
EPTCS 408

Proceedings of the

13th International Workshop on

Developments in Computational Models

Rome, Italy, 2 July 2023

Edited by: Sandra Alves and Ian Mackie



Published: 1st October 2024

DOI: 10.4204/EPTCS.408

ISSN: 2075-2180

Open Publishing Association



S. Alves and I. Mackie (Eds.): 13th International Workshop
on Developments in Computational Models 2023 (DCM’23).
EPTCS 408, 2024, pp. i–i, doi:10.4204/EPTCS.408.0

Preface

This volume contains the proceedings of DCM 2023, the 13th International Workshop on Develop-
ments in Computational Models held on 2 July 2023 in Rome, Italy. DCM 2023 was organised as a
one-day satellite event of FSCD 2023, the 8th International Conference on Formal Structures for Com-
putation and Deduction.

Several new models of computation have emerged in the last few years, and many developments
of traditional computational models have been proposed with the aim of taking into account the new
demands of computer systems users and the new capabilities of computation engines. A new computa-
tional model, or a new feature in a traditional one, usually is reflected in a new family of programming
languages, and new paradigms of software development.

The aim of this series of workshops is to bring together researchers who are currently developing
new computational models or new features for traditional computational models, in order to foster their
interaction, to provide a forum for presenting new ideas and work in progress, and to enable newcomers
to learn about current activities in this area. Topics of interest include all abstract models of computation
and their applications to the development of programming languages and systems. This includes (but is
not limited to):

• Functional calculi: lambda-calculus, rho-calculus, term and graph rewriting;

• quantum computation, including implementations and formal methods in quantum protocols;

• probabilistic computation and verification in modelling situations;

• chemical, biological and bio-inspired computation, including spatial models, self-assembly, growth
models;

• models of concurrency, including the treatment of mobility, trust, and security;

• infinitary models of computation;

• information-theoretic ideas in computing.
The programme committee accepted 5 papers for presentation at the workshop. The program also

included 3 invited talks by:
• Gabriele Vanoni, INRIA. “What are abstract machines good for?"

• Mariangiola Dezani-Ciancaglini, Torino University. “Partial Typing for Open Compliance in Mul-
tiparty Sessions."

• Clemens Grabmayer, Gran Sasso Science Institute. “From Compactifying Lambda-letrec Terms to
Recognizing Regular-Expression Processes."

Following the workshop, authors were invited to submit a contribution for the formal proceedings.
Seven papers were selected that compose the present volume.

We would like to thank all those who contributed to DCM 2023. We are grateful to the Programme
Committee members and the external referees for their careful and efficient work in reviewing and se-
lecting the submitted papers. A special thanks to EPTCS for supporting the publication of this issue.

Sandra Alves and Ian Mackie
DCM 2023 PC-chairs

http://dx.doi.org/10.4204/EPTCS.408.0
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Formal verification methods for concurrent systems cannot always be scaled-down or tailored in
order to be applied on specific subsystems. We address such an issue in a MultiParty Session Types
setting by devising a partial type assignment system for multiparty sessions (i.e. sets of concurrent
participants) with asynchronous communications. Sessions are possibly typed by “asynchronous
global types” describing the overall behaviour of specific subsets of participants only (from which
the word “partial”). Typability is proven to ensure that sessions enjoy the partial versions of the
well-known properties of lock- and orphan-message-freedom.

Keywords: MultiParty Session Types, Asynchronous Communication, Lock-freedom.

1 Introduction

When validating/verifying distributed and concurrent systems, it is often natural to identify different
subsystems for which the properties we have to take into account are not those required for the whole
system, if any. The system of a social media, for instance, is made of users and services the former are
provided with. The users are the main concern of the social media, which hence tend to ensure to the
user subsystem properties which cannot be (or need not to be) ensured to the services. This particularly
applies in case services are managed by a second party not under direct control of the social media.
Lock-freedom is a relevant specimen of such properties. It ensures that no lock is ever reached in the
evolution of a system. A lock being a system’s reachable configuration where a still active participant
is forever prevented to perform any action in any possible continuation of the system1. In particular,
such a configuration is called a p-lock in case the stuck participant is p. A social media would hence be
focused on p-lock freedom for each p ∈P , where P is the set of users in the current example. As far as
the users cannot get into a lock, the services can behave as they like best. The social media can also be
interested in that, in case of an asynchronous model of communication, the messages exchanged among
the users are eventually received. This is a partial version of the property referred to in the literature as
orphan-message freedom. An investigation on verification of partial properties was carried on in [1] in
the setting of MultiParty Session Types (MPST for short), in particular in a bottom-up MPTS setting.
Unlike formalisms using the notion of projections, the formalism in [1] enables to exploit an approach
to the development and verification of distributed/concurrent system where systems (formalised here

*Partially supported by Project “National Center for HPC, Big Data e Quantum Computing”, Programma M4C2, Investi-
mento 1.3 – Next Generation EU.

†Partially supported by Project INDAM-GNCS “Fondamenti di Informatica e Sistemi Informatici”.
1Actually several slightly different property are present in the literature under the name “lock-freedom”.
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through the notion of “network”, a parallel composition of named processes) are first developed and
then subsequently proved sound with respect a specific overall description of the system’s behaviour by
checking the network against a global type. The MPST type system of [1] derives judgements of the
shape

⊢P N : G

where P is a set of participants, N is a network and G is a global type. The typing is partial since
some communications between participants in P do not appear in the global type. Typing N with G
does ensure that (a) the communications of the participants in N not belonging to P comply with the
interaction scenario represented by G and (b) N is p-lock-free for each p ̸∈P .

In the present paper we push further the investigation of [1] by treating an asynchronous model of
communication, instead of a synchronous one. Besides, we take into account also the partial version of
the property of orphan-message freedom. The calculus, the global types and the type system we use are
inspired by [3, 4, 7].

Contributions and structure of the paper. In Section 2 we recall from [3] the asynchronous calculus
of multiparty sessions. Also, we adapt from [1] the notion of P-lock-freedom (the absence of locks is
ensured here to the participants in P) and introduce the novel notion of P-orphan-message freedom.
An example is given to clarify the various notions and results. Section 3 is devoted to the presentation of
(asynchronous) global types from [3] and the introduction of our “partial” type system, assigning global
types to multiparty sessions, where some communications can be ignored. The relevant properties of
partially typable sessions are proved in Section 4. In particular Subject Reduction, Session Fidelity, P-
lock-freedom and P-orphan-message-freedom. A section summing up our results, discussing related
works and possible directions for future work concludes the paper.

2 Multiparty Sessions

The calculus of multiparty sessions, as well as global types, used in the present paper are inspired by [3].
The simplicity of the calculus with respect to the original MPST calculus [9] and of many of the subse-
quent ones, as well as the lack of explicit channels, enables us to focus on our main concerns. Besides,
it allows for a clear explanation of the type system we will introduce in the next section. All this has
however the cost of preventing the representation of session interleaving and delegation.

We use the following base sets and notation: labels, ranged over by λ ,λ ′, . . . ; session participants,
ranged over by p,q, r,s,u, . . .; processes, ranged over by P,Q,R,S,U, . . . ; networks, ranged over by
N,N′, . . . ; queues, ranged over by M ,M ′, . . . ; integers, ranged over by i, j, l,h,k, . . . ; (finite) integer
sets, ranged over by I,J,L,H,K, . . . .

Definition 2.1 (Processes) Processes are defined by:

P ::=ρ 0 | p!{λi.Pi}i∈I | p?{λi.Pi}i∈I

where I ̸= /0 and λh ̸= λk for h,k ∈ I and h ̸= k.

The symbol ::=ρ , in the above definition and in other definitions, indicates that the productions of the
grammar should be interpreted coinductively. That is, they define possibly infinite processes. However,
we assume such processes to be regular, i.e. with finitely many distinct subprocesses. In this way, we
only obtain processes which are solutions of finite sets of equations, see [6]. We choose this formulation
since it allows us to avoid explicitly handling variables, thus simplifying a lot the technical development.
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A process of shape p!{λi.Pi}i∈I (internal choice) chooses a label in the set {λi | i ∈ I} to be sent to
p, and then behaves differently depending on the label sent. A process of shape p?{λi.Pi}i∈I (external
choice) waits for receiving one of the labels {λi | i ∈ I} from p, and then behaves as Pi depending on
the received label λi. Note that the set of indexes in choices is assumed to be non-empty, and the
corresponding labels to be pairwise distinct. An internal choice which is a singleton is simply written
p!λ .P; analogously for an external choice. The process 0 is inactive and we omit trailing 0. In a full-
fledged calculus, labels would carry values, namely they would be of shape λ (v). For simplicity, here
we consider “pure” labels.

The participants of a process are the senders and the receivers which occur in the process itself.
Their set is defined as the smallest set satisfying

Prt(0) = /0 Prt(p!{λi.Pi}i∈I) = Prt(p?{λi.Pi}i∈I) = {p}∪
⋃

i∈I Prt(Pi)

We use queues in order to formalise a one-to-one asynchronous model of communication. Instead
of explicitly defining a queue for each possible sender and receiver, we use a single queue and equip the
communicated labels with their sender and receiver names, so forming triples that we dub messages.

Definition 2.2 (Messages and Queues) i) Messages are triples of the form ⟨p,λ ,q⟩ denoting that
participant p is the sender of label λ to the receiver q.

ii) Message queues (queues for short) are defined by the following grammar:

M ::= /0 | ⟨p,λ ,q⟩ ·M

Sent messages are stored in a queue, from which they are subsequently fetched by the receiver.
The order of messages in the queue is the order in which they will be read. Since order matters only

between messages with the same sender and receiver, we always consider message queues modulo the
following structural equivalence:

M · ⟨p,λ ,q⟩ · ⟨r,λ ′,s⟩ ·M ′ ≡M · ⟨r,λ ′,s⟩ · ⟨p,λ ,q⟩ ·M ′ if p ̸= r or q ̸= s

Note, in particular, that ⟨p,λ ,q⟩ · ⟨q,λ ′,p⟩ ≡ ⟨q,λ ′,p⟩ · ⟨p,λ ,q⟩. These two equivalent queues represent
a situation in which both participants p and q have sent a label to the other one, and neither of them has
read the message. This case may happen in a multiparty session with asynchronous communication.

The participants of queues are the senders and the receivers which occur in the queue, i.e.

Prt( /0) = /0 Prt(⟨p,λ ,q⟩ ·M ) = {p,q}∪Prt(M )

A multiparty sessions is comprised of a network, i.e. a number of pairs participant/process of shape
p[[P ]] composed in parallel, each with a different participant p, and a message queue.

Definition 2.3 (Networks and Sessions) i) Networks are defined as finite parallel composition of
named processes, namely

N= p1[[P1 ]] ∥ · · · ∥ pn[[Pn ]]

where ph ̸= pk and ph ̸∈ Prt(Ph) for any 1≤ h ̸= k ≤ n.

ii) Sessions are defined as pairs of networks and message queues of the following form:

N ∥M
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p[[q!{λi.Pi}i∈I ]] ∥ N ∥M
pq!λh−−−→ p[[Ph ]] ∥ N ∥M · ⟨p,λh,q⟩ where h ∈ I [SEND]

p[[q?{λi.Pi}i∈I ]] ∥ N ∥ ⟨q,λh,p⟩ ·M
pq?λh−−−→ p[[Ph ]] ∥ N ∥M where h ∈ I [RCV]

Figure 1: LTS for sessions.

The condition ph ̸∈ Prt(Ph) forbids self-messages.
We assume the standard structural congruence on networks (denoted≡), that is we consider sessions

modulo permutation of components and adding/removing components of the shape p[[0 ]].
If P ̸= 0 we write p[[P ]] ∈ N as short for N ≡ p[[P ]] ∥ N′ for some N′. This abbreviation is justified

by the associativity and commutativity of ∥.
The participants of networks are the participants which occur in processes, i.e.

Prt(N) =
⋃

p[[P ]]∈N{Prt(P)}

The players of networks are the participants associated with active processes, i.e.

Plays(N) = {p | p[[P ]] ∈ N}

To define the asynchronous operational semantics of sessions, we use an LTS whose labels record
the outputs and the inputs.

Definition 2.4 (Asynchronous Operational Semantics) We equip sessions with the (asynchronous) op-
erational semantics specified by the LTS of Figure 1. Transitions are labelled with communications
(ranged over by β ) which are either the asynchronous emission of a label λ from participant p to par-
ticipant q (notation pq!λ ) or the actual reading by participant p of the label λ sent by participant q
(notation pq?λ ).

Rule [SEND] in Figure 1 allows a participant p with an internal choice (a sender) to send one of
its possible labels λh, by adding the corresponding message to the queue. Symmetrically, Rule [RCV]
allows a participant p with an external choice (a receiver) to read the first message in the queue sent to
her by a given participant q, if its label λh is one of those she is waiting for.

The players of communications are the senders for the outputs and the receivers for the inputs, i.e.
we define

play(pq!λ ) = play(pq?λ ) = p

As usual we define (possibly empty) sequences of communications as traces.

Definition 2.5 (Traces) (Finite) traces are defined by τ := ε | β ·τ .

When τ = β1 · . . . ·βn (n≥ 1) we write N ∥M
τ−→ N′ ∥M ′ as short for

N ∥M
β1−→ N1 ∥M1 · · ·

βn−→ Nn ∥Mn = N′ ∥M ′

With N ∥M ̸→ we denote that the session N ∥M is stuck.

Example 2.6 (A social media session) A social network has two users (u1 and u2) that want to interact
using a service s. The users exchange messages GO and STOP communicating when they like to continue
or not their interaction. They “should” REQuest DATA to the service only when they both are willing to
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u1

s

u2

REQ

DATA

REQ
DATA

GO/STOP

GO/STOP

Figure 2: Representation of the session of Example 2.6.

do. The above system is roughly described (disregarding the logical order of messages) in Figure 2. A
multiparty session corresponding to this system is the following.

u1[[U1 ]] ∥ u2[[U2 ]] ∥ s[[S ]] ∥ /0

U1 = u2!


GO.u2?

{
GO.s!REQ.s?DATA.U1
STOP.s!REQ

STOP.u2?
{

GO

STOP

U2 = u1!


GO.u1?

{
GO.s!REQ.s?DATA.U2
STOP

STOP.u1?
{

GO

STOP

S = u2?REQ.u1?REQ.u1!DATA.u2!DATA.S

where both participants start sending messages, a feature which typically can be dealt only thanks to
asynchronous communication. The behaviours of u1 and u2 only differ in that the process U1, after
sending GO to u2 and receiving STOP from u2, sends a REQ to the service. So the process U1 does not
precisely implement the prescribed behaviour, while U2 does.

2.1 Partial Communication Properties

Now, we define the property of P-lock-freedom. This property was first introduced in [1], where P was
the set of participants whose lock-freedom we don’t care about. P-lock-freedom is a “partial” version
of the standard lock-freedom [12, 13]. The latter consists in the possibility of completion of pending
communications of any participant (this can be alternatively stated by saying that any participant is lock-
free). We are interested instead in the progress of some explicitly specified participants only.

Definition 2.7 (P-lock-freedom) i) A multiparty session N ∥M is p-lock-free if

N ∥M
τ−→ N′ ∥M ′ and p[[P ]] ∈ N′ imply N′ ∥M ′ τ ′ ·β−−→ for some τ ′ and β

such that p ∈ play(β ).

ii) A multiparty session N ∥M is P-lock-free if it is p-lock-free for each p ∈P .

iii) A multiparty session N ∥M is a lock-free session if it is p-lock-free for each p ∈ Plays(N).

It is natural to extend also the usual notion of Deadlock-freedom to our setting.
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Definition 2.8 (P-deadlock-freedom) A multiparty session N ∥M is a P-deadlock-free session if
N ∥M

τ−→ N′ ∥M ′ ̸→ implies p ̸∈ Plays(N′) for any p ∈P .
It is immediate to check that, as for standard Lock- and Deadlock-freedom, the following hold.

Fact 2.9 P-lock-freedom implies P-deadlock-freedom.
Trivially, as for the standard versions of the properties, the vice versa does not hold whenever P ̸= /0.

Definition 2.10 (P-orphan-message-freedom)
i) A multiparty session N ∥M is pq-orphan-message-free if N ∥M

τ−→ N′ ∥ ⟨p,λ ,q⟩ ·M ′ implies

N′ ∥ ⟨p,λ ,q⟩ ·M ′ τ ′·qp?λ−−−−→ for some τ ′.

ii) A multiparty session N ∥M is P-orphan-message-free if it is pq-orphan-message-free for each
pair of participants p,q ∈P .

iii) A multiparty session N ∥M is orphan-message-free if it is Plays(N)∪Prt(N)∪Prt(M )-orphan-
message-free.

Point (iii) of previous definition is justified by the example N= p[[q!λ ]] ∥ /0
pq!λ−−−→ p[[0 ]] ∥ ⟨p,λ ,q⟩, where

the message ⟨p,λ ,q⟩ is orphan and p ∈ Plays(N), q ∈ Prt(N).
Example 2.11 (Partial properties for the social media example) It is not difficult to check that the
session of Example 2.6 is neither lock-free nor orphan-message-free. In fact we get an s-lock when-
ever at least one among u1 and u2 sends to the other the message STOP. In such a case the process of s is
not 0, but unable to perform the input action it is willing to do. An orphan message does result present in
the queue because of a “programming error”: in case u1 sends GO to u2, receives STOP from u2 and then
sends REQ to the server, it happens that such a REQ from u1 will never be received by s, since a REQ from
u2 should be received first, but such a message will never be sent.

The social network, however, is interested in the absence of locks for the {u1,u2} subsystem only
(i.e. {u1,u2}-lock-freedom) as well in the absence of orphan-messages only for the messages exchanged
among u1 and u2 (i.e. {u1,u2}-orphan-message-freedom).

3 Global Types and Type System

The vast majority of global types used in the literature are independent of the synchronic-
ity/asynchronicity of the underlying communication model. This means that, in a global type, the ex-
change of a message m from a participant A to a participant B is generally represented by something like
A

m−→ B. This is then interpreted either as the synchronous exchange of m according to a handshaking
protocol between A and B or as the simultaneous representation of two distinct asynchronous actions:
the insertion of m in a communication medium (typically a queue or a bag) and the acquisition of the
message from that. In [3, 4, 7] global types are instead strictly tailored for asynchronous interactions:
the separate output and input actions, which together form an asynchronous communication (respectively
pq!λ and pq?λ in our formalism, see below), are made visible in the global type. Even if this is actually
more than what a choreographic formalism should require (our one can in fact hardly be considered a
choreographic formalism in the usual sense), it allows the global types to be used in a type assignment
system for asynchronous processes guaranteeing relevant (partial, in our case) communication properties.
Being the asynchrony of communication syntactically evident in the global type, the formal verification
of such properties can be performed without having to consider a layer of “semantic” interpretation of
the types, so maintaining the complexity of proofs at the same complexity level as those for synchronous
formalisms like the one in [1].
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Definition 3.1 (Asynchronous Global Types) (Asynchronous) global types G are defined by the fol-
lowing grammar:

G ::=ρ pq!{λi.Gi}i∈I | pq?λ .G | End

where I ̸= /0, p ̸= q and λh ̸= λk for h,k ∈ I and h ̸= k.

As for processes, ::=ρ indicates that global types are coinductively defined regular terms. The global
type pq!{λi.Gi}i∈I specifies that p sends a label λh with h ∈ I to q and then the interaction described by
the global type Gh takes place. Dually, the global type pq?λ .G specifies that q receives label λ from p
and then the interaction described by the global type G takes place. The terminated global type is End
and we will omit trailing End’s.

Clearly message outputs must precede the corresponding inputs, since in the asynchronous commu-
nication the output puts the message on the queue and the input takes the message from the queue. Once
a message is on the queue no other message can be read with the same sender and receiver. This justifies
the fact that inputs in global types have no choices.

Example 3.2 (A global type for the social media example) A global type describing a possible be-
haviour of the network of Example 2.6 is provided in Figure 3.

G= u1u2!


GO.u2u1!

 GO.u1u2?GO.u2u1?GO.u2s!REQ.su2?REQ.u1s!REQ.su1?REQ.←↩su1!DATA.u1 s?DATA.su2!DATA.u2 s?DATA.G
STOP.u1u2?STOP.u2u1?GO.u1s!REQ

STOP.u2u1!
{

GO.u1u2?GO.u2u1?STOP

STOP.u1u2?STOP.u2u1?STOP

Figure 3: A global type for the social media session.

The set of players of a global type, notation Plays(G), is the smallest set satisfying the following
equations:

Plays(End) = /0
Plays(pq!{λi.Gi}i∈I) = {p}∪

⋃
i∈I Plays(Gi) Plays(pq?λ .G′) = {p}∪Plays(G′)

Notice that the sets of players are always finite thanks to the regularity of global types.
To guarantee good communication properties for typable sessions, we require global types to satisfy

a boundedness condition. To formalise boundedness we use the notion of path of a global type. Paths
are actual paths in global types viewed as trees. They are possibly infinite sequences of communications,
and are ranged over by ξ . Note that a finite path is a trace in the sense of Definition 2.5. We extend the
notation · to denote also the concatenation of a finite sequence with a possibly infinite sequence. The
function Paths returns the set of all the paths of a global type and is defined as the greatest set such that:

Paths(End) = {ε}
Paths(pq!{λi.Gi}i∈I) =

⋃
i∈I{pq!λi ·ξ | ξ ∈ Paths(Gi)}

Paths(pq?λ .G′) = {pq?λ ·ξ | ξ ∈ Paths(G′)}

If x ∈ N∪{∞} is the length of ξ , i.e. x =| ξ |, we denote by ξ [n] the n-th communication in the path
ξ , where 1 ≤ n < x if x = ∞ and 1 ≤ n ≤ x if x ̸= ∞. It is handy to define the depth of a player p in a
global type G, depth(G,p).

Definition 3.3 (Depth of a Player) Let G be a global type. For ξ ∈ Paths(G) set
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depth(ξ ,p) = inf{n | play(ξ [n]) = p}

and define depth(G,p), the depth of p in G, as follows:

depth(G,p) =

{
sup{depth(ξ ,p) | ξ ∈ Paths(G)} p ∈ Plays(G)

0 otherwise

Note that depth(G,p) = 0 iff p ̸∈ Plays(G). Moreover, if p ̸= play(ξ [n]) for all n∈N, then depth(ξ ,p) =
inf /0 = ∞. Hence, if p is a player of a global type G and there is some path in G where p does not occur
as a player, then depth(G,p) = ∞.

Definition 3.4 (Boundedness) A global type G is bounded if depth(G′,p) is finite for each participant
p ∈ Plays(G) and each type G′ which occurs in G.

Example 3.5 The following example shows the necessity of considering all types occurring in a global
type for defining boundedness. Consider G= rq!λ .qr?λ .G′, where

G′ = pq!{λ1.qp?λ1.qr!λ3.rq?λ3 , λ2.qp?λ2.G
′}

Then we have: depth(G,p) = 3,depth(G,q) = 2,depth(G, r) = 1, whereas depth(G′,p) =
1,depth(G′,q) = 2,depth(G′, r) = ∞.

Since global types are regular, the boundedness condition is decidable.
The following notion of weight will be used for defining the subsequent notion of P-soundness, a

condition in the typing rules, needed to guarantee P-orphan-message-freedom. The weight says if and
where the global type prescribes an input corresponding to a message. Clearly if the message is ⟨p,λ ,q⟩
and the global type is qp?λ ′.G with λ ̸= λ ′, then the global type forbids to read this message.

Definition 3.6 (Weight)

weight(G,⟨p,λ ,q⟩) =


0 if G= qp?λ .G′

∞ if G= End or G= qp?λ ′.G′ with λ ̸= λ ′

1+maxi∈I weight(Gi,⟨p,λ ,q⟩) if G= rs!{λi.Gi}i∈I

1+weight(G′,⟨p,λ ,q⟩) if G= rs?λ ′.G′ and r ̸= p or s ̸= q

We consider the parallel composition of a global type with a queue that we dub type configuration.
The P-soundness of type configurations ensures that all messages with both participants in P have
corresponding inputs in all the paths of the global type.

Definition 3.7 (P-soundness) A type configuration G ∥M is P-sound if weight(G,⟨p,λ ,q⟩) is finite
for all messages ⟨p,λ ,q⟩ which occur in M with {p,q} ⊆P .

3.1 Partial Type System

As mentioned before, we devise a type system ensuring partial communication properties for typable
sessions. Being in an asynchronous setting, some restrictions have to be imposed in order to guarantee
decidability of typability. We achieve that by looking at queues as invariants for cycles. This is a quite
more flexible condition than, for instance, imposing a fixed bound on the number of messages between
participants. It would be rather cumbersome to guarantee our condition in a coinductive type system
which, like those in [3, 4, 7, 1], suits a formalism with coinductively defined processes and types. We
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hence introduce an implicitly coinductive type system, that is looking like the inductive versions of
coinductive systems, as defined in [14, Section 21.9]. We define an inductive system with histories (see
below), where the queue invariance can be immediately guarantee by the typing rule for cycles.

Definition 3.8 (Histories) A history H is a finite set of (session, global type) pairs, namely

H ::= /0 |H ,(N ∥M ,G)

We define (N ∥ −,G) ∈H if (N ∥M ,G) ∈H for some M .

Definition 3.9 (Partial Type System) The judgements of our partial type system have the form

H ⊢P N ∥M : G

where P is a set of participants (those whose properties we are interested in) and where the global type
G is bounded. The inference rules are described in Figure 4.

[END]
Plays(N)∩P = /0

H ⊢P N ∥M : End
End ∥M is P -sound [CYCLE]

(N ∥M ,G) ∈H

H ⊢P N ∥M : G

[OUT]

H ,(p[[P ]] ∥ N ∥M ,G) ⊢P p[[Pi ]] ∥ N ∥M · ⟨p,λi,q⟩ : Gi

(Plays(N)\Plays(G))∩P = /0 ∀i ∈ I

H ⊢P p[[P ]] ∥ N ∥M : G

G ∥M is P -sound
(p[[P ]] ∥ N ∥ −,G) ̸∈H

G= pq!{λi.Gi}i∈I P = q!{λi.Pi}i∈I

[IN]

H ,(p[[P ]] ∥ N ∥M ,G) ⊢P p[[Ph ]] ∥ N ∥M : G′

(Plays(N)\Plays(G))∩P = /0 h ∈ I

H ⊢P p[[P ]] ∥ N ∥ ⟨q,λh,p⟩ ·M : G

G′ ∥M is P -sound
(p[[P ]] ∥ N ∥ −,G) ̸∈H

G= pq?λh.G
′ P = q?{λi.Pi}i∈I

Figure 4: Typing rules for sessions.

In case all the participants in P (those we care about) terminate, we are not interested anymore
in what other participants do and hence we do not record their behaviours in the global type. This is
essentially what is formalised by Axiom [END]. No message with both sender and receiver in P must
be present in the queue if we wish to ensure P-orphan-message-freedom. This is formalised by the
clause “End ∥M is P-sound” of Axiom [END].

The inductive rules of our system can be looked at as a type reconstruction algorithm for a coinduc-
tively defined system.

We formalise in Axiom [CYCLE] also an invariant requirement for ensuring decidability, namely the
invariance of queues for cycles. This implies that any output in a cycle must have a corresponding input
in the cycle itself.

Rules [OUT] and [IN] enable to record in the global types the actions performed by processes.
Rule [OUT] adds in the process and in the global type the same outputs. Rule [IN] adds one input in the
global type and it allows more inputs in the process, mimicking the subtyping for session types [8].
Both rules require as premises the typability of the sessions obtained by reducing the added communi-
cations. These rules ask for some conditions. The condition (Plays(N) \Plays(G))∩P = /0 ensures
that the communications done by players in N which belong to P are recorded in G. The P-soundness
condition for configurations is needed to ensure absence of orphan-messages with sender and receiver
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[CYCLE]
H15 ⊢P u1[[U1 ]] ∥ u2[[U2 ]] ∥ s[[S ]] ∥ /0 : G

H14 ⊢P u1[[U1 ]] ∥ u2[[U IV
2 ]] ∥ s[[S ]] ∥M6 : G15

H13 ⊢P u1[[U1 ]] ∥ u2[[U IV
2 ]] ∥ s[[SIII ]] ∥ /0 : G14

H12 ⊢P u1[[U IV
1 ]] ∥ u2[[U IV

2 ]] ∥ s[[SIII ]] ∥M5 : G13

H11 ⊢P u1[[U IV
1 ]] ∥ u2[[U IV

2 ]] ∥ s[[SII ]] ∥ /0 : G12

H10 ⊢P u1[[U IV
1 ]] ∥ u2[[U IV

2 ]] ∥ s[[SI ]] ∥M4 : G11

H9 ⊢P u1[[U III
1 ]] ∥ u2[[U IV

2 ]] ∥ s[[SI ]] ∥ /0 : G10

H7 ⊢P u1[[U III
1 ]] ∥ u2[[U IV

2 ]] ∥ s[[S ]] ∥M3 : G9

H5 ⊢P u1[[U III
1 ]] ∥ u2[[U III

2 ]] ∥ s[[S ]] ∥ /0 : G7

H3 ⊢P u1[[U III
1 ]] ∥ u2[[U I

2 ]] ∥ s[[S ]] ∥M0 : G5

H2 ⊢P u1[[U I
1 ]] ∥ u2[[U I

2 ]] ∥ s[[S ]] ∥M1 : G3

[END]
H8 ⊢P u1[[0 ]] ∥ u2[[0 ]] ∥ s[[S ]] ∥M7 : End

H6 ⊢P u1[[UV
1 ]] ∥ u2[[0 ]] ∥ s[[S ]] ∥ /0 : G8

H4 ⊢P u1[[UV
1 ]] ∥ u2[[U II

2 ]] ∥ s[[S ]] ∥M0 : G6

H2 ⊢P u1[[U I
1 ]] ∥ u2[[U II

2 ]] ∥ s[[S ]] ∥M2 : G4

H1 ⊢P u1[[U I
1 ]] ∥ u2[[U2 ]] ∥ s[[S ]] ∥M0 : G1 D

⊢P u1[[U1 ]] ∥ u2[[U2 ]] ∥ s[[S ]] ∥ /0 : G

Figure 5: Derivation for the social media example.

in P . The condition (p[[P ]] ∥ N ∥ −,G) ̸∈H , together with the one for Axiom [CYCLE], is used for
ensuring decidability. Our type system is in fact decidable, since global types and processes are regular.
In particular, any bottom-up attempt to reconstruct a branch of a to-be derivation necessarily ends up
with an application of Axiom [END], or of Axiom [CYCLE] or fails because Rules [OUT] and [IN] do not
apply.

Whereas our type system enables to deal with participants whose lock-freedom we do care about,
the system of [1], besides taking into account a synchronous model of communication, deals with par-
ticipants whose lock-freedom we do not care about. Even if equivalent from an abstract viewpoint, these
two different perspectives from which one can deal with the notion of “partiality” , bring with them pros
and cons when formalised in specific MPST type systems. For instance, something like the rule [WEAK]
of [1] is not needed here, so accounting for simpler proofs. On the other hand, the loose treatment of
disregarded participants in [1], where one can consider different sets of participants in different branches
of derivations, allows for a modular development of the derivations.

The presence of queues in our asynchronous setting makes some extra conditions – besides the reg-
ularity of global types and processes – necessary in order to get a decidable type systems. Such extra
conditions are definitely easier to formalise in an inductive system rather that in a coinductive one, so
accounting for the use of an inductive system, unlike a coinductive one as in [1].

Example 3.10 (Typing for the social media example) The type derivation for our social media exam-
ple is shown in Figure 5 where P = {u1,u2} and D is the derivation with conclusion

H1 ⊢{u1,u2} u1[[U II
1 ]] ∥ u2[[U2 ]] ∥ s[[S ]] ∥ ⟨u1, STOP,u2⟩ : G2

whose detailed description we omit for the sake of readability. The abbreviations used in Figure 5 are
listed in Figures 6, 7, 8, 9.

In order to show that a type configuration does represent a correct and complete description of the
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H1 = (u1[[U1 ]] ∥ u2[[U2 ]] ∥ s[[S ]] ∥ /0,G)

H2 = H1,(u1[[U I
1 ]] ∥ u2[[U2 ]] ∥ s[[S ]] ∥M0,G1)

H3 = H2,(u1[[U I
1 ]] ∥ u2[[U I

2 ]] ∥ s[[S ]] ∥M1,G3)

H4 = H2,(u1[[U I
1 ]] ∥ u2[[U II

2 ]] ∥ s[[S ]] ∥M2,G4)

H5 = H3,(u1[[U III
1 ]] ∥ u2[[U I

2 ]] ∥ s[[S ]] ∥M0,G5)

H6 = H4,(u1[[UV
1 ]] ∥ u2[[U II

2 ]] ∥ s[[S ]] ∥M0,G6)

H7 = H5,(u1[[U III
1 ]] ∥ u2[[U III

2 ]] ∥ s[[S ]] ∥ /0,G7)

H8 = H6,(u1[[UV
1 ]] ∥ u2[[0 ]] ∥ s[[S ]] ∥ /0,G8)

H9 = H7,(u1[[U III
1 ]] ∥ u2[[U IV

2 ]] ∥ s[[S ]] ∥M3,G9)

H10 = H9,(u1[[U III
1 ]] ∥ u2[[U IV

2 ]] ∥ s[[SI ]] ∥ /0,G10)

H11 = H10,(u1[[U IV
1 ]] ∥ u2[[U IV

2 ]] ∥ s[[SI ]] ∥M4,G11)

H12 = H11,(u1[[U IV
1 ]] ∥ u2[[U IV

2 ]] ∥ s[[SII ]] ∥ /0,G12)

H13 = H12,(u1[[U IV
1 ]] ∥ u2[[U IV

2 ]] ∥ s[[SIII ]] ∥M5,G13)

H14 = H13,(u1[[U1 ]] ∥ u2[[U IV
2 ]] ∥ s[[SIII ]] ∥ /0,G14)

H15 = H14,(u1[[U1 ]] ∥ u2[[U IV
2 ]] ∥ s[[S ]] ∥M6 : G15)

Figure 6: Histories for the derivation of the social media example.

U I
1 = u2?

{
GO.U III

1
STOP.UV

1
U II

1 = u2?
{

GO

STOP
U III

1 = s!REQ.U IV
1 U IV

1 = s?DATA.U1 UV
1 = s!REQ

U I
2 = u1?

{
GO.U III

2
STOP

U II
2 = u1?

{
GO

STOP
U III

2 = s!REQ.U IV
2 U IV

2 = s?DATA.U2

SI = u1?REQ.SII SII = u1!DATA.SIII SIII = u2!DATA.S

Figure 7: Processes for the derivation of the social media example.

M0 = ⟨u1,GO,u2⟩ M1 = M0 · ⟨u2,GO,u1⟩ M2 = M0 · ⟨u2, STOP,u1⟩ M3 = ⟨u2,REQ,s⟩
M4 = ⟨u1,REQ,s⟩ M5 = ⟨s,DATA,u1⟩ M6 = ⟨s,DATA,u2⟩ M7 = ⟨u1,REQ,s⟩

Figure 8: Queues for the derivation of the social media example.
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G1 = u2u1!
{

GO.G3
STOP.G4

G2 = u2u1!
{

GO.u1u2?GO.u2u1?STOP

STOP.u1u2?STOP.u2u1?STOP
G3 = u1u2?GO.G5

G4 = u1u2?STOP.G6 G5 = u2u1?GO.G7 G6 = u2u1?GO.G8 G7 = u2s!REQ.G9

G8 = u1s!REQ G9 = su2?REQ.G10 G10 = u1s!REQ.G11 G11 = su1?REQ.G12

G12 = su1!DATA.G13 G13 = u1 s?DATA.G14 G14 = su2!DATA.G15 G15 = u2 s?DATA.G

Figure 9: Global types for the derivation of the social media example.

[TOP-OUT]
pq!{λi.Gi}i∈I ∥M

pq!λh−−−→ Gh ∥M · ⟨p,λh,q⟩
h ∈ I

[TOP-IN]
pq?λ .G ∥ ⟨q,λ ,p⟩ ·M pq?λ−−−→ G ∥M

[INSIDE-OUT]
Gi ∥M · ⟨p,λi,q⟩

β−→ G′i ∥M ′ · ⟨p,λi,q⟩ ∀i ∈ I

pq!{λi.Gi}i∈I ∥M
β−→ pq!{λi.G

′
i}i∈I ∥M ′

p ̸= play(β )

[INSIDE-IN]
G ∥M

β−→ G′ ∥M ′

pq?λ .G ∥ ⟨q,λ ,p⟩ ·M β−→ pq?λ .G′ ∥ ⟨q,λ ,p⟩ ·M ′
p ̸= play(β )

Figure 10: LTS for type configurations.

overall behaviour of a session (see Subject Reduction and Session Fidelity theorems), we equip type
configurations with an LTS, as formally defined in Figure 10. Actually we are interested in reducing
only type configurations G ∥M such that ⊢P N ∥M : G for some P and N. This justifies the shapes
of message queues in Rules [INSIDE-OUT] and [INSIDE-IN], which mimic the message queues in Rules
[OUT] and [IN], see Figure 4. The condition p ̸= play(β ) in these rules ensures that β is independent of
the enclosing communication.

4 Properties of Typable Sessions

We begin with a few technical lemmas enabling to prove Subject reduction and Session Fidelity, that is
completeness and correctness, respectively, of type configurations with respect to sessions (by taking into
account participants in P only). These in turn will enable us to prove partial communication properties
for typable sessions.

A first lemma immediately follows by cases on the typing axioms/rules.

Lemma 4.1 If ⊢P N ∥M : G, then (Plays(N)\Plays(G))∩P = /0 and G ∥M is P-sound.

The following lemma allows to get rid of histories in particular derivations. It states that, if a judge-
ment occurs in a proof whose conclusion is without history, then the judgement itself holds without
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history. Moreover, if the premises of Rules [OUT] and [IN] hold without histories, also the conclusion
holds without history.

Lemma 4.2

1. If H ⊢P N ∥M : G occurs in the proof of ⊢P N′ ∥M ′ : G′, then ⊢P N ∥M : G.

2. If ⊢P p[[Pi ]] ∥N ∥M · ⟨p,λi,q⟩ : Gi for all i∈ I, then ⊢P p[[q!{λi.Pi}i∈I ]] ∥N ∥M : pq!{λi.Gi}i∈I .

3. If ⊢P p[[Ph ]] ∥ N ∥M : G and h ∈ I, then ⊢P p[[q?{λi.Pi}i∈I ]] ∥ N ∥ ⟨q,λh,p⟩ ·M : pq?λh.G.

Proof. 1. By induction on the distance d between H ⊢P N ∥M : G and ⊢P N′ ∥M ′ : G′ in the
derivation of ⊢P N′ ∥M ′ : G′. The case d = 0 is trivial.

Case d = 1. Then H ⊢P N ∥M : G is a premise of a rule whose conclusion is ⊢P N′ ∥M ′ : G′,
which implies H = (N′ ∥M ′,G′). We can now build a derivation of ⊢P N ∥M : G out of the derivation
of (N′ ∥M ′,G′) ⊢P N ∥M : G, as follows. First we erase everywhere (N′ ∥M ′,G′) from the histories
present in the derivation. This operation does not affect the correctness of the applicability conditions
of Axiom [END] and Rules [IN] and [OUT]. Axiom [CYCLE], instead, is affected by such an erasing
only in case (N′ ∥M ′,G′) is the triple used in the axiom, namely H ′,(N′ ∥M ′,G′) ⊢P N′ ∥M ′ : G′

is the axiom conclusion. In such a case, we replace this application of Axiom [CYCLE] by a proof of
H ′ ⊢P N′ ∥M ′ : G′ built out of the derivation D of ⊢P N′ ∥M ′ : G′ in the following way.
Let us consider the premises of the last rule in the derivation D . For the premises which are axioms there
is nothing to do. For the other premises we need to modify the derivation as follows.
Let (N′ ∥M ′,G′) ⊢P N̂ ∥ M̂ : Ĝ be obtained as conclusion of either Rule [IN] or Rule [OUT] with
premises having (N′ ∥M ′,G′),(N̂ ∥ M̂ , Ĝ) as histories. D has hence the form

· · ·

· · · (N′ ∥M ′,G′),(N̂ ∥ M̂ , Ĝ) ⊢P : . . .
[IN]/[OUT]

(N′ ∥M ′,G′) ⊢P N̂ ∥ M̂ : Ĝ · · ·
[IN]/[OUT]

⊢P N′ ∥M ′ : G′

Notice that this implies that (N̂ ∥ M̂ , Ĝ) ∈ H ′. We can hence transform the above derivation in a
derivation of H ′ ⊢P N′ ∥M ′ : G′ as follows:

· · ·
[CYCLE]

H ′,(N′ ∥M ′,G′) ⊢P N̂ ∥ M̂ : Ĝ · · ·
[IN]/[OUT]

H ′ ⊢P N′ ∥M ′ : G′

Case d > 1. Let (N′ ∥M ′,G′) ⊢P N̂ ∥ M̂ : Ĝ be an arbitrary premise of a rule whose conclusion
is ⊢P N′ ∥M ′ : G′. By the construction described in the base case, we can get a derivation D for
⊢P N̂ ∥ M̂ : Ĝ containing a subderivation for H \ {(N′ ∥M ′,G′)} ⊢P N ∥M : G. In D the distance
between ⊢P N̂ ∥ M̂ : Ĝ and H \{(N′ ∥M ′,G′)} ⊢P N ∥M :G is d−1. So, by the induction hypothesis,
we conclude ⊢P N ∥M : G.

