
EPTCS 386

Proceedings of the

16th International Conference on

Automata and Formal Languages

Eger, Hungary, September 5-7, 2023

Edited by: Zsolt Gazdag, Szabolcs Iván and Gergely Kovásznai

Published: 3rd September 2023

DOI: 10.4204/EPTCS.386

ISSN: 2075-2180

Open Publishing Association

Table of Contents

Preface . 1

Zsolt Gazdag, Szabolcs Iván and Gergely Kovásznai

Invited Presentation: Operations on Boolean and Alternating Finite Automata 3

Galina Jirásková

Invited Presentation: Compositions of Weighted Extended Top-Down Tree Transducers 11

Andreas Maletti

Invited Presentation: On the Degree of Extension of Some Models Defining Non-Regular

Languages . 12

Victor Mitrana and Mihaela Păun

A Construction for Variable Dimension Strong Non-Overlapping Matrices . 25

Elena Barcucci, Antonio Bernini, Stefano Bilotta and Renzo Pinzani

Duality of Lattices Associated to Left and Right Quotients . 35

Jason Bell, Daniel Smertnig and Hellis Tamm

Approximate State Reduction of Fuzzy Finite Automata . 51

Miroslav Ćirić, Ivana Micić, Stefan Stanimirović and Linh Anh Nguyen

Weighted Automata over Vector Spaces . 67

Nada Damljanović, Miroslav Ćirić and Jelena Ignjatović

Freezing 1-Tag Systems with States . 82

Szilárd Zsolt Fazekas and Shinnosuke Seki

When Stars Control a Grammar’s Work . 96

Henning Fernau, Lakshmanan Kuppusamy and Indhumathi Raman

Comparative Transition System Semantics for Cause-Respecting Reversible Prime Event Structures 112

Nataliya Gribovskaya and Irina Virbitskaite

On Minimal Pumping Constants for Regular Languages . 127

Markus Holzer and Christian Rauch

Reversible Two-Party Computations . 142

Martin Kutrib and Andreas Malcher

Pumping Lemmata for Recognizable Weighted Languages over Artinian Semirings 155

Andreas Maletti and Nils Oskar Nuernbergk

ii

State-deterministic Finite Automata with Translucent Letters and Finite Automata with

Nondeterministically Translucent Letters . 170

Benedek Nagy

Words-to-Letters Valuations for Language Kleene Algebras with Variable Complements 185

Yoshiki Nakamura and Ryoma Sin’ya

Solving the Weighted HOM-Problem With the Help of Unambiguity . 200

Andreea-Teodora Nász

Once-Marking and Always-Marking 1-Limited Automata . 215

Giovanni Pighizzini and Luca Prigioniero

A General Approach to Proving Properties of Fibonacci Representations via Automata Theory. 228

Jeffrey Shallit and Sonja Linghui Shan

Separating Words from Every Start State with Horner Automata . 243

Nicholas Tran

Strictly Locally Testable and Resources Restricted Control Languages in Tree-Controlled Grammars253

Bianca Truthe

GAPs for Shallow Implementation of Quantum Finite Automata . 269

Mansur Ziiatdinov, Aliya Khadieva and Abuzer Yakaryılmaz

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 1–2, doi:10.4204/EPTCS.386.0

© Gazdag, Iván, Kovásznai
This work is licensed under the
Creative Commons Attribution License.

Preface

Zsolt Gazdag
University of Szeged, Hungary

gazdag@inf.u-szeged.hu

Szabolcs Iván
University of Szeged, Hungary

szabivan@inf.u-szeged.hu

Gergely Kovásznai
Eszterházy Károly Catholic University

kovasznai.gergely@uni-eszterhazy.hu

The 16th International Conference on Automata and Formal Languages (AFL 2023) was held in
Eger, September 5-7, 2023. It was organized by the Eszterházy Károly Catholic University of Eger,
Hungary, and the University of Szeged, Hungary. Topics of interest covered the theory and applica-
tions of automata and formal languages and related areas.

The scientific program consisted of invited lectures by

• Galina Jírásková (Slovak Academy of Sciences, Košice),

• Andreas Maletti (Universität Leipzig),

• Victor Mitrana (Polytechnic University of Madrid and National Institute of R&D for Biological
Sciences, Bucharest),

and 18 contributed presentations.
This volume contains the texts of the invited lecturers and the 18 papers selected by the Interna-

tional Program Committee from a total of 23 submissions. We would like to thank everybody who
submitted a paper to the conference. We are especially grateful to the invited speakers for presenting
interesting new developments.

