
EPTCS 412

Proceedings of the

Combined 31st International Workshop on

Expressiveness in Concurrency

and 21st Workshop on

Structural Operational Semantics

Calgary, Canada, 9th September 2024

Edited by: Georgiana Caltais and Cinzia Di Giusto

Published: 22nd November 2024

DOI: 10.4204/EPTCS.412

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . ii

Georgiana Caltais and Cinzia Di Giusto

Invited Presentation: Reverse My Computation? But Why? . 1

Clément Aubert

Functional Array Programming in an Extended Pi-Calculus . 2

Hans Hüttel, Lars Jensen, Chris Oliver Paulsen and Julian Teule

Synchronisability in Mailbox Communication . 19

Cinzia Di Giusto, Laetitia Laversa and Kirstin Peters

Semantics for Linear-time Temporal Logic with Finite Observations . 35

Rayhana Amjad, Rob van Glabbeek and Liam O’Connor

Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings . . 51

Marco Bernardo, Andrea Esposito and Claudio A. Mezzina

One Energy Game for the Spectrum between Branching Bisimilarity and Weak Trace Semantics . . . 71

Benjamin Bisping and David N. Jansen

G. Caltais and C. Di Giusto (Eds.): EXPRESS/SOS 2024

EPTCS 412, 2024, pp. ii–iii, doi:10.4204/EPTCS.412.0

© G. Caltais & C. Di Giusto

This work is licensed under the

Creative Commons Attribution License.

Preface

Georgiana Caltais

University of Twente, The Netherlands

Cinzia Di Giusto

Université Côte d’Azur, France, CNRS, France

This volume contains the proceedings of EXPRESS/SOS 2024, the Combined 31th International

Workshop on Expressiveness in Concurrency (EXPRESS) and the 21th Workshop on Structural Opera-

tional Semantics (SOS).

The first edition of EXPRESS/SOS was held in 2012, when the EXPRESS and SOS communities

decided to organise an annual combined workshop bringing together researchers interested in the formal

semantics of systems and programming concepts, and in the expressiveness of computational models.

Since then, EXPRESS/SOS was held as one of the affiliated workshops of the International Conference

on Concurrency Theory (CONCUR). Following this tradition, EXPRESS/SOS 2024 was held affiliated

to CONCUR 2024, as part of CONFEST 2024, in Calgary, Canada.

The topics of interest for the EXPRESS/SOS workshop include:

• expressiveness and rigorous comparisons between models of computation;

• expressiveness and rigorous comparisons between programming languages and models;

• logics for concurrency; analysis techniques for concurrent systems;

• comparisons between structural operational semantics and other formal semantic approaches;

• applications and case studies of structural operational semantics;

• software tools that automate, or are based on, structural operational semantics.

This volume contains revised versions of the 5 full papers, selected by the Program Committee, as

well as the abstract of the invited presentation by Clément Aubert.

We would like to thank the authors of the submitted papers, the invited speaker, the members of the

program committee, and their subreviewers for their contribution to both the meeting and this volume.

We also thank the CONFEST 2024 organising committees for hosting the workshop. Finally, we would

like to thank our EPTCS editor Rob van Glabbeek for publishing these proceedings and his help during

the preparation.

Georgiana Caltais and Cinzia Di Giusto,

October 2024

Program Committee

• Elli Anastasiadi, Uppsala University, Sweden

• Matteo Cimini, University of Massachusetts Lowell, USA

• Wan Fokkink, Vrije Universiteit Amsterdam, The Netherlands

• Adrian Francalanza, University of Malta

• Fatemeh Ghassemi, University of Tehran, Iran

• Lorenzo Gheri, University of Liverpool

http://dx.doi.org/10.4204/EPTCS.412.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

G. Caltais & C. Di Giusto iii

• Eva Graversen, University of Southern Denmark, Denmark

• Jean Krivine, CNRS, Paris, France

• Sergueı̈ Lenglet, Université de Lorraine

• Doriana Medic, University of Turin, Italy

• Maurizio Murgia, Gran Sasso Science Institute

• António Ravara, Universidade NOVA de Lisboa, Portugal

• Marjan Sirjani, Malardalen University, Sweden

• Felix Stutz, University of Luxembourg, Luxembourg

• Emilio Tuosto, Gran Sasso Science Institute, Italy

• Frank Valencia LIX, Ecole Polytechnique, France

• Daniele Varacca, LACL - Université Paris Est Créteil, France

• Gianluigi Zavattaro, Department of Computer Science and Engineering - University of Bologna,

Italy

G. Caltais and C. Di Giusto (Eds.): EXPRESS/SOS 2024

EPTCS 412, 2024, pp. 1–1, doi:10.4204/EPTCS.412.1

© C. Aubert

This work is licensed under the

Creative Commons Attribution License.

Reverse My Computation? But Why?

Clément Aubert

School of Computer and Cyber Sciences, Augusta University, Georgia, USA

A typical computer user knows the difference between what can be undone on a computer, and what

cannot. They may be familiar with the “undo” feature of text editors but understand the impossibility

of recovering an unsaved document after an emergency shutdown. Creating programs guaranteeing

that any action can be undone requires to design and implement reversible programming languages.

While such languages come with interesting built-in security features (because any past action can

be investigated), they also raise challenges when it comes to concurrency. Indeed, undoing an ac-

tion that involved synchronization between multiple actors requires all actors to agree to undo said

action. Process algebras offer an interesting frame to study reversible computation, and reciprocally.

Enriching process algebras such as CCS with memory, identifiers or keys, allowed to represent re-

versible computation, and in turn helped gained a finer understanding of causality, bisimulations,

and other “true concurrency” notions. This talk offers to briefly motivate the interests of reversible

computation, and to discuss the new lights it shed on process algebras.

http://dx.doi.org/10.4204/EPTCS.412.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

G. Caltais and C. Di Giusto (Eds.): EXPRESS/SOS 2024

EPTCS 412, 2024, pp. 2–18, doi:10.4204/EPTCS.412.2

© H. Hüttel, L. Jensen, C.O. Paulsen & J. Teule

This work is licensed under the

Creative Commons Attribution License.

Functional Array Programming in an Extended Pi-Calculus

Hans Hüttel

Department of Computer Science, University of Copenhagen, Denmark (hans.huttel@di.ku.dk)

Lars Jensen

Department of Computer Science, Aalborg University, Denmark (larsdjand@gmail.com)

Chris Oliver Paulsen

Department of Computer Science, Aalborg University, Denmark (chris@coppm.xyz)

Julian Teule

Department of Computer Science, Aalborg University, Denmark (julian@jtle.dk)

We study the data-parallel language BUTF, inspired by the FUTHARK language for array program-

ming. We give a translation of BUTF into a version of the π-calculus with broadcasting and labeled

names. The translation is both complete and sound. Moreover, we propose a cost model by annotat-

ing translated BUTF processes. This is used for a complexity analysis of the translation.

1 Introduction

The FUTHARK programming language is a functional language whose goal is to abstract parallel array

operations by means of utilizing second order array combinators, such as map and reduce [10]. The

FUTHARK compiler then efficiently translates code into optimized code for the targeted hardware.

Parallel hardware, such as graphics processing units (GPUs), does not support arbitrary nesting of

parallel operations, nor arbitrarily large problem sizes, and the FUTHARK compiler therefore produces a

program for which the outermost levels of nested operations of a program are executed in parallel.

The GPU programs produced by the FUTHARK compiler are therefore limited by the physical con-

straints of the hardware in question, and it would thus be interesting to analyze FUTHARK programs in

the setting of an underlying parallel language without these limitations.

It is known that there exist sound translations of the λ -calculus and different reduction strategies

into the simple π-calculus [15, 19]. Milner was the first to provide such a translation [13] and Sangiorgi

extended his work [16, 17, 18]. These encodings identify the essence of how to implement a functional

programming language on a parallel architecture using references in the form of name-passing and the

ability to express arbitrary levels of nested concurrency and parallelism.

In this paper we use this work as the inspiration for a translation of a functional array programming

language which is a subset of FUTHARK into an extended π-calculus, Eπ . In Eπ we extend the setting

to one containing structured data [2, 5] and broadcasting, as these are central to the protocol used by

FUTHARK.

Our focus is on how to encode the array structure and a subset of second-order array operators

from FUTHARK into Eπ . For the proof of operational correspondence we use a coinductive approach

which lends itself well to expressing the correctness of our encoding. Our approach is inspired by that

of Amadio et al. [3] in that we distinguish between the “important” and “administrative” computation

steps. This also allows us to compare the cost of the translation to that of FUTHARK constructs.

http://dx.doi.org/10.4204/EPTCS.412.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

H. Hüttel, L. Jensen, C.O. Paulsen & J. Teule 3

2 A language for array programming

First we introduce BUTF and the process calculus Eπ that will be the target language of our translation.

2.1 Basic Untyped FUTHARK

Basic Untyped FUTHARK (BUTF) deals only with functional array computation and omits the module

system of FUTHARK. BUTF is thus a simple λ−calculus with arrays, tuples, and binary functions.

2.1.1 Expressions in BUTF

The formation rules of BUTF expressions are shown below.

e ::= b | x | [e1, . . . ,en] | e1[e2] | λx.e1 | e1 e2 | (e1, . . . ,en) | if e1 then e2 else e3

b ::= n | map | iota | size | ⊙
(1)

BUTF makes use of prefix application e1 e2. Constants are denoted as b, and are integer constants,

arithmetic operations ⊙ and the array operations described in Section 2.1.2. Arrays are denoted by

[e1, . . . ,en] and tuples are denoted by (e1, . . . ,en). The expression e1[e2] will evaluate to the place in the

array e1 whose index is the value of e2. To express a unary tuple, we use the notation (x,), while a empty

tuple is denoted as ().
BUTF is a call-by-value language whose values v ∈V are constants, function symbols and arrays and

tuples that contain values only.

v ::= b | [v1, . . .vn] | (v1, . . . ,vn)

The semantics of BUTF is given by the reduction relation →, and reductions are of the form e → e′.

Equation (2) shows the semantics of application is beta-reduction.

(λx.e) v → e{x 7→ v}
(2)

Arrays contain elements that can be arbitrary expressions. Equation (3) shows how each subexpression

in an array can take a reduction step. Fully evaluated expressions can be indexes with the index operator.

ei → e′i 1 ≤ i ≤ n

[e1, . . . ,ei, . . . ,en]→ [e1, . . . ,e
′
i, . . . ,en]

0 ≤ i ≤ n−1

[v1, . . . ,vn][i]→ vi+1

(3)

Lastly, we have the conditional structure that allows branching depending on the result of e1.

v 6= 0

if v then e2 else e3 → e2

v = 0

if v then e2 else e3 → e3
(4)

2.1.2 Array Operations

BUTF uses the array operations size, iota and map. These have been chosen since they can be used to

define other common array operators such as concat, reduce, and scan [12]. This allows us to simplify

the translation and the proof of its correctness.

The intended behaviour of the function constants is as follows. size receives a handle of an array and

returns its element count and iota creates an array of the size of its parameter with values equal to the

values’ index. The map function allows for applying a function to each element in an array.

4 Functional Array Programming in an Extended Pi-Calculus

The reduction rules for the function constants are shown below. Notice that map is uncurried – it

cannot be partially applied. This eliminates the translation case of a partially applied map function.

map ((λx.e), [v1, . . . ,vn])→ [e{x 7→ v1}, . . . ,e{x 7→ vn}] (5)

size [v1, . . . ,vn]→ n iota n → [0,1,2, . . . ,n−1] (6)

2.2 Extended Pi-Calculus

The language used as the target for the translation is the Extended π-calculus (Eπ), presented in previous

work [12], and is based on the applied π-calculus presented by Abadi, Blanchet, and Fournet [1]. This

calculus is extended with broadcast communication as presented by Hüttel and Pratas [11] as well as

simple first order composite names based on [6].

2.2.1 Processes in Eπ

Processes are given by the formation rules below.

P ::= 0 | P|Q | !P | νa.P | A.P | •P | [M ⊲⊳ N]P, Q A ::= c〈~T 〉 | c(~x) | c:〈~T 〉

c ::= a | x | a · I | x · I I ::= n | x | all | tup | len

T ::= n | a | x | T ⊙T

(7)

T ranges over terms that can be sent on channels. These may be a number (n), a channel name (a), or

a variable (x). A term may also be a binary operation on two terms (T ⊙T). These operations are as in

BUTF, except that one cannot use them on names. We let u range over the set of variables and names.

Processes P can be the empty process 0 which cannot reduce further, parallel composition (P | Q)

consisting of two processes in parallel, replication (!P) which constructs an unbounded number of process

P in parallel, and declaration of new names (νu.P), which restricts u to the scope of P. A process

[M ⊲⊳ N]P, Q is a conditional process where ⊲⊳∈ {<,>,=, 6=}. If M ⊲⊳ N, it proceeds as P and else as

Q. Actions A are output c〈~T 〉 and input c(~x); in c(~x).P, the variables ~x are bound in P. In νa.P, a is

bound in P. We let fn(P) and fv(P) denote the sets of free names and free variables in P. The process •P

denotes that P begins with an important computation step; this is explained in Section 2.2.2 and is used

in analyzing the complexity of our encoding.

Broadcasting in Eπ is denoted as c:〈~T 〉. It can send a vector of terms ~T over a channel c to multiple

processes in a single reduction, atomically. A channel name c can be a name (a) is a composite name

consisting of a name followed by an identifier I that can be either a number or a label. These labels are

used to distinguish between several different translation constructs. In particular, in the encoding, labels

describe if a reduction involves an entire array (all), the reduction of a tuple (tup) or the computation

of the length of an array (len).

2.2.2 Semantics

The structure of the semantics for Eπ is similar to that of the π-calculus, using a structural congruence

relation that identifies process expression with the same structure and a reduction relation.

H. Hüttel, L. Jensen, C.O. Paulsen & J. Teule 5

(COMM) C〈v〉.P |C(x).Q
τ
−→ P | Q{v/x} (BROAD) C:〈v〉.Q |C(x1).P1 | · · · | c(xn).Pn

:c
−→ Q | P1{v/x1} | · · · | Pn{v/xn}

(PAR)
P

τ
−→ P′

P | Q
τ
−→ P′ | Q

(B-PAR)
P

:c
−→ P′ Q 6↓c

P | Q
:c
−→ P′ | Q

(RES-1)
P

:c
−→ P′ c 6∈ {u,u · I}

νu.P
:c
−→ νu.P′

(RES-2)
P

:c
−→ P′ c ∈ {u,u · I}

νu.P
τ
−→ νu.P′

(STRUCT)
P

q
−→ P′

Q
q
−→ Q′

if P ≡ Q and P′ ≡ Q′ (THEN) [M ⊲⊳ N]P, Q
τ
−→ P if M ⊲⊳ N

(ELSE) [M ⊲⊳ N]P, Q
τ
−→ Q if M 6⊲⊳ N

Figure 2: The reduction rules of extended processes in Eπ . Here, q is either τ or some :b.

(ADM)
P

τ
−→ P′

P
◦
−→ P′

(NONADM)
P → P′

•P
•
−→ P′

(BOTH)
P

s
−→ P′ s ∈ {•,◦}

P → P′

Figure 3: Labeled semantics for important (
•
−→) and administrative reductions (

◦
−→) in Eπ .

(RENAME) P ≡ P′ by α-conversion (REPLICATE) !P ≡ P | !P

(PAR-0) P | 0 ≡ P (NEW-0) νn.0 ≡ 0

(PAR-A) P | (Q | R)≡ (P | Q) | R (NEW-A) νu.νv.P ≡ νv.νu.P

(PAR-B) P | Q ≡ Q | P (NEW-B) P | νu.Q ≡ νu.(P | Q)
when u 6∈ fv(P)∪ fn(P)

Figure 1: The structural congruence rules for the extended π calculus

The congruence rules shown in Fig. 1 are common for most π-calculi, and for a more detailed expla-

nation see previous work [13].

The transition labels τ and : c in Fig. 2 ensure that all parallel receivers of a broadcast are used in the

broadcast. A reduction arrow without a label, →, is used to denote an arbitrary reduction.

The semantics shown in Fig. 3 are used to distinguish between important and administrative reduc-

tions. This will be used in the translation to distinguish transitions which emulate a BUTF reduction, and

transitions which facilitate the translation.

2.2.3 Weak Bisimilarity

Our notion of semantic equivalence is called weak administrative barbed bisimilarity as is a form of

barbed congruence [14]. To define it, we use an observability predicate ↓α where α is a or a. If α〈b〉.P →
P then P ↓α . The definition (which involves broadcast) follows the structure of that of [15]. The arrows
◦
=⇒ and

•
=⇒ denote multiple transitions as follows.

6 Functional Array Programming in an Extended Pi-Calculus

Definition 1. We define
s
=⇒ as follows for the label s ∈ {•,◦}.

s
=⇒ =

{

s = ◦
◦
−→

∗

s = •
◦
−→

∗ •
−→

In weak administrative barbed bisimilarity, important reductions in the one process must be matched

by important reductions in the other process.

Definition 2 (Weak Administrative Barbed Bisimulation). A symmetric relation R over processes is

called a weak administrative barbed bisimulation (wabb) if whenever (P,Q) ∈ R, the following holds

1. If P
•
−→ P′ then there exists a Q′ such that Q

•
=⇒ Q′ and (P′,Q′) ∈ R,

2. If P
◦
−→ P′ then Q

◦
=⇒ Q′ and (P′,Q′) ∈ R,

3. For all contexts C, (C[P],C[Q]) ∈ R,

4. For all prefixes α , if P ↓α then Q
◦
=⇒↓α .

We write P ≈̇a Q if there exists a weak administrative barbed bisimulation R such that (P,Q) ∈ R.

3 Translating BUTF to Eπ

The translation from BUTF into the extended π-calculus is very similar to the approach of Robin Milner

[13]. We use the same notation of JeKo for the translation of the BUTF expression e into a process

emitting the representation of the its value on the channel o. Our translation differs in that BUTF uses

not numbers but also arrays and the accompanying operators as values.

3.1 Translating the functional fragment

First, we define the translation of the part of BUTF that corresponds to an applied λ -calculus – numbers,

functions, and application, shown in Fig. 4. Numbers and variables are themselves already evaluated,

and they are thus sent directly on the out channel. With abstractions, we introduce a function channel f ,

which represents that abstraction. A replicated process is listening on f , waiting for other processes to

call it. An application consists of two subexpressions that must be evaluated before the function channel

and value can be extracted on the two inner o channels.

The translation has been annotated with • to ensure that transitions in BUTF are matched by a single

bullet. This can be seen in application, Je1 e2Ko, which requires a single
•
−→ before the function is called.

3.2 Tuples

Tuples are translated by evaluating all subexpressions in parallel and waiting for them all to return on

their out channels. These results are then all repeatedly sent on the h channel. Users of the tuple can read

the handle channel to get access to all the values.

Therefore tuple elements are sent on h · tup to ensure that the tuple can not be used in places that

expect arrays. By composing with the label tup, the array can only be accessed with this label and not

the array labels all and len.

J(e1, . . . ,en)Ko = νo1.νon.(Je1Ko1
| · · · | JenKon

| o1(v1).on(vn).νh.(!h ·tup〈v1, . . . ,vn〉 | o〈h〉))

H. Hüttel, L. Jensen, C.O. Paulsen & J. Teule 7

JxKo = o〈x〉

JnKo = o〈n〉

Jif e1 then e2 else e3Ko =

νo1.(Je1Ko1
| o1(v).• [v 6= 0] Je2Ko,Je3Ko)

Jλx.eKo = ν f .(o〈 f 〉 | ! f (x,r).JeKr)

Je1 e2Ko =

νo1.νo2.(Je1Ko1
| Je2Ko2

| o1(f).o2(v).• f 〈v,o〉)

Figure 4: The translation for basic expressions.

3.3 Representing arrays

This section will cover how arrays can be represented in Eπ , and how this is used to translate BUTF

arrays. This approach represents each array element with a independent cell, which users communicate

with. Here the extensions in Eπ are very useful, because they allow addressing individual array cells, or

all at once.

3.3.1 Arrays

We have decided to represent arrays as a replicated process listening on some handle, much like how

functions are represented in the π-calculus. An array element is described by a cell process that listens

on a broadcast for a request for all elements and listens on the composed name handle · index for a

request for a specific element.

Cell(handle, index,value) = !handle ·all(r).r〈index,value〉 | !handle · index〈index,value〉

An array is a parallel composition of cells together with a single replicated sender that provides users

of the array with its length. This is accessed via h ·len. Notice how the different composed labels and

numbers, direct messages towards different listeners in the array.

J[e1, . . . ,en]Ko = νo1.νon.νh.(
n

∏
i=1

JeiKoi
| o1(v1).on(vn).(

n

∏
i=1

Cell(h, i−1,vi) | !h ·len〈n〉 | o〈h〉))

Also, notice how all subexpressions must return a value on their out channels, before the translation

creates the array and returns its handle.

Indexing is translated similarly to application, however here we compose the array handle h of the

first expression with the index of the second expression to request the result. The check [i ≥ 0] is added

to make it clear, that the program terminates if an attempt is made to index on a non-positive number.

Je1[e2]Ko = νo1.νo2.(Je1Ko1
| Je2Ko2

| o1(h).o2(i).• [i ≥ 0]h · i(i,v).o〈v〉,0)

8 Functional Array Programming in an Extended Pi-Calculus

3.3.2 Array Operators

The translation of the size operator is simple, as the size of an array is sent on the handle channel by the

array.

Jsize e1Ko = νo1.(Je1Ko1
| o1(h).h ·len(n).o〈n〉)

In the translation of the iota function below, a process Repeat is created to send numbers 0 to n− 1

on the return channel r (in reverse, but that is not important). Once all numbers are sent it sends an empty

message on d to signal this. iota then creates an array in much the same way as usual, but by using the

Repeat process instead. Notice how we wait for the done signal by Repeat, before we return the result

on o, thus ensuring the call-by-value semantics of BUTF.

Repeat(s,r,d) =

νc.(!c(n).[n ≥ 0](r〈n−1,n−1〉 | c〈n−1〉),d〈〉 | c〈s〉)

Jiota e1Ko = νo1.νr.νh.(Je1Ko1
|

o1(n).Repeat(n,r,d) | !r(i,v).Cell(h, i,v) |

d().(!h ·len〈n〉) | o〈h〉)

A translation of map must extract the array values from the input array and then apply some given

function to all these values, before they are added back to a new array. A function and the arr handle

are extracted from the input tuple. The channel vals is set up such that all values on the array are sent

on it, followed by a replicated read on all the values. Each element of the output array is initialized after

receiving a signal on the count channel. This ensures that the done signal is only communicated after

each array Cell has been initialized. Once the done signal has been communicated, the output of the new

array handle can be sent on o. This ensures the call by value nature of BUTF. Finally, to ensure that func

is a function handle, we invoke it without ever reading the result. Otherwise the translation would allow

a non-function value when the array is empty.

Jmap e1Ko = νo1.νh′.(Je1Ko1
| o1(args).

args ·tup(func,h).h ·len(n).νvals.h ·all:〈vals〉.

νcount.(

Repeat(n,count,done) |

!vals(index,value).νr.func〈value,r〉.

r(v).count(,).Cell(h′, index,v) |

νo′.func〈0,o′〉.•done().o〈h′〉 | !h′ ·len〈n〉))

4 Correctness Criteria

To be able to analyze the complexity and thus allowing us to reason about the translation, an annotated

step notation is introduced. This is inspired by the tick-notation used in [4]. Here, the • notation marks

the important transitions in Eπ that match a transition in BUTF.

H. Hüttel, L. Jensen, C.O. Paulsen & J. Teule 9

4.1 Well-Behavedness and Substitution

In the translation we consider four different kinds of channels: outputs (o ∈ Ω), handles (h ∈ Λ), signals

(d ∈ ∆), and collections (c ∈ Ψ).

In the following, we define U as building blocks for translated processes, use U as the set of all

possible U . The intention is that for any e there should exist a process P and o such that JeKo ≡P∧P∈U .

We define the formation rules for U as follows.

U ::= o(v).U | h(v,o).U | !h(v,o).U | h ·n(n,v).U |

h ·len(n).U | h ·tup(v1, . . .).U | h ·all(c).U | !h ·all(c).U | h ·all:〈c〉.U |

c(n,v).U | !c(n,v).U | d().U | [n ≥ 0]U,0 | [v 6= 0]U,U |U |U | νa.U |

o〈v〉 | h〈v,o〉 | h ·n〈n,v〉 | !h ·n〈n,v〉 |

h ·len〈n〉 | !h ·len〈n〉 | h ·tup〈v1, . . . 〉 | !h ·tup〈v1, . . . 〉 |

c〈n,v〉 | d〈〉 | Repeat(n,c,d) | 0

(8)

Here, we consider o ∈ Ω, h ∈ Λ, d ∈ ∆, c ∈ Ψ, and a ∈ Ω∪Λ∪∆∪Ψ. The terms v,v1,v2, . . . are used

to signify numbers n or handles, and we use Θ for these. Therefore for channels o and h, it holds that

o〈h〉 ∈U , and o〈5〉 ∈U , while o〈o〉 6∈U .

Note that we use members of the sets above in name binding also, which is to signify which “type” of

term is expected to be received on the channel. For example in o(v).U for o ∈ Ω and v ∈ Θ, the variable

v might be present in the process U where it is used as a value assuming that what is sent on o is actually

in Θ. If the term t received on o is not in Θ, U {t/v} would also not be in U .

Lemma 1 ensures that any process U ∈ U continues to be well-behaved in regards to the translation

channels.

Lemma 1. For any process U it holds that if U → P′ and U is not observable on any channel, then

P′ ∈ U .

In BUTF function application is done by substituting a value into the function body. For numbers,

this is simple as the number simply gets substituted into the process. However, in the translated process,

the function, array, and tuple servers cannot be substituted into a process, and therefore, lie outside of it.

This creates a structural difference between JeKo and Je′Ko, which Theorem 1 shows that they still behave

the same under ≈̇a.

Theorem 1. For values e1 and arbitrary expressions e2, we have that

1. if e1 is a number (n) then Je2Ko {n/x} ≈̇a Je2{x := n}Ko for some o,

2. or if e1 is an abstraction, tuple, or array then νh.(Q | Je2Ko {h/x}) ≈̇a Je2{x := e1}Ko for some o.

Here, Q is Je1Ko after sending h on o, i.e. Je1Ko | o(x).P
•
=⇒ νh.(Q | P{h/x}).

Proof. 1. When JnK = o〈n〉 and JxK = o〈x〉, we have that o〈x〉{n/x}≈̇a o〈x〉{x := n}∧o〈x〉{x := n}=
o〈n〉. Thus o〈x〉{n/x} ≈̇a o〈n〉.

2. In the process Je2{x 7→ e1}Ko there can be different servers all of which stem from the translation

of e1. Each of these servers can have a number of usages, where a handle is communicated on to

access a specific server. We denote P = {P1, . . . ,Pn} as a collection of usages of these servers in

the translation, and therefore P ⊆ U . And Q = {Q1, . . . ,Qm} is a collection of servers, such that

for some Qi ∈ Q, Qi communicates on hi instead of h.

10 Functional Array Programming in an Extended Pi-Calculus

Now we introduce the relation R, which relates processes with a single server channel with pro-

cesses where the same server channels is repeated for multiple handle channels. Here processes in

P are in a context and either communicate with a single Q on h (the left side), or with multiple

Q’s with multiple h’s (the right side). The function f : Q → P(P) takes a single Qi and returns

the uses of said Q, these uses Pi normally use the channel h, but have to be substituted to use hi.

R = {(K[νh.νA .(Q | ∏
Pi∈P

Pi |U)],K[νh1. . . .νhm.νA .

(∏
Qi∈Q

Qi | ∏
Ql∈Q

∏
Pi∈ f (Ql)

Pi{hl/h} |U)]) |

U 6↓h ∧∀i ∈ [1..n].U ↓hi
∧

⋃

Qi∈Q

f (Qi) = P

∧∀Qi,Q j ∈ Q. f (Qi)∩ f (Q j) =∅∧∀a.((νA .U) 6↓ a)

}

(9)

Now we show that R is a WABB, by considering the transitions each side can take. First, consider

when the left transitions, and identify four cases.

(a) For an internal communication of the form K[0]→ K′[0], we can use the same K′ on the right

side, and show that the new pair is in R.

(b) For an internal communication in U of the form U →U ′ we might introduce a new process

P or Q in U , which can be moved out of U ′ such that U ′ 6↓h. We can match this transition on

the right side, and through ≡ the pair is still in R.

(c) A Pi communicates with Q on the channel h.

Pi | Q → Q | S

We consider the different forms which Q an take, depending on whether e1 is an abstraction,

tuple, or array.

i. If e1 = λx.eb, then Q takes the form shown below.

Q = !h(x,r).JebKr

Given that Pi communicated with Q, means that Pi = h〈x,r〉.S′, where S′ is some arbitrary

process. This communication will therefore uncover S and spawn JebKr. Similarly to the

first case, we can find a new U ′, and P ′, such that U ′ does not contain h. Then the

following holds.

Q | ∏
Pi∈P

Pi |U → Q | ∏
Pi∈P ′

Pi |U ′

With the right side, the same transition can be taken by Pi{hl/h} on the channel hl with

the server Ql . Here, we can find a new Q′ such that the pair resulting from the two

transitions is in R.

ii. If e1 = (e1,1, . . . ,e1,o), then Q is as follows for some T1 to To

Q = !h · (−1)〈T1, . . . ,To〉

The proof proceeds as in the case of abstraction, except that now Q will not spawn any

new processes.

H. Hüttel, L. Jensen, C.O. Paulsen & J. Teule 11

iii. If e1 = [e1,1, . . . ,e1,o]. Here, Q will be as follows for terms T1 to To.

Q = ∏
i∈1..o

(!h ·all(r).r〈Ti〉 | !h · i〈Ti〉) | !h〈o〉

Because Q is a collection of parallel replicated sends and receives, it acts in much the

same way as in the case of tuples. We can therefore follow the same reasoning as in the

previous cases.

We know that no other cases exists for the transition, given that Q and Pi cannot communicate with

either U or K, given that these processes do not contain h.

We now consider then the right side of a pair in R transitions, and again identify four cases

(a) Internal communication in K, which is similar to case (2) above.

(b) Internal communication in U, which is similar to case (3) above.

(c) A Pi{h j/h} communicates with a Q j on a channel hm.

Pi{h j/h}|Q j → Q | S

We only consider the case when e1 = λx.eb, as the other cases easily follow.

In this case Q j will again take the form shown below.

Q j = !h j(x,r).JebKr

Like in case (4) above, we can construct new U ′ and P ′ to accommodate the new processes

after the reduction.

Finally, we must show that the pair below is in R.

(νh.(Q | Je2Ko {h/x}),Je2{x := e1}Ko)

In e2 a number of uses of the variable x exists. In the translation Je2Ko, each of these usages of x

have been replaced by o′〈x〉 ∈U . In e2{x := e1} each of the x’es have been replaced by the whole

of e1, and the translation Je2{x := e1}Ko then contains multiple instances of Je1Ko′ for some output

channel o′. Each of these instances has the form Je1Ko′ = νh.(Q | o′〈h〉).

We know that both Je2Ko {h/x} and Je2{x 7→ e1}Ko are in U , and we can match them to a pair in R

by structural congruence.

4.2 Operational Correspondence

We consider the translation to be correct when it preserves the reduction sequence and the result of the

program. To do this, we define an operational correspondence, which ensures translation correctness.

Definition 3 (Administrative Operational Correspondence). Let R be a binary relation between an ex-

pression and a process. Then R is an administrative operational correspondence if ∀(e,P) ∈ R it holds

that

1. if e → e′ then there ∃P′ such that P
•
=⇒ ≈̇aP′ and (e′,P′) ∈ R, and

2. if P
•
=⇒ P′ then there ∃e′,Q such that e → e′, Q ≈̇a P′, and (e′,Q) ∈ R.

12 Functional Array Programming in an Extended Pi-Calculus

We denote e ≷ok P if there exists an operational correspondence relation R such that (e,P) ∈ R.

This definition achieves soundness by guaranteeing that all reductions that happen in a BUTF pro-

gram e can be matched by a sequence of reductions in the corresponding Eπ process P. The completeness

is ensured by requiring that for any important reduction P
•
=⇒ P′ where e ≷ok P, we have that e can evolve

to some e′ for which there exists some Q where e′ ≷ok Q and Q is bisimilar to P′.

We will now attempt to prove administrative operational correspondence for BUTF and Eπ . The

lemma below is used to identify the possible reduction cases when P is contained within a context, and

is usefully for simplifying program behavior.

Lemma 2. For any P and C, if Q exists such that C[P]
s
−→ Q, then one of the following holds:

1. C reduces alone, thus Q =C′[P] with context C′ such that C[0]
s
−→C′[0],

2. P reduces alone, thus Q =C[P′] with P
s
−→ P′, and

3. C and P interact, thus Q = C′[P′] for P′ and C′ such that O exists where O | P
s
−→ O′ | P′, C[P]

s
−→

C′[P′], and C[P]≡ ν~a.(O | P).

The first step to prove the operational correspondence, is proving that values always send on o. This

is shown in the following lemma.

Lemma 3. Let e be a value. Then ∃P.JeKo
◦
−→ P∧P ↓o.

Proof. We let D(e) denote the depth of e and proceed by induction on D(e). If e is a number or an

abstraction, then D(e) = 0. However, if e is a tuple or array with elements e0 to em, then D(e) =
maxi∈[0..m](D(ei)) + 1. By induction on D(e) we show that the lemma holds for all e. In the base

case D(e) = 0, and thus e is either a number or abstraction. From the translation of a number or an

abstraction, we know that JeKo ↓o, which is consistent with the lemma for e. In the inductive case, where

D(e)> 0, e must be either a tuple or array with elements e0 to em. Here, the lemma holds for all e′ where

D(e′) < D(e), and in extension e0 to en. If e is a tuple, then we can take reductions such that Je0Ko0
to

JemKom
, all send on channels o0, . . . ,om. Then o〈h〉 is unguarded. For array, after it has sent on channels

o0 to om, it can then receive on done because it has sent m+1 values. Then o〈handle〉 is unguarded.

The proofs of the next two lemmas can be found in [12]. The first lemma is used to remove the no

longer used parts of the program and thus allows for a simple garbage collection.

Lemma 4. If P ≈̇a 0, then for all Q it holds P | Q ≈̇a Q.

The second lemma is the converse of Lemma 3. It tells us that if the encoding of a BUTF expression

e is eventually able to output on the o name, then e is a value.

Lemma 5. If for some expression e, ∃P.JeKo
◦
=⇒ P∧P ↓o then e ∈ V .

We now construct an administrative operational correspondence whose pairs consist of BUTF pro-

grams and their corresponding translations.

Theorem 2. For any BUTF program e and fresh name o we have that e ≷ok JeKo.

Proof. Let B be the set of all BUTF programs and let R be the relation R = {(e,JeKo) | e ∈ B,o fresh}.

We show that R is an administrative operational correspondence.

We only consider pairs where e → e′ and where JeKo contains •. By extension of this, we are not

considering values.

H. Hüttel, L. Jensen, C.O. Paulsen & J. Teule 13

Array e = [e1, . . . ,en] Let us first consider that e → e′, and from the BUTF semantics, we know that

there must exist an i such that ei → e′i. Here, JeKo contains νoi.(JeiKoi
). We assume that (ei,JeiKo)∈R, and

therefore we know that JeiKoi

◦
=⇒

•
−→ Q such that Q ≈̇a Je′iKoi

. Let P be the process JeKo with the subprocess

JeiKoi
replaced by Q. In that JeiKoi

is unguarded in JeKo, we know that JeKo
◦
=⇒

•
−→ P, and that P ≈̇a Je′Ko.

Vice versa, we show that if JeKo
◦
=⇒

•
−→ P, then P ≈̇a Je′Ko where e → e′. Given that the translation of

array does not have •, the important reduction must happen inside JeiKoi
. The translation ensures that

JeiKoi
can only be observed on oi, and therefore the different JeiKoi

cannot reduce together. We know that

there exists a j, such that the important reduction occurs in Je jKo j
, and because (e j,Je jKo) ∈ R, we know

that Je jKo j

◦
=⇒

•
−→ Q for some Q and e′j where Q ≈̇a Je′jKo j

and e j → e′j. We can then select e′ as e where

e j has been replaced by e′j, and then P ≈̇a Je′Ko. This is because P and Je′Ko only differ by administrative

reduction (for example in some other JeiKoi
for i 6= j).

Tuple e = (e1, . . . ,en) Follows from the same argument as Array.

Indexing e = e1[e2] Operational correspondence requires that if e → e′ then JeKo
•
=⇒ P such that P ≈̇a

Je′K. The translation of indexing is defined as seen below.

