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Preface

This volume encompasses the proceedings of the Third Workshop on Agents and Robots for reli-

able Engineered Autonomy (AREA 2023), co-located with the 26th European Conference on Artificial

Intelligence (ECAI 2023).

The realm of autonomous agents, extensively studied for decades, has been a focal point from both

design and implementation standpoints. Nevertheless, the practical utilization of agents in real-world

scenarios has predominantly been within software-centric applications, with limited adoption in situ-

ations necessitating physical interactions. Concurrently, the utility of robots has transcended narrow

industrial contexts and has expanded across various domains. These domains span from robotic assis-

tants to search and rescue operations, wherein the operational context is dynamic and not fully specified.

This context often involves intricate interactions between multiple robots and humans.

These circumstances pose notable challenges to conventional software engineering methods. En-

hanced autonomy stands as a pivotal avenue for enabling effective functioning of robotic applications in

such settings. Autonomous agents and multi-agent systems emerge as promising methodologies for their

development. As the levels of autonomy and interaction escalate, ensuring reliable behavior becomes

increasingly intricate, not only in robotic applications but also in conventional autonomous agent scenar-

ios. Hence, there exists a demand for research into novel verification and validation approaches that can

be seamlessly integrated into the developmental life cycle of these systems.

The primary objective of this workshop is to facilitate collaboration between researchers in the fields

of autonomous agents and robotics. By amalgamating insights from these domains, innovative solutions

could potentially emerge to tackle intricate challenges associated with the verification and validation of

autonomous robotic systems.

In this third iteration of the workshop, a total of 12 submissions were received, of which 7 full papers

and 5 short papers were accepted. We extend our gratitude to all authors who contributed their valuable

work to the workshop.

Finally, we would like to thank our invited speakers, Viviana Mascardi and Bruno Lacerda. The title

and abstract of their presentations can be found below.

We also express our appreciation to the 25 program committee members (the complete list is available

below) for their valuable feedback, which contributed to the refinement of the papers. Our thanks also

extend to the EPTCS staff for their support in compiling these proceedings.

For additional details about the workshop, kindly refer to our website: https://areaworkshop.

github.io/AREA2023/.

The AREA 2023 organisers,

Angelo Ferrando and Rafael C. Cardoso

Program Committee

• Tobias Ahlbrecht, Clausthal University of Technology (Germany)

• Gleifer Vaz Alves, Federal University of Technology – Paraná (Brazil)

http://dx.doi.org/10.4204/EPTCS.391.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://areaworkshop.github.io/AREA2023/
https://areaworkshop.github.io/AREA2023/
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Talking Agents in the Virtual World

Viviana Mascardi

University of Genoa, Italy

viviana.mascardi@unige.it

What do chatbots and the metaverse have to do with reliability, cognitive agents, and robotic appli-

cations? In this talk I will explore the intriguing connections among them, presenting a small scale

prototype of (reliable) “talking agents in the virtual world”.

https://dx.doi.org/10.4204/EPTCS.391.1
https://creativecommons.org
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Model-Based Reasoning under Uncertainty for Reliable

Robot Mission Planning

Bruno Lacerda

University of Oxford, United Kingdom

bruno@robots.ox.ac.uk

In this presentation, I will argue that the synergy between three factors is critical for creating reliable

mission planning algorithms for autonomous robots operating in uncontrolled environments. These fac-

tors are (i) utilising historical data gathered online to enhance decision-making under uncertainty models,

(ii) implementing principled planning techniques that explicitly reason about the epistemic uncertainty

inherent to these data-driven models, and (iii) incorporating rich specifications that go beyond typical

expected reward maximisation problems. Developing frameworks that unify these three factors is an

open problem in the field of robotics, which is heavily dependent on the specific application domain. I

will offer an overview of various works undertaken at the GOALS lab at the Oxford Robotics Institute

that consider these three factors in distinct ways. Moreover, I will describe how these works provide

a foundation for creating integrated approaches that enable long-term deployment of robots capable of

acquiring parametrised environmental models from historical data, plan considering the epistemic un-

certainty of such models, and effectively adapt their behaviour to in-mission observations, continuously

refining their estimate over the epistemic uncertainty online.

http://dx.doi.org/10.4204/EPTCS.391.2
https://creativecommons.org
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Online Proactive Multi-Task Assignment with Resource
Availability Anticipation

Déborah Conforto Nedelmann Jérôme Lacan Caroline Chanel
ISAE-SUPAERO, Université de Toulouse, France

{deborah.conforto-nedelmann,jerome.lacan,caroline.chanel}@isae-supaero.fr

With the emergence of services and online applications as taxi dispatching, crowdsourcing, package
or food delivery, industrials and researchers are paying attention to the online multi-task assignment
optimization field to quickly and efficiently met demands. In this context, this paper is interested in
the multi-task assignment problem where multiple requests (e.g. tasks) arrive over time and must
be dynamically matched to (mobile) agents. This optimization problem is known to be NP-hard. In
order to treat this problem with a proactive mindset, we propose to use a receding-horizon approach
to determine which resources (e.g. taxis, mobile agents, drones, robots) would be available within
this (possibly dynamic) receding-horizon to meet the current set of requests (i.e. tasks) as good
as possible. Contrarily to several works in this domain, we have chosen to make no assumption
concerning future locations of requests. To achieve fast optimized online solutions in terms of costs
and amount of allocated tasks, we have designed a genetic algorithm based on a fitness function
integrating the traveled distance and the age of the requests. We compared our proactive multi-task
assignment with resource availability anticipation approach with a classical reactive approach. The
results obtained in two benchmark problems, one synthetic and another based on real data, show
that our resource availability anticipation method can achieve better results in terms of costs (e.g.
traveled distance) and amount of allocated tasks than reactive approaches while decreasing resources
idle time.

1 Introduction
The emergence of new applications dedicated to services such as taxi dispatching [9], ridesharing [12],
crowdsourcing [27] or package delivery has generated a lot of interest in the field of online multi-task
assignment. What all these services have in common, is that users can make requests and the platforms
have to adapt their resources in order to satisfy the demand.

The difference between offline and online assignment is that on the online one, requests (i.e. tasks)
arrive over time and are dynamically matched whereas, in the offline case, all the requests are known
beforehand [9]. With offline matching, finding an optimal task assignment is doable whereas online
matching poses additional challenges. In a majority of online task assignments, resources are disposable
and can only be used once, whereas we will consider the case where the resources are reusable in accor-
dance with the following references [25], [9]. In other words, after an agent has received an assignment,
it will not be available for a new allocation for a certain period of time before being able to be assigned
to new requests.

In order to treat online (multi-)task assignment, there are generally two options to manage the time.
The first option consists to divide the time into intervals. At the end of each interval, the requests that
have arrived within this interval are assigned to agents that have finished their previous tasks [2], [19].
The second option consists in assigning the requests immediately upon their arrival (i.e. continuously on
time) to whatever available agents at that moment. Both of these solutions have drawbacks: the first one
might result in a better solution but the waiting time before agents are available to assign tasks might be
important and the second one assigns the request immediately but the solution is worse [25].

https://dx.doi.org/10.4204/EPTCS.391.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Following the literature, there are several possibilities to describe the requests according to their
arrival model [20] but, in this work, we have chosen to make no assumption on any arrival distribution.
This choice was motivated by the fact that we chose to focus on the performance of online task allocation
algorithms without being distracted by any knowledge of future task appearances.

With a proactive mindset, our contribution to treat this problem is to use a receding-horizon approach
to determine which agents would be available at a given time horizon given their current allocated tasks.
Inspired by [2] and [19], our approach divides the time in small intervals and accounts for a certain
horizon size (some time steps in the future), to determine where the agents would be and if they would
have finished their tasks within this horizon. This would lead to the choice to consider them as near-
future available resources for current multi-task assignment problem. Hence, our contribution can be
seen as a proactive multi-task assignment with resource availability anticipation approach.

In terms of assignment computations, this problem is similar to the Multiple Traveling Salesmen
Problem with open path and multiple depot [22]. A way to treat this problem online is to use meta-
heuristic approaches, such as Genetic Algorithm, as we will present in next section. Moreover, meta-
heuristic approaches allows to use multi-objective criteria costs to evaluate (multi-)task assignments
solutions [23].

We compared our proactive approach with a classical reactive approach (no anticipation) using two
benchmark problems: a synthetic and a real-data based one. In brief, the results show that our resource
availability anticipation method can achieve better results in terms of costs (e.g. traveled distance) and
amount of allocated tasks than a reactive approach. Interestingly, the results also demonstrate that our
approach decreases resources idle time.

The paper is organized as follows. Section 2 overviews related works. Section 3 formally describes
the optimization problem we are addressing. The approach proposed to treat the proactive online multi-
task assignment problem is presented in Section 4. Experiments are showed in Section 5, and Section 6
concludes the paper.

2 Related Work
The general problem we address in this paper is the multi-task assignment with reusable resources,
where the goal is to coordinate a set of agents (i.e. the resources) in order to accomplish some tasks in
an efficient way [17] within a given time period. Here, we focus on the case where multiple agents have
to travel, reach and perform their tasks in a way that the overall (traveled) distance is minimized and the
number of assigned tasks is maximized. This is reminiscent of the Multiple Traveling Salesmen Problem
(MTSP), a well known hard optimization problem, for which literature has proposed several solution
search algorithms [22][5]. In particular, our problem is similar to the special case of MTSP with open
path and multiple depots. For this last, most common methods use meta-heuristics which include Ant
Colony Optimization, Simulated Annealing and Genetic Algorithm [5][22].

In this paper we are focusing on online variants of the classical multi-task assignment approaches
[17], [16], [6], where requests arrive dynamically. Compared to classical offline models, online models
tend to perform worse due to the uncertain nature of the future requests [3]. In spite of this, several
methods have been used to find solutions for the online assignment problem. A common one is the Linear
Programming [25] [21]. Evolutionary algorithm have also been used due to their strong performance for
multi-criteria objective [23]. Given the nature of the problem we are treating in this paper, this solving
approach interests us as we will detail on Section 4. Reference [12] has studied, in the context of online
assignment, the performance of variants of the Ant Colony Optimization (ACO) algorithm compared to
a Genetic Algorithm (GA) and have found that a variant of ACO would perform at best the same as the
GA. This is why GA seems to be an interesting choice.
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Additionally, we have observed in the literature (see [1] [10] [9] [25] [14]) that papers tend to focus
on using a request arrival model, usually a distribution that describes the likely tasks locations (e.g.
requests). Several authors have examined the concept of anticipation by working with the distribution.
In [4], the authors divides the time in intervals and with the arrival distribution determines the number
of tasks and their location a couple of intervals ahead, enabling them to better position their agents to
respond to the future tasks more effectively. In [8], the authors have beforehand an example of the
characteristics of the requests which allows them to build offline a distribution about the more likely
scenarios. On a more practical example, both [24] and [7] chose to build an anticipation model to try to
avoid traffic jams thanks to previous registered data. As said previously, we make no assumption about
the requests arrival model, but we work on anticipating the availability of agents given their current
tasks (i.e. the end-time of the tasks assigned to a given agent and its corresponding location). As far
as we know, there is no work in the literature for online proactive multi-task assignment with resource
availability anticipation.

Moreover, to treat the problem online, time has to either be divided in small intervals or requests must
be assigned immediately at their arrival. Both have their benefits and drawbacks, because as presented in
[26], either the new allocation is sub-optimal (regarding a long-term horizon), due to a lack of available
agents at a given moment compared to the fleet, or that, in order to find a better solution, we need to wait
for more agents to become available, which can be long. In this work, we have decided to divide the time
into intervals and assign the requests that have arrived within the interval to agents that may be available
within a given receding-horizon.

3 Problem Statement and Treatment
3.1 Problem statement
Multi-task assignment is a combinatorial optimization problem. In our case and over the entire time
horizon, we aim to maximize the amount of allocated requests (i.e. tasks) while also minimizing the
overall traveled distance of the agents (i.e. the resources).

We consider that we have a set of M agents denoted by A = {a1,a2, . . . ,aM}. The location of the
agents is denoted by pa for all a ∈ A. The tasks are described by their location pr and the expected time
tr an agent is supposed to met them. Thus, a single request r ∈ R can be written as r = (pr, tr). A request
can be assigned to only one agent. Thus, each agent a ∈ A has an associated vector of requests assigned
to them: Ra = (r1

a,r
2
a, . . . ,r

n
a), where n is the number of tasks assigned to a at a given time. To describe

if a request has been allocated to an agent, we use the binary variable xa,r. If request r was allocated to
agent a, we have xa,r = 1, otherwise xa,r = 0. Thus, we have Ra = {

⋃
r∈R r|xa,r = 1} defining the set of

tasks from R assigned to a. To an agent a maximum of Ca requests can be assigned. Let La be the cost
associated to the path length that an agent have to travel to accomplish their assigned tasks at a given
time.

The total time horizon T is divided into small intervals called time steps or time windows. The time
windows are indexed by τ and their duration is a constant equal to δ . During the time window τ , we read
the buffer of requests B and store the new requests in Rτ . It is worth saying that Ra, Ca and La may also
depend on this time step τ , such as Rτ,a, Cτ,a and Lτ,a.

Therefore, the general optimization problem we address can be formalized as:

min

[
T−1

∑
τ=0

(
α ∑

a∈A
Lτ,a

( ⋃
ri∈Rτ

ri|xa,ri = 1
)
+(1−α)

(
|Rτ |− ∑

a∈A
∑

r∈Rτ

xa,r
))]

(1)

subject to:
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∑
a∈A

xa,r ≤ 1,∀r ∈ Rτ , (2)

∑
r∈Rτ

xa,r ≤Cτ,a,∀a,∀τ ∈ {0, ...,T −1} (3)

where the weights α(∈ [0,1]) and (1−α) define the relative importance of the total path length cost
and the total number of assigned tasks, including criteria scaling needs. We do not have any information
on the upcoming requests, thus the general optimization problem formalized above is hard (or even
impossible) to be solved offline.

3.2 Problem treatment
With a proactive mindset, we propose to use a receding-horizon approach to determine which agent
would be available at horizon H given their current allocation. For simplicity, we define this receding-
horizon as a multiple of the duration of the time intervals such as, H(k) = kδ , with k ≥ 0 (e.g H(5) =
5δ ).We will call the set of agents that are available within horizon H at time step τ as Aτ(H) ∈ A. Note
that the number of available agents depends on the size of the receding-horizon H and the time step τ .

So to achieve a solution to the general optimization problem presented, we use this receding-horizon
to be proactive, and we adapt the optimization problem to be solved at each time window τ . At τ , we
know the position of the tasks Rτ and we can check the availability of the agents within this receding-
horizon H.

Thus, at the time step τ , the optimization problem we solve is the following:

min

[
α ∑

a∈Aτ (H)

Lτ,a

( ⋃
ri∈Rτ

ri|xa,ri = 1
)
+ (1−α)

(
|Rτ |− ∑

a∈Aτ (H)
∑

r∈Rτ

xa,r

)]
(4)

subject to:

∑
a∈Aτ (H)

xa,r ≤ 1,∀r ∈ Rτ (5)

∑
r∈Rτ

xa,r ≤Cτ,a,∀a ∈ Aτ (H) (6)

In the following, we define how we compute Lτ,a, the cost associated to the path length that an agent
a has to travel to accomplish its assigned tasks at τ:

Lτ,a(
⋃
ri

) = c(pa;pr1)+

|
⋃

ri
|−1

∑
i=1

c(pri ;pri+1),∀ri ∈ Rτ (7)

where c is the cost associated to the distance between two locations and
⋃

ri
= {

⋃
ri∈Rτ

ri|xa,ri = 1}. This
path cost formula was inspired by the definition of cost for MTSP with multi-depot open path proposed
in [5] and adapted to our case. Lτ,a(

⋃
ri
) effectively quantifies the length of the shortest path between the

agent’s location and his assigned tasks.
As a feature, and with the aim of maximizing the number of achieved requests within the entire

horizon T , at τ , we consider the tasks that have not been allocated in earlier time steps in addition to the
current buffer B to form Rτ . Earlier requests are considered with higher priority compared to later tasks.
This constraint will be integrated into the design of the solution, explained in Section 4.3.2. The reason
we take into account this aspect is that we want to avoid cases where some tasks would potentially wait
for a long time before being allocated or even never be allocated.
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4 Online Proactive Task-Assignment with Resource Availability Antici-
pation

4.1 General solving procedure
In accordance with our problem statement and model stated previously, we summarize our general al-
gorithm as the pseudo-code in Algorithm 1. In line 1 and 2, we first define the set of agents and their
locations as well as the size of our receding-horizon H. At each time step τ , we consider the tasks that
have arrived since the last assignment which are stored in buffer B along with the ones that have not
been assigned yet (line 5). Then in line 6, we check the availability of agents at the receding-horizon H.
Agents that are available within H are then used for multi-task assignment using a genetic algorithm in
line 7 (explained later).

Algorithm 1 General Algorithm
1: Definition of the set of agents A and their locations
2: Definition of horizon H
3: Rτ=0← /0, tr = 0
4: for each time step τ do
5: Rτ ← GetTasksFrom(B,Rτ−1)
6: Aτ (H) = AvailabilityAnticipation(H,A,τ)
7: Solτ = GeneticAlgorithm(Rτ ,Aτ (H),Cτ,a)

Algorithm 2 Availability Anticipation Process
1: procedure AVAILABILITYANTICIPATION(H,A,τ)
2: Aτ (H)← []
3: for a ∈ A do
4: Rτ,a←

⋃
ri∈Rτ

ri|xa,ri = 1
5: tRτ,a ← getLastTaskElementTime(Rτ,a).
6: if tRτ,a < τ +H then
7: append a to Aτ (H)

8: return Aτ (H).
9: end procedure

4.2 Availability Anticipation
We now define the essential part of our contribution which corresponds to the function on line 6 in
Algorithm 1. The main difference with other reactive matching algorithms [25] [14] [9] is we are not
using only the agents that are strictly available at τ , but we are computing which agents will be available
within a certain horizon.

Using only the instantly available agents at the current time may provide sub-optimal solutions in
terms of distance and the overall amount of requests allocated [26]. Note if an agent becomes available
right after the time window, it will have to wait almost the time window duration before being assigned to
new requests. We believe anticipation may allow to find better solutions in terms of overall traveled dis-
tance while being proactive in terms of resource usage. Additionally, in terms of the number of requests
completed, if we have more agents available, the number of tasks that can be allocated is automatically
higher given an agent can only treat a maximum of Cτ,a requests per round. Another point is we do not
wait for the agents to complete their previous tasks before assigning them new ones. With this, we avoid
the problem of agents staying idle for almost a round.

A feature of our solution is to try to avoid unbalance of tasks between agents where the requests of
busy agents could be completed well after some newer requests, which are assigned to less busy agents.
With our solution, if some agents are very busy, they will simply not be picked for a new allocation until
they complete some of their previously assigned requests.

The availability anticipation process is detailed in Algorithm 2. For every agent, we check the es-
timated time tRτ,a when their last request is supposed to be completed in lines 4 and 5. If this time is
within the horizon H with respect to current time τ (line 6), then we consider this agent as available
at the receding-horizon and consequently this agent is used for multi-task assignment. The last request
completion time tRτ,a can be predicted by supposing each agent has a constant velocity. Using the current
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set of tasks assigned to an agent, Rτ,a we can calculate the time necessary for the agent a to go to them
and, also its final location.

4.3 Genetic Algorithm
The Genetic Algorithm (GA) is an evolutionary algorithm and a well known meta-heuristic approach
[15] usually used to solve high combinatorial optimization problems [5], which iteratively constructs
solutions. A proposition of a solution by a GA is called a chromosome and a list of chromosomes is a
population. At each iteration, the population is evaluated and the better chromosomes are used to create a
new generation thanks to some operations inspired by natural evolution theories. The new generation will
hopefully provide better solutions than the previous one. This process is repeated until some stopping

Algorithm 3 Genetic Algorithm
1: procedure GENETICALGORITHM(Rτ , Aτ (H), Cτ,a )
2: Definition of the probability of mutation pmuta and the probability of swapping pswap
3: Definition of the size of the population nPop and the size of a chromosome: |Aτ (H)|×Cτ,a
4: Definition of the timing beginning tbeg
5: Fill each chromosome chr of the population Pop with −1
6: P← []
7: for ri ∈ Rτ do
8: Calculate pi with the Boltzmann Probability Distribution
9: Append pi to P

10: for each chr ∈ Pop do
11: while Rτ 6= /0 or count(v in chr | v =−1) 6= 0 do
12: Select ri from Rτ using P
13: Select pos position in chr randomly
14: chr[pos] = riID

15: Remove ri from Rτ

16: Set minnow = ∞ and minprec = 0
17: Definition of the current time tnow
18: while tnow− tbeg < δ or |minnow−minprec|> ε do
19: S← []
20: for each chr in Pop do
21: s = f itness(chr)
22: Append s to S
23: Set minprec = minnow and minnow = min(S)
24: Select the best 30% chromosomes Bestchr ⊂ Pop regarding S
25: Pop← []
26: Append Bestchr to Pop
27: while |Pop|< nPop do
28: parent1 = random(Bestchr) and parent2 = random(Bestchr)
29: childchr =Crossover(parent1, parent2)
30: v = random(0,1)
31: if v < pmuta and v < pswap then
32: childchr = Swapping(childchr)

33: if v < pmuta and v > pswap then
34: childchr = Inversion(childchr)

35: Append childchr to Pop
36: Update the current time tnow

37: Set Solτ = chr∗, such as chr∗ = argminchr∈PopS
38: return Solτ
39: end procedure
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condition is reached.
In the following, we detail some design choices of the GA that we use in order to find assignment

solutions to the Rτ tasks considering the Aτ(H) agents. This operation corresponds to line 7 of Algorithm
1 and is detailed in Algorithm 3.

4.3.1 Solution representation
Our population has the general aspect illustrated in Fig. 1. Each chromosome represents a proposition of
solution (i.e. an multi-task assignment solution given the agents and requests considered). The size of a
chromosome is therefore limited to |Aτ(H)|×Cτ,a to respect the maximum number of requests assigned
to each agent. If this constraint is relaxed, the size is then |Aτ(H)| × |Rτ |. Each request has a unique
positive identification number (ID) which is used inside the chromosome. If an agent is assigned less
than Cτ,a tasks, the remaining values are noted as −1 to differentiate from the ID. For example, in the
last chromosome of Figure 1, the GA has assigned requests 8 and 6 to the first agent, requests 12 and 3
to the second agent, request 5 to the third agent, and request 7 to the last agent.

Figure 1: Structure of the population and chromo-
some. Figure 2: Illustration of the different evolution op-

erations: (a) for crossover and (b) and (c) for the
respective swapping and inversion mutation oper-
ations.

4.3.2 Solution Initialization
This step corresponds from line 5 to 22 of Alg. 3. In line 5, we fill each chromosome with the value -1
that we will possibly replace with the ID of the requests. As mentioned previously, we want to prioritize
the selection of tasks that have been registered earlier. For this, we use the Boltzmann Probability Dis-
tribution, which was proposed for thermodynamic field but has since been picked up to be used in the
domain of reinforcement learning [11]. We propose the following adaptation:

pi =

{
1
Q exp(− tri

τ
) for τ > 0

1
|Rτ | for τ = 0

(8)

where Q = ∑
|Rτ |
r j=1 exp(−

tr j
τ
). Then, pi is the probability of the task ri to be selected, and tri is the time

when ri was registered and τ is the current time step. This is done between the lines 7 and 9 of Alg. 3.
We select the tasks using this distribution for each chromosome initialization and we order them in the
chromosome randomly (from line 10 to line 15).
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To create a new generation, we need to evaluate the quality of our previous population chromosomes
thanks to a fitness function defined from our optimization objective. The goal is to minimize the result
of this fitness function throughout the generations of the GA. The fitness function is defined as follows:

α

(
∑

a∈Aτ (H)

la
1

Lmax

)
+(1−α)

(
1−

∑a∈Aτ (H) ∑r∈Rτ
xa,r

|Rτ |

)
(9)

where la is the distance traveled by agent a from its (current or anticipated) position in order to complete
his new list of requests, and rn is the list of requests assigned to agent a for this chromosome. We
normalize the cost concerning the total traveled distance agents Aτ(H) by Lmax, which is the maximum
distance traveled by all agents in the first generation of the GA. As we assign the selected tasks in a
random order in the solution initialization, this maximum distance obtained in the first generation can be
considered as a worst-case solution. The scoring of the different chromosomes is done between lines 20
and 22 in Alg. 3.

4.3.3 Evolution operations
Using the fitness function, we select the 30% best chromosomes (line 24) and apply some operations on
them to build a new generation. We use crossover operation and two types of mutation operations. These
different operations are illustrated in Figure 2.

The crossover operation selects two parent chromosomes and a random index. The elements from
the first parent are copied until that index and from that index, we append the elements of the second
parent, respecting the condition that a request can only be assigned to one agent. This creates a child
chromosome (see line 29 of Alg. 3). After the crossover operation, some chromosomes go randomly
through one of the mutations. This operation is usually used to avoid the genetic algorithm getting stuck
on a local minimum (see [18]). We call the first type of mutation swapping, which consists in taking
two random tasks in a chromosome and swapping their positions. The other mutation is the inversion
operation, where the order of the requests between two random indexes is inverted. A chromosome can
(randomly) undergo a mutation following two probabilities pmuta and pswap (line 30 to 34) which were
empirically set.

4.3.4 Stopping condition
Our GA stops if it reaches one of two stopping conditions: (i) if it can not improve its solution value (e.g.
not more than ε ' 0) from the last couple of generations or (ii) if the time spent since the beginning of
the GA calculations has reached the duration of the time window δ (line 18 in Alg. 3). If some requests
were not assigned (e.g. due to the constraint on the number of tasks), they will be considered along with
the buffer for the next allocation. The best solution in terms of fitness function evaluation is selected and
we consider it as the assignment solution (Solτ ) for the time window τ (line 37).

5 Experiments
5.1 Benchmarks and Metrics
The first aspect we are interested in is how our proactive approach compares with a reactive approach that
considers only the immediately available agents. For that, we are going to use two different benchmarks:
the first one is a synthetic simulation and the second one is based on the real data of taxi dispatching in
New York city1 obtained from reference [9].

1available at http://www.andresmh.com/nyctaxitrips/

http://www.andresmh.com/nyctaxitrips/
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This is also the step where we have to make some adaptations to fit each scenario. We focused on the
cost of the distance la present. In our synthetic scenario, we consider the request as completed when the
agent reaches it; so la is only the distance from the anticipated position of the agent to the first task and
the distance between the other tasks. Whereas for taxi dispatching, we have to also take into account the
pick-up and the arrival locations of the requests, so here la is sum of the distance from the anticipated
position of the taxi to the pick-up of the first request, the distance between the pick-up and the arrival
for each task and the distance between the arrival location of the previous task and the pick-up of the
following request. We can adapt this criterion to whatever scenario by just changing the formula of la.

During our synthetic simulation, we vary different parameters to analyze how they impact the perfor-
mance of our proposal. We will first analyze the impact of changing α through empirical testing. Note
that different values of α give more or less importance to either the traveled distance criterion or the
percentage of assigned requests criterion. The goal is to find an α value that allows for a compromise
between the performance of the different criteria. We will also evaluate how our method performs de-
pending on the number of tasks compared to the number of agents: in one case, at each time window τ

there will be fewer tasks to assign than the total number of agents |Rτ |< |A|,∀τ ∈ {0, ...,T −1}, and on
the other hand, there will be more tasks than agents at each time window |Rτ |> |A|,∀τ ∈ {0, ...,T −1}.

In a second moment, we analyze the impact of the receding-horizon H. We denote by H(k) the
receding-horizon with a duration equal to k time steps. In variable case, denoted H(v), we compute the
solutions for several receding-horizon sizes and take the best solution among them. Note that the H(0)
case is equivalent to the classical reactive approach whereas the others constitute the proactive approach.
In the variable receding-horizon case H(v) we search a solution for H(0), H(1), . . . ,H(5) and chose the
best solution among them regarding the score from the fitness function in the GA. The last parameter we
evaluate is the impact of the maximum amount of requests Cτ,a that can be assigned to an agent in each
time window. For one case, we fixed Cτ,a =

1
3 |Rτ | and for the other case Cτ,a = ∞ for all different agents.

For the real data set of taxi dispatching, we want to see how our method scales and performs in a
real-data based environment, where there is more ground to be covered by the numerous agents and the
number of requests really varying according the time and the activity of the clients.

In terms of metrics we uses to evaluate our model, we are interested in three specific metrics regis-
tered during the total time length on our simulations. The first one is the total distance traveled by the
agents, the second one is the time agents stay idle, and the last one is the percentage of allocated tasks.
We want the distance and the idle time to be low and the percentage of assigned tasks to be high. The idle
time is when agents stay idle waiting for their new assignments after completing their tasks. Normally,
with the availability anticipation, this only happens to an agent if the timing to complete all their requests
is less than τ .

5.2 Results
5.2.1 Synthetic benchmark
In this simulation, we have fixed the velocity of each agent at 1 m/s. The generated requests at τ have
a random position in a squared grid world of dimensions of 10m× 10m. One simulation has a total of
30 time windows and we use 10 different simulations. During one simulation, each agent can travel a
maximum of 150m. The results presented are based on the average of our 10 simulations.

Evaluation of the impact of the α parameter. We attributed to α the following values: {0, 0.25, 0.5,
0.75 ,1} for the fixed and variable receding-horizons. We also look at the case where there are fewer
requests per time step than agents and the contrary. Results are presented in Table 1 in Appendix. We
can observe that, in general, when the α value increases, the traveled distance decreases, which is an
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expected result since α is the weight of the distance in the fitness function. When α = 0, no attention
is given to the way the tasks are ordered and the algorithm does not search for the shortest path. This is
also when the idle time is the lowest since the agents have the biggest distance to cover.

With |Rτ | > |A|, when α value increases, the percentage of allocated tasks rises even if the weight
of the total number or assigned tasks criterion is less important in the fitness function. With |Rτ | < |A|,
percentage of allocated tasks is almost 100 % until α = 0.75, when the minimization of total distance
becomes the dominant criterion and the percentage drops slightly. In this case, the the agents are un-
derutilized and should be able to complete all the requests. For this reason, we chose to exclude α = 1.
The value with the best results is α = 0.75. This value will used in the deep analysis presented in the
following and on the rest of our synthetic benchmark tests.

(a) Total traveled distance (b) Total idle time (c) Percent of assigned tasks

Figure 3: Comparison between different receding-horizon sizes when |Rτ |< |A|.

(a) Total traveled distance (b) Total idle time (c) Percent of assigned tasks

Figure 4: Comparison for different receding-horizon sizes when |Rτ |> |A|.

Less tasks than agents In Figure 3, we are paying attention to the case where at each time step the
number of tasks is inferior to the number of agents. In particular, we have 20 agents and new 10 tasks at
each time window τ . In terms of total distance traveled during the simulation, we can see that it is almost
equal for the different receding-horizon sizes. For the total agents idle time, it is maximal when there
is no anticipation (i.e. at H(0)) and decreases for the following values until it reaches a minimum in
H(4) before going slightly up again for H(5). This decrease is explained by the fact that the availability
anticipation allows to predict where and when the different agent finishes his tasks. The increase at the
end can also be explained. The values of idle time are particularly high because the agents are underused.
In terms of percentage tasks assigned, we can see that all of them have been assigned regardless of the
size of the receding-horizon. In the case where there are less requests than agents, the anticipation
availability method is not necessary as it does not bring advantages in terms of traveled distance and
amount of allocated tasks (the two metrics we want to optimize) but can be interesting to lower the time
agents stay idle.
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More tasks than agents Figure 4 shows the results for the case where, at each round, the number of
tasks is superior to the number of agents. Even in this case we maintain the constraint of Cτ,a =

1
3 |Rτ |.

In general, we can see that with a farther receding-horizon, our method allows for a better balance. As
previously, when there is no anticipation, the percentage of assigned tasks is the lowest and the agents
idle time the highest. Here, with the constraint of maximum number of tasks per agent, we can see a
significant improvement in terms of percentage of assigned tasks when anticipation is used. With these
results, we can clearly see that the variable receding-horizon is the best among all the receding-horizon
cases, as it achieves the lowest distance, the lowest idle time and the higher percentage assigned tasks.
This is due to the fact we take the receding-horizon size that is more advantageous, resulting in the best
results.

(a) Total traveled distance (b) Total idle time (c) Percent of assigned tasks

Figure 5: Comparison for different receding-horizon sizes when Cτ,a = ∞.

(a) Total traveled distance
(b) Total drivers idle time (c) Percent of assigned tasks

Figure 6: Our method applied to taxi dispatching dataset to answer the consumers’ requests.

Relaxation of the Cτ,a constraint In this set of results we study the case where we relax the constraint
Cτ,a such as Cτ,a = ∞, with |Rτ | > |A| (we have 10 agents and 20 new tasks each time window τ).
Compared to the previous part, the total traveled distance is higher but it is explained by the fact that the
agents are traveling to more tasks and at the same time. It is confirmed by the fact that the idle time is
lower since our agents (e.g. resources) are more used. As before, the percentage of assigned requests is
close to 100%.

For the different receding-horizon cases, in terms of total distance traveled, we have an increase from
H(0) to H(1) and then the value decreases. The increase can be explained by the fact that the idle time
with in these cases more important - i.e. less anticipation cases. With the receding-horizon size growing,
the traveled distance diminishes because we balance the assigned tasks in a better way. Additionally, in
terms of idle time, there is an important difference when there is no anticipation compared to when there
is some anticipation, which allows for a better use of the agents. With the anticipation, there is no need
to wait for the agents to finish their previous tasks before assigning them new ones.
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With these results we can speculate that our proactive online multi-assignment method which antici-
pates resource availability brings benefits in terms of resource use.

5.2.2 Taxi Dispatching benchmark

We also applied our method to a real-set of data to analyze how our approach scales up. For this we
use the dataset, which details the rides of the taxis in New York on the year 2013 (see [9]). To evaluate
our method on this dataset we considered the pickup-time instead as the time a request for a ride was
registered. We concentrated our test from January 07th to January 09th and during nights from 12:00am
to 07:00am. We set a time window lasting 5 minutes. To answer the requests, we considered a constant
fleet of 1000 taxis, randomly placed in New York. We assume the taxis to have a constant velocity of
30 mph (the authorized limit in New York). Contrarily to the synthetic benchmark, here the number of
requests truly varies as it depends on the habits of the clients. This way, the minimum amount of requests
are registered between 3AM and 4AM (most people are sleeping) whereas the maximum is close to 7AM
when people start going to work.

The results are showed in Figure 6. We can see that as in the synthetic benchmark simulations, the
anticipation availability method allows for a higher percentage of assigned tasks, while also reducing the
time the drivers stay idle. We also see that H(v) is the setting with the more allocated tasks and one of
the lowest distance, which highlights the potential of using the variable receding horizon. In a curious
way, the distance does not steadily decrease like previously but this is probably due to the increase of
the assigned requests since the distances are a lot more important in New York compared to our previous
(synthetic) simulations.