The members of the International Program Committee were

• Francine Blanchet-Sadri (UNC Greensboro),

• Henning Bordihn (Universität Potsdam),

• Miroslav Ćirić (University of Niš),

• Erzsébet Csuhaj-Varjú (Eötvös Loránd University, Budapest),

• Pál Dömösi (University of Nyíregyháza),

• Gabriele Fici (Università di Palermo),

• Zoltán Fülöp (University of Szeged),

• Zsolt Gazdag (University of Szeged, co-chair),

• Viliam Geffert (P. J. Šafárik University, Košice),

• Géza Horváth (University of Debrecen),

• Szabolcs Iván (University of Szeged, co-chair),

• Roland Király (Eszterházy Károly Catholic University, Eger),

• Gergely Kovásznai (Eszterházy Károly Catholic University, Eger),

• Martin Kutrib (Universität Gießen),

• Andreas Malcher (Universität Gießen),

http://dx.doi.org/10.4204/EPTCS.386.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Preface

• František Mráz (Charles University, Prague),

• Benedek Nagy (Eastern Mediterranean University, Famagusta; Eszterházy Károly Catholic Uni-
versity, Eger),

• Chrystopher L. Nehaniv (University of Waterloo),

• Giovanni Pighizzini (University of Milan),

• Agustín Riscos-Nunez (Universidad de Sevilla),

• Kai Salomaa (Queen’s University, Kingston),

• Petr Sosík (Silesian University in Opava),

• Bianca Truthe (Universität Gießen),

• György Vaszil (University of Debrecen).

The members of the Steering Committee overseeing the AFL series are

• András Ádám (Budapest, honorary chair),

• István Babcsányi (Budapest),

• Erzsébet Csuhaj-Varjú (Budapest),

• Pál Dömösi (Nyíregyháza, chair),

• Zoltán Fülöp (Szeged),

• Zsolt Gazdag (Szeged),

• Géza Horváth (Debrecen),

• László Hunyadvári (Budapest),

• Szabolcs Iván (Szeged),

• László Kászonyi (Szombathely),

• Gergely Kovásznai (Eger),

• Attila Nagy (Budapest),

• György Vaszil (Debrecen).

We thank all members of the Program Committee and their subreferees for their excellent coop-
eration in the selection of the papers. We are grateful to the Faculty of Informatics of the Eszterházy
Károly Catholic University of Eger and the Institute of Informatics of University of Szeged for the local
organization and financial support of AFL 2023.

Eger, September 2023.
Zsolt Gazdag, Szabolcs Iván, and Gergely Kovásznai

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 3–10, doi:10.4204/EPTCS.386.1

© G. Jirásková
This work is licensed under the
Creative Commons Attribution License.

Operations on Boolean and Alternating Finite Automata

Galina Jirásková*

Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk

We examine the complexity of basic regular operations on languages represented by Boolean and
alternating finite automata. We get tight upper bounds m+ n and m+ n+ 1 for union, intersection,
and difference, 2m+n and 2m+n+1 for concatenation, 2n+n and 2n+n+1 for square, m and m+1
for left quotient, 2m and 2m +1 for right quotient. We also show that in both models, the complexity
of complementation and symmetric difference is n and m+n, respectively, while the complexity of
star and reversal is 2n. All our witnesses are described over a unary or binary alphabets, and whenever
we use a binary alphabet, it is always optimal.

1 Introduction

Boolean and alternating finite automata [1, 2, 6, 7, 10, 11, 12] are generalizations of nondeterministic
finite automata. They recognize regular languages, however, they may be exponentially smaller, with
respect to the number of states, than equivalent nondeterministic finite automata (NFAs). While in an
NFA the transition function maps any pair of a state and input symbol to a set of states that can be viewed
as a disjunction of the states, in a Boolean finite automaton (BFA) the result of the transition function is
given by any Boolean function with variables in the state set.

Fellah et al. [3] examined alternating finite automata (AFAs), that is, Boolean automata in which the
initial Boolean function is given by a projection. They proved that every n-state AFA can be simulated by
a (2n +1)-state nondeterministic finite automaton with a unique initial state, and left as an open problem
the tightness of this upper bound. An answer to this problem was given in [7, Lemma 1, Theorem 1]
by describing an n-state binary AFA whose equivalent NFA with a unique initial state has at least 2n +1
states. Here we present a different example in which the reachability and co-reachability of all singleton
sets immediately implies the result.

