to 3.3, we explain the modelling, in Section 3.4 the treatment of collectives, in Section 3.5 the
constrained POMDP synthesis problem, and, in the Sections 3.6 and 3.7, the extraction and verification
of a strategy. We evaluate our approach in Section 4, discuss issues we encountered during modelling
and synthesis in Section 5, and add concluding remarks in Section 6.

2 Preliminaries

Stochastic modelling is about describing uncertain real-world behaviour in terms of states and probabilis-
tic actions producing transitions between these states. For stochastic reasoning (i.e., drawing conclusions
about such behaviour), we use probabilistic model checking. This section introduces the stochastic mod-
els, temporal logic, and tools we employ for synthesis and verification.

Partially Observable Markov Decision Processes. Let Dist(X) denote the set of discrete probability
distributions over a set X , and R≥0 be the non-negative real numbers. Then, a POMDP [13] is given by

Definition 2.1. A POMDP is a tuple M = (S,s,A,P,R,O,obs), where

• S is a set of states with s ∈ S being the initial state,

• A is a set of actions (or action labels),

• P : S×A → Dist(S) is a (partial) probabilistic transition function,

• R = (RS,RA) is a structure defining state and action rewards RS : S → R≥0 and RA : S×A → R≥0,

• O is a finite set of observations, and

• obs : S → O is a labelling of states with observations.

112 Robustly Recurrent Strategies for Robot Collectives

Moreover, A(s) = {a ∈ A | P(s,a) is defined} describes the actions available in s. A path in M is
defined as a finite or infinite sequence π = s0

a0→ s1
a1→ . . . where si ∈ S, ai ∈ A(si), and P(si,ai)(si+1)> 0

for all i ∈ N. Let last(π) be the last state of π . FPathsM and IPathsM denote all finite and infinite paths
of M starting at state s. Non-determinism in M is resolved through a strategy according to

Definition 2.2 (POMDP Strategy). A strategy for a POMDP M is a map σ : FPathsM → Dist(A), where

• for any π ∈ FPathsM, we have σ(π)(a)> 0 only if a ∈ A(last(π)), and

• for any path π = s0
a0→ s1

a1→ . . . and π ′ = s′0
a′0→ s′1

a′1→ . . . satisfying obs(si) = obs(s′i) and ai = a′i for
all i, we have σ(π) = σ(π ′).

We call σ memoryless if σ ’s choices only depend on the most recent state (last(π)), and deterministic
if σ always selects an action with probability 1. Below, we consider memoryless deterministic strategies.

Probabilistic Linear Temporal Logic (PLTL). A POMDP M describes a stochastic process, such
that every possible execution of that process corresponds to a path through M’s transition graph. To draw
qualitative conclusions about M and its associated strategies, we express properties in linear temporal
logic (LTL). An LTL formula φ over atomic propositions AP follows the grammar

φ ::= ap | ¬φ | φ ∧φ | Xφ | φ U φ (1)

where ap ∈ AP. In LTL, we make statements about M’s path structure and specify admissible sets of
paths. Informally, Xφ describes that φ holds in the next state of a given path, and φ U ψ describes that φ
holds until ψ occurs, or globally, if ψ never occurs. We allow the abbreviations Fφ ≡ T U φ , describing
that φ holds at some point on a path, and Gφ ≡ ¬F¬φ , describing that φ applies to the entire path.

To draw quantitative conclusions about M (or query probabilities and rewards), we use probabilistic
LTL (PLTL), whose formulas φ are formed along (1) and by the two operators P and R:

• P[min|max]∼p|=?[ψ] describes that the [minimum|maximum] probability of ψ (under all possible
POMDP strategies) being valid is ∼ p, and

• RR
[min|max]∼r|=?[ψ] expresses that the [minimum|maximum] expected reward R associated with ψ

(under all possible POMDP strategies) meets the bound ∼ r,

where ψ is an LTL formula, ∼∈ {<,≤,=,≥,>}, and =? is used for queries. Given a timer t in M and
that all actions in A increment t by 1, we allow F∼T ψ ≡ F(t ∼ T ∧ψ). In LTL, M |= φ expresses that all
paths of M from s are permitted by φ , and, in PLTL, that a probability measure over M’s paths satisfies φ .
For convenience, we use φ to refer to both, the expression and the region in S where it evaluates to true.
LTL and PLTL’s semantics are explained in detail in, for example, [1, p. 231 and Sec. 6.2].

The PRISM Model Checker can check M |= φ using exact and approximate algorithms [14]. It sup-
ports a variety of stochastic models and logics and has its own languages for modelling and for specifying
properties. In PRISM, a reward structure R is used as a parameter in RR[·]. For POMDPs, PRISM can
synthesise strategies in the form of Definition 2.2.

A PRISM model consists of a series of modules, each defining a fraction of a state s using its own
variables. Modules can synchronise their transitions by sharing labels from A, such that transitions in
several modules using the same label can only switch in a state s ∈ S if each transition is enabled in s.
An example module with state variable x and command increase is given in Listing 1.

Till Schnittka and Mario Gleirscher 113

World
Modelling

(Secs. 3.1 to 3.4)

Controller
Synthesis

using B(M)
(Section 3.5)

Controller
Verification
using Mσ

(Secs. 3.6 and 3.7)

C1 1 24

R1

2

16 15

23

R4

3

8
19

R2

6
17

R3

22

4

13
20

R5
9

7

18

5

14
21

12

C2

10

11

Action
specification POMDP M POMDP strategy σ

Verified
strategy σ

Strategy specification

Regulations
(e.g. DIN 77400),

Table 1

Arena (graph, 3.1),
states & actions

(CPN/automata, 3.2),
penalties & costs

(reward struct., 3.3),
collective (CPN, 3.4)

Task schedule
for collective

Task schedule
satisfying Table 2

in PLTL (Table 2)

Figure 2: Overview of the proposed synthesis approach for robot collectives

1 module Example
2 x : [0..2] init 0; // state variable x with range {0,1,2} and initial value 0
3 [increase] x<2 -> (x‘=x+1); // command increase increasing x by 1 if x < 2
4 endmodule

Listing 1: Example of a module in PRISM’s guarded command language

Fixed-Grid Approximation in PRISM. When analysing a POMDP M, PRISM computes an approxi-
mate (finite-state) belief-MDP B(M) [13], each belief being a probability distribution over the partially
observable states (e.g., the possible room contamination). The size of B(M)’s state space, called belief
space [10], is exponential in PRISM’s grid-resolution parameter g controlling the approximation of the
upper and lower bounds to be determined for P |Rmin |max-properties using B(M).

3 Developing Controllers by Example of the Cleaning Scenario

In this section, we first state our synthesis problem and then describe our approach to strategy synthesis
and verification as illustrated in Figure 2.

Problem Statement. Our aim to synthesise a collective controller is specified in the LTL property

G
(reach task goal︷ ︸︸ ︷
(ω → F≤T (ω ∧φr))∧

keep safe︷ ︸︸ ︷
G≤T φs

)︸ ︷︷ ︸
periodically achieve task safely (implied by our approach)

, (2)

where ω is the recurrence area (including s and acting as a task invariant), φr specifies an invariant-
narrowing condition,1 φs specifies task safety, and T > 1 is the recurrence interval (an upper cycle-time
bound). Among the controllers satisfying (2), we look for an optimal (e.g., one minimising energy
consumption) and robust (e.g., under partial observability of stochastic room contamination) one.

Overview of Controller Development. First, a spatio-temporal abstraction of the cleaning scenario is
modelled using a coloured Petri net (CPN) for coordination modelling and finite automata for describing
robot-local behaviour. These aspects are translated into a reward-enhanced POMDP M (Sections 3.1
to 3.3) in support of multiple robots (Section 3.4), which uses probabilistic actions to reduce the state
count of a hypothetical detailed model. Then, a strategy σ is synthesised for M (Section 3.5), which is
used to derive a deterministic, non-probabilistic, and integer-valued model Mσ (Section 3.6). Finally,

1φr only has methodological relevance. It could, for example, be used to develop an increasingly strong invariant ω .

114 Robustly Recurrent Strategies for Robot Collectives

ℛ1 ℛ4ℛ2

ℛ3

ℛ5 C2
C1

Figure 3: Example of a room plan graph

Table 1: Requirements of the cleaning scenario defining the at action implemented in three modules

Id. Action Specification (Behavioural Requirement) Impl. in Module

Ba The robot either stays in the room it is currently in or moves to another room, whereby
there must be an edge in the room plan graph between the current and next room.

cleaner

Bb If the robot is on a charging station, its battery charge level is increased by the charg-
ing rate of the robot.

Bc If the robot is not on a charging station, its battery charge level is reduced by the
robot’s discharge rate.

Da The total contamination of each room increases by its contamination rate if there is
no robot in that room.

contamination

Db If the robot is in a room, the total contamination of that room is reset.

Ta The time counter is incremented by one. time

Mσ , representing the high-level controller, is verified (Section 3.7) against strategy requirements that,
due to current limitations in the formalisms and tools, cannot be checked directly during synthesis.

3.1 Spatio-temporal Abstraction

State Space. For the implementation of the problem (e.g., cleaning task), it is important to keep the
number of states as small as possible. Therefore, large parts of the initial problem are abstracted.

Instead of a complete room plan with area assignment, the abstracted environment uses a graph that
only contains the different rooms and charging stations. An example of such a graph for the room plan
in Figure 1a can be seen in Figure 3. A pointer Bi.x, i ∈ 0..k, to a room or charging station in this graph
is used to keep track of the position of robot Bi. The behaviour of the charging state Bi.c of the robot’s
battery is described by a number of discrete charging levels and charge and discharge rates.

The total contamination is represented by a counter R j.d, j ∈ 0..m, whose maximum value is the
contamination threshold R j.threshold. Since we want to avoid reaching a state with the contamination
at this threshold, it is not necessary to model contamination beyond R j.threshold.

Actions and High-level Behaviour. Discrete values are used to model time as well, where the action
at, as specified in Table 1 and described below, is performed at each discrete time step.

The CPN in Figure 4a provides a high-level description of the moves of the collective B across charg-
ing stations C and rooms R (Figure 3). The abstract at action (black bar) expands to a range of concrete
POMDP actions at jB1 . . . jBk with jBi ∈ 0..m. Whenever at is taken, any number of tokens (black dots,
representing robots) on the places (grey circles, representing rooms and charging stations) can flow si-

Till Schnittka and Mario Gleirscher 115

C1

C2
...

Cn

R1

R2
...

Rm

B1

B2

Bkat
(at jB1 . . . jBk)

(a) Coordination of k ≤ n cleaners

Cleaner Bi

charging cleaning(R j)

at jBi

(move to R j)

at0Bi (idle)
at0Bi

(move to Ci) at jBi (move to R j)

(b) Control of cleaner Bi

Figure 4: Cleaner coordination (a) as a CPN and local control (b) as a finite automaton

multaneously, such that Bi can move from one place via at to an adjacent empty (possibly same) place.2

Figure 4b outlines the control of a particular robot Bi. When composed (in parallel), as formalised in
M by implicit constraints on the j-indices, simultaneous moves of several robots into a single place and
jumps to non-adjacent places are prohibited by the coordination constraint in Figure 4a.3

3.2 Quantitative and Stochastic Abstraction

For the sake of simplicity, this section and the following will focus on a reduced problem with only one
robot. The case of multiple robots will be reintroduced in Section 3.4.

As already mentioned, the PRISM-encoding of M is divided into three modules operating on three
independent fragments of the state space S: The state of the robots, the room contamination, and time.

The cleaner module describes the behaviour of cleaning robot B1. An integer is used to model the
robot position B1.x. For this, each room and charging station is mapped to an integer bijectively.
For example, the room graph in Figure 3 can be described by the following relation: C0 → 0,R1 →
1,R2 → 3,R3 → 4,R4 → 5,R5 → 6,C2 → 7. The battery status B1.c is also described as an integer
whose upper bound is the maximum charge B1.maxcharge of B1’s battery, see Listing 2.

1 module cleaners
2 x : [0..m−1] init B1.start; // position of cleaner B1
3 c : [0..B1.maxcharge] init B1.ωchgthres; // battery status of B1
4 [at0] (x=0|x=1)
5 -> (x’=0) & (c=min(c+B1.chargerate, B1.maxcharge)); // charge B1
6 [at1] (x=0|x=1|x=2|x=3|x=4)
7 -> (x’=1) & (c=max(c-B1.dischargerate, 0)); // move to R1
8 ...
9 endmodule

Listing 2: A model fragment of the cleaners module highlighting its states and actions

For each charging station and each room there is a transition atN (where N is the integer assigned
to the room), which models entering or staying in this room. The precondition for this transition
is that the robot must already be in that room or a neighbouring room. If a robot enters or stays
at a charging station, the charge increases by the charging rate; if a robot is in a room, the charge
decreases by the discharge rate, see lines 5 and 7 respectively.

The contamination module describes the contamination status of R. To reduce the number of states,
contamination is modelled by booleans—the contamination flags R j.d, j ∈ 1..m—rather than in-

2We assume for any initial state s ∈ S that no more than one robot is at a particular place.
3This construction reduces S and P of M in comparison with using alphabetised synchronous composition.

116 Robustly Recurrent Strategies for Robot Collectives

tegers. The probability R j.pr of R j.d getting true is used to model the state in which the con-
tamination of the corresponding room has reached its threshold R j.threshold. If there is no robot
in R j, we set R j.d = true with probability R j.pr inversely proportional to the contamination
threshold R j.threshold. If a robot visits or stays in R j then R j.d is set to false , see Listing 3.

1 module contamination // sequential stochastic contamination
2 R1.d : boolean init false; R2.d : boolean init false;
3 ...
4 [at0] true -> 1− (∑i∈1..m Ri.pr): true
5 + R1.pr: (R1.d’=true) + R2.pr: (R2.d’=true) + ...; // prob. contam. all while charg.
6 [at1] true -> 1− (∑i∈1..m\1 Ri.pr): (R1.d’=false)
7 + R2.pr: (R1.d’=false)&(R2.d’=true) + ...; // clean R1 and prob. cont. other rooms
8 [at2] true -> 1− (∑i∈1..m\2 Ri.pr): (R2.d’=false)
9 + R1.pr: (R2.d’=false)&(R1.d’=true) + ...; // clean R2 and prob. cont. other rooms

10 ...
11 endmodule

Listing 3: A fragment of the contamination module (e.g. Ri.pr = 0.05 for i ∈ 1..m)

The time module describes the progression of time and manages the switching to the error and final
state (the model handles both the same). time also restricts the atN transitions so that they can
only be used as long as the model is not in the error or final state. This is possible because a transi-
tion can only trigger if it can trigger in each module. Therefore, precondition in the time module
can prevent a transition from triggering even though it is marked with true in the cleaner and
contamination modules. The time is increased by one unit with each transition until it reaches T .
At this point (due to the definition of error_or_final), only the fin transition can switch and
the model ends in a loop, see Listing 4.

1 formula error_or_final = (c=0|!(t<T));
2 module time
3 t : [0..T] init 0;
4 [at0] !error_or_final -> (t’=min(t+1,T)); // charge
5 [at1] !error_or_final -> (t’=min(t+1,T)); // move to R1
6 [fin] error_or_final -> (t’=min(t+1,T)); // finish cycle
7 endmodule

Listing 4: A fragment of the time module

3.3 Choice of the Reward Function

Four requirements, a valid strategy must satisfy, can be derived from Formula (2) and Table 1:

FR At time T , all robots must be back in their initial location, so that the plan can be repeated.

ωC At time T , the battery of a robot must not be lower than its threshold charge level.

BC The battery of a robot must never be empty.

CT The total contamination of any room must never exceed its contamination threshold.

When just focusing MDP verification rather than synthesis, it would be sufficient to describe these
as PLTL constraints. However, PLTL constraints cannot be used as queries for synthesising strategies,
since generating strategies through PRISM requires each path to be able to fulfil all constraints eventually.

Till Schnittka and Mario Gleirscher 117

Using constraints that are violated on some of M’s paths (e.g., if we require BC, any path leading to an
empty battery eventually violates BC) will prevent PRISM from finding a reward-optimal strategy. This
is a specific known limitation of the used formalism. Even though we cannot use PLTL constraints to
encode all our requirements, the reward structure R can be used to prioritise selecting strategies that fulfil
these requirements. The encoding of our requirements in R can be achieved by penalising states that do
not fulfil some or all of the requirements, see Listing 5.

1 const a_lot = 10000000;
2 const a_bit = 10000;
3 rewards "penalties"
4 c=0: a_lot; // BC: battery empty
5 t=T & (x!=B1.start|c<B1.ωchgthres): a_lot; // FR: robot not at initial loc. at time T
6 R1.d=true: a_bit; // Room 1’s contamination flag is set
7 R2.d=true: a_bit; // Room 2’s contamination flag is set
8 ...
9 endrewards

Listing 5: An example of the reward structure for the state penalities

We previously found it ineffective to penalise the contamination flags the same as the constraints
FR, ωC, and BC. Whereas the latter can be determined from M’s state, contamination flags only carry
the probability of a requirement being violated. Hence, we apply lower penalties to the contamination
flags. Further reward structures are used to model optimisation goals, such as energy consumption, see
Listing 6a. However, the penalty for constraints is chosen such that it is not possible to offset the penalty
of an invalid state by the reduced penalty for a less energy-consuming strategy.

1 rewards "energy consumption"
2 t < T: B1.maxcharge - c;
3 endrewards

(a) A fragment of the optimisation rewards

1 const a_lot = 10000000;
2 rewards "utilisation"
3 x=2 & t>=8 & t<10: a_lot;
4 x=2 & t>=12 & t<14: a_lot; ...
5 endrewards

(b) A fragment of room utilisation rewards

Listing 6: Fragments of the reward structure used for the cleaning scenario

Room Utilisation. As with the other requirements, a room utilisation profile to be respected by the
cleaners (UT) can be softly specified using additional reward functions as shown in Listing 6b. However,
UT as a safety property will later also be specified in PLTL and checked of the synthesised strategy.

3.4 Cooperation between Multiple Robots
1 x1 : [0..m] init B1.start;
2 x2 : [0..m] init B2.start;
3 ...
4 c1 : [0..B1.maxcharge] init B1.maxcharge;
5 c2 : [0..B2.maxcharge] init B2.maxcharge;
6 ...

Figure 5: The structure of the cleaner state

To keep M simple, robots are not modelled as sep-
arate modules, but the state of the cleaner module is
extended to include the positions of all robots (see Fig-
ure 4a). This simplification excludes all transitions from
the model that would lead to conflicts in robot behaviour
(e.g., the case where several robots clean the same room
at the same time). Additionally, each robot has its own battery charge, see Listing 5.

118 Robustly Recurrent Strategies for Robot Collectives

The atN actions for a single robot are now extended to atN_N_... actions, which then model the
simultaneous movement of k robots, as illustrated in Figure 4a and implemented in Listing 7.

1 [at0_1] !error & (x1=0|x1=1) & (x2=0|x2=1|x2=2|x2=3|x2=4) // charge B1 and move B2 to R1
2 -> (x1’=0) & (x2’=1)
3 & (c1’=min(c1+B1.chargerate,B1.maxcharge))
4 & (c2’=max(c2-B2.dischargerate,0));
5 [at1_2] !error & (x1=0|x1=1|x1=2|x1=3|x1=4) & (x2=1|x2=2) // move B1 to R1 and B2 to R2
6 -> (x1’=1) & (x2’=2)
7 & (c1’=max(c1-B1.dischargerate,0))
8 & (c2’=max(c2-B2.dischargerate,0));
9 ...

Listing 7: Two examples of atN_N actions

This solution increases the number of states per robot considerably, but the complexity of M is still
within a practically verifiable range. Additionally, the reward structures that depend on the position and
charge of a robot are adapted to include the position of all robots, as can be seen in Listing 8.

1 rewards "penalties"
2 c1=0: a_lot;
3 c2=0: a_lot;
4 ...
5 t=T & (x1!=B1.start|c1<B1.ωchgthres): a_lot;
6 t=T & (x2!=B2.start|c2<B2.ωchgthres): a_lot;
7 ...
8 endrewards
9

10 rewards "utilisation"
11 x1=2 & t>=8 & t<10: a_lot;
12 x2=2 & t>=8 & t<10: a_lot;
13 x1=2 & t>=12 & t<14: a_lot;
14 x2=2 & t>=12 & t<14: a_lot;
15 ...
16 endrewards

Listing 8: Reward structure for a collective

3.5 Synthesising Strategies (under Uncertainty) for the Cleaning Scenario

PRISM’s POMDP strategy synthesis works under certain limitations. As indicated in Section 3.3, it is
not possible to use RR

min=?[ψ] for synthesis if Pmin=?[ψ] < 1, that is, if M contains ψ-violating paths
under some strategy σ . Hence, we choose a ψ that defines a state that all paths converge at, and syn-
thesise a strategy that minimises the total reward (since we model R using penalties) up to that point. A
commonality of all paths is the flow of time, so the reachability reward-based synthesis query

∑R∈{penalties, energy consumption, utilisation} RR
min=?[F t = T] (3)

uses a target state where time t is equal to some maximum time T .

1 observables
2 t,
3 x1, x2, ...,
4 c1, c2, ...
5 endobservables

Additionally, a mapping obs needs to be specified, which defines the observa-
tions of M that σ can use to make choices. In this case, σ cannot use the con-
tamination flags to make its choices. If σ could consider the contamination flag,
it would not need to account for the accumulative probability; σ could just check
if a contamination flag is true and act accordingly. We can hide the contamination
flags from σ by defining obs to just include the position and charge of the robot
and the time, see the listing on the right.

PRISM allows the explicit generation of deterministic strategies. Such strategies are useful in this
case, since, except for the final state, the model has no loops (i.e., time is always advancing). Because σ
is deterministic, it can be thought of as a list of actions for each time step of the cleaning schedule, where
the transition of each step of the strategy denotes the action of the robot at that time step within period
T . Note that the observable environmental part of M is deterministic such that after applying σ , Mσ has
exactly one path, hence, σ only depends on time t.

Till Schnittka and Mario Gleirscher 119

3.6 Creating an Induced Model from the Strategy

It is possible to create a cleaning schedule from the synthesised strategy σ . However, it is not yet possible
to verify σ regarding the constraints listed in Section 3.3. This is because, up to this point, contamination
was modelled in M only as a probabilistic factor. To verify the contamination constraint CT, below, we
include a non-probabilistic contamination model in M′ using counters to represent contamination.

Modelling the Contamination Value. To verify that the contamination value (modelled as a boolean
sub-MDP of M) never actually reaches the thresholds R j.threshold, j ∈ 1..m, it is necessary to transform
M into an MDP M′ that accounts for the actual values R j.d. We accomplish this in M′ by integer-valued
contamination counters R j.d (Listing 9) replacing the boolean variables R j.d in M (Listing 3).

1 module contamination
2 R1.d : [0..R1.threshold] init 0;
3 R2.d : [0..R2.threshold] init 0;
4 ...
5 [at0_6] true -> (R1.d’=min(R1.d+R1.contaminationrate,R1.threshold))
6 & (R2.d’=min(R2.d+R2.contaminationrate,R2.threshold)) & ...;
7 [at0_1] true -> (R1.d’=0)
8 & (R2.d’=min(R2.d+R2.contaminationrate,R2.threshold)) & ...;
9 [at0_2] true -> (R1.d’=min(R1.d+R1.contaminationrate,R1.threshold))

10 & (R2.d’=0) & ...;
11 ...
12 endmodule

Listing 9: An example of the structure of the contamination module using discrete contamination values

1 module time
2 ...
3 [at0_1] !error_or_final
4 & (t=8|t=10)
5 -> (t’=min(t+1,T))
6 ...
7 endmodule

Applying the Strategy. Apart from using contamination counters,
our model does no longer contain probabilistic choices. Concretely,
each probabilistic choice in M (branching to each possible selec-
tion of fully contaminated rooms, Listing 3) is replaced by an action
in M′ performing a simultaneous update of all contamination coun-
ters (Listing 9). We can use the generated strategy σ to derive the
induced deterministic model Mσ from M′, which acts according to
the strategy. This step is done by modifying the preconditions of the
atN_N_... actions of the time module to only be able to trigger when that action is chosen at the same
point in the strategy. If, for example, within σ , the at0_1 action is only chosen in time steps 8 and 10,
we modify the time module, see the listing on the right.

Notes on the Relationship between M, M′, and Mσ . The state space of M′ is significantly larger than
the one of M as the latter contains intermediate contamination R j.d up to R j.d = R j.threshold. The
fact that R j gets contaminated in M corresponds to all shortest sequences of transitions with non-zero
probability to a state where R j.d = true. The same fact in M′ corresponds to all sequences of transitions
leading to R j.d = R j.threshold. Hence, the time module in Mσ is a refinement of the time module in M
and, due to synchronisation (via action labels), the resetting of contamination’s (i.e., the cleaning) in Mσ

is a refinement of the corresponding resets in M.
A property of M′ preserving quantitative strategy correctness, that we left for future work, is to check

whether the probabilities of the contamination flags set in M are greater than or equal to the hypothetical

120 Robustly Recurrent Strategies for Robot Collectives

Table 2: Requirements for validating the synthesised strategies (checks of Mσ by PRISM)

Id. Strategy Specification (Behavioural Requirement) . . . expressed in PLTL

FR Cleaner Bi Finally Returns to its starting position.
∧

i∈[1..k] P≥1[F=T Bi.x = Bi.start]
ωR Cleaner Bi has a final charge of at least Bi.ωchgthres.

∧
i∈[1..k] P≤0[F=T Bi.c < Bi.ωchgthres]

ωC Contamin. of Ri is finally less than Ri.ωcontthres.
∧

i∈[1..m] P≤0[F=T Ri.d < Ri.ωcontthres]

BC Battery charge of Cleaner Bi is never 0.
∧

i∈[1..k] P≤0[FBi.c = 0]
CT Contamination of Ri never exceeds Ri’s threshold.

∧
i∈[1..m] P≤0[FRi.d ≥ Ri.threshold]

UT Room Ri is not cleaned while occupied.
∧

i∈[1..m]

∧
T∈util(Ri)

∧
j∈[1..k] P≤0[F=T B j.x = Ri]

probabilities of the corresponding counters in M′ and, thus, Mσ , reaching their thresholds. This property,
when true, expresses that the flags are a sound (i.e., conservative) quantitative abstraction of the counters.

3.7 Strategy Verification via Verifying the Induced Model

Now, we use Mσ to check recurrence and safety from Formula (2), that is, ω → F≤T ω and G≤T φs.4

In particular, we check their decomposed translations into PLTL requirements5 listed in Table 2. The
recurrence area ω is encoded by the state propositions in FR, ωR, and ωC, while safety φs is encoded by
the state propositions in BC, CT, and UT. Note that the upper bound T of the recurrence interval is met
by all paths in Mσ . util(Ri) is the set of time slots in which Ri is utilised.

For checking ω → F≤T ω , we define ω to be a (not necessarily maximum) region in S from where
σ can be applied and ω is revisited after T steps. The requirements for σ need to be true for every
initial state in ω . FR, ωR, and ωC ensure that applying σ leads to a state within ω . To specify ω , we
use thresholds for the battery charge of robots (Bi.c for every robot Bi) and the contamination of rooms
(Ri.ωcontthres for every room Ri). ω then characterises every state of Mσ where the battery charge and
room contamination are within these thresholds and all robots are on their starting position. Recurrence
can even be checked more easily for Mσ by selecting the worst state in ω , which is the state where every
value lies exactly at the thresholds, and verifying the requirements in Table 2 for this state.

4 Experimental Evaluation

Our experimental evaluation addresses two research questions (RQs).

4.1 RQ1: Can we synthesise reasonable strategies for multiple robots?

In the following, an instance of the example model with only one robot is considered first. The contam-
ination rate is the same for all rooms, except that R5.d has a threshold value R5.threshold of 24 (based
on a contamination rate of 1 h−1), which is twice as high, whereas all other rooms have a threshold value
of 12. We identified ω manually by examining the generated strategy. Using the method described in
Section 3, a strategy was generated that meets all the requirements. This strategy is visualised in Fig-
ure 6a. Each action is shown with a blue arrow, at which the time step in which the action is to be
executed is annotated. To develop a strategy for two robots, the battery charge was halved to keep the

4For the sake of simplicity of the example, we use φr ≡⊤ and can omit ω → F≤T φr.
5All properties are expressed in quasi-LTL, that is, ACTL* allowing only one universal quantifier at the outermost level.

Till Schnittka and Mario Gleirscher 121

C1 1 24

R1

2

16 15

23

R4

3

8
19

R2

6
17

R3

22

4

13
20

R5
9

7

18

5

14
21

12

C2

10

11

(a) Strategy for one robot

C1

R1

15

9 13

17

21

4

8

12

16

2024

R4

R2

2
10

18

R3

6

14
22

R5

5 13

21

3

11
19

715
23

4

12
20

C2

26

9

14

17
22

1
3
811

16

19

7 1015182324

(b) Strategy for two robots (blue and green directed arcs)

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 24

B1 C1 R1 R2 R1 C1 R1 R3 R1 C1 R1 R2 R1 C1 R1 R3 R1 . . . C1
B2 C2 R1 C2 R5 R4 R5 C2 idle R5 C2 idle R5 R4 R5 C2 idle . . . C2

(c) Execution of a 24h model cycle using the strategy in Figure 6b; (sub-)cycles indicated in bold

Figure 6: Synthesised strategies. Nodes represent charging stations and rooms; undirected arcs indicate
room connections (doors); edge labels specify the execution order of particular at actions.

model less complex. The corresponding strategy can be seen in Figure 6b. This result turns out to be a
partition-based patrolling strategy, considered effective under random disturbance [15, 143].

4.2 RQ2: How do model parameters influence the synthesis of recurrent strategies?

We evaluate the model using a_bit, Ri.pr, and the fixed-grid resolution g as parameters. Figure 7 visu-
alises the result using these parameters on a simplified model, which only contains one robot and omits
room R5 and charger C2. When building σ , we set Ri.pr = cumulative_probability/|R|. The generated
strategies were verified by iteratively assuming ω-thresholds (Table 2) from a set chosen appropriately.

Figure 7 contains four plots for resolutions g = 1..4. Correct non-recurrent strategies are represented
by a blue dot, correct recurrent strategies by a green dot, and incorrect strategies in red.

We deemed the simplification of the model necessary to allow a timely execution of the test series,
which contained 400 experiments in total (100 for each grid resolution). Detailed information about the

122 Robustly Recurrent Strategies for Robot Collectives

0.0
0.2

0.4
0.6

cumulative propability
0

1
2

3
va

lue
 of

 a_
bit

0
20
40
60
80

en
er

gy
 c

on
su

m
pt

io
n

resolution=1

0.0
0.2

0.4
0.6

cumulative propability
0

1
2

3

va
lue

 of
 a_

bit

0
20
40
60
80

en
er

gy
 c

on
su

m
pt

io
n

resolution=2

0.0
0.2

0.4
0.6

cumulative propability
0

1
2

3

va
lue

 of
 a_

bit

0
20
40
60
80

en
er

gy
 c

on
su

m
pt

io
n

resolution=3

0.0
0.2

0.4
0.6

cumulative propability
0

1
2

3

va
lue

 of
 a_

bit

0
20
40
60
80

en
er

gy
 c

on
su

m
pt

io
n

resolution=4

Figure 7: Parameterised evaluation. Non-recurrent strategies are marked in blue, recurrent strategies in
green. The scale for a_bit is logarithmic.

time of the evaluation is shared at the end of the section.

As expected, a smaller cumulative contamination probability leads the strategy to de-prioritise clean-
ing the rooms regularly, since the probability of them being contaminated stays low. This, at some
point, causes the strategy to not satisfy the recurrence criteria. Similarly, a lower value of a_bit causes
the strategy to prioritise saving battery over resetting the contamination flags, which reduces the energy
consumption significantly, but at some point at the cost of strategy correctness.

In the evaluation, the optimal strategy per grid resolution uses less or equal energy with a larger grid
resolution (84, 64, 64, and 36 for g of 1, 2, 3, and 4, respectively). There is also a difference in the
number of distinct strategies that are generated between the different g, where the experiment with a
resolution of 4 generates more unique strategies than the experiments with lower grid resolutions, where
many parameters lead to the same generated strategy.

Finally, we can observe distinct areas of incorrect, non-recurrent and recurrent strategies that depend
on these parameters, where the optimal recurrent strategy lies on the border between recurrent and non-
recurrent strategies. While the states in ω are ordered for the choice of a worst case, the border area is at
best an approximation of a Pareto front, the non-convex reward function defined by R combined with the
belief-MDP approximation B(M) may lead to optimal strategies remaining hidden from the search.

Beyond the reward structure Rutilisation used for strategy pre-selection, checking the PLTL safety
property UT (Table 2) ensures that the finally chosen strategy only cleans outside the room utilisation
schedule (Figure 1b).

Some Key Data. The experiments were conducted on an AMD FX(tm)-8350 Eight-Core Processor
with 32 GiB of RAM running Ubuntu 22.04.4 LTS. However, PRISM was restricted to one core and
12 GiB of RAM. The reduced model in Section 4.2 contains 4879 states and 35014 transitions, while
the reduced model Mσ contains 23 states and 23 transitions. The verification consists of 13 PLTL
formulas containing 25 propositions. We ran the experiments with parameters of m = 4, Ri.pr =
0.02,0.04, . . . ,0.16 and a_bit = 1,3,6,10,17,32,100,316,1000,3162. The cumulative probability can
be derived from Ri: ∑i=1,...,m Ri.pr = 0.08,0.16, . . . ,0.64. The strategy synthesis took about 5, 16, 60,
and 200 seconds for a grid resolution of 1, 2, 3, and 4, respectively, while the verification took about
one second for a given ω . Evaluating the entire test series took about 8 hours sequentially, although this
process could be easily parallelised.

Till Schnittka and Mario Gleirscher 123

5 Discussion

Selecting the Recurrence Area ω . When evaluating the strategy, ω was chosen either by examining
the strategy manually (Figure 6c) or by verifying a list of probable ωs. Further work may focus on
finding probable ωs from the room layout, and generating strategies which fulfil these ωs.

Complexity of the Cleaning Scenario. For the evaluation, we considered a rather simple room layout.
The performance of the above described method may be different with larger room graphs, more complex
room layouts, a larger number of robots, and tighter restrictions on battery charge and room utilisation.

Moreover, our model allows us to find strategies that operate with a varying number of robots. Given
that some robots remain idling all the time, our optimal synthesis could also be used to find the smallest
subset Bmin ⊆ B or minimal number kmin ≤ k of robots for an optimal task performance.

The complexity of the model is heavily dependant on the number of rooms, the maximum time T ,
and the maximum charge of the robots. Following the comprehensive scheme in Section 4.2, we were
able to calculate a 12-hour (T = 12) cleaning schedule for 3 robots with 11 rooms and a maximum charge
of 6 in 15 hours. The corresponding belief-MDP B(M) contains ≈ 690k states and ≈ 11.8m transitions.

Adjusting Grid-Resolution vs. Filtering Strategies. For industry-size POMDPs, a high resolution g
can lead to an impractically high computational effort when solving the mostly NP-hard approximate
analysis (i.e., verification, synthesis) problems. Hence, our approach is to keep g just fine enough to
find some (not necessarily globally optimal) strategy σ and verify more nuanced properties of the quasi-
MDP6 Mσ derived from M by applying σ . In Mσ , verification is simpler (no belief-MDP B(M) is
computed), also the strategy (integrated in Mσ) can directly observe the outcome of each action and does
not have to memorise a finite observation history. Despite the expansion of Ri.d to integers, Mσ ’s state
space is expected to be smaller than B(M)’s state space for the applied values of g.

Parameter Selection. For the evaluation in Section 4.2, a set of values for the parameters a_bit and
the contamination probability was chosen. Via g (Section 2), we reduced the resolution of the fixed
grid (i.e., a wider grid width) to limit the number of states in the belief space approximation B(M).
However, our findings in Section 4.2 suggest that increasing the resolution, while keeping the cumulative
contamination probability around 40 % and the value of a_bit around 300 leads to the synthesis of better
strategies. However, these values may not be universally favourable for any room layout, and it may be
possible to synthesise better strategies using a different set of parameters. Further work may focus on
better ways of parameter selection.

Generalisation to Other Applications. The running example in our case study focuses on a cleaning
robot collective. However, we think that our approach and model can be transferred rather straightfor-
wardly to other spatio-temporal settings with recurrent tasks, for example,

• firefighting drone collectives tasked with repetitive sector-wise fire detection and water distribution
and with partially observable quantities such as ground temperature and extinction level;

• geriatric care robot collectives tasked with recurrent monitoring and care-taking tasks (e.g., medi-
cation supply) with patient satisfaction and health status being partially observable;

• general patrolling collectives tasked with monitoring or supervising specific environments [15].
6non-probabilistic, deterministic, with full observability

124 Robustly Recurrent Strategies for Robot Collectives

6 Conclusion

We proposed an approach using weighted, partially observable stochastic models (i.e., reward-enhanced
POMDPs) and strategy synthesis for optimally coordinating tasked robot collectives while providing
recurrence and safety guarantees on the resulting strategies under uncertainty. Along with that, we dis-
cussed guidance on POMDP modelling and strategy synthesis. We focused on a cleaning robot scenario
for public buildings, such as schools. Our notion of correctness combines (i) safe recurrence (e.g., repet-
itively accomplish the cleaning task while avoiding to collect penalties), (ii) robustness (e.g., correctness
under worst-case contamination), and (iii) optimality (e.g., minimal energy consumption).

For scaling up strategy synthesis to scenarios beyond what can easily be tackled by stochastic game-
based synthesis, we addressed the key challenge [6] of reducing the state space and the transition relation
of a naïve model via partial observability (hiding details of stochastic room contamination) and by em-
ploying simultaneous composition (for robot movement). PRISM’s grid-based POMDP approximation
allowed us to adjust the level of detail of the belief space to synthesise strategies more efficiently. Fur-
thermore, we softly encode the strategy search space using penalties and optimisation rewards and can,
thus, shift the verification of more complicated properties to a later stage working with an unweighted
and non-probabilistic behavioural model, again using a more detailed, numerical state and action space.
However, decoupling synthesis from verification can require time-consuming experiments (Section 4.2)
to identify regions of the parameter space for ensuring the existence of good recurrent strategies.

In future work, we will improve finding ω ensuring the existence of correct strategies (i.e., green dots
in Figure 7). Ideally, we avoid defining ω explicitly (e.g., by hiding time). In a larger example, we want
to allow invariant-narrowing with φr and observable stochasticity in the environment, such that σ can
depend on arbitrary variables. The reset of the contamination flag on a room visit (Db) could be refined
by a decontamination rate in Mσ . Moreover, we aim to use multi-objective queries to include further
criteria (e.g., minimal contamination) for Pareto-optimal strategy choice. While PRISM imposes some
limits on the combination of queries and constraints, we will need to see how we can use tools such as
EVOCHECKER (as, e.g., used in [17]) for POMDPs. Also, we can further reduce the action set by taking
into account trajectory intersections in the simultaneous movements (cf. Figure 4a). Finally, we want to
connect the synthesis pipeline with code generation, such as demonstrated in our previous work [5].

References

[1] Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking. MIT Press.

[2] Davide Basile, Maurice H. ter Beek & Axel Legay (2020): Strategy Synthesis for Autonomous Driving in
a Moving Block Railway System with UPPAAL Stratego. In: FORTE, LNPSE 12136, Springer, pp. 3–21,
doi:10.1007/978-3-030-50086-3_1.

[3] DIN (2015): DIN 77400: Reinigungsdienstleistungen - Schulgebäude - Anforderungen an die Reinigung.
Standard, DIN. Available at https://www.dinmedia.de/de/norm/din-77400/237208488.

[4] Ruben Giaquinta, Ruth Hoffmann, Murray Ireland, Alice Miller & Gethin Norman (2018): Strategy Synthesis
for Autonomous Agents Using PRISM, p. 220–236. Springer, doi:10.1007/978-3-319-77935-5_16.

[5] Mario Gleirscher, Radu Calinescu, James Douthwaite, Benjamin Lesage, Colin Paterson, Jonathan Aitken,
Robert Alexander & James Law (2022): Verified Synthesis of Optimal Safety Controllers for Human-Robot
Collaboration. Sci. Comput. Program. 218, p. 102809, doi:10.1016/j.scico.2022.102809. arXiv:2106.06604.

[6] Mario Gleirscher, Jaco van de Pol & James Woodcock (2023): A Manifesto for Applicable Formal Methods.
Softw. Syst. Model. 22, pp. 1737–1749, doi:10.1007/s10270-023-01124-2. arXiv:2112.12758.

https://doi.org/10.1007/978-3-030-50086-3_1
https://www.dinmedia.de/de/norm/din-77400/237208488
https://doi.org/10.1007/978-3-319-77935-5_16
https://doi.org/10.1016/j.scico.2022.102809
https://arxiv.org/abs/2106.06604
https://doi.org/10.1007/s10270-023-01124-2
https://arxiv.org/abs/2112.12758

Till Schnittka and Mario Gleirscher 125

[7] Rong Gu, Peter G. Jensen, Cristina Seceleanu, Eduard Enoiu & Kristina Lundqvist (2022): Correctness-
guaranteed strategy synthesis and compression for multi-agent autonomous systems. Sci. Comput. Program.
224, p. 102894, doi:10.1016/j.scico.2022.102894.