Je1[e2]K = νo1.νo2.(Je1Ko1
| Je2Ko2

| o1(h).o2(i).• [i ≥ 0] h · i(i,v).o〈v〉,0)
(10)

There are three rules for indexing in BUTF which we shall call (E-INDEX, E-INDEX-1, and E-INDEX-

2). On the other hand, in Eπ , there is the translation for the array (Je1Ko1
) and the expression to define the

desired index (Je2Ko2
). The E-INDEX-1/2 rules are used to evaluate sub-expressions e1 and e2. Because

(e1,Je1K0) ∈ R, if e1[e2] → e′1[e2] then Je1Ko1

•
=⇒ ≈̇aJe′1Ko1

. Then because Je1Ko1
is unguarded in JeKo,

Eq. (11) holds.

JeKo
•
=⇒ ≈̇a νo1.νo2.(Je′1Ko1

| Je2Ko2
|

o1(h).o2(i).• [i ≥ 0] h · i(v).o〈v〉,0) = Je′Ko

(11)

The same has to hold for e2. These must be assumed to hold if all other cases are operationally corre-

spondent since e1 and e2 are in R.

The actual indexing operation (E-INDEX) is also relevant here. Here, we know that if v1[v2] → v3

then we have to have the corresponding operation Jv1[v2]Ko
•
=⇒≈̇aJv3Ko. Because e → e′ by E-INDEX, we

know that e1 is an array of length m and e2 is an integer less than m. With the translation νo1.νo2.(Je1Ko1
|

Je2Ko2
| o1(h).o2(i). • [i ≥ 0] h · i(v).o〈v〉) we know that they are ready to send on their o after some

administrative reductions channels by Lemma 3. The translation thus proceeds to send the handle of the

array via o1 and the value is sent on o2. These are administrative reduction and are thus covered by the
◦
=⇒ reductions.

This reduces the program down to νh.(Qh | • [i > 0] h · i(v).o〈v〉), where Qh is the leftovers from the

array Je1Ko1
and i is the index from e2. Next, we have the if statement together with •, which is defined

as an important reduction, and is expressed by the
•
−→ arrow: . . .

•
−→ νo1.νo2.(Qh | h · i(v).o〈v′〉). Lastly,

the value is received internally as v′ and returned along the out-channel (o). The still existing array Qh

can now be garbage collected by Lemma 4.

We must also show that if JeKo
◦
=⇒

•
−→ P then we can find e′ such that P ≈̇a Je′Ko and e → e′. The

important reduction can either happen inside either Je1Ko1
or Je2Ko2

(very similar to array), or before the

index check. In the first case, we can find a e′ much like in arrays. In the latter case, we know that e2 and

14 Functional Array Programming in an Extended Pi-Calculus

i are integers that are greater or equal to zero and that some process is listening on h · i. This is only the

case if e2 is an array of size larger than i. With this, we know that e → by E-INDEX.

Application e := e1 e2 There are two cases for which e→ e′. One case is when the subexpressions e1 or

e2 can reduce. In that Je1Ko1
and Je2Ko2

appear unguarded in JeKo and since {(e1,Je1Ko),(e2,Je2Ko)} ⊆ R,

we know that JeKo can match
◦
=⇒

•
−→ ≈̇a.

The second case is when e1 6→ ∧ e2 6→. Here, E-BETA can take an important reduction. These are

matched by the translation of application.

νo1.νo2.(Je1Ko1
| Je2Ko2

| o1(f).o2(x).• f 〈x,o〉)
◦
=⇒

νo1.νo2.(ν f ′.o1〈 f ′〉.(! f ′(x,r).JebKr) |

νv.(o2〈v〉 | S) | o1(f).o2(x).• f 〈x,o〉)
◦
=⇒

νv.ν f ′.(! f ′(x,r).JebKr | • f ′〈v,o〉) | S
•
−→

ν f ′.(! f ′(x,r).JebKr) | νv.(Fo | S) ≈̇a

νv.(Fo | S)

First, the expressions are evaluated to values such that they are ready to send on the out-channels. This

results in a guarded replicated function server for e1 and a value ready to be sent for e2. Afterward, the

administrative reductions, in the form of communicating along the out-channels, are performed.

We know that e1 is an abstraction, λx.eb, and therefore Je1Ko1
= ν f .(! f (x,r).JebKr | o1〈 f 〉). Also

note that S is the process needed to maintain value v, i.e. Je2Ko2
≈̇a νa.(S | o2〈v〉) such that S is only

observable on a or a.

After the two subprocesses have sent their value on o, we can send on f ′ which is marked by a •. By

sending (v,o) an instance of JebKr is unguarded, where the name of the return channel is substituted with

the name of the out-channel (o) together with the value (v).

We let Fo denote the function body JebKr with the return channel o and the value of Je2Ko2
, ie. Fo =

JebKo {v/x}. Fo corresponds to the translation of e′ = eb{x := e1} by Theorem 1, and thus JeKo
◦
=⇒

•
−→

≈̇aJe′Ko.

If JeKo
◦
=⇒

•
−→ P then we must show that e′ exists such that P≈̇a Je′Ko and e → e′. Like with arrays, if

•
−→

happens entirely inside either Je1Ko1
or Je2Ko2

then, we can select e′ = e′1 e2 or e′ = e1 e′2. If
•
−→ happens

when sending on f , then both Je1Ko1
and Je2Ko2

can send on o after some administrative reductions.

Therefore by Lemma 5 e1 and e2 must be values. Also Je1Ko1
must send the name of a function channel

on o1 and therefore we know that e1 = λx.eb or e1 = λ p.eb. Therefore by E-BETA we have e → e′ where

e′ = eb{p := e2}.

Conditional e = if e1 then e2 else e3

The translation for e is as seen below.

νo1.(Je1Ko1
| o1(v).[v 6= 0] Je2Ko,Je3Ko)

We know that any reduction done by e1, can be matched by Je1Ko1
since Je1Ko1

is unguarded and

(e1,Je1Ko) ∈ R. Once e1 is done and can send some term (M) on o1, there is only one reduction left.

This reduction reduces [M 6= 0] Je2Ko,Je3Ko to either Je2Ko or Je3Ko. Since e → and e1 6→, e1 must be a

value, and thus either E-IF-TRUE is matched and Eq. (12) or E-IF-FALSE is matched and Eq. (13).

[M 6= 0] Je2Ko,Je3Ko
•
−→ Je2Ko (12)

H. Hüttel, L. Jensen, C.O. Paulsen & J. Teule 15

[M 6= 0] Je2Ko,Je3Ko
•
−→ Je3Ko (13)

In the other case when JeKo
•
=⇒ P, we can show that e′ exists such that P ≈̇a e′ and e → e′, in much the

same way as with name binding.

Map e =map e1 First we consider the case where e → e′. Like in previous cases, we have can match

transitions to the e1 subexpression with the unguarded Je1Ko1
in JeKo.

This leaves us with the case where e1 is the tuple ((λx.eb), [v1, . . . ,vn]), such that the map transition

can occur. Then e′ becomes the following.

e′ = [eb{x 7→ v1}, . . . ,eb{x 7→ vn}]

We can then see that Jmap e1Ko only differs from Je′Ko by some additional administrative reductions.

These happen when the tuple is unpacked, and when each function/substitution is done before the Cell.

We follow the same argument to state that JeKo
•
=⇒ ≈̇aJe′Ko.

Additional if JeKo
•
=⇒ P′ then we must be able to find e′ such that P′ ≈̇a Je′Ko. We know that P′ must

have taken transition •done〈〉, meaning e1 is a tuple value due to o1 and args ·tup requiring an receive

action. We also know that the tuple must contain an array in the second parameter, and due to the dummy

send on func, that the first is a function. Then e = (λx.eb, [v1, . . . ,vn]) and e′ can be set as follows.

e′ = [eb{x 7→ v1}, . . .eb{x 7→ vn}]

Size e = size e1 Follows same argument as the map case.

Iota e = iota e1 Follows same argument as the map case.

5 Work and Span Analysis

To compare the work (W) and span (S) with those of Futhark we carry out an analysis on the translation

of BUTF into Eπ . We define work as the actual instructions that happen and span as the depth of

parallel instructions. Our cost model is based on the number of •-marked reductions encountered which

were placed earlier to facilitate operational correspondence. We find this definition of work useful, but

can also see that this definition and the • placements is arbitrary when using it to define work. With

this definition, we want to illustrate a way that a translation can be analyzed, despite being two very

different paradigms in terms of their executions. This means that we for example assume that sending

and receiving variables is “free” (◦). In our comparison, work and span costs in FUTHARK are taken

from the FUTHARK website[8]. The notion of span is the more interesting of the two, given the potential

for parallelization in Eπ .

The first thing to note is that the values in FUTHARK have a cost and span of O(1), compared to

the O(0) in the translation, which could indicate an unacknowledged cost in the translation. For arrays

and tuples, an improvement in span can be seen as Eπ allows for a full concurrent evaluation of the

expressions inside them. So instead of span being S(e1)+ · · ·+S(en) it becomes S(max(ei)). The work

performed stays the same.

For application, when handling more than one variable the translation makes use of a tuple input,

which then allows for multiple simultaneous bindings. This can also be done in FUTHARK and the costs

are the same for both span and work.

iota involves lower work and span in the translation, as here only the evaluation of the sub-expression

has a cost. However, the difference in span compared to that of FUTHARK is only the absence of a single

16 Functional Array Programming in an Extended Pi-Calculus

Construct Work Span

JxKo O(0) O(0)
JvKo O(0) O(0)
Jif(. . .)Ko O(1+W(Je1Ko)+max(W (Je2Ko),W (Je3Ko))) O(1+ S(Je1Ko)+max(S(Je2Ko),S(Je3Ko)))
Jλ x.eKo O(0) O(0)
Je1 e2Ko O(1+Wf (Je1Ko)+W(Je2Ko)) O(1+ S f (Je1Ko)+ S(Je2Ko))
Array O(∑n

i=1(W (JeiKo))) O(S(max(JeiKo)))
Tuple O(∑n

i=1(W (JeiKo))) O(S(max(JeiKo)))
Je1[e2]Ko O(1+W(Je1Ko)+W(Je2Ko)) O(1+max(S(Je1Ko),S(Je2Ko))
Jsize e1Ko O(W (Je1Ko)) O(S(Je1Ko))
Jiota e1Ko O(W (Je1Ko)) O(S(Je1Ko))
Jmap e1Ko O(Wa(Je1Ko)+Wf (Je1Ko)∗ n) O(Sa(Je1Ko)+ S f (Je1Ko))

Table 1: The different complexities of translated expressions, measured by the number of • reductions.

constant. The cost of map is the same in both languages, as FUTHARK also all handles all the array

members in parallel. reduce can be expressed using map, iota, and size, keeping the asymptotic work

and span complexity of O(n) and O(log(n)) respectively that FUTHARK has.

6 Conclusion

In this paper we have presented the BUTF language, a λ -calculus with parallel arrays inspired by the

FUTHARK programming language, and we show a translation of BUTF into Eπ , a variant of π-calculus

that uses polyadic communication and broadcast.

Our translation extends the translation from the λ -calculus to the π-calculus due to Milner et al. with

the notion of arrays and involves defining the usual operations on arrays in a process calculus setting.

Our proof of correctness uses a coinductively defined notion of operational correspondence. While we

proof that the translation is correct in regards to operational correspondence, we do not show that the

translation is fully abstract, or that translated programs diverge.

We present a cost model for our version of the π-calculus in the form of a classification of reductions

– they can be either important or administrative. A cost analysis was performed for the translation to Eπ ,

and its results were compared with the cost for FUTHARK’s language constructs. This comparison shows

that the map and reduce operations in FUTHARK are similar to the fully parallel ones shown here.

Eπ uses broadcasting; while this allows us to have a concise approach that has no counterpart in the

λ -calculus or general purpose computer instructions means that it might not represent actual possible

performance in the computers which FUTHARK targets. Having broadcast in Eπ makes it rather simple

to implement array indexing. It would be interesting to consider an array structure without the use

of broadcast. Here, one must take into account the result due to Ene and Muntean [7] that broadcast

communication is more expressive than point-to-point communication.

Our translation is not typed; the next step will be to introduce a type system in BUTF and Eπ , and

extend the translation to also translate types. Binary session types [9] would be a natural candidate to

ensure that the channels in the translation follow a particular protocol.

Furthermore, it is of interest to validate if the translation can be done in the standard π-calculus

without broadcast and composite names. This would make it possible to relate the translation with other

work in the π-calculus domain. Broadcasting and composed names as primitives in Eπ might also be

unrealistic, when considering Eπ as an abstraction for real world hardware.

H. Hüttel, L. Jensen, C.O. Paulsen & J. Teule 17

References

[1] Martı́n Abadi, Bruno Blanchet & Cédric Fournet (2018): The Applied Pi Calculus: Mobile Values, New

Names, and Secure Communication. J. ACM 65(1), pp. 1:1–1:41. Available at https://doi.org/10.

1145/3127586.

[2] Martı́n Abadi & Cédric Fournet (2001): Mobile Values, New Names, and Secure Communication. In: Pro-

ceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’01. Association for Computing Machinery, New York, NY, USA, p. 104–115. Available at https://doi.

org/10.1145/360204.360213.

[3] Roberto M. Amadio, Lone Leth Thomsen & Bent Thomsen (1995): From a Concurrent Lambda-Calculus

to the Pi-Calculus. In: Horst Reichel, editor: Fundamentals of Computation Theory, 10th International

Symposium, FCT ’95, Dresden, Germany, August 22-25, 1995, Proceedings, Lecture Notes in Computer

Science 965. Springer, pp. 106–115. Available at https://doi.org/10.1007/3-540-60249-6_43.

[4] Patrick Baillot & Alexis Ghyselen (2022): Types for Complexity of Parallel Computation in Pi-calculus. 44.

Association for Computing Machinery, New York, NY, USA. Available at https://doi.org/10.1145/

3495529.

[5] Jesper Bengtson, Magnus Johansson, Joachim Parrow & Björn Victor (2009): Psi-calculi: Mobile Processes,

Nominal Data, and Logic. In: Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Sci-

ence, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA. IEEE Computer Society, pp. 39–48. Available

at https://doi.org/10.1109/LICS.2009.20.

[6] Marco Carbone & Sergio Maffeis (2002): On the Expressive Power of Polyadic Synchronisation in pi-

calculus. In: Uwe Nestmann & Prakash Panangaden, editors: 9th International Workshop on Expressiveness

in Concurrency, EXPRESS 2002, Satellite Workshop from CONCUR 2002, Brno, Czech Republic, August

19, 2002, Electronic Notes in Theoretical Computer Science 68. Elsevier, pp. 15–32. Available at https://

doi.org/10.1016/S1571-0661(05)80361-5.

[7] Cristian Ene & Traian Muntean (1999): Expressiveness of Point-to-Point versus Broadcast Communica-

tions. In: Fundamentals of Computation Theory, 12th International Symposium, FCT ’99, Iasi, Romania,

August 30 - September 3, 1999, Proceedings. pp. 258–268. Available at https://doi.org/10.1007/

3-540-48321-7_21.

[8] Futhark. A Parallel Cost Model for Futhark Programs. Available at https://futhark-book.

readthedocs.io/en/latest/parallel-cost-model.html.

[9] Simon Gay & Malcolm Hole (2005): Subtyping for session types in the pi calculus. Acta Informatica 42(2),

pp. 191–225. Available at https://doi.org/10.1007/s00236-005-0177-z.

[10] Troels Henriksen (2017): Design and Implementation of the Futhark Programming Language. Ph.D.

thesis, DIKU. Available at https://di.ku.dk/english/research/phd/phd-theses/2017/Troels_

Henriksen_thesis.pdf.

[11] Hans Hüttel & Nuno Pratas (2015): Broadcast and aggregation in BBC. In: Simon Gay & Jade Alglave,

editors: Proceedings Eighth International Workshop on Programming Language Approaches to Concurrency-

and Communication-cEntric Software, PLACES 2015, London, UK, 18th April 2015, EPTCS 203. pp. 15–

28. Available at https://doi.org/10.4204/EPTCS.203.2.

[12] Lars Jensen, Chris Oliver Paulsen & Julian Jørgensen Teule (2023): Translating Concepts of the

Futhark Programming Language into an Extended pi-Calculus. Master’s thesis, AAU. Available

at https://futhark-lang.org/student-projects/pi-msc-thesis.pdf. Available at https://

futhark-lang.org/student-projects/pi-msc-thesis.pdf.

[13] Robin Milner (1990): Functions as processes. In: Michael S. Paterson, editor: Automata, Languages and

Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 167–180. Available at https://doi.

org/10.1007/BFb0032030.

https://doi.org/10.1145/3127586
https://doi.org/10.1145/3127586
https://doi.org/10.1145/360204.360213
https://doi.org/10.1145/360204.360213
https://doi.org/10.1007/3-540-60249-6_43
https://doi.org/10.1145/3495529
https://doi.org/10.1145/3495529
https://doi.org/10.1109/LICS.2009.20
https://doi.org/10.1016/S1571-0661(05)80361-5
https://doi.org/10.1016/S1571-0661(05)80361-5
https://doi.org/10.1007/3-540-48321-7_21
https://doi.org/10.1007/3-540-48321-7_21
https://futhark-book.readthedocs.io/en/latest/parallel-cost-model.html
https://futhark-book.readthedocs.io/en/latest/parallel-cost-model.html
https://doi.org/10.1007/s00236-005-0177-z
https://di.ku.dk/english/research/phd/phd-theses/2017/Troels_Henriksen_thesis.pdf
https://di.ku.dk/english/research/phd/phd-theses/2017/Troels_Henriksen_thesis.pdf
https://doi.org/10.4204/EPTCS.203.2
https://futhark-lang.org/student-projects/pi-msc-thesis.pdf
https://futhark-lang.org/student-projects/pi-msc-thesis.pdf
https://futhark-lang.org/student-projects/pi-msc-thesis.pdf
https://doi.org/10.1007/BFb0032030
https://doi.org/10.1007/BFb0032030

18 Functional Array Programming in an Extended Pi-Calculus

[14] Robin Milner (1993): The Polyadic π-Calculus: a Tutorial. In: Friedrich L. Bauer, Wilfried Brauer &

Helmut Schwichtenberg, editors: Logic and Algebra of Specification. Springer Berlin Heidelberg, Berlin,

Heidelberg, pp. 203–246. Available at https://doi.org/10.1007/978-3-642-58041-3_6.

[15] Robin Milner (1999): Communicating and mobile systems - the π-calculus. Cambridge University Press.

[16] Davide Sangiorgi (1993): An Investigation into Functions as Processes. In: Stephen D. Brookes, Michael G.

Main, Austin Melton, Michael W. Mislove & David A. Schmidt, editors: Mathematical Foundations of Pro-

gramming Semantics, 9th International Conference, New Orleans, LA, USA, April 7-10, 1993, Proceedings,

Lecture Notes in Computer Science 802. Springer, pp. 143–159. Available at https://doi.org/10.1007/

3-540-58027-1_7.

[17] Davide Sangiorgi (1994): The Lazy Lambda Calculus in a Concurrency Scenario. Inf. Comput. 111(1), pp.

120–153. Available at https://doi.org/10.1006/inco.1994.1042.

[18] Davide Sangiorgi (1999): From lambda to pi; or, Rediscovering continuations. Math. Struct. Comput. Sci.

9(4), pp. 367–401. Available at https://doi.org/10.1017/S0960129599002881.

[19] Davide Sangiorgi & David Walker (2001): The π-Calculus - a theory of mobile processes. Cambridge

University Press.

https://doi.org/10.1007/978-3-642-58041-3_6
https://doi.org/10.1007/3-540-58027-1_7
https://doi.org/10.1007/3-540-58027-1_7
https://doi.org/10.1006/inco.1994.1042
https://doi.org/10.1017/S0960129599002881

G. Caltais and C. Di Giusto (Eds.): EXPRESS/SOS 2024

EPTCS 412, 2024, pp. 19–34, doi:10.4204/EPTCS.412.3

© C. Di Giusto, L. Laversa & K. Peters

This work is licensed under the

Creative Commons Attribution License.

Synchronisability in Mailbox Communication

Cinzia Di Giusto
Université Côte d’Azur,

CNRS,I3S, France

Laetitia Laversa
Université Sorbonne Paris Nord,

Paris, France

Kirstin Peters
Universität Augsburg,
Augsburg, Germany

We revisit the problem of synchronisability for communicating automata, i.e., whether the language

of send messages for an asynchronous system is the same as the language of send messages with

a synchronous communication. The un/decidability of the problem depends on the specific asyn-

chronous semantics considered as well as the topology (the communication flow) of the system.

Synchronisability is known to be undecidable under the peer-to-peer semantics, while it is still an

open problem for mailbox communication. The problem was shown to be decidable for ring topolo-

gies. In this paper, we show that when generalising to automata with accepting states, synchronis-

ability is undecidable under the mailbox semantics, this result is obtained by resorting to the Post

Correspondence problem. In an attempt to solve the specific problem where all states are accepting,

we also show that synchronisability is decidable for tree topologies (where, as well as for rings, peer-

to-peer coincides with mailbox semantics). We also discuss synchronisability for multitrees in the

mailbox setting.

1 Introduction

Communicating automata [4], i.e., a network of finite state automata (the participants) where transitions

can be interpreted as sending or receiving actions, are a common way to model communication protocols.

This model allows to consider systems exchanging messages in either a synchronous or asynchronous

way. While in the former case communication happens simultaneously, in the latter, messages are sent

to buffers where they wait until they are received by other participants. Several semantics have been

proposed in the literature, e.g., [5, 6, 7]. Nonetheless, the two most prominent ones are peer-to-peer (P2P)

communication (where between each pair of participants there are two FIFO buffers, one per direction of

communication) and mailbox communication (where each participant has its own FIFO buffer that stores

all received messages, whatever the sender). P2P is more generally found in channel-based languages

(e.g., Go, Rust), while mailbox is more common on actor languages such as Erlang or Elixir.

From the expressiveness point of view, when considering asynchronous communicating automata,

Turing machines can be encoded with two participants and two FIFO buffers only [4]. On the other

side of the spectrum, synchronous systems are equivalent to finite state automata. In order to fill the gap

between these two extremes and recover some decidability, several approaches have been considered to

approximate the synchronous behaviour. Results can be classified into two main families of systems.

In the first one, asynchronous behaviours are limited by bounding the size of buffers. While in the

second, asynchronous behaviours are bounded by only considering systems where all the executions

can be related (up to different equivalence relations) to synchronous executions. Some examples of the

first family are existentially (∃) and universally (∀) B-bounded systems [11]. A system is universally

B-bounded if all its executions are B-bounded, i.e., can be made with buffers of size B, and existentially

B-bounded if all its executions are causally equivalent to a B-bounded one. If a system is ∃/∀-B-bounded,

model checking problems (i.e., checking whether a configuration is reachable or more generally whether

a monadic second order formula is satisfied) turn out to be decidable. Unfortunately deciding whether

a given system is ∃/∀-B-bounded, when B is unknown is undecidable for P2P [13] and mailbox [2].

http://dx.doi.org/10.4204/EPTCS.412.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

20 Synchronisability in Mailbox Communication

Instead, as an example of the second family, in [3], the authors define the class of k-synchronisable

systems, which requires that any execution is causally equivalent to an execution that can be divided

into slices of k messages, where all the sending must be done before the receiving. In these systems,

the reachability of a configuration is decidable. Moreover, deciding whether a given P2P system is k-

synchronisable is decidable [3], and the same for a given mailbox system [8]. It is also decidable whether

there exists a k such that a given mailbox system is k-synchronisable [12].

The causal equivalence relation [8] derives from the happened before relation [14], which ensures

that actions are performed in the same order, from the point of view of each participant. It allows to

compare and group executions into classes. In [1], the authors define a different notion of synchro-

nisability, which does not rely on causal equivalence, but on send traces (the projection of executions

onto send actions). A system is synchronisable if each asynchronous execution has the same send trace

as a synchronous execution of the system. This differs from k-synchronisability, since actions may be

performed in a different order by a participant, and the class of k-synchronisable systems and the one

of synchronisable systems are incomparable. Synchronisability of a system implies that reachability is

decidable in it. A way of checking if a system is synchronisable (for P2P and mailbox) was proposed

in [1]: the authors claimed that if the set of synchronous send traces is equal to the set of 1-bounded

send traces, then the system is synchronisable. The claim is actually false, as shown in [9]. The authors

provide two counterexamples showing that the method is faulty for both P2P and mailbox. The coun-

terexamples in [9] expose cases where the set of 2-bounded send traces contains traces that do not exist

in the set of 1-bounded send traces, while the latter are identical to the set of synchronous send traces.

Moreover, checking synchronisability of a system communicating with a P2P architecture, is shown to

be undecidable in [9, Theorem 3], while the problem remains open for mailbox systems.

Contributions. In this paper we start answering this last question. In a first attempt to assess the

problem, we relax one of the hypothesis in [9] and consider the general case of communicating automata

with final accepting states. This allows us to code the Post Correspondence Problem into our formalism

and thus prove undecidability of what we call the Generalised Synchronisability Problem. Final states

are a key ingredient in the proof which cannot be adapted to the case without accepting states (or said

otherwise where all states are accepting).

To understand where the expressiveness of the problem lies, we started considering how different

topologies of communication –i.e., the underlining structure of exchanges– affects the decidability of

the Synchronisability Problem. Our first step generalises another result of [9], where it was shown that

Synchronisability Problem is decidable for oriented ring topologies, [9, Theorem 11]. Here, we consider

trees and show that the Synchronisability Problem is decidable. The result is obtained by showing that

the language of buffers is regular and can be computed. We believe that our algorithm can be extended

to multitrees (which are acyclic graphs where among each pair of nodes there is a single path). Notice

that our approach is more direct than the one in [1]. Instead of comparing (regular) sets of send traces

we directly analyse the content of buffers

Outline. The paper is organised as follows: Section 2 introduces the necessary terminology. The first

undecidability result is given in Section 3, while Section 4 discuss the decidability of synchronisability

for tree topologies. Finally, Section 5 concludes with some perspectives.

C. Di Giusto, L. Laversa & K. Peters 21

2 Preliminaries

For a finite set Σ, a word w = a1a2 . . .an ∈ Σ∗ is a finite sequence of symbols, such that ai ∈ Σ, for all

1 ≤ i ≤ n. The concatenation of two words w1 and w2 is denoted w1 ·w2, |w| denotes the length of w, and

ε denotes the empty word. We assume some familiarity with non-deterministic finite state automata, and

we write L (A) for the language accepted by automaton A.

A communicating automaton is a finite state machine that performs actions of two kinds: either sends

or receives. A network of communicating automata, or simply network, is the parallel composition of

a finite set P of participants that exchange messages. We consider a finite set of messages M. Each

message in M consists of a sender, a receiver, and some finite information. We denote ap→q ∈ M the

message sent from peer p to q with payload a, p 6= q, i.e., a peer can not send/receive messages to/from

itself. An action is the send !m or the reception ?m of a message m ∈M. We denote the set of actions for

peer p Actp = {!ap→q,?aq→p | ap→q ∈M∧ q ∈ P} and SActp = {!ap→q | ap→q ∈M∧ q ∈ P} the set of

sends from p.

Definition 2.1 (Network of communicating automata). N =((Ap)p∈P,M) is a network of communicating

automata, where:

1. for each p ∈ P, Ap = (Sp,s
p
0 ,M,→p,Fp) is a communicating automaton with Sp is a finite set of

states, s
p
0 ∈ Sp the initial state, →p ⊆ Sp ×Actp × Sp is a transition relation, and Fp a set of final

states and

2. for each m ∈M, there are p ∈ P and s1,s2 ∈ Sp such that (s1, !m,s2) ∈→p or (s1,?m,s2) ∈→p.

The topology of a system is a graph with arrows from senders to receivers.

Definition 2.2 (Topology). Let N =((Ap)p∈P,M) be a network of communicating automata. Its topology

is an oriented graph G(N) = (V,E), where V = {p | p ∈ P} and E = {(p,q) | ∃ap→q ∈M}.

Let P
p
send (resp. P

p
rec) be the set of participants sending to (resp. receiving from) p.

Different semantics can be considered for the same network depending on the communication mech-

anism. A system is a network together with a communication mechanism, denoted Ncom . It can com-

municate synchronously or asynchronously. In a synchronous system, each message sent is immediately

received, i.e., the communication exchange cannot be decoupled. In an asynchronous communication in-

stead, messages are stored in a memory. Here we only consider FIFO (First In First Out) buffers, which

can be bounded or unbounded. Summing up, we deal with:

• Synchronous (sync): there is no buffer in the system, messages are immediately received when

they are sent;

• P2P (p2p): there is a buffer for each pair of peers and direction of communication (n× (n− 1)
buffers), where one element of the pair is the sender and the other is the receiver;

• Mailbox (mbox): there are as many buffers as peers, each peer receives all its messages in a unique

buffer, no matter the sender.

We use configurations to describe the state of a system and its buffers.

Definition 2.3 (Configuration). Let N =
(

(Ap)p∈P,M
)

be a network. A sync configuration (respectively

a p2p configuration, or a mbox configuration) is a tuple C =
(

(sp)p∈P,B
)

such that:

• sp is a state of automaton Ap, for all p ∈ P

• B is a set of buffers whose content is a word over M with:

22 Synchronisability in Mailbox Communication

– an empty tuple for a sync configuration,

– a tuple (b12, . . . ,bn(n−1)) for a p2p configuration, and

– a tuple (b1, . . . ,bn) for an mbox configuration.

We write ε to denote an empty buffer, and B
/0 to denote that all buffers are empty. We write B{bi/b}

for the tuple of buffers B, where bi is substituted with b. We denote C the set of all configurations,

C0 =
(

(sp
0)p∈P,B

/0
)

is the initial configuration, and CF ⊆ C is the set of final configurations, where

sp ∈ Fp for all participant p ∈ P.

We describe the behaviour of a system with runs. A run is a sequence of transitions starting from an

initial configuration C0. Let com ∈ {sync, p2p, mbox} be the type of communication. We define −−→
com

∗

as the transitive reflexive closure of −−→
com

.

In order to simplify the definitions of executions and traces (given in what follows) and without loss

of generality, we choose to label the transition with the sending message !ap→q.

In a synchronous communication, we consider that the send and the receive of a message have done

at the same time, i.e., the synchronous relation sync-send merges these two actions.

Definition 2.4 (Synchronous system). Let N =
(

(Ap)p∈P,M
)

be a network. The synchronous system

Nsync associated with N is the smallest binary relation −−−→
sync

over sync-configurations such that:

sp !ap→q

−−−→p s′
p

sq ?ap→q

−−−→q s′
q

(sync-send)
(

(s1, . . . ,sp, . . . ,sq, . . . ,sn),B /0
) !ap→q

−−−→
sync

(

(s1, . . . ,s′p, . . . ,s′q, . . . ,sn),B /0
)

Definition 2.5 (Peer-to-peer system). Let N =
(

(Ap)p∈P,M
)

be a network. The peer-to-peer system

Np2p associated with N is the least binary relation −−→
p2p

over p2p configurations such that for each

configuration C =
(

(sp)p∈P,B
)

, we have B= (bpq)p6=q∈P, with bpq ∈ M
∗, and −−→

p2p
is the least transition

induced by:

sp !ap→q

−−−→p s′
p

(p2p-send)
(

(s1, . . . ,sp, . . . ,sn),B
) !ap→q

−−−→
p2p

(

(s1, . . . ,s′p, . . . ,sn),B{bpq/bpq ·a}
)

sq ?ap→q

−−−→q s′
q

bpq = a ·b′pq
(p2p-rec)

(

(s1, . . . ,sq, . . . ,sn),B
) ?ap→q

−−−→
p2p

(

(s1, . . . ,s′q, . . . ,sn),B{bpq/b′pq}
)

Definition 2.6 (Mailbox system). Let N =
(

(Ap)p∈P,M
)

be a network. The mailbox system Nmbox

associated with N is the smallest binary relation −−−→
mbox

over mbox-configurations such that for each

configuration C =
(

(sp)p∈P,B
)

, we have B= (bp)p∈P and −−−→
mbox

is the smallest transition such that:

sp !ap→q

−−−→p s′
p

(mbox-send)
(

(s1, . . . ,sp, . . . ,sn),B
) !ap→q

−−−→
mbox

(

(s1, . . . ,s′p, . . . ,sn),B{bq/bq ·a}
)

sq ?ap→q

−−−→q s′
q

bq = a ·b′q
(mbox-rec)

(

(s1, . . . ,sq, . . . ,sn),B
) ?ap→q

−−−→
mbox

(

(s1, . . . ,s′q, . . . ,sn),B{bq/b′q}
)

C. Di Giusto, L. Laversa & K. Peters 23

In order to study the behaviour of systems, we define the set of executions and traces. An execution

e is a sequence of actions leading to a final global state and the corresponding trace t is the projection on

the send actions1.

Definition 2.7 (Execution). Let N =
(

(Ap)p∈P,M
)

be a network and com ∈ {sync,p2p,mbox} be the

type of communication. E(Ncom) is the set of executions defined, with C0 the initial configuration, Cn a

final configuration and ai ∈ Act for all 1 ≤ i ≤ n, by:

E(Ncom) = {a1 · . . . ·an |C0
a1−−→
com

C1
a2−−→
com

. . .
an−−→
com

Cn}.

If w is a word over actions, then let w↓! (resp. w↓?) be its projection on only send (resp. receive)

actions, let w↓P its projection on only actions that involve only the participants in a set P, let w↓p its

projection on receives towards p and sends from p, and let w↓✚!? be the word over messages that results

from w by removing all ! and ?. We extend the operators ↓!, ↓?, ↓P, ↓p, and ↓✚!? to languages, by applying

them on every word of the language. Note that, w↓{p} is always empty, since there are no actions that

involve only a single participant p, whereas w↓p is the projection of w to its actions in that p has an active

role (sender in send actions and receiver in receive actions).

Definition 2.8 (Traces). Let N =
(

(Ap)p∈P,M
)

be a network and com ∈ {sync, p2p, mbox} be the type

of communication. T(Ncom) is the set of traces:

T(Ncom) = {e↓! | e ∈ E(Ncom)}.

A system is synchronisable if its asynchronous behaviour can be related to its synchronous one.

Thus, an asynchronous system is synchronisable if its set of traces is the same as the one obtained from

the synchronous system.

Definition 2.9 (Synchronisability). Let N =
(

(Ap)p∈P,M
)

be a network and com ∈ {p2p, mbox} be the

type of communication. The system Ncom is synchronisable if and only if T(Ncom) = T(Nsync).

Problems statements. We define the Synchronisability Problem as the decision problem of determin-

ing whether a given system, where all states are accepting states, is synchronisable or not. We also

consider the Generalised Synchronisability Problem without any constraints on the accepting states of

the system.

3 The Generalised Synchronisability Problem is Undecidable

The first contribution is about assessing the undecidability of the Generalised Synchronisability Problem

for the mailbox semantics. This result strongly relies on the notion of accepting word. Moreover, the

entire section considers networks without any constraints on final configurations (i.e., CF ⊆ C).

Post Correspondence Problem. We will resort to the Post Correspondence Problem (PCP) which

is known to be an undecidable decision problem [15], to prove that the Generalised Synchronisability

Problem is undecidable. We will show that the encoding of a PCP instance (W,W′) is not synchronisable

if and only if the instance has a solution.

1In Definition 2.8, we decide not to take into consideration the content of buffers, differently to others papers, like [9], where

the authors study stable configurations, i.e., configurations where buffers are empty.

24 Synchronisability in Mailbox Communication

AI

AW

AW ′

AL

Figure 1: Topology of the encoding of an instance (W,W′) of the PCP

Definition 3.1 (Post Correspondence Problem). Let Σ be an alphabet with at least two symbols. An

instance (W,W′) of the PCP consists of two finite ordered lists of the same number of non-empty words

W = w1,w2, . . . ,wn and W’ = w′
1,w

′
2, . . . ,w

′
n

such that wi,w
′
i ∈ Σ∗ for all indices 1 ≤ i ≤ n. A solution of this instance is a finite sequence of indices

Sol = (i1, i2, . . . , im) with m ≥ 1 and i j ∈ [1,n] for all 1 ≤ j ≤ m such that:

wi1 ·wi2 · . . . ·wim = w′
i1
·w′

i2
· . . . ·w′

im
.

Mailbox Encoding of the Post Correspondence Problem. The encoding in mailbox systems requires

some care. When an automaton is receiving messages from multiple participants, these messages are

interleaved in the buffer and it is generally not possible to anticipate in which order these messages have

been sent.

The encoding of an instance (W,W′) of the PCP is a parallel composition of four automata: AI , AW ,

AW ′ , and AL, where AI sends the same indices to AW and AW ′ which in turn send the respective words to

AL. AL compare letters and, at the end of the run, its state allows to say if a solution exists. The topology

and the buffer layout of the system is depicted in Figure 1.

We will explain our encoding over an example. Take the following PCP instance with Σ = {a,b},

W = a,b,abab and W′ = ba,baa,b. We know that there is a solution for this instance with Sol = (2,1,3).
Figures 2–5 depict the automata solving the PCP instance.

Automaton AI guesses the sequence of indexes and sends it to both AW and AW ′ . The message $ is

used to signal the end of the sequence. Automaton AW and AW ′ receive indexes from AI and send the

corresponding sequences of letters to AL. At the reception of message $, they send messages end to AL.