In [3] it was also shown that given an m-state and n-state AFAs for languages K and L, the lan-
guages Lc, K∪L, K∩L, KL, and L∗ are recognized by AFAs of at most n,m+n+1,m+n+1,2m+n+1,
and 2n +1 states, respectively, and the tightness of these upper bounds was left open as well.

Here we present the results obtained in [5, 6, 7, 8, 11] that provide the exact complexity of basic regu-
lar operations on languages represented by Boolean and alternating finite automata. Table 1 summarizes
these results. It also displays the sizes of alphabet used to describe witness languages.

2 Preliminaries

Let Σ be a non-empty alphabet of symbols. Then Σ∗ denotes the set of all strings over the alphabet Σ

including the empty string ε . A language over Σ is any subset of Σ∗.

*This research was supported by the Slovak Grant Agency for Science (VEGA) under contract 2/0096/23 “Automata and
Formal Languages: Descriptional and Computational Complexity”.

http://dx.doi.org/10.4204/EPTCS.386.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

4 Operations on Boolean and Alternating Finite Automata

Table 1: The complexity of basic regular operations on Boolean and alternating finite automata.

operation BFA |Σ| AFA |Σ| source

complementation n 1 n 1 [6, Thm. 1]
union m+n 1 m+n+1 1 [7, Thm. 2(1) and 3(1)], [11, Thm. 4.3 and 4.4]
intersection m+n 1 m+n+1 1 [7, Thm. 2(2) and 3(2)], [11, Thm. 4.3 and 4.4]
difference m+n 1 m+n+1 1 [6, Thm. 13(a) and 14(a)], [11, Thm. 4.3 and 4.4]
symm. difference m+n 1 m+n 1 [6, Thm. 13(b) and 14(b)], [11, Thm. 4.3 and 4.4]
star 2n 2 2n 2 [6, Thm. 12]
reversal 2n 2 2n 2 [6, Thm. 13(c) and 14(c)]
right quotient 2m 2 2m +1 2 [6, Thm. 13(d) and 14(d)]
left quotient m 1 m+1 1 [6, Thm. 13(e) and 14(e)]
concatenation 2m +n 2 2m +n+1 2 [7, Thm. 4 and 5],[5, Thm. 6.4]
square 2n +n 2 2n +n+1 2 [8, Thm. 13 and 14]

A Boolean finite automaton (BFA) is a quintuple A = (Q,Σ, ·,gs,F) where Q = {q1,q2, . . . ,qn} is a
finite non-empty set of states, Σ is a finite input alphabet, · is a transition function that maps Q×Σ into
the set Bn of Boolean functions with variables {q1,q2, . . . ,qn}, gs ∈Bn is the initial Boolean function,
and F ⊆ Q is the set of final states. The transition function · is extended to the domain Bn× Σ∗ as
follows: For each g ∈Bn, each a ∈ Σ, and each w ∈ Σ∗, we have

• g · ε = g,

• if g = g(q1,q2, . . . ,qn), then g ·a = g(q1 ·a,q2 ·a, . . . ,qn ·a),
• g · (wa) = (q ·w) ·a.

Let f = (f1, f2, . . . , fn) be a Boolean vector (finality vector) such that fi = 1 if and only if qi ∈ F . The
language accepted by a BFA A is the set of strings L(A) = {w ∈ Σ∗ | (gs ·w)(f) = 1}. We illustrate the
above mentioned notions in the following example.

Example 1. Consider the 2-state binary Boolean finite automaton A = ({q1,q2},{a,b}, ·,q1∧q2,{q1})
where the transition function · is defined in Table 2.

Table 2: The transition function of the BFA A.

· a b

q1 q1∨q2 q1

q2 q2 q1∧¬q2

Then the string ab is accepted by A since we have

gs ·ab = (q1∧q2) ·ab = ((q1∨q2)∧q2) ·b = (q1∨ (q1∧¬q2))∧ (q1∧¬q2),

and the resulting function evaluates to 1 in the finality vector (1,0).