[8] Umweltbundesamt (Hrsg.) (2008): Leitfaden für die Innenraumhygiene in Schulgebäuden. Available
at https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3689.
pdf.

[9] Bruno Lacerda, David Parker & Nick Hawes (2017): Multi-Objective Policy Generation for Mobile Robots
Under Probabilistic Time-Bounded Guarantees. In: Automated Planning and Scheduling (ICAPS), 27th Int.
Conf., pp. 504–512, doi:10.1609/icaps.v27i1.13865.

[10] William S. Lovejoy (1991): Computationally Feasible Bounds for Partially Observed Markov Decision Pro-
cesses. Oper. Res. 39(1), p. 162–175, doi:10.1287/opre.39.1.162.

[11] Owen Macindoe, Leslie Pack Kaelbling & Tomás Lozano-Pérez (2012): POMCoP: Belief Space Planning
for Sidekicks in Cooperative Games. In: AIIDE, The AAAI Press, pp. 38–43, doi:10.1609/aiide.v8i1.12510.

[12] Pierre El Mqirmi, Francesco Belardinelli & Borja G. León (2021): An Abstraction-based Method
to Check Multi-Agent Deep Reinforcement-Learning Behaviors. In: AAMAS, pp. 474–482,
doi:10.5555/3463952.3464012. arXiv:2102.01434.

[13] Gethin Norman, David Parker & Xueyi Zou (2017): Verification and control of partially observable proba-
bilistic systems. Real-Time Systems 53(3), p. 354–402, doi:10.1007/s11241-017-9269-4.

[14] Dave Parker, Gethin Norman & Marta Kwiatkowska (2024): PRISM Model Checker. Available at http:
//www.prismmodelchecker.org/manual/.

[15] David Portugal & Rui Rocha (2011): A Survey on Multi-robot Patrolling Algorithms, pp. 139–146. Springer,
doi:10.1007/978-3-642-19170-1_15.

[16] Antony Thomas, Fulvio Mastrogiovanni & Marco Baglietto (2021): MPTP: Motion-planning-
aware task planning for navigation in belief space. Robot. Auton. Syst. 141, p. 103786,
doi:10.1016/j.robot.2021.103786.

[17] Gricel Vázquez, Radu Calinescu & Javier Cámara (2022): Scheduling of Missions with Constrained
Tasks for Heterogeneous Robot Systems. In: Proceedings Fourth International Workshop on Formal
Methods for Autonomous Systems (FMAS) and Fourth International Workshop on Automated and verifi-
able Software sYstem DEvelopment (ASYDE), EPTCS 371, Open Publishing Association, pp. 156–174,
doi:10.4204/eptcs.371.11. arXiv:2209.14040.

https://doi.org/10.1016/j.scico.2022.102894
https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3689.pdf
https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3689.pdf
https://doi.org/10.1609/icaps.v27i1.13865
https://doi.org/10.1287/opre.39.1.162
https://doi.org/10.1609/aiide.v8i1.12510
https://doi.org/10.5555/3463952.3464012
https://arxiv.org/abs/2102.01434
https://doi.org/10.1007/s11241-017-9269-4
http://www.prismmodelchecker.org/manual/
http://www.prismmodelchecker.org/manual/
https://doi.org/10.1007/978-3-642-19170-1_15
https://doi.org/10.1016/j.robot.2021.103786
https://doi.org/10.4204/eptcs.371.11
https://arxiv.org/abs/2209.14040

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 126–142, doi:10.4204/EPTCS.411.8

A Case Study on Numerical Analysis of a Path Computation
Algorithm

Grégoire Boussu
Thales Research & Technology

Palaiseau, France
gregoire.boussu@thalesgroup.com

Nikolai Kosmatov
Thales Research & Technology

Palaiseau, France
nikolai.kosmatov@thalesgroup.com

Franck Védrine
Université Paris-Saclay, CEA, List

Palaiseau, France
franck.vedrine@cea.fr

Lack of numerical precision in control software — in particular, related to trajectory computation —
can lead to incorrect results with costly or even catastrophic consequences. Various tools have been
proposed to analyze the precision of program computations. This paper presents a case study on
numerical analysis of an industrial implementation of the fast marching algorithm, a popular path
computation algorithm frequently used for trajectory computation. We briefly describe the selected
tools, present the applied methodology, highlight some attention points, summarize the results and
outline future work directions.

1 Introduction

Numerical precision of algorithms has become an important concern for modern critical software. Ac-
cumulation of rounding errors can lead to serious issues in programs involving floating-point numbers.
Such accumulated errors can significantly affect the accuracy of computations and lead to incorrect
results. Even for a mathematically correct algorithm — considered in real numbers — its computer
implementation can give inaccurate or incorrect results if this implementation does not properly take
into consideration numerical precision aspects of the resulting computation in floating-point numbers.
In critical software, in particular in control software related to trajectory computation, lack of numeri-
cal precision can lead to incorrect results with costly or even catastrophic consequences. Well-known
examples include the Patriot missile failure in 19911 and the crash of Ariane 5 in 19962.

The fast marching algorithm [10] is a popular path computation algorithm frequently used for trajec-
tory computation in autonomous systems. It answers the question of which path is optimal between two
given nodes, that is, has the shortest time or, more generally, the smallest weight. The algorithm works in
two steps. A first step performs a forward wave front propagation from the given origin point, computing
the time the wave front will take to reach each point (of the plan, or grid, or graph). A second step uses
the resulting computation to perform a backward propagation from the final point to the origin point in
order to compute an optimal path. This algorithm has various applications for trajectory computation and
image segmentation. The purpose of this work is to investigate the numerical precision of an industrial
implementation by Thales of this algorithm over a discrete grid.

1See https://www-users.cse.umn.edu/~arnold/disasters/Patriot-dharan-skeel-siam.pdf.
2See https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html.

http://dx.doi.org/10.4204/EPTCS.411.8
https://www-users.cse.umn.edu/~arnold/disasters/Patriot-dharan-skeel-siam.pdf
https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

G. Boussu, N. Kosmatov and F. Védrine 127

Numerical analysis of such trajectory computation algorithms is a very challenging and time-consu-
ming task. Execution paths in the code are typically very long and go through many instructions. Each of
them can have an impact on precision and robustness of the algorithm. Indeed, such a path can go through
many unstable branches, that is, branches after a conditional expression for which a small imprecision of
computation or a small variation of input values can change the truth value of the condition and lead to
another branch in the code (ex: else instead of then branch of a conditional statement, or one more loop
iteration), possibly impacting the rest of the algorithm. Rounding a floating-point number to an integer
can have a similar impact when the resulting integer is later used in the code: if a value around 100.0
can be rounded to 99 or 100, it can potentially have a significant impact. Moreover, since the algorithm
simulates a continuous real space by a discrete grid, a deviation at one node can easily involve different
nodes and thus lead to a quite different result.

Various techniques and tools have been proposed to analyze the precision of program computations.
They include dynamic analysis and static analysis techniques. In this work, we use three popular nu-
merical analysis tools: Cadna [7] and Verrou [6] realizing (possibly unsound) dynamic analysis, and
FLDLib [12] performing a combination of sound abstract interpretation and dynamic path exploration.

Contributions. This paper presents a case study on numerical analysis of an industrial implementation
of the fast marching algorithm. While the considered implementation is currently not publicly available,
the underlying algorithm is classic, therefore we believe that the presented methodology and findings can
be of interest for other implementations of similar (and possibly other) algorithms. We briefly describe
the selected tools, present the applied methodology combining several tools, highlight some attention
points, summarize the results and outline ongoing and future work directions.

Outline. Section 2 presents the considered algorithm. Section 3 describes the verification methodol-
ogy, the selected tools and our findings. Section 4 provides a conclusion and future work perspectives.

2 The Verification Target: the Fast Marching Algorithm

This section provides a simplified presentation of the problem and the implemented algorithm without
giving all technical and theoretical details (which are not mandatory for understanding the paper). For a
more thorough description of theory behind the Fast Marching Algorithm, one may refer to [11].

The problem under consideration for the study is named the minimum-cost path problem. On a
finite graph with weighted edges, this problem can be stated as follows: which path to take between
two specified vertices so that the sum of weights along this path is the lowest among all possible paths
between the two nodes. When the weight is (seen as) the distance between the nodes, this problem is
also called the shortest path problem, and the cost is (seen as) the time to reach the point. Different
algorithms exist to solve the shortest path problem (e.g. Dijkstra, Bellman-Ford).

In our case, we are interested in the definition of the minimum-cost path problem in the continuous
case: let us consider the problem in Rn. A cost density function τ : Rn → (0,∞) gives the cost at each
point of the space. The minimum-cost path problem between A and B, two points in Rn, is to find a path
c(s) : [0,∞)→ Rn that minimizes the cumulative cost (often interpreted as the arrival time) from A to B.
The cumulative cost for a path c between A and M is:

Tc(M) =
∫ l

0
τ(c(s))ds

128 Numerical Analysis of a Path Computation Algorithm

where l is the length of path c between A and M, c(0) = A and c(l) = M. Therefore, csol is a solution to
the problem if and only if csol ∈ C where C is the set of all paths c between A and B with the minimum
Tc(B).

As stated in [10], if csol is a solution to the problem, it satisfies the equation below, named the Eikonal
equation, for all M ∈ csol:

||∇Tcsol (M)||= τ(M)

where ∇ denotes the gradient, and || · || denotes the Euclidean norm. This equation is, in particular, a
way to describe the propagation of a wave front initiated in point A. The front speed at point M is given
by 1/τ(M), and Tcsol (M) is the time of arrival of the front from point A to point M.

In the presented definition of the problem, the value of τ at a given point depends only on the point’s
location. This case is qualified as isotropic. If τ also depends on the direction of the path at the point,
the cost function is anisotropic. A method to solve this equation in the case of an isotropic problem
discretized on a Cartesian grid was proposed by Sethian in 1995 [10] and has become the starting point
for many extensions. This method, named fast marching method (FMM), shares many aspects with
Dijsktra’s algorithm. Once the equation is solved for all points of the grid, a second step is necessary
to figure out the (or one of the) optimal path solution(s) to the minimum-cost path problem. We will go
over the two steps sequentially.

2.1 First Step: Solving the Eikonal Equation

Basically, given a grid and a starting point A of the grid, Sethian’s method allows one to calculate the
arrival time Tc(M) to any point M of the grid over a minimum-cost path c starting from point A. Each
point M of the grid has 4 neighbors as shown in Fig. 1. Based on a relevant approximation scheme, Tc(M)
is calculated considering the possibilities that the wave about to reach the point M comes from North-
East (with a contribution from the neighbors above and on the right), or South-East (with a contribution
from the neighbors below and on the right), or South-West (with a contribution from the neighbors below
and on the left, as shown in Fig. 1) or North-West (with a contribution from the neighbors above and on
the left). Starting the algorithm with Tc(A) = 0 and Tc(M) = ∞ for all M ̸= A, and picking the next point
M to study in an appropriate order, the process progressively computes the arrival time Tc(M) (or more
precisely, its approximation due to the discretization) for all points M of the grid.

We can further explain the process using the interpretation of the equation with a wave front, illus-
trated in Fig. 2. The black points of the grid have their final value Tc(M) computed, the gray ones have a
tentative value Tc(M) computed, and the white ones still have Tc(M) = ∞, as set at the initialization step.

The set of gray points is named the narrow band. Intuitively, at each step of the algorithm, the
black points have already been reached by the wave, and at least one of the gray points will be reached
next, before any of the white points will be reached. Just like in a classic implementation of Dijkstra’s
algorithm, a priority queue is used to store the gray points. When a point M is selected from the queue, its
neighbors M′ enter the queue (if they were not already part of it) and get their arrival time values Tc(M′)
calculated or updated based on Tc(M). The next point M to be selected in the queue is the one with the
lowest tentative arrival time Tc(M). When selected, such a gray point gets its tentative value Tc(M) turned
to the final one, and the point itself is removed from the queue and labeled as black. Intuitively, since
the tentative arrival time of the wave to this point is the smallest one among the gray nodes, it cannot be
reached even faster through some other node (for which the arrival time will necessarily be bigger) hence
the computed arrival time to it is final. At the beginning of the algorithm, the priority queue is initialized
with A.

The fast marching method has two interesting features:

G. Boussu, N. Kosmatov and F. Védrine 129

Figure 1: Neighbors selected for calculation of Tc(M)

• It is efficient in terms of computational complexity. Indeed, its complexity is similar to that of
Dijsktra’s algorithm, and is of O(n lg(n)), with n being the number of points of the grid.

• It can be proven that the FMM produces a solution that satisfies everywhere the discrete version
of the Eikonal equation, leading to an approximation of its so-called viscosity solution (see for
example [4] on viscosity solutions). So when the grid spacing tends to 0, the solution provided by
the FMM algorithm tends to the continuous solution of the equation.

Though, as Tc(M) is calculated based on the Tc of the neighbors of M, the calculation errors may
propagate over the entire grid. Added up, these errors may lead to a discrepancy for points far from
point A and impact the precision of the global result expected from using FMM. Studying the order of
magnitude of this discrepancy is of great interest to be confident in the implementation of the algorithm.

2.2 Second Step: Finding an Optimal Path by a Backward Propagation

The theory provides a way to find an optimal path, thanks to a property of such a path: its direction
is always normal to the wave front [1]. To produce the result, a so-called back-propagation from the
final point (supposed to be on the grid) is realized, based on a gradient descent following the direction
perpendicular to the wave front curve.

Though, once the arrival time values Tc(M) are calculated for each point of the grid, we are still
in a discrete space and the gradient calculation is not straightforward. The gradient descent can be
approximated by selecting for each point its predecessor among the neighbors, the appropriate one being
the (or one of the) neighbor(s) with the lowest Tc(M). But this approach leads to a path made of following
segments that can be perpendicular one to the next. Moreover, aggregating the length of each segment of
the path will generally lead to a value overestimated compared to the optimal path length in a continuous
space. It would be preferable to provide a visually smooth path with its length approximating the length
of the viscosity solution of the Eikonal equation.

Such an alternative can be implemented with the following approach: starting from the final point of

130 Numerical Analysis of a Path Computation Algorithm

Figure 2: Propagation of the wave front

the path, a pseudo-gradient is calculated on each segment around this point, as shown in Fig. 3. The best
point on the segments, i.e. the point (or one of the points) minimizing ∆Tc/distance (that is, maximizing
the speed of the wave) is selected as the previous point of the approximated path. A similar approach is
taken to find out the best point when the gradient is calculated from any point in the middle of a segment.
This leads to a much smoother path, whose length provides a good approximation of the expected length
of the viscosity solution.

Just as in the case of the fast marching algorithm, the calculation is made one point after the other.
Therefore, the calculation errors due to the implementation can lead to an aggregated discrepancy. An
analysis of sensitivity of the implementation to these errors is thus required.

2.3 Applications of These Algorithms

Many fields of application exist for these algorithms. The first is of course related to path calculation
leading to the shortest time between two points, considering the speed of the mobile agent depending
on its position in an area. A less obvious application could be image segmentation [3]. To allow for
different and more specific situations, many extensions to the method have been developed. To name a
few: the possibility to deal with anisotropic costs [8], or with time-dependent costs with no restriction
on sign [2], or the extension taking into consideration constraints like minimum turning radius of the

G. Boussu, N. Kosmatov and F. Védrine 131

Figure 3: Calculation of pseudo-gradient on a segment

moving agent [9].
In our case, the fast marching method is a general approach to produce paths optimizing any kinds of

criteria (or a mix of criteria). The most straightforward situation would be to aim at minimizing time to
reach a location, while the area through which we can move is made of danger-free zones where the speed
can be high, and others surrounded by dangers (mountains, ...) where the velocity should be reduced.
Let us consider another example where time is not the criterion to optimize: the pilot of a plane wishes
to avoid turbulence areas ahead (considered as static). He may want to find a good balance between
disturbance due to very strong winds and the additional distance incurred by avoiding these areas. If the
plane has a steady cruising speed, by defining the cost function τ with high values in the center of the
turbulence areas and decreasing values towards the outside, the fast marching method can provide an
appropriate path to follow (see Fig. 4).

For use cases where a lack of precision can generate additional risks (e.g. air traffic, autonomous
drones), aggregated calculation errors can significantly impact the result of the computation. This con-
cern motivated the current study.

3 The Verification Approach and Results

The target implementation of the path computation algorithm contains more than 6,200 lines of C++
code and provides several test cases. They include realistic test cases over a square grid with 200x200
nodes and obstacles simulated by higher weights, as illustrated by Fig. 4. Internally, the code uses some
C++ STL (Standard Template Library) containers, like vectors, maps and priority queues. So, formal
numerical analysis of this implementation and its adequacy with respect to the underlying mathematical
formulas within a short period of time requires concentrating on successive research questions:

RQ1: What is the accuracy of the computed path cost?

RQ2: Is the computation robust (meaning that a small perturbation of inputs leads only to a small varia-
tion of outputs)?

132 Numerical Analysis of a Path Computation Algorithm

Figure 4: Result of calculation of a path avoiding turbulence areas

RQ3: How does the computed path compare to the path obtained on a more or less precise grid (say, with
twice more or twice fewer points on each side)?

This paper focuses on RQ1 and RQ2, while RQ3 is left for future work. To address these questions,
we decided to apply the following methodology that was successfully applied earlier on some simpler
numerical use-cases, except the last item that is more related to deductive verification:

• instrument the tests with different numerical analysis libraries to identify the difficulties in obtain-
ing relevant analysis results and then refine the verification objectives, such as accuracy require-
ments;

• enlarge the tests into analysis scenarios to check whether the analysis scales up and still provides
precise results. Fine-grained analysis scenarios typically replace concrete input values by very
small input intervals and then apply conservative interval operations; larger analysis scenarios can
also be considered;

• apply modular formal verification to the components of the target implementation and assemble
the reasoning results to provide a proof of global correctness.

After presenting the common instrumentation in the next section, we will apply Cadna to address
RQ1, Verrou to address RQ1 and RQ2 by comparing with Cadna results, and FLDLib to address RQ1
and RQ2 to investigate the unstable branches that may have a significant impact on the robustness results.

3.1 A Common Instrumentation Mechanism for Different Verifications

The mechanism for building the target implementation of the fast marching algorithm uses the cmake
tool; so a slight modification of the file CMakeLists.txt enables adding some new executable targets
compiled with specific compilation flags. This feature enables the source code to be easily compiled with

G. Boussu, N. Kosmatov and F. Védrine 133

analysis libraries into a single executable. For the verification purposes, this instrumentation mechanism
competes with abstract interpreters when the abstractions to be used are generic (intervals, affine forms).
But our case study also requires the elaboration of specific abstractions. So, to quickly explore and debug
these newly created abstractions, an instrumentation based on C++ operator overloading and template/-
macros mechanisms seemed to us more efficient than using an existing generic abstract interpreter.

Our default instrumentation mechanism replaces double and float types with data structures car-
rying analysis information like accuracy, as it is often done by instrumentation libraries [7, 12]. Such
data structures implement an overload for the arithmetic operations (+, -, *, /, pow) to infer numerical
properties like the accumulation of round-off errors in numerical computations. Integer types like int
or unsigned int are not instrumented by default. But, the source code can use explicit intrumenta-
tion for these types by replacing int by EnhancedInteger<int> whenever it makes sense for some
EnhancedInteger template class to define. The C++ compiler helps then to statically propagate these
custom types on the source code since an operation manipulating int and EnhancedInteger<int>
generates an error if its result is assigned to an int and not to an EnhancedInteger<int>.

For each analysis target, the file CMakeLists.txt adds specific compilation flags like
-I.../analysis_include -include std_header.h -DFLOAT_MY_ANALYSIS to build the target.
The directory .../analysis_include contains the file std_header.h that conditionally loads the
appropriate analysis data structures for the flag FLOAT_MY_ANALYSIS and replaces the double type with
the macro double defined by #define double EnhancedFloatingPoint<double>.

The research questions stated in the beginning of this section systematically compare two or more
executions. These executions can (and do) follow different control flows (that is, different execution
paths) in the target program. In our experiments, we instrument the code with three different strategies:

1. A single run of a synchronous analysis with a single control flow: this single analysis run prop-
agates complete analysis information for every variable at every point of the execution path until
the end of the program.

2. Multiple runs of asynchronous analyses with a single control flow: a run propagates partial analysis
information until the end of the program. With multiple runs, the user can compute the analysis
result as a model from the correlated input/output data.

3. A single run of a synchronous analysis with multiple control flows: this single analysis run prop-
agates complete analysis information and thanks to additional local loops, it covers all possible
execution paths (which corrects a weakness of Strategy 1 with an additional instrumentation and
execution cost).

For the last strategy, we use SPLIT/MERGE macros introduced and used by FLDLib [12]. A pair of such
macros (SPLIT and MERGE) define a so-called SPLIT/MERGE section: it expands into a local loop that
iterates over all the reachable control flows of the SPLIT/MERGE section in order to analyze them one
after another. A local memory defined in the SPLIT macro saves the memory before the section and
restores it at the beginning of the loop body for an exploration of a new control flow. SPLIT also saves
a control flow identifier for an exploration of a new execution path of the section. It then increments
this identifier to cover another execution path in the next loop iteration. At the end of the loop, MERGE
incrementally synchronizes the results of the local analyses to create a single analysis summary per
variable. The analysis is then continued with this summary until the end of the program.

Beyond these generic principles, the instrumentation may encounter some problems listed below,
which may require minor adaptations to the source code for analysis purposes. In practice, the first two
problems are absent in the modern C++ implementation of the fast marching algorithm.

134 Numerical Analysis of a Path Computation Algorithm

• dynamic allocations with C functions malloc and free should be replaced by C++ new operator
with smart pointers (or delete): EnhancedFloatingPoint often has non-trivial constructor and
destructor and the malloc and free functions do not call them unlike new and delete.

• C functions with variable number of arguments and specialized format specifiers (such as scanf
and printf(“%e”, ...)) should be replaced with std::cout, std::cin calls because “%e”
does not recognise EnhancedFloatingPoint.

• In a divide-and-conquer analysis approach, we typically instrument certain parts of the code and
leave others unchanged. But, replacing int with EnhancedInteger<int> also generates many
other replacements. In the case of the fast marching algorithm, the forward propagation part
(Sect. 2.1) and the backward propagation for path generation (Sect. 2.2) share some common meth-
ods. However, replacing int with EnhancedInteger<int> is only required in the backward path
generation. In this case we rename the original method as a template method in the private section
of the class. Then, we duplicate the public method, one with int arguments and the other with
EnhancedInteger<int> arguments. The bodies of the original method and its duplication just
call the template private method. From the caller’s perspective, the C++ “name lookup” generally
generates correct calls.

• The second argument of binary operators whose first argument is of type EnhancedInteger<int>
may be int, unsigned, double, EnhancedFloatingPoint<double>. The instrumentation needs
precise overloaded operators to be called by all the constructs of the source code. In C++-03, pro-
viding an interface for this instrumentation that correctly connects the source operator with the
correct overloading for all type combinations was a very complex task and ultimately produced a
resulting interface that was difficult to manage. That is probably the reason why Cadna 2.1 does
not support long double. Then, the SFINAE (Substitution failure is not an error) [14] feature
allows the definition of such a robust interface, but this remains very technical with maintainance
difficulties. Our libraries use recent C++-20 concepts to manage this class interactions, which
makes the instrumentation more robust.

3.2 Results of the Approach based on Dynamic Analyses

To address RQ1, the objectives of the first analyses are
• ensuring that the code can be instrumented with dynamic analysis libraries (that are generally

simple to use from the instrumentation point of view),

• obtaining initial quantitative accuracy properties to be refined later with more complex analyses,

• evaluating the robustness of the implementation: a small perturbation of input data should generate
a small deviation in the outputs. If the implementation is not robust, we have no chance of proving
formal functional properties, such as “the results depend in a limited way on the size of the grid”.

Dynamic analysis with stochastic arithmetic meets these goals; that is why we use it as a first ap-
proach. To do this, we couple the instrumentation mechanism described in the previous section with
stochastic analysis libraries in order to obtain accuracy and robustness results without any modification
to the source code. Such analyses only require a test case and explore the impact of minor perturbations
on the results after execution of the test scenario.

The Cadna3 [7] library evaluates the accuracy of a code by propagating three executions in a single
run (synchronous analysis with single control flow). This leads to maintaining three values (v0, v1, v2 in

3See https://www-pequan.lip6.fr/cadna

https://www-pequan.lip6.fr/cadna

G. Boussu, N. Kosmatov and F. Védrine 135

u n s t a b l e b r a n c h e s

l o c a l c o n t r o l f l o w g r a p h r e l a t e d
t o t h e u n s t a b l e b r a n c h

4 8 2 5 3 8

s
ta
rt
 o
f
th
e

te
s
t
c
a
s
e

e
n
d
 o
f
th
e

te
s
t
c
a
s
e

c o s t
v 0

v 1

v 2

Figure 5: (Simplified) trace of the execution with Cadna (in green), where the cost of the path is evaluated
by three values v1, v2, v3.

Fig. 5) for each computed variable var instead of one. To evaluate potential impact of rounding errors,
with this library each floating-point computation involving var is dispatched over v0, v1 and v2. The ideal
results are randomly rounded up or down — with a probability of 50% for up or 50% for down — instead
of using the deterministic IEEE-754 rules implemented in the processor. The average of the three values
provides the expectation of the computed result, while the standard deviation provides an estimate of the
accumulation of round-off errors [13]. Such analysis is synchronous: the three executions are forced to
follow the same control flow (shown in green in Fig. 5) and do not evaluate unstable branches, for which
a possible imprecision can impact the result of a conditional test (and therefore the branch taken after it).
Let us consider a comparison, say d < d′ between two double values d and d′ instrumented by Cadna.
It compares each of the three values v0, v1, v2 obtained for the first value d with the corresponding value
of the three values v′0, v′1, v′2 obtained for the second value d′. Suppose that the first two comparisons
return true and the last returns false. Cadna just reports an “UNSTABLE BRANCHING” and propagates the
last execution into the then branch as well, even if it would naturally execute the else branch.

The instrumentation quickly succeeds on the target code with Cadna (thus fulfilling the first objec-
tive). The algorithm computes (in 0.556s) a path of 322 points as well as the cost of the path, stored
in variable cost. Since cost is the value that the algorithm attempts to optimize, we expect it to be
robust. The cost has an average of 0.392 and a relative error of 1.323×10−15 due to the accumulation
of round-off errors. Cadna also reports the following warnings:

CRITICAL WARNING: the self-validation detects major problem(s). The results are NOT guaranteed.
There are 977194 numerical instabilities
1687 UNSTABLE MULTIPLICATION(S), ...
482538 UNSTABLE BRANCHING(S), 260343 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

The execution of the test case takes 0.182s and generates a shorter path of 320 points with a cost of
0.393257, that is outside the error range computed by Cadna. That confirms — as suggested by the
warnings — that the Cadna results are not conclusive: unstable branches (not evaluated by Cadna)
probably have a major impact on the path computation and therefore on the robustness of the algorithm.

The second analysis uses the Verrou4 [6] tool5. Verrou evaluates the accuracy of a code during
multiple runs by randomly rounding up or down every floating-point computation (asynchronous analysis
with single control flow). Unlike Cadna, Verrou does not need additional memory: since the execution
of the program perturbed by Verrou is non-deterministic, multiple runs provide multiple output values
(see Fig. 6, where we show only four traces for readability). The average and the standard deviation
of the output respectively provide the expected stochastic result and an error that is representative of

4See https://github.com/edf-hpc/verrou
5The Verificarlo [5] tool (see https://github.com/verificarlo/verificarlo) can be expected to produce similar

results, but it was not used in this study.

https://github.com/edf-hpc/verrou
https://github.com/verificarlo/verificarlo

136 Numerical Analysis of a Path Computation Algorithm

s t a r t o f t h e
t e s t c a s e

e n d o f t h e
t e s t c a s e

s y n c h r o n i z a t i o n o f V e r r o u r e s u l t s

c o s t 0
c o s t 1
c o s t 2
c o s t 3

Figure 6: Four (simplified) traces (in green) from the 10 executions with Verrou. Each trace leads to
computing a (possibly different) path and its cost

g l o b a l s p l i t / m e r g e s e c t i o n

s
ta
rt
 o
f
th
e

te
s
t
c
a
s
e

e
n
d
 o
f
th
e

te
s
t
c
a
s
e

s a v e l o c a l
m e m o r y

r e s t o r e
l o c a l m e m o r y

s a v e p a t h & c o s t t o
m e r g e w i t h p a t h & c o s t

s y n c h r o n i z a t i o n
p o i n t

t h e n

t h e n

t h e n

t h e n t h e n
e l s e

e l s e e l s e
e l s e e l s e

Figure 7: (Simplified) trace of the FLDLib analysis, in which the code of a SPLIT/MERGE section is
executed several times for all executable control flows inside it and the results are consolidated at the end

the accumulation of round-off errors. With ten runs (performed in 16.123s), Verrou provides different
lengths for the optimized path: 324, 307, 308, 307, 315, 315, 314, 317, 312, 300. The average of the ten
values of cost is evaluated to 0.3922 and its standard deviation to 2.68×10−4.

The error produced by Verrou seems to be more consistent than that of Cadna with respect to the
original IEEE-754 floating-point execution. The multiple runs nevertheless do not contain the value of
cost produced by the test case execution since 0.393257 ≫ 0.3922+0.000268. We relaunch the Verrou
analysis several times and we systematically obtain an average and a standard deviation close to these
values. That means that the floating-point execution takes a control path that is distinct from other control
paths in terms of their impact on the cost value. At this point, the use of formal methods appears relevant
to further investigate the relative instability of the floating-point execution.

3.3 Evaluating the Impact of Perturbations on the Control Flow and the Resulting Path

To further address RQ1 and investigate RQ2, the third analysis relies on the FLDLib6 library [12] to
provide a sound over-approximation of the accumulation of round-off errors by maintaining the ideal (in
practice, a very precise machine) computation and the floating-point computation in parallel. FLDLib
relies on SPLIT/MERGE sections (presented above) to analyze unstable branches by exploring each of
the different control flows using abstract interpretation and by consolidating the observed results at the
end. This analysis propagates affine forms for rounding errors and for the possible values on the test case.
The mathematical representation of an affine form is α0+∑

n
i=1 αi×εi, where αi are constant coefficients

in R (approximated by floating-point values with a large mantissa) and εi are free variables in the interval
[−1.0,+1.0]. The error symbols εi represent unknown values due to basic approximations of complex
computations. The program variables can share some εi, which creates linear relationships between some
of these variables. FLDLib also offers advanced features to reduce the size of the re-executed code with
local synchronization annotations (see the FLDLib library documentation and [12] for more detail).

6See https://github.com/fvedrine/fldlib

https://github.com/fvedrine/fldlib

G. Boussu, N. Kosmatov and F. Védrine 137

1 double jm _r e s = (y − yMin) / dy ;
2 unsigned i n t jm = (unsigned i n t) jm _r e s ;

Figure 8: First unstable branch identified with FLDLib

In practice, we activate the FLDLib analysis after initialization of the mesh. Therefore, the grid is
composed of points with floating-point coordinates considered exact, i.e. without any numerical error.
With this assumption, the analysis only propagates affine forms over 4 execution paths. A simplified
version of an execution trace of FLDLib is illustrated by Fig. 7. After several attempts, we have found
the right settings: 319 bits for the internal mantissa of the coefficients of the affine forms and a limit of 30
shared symbols per expression. With an internal mantissa of 255 bits, the intervals representing the ideal
computations are too wide at the end of the forward wave propagation (see Sect. 2.1). Therefore, the
cost associated with the resulting path is too strongly over-approximated with the interval [−∞,+∞]: the
algorithm performs at some moment a division by the distance between two points, and if the localization
of these points is imprecise, a potential division by zero due to interval arithmetic gives this result. This
first FLDLib experimentation (internal mantissa of 255 bits) is nevertheless interesting because, like with
Cadna and Verrou before, it also produces a resulting path (with 278 points) that is different from the
path produced by the floating-point execution of the test case (with 320 points).

FLDLib quickly identifies the location in the source code of a first unstable branching, for which
it explores both branches in floating-point and ideal computation. It concerns the computation of the
second instruction of Fig. 8 with the values y=0.5, yMin=0, dy=0.005.

In floating-point semantics, the value of jm_res is 100. In the ideal semantics, the value of dy is
5×10−3 +1.0408×10−18 since all the constants take the same floating-point value for both semantics;
therefore, the analysis shows that the ideal value of jm_res belongs to the small interval [100−2.082×
10−16,100− 2.081× 10−16]. The value of jm is then 100 in floating-point semantics and 99 in ideal
semantics, which creates an unstable branching. The analysis then separates the joined control flow of
both semantics into two control flows and explores them separately. These control flows merge at the
end of the source code after the computation of the path and its cost. The merge operation computes
the numerical error from the substraction between the floating-point value and the ideal small interval of
the cost, each value being inferred by the corresponding control flow. The result of this second FLDLib
experimentation (internal mantissa of 319 bits) shows an interesting finding: the unstable branch has no
impact on the cost and on the points of the path, even if the sorted priority queue (see the gray points
of Fig. 2) is organized differently in the two control flows. Therefore, the resulting paths both have 320
points, like the floating-point execution and they return a relative error of 7.058×10−16 for the cost.

The duration of this second FLDLib analysis is 114 min after a limited exploration of only 4 execu-
tion flow paths. For one control flow path, the analysis encounters 351296 unstable branches. Therefore,
the estimated time for the complete analysis would be 2351296 ×114min/4. Nevertheless, these prelim-
inary results allow us to identify the first unstable branches and to show their absence of impact on the
computed path and its cost.

As another finding, this second FLDLib analysis also provides the complete list of locations in the
source code of the unstable branches encountered. This list has only 5 locations (which are executed
multiple times due to loops), each with a unique calling context. The calling contexts show that the
first 4 locations (one of which is the unstable branch of Fig. 8) belong to the forward wave propagation
(Sect. 2.1) and that the last location belongs to the backward propagation dedicated to the path generation
(Sect. 2.2).

138 Numerical Analysis of a Path Computation Algorithm

g l o b a l s p l i t / m e r g e s e c t i o n

s
ta
rt
 o
f
th
e

te
s
t
c
a
s
e

s y n c h r o n i z a t i o n
p o i n t

e
n
d
 o
f
th
e

te
s
t
c
a
s
e

t h e n t h e n

e l s e e l s e

t h e ne l s e

e l s e

s a v e l o c a l
m e m o r y

r e s t o r e
l o c a l m e m o r y

s a v e p a t h & c o s t t o
m e r g e w i t h p a t h & c o s t

Figure 9: Trace of the FLDLib analysis forgetting unstable branches related to unsigned int conversion

To investigate the impact of other unstable branches, we modify the analysis with an analysis library
that only targets the last unstable branch: the one that has a direct impact on the outcome of the path.
The reason is that the first unstable branches listed potentially concern all the cells of the grid of Fig. 2
(as they are part of the forward wave propagation); therefore, they have little chance of having an impact
on the final path, whereas the last unstable branch directly concerns the cells crossed by the resulting
path (as it belongs to the path generation step). Concretely, the new analysis forces the ideal computation
of the unstable branch created by the unsigned int conversion of Fig. 8 to be equal to the floating-
point point computation. Indeed, we observe in Fig. 9 that for the first branches of the analysis paths,
the control flow of ideal computations follows the floating-point control flow, which was not the case in
Fig. 7. The duration of the new analysis increases significantly: 17 h 20 min instead of 114 min to cover
four different branches7.

The first iteration of this third FLDLib analysis follows a joined control flow for both semantics until
the path and cost are computed, which was not the case in the previous analysis. The reported error
for this iteration on cost is 4.71× 10−13, which is consistent with the Cadna results (1.323× 10−15)
since FLDLib provides a guaranteed over-approximation while Cadna returns a stochastic estimation of
the error. Then, as expected, the first unstable branch is found during the backward path generation.
The second analysis iteration follows only the floating-point control flow and it gives the same result
for cost as the reference execution. The third analysis iteration follows only the ideal control flow and
the MERGE macro at the end of the main function creates an error of 4.66× 10−13 as the maximum
difference between the ideal cost and the floating-point cost. An important finding here is that this small
error satisfies a sufficient stability criterion for our optimization algorithm, even if there are only two
unstable branches evaluated.

The robustness of this conservative analysis, if it is confirmed on all paths despite the unstable branch-
ings encountered by Cadna and qualified by Verrou, suggests that certain computations are redone in dif-
ferent parts of the algorithm, notably between the forward wave propagation (Sect. 2.1) and the backward
propagation for path generation (Sect. 2.2). This would be another interesting finding for such kinds of
algorithms, where some small steps are recomputed several times. Indeed, the stochastic analysis does
not ensure the introduction of exactly the same perturbation if exactly the same computation is performed
several times. Suppose such a redundant computation evaluates to a value res the first time, the stochastic
analysis evaluates it to res+δ the second time, since the pertubations introduced by the analysis are not

7Here is an explanation for this time difference. The first analysis very early encounters an unstable branch that separates
the floating-point control flow from the ideal control flow. The analysis of the floating-point control flow then propagates only
constant values and the analysis of the ideal flow stops propagating affine forms related to the difference between the float and
the ideal value since the floats are no longer present. Conversely, the new analysis has to propagate constants for floating-point
values and affine forms for ideal values and for errors during longer execution fragments, which is costly, including the reduced
product between the inferred error and the subtraction of ideal value and floating-point value.

G. Boussu, N. Kosmatov and F. Védrine 139

Cadna Verrou FLDLib: 4 paths
over 2351296

instrumentation time 10 min 0 s 3 h
analysis time 0.556 s 16.123 s 17 h 20 min

cost error 1.323e-15 2.68e-4 4.71e-13

error of mean cost value
wrt. reference execution

1.25e-3 1.27e-3 4.71e-13

indicative confidence
in results (/10)

4 6 7

reason of error unstable branching original float no inconsistency
inconsistency not evaluated execution not reached for 4 paths

Figure 10: Analysis summary (the floating-point reference execution time without analysis being 0.182 s)

the same. Hence, the branch taken after the first computation may be different from the one taken after
the second, whereas the deterministic IEEE-754 computation guarantees that it will be the same branch.
This issue also occurs for FLDLib analysis in case of over-approximations. In this case, the evaluation
result is res+[a,b], but the analysis cannot guarantee that it is the same branch because the value chosen
in [a,b] the first time may be different from the value chosen in [a,b] the second time. Since the intervals
for the ideal values are very very small (319 bits of mantissa is equivalent to a precision of 4.68×10−97)
and since the main linear relationships are preserved between the variables, the analysis is likely to avoid
certain over-approximations that would consider unreachable branches and generate false negatives.

Figure 10 shows a summary of our first experiments, which required little investment in annotations
of the source code, but a lot of effort in the definition and configuration of the analyses. It gives an
indicative (and subjective, based on our experience) level of confidence for the results of each tool. The
instrumentation time corresponds to the time that was required for the authors to instrument the code. The
analysis time shows the tool execution without the compilation steps. The cost error is the error output
directly produced by the tools for the cost variable. It concerns the standard deviation of the cost values
for the stochastic tools (Cadna and Verrou) and the conservative error for the formally guaranteed tool
(FLDLib). The error of mean cost value is the difference between the mean of the cost values computed
by the tools and the original floating-point evaluation of the variable cost computed by the code without
any instrumentation. The indicative confidence in the corresponding analysis increases when both errors
become closer. The reason of error inconsistency is given in the last line.

3.4 Ongoing Work on Formal Verification for Thin Numerical Scenarios

The aforementioned results are promising and make us believe that a complete formal robustness analysis
for this case study is possible. But we need to cover all of the 351296 unstable branches identified by
the FLDLib analysis to know if the accuracy of the cost is rather close to 1.27×10−3 or 4.71×10−13 for
this test case (cf. Fig. 10). This section presents our ongoing work in this direction.

For this purpose, we add local synchronization annotations around the detected unstable branches
(see the resulting trace in Fig. 11). That means that the unsigned int variable receiving the conver-
sion of the floating-point computation in Fig. 8 is conditionally defined. For instance, the evaluation
of jm_res with the values y=0.5, yMin=0, dy=0.005 can be seen as producing an integer defined as

140 Numerical Analysis of a Path Computation Algorithm

l o c a l s p l i t / m e r g e s e c t i o n s

s
ta
rt
 o
f
th
e

te
s
t
c
a
s
e

e
n
d
 o
f
th
e

te
s
t
c
a
s
e

m e r g e i n t e g e r , f l o a t i n g - p o i n t d a t a i n c o n d i t i o n a l e x p r e s s i o n s
l e a d i n g t o u n s t a b l e b r a n c h e s - s y n c h r o n i z a t i o n p o i n t

Figure 11: (Simplified) trace of the FLDLib analysis with local synchronization points

if b0 then 100 else 99, where b0 is a fresh and free logical variable in {true, false}. For this unstable
branch, b0 evaluates to true in the floating-point semantics and false in the ideal semantics. Further
unstable branches have a more complex evaluation in ideal semantics.

For this propagation, we define a new conditional domain8 in FLDLib that contains cascading con-
ditional expressions or a simple integer value. This domain is implemented as an instantiation of
EnhancedInteger template mentioned in Sect. 3.1. Therefore, it can represent domains like

if b0 then (if b1 then . . . else . . .) else ((if b2 then . . . else . . .))