Automaton AL checks whether the sequences of letters produced by AW and AW ′ coincide. Letters from

AW and AW ′ need to be alternate and are read in turn, and the additional receptions are used to make the

system synchronisable and to recognize errors (i.e., sequences that are not a solution). If all comparisons

succeed, included the end messages, then AL sends message ok that is not received by any participant

and ends up in the unique accepting state.

More formally, we define the encoding as follows.

Definition 3.2 (Encoding of PCP in mailbox system). Let (W,W′) be a PCP instance over Σ. The

encoding of (W,W′) is the network JW,W′Kmbox =
(

(Ap)p∈P,M
)

where:

• P= {I,W,W ′,L}

• M=
{

iI→W , iI→W ′
| i ∈ [1,n]

}

∪
{

αW→L,αW ′→L | α ∈ Σ
}

∪M with

M =
{

$I→W ,$I→W ′
,endW→L,endW ′→L,okL→I

}

• AI = (SI ,s
I
0,M,→I ,FAI

) where SI =
{

q0,q$,q$′

}

∪{qi | i ∈ [1,n]}, sI
0 = q0, FAI

=
{

q$′

}

and

→I=

{

q0
!iI→W

−−−→ qi,qi
!iI→W ′

−−−→ q0 | i ∈ [1,n]

}

∪

{

q0
!$I→W

−−−→ q$,q$
!$I→W ′

−−−−→ q$′

}

C. Di Giusto, L. Laversa & K. Peters 25

0

1

2 3

$ $′

!1 I→
W!1 I→

W
′

!2
I→

W!2
I→

W
′ !3 I→

W!3 I→
W
′

!$I→W !$I→W ′

Figure 2: Automaton AI

0

1,0

2,0

3,0 3,1 3,2 3,3

f

$ e

?1I→W

?2I→W

?3I→W

!a W→
L

?1 I→W

!bW→L

?2I→W

!aW→L !bW→L !aW→L

!b W
→

L

?3
I→

W

?$I→W

!endW→L

Figure 3: Automaton AW

• AW = (SW ,sW
0 ,M,→W ,FAW

) where SW =
{

q0,q f ,q$,qe

}

∪
{

qi, j | i ∈ [1,n]∧ j ∈ [0, |wi|−1]
}

,

sW
0 = q0, FAW

= {qe} and

→W=

{

q0
?iI→W

−−−→ qi,0,q f
?iI→W

−−−→ qi,0 | i ∈ [1,n]

}

∪

{

qi,|wi |−1
!αW→L

−−−−→ q f | α = wi,|wi |∧ i ∈ [1,n]

}

∪

{

qi, j
!αW→L

−−−−→ qi, j+1 | α = wi, j+1 ∧ i ∈ [1,n]∧ j ∈ [1, |wi|−2]

}

∪

{

q f
?$I→W

−−−→ q$,q$
!endW→L

−−−−−→ qe

}

26 Synchronisability in Mailbox Communication

0

1,0 1,1

2,0 2,1 2,2

3,0 f

$ e

?1I→W ′

?2I→W ′

?3I→W ′

!bW ′→L

!a W ′→
L?1 I→W ′

!bW ′→L !aW ′→L

!aW ′→L

?2
I→

W
′

!bW ′→L

?3I→W ′

?$I→W ′

!endW ′→L

Figure 4: Automaton AW ′

• AL = (SL,s
L
0 ,M,→L,FAL

) where SL = {q0,qe,qe′ ,qok,q∗}∪{qα |α ∈ Σ}, sL
0 = q0, FAL

=
{

qok

}

and

→L=

{

q0
?αW→L

−−−−→ qα ,qα
?αW ′→L

−−−−→ q0 | α ∈ Σ

}

∪

{

qα
?βW ′→L

−−−−→ q∗ | β ∈ Σ∪{end}∧β 6= α

}

∪

{

q0
?αW ′→L

−−−−→ q∗ | α ∈ Σ∪{end}

}

∪

{

qα

?βW→L

−−−−→ q∗ | β ∈ Σ∪{end}

}

∪

{

qe
?αW→L

−−−−→ q∗ | α ∈ Σ

}

∪

{

qe
?αW ′→L

−−−−→ q∗ | α ∈ Σ

}

∪

{

q∗
?αX→L

−−−−→ q∗ | α ∈ Σ∪{end}∧X ∈ {W,W ′}

}

∪

{

q0
?endW→L

−−−−−→ qe,qe
?endW ′→I

−−−−−→ qe′ ,qe′
!okL→I

−−−→ qok

}

AW ′ is defined as AW but considering W′ instead of W.

It is easy to see that in the synchronous semantics the system cannot reach any final configuration,

because of message ok which cannot be sent since it cannot be received. The set of traces of the syn-

chronous system is indeed empty.

Lemma 3.3. Let (W,W′) an instance of PCP and N = JW,W′Kmbox its encoding into communicating

automata. Then T(Nsync) = /0.

In the mailbox semantics, message ok can be sent only if the encoded instance of PCP has a solution.

If the instance of PCP has no solution, then the mailbox system is unable to reach the final configuration

and the set of traces is empty. Summing up, the set of traces is not empty if and only if there exists a

solution to the corresponding PCP instance.

Lemma 3.4. For every instance (W,W′) of PCP, where N = JW,W′Kmbox, (W,W′) has a solution if and

only if T(Nmbox) 6= /0.

Proof. Let (W,W′) be a PCP instance and N = JW,W′Kmbox.

⇒ We show that if (W,W′) has a solution, then T(Nmbox) 6= /0. Let Sol(W,W′) = (i1, i2, . . . , im) be a

solution of (W,W′). Let w = a1 . . .an be the word generated from the sequence of indices. From

Definition 3.2, it is easy to see that the following execution t is possible and that it leads to a final

configuration with the final global state (qI
$′ ,q

W
e ,qW ′

e ,qL
ok):

C. Di Giusto, L. Laversa & K. Peters 27

0

a

b

∗

e

e′ ok

?a
W
→

L

?a
W
′ →

L

?b W
→

L

?b W ′→
L

?endW→L

?endW ′→L !okL→I

?aW ′→L

?bW ′→L ?endW ′→L

?aW→L ?aW ′→L

?bW→L ?endW ′→L

?endW→L

?aW→L

?bW→L ?bW ′→L

?endW→L ?endW ′→L

?aW ′→L

?bW ′→L

∗

Figure 5: Automaton AL

t =!iI→W
1 ·!iI→W ′

1 · . . . ·!iI→W
m ·!iI→W ′

m ·!$I→W ·!$′I→W ′
(1)

·!aW→L
1 ·!a′W

′→L
1 · . . . ·!aW→L

n ·!a′W
′→L

n ·!endW→L·!endW ′→L (2)

·!okL→I (3)

Part (1) consists of the indices sent by automaton AI in turn to the automata AW and AW ′ , including

the messages $,$′ that are used to signal the end of the sequence. Part (2) contains the letters of

word w sent in turn by AW and AW ′ upon reception of the corresponding indices to AL. Since we

are considering mailbox communication here, note that messages from AW and AW ′ must alternate.

Finally, automaton AL having matched all the words from AW and AW ′ , including the final end

messages is able to send the last message ok, part (3). Hence t ∈ T(Nmbox).
⇐ Conversely, we show that if t ∈ T(Nmbox), then there is a solution to (W,W′). Since t ∈ T(Nmbox),

t is the projection on send messages of an accepting execution t ′ ∈ E(Nmbox). By construction, to

reach state qL
ok we know that t ′ = t1·?endW→L·?endW ′→L·!okL→I!okL→I . With a similar reasoning,

to reach states qW
e and qW ′

e , t1↓! = t2↓!·!endW→L·!endW ′→L. This also entails that there has been

at least one index sent by automaton AI (both to AW and AW ′). In turn, upon reception of the

corresponding index, AW and AW ′ send the corresponding letters to AL. The sequence can only

be accepted if letters are queued in order: one letter from AW followed by the same letter from

AW ′ . Hence if we take the projection of t on the actions of AI we obtain a sequence of indices that

represent a solution to (W,W′).

Therefore, the system is synchronisable if and only if the encoded instance does not have solution.

Theorem 3.5. The Generalised Synchronisability Problem is undecidable for mailbox systems.

Proof. Let (W,W′) be an instance of PCP.

28 Synchronisability in Mailbox Communication

⇒ If (W,W′) has a solution, then by Lemma 3.4 T(Nmbox) 6= /0 and by Lemma 3.3 T(Nsync) = /0. Hence,

the system is not synchronisable.

⇐ Conversely, if (W,W′) has no solution, then by Lemma 3.4 T(Nmbox) = /0 and T(Nsync) = /0 by

Lemma 3.3. Hence the system is synchronisable.

4 Synchronisability of Mailbox Communication for Tree-like Topologies

We are interested in the Synchronisability Problem, where automata have no final states. Notice that this

is equivalent of having automata where all states are final. Thus, we consider networks where all config-

urations are final configurations (CF = C). The encoding in Section 3 cannot be used as it strongly relies

on the existence of special final configurations that can only be reached in the asynchronous (mailbox)

semantics. Moreover, because of the nature of mailbox communications, the encoding in [9] cannot be

used. In fact, the order of messages received from different recipients becomes important and the relative

speeds of the automata (W and W ′) producing the letters to be compared, cannot be “synchronised”.

In order to understand the expressiveness of mailbox system, we start by constraining the shape of

topologies. A topology (cfr. Definition 2.2) is the underlining communication structure marking the

direction of communication among participants. Here we start by considering topologies that form a tree

and we want to understand whether the topology impacts (or not) the decidability of the Synchronisability

Problem. When considering tree topologies, each of the inner automata (nodes) receives messages by

only one other participant. Because of this, systems with tree topologies will have the same set of

executions for both mailbox and P2P semantics.

Definition 4.1 (Tree topology). Let N = ((Ap)p∈P,M) be a network of communicating automata and

G(N) = (V,E) its topology. G(N) = (V,E) is a tree if it is connected, without any cycle, and | Pp
send |≤ 1

for all p ∈ P.

Let r ∈ P denote the root of the tree, i.e., Pr
send is empty. Notice that P

p
send is a singleton for all inner

nodes p ∈ P\{r}.

It is interesting to see that we can characterise an algorithm to check whether a system is synchronis-

able or not. To this aim, a system needs to validate two conditions:

1. the automata should provide matching receptions whenever their communication partners are

ready to send and

2. for each send of a parent there is a matching reception of the child.

The main idea is to use the tree structure to capture the influence the automata have on the language

of each other. The receptions of an automaton depend only on the availability of matching incoming

messages, i.e., in a tree by the sends of at most one parent. We compute the influenced language of Ap,

denoted L ≬(Ap), considering only the influence of its parent but not of its children. These languages

have to be computed from the root r—that does not depend on anybody—towards the leafs of the tree.

For an inner node of the tree the possible sequences of outputs of the respective (unique) parent node

determine the possible sequences of inputs it can perform and thus the outputs that can be unguarded.

The languages L
≬

? (Ap) and L
≬

! (Ap) are its respective projections on only receives or sends.

C. Di Giusto, L. Laversa & K. Peters 29

(a)

r

q

p

Ar:
!ar→q

Aq:
!bq→p ?ar→q

Ap:
?bq→p

(b)

r

q

p

Ar:
!ar→q

Aq:
?ar→q

!bq→p

!bq→p !cq→p

!cq→p ?ar→q

Ap:
?bq→p

?cq→p

?cq→p

?bq→p

Figure 6: Examples for dependencies that prevent synchronisability

Definition 4.2 (Influenced languages). Let p ∈ P. We define the influenced language as follows:

L
≬(Ap) =

{

L (Ar) if p = r
{

w | w ∈ L (Ap)∧ (w↓?)↓✚!? ∈
(

L
≬

! (Aq)
)

↓✚!? ∧P
p
send = {q}

}

otherwise

L
≬

? (Ap) = L
≬(Ap)↓?

L
≬

! (Ap) = L
≬(Ap)↓!

Since the root does not receive any message, it is not influenced by any parent. Hence, L
≬

? (Ar) = {ε}

and L ≬(Ar) = L
≬

! (Ar) = L (Ar). For any inner node p ∈ P of the tree, we allow only words with input

sequences that match a sequence of outputs of its parent q influenced language. To match inputs with

their corresponding outputs, we ignore the signs ! and ? using the projection ↓✚!?. Then L ≬(Ap) contains

the words of Ap that respect the possible input sequences induced by the parent q.

Example 4.1. Figure 6 depicts two examples of networks with their topology and the automata of each

participant. L ≬(Ap) only rules out paths that do not respect the sends of its parents. Hence, L ≬(Ar) =
L (Ar) = {ε , !ar→q}, L ≬(Aq) =L (Aq) = {ε , !bq→p, !bq→p?ar→q}, and L ≬(Ap) =L (Ap) = {ε ,?bq→p}
in Figure 6.(a), but in Figure 6.b) L ≬(Ap) = L (Ap)\{?cq→p,?cq→p?bq→p}.

In synchronous communication, sends and receptions are blocking, i.e., they have to wait for match-

ing communication partners. In asynchronous communication with unbounded buffers, only inputs are

blocking, whereas all outputs can be performed immediately. Hence, for synchronisability the automata

should provide matching inputs whenever their communication partners are ready to send. We use causal-

ity to check for this condition. For some automaton Ap, action a2 causally depends on action a1, denoted

as a1 <p a2, if for all w ∈ L ≬(Ap) action a2 does not occur or a1 occurs before a2.

First, we have to check that in no automata we find a relation of the form !x <p?y, because such a

dependency always leads to non-synchronisability. Intuitively, with !x <p?y, the automaton p enforces

the order !x before !y in the synchronous language, whereas in the asynchronous case with unbounded

buffers, these sends may occur in any order. Not having !x <p?y means that if !x can occur before ?y in

Ap, then another path in Ap allows to have ?y before !x.

Example 4.2. Consider Figure 6.(a), Nsync has to perform !bq→p before !ar→q, because ?ar→q is ini-

tially not available in Aq. In Nmbox , we have the execution !ar→q!bq→p?ar→q?bq→p and hence the trace

!ar→q!bq→p. The problem is the dependency !bq→p <q?ar→q, that blocks the a in the synchronous but

not the asynchronous system.

The other three kinds of dependencies are not necessarily problematic. Causal dependencies of the

form ?x <p?y are enforced by the parent of p. Dependencies of the form ?x <p!y allow p to make its

30 Synchronisability in Mailbox Communication

behaviour depending on the input of its parent. Finally, dependencies !x <p!y allow p to implement a

certain strategy on sends.

Note that, Ap may perform an action a several times. Thus, we count the occurrences of a in a word

such that a <p a′ is actually a#n <p a′#m, where a#i is the i’th occurrence of a. This allows to express

dependencies such as a#2 <p a#3 (the third a depends on the second) or a#2 <p a′#1 (a′ depends on the

second a). However, we keep the counters implicit, if they are not relevant, i.e., if every action is unique.

For instance all actions in the examples in Figure 6 are unique and thus we do not mention any counters.

Then, we have to check that missing inputs cannot block outputs of a parent. The word w′ is a

valid input shuffle of w, denoted as w′
�? w, if w′ is obtained from w by a (possibly empty) number of

swappings that replace some !x?y within w by ?y!x.

Definition 4.3 (Shuffled language). Let p ∈ P. We define its shuffled language as follows:

L
≬
�

(p) =
{

w′ | w ∈ L
≬(Ap)∧w′

�? w
}

Then we require L ≬(Ap) = L
≬
�

(p) to ensure synchronisability, and more precisely to avoid to have

any dependence !x <p?y in a participant p. Note that �? only allows to move inputs further to the front

by swapping them with outputs. Neither the order of outputs nor of inputs within the word is changed.

Example 4.3. Consider Figure 6.(b). This example is not synchronisable, because !bq→p!ar→q!cq→p ∈

T(Nmbox) but !bq→p!ar→q!cq→p /∈ T(Nsync). Indeed the condition L ≬(Ap) = L
≬
�

(p) is violated:

L
≬(Aq) = {ε ,?ar→q, !bq→p,?ar→q!bq→p, !bq→p!cq→p,?ar→q!bq→p!cq→p, !bq→p!cq→p?ar→q}

6= L
≬
�

(q) = L
≬(Aq)∪{!bq→p?ar→q, !bq→p?ar→q!cq→p}

Since Aq does not allow for all possible valid input shufflings, after b the action a becomes blocked in Aq

in the synchronous but not the asynchronous system.

Finally, we have to check that for each send of a parent there is a matching input in the child, i.e.,

L
≬

! (Aq)↓{p,q}↓✚!? ⊆L (Ap)↓✚!? whenever P
p
send = {q}. Unmatched sends appear as sends in asynchronous

languages, but are not present in synchronous languages. This is the trick that we have used in the Post

Correspondence encoding to force the synchronous set of traces to be empty.

Note that L
≬

! (Aq)↓{p,q}↓✚!? ⊆ L ≬(Ap)↓✚!? ∧L ≬(Ap) = L
≬
�

(p) ensures all three conditions, i.e., also

ensures that there are no dependencies of the form !x <p?y.

We prove first that words in L ≬(Aq) belong to executions of the mailbox system with unbounded

buffers that do not require any interaction with a child of q.

Lemma 4.4. Let N be a network such that CF = C, G(N) is a tree, q ∈ P, and w ∈ L ≬(Aq). Then there

is an execution w′ ∈ E(Nmbox) such that w′↓q = w and w′↓p = ε for all p ∈ P with P
p
send = {q}.

Proof. We construct w′ from the unique path from the root r to q. Let r = q1, q2, . . . , qn = q be this path of

length n such that P
qi

send = {qi−1} for all 1 < i ≤ n. Remember that in a tree there is exactly one path from

the root to every node. Hence, this path r = q1, q2, . . . , qn = q and its length n are uniquely defined by

q. In the following, let wn = w. For n = 1, i.e., for the case q = r and w ∈ L ≬(Aq), w consists of outputs

only. In this case we can choose w′ = w such that w′ ∈ E(Nmbox), w′↓q = w, and w′↓p = ε for all p ∈ P

with P
p
send = {q}. It remains to show that these conditions are satisfied if n > 1, i.e., q 6= r. Because of

w ∈ L ≬(Aq), there is some wn−1 ∈ L ≬
(

Aqn−1

)

such that (wn−1↓q)↓✚!? =
(

w↓qn−1

)

↓✚!?, i.e., wn−1 provides

the outputs for all inputs in wn in the required order. By repeating this argument moving from q towards

C. Di Giusto, L. Laversa & K. Peters 31

the root along the path, there is some wi−1 ∈ L ≬
(

Aqi−1

)

such that (wi−1↓qi
)↓✚!? =

(

wi↓qi−1

)

↓✚!? for all

1 < i ≤ n. Then w′ = w1w2 . . .wn. Since q1 = r is a root, w1 contains only outputs, i.e., w1 ∈ E(Nmbox).
For all inputs in w2, w1 provides the matching outputs in the correct order, i.e., w1w2 ∈ E(Nmbox). By

repeating this argument moving from r towards q along the path, then w′ = w1 . . .wn ∈ E(Nmbox). By

construction, w′↓q = w and w′↓p = ε for all p ∈ P with P
p
send = {q}.

Finally, the next theorem states that synchronisability can be checked by verifying that for all neigh-

bouring peers p and its parent q, all sequences of sends from q can be received by p at any moment, i.e.,

without blocking sends from p.

Theorem 4.5. Let N be a network such that CF = C and G(N) is a tree. Then T(Nmbox) = T(Nsync) iff,

for all p,q ∈ P with P
p
send = {q}, we have

(

L
≬

! (Aq)↓{p,q}

)

↓✚!? ⊆ L ≬(Ap)↓✚!? and L ≬(Ap) = L
≬
�

(p).

Proof. ⇒ Assume T(Nmbox) = T(Nsync). We have to show that 1.
(

L
≬

! (Aq)↓{p,q}

)

↓✚!? ⊆ L ≬(Ap)↓✚!?

and 2. L ≬(Ap) = L
≬
�

(p) for all p,q ∈ P with P
p
send = {q}.

1. Assume
(

L
≬

! (Aq)↓{p,q}

)

↓✚!? 6⊆L ≬(Ap)↓✚!? for some p,q ∈ P with P
p
send = {q}. Then there is

some sequence of outputs v ∈ L
≬

! (Aq)↓{p,q} for that there is no matching sequence of inputs

in L ≬(Ap), i.e., v↓✚!? /∈ L ≬(Ap)↓✚!?. By Lemma 4.4, then there is an execution v′ ∈ E(Nmbox)
such that (v′↓!)↓q = v and v′↓p = ε . Hence, v′↓! ∈ T(Nmbox) = T(Nsync) = E(Nsync). Be-

cause of v′↓! ∈ E(Nsync) and v′↓p = ε , Ap has to be able to receive the sequence of outputs

of v without performing any outputs itself, i.e., v↓✚!? ∈ (L (Ap)↓?)↓✚!? and v↓✚!? ∈ L
≬

? (Ap)↓✚!?.

But then v↓✚!? ∈ L ≬(Ap)↓✚!?. This is a contradiction. We conclude that
(

L
≬

! (Aq)↓{p,q}

)

↓✚!? ⊆

L ≬(Ap)↓✚!? for all p,q ∈ P with P
p
send = {q}.

2. By definition, L ≬(Ap) ⊆ L
≬
�

(p). Assume v ∈ L
≬
�

(p). We have to show that v ∈ L ≬(Ap).

Since v ∈ L
≬
�

(p), then there is some v′ such that v′ ∈ L ≬(Ap) and v′�? v. We consider

the shortest two such words v and v′, i.e., v = w?aq→p!x1 . . .!xn and v′ = w!x1 . . .!xn?aq→p

with n > 0, where P
p
send = {q} and x1, . . .xn are ouputs from p to its children. Then also

w!x1 . . .!xn?aq→p ∈ L ≬(Ap). By Lemma 4.4, then there is an execution w′ ∈ E(Nmbox) such

that w′↓p = w!x1 . . .!xn?aq→p. By the construction of w′ in the proof of Lemma 4.4, w′

contains the output !aq→p before the outputs !x1 . . .!xn. Then !aq→p occurs before !x1 . . .!xn in

w′↓! ∈ T(Nmbox). Since T(Nmbox) = T(Nsync) = E(Nsync), w′↓! ∈ E(Nsync). Then Ap has to

receive ?aq→p before sending !x1 . . .!xn, i.e., v = w?aq→p!x1 . . .!xn ∈ L ≬(Ap). We conclude

that L ≬(Ap) = L
≬
�

(p).

⇐ Assume that
(

L
≬

! (Aq)↓{p,q}

)

↓✚!? ⊆ L ≬(Ap)↓✚!? and L ≬(Ap) = L
≬
�

(p) for all p,q ∈ P with P
p
send =

{q}. We have to show that T(Nmbox) = T(Nsync).
w ∈ T(Nmbox): Let w′ be the word obtained from w by adding the matching receive action directly

after every send action. We show that w′ ∈ E(Nmbox), by an induction on the length of w.

Base Case: If w =!aq→p, then w′ =!aq→p?aq→p. Since w ∈ T(Nmbox), Aq is able to send

!aq→p in its initial state within the system Nmbox . Then !aq→p ∈ L
≬

! (Aq). Because of
(

L
≬

! (Aq)↓{p,q}

)

↓✚!? ⊆ L ≬(Ap)↓✚!?, then ?aq→p ∈ L ≬(Ap), i.e., Aq can receive ?aq→p in

its initial state. Then w′ ∈ E(Nmbox).
Inductive Step: If w = v!aq→p with v!aq→p ∈ T(Nmbox), then w′ = v′!aq→p?aq→p. By in-

duction, v′ ∈ E(Nmbox). Since w = v!aq→p ∈ T(Nmbox), Aq is able to perform !aq→p in

32 Synchronisability in Mailbox Communication

some state after performing all the outputs in v. Since v′↓! = v, then Aq is able to per-

form !aq→p in some state after performing all the outputs in v′. Also inputs of Aq cannot

prevent Aq from sending !aq→p after v′, because:

• For all such inputs ?y there has to be !y occurring before the input.

• Then !y is among the outputs of v, because Aq is able to perform !aq→p in some state

after performing all the outputs in v of q.

• Then also ?y is already contained in v′, by the construction of v′.

This entails that Aq can send !aq→p after execution v′ such that v′!aq→p ∈ E(Nmbox).

Hence we have
(

(v′!aq→p)↓{p,q}

)

↓! =
(

w↓{p,q}

)

↓! ∈L
≬

! (Aq)↓{p,q} and after v′!aq→p all

buffers are empty except for the buffer of Ap that contains only aq→p. By noticing that
(

L
≬

! (Aq)↓{p,q}

)

↓✚!? ⊆ L ≬(Ap)↓✚!?, then
(

(v′?aq→p)↓{p,q}

)

↓? ∈ L ≬(Ap), i.e., Ap is able

to receive ?aq→p in some state after receiving all the inputs in v′. By L ≬(Ap) = L
≬
�

(p)
and since aq→p is in its buffer, then Ap can receive ?aq→p after execution v′!aq→p such

that w′ = v′!aq→p?aq→p ∈ E(Nmbox).
Hence w′ ∈ E(Nmbox). This entails that the synchronous system can simulate the run of w′

in Nmbox by combining a send action with its direct following matching receive action into a

synchronous communication. Since w′↓! = w, then w ∈ E(Nsync) = T(Nsync).
w ∈ T(Nsync): For every output in w, Nsync was able to send the respective message and directly

receive it. Let w′ be the word obtained from w by adding the matching receive action directly

after every send action. Then Nmbox can simulate the run of w in Nsync by sending every mes-

sage first to the mailbox of the receiver and then receiving this message. Then w′ ∈ E(Nmbox)
and, thus, w = w′↓! ∈ T(Nmbox).

Since there is no difference between mailbox and P2P communication with a tree topology, we have

T(Nmbox) = T(Np2p). Accordingly, Theorem 4.5 provides a decision procedure for mailbox and P2P

systems. In both cases it suffice to algoritmically check, whether
(

L
≬

! (Aq)↓{p,q}

)

↓✚!? ⊆ L ≬(Ap)↓✚!? and

L ≬(Ap) = L
≬
�

(p) for all p,q ∈ P with P
p
send = {q}. This can be done by computing the influenced

languages starting from the root moving down in the tree.

Corollary 4.6. Let N be a network such that CF = C and G(N) is a tree. Then the Synchronisability

Problem is decidable for P2P and mailbox communication.

5 Discussion

In this paper, we start answering a problem that have remained open since [9]. We first have shown

that the Generalised Synchronisability Problem is undecidable for mailbox systems. The undecidability

result cannot be easily adpated to communicating automata without final states as the role of automaton

AL (i.e., the comparator) is made more complex by the fact that letters that end up in its buffer are mixed

between those coming from AW and AW ′ . This would require an additional synchronisation between AW

and AW ′ which would mess the exchanges between those automata and AI .

Hence, in an attempt to get closer to a proof of decidability for Synchronisability Problem, we con-

sidered tree topologies. We have presented an algorithm to decide synchronisability for systems that

feature a tree topology. The key ingredient in the above algorithm for trees is, that we can compute the

languages L ≬(Ap) and thus the possible behaviour for every node, by starting from the root and follow-

C. Di Giusto, L. Laversa & K. Peters 33

ing the unique path from the root to the respective node. Then we only check properties on a single node

(L ≬(Ap) = L
≬
�

(p)) or between two neighbouring nodes (L
≬

! (Aq)↓{p,q}↓✚!? ⊆ L ≬(Ap)↓✚!?).

We conjecture that this result can be extended to reversed trees and multitrees [10]. By observing

that a forest is synchronisable if and only if each of its trees is synchronisable. Moreover reversed trees

and multitrees have the same property of featuring unique paths between any two nodes. Hence, we con-

jecture that the above technique can be extended to reversed trees and multitrees. Moreover the absence

of coordination between brothers should also entail that the result is true for P2P. These developments

are left for future work. Moreover, we are working on a mechanisation of our proofs in Isabelle, which

is quite challenging as there are few existing mechanisation approaches for communicating automata.

References

[1] Samik Basu & Tevfik Bultan (2016): On deciding synchronizability for asynchronously communicat-

ing systems. Theoretical Computer Science 656, pp. 60–75, doi:10.1016/j.tcs.2016.09.023. Available at

http://www.sciencedirect.com/science/article/pii/S0304397516305102.

[2] Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Étienne Lozes & Amrita Suresh

(2021): A Unifying Framework for Deciding Synchronizability. In Serge Haddad & Daniele Varacca,

editors: 32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021,
Virtual Conference, LIPIcs 203, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 14:1–14:18,

doi:10.4230/LIPICS.CONCUR.2021.14.

[3] Ahmed Bouajjani, Constantin Enea, Kailiang Ji & Shaz Qadeer (2018): On the Completeness of Verifying

Message Passing Programs Under Bounded Asynchrony. In Hana Chockler & Georg Weissenbacher, editors:

Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, Lecture Notes in Computer

Science 10982, Springer, pp. 372–391, doi:10.1007/978-3-319-96142-2 23.

[4] Daniel Brand & Pitro Zafiropulo (1983): On Communicating Finite-State Machines. Journal of the ACM

30(2), pp. 323–342, doi:10.1145/322374.322380.

[5] Bernadette Charron-Bost, Friedemann Mattern & Gerard Tel (1996): Synchronous, Asynchronous, and

Causally Ordered Communication. Distributed Comput. 9(4), pp. 173–191, doi:10.1007/S004460050018.

[6] Florent Chevrou, Aurélie Hurault & Philippe Quéinnec (2016): On the diversity of asynchronous communi-

cation. Formal Aspects Comput. 28(5), pp. 847–879, doi:10.1007/S00165-016-0379-X.

[7] Cinzia Di Giusto, Davide Ferré, Laetitia Laversa & Étienne Lozes (2023): A Partial Order View

of Message-Passing Communication Models. Proc. ACM Program. Lang. 7(POPL), pp. 1601–1627,

doi:10.1145/3571248.

[8] Cinzia Di Giusto, Laetitia Laversa & Étienne Lozes (2020): On the k-synchronizability of Systems. In Jean

Goubault-Larrecq & Barbara König, editors: Foundations of Software Science and Computation Structures -

23rd International Conference, FOSSACS 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Lecture Notes in

Computer Science 12077, Springer, pp. 157–176, doi:10.1007/978-3-030-45231-5 9.

[9] Alain Finkel & Etienne Lozes (2017): Synchronizability of Communicating Finite State Machines

is not Decidable. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn & Anca Muscholl, edi-

tors: 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), Leib-

niz International Proceedings in Informatics (LIPIcs) 80, Schloss Dagstuhl–Leibniz-Zentrum fuer In-

formatik, Dagstuhl, Germany, pp. 122:1–122:14, doi:10.4230/LIPIcs.ICALP.2017.122. Available at

http://drops.dagstuhl.de/opus/volltexte/2017/7402. ISSN: 1868-8969.

https://doi.org/10.1016/j.tcs.2016.09.023
http://www.sciencedirect.com/science/article/pii/S0304397516305102
https://doi.org/10.4230/LIPICS.CONCUR.2021.14
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/S004460050018
https://doi.org/10.1007/S00165-016-0379-X
https://doi.org/10.1145/3571248
https://doi.org/10.1007/978-3-030-45231-5_9
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
http://drops.dagstuhl.de/opus/volltexte/2017/7402

34 Synchronisability in Mailbox Communication

[10] George W. Furnas & Jeff Zacks (1994): Multitrees: enriching and reusing hierarchical structure. In: Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’94, Association for

Computing Machinery, New York, NY, USA, p. 330–336, doi:10.1145/191666.191778.

[11] Blaise Genest, Dietrich Kuske & Anca Muscholl (2006): A Kleene theorem and

model checking algorithms for existentially bounded communicating automata. Informa-

tion and Computation 204(6), pp. 920–956, doi:10.1016/j.ic.2006.01.005. Available at

http://www.sciencedirect.com/science/article/pii/S0890540106000290.

[12] Cinzia Di Giusto, Laetitia Laversa & Étienne Lozes (2023): Guessing the Buffer Bound for k-

Synchronizability. Int. J. Found. Comput. Sci. 34(8), pp. 1051–1076, doi:10.1142/S0129054122430018.

[13] Dietrich Kuske & Anca Muscholl (2021): Communicating automata. In Jean-Éric Pin, editor: Handbook of

Automata Theory, European Mathematical Society Publishing House, Zürich, Switzerland, pp. 1147–1188,

doi:10.4171/AUTOMATA-2/9.

[14] Leslie Lamport (1978): Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM

21(7), pp. 558–565, doi:10.1145/359545.359563.

[15] Emil L. Post (1946): A variant of a recursively unsolvable problem. Bulletin of the Ameri-

can Mathematical Society 52(4), pp. 264–268, doi:10.1090/S0002-9904-1946-08555-9. Available at

https://www.ams.org/bull/1946-52-04/S0002-9904-1946-08555-9/.

https://doi.org/10.1145/191666.191778
https://doi.org/10.1016/j.ic.2006.01.005
http://www.sciencedirect.com/science/article/pii/S0890540106000290
https://doi.org/10.1142/S0129054122430018
https://doi.org/10.4171/AUTOMATA-2/9
https://doi.org/10.1145/359545.359563
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://www.ams.org/bull/1946-52-04/S0002-9904-1946-08555-9/

G. Caltais and C. Di Giusto (Eds.): EXPRESS/SOS 2024
EPTCS 412, 2024, pp. 35–50, doi:10.4204/EPTCS.412.4

© R.Y. Amjad, R.J. van Glabbeek & L. O’Connor
This work is licensed under the
Creative Commons Attribution License.

Semantics for Linear-time Temporal Logic with Finite
Observations

Rayhana Amjad
University of Edinburgh

Edinburgh, Scotland
rayhana.amjad@ed.ac.uk

Rob van Glabbeek
University of Edinburgh

Edinburgh, Scotland
rvg@cs.stanford.edu

Liam O’Connor
Australian National University

Canberra, Australia
liam.oconnor@anu.edu.au

LTL3 is a multi-valued variant of Linear-time Temporal Logic for runtime verification applications.
The semantic descriptions of LTL3 in previous work are given only in terms of the relationship to
conventional LTL. Our approach, by contrast, gives a full model-based inductive accounting of the
semantics of LTL3, in terms of families of definitive prefix sets. We show that our definitive prefix
sets are isomorphic to linear-time temporal properties (sets of infinite traces), and thereby show that
our semantics of LTL3 directly correspond to the semantics of conventional LTL. In addition, we
formalise the formula progression evaluation technique, popularly used in runtime verification and
testing contexts, and show its soundness and completeness up to finite traces with respect to our
semantics. All of our definitions and proofs are mechanised in Isabelle/HOL.

1 Introduction

Linear-time Temporal Logic (LTL) [MP92] is one of the most commonly-used logics for the specification
of reactive systems. It adds to propositional logic temporal modalities to describe behaviours: completed,
infinite traces describing the execution of a system over time. In the context of runtime monitoring or
testing, however, we can only make finite observations, and must therefore turn to variants of LTL with
finite traces as models. The oldest such variant, commonly attributed to Pnueli1, concerns finite or
infinite completed traces, but this is also not suitable for the context of runtime monitoring, as our finite
observations are not completed traces, but finite prefixes of infinite behaviours: partial traces.

Bauer et al. [BLS11] describe a variant of LTL for partial traces called LTL3 that distinguishes be-
tween those formulae that can be definitively said to be true or false from just the partial trace provided,
and those formulae which are indeterminate, requiring further states to evaluate definitively. As we shall
see in Section 2, the semantics of LTL3 in the literature are given only in terms of conventional LTL,
and Bauer et al. [BLS10] further claim that LTL3 cannot be given an inductive semantics, a claim that is
refuted by the present paper.

We give a compositional, inductive semantics for LTL3, in terms of families of definitive prefix sets:
sets of all (finite or infinite) traces which are sufficient to definitively establish or refute the given formula.
We introduce the concept of definitive prefix sets in Section 3, and our semantics in Section 4. We
show that definitive prefix sets are determined uniquely by their infinite traces, i.e., that our definitive
prefix sets are isomorphic to linear-time temporal properties, and thereby we show that the semantics of
conventional LTL and of LTL3 correspond directly. LTL3, then, can be understood merely as a different
presentation of conventional LTL.

In Section 5 we turn to formula progression, a popular technique for evaluating formulae against a
finite trace where the formula is evaluated state-by-state, in a style reminiscent of operational semantics

1Such logics are found in many early papers on LTL with Pnueli as a coauthor such as Lichtenstein et al. [LPZ85], but
Manna and Pnueli [MP95], which is usually cited, does not mention finite traces at all.

http://dx.doi.org/10.4204/EPTCS.412.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

36 Semantics for Linear-time Temporal Logic with Finite Observations

Formulae ϕ,ψ ∶∶= ⊺ ∣ a
∣ ¬ϕ

∣ ϕ ∧ψ

∣ ϕ

∣ ϕ U ψ

Atomic propositions a ∈ A
Traces t,u ∈ Σ

∞

States Σ = P(A)

Abbreviations:

� ≜ ¬⊺
ϕ ∨ψ ≜ ¬(¬ϕ ∧¬ψ)

ϕ ≜ ⊺ U ϕ

ϕ Rψ ≜ ¬(¬ϕ U ¬ψ)
ϕ ≜ �Rϕ

Figure 1: Syntax of LTL

or the Brzozowski derivative. Bauer and Falcone [BF12] claim without proof that formula progression
yields an equivalent semantics to LTL3. In this paper, we make this statement formally precise, and
prove soundness and completeness (modulo a sufficiently powerful simplifier) of the formula progression
technique with respect to our semantics.