G. Jirásková 5

A BFA A is called alternating (AFA) if its initial function is a projection gs(q1,q2, . . . ,qn) = q1;
cf. [2, 3, 15]. It is nondeterministic with multiple initial states (MNFA) if gs and all qi · a are of the
form qi1 ∨ qi2 ∨ ·· · ∨ qi` . If moreover gs = q1, then A is nondeterministic (with a unique initial state)
(NFA). If moreover all qi ·a are of the form q j, then A is deterministic (DFA).

3 Simulations of BFAs and AFAs by MNFAs, NFAs, and DFAs

In this section we recall the trade-offs between different models of finite automata. Let us start with the
simulation of BFAs by MNFAs.

Proposition 2 ([3, Theorem 4.1], [7, Lemma 1]). Let L be a language accepted by an n-state BFA.
Then L is accepted by a 2n-state MNFA whose reverse is a DFA.

Proof Idea. Let A = (Q,Σ, ·,gs,F) be a BFA with Q = {q1,q2, . . . ,qn}. Let f = (f1, f2, . . . , fn) be the
Boolean finality vector with fi = 1 iff qi ∈ F . Construct a MNFA A′ = (Q′,Σ,◦, I,{ f}) where

• Q′ = {0,1}n,

• I = {u ∈ Q′ | gs(u) = 1},
• for each u ∈ Q′ and each a ∈ Σ, we set u◦a = {u′ ∈ Q′ | (q1 ·a,q2 ·a, . . . ,qn ·a)(u′) = u}.

Then L(A) = L(A′).

Since the reverse of the MNFA in the proof above is a DFA, we get the next result.

Corollary 3. If L is accepted by an n-state BFA, then LR is accepted by a 2n-state DFA.

Notice that if A is an AFA, then the MNFA A′ constructed in the proof of Proposition 2 has 2n−1

initial states, and we get the following observation.

Corollary 4. If L is accepted by an n-state AFA, then LR is accepted by a 2n-state DFA of which 2n−1

are final.

Our next aim is to get the converses of the above corollaries.

Proposition 5 ([7, Lemma 2]). Let L be accepted by a 2n-state MNFA whose reverse is a DFA. Then L
is accepted by an n-state BFA.

Proof Idea. Let A = (Q,Σ, ·, I,F) be a MNFA with Q = {0,1}n. Since AR is a DFA, the MNFA A has
a unique final state f ∈ Q, and moreover, for each u ∈ Q and each a ∈ Σ there is a unique state u′

with u′ ·a = u; denote this state by au. Construct a BFA A′ = (Q′,Σ,◦,gs,F ′) where

• Q′ = {q1,q2, . . . ,qn},
• gs(u) = 1 iff u ∈ I,

• F ′ = {qi | fi = 1},
• (q1 ◦a,q2 ◦a, . . . ,qn ◦a)(u) = au.

Then L(A) = L(A′).

Corollary 6. If L is accepted by a 2n-state DFA, then LR is accepted by an n-state BFA.

Corollary 7. If L is accepted by a 2n-state DFA which has 2n−1 final states, then LR is accepted by
an n-state AFA.

6 Operations on Boolean and Alternating Finite Automata

We continue with the simulation of BFAs by DFAs.

Proposition 8 ([10, Theorem 7], [1, Theorem 2], [2, Theorem 5.2], [12, Corollary 3]). Let L be a
language over an alphabet Σ accepted by an n-state BFA. Then L is accepted by a DFA of at most 22n

states, and this upper bound is tight if |Σ| ≥ 2.

Proof Idea. If L is accepted by an n-state BFA, then by Proposition 2, it is accepted by a 2n-state MNFA,
and, consequently, by a 22n

-state DFA. For tightness, let K be the binary 2n-state DFA from [12, Proposi-
tion 2] whose reversal KR requires 22n

deterministic states. By Corollary 6, the language KR is accepted
by an n-state BFA.

Finally, we consider the simulation of BFAs by NFAs, and provide an answer to an open problem
from [3].

Theorem 9 ([7, Theorem 1]). Let L be accepted by an n-state BFA. Then L is accepted by an NFA of at
most 2n +1 states. This upper bound is tight, and it can be met by a binary n-state AFA.