There are also other practical advantages with our method. First of all, we see that our method is able
to scale up well and keep with real-life demands. For comparison, the article [9] which also referenced
this dataset used 30 tasks for allocating 550 tasks. With our method, we managed to allocate 1000 agents
to around 30 000 tasks per night. We also get rid of human bias: in general, a driver working for a
driving platform accepts or declines the request himself. Drivers may refuse some requests due to the
distance, which leaves the consumer in the uncertainty if he will be picked up or not. Our method gets
rid of this bias and tries to arrange the requests so that it can be combined with other close requests
favoring ride-sharing. Moreover, we speculate that our method can also be used to determine fleet size
to met demands, adding more agents when too many requests are being left unattended and reducing the
number of agents if the idle time becomes important, leading to a variable size of fleet.

6 Conclusion and Future Work
In order to treat the online multi-task assignment problem, we have proposed an alternative approach:
online proactive multi-task assignment with resource availability anticipation, where we use a receding-
horizon to anticipate which agents would be available with this horizon. Through our synthetic and real
dataset benchmark simulations, we have shown that our method allows for generally assign a higher
percentage of tasks to agents and that the agents tend to be less idle, leading to a better use of our
resources. We have plans to further explore the concept of resource availability anticipation in the future.
First of all, we plan to integrate a criterion to take into account the waiting times of the tasks for their
completion, in order to try to minimize this waiting time. While the genetic algorithm is effective, it can
be time-consuming in terms of calculation so we want to try to find another efficient but lighter allocation
method. We are also planning to test our anticipation method with some algorithms that have been used
for offline allocation or exploration but not in the context of online allocation.
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Appendix

Table 1: Average results for the evaluation of the impact of the α parameter given different receding-
horizons and the cases where there are more/less agents than requests.

|Rτ |< |A|
Total traveled distance (m)

α H(0) H(1) H(2) H(3) H(4) H(5) H(v)
0 1501 1524 1522 1501 1512 1487 1519

0.25 965 936 934 971 979 965 922
0.5 926 917 920 926 932 911 909
0.75 804 789 794 833 821 805 843

1 867 839 874 886 886 864 859
Idle time (s)

0 1378.0 1350.0 1326.2 1330 1343.1 1350.9 1108.0
0.25 1715.6 1572.6 1517.5 1500.0 1541.4 1536.4 1766.5
0.5 1736.7 1535.5 1585.2 1610.7 1528.4 1570.0 1733.2
0.75 1936.7 1759.6 1761.1 1659.0 1600.8 1765.4 1668.8

1 1860.1 1706.8 1681.8 1682.1 1646.1 1674.2 1608.3
Percentage of assigned tasks (%)

0 100 100 100 100 100 100 100
0.25 100 100 100 100 100 100 100
0.5 100 100 100 100 100 100 100
0.75 100 100 100 99.97 99.97 100 100

1 99.63 99.53 99.73 99.77 99.87 99.83 99.73
|Rτ |> |A|

Total traveled distance (m)
α H(0) H(1) H(2) H(3) H(4) H(5) H(v)
0 1355 1421 1426 1437 1440 1420 1273

0.25 1270 1334 1315 1301 1274 1261 1138
0.5 1243 1297 1273 1250 1206 1202 1080
0.75 1211 1277 1247 1221 1203 1811 1031

1 1207 1277 1258 1225 1198 1208 1044
Idle time (s)

0 97.5 15.6 7.3 9.8 9.7 9.3 4.5
0.25 185.9 61.2 50.5 62.5 85.5 90.1 29.0
0.5 212.3 64.5 54.4 70.4 83.1 92.9 22.9
0.75 233.8 89.1 62.3 83.6 96.6 109.7 21.1

1 240.2 86.7 69.4 97.5 107.3 117.7 30.5
Percentage of assigned tasks (%)

0 79.5 86.4 81.2 84.3 84.6 80.3 85.9
0.25 89.3 90.5 90.3 92.9 93.4 92.1 92.4
0.5 91.2 93.5 94.3 94.4 93.2 93.3 95.9
0.75 88.8 93.0 94.2 93.4 94.5 95.3 96.5

1 89.5 93.1 94.4 93.7 93.4 94.7 97.9
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Localization is a crucial task for autonomous mobile robots in order to successfully move to goal

locations in their environment. Usually, this is done in a robot-centric manner, where the robot

maintains a map with its body in the center. In swarm robotics applications, where a group of robots

needs to coordinate in order to achieve their common goals, robot-centric localization will not suffice

as each member of the swarm has its own frame of reference. One way to deal with this problem

is to create, maintain and share a common map (global coordinate system), among the members of

the swarm. This paper presents an approach to global localization for a group of robots in unknown,

GPS and landmark free environments. The main idea relies on members of the swarm staying still

and acting as beacons, emitting electromagnetic signals. These stationary robots form a global frame

of reference and the rest of the group localize themselves in it using the Received Signal Strength

Indicator (RSSI). The proposed method is evaluated, and the results obtained from the experiments

are promising.

1 Introduction

Robotic Swarms is a topic with significant interest, especially with the increased use of large groups of

unmanned air or ground vehicles [13]. Self localization and navigation is a crucial task for autonomous

robots [3], both on indoor and outdoor navigation. Depending on the application of the robotic swarm,

the robots may need the ability to discover their location.

Non robotic applications can also take advantage of indoor localization techniques. In case of emer-

gency evacuation, especially on crowded buildings like malls, airports etc., it is beneficial to know the

location of people inside the building as this can help with faster and safer evacuation. In order to achieve

that, specific devices or smartphones can be used that take advantage of the proposed localization scheme.

Localization is the ability of a robot to know its position and orientation. The location could be

relative to other robots or absolute on a common coordinate system. While operating outdoors, a robot

can rely on GPS to localize itself. The aforementioned sensor can not be used on indoor environments.

Simultaneous localization and mapping (SLAM) algorithms are extensively used [2], although when

small and relatively simple robots are needed, their high complexity and computational cost is a major

drawback. Several techniques exploiting beacons and landmarks for localization have been proposed in

the literature as well as techniques using inertial navigation systems, magnetic, sound and optic based

navigation [14].

Inertial localization is also a common approach. Based on odometers, accelerometers and gyro-

scopes, one can determine the orientation and direction of the robot [7]. Although the results provided

http://dx.doi.org/10.4204/EPTCS.391.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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are robust against environmental changes, this technique is prone to error accumulation [15]. Kalman

filters have been expensively used in order to improve accuracy [8].

Radio frequency localization is the approach usually preferred. Beacons can cover a wide area, radio

waves can penetrate most materials while the installation cost is relatively low [11]. Received Signal

Strength Indicator (RSSI) is mainly exploited for robot localization [1, 19, 27]. Time of arrival and

time difference of arrival of two signals that are known to have different propagation is also a common

approach for localization.

Localization based on RSSI is proposed in the Ladybug algorithm [10]. A robot equipped with

sensors able to measure the strength of the received electromagnetic signal, is able to identify the location

of the source of the signal and navigate to it. The source could be either a beacon or another robot. The

LadyBug Algorithm was effective and had numerous benefits compared to similar approaches, such

as I-Bug [22]. RSSI could be an efficient solution when deploying a robotic swarm on GPS denying

environment. Our motivation was to propose an approach where a robotic swarm could be able to extract

the location of each robot in the same coordinate system using local sensing only, allowing the LadyBug

algorithm to be implemented on the swarm. Sharing a common coordinate system is crucial for tasks

such as self-assembly.

The benefits of localizing the swarm in a common coordinate system are presented in [18]. The

ability of the swarm to self-assemble on a specific shape was realized by placing four robots on a specific

layout, marking the coordinate system and using trillateration. While the proposed solution is efficient,

it’s main drawback is the limitation to two dimensions and the requirement of hand placing the four

initial robots. Our incentive was to propose an approach where the robots will use local sensing but will

have the ability to localize in a global system without the aforementioned limitations.

Our approach would have numerous benefits such as: a) the swarm will share a common localization

scheme, sharing the same map. b) The localization scheme is based on three members of the swarm

equipped with a beacon instead of four. c) No manual placement is required. The beacons could be

anywhere on the operation area. d) Our approach is able to localize in three dimensions. e) The proposed

solution is robust as, in case of a possible failure of a beacon, another robot from the swarm can replace

it.

2 Related Work

Radio frequency identification technology (RFID) is used in [23] to localize robots navigating indoors.

The passive RFID tags installed, divided the area into a grid. As a robot, equipped with an RFID reader,

explores the area, the reader reads the tag. The position is then estimated by correlating the ID of the tag

with a map containing the localization information of the tags. Despite the high accuracy, the need for a

map containing the ID and location of the tags limits the practical applications.

Pseudolites (i.e. pseudo satellites) have been proposed for indoor localization [24]. The main idea is

to receive the GPS signal and transmit it indoors using signal repeaters [26]. The major drawback of this

approach is the increased cost of the network installation. Additionally, in case the main signal receiver

fails the whole network is unusable.

A localization method based on RSSI of heterogeneous sources (i.e. WLAN, GSM etc) is presented

in [21]. By analyzing the fingerprint and strength of the received signal, the robot is able to localize

itself by comparing it with a fingerprint map. While exploiting already existing infrastructures, negating

the need for a network deployment, the main disadvantage is the need for a fingerprint map covering all

the area of interest. RFID sensors can also be used for indoor localization. In [6], authors presented a
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simulator that allows modeling environments and testing the deployment of RFID solutions. Tags and

antennas are placed and RSSI is exploited to find the location of each tag.

A distributed localization method based on swarm intelligence algorithms is presented in [4]. Particle

swarm optimization and an approach based on backtracking search algorithm is proposed. The proposed

method operates in three stages. The first stage allows a robot to estimate the distance from a reference

node using the Sum-Dist algorithm [9]. The second stage estimates the position of the robot using the

min-max technique [9, 20]. Finally the third stage the accuracy improves by re-evaluating the position

based on the position of the neighbors.

3 Problem Statement

The localization of the robot is based on RSSI. Given an electromagnetic signal, the coordinates of the

source in 3D space can be calculated in the robocentric system and the in the global coordinate system.

In order to achieve our goal, three beacons are employed, creating a 3D common coordinate system for

all robots. In our work, the following assumptions were made: a) All robots are equipped with sensors

capable of reading the RSSI of a received signal. b) Two robots act as anchors. c) A beacon/robot is

placed at the center of the coordinate system.

Figure 1: The position of the four sensors on the robot.

The main localization scheme employs three receivers and one transceiver. The transceiver allows

the robot to act as a beacon or exchange information with the rest of the swarm. The receivers are placed

on the front, right and left of a robot with radius r and the transceiver on the center, as seen in Fig. 1.

Each sensor is able to identify both the source of the signal and the signal strength. The signal strength

(S) is inversely proportional to the square of the distance (d) between the sensor and the source (1). Using

(1) the distance between the source and each sensor can be calculated (1).

S =
1

d2
d =

√

1

S
(1)

The coordinates of each sensor, in the robot-centric system, can be seen on Table 1. Let (xs,ys,zs)
be the coordinates of the signal source in the robot-centric system. Using (1) the distance between each

sensor (center, front, left, right) is calculated.

d2
0 = x2

s + y2
s + z2

s d2
f = x2

s +2rx+ r2 + y2
s + z2

s

d2
l = x2

s + y2
s + z2

s +2ry+ r2 d2
r = x2

s + y2
s + z2

s −2ry+ r2 (2)

Solving the equation system (2), the coordinates of the source, xs and ys respectively, can be calcu-

lated. By replacing the values of xs and ys on (2) the zs coordinate can be calculated. Similarly (and
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Sensor Robocentric Coordinates (x,y) Enchanced Localization Coordinates

S0 (0,0,0) (0,0)

SL (0,r,0) (0,-r)

SR (0,-r,0) (0,r)

SF (r,0,0) (r,0)

SB - (-r,0)

Table 1: Position of the sensors

knowing the coordinates of the source) the coordinates of the beacon (xb,yb,zb) and the anchor robots

(xa1,ya1,za1), (xa2,ya2,za2) can be calculated.

3.1 Enhanced Localization

In order to further enhance the localization procedure, redundant sensors were added. Our implementa-

tion uses five sensors. All the receivers are placed on the perimeter of the robot thus creating four sensor

groups (triangle formed by the transceiver in the center and two receivers on the perimeter). The updated

robot-centric coordinates can be seen on Table 1. The estimates of the four groups are averaged, resulting

in more accurate estimation of the source’s position.

3.2 Global Localization

As already described in the previous section, the robot is able to calculate the coordinates of the three

beacons in the robocentric system. Knowing their relative positions, the global position of the robot can

be calculated. Let A be the center of the global coordinate system and B, C the two beacons that define

axis X and Y respectively.

Using vectors ~AB and ~AC we define three new vectors using the outer products, as seen in (3), and

normalize them.

~z = ~AB⊗ ~AC ~y =~z⊗ ~AB ~x =~y⊗~z (3)

Let~r be the vector between the center of the robot R and A. We can now calculate the coordinates of

the robot in the global system defined by~x,~y and~z. The coordinates of the robot, (xr,yr,zr), are the dot

product of~r and~x,~y,~z respectively.

4 Experimental Results

In order to evaluate the performance of our localization approach we implemented the algorithm in the

Webots Open Source Robot simulator [25]. A swarm of four identical robots was used, where three of

them were serving as beacons. A generic round shaped robot with 20cm radius was employed, equipped

with four radio receivers capable of identifying the signal strength on its perimeter and a radio transceiver

on the center.

The three robots acting as beacons were constantly emitting a radio signal with a unique ID, allowing

the robot to identify the source of the signal. In order to further increase the accuracy, each beacon was

transmitting on a different channel reducing the generated noise. For each source the RSSI of 100 packets
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was averaged reducing the noise generated error. The robot was cycling through the three predefined

channels allowing it to identify and locate the robocentric position of each beacon. Lastly the global

coordinates were calculated and reported.

During the experiment, the robot was static while calculating it’s position. After a successfully

calculation it was moving randomly and the new position was calculated and reported. This process was

repeated 10 times. The error (i.e. euclidean distance between the real and calculated global location) for

each location was averaged and used as a metric. In a noiseless environment, the calculated position was

the same with the real one, no matter the distance from the beacons or the orientation of the robot.

In order to evaluate our approach in more real-like conditions, noise was gradually introduced into

the experiment. In total the process described above was repeated 5 times with 5 different noise levels:

10%, 20%, 30%, 40% and 50%. Noise strength is the standard deviation of the Gaussian noise added

to the signal strength. The rest of the conditions were controlled (i.e. the random seed) making sure the

experiment would be the same, providing comparable results. As seen in Fig. 2a, for 10% noise the error

was 0.6m while for 20% noise the calculated position was 1.4m off. Further increasing the noise had a

bigger impact.

(a) Error per noise level (b) Error per distance from the beacons

Figure 2: Localization error.

As noise is related to the distance of the source, an experiment was performed where the distance

between the robot and beacons was gradually increased. The three beacons were hand placed forming an

isosceles triangle. This placement guaranteed that the distance between the robot and two beacons would

be the same. The side of the triangle formed was 4m and the noise level was set to 10%. The experiment

was repeated 10 times and the results were averaged. As seen in Fig. 2b the error was 0.1m when the

robot was closer to the source. The best results were observed when the robot was between 3m and 3.5m

from the beacons. Increasing the distance between the robot and source results in increased noise level,

making it harder to correctly identify the position of the robot. It is worth mentioning that for distances

up to almost 6m the calculated position error was less than 1m.

An experiment was also performed using a small swarm of three robots. The first robot was placed

away from the beacons, the second close to the two of them while the third close to the three beacon

robots. The robots reported their global position 10 times with a time delay added between each calcula-

tion. The noise level was set to 10%. Further noise was introduced, as each robot was emitting a random

signal, simulating an environment where the robots communicate with each other. In Fig. 3 the position

of each robot can be seen. The results show that even with the extra noise (i.e. robots communicating

with each other), the localization process is not heavily affected. It is worth mentioning that the distance

between the robot and the beacons has an impact on the calculations (as already discussed).
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Figure 3: Calculated position of each robot.

5 Conclusion & Future Work

In this paper, a novel global localization method was presented. Our approach exploits RSSI from a

signal emitted by three beacons, to localize a robot on the coordinate system formed by those beacons.

Our approach was evaluated in a noiseless environment as well as in an environment with different

noise levels. While for lower noise levels the results were accepted, for increased noise levels the error

was bigger. This requires further experiments as noise levels in the real world are affected by many

factors, such as the materials of the obstacles, reflectance etc.

Additionally, the impact of the distance between the robot and the source of the signal was investi-

gated. Placing the robot close to the beacons negatively affects the ability to localize itself. Increasing

the distance up to a certain threshold has low impact. Further increasing the distance produced increased

error.

Although a small swarm was simulated, allowing the observation of how multiple robots commu-

nicating will impact the performance, the robots were not exchanging any location related information.

In the near future our focus will be on investigating ways that will allow the robots to correlate their

individual localization information and create a more accurate global map.

Furthermore, the current experiments were performed in a simulated environment. Even with noise

added it is not as close as the real world. Experiments will be performed on a real robot. That evaluation

is crucial as real world noise can not be reproduced easily (i.e. reflection of the signal, non-uniform noise

etc.).

Another important part of our future work is to integrate the localization presented with the LadyBug

algorithm [22]. As LadyBug provides robust results, the proposed method will allow its application to

robotic swarms.
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The safe operation of an autonomous system is a complex endeavor, one pivotal element being its
decision-making. Decision-making logic can formally be analyzed using model checking or other
formal verification approaches. Yet, the non-deterministic nature of realistic environments makes
these approaches rather troublesome and often impractical. Constraint-based planning approaches
such as Tumato have been shown to be capable of generating policies for a system to reach a stated
goal and abiding safety constraints, with guarantees of soundness and completeness by construction.
However, uncertain outcomes of actions in the environment are not explicitly modeled or accounted
for, severely limiting the expressiveness of Tumato.

In this work, we extend Tumato with support for non-deterministic outcomes of actions. Actions
have a specific intended result yet can be modeled to have alternative outcomes that may realistically
occur. The adapted solver generates a policy that enables reaching the goals in a safe manner, even
when alternative outcomes of actions occur. Furthermore, we introduce a purely declarative way of
defining safety in Tumato, increasing its expressiveness. Finally, the addition of cost or duration
values to actions enables the solver to restore safety when necessary, in the most preferred way.

1 Introduction

Autonomous robotic systems are becoming increasingly popular, both in industry and households. The
number and complexity of tasks they are expected to execute are expanding. However, generating a
plan providing both productive (goal-oriented) and safe behavior is far from trivial. A plan must be
constructed, given the actions that the robot can execute, the information about the environment, and the
desired goals. During planning, additional safety constraints have to be taken into account to generate
a safe plan while trying to achieve the goals. If such a safe and productive plan can be generated, it is
sound by construction.

The main contribution of this paper is to support foreseeable non-deterministic transitions while
guaranteeing safety when planning robot behavior. For this purpose, we focus on constraint-based plan-
ning and build further upon Tumato, a planning framework by Hoang Tung Dinh et al. [5]. Firstly, we
support specifying and accounting for foreseeable non-deterministic alternative effects of actions rather
than assuming a purely deterministic system. Effects of actions in the real world are virtually never fully
deterministic. Non-determinism can arise from varying weights of payloads, various ground surfaces to
navigate across, and small measuring and actuation errors, to name just a few. Secondly, the extension
supports specifying safety conditions explicitly. In the original version of Tumato, to obtain a similar
result, one has to consider all state-action combinations that could lead to unsafe states separately, which
is error-prone and inflexible when the specification of the system evolves. Furthermore, the generated
behavior always has to adhere to the safety conditions, even when alternative effects occur.

Since the environment, and hence the effects of actions, are most often not deterministic in practical
robotic applications, the policy must be sufficiently robust to deal with this kind of uncertainty. Ideally, all
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contingencies are taken into account. A first step is to pursue a complete policy. For each state in which
the system could be, the policy must provide the actions to execute next. If the system unexpectedly
arrives in an unintended state, the operation can continue. We maintain this powerful feature of Tumato’s
original approach. In a second step, we take the uncertainty into account by allowing the effects of actions
to be modeled in a non-deterministic way. In our approach, we assume that each action has one intended
outcome. We call this outcome the nominal effect of the action. Additionally, each action can have
a number of alternative effects. These effects could emerge instead of the nominal one, but they are
not intentional. For the goal-oriented aspect of planning, only the nominal effect is relevant. Alternative
effects are unintentional outcomes and can not reliably be used to achieve a goal. However, when dealing
with safety, also the alternative effects must be taken into account as there is a possibility they occur.

Due to external causes, the system might still end up in an unforeseen state. Although for such
events safety can not be guaranteed (an external force might put the system in an unsafe state directly),
the planner will make sure that the policy contains instructions on how to get back on (safe) track to
the goal immediately. If multiple such instructions are possible, the planner is capable of selecting the
preferred one based on cost values assigned to actions.

The paper is structured as follows. Section 2 discusses the related work to outline the necessary
background and provides an overview of Tumato. Section 3 briefly introduces the use case of the robotic
system used to illustrate the proposed extension. Section 4 explains and motivates the approach. Sec-
tion 5 elaborates and analyzes the extension of the specification using the robotic system from the case
study. Section 6 discusses the approach and its results. Finally, Section 7 draws conclusions.

2 Background and Related Work

Well-thought-out behavior planning is essential for the safe operation of autonomous safety-critical
robots. Furthermore, practical systems often involve a degree of non-determinism that needs to be ad-
dressed. In this section, we point to the related work necessary to provide a background for the explored
planning approach. However, all (fully observable) non-deterministic planning can be considered related.

Traditionally, the behavior of robots has been defined manually. Finite State Machines (FSMs) are
often used to represent the robot’s behavior [9, 15]. However, FSMs are known not to cope well with the
increasing complexity of the behavior. It is non-trivial to manually specify sound and complete behavior
for larger and more complex systems, and one has to rely on simulation and verification approaches to
check whether the behavior effectively meets the requirements. This problem can partly be solved by
automatically generating the behavior based on a model of the system, along with a representation of the
desired requirements.

Different specification languages and planners have been proposed. For example, Linear Tempo-
ral Logic (LTL) [8] is often used in robotics. Techniques exist to use (fragments of) LTL to generate
FSMs [14, 20], or to compile them into PDDL [1]. Since LTL can take all contingencies into account,
the generated behavior will be sound and complete, a property we also value. Further, modeling state-
based safety conditions explicitly in LTL should require limited effort. Two other examples are Tempo-
ral Action Logic (TAL) [6, 7] and the previously mentioned, more generic Planning Domain Definition
Language (PDDL) [11, 13]. Both TAL and PDDL generally rely on replanning at run-time to cope with
contingencies. They do not guarantee completeness of the behavior since the replanning could fail due
to an unrealizable specification. This lack of completeness would only be detected at run-time. Simi-
larly, in a more practical context, probabilistic planners can be used within the ROSPlan [3] framework
directly [2].
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To a certain extent, robustness can be obtained by explicitly dealing with non-determinism, as cov-
ered in the book Automated Planning and Acting by Malik Ghallab et al. [12]. The planning can freely
make use of the non-deterministic effects of actions to reach the goal. Unlike this approach, we opt to
define one (intended) nominal effect for each action while recognizing alternative (less likely and less
desired) outcomes. This is more closely related to practical behavior planning problems. Note that, in
the non-deterministic context, the definition of a Safe Solution is a policy in which the goal is reachable
from the initial state [12]. This definition is different from the additional safety constraints that we are
imposing on the system to reach the goal in a safe manner.

Tomas Geffner et al. introduce a SAT encoding for fully observable non-deterministic planning [10].
A distinction is made between fair and unfair non-deterministic actions. In our work, we focus on fair
actions and do not consider adversarial actions or agents. We do acknowledge that probabilistic effects
of actions are difficult to estimate correctly, while they should not be considered fully non-deterministic
either.

We have surveyed existing frameworks combining safe and robust planning before [19]. The use
of Markov Decision Processes (MDPs) [17] for probabilistic planning and, to a smaller extent, Simple
Temporal Networks (STNs) [4] for temporal scheduling have been explored. Especially their extensions
are able to explicitly guarantee safety while dealing with uncertainties. In this work, avoiding the need
for (often inherently imprecise) probabilistic values, we investigate and extend the promising constraint
programming approach Tumato by Hoang Tung Dinh et al. [5].

Tumato Hoang Tung Dinh et al. [5] obtain sound and complete behavior via constraint programming.
As the specification of a system has to contain information about the environment, the actions, and the
goals of the system, as well as a set of safety rules, it effectively combines classical planning (using
states, actions, and goals) with constraint programming to enforce safety.

Constraint-based planning is achieved by (automatically) translating the entire specification into con-
straints. Trivially, preconditions of actions constrain whether or not the action can be executed. Further-
more, the effects of actions on the state of the system and whether or not an action is executed in the
first place are modeled as constraints. One Constraint Satisfaction Problem (CSP) [18] is generated for
each valid starting state of the system. The set of CSPs yielding from the specification can be solved
offline. Tumato currently employs Choco-solver [16], yet we try to maintain transparency to the exact
solver used. The first execution step found by each individual CSP is selected as the set of actions for the
corresponding state. The final result is a mapping from every state to the actions that have to be executed
in that state. We will call this mapping the policy. If a solution exists, we consider the specification to
be realizable. Otherwise, we say the specification is unrealizable. If a sound and complete policy exists,
it will be found by the constraint solver. The obtained policy can safely be used at run-time without re-
quiring online re-planning. For further details on the general approach, please refer to the original work
on Tumato [5].

In the remainder of this section, we will give an overview of the specification of a model in Tumato.
The specification contains information on the state space of the system, the actions that can be executed,
the relevant safety constraints, and the goals of the system. Our work will extend this specification where
necessary, as described in Section 5.

States A state vector is used to represent the states in which the system can reside. This vector consists
of a set of discrete state variables. Each of the state variables represents one aspect of the state. At run-
time, the state variables are updated by a monitoring module. This module is responsible for translating
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the sensor readings and other input to discrete values in the state variables. An example of a state variable
is the location of the robot. A state variable SLocation can represent the different discrete locations at which
the robot can reside. For example, {corridor, charger, workstation_1, workstation_2} includes a common
corridor, a charging station for the robot, and two interactable workstations. Additional workstations and
locations can be added as needed. Alternatively, when more detailed location information is required, a
more fine-grained location discretization can be utilized.

Actions Actions represent elemental behavior. They are the smallest unit of execution that we consider
during planning. As an example, both move_one_cell_forward and move_to_charging_station are pos-
sible actions, yet they relate to planning at different abstraction levels. Actions can be specified to have
preconditions that must hold before they can be executed. Actions also can be specified to make use of
certain resources. The purpose of allocating resources is to prevent two actions from being simultane-
ously executed if they make use of at least one resource in common. Finally, actions usually have an
effect on the state. After executing an action, which can take an arbitrary amount of time, the state has
changed according to that effect. An example of a simple action is move_to_workstation_1, which:

• controls one resource: motors,

• has one precondition: SLocation = corridor,

• has the effect: SLocation = workstation_1.

Reaction Rules As their name indicates, reaction rules can be used to specify reactive behavior. They
are logical rules on the current state and the executed actions. If a certain condition holds on the current
state, either a specific action has to be executed or is not allowed to be executed. For example, if the robot
resides in the corridor with a workstation-sensitive actuator (for example, a conveyor belt) active, then
it should deactivate that actuator (for example, by executing the action stop_conveyor). Let SConveyor

represent whether or not the conveyor is currently active, as {on, off }.

(SLocation = corridor∧SConveyor = on)⇒ Exec(stop_conveyor).

We will discuss the use of reaction rules in more detail in Section 5.2.1.

Goals The goals define conditions that have to be achieved by the system. Because of the constraint-
based approach, different formats of goals can be specified. For this example, we focus on prioritized
and conditional goals. A conditional goal is a goal that is active only when a specified condition is met.
Consider a state variable SLoad that can be {loaded, free}. If the robot is loaded with an item, the goal is
to unload that item (2) and hence, deliver it. Analogously for picking up an item, a conditional goal is
specified (3). Priorities can indicate which conditional goals should be taken into account first. Consider
a state variable SBattery that can be {low, ok}. A conditional goal can be responsible for recharging
the battery when the battery level becomes low (1).1 This conditional goal should get priority over the
transport goals (2) and (3). Priorities are determined by the order in which the goals are specified.

(SBattery = low)⇒ SGoal
Battery = ok (1)

(SLoad = loaded)⇒ SGoal
Load = f ree (2)

(SLoad = f ree)⇒ SGoal
Load = loaded (3)

1For a practical application, it is important that the monitoring module only updates S_Battery to ok when the battery has
been sufficiently charged. An earlier update would result in (undesired) shorter operation cycles.
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3 Case Study

As hinted toward in the previous section, we consider a battery-powered Autonomous Mobile Robot
(AMR) for validation purposes. The AMR, shown in Figure 1, operates in an automated demo factory.
The workstations present in the factory are capable of executing different operations on small, standard-
ized workpieces. Adjacent workstations share a conveyor belt, yet not all workstations are connected.
The AMR is responsible for moving around workpieces in the factory. We use this system as an example
to paint out shortcomings of the current constraint programming planning approach and to illustrate how
to mitigate these shortcomings.

Figure 1: The AMR

The base of the AMR has three omnidirectional wheels (not vis-
ible in the picture), enabling the AMR to move in all directions as
well as to turn in place. Combined with information regarding the
layout of the factory, the AMR can move to any location and obtain
any orientation within the factory. Only 2D movement and orien-
tation are applicable. The AMR can navigate between the different
workstations and a charging station, as well as the corridor con-
necting the different locations. The AMR has a camera and LIDAR
system for perception, along with a number of proximity sensors.
On top of the base, a looping conveyor belt is mounted at a fixed
height. This setup is used to dock to workstations and receive or de-
liver workpieces from or to workstations. Infrared sensors attached
near the conveyors help with the alignment when docking. Further-
more, an emergency stop button is mounted on top, as well as a
beacon for visual signaling.

One or more AMRs can be operating simultaneously on the fac-
tory floor alongside human agents. The AMRs and humans are not
physically separated, increasing the importance of generating safe
behavior. An AMR should complete its assigned transport without
creating any unsafe situations. As an additional hurdle, the effects
of actions can unintentionally vary, even within a relatively controlled environment such as a factory.

4 Uncertainty and Safety

As mentioned in Section 1, we account for uncertainty by adding foreseeable alternative outcomes to
actions. Merely to illustrate the approach, this section introduces a grid-based 2D navigation planning
example, although the approach can be more fully appreciated with examples from the case study, see
Section 5.

4.1 Uncertainty

Assume a 3×3 grid, with starting point S and destination D as illustrated in Figure 2a. We assign each
cell in the grid to a corresponding state. Further, we define the actions move_up, move_down, move_left,
and move_right. In a deterministic setting, each action always moves the agent exactly one cell in the
intended direction of that action. In this example, the shortest plan from starting point S to destination
D executes move_right twice. An example of a complete policy for this planning problem is shown in
Figure 2b.
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(a) Starting point S and destina-
tion D

(b) Policy for a deterministic
approach

(c) Move_right in S with two al-
ternative outcomes (X)

Figure 2: Illustrative 3×3 grid example

More realistically, however, in a non-deterministic planning setting, actions are not always success-
ful. Firstly, the action could have no effect. For example, the agent did not move far enough to reach the
new cell. Since we are dealing with policy-based execution, the same action will be executed again, pre-
sumably leading to a new state eventually. Note that this implicit assumption has to be taken into account
when constructing the system. If an action could fail indefinitely, for example, if the agent could have
insufficient force to move up a hill, the action should be reconsidered. Either the model is not adequate
(the effect does not correspond to the real world), or the (physical) implementation of the action has to
be adapted.

Secondly, deviations can occur. When executing move_right at the starting point S, two states (cells)
could be reached unintentionally, as shown in Figure 2c. Such outcomes could either be observed after
deploying and running the system for an extended period or be indicated by experts. These outcomes
are less likely than the desired and intentional (nominal) outcome, which is the middle cell in the 3×3
grid. Since these outcomes can occur, we should be aware of them when modeling the system, especially
when dealing with safety. However, as the alternative outcomes only occur sporadically, we can not
determine accurate probabilistic values to use during planning.2 For the productive, goal-oriented aspect
of planning, we do not take into account alternative outcomes. The constraint solver will assume that the
intended effects occur. If, during execution, the system were to arrive in any unintentional state (possibly
due to an alternative effect), the completeness of the policy will make sure that the operation can continue
to reach the goal. If from such a state, and by extension from any state, the goal can not be reached no
policy can be found. The planner will then provide such states as feedback to the developer.

Note on non-determinism The presented approach, using nominal and alternative effects, can also be
used to model true non-determinism in the system. We illustrate this with the example of a coin flipped
at run-time. Two actions (one for each side of the coin) are modeled to eliminate the inherent bias toward
the nominal outcome. For each action, the nominal effects take care of one side of the coin while the
alternative effects take care of the other side. Regardless of the outcome of an individual toss, the policy
ensures that the executed actions are safe, as we define next.

4.2 Safety

We extend the previous grid example to a 5× 5 grid. In this example, the outer cells are considered
unsafe. These cells could be located next to stairs which the agent could fall off, or a wall it could run into.
Although simply defining unsafe states or conditions is a very straightforward way to define (un)safety,

2If one is able to determine the probabilistic values for the effects accurately, using an MDP would be a better choice to
obtain the policy.
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(a) Visualization of the three reachable states by
move_right from S. A second move_right (not visual-
ized) in either x or y could lead to unsafe (gray) states.

(b) A guaranteed safe policy. This policy should not
be considered complete unless it is accompanied by the
necessary assumptions.

Figure 3: Illustrative 5×5 grid example

it yields a powerful approach. It provides a large improvement over manually identifying which state-
action combinations are unsafe, as the original Tumato planner requires using reaction rules.

A move_right at the starting point S will never lead to an unsafe state, as shown in Figure 3a. This
action will be allowed to be used during planning. In turn, in both of the unintentionally reachable states
(separately denoted as x and y in the figure), a similar move_right will not be allowed, as alternative
outcomes could lead the agent into an unsafe state. A safe policy is shown in Figure 3b. Note that
many cells remain empty. Those cells do not allow any safe actions in our current example. To obtain
this policy, the specification would explicitly have to contain a number of assumptions to exclude those
cells from the valid state space. If those assumptions are not added, no result will be obtained since no
complete policy exists. In this paper, we will not look further into assumptions or how they are modeled.

Note on restoring safety The approach mentioned above does not distinguish between starting from a
safe or unsafe state: the next state is guaranteed to be safe. Hence, for unsafe states, a solution will only
be found when safety can be restored within one step. In addition, when multiple actions are executed,
the planner is aware that only the effects of one of those actions will take place first. As a result, every
possible outcome of every action selected for execution must be safe. Furthermore, since actions can be
assigned a cost value (see Section 5.1), the planner can choose the set of actions that restores safety in
the most preferred way.

5 Specification

In this section, we elaborate on the modifications made to the specification introduced in Section 2. Our
contribution lies in the inclusion of alternative effects and costs for actions, as well as the addition of state
rules. We use the AMR described in Section 3 as an example for constructing a formal specification. For
the complete specification, formatted as supported by Tumato, please refer to Appendix A.