Finally in Section 6, we relate our work to other characterisations of prefixes, traces, and properties,
as well as to other multi-valued variants of LTL. All of our work has been mechanised in the Isabelle/HOL
proof assistant, proofs of which are available for download [AGO24].

2 Linear-time Temporal Logic

Figure 1 describes the syntax of LTL formulae and adjacent definitions. LTL extends propositional
logic over states (sets of atomic propositions) with temporal operators to produce a logic over traces,
sequences of states. We denote the set of all states as Σ. A trace t may be finite (in Σ

∗) or infinite (in
Σ

ω). We denote the set of all traces, i.e. Σ
∗∪Σ

ω , as Σ
∞. Two traces t and u may be concatenated in the

obvious way, written as tu. If t is infinite, then tu = t. The empty trace is denoted ε .
Our formulation takes conjunction, negation, atomic propositions and the temporal operators next

() and until (U) as primitive, with disjunction and the temporal operators eventually (), always ()
and release (R) derived from these primitives.

Figure 2 gives the semantics of conventional LTL, as a satisfaction relation whose models are infinite
traces. Here t0 denotes the first state of a trace t. As we only include future temporal operators, we
can advance to the future by dropping initial prefixes from the trace. The notation t∣n denotes the trace t
without the first n states. If n is greater than the length of t, the result of t∣n is the empty trace ε . Note
that our until operator (U) is strong, in that ϕ U ψ requires that ψ eventually becomes true at some point
in the trace.

R.Y. Amjad, R.J. van Glabbeek & L. O’Connor 37

Σ
ω ⊧ ϕ

t ⊧ ⊺
t ⊧ a iff a ∈ t0
t ⊧ ¬ϕ iff t ⊭ ϕ

t ⊧ ϕ ∧ψ iff t ⊧ ϕ and t ⊧ψ

t ⊧ ϕ iff t∣1 ⊧ ϕ

t ⊧ ϕ U ψ iff there exists i s.t. t∣i ⊧ψ and ∀ j < i. t∣ j ⊧ ϕ

Figure 2: Semantics of conventional LTL

Bauer et al. [BLS11] describe LTL3 as a three-valued logic that interprets LTL formulae on finite
prefixes to obtain a truth value in B3 = {T,F,?}. For a formula ϕ and a finite prefix t, the truth value T
indicates that ϕ can be definitively established from t alone, whereas F indicates that ϕ can be definitively
refuted from t alone. The third value ? indicates that the formula ϕ can neither be established nor refuted
from t alone:

[t ⊧3 ϕ] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T if ∀u ∈ Σ
ω . tu ⊧ ϕ

F if ∀u ∈ Σ
ω . tu ⊭ ϕ

? otherwise

Because the truth value ? indicates merely that neither T nor F apply, LTL3 can be better understood as a
two-valued partial logic [Bla02], where ? indicates the absence of a truth value. In this view, LTL3 only
gives truth values when the trace is definitive, i.e., when the answer given will not change regardless of
how the trace is extended.

Bauer et al. [BLS11] note that this presentation of LTL3 is inherently non-inductive, i.e., the answer
given for a compound formula cannot be produced by combining the answers for its components. To see
why, consider the formula ϕ = a∨ ¬a. Using the semantics above, we have [ε ⊧3 ϕ] = T but each
component of ϕ produces no definitive answer for the empty trace, i.e. [ε ⊧3 a] = [ε ⊧3 ¬a] = ?.
Likewise both components of the formula ψ = b∨ ¬c produce the answer ? for the empty trace, but
unlike ϕ , we have [ε ⊧3 ψ] = ?. Therefore, there is no way to combine two ? answers in a disjunction that
produces correct answers for both ϕ and ψ . Because of this, Bauer et al. [BLS11] claim that inductive
semantics are impossible for LTL3. As we shall see, however, this claim applies only to the multi-
valued semantics defined above. In our development, which associates sets of traces to each formula,
the semantics for a given formula can indeed be compositionally constructed from the semantics of its
components.

3 Definitive Prefix Sets

In this section, we develop a theory of definitive prefixes, which we will use in Section 4 to give a
semantics to LTL3. We denote the set of prefixes of a trace t as ↓t:

↓t ≜ {u ∣ ∃v ∈ Σ
∞. t = uv}

We also generalise this notation to sets, so ↓X is the set of all prefixes of traces in X . The set of all
extensions of a trace t is likewise written as ↑t:

↑t ≜ {tu ∣ u ∈ Σ
∞}

38 Semantics for Linear-time Temporal Logic with Finite Observations

The set of definitive prefixes of a set of traces X is written ☇X . This is the set of all traces for which all
extensions are a prefix of a trace in X .

☇X ≜ {t ∣ ↑t ⊆ ↓X}

Equivalently, t is a definitive prefix of X iff X contains all infinite extensions of t: ☇X = {t ∣ ↑t ∩Σ
ω ⊆ X}.

Intuitively, this means that ☇X contains all those traces for which reaching X ∩Σ
ω is in some way in-

evitable, even if it hasn’t happened yet. Definitive prefixes are therefore similar to the notion of good and
bad prefixes from Kupferman and Vardi [KV01], just without any moral judgement (see Section 6.1).

A set X of traces is called definitive iff X = ☇X . Let D ⊆P(Σ∞) denote the set of all definitive sets.
For any set of traces X , we have the following straightforwardly from the definitions:

• All definitive prefixes are prefixes, i.e. ☇X ⊆ ↓X .

• The set ☇X itself is definitive, i.e. ☇☇X = ☇X .

• Any extension of a definitive prefix is also a definitive prefix, i.e. ∀t ∈ ☇X . ↑ t ⊆ ☇X .

• The definitive prefix operator ☇ distributes over intersection, i.e ☇(⋂i∈I Xi) =⋂i∈I ☇Xi.

The sets ∅ and Σ
∞ are both definitive, and the definitive sets are closed under intersection, i.e., for a

set of definitive sets S, ☇⋂S = ⋂S. This follows from the distributivity theorem above. The definitive
sets are not closed under union, however. To see why, consider when Σ = {A,B} and the set XA contains
all traces starting with A and the set XB contains all traces starting with B. The sets XA and XB are both
definitive, but their union is not: neither XA nor XB contain the empty trace ε , but ε ∈ ☇(XA ∪XB), as all
extensions of ε (i.e. all non-empty traces) must begin with either A or B.

3.1 Lattice Properties

Define the definitive union, written ⋃☇ S or X ∪☇ Y in the binary case, as merely the definitive prefixes of
the union:

⋃☇ S ≜ ☇⋃S

Theorem 1. The definitive union gives least upper bounds for definitive sets ordered by set inclusion,
i.e., for a set S ⊆D of definitive sets:

• For all X ∈ S, X ⊆⋃☇ S.

• If there is a definitive set Z such that ∀X ∈ S. X ⊆ Z, then ⋃☇ S ⊆ Z.

Proof. Follows from definitions.

Thus, the definitive sets D ordered by set inclusion form a complete lattice, where the supremum is the
definitive union, the infimum is the intersection, the greatest element ⊺ is Σ

∞ and the least element � is
∅.

3.2 Isomorphism to Linear-time Temporal Properties

Theorem 2. Define the lower adjoint Pr ∶D →P(Σω) as Pr(X) = X ∩Σ
ω , and the upper adjoint Df ∶

P(Σω)→D as Df(P) = ☇P. We have, for any definitive set X and linear-time temporal property P:

Pr(X) = P if and only if X =Df(P)

Proof. Proving each direction separately:

R.Y. Amjad, R.J. van Glabbeek & L. O’Connor 39

Ô⇒ It suffices to show that Df(Pr(X)) = X , i.e. ☇(X ∩Σ
ω) = X . Because any extension of a definitive

prefix is also a definitive prefix, and all traces in X are definitive prefixes, every finite trace in X
must be a prefix of some infinite trace in X . Thus, the infinite traces in X alone are sufficient to
describe all their definitive prefixes, i.e., all traces in X .

⇐Ô It suffices to show that Pr(Df(P)) = P, i.e. ☇P∩Σ
ω = P. Recall that the definitive prefixes of P

are all those traces t for which all extensions of t are a prefix of a trace in P. For an infinite trace
t ∈ P, the set of extensions ↑t is just {t}, which is surely contained in ↓P. Therefore, for a linear-
time temporal property P (consisting only of infinite traces), we can conclude P ⊆ ☇P. In fact, ☇P
consists of all the (infinite) traces of P as well as possibly some finite prefixes of these. Hence
☇P∩Σ

ω = P.

Theorem 3. Pr (and likewise for Df) is monotone and preserves least upper and greatest lower bounds,
i.e:

• If A ⊆ B then Pr(A) ⊆ Pr(B)
• Pr(⋂i∈I Xi) =⋂i∈I Pr(Xi)
• Pr(⋃☇ i∈I Xi) =⋃i∈I Pr(Xi)

Proof. The first two statements follow directly from definitions. Preservation of least upper bounds
requires more finesse. As we have already seen in the proof of Theorem 2, for any set of traces S,
Pr(☇S) = Pr(S). This means that Pr(⋃☇ i∈I Xi) = Pr(⋃i∈I Xi) =⋃i∈I Pr(Xi) as required.

These theorems say that (Pr,Df) forms a lattice isomorphism between definitive sets and linear-time
temporal properties.

4 Semantics of LTL and LTL3

4.1 Answer-indexed Families

We give a semantics to LTL3 by compositionally assigning to each formula an answer-indexed family of
definitive sets. In general, an answer-indexed family is a function that, given an answer (e.g. a value in
B = {T,F}), produces a set of models (depending on the logic, this could be a set of states, a definitive
set, a linear-time temporal property, etc.). This set contains all those models which produce the given
answer for the formula in question. In this way, we invert the traditional presentation of multi-valued
logics, where the truth value is the output of a satisfaction function, and instead take the desired answer a
as an input and produce models as an output: a = [σ ⊧ ϕ] becomes σ ∈ JϕK a. An answer-indexed family
for conventional, infinite-trace LTL therefore produces a linear-time temporal property as an output:

Φ,Ψ ∈ B→P(Σω)
whereas an answer-indexed family for LTL3 produces a definitive set as an output:

Φ,Ψ ∈ B→D
To begin with, we define an alternative semantics for conventional LTL in terms of answer-indexed
families of linear-time temporal properties. This requires us to define various operations on answer-
indexed families, one for each kind of LTL constructor:

⊺ T = Σ
ω (Φ ∧ Ψ) T =Φ T∩Ψ T (Φ ∨ Ψ) T =Φ T∪Ψ T (¬ Φ) T =Φ F

⊺ F =∅ (Φ ∧ Ψ) F =Φ F∪Ψ F (Φ ∨ Ψ) F =Φ F∩Ψ F (¬ Φ) F =Φ T

40 Semantics for Linear-time Temporal Logic with Finite Observations

J⊺K = ⊺

JaK = 2a7
J¬ϕK = ¬ JϕK

Jϕ ∧ψK = JϕK ∧ JψK
Jϕ ∨ψK = JϕK ∨ JψK

J ϕK = JϕK
Jϕ U ψK = JϕK U JψK

Figure 3: LTL semantics using answer-indexed families

Note that the set operations used for the F answer are always the duals of the operations used for the
T answer, which means that for conventional LTL, the set produced for the F answer is always the
complement of the set for the T answer. This means that the operator for negation (¬) can simply swap
the places of the set and its complement. This is akin to performing a conversion to negation normal
form “just-in-time” as we evaluate a formula.
For atomic propositions a, the corresponding answer-indexed family maps T to the set of all traces that
begin with a state containing a, and F to its complement:

2a7 T = {t ∣ t ∈ Σ
ω ∧a ∈ t0}

2a7 F = {t ∣ t ∈ Σ
ω ∧a ∉ t0}

The semantic operator for ϕ formulae prepends one state to all the corresponding traces for ϕ , analo-
gously to the conventional LTL semantics in Figure 2:

(Φ) T = {t ∣ t∣1 ∈Φ T}
(Φ) F = {t ∣ t∣1 ∈Φ F}

The T case of the semantic operator for ϕ U ψ formulae is also defined analogously to Figure 2, with the
F case being the complement:

(Φ U Ψ) T = {t ∣ ∃k.(∀i < k.t∣i ∈Φ T)∧ t∣k ∈Ψ T}
(Φ U Ψ) F = {t ∣ ∀k.(∃i < k.t∣i ∈Φ F)∨ t∣k ∈Ψ F}

Finally, we put all of these semantic operators to use in Figure 3, which gives a compositional, inductive
semantics to conventional LTL using these operators.

Theorem 4 (Equivalence to conventional semantics). Answer-indexed family LTL semantics assigns the
same truth values to a given trace for a given formula as conventional LTL semantics:

• (t ⊧ ϕ)⇐⇒ (t ∈ JϕK T)
• ¬(t ⊧ ϕ)⇐⇒ (t ∈ JϕK F)

Proof. This is proven straightforwardly by induction on ϕ , justified in the same way as a conversion to
negation normal form.

R.Y. Amjad, R.J. van Glabbeek & L. O’Connor 41

4.2 The Prepend Operation

To give a semantics to LTL3, our answer-indexed families will produce definitive sets, rather than linear-
time temporal properties. To this end, we will define an auxiliary operation on definitive sets called
prepend, written ▷X , which gives all traces whose tails are in X :

▷X ≜ {t ∣ t∣1 ∈ X}

Theorem 5. The prepend operation is closed for definitive sets. That is, if X is definitive, then ▷X is
definitive.

Proof. We must show that ☇(▷X) =▷X for any definitive set X . Showing each direction separately:

Ô⇒ Given a definitive prefix t ∈ ☇(▷X), we must show that t ∈ ▷X . If t = ε , then this implies
that ▷X = Σ

∞ and therefore t ∈ ▷X . If t = σu, because ↓(▷X) = ▷(↓X), we can conclude
↑σu ⊆▷(↓ X). Taking the tail of both sides, we can see that ↑u ⊆ ↓X and therefore u ∈ X as X
is definitive. Prepending σ to both sides, we conclude that σu ∈▷X as required.

⇐Ô Given a prefix t ∈▷X , we must show that t ∈☇(▷X). If t = ε , this means that X =▷X =☇(▷X)=Σ
∞

as X is definitive. If t = σu, we know that u ∈ X . As X is definitive, all extensions of u are also in
X . Therefore ▷(↑u) ⊆ X and thus σu ∈ ☇(▷X).

4.3 Semantics for LTL3

The semantic operators for LTL3 resemble that of conventional LTL, except that now we work with
definitive sets rather than linear-time temporal properties.

⊺ 3 T = Σ
∞ (Φ ∧ 3 Ψ) T =Φ T∩Ψ T (Φ ∨ 3 Ψ) T =Φ T∪☇ Ψ T (¬ 3 Φ) T =Φ F

⊺ 3 F =∅ (Φ ∧ 3 Ψ) F =Φ F∪☇ Ψ F (Φ ∨ 3 Ψ) F =Φ F∩Ψ F (¬ 3 Φ) F =Φ T

All of the sets produced by these answer-indexed families are definitive, as Σ
∞ and ∅ are both definitive

sets and definitive sets are closed under intersection and definitive union. Unlike with conventional LTL,
the set for the F answer is not the complement of the set for the T answer, as definitive sets are not closed
under complement. The set for T contains all traces that are sufficient to definitively satisfy the formula,
and the set for F contains all traces that are sufficient to definitively refute the formula.

For an atomic proposition a, the set for T contains all non-empty traces that begin with a state that
satisfies a, and the set for F contains all non-empty traces that begin with a state that does not satisfy a.
However, if a is trivial, in the sense that all or no possible states satisfy a, then these sets are not definitive,
as the excluded empty trace ε would also be definitive for these sets. Thus, we take the definitive prefixes
of these sets to account for this possibility:

2a73 T = ☇{t ∣ t ≠ ε ∧a ∈ t0}
2a73 F = ☇{t ∣ t ≠ ε ∧a ∉ t0}

For the operator, we make use of the prepend operator, which by Theorem 5 produces definitive sets:

(3 Φ) T =▷ (Φ T)
(3 Φ) F =▷ (Φ F)

42 Semantics for Linear-time Temporal Logic with Finite Observations

J⊺K3 = ⊺ 3

JaK3 = 2a73
J¬ϕK3 = ¬ 3 JϕK3

Jϕ ∧ψK3 = JϕK3 ∧ 3 JψK3

Jϕ ∨ψK3 = JϕK3 ∨ 3 JψK3

J ϕK3 = 3 JϕK3

Jϕ U ψK3 = JϕK3 U 3 JψK3

Figure 4: LTL3 semantics using answer-indexed families

For the U operator, we construct our semantics iteratively, building up by repeatedly prepending states.
Here the notation f k indicates the self-composition of f k times, i.e. f 0(x) = x and f k+1(x) = f k(f (x)):

(Φ U 3 Ψ) T =⋃☇
k∈N

f k(Ψ T), where f (X) =▷X ∩Φ T

(Φ U 3 Ψ) F = ⋂
k∈N

f k(Ψ F), where f (X) =▷X ∪☇ Φ F

Because definitive sets are closed under intersection, definitive union and the prepend operator, we can
see that that our U operator also produces definitive sets by a simple inductive argument on the natural
number k. Using all of these operations, we construct an inductive, compositional semantics for LTL3 in
Figure 4.

Theorem 6 (Equivalence to original LTL3 definition). Let t be a finite prefix and ϕ be an LTL formula.
Then:

• t ∈ JϕK3 T ⇐⇒ ∀u ∈ Σ
ω . tu ∈ JϕK T

• t ∈ JϕK3 F ⇐⇒ ∀u ∈ Σ
ω . tu ∈ JϕK F

Proof. Follows directly from the definition of definitive sets, as JϕK3 T and JϕK3 F are both definitive.

Theorem 6 shows that our inductive semantics coincides with the original non-inductive semantics given
for LTL3. If we view our semantics through the lens of the isomorphism in Theorem 2, however, we see
that this semantics is also equivalent to the semantics of conventional LTL:

Theorem 7 (Equivalence to conventional LTL). For all formulae ϕ:

• Pr(JϕK3 T) = JϕK T

• Pr(JϕK3 F) = JϕK F

Proof. The two statements are shown simultaneously by induction on ϕ:

ϕ = ⊺: Pr(Σ∞) = Σ
ω by definition.

ϕ = a: Because Pr(☇S) = Pr(S) as seen in the proof of Theorem 2, Pr(2a73T) = 2a7 T and
likewise Pr(2a73F) = 2a7 F.

ϕ = ¬ϕ
′: Follows from inductive hypotheses.

R.Y. Amjad, R.J. van Glabbeek & L. O’Connor 43

ϕ
σÐ→ψ

⊺ σÐ→ ⊺
a ∈ σ

a
σÐ→ ⊺

a ∉ σ

a
σÐ→ � ϕ

σÐ→ ϕ

ϕ
σÐ→ ϕ

′

¬ϕ
σÐ→ ¬ϕ

′

ϕ
σÐ→ ϕ

′
ψ

σÐ→ψ
′

ϕ ∧ψ
σÐ→ ϕ

′∧ψ
′

ψ
σÐ→ψ

′
ϕ

σÐ→ ϕ
′

ϕ U ψ
σÐ→ψ

′∨(ϕ ′∧(ϕ U ψ))

Figure 5: Rules for formula progression

ϕ = ϕ
′∧ψ

′: Follows from inductive hypotheses as Pr preserves greatest lower and least upper
bounds.

ϕ = ϕ
′: Follows from inductive hypotheses as the prepend operator ▷ commutes with Pr.

ϕ = ϕ
′ U ψ

′: Because Pr commutes with ▷ and preserves least upper and greatest lower bounds,
we can show that Pr(⋃☇ k∈N f k(Jψ

′K3 T)), where f (X) = ▷X ∩ JϕK3 T, is equal to
⋃k∈Ngk(Pr(Jψ

′K3 T)) where g(X) =▷X ∩Pr(Jϕ
′K3 T) by induction on on the natu-

ral number k. By the inductive hypotheses, this is equal to ⋃k∈Ngk(Jψ
′K T) where

g(X) =▷X ∩ Jϕ
′K T. This can be shown by another simple induction to be equal to the

original definition in the conventional LTL semantics {t ∣ ∃k.(∀i < k.t∣i ∈ Jϕ
′K T)∧ t∣k ∈

Jψ
′K T}. The cases for the F answer are proved similarly.

Because of this equivalence theorem, we can now express the relationship between the set for T and
the set for F in our LTL3 semantics. In LTL3, while the two sets do not overlap, they are not perfect
complements of each other as they were in conventional LTL, as definitive sets are not closed under
complement. Instead, the F set is the definitive set corresponding to the linear-time temporal property
containing all infinite traces not in the T set.

Theorem 8 (Excluded Middle). For all formulae ϕ:

JϕK3 T = ☇(Σω ∖ JϕK3 F) and JϕK3 F = ☇(Σω ∖ JϕK3 T)

Proof. It is a straightforward consequence of Theorem 4 that JϕK T = Σ
ω ∖ JϕK F (*). Then:

JϕK3 T = Df(Pr(JϕK3 T)) (Theorem 2)
= Df(JϕK T) (Theorem 7)
= Df(Σω ∖ JϕK F) (*)
= Df(Σω ∖Pr(JϕK3 F)) (Theorem 7)
= Df(Σω ∖(JϕK3 F∩Σ

ω)) (Definition of Pr)
= ☇(Σω ∖ JϕK3 F) (Definition of Df)

5 Formula Progression

Formula progression is a technique first introduced by Kabanza et al. [BK96, KT05] that evaluates a for-
mula stepwise against states in a style reminiscent of operational semantics or the Brzozowski derivative.

44 Semantics for Linear-time Temporal Logic with Finite Observations

This technique was used by O’Connor and Wickström [OW22] as the basis for their testing algorithm,
and by Bauer and Falcone [BF12] for decentralised monitoring of component-based systems. Figure 5
gives an overview of formula progression rules for LTL. The judgement ϕ

σÐ→ψ states that, to prove ϕ , it
suffices to prove ψ for the tail of our trace if the head of our trace is σ ∈ Σ. Note that these rules are total
and syntax-directed on the left-hand formula ϕ . This means that these rules taken together constitute a
definition of a total function that takes ϕ and σ as input and produces ψ as output. We generalise this no-
tation to finite prefixes, so that for a finite trace t =σ0 . . .σn, the notation ϕ

tÐ→ψ just means ϕ
σ0Ð→⋯ σnÐ→ψ .

Repeated application of these rules, however, can lead to exponential blowup in the size of the formula.
While both O’Connor and Wickström [OW22] and Bauer and Falcone [BF12] report that interleaving
this progression with formula simplification at each step keeps the formulae tractable for most practical
use cases, Roşu and Havelund [RH05] warn that pathological exponential cases still exist.

Bauer and Falcone [BF12] state that formula progression can serve as an alternative semantics for
LTL3 on finite traces, where a formula ϕ is considered definitively true for a finite trace t iff ϕ

tÐ→ ⊺,
definitively false iff ϕ

tÐ→ �, and is unknown otherwise. While it goes unmentioned in their paper, here
the implicit simplification steps are not just a performance optimisation, but are vital to ensure that the
semantics given via formula progression is complete with respect to the standard LTL3 semantics. To
see why, consider the formula a. Let σa be a state where a ∈ σa. Then the formula a should be
considered definitively true for the trace consisting of just σa. The formula generated by our formula
progression rules, however, would be ⊺∨(⊺∧ a), which yields the desired formula ⊺ only after logical
simplifications are applied. While in this case, the simplifications required are just identities of proposi-
tional logic, in general such straightforward simplifications alone are insufficient. For example, consider
the formula (a)∨ (¬a). According to the semantics of LTL3 presented above, this formula should
be considered definitively true for the empty trace ε , as it is a tautology. Temporally local simplifications
such as those used by O’Connor and Wickström [OW22], however, would not be able to determine that
this formula is a tautology until after one state has been observed. Therefore, in order for formula pro-
gression to align correctly with the semantics of LTL3, the simplification must transform all tautologies
into ⊺ and all absurdities into �. A simple, although slow way to implement such a simplifier would be
to convert both the formula and its negation into Büchi automata, and perform cycle detection to check
for emptiness. For our development, we abstract away from such syntactic simplification procedures
by working only on the level of our model-based semantics. As can be seen in our Theorem 11 given
below, we do not seek a specific syntactic tautology ⊺ or absurdity �, but rather refer to any formula with
trivial semantics. A purely syntactic characterisation, by contrast, would require a full accounting of the
simplification procedure, which is outside the scope of our development here.

The rules given in Figure 5 operate on one state at at a time, whereas our semantics are on the level of
entire traces. Therefore, in order to show soundness and completeness (for finite traces) of our formula
progression rules with respect to our semantics, we must first prove two lemmas which relate a single
step of formula progression to our semantics.

The first lemma states that for one step of formula progression ϕ
σÐ→ ϕ

′, prepending σ to the traces
that satisfy/refute the output formula ϕ

′ yields traces that satisfy (resp. refute) the input formula ϕ .

Theorem 9. Let ϕ and ϕ
′ be formulae and σ be a state such that ϕ

σÐ→ ϕ
′. Then:

• ▷(Jϕ
′K3 T)∩{t ∣ t0 = σ} ⊆ JϕK3 T

• ▷(Jϕ
′K3 F)∩{t ∣ t0 = σ} ⊆ JϕK3 F

Proof. The two statements are shown simultaneously by structural induction on the formula ϕ (which, as
our rules are syntax directed, uniquely determines the output formula ϕ

′). The base cases for ϕ = ⊺ and

R.Y. Amjad, R.J. van Glabbeek & L. O’Connor 45

ϕ = a as well as the inductive cases for the next operator follow directly from definitions. Of the other
inductive cases, the cases for conjunction and disjunction require the use of the distributive properties of
the lattice of definitive sets, as well as the fact that the prepend operator ▷ distributes over intersection
and definitive union. The cases for negation follow directly from the inductive hypotheses, whereas the
cases for the until operator U require unfolding of the big unions and intersections in the definition of
the semantic operator U 3 by one step.

The second lemma states that those traces that satisfy the input formula ϕ and begin with the state σ will
have tails that satisfy the output formula ϕ

′.

Theorem 10. Let ϕ and ϕ
′ be formulae and σ be a state such that ϕ

σÐ→ ϕ
′. Then:

• JϕK3 T ∩{t ∣ t0 = σ} ⊆▷(Jϕ
′K3 T)

• JϕK3 F ∩{t ∣ t0 = σ} ⊆▷(Jϕ
′K3 F)

Proof. As with Theorem 9, the two statements are shown simultaneously by structural induction on the
formula ϕ . The base cases and the cases for the next operator are shown just by unfolding definitions,
the cases for conjunction and disjunction are shown by use of distributive properties including those of
the prepend operator ▷, negation proceeds directly from the induction hypotheses, and the until operator
U requires unfolding of the semantic operator U 3 by one step.

By combining these two lemmas, we can inductively prove a theorem that relates formula progression
to our semantics on the level of entire finite traces. This resembles the informal definition of formula
progression semantics given by Bauer and Falcone [BF12], but with the syntactic requirement that the
ultimate formula be ⊺ or � replaced by a semantic requirement that it has trivial semantics.

Theorem 11. Let t ∈ Σ
∗ be a finite trace. Then, for all formulae ϕ and ϕ

′ where ϕ
tÐ→ ϕ

′:

• t ∈ JϕK3 T if and only if Jϕ
′K3 T = Σ

∞.

• t ∈ JϕK3 F if and only if Jϕ
′K3 F = Σ

∞.

Proof. By induction on the length of the trace t (where ϕ and ϕ
′ are kept arbitrary). The second statement

for F is proved identically to the first for T, so we present the proof only for T here.

Base Case (t = ε) It suffices to show that ε ∈ JϕK3 T iff JϕK3 T = Σ
∞. Because JϕK3 T is a definitive set,

and any extension of a definitive prefix is also a definitive prefix, as ε is in JϕK3 T, we can conclude
that all traces (i.e. extensions of ε) are in JϕK3 T. The reverse direction of the iff is straightforward.

Inductive Case (t = σu) We know that ϕ0
σÐ→ ϕ

uÐ→ ϕ
′ and have the inductive hypothesis that u ∈ JϕK3 T

⇐⇒ Jϕ
′K3 T=Σ

∞. We must show that σu ∈ Jϕ0K3 T ⇐⇒ Jϕ
′K3 T=Σ

∞. Therefore, by the inductive
hypothesis, it suffices to show σu ∈ Jϕ0K3 T ⇐⇒ u ∈ JϕK3 T. Showing each direction separately:

Ô⇒ By Theorem 10 we can conclude that σu ∈ ▷(JφK3 T) and thus that u ∈ JϕK3 T by the
definition of the prepend operator ▷.

⇐Ô By the definition of the prepend operator ▷ we can conclude that σu ∈▷(JϕK3 T) and thus
that σu ∈ Jϕ0K3 T by Theorem 9.

Theorem 11 is both a soundness and completeness proof for formula progression semantics with respect
to our model-based semantics, up to finite traces. Soundness here means that a formula ϕ will only
evaluate in formula progression to a tautology for a trace t when t is in JϕK3 T, and likewise will only
evaluate to an absurdity when t is in t is in JϕK3 F. This is the ⇐Ô direction of the iff in Theorem 11.

46 Semantics for Linear-time Temporal Logic with Finite Observations

Completeness (or adequacy) up to finite traces means that all finite prefixes that definitively confirm the
formula will evaluate in formula progression to a tautology, and all finite prefixes that definitively refute
the formula will evaluate to an absurdity. This is the Ô⇒ direction of the iff in Theorem 11.

6 Discussion

6.1 Prefix Characterisations and Monitorability

Kupferman and Vardi [KV01] define the bad prefixes of a property P ⊆ Σ
ω as those finite prefixes that

cannot be extended to a trace that is in P, and further define good prefixes as those for whom all infinite
extensions are in P. For any linear-time temporal property P, we can see from our definitions that ☇P
consists of P along with all good prefixes of P. The bad prefixes of P can be obtained by taking the
definitive prefixes of the complement of P, i.e. ☇(Σω ∖P). Our answer-indexed families B→D can be
thought of as tracking both the good and bad prefixes of a property simultaneously, along with the infinite
traces that they approximate. That is, for a formula ϕ , JϕK3 T contains all infinite traces that satisfy ϕ as
well as the good prefixes of ϕ , and JϕK3 F contains all infinite traces that do not satisfy ϕ as well as the
bad prefixes of ϕ .

Bauer et al. [BLS10] further define ugly prefixes as those that cannot be finitely extended into good
nor bad prefixes. Note that the good, bad, and ugly prefixes do not constitute a complete classification
of all finite prefixes. For example, the prefix ppp . . . is not in Jp U qK3 T nor Jp U qK3 F, but it it not ugly
either, as it can be extended with q giving a good prefix, or with ∅ giving a bad prefix. Here, ∅ is the
state satisfying neither p nor q. The presence of ugly prefixes means that the formula is non-monitorable.

Aceto et al. [AAF+19] define monitorability positively, through a framework for synthesising moni-
tors from modal µ-calculus formulae. The semantics of these monitors resembles our formula progres-
sion semantics, and thus it may be interesting to find some connection (such as bisimilarity) between
these. Aceto et al. define monitorable formulae as those for which a monitor can be synthesised — we
conjecture that this definition and that of Bauer et al. [BLS10] coincide. They also define syntactic frag-
ments of modal µ-calculus that are monitorable for acceptance and violation, which is a useful syntactic
accounting of monitorability that may be transferable to LTL3. Like us, Aceto et al. give their semantics
of modal µ-calculus in terms of sets of traces, including sets of both finite and infinite traces (‘finfinite’
traces) — they do not, however, consider definitive prefixes, and as such their finfinite semantics does
not align with our LTL3 semantics.

6.2 Safety and Liveness

Linear-time temporal properties can be broadly categorised into safety properties, which state that some-
thing “bad” does not happen during execution, and liveness properties, which state that something “good”
will eventually happen during execution [Lam77]. Alpern and Schneider [AS85] provide a formal char-
acterisation by equipping Σ

ω with a metric space structure, where the distance between two traces is
measured inversely to the length of their longest common prefix. Then, safety properties are those sets
that are limit-closed (i.e. P = P) and liveness properties are those sets that are dense (i.e. P = Σ

ω). The
key insight that enables this elegant characterisation is that a safety property can always be definitively
refuted by a finite prefix of a trace, whereas any finite prefix can be extended in such a way as to sat-
isfy a given liveness property. We also see in later work [KV01, HMS23] the concept of co-safety (or
guarantee) properties and co-liveness (or morbidity) properties, the complements of safety and liveness

R.Y. Amjad, R.J. van Glabbeek & L. O’Connor 47

properties respectively. A co-safety property can always be definitively confirmed by a finite prefix of a
trace,2 whereas any finite prefix can be extended in such a way as to refute a given co-liveness property.

Our definitive sets include those finite prefixes that can confirm (or refute) the property, enabling us
to express these insights about finite prefixes directly. This provides an alternative characterisation that
we conjecture is equivalent to that of Alpern and Schneider [AS85].

Liveness Properties Liveness properties are those that can never be definitively refuted by a finite pre-
fix. Thus a definitive set X represents a liveness property iff all finite traces are prefixes of traces
in X , i.e. Σ

∗ ⊆ ↓X . A co-liveness property can never be definitively confirmed by a finite prefix.
As we saw in Theorem 8, the complement of a definitive set X is given by ☇(Σω ∖X). This gives
us a characterisation of co-liveness, where X represents a co-liveness property iff Σ

∗ ⊆ ↓(Σω ∖X).

Safety Properties Safety properties are those that can always be definitively refuted by a finite prefix,
but because our definitive sets include definitive confirmations and not refutations, it is easier to
begin with co-safety properties, which can always be definitively confirmed by a finite prefix.
That is, any infinite trace in the property must be an extension of some finite definitive prefix of
the property. Thus, a definitive set X represents a co-safety property iff X = ↑(X ∩Σ

∗). A safety
property is just the complement of a co-safety property, i.e. X is a safety property iff ☇(Σω ∖X) =
↑(☇(Σω ∖X)∩Σ

∗).

6.3 RV-LTL

LTL3 only gives definitive non-? answers, that is, a formula is judged to be true (resp. false) for a finite
trace t only if all extensions of that prefix t are also true (resp. false). As noted by Bauer et al. [BLS10],
this means that there exists a large class of formulae for which no definitive answers can be given for any
finite trace. For example, take the standard request/acknowledge format:

(r⇒ a)

which states that all requests (r) must eventually be acknowledged (a). For every finite prefix u, we have
urω ∈ JϕK3 F and uaω ∈ JϕK3 T. As the F and T answers are non-overlapping (Theorem 8), u must not be a
definitive prefix. Therefore, all finite prefixes are not definitive, meaning that LTL3 cannot give a non-?
answer for any finite trace. To remedy this, Bauer et al. [BLS07, BLS10] propose RV-LTL, a dialect of
LTL specifically for the domain of runtime verification. RV-LTL is more accurately an ad-hoc layering
of LTL3 on top of Pnueli’s LTL for finite traces (here notated ⊧F). Where LTL3 would give the ? answer,
RV-LTL instead gives a presumptive answer (⊺p or �p) based on the answer obtained from Pnueli’s finite
LTL:

[u ⊧ ϕ]RV =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⊺ if [u ⊧ ϕ]3 = ⊺
� if [u ⊧ ϕ]3 = �
⊺p if [u ⊧ ϕ]3 = ? and u ⊧F ϕ

�p if [u ⊧ ϕ]3 = ? and u ⊭F ϕ

Intuitively, after a finite prefix u, a definitive answer (⊺ or �) is unchangeable no matter how the prefix is
extended, whereas a presumptive answer (⊺p or �p) only applies if execution is stopped at that point.

2Thus, co-safety could be seen as an alternative formalisation of Lamport’s informal concept of a liveness property [Lam77],
different from the standard formalisation of [AS85].

48 Semantics for Linear-time Temporal Logic with Finite Observations

If the property in question is a safety property, then the only presumptive answer possible is ⊺p,
and likewise for co-safety properties and �p. This means that for properties at the bottom of the safety-
progress hierarchy [CMP93], LTL3 is sufficient, as the single ? answer can be interpreted as ⊺p or �p

respectively. However, as noted by Bauer et al. [BLS10], there are monitorable properties such as ((p∨
q) U r)∨ p for which both ⊺p and �p answers are possible (consider qqqq . . . and pppp . . .).

Like LTL3 previously, the semantics of RV-LTL is presented only in terms of other logics. We believe
that an inductive semantics can be designed along similar principles to that of LTL3 given in the present
paper, where our answer indexed-families instead produce four sets, two of which are definitive, rather
than the two definitive sets we provide for LTL3.