Proof Idea. By Proposition 2, the language L is accepted by a 2n-state MNFA, and, consequently, by
a (2n + 1)-state NFA. For tightness, let n ≥ 2. Let L be the language accepted by the 2n-state MNFA
A = (Q,{a,b}, ·, I,F) where

• Q = {0,1, . . . ,2n−1},

• I = {0,1, . . . ,2n−1−1},

• F = {2n−1},

• i ·a = {(i+1) mod 2n} for each i ∈ Q,

• 0 ·b = {0}, (2n−1) ·b = Q\{0}, and i ·b = /0 is i ∈ Q\{0,2n−1};

see Figure 1 for an illustration 1. The reverse AR is a 2n-state DFA which has 2n−1 final states. By
Corollary 7, the language L is accepted by an n-state AFA. On the other hand, each singleton set is
reachable and co-reachable in the MNFA A which means that every NFA accepting L has at least 2n +1
states by [4, Lemma 9].

0 1 2 3 4 5 6 7a a a a a a a

a

b

b

b
b

b
b

b
b

Figure 1: The MNFA A; n = 3.

G. Jirásková 7

4 Operational Complexity on Boolean and Alternating Finite Automata

In this section we use the four corollaries from the previous section to get the complexity of basic regular
operations on languages represented by Boolean and alternating finite automata. The idea is as follows.
Consider a binary operation and take languages K and L recognized by a 2m-state and 2n-state DFA,
respectively, that are witnesses for the considered operation on DFAs. Then the languages KR and LR

are accepted by an m-state and n-state BFA, respectively. Now it is enough to show that the language
resulting from the operation applied to the languages KR and LR requires large enough BFA. In the case
of AFAs, we start with DFAs with half of their states final that are hard for the considered operation on
DFAs. We illustrate this idea for the concatenation operation.
Theorem 10 (Concatenation on BFAs). Let K and L be languages over an alphabet Σ accepted by
an m-state and n-state BFA, respectively. Then the language KL is accepted by a BFA of at most 2m +n
states, and this upper bound is tight if |Σ| ≥ 2.

Proof. To get an upper bound, let A = (QA,Σ, ·A,gA,FA) and B = (QB,Σ, ·B,gB,FB) be BFAs accept-
ing the languages K and L, respectively. We first convert the BFA A to the 2m-state MNFA M =
(QM,Σ, ·M,gM,FM). Now we construct a BFA C = (QM ∪QB,Σ, ·,gM,FB) with

q ·a =


q ·M a, if q ∈ QM \FM;
q ·M a∨gB ·B a, if q ∈ FM;
q ·B a, if q ∈ QB;

cf. [3, Theorem 9.2]. Then the BFA C has 2m +n states and recognizes the language KL.
To get tightness, let K and L be Maslov’s binary witnesses for concatenation on DFAs from [13],

see Figure 2, accepted by a 2n-state and 2m-state DFA, respectively. Then every DFA accepting the
language KL has at least 2n22m − 22m−1 states. By Corollary 6, the languages LR and KR are accepted
by m-state and n-state BFA, respectively. Next, we have (LRKR)R = KL, so every DFA accepting the
reverse of the concatenation LRKR has at least 2n22m−22m−1 states. By Corollary 3, it follows that every
BFA accepting KRLR has at least dlog(2n22m−22m−1)e= 2m +n states.

A 1 2 . . . m−1 ma a a a

a

b b b b

B 1 2 . . . n−2 n−2 nb b b b a,b

ba a a

a

Figure 2: Maslov’s witness DFAs for concatenation meeting the upper bound m2n−2n−1.

Theorem 11 (Concatenation on AFAs). Let K and L be languages over an alphabet Σ accepted by an m-
state and n-state AFA, respectively. Then the language KL is accepted by a AFA of at most 2m + n+ 1
states, and this upper bound is tight if |Σ| ≥ 2.

8 Operations on Boolean and Alternating Finite Automata

A 1 2 . . . m
2

m
2 +1 m

2 +2 . . . ma

b

a a a a a a

a

b b b b b b b

B 1 2 3 . . . n
2

n
2 +1 . . . nb a,b

b b b ba

a a a a a

a

Figure 3: Witness DFAs for concatenation with half of states final meeting the upper bound m2n− m
2 2n−1.

Proof. The upper bound follows from the previous theorem since one more state is enough to get an AFA
equivalent to a given BFA. To get tightness, we use languages K and L accepted by 2n-state and 2m-state
witness DFAs for concatenation with half of their states final from [5, Theorem 4.7], see Figure 3. Then
the minimal DFA for KL has 2n22m − 2n−122m−1 states, of which more that 22m+n−1 states are final [5,
Lemma 6.4]. Then the languages LR and KR are accepted by an m-state and n-state AFA, respectively.
Next, we have (LRKR)R = KL, so every AFA for LRKR has at least dlog(2n22m − 2n−122m−1)e = 2m + n
states. If an AFA of 2m + n states would accept LRKR, then the reverse of this language, that is, the
language KL would be accepted by a DFA of 22m+n states with 22m+n−1 final states. However, the
minimal DFA for KL has more than 22m+n−1 final states, a contradiction.