2. Let G = pq!{λi.Gi}i∈I and N′ = p[[q!{λi.Pi}i∈I ]] ∥ N. If a statement H ⊢P N′ ∥M ′ : G does
not occur in the derivation of ⊢P p[[Pi ]] ∥ N ∥M · ⟨p,λi,q⟩ : Gi, then we can simply add (N′ ∥M ,G)
to the histories of the derivation, so getting a still correct derivation, and then apply Rule [OUT].
Otherwise this statement must also be the conclusion of an application of Rule [OUT] with premises
H ,(N′ ∥M ′,G) ⊢P p[[Pi ]] ∥ N ∥ M ′ · ⟨p,λi,q⟩ : Gi for all i ∈ I. This implies M ′ ≡ M . Since
H ⊢P N′ ∥M : G occurs in a derivation of ⊢P p[[Pi ]] ∥ N ∥M · ⟨p,λi,q⟩ : Gi, by Point (1) we con-
clude ⊢P N′ ∥M : G.
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3. Let G′ = pq?λh.G and N′ = p[[q?{λi.Pi}i∈I ]] ∥ N and M ′ ≡ ⟨q,λh,p⟩ ·M . If the derivation of
⊢P p[[Ph ]] ∥ N ∥M : G does not contain a statement H ⊢P N′ ∥M ′′ : G′, then we can simply add
(N′ ∥M ,G′) to the histories of the derivation, so getting a still correct derivation, and then apply Rule
[IN]. Otherwise this statement must also be the conclusion of an application of Rule [IN] with premise
H ,(N′ ∥M ′′,G′) ⊢P p[[Ph ]] ∥ N ∥M : G. This implies M ′′ ≡M ′. Since H ⊢P N′ ∥M ′ : G′ occurs
in a derivation of ⊢P p[[Ph ]] ∥ N ∥M : G, by Point (1) we conclude ⊢P N′ ∥M ′ : G′. □

We can now show that the reductions of type configurations are matched by the reductions of the
sessions.

Theorem 4.3 (Session Fidelity) If ⊢P N ∥M : G and G ∥M
β−→ G′ ∥M ′, then N ∥M

β−→N′ ∥M ′ and
⊢P N′ ∥M ′ : G′.

Proof. The proof is by cases on the last applied axiom/rule in the derivation of ⊢P N ∥M : G.
Axiom [End]. Impossible since G= End and End ∥M ̸→.
Axiom [CYCLE]. Impossible since the history cannot be empty.
Rule [OUT]. In such a case G= pq!{λi.Gi}i∈I and N= p[[P ]] ∥ N̂ and P = q!{λi.Pi}i∈I and

(p[[P ]] ∥ N̂ ∥M ,G) ⊢P p[[Pi ]] ∥ N̂ ∥M · ⟨p,λi,q⟩ : Gi ∀i ∈ I (1)

We proceed by induction on the height t of the derivation of G ∥M
β−→ G′ ∥M ′.

Case t = 1. Then G ∥M
β−→ G′ ∥M ′ is necessarily obtained by Axiom [TOP-OUT], that is β = pq!λh

for some h ∈ I, and

[TOP-OUT]
pq!{λi.Gi}i∈I ∥M

pq!λh−−−→ Gh ∥M · ⟨p,λh,q⟩
h ∈ I

By Rule [SEND] we have that

p[[P ]] ∥ N̂ ∥M
pq!λh−−−→ p[[Ph ]] ∥ N̂ ∥M · ⟨p,λh,q⟩

Now, by (1) we have (p[[P ]] ∥ N ∥M ,G) ⊢P p[[Ph ]] ∥ N ∥M · ⟨p,λh,q⟩ : Gh, and by Lemma 4.2(1) we
get the rest of the thesis, namely ⊢P p[[Ph ]] ∥ N̂ ∥M · ⟨p,λh,q⟩ : Gh.

Case t > 1. Then G ∥M
β−→ G′ ∥M ′ is necessarily obtained by Rule [INSIDE-OUT], that is

[INSIDE-OUT]
Gi ∥M · ⟨p,λi,q⟩

β−→ G′i ∥M ′ · ⟨p,λi,q⟩ ∀i ∈ I

pq!{λi.Gi}i∈I ∥M
β−→ pq!{λi.G

′
i}i∈I ∥M ′

p ̸= play(β )

From (1) and Lemma 4.2(1) we can infer that

⊢P p[[Pi ]] ∥ N̂ ∥M · ⟨p,λi,q⟩ : Gi ∀i ∈ I

We can now recur to the induction hypothesis, getting

p[[Pi ]] ∥ N̂ ∥M · ⟨p,λi,q⟩
β−→ p[[Pi ]] ∥ N̂′ ∥M ′ · ⟨p,λi,q⟩ ∀i ∈ I

and

⊢P p[[Pi ]] ∥ N̂′ ∥M ′ · ⟨p,λi,q⟩ : G′i ∀i ∈ I

Notice that the condition p ̸= play(β ) ensures that, for each i ∈ I, the transition does not modify the
process of participant p. Moreover, the transition does not depend on the messages ⟨p,λi,q⟩, since these
messages are at the end of the queue both before and after the transitions. So, we can infer that
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p[[P ]] ∥ N̂ ∥M
β−→ p[[P ]] ∥ N̂′ ∥M ′

Lemma 4.2(2) applied to

⊢P p[[Pi ]] ∥ N̂′ ∥M ′ · ⟨p,λi,q⟩ : G′i for all i ∈ I

gives ⊢P p[[P ]] ∥ N̂′ ∥M ′ : G′.
Rule [IN]. In such a case G = pq?λh.G

′ and N = p[[P ]] ∥ N̂ and M ≡ ⟨q,λh,p⟩ ·M̂ , with h ∈ I and
P = q?{λi.Pi}i∈I and

(p[[P ]] ∥ N̂ ∥M ,G) ⊢P p[[Ph ]] ∥ N̂ ∥ M̂ : G′ (2)

We proceed by induction on the height t of the derivation of G ∥M
β−→ G′ ∥M ′.

Case t = 1. Then G ∥M
β−→ G′ ∥M ′ is necessarily obtained by Axiom [TOP-IN], that is β = pq?λh and

[TOP-IN]
pq?λh.G

′ ∥ ⟨q,λh,p⟩ ·M̂
pq?λh−−−→ G′ ∥ M̂

By Rule [RCV] we have that

p[[P ]] ∥ N̂ ∥ ⟨q,λh,p⟩ ·M̂
pq?λh−−−→ p[[Ph ]] ∥ N̂ ∥ M̂

We can now get the rest of the thesis since (2) and Lemma 4.2(1) imply

⊢P p[[Ph ]] ∥ N̂ ∥ M̂ : G′

Case t > 1. Then G ∥M
β−→ G′ ∥M ′ is necessarily obtained by Rule [INSIDE-IN], that is

[INSIDE-IN]
G′ ∥ M̂

β−→ G′′ ∥ M̂ ′

pq?λh.G
′ ∥ ⟨q,λh,p⟩ ·M̂

β−→ pq?λh.G
′′ ∥ ⟨q,λh,p⟩ ·M̂ ′

p ̸= play(β )

Now, (2) and Lemma 4.2(1) imply

⊢P p[[Ph ]] ∥ N̂ ∥ M̂ : G′

We can hence recur to the induction hypothesis, getting that

p[[Ph ]] ∥ N̂ ∥ M̂
β−→ p[[Ph ]] ∥ N̂′ ∥ M̂ ′

and

⊢P p[[Ph ]] ∥ N̂′ ∥ M̂ ′ : G′′

since the side condition p ̸= play(β ) of Rule [INSIDE-IN] implies that the process of participant p is
unchanged. Lemma 4.2(3) applied to

⊢P p[[Ph ]] ∥ N̂′ ∥ M̂ ′ : G′′

gives the rest of the thesis, namely

⊢P p[[P ]] ∥ N̂′ ∥ ⟨q,λh,p⟩ ·M̂ ′ : pq?λh.G
′′ □

The proof of Subject Reduction requires some lemmas which are typical of our partial typing. The
first lemma deals with participants which have active processes but are not players of global types. The
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second lemma deals with messages whose receivers are not players of global types. The last lemma
states that a player of the network whose lock-freedom must be ensured is always a player of the global
type.

Lemma 4.4 If ⊢P p[[P ]] ∥ N ∥M : G, P ̸= 0 and p ̸∈ Plays(G), then ⊢P p[[P′ ]] ∥ N ∥M : G for any
arbitrary P′ such that p ̸∈ Prt(P′).

Proof. If p ̸∈ Plays(G), then the process P can never be involved in any occurrence of Rules [OUT] or
[IN]. This implies that p[[P ]] must occur only in axioms. It is hence enough to replace P by P′ in those
axioms and modify the histories present in the derivation accordingly. □

Lemma 4.5 If ⊢P N ∥ ⟨q,λ ,p⟩ ·M : G and p ̸∈ Plays(G), then ⊢P N ∥M : G.

Proof. Rule [OUT] does not add messages to the queue. If p ̸∈ Plays(G), then ⟨q,λ ,p⟩ cannot be added
by Rule [IN]. Then ⟨q,λ ,p⟩ is present in all the queues of the judgements in the derivation. We remark
that the removal of a message from a queue cannot alter the truth value of the P-soundness condition,
which is required for the applicability of an axiom or a rule. It is hence possible to remove ⟨q,λ ,p⟩ from
the queues in the axioms and modify the queues present in the derivation accordingly. □

Lemma 4.6 If ⊢P N ∥M : G and p ∈ (Plays(N)∩P), then p ∈ Plays(G).

Proof. If p∈P , then an output with sender p can only be typed by Rule [OUT] and an input with receiver
p together with a message with receiver p can only be typed by Rule [IN]. □

Subject Reduction ensures that a transition of a session is mimicked by a transition of the corre-
sponding type configuration only if the player of the transition is a player of the global type.

Theorem 4.7 (Subject Reduction) Let ⊢P N ∥M : G and N ∥M
β−→ N′ ∥M ′. If play(β ) ∈ Plays(G),

then G ∥M
β−→ G′ ∥M ′ and ⊢P N′ ∥M ′ : G′. Otherwise ⊢P N′ ∥M ′ : G.

Proof. The proof is by cases on the reduction rules.
Rule [SEND]. In this case

N≡ p[[q!{λi.Pi}i∈I ]] ∥ N0, M ′ ≡M · ⟨p,λh,q⟩, β = pq!λh, N′ ≡ p[[Ph ]] ∥ N0 where h ∈ I.

By definition of network p ̸∈ Prt(q!{λi.Pi}i∈I), which implies p ̸∈ Prt(Ph). If p ̸∈ Plays(G), Lemma 4.4
implies ⊢P N′ ∥M ′ : G. Otherwise the proof proceeds by cases on the last typing axiom/rule used in the
derivation for ⊢P N ∥M : G and by induction on d = depth(G,p).
Axiom [END]. Since it cannot be play(β ) ∈ Plays(G), the implication is vacuously satisfied.
Axiom [CYCLE]. Impossible since the history cannot be empty.

Rule [OUT] and d = 1. In this case G = pq!{λi.Gi}i∈I . We get G ∥M
pq!λh−−−→ Gh ∥M ′ by Axiom

[TOP-OUT]. Lemma 4.2(1) implies

⊢P p[[Ph ]] ∥ N0 ∥M · ⟨p,λh,q⟩ : Gh

Rule [OUT] and d > 1. In this case G= rs!{λ ′j.G j} j∈J with r ̸= p and N0≡ r[[s!{λ ′j.R j} j∈J ]] ∥N1. Lemma
4.2(1) implies

⊢P p[[q!{λi.Pi}i∈I ]] ∥ r[[R j ]] ∥ N1 ∥M · ⟨r,λ ′j,s⟩ : G j for all j ∈ J

We hence get, by Rule [SEND], for all j ∈ J,
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p[[q!{λi.Pi}i∈I ]] ∥ r[[R j ]] ∥ N1 ∥M · ⟨r,λ ′j,s⟩
pq!λh−−−→ p[[Ph ]] ∥ r[[R j ]] ∥ N1 ∥M · ⟨r,λ ′j,s⟩ · ⟨p,λh,q⟩

Since depth(G j,p)< d, induction implies G j ∥M · ⟨r,λ ′j,s⟩
pq!λh−−−→ G′j ∥M · ⟨r,λ ′j,s⟩ · ⟨p,λh,q⟩ and

⊢P p[[Ph ]] ∥ r[[R j ]] ∥ N1 ∥M · ⟨r,λ ′j,s⟩ · ⟨p,λh,q⟩ : G′j for all j ∈ J

Let G′ = rs!{λ ′j.G′j} j∈J and M ′ = M · ⟨p,λh,q⟩. Since the messages ⟨r,λ ′j,s⟩ and ⟨p,λh,q⟩ commute,

being r ̸= p, we can derive G ∥M
pq!λh−−−→ G′ ∥M ′ using Rule [INSIDE-OUT]. Lastly, ⊢P N′ ∥M ′ : G′ by

Lemma 4.2(2).
Rule [IN] and d = 1. Impossible.
Rule [IN] and d > 1. In this case

G= rs?λ ′k.G
′′ with r ̸= p and N0 ≡ r[[s?{λ ′j.R j} j∈J ]] ∥ N1 and M ≡ ⟨s,λ ′k, r⟩ ·M0 with k ∈ J.

Moreover, ⊢P p[[q!{λi.Pi}i∈I ]] ∥ r[[Rk ]] ∥ N1 ∥M : G′′ by Lemma 4.2(1). We get

p[[q!{λi.Pi}i∈I ]] ∥ r[[Rk ]] ∥ N1 ∥M
pq!λh−−−→ p[[Ph ]] ∥∥ r[[Rk ]] ∥ N1 ∥M · ⟨p,λh,q⟩

Since depth(G′′,p)< d, induction implies

G′′ ∥M
pq!λh−−−→ G′′′ ∥M · ⟨p,λh,q⟩ and ⊢P p[[Ph ]] ∥ r[[Rk ]] ∥ N1 ∥M · ⟨p,λh,q⟩ : G′′′

Let G′ = rs?λ ′k.G
′′′. Being r ̸= p we can derive G ∥M

pq!λh−−−→ G′ ∥M ′ using Rule [INSIDE-IN]. Lastly,
⊢P N′ ∥M ′ : G′ by Lemma 4.2(3).

Rule [RCV]. In this case

N≡ p[[q?{λi.Pi}i∈I ]] ∥ N0, M ≡ ⟨q,λh,p⟩ ·M ′, β = pq?λh, N′ ≡ p[[Ph ]] ∥ N0 where h ∈ I.

By definition of network p ̸∈ Prt(q?{λi.Pi}i∈I), which implies p ̸∈ Prt(Ph). If p ̸∈ Prt(G) Lemmas 4.4
and 4.5 imply ⊢P N′ ∥M ′ : G. Otherwise the proof proceeds by cases on the last axiom/rule used in the
derivation for ⊢P N ∥M : G and by induction on d = depth(G,p).
Axiom [END]. Since it cannot be play(β ) ∈ Prt(G), the implication is vacuously satisfied.
Axiom [CYCLE]. Impossible since the history cannot be empty.
Rule [OUT] and d = 1. Impossible.
Rule [OUT] and d > 1. In this case G = rs!{λ ′j.G j} j∈J with r ̸= p and N0 ≡ r[[s!{λ ′j.R j} j∈J ]] ∥ N1 and
⊢P p[[q?{λi.Pi}i∈I ]] ∥ r[[R j ]] ∥N1 ∥M · ⟨r,λ ′j,s⟩ : G j for all j ∈ J by Lemma 4.2(1). We get, for all j ∈ J,

p[[q?{λi.Pi}i∈I ]] ∥ r[[R j ]] ∥ N1 ∥M · ⟨r,λ ′j,s⟩
pq?λh−−−→ p[[Ph ]] ∥ r[[R j ]] ∥ N1 ∥M ′ · ⟨r,λ ′j,s⟩

Since depth(G j,p)< d, induction implies, for all j ∈ J,

G j ∥M · ⟨r,λ ′j,s⟩
pq?λh−−−→ G′j ∥M ′ · ⟨r,λ ′j,s⟩ and ⊢P p[[Ph ]] ∥ r[[R j ]] ∥ N1 ∥M ′ · ⟨r,λ ′j,s⟩ : G′j

Let G′ = rs!{λ ′j.G′j} j∈J . Being r ̸= p we can derive G ∥M
pq?λh−−−→ G′ ∥M ′ using Rule [INSIDE-OUT].

Lastly, ⊢P N′ ∥M ′ : G′ by Lemma 4.2(2).
Rule [IN] and d = 1. In this case G= pq?λ .G′. Lemma 4.2(1) implies ⊢P p[[Ph ]] ∥N0 ∥M ′ : G′. We get

G ∥M
pq?λh−−−→ G′ ∥M ′ by Axiom [TOP-IN].

Rule [IN] and d > 1. In this case

G= rs?λ ′k.G
′′ N0 ≡ r[[s?{λ ′j.R j} j∈J ]] ∥ N1, M ′ ≡ ⟨s,λ ′k, r⟩ ·M0 with r ̸= p and k ∈ J
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Lemma 4.2(1) implies ⊢P p[[q?{λi.Pi}i∈I ]] ∥ r[[Rk ]] ∥ N1 ∥ ⟨q,λh,p⟩ ·M0 : G′′. We get

p[[q?{λi.Pi}i∈I ]] ∥ r[[Rk ]] ∥ N1 ∥ ⟨q,λh,p⟩ ·M0
pq?λh−−−→ p[[Ph ]] ∥ r[[Rk ]] ∥ N1 ∥M0

Since depth(G′′,p)< d, induction implies

G′′ ∥ ⟨q,λh,p⟩ ·M0
pq?λh−−−→ G′′′ ∥M0 and ⊢P p[[Ph ]] ∥ r[[Rk ]] ∥ N1 ∥M0 : G′′′

Let G′ = rs?λ ′k.G
′′′. Being r ̸= p we can derive G ∥M

pq?λh−−−→ G′ ∥M ′ using Rule [INSIDE-IN]. Lastly,
⊢P N′ ∥M ′ : G′ by Lemma 4.2(3). □

We conclude this section by showing the main properties of our type system: partial lock-freedom
and partial orphan-message-freedom.

Theorem 4.8 (Partial Lock-freedom) If ⊢P N ∥M : G, then N ∥M is P-lock free.

Proof. Let p ∈P . If p ̸∈ Plays(N), then N ∥M is trivially p-lock free. Otherwise p ∈ (Plays(N)∩P)

gives p ∈ Plays(G) by Lemma 4.6. We first show by induction on d = depth(G,p) that G ∥M
τ·β−−→ with

play(β ) = p for some τ , β .

If d = 1, then either G = pq!{λi.Gi}i∈I or G = pq?λ .G′. We get G ∥M
β−→ with play(β ) = p by either

Axiom [TOP-OUT] or Axiom [TOP-IN].

If d > 1, then G ∥M
β ′−→ G′ ∥M ′ for some β ′, G′ and M ′ by Axiom [TOP-OUT] or Axiom [TOP-IN].

The applicability of Axiom [TOP-IN] is ensured by the fact that ⊢P N ∥M : G must be typed using Rule

[IN]. Since depth(G′,p) < d, by induction G′ ∥M ′ τ ′·β−−→ with play(β ) = p for some τ , β . We can take
τ = β ′ · τ ′.

By Theorem 4.3 G ∥M
τ·β−−→ implies N ∥M

τ·β−−→. □

Theorem 4.9 (Partial Orphan-message-freedom) If ⊢P N ∥ M : G, then N ∥ M is P-orphan-
message free.

Proof. Let M ≡ ⟨p,λ ,q⟩ · M̂ and {p,q} ⊆P . We first show that G ∥M
τ·qp?λ−−−−→ by induction on

weight(G,⟨p,λ ,q⟩). If weight(G,⟨p,λ ,q⟩) = 0 it is trivial. Otherwise G ∥M
β−→ G′ ∥M ′ by Axiom

[TOP-OUT] or Axiom [TOP-IN] and weight(G′,⟨p,λ ,q⟩) < weight(G,⟨p,λ ,q⟩). The applicability of
Axiom [TOP-IN] is ensured by the fact that ⊢P N ∥M : G must be typed using Rule [IN]. By induction

G′ ∥M ′ τ ′·qp?λ−−−−→, so we can take τ = β · τ ′.
Applying Theorem 4.3 to G ∥M

τ·qp?λ−−−−→ we conclude N ∥M
τ·qp?λ−−−−→. □

It is worth noticing that in case we were interested in P-lock-freedom only we could simply take
out the P-soundness conditions in the type system.

Remark 4.10 (Saving P-soundness checks) One could avoid to have the P-soundness condition in
Rules [IN] and [OUT] in case we impose M = /0 in Axiom [CYCLE]. In fact (a) G ∥ /0 is P-sound for
any G and P and (b) applications of Rules [IN] and [OUT] do preserve P-soundness. Note that requiring
G ∥M to be P-sound only in Axioms [CYCLE] and [END] would not work. A counterexample being
the obvious derivation for

⊢P p[[P ]] ∥ q[[Q ]] ∥ ⟨q,λ ,p⟩ : G
where P = q!λ .P, Q = p?λ .Q and G= pq!.qp?λ .G.
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5 Conclusions

Membership of a component to a concurrent/distributed system does not imply that the component is
equivalent in rights, capabilities and properties to the other components. A system can often viewed
as being formed by different and heterogeneous subsystems. Formal verification techniques and meth-
ods are usually devised to ensure properties of whole systems and they cannot always be scaled down
or tailored to work on specific subsystems. This is obviously due to non trivial interactions between
subsystems and the rest of system components. This issue has been addressed in [1], in the develop-
ment/verification framework of MPTS. The type assignment of [1], guaranteeing good communication
properties, can be in fact tailored for specific subsets of participants, so disregarding the behaviour of the
rest of the participants. In the present paper we extend the investigation in [1] by considering an asyn-
chronous model of communication, which was instead synchronous in [1]. With respect to that paper
we consider, besides P-lock-freedom (absence of locks for participants in P), also P-orphan-message
freedom. The type assignment we devise is inspired by [3, 4, 7] where, unlike most choreographic
formalisms, the asynchronicity of the communication model is explicitly reflected at the level of global-
behaviour descriptions, namely the global types in our case.

A MPST formalism dealing with properties holding for partial descriptions of systems was defined
in [11] and further investigated in [2, 5]. In those papers, a notion of connecting communications en-
ables us to consider some participants as optional, in particular the ones that are “invited” (via connect-
ing inputs) to join some interactions. Such a feature allows for a more natural description of typical
communication protocols. Connecting communications and our partial typing are sort of orthogonal.
An advantage of connecting communications over partial typing (where participants offering connecting
communications should be ignored) is that only participants offering connecting inputs can be stuck. The
disadvantage is that the typing rules are more demanding, so many interesting sessions can be partially
typed but cannot be typed using connecting communications. We definitely deem worth investigating an
extension of our formalism to deal with participants offering connecting communications.

An algorithm enabling to infer all the global types for a given session – and handling, in particular,
infinite expressions as sets of recursive equations – has been devised in [1], working on a similar one in
[7]. We are confident that the approach of [7], for what concerns the representation of infinite terms, can
be also exploited in inference algorithms for our system.

The MPTS formalism used in the present paper, unlike many MPST formalisms stemmed from
[10], does not recur to projections. Extending the standard projection operator to a relation between
global types and local behaviours with good partial properties would lead to a top-down develop-
ment/verification formalism for partial properties, i.e. where local descriptions are obtained by projecting
previously developed global descriptions.

The properties verified by formalisms like the present one, as well as the ones in [1, 3, 4, 7], are
strictly related to LTSs on type configurations. Such LTSs are inductively defined. It is worth considering
coinductively defined LTSs, so that communication properties can be ensured for wider sets of sessions.
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to improve the readability of this paper.
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As a supplement to my talk at the workshop, this extended abstract motivates and summarizes my
work with co-authors on problems in two separate areas: first, in the λ -calculus with letrec, a univer-
sal model of computation, and second, on Milner’s process interpretation of regular expressions, a
proper subclass of the finite-state processes. The aim of my talk was to motivate a transferal of ideas
for workable concepts of structure-constrained graphs: from the problem of finding compact graph
representations for terms in the λ -calculus with letrec to the problem of recognizing finite process
graphs that can be expressed by regular expressions. In both cases the construction of structure-con-
strained graphs was expedient in order to enable to go back and forth easily between, in the first case,
λ -terms and term graphs, and in the second case, regular expressions and process graphs.

The main focus here is on providing pointers to my work with co-authors, in both areas sepa-
rately. A secondary focus is on explaining directions of my present projects, and describing research
questions of possibly general interest that have developed out of my work in these two areas.

1 Introduction

The purpose of this extended abstract is to supplement my talk at the workshop [3] with a brief description
of my work with co-authors in two areas, including ample references. While my workshop-presentation
covered similar topics as my talk [1] at TERMGRAPH 2018, and while the proceedings article [2] for that
workshop remains a useful resource, this article is a rewritten account with a detailed update on results
that have been obtained in the meantime, and with an outlook on remaining challenging problems.

My talk [3] at the workshop aimed at motivating a fruitful transferal of ideas between two areas on
which I worked in the (a bit removed, and more recent) past: λ -calculus, and the implementation of func-
tional programming languages (2009–2014), and the process theory of finite-state processes (2005–6,
and from 2015). My intention was to show, supported by many pictures: How a solution to the problem
of finding adequate graph representations for terms in the λ -calculus with letrec, a universal model of
computation, turned out to be very helpful in understanding process graphs that can be expressed by
regular expressions (via Milner’s process interpretation), a proper subclass of finite-state processes.

In both cases the definition of an adequate notion of structure-constrained (term or process) graph
was the key to solve a specific practical, and respectively, a theoretical problem. It was central that
the structure-constrained graphs facilitate to go back and forth easily between, on the one hand, terms
in the λ -calculus with letrec and term graphs, and on the other hand, regular expressions and process
graphs. The graph representations respect the appertaining operational semantics, but were conceived
with specific purposes in mind: to optimize functional programs in the Lambda Calculus with letrec; and
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respectively, to reason with process graphs denoted by regular expressions, and to decide recognizability
of these graphs. For a detailed comparison of the similarities and differences of the structure-constrained
graphs as defined in the term graph semantics of terms in the λ -calculus with letrec (see Section 2), and
the process (graph) semantics of regular expressions (see Section 3), we want to refer to Section 4 of [2].

Section 2 summarizes work by Jan Rochel and myself that led us to the definition, and efficient im-
plementation of maximal sharing for the higher-order terms in the λ -calculus with letrec. Specifically we
formulated a representation-pipeline: Higher-order terms can be represented by, appropriately defined,
higher-order term graphs, then these can be encoded as first-order term graphs, and subsequently those
can in turn be represented as deterministic finite-state automata (DFAs). Via these correspondences and
DFA minimization, maximal shared forms of higher-order terms can be computed.

Section 3 gives an overview of my work, in important parts done together with Wan Fokkink, on
two non-trivial problems that concern the process semantics of regular expressions. In Milner’s process
semantics, regular expressions are interpreted as finite process graphs (or for that matter non-determi-
nistic finite-state automata (NFAs)) that are viewed as equal (as describing the same ‘behavior’) if they
are bisimilar. Unlike for the standard language interpretation, not every finite process can be expressed,
in this way, by a regular expression. This fact raised a non-trivial recognition (or expressibility) problem,
which was formulated by Milner (1984) next to a completeness problem for an equational proof system.
In Section 3 I report on the crucial steps that have led me to a solution of the completeness problem.

Finally Section 4 reports on my present projects, and lists research questions that have developed out
of my work in these two areas.
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2 Compactifying Lambda-Letrec Terms

This section gives an overview about work that Jan Rochel and I did in the framework of the NWO-
project Realizing Optimal Sharing (ROS) at Utrecht University (2009–2014).1 It eventually led us to the
definition and practical implementation of maximal sharing for terms in the λ -calculus with letrec, the
Core language for the compilation of functional programming languages.

We started with the intention to study phenomena that arise practically for optimal-sharing implemen-
tations of the λ -calculus (by graph-transformation schemes due to Lamping [18], and Kathail [17], and

1This project was headed jointly by Vincent van Oostrom (rewriting and λ -calculus) and Doitse Swierstra (implementation
of functional languages). The project was concluded successfully in June 2016 with Jan Rochel’s defense of his thesis [22].
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later interaction-net formalizations by Gonthier, Abadi, Lèvy [6], and also van Oostrom, van de Looij,
Zwitserlood [20]), which are implementations of optimal or parallel β -reduction (due to Lèvy [19]). For
this purpose Rochel wrote an impressive visualization and animation tool [21] for transforming graphs by
reducing graph-rewrite redexes per mouse-click. It produces beautifully rendered graphs that slowly float
over the screen like bacteria in a liquid under a microscope. This animation tool provided us with much
room for experimentation. We first tried to understand whether optimal implementations could render the
so-called static-argument transformation unnecessary. When we could not establish that, we first tried
to understand in how far the static-argument transformation changes the evaluation of programs with re-
spect to usual scope-preserving graph evaluation. As a consequence, we partly turned our attention away
from optimal evaluation (in the hope that we would later come back to it with a better understanding).

We started by generalizing the static-argument transformation to more general optimizations.

Parameter-dropping optimization transformations
In [23] we described an optimization transformation for the compilation of functional programs that
drops parameters that are passed along unchanged between a number of recursive functions from the
definitions of these functions. We used higher-order rewrite rules to describe this generalization of
the static-argument transformation that permits the avoidance of repetitive evaluation patters [23]. We
discovered later a close connection with Lambda Dropping due to Danvy and Schultz [5].

Realizing that we had moved on to terrain for which a strong theory had already been established,
we set ourselves more ambitious goals: First, to understand formally and conceptually the relationship
between terms in the λ -calculus with letrec (λ letrec) and the infinite λ -terms they represent (in λ

∞, the
infinitary λ -calculus). Second, to find term graph representations of λ letrec-terms that are preserved
under homomorphism (functional bisimularity). Finally third, we wanted to use possible answers for
these two points to define maximally-shared representations of arbitrary λ letrec-terms. Below we report
on our results concerning these three goals.

1. Expressibility of infinite λ -terms by terms in λ letrec (and in λµ).
We studied the question: Which infinite λ -terms are (infinite) unfoldings of terms in λ letrec, the
λ -calculus with letrec, or (equivalent, but formally easier) in λµ , the λ -calculus with µ? Clearly,
such infinite λ -terms have to be regular in the sense that their syntax-trees have only finitely
many subtrees modulo α-conversion. However, while regularity is necessary for expressibility
by a λletrec-term under infinite unfolding, it is not sufficient. What is missing is, intuitively, that
the abstraction scopes in regular infinite λ -terms are not infinitely entangled. We formulated this
requirement in two different ways: that the infinite (regular) λ -term in question (i) has only finitely
many ‘generated subterms’ that are generated by a certain decomposition rewrite system that uses
eager scope closure, (ii) does not contain infinite ‘binding–capturing chains’. Both conditions
delineate the strongly regular infinite λ -terms among the regular ones. For this concept we showed
that an infinite λ -term M is the unfolding of a term in λ letrec (resp. a term in λµ ) if and only if
M is strongly regular. For λ letrec-expressibility we showed that in [9], and for λµ -expressibility in
[11, 12]; slides with many suggestive illustrations can be found in [7].
Part of [9], and described separately in [24], is a non-trivial proof of confluence of a higher-
order rewriting system that defines the unfolding semantics for λ letrec-terms. Furthermore in [10]
we showed confluence of let-floating operations on λletrec-terms, obtaining a unique-normal-form
result for let-floating, by using a higher-order rewriting system for the formalization of let-floating.

2. Term graph representations of cyclic λ -terms.

In [13, 16] we systematically investigated a range of natural options for faithfully representing the
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Figure 1: Translation of the λ letrec-term L0 ∶= λx.λ f . let r = f r x in r into a λ -higher-order term graph
with scope sets à la Blom (left), and a λ -h-o term graph JL0KH with an abstraction-prefix function (right).
Note that the inner scope has been chosen minimally here, applying eager scope closure. (Non-eager
scope λ -ho-term-graphs can be defined as well, but are not expedient for maximal sharing.)
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Figure 2: Translation of the λ letrec-term L0 ∶= λx.λ f . let r = f r x in r into a λ -term-graph JL0KT by
adding a scope vertex delimiting the inner scope to the λ -higher-order term graphs in Fig. 1, and by
then dropping the scope sets (which now can be reconstructed as well as a corresponding abstraction
prefix function). While the backlink from the left variable vertex to its binding abstraction vertex is
drawn suggestively along the scope border, it does not target the scope-delimiting vertex, but continues
invisibly below the backlink of that scope-delimiting vertex onwards to the commonly targeted abstrac-
tion vertex. (While not relevant for maximal sharing, relaxing the condition of eager scope closure for
λ -ho-term-graphs can be dealt with by an adapted encoding as first-order term graph.)

cyclic λ -terms in λ letrec by higher-order term graphs (first-order term graphs with additional fea-
tures that describe scopes), and by first-order term graphs (with specific scope-delimiting vertices).

As the result of this analysis we arrived at a natural class of higher-order term graphs (of ‘λ -ho-
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term-graphs’, see below) that can be implemented faithfully as first-order term graphs (‘λ -term-
graphs’, see below). The basis of the higher-order term graphs (as well as of their first-order im-
plementations) for representing λ letrec-terms are first-order term graphs with three different kinds
of vertex labels:

• unary symbols λ for abstraction vertices,

• binary symbols @ for application vertices, and

• unary symbols 0 for nameless variable vertices that enable backlinks to the binding abstrac-
tion vertices.

The first-order λ -term-graphs also permit:

• binary symbols S for scope-delimiting vertices that facilitate backlinks to the abstraction
vertices whose scope they close.

With this preparations we can now explain the higher-order λ -ho-term-graphs and first-order
λ -term-graphs in more detail. For the precise definitions and statements we refer to [13, 16, 14].

λ -ho-term-graphs appear in two versions:

λ -ho-term-graphs with scope-sets are extensions of first-order term graphs with vertex labels
λ , @, and 0 by adding, to each abstraction vertex w, a scope set that consists of all vertices
in the scope of w. The scope sets of abstraction vertices in a λ -ho-term-graph satisfy a
number of conditions that safeguard that (i) scopes are nested, (ii) scopes arise by eager
scope closure, and (iii) each variable vertex is contained in the scope of the abstraction
vertex to which its backlink points to. In this way, scope sets aggregate scope information
that is available locally at the abstraction vertices.
λ -term-graphs with scope sets are an adaptation of Blom’s of higher-order term graphs with
scope sets [4] to representing the cyclic λ -terms in λ letrec (and the strongly regular infinite
λ -terms in λ

∞). For an example, see Figure 1 on the left for the translation of a (variant)
fixed-point combinator into a λ -ho-term-graph with (eager-scope) scope sets.

λ -ho-term-graphs with abstraction-prefix function are extensions of first-order term graphs with
vertex labels λ , @, and 0 by adding an abstraction prefix function: That function assigns,
to each vertex w, an abstraction prefix (v1 . . .vn) consisting of a word of abstraction vertices
that lists those abstractions (from the top down) for which w is in their ‘extended scope’
(transitive closure of scope relation) as obtained by eager scope closure. Abstraction pre-
fixes aggregate scope information that then is locally available at individual vertices.
See Figure 1 on the right for the translation of a (variant) fixed-point combinator into a
λ -ho-term-graph with abstraction prefixes (obtained by eager scope closure).

In both versions of λ -ho-term-graph, the added constraints guarantee that each variable
vertex (with label 0) has a backlink to the binding λ -abstraction vertex. A bijective corre-
spondence can be shown to exist between both versions of λ -ho-term-graphs (see [13, 16]).

λ -term-graphs are first-order term graphs that represent λ -ho-term-graphs of both kinds as above.
Scopes are delimited, again by using eager scope closure, by scope-delimiting vertices (with
label S) that have backlinks to the abstraction vertex whose scope they declare closed. Vari-
able vertices (with label 0) have backlinks to the binding λ -abstraction vertex.
See Figure 2 for the encoding of the λ -ho-term-graphs in Figure 1 into a λ -term-graph. For
this purpose a scope-delimiter vertex with label S is used to represent the (eager) closure of
the inner scope.
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(1) term graph interpretations J⋅K⋅ of λ letrec-term L as:

a. higher-order term graph G = JLKH
b. first-order term graph G = JLKT

(2) bisimulation collapse |↓ of first-order term graph G with as result G0

(3) readback rb of first-order term graph G0 yielding λ letrec-term L0 = rb(G0).

Figure 3: Schematic representation of the maximal sharing method, and its application to a toy example:
Maximal sharing of a λ letrec-term L proceeds via three steps: (1) interpretation of L as a λ -term-graph
G = JLKT , (2) collapse of G via bisimilarity to λ -term-graph G0, and (3) readback of λ letrec-term L0 from
G0. On the top right these steps are illustrated for a redundant λ letrec-term formulation of a fixed-point
combinator, yielding an efficient representation of fixed-point combinator as λ letrec-term.

The conditions underlying λ -ho-term-graphs and λ -term-graphs (see [13, 16]) guarantee that they
represent finite or infinite closed λ -terms; that is, they do not contain meaningless parts. Both
λ -ho-term-graphs (all two versions) and λ -term-graphs induce appropriate concepts of homomor-
phism (functional bisimulation) and bisimulation. Homomorphisms increase sharing, and intro-
duce a sharing (partial) order. Bisimulations preserve the unfolding semantics (as do homomor-
phisms). We established in [13, 16] a bijective correspondence between λ -ho-term-graphs and
λ -term-graphs that preserves and reflects homomorphisms, and hence the sharing (partial) order.
These results form the basis of the maximal-sharing method, see below.

The property that is of the most central importance for the maximal-sharing method is that homo-
morphisms (functional bisimulations) between first-order term graphs preserve λ -term-graphs: if
G1 is a λ -term-graph, and G1→G2 for a term graph G2 (there is a homomorphism from G1 to G2),
then also G2 is a λ -term-graph. For this property to hold, eager scope closure is crucial.2

2While that is not relevant for the maximal-sharing method (for which use of eager scope closure is essential), we mention
as an aside that this restriction can be circumnavigated: a generalization of the preservation property can also be shown for a
different kind of encoding of (also non-eager-scope) λ -ho-term-graphs into first-order term graphs (see Remark 7.10 in [16]).
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3. Maximal sharing in λ letrec.

For defining maximally shared versions of terms in λ letrec in a natural way we defined a ‘represen-
tation pipeline’ in [14, 15] (see Figure 3 for a suggestive illustration): First we linked λ letrec-terms
by an interpretation function J⋅KH to the classH of λ -ho-term-graphs that we formulated earlier in
[13, 16]. Then we extended J⋅KH by using the representation of λ -ho-term-graphs as λ -term-graphs
(first-order term graphs) from [13, 16] to define an interpretation function J⋅KT of λ letrec-terms to
the class T of λ -term-graphs. For this representation pipeline we showed that unfolding equiva-
lence =J⋅Kλ∞

of λ letrec-terms is faithfully represented by bisimulation equivalence↔ on λ -ho-term-
graphs, and equally, by bisimulation equivalence↔ on λ -term-graphs.

Then we defined a readback operation rb on λ -term-graphs in the class T (see also in Figure 3)
with the property that the interpretation operation J⋅KT is a left-inverse of rb on T :

J⋅KT ○ rb = idT (modulo isomorphism).

These three operations facilitate to compute, for any given λ letrec-term L, a maximally shared form
L0, by the following three-step procedure (see Figure 3):

(interpret) from L its interpretation JLKT as λ -term-graph is obtained,

(collapse) from the λ -term-graph JLKT its bisimulation collapse G0 is computed, which is again a
λ -term-graph in T (due to preservation of λ -term-graphs along functional bisimulations),

(readback) from the collapsed λ -term-graph G0 its readback rb(G0) is computed, thereby obtain-
ing the term L0 ∶= rb(G0) as a maximally shared form L with L0 =J⋅Kλ∞

L (and hence so that
L0 has the same infinite unfolding as L).