As noted by O’Connor and Wickström [OW22], Pnueli’s finite LTL is a logic of finite completed
traces, so the decision to judge partial traces as completed for the purpose of giving presumptive answers
in RV-LTL is ad-hoc and can produce rather arbitrary answers for properties higher in the safety-progress
hierarchy. For example, consider a system where a flashing light consistently alternates between On and
Off states:

On Off On Off ⋯
A simple property that we might wish to monitor for this system is that the light is On infinitely often:

On

As this formula nests and operators, it is definitive in neither positive nor negative cases and will
only give presumptive answers. But the presumptive answer given in RV-LTL depends only on the very
last observed status of the light. For a trace where the light continuously alternates off and on, as above,
we might intuitively say that presumptive answer ought to be true, but this formula would be considered
presumptively false if our observation happens to end in a state where the light is off. Thus, the truth
value obtained for this formula is overly sensitive to the point at which our finite observation ceases.

One potential approach that may provide a more robust logic for finite traces would be to first de-
compose the property into LTL3-monitorable and non-monitorable components, and, where possible,
combine the answers obtained by monitoring each monitorable component separately. Such decomposi-
tions are very general: for example, Alpern and Schneider [AS85] famously prove that all properties are
the intersection of a safety (i.e. LTL3-monitorable) property and a liveness property. We conjecture that
there will be some configuration of this approach whose answers coincide with RV-LTL, but it will be
interesting future work to explore the design space here.

7 Conclusion

We have presented a new, inductive, model-based semantic accounting of LTL3 in terms of answer-
indexed families of definitive sets, and in the process shown that LTL3 is more accurately described as
a more detailed presentation of conventional LTL, rather than a distinct logic in its own right. We have
formalised the popular formula progression technique used in runtime verification and testing scenarios,
and proved it sound and complete with respect to our semantics. All of our work has been mechanised
in over 1700 lines of Isabelle/HOL proof script.

We anticipate that our theory of definitive sets will provide a semantic foundation for other logics
of partial traces, such as the LTL± of Eisner et al. [EFH+03], QuickLTL from O’Connor and Wick-
ström [OW22], or the aforementioned RV-LTL [BLS10]. Our answer-indexed families may also be
applicable to other multi-valued logics. Examples include rLTL [TN16], RV-LTL [BLS10], and the five-
valued logic of Chai et al. [CS14]. We intend, in future work, to develop logics that go beyond just

R.Y. Amjad, R.J. van Glabbeek & L. O’Connor 49

the definitive prefixes of LTL3, giving presumptive or probabilistic answers when definitive answers are
unavailable.

References

[AAF+19] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir & Karoliina Lehtinen (2019):
Adventures in monitorability: from branching to linear time and back again. Proceedings of the ACM
on Programming Languages 3(POPL), pp. 1–29, doi:10.1145/3290365.

[AGO24] Rayhana Amjad, Rob van Glabbeek & Liam O’Connor (2024): Definitive Set Semantics for LTL3.
Archive of Formal Proofs. https://isa-afp.org/entries/LTL3_Semantics.html, Formal
proof development.

[AS85] Bowen Alpern & Fred B. Schneider (1985): Defining liveness. Information Processing Letters 21(4),
pp. 181–185, doi:10.1016/0020-0190(85)90056-0.

[BF12] Andreas Bauer & Yliès Falcone (2012): Decentralised LTL Monitoring. In: FM 2012: Formal Meth-
ods, Springer, pp. 85–100, doi:10.1007/978-3-642-32759-9_10.

[BK96] Fahiem Bacchus & Froduald Kabanza (1996): Using Temporal Logic to Control Search in a Forward
Chaining Planner, p. 141–153. IOS Press.

[Bla02] Stephen Blamey (2002): Partial Logic. In: Handbook of Philosophical Logic, Springer, pp. 261–353,
doi:10.1007/978-94-017-0458-8_5.

[BLS07] Andreas Bauer, Martin Leucker & Christian Schallhart (2007): The Good, the Bad, and the Ugly, But
How Ugly Is Ugly? In: Runtime Verification, Springer, pp. 126–138, doi:10.1007/978-3-540-77395-
5_11.

[BLS10] Andreas Bauer, Martin Leucker & Christian Schallhart (2010): Comparing LTL Semantics for Runtime
Verification. Journal of Logic and Computation 20(3), pp. 651–674, doi:10.1093/logcom/exn075.

[BLS11] Andreas Bauer, Martin Leucker & Christian Schallhart (2011): Runtime Verification for LTL and TLTL.
ACM Transactions on Software Engineering Methodology 20(4), doi:10.1145/2000799.2000800.

[CMP93] Edward Chang, Zohar Manna & Amir Pnueli (1993): The Safety-Progress Classification. In: Logic
and Algebra of Specification, Springer, pp. 143–202, doi:10.1007/978-3-642-58041-3_5.

[CS14] Ming Chai & Bernd-Holger Schlingloff (2014): Online Monitoring of Distributed Systems with a
Five-Valued LTL. In: IEEE 44th International Symposium on Multiple-Valued Logic, pp. 226–231,
doi:10.1109/ISMVL.2014.47.

[EFH+03] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac & David Van Campen-
hout (2003): Reasoning with Temporal Logic on Truncated Paths. In: Computer Aided Verification,
Springer, pp. 27–39, doi:10.1007/978-3-540-45069-6_3.

[HMS23] Thomas A. Henzinger, Nicolas Mazzocchi & N. Ege Saraç (2023): Quantitative Safety and Live-
ness. In: Foundations of Software Science and Computation Structures, Springer, pp. 349–370,
doi:10.1007/978-3-031-30829-1_17.

[KT05] Froduald Kabanza & Sylvie Thiébaux (2005): Search Control in Planning for Temporally Extended
Goals. In: International Conference on Automated Planning and Scheduling, AAAI, pp. 130–139.

[KV01] Orna Kupferman & Moshe Y. Vardi (2001): Model Checking of Safety Properties. Formal Methods in
System Design 19(3), pp. 291–314, doi:10.1023/A:1011254632723.

[Lam77] Leslie Lamport (1977): Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering 3(2), pp. 125–143, doi:10.1109/TSE.1977.229904.

[LPZ85] Orna Lichtenstein, Amir Pnueli & Lenore Zuck (1985): The Glory of the Past. In: Logics of Programs,
Springer, pp. 196–218, doi:10.1007/3-540-15648-8_16.

https://doi.org/10.1145/3290365
https://isa-afp.org/entries/LTL3_Semantics.html
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/978-3-642-32759-9_10
https://doi.org/10.1007/978-94-017-0458-8_5
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-642-58041-3_5
https://doi.org/10.1109/ISMVL.2014.47
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/3-540-15648-8_16

50 Semantics for Linear-time Temporal Logic with Finite Observations

[MP92] Zohar Manna & Amir Pnueli (1992): The Temporal Logic of Reactive and Concurrent Systems.
Springer, doi:10.1007/978-1-4612-0931-7.

[MP95] Zohar Manna & Amir Pnueli (1995): Temporal Verification of Reactive Systems: Safety. Springer,
doi:10.1007/978-1-4612-4222-2.

[OW22] Liam O’Connor & Oskar Wickström (2022): Quickstrom: Property-based Acceptance Testing with
LTL Specifications. In: Programming Language Design and Implementation, PLDI 2022, ACM, p.
1025–1038, doi:10.1145/3519939.3523728.

[RH05] Grigore Roşu & Klaus Havelund (2005): Rewriting-Based Techniques for Runtime Verification. Auto-
mated Software Engineering 12(2), pp. 151–197, doi:10.1007/s10515-005-6205-y.

[TN16] Paulo Tabuada & Daniel Neider (2016): Robust Linear Temporal Logic. In: 25th EACSL An-
nual Conference on Computer Science Logic, CSL 2016, Leibniz International Proceedings in
Informatics (LIPIcs) 62, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 10:1–10:21,
doi:10.4230/LIPIcs.CSL.2016.10.

https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1145/3519939.3523728
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.4230/LIPIcs.CSL.2016.10

G. Caltais and C. Di Giusto (Eds.): EXPRESS/SOS 2024
EPTCS 412, 2024, pp. 51–70, doi:10.4204/EPTCS.412.5

© M. Bernardo, A. Esposito & C.A. Mezzina
This work is licensed under the
Creative Commons Attribution License.

Expansion Laws for Forward-Reverse, Forward, and Reverse
Bisimilarities via Proved Encodings

Marco Bernardo Andrea Esposito Claudio A. Mezzina
Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy

Reversible systems exhibit both forward computations and backward computations, where the aim
of the latter is to undo the effects of the former. Such systems can be compared via forward-reverse
bisimilarity as well as its two components, i.e., forward bisimilarity and reverse bisimilarity. The
congruence, equational, and logical properties of these equivalences have already been studied in
the setting of sequential processes. In this paper we address concurrent processes and investigate
compositionality and axiomatizations of forward bisimilarity, which is interleaving, and reverse and
forward-reverse bisimilarities, which are truly concurrent. To uniformly derive expansion laws for the
three equivalences, we develop encodings based on the proved trees approach of Degano & Priami.
In the case of reverse and forward-reverse bisimilarities, we show that in the encoding every action
prefix needs to be extended with the backward ready set of the reached process.

1 Introduction

A reversible system features two directions of computation. The forward one coincides with the normal
way of computing. The backward one undoes the effects of the forward one so as to return to a consistent
state, i.e., a state that can be encountered while moving in the forward direction. Reversible computing
has attracted an increasing interest due to its applications in many areas, including low-power com-
puting [34, 6], program debugging [30, 38], robotics [40], wireless communications [53], fault-tolerant
systems [23, 55, 35, 54], biochemical modeling [49, 50], and parallel discrete-event simulation [44, 52].

Returning to a consistent state is not an easy task to accomplish in a concurrent system, because the
undo procedure necessarily starts from the last performed action and this may not be uniquely identifiable
due to concurrency. The usually adopted strategy is that an action can be undone provided that all the
actions it subsequently caused, if any, have been undone beforehand [22]. In this paper we focus on
reversible process calculi, for which there are two approaches – later shown to be equivalent in [36] –
to keep track of executed actions and revert computations in a causality-consistent way.

The dynamic approach of [22, 33] yielded RCCS (R for reversible) and its mobile variants [37, 21].
RCCS is an extension of CCS [41] that uses stack-based memories attached to processes so as to record
executed actions and subprocesses discarded upon choices. A single transition relation is defined, while
actions are divided into forward and backward thereby resulting in forward and backward transitions.
This approach is adequate in the case of very expressive calculi as well as programming languages.

The static approach of [45] proposed a general method to reverse calculi, of which CCSK (K for keys)
and its quantitative variants [10, 14, 11, 12] are a result. The idea is to retain within the process syntax all
executed actions, which are suitably decorated, and all dynamic operators, which are thus made static.
A forward transition relation and a backward transition relation are defined separately. Their labels are
actions extended with communication keys so as to know, upon generating backward transitions, which
actions synchronized with each other. This approach is very handy to deal with basic process calculi.

A systematic study of compositionality and axiomatization of strong bisimilarity in reversible pro-
cess calculi has started in [13], both for nondeterministic processes and for Markovian processes. Then

http://dx.doi.org/10.4204/EPTCS.412.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

52 Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings

0_ O/|| 0_a. b.

0_ O/||a . 0_b .

0_ O/|| 0_ba. .

0_ 0_+b.a. b.a.

0_ 0_a . +b. b.a.

0_ 0_b .a . +b.a.

0_ b . 0_+b.a. a.

0_ b . a . 0_+b.a.

FB~
~RB

FRB~/

FB~
~RB

FRB~/

FB~

FRB~/
/~RB

O/|| 0_0_a . b.

a b

ab

a b

b a

Figure 1: Forward, reverse, and forward-reverse bisimilarities at work: interleaving vs. true concurrency

compositionality and axiomatization of weak bisimilarity as well as modal logic characterizations for
strong and weak bisimilarities have been investigated in [8, 9] for the nondeterministic case. That study
compares the properties of forward-reverse bisimilarity ∼FRB [45] with those of its two components, i.e.,
forward bisimilarity ∼FB [43, 41] and reverse bisimilarity ∼RB. The reversible process calculus used
in that study is minimal. Similar to [26], its semantics relies on a single transition relation, where the
distinction between going forward or backward in the bisimulation game is made by matching outgoing
or incoming transitions respectively. As a consequence, similar to [17] executed actions can be deco-
rated uniformly, without having to resort to external stack-based memories [22] or communication keys
associated with those actions [45].

A substantial limitation of [13, 8, 9] is the absence of the parallel composition operator in the calcu-
lus, motivated by the need of remaining neutral with respect to interleaving view vs. true concurrency.
Unlike forward bisimilarity, as noted in [45] forward-reverse bisimilarity – and also reverse bisimilarity –
does not satisfy the expansion law of parallel composition into a nondeterministic choice among all pos-
sible action sequencings. In Figure 1 we depict two labeled transition systems respectively representing
a process that can perform action a in parallel with action b (a .0∥ /0 b .0 using a CSP-like parallel com-
position [19]) and a process that can perform either a followed by b or b followed by a (a .b .0+b .a .0
with + denoting a CCS-like choice [41]), where a ̸= b and † decorates executed actions.

The forward bisimulation game yields the usual interleaving setting in which the two top states are
related, the two pairs of corresponding intermediate states are related, and the three bottom states are
related. However, the three bottom states are no longer related if we play the reverse bisimulation game,
as the state on the left has two differently labeled incoming transitions while either state on the right has
only one. The remaining pairs of states are related by reverse bisimilarity as they have identically labeled
incoming transitions, whereas they are told apart by forward-reverse bisimilarity due to the failure of the
interplay between outgoing and incoming transitions matching. More precisely, any two corresponding
intermediate states are not forward-reverse bisimilar because their identically labeled outgoing transitions
reach the aforementioned inequivalent bottom states. In turn, the two initial states are not forward-reverse
bisimilar because their identically labeled outgoing transitions reach the aforementioned inequivalent
intermediate states. A new level of complexity thus arises from the introduction of parallel composition.

For the sake of completeness, we recall that an interleaving view can be restored by considering
computation paths (instead of states) like in the back-and-forth bisimilarity of [26]. Besides causality,
this choice additionally preserves history, in the sense that backward moves are constrained to take place
along the path followed in the forward direction even in the presence of concurrency. For instance, in the
labeled transition system on the left, after performing a and then b it is not possible to undo a before b
although there are no causality constraints between those two actions.

M. Bernardo, A. Esposito & C.A. Mezzina 53

In this paper we add parallel composition and then extend the axiomatizations of the three strong
bisimilarities examined in [13] via expansion laws. The usual technique consists of introducing normal
forms, in which only action prefix and alternative composition occur, along with expansion laws, through
which occurrences of parallel composition are progressively eliminated. Although this originated in the
interleaving setting for forward-only calculi [32] to identify processes such as a .0∥ /0 b .0 and a .b .0+
b .a .0, it was later exploited also in the truly concurrent spectrum [31, 28] to distinguish processes
like the aforementioned two. This requires an extension of the syntax that adds suitable discriminating
information within action prefixes. For example:

• Causal bisimilarity [24, 25] (corresponding to history-preserving bisimilarity [51]): every action
is enriched with the set of its causing actions, each of which is expressed as a numeric back-
ward pointer, so that the former process is expanded to <a, /0>.<b, /0>.0+<b, /0>.<a, /0>.0
while the latter process becomes <a, /0>.<b,{1}>.0+<b, /0>.<a,{1}>.0.

• Location bisimilarity [18] (corresponding to local history-preserving bisimilarity [20]): every ac-
tion is enriched with the name of the location in which it is executed, so that the former pro-
cess is expanded to <a, la>.<b, lb>.0 +<b, lb>.<a, la>.0 while the latter process becomes
<a, la>.<b, lalb>.0+<b, lb>.<a, lbla>.0.

• Pomset bisimilarity [15]: instead of a single action, a prefix may contain the combination of several
independent actions that are executed simultaneously, so that the former process is expanded to
a .b .0+b .a .0+(a∥ b) .0 while the latter process is unchanged.

A unifying framework for addressing both interleaving and truly concurrent semantics along with
their expansion laws was developed in [27]. The idea is to label every transition with a proof term [16,
17], which is an action preceded by the operators in the scope of which the action occurs. The semantics
of interest then drives an observation function that maps proof terms to the required observations. In the
interleaving case proof terms are reduced to the actions they contain, while in the truly concurrent case
they are transformed into actions extended with discriminating information as exemplified above.

In this paper we apply the proved trees approach of [27] to develop expansion laws for forward,
reverse, and forward-reverse bisimilarities. This requires understanding which additional discriminating
information is needed inside prefixes for the last two equivalences. While this is rather straightforward
for the truly concurrent semantics recalled above – the considered information is already present in the
original transition labels – it is not obvious in our case because original transitions are labeled just with
actions. However, by looking at the three bottom states in Figure 1, one can realize that they have
different backward ready sets, i.e., sets of actions labeling incoming transitions: {b,a},{b},{a}.

We show that backward ready sets indeed constitute the information that is necessary to add within
action prefixes for reverse and forward-reverse bisimilarities, by means of a suitable process encoding.
Moreover, we provide an adequate treatment of concurrent processes in which independent actions have
been executed on both sides of the parallel composition because, e.g., a†.0∥ /0 b†.0 cannot be expanded to
something like a†.b†.0+b†.a†.0 in that only one branch of an alternative composition can be executed.

This paper is organized as follows. In Section 2 we extend the syntax of the reversible process
calculus of [13] by adding a parallel composition operator, we reformulate its operational semantics
by following the proved trees approach of [27], and we rephrase the definitions of forward, reverse,
and forward-reverse bisimilarities of [13]. In Section 3 we illustrate the next steps of the proved trees
approach, i.e., the definition of observation functions and process encodings. In Sections 4 and 5
we respectively develop axioms for forward bisimilarity, including an interleaving-style expansion law,
and for reverse and forward-reverse bisimilarities, including expansion laws based on extending action
prefixes with backward ready sets. In Section 6 we provide some concluding remarks.

54 Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings

2 From Sequential Reversible Processes to Concurrent Ones

Starting from the sequential reversible calculus considered in [13], in this section we extend its syntax
with a parallel composition operator in the CSP style [19] (Section 2.1) and its semantics according to
the proved trees approach [27] (Section 2.2). Then we rephrase forward, reverse, and forward-reverse
bisimilarities and show that they are congruences with respect to the additional operator (Section 2.3).

2.1 Syntax of Concurrent Reversible Processes

Given a countable set A of actions including an unobservable action denoted by τ , the syntax of concur-
rent reversible processes extends the one in [13] as follows:

P ::= 0 | a .P | a†.P | P+P | P∥L P
where a ∈ A, † decorates executed actions, L ⊆ A\{τ}, and:

• 0 is the terminated process.

• a .P is a process that can execute action a and whose forward continuation is P.

• a†.P is a process that executed action a and whose forward continuation is inside P, which can
undo action a after all executed actions within P have been undone.

• P1 +P2 expresses a nondeterministic choice between P1 and P2 as far as neither has executed any
action yet, otherwise only the one that was selected in the past can move.

• P1 ∥L P2 expresses the parallel composition of P1 and P2, which proceed independently of each
other on actions in L̄ = A\L while they have to synchronize on every action in L.

As in [13] we can characterize some important classes of processes via as many predicates. Firstly,
we define initial processes, in which all actions are unexecuted and hence no †-decoration appears:

initial(0)
initial(a .P) if initial(P)

initial(P1 +P2) if initial(P1)∧ initial(P2)
initial(P1 ∥L P2) if initial(P1)∧ initial(P2)

Secondly, we define well-formed processes, whose set we denote by P , in which both unexecuted
and executed actions can occur in certain circumstances:

wf(0)
wf(a .P) if initial(P)

wf(a†.P) if wf(P)
wf(P1 +P2) if (wf(P1)∧ initial(P2))∨ (initial(P1)∧wf(P2))
wf(P1 ∥L P2) if wf(P1)∧wf(P2)

Well formedness not only imposes that every unexecuted action is followed by an initial process, but also
that in every alternative composition at least one subprocess is initial. Multiple paths arise in the presence
of both alternative (+) and parallel (∥L) compositions. However, at each occurrence of the former, only
the subprocess chosen for execution can move. Although not selected, the other subprocess is kept as
an initial subprocess within the overall process in the same way as executed actions are kept inside the
syntax [17, 45], so as to support reversibility. For example, in a†.b .0+ c .d .0 the subprocess c .d .0
cannot move as a was selected in the choice between a and c.

It is worth noting that:

• 0 is both initial and well-formed.

M. Bernardo, A. Esposito & C.A. Mezzina 55

(ACTf)
initial(P)

a .P a−→ a†.P
(ACTp)

P θ−→P′

a†.P .θ−→ a†.P′

(CHOl)
P1

θ−→P′
1 initial(P2)

P1 +P2
.+θ−→P′

1 +P2

(CHOr)
P2

θ−→P′
2 initial(P1)

P1 +P2
+.θ−→P1 +P′

2

(PARl)
P1

θ−→P′
1 act(θ) /∈ L

P1 ∥L P2
Uθ−→P′

1 ∥L P2

(PARr)
P2

θ−→P′
2 act(θ) /∈ L

P1 ∥L P2
Tθ−→P1 ∥L P′

2

(SYN)
P1

θ1−→P′
1 P2

θ2−→P′
2 act(θ1) = act(θ2) ∈ L

P1 ∥L P2
⟨θ1,θ2⟩−−−→P′

1 ∥L P′
2

Table 1: Proved operational semantic rules for concurrent reversible processes

• Any initial process is well-formed too.

• P also contains processes that are not initial like, e.g., a†.b .0, which can either do b or undo a.

• In P the relative positions of already executed actions and actions to be executed matter. Precisely,
an action of the former kind can never occur after one of the latter kind. For instance, a†.b .0 ∈P
whereas b .a†.0 /∈ P .

• In P the subprocesses of an alternative composition can be both initial, but cannot be both non-
initial. As an example, a .0+b .0 ∈ P whilst a†.0+b†.0 /∈ P .

2.2 Proved Operational Semantics

According to [45], in the semantic rules dynamic operators such as action prefix and alternative com-
position have to be made static, so as to retain within the syntax all the information needed to enable
reversibility. Unlike [45], we do not generate a forward transition relation and a backward one, but a
single transition relation that, like in [26], we deem to be symmetric in order to enforce the loop prop-
erty [22]: every executed action can be undone and every undone action can be redone. In our setting,
a backward transition from P′ to P is subsumed by the corresponding forward transition t from P to P′.
As we will see in the definition of behavioral equivalences, like in [26] we view t as an outgoing transition
of P when going forward, while we view t as an incoming transition of P′ when going backward.

Unlike [13], as a first step based on [27] towards the derivation of expansion laws for parallel compo-
sition we provide a very concrete semantics in which every transition is labeled with a proof term [16, 17].
This is an action preceded by the sequence of operator symbols in the scope of which the action occurs.
In the case of a binary operator, the corresponding symbol also specifies whether the action occurs to the
left or to the right. The syntax that we adopt for the set Θ of proof terms is the following:

θ ::= a | .θ | .+θ |+.θ | Uθ | Tθ | ⟨θ ,θ⟩
The proved semantic rules in Table 1 extend the ones in [13] and generate the proved labeled transi-

tion system (P,Θ,−→) where −→⊆P×Θ×P is the proved transition relation. We denote by P⊊P
the set of processes that are reachable from an initial one via −→. Not all well-formed processes are
reachable; for example, a†.0∥{a} 0 is not reachable from a .0∥{a} 0 as action a on the left cannot syn-
chronize with any action on the right. We indicate with Pinit the set of initial processes in P.

56 Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings

The first rule for action prefix (ACTf where f stands for forward) applies only if P is initial and
retains the executed action in the target process of the generated forward transition by decorating the
action itself with †. The second rule (ACTp where p stands for propagation) propagates actions of inner
initial subprocesses by putting a dot before them in the label for each outer executed action prefix.

In both rules for alternative composition (CHOl and CHOr where l stands for left and r stands for
right), the subprocess that has not been selected for execution is retained as an initial subprocess in the
target process of the generated transition. When both subprocesses are initial, both rules for alternative
composition are applicable, otherwise only one of them can be applied and in that case it is the non-initial
subprocess that can move, because the other one has been discarded at the moment of the selection.

The rules for parallel composition make use of partial function act : Θ ⇀ A to extract the action from
a proof term θ . The function is defined by induction on the syntactical structure of θ as follows:

act(a) = a
act(.θ ′) = act(.+θ ′) = act(+.θ ′) = act(Uθ ′) = act(Tθ ′) = act(θ ′)

act(⟨θ1,θ2⟩) = act(θ1) if act(θ1) = act(θ2)
In the first two rules (PARl and PARr), a single subprocess proceeds by performing an action not belong-
ing to L. In the third rule (SYN), both subprocesses synchronize on an action in L.

Every process may have several outgoing transitions and, if it is not initial, has at least one incoming
transition. Due to the decoration of executed actions inside the process syntax, over the set Pseq of
sequential processes – in which there are no occurrences of parallel composition – every non-initial
process has exactly one incoming transition, the underlying labeled transition systems turn out to be
trees, and well formedness coincides with reachability [13].

Example 2.1 The proved labeled transition systems generated by the rules in Table 1 for the two initial
sequential processes a .0+a .0 and a .0 are depicted below:

0_a . 0_a . 0_a . +

+a.+a.

0_a . 0_a . + 0_a . 0_a . + 0_a .

a

.

In the case of a forward-only process calculus, a single a-transition would be generated from a .0+a .0
to 0 due to the absence of action decorations within processes.

2.3 Forward, Reverse, and Forward-Reverse Bisimilarities

We rephrase the definitions given in [13] of forward bisimilarity [43, 41] (only outgoing transitions),
reverse bisimilarity (only incoming transitions), and forward-reverse bisimilarity [45] (both kinds of
transitions) because transition labels now are proof terms. Since we focus on the actions contained in
those terms, the distinguishing power of the three equivalences does not change with respect to [13].

Definition 2.2 We say that P1,P2 ∈ P are forward bisimilar, written P1 ∼FB P2, iff (P1,P2) ∈ B for
some forward bisimulation B. A symmetric relation B over P is a forward bisimulation iff, whenever
(P1,P2) ∈ B, then:

• For each P1
θ1−→P′

1 there exists P2
θ2−→P′

2 such that act(θ1) = act(θ2) and (P′
1,P

′
2) ∈ B.

Definition 2.3 We say that P1,P2 ∈ P are reverse bisimilar, written P1 ∼RB P2, iff (P1,P2) ∈ B for
some reverse bisimulation B. A symmetric relation B over P is a reverse bisimulation iff, whenever
(P1,P2) ∈ B, then:

• For each P′
1

θ1−→P1 there exists P′
2

θ2−→P2 such that act(θ1) = act(θ2) and (P′
1,P

′
2) ∈ B.

M. Bernardo, A. Esposito & C.A. Mezzina 57

Definition 2.4 We say that P1,P2 ∈ P are forward-reverse bisimilar, written P1 ∼FRB P2, iff (P1,P2) ∈ B
for some forward-reverse bisimulation B. A symmetric relation B over P is a forward-reverse bisimu-
lation iff, whenever (P1,P2) ∈ B, then:

• For each P1
θ1−→P′

1 there exists P2
θ2−→P′

2 such that act(θ1) = act(θ2) and (P′
1,P

′
2) ∈ B.

• For each P′
1

θ1−→P1 there exists P′
2

θ2−→P2 such that act(θ1) = act(θ2) and (P′
1,P

′
2) ∈ B.

Example 2.5 The two initial processes considered in Example 2.1 are identified by all the three equiva-
lences. This is witnessed by any bisimulation that contains the pairs (a .0+a .0,a .0), (a†.0+a .0,a†.0),
and (a .0+a†.0,a†.0).

As observed in [13], ∼FB is not a congruence with respect to alternative composition, e.g.:
a†.b .0 ∼FB b .0 but a†.b .0+ c .0 ̸∼FB b .0+ c .0

because in a†.b .0+ c .0 action c is disabled by virtue of the already executed action a†, while in b .0+
c .0 action c is enabled as there are no past actions preventing it from occurring. This problem, which
does not show up for ∼RB and ∼FRB because they cannot identify an initial process with a non-initial
one, led in [13] to the following variant of ∼FB that is sensitive to the presence of the past.

Definition 2.6 We say that P1,P2 ∈ P are past-sensitive forward bisimilar, written P1 ∼FB:ps P2, iff
(P1,P2)∈B for some past-sensitive forward bisimulation B. A relation B over P is a past-sensitive for-
ward bisimulation iff it is a forward bisimulation where initial(P1)⇐⇒ initial(P2) for all (P1,P2) ∈ B.

Since ∼FB:ps is sensitive to the presence of the past, we have that a†.b .0 ̸∼FB:ps b .0, but it is still
possible to identify non-initial processes having a different past like, e.g., a†

1 .P and a†
2 .P. It holds

that ∼FRB ⊊ ∼FB:ps ∩ ∼RB, with ∼FRB=∼FB:ps over initial processes as well as ∼FB:ps and ∼RB being
incomparable because, e.g., for a1 ̸= a2:

a†
1 .P ∼FB:ps a†

2 .P but a†
1 .P ̸∼RB a†

2 .P
a1 .P ∼RB a2 .P but a1 .P ̸∼FB:ps a2 .P

It is easy to establish two necessary conditions for the considered bisimilarities. Following the ter-
minology of [42, 7], the two conditions respectively make use of the forward ready set in the forward
direction and the backward ready set in the backward direction; the latter condition will be exploited
when developing the expansion laws for ∼RB and ∼FRB. We proceed by induction on the syntactical
structure of P ∈ P to define its forward ready set frs(P) ⊆ A, i.e., the set of actions that P can immedi-
ately execute (labels of its outgoing transitions), as well as its backward ready set brs(P) ⊆ A, i.e., the
set of actions whose execution led to P (labels of its incoming transitions):

frs(0) = /0 brs(0) = /0
frs(a .P′) = {a} brs(a .P′) = /0

frs(a†.P′) = frs(P′) brs(a†.P′) =

ß
{a} if initial(P′)
brs(P′) if ¬initial(P′)

frs(P1 +P2) =

frs(P1)∪ frs(P2) if initial(P1)∧ initial(P2)
frs(P1) if ¬initial(P1)∧ initial(P2)
frs(P2) if initial(P1)∧¬initial(P2)

brs(P1 +P2) =

/0 if initial(P1)∧ initial(P2)
brs(P1) if ¬initial(P1)∧ initial(P2)
brs(P2) if initial(P1)∧¬initial(P2)

frs(P1 ∥L P2) = (frs(P1)∩ L̄)∪ (frs(P2)∩ L̄)∪ (frs(P1)∩ frs(P2)∩L)
brs(P1 ∥L P2) = (brs(P1)∩ L̄)∪ (brs(P2)∩ L̄)∪ (brs(P1)∩brs(P2)∩L)

58 Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings

Proposition 2.7 Let P1,P2 ∈ P. Then:

1. If P1 ∼ P2 for ∼∈ {∼FB,∼FB:ps,∼FRB}, then frs(P1) = frs(P2).

2. If P1 ∼ P2 for ∼∈ {∼RB,∼FRB}, then brs(P1) = brs(P2).

In [13] it has been shown that all these four bisimilarities are congruences with respect to action pre-
fix, while only ∼FB:ps, ∼RB, and ∼FRB are congruences with respect to alternative composition too, with
∼FB:ps being the coarsest congruence with respect to + contained in ∼FB. Sound and ground-complete
equational characterizations have also been provided for the three congruences. Here we show that all
these bisimilarities are congruences with respect to the newly added operator, i.e., parallel composition.

Theorem 2.8 Let ∼∈ {∼FB,∼FB:ps,∼RB,∼FRB} and P1,P2 ∈ P. If P1 ∼ P2 then P1 ∥L P ∼ P2 ∥L P and
P∥L P1 ∼ P∥L P2 for all P ∈ P and L ⊆ A\{τ} such that P1 ∥L P,P2 ∥L P,P∥L P1,P∥L P2 ∈ P.

3 Observation Functions and Process Encodings for Expansion Laws

Among the most important axioms there are expansion laws, which are useful to relate sequential spec-
ifications of systems with their concurrent implementations [41]. In the interleaving setting they can be
obtained quite naturally, whereas this is not the case under true concurrency. Thanks to the proved op-
erational semantics in Table 1, we can uniformly derive expansion laws for the interleaving bisimulation
congruence ∼FB:ps and the two truly concurrent bisimulation congruences ∼RB and ∼FRB by following
the proved trees approach of [27].

All we have to do is the introduction of three observation functions ℓF, ℓR, and ℓFR that respectively
transform the proof terms labeling all proved transitions into suitable observations according to ∼FB:ps,
∼RB, and ∼FRB. In addition to a specific proof term θ , as shown in [27] each such function, say ℓ, may
depend on other possible parameters in the proved labeled transition system generated by the semantic
rules in Table 1. Moreover, it must preserve actions, i.e., if ℓ(θ1) = ℓ(θ2) then act(θ1) = act(θ2).

Based on the corresponding ℓ, from each of the three aforementioned congruences we can thus derive
a bisimilarity in which, whenever (P1,P2) ∈ B, the forward clause requires that:

for each P1
ℓ(θ1)−−−→P′

1 there exists P2
ℓ(θ2)−−−→P′

2 such that ℓ(θ1) = ℓ(θ2) and (P′
1,P

′
2) ∈ B

while the backward clause requires that:

for each P′
1

ℓ(θ1)−−−→P1 there exists P′
2

ℓ(θ2)−−−→P2 such that ℓ(θ1) = ℓ(θ2) and (P′
1,P

′
2) ∈ B

We indicate with ∼FB:ps:ℓF , ∼RB:ℓR , and ∼FRB:ℓFR the three resulting bisimilarities.
To derive the corresponding expansion laws, the final step – left implicit in [27], see, e.g., the forth-

coming Definitions 5.1 and 5.3 – consists of lifting ℓ to processes so as to encode observations within
action prefixes. For a process P∈Pseq, the idea is to proceed by induction on the syntactical structure of P
as follows, where σ ∈ Θ∗

seq for Θseq = {., .+,+.}:
ℓσ (0) = 0

ℓσ (a .P′) = ℓ(σa) . ℓσ .(P′)
ℓσ (a†.P′) = ℓ(σa)†. ℓσ .(P′)

ℓσ (P1 +P2) = ℓ.+σ (P1)+ ℓ+.σ (P2)
Every sequential process P will thus be encoded as ℓε(P), so for example a .b .0+b .a .0 will become:
ℓ.+(a .b .0)+ ℓ+.(b .a .0) = ℓ(.+a) . ℓ.+.(b .0)+ ℓ(+.b) . ℓ+..(a .0) = ℓ(.+a) . ℓ(.+.b) .0+ ℓ(+.b) . ℓ(+..a) .0

Then, given two initial sequential processes expressed as follows due to the commutativity and asso-
ciativity of alternative composition (where any summation over an empty index set is 0):

M. Bernardo, A. Esposito & C.A. Mezzina 59

P1 = ∑
i∈I1

ℓ(θ1,i) .P1,i and P2 = ∑
i∈I2

ℓ(θ2,i) .P2,i

the idea is to encode their parallel composition via the following expansion law (where 0∥L 0 yields 0):
P1 ∥L P2 = ∑

i∈I1,act(θ1,i)/∈L
ℓ(Uθ1,i) .(P1,i ∥L P2)+ ∑

i∈I2,act(θ2,i)/∈L
ℓ(Tθ2,i) .(P1 ∥L P2,i) +

∑
i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2, j)=act(θ1,i)

ℓ(⟨θ1,i,θ2, j⟩) .(P1,i ∥L P2, j)

For instance, a .0∥ /0 b .0, represented as ℓ(a) .0∥ /0 ℓ(b) .0, will be expanded as follows:
ℓ(U /0a) .(0∥ /0 ℓ(b) .0)+ ℓ(T /0b) .(ℓ(a) .0∥ /0 0) = ℓ(U /0a) . ℓ(T /0b) .0+ ℓ(T /0b) . ℓ(U /0a) .0

where, compared to the encoding of a .b .0+b .a .0, in general ℓ(.+a) ̸= ℓ(U /0a) ̸= ℓ(+..a) and ℓ(.+.b) ̸=
ℓ(T /0b) ̸= ℓ(+.b). The expansion laws for the cases in which the two sequential processes are not both
initial – which are specific to reversible processes and hence not addressed in [27] – are derived similarly.
We will see that care must be taken when both processes are non-initial because for example a†.0∥ /0 b†.0
cannot be expanded to ℓ(Ua)†. ℓ(Tb)†.0+ ℓ(Tb)†. ℓ(Ua)†.0 as the latter is not even well-formed due to
the presence of executed actions on both sides of the alternative composition.