Hence, the upper bound 2m +n+1 for concatenation on AFAs from [3, Theorem 9.3] is tight. This
provides an answer to the second open problem from [3]. A similar idea as for concatenation also works
for square, and left and right quotients. Our results for the star operation are covered by the next theorem.
Theorem 12 (Star on BFAs and AFAs). If L is accepted by an n-state BFA, then L∗ is accepted by
a 2n-state AFA. Moreover, there exists a binary language L accepted by an n-state AFA such that every
BFA for L∗ has at least 2n states.

Proof. If L is accepted by an n-state BFA, then LR is accepted by a 2n-state DFA by Corollary 3.
Then (LR)∗ is accepted by a 22n

-state DFA with half of its state final [6, Proposition 8]. Next, we
have (L∗)R = (LR)∗. Hence L∗ is accepted by an n-state AFA by Corollary 7.

To get tightness, let L be the Palmovský’s witness DFA for star with 2n states half of which are
final [14, Theorem 4.4], see Figure 4. Then LR is accepted by an n-state AFA by Corollary 7. Next, we
have ((LR)∗)R = ((L∗)R)R = L∗, and every DFA for L∗ has at least 22n−1 + 22n−1+2n−1

states. It follows
that every BFA for (LR)∗ has at least dlog(22n−1 +22n−1+2n−1

)e= 2n states by Corollary 3.

Similar arguments work for reversal. If L is accepted by an n-state BFA, that LR is accepted by a 2n-
state DFA, a special case of AFA. For tightness, we take the language L accepted by a 2n-state Šebej’s
DFA from [9, Fig. 6] with half of its states final. Then LR ia accepted by an n-state AFA, while every
DFA for LR has at least 22n

states. Hence, every BFA for L = (LR)R has at least 2n states by Corollary 6.
We conclude this section with Boolean operations. Denote by bsc(L) the number of states in a

minimal, with respect to the number of states, BFA accepting L. Define asc(L) in an analogous way.

G. Jirásková 9

A 1 2 . . . n
2

n
2 +1 . . . n−1 na a,b a,b a,b a,b a,b a

a

b b

b

Figure 4: Witness DFA for star with half of states final meeting the upper bound 2n−1 +2n−1− n
2 .

Proposition 13. Let L be a regular language. Then bsc(L) =bsc(Lc) and asc(L) =asc(Lc).

Proof. If L is accepted by a minimal n-state BFA, then LR is accepted by a 2n-state DFA by Corollary 3.
It follows that (LR)c = (Lc)R is accepted by a 2n state DFA, and therefore Lc is accepted by an n-state
BFA by Corollary 6. Moreover, the language Lc cannot be accepted by a smaller BFA because otherwise
the language L = (Lc)c would be accepted by a smaller BFA as well. In the case of AFAs, the DFAs
for LR and (LR)c have 2n states and 2n−1 final states, and we use Corollaries 4 and 7 to get the result.

Theorem 14. Let K and L be languages over Σ accepted by an m-state and n-state AFA, respectively.
Then K∪L is accepted by an AFA of at most m+n+1 states, and this upper bound is tight if |Σ| ≥ 1.

Proof. The language K ∪ L can be accepted by a (m+ n)-state BFA constructed from the two AFAs
by setting the initial function to the disjunction of the corresponding initial states. The upper bound
for AFAs follows. For tightness, let K be the language accepted by the unary 2m-state DFA with state
set {0,1, . . . ,2m−1}, the initial state 0, the set of final states {2m−1,2m−1+1, . . . ,2m−1}, and transitions
given by i ·a = (i+1) mod 2m. Then KR = K is accepted by an m-state AFA. Next, let L be a language
accepted by a (2n−1)-state unary DFA with state set {0,1, . . . ,2n−2}, the initial state 0, the set of final
states {2n−1,2m−1 + 1, . . . ,2m− 2}, and transitions given by i · a = (i+ 1) mod 2m− 1. Then we can
add an unreachable final state to this DFA to get an equivalent 2n-state DFA with half of its states final.
Hence LR = L is accepted by an n-state AFA. As shown in [11, Lemma 4.2, Theorem 4.4], the minimal
DFA for K ∪L has 2m(2n− 1) states, of which more than 2m+n+1 are final. It follows that every AFA
for K∪L has at least m+n+1 states.