This procedure permits an efficient implementation. We could derive its complexity as (at about)
quadratic in the size of the input λletrec-term.

See Figure 4 for an example of the collapse step on the λ -term-graph interpretation JLKT of an
inefficient version L of a (slight variation of a) fixed-point combinator to obtain the λ -term-graph
interpretation JL0KH that obtains a more efficient and compact version L0 of such a combinator.

A straightforward adaptation of this procedure permits to obtain also an efficient algorithm for
deciding unfolding-semantics equality =J⋅Kλ∞

of any two given λ letrec-terms L1 and L2 by the fol-
lowing two-step procedure:

(interpret) obtain the λ -term-graph interpretations G1 ∶= JL1KT of L1 and G2 ∶= JL2KT of L2;

(check-bisim) check bisimilarity of G1 and G2; if G1↔ G2 holds, conclude that L1 =J⋅Kλ∞
L2 holds

(that is, L1 and L2 have the same infinite unfolding), otherwise L1 ≠J⋅Kλ∞
L2 holds.

We implemented both the maximal-sharing method and the decision procedure for unfolding
equivalence =J⋅Kλ∞

by a prototype implementation [25] that is available on Haskell’s Hackage plat-
form. For the efficient implementation of these methods we extended the representation pipeline
from λ -term-graphs further to λ -DFAs, by which we mean representations of λ letrec-terms as de-
terministic finite-state automata. In this way, unfolding equivalence =J⋅Kλ∞

of λ letrec-terms is rep-
resented as language equivalence of λ -DFAs, and so we could use for the implementation [25] that
bisimulation collapse of λ -term-graphs is faithfully represented by state minimization of λ -DFAs.

At the end of this section I want to mention a concept that Vincent van Oostrom suggested after
seeing the concept of λ -term-graphs in Jan Rochel’s thesis [22]: the concept of ‘nested term graphs’.
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Figure 4: Compactification of the λ letrec-term L, a redundant form of a variant fixed-point combinator
(compare with the forms in Figure 3), to the more compact λ letrec-term L0. The λ -term-graph interpre-
tations JLKT and JL0KT of the λ letrec terms L and L0 are bisimilar. Indeed the links form a functional
bisimulation→ from JLKT to JL0KT , of which the λ -term-graph JL0KT is in bisimulation-collapsed form.

Nested Term Graphs

Motivated by the results on term graph representations and maximal sharing for λletrec-terms, Vincent
van Oostrom and I formulated a concept of nested term graph [8]. Instead of describing scopes by
additional features like scope sets or an abstraction-prefix function in order to define constraints that
guarantee that scopes are nested, we introduced ‘nesting’ itself as a structuring concept. This means
that we permitted nesting of first-order term graphs into vertices of other first-order term graphs. In
this manner, well-foundedly nested first-order term graphs can be defined by induction. We studied
the behavioral semantics of nested term graphs in [8], and also showed, in analogy with the faithful
encoding of λ -ho-term-graphs as λ -term-graphs, that nested term graphs can be encoded by first-order
term graphs faithfully (in the sense of preserving the respective unfolding semantics).

Nested term graphs not only provide a natural formalization the maximal-sharing method developed
in [13, 14], but they make it much more broadly applicable, also outside of Lambda Calculus.
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Figure 5: Transition system specification T for computations enabled by regular expressions.
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3 Proving Bisimilarity between Regular-Expression Processes

This section motivates, summarizes, and provides references to my work on Milner’s process semantics
of regular expressions [52]. An important part of it (leading to [49, 50]) was done in close collaboration
(2015–2020) with Wan Fokkink who had stimulated me to work on Milner’s question already in 2005.
While this section focuses on my work on Milner’s axiomatization questions (see (A) below), my current
work on the expressibility question (see (E) below) will be mentioned in Section 4.

Milner introduced a process semantics J⋅KP in [52] for regular expressions (conceived by Kleene [51])
that refines the standard language semantics J⋅KL (defined by Copi, Elgot, Wright [32]). For regular ex-
pressions e that are constructed from constants 0, 1, letters over a given set A with the binary operators +
and ⋅, and the unary operator (⋅)∗, Milner first defined a process interpretation P(e) that can informally
be described as follows: 0 is interpreted as a deadlocking process without any observable behavior, 1 as a
process that terminates successfully immediately, letters from the set A stand for atomic actions that lead
to successful termination; the binary operators + and ⋅ are interpreted as the operations of choice and con-
catenation of two processes, respectively, and the unary star operator (⋅)∗ is interpreted as the operation
of unbounded iteration of a process, but with the option to terminate successfully before each iteration.

Milner formalized this process interpretation in [52] as process graphs that are defined by induction
on the structure of regular expressions. But soon afterwards a formal definition by means of a transition
system specification (TSS) that defines a labeled transition system (LTS) became more common. The
TSS T in Figure 5 defines, via derivations that it permits from its axioms, labeled transitions
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P((a ⋅(a ⋅(b+b ⋅a))∗) ⋅0)

P-expressible, hence J⋅KP-expr.

(a ⋅(a ⋅(b+b ⋅a))∗) ⋅0

G0

? ∈ im(P(⋅)) ?

J⋅KP-expressible
=J⋅KP

G2

P((1 ⋅(((a ⋅a) ⋅(b ⋅a)∗) ⋅b)∗) ⋅0)

P-expressible, hence J⋅KP-expr.

(1 ⋅(((a ⋅a) ⋅(b ⋅a)∗) ⋅b)∗) ⋅0

Figure 6: Two process graphs G1 and G2 that are P-expressible, and hence J⋅KP-expressible, because they
are the process interpretations of regular expressions as indicated. G1 and G2 are bisimilar via bisimula-
tions that are drawn as links to their joint bisimulation collapse G0 (of which P-expressibility is at first
unclear). It follows that also G0 is J⋅KP-expressible, and that process semantics equality holds between the
regular expressions with interpretations G1 and G2, respectively. In this example G0 is actually also in
the image of P(⋅), hence P-expressible, as witnessed for example by G0 =P(((1 ⋅a) ⋅(a ⋅(b+b ⋅a))∗) ⋅0).

actions a that occur in a regular expressions, and immediate successful termination via the unary pred-
icate ⇓. The process interpretation P(e) of a regular expression e is then defined as the sub-LTS that is
induced by e in the LTS on regular expressions that is defined via derivability in T . See Figure 6 for
suggestive examples of (bisimilar) process interpretations of two simple regular expressions. In process
graph illustrations there and later we indicate the start vertex by a brown arrow , and the property of a
vertex v to permit immediate successful termination by emphasizing v in brown as with a boldface ring.

It is interesting to note that the so-defined process interpretation of regular expressions corresponds
directly to non-deterministic finite-state automata (NFAs) that are defined via iterations of Antimirov’s
partial derivatives [27].3

Based on the process interpretation P(⋅), Milner then defined the process semantics of a regular
expression e as JeKP ∶= [P(e)]↔ where [P(e)]↔ is the equivalence class of P(e) with respect to bisim-
ilarity ↔. In analogy to how language-semantics equality =J⋅KL of regular expressions is defined from
the language semantics J⋅KL (namely as e =J⋅KL f if L(e) = JeKL = J f KL = L(e), for all regular expressions
e and f , where L(g) is the language defined by a regular expression g) Milner was then interested in
process-semantics equality =J⋅KP that is defined, for all regular expressions e and f by:

e =J⋅KP f ∶ ⇐⇒ JeKP = J f KP

⇐⇒ P(e)↔ P( f) .

As the process interpretations of the regular expressions in Figure 7 are bisimilar, it follows that these
regular expressions are linked by =J⋅KP .

3Antimirov did not have a process semantics in mind, but he had set out to define, for every regular expression e, an NFA
that is typically smaller than the deterministic automaton (DFA) as usually associated with e in automata and language theory.
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G(ne)
1

a b

G(ne)
2

a1 a2b1

b2

c1

c2

not P(⋅)-expressible, and not J⋅KP-expressible

a

b c

a ⋅(b+c)

a a

b c

a ⋅b+a ⋅c
=J⋅KL
≠J⋅KP

Figure 7: On the left: Two process graphs that are neither P(⋅)-expressible (that is, not in the image of the
process interpretation P) nor J⋅KP-expressible (that is, not bisimilar to the process interpretation of any
regular expression). On the right: two regular expressions with the same language semantics (associated
language) but different process semantics, since the process interpretations are not bisimilar; therefore
right-distributivity does not hold for =J⋅KP , which entails that fewer identities hold for =J⋅KP than for =J⋅KL .

Milner realized in [52] that the process semantics J⋅KP of regular expressions differs from the lan-
guage semantics J⋅KL in at least two respects: first, J⋅KP is incomplete, and second, process-semantics
equality =J⋅KP satisfies fewer identities than language-semantics equality =J⋅KL .

We start by explaining incompleteness of J⋅KP. Language semantics J⋅KL is complete in the follow-
ing sense: every language that is accepted by some finite-state automaton (FA) is the language that is
defined by some regular expression; that is, every FA-accepted language is J⋅KL-expressible. However,
an analogous statement does not hold for the process interpretation: not every finite process graph is
‘J⋅KP-expressible’ in the sense of that it is ‘P-expressible’ by a regular expression. Here we call a finite
process graph J⋅KP-expressible if it is bisimilar to a P-expressible process graph, by which we mean the
process interpretation of some regular expression (and hence a graph in the image of P(⋅). That not every
finite process graph is P-expressible follows from the fact that there are finite process graphs that are not
J⋅KP-expressible, either. Indeed, Milner proved in [52] that the process graph G(ne)

2 in Figure 7 not only is
not P-expressible, but that it is not J⋅KP-expressible, either. He also conjectured that also G(ne)

1 in Figure 7
is not J⋅KP-expressible. That was later shown by Bosscher [31].

Milner also noticed in [52] that some identities that hold for language-semantics equality =J⋅KL are not
true any longer for process semantics equality =J⋅KP . Most notably this is the case for right-distributivity
e ⋅( f +g) = e ⋅ f +e ⋅g, which is violated just as for the comparison of process terms via bisimilarity; see
the well-known counterexample in Figure 7. The language-semantics identity e ⋅0 = 0 is also violated in
the process semantics. In order to define a natural sound adaptation (that we here designated by) Mil, see
Figure 8, of the complete axiom systems for =J⋅KL by Aanderaa [26] and Salomaa [53], Milner dropped
these two identities from Aanderaa’s system, but added the sound identity 0 ⋅e = 0.

These two pecularities of the process semantics led Milner to formulating two questions concerning
recognizability of expressible process graphs, and axiomatizability of process-semantics equality:

(E) How can J⋅KP-expressible process graphs be characterized structurally, that is, those finite process
graphs that are bisimilar to process interpretations of regular expressions?

(A) Is the natural adaptation Mil to process-semantics equality =J⋅KP (see Figure 8 for Mil) of Salomaa’s
and Aanderaa’s complete proof systems for language-semantics equality =J⋅KL complete for =J⋅KP ?

The expressibility question (E) seems to have received only limited attention at first. The reason
may have been because it asks for a structural property of (the J⋅KP-expressible) process graphs that is
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(A1) e+( f +g) = (e+ f )+g (A7) e = 1 ⋅ e
(A2) e+0 = e (A8) e = e ⋅ 1
(A3) e+ f = f +e (A9) 0 = 0 ⋅ e
(A4) e+e = e (A10) e∗ = 1+e ⋅ e∗

(A5) e ⋅ ( f ⋅ g) = (e ⋅ f ) ⋅ g (A11) e∗ = (1+e)∗

(A6) (e+ f ) ⋅ g = e ⋅ g+ f ⋅ g

e = f ⋅ e+g
RSP∗ (if f⇓̸)

e = f ∗ ⋅ g

Figure 8: Milner’s equational proof system Mil for process semantics equality =J⋅KP of regular expressions
with the fixed-point rule RSP∗ in addition to the (not shown) basic rules for reasoning with equations
(which guarantee that derivability in Mil is a congruence relation). From Mil the complete proof system
for language equivalence =J⋅KL due to Aanderaa arises by adding the axioms e ⋅ ( f +g) = e ⋅ f + e ⋅ g and
e ⋅ 0 = 0 (which are not sound for =J⋅KP) and by dropping (A9) (which then is derivable).

invariant under bisimilarity. This is a difficult aim, because bisimulations can significantly distort the
topological structure of labeled transition graphs. Two variants of (E) have been solved after some time:
First, the question for a natural sufficient condition for J⋅KP-expressibility of process graphs was answered
by Baeten and Corradini in [28] by the definition of process graphs that satisfy ‘well-behaved’ recursive
specifications. Second, the question of whether J⋅KP-expressibility of finite process graphs is decidable
was answered by Baeten, Corradini, and myself in [29] by giving a decision procedure (unfortunately it
is highly super-exponential) that is based on minimizing well-behaved specifications under bisimilarity.

For the axiomatization problem (A) at first only a string of partial results have been obtained. In
particular Milner’s proof system Mil has initially been shown to be complete for =J⋅KP for the following
subclasses of regular expressions:

(a) without 0 and 1, but with binary star iteration e1
⊛e2 with iteration-part e1 and exit-part e2 instead

of unary star (Fokkink and Zantema, 1994, [36]),

(b) with 0, and with iterations restricted to exit-less ones (⋅)∗ ⋅0 in absence of 1 (Fokkink, 1997, [35])
and in the presence of 1 (Fokkink, 1996 [34]),

(c) without 0, and with restricted occurrences of 1 (Corradini, De Nicola, and Labella, 2002 [33]),

(d) 1-free expressions formed with 0, without 1, but with binary iteration ⊛ (G, Fokkink, 2020, [49,
50], also showing the completeness of a proof system by Bergstra, Bethke, and Ponse [30]).

While the maximal subclasses in (c) and (d) are incomparable, these results can be joined to apply
to an encompassing class that is still a proper subclass of the regular expressions, see [49]. Indepen-
dently of these partial results concerning completeness of Milner’s system Mil for subclasses of regular
expressions, I noticed in [37] that from Mil a proof system that is complete for =J⋅KP arises when the
single-equation fixed-point rule RSP∗ is replaced by a unique-solvability principle USP for systems of
guarded equations. Also in [37] I formulated a coinductively motivated proof system for process-seman-
tics equality =J⋅KP that utilizes Antimirov’s partial derivatives [27] of regular expressions.

The principal new idea that facilitated the partial completeness result (d) in [49, 50] of Mil for 1-free
regular expressions consisted in formulating a natural structural condition that is sufficient (but not nec-
essary) for J⋅KP-expressibility of process graphs: the Loop Existence and Elimination Condition LEE,
and its layered form LLEE. This condition is based on the concept of ‘loop (process) graph’, and an
elimination process of ‘loop subgraphs’ from a given process graph. A process graph G is said to have
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v0
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v0
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v2

(L1),(L2),(L3)
loop graph

v0

v1

v2

loop subgraph

LG

LG2

Figure 9: Four process graphs (action labels ignored) that violate at least one loop graph condition (LG1),
(LG2), or (LG3), and a loop graph LG with one of its loop subgraph LG2.

the property LEE if the non-deterministic iterative procedure, started on G, of repeatedly eliminating
loop subgraphs is able to obtain a process graph without an infinite behavior (that is, a graph without
infinite paths and traces). We explain the definitions in some more detail below, and provide examples.

A process graph LG is called a loop (process) graph if it satisfies the following three conditions:

(LG1) There is an infinite trace from the start vertex of LG.

(LG2) Every infinite trace from the start vertex vs of LG returns to vs.

(LG3) Immediate successful termination is only possible at the start vertex of LG.

In such a loop graph LG, the transitions from the start vertex are called loop-entry transitions, and all
other transitions are called loop-body transitions. By a loop subgraph of a process graph G we mean a
graph LG such that with respect to a vertex v of G, and a non-empty set T of transitions of G that depart
from v the following three conditions are satisfied:

(LSG1) LG is a subgraph of G with start vertex v (which may be different from the start vertex vs of G).

(LSG2) LG is generated by the transitions T from v in the following sense: LG contains all vertices and
transitions of G that are reachable on traces that start from v via transitions in T , and continue
onward until v is reached again for the first time.

(LSG3) LG is a loop graph.

In accordance with the stipulation for loop graphs, in such a loop subgraph LG the transitions in T are
called loop-entry transitions of LG, and all others loop-body transitions of LG. In Figure 9 we have
gathered, on the left, four examples of process graphs (with action labels ignored) that are not loop
graphs: each of them violates one of the conditions (LG1), (LG2), or (LG3). The paths in red indicate
violations of (LG2), and (LG3), respectively, where the thicker arrows from the start vertex indicate
transitions that would need to be (but are not) loop-entry transitions. However, the loop subgraph LG2 in
Figure 9 is indeed a loop graph.

Based on these concepts, elimination of loop subgraphs is then defined as follows. We say that G′ is
the result of eliminating a loop subgraph LG with set T of loop-entry transitions from a process graph G,
and denote such an elimination step by G⇒elim G′, if G′ results from G by first removing the transitions
in T and by then applying garbage collection of vertices and transitions that have become unreachable
from the start vertex of G due to the transition removals. See Figure 10 for an example of three loop
elimination steps. As for non-examples, note that neither of two not J⋅KP-expressible graphs G(ne)

1 and
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elim elim

G′′′
v

elimG
v

v1

v11

v2

v21

v

v1

v11

v2

v21

G′
v

v1

v11

v2

v21

G′′

Figure 10: Example of successful loop elimination from the process graph G: three elimination steps of
loop subcharts, which are represented as shaded gray areas, lead to the process graph G′′′ without infinite
behaviour. These steps witness that G satisfies the properties LEE and LLEE (as well as do G′, G′′, G′′′).

G(ne)
2 in Figure 7 are loop graphs, nor do they contain loop subgraphs; hence neither of G(ne)

1 and G(ne)
2

permits a loop-elimination step.
We say that a process graph G has the property LEE (resp. has the property LLEE (layered LEE)) if

there is a finite sequence of loop-elimination steps G⇒∗elim G′ from G such that the resulting graph G′

does not permit an infinite trace (and resp., if additionally during the elimination steps in G⇒∗elim G′ it
never happens that a transition is removed that was a loop-body transition of a loop subgraph that was
eliminated in an earlier step). It can be shown that although the property LLEE is a formally stronger
requirement than the property LEE, which often helps to simplify proofs, both properties are equivalent.
See Figure 10 for an example of a process graph G with the properties LEE and LLEE as is witnessed
there by a sequence of three loop elimination steps that lead to graph G′′′ without infinite traces. The not
J⋅KP-expressible graphs G(ne)

1 and G(ne)
2 in Figure 7 do not satisfy LLEE and LEE, since loop elimination

is not successful on them: they do not enable loop-elimination steps, but facilitate infinite traces.
The reason why the definition of the properties LEE and LLEE has facilitated progress concerning

the problem (A) was that they define manageable conditions that could be used for proofs about process
graphs that are linked by functional bisimulations. Specifically for obtaining the partial result (d) in
[49, 50] it was crucial that we could prove the following facts:

(I)1 Process interpretations of 1-free regular expressions satisfy LLEE (see [50, 49]).
(E)1 Finite process graphs with LLEE are J⋅KP-expressible, by 1-free regular expressions (see [50, 49]).
(C) LLEE is preserved along functional bisimilarity, and consequently, also by the operation of bisimu-

lation collapse (see [50, 49]).

Additionally, the property LLEE permitted me to formulate a coinductive version cMil of Milner’s
system Mil that also permits cyclic derivations of the form of process graphs with the property LLEE, see
[40, 39, 46]. The system cMil could be viewed as being located proof-theoretically half-way in between
Mil and bisimulations between process interpretation. As such it could be expected to form a natural
beachhead for a completeness proof of Mil.

These results raised my hope that the argumentation could be extended quite directly to the full set of
regular expressions (including 1 and with unary iteration instead of binary iteration) as well as to process
graphs with 1-transitions and with the property LEE. While the generalization of (I)1 to all regular
expressions does not hold, this obstacle could be overcome by defining a refined process interpretation
with the desired property. Together with a rather straightforward generalization of (E)1 we obtained:

(I) The process interpretation P(e) of a regular expression e does not always satisfy LLEE (nor LEE)
(see [38, 42]).
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Figure 11: On the left: a finite process graph G with 1-transitions (drawn dotted, representing empty
steps) that satisfies LLEE, but cannot be minimized under bisimilarity while preserving LLEE. It is a
prototypical example of a twin-crystal. As such it consists of two interlinked parts, the top-part and the
pivot-part, which by themselves are bisimulation collapsed, but contain vertices that have bisimilar coun-
terparts in the opposite part of the twin-crystal. The self-inverse counterpart function cp links bisimilar
vertices in the two parts. On the right: schematic illustration of a twin-crystal with suggestive drawing
of its top-part and its pivot-part, together with interconnecting proper transitions from top and pivot.

(RI)1 There is a refined process interpretation P(⋅) that produces finite process graphs with 1-transitions
such that, for every regular expression e, P(e) satisfies LLEE, P(e) is a refinement of P(e) by sharing
transitions by means of added 1-transitions, and P(e)↔ P(e), that is, P(e) is bisimilar to P(e) when
1-transitions are interpreted as empty steps (see [47], and a slightly weaker statement in [38, 42]).

(E)1 Finite process graphs with 1-transitions and with LLEE are J⋅KP-expressible. (See [39, 40, 46].)
However, critically, a direct generalization of our argument broke down dramatically due to the fact that
the collapse statement (C) did not generalize to process graphs with LLEE that contain 1-transitions:
(C)1 LLEE is not preserved under bisimulation collapse of process graphs with 1-transitions. A coun-

terexample holds for the process graph G on the left in Figure 11. (See [43, 44, 47].)
As a consequence of this statement the image of the process interpretation is not closed under bisimula-
tion, see [47]. This, however, contrasts with the image of a ‘compact’ version of the process interpretation
that, when restricted to ‘under-star-1-free’ regular expressions, is closed under bisimulation collapse, see
[47, 48]. Now due to (C)1 the proof strategy we used in [49, 50] for showing completeness of Mil for
1-free regular expressions, turned out not to work for showing completeness of Mil for the full class of
regular expressions. At the very least it was in need of a substantial refinement.

What came to my rescue here was that the counterexample for LLEE-preserving collapse of process
graphs with 1-transitions and LLEE, the graph G in 11, is of a specific symmetric form. It is a twin-crys-
tal, a process graph with 1-transitions and with LLEE that is near-collapsed in the sense that non-identical
bisimilar vertices appear only as pairs. More precisely, twin-crystals are process graphs with 1-transi-
tions and with LLEE that consist of a single strongly connected component (scc), and of two parts, the
top-part and the pivot-part (see in Figure 11 on the right). Each part by itself is bisimulation collapsed,
and hence any two bisimilar vertices in the twin-crystal must occur in different of the top and pivot
parts, and are linked by a self-inverse (partial) counterpart function. Process graphs with 1-transitions
and with LLEE that are collapsed apart from within scc’s, and in which all scc’s are either collapsed or
twin-crystals, we called crystallized. For this concept it was possible to show:
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(NC)1 Every finite process graph with 1-transitions and with LLEE can be minimized under bisimilarity
to obtain a crystallized process graph (see [43, 44, 45]).

This statement is based on an effective crystallization procedure of process graphs with LLEE and with
1-transitions: it minimizes all scc’s of the graph either to twin-crystals or collapsed parts of the graph, and
also guarantees that the resulting graph is collapsed apart from within those scc’s that are twin-crystals.
The symmetric structure of twin-crystals can then be used to show that self-bisimulations of crystallized
process graphs are of a particularly easy kind, which can be assembled from bisimulation slices that act
on the twin-crystal-scc’s [41]. This result on crystallized versions of process interpretations permitted
me to adapt the proof strategy that Fokkink and I had used previously to also show completeness of Mil
for =J⋅KP on the full class of regular expressions, see [43, 44], and the poster [45].

There is now much hope that the crystallization technique that we developed for solving the ax-
iomatization question (A) may turn out to facilitate also significant improvements for answers to the
expressibility question (E). We return to the expressibility question (E) at the end of the next section.
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4 Current and Future Work

This section touches on my current research, and lists as well as briefly motivates three research questions
and projects that have developed out of the work that we summarized in the previous two sections. This
is organized in two subsections below that refer to the topics of Section 2 and Section 3, respectively.

4.1 Maximal Sharing at Run Time

Apart from using the maximal-sharing method for functional programs as a static-analysis based opti-
mization transformation during compilation, one of the ideas for applications that Rochel and I gathered
in [14] was that maximal sharing could be used as an optimization transformation also repeatedly at
run-time. Making that idea fruitful, however, requires that representations of programs that are used in
graph evaluators can be linked closely with λ -term-graph representations of λletrec-terms on which the
maximal-sharing method operates. This is necessary because graph evaluators in implementations of
functional languages typically use supercombinator representations of λ letrec-terms, and much computa-
tional overhead is to be expected in transformations to and from λ -term-graphs. Yet any such overhead
is highly undesirable during program execution. Now supercombinator reduction as carried out by graph
evaluators intuitively corresponds to scope-sharing forms of β -reduction.4 And so, since λ -term-graphs
contain neatly described scopes of λ -abstractions, the implementation of a scope-sharing form of evalu-
ation on λ -term-graphs is conceivable. These considerations lead me to the following research question.

Research Question 1. Coupling of maximal sharing with evaluation, generally, and more specifically:

(i) Can the maximal-sharing method for terms in the λ -calculus with letrec be coupled naturally with
an efficient evaluation method (such as a standard graph-evaluation implementation)?

(ii) Do λ -term-graphs (which represent λ letrec-terms) permit a representation as interaction nets or as
port graphs [59] for which a form of β -reduction can be defined that preserves both λ -term-graph
form and represented λ -abstraction scopes by adequately chosen multi-steps of interactions?

In communication after the workshop, Ian Mackie pointed me to his interaction-net based implemen-
tation [56, 57] of an evaluation method for the λ -calculus. I am grateful for this reference, first, because
this interaction-net representation of λ -terms bears a close resemblance with λ -term-graphs, and second,
because it provides a mechanism for implementing scope-preserving forms of β -reduction. Nevertheless
it remains a challenging question to relate the two formalisms (λ -term-graphs and interaction-net repre-
sentations of λ -terms in [56]) closely together. Yet an interaction-net representation of λ -term-graphs
close to the representation of λ -terms as used in [56] seems to me to be a plausible and promising in-road
for approaching part (ii) of Research Question 1.

Regarding graph evaluators that implement scope-preserving forms of β -reduction it will also be im-
portant to explore correspondences on the rewrite-step level between graph evaluation steps and steps of,
on the one hand, leftmost-outermost β -reduction, and on the other hand, reduction on super-combinator
representations of λ -terms. Such connections were recently outlined by van Oostrom in [58]: a cor-
respondence between β -reduction steps and combinator-reduction steps, as well as a correspondence

4Note that scope-sharing is distinct from the context-sharing forms of graph reduction on which implementations of parallel
or optimal β -reduction are based.
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between, β -reduction and combinator-reduction multi-steps on the one hand, and graph-rewriting multi-
steps on the other hand. In doing so, van Oostrom carried a decisive step further the idea that I suggested
in [55] of using supercombinator representations for obtaining an alternative proof, based on graph-
rewriting on supercombinator representations of λ -terms, of an invariance result for leftmost-outermost
β -reduction by Accattoli and Dal Lago in [54]. Namely, of the result that leftmost-outermost β -reduction
in the λ -calculus can be implemented on every reasonable machine with only a polynomial overhead in
the number of computation steps. In preparation for such a proof I had used supercombinator represen-
tations of λ -terms in [55] for developing the result that the depth increase along any leftmost-outermost
β -reduction sequence from a λ -term is always bounded linearly in the number of steps of the sequence.

4.2 Crystallization: Proof Verification, and Application to the Expressibility Problem

Currently I am writing two articles that will provide the details of the completeness proof of Milner’s
proof system Mil. The first article will explain the motivation of the crystallization process for process
interpretations of regular expressions: a limit to minimization under bisimilarity of P-expressible process
graphs. This limit will be established specifically for the process graph G in Figure 11 with 1-transitions.
The second article will detail the crystallization procedure by which process graphs with the property
LLEE (which are J⋅KP-expressible) are minimized under bisimulation to obtain process graphs with LLEE
that are close to their bisimulation collapse. This central result will then be used, as explained in [43], to
show that Milner’s proof system Mil is complete with respect to process semantics equality =J⋅KP .

This completeness proof can be explained with clear conceptual concepts, and with convincing de-
tails, answering Milner’s question (A) positively. However, a verification of the crystallization procedure
and the completeness proof of Mil with respect to =J⋅KP forms an important goal for me.

Research Project 2. Formalization of the proofs for crystallization, and completeness of Mil:

(a) Develop formalizations of structure constraints for process graphs in order to verify the correct-
ness of the crystallization procedure for process graphs with LEE by a proof assistant.

(b) Use the correctness proof of crystallization to verify the completeness proof of Milner’s proof
system Mil by a proof assistant.

Separately I am working out a proof of the fact that the loop existence and elimination property LEE
(and equivalently LLEE) can be decided in polynomial time. For this result the observation is crucial
that loop elimination ⇒elim can be completed to obtain a confluent rewrite system (which is obviously
terminating). As a consequence of the efficient decidability of LLEE it follows that the restriction of the
expressibility problem (E) to expressibility by regular expressions that are under-star-1-free (but with
unary iteration, see [47, 48]) can be solved efficiently. This is because the methods and results in [49, 50]
permit to show that a finite process graph G is J⋅KP-expressible by a regular expression that is under-star-
1-free if and only if the bisimulation collapse of G satisfies LLEE. Then it follows that expressibility of
finite process graphs by regular expressions that are under-star-1-free can be decided in polynomial time.

The crystallization procedure that we use in the completeness proof of Mil with respect to =J⋅KP sug-
gests that an extension of this characterization statement to one for J⋅KP-expressibility in full generality
is conceivable. We formulate that as our final research question.

Research Question 3. Is the problem of whether a finite process graph is J⋅KP-expressible efficiently
decidable? That is, is there a polynomial decision algorithm for it? Or is J⋅KP-expressibility at least
fixed-parameter tractable (in FPT) for interesting parameterizations?
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In the logic programming paradigm, a program is defined by a set of methods, each of which can

be executed when specific conditions are met during the current state of an execution. The seman-

tics of these programs can be elegantly represented using sequent calculi, in which each method is

linked to an inference rule. In this context, proof search mirrors the program’s execution. Previous

works introduced a framework in which the process of constructing proof nets is employed to model

executions, as opposed to the traditional approach of proof search in sequent calculus.

This paper further extends this investigation by focussing on the pure multiplicative fragment

of this framework. We demonstrate, providing practical examples, the capability to define logic

programming methods with context-sensitive behaviors solely through specific resource-preserving

and context-free operations, corresponding to certain generalized multiplicative connectives explored

in existing literature. We show how some of these methods, although still multiplicative, escape the

purely multiplicative fragment of Linear Logic (MLL, containing only ` and ⊗).

1 Introduction

Proof theory provides various paradigms for interpreting computations as proofs and their transforma-

tions. The renowned Curry-Howard correspondence interprets proofs as programs, and proof reduction

(i.e., cut-elimination) as program execution. This correspondence offers an elegant model for functional

programming, where the primary computation mechanism is substitution. In this context, well-typed

programs are expected to terminate their execution after computing results derived by the complete ini-

tial information. However, this paradigm appears to face challenges in representing programs where the

main computational mechanism is not substitution, as well as the ones characterized by non-termination,

partial information, and strong concurrency (see, e.g., distributed systems, database servers, and mi-

croservices architectures). By means of example, consider the way of modeling the Curry-Howard cor-

respondence in the case of non-terminating programs, where we need to consider infinitary proof systems

to be able to represent infinite programs as non-wellfounded derivations. In these systems, even basic re-

sults like soundness, completeness, and cut-elimination require complex techniques [17, 22, 23, 4, 56, 5].

Therefore, it may appear more intuitive to interpret the rules of operational semantics for these programs

as rules of a sequent system, and the program execution as the process of proof search [51, 50, 13, 15].

This approach naturally handles issues related to partial information, the concurrency of rule applica-

tions, and the possibility of non-termination.

Alternatively, in the logic programming paradigm, a program is provided by a set of methods, which

are elementary programs that can be executed when specific preconditions are met. The conventional

proof-theoretical interpretation of logic programming associates a sequent of formulas with each state

of the computation, and a sequent calculus rule with each program method. This establishes an intuitive

connection between program execution and the process of proof search within the calculus. In this

*The author is supported by Villum Fonden, grant no. 50079.
†The author is supported by INdAM-GNSAGA.
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Paradigm Curry-Howard Logic programming Logic programming

(sequent calculus) (multiplicative structures)

State Proof Proof Multiplicative structure:

- with cuts; - without cuts; - (transitory) component;

- without proper axioms - possibly with proper axioms - possibly with inputs;

(i.e., without open premises); (i.e., with open premises);

Computation step Proof reduction: Proof construction: Proof net expansion:

Cut-elimination Proper axioms elimination Proof structure expansion

Final state Cut-free proof Derivation with closed branches Structure without inputs

Program type Formula Formula Network behavior

Figure 1: A summary of the interpretation of proofs-as-programs in the paradigms of functional pro-

gramming, and logic programming using sequent calculus and using proof net expansion.

context, a derivation tree where all leaves are axioms of the system represents a successfully completed

computation.

It’s worth noting that two forms of non-determinism arise during the process of proof search, corre-

sponding to two distinct notions of non-determinism in program executions. Using the terminology from

[12, 38, 43], The first type of non-determinism arises from the possibility of applying multiple methods

to separate sub-sequents, which is a consequence of the limitations of sequent calculus1. The second

form of non-determinism is observed when different methods are applied to non-disjoint sequents.

In this paper we continue the investigation on the interpretation of logic programming based on linear

logic proof structure expansion instead of sequent calculus proof search, as in [14, 15, 29, 35]. In this

approach, the set of inputs of a proof structure is interpreted as the current state of an execution, and the

process of connecting new proof structures to its input (called expansion) is interpreted as the application

of a method. The motivation to employ proof structures is due to their efficacy in capturing the non-

determinism arising from the constraints of sequent calculus syntax: the graphical syntax relieves us

from the bureaucracy of rules permutations between independent rule applications. Additionally, proof

structures offer a more flexible structure, enabling us to define methods corresponding to the expansion

of multiple branches simultaneously.

Contributions of the paper. In this paper, we study a logic programming framework built upon linear

logic proof structures, offering a generalization of the standard MLL-proof structure [30] and the focused

bipolar proof structures [15]. We focus on the multiplicative fragment of this framework, where the

Danos-Regnier correctness criterion [21] can be easily generalized.

We introduce the concept of a component as an acyclic multiplicative structure where each of its

part can interact with a context, analogous to the notion of an open derivation in sequent calculus.

After establishing the topological conditions necessary for ensuring the composability of components,

we proceed to define the foundational blocks of a logic programming framework based in the expansion

of proof structures. Within this framework, as main novelty, we offer a computational interpretation of a

specific family of generalized multiplicative connectives, which are connectives provided with linear and

context-free introduction rules proposed in early works on linear logic [21, 32], but which lacked of any

concrete computational interpretation prior to this work. We conclude by illustrating methods, defined

within a linear and context-free setting, whose behavior is “locally additive” (in the sense of [32]), which

cannot be expressed using the conventional MLL connectives ` and ⊗ (see [44, 9, 47]).

1In sequent calculus, two independent rules which can be applied to a same sequent must be sequentialized because the

syntax does not allow for the application of rules to portions of a sequent. At the same time, if proof search produces a

branching, then the two branches of the proof search can be performed independently in a true concurrent way.
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Outline of the paper. In Section 2 we recall some notions on hypergraphs, partitions and the definition

of multiplicative linear logic and its proof nets. In Section 3 we recall the definition and results from

[44, 9] on the generalized multiplicative connectives (theorized in [21, 32]) we use in this paper. In

Section 4 we give an overview of the way logic programming program executions are represented in using

sequent calculi and how this paradigm has been extended in [15] to proof net expansion. In Section 5

we define our framework by extending the definition of proof structures, and proving the results about

their compositionality. In Section 6 we provide a computational interpretation of certain generalized

multiplicative connectives in our framework. We show that these connectives, beside being linear and

context-free operators, are still able to capture non-linear and context-sensitive behaviors.

2 Preliminary Notions

In this section we recall basic definitions for hypergraphs and partitions we use in this paper. We then

recall the definition of multiplicative linear logic and the syntax of its proof nets.

2.1 Hypergraphs

A hypergraph G =
〈
+G , �G

〉
is given by a set of vertices +G and a set of hyperedges �G, that is, a set

of pairs of list of vertices in +G . In a hyperedge h = 〈in(h),out(h)〉 ∈ �G we call the vertices occurring

in in(h) (resp. in out(h)) the inputs (resp. the outputs) of h and we define the border B(h) as the

multiset of vertices occurring in in(h) and in out(h). A sub-hypergraph of a hypergraph G =
〈
+G , �G

〉

is a hypergraph G′
〈
+G′ , �G′

〉
such that +G′ ⊆ +G and �G′ ⊆ {h ∈ �G | B(h) ⊆ +G′}.

An input (resp. output) of the hypergraph G is a vertex which does not occur as output (resp. input)

of any hyperedge of G. We denote by IG (resp. OG) the set of inputs (resp. outputs) of G, and we define

the border of G as the set of its inputs and the outputs, that is, BG = IG ∪OG . A hypergraph is linear if

each vertex occurs at most once as an input of a hyperlink and as an output of another link2.

In a hypergraph G, a path (of length =) from G ∈ +G to H ∈ +G is an alternating list of vertices

and hyperedges of the form G = E0h1E1 · · ·h=E= = H such that E8−1 = out(h8) and E8 = in(h8) for all 8 ∈

{1, . . . , =}; in this case we say that G is connected to H. A cycle is a path with h1 = h=, or = > 0 and

E0 = E=; it is elementary if there are no 8 and 9 such that 8 ≠ 9 and E8 = E 9 or h8 ≠ h 9 . A hypergraph is

acyclic if it contains no elementary cycles.

An undirected hypergraph G =
〈
+G , �G

〉
is given by a set of vertices +G and a set of undirected

hyperedges �G, that is, a set of subset of vertices in +G . A graph is an undirected hypergraph in which

each hyperedge is an edge, that is, a set of two vertices {E1, E2}. Paths and cycles in an undirected

hypergraph are defined analogously to the ones in hypergraph. Two vertices are connected if there

is a path from one to the other. A connected component of an undirected hypergraph is a maximal

subset of pairwise connected vertices. The undirected hypergraph associated to a linear hypergraph

G =
〈
+G, �G

〉
is defined as the undirected hypergraph

〈
+G , {B(h) | h ∈ �G}

〉
. We say that a hypergraph

G is connected if the undirected hypergraph associated to it is connected.

Notation 1. We drawing hyperedges with inputs on top and output on the bottom. By convention, we

enumerate the inputs and outputs from left to right.

Definition 2. Let G =
〈
+G , �G

〉
and H = 〈+H, �H〉 be two hypergraphs with disjoint sets of vertices.

The disjoint union of G and H (denoted G‖H ) is defined as the union of vertices and hyperedges of

2In works on hypergraphs with interfaces (e.g., [19]), this property is referred to as linearity or monogamicity. Note that, by

definition, no vertex can occur at the same time as an input and an output of a linear hyperedge.
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G and H that is, G‖H ≔
〈
+G ∪+H , �G ∪�H

〉
. Note that in defining G‖H we always assume G and

H having disjoint sets of nodes. An (linear) interface - = (6, ℎ) is a pair of bijections from a finite set

{1, . . . , =} to +G and +H respectively. We define the composition of G and H via an interface - as the

hypergraph G ⊳-H obtained by identifying in G‖H the vertices 6(8) and ℎ(8) for each 8 ∈ {1, . . . , =}, as

shown on the left of Equation (1).

G H - = (6, ℎ) G ⊳-H or G ⊳H - G H

E1 E2 E3

h1

h2

E4 E5 E6

F1 F2 F3

h3

h4

F4

6(1) = E5 ℎ(1) = F2

6(2) = E6 ℎ(2) = F3

F1 E1 E2 E3

h1

h2

h3

h4

E4 F4

{
0, 1

}

E1 E2 E3

h1

h2

E4 0 1

F1 0 1

h3

h4

F4

(1)

To improve readability, we may simply identify the vertices 6(8) and ℎ(8) for all 8 ∈ {1, . . . , =}, there-

fore considering - as a set of vertices in +G ∩+H and simply writing G ⊳H , as shown in the right of

Equation (1).