In the next two sections we will investigate how to define the three observation functions ℓF, ℓR, and
ℓFR in such a way that the three equivalences ∼FB:ps:ℓF , ∼RB:ℓR , and ∼FRB:ℓFR respectively coincide with
the three congruences ∼FB:ps, ∼RB, and ∼FRB. As far as true concurrency is concerned, we point out that
the observation functions developed in [27] for causal semantics and location semantics were inspired
by additional information already present in the labels of the original semantics, i.e., backward pointers
sets [24] and localities [18] respectively. In our case, instead, the original semantics in Table 1 features
labels that are essentially actions, hence for reverse and forward-reverse bisimilarities we have to find out
the additional information necessary to discriminate, e.g., the processes associated with the three bottom
states in Figure 1.

4 Axioms and Expansion Law for ∼FB:ps

In this section we provide a sound and ground-complete axiomatization of forward bisimilarity over
concurrent reversible processes. As already mentioned, this behavioral equivalence complies with the
interleaving view of concurrency. Therefore, we can exploit the same observation function for interleav-
ing semantics used in [27], which we express as ℓF(θ) = act(θ) and immediately implies that ∼FB:ps:ℓF

coincides with ∼FB:ps. Moreover, no additional information has to be inserted into action prefixes, i.e.,
the lifting to processes of the observation function is accomplished via the identity function.

The set AF of axioms for ∼FB:ps is shown in Table 2 (where-clauses are related to P-membership).
All the axioms apart from the last one come from [13], where an axiomatization was developed over
sequential reversible processes. Axioms AF,1 to AF,4 – associativity, commutativity, neutral element,
and idempotency of alternative composition – coincide with those for forward-only processes [32]. Ax-
ioms AF,5 and AF,6 together establish that the presence of the past cannot be ignored, but the specific
past can be neglected when moving only forward. Likewise, axiom AF,7 states that a previously non-
selected alternative process can be discarded when moving only forward; note that it does not subsume
axioms AF,3 and AF,4 because P has to be non-initial.

Since due to axioms AF,5 and AF,6 we only need to remember whether some action has been executed
in the past, axiom AF,8 is the only expansion law needed for ∼FB:ps. Notation [a†.] stands for the possible
presence of an executed action prefix, with a† being present at the beginning of the expansion iff at least
one of a†

1 and a†
2 is present at the beginning of P1 and P2 respectively. In P1 and P2, as well as on the

righthand side of the expansion, summations are allowed by axioms AF,1 and AF,2 and represent 0 when

60 Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings

(AF,1) (P+Q)+R = P+(Q+R) where at least two among P, Q, R are initial
(AF,2) P+Q = Q+P where at least one between P and Q is initial
(AF,3) P+0 = P
(AF,4) P+P = P where initial(P)
(AF,5) a† .P = b† .P if initial(P)
(AF,6) a†.P = P if ¬initial(P)
(AF,7) P+Q = P if ¬initial(P), where initial(Q)

(AF,8) P1 ∥L P2 = [a†.]

Ç
∑

i∈I1,a1,i /∈L
a1,i .(P1,i ∥L P′

2) +

∑
i∈I2,a2,i /∈L

a2,i .(P′
1 ∥L P2,i) +

∑
i∈I1,a1,i∈L

∑
j∈I2,a2, j=a1,i

a1,i .(P1,i ∥L P2, j)

å
with Pk = [a†

k .]P
′
k, P′

k = ∑
i∈Ik

ak,i .Pk,i in F-nf for k ∈ {1,2} and a† present iff so is a†
1 or a†

2

Table 2: Axioms characterizing ∼FB:ps over concurrent reversible processes

their index sets are empty (so that AF ⊢ 0∥L 0 = 0+ 0+ 0 = 0 due to axiom AF,3, substitutivity with
respect to alternative composition, and transitivity).

The deduction system based on AF, whose deducibility relation we denote by ⊢, includes axioms
and inference rules expressing reflexivity, symmetry, and transitivity (because ∼FB:ps is an equivalence
relation) as well as substitutivity with respect to the operators of the considered calculus (because ∼FB:ps
is a congruence with respect to all of those operators). Following [32], to show the soundness and
ground-completeness of AF for ∼FB:ps we introduce a suitable normal form to which every process can
be reduced. The only operators that can occur in such a normal form are action prefix and alternative
composition, hence all processes in normal form are sequential.

Definition 4.1 We say that P ∈ P is in forward normal form, written F-nf, iff it is equal to [b†.]∑i∈I ai .Pi

where the executed action prefix b†. is optional, I is a finite index set (with the summation being 0
when I = /0), and each Pi is initial and in F-nf.

Lemma 4.2 For all (initial) P ∈ P there exists (an initial) Q ∈ P in F-nf such that AF ⊢ P = Q.

Theorem 4.3 Let P1,P2 ∈ P. Then P1 ∼FB:ps P2 iff AF ⊢ P1 = P2.

5 Axioms and Expansion Laws for ∼RB and ∼FRB

In this section we address the axiomatization of reverse and forward-reverse bisimilarities over concur-
rent reversible processes. Since these behavioral equivalences are truly concurrent, we have to provide
process encodings that insert suitable additional discriminating information into action prefixes. We show
that this information is the same for both semantics and is constituted by backward ready sets. Precisely,
for every proved transition P θ−→P′, we let ℓR(θ)P′ = ℓFR(θ)P′ =<act(θ),brs(P′)>≜ ℓbrs(θ)P′ , where
in the observation function we have indicated its primary argument θ in parentheses and its secondary
argument P′ as a subscript (see Section 3 for the possibility of additional parameters like P′).

M. Bernardo, A. Esposito & C.A. Mezzina 61

(ACTbrs,f)
initial(U)

<a,ℶ>.U
a,ℶ−−→brs<a†,ℶ>.U

(ACTbrs,p)
U

θ ,ℸ−−→brsU ′

<a†,ℶ>.U
.θ ,ℸ−−→brs<a†,ℶ>.U ′

(CHObrs,l)
U1

θ ,ℶ−−→brsU ′
1 initial(U2)

U1 +U2
.+θ ,ℶ−−−→brsU ′

1 +U2

(CHObrs,r)
U2

θ ,ℶ−−→brsU ′
2 initial(U1)

U1 +U2
+.θ ,ℶ−−−→brsU1 +U ′

2

Table 3: Proved operational semantic rules for Pbrs (ℶ,ℸ ∈ 2A)

By virtue of Proposition 2.7(2), the distinguishing power of ∼RB and ∼FRB does not change if, in the
related definitions of bisimulation, we additionally require that brs(P1) = brs(P2) for all (P1,P2) ∈ B.
As a consequence, it is straightforward to realize that ∼RB:ℓbrs and ∼FRB:ℓbrs (see page 58) respectively
coincide with ∼RB and ∼FRB over P. Moreover, ∼RB:ℓbrs and ∼FRB:ℓbrs also apply to the encoding target
Pbrs, i.e., the set of processes obtained from Pseq by extending every action prefix with a subset of A.

The syntax of Pbrs processes is defined as follows where ℶ ∈ 2A:
U ::= 0 |<a,ℶ>.U |<a†,ℶ>.U |U +U

The proved operational semantic rules for Pbrs shown in Table 3 generate the proved labeled transition
system (Pbrs,Θ× 2A,−→brs). With respect to those in Table 1, the rules in Table 3 additionally label
the produced transitions with the action sets occurring in the action prefixes inside the source processes.
Given a symmetric relation B over Pbrs, whenever (U1,U2) ∈ B the forward clause of ∼FRB:ℓbrs can be
rephrased as:

for each U1
θ1,ℶ−−→brsU ′

1 there exists U2
θ2,ℶ−−→brsU ′

2 such that act(θ1) = act(θ2) and (U ′
1,U

′
2) ∈ B

while the backward clauses of ∼RB:ℓbrs and ∼FRB:ℓbrs can be rephrased as:

for each U ′
1

θ1,ℶ−−→brsU1 there exists U ′
2

θ2,ℶ−−→brsU2 such that act(θ1) = act(θ2) and (U ′
1,U

′
2) ∈ B

Following the proved trees approach as described in Section 3, we now lift ℓbrs so as to encode P into
Pbrs. The objective is to extend each action prefix with the backward ready set of the reached process.
While in the case of processes in Pseq it is just a matter of extending any action prefix with a singleton
containing the action itself, backward ready sets may contain several actions when handling processes
not in Pseq. To account for this, the lifting of ℓbrs has to make use of a secondary argument, which we
call environment process and will be written as a subscript by analogy with the secondary argument of
the observation function.

The environment process is progressively updated as prefixes are turned into pairs so as to represent
the process reached so far, i.e., the process yielding the backward ready set. The environment process
E for P embodies P, in the sense that it is initially P and then its forward behavior is updated upon
each action prefix extension by decorating the action as executed, where the action is located within E
by a proof term. To correctly handle the extension of already executed prefixes, (part of) E has to be
brought back by replacing P inside E with the process to initial(P) obtained from P by removing all
†-decorations. Function to initial : P→ Pinit is defined by induction on the syntactical structure of P ∈ P
as follows:

to initial(P) = P if initial(P)
to initial(a†.P′) = a . to initial(P′)

to initial(P1 +P2) = to initial(P1)+ to initial(P2) if ¬initial(P1)∨¬initial(P2)
to initial(P1 ∥L P2) = to initial(P1)∥L to initial(P2) if ¬initial(P1)∨¬initial(P2)

In Definitions 5.1 and 5.3 we develop the lifting of ℓbrs and denote by P̃ the result of its application.

62 Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings

We recall that ℓbrs(θ)P′ = <act(θ),brs(P′)> and we let ℓbrs(θ)
†
P′ = <act(θ)†,brs(P′)>. We further

recall that Θseq = {., .+,+.}.

Definition 5.1 Let P ∈ P, E ∈ P be such that P is a subprocess of E, and Ë be obtained from E
by replacing P with to initial(P). The ℓbrs-encoding of P is P̃ = ℓε

brs(P)P, where ℓσ
brs : P×P → Pbrs

for σ ∈ Θ∗
seq is defined by induction on the syntactical structure of its primary argument P ∈ P

(its secondary argument is E ∈ P) as follows:
ℓσ

brs(0)E = 0
ℓσ

brs(a .P
′)E = ℓbrs(σa)upd(E,σa) . ℓ

σ .
brs(P

′)upd(E,σa)

ℓσ
brs(a

†.P′)E = ℓbrs(σa)†
upd(Ë,σa). ℓ

σ .
brs(P

′)E

ℓσ
brs(P1 +P2)E = ℓσ .+

brs (P1)E + ℓσ+.
brs (P2)E

ℓσ
brs(P1 ∥L P2)E = eℓσ

brs(P̃1, P̃2,L)E
where function eℓσ

brs will be defined later on while function upd : P×Θ → P is defined by induction on
the syntactical structural of its first argument E ∈ P as follows:

upd(0,θ) = 0

upd(a .E ′,θ) =

ß
a†.E ′ if θ = a
a .E ′ otherwise

upd(a†.E ′,θ) =

ß
a†.upd(E ′,θ ′) if θ = .θ ′

a†.E ′ otherwise

upd(E1 +E2,θ) =

upd(E1,θ

′)+E2 if θ = .+θ ′

E1 +upd(E2,θ
′) if θ =+.θ ′

E1 +E2 otherwise

upd(E1 ∥L E2,θ) =

upd(E1,θ

′)∥L E2 if θ =Uθ ′

E1 ∥L upd(E2,θ
′) if θ = Tθ ′

upd(E1,θ1)∥L upd(E2,θ2) if θ = ⟨θ1,θ2⟩
E1 ∥L E2 otherwise

Example 5.2 Encoding sequential processes (for them function eℓσ
brs does not come into play):

• Let P be the initial sequential process a .b .0+b .a .0. Then:
P̃ = ℓε

brs(P)P = ℓ.+brs(a .b .0)a .b .0+b .a .0 + ℓ+.brs(b .a .0)a .b .0+b .a .0
= ℓbrs(.+a)a†.b .0+b .a .0 . ℓ

.+.
brs(b .0)a†.b .0+b .a .0 +

ℓbrs(+.b)a .b .0+b†.a .0 . ℓ
+..
brs(a .0)a .b .0+b†.a .0

= <a,{a}>.ℓbrs(.+.b)a†.b†.0+b .a .0 . ℓ
.+..
brs (0)a†.b†.0+b .a .0 +

<b,{b}>.ℓbrs(+..a)a .b .0+b†.a†.0 . ℓ
+...
brs (0)a .b .0+b†.a†.0

= <a,{a}>.<b,{b}>.0+<b,{b}>.<a,{a}>.0
• Let P be the non-initial sequential process a†.b†.0. Then:

P̃ = ℓε
brs(P)P = ℓbrs(a)

†
a†.b .0 . ℓ

.
brs(b

†.0)a†.b†.0 =

= <a†,{a}>.ℓbrs(.b)
†
a†.b†.0 . ℓ

..
brs(0)a†.b†.0 = <a†,{a}>.<b†,{b}>.0

Definition 5.1 yields a .b .0 as P̈ after the second = (before it, P is a subprocess of the environment
P) and a†.b .0 as P̈ after the third = (before it, b†.0 is a subprocess of the environment P).

While for sequential processes the backward ready set added to every action prefix is a singleton
containing the action itself, this is no longer the case when dealing with processes of the form P1 ∥L P2.
We thus complete the encoding by providing the definition of eℓσ

brs. When P1 and P2 are not both initial,
in the expansion we have to reconstruct all possible alternative action sequencings that have not been
undertaken – which yield as many initial subprocesses – because under the forward-reverse semantics

M. Bernardo, A. Esposito & C.A. Mezzina 63

each of them could be selected after a rollback. In the subcase in which both P1 and P2 are non-initial
and their executed actions are not in L – e.g., a†.0∥ /0 b†.0 – care must be taken because executed actions
cannot appear on both sides of an alternative composition – e.g., the expansion cannot be a†.b†.0+
b†.a†.0 in that not well-formed. To overcome this, based on a total order ≤† over Θ induced by the trace
of actions executed so far, the expansion builds the corresponding sequencing of already executed actions
plus all the aforementioned unexecuted action sequencings – e.g., a†.b†.0+ b .a .0 or b†.a†.0+ a .b .0
depending on whether Ua ≤† Tb or Tb ≤† Ua respectively.

Definition 5.3 Let P1,P2 ∈ P, L ⊆ A \ {τ}, E1,E2,E ∈ P be such that P1 ∥L P2,E1 ∥L E2 ∈ P, P1 is a
subprocess of E1, P2 is a subprocess of E2, and E1 ∥L E2 is a subprocess of E. Then eℓσ

brs : Pbrs ×Pbrs ×
2A\{τ}×P→ Pbrs for σ ∈ Θ∗

seq is inductively defined as follows, where square brackets enclose optional
subprocesses as already done in Section 4 and every summation over an empty index set is taken to be 0
(and for simplicity is omitted within a choice unless all alternative subprocesses inside that choice are 0,
in which case the whole choice boils down to 0):

• If P̃1 and P̃2 are both initial, say P̃k = ∑i∈Ik
ℓbrs(θk,i)upd(Pk,θk,i) . P̃k,i for k ∈ {1,2}, let eℓσ

brs(P̃1, P̃2,L)E

= ∑
i∈I1,act(θ1,i)/∈L

ℓbrs(σUθ1,i)upd(E,σUθ1,i) .eℓ
σ
brs(P̃1,i, P̃2,L)upd(E,σUθ1,i) +

∑
i∈I2,act(θ2,i)/∈L

ℓbrs(σTθ2,i)upd(E,σTθ2,i) .eℓ
σ
brs(P̃1, P̃2,i,L)upd(E,σTθ2,i) +

∑
i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2, j)=act(θ1,i)

ℓbrs(σ⟨θ1,i,θ2, j⟩)upd(E,σ⟨θ1,i,θ2, j⟩) .eℓ
σ
brs(P̃1,i, P̃2, j,L))upd(E,σ⟨θ1,i,θ2, j⟩)

where each of the three summation-shaped subprocesses on the right is an initial process.

• If P̃1 is not initial while P̃2 is initial, say P̃1 = ℓbrs(θ1)
†
upd(to initial(P1),θ1)

. P̃′
1 [+ P̃′′

1] where act(θ1) /∈ L

and P̃′′
1 is initial, say P̃′′

1 = ∑i∈I1 ℓbrs(θ1,i)upd(P′′
1 ,θ1,i) . P̃

′′
1,i, and P̃2 = ∑i∈I2 ℓbrs(θ2,i)upd(P2,θ2,i) . P̃2,i,

for Ë obtained from E by replacing P1 with to initial(P1) let eℓσ
brs(P̃1, P̃2,L)E

= ℓbrs(σUθ1)
†

upd(Ë,σUθ1)
.eℓσ

brs(P̃
′
1, P̃2,L)E +

[∑i∈I1,act(θ1,i)/∈L ℓbrs(σUθ1,i)upd(Ë,σUθ1,i)
.eℓσ

brs(P̃
′′
1,i, P̃2,L)upd(Ë,σUθ1,i)

+]

∑i∈I2,act(θ2,i)/∈L ℓbrs(σTθ2,i)upd(Ë,σTθ2,i)
.eℓσ

brs(to initial(P̃1), P̃2,i,L)upd(Ë,σTθ2,i)
+

[∑
i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2, j)=act(θ1,i)

ℓbrs(σ⟨θ1,i,θ2, j⟩)upd(Ë,σ⟨θ1,i,θ2, j⟩) .eℓ
σ
brs(P̃

′′
1,i, P̃2, j,L))upd(Ë,σ⟨θ1,i,θ2, j⟩)]

where each of the last three summation-shaped subprocesses on the right is an initial process
needed by the forward-reverse semantics, with the presence of the first one and the third one
depending on the presence of P̃′′

1 .

• The case in which P̃1 is initial while P̃2 is not initial is like the previous one.

• If P̃1 and P̃2 are both non-initial, say P̃k = ℓbrs(θk)
†
upd(to initial(Pk),θk)

. P̃′
k [+ P̃′′

k] where P̃′′
k is initial, say

P̃′′
k = ∑i∈Ik

ℓbrs(θk,i)upd(P′′
k ,θk,i) . P̃

′′
k,i, for k ∈ {1,2}, for Ë obtained from E by replacing each Pk with

to initial(Pk) there are three subcases:

– If act(θ1) /∈ L∧ (act(θ2) ∈ L∨σUθ1 ≤† σTθ2), let eℓσ
brs(P̃1, P̃2,L)E

= ℓbrs(σUθ1)
†

upd(Ë,σUθ1)
.eℓσ

brs(P̃
′
1, P̃2,L)E +

[ℓbrs(σTθ2)upd(Ë,σTθ2)
.eℓσ

brs(to initial(P̃1), to initial(P̃′
2),L)upd(Ë,σTθ2)

+]

[∑
i∈I1,act(θ1,i)/∈L

ℓbrs(σUθ1,i)upd(Ë,σUθ1,i)
.eℓσ

brs(P̃
′′
1,i, to initial(P̃2),L)upd(Ë,σUθ1,i)

+]

[∑
i∈I2,act(θ2,i)/∈L

ℓbrs(σTθ2,i)upd(Ë,σTθ2,i)
.eℓσ

brs(to initial(P̃1), P̃′′
2,i,L)upd(Ë,σTθ2,i)

+]

[∑
i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2, j)=act(θ1,i)

ℓbrs(σ⟨θ1,i,θ2, j⟩)upd(Ë,σ⟨θ1,i,θ2, j⟩) .eℓ
σ
brs(P̃

′′
1,i, P̃

′′
2, j,L))upd(Ë,σ⟨θ1,i,θ2, j⟩)]

64 Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings

where each of the last four subprocesses on the right is an initial process needed by the
forward-reverse semantics, with the first one being present only if act(θ2) /∈ L and the pres-
ence of the subsequent three respectively depending on the presence of P̃′′

1 , P̃′′
2 , or both.

– The subcase act(θ2) /∈ L∧ (act(θ1) ∈ L∨σTθ2 ≤† σUθ1) is like the previous one.
– If act(θ1) = act(θ2) ∈ L, let eℓσ

brs(P̃1, P̃2,L)E

= ℓbrs(σ⟨θ1,θ2⟩)†
upd(Ë,σ⟨θ1,θ2⟩) .eℓ

σ
brs(P̃

′
1, P̃

′
2,L))E +

[∑
i∈I1,act(θ1,i)/∈L

ℓbrs(σUθ1,i)upd(Ë,σUθ1,i)
.eℓσ

brs(P̃
′′
1,i, to initial(P̃2),L)upd(Ë,σUθ1,i)

+]

[∑
i∈I2,act(θ2,i)/∈L

ℓbrs(σTθ2,i)upd(Ë,σTθ2,i)
.eℓσ

brs(to initial(P̃1), P̃′′
2,i,L)upd(Ë,σTθ2,i)

+]

[∑
i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2, j)=act(θ1,i)

ℓbrs(σ⟨θ1,i,θ2, j⟩)upd(Ë,σ⟨θ1,i,θ2, j⟩) .eℓ
σ
brs(P̃

′′
1,i, P̃

′′
2, j,L))upd(Ë,σ⟨θ1,i,θ2, j⟩)]

where each of the last three summation-shaped subprocesses on the right is an initial process
needed by the forward-reverse semantics, with their presence respectively depending on the
presence of P̃′′

1 , P̃′′
2 , or both.

Example 5.4 Let P be P1 ∥ /0 P2, where P1 and P2 are the initial sequential processes a .0 and b .0 so that
P̃1 = ℓbrs(a)a†.0 . 0̃ and P̃2 = ℓbrs(b)b†.0 . 0̃. Then:

P̃ = ℓε
brs(P)P = eℓε

brs(P̃1, P̃2, /0)P

= ℓbrs(Ua)a†.0∥ /0 b .0 .eℓ
ε
brs(0̃, P̃2, /0)a†.0∥ /0 b .0 +

ℓbrs(Tb)a .0∥ /0 b†.0 .eℓ
ε
brs(P̃1, 0̃, /0)a .0∥ /0 b†.0

= <a,{a}>.ℓbrs(Tb)a†.0∥ /0 b†.0 .eℓ
ε
brs(0̃, 0̃, /0)a†.0∥ /0 b†.0 +

<b,{b}>.ℓbrs(Ua)a†.0∥ /0 b†.0 .eℓ
ε
brs(0̃, 0̃, /0)a†.0∥ /0 b†.0

= <a,{a}>.<b,{a,b}>.0+<b,{b}>.<a,{a,b}>.0
which is different from the encoding of a .b .0+ b .a .0 shown in Example 5.2, unless a = b as in that
case the backward ready set {a,b} collapses to {a}.
If instead P1 is the non-initial sequential process a†.0 and P2 is the initial sequential process b .0, so that
P̃1 = ℓbrs(a)

†
a†.0 . 0̃ and P̃2 = ℓbrs(b)b†.0 . 0̃, then:

P̃ = ℓε
brs(P)P = eℓε

brs(P̃1, P̃2, /0)P

= ℓbrs(Ua)†
a†.0∥ /0 b .0 .eℓ

ε
brs(0̃, P̃2, /0)P +

ℓbrs(Tb)a .0∥ /0 b†.0 .eℓ
ε
brs(ℓbrs(a)a†.0 . 0̃, 0̃, /0)a .0∥ /0 b†.0

= <a†,{a}>.ℓbrs(Tb)a†.0∥ /0 b†.0 .eℓ
ε
brs(0̃, 0̃, /0)a†.0∥ /0 b†.0 +

<b,{b}>.ℓbrs(Ua)a†.0∥ /0 b†.0 .eℓ
ε
brs(0̃, 0̃, /0)a†.0∥ /0 b†.0

= <a†,{a}>.<b,{a,b}>.0+<b,{b}>.<a,{b,a}>.0
If finally P1 is the non-initial sequential process a†.0 and P2 is the non-initial sequential process b†.0,
so that P̃1 = ℓbrs(a)

†
a†.0 . 0̃ and P̃2 = ℓbrs(b)

†
b†.0 . 0̃, then for Ua ≤† Tb:

P̃ = ℓε
brs(P)P = eℓε

brs(P̃1, P̃2, /0)P

= ℓbrs(Ua)†
a†.0∥ /0 b .0 .eℓ

ε
brs(0̃, P̃2, /0)P +

ℓbrs(Tb)a .0∥ /0 b†.0 .eℓ
ε
brs(ℓbrs(a)a†.0 . 0̃, 0̃, /0)a .0∥ /0 b†.0

= <a†,{a}>.ℓbrs(Tb)†
a†.0∥ /0 b†.0 .eℓ

ε
brs(0̃, 0̃, /0)a†.0∥ /0 b†.0 +

<b,{b}>.ℓbrs(Ua)a†.0∥ /0 b†.0 .eℓ
ε
brs(0̃, 0̃, /0)a†.0∥ /0 b†.0

= <a†,{a}>.<b†,{a,b}>.0+<b,{b}>.<a,{b,a}>.0

We now investigate the correctness of the ℓbrs-encoding. After some compositionality properties,
we show that the encoding preserves initiality and – to a large extent – backward ready sets.

M. Bernardo, A. Esposito & C.A. Mezzina 65

(AR,1) Â�(P+Q)+R = Â�P+(Q+R) where at least two among P, Q, R are initial
(AR,2) flP+Q = flQ+P where at least one between P and Q is initial
(AR,3) ã .P = P̃ where initial(P)
(AR,4) flP+Q = P̃ if initial(Q)

(AR,5) ‡P1 ∥L P2 = eℓε
brs(P̃1, P̃2,L)P1 ∥L P2 with Pk in R-nf for k ∈ {1,2}

(AFR,1) Â�(P+Q)+R = Â�P+(Q+R) where at least two among P, Q, R are initial
(AFR,2) flP+Q = flQ+P where at least one between P and Q is initial
(AFR,3) flP+0 = P̃
(AFR,4) flP+Q = P̃ if initial(Q)∧ to initial(P) = Q

(AFR,5) ‡P1 ∥L P2 = eℓε
brs(P̃1, P̃2,L)P1 ∥L P2 with Pk in FR-nf for k ∈ {1,2}

Table 4: Axioms characterizing ∼RB and ∼FRB via the ℓbrs-encoding into Pbrs processes

Lemma 5.5 Let a ∈ A and P,P1,P2 ∈ P be such that a .P,P1 +P2 ∈ P. Then:

1. ã .P =<a,{a}>. P̃.

2. fia†.P =<a†,brs(a†.P)>. P̃, with brs(a†.P) = {a} if P is initial.

3. ‡P1 +P2 = P̃1 + P̃2.

Proposition 5.6 Let P ∈ P. Then:

1. initial(P̃) iff initial(P).

2. brs(P̃) = brs(P) if P has no subprocesses of the form P1 ∥L P2 such that P1 and P2 are non-initial and
the last executed action b†

1 in P̃1 is different from the last executed action b†
2 in P̃2 with b1,b2 /∈ L.

As an example, for P given by a†.0∥ /0 b†.0 we have that P̃ = <a†,{a}>.<b†,{a,b}>.0 +
<b,{b}>.<a,{a,b}>.0 when the last executed actions satisfy Ua ≤† Tb (see end of Example 5.4),
hence brs(P) = {a,b} but brs(P̃) = {b} for a ̸= b. However, in P̃ the backward ready set {a,b} occurs
next to the last executed action b†, hence it will label the related transition in −→brs (see Table 3). Indeed,
the ℓbrs-encoding is correct in the following sense.

Theorem 5.7 Let P,P′ ∈ P and θ ∈ Θ. Then P θ−→P′ iff P̃
ℓbrs(θ)P′−−−−→brs P̃′.

Corollary 5.8 Let P1,P2 ∈ P and B ∈ {RB,FRB}. Then P1 ∼B P2 iff P̃1 ∼B:ℓbrs P̃2.

The set AR of axioms for ∼RB is shown in the upper part of Table 4. All the axioms apart from the last
one come from the axiomatization developed in [13] over sequential processes. Axiom AR,3 establishes
that the future can be completely canceled when moving only backward. Likewise, axiom AR,4 states
that a previously non-selected alternative can be discarded when moving only backward; note that this
axiom subsumes both flP+0 = P̃ and flP+P = P̃. The new axiom AR,5 concisely expresses via eℓbrs the
expansion laws for reverse bisimilarity, where Pk is 0 or the +-free sequential process a†

k .P
′
k featuring

only executed actions for k ∈ {1,2}.

66 Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings

Definition 5.9 We say that P ∈ P is in reverse normal form, written R-nf, iff it is equal to 0 or a†.P′

where P′ is in R-nf. This extends to P̃ ∈ Pbrs in the expected way.

Lemma 5.10 For all (initial) P ∈ P there exists (an initial) Q̃ ∈ Pbrs in R-nf (which is 0̃) such that
AR ⊢ P̃ = Q̃.

Theorem 5.11 Let P1,P2 ∈ P. Then P̃1 ∼RB:ℓbrs P̃2 iff AR ⊢ P̃1 = P̃2.

The set AFR of axioms for ∼FRB is shown in the lower part of Table 4. All the axioms apart from
the last one come from the axiomatization developed in [13] over sequential processes. Axiom AFR,4 is
a variant of idempotency appeared for the first time in [39], with P and Q coinciding like in axiom AF,4
when they are both initial. The new axiom AFR,5 concisely expresses via eℓbrs the expansion laws for
forward-reverse bisimilarity, where Pk is the sequential process [a†

k .P
′
k+]∑i∈Ik

ak,i .Pk,i for k ∈ {1,2}.

Definition 5.12 We say that P ∈ P is in forward-reverse normal form, written FR-nf, iff it is equal to
[b†.P′+]∑i∈I ai .Pi where b†.P′ is optional, P′ is in FR-nf, I is a finite index set (with the summation
being 0 – or disappearing in the presence of b†.P′ – when I = /0), and each Pi is initial and in FR-nf.
This extends to P̃ ∈ Pbrs in the expected way.

Lemma 5.13 For all (initial) P ∈ P there exists (an initial) Q̃ ∈ Pbrs in FR-nf such that AFR ⊢ P̃ = Q̃.

Theorem 5.14 Let P1,P2 ∈ P. Then P̃1 ∼FRB:ℓbrs P̃2 iff AFR ⊢ P̃1 = P̃2.

6 Conclusions

In this paper we have exhibited expansion laws for forward bisimilarity, which is interleaving, and re-
verse and forward-reverse bisimilarities, which are truly concurrent. To uniformly develop them, we
have resorted to the proved trees approach of [27], which has turned out to be effective also in our set-
ting. With respect to other truly concurrent semantics to which the approach was applied, such as causal
and location bisimilarities, the operational semantics of our reversible calculus does not carry the addi-
tional discriminating information within transition labels. However, we have been able to derive it from
those labels and shown to consist of backward ready sets for both reverse and forward-reverse bisimilar-
ities. Another technical difficulty that we have faced is the encoding of concurrent processes in which
both subprocesses have executed non-synchronizing actions, because their expansions cannot contain
executed actions on both sides of an alternative composition. For completeness we mention that in [1]
proved semantics has already been employed in a reversible setting, for a different purpose though.

As for future work, an obvious direction is to exploit the same approach to find out expansion laws
for the weak versions of forward, reverse, and forward-reverse bisimilarities, i.e., their versions capable
of abstracting from τ-actions [8].

A more interesting direction is to show that forward-reverse bisimilarity augmented with a clause
for backward ready multisets equality corresponds to hereditary history-preserving bisimilarity [5], thus
yielding for the latter an operational characterization, an axiomatization alternative to [29], and logical
characterizations alternative to [48, 4]. These two bisimilarities were shown to coincide in [5, 46, 47, 2]
in the absence of autoconcurrency. In fact, if a = b in Figure 1, the two processes turn out to be forward-
reverse bisimilar, with the backward ready sets of the three bottom states collapsing to {a}, but not
hereditary history-preserving bisimilar, because identifying executed actions is important [3] (as done
also in CCSK via communication keys [45]). However, if backward ready multisets are used instead,
then the bottom state on the left can be distinguished from the two bottom states on the right. Thus,
counting executed actions that label incoming transitions may be enough.

M. Bernardo, A. Esposito & C.A. Mezzina 67

Acknowledgments. We would like to thank Irek Ulidowski, Ilaria Castellani, and Pierpaolo Degano
for the valuable discussions. This research has been supported by the PRIN 2020 project NiRvAna –
Noninterference and Reversibility Analysis in Private Blockchains, the PRIN 2022 project DeKLA –
Developing Kleene Logics and Their Applications, and the INdAM-GNCS 2024 project MARVEL –
Modelli Composizionali per l’Analisi di Sistemi Reversibili Distribuiti.

References

[1] C. Aubert (2022): Concurrencies in Reversible Concurrent Calculi. In: Proc. of the 14th Int. Conf. on
Reversible Computation (RC 2022), LNCS 13354, Springer, pp. 146–163, doi:10.1007/978-3-031-09005-
9 10.

[2] C. Aubert & I. Cristescu (2017): Contextual Equivalences in Configuration Structures and Reversibility.
Journal of Logical and Algebraic Methods in Programming 86, pp. 77–106, doi:10.1016/j.jlamp.2016.08.004.

[3] C. Aubert & I. Cristescu (2020): How Reversibility Can Solve Traditional Questions: The Example of
Hereditary History-Preserving Bisimulation. In: Proc. of the 31st Int. Conf. on Concurrency Theory (CON-
CUR 2020), LIPIcs 171, pp. 7:1–7:23, doi:10.4230/LIPIcs.CONCUR.2020.7.

[4] P. Baldan & S. Crafa (2014): A Logic for True Concurrency. Journal of the ACM 61, pp. 24:1–24:36,
doi:10.1145/2629638.

[5] M.A. Bednarczyk (1991): Hereditary History Preserving Bisimulations or What Is the Power of the Future
Perfect in Program Logics. Technical Report, Polish Academy of Sciences, Gdansk.

[6] C.H. Bennett (1973): Logical Reversibility of Computation. IBM Journal of Research and Development 17,
pp. 525–532, doi:10.1147/rd.176.0525.

[7] J.A. Bergstra, J.W. Klop & E.-R. Olderog (1988): Readies and Failures in the Algebra of Communicating
Processes. SIAM Journal on Computing 17, pp. 1134–1177, doi:10.1137/0217073.

[8] M. Bernardo & A. Esposito (2023): On the Weak Continuation of Reverse Bisimilarity vs. Forward Bisimi-
larity. In: Proc. of the 24th Italian Conf. on Theoretical Computer Science (ICTCS 2023), CEUR-WS 3587,
pp. 44–58.

[9] M. Bernardo & A. Esposito (2023): Modal Logic Characterizations of Forward, Reverse, and Forward-
Reverse Bisimilarities. In: Proc. of the 14th Int. Symp. on Games, Automata, Logics, and Formal Verification
(GANDALF 2023), EPTCS 390, pp. 67–81, doi:10.4204/EPTCS.390.5.

[10] M. Bernardo & C.A. Mezzina (2023): Bridging Causal Reversibility and Time Reversibility: A Stochastic
Process Algebraic Approach. Logical Methods in Computer Science 19(2), pp. 6:1–6:27, doi:10.46298/lmcs-
19(2:6)2023.

[11] M. Bernardo & C.A. Mezzina (2023): Causal Reversibility for Timed Process Calculi with Lazy/Eager Du-
rationless Actions and Time Additivity. In: Proc. of the 21st Int. Conf. on Formal Modeling and Analysis of
Timed Systems (FORMATS 2023), LNCS 14138, Springer, pp. 15–32, doi:10.1007/978-3-031-42626-1 2.

[12] M. Bernardo & C.A. Mezzina (2024): Reversibility in Process Calculi with Nondeterminism and Probabili-
ties. In: Proc. of the 21st Int. Coll. on Theoretical Aspects of Computing (ICTAC 2024), LNCS, Springer.

[13] M. Bernardo & S. Rossi (2023): Reverse Bisimilarity vs. Forward Bisimilarity. In: Proc. of the 26th Int. Conf.
on Foundations of Software Science and Computation Structures (FOSSACS 2023), LNCS 13992, Springer,
pp. 265–284, doi:10.1007/978-3-031-30829-1 13.

[14] L. Bocchi, I. Lanese, C.A. Mezzina & S. Yuen (2024): revTPL: The Reversible Temporal Process Language.
Logical Methods in Computer Science 20(1), pp. 11:1–11:35, doi:10.46298/lmcs-20(1:11)2024.

[15] G. Boudol & I. Castellani (1988): Concurrency and Atomicity. Theoretical Computer Science 59, pp. 25–84,
doi:10.1016/0304-3975(88)90096-5.

https://doi.org/10.1007/978-3-031-09005-9_10
https://doi.org/10.1007/978-3-031-09005-9_10
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.4230/LIPIcs.CONCUR.2020.7
https://doi.org/10.1145/2629638
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1137/0217073
https://doi.org/10.4204/EPTCS.390.5
https://doi.org/10.46298/lmcs-19(2:6)2023
https://doi.org/10.46298/lmcs-19(2:6)2023
https://doi.org/10.1007/978-3-031-42626-1_2
https://doi.org/10.1007/978-3-031-30829-1_13
https://doi.org/10.46298/lmcs-20(1:11)2024
https://doi.org/10.1016/0304-3975(88)90096-5

68 Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings

[16] G. Boudol & I. Castellani (1988): A Non-Interleaving Semantics for CCS Based on Proved Transitions.
Fundamenta Informaticae 11, pp. 433–452, doi:10.3233/FI-1988-11406.