The conditional domain also propagates to floating-point computations.
The initial code contains integer and floating-point values. Our automatic instrumentation (see

Sect. 3.1) preserves floating-point constants but replaces floating-point variables with the default floating-
point domain containing an affine form for the ideal computation and the accumulation of round-off er-
rors, and an interval for the floating-point computations. Thus, each new domain potentially interacts
with 3 different domains (conditional integer, conditional floating-point, affine forms) and the concepts
of C++-20 are very useful for handling these interactions — adding the conditional domains to FLDLib
required 12 kloc of C++ code.

A finalization of these new domains and their application for the robustness analysis of the case study
is still ongoing. It will require a manual instrumentation of the code (that will probably take more than 8
hours) but can be expected to help analyze the target code.

Robustness analysis is a mandatory requirement before attempting to verify functional properties,
such as the relative independence of the results with respect to the size of the grid (cf. RQ3). Checking
these properties follows the same methodology as checking robustness. We proceed first with simple
tests, then with formal analysis. We start by using the same test case, before attempting later a modular
verification approach based on deductive methods.

4 Conclusion

Numerical analysis of software is important for critical programs, in particular related to trajectory com-
putation used in autonomous systems. It is also a very challenging and time-consuming task. Indeed,
precision and robustness of the algorithm can be impacted by many instructions, especially for programs
with long execution paths and/or simulating a continuous real space by a discrete grid, for which a small
perturbation of data can naturally lead to another behavior.

8This domain is not yet available in the public repository of FLDLib, but we plan to integrate it into the open-source
repository of the tool in the near future.

G. Boussu, N. Kosmatov and F. Védrine 141

This case study paper describes an industrial application of several modern numerical analysis tools
to a real-life path computation algorithm with a realistic test case. We present the applied methodology
and results. An important first step of the study is to ensure code instrumentability and to compare var-
ious analysis results to qualify the impact of unstable branches with stochastic methods (with tools like
Cadna and Verrou). Next, we investigate unstable branches and formally ensure robustness with a formal
analysis (using a tool like FLDLib). The results we obtained seem very promising: we managed to iden-
tify the unstable branches and the corresponding locations on the code that constitute important attention
points for numerical analysis. Dynamic analysis tools (Cadna and Verrou) show that the relative error
in the path computation is sufficiently small, and the algorithm is sufficiently robust. This conclusion
should be confirmed by a formal analysis. A representative subset of unstable branches coming from
different parts of the algorithm has been formally shown (with FLDLib) to ensure expected robustness
properties, while the study for other branches is still in progress. So far, the analysis confirmed that the
algorithm meets the user expectations in terms of accuracy and robustness.

Future Work. This case study suggests numerous future work perspectives. One perspective is to
finalize the investigation of unstable branches. We plan to use the new conditional domains that were
recently integrated into FLDLib and will be evaluated on this case study. Considering other realistic test
cases and replaying the analyses for them is another work direction. Applying the described methodology
on other industrial use cases is another perspective.

As a more ambitious long-term research objective, proving that the result does not depend on the size
of the grid (RQ3) is a much more complex problem. Our plan is to apply a component-based divide-and-
conquer approach on the source code. For each component, this requires formal instrumentation in order
to propagate logical formulas instead of abstract domains. The starting point is the previous instrumen-
tation of the code with its annotations for the synchronization of unstable branches. The methodology
is inspired by the approach used in deductive verification, by first replacing the data structures of the
code with classes representing formal properties. C++ operator overloading will propagate these prop-
erties across components using carefully designed verification unit scenarios. The engineer’s objective
will be to design unit scenarios (such as the postcondition/output invariant of a method/class is formally
contained in the precondition/input invariant of the method/class that takes its results).

Acknowledgment. Part of this research (tooling improvement) was supported by the ANR InterFLOP
project (grant ANR-20-CE46-0009). Part of this work was also supported by the ANR EMASS project
(grant ANR-22-CE39-0014). We thank the designers and developers of numeric analysis tools of the
InterFLOP community.

References

[1] R. Bellman & R. Kalaba (1965): Dynamic Programming and Modern Control Theory. Academic paperbacks,
Elsevier Science.

[2] Elisabetta Carlini, Maurizio Falcone, Nicolas Forcadel & Régis Monneau (2008): Convergence of a general-
ized fast marching method for a non-convex eikonal equation. SIAM Journal on Numerical Analysis 46, pp.
2920–2952, doi:10.1137/06067403X.

[3] Da Chen, Jian Zhu, Xinxin Zhang, Minglei Shu & Laurent D. Cohen (2021): Geodesic Paths for Image Seg-
mentation With Implicit Region-Based Homogeneity Enhancement. IEEE Transactions on Image Processing
30, pp. 5138–5153, doi:10.1109/TIP.2021.3078106.

https://doi.org/10.1137/06067403X
https://doi.org/10.1109/TIP.2021.3078106

142 Numerical Analysis of a Path Computation Algorithm

[4] Michael G. Crandall, Hitoshi Ishii & Pierre-Louis Lions (1992): user’s guide to viscosity solutions of second
order partial differential equations. Available at https://arxiv.org/abs/math/9207212.

[5] Christophe Denis, Pablo de Oliveira Castro & Eric Petit (2016): Verificarlo: Checking Floating
Point Accuracy through Monte Carlo Arithmetic. In: Symposium on Computer Arithmetic (ARITH),
doi:10.1109/ARITH.2016.31.

[6] François Févotte & Bruno Lathuilière (2019): Debugging and Optimization of HPC Programs with the Verrou
Tool. In Ignacio Laguna & Cindy Rubio-González, editors: 2019 IEEE/ACM 3rd International Workshop
on Software Correctness for HPC Applications (Correctness), Denver, CO, USA, November 18, 2019, IEEE,
pp. 1–10, doi:10.1109/CORRECTNESS49594.2019.00006.

[7] Fabienne Jézéquel & Jean Marie Chesneaux (2008): CADNA: a library for estimating round-off error prop-
agation. Comput. Phys. Commun. 178(12), pp. 933–955, doi:10.1016/J.CPC.2008.02.003.

[8] R. Kimmel & J. A. Sethian (1998): Computing geodesic paths on manifolds. Proceedings of the National
Academy of Sciences of the United States of America 95(15), pp. 8431–8435, doi:10.1073/pnas.95.15.8431.

[9] Jean-Marie Mirebeau, Lionel Gayraud, Rémi Barrère, Da Chen & François Desquilbet (2023): Massively
parallel computation of globally optimal shortest paths with curvature penalization. Concurrency and Com-
putation: Practice and Experience 35(2), p. e7472, doi:10.1002/cpe.7472.

[10] J. A. Sethian (1996): A Fast Marching Level Set Method for Monotonically Advancing Fronts. Pro-
ceedings of the National Academy of Sciences of the United States of America 93(4), pp. 1591–1595,
doi:10.1073/pnas.93.4.1591.

[11] J.A. Sethian (2001): Evolution, Implementation, and Application of Level Set and Fast Marching Methods
for Advancing Fronts. Journal of Computational Physics 169(2), pp. 503–555, doi:10.1006/jcph.2000.6657.

[12] Franck Védrine, Maxime Jacquemin, Nikolai Kosmatov & Julien Signoles (2021): Runtime Abstract In-
terpretation for Numerical Accuracy and Robustness. In Fritz Henglein, Sharon Shoham & Yakir Vizel,
editors: Verification, Model Checking, and Abstract Interpretation - 22nd International Conference, VMCAI
2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings, Lecture Notes in Computer Science 12597,
Springer, pp. 243–266, doi:10.1007/978-3-030-67067-2_12.

[13] J. Vignes (1993): A stochastic arithmetic for reliable scientific computation. Mathematics and Computers in
Simulation 35(3), pp. 233–261, doi:10.1016/0378-4754(93)90003-D.

[14] Wikipedia: Substitution failure is not an error. Available at https://en.wikipedia.org/wiki/
Substitution_failure_is_not_an_error.

https://arxiv.org/abs/math/9207212
https://doi.org/10.1109/ARITH.2016.31
https://doi.org/10.1109/CORRECTNESS49594.2019.00006
https://doi.org/10.1016/J.CPC.2008.02.003
https://doi.org/10.1073/pnas.95.15.8431
https://doi.org/10.1002/cpe.7472
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1006/jcph.2000.6657
https://doi.org/10.1007/978-3-030-67067-2_12
https://doi.org/10.1016/0378-4754(93)90003-D
https://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
https://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 143–150, doi:10.4204/EPTCS.411.9

© S. Raïs, J. Brunel, D. Doose & F. Herbreteau
This work is licensed under the
Creative Commons Attribution License.

Cross-Layer Formal Verification of Robotic Systems*

Sylvain Raïs1,2, Julien Brunel1, David Doose1 and Frédéric Herbreteau2

1 ONERA DTIS, Université de Toulouse, France
2 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400, Talence, France
1 firstname.lastname@onera.fr, 2 firstname.lastname@u-bordeaux.fr

Robotic systems are widely used to interact with humans or to perform critical tasks. As a result, it
is imperative to provide guarantees about their behavior. Due to the modularity and complexity of
robotic systems, their design and verification are often divided into several layers. However, some
system properties can only be investigated by considering multiple layers simultaneously. We pro-
pose a cross-layer verification method to verify the expected properties of concrete robotic systems.
Our method verifies one layer using abstractions of other layers. We propose two approaches: refin-
ing the models of the abstract layers and refining the property under verification. A combination of
these two approaches seems to be the most promising to ensure model genericity and to avoid the
state-space explosion problem.

1 Introduction

The design and development of modern robotic systems is a complex issue, as it brings together many
fields of research. Moreover, these robotic systems are intended to interact with humans or to be de-
ployed in critical sites. Therefore, it is essential to provide guarantees for the operation of these systems.
Formal methods are widely used to assert the reliability of critical systems. They provide strong proof-
based guarantees that the verified system behaves accordingly to the specifications. In the context of
robotic systems, several modeling tools and formalisms have been developed to verify properties, either
online [7] or offline [4, 6].

On the other hand, in order to improve the design of robotic systems, state-of-the-art approaches rely
on multi-layer architectures as they provide powerful abstraction to develop each layer independently of
the others. Such a design facilitates the development of robotic systems, improves their modularity and
enables each layer to be (formally) verified separately. These advantages help to implement complex
behaviors such as fault tolerance [9] and facilitate the reuse of robotic system code. Note that several
multi-layer design standards exist within the robotics research community: five-layer pyramid design [3],
four-layer design [13], three-layer pyramid design [10, 14], and more. Among these classical designs, the
three-layer architecture shown in Figure 1 is a promising and widely used approach because it provides
a modular design while minimizing the number of layers. In this architecture, the decision layer deals
with the robot’s decision-making and planning processes (e.g. a user interface or a "smart" program).
The executive layer provides an abstract interface to the functional layer via the concept of skills [1, 13,
14, 10]. And the functional layer corresponds to low-level task processing.

*This study has received financial support from the French government in the framework of the France 2030 programme
IdEx université de Bordeaux / RRI ROBSYS

http://dx.doi.org/10.4204/EPTCS.411.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

144 Cross-layer Formal Verification of Robotic Systems

Listing 1: An example of RobotLanguage design
s k i l l s e t c u s t o m _ r o b o t {

r e s o u r c e {
mot ion { s t a t e { On Off } i n i t i a l Off t r a n s i t i o n a l l }
b a t t e r y { s t a t e { Normal C r i t i c a l } i n i t i a l Normal t r a n s i t i o n a l l }

}
s k i l l go to {

input { d i s t a n c e : I n t e g e r }
output p o s i t i o n : P o s i t i o n
p r e c o n d i t i o n { (mot ion == Off) && (b a t t e r y != C r i t i c a l) }
s t a r t motion -> On
i n v a r i a n t { in_movement { guard motion == On }}
i n t e r r u p t { e f f e c t { mot ion -> Off }}
s u c c e s s { a r r i v e d { e f f e c t { mot ion -> Off }}}
f a i l u r e { b l o c k e d { e f f e c t { mot ion -> Off }}}

}
} Figure 1: Three-layer architecture

In practice, it is impossible to verify the whole system at once, due to the complexity of robotic sys-
tems, or the incompatibility of certain theories that make verification undecidable. Specific formalisms
and techniques have been developed for the design and the verification of each layer separately. However,
the compartmentalization of the different analyses is an obstacle to complete system analysis because
these formalisms cannot always be combined. In fact, some of the operating characteristics of the system
must consider multiple layers in order to be studied.

The present work, which is part of a Ph.D. thesis, aims to provide an offline cross-layer verification
method based on the three-layer design in Figure 1. Our method uses RobotLanguage 1 [5, 2, 1], an
interesting framework for designing reliable robotic systems. RobotLanguage provides a formal lan-
guage to model the executive layer, a formal offline verification of predefined properties on this model,
and an automatic code generation from the model to implement this layer. Our approach is based on
a RobotLanguage model of the executive layer, and extends it with abstract models of the other layers
in order to verify properties of the whole system. In general, abstract models are not refined enough
to verify robotic systems. We introduce two complementary approaches: one consists in refining the
model, and the other consists in refining the property. We illustrate the relevance of our techniques on
an example. Our method is not specific to the three-layer architecture in Figure 1, and can be used with
other multi-layer designs.

2 Related Works

Several formal frameworks have been defined to support the design and the verification of robotic sys-
tems, such as RobotLanguage. PROSKILL [8] gathers the specifications of the decisional layer, the
executive layer and a part of the functional layer (see Figure 1), and allows to verify temporal and timed
properties both offline and online. However, PROSKILL provides a monolithic design for robotic sys-
tems and does not benefit from the advantages of a multi-layer design. Our method is based on the
multi-layer design, preserving the modularity gained by this design, and thus fits well to our real robotic
systems.

On the other hand, RobotLanguage comes with a tool, SkiNet [11], which provides a translation to
Petri nets to perform offline formal verification of temporal properties. This tool has also been extended
[12] to verify temporal properties online in order to address the state-explosion problem. However,
SkiNet only verifies properties of the executive layer only, while our work aims to provide a multi-layer
verification method.

1https://onera-robot-skills.gitlab.io/index.html

https://onera-robot-skills.gitlab.io/index.html

S. Raïs, J. Brunel, D. Doose & F. Herbreteau 145

3 Cross-Layer Verification

RobotLanguage has been developed to design the executive layer of robotic systems. After a brief intro-
duction, we describe the formalism used to model these systems. Next, we explain how to model each
system layer and how to incorporate all models for formal verification. Finally, we present a method for
systematically verifying multi-layer systems, illustrated with an example.

3.1 Introduction to RobotLanguage

Modern approaches to formal robotic system design are based on skills and resources[8, 5, 13, 10].
Skills are basic actions provided by the executive layer to implement complex behaviors in the decision
layer. For example, Listing1 defines one skill: goto, which moves a robot a given distance. Resources
represent physical features used by skills, such as motion and battery in Listing 1. The resource
battery tracks levels, while motion monitors movement. In RobotLanguage, each group of skills and
their shared resources forms a skill set, such as custom_robot in Listing 1.

The skill goto is an abstraction of the actual code executed at the functional layer. In RobotLanguage
the system designer specifies conditions for starting a skill (precondition), conditions that should
remain true during execution (invariant), and resource updates (start, effect).

RobotLanguage includes a toolset2 that translates models into executable C++ code using the ROS2
middleware. This code creates one ROS2 node per skill set and several topics to manage communi-
cation between the executive and decision layers. In addition, the generated code verifies conditions
(precondition, invariant) and applies effects (start, effect) specified in RobotLanguage. The
programmer is responsible for implementing the functional layer in specific hook functions, whose pro-
totypes are generated from the RobotLanguage design.

3.2 Modeling Formalism

In this paper, a model consists of a finite set M = {S1, . . . ,Sk} of finite labeled transition systems. Each
transition system Si = (Qi,q0

i ,Σi,Ti) consists of a finite set of states Qi, a distinguished initial state q0
i , a

finite alphabet of events Σi and a transition relation Ti ⊆ Qi ×Σi ×Qi where edges are labeled by events
from Σi. Note that the transition systems may have common events on which they synchronize. Let
Σ =

⋃
i∈[1;k] Σi. A global state of M is a tuple (q1, . . . ,qk) of states, one for each transition system in M.

The initial global state is (q0
1, . . . ,q

0
k). There exists a global transition (q1, . . . ,qk)

a−→ (q′1, . . . ,qk) with
a ∈ Σ if for each Si such that a ∈ Σi, there exists a transition (qi,a,q′i) ∈ Ti, and q′i = qi for every Si such
that a /∈ Σi. A global run is a sequence of global transitions starting from the initial global state.

As an example, consider the model consisting of two transition systems: S in Figure 2 and F in
Figure 3a. These two transition systems synchronize on their common labels. Thus, any run in this
model consists of asynchronous solid and zigzag transitions from S, or dotted and dashed transitions that
synchronize S and F .

3.3 Executive Layer Modeling

First, we explain how to model the executive layer by describing the execution of a skill through the
transition system in Figure 2. During its execution, the skill transitions through several states, depending
on internal actions (plain transitions), or on interactions with the decision layer (zigzag transitions) or

2https://onera-robot-skills.gitlab.io/

https://onera-robot-skills.gitlab.io/

146 Cross-layer Formal Verification of Robotic Systems

Ready Precondition Validate Start Running Interrupting
request

precond
success

validate
success start_hook

validate
failure

invariant
failure

interrupt

success failure interrupted

precond
failure

start effect
failure

: decisional layer to executive layer
: functional layer to executive layer

: internal transition
: executive layer to functional layer

Figure 2: Control flow graph of a skill

with the functional layer (dashed/dotted transitions). The execution begins in the state Ready, and spans
into three phases. First, on reception of request from the decision layer, the state of the system is
checked at the executive layer (precond) and the functional layer (validate). If these conditions are
satisfied, start_hook triggers the execution of the functional layer, switching the state to Running.
Finally, the execution can terminate in a success or a failure, triggered by the functional layer, or it can
be interrupted by the decision layer. In each case, the functional layer notifies the executive layer by
calling success, failure, or interrupted. The execution can also stop if an invariant is violated.
These invariants are monitored by the code that is automatically generated from the RobotLanguage
design. We refer the reader to [1] for more details on the semantics of invariants in RobotLanguage
which is beyond the scope of this paper.

For a given skill set like in Listing 1, a model using instances of the transition system in Figure 2 for
each skill can formally verify some properties at the executive layer, such as “skill goto can be executed.”
However, this model is not refined enough to verify more specific properties, such as “skill goto cannot
be executed infinitely often”, which is expected to hold, since our RobotLanguage design in Listing 1
lacks a skill to recharge the battery.

3.4 Multi-Layer Modeling

We aim to extend the model in Figure 2 (called S in the sequel) with models of the functional and decision
layers. For now on, we will concentrate on the functional layer, as the approach that we present hereafter
straightforwardly applies to the decision layer.

From Section 3.2, it comes that a model of the functional layer should conform to a synchronization
interface that will enable communication between the model of the functional layer, and the model of the
executive layer, through event synchronizations. More specifically, a model of the functional layer should
synchronize on events validate success, validate failure, start hook, success, failure and interrupted with
the transition in Figure 2.

The transition system F in Figure 3a shows a very abstract model of a functional layer that conforms
to this synchronization interface. Note that F allows any sequence of the above mentioned events since
its transitions can be crossed unconditionally. Hence, any sequence of events that is possible in S is also
possible in the model {S,F} where S and F synchronize on common labels. F can be seen as the generic
most abstract functional layer model.

Figure 3b shows another model of the skill goto at the functional layer. Observe that this model also
conforms to the synchronization interface. It further has an internal action move that does not synchronize
with S: it is asynchronous. This model is described as a control graph with two variables: d which is
the distance to travel, and blevel which is the battery level (both variables have finite domains). Note

S. Raïs, J. Brunel, D. Doose & F. Herbreteau 147

Idle

validate success validate failure

success interrupted

failurestart_hook

(a) Default functional layer model

Idle

(blevel ≥ 2.0)∧ (d > 0)
validate success

(blevel < 2.0)∨ (d ≤ 0)
validate failure

success
(d ≤ 0)

move
(blevel ≥ 2.0)∧ (d > 0)

d := d −1, blevel := blevel −2.0

interrupted

failure
(blevel < 2.0)∧ (d > 0)start_hook

(b) Concrete functional layer model for skill goto

Figure 3: Transition systems modeling the skill goto at the functional layer

that the variables used at the functional layer partly model the robot’s state, while the RobotLanguage
resources used in the executive layer (Listing 1) are abstract knowledge of the robot’s state, updated
by monitoring the robot. The model for updating the battery resource according to the actual value
of blevel is not shown for the sake of simplicity. Following our settings described in Section 3.2, we
consider the transition systems F ′ that defines the semantics of control graph in Figure 3b. Its states
are pairs (d,blevel) of values of the two variables, and transitions (d,blevel) a−→ (d′,blevel′) take into
account the guards and updates on the variables. Now, observe that due to variables d and blevel, the
model F ′ restricts the sequences of events that can occur in a run. For instance, validate success is not
possible if the battery level is less than 2.0. F ′ can thus be seen as a refinement of F . As a result, some
runs that exist in S do not exist any more in the model {S,F ′} that synchronizes S and F ′.

Similarly, we can model the decision layer, with a synchronization interface that is defined by the
events request and interrupt. We thus obtain a multi-layer model, that consists in transition systems for
each skill (as in Figure 2) at the executive layer, for each skill at the functional layer (as in Figure 3a
or 3b), as well as transition systems for each resource (as defined in Listing 1) and a transition system
modeling the decision layer.

3.5 A Method for Cross-layer Verification

We aim at verifying that “skill goto cannot be executed infinitely often” taking into account a model of
the functional layer. This property can be expressed in LTL as:

FG not Running (1)

This formula specifies that after some finite amount of time, the robot will never be running. It does not
hold when the functional layer is modeled as in Figure 3a. We present two approaches for verifying such
specifications requiring a multi-layer model.

A first approach consists in considering the refined model of the functional layer in Figure 3b, where
d represents the distance to travel, and blevel tracks the battery level. In Figure 3b, the black loop
moves the robot one meter ahead, consuming two battery units at the same time. At some point, either
the distance d reaches 0 which leads to a success, or the battery level gets below 2.0 which leads to
a failure. Observe that the battery level blevel is set at the initialization of the model. Hence, the
battery level eventually becomes insufficient to execute skill goto: it only allows “validate failure”
and “failure” transitions. As a result, property (1), that is “skill goto cannot execute infinitely often”,
holds on the refined model.

A second approach consists in refining the specification. In this approach, we aim at verifying our
property: “skill goto cannot execute infinitely often” on the model including the abstract representation

148 Cross-layer Formal Verification of Robotic Systems

of the functional layer from Figure 3a, but with some extra assumptions. Coming back to our example,
since our RobotLanguage design in Listing 1 does not include a skill to recharge the battery, we can
expect the resource battery to be in state Critical after some finite amount of time. Hence, we can
verify that “skill goto cannot execute infinitely often” under the assumption “eventually the battery is
forever in state Critical”. This approach consists in refining the LTL formula in (1) to verify the prop-
erty only on runs which satisfy this assumption. This is formalized in (2), where Critical corresponds
to the state of the resource battery in Listing 1. This formula ensures that if the battery eventually
stays in state Critical forever, then, the skill goto is not executed infinitely often.

FG Critical =⇒ FG not Running (2)

Observe that due to the precondition in Listing 1 the transition labeled “precond success” in Fig-
ure 2 can only be taken a finite number of times on any run such that the battery eventually stays in
state Critical forever. As a result the property in (2) holds on the abstract model of the system with the
functional layer modeled by the transition system in Figure 3a. Observe that this model does not need
any extra variable and is thus much smaller than the model obtained with the first approach.

To validate our approaches, we have translated the transition systems and specifications correspond-
ing to the two approaches, as formulas for the Tatam model-checker3. The RobotLanguage design in
Listing 1 as well as the Tatam models underlying the two approaches above are available on a public
repository4. As expected, we have first observed that the property “skill goto cannot execute infinitely
often” does not hold on the abstract model of the functional layer in Figure 3a as the discharge of the
battery is not taken into account. On the other hand, the two approaches above allow to prove that the
property holds, either by providing a refined model of the functional layer, or by refining the specifica-
tion.

We see these two approaches as complementary tools for cross-layer verification of robotic systems.
Refining the property keeps the model small and simple. It also yields a simpler counter-example when
a property is not satisfied. However, some properties require a more precise knowledge of the state of
the robot. Then, the first approach should be used to refine (parts of) the model with as few details as
possible in order to be able to verify the property under consideration.

4 Conclusion

This paper presents a method for cross-layer verification of robotic systems. Our approach consists
in verifying one layer using abstractions of the others. We have proposed two approaches to prove a
property. One consists in refining the models of the abstract layers, the other consists in refining the
property. In practice, the combination of the two approaches seems to be the most promising since it
allows to consider as few implementation details as possible in the model, while mitigating the state-
space explosion problem.

As future work, we plan to implement our approach in a tool to formally verify RobotLanguage
designs using a precise model of the executive layer and abstract models of the decision and functional
layers. To obtain a full guarantee approach, we plan to extend our technique to prove that these abstract
models correspond to the implementation of the corresponding layers.

3Tatam git repository: https://github.com/DavidD12/tatam
4https://gitlab.com/sylvain.rais24/fmas_2024_s_rais_models

https://gitlab.com/sylvain.rais24/fmas_2024_s_rais_models
https://gitlab.com/sylvain.rais24/fmas_2024_s_rais_models
https://github.com/DavidD12/tatam
https://gitlab.com/sylvain.rais24/fmas_2024_s_rais_models

S. Raïs, J. Brunel, D. Doose & F. Herbreteau 149

References

[1] Alexandre Albore, David Doose, Christophe Grand, Jérémie Guiochet, Charles Lesire & Au-
gustin Manecy (2023): Skill-based design of dependable robotic architectures 160, p. 104318.
doi:10.1016/J.ROBOT.2022.104318.

[2] Alexandre Albore, David Doose, Christophe Grand, Charles Lesire & Augustin Manecy (2021): Skill-
Based Architecture Development for Online Mission Reconfiguration and Failure Management, pp. 47–54.
doi:10.1109/ROSE52553.2021.00015.

[3] V. Alcácer & V. Cruz-Machado (2019): Scanning the Industry 4.0: A Literature Review on Technologies for
Manufacturing Systems. Engineering Science and Technology, an International Journal 22(3), pp. 899–919,
doi:10.1016/j.jestch.2019.01.006. Available at https://www.sciencedirect.com/science/article/
pii/S2215098618317750.

[4] Renato Carvalho, Alcino Cunha, Nuno Macedo & André Santos (2020): Verification of system-wide safety
properties of ROS applications. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, IROS 2020, Las Vegas, NV, USA, October 24, 2020 - January 24, 2021, IEEE, pp. 7249–7254,
doi:10.1109/IROS45743.2020.9341085.

[5] Christophe Grand Charles Lesire, David Doose (2020): Formalization of Robot Skills with Descriptive and
Operational Models, pp. 7227–7232. doi:10.1109/IROS45743.2020.9340698.

[6] Lukas Johannes Dust, Rong Gu, Cristina Seceleanu, Mikael Ekström & Saad Mubeen (2023): Pattern-Based
Verification of ROS 2 Nodes Using UPPAAL. In Alessandro Cimatti & Laura Titolo, editors: Formal Methods
for Industrial Critical Systems - 28th International Conference, FMICS 2023, Antwerp, Belgium, September
20-22, 2023, Proceedings, 14290, Springer, pp. 57–75, doi:10.1007/978-3-031-43681-9_4.

[7] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon M. Moore, Qingzhou Luo, Aravind Sundaresan & Grigore
Rosu (2014): ROSRV: Runtime Verification for Robots. In Borzoo Bonakdarpour & Scott A. Smolka, editors:
Runtime Verification - 5th International Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014.
Proceedings, 8734, Springer, pp. 247–254, doi:10.1007/978-3-319-11164-3_20.

[8] Félix Ingrand (2024): PROSKILL: A formal skill language for acting in robotics. CoRR abs/2403.07770,
doi:10.48550/ARXIV.2403.07770.

[9] André Leite, Andry Maykol Pinto & Aníbal Matos (2018): A Safety Monitoring Model for a Faulty Mobile
Robot. Robotics 7(3), p. 32, doi:10.3390/ROBOTICS7030032.

[10] Mikkel Rath Pedersen, Lazaros Nalpantidis, Rasmus Skovgaard Andersen, Casper Schou, Simon Bøgh,
Volker Krüger & Ole Madsen (2016): Robot skills for manufacturing: From concept to industrial deployment.
Robotics and Computer-Integrated Manufacturing 37, pp. 282–291, doi:10.1016/j.rcim.2015.04.002.

[11] Baptiste Pelletier, Charles Lesire, David Doose, Karen Godary-Dejean & Charles Dramé-Maigné (2022):
SkiNet, A Petri Net Generation Tool for the Verification of Skillset-based Autonomous Systems. In Matt
Luckcuck & Marie Farrell, editors: Proceedings Fourth International Workshop on Formal Methods for Au-
tonomous Systems (FMAS) and Fourth International Workshop on Automated and verifiable Software sYs-
tem DEvelopment (ASYDE), FMAS/ASYDE@SEFM 2022, and Fourth International Workshop on Auto-
mated and verifiable Software sYstem DEvelopment (ASYDE)Berlin, Germany, 26th and 27th of September
2022, EPTCS 371, pp. 120–138, doi:10.4204/EPTCS.371.9.

[12] Baptiste Pelletier, Charles Lesire, Christophe Grand, David Doose & Mathieu Rognant (2023): Predictive
Runtime Verification of Skill-based Robotic Systems using Petri Nets. In: IEEE International Conference
on Robotics and Automation, ICRA 2023, London, UK, May 29 - June 2, 2023, IEEE, pp. 10580–10586,
doi:10.1109/ICRA48891.2023.10160434.

[13] Francesco Rovida, Matthew Crosby, Dirk Holz, Athanasios Polydoros, Bjarne Großmann, Ronald Petrick
& Volker Krueger (2017): SkiROS—A skill-based robot control platform on top of ROS, pp. 121–160.
doi:10.1007/978-3-319-54927-9_4.

https://doi.org/10.1016/J.ROBOT.2022.104318
https://doi.org/10.1109/ROSE52553.2021.00015
https://doi.org/10.1016/j.jestch.2019.01.006
https://www.sciencedirect.com/science/article/pii/S2215098618317750
https://www.sciencedirect.com/science/article/pii/S2215098618317750
https://doi.org/10.1109/IROS45743.2020.9341085
https://doi.org/10.1109/IROS45743.2020.9340698
https://doi.org/10.1007/978-3-031-43681-9_4
https://doi.org/10.1007/978-3-319-11164-3_20
https://doi.org/10.48550/ARXIV.2403.07770
https://doi.org/10.3390/ROBOTICS7030032
https://doi.org/10.1016/j.rcim.2015.04.002
https://doi.org/10.4204/EPTCS.371.9
https://doi.org/10.1109/ICRA48891.2023.10160434
https://doi.org/10.1007/978-3-319-54927-9_4

150 Cross-layer Formal Verification of Robotic Systems

[14] Casper Schou, Rasmus Skovgaard Andersen, Dimitrios Chrysostomou, Simon Bøgh & Ole Madsen (2018):
Skill-based instruction of collaborative robots in industrial settings. Robotics and Computer-Integrated Man-
ufacturing 53, pp. 72–80, doi:10.1016/j.rcim.2018.03.008. Available at https://www.sciencedirect.
com/science/article/pii/S0736584516301910.

https://doi.org/10.1016/j.rcim.2018.03.008
https://www.sciencedirect.com/science/article/pii/S0736584516301910
https://www.sciencedirect.com/science/article/pii/S0736584516301910

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 151–159, doi:10.4204/EPTCS.411.10

© J. Gruteser, J. Roßbach, F. Vu & M. Leuschel
This work is licensed under the
Creative Commons Attribution License.

Using Formal Models, Safety Shields and Certified Control to
Validate AI-Based Train Systems *

Jan Gruteser Jan Roßbach Fabian Vu Michael Leuschel
Heinrich Heine University Düsseldorf

Faculty of Mathematics and Natural Sciences
Department of Computer Science

Düsseldorf, Germany
{jan.gruteser,jan.rossbach,fabian.vu,leuschel}@hhu.de

The certification of autonomous systems is an important concern in science and industry. The KI-
LOK project explores new methods for certifying and safely integrating AI components into au-
tonomous trains. We pursued a two-layered approach: (1) ensuring the safety of the steering system
by formal analysis using the B method, and (2) improving the reliability of the perception system
with a runtime certificate checker. This work links both strategies within a demonstrator that runs
simulations on the formal model, controlled by the real AI output and the real certificate checker. The
demonstrator is integrated into the validation tool PROB. This enables runtime monitoring, runtime
verification, and statistical validation of formal safety properties using a formal B model. Conse-
quently, one can detect and analyse potential vulnerabilities and weaknesses of the AI and the cer-
tificate checker. We apply these techniques to a signal detection case study and present our findings.

1 Introduction and Motivation

Artificial intelligence (AI) is increasingly used in safety-critical applications such as autonomous driv-
ing [33] and autonomous flying [26, 20]. While AI can be effective for many challenging tasks, it also
introduces new risks and concerns. This leads to new challenges regarding certification and ensuring the
safety of AI components (see, e.g., Peleska et al. [28] in the context of autonomous railway systems).

This work deals with systems that employ an AI perception system, such as image recognition.
Those systems include autonomous vehicles and autonomous railway systems. In earlier work [14],
we formally verified a steering system, assuming the perception system works perfectly. However, as
the perception system is imperfect, we also created simulations with (hand-coded) probabilities for all
kinds of erroneous detections. We then applied Monte Carlo simulation to estimate the likelihood of
safety-critical errors. As a concrete case study, we applied those techniques to an AI-based railway
system [14] using PROB [23] and SIMB [35]. In this paper, we move towards using the real AI within
these simulation and validation runs, rather than using estimated error rates. As outlined by Myllyaho
et al. [25], fully virtual simulation enables validation of the system in dangerous situations without real
danger. Although the validity of the simulator is difficult to verify, simulation still helps as a validation
method to initially assess the quality of the system under evaluation.

The AI perception system itself is based on the widely-used YOLO [29] architecture, making the
system difficult to verify with formal methods alone. To address this, we implemented a runtime certifi-
cate checker using classical computer vision algorithms to verify the output of the AI [31]. This checker
can be certified using classical techniques (e.g., [4]).

*This research is part of the KI-LOK project funded by the “Bundesministerium für Wirtschaft und Energie”; grant #
19/21007E. The work of Fabian Vu is part of the IVOIRE project funded by “Deutsche Forschungsgemeinschaft” (DFG) and
the Austrian Science Fund (FWF) grant # I 4744-N.

http://dx.doi.org/10.4204/EPTCS.411.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0006-4228-404X
https://orcid.org/0009-0005-7725-9832
https://orcid.org/0000-0003-2556-5553
https://orcid.org/0000-0002-4595-1518

152 Using Formal Models, Safety Shields and Certified Control to Validate AI-Based Train Systems

This work presents a real-time demonstrator linking the formal model, the AI, and certified control,
extending an approach used to validate reinforcement learning agents [34]. AI now controls the simula-
tion directly by executing events for the perception system in the formal model. With our approach, we
capture real AI behaviour and can use two runtime monitoring techniques: 1) the formal B model acts as
a safety shield for the steering system (e.g., to detect false negatives), 2) and the certified control mon-
itors the perception system (detecting false positives). We demonstrate this methodology on a railway
case study [14], and discuss our findings and the challenges of the approach.

B Method, ProB, and SimB. The B method [1] is a state-based formal method for specifying and
verifying software systems. The B method is based on first-order logic and set theory and has been used
industrially for over 25 years [3] to generate software that is “correct by construction” [7, 10], and for
system-level safety modelling. For the latter, the B method has been used for many railway applications,
such as ETCS Hybrid Level 3 [16, 24] and CBTC systems [5, 6]. In this article, we use the B method to
model autonomous train control in a shunting yard, based on the model from [14].

PROB [23] is an animator, constraint solver, and model checker for formal models. It supports
various formal languages including the formal B method. SIMB [35] is a simulator built on PROB’s
animator, supporting real-time simulation and Monte Carlo simulation. SIMB can be linked with external
software components [34]. We use PROB and SIMB in this article to run the steering system and the
safety shield, and also for validating the entire system.

(a) Validated Sh1 Sign

(b) Falsely rejected
Sh0 Sign

Figure 1: Runtime
Monitor Example

Certified Control. Certified control [19] is a runtime monitoring approach
to ensure the safety of the perception system in autonomous vehicles. Unlike
conventional monitoring methods, certified control does not rely on inde-
pendent perceptions. Instead, a controller provides a certificate containing
all essential information to prove formal properties. This certificate may
be generated by a sophisticated AI algorithm, which does not need to be
formally verified. Using this certificate, the runtime monitor verifies if the
specified criteria hold for the provided data. This monitor can, in contrast
to the AI system, be comparatively small and deterministic. The architec-
ture establishes a trusted foundation that can potentially be subjected to a
rigorous formal verification process.

In previous tests, this technique almost eliminated all false positive de-
tections, in exchange for rejecting some true positives [31]. The bounding
box of the sign detected by the YOLO model is cropped from the image and
passed to the runtime monitor, which uses various computer vision tech-
niques, e.g. contour detection, to validate the sign for expected features. If
the desired features are not recognised, the detection is rejected. Figure 1
shows a successfully validated Sh1, and a Sh0 sign that would be rejected
by the checker.

2 Linking Formal Model, AI, and Certified Control

This section describes how we link together the formal model, the AI, and the certificate checker. In
the formal model, we formally specify and verify the steering system which includes safety shields
to prevent unsafe operations based on the AI’s perception and the known environment. In previous

J. Gruteser, J. Roßbach, F. Vu & M. Leuschel 153

AI
(Perception

System)

Steering
System

Safety
Shield

Certificate
Checker ✓

Formal B Model

Environment (simulated)

AI and Certified Control (real)

Image of Environment

actions

Figure 2: Simulation of the Formal B Model with AI-based Perception System and Certificate Checker
in an Environment

work [14] on validating an AI-based train control system, we encoded probabilities for false positive and
false negative detections of the AI by hand. Now, we use real AI components and real certificate checkers
for simulation. Figure 2 gives an overview of how we link the formal model, the AI, and certified control
inside a real-time demonstrator with runtime monitoring/verification.

In our case study, the AI-based perception system processes the environment in form of images at
runtime. Ideally, various techniques should be employed to ensure that the AI is trained correctly and
performs well (see [30] and references therein). Additionally, we use certified control to monitor the
perception system, and detect false positives (i.e., the monitor will reject detections which it cannot
confirm). The output of the perception system and the certificate checker are then synchronised with the
formal model. The simulated environment, including the image provided to the AI, must correspond to
the formal model’s current state. This is a significant challenge as discussed in Section 3.3. The formal
model contains events for both the steering system and the perception system. The model should be safe
under the assumption that the perception system works perfectly. Furthermore, the formal model can be
used as a basis for a safety shield which enforces safe actions on the steering system. The shield can
disallow unsafe actions, like driving through a detected stop signal. The safety shield can also detect
false negatives. For example, when the AI detects no signals but the formal model “knows” that a signal
must be visible at the current location, it can enforce a safe fallback action (like stopping).

3 Case Study: AI-based Signal Detection

We apply the presented technique to a case study provided by our project partners (see [14]). For this
case study, we developed a formal B model [14], consisting of an environment, the steering system, and
the perception system. The environment includes obstacles, points (aka switches) and signal states, field
elements and movements of the steered train. The formal model abstracts away the AI-based perception
system by events that represent possible outcomes of the object detection, including correct, false positive
and false negative detections.

The objective, or the “mission order”, is to drive autonomously from the starting position through
a small shunting yard to the destination without dangerous situations or at least as safely as human
drivers (cf. [14, PROB1-2]). The focus of this work is the detection of signal aspects during the shunting
movement.

154 Using Formal Models, Safety Shields and Certified Control to Validate AI-Based Train Systems

3.1 Implementation

We collected images from multiple videos of the case study track containing the various signal aspects,
e.g., stop signals, permission signals, and no signals along the route to capture an interactively changing
environment. Based on the position of the train and the state controlled by the formal model, an image
with the appropriate signalling aspect is randomly selected from the corresponding collection. For our
experiments, we assume that a signal becomes visible as soon as the train is closer than 10 distance units
(freely selectable). The procedure for a simulation step is as follows:

1. Pick an image randomly depending on the current train location and signal states in the B model

2. Pass the image to our fine-tuned YOLOv8 model (cf. [31]); based on the result: if no signal has
been detected: ignore and do not execute any operation in the B model; if a signal has been
detected:

• Correct signal (corresponding B event is enabled): execute VIS_DetectCorrectSignal

• Wrong stop signal: execute VIS_DetectWrongStopSignal

• Wrong permission signal: execute VIS_DetectWrongPermissionSignal

3. Execute event for environment change, e.g., switch signals or activate derailer, with a probability of
25% or move train forwards and update controller with a probability of 75% (environment changes
should occur less frequently than train movements)

The simulation runs in a loop until reaching the ending condition which is later explained in our experi-
ments.

The controller of the steering system is updated after each detection to recompute the maximum
allowed movement distance. Since the simple object detection AI does not provide positioning informa-
tion, we place all detections in the formal model at a fixed distance in front of the train. In the second
step, we (optionally) apply the certificate checker which monitors the output of the AI by accepting or
rejecting its detections.

For the AI to run the simulation, we use SIMB’s interface for external simulation [34].