2.2 Partitions

Given a set - , a partition of - is a set of disjoint subsets of - (we call each a block) such that their

union is - . In order to improve readability, when writing sets of partitions, in which three parentheses

are nested inside each other, even if blocks and partitions are sets (not permutations, nor multisets), we

use parentheses (−) to denote blocks (subsets of -), and square brackets [−] to denote partitions (sets

of subsets of -). For example, we write [(1,3) , (2)] to denote the partition of the set {1,2,3} with

one block containing 1 and 3 and one block containing only 2. We denote by P- (resp. P=) the set of

partitions over - (resp. over {1, . . . , =}). If ? ∈ P- and . ⊂ - , we define the restriction of ? on . as the

partition ? |. ∈ P. such that G, H ∈ . belongs to the same block W |. ∈ ? |. iff G and H belongs in a same

block W ∈ ?. By means of example, if ? = [(1,3,4) , (2,5) , (6)] ∈ P6, then ? |{1,2,3} = [(1,3) , (2)].

Definition 3 (Orthogonality [21]). Let - be a set and ?, @ ∈ P-. We define graph of incidence of ?

and @ as the graph G(?, @) with vertices the blocks in ? and in @ and with an edge between a block

W? ∈ ? and a block in W@ ∈ @ for each 8 ∈ W? ∩ W@ (see examples in Equation (2)). That is, the graph

G(?, @) =
〈
+G(?,@) , �G(?,@)

〉
has set of vertices and edges respectively

+G(?,@) = {W | W ∈ ? or W ∈ @} and �G(?,@) = {{W
?

8
, W

@

8
} | W

?

8
∈ ? and W

@

8
∈ @ and 8 ∈ W

?

8
∩W

@

8
} .

We say that ?, @ ∈ P- are weakly orthogonal, denoted ? ⊥F @, if their graph of incidence G(?, @) is

acyclic. They are orthogonal, denoted ? ⊥ @, if their graph of incidence is connected and acyclic.

The notion of weak orthogonality and orthogonality extends to sets of partitions: if %,& ⊂ P- then

% ⊥F & (respectively % ⊥ &) if ? ⊥F @ (respectively ? ⊥ @) for all ? ∈ % and for all @ ∈ &. The

orthogonal set of a set of partitions % ⊂ P= is defined as %⊥ = {@ ∈ P= | ? ⊥ @ for all ? ∈ %}. We write

% |=& if % ⊥& and %⊥ ⊥&⊥.

Example 4. Consider the partitions ? = [(1,2) , (3)], @1 = [(1,2,3)], @2 = [(1,3) , (2)] @3 = [(1) , (2,3)]

and @4 = [(1) , (2) , (3)]. We have that ? 6⊥ @1, ? ⊥ @2, ? ⊥ @3, ? ⊥F @4 because

(1,2) (3)

(1,2,3)

(1,2) (3)

(1,3) (2)

(1,2) (3)

(1) (2,3)

(1,2) (3)

(1) (2) (3)

is cyclic is connected and acyclic is connected and acyclic is acyclic.

(2)
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−−−−−−−−− ax
⊢ 0, 0⊥

⊢ Γ, �, �
−−−−−−−−−−−−−− `
⊢ Γ, �` �

⊢ Γ, � ⊢ �,Δ
−−−−−−−−−−−−−−−−−−−− ⊗
⊢ Γ, �⊗ �,Δ

⊢ Γ ⊢ Δ
−−−−−−−−−−−− mix
⊢ Γ,Δ

⊢ Γ, � ⊢ �⊥,Δ
−−−−−−−−−−−−−−−−−−−−−− cut

⊢ Γ,Δ

Figure 2: Sequent calculus rules for the multiplicative linear logic, and rules mix and cut.

2.3 Multiplicative Linear Logic

Multiplicative linear logic formulas are generated from a countable set A = {0, 1, . . . } of propositional

variables by the following grammar:

�, � ::= 0 | �⊥ | �` � | �⊗ �

We consider formulas modulo the involutivity of the negation �⊥⊥ = � and the De Morgan laws (�⊗

�)⊥ = �⊥` �⊥ and (�` �)⊥ = �⊥ ⊗ �⊥.

A sequent is a set of occurrences of formulas (as in, e.g., [17, 5]). The sequent systems MLL =

{ax,`,⊗} and MLL◦ =MLL∪{mix} are defined using the rules in Figure 23. We call active (resp. prin-

cipal) a formula occurrence in one of the premises (resp. in the conclusion) of a rule, not occurring in

conclusion (resp. in any of its premises).

Multiplicative Proof Nets Proof nets are a graphical syntax for multiplicative linear logic proofs cap-

turing the proof equivalence generated by independent rules permutations (see, e.g., [31, 41, 36, 40, 10,

37, 1, 11]). A proof structure S = 〈+S , �S〉 is a hypergraph whose vertices are labeled by MLL-formulas

and whose hyperedges (called links) are labeled by rules in MLL (such labels are called types) in such a

way the following local constraints are respected:

0 0⊥

ax
� �

⊗

�⊗ �

� �

`

�` �

(3)

with � and � formulas and 0 ∈ A.

Since we are considering a sequent as a set of occurrences of formulas, it is possible to easily trace

formula occurrences in a derivation, defining a proof structure that encodes a given derivation.

Definition 5. Let c be a derivation in MLL. We define the proof structure representing c as the proof

structure Pc having a vertex for each occurrence of an active formulas of a rule in c, and a link of type

d with inputs (resp. with output) the vertices corresponding to the active formulas (resp. the principal

formula) for each occurrence of a rule d in c. A proof net is a proof structure S = Pc representing a

derivation c in MLL.

By definition not all proof structures are proof nets. For this reason, a correctness criterion, that is,

a topological characterization of those proof structures which are proof nets, is needed. Beside various

criteria have been developed in the literature [30, 21, 55, 34], we here report the so-called Danos-Regnier

criterion (or DR-criterion for short), which is the most relevant to our purposes.

3In the figure we include the rule cut required to define compositionality of proofs via modus ponens. We do not include it

in the definition of MLL and MLL
◦ since this rule is proven to be admissible [30] and it plays no role in the framework we are

presenting in this paper.
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` ⊗ ⊗

�
1

�
2

�
3

ax ax

ax 0
1

0
2

0
3

0
4

` ⊗

⊗

�

0
1

0
2

0
3

0
4

` `

�
1

�
2

ax

S1 S2 S3

Figure 3: Examples of proof structures: S1 is a proof net (therefore a module), S2 is a module, and S3

is not a module (it admits a test in which 02 and 03 are disconnected from any other vertex, therefore S3

cannot be a sub-hypergraph of a proof net).

Definition 6. Let M be a proof structure. A test for M is the undirected hypergraph with the same

vertices of M having a hyperedge {0, 0⊥} for each ax-link (∅, 〈0, 0⊥〉), a hyperedge {�, �, � ⊗ �} for

each ⊗-link (〈�, �〉 , 〈�⊗ �〉), and either one edge {�, �` �} or one edge {�, �` �} for each `-link

(〈�, �〉 , 〈�` �〉). The proof structure M is DR-correct if it has no inputs and if all of its tests are

connected and acyclic (undirected) hypergraph.

Theorem 7 ([21]). A proof structure S is a proof net iff S is DR-correct.

It is worth noticing that by dropping connectedness condition in Definition 6, we obtain a notion of

correctness for MLL◦-proof net, that is, if any test of a proof structure M is an acyclic hypergraph, then

we can associate to M a derivation in MLL◦.

Definition 8. A module is a proof structure which is a connected sub-hypergraph of a proof net.

Remark 9 (Definitions of module in the literature). The definition of module we consider in this paper

differs from the definition of module given in [21] where a module is defined as a pair 〈S,Y〉 with S a

proof structure such that f (S) is acyclic for all f ∈ Σ(S), and a subset of its border Y ⊆ BS .

3 Generalized Connectives in Multiplicative Linear Logic

The notion of generalized (multiplicative) connectives for multiplicative linear logic was introduced since

the early works on linear logic [21]. We say that an inference rule of the sequent calculus is linear if

each occurrence of subformula (except the principal formula of the rule) occurring in the conclusion of

the rule occurs exactly once in its premise(s), and it is context-free if no conditions on the non-principal

formulas affect the application of the rule. A rule is multiplicative if linear and context-free.

Example 10. Consider the three rules in Equation (4) below. Only the leftmost is multiplicative: the

central one is not linear since the subformula � does not occur in the premise, while the rightmost one is

not context-free since the rule requires the sequent to contain an odd number of formulas.

⊢ Γ, � ⊢ Δ, �,�
−−−−−−−−−−−−−−−−−−−−−−−−−− 0 ⊗ (1`2)
⊢ Γ,Δ, �⊗ (�`�)

Γ, �
−−−−−−−−−−−−−− W`
⊢ Γ, �` �

⊢ �1, . . . ,�2:−1, � ⊢ �2, . . . ,�2: , �
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− odd⊗

⊢ �1,�2, . . . ,�2:−1,�2: , �⊗ �
(4)

In [21] the authors observe that any multiplicative rule can be fully described by a partition (having

a block for each of the rule premises) keeping track of how active formulas are distributed among the

premise of the rule. Thus, we can define so called synthetic rules (see, e.g., [21, 32, 52]), allowing us

to gather multiple inference of multiplicative rules to construct a formula by a single rule application, as

shown in the following example.
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Example 11. Consider the following formulas, their synthetic rules and the associated partitions.

Formula � = 0 ⊗ (1` 2) � = (0` 1) ⊗ (2` 3) � = 0` (1 ⊗ 2)

Derivation(s) Γ, 0

Δ, 1, 2
−−−−−−−−−− `
Δ, 1` 2

−−−−−−−−−−−−−−−−−−−−−− ⊗
Γ,Δ, 0 ⊗ (1` 2)

Δ, 0, 1
−−−−−−−−−− `
Δ, 0` 1

Δ, 2, 3
−−−−−−−−−− `
Δ, 2` 3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
Γ,Δ, (0` 1) ⊗ (2` 3)

Γ, 0, 1 Δ, 2
−−−−−−−−−−−−−−−−− ⊗
Γ,Δ, 0, 1 ⊗ 2

−−−−−−−−−−−−−−−−−−−−−− `
Γ,Δ, 0` (1 ⊗ 2)

and

Γ, 0, 2 Δ, 1
−−−−−−−−−−−−−−−−− ⊗
Γ,Δ, 0, 1 ⊗ 2

−−−−−−−−−−−−−−−−−−−−−− `
Γ,Δ, 0` (1 ⊗ 2)

Synthetic Rule(s)
⊢ Γ, 0 ⊢ Δ, 1, 2
−−−−−−−−−−−−−−−−−−−−−−−− R�
⊢ Γ,Δ, 0 ⊗ (1` 2)

⊢ Γ, 0, 1 ⊢ Δ, 2, �
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− R�
⊢ Γ,Δ, (0` 1) ⊗ (2`�)

⊢ Γ, 0, 1 ⊢ Δ, 2
−−−−−−−−−−−−−−−−−−−−−−−− R�1
⊢ Γ,Δ, 0` (1 ⊗ 2)

and
⊢ Γ, 0, 2 ⊢ Δ, 1
−−−−−−−−−−−−−−−−−−−−−−−− R�2
⊢ Γ,Δ, 0` (1 ⊗ 2)

Associated partitions [(1) , (2,3)] [(1,2) , (3,4)] [(1,2) , (3)] and [(1,3) , (2)]

Conversely, given a set of partitions % in P=, we can define a rule introducing an =-ary generalized

connective C% for each partition in %. In this case, we say that % is the behavior of C%. Consider the

following examples.

Behavior % =
{
[(1,2) , (3,4)] , (1,4) , (2,3)

}
& =

{
[(1,3) , (2) , (4)] , [(1) , (2,4) , (3)]

}

⊢ Γ, �, � ⊢ Δ,�,�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [ (1,2) , (3,4) ]
⊢ Γ,Δ,C% (�, �,�,�)

⊢ Γ, �,� ⊢ Δ, � ⊢ Σ, �
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [ (1,3) , (2) , (4) ]
⊢ Γ,Δ,Σ,C& (�, �,�,�)

Rules

⊢ Γ, �,� ⊢ Δ, �,�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [ (1,4) , (2,3) ]
⊢ Γ,Δ,C% (�, �,�,�)

⊢ Γ, � ⊢ Δ, �,� ⊢ Σ,�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [ (1) , (2,4) , (3) ]
⊢ Γ,Δ,Σ,C& (�, �,�,�)

(5)

However, as shown in various works [21, 32, 44, 9], not all sets of partitions can be considered to be

satisfactory in order to define connectives. In fact, we allow to use a set of partitions % ⊂ P= to describe

a connective only if % admits a set & such that % ⊥ &. This condition is mandatory to guarantee the

possibly to define a dual connective whose rules well-behave with respect to cut-elimination.

In [44, 9] it has been proved that there are families of sets of partitions which can be used to describe

behaviors different from any synthetic rule defined using ⊗ and ` rules. Moreover, in [9] it is also shown

that no satisfactory sequent calculus can be defined in presence of generalized connectives due to the lack

of the so-called initial coherence [52, 16] (also called packaging problem in [21]), that is, the possibility

of having a proof system in which it is always possible to prove “� implies �” using atomic axiom only.

3.1 Generalized Connectives in Multiplicative Proof Nets

Sets of partitions have been used to define generalized connectives in the proof net syntax in [21, 32, 48,

44, 9], overcoming the aforementioned problem of initial coherence. We here give some intuitions on

these connectives, while more precise definitions are provided in Section 5 where we properly define the

formal setting required to accommodate them.

Generalized connectives in multiplicative proof structures use sets of partitions to define the behavior

of new connectives, that is, the way tests are constructed. Intuitively, the behavior of ` (defined as

{[ (1) , (2)]}) and ⊗ (defined as {[ (1,2)]}) provide the topological constraints of the definition of the

test: for ` the link is replaced by a hyperedge connecting only one of the two inputs (connecting the

output to one of the two blocks) while for the ⊗ the link is replaced by hyperedge connecting both inputs

(since both belong to the same block). Similarly, in defining a test for a link with a given behavior is

replaced by certain hyperedges connecting the vertices in a same block.

In this case, given an =-ary connective and a partition % ⊂ P=, the condition of the existence of a &

such that % ⊥& is not enough to guarantee the existence of a dual connective well-behaving with respect
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Formula Proof Structure Tests

^(0, 1, 2)

=

0 ⊗ (1` 2)

1 2

0
`

⊗

^(0, 1, 2)

1 2

0 1` 2

^(0, 1, 2)

1 2

0 1` 2

^(0, 1, 2)

^⊥ (0⊥, 1⊥, 2⊥)

=

0⊥` (1⊥ ⊗ 2⊥)

1⊥ 2⊥

0⊥
⊗

`

^⊥ (0, 1, 2)

1⊥ 2⊥

0⊥ 1 ⊗ 2

^⊥ (0, 1, 2)

1⊥ 2⊥

0⊥ 1 ⊗ 2

^⊥ (0, 1, 2)

˜̂(0, 1, 2)

0 1 2

˜̂

˜̂(0, 1, 2)

0 1 2

˜̂(0, 1, 2)

0 1 2

˜̂(0, 1, 2)

0 1 2

˜̂(0, 1, 2)

Figure 4: The behaviors of the synthetic connectives associated to the formula � (0, 1, 2) = 0 ⊗ (1` 2),

to its dual formula, and to a generalized multiplicative connective whose behavior strictly contains the

one of � (0, 1, 2) in such a way is the same of � (0, 1, 2) if restricted on the inputs only.

to cut-elimination. Thus the stronger condition % |=& is needed4.

Remark 12. As noticed in [44, 9], the definition of more-than-binary generalized connectives requires

to include the information about which block of inputs is connected to the output of the link connec-

tive. This information is only required to ensure a sound cut-elimination procedure, and it is lost after

removing cuts. Said differently, the contextual equivalence defined by cut-elimination is not able to dis-

tinguish certain behaviors differing in the way set of inputs are connected to the output. This information

is not relevant for the standard MLL connectives nor for synthetic connectives (that is, the ones which

can indirectly defined by means of combination of ⊗ and `; see Example 11), since it can be indirectly

derived using the less complex nature of these connectives, which are defined inductively using binary

ones. Nevertheless, this information is not negligible in the general case, since this information may

define different tests as shown in the following example explaining in detail Figure 4.

Example 13. Consider the formula � (0, 1, 2) = 0 ⊗ (1` 2) and the synthetic connectives ^(0, 1, 2) ≔

� (0, 1, 2) and ^⊥ (0⊥, 1⊥, 2⊥) ≔ �⊥(0⊥, 1⊥, 2⊥) respectively associated to the sets of partitions B^ =

{[ (1,2) , (3)] , [(1,3) , (2)]} and B^⊥ = {[(1) , (2,3)]} (see Figure 4).

We can now define the connective ˜̂ associated to the same set of partitions of ^ (that is, the set of

partitions B˜̂=B^ = {[ (1,2) , (3)] , [(1,3) , (2)]} ) but in which we allow an extra test which enforces no

new partitions among the inputs. See the bottom-most row of the table in Figure 4, where the new test

(the right-most one) enforces the partition [(1,2) , (3)] ∈B^ over inputs.

Since ^ and ˜̂ are defined by the same set of partitions over their inputs, they are both orthogo-

nal to ^⊥. Moreover, both DR-correctproof structures of ^(0, 1, 2) ` ^⊥ (0⊥, 1⊥, 2⊥) and ˜̂(0, 1, 2) `
^⊥ (0⊥, 1⊥, 2⊥) are correct, and the result of cut-elimination of a ^- or a ˜̂-gate against a ^⊥-gate reduces

4Note that in [21, 32] each multiplicative connective is defined by a pair of sets of dual partitions over the same finite set

satisfying an orthogonality condition. This condition is sufficient to fully describe these connectives in sequent calculus style,

and we here show that it is also sufficient for our proof net expansion paradigm. However, it is well-known that in a Curry-

Howard oriented interpretation of proof-as-program paradigm stronger conditions are required in order to guarantee a sound

dynamic of cut-elimination (that is, not only the two partitions must be orthogonal, but also their orthogonal sets must be so).
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to a proof structure with the same behavior. Note that this implies that ^ and ˜̂are indistinguishable with

respect to the notion of context equivalence usually considered on proof structures (see, e.g., [33, 25, 27]).

4 Logic Programming with Multiplicative Structures

In this section we recall the results from [14, 15] (restricted to the multiplicative linear logic fragment)

on the possibility to define a logic programming framework based on proof net construction.

The classical interpretation of logic programming (see, e.g., [12, 14, 52]), a program is defined by a

set of sequent calculus rules and its execution is conceived as the process of expanding the open branches

of the derivation tree of a given formula. This correspondence can easily be extended using synthetic

(linear) inference rules as the ones from Example 11 to define the following methods:

F : − a, (b` c) G : − (a`b), (c`d) H1 : − (a`b),c H2 : − (a` c),b (6)

In particular, a specific family of formulas (called bipoles) can be used to define methods.

Definition 14 ([14]). Given a set of negative atoms A whose negations are positive, a monopole is a

disjunction (`) of negative atoms. A bipole is a conjunction (⊗) of monopoles and positive atoms which

contains at least one positive atom. Given a set of bipoles F, the focussing bipolar sequent calculus

[F,A] is given by the set of inference rules of the following form, where � is a bipole in F.

⊢ i1,1, . . . , i1,:1
· · · ⊢ i8,1, . . . , i8,:8

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− � = o⊥
1
⊗ · · · ⊗ o⊥= ⊗ (i1,1 ` · · ·` i1,:1

) ⊗ · · · ⊗ (i8,1 ` · · ·` i8,:8 )
⊢ o1, . . . ,o=

(7)

As shown in [12], a bipole � can be seen as a logic programming method having as head (or trigger)

the subformula containing the positive atoms of � (a conjunction), and as body the subformula contain-

ing the negative atoms � (a CNF formula). Intuitively, each bipole � induces a synthetic rule with

principal formula � and and whose active formulas are its positive atoms gathered in a same premise if

they belong to the same conjunct. By means of example the rule for the bipole � in Equation (7) can be

seen as a synthetic rule introducing the formula � corresponding to the following derivation

i1,1, . . . , i1,:1
============================== `
i1,1 ` · · ·` i1,:1

· · ·

i8,1, . . . , i8,:8
============================`
i8,1 ` · · ·` i8,:8

=================================================================================== ⊗
(i1,1 ` · · ·` i1,:1

) ⊗ · · · ⊗ (i8,1 ` · · ·` i8,:8 )

−−−−−−−−−− ax
⊢ o⊥

1
,o1 · · ·

−−−−−−−−−− ax
⊢ o⊥= ,o=

==================================================== ⊗
o⊥

1
⊗ · · · ⊗ o⊥= ,o1, · · · ,o=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
o⊥

1
⊗ · · · ⊗ o⊥= ⊗ (i1,1 ` · · ·` i1,:1

) ⊗ · · · ⊗ (i8,1 ` · · ·` i8,:8 ),o1, · · · ,o=

(8)

In [13] it has been proved that the focussing bipolar sequent system with one rule for each MLL bipole

is sound and complete with respect to MLL.

4.1 Bipolar Proof Nets

The idea of using the focussing bipolar sequent calculus has been further developed in [15], where the

authors proposed to model such a framework using proof nets construction instead of proof search in

sequent calculi. The main advantage of the graphical syntax with respect to the bipolar sequent calculus

is that in this latter, even if this rule admits a non-singleton trigger, a rule can expand only a single branch

of a derivation. In fact, the tree-like structure of sequent calculus syntax allows us to expand one leaf

of the derivation tree at a time by applying a rule. For instance, consider Figure 5 where the concurrent
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Bipoles Sequent calculus derivation with focussing bipolar expansion Proof Net expansion
concurrent expansion (� and �) (concurrent synthetic rules) (one link of type � ‖�)

� = 0⊥ ⊗ 1 ⊗ 2

� = 1⊥ ⊗ (1′` 1′′)

� = 2⊥ ⊗ 2′

1,� 2,�
−−−−−−−−−−−−−−− R�
�,0,�,�

 

1′` 1′′
−−−−−−−−−− R�
1,�

2′
−−−−− R�
2,�

−−−−−−−−−−−−−−−−−−−−−−− R�
�,0,�,�
−−−−−−−−−−−−−−−− `
�,0,�`�

1 2
−−−−−−− �
0

 

1′` 1′′
−−−−−−−−−− �

1

2′
−−− �
2

−−−−−−−−−−−−−−−−− �
0

1 2

�

0

 

1′` 1′′ 2
′

� ‖�

1 2

�

0

Figure 5: A concurrent application of the bipoles � and � after � represented in different formalisms

application of two methods on two different branches of a derivation can be represented by an expansion

of a proof structure with a single link.

More precisely, we can use bipoles to define new link types in the same manner a bipole defines

a new synthetic inference rule in the sequent calculus. Each test replaces such a link with one of the

possible tests of the proof structure representing the bipole. By means of example, the bipolar rule from

Equation (7) could be used to define the link below on the left, and tests would replace such a link with

any test of the proof structure below on the right, which represents the open derivation in Equation (8).

Link of � The proof structure of the synthetic rule for �

associated to the bipole in Equation (7) (see Equation (8))

0
1,1

. . . 0
1,:1

. . . 0
8,1
. . . 0

8,:8

ℓ

�
1

. . . �
=

0
1,1

. . . 0
1,:1

. . . 0
8,1

. . . 0
8,:8

`= `=

�
⊥

1
. . . �

⊥

=

⊗= ⊗=

⊗

� �
1

. . . �
=

ax ax

(9)

Note that the link above on the left has outputs o1, . . . ,o=, while the proof structure on the right has

an additional output �. In the next section we provide a solution to address this mismatch (see no-output

links in Definition 16), but it is worth noting that we can define links representing concurrent application

of bipoles by simply connecting those additional outputs via a `-link. Analyzing the shape of the proof

structure describing a concurrent bipole.

Definition 15. We introduce the following naming for specific proof structure (see examples in Figure 6):

• body: a ⊗=-link collecting the outputs of `=-links (i.e., the proof structure of a CNF-formula).

The body gathers the clauses corresponding to the body of a method;

• header: a bundle of ax-links attached to a ⊗=-link by exactly one of their two outputs each. The

header gathers the outputs corresponding to the head of a method;

• synchronizer: a `=-link collecting the outputs of ⊗-links (i.e., the proof structure of a DNF-

formula). The synchronizer establishes a connection between headers of methods and their bodies.

A concurrent bipole is a proof structure made of a synchronizer whose inputs are attached to headers
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Body Header Synchronizer

0
1

. . . 0
81

. . . 0
8:−1+1

. . . 0
8:

`= `=

⊗=

�
⊥

1
. . . �

⊥

=
�

1
. . . �

=

⊗=

ax
ax

0
1

0
2

. . . 0
2:−1

0
2:

⊗ ⊗

`

Figure 6: Components of a concurrent bipolar link.

and bodies. That is, a proof structure of the following shape:

0
1

. . . 0
:1

. . . 0
:=−1+1

. . . 0
:=

C1 C= H1 · · · H=

R

� �
1
· · · �

ℎ1

· · · �
ℎ=−1+1

· · ·�
ℎ=

(10)

where H1, . . . ,H= are headers, C1, . . . ,C= are bodies, and R is a synchronizer.

5 Generalizing Multiplicative Proof Structures

In this section we provide a general setting to define hypergraphs with hyperedges labeled by sets of par-

titions generalizing the syntax of proof structures, allowing us to accommodate generalized connectives,

generalize the DR-correct, and define the notion of a component as a “proof structure which may be a

piece of a proof net”.

Definition 16. A link type (or simply type) is a triple 〈=,<,B〉 given by two natural numbers =,< ∈ N

and a behavior B ⊆ P{i1,...,i= ,o1 ,...,o< } . We define the following link types:

ax =
〈
0,2,

{
[(o1,o2)]

}〉
⊗ =

〈
2,1,

{
[(i1, i2,o1)]

}〉
` =

〈
2,1,

{
[(i1,o1) , (i2)] , [(i1) , (i2,o1)]

}〉

cut = 〈2,0, [(o1,o2)]〉 `
•
= = 〈=,0, [ (o1) , . . . , (o=)]〉 ⊗•

= = 〈=,0, [ (o1, . . . ,o=)]〉

⊗= =
〈
=,1,

{
[(i1, . . . , i=,o1)]

}〉
`= =

〈
=,1,

{
[(i1) , . . . , (i:−1) , (i: ,o1) , (i:+1) , . . . , (i=)]

}
:∈{1,...,=}

〉

Remark 17. By definition, ⊗2 = ⊗ and `2 = ` and cut = ⊗•
2
. The type ⊗1 = `1 can be thought as an

edge connecting the input with the output since they both have behavior [(i1,o1)]. The type ⊗•
1
=`•

1
can

be thought as a “dead-end” hyperedge with one input and no output (their behavior is [(i1)]).

Definition 18. A multiplicative structure over a signature Σ is a linear hypergraph H such that each

hyperedge ℓ is labelled with a 〈=,<,B〉 ∈ Σ such that |in(h) | = = and |out(h) | = <.

In drawing multiplicative structures, we label hyperedges by the corresponding type. The definition

of sub-multiplicative structure, as well as the definition of sequential and parallel composition of

multiplicative structures are defined extending the ones for hypergraphs.

In order to extend the notion of DR-correct, we need to provide a way to define tests.

Definition 19. Let S =
〈
+G , �S

〉
be a multiplicative structure. A switching for S is a map f assigning to

each link ℓ a single partition f (ℓ) ∈Bℓ . We denote by Σ(S) the set of all possible switchings for S. The
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0 1 2 3 4

^ ⊗

`

>

f (^) = [(o1, i1, i2) , (i)3] f (⊗) = [(o1, i1, i2)] f (`) = [(o1, i1) , (i2)] f (^) = [(o1, i1, i3) , (i2)] f (⊗) = [(o1, i1, i2)] f (`) = [(o1, i2) , (i1)]

0 1 2 3 4

^(0, 1, 2) 3 ⊗ 4

^(0, 1, 2)` (3 ⊗ 4)

0 1 2 3 4

^(0, 1, 2) 3 ⊗ 4

^(0, 1, 2)` (3 ⊗ 4)

Figure 7: A proof structure where ^ = 〈3,1, {[ (o1, i1, i2) , (i)3] , [(o1, i1, i3) , (i2)]}〉 and two of its test

test f (S) defined by the switching f is the undirected hypergraph obtained by replacing each link in �S

with one undirected hyperedge for each block in f (ℓ). Formally, f (S) =
〈
+S ,

⋃
ℓ∈�S

{W | W ∈ f (ℓ)}
〉
.

The behavior of a test f is the partition ?f of the border of S defined by the connected components

of f (S). That is, G, H ∈ BS belongs to the same block W ∈ ?f iff the vertices G and H are connected of

f (S). The behavior of a multiplicative structure S is defined as the set of behaviors of its tests, that is,

BS =
{
?f ∈ PBS

| f ∈ Σ(S)
}
.

The behavior of a multiplicative structure is the collection of the information on how a multiplicative

structure interacts with any possible context. It keeps track of the connectivity the vertices in its border

in all its tests (see an example in Figure 7).

Definition 20. Let S be a multiplicative structure. We say that S is correct if f (S) is connected and

acyclic for any test f ∈ Σ(S). It is multiplicative net if correct and if S has no inputs and at least one

output. If each test f (S) of S is acyclic and each of its vertices is connected to a vertex of the border,

then we say that S is a (multiplicative) component. A transitory component (or T-component) is

a component such that each input admits a test where it is connected to an output. A module M is a

connected non-empty multiplicative structure such that M ⊂ S for a multiplicative net S.

Example 21. Consider the examples in Figure 3. The multiplicative structure S1 is a multiplicative net

(therefore a T-component). S2 is a component and a module, but not a T-component (it has no outputs).

The multiplicative structure S3 is not a component (it admits a test in which 02 and 03 are disconnected

from any other vertex) nor a module (there is no multiplicative net containing S3 as a sub-multiplicative

structure).

Theorem 22. All modules are components.

Proof. If M is a module, then each test f (M) is acyclic, otherwise there should be a cycle in a test of

S. Moreover, as consequence of the fact that S is connected, no sub-multiplicative structure S′ of S

such that BS′ = ∅. Therefore each vertex in M must be connected to a vertex in BM in each test f (M)

otherwise S would not be connected. �

Definition 23. Let M1 and M2 be components and - ⊆
(
IM1

∩OM2

)
non-empty. We say that M2

expands M1 (on -) if M1 ⊳-M2 is a component.

Theorem 24. Let M1 and M2 be components and - ⊆
(
IM1

∩OM2

)
non-empty. Then

M2 expands M1

on -
⇐⇒




- ≠ BM1
∪BM2

BM1 |-
⊥F BM2 |-

each G ∈ - is connected either to a H ∈
(
BM1

\ -
)

in each test of M1,

or to a I ∈
(
BM2

\ -
)

in each test of M2

Proof. By definition of component, letting M =M1 ⊳-M2.
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(⇒) If M is a component, then BM =
(
BM1

∪BM2

)
\ - must be non-empty, thus - ≠

(
BM1

∪BM2

)
.

If we assume that BM1 |-
6⊥F BM2 |-

, then there are G, H ∈ - such that {G, H} ⊂ W1 ∈ ? ∈ BM1 |-
and {G, H} ⊂ W2 ∈ @ ∈BM2 |-

. That is, there is a path between G and H in both f1(M1) and f2(M2)

with f8 ∈ Σ(M8) and 8 ∈ {1,2}. Thus there is a switch f ∈ Σ(M) such that f (M) contains a

cycle. This contradicts the hypothesis of M being a module.

Finally, since each vertex of M is connected to a vertex in BM =
(
BM1

∪BM2

)
\ - in each test,

then, each G ∈ - is.

(⇐) Since M1 and M2 are components, then f (M1) and f (M2) does not contain cycles (where,

for both 8 ∈ {1,2}. Let us denote by f (M8) the test defined from M8 by the switch obtained by

restringing f ∈ Σ(M) to M8). Then, if f (M) contains a cycle, then there are G, H ∈ - such that

G and H are connected in f (M1) and in f (M2). This implies the existence of a W1 ∈ ? ∈ BM1 |-
and a W2 ∈ @ ∈BM2 |-

with W1 and W2 both containing G and H, therefore ? 6⊥F @, contradicting the

hypothesis.

The fact that each vertex in M is connected to a vertex of the border in any test is consequence

of the fact that each vertex in M (then, in particular, each G ∈ -) is connected to a vertex in

BM =
(
BM1

\ -
)
∪
(
BM2

\ -
)
. �

Corollary 25. Let M be a component, and T be T-component and (IM ∩OT) ⊇ - ≠ ∅. If M is a

transitory, then T ⊳-M is so.

Proof. In light of Theorem 24, it suffices to remark that if M is a T-component, then every input i ∈ IM
is connected to an output o ∈ OM in a test f2(M). If o ∈ OM we conclude. Otherwise o ∉ OM and

o = G ∈ - . Since T is T-component, then by definition there is a test f1(T ) in which G is connected to a

vertex o ∈ OT . We conclude since each input of T ⊳-M is either an input of T , or an input of M; and

in the latter case we have a switching f defined as the union of f1 and f2 such that i is connected to an

output o ∈ OT ⊆ OT⊳-M . �

Proposition 26. We can check if a component M′ expands a component M in polynomial time with

respect to |OM′ | + |BM′ | + |BM |.

Proof. To check if BM′ ⊥F BM |Oℓ
requires |BM′ | × | (BM) |OM′

| ≤ |BM′ | × |BM | orthogonality tests

on partitions. Each test requires to build the graph G(?, @) (linear on |Oℓ |) and check graph acyclicity

since graph traversal is linear in |+G(?,@) | + |
G(?,@)
⌢ | ≤ 2|Oℓ | and |

G(?,@)
⌢ | = |Oℓ |, see [20]. �

6 Modelling behaviors beyond the scope of MLL-proof structures

In this section we recall the definition of two classes of generalized multiplicative connectives from [9],

showing how the corresponding links can be used to define methods whose behaviors exhibit unexpected

context-sensitive and non-linear characteristics in a multiplicative setting.

Definition 27. Let = = DE be the product of two prime numbers D, E ∈ N. We define a basic partition

with D blocks of E elements to be a partition ? ∈ P= such that each block W ∈ ? is either of the form

W = (8, 8 +1, . . . , 8 + E−1) if 8+E < =, or of the form W = (8, . . . , =,1,2, . . . , 8 + E− (=+1)) for a 8 ∈ {1, . . . , =}

otherwise. We denote by B〈D,E〉 ⊂ P= the set of basic partitions with D blocks of E elements and B⊥
〈D,E〉

its orthogonal set of partitions.
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G⊥
2,2

G2,2

8
1

8
2

8
3

8
4

⊗ ⊗

`

>

8
4

8
1

8
2

8
3

⊗ ⊗

`

>

8
1

8
2

8
3

8
4

` `

⊗

>

8
4

8
1

8
2

8
3

` `

⊗

>{
[(o, i1, i2) , (i3, i4)] , [(o, i3, i4) , (i1, i2)]

} {
[(o, i1, i3) , (i2) , (i4)] , [(o, i2, i4) , (i1) , (i3)] , [(o, i1, i4) , (i2) , (i3)] , [(o, i2, i3) , (i1) , (i4)]

}

∪ ∩{
[(o, i1, i4) , (i2, i3)] , [(o, i2, i3) , (i1, i4)]

} {
[(o, i1, i3) , (i2) , (i4)] , [(o, i2, i4) , (i1) , (i3)] , [(o, i1, i2) , (i3) , (i4)] , [(o, i3, i4) , (i1) , (i2)]

}

={
[(o, i1, i3) , (i2) , (i4)] , [(o, i2, i4) , (i1) , (i3)]

}

Figure 8: Connective G⊥
2,2

and its dual connective G2,2 interpreted as the union of the behaviors of DNF

formula-trees and as the intersection of the behaviors of CNF formula-trees respectively.

For every = = DE we define the following sets of partitions of the set {0, . . . , =}:

G〈D,E〉 (0,1, . . . , =) =
⋃D

:=1

{
?: =

[
W?: , (81) , . . . , (8=−D)

]
| ?: |{1,...,=} ∈B⊥

〈D,E〉
and 0 ∈ W?:

}

G⊥
〈D,E〉

(0,1, . . . , =) =
⋃D

:=1

⋃E
9=1

{
?
9

:
= [W1, . . . , WE] | ?

9

: |{1,...,=}
∈B〈D,E〉 and 0 ∈ W 9

}

and we define the following Girard’s types: GD,E ≔
〈
DE,1,G〈D,E〉

〉
and G⊥

D,E ≔

〈
DE,1,G⊥

〈D,E〉

〉
. 5

Remark 28. The behavior G〈D,E〉 is the same of the intersection of the behavior of specific DNF-

formulas, while G⊥
〈D,E〉

is the same of the union of behavior of specific CNF-formulas (see Figure 8).

More precisely,

G〈D,E〉 =
⋂

g∈Cy=

BDNF(8g (1) ,...,8g (=) ) and G⊥
〈D,E〉 =

⋃

g∈Cy=

BCNF(8g (1) ,...,8g (=) ) where

• BDNF(1,...,=) be the behavior of the multiplicative structure representing the formula tree of the

disjunctive normal form formula DNF(1, . . . , =) =
(
01 ⊗ · · · ⊗ 0E

)
` · · ·`

(
0=−E+1 ⊗ · · · ⊗ 0=

)
;

• BCNF(1,... ,=) be the behavior of the multiplicative structure representing the formula tree of the

conjunctive normal form formula CNF(01, . . . , 0=) =
(
01 ` · · ·` 0E

)
⊗ · · · ⊗

(
0=−E+1 ` · · ·` 0=

)
;

• Cy= be the set of cyclic permutations over the set {1, . . . , =} (assuming the standard order on N).

Theorem 29 ([9]). There is no multiplicative structure S over the signature {`,⊗} such that BS =BGD,E

or BS = BG⊥
D,E

for any D, E ∈ N prime numbers.

Definition 30. We generalize the components of bipoles (see Definition 15) as follows:

• A generalized body is a component made of a ⊗= collecting the outputs of a multiplicative struc-

ture representing a CNF-formula (i.e., bodies) or G⊥
〈D,E〉

-links.

• A generalized synchronizer is a component made of a `
•
= collecting the outputs of a multiplica-

tive structure representing a DNF-formula (i.e., synchronizers) or G〈D,2〉 -links.

A generalized bipole is a component made of a generalized synchronizer R collecting the outputs

of certain generalized bodies C1, . . . ,C= and headers H1, . . . ,H= whose structure is similar to the one in

Equation (10), but where no output � occurs (thanks to the `
•
= in the generalized synchronizer).

5In [9] it has been shown that there is no module M containing only `- and ⊗-link such that BM =BGD,E
or BM =BG⊥

D,E
.
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Figure 9: A multiplicative structure representing a non-deterministic application of two concurrent meth-

ods.
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2
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Figure 10: A link representing a method application with a dependent choice.

Remark 31. Headers and Generalized bodies and synchronizes are modules.

The following result is a corollary of Theorem 29.

Corollary 32. There are generalized bipoles whose behavior is different from any behavior of a MLL-

proof structure.

Remark 33. In [15] the bipolar links have an additional output (the one labeled by the formula) as

shown in Equation (9) because the syntax from [15] is closer to the representation of methods we use in

Equation (8), where the name of the applied method (the formula � identifying the rule) occurs in the

final sequent. In our syntax this superfluous information is discarded in the same way as in Equation (7),

where the formula � does not occur in the conclusion. That is, the additional output � in Equation (10)

would not occur in our generalized bipoles because in the definition of generalized synchronizes we use

`
•
= instead of `=, allowing us to formally discard this output.

We conclude this section by providing two toy-examples describing the way a server manages access

requests to critical sections. The naı̈ve idea behind these models is that if the vertex corresponding to a

client is connected to the vertex corresponding to a resource, then there is a configuration of the model

in which only that specific client accesses the resource.

Example 34 (basic union link). Consider a server receiving a request from two different clients 21 and 22

to access, at the same time, to one resource A1 or A2 in a critical section. In this case the server can execute

four different methods of the form ri : − cj each of which represents the resource A8 being allocated to

the client 2 9 (for some 8, 9 ∈ {1,2}). Once any one of these methods is executed, the condition of critical

section requires that no other user can access to this resource (until it is released). Therefore, either the

server authorizes 21 to access A1, and authorizes 22 to access A2, or the server authorizes 21 to access A2,

and authorizes 22 to access A1.