[17] G. Boudol & I. Castellani (1994): Flow Models of Distributed Computations: Three Equivalent Semantics
for CCS. Information and Computation 114, pp. 247–314, doi:10.1006/inco.1994.1088.

[18] G. Boudol, I. Castellani, M. Hennessy & A. Kiehn (1994): A Theory of Processes with Localities. Formal
Aspects of Computing 6, pp. 165–200, doi:10.1007/BF01221098.

[19] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A Theory of Communicating Sequential Processes.
Journal of the ACM 31, pp. 560–599, doi:10.1145/828.833.

[20] I. Castellani (1995): Observing Distribution in Processes: Static and Dynamic Localities. Foundations of
Computer Science 6, pp. 353–393, doi:10.1142/S0129054195000196.

[21] I. Cristescu, J. Krivine & D. Varacca (2013): A Compositional Semantics for the Reversible P-Calculus.
In: Proc. of the 28th ACM/IEEE Symp. on Logic in Computer Science (LICS 2013), IEEE-CS Press, pp.
388–397, doi:10.1109/LICS.2013.45.

[22] V. Danos & J. Krivine (2004): Reversible Communicating Systems. In: Proc. of the 15th Int. Conf. on
Concurrency Theory (CONCUR 2004), LNCS 3170, Springer, pp. 292–307, doi:10.1007/978-3-540-28644-
8 19.

[23] V. Danos & J. Krivine (2005): Transactions in RCCS. In: Proc. of the 16th Int. Conf. on Concurrency Theory
(CONCUR 2005), LNCS 3653, Springer, pp. 398–412, doi:10.1007/11539452 31.

[24] Ph. Darondeau & P. Degano (1989): Causal Trees. In: Proc. of the 16th Int. Coll. on Automata, Languages
and Programming (ICALP 1989), LNCS 372, Springer, pp. 234–248, doi:10.1007/BFb0035764.

[25] Ph. Darondeau & P. Degano (1990): Causal Trees: Interleaving + Causality. In: Proc. of the LITP
Spring School on Theoretical Computer Science: Semantics of Systems of Concurrent Processes, LNCS
469, Springer, pp. 239–255, doi:10.1007/3-540-53479-2 10.

[26] R. De Nicola, U. Montanari & F. Vaandrager (1990): Back and Forth Bisimulations. In: Proc.
of the 1st Int. Conf. on Concurrency Theory (CONCUR 1990), LNCS 458, Springer, pp. 152–165,
doi:10.1007/BFb0039058.

[27] P. Degano & C. Priami (1992): Proved Trees. In: Proc. of the 19th Int. Coll. on Automata, Languages and
Programming (ICALP 1992), LNCS 623, Springer, pp. 629–640, doi:10.1007/3-540-55719-9 110.

[28] H. Fecher (2004): A Completed Hierarchy of True Concurrent Equivalences. Information Processing Letters
89, pp. 261–265, doi:10.1016/j.ipl.2003.11.008.

[29] S. Fröschle & S. Lasota (2005): Decomposition and Complexity of Hereditary History Preserving Bisim-
ulation on BPP. In: Proc. of the 16th Int. Conf. on Concurrency Theory (CONCUR 2005), LNCS 3653,
Springer, pp. 263–277, doi:10.1007/11539452 22.

[30] E. Giachino, I. Lanese & C.A. Mezzina (2014): Causal-Consistent Reversible Debugging. In: Proc. of the
17th Int. Conf. on Fundamental Approaches to Software Engineering (FASE 2014), LNCS 8411, Springer,
pp. 370–384, doi:10.1007/978-3-642-54804-8 26.

[31] R.J. van Glabbeek & U. Goltz (2001): Refinement of Actions and Equivalence Notions for Concurrent Sys-
tems. Acta Informatica 37, pp. 229–327, doi:10.1007/s002360000041.

[32] M. Hennessy & R. Milner (1985): Algebraic Laws for Nondeterminism and Concurrency. Journal of the
ACM 32, pp. 137–162, doi:10.1145/2455.2460.

[33] J. Krivine (2012): A Verification Technique for Reversible Process Algebra. In: Proc. of the 4th Int. Workshop
on Reversible Computation (RC 2012), LNCS 7581, Springer, pp. 204–217, doi:10.1007/978-3-642-36315-
3 17.

[34] R. Landauer (1961): Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research
and Development 5, pp. 183–191, doi:10.1147/rd.53.0183.

https://doi.org/10.3233/FI-1988-11406
https://doi.org/10.1006/inco.1994.1088
https://doi.org/10.1007/BF01221098
https://doi.org/10.1145/828.833
https://doi.org/10.1142/S0129054195000196
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/BFb0035764
https://doi.org/10.1007/3-540-53479-2_10
https://doi.org/10.1007/BFb0039058
https://doi.org/10.1007/3-540-55719-9_110
https://doi.org/10.1016/j.ipl.2003.11.008
https://doi.org/10.1007/11539452_22
https://doi.org/10.1007/978-3-642-54804-8_26
https://doi.org/10.1007/s002360000041
https://doi.org/10.1145/2455.2460
https://doi.org/10.1007/978-3-642-36315-3_17
https://doi.org/10.1007/978-3-642-36315-3_17
https://doi.org/10.1147/rd.53.0183

M. Bernardo, A. Esposito & C.A. Mezzina 69

[35] I. Lanese, M. Lienhardt, C.A. Mezzina, A. Schmitt & J.-B. Stefani (2013): Concurrent Flexible Reversibility.
In: Proc. of the 22nd European Symp. on Programming (ESOP 2013), LNCS 7792, Springer, pp. 370–390,
doi:10.1007/978-3-642-37036-6 21.

[36] I. Lanese, D. Medić & C.A. Mezzina (2021): Static versus Dynamic Reversibility in CCS. Acta Informatica
58, pp. 1–34, doi:10.1007/s00236-019-00346-6.

[37] I. Lanese, C.A. Mezzina & J.-B. Stefani (2010): Reversing Higher-Order Pi. In: Proc. of the 21st Int.
Conf. on Concurrency Theory (CONCUR 2010), LNCS 6269, Springer, pp. 478–493, doi:10.1007/978-3-
642-15375-4 33.

[38] I. Lanese, N. Nishida, A. Palacios & G. Vidal (2018): CauDEr: A Causal-Consistent Reversible Debugger
for Erlang. In: Proc. of the 14th Int. Symp. on Functional and Logic Programming (FLOPS 2018), LNCS
10818, Springer, pp. 247–263, doi:10.1007/978-3-319-90686-7 16.

[39] I. Lanese & I. Phillips (2021): Forward-Reverse Observational Equivalences in CCSK. In: Proc. of the 13th
Int. Conf. on Reversible Computation (RC 2021), LNCS 12805, Springer, pp. 126–143, doi:10.1007/978-3-
030-79837-6 8.

[40] J.S. Laursen, L.-P. Ellekilde & U.P. Schultz (2018): Modelling Reversible Execution of Robotic Assembly.
Robotica 36, pp. 625–654, doi:10.1017/S0263574717000613.

[41] R. Milner (1989): Communication and Concurrency. Prentice Hall.

[42] E.-R. Olderog & C.A.R. Hoare (1986): Specification-Oriented Semantics for Communicating Processes.
Acta Informatica 23, pp. 9–66, doi:10.1007/BF00268075.

[43] D. Park (1981): Concurrency and Automata on Infinite Sequences. In: Proc. of the 5th GI Conf. on Theoret-
ical Computer Science, LNCS 104, Springer, pp. 167–183, doi:10.1007/BFb0017309.

[44] K.S. Perumalla & A.J. Park (2014): Reverse Computation for Rollback-Based Fault Tolerance in Large
Parallel Systems – Evaluating the Potential Gains and Systems Effects. Cluster Computing 17, pp. 303–313,
doi:10.1007/s10586-013-0277-4.

[45] I. Phillips & I. Ulidowski (2007): Reversing Algebraic Process Calculi. Journal of Logic and Algebraic
Programming 73, pp. 70–96, doi:10.1016/j.jlap.2006.11.002.

[46] I. Phillips & I. Ulidowski (2007): Reversibility and Models for Concurrency. In: Proc. of the 4th
Int. Workshop on Structural Operational Semantics (SOS 2007), ENTCS 192(1), Elsevier, pp. 93–108,
doi:10.1016/j.entcs.2007.08.018.

[47] I. Phillips & I. Ulidowski (2012): A Hierarchy of Reverse Bisimulations on Stable Configuration Structures.
Mathematical Structures in Computer Science 22, pp. 333–372, doi:10.1017/S0960129511000429.

[48] I. Phillips & I. Ulidowski (2014): Event Identifier Logic. Mathematical Structures in Computer Science
24(2), pp. 1–51, doi:10.1017/S0960129513000510.

[49] I. Phillips, I. Ulidowski & S. Yuen (2012): A Reversible Process Calculus and the Modelling of the ERK
Signalling Pathway. In: Proc. of the 4th Int. Workshop on Reversible Computation (RC 2012), LNCS 7581,
Springer, pp. 218–232, doi:10.1007/978-3-642-36315-3 18.

[50] G.M. Pinna (2017): Reversing Steps in Membrane Systems Computations. In: Proc. of the 18th Int. Conf. on
Membrane Computing (CMC 2017), LNCS 10725, Springer, pp. 245–261, doi:10.1007/978-3-319-73359-
3 16.

[51] A.M. Rabinovich & B.A. Trakhtenbrot (1988): Behavior Structures and Nets. Fundamenta Informaticae 11,
pp. 357–404, doi:10.3233/FI-1988-11404.

[52] M. Schordan, T. Oppelstrup, D.R. Jefferson & P.D. Barnes Jr. (2018): Generation of Reversible C++
Code for Optimistic Parallel Discrete Event Simulation. New Generation Computing 36, pp. 257–280,
doi:10.1007/s00354-018-0038-2.

[53] H. Siljak, K. Psara & A. Philippou (2019): Distributed Antenna Selection for Massive MIMO Using Reversing
Petri Nets. IEEE Wireless Communication Letters 8, pp. 1427–1430, doi:10.1109/LWC.2019.2920128.

https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/s00236-019-00346-6
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-030-79837-6_8
https://doi.org/10.1007/978-3-030-79837-6_8
https://doi.org/10.1017/S0263574717000613
https://doi.org/10.1007/BF00268075
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/s10586-013-0277-4
https://doi.org/10.1016/j.jlap.2006.11.002
https://doi.org/10.1016/j.entcs.2007.08.018
https://doi.org/10.1017/S0960129511000429
https://doi.org/10.1017/S0960129513000510
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.3233/FI-1988-11404
https://doi.org/10.1007/s00354-018-0038-2
https://doi.org/10.1109/LWC.2019.2920128

70 Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings

[54] M. Vassor & J.-B. Stefani (2018): Checkpoint/Rollback vs Causally-Consistent Reversibility. In: Proc.
of the 10th Int. Conf. on Reversible Computation (RC 2018), LNCS 11106, Springer, pp. 286–303,
doi:10.1007/978-3-319-99498-7 20.

[55] E. de Vries, V. Koutavas & M. Hennessy (2010): Communicating Transactions. In: Proc. of the 21st Int.
Conf. on Concurrency Theory (CONCUR 2010), LNCS 6269, Springer, pp. 569–583, doi:10.1007/978-3-
642-15375-4 39.

https://doi.org/10.1007/978-3-319-99498-7_20
https://doi.org/10.1007/978-3-642-15375-4_39
https://doi.org/10.1007/978-3-642-15375-4_39

G. Caltais and C. Di Giusto (Eds.): EXPRESS/SOS 2024
EPTCS 412, 2024, pp. 71–88, doi:10.4204/EPTCS.412.6

© B. Bisping & D.N. Jansen
This work is licensed under the
Creative Commons Attribution License.

One Energy Game for the Spectrum between
Branching Bisimilarity and Weak Trace Semantics

Benjamin Bisping
Technische Universität Berlin, Germany

https://bbisping.de
benjamin.bisping@tu-berlin.de

David N. Jansen
Key Laboratory of System Software and

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

dnjansen@ios.ac.cn

We provide the first generalized game characterization of van Glabbeek’s linear-time–branching-time
spectrum with silent steps. Thereby, one multi-dimensional energy game can be used to characterize
and decide a wide array of weak behavioral equivalences between stability-respecting branching
bisimilarity and weak trace equivalence in one go. To establish correctness, we relate attacker-win-
ning energy budgets and distinguishing sublanguages of Hennessy–Milner logic that we characterize
by eight dimensions of formula expressiveness.

1 Introduction: Mechanizing the Spectrum

Picking the right notion of behavioral equivalence for a particular use case can be hard.1 Theoretically,
van Glabbeek’s “linear-time–branching-time spectrum” [22, 23, 24] brings order to the zoo of equiva-
lences by casting them as a hierarchy of modal logics. But practically, it is difficult to navigate in par-
ticular the second part [23], which considers so-called weak equivalences that abstract from “internal”
behavior, expressed by “silent” τ-steps. Abstracting internal behavior is crucial to model communication
happening without participation of the observer and refinements, that is, for virtually every application.

In this paper, we show how to operationalize the silent-step linear-time–branching-time spectrum
of [23]. We enable researchers to provide a set of processes that ought to be equated (or distinguished)
for their scenario and to learn “where” in the spectrum this set of (in-)equivalences holds. In prior work
on the strong spectrum [22] (without silent steps), we dubbed this process linear-time–branching-time
spectroscopy [7]. Implicitly, we obtain decision procedures (and games) for each individual notion of
equivalence as a by-product.

As outlined in Figure 1, we apply our recent approach [7, 5] to use a generalized bisimulation game
with moves corresponding to sets of conceivable distinguishing formulas. The background is that formu-
las can be partially ordered by the amount of Hennessy–Milner logic expressiveness they use in a way that
aligns with the spectrum. The game can then be understood as a multi-weighted energy game [5, 13, 26]
where moves use up attacker’s resources to distinguish processes. So, defender-won energy levels reveal
non-distinguishing subsets of Hennessy–Milner logic (HML) and thus sets of maintained equivalences.

Applying the above approach to the weak spectrum faces many obstacles: The modal logics of
the weak spectrum in [23] are quite intricate and are not closed under HML-subterms. Also, van
Glabbeek [23] does not account for unstable linear-time equivalences, but other publications like Gazda
et al. [19] use these. On the game side, existing weak bisimulation games by De Frutos Escrig et al. [18]
and Bisping et al. [9] lack moves for many observations that are relevant for weaker notions in the spec-
trum. This paper shows how all this can still be brought together.

1Some accounts of researchers who struggled to pick fitting equivalence for verification and encoding challenges: [2, 3, 25].

http://dx.doi.org/10.4204/EPTCS.412.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0637-0171
https://bbisping.de
https://orcid.org/0000-0002-6636-3301

72 One Energy Game for the Weak Spectrum

p is preordered to q
w.r.t. notion of
equivalence N

:⇐⇒

van Glabbeek’s
spectrum approach [23]

no formula below eN

distinguishes p from q
(Section 2)

⇐⇒

Bisping’s spectroscopy
approach [5] (Section 4)

defender wins spectroscopy game
G△ from [p,{q}]a with energy eN

(Section 3)

Figure 1: How the paper combines the weak spectrum [23] and the spectroscopy approach [5].

Contributions. At its core, this paper extends the spectroscopy energy game of [5] by modalities
needed to cover the weak equivalence spectrum of [23], namely, delayed observations, stable conjunc-
tions, and branching conjunctions. More precisely:

• In Section 2, we capture a big chunk of the linear-time–branching-time spectrum with silent
steps by measuring expressive powers used in an HML-subset, which we prove to correspond
to stability-respecting branching bisimilarity.

• In Section 3, we introduce the first generalized game characterization of the silent-step equivalence
spectrum. For this, we adapt the spectroscopy energy game of [5] to account for distinctions in
terms of delayed observations (⟨ε⟩⟨a⟩ . . .), stable conjunctions (⟨ε⟩

∧
{¬⟨τ⟩T, . . .}), and branching

conjunctions (⟨ε⟩
∧
{⟨a⟩ . . . ,⟨ε⟩ . . .}).

• Section 4 proves that winning energy levels and equivalences coincide by closely relating dis-
tinguishing formulas and ways the attacker may win the energy game. The proofs have been
Isabelle/HOL-formalized.

• Section 5 lays out how to use the game to decide all equivalences at once in exponential time using
our prototype tool for everyday research.

2 Distinctions and Equivalences in Systems with Silent Steps

This paper follows the paradigm that equivalence is the absence of possibilities to distinguish. Equiva-
lently, one could speak about apartness, i.e. the view that non-equivalence is based on evidence of dif-
ference [20]. We begin by introducing distinguishing Hennessy–Milner logic formulas (Subsection 2.1),
and a quantitative characterization of weak equivalences in terms of distinctive capabilities (Subsec-
tion 2.2).

2.1 Transition Systems and Hennessy–Milner Logic

Definition 2.1 (Labeled transition system with silent steps). A labeled transition system is a tuple S =
(P,Σ,−→) where P is the set of processes, Σ is the set of actions, and −→⊆P×Σ×P is the transition
relation.

τ ∈ Σ labels silent steps and ↠ is notation for the reflexive transitive closure of internal activity τ−→∗.
The name ε /∈ Σ is reserved and indicates no (visible) action. A process p is called stable if p ̸ τ−→. We
write p (α)−→ p′ if p α−→ p′, or if α = τ and p = p′.

We implicitly lift the relations to sets of processes P α−→ P′ (with P,P′ ⊆ P , α ∈ Σ), which is defined
to be true if P′ = {p′ ∈ P | ∃p ∈ P. p α−→ p′}.

B. Bisping & D.N. Jansen 73

Pe

Ae Be

◦

op op

a

idle

b

idle

Pℓ

Aℓ Bℓ

◦

op op

a
idle

idle

b

idle
idle

Pτ
e

Aτ
e Bτ

e

◦

op op

a

τ

b

τ

Pτ
ℓ

Aτ
ℓ Bτ

ℓ

◦

op op

a

τ

τ

b

τ

τ

Figure 2: A pair of processes Pe and Pℓ together with versions Pτ
e and Pτ

ℓ of the two where idle has been
abstracted into internal τ-behavior.

Example 2.1. Figure 2 presents transition systems of four processes: Pe makes a nondeterministic choice
op between a and b, performing arbitrarily many idle-actions in between. Pℓ does the same but can
change the choice while idling. Pτ

e and Pτ
ℓ are variants of the two obtained by abstracting idle into

τ-actions.
The example is helpful to test whether a process equivalence can be a congruence for abstraction.

Any congruence for abstraction ∼ would need to have the property that Pe ∼ Pℓ implies Pτ
e ∼ Pτ

ℓ . So,
if we just had a quick way of testing for all weak behavioral equivalences at once, we could quickly
narrow down which equivalences work for this example. Using this paper’s spectroscopy algorithm, we
can achieve this.

Bisimilarity and other notions of equivalence can conveniently by defined in terms of Hennessy–Milner
logic. We direct our attention to variants that allow for silent behavior to happen before visible actions are
observed. We thus focus on the following variant, where the brick-red part represents stable conjunctions
and the steel-blue part branching conjunctions:

Definition 2.2 (Branching Hennessy–Milner logic). We define stability-respecting branching Hennessy–
Milner modal logic, HMLsrbb, over an alphabet of actions Σ by the following context-free grammar
starting with ϕ:

ϕ ::= ⟨ε⟩χ “delayed observation”

|
∧
{ψ,ψ, ...} “immediate conjunction”

χ ::= ⟨a⟩ϕ with a ∈ Σ\{τ} “observation”

|
∧
{ψ,ψ, ...} “standard conjunction”

|
∧
{¬⟨τ⟩T,ψ,ψ, ...} “stable conjunction”

|
∧
{(α)ϕ,ψ,ψ, ...} with α ∈ Σ “branching conjunction”

ψ ::= ¬⟨ε⟩χ | ⟨ε⟩χ “negative / positive conjuncts”

Its semantics J · KS : HMLsrbb → 2P, where a formula “is true,” over a transition system S = (P,Σ,−→)
is defined in mutual recursion with helper functions J · Kε for subformulas in the “delayed” context (χ-

74 One Energy Game for the Weak Spectrum

productions) and J · K∧ for conjuncts (ψ-productions):

J⟨ε⟩χKS := {p ∈ P | ∃p′ ∈ JχKS
ε . p ↠ p′}

J
∧

ΨKS := J
∧

ΨKS
ε

:=
⋂
{JψKS

∧ | ψ ∈ Ψ}

J⟨a⟩ϕKS
ε

:= {p ∈ P | ∃p′ ∈ JϕKS . p a−→ p′}

J¬⟨τ⟩TKS
∧ := {p ∈ P | p ̸ τ−→}

J(α)ϕKS
∧ := {p ∈ P | ∃p′ ∈ JϕKS . p (α)−→ p′}

J¬⟨ε⟩χKS
∧ := P \ J⟨ε⟩χKS

J⟨ε⟩χKS
∧ := J⟨ε⟩χKS

∧
{ψ,ψ, ...} in the grammar stands for conjunction with arbitrary branching. We write T for the empty

conjunction
∧
∅.

Definition 2.3 (Distinguishing formulas and preordering languages). A formula ϕ ∈ HMLsrbb is said to
distinguish a process p from q iff p ∈ JϕKS and q /∈ JϕKS. The formula is said to distinguish a process
p from a set of processes Q iff it is true for p and false for every q ∈ Q.

A sublogic, ON ⊆ HMLsrbb, corresponding to a notion of observability N, distinguishes two pro-
cesses, p ̸⪯N q, if there is ϕ ∈ ON with p ∈ JϕKS and q /∈ JϕKS . Otherwise N preorders them, p ⪯N q.
If processes are mutually N-preordered, p ⪯N q and q ⪯N p, then they are considered N-equivalent,
p ∼N q.

Example 2.2. In Example 2.1, ϕτ := ⟨ε⟩⟨op⟩⟨ε⟩
∧
{¬⟨ε⟩⟨b⟩T} distinguishes Pτ

e from Pτ
ℓ . ϕτ states that

a weak op-step may happen such that, afterwards, b is not τ-reachable. This is true of Pτ
e because of the

Aτ
e-state, but not of Pτ

ℓ .

Remark 2.1. Definition 2.2 is constructed to fit the distinctive powers we need from HML to characterize
varying notions of the weak spectrum by controlling which productions are used. Subformulas in the
grammar usually start with ⟨ε⟩ . . ., effectively hiding silent steps. Formulas with fewer ⟨ε⟩-positions
bring in additional distinctive power. We will use immediate conjunctions to distinguish non-delay-
bisimilar processes, and branching conjunctions (that contain one positive conjunct without leading ⟨ε⟩)
to distinguish non-η-(bi)similar processes. Allowing the observation of stabilization, ¬⟨τ⟩T, increases
distinctive power; requiring stabilization for conjunct observations decreases it.
The name already alludes to HMLsrbb as a whole characterizing stability-respecting branching bisimilar-
ity. Let us quickly recall the operational definition for branching bisimilarity (for instance from [15]):

Definition 2.4 (Branching bisimilarity, operationally). A symmetric relation R is a branching bisimula-
tion if, for all (p,q) ∈ R, a step p α−→ p′ implies (1) α = τ and (p′,q) ∈ R, or (2) q ↠ q′ α−→ q′′ for some
q′,q′′ with (p,q′) ∈ R and (p′,q′′) ∈ R.

If moreover every (p,q) ∈ R with p ̸ τ−→ implies that there is some q′ with q ↠ q′ ̸ τ−→ and (p,q′) ∈ R,
the relation is stability-respecting.

If there is a stability-respecting branching bisimulation RBBsr with (p0,q0) ∈ RBBsr , then p0 and q0
are stability-respecting branching bisimilar.

The power of Definition 2.2 to distinguish matches exactly the power of Definition 2.4 to equate:

Lemma 2.1. HMLsrbb characterizes stability-respecting branching bisimilarity.

B. Bisping & D.N. Jansen 75

stability-respecting branching bisim BBsr

∞,∞,∞,∞,∞,∞,∞,∞

branching bisim BB
∞,∞,∞,0,∞,∞,∞,∞

η-bisim η

∞,∞,∞,0,0,∞,∞,∞

delay bisim DB
∞,0,∞,0,∞,∞,∞,∞

weak bisim B
∞,0,∞,0,0,∞,∞,∞

2-nested sim 2S
∞,0,∞,0,0,∞,∞,1

contrasim C
∞,0,∞,0,0,0,∞,∞

ready sim RS
∞,0,∞,0,0,∞,1,1

readiness R
∞,0,1,0,0,1,1,1

possible futures PF
∞,0,1,0,0,∞,∞,1

impossible futures IF
∞,0,1,0,0,0,∞,1

sim 1S
∞,0,∞,0,0,∞,0,0

η-sim ηS
∞,∞,∞,0,0,∞,0,0

failures F
∞,0,1,0,0,0,1,1

traces T
∞,0,0,0,0,0,0,0

s.-r. delay bisim DBsr

∞,0,∞,∞,∞,∞,∞,∞

stable bisim SB
∞,0,0,∞,0,∞,∞,∞

stable ready sim RSs

∞,0,0,∞,0,∞,1,1

stable readiness Rs

∞,0,0,1,0,1,1,1

stable imposs. fut. IFs

∞,0,0,1,0,0,∞,1

stable failures Fs

∞,0,0,1,0,0,1,1

Figure 3: Hierarchy of weak behavioral equivalences/preorders, becoming finer towards the top. Each
notion N comes with its expressiveness coordinate eN .

Proof. We use the standard approach for Hennessy–Milner theorems: We prove that Rsrbb := {(p,q) |
∀ϕ ∈ HMLsrbb. p ∈ JϕK −→ q ∈ JϕK} is a stability-respecting branching bisimulation by definition, and
that any formula ϕ ∈HMLsrbb is equally true for stability-respecting branching bisimilar states by induc-
tion on the structure of ϕ . Full proof in report [6].

2.2 Price Spectra of Behavioral Equivalences

Van Glabbeek [23] uses about 20 binary dimensions to characterize 155 “notions of observability” (de-
rived from five dimensions of testing scenarios). These then entail behavioral preorders and equivalences

76 One Energy Game for the Weak Spectrum

given as modal characterizations. In this subsection, we recast the notions of observability as coordinates
in a (more quantitative) 8-dimensional space of HML formula expressiveness.

We will “price” formulas of HMLsrbb by vectors we call energies. The pricing allows to conveniently
select subsets of HMLsrbb in terms of coordinates.
Definition 2.5 (Energies). We denote as energies, En∞, the set (N∪{∞})8.

We compare energies component-wise: (e1, . . . ,e8) ≤ (f1, . . . , f8) iff ei ≤ fi for each i. Least upper
bounds sup are defined as usual as component-wise supremum.

We write êi for the standard unit vector where the i-th component is 1 and every other component
equals 0. 0 is defined to be the vector (0,0, . . . ,0). Vector addition and subtraction happen component-
wise as usual.
In Figure 3, we order weak equivalences along dimensions of HMLsrbb-expressiveness in terms of op-
erator depths (i.e. maximal occurrences of an operator on a path from root to leaf in the abstract syntax
tree). Intuitively, the dimensions are:

1. Modal depth (of observations ⟨α⟩, (α)),
2. Depth of branching conjunctions (with one observation conjunct not starting with ⟨ε⟩),
3. Depth of unstable conjunctions (that do not enforce stability by a ¬⟨τ⟩T-conjunct),
4. Depth of stable conjunctions (that do enforce stability by a ¬⟨τ⟩T-conjunct),
5. Depth of immediate conjunctions (that are not preceded by ⟨ε⟩),
6. Maximal modal depth of positive conjuncts in conjunctions,
7. Maximal modal depth of negative conjuncts in conjunctions,
8. Depth of negations.

Definition 2.6 (Formula prices). The expressiveness price of a formula expr : HMLsrbb → En∞ is defined
in mutual recursion with helper functions exprε and expr∧; if multiple rules apply to a subformula, pick
the first one:

expr (T) := exprε (T) := 0
expr (⟨ε⟩χ) := exprε (χ)

expr (
∧

Ψ) := ê5 + exprε (
∧

Ψ)

exprε (⟨a⟩ϕ) := ê1 + expr (ϕ)

exprε (
∧

Ψ) := sup {expr∧ (ψ) | ψ ∈ Ψ}+

ê4 if ¬⟨τ⟩T ∈ Ψ

ê2 + ê3 if there is (α)ϕ ∈ Ψ

ê3 otherwise

expr∧ (¬⟨τ⟩T) := 0
expr∧ (¬ϕ) := sup {ê8 + expr (ϕ) , (0,0,0,0,0,0,(expr (ϕ))1 ,0)}

expr∧ ((α)ϕ) := sup {ê1 + expr (ϕ) , (0,0,0,0,0,1+(expr (ϕ))1 ,0,0)}
expr∧ (ϕ) := sup { expr (ϕ) , (0,0,0,0,0,(expr (ϕ))1 ,0,0)}

Definition 2.7 (Linear-time–branching-time equivalences). Each notion N named in Figure 3 with co-
ordinate eN is defined through the language of formulas with prices below, i.e., through ON = {ϕ |
expr(ϕ)≤ eN}.

Recalling Definition 2.3, that is, p ⪯N q with respect to notion N, iff no ϕ with expr(ϕ) ≤ eN dis-
tinguishes p from q. So, this paper sees notions of preorder / equivalence to be defined through these
coordinates and not through other characterizations.

B. Bisping & D.N. Jansen 77

Example 2.3. The formula ϕτ = ⟨ε⟩⟨op⟩⟨ε⟩
∧
{¬⟨ε⟩⟨b⟩T} in Example 2.2 has expressiveness price

expr(ϕτ) = (2,0,1,0,0,0,1,1). The coordinate is below the one of failures eF = (∞,0,1,0,0,0,1,1) in
Figure 3. Accordingly, Pτ

e is distinguished from Pτ
ℓ by failure ϕτ ∈ OF, that is, Pτ

e ̸⪯F Pτ
ℓ . There neither

are strictly-stable nor strictly-positive formulas to distinguish Pτ
e from Pτ

ℓ . Therefore, stable bisimula-
tion preorder, Pτ

e ⪯SB Pτ
ℓ , and η-simulation preorder, Pτ

e ⪯ηS Pτ
ℓ , apply. (The latter implies the more

well-known weak simulation preorder.)

For stability-respecting branching bisimilarity, where OBBsr = HMLsrbb, Lemma 2.1 establishes that our
modal characterization corresponds to the common relational definition. For some notions, there are
superficial differences to other modal characterizations in the literature, which do not change distinctive
power. We give two examples.

Example 2.4 (Weak trace equivalence and inclusion). The notion of weak trace inclusion (and equiva-
lence) is defined through eT = (∞,0,0,0,0,0,0,0) and Definition 2.6 inducing OT, the language given
by the grammar:

ϕT ::= ⟨ε⟩⟨a⟩ϕT | ⟨ε⟩T | T.

This slightly deviates from languages one would find in other publications. For instance, Gazda et
al. [19] do not have the second production. But this production does not increase expressiveness, as
J⟨ε⟩TK = JTK = P .

Example 2.5 (Weak bisimulation equivalence and preorder). The logic of weak bisimulation observa-
tions OB defined through eB = (∞,0,∞,0,0,∞,∞,∞) equals the language defined by the grammar:

ϕB ::= ⟨ε⟩⟨a⟩ϕB | ⟨ε⟩
∧
{ψB,ψB, . . .} | T

ψB ::= ¬⟨ε⟩⟨a⟩ϕB | ¬⟨ε⟩
∧
{ψB,ψB, . . .} | ⟨ε⟩⟨a⟩ϕB | ⟨ε⟩

∧
{ψB,ψB, . . .}.

Let us contrast this to the definition for weak bisimulation observations OB′ from Gazda et al. [19]:

ϕB′ ::= ⟨ε⟩ϕB′ | ⟨ε⟩⟨a⟩⟨ε⟩ϕB′ |
∧
{ϕB′ ,ϕB′ , . . .} | ¬ϕB′ .

Our OB allows a few formulas that OB′ lacks, e.g. ⟨ε⟩⟨a⟩⟨ε⟩⟨a⟩⟨ε⟩T. This does not add expressiveness
as OB′ has ⟨ε⟩⟨a⟩⟨ε⟩⟨ε⟩⟨a⟩⟨ε⟩T and J⟨ε⟩⟨ε⟩ϕK = J⟨ε⟩ϕK.

For the other direction, there is a bigger difference due to OB′ allowing more freedom in the place-
ment of conjunction and negation. In particular, it permits top-level conjunctions and negated conjunc-
tions without ⟨ε⟩ in between. But these features do not add distinctive power. OB′ also allows top-level
negation, and this adds distinctive power to the preorders, effectively turning them into equivalence re-
lations. We do not enforce this and thus our ⪯B ̸= ∼B; e.g. τ.a ⪯B τ + τ.a, but τ + τ.a ̸⪯B τ.a due to
⟨ε⟩

∧
{¬⟨ε⟩⟨a⟩T}. However, as a distinction by ¬ϕ in one direction implies one by ϕ in the other, we

know that this difference is ironed out once we consider the equivalence ∼B.

3 A Game of Distinguishing Capabilities

This section introduces a game to find out how two states can be distinguished in the silent-step spectrum:
Attacker tries to implicitly construct a distinguishing formula, defender wants to prove that no such
formula exists. The twist is that we use an energy game where energies ensure the possible formulas to
lie in sublogics along the lines of the previous section.

78 One Energy Game for the Weak Spectrum

3.1 Declining Energy Games

Equivalence problems of the strong linear-time–branching-time spectrum can be characterized as multi-
dimensional declining energy games with special min-operations between components as outlined in [5].
In this subsection, we revisit the definitions we will need in this paper. For a more detailed presentation—
in particular on how to compute attacker and defender winning budgets on this class of games—we refer
to [5] and [10].

Definition 3.1 (Energy updates). The set of energy updates, Up, contains (u1, . . . ,u8) ∈ Up where each
component uk is a symbol of the form

• uk ∈ {−1,0} (relative update), or
• uk = minD where D ⊆ {1, . . . ,8} and k ∈ D (minimum selection update).

Applying an update to an energy, upd(e,u), where e = (e1, . . . ,e8) ∈ En∞ and u = (u1, . . . ,u8) ∈ Up,
yields a new energy vector e′ where kth components e′k := ek + uk for uk ∈ Z and e′k := mind∈D ed for
uk = minD. Updates that would cause any component to become negative are undefined, i.e., upd is a
partial function.

Example 3.1. upd((2,0,∞,0,0,0,1,1),(min{1,7},0,−1,0,0,0,0,−1)) equals (1,0,∞,0,0,0,1,0).

Definition 3.2 (Games). An 8-dimensional declining energy game G = (G,Gd, ,w) is played on a
directed graph uniquely labeled by energy updates consisting of

• a set of game positions G, partitioned into
– defender positions Gd ⊆ G and
– attacker positions Ga := G\Gd,

• a relation of game moves ⊆ G×G, and
• a weight function for the moves w : ()→ Up.

The notation g u g′ stands for g g′ and w(g,g′) = u.

In the games of [5], the attacker wins precisely if they can get the defender stuck without running out of
energy. The energy budgets that suffice for the attacker to win from a game position can be characterized
as follows:

Definition 3.3 (Winning budgets). The attacker winning budgets WinG
a per position of a game G are

defined inductively by the rules:

ga ∈ Ga ga
u g′ upd(e,u) ∈WinG

a (g
′)

e ∈WinG
a (ga)

gd ∈ Gd ∀u,g′. gd
u g′ −→ upd(e,u) ∈WinG

a (g
′)

e ∈WinG
a (gd)

3.2 Delaying Observations in the Spectroscopy Energy Game

We begin with the part of the game that adds the concept of “delayed” attack positions to the “strong”
spectroscopy game of [5]. It matches the black part of the HMLsrbb-grammar of Definition 2.2. Figure 4
gives a schematic overview of the game rules, where the game continues from the dashed nodes as from
the initial node. The colors differentiate the layers of following definitions and match the scheme of
Definition 2.2 and Figure 3.

B. Bisping & D.N. Jansen 79

[p,Q]a [p,Qε]
ε

a

(p,Q)d

(p,{q∈Qε | q ̸ τ−→})s
d

(p,α, p′,Qε \Qα ,Qα)
η

d

[p′,Q′]ηa

[p,q]∧a [q,{p′ | p ↠ p′}]εa

[p,{q′ | q ↠ q′}]εa

[p′,Q′]a

Q ↠ Qε

0

Q =∅
0

Q ̸=∅
−ê5

p τ−→ . . . 0

p a−→ p′

Qε

a−→ Q′

−ê1

Q = Qε0
p ̸ τ−→

0

p (α)−→ p′

Qα ⊆ Qε

0

q ∈ Q

−ê3

q ∈ Qε

q ̸ τ−→−ê4
∅= Q =

{q∈Qε | q ̸ τ−→}

−ê4 min{1,6},0,0,0,0,0,0,0

min{1,7},0,0,0,0,0,0,−1

Qα

(α)−−→ Q′ min{1,6},−1,−1,0,0,0,0,0

−ê1

q ∈ Qε \Qα−ê2 − ê3

Figure 4: Schematic spectroscopy game G△ of Definitions 3.4 (the black part), 3.5 (with position (· · ·)s
d),

and 3.6 (with positions (· · ·)s
d, (· · ·)η

d and [· · ·]ηa).