5.1 Actions

Unlike in the original Tumato framework, we define two kinds of effects. The nominal effects represent
the desired and intended outcome of an action, whereas the alternative effects correspond to unintended
outcomes that could occur instead of the nominal one, but are less likely to. To provide a comprehensive
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understanding of both kinds of effects, we present a two-fold perspective. In the context of productive
(goal-oriented) planning, only the nominal effects are considered, as mentioned in Section 4.1. Unde-
sired outcomes are deliberately excluded. However, when ensuring safe behavior, all effects should be
considered. Each possible outcome of every executed action must be safe. This two-fold perspective
enables the appreciation of both kinds of effects within their respective formal contexts.

Further, we extend the specifications of actions with a generic cost. In the AMR example, the notion
of duration3 is used. If no value is specified, the planner will assume a value of 0. The planner only
considers these values when choosing the best solution to restore safety. For states where safety should
only be maintained rather than restored, these values are ignored and can be all considered 0.

Next, a few examples of actions of the AMR are given to provide further clarification.

The action stop_conveyor:

• has a duration of 1,

• controls one resource: conveyor,

• has one precondition: SConveyor = on,

• has the nominal effect: SConveyor = o f f ,

• has no alternative effects.

Since stopping the conveyor happens virtually instantly, the action gets assigned an arbitrarily low dura-
tion value. Since there are no alternative effects specified, we assume that the action will never fail.

The action move_to_workstation_1:

• has a duration of 10,

• controls one resource: motors,

• has one precondition: SLocation = corridor,

• has the nominal effect: SLocation = workstation_1,

• has one set of alternative effects: SLocation = corridor.

For moving to a specific location, we assign a relative duration of 10. The nominal effect is as expected,
reaching workstation_1, and the alternative effect is expressed as the AMR not reaching the workstation.
In practice, this alternative effect can occur when this specific workstation is blocked or occupied. This
possibility is workstation-specific, and the effects can be modeled differently for every action.

The action receive_workpiece:

• has a duration of 3,

• controls the resources: conveyor and motors,

• has the preconditions: SLocation = workstation_1 and SLoad = f ree,

• has the nominal effects: SConveyor = on and SLoad = loaded,

• has two sets of alternative effects:
SConveyor = on and SLoad = f ree, and
SConveyor = o f f and SLoad = f ree.

3Please note that time is not considered explicitly. The durations are merely used to find the most preferred (fastest) way to
restore safety.
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A relative duration of 3 is assigned to load transfer actions. During the transfer of a workpiece, the motors
are used to hold the AMR in place. In this example, workpieces can only be obtained at workstation_1,
hence the corresponding precondition. For this action, two sets of alternative effects are considered.
The first one represents the outcome where a (for example, oddly shaped) workpiece gets stuck. The
second one represents an even worse scenario where the entire conveyor gets blocked by receiving a (for
example, too heavy) workpiece.

These three examples show how actions and their effects can be modeled. If only one effect is given
(the nominal effect), the outcome of the action is considered deterministic. Alternatively, one or more
alternative outcomes can be specified. Recall that the alternative outcomes are not taken into account for
the productive aspect of planning. We do not (want to) rely on the alternative effects to reach a particular
goal. They are, however, considered when guaranteeing safety.

5.2 Safety Rules

Safety rules are used to add constraints to the behavior of the system to guarantee safe behavior. In this
section, we delve deeper into the use of reaction rules and introduce the new state rules.

5.2.1 Reaction Rules

As explained in Section 2, reaction rules are used to specify reactive behavior. If a condition holds on
the current state, an action is constrained to be executed or not. We specified that if the AMR is present
in the corridor with the conveyor on, the conveyor should be stopped:

(SLocation = corridor∧SConveyor = on)⇒ Exec(stop_conveyor).

However, we would prefer to guarantee that the conveyor is never on when the AMR is in the cor-
ridor (or at the charger4) in the first place. Such behavior could lead to dropping workpieces and other
dangerous situations for human agents in the factory. Given our knowledge of the system, we specify:

(SLocation = corridor∨SLocation = charger)∧ (SConveyor = o f f )

⇒¬Exec(receive_workpiece)∧¬Exec(deliver_workpiece).

This rule has to be updated every time a new action is introduced that could turn on the conveyor. We
also have to specify:

(SConveyor = on)⇒¬Exec(move_to_{x})

for every location x for which moving toward x could result in arriving at the corridor or charger. This
last expression can require a large number of reaction rules to be modeled, depending on the number
of locations and how the effects of different move-actions connect them. To considerably reduce the
number of safety rules that have to be specified and hence, to make the specification less prone to errors,
we introduce the concept of state rules next.

4The previous reaction rule becomes: (SLocation = corridor ∨ SLocation = charger) ∧ (SConveyor = on) ⇒
Exec(stop_conveyor).
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5.2.2 State Rules

This new kind of safety rule enables specifying constraints on reachable states rather than on the actions
to execute. We can simplify the previous example to one state rule:

(SLocation = corridor∨SLocation = charger)⇒ (SConveyor = o f f ).

We introduce state rules in the form of desired safety conditions. The specified conditions should, ac-
cording to the system’s ability, always remain True. Alternatively, one can specify the unsafe conditions,
which should be kept False. Translating between the two corresponds to negating the conditions.

The effects of an executed action should never lead to the violation of a state rule. Formally, a state
rule expresses a condition that must hold after executing any (set of) action(s) that the policy instructs
for a state, regardless of which action effectuates first and regardless of which (nominal or alternative)
effects occur. Whether an action a is allowed in a state s can more formally be expressed as follows:

allowed(a,s)⇔∀e f f ect ∈ e f f ect(a,s) : e f f ect⇒{state_rules}

where e f f ect(a,s) represents all possible effects (nominal ∪ alternative) of action a in state s and
e f f ect⇒{state_rules} denotes that the effect does adhere to all conditions described by the state rules.

If the current state was to violate a state rule, the next planned (set of) action(s) will always clear
that violation (see Section 4.2). Since the state rules do not allow any actions that could knowingly
lead to undesired states, the system must have reached that state under the influence of an external
force. Further, if during planning for some state no instructions to restore safety exist, the planner
notifies the user, indicating for which state no solution can be found. When multiple such instructions
are available, the planner selects that set of instructions that restores safety in the most preferred way.
For this example, we assigned durations to actions, hinting at the intention of restoring safety as quickly
as possible. Alternative approaches are to use costs and find the cheapest solution or to deal with risk
explicitly.

6 Discussion

In this section, we first discuss the modifications made to the set of constraints solved during planning.
We also present the findings from a preliminary experiment and analyze the resulting policy. Finally, we
discuss the challenges and potential limitations of the approach, hinting toward possible future work.

6.1 Constraint-Based Planning

The constraint-based approach providing the basis for this work has been introduced in the original work
on Tumato [5]. The constraints that differ are the ones related to the new state rules. While reaction
rules could be incorporated directly into the constraint satisfaction problem as a constraint prohibiting
or enforcing an action to be executed in a certain state, state rules require more insight. For every
execution step, the condition of the state rule is applied as a constraint to each state in the set of possible
next states. State rules constrain every possible outcome of an action in the current state rather than
the actions themselves. This approach results in a number of new constraints, one for every possible
outcome, enforcing a state rule conditionally to whether the action gets executed. As a result, if an action
could violate one or more state rules, this action will be prohibited in the given state. Practically, these
constraints replace a (potentially large) number of constraints specified by reaction rules, as illustrated in
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Section 5.2.1. Complementary, state rules can enforce the execution of actions if their effects are required
to maintain safety. Even if the current state is not safe, the next state is guaranteed to be safe, and the
planner will minimize the required duration or cost to restore safety using a minimization objective.
Since the use of objectives is solver-specific, we refrain from elaborating further and only illustrate their
potential use. Finally, when no solution exists, the solver can refer to states for which no behavior can
be generated to explain why the specification is unrealizable, identical to the original feature of Tumato.

6.2 Preliminary Experimental Results

The example model described throughout this paper contains 32 states and 8 actions, and the planner
takes between 2 and 3 seconds to obtain a policy on a 1.6 GHz Dual-Core Intel Core i5. No significant
memory usage was detected. The initial CSP starts off with 518 constraints and ramps up to 5266 (as in
Tumato, constraints are added automatically to obtain conflict-free plans to define a policy). The number
of decision variables starts at 823 and reaches up to 8487. These numbers are slightly higher compared
to using a reaction rule based approach but within the same order of magnitude. For a scalability com-
parison, a somewhat larger model with 2688 valid states and 18 actions takes about 75 seconds, while
memory usage remains negligible. The CSP starts with 1130 constraints and ramps up to 5545. The
number of decision variables starts at 1787 and reaches up to 8911.

Practically, all the individual reaction rules have been replaced by the constraints generated from the
state rule. However, reaction rules require manual (more error-prone) implementation, and the state rules
might cover situations the user did not anticipate. Especially for more complex systems, this approach
can be beneficial. Finally, albeit more technical, we want to mention the impact on restoring safety
the most preferred way when the maximum planning length or number of possible unsafe states grows.
Now, the best solution has to be found, rather than any solution, as otherwise was sufficient. Performance
worsens because of the increasing number and complexity of the minimization objectives.

6.3 The Policy

Since the generated policies are complete, every valid state of the system has a corresponding entry in
the policy. In this section, a few well-chosen entries from the AMR’s policy are presented.5

" S _ L o c a t i o n " : " c o r r i d o r " , " S _ L o c a t i o n " : " c o r r i d o r " ,
" S _ B a t t e r y " : " ok " , " S _ B a t t e r y " : " low " ,
" S_Load " : " f r e e " , " S_Load " : " f r e e " ,
" S_Conveyor " : " o f f " , " S_Conveyor " : " o f f " ,
" A c t i o n s " : [ " m o v e _ t o _ w o r k s t a t i o n _ 1 " ] " A c t i o n s " : [ " m ove_ to_c ha rge r " ]

The first entry (left) instructs the AMR to move to workstation_1, as it is currently not carrying a work-
piece and there is sufficient battery power left. The desired productive behavior appears. In the second
entry (right), as the battery level holds the value low, a different (prioritized) conditional goal is active.
The AMR now moves to the charger. In neither entry the state rule condition (specified in Section 5.2.2)
is violated, neither in the current state nor any foreseeable possible next state.

" S _ L o c a t i o n " : " w o r k s t a t i o n _ 2 " , " S _ L o c a t i o n " : " c o r r i d o r " ,
" S _ B a t t e r y " : " ok " , " S _ B a t t e r y " : " low " ,
" S_Load " : " f r e e " , " S_Load " : " f r e e " ,
" S_Conveyor " : " on " , " S_Conveyor " : " on " ,
" A c t i o n s " : [ " s t o p _ c o n v e y o r " ] " A c t i o n s " : [ " s t o p _ c o n v e y o r " ]

5A short clip of the AMR executing a policy generated by Tumato can be found online.

https://kuleuven-my.sharepoint.com/:v:/g/personal/jan_vermaelen_kuleuven_be/EQgdGpJ28eNCnuuap2i2mG4BOD2N92KTFuz1R013CdiIrA
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In the next entry (left), the specified state rule is more prominent. Without the state rule, the planner
would instruct the AMR to start moving to workstation_1. Since the conveyor will be active later on,
turning it off now would be redundant. It is clear that the state rule leads to executing stop_conveyor. A
naive implementation of state rules (or use of reaction rules) would allow simultaneous movement and
stopping of the conveyor. However, the adapted Tumato solver recognizes the non-deterministic order
in which actions effectuate when multiple actions are executed simultaneously and ensures safety by
permitting only the stop_conveyor action. In the final presented entry (right), the current state violates
the state rule. To restore safety, the AMR is instructed to execute stop_conveyor. Although the more
productive action move_to_charger would also restore safety (as the only foreseeable next state is safe),
the planner chooses the most preferred way to restore safety based on the durations of actions.

6.4 Overview and Future Work

Tumato succeeds in connecting theoretic agents-based research, specifically on guaranteeing safe behav-
ior, to the field of robotics, where non-determinism is inevitable. By including durations and alternative
outcomes, we achieve a concise and expressive behavior specification. State rules further enhance ex-
pressiveness and result in a stronger as well as less error-prone safety specification. One main limitation
of the approach is the use of discrete state variables. For practical applications, a monitoring module has
to be present to map the continuous world into a discrete state space.

Despite the promising combination of uncertainty and safety with the constraint-based planning ap-
proach, challenges remain open for further investigation. The state rules currently enforce that any
foreseeable outcome of the executed actions is safe. When multiple sets of actions exist to restore safety,
the planner is capable of choosing the best one with regard to a value such as duration or cost. When no
actions are available to restore safety immediately, the planner will notify the user, indicating for which
state safety can not be restored. Although this is a desirable approach, future research could explore how
allowing multiple successive (sets of) actions in unsafe states could be required to restore safety. Further-
more, in practice, different safety constraints relate to different severities. In the same way that actions
can be assigned a specific value, the safety rules could be weighted to enable the constraint solver to find
the overall best solution. Finally, an empirical study will be conducted concerning the practical use of
the adapted planner. This study should consider the actual safety guarantees that are obtained as well
as the specification effectiveness and comfort that is achieved. Comparisons with the original version of
Tumato, as well as with more traditional approaches, are in order.

7 Conclusion

This paper presents an approach to specify and generate safe and robust robot behavior. For this purpose,
we extend the existing constraint-based planning tool Tumato with the notion of uncertainty and state
rules. Robustness against uncertainty is achieved by extending actions with alternative, less desired and
less likely, but foreseeable outcomes. Further, state rules form a powerful approach for expressing safety
rules based on state conditions rather than manually having to specify all situations that could lead to
such unsafe states. This new approach requires an order of magnitude fewer rules to be specified and
hence is less prone to errors. Tumato translates the declarative specification, including the defined safety
rules, automatically into a set of Constraint Satisfaction Problems. Solving the CSPs yields an execution
policy that inherently satisfies all the specified rules. This approach enables the detection of unrealizable
specifications early on. The obtained policy is sound and complete by construction.
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A The Specification

In this appendix, we use the AMR example to illustrate the extended format of specification supported
by Tumato.

BEGIN STATE VECTOR
s t a t e S _ L o c a t i o n can be c o r r i d o r , c h a r g e r , w o r k s t a t i o n _ 1 , w o r k s t a t i o n _ 2
s t a t e S _ B a t t e r y can be low , ok
s t a t e S_Load can be loaded , f r e e
s t a t e S_Conveyor can be on , o f f

END STATE VECTOR

BEGIN RESOURCES
r e s o u r c e MOTORS
r e s o u r c e CONVEYOR
END RESOURCES

BEGIN ACTIONS
a c t i o n m o v e _ t o _ w o r k s t a t i o n _ 1
d u r a t i o n : 10
c o n t r o l l e d r e s o u r c e s : MOTORS
p r e c o n d i t i o n s : S _ L o c a t i o n i s c o r r i d o r
nomina l e f f e c t s : S _ L o c a t i o n i s w o r k s t a t i o n _ 1
a l t e r n a t i v e e f f e c t s : S _ L o c a t i o n i s c o r r i d o r

a c t i o n m o v e _ t o _ w o r k s t a t i o n _ 2
d u r a t i o n : 10
c o n t r o l l e d r e s o u r c e s : MOTORS
p r e c o n d i t i o n s : S _ L o c a t i o n i s c o r r i d o r
nomina l e f f e c t s : S _ L o c a t i o n i s w o r k s t a t i o n _ 2

a c t i o n move _ to_cha r ge r
d u r a t i o n : 10
c o n t r o l l e d r e s o u r c e s : MOTORS
p r e c o n d i t i o n s : S _ L o c a t i o n i s c o r r i d o r
nomina l e f f e c t s : S _ L o c a t i o n i s c h a r g e r
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a c t i o n m o v e _ t o _ c o r r i d o r
d u r a t i o n : 2
c o n t r o l l e d r e s o u r c e s : MOTORS
p r e c o n d i t i o n s : NOT S _ L o c a t i o n i s c o r r i d o r
nomina l e f f e c t s : S _ L o c a t i o n i s c o r r i d o r

a c t i o n r e c e i v e _ w o r k p i e c e
d u r a t i o n : 3
c o n t r o l l e d r e s o u r c e s : MOTORS, CONVEYOR
p r e c o n d i t i o n s : S _ L o c a t i o n i s w o r k s t a t i o n _ 1 , S_Load i s f r e e
nomina l e f f e c t s : S_Conveyor i s on , S_Load i s l o a d e d
a l t e r n a t i v e e f f e c t s : S_Conveyor i s on , S_Load i s f r e e
a l t e r n a t i v e e f f e c t s : S_Conveyor i s o f f , S_Load i s f r e e

a c t i o n d e l i v e r _ w o r k p i e c e
d u r a t i o n : 3
c o n t r o l l e d r e s o u r c e s : MOTORS, CONVEYOR
p r e c o n d i t i o n s : S _ L o c a t i o n i s w o r k s t a t i o n _ 2 , S_Load i s l o a d e d
nomina l e f f e c t s : S_Conveyor i s on , S_Load i s f r e e
a l t e r n a t i v e e f f e c t s : S_Conveyor i s on , S_Load i s l o a d e d

a c t i o n s t o p _ c o n v e y o r
d u r a t i o n : 1
c o n t r o l l e d r e s o u r c e s : CONVEYOR
p r e c o n d i t i o n s : S_Conveyor i s on
nomina l e f f e c t s : S_Conveyor i s o f f

a c t i o n c h a r g e
d u r a t i o n : 50
c o n t r o l l e d r e s o u r c e s : MOTORS
p r e c o n d i t i o n s : S _ L o c a t i o n i s c h a r g e r
nomina l e f f e c t s : S _ B a t t e r y i s ok
END ACTIONS

BEGIN REACTION RULES / / P l e a s e note , comments s t a r t w i th " / / " .
/ / r u l e : IF ( S _ L o c a t i o n i s c o r r i d o r OR S _ L o c a t i o n i s c h a r g e r ) AND S_Conveyor i s on
/ / THEN e x e c u t i n g s t o p _ c o n v e y o r
/ / r u l e : IF ( S _ L o c a t i o n i s c o r r i d o r OR S _ L o c a t i o n i s c h a r g e r ) AND S_Conveyor i s o f f
/ / THEN NOT e x e c u t i n g r e c e i v e _ w o r k p i e c e AND NOT e x e c u t i n g d e l i v e r _ w o r k p i e c e
/ / / /AND NOT any f u t u r e a c t i o n t h a t c o u l d t u r n t h e conveyor on
/ / r u l e : IF S_Conveyor i s on THEN NOT e x e c u t i n g m o v e _ t o _ c o r r i d o r
/ / AND NOT e x e c u t i n g move_ to _cha rge r AND NOT e x e c u t i n g m o v e _ t o _ w o r k s t a t i o n _ 1
/ / / /AND NOT any f u t u r e a c t i o n t h a t c o u l d move t h e
/ / / /AMR away from NOT( c o r r i d o r OR c h a r g e r ) .
/ / And p r o b a b l y more r u l e s

END REACTION RULES

BEGIN STATE RULES
r u l e : IF S _ L o c a t i o n i s c o r r i d o r OR S _ L o c a t i o n i s c h a r g e r THEN S_Conveyor i s o f f
END STATE RULES

BEGIN GOALS
g o a l t y p e : p r i o r i t y
when S _ B a t t e r y i s low t h e n g o a l : S _ B a t t e r y i s ok
when S_Load i s l o a d e d t h e n g o a l : S_Load i s f r e e
when S_Load i s f r e e t h e n g o a l : S_Load i s l o a d e d
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END GOALS

BEGIN CONFIG
m a x _ p l a n _ l e n g t h : 5
END CONFIG
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In this paper, we define an intuitionistic version of Computation Tree Logic. After explaining the

semantic features of intuitionistic logic, we examine how these characteristics can be interesting for

formal verification purposes. Subsequently, we define the syntax and semantics of our intuitionistic

version of CTL and study some simple properties of the so obtained logic. We conclude by demon-

strating that some fixed-point axioms of CTL are not valid in the intuitionistic version of CTL we

have defined.

1 Introduction

Classical modal and temporal logics are extensions of classical logic, in which some new operators

(usually called modalities) qualify the truth of classical formulae. For instance, in a classical or temporal

modal logic, one can express that a certain formula is necessarily true, possibly true, that it will be true

in some future moment of time and so on. In particular, temporal logics are a family of modal logics in

which the modalities permit to express, as the name suggests, temporal properties of formulae. Temporal

logics originated in the philosophical work of Prior [11] in the 50s and were rediscovered and adapted

by Pnueli [10] who defined the Linear Temporal Logic (LTL) and showed how interesting program

properties could be expressed using temporal logic and, more importantly, automatically verified on

mathematical models of the executions of such programs. Time flow in LTL is linear, meaning that

each instant of time has exactly one successor. In 1981, Edmund M. Clarke and E. Allen Emerson first

introduced Computation Tree Logic (CTL) [4]. CTL is a type of branching-time logic, where time is

represented as a tree-like structure with an undetermined future. This logic was first used to reason about

abstractions of concurrent programs and subsequently became a milestone in the automatic verification

of cyber-physical models.

Intuitionistic Logic. Intuitionism is a mathematical school developed in the early 1900s by the Dutch

mathematician L.E.J. Brouwer. Intuitionism rejects the idea that the truth value of a mathematical state-

ment is independent of our ability to know or verify it. Put differently: an intuitionist believes that the

truth conditions of a mathematical statement are its provability conditions. As a result, intuitionism re-

jects the validity of the principle of excluded middle. In fact, given any mathematical statement ϕ, it

is not always possible to have knowledge of (i.e., prove or verify) ϕ or its negation ¬ϕ. In the 1930s,

Heyting developed intuitionistic logic [7], a logic embodying the underlying principles of intuitionistic

reasoning. Intuitionistic logic has found many applications in computer science, e.g., the Curry-Howard

isomorphism relating intuitionistic proofs and typed lambda terms [13] and the constructive type theory

of Per Martin-Löf [8]. The semantics of intuitionistic logic was first specified by means of topological

spaces, and later, by Saul Kripke in terms of Kripke models [6]. This latter semantics is particularly

interesting for our means. Kripke’s idea is that a model of intuitionistic logic represents the dynamics
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of an idealized agent (or idealized mathematician) that is expanding her knowledge about mathematical

statements over time. In this temporal process, she creates new elements while observing the fundamen-

tal facts in her universe. Moving from one moment to the next, she freely decides how to continue her

activity, resulting in a partially ordered set of possible stages, known as possible worlds. In this partic-

ular interpretation, the truth of an intuitionistic formula ϕ in a given moment of time w depends upon

the future of w, i.e, upon the moments of time coming after w. For instance, to conclude that a formula

ϕ→ ψ is true at a given moment w, the agent must be certain that for every future moment w′, if there is

a proof of ϕ at w′, it is always possible to obtain a proof of ψ as well.

Intuitionistic Modal Logic. Intuitionistic logic can be extended with modalities in different ways (for

an overview see [12]): while in classical logic axioms involving only � provide also description of the

behavior of ^, for intuitionistic logic this is no more the case since the duality of the two modalities does

not hold anymore. This leads to different approaches. Constructive modal logics consider minimal sets

of axioms to guarantee the definition of the behaviors of the � and ^ modalities. A second approach,

referred to as intuitionistic modal logic, considers additional axioms in order to validate the Gödel-

Gentzen translation [3]. This second approach has led to the definition of a class of Kripke models (called

birelational models) in which two distinct relations of accessibility are considered: one representing the

aforementioned preorder and the other representing the “standard” accessibility relation of a Kripke

model. In this paper, for the sake of simplicity, we will follow this second approach. This approach is

used, for instance, for the intuitionistic version of LTL studied in [2].

Intuitionistic Computational Tree Logic. In this paper, we aim to define an intuitionistic version

of the aforementioned Computation Tree Logic. The intuition we seek to formalize is as follows: we

distinguish between two different temporal evolutions within a CTL model. One represents the agent’s

knowledge about the system, while the other represents the possible evolutions of the system itself based

on the given knowledge. The agent’s goal is to conclusively verify that certain properties hold with

respect to the possible evolutions of the model and the potential evolution of its knowledge. In other

words, given a property of interest ϕ, it wants to ascertain that, in any state of its knowledge regarding

the model, and regardless of the evolution of the model itself, ϕ is satisfied. We think this type of intuition

allows for considering the verification of CTL properties in the imperfect information context.

Structure of the work In Section 2 we provide the syntax and semantic of Intuitionistic Computation

Tree Logic. Then, in Section 3 we provide some properties of our logic. Finally, we conclude in Section 4

with some future directions.

2 Syntax and Semantics of Intuitionistic Computation Tree Logic

In this section we provide the syntax and semantics of our logic. We follow [9] for the definition of

models that will be used in the following. We fix a countable set P of atomic propositions or atoms.

Definition 1. Formulae of Intuitionistic Computation Tree Logic (ICTL for short) are defined by the

following grammar:

ϕ,ψ := p | ⊥ | ϕ∧ψ | ϕ∨ψ | ϕ→ ψ

E Xϕ | E (ϕUψ) | E (ϕRψ) | A Xϕ | A (ϕUψ) | A (ϕRψ)
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where p ∈ P and ⊥ is the absurdity symbol. We define the negation of a formula ϕ as ¬ϕ ≡ ϕ→ ⊥ .

Formulae whose first operator is E are called existential formulae, while those whose first operator is A

are called universal formulae.

Given the syntax of ICTL, we can now provide the definition of birelational frame.

Definition 2. A birelational frame F is a triple 〈W,P,R〉 where W is a non-empty countable set of worlds,

P is a preorder on W (i.e., a reflexive and transitive relation) and R is a binary serial relation on W (i.e.,

for every x ∈ W there is a y ∈ W such that xRy) in which the following conditions are satisfied, for all

x,y,z ∈W:

(C1) if xRy and yPz, then there is a u ∈W such that xPu and uRz (see below left);

(C2) if xPz and xRy, then there is a u ∈W such that yPu and zRu (see below right).

u z z u

x y x y

A path in a frame F is an infinite sequence of worlds ρ = ρ0,ρ1, . . . such that for any i ∈ N we have

that ρiRρi+1. If ρ is a path then ρi denotes its (i+1)-th element, ρ≤i the finite prefix ρ0, . . . ,ρi of ρ and ρ≥i

the infinite suffix ρi,ρi+1, . . . of ρ starting at ρi.

Lemma 1. Let F be a frame and w and w′ two worlds of F such that wPw′. For every path ρ such that

ρ0 = w there is a path τ such that τ0 = w′ for which holds that ρiPτi for every natural number i.

Proof. Let A = (wi)i∈N be an enumeration of the worlds of F. Given ρ, we define τ by induction on N.

We define τ0 = w′ and for any i ≥ 1 we let τi be the smallest element in A such that τi−1Rτi and τiPρi.

Remark that τi exists because of condition C2 above: in fact, suppose that for j < i it holds that ρ jPτ j,

in particular, this means that τi−1Pρi−1. Since ρi−1Rρi, then by C2 there is (at least one and possibly an

infinite countable number of) u ∈W such that τiRu and ρiPu. �

Given the definition of frames, we are able to define our models.

Definition 3. A birelational model (model from now on) is a tupleM = 〈W,P,R,V〉 where 〈W,P,R〉 is a

birelational frame andV : W→ 2P is a valuation function sending each world w to the subset of atomic

propositions that are true at w and that is subject to the monotonicity condition, that is: if wPw′ then

V(w) ⊆V(w′).

Now, we have all the ingredients to define the semantics of ICTL.

Definition 4. The satisfaction relation M,w |= ϕ between a model M, a world w of M, and an ICTL

formula ϕ is inductively defined as follows:

• M,w |= p iff p ∈ V(w);

• M,w |= ⊥ never;

• M,w |= ψ∧ θ iffM,w |= ψ andM,w |= θ;

• M,w |= ψ∨ θ iffM,w |= ψ orM,w |= θ;

• M,w |= ψ→ θ iff for every w′ such that wPw′ we have thatM,w′ |= ψ impliesM,w′ |= θ;

• M,w |= E Xψ iff there is a path ρ whose first element ρ0 is w andM,ρ1 |= ϕ;
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• M,w |= E (ψUθ) iff there is a path ρ whose first element ρ0 is w and there is a j ≥ 0 such that

M,ρ j |= θ and for all 0 ≤ i < j we have thatM,ρi |= ψ;

• M,w |= E (ψRθ) iff there is a path ρ whose first element ρ0 is w and eitherM,ρi |= θ for all i ∈N or

there is a j ≥ 0 such thatM,ρ j |= ψ andM,ρi |= θ for all 0 ≤ i ≤ j;

• M,w |= A Xψ iff for every w′ such that wPw′ and for every path ρ whose first element ρ0 is w′ we

have thatM,ρ1 |= ψ;

• M,w |= A (ψUθ) iff for every w′ such that wPw′ and for every path ρ whose first element ρ0 is w′

we have that there is a j ≥ 0 such thatM,ρ j |= θ and for all 0 ≤ i < j we have thatM,ρi |= ψ;

• M,w |= A (ψRθ) iff for every w′ such that wPw′ and for every path ρ whose first element ρ0 is w′

we have that either M,ρi |= θ for all i ∈ N or there is a j ≥ 0 such thatM,ρ j |= ψ andM,ρi |= θ for

all 0 ≤ i ≤ j.

We write M,w 6|= ϕ when w does not satisfy ϕ. We say that a formula ϕ is valid in a model M iff it is

satisfied in every w ∈W. A formula ϕ is valid in a frame F = 〈W,P,R〉 iff it is valid in 〈W,P,R,V〉 for

any valuation V. A formula ϕ is valid iff it is valid in every frame.

Remark that, by the above definition, a formula ¬ϕ = ϕ→⊥ is satisfied at w if for any w′ such that

wPw′ we have that w′ satisfies ϕ implies w′ satisfies ⊥. Since ⊥ is never satisfied, this is equivalent to

say that no state w′ bigger than w satisfies ϕ. Given the above definition of satisfaction and validity, it is

fairly easy to show that the operators are not dual, e.g., we do not have that ¬A X¬ϕ→ E Xϕ.

3 Main Properties

In this section, we show that CTL and ICTL differs in some important properties. First, we show that

the satisfaction relation is monotonous with respect to the preorder. This properties, that is shared by all

intuitionist modal logics, intuitively says that the agent’s knowledge can only grow.

Proposition 1. Let M be a model, ϕ a formula, and w and w′ a pair of worlds of M. if M,w |= ϕ and

wPw′ thenM,w′ |= ϕ

Proof. By induction on the structure of ϕ using Lemma 1 when we consider existential formulae. �

Given a model M and a formula ϕ, we write ~ϕ�M to denote the set of worlds of M satisfying ϕ,

that is ~ϕ�M = {w ∈ W | M,w |= ϕ}. Whenever the model M is contextually given and no confusion

can arise, we omit the superscript M. If w is a world of M, we denote by w↑ the set of worlds that

are greater of w with respect to P. Given X ⊆ W , we let Pre∃(X) = {w′ | w′Rw for some w ∈ X} and

Pre∀(X) = {w′ | w′Rw implies w ∈ X}. If Y ⊆W is a set then Y↑ denotes the set of elements of w whose

upward closure is in Y , that is Y↑ = {w ∈W | w↑ ⊆ Y}. If Y is a set Yc denotes its complement.

Proposition 2. Given a modelM and a world w, we have that:

1. M,w |= ϕ→ ψ iff w ∈ (~ϕ�c∪~ψ�)↑

2. M,w |= E Xϕ iff w ∈ Pre∃(~ϕ�)

3. M,w |= A Xϕ iff w ∈ (Pre∀(~ϕ�))↑

Proof. We only prove (1) and (3).
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1. For the (→)-direction we reason by contraposition: suppose that there is w′ such that w′ ∈ ~ϕ�∩

~ψ�c and wPw′. This means that M,w′ |= ϕ and M,w′ 6|= ψ thus we conclude that M,w 6|= ϕ→ ψ.

For the converse direction: suppose that w ∈ (~ϕ�c ∪~ψ�)↑. Thus given any w′ such that wPw′ we

have that w′ ∈ ~ϕ�c or w′ ∈ ~ψ�. From this fact we deduce that w′ ∈ ~ϕ� (that is w < ~ϕ�c) implies

w′ ∈ ~ψ� and we can conclude.

3. For the (→)-direction: suppose that M,w |= A Xϕ. By definition, this means that given any w′

such that wPw′ all successors of w′ are in ~ϕ�. This proves that w↑ ⊆ Pre∀(~ϕ�) and thus w ∈

(Pre∀(~ϕ�))↑. For the converse direction, suppose that s ∈ (Pre∀(~ϕ�))↑. This means given any w′

such that wPw′ we have that all succesors of w′ are in ~ϕ�. Thus any path starting at the given w′

will satisfy ϕ on its second component. We thus deduce thatM,w |= A Xϕ.

�

Proposition 3. Define ϕ↔ ψ as (ϕ→ ψ)∧ (ψ→ ϕ). The following formulae are valid:

1. E (ϕUψ)↔ ψ∨ (ϕ∧E XE (ϕUψ))

2. E (ϕRψ)↔ ψ∧ (ϕ∨E XE (ϕRψ))

3. ψ∨ (ϕ∧A XA (ϕUψ))→ A (ϕUψ)

4. ψ∧ (ϕ∨A XA (ϕRψ))→ A (ϕRψ)

Proof. We prove (2) and (3). LetM be any model and w any of its worlds.

2. For the (→)-direction, suppose that M,w |= E (ϕUψ) and let w′ be a world such that wPw′. We

must check that w′ |= ψ∨ (ϕ∧E XE (ϕUψ)). From the fact that w satisfies E (ϕUψ), we deduce that

either w ∈ ~ψ� (in this case we conclude by Proposition 1), or that w ∈ ~ϕ� and there is a path ρ

such that ρ0 = w , ρi ∈ ~ψ� for some i ≥ 1 and ρ j ∈ ~ϕ� for all 1 ≤ j < i, we thus conclude that

w ∈ ~ψ∨ (ϕ∧E XE (ϕUψ)� and, again by Proposition 1, that w′ ∈ ~ψ∨ (ϕ∧ (E XE (ϕUψ))�. For

the converse direction: suppose that w ∈ ~ψ∨ (ϕ∧E XE (ϕUψ)� and let w′ be a world such that

wPw′. Since w ∈ ~ϕ∧ (ψ∨E XE (ϕUψ))� either w ∈ ~ψ� or w ∈ ~ϕ∧E XE (ϕUψ)�. In both cases,

we deduce that w ∈ ~EϕUψ� and we conclude using Proposition 1.

3. Suppose thatM,w |=ψ∨(ϕ∧A XA (ϕUψ)) and let w′ be a world such that wPw′. We must show that

w′ ∈ ~A (ϕUψ)�. If w ∈ ~ψ� we conclude using Proposition 1 since any path starting at any world

bigger than w will immediately satisfy ψ (and thus (ϕUψ)). Otherwise, w ∈ ~ϕ∧A XA (ϕUψ))�

this means that w ∈ ~ϕ� and given any world w′ bigger than w, we will have that w′Ru implies

u ∈ ~A (ϕUψ)�. Since wPw′, Proposition 1 allows us to conclude that w′ ∈ ~ϕ� and since given any

u such that w′Ru we have that u ∈ ~A (ϕUψ)�, we conclude that w′ ∈ ~A (ϕUψ)� as we wanted.