In both cases, the two methods representing the clients accessing the resources can be applied con-

currently, and the multiplicative structures on the right-hand side of Figure 9 represent these two config-

urations. Note that none of the two multiplicative structures fully capture the described configuration:

each solution makes a choice about which client has access to which resource since, and this kind of

choices are beyond the scope of multiplicative linear logic. Using the basic union link G⊥
2,2

we can define
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the multiplicative structure in the left-hand side of Figure 9, whose behavior is the same of the union of

the two multiplicative structures describing the two possible choices (see Remark 28). That is, this the

G⊥
2,2

-link can be interpreted as a synchronizer allowing such a concurrent choice.

Example 35 (basic intersection link). Consider a server receiving a request from a single client 2 to

access the set of resources {A1, A2, A3, A4} with goal of either collect A1 and A3 (that is, to apply the method

c : − r1,r3), or to collect A2 and A4 (that is, to apply the method c : − r2,r4). Because of our constraints,

the server can either grant access to a resource in {A1, A2} and one in {A3, A4}, or grant access to a re-

source in {A1, A4} and one in {A2, A3}. These two different solutions are represented by the multiplicative

structures in the right-hand side of Figure 10. However, if we consider singularly each multiplicative

structure, it models more permissive configurations. For example, the right-most multiplicative structure

admits a test in which 2 is connected to A1 and A4, which is not a configuration we want to allow. Indeed,

the configurations we want to allow are exactly the configurations which are valid in both multiplicative

structures. However, using the basic intersection link G2,2 we can define the multiplicative structure in

the left of Figure 10, whose behavior is the same of the intersection of the two multiplicative structures

on the right-hand side: the client 2 can only access at the same time to either A1 and A3, or A2 and A4.

7 Conclusion

In this paper, we extended the multiplicative fragment of the logic programming framework studied in

[13, 14, 15, 29, 35]. Within this framework, as main novelty, we offered a computational interpretation

of the generalized connectives discussed in [45, 9]. These connectives were initially introduced in early

works on linear logic, but prior to this work, they had not been given a concrete computational inter-

pretation: they cannot be expressed using combinations of the multiplicative connectives ` and ⊗ and

they describe “locally additive” behaviors [42, 2] such as non-deterministic or conditional choices. It is

worth noting that the methodology used to define our framework appears to align with the definition of

the basic building block of the transcendental syntax [33, 27] and its extensions [26, 25, 28].

Future works. As observed in Remark 28, the behavior of a basic union link can be seen as the union of

behaviors of bodies (see Figure 8). This allows us to replace any basic union link within the multiplicative

structure of any of these bodies, and preserving correctness. Leveraging this intuition, we could define a

non-deterministic expansion operation on basic union link, returning their set of bodies. This operation

can be further extended to multiplicative structures, providing a notion of expansion for multiplicative

structures similar to the concept of Taylor expansion in differential linear logic [24]. Such an expansion,

could be interpreted as representing specific instances of delayed choice [18]: during proof (net) con-

struction we do not need to specify which of the possible bodies we want to use in a specific step, but we

can use a basic union link containing it instead, delaying this decision. We also envision an extension of

our model where links have probabilistic distributions on the set of switchings. In this setting basic union

links could be equipped with probability distribution functions, transforming the non-deterministic ex-

pansion operator into a probabilistic one. Consequently, multiplicative structures could be employed to

model Bayesian networks [54, 46]. Additionally, we foresee the possibility of defining refinements of the

attack trees syntax with a linear treatment of resources but including specific non-deterministic choices

[49, 39, 53]. Similarly, the linear constraints on the hypergraphs used in our model allow us to define

a concurrent computational model with a more granular management of resource consumption, akin to

what we experience in the management of critical sections in concurrent systems. Another possible di-

rection is to study modules for proof structures built using the graphical connectives from [7, 8, 6, 3] to

provide them with a computational meaning based on resources separation.
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Sheaves are mathematical objects consisting of a base that constitutes a topological space and the data
associated with each open set thereof, e.g. continuous functions defined on the open sets. Sheaves
have originally been used in algebraic topology and logic. Recently, they have also modelled events
such as physical experiments and natural language disambiguation processes. We extend the lat-
ter models from lexical ambiguities to discourse ambiguities arising from anaphora. To begin, we
calculated a new measure of contextuality for a dataset of basic anaphoric discourses, resulting in
a higher proportion of contextual models–82.9%–compared to previous work which only yielded
3.17% contextual models. Then, we show how an extension of the natural language processing chal-
lenge, known as the Winograd Schema, which involves anaphoric ambiguities can be modelled on
the Bell-CHSH scenario with a contextual fraction of 0.096.

1 Background

We introduce the basic elements of presheaf and sheaf theory, review sheaf theoretic models of quantum
scenarios and of lexical ambiguities of natural language.

1.1 Sheaf Theory

The presheaf of events is a contravariant functor E from subsets of a set X to the category Set:

E : P(X)op → Set

Given a set O of outcomes, the functor acts as follows on objects, i.e. subsets U of X :

E : U 7→ OU

Given U,U ′ ⊆ X and for resU ′
U the restriction map, E acts as follows on morphisms:

U ⊆U ′ =⇒ resU ′
U : E (U ′)→ E (U) :: s 7→ s|U

U ⊆U ′ ⊆U ′′ =⇒ resU ′
U ◦ resU ′

U = resU ′′
U

That is, it assigns to each subset U ⊆ X a map s : U → O. This map describes the event in which an
element m ∈ U is performed with the outcome s(m). It describes a section of the data that is being
modelled and is thus referred to as a section. A presheaf is a sheaf if every compatible family of sections
can be glued together to form a global section. This means that for some locally compatible sections
{si ∈ E (Ui)}i∈I , there is a unique global section s ∈ E (U) such that s|Ui = si for all i ∈ I. In other words,
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(a) •a1

•
b1

• a2

•b2

(b)

(0,0) (0,1) (1,0) (1,1)
(a1,b1) 1/2 0 0 1/2
(a1,b2) 3/8 1/8 1/8 3/8
(a2,b1) 3/8 1/8 1/8 3/8
(a2,b2) 1/8 3/8 3/8 1/8

Figure 1: The geometric representation of the Bell-CHSH scenario and an empirical model for it.

local data must agree on overlaps. If this is the case, we can glue it together to create a (unique) global
section s ∈ E (U) such that s|Ui = si, for all i ∈ I.

We can assign to each set of measurements U , the set of probability distributions over the sections
of U by composing the sheaf functor E with a distribution functor DR. This provides us with the functor
DR(E (U)). The distribution functor is over a semiring R. It assigns to a set X of measurements, a set of
functions d : X → R with finite support, such that ∑x∈X d(x) = 1. The resulting composed functor has the
type DRE : P(X)op → Set and is a presheaf, as for U ⊆U ′, we can define a restriction map as follows:

DRE (U ′)→ DRE (U) :: d 7→ d|U
This map sends a section s ∈ E (U) to its marginal d|U(s), that is the sum of all probabilities in the larger
sections d(s′) for s′ ∈ E (U ′) whenever those larger sections s′ restricted to s, i.e. s′ |U = s.

1.2 Sheaf Models of Quantum Scenarios

An example of a sheaf of events with distributions is the entanglement protocols of quantum mechanics.
Here, we have measurement scenarios, which are modelled by tuples of the form ⟨X ,M ,O⟩, where X
is the set of observables of the scenario, M is a cover of X , and O is the set of measurement outcomes.
A subset of simultaneously measurable observables of X is called a measurement context. Thus, one can
define a (local) joint probability distribution over the observables of a context. Such a joint probability
distribution can either be estimated by performing the measurements in an experiment, or by calculating
according to the theory of the system of interest. A collection of all joint probability distributions is
called an empirical model.

Sheaf theory can be used to model and reason about a fundamental phenomenon of quantum me-
chanics known as contextuality. This phenomenon was observed as early as 1935 by Einstein, Podolsky
and Rosen (EPR) [10]. It occurs when the quantum mechanical description of a scenario is incomplete.
A typical scenario that exhibits contextuality has two space-like separated parties allowed to make mea-
surements on an entangled system. In a sheaf theoretic setting, contextuality becomes the fact that there
does not exist a global joint distribution over all the observables of the scenario that marginalises to every
local joint distribution in the empirical model. This means failure of finding a classical explanation for
the empirical model of the scenario. In conclusion, a scenario can host any contextual model if and only
if its distribution presheaf is not a sheaf.

As an example, consider the Bell-CHSH scenario [4]. It is specified by X = {a1,a2,b1,b2}; M ={
{a1,b1},{a1,b2},{a2,b1},{a2,b2}

}
; O = {0,1}. M has a geometric realisation as the boundary of a

square (a cycle of order 4), where each vertex is an observable, and each edge is a context (see Figure 1.2).
The Bell state |Ψ⟩ =

(
|00⟩+ |11⟩

)
/
√

2 produces the empirical model shown in Figure 1.2, which is
contextual and moreover violates the Bell-CHSH inequality maximally [2, 4].
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An empirical model is signalling if the marginalised distribution of a set of observables differs from
one context to another. Intuitively speaking, non-signalling means that the observed probabilities are
context-invariant and thus the choice of context cannot be used to transmit information over parties. A
degree of contextuality can be defined for a model using its contextual fraction CF(e), introduced in [1].
Given an empirical model e, the contextual fraction CF(e) is the minimum λ such that e admits a convex
decomposition:

e = (1−λ )eNC +λeC, (1)

where eNC is a non-contextual empirical model and eC is an empirical model that may be contextual.
Suppose a given model e is non-contextual, then λ can be set to zero by choosing eNC = e. Otherwise, λ

must be greater than zero to make the decomposition valid. In a nutshell, for all contextual models, we
have:

CF(e)> 0 (2)

The CF of a model has a nice interpretation as the maximum amount of normalised violation of all
possible general Bell’s inequalities [1]. For signalling models, the above decomposition would never
hold as eNC and eC are non-signalling by definition. We could instead allow eC to be signalling, but
doing so would lead to the erroneous conclusion that all signalling models are contextual, assuming we
still interpret CF as a measure of contextuality for signalling models.

Emeriau et al. [18] proposed a criterion for contextuality in the presence of signalling, making use
of a measure called the signalling fraction SF(e), defined as the minimum λ such that e admits a convex
decomposition:

e = (1−λ )eNS +λeS, (3)

where eNS is a non-signalling empirical model and eS is an empirical model that may be signalling.
The signalling fraction of a model is zero if and only if the model is non-signalling. The contextuality
criterion of Emeriau requires the following inequality to hold:

CF(e)> 2|M |SF(e). (4)

The intuition is that the degree of signalling (SF) can be regarded as the magnitude of perturbation
on the empirical model. The perturbation in turn affects the contextual fraction (CF) of the model.
Emeriau et al. proved a continuity result that bounds the change to the contextual fraction given the
magnitude of a perturbation of the empirical model. The factor of |M | comes from the fact that every
context in the scenario could be perturbed independently, and thus their effects could accumulate. The
factor of 2 comes from the use of total variation as a distance measure between empirical models. The
total variation distance between two probability distributions is defined as half the sum of the absolute
differences between their probabilities.

1.3 Sheaf Models of Lexical Ambiguities

Lexical ambiguity, where a word has multiple meanings, is one of the most common types of ambiguity in
natural language. One way to formalise lexical ambiguity in natural language is to consider an ambiguous
word as an observable. The possible interpretations of the ambiguous word are treated as the possible
outcomes of the observable. As an example, consider the ambiguous word pitcher, which means a
certain type of jug or or a type of baseball player. These interpretations are modelled as outcomes.
Reading the word pitcher in a piece of text thus becomes the event of performing a measurement. The
word itself becomes an observable. Probabilities are assigned to outcomes by asking a group of readers
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to read a word and rate the likelihood of its interpretations over one another. This way of treating
ambiguous words is inspired by the Bell-CHSH scenario and was first considered in [19, 20]. The authors
considered subject-verb and verb-object phrases where each word in the phrase had at least two possible
interpretations. The measurement contexts were constructed by selecting different pairs of nouns and
verbs in a way similar to how Alice and Bob select their measurements in the Bell-CHSH scenario. The
phrases were uploaded into the crowd-sourcing Amazon Mechanical Turk and probability judgments
were collected from human subjects. The resulting empirical models were all signalling and the authors
had to analyze the data in the framework of Contextuality-by-Default [7, 8, 9]. This setting is able to
compute a degree of contextuality in the presence of signalling. According to this measure, 4.5% of the
phrases (13 out of 290) in [20] were contextual.

2 Methodology

In this section, we introduce the basic anaphoric ambiguity schema and the Winograd Schema. We then
describe how we modelled them using the sheaf framework and the Contextuality-by-Default framework.

2.1 Sheaf Models of Basic Anaphoric Ambiguities

Another type of ambiguity in natural language is anaphoric ambiguity. Here, a pronoun can refer to
different expressions that come before it in a piece of text. For instance, the pronoun it (aka anaphora)
can refer to the dog or the cat (aka anaphors) in the text The dog chased the cat. It barked.. A piece of
text that contains an anaphora together with its possible anaphors is often called a discourse.

In a previous work [15], we discovered that a simpler scenario than Bell-CHSH can be used to model
basic anaphoric ambiguities. This scenario has three (rather than four) observables X = {x1,x2,x3},
which give rise to measurement contexts M = {{x1,x2},{x2,x3},{x3,x1}}. We proved that this scenario
is the only strongly contextual scenario up to relabelling and called the models of the scenario PR prism,
as an analogy to the PR boxes. We then built schemas demonstrating anaphoric ambiguities, where
outcomes O1 and O2 were the choice of referents are noun phrases and the observables X1,X2,X3 are
any of their basic modifiers, i.e. adjective, verb, and prepositional phrases. We refer to the ambiguities
resulting from these constructions as basic anaphoric ambiguities.

We then built schemas in English demonstrating the basic anaphoric ambiguities. The schemas
were instantiated using the large pre-trained transformer-based language model BERT [5]. The masked
word prediction capability of BERT provided us with instances of the modifiers and their probability
distributions.

In order to build discourses with basic anaphoric ambiguities, we used the template shown in Figure
2 which involves two nouns (O1 and O2), and three modifiers (X1, X2, and X3) which can be instantiated
by any of the following types of modifier:

1. adjectives, e.g. red, round, sweet; (an example of which is shown in Figure 2)

2. participial adjectives (verb-derived adjectives), e.g. running, broken, frozen;

3. prepositional phrases, e.g. in the box, on the table, under the bed.

In [15], we constructed 11,052 examples of the schema with adjective modifiers. As the examples
were in general signalling, we used the criterion of [18], which makes use of the signalling fraction to
determine if the examples were contextual. We found that only 350 examples (3.17%) were contextual.
Since the criterion of [18] is a lower bound, the actual percentage of contextual examples could be higher.
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There is an O1 and an O2.

1. It is X1 and the same one is X2.

2. It is X2 and the same one is X3.

3. It is X3 and the other one is X1.

There is an apple and a strawberry.

1. It is red and the same one is round.

2. It is round and the same one is sweet.

3. It is sweet and the other one is red.

There is an apple and a strawberry. The [MASK] is red and the same one is round.

There is an apple and a strawberry. The [MASK] is round and the same one is sweet.

There is an apple and a strawberry. The [MASK] is sweet and the other one is red.

Figure 2: The left box shows the general PR prism schema of basic anaphoric ambiguities. The two
outcomes O1 and O2 are two nouns which are the referents of the anaphor. The three observables X1,
X2, and X3 are the modifiers of the nouns. The right box shows an instance of the schema with adjective
modifiers.

2.2 The Contextuality-by-Default (CbD) framework

In the Contextuality-by-Default framework, one has two important notions: contents qi, which are ques-
tions about the system; and contexts c j, which represent the conditions under which the questions are
asked. A question qi asked in a context c j gives rise to a random variable R j

i taking values in {±1}, and
representing possible answers and their probabilities. All random variables in a given context are jointly
distributed.

The simplest types of CbD systems are n-cyclic. Here, each context has exactly 2 contents, and every
content is exactly in 2 contexts. It has been proven in [12] that these systems are contextual if and only
if:

CNT1 = CNT2 = sodd

({〈
R j

i j
R j

i′j

〉}
j=1,...,n

)
−∆−n+2 > 0 (5)

where ji ̸= j′i for all i and R j
i j
,R j

i′j
are well-defined for all j. Quantities sodd : Rn → R and ∆ are defined

as follows:

sodd (x) = max
σ∈{±1}k;
p(σ=−1)

σ · x ; ∆ =
n

∑
i=1

∣∣∣〈R ji
i

〉
−
〈

R j′i
i

〉∣∣∣ (6)

where p(σ) = ∏
n
i=1 σi (p is the parity function of σ ). The quantity ∆ is called Direct Influence and it

measures the degree of signalling in the system (in a non-signalling system ∆ = 0). In the Bell-CHSH
scenario, n = 4 and Sodd becomes the maximum violation of the inequality.

Following Wang et al. [19, 20], instead of using the signalling fraction of sheaf theoretic models
for our basic anaphoric ambiguities, we use the CbD framework. We modelled our basic anaphoric
ambiguity dataset, described in Section 3.1, by taking qi to be the anaphors, i.e. the adjective, verb, and
prepositional phrase modifiers. We took c j to be the different sentences in which the anaphors appear.

2.3 Sheaf Theoretic Models of the Original Winograd Schema

The Winograd Schema Challenge (WSC) consists of 285 descriptions with anaphoric ambiguities in
them, followed by questions about the anaphors. The questions cannot be answered by syntactic rea-
soning only and extra information about the semantic context of the descriptions are needed. WSC was
proposed as a test for human intelligence and an alternative to Turing’s test in 2012 [13]. An example
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description is The trophy doesn’t fit into the suitcase because it’s too [small / large]. The questions fol-
lowing this description are What is too [small / large]? The correct answer for small is suitcase, and for
large is trophy . In 2014, a cash prize was put forwards for an AI that could solve the WSC with an accu-
racy close to humans. The prize was withdrawn in 2018 after failures of machine learning algorithms of
the time. In 2019, however, the deep learning transformer algorithm RoBERTa [14] fine-tuned on large
amounts of data, got close to solving it. Nevertheless, WSC still poses a challenge for AI’s that do not
have access to the large resources of these algorithms [11]. In this subsection, we describe and model
the challenge. A valid Winograd schema must satisfy the following requirements:

1. It consists of a pair of sentences. The first sentence contains a special word. The second sentence
is obtained by replacing the special word with an alternate word. In the trophy-suitcase example,
the special word is small and the alternate word is large.

2. There should be two noun phrases in the sentences. In the trophy-suitcase example, the two noun
phrases are the trophy and the suitcase.

3. A pronoun must appear in the sentences. The pronoun must agree with the two noun phrases in
terms of number and gender. In the trophy-suitcase example, the pronoun is it which agrees with
both the trophy and the suitcase in terms of number and gender.

4. The referent of the pronoun should be easily identifiable from the sentence. The correct referent
should be different in the two sentences.

5. Both sentences in the pair must be read in a natural way, i.e. similar to what appears in common
sources of text such as news articles and Wikipedia.

Previous work modelled an ambiguous word as an observable, but they had two or more of them. In
our case, we have ambiguous pronouns, but only one. In order not to end up with a scenario with only
one observable, we define an observable to be a pair: (pronoun, special word) or (pronoun, alternate
word). The possible outcomes of each of these observables are the candidate referents of the pronoun.

Definition 1 (Winograd Schema scenario) Given a Winograd Schema with two noun phrases A and B;
an ambiguous pronoun p which refers to either A or B; a special word (s) and an alternate word (a), the
corresponding measurement scenario is defined by the data:

• observables X = {(p,s),(p,a)};

• contexts M =
{
{(p,s)},{(p,a)}

}
;

• outcomes O = {A,B}.

Such a measurement scenario is called a Winograd Schema scenario, or a WS scenario in short.

With the trophy-suitcase example, the measurement scenario would be given by the data:

• observables X = {(it, large), (it, small)};

• contexts M =
{
{(it, large)}, {(it, small)}

}
;

• outcomes O = {trophy, suitcase}.

One can see that there is no overlap between the contexts and thus the empirical model corresponding to
the schema is deterministic. It is shown in [6] that deterministic systems are not contextual and thus WS
scenarios are not either.
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Instruction: Please read the following short story which contains some ambiguities, then select the
interpretations you think are the most appropriate.

Story: A and B belong to the same ${word1} species of animals. In a hot afternoon in south Sahara,
one of them was very hungry. They notice each other when they were roaming in the field. In a while,
one of them is no longer ${word2}.

Question: The following are 4 different interpretations of the story. Please select the 2 most
appropriate interpretations.

 

 

A was the very hungry ${word1} animal. A is no longer ${word2}.
A was the very hungry ${word1} animal. B is no longer ${word2}.
B was the very hungry ${word1} animal. A is no longer ${word2}.
B was the very hungry ${word1} animal. B is no longer ${word2}.

Please provide your reasoning here.

(optional) Is there any feedback you would like to share with us?

Submit

Figure 3: A screenshot of the template of the questionnaire used to collect human judgments on the
generalised Winograd Schema.

2.4 Extending Winograd to Generalised Winograd

We generalised the Winograd Schema scenario such that contextuality can be exhibited in a recent
work [16]. The original WS is analogous to an imaginary physical experiment with only one experi-
menter, who decides whether to measure the pronoun with the special word, or with the alternate word,
by choosing between the two observables: (p,s) and (p,a). A natural way of generalising it would be
to introduce one more experimenter, resulting in the Bell-CHSH scenario. This means that we need to
add one more pronoun, one more special word and its alternate word. We use the subscript 1 to denote
components relating to the first pronoun and the subscript 2 to those relating to the second pronoun. We
obtain a new set of requirements for the resulting schema, which we call generalised Winograd Schema:

1. A generalised Winograd schema consists of four sentences. The first sentence contains two special
words s1 and s2. Similar to the original Winograd Schema, s1 can be replaced by an alternate word
a1, and s2 can be replaced by a2. Replacing special words with alternate words creates the rest of
the four sentences.

2. There are two pairs of noun phrases. The first pair can be identical to the second pair.

3. There are two pronouns in the sentences. The first one refers to one of the noun phrases in the first
pair of noun phrases. The second pronoun refers to either one of the noun phrases in the second
pair of noun phrases.

4. All four sentences should be natural to read.

Definition 2 (Generalised Winograd Schema scenario) Given a Generalised Winograd Schema with
two noun phrases A and B; two ambiguous pronouns p1 and p2 can each refers to either A or B; two
special words (s1) and (s2); two alternate words (a1) and (a2), the corresponding measurement scenario
is defined by the data:

• observables X = {(p1,s1),(p1,a1),(p2,s2),(p2,a2)}
• contexts M =

{
{(p1,s1),(p2,s2)},{(p1,s1),(p2,a2)},{(p1,a1),(p2,s2)},{(p1,a1),(p2,a2)}

}
;

• outcomes O = {A,B}.
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Such a measurement scenario is called a Generalised Winograd Schema scenario, or a generalised WS
scenario in short.

The generalised WS scenario is isomorphic, i.e. identical upon relabelling, to the Bell-CHSH scenario
and should thus be able to host contextuality.

3 Results

3.1 Basic Anaphoric Ambiguities revisited

As discussed in Section 2.1, the criterion of [18] is sufficient but not necessary. To address this issue, we
reanalysed the basic anaphoric ambiguities dataset using the CbD framework [7, 8, 9], which provides
a tight criterion for contextuality. Indeed our analysis revealed that 9,159 examples (82.87%) were
contextual in the CbD framework. Distributions of the signalling fractions and the Direct Influence of
the CbD framework are shown in Figure 4.
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Figure 4: Distributions of 11,052 examples of basic anaphoric ambiguities. The top histogram shows the
distribution of the signalling fractions. We observed that 350 examples (3.17%) have a signalling fraction
less than 1/6, which is the threshold for conclusive contextuality according to the criterion of [18]. The
bottom histogram shows the distribution of the Direct Influence of the CbD framework. We observed that
9159 examples (82.87%) have a Direct Influence of less than 2, which is the threshold for contextuality
in the CbD framework.

3.2 Human Judgments on the Generalised Winograd Schema

We constructed an example of the generalised Winograd Schema and collected human judgments on this
example on the crowd-sourcing platform Amazon Mechanical Turk in the form of a questionnaire. The
example is:
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Figure 5: A histogram of violation of Bell-CHSH inequality for 100,000 bootstrap samples.

A and B belong to the same [cannibalistic / herbivorous]1 species of animal. On a hot
afternoon south of Sahara, one of them1 was very hungry. They noticed each other when
they were roaming in the field. In a while, one of them2 is no longer [hungry / alive]2.

There were four versions of the questionnaire, each corresponding to one of the four contexts in the gen-
eralised WS scenario. The respondents were asked to read the example and answer a question about the
correct referents, A or B, of the two referring phrases one of them1 and one of them2. A screenshot of
the questionnaire is shown in Figure 3. The placement holders ${word1} and ${word2} are instantiated
with the two special words or the alternate words of the generalised Winograd Schema. In this exam-
ple, ${word1} can be either cannibalistic or herbivorous and ${word2} can be either hungry or alive.
Four versions of the questionnaire were created, each corresponding to one of the four contexts in the
generalised WS scenario.

Since each referring phrase can be interpreted in two ways, there are 4 possible combinations of
interpretations, (A, A), (A, B), (B, A), (B, B), of the two referring phrases. The symmetry between A
and B in the example ensures that the combinations (A, A) and (B, B) are equally plausible and (A, B)
and (B, A) are also equally plausible. Therefore we asked the respondents to pick two out of the four
combinations. This design choice also allows the detection of invalid answers, i.e. answers that are not
symmetric with respect to A and B.

A total of 410 responses were collected on 20 Oct and 23 Nov 2022 from Amazon Mechanical Turk;
110 were for the context (cannibalistic, hungry) and 100 each for the rest of the three contexts. From
these, 348 were valid. The respondents were each rewarded USD 1.00, regardless of the validity of
their responses. The valid data was used to build an estimated probability distribution for each of the
four contexts. The resulting empirical model is shown in Table 1. The model violates the Bell-CHSH
inequality by 0.192 with a standard deviation of 0.176 and is thus contextual. We conducted bootstrap
resampling to establish the statistical significance of this result. The distribution of the violation of the
resampled models is shown in Figure 5. We see that of 87% of the models have a positive violation with
a standard deviation of 0.176. Our experimental model is thus contextual with a significance level of
87%.
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a) (A, A) (A, B) (B, A) (B, B)
(canni, hungry) 0.402 0.097 0.097 0.402
(canni, alive) 0.044 0.455 0.455 0.044
(herbi, hungry) 0.345 0.154 0.154 0.345
(herbi, alive) 0.344 0.155 0.155 0.344

b) (A, A) (A, B) (B, A) (B, B)
. . . 1/2 0 0 1/2
. . . 0 1/2 1/2 0
. . . 1/2 0 0 1/2
. . . 1/2 0 0 1/2

Table 1: (a) Empirical model constructed with human judgments from Amazon Mechanical Turk. The
violation of Bell’s inequality of the model is 0.192 ± 0.176. For brevity, the special word cannibalistic
is shortened to canni and the alternate word herbivorous is shortened to herbi. (b) Empirical model of
the PR box.

4 Discussion and Future Work

We assumed that the alphabetic symbols A,B used to model the generalised winograd scenarios are lin-
guistic variables and thus interchangeable. This had the advantage that the model became non-signalling
and thus the contextual fraction remains a valid measure of contextuality. Symmetrising psychological
experiments has its criticisms, see [3]. We are, however, unaware of the existence of similar criticisms to
a linguistic setting. The symmetry in the outcomes allows the violation to saturate the bound defined by
CF [1] and the following equality is attained

max
{

0,
1
2

violation of Bell-CHSH inequality
}
= CF. (7)

The CbD contextuality measures CNT1 and CNT2 coincide with the above degree of violation [12].
Thus, our model is considered contextual in both the sheaf-theoretic framework and the CbD framework.

The approach presented in this paper consists of deliberately constructing sentences that exhibit con-
textuality. One may criticise this as producing unnatural text. In future work, we will find naturally
occurring language data that exhibits contextuality with the help of state-of-the-art generative large lan-
guage models such as GPT-4 [17].

Acknowledgements

We are grateful to Daphne Wang for insightful discussions and the anonymous reviewers for their
constructive comments. KL is supported by the Engineering and Physical Sciences Research Council
[grant number EP/S021582/1]. MS is supported by the Royal Academy of Engineering research chair
RCSRF2122-14-152 on Engineered Mathematics for Modelling Typed Structures.

References

[1] Samson Abramsky, Rui Soares Barbosa & Shane Mansfield (2017): Contextual Fraction as a Measure of
Contextuality. Physical Review Letter 119, p. 050504, doi:10.1103/PhysRevLett.119.050504.

[2] J. S. Bell (1964): On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1(3), pp. 195–200,
doi:10.1103/PhysicsPhysiqueFizika.1.195.

[3] Víctor H. Cervantes & Ehtibar N. Dzhafarov (2018): Snow queen is evil and beautiful: Experimental evidence
for probabilistic contextuality in human choices. Decision 5(3), pp. 193–204, doi:10.1037/dec0000095.

https://doi.org/10.1103/PhysRevLett.119.050504
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1037/dec0000095


72 Sheaf Theory and Natural Language

[4] John F. Clauser, Michael A. Horne, Abner Shimony & Richard A. Holt (1969): Proposed Ex-
periment to Test Local Hidden-Variable Theories. Physical Review Letters 23(15), pp. 880–884,
doi:10.1103/PhysRevLett.23.880.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee & Kristina Toutanova (2019): BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 4171–4186, doi:10.18653/v1/N19-1423.

[6] Ehtibar N. Dzhafarov (2019): The Contextuality-by-Default View of the Sheaf-Theoretic Approach to Con-
textuality. doi:10.48550/arXiv.1906.02718.

[7] Ehtibar N. Dzhafarov & Janne V. Kujala (2013): All-Possible-Couplings Approach to Measuring Probabilis-
tic Context. PLoS ONE 8(5), p. e61712, doi:10.1371/journal.pone.0061712.

[8] Ehtibar N. Dzhafarov & Janne V. Kujala (2017): Contextuality-by-Default 2.0: Systems with Binary Ran-
dom Variables. In Jose Acacio de Barros, Bob Coecke & Emmanuel Pothos, editors: Quantum Interaction,
Springer International Publishing, pp. 16–32, doi:10.1007/978-3-319-52289-0_2.

[9] Ehtibar N. Dzhafarov, Janne V. Kujala & Victor H. Cervantes (2015): Contextuality-by-Default: A Brief
Overview of Ideas, Concepts, and Terminology. Lecture Notes in Computer Science 9535, 12-23, 2016,
doi:10.1007/978-3-319-28675-4-2.

[10] Albert Einstein, Boris Podolsky & Nathan Rosen (1935): Can Quantum-Mechanical Description of Physical
Reality Be Considered Complete? Phys. Rev. 47, pp. 777–780, doi:10.1103/PhysRev.47.777.

[11] Vid Kocijan, Ernest Davis, Thomas Lukasiewicz, Gary Marcus & Leora Morgenstern (2023): The defeat of
the Winograd Schema Challenge. Artificial Intelligence 325, p. 103971, doi:10.1016/j.artint.2023.103971.

[12] Janne V. Kujala & Ehtibar N. Dzhafarov (2019): Measures of Contextuality and Noncontextual-
ity. Philosophical Transactions of the Royal Society A 377:20190149, 2019 377(2157), p. 20190149,
doi:10.1098/rsta.2019.0149.

[13] Hector J. Levesque, Ernest Davis & Leora Morgenstern (2012): The Winograd Schema Challenge. In: Pro-
ceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reason-
ing, KR’12, AAAI Press, pp. 552–561, doi:10.5555/3031843.3031909.

[14] Zhuang Liu, Wayne Lin, Ya Shi & Jun Zhao (2021): A Robustly Optimized BERT Pre-training Approach with
Post-training. In Sheng Li, Maosong Sun, Yang Liu, Hua Wu, Liu Kang, Wanxiang Che, Shizhu He & Gaoqi
Rao, editors: Chinese Computational Linguistics, Springer International Publishing, Cham, pp. 471–484,
doi:10.1007/978-3-030-84186-7_31.

[15] Kin Ian Lo, Mehrnoosh Sadrzadeh & Shane Mansfield (2022): A Model of Anaphoric Ambiguities using
Sheaf Theoretic Quantum-like Contextuality and BERT. EPTCS 366, pp. 23–34, doi:10.4204/EPTCS.366.5.

[16] Kin Ian Lo, Mehrnoosh Sadrzadeh & Shane Mansfield (2023): Generalised Winograd Schema
and its Contextuality. Electronic Proceedings in Theoretical Computer Science 384, pp. 187–202,
doi:10.4204/EPTCS.384.11.

[17] OpenAI (2024): GPT-4 Technical Report. doi:10.48550/arXiv.2303.08774.
[18] Kim Vallée, Pierre-Emmanuel Emeriau, Boris Bourdoncle, Adel Sohbi, Shane Mansfield & Damian

Markham (2024): Corrected Bell and Non-Contextuality Inequalities for Realistic Experiments. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382(2268), p.
20230011, doi:10.1098/rsta.2023.0011.

[19] Daphne Wang, Mehrnoosh Sadrzadeh, Samson Abramsky & Victor Cervantes (2021): On the Quantum-
like Contextuality of Ambiguous Phrases. In: Proceedings of the 2021 Workshop on Semantic Spaces at the
Intersection of NLP, Physics, and Cognitive Science (SemSpace), Association for Computational Linguistics,
Groningen, The Netherlands, pp. 42–52, doi:10.48550/arXiv.2107.14589.

[20] Daphne Wang, Mehrnoosh Sadrzadeh, Samson Abramsky & Víctor H. Cervantes (2021): Analysing Ambigu-
ous Nouns and Verbs with Quantum Contextuality Tools. Journal of Cognitive Science 22(3), pp. 391–420,
doi:10.17791/jcs.2021.22.3.391.

https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.1906.02718
https://doi.org/10.1371/journal.pone.0061712
https://doi.org/10.1007/978-3-319-52289-0_2
https://doi.org/10.1007/978-3-319-28675-4-2
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1016/j.artint.2023.103971
https://doi.org/10.1098/rsta.2019.0149
https://doi.org/10.5555/3031843.3031909
https://doi.org/10.1007/978-3-030-84186-7_31
https://doi.org/10.4204/EPTCS.366.5
https://doi.org/10.4204/EPTCS.384.11
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1098/rsta.2023.0011
https://doi.org/10.48550/arXiv.2107.14589
https://doi.org/10.17791/jcs.2021.22.3.391


S. Alves and I. Mackie (Eds.): 13th International Workshop

on Developments in Computational Models 2023 (DCM’23).

EPTCS 408, 2024, pp. 73–89, doi:10.4204/EPTCS.408.5

© H.-M. Ho & K. Madnani

This work is licensed under the

Creative Commons Attribution License.

When Do You Start Counting?
Revisiting Counting and Pnueli Modalities in Timed Logics

Hsi-Ming Ho

Department of Informatics, University of Sussex
United Kingdom

hsi-ming.ho@sussex.ac.uk

Khushraj Madnani

Max Planck Institute for Software Systems
Germany

kmadnani@mpi-sws.org

Pnueli first noticed that certain simple ‘counting’ properties appear to be inexpressible in popular

timed temporal logics such as Metric Interval Temporal Logic (MITL). This interesting observation

has since been studied extensively, culminating in strong timed logics that are capable of expressing

such properties yet remain decidable. A slightly more general case, namely where one asserts the

existence of a sequence of events in an arbitrary interval of the form 〈0, 1〉 (instead of an upper-

bound interval of the form [0, 1〉, which starts from the current point in time), has however not

been addressed satisfactorily in the existing literature. We show that counting in [0, 1〉 is in fact as

powerful as counting in 〈0, 1〉; moreover, the general property ‘there exist G′, G′′ ∈ � such that G′ ≤ G′′

and k(G′, G′′) holds’ can be expressed in Extended Metric Interval Temporal Logic (EMITL) with

only [0, 1〉.

1 Introduction

Timed logics. Temporal logics provide constructs to specify qualitative ordering between events in time.

Timed logics extend classical temporal logics with the ability to specify quantitative timing constraints

between events. Metric Interval Temporal Logic (MITL) [2] is amongst the best studied of timed logics. It

extends the ‘until’ (U) and ‘since’ (S) modalities of Linear Temporal Logic (LTL) [37] with non-singular

intervals to specify timing constraints. For example, %U�& states that an event where & holds should

occur in the future within a time interval �, and % should hold continuously till then.

Specifying multiple events. In many practical scenarios, e.g, those involving resource-bounded com-

putations, the ability to specify not just one but a sequence of events within a given time interval can

be crucial. For example, in a multi-threaded environment, a desired property for scheduling algorithms

could be to have at most : context switches in every " time units. Such properties, however, cannot be

expressed in MITL [9,18,27]. In particular, the counting (C and
←−
C) and Pnueli (P and

←−
P ) modalities that

specify event occurrences within the next or previous unit interval (i.e. within [C0, C0 + 1) or (C0− 1, C0],
where the current time is C0) are studied in [18], and it turned out that for MITL extended with these

modalities (called TLC and TLP, respectively), the satisfiability problem remains EXPSPACE-complete.1

Moreover, it turned out that TLC and TLP, while the latter is syntactically more general, are equally

expressive in the continuous semantics. This is shown by proving that both TLC and TLP are expressively

complete for a natural fragment of Monadic First-Order Logic of Order and Metric (FO[<,+1]) called

Q2MLO, where one can specify that the sequence of events between the current time C0 and C ∈ C0 + � (for

a non-singular interval �) satisfies a first-order formula o(G0, G).

1The exponential blow-up comes from the succinct encodings of both constants in intervals of the form 〈0, 1〉 in MITL and

constants : in C:
�
; for more details, see [38].
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LTL = Propositional Logic∪ {i1 Ui2, i1 Si2 | i1, i2 ∈ LTL}

MITL = LTL∪ {i1 U� i2, i1 S� i2 | i1, i2 ∈ MITL, � = 〈0, 1〉, 0, 1 ∈ N∪ {∞}, 0 < 1}

TLC = MITL+ {C:
� i,
←−
C :

� i | i ∈ TLC, � = [0, 1〉, 1 ≥ 1, : ≥ 1}

TLP = MITL+ {P:
� i,
←−
P :

� i | i ∈ TLP, � = [0, 1〉, 1 ≥ 1, : ≥ 1}

TLCI = MITL+ {C:
� i,
←−
C :

� i | i ∈ TLCI, � = 〈0, 1〉, 0, 1 ∈ N∪ {∞}, 0 < 1}

TLPI = MITL+ {P:
� i,
←−
P :

� i | i ∈ TLPI, � = 〈0, 1〉, 0, 1 ∈ N∪ {∞}, 0 < 1}

Fig. 1: Some timed temporal logics considered in this paper. Note that the definitions of TLC and TLP

in [18] are less general but equally expressive in the continuous semantics.

Expressiveness. It is of course trivial to see that Q2MLO subsumes TLC, but it is unclear (at least to

us) whether Q2MLO can express the more general modalities C:
� and their past counterparts, which count

event occurrences within arbitrary non-singular intervals � of the form 〈0, 1〉 with 0 ≤ 0 < 1—on the

face of it, we seem to need a first-order formula o(G1, G2) along with two quantified instants C1, C2 ∈ C0 + �,
which is not allowed by the syntax of Q2MLO. In [38], it is claimed (without proof) that in the continuous

semantics, MITL extended with such modalities (TLCI) is equally expressive as the fragment with only

the most basic versions of the counting modalities (allowing only � = (0,1)). By contrast, Krishna et

al. [27] showed that in the pointwise semantics, C:
� with � = 〈0, 1〉 cannot be expressed in the future

fragment of TLCI with only counting modalities with � = [0, 1〉. In this paper, we reconcile these results

and reaffirm the claim, i.e. we prove that C:
� with � = 〈0, 1〉 is indeed expressible in (future) Q2MLO in

both the pointwise and continuous semantics. This suggests that Q2MLO is a very expressive and robust

logic in both the pointwise and continuous semantics. From [22], we also know that in the pointwise

semantics, C:
� with � = 〈0, 1〉 is expressible in the fragment of TLCI with (both future and past) counting

modalities with � = [0, 1〉.