3.2 Experiments and First Results

For initial experiments, we encoded a safety shield in the B model that only allows for signal detections
at known positions of signals. If no signal is detected at an expected position, the B operations for train
movements are disabled so that the train falls back to safe mode and stops in front of the signal. This
assumes that we have a map of the shunting yard and know at which locations the signals are located. We
then analyse the behaviour using SIMB’s real-time simulation which is now controlled by the AI and the
certificate checker. For better understanding, we use the domain-specific VisB visualisation [36] from
previous work [14]. Both tools are part of PROB2-UI [2]; an illustration is shown in Figure 3.

With SIMB, we also run Monte Carlo simulation with 500 runs for all combinations with/without
safety shield, and with/without certified control. We also investigated the effect of not applying the
certificate checker to stop signals, so that these cannot be falsely rejected and the train always enters a
safe state (stop). The termination condition has been defined so that a simulation stops when a safety-
critical situation occurs or when the train can no longer proceed, either due to its arrival at a stop signal or
reaching the end. For each execution run, we estimate the maximum (safe) distance travelled to validate
that the train does move forward (not driving at all would be 100 % safe, but not useful). Furthermore,

J. Gruteser, J. Roßbach, F. Vu & M. Leuschel 155

Figure 3: Real-time Simulation in ProB2-UI together with Domain-Specific Visualisation and corre-
sponding image; Signal is detected correctly.

we estimate the likelihood of a safety-critical situation where an accident might occur, similar to [14],
using the safety properties SAF1-5 1. The results are shown in Table 1.

Table 1: Results after 500 Simulations (NoStop: certificate checker is not applied to stop signals,
False/Correct Det.: total number of activated operations for false/correct detections in all simulations)

Controller No safety shield Safety Shield: Known signal positions
Cert. Control No NoStop Yes No NoStop Yes

Distance 6.4 (0.0 %) 6.1 (0.0 %) 221.2 (63.2 %) 247.8 (82.4 %) 247.0 (80.4 %) 216.8 (63.0 %)

Safe 100 % 100 % 63.2 % 82.8 % 80.4 % 63.0 %
False Det. 500 500 0 20611 20993 0

Correct Det. - - 2335 9155 8929 2094

With certified control, it can be obtained that all false detections are correctly rejected (in our simple
environment). Unfortunately, we also observe a significant decrease in correct detections with certified
control due to false rejections (as shown in the last row of Table 1). When using the safety shield, there
are still many false detections, as all detections are forwarded to the controller but then ignored if they
were not expected. Without safety shield and without certified control it can be observed that the train
always stops early before the first wrong detected stop signal and therefore does not make progress (the
train does not even arrive at a position where it could detect a signal correctly). This is because our
detection model produces quite a lot of false positive detections of stop signals. As expected, these false
positive detections can be effectively avoided by both the safety shield and the certificate checker. This
is reflected in significantly improved values for the distance travelled in the first row of Table 1.

1Note that compared to the results in [14], we simulate real AI behaviour at runtime, instead of encoding fixed probabilities
for how the AI, i.e., the perception system could behave.

156 Using Formal Models, Safety Shields and Certified Control to Validate AI-Based Train Systems

Surprisingly, the results of the combination of the safety shield and certified control are worse than
those without certified control. With PROB, we identify the cause by inspecting the execution runs
simulated in SIMB. We found that falsely rejected detections by the certificate checker can still lead to
safety-critical situations when a signal has been correctly detected as a permission signal but then falls
back to stop. In this case, the safety shield no longer applies and a false negative detection can still
cause the train to overrun the signal. Moreover, we identified particular scenarios, in which the checker
encounters difficulties in certifying a correct stop signal detection, resulting in unexpectedly many false
rejections (e.g. Fig. 1b).

In general, it can be observed that the likelihood of safety-critical situations is still high. This might
be the case because of two reasons: (1) our custom AI model does not produce perfect results, and (2)
there are still false negative detections. Our experiments revealed that the safety shield of known signal
positions is still not enough to tackle these.

3.3 Challenges

The main benefit of our methodology is that we can link the execution of a real AI model to a formal
model and check its behaviour using formal properties and statistical validation techniques. However,
there are still many challenges and limitations.

A major issue is to match the real environment provided to the AI with the environment’s state in
the formal model. This requires an interactive simulation environment with control of the environment
(signals, points, etc.) and control of the train, to ensure that the actuators controlled by the formal model
are taken into account by the simulated environment. We have conducted some successful experiments
with a commercial train simulator, but since it is not designed for discrete states, as required by the
formal model, the handling is complicated (apart from the fact that a new instance of the simulator
would have to be set up for each simulation run). Simply using a video as input is not sufficient either,
as the environment remains static and we have no control over the movement of the train. In our current
experiments, we avoid this problem by sampling images from videos fitting to the current state. Although
this is sufficient to demonstrate the concept, we have not yet simulated real train rides. This requires a
simulation environment for configurable scenarios (with PROB we are already able to load and visualise
flexible scenarios, e.g., via a standardised data exchange format such as railML [15]). While there are
already established tools in the automotive sector, e.g., CARLA [8], such tools are still rare in the railway
sector, but are under development [9, 13, 37].

4 Related Work

There are many approaches to verifying neural networks [21, 32, 18]. In practical application, however,
it is challenging for these techniques to scale to large neural networks. Another technique is robustness
checks [11, 12] which also work on neural networks. Robustness checks aim to ensure the safety of the
AI directly, while this work employs safety boxes around the AI. For instance, the perception system
could be unsafe, but is monitored by a certificate checker. Similarly, the steering system could make
unsafe decisions based on the perception, but is monitored by a safety shield encoded in the formal
model.

Another work presented by Pasareanu et al. [27] abstracts away perception components, and replaces
them with a probabilistic component that estimates their behaviour. In particular, the probabilities are
derived from confusion matrices computed for the underlying neural network. Finally, the verification

J. Gruteser, J. Roßbach, F. Vu & M. Leuschel 157

is done by probabilistic model checkers such as PRISM [22] and STORM [17]. To improve safety,
Pasareanu et al. [27] employ run-time guards which are used as runtime monitors.

Instead of estimating the probabilities for real AI behaviour, this work simulates real AI behaviour
at runtime. This means that the perception system operates at runtime with real images and provides
the detection to the validation tools PROB and SIMB. Alternatively, we could have extracted confusion
matrices and encoded them as probabilities into the simulation.

5 Conclusion and Outlook

This work successfully links a formal model, AI, and certified control to a real-time demonstrator. We
demonstrated the technique in an AI-based train system. The methodology consists of the following
steps: (1) formally specify and verify the steering system using formal methods, (2) encode safety shields
in the formal model to prevent unsafe operations, (3) use real AI for simulation, (4) add a runtime
certificate checker of the AI outputs to reduce false positive detections, and (5) link all components to
simulate the formal model with the AI and the certificate checker’s output. Using the tools PROB and
SIMB, we then evaluate the performance of the AI with (and without) certified control and safety shield.

With SIMB, we can make statistical statements about the formal properties of the whole system. We
analysed the likelihood of unsafe situations and identified weaknesses in our AI and certificate checker.
With our approach, we can identify issues early during development. The results are then used to improve
the AI or the certificate checker, followed by further validation.

In our case study, we identified false negatives of certified control as a cause of unsafe situations. In
future, we thus need to improve our safety shield, to better protect against such false negative detections
and reduce the error rates to levels required for certification. Other future improvements are to link our
tool with a realistic simulation environment, e.g., in the form of co-simulation.

Acknowledgements. We thank Hitachi for providing the case study and parts of the video material.

References

[1] Jean-Raymond Abrial & A. Hoare (2005): The B-Book: Assigning Programs to Meanings. Cambridge
University Press, doi:10.1017/CBO9780511624162.

[2] Jens Bendisposto, David Geleßus, Yumiko Jansing, Michael Leuschel, Antonia Pütz, Fabian Vu & Michelle
Werth (2021): ProB2-UI: A Java-Based User Interface for ProB. In: Proceedings FMICS, LNCS 12863,
Springer, pp. 193–201, doi:10.1007/978-3-030-85248-1_12.

[3] Michael J. Butler, Philipp Körner, Sebastian Krings, Thierry Lecomte, Michael Leuschel, Luis-Fernando
Mejia & Laurent Voisin (2020): The First Twenty-Five Years of Industrial Use of the B-Method. In: Proceed-
ings FMICS, LNCS 12327, pp. 189–209, doi:10.1007/978-3-030-58298-2_8.

[4] CENELEC (2011): Railway Applications – Communication, signalling and processing systems – Software
for railway control and protection systems. Technical Report EN50128, European Standard.

[5] Mathieu Comptier, David Déharbe, Julien Molinero Perez, Louis Mussat, Pierre Thibaut & Denis Sabatier
(2017): Safety Analysis of a CBTC System: A Rigorous Approach with Event-B. In: Proceedings RSSRail,
pp. 148–159, doi:10.1007/978-3-319-68499-4_10.

[6] Mathieu Comptier, Michael Leuschel, Luis-Fernando Mejia, Julien Molinero Perez & Mareike Mutz (2019):
Property-Based Modelling and Validation of a CBTC Zone Controller in Event-B. In: Proceedings RSSRail,
pp. 202–212, doi:10.1007/978-3-030-18744-6_13.

https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1007/978-3-030-85248-1_12
https://doi.org/10.1007/978-3-030-58298-2_8
https://doi.org/10.1007/978-3-319-68499-4_10
https://doi.org/10.1007/978-3-030-18744-6_13

158 Using Formal Models, Safety Shields and Certified Control to Validate AI-Based Train Systems

[7] Daniel Dollé, Didier Essamé & Jérôme Falampin (2003): B dans le transport ferroviaire. L’expérience
de Siemens Transportation Systems. Technique et Science Informatiques 22(1), pp. 11–32,
doi:10.3166/tsi.22.11-32.

[8] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio M. López & Vladlen Koltun (2017):
CARLA: An Open Urban Driving Simulator. CoRR abs/1711.03938, doi:10.48550/arXiv.1711.03938.
arXiv:1711.03938.

[9] Gianluca D’Amico, Mauro Marinoni, Federico Nesti, Giulio Rossolini, Giorgio Buttazzo, Salvatore
Sabina & Gianluigi Lauro (2023): TrainSim: A Railway Simulation Framework for LiDAR and Camera
Dataset Generation. IEEE Transactions on Intelligent Transportation Systems 24(12), pp. 15006–15017,
doi:10.1109/TITS.2023.3297728.

[10] Didier Essamé & Daniel Dollé (2007): B in Large Scale Projects: The Canarsie Line CBTC Experience. In:
Proceedings B (B2007), LNCS 4355, Springer, Besancon, France, pp. 252–254, doi:10.1007/11955757_21.

[11] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri & Martin Vechev
(2018): Ai2: Safety and robustness certification of neural networks with abstract interpretation. In: 2018
IEEE symposium on security and privacy (SP), IEEE, pp. 3–18, doi:10.1109/SP.2018.00058.

[12] Divya Gopinath, Guy Katz, Corina S. Păsăreanu & Clark Barrett (2018): DeepSafe: A Data-Driven Approach
for Assessing Robustness of Neural Networks. In: Proceedings ATVA, LNCS 11138, Springer, pp. 3–19,
doi:10.1007/978-3-030-01090-4_1.

[13] Jürgen Grossmann, Nicolas Grube, Sami Kharma, Dorian Knoblauch, Roman Krajewski, Mariia Kucheiko &
Hans-Werner Wiesbrock (2023): Test and Training Data Generation for Object Recognition in the Railway
Domain. In: SEFM 2022 Collocated Workshops, LNCS 13765, Springer, pp. 5–16, doi:10.1007/978-3-031-
26236-4_1.

[14] Jan Gruteser, David Geleßus, Michael Leuschel, Jan Roßbach & Fabian Vu (2023): A Formal Model of Train
Control with AI-based Obstacle Detection. In: Proceedings RSSRail, LNCS 14198, Springer, pp. 128–145,
doi:10.1007/978-3-031-43366-5_8.

[15] Jan Gruteser & Michael Leuschel (2024): Validation of RailML Using ProB. In: Proceedings ICECCS 2024,
LNCS 14784, Springer, pp. 245–256, doi:10.1007/978-3-031-66456-4_13.

[16] Dominik Hansen, Michael Leuschel, Philipp Körner, Sebastian Krings, Thomas Naulin, Nader Nayeri, David
Schneider & Frank Skowron (2020): Validation and real-life demonstration of ETCS hybrid level 3 principles
using a formal B model. Int. J. Softw. Tools Technol. Transf. 22(3), pp. 315–332, doi:10.1007/s10009-020-
00551-6.

[17] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann & Matthias Volk (2022): The prob-
abilistic model checker Storm. STTT 24(4), pp. 589–610, doi:10.1007/s10009-021-00633-z.

[18] Xiaowei Huang, Marta Kwiatkowska, Sen Wang & Min Wu (2017): Safety Verification of Deep Neural
Networks. In: Proceedings CAV, LNCS 10426, Springer, pp. 3–29, doi:10.1007/978-3-319-63387-9_1.

[19] Daniel Jackson, Valerie Richmond, Mike Wang, Jeff Chow, Uriel Guajardo, Soonho Kong, Sergio Cam-
pos, Geoffrey Litt & Nikos Aréchiga (2021): Certified Control: An Architecture for Verifiable Safety of
Autonomous Vehicles. CoRR abs/2104.06178, doi:10.48550/arXiv.2104.06178. arXiv:2104.06178.

[20] Ismet Burak Kadron, Divya Gopinath, Corina S. Păsăreanu & Huafeng Yu (2022): Case Study: Analysis of
Autonomous Center Line Tracking Neural Networks. In: Proceedings VSTTE 2021, LNCS 13124, Springer,
pp. 104–121, doi:10.1007/978-3-030-95561-8_7.

[21] Guy Katz, Clark Barrett, David L Dill, Kyle Julian & Mykel J Kochenderfer (2017): Reluplex: An efficient
SMT solver for verifying deep neural networks. In: Proceedings CAV, LNCS 10426, Springer, pp. 97–117,
doi:10.1007/978-3-319-63387-9_5.

[22] Marta Kwiatkowska, Gethin Norman & David Parker (2011): PRISM 4.0: Verification of probabilistic real-
time systems. In: Proceedings CAV, LNCS 6806, Springer, pp. 585–591, doi:10.1007/978-3-642-22110-1_-
47.

https://doi.org/10.3166/tsi.22.11-32
https://doi.org/10.48550/arXiv.1711.03938
https://arxiv.org/abs/1711.03938
https://doi.org/10.1109/TITS.2023.3297728
https://doi.org/10.1007/11955757_21
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-031-26236-4_1
https://doi.org/10.1007/978-3-031-26236-4_1
https://doi.org/10.1007/978-3-031-43366-5_8
https://doi.org/10.1007/978-3-031-66456-4_13
https://doi.org/10.1007/s10009-020-00551-6
https://doi.org/10.1007/s10009-020-00551-6
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.48550/arXiv.2104.06178
https://arxiv.org/abs/2104.06178
https://doi.org/10.1007/978-3-030-95561-8_7
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

J. Gruteser, J. Roßbach, F. Vu & M. Leuschel 159

[23] Michael Leuschel & Michael Butler (2008): ProB: an automated analysis toolset for the B method. STTT
10(2), pp. 185–203, doi:10.1007/s10009-007-0063-9.

[24] Michael Leuschel & Nader Nayeri (2023): Modelling, Visualisation and Proof of an ETCS Level 3 Moving
Block System. In: Proceedings RSSRail, LNCS 14198, Springer, pp. 193–210, doi:10.1007/978-3-031-
43366-5_12.

[25] Lalli Myllyaho, Mikko Raatikainen, Tomi Männistö, Tommi Mikkonen & Jukka K. Nurminen (2021): Sys-
tematic literature review of validation methods for AI systems. Journal of Systems and Software 181, p.
111050, doi:10.1016/j.jss.2021.111050.

[26] Kenzo Nonami, Farid Kendoul, Satoshi Suzuki, Wei Wang & Daisuke Nakazawa (2010): Autonomous fly-
ing robots: unmanned aerial vehicles and micro aerial vehicles. Springer Science & Business Media,
doi:10.1007/978-4-431-53856-1.

[27] Corina S. Păsăreanu, Ravi Mangal, Divya Gopinath, Sinem Getir Yaman, Calum Imrie, Radu Calinescu
& Huafeng Yu (2023): Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study. In:
Proceedings CAV, LNCS 13964, Springer, pp. 289–303, doi:10.1007/978-3-031-37706-8_15.

[28] Jan Peleska, Anne E Haxthausen & Thierry Lecomte (2022): Standardisation considerations for autonomous
train control. In: Proceedings ISoLA, LNCS 13704, Springer, pp. 286–307, doi:10.1007/978-3-031-19762-
8_22.

[29] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick & Ali Farhadi (2016): You Only Look Once: Uni-
fied, Real-Time Object Detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE Computer Society, Los Alamitos, CA, USA, pp. 779–788, doi:10.1109/CVPR.2016.91.

[30] Jan Roßbach, Oliver De Candido, Ahmed Hamman & Michael Leuschel (2024): Evaluating AI-based Com-
ponents for Autonomous Railway System. In: Proceedings KI 2024, LNAI 14992, Springer, pp. 190–203,
doi:10.1007/978-3-031-70893-0_14.

[31] Jan Roßbach & Michael Leuschel (2023): Certified Control for Train Sign Classification. EPTCS 395, pp.
69–76, doi:10.4204/eptcs.395.5.

[32] Wenjie Ruan, Xiaowei Huang & Marta Kwiatkowska (2018): Reachability Analysis of Deep Neural Networks
with Provable Guarantees. In: Proceedings IJCAI, pp. 2651–2659, doi:10.24963/ijcai.2018/368.

[33] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo,
Yin Zhou, Yuning Chai, Benjamin Caine et al. (2020): Scalability in perception for autonomous driving:
Waymo open dataset. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 2446–2454, doi:10.48550/arXiv.1912.04838.

[34] Fabian Vu, Jannik Dunkelau & Michael Leuschel (2024): Validation of Reinforcement Learning Agents and
Safety Shields with ProB. In: NASA Formal Methods Symposium, LNCS 14627, Springer, pp. 279–297,
doi:10.1007/978-3-031-60698-4_16.

[35] Fabian Vu, Michael Leuschel & Atif Mashkoor (2021): Validation of Formal Models by Timed Probabilistic
Simulation. In: Proceedings ABZ, LNCS 12709, Springer, pp. 81–96, doi:10.1007/978-3-030-77543-8_6.

[36] Michelle Werth & Michael Leuschel (2020): VisB: A Lightweight Tool to Visualize Formal Models with SVG
Graphics. In: Proceedings ABZ, LNCS 12071, Springer, pp. 260–265, doi:10.1007/978-3-030-48077-6_21.

[37] Michael Wild, Jan Steffen Becker, Günter Ehmen & Eike Möhlmann (2023): Towards Scenario-Based Certi-
fication of Highly Automated Railway Systems. In: Proceedings RSSRail, LNCS 14198, Springer, pp. 78–97,
doi:10.1007/978-3-031-43366-5_5.

https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/978-3-031-43366-5_12
https://doi.org/10.1007/978-3-031-43366-5_12
https://doi.org/10.1016/j.jss.2021.111050
https://doi.org/10.1007/978-4-431-53856-1
https://doi.org/10.1007/978-3-031-37706-8_15
https://doi.org/10.1007/978-3-031-19762-8_22
https://doi.org/10.1007/978-3-031-19762-8_22
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1007/978-3-031-70893-0_14
https://doi.org/10.4204/eptcs.395.5
https://doi.org/10.24963/ijcai.2018/368
https://doi.org/10.48550/arXiv.1912.04838
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-030-77543-8_6
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-031-43366-5_5

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 160–177, doi:10.4204/EPTCS.411.11

© Rong Gu
This work is licensed under the
Creative Commons Attribution License.

Model Checking for Reinforcement Learning in Autonomous
Driving: One Can Do More Than You Think!

Rong Gu
Mälardalen University

Västerås, Sweden
rong.gu@mdu.se

Most reinforcement learning (RL) platforms use high-level programming languages, such as OpenAI
Gymnasium using Python. These frameworks provide various API and benchmarks for testing RL
algorithms in different domains, such as autonomous driving (AD) and robotics. These platforms
often emphasise the design of RL algorithms and the training performance but neglect the correctness
of models and reward functions, which can be crucial for the successful application of RL. This paper
proposes using formal methods to model AD systems and demonstrates how model checking (MC)
can be used in RL for AD. Most studies combining MC and RL focus on safety, such as safety shields.
However, this paper shows different facets where MC can strengthen RL. First, an MC-based model
pre-analysis can reveal bugs with respect to sensor accuracy and learning step size. This step serves
as a preparation of RL, which saves time if bugs exist and deepens users’ understanding of the target
system. Second, reward automata can benefit the design of reward functions and greatly improve
learning performance especially when the learning objectives are multiple. All these findings are
supported by experiments.

1 Introduction

With the advance of hardware and artificial intelligence (AI), Autonomous Driving (AD) has become
more and more realistic around us. However, although automotive companies are running road tests for
their AD vehicles over millions of miles a year, accidents still keep occurring [28], like crashes involving
Tesla’s driver-assistance system [23], and a fatal crash caused by a self-driving car of Uber [4]. Such ac-
cidents damage people’s confidence in AD dramatically as the public usually cannot accept even a single
accident caused by an AD vehicle. One of the reasons is that people even experts cannot fully understand
why AD vehicles behave in a certain way as the AI components are different from conventional hard-
ware and software systems and they can be unpredictable. Without knowing the reason behind an AD
vehicle’s every action, it is impossible to gain trust in the machine. Formal methods (FMs) are widely
accepted for their ability to analyse safety-critical systems with mathematics-based methods. In recent
years, scientific studies and projects have been conducted where FMs play an important role in providing
safety assurance on AD systems [24][25][12][26][27][10]. However, FMs have limits when adopted in
AD systems, such as the usability barrier due to the complex mathematical models and scalability due to
the notorious state-space explosion. Another problem with using FMs in AD systems is the lack of tools
that can provide visualisation of models, counterexamples, and analytical results.

Thanks to our previous work, two state-of-the-art tools in both FMs and AD research communi-
ties have been integrated, namely CommonUppRoad [13]. This new tool combines the model checker
UPPAAL [18] with CommonRoad [2], an open-source toolset for AD development, testing, and visuali-
sation. Users of CommonUppRoad can load and configure an AD scenario and specify the planning goal
by programming it in Python. The tool then converts everything into a formal model that is recognisable

http://dx.doi.org/10.4204/EPTCS.411.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Rong Gu 161

and verifiable by UPPAAL. Although UPPAAL is well-known for its ability of symbolic and statistical
model checking of timed automata, the latest version of UPPAAL1 also provides functions for controller
synthesis. Specifically, UPPAAL can compute a so-called strategy that controls which transitions (aka,
actions) to choose at each of the states. In this way, the model state space is restricted by the strat-
egy and the exhaustive-search-based synthesis in UPPAAL guarantees that the strategy fulfils properties,
e.g., safety. Additionally, UPPAAL also provides reinforcement learning (RL) algorithms to optimise a
strategy. For example, a safe strategy can permit multiple actions at a state, but only one of them moves
the AD vehicle towards the goal. RL can capture this action by accumulating rewards of state-action
pairs and eventually control the AD vehicle to always choose the actions with the highest reward, i.e.,
the goal-reaching actions. Additionally, the fact that the learning is performed under the control of a safe
strategy ensures the learning process as well as the result are still safe, and this is not given by pure RL.
One of the barriers to using UPPAAL in the AD domain is that the strategies of UPPAAL are not visu-
alised properly. One cannot get to know the moving trajectories of an AD vehicle under the control of a
UPPAAL strategy. CommonUppRoad compensates for this disadvantage by leveraging CommonRoad’s
ability to visualise the driving scenarios and its rich database of real-world traffic scenarios.

Despite all the advantages, CommonUppRoad has unsolved problems. First, the synthesis of safe
strategies is done via an exhaustive search of the state space. This is very similar to the symbolic model
checking of UPPAAL. Therefore, the state-space explosion of symbolic model checking also exists in the
synthesis of safe strategies. According to our experiments [13], the computation time rises exponentially
when the maximum execution time of the AD vehicle increases linearly. Second, the motion model of
AD vehicles in CommonUppRoad is not precise enough to represent continuous actions. For example,
turning in CommonUppRoad only has two speeds, i.e., ±0.1 d/s, which is not faithful to the vehicular
dynamics in CommonRoad. Third, when the tool returns “no result”, it means the state space does not
contain a sequence of actions that satisfies the safety property, such as never colliding. However, it is
hard to analyse where the bug originates because it can be caused by the sensor error or the control
logic of the strategy. Last, besides the safety guarantee, model checking (MC) does not benefit RL in
CommonUppRoad. However, there are many aspects that the former can do for the latter. For example,
the design of the reward function is a dominant factor influencing learning efficiency and effectiveness.
However, there is a lack of an automatic validation framework for reward functions in the context of AD
[1]. The author believes MC can contribute to establishing such a framework.

This paper introduces how MC benefits RL in the AD context. First, the author proposes new model
templates for AD vehicles and their driving scenarios in the new CommonUppRoad framework. By us-
ing the new model templates, analysis of sensor accuracy and a quick check on the existence of solutions
can be conducted prior to RL. This step is highly beneficial but neglected by most studies. Second, the
new model templates allow multiple timesteps of sensing and decision-making, as well as finer granu-
larities of action discretisation, which can be taken as continuous actions in practice. Last, the author
shows how symbolic and statistical model checking benefits the design and evaluation of reward func-
tions. Statistical model checking and the corresponding model templates enable statistical analysis of
probabilistic models, which are important for AD design and testing in uncertain environmental models.
In a nutshell, the contributions of this paper are as follows:

• New model templates supporting “continuous actions” – a fine granularity of discretisation, and
the corresponding model conversion from CommonRoad to UPPAAL.

• Model pre-analysis before RL. The analysis shows the data accuracy that RL can tolerate, suitable
periods for sensing and decision-making, and the possible existence of an optimal motion plan. A

1UPPAAL 5 on uppaal.org

162 Model Checking for Reinforcement Learning in Autonomous Driving

safety shield can also be automatically generated prior to RL such that the state-space exploration
of RL is restricted to safe regions.

• Reward automata. This model and the corresponding analysis benefit RL designers in understand-
ing the system model and reward functions. With reward automata, the learning performance can
be greatly improved especially when the learning objectives are multiple.

The remainder of the paper is organised as follows. Section 2 introduces CommonUppRoad, which is
the foundation of this study. Section 3 describes the new model templates before Section 4 introduces
how model checking strengthens reinforcement learning. Section 5 presents the experiments and results.
Section 6 presents the related work and Section 7 concludes the paper and introduces future work.

2 Preliminary

In this section, the author briefly introduces the aspects of CommonUppRoad that are necessary for
understanding this paper. Interested readers are referred to the literature [13] for a detailed description
of the tool including experimental results.

2.1 Models of AD Vehicles and Environment

In CommonUppRoad, users can load and configure an AD scenario that is stored as an XML file in
CommonRoad [2], one of the fundamental tools of CommonUppRoad. Essentially, a scenario contains
a network of roads, static vehicles and traffic signs on the roads, a planning goal, and a group of moving
vehicles that can follow predefined trajectories or behave reactively to other vehicles. Static elements
in the scenario, such as static obstacles, are presented as a group of XY coordinates in the XML file,
representing their shapes (e.g., rectangle) and positions in a 2D environment. The states of moving
vehicles consist of their positions, orientations, velocities, and accelerations at each of the time points
until the maximum time. The scenario XML file stores moving trajectories as sequences of states that are
sorted from the beginning to the maximum time. An example of moving trajectories is shown in Fig.1.

CommonRoad provides Python functions for visualising and parsing the XML file. CommonUp-
pRoad calls these functions in the model conversion from AD scenarios to formal models, that is, timed
games (TG) in UPPAAL. As a class of formal model, TG has syntax and semantics. Briefly, the syntax
is the formal presentation of the model structure and the semantics is an interpretation of the syntacti-
cal model. Fig.1 has the snippets of two TG, which depict their syntactic presentations. The box on
the bottom left is the AD-action TG. Although it is only partially shown in the figure (for the sake of
page limit), one can see that the turning action, an edge from location Choose to location Turn_Const,
is discrete. In UPPAAL, integers can be assigned to edges via a select statement, distinguishing syn-
tactically the same edge at the semantic level. For example, in the AD-action TG, a select statement
(d:int[0,1]) associates an integer d, whose value can be 0 or 1, to the edge from location Choose

to location Turn_Const, meaning that turning has two angular speeds. Similarly, other actions that are
syntactically represented by one edge can have multiple semantic transitions. Controller synthesis means
to choose from those transitions at each of the states such that the TG can satisfy properties regardless
of how the environment’s actions, that is, the dashed edges, are performed. For example, the moving-
obstacle TG in Fig.1 only has one location and three dashed edges, meaning that after initialisation,
moving obstacles keep changing their state variables continuously, updating their discrete variables and
making decisions periodically. If the planning goal is to reach a destination, then motion planning here

Rong Gu 163

AD-action TG Moving-obstacle TG

typedef struct {
ST_DPOINT center;
int16_t width;
int16_t length;
int16_t orientation;

} ST_RECTANGLE

Static obstacle

typedef struct {
ST_DPOINT goal;
int16_t velocity;
int16_t orientation;

} ST_PLANNING

Planning goal

<trajectory>
<state>

<position>…</position>
<orientation>…</orientation>
<velocity>…</velocity>
<acceleration>…</acceleration>
<time>…</time>

</state>
</trajectory> AD trajectory

XML

TG Template TG Template

Struct
Struct

Figure 1: CommonUppRoad, a platform for model-checking-based AD motion planning, verification,
and visualisation. Figure adopted from the literature [13].

means to choose actions at states of the AD-action TG such that the destination is reachable no matter
how the actions in the moving-obstacle TG are taken.

2.2 Motion Planning Methods and Visualisation

CommonUppRoad has two kinds of motion-planning methods, i) exhaustive-search-based synthesis
(ESS), and ii) reinforcement-learning-based synthesis (RLS).

2.2.1 Exhaustive-Search-Based Synthesis (ESS)

As synthesis is about finding a combination of actions of the AD vehicle, a natural method is to exhaus-
tively explore the model state space and collect the desired execution traces, i.e., sequences of state-action
pairs. ESS follows this idea but the problem is that timed automata have infinite and uncountable states
because of the continuous variable, time. UPPAAL uses zones to represent the infinite values of time
such that the symbolic state space of timed automata is finite and countable [5]. ESS uses the symbolic
state space and the exploration is on the fly, that is, checking the property while exploring the state space
simultaneously. Specifically, CommonUppRoad uses the following query in UPPAAL, where A[] means
all the states of all the traces in the state space, and functions collide() and offroad() are functions
for judging if a collision or going off the road ever happens, respectively. Therefore, Query (1) aims to
collect all the state-action pairs where those two functions return false.

strategy safe = control: A[] !collide() && !offroad() (1)

When Query (1) is executed, UPPAAL explores the entire symbolic state space of the model of the AD
vehicle and environment, checks if collide() or offroad() ever returns false, and stores the execution

164 Model Checking for Reinforcement Learning in Autonomous Driving

traces where the check passes. If a strategy is synthesised, it is represented as a function mapping actions
to each of the states. Since the state-space exploration is exhaustive, ESS is sound and complete, that
is, the synthesised strategy must be correct, i.e., free of colliding and offroad situations (soundness),
and if a correct strategy exists, the method must be able to find it (completeness). Henceforth, we call
strategies computed via ESS safe strategies. A safe strategy is permissive as it contains all the safe state-
action pairs, including the inefficient ones. For example, when an AD vehicle needs to turn left at an
intersection, a permissive strategy would allow the AD vehicle to wait unnecessarily long, e.g., close to
the maximum execution time, and then turn. Therefore, permissive strategies can be optimised.

2.2.2 Reinforcement-Learning-Based Synthesis (RLS)

RLS explores the model state space randomly via simulations instead of exhaustive exploration. Note
that states in RLS are not symbolic anymore as they have concrete values of the state variables, including
time. Scores of the state-action pairs are computed through a reward function and accumulated during the
random exploration. After user-defined rounds of simulation (aka, learning episodes), learning finishes
with a score table containing the pairs and their scores. Following the control of a learned strategy means
always choosing the action with the highest/lowest score at each of the states. The advantage of RLS
is that state-space explosion does not exist as the exploration is not exhaustive now, but the method is
neither sound nor complete. We need methods to provide correctness guarantees on the learning results.
CommonUppRoad uses safety strategies synthesised by UPPAAL running Query (1) to achieve this goal.
Specifically, RL executes the following query in UPPAAL, where maxE(reward) means the learning
objective is to maximise rewards, MAXT is the maximum time of one learning episode, <> is a temporal
operator meaning the existence of a state in any of the traces, goal() is a function to judge if the AD
vehicle reaches the destination, and under safe means the random selection of state-action pairs must
be within the pair set of strategy safe. Hence, the safe strategy serves as a safety shield for learning and
must be synthesised prior to running Query (2), and the latter aims to sample and compute the scores of
the pairs from traces that have a state reaching the destination and the state space must be restricted by
the safe strategy (aka, safety shield).

strategy reachSafe = maxE(reward)[<=MAXT]: <> goal() under safe (2)

Strategies can be visualised in CommonUppRoad as animated moving trajectories2. Specifically,
CommonUppRoad simulates the model by using the following query, where x, y, and velocity are
the representative variables that are in the state structure of trajectories in Fig.1. Query (3) randomly
simulates the model under the control of strategy reachSafe, samples values of the variables in the
curly brackets, and stores them in a log file, which is parsed in CommonUppRoad for visualisation.
Strategy visualisation is another important feature that CommonUppRoad provides because there was no
easy way to visualise UPPAAL strategies as moving trajectories.

simulate [<=MAXT]{x, y, velocity, ...} under reachSafe (3)

2.2.3 Unsolved Problems in CommonUppRoad

Modelling of Continuous Actions. As shown in Fig.1, the AD-action TG only has discrete actions. For
instance, turning only has two possible angular speeds in CommonUppRoad but the vehicle dynamics in
CommonRoad can have continuous actions, e.g., a continuously changing angular speed represented by

2Trajectory animations are posted online: sites.google.com/view/commonupproad/experiment

Rong Gu 165

a real number. However, formally modelling continuous actions is not trivial. Once the model includes
continuous variables, safe shields as Query (1) are not supported anymore unless those variables are
hybrid clocks. Hybrid clocks are special variables in UPPAAL. They are continuous and their changing
rates are described by ordinary differential equations (ODE), but they cannot be used in guards (i.e.,
boolean expressions on edges) or invariants (i.e., boolean expressions on locations) as the values of hy-
brid clocks are not supposed to change the model behaviour. In other words, hybrid clocks are abstracted
away from symbolic analysis, and thus UPPAAL can still use zones to form a symbolic state space of the
model. Therefore, although moving obstacles have nonlinear and continuous dynamics, their variables
are modelled as hybrid clocks in UPPAAL and thus CommonUppRoad can still synthesise safety shields
for reinforcement learning.

Modelling AD-action TG is not the same. If one models the AD vehicle’s actions as hybrid clocks
and ODE, they would not be taken into the symbolic state space and thus safety-shield synthesis would
have no actions to learn from. This is not the problem of the tool, UPPAAL, but rather a theoretical limit.
Models with both discrete and continuous components are hybrid automata, and the reachability problem
of hybrid automata is undecidable in general [14]. Hence, there is no model checker that supports
exhaustive verification of hybrid automata so far. Hybrid clocks provide a way to model continuous
actions but one needs methods to represent those continuous actions symbolically.
Model pre-analysis before RL. Like most studies of AD motion planning, CommonUppRoad attempted
to synthesise an AD controller without analysing the model itself. However, there are at least two ques-
tions before synthesis starts: i) are the data perceived by the digital controller of an AD vehicle accurate
enough, and ii) does a valid motion plan exist in the model state space? Question i) comes from the
fact that the controller of an AD vehicle is a piece of software that periodically reads data about the
surrounding environment and sends signals to control the vehicle. As a piece of software, no matter
how accurate the sensors are, it inevitably truncates real numbers to floating-point numbers, which have
a limited length of digits. Additionally, sensors cannot be perfect. When a new measuring method is
introduced into an AD system, one may want to investigate the intervals of sensor errors before running
motion planning. Question ii) comes as a following concern after question i). Given the current sensor
error and motion primitives (aka, the atomic motions used in RL), does a valid solution exist? If one
can get a negative answer to this question quickly, there is no need to run RL at all. Therefore, a model
analysis before RL can be greatly beneficial.

3 New Model Templates of AD Vehicles and Environment

Before introducing what model checking can do for reinforcement learning in the context of AD vehicles,
the author describes the new model templates of CommonUppRoad in this section. The new model
templates allow symbolic and statistical model checking, which play the fundamental role in the model
pre-analysis and reward automata design (Section 4).

3.1 Model Templates of AD Vehicles

Fig.2 depicts three UPPAAL model templates of the AD vehicles, i.e., controller, action, and dynam-
ics. AD vehicles are cyber-physical systems that consist of digital and physical components. Fig.2(a) -
Fig.2(c) are the digital components describing the control logic.

Timer is a timed automaton calling other models, e.g., Controller, periodically. This is for mod-
elling CPU periodically calling the processes of the controlling software and reading sensors. In Fig.2(a),

166 Model Checking for Reinforcement Learning in Autonomous Driving

(a) Timer (b) Controller (c) Action (d) Dynamics

Figure 2: UPPAAL model templates of AD vehicles. In (a), (b), and (c), s, d, and p are broadcast
synchronisation channels, sense(), can(), and act() are C-like code functions, a, c, and actID are
integers, and P, C1, C2, D, U, and MACT are constant integers, and t is a clock. In (d), variables x, y, v,
acc, and head are hybrid clocks, and iJerk and iTurn are integers, equations like v’==acc define the
derivatives of the hybrid clocks, and i2d is a C-like code function.

the model leaves location S1 every P time unit and comes to an urgent location S2 meaning that the next
transition starts immediately when reaching this location. Transitions from S2 have two options: i) go-
ing back to S1 directly, ii) going back to S1 via another urgent location S3. In case i), the transition is
synchronised with Controller on channel s meaning that the Controller reads data from sensors by
calling function sense(). In case ii), the first transition to location S3 is the same as case i), which is
followed by a transition to location S1 synchronised on channel d meaning that the Controller starts to
make a decision of actions after reading the sensor data. Note that locations S2 and S3 are both urgent,
meaning that the operations of sensor-reading, decision-making, and performing actions happen instan-
taneously at the end of each period. Constants C1 and C2 are for distinguishing the periods of cases i)
and ii), which are also used in the model pre-analysis before running RL (Section 4.1).

Controller and Action are also timed automata. When Timer invokes sensor-reading, Controller
transits via a self-loop edge of its initial location L1, meaning that Controller does nothing but reads
data from sensors in this period. When Timer invokes decision-making, Controller transits to a com-
mitted location L2, meaning that the next transition must start from this location immediately. Next,
Controller goes to an urgent location L3 synchronising on channel p[actID], in which actID is an
integer identifying actions. In Fig.2(c), Action transits to a committed location G2 synchronising on
channel p[actID] too. The difference is that now location G2 is committed, so transitions from L3 in
Controller must wait until the ones in Action finish, meaning that actions are atomic and cannot be
interrupted. From G2, Action goes back to G1 via multiple actions although only one edge appears from
G2 to G1. The author labels this edge with a select statement, which assigns different integers to an
edge. In this way, an edge can represent multiple transitions at the semantic level. Here, a:int[D,U]
means an integer a from constant D to constant U is selected, where a is a variable associated to this
action, and D and U are the lower and upper boundaries of a, respectively. This design is for modelling
continuous actions.

In the field of control theory, real numbers are often used to present continuous actions and their
dynamics. However, it is impossible to represent real numbers in digital systems precisely, because
digital systems use floating-point numbers to represent real numbers. A truncation is inevitable when the
real number is not rational or its digit lengths exceed the limit of the digital system, e.g., 32 bits or 64
bits. In the model-checking world, floating-point numbers are not welcome as they would overly bloat
a model’s state space and floating-point computations are unstable due to the cancellation effects [16].
For example, if a model contains floating-point numbers (aka, type double), UPPAAL does not allow

Rong Gu 167

symbolic analysis, e.g., symbolic model checking and ESS.
To avoid this problem, floating-point numbers in the new model templates are either abstracted away

from the symbolic state space, e.g., hybrid clocks, or represented as integers. Specifically, the base and
exponent of floating-point numbers are defined as constant integers, and the significand of each floating-
point number is an integer, which is used to represent this floating-point number. For example, when the
base is 10 and the exponent is −4, 21200 represents 2.12.

2.12 = 21200︸ ︷︷ ︸
significand

×

scale︷ ︸︸ ︷
10−4︸︷︷︸

baseexponent

(4)

In the model Action, constants D and U are the integer representations of two floating-point numbers,
that is, the lower and upper boundaries of continuous variable a. When the period of decision-making
comes, Action needs to choose a value from D to U for variable a, which indicates selecting a continuous
action. One can set the granularity of continuous actions by changing the exponent of floating-point
numbers. Although this representation is an approximation of real numbers, it is how digital systems
work and allows symbolic analysis in UPPAAL.