By Proposition 13 and De Morgan’s laws, the complement of the languages described in the previous
proof are witnesses for intersection. The case of difference is analogous. The same languages give a
lower bound m+ n for symmetric difference on AFAs [11, Lemma 4.2] which is also an upper bound;
notice that the symmetric difference of two DFAs with half of their states final is accepted by a DFA with
half of its states final. Finally, exactly the same languages serve as witnesses for Boolean operations on
BFAs [11, Theorem 4.3].

In the unary case, the reverse of any language is the same language, and the right quotient is the same
as the left quotient of the corresponding languages. Moreover, we can show that the complexity of star,
concatenation, and square on unary BFAs is 2n,m+n, and n+1, respectively. It follows that whenever
we used a binary alphabet to describe witnesses for the corresponding operations on BFAs and AFAs, it
was always optimal.

The exact complexity of star, concatenation, and square on unary AFAs remains open since the
complexity of these operations on unary DFAs with half of their states final is not known. The complexity
of less common regular operations like shuffle, cyclic shift, or square root, would be of interest as well.

10 Operations on Boolean and Alternating Finite Automata

References
[1] J.A. Brzozowski & E.L. Leiss (1980): On equations for regular languages, finite automata, and sequential

networks. Theor. Comput. Sci. 10, pp. 19–35, doi:10.1016/0304-3975(80)90069-9.
[2] A.K. Chandra, D. Kozen & L.J. Stockmeyer (1981): Alternation. J. ACM 28(1), pp. 114–133,

doi:10.1145/322234.322243.
[3] Abdelaziz Fellah, Helmut Jürgensen & Sheng Yu (1990): Constructions for alternating finite automata. Int.

J. Comput. Math. 35(1-4), pp. 117–132, doi:10.1080/00207169008803893.
[4] M. Hospodár (2021): Power, positive closure, and quotients on convex languages. Theor. Comput. Sci. 870,

pp. 53–74, doi:10.1016/j.tcs.2021.02.002.
[5] M. Hospodár & G. Jirásková (2018): The complexity of concatenation on deterministic and alternating finite

automata. RAIRO Theor. Informatics Appl. 52(2-3-4), pp. 153–168, doi:10.1051/ita/2018011.
[6] M. Hospodár, G. Jirásková & I. Krajňáková (2018): Operations on Boolean and alternating finite au-

tomata. In F.V. Fomin & V.V. Podolskii, editors: CSR 2018, LNCS, vol. 10846, Springer, pp. 181–193,
doi:10.1007/978-3-319-90530-3_16.

[7] G. Jirásková (2012): Descriptional complexity of operations on alternating and Boolean automata. In E.A.
Hirsch, J. Karhumäki, A. Lepistö & M. Prilutskii, editors: CSR 2012, LNCS, vol. 7353, Springer, pp. 196–
204, doi:10.1007/978-3-642-30642-6_19.

[8] G. Jirásková & I. Krajňáková (2019): Square on deterministic, alternating, and Boolean finite automata. Int.
J. Found. Comput. Sci. 30(6-7), pp. 1117–1134, doi:10.1142/S0129054119400318.

[9] G. Jirásková & J. Šebej (2012): Reversal of binary regular languages. Theor. Comput. Sci. 449, pp. 85–92,
doi:10.1016/j.tcs.2012.05.008.

[10] D. Kozen (1976): On parallelism in Turing machines. In: 17th Annual Symposium on Foundations
of Computer Science, Houston, Texas, USA, 25-27 October 1976, IEEE Computer Society, pp. 89–97,
doi:10.1109/SFCS.1976.20.

[11] I. Krajňáková (2020): Finite Automata and Operational Complexity. Ph.D. thesis, Comenius University in
Bratislava, Faculty of Mathematics, Physics and Informatics. Available at https://www.mat.savba.sk/
musav/autoreferaty/Krajnakova-dizertacna_praca.pdf.

[12] E.L. Leiss (1981): Succint representation of regular languages by Boolean automata. Theor. Comput. Sci.
13, pp. 323–330, doi:10.1016/S0304-3975(81)80005-9.