Definition 3.4 (Spectroscopy delay game). For a system S = (P,Σ,−→), the spectroscopy delay energy
game G S

ε = (G,Gd, ,w) consists of

• attacker positions [p,Q]a ∈ Ga,
• attacker delayed positions [p,Q]εa ∈ Ga,
• attacker conjunct positions [p,q]∧a ∈ Ga,
• defender conjunction positions (p,Q)d ∈ Gd,

where p,q ∈ P , Q ∈ 2P , and nine kinds of moves:

• delay [p,Q]a
0,0,0,0,0,0,0,0

[p,Q′]εa if Q ↠ Q′,
• procrastination [p,Q]εa

0,0,0,0,0,0,0,0
[p′,Q]εa if p τ−→ p′, p ̸= p′,

• observation [p,Q]εa
−1,0,0,0,0,0,0,0

[p′,Q′]a if p a−→ p′, Q a−→ Q′, a ̸= τ ,
• finishing [p,∅]a

0,0,0,0,0,0,0,0
(p,∅)d,

• immediate conj. [p,Q]a
0,0,0,0,−1,0,0,0

(p,Q)d if Q ̸=∅,
• late conj. [p,Q]εa

0,0,0,0,0,0,0,0
(p,Q)d,

• conj. answer (p,Q)d
0,0,−1,0,0,0,0,0

[p,q]∧a if q ∈ Q,
• positive conjunct [p,q]∧a

min{1,6},0,0,0,0,0,0,0
[p,Q]εa if {q}↠ Q,

• negative conjunct [p,q]∧a
min{1,7} ,0,0,0,0,0,0,−1

[q,Q]εa if {p}↠ Q and p ̸= q.

Example 3.2. Starting at Pτ
e and Pτ

ℓ of Example 2.1 with energy (2,0,1,0,0,0,1,1), the attacker can
move with [Pτ

e,{Pτ
ℓ}]a

delay observation
[Aτ

e,{Aτ
ℓ ,B

τ
ℓ}]a. (For readability, we label the moves by the names

of their rules.) This uses up ê1 energy leading to level (1,0,1,0,0,0,1,1).
Figure 5 shows how the attacker can win from there. The attacker chooses a delay move and yields

to the defender (Aτ
e,{Aτ

ℓ ,B
τ
ℓ})d. If the defender selects Bτ

ℓ , bringing the energy to (1,0,0,0,0,0,1,1),
the attacker wins by [Aτ

e,B
τ
ℓ]

∧
a

negative conjunct
[Bτ

ℓ ,A
τ
e]

ε

a
observation finishing

(0,∅)d ̸ . For the defender choosing
Aτ
ℓ , a similar attack works due to [Aτ

ℓ ,A
τ
e]

ε

a
procrastination

[Bτ
ℓ ,A

τ
e]

ε

a. Thus, the attacker wins the game.

80 One Energy Game for the Weak Spectrum

[Aτ
e ,{Aτ

ℓ ,B
τ
ℓ}]a

1,0,1,0,0,0,1,1

⟨ε⟩
∧
{¬⟨ε⟩⟨b⟩}

[Aτ
e ,{Aτ

ℓ ,B
τ
ℓ}]εa

1,0,1,0,0,0,1,1

∧
{¬⟨ε⟩⟨b⟩}

[0,{0}]a

(Aτ
e ,{Aτ

ℓ ,B
τ
ℓ})d

1,0,1,0,0,0,1,1

∧
{¬⟨ε⟩⟨b⟩}

[Aτ
e ,B

τ
ℓ]

∧
a

1,0,0,0,0,0,1,1

¬⟨ε⟩⟨b⟩T

[Aτ
e ,A

τ
ℓ]

∧
a

1,0,0,0,0,0,1,1

¬⟨ε⟩⟨b⟩T

[Bτ
ℓ ,{Aτ

e}]εa
1,0,0,0,0,0,0,0

⟨b⟩T
(Bτ

ℓ ,{Aτ
e})d

1,0,1,0,0,1,0,0
1,0,2,0,0,0,1,2

[Bτ
ℓ ,A

τ
e]

∧
a

1,0,0,0,0,1,0,0
1,0,1,0,0,0,1,2

[Aτ
ℓ ,{Aτ

e}]εa
1,0,0,0,0,0,0,0

⟨b⟩T
(Aτ

ℓ ,{Aτ
e})d

1,0,1,0,0,1,0,0
1,0,2,0,0,0,1,2

[Aτ
ℓ ,A

τ
e]

∧
a

1,0,0,0,0,1,0,0
1,0,1,0,0,0,1,2

[0,∅]a

0,0,0,0,0,0,0,0

T

[0,∅]εa

0,0,0,0,0,0,0,0

T

(0,∅)d

0,0,0,0,0,0,0,0

T

−ê1

−ê5

−ê3 −ê3

min{1,7}, ...,−1 min{1,7}, ...,−1

min{1,6} min{1,6}

−ê3 min{1,6}

min{1,7}, ...,−1

−ê3min{1,6}

min{1,7}, ...,−1

−ê1

Figure 5: Spectroscopy delay game Gε from [Aτ
e,{Aτ

ℓ ,B
τ
ℓ}]a for Example 3.2. Each position names

minimal attacker-winning budgets (due to the thick arrows) and corresponding distinguishing formulas
(pink). Zeros and 0-updates are omitted for readability. Also, the game graph under defender-won
reflexive position [0,{0}]a (dashed in blue) is omitted.

The tree of winning moves corresponds to formula ϕτ = ⟨ε⟩⟨op⟩⟨ε⟩
∧
{¬⟨ε⟩⟨b⟩T} and budget of

Example 2.3. This is no coincidence, but rather our core design principle for game moves. As we will
prove in Section 4, attacker’s winning moves match distinguishing HMLsrbb-formulas and their prices.

Note that the attacker would not win if any component of the starting energy vector were lower. For
example, eT = (∞,0,0,0,0,0,0,0) /∈Wina([P

τ
e,{Pτ

ℓ}]a) corresponds to weak trace inclusion, Pτ
e ⪯T Pτ

ℓ .

3.3 Covering Stable Failures and Conjunctions

In order to cover “stable” and “stability-respecting” equivalences, we must separately count stable con-
junctions.

Definition 3.5 (Spectroscopy stability game). The stability game G S
s extends the delay game G S

ε of
Definition 3.4 by

• defender stable conjunction positions (p,Q)s
d ∈ Gd,

where p ∈ P , Q ∈ 2P , and three kinds of moves:

B. Bisping & D.N. Jansen 81

• stable conj. [p,Q]εa
0,0,0,0,0,0,0,0

(p,Q′)s
d if Q′ = {q ∈ Q | q ̸ τ−→}, p ̸ τ−→,

• conj. stable answer (p,Q)s
d

0,0,0,−1,0,0,0,0
[p,q]∧a if q ∈ Q,

• stable finishing (p,∅)s
d

0,0,0,−1,0,0,0,0
(p,∅)d.

In principle, we add a move to enter a defender stable conjunction position and a move to leave it, similar
to the defender conjunction positions in Definition 3.4.

Example 3.3. Note that these new rules allow no new (incomparable) wins for the attacker in Exam-
ple 3.2. Therefore, stable bisimulation is another finest preorder (and equivalence) for the example
processes because eSB /∈Wina([P

τ
e,{Pτ

ℓ}]a) for Gs.

3.4 Extending to Branching Bisimulation

One last kind of distinctions is necessary to characterize branching bisimilarity, the strongest common
abstraction of bisimilarity for systems with silent steps: its characteristic branching conjunctions.

Definition 3.6 (Weak spectroscopy game). The weak spectroscopy energy game G S
△ extends Defini-

tion 3.5 by

• defender branching positions (p,α, p′,Q,Qα)
η

d ∈ Gd,
• attacker branching positions [p,Q]ηa ∈ Ga,

where p, p′ ∈ P and Q,Qα ∈ 2P as well as α ∈ Σ, and four kinds of moves:

• branching conj. [p,Q]εa
0,0,0,0,0,0,0,0

(p,α, p′,Q\Qα ,Qα)
η

d if p (α)−→ p′, Qα ⊆ Q,
• branch. answer (p,α, p′,Q,Qα)

η

d
0,−1,−1,0,0,0,0,0

[p,q]∧a if q ∈ Q,
• branch. observation (p,α, p′,Q,Qα)

η

d

min{1,6} ,−1,−1,0,0,0,0,0
[p′,Q′]ηa with Qα

(α)−→ Q′,
• branch. accounting [p,Q]ηa

−1,0,0,0,0,0,0,0
[p,Q]a.

Intuitively, the attacker picks a step p α−→ p′ and some Qα ⊆ Q that they claim to be inable to immediately
simulate this step. For the remaining Q \Qα , the attacker claims that these can be dealt with by other
(possibly negative) delayed observations. The defender then chooses which claim to counter.

Example 3.4. Consider the CCS processes a+ τ.b+ b and a+ τ.b. The first process explicitly allows
a b to happen before deciding against a. To weak bisimilarity, for instance, this is transparent. To more
branching-aware notions, it constitutes a difference.

The two processes can be distinguished as follows in the weak spectroscopy game with energy budget
(1,1,1,0,0,1,0,0): First, the attacker enters a defender branching position [a+τ.b+b,{a+τ.b}]a

delay

[a+ τ.b+b,{a+ τ.b,b}]εa
branching conjunction

(a+ τ.b+b,b,0,{b},{a+ τ.b})η

d. The defender can then pick
between two losing options:

• (· · ·)η

d
branching answer

[a+ τ.b+ b,b]∧a: Attacker responds [· · ·]∧a
positive conjunct a-observation finishing

(0,∅)d,
which corresponds to formula ⟨ε⟩⟨a⟩T.

• (· · ·)η

d
branching observation

[0,{}]ηa: Attacker replies [· · ·]ηa
branching accounting finishing

(0,∅)d, which corre-
sponds to the (b)T-observation in the context of a branching conjunction.

Taken together, the attacker wins this game constellation with a strategy that corresponds to the formula
⟨ε⟩

∧
{(b),⟨ε⟩⟨a⟩}.

The formula disproves η-simulation preorder and thus branching bisimilarity. However, the two pro-
cesses are (stability-respecting) delay-bisimilar as there are no delay bisimulation formulas to distinguish
them.

82 One Energy Game for the Weak Spectrum

4 Correctness

We now state in what sense winning energy levels and equivalences coincide in the context of a transition
system S = (P,Σ,−→).

Theorem 4.1 (Correctness). For all e ∈ En∞, p ∈ P , Q ∈ 2P , the following are equivalent:

1. There exists a formula ϕ ∈ HMLsrbb with price expr(ϕ)≤ e that distinguishes p from Q.

2. Attacker wins G S
△ from [p,Q]a with e (that is, e ∈Win

G S
△

a ([p,Q]a)).

With Definition 2.7, this means that, for a notion of equivalence N with coordinate eN in Figure 3, p ⪯N q
precisely if the defender wins, eN /∈Wina([p,{q}]a).

The proof of the theorem is given through the following three lemmas. The direction from (1) to
(2) is covered by Lemma 4.1 when combined with the upward-closedness of attacker winning budgets.
From (2) to (1), the link is established through strategy formulas by Lemmas 4.2 and 4.3. The proofs
can be found on arXiv [6] and have also been formalized in an Isabelle/HOL theory.2

4.1 Distinguishing formulas imply attacker-winning budgets

Lemma 4.1. If ϕ ∈ HMLsrbb distinguishes p from Q, then expr(ϕ) ∈Wina([p,Q]a).

Proof. By mutual structural induction on ϕ , χ , and ψ with respect to the following claims:

1. If ϕ ∈ HMLsrbb distinguishes p from Q ̸=∅, then expr(ϕ) ∈Wina([p,Q]a);
2. If χ distinguishes p from Q ̸= ∅ and Q is closed under ↠ (that is Q ↠ Q), then exprε(χ) ∈

Wina([p,Q]εa);
3. If ψ distinguishes p from q, then expr∧(ψ) ∈Wina([p,q]∧a).
4. If

∧
Ψ distinguishes p from Q ̸=∅, then exprε(

∧
Ψ) ∈Wina((p,Q)d);

5. If
∧
{¬⟨τ⟩T} ∪ Ψ distinguishes p from Q ̸= ∅ and all the processes in Q are stable, then

exprε(
∧
{¬⟨τ⟩T}∪Ψ) ∈Wina((p,Q)s

d);
6. If

∧
{(α)ϕ ′}∪Ψ distinguishes p from Q, then, for any p (α)−→ p′ ∈ Jϕ ′K and Qα = Q \ J⟨α⟩ϕ ′K,

exprε(
∧
{(α)ϕ ′}∪Ψ) ∈Wina((p,α, p′,Q\Qα ,Qα)

η

d).

Full proof in report [6].

4.2 Winning attacks imply cheap distinguishing formulas

Definition 4.1 (Strategy formulas). The set of attacker strategy formulas Strat for a G△-position with
given energy level e is derived from the sets of winning budgets, Wina, inductively according to the rules
in Figure 6.

As an example how to read the above rules, procr states that if there is a move [p,Q]εa
u [p′,Q]εa (based

on Definition 3.4, this must be a procrastination move), and the strategy formulas of the latter position
contain χ , then also the strategy formulas of the former position contain χ .

Lemma 4.2. If e ∈Wina([p,Q]a), then there is ϕ ∈ Strat([p,Q]a,e) with expr(ϕ)≤ e.

Proof. By induction over the structure of Definition 3.3. Full proof in report [6].

2The formalization can be found on https://github.com/equivio/silent-step-spectroscopy.

https://github.com/equivio/silent-step-spectroscopy

B. Bisping & D.N. Jansen 83

delay
[p,Q]a

u [p,Q′]εa e′ = upd(e,u)∈Wina([p,Q′]εa) χ ∈ Strat([p,Q′]εa,e
′)

⟨ε⟩χ ∈ Strat([p,Q]a,e)

procr
[p,Q]εa

u [p′,Q]εa e′ = upd(e,u)∈Wina([p′,Q]εa) χ ∈ Strat([p′,Q]εa,e
′)

χ ∈ Strat([p,Q]εa,e)

observation

[p,Q]εa
u [p′,Q′]a

e′ = upd(e,u)∈Wina([p′,Q′]a) p a−→ p′ Q a−→ Q′
ϕ ∈ Strat([p′,Q′]a,e

′)

⟨a⟩ϕ ∈ Strat([p,Q]εa,e)

immediate conj
[p,Q]a

u (p,Q)d e′=upd(e,u)∈Wina((p,Q)d) ϕ ∈ Strat((p,Q)d,e
′)

ϕ ∈ Strat([p,Q]a,e)

late conj
[p,Q]εa

u (p,Q)d e′=upd(e,u)∈Wina((p,Q)d) χ ∈ Strat((p,Q)d,e
′)

χ ∈ Strat([p,Q]εa,e)

conj
(p,Q)d

uq
[p,q]∧a ∀q ∈ Q. eq=upd(e,uq)∈Wina([p,q]∧a) ∧ ψq ∈ Strat([p,q]∧a,eq)∧

{ψq | q ∈ Q} ∈ Strat((p,Q)d,e)

pos
[p,q]∧a

u [p,Q′]εa e′ = upd(e,u) ∈Wina([p,Q′]εa) χ ∈ Strat([p,Q′]εa,e
′)

⟨ε⟩χ ∈ Strat([p,q]∧a,e)

neg
[p,q]∧a

u [q,P′]εa e′ = upd(e,u) ∈Wina([q,P′]εa) χ ∈ Strat([q,P′]εa,e
′)

¬⟨ε⟩χ ∈ Strat([p,q]∧a,e)

stable
[p,Q]εa

u (p,Q′)s
d e′=upd(e,u)∈Wina((p,Q′)s

d) χ ∈ Strat((p,Q′)s
d,e

′)

χ ∈ Strat([p,Q]εa,e)

stable conj

(p,Q)s
d

uq
[p,q]∧a

Q ̸=∅ ∀q ∈ Q. eq=upd(e,uq)∈Wina([p,q]∧a) ∧ ψq ∈ Strat([p,q]∧a,eq)∧
({¬⟨τ⟩T}∪{ψq | q ∈ Q}) ∈ Strat((p,Q)s

d,e)

stable finish
(p,∅)s

d
u (p,∅)d e′=upd(e,u)∈Wina((p,∅)d)∧

{¬⟨τ⟩T} ∈ Strat((p,Q)s
d,e)

branch

[p,Q]εa
u (p,α, p′,Q′,Qα)

η

d

e′=upd(e,u) ∈Wina((p,α, p′,Q′,Qα)
η

d) χ ∈ Strat((p,α, p′,Q′,Qα)
η

d,e
′)

χ ∈ Strat([p,Q]εa,e)

branch conj

gd = (p,α, p′,Q,Qα)
η

d
uα [p′,Q′]ηa

u′α [p′,Q′]a
eα =upd(upd(e,uα),u′α) ∈Wina([p′,Q′]a) ϕα ∈ Strat([p′,Q′]a,eα)

∀q ∈ Q. gd
uq

[p,q]∧a ∧ eq=upd(e,uq)∈Wina([p,q]∧a) ∧ ψq∈ Strat([p,q]∧a,eq)∧
({(α)ϕα}∪{ψq | q ∈ Q}) ∈ Strat((p,α, p′,Q,Qα)

η

d,e)

Figure 6: Strategy formula constructions for Definition 4.1.

84 One Energy Game for the Weak Spectrum

Figure 7: Screenshot of equiv.io solving Example 5.1.

Lemma 4.3. If ϕ ∈ Strat([p,Q]a,e), then ϕ distinguishes p from Q.

Proof. By induction over the derivation of · · · ∈ Strat(g,e) according to Definition 4.1. Full proof in
report [6].

5 Deciding All Weak Equivalences at Once

The weak spectroscopy energy game enables algorithms to decide all considered behavioral equiva-
lences. An open-source prototype implementation can be tried out on https://equiv.io. Moreover,
there is an extension of CAAL (Concurrency Workbench, Aalborg Edition, [1]) with the entailed algo-
rithm on https://github.com/equivio/CAAL. Both yield the expected output on the finitary exam-
ples from [23].

The game allows checking individual equivalences by instantiating it to start with an energy vector
eN from Figure 3. The remaining reachability game can be decided with (usually exponential) time and
space complexities depending on the selected energy vector.

More generally, one can decide all equivalences at once by computing the pareto frontier of attacker
budgets Wina([p,{q}]a). The algorithm of [10] for multi-weighted games, has space complexity O(|G|)
and time complexity O(| | · |G| ·o) for bounded energies (due to a concrete spectrum), where o is the
out-degree of . For this paper’s weak spectroscopy game, G△, we have |G△| ∈ O(|−→| · 3|P|) and
| △| ∈ O(|−→| · |P| · 3|P|), and also o△ ∈ O(|−→| · 2|P|), because of the defender branching positions
and their surroundings. This amounts to exponential time complexity. Clearly, the approach is mostly
tailored towards small examples. But often these are all one needs:
Example 5.1. Let us try our initial Example 2.1 of abstracted processes (Figure 7 and https://equiv.

io/#stable-unstable-abstraction). The browser tool takes about 100 ms (considering a game of

equiv.io
https://equiv.io
https://github.com/equivio/CAAL
https://equiv.io/#stable-unstable-abstraction
https://equiv.io/#stable-unstable-abstraction

B. Bisping & D.N. Jansen 85

112 positions) to report that Pe and Pℓ are stable and unstable readiness-equivalent. Pτ
e and Pτ

ℓ on the
other hand are stable-bisimilar. This output immediately tells us that only notions either strictly finer than
readiness or coarser than stable bisimilarity can be congruences for abstraction. In particular, unstable
failures, which Gazda et al. [19, Corr. 9] report to be a congruence for abstraction, cannot be one because
the unstable failure formula ⟨ε⟩⟨op⟩⟨ε⟩

∧
{¬⟨ε⟩⟨a⟩T} distinguishes Pτ

e from Pτ
ℓ , analogously to ϕτ of

Example 2.2.

6 Related Work and Conclusion

This paper provides the first generalized game characterization for the spectrum of “weak” behavioral
equivalences and preorders. To this end, Section 2 introduced a new modal characterization of branching
bisimilarity that can be used to capture the modal logics of the silent-step spectrum. With this perspective,
the set of weak equivalence problems becomes just one quantitative problem, expressible as one energy
game in Section 3.

Other generalized game characterizations by Chen and Deng [11] and by us [7, 5] have only ad-
dressed strong equivalences or parts of the spectrum [28, 29]. Fahrenberg et al. [14] treated a quantitative
game interpretation for behavioral distances, as well disregarding silent-step notions. Extending this line
of work to account for silent steps in full is necessary for virtually every application.

In the silent-step spectrum, many things are more complicated. There are several abstractions of
bisimilarity: branching, η , delay and weak bisimilarity, as well as contrasimilarity, stable bisimilarity
and coupled similarity. We have had to radically depart from their existing games [18, 9, 8] to cover
all equivalences. Depending on whether stabilization is required for negated and conjunct observations,
each equivalence notion has different weak versions. Our game characterization is the first to explicitly
consider stability-respecting notions, thereby unifying stable equivalences [23] and unstable ones [19].
This unification enables observations about the applicability of (un)stable equivalences as the one in
Example 5.1.

The framework of codesigning games and grammars can also easily be extended to cater for more
notions, for instance, divergence-aware ones, or even to combine strong and weak ones in one game.
The connection to energy games enabled us to boost our approach using Brihaye and Goeminne’s recent
polynomial decision procedure for multi-weighted games [10].

We have added to the rich body of work on modal characterizations of branching bisimilarity [12, 23,
15, 21, 20]. Continuing [7, 5], our work participates in a recent trend towards a modal focus for equiv-
alences, also found in Ford et al. [16] connecting graded modal logics and monads, and in Wißmann et
al. [30] as well as Beohar et al. [4]. Like Martens and Groote [27], we find minimal-depth distinguishing
formulas for branching bisimilarity, but we solve the problem for all weak notions at once.

Our main related work, of course, is van Glabbeek’s linear-time–branching-time spectrum [22, 23].
Up to today, part II on silent steps is available only as “extended abstract” (in two versions!), while part I
has seen a journal version [24] and refinements by others [17]. We hope the present work makes the
wisdom on weak equivalences of part II more accessible to tools and humans alike.

Acknowledgments. We would like to thank Rob van Glabbeek and the EXPRESS/SOS’24 audience for dis-
cussing the material with us, as well as several anonymous referees for pointing out weaknesses in a previous ver-
sion of this paper. Special thanks is due to the TU Berlin students Lisa A. Barthel, Leonard M. Hübner, Caroline
Lemke, Karl P. P. Mattes, and Lenard Mollenkopf, who validated the present paper in Isabelle/HOL, uncovering
and addressing several flaws.

86 One Energy Game for the Weak Spectrum

References

[1] Jesper R. Andersen, Nicklas Andersen, Søren Enevoldsen, Mathias M. Hansen, Kim G. Larsen, Simon R.
Olesen, Jirı́ Srba & Jacob K. Wortmann (2015): CAAL: Concurrency Workbench, Aalborg Edition. In
Martin Leucker, Camilo Rueda & Frank D. Valencia, editors: Theoretical Aspects of Computing – ICTAC
2015, Springer International Publishing, Cham, pp. 573–582. Available at https://doi.org/10.1007/
978-3-319-25150-9_33.

[2] Adam D. Barwell, Francisco Ferreira & Nobuko Yoshida (2022): CONCUR test-of-time award for the period
1994–97 interview with Uwe Nestmann and Benjamin C. Pierce. Journal of Logical and Algebraic Methods
in Programming 125, p. 100744. Available at https://doi.org/10.1016/j.jlamp.2021.100744.

[3] Christian J. Bell (2013): Certifiably sound parallelizing transformations. In Georges Gonthier & Michael
Norrish, editors: Certified Programs and Proofs: CPP, LNCS 8307, Springer, Cham, pp. 227–242, https:
//doi.org/10.1007/978-3-319-03545-1_15.

[4] Harsh Beohar, Sebastian Gurke, Barbara König & Karla Messing (2023): Hennessy-Milner Theorems
via Galois Connections. In Bartek Klin & Elaine Pimentel, editors: 31st EACSL Annual Conference
on Computer Science Logic (CSL 2023), Leibniz International Proceedings in Informatics (LIPIcs) 252,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 12:1–12:18. Available at
https://doi.org/10.4230/LIPIcs.CSL.2023.12.

[5] Benjamin Bisping (2023): Process Equivalence Problems as Energy Games. In Constantin Enea & Akash
Lal, editors: Computer Aided Verification, Springer Nature Switzerland, Cham, pp. 85–106. Available at
https://doi.org/10.1007/978-3-031-37706-8_5.

[6] Benjamin Bisping & David N. Jansen (2023): Linear-Time-Branching-Time Spectroscopy Accounting for
Silent Steps. arXiv abs/2305.17671. Available at https://doi.org/10.48550/arXiv.2305.17671.

[7] Benjamin Bisping, David N. Jansen & Uwe Nestmann (2022): Deciding All Behavioral Equivalences at
Once: A Game for Linear-Time–Branching-Time Spectroscopy. Logical Methods in Computer Science 18(3),
pp. 19:1–19:33. Available at https://doi.org/10.46298/lmcs-18(3:19)2022.

[8] Benjamin Bisping & Luisa Montanari (2021): A Game Characterization for Contrasimilarity. In Ornela
Dardha & Valentina Castiglioni, editors: Proceedings Combined 28th International Workshop on Expres-
siveness in Concurrency and 18th Workshop on Structural Operational Semantics, Electronic Proceedings in
Theoretical Computer Science 339, Open Publishing Association, Waterloo, Australia, pp. 27–42. Available
at https://doi.org/10.4204/EPTCS.339.5.

[9] Benjamin Bisping, Uwe Nestmann & Kirstin Peters (2020): Coupled similarity: the first 32 years. Acta
Informatica 57(3–5), pp. 439–463. Available at https://doi.org/10.1007/s00236-019-00356-4.

[10] Thomas Brihaye & Aline Goeminne (2023): Multi-weighted Reachability Games. In Olivier Bournez, Enrico
Formenti & Igor Potapov, editors: Reachability Problems, RP 2023, Springer Nature Switzerland, Cham, pp.
85–97. Available at https://doi.org/10.1007/978-3-031-45286-4_7.

[11] Xin Chen & Yuxin Deng (2008): Game Characterizations of Process Equivalences. In G. Ramalingam, edi-
tor: Programming Languages and Systems: APLAS, LNCS 5356, Springer, Berlin, pp. 107–121. Available
at https://doi.org/10.1007/978-3-540-89330-1_8.

[12] Rocco De Nicola & Frits Vaandrager (1995): Three logics for branching bisimulation. J. ACM 42(2), p.
458–487. Available at https://doi.org/10.1145/201019.201032.

[13] Uli Fahrenberg, Line Juhl, Kim G. Larsen & Jiřı́ Srba (2011): Energy Games in Multiweighted Automata.
In Antonio Cerone & Pekka Pihlajasaari, editors: Theoretical Aspects of Computing – ICTAC 2011, LNCS
6916, Springer, Heidelberg, pp. 95–115. Available at https://doi.org/10.1007/978-3-642-23283-1_
9.

[14] Uli Fahrenberg & Axel Legay (2014): The quantitative linear-time–branching-time spectrum. Theoreti-
cal Computer Science 538, pp. 54–69. Available at https://doi.org/10.1016/j.tcs.2013.07.030.
Quantitative Aspects of Programming Languages and Systems (2011-12).

https://doi.org/10.1007/978-3-319-25150-9_33
https://doi.org/10.1007/978-3-319-25150-9_33
https://doi.org/10.1016/j.jlamp.2021.100744
https://doi.org/10.1007/978-3-319-03545-1_15
https://doi.org/10.1007/978-3-319-03545-1_15
https://doi.org/10.4230/LIPIcs.CSL.2023.12
https://doi.org/10.1007/978-3-031-37706-8_5
https://doi.org/10.48550/arXiv.2305.17671
https://doi.org/10.46298/lmcs-18(3:19)2022
https://doi.org/10.4204/EPTCS.339.5
https://doi.org/10.1007/s00236-019-00356-4
https://doi.org/10.1007/978-3-031-45286-4_7
https://doi.org/10.1007/978-3-540-89330-1_8
https://doi.org/10.1145/201019.201032
https://doi.org/10.1007/978-3-642-23283-1_9
https://doi.org/10.1007/978-3-642-23283-1_9
https://doi.org/10.1016/j.tcs.2013.07.030

B. Bisping & D.N. Jansen 87

[15] Wan Fokkink, Rob van Glabbeek & Bas Luttik (2019): Divide and congruence III: From decomposition of
modal formulas to preservation of stability and divergence. Information and Computation 268, p. 104435.
Available at https://doi.org/10.1016/j.ic.2019.104435.

[16] Chase Ford, Stefan Milius & Lutz Schröder (2021): Behavioural Preorders via Graded Monads. In: 2021
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, New York, NY, USA,
pp. 1–13. Available at https://doi.org/10.1109/LICS52264.2021.9470517.

[17] David de Frutos Escrig, Carlos Gregorio Rodrı́guez, Miguel Palomino & David Romero Hernández (2013):
Unifying the Linear Time-Branching Time Spectrum of Strong Process Semantics. Logical Methods in Com-
puter Science 9(2:11), pp. 1–74. Available at https://doi.org/10.2168/LMCS-9(2:11)2013.

[18] David de Frutos Escrig, Jeroen J. A. Keiren & Tim A. C. Willemse (2017): Games for Bisimulations and
Abstraction. Logical Methods in Computer Science 13(4:15), pp. 1–40. Available at https://doi.org/
10.23638/LMCS-13(4:15)2017.

[19] Maciej Gazda, Wan Fokkink & Vittorio Massaro (2020): Congruence from the operator’s point of view:
Syntactic requirements on modal characterizations. Acta Informatica 57(3–5), pp. 329–351. Available at
https://doi.org/10.1007/s00236-019-00355-5.

[20] Herman Geuvers (2022): Apartness and distinguishing formulas in Hennessy–Milner Logic. In Nils Jansen,
Mariëlle Stoelinga & Petra van den Bos, editors: A journey from process algebra via timed automata to model
learning: essays dedicated to Frits Vaandrager on the occasion of his 60th birthday, LNCS 13560, Springer,
Cham, pp. 266–282. Available at https://doi.org/10.1007/978-3-031-15629-8_14.

[21] Herman Geuvers & Anton Golov (2023): Positive Hennessy-Milner Logic for Branching Bisimulation.
arXiv:2210.07380.

[22] Rob van Glabbeek (1990): The linear time–branching time spectrum: extended abstract. In J. C. M. Baeten
& J. W. Klop, editors: CONCUR’90, LNCS 458, Springer, Berlin, pp. 278–297. Available at https:
//doi.org/10.1007/BFb0039066.

[23] Rob van Glabbeek (1993): The linear time–branching time spectrum II: The semantics of sequential systems
with silent moves; extended abstract. In Eike Best, editor: CONCUR’93, LNCS 715, Springer, Berlin, pp.
66–81. Available at https://doi.org/10.1007/3-540-57208-2_6.

[24] Rob van Glabbeek (2001): The Linear Time–Branching Time Spectrum I: The Semantics of Concrete, Se-
quential Processes. In J. A. Bergstra, A. Ponse & S. A. Smolka, editors: Handbook of Process Algebra,
chapter 1, Elsevier, Amsterdam, pp. 3–99, https://doi.org/10.1016/B978-044482830-9/50019-9.

[25] Ross Horne & Sjouke Mauw (2021): Discovering ePassport Vulnerabilities using Bisimilarity. Logical Meth-
ods in Computer Science 17(2), pp. 24:1–24:52. Available at https://doi.org/10.23638/LMCS-17(2:
24)2021.

[26] Orna Kupferman & Naama Shamash Halevy (2022): Energy Games with Resource-Bounded Environments.
In Bartek Klin, Sławomir Lasota & Anca Muscholl, editors: 33rd International Conference on Concurrency
Theory: CONCUR, LIPIcs 243, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Saarbrücken, pp. 19:1–
19:23. Available at https://doi.org/10.4230/LIPIcs.CONCUR.2022.19.

[27] Jan Martens & Jan Friso Groote (2024): Minimal Depth Distinguishing Formulas Without Until for Branching
Bisimulation. In Venanzio Capretta, Robbert Krebbers & Freek Wiedijk, editors: Logics and Type Systems in
Theory and Practice: Essays Dedicated to Herman Geuvers on The Occasion of His 60th Birthday, Springer
Nature, Cham, pp. 188–202. Available at https://doi.org/10.1007/978-3-031-61716-4_12.

[28] Sandeep K. Shukla, Harry B. Hunt III & Daniel J. Rosenkrantz (1996): HORNSAT, Model Checking, Veri-
fication and Games: extended abstract. In Rajeev Alur & Thomas A. Henzinger, editors: Computer Aided
Verification: CAV, LNCS 1102, Springer, Berlin, pp. 99–110. Available at https://doi.org/10.1007/
3-540-61474-5_61.

[29] Li Tan (2002): An Abstract Schema for Equivalence-Checking Games. In Agostino Cortesi, editor: Verifi-
cation, Model Checking, and Abstract Interpretation, Third International Workshop, VMCAI 2002, Venice,

https://doi.org/10.1016/j.ic.2019.104435
https://doi.org/10.1109/LICS52264.2021.9470517
https://doi.org/10.2168/LMCS-9(2:11)2013
https://doi.org/10.23638/LMCS-13(4:15)2017
https://doi.org/10.23638/LMCS-13(4:15)2017
https://doi.org/10.1007/s00236-019-00355-5
https://doi.org/10.1007/978-3-031-15629-8_14
https://arxiv.org/abs/2210.07380
https://doi.org/10.1007/BFb0039066
https://doi.org/10.1007/BFb0039066
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1016/B978-044482830-9/50019-9
https://doi.org/10.23638/LMCS-17(2:24)2021
https://doi.org/10.23638/LMCS-17(2:24)2021
https://doi.org/10.4230/LIPIcs.CONCUR.2022.19
https://doi.org/10.1007/978-3-031-61716-4_12
https://doi.org/10.1007/3-540-61474-5_61
https://doi.org/10.1007/3-540-61474-5_61

88 One Energy Game for the Weak Spectrum

Italy, January 21-22, 2002, Revised Papers, Lecture Notes in Computer Science 2294, Springer, pp. 65–78.
Available at https://doi.org/10.1007/3-540-47813-2_5.

[30] Thorsten Wißmann, Stefan Milius & Lutz Schröder (2021): Explaining Behavioural Inequivalence Gener-
ically in Quasilinear Time. In Serge Haddad & Daniele Varacca, editors: 32nd International Conference
on Concurrency Theory (CONCUR 2021), Leibniz International Proceedings in Informatics (LIPIcs) 203,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 32:1–32:18. Available at
https://doi.org/10.4230/LIPIcs.CONCUR.2021.32.

https://doi.org/10.1007/3-540-47813-2_5
https://doi.org/10.4230/LIPIcs.CONCUR.2021.32

	Introduction
	A language for array programming
	Basic Untyped Futhark
	Expressions in ButF
	Array Operations

	Extended Pi-Calculus
	Processes in E
	Semantics
	Weak Bisimilarity

	Translating ButF to E
	Translating the functional fragment
	Tuples
	Representing arrays
	Arrays
	Array Operators

	Correctness Criteria
	Well-Behavedness and Substitution
	Operational Correspondence

	Work and Span Analysis
	Conclusion
	Introduction
	Preliminaries
	The Generalised Synchronisability Problem is Undecidable
	Synchronisability of Mailbox Communication for Tree-like Topologies
	Discussion
	Introduction
	LTL
	Definitive Prefix Sets
	Lattice Properties
	Isomorphism to LTL Properties

	Semantics of LTL and LTL3
	Answer-indexed Families
	The Prepend Operation
	Semantics for LTL3

	Formula Progression
	Discussion
	Prefix Characterisations and Monitorability
	Safety and Liveness
	RV-LTL

	Conclusion
	Introduction
	From Sequential Reversible Processes to Concurrent Ones
	Syntax of Concurrent Reversible Processes
	Proved Operational Semantics
	Forward, Reverse, and Forward-Reverse Bisimilarities

	Observation Functions and Process Encodings for Expansion Laws
	Axioms and Expansion Law for FB:ps
	Axioms and Expansion Laws for RB and FRB
	Conclusions
	Introduction: Mechanizing the Spectrum
	Distinctions and Equivalences in Systems with Silent Steps
	Transition Systems and Hennessy–Milner Logic
	Price Spectra of Behavioral Equivalences

	A Game of Distinguishing Capabilities
	Declining Energy Games
	Delaying Observations in the Spectroscopy Energy Game
	Covering Stable Failures and Conjunctions
	Extending to Branching Bisimulation

	Correctness
	Distinguishing formulas imply attacker-winning budgets
	Winning attacks imply cheap distinguishing formulas

	Deciding All Weak Equivalences at Once
	Related Work and Conclusion