�

Note that, unlike CTL, in ICTL in Proposition 3.3 and 3.4 we have an implication. So, to prove that

the other directions do not hold, we provide a counterexample in the following proposition.

Proposition 4. The two formulae below are not valid

1. A (pUq)→ q∨ (p∧ (A XA (pUq))

2. A (qRp)→ p∧ (q∨ (A XA (qUp))
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Proof. For both formulae, consider the modelM depicted below in which the preorder P is represented
by the blue arrows, the relation R is represented by the red arrows and the valuation function is specified
next to each node.

{p,q} v1 v2 ∅

{p} w1 w2 {q}

we have thatM,w1 |= A (pUq) but neither M,w1 |= q norM,w1 |= p∧A XA (pUq). In particular w1 does

not satisfy A XA (pUq) because w1Pv1 and given the path τ = v1 · v
ω
2

we have that there is no i ≥ 1 such

thatM, τ j |= q. Similarly,M,w1 |= A (qRp) but w1 does not satisfy neither p∧q nor p∧A XA (qRp). �

4 Conclusions and Future Works

We have sketched an Intuitionistic variant of CTL (ICTL) and proved some basic properties about this

logic. There is still a lot, practically everything, to be done about this logic. Below, we outline some

directions we would like to explore, without any specific hierarchical order.

Formal verification. In addition to its purely theoretical interest, the study of CTL has been fundamen-

tal for the development of applications in formal software verification. This is because Kripke models on

which this logic is interpreted are particularly suitable for modeling the evolution of reactive systems. In

order to make ICTL appealing, we would like to identify a class of reactive systems, or specific problems

within these systems, that lend themselves well to being modeled using birelationals models.

Model Checking. The model checking problem for ICTL is the same as the one of CTL: given a (finite)

birelational model M, a formula ϕ, and a world w can we decide whether M,w |= ϕ? This problem is

P-space hard. For instance, given a CTL model R one can see it as a birelational model by setting uPu′

iff u = u′ for any world of R, and thus reduce the model-checking problem for CTL to the one of ICTL.

Furthermore, even though the CTL fix points axioms do not hold in ICTL, we think we can characterize

the semantics of the release and until operators by the upward-closure of the usual (classical) fix-point

characterization.
Axiomatization & fix-points. The fix-point axioms are not valid in the intuitionistic variant of CTL that
we have defined. It would be interesting to find out whether an axiomatization of ICTL can be obtained
by other means. Possibly, one could think of adding another condition on birelational models in order
to validate the axioms. For instance the following, for all x,y,z ∈W: if xPy and yRz then there exist an
u ∈W such that xRu and uPz. Diagrammatically this gives:

y z

x u

Multiagent Systems. It would be natural to extend our intutionistic intepretation of CTL to Alternating-

time Temporal Logic (ATL) [1]. A natural interpretation of Intuitionistic ATL would be to consider that

agents try to verify a temporal formula by executing some coordinate action on the base of a shared

knowledge at a given time. We think that this interpretation would have much in common with the

epistemic interpretation of ATL [5].
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Autonomous and robotic systems are increasingly being trusted with sensitive activities with poten-
tially serious consequences if that trust is broken. Runtime verification techniques present a natural
source of inspiration for monitoring and enforcing the desirable properties of the communication
protocols in place, providing a formal basis and ways to limit intrusiveness. A recently proposed ap-
proach, RV-TEE, shows how runtime verification can enhance the level of trust to the Rich Execution
Environment (REE), consequently adding a further layer of protection around the Trusted Execution
Environment (TEE).

By reflecting on the implication of deploying RV in the context of trustworthy computing, we
propose practical solutions to two threat models for the RV-TEE monitoring process: one where
the adversary has gained access to the system without elevated privileges, and another where the
adversary gains all privileges to the host system but fails to steal secrets from the TEE.

1 Introduction

The challenge of secure software execution is ultimately a game of cat and mouse where for every step
forward in security, the attackers likewise launch increasingly sophisticated attacks. Suffice to consider
the all too frequent examples1 from recent history. Given this state of affairs, software architectures need
to take a risk-based approach where progressively higher price for security is paid for the correspondingly
sensitive components of a system (just like a traditional physical bank puts more hurdles the closer one
gets to the vault where all the cash is). As robots are becoming more ubiquitous, they are naturally
increasingly becoming likely targets of attacks; motivating more investment in their security [11].

In the security community, the idea of a trusted execution environment (TEE) is well known and
is the ultimate objective whenever executing security-critical tasks [27], such as cryptographic protocol
steps. Trusted computing finds its origin in trusted platform modules (TPM) that comprise tamper-
evident hardware modules and enable secure boots [7]. However, TPM constitute just one component
of a complete TEE solution as depicted in Fig. 1. In fact, the cornerstone of TEE lies in the isolated
execution of critical code segments in a way that they become unreachable by malware infections of
the non-trusted operating system and application code. A secure monitor, which is part of the TEE’s
trusted computing base (TCB), performs thorough checking of the dynamically provisioned code and
the parameters of flows that call into the TEE.

1https://securityintelligence.com/heartbleed-openssl-vulnerability-what-to-do-protect/,
https://github.com/openssl/openssl/issues/353,
https://blog.trailofbits.com/2018/08/01/bluetooth-invalid-curve-points/,
https://info.keyfactor.com/factoring-rsa-keys-in-the-iot-era,

http://dx.doi.org/10.4204/EPTCS.391.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://securityintelligence.com/heartbleed-openssl-vulnerability-what-to-do-protect/
https://github.com/openssl/openssl/issues/353
https://blog.trailofbits.com/2018/08/01/bluetooth-invalid-curve-points/
https://info.keyfactor.com/factoring-rsa-keys-in-the-iot-era
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Figure 1: An overview of TEE components.

In previous works [40, 4, 13], we have proposed RV-TEE: A TEE which is supported by runtime ver-
ification techniques. The RV component complements the TEE services to elevate trust also inside the
rich execution environment (REE)2. Even though the TEE’s isolated context protects trusted application
(TA) components, the rich application (RA) components executing inside the REE may still be required
to demonstrate increased trust. In effect, RV-TEE establishes an intermediate level of trust, somewhere
in between the levels offered by the TEE and the REE, since i) a clean un/trusted split of an application
is far from simple in practice; ii) static verification techniques do not always scale and require comple-
mentary dynamic approaches. RV-TEE makes it a point to not be specific to common CPU-mode TEE
implementations [23], whose security-efficiency trade-off may still not satisfy the levels of trust of spe-
cific security-critical applications. Rather, it considers TEE in its broadest sense possible [16], i.e., any
platform realisation that splits runtime execution into trusted and rich execution modes. In sensitive ap-
plications such as military and governmental ones, the input/output overheads introduced by a removable
hardware security module (HSM) of choice could be acceptable as long as the TEE employs a trusted
hardware component.

Robotic systems are far from immune to vulnerabilities [14] and the independent use of TEE’s [37]
and RV [20, 15] for robotic applications is not new. However, to our knowledge, the proposal of com-

https://labs.sentinelone.com/how-trickbot-hooking-engine-targets-windows-10-browsers,
https://meltdownattack.com/

2REE refers to execution which does not take place within a TEE.

https://labs.sentinelone.com/how-trickbot-hooking-engine-targets-windows-10-browsers
https://meltdownattack.com/


R. Abela et al. 51

bining the two in this context is novel. Interestingly, although one could simply introduce the two in-
dependently in a system, we show how the monitor can be further secured through the introduction of
the HSM. While the RV-TEE approach contributes to the trustworthiness of the monitored process, the
monitor itself does not run in a trusted environment, making it a potential target for attacks. In highly
sensitive contexts [26], it is not enough to design for the prevention of attacks. Rather, one has to also
design for handling situations where parts of the system have been taken over by the adversary. Applying
this approach to the security aspects of the monitor itself: What guarantees do we have that the monitor
has not been compromised? How can we be sure that the logs the monitor consumes and generates are
actually authentic?

To answer these salient questions, we consider different threat models reflecting different levels of
attack success. The first threat model considers the case where the adversary has gained access to the
monitor-hosting system without elevated privileges, e.g., through an unpatched OS vulnerability the
attacker manages to execute a malicious process. While this threat model doesn’t directly compromise
the monitoring process, it could potentially gather sensitive information and/or interfere with system
resources and processes, e.g., the monitor log file in the filesystem. We handle this threat scenario by
isolating the monitor through containerisation and consider the challenges that this brings about. The
second threat model goes further by assuming that the adversary has gained all privileges to the host
system but fails to steal secrets from the HSM. This gives the adversary full control over the system,
including the monitor. The best we can aim for in such a scenario is that the attack is detected via
tamper-evident logs. We outline the algorithm of an adaptation of SealFS— a filesystem employing
cryptographic techniques to expose any modification of saved data.

In the next section, we introduce the notion of trusted execution, followed by an overview of how we
have employed RV to enhance trust in Sec. 3. After elaborating on the two threat models under consid-
eration in Sec. 4, we propose two practical solutions in each context in Sec. 5 and Sec. 6 respectively.
Next, in Sec. 7, we give an update of the ongoing work to apply RV-TEE within robotics. We hope that
as we conclude in the final sections, this paper offers a novel way of seeing and employing RV in secure
contexts such as robotics, highlighting lessons learnt along with practical solutions for varying scenarios
of compromise.

2 Trusted Execution Environment

A number of prominent TEE extensions to CPUs (CPU-TEE) have already reached industry level ma-
turity. Intel’s SGX [23] and AMD’s SVM [18] technologies are primary examples. These constitute
hardware extensions allowing an operating system to fully suspend itself, including interrupt handlers
and all the code executing on other cores, in order to execute the trusted domain code within a code
enclave. Another wide-spread example is ARM’s TrustZone [25] that provides a CPU-TEE for mobile
device platforms. Several other ideas also originate from academia, such as the suggestion to leverage
existing hardware virtualisation extensions to implement TEE without having to resort to further spe-
cialised hardware [22]. Other works [9, 39, 30, 43] focus on providing practical solutions to port existing
applications to a CPU-TEE.

Despite all these efforts, it is important to note that CPU-TEEs are not attack-proof since practical
threats targeting all the aforementioned hardware have already been demonstrated [41, 28, 31, 21]. The
root cause of these attacks stems from the overall design of CPU-TEEs. Their architecture follows an
on-chip security subsystem approach [16], favouring TEE/REE context switching speed at the expense
of having a shared micro-architecture, which ends up exposing a significant attack surface. However, the
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architecture of a TEE is not constrained to the widely-available hardware that mainly follows the CPU-
TEE design. Instead, the level of isolation offered by a TEE and the hardware components involved in its
implementation are highly configurable, possibly to fit specific application requirements. For example, a
TEE component may be fully implemented as an external security System-on-Chip (SoC) [16], trading
efficiency with increased trust by eliminating shared micro-architectural components and bringing in
trustworthy hardware of choice.

3 RV-TEE

Circumventing the need of TEE’s to execute sensitive code on specific commodity CPU-TEE, we have
proposed RV-TEE [40] to achieve a similar benefit by combining RV with any hardware security module
of choice — whether a high-speed bus adapter [38], or a commodity USB stick [42]. More specialised
options exist, including multi-chip modules that combine a security-enhanced microprocessor with a se-
curity controller, with the possibility of hardware-accelerated cryptography [10]. Compatibility-wise, if
the design of the software to be secured already supports HSMs, e.g., PKCS#11, deployment even comes
close to ‘plug-and-play’. Ultimately, the level of protection with respect to tampering and resistance to
side-channel attacks of the adopted HSM is carried forward to RV-TEE.

Overall, RV-TEE aims to be compatible with any physical TEE implementation — its primary goal
being that of offering an intermediate level of trust to code executing inside the REE. It might be tempting
to push more of the REE on the TEE so that the boundary between the REE and the TEE handles less
sensitive elements. However, this approach risks turning the TEE into yet another REE in terms of
potential attack surfaces, and which therefore would be counter productive. In the absence of a clean
split between the TEE and REE, the result is a set of RA components that process sensitive derivatives of
TA computations, e.g., plaintext derived from TA decryption. These RA components would benefit from
the trust boundary monitoring for the provision of intermediate trust. The concerned trust boundaries
comprise both that between the RA and the TEE as well as that between the RA and the rest of the REE
(see Fig. 2). This additional trust boundary monitoring is RA-centric, and complements the existing
security monitoring shown in Fig. 1 which rather is TA-centric.

The RV community has traditionally distinguished RV as control-flow or data-flow oriented moni-
toring (see for example [5]). Following this lead, at each boundary, we can loosely distinguish between
control flow, i.e., triggering of code execution, usually through method calls, and data flow, i.e., passing
of data through the stack or heap. In what follows we consider each one in turn.

Monitoring Control Flows Employing RV techniques to monitor the control flow is useful both as a
means of detecting bugs and also to reduce the attack surface: if we know a priori how the code
is expected to be used, then any deviations are either due to bugs, or due to malicious use of the
codebase. This is useful both in RA-TEE as well as RA-REE control flows. Monitoring RA-TEE
calls may uncover insecure usage of the HSM, while monitoring of RA-REE calls could expose
attempts to execute external malicious code belonging to the attacker.
Specifying and monitoring of control flows is a well studied area in RV. In fact, our experience
[40, 4, 13] has shown that this part of the RV-TEE instantiation is indistinguishable from traditional
RV (see for example [8, 44, 33, 34]): A security protocol is analysed, properties are extracted and
encoded in the specification language of choice, and subsequently synthesised into monitoring
code using the preferred RV tool. More details are provided in the next section.
Given that RV is monitoring a boundary, the RV monitor itself could potentially be hosted (exe-
cuted) by either side of the boundary. This is not an easy choice because on the one hand, it is
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Figure 2: RV-TEE instantiation.

desirable to keep the size of the TA minimal while on the other hand, the monitor by its nature is
a sensitive part of the system requiring protection. For all three past works [40, 4, 13], we have
opted to run the RV code within the REE, while taking additional precautions to cater for the threat
models considered in the following sections. We leave the exploration of deploying the monitor
on the TEE side as future work, where the challenges of working with limited resources shouldn’t
be underestimated.

Monitoring Data Flows Monitoring the control flow, typically also gives access to the data flowing
through the function arguments and return values. In this section, we are however particularly
interested in the analysis of data which could be used to attack the system (inbound) or ex-filtrated
out of the system (outbound), e.g., data leaving the TEE which should never include the keys, and
data leaving the REE which should never leak the plaintext version (of sensitive information).
Checking for such flows can be done using dynamic taint tracking where data is followed through
the system to ensure that it (or derivatives thereof) are not leaked. While this constitutes a precise
approach, it is generally very expensive to deploy [19]. A cheaper alternative is to use taint infer-
ence [32], where rather than following data at every step of the way, the outflows are monitored
for any sensitive data. This comes with several limitations: if the data is manipulated in any way,
a simple string matching approach would immediately fail to flag issues where there might be.
Therefore, an approximate string matching approach would be preferable while also lending itself
amenable to speedup optimisations. Initial experiments in this regard [40] indicate that finetuning
a number of parameters could establish a compromise of efficient execution and avoid accidental
matching, while running the process asynchronously (possibly on separate resources) could also
make the processor-intensive algorithm affordable.

4 Threat models

Being implemented within the REE, RV monitors constitute an attack surface which could particularly
attract the adversaries’ attention given its ability to raise intrusion alarms. One way of limiting the
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monitor exposure to attacks (such as process injection using a debugging API) is to deploy it offline,
but this of course limits the timeliness of the detection mechanism. In any case, instrumentation and
recording of the events in a log file still need to happen within the REE and somehow need to be made
accessible to the monitor. In this context, we consider two threat models, ordered in increasing severity:

Non-privileged access In this threat model, we consider the presence of user-space malware without
root privileges. We assume that while such processes do not have elevated privileges, they still
have sufficient privileges to perform malicious actions to interfere with the RV monitor and the
monitored app through their data artefacts (e.g., log files, backups) or directly by tracing executing
processes.

Successful privilege escalation In the event of an elevated malware infection, the possibilities are much
wider, including access to entire filesystems, all devices and even the OS kernel. In other words,
the only thing we assume under this threat model is that the secrets held inside the HSM have
not been stolen, i.e., either the HSM is still operational and any attacks directed at it have been
unsuccessful, or the HSM has been tampered with and became nonoperational with the secrets
remaining safe.

Corresponding to these two threat models, a two-fold strategy is being proposed (refer to Fig. 3 which
will be described further below: (i) the first involving process isolation to address attack vectors used
for RV tampering without privilege escalation and (ii) employing tamper-evident techniques on logs
(through an authentication scheme) are able to detect escalation attempts.

5 Isolated Monitoring Process

Namespaces [3] are a feature of the Linux kernel that partitions kernel resources such that a set of
processes running in the same namespace are restricted to a corresponding set of resources. This has a
similar effect to what chroot [2] does at the filesystem level. Common examples of namespace usage
includes container software (e.g., Docker) to isolate processes, and Google Chrome to isolate its own
browser tab processes hosting non-trusted code. Contrary to the typical use case of sandboxing non-
trusted code, our aim is to use process isolation to safeguard the RV monitor and the instrumented
monitored applications from a compromised OS. This setup provides protection from the Non-privileged
access threat model through custom containers.

We consider two well-known containerisation tools: runc3 and Docker4. runc is a tool for spawning
and running containers on Linux according to OCI specifications. Docker is a software platform which
allows developers to build, share, and deploy applications using container technology to separate the
application from the rest of the infrastructure. The difference between the two is that Docker is at
a higher-level, making use of runc underneath. Docker, consisting of a command-line interface tool
and a daemon process named dockerd, utilises runc through containerd5, which provides additional
features to the lower-level tool such as shareable images, storage, and networking. While convenient,
Docker tooling adds a significant attack surface6 which we opted to avoid, and therefore made direct use
of runc. As for code instrumentation, we opted for source-level function hooking aiming for minimal

3https://github.com/opencontainers/runc
4https://github.com/docker
5https://github.com/containerd/containerd
6https://www.cvedetails.com/product/28125/Docker-Docker.html?vendor_id=13534

https://github.com/opencontainers/runc
https://github.com/docker
https://github.com/containerd/containerd
https://www.cvedetails.com/product/28125/Docker-Docker.html?vendor_id=13534


R. Abela et al. 55

Figure 3: The proposed setup with isolated, tamper-evident monitoring.

impact on runtime overheads. Funchook7, an API hook library, was deemed suitable for this task. The
bottom left quadrant of Fig. 3 shows the RV monitor process and the instrumented application running
in separate runc containers created through the combined use of namespaces and chroot.

The namespace/chroot-based isolation, along with function hooking-level instrumentation, is not ex-
pected to impact significantly on runtime overheads. Yet we made sure that this is the case with an
empirical investigation considering the two scenarios of a chat application used in our previous publi-
cation [4]. Although we have yet to perform a case study directly on ROS, we expect that the message
exchange mechanism in ROS will share several significant characteristics of the chat application case
study.

These two testing scenarios involved a number of chat client applications connecting to one server,
performing the protocol handshake to establish a secure session and exchanging some text messages
between them. The client application was extended making it accept scripted session input in order
to allow for automate testing. Artificial pauses were also introduced to better simulate a typical user’s

7https://github.com/kubo/funchook

https://github.com/kubo/funchook
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Table 1: Runtime overheads (in seconds).
Time (s) No Instrumentation Instrumentation Increase
Scenario A B A B A & B
Non-Containerised 20.042 13.028 20.044 13.026 0%
Runc 20.04 13.034 20.042 13.04 0.02%

interaction with the chat application. In both scenarios, only the chat client with id=1 was instrumented,
and all the other clients and server were running on the same machine.

Specifically, the testing scenarios were as follows:

• Scenario A: 3 clients involved, with client id=1 creating a room (following the protocol steps for
an initiator participant U0).

• Scenario B: 3 clients involved, with client id=1 joining the room (following the protocol steps for
a non-initiator participant U1≤i≤n).

The experiments were carried out on a Hetzner Cloud VM having two virtual Central Processing
Units (vCPU) on an Intel Xeon Gold Processor with 4GB of RAM. All experiments were run 10 times
and the results reflect their average running time. Results in Tbl. 1 confirm minimal overheads, not
even close to 1%. However, there are other considerations of containerisation, namely that additional
work will have to be done if the isolated application makes use of resources isolated via non-default
namespaces (e.g., makes use of network or inter-process communication). In such cases the monitored
application will have to account for the isolated setup by emulating/virtualising the missing devices and
kernel resources through network proxies over virtual network interfaces. Such scenarios are expected
to introduce further runtime overheads, and therefore further experimentation is needed.

6 Tamper-Evident Logging

In this section we now consider the Privileged access threat model. In this case, the adversary has full
control of the system, possibly including physical access to the hardware. Our only assumption will be
that the adversary cannot compromise the HSM without breaking it, i.e., the keys stored inside it remain
secret.

Log analysis is an important tool for forensic investigation and similarly, most monitoring tools
depend on log files both as their source of input and also to record monitoring verdicts. Logs can however
be forged by intruders to hide or fake evidence. Sending logs to a remote system might mitigate this risk,
but it can be seen as simply shifting the problem to another location on the network.

While it is not possible to stop a fully privileged adversary from tampering with the logs, we adopt
the SealFS filesystem [35] whereby any modification doesn’t go unnoticed. SealFS implements a scheme
that authenticates local log files based on a forward integrity model, i.e., log data from boot time to the
instant the malicious code elevates privileges can be authenticated. It does not depend on specialised
security hardware or securing a distributed system. An intuitive summary of the procedure is as follows
(refer to the bottom left quadrant of Fig. 3):

Generation of keystream A random keystream is generated, in our case by the HSM in order to have
more entropy, prior to loading SealFS. This keystream is used in the following steps and a copy is
stored on the forensic node (or safe external storage8) for the purposes of verification.

8We acknowledge that communication to a remote forensic node or external storage might not be an option during operation
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Setting up The SealFS module creates an offset on the HSM (initialised at zero) representing the number
of bytes consumed from the key and creates a file, SEALlog, within the forensic node to store the
authentication data and metadata for the logs.

Execution Referring to Alg. 1, when some data D of size Dsz is to be appended to a log file L at
offset Loff , the following operations are executed in the HSM9: A chunk C of the key is read
and the corresponding zone is “burnt” (lines 2–3), leaving no trace of it. An HMAC of the log
concatenation, uniquely identifying the log file, the offset in the log, the data length, the key offset,
and data D is generated (line 4). The key chunk is removed from memory (line 5). The record
is sent to the SealFS module and appended to SEALlog (line 6). Finally, the offsets are updated
accordingly (lines 7–8).

input : System event/monitor verdict D of length Dsz

input : Log file L
input : Log file offset Loff
input : HSM-stored key K
input : HSM-stored key offset Koff
input : Fixed key chunk size Csz

input : Authentication data log file SEALlog

1 append D to L at offset Loff ; // add data to log file

2 C← K[Koff . . .(Koff +Csz−1)]; // copy key chunk

3 K[Koff . . .(Koff +Csz−1)]← RANDOM(); // burn key chunk

4 H← HMAC(C,L‖Loff ‖Dsz‖Koff ‖D); // generate HMAC using C
5 remove C from memory ;
6 append (L,Loff ,Dsz,Koff ,H) to SEALlog; // create record in SEALlog
7 Loff ← Loff +Dsz; // update log file offset

8 Koff ← Koff +Csz; // update key offset

Algorithm 1: Appending tamper-evident logfile (adapted from [35])

When it comes to verifying that the log is intact, all the records of SEALlog are verified sequentially using
the safe copy of the key stored as in the first step above. If the adversary removes any log records from
SEALlog, or if any log file is truncated or shortened, the verification fails. Similarly, if the adversary
modifies any of the fields of any record in the log file, the verification fails because the HMAC would not
match. The verification process can either be carried out on-demand, i.e., whenever the system auditor
decides to, or on particular events, e.g., at regular time intervals, after a specific number of log entries,
or when suspected malicious actions have taken place.

We note that our proposal depends on the HSM being used as the root of trust of the whole scheme.
An attestation protocol (e.g., see [6]) could be used to provide assurance to a remote observer that the
HSM is still being used by the system, and by extension that the guarantees it affords are still in place.
However, in our proposal, since the HSM is burning parts of the key which is stored in its entirety in safe
storage, by verifying the log file, one would also be indirectly verifying that the system is still using the
HSM (keeping in mind our only assumption that the adversary fails to steal secrets from the HSM).

of autonomous robots. In such cases, the key stream could be generated and safely stored before the start of the robot’s
operation.

9Given the limited resources of the HSM, the process described here could be optimised through techniques such as ratch-
eting (see SealFSv2 [24]) which can work with less memory requirements.
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Figure 4: ROS monitoring using Larva as an oracle.

7 Implementation for Robotic Systems

As a step towards deploying RV-TEE within robotic systems, we have developed a prototype which
combines the RV tool which we have used in our previous works, Larva [12], with ROSMonitoring [15]
to successfully monitor a ROS-based system.

Fig. 4 shows how ROSMonitoring listens for relevant events (also known as topics) occurring within
the ROS application. These are then forwarded to the Larva monitor, which in turn can send back
commands to the system being monitored. As ROSMonitoring is agnostic to the chosen verification
system (also referred to as oracle) by design, it was not difficult to combine it with Larva.

At the time of writing this paper, the implementation of the rest of the proposed secured RV-TEE
setup (described in this paper) is underway. Depending on the robotic case study which would be con-
sidered in the future, we expect the Larva process to run in a separate container, the forensic node.

It is important to note that, as for the software systems discussed previously, robotic applications
may also be the target of attacks. In case of robotic applications developed in ROS10, security is a
big concern. Indeed, ROS was not born to be exploited in industrial applications and security was not
taken into consideration in its development. As mentioned before, ROS nodes can communicate through
messages. Such messages are shared over channels, that in ROS are named topics. In ROS, such topics
are not protected whatsoever; that is, one cannot protect the data exchanged (except by encrypting the
data before sending them). In fact, any ROS node can be the publisher (resp., subscriber) of a topic and
hence there is no way to guarantee an attacker node will not intercept the messages on our topics (by
simply subscribing to them). One can solve this issue by deploying the robotic system through ROS2
(the newer version of ROS), which offers security mechanisms to forbid attacker nodes from intercepting
private messages. However, even with ROS2, the protection against attackers with privileged access is
limited.

In both ROS and ROS2, the exploitation of RV-TEE would be of great impact. Thanks to the Larva
component currently under development, it is possible, through ROSMonitoring, to intercept and verify
the messages exchanged on the topics. By doing so, it is possible to implement the bridge (as partially
shown in Figure 4) which would connect the TEE node with the rest of the system. Moreover, since ROS
is node-based, our approach could exploit such distribution by deploying the TEE component as a node

10https://www.ros.org/
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in the net. The rest of the nodes would be considered non-protected nodes that could be the target of
malicious attacks. In such a scenario, RV-TEE would be deployed through ROSMonitoring and would
be used to protect the information exchange between the secure node (TEE) and the rest of the robotic
system.

Most importantly, it is relevant to observe that the exploitation of RV-TEE with ROSMonitoring
would be applicable both in ROS and ROS2 (since ROSMonitoring is supported in both ROS versions).
Moreover, both ROS and ROS2 would gain from such integration, since the security techniques natively
deployed in ROS2 would not protect the system from attackers with privileged access.

While the additional forensic node can assure adherence to some security policy established for
the ROS2 computational graph, RV-TEE can also secure communications between nodes on different
machines. Secure inter-machine communication in ROS2 is provided by the underlying Data Distribu-
tion Service (DDS) [36], which is the programmatic abstraction enabling the publish/subscribe-based
communication. Once secure communication is enabled in DDS, the security plugins provided by the
specific implementation, e.g., Eclipse Cyclone DDS [1], provide node authentication, data encryption,
and integrity services. Any such implementation executing on a robot-controlling PC is prone to threats
related to incorrect cryptographic protocol implementation and malware attacks. Thus, DDS security
plugin implementations through RV-TEE can offer enhanced resilience, similar to how RV-TEE has se-
cured both classic and post-quantum cryptography in previous works (hence the relevance of the chat
application case study presented above).

8 Conclusions

While there are numerous accounts in the literature of the application RV techniques to the area of
security (see for example [8, 44, 33, 34]), the challenging task of securing the monitor implementation
itself seems not to be so well studied. In fact, the survey of RV challenges in 2019 [29] leaves this aspect
out. There are of course several other considerations to achieving “high-assurance” RV [17], but securing
and protecting the monitoring code under various threat models cannot be left out if RV is to be deployed
in real-life, high-security scenarios such as robotics.

By bridging the gap between the REE and the TEE, RV-TEE presents a flexible way of creating an
intermediate level of trust without being restricted to specific specialised hardware. Yet, apart from the
usual concerns of monitor correctness and non-intrusiveness, the context requires the monitor itself to be
adapted for adversarial conditions. Considering two incrementally compromising threat models, we have
thus first isolated the monitoring process to make it harder for attackers to tamper with. Initial results
in this regard show that any overheads introduced by containerisation are not of the processing kind but
rather due to potential proxying of resources. To cater for the second threat model, we have proposed the
integration of a tamper-evident filesystem to protect system and monitor logs from modification. Though
an adversary might have been successful in penetrating into the heart of the system, we can be sure that
evidence of system log modification cannot be concealed.

9 Future Work

There are still several questions to be answered in the context of RV-TEE. Here are a few of these
organised under the following headings:

Further experimentation In this paper we have presented a proof of concept for securing RV monitors.
Next, we plan to explore the practical implications of the current setup. In particular, we need to
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answer questions such as: What is the impact on the HSM given that it will also be used to encrypt
log entries (apart from the other tasks assigned to it)?

RV within the TEE? It could be interesting to explore the possibility of deploying elements of RV as
part of the TCB of the TEE itself. However, apart from the practical challenge of further loading
the already resource constrained TEE, there is also a conceptual objection: The code deployed
on the TEE usually consists of well established primitives which are deployed within the TEE
precisely because they are trusted. Therefore, it is yet to be seen whether this is something worth
investigating. As a first step, one would need to consider a number of interesting properties at
this level and note their cost-benefit analysis. For example, the property concerning the quality
of the randomness, which is at the core of cryptographic primitives, is far from straightforward to
monitor.

Taint inference The string matching algorithm implemented for taint inference has several set thresh-
olds (e.g., when to trigger fine-grained string matching) and a number of parameters which could
also be fine-tuned (e.g., by how much to move the window during coarse-grained matching). These
are also dependant on the size of the buffer under consideration, giving rise to various possible ex-
periments, not least on how to efficiently use the hardware available for speedups. Furthermore,
selection of taint sinks to make taint inference resilient to high-entropy transformations e.g., com-
pression and encryption, needs further study.
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System correctness is one of the most crucial and challenging objectives in software and hardware

systems. With the increasing evolution of connected and distributed systems, ensuring their cor-

rectness requires the use of formal verification for multi-agent systems. In this paper, we present a

summary of certain results on model checking for multi-agent systems that derive from the selection

of strategies and information for agents. Additionally, we discuss some open directions for future

research.

1 Introduction

The problem of assuring systems correctness is particularly felt in hardware and software design, es-

pecially in safety-critical scenarios. When we talk about a safety-critical system, we mean the one in

which failure is not an option. To face this problem, several methodologies have been proposed. Among

these, Model Checking (MC) [11, 10] results to be very useful. This approach provides a formal-based

methodology to model systems, to specify properties via temporal logics, and to verify that a system

satisfies a given specification.

Notably, first applications of model checking just concerned closed systems, which are characterized

by the fact that their behavior is completely determined by their internal states. Unfortunately, model

checking techniques developed to handle closed systems turn out to be quite useless in practice, as most

of the systems are open and are characterized by an ongoing interaction with other systems. To overcome

this problem, model checking has been extended to Multi-Agent Systems (MAS). In the latter context,

temporal logics have been extended to temporal logics for the strategic reasoning such as Alternating-

time Temporal Logic (ATL) [2] and Strategy Logic (SL) [21].

Given the logics under exam, there are two key aspects in MAS to determine the model checking

complexity: the type of strategies and the agents’ information. A strategy is a generic conditional plan

that prescribes an action at each step of the MAS. There are two main classes of strategies: memoryless

and memoryfull. In the former case, agents choose an action by considering only the current state,

while in the latter case, agents choose an action by considering the full history of the MAS. Regarding

information, we distinguish between perfect and imperfect information MAS. The former corresponds to

a basic setting in which every agent has full knowledge about the MAS. However, real-life scenarios often

involve situations where agents must act without having all relevant information at hand. In computer

science, these situations occur, for example, when some variables of a system are internal/private and

not visible to an external environment. In MAS models, imperfect information is usually modeled by

setting an indistinguishability relation over the states of the MAS. This feature deeply impacts on the

MC complexity. For example, ATL and SL become undecidable in the context of imperfect information

and memoryfull strategies [12].
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In this paper, we present a review of results on model checking for multi-agent systems concerning

strategy classes and agent visibility, and explore potential directions for future research.

Outline In Section 2, we recall the definition of concurrent game structures and the syntax of ATL

and SL. Then, in Section 3, we review the main classes of strategies and the concept of information.

In Section 4, we revisit the model checking complexities for the aforementioned contexts. Finally, we

conclude by providing some future directions in Section 5.

2 Model and logics for MAS

In this section, we recall the definition of a formal model for MAS and the syntax of two well-known

logics for strategic reasoning: ATL and SL.

We start by recalling the definition of concurrent game structures [2].

Definition 1 Given sets Ag of agents and AP of atoms, a concurrent game structure (CGS) is a tuple

M = 〈S,s0,{Acti}i∈Ag,{∼i}i∈Ag,d,δ ,V 〉 such that:

• S is a finite, non-empty set of states, with initial state s0 ∈ S.

• For every i ∈ Ag, Acti is a finite, non-empty set of actions.

Let Act =
⋃

i∈Ag Acti be the set of all actions, and ACT = ∏i∈Ag Acti the set of all joint actions, i.e.,

tuples of actions.

• For every i ∈ Ag, ∼i is a relation of indistinguishability between states, that is, an equivalence re-

lation on S. Given states s,s′ ∈ S, s ∼i s′ iff s and s′ are said to be observationally indistinguishable

for agent i.

• The protocol function d : Ag× S → (2Act \ /0) defines the availability of actions so that for every

i ∈ Ag, s ∈ S, (i) d(i,s) ⊆ Acti and (ii) s ∼i s′ implies d(i,s) = d(i,s′).

• The transition function δ : S×ACT → S assigns a successor state s′ = δ (s,~α) to each state s ∈ S,

for every joint action ~α ∈ ACT such that ai ∈ d(i,s) for every i ∈ Ag, that is, ~α is enabled at s.

• V : S×AP →{⊤,⊥} is a two-valued labelling function.

According to Def. 1, a CGS describes the interactions of a group Ag of agents, starting from the initial

state s0 ∈ S, following the transition function δ . The latter is constrained by the availability of actions

to agents, as specified by the protocol function d. A history h ∈ S+ is a finite (non-empty) sequence of

states.