Contributions. We argue that the folklore belief—C:
� with � = 〈0, 1〉 can be rewritten into formulae

using only C:
� with � = [0, 1〉 in about the same way as U� with � = 〈0, 1〉 can be rewritten into U� with

� = [0, 1〉—is not correct. We however show that by allowing automata modalities (or, equivalently,

Q2MLO or Q2MSO [28]), one can indeed enforce that a sequence of events specified lies in the required

interval; the proof is based on a generalisation of the techniques developed in [21] to show that Extended

Metric Interval Temporal Logic (EMITL [42]) remains as expressive when restricted to only unilateral

intervals, i.e. in the form of [0, 1〉 or 〈0,∞). Building upon this insight, we ‘correct’ the folklore belief

by showing that C:
� with � = 〈0, 1〉 can actually be expressed in C:

� with � = [0, 1〉 (without using
←−
C :

� ) in

a more involved way (in the pointwise semantics as well, under some extra conditions).

Related work. Hirshfeld and Rabinovich [15,16,17,18,19,20,38] pioneered the research on decidable

timed logics that extends MITL with counting and Pnueli modalities, which culminates in the strong

metric predicate logic Q2MLO. Hunter [23] later proved that if MTL [25] (which is exactly like MITL,

but singular �’s are allowed) is extended in the same way, or equivalently if singular �’s are allowed in

Q2MLO, one obtains a logic that is expressively complete for FO[<,+1] (in the continuous semantics).

In the context of temporal logics and model checking, there are also some closely related results that

are not directly comparable with the present paper. Extending LTL with threshold counting is first done



H.-M. Ho & K. Madnani 75

by Laroussinie et al. [29] where the ‘until’ (U) modality is extended with counting specifications. The

timed versions of such modalities UT� are studied by Krishna et al. in [27]. Another type of counting

specification is modulo counting, which counts the number of events (seen so far) satisfying some monadic

predicate modulo a given constant # . LTL extended with modulo counting modalities is first considered

by Baziramwabo et al. [6], and Lodaya and Sreejith [30] showed that # can be encoded succinctly yet

still retaining the PSPACE upper bound. Bednarczyk and Charatonik [7] studied the complexity of the

satisfiability problem of the two variable fragment of first-order logic extended with modulo counting

quantifiers interpreted over both trees and words. Similar operations also appear in other contexts, such

as temporal aggregation [8] in databases and knowledge graphs.

2 Preliminaries

We give a brief account of the required background on timed logics. For more detailed reviews and

comparisons of relevant results, we refer the readers to [10, 17]. Note that, in contrast with [18, 38, 42],

we focus mainly on the future fragments of metric temporal logics.

Timed languages. A timed word over a finite alphabet Σ is an l-sequence of events (f8, g8)8≥1 over

Σ×R≥0 with (g8)8≥1 a non-decreasing sequence of non-negative real numbers (‘timestamps’) such that

for each A ∈ R≥0, there is some 9 ≥ 1 with g9 ≥ A (i.e. we require all timed words to be ‘non-Zeno’). We

denote by )Σl the set of all the timed words over Σ. A timed language is a subset of )Σl .

Metric predicate logics. Monadic Second-Order Logic of Order and Metric (MSO[<,+1]) [4, 42]

formulae over a finite set of atomic propositions (monadic predicates) AP are generated by

o ::= ⊤ | - (G) | G < G′ | 3 (G, G′) ∈ � | o1∧o2 | ¬o | ∃G o | ∃- o

where - ∈ AP, G, G′ are first-order variables, 3 is the distance predicate, � ⊆ R≥0 is an interval with

endpoints in N∪ {∞}, and ∃G, ∃- are first- and second-order quantifiers, respectively.We write, e.g.,

(0, 1〉, to refer to (0, 1) or (0, 1]. We say that G (respectively -) is a free first-order (respectively second-

order) variable in o if it does not appear in the scope of ∃G (respectively ∃-) in o. We usually write

o(G1, . . . , G<, -1, . . . , -=) for o, if G1, . . . , G< and -1, . . . , -= are free in o. We say that an MSO[<,+1]

formula o(G) with only a free first-order variable G is a future formula if all the quantifiers appearing in

o(G) are relativised to (G,∞), i.e. if ∃G′ \ (respectively ∀G′ \) is a subformula of o(G), then \ is of the form

G < G′ ∧ \′ (respectively G < G′ =⇒ \′). The fragment of MSO[<,+1] without second-order quantifiers

is the Monadic First-Order Logic of Order and Metric (FO[<,+1]). The fragment of FO[<,+1] without

the distance predicate is the Monadic First-Order Logic of Order (FO[<]). Q2MLO [15] is a fragment

of FO[<,+1] obtained from FO[<] by allowing only non-singular �’s (for the sake of decidability [4, 33])

and a restricted use of distance predicates. More precisely, Q2MLO is the smallest syntactic fragment of

FO[<,+1] satisfying the following conditions:

• All FO[<] formulae o(G) with only a free first-order variable G are Q2MLO formulae.

• If o(G0, G) is an FO[<] formula (possibly with Q2MLO formulae used as monadic predicates) where

G0, G are the only free first-order variables, then

– ∃G
(

G0 < G∧ 3 (G0, G) ∈ � ∧o(G0, G)
)

and

– ∃G
(

G < G0∧ 3 (G0, G) ∈ � ∧o(G0, G)
)

,
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i1

i2

Fig. 2: The NFA AU for i1 U� i2.

i i i

Fig. 3: The NFA AC,3 for C3
� i.

where � is non-singular, are also Q2MLO formulae (with free first-order variable G0).

The future fragment Q2MLOfut is obtained by allowing only o(G) and ∃G
(

G0 < G∧3 (G0, G) ∈ �∧o(G0, G)
)

above and also requiring them to be future formulae. In the same way we can define the corresponding

fragments MSO[<], Q2MSO, and Q2MSOfut [28] of MSO[<,+1].

Metric temporal logics. A non-deterministic finite automaton (NFA) overΣ is a tupleA = 〈Σ, (, B0,Δ, �〉
where ( is a finite set of locations, B0 ∈ ( is the initial location, Δ ⊆ (×Σ× ( is the transition relation,

and � is the set of final locations. We say that A is deterministic (a DFA) iff for each B ∈ ( and f ∈ Σ,

|{(B,f, B′) | (B,f, B′) ∈ Δ}| ≤ 1. A run ofA on f1 . . . f= ∈ Σ
+ is a sequence of locations B0B1 . . . B= where

there is a transition (B8,f8+1, B8+1) ∈ Δ for each 8, 0 ≤ 8 < =. A run of A is accepting iff it ends in a final

location. A finite word is accepted by A iff A has an accepting run on it.

(Future) Extended Metric Interval Temporal Logic (EMITLfut) [42] formulae over a finite set of atomic

propositions AP are generated by

i ::= ⊤ | % | i1∧ i2 | ¬i | A� (i1, . . . , i=)

where % ∈ AP,A is an NFA over the =-ary alphabet {1, . . . , =}, and � ⊆ R≥0 is a non-singular interval with

endpoints in N∪{∞}.2 We sometimes omit the subscript � when � = [0,∞) and write pseudo-arithmetic

expressions for lower or upper bounds, e.g., ‘< 3’ for [0,3). We also omit the arguments i1, . . . , i= and

simply write A� , if clear from the context. (Future) Metric Interval Temporal Logic (MITLfut) [2] is the

fragment of EMITLfut with only the ‘until’ modalities defined by the NFA AU in Fig. 2 (usually written

in infix notation as i1 U� i2). We also use the usual shortcuts like ⊥ ≡ ¬⊤, X� i ≡ ⊥U� i, F� i ≡ ⊤U� i,

F� i ≡ i∨F� i, G� i ≡ ¬F� ¬i, and i1 R� i2 ≡ ¬
(

(¬i1)U� (¬i2)
)

. (Future) Linear Temporal Logic

(LTLfut) [37] is the fragment of MITLfut where all modalities are labelled by [0,∞). TLCfut [18] is the

fragment of EMITLfut obtained from MITLfut by adding the counting modalities C:
� , where � is a non-

singular upper-bound interval (i.e. of the form [0, 1〉 for some 1 ∈ N>0∪ {∞}) and : ≥ 1.3 For example,

C3
� i (‘i happens at least 3 times in � in the future’) is defined by the NFA AC,3 in Fig. 3.

The definitions above are for the future versions of the modalities, but we note that we can also define

the past versions of the modalities and correspondingly the full fragments of logics (denoted by names

with no ‘fut’ superscripts), e.g., EMITL [42] and MITL [3].

Semantics. With each timed word d = (f8, g8)8≥1 over ΣAP = 2AP we associate a structure "d whose

universe*d is {8 | 8 ≥ 1}. The order relation< and atomic propositions in AP are interpreted in the expected

way, e.g., %(8) holds in "d iff % ∈ f8. The distance predicate 3 (G, G′) ∈ � holds iff |gG − gG′ | ∈ �. The

satisfaction relation for MSO[<,+1] is defined inductively as usual: we write "d, 91, . . . , 9<, �1, . . . , �= |=
o(G1, . . . , G<, -1, . . . , -=) (or simply d, 91, . . . , 9<, �1, . . . , �= |= o(G1, . . . , G<, -1, . . . , -=)) if 91, . . . , 9< ∈*d,

2For notational simplicity, we also use i1, . . . , i= directly as transition labels (instead of 1, . . . , =) in the figures.

3This definition is a mild generalisation of the modalities C� in [18,19] where � must be (0,1). Note that TLC is equivalent

to the unilateral fragment of TLCI (defined later in Section 3), as intervals of the form 〈0,∞) can easily be eliminated in general.
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�1, . . . , �= ⊆ *d, and o( 91, . . . , 9<, �1, . . . , �=) holds in "d. We say that two MSO[<,+1] formulae o1 (G)
and o2 (G) are equivalent if for all timed words d = (f8, g8)8≥1 and 9 ∈*d,

d, 9 |= o1 (G) ⇐⇒ d, 9 |= o2 (G) .

Given a EMITLfut formula i over AP, a timed word d = (f8, g8)8≥1 over ΣAP = 2AP and a position 8 ≥ 1,

we define the satisfaction relation d, 8 |= i as follows:

• d, 8 |=⊤;

• d, 8 |= ? iff ? ∈ f8;

• d, 8 |= i1∧ i2 iff d, 8 |= i1 and d, 8 |= i2;

• d, 8 |= ¬i iff d, 8 6 |= i;

• d, 8 |=A� (i1, . . . , i=) iff there exists 9 ≥ 8 such that (i) g9 − g8 ∈ � and (ii) there is an accepting run

of A on 08 . . . 0 9 where d, ℓ |= i0ℓ (0ℓ ∈ {1, . . . , =}) for each ℓ, 8 ≤ ℓ ≤ 9 .

We say that d satisfies i (written d |= i) iff d,1 |= i.

The definitions above correspond to the so-called pointwise semantics of timed logics [4, 5, 34, 42].

It is also possible to define the continuous semantics of timed logics over timed words by taking R≥0

instead of {8 | 8 ≥ 1} as the universe and 3 (G, G′) = |G − G′ |; we refer the readers to [9, 11, 32] for details.

While we focus on the former in this paper, it is clear that all of our results carry over to the continuous

interpretations of timed logics where system behaviours are modelled as (finitely variable) signals.

Expressiveness. We say that a metric logic !′ is expressively complete for a metric logic ! iff for any

formula o(G) ∈ !, there is an equivalent formula i(G) ∈ !′.4 We say that !′ is at least as expressive as

(or more expressive than) ! (written ! ⊆ !′) iff for any formula o(G) ∈ !, there is an initially equivalent

formula i(G) ∈ !′ (i.e., o(1) and i(1) evaluate to the same truth value for any timed word). If ! ⊆ !′

but !′ * ! then we say that !′ is strictly more expressive than ! (or ! is strictly less expressive than

!′). We write ! ≡ !′ iff ! ⊆ !′ and !′ ⊆ !. For the purpose of this paper, the most relevant known

expressiveness results are EMITLfut ≡ Q2MSOfut and aperiodic [31, 40] EMITLfut ≡ Q2MLOfut [28], and

thus we will freely mix the use of them.

3 Expressing counting modalities

Counting events in arbitrary intervals. We start by giving an alternative and more general definition

(in terms of FO[<,+1]) of what do we mean by counting events in an interval �. Note that the following

definition of C:
� i is equivalent to the definition based on automata modalities in Section 2 for the special

case where � is of the form [0, 1〉.

Definition 1 (TLCIfut [38]). TLCIfut is obtained from MITLfut by adding the (one-place) modalities C:
�

defined by the following formula (where � is non-singular):

o
C,:

�
(G, -) = ∃G1 . . . ∃G:

(

G < G1 < · · · < G: ∧ 3 (G, G1) ∈ � ∧ 3 (G, G:) ∈ � ∧
∧

1≤8≤:

- (G8)
)

.

TLCI is obtained by adding the past counterparts of the modalities above (defined symmetrically).

4Formulae of metric temporal logics in this paper are MSO[<,+1] formulae with a single free first-order variable.
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We first note that while o
C,:

�
(G, -) is in FO[<,+1], it is not in Q2MLO (at least syntactically), thus it

is not immediately clear how to express it in TLC (with both the future and past modalities) even in the

continuous semantics, as the translation from Q2MLO to TLC in [18,20] does not apply. It should also be

clear that the trivial attempt of simply decorating AC,: with an arbitrary non-singular � would not give a

formula equivalent to o
C,:
�

. For example, the following timed word

(∅,0) ({%},0.5) ({%},1.5) ({%},2.5) ({%},3.5) . . .

satisfies AC,3

(2,3)
%, but clearly d,1 6|= o

C,3

(2,3)
(G, -). In [38], it is stated that TLC is as expressive as TLCI,

but no complete proof is given. In [12] the following equivalence, which is reminiscent of how MITL and

Q2MLO with arbitrary non-singular intervals can be reduced to their base versions using only � = (0,1)
in the continuous semantics [14, 16, 18], is proposed:

C:
(0,0+1) % ⇐⇒ G(0,1) F(0,0) C

:
(0,1) % . (1)

This is, however, not correct in either the pointwise or the continuous semantics—for instance, if : = 2

and 0 = 2, then any timed word with only one event at g1 +1, two %-events in g1 + (1,2), and no %-event

in g1 + (2,3) satisfies the right-hand side of (1), but not its left-hand side; if : = 2 and 0 = 1, then

(∅,0) (∅,0.6) (∅,0.7) ({%},0.8) ({%},0.9) (∅,1.6) ({%},1.7) ({%},2.1) . . .

satisfies the right-hand side of (1), but not its left-hand side.

In the study of timed logics, it is common to rule out constraints involving singular (‘punctual’)

intervals as they can easily render the satisfiability problem undecidable (or have prohibitively high

complexity [34]). If we do however allow singular intervals, then the following equivalence clearly holds

in the continuous semantics:

C:
(0,0+1) % ⇐⇒ F=0 C:

(0,1) % . (2)

Indeed, the main difficulty in expressing (2) in TLC is the lack of ability to express punctuality—roughly

speaking, G(0,1) F(0,1) i is a weaker requirement than F=1 i: the former is also satisfied by two points that

both satisfy i, surround C +1 (where C is the current time), and separated by less than 1. Therefore, while

G(0,1) F(0,1) C
:
(0,1) % implies F(1,2) C

:
(0,1) % or F=1 C:

(0,1) %, it does not guarantee that all the : ‘witnesses’

lie within C + (1,2) in the former case. On the other hand, F(0,1) G(0,1) C
:
(0,1) % does not necessarily hold

when F=1 C:
(0,1) % holds, as F(0,1) G(0,1) i is a stronger requirement than F=1 i.

Before we explain how to express C:
� for the general case where � = 〈0, 1〉 with 0 < 1 in Q2MLOfut in

the next section, let us first mention two simple ways that do not involve punctuality to express them in

non-trivial extensions of MITL.

Counting events in � by automata modalities. In the case of counting where each witness is ‘context

free’, instead of trying to locate a suitable point where C:
(0,1) % holds (like in (1)), we can specify that

there are : distinct %-events in C + (0, 0 + 1)—this can be done with : modulo-: counters, similar to an

idea used in [27]. For example, if : = 3 we use three automata modalities that accept every (3=)-th,

(3=+1)-th, and (3=+2)-th %-event, respectively, and then specify that each of them has a run that ends

in C + (0, 0 +1). The following theorem is then immediate.

Theorem 1. TLCIfut ⊆ aperiodic EMITLfut ≡ Q2MLOfut.

This idea, however, does not easily generalise to TLPI, which we discuss in the next section.
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Counting events in � by rational constants. Recall from [24] that C2
(0,1) % can be expressed as the

disjunction of F(0, 1
2 )
(%∧F(0, 1

2 )
%), F( 1

2 ,1)
(%∧
←−
F (0, 1

2 )
%), and F(0, 1

2 )
%∧F( 1

2 ,1)
% (where

←−
F is the past

version of F). This can easily be generalised (like in [24], but with trivial modifications to avoid using

punctualities) to arbitrary non-singular � and larger values of :, e.g., for C3
(1,2) %, we partition (1,2) into

6 subintervals and consider the cases where 1) all three witnesses lie within one of the three subintervals

covering (1,1.5); 2) all three witnesses lie within one of the three subintervals covering (1.5,2); and 3) not

all witnesses lie within a single subinterval.

Theorem 2. MITL (with both the future and past modalities) is expressively complete for TLCI, if rational

constants are allowed.

This also applies straightforwardly to TLPI. On the other hand, MITL with only one of these

extensions—i.e. either past modalities [35] or rational constants [9]— is insufficient for expressing

TLPI.

4 Expressing P2
� in Q2MLOfut

A more general form of counting, where one can specify a sequence of distinct events, is enabled by the

Pnueli modalities P:
�

defined below. Once again, [38] states that they are expressible in TLC without

proof.

Definition 2 (TLPIfut [38]). TLPIfut is obtained from MITLfut by adding the (:-place) modalities P:
�

defined

by the following formula (where � is non-singular):

o
P,:
�
(G, -1, . . . , -:) = ∃G1 . . . ∃G:

(

G < G1 < · · · < G: ∧ 3 (G, G1) ∈ � ∧ 3 (G, G:) ∈ � ∧
∧

1≤8≤:

-8 (G8)
)

.

TLPI is obtained by adding the past counterparts of the modalities above (defined symmetrically).

The modulo-: trick that we used earlier to express C:
� no longer works in the case of Pnueli modalities,

as obviously we must also ensure that -1, . . . , -: are satisfied in this order by a sequence of events in

�. We now describe a general construction of Q2MLOfut formulae (or, equivalently, aperiodic EMITLfut

formulae where all automata modalities are definable by LTLfut or future FO[<] formulae [28]) that specify

sequences of events in arbitrary non-singular intervals. For simplicity, we will use P2
(0,0+1) (%,&) with

0 ≥ 1 as an example to explain the ideas involved before we extend the construction to the general case

where the sequence of events is specified by a first- or second-order formula in the next section.

Let us call a pair of positive integers 〈ℎ, ℓ〉 where ℎ ≤ ℓ a segment. Given a timed word d = (f8, g8)8≥1

over ΣAP where AP = {%,&}, we say that a segment 〈ℎ, ℓ〉 is a witness for P2
(0,0+1) (%,&) at 8 if ℎ < ℓ,

% ∈ fℎ, & ∈ fℓ , 〈ℎ, ℓ〉 is minimal in the sense that there is no ℎ′, ℓ′ such that ℎ ≤ ℎ′ ≤ ℓ′ ≤ ℓ, either ℎ < ℎ′

or ℓ′ < ℓ, and 〈ℎ′, ℓ〉 also satisfies the conditions above, and both gℎ, gℓ ∈ g8 + (0, 0 +1). In other words,

d, ℎ |= ∃G′ i1(G, G
′) where

i1(G, G
′) = G < G′ ∧%(G) ∧& (G′) ∧¬∃H

(

G < H < G′∧
(

%(H) ∨& (H)
)

)

.

The idea is that ∃G′ i1(G, G
′) holds at the starting points ℎ of all the potential witnesses (witnesses but

without the timing requirement in relation to g8) for P2
(0,0+1) (%,&). For each 8 ≥ 1, we either have

d, 8 |= ∃G′ i1(G, G
′) or d, 8 6|= ∃G′ i1(G, G

′), and this gives rise to a (finite or infinite) sequence of potential

witnesses for P2
(0,0+1) (%,&):

〈ℎ1, ℓ1〉〈ℎ2, ℓ2〉 . . .
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where ℎ1 < ℎ2 < . . . . From the definition of i1, it is clear that ℓ 9 ≤ ℎ 9+1 for all 9 (i.e. the potential

witnesses for P2
(0,0+1) (%,&) do not overlap except possibly on the endpoints).

Now, to specify that d, 8 |= P2
(0,0+1) (%,&), we want to express the condition that some potential

witness 〈ℎ 9 , ℓ 9〉 for P2
(0,0+1) (%,&) actually satisfies the timing requirement gℎ 9

, gℓ 9 ∈ g8 + (0, 0 +1). We

start from this initial attempt to express P2
(0,0+1) (%,&):

iwit = F(0,0+1) i1∧A
1
(0,0+1)

where i1 is the LTL formula equivalent to ∃G′ i1(G, G
′),A1 is the equivalent NFA for i′

1
(G, G′) = ∃H

(

G <

H < G′ ∧ i1(H, G
′)
)

.5 Intuitively, F(0,0+1) i1 says that 3 (8, ℎ 9) ∈ (0, 0 +1) for some 9 , and A (0,0+1) says

that 3 (8, ℓ 9′ ) ∈ (0, 0 + 1) for some 9 ′. But it is not hard to see that an undesired scenario (illustrated

in Fig. 4), where no potential witness 〈ℎ, ℓ〉 for P2
(0,0+1) (%,&) lies completely within g8 + (0, 0 +1), also

satisfies iwit. To capture and rule out this undesired scenario, note that in Fig. 4 it is clear that the time

elapsed between ℎ 9 and ℓ 9+1 is greater or equal than 1. Based on this observation, we can write a formula

involving the two adjacent potential witnesses 〈ℎ 9 , ℓ 9〉 and 〈ℎ 9+1, ℓ 9+1〉 for P2
(0,0+1) (%,&):

i2(G, H
′) = ∃G′∃H

(

G < H∧G ≤ G′∧ H ≤ H′∧i1(G, G
′)∧i1(H, H

′)∧¬∃I∃I′
(

G < I < H∧I ≤ I′∧i1(I, I
′)
)

)

.

To express 3 (ℎ 9 , ℓ 9+1) ≥ 1, we just check if the Q2MLOfut formula

i≥1
2
(G) = ∃H′

(

G < H′∧ 3 (G, H′) ≥ 1∧ i2(G, H
′)
)

holds at position ℎ 9 . It remains to enforce the following conditions:

• 〈ℎ 9 , ℓ 9〉 is the last segment 〈ℎ, ℓ〉 with gℎ ≤ g8 + 0.

• gℓ 9+1 ≥ g8 + (0+1); see Fig. 5 for an example when 〈ℎ 9+1, ℓ 9+1〉 lies completely within g8 + (0, 0+1)

but i≥1
2
(G) holds at ℎ 9 .

We now use the following crucial lemma to locate the last 〈ℎ, ℓ〉 with gℎ ≤ g8 + 0.

Lemma 1. For any d = (f8, g8)8≥1 over ΣAP where AP = {%,&}, the Q2MLOfut formula i≥1
2
(G) is satisfied

by at most 20 +2 positions 9 > 8 with 3 (8, 9) ∈ [0, 0] for any 8 ≥ 0.

Proof. Let 〈ℎ1, ℓ1〉〈ℎ2, ℓ2〉 . . . be the sequence of potential witnesses for P2
(0,0+1) (%,&) as described

above. If d, ℎ 9 |= i≥1
2
(G), then either there is no 〈ℎ 9+2, ℓ 9+2〉 or gℎ 9+2 ≥ gℎ 9

+1. It follows that if there are

20 +3 positions satisfying i≥1
2
(G), then the first and the last of them must be more than 0 apart. �

It follows that the undesired scenario #1 is captured by

iout =

∨

1≤:≤20+2

(

C:
≤0 (A

2
≥1
) ∧¬C:+1

≤0 (A
2
≥1
) ∧B:

≥0+1

)

where A2 is the equivalent NFA for i2(G, H
′) (i.e. A2

≥1
≡ i≥1

2
(G)) and B: is the equivalent NFA for

i:
2 (G, G

′) = ∃G1 . . .∃G:

(

G < G1 < · · · < G: < G′∧ i≥1
2
(G1) ∧ · · · ∧ i

≥1
2
(G:) ∧ i2(G: , G

′)

∧¬∃H
(

G ≤ H ≤ G: ∧
∧

1≤ 9≤:

(H ≠ G:) ∧ i
≥1
2
(H)

)

)

;

5Technically, we can use a theorem in [13] to get equivalent finite-word LTL formulae (over infinite-word LTL formulae as

monadic predicates) for FO[<] formulae of the form i(G, G′).
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0 0 +1

ℓ 9 ℓ 9+1ℎ 9 ℎ 9+1

≥ 1

Fig. 4: Undesired scenario #1.

0 0 +1

ℓ 9 ℓ 9+1ℎ 9 ℎ 9+1

≥ 1

Fig. 5: Desired scenario with 3 (ℎ 9 , ℓ 9+1) ≥ 1.

it can be obtained by regarding i≥1
2

as an atomic proposition and replace it afterwards byA2
≥1

. Specifically,

the first two conjuncts specify that the number of positions satisfying i≥1
2
(G) before g8 +0 is exactly :, and

the last conjunct ensures that the second potential witness in this pair is out of bounds, i.e. gℓ 9+1 ≥ g8+ (0+1).
The desired formula is

i
P,2

(0,0+1)
(%,&) = iwit∧¬iout .

Proposition 1. i
P,2

(0,0+1)
(%,&) ≡ P2

(0,0+1) (%,&).

Proof. If i
P,2

(0,0+1)
(%,&) holds at 8 then either there is a potential witness 〈ℎ, ℓ〉 for P2

(0,0+1) (%,&) that

lies completely within g8 + (0, 0 + 1) (in which case P2
(0,0+1) (%,&) holds), or we are in the scenario

in Fig. 4—but this is impossible, as one of the disjuncts of iout must hold at 8, as argued above. If

P2
(0,0+1) (%,&) holds at 8, then we have a witness 〈ℎ, ℓ〉 for P2

(0,0+1) (%,&) at 8 that lies completely within

g8 + (0, 0 +1), and iwit clearly holds at 8 too. If C:
≤0 (A

2
≥1
) ∧¬C:+1

≤0 (A
2
≥1
) indeed holds at 8 for some :

then B:
≥0+1 must not hold at 8: if 〈ℎ 9 , ℓ 9〉 and 〈ℎ 9+1, ℓ 9+1〉 are potential witnesses for P2

(0,0+1) (%,&) and

ℎ 9 is the :-th point satisfying i≥1
2
(G), we must have ℎ 9+1 ≤ ℎ and gℓ 9+1 ∈ g8 + (0, 0 +1). �

5 Expressing more general properties in Q2MLOfut

We now consider the more general case where the desired behaviour in � is specified as a future FO[<]

formula k (G′, G′′).6 Formally, the property that we want to express is

o
k

�
(G) = ∃G′∃G′′

(

G < G′ ≤ G′′ ∧ 3 (G, G′) ∈ � ∧ 3 (G, G′′) ∈ � ∧k (G′, G′′)
)

.

To simplify the analysis, we first modify k (G′, G′′) into k1(G
′, G′′) to rule out witnesses that are not

minimal:

k1(G
′, G′′) = k (G′, G′′) ∧¬

(

∃H∃I
(

G′ ≤ H ≤ I ≤ G′′ ∧ (G < H∨ I < G′) ∧k (H, I)
)

)

.

Similarly as before, ∃G′′k1 (G
′, G′′) holds at the starting points of all the potential witnesses for o

k

�
.

However, as opposed to the case of %2
(0,0+1)

(%,&), now the potential witnesses may overlap non-trivially.

In particular, if d, 8 |= kwit where kwit is defined in the same way as iwit in the last section, there is one

more possible undesired scenario (illustrated in Fig. 6; note in particular that k1(ℎ 9+2, ℓ 9) does not hold).

Thanks to the finite-state nature of k1 (G
′, G′′), the scenario in Fig. 6 can also be ruled out in the same

way: in this particular case, either 3 (ℎ 9 , ℓ 9+1) ≥ 1 or 3 (ℎ 9+1, ℓ 9+2) ≥ 1 must hold. This is made possible

by the following lemma that gives an upper bound on the number of positions satisfying k≥1
2
(G) (defined

from k1(G
′, G′′) in the same way as i≥1

2
(G)) before g8 + 0.7

6The proof applies also to the case where k(G′, G′′) is a second-order formula.

7Similar observations based on Shelah’s composition method [41] have also been used in [18, 20].
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0 0 +1

ℎ 9+2 ℓ 9+2ℎ 9 ℓ 9

≥ 1

Fig. 6: Undesired scenario #2 where k1(ℎ 9+2, ℓ 9) does not hold.

Lemma 2. For any d = (f8, g8)8≥1 over ΣAP, the Q2MLO formula k≥1
2
(G) over AP is satisfied by at most

(< + 1) · (0 + 1) positions 9 > 8 (where < is the number of locations in the minimal equivalent DFA for

k1 (G, G
′)) with 3 (8, 9) ∈ [0, 0] for any 8 ≥ 0.

Proof sketch. Any point cannot intersect with more than < potential witnesses for o
k

�
(otherwise there

will be a contradiction with the minimality of potential witnesses), and this implies that if d, ℎ 9 |= k≥1
2
(G),

then either there is no 〈ℎ 9+<+1, ℓ 9+<+1〉 or gℎ 9+<+1 ≥ gℎ 9
+1. �

We then obtain the following theorem.

Theorem 3. The property ‘the future FO[<,+1] formula k (G′, G′′) is satisfied by positions G′, G′′ in � in

the future’ can be expressed in EMITLfut ≡ Q2MLOfut.

The theorem also holds for the general case where k (G′, G′′) is a non-future FO[<,+1] formula; in this

case, the property can be expressed in EMITL ≡ Q2MLO.

6 Expressing C:
� in TLCfut

From [21] we know that in the pointwise semantics, (aperiodic) EMITL (or Q2MLO) formulae can be

rewritten into simpler equivalent formulae where all intervals are unilateral, and in fact it suffices to use

[0, 1〉 and [0,∞) [22]. For the aperiodic case, such a formula can even be expressed with the simpler

counting modalities as below, if we allow both the future and past versions of them:

• C:
� and

←−
C :

� with � = (0,1) in the continuous semantics [18, 20]; or

• C:
� and

←−
C :

� with � = [0, 1〉 in the pointwise semantics [22].

We now show that for the special case of C:
� , i.e. when the Q2MLOfut formula in question is a TLCIfut

formula, we can do the same with only the future modalities; this can be seen as a strict generalisation

of the ‘well-known’ reduction from U� with 〈0, 1〉 to U� with � = [0, 1〉 discussed earlier [14, 16, 18]. In

the presentation below we will focus on the pointwise case, where some additional conditions must be

satisfied (as explained below), but these conditions are automatically satisfied in the continuous semantics.

Expressing F� with � = 〈0, 1〉. We start by rewriting the ‘eventually’ modalities F� , which can actually

be regarded as a special case of C:
� with : = 1 [18]; for simplicity, let us consider a subformula F� i

where i is in unilateral MITLfut and � = (0, 0+1), 0 ≥ 1. It is well known that in the pointwise semantics,

such modalities cannot be expressed in unilateral MITL [39]. To overcome this apparent difficulty, let us

define a family of formulae for all < ∈ {0, . . . , 0−1}:

Φ
0
= {i} ,

Φ
<+1

= {X>0⊤∧¬i
<U≤1 i

<∧¬i<U≥1 i
<,G(0,1) i

< | i< ∈ Φ< or ¬i< ∈ Φ<} .

All these formulae are in unilateral MITLfut: G(0,1) i
< ≡ (X>0⊤∧G[0,1) i

<) ∨F≤0 G[0,1) i
<. Addition-

ally, we assume that the timed word d = (f8, g8)8≥1 in question satisfies the following condition:
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• For every< ∈ {0, . . . , 0−1} and i< ∈Φ<, if d, 9 |= i< and d, 9 ′ 6|= i< for all 9 ′ < 9 with 3 ( 9 ′, 9) < 1,

then there exists 8 in d such that 3 (8, 9) = 1 (unless 3 (1, 9) < 1).

We note that in practical applications, this should not be a severe limitation—for example in model

checking, if the system is modelled as a timed automaton [1], one can simply add a self-loop labelled

with an extra ‘empty’ letter n to each location, and use the following formula (which is easily expressible

in unilateral MITLfut) as a precondition:

oF
=

∧

i<∈Φ<

<∈{0,...,0−1}

¬∃G∃G′
(

G < G′∧�G′′ (G < G′′ < G′)

∧∃H
(

G < H∧ 3 (G, H) > 1∧ 3 (G′, H) < 1∧ i<(H) ∧�I
(

G < I < H∧ i<(I)
)

)

)

.

Intuitively, oF rules out the situations when X>0⊤∧¬i
<U≤1 i

<∧¬i<U≥1 i
< ∈ Φ<+1 should hold at

G′′, but G′′ does not exist in d. With the condition in place, we now show that F〈0−<,0−<+1〉 i
<′ where

i<′ ∈ Φ<′ can be expressed in unilateral MITLfut for < ∈ {0, . . . , 0} and <′ ≤ <. For the base step < = 0,

note that F(0,1〉 i
<′ ≡ (X>0⊤∧F[0,1〉 i

<′) ∨F≤0(X>0⊤∧F[0,1〉 i
<′). For the inductive step (from < +1

to <), suppose that we want to express d, 8 |= F(0−<,0−<+1) i
< where i< ∈ Φ< and let ℓ > 8 be the

minimal position such that d, ℓ |= i< and 3 (8, ℓ) ∈ (0−<,0−< + 1) (the arguments for other types of

intervals are exactly similar). We can then essentially follow [21] but only need to consider the cases

below:

• There exists (a maximal) 9 , 8 < 9 < ℓ such that 3 ( 9 , ℓ) = 1 and d, 9 |= X>0⊤∧¬i
<U≤1 i

< ∧
¬i<U≥1 i

<: we have

d, 8 |= Z1 = F(0−<−1,0−<) (X>0⊤∧¬i
<U≤1 i

<∧¬i<U≥1 i
<)

where X>0⊤∧¬i
<U≤1 i

<∧¬i<U≥1 i
< ∈ Φ<+1.

• There exists 9 , 8 < 9 < ℓ such that 3 ( 9 , ℓ) < 1, 3 (8, 9) ∈ (0−< −1, 0−<] and d, 9 |= i<: we have

d, 8 |= Z2 = F(0−<−1,0−<] i
<∧¬F(0−<−1,0−<]G(0,1) (¬i

<)

where G(0,1) (¬i
<) ∈ Φ<+1.

The equivalent formula is Z1∨ Z2, which can be rewritten into a unilateral MITLfut formula by the induction

hypothesis. It follows that F〈0,0+1〉 i
0, where i0 = i ∈Φ0 is an arbitrary MITLfut formula, can be expressed

in unilateral MITLfut, as desired.

Expressing C:
� with � = 〈0, 1〉. We now consider a subformula C:

� k where k is in TLCfut, : ≥ 2, and

� = (0, 0 +1), 0 ≥ 1. Define a family of formulae for all < ∈ {1, . . . , 0−1}:

Ψ
1
= {(X>0⊤∨X≤0k) ∧C:

[0,1] k∧¬C:
[0,1) k} ,

Ψ
<+1

= {X>0⊤∧¬k
<U≤1k

<∧¬k< U≥1k
<,G(0,1) k

< | k< ∈ Ψ< or ¬k< ∈ Ψ<} .

All these formulae are in TLCfut. Now we assert that d = (f8, g8)8≥1 satisfies the following conditions:

(C1) If d, 9 |= k and there are

• less than : positions 9 ′ < 9 with 0 < 3 ( 9 ′, 9) < 1 such that d, 9 ′ |= k, and
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• at least : positions 9 ′ ≤ 9 with 0 ≤ 3 ( 9 ′, 9) < 1 such that d, 9 ′ |= k,

then there exists 8 in d such that 3 (8, 9) = 1 (unless 3 (1, 9) < 1).

(C2) For every< ∈ {1, . . . , 0−1} andk< ∈Ψ<, if d, 9 |=k< and d, 9 ′ 6|=k< for all 9 ′ < 9 with 3 ( 9 ′, 9) < 1,

then there exists 8 in d such that 3 (8, 9) = 1 (unless 3 (1, 9) < 1).

As before, we can use oF (trivially modified so that the conjunction ranges over < ∈ {1, . . . , 0− 1}) to

enforce the second condition. For the first condition we assert the formula

iC
= ¬

(

F
(

X>0 (¬k) ∧¬C:
[0,1] k∧XC:

[0,1) k
)

∨F(X>0k∧¬C:
[0,1] k∧XC:−1

[0,1) k)
)

.

Lemma 3. d,1 |= iC iff the first condition above holds.

Proof. Assume that the first condition is violated and there are two adjacent positions G, G′ < 9 such that

3 (G, 9) > 1 and 3 (G′, 9) < 1. Consider the following cases:

• d, G′ 6|= k: It is clear that d, G′ |= C:
[0,1) k, since the covered period may contain positions 9 ′ > 9

with 3 ( 9 , 9 ′) > 0, and excluding G′ makes no difference. It is also clear that d, G 6|= C:
[0,1] k as the

covered period may only contain fewer positions. We thus have d, 8 6|= iC.

• d, G′ |= k: It is clear that d, G′ |= C:−1
[0,1) k as the covered period must contain at least : −1 positions

satisfying k after excluding G′. It is also clear that d, G 6|= C:
[0,1] k as the covered period may only

contain fewer positions. We thus have d, 8 6|= iC.

For the other direction, consider the following cases:

• d, G |= X>0 (¬k) ∧¬C:
[0,1] k∧XC:

[0,1) k for some position G: Let the next position be G′. It is clear

that there is at least one position satisfying k in (gG + 1, gG′ + 1). Let 9 be the position such that

|{ 9 ′ | G < 9 ′ ≤ 9 and d, 9 ′ |= k}| = :. It is clear that 9 satisfies the statements in the condition, but

by assumption, there is no 8 in d such that 3 (8, 9) = 1.

• d, G |= X>0k∧¬C:
[0,1] k∧XC:−1

[0,1) k for some position G: Let the next position be G′. Once again

it is clear that there is at least one position satisfying k in (gG +1, gG′ +1). The argument is identical

to the previous case. �

We say that a segment 〈ℎ, ℓ〉 is a witness for C:
(0,0+1) k at 8 if ℎ < ℓ, d, ℎ |= k, d, ℓ |= k, |{ 9 | ℎ ≤ 9 ≤

ℓ and d, 9 |= k}| = :, and both gℎ, gℓ ∈ g8 + (0, 0+1). Similarly as before, we can write an untimed (finite-

word) LTLfut formula k1 that holds at all the starting points ℎ of all the potential witnesses (ignoring the

timing requirement) for C:
(0,0+1) k—in this case, it is simply an untimed (finite-word) LTL formula that

counts exactly : occurrences of k. Based on this, we can give an initial attempt to express C:
(0,0+1) k,

similar to what we did for P2
(0,0+1) (%,&) using Q2MLOfut in Section 4:

iwit = F(0,0+1) k1∧
(

F(0−1,0)

(

(X>0⊤∨X≤0k) ∧C:
[0,1] k∧¬C:

[0,1) k
)

∨
(

F(0−1,0] k∧G(0−1,0] (k =⇒ C:
[0,1) k)

)

)

.

Here, however, the second conjunct is more involved as we must refrain from using (aperiodic) automata

modalities. We now prove some propositions about the correctness of iwit, based on the assumption that

d satisfies (C1) and (C2).

Proposition 2. d, 8 |= F(0−1,0] k∧G(0−1,0] (k =⇒ C:
[0,1) k) implies d, 8 |= C:

(0,0+1) k.
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Proof. Let 9 be the maximal position in d such that 3 (8, 9) ∈ (0 − 1, 0] and d, 9 |= k. We have d, 9 |=
C:
[0,1) k, and it is clear that g8 + (0, 0 +1) contains at least : positions satisfying k. �

Proposition 3. d, 8 |= C:
(0,0+1) k∧¬F(0−1,0] k implies that d, 8 |= F(0−1,0)

(

(X>0⊤∨X≤0k) ∧C:
[0,1] k∧

¬C:
[0,1) k

)

.

Proof. Let 91 be the minimal position in d such that 3 (8, 91) ∈ (0, 0 + 1) and d, 91 |= k, and 9: be the

position in d such that f91 . . .f9: |= k1 and d, 9: |= k. By Lemma 3, the first condition above holds and

there is a position 9 ′ such that 3 ( 9 ′, 9:) = 1 and d, 9 ′ |= (X>0⊤∨X≤0k) ∧C:
[0,1] k∧¬C:

[0,1) k. �

Proposition 4. d, 8 |= C:
(0,0+1) k ∧F(0−1,0] k implies that d, 8 |= F(0−1,0)

(

(X>0⊤∨X≤0k) ∧C:
[0,1] k ∧

¬C:
[0,1) k

)

or d, 8 |= F(0−1,0] k∧G(0−1,0] (k =⇒ C:
[0,1) k).