Dynamics is a hybrid automaton (Fig.2(d)), where variables x, y, v, acc, and head are hybrid clocks,
indicating the AD vehicle’s X and Y coordinates, velocity, acceleration, and heading, respectively. Equa-
tions, such as v’==acc, define the derivatives of the hybrid clocks. The rate of acceleration (aka, jerk)
and turning are modelled as integers (i.e., iJerk and iTurn) because these two variables are changed
by actions, and the integers are the significands of the floating-point numbers associated to continuous
actions. Therefore, before they are used in any computation, such as the equations of derivatives, they
must be transformed back to floating-point numbers. This is done in function i2d, where the significand
multiplies the scale and becomes a floating-point number. Oppositely, another function d2i transforms
a floating-point number into an integer by dividing the former by the scale.

3.2 Numerical Integration

Since the continuous variables in Dynamics are hybrid clocks, one cannot use them in symbolic analysis
in UPPAAL. However, functions like sense() are supposed to detect the values of these variables.
Thanks to the integer representations of floating-point numbers, the author implements a function for
calculating the values of continuous variables by using numerical integration. Algorithm 1 shows the
numerical integration in function sense().

Algorithm 1: sense(): numerical integration
1 Function sense()
2 int steps := 1/G // G is the granularity of integration
3 double x := i2d(iX) // convert integer iX to double x
4 double y, v, acc, head ... // convert the rest integers to double
5 double unit = C1 · G // C1 is defined in Timer, Fig.2(a)
6 while steps ̸= 0 do
7 acc := acc + iJerk · unit
8 head := head + iTurn · unit
9 v := v + acc · unit

10 x := x + v · cos(head) · unit
11 y := y + v · sin(head) · unit
12 steps := steps - 1
13 iX := d2i(x) // convert double x to integer iX
14 iY, iV, iAcc, iHead ... // convert the rest double to integers
15 return

168 Model Checking for Reinforcement Learning in Autonomous Driving

Line 3 and line 4 convert variables like iX to floating-point numbers. From line 7 to line 12, the
results of the ODE in the model Dynamics are approximated by the numerical integration. Specifically,
the floating-point numbers are updated step by step with a changing unit C1 ·G, where C1 is the length
of the sensing period and G is a predefined sampling granularity of the integration points. Although
the numerical integration only approximates the integral, it reflects what the digital system perceives via
sensors, that is, periodically updated discrete variables. Between two consecutive sampling periods, the
variables’ values remain unchanged in the controller. After the numerical integration, line 13 and line 14
convert the floating-point numbers back to their integer representations, which can be used in functions
like collide() and offroad().

3.3 Model Template of Moving Obstacles

Figure 3: Obstacle

Moving obstacles in CommonRoad usually follow predefined trajecto-
ries (Fig.1), therefore the model template of moving obstacles is rel-
atively simple. Fig.3 is the model template, where xo and yo are the
only two hybrid clocks because the velocity (iVo) and heading (iHo)
of a moving obstacle immediately changes when it reaches a waypoint
on the trajectory. One may argue that the model template is not faithful
to real moving obstacles because the velocity and heading of an object
in the real world must be continuous. However, this model template is
based on two conditions: i) the moving obstacle follows a predefined

trajectory, and ii) the controller of the AD vehicle is digital. Condition i) is explained, so the moving
obstacle can only change its velocity and head at the waypoints of the predefined trajectory. Condition
ii) is also true because our AD vehicle is a cyber-physical system. Therefore, the information on moving
obstacles is discrete from the AD vehicle’s point of view. Besides, this modelling removes unnecessary
details, which simplifies verification and synthesis. One can easily add probabilistic behaviour to moving
obstacles, like the uncertain velocity due to erroneous sensors of AD vehicles. During learning and sta-
tistical model checking, non-deterministic transitions in the model template are interpreted as stochastic
transitions with a uniform probability distribution by UPPAAL. However, this paper does not focus on
such behaviours and interested readers are referred to the website of CommonUppRoad3.

4 Model Checking for AD Reinforcement Learning

In this section, the author introduces three aspects that model checking (MC) can do for reinforcement
learning (RL) in the context of AD vehicles. First, MC enables model pre-analysis and quick checking
for the existence of an optimal motion plan. Second, to achieve the best learning performance, MC helps
to choose a suitable decision-making period, construct reward automata, and synthesise a safety shield
for the learning process. Last, MC can verify the learning results.

4.1 Pre-analysis of AD Vehicle and Scenario Models

When facing a motion-planning problem such as the one in Fig.4, the first task is probably designing a
good searching algorithm to find the optimal state-action pairs in the model state space. However, such
solutions neglect two important aspects that should be considered before the motion planning starts.

3sites.google.com/view/commonupproad

Rong Gu 169

(a) Lane changing (b) A missing frame (c) No valid motion plan

Figure 4: An illustration of potential problems when running RL without pre-analysis.

First, all AD vehicles are cyber-physical systems, which means the controller is a piece of software that
periodically reads sensor data, makes decisions, and sends signals to actuators to control the physical
processes of the vehicle. Between two periods, the vehicle moves according to the latest controlling
signals. For example, Fig.4(a) depicts the discrete frames capturing the AD vehicle’s trajectory, which is
safe because the yellow boxes do not overlap with the blue boxes, i.e., the collision detection ranges of
the AD vehicle and moving obstacle, respectively. However, such a trajectory does not guarantee a safe
lane-changing manoeuvre. If the sensing periods are too long, the AD vehicle may miss critical frames
of collision (Fig.4(b)). If the decision-making periods are too short, learning may spend too much time
on trivial behaviour. Additionally, computer systems inevitably lose accuracy when representing real
numbers. The mismatch of data types would result in unexpected behaviour.

Fig.4(c) shows another scenario where running RL is meaningless because a safe motion plan does
not even exist. Therefore, one may want to ensure the existence of an optimal motion plan before con-
suming any resource for learning. However, checking the existence of an optimal motion plan can be as
difficult as finding one, because motion planning usually has multiple objectives, such as safety, progress,
comfort, and traffic rules conformance. However, it is relatively easy to decide the non-existence of valid
motion plans because safety is the first and foremost target of motion planning. If one can quickly
conclude the non-existence of safe motion plans, one does not even need to run RL. Symbolic model
checking is a powerful tool for this job.

Table 1: UPPAAL queries for model pre-analysis, where fabs returns the absolute value of a floating-
point number, cv is a hybrid clock and iv is an integer, THD is the threshold of sensor errors.

Query Explanation
Qa Pr[<=MAXT]{fabs(cv-i2d(iv))≥THD} Probability of sensor errors
Qb E[]!collide()&&!offroad() Existence of a safe path
Qc E<>!collide()&&!offroad()&&goal() Existence of a safe and reachable path
Qd strategy safe=control:A[] !collide()&&!offroad() Safety shield for RL

As aforementioned in Section 3.1, the controller model has two periods, one for reading data from
sensors and one for decision-making. One can define the lengths of those two periods and execute
the UPPAAL queries in Table 1 for model pre-analysis. In Qa, cv is a hybrid clock representing a

170 Model Checking for Reinforcement Learning in Autonomous Driving

continuous variable in the physical component of the AD vehicle, i.e, model Dynamics in Fig.2(d),
and iv is an integer used in the controlling software, i.e., model Controller in Fig.2(b). When the
difference between these two variables exceeds a threshold, it means the information perceived by the
controlling software is too far away from the ground truth, and thus a sensor error is discovered. Qa

uses statistical model checking and returns the probability of sensor errors occurring. For example, when
cv represents the physical distance between the AD vehicle and the front car, iv represents the same
distance but calculated by using discrete frames, and the difference between cv and iv is too large, it
indicates the sensing periods are too coarse and a colliding scenario similar to Fig.4(b) may exist.

Qb and Qc use symbolic model checking, which exhaustively explores the entire symbolic state space
of the model. If Qb is satisfied, an absolutely safe path exists in the state space where no collision or
offroad event happens, otherwise, no safe path exists and thus RL is not needed any more. However, the
path found by Qb does not necessarily reach the goal. Qc adds a condition goal(), which returns true
when the AD vehicle reaches the destination. If Qc is satisfied, a path reaching the destination safely is
found, otherwise, a safe and reachable path does not exist and thus RL is not needed either (Fig.4(c)). Qd
is for synthesising a safe strategy that guarantees the AD vehicle is safe regardless of how other vehicles
move in the environment. This is the same query for synthesising safety shields for RL, i.e., Query (1).
Qb - Qd are symbolic analysis, which excludes hybrid clocks. Hence, if a sensor error is indicated by
Qa, Qb - Qd are not needed because even if a symbolic safe path and a shield are found, they are not
necessarily safe in real scenarios. If Qa returns a value lower than the tolerant level of sensor errors, but
Qb or Qc is not satisfied, one may want to shorten the decision-making periods, change or add the AD
actions, or extend the time limit. All of these changes can be easily configured in the Python code of
CommonUppRoad. One does not need to know the formal model templates (Fig.2) behind the Python
code, which makes CommonUppRoad user-friendly to researchers outside the FMs community.

Now if Qa - Qc all show positive results but Qd fails, it means the moving obstacles, like the front
car in Fig.4, can make the AD vehicle deviate from the path of Qb or Qc. One can modify the behaviour
of the AD vehicle or shorten the decision-making periods so that the AD vehicle has more chances to
avoid moving obstacles. In some cases, however, the AD vehicle only needs to make decisions at a
few critical time steps, but RL with a fixed learning step size makes it unnecessarily complex. Having
different lengths of sensing and decision-making periods makes RL in CommonUppRoad adaptable to
simple and complex scenarios. One can start with a large decision-making period but a standard sensing
period, and run Qd to see if a safety shield exists. If it does exist, one can decompose the motion-planning
problem into sub-problems by dividing it at the time points of decision-making. Next, one can fine-tune
the motion plan for each of the sub-problems by using RL. We refer interested readers to our previous
work about this concatenated motion planning and verification [21].

4.2 Model Checking Facilities Multi-Objective Learning

Autonomous driving usually involves multiple objectives. Naturally, safety and reachability are two
major objectives, which require the AD vehicle to reach the destination without collision or going off the
road. Additionally, comfort and traffic rule conformance are also important objectives of AD. In some
applications, timing and efficiency are also non-negligible requirements. Although the objectives of AD
are multiple, the goal of RL is simple, i.e., maximising the cumulative reward. Therefore, the design
of AD reward functions must take into account all the objectives, which is not trivial because those
objectives can be contradictory. For example, RL rewards AD vehicles for progressing towards the goal
and punishes them for collisions. When a permanent obstacle blocks the only path to the goal, RL may
eventually motivate the AD vehicle to crash into the obstacle if the cumulative waiting penalty exceeds

Rong Gu 171

the collision penalty. This erroneous behaviour stems from AD engineers’ insufficient understanding
of reward functions in the AD context. Formal models, however, provide rigorous semantics of the
AD vehicles’ behaviour as well as reward functions, which would greatly help the AD engineers design
multi-objective reward functions and even verify them before running RL.

In this paper, the author selects three AD objectives in the literature [1], that is, safety, progress, and
comfort, and proposes different methods to cope with them. Additionally, the reward functions of all
objectives are integrated into one automaton, which is similar to the concept of reward machines in the
literature [15]. This design has many benefits. First, it enables the users of CommonUppRoad to consider
the various driving contexts in one model. Under different contexts, e.g., different weather conditions,
the reward functions can be different. Second, a reward automaton allows users to verify the design of
reward functions before RL. One can observe the change of rewards by exploring the model’s symbolic
state space step by step, or model check properties, such as the penalty for unsafe behaviour is always
larger than the summation of rewards of other objectives.

4.2.1 Reward Automata

!"̇ = 1
&'̇ = 1
()̇ = 1

!"̇ = −1
&'̇ = 0
()̇ = 0

!"̇ = 1
&'̇ = −1
()̇ = 1

!"̇ = 1
&'̇ = 1
()̇ = −1

!"#$%"&

! !"#$%"&

!"#%$$!"!%(
") ≔ ") − 100

! !"#$%"&
&&
! !"/)!0
&&
! !"#%12%30

! !"#$%"&
&&

! !"/)!0
&&

!"#%12%30

!"#$%"&

! !"#$%"&
&&
!"/)!0

! !"#$%"&
&&
! !"/)!0

! !"#$%"&
&&
!"/)!0

!"#$%"&

45

62 63

64

Figure 5: An example of reward automata. Hy-
brid clocks sa, co, and pr represent the rewards for
safety, comfort, and progress, respectively.

Fig.5 shows an example of reward automata,
which considers the aforementioned three ob-
jectives in the following order of priority:
safety>progress>comfort. State S1 is the ini-
tial state, where the AD vehicle moves normally
and the three rewards increase steadily at the rate
of one. Once the distance between the AD ve-
hicle and an obstacle is lower than a threshold,
i.e., isClose is true, the reward automaton tran-
sits to state S4, where sa decreases and the other
two rewards stay the same. This indicates that
once an unsafe situation occurs, no reward should
increase. This prohibits the cumulative rewards
from becoming larger than the penalty for unsafe
behaviour. Similarly, the reward automaton can
transit to states S2 and S3, where the rewards for
comfort and progress decrease, respectively. State
S4 has a self-loop, where a collision happens and
sa is divided by a large value, e.g., 100. This de-
sign follows the recommendation from the litera-

ture [1], i.e., a safety reward should include a sparse penalty for collisions and a continuous dense term
that penalises dangerous behaviour. However, if one synthesises a safety shield for RL first (Qd in Table
1), this self-loop is not necessary because the safety shield eliminates all collisions and offroad events.

One can verify reward automata together with the AD vehicle model, which helps in understanding
and improving reward functions. Table 2 lists some exemplary UPPAAL queries for reward automata
verification. Qe - Qg verify if the reward automaton transits to the right state when the AD vehicle’s
behaviour presents the corresponding features. For example, Qg verifies whether the reward automaton
goes to the right state to decrease the comfort reward when the acceleration or the angular speed becomes
larger than 80% of its maximum value, meaning the AD vehicle is accelerating or turning too much and
makes passengers feel uncomfortable. However, the reward automaton only does this transition when

172 Model Checking for Reinforcement Learning in Autonomous Driving

the Boolean variable comf, i.e., comfort, is false, and other Boolean variables prog and safe are true,
because the objective comfort has the lowest priority among all objectives. Q f is designed similarly.
Counterexamples returned from these queries greatly help the AD vehicle designers to see the problems
of their reward functions and improve them before RL starts.

Table 2: Examplary UPPAAL queries for the verification of reward automata RA, where safe, prog,
and comf are Boolean variables, iX is the integer representation of a hybrid clock x, TD is the distance
threshold of collision, S is a non-negtive integer, MA and MT are maximum acceleration and turning speed,
respectively, p1 and p2 are real numbers between 0 and 1, ADN and ObsN are the positions of the AD
vehicle and an obstacle at the Nth period, respectively, GO is the goal area, Dis(□1,□2) computes the
distance between two rectangles, which represent objects in the environment, and w1 - w3 are weights.

Query Explanation
Qe A[] !safe imply RA.S4,

safe=Dis(ADN,ObsN)> S ·T D
If AD vehicle and an obstacle gets too close,
the safety reward is punished.

Q f A[] !prog&safe imply RA.S3,

prog=Dis(ADN,GO)>Dis(ADN+1,GO)

If the distance from AD to the goal increases,
the progress reward is punished.

Qg A[] !comf&prog&safe imply RA.S2,

comf=iAcc< p1·MA&iTurn< p2·MT
If acceleration or angular velocity is too large,
the comfort reward is punished.

Qh A[] RA.S4 imply

w1·iSa+w2·iCo+w3·iPr≤0
The safety reward cannot be compensated by
other rewards when unsafe behaviour occurs.

5 Experiments

initial state

moving obstacle

goal

unsafe collision

Figure 6: Experimental AD scenario

The experiments in this section aim to demonstrate the strengths
of MC-enhanced RL in two aspects: i) the necessity of model
pre-analysis, and ii) the benefits of MC in designing reward au-
tomata4. The selected AD scenario is depicted in Fig.6, where the
AD vehicle needs to enter the intersection, turn left, and drive to
the goal area safely. Surrounding obstacles, there are two critical
ranges: unsafe and collision. Once the distance between the AD
vehicle and an obstacle is less than TD (resp. 3·TD), a collision
(resp. unsafe) situation happens.

To show the necessity of model pre-analysis, the author in-
tentionally decreases the sensor accuracy and extends the sensing
periods. Specifically, the exponent (see Equation (4)) is decreased

from four to one such that the integer representations of floating-point numbers preserve only one digit
after the decimal. The sensing periods are set to be two time units such that sensors may miss critical
frames. First, the author executes Query (1) to synthesise a safety shield, namely safe, and verify the
model by the following queries.

Pr[≤MAXT](<> Dis(AD,Obs)≥ 3·TD) under safe (5)

simulate[≤MAXT;100](3·TD,Dis(AD,Obs)) under safe (6)

4The model for experiments: sites.google.com/view/commonupproad/experiment. Run it in UPPAAL 5.1.0-beta5.

Rong Gu 173

Time

Value

(a) Exponent: 1, sensing period: 1

Time

Value

(b) Exponent: 4, sensing period: 2

Time

Value

(c) Exponent: 4, sensing period: 1

Figure 7: Model pre-analysis result (Query (6)). The blue lines are the distances between the AD vehicle
and an obstacle in 100 simulations. The red line is the threshold of unsafe distance, i.e., 3·TD.

Fig.7 shows the results of Query (6) in different settings and 100 simulations. In the first two settings,
the AD vehicle’s distance to an obstacle can be less than the threshold even though the model is under the
control of the safety shield. This shows that the exponent and sensing period are inadequate. Fig.7(c) has
no cases exceeding the threshold, and thus the author chooses this setting in the following experiments.

There are several RL algorithms implemented in UPPAAL, such as Q learning. One can also call their
own RL algorithm in UPPAAL from an external library [12]. The next experiment uses two synthesis
methods: Q learning with/without a safety shield, using a reward automaton or a reward function. First,
the author executes Query (7), in which dv1 and cv1, etc., are state variables used in RL, and rf can be
a reward function (Equation (8)) or a summation of hybrid clocks (Equation (9)), where safe, prog, and
comf are Boolean variables (Table 2), and sa, pr, and co are hybrid clocks (Fig.5). As strategy reach

may not be safe or reach the goal, the author verifies it against Queries (10) and (11).

strategy reach = maxE(rf)[<=MAXT]{dv1,...}->{cv1,...}: <> time>=MAXT (7)

rf= 10 ·safe+(5+100 ·goal()) ·prog+comf (8)

rf= sa+pr+co (9)

A[] !collide() && !offroad() under reach (10)

A<> goal() under reach (11)

In comparison, the author also synthesises a safety shield (Query (1)) before RL. The synthesis query
now is Query (2) such that the learning process and result are guaranteed to be safe. The computation
time is in Table 3, where the column learning episodes refers to the number of simulation rounds that RL
used in the experiment. The experiment is conducted on a Macbook Pro with an Apple M2 Pro chip and
16 GB memory. The OS is Sonoma 14.6.1 and UPPAAL’s version is 5.1.0-beta5. Safety-shield synthesis
costs around 30 seconds, which is much longer than what the pre-analysis takes (i.e., Qb and Qc), that
is, within 3 seconds together. In the cases where safety-shield synthesis takes too long, the pre-analysis
would be even more beneficial. The computation time of RL with a reward function and without a safety
shield (aka, RF) costs the longest time because it does not have a safety shield to restrict the model space
and the reward function does not guide the state-space exploration as efficiently as the reward automaton.

The author would like to discuss more about the benefits of using reward automata (RA) and reward
functions (RF). Table 3 indicates that the computation time of RL with a safety shield costs a similar
time when using RA or RF. However, the design of RF benefited heavily from RA in the experiment.

174 Model Checking for Reinforcement Learning in Autonomous Driving

For example, the author chose the weights in Equation (8) by observing the behaviour of the reward
automaton and verifying queries in Table 2. Those queries helped the author understand the mistakes
of weights because the priority order of the objectives was broken, e.g., the accumulated rewards of
progressing exceeded the punishment of unsafe situations. In other words, without reward automata,
the design of RF would take much longer time in the trial-and-error process. However, the computation
times of queries in Table 2 were less than 20 seconds in the experiment.

Table 3: RL with/without safety shields (SS), using reward automata (RA) or reward functions (RF)
Combination Queries Computation time Learning episodes

SS&RA
Query (1) 34.8 s /
Query (2) 15.1 s 20

SS&RF
Query (1) 34.8 s /
Query (2) 16.0 s 20

RA Query (7) 15.1 s 20
RF Query (7) 310.8 s 500

6 Related Work

In the formal methods (FMs) community, verification of reinforcement learning in autonomous driving
(AD) has drawn wide interest. Khaitan et al. [17] propose a curriculum learning approach for training a
deep reinforcement learning agent. The performance of the curriculum is tested on the task of traversing
unsignalised intersections with the CommonRoad framework. Naumann et al. [22] propose a motion
planning method through probabilistic analysis under occlusions and limited sensor range, and use a real-
world scenario with actual existing occlusions in CommonRoad for the validation. Liu et al. [19] address
specification-compliant motion planning for AD vehicles based on set-based reachability analysis with
automata-based model checking. The effectiveness of the methods is demonstrated with scenarios from
the CommonRoad benchmark suite. In comparison, this study emphasises FMs’ strong support for RL.
The MC-based model pre-analysis and reward automata as well as the corresponding verification are the
first attempts. The support of continuous states and actions, and symbolic and statistical model checking
in one model are also profoundly beneficial for deepening users’ understanding of the target system.

Another usability barrier of FMs in AD systems is the steep learning curve of the mathematics-based
techniques. Researchers have developed tools to overcome this barrier, such as Kronos [8], LTSim [7],
and SpaceEx [9]. Bersani et al. [6] present PuRSUE (Planner for RobotS in Uncontrollable Environ-
ments), which supports users to configure their robotic applications and automatically generate their
controllers by using UPPAAL. Gu et al. [11] develop a tool called MALTA, which uses UPPAAL as
a backend mission planner for AD vehicles under complex road conditions. These tools mainly suffer
from a common problem: state-space explosion. Alur et al. [3] propose a compositional method for syn-
thesizing reactive controllers satisfying Linear Temporal Logic specifications for multi-agent systems.
Muhammad et al. [20] also use the concept of compositional planning for synthesising energy-optimal
motion plans. The new model templates allow different periods for decision-making and sensing, which
greatly eases the computational effort for synthesising safety shields and learning. The experiment re-
sults show that the new method performs better than the first version of CommonUppRoad [13], which
demonstrates the improvement of the new model templates.

Rong Gu 175

7 Conclusion

This paper demonstrates how model checking (MC) can strengthen reinforcement learning (RL) in the
domain of autonomous driving (AD). This study is built upon CommonUppRoad, a platform combin-
ing CommonRoad and UPPAAL. The author proposes new model templates for AD vehicles, driving
scenarios, and reward automata. The new model templates contain discrete and continuous components
and support symbolic and statistical model checking. Thanks to the new features, the new version of
CommonUppRoad proposes model pre-analysis prior to RL and reward automata for designing reward
functions. The Model pre-analysis can help RL designers find bugs in sensor accuracy and determine
period lengths, which are imperative for RL. Reward automata are greatly beneficial for multi-objective
RL. The experiments demonstrate the necessity of model pre-analysis and the profoundly improved per-
formance of RL with safety shields and reward automata.

One of the future works is investigating the possibility of breaking soft rules to achieve important
objectives. How reward automata can help in this setting is unknown. Another direction is scenario
generation and critical scenario identification. A combination of MC and RL would be greatly helpful in
discovering collision scenarios in a huge database of scenarios.

Acknowledgments

The author acknowledges the support of the Swedish Knowledge Foundation via the project SATISFIES
- Holistic Synthesis and Verification for Safe and Secure Autonomous Vehicles, grant nr. 20230047.

References

[1] Ahmed Abouelazm, Jonas Michel & J Marius Zoellner (2024): A Review of Reward Functions for
Reinforcement Learning in the context of Autonomous Driving. arXiv preprint arXiv:2405.01440,
doi:10.48550/arXiv.2405.01440.

[2] Matthias Althoff, Markus Koschi & Stefanie Manzinger (2017): CommonRoad: Composable benchmarks
for motion planning on roads. In: 2017 IEEE Intelligent Vehicles Symposium (IV), IEEE, pp. 719–726,
doi:10.1109/IVS.2017.7995802.

[3] Rajeev Alur, Salar Moarref & Ufuk Topcu (2018): Compositional and symbolic synthesis of
reactive controllers for multi-agent systems. Information and Computation 261, pp. 616–633,
doi:10.1016/j.ic.2018.02.021.

[4] BBC (September 16th, 2020): Uber’s self-driving operator charged over fatal crash. https://www.bbc.

com/news/technology-54175359.

[5] Johan Bengtsson & Wang Yi (2003): Timed automata: Semantics, algorithms and tools. In: Advanced
Course on Petri Nets, Springer, pp. 87–124, doi:10.1007/978-3-540-27755-2 3.

[6] Marcello M Bersani, Matteo Soldo, Claudio Menghi, Patrizio Pelliccione & Matteo Rossi (2020): PuRSUE-
from specification of robotic environments to synthesis of controllers. Formal Aspects of Computing 32(2),
pp. 187–227, doi:10.1007/s00165-020-00509-0. Springer.

[7] Stefan Blom, Jaco van de Pol & Michael Weber (2010): LTSmin: Distributed and symbolic reachability. In:
International Conference on Computer Aided Verification, Springer, doi:10.1007/978-3-642-14295-6 31.

[8] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis & Sergio Yovine (1998):
Kronos: A model-checking tool for real-time systems. In: International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems, Springer, doi:10.1007/BFb0055357.

https://doi.org/10.48550/arXiv.2405.01440
https://doi.org/10.1109/IVS.2017.7995802
https://doi.org/10.1016/j.ic.2018.02.021
https://www.bbc.com/news/technology-54175359
https://www.bbc.com/news/technology-54175359
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/s00165-020-00509-0
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/BFb0055357

176 Model Checking for Reinforcement Learning in Autonomous Driving

[9] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo
Ripado, Antoine Girard, Thao Dang & Oded Maler (2011): SpaceEx: Scalable verification of hybrid systems.
In: International Conference on Computer Aided Verification, Springer, doi:10.1007/978-3-642-22110-1 30.

[10] Kunal Garg, Songyuan Zhang, Oswin So, Charles Dawson & Chuchu Fan (2024): Learning safe control for
multi-robot systems: Methods, verification, and open challenges. Annual Reviews in Control 57, p. 100948,
doi:10.1016/j.arcontrol.2024.100948.

[11] Rong Gu, Eduard Baranov, Afshin Ameri, Cristina Seceleanu, Eduard Paul Enoiu, Baran Cürüklü, Axel
Legay & Kristina Lundqvist (2024): Synthesis and Verification of Mission Plans for Multiple Autonomous
Agents under Complex Road Conditions. ACM Trans. Softw. Eng. Methodol. 33(7), doi:10.1145/3672445.

[12] Rong Gu, Peter G Jensen, Cristina Seceleanu, Eduard Enoiu & Kristina Lundqvist (2022): Correctness-
guaranteed strategy synthesis and compression for multi-agent autonomous systems. Science of Computer
Programming 224, p. 102894, doi:10.1016/j.scico.2022.102894.

[13] Rong Gu, Kaige Tan, Andreas Holck Høeg-Petersen, Lei Feng & Kim Guldstrand Larsen (2024): Com-
monUppRoad: A Framework of Formal Modelling, Verifying, Learning, and Visualisation of Autonomous
Vehicles. Available at https://arxiv.org/abs/2408.01093.

[14] Thomas A Henzinger, Peter W Kopke, Anuj Puri & Pravin Varaiya (1995): What’s decidable about hybrid
automata? In: Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, pp.
373–382, doi:10.1145/225058.225162.

[15] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano & Sheila A McIlraith (2022): Reward machines:
Exploiting reward function structure in reinforcement learning. Journal of Artificial Intelligence Research
73, pp. 173–208, doi:10.1613/jair.1.12440.

[16] Franjo Ivančić, Malay K Ganai, Sriram Sankaranarayanan & Aarti Gupta (2010): Numerical stability
analysis of floating-point computations using software model checking. In: Eighth ACM/IEEE Interna-
tional Conference on Formal Methods and Models for Codesign (MEMOCODE 2010), IEEE, pp. 49–58,
doi:10.1109/MEMCOD.2010.5558622.

[17] Shivesh Khaitan & John M Dolan (2022): State dropout-based curriculum reinforcement learning for self-
driving at unsignalized intersections. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, pp. 12219–12224, doi:10.1109/IROS47612.2022.9981109.

[18] Kim G Larsen, Paul Pettersson & Wang Yi (1997): UPPAAL in a nutshell. International journal on software
tools for technology transfer 1, pp. 134–152, doi:10.1007/s100090050010.

[19] Irani Liu & Matthias Althoff (2023): Specification-compliant driving corridors for motion planning of auto-
mated vehicles. IEEE Transactions on Intelligent Vehicles, doi:10.1109/TIV.2023.3289580.

[20] Naeem Muhammad, Gu Rong, Seceleanu Cristina, Guldstrand Larsen Kim, Nielsen Brian & Albano Michele
(2024): Energy-Optimized Motion Planning for Autonomous Vehicles Using UPPAAL Stratego. In: The 18th
International Symposium on Theoretical Aspects of Software Engineering, Springer, doi:10.1007/978-3-031-
64626-3 21.

[21] Muhammad Naeem, Rong Gu, Cristina Seceleanu, Kim Guldstrand Larsen, Brian Nielsen & Michele Albano
(2024): Energy-Efficient Motion Planning for Autonomous Vehicles Using Uppaal Stratego. In: International
Symposium on Theoretical Aspects of Software Engineering, Springer, pp. 356–373, doi:10.1007/978-3-
031-64626-3 21.

[22] Maximilian Naumann, Hendrik Konigshof, Martin Lauer & Christoph Stiller (2019): Safe but not over-
cautious motion planning under occlusions and limited sensor range. In: 2019 IEEE Intelligent Vehicles
Symposium (IV), IEEE, pp. 140–145, doi:10.1109/IVS.2019.8814251.

[23] The Washington Post (June 10th, 2023): 17 fatalities, 736 crashes: The shocking toll
of Tesla’s Autopilot. https://www.washingtonpost.com/technology/2023/06/10/

tesla-autopilot-crashes-elon-musk/.

[24] KKS funded Project (2015 - 2023): DPAC - Dependable Platforms for Autonomous systems and Control.
https://www.es.mdh.se/dpac/.

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1016/j.arcontrol.2024.100948
https://doi.org/10.1145/3672445
https://doi.org/10.1016/j.scico.2022.102894
https://arxiv.org/abs/2408.01093
https://doi.org/10.1145/225058.225162
https://doi.org/10.1613/jair.1.12440
https://doi.org/10.1109/MEMCOD.2010.5558622
https://doi.org/10.1109/IROS47612.2022.9981109
https://doi.org/10.1007/s100090050010
https://doi.org/10.1109/TIV.2023.3289580
https://doi.org/10.1007/978-3-031-64626-3_21
https://doi.org/10.1007/978-3-031-64626-3_21
https://doi.org/10.1007/978-3-031-64626-3_21
https://doi.org/10.1007/978-3-031-64626-3_21
https://doi.org/10.1109/IVS.2019.8814251
https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/
https://www.washingtonpost.com/technology/2023/06/10/tesla-autopilot-crashes-elon-musk/
https://www.es.mdh.se/dpac/

Rong Gu 177

[25] KKS funded Project (2024 - 2026): Holistic Synthesis and Verification for Safe and Secure Autonomous
Vehicles. https://www.mdu.se/en/malardalen-university/research/research-projects/

holistic-synthesis-and-verification-for-safe-and-secure-autonomous-vehicles?

[26] José Manuel Gaspar Sánchez, Truls Nyberg, Christian Pek, Jana Tumova & Martin Törngren (2022): Foresee
the unseen: Sequential reasoning about hidden obstacles for safe driving. In: 2022 IEEE Intelligent Vehicles
Symposium (IV), IEEE, pp. 255–264, doi:10.1109/IV51971.2022.9827171.

[27] Qisong Yang, Thiago D Simão, Nils Jansen, Simon H Tindemans & Matthijs TJ Spaan (2023): Reinforcement
Learning by Guided Safe Exploration. arXiv preprint arXiv:2307.14316, doi:10.3233/FAIA230598.

[28] Xinhai Zhang, Jianbo Tao, Kaige Tan, Martin Törngren, Jose Manuel Gaspar Sanchez, Muhammad Rusyadi
Ramli, Xin Tao, Magnus Gyllenhammar, Franz Wotawa, Naveen Mohan et al. (2022): Finding critical sce-
narios for automated driving systems: A systematic mapping study. IEEE Transactions on Software Engi-
neering 49(3), pp. 991–1026, doi:10.1109/TSE.2022.3170122/mm1.

https://www.mdu.se/en/malardalen-university/research/research-projects/holistic-synthesis-and-verification-for-safe-and-secure-autonomous-vehicles?
https://www.mdu.se/en/malardalen-university/research/research-projects/holistic-synthesis-and-verification-for-safe-and-secure-autonomous-vehicles?
https://doi.org/10.1109/IV51971.2022.9827171
https://doi.org/10.3233/FAIA230598
https://doi.org/10.1109/TSE.2022.3170122/mm1

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 178–190, doi:10.4204/EPTCS.411.12

© S. A. A. Bukhari, T. Flinkow, M. Inkarbekov, B. A. Pearlmutter & R. Monahan

Creating a Formally Verified Neural Network
for Autonomous Navigation: An Experience Report*

Syed Ali Asadullah Bukhari Thomas Flinkow Medet Inkarbekov
Barak A. Pearlmutter Rosemary Monahan

Department of Computer Science, Maynooth University, Maynooth, Ireland

{ali.bukhari,thomas.flinkow,medet.inkarbekov,rosemary.monahan}@mu.ie barak@pearlmutter.net

The increased reliance of self-driving vehicles on neural networks opens up the challenge of their
verification. In this paper we present an experience report, describing a case study which we undertook
to explore the design and training of a neural network on a custom dataset for vision-based autonomous
navigation. We are particularly interested in the use of machine learning with differentiable logics to
obtain networks satisfying basic safety properties by design, guaranteeing the behaviour of the neural
network after training. We motivate the choice of a suitable neural network verifier for our purposes
and report our observations on the use of neural network verifiers for self-driving systems.

1 Introduction and Motivation

A shift from a purely rule-based software to a learning-based approach for control of autonomous driving
systems is evident in recent years [26, 21]. This change can be attributed primarily to the advances in Deep
Neural Networks (DNNs) and their improved ability to handle the complexity of environments compared
to conventional autonomous navigation methods. Moreover, the availability of hardware accelerators and
GPUs on edge devices at low cost and power has also progressed the use of DNNs for these systems. In
addition, the computing ability coupled with the presence of various on-device sensors, such as Lidar
and cameras, makes it possible to achieve the task of controlling vehicles without the need of human
intervention [38]. In particular, vision-based systems have been successful for this purpose as on-board
cameras can be used to help auto navigation as well as providing real time video monitoring, as is often
required in these systems. Some notable examples of vision-based systems employing DNNs include
obstacle avoidance, path following, and object detection [27, 47].

The increased reliance of self-driving vehicles on neural networks opens up the challenge of their
verification. The safety-critical nature of these vehicles calls for their complete verification before they
are put to use in a real environment. In general, the verification of any safety-critical component in any
system is viewed as a crucial task, as an overlooked corner case may lead to a catastrophic condition or an
irreparable loss. However, the presence of neural networks in a system makes the verification task further
challenging [28].

Many efforts have been made to verify neural networks, with verifiers like VNN [40], Marabou [19]
and α,β -CROWN [46, 43, 44, 42, 45, 20, 29] (the winner of the recent VNN-COMP neural network
verification competitions [2, 23, 3]). These verifiers have shown promising results for verification of
robustness properties of neural network models used for objects classification. Robustness, in the case of
image classification, can be described as the ability of the neural network to retain the prediction label of
an input image in response to a small change in the input image.

*This publication has emanated from research conducted with the financial support of Science Foundation Ireland under
Grant number 20/FFP-P/8853.

http://dx.doi.org/10.4204/EPTCS.411.12

S. A. A. Bukhari, T. Flinkow, M. Inkarbekov, B. A. Pearlmutter & R. Monahan 179

Neural Network Verifier

training data logical constraints

verify constraints

re-train

Figure 1: Differentiable logics allow for the use of logical constraints during training by translating them
into additional loss terms. Note that in this paper, we do not use continuous verification, that is, we do not
re-train the network after the verification; instead, we only try to evaluate what influence training with
logical constraints has on the verification afterwards.

While the aforementioned verifiers usually assume a trained network with fixed weights, another
area of research is the design of correct-by-construction neural networks. One approach in this direction
is differentiable logics [9, 41, 35]. The fundamental principle of machine learning is to minimise a
so-called loss function which indicates how wrong the network output is compared to the desired output.
Differentiable logics are used to transform a logical constraint φ into an additional logical loss term Lφ to
minimise when learning. This loss term is in addition to the standard loss (such as mean-squared error loss
LMSE). Therefore, the optimisation objective is of the form L= LMSE +λLφ . It is important to balance
the different loss terms, and for this we employ gradient normalisation (GradNorm) [6], an adaptive loss
balancing approach which treats λ as an additional learnable parameter λ (t). GradNorm has been shown
to outperform grid search, the conventional algorithm used in machine learning for hyperparameter tuning.

Figure 1 shows the standard loop of training a network, verifying it, and re-training the network
if necessary. Differentiable logics allow the integration of constraints as additional loss terms into the
training process. Multiple mappings have been defined in the literature to translate logical constraints
into loss terms, which allow for real-valued truth values, but are also differentiable almost everywhere for
use with standard gradient-based methods. Prominent examples include DL2 [9] and fuzzy logic based
mappings [41, 35]. In our experiments, we use the Gödel fuzzy logic [[·]] : [0,1]→ [0,1] which translates
as follows:

• conjunction as [[x∧ y]] = min(x,y),

• disjunction as [[x∨ y]] = max(x,y), and

• implication as [[x → y]] =

{
1, x < y
y, else.

We chose to use this logic translation as it provides a desirable property for the translation process i.e. that
the operators have strong derivatives almost everywhere. Previous experimental results [10] suggest that
the choice of a logic does not have a major impact.

In this paper we present an experience report, describing a case study which we undertook to explore
the following challenges: (1) design and training of a neural network on a custom dataset for vision-based
autonomous navigation, (2) use of machine learning with differentiable logics to obtain networks satisfying
basic safety properties, (3) obtaining formal guarantees with formal verification of the neural network
after training. We motivate the choice of a suitable neural network verifier for our purposes and report our
observations on the use of neural network verifiers for self-driving systems. As can be seen in Section 2,

180 Creating a Formally Verified Neural Network for Autonomous Navigation: An Experience Report

to the best of our knowledge, such a setup of using formal methods at multiple stages of the machine
learning pipeline has not been published before.

2 Related Work

The verification of autonomous driving systems, especially on edge devices, remains a largely under-
explored area. Despite the rapid progress in autonomous vehicle technology [25], few studies have
addressed the verification challenges in resource-constrained environments. This section provides an
overview of some foundational contributions in this domain.

Sun et al. [37] present a framework for formal verification of safety properties in autonomous systems
controlled by neural networks. Their approach focuses on ensuring that a robot can safely navigate
environments with polyhedral obstacles by constructing a finite state abstraction of the system and
applying reachability analysis. The introduction of imaging-adapted partitions in their work is particularly
relevant to the verification of robotic cars, as it simplifies the modelling of LiDAR-based perception,
making the verification process more manageable.

Habeeb et al. [13] develop a procedure for the safety verification of camera-based autonomous systems,
which includes a falsification approach that collects unsafe trajectories to assist in retraining neural
network controllers. Their concept of image-invariant regions is noteworthy, as it enables reasoning about
trajectories at the level of regions rather than individual positions, potentially reducing the complexity of
the verification process for systems relying on visual inputs.

Cleaveland et al. [7] propose a risk verification framework for stochastic systems with neural network
controllers, focusing on estimating the risk of failure under stochastic conditions. Their work is significant
in handling the verification of systems where environmental perturbations might occur, which is critical
for autonomous vehicles operating in unpredictable real-world environments. The empirical validation of
their framework using autonomous vehicles demonstrates its applicability to scenarios where robustness
to environmental changes is essential.

Ivanov et al. [15] present a benchmark for assessing the scalability of verification tools in the context of
an autonomous racing car controlled by a neural network. Their work highlights the challenges in verifying
systems with high-dimensional inputs, such as LiDAR data, and underscores the importance of addressing
the gap between simulated and real-world performance, known as the sim2real gap, in verification efforts.
The limitations identified in their study, particularly regarding sensor faults in real-world environments,
emphasise the need for more scalable and robust verification methods.

While these approaches address key verification aspects, they fall short in addressing the specific
requirements for edge devices used in autonomous driving systems. Further research is necessary to
bridge this gap and provide effective solutions for resource-constrained environments.

3 Case Study: A Verified Neural Network for Autonomous Navigation

The goal of this case study is to build a formally verified regression neural network that detects the
centre of the track on which the vehicle is travelling. We train the network in two different ways. First,
we train in a standard manner, training only on the dataset. Our second approach aims to achieve a
correct-by-construction network by training using the constraints that we want the network to satisfy after
training. In this approach we use differentiable logics.