Now, we recall the syntax of Alternating-time Temporal Logic [2].

Definition 2 (AT L∗) The state (ϕ) and path (ψ) formulas in ATL∗ are defined as follows, where p ∈ AP

and Γ ⊆ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | 〈〈Γ〉〉ψ

ψ ::= ϕ | ¬ψ | ψ ∧ψ | Xψ | (ψUψ) | (ϕRϕ)

Formulas in ATL∗ are all and only the state formulas.
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ATL extends Computation Tree Logic (CTL) [9] in which the existential E and the universal A path

quantifiers are replaced with strategic modalities of the form 〈〈Γ〉〉 and [[Γ]], where Γ is a set of agents.

A formula 〈〈Γ〉〉ψ is read as “the agents in coalition Γ have a strategy to achieve ψ”. The meaning of

temporal operators next X and until U is standard [11]. Operators unavoidable [[Γ]], release R, finally F ,

and globally G can be introduced as usual.

The formulas in the ATL fragment of ATL∗ are obtained from Def. 2 by restricting path formulas ψ

to the temporal operators.

To conclude this section, we recall the syntax of Strategy Logic [21].

Definition 3 (SL Syntax) Given the set AP of atoms, variables Var, and agents Ag, the formal syntax of

SL is defined as follows, where p ∈ AP, x ∈Var, and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | ∃xϕ | ∀xϕ | (a,x)ϕ

SL syntactically extends Linear-time Temporal Logic (LTL) [23] with two strategy quantifiers, the

existential ∃x and universal ∀x, along with an agent binding (a,x), where a is an agent and x a variable.

Intuitively, these additional elements can be respectively interpreted as “there exists a strategy x”, “for

all strategies x”, and “bind agent a to the strategy associated with the variable x”.

3 Classes of Strategies and Information

In this section, we recall some definitions of strategies and of agents’ information.

In Definition 1, we have defined an indistinguishability relation for each agent involved in the model.

When every ∼i is the identity relation, i.e., s∼i s′ iff s= s′, we obtain a CGS with perfect information [2].

When the latter is not true, we assume that every agent i has imperfect information about the exact state

of the system. That is, in any state s, i considers all states s′ that are indistinguishable for i from s to be

epistemically possible [13]. The indistinguishability relations are extended to histories in a synchronous,

pointwise way, i.e., histories h,h′ ∈ S+ are indistinguishable for agent i ∈ Ag, or h ∼i h′, iff (i) |h|= |h′|
and (ii) for all j ≤ |h|, h j ∼i h′j.

Now, we have all the ingredients to present the different definitions of strategies. First, we start with

a class of strategies in which the agents determine their actions by considering only the current state of

the MAS.

Definition 4 (Memoryless Strategy) A memoryless strategy for agent i ∈ Ag is a function fi : S → Acti
such that for each state s ∈ S, (i) fi(s) ∈ d(i,s); and (ii) s ∼i s′ implies fi(s) = fi(s

′).

By Def. 4, any strategy for agent i must return actions that are enabled for i (i.e. condition (i)).

Additionally, whenever two states are indistinguishable for i, the same action is returned (i.e. condition

(ii)). This latter introduces the concept of uniformity, where an agent can select a strategy that adheres

to its visibility. Notice that, for the case of perfect information, condition (ii) is satisfied by any function

fi : S → Acti.

The notion of memoryless strategy is considered too weak for an agent. For this reason, the concept

of memoryfull strategy has been introduced.

Definition 5 (Memoryfull Strategy) A memoryfull strategy for agent i ∈ Ag is a function fi : S+ → Acti
such that for all histories h,h′ ∈ S+, (i) fi(h) ∈ d(i, last(h)); and (ii) h ∼i h′ implies fi(h) = fi(h

′).
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As for the memoryless case, memoryfull strategies must adhere to the protocol function and indis-

tinguishability relation.

Between these two approaches, i.e. memoryless and memoryfull, several different classes of bounded

strategies have been proposed, including works by Ågotnes and Walther [1], Brihaye et al. [8], Vester [27],

and Belardinelli et al. [6]. In this work, we focus our attention to natural strategies [18]. The idea be-

hind natural strategies is to adopt the view of bounded rationality, and look at “simple” strategies in

specification of agents’ abilities. This notion has been introduced in both ATL and SL in the context of

perfect [17] and imperfect information [5, 19]. Here, we focus on the definition provided in [19].

A natural strategies is an ordered list of guarded actions, i.e., sequences of pairs (φi,αi) such that: φi

is a condition, and αi is an action. That is, a natural strategy is a rule-based representation in which the

first rule whose condition holds in the current execution of the MAS is selected, and the corresponding

action is executed.

With respect to the nature of the conditions, it is possible to define different classes of natural strate-

gies. We start by recalling the notion of uniform natural memoryless strategy.

Definition 6 In an uniform natural memoryless strategy for any agent a, the conditions are defined over

epistemic formulas as follows:

ψ ::=⊤ | Kaϕ | ¬ψ | ψ ∧ψ

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | Kbϕ

where p is an atomic proposition, b an agent, and Ki is the knowledge operator for any agent i. Intuitively,

a formula Kiϕ can be interpreted as “the agent i knows ϕ”.

So, we have formulas that are prefixed by Ka and then possibly combined by boolean operators. In

other words, the formulas are always boolean conditions on a’s knowledge. As discussed in [17], to

define natural memoryless strategy in the perfect information case, we can replace epistemic formulas

with boolean formulas only.

To improve the abilities of the agents, natural strategies have also been defined with recall. In par-

ticular, to evaluate properties over histories instead of states, a way to define conditions is to use regular

expressions with the standard constructors ·,∪,∗ representing concatenation, nondeterministic choice,

and finite iteration, respectively. Thus, to define a natural strategies with recall in the perfect infor-

mation context, we can use regular expressions over boolean formulas. Similarly, to define a uniform

natural strategies with recall in the imperfect information context, we can use regular expressions over

epistemic formulas.

In the next section, we will provide the main model checking results for the above mentioned classes.

4 Model Checking Complexities

Here, we discuss the model checking complexities for ATL and SL in terms of memoryless, memoryfull,

and natural strategies in the perfect and imperfect information context.

First, we can analyze ATL. As you can see in Table 1, in the worst case, that is imperfect information

and perfect recall strategies, the problem becomes undecidable, while in the perfect information case,

the problem is polynomial. An interesting point of ATL is that memoryless and memoryfull strategies

are equivalent in the perfect information case. This is because ATL is too weak in expressive power.

To overcome this problem, there is ATL∗. In this logic, strategic and temporal operators are de-

coupled to express more complex strategic objectives. As you can see in Table 2, the model checking

complexity becomes solvable in polynomial space in the memoryless case, double-exponential time in
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ATL perfect information imperfect information

memoryless PT IME-complete [2] ∆P
2 -complete [26]

memoryfull PT IME-complete [2] undecidable [12]

Table 1: Model checking complexities for ATL.

ATL∗ perfect information imperfect information

memoryless PSPACE-complete [26] PSPACE-complete [26]

memoryfull 2EXPTIME-complete [2] undecidable [12]

Table 2: Model checking complexities for ATL∗.

the memoryfull and perfect information case, and again undecidable in the memoryfull and imperfect

information case. To address the latter problem, some works have either focused on an approxima-

tion to perfect information [3], developed notions of bounded memory [6], or employed hybrid tech-

niques [14, 15]. Despite its expressiveness, ATL∗ suffers from the strong limitation that strategies are

treated only implicitly in the semantics of strategic operators. This restriction makes the logic less suited

to formalize several important solution concepts, such as the Nash Equilibrium [22].

To gain expressive power, we need to move to Strategy Logic. As shown in Table 3, the model

checking problem becomes intractable in the memoryfull case. Given the relevance of this logic, several

fragments have been proposed [21, 4]. Among others, we would like to mention Strategic Logic One

Goal that has the same model checking complexity as ATL∗ but more expressive power, and Strategic

Logic Simple Goal that has the same model checking complexity as ATL but more expressive power.

In all the above-mentioned logics, the model checking problem is undecidable in the worst case. In

the last few years, a natural way to represent strategies has been studied. From the definition of natural

strategies, two variants of ATL and SL have been proposed. In these variants, called NatATL [18] and

NatSL [5], the strategic operators are equipped with graded modalities that represent the complexity of

the natural strategies in achieving the temporal objectives. As you can see in Tables 4 and 5 the model

checking problem has a complexity less than or equal PSPACE .

Can this approach solve all the problems related to model checking for MAS? Unfortunately (or

fortunately for researchers), there are several open problems related to what we have summarized in this

work. We will discuss some of them in the following section.

5 Future Directions

As promised throughout the paper, in this section, we will discuss some directions for future research.

We will summarize these aspects with respect to the three main features related to the formal verification

SL perfect information imperfect information

memoryless - PSPACE-complete [20]

memoryfull non-elementary [21] undecidable [12]

Table 3: Model checking complexities for SL.



68 The Impact of Strategies and Information in Model Checking for MAS

NatATL perfect information imperfect information

memoryless ∆P
2 -complete [18] ∆P

2 -complete [19]

with recall PSPACE-complete [18] PSPACE-complete [19]

Table 4: Model checking complexities for NatATL.

NatSL perfect information imperfect information

memoryless - PSPACE-complete [5]

with recall - PSPACE-complete [5]

Table 5: Model checking complexities for NatSL.

of multi-agent systems, namely: strategies, information, and logics.

About strategies: find the good representation. As we briefly discussed along the paper, both mem-

oryless and memoryful strategies are not suitable choices. In fact, memoryless and memoryfull are too

weak and strong, respectively, to describe agents’ abilities. The weakness of memoryless strategies is a

gain in terms of complexity, and the strength of memoryfull strategies is paid in terms of complexity. In

addition, memoryfull strategies cannot be used to implement a model checker due to their domain over

histories. As we mentioned earlier, there are some bounded versions between memoryless and memo-

ryfull, but there is a lot of work to do to standardize the good choice. For instance, in the context of

natural strategies, there are various aspects that require attention, such as defining the appropriate notion

of complexity for these strategies. In the above-mentioned works, the authors have proposed the total

size of the strategy as complexity, i.e., the overall complexity is the sum of all the symbols involved in

the conditions. Is this the best way to define the complexity of a strategy? This is an open problem that

needs to be investigated.

About information: perfect and imperfect is not enough. We believe there is significant work to be

done in this area. For instance, it seems too reductive to consider only white (i.e. perfect information)

and black (i.e. imperfect information) settings. We advocate the need to define a taxonomy for imperfect

information. As discussed earlier in the paper, some approaches try to make some MAS with imperfect

information decidable. However, the authors in [5, 3, 16] do not give a specific class of MAS with

imperfect information that is decidable. Currently, only the class of hierarchical information has been

proposed [25, 24] and analyzed in SL [7].

About logics: find the gap between ATL and SL. The two logics for the strategic reasoning discussed

in this work suffer from two main problems on two different sides. On one hand, ATL has a good model

checking complexity, but it cannot express several solution concepts such as the Nash Equilibrium. The

strong limitation of ATL is that it treats strategies only implicitly in the semantics of its modalities. So, it

is weak in expressiveness. On the other hand, SL is the more powerful logic for the strategic reasoning,

but its model checking problem is not tractable. So, the full logic cannot have practical applications. The

idea is to define a new logic for the strategic reasoning that can incorporate the positive features of ATL

in terms of complexity and the good features of SL in terms of expressiveness. We understand that this is

not a simple challenge, and finding a perfect trade-off between ATL and SL may be difficult. However,

we see this need and want to go all the way on this point.
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Communication is a vital component for all swarm robotics applications, and even simple swarm
robotics behaviours often break down when this communication is unreliable. Since wireless com-
munications are inherently subject to interference and signal degradation, real-world swarm robotics
applications will need to be able handle such scenarios. This paper argues for tighter integration of
application level and network layer behaviour, so that the application can alter its behaviour in re-
sponse to a degraded network. This is systematised through the implementation of a mixed-criticality
system model. We compare a static application behaviour with that of an application that is able to
alter its behaviour in response to the current criticality level of a mixed-criticality wireless protocol.
Using simulation results we show that while a static approach is sufficient if the network conditions
are known a priori, a mixed-criticality system model is able to adapt application behaviour to better
support unseen or unpredictable conditions.

1 Introduction

Swarm robotics platforms usually rely on wireless communications, which by their nature can be unre-
liable and exhibit unpredictable timing characteristics. The standard approach is to use best-effort pro-
tocols with sufficient redundancy so that all important traffic can be conveyed. Conventional protocols
such as WiFi, ZigBee, and Bluetooth offer good throughput and robustness, but they rely on features like
random backoff and retransmissions which can be disqualifying when attempting to build high-criticality
systems that rely on timing correctness. There are similarly a range of swarm-oriented protocols such
as Glossy [7], and the related Low-Power Wireless Bus [6] and Blink [17] which all remain topology-
agnostic by flooding the network with packets and retransmissions in order to maximise connectivity at
the expense of throughput and power-efficiency.

Accordingly there has been a more recent trend towards protocols which are timing-aware, such as
WirelessHART [5] and AirTight [3]. These approaches require a priori information about the system,
but compensate by allowing for greater timing confidence. They still, however, suffer from the inherent
unreliability of wireless links.

This work combines ideas from these timing-aware protocols and from the real-time systems do-
main to argue for application-level adaptive behaviour to support reliability in the presence of errors and
unreliable communications. If a swarm robotics platform employs a wireless protocol that can provide
feedback as to whether communication reliability requirements are currently being met, the application
can be designed to adapt its own behaviour in order to recover connectivity if packet delivery rates fall
below a predefined threshold. This paper argues for the use of a mixed-criticality approach, in which the
application switches between two behaviour modes depending on the network conditions.
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https://creativecommons.org
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2 Application Adaptivity and Mixed Criticality Systems

A common claim is that robot swarms achieve fault tolerance and redundancy through the size of the
swarm. However as is well-understood in the research, communication failures are particularly prob-
lematic and can actually be compounded by increasing swarm size [2]. Swarm applications must be
designed with the reliability of communications as a priority. Robotic swarm programming models like
Buzz [10] allow for developers to discuss higher level concepts such as moving groups of robots as one,
but frameworks which tie reliability requirements from the application developer to the reliability state
of the running system are less formalised.

This work argues that in order to address this issue, a swarm robotics system with unreliable com-
munications should be viewed as a Mixed Criticality System (MCS), and that such a characterisation
can be used to explicitly guide the system’s behaviour at times of overload or error. The MCS model is
a commonly-deployed system model in the domains of high-integrity or safety-critical systems, and is
used to provide guarantees on the behaviour and timing of the system in the presence of unreliability. In-
formally, the developer provides a description of their system, along with an “importance” for each task,
and the guarantees that are required to support these tasks at each criticality level. If the system enters a
state when it can no longer guarantee the “important” parts, then a graceful degradation is codified into
the model.

The original formulation of MCS [15] was aimed at CPU scheduling problems and defined the system
to have two criticality levels: LO and HI. Each task/process/job is designated either LO criticality or HI
criticality: HI tasks perform safety-critical functions and are required for safety assurance, whereas LO
tasks are less important and may occasionally fail or miss their deadlines. The response time analysis of
CPU scheduling requires tasks to be assigned an estimate of their worst-case execution time (WCET) a
priori, but determining this value proves difficult in practice. If a task’s WCET comes from estimation
or measurement it may be optimistic (i.e. not a true worst-case time). This could result in important
tasks missing their deadlines if the true WCET at runtime is larger than the assumed value. A task’s
WCET may also come from a safe, analytical approach which is guaranteed to cover the worst-case but
in practice this might be very pessimistic. This could lead to the application designer falsely believing
that the system is not schedulable without greater hardware resources, which may in turn be infeasible
for other reasons (cost, energy use, etc).

The key insight of the MCS model is that the optimistic execution times will be correct most of the
time, and the true worst-case is usually only seen in rare situations. Tasks are therefore assigned two
estimates of their worst-case execution time, a LO WCET and a HI WCET. A system can proceed at the
LO criticality level most of the time, assuming that tasks will exhibit their expected LO WCETs. How-
ever, when any task exceeds its LO WCET, the system enters the HI criticality state and stops executing
any LO tasks. This means that to guarantee the safety of a system in the presence of unreliability, it is
necessary to prove only that the HI tasks will not exceed their HI WCET times. The application adapts
its behaviour based on the current state of the system by dropping less important activities and focusing
on only the most important system guarantees.

Prior work has applied mixed-criticality scheduling to wireless networks by assuming that it is the
level of interference (i.e. the assumed maximum number of retransmissions required within a time pe-
riod) that varies by criticality level [3]. This paper takes this idea and applies it to both the transmission
of packets in a wireless communications swarm, but also to the behaviour of that swarm. Instead of
treating criticality as just a feature of the scheduling and communications layer, this work argues that
the application itself can respond to such changes usefully, based on developer-provided criticality re-
quirements, in order to preserve the performance of the overall swarm. Such a characterisation can be
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exploited to allow for applications which assume communications will mostly operate well, and so be-
have accordingly, but can respond appropriately when, for whatever reason, communicating tasks start to
fail to meet their deadlines. In Section 6 we describe an example of such an application, with Section 6.1
describing how the application modifies its own behaviour based on feedback from the network layer.

3 Prior Work

In existing research, unrealistic assumptions are often made about the reliability of wireless communica-
tions, such as assuming perfect transmission within a given radius. Prior research has shown that imper-
fect communication results in swarm behaviours breaking down [12], and so it is therefore not always
appropriate to simply ignore the communications medium and rely on TCP to transmit data ‘eventually’.

The MCS system model has been applied to industrial wireless communications [16] to show that
such an approach can give more reliable timing bounds by adapting the network routing based on the
system’s criticality level. This work provides better timing bounds, but is restricted to considering the
communications layer only.

Our previous work has argued for the use of an MCS wireless protocol in swarm robotics applica-
tions [13]. The system initially operates in LO criticality mode, and if the level of successful message
transmissions degrades past some threshold this is detected and the network switches to HI criticality
mode. The result of this change is typically to drop or deprioritise less important traffic. While this
allows the application designer to preserve some behavioural elements in the presence of partial network
degradation, it is inherently limited to preserving a subset of the full behaviour, and will eventually fail
if network conditions continue to degrade.

The AirTight protocol [3] considered in that work, being purely a point-to-point protocol, is imprac-
tical for real swarm robotics applications. We therefore introduce a model (Section 4) and simulation
implementation (Section 5) for a new protocol that can provide mixed criticality behaviour over broadcast
transmissions.

The work in this paper extends this idea to consider the how the application’s overall behaviour can
adapt to criticality. Specifically, we enable an application to observe the network layer’s criticality level,
so that the application can modify its own behaviour in response to current network conditions (Sec-
tion 6.1).

4 Communication Model

This paper argues for a closer integration of an application implementation with a mixed-criticality net-
work MAC layer, specifically by allowing the application to be aware of the MAC layer’s current crit-
icality mode. This allows the application to detect when the network is no longer able to guarantee
reliable message delivery due to communication faults, enabling it to adjust its behaviour to prevent
further degradation. We compare the effect allowing a robot to use this criticality mode information to
locally adjust its cohesion factor against simply using a static cohesion factor, as described in Section
6.1.

We consider a network of N homogeneous robot nodes in which all transmissions are assumed to be
broadcasts that should reliably reach each other node. The network provides multiple buffers of config-
urable priority and criticality such that the application designer can determine the order of transmissions.
In each transmission slot, the node chooses to transmit the first message from the highest priority non-
empty buffer at, or above, the current criticality level.
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The network layer observes the number of “failed” transmissions, defined as transmissions after
which it cannot prove that all nodes have received its last message. If the number of failed transmis-
sions within a busy-period exceed a predefined threshold, the network switches to HI criticality mode.
Messages in LO criticality buffers are discarded if the node enters HI criticality mode. Time sensitive
messages in HI criticality buffers can optionally be assigned a maximum time-to-live (TTL), such that
they expire and are not retransmitted after a given time period has elapsed since they were first queued.

5 Communication Implementation

In order to implement the behaviour described by the model in Section 4, we introduce an implementation
of AirTight [8] modified to use broadcast transmission rather than point-to-point links. AirTight is a slot-
based real-time, mixed criticality protocol which can guarantee the time-sensitive transmission of a set
of traffic flows using ahead of time analysis under a given fault rate assumption.

The network runs using time-division multiplexing over 10ms time slots. There is a periodic slot
table assigned a priori, such that the slot table is of length N and each node has exactly one exclusive
transmission slot. It is assumed that background clock synchronisation takes place such that nodes agree
on the current slot.

Each node maintains a bit-field of length N−1, where each bit encodes whether the node successfully
received a transmission in the last occurrence of the corresponding slot in the slot table (excluding the
node’s own transmission slot). This bit-field is included in the header of each transmission as a type of
delayed acknowledgement, such that each receiving node can determine if its own last transmission was
received by the sender.

For each transmission buffer, the node maintains a further bit-field of length N −1 in which each bit
encodes whether confirmation of successful delivery has been received from a corresponding other node.
Upon reception of a frame, a node can thereby set the transmitting node’s bit in its last transmission
buffer’s bitfield if the received header indicates that the transmission was received. Once all bits have
been set, the message at the head of the buffer has been delivered to all other nodes. The message can
then be removed from the buffer and the bit-field is cleared.

The node keeps two counters: a counter of the length of the current busy-period, and a counter
of the number of retransmissions. The busy-period counter is incremented on all transmissions, whilst
the retransmission counter is incremented whenever the node rebroadcasts a frame that had previously
been transmitted. If the number of retransmissions exceeds a given threshold, the node switches to HI
criticality mode.

During its assigned transmission slot, a node broadcasts a single frame from the highest priority non-
empty buffer at or above the current criticality level. If no such frame exists the counters are reset and,
if the node was in HI criticality mode, it switches back to LO. The node then broadcasts a no-op frame
such that the bit-field used for delayed acknowledgements is always transmitted. The real-time timing
analysis of this implementation is future work but can be based on the structure of the original AirTight
analysis.

The implementation of the simulation plugin, communications layer, and other artefacts associated
with this paper can be found in our code repository 1.

1https://github.com/yorkrobotlab/argos3-airtight
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6 Exploration Application

We consider an autonomous wireless swarm robotics platform in which a swarm of robots should collab-
orate to explore an unknown area. The environment is partitioned into a two-dimensional grid. Robots
should visit each cell in the grid and detect if there is an object present in that cell, building a map of
clear/occupied cells in the area. It is assumed that obstacles are stationary, such that it is unimportant
when a robots visits the cell, or whether a cell is visited multiple times by one or more robots. Each
robot has its own local copy of the map, which it should complete for all accessible cells2. Robots can
communicate the sensed values for a given cell over the network, allowing other robots to insert this
value into their map without needing to visit the cell.

For a concrete instantiation we consider a set of 10 Pi-Puck [9] robots exploring a 6x6m grid of
10x10cm square cells. Pi-Puck robots only have simple infrared range-finder sensors that determine the
distance to the closest object within a short range, but are unable to determine the nature of any detected
object. Therefore, to avoid falsely detecting other robots as an obstacle in the environment, robots must
maintain a minimum separation. Each robot is assumed to be able to determine its own location, which it
must communicate to the other robots to avoid such near-collisions. Robots cannot store their complete
location history, so they cannot retrospectively determine that incorrect data may have been sensed where
position messages have been lost or delayed. These position messages are therefore intuitively subject
to soft real-time constraints, since robots must learn the positions of other robots before the minimum
separation distance is violated.

The robot behaviour is loosely inspired by an existing algorithm [14], but adapted to the much simpler
Pi-Puck robots and to much reduced communication ability. It is implemented by picking and driving
towards a target cell, which is always chosen as one of the nine cells within a 3x3 grid centred on the
robot’s current position. A new target cell is chosen once the current target is reached, or the robot
encounters an obstacle such that it deems the current target to be unreachable. The target cell is selected
as the cell for which the sum of the following weights results in the smallest value.

• Diagonal movements are assigned a weight of +1.

• The cell the robot is currently in is assigned a linearly increasing weight the longer it remains in
that cell, and the cell it was in immediately previously is assigned a weight of +1.

• An avoidance score of +1000 if the cell is known to contain an obstacle.

• An attraction score of -10 if it is an unexplored cell.

• A separation score of 400000, 200000, 100000, 4, 1, 0.25, or 0.1 respectively if the distance to the
closest target cell of another robot, counted as a number of cells, between 0 and 6.

• An alignment score, given by the dot product of the robot’s forwards vector and the vector from
it’s current position to the potential target.

• An attraction score equal to the distance to the closest reachable unexplored cell, counted as a
number of cells.

• Optionally, a cohesion force of 8d3, where d is the distance to the computed centroid of all robots
using the most recent position information the robot has received. This force is applied according
to the rules defined in Section 6.1.

2The positioning of obstacles in the environment may render some cells inaccessible.
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6.1 Robot Cohesion

Figure 1: Visualisation of exploration state after 95s when applying constant cohesion (left) compared
with no cohesion (right) under perfect network conditions. Explored cells are shown in grey if empty or
black if containing/bordering an obstacle; unexplored cells are shown in red when bordering explored
cells, else in green.

The effect of adding a cohesion element to the target cell selection depends on the environmental
factors encountered by the robots. Under perfect communication, robot cohesion reduces the overall
application performance. This can be intuitively understood by considering that robots that disperse
maximally will not block each other and can greedily explore new cells. The closer the robots are pulled
together, the more often robots may need to change direction (for example by revisiting already explored
cells) in order to avoid violating the minimum separation constraint. As shown in Figure 1, this may
result in robots towards the rear of a group being surrounded by already explored cells.

With a communication model that deteriorates with distance, the performance of a solution where
robots disperse decreases, since robots are unable to receive the sensing information of other robots.
In extreme cases, this could effectively result in each robot needing to explore the entire area. There
is therefore a trade-off in which some amount cohesion is useful to preserve communication, but too
much cohesion decreases performance by limiting the exploration ability. The optimal level of cohesion
depends on the properties of the wireless medium, which in a real scenario may not be known a priori.

In this paper, we argue for application adaptation based on the state of the network, by applying
cohesion weighting on target cell selection using a mixed-criticality approach. While the network layer
is in LO criticality mode the robots can disperse to maximise their exploration potential, before being
pulled back towards each other if/when the network changes to HI criticality mode. Once the network
has recovered, the robots can then resume exploring. This results in an equilibrium that allows the robots
to adapt their behaviour to the encountered conditions. We compare the effects of the following four
ways of applying the cohesion weighting:

• No cohesion: The cohesion weight is completely disabled.

• Constant cohesion: A cohesion weight is always applied.

• Half cohesion: The cohesion weight is always applied but is computed using half of the true
centroid distance.

• Mixed criticality: The application applies a cohesion weighting when the network protocol has
been in HI criticality mode at any point within the last three seconds.
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Figure 2: The running “physicalised simulation” of an earlier experiment on the Pi-Puck robots. The
simulation shows the LED synchronisation breaking down as the robot separation increases.

7 Simulation Setup

7.1 Simulation Framework

Our simulation setup is based on the popular ARGoS robot simulator [11]. An extended version of a
custom networking plugin [13] implements the network simulation capabilities. Each simulation step
is assumed to correspond to a network level transmission slot in which a robot can attempt to send or
receive a single message. A simulated transmission model controls which messages are successfully
received.

In order to partially validate our simulation framework, we have implemented a “physicalised sim-
ulation” of our earlier experiments using real Pi-Puck robots (Figure 2). By this we mean an imple-
mentation on physical robots, but where some key components are still simulated. Specifically, we use
Pi-Puck robots communicating over IEEE 802.15.4 provided by XBee modules, whilst simulating the
packet loss by artifically discarding some messages according to the packet delivery rates provided by
the transmission model. Since this still relies on a simulated transmission model, the results between
the full simulation and physicalised simulation are very similar. Due to the logistical challenges of run-
ning larger scale experiments with physical robots, we have not yet implemented such a physicalised
simulation for the current experiments.

7.2 Robot Configuration

Each robot is configured with two network buffers, for position messages and cell status message. A
position message contains the robots target location, while a cell status message encodes a single cell
to be either clear or containing an obstacle. Since the focus of these experiments is on the effect of
application level behaviour changes based on the network criticality level, we configure both buffers as
HI criticality to prevent criticality changes having an impact at the network level. Positional data is time
sensitive to ensure the minimum robot separation is preserved, and so this buffer is configured with the
higher priority. Positional messages are set to be retried for a maximum of 0.8s to prevent old position
data filling up transmission buffers, whilst cell status messages are set not to expire since these are not
time sensitive.
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7.3 Arena Generation

We randomly generate 100 simulated arenas, comparing the exploration performance of each cohesion
and transmission model configuration combination across these arenas. The robots are placed first, by
distributing them within a 1.8m by 1.8m square centred around a random point in the area, whilst en-
suring each robot placed at least 30cm away from the next closest robot. We then distribute up to 17
obstacles across the arena, again requiring a minimum separation from each other obstacle and each
robot starting position.

7.4 Transmission Model

Packet delivery is determined by a simulated transmission model in which successful or unsuccessful
delivery is determined independently for each transmission and each potential receiving node. The packet
delivery rate is assumed to be fixed to a maximum of 95% for distance of less than 0.5m, after which
the packet delivery rate is inversely proportional to the square distance between the nodes, subject to an
additional constant scaling factor (k). By modifying this scaling factor, the effect of the packet delivery
rate on the application behaviour can be observed.

PDR =
0.95

1+(k ·X)2

Where:
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Figure 3: Transmission model defining packet reception probability in relation to distance, for scaling
factors k = 1

8 , k = 1
4 , k = 1

2 , and k = 1.

This is a simple model that cannot capture the true complexity of real-world wireless communica-
tions. Prior research [1, 4] has shown that observed packet delivery rates do not correlate as strongly
with distance in real-world experiments. Nonetheless, observed results broadly show that there exists a
safe distance cutoff up to which the communication is generally reliable. Baccour et al. describes this as
the “connected” region [1], which is followed by “transitional” and “disconnected” regions where packet
delivery first becomes intermittent and then mostly unsuccessful. This fits well with the mixed criticality
system model, which inherently assumes that the system will operate under its optimistic assumptions
most of the time, before encountering some kind of state change that requires rectification.

The implementation here does not rely on specific details of the transmission model, and the criti-
cality response merely assumes that moving closer to other nodes is likely to improve packet reception
rates. We therefore believe the simulation results should be broadly applicable regardless of the selected
transmission model.
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8 Results
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Figure 4: Coverage over time across the four cohesion modes for transmission model scaling factors k =
1
8 and k = 1

4 . Line shows median value; shaded region shows interquartile range across 100 simulation
runs.

With the transmission model scaling factor configured for the most gradual dropoff in packet delivery
rates, k = 1

8 , the simulation results in Figure 4 shows that not applying a cohesion force results in the
highest performance. At this low dropoff rate the robots can adequately communicate across the entire
arena such that there is no advantage to moving as a cohesive group. The mixed criticality configuration
can spend a significant proportion of its runtime in LO criticality mode (where no cohesion is applied)
and thus displays better performance than the half cohesion or constant cohesion configurations.

When the transmission model scaling factor is increased to k = 1
4 a maximal dispersion of the nodes

begins to impede communication between the nodes, creating an advantage to applying some level of
cohesion. The mixed criticality and half cohesion configurations perform similarly to each other. The
no cohesion configuration starts to suffer from the aforementioned communication issues, while the
performance of the constant cohesion configuration is still reduced from applying a stronger cohesive
force than necessary.
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Figure 5: Coverage over time across the four cohesion modes for transmission model scaling factors
k = 1

2 and k = 1. Line shows median value; shaded region shows interquartile range across 100 simulation
runs.
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A further increase of the transmission model scaling factor to k = 1
2 , shown in Figure 5, causes the

no cohesion configuration to break down. The performance of the half cohesion configuration is also
decreased, showing a fairly wide spread depending on runtime circumstances. The mixed criticality
configuration is able to adapt to the conditions, yielding the highest performance for this transmission
model.

At the maximum tested dropoff rate, with the transmission model scaling factor set to k = 1, the
mixed criticality mode and constant cohesion modes perform very similarly, with the low packet deliv-
ery rates causing the mixed criticality configuration to spend large proportions of its time in HI criticality
mode where cohesion is applied. The half cohesion and no cohesion modes both show poor performance,
with the half cohesion mode no longer resulting in a sufficiently tight formation to maintain communi-
cation between the nodes.

The constant cohesion configuration is mostly unaffected by the transmission model’s scaling factor.
While this results in comparatively good performance when communications are limited to short ranges,
it cannot take advantage of long communication ranges under good radio conditions. The half cohesion
configuration provides comparatively good performance for the two middling transmission models, but
neither takes full advantage of long communication ranges nor does it cope with very short communica-
tion ranges.

The mixed criticality mode is better able to adjust to different communication dropoff rates, and
can do so in a way that does not require the application layer to understand the specific issues that
are happening at the networking layer. While a static cohesion factor can provide similar levels of
performance for any given transmission model, this requires the transmission characteristics to be known
beforehand and to remain static. For a real-world application this is unlikely to be the case. A static
cohesion factor therefore requires the application designer to make a tradeoff between performance under
good networking conditions and reliability under network degradation. A mixed criticality approach
avoids this tradeoff by allowing the application to observe the true conditions at runtime.

9 Limitations and Future Work

The communication protocol presented in this paper is developed to study the effect of adjusting appli-
cation behaviour based on a network layer criticality level. Compared to a complete protocol it is lacking
in several aspects, most importantly the absence of formal timing analysis that can provide guarantees on
the network performance. In future work we intend to develop a real-time mixed-criticality protocol that
supports network layer and application integration while being suitable for swarm robotics and providing
such timing guarantees.

We also intend to further study the two-way relationship between application behaviour and network
MAC layer. In the implementation provided in this paper, the application is aware of the current network
layer criticality level, and has been programmed that cohesion should be applied only when the network
layer is in HI criticality mode. Beyond this simple rule, however, it could be imagined a more intelligent
application could attempt to predict the effect of its future behaviour on the network. This could allow
the application to either modify its planned behaviour to avoid network issues, or warn the network layer
such that it could prepare for a drop in packet delivery rates.
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10 Conclusion

In this paper we have presented a mixed-criticality approach to swarm robotics application behaviour.
Mixed criticality is widely applied in real-time CPU scheduling and network protocols, but has so far not
been widely applied to swarm robotics. The parameters controlling a robot’s behaviour may have dif-
ferent optimal values depending on the conditions encountered by the robot. Communication conditions
at runtime can vary from those expected by the application designer in ways that are often opaque to
the application, placing stress on the network and leading to a loss of real-time performance. A mixed-
criticality approach allows a systematic way for the application to both define what is considered of
higher and lower importance, and then respond in a way that prioritises resources appropriately.

Our simulation results show that a swarm robotics application using a mixed-criticality approach to
adjust its behaviour to match the encountered conditions can be made more robust than one that uses a
static configuration. In future work we intend to develop mixed-criticality network protocols targeted at
swarm robotics applications and further study the integration of network and application behaviour.
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An overview of the process to develop a safety case for an autonomous robot deployment on a nuclear
site in the UK is described and a safety case for a hypothetical robot incorporating AI is presented.
This forms a first step towards a deployment, showing what is possible now and what may be possible
with development of tools. It forms the basis for further discussion between nuclear site licensees,
the Office for Nuclear Regulation (ONR), industry and academia.