Proof. Let 91 be the minimal position in d such that 3 (8, 91) ∈ (0, 0 + 1) and d, 91 |= k, and 9: is the

minimal position in d such that there exists 91 < · · · < 9: where d, 98 |= k for all 8 ∈ {1, . . . , :}. Let ℓ be

the maximal position in d such that 3 (8, ℓ) ∈ (0−1, 0] and d, ℓ |= k. Consider the following cases:

• 3 (ℓ, 9:) ≥ 1: By Lemma 3, there exists a position ℓ′ ≥ ℓ in d such that 3 (ℓ′, 9:) = 1 and d, ℓ′ |=
(X>0⊤∨X≤0k) ∧C:

[0,1] k∧¬C:
[0,1) k.

• 3 (ℓ, 9:) < 1: We have d, ℓ |= C:
[0,1) k. Now consider 9:−1 and the largest position ℓ′ < ℓ such that

3 (8, ℓ′) ∈ (0−1, 0] and d, ℓ′ |= k. If 3 (ℓ′, 9:−1) < 1 then clearly d, ℓ′ |= C:
[0,1) k. If 3 (ℓ′, 9:−1) ≥

1, then by Lemma 3, there exists ℓ′′ ≥ ℓ′ such that 3 (8, ℓ′′) ∈ (0 − 1, 0], 3 (ℓ′′, 9:−1) = 1, and

d, ℓ′′ |= (X>0⊤∨X≤0k) ∧C:
[0,1] k ∧¬C:

[0,1) k. The argument is repeated until some position in

g8 + (0 − 1, 0] satisfies (X>0⊤∨X≤0k) ∧C:
[0,1] k ∧¬C:

[0,1) k, or all positions in g8 + (0 − 1, 0]

satisfying k also satisfy C:
[0,1) k. �

It remains to strengthen F(0,0+1) k1 ∧F(0−1,0)

(

(X>0⊤∨X≤0k) ∧C:
[0,1] k ∧¬C:

[0,1) k
)

so that it

implies C:
(0,0+1) k. As before in Section 4, we need a formula k:

2
that refers to two neighbouring

potential witnesses—in this case, it is simply an untimed (finite-word) LTLfut formula that counts exactly

: + 1 occurrences of k. We can then argue that there is an upper bound on the number of positions

satisfying k
:,≥1
2

(easily expressible in TLCfut) before g8 + 0. In contrast to Section 4, however, we need

an alternative way to express B:
≥0+1.

Lemma 4. For any d = (f8, g8)8≥1 over ΣAP, the TLCfut formula k
:,≥1
2

over AP is satisfied by at most : ·0
positions 9 > 8 with 3 (8, 9) ∈ [0, 0) for any 8 ≥ 0.

Lemma 5. For any d = (f8, g8)8≥1 over ΣAP, the TLCfut formula (X>0⊤∨X≤0k) ∧C:
[0,1] k∧¬C:

[0,1) k

over AP is satisfied by at most : · (0 +1) +1 positions 9 > 8 with 3 (8, 9) ∈ [0, 0] for any 8 ≥ 0.

Proof sketch. Each occurrence 9 of (X>0⊤∨X≤0k) ∧C:
[0,1] k∧¬C:

[0,1) k, except for possibly the first

one, happens ‘between’ two neighbouring (minimal) potential witnesses 〈ℎ8, ℓ8〉 and 〈ℎ8+1, ℓ8+1〉 with

3 (ℎ8 , ℓ8+1) ≥ 1: either 9 = ℎ8 or ℎ8 < 9 < ℎ8+1. The claim holds by (a trivial modification of) Lemma 4. �

Now suppose that d, 8 |= F(0,0+1) k1 ∧F(0−1,0)

(

(X>0⊤∨X≤0k) ∧C:
[0,1] k ∧¬C:

[0,1) k
)

and let 9

be the maximal position in g8 + (0− 1, 0) such that d, 9 |= (X>0⊤∨X≤0k) ∧C:
[0,1] k ∧¬C:

[0,1) k. The

undesired scenario is when there is a maximal 9 ′ > 9 with g9′ ∈ g8 + (0− 1, 0] such that d, 9 ′ |= k, and

there are less than : positions in g8 + (0, 0 +1) satisfying k. In this case, it is clear that d, 9 ′ |= k
:,≥1
2

. To
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rule this scenario out we employ the following strategy, which can be implemented as a TLCfut formula

(which we opt to explain in English, for the sake of readability; we count events at positions > 8):

(1) Count the number of occurrences of k
:,≥1
2

in g8 + [0, 0) and g8 + [0, 0]. If they do not match, then

we are in the undesired scenario.

(2) Count the number of occurrences of (X>0⊤∨X≤0k) ∧C:
[0,1] k∧¬C:

[0,1) k in g8 + [0, 0).

(3) Take a disjunction over all the possible ways in which these occurrences may interleave in g8 + [0, 0)
(note that they may hold simultaneously on the same position). Those ending with k

:,≥1
2

but not

(X>0⊤∨X≤0k) ∧C:
[0,1] k∧¬C:

[0,1) k are in the undesired scenario.

Let us call this formula (which captures the undesired scenario) i′out.

Proposition 5. F(0,0+1) k1 ∧F(0−1,0)

(

(X>0⊤∨X≤0k) ∧C:
[0,1] k ∧¬C:

[0,1) k
)

∧¬i′out implies d, 8 |=

C:
(0,0+1) k.

Proof. Consider the conditions above that form i′out. First note that if the number of occurrences of

k
:,≥1
2

in g8 + [0, 0] is 0, then it is easy to see that d, 8 |= C:
(0,0+1) k. To see (1), note that if k

:,≥1
2

holds

at some position 9 ′ with g9′ = g8 + 0, then g8 + (0, 0 +1) may contain at most : −1 positions satisfying k.

So for (3), first assume that k
:,≥1
2

does not hold at any position at g8 + 0. Let 9 be the maximal position

with g9 ∈ g8 + (0−1, 0) such that d, 9 |= (X>0⊤∨X≤0k) ∧C:
[0,1] k∧¬C:

[0,1) k and 9 ′ > 8 be the maximal

position with g9′ ∈ g8 + [0, 0) and d, 9 ′ |= k
:,≥1
2

.

If k holds at some maximal position ℓ at g8 + 0, since d, 8 |= F(0,0+1) k1, we have d, ℓ |= k
:,<1
2

(defined in the expected way) and thus d, 8 |= C:
(0,0+1) k; we argue that k:,≥1

2
cannot hold at any ℓ′

where 9 < ℓ′ < ℓ. Suppose to the contrary that d, ℓ′ |= k
:,≥1
2

(Wlog. let ℓ′ be the largest such position

at the same timestamp gℓ′). If d, ℓ′ |= k
:,=1
2

, we have d, ℓ′ |= (X>0⊤∨X≤0k) ∧C:
[0,1] k ∧¬C:

[0,1) k,

contradicting the maximality of 9 . If d, ℓ′ |= k
:,>1
2

then by Lemma 3, there exists a position ℓ′′ > ℓ′ such

that d, ℓ′′ |= (X>0⊤∨X≤0k) ∧C:
[0,1] k ∧¬C:

[0,1) k, again contradicting the maximality of 9 . Now we

assume that k does not hold at any position at g8 + 0. Consider the following cases:

• 9 ′ = 9 : We know that d, 9 |= k. Consider the following subcases:

– 9 ′ is not the maximal position with g9′ ∈ g8 + (0−1, 0) such that d, 9 ′ |= k: There is a maximal

9 ′′ with g9′′ ∈ g8 + (0−1, 0) and d, 9 ′′ |= k. Since d, 8 |= F(0,0+1) k1 and thus d, 9 ′′ |= k
:,<1
2

, it

follows that d, 8 |= C:
(0,0+1) k.

– 9 ′ is the maximal position with g9′ ∈ g8 + (0− 1, 0) such that d, 9 ′ |= k: Since d, 9 ′ |= C:
[0,1]

but there is no 9 ′′ > 9 with g9′′ ∈ g8 + (0−1, 0] such that d, 9 ′′ |= k, we have d, 8 |= C:
(0,0+1) k.

• 9 ′ < 9 : If there is a maximal 9 ′′ > 9 with g9′′ ∈ g8 + (0−1, 0) and d, 9 ′′ |= k, Since d, 8 |= F(0,0+1) k1

we have d, 9 ′′ |=k
:,<1
2

, and it follows that d, 8 |=C:
(0,0+1) k. If there is no such 9 ′′, since d, 9 |=C:

[0,1]

we also have d, 8 |= C:
(0,0+1) k. �

Our final formula for C:
(0,0+1) k is

i′wit = F(0,0+1) k1∧

(

(

F(0−1,0)

(

(X>0⊤∨X≤0k) ∧C:
[0,1] k∧¬C:

[0,1) k
)

∧¬i′out

)

∨
(

F(0−1,0] k∧G(0−1,0] (k =⇒ C:
[0,1) k)

)

)

.
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To see that C:
(0,0+1) k implies i′

wit
, observe that Propositions 3 and 4 still hold if the conjunct ¬i′

wit
is

added. We apply the equivalence repeatedly from the innermost subformula C:
� k where k is in TLCfut,

and then work outwards until there is no C:
� k with � = 〈0, 1〉. In the process, we also need to ensure

that (C1) and (C2) are satisfied for various k. Finally, we rewrite F� with � = 〈0, 1〉 into F� with � = [0, 1〉.

Theorem 4. Given a TLCIfut formula i, there is a TLCfut formula i′ such that i and i′ are equivalent

over timed words satisfying (C1) and (C2) (for some finite set of k).

Finally, this result carries over to the case of the continuous interpretations of TLCI, as the ‘positions’

postulated by (C1) and (C2) automatically exist.

Corollary 1. TLCIfut ⊆ TLCfut in the continuous semantics.

7 Conclusion and future work

It turned out that allowing 〈0, 1〉 in counting modalities only makes them more intricate to express in

(aperiodic) automata modalities (or Q2MLO), which necessarily ‘start’ from the current point; in other

words, the relevant claims in [38] are indeed correct. More generally, we have shown that the existence of

two ‘witnesses’ G′ ≤ G′′ for a first-order formula i(G′, G′′) in C0 + 〈0, 1〉 can also be captured in aperiodic

EMITLfut (or Q2MLOfut). This is somewhat surprising, as the timing constraints on both G′ and G′′

does seem to require the use of punctualities or non-trivial extensions. Our second main result gives a

satisfactory correction to the folklore belief, at least in the case of continuous semantics. We list below

some possible further directions:

• MITL with both the future and past modalities and rational constants appears to be very expressive

with EXPSPACE-complete satisfiability and model-checking problems (through a simple scaling

argument). We also know from Theorem 2 and [23] that it can be made expressively complete

for FO[<,+1] by adding punctualities in the continuous semantics. Can it express some decidable

fragments of 1-TPTL[U ,S ] [26] with rational constants (i.e. without using automata modalities)?

• The properties considered in Section 5 can be seen as a special case of a decidable fragment of the

logic PnEMTL recently proposed in [26]. Can we extend the ideas presented here to handle more

general PnEMTL properties, where automata modalities do not start from the current point?

• Can the construction in Section 6 lead to a future (or ‘almost future’ [36]) metric temporal logic that

is expressively complete for Q2MLOfut, or more generally a separation result akin to [13] or [24]?
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Interaction nets are a form of restricted graph rewrite system that can serve as a graphical or textual
programming language. As such, benefits include one-step confluence, ease of parallelism and ex-
plicit garbage collection. However, some of these restrictions burden the programmer, so they have
been extended in several ways, notably to include data types and conditional rules. This paper intro-
duces a further extension to allow nested pattern matching and to do so in a way that preserves these
benefits and fundamental properties of interaction nets. We also show that by introducing a transla-
tion to non-nested matching, this extension is conservative in rewriting. In addition, we propose a
new notation to express this pattern matching.

1 Introduction

Interaction nets, proposed by Lafont [6], can be considered as an execution model of programming
languages, where programs are described as graphs and computation is realised by graph reduction.
They have been used for optimal reduction [7, 3] and other efficient implementations [8] of λ -calculus,
the basis of functional programming languages. Indeed, as a programming language, interaction nets
have several attractive features:

• A simple graph rewriting semantics;

• A complete symmetry between constructors and destructors;

• They are Turing complete;

• Reduction steps are local, lending them to parallel execution without amending the algorithm being
executed;

• Memory management, including garbage collection, is explicitly part of the execution, improving
speed and, again, not requiring any changes in a parallel environment.

When writing programs in interaction nets, it is useful to have some extensions to the basic net
structure, to facilitate the process. It is analogous to PCF [11], which is an extension of the pure typed
λ -calculus obtained by adding some constants. For example, “pure” interaction nets do not have built-in
constants, data types or conditional branching. Data types, such as integers, were introduced in [2], and
conditional rewriting rules on values were introduced in [12].

Although net reduction rules have a basic, depth-one pattern matching, a nested version has been
introduced in [4] as a conservative extension, i.e. although it provides a new feature to the programmer,
it can be implemented using pure interaction nets and thus retains fundamental properties of interaction
nets such as the one-step confluence property (defined in Section 2.1).

The aim of this paper is to introduce conditional nested pattern matching on values, as a further
extension of [4], whilst preserving one-step confluence. We show that this extension is conservative by
introducing a translation that maps the nested pattern matching back to pure nets. We also propose a new

http://dx.doi.org/10.4204/EPTCS.408.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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notation for the pattern matching. This notation is similar to the well-known case expressions in many
programming languages.

One of the goals of this work is to show how to represent functional programs (and more generally
term rewriting systems) that contain nested pattern matching in interaction nets. This is part of on-
going work to demonstrate a real-world functional programming language that can take full advantage
of interaction nets’ built-in parallelism.

This paper is structured as follows. In the next section we give a overview of interaction nets and
the extension for values. In Section 3 we introduce the conditional nested pattern matching. Section 4
introduces a translation that removes the nested pattern matching and shows that this extended matching
is a conservative extension. Then Section 5 proposes a notation to easily express the matching and
Section 6 discusses some implementation issues. The paper concludes in Section 7 with an outlook for
the future.

2 Background

In this section we review the interaction net paradigm, and describe some known extensions to it.

2.1 Interaction nets

Interaction nets are graph rewriting systems [6]. Each node has a name α and one or more ports which
can be connected to ports of other nodes. The number of ports is determined by the node name α and is
called the node’s arity, written as ar(α). When ar(α) = n, then the node α has n+1 ports: n auxiliary
ports and a distinguished one called the principal port, labelled with an arrow. Nodes are drawn as
follows:

We may put different labels on the ports to distinguish them.
We have a set Σ of symbols, which are the names of nodes. A net built on Σ is an undirected graph:

the vertices are nodes, and the edges connect nodes at the ports. There is at most one edge at every port.
A port which is not connected is called a free port. A pair of nodes (α,β ) ∈ Σ×Σ connected via their
principal ports forms an active pair, which is the interaction nets analogue of a redex pattern. We refer
to such a connected pair (α,β ) as α ▷◁ β . A rule ((α,β )⇒ N) describes how to replace the pair (α,β )
with the net N. N can be any net as long as the set of free ports are preserved during the reduction. The
following diagram illustrates the idea:

There is at most one rule for each pair of nodes, and the pairs are matched symmetrically, that is to say,
(β ,α) is also replaced by N by a rule ((α,β ) ⇒ N). If the pair is symmetric, such as (α,α), then N
must be symmetric. We write N1 → N2 when a net N1 is reduced to N2 by a rule. One of the most
powerful properties of this graph rewriting system is that it is one-step confluent; if N → N1 and N → N2
(N1 ̸= N2), then there exists a net N′ such that N1 → N′ and N2 → N′. Therefore, if a normal form exists,
it is uniquely determined and any reduction path to the normal form has the same number of steps.

Here, as shown in Figure 1, we give an example of the interaction net system for unary number
multiplication, represented by the following term rewriting system:



92 Conditional Nested Pattern Matching in Interaction Nets

• Mult(Z,y) = y

• Mult(S(x),y) = Add(y,Mult(x,y))

This system has nodes Z, S, Add and Mult for arithmetic expressions and δ , ε for duplication and elimi-
nation where the α in the δ and ε rules stands for either Z or S. This rewrites Mult(S(S(Z)),S(S(S(Z))))
to Add(S(S(S(Z))),Add(S(S(S(Z))),Z)). Whilst in term rewriting systems Mult(S(x),A) can be rewrit-
ten as Add(A,Mult(x,A)) even if the A has redexes, in this system the duplications are performed only
for nets that have no active pairs, i.e. nets that are built from S and Z. We use δ to explicitly duplicate
terms and ε to remove them when not needed in the result—an example of the explicit memory man-
agement. In addition, evaluated results in the interaction net can be quickly used for other computations
without waiting for the whole computation to finish, i.e. as a wait-free algorithm. This is called a stream
operation [9], and Figure 1 shows that in the second rewrite step, the S duplicated by δ ▷◁ S can be used
with Add.

Figure 1: An example of rules and rewritings of interaction nets

We call the system pure to mean that no extensions are applied. From here, we show some extensions
to the pure interaction nets system.
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2.2 Attributes

Nodes can be extended to contain additional information [2, 12], and here we review an extension called
attributes [12]. This extension is considered as an analogue of PCF obtained by adding some constants
to the pure typed λ -calculus. Attribute values are integers and are written in parentheses following agent
symbols. For instance, α(2,4) is a node which holds 2 and 4 as attribute values, and is drawn as follows:

Integers and their lists are represented using built-in nodes Int(i), Cons( j) and Nil where i, j are integer
numbers, and are drawn as follows:

To simplify the diagram, the nodes Int(i) and Cons( j) are often drawn without the symbols when no
confusion will happen. For instance, an integer 1 and a list of 2,4,3 are written in the following way:

Rewriting rules are also extended to deal with attributes by considering a node name with attribute
values as one symbol. For instance, the name of the node α(2,4), which holds attribute values 2 and 4,
is considered as a symbol “α(2,4)”. We soon see that we need to add extra power to this system. For
example, the increment operator for integer numbers can be defined by the following rules between a
node Inc and each integer number:

This demonstrates an obvious problem in practical using—if we want to define the increment for any
integer, we need not only an infinite set of symbols such as Int(0), Int(1), Int(-1), Int(2), . . ., but
also an infinite number of rules. To deal with these in finite schemes, we introduce meta variables v for
them, called attribute variables and expressions e on attribute variables as follows:

e ::= v | i | -e | not e | e op e | (e)
where v is an attribute variable, i is an integer number, e is an expression, and op is defined as follows:

op ::= + | - | * | / | mod | == | != | < | <= | > | => | and | or.
The definition of expressions may be extended as long as the computation is decidable. We will abbre-
viate in the following the left- and right-hand sides of a rule by LHS and RHS, respectively. Attribute
variables can be placed on the LHS nodes, expressions on the variables can be placed on the RHS nodes,
just like attributes. The LHS nodes do not have the same attribute variables to ensure that each variable
matches any attribute value; for example, α(i, i) is not allowed as the name of the LHS node because it
has the same variable as i, whereas α(i, j) is allowed. Now the increment operator is represented as the
following one rule, in which an attribute value v is replaced by a value obtained by executing v+1:

Addition of integers on two node attributes is represented as the following two rules:
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2.2.1 Conditional rules on attributes

Conditional rules were proposed in [12], and here we introduce a refined version. We write conditional
rules as ((α,β ) if c ⇒ N), where the c is an expression on attribute variables of α , β . The c is called
the conditional expression of a rule, and the rule becomes available to be applied if c is calculated to
true, where false is represented by 0 and true by any other value. We also refer to the active pair with a
conditional expression as (α ▷◁ β if c), and call it a conditional active pair. The rule is drawn as follows:

There may exist several conditional rules for the same active pair, but they must be disjoint, i.e. only at
most one condition among the rules must be true. This can be realised by introducing a decidable eval-
uation strategy for the conditions. We use true and false that are evaluated as true and false, respec-
tively. In addition, as a refined version, we introduce a special conditional rule ((α,β ) if otherwise ⇒N)
which becomes available if any other conditional expressions for the α ▷◁ β become false. We may write
“if otherwise” as just “otherwise” and omit “if true” when no confusion will arise.

For instance, a function sumup that takes a natural number and computes the sum up to the number
can be realised by the following conditional rules:

sumup 0 = 0

sumup n = n + sumup (n-1)

Conditional rules are disjoint for the same active pairs, therefore the one-step confluence property is
preserved.

3 Conditional Nested Pattern Matching

In this section we introduce conditional nested pattern matching on attributes, as an extension of the
nested matching introduced in [4], so that we can put a condition on each nested pattern. We write NAP

as an abbreviation of “nested active pair”.
Attribute values can be considered as parts of symbols, so nested pattern matching can also manage

attributes values. Here, we extend the NAP to conditional ones. For simplicity, we consider all rules
((α,β )⇒N) in the pure system as conditional rules with the true expression such as ((α,β ) if true ⇒
N).

Definition 3.1 (Conditional NAPs). Conditional NAPs ⟨Pif ⟩ are inductively defined as follows:

Base: Every conditional active pair (α ▷◁ β if c) is a conditional NAP. We write this as:

⟨α (⃗x) ▷◁ β (⃗y) if c⟩

where x⃗, y⃗ are distinct names, corresponding to the occurrences of the auxiliary ports of α and β ,
respectively.

Step: We assume that ⟨Pif ⟩ is a conditional NAP, γ is an agent, c is an expression on attribute variables
of agents occuring in ⟨Pif ⟩ and a free port in ⟨Pif ⟩ has a name z. A net obtained by connecting the
principal port of γ with the expression c to the free port z is also a conditional NAP.
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We write this as:
⟨Pif , z− γ(w⃗) if c⟩

where w⃗ are distinct names and fresh for ⟨Pif ⟩, corresponding to the occurrences of the auxiliary
ports of γ .
We call the form “z − γ(w⃗) if c” a connection in a conditional NAP. We use u to range over
connections.

Expressions that occur as “if c” in conditional NAPs are also called conditional expressions. If all
conditional expressions in a conditional NAP evaluate to true, the NAP is called available.

We build just a NAP from a conditional NAP by removing all conditional expressions. For a condi-
tional NAP ⟨Pif ⟩, we write the (non-conditional) ⟨P⟩ as the condition dropped NAP for ⟨Pif ⟩. A rewriting
rule on a conditional NAP (⟨Pif ⟩ ⇒ N) replaces a matched net by the condition dropped ⟨P⟩ to the net N
if ⟨Pif ⟩ is available. Nested nets are also symmetrically matched and replaced.
Example 3.2. We take the following program gcd’ which obtains the greatest common divisor of two
given natural numbers:
gcd’ (a,b) = if b==0 then a

else gcd’ (b, a ‘mod‘ b)

This is written as the following rewriting rules on conditional NAPs:

The following is an example of rewritings for gcd’(21,14):

Of course, we can realise the same computation for the gcd’ without conditional NAPs, but this requires
several additional rules that obscure the overall meaning:
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Example 3.3. Consider the following non-confluent map: f(0,y)=0, f(x,0)=1.
This map is encoded as the following rules where the agent del deletes built-in nodes Int(i):

As shown below, the two rewriting paths from f(0,0) are not confluent:

To preserve the one-step confluence property, it is sufficient to introduce local sequentiality [6], i.e.
which port is looked first. We extend several properties in [4]. First, we instantiate the sequentiality to
sets of conditional NAPs:

Definition 3.4 (Local sequentiality). Let Pif be a set of conditional NAPs. Pif is local sequential if:

(1) If ⟨α (⃗x) ▷◁ β (⃗y) if c⟩ ∈ Pif :

(1a) All conditional expressions ck such that ⟨α (⃗x) ▷◁ β (⃗y) if ck⟩ ∈ Pif are disjoint, i.e. only at
most one conditional expression must be true.

(2) If ⟨Pif , z− γ(w⃗) if c⟩ ∈ Pif :

(2a) All conditional expressions ck such that ⟨Pif , z− γ(w⃗) if ck⟩ ∈ Pif are disjoint,

(2b) ⟨Pif ⟩ ∈ Pif ,

(2c) ⟨Pif , z j − γ j(w⃗ j) if cj⟩ ̸∈Pif for any free port z j in the ⟨Pif ⟩ except the z, where γ j is an agent,
c j is a conditional expression.
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We may write “local sequential” as just “sequential” when no confusion will arise. If a local sequen-
tial set has an element ⟨α (⃗x) ▷◁ β (⃗y) if c, u⃗, z− γ(w⃗) if c⟩ where u⃗ is a sequence of connections, then
every element started from the origin pair α ▷◁ β is along the path to the z. For clarity, we draw triangles
on auxiliary ports connected to agents, and horizontal dotted lines for the sequential order. As an exam-
ple, we depict a NAP which is textually represented ⟨α (⃗x) ▷◁ β (⃗y) if c1, zk −κ(w⃗) if c2, z1 − γ (⃗z) if c3⟩
as follows:

Example 3.5. The following program lastElt returns the last element of a given non-empty list:
lastElt ([x]) = x

lastElt (x:y:ys) = lastElt (y:ys)

This is written as the following rewriting rules on (non-conditional) NAPs where del erases any agent:

These are written as follows (omitting “if true”) and the set of the LHS nodes of the rules is sequential:

• (⟨lastElt(r) ▷◁ Cons(x,xs), xs−Nil⟩ ⇒ N1),

• (⟨lastElt(r) ▷◁ Cons(x,xs), xs−Cons(y,ys)⟩ ⇒ N2).

Example 3.6. The rewriting rules in Example 3.2 are textually written and graphically drawn as follows
and the set of the LHS nodes of the rules is also sequential:

• (⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 −Int(b) if b==0⟩ ⇒ N1),

• (⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 −Int(b) if not(b==0), p1 −Int(a) if true⟩ ⇒ N2).

Next, we extend well-formed rule sets [4] as sets of pairwise distinct rules on conditional NAPs:

Definition 3.7 (Subnets of conditional NAPs). Let ⟨Pif ⟩ and ⟨P′
if ⟩ be conditional NAPs. ⟨Pif ⟩ is a subnet

of ⟨P′
if ⟩ if:
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• ⟨P⟩ is a subnet of ⟨P′⟩, where ⟨P⟩ and ⟨P′⟩ are condition dropped NAPs for ⟨Pif ⟩ and ⟨P′
if ⟩, respec-

tively.

• ⟨Pif ⟩ is available if ⟨P′
if ⟩ is available.

Definition 3.8 (Sets of pairwise distinct rules). A set of pairwise distinct rules on conditional NAPs Rif
is defined if:

• There is a local sequential set which contains every conditional NAP ⟨Pif ⟩ such that (⟨Pif ⟩ ⇒ N) ∈
Rif ,

• For any (⟨Pif ⟩ ⇒ N) ∈ Rif , Rif has no (⟨P′
if ⟩ ⇒ N′) where ⟨P′

if ⟩ is a subnet of ⟨Pif ⟩.
We call a rule set pairwise distinct if the set satisfies conditions in Definition 3.8. We also call rules
pairwise distinct if there is a set of pairwise distinct rules containing them.

As long as a rule set is pairwise distinct, one-step confluence property is preserved as follows:

Proposition 3.9 (One-step confluent). When a given set of rules on conditional NAPs Rif is pairwise
distinct, then all reductions using rules in Rif are confluent in one step.

Proof. We assume that Rif has two rules (⟨Pif ⟩ ⇒ N) and (⟨P′
if ⟩ ⇒ N′) which rewrite the same NAP into

different nets N and N′. Let ⟨P⟩ and ⟨P′⟩ be condition dropped NAPs for ⟨Pif ⟩ and ⟨P′
if ⟩, respectively.

First, we suppose that ⟨P⟩ and ⟨P′⟩ are the same. If both ⟨Pif ⟩ and ⟨P′
if ⟩ are available, then conditional

expressions in ⟨Pif ⟩ and ⟨P′
if ⟩ are not disjoint, and this contradicts that ⟨Pif ⟩ and ⟨P′

if ⟩ are elements of the
same sequential set. Otherwise, at most only one rule can be applied to the ⟨P⟩, and thus no critical pairs
will be created by using both rules.

Next, we suppose that the ⟨P⟩ is a subnet of ⟨P′⟩. If both ⟨Pif ⟩ and ⟨P′
if ⟩ are available, then ⟨Pif ⟩ is a

subnet of ⟨P′
if ⟩, and it contradicts that the Rif is well-formed. Otherwise, there is at most only one rule

that can be applied to both ⟨P⟩ and ⟨P′⟩. As a result, there are no critical pairs by using both rules.

4 Translation of nested conditional rules into non-nested ones

In this section we introduce a translation T of a rewriting rule on a conditional NAP (⟨Pif ⟩ ⇒ N) into
non-nested conditional rules and show properties of the translation T. Generally nested pattern matching
can be unfolded by introducing fresh symbols into less nested ones [5]. In NAPs each nested agent is
inductively connected, and thus by considering such induction steps as the local sequential order, we
realise the nested matching as non-nested ones by introducing fresh agents.

Definition 4.1. We define a translation T of a rewriting rule on a conditional NAP (⟨Pif ⟩ ⇒ N) into
non-nested conditional rules by structural induction on conditional NAPs:

Base case: If the ⟨Pif ⟩ is ⟨α (⃗x) ▷◁ β (⃗y) if c⟩, then the translation T works as the identity function.

Step case: If the ⟨Pif ⟩ is ⟨α (⃗x) ▷◁ β (⃗y) if c, z− γ(w⃗) if cz, u⃗⟩ where z is an auxiliary port in α (⃗x) ▷◁ β (⃗y)
and u⃗ is a sequence of connections such as “z1 − γ(w⃗1) if c1, z2 − γ(w⃗2) if c2, . . .”.
To draw graphs simply, we suppose that y⃗ is y1, . . . ,ym,ym+1 and the z is ym+1. Other cases can be
defined in a similar way. We also write the α and β as α ′(⃗a) and β ′(⃗b), respectively, in order to
show the attribute variables explicitly.
The T generates the following rules:

• (α ′(⃗a)(⃗x) ▷◁ β ′(⃗b)(⃗y) if c⇒M) where M is a net obtained by connecting the ym+1 to the prin-
cipal port of an agent κ (⃗a,⃗b)(⃗x,y1, . . . ,ym) and the κ is fresh for Σ and the previous occurring
symbols and depending uniquely on the symbols α ′,β ′ and the conditional expression c,
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• T[(⟨κ (⃗a,⃗b)(⃗x,y1, . . . ,ym) ▷◁ γ(w⃗) if cz, u⃗⟩ ⇒ N)].

Example 4.2. We show the translation of the rules for gcd ▷◁ Pair in Example 3.2. First, we take
the following rule: (⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 −Int(b) if b==0⟩ ⇒ N1). By applying the
translation to the rule, we have the following rule and translation:

T works for ⟨gcd Pair tt ▷◁ Int(b) if true⟩ as the identity function, so we obtain the following rules
as the result:
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The other rule for gcd ▷◁ Pair is similarly translated as follows:

By the obtained conditional rules for gcd Pair tt ▷◁ Int(b), we have two branches according to
the value of b—return the result a if b is 0, otherwise proceed to the calculation. We note the four
rules obtained are the same as the non-nested rules in Example 3.2, by changing gcd Pair tt and
gcd Pair tt ot into gcd1 and gcd2, respectively.

For each connection of a conditional NAP, the translation T introduces a rule in which one of the
active pair agents has a fresh symbol for Σ and the previous occurring ones. Therefore, the following
holds:

Lemma 4.3. Let Rif be a rule on a conditional NAP. T[Rif ] does not have two rules for the same active
pair P such that (P if c1 ⇒ N1) and (P if c2 ⇒ N2).

Lemma 4.4. Let R1,R2 be pairwise distinct rules on conditional NAPs. When for the same active pair
P, (P if c1 ⇒ N1) and (P if c2 ⇒ N2) are introduced by T[R1] and T[R2], then c1,c2 are disjoint or
N1 = N2.

We suppose an interaction net that has a symbol set Σ and a set of pairwise distinct rules on condi-
tional NAPs Rif . By applying the translation T to each rule in Rif , we obtain two sets R ′

if and Σ′—a
set of (non-nested) conditional rules and a set of symbol introduced during the translation, respectively.
The system with a symbol set Σ∪Σ′ and a rule set R ′

if is also an interaction net by Lemma 4.3 and 4.4.
In addition, the following proposition shows that the conditional NAP extension is conservative, i.e. an
interaction net with Σ∪Σ′ and Rif is realised without the extension, thus as an interaction net with Σ∪Σ′

and R ′
if .

Proposition 4.5. Let (⟨Pif ⟩ ⇒ N) be a rule on conditional NAPs and ⟨P⟩ be the condition dropped NAP

for ⟨Pif ⟩. If ⟨P⟩ is reduced to N by using this rule, ⟨P⟩ is also reduced to N by using only rules obtained
from T[(⟨Pif ⟩ ⇒ N)].

Proof. By structural induction on conditional NAPs.

Base case: The translation T works as the identity function, so the ⟨P⟩ is reduced to N by using rules
obtained from the translation.
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Step case: We assume that ⟨Pif ⟩ is ⟨P1 if c1, z− γ(w⃗) if c, u⃗⟩ and the condition dropped NAP ⟨P⟩ is
reduced to N by the rule (⟨Pif ⟩ ⇒ N). T generates the following rules:
(1) (P1 if c1 ⇒ M) where M is a net obtained by connecting the z to the principal port of an agent

κ (⃗z), where the symbol κ is a fresh and uniquely depending on the agents symbols in P1 and
the c1.

(2) T[⟨κ (⃗z) ▷◁ γ(w⃗) if c, u⃗⟩ ⇒ N].
By the rule of (1), P1 is reduced to an active pair (κ,γ), and it is iteratively reduced to N by the
induction hypothesis.

5 A notation for rules on conditional NAPs

In this section, we introduce a notation to facilitate expressing sets of pairwise distinct rules.
It is practical to write rules for an active pair α ▷◁ β with conditional expressions c1, . . . ,cn as guards

like in Haskell [10], which are evaluated one at a time from c1 to cn, as follows:

α (⃗x) ▷◁ β (⃗y)
| c1 ⇒ N1
| c2 ⇒ N2

...
| cn ⇒ Nn.

The last placed “otherwise” is evaluated as true. We can suppose that this is translated into the following
rules where the conditional expressions do not overlap:

((α,β ) if c1 ⇒ N1),
((α,β ) if not(c1) and c2 ⇒ N2), . . . ,
((α,β ) if not(c1 or c2 or · · · or cn−1) and cn ⇒ Nn).

As another example, we take the following two rules whose bases of conditional NAPs are the same ones
which are followed by connections to the same port:

(⟨α (⃗x) ▷◁ β (⃗y) if c, z− γ(z⃗1) if c1⟩ ⇒ N1),
(⟨α (⃗x) ▷◁ β (⃗y) if c, z−κ(z⃗2) if c2⟩ ⇒ N2)

It is also convenient to group these connections by the same port z with guards and a case-expression as
follows:

α (⃗x) ▷◁ β (⃗y)
| c -> case of z

γ(z⃗1) | c1 ⇒ N1
κ(z⃗2) | c2 ⇒ N2.

We may omit the guards if there is only one condition true.
Example 5.1. By using this notation, the rules for gcd ▷◁ Pair in Example 3.2 is written in the following
single sentence:

gcd(r) ▷◁ Pair(p1, p2)
-> case of p2

Int(b) | b==0 ⇒ N1
| otherwise -> case of p1

Int(a) ⇒ N2.
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5.1 Definition and translations of the notation

First, we define the rule notation by the following Rule with Sprays, which are branches connected to
nets:

Rule ::= α (⃗x) ▷◁ β (⃗y) | c1 Spray1
| c2 Spray2

...
| cm Spraym

Spray ::= ⇒ N
| -> case z of

γ1(w⃗1) | c11 Spray11
...

| c1m1 Spray1m1
...

γn(w⃗n) | cn1 Sprayn1
...

| cnmn Spraynmn

where α (⃗x), β (⃗y) are agents, ci is a conditional expression, N is a net, z is a free port, γ1(w⃗1), . . . ,γn(w⃗n)
are distinct agents, and the conditional expression “otherwise” can appear last. We may write Spray as S
when there is no confusion.

Translation of the rule notation to rules on conditional NAPs: We define the following translations
of the rule notation to obtain rules on conditional NAPs:

TR : Rule 7→
−−−−−−−−−−→
TS[⟨Pif ⟩, Spray], TS : (⟨Pif ⟩, Spray) 7→ r⃗

where ⟨Pif ⟩ is a conditional NAP, r⃗ is a rule sequence. If the ⟨Pif ⟩ obtained during translation do not
satisfy the conditions of given in Definition 3.1, then the translation will fail.

We may write “not(c1 or c2 or · · · or cn−1) and cn” as “not(c1, c2, . . . , cn−1) & cn” to save space.
In addition, we may write “not(c1, c2, . . . , cn−1) & otherwise” just as “otherwise”.

TR


α (⃗x) ▷◁ β (⃗y) | c1 S1

| c2 S2
...

| cn Sn

 def
=

TS[⟨α (⃗x) ▷◁ β (⃗y) if c1⟩, S1],
TS[⟨α (⃗x) ▷◁ β (⃗y) if not(c1) & c2⟩, S2]

...
TS[⟨α (⃗x) ▷◁ β (⃗y) if not(c1, c2, . . . , cn−1) & cn⟩, Sn].

TS
[
⟨Pif ⟩, ⇒ N

] def
= (⟨Pif ⟩ ⇒ N),

TS


⟨Pif ⟩,

-> case z of
γ1(w⃗1) | c11 S11

...
| c1m1 S1m1

...
γn(w⃗n) | cn1 Sn1

...
| cnmn Snmn


def
=

TS[⟨Pif , z− γ1(w⃗1) if c11⟩, S11],
...

TS[⟨Pif , z− γ1(w⃗1) if not(c11, . . . , cnm1−1) & c1m1⟩, S1m1 ],
...

TS[⟨Pif , z− γn(w⃗n) if cn1⟩, Sn1],
...

TS[⟨Pif , z− γ1(w⃗n) if not(cn1, . . . , cnmn−1) & cnmn⟩, Snmn ].
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Example 5.2. The following is a translation of the rule notation in Example 5.1:

TR


gcd(r) ▷◁ Pair(p1, p2)
| true -> case of p2

Int(b) | b==0 ⇒ N1
| otherwise -> case of p1

Int(a) | true ⇒ N2



= TS

⟨gcd(r) ▷◁ Pair(p1, p2) if true⟩,

-> case of p2
Int(b) | b==0 ⇒ N1

| otherwise -> case of p1
Int(a) | true ⇒ N2



= TS [⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if b==0⟩, ⇒ N1] ,

TS

[
⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if otherwise⟩, -> case of p1

Int(a) | true ⇒ N2

]

= (⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if b==0⟩ ⇒ N1),

TS [⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if otherwise, p1 − Int(a) if true⟩, ⇒ N2]

= (⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if b==0⟩ ⇒ N1),

(⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if otherwise, p1 − Int(a) if true⟩ ⇒ N2).

Thus, we derive the same rules as in Example 3.2.

5.2 Properties of the rule notation

In this section we show properties of the notation. First, we show that the translation TR is a function if
TR does not fail, thus we have the same result for the same rule notation.

Lemma 5.3. Let Rule be a string accepted by the rule notation, and let TR[Rule] not fail. If during
expansions of TR[Rule] to rules, the followings occur for the same conditional NAP ⟨Pif ⟩, then S1 and S2
are the same spray:

• TS[⟨Pif ⟩, S1],

• TS[⟨Pif ⟩, S2].

Proof. By structural induction on the conditional NAPs ⟨Pif ⟩.

From now on, we will only consider the case where the translation TR does not fail. By Lemma 5.3, we
can show the property more precisely:

Lemma 5.4. Let Rule be a string accepted by the rule notation. If during expansions of TR[Rule] to
rules, the followings occur for the same conditional NAP ⟨Pif ⟩, then y1 and y2 are the same:

• TS[⟨Pif , y1 − γ1(w⃗1) if c1⟩, S1],
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• TS[⟨Pif , y2 − γ2(w⃗2) if c2⟩, S2].
In addition, when γ1(w⃗1) and γ2(w⃗2) are the same, c1 and c2 are not overlapped.