S. A. A. Bukhari, T. Flinkow, M. Inkarbekov, B. A. Pearlmutter & R. Monahan 181

(a) label = 68 ,110 (b) label = 86, 112 (c) label = 162, 133

Figure 2: Samples from the LEGO road dataset showing various lighting conditions and track configura-
tions. The red dots located at label coordinates show the centre of the path to be followed in the frame.

3.1 Experimental Setup

For demonstration purposes, we have used the JetBot kit available at [36]. JetBot [16] is an open-source
AI robotic vehicle based on NVIDIA Jetson Nano [24]. Jetson Nano is an edge device equipped with
GPUs to train and run neural networks at a lower power range of 5 W to 10 W. It can be easily interfaced
with several sensor modules including a camera, making it suitable for demonstrating a vision-based
autonomous navigation application. The JetBot kit features a Leopard Imaging 136 FOV Camera [14]
(3280×2464 pixels).

3.2 Data Collection

Various neural network models and training data are readily available for a range of computer vision
tasks, thus providing a possible foundation for development of vision-based autonomous navigation
systems. Additionally, there are multiple open source architectures for autonomous car navigation such as
Openpilot [8]. A lane-keeping dataset for autonomous plane taxiing was presented in [11], where they
also verified the neural network component. In this case study, we generate our own dataset as our focus
is on a meaningful prototype, rather than developing a state-of-the-art lane keeping autonomous vehicle.
We build upon the example provided with JetBot, available at [17].

More specifically, we have built a reference track using readily available Lego road plates (with a
centred line). The data is collected by placing the robotic car at various positions on the tracks and
taking images with the onboard camera facing down on the track. The images are labelled with x and
y coordinates indicating the centre of the path to be followed in the frame. These coordinates are used
to calculate the driving parameters for the JetBot motor. The dataset consists of 385 images stored in a
resolution of 224×224 pixels. A few samples from the dataset are shown in Fig. 2. The dataset is publicly
available at https://github.com/tflinkow/fmas2024

3.3 Neural Network Architecture

Scalability is an important issue for neural network verifiers due to the high-dimensional inputs, the large
number of neurons in the network, and the use of non-linear activation functions. Hence, in order to make
verification tractable, finding a sufficiently small neural network architecture is essential in this case study.
For that reason, we first chose to downscale the original 224×224 pixel RGB images to 112×112 pixels

https://github.com/tflinkow/fmas2024

182 Creating a Formally Verified Neural Network for Autonomous Navigation: An Experience Report

Table 1: Summary of the proposed neural network.

Network
Layer

Input Shape Output Shape Kernel (if applicable) No. of Trainable
ParametersSize×Size×Channel×Batch Size, Stride, Padding

Conv2D 112×112×1×1 112×112×1×1 3×3, 1×1, 1×1 10
ReLU 112×112×1×1 112×112×1×1 — —
MaxPool2D 112×112×1×1 56×56×1×1 2×2, 2×2, none —
Conv2D 56×56×1×1 56×56×1×1 3×3, 1×1, 1×1 10
ReLU 56×56×1×1 56×56×1×1 — —
MaxPool2D 56×56×1×1 28×28×1×1 2×2, 2×2, none —
Linear 784×1 256×1 — 200, 960
ReLU 256×1 256×1 — —
Linear 256×1 128×1 — 32, 896
ReLU 128×1 128×1 — —
Linear 128×1 2×1 — 258
Tanh 2×1 2×1 — —

and convert them to grey scale before passing them to the network, thus allowing for a noticeably smaller
network architecture.

The neural network we propose consists of two convolutional layers with ReLU activations (each
followed by a max-pooling layer) followed by three fully connected layers, the first two with ReLU
activations, and the last layer followed by a tanh activation. Further details about each layer and other
network parameters are listed in Table 1. The network contains 234,136 parameters. Our proposed
architecture is shown in Fig. 3.

In the following, we consider our network to approximate the function

N : R112×112 → R2, (1)

where the inputs are images of size 112×112, and the outputs are the x,y-coordinates of the centre of the
track in the image (according to the image label).

3.4 Verification Properties

The property we wish to verify is a standard local robustness property [5] for neural networks, formally
defined as

Robustness(xxx0,ε,δ) := ∀xxx. ||xxx0 − xxx||∞ ≤ ε =⇒ ||N(xxx0)−N(xxx)||∞ ≤ δ . (2)

This property checks that for slight perturbations xxx within some bound ε of a given input image xxx0,
the neural network N should give roughly the same output, i.e., the measure of difference between the
network’s outputs N(xxx0) and N(xxx) should be within an acceptable threshold δ .

As explained in [9], learning properties of the form ∀xxx. ||xxx0 − xxx||∞ ≤ ε =⇒ φ can be approximated
by finding a counterexample (i.e., the worst perturbation) xxx∗ for φ within the ε-neighbourhood of xxx0 with
Projected Gradient Descent (PGD) [22] and using it in training. This approach is similar to adversarial
training. However the perturbation found using PGD is only used as a counterexample for the logical
constraint, and not for calculating the mean squared error loss term. Thus in turn adversarial examples do

S. A. A. Bukhari, T. Flinkow, M. Inkarbekov, B. A. Pearlmutter & R. Monahan 183

Input Image
11

2 ×
11

2

Conv2D

56
× 56

MaxPool2D
56
× 56

Conv2D

28
×

28

MaxPool2D

25
6×

1

Linear
25

6×
1

ReLU

12
8×

1

Linear
12

8×
1

ReLU

2×
1

Linear

2×
1

tanh

x,y
coordinates

Output

Figure 3: The proposed neural network architecture for extracting the path centre in an input image of
size 112×112 pixels.

not improve the performance of the network; they are only used to make the network satisfy the constraint
more. The code we use to achieve this in training is based on [10].

4 Results and Observations

We performed two variations of training of the suggested neural network on our collected data. Firstly, we
trained the network in a standard manner (called vanilla in the following) using only our collected data.
Secondly, we trained our network on the collected data but added constraints (called constrained-training
in the following). Both training runs were executed for 100 epochs with a batch size of 16.

4.1 Performance

To evaluate the performance, we look at prediction loss (i.e. mean squared error) and constraint accuracy
(i.e. the number of times the constraint was satisfied out of all the predictions). Figs. 4 and 5 illustrate that
including constraints in the training process leads to improved performance on adversarial examples, as
well as drastically improving constraint accuracy. However, as mentioned in [12], training with constraints
does not guarantee their satisfaction. Instead, we aimed to obtain formal guarantees that both networks
verify the constraints after training.

4.2 Verification of Robustness

We used α,β -CROWN to verify that the network satisfies the robustness property in Eq. (2). However,
we found that the tool was not suitable for the verification of regression tasks (as opposed to classification
tasks) without modification. We also used DNNV [30], a framework providing a unified interface

184 Creating a Formally Verified Neural Network for Autonomous Navigation: An Experience Report

(a) Vanilla (b) Constrained-training

Figure 4: Comparison of predictions of models trained without (vanilla) and with logical constraints
(constrained-training) on an adversarial example in epoch 45 of 100.

0 20 40 60 80 100
0

1

2

3

4

·10−3

Epoch

Prediction Loss

0 20 40 60 80 100

0.7

0.8

0.9

1

Epoch

Constraint Accuracy

Vanilla constrained-training

Figure 5: The prediction loss (i.e., mean squared error; lower is better) and constraint accuracy (higher is
better) for a model trained only on data (vanilla) and a model trained on both data and logical constraints
with differentiable logics (constrained-training).

S. A. A. Bukhari, T. Flinkow, M. Inkarbekov, B. A. Pearlmutter & R. Monahan 185

Listing 1: The robustness property from Eq. (2) specified in DNNV’s property specification language.
from dnnv.properties import *

N = Network("N")
x = Image("data/image_0.npy")

epsilon = Parameter("epsilon", float , default =(48. / 255))
delta = Parameter("delta", float , default =0.1)

Forall(
x_ ,
Implies(

((x - epsilon) <= denormalise(x_) <= (x + epsilon)),
(abs(N(x_)[0][0] - N(x)[0][0]) <= delta) &
(abs(N(x_)[0][1] - N(x)[0][1]) <= delta)

),
)

Listing 2: Output of DNNV for verification of robustness property.
dnnv.verifiers.bab

result: BabTranslatorError(Unsupported computation graph detected)
time: 0.3495

dnnv.verifiers.eran
result: unknown
time: 4.9732

dnnv.verifiers.nnenum
result: NnenumError(Return code: 1)
time: 0.7476

dnnv.verifiers.reluplex
result: ReluplexTranslatorError(Unsupported computation graph detected)
time: 0.3622

to interact with verifiers such as Reluplex [18], Marabou [19], BaB [4], ERAN [32, 33, 34, 31], and
nnenum [1]. DNNV provides a Python-based domain-specific language for expressing properties. Our
translation of the constraint Eq. (2) is shown in Listing 1. DNNV was not straightforward to install,
requiring older versions of Python along with outdated requirements for packages such as numpy. The
only verifiers that we were able to install successfully within DNNV were BAB, ERAN, Reluplex and
nnenum. Verifying the property shown in Listing 1 led to an inconclusive result for ERAN, whereas
Reluplex and BAB were not able to attempt verification due to unsupported operations, and nnenum
returned a generic error. The tool’s output for these scenarios is shown in Listing 2.

We also used the Matlab Toolbox for Neural Network Verification (NNV) [40] for verification of the
robustness property. NNV provides a relatively simplier interface that accepts several neural network
formats. The tool has an estimateNetworkOutputBounds function that estimates lower and upper
output bounds of the network, supporting a change in input within the specified bounds. For a small
perturbation ε in input X , the input bounds are X − ε and X + ε . For the input image in Fig. 6, Table 2

186 Creating a Formally Verified Neural Network for Autonomous Navigation: An Experience Report

Figure 6: An image (converted to grey scale) from the LEGO dataset taken as a running example.

Table 2: Lower and upper output bounds of the proposed neural network computed by NNV against
perturbations in the normalised input image from Figure 6.

Input Perturbations ε

(Normalised Image)

Network Configuration
Vanilla Constrained-training

x y x y
0.001 [9 – 107] [19 – 97] [8 – 107] [15 – 97]
0.01 [1 – 112] [1 – 112] [1 – 112] [1 – 112]

shows the lower and upper bounds (x, y coordinates) estimated by NNV against the perturbations in
the normalised input for different network training configurations. It can be observed from Table 2 that
the estimateNetworkOutputBounds function does return any tighter bounds for the network’s output,
showing the sensitivity of the network to input changes.

4.3 Lessons Learned

Supporting formal guarantees for neural networks appears qualitatively different from traditional formal
verification. While formal verification techniques for neural networks are general enough to allow the
verification of various properties over certain regions of the input space, in practice, finding these regions
can be problematic—for example, requiring a network to be robust usually applies only for specific
images, not all possible images. As this is difficult to specify for all but the most simple, low-dimensional
problems (such as ACAS Xu [18]), verification is usually limited to verifying local properties at input
points contained in the available data. This has important implications for the use of the network in
formally verified systems—such as the lack of real guarantees for unseen data.

The architecture of the neural network has extensive consequences for the whole pipeline, from affect-
ing the training time with differentiable logics, to making verification difficult or potentially impossible.
As explained in [39], max-pooling layers are typically too complicated for verification. The same applies
to tanh layers, as many tools support only ReLU activation functions, fully connected, and convolutional
layers, which explains why Reluplex and BaB failed to verify our property, as seen in Listing 2.

Regarding verification tools, the effort in installation, interfacing tools with the network to be verified,
and getting the tool running in terms of computational resources is substantial. Tools were difficult
to install due to their (sometimes outdated) dependencies, and the data and network often required
conversion to an acceptable format to be compatible with the tools expectations. We note also that neural
network verification tools focus primarily on networks performing classification rather than regression, as
evidenced by the large number of examples provided for the earlier case.

S. A. A. Bukhari, T. Flinkow, M. Inkarbekov, B. A. Pearlmutter & R. Monahan 187

Lastly, considering the autonomous navigation example in our case study and the dataset design,
we would like to explore using further labelled data, e.g., the left and right edges of the track could be
included in addition to the centre of the track. This opens up more interesting logical constraints to use in
training.

5 Conclusion

In this paper we presented our experience of creating a formally verified neural network for autonomous
navigation. While we gained many insights into the currently available tools and approaches, the challenge
of creating verification-friendly neural networks (in general and) for autonomous driving systems is still an
open problem, requiring expertise from both the formal verification and the neural network communities.

We investigated the design and training of a neural network on a custom dataset for vision-based
autonomous navigation in a fashion that integrates standard training methods and logic-based formal
methods. In particular, we used differentiable logics to constrain training to yield networks satisfying
safety properties like robustness. This approach can be integrated into a pipeline in which the networks
thus trained are then checked for compliance using formal verification of the post-training neural network.

References

[1] Stanley Bak (2021): Nnenum: Verification of ReLU Neural Networks with Optimized Abstraction Refine-
ment. In Aaron Dutle, Mariano M. Moscato, Laura Titolo, César A. Muñoz & Ivan Perez, editors: NASA
Formal Methods, Lecture Notes in Computer Science, Springer International Publishing, Cham, pp. 19–36,
doi:10.1007/978-3-030-76384-8_2.

[2] Stanley Bak, Changliu Liu & Taylor Johnson (2021): The Second International Verification of Neural Networks
Competition (VNN-COMP 2021): Summary and Results, doi:10.48550/arXiv.2109.00498. arXiv:2109.00498.

[3] Christopher Brix, Stanley Bak, Changliu Liu & Taylor T. Johnson (2023): The Fourth International Verification
of Neural Networks Competition (VNN-COMP 2023): Summary and Results, doi:10.48550/arXiv.2312.16760.
arXiv:2312.16760.

[4] Rudy R. Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli & Pawan K. Mudigonda (2018): A Unified View
of Piecewise Linear Neural Network Verification. In: Advances in Neural Information Processing Systems, 31,
Curran Associates, Inc.

[5] Marco Casadio, Ekaterina Komendantskaya, Matthew L. Daggitt, Wen Kokke, Guy Katz, Guy Amir & Idan
Refaeli (2022): Neural Network Robustness as a Verification Property: A Principled Case Study. In Sharon
Shoham & Yakir Vizel, editors: Computer Aided Verification, Lecture Notes in Computer Science, Springer
International Publishing, pp. 219–231, doi:10.1007/978-3-031-13185-1_11.

[6] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee & Andrew Rabinovich (2018): GradNorm: Gradient
Normalization for Adaptive Loss Balancing in Deep Multitask Networks. In: Proceedings of the 35th
International Conference on Machine Learning, PMLR, pp. 794–803.

[7] Matthew Cleaveland, Lars Lindemann, Radoslav Ivanov & George J. Pappas (2022): Risk verifica-
tion of stochastic systems with neural network controllers. Artificial Intelligence 313, p. 103782,
doi:10.1016/j.artint.2022.103782.

[8] CommaAI (2024): Commaai/Openpilot. comma.ai. Available at https://github.com/commaai/
openpilot.

[9] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang & Martin Vechev (2019):
DL2: Training and Querying Neural Networks with Logic. In: Proceedings of the 36th International Conference
on Machine Learning, PMLR, pp. 1931–1941.

https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.48550/arXiv.2109.00498
https://arxiv.org/abs/2109.00498
https://doi.org/10.48550/arXiv.2312.16760
https://arxiv.org/abs/2312.16760
https://doi.org/10.1007/978-3-031-13185-1_11
https://doi.org/10.1016/j.artint.2022.103782
https://github.com/commaai/openpilot
https://github.com/commaai/openpilot

188 Creating a Formally Verified Neural Network for Autonomous Navigation: An Experience Report

[10] Thomas Flinkow, Barak A. Pearlmutter & Rosemary Monahan (2024): Comparing Differentiable Logics for
Learning with Logical Constraints. arXiv:2407.03847. (under review).

[11] Daniel J. Fremont, Johnathan Chiu, Dragos D. Margineantu, Denis Osipychev & Sanjit A. Seshia (2020):
Formal Analysis and Redesign of a Neural Network-Based Aircraft Taxiing System with VerifAI. In: Computer
Aided Verification: 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020,
Proceedings, Part I, Springer-Verlag, Berlin, Heidelberg, pp. 122–134, doi:10.1007/978-3-030-53288-8_6.

[12] Eleonora Giunchiglia, Mihaela Catalina Stoian & Thomas Lukasiewicz (2022): Deep Learning with Logical
Constraints. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
International Joint Conferences on Artificial Intelligence Organization, Vienna, Austria, pp. 5478–5485,
doi:10.24963/ijcai.2022/767.

[13] P. Habeeb, Nabarun Deka, Deepak D’Souza, Kamal Lodaya & Pavithra Prabhakar (2023): Verification of
Camera-Based Autonomous Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 42(10), pp. 3450–3463, doi:10.1109/TCAD.2023.3240131.

[14] Leopard Imaging Inc. (2024): LI-IMX219-MIPI-FF-NANO-H136—Leopard Imaging Inc. Available
at https://leopardimaging.com/product/platform-partners/nvidia/nvidia-jetson-nano/
nano-mipi-camera-kits/li-imx219-mipi-ff-nano/li-imx219-mipi-ff-nano-h136/.

[15] Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pappas & Insup Lee (2020): Case
study: verifying the safety of an autonomous racing car with a neural network controller. In: Proceedings of
the 23rd International Conference on Hybrid Systems: Computation and Control, HSCC ’20, Association for
Computing Machinery, New York, NY, USA, doi:10.1145/3365365.3382216.

[16] JetBot. (2024): JetBot. Available at https://jetbot.org/master/index.html.

[17] JetBot (2024): Road Following—JetBot. Available at https://jetbot.org/master/examples/road_
following.html.

[18] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian & Mykel J. Kochenderfer (2017): Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In Rupak Majumdar & Viktor Kunčak, editors: Computer
Aided Verification, Lecture Notes in Computer Science, Springer International Publishing, Cham, pp. 97–117,
doi:10.1007/978-3-319-63387-9_5.

[19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah,
Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer & Clark Barrett (2019):
The Marabou Framework for Verification and Analysis of Deep Neural Networks. In Isil Dillig & Serdar
Tasiran, editors: Computer Aided Verification, Lecture Notes in Computer Science, Springer International
Publishing, Cham, pp. 443–452, doi:10.1007/978-3-030-25540-4_26.

[20] Suhas Kotha, Christopher Brix, J. Zico Kolter, Krishnamurthy Dvijotham & Huan Zhang (2023): Prov-
ably Bounding Neural Network Preimages. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt
& S. Levine, editors: Advances in Neural Information Processing Systems, 36, Curran Associates, Inc.,
pp. 80270–80290. Available at https://proceedings.neurips.cc/paper_files/paper/2023/file/
fe061ec0ae03c5cf5b5323a2b9121bfd-Paper-Conference.pdf.

[21] Yifang Ma, Zhenyu Wang, Hong Yang & Lin Yang (2020): Artificial intelligence applications in the de-
velopment of autonomous vehicles: A survey. IEEE/CAA Journal of Automatica Sinica 7(2), pp. 315–329,
doi:10.1109/JAS.2020.1003021.

[22] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras & Adrian Vladu (2018): To-
wards Deep Learning Models Resistant to Adversarial Attacks. In: International Conference on Learning
Representations. Available at https://openreview.net/forum?id=rJzIBfZAb.

[23] Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu & Taylor T. Johnson (2022): The Third
International Verification of Neural Networks Competition (VNN-COMP 2022): Summary and Results,
doi:10.48550/arXiv.2212.10376. arXiv:2212.10376.

https://arxiv.org/abs/2407.03847
https://doi.org/10.1007/978-3-030-53288-8_6
https://doi.org/10.24963/ijcai.2022/767
https://doi.org/10.1109/TCAD.2023.3240131
https://leopardimaging.com/product/platform-partners/nvidia/nvidia-jetson-nano/nano-mipi-camera-kits/li-imx219-mipi-ff-nano/li-imx219-mipi-ff-nano-h136/
https://leopardimaging.com/product/platform-partners/nvidia/nvidia-jetson-nano/nano-mipi-camera-kits/li-imx219-mipi-ff-nano/li-imx219-mipi-ff-nano-h136/
https://doi.org/10.1145/3365365.3382216
https://jetbot.org/master/index.html
https://jetbot.org/master/examples/road_following.html
https://jetbot.org/master/examples/road_following.html
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://proceedings.neurips.cc/paper_files/paper/2023/file/fe061ec0ae03c5cf5b5323a2b9121bfd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fe061ec0ae03c5cf5b5323a2b9121bfd-Paper-Conference.pdf
https://doi.org/10.1109/JAS.2020.1003021
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.48550/arXiv.2212.10376
https://arxiv.org/abs/2212.10376

S. A. A. Bukhari, T. Flinkow, M. Inkarbekov, B. A. Pearlmutter & R. Monahan 189

[24] NVIDIA (2024): Jetson Nano Brings the Power of Modern AI to Edge Devices | NVIDIA. Available
at https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
product-development/.

[25] Budi Padmaja, CH VKNSN Moorthy, N Venkateswarulu & Myneni Madhu Bala (2023): Exploration of issues,
challenges and latest developments in autonomous cars. Journal of Big Data 10(1), p. 61, doi:10.1186/s40537-
023-00701-y.

[26] Dean A. Pomerleau (1988): ALVINN: An Autonomous Land Vehicle in a Neural Network.
In: Advances in Neural Information Processing Systems (NIPS), 1, Morgan-Kaufmann, pp.
305–15. Available at https://proceedings.neurips.cc/paper_files/paper/1988/file/
812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf.

[27] Ratheesh Ravindran, Michael J. Santora & Mohsin M. Jamali (2020): Multi-object detection and track-
ing, based on DNN, for autonomous vehicles: A review. IEEE Sensors Journal 21(5), pp. 5668–5677,
doi:10.1109/JSEN.2020.3041615.

[28] Sanjit A Seshia, Dorsa Sadigh & S Shankar Sastry (2022): Toward verified artificial intelligence. Communica-
tions of the ACM 65(7), pp. 46–55, doi:10.1145/3503914.

[29] Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh & Huan Zhang (2024): Neural Network
Verification with Branch-and-Bound for General Nonlinearities. arXiv preprint arXiv:2405.21063.

[30] David Shriver, Sebastian Elbaum & Matthew B. Dwyer (2021): DNNV: A Framework for Deep Neural Network
Verification. In Alexandra Silva & K. Rustan M. Leino, editors: Computer Aided Verification, Lecture Notes in
Computer Science, Springer International Publishing, Cham, pp. 137–150, doi:10.1007/978-3-030-81685-8_6.

[31] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel & Martin Vechev (2019): Beyond the Single Neuron
Convex Barrier for Neural Network Certification. In: Advances in Neural Information Processing Systems,
32, Curran Associates, Inc.

[32] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel & Martin Vechev (2018): Fast and
Effective Robustness Certification. In: Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, Curran Associates Inc., Red Hook, NY, USA, pp. 10825–10836.

[33] Gagandeep Singh, Timon Gehr, Markus Püschel & Martin Vechev (2018): Boosting Robustness Certification
of Neural Networks. In: International Conference on Learning Representations.

[34] Gagandeep Singh, Timon Gehr, Markus Püschel & Martin Vechev (2019): An Abstract Domain for
Certifying Neural Networks. Proceedings of the ACM on Programming Languages 3(POPL), pp. 1–30,
doi:10.1145/3290354.

[35] Natalia Ślusarz, Ekaterina Komendantskaya, Matthew Daggitt, Robert Stewart & Kathrin Stark (2023): Logic
of Differentiable Logics: Towards a Uniform Semantics of DL. In: EPiC Series in Computing, 94, EasyChair,
pp. 473–493, doi:10.29007/c1nt.

[36] Sparkfun (2024): SparkFun JetBot AI Kit v3.0 Powered by Jetson Nano—KIT-18486—SparkFun Electronics.
Available at https://www.sparkfun.com/products/18486.

[37] Xiaowu Sun, Haitham Khedr & Yasser Shoukry (2019): Formal verification of neural network controlled
autonomous systems. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, pp. 147–156.

[38] Sebastian Thrun (2010): Toward robotic cars. Commun. ACM 53(4), p. 99–106,
doi:10.1145/1721654.1721679.

[39] Hoang-Dung Tran, Stanley Bak, Weiming Xiang & Taylor T. Johnson (2020): Verification of Deep Con-
volutional Neural Networks Using ImageStars. In Shuvendu K. Lahiri & Chao Wang, editors: Computer
Aided Verification, Lecture Notes in Computer Science, Springer International Publishing, Cham, pp. 18–42,
doi:10.1007/978-3-030-53288-8_2.

[40] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming
Xiang, Stanley Bak & Taylor T. Johnson (2020): NNV: The Neural Network Verification Tool for Deep Neural
Networks and Learning-Enabled Cyber-Physical Systems. In Shuvendu K. Lahiri & Chao Wang, editors:

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1186/s40537-023-00701-y
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://doi.org/10.1109/JSEN.2020.3041615
https://doi.org/10.1145/3503914
https://doi.org/10.1007/978-3-030-81685-8_6
https://doi.org/10.1145/3290354
https://doi.org/10.29007/c1nt
https://www.sparkfun.com/products/18486
https://doi.org/10.1145/1721654.1721679
https://doi.org/10.1007/978-3-030-53288-8_2

190 Creating a Formally Verified Neural Network for Autonomous Navigation: An Experience Report

Computer Aided Verification, Lecture Notes in Computer Science, Springer International Publishing, Cham,
pp. 3–17, doi:10.1007/978-3-030-53288-8_1.

[41] Emile van Krieken, Erman Acar & Frank van Harmelen (2022): Analyzing Differentiable Fuzzy Logic
Operators. Artificial Intelligence 302, p. 103602, doi:10.1016/j.artint.2021.103602. arXiv:2002.06100.

[42] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh & J. Zico Kolter (2021): Beta-
CROWN: Efficient bound propagation with per-neuron split constraints for complete and incomplete neural
network verification. Advances in Neural Information Processing Systems 34.

[43] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue
Lin & Cho-Jui Hsieh (2020): Automatic perturbation analysis for scalable certified robustness and beyond.
Advances in Neural Information Processing Systems 33.

[44] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin & Cho-Jui Hsieh (2021): Fast and
Complete: Enabling Complete Neural Network Verification with Rapid and Massively Parallel Incomplete
Verifiers. In: International Conference on Learning Representations. Available at https://openreview.
net/forum?id=nVZtXBI6LNn.

[45] Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh & J. Zico Kolter (2022):
General Cutting Planes for Bound-Propagation-Based Neural Network Verification. Advances in Neural
Information Processing Systems.

[46] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh & Luca Daniel (2018): Efficient Neural Network
Robustness Certification with General Activation Functions. In: Advances in Neural Information Processing
Systems, 31, Curran Associates, Inc.

[47] Jingyuan Zhao, Wenyi Zhao, Bo Deng, Zhenghong Wang, Feng Zhang, Wenxiang Zheng, Wanke Cao,
Jinrui Nan, Yubo Lian & Andrew F. Burke (2024): Autonomous driving system: A comprehensive survey.
Expert Systems with Applications 242, p. 122836, doi:10.1016/j.eswa.2023.122836. Available at https:
//www.sciencedirect.com/science/article/pii/S0957417423033389.

https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1016/j.artint.2021.103602
https://arxiv.org/abs/2002.06100
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://doi.org/10.1016/j.eswa.2023.122836
https://www.sciencedirect.com/science/article/pii/S0957417423033389
https://www.sciencedirect.com/science/article/pii/S0957417423033389

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 191–200, doi:10.4204/EPTCS.411.13

© P. Burgio, A. Ferrando & M. Villani
This work is licensed under the
Creative Commons Attribution License.

Open Challenges in the Formal Verification
of Autonomous Driving

Paolo Burgio Angelo Ferrando Marco Villani
University of Modena and Reggio Emilia

Department of Physics, Informatics and Mathematics
Modena, Italy

forename.surname@unimore.it

In the realm of autonomous driving, the development and integration of highly complex and hetero-
geneous systems are standard practice. Modern vehicles are not monolithic systems; instead, they are
composed of diverse hardware components, each running its own software systems. An autonomous
vehicle comprises numerous independent components, often developed by different and potentially
competing companies. This diversity poses significant challenges for the certification process, as it
necessitates certifying components that may not disclose their internal behaviour (black-boxes). In
this paper, we present a real-world case study of an autonomous driving system, identify key open
challenges associated with its development and integration, and explore how formal verification tech-
niques can address these challenges to ensure system reliability and safety.

1 Introduction

The Society of Automotive Engineers (SAE) defines the design goals of autonomous driving across six
distinct levels, ranging from Level 0 (L-0) to Level 5 (L-5), as outlined in [27]. These levels represent a
spectrum of automation: L-0 denotes no automation, followed by L-1 which includes driver assistance,
L-2 for partial automation, L-3 for conditional automation, L-4 for high automation, and culminating in
L-5, which signifies full automation. Each level reflects the increasing capability of autonomous sys-
tems and their interaction with human drivers. Currently, most commercially available vehicles operate
at L-2 automation. This level encompasses features such as adaptive cruise control and lane-keeping
assistance, enabling the vehicle to assist the driver while still requiring constant supervision and active
engagement. A few manufacturers are exploring L-3 systems, which offer conditional automation under
specific circumstances. For example, some modern vehicles equipped with L-3 systems can handle high-
way driving autonomously, including lane-keeping, speed regulation, and adaptive cruise control, but
require the driver to take over when exiting highways or in complex urban environments. Despite such
advancements, the industry is still in the early stages of fully implementing higher levels of automation.

According to a recent survey on the subject [17], achieving L-5 autonomy requires the appropriate
integration of technologies and efficient communication channels. Realising the full potential of auto-
mated driving demands a reliable, robust, and widespread mobile network. In this work, we focus on
the first item on the list; that is, we are interested in making the components of autonomous driving, as
well as their interactions, (more) reliable. To achieve this, we start with a case study of a real-world
autonomous driving system and address the issues to enhance its reliability from a formal perspective.

Taking inspiration from [22], we treat the autonomous driving system as a component-based system
composed of black-box components that we are not interested in opening (or cannot open). Instead, we
focus on how to achieve the formal verification of the resulting heterogeneous system. That is, how the

http://dx.doi.org/10.4204/EPTCS.411.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

192 Open Challenges in the Formal Verification of Autonomous Driving

Figure 1: The vehicle architecture and use case

components interact with each other, and how we can verify (and perhaps even enforce) correct behaviour
according to well-known standards in autonomous driving.

This paper presents a real-world case study in autonomous driving (Section 2), highlighting key
challenges. Section 3 examines how formal methods, particularly formal verification, can address these
issues and be integrated into autonomous systems, with Section 4 discussing their limitations. Finally,
Section 5 concludes the paper and outlines future directions.

2 Autonomous Driving Case Study

As a motivational example, we present a case study from the AI4CSM Project1, funded by the European
Commission [33]. This study features a L-3/L-4 autonomous vehicle equipped with advanced sensor fu-
sion capabilities, exemplifying a next-generation automotive platform [29, 35]. The vehicle can interpret
both driver status (e.g., drowsiness, distraction) using in-vehicle cameras, and external environmental
conditions using on-board sensors and data from city sensors, as illustrated in Figure 1.

In the simplest scenario, the vehicle operates at a low level of automation (i.e., L-2/L-3), with the
driver maintaining control. If the vehicle detects a potentially dangerous situation, such as drowsiness or
imminent collisions, it triggers a secure takeover strategy, transitioning to L-4 and executing a safety ma-
noeuvre. For our study, we focus on the sensor fusion component, where the perception module running
on the on-board Electronic Control Unit (ECU) aggregates information from heterogeneous data streams.
Specifically, we implemented a system to monitor the driver using camera-based behavioural analysis,
coupled with on-board cameras to inspect the surrounding environment. Additionally, we enhanced
the vehicle’s perception capabilities by incorporating data from a smart city prototype area, namely the
Modena Automotive Smart Area (MASA)2. Its structure is shown in Figure 2.

This area includes smart cameras mounted on poles that detect vulnerable road users and analyse
or predict their movement trajectories. These data are streamed to the vehicle through the smart city’s
4G-5G wireless connectivity. The vehicle’s centralised ECU, also known as the Domain Controller, pro-
cesses this information to determine the most appropriate response, such as emergency braking, complex
manoeuvres, or issuing driver warnings. For research purposes, we implemented this use case on a Cit-
roen Mehari. We will now explore the main open challenges that must be addressed to facilitate the
industrialisation of these complex systems.

1https://ai4csm.eu/
2https://www.automotivesmartarea.it/

P. Burgio, A. Ferrando & M. Villani 193

Figure 2: The Modena Automotive Smart Area.

Aggregating probabilistic data sources. One primary open challenge arises from the inherent na-
ture of most software components used for perception. This stage is the first in any autonomous driving
stack, where raw sensor data (in our scenario, RGB cameras) are processed to interpret and analyse
the driver or the car’s surroundings. Numerous algorithms and approaches could be employed, most of
which [29, 35, 5, 19, 24] heavily rely on machine learning, deep learning, or, more generally, on heuristics
and statistical methodologies to handle the complexity of raw data frames. Additionally, most systems
have a hierarchical structure, consisting of sub-components arranged in pipelines. Figure 3 illustrates
this decomposition for our camera-based behavioural analysis used for monitoring the driver.

Figure 3: Scheme of the behavioural DMS pipeline.

Every block of this system has a specific performance metric, typically expressed in Frames-Per-
Second (FPS), and a nominal accuracy, indicating the reliability of the information produced by the
(sub)component. Our Driver Monitoring System (DMS) is a white-box component, developed in-house,
which allows us complete access to its internals for tuning and modifications. However, in realistic indus-
trial scenarios, most software modules will be developed by different companies and often implemented
as “black-box” ECUs. Therefore, we identify the first open challenge.

Open Challenge 1: the need to compose a hierarchy of probabilistic software modules to formally
measure and derive the overall system’s resulting accuracy.

Deploy on embedded systems. Deploying intelligence in automation use cases requires two key
components: powerful computational hardware and numerous sensor modules to accurately interpret

194 Open Challenges in the Formal Verification of Autonomous Driving

the surrounding and in-cabin environment in a timely manner. This presents a significant challenge
for automotive engineers, who must integrate TOPS-greedy3 software components onto power-efficient
boards, ideally featuring many-core data processors such as those from NVIDIA Orin [25] or AMD
XILINX [7, 1]. Figure 4 illustrates the target architecture of next-generation ECUs.

Figure 4: Generic architecture next-generation ECUs.

These systems employ multi-core host platforms, which include both Real-Time and non-Real-Time
core ISAs (Instruction Set Architectures), which define the set of instructions a processor can execute.
These are coupled with data-crunching architectures such as GPGPUs [25], reconfigurable arrays [1], or
application-specific circuitry to implement processing algorithms directly in hardware. Such a complex
architecture presents two main challenges.

Open Challenge 2: to devise efficient strategies for mapping software components onto the available
computing cores, exploiting redundancy and voting schemes to enhance overall system reliability.

Intuitively, most of the algorithms we employ can potentially run on various cores, and finding the
optimal mapping must be handled in the most efficient manner.

3 Formal Methods to the Rescue

In the previous section, we discussed a real-world case study in autonomous driving, highlighting chal-
lenges in integrating autonomous systems into road infrastructure and progressing towards L-5 capabil-
ities. Here, we explore how formal methods, particularly formal verification, address these challenges.
For a comprehensive overview of formal verification techniques in autonomous systems, see [21].

3.1 Open Challenge 1: Heterogeneous Composition of Untrustworthy Components

The first challenge involves managing components with varying levels of reliability. Some components
are open-source (white-box), allowing full access and modifications, while others are closed-source
(black-box), restricting access to their internal workings. To address this challenge, we propose ex-
ploiting formal verification techniques. Specifically, as outlined in [20], we employ formal verification
methods focusing on three key areas (called also recipes): verification of decision-making components,
AI-based components, and the enforcement of safety claims.

3They require a high number of Tera Operations Per Second (TOPS) to process complex algorithms, such as those used in
artificial intelligence and sensor fusion.

P. Burgio, A. Ferrando & M. Villani 195

To address this challenge, we propose the use of heterogeneous verification techniques [22, 4, 6,
26]. These techniques are based on the Assume-Guarantee principle, where each component of the
heterogeneous system is defined in terms of its assumptions (what the component expects from the
system to function correctly) and its guarantees (what the component provides to the system upon correct
execution). This methodology allows us to abstract away the implementation details of the various system
components, enabling the system designer to focus on their integration. As long as the assumptions and
guarantees of a component are documented and made available, it can be implemented as either a white-
box or black-box component. By employing these verification techniques, it is possible to formally verify
the proper integration of multiple components, potentially developed by different parties [22, 4, 6, 26].

In addition to Assume-Guarantee reasoning, model checking and formal methods can play a crucial
role in verifying component integration and ensuring system reliability [8, 3, 10, 16]. Component-Based
Software Engineering (CBSE) methodologies also provide a framework for assembling reliable systems
from diverse components [30]. Moreover, adhering to safety and certification standards, such as ISO
26262, is essential for validating the safety of automotive software systems [14].

To complete the verification process, we envision the use of Runtime Verification (RV) [2], a tech-
nique for monitoring and analysing the execution of a system at runtime to ensure it adheres to specified
properties. RV can check and enforce adherence to all assumptions and guarantees of the components.
As highlighted in [22], the Assume-Guarantee verification methodology focuses on verifying the result-
ing distributed system and the integration of its components. However, it relies on the assumption that the
assumptions and guarantees of each component (which may be black-boxes) are satisfied. To bridge this
gap and provide a robust verification technique suitable for the heterogeneous nature of the autonomous
driving domain, we need to employ additional verification methods to ensure the proper behaviour of
individual components. By confirming that each component behaves correctly, we can validate the entire
system’s integration and maintain its formal assurances.

It is important to note that the use of RV in this context is not entirely straightforward. The com-
ponents of an autonomous driving system may exhibit a certain level of uncertainty, meaning that the
information they provide may not always be precise. For example, as illustrated in Figure 3, the steps
that process the camera input to determine the driver’s level of drowsiness, distraction, fatigue, etc., are
inherently uncertain. These steps rely on Machine Learning models, which offer results with varying
levels of confidence. Additionally, this uncertainty is not limited to the current information provided but
may also encompass temporal aspects. For instance, a component might predict that the driver will fall
asleep in five minutes, with a given level of confidence. Due to these factors, it is unrealistic to rely solely
on standard RV approaches for verifying component conformance. Instead, techniques that incorporate
RV with uncertainty must be considered, such as those discussed in [34, 32, 11]. For a comprehensive
survey on this topic, the reader may refer to [31]. Additionally, the complexity of verifying machine
learning and AI components within autonomous systems presents unique challenges. Ensuring the relia-
bility of non-deterministic algorithms requires specialised verification techniques [23]. Addressing these
challenges will enable the development of robust, reliable, and safe autonomous driving systems.

3.2 Open Challenge 2: Efficient Strategies for Mapping the Distributed Computation

Addressing this challenge involves the use of formal verification techniques to ensure that the mapping
strategies are both efficient and reliable (since we are in a real-time system). Formal verification can
be employed to systematically verify that the software components are optimally distributed across the
computing cores, and that redundancy and voting mechanisms are correctly implemented to enhance
fault tolerance and system robustness. By formally verifying these strategies, we can guarantee the sys-

196 Open Challenges in the Formal Verification of Autonomous Driving

tem meets its performance and reliability requirements, even in the presence of component failures or
uncertainties. Indeed, fault-tolerant designs, which incorporate redundancy and voting schemes, play a
crucial role in mitigating the impact of component failures. The study presented in [9] provides valuable
insights into the application of formal verification techniques to validate the correctness of these designs.
By systematically verifying that fault-tolerant hardware meets specified reliability requirements, the au-
thors demonstrate the effectiveness of formal methods in identifying design errors that traditional testing
might overlook. Although [9] does not originate from the domain of autonomous driving, it provides a
valuable foundation for addressing the open challenge discussed here. The paper presents methodologies
for formal verification of fault-tolerant hardware designs, which are crucial for ensuring the reliability
and robustness of systems with heterogeneous components. By adapting these verification techniques,
we can systematically validate the correctness and reliability of the complex, integrated systems used in
autonomous vehicles.

Formal verification can be used to prove that the redundancy and voting mechanisms are correctly
implemented and that they effectively enhance system reliability; for example, in [28], the authors discuss
fault-tolerance techniques that include redundancy and efficient scheduling policies. Formal verification
ensures that these techniques are correctly applied, thereby enhancing the reliability of the system.

The work in [15] provides a comprehensive framework for the formal verification of distributed
Resource Management (RM) schemes in many-core systems using probabilistic model checking. This
research is particularly relevant to our work in the context of autonomous driving systems, which also
require efficient resource allocation across multiple computing cores. The authors demonstrate the use
of the PRISM model checker [18] to analyse and compare the performance and reliability of different
RM schemes. They emphasise the limitations of traditional simulation methods, which are inherently
exhaustive, and advocate for formal verification to ensure completeness and accuracy. In our study,
similar formal verification techniques can be applied to optimise the mapping of software components
onto the available computing cores in autonomous vehicles. By leveraging the probabilistic analysis
methods described in [18], we could systematically evaluate the robustness and performance efficiency
of our proposed resource management strategies in autonomous driving systems.

4 Limitations of Applying Formal Methods in Autonomous Systems

While Formal Methods provide a promising approach for integrating heterogeneous components and
efficient mapping in autonomous systems, there are significant practical limitations to their use. The
main challenges include the need for specialised knowledge, scalability issues, interpretability of results,
and difficulties in handling uncertain environments, as well as cost-benefit trade-offs in development.