1 Introduction

Autonomy lends itself to activities in the nuclear industry. Traditional, verifiable [8, 7] robotic systems
lack the ability to perform many desirable tasks, however, this could be made possible by the use of Arti-
ficial Intelligence (AI) technologies, which include machine learning (ML) (sub-symbolic) and formally
verifiable logical reasoning (symbolic).

The deployment of these systems in nuclear environments necessitates that a complete and coherent
set of arguments is made which demonstrates that the activity to be undertaken (by the autonomous
system) is adequately safe, by utilising a claims, arguments and evidence trail [10] (CAE).

However, in the view of the UK nuclear industry, AI is not a mature technology that can easily be
shown to meet the well-established, conservative approaches to safety. It can appear difficult or indeed
impossible to construct a safety case, in contrast to other domains where AI is in the process of being
adopted (e.g. automotive). Whilst the nuclear consequence may be higher, the environment in which the
activity is undertaken is generally well constrained. We have proposed a route that, with some thought
and good engineering practices, can enable a safety case to be constructed. This builds on a white
paper providing principles for the development and assurance of autonomous systems [9]. An outline
architecture and safety case [1] has been developed to demonstrate this.

2 The Robot and Task

In the absence of a suitable and timely deployment, a hypothetical robot and scenario have been used
based very loosely on the A2I2 Lilypad ASV [15] deployed to survey a nuclear waste storage pond to
assist with remediation tasks. These ponds hold the spent fuel from a reactor in water which has a depth
of more than 10 m. The robot is programming using a combination of symbolic and sub-symbolic AI.

*This work is supported by the EPSRC, through the Robotics and AI for Nuclear (RAIN) Hub (EP/R026084,
EP/W001128/1, EP/R026084/1). Thanks are due to the Office for Nuclear Regulation (ONR) and Sellafield Ltd. for input
into and comments upon the Safety Case this paper describes.
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A Robotics with Autonomy/AI Safety Case framework for our hypothetical robot can be found on-
line [1]1. In this paper we discuss salient features of this safety case that would enable similar safety
cases to be created, for real deployments in UK Nuclear environments.

3 Safety Cases in the UK Nuclear Industry

In this section we discuss the key features of creating a safety case for use in a UK Nuclear environment,
with particular focus on those aspects relevant to the deployment of autonomous robotic systems.

Identification of hazards: The building of a safety case starts with the holistic identification of
hazards, analysed for the robot within its application task and environment, whether the robot is pre-
existing or proposed. Analyses of robot behaviour that do not account for the specific task and location
are not sufficient on their own for creating a safety case. Hazards should be identified for all of the
robot’s lifecycle phases and tasks. This can usually be achieved by applying the site licensee’s high level
principles. Normal and abnormal operations should also be analysed.

Developing risk mitigation strategies: Mitigation strategies are derived through one or more op-
tioneering studies (the selection of the best option from a set of alternatives), where the objective is to
reduce risks to As Low As Reasonably Practicable (ALARP). This process should identify the benefits
and disadvantages of any proposed solution in comparison to other options. It may include an argument
that deployment of a prototype technology that may have not be preferable for the specific task has long
term benefits that out-weigh the immediate disadvantages. The aim is to either reduce the consequence
(which is typically fixed) or reduce the likelihood of any unwanted outcome. Defence in depth principles
are applied to each hazard. In the case of autonomous robots, most of the robotics design efforts lie in an
‘occurrence barrier’ regime – the protection and mitigation barriers are usually external to the robot.

This paper assumes that an optioneering study has determined that an autonomous robot is necessary.
Tolerability and ALARP: The principles of tolerability and ALARP are key to acceptance of the

autonomous robot to perform a particular task at a particular location on a nuclear site. Tolerability is
expressed in The Tolerability of Risks from Nuclear Power Stations (TOR), 1992 [2] which defines risks
which are so high they are unacceptable unless there are exceptional circumstances. The requirement for
risks to be ALARP (take all measures to reduce risk where doing so is reasonable [12]) is fundamental
and applies to all activities within the scope of the Health and Safety at Work Act, 1974 (HSWA).
ALARP can be achieved through applying established ‘Relevant Good Practice’ (RGP) and standards
and only in cases where these are inappropriate is a cost/benefit analysis used. Tolerability and ALARP
are understood through the diagrams in TAG 094 [11], Figure 3.

Safety functions A Safety Function (SF) is a mechanism for implementing mitigation strategies. An
SF can be realised as either: a function which is diverse, independent and segregated from the control
system, sensors, control and actuators of the robot (a guard); the control function (system) itself or a
combination of guard and control system. The guard and/or control system must: lend itself to design,
implementation, verification & validation to the degree required by the hazard analysis and the safety
requirements (functional and non-functional) imposed on it; meet all non-probabilistic requirements;
meet the probabilistic claim required by the hazard analysis and the safety requirements imposed on it.

Safety Functions (SF) are realised by Structures, Systems and Components (also known as Safety
Instrumented Functions (SIF)), using appropriate standards and RGP. e.g. IEC 61508 [8]. Production
Excellence (PE), one of two “legs” used to substantiate safety to the regulator, demonstrates good control

1Note that, this Safety Case was generated using an ASCE Academic Licence and therefore cannot be used for commercial
purposes
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of the robot’s development and verification lifecycle. The second leg, Independent Confidence Building
Measures (ICBM), requires that the final validated software (in its target hardware deployment) and the
testing programme be independently checked and can include statistical testing and static code analysis.
In general, it is always preferrable to use the simplest, most effective mitigation and this should be
demonstrated in the optioneering study and ultimately in the safety case.

4 The Safety Case

It is widely recognised that the use of autonomy/AI in robotics in high integrity applications can be
difficult to justify. In particular challenges in analysing the behaviour of such systems form a challenge to
the creation of a robust safety case. The definition of the activity and formal identification and analysis of
the hazards (the Preliminary Hazard Analysis (PHA)) forms the primary, and probably most crucial, task
in such a robot’s development lifecycle. The PHA ensures that the safety system is not over engineered or,
indeed, unnecessary. In particular, we assert that it is not always necessary to introduce new mitigations
simply because autonomy is involved.

Whilst there are potentially a number of hazards which the robot we consider here could either
encounter or initiate, including propeller splash, being irretrievable due to complete robot system failure
and explosion due to hydrogen evolution at the surface of the pond, the safety case presented here focuses
on collision with either the pond structure or its contents and we assume that the PHA has resulted in the
identification of this as a hazard that requires mitigation.

Our safety case has been generated as an example framework, based on a hypothetical robot operating
in a nuclear material storage pond. Consequently, in several places the safety case contains placeholder
nodes since this documentation is not available for the hypothetical robot. The safety case provides two
examples of how a ‘Collision’ hazard may be mitigated (referred to below as Method 1 and Method 2). It
is unlikely that both methods would be needed to show that the risk has been reduced to be ALARP and,
therefore, one could be deleted. In the event that both are needed to show defence in depth and diversity,
then Method 1 and 2 would need to be restructured into one set of CAE. We are reasonably certain that
Method 1 can be used now, and it is feasible that Method 2 can be used in the medium term, providing
the necessary verification tools and methodologies are developed.

The ‘Top View’ provides the best entry point for the safety case [1]. Here the primary claim (node
C1) “Robot is adequately safe... to provide...” is elaborated by the main elements: Optioneering study
and justification of the choices made; establishment and analysis of the hazards; the derivation of safety
requirements; compliance of the design with safety requirements; the use within a safety management
system; and compliance with standards and RGP. The hazards are separated into four groups: Nuclear
(radiological), conventional, physical, and cyber security. The compliance of the design with safety
requirements is further broken down and eventually reaches the claim that the safety risk is mitigated
and managed. At this claim node the arguments split into Method 1 (Using an Engineered SSC in the
form of a guard) and Method 2 (Using verifiable AI technologies).

Robot hazard and mitigations: The collision hazard for our hypothetical robot was determined to
have a consequence of < 2 mSv (Sievert - the SI (International System of Units) unit which represents
the stochastic risk to health of ionising radiation), based on experience of this environment. However,
normally specific site licensee experience would be applied here. The principle of ALARP means that
the same strategies can be applied in the range of 2 to 20 mSv (below the BSL for on-site workers). We
deem this hazard to be mitigated by the use of an Occurrence Barrier which we describe below.
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4.1 Occurrence barrier (SIF)

This safety case proposes two approaches to mitigation of the collision hazard, as follows:
Diverse guard ([1], Method 1: This SIF is comprised of cat’s whiskers surrounding the robot which

actuate microswitches and in turn, open safety relay contacts, removing the delivery of power to the
propellers. This is relatively crude and does not allow for subtle control. e.g. an ‘intelligent’ robot may
be able to avoid the collision by steering away from the obstacle or reversing away from it. From a safety
perspective it has the advantage of the ability to make a highly deterministic and probabilistic claim
because of its simplicity. A minimal claim is necessary to ensure that the SIF (guard) is not demanded
too often thereby causing excessive deterioration of the components or encouraging the operator to ignore
or disable the safety feature.

Rules based reasoning ([1], Method 2: This SIF is comprised of the intelligent (safety) control
system itself and a collision sensor with a software component, as shown in Figure 1. At higher Safety
Integrity Level (SIL) (lower Class in nuclear) this may be completely independent of any ML-based
components involved in implementing the base functionality of the robot. We assume that navigation
utilises an ML image classifier and that other ML components may have been involved in developing
navigation planning systems. It is not feasible to place a claim on such systems at this time, therefore,
a second independent (software based) sensor, such as an ultrasonic sensor or LIDAR, is used to detect
collisions on which a safety claim is made. This and the differential control equations that control motion
have been constructed from traditional software and hardware and developed using a safety lifecycle
process such as that described in IEC 61508 [8] at the appropriate SIL for which PE and ICBM can be
demonstrated.

The detection of the potential collision and actuation of the consequential avoidance action is then
mediated by a 1-out-of-2 voting system [13], between the image classifier and the collision sensor,
providing output to a separate intelligent control system. The intelligent control system here is con-
structed from a rules based reasoning (RBR) architecture (such as those supported by the MCAPL frame-
work [5, 6]). This strategy allows for a more subtle control where the robot can take evasive action. RBR
systems controlling autonomous and robotic systems work in a cyclic fashion first sensing the environ-
ment, then applying rules to pick an appropriate action and then acting before returning to sensing. They
can generally be transformed into decision tree structures but the representation as a set of rules with
specified applicability conditions is more compact and so has advantages in terms of code readability.
The applicability conditions and output actions of the rules themselves define a state space which can be
explored using techniques such as model-checking [4] to check for desirable properties. These properties
can be expressed in a variety of temporal and probabilistic logics and tools exist to allow requirements
to be captured and expressed in these logics. Typically model-checking operates on an abstract model of
the system to be verified, but so called program model-checkers exist which apply the same process to
the actual code. For instance the MCAPL Framework uses a version of the JPF model-checker [14] to
verify the behaviour of RBR systems written in a number of agent programming languages. To achieve
this it executes the actual code in order to determine the next state of the system. Some property lan-
guages allow timing constraints to be expressed, such as UppAal [3] which has a property specification
language but it is not a program model-checker and we are not aware of any program model-checkers
that allow timing constraints to be expressed. However, a timer and runtime monitors (and watchdog
timers (WDT)) could be provided to ensure that the collision avoidance takes place in a timely fashion
and triggering some default safe behaviour (e.g. the complete stop of method 1) if it did not. The full
architecture is shown in Figure 1. To achieve this both a deterministic (complying with standards and
RGP) and probabilistic (from, for example, a Failure Modes, Effects and Criticality Analysis) claim must
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Figure 1: Rules based reasoning SIF (Method 2).

be placed on the intelligent control system. RBR enables the use of formal verification (i.e. the applica-
tion of a formal mathematical proof) of the collision avoidance. Its implementation is on an end to end
basis. i.e. from requirements through to hardware deployment.

At present the necessary technology at a high enough Technology Readiness Level (TRL) does not
exist to realise Method 2. The MCAPL Framework which enables verifiable RBR for agent programs is
academic software and depends upon the underlying use of the Java programming language. Obviously
it would be preferable to use a safety critical realtime operating system and programming language.
However, the barriers to this method are primarily the availability of appropriate languages and toolsets,
not a lack of methodology.

5 Conclusion

The safety case described here and found in [1] provides a first attempt at an argument for deploying a
robot with autonomy on a nuclear site in the UK. It introduces two approaches: one of which is possible
now but does not allow all of the benefits of the autonomy to be realised and a second which identifies
a potential route to incorporating these benefits. The safety case shows that autonomy in and of itself is
not necessarily a barrier to the deployment of autonomous robots in UK nuclear environments and, in
fact, that existing approaches to analysing hazards, devising mitigations and establishing safety claims
are still applicable where autonomy is involved. However we have also shown that there remains a gap
in situations where we might want the autonomy itself to form a part of the SF and claim. Method 2
outlines a potential approach to bridging this gap.

Open and Data Access Statements: For the purpose of open access, the authors have applied a Creative
Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.
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Partially observable Markov decision processes (POMDP) are a useful model for decision-making
under partial observability and stochastic actions. Partially Observable Monte-Carlo Planning is
an online algorithm for deciding on the next action to perform, using a Monte-Carlo tree search
approach, based on the UCT (UCB applied to trees) algorithm for fully observable Markov-decision
processes. POMCP develops an action-observation tree, and at the leaves, uses a rollout policy to
provide a value estimate for the leaf. As such, POMCP is highly dependent on the rollout policy to
compute good estimates, and hence identify good actions. Thus, many practitioners who use POMCP
are required to create strong, domain-specific heuristics.

In this paper, we model POMDPs as stochastic contingent planning problems. This allows us to
leverage domain-independent heuristics that were developed in the planning community. We suggest
two heuristics, the first is based on the well-known hadd heuristic from classical planning, and the
second is computed in belief space, taking the value of information into account.

1 Introduction

Many autonomous agents operate in environments where actions have stochastic effects, and important
information that is required for obtaining the goal is hidden from the agent. Agents in such environments
typically execute actions and sense some observations that result from these actions. Based on the ac-
cumulated observations the agents can better estimate their current state and decide on the next action
to execute. Such environments are often modeled as partially observable Markov decision processes
(POMDPs) [28].

POMPD models allow us to reason about the hidden state of the system, typically using a belief state
– a distribution over the possible environment states. The belief state can be updated given the executed
action and the received observation. One can compute a policy, a mapping from beliefs to actions, that
dictates which action should be executed given the current belief. Many algorithms were suggested for
computing such policies [25].

However, in larger environments, it often becomes difficult to maintain a belief state, let alone com-
pute a policy for all possible belief states. In such cases, one can use an online re-planning approach,
where after every action is executed, the agent computes which action to execute next. Such online ap-
proaches replace the lengthy single policy computation which is done offline, before the agent begins
to act, with a sequence of shorter computations, which are executed online, during execution, after each
action [21].

POMCP [27] is such an online replanning approach, extending the UCT algorithm for fully observ-
able Markov decision processes (MDPs) to POMDPs. POMCP operates by constructing online a search
tree, interleaving decision and observation nodes. The root of the tree is a decision node. Each decision
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node has an outgoing edge for every possible action, ending at an observation node. Then, the outgoing
edges from an observation node denote the possible observations that result from the incoming action.
The agent computes a value for each node in the tree, and then, the agent can choose, from the root node,
the action associated with the edge leading to the highest value child node.

To evaluate the value of leaf nodes, POMCP executes a random walk in belief space, known as a
rollout, where the agent selects actions from some rollout policy to construct a trajectory in belief space
and obtain an estimation of the quality of the leaf node. Clearly, this evaluation is highly dependant
on the ability of the rollout policy to reach the agent goals. In complex problems, obtaining the goal
may require a lengthy sequence of actions [16], and until the goal is reached, no meaningful rewards are
obtained. Indeed, practitioners that use POMCP often implement complex domain-specific heuristics for
the rollout policy.

In this paper we focus on suggesting domain-independent heuristics for rollout policies. We leverage
work in automated planning, using heuristics defined for classical and contingent planning problems [7,
8, 6]. We thus represent POMDP problems in a structured manner, using boolean facts to capture the state
of the environments. This allows both for a compact representation of large problems, compared with
standard flat representations that do not scale, as well as the ability to use classical planning heuristics.

We begin by suggesting using the well-known hadd heuristic for choosing rollout actions [2]. This
heuristic searches forward in a delete relaxation setting, until the goal has been reached. Then, the value
of an action is determined by the number of steps in the delete relaxation space following the action,
required for obtaining the goal.

Next, we observe that any state-based rollout policy is inherently limited in its ability to evaluate the
missing information required for reaching the goal, and hence, provide some estimate as to the value of
information [12] of an action. We hence suggest a multi-state rollout policy, where actions are executed
on a set of states jointly, and observations are used to eliminate states that are incompatible with the
observed value. We show that this heuristic is much more informed in domains that require complex
information-gathering strategies.

For an empirical evaluation, we extend domains from the contingent planning community with
stochastic effects. We evaluate our heuristics, comparing them to random rollouts, showing that they
allow us to provide significantly better behavior.

2 Background

We now provide the required background on POMDPs, contingent planning, domain-independent heuris-
tics, and the POMCP algorithm.

2.1 POMDPs

A goal-oriented partially observable Markov decision process (POMDP) is a tuple 〈S,A, tr,Ω,O,G〉 [3].
S is a set of states; A is a set of actions. tr : S×A×S→ [0,1] is the transition function, i.e., tr(s,a,s′) is the
probability that when executing action a at state s we would reach state s′. Ω is the set of observations the
agent can obtain. O : S×A×Ω→ [0,1] is the observation function, such that O(s,a,o) is the probability
of observing o when a was performed and led to state s. G is a set of goal states.

Because the state of a POMDP is partially observable, the agent typically does not know what the
true underlying state of the world is. Hence, it can maintain a belief state b, which is a distribution over S,
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i.e., b(s) is the likelihood that s is the current state. When a goal belief is reached, that is sums∈Gb(s) = 1,
then the agent is sure that it is at a goal state, and the execution terminates.

A solution to a POMDP, called a policy, is a function that assigns an action to every belief state. The
optimal policy minimizes the expected cost, i.e., the expected number of steps before a goal belief has
been reached.

2.2 POMCP

The Partially Observable Monte-Carlo Planning (POMCP) online re-planning approach uses a Monte
Carlo tree search (MCTS) approach to select the next action to execute [27]. At each re-planning episode
POMCP constructs a tree, where the root node is the current belief state. Then, POMCP runs forward
simulations, where a state is sampled from the current belief, and actions are chosen using an exploration
strategy that initially selects actions that were not executed a sufficient amount of times, but gradually
moves to select the seemingly best action. Observations in the simulations are selected based on the
current state-action observation distribution.

When reaching a leaf node, POMCP begins a so-called rollout. This rollout is designed to provide
a value estimate for the leaf, based on some predefined rollout policy. The value of the leaf is updated
using the outcome of the rollout, and then the values of the nodes along the branch that were visited
during the simulation are updated given their descendants. Obviously, the values of all nodes in the tree
are hence highly dependent on the values obtained by the rollout policy.

POMCP is an anytime algorithm, that is, it continues to run simulations until a timeout, and then
returns the action that seems best at the root of the search tree.

POMCP was designed for large problems. Hence, POMCP does not maintain and update a belief
state explicitly. Instead, POMCP uses a particle filter approach, where a set of states is sampled at the
initial belief, and this set is progressed through the tree.

2.3 Contingent Planning under Partial Observability

A partially observable contingent planning problem is a tuple: π = 〈P,Aact ,Asense,ϕI,G〉 [10, 1, 4, 24].
P is a set of facts, Aact is a set of actuation actions, and Asense is a set of sensing actions. ϕI is a
formula describing the set of initially possible states. For ease of exposition, we will assume that ϕI

is a conjunction of facts, disjunctions of facts, or oneof clauses over facts, specifying that exactly one
fact in the clause holds. A state s assigns truth values to all p ∈ P. G is a formula over P defining goal
conditions.

A belief-state is a set of possible states. The initial belief state, bI = {s : s |= ϕI} is the set of initially
possible states.

An actuation action a ∈ Aact is a pair, {pre(a), eff (a)}, where pre(a) is a set of fact preconditions, and
eff (a) is a set of pairs (c,e) denoting conditional effects. We use a(s) to denote the state that is obtained
when a is executed in state s. A sensing action a ∈ Asense is a pair, {pre(a), obs(a)}, where pre(a) is
as above, and obs(a) is a set of facts in P whose value is observed when a is executed. We denote by
obs(a,s) the values of the observed facts when a is executed at state s. This separation to actuation and
sensing actions is only for ease of exposition, and our methods apply also to actions that both modify the
state of the world and provide an observation.

Preconditions allow us to restrict our attention only to applicable actions. An action is applicable
in a belief b is all possible states in b satisfy the preconditions of the action. Obviously, one can avoid
specifying preconditions for actions, allowing for actions that can always be executed, as is typically the



92 Rollout Heuristics for Online Stochastic Contingent Planning

case in flat POMDP representations. However, in domains with many actions, preconditions are a useful
tool for drastically limiting the amount of actions that should be considered.

2.4 Regression-based Belief Maintenance

Updating a belief can be costly. Alternatively, one can avoid the computation of new formulas represent-
ing the updated belief, by maintaining only the initial belief formula, and the history — the sequence of
executed actions and sensed observations [5]. When the agent needs to query whether the preconditions
of an action or the goal hold at the current node, the formula is regressed [20] through the action-
observation sequence back towards the initial belief. Then, one can apply SAT queries to check whether
the query formula holds. We now briefly review the regression process for deterministic actions. This
approach can be highly useful for larger POMDPs, complementing the particle filter approach used in
POMCP.

First, let us consider the regression of an actuation action a that does not provide an observation. Let
φ be a propositional formula and a a deterministic actuation action. Let ca,l denote the condition under
which l is an effect of a, and that a(s) satisfies l iff either s |= ca,l or s |= l∧¬ca,¬l . Hence, we define the
regression of φ with respect to a as:

rga(φ) = pre(a)∧φr(a) (1)

φr(a) = replace each literal l in φ by ca,l ∨ (l∧¬ca,¬l) (2)

Now, consider a sensing action and an ensuing observation. Suppose we want to validate that φ holds
following the execution of a ∈ Asense in some state s given that we observed obs(a) = o. Thus, we need
to ensure that following a, if l holds then φ holds. That is:

rga,o(φ) = rga(obs(a) = o→ φ) (3)

Regression maintains the equivalence of the formula [20, 5]. For any two formulas φ1 and φ2 we
have:

1. φ1 ≡ φ2⇒ rga,o(φ1)≡ rga,o(φ2)

2. φ1 ≡ φ2⇒ rga(φ1)≡ rga(φ2)

Hence, we can produce a regression over formulas, and compare the regressed formulas, making conclu-
sions about the original formulas.

The regression can be recursively applied to a sequence of actions and observations (history) h as
follows:

rgh+(a,o)(φ) = rgh(rga,o(φ)); rgε,ε(φ) = φ (4)

where ε is the empty sequence. This allows us to perform a regression of a formula through an entire
plan, and analyze the required conditions for a plan to apply.

In addition, the regression mechanism of [5] maintains a cached list of fluents F(n) that are known to
hold at node n, given the action effects or observations. Following an actuation action a, F(a(n)) contains
all fluents in F(n) that were not modified by a, as well as effects of a that are not conditioned on hidden
fluents. For a sensing action revealing the value l, F(a(n, l)) = F(n)∪{l}. During future regression
queries, when a value at a particular node becomes known, e.g. when regressing a later observation, it is
added to F(n). All fluents p such that p /∈ F(n)∧¬p /∈ F(n) are said to be hidden at n. The cached list
is useful for simplifying future regressed formulas.
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3 Related Work

Augmenting MCTS methods with heuristics in the context of fully observable MDPs was previously
suggested. [14] describe an MCTS tree based approach that uses planning based heuristics. The PROST
planner [13] uses a heuristic for estimating the value of states. The DP-UCT approach [26] use a planning
heuristic based on deep learning for the rollout phase. We are not aware of previous attempts to adapt
these approaches to POMDPs.

There were several extensions suggested for POMCP [16]. For example [17] considers dynamic
environments, and [11] consider non-linear dynamics. All these methods rely on rollouts, and can hence
leverage the rollout strategies that we suggest here.

POMCPOW [30] extends POMCP to the challenge of solving POMDPs with continuous state, action,
and observation spaces. It constructs the search tree incrementally to explore additional regions of the
observation and action spaces. It also requires a rollout policy to evaluate the utility of leaf nodes. Our
rollout strategies relay on classical planning approaches which are discrete, and it is hence unlikely that
our methods can be extended to continuous domains.

DESPOT [29, 32, 18] is an online POMDP solver based on tree search, similar to POMCP. DESPOT
uses a different strategy than the UCB rule for constructing the tree, designed to avoid the overly greedy
nature of POMCP exploration strategy. DESPOT also requires a so-called default policy to evaluate the
utility of a leaf in the tree, and the authors stress the importance of a strong default policy to improve
the convergence. Thus, our methods can be directly applied to DESPOT as well. We chose here to focus
on POMCP rather than DESPOT, because POMCP is a simpler method, which allows us to better focus
on the importance of the heuristic function, independent of the effect of the various augmentations that
DESPOT adds on top of POMCP.

[22] suggest a method called PSG to evaluate the proximity of states to the goal. They suggest
using PSG in several places within POMCP including rollouts. PSG assumes that states are defined in a
factored manner using state features, and computes a function from features to the goal using subgoals.
In essence, their approach can be considered as a type of heuristic, which is highly related to the concept
of landmarks in classical planning [19]. Representing the POMDP as a stochastic contingent planning
problem, as we do, allows us to use any heuristic developed in the planning community, and can hence
be considered to be an extension of PSG.

Similarly, [31] also find it difficult to provide good rollout strategies to compute the value of POMCP
leaves. Focusing on a robotics motion planning domain, they suggest SVE, state value estimator, that
attempts to evaluate the utility of a state directly.

[15] also focus on the need to use heuristics for guiding search in POMDPs. They focus on RTDP-
BEL [4], an algorithm that runs forward trajectories in belief space to produce a policy. They show that
using a heuristic can significantly improve RTDP-BEL. They use domain specific heuristics, and as such,
our domain independent approach can also be applied to their methods.

4 POMCP for Stochastic Contingent Planning

We focus here on goal-oriented POMDP domains specified as stochastic contingent planning problems.
We now define this concept formally.

We define a stochastic formula ψ to be a set of options. Each option o is a conjunction of facts, and
is associated with a probability pr(o) ∈ (0,1) such that ∑o pr(o) = 1. One can sample a single option
from the stochastic formula, given the distribution defined by pr(o).
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A stochastic contingent planning problem is a tuple π = 〈P,Aact ,Asense,ϕI, prI,G〉, where P,Asense,
ϕI,G are as in a deterministic contingent planning problem. prI is a stochastic formula defining prob-
abilities over the initial values of some unknown facts. For each action a ∈ Aact , the formula defining
the effects of a may contain stochastic formulas, capturing stochastic effects. We denote by a(s) the
distribution over next states given that a was executed at s.

This definition does not support noisy observations, however, this is not truly a limitation. One can
compile a noisy observation into a deterministic observation over an artificial fact whose value changes
stochastically. Consider, for example, a sensor that nosily detects whether there is a wall in front of a
robot. Instead of noisily observing whether there is a wall, we can deterministically detect a green light
that is lit when the sensor (stochastically) detects a wall. That is, we can observe the green light without
noise, but the green light is only noisily correlated with the existence of a wall.

Algorithm 1 describes the POMCP implementation for stochastic contingent planning problems.
When the agent needs to act, it calls Search. Search repeatedly samples a state (line 3-4) and simulates
forward execution given this state is the true underlying system state.

We do not maintain or update a belief state. Instead, we use regression over the history of executed
actions and sensed observations. The Search procedure hence samples a state s from the initial belief
state, given the initial probability distribution prI (line 3). Then, the agent advances the sampled state
through the history to obtain a current state s′ (line 4).

The Simulate procedure is recursive. We first check whether the current tree node is a goal belief.
This is done be regressing the negation of the goal formula ¬G through the history of the current node.
For goal beliefs, the value is 0, and we can stop.

Our implementation of POMCP also stops deepening the tree after a predefined threshold Max-Tree-
Depth. If that threshold is reached (line 12), we run a Rollout to compute an estimation for the cost of
reaching the goal from this node (line 13).

In line 15 we check whether this node has already been expanded, and if not, we compute its children.
We do so only for applicable actions whose preconditions are satisfied in the current belief (line 17).
Again, this is computed using regression over the history.

We now select an action a using the UCT exploration-exploitation criterion (line 21), and sample a
next state and an observation (lines 22-27). We call Simulate recursively in line 28.

Lines 29-32 update the value of the current node. Lines 28,29 update the counters for the executed
action and received observation. Line 31 computes the value for the action as a weighted average over all
observations. Line 32 computes the value of the node as the minimal cost among all actions. Our value
update, which we empirically found to be more useful, is different than the original POMCP, which uses
incremental updates, and more similar to the value update in DESPOT [18].

The Rollout procedure receives as input the current simulated state s, as well as a set B of states
(particles) in the node from which the rollout begins. B is used by some of our rollout heuristics, as
we explain below. The rollout executes actions given the heuristic rollout policy until the goal has been
reached, or a maximal number of steps has been reached.

5 Domain Independent Heuristics for POMCP

We now describe the main contribution of this paper — two domain independent rollout heuristics that
leverage methods developed in the automated planning community, using the structure specified in the
stochastic contingent planning problem.
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Algorithm 1: POMCP for Stochastic Contingent Problems

1 Search(h)
2 while timeout not reached do
3 s∼ ϕI, prI

4 s′← apply h to s
5 Simulate(s′,root,o)
6 Simulate(s,n,depth)
7 add s to n.b
8 count(n)← count(n)+1
9 if G is satisfied in n.history then

10 V (n)← 0
11 return
12 if depth > MaxTreeDepth then
13 V (n)+ = Rollout(s,n.b)
14 return
15 if n is a leaf node then
16 for a ∈ Aact ∪Asense do
17 if pre(a) are satisfied at n.history then
18 Add child n.a to n
19 for o ∈ obs(a) do
20 Add child n.a.o to n.a

21 a← argminaQ(n,a)− c
√

log(count(n))
count(n.a)

22 if a ∈ Aact then
23 s′ ∼ a(s), o← null
24 else
25 s′← s, o← obs(a,s)
26 Simulate(s′,n.a.o,depth+1)
27 count(n.a)← count(n.a)+1, count(n.a.o)← count(n.a.o)+1
28 V (n.a)← ∑count(n.a.o)·V (n.a.o)

count(n.a)

29 V (n)←minaV (n.a)
30 Rollout(s,B)
31 depth← 0
32 while s /∈ G∧depth < MaxRolloutDepth do
33 a← πrollout,B(s)
34 s∼ a(s)
35 if a is a sensing action then
36 Remove from B states that do not agree with s on the observation
37 depth← depth+1
38 return depth
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Algorithm 2: Single State hadd

1 πhadd (s)
2 f act0← all facts in s
3 i← 1
4 repeat
5 actioni←{a ∈ Aact : f acti−1 |= pre(a),a /∈

⋃
j=1..i−1 action j}

6 f acti← f acti−1∪{ f ∈ e f f (a) : a ∈ actioni}
7 i← i+1
8 until f acti−1 = f acti−2;
9 return ∑ f∈G i : f ∈ f acti, f /∈ f acti−1

Algorithm 3: Belief Space hadd

1 πhadd (s,B)
2 ∀s′ ∈ B, f acts′

0 ← all facts in s′

3 B0← B
4 i← 1
5 repeat
6 Bi← Bi−1

7 actioni←{a ∈ Aact : ∀s′ ∈ Bi, f acts′
i−1 |= pre(a),a /∈

⋃
j=1..i−1 action j}

8 for a ∈ Asense do
9 if ∀s′ ∈ Bi, f acts′

i−1 |= pre(a) then
10 F ← the values of obs(a) in f acts

i
11 for s′ ∈ Bi,s′ 6= s do
12 F ′← the values of obs(a) in f acts′

i
13 if F ′ 6= F then
14 Bi← Bi \{s′}

15 ∀s′ ∈ Bi, f acts′
i ← f acts′

i−1∪{ f ∈ e f f (a) : a ∈ actioni}
16 i← i+1
17 until Bi−1 = Bi−2∧∀s′ ∈ Bi−1 : f acts′

i−1 = f acts′
i−2;

18 return ∑ f∈G i : f ∈ f acts
i , f /∈ f acts

i−1

5.1 Delete Relaxation Heuristics

Delete relaxation heuristics are built upon the notion that if actions have only positive effects, then the
number of actions that can be executed before the state becomes fixed is finite, and in many cases, small.
Also, as actions cannot destroy the precondition of other actions, one can execute actions in parallel.
Algorithm 2 portrays a delete relaxation heuristic.

Delete relaxation heuristics create a layered graph, interleaving action and fact layers. The first layer,
which is a fact layer, contains all the facts that hold in the state for which the heuristic is computed (line
2). The second layer, which is an action layer, contains all the actions whose preconditions hold given
the facts in the first layer (line 5). The next layer, which is again a fact layer, contains all the positive
effects of the actions in the previous layer, as well as all facts from the previous layer (line 6), and so
forth. We stop developing the graph once no new facts can be obtained (line 8).

After the graph is created, one can compute a number of heuristic estimates. The hmax returns the
depth of the first fact layer that satisfies G. The hadd heuristic sums the fact depth of all goal facts (line
9) [2]. The h f f heuristic computes a plan in the relaxed space by tracing back actions that achieved the
goal predicates [9].

In this paper we experimented using the hadd heuristic.
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5.2 Heuristics in Belief Space

A major disadvantage of the above heuristics is that they focus on a single state. When the agent is aware
of the true state of the system, observations have no value. Hence, the above heuristics, as well as any
heuristic that is based on a single state, do not provide an estimate for the value of information, which is
a key advantage of POMDPs. We hence suggest now a heuristic that is computed over a set B of possible
states (Algorithm 3).

We compute again the delete relaxation graph, with a few modifications. We compute for each state
in B a separate fact layer. An action can be applied only if its preconditions are satisfied in the fact layers
of all agents (line 7). This is equivalent to the requirement in contingent planning where an action is
applicable only if it is applicable in all states in the current belief, where B is served as an approximation
of the true belief state.

Second, our method leverages the deterministic observations, that allow us to filter out states that are
inconsistent with the received observation (lines 8-14). When a sensing action can be applied, all states
that do not agree with the value of s on the observation are discarded from B (lines 10-14). That is, we
remove the fact layers corresponding to these states, and no longer consider them when computing which
actions can be applied.

We stop when both no states were discarded, and no new facts were obtained (line 17). This process
must take into account sensing actions to remove states that are incompatible with s, which would allow,
at the next iteration, that action preconditions would be satisfied for less states, and hence additional
actions can be executed.

6 Empirical Evaluation

We conduct an empirical study to evaluate our methods. Our methods are implemented in C#.