Proof. By the definition of TS, TS[⟨Pif , y1 − γ1(w⃗1) if c1⟩, S1] and TS[⟨Pif , y2 − γ2(w⃗2) if c2⟩, S2] are
directly derived from TS[⟨Pif ⟩, S′1] and TS[⟨Pif ⟩, S′2] for some S′1 and S′2, respectively. By Lemma 5.3,
S′1 = S′2, and therefore this lemma holds.

Here we form a set whose elements are conditional NAPs that appear during expansions of TR to
rules, and show that the set is sequential.
Definition 5.5. For conditional NAPs ⟨Pif ⟩ and ⟨Pif , u⃗⟩ for any sequence of connections u⃗ (which may be
empty), we write ⟨Pif ⟩ ⊆ ⟨Pif , u⃗⟩. We use AllSub(⟨Pif ⟩) as a set {P′

if | P′
if ⊆ Pif }.

Example 5.6. The followings are the results of applying AllSub to rules obtained in Example 5.2:
• Elements of AllSub(⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if b==0⟩):

– ⟨gcd(r) ▷◁ Pair(p1, p2) if true⟩,
– ⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if b==0⟩.

• Elements of AllSub(⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if otherwise, p1 − Int(a) if true⟩):
– ⟨gcd(r) ▷◁ Pair(p1, p2) if true⟩,
– ⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if otherwise⟩,
– ⟨gcd(r) ▷◁ Pair(p1, p2) if true, p2 − Int(b) if otherwise, p1 − Int(a) if true⟩.

Proposition 5.7. Let Rule be a string accepted by the rule notation. When we obtain rules (⟨Pif 1
⟩ ⇒

N1), . . . , (⟨Pif m
⟩ ⇒ Nm) from TR[Rule], then AllSub(⟨Pif 1

⟩) ∪ ·· · ∪ AllSub(⟨Pif m
⟩) is sequential.

Proof. We examine whether the set A = AllSub(⟨Pif 1
⟩) ∪ ·· · ∪ AllSub(⟨Pif m

⟩) satisfies sequentiality
conditions in Definition 3.4.

First, we check the condition (1a). Each ⟨Pif i
⟩ is obtained from the same rule notation Rule by

using the translation of TR. Therefore, when ⟨α (⃗x) ▷◁ β (⃗y) if c1⟩,⟨α (⃗x) ▷◁ β (⃗y) if c2⟩ ∈A , c1 and c2 are
disjoint, by the definition of TR.

Next, we verify conditions in (2). We suppose that (⟨α (⃗x) ▷◁ β (⃗y) if c, u1, u2, . . . , un⟩ ⇒ N) is de-
rived from TR[Rule]. All elements of AllSub(⟨α (⃗x) ▷◁ β (⃗y) if c, u1, u2, . . . , un⟩) are related by ⊆ as
follows:

⟨α (⃗x) ▷◁ β (⃗y) if c⟩ ⊆ ⟨α (⃗x) ▷◁ β (⃗y) if c, u1⟩ ⊆ · · · ⊆ ⟨α (⃗x) ▷◁ β (⃗y) if c, u1, u2, . . . , un⟩.

By the definition of TR, for each two elements such that ⟨Pif ⟩ ⊆ ⟨Pif , u⟩ in the AllSub, there is the
following expansion:

TS[⟨Pif ⟩, S] = . . . , TS[⟨Pif , u⟩, S′], . . . .

Thus every element must occur as the first argument of TS during the applications of TR. Therefore, by
Lemma 5.4, each AllSub(⟨Pif i

⟩) satisfies (2a) and (2c). (2b) also is satisfied by the definition of AllSub.
AllSub(⟨Pif i

⟩) and AllSub(⟨Pif j
⟩) are disjoint because these are derived for the same Rule by TR[Rule].

Therefore, A also satisfies all these conditions.

We suppose that Rif is a rule set whose elements are obtained from the same rule notation Rule by
using TR[Rule]. Rules in Rif do not have any overlapped conditions, and thus there are not any rules
(⟨Pif ⟩ ⇒ N) such that the ⟨Pif ⟩ is a subnet of ⟨P′

if ⟩ for other rules (⟨P′
if ⟩ ⇒ N′) in Rif . Therefore, as long

as we use the rule notation, the rule set derived from Rif will be pairwise distinct.
Proposition 5.8. Let Rule be a string accepted by the rule notation, and Rif a set whose elements are
obtained from TR[Rule]. Then, Rif is pairwise distinct.
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6 Discussion

Implementation: Using rules on conditional NAPs allows us to write algorithms naturally and reduces
the number of reduction steps in comparison with using non-nested ones. However, when it comes to
the implementation of these rules, we need an efficient matching mechanism so that the rule application
waits until each nested agent is connected to all its ports and avoids repeatedly checking that these
connections have been made. This method can be realised by the T translation, since it ensures that
the nested agents are connected. Given this, the matching can then be performed by the net evaluator.
Another advantage of using the T translation is that it is then possible to perform some rule optimisation,
by combining rules. For instance, we take the translated rules in Example 4.2. The RHS of the rule
gcd Pair tt ot(b) ▷◁ Int(a) has an agent pair gcd ▷◁ Pair. Thus, by applying a rule for gcd ▷◁ Pair
to the RHS, we can have a one-step reduced optimisation rule as follows:

Therefore we can say that by using the translation T, conditional NAPs can be realised, taking advantage
of the expressiveness of the case notation and the already implemented evaluator such as Inpla [12] 1.

Related work: It is also possible to realise nested pattern matching for pure interaction nets by using
other approaches [1, 13] where agents are allowed to have more than one principal port. However, there
are some limitations, as discussed in [4]. For example, there is no natural way to express the function
lastElt, which returns the last element of a list. The last element of a list [x] is matched by using a
pattern, which is the LHS of a rule, with Cons agent having two principal ports and Nil agent. However,
to keep the one-step confluence, the patterns must be such that every principal port is connected to the
principal port of another agent. Thus, because two principal ports of Cons cannot be free, we need to
have every pattern for lists such as [y1,x],[y1,y2,x], . . ..

7 Conclusion

In this paper we introduced conditional nested pattern matching as an extension of [4], and showed that
as long as a rule set is pairwise distinct, the rewritings can continue to be one-step confluent. This not
only allows programs to be more easily written in interaction net form, but also allows the execution to
be performed by existing evaluators. Most well-known algorithms contain computations of conditional
nested pattern matching, and these can now be realised in interaction nets. We expect this will contribute
to finding new ways of implementing such algorithms, taking advantage of the benefits of interaction
nets, such as built-in parallelism and internal garbage collection.

1An up-to-date implementation is available from https://github.com/inpla/inpla

https://github.com/inpla/inpla
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We present a method for generating random hypergraphs in context-free hypergraph languages. It is

obtained by adapting Mairson’s generation algorithm for context-free string grammars to the setting

of hyperedge replacement grammars. Our main results are that for non-ambiguous hyperedge re-

placement grammars, the method generates hypergraphs uniformly at random and in quadratic time.

We illustrate our approach by a running example of a hyperedge replacement grammar generating

term graphs.

1 Introduction

We present a novel approach to the generation of random hypergraphs in user-specified domains. Our

approach extends a method of Mairson for generating strings in context-free languages [11] to the set-

ting of context-free hypergraph languages specified by hyperedge replacement grammars. Generating

(or “sampling”) graphs and hypergraphs according to a given probability distributions is a problem that

finds application in testing algorithms and programs working on graphs. Molecular biology and cryp-

tography are two fields of potential application where our methods could find a concrete use besides

the mere software testing. In [9] Kajino presents a novel approach for the representation of molecules

through hypergraphs. Specifically adapting our method to this setting would provide an instrument for

the exploration of new compounds in the field of molecular biology. The uniformity of the distribution

of our method is a fundamental requirement for the development of cryptographic protocols. In [6] and

[12] we may find some useful insights on how to model graph based algorithms in that domain. In the

setting of hyperedge replacement grammars, we believe that there is an opportunity for the development

of one-way functions.

Our generation algorithm uses as input a hyperedge replacement grammar in Chomsky normal form

[2] and a positive integer n. The former specifies the hypergraph language to sample from, the latter

the size of the hypergraph to be generated. The algorithm then chooses a hypergraph at random from

the slice of the language consisting of all members of size n. We show that if the grammar is non-

ambiguous, the generated samples are uniformly distributed. The only requirements for our method are

that the properties sought for the generated hypergraphs are representable by a hyperedge replacement

language and that, to guarantee a uniform distribution, a non-ambiguous grammar is used as input.

We also show that our method generates a random hypergraph of size n in time O(n2). This is the

same time bound established by Mairson (for the first method) in the setting of random string generation

in context-free languages.

http://dx.doi.org/10.4204/EPTCS.408.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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2 Hyperedge Replacement Grammars

This section gives a concise overview of the definitions needed to understand the generation process. We

also introduce our running example of a language of term graphs specified by hyperedge replacement.

For comprehensive treatments of the theory of hyperedge replacement grammars and languages, we refer

to Courcelle [3], Drewes et al. [4] and Engelfriet [5].

Let type : C → N0 be a typing function for a fixed set of labels C, then a hypergraph over C is a

tuple H = (VH ,EH ,attH , labH ,extH) where VH is a finite set of vertices, EH is a finite set of hyperedges,

attH : EH → V ∗H is a mapping assigning a sequence of attachment nodes to each e ∈ EH , labH : EH →C

is a function that maps each hyperedge to a label such that type(labH(e)) = |attH(e)|, extH ∈ V ∗H is a

sequence of pairwise distinct external nodes (Figure 1). The class of all hypergraphs over C is denoted

by HC.

1

2 3

1

2

3

1
2

3

1
2

3

1

1

+

∗

1

∗

+

1

Figure 1: A term graph

We write type(H) for |extH | and call H an n-hypergraph if type(H) = n. The length of the sequence

of attachments |attH(e)| is the type of e. Hyperedge e is an m-hyperedge if type(lab(e)) = m. We also

write type(e) = m if the context is clear. If an n-hypergraph has exactly 1 hyperedge and all its nodes are

external, that is EH = {e} and |VH |= n, it is called the handle induced by e and denoted by Ie. Moreover

if type(e) = n and extH = att(e) such a hypergraph is called the handle induced by A and denoted by A•.

We write attH(e)i for the ith attachment node of e ∈ EH and extH,i for the ith external node of H . The set

EX
H = {e ∈ E | labH(e) ∈ X} is the subset of EH with labels in X ⊆C. We define |H|= |VH |+ |EH | as the

size of H and we call H a size-n-hypergraph if |H|= n.

Figure 1 shows a term graph, a form of acyclic hypergraphs that represent functional expressions

with possibly shared subexpressions. (See [13] for an introduction to the area of term graph rewriting.)

Grey boxes represent hyperedges labelled with the function symbols ∗, + and 1, while nodes are drawn

as black bullets. Lines connect hyperedges with their attachment nodes, whose position in the attachment

sequence is given by small numbers.

Two hypergraphs H,H ′ ∈ HC are isomorphic, denoted H ∼= H ′, if there are bijective mappings

hV : VH → VH′ and hE : EH → EH′ such that h∗V (attH(e)) = attH′(hE(e)) and labH(e) = labH′(hE(e))
for each e ∈ EH and h∗V (extH) = extH′ . Two isomorphic hypergraphs are considered to be the same. A

hypergraph H is a subgraph of H ′, denoted as H ⊆H ′ if VH ⊆VH′ and EH ⊆ EH′ .

Hypergraphs are generated by replacement operations. Let H ∈HC and B ⊆ EH and let repl : B→
HC be a mapping with type(repl(e)) = type(e) for each e ∈ B. Then the replacement of the hyperedges

in B with respect to repl(e) is defined by the operations: remove the subset B of hyperedges from EH ; for

each e ∈ B, disjointly add the vertices and the hyperedges of repl(e); for each e ∈ B and 1≤ i≤ type(e),
fuse the ith external node extrepl(e),i with the ith attachment node attB(e)i.
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We denote the resulting hypergraph by H[e1/R1, . . . ,en/Rn], where B= {e1, . . . ,en} and repl(ei) = Ri

for 1≤ i≤ n, or H[repl]. The replacement preserves the external nodes, thus extH[repl] = extH .

Given the subsets Σ,N ⊆C used as terminal and non-terminal labels, with Σ∩N = /0, we denote EΣ
H

and EN
H respectively the subsets of terminal and non-terminal hyperedges of H .

The replacements applied during the generation are defined in productions: p= (A,R) is a production

over N, where lhs(p)=A∈N is the label of the replaced hyperedge and rhs(p) =R∈HC is a hypergraph

with type(R) = type(A). If |extR|= |VR| and ER = /0, then p is said to be empty.

Let H ∈HC and let p = (lab(e),R), with e ∈ EH , then a direct derivation H ⇒p H ′ is obtained by

the replacement H ′ = H[e/R].

A sequence d of direct derivations H0⇒p1
· · · ⇒pk

Hk of length k with (p1, . . . , pk) ∈ P is denoted as

H⇒k Hk or H⇒∗P Hk if the length is not relevant. We denote it as H⇒∗ Hk if the sequence is clear from

the context.

A derivation H⇒∗ H ′ of length 0 is given if H ∼= H ′.

Given an ordered set {α1, . . . ,αn} where ai < a j if i < j ∈ N we define a hyperedge replacement

grammar, or HRG as a tuple G = (N,Σ,P,S,(markp)p∈P) where N ⊆ C is a finite set of non-terminal

labels, Σ ⊆C is a finite set of terminal labels with N ∩Σ = /0, P is a finite set of productions, S ∈ N is

the starting symbol, (markp)p∈P is a family of functions markp : ER→{α1, . . . ,αn} assigning a mark to

each hyperedge in the right-hand side of a production p (Figure 2). For each pair ei,e j ∈ ER with i 6= j,

mark(ei) 6= mark(e j).

We denote as PA ⊆ P the subset of productions where lhs(p) = A. We call a production p = (A,R) ∈
PN ⊆ P non-terminal if EN

R 6= /0 or terminal if p = (A,R) ∈ PΣ = P\PN .

A ::=
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Figure 2: An ambiguous hyperedge replacement grammar for term graphs

The marking of the hyperedges in the rhs of each production, represents the order in which the

replacements are carried out (α1,α2, . . . ,αn−1,αn). It allows for the definitions of ordered derivation tree

and leftmost derivation.

Given a set of productions P, we denote by TP the set of all ordered trees over P which is inductively

defined as follows: for each p ∈ P, p ∈ TP; for t1, . . . , tn ∈ TP and p ∈ P, p(t1, . . . , tn) ∈ TP.

Then, given an HRG G, an ordered derivation tree t for e such that lab(e) = X ∈ N, is a tree

p(tα1
, . . . , tαn

) in TP, such that p = (X ,R) is a production in P, and tα1
, . . . , tαn

are derivation trees for

e1 . . .en, such that X1 . . .Xn are the labels of the non-terminal hyperedges in R marked with α1 . . .αn,

respectively (Figure 11).

We define the yield of an ordered derivation tree t, denoted with yield(t), as the sequence of replace-

ments: yield(p(tα1
, . . . , tαn

)) = rhs(p)[e1/yield(tα1
), . . . ,en/yield(tαn

)].

Let t be an ordered derivation tree for a hypergraph H obtained from a derivation d = S•⇒∗P H and

trav(t) its pre-ordered visit. Then d is said to be a leftmost derivation, denoted as lmd(H), if and only if

the order of the applied productions of d corresponds to trav(t).

Since we need a measure to ensure the termination of the proposed algorithm, we define an HRG
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to be non-contracting if for each direct derivation H ⇒p H ′, |H| ≤ |H ′|. We call a grammar essentially

non-contracting if there exists p = (S,R) ∈ P such that p is the empty production.

The hyperedge replacement language (HRL) generated by an HRG is the set L(G) = {H ∈HΣ |
S• ⇒∗P H}. We define for each A ∈ N, LA(G) = {H ∈ HΣ | A

• ⇒∗P H}. We also define for n ∈ N,

LA
n (G) = {H ∈HΣ | A

•⇒∗P H ∧ |H|= n}. Clearly LA
n (G)⊆ LA(G). We denote as |LA

n | the size of the set

of all size-n-hypergraphs in L that can be derived from A•.

For example, the hyperedge replacement grammar in Figure 2 generates the class of all term graphs

with function symbols in {∗,+,1}. Note that hyperedges with non-terminal labels are depicted as white

boxes. A derivation with the Chomsky normal form version of this grammar is given in Figure 10.

We define a grammar G to be ambiguous if there are ordered derivation trees t1, t2 ∈ TP, such that

t1 6= t2 and yield(t1) ∼= yield(t2), or equivalently, if there exist H,H ′ ∈ L(G) such that H ∼= H ′ and

lmd(H) 6= lmd(H ′). If yield(t1),yield(t2) ∈ Ln(G) we say that G is n-ambiguous. A non-ambiguous

version of the term graphs grammar is given in Figure 3.
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Figure 3: A non-ambiguous hyperedge replacement grammar for term graphs

3 Random hypergraph generation

In 1994, Mairson proposed a pair of methods for the sampling of strings from context-free grammars

[11] . His approach requires, as input, a grammar G in Chomsky normal form and the length n of the

word to be generated. He proves that, if G is non-ambiguous, such a word is generated uniformly at

random. The first method has a time complexity of O(n2) while requiring O(n) space, and vice versa, the

second method runs in linear time using quadratic space. In the following we adapt the first of Mairson’s

methods to hyperedge replacement grammars. We use our running example of a term graph language to

illustrate the generation process.

We define a Chomsky normal form (CNF) for hyperedge replacement grammars as a tuple GCNF =
(N,Σ,P,S,(markp)p∈P) where:

• N ⊆C is a finite set of non-terminal labels

• Σ⊆C is a finite set of terminal labels with N ∩Σ = /0

• P is a finite set of productions

• S ∈ N is the starting symbol



Federico Vastarini, Detlef Plump 111

• (markp)p∈P is a family of functions markp : ER→ {α ,β} assigning a mark to each hyperedge in

the right-hand side of a production p

Each production p = (A,R) ∈ P satisfies one of the following constraints:

• ER = {e1,e2} where lab(e1), lab(e2)∈N and mark(e1) 6= mark(e2), in which case the replacement

is firstly carried out on the hyperedge marked with α , then on the one marked with β

• ER = {e1} where lab(e1) ∈ Σ and mark(e1) = α

• ER = /0, |VR|> |extR|

• A = S, p is the empty production and for each q ∈ P, for each e ∈ rhs(q), lab(e) 6= S

Note that in the first two cases, rhs(p) contains either exactly two non-terminal hyperedges or a single

terminal hyperedge and may also contain isolated nodes. Productions according to the third case are

considered as terminal productions. The last case specifies that the empty production is only allowed if

there is no other production having the starting symbol in its right-hand side. The grammar in Figure 4

is the CNF version of the term graph grammar in Figure 2.

A ::=

1
2 3

1
C

α
A

β

1

P1

1
2 3

1

B

α

A
β

1

P2

1

1

1

P3

B ::=

1
2 3

1
2

3

D

α
B

β

1

2 3

P4

1
2 3

1

2

3

D

α
B

β

1

2 3

P5

1
2 3

+

1

2 3

P6

1
2 3
∗

1

2 3

P7

C ::=
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Figure 4: CNF of the grammar in Figure 2

Lemma 3.1. There exists an algorithm that for every hyperedge replacement grammar G produces a

grammar G′ in CNF such that L(G) = L(G′).

Proof. We present a set of rules to transform any grammar G, into an equivalent grammar G′ such that,

for each direct derivation H⇒p H ′ with p∈ PG, it exists an equivalent derivation H⇒∗Q H ′ with Q⊆ PG′ .

The proof is provided with a running example showing the application of the rules. The grammar in

Figure 5 contains productions that are not in CNF: P1 has more than 2 hyperedges; P2 has a single non-

terminal hyperedge; P3 is an empty production, but its lhs is not S; P4 has 2 hyperedges one of which is

terminal.

S ::=
1

2
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B
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2

c

1

2
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Figure 5: Starting grammar for the proof of CNF equivalence.
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For a production p = (A,R) ∈ P, that is not already in CNF, we consider the following set of rules,

applied in this order, to obtain a corresponding equivalent set of productions P′ in CNF:

1. If p is the empty production, for each production q = (B,X) ∈ P having e ∈ EX with lab(e) = A in

its rhs, for each production q′ = (A,Y )∈P having A in its lhs we apply the substitution R′=X [e,Y ]
and add the productions p = (B,R′). We then remove the productions that are no longer needed.

The proof of equivalence of the derivations H⇒q H ′⇒q′ H ′′ and H⇒p′ H ′′ is the following: if e′

with lab(e′) = B is the hyperedge involved in the derivation H ⇒q H ′ then H ′′ = H[e′/X [e/Y ]] =
H[e′/R′] since R′ = X [e,Y ].

S ::=
1
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C

C

C
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2
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Figure 6: Removal of the empty production P3.

In order to remove the empty production P3 (Fig. 6) we apply the replacements of all the produc-

tions having B as their lhs to all the productions having a hyperedge labelled as B in their rhs. We

remove P1 and introduce the productions P6 and P7. We then remove P2 and P3 since they are no

longer needed.

2. If ER = {e′} with lab(e′) ∈ N for each production q = (lab(e′),X) ∈ P we add the production

p′ = (lab(e),R′) with R′ = R[e′/X ]. If ER′ = {e
′′} with lab(e′′) ∈ N this step is iterated and termi-

nates when |ER′| > 1 or ER′ = {et} with lab(et) ∈ Σ or |ER′| = 0 and |VR′ | > extR′ . The proof of

equivalence of the derivations H⇒p H ′⇒q H ′′ and H ⇒p′ H ′′ is the following: if e′ is the hyper-

edge involved in the derivation H ′⇒q H ′′ then H ′′ = H ′[e/R[e′/X ]] = H[e/R′] since R′ = R[e′/X ].

S ::=
1
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2

C

C

C
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2
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2
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2
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C ::=
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S
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1

2

c

1

2
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Figure 7: Removal of production P7

Since P7 has a single non-terminal hyperedge C (Fig. 7), we apply a replacement for each produc-

tion that has C on its lhs. In our case, using the replacements of P4 and P5, we obtain P8 and P9.

The production P7 is removed from the grammar.

3. If |ER|= k > 2 we consider the subgraph X of R composed by the subset EX ⊂ ER of hyperedges

e2, . . . ,ek and their attachment nodes. We introduce a new label T so that N ′ = N∪{T} and a new

handle T • of eT with ext(eT ) =
⋃

2≤i≤k

att(ei) such that type(eT ) = type(X). We then consider the

hypergraph R′ composed by R\X and T • where VR′ = VR\X ∪VT• and ER′ = ER\X ∪ET• . Finally

we add the productions p′ = (A,R′), p′′ = (T,X) to P′. If |EX |> 2 this step is iterated. The proof

of equivalence of the derivations H ⇒p H ′ and H ⇒∗P′ H ′ is the following: if ea is the handle
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S ::=
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Figure 8: Removal of production P6

of the lhs of p we consider the following equivalence of the replacements then H ′ = H[ea/R] =
H[ea/R′[eT/X ]] since R = R′[eT/X ].

Since production P6 has three non-terminal hyperedges (Fig. 8), we create a new label T , a new

handle T • and the production P11. Then we add the production P10 so that the replacement of

the hyperedge labelled as T by the rhs of P11 results in the rhs of P6. The production P6 is then

removed from the grammar.

4. If |ER|> 1 and exists e′ ∈ER such that lab(e′)∈Σ a new label T is introduced so that N ′=N∪{T}.
We add 2 new productions p′ = (A,R′) to P′ where R′ = R with lab(e′) = T and p′′ = (T,e

′•). This

step is repeated for each e′ ∈ ER with lab(e′) ∈ Σ. Due to the confluence property [3] of HRGs

the order in which the terminal hyperedges are chosen is irrelevant. The proof of equivalence of

the derivations H ⇒p H ′′ and H ⇒p′ H ′ ⇒p′′ H ′′ is the following: if e′ ∈ ER with lab(e′) ∈ Σ

is the hyperedge involved in the derivation H ⇒p H ′′ then H ′ = H[e/R] = H[e/R′[e′/e
′•]] since

R = R′[e′/e
′•].

S ::=
2

3

1
1

2

T

C
1

2

P10

1

2

1

2
A

S

1

2

P8

1

2

c

1

2

P9

C ::=

1

2

1

2
A

S

1

2

P4

1

2

c

1

2

P5

T ::=
1

2

1

2

C

C

1

2

3

P11

A ::=

1

2

a

1

2

P14

Figure 9: Removal of productions P8 and P4

Both rhs of productions P4 and P8 are composed by a terminal and a non-terminal hyperedge. We

introduce a new label A and a its handle A• along with the production P14 (Figure 9). We then add

the productions P12 and P13 resulting from the substitution of the terminal hyperedges labelled

with a by the non-terminal hyperedges labelled with A. Productions P4 and P8 are then removed

from the grammar.

From this point on, if not explicitly specified, we always refer to an HRG as an HRG in CNF. We

stress that the input of the method must be already provided in this form, that is, the time required for the

transformation is not taken into account during the evaluation of the time complexity.

In order to complete the adaptation of the grammar we propose a more suitable short-hand represen-

tation of the productions that only extracts the necessary information, so, for each p = (A,R) ∈ P and

i ∈N0 we use the following notations:

• A
p
−→ BC, i for a non-terminal production where B,C ∈ N are the labels of the marked hyperedges

eα ,eβ ∈ R with mark(eα) = α , mark(eβ ) = β and i = |VR\extR|.
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• A
p
−→ a, i for a terminal production where a ∈ Σ is the label of the marked hyperedge eα ∈ R and

i = |VR\extR|.

• A
p
−→ λ , i for a terminal production where ER = /0 and i = |VR\extR|.

Matrix M2 (Tab. 1) shows the short-hand representation of the productions of the grammar in Figure

4. Considering a second input n as the size of the hypergraph to be generated, we are ready to describe

a pair of algorithms (Pre,Gen) for the random sampling of a hypergraph H from a grammar G. Such a

hypergraph is sampled in LA
n (G), where A ∈ N is the non-terminal we begin the sampling from. If A = S

and G is n-unambiguous, H is sampled uniformly at random among all the hypergraphs in Ln(G).

3.1 Pre-processing phase

The Pre-processing phase is used to construct a pair of matrices M1,M2 needed in the generation phase.

Let G = (N,Σ,P,S,(markp)p∈P) be an HRG, let n∈N be the size of the hypergraph H ∈ Ln(G) we would

like to generate, then the algorithm Pre (Alg. 1) produces the structures required for the generation.

Table 1: Matrices M1 and M2 resulting from Pre(G′,12)

M1 M2

N 1 2 3 4 5 6 7 8 9 10 11 12

A 1 0 2 0 14 0 92 0 616 0 3920 0

B 2 0 8 0 32 0 128 0 256 0 512 0

C 0 0 2 0 32 0 76 0 488 0 2928 0

D 2 0 0 0 0 0 0 0 0 0 0 0

P 1 2 3 4 5 6 7 8 9 10 11 12

A
P1
−→CA,1 0 0 0 0 2 0 16 0 128 0 992 0

A
P2
−→ BA,1 0 0 2 0 12 0 76 0 488 0 2928 0

B
P4
−→ DB,1 0 0 4 0 16 0 64 0 128 0 256 0

B
P5
−→ DB,1 0 0 4 0 16 0 64 0 128 0 256 0

C
P8
−→ BA,1 0 0 2 0 12 0 76 0 488 0 2928 0

A
P3
−→ 1,0 1 0 0 0 0 0 0 0 0 0 0 0

B
P6
−→+,0 1 0 0 0 0 0 0 0 0 0 0 0

B
P7
−→ ∗,0 1 0 0 0 0 0 0 0 0 0 0 0

D
P9
−→+,0 1 0 0 0 0 0 0 0 0 0 0 0

D
P10
−→ ∗,0 1 0 0 0 0 0 0 0 0 0 0 0

We begin initializing the entries of two matrices M1 = (N×N) and M2 = (P×N) to 0. Each entry

(A, ℓ) of M1, also denoted as A[ℓ], represents the number of derivations yielding a hypergraph of size ℓ+
type(A), from a non-terminal A ∈ N. Each entry (p, ℓ) of M2, also denoted as p[ℓ] represents the number

of derivations yielding a hypergraph of size ℓ+ |extR|, from a production p ∈ P. According to the type

of production they are also denoted as A
p
−→ λ , i[ℓ] or A

p
−→ a, i[ℓ] for terminal productions and A

p
−→

BC, i[ℓ] for a non-terminal production. Considering each terminal production p ∈ PT , either yielding a

single terminal hyperedge A
p
−→ a, i or at least a single isolated node A

p
−→ λ , i, the corresponding M2

entry p[i+1] in the former case, or p[i] in the latter, is set to 1. Then, for each ℓ∈N in 1≤ ℓ≤ n, for each

non-terminal A ∈ N, A[ℓ] = ∑p∈PA p[ℓ] and for each production p ∈ PN , p[ℓ] = ∑0<k<ℓ B, [k] ·C[ℓ− k].

The matrices can be used to generate hypergraphs in LA(G) of size ℓ+ type(A), with 1≤ ℓ≤ n from

any non-terminal A ∈ N. If the non-terminal A is chosen before the pre-processing phase we can reduce

the size of the tables to n− type(A). Table 1 shows the result of running the algorithm Pre using the

grammar G′ in Figure 4 and a size of 12 as input.
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3.2 Generation phase

In the generation phase a non-terminal Ā ∈ N is chosen and a size-n̄-hypergraph H , with 1 ≤ n̄ ≤ n+
type(A), is generated using the data collected in the matrices M1, M2 and a pseudo-random number

generator RNG. The algorithm Gen (Alg. 2) describes this process.

On input Gen(G,〈M1,M2〉, Ā, n̄− type(A)), if Ā[n̄− type(A)] = 0 the generating algorithm fails, oth-

erwise, having Ā• as a basis, the algorithm recursively calls the function derH proceeding through the

following steps:

1. The RNG is used to choose a production p ∈ PA with probability p[ℓ]/A[ℓ].
2. If p ∈ PA

Σ , the replacement of e, the handle of A, with the hypergraph R in rhs(p) is returned.

3. If p ∈ PA
T the RNG is used again to choose a “split” 0 < k < ℓ′ with ℓ′ = ℓ− i and probability

B[k] ·C[ℓ′ − k]/A
p
−→ BC, i[ℓ]. The hypergraph rhs(p)[eα/derH(B,k),eβ/derH(C, ℓ′ − k)] pro-

duced by the replacement of eα with the result on the recursive function on input derH(B,k) and

the replacement of eβ with the result of the recursive function on input derH(C, ℓ′−k) is computed.

Then, the replacement of the hyperedge e, the handle of A, with the aforementioned hypergraph is

returned. We use the notation BkCℓ′−k to indicate such a split.

The derivation d = A• ⇒∗P H in Figure 10 corresponds to the sequence of replacements computed

by the recursive function derH to generate the size-12-hypergraph H in Figure 1, using non-terminal

A as input. For each step we show the probability of the production p to be chosen and the choice of

the split and its probability if p ∈ PN . Since G is non-ambiguous, the first step shows that |L12(G)| =
3920, that is, there are 3920 unique size-12-hypergraphs to choose from, each having a different ordered

derivation tree. Figure 11 shows the tree t for which yield(t) = H , so that trav(t), or equivalently lmd(H),
corresponds to the unique sequence of productions applied by the generation algorithm to produce H . In

the figure are also indicated the starting symbol A and the replaced hyperedges eα and eβ , respectively

on the edges connecting the left and right child of each node. The proof of termination of the Generation

algorithm is based on the assumption that the input grammar is non-contracting:

Algorithm 1: Pre - Pre-processing phase

Input: (G,n), where G = (N,Σ,P,S,(markp)p∈P)
and n ∈ N, n≥ 1

Output: 〈M1,M2〉

for 1≤ ℓ≤ n do
foreach A ∈ N do

A[ℓ] := 0;
end
foreach p ∈ P do

p[ℓ] := 0;
end

end

foreach A
p
−→ a, i ∈ PΣ do

A
p
−→ a, i[i+1] := 1;

end

foreach A
p
−→ λ , i ∈ PΣ do

A
p
−→ λ , i[i] := 1;

end
for 1≤ ℓ≤ n do

foreach A ∈ N do
foreach p ∈ PA do

A[ℓ] := A[ℓ]+ p[ℓ];
end

end

foreach A
p
−→ BC, i ∈ PN do

for 1≤ k < ℓ do

A
p
−→ BC, i[ℓ+ i] := A

p
−→

BC, i[ℓ+ i]+B[k] ·C[ℓ− k];
end

end
end

Proof. Let’s consider a measure equivalent to the size of a hypergraph |H|. To each application of the

recursive function derH in each step of the algorithm Gen, corresponds a direct derivation between two
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Algorithm 2: Gen - Generation phase

Input: (G,〈M1,M2〉, Ā, n̄), where G = (N,Σ,P,S,(markp)p∈P), 〈M1,M2〉 := Pre(G,n), Ā ∈ N

and n̄ ∈ N, 1≤ n̄≤ n+ type(Ā)

Output: H ∈ LĀ
n̄ (G)

ℓ= n̄− type(Ā)
if Ā[ℓ] = 0 then

return ⊥;
end

Recursively generate H using (Ā, ℓ) as first input as follows:
function derH (A, ℓ):

p←− RNG with p ∈ PA and probability p[ℓ]/A[ℓ];
if p ∈ PT then

return A•[e/R];
else

ℓ′ = ℓ− i;

k←− RNG with 0 < k < ℓ′ and probability B[k] ·C[ℓ′− k]/(A
p
−→ BC, i)[ℓ];

return A•[e/R[eα/derH(B,k),eβ/derH(C, ℓ′− k)]];
end

end function
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Figure 10: A derivation d = A•⇒∗P H using the grammar of Figure 4
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sentential forms F ⇒ F ′ such that F ≤ F ′. Since the grammar is in CNF, at each step there are two

possible cases:

1. derH chooses a non-terminal production. In this case a single hyperedge e ∈ F is replaced with

a hypergraph R ⊆ F ′ containing 2 hyperedges and 0 or more internal nodes. Clearly |F| < |F ′|,
meaning that the size of the sentential forms gets progressively close to n.

2. derH chooses a terminal production. A hyperedge is replaced by a terminal hyperedge or a single

node and 0 or more additional internal nodes. In this case |F | ≤ |F ′|. Even if the size is not

incremented, being a terminal production, the recursion does not progress any further.

If it is not possible to generate a size-n-hypergraph using the input grammar G the algorithm trivially

ends in one step.

4 Uniform distribution and time complexity

We now state our first main result, the uniform generation guarantee for Algorithm 2.

Theorem 4.1. Given a grammar G = (N,Σ,P,S,(markp)p∈P), Algorithm 2 generates from every non-

terminal A ∈ N a size-n-hypergraph H ∈ LA
n (G), provided that LA

n (G) 6= /0. If G is n-unambiguous and

RNG is a uniform random number generator, the hypergraph is chosen uniformly at random.

Proof. Let G be an n-unambiguous grammar in CNF, the recursive function derH derives a hypergraph

H ∈ LĀ
n̄ (G) simulating trav(t) where yield(t) = H and let P(c j) denote the probability of the jth choice

c made using the RNG at each step of the recursion, for a production or a split, according to lmd(H).
Let’s recall that for the parallelization, confluence and associativity properties of context-free hyper-

edge replacement grammars [3], the sequence of replacements associated to a derivation preserves the

result of the derivation, despite of the order in which the replacements are applied. Thus, we are able to

discuss each of its steps independently.

By definition, since the grammar is n-unambiguous, for any non-terminal A ∈N we know that the set

of hypergraphs that can be generated using different productions p∈ PA are pairwise distinct. Otherwise,

there would exist trav(t ′) 6= trav(t ′′) for which yield(t ′)∼= yield(t ′′).
From algorithm Pre (Alg. 1) we know that ∑p∈PA p[ℓ] = A[ℓ] and so the probability of the choice c j

of each production in lmd(H) can be expressed by P(c j) = p[ℓ]/A[ℓ]. Also, if p ∈ PN , since the grammar

is n-unambiguous the subsets of hypergraphs that can be derived by choosing different splits are also

pairwise distinct. For a production p ∈ PN then ∑0<k<ℓ B[k] ·C[ℓ′− k] = A
p
−→ BC, i[ℓ], thus a split can

be chosen with probability P(c j) = B[k] ·C[ℓ′− k]/p[ℓ].
Knowing that for an lmd, if the grammar is n-unambiguous, both the choices of productions and

splits are made from independent sets, considering the corresponding derivation tree t, the probabilities

associated to the choice of a node P(c) and the ones associated to its children P(c′) and P(c′′) are of the

form m
q

, m′

q′
and m′′

q′′
with m,m′,m′′,q,q′,q′′ ∈ N and q′q′′ = m. Moreover, the probabilities of two con-

secutive choices P(c) and P(c′) are bound to the law of compound probabilities [10], that is, the choice

of a node given the choice of its parent is of the form P(c′|c) = P(c′∩ c)/P(c). Then, considering their

independence, P(c′|c) = (P(c′)P(c))/P(c) = P(c′). The same applies for P(c′′). The overall probability

of the choice of a node and its children is then P(c)P(c′)P(c′′) = m
q

m′

q′
m′′

q′′
= m′m′′

q
.

Finally, considering the chain of probabilities described by an lmd, since for Ā q = |Ln̄(G)| and for

each terminal production p ∈ PΣ m = 1, then for each H ∈ Ln̄(G) we can define its probability P(H) to

be generated as the productory of independent choices:
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P(H) =
k

∏
j=1

P(c j) =
m1

|Ln̄(G)|
·

m2

q2

·
mk−1

qk−1

. . .
1

qk

=
1

|Ln̄(G)|

Each hypergraph H ∈ Ln̄(G) is generated over a uniform distribution given the uniformity of the

sampling of the underlying RNG.

For the complexity analysis we consider the time required by the algorithm Gen (Alg. 2) for the

generation of the hypergraph and the space required by the algorithm Pre (Alg. 1) to store the required

data, taking into account that the input grammar is already provided in the correct CNF and the query to

the RNG and the replacement operations are performed in unit time. The gaps present in the tables, that

are not encountered in string method, are due to the possibility of a production to increase the size of the

resulting hypergraph by more than 1 in a single step.

Theorem 4.2. With the assumptions of Theorem 4.1, the size-n-hypergraph H is generated by Gen (Alg.

2) in time O(n2).

Proof. The proof of Theorem 4.2 is based on the analysis of the following recurrence relation for the

function derH: T (n) ≤ cn+ max
1≤k<(n−i)

[T (k)+ T(n− k− i)], where T (k) and T (n− k− i) are the com-

putational steps required to process the result of the split and i is the number of internal nodes of the

current production. In the worst case, we consider that i = 0 and that k = 1. A simple example is the

discrete hypergraph language in which every iteration may generate a terminal hyperedge from eα and

the rest of the resulting hypergraph from eβ without adding any node. Since the choice of the production

is constant, while the choice of a split is linear in n, choosing a split n times leads to a quadratic behavior.

Since i≪ n, we may rewrite the recursion as:

T (n)≤ cn+ max
1≤k<n

[T (k)+T (n− k)]

Then, considering the worst case k = 1, for the next step of the recursion we obtain:

T (n−1)≤ c(n−1)+ max
1≤k<(n−1)

[T (k)+T(n− k−1)]

That is, at each step the choice of a split happens on an input of size n−1. Since this choice requires

linear time and it is taken n times, the relation has solution O(n2).

We omit a discussion of the time complexity of the pre-processing phase (Alg. 1) which can be

shown to be linear, considering that given a grammar G in CNF, being its size |G| constant, for each

production p a short form containing the information about the labels and the internal nodes is obtained

in constant time.

5 Conclusion

Our main results, presented in Section 4, are that the method generates hypergraphs uniformly at random

and in quadratic time. A topic for future work is to design an alternative generation algorithm that runs

in linear time and quadratic space, following Mairson’s second method in [11].
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Figure 11: Ordered tree t for the derivation d in Figure 10

Another interesting topic is to extend the quasi-polynomial-time approximation algorithm of Gore

et al. [7] from strings to hypergraphs. This algorithm guarantees an approximated uniform distribution

even for ambiguous grammars.

Our method allows to generate strings uniformly at random in some non-context-free string lan-

guages because hyperedge replacement grammars can specify certain string graph languages that are not

context-free. For example, this applies to the language {anbncn | n ≥ 0}. Moreover, our method is able

to generate strings uniformly at random for a range of inherently ambiguous context-free languages.

The practically most promising application of our generation approach is the testing of programs in

arbitrary programming languages that work on graphs. If the inputs of such programs are graphs in a

context-free graph language, our method can generate test graphs uniformly at random in the domain of

interest. This should allow to refine random testing approaches such as [1, 8].
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