One key limitation is the high barrier to entry, as FM often requires deep expertise in formal logic
and verification techniques. This specialised skill set is not commonly available within standard engi-
neering teams, and the process of specifying and verifying systems can be time-consuming. Despite the
development of new tools aimed at making FM more accessible, their capabilities are still evolving and
often require substantial refinement to meet industry needs.

Scalability and complexity also present major obstacles. Autonomous systems comprise numerous
interacting components, leading to a state space that grows exponentially, making exhaustive verification
computationally expensive or infeasible. Techniques like compositional reasoning and modular verifi-
cation attempt to manage this, but they require careful abstraction, which may oversimplify or overlook
critical behaviours. Moreover, model checking can be computationally intensive, particularly when ap-
plied to real-time or resource-constrained systems, and Assume-Guarantee reasoning hinges on accurate

P. Burgio, A. Ferrando & M. Villani 197

assumptions that are challenging to guarantee in practice.
Another practical challenge is the interpretability of verification results. Outputs from FM tools,

such as model checkers or runtime verifiers, may highlight specification violations without providing
clear solutions, requiring domain expertise to resolve. When AI and machine learning components are
involved, this issue is further complicated by their probabilistic and non-deterministic nature, making the
analysis of verification results particularly difficult.

The dynamic and uncertain environment in which autonomous systems operate adds further complex-
ity. Perception modules relying on sensor fusion and AI-based decision-making are context-dependent
and produce inherently uncertain outputs. Traditional FM approaches struggle to define precise specifi-
cations in such cases. Techniques that incorporate probabilistic reasoning or uncertainty-aware models
are being explored [34, 32, 11], but their practical applicability to real-world systems remains under
active research and development.

Integrating FM into existing development workflows also poses a significant challenge, as it requires
a careful cost-benefit analysis. The process of formally specifying, modeling, and verifying components
demands significant time and resources, potentially extending the development lifecycle. While FM
provides strong safety and reliability assurances – critical for autonomous vehicles – these benefits must
be weighed against their scalability and adaptability to system updates and changes.

Lastly, verifying AI and ML components remains an open challenge, as their non-deterministic be-
haviour does not fit within traditional FM frameworks. Specialised techniques are needed to manage
varying levels of confidence and probabilistic outputs in AI models [23]. Thus, hybrid approaches com-
bining formal verification with testing and validation are necessary for comprehensive system assurance.

In summary, FM offers a rigorous foundation for ensuring system reliability and safety in autonomous
vehicles, but practical limitations such as scalability, required expertise, result interpretation, and integra-
tion into dynamic environments must be addressed to enable their effective use in real-world applications.

5 Conclusions and Future Work

In this short paper, we present a real-world case study in the autonomous driving domain, identify key
open challenges, and discuss how formal verification techniques can address these issues.

We focus on two primary challenges hindering the achievement of L-5 automation in autonomous
vehicles. The first is the heterogeneous composition of black-box components, which affects system
reliability. The second challenge involves the proper mapping of computations within a highly dynamic,
real-time distributed system. We propose how existing formal verification techniques can be leveraged to
address these issues and explore their implications, along with potential adaptations for integration into
autonomous driving systems.

Our aim is to highlight these open challenges in the autonomous driving domain and demonstrate how
formal verification techniques can theoretically enhance system reliability. For future work, we intend
to build upon the insights reported here by applying some of the discussed techniques and methodolo-
gies to our case study, leveraging tools like those proposed in [12, 13] to further explore their practical
applicability and impact on system robustness.

Acknowledgements

The authors have received funding from ECSEL JU project AI4CSM (GA N.101007326) and the Chips
JU project ShapeFuture (GA N.101139996).

198 Open Challenges in the Formal Verification of Autonomous Driving

References

[1] AMD Xilinx (2022): Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. Available at https://www.
xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html. Accessed on October 2024.

[2] Ezio Bartocci, Yliès Falcone, Adrian Francalanza & Giles Reger (2018): Introduction to Runtime Verification.
In Ezio Bartocci & Yliès Falcone, editors: Lectures on Runtime Verification - Introductory and Advanced
Topics, Lecture Notes in Computer Science 10457, Springer, pp. 1–33, doi:10.1007/978-3-319-75632-5_1.

[3] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen & Joseph Sifakis (2010): Compositional verifi-
cation for component-based systems and application. IET Softw. 4(3), pp. 181–193, doi:10.1049/IET-
SEN.2009.0011.

[4] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste Raclet, Philipp
Reinkemeier, Alberto L. Sangiovanni-Vincentelli, Werner Damm, Thomas A. Henzinger & Kim G. Larsen
(2018): Contracts for System Design. Found. Trends Electron. Des. Autom. 12(2-3), pp. 124–400,
doi:10.1561/1000000053.

[5] Roberto Cavicchioli, Riccardo Martoglia & Micaela Verucchi (2022): A Novel Real-Time Edge-Cloud Big
Data Management and Analytics Framework for Smart Cities. Journal of Universal Computer Science 28(1),
p. 3 – 26, doi:10.3897/jucs.71645.

[6] Adrien Champion, Arie Gurfinkel, Temesghen Kahsai & Cesare Tinelli (2016): CoCoSpec: A Mode-Aware
Contract Language for Reactive Systems. In Rocco De Nicola & Eva Kühn, editors: Software Engineering
and Formal Methods - 14th International Conference, SEFM 2016, Held as Part of STAF 2016, Vienna,
Austria, July 4-8, 2016, Proceedings, Lecture Notes in Computer Science 9763, Springer, pp. 347–366,
doi:10.1007/978-3-319-41591-8_24.

[7] Kwon Neung Cho, Jeongeun Kim, Do Young Choi, Young Hyun Yoon, Jung Hwan Oh & Seung Eun Lee
(2021): An FPGA-Based ECU for Remote Reconfiguration in Automotive Systems. Micromachines 12,
doi:10.3390/mi12111309. Available at https://www.mdpi.com/2072-666X/12/11/1309.

[8] E. M. Clarke, O. Grumberg & D. A. Peled (1999): Model Checking. MIT Press.

[9] Luis Entrena, Antonio J. Sanchez-Clemente, Luis Ángel García-Astudillo, Marta Portela-García, Mario
García-Valderas, Almudena Lindoso & Roberto Sarmiento (2023): Formal Verification of Fault-Tolerant
Hardware Designs. IEEE Access 11, pp. 116127–116140, doi:10.1109/ACCESS.2023.3325616.

[10] Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius Bozga & Saddek Bensalem (2015): Runtime
verification of component-based systems in the BIP framework with formally-proved sound and complete
instrumentation. Softw. Syst. Model. 14(1), pp. 173–199, doi:10.1007/S10270-013-0323-Y.

[11] Angelo Ferrando & Vadim Malvone (2022): Runtime Verification with Imperfect Information Through In-
distinguishability Relations. In Bernd-Holger Schlingloff & Ming Chai, editors: Software Engineering and
Formal Methods - 20th International Conference, SEFM 2022, Berlin, Germany, September 26-30, 2022,
Proceedings, Lecture Notes in Computer Science 13550, Springer, pp. 335–351, doi:10.1007/978-3-031-
17108-6_21.

[12] Angelo Ferrando & Vadim Malvone (2024): Hands-on VITAMIN: A Compositional Tool for Model Check-
ing of Multi-Agent Systems. In Marco Alderighi, Matteo Baldoni, Cristina Baroglio, Roberto Micalizio
& Stefano Tedeschi, editors: Proceedings of the 25th Workshop "From Objects to Agents", Bard (Aosta),
Italy, July 8-10, 2024, CEUR Workshop Proceedings 3735, CEUR-WS.org, pp. 148–160. Available at
https://ceur-ws.org/Vol-3735/paper_12.pdf.

[13] Angelo Ferrando & Vadim Malvone (2024): VITAMIN: A Compositional Framework for Model Checking of
Multi-Agent Systems. CoRR abs/2403.02170, doi:10.48550/ARXIV.2403.02170. arXiv:2403.02170.

[14] International Organization for Standardization (2018): ISO 26262-1:2018. Road vehicles – Functional safety.

[15] Shafaq Iqtedar, Osman Hasan, Muhammad Shafique & Jörg Henkel (2016): Formal probabilistic analysis of
distributed resource management schemes in on-chip systems. In Luca Fanucci & Jürgen Teich, editors: 2016

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1049/IET-SEN.2009.0011
https://doi.org/10.1049/IET-SEN.2009.0011
https://doi.org/10.1561/1000000053
https://doi.org/10.3897/jucs.71645
https://doi.org/10.1007/978-3-319-41591-8_24
https://doi.org/10.3390/mi12111309
https://www.mdpi.com/2072-666X/12/11/1309
https://doi.org/10.1109/ACCESS.2023.3325616
https://doi.org/10.1007/S10270-013-0323-Y
https://doi.org/10.1007/978-3-031-17108-6_21
https://doi.org/10.1007/978-3-031-17108-6_21
https://ceur-ws.org/Vol-3735/paper_12.pdf
https://doi.org/10.48550/ARXIV.2403.02170
https://arxiv.org/abs/2403.02170

P. Burgio, A. Ferrando & M. Villani 199

Design, Automation & Test in Europe Conference & Exhibition, DATE 2016, Dresden, Germany, March 14-
18, 2016, IEEE, pp. 930–935. Available at https://ieeexplore.ieee.org/document/7459441/.

[16] Daniel Karlsson, Petru Eles & Zebo Peng (2007): Formal verification of component-based designs. Des.
Autom. Embed. Syst. 11(1), pp. 49–90, doi:10.1007/S10617-006-9723-3.

[17] Manzoor Ahmed Khan, Hesham El-Sayed, Sumbal Malik, Muhammad Talha Zia, Muhammad Jalal Khan,
Najla Alkaabi & Henry Alexander Ignatious (2023): Level-5 Autonomous Driving - Are We There Yet? A
Review of Research Literature. ACM Comput. Surv. 55(2), pp. 27:1–27:38, doi:10.1145/3485767.

[18] Marta Z. Kwiatkowska, Gethin Norman & David Parker (2002): PRISM: Probabilistic Symbolic Model
Checker. In Tony Field, Peter G. Harrison, Jeremy T. Bradley & Uli Harder, editors: Computer Perfor-
mance Evaluation, Modelling Techniques and Tools 12th International Conference, TOOLS 2002, London,
UK, April 14-17, 2002, Proceedings, Lecture Notes in Computer Science 2324, Springer, pp. 200–204,
doi:10.1007/3-540-46029-2_13.

[19] Songtao Liu, Di Huang & andYunhong Wang (2018): Receptive Field Block Net for Accurate and Fast Object
Detection. In: The European Conference on Computer Vision (ECCV), doi:10.1007/978-3-030-01252-6_24.

[20] Matt Luckcuck (2023): Using formal methods for autonomous systems: Five recipes for formal verification.
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 237(2), pp.
278–292, doi:10.1177/1748006X211034970.

[21] Matt Luckcuck, Marie Farrell, Louise A. Dennis, Clare Dixon & Michael Fisher (2019): Formal Specification
and Verification of Autonomous Robotic Systems: A Survey. ACM Comput. Surv. 52(5), pp. 100:1–100:41,
doi:10.1145/3342355.

[22] Matt Luckcuck, Marie Farrell, Angelo Ferrando, Rafael C. Cardoso, Louise A. Dennis & Michael Fisher
(2022): A Compositional Approach to Verifying Modular Robotic Systems. CoRR abs/2208.05507,
doi:10.48550/ARXIV.2208.05507. arXiv:2208.05507.

[23] G. Marcus & E. Davis (2019): Rebooting AI: Building Artificial Intelligence We Can Trust. Pantheon Books.

[24] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong & Jayant Kalagnanam (2023): A Time Series is Worth 64
Words: Long-term Forecasting with Transformers. In: The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023, OpenReview.net. Available at https://
openreview.net/forum?id=Jbdc0vTOcol.

[25] NVIDIA (2022): NVIDIA Jetson AGX Orin Series. Available at https://www.nvidia.com/content/
dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf.
Accessed: October 2024.

[26] Ivan Ruchkin, Joshua Sunshine, Grant Iraci, Bradley R. Schmerl & David Garlan (2018): IPL: An Integration
Property Language for Multi-model Cyber-physical Systems. In Klaus Havelund, Jan Peleska, Bill Roscoe
& Erik P. de Vink, editors: Formal Methods - 22nd International Symposium, FM 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings, Lecture Notes in
Computer Science 10951, Springer, pp. 165–184, doi:10.1007/978-3-319-95582-7_10.

[27] I SAE (2021): Taxonomy and definitions for terms related to driving automation systems for on-road motor
vehicles j3016 202104. Society of Automotive Engineers 41.

[28] Sepideh Safari, Mohsen Ansari, Heba Khdr, Pourya Gohari-Nazari, Sina Yari-Karin, Amir Yeganeh-Khaksar,
Shaahin Hessabi, Alireza Ejlali & Jörg Henkel (2022): A Survey of Fault-Tolerance Techniques for Embedded
Systems From the Perspective of Power, Energy, and Thermal Issues. IEEE Access 10, pp. 12229–12251,
doi:10.1109/ACCESS.2022.3144217.

[29] Society of Automotive Engineers (SAE) (2024): Sensor fusion expanding in step with advancing vehicle
sophistication. Available at https://www.sae.org/news/2024/02/sensor-fusion-trends. Accessed
on October 2024.

[30] Clemens A. Szyperski, Dominik Gruntz & Stephan Murer (2002): Component software - beyond object-
oriented programming, 2nd Edition. Addison-Wesley component software series, Addison-Wesley. Available
at https://www.worldcat.org/oclc/248041840.

https://ieeexplore.ieee.org/document/7459441/
https://doi.org/10.1007/S10617-006-9723-3
https://doi.org/10.1145/3485767
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-030-01252-6_24
https://doi.org/10.1177/1748006X211034970
https://doi.org/10.1145/3342355
https://doi.org/10.48550/ARXIV.2208.05507
https://arxiv.org/abs/2208.05507
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=Jbdc0vTOcol
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://doi.org/10.1007/978-3-319-95582-7_10
https://doi.org/10.1109/ACCESS.2022.3144217
https://www.sae.org/news/2024/02/sensor-fusion-trends
https://www.worldcat.org/oclc/248041840

200 Open Challenges in the Formal Verification of Autonomous Driving

[31] Rania Taleb, Sylvain Hallé & Raphaël Khoury (2023): Uncertainty in runtime verification: A survey. Com-
put. Sci. Rev. 50, p. 100594, doi:10.1016/J.COSREV.2023.100594.

[32] Rania Taleb, Raphaël Khoury & Sylvain Hallé (2021): Runtime Verification Under Access Restrictions. In
Simon Bliudze, Stefania Gnesi, Nico Plat & Laura Semini, editors: 9th IEEE/ACM International Conference
on Formal Methods in Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain, May 17-21, 2021,
IEEE, pp. 31–41, doi:10.1109/FORMALISE52586.2021.00010.

[33] Ovidiu Vermesan, Reiner John, Patrick Pype, Gerardo Daalderop, Kai Kriegel, Gerhard Mitic, Vincent
Lorentz, Roy Bahr, Hans Erik Sand, Steffen Bockrath & Stefan Waldhör (2021): Automotive Intelligence
Embedded in Electric Connected Autonomous and Shared Vehicles Technology for Sustainable Green Mobil-
ity. Frontiers in Future Transportation 2, doi:10.3389/ffutr.2021.688482.

[34] Shaohui Wang, Anaheed Ayoub, Oleg Sokolsky & Insup Lee (2011): Runtime Verification of Traces under
Recording Uncertainty. In Sarfraz Khurshid & Koushik Sen, editors: Runtime Verification - Second Inter-
national Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers,
Lecture Notes in Computer Science 7186, Springer, pp. 442–456, doi:10.1007/978-3-642-29860-8_35.

[35] Zhangjing Wang, Yu Wu & Qingqing Niu (2020): Multi-Sensor Fusion in Automated Driving: A Survey.
IEEE Access 8, pp. 2847–2868, doi:10.1109/ACCESS.2019.2962554.

https://doi.org/10.1016/J.COSREV.2023.100594
https://doi.org/10.1109/FORMALISE52586.2021.00010
https://doi.org/10.3389/ffutr.2021.688482
https://doi.org/10.1007/978-3-642-29860-8_35
https://doi.org/10.1109/ACCESS.2019.2962554

Matt Luckcuck and Mengwei Xu (Eds.):
Sixth International Workshop on Formal Methods
for Autonomous Systems (FMAS 2024)
EPTCS 411, 2024, pp. 201–218, doi:10.4204/EPTCS.411.14

Formalizing Stateful Behavior Trees

Serena S. Serbinowska
0000-0002-9259-1586
Vanderbilt University
Nashville TN, USA

serena.serbinowska@vanderbilt.edu

Preston Robinette
0000-0002-4906-2179
Vanderbilt University
Nashville TN, USA

preston.robinette@vanderbilt.edu

Gabor Karsai
0000-0001-7775-9099
Vanderbilt University
Nashville TN, USA

gabor.karsai@vanderbilt.edu

Taylor T. Johnson
0000-0001-8021-9923
Vanderbilt University
Nashville TN, USA

taylor.johnson@vanderbilt.edu

Behavior Trees (BTs) are high-level controllers that are useful in a variety of planning tasks and are
gaining traction in robotic mission planning. As they gain popularity in safety-critical domains, it
is important to formalize their syntax and semantics, as well as verify properties for them. In this
paper, we formalize a class of BTs we call Stateful Behavior Trees (SBTs) that have auxiliary variables
and operate in an environment that can change over time. SBTs have access to persistent shared
memory—often known as a blackboard—that keeps track of these auxiliary variables. We demonstrate
that SBTs are equivalent in computational power to Turing Machines when the blackboard can store
mathematical (unbounded) integers. We also identify conditions where SBTs have computational
power equivalent to finite state automata, specifically where the auxiliary variables are of finitary
types. We present a domain specific language (DSL) for writing SBTs and adapt the tool BehaVerify
for use with this DSL. This new DSL in BehaVerify supports interfacing with popular BT libraries in
Python, and also provides generation of Haskell code and nuXmv models, the latter of which are used
for model checking temporal logic specifications for the SBTs. We include examples and scalability
results where BehaVerify outperforms another verification tool (MoVe4BT) by a factor of 100.

1 Introduction

A Behavior Tree (BT) is a high-level controller that shares similarities with a hierarchical state machine,
yet distinguishes itself by offering greater flexibility and modularity in defining behaviors. At its core, a
BT organizes various behaviors within a tree structure, where leaf nodes encapsulate distinct behaviors
and higher-level nodes define the control flow. This hierarchical arrangement facilitates the design of
complex behaviors and is both scalable and adaptable to changing circumstances or requirements.

BTs were originally created for video game development and were devised to enhance the autonomy
and realism of Non-Playable Characters (NPCs). An NPC is an entity within a video game that operates
under the control of the game’s Artificial Intelligence (AI). BTs are useful for specifying such behaviors.
The explainability and versatility of BTs have also led to their widespread adoption in areas like robotics
and AI. Accordingly, BTs have been used for a variety of tasks, such as for controlling wheeled-legged
robots [10] and bipedal locomotion robots [16], in vision measurement systems of road users [24], and the
management swarms [18, 20]. Additional applications can be found in this survey [19].

As BTs continue to be adopted to address new and existing challenges in various domains, especially in
real-world, safety-critical domains such as robotics, it is increasingly important to formalize their structure
and behaviors. Such formalization is crucial for the verification of safety and liveness specifications,
ensuring the systems behave reliably and as intended under all conditions. Toward this end, we provide

http://dx.doi.org/10.4204/EPTCS.411.14

202 Formalizing Stateful Behavior Trees

a formalization we call Stateful Behavior Trees (SBTs). SBTs are a class of BTs that have auxiliary
variables and operate in an environment. The primary contributions of this work are the following.

1. We formalize a novel class of models we call SBTs that operate in an environment and have global
variables stored in persistent shared memory.

2. We demonstrate equivalence of SBTs to Turing Machines and Finite State Automata under syntactic
assumptions, which is of critical importance for model checking BTs.

3. We present a domain specific language (DSL) for writing SBTs implemented in an entirely reworked
software tool called BehaVerify [25].

4. We compare the entirely reworked BehaVerify [25] to MoVe4BT [23] in different verification
examples and outperform in each; in one, BehaVerify outperformed by a factor of over 100.

2 Related Work

In this section, we discuss relevant literature, focusing on the verification of BTs and domain specific
languages (DSLs) for BTs. We highlight the contributions of this paper within these contexts.

Our Prior Work In our prior work we presented BehaVerify [25]. That version of BehaVerify [25] took
as input a Py Trees [27] object and walked the tree to create a nuXmv [5] model. The created nuXmv [5]
model was incomplete; it had composite and decorator nodes, but the leaf nodes were ‘stubs’ for the user
to fill in. The same was true of variables. The new version of BehaVerify [25] utilizes a Domain Specific
Language (DSL). It takes as input a BT specified using the DSL and produces as output a nuXmv [5]
model, a Py Trees [27] implementation of the BT , or a Haskell implementation of the BT . Crucially, the
nuXmv [5] model is now complete; there are no ‘stubs’ for the user to fill in as all the variables and leaf
nodes are fully and completely generated.

Existing Behavior Tree Frameworks To our knowledge, there are no existing DSLs for BTs, but there
are several related libraries and frameworks. [15] lists a variety of different DSLs, but we believe these
would more correctly be classified as library implementations of BTs (e.g. BehaviorTree.CPP [1] and
Py Trees [27]). PROMISE [14] is a DSL inspired by BTs, but it is not a DSL for BTs. MoVe4BT [23],
which we compare against, uses an xml style for specifying BTs.

Verifying Behavior Trees There are several existing formal verification works for BTs. [2] utilizes SPOT
[12] for verification of BTs, but is limited to atomic propositions and boolean operators. Furthermore, the
examples provided seemed to take over an hour to run for very small trees. [6] does runtime verification
for a fragment of Timed Propositional Temporal Logic (TPTL), but not design-time model verification.
We compared against BTCompiler in our previous paper [25]. To the best of our knowledge, the only
other existing and available tools for model verification of BTs are ArcadeBT [17] and MoVe4BT [23].

ArcadeBT [17] is an automatic verification method for BTs that verifies safety properties by encoding
the BT using Linear Constrained Horn Clauses (LCHCs). To do this, ArcadeBT [17] includes an
implementation of BTs in C++ that can be automatically converted to LCHCs and verified using Z3 [22].
The tool has been evaluated on trees with up to 18 nodes. By comparison, our new DSL and implementation
in BehaVerify handles trees with 20000 nodes (see Section 7) and supports verification of linear temporal
logic (LTL) and computation tree logic (CTL) allowing for both liveness and safety to be verified.

S. Serbinowska, P. Robinette, G. Karsai, T. Johnson 203

MoVe4BT [23] allows for the verification of LTL specifications over nodes, but it cannot verify LTL
specifications written as predicates over variables. In contrast, the implementation of SBT verification in
BehaVerify developed in this paper supports LTL specifications over variables and nodes. MoVe4BT [23]
supports nodes with true parallelism, while BehaVerify does not. However, Py Trees [27], a popular
implementation of BTs that BehaVerify targets, does not support true parallelism. A more detailed
comparison of the tools can be found in Section 7, including experimental evaluations that demonstrate
BehaVerify is able to verify trees 100 times bigger than MoVe4BT [23] (20000 vs 200 nodes).

BTs with State and Theoretical Foundation for Verification While not universal, it is common for
BTs to interact with memory, referred to here as a blackboard. [4] compares pure BTs (BTs without a
blackboard) to unrestricted BTs (BTs with a finite blackboard). While the unrestricted BTs are strictly
more powerful than the pure BTs, [3] points out that this violates the ‘reactive’ nature of BTs ([3] states
“An architecture is reactive if its decision making depends only on the current state of the environment”).
Instead of using blackboards, the authors of [3] advocate for combining BTs with Stateful Components,
thereby preserving the benefits of BTs without loss of computational power. Regardless, practical major
implementations of BTs (such as Py Trees [27] and its Robotic Operating System (ROS) extension
PyTreesRos, BehaviorTree.cpp [1], and Unreal Engine [13]) all feature the blackboard. As such, there is a
practical need for a framework that addresses BTs with blackboards.

Other researchers take a different approach and treat BTs as deterministic functions with control
systems, as seen in the works by [29], [9], [28], [26], and [8], with [21] analyzing the potential of BTs as
alternatives to Controlled Hybrid Dynamical Systems. While these undoubtedly describe BTs with state,
there are crucial differences between this style and our formalization of SBTs. The issue at hand is that
‘state’ is an ambiguous term; it could refer to either memory or to the environment. For instance, it was not
assumed that pure BTs do not function in a persistent environment; rather, the assumption was that the BT
does not leverage its own persistent memory to augment its behavior. In essence, pure BTs are functional;
if presented with the same set of inputs, they will produce the same outputs. In this sense, the control
system approach utilizes pure BTs without memory; the state represents the environment rather than
memory. In contrast, SBTs consider both a blackboard and the environment. Moreover, the environment
in the control system model was fully under control of the BT . While this may be a reasonable assumption
in certain contexts, it makes it impossible to model uncertainty (such as the presence of wind for drones).
As such, our formalization allows for nondeterministic updates. This is extended to the environment,
which is allowed to change and develop according to user defined rules that can utilize nondeterminism.

Computational Power Finally, we consider the computational power of the resulting models. [7]
informally says BTs are the same as Finite State Machines (FSMs), but does not explicitly state any
assumptions, restrictions, etc. On the other hand, [4] creates a hierarchy of Teleo-reactive programs (TR),
Decision Trees (DT), BTs, and FSMs. They conclude that if you provide a TR, DT, or BT with access
to a finite blackboard that they can freely read from/write to, then they are equivalent to a FSM. Giving
a FSM access to a finite blackboard does not increase the computational power of the model, as this is
the equivalent of adding a finite number of additional states. We take this a step further and consider the
power of a SBT with an infinite blackboard (a blackboard capable of storing variables of unbounded size)
and conclude that such a model has the computational power of a Turing Machine.

204 Formalizing Stateful Behavior Trees

Node a

Node e

x :=(3∗x)+1
S

Node b

Node d

x :=x/2
S

Node c

(x%2=0)?S:F

Tick 1 1 1 1 1 1 1 2 2 2 2 2 2 2

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Active a b c b d b a a b c b a e a

Returns - - S - S S S - - F F - S S

x 6 6 6 6 3 3 3 3 3 3 3 3 10 10

Figure 1: A BT for the Collatz conjecture (hailstone sequence) consisting of a selector node (a), a sequence
node (b), a check (c), and two actions (d, e). We use the ternary operator i? j :k to mean if i then j else k.
We use % for modulo. Tick indicates the number of times the tree has been ticked. t is used to track the
number of times we have changed active nodes. Active is used to track where we are in the tree. Returns
indicates what the active node returns; a - indicates the node did not return. If a node is finished, then it
returns one of S, F, or R.

3 Behavior Tree Overview

We will utilize Figure 1 to provide an intuitive explanation of BTs. We will then provide additional details.
In Figure 1 we have a basic BT for calculating a hailstone sequence from a starting value. To calculate

such a sequence, start with a positive integer and use the following rules: if the number is even, divide by
2; otherwise, multiply by 3 and add 1. The root of the tree (a) is a selector node. As the name implies,
this node ‘selects’ a child. In this case, we want to select either ‘divide by 2’ or ‘multiply by 3 and add
1’. (b) is a sequence node; aptly named once more, this node executes a sequence, aborting if a failure is
encountered. Here our sequence is ‘number is even’ followed by ‘divide by 2’. (c) is a check node; it
checks if a condition is true or false. (d) and (e) are action nodes; they actually do stuff.

Our tree starts when it receives an external signal (a tick). This causes the root (a) to become active.
Execution will now, mostly, follow a depth first traversal (DFT). (a) hasn’t yet selected an option, so
it follows DFT and makes (b) active. (b) hasn’t completed the sequence or encountered a failure, so it
follows DFT and makes (c) active. (c) checks if x is even; since 6 is even it returns Success (S). (b) is
active again, but it still hasn’t completed a sequence or encountered a failure, so it follows DFT and makes
(d) active. (d) executes the action and halves the value of x and returns S. (b) is active again and the
sequence successfully finished, so S is returned. (a) is finally active again and it has selected an option, so
it returns S. The first tick is now over. The tree will now do nothing until it receives another tick. When it
does, (a) again becomes active, then (b), then (c). This time, however, x is not even, so (c) returns Failure
(F). Thus the sequence failed, so (b) returns F. (a) is now active again, but still hasn’t selected an option,
so (e) becomes active. (e) executes the action; x becomes 10 and S is returned. (a) has now selected an
option, so it returns S. The second tick is now over.

We now provide some more concrete requirements for BTs that were not covered by the example.
There must be a path from the root to every other node in the tree. Each node has exactly one parent, except
the root which has no parent. There are four possible states for nodes: Success (S), Failure (F), Running
(R), and Invalid (I). Each node becomes I when a new tick arrives. When a node finishes executing it
returns one of S, R, or F. Finally, there are three types of nodes: leaf, decorator, and composite.

Leaf Nodes Leaf nodes are nodes that do not have any children, and they either check a condition
(check node) or do an action (action node). Check nodes return S if the associated condition is true and F
otherwise; they do not do anything else. Action nodes can perform various actions. Furthermore, they are
allowed to return S, F, or R and can utilize conditions to determine what to return. In Figure 1, (c) is a
check node while (d) and (e) are action nodes.

S. Serbinowska, P. Robinette, G. Karsai, T. Johnson 205

Decorator Nodes A decorator node always has exactly one child. For our purposes, decorator nodes are
used to change the output of a child node without requiring the child node to be modified. Some common
decorator types are inverter, which swaps S and F, and R_Is_F which turns R into F.

Composite Nodes Composite nodes control the execution flow through a BT . There are three types of
composite nodes: selector, sequence, and parallel. The children are ordered and for convenience we will
use a left-to-right order.

1. Selector or fallback nodes, try to ‘select’ a child. A child is ‘selected’ if it returns S. Each child is
activated in order, from left to right, until one of them returns S or R. At that point, the selector
returns the same status. If every child returns F, the selector returns F.

2. Sequence nodes are identical to selector nodes, except S and F are swapped. While this is true and
useful to note, it is more practical to think of them in a more distinct manner. Sequence nodes are
used to execute a sequence to the end or a failure point. Each child is activated in order, from left to
right, until one of them returns F or R. At that point, the sequence returns the same status. If every
child returns S, then the sequence returns S.

3. Parallel nodes will not appear in this paper, but it is still important to mention them. As the name
implies, parallel nodes activate all their children simultaneously. We do not support this behavior
and neither does Py Trees [27], the Python implementation that BehaVerify targets. Instead, our
parallel nodes activate each child in order, one at a time, left to right. Unlike selector and sequence
nodes, there is no early termination condition for parallel nodes; each child will be activated. Once
all the children have returned, the parallel node consults a policy to determine what to return.

4 Formal Definition of Stateful Behavior Trees

Here we provide a formal definition of a SBT . In service of this task, we start by defining a tree. A rooted
tree is a triple (V,r,E) such that

• V is a finite set representing the vertices of the tree.

• r∈V is a vertex representing the root.

• Let V S be the set of all finite sequences vs = [v0,v1, ... ,vn] such that ∀ j,k ∈ Z s.t. (0 ≤ j,k ≤
n),(v j,vk ∈ V ∧ (v j = vk =⇒ j = k)). That is to say, the elements of the sequence are unique
vertices. If a and b are elements in a sequence, we will use <,>,≤,≥ to indicate relative order of
the sequence. For example a<b means that a appears before b in the sequence.

• E :V 7→V S is a function from vertices to sequences of vertices (the children). It must also meet the
following requirements

– ∀v∈V,r /∈E(v) (the root has no parent).

– ∀v,v′∈V,v ̸=v′ =⇒ E(v)∩E(v′)=∅. Each vertex has at most one parent.

– ∀v∈V,∃[v0,v1,...,vn] s.t. v0=r∧vn=v∧∀ j∈Z s.t. 0≤ j<n,v j+1∈E(v j).
There exists a path from the root to each vertex.

These conditions ensure that the tree is actually a tree.

206 Formalizing Stateful Behavior Trees

4.1 Stateful Behavior Tree

A SBT is a tuple (V,r,E,SSBT ,sSBT ,ΣSBT ,δSBT) such that

• (V,r,E) is a tree.

• SSBT is a set representing the possible states of the blackboard of SBT . We discuss the implications
of this set being infinite vs finite in Subsection 4.2.

• sSBT ∈SSBT is the initial state of the blackboard.

• ΣSBT is a set representing the possible inputs (the environment).

• ST is the set of all functions st :V 7→{S,R,F,I}. Each st∈ST is a function that maps each vertex to
a status. ST is not an element of the tuple; it arises from the elements.

• δSBT :V×ST×SSBT ×ΣSBT 7→2V×ST×SSBT . Here 2V×ST×SSBT is the power set of V×ST×SSBT . The
function maps to sets to allow for the expression of nondeterminism. This function must also obey
the following:

∀v,v′∈V,∀st,st ′∈ST,∀s,s′∈SSBT ,∀a∈ΣSBT ,(v′,st ′,s′)∈δSBT (v,st,s,a) =⇒

(v=r∧st(v) ̸= I =⇒ (v′=r∧s=s′∧(∀v′′∈V,st ′(v′′)= I)))∧
(v ̸=r =⇒∀v′′∈V,(v′′=v)∨st(v′′)=st ′(v′′))∧

(v′=v=r∨v′∈E(v)∨v∈E(v′))∧
(v∈E(v′) =⇒ st ′(v) ̸= I)∧

(v′∈E(v) =⇒ st(v)=st ′(v)=st(v′)= I)∧
(v′∈E(v) =⇒∀v′′∈E(v),st(v′′) ̸= I∨v′≤v′′)

We will refer to v as the active node and v′ as the next node while explaining the above. If the root
is active and not I, then we reset the status of the tree without changing anything else. In all other
cases, only the status of the active node can be updated. The next node is either the root, the child
of the active node, or the parent of the active node. If the next node is the parent of the active node,
then the next status of the active node will not be I. If the active node is the parent of the next node,
then the status of the active node and the next status of the active node are I and the status of the
next node is I. If the active node is the parent of the next node, then all children that appear earlier
in the sequence of active node’s children are not I. These rules ensure that we move through the
tree in the appropriate order.

Let [a0,a1,...] be a sequence of inputs from ΣSBT . Then a SBT trace is a sequence [(v0,st0,s0),(v1,st1,s1),...]
such that v0=r, s0=sSBT , ∀v∈V,st0(v)= I, and ∀ j∈Z, j≥0 =⇒ (v j+1,st j+1,s j+1)∈δSBT (v j,st j,s j,a j).

4.2 Translating Stateful Behavior Trees to Finite State Machines

Assuming that SBT has a finite alphabet set and a finite set of states, we will translate it into a nondeter-
ministic Finite State Machine (FSM). A FSM is a tuple (SFSM,sFSM,ΣFSM,δFSM).

• SFSM is a set of states and sFSM ∈SFSM is the initial state.

• ΣFSM is a set of possible inputs.

• δFSM :SFSM×ΣFSM 7→2SFSM is the transition function.

S. Serbinowska, P. Robinette, G. Karsai, T. Johnson 207

Seq

Update State

tape(h) :=sym′

stc :=st′

h :=h+dir
S

Check State

(sym= tape(h)∧
st=stc)?S:F

Figure 2: Assume that f (sym,st)=(sym′,st ′,dir), where f is the
transition function for the Turing Machine. Then this means that
if the Turing Machine is in state st and reads sym from the tape
head, it will write sym′ to the tape head, transition to st ′, and move
the tape head according to dir. The subtree captures this behavior.

Let [a0,a1,...] be a sequence of inputs from ΣFSM. Then a FSM trace is a sequence [s0,s1,...] such that
s0=sFSM and ∀ j∈Z, j≥0 =⇒ s j+1∈δFSM(s j,a j).

Let SBT = (V,r,E,SSBT ,sSBT ,ΣSBT ,δSBT). Assume SSBT and ΣSBT are finite. Furthermore, let ST
be the set of all functions st : V 7→ {S,R,F, I} (as defined earlier). Since V is a finite set, ST is a
finite set. Then V × SSBT × ST is finite as well. Let n be the number of elements in V × SSBT × ST .
Create a one-to-one mapping BT SM from V × SSBT × ST to the integer interval [0,1, ... ,n − 1]. Let
δFSM : [0,1,...,n−1]×ΣSBT 7→2[0,1,...,n−1] be defined such that

∀v∈V,∀s∈SSBT ,∀st∈ST,∀a∈ΣSBT ,∀(v′,s′,st ′)∈δSBT (v,s,st,a)

BT SM(v′,s′,st ′)∈δFSM(BT SM(v,s,st),a).

Then ([0,1, ... ,n − 1],BT SM(r,sSBT ,st0),ΣSBT) is an equivalent FSM, where st0 ∈ ST such that ∀v ∈
V,st0(v)= I. By translating the SBT to a FSM, we allow for verification with tools such as nuXmv [5].

Turing Complete In our translation, we assumed that SSBT was finite. If the blackboard can store one
or more infinite variables (e.g. true integers), then SSBT is not finite and SBTs are Turing Complete. To
see this, consider the following:

• While the ‘tape’ of a Turing Machine (T M) is infinite, the alphabet of symbols that can appear in
each cell is finite. Assume that there are n such symbols. Then the ‘tape’ can clearly be represented
as an integer in base n where each cell is represented by a digit.

• There are finitely many states that the Turing Machine can be in. Thus, these can be enumerated
and stored using a finite integer.

• The location of the ‘tape head’ can be stored using an unbounded integer.

Thus by storing two unbounded integers and a bounded integer in the blackboard, we can fully capture the
state and tape of a T M. All that remains is to reproduce the transition function of the T M. Because the
transition function is a function from the set of finite states and finite alphabet to the set of finite states,
finite alphabet, and a tape motion (Left, Right), it can easily be captured using a BT . For each possible
input to the transition function that has a defined output, create a 3-node subtree as seen in Figure 2.
Finally, add a selector root node with the 3-node subtrees as children.

Turing Incomplete A T M that only has access to a finite tape is not Turing Complete. Similarly, if we
restrict the blackboard to storing finitely many finite variables, the SBT ceases to be Turing Complete, as
seen by the fact that a translation to a FSM exists.

208 Formalizing Stateful Behavior Trees

5 DSL and Implementation Details

In this section, we provide details regarding the BehaVerify DSL used to specify SBTs. The grammar
presented in Grammar 1 differs from the actual DSL (see 1) for the following reasons:

1. Syntactic sugar. For example, the actual DSL allows for fixed size arrays. In practice, this
is equivalent to utilizing a large number of variables, but is more convenient (especially when
combined with some basic loop functions).

2. Visual divisions. The actual DSL uses far more pronounced visual dividers between sections
(e.g., a case result is written as ‘case { Code } result { Code, Code, . . . }’). This ensures that a
specification written using the implementation is readable. However, it also injects a great deal of
‘text’ into the grammar of the DSL, making it more difficult to parse here.

3. Other features. The actual DSL is still actively being developed for new features, many of which
are not relevant to this paper (e.g., hyperproperties). Such features were omitted.

4. Format. The actual DSL is written for use with textX [11] rather than with Backus-Naur Form.

⟨SBT⟩ ::= ⟨Enums⟩ ‘;’ ⟨Consts⟩ ‘;’ ⟨BLVars⟩ ‘;’ ⟨ENVVars⟩ ‘;’ ⟨Env⟩ ‘;’ ⟨Chks⟩ ‘;’ ⟨Acts⟩ ‘;’ ‘{’
⟨Node⟩ ‘}’ ‘;’ ⟨Specs⟩ ‘;’

⟨Status⟩ ::= ‘success’ | ‘running’ | ‘failure’

⟨Code⟩ ::= ⟨Int⟩ | ⟨Boolean⟩ | ⟨String⟩ | ⟨ID⟩ | ‘(’ ⟨Function⟩ ‘)’
#ID is used to reference variables, constants, etc

⟨CodeList⟩ ::= ⟨Code⟩ | ⟨Code⟩‘,’⟨CodeList⟩

⟨Function⟩ ::= ‘add’ ‘,’ ⟨Code⟩ ‘,’ ⟨CodeList⟩ | ‘not’ ‘,’ ⟨Code⟩ | . . .

⟨Enums⟩ ::= ε | ‘{’ ⟨String⟩ ‘}’ ⟨Enums⟩ #ε is the empty string

⟨Const⟩ ::= ⟨ID⟩ ‘:=’ ⟨Int⟩ | ⟨ID⟩ ‘:=’ ⟨Boolean⟩ | ⟨ID⟩ ‘:=’ ⟨String⟩

⟨Consts⟩ ::= ε | ‘{’ ⟨Const⟩ ‘}’ ⟨Consts⟩ #ε is the empty string

⟨Domain⟩ ::= ‘BOOLEAN’ | ‘[’ ⟨Code⟩ ‘,’ ⟨Code⟩ ‘]’ | ‘{’ ⟨CodeList⟩ ‘}’
#Code is used to allow constants and expressions

⟨CaseResult⟩ ::= ⟨Code⟩ ‘?’ ⟨CodeList⟩ #If Case (left), then Result (right).
#Choose nondeterministically if multiple Results

⟨Assign⟩ ::= ‘{’ ⟨CaseResult⟩ ‘}’ ⟨Assign⟩ | ‘{’ ⟨CodeList⟩ ‘}’
#Try each CaseResult until one works. Default to CodeList if all fail

⟨RCaseResult⟩ ::= ⟨Code⟩ ‘?’ ⟨Status⟩
#Same as CaseResult but for status. Deterministic.