6.1 Benchmark Domains

We extended the following contingent planning benchmarks to stochastic settings:

Doors: In the door domain the agent must move in a grid to reach a target position. Odd levels in the
grid are all open, while in even levels there are doors, and only one door is open. The agent can sense
whether a door is open when it is at adjacent cells. The agent must identify the open doors and get to
the target position. In the stochastic version the agent can open a closed door with some probability of
success. The agent can hence either search for the already open door, or attempt to open a closed door.

Blocks World: In the contingent blocks world problem, the agent does not know the structure of the
initial block configuration, but it can sense whether one block is on top of another one, and whether a
block is clear. In the stochastic version moving a block from one block to another has a 0.3 probability of
success, while moving blocks to and from the table succeeds deterministicly. Hence, it is often preferable
to use the table as an intermediate position.

Unix: In this domain the agent must search for a file in a file system, and copy it to a destination folder.
In the stochastic version there is a non-uniform distribution over the possible locations of the file.



98 Rollout Heuristics for Online Stochastic Contingent Planning

Sim. Avg cost Avg step time (secs) Success
Domain Rnd πhadd (s) πhadd (s,B) Rnd πhadd (s) πhadd (s,B) Rnd πhadd (s) πhadd (s,B)
doors 5 1500 17.3 13.7 14.4 6.552 0.403 1.86 100% 100% 100%
blocks 4 1500 4.9 4.45 4.8 0.33 0.13 0.37 100% 100% 100%
localize 3 1500 14.75 10.35 10.95 1.325 0.752 1.16 80% 100% 100%
MedPks 10 1500 6.3 7.25 7.45 4.029 4.594 3.388 100% 100% 100%
Unix 1 1500 7.35 5.65 6.4 2.551 0.274 1.322 100% 100% 100%
Wumpus 5 1500 39.47 33.352 24.33 10.829 3.491 4.909 85% 85% 90%
Wumpus 5 500 56.117 33.722 22.05 2.442 0.823 1.12 85% 90% 100%

Table 1: Comparing rollout heuristics on various domains over 20 runs on each problem. Each number
following the domain name is a specific instance of the domain, for example Wumpus5 means the grid
is 5x5.

MedPks: The agent here needs to identify which illness a patient has and treat it. To do so, the agent
tests for each illness independently, until the proper illness is found. The stochastic version here has
non-uniform distribution over the possible illnesses as well.

Localize: In this domain the agent must reach a goal position in a grid. The agent does not know where
it initially is, and can only sense adjacent walls. In the stochastic version there several places in the grid
where the agent may slip and stay in place. This makes the localization in the grid more difficult.

Wumpus: In this challenging problem the agent must reach a target position in a grid infested by
monsters called Wumpuses. Cells may be unsafe to travel as they may contain either a Wumpus or a
pit. Wumpuses emit a stench, and pits emit a breeze, both of which can be sensed in adjacent cells. The
agent must sense in multiple positions to identify the safe cells. The stochastic version here also has
non-uniform distribution over the safe cells.

6.2 Results

For each domain above we run 20 online episodes, and compute the success rate, the average run time
for computing the next action, and the average cost to the goal. We did not use a timeout, but runs longer
than 100 steps were considered to be stuck in a loop, and terminated.

Table 1 presents the experiments results over the benchmarks, comparing the random (uniform) roll-
out policy (denoted Rnd), the hadd heuristic using a single state (πhadd (s)), and the hadd heuristic over
multiple states (πhadd (s,B)).

We begin by looking at the quality of the policy — the average cost to the goal. As can be seen,
the random rollout policy is best only in the MedPks domain, and close to best in unix. This is not too
surprising, because in these two domains the best strategy is very simple, and random strategies easily
stumble upon the goal. In blocks all methods achieved similar performance, because the optimal strategy
is very short, and rollouts are less important. This domain has many possible actions, and hence a huge
branching factor, making it difficult to scale up using POMCP.

On doors and localize, which require lengthier trajectories to reach the goal, but do not need long
information-gathering efforts, the single state hadd strategy operates very well. However, on Wumpus,
where long sequences of actions are needed for information gathering, the multiple-state heuristic works
best. We expected the results to be that way, although we expected more significant difference between
the "smart" heuristics and the random rollout.
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With respect to the required time to run the simulations for a single decision, the results are mixed.
While obviously the random strategy requires no time to compute the next action during a rollout, it often
results in lengthy rollouts, which reduce this effect. The single state heuristic is almost always faster than
the multi-state heuristic, but not by much.

7 Conclusion

In this paper we suggested to model goal POMDPs as stochastic contingent planning models, which
allows us to use domain independent heuristics developed in the automated planning community to
estimate the utility of belief states. We implemented our domain independent heuristics into the rollout
mechanism of POMCP — a well known online POMDP planner that constructs a search tree to evaluate
which action to take next. We provide an empirical evaluation showing how heuristics provide much
leverage, especially in complex domains that require a long planning horizon, compared to the standard
uniform rollout policy that is often used in POMCP.

For future research we intend to integrate our methods into other solvers, such as RTDP-BEL, or into
point-based planners as a method to gather good belief points. We can also experiment with additional
heuristics, other than the hadd heuristic used in this paper.
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The paper presents a comprehensive performance evaluation of some heuristic search algorithms in
the context of autonomous systems and robotics. The objective of the study is to evaluate and com-
pare the performance of different search algorithms in different problem settings on the pathfinding
domain. Experiments give us insight into the behavior of the evaluated heuristic search algorithms,
over the variation of different parameters: domain size, obstacle density, and distance between the
start and the goal states. Results are then used to design a selection algorithm that, on the basis of
problem characteristics, suggests the best search algorithm to use.

1 Introduction
Autonomous agents and robotics have increasingly been used in various domains, such as, industrial ap-
plications [16, 18, 8], surveillance [17], and exploration [4]. These systems are designed to autonomously
make decisions and execute actions based on their dynamic and unpredictable environments. Under such
conditions, systems are required to be as reactive as possible to changes in the environment. Therefore,
ensuring good performance is a significant challenge. In the case of planning, selecting the most effective
search algorithm becomes crucial to enhance the overall performance of the system. Real-time heuristic
search (RTS) (e.g.,[14, 9]) is a state-of-the-art approach for planning while executing, that helps min-
imize agent reaction time. These algorithms enable agents to make decisions by interleaving planning
with execution while considering the evolving environment, which is an essential property in applica-
tions such as robotics, and video game agents. Despite the numerous methods proposed in this field
[14, 13, 12, 3, 2], a comprehensive understanding of these algorithms remains elusive. Existing studies
[1, 13, 10] have primarily focused on testing the performance of the algorithm based on a single param-
eter (e.g., look-ahead, sensor range). However, the influence of the problem domain characteristics on
algorithm performance remains an understudied aspect.

Our objective is to investigate the characteristics of the problem that may impact algorithm perfor-
mances. To achieve this, we first review existing state of art of search algorithms and their applications.
Then we design our experiments to evaluate some of the algorithm performances, also defining relevant
metrics to use in the evaluation. Later on, experiment results are analyzed to provide a comprehensive
understanding of how problem characteristics influence the performance of the different search algo-
rithms. Finally, from the insight gained from our study, we introduce a selection algorithm that helps us
to select the appropriate search algorithm.
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This paper is structured as follows. We begin by reviewing state-of-the-art search algorithms and
previous performance evaluation studies. Next, we describe the approach we adopted to evaluate the
search algorithms that are subject to our study, define the problem domain and its characteristics, and
the performance metrics. In section four, we present our experimental results. Section five introduces
our proposed selection algorithm with an execution example. Finally, we derive our conclusion, the
limitations of our study, and possible directions for future work.

2 State of the art and related work
Path planning is a relevant problem in autonomous agents, such as, self-driving cars, robots, unmanned
aerial vehicles (UAVs), and unmanned ground vehicles (UGVs), in which the host agent deliberates its
path by moving from one position to another while avoiding obstacles and respecting some constraints
[19]. One of the path planning approaches that have been proposed to control the movement of these
agent-based systems is search-based algorithms, with Dijkstra and its extension A* [5, 21], being the
most popular and effective ones. Besides these, other search algorithms have been proposed in the litera-
ture, specifically to reduce reaction time, broadly classified as real-time or incremental search algorithms.

Real-time search algorithms must find a solution in a limited time, while incremental search instead
uses the previously obtained searches to speed up the search. Amongst the first class, Real-time A*
(RTA*) and Learning real-time A* (LRTA*) [14] were some of the first algorithms to apply real-time
heuristic search in path planning problems for moving agents. Both algorithms use heuristics to guide
the search toward the goal, with RTA* storing the second-best f-values of the previous state as the best
alternative to choose when backtracking from the current state. However, this may mislead the agent.
Thereby, LRTA* overcomes this by storing the first best value rather than the second and learning from
comparing the heuristic values of the adjacent states, thus preventing the algorithm from misleading the
agent. Another optimized version of LRTA* is real-time adaptive A* (RTAA*) [12]. It first determines
its local search space and then speeds up the search by updating the heuristics values of states. It was
developed for stationary target search problems and it follows trajectories of smaller costs. Anytime
repairing A* (ARA*) [15] is a variation of A* that has been designed to find suboptimal solutions fast
and then improve them over time, which makes it a good algorithm for problems where finding an optimal
solution is not mandatory or too expensive [15]. However, finding suboptimal solutions does not make it
find the optimal solution [15].

Moving to incremental search algorithms, D* (Dynamic A*) is an incremental search algorithm used
in real-time planning in robotics [20]. It is designed to react quickly to changes in the environment, by
updating the nodes affected in the search tree rather than recomputing a new plan from scratch. D* has
a main drawback that it requires a lot of memory to perform the search. LPA* (Lifelong Planning A*),
an incremental version of A*. This algorithm is used in path planning or robot navigation in unknown
terrain. It behaves just like A* in the first run, and then for the rest of subsequent searches it reuses the
previous search thus reducing the number of examined nodes, which makes it fast. LPA* differs from D*
in its search direction where it finds a path from the initial state to the initial goal state, therefore it does
not fit in applications where the starting point may change over time. Another variant of D*, D* Lite,
was developed based on LPA*, and is used for goal-directed path planning in unknown environments
using the same idea as D*, however, it is a simple version of D* and produces effective results as the one
delivered by D* as proven in [11]. While these heuristic search algorithms are numerous and diverse,
it is important to emphasize that there are even more algorithms in the literature with new ones being
developed, or existing ones being improved such as [2, 13, 7]. This variety of algorithms in the field
emphasizes the complexity of the problem. Consequently, this variety of proposed algorithms presents
a challenge; the wide number of these algorithms results in disparate performances in tasks such as path
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planning, making it difficult to select the optimal algorithms for a given task.
Given the multitude of algorithms, studies have been done to compare the performance of RTS

algorithms in path planning tasks such as [1] where authors have compared the performances of path
planning algorithms using agents equipped with a sensor in both stationary and moving target settings
to select the most appropriate algorithm. The obtained results were compared using various sensor
ranges and angles, and the authors concluded that sensor range is an important parameter in selecting
the algorithm, unlike the sensor angle. Therefore the most appropriate algorithm can be selected based
on the sensor range and its priorities. However, the authors did not consider varying the environmental
characteristics, which may influence the performance of the algorithms.

Another study has been presented in [13], in which the authors also compared real-time and incre-
mental heuristic search algorithms using an autonomous agent in a navigation task to know which class
of heuristic search approach is better to be used depending on how informed the h-values are, and the
search objective such as minimizing the sum of the search and action execution.

The comparative analysis done in [1] considers only a static environment, neglecting the possible
variations in the algorithm performance under different environmental characteristics. This limitation
hampers us from creating a clear understanding of different search algorithms that could perform under
different environmental characteristics, precisely in the context of path planning. Similarly, the study
conducted in [13] restricts its investigation to only two algorithms each one from a different class i.e.,
real-time and incremental heuristic search. Even though it provides an insightful comparison, the study
does not fully capture the breadth of available algorithms in these classes.

Moreover, the study aimed to provide a recommendation on when to use each of the algorithm
classes, but also does not investigate algorithm performances in diverse environmental characteristics.

Consequently, considering the challenge posed by the presence of a wide range of search algorithms
and the lack of a comprehensive comparative analysis under different environment settings, we propose
to evaluate and analyze the performance of some search algorithms under different environment char-
acteristics in the context of path planning, But first, we define the characteristics of the environment
used, and through our experiments, we aim to provide a comprehensive evaluation of these algorithms
followed by proposing our selection algorithm.

3 Experimental environment and performance metrices
Heuristic search algorithms play an important role in fields such as robotic pathfinding, as they determine
the optimal path given a starting position and a goal position. Grid-based environments are commonly
used for representing real-world environment scenarios, where these algorithms can be implemented,
such as in autonomous navigation and robotics [6]. In this study, we comprehensively analyze well-
known heuristic search algorithms, namely D*, D* Lite, LPA*, LRTA*, RTAA*, and ARA* in different
grid environments. We use the Euclidean distance heuristic to guide the search of the algorithms and
assess the impact of a few grid characteristics, such as the obstacle density and the grid size, on the
performance of the algorithms.

In our study, we use grid-based environments due to their simplicity, and control ease, in addition
to being commonly used in path-planning tasks in the research community. The grids are composed of
white cells, representing traversable states, whereas the black ones represent non-traversable obstacles.
The agent in our simulation can move in eight directions, with a cost equal to 1 for horizontal and vertical
moves, and

√
2 for diagonal movements. We used two types of grid environments: randomly generated

grid environments and personalized grid environments.
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Randomly generated grid-based environments: The grids are characterized by three parameters:
grid size (NxN), obstacle density, and the distance between the start and the goal states. To investigate
the impact of each parameter on the performance of the search algorithms, we varied each parameter
independently while keeping the other parameters constant. The variations included varying the grid
size, varying start to goal distance, and varying the obstacle densities. For each grid in a variation, we
generated ten random instances of the same grid parameters (e.g., a grid with 0.25 of obstacle density,
size 300x300, and 140 of start to goal distance, have ten instances, which were generated randomly).

Personalised grid environment: Designed for simulating more specific scenarios. These grids have
fixed size (71x31 units) and a fixed position for both the start and goal states, and they were divided into
two parts based on their obstacle configuration:

• Horizontal wall configuration: For these experiments, we add horizontal walls of half grid width
every 10 units of grid length. We added the walls in two orientations: once from left to right, and
once from right to left in the newly generated grid.

• Horizontal wall length configuration: Here, we add all possible walls that can be placed within
the grid length, and each time we generate a new grid we increase all wall lengths by 2 units.

We adopted these two distinct environments to provide a thorough analysis, seeking to reveal nuanced
insights into the performance of the search algorithm in the presence of two different hindering scenarios.
In the first one, obstacles are scattered randomly within the grid, whereas in the second one, the wall-like
structures, appear as a mass of connected obstacles.

To evaluate the performance of the different search algorithms used in the experiments, we have
selected the following metrics:

• Path cost: The metric measures the path length or the number of executed actions from the start
to the goal state. It indicates the quality of the solution.

• Memory consumption: It measures the required amount of memory for the algorithm to find a
solution. It is relevant to check the scalability of the algorithm, and it is measured in (KB).

• Solving Time: Represent the total time an algorithm takes to find a solution in (ms), measured in
milliseconds (ms).

We carried out our experiments on 3.30GHz 27 Intel i9 cores, equipped with 250Gb of RAM and running
Ubuntu Linux 22.04. Using the following settings: All algorithms were using the Euclidean distance as
the heuristic function. For LRTA* and RTAA*, we set the number of expended nodes to 250 for each
iteration. The ARA* algorithm was run with a weight of 2.5 for the heuristic. We ran each algorithm
100 times on each grid to account for randomness and to ensure the reliability of the results.

4 Experimental results
Grid Size Variation: In the results obtained by varying the grid size (see Figure 1, 3, 2), ARA*
displays relatively stable solving time. However, it has some fluctuation in its standard deviation, with a
slight increase as the grid size increases. Its maximum value of (76ms) was obtained at size 200. At grid
size 50, RTAA* was the fastest algorithm, recording a solving time of (21ms). Subsequently, its solving
time and allocated memory increased notably with the grid size. which indicates that the grid size affects
the performance of RTAA* as it increases; and the algorithm is forced to do more searches. LRTA* has
the highest solving time across all sizes compared to ARA*, RTAA*, D* Lite, LPA*, and even D* at
size 50. Its performance greatly varies as indicated by its high standard deviations. Moreover, LRTA*
did not show a clear trend in increasing time relative to grid size, indicating that it may be unpredictable
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and inefficient for this task. Both D* Lite and LPA* exhibited relatively stable performances. D* Lite
has a lower solution time across all grid sizes compared to LPA*. However, both algorithm’s standard
deviations show some degree of fluctuation. D*, on the other hand, showcased an extreme increase in
solution time when transitioning from size 50 to 100, revealing its challenges as the grid size increases.

Regarding path cost (see Figure 3), while LPA*, D*, and ARA* lines overlap, suggesting similar
path costs across all grid sizes, D* Lite consistently generates the shortest paths across all grid sizes,
with a relatively small standard deviation. In terms of memory allocation (see Figure 2), LPA* and D*
Lite were consistent across all grid sizes, requiring the least memory among all algorithms. In contrast,
RTAA*, LRTA*, and D* demanded more memory as the grid size increased.

Figure 1: solving time vs. Grid
Size

Figure 2: Memory Allocation vs.
Grid Size

Figure 3: Path Cost vs. Grid Size

Start to goal distance variation: The obtained results from running the algorithms on grids with
varying start-to-goal distances (see figures 4, 5, 6) revealed that both the mean of the path cost and the
mean of solving time for all algorithms escalate as the distance increases (see Figure 4, 6). This outcome
was expected, since longer distances naturally demand more computational efforts and more nodes to
expand.

ARA* seems to have a strong correlation with the distance between the start and goal; its solving
time is drastically influenced by this factor. Precisely, ARA* remains the fastest algorithm for distances
smaller than approximately 140. Beyond this threshold, however, RTAA* takes the lead in terms of
solving time.

Observing the path cost (see Figure 6), the lines for D* Lite, LRTA* RTAA* overlap, indicating
similar performances. Correspondingly, LPA*, ARA*, and D* also exhibit overlapping lines, where D*
Lite being the algorithm with the lowest path cost. In the context of allocated memory (see Figure 5),
D* lite allocates the least memory for all distances followed by LPA* and then ARA*. The rest of the
algorithms allocate almost a similar amount of memory with D* being the worst.

Figure 4: solving time vs. SG
Distance

Figure 5: Memory Allocation vs.
SG Distance

Figure 6: Path Cost vs. SG Dis-
tance
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Obstacle density variation: RTAA* constantly excels by producing the shortest solving time among
all algorithms and across all obstacle densities as depicted in Figure 7. This superior performance can
be explained due to its rapid heuristic values update procedure within its local search space. The rest of
the algorithm’s solving time increases as the obstacle density rises, with D* being the one with a higher
solving time, except for LPA*, which starts to decrease slightly after a density of 0.20.

Figure 9 shows that the path cost of all algorithms tends to increase as the density increases, which
can be a predictable outcome since denser environments pose more complex navigation challenges.
Amongst all algorithms, D* Lite maintains the lowest path across all densities, marking its efficiency
in complex environments. D* Lite’s performance is followed by LRTA* for obstacle densities below
0.25, and RTAA* outperforms the rest for densities higher than 0.25. In addition to maintaining the
lowest path cost, D* Lite allocates the least amount of memory at all densities, as depicted in Figure 8,
followed by LPA*. In contrast, both RTAA* and LRTA* consume a lot of memory, but not as much as
D*, which allocates even more.

Figure 7: solving time vs. Obsta-
cle Density

Figure 8: Memory Allocation vs.
Obstacle Density

Figure 9: Path Cost vs. Obstacle
Density

We hypothesize that changing other parameters that we have fixed while varying other ones could
indeed provide us with further insight into how these parameters interact and affect the performance of
the search algorithms i.e., using an obstacle density of 0.4 rather than 0.25 while changing the grid size.
However, to maintain simplicity and manage the computational resources, we opted to keep a balanced
grid size, obstacle density, and distance from the start to the goal that will help us fairly represent an
environment for a pathfinding task. Also, the combination of varying one parameter independently from
the other ones and then repeating the same experiment, in which we vary the fixed parameter using all
other possible values would dramatically increase the number of possible experiments that must be done,
in addition to the number of runs that they must be made for each grid, which will amplify the number
of experiments that must be performed.

Horizontal wall configuration: In the horizontal wall configuration results, as depicted in Figures
(10, 11, and 12). We observed that the path cost tends to increase for all algorithms as walls are added
(see Figure 12), which is expected. LRTA* exhibited the highest solving time (see Figure 10), followed,
in descending order by D* Lite, RTAA*, LPA*, ARA*, and LRTA*. Regarding the obtained results
for the path cost, D* Lite produces the most optimal paths followed by ARA*, D*, and LPA*. In
terms of memory allocation (see Figure 11), all algorithms tend to allocate the same amount of memory
even when new walls are introduced, with only slight increases. Among all algorithms, D* allocates
the highest amount of memory, while LPA* allocates the least memory, followed by D* Lite, LRTA*,
RTAA*, and ARA*. However, it is worth noting that both ARA* and LPA* had a remarkable increase
in memory consumption when adding the last wall.
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Figure 10: solving time vs. Num-
ber of walls

Figure 11: Memory Allocation
vs. Number of walls

Figure 12: Path Cost vs. Number
of walls

Horizontal wall length configuration: The results obtained from varying the wall sizes are depicted
in the figures 13, 14, and 15. The numbers on the axis represent seven different lengths. The initial length
corresponds to half the grid width, and with each subsequent step, it increases by two obstacles.

All algorithm’s solving times varied across the different wall lengths showing a general trend of
increasing as the wall lengths increase as depicted in Figure 13. LRTA* recorded the highest solving
times, whereas ARA* recorded the lowest across all wall lengths. For the amount of memory used by
the algorithms (see Figure 14), D* was again the one that consumed more memory. In contrast, both
D* Lite and LPA* allocated almost similar and the latest amount of memory over all seven wall lengths.
Turning to the path cost metrics (see Figure 15), all algorithm’s path costs tend to increase as the wall
lengths increase, with D* Lite generating the lowest path costs for all wall lengths.

Figure 13: solving time vs. Walls
length

Figure 14: Memory Allocation
vs. Walls length

Figure 15: Path Cost vs. Walls
length

Based on the results obtained in the grid size variation, the performance of most algorithms, par-
ticularly RTAA*, was affected by grid size. In the meanwhile, the high level of consistency of ARA*
performance in terms of solving time regardless of the grid size indicates its suitability for various grid
sizes higher than 100. D* proved to be the one generating the lowest path costs, and also allocating the
least memory alongside LPA*. Obstacle density results showed that it is a factor that influences the per-
formance of all algorithms. However, D* Lite kept generating the most efficient paths, which indicates
its effectiveness in dense environments. Based on the results obtained by increasing the start-to-goal
distance, ARA* appears to be the most affected one since its solving time continuously increases. In
addition to allocating the least memory, D* Lite consistently exhibits the optimal paths, which indicates
its utility where the shortest path is of importance. Adding horizontal walls each time in the same grid
setting has increased the path length and solving time for all algorithms with D* being the worst. D*
Lite keeps its optimal performance by generating the most optimal paths, which suggests its suitability in
environments with many obstacles. However when increasing the length of the walls, ARA* displayed
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Table 1: Selection algorithm evaluation results

Randomly generated NxN grid environments
Algorithm Number of walls Wall length Obstacle density Grid size s/g distance Path cost Memory Allocation (KB) Solving time (ms)

RTAA* - - 0.35 100 43.174 81.012 1145.648 86.106
ARA* - - 0.35 100 43.174 86.041 437.012 63.376
D* Lite - - 0.35 100 43.174 73.698 109.248 252.110
RTAA* - - 0.35 250 56.080 78.769 7520.803 165.108
ARA* - - 0.35 250 56.080 83.798 173.603 33.001
D* Lite - - 0.35 250 56.080 73.698 94.861 196.605
RTAA* - - 0.25 100 38.118 77.012 1159.855 111.278
ARA* - - 0.25 100 38.118 75.455 382.359 55.283
D* Lite - - 0.25 100 38.118 72.870 111.344 285.450
RTAA* - - 0.35 100 36.069 70.497 1119.316 55.832
ARA* - - 0.35 100 36.069 97.426 825.953 136.500
D* Lite - - 0.35 100 36.069 69.083 91.369 218.514

Personalised grid environments
Algorithm Number of walls Wall length Obstacle density Grid size s/g distance Path cost Memory Allocation (KB) Solving time (ms)

RTAA* 6 25 - 31x71 73.539 177.480 368.113 131.508
ARA* 6 25 - 31x71 73.539 117.195 531.484 88.499
D* Lite 6 25 - 31x71 73.539 113.095 243.723 708.3793
RTAA* 6 16 - 31x71 73.539 83.698 334.370 64.666
ARA* 6 16 - 31x71 73.539 83.113 449.302 46.540
D* Lite 6 16 - 31x71 73.539 82.527 244.100 686.459

the lowest solving times, suggesting its efficiency in environments with extensive barriers. Moreover, D*
Lite keeps generating the lowest path costs.

In summary, while each algorithm has its strengths and weaknesses, D* Lite has continuously shown
a good performance across most conditions, particularly in generating the optimal paths. Meanwhile,
ARA* has proved its stability in producing the fastest paths regardless of the grid size. Moreover, RTAA*
showed its ability to generate faster paths regardless of the obstacle density due to its faster procedure in
updating the heuristic values.

5 Selection algorithm and example of execution

Based on the insights derived from our experimental results, we propose the selection algorithm repre-
sented in Algorithm 1. The algorithm is designed to select the appropriate search algorithm based on
various priorities alongside the characterization of the environment used.

The selection algorithm emphasizes the desired priority first, which could manifest in various aspects
of pathfinding tasks, including the path cost, memory usage, or the time taken to find a solution. The
rational reason for emphasizing ”Priority” at the beginning of the selection algorithm is that, based on
this user choice, different search algorithms may be considered to suit best the addressed problem. Thus,
by tackling the ”Priority” upfront, The selected algorithm will eventually, cater to the main requirements
of the task at hand.

The algorithm takes as input the Grid that is of size NxN with the start and goal positions, the distance
threshold, and the priority criterion. If we aim to minimize memory usage, path cost, or both (Line 2),
the algorithm suggests using D* Lite. However, If minimizing the solving time is our primary concern
(line 4), we should first calculate the Euclidean distance between the start and the goal using the function
in line 12. If the distance is higher or equal to the threshold (in our experiments it is equal to 140),
the algorithms suggest using RTAA*. If the distance is less, then the selection algorithm suggests using
ARA*.
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Algorithm 1 selection algorithm

Input:
Grid: < array: size[N][N], start(startx,starty), goal(goalx,goaly)>
Integer: D . Distance threshold
String: P . Priority_criterion

Output:
Selected algorithm based on specified criteria.

1: function SELECT_ALGORITHM( Grid<size, start, goal>, D, P)
2: if P is ‘Memory’ or P is ‘PathCost’ then
3: return DSTAR_LITE_ALGO

4: else if P is ‘SolvingTime’ then
5: if COMPUTEEUCLIDEANDISTANCE(start, goal) ≥ D then
6: return RTAA_ALGO

7: else
8: return ARA_STAR

9: end if
10: end if
11: end function
12: function COMPUTEEUCLIDEANDISTANCE(start, goal)
13: return

√
(startx−goalx)2 +(starty−goaly)2

14: end function

5.1 Example of execution

To showcase the efficiency of our selection algorithm, we have designed an execution example that
consists of generating a grid with random parameters i.e., choose a random grid size, obstacle density, and
start to goal distance. After that, we generate an identical grid, however, we change only one parameter
each time while keeping the other parameters as they were in the initial grid. We do the same for
generating personalized grid environments, where we generate a grid with a random choice of wall
number, and then we change the wall lengths.

We run RTAA*, ARA*, and D*Lite algorithms on the generated grids (all obtained results are shown
in table 1) alongside our selection algorithm, so that we can compare the obtained results with what the
selection algorithm is suggesting to use for the given grid.

It is essential to highlight that the randomly chosen values for the grid parameters are all within the
range of the values used in the experiments, which ensures that the thresholds chosen are relevant. Also,
the reason behind using only RTAA*, ARA*, and D*Lite in this execution example is because of their
standout performance in our experiments.

For each grid, we run our selection algorithm each time with a different priority, and it suggests using
an algorithm that will perform the best given the selected priority. The highlighted values in the table
refer to the outcomes derived from the suggested search algorithm by our selection algorithm. These
highlighted values are notably the best that we can obtain for each grid given a certain priority except
for the red one; yellow represents the most efficient paths, green represents the best values that we can
obtain if we want to reduce memory consumption, and the values highlighted in purple indicates the best
solving time. However, our algorithm failed in selecting the right algorithm to use in the fourth grid
when prioritizing the solving time, where the shortest solving time was found by RTAA*, instead our
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algorithm suggested using ARA*.

6 Conclusion
This work aimed to evaluate the performance of several known heuristic search algorithms, such as D*,
D* Lite, LPA*, LRTA*, RTAA*, and ARA* in terms of solving time, memory consumption, and path
cost. The evaluation was made using different randomly generated grid environments with different
characteristics alongside personalized grid environments with horizontal walls and different wall lengths
as different hinders.

Our experimental evaluation revealed that all the algorithms exhibit different performances with
strengths and weaknesses under different grid characterizations. D* Lite consistently generated the short-
est paths even in obstacle-dense grids, indicating its efficiency in dense environments. ARA* consistently
provides faster solutions as the grid size increases, particularly larger than 100, while RTTA* generates
faster solutions in smaller grid sizes, with the advantage of not being affected by dense environments.

Our study provides valuable insights into selecting the appropriate heuristic search algorithm in the
pathfinding domain. Using these insights, we propose a selection algorithm used to optimize the per-
formance needed in a pathfinding domain, such as, solving time, path length, or memory consumption.
However, our evaluation focused only on static environments, while dynamic environments may in-
troduce additional challenges. Furthermore, we considered a limited set of experiments, not covering
all possible combinations of the grid characteristics. This limitation means that the selection algorithm
might not always recommend the most optimal solution, as seen in the example we introduced to evaluate
our algorithm.

In future work, we aim to address these limitations as follows: Firstly, we plan to extend our evalu-
ation of the search algorithms to include dynamic environments. Secondly, we intend to explore various
combinations of both domain characterization and priorities. Furthermore, we want to include additional
scenario configuration, extending the random obstacles and the walls scenarios. With such additional
understanding, we aim to refine our selection algorithm to automatically take decisions among the best
search algorithms, based on the type of obstacles in the local search space.
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Recent years have seen an increasing number of deployment of fleets of autonomous vehicles. As
the problem scales up, in terms of autonomous vehicles number and complexity of their objectives,
there is a growing need for decision-support tooling to help the operators in controlling the fleet.

In this paper, we present an automated planning system developed to assist the operators in the
CoHoMa II challenge, where a fleet of robots, remotely controlled by a handful of operators, must
explore and progress through a potential hostile area. In this context, we use planning to provide the
operators with suggestions about the actions to consider and their allocation to the robots.

This paper especially focus on the modelling of the problem as a hierarchical planning problem
for which we use a state-of-the-art automated solver.

1 Introduction

The "Battle-Lab Terre", a part of the French Army studying innovation, organized in 2022 the second
version of the CoHoMa challenge [15] in order to study the collaboration between human operators and
autonomous multi-robot systems.

The task was to navigate through a dangerous terrain in an Armoured Vanguard Vehicle (AVV)
(Figure 1a). The land included 1m-wide red cube (Figure 1b) representing a trap said to be explosive
and capable of damaging the AVV. Therefore, the human operators on board had to ensure that the
AVV’s environment was safe before moving it. To do this, they had to use various Unmanned Aerial
Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs), to perform reconnaissance missions, seek
out traps, and avoid or disable them. A general system architecture of these vehicles has been studied
in [7].

When the number of unmanned vehicles is too important for the number of human operators (6
UGVs and 3 UAVs for 4 human operators in our case), a decision-making aid is welcomed. This aid
must decide which actions are to be performed, when, and by which vehicle. This problem of multi-
robot task allocation is highly studied [10], especially when there are communications issues [1] which
will be ignored in this study.

The model proposed in this paper is rooted in the CoHoMa challenge. At a high level it abstracts
of emergency and rescue missions [6] such as floods controlling [14] or subterranean rescue [13], using
mixed-initiative planning with automated vehicles [3].

The mission is for a group of humans to go through a hazardous zone with securable obstacles that
they must avoid. Because the obstacles are unknown at the beginning of the mission, the operators have
at their disposal UAVs and UGVs to explore the area, detect obstacles and secure them. The fleet of
robots is typically heterogeneous: they have different capacities, in order to be complementary and be

http://dx.doi.org/10.4204/EPTCS.391.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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(a) The AVV and two UGVs (b) A UAV detecting a trap

Figure 1: Illustrations of the CoHoMa challenge

able to secure the human movements. The obstacles will be discovered as the progression goes on, so
there will be replanning steps for each event.

To simplify the interactions with the robots, their locations are discretized. Indeed, the operator does
not need to have a precise representation of the robot’s location for the planning process, the points of
interest are sufficient. Therefore, a navigation graph as shown in the Figure 2 is used. This graph regroups
the location of the vehicles, the location of the obstacles, and the objectives of the mission. Moreover, the
edges of the graph are configured to forbid the access to some vehicles, e.g. a UAV can cross a cliff where
the other vehicles cannot. This way, a unique graph can be used to store all the possible displacements.

The Figure 3a shows the Human-Machine Interface (HMI) used by a human operator to visualize
the environment, the real location of the robots and the detected obstacles, i.e. the navigation graph with
more details, on a satellite view of the terrain. The operator can interact with the map to specify events,
e.g. an obstacle detection, and to change the mission’s objectives. When the mission details have been
updated, the operator can request a plan to achieve those objectives on the right side of the HMI. This
plan is not sent to the robots directly. First, it is shown in the HMI (see Figure 3b) on the left side
for potential modification, e.g. allocate an action to another robot, and for approbation. Thus, the plan
needs to be as simple as possible in order to be easily understandable by the operator. Once the plan is
validated, it is sent to each robot which are able to accomplish it. For example, considering the calculated
plan

Move UAV from L1 to L5

Move UAV from L5 to L10

Move UAV from L10 to L12

The operator does not need to know which path the vehicle will take since it is autonomous, so the tasks
can be regrouped into a single task ’Move UAV from L1 to L12’. Eventually, the operator already knows
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Figure 2: Example of a navigation graph where (i) the vehicles (UAV, UGV, H for Humans) are in L1
(ii) the objective is for H to go to L8 (iii) there are undetected obstacles in L2, L5, L6, L9 and L11

where the UAV is at the beginning (i.e. in location L1), so the action can be transformed, and the plan
can be simplified as ’Move UAV to L12’. After validation, the task is sent to the concerned robot UAV,
which knows how to go to the location L12.