⟨RAssign⟩ ::= ‘{’ ⟨RCaseResult⟩ ‘,’ ⟨RAssign⟩ ‘}’ | ‘{’ ⟨Status⟩ ‘}’

1https://github.com/verivital/behaverify/blob/main/metamodel/behaverify.tx

https://github.com/verivital/behaverify/blob/main/metamodel/behaverify.tx

S. Serbinowska, P. Robinette, G. Karsai, T. Johnson 209

⟨Statement⟩ ::= ⟨ID⟩ ‘,’ ⟨Assign⟩ #Update variable ID using Assign

⟨Statements⟩ ::= ε | ‘{’ ⟨Statement⟩ ‘}’ ⟨Statements⟩ #ε is the empty string

⟨Var⟩ ::= ⟨ID⟩ ‘,’ ⟨Domain⟩ ‘,’ ⟨Assign⟩

⟨BLVars⟩ ::= ε | ‘{’ ⟨Var⟩ ‘}’ ⟨BLVars⟩ #ε is the empty string

⟨ENVVars⟩ ::= ⟨BLVars⟩

⟨Envs⟩ ::= ⟨Statements⟩

⟨Chk⟩ ::= ⟨ID⟩ ‘,’ ⟨Code⟩ #Code must resolve to a Boolean
#ID is the NodeType. Allows for reusage.

⟨Chks⟩ ::= ε | ‘{’ ⟨Chk⟩ ‘}’ ⟨Chks⟩ #ε is the empty string

⟨Act⟩ ::= ⟨ID⟩ ‘,’ ⟨Statements⟩ ⟨RAssign⟩ ⟨Statements⟩
#ID is the NodeType. Allows for reusage.

⟨Acts⟩ ::= ε | ‘{’ ⟨Act⟩ ‘}’ ⟨Acts⟩ #ε is the empty string

⟨NodeBody⟩ ::= ‘sequence’ ‘{’ ⟨Children⟩ ‘}’ | ‘selector’ ‘{’ ⟨Children⟩ ‘}’
| ‘parallel one’ ‘{’ ⟨Children⟩ ‘}’ | ‘parallel all’ ‘{’ ⟨Children⟩ ‘}’
| ‘inverter’ ‘{’ ⟨Node⟩ ‘}’ | ‘X_is_Y’ ⟨Status⟩ ⟨Status⟩ ‘{’ ⟨Node⟩ ‘}’
| ⟨ID⟩ ‘:=’ ⟨ID⟩ #Name of leaf node (left) and NodeType (right)

⟨Node⟩ ::= ⟨ID⟩ ‘,’ ⟨NodeBody⟩

⟨Children⟩ ::= ‘{’ ⟨Node⟩ ‘}’ | ‘{’ ⟨Node⟩ ‘}’ ⟨Children⟩

⟨Spec⟩ ::= ‘LTL’ ‘{’ ⟨Code⟩ ‘}’ | ‘CTL’ ‘{’ ⟨Code⟩ ‘}’ | ‘Invar’ ‘{’ ⟨Code⟩ ‘}’

⟨Specs⟩ ::= ε | ⟨Spec⟩ ⟨Specs⟩ #ε is the empty string

Grammar 1: Representation of BehaVerify DSL with slight changes. We avoid defining basic types
such as Int or ID (a letter followed by letters or digits).

Note that both Grammar 1 and the actual DSL allow for nonsensical statements (e.g. (add, 1, 'dog')).
It is possible to create a grammar to exclude such cases, but the practical implementation proved both
cumbersome to maintain and slow in practice. Instead, we made a semantic checker for basic type
checking along with other cases not covered by the grammar structure (e.g. ensuring that identifiers are
unique). Listing 1 is an example of how Grammar 1 would be used to create the SBT in Figure 4.

Listing 1: A basic example of a SBT specified using Grammar 1
; ; / / no e n u m e r a t i o n s o r c o n s t a n t s
{x , [(neg , 1) , 5] , {0 , 1 } } ;
/ / ^ Bl v a r x , n o n d e t e r m i n i s t i c a l l y i n i t i a l i z e d t o 0 or 1
{y , {0 , 1} , { (eq , x , 0) ? 0} { 1 } } ;
/ / ^Env v a r y , i n i t i a l i z e d t o 0 i f x i s 0 , o t h e r w i s e 1
{y , { (eq , y , 0) ? 1} { 0 } } ; / / be tween t i c k s , swap y v a l u e
{cN , (geq , (add , x , y) , 3) } ;

210 Formalizing Stateful Behavior Trees

/ / ^ d e c l a r e check cN , c he ck s i f x+y i s more t h a n 3
{aN1 , {x , { (add , x , 1) } } , { s u c c e s s }}
/ / ^ d e c l a r e a c t i o n aN1 , adds 1 t o x (; on ly on l a s t a c t i o n)
{aN2 , {x , { (sub , y , 1) } } , { s u c c e s s } } ;
/ / ^ d e c l a r e a c t i o n aN2 , s e t x t o y−1
{a , s e q u e n c e {{ b := aN1}{ c := cN}{ d := aN2 } } } ;
/ / ^ t r e e s t r u c t u r e
; / / no s p e c i f i c a t i o n s

Specifications The user may write specifications for the SBT using Linear Temporal Logic (LTL),
Computational Tree Logic (CTL), or using Invariants over first order logic with standard connectives (and,
or, etc.). In the case of LTL and CTL, temporal functions may be used that are otherwise unavailable. We
provide a brief overview on LTL, as we use it in Section 7 to specify the desired outcomes and confirm
that they occur (or provide a violation).

LTL operates on traces (sequences of states). Let tr = [s0,s1,s2,...] be a trace for a FSM. When
considering such a trace, time t refers to st . In general, we are interested in whether an LTL formula is
true for the entire trace; this is the same as asking if the LTL formula is true at time 0. Below we provide a
minimal Grammar 2 and then an overview of the presented functions and some syntactic sugar.

⟨LTL⟩ :: = ⟨a⟩ #First Order Logic Formula
| ¬ ⟨LTL⟩ | ⟨LTL⟩ ∨ ⟨LTL⟩ #Boolean operators; in practice we allow more operators
| ⃝(⟨LTL⟩) | (⟨LTL⟩)U (⟨LTL⟩) #Temporal operators next and until

Grammar 2: Minimal LTL Grammar.

• ⃝(φ) (next) is true at time t if φ is true at time t+1.

• (φ1)U (φ2) (until) is true at time t if ∃t ′′ such that t ≤ t ′′ and φ2 is true at t ′′ and ∀t ′ such that
t≤ t ′< t ′′, φ1 is true at t ′.

• (φ1)M (φ2) (strong release) is true at time t if ∃t ′′ such that t≤ t ′′ and φ2 is true at t ′′ and ∀t ′ such
that t≤ t ′≤ t ′′, φ1 is true at t ′.

• □(φ) (globally) is true at time t if ∀t ′ such that t≤ t ′, φ is true at time t ′.

• ♢(φ) (finally) is true at time t if ∃t ′ such that t≤ t ′, φ is true at time t ′.

6 Fastforwarding Execution

Recall the example execution in Figure 1. The execution presented was intuitive and clear, but also
highlighted a clear drawback: it took 14 time steps to complete 2 ticks in a 5 node tree. This is not ideal
for verification. The total encoding, presented in our previous paper [25], was created to address this
issue. The experiments conducted in [25] clearly demonstrated the performance concerns associated with
stepping through nodes one at a time and demonstrated that the total encoding is an effective method
by which to mitigate this. However, that encoding required the user to edit the resulting model by hand:
an arduous task requiring not only expertise in nuXmv but in how BehaVerify encoded the model. We
have now addressed this issue (the user need only provide a specification file; everything else is handled
automatically) and will explain our solution below.

S. Serbinowska, P. Robinette, G. Karsai, T. Johnson 211

Fastforwarding and a review of the total encoding The goal is to handle the entire tick in one step,
rather than stepping through each node one at a time. To that end, the total encoding represented the
status of each node as a function of other nodes. This is shown in Figure 3. Both the encoding and the
process of automatically creating the total encoding were part of our prior work. However, our prior
work required the user to manually handle the creation of functions such as userB in nuXmv, along with
creating appropriate variable updates in nuXmv. These limitations were the result of:

1. A lack of a DSL. Our prior work handled existing Py Tree objects to create the tree. Unfortunately,
this was not conducive to specifying how leaf nodes behave.

2. The complexity of variables in a total encoding. Suppose the variable x is 0 at the start of the tick
and 1 at the end; what value of x does the function userC use?

This is where our new work comes into play. The user uses our DSL to specify leaf nodes, defining what
status they return and how they change variables, and BehaVerify takes that information and automatically
creates an improved total encoding allowing for the fastforwarding of execution, complete with variable
updates and functions for leaf nodes, no additional input from the user required. BehaVerify resolves the
issue with variables through the use of variable stages. Each variable has at least one stage. For each
possible update to a variable, an additional stage is created representing the variable after the update. Thus,
the number of stages a variable has is equal to the number of possible updates to that variable during a
single tick plus one. This can be seen in Figure 4. Each stage describes the value of a variable during a
portion of the tick; BehaVerify tracks which stage the variable is in and references the appropriate stage in
other functions, thus resolving the issue posed above.

Specification Writing We found that fastforwarding often simplifies specification writing. Consider
Figure 4. Suppose we want to write that during each tick, (d) returns S (note that this specification is false;
during the first tick (d) is I). With fastforwarding, this can be written as an invariant condition, namely
status(d)=S. If we are not using fastforwarding, we must write this using LTL

□(status(a)= I =⇒ ((status(a)= I)U (status(d)=S))).

This specification is far more complicated, because we now have to define the duration of a tick. In this
case, we accomplish this task by realizing that since (a) is the root, the tick ends when (a) returns. As
such, this specification says that it is always the case that if (a) is I, then (a) will stay I until (d) returns S.

Note that sequential properties can also be written with fastforwarding, though may require a little
more forethought. For instance, suppose we want to specify that (b) eventually returns S and until that

A

CB

Figure 3:
(L) 3 node tree.
(R) total encoding.
Note: x?y :z means
if x, then y, else z.

• act is a function that describes if a node is active or not during a given tick.
status is a function that describes the status of a node during a given tick.

• act(A)≜⊤, act(B)≜act(A), act(C)≜act(A)∧(status(B)=S)

• status(A)≜

I if ¬act(A)
F if status(B)=F∨status(C)=F
R if status(B)=R∨status(C)=R
S if status(B)=S∧status(C)=S

• Let userB be a function specified by the user that depends on variables and
outputs a status. Then status(B)≜act(B)?userB(vars) : I.

• Let userC be a function specified by the user that depends on variables and
outpus a status. Then status(C)≜act(C)?userC(vars) : I.

212 Formalizing Stateful Behavior Trees

Tick 1 1 1 1 1 2 2 2 2 2 2 2 2
t 0 1 2 3 4 5 6 7 8 9 10 11 12

Active a b a c a a b a c a d a a
Returns - S - F F - S - S - S S -

x 0 1 1 1 1 1 2 2 2 2 1 1 1
y 0 0 0 0 0 1 1 1 1 1 1 1 0

Initial
x0∈{0,1}

y0 :=x0=0?0:1

Between Ticks
y1 :=y0=0?1:0

a

d

x2 :=y0−1
S

c

x1+y0≥3?S:F

b

x1 :=x0+1
S

Tick 1 2
a F S
b S S
c F S
d I S
x0 0 1
x1 1 2
x2 1 1
y0 0 1
y1 1 0

Figure 4: Here x is a blackboard variable and y is an environment variable (an input).
The input changes between ticks, so y1 does not appear in the tree. The upper table
shows what stepping through the tree one node at a time would look like. The lower
table shows what fastforwarding looks like. The tree itself includes stage subscripts that
were added for readability; the user would normally create a tree without knowledge of
the stages, as BehaVerify handles stage creation. Note that when fastforwarding, the
value of x2 is set to that of x1 if (d) does not execute. Furthermore, note that the value
of x at the end of the tick (x2) is the value of x at the start of the next tick (x0).

happens, (c) does not returns S. Since (b) occurs before (c) in the tree, this specification can be written as
status(c) ̸=SU status(b)=S. The reverse, namely that (c) eventually returns S and until that happens (b)
does not return S, is slightly trickier. One might be tempted to write status(b) ̸=SU status(c)=S, but this
accepts the case where (b) and (c) both return S for the first time on the same tick. To account for this,
one should use M instead of U . In general, this example illustrates the point well; it is entirely possible
to describe sequential events when writing specifications for fastforwarded execution, but one must be
mindful of the structure of the tree. Finally, it is important to note that some sequential specifications are
trivially true, and their verification is not a major objective for BehaVerify. For instance, if (b) and (c) are
both active during a tick, then because (b) is before (c) in a depth first traversal of the tree, node (b) was
active before node (c). BehaVerify does generate a list of nodes in order of depth first traversal; if one
wishes to confirm such specifications, they may consult this order.

Optimizations An immediate concern raised by introducing stages is how this effects model size. After
all, if we went from storing a single variable with 10 states to storing 3 variables with 10 states each, then
the model is now spending 1000 states on this single variable. Fortunately, through optimizations, we can
generally avoid this issue. Specifically, if a variable update is deterministic, then the stage is a function of
the previous stage and doesn’t increase the model size. Furthermore, even if an update is nondeterministic,
we can sometimes avoid an increase in model size. Consider a very simple model with one variable, x,
which is updated nondeterministically twice per tick. Then, without optimizations, we would have three
stages x0, x1, and x2, and each stage would increase the size of the model. Here x0 is the value of x at the
start of the tick, x1 the value after the first update, and x2 the value after the second update. Note that the
next value of x0 is the current value of x2. This is true for all variables; the next value of stage 0 is equal to
the current value of the last stage. Furthermore, each other stage depends only on current values. In this
example, since nothing depends on the value of x2 other than the next value of x0, we can safely remove
the last stage and simply make it so the next value of x0 is the value that x2 would have been assigned. It
is important to note that if a user writes a specification that checks the value of x at the end of a tick, this
optimization would change the result; we detect such cases and automatically disable the optimization for
the variable. Furthermore, if another variable or node depends on the value of x2, this optimization would

S. Serbinowska, P. Robinette, G. Karsai, T. Johnson 213

FishSeq

Bigger

f :=min(999,
f +1)

S

SelectFish

f =4?

f =4?S:F

f =3?

f =3?S:F

f =2?

f =2?S:F

f =1?

f =1?S:F

f =0?

f =0?S:F

MoVeSel

MoVe4BTCheck

f =5?S:F

FishSeq

Bigger

f :=min(999,
f +1)

S

SelectFish

f =4?

f =4?S:F

f =3?

f =3?S:F

f =2?

f =2?S:F

f =1?

f =1?S:F

f =0?

f =0?S:F

Figure 5: Left is original, right is reworked for MoVe4BT. Number of nodes is counted using right tree
(10 in this case). f is the size of the ‘biggest fish’ so far. Each check returns S if the f is equal to its
number and F otherwise. If any check returns S, the left half of the tree returns S and f is incremented.

change the result and would therefore be disabled. In such cases, we can instead try to combine the 0
stage with the 1 stage using a similar process, with similar caveats. We can attempt this with the first and
last stage of each variable.

7 Verification Results for Stateful Behavior Trees

Here we present formal verification results and include comparisons to MoVe4BT [23] that demonstrate
BehaVerify scales significantly better in the size of the tree and overall state space. Additionally, we present
an interesting example demonstrating that BehaVerify is capable of finding complex counterexamples.
All results were generated on a Dell Inc. OptiPlex 7040 with 64 GiB of Memory with an Intel i7–6700
CPU @ 3.40GHz with 8 cores. The code used and instructions for reproducing the results are available 2.

We note here that BehaVerify takes a specification file written using the DSL and produces a nuXmv
model. The timing results for BehaVerify are based solely on the time it takes nuXmv to run on the
generated model. We do not include the time it takes for BehaVerify to generate the nuXmv model. This
is because we wanted to compare our encoding to that of the competing tool, MoVe4BT, and we felt this
was best demonstrated through a comparison of the model checking aspect. However, we also note that
the compile times do not meaningfully change the outcome of the results; compiling the simple robot
experiment takes fractions of a second even with a 30 by 30 grid and the same is true for the bigger fish
experiment with 1000 nodes.

Scaling Tree Experiment: Bigger Fish The bigger fish experiment (see Figure 5) scales the tree while
the blackboard and environment are unchanged. f is an integer between 0 and 1000 inclusive and is
initially 0. The upper limit was increased for the tests on 10000 and 20000 nodes. We intended to verify
♢(□(f =n)) (variable attains and maintains a value), but MoVe4BT does not support LTL specifications
over variables; you are restricted to checking the statuses of nodes. We modified the tree and created
a node (named MoVe4BTCheck) to check the value of the variable (see Figure 5 for details). We then
tried to verify ♢(□(MoVe4BTCheck=S)). In BehaVerify, this specification states that eventually, during
each tick the check returns S. However, because MoVe4BT does not utilize fastforwarding (see Section 6
for details), MoVe4BT interprets this to mean that eventually the check is always active, which is false.
We instead had to settle for verifying ♢(MoVe4BTCheck=S). This means that instead of verifying that
the variable attains the value and maintains it, MoVe4BT only verifies that it attains it. It is crucial to

2https://github.com/verivital/behaverify/tree/main/REPRODUCIBILITY/2024_FMAS_SBT

https://github.com/verivital/behaverify/tree/main/REPRODUCIBILITY/2024_FMAS_SBT

214 Formalizing Stateful Behavior Trees

Figure 6: Time to verify ♢(□(f =n)) (original) and
♢(f =n) (changed) where n is the number of nodes
minus 5. Starting at 250 nodes total, MoVe4BT ran
for over a minute, producing a blank screen with
no results; we interpret this as a timeout. We ran
BehaVerify with 10000 and 20000 nodes, taking
8.20 and 32.32 seconds. At 200 and 20000 nodes,
BehaVerify reported 196 and 19996 reachable states.
BehaVerify reports similar runtimes for both trees.

Move

TryD

Down

y−−
S

yBig?

y>yg?S:F

TryU

Up

y++
S

ySmall?

y<yg?S:F

TryL

Left

x−−
S

xBig?

x>xg?S:F

TryR

Right

x++
S

xSmall?

x<xg?S:F

Figure 7: Top right is the original, bottom is reworked
for MoVe4BT. The robot (blue) traces the shown path to
capture each flag (gray). The flags appear one at a time, in
order. The starting position of the robot is nondeterministic.
The location of each flag is also nondeterministic. (x,y) is
the robot location, (xg,yg) is the current flag location.

MoVe4BTSel

Seq

Move

TryD

Down

y−−
S

yBig?

y>yg?S:F

TryU

Up

y++
S

ySmall?

y<yg?S:F

TryL

Left

x−−
S

xBig?

x>xg?S:F

TryR

Right

x++
S

xSmall?

x<xg?S:F

EnvSel

EnvSeq

ySel

yn-1

(S∧yg :=n−1)

yn-2

(S∧yg :=n−2)
∨F

y0

(S∧yg :=0)
∨F

xSel

xn-1

(S∧xg :=n−1)

xn-2

(S∧xg :=n−2)
∨F

x0

(S∧xg :=0)
∨F

notGoal

x ̸=xg∨y ̸=yg?S:F

MoVe4BTCheck

RG=0?S:F

... ...

stress that BehaVerify is capable of verifying the original condition; in fact, we include timing results for
both the original and new condition. Figure 6 shows BehaVerify scales well with tree complexity, while
MoVe4BT does not. The specification is true. If the model is changed so it is false (by removing a leaf in
the chain), both tools produce a counterexample.

Scaling Blackboard Experiment: Simple Robot The simple robot experiment (see Figure 7) scales
the blackboard while the tree is constant. A robot on a n by n board tries to reach a goal. Once reached, a
new goal is generated. We verify that eventually 3 goals are reached. The experiment scales by increasing
n from 2 to 30 in increments of 4. We compare to MoVe4BT for this experiment. MoVe4BT has no

S. Serbinowska, P. Robinette, G. Karsai, T. Johnson 215

Figure 8: Time in seconds to verify that finally, there
are no remaining goals: ♢(RG = 0). Our tool ran on
both the original tree and the changed tree. Starting
at a 22 by 22 grid, MoVe4BT ran for over a minute
and then produced a blank screen; we interpreted this
as a timeout. At 18 by 18, BehaVerify reported about
219 reachable states. At 30 by 30, BehaVerify reported
about 222 reachable states.

Figure 9: The target (gray) is able to avoid the drone (blue) by circling a
tree (green) that obstructs vision but not movement. The target’s initial
position and movement are nondeterministic; the drone’s are not. Note
that this was a counterexample generated by nuXmv from the generated
model.

concept of an environment so the environment has to become part of the BT . Furthermore, MoVe4BT
cannot assign values to variables nondeterministically; instead MoVe4BT nodes can nondeterministically
choose one of S, R, F, and a single accompanying ‘program’ with updates. Thus to achieve the effect of
nondeterminism, we had to use a series of nodes. Each node could nondeterministically choose to change
the value or not. Thus the tree is more complex and also grows in size with the blackboard. Finally, we
had to introduce an extra node (called MoVe4BTCheck) so that MoVe4BT could verify the condition at
all. Refer to Figure 7 for a visual comparison of the trees. See Figure 8 for timing results.

Moving Target Experiment For this experiment, a drone is searching for a mobile target on a grid.
The drone has limited vision, which is further obscured by trees (the trees do not prevent movement).
We conduct two experiments for this setup: one where the target can move every 5 turns and one where
the target can move every 10 turns. When the target can move every 10 turns, we verify that eventually
the drone finds the target. When the target can move every 5 turns, we generate a counterexample (see
Figure 9). In both cases, the specification being verified is that we eventually ‘see’ the target. Given the
complexity of encoding the simple robot environment for MoVe4BT and the fact that this experiment is
more complex and nondeterministic, we did not attempt to recreate it in MoVe4BT.

Reasoning About Results We believe fastforwarding (see Section 6) is the main reason BehaVerify
outperforms MoVe4BT. Based on the traces that MoVe4BT produces, we believe that MoVe4BT jumps
from leaf to leaf during execution. This provides a performance boost over stepping through every
single node in the tree, but it is not enough. Consider the bigger fish experiment. With 20000 nodes,

216 Formalizing Stateful Behavior Trees

there are 19997 leaf nodes. During the first tick, 2 leaf nodes will be active. During the second tick,
there will be 3. Finally, there will be 19996 active leafs. Thus, MoVe4BT would have to step through
2+3+···+19996=199,930,005 leaf nodes resulting in a very long trace. By comparison, the BehaVerify
trace would have less than 20000 states. Next, we consider the simple robot experiment, where changing
the tree had a huge impact. This is because MoVe4BT does not support nondeterministic variable
assignments; as such we had to create a series of nondeterministic nodes. Thus instead of having one
nondeterministic update for x and one for y, we had n−1 for each. This caused the number of total states
to jump from 223 to 280 while the number of reachable states was relatively unchanged. The changed tree
is close to a worst case scenario for BehaVerify; many variable updates, all of them nondeterministic.
Even in this worst case scenario, BehaVerify significantly outperformed MoVe4BT.

8 Conclusions and Future Work

We introduced and formally defined SBTs and demonstrated they are Turing Complete under certain
assumptions. We presented a DSL for specifying SBTs implemented in BehaVerify. Our experiments
demonstrate BehaVerify can complete a verification task on a tree with 20000 nodes in the time that
MoVe4BT, a different verification tool, verifies a property on a tree with 200 nodes, demonstrating two
orders of magnitude scalability improvement. Potential future work includes improving our encoding of
array variables, developing a graphical user interface for the creation of SBTs, visualization of counterex-
amples provided by nuXmv, general performance improvements, and expanding support for unbounded
variable types in nuXmv for bounded model checking (BMC).

Acknowledgements

The material presented in this paper is based upon work supported by the National Science Foundation
(NSF) through grant numbers 2220426 and 2220401, the Defense Advanced Research Projects Agency
(DARPA) under contract number FA8750-23-C-0518, and the Air Force Office of Scientific Research
(AFOSR) under contract numbers FA9550-22-1-0019 and FA9550-23-1-0135. This paper was also
supported in part by a fellowship award under contract FA9550-21-F-0003 through the National Defense
Science and Engineering Graduate (NDSEG) Fellowship Program, sponsored by the Air Force Research
Laboratory (AFRL), the Office of Naval Research (ONR), and the Army Research Office (ARO). Any
opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of AFOSR, DARPA, or NSF.

References

[1] Auryn Robotics: Tutorial 02: Blackboard and Ports. Available at https://www.behaviortree.dev/docs/tutorial
-basics/tutorial_02_basic_ports.

[2] Oliver Biggar & Mohammad Zamani (2020): A Framework for Formal Verification of Behavior
Trees With Linear Temporal Logic. IEEE Robotics and Automation Letters 5(2), pp. 2341–2348,
doi:10.1109/LRA.2020.2970634.

[3] Oliver Biggar, Mohammad Zamani & Iman Shames (2020): A principled analysis of Behavior Trees and their
generalisations. CoRR abs/2008.11906, doi:10.48550/arXiv.2008.11906. arXiv:2008.11906.

https://www.behaviortree.dev/docs/tutorial-basics/tutorial_02_basic_ports
https://www.behaviortree.dev/docs/tutorial-basics/tutorial_02_basic_ports
https://doi.org/10.1109/LRA.2020.2970634
https://doi.org/10.48550/arXiv.2008.11906
https://arxiv.org/abs/2008.11906

S. Serbinowska, P. Robinette, G. Karsai, T. Johnson 217

[4] Oliver Biggar, Mohammad Zamani & Iman Shames (2021): An Expressiveness Hierarchy of Behav-
ior Trees and Related Architectures. IEEE Robotics and Automation Letters 6(3), pp. 5397–5404,
doi:10.1109/lra.2021.3074337.

[5] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea
Micheli, Sergio Mover, Marco Roveri & Stefano Tonetta (2014): The nuXmv Symbolic Model Checker. In:
CAV, pp. 334–342. Available at http://dx.doi.org/10.1007/978-3-319-08867-9_22.

[6] Michele Colledanchise, Giuseppe Cicala, Daniele E. Domenichelli, Lorenzo Natale & Armando Tacchella
(2021): Formalizing the Execution Context of Behavior Trees for Runtime Verification of Deliberative Policies.
In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE Press, pp.
9841–9848, doi:10.1109/IROS51168.2021.9636129.

[7] Michele Colledanchise & Petter Ögren (2014): How Behavior Trees modularize robustness and safety in hybrid
systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1482–1488,
doi:10.1109/IROS.2014.6942752.

[8] Michele Colledanchise & Petter Ögren (2016): How Behavior Trees generalize the Teleo-Reactive paradigm
and And-Or-Trees. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 424–429, doi:10.1109/IROS.2016.7759089.

[9] Michele Colledanchise & Petter Ögren (2017): How Behavior Trees Modularize Hybrid Control Systems
and Generalize Sequential Behavior Compositions, the Subsumption Architecture, and Decision Trees. IEEE
Transactions on Robotics 33(2), pp. 372–389, doi:10.1109/TRO.2016.2633567.

[10] Alessio De Luca, Luca Muratore & Nikos G. Tsagarakis (2023): Autonomous Navigation With Online
Replanning and Recovery Behaviors for Wheeled-Legged Robots Using Behavior Trees. IEEE Robotics and
Automation Letters 8(10), pp. 6803–6810, doi:10.1109/LRA.2023.3313052.

[11] I. Dejanović, R. Vaderna, G. Milosavljević & Z. Vuković (2017): TextX: A Python tool for Domain-Specific
Languages implementation. Knowledge-Based Systems 115, pp. 1–4, doi:10.1016/j.knosys.2016.10.023.
Available at https://www.sciencedirect.com/science/article/pii/S0950705116304178.

[12] Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexandre Gbaguidi Aisse,
Philipp Schlehuber-Caissier, Thomas Medioni, Antoine Martin, Jérôme Dubois, Clément Gillard & Henrich
Lauko (2022): From Spot 2.0 to Spot 2.10: What’s New? In: Proceedings of the 34th International Conference
on Computer Aided Verification (CAV’22), Lecture Notes in Computer Science 13372, Springer, pp. 174–187,
doi:10.1007/978-3-031-13188-2_9.

[13] EpicGames (2021): Behavior tree overview. Available at https://docs.unrealengine.com/4.27/en-US/Interactiv
eExperiences/\ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/.

[14] Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger & Tomas Bures (2020): PROMISE:
High-Level Mission Specification for Multiple Robots. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings, ICSE ’20, Association for Computing
Machinery, New York, NY, USA, pp. 5–8, doi:10.1145/3377812.3382143.

[15] Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Andrzej Wasowski & Swaib Dragule (2023): Behavior
Trees and State Machines in Robotics Applications. IEEE Transactions on Software Engineering, pp. 1–24,
doi:10.1109/TSE.2023.3269081.

[16] Zhaoyuan Gu, Nathan Boyd & Ye Zhao (2022): Reactive Locomotion Decision-Making and Robust Motion
Planning for Real-Time Perturbation Recovery. In: 2022 International Conference on Robotics and Automation
(ICRA), pp. 1896–1902, doi:10.1109/ICRA46639.2022.9812068.

[17] Thomas Henn, Marcus Völker, Stefan Kowalewski, Minh Trinh, Oliver Petrovic & Christian Brecher (2022):
Verification of Behavior Trees using Linear Constrained Horn Clauses. In Jan Friso Groote & Marieke
Huisman, editors: Formal Methods for Industrial Critical Systems, Springer International Publishing, Cham,
pp. 211–225, doi:10.1007/978-3-031-15008-1_14.

https://doi.org/10.1109/lra.2021.3074337
http://dx.doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1109/IROS51168.2021.9636129
https://doi.org/10.1109/IROS.2014.6942752
https://doi.org/10.1109/IROS.2016.7759089
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1109/LRA.2023.3313052
https://doi.org/10.1016/j.knosys.2016.10.023
https://www.sciencedirect.com/science/article/pii/S0950705116304178
https://doi.org/10.1007/978-3-031-13188-2_9
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/\ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/\ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/
https://doi.org/10.1145/3377812.3382143
https://doi.org/10.1109/TSE.2023.3269081
https://doi.org/10.1109/ICRA46639.2022.9812068
https://doi.org/10.1007/978-3-031-15008-1_14

218 Formalizing Stateful Behavior Trees

[18] Qian Huang, Xianming Ma, Kun Liu, Xinyi Ma & Weijian Pang (2022): Autonomous Reconnaissance Action
of Swarm Unmanned System Driven by Behavior Tree. In: 2022 IEEE International Conference on Unmanned
Systems (ICUS), pp. 1540–1544, doi:10.1109/ICUS55513.2022.9986758.

[19] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ögren & Christian Smith (2022): A survey of Behavior
Trees in robotics and AI. Robotics and Autonomous Systems 154, p. 104096, doi:10.1016/j.robot.2022.104096.

[20] Seungwoo Jeong, Taekwon Ga, Inhwan Jeong & Jongeun Choi (2022): Behavior Tree-Based Task Planning
for Multiple Mobile Robots using a Data Distribution Service. In: 2022 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM), pp. 1791–1798, doi:10.1109/AIM52237.2022.9863364.

[21] Alejandro Marzinotto, Michele Colledanchise, Christian Smith & Petter Ögren (2014): Towards a unified
behavior trees framework for robot control. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5420–5427, doi:10.1109/ICRA.2014.6907656.

[22] Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In C. R. Ramakrishnan &
Jakob Rehof, editors: Tools and Algorithms for the Construction and Analysis of Systems, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 337–340, doi:10.1007/978-3-540-78800-3_24.

[23] Huang Peishan, Hong Weijiang, Chen Zhenbang & Wang Ji: MoVe4BT: Modeling & Verification For BT.
Available at https://move4bt.github.io/. Accessed: 2023-12-14.

[24] Fangbo Qin, De Xu, Blake Hannaford & Tiantian Hao (2023): Object-Agnostic Vision Measurement Frame-
work Based on One-Shot Learning and Behavior Tree. IEEE Transactions on Cybernetics 53(8), pp. 5202–5215,
doi:10.1109/TCYB.2022.3181054.

[25] Serena S. Serbinowska & Taylor T. Johnson (2022): BehaVerify: Verifying Temporal Logic Specifications For
Behavior Trees. In: Software Engineering and Formal Methods: 20th International Conference, SEFM 2022,
Berlin, Germany, September 26-30, 2022, Proceedings, Springer-Verlag, Berlin, Heidelberg, pp. 307–323,
doi:10.1007/978-3-031-17108-6_19.

[26] Christopher I. Sprague & Petter Ögren (2022): Continuous-Time Behavior Trees as Discontinuous Dynamical
Systems. IEEE Control Systems Letters 6, pp. 1891–1896, doi:10.1109/LCSYS.2021.3134453.

[27] Daniel Stonier: PyTrees Module API. Available at https://py-trees.readthedocs.io/en/devel/modules.html.
Accessed: 2023-12-14.

[28] Petter Ögren (2020): Convergence Analysis of Hybrid Control Systems in the Form of Backward Chained
Behavior Trees. IEEE Robotics and Automation Letters 5(4), pp. 6073–6080, doi:10.1109/LRA.2020.3010747.

[29] Petter Ögren & Christopher I. Sprague (2022): Behavior Trees in Robot Control Systems. Annual Review of
Control, Robotics, and Autonomous Systems 5(Volume 5, 2022), pp. 81–107, doi:10.1146/annurev-control-
042920-095314.

https://doi.org/10.1109/ICUS55513.2022.9986758
https://doi.org/10.1016/j.robot.2022.104096
https://doi.org/10.1109/AIM52237.2022.9863364
https://doi.org/10.1109/ICRA.2014.6907656
https://doi.org/10.1007/978-3-540-78800-3_24
https://move4bt.github.io/
https://doi.org/10.1109/TCYB.2022.3181054
https://doi.org/10.1007/978-3-031-17108-6_19
https://doi.org/10.1109/LCSYS.2021.3134453
https://py-trees.readthedocs.io/en/devel/modules.html
https://doi.org/10.1109/LRA.2020.3010747
https://doi.org/10.1146/annurev-control-042920-095314
https://doi.org/10.1146/annurev-control-042920-095314

	Introduction
	From Event-B to Hybrid Event-B
	Hybrid Event-B Refinement
	Multiple Hybrid Event-B Machines
	A Small Incident Response Case Study
	Verification of Hybrid Event-B Models
	Conclusions
	Appendix: Contexts, Interfaces and Instantiated Machine Outlines
	1 Introduction
	2 Lince's Foundations Extended with the Possibility of Failure
	3 An Improved Simulator for Hybrid Programs
	4 An Improved Visualiser for Hybrid Programs
	5 Lince at Work: a Showcase of the Overall List of Improvements
	6 Conclusion and Future Work
	Introduction
	Preliminaries
	Runtime Verification
	ROSMonitoring
	Instrumentation
	Oracle
	ROS monitor

	Motivating example
	ROSMonitoring 2.0
	Service extension
	Ordered topics extension

	Experimental evaluation
	Related Work
	Conclusions and Future Work
	Introduction
	Introduction
	Related Work
	Related Work
	Preliminaries
	Preliminaries
	Linear Temporal Logic
	Linear Temporal Logic
	Buchi Automata
	Buchi Automata
	Behavior Tree Overview
	Behavior Tree Overview
	Leaf Nodes
	Decorator Nodes
	Composite Nodes

	Formal Definition of Behavior Trees
	Formal Definition of Behavior Trees

	Problem Statement and Methodology
	Problem Statement and Methodology
	Formal Definition of Behavior Trees with Monitors
	Formal Definition of Behavior Trees with Monitors
	Problem Statement
	Problem Statement
	BehaVerify
	BehaVerify
	Monitors

	Generating Implementations
	Generating Implementations
	Command Creation
	Monitor

	nuXmv Model Generation
	nuXmv Model Generation

	Monitor Comparison
	Monitor Comparison
	Scenarios
	Scenarios
	Motivation
	Motivation
	Results
	Results
	Analysis
	Analysis
	Timing
	File Size
	Correctness

	NuRV
	NuRV

	Design Time Verification
	Design Time Verification
	Conclusions and Future Work
	Conclusions and Future Work
	Introduction
	Related Work
	Motivating Example
	RV4Chatbot: The Foundation
	RV4Rasa
	Rasa
	The RV4Rasa instantiation of RV4Chatbot
	Challenges in the RV4Rasa design and development
	Source Code

	RV4Dialogflow
	Dialogflow
	The RV4Dialogflow instantiation of RV4Chatbot
	Challenges in the RV4Dialogflow design and development
	Source Code

	Experiments
	Runtime Monitoring Language
	Factory Automation Domain properties
	Performance Evaluation

	Conclusions and Future Work
	Introduction
	Formal Verification and Model Checking
	IntelliWelder and Synchronous Welding
	System Architecture
	Existing URScript code
	Requirements
	System-Wide Requirements
	Model Requirements

	Modelling in RoboChart
	Abstractions and Simplifications
	RoboChart Model

	Model Checking
	Verification of Selected Properties
	Results from Checking the Assertions
	Implications and Real-Life System Improvements

	Conclusion and Further Work
	Introduction
	Preliminaries
	Developing Controllers by Example of the Cleaning Scenario
	Spatio-temporal Abstraction
	Quantitative and Stochastic Abstraction
	Choice of the Reward Function
	Cooperation between Multiple Robots
	Synthesising Strategies (under Uncertainty) for the Cleaning Scenario
	Creating an Induced Model from the Strategy
	Strategy Verification via Verifying the Induced Model

	Experimental Evaluation
	RQ1: Can we synthesise reasonable strategies for multiple robots?
	RQ2: How do model parameters influence the synthesis of recurrent strategies?

	Discussion
	Conclusion
	Introduction
	The Verification Target: the Fast Marching Algorithm
	First Step: Solving the Eikonal Equation
	Second Step: Finding an Optimal Path by a Backward Propagation
	Applications of These Algorithms

	The Verification Approach and Results
	A Common Instrumentation Mechanism for Different Verifications
	Results of the Approach based on Dynamic Analyses
	Evaluating the Impact of Perturbations on the Control Flow and the Resulting Path
	Ongoing Work on Formal Verification for Thin Numerical Scenarios

	Conclusion
	Introduction
	Related Works
	Cross-Layer Verification
	Introduction to RobotLanguage
	Modeling Formalism
	Executive Layer Modeling
	Multi-Layer Modeling
	A Method for Cross-layer Verification

	Conclusion
	Introduction and Motivation
	Linking Formal Model, AI, and Certified Control
	Case Study: AI-based Signal Detection
	Implementation
	Experiments and First Results
	Challenges

	Related Work
	Conclusion and Outlook
	Introduction
	Preliminary
	Models of AD Vehicles and Environment
	Motion Planning Methods and Visualisation
	Exhaustive-Search-Based Synthesis (ESS)
	Reinforcement-Learning-Based Synthesis (RLS)
	Unsolved Problems in CommonUppRoad

	New Model Templates of AD Vehicles and Environment
	Model Templates of AD Vehicles
	Numerical Integration
	Model Template of Moving Obstacles

	Model Checking for AD Reinforcement Learning
	Pre-analysis of AD Vehicle and Scenario Models
	Model Checking Facilities Multi-Objective Learning
	Reward Automata

	Experiments
	Related Work
	Conclusion
	1 Introduction and Motivation
	2 Related Work
	3 Case Study: A Verified Neural Network for Autonomous Navigation
	3.1 Experimental Setup
	3.2 Data Collection
	3.3 Neural Network Architecture
	3.4 Verification Properties

	4 Results and Observations
	4.1 Performance
	4.2 Verification of Robustness
	4.3 Lessons Learned

	5 Conclusion
	Introduction
	Autonomous Driving Case Study
	Formal Methods to the Rescue
	Open Challenge 1: Heterogeneous Composition of Untrustworthy Components
	Open Challenge 2: Efficient Strategies for Mapping the Distributed Computation

	Limitations of Applying Formal Methods in Autonomous Systems
	Conclusions and Future Work
	Introduction
	Introduction
	Related Work
	Related Work
	Our Prior Work
	Existing Behavior Tree Frameworks
	Verifying Behavior Trees
	BTs with State and Theoretical Foundation for Verification
	Computational Power

	Behavior Tree Overview
	Behavior Tree Overview
	Leaf Nodes
	Decorator Nodes
	Composite Nodes

	Formal Definition of Stateful Behavior Trees
	Formal Definition of Stateful Behavior Trees
	Stateful Behavior Tree
	Stateful Behavior Tree
	Translating Stateful Behavior Trees to Finite State Machines
	Translating Stateful Behavior Trees to Finite State Machines
	Turing Complete
	Turing Incomplete

	DSL and Implementation Details
	DSL and Implementation Details
	Specifications

	Fastforwarding Execution
	Fastforwarding Execution
	Fastforwarding and a review of the total encoding
	Specification Writing
	Optimizations

	Verification Results for Stateful Behavior Trees
	Verification Results for Stateful Behavior Trees
	Scaling Tree Experiment: Bigger Fish
	Scaling Blackboard Experiment: Simple Robot
	Moving Target Experiment
	Reasoning About Results

	Conclusions and Future Work
	Conclusions and Future Work