(a) Full view of the HMI (b) Zoom on the plan visual: a line is the time-
line of a robot

Figure 3: HMI used by the operator to interact with the robot fleet

Although the robots are capable of detecting obstacles, they do not modify the mission on their own
because their detection cannot be perfectly accurate; they add several false obstacles next to the real one.
To compensate for this, the detected obstacles are displayed in the HMI by grouping nearby obstacles
together, with a customizable threshold, and operator approval is required to add the obstacle to the
mission problem. This approach is generalized to all possible events. In this way, no uncertainty is taken
into account in the planning process; it is taken upstream by the operator who has validated the event.
Finally, as two events can occur at the same time for two different robots, replanning is not triggered
automatically after each event but only when the operator requests it.

This paper will begin by presenting the necessary background for chronicle modelling. Next, a
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model that is as simple as possible for a non-expert user, called the natural model in the following, will
be proposed to show the limitations of simple models. Finally, some optimizations of this first model
will be introduced, and the time needed for the planner to find a solution will be compared.

2 Background

To model the planning problem, we wish to exploit the hierarchical nature of the task where some high-
level tasks to accomplished are specified by the operator that must then be refined into sets of primitives
actions executable by the autonomous vehicles.

An Hierarchical Task Network (HTN)[2] can represent this kind of decomposition and is easily
defined with the HDDL language [12]. This language however lacks the ability to express temporal
properties of the problem such as the duration of action or deadlines. Instead, we rely on the formalism
of chronicles [9] that support the specification of rich temporal planning problem. In particular, we
exploit their extension for hierarchical task networks can represent combined temporal and hierarchical
problems [11]. However, it does not have an input language that can represent both.

A type is a set of values that can be either domain constants (e.g. the type Vehicle = {V1,V2 } defines
two vehicles objects V1, V2) or numeric values (e.g. timepoints are regularly spaced numerical values
describing absolute times when events occur). The types can present a hierarchy, e.g. the type Robot is a
subtype of Vehicle meaning that a Robot is a Vehicle, but the reverse is not necessarily true. When there
is a type hierarchy, an abstract root type named Ob ject is defined in order to have a decomposition tree.

A state variable describes the evolution of an environment characteristic over time. Generally, it is
parametrized by one or multiple variables. Its value will depend on the value of the variables, e.g. loc(v)
denotes the evolution of the location of the vehicle v, its value will be loc(V1) or loc(V2) depending on
the value taken by v of type Vehicle.

A task is a high-level operation to accomplish over time. Generally, it is parametrized by one or
multiple variables. It is of the form [s,e]task ( x1, . . . ,xn ) where s and e are timepoints denoting the start
and end instants when the task occurs, task ( x1, . . . ,xn ) is the task with each xi a variable. For instance,
[2,4]Move(V1,L2) denotes the operation of moving the vehicle V1 to the location L2 during the temporal
interval [2,4]. The set of available tasks of the planning problems is T .

A chronicle defines the requirements of a process in the planning problem. A chronicle is a tuple
C = (V,T,X ,C,E,S ) where:

• V is the set of variables of the chronicle. This set is split into a set of temporal variables VT whose
domains are timepoints and a set of non-temporal variables VO.

• T ∈T is the parametrized task achieved by the chronicle. The start and the end instants of the task
correspond to the start and the end instants when the chronicle is active, it is its active temporal
interval.

• X is a set of constraints over the variables of V . The chronicle cannot be active (defined bellow) if
at leat one constraint is not respected over its active temporal interval.

• C is a set of conditions with each condition of the form [s,e]var ( x1, . . . ,xn ) = v where ( s,e ) ∈V 2
T

such that the temporal interval [s,e] is contained in the active temporal interval of the chronicle,
var ( x1, . . . ,xn ) is a parametrized state variable with each xi ∈ VO, and v ∈ VO. A condition is
verified if the state variable var ( x1, . . . ,xn ) has the value v over the temporal interval [s,e]. The
chronicle cannot be active if at least one condition is not verified.
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• E is a set of effects with each effect of the form [s,e]var ( x1, . . . ,xn ) ← v where ( s,e ) ∈ V 2
T

such that the temporal interval [s,e] is contained in the active temporal interval of the chroni-
cle, var ( x1, . . . ,xn ) is a parametrized state variable with each xi ∈VO, and v ∈VO. An effect states
that the state variable var ( x1, . . . ,xn ) takes the value v at time e. The temporal interval ]s,e[ is the
moment when the state variable is transitioning from its previous value to its new value. During
this transition, the value of the state variable is undetermined.

• S is a set of subtasks where each subtask is a task in T that must be achieved by another chronicle.

A chronicle can be active or not, defining whether the chronicle is present in the final solution. If the
chronicle is not active, then the planner must find another chronicle achieving the same task to replace it.

We make the distinction between three types of chronicles: the action chronicle which has effects
but no subtasks (i.e. S = /0), the method chronicle which has subtasks but no effects (i.e. E = /0), and the
initial chronicle encoding the initial state as effect and the objectives of the problem as conditions and
subtasks, it is the only one which does not have a task T to achieve (i.e. T = /0).

As an alternative to specifying chronicles manually, the AIPlan4EU project1 offers a Python API2 for
modelling different kinds of planning problems, notably temporal and hierarchical ones. The correspond-
ing problems map almost immediately to the chronicles defined above. The python API for constructing
planning problems is especially useful in our case where the new problems are defined online, as the
situation evolves during the mission.

3 Initial Model

According to the mission specification, the humans need to be able to move while the autonomous
vehicles need to move, explore to detect obstacles and secure them. This way, a list of high-level tasks
appears:

• [s,e]goto(v, l) : The vehicle v (humans, UAV or UGV) goes to the location l

• [s,e]explore(r, f , t): The robot r (UAV or UGV) explores the path from the location f to t

• [s,e]secure(r,o): The robot r secures the obstacle o

From this list, one can easily extract the type hierarchy shown in the Figure 4. The Obstacle allows
handling different types of obstacles for the secure task, e.g. in a fire rescue mission we could image to
use different types of extinguishers (water, CO2 or powder), each one for a different type of obstacle.

Object

Vehicle

Humans Robot

UAV UGV

Location Obstacle

Obs1 . . . Obsn

Figure 4: Type hierarchy

1https://www.aiplan4eu-project.eu/
2https://github.com/aiplan4eu/unified-planning

https://www.aiplan4eu-project.eu/
https://github.com/aiplan4eu/unified-planning
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3.1 Goto task

A vehicle needs to be able to go from a location to another. However, a human, a UAV and a UGV does
not move the same way. A human will walk while a UAV will fly and a UGV will roll on land. Therefore,
we obtain the three following action chronicles:

[s,e]walk(h, f , t)
variables: Humans h

Locations f (from) and t (to)
task: [s,e]walk(h, f , t)
constraints: f 6= t

e− s = dur(h, f , t)
conditions: [s,s]loc(h) = f

[s,e]path( f , t) =>
[s,e]explored air( f , t) =>
[s,e]explored ground( f , t) =>
[s,e]obstacle( f , t) =⊥

effects: [s,e]loc(h)← t

The humans h can move to the location t only if
(i) the humans are in the location f at the begin-
ning of the chronicle (ii) there is an edge from
f to t in the navigation graph (iii) the path has
been explored by a UAV and a UGV (iv) there
is no obstacle affecting the path.
At the end of the chronicle, the humans h will
be at the location t.
The state variable dur(v, f , t) represents the du-
ration taken by the vehicle v to go from the lo-
cation f to the location t. It depends on the
distance between f and t, and on the speed of
the vehicle v.

[s,e] f ly(a, f , t)
variables: UAV a

Locations f (from) and t (to)
task: [s,e] f ly(a, f , t)
constraints: f 6= t

e− s = dur(a, f , t)
conditions: [s,s]loc(a) = f

[s,e]path( f , t) =>
effects: [s,e]loc(a)← t

The UAV a can move to the location t only if
(i) the UAV is in the location f at the beginning
of the chronicle (ii) there is an edge from f to t
in the navigation graph
At the end of the chronicle, the UAV a will be
at the location t.
As for the walk chronicle, the duration is spec-
ified with the constraint e− s = dur(a, f , t).

The chronicle [s,e]roll(g, f , t) is similar to the chronicle [s,e] f ly(a, f , t) by replacing the UAV a by the
UGV g. However, the distinction is made because in a more detailed model it could be more conditions
and effects making a difference between the air and ground movements.

The Figure 5 shows a possible decomposition of the [s,e]goto(v, t) task made by a user. There are
four possibilities for the vehicle v to go to the location t:

• It is already at the location, i.e. loc(v) = t, then there is no operation (Noop) to do. The associated
chronicle is detailed in the Figure 6a.

• It is a UAV, then it flies to another location and retry to go to t from this new location. The
recursion will end when loc(v) = t with the Noop method. The associated chronicle is detailed in
the Figure 6b.

• In the same way as UAVs, the UGVs and humans will move and try again. The associated chroni-
cles are similar to the one of UAV.

3.2 Explore task

The robots need to be able to explore an edge the navigation graph in order to detect the obstacles and
secure the path for the humans. To explore the edge going from the location f to the location t, the robot
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goto(v, t)

Noop(v, t) UAV(v, f, i, t)

fly(v, f, i) goto(v, t)

UGV(v, f, i, t)

roll(v, f, i) goto(v, t)

Humans(v, f, i, t)

walk(v, f, i) goto(v, t)

Figure 5: Natural decomposition of the goto task where (i) rectangles are action chronicles (ii) diamonds
are method chronicles and (iii) ovals are tasks to achieve

[s,e]Noop(v, t)
variables: Vehicle v

Location t
task: [s,e]goto(v, t)
conditions:[s,e]loc(v) = t

(a) Noop method

[s,e]UAV(a, f , i, t)
variables: UAV a

Locations f (from), i (intermediate), t (to)
task: [s,e]goto(a, t)
conditions: [s,e]loc(a) 6= l
subtasks: [s1,e1] f ly(a, f , i)

[s2,e2]goto(a, t)
constraints:e1 < s2

(b) UAV method

Figure 6: Some method chronicles used to decompose the goto task

r needs to be either in location f or location t. Therefore, there are two methods to explore an edge
(shown in Figure 7):

• going to the location f then explores from f to t: forward method

• going to the location t then explore from t to f : backward method

explore(r, f, t)

forward(r, f, t)

air(r, f, t)

goto(r, f) explore air(r, f, t)

ground(r, f, t)

goto(r, f) explore ground(r, f, t)

backward(r, t, f)

air(r, t, f)

goto(r, t) explore air(r, t, f)

ground(r, t, f)

goto(r, t) explore ground(r, t, f)

Figure 7: Natural decomposition of the explore task

These two methods can be accomplished by a UAV with the air method or by a UGV with the ground
method. The distinction between the two associated actions is that one effect of the explore air action
will be explored air( f , t)←>, and for the explore ground action it will be explored ground( f , t)←>.
These two state variables are used in conditions of the walk action in order for the humans to move
securely.

As for the movement actions, the duration of an exploration is based on the state variable dur(v, f , t).
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3.3 Secure task

Finally, the robots need to be able to secure detected obstacles so that they can be crossed by humans.
Because there are several types of obstacles (see Figure 4), there will be several methods to secure them
as shown in the Figure 8.

We made the assumption that the robot r needs to be close to the obstacle o to secure it for every
method. In the case where it is not needed, e.g. in a military context as CoHoMa II where some obstacles
representing enemy’s troops could be secured in distance with artillery fire, the associated goto task
should be removed.

For the following simulations, we consider only one way to secure an obstacle with the duration of
15 minutes.

secure(r, o)

Obs1(r, o)

goto(r, loc(o)) secure Obs1(r, o)

. . . . . . . . . . . . Obsn(r, o)

goto(r, loc(o)) secure Obsn(r, o)

Figure 8: Natural decomposition of the secure task

3.4 Initial State and Objectives

Once the different high-level tasks have been defined, an initial chronicle needs to be specified to encode
the initial state and the objectives.

[s,e]initial
constraints:s = 0
effects: [s,s]loc(H)← L1

[s,s]loc(UAV )← L1
[s,s]loc(UGV )← L1
[s,s]path(L1,L2)←>
...
[s,s]path(L12,L13) =>

subtasks: [s1,e1]goto(H,L8)

The initial chronicle starts at the time-
point 0 and ends at the timepoint e. This
timepoint can be used to specify objec-
tives.
Initially, the vehicles are located to the lo-
cation L1 and the different paths are speci-
fied. All the unspecified state variable val-
ues are considered to be false.
The objective of the problem is for the hu-
mans to go to the location L8.

With this initial chronicle, the planner will try to achieve the subtask [s1,e1]goto(H,L8). Since there
are no explored paths, this is impossible without the intervention of a robot, but they cannot explore
because exploration tasks are not present in the initial chronicle’s subtasks. However, the robots are not
expected to explore all the paths, they are expected to be free to do whatever they want in order to help
the humans.

3.5 Freedom Task

In order to achieve that, the f reedom(v) task (see Figure 9) is added. It allows the vehicle v to go to
another location or to explore a path without any constraints. Once the robot will have nothing more to
do, the f reedom noop(v) method will allow it to stop.
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freedom(r)

freedom noop(r) freedom goto(r, l)

goto(r, l) freedom(r)

. . . freedom explore(r, f, t)

explore(r, f, t) freedom(r)

Figure 9: Natural decomposition of the freedom task

Next, the three subtasks [s2,e2] f reedom(UAV ), [s3,e3] f reedom(UGV ), and [s4,e4] f reedom(H) can
be added to the initial chronicle’s subtasks. Note that the f reedom(H) task only allows the humans to go
wherever they want, they cannot do exploration even if it is present in the decomposition of the task. This
is caused by the type hierarchy and the definition of the explore task that only take robots as parameters.

In general these freedom tasks allow the planner to insert some classes of actions in the plans regard-
less of the rest of the hierarchy. In this sense, it simulates in the HTN the notion of task insertion [8],
where any action can be inserted along the hierarchy. It is in particular close to the task-independent
action in FAPE [5], where only a subset of the actions are allowed to be inserted arbitrarily.

3.6 First Planning Results

Considering ground truth shown in the Figure 2, the vehicles are in the location L1 and the humans need
to go to the location L8, but there are undetected obstacles on the path. Because the terrain is not fully
known at the beginning of the mission, a replanning step is needed when the operator adds some details
to the mission, e.g. when an obstacle is detected by a robot.

Initially, the knowledge of the terrain is empty. Therefore, the decision-making aid has the navigation
graph shown in the Figure 10a and will propose the associated plan. This plan is to take the shortest route
to the goal, with the robots ahead of the humans to secure the path. The planning operation has been
done with the Aries planner [4], it took 333.59s to find the optimal solution.

During the execution of that plan, the robots detect an obstacle at the location L5 (see Figure 10b). A
new plan is proposed based on the new knowledge of the terrain. The planner believes it’s quicker to go
back and explore a new route than to secure the current obstacle. This plan has been found in 328.25s.

Finally, a new obstacle is discovered at the location L2 (see Figure 10c). Again, a new plan is
proposed based on the new knowledge of the terrain. This time, it is faster to secure the current obstacle
and go to the target. The planner took 308.72s to find this plan.

4 Optimizations

While reasonable, planning times of a handful of minutes are far from ideal in mixed-initiative planning
context, especially when task durations are faster than the minute. To reduce this time, one could ask for
the first solution found by the planner (instead of an optimal solution) with the risk of handing out bad
quality solutions. Instead, in this section, we introduce some modifications that can be brought to the
planning model in order to speed up the planning process.



122 Multi-Robot Task Planning to Secure Human Group Progress

(a) Step 1 - Beginning of the mission (b) Step 2 - Obstacle detection at L5

(c) Step 3 - Obstacle detection at L2

Figure 10: Terrain knowledge with their associated plan to solve the problem
EA: Explore Air GO: Goto (with walk, f ly, or roll)
EG: Explore Ground OS: Secure Obstacle

4.1 Recursive Tasks

To find a solution, the planner needs to scan the search tree and prune the branches that lead to no
solution. Therefore, the model should use the least possible recursive tasks in order to reduce the size of
the search tree.

Considering the goto task (see Figure 5) and n > 0 the decomposition depth, i.e. the number of times
goto leaves are replaced by the decomposition. Note that if a leaf is not decomposed, the associated
method is removed from the three since it will not be applicable. Then, the size of the tree, i.e. the
number of nodes, is 2+3∗4n = O(4n) which is exponential.

However, one can notice that all the methods have the same pattern. There is an action followed by
the recursive call to the goto task. Then, the actions can be grouped in a goto once task and the goto task
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can be moved outside in order to be present only once as shown in the Figure 11.

goto(v, t)

Noop(v, t) M_Goto(v, t)

goto once(v, t)

UAV(v, f, i, t)

fly(v, f, i)

UGV(v, f, i, t)

roll(v, f, i)

Humans(v, f, i, t)

walk(v, f, i)

goto(v, t)

Figure 11: Optimized decomposition of the goto task

With this new decomposition and n > 0 the decomposition depth, the size of the tree is 2+10∗n =
O(n) which is linear.

This method can be applied to all the tasks. For goto, explore, and secure, it is the call to goto which
will be extracted. For the f reedom task, it is the recursive call to f reedom.

4.2 Complete Navigation Graph

One of the mission’s assumptions is that the calculated plan is not intended directly for the robots, but
for a human operator to approve, so the plan must be as simple as possible, which translates in particular
into the aggregation of movement actions.

The edges of the navigation graph can be set to prohibit the passage of certain vehicles. Therefore,
one could make the graph complete, i.e. each node is connected to all the others, and make an edge
allowed for a given vehicle if :

• the vehicle is a robot, humans need to know exactly where they are going

• there is a path in the initial graph corresponding to that new edge

• the vehicle is allowed to go through all the edges of this path

• the time taken by the vehicle to pass this new edge is the time taken to cover the associated path

This way, the action of going from L1 to L9 for a robot can be done with only one decomposition of the
goto task rather than 4 decomposition without this navigation graph manipulation. As a result, the search
tree will be smaller, and the solution will be found more quickly.

4.3 Objectives as Conditions

The initial chronicle defines the objective as a subtask. That means the given subtask needs to be accom-
plished. However, the subtasks also contain three f reedom tasks in order to the vehicles to do whatever
they want to complete the objective.

Looking closer, one can see that this allows many opportunities to achieve the objective goto(H,L8),
which are all the possible combinations of the two tasks goto(H,L8) and f reedom(H), both allowing
the humans to move.
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To avoid that, the objective can be encoded in another way. The objective is not for the humans to
go to the location L8, but to be at the location L8 at the end, i.e. loc(H) = L8. Therefore, the initial
chronicle can be updated as shown below. With this new encoding, the only way for the humans to be at
the location L8 is to use the goto(H,L8) hidden in the f reedom(H) subtask. As a result, the search tree
will be reduced.

[s,e]initial
constraints:s = 0
effects: [s,s]loc(H)← L1

[s,s]loc(UAV )← L1
[s,s]loc(UGV )← L1
. . .

conditions: [e,e]loc(H) = L8
subtasks: [s1,e1] f reedom(H)

[s2,e2] f reedom(UAV )
[s3,e3] f reedom(UGV )

4.4 Final Planning Results

Considering the same mission studied in the previous section, the planner found the same plans as shown
in the Figure 10. This demonstrates that the proposed optimizations do not change the problem repre-
sented by the model, both are equivalent. However, as shown in the Table 1, the planner is 95% faster
with these optimizations.

Step 1 Step 2 Step 3
Natural model 333.59s 328.25s 308.72s
Optimized model 13.61s 14.17s 9.19s
Global reduction 95.9% 95.7% 97.0%

Table 1: Planning time with and without the proposed optimizations

As these optimizations are independent of the domain, the same results should be observed in other
use cases.

5 Conclusion

In this paper, we presented a planning-based decision-making aid that exploits a hierarchical task planner
for the control of a fleet of robots in an exploration scenario. A first natural model of the problem has been
proposed. We then proposed some domain-agnostic optimization of this initial model, which resulting in
the planner being at least 20 times faster to provide an optimal solution.

Some assumptions have been made in the current model, notably that the robot’s battery level is
infinite. It could be interesting to be able to represent these kinds of resources in order to accomplish
more complex missions. Moreover, the planner is optimizing the makespan of the plan, i.e. it tries to
make the plan as short as possible in time. It could be useful to associate a cost to each action to optimize
the global cost of the plan, i.e. the sum of the present action’s cost. This way, it could be possible to
minimize, for example, the total distance travelled by the human group.
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A tactical military unit is a complex system composed of many agents such as infantry, robots, or
drones. Given a mission, an automated planner can find an optimal plan. Therefore, the mission itself
must be modeled. The problem is that languages like PDDL are too low-level to be usable by the
end-user: an officer in the field. We present ORTAC+, a language and a planning tool designed for
this end-user. Its main objective is to allow a natural modeling of the mission, to minimize the risk of
bad modeling, and thus obtain reliable plans. The language offers high-level constructs specifically
designed to describe tactical missions, but at the same time has clear semantics allowing a translation
to PDDL, to take advantage of state-of-the-art planners.

1 Introduction
A tactical military ground unit is a complex system composed of many agents, such as infantry sec-
tions, armored units, ground robots, or flying drones. A typical mission lasts one day and is a mix of
displacements on a road network of 20 km between given start and finish points and actions. We deal only
with the reconnaissance action of a route or an area when an enemy presence is suspected. For us, the
reconnaissance action is equivalent to a speed reduction of the progression on a route and exploration of
an area. The progression and exploration should be done more safely, thus it is slower. It could be seen as
the first visit to a location. This brings us to a variant of the classic Multi-Agent Path Finding (MAPF)
problem [1]. Of course, if we consider moves as actions, this is also a multi-agent planning problem [2],
but classification as a MAPF problem is more accurate.

Given a mission, if it is described in a programming language, an automated planner can find an
optimal plan. Therefore the mission itself must be modeled. The automated planning community has
developed the PDDL language in order to specify high level planning problems [3]. However, the
specification of the mission should be done by an officer in the field who is not an expert in automated
planning. Languages like PDDL are too low-level to be usable by the defined end-user who is not an
expert in planning. This is why we present ORTAC+. Its main objective is to allow a natural modeling of
the mission, so as to minimize the risk of errors on the modeling of the desired mission, and thus obtain
reliable plans. The language is composed by high-level constructs specifically designed to facilitate the
specification of tactical missions, with a clear semantic allowing a translation to PDDL, to take advantage
of state-of-the-art planners. Planning is done offline, and the plans are deterministic, with no contingency.
The default assumption is that the enemy, when suspected, is in fact not present. Otherwise, if there is
contact with the enemy, the execution of the plan is de facto interrupted in the field, and the officer must
replan with modified objectives.

We proceed by presenting related work of the paper in section 2. The domain-specific language
ORTAC+ is presented in section 3, the operational context in section 4, and the conclusion in section 5.
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2 Related Work
ORTAC stands for "Optimal Resource and Technical Action Control". It is a multi-agent planning language
and tool combining constraint-solving techniques with advanced search strategy to deconflict single-agent
plans [4]. At the language level, ORTAC is innovative in the constraints of coordination between units
introducing the notion of "support" explained later [4]. The proper term for that is "cross-schedule
dependencies" [5], typically in the case of "coalition formation."

PDDL is the standard planning language used commonly by the automated planning community.
One of the purposes of PDDL was to benchmark planning algorithms. Since its creation in 1998 for the
International Planning Competition [6], the language evolved to model more complex planning problems
as temporal or numerical planning [3]. The Competition of Distributed and Multiagent Planners [7]
benchmarks some centralized and decentralized algorithms with an extension of PDDL for multiagent
planning as a reference language. ORTAC and PDDL are powerful tools for modeling high-level missions
and finding a corresponding plan, nevertheless, they cannot be used by an end-user.

In recent years, an effort on designing domain specific languages (DSL) for non-expert in robotics
raised in the research community. Indeed, some of these languages lack clear semantics [8]. Additionnaly,
users are required to define the behavior of each robot. Consequently, the autonomy of the system is
hindered. Theses systems lack planning capabilities, making it challenging to initiate the integration of
planning tools. The research community uses PDDL as the standard task planing language. However, its
integration into robotics remains limited. To remedy this issue, efforts were done to integrate planning in
robotics [9].

3 ORTAC+
ORTAC+ is a tool that assists a military officer in planning a mission. It is a language that aims to be
expressive with well-defined syntax and semantics. To do that, the language should allow the description
of a given mission and be compatible with automated planners. A military mission is limited in space and
time. The first version of ORTAC+ emphasizes the spatial aspects of the mission. The temporal aspects
will be added in future works.

3.1 Problem Definition
The missions could be seen as a multi-agent planning problem where each agent collaborates to reach
a global goal. However, we only consider agents movements. Thus, the model is a variant of a MAPF
problem. A classical MAPF problem is represented with a set of agents with an initial position and a
target position, in an undirected graph. The solution of a classical MAPF problem is a set of single-agent
paths that does not collide [1]. ORTAC+ allows the description of this kind of problem but aims to be
more general with the following variants:

• Targets are no longer assigned to each agent but to teams of agents, leading to the possibility of
having less target positions than agents. Several agents could be assigned to the same target position
but only one of them should reach it.

• Spatial constraints are added to the problem. The constraint can be forbidden or enforced vertex for
specific agent.

• Agents can be heterogeneous. While classical MAPF problems harnesses agents with similar
characteristics, our problem differs in this aspect.

• The position of an agent is not only on vertices but can be on edges too. The path of an agent is
then a succession of vertices and edges.
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3.2 Modelisation
Our DSL describes the mission within a three axis representation:

• A geographical representation, corresponding to an undirected graph G = (V,E), with V the space
of vertices which models geographic points and E the space of edges that links one vertice to
another. If there is an edge between two vertices, it means that there is a path between these two
points, a road for example.

• A resource representation, including the agents involved in the mission and their characteristics.
Each element of the description is an object with attributes.

• An operational representation where the constraints and the goal will be defined.

This approach allows a structured and organized representation of critical information, enabling a
comprehensive analysis of a complex mission. While the geographic and resource representations corre-
spond to static meta-data available at the start of the mission, the operational representation corresponds
to flexible operational and tactical elements from the mission, allowing the definition of the goal and
mandatory waypoints. Furthermore, some components of the description are objects with attributes. The
type of mission modeled by ORTAC+ deals with three types of objects: the nodes, the edges, and the
agents. By leveraging the three axes, we enable an in-depth portrayal of mission-critical information with
a more expressive and accessible representation. It is worth noting that the agents involved in the missions
are usually humans, but the tool aims to be compatible with robots.

During the conception phase, the graph is pre-defined or already given. The mission specification
includes the available resources and the operational elements within the system with high-level predicates.
Each predicate has a logical meaning and is a constraint for a planning algorithm.

3.2.1 Resources
The resources encompass the agents, their initial states, and their characteristics. The agent_define(init,
characteristics) predicate instantiates the agent, creating the object agent with its initial position init and
its characteristics. It is still possible to add attributes to the agent after its instantiation.

3.2.2 Operational Predicates
This representation is the modular part of the modeling. Indeed, modeling a complex mission can lead to
the absence of solutions. In this part the user can change some elements of the problem and relax some
constraints to find a plan. The planning tool allocates a path for each agent to reach the goal, and the
tactical interpretation of the mission remains to the user.

Table 1 presents the high-level predicates introducing the constraints. Each predicate has a description
and a logical meaning. For example, the predicate node_goal() can allocate a node goal to an agent. The
predicates aim to give a declarative specification.

Besides, the predicates can be generalised so that they operate on lists of objects and no longer
individual objects. To facilitate modeling, when a "generalised" predicate is applied to an individual
object, this is automatically replaced by the application on the singleton containing that object. So
the preceding predicate is in fact syntactic sugar for: node_goal([node],[agent]). The general case
node_goal(node_list,agent_list) has the following meaning:

∀n ∈ node_list,∃a ∈ agent_list,a is in n at t f inal (1)

The ∀ n is in fact a general pattern to which all ’list-generalized’ predicates conform, so as to facilitate
their understanding: the first list argument can always be "and-expanded", which means:
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Predicates Description Logic formula
node_goal(node, agent) The location of agent should be

node at the final state
agent.loc(t f inal) = node

node_visit(node, agent) Agent should visit node during
execution

∃t ∈ [[tinitial; t f inal]],
agent.loc(t) = node

edge_visit(edge, agent) Agent should visit edge during
execution

∃t ∈ [[tinitial; t f inal]],
agent.loc(t) = edge

node_avoid(node, agent) Agent should never visit node ∀t ∈ [[tinitial; t f inal]],
agent.loc(t) 6= node

edge_avoid(edge, agent) Agent should never visit edge ∀t ∈ [[tinitial; t f inal]],
agent.loc(t) 6= edge

node_supported_from(node1,
node2)

An agent can visit node1 only
if another agent supports him in
node2

∀t ∈ [[tinitial; t f inal]],∀agent,
agent.loc(t) = node1 ⇒
∃agent2 6= agent,
agent2.loc(t) = node2

Table 1: Existing predicates in ORTAC+ DSL. Other predicates can be constructed

predicate([o1,o2], list2, ...) ⇔ predicate(o1, list2, ...) & predicate(o2, list2, ...)
Because of the multi-agent nature of the model, coordination constraints could be required. We are

interested in the coordination presented in ORTAC [4]. The main coordination predicate uses quantitative
time, but if we restrict ourselves to causality, it boils down to: support(unit1,node1,unit2,node2)
which means: "when unit1 goes through node1 (if it goes there), unit2 must be in node2". For this to make
sense, node1 and node2 must be close enough, and from a tactical point of view, it is the standard way to
progress in dangerous areas. However, we are no longer specifying the mission, but have begun designing
the plan. We will call ORTAC’s description style "imperative", and ORTAC+ will add a new style that we
will call "declarative": node_supported_from(node1,node2) which means: "when an agent goes through
node1, another agent must be in node2". This first addition to ORTAC will be called "anonymization",
it is not a generic evolution because it is only suitable for certain predicates like support or goal. And
concerning goals, their "anonymization" corresponds to an interesting variant of MAPF initially called
"permutation-invariant" [10] and today called "anonymous" [11].

3.2.3 Ontology
Considering the specificity of our language for its domain, the proposal entails adding a knowledge base
to augment its capability. This knowledge base is an ontology designed to help the mission specification.
The characteristics of the agents is defined with the declarative predicate presented in the section 3.2.1.

It is possible to specify a constraint involving several agents. For example, considering a mission with
two types of agents, an agent can be a "UAV" for unmanned aerial vehicle or a "UGV" for unmanned
ground vehicle. This characteristics will be define as an attribute of the agents. Instead of writing:
node_goal(14, [agent1, agent2]), it is possible to write node_goal(14, "UGV") if agent1 and agent2 have
the attribute UGV, meaning at the end of the mission a "UGV" should be at the node 14.

Another example of the combined efficiency of objects and ontologies is: french infantry uses
impressive vehicles called "VBCI" which need some place to maneuver. If the officer wants to ban the
progression of these vehicles on narrow roads, he has to stipulate: edge_avoid("width < 10", "VBCI") in
spite of edge_avoid(list_of_edges_with_width_less_than_10, list_of_units_with_VBCI)

Currently, the ontology is hierarchical. An attribute can be a leaf in knowledge tree. For instance, if
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agent1 is a UGV on wheels and agent2 is a UGV on caterpillars. There are the relations: a UGV with
wheels is a UGV, and the UGV on caterpillars is a UGV. They have the same parent. The ontology allows
to specify node_goal(14, "UGV") to involve agent1 and agent2 in the constraint.

4 Operational Context
ORTAC+ is built to specify military missions in order to assist an officer planning the mission. In the
following part, an example of mission is described, then its representation in the proposed language.

4.1 Description of the Mission

Figure 1: Cartography of the mission
in Goma, Congo.

Figure 2: Geographical mission mod-
elisation using graphs

Congolese rebels, supported by elements from Rwanda, are located in the eastern region of Goma.
The rebels raise a significant threat to the peace and security of the city. The mission focused on two
specific objectives: securing the United Nation (UN) point at the border, between Congo and Rwanda, and
preparing for the potential evacuation of civilians at the airport. With forces comprising 4 distinct military
sections and 4 motorized companies positioned along the west cost of the city, this mission implies the
recognition of crucial points and axes leading to the destination goals.
Operational constraint. Units follow specific rules of engagements during the execution of their tasks:

• Simultaneous coexistence of two distinct units at the same spatial coordinates is not allowed.
• Any unit advancing on a main street or an intersection must be supported by another unit recently

deployed to an adjacent position.

Tactical information. The mission encompasses critical data as a foundation for modeling and planning:

• The airport: the airport is a crucial point and must be controlled during the mission, with a designated
convoy of one company and one unit equipped with night vision glasses will be tasked to evacuate
people from the airport.

• Securing the UN point: The UN point is identified at the border, requiring strict security measures,
with a priority to maintain control over

• Support team: A support team will be positioned at the southern region of the operation area
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Figure 3: Specification of the "Secure the UN in Goma" mission in ORTAC+

4.2 Mission specification in ORTAC+
An example of the mission specification in ORTAC+ is given in Figure 3. The mission goal is the

securing of the United Nations. The cartography of the mission is given in Figure 1. Friendly forces
are blue rectangles at the west of Goma. Target positions are triangles at the east near to enemies in
red rectangles. The black triangle correspond to the airport and the red one the UN. The 3 axis of
representation (geography, resources and operations) appear clearly combined with the construction
of a hierarchical ontology. Geography elements of the mission are supposed to be already given. It
is represented in Figure 2 The Goma mission involves two types of agents: compagnies and sections.
The predicates "agent_define()" is used to instantiate the units. At the initial state, the 4 mechanized
compagnies are at the same node (9). This violates the constraint that only one unit can be at a node at the
same time. That’s why the notion of capacity is introduced for nodes and edges. By default the capacity
of a node or an edge will be 1 but it can be changed for some exceptions. The method "attribute()" allows
the user to add some characteristics to the units. Then, the high level predicates described earlier are used
to add the constraints of the mission. The final state is defined with the predicate "node_goal()" with the
help of the knowledge base. A compagny should be at the node 11, corresponding to the airport, at the
final state. Other constraints are defined, for instance, the unit1 should visit the node 9 but avoid the edge
(9,8). ORTAC+ introduces coordination constraints. If an enemy is suspected on a node or an edge, a unit
cannot visit it without support. Therefore, the predicate "node_supported_from()" model this coordination.
In the presented example, it is specified in order to visit the node 3, there must be a support at the node 18.

5 Conclusion
We have presented ORTAC+, a DSL that hopefully permits a military officer to specify a mission.
Compared to its predecessor, ORTAC, the evolution can be summarized as follows:

1. predicates are anonymized when suitable, in particular for the declaration of goals or supports and
operate on lists of homogeneous objects (agents, nodes, or edges),

2. these lists can be described intentionally, with a propositional sub-language constraining the
attributes of objects,

3. these propositions, when they involve the "or" operator, can be shortened thanks to the declaration
of the adequate ontology.

As a result, ORTAC+ allows more compact and declarative models, which will be more easily written
and checked by end-users. At the same time, we take care to keep semantics to allow a translation to
PDDL, making it possible to rely on the existing planners. Current and future work explores 3 orthogonal
directions: new coordination constraints, quantitative time and resources, and compatibility with flying
drones.
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