[13] A. N. Maslov (1970): Estimates of the number of states of finite automata. Soviet Math. Doklady 11(5), pp.
1373–1375. Available at https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&
paperid=35742&option_lang=eng.

[14] M. Palmovský (2016): Kleene closure and state complexity. RAIRO Theor. Informatics Appl. 50(3), pp.
251–261, doi:10.1051/ita/2016024.

[15] S. Yu (1997): Regular Languages. In G. Rozenberg & A. Salomaa, editors: Handbook of Formal Languages,
Volume 1: Word, Language, Grammar, Springer, pp. 41–110, doi:10.1007/978-3-642-59136-5_2.

https://doi.org/10.1016/0304-3975(80)90069-9
https://doi.org/10.1145/322234.322243
https://doi.org/10.1080/00207169008803893
https://doi.org/10.1016/j.tcs.2021.02.002
https://doi.org/10.1051/ita/2018011
https://doi.org/10.1007/978-3-319-90530-3_16
https://doi.org/10.1007/978-3-642-30642-6_19
https://doi.org/10.1142/S0129054119400318
https://doi.org/10.1016/j.tcs.2012.05.008
https://doi.org/10.1109/SFCS.1976.20
https://www.mat.savba.sk/musav/autoreferaty/Krajnakova-dizertacna_praca.pdf
https://www.mat.savba.sk/musav/autoreferaty/Krajnakova-dizertacna_praca.pdf
https://doi.org/10.1016/S0304-3975(81)80005-9
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=35742&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=35742&option_lang=eng
https://doi.org/10.1051/ita/2016024
https://doi.org/10.1007/978-3-642-59136-5_2

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 11–11, doi:10.4204/EPTCS.386.2

© Andreas Maletti

This work is licensed under the

Creative Commons Attribution License.

Compositions of Weighted Extended Top-Down Tree

Transducers

Andreas Maletti

Universität Leipzig, Germany

andreas.maletti@uni-leipzig.de

Weighted extended top-down tree transducers are a natural generalization of the classic top-down

tree transducers, but their compositions pose additional problems due to the extension as well as

the weights. We review the basic composition results of [1] of the unweighted case and the basic

composition approach of [2] or the weighted case. Additionally we report on recent progress on

the conjectures raised in the latter reference. In particular we recently were able to obtain results

that mirror the classical composition results for top-down tree transducers.

References

[1] Joost Engelfriet, Zoltán Fülöp & Andreas Maletti (2017): Composition closure of linear extended top-down

tree transducers. Theory of Computing Systems 60(2), pp. 129–171, doi:10.1007/s00224-015-9660-2.

[2] Aurélie Lagoutte & Andreas Maletti (2011): Survey: Weighted Extended Top-Down Tree Transducers Part III

– Composition. In: Algebraic Foundations in Computer Science, Lecture Notes in Computer Science 7020,

pp. 272–308, doi:10.1007/978-3-642-24897-9_13.

http://dx.doi.org/10.4204/EPTCS.386.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00224-015-9660-2
https://doi.org/10.1007/978-3-642-24897-9_13

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 12–24, doi:10.4204/EPTCS.386.3

© V. Mitrana, M. Păun

This work is licensed under the

Creative Commons Attribution License.

On the Degree of Extension of Some Models Defining

Non-Regular Languages*

Victor Mitrana

Department of Information Systems,
Universidad Politécnica de Madrid

Calle Alan Turing s/n (Carretera de Valencia Km 7),
28031 Madrid, Spain

and
National Institute of R&D for Biological Sciences,

296 Independent, ei Bd., 060031, Bucharest. Romania
victor.mitrana@upm.es

Mihaela Păun

National Institute for R&D for Biological Sciences
296 Independent, ei Bd., 060031, Bucharest, Romania

mihaela.paun@incdsb.ro

This work is a survey of the main results reported for the degree of extension of two models defining

non-regular languages, namely the context-free grammar and the extended automaton over groups.

More precisely, we recall the main results regarding the degree on non-regularity of a context-free

grammar as well as the degree of extension of finite automata over groups. Finally, we consider a

similar measure for the finite automata with translucent letters and present some preliminary results.

This measure could be considered for many mechanisms that extend a less expressive one.

1 Introduction

Language defining models play a central role in formal language theory, and in theoretical computer

science. There have been defined very many such models with various motivations depending on the

specific problems to be solved. In this work, we restrict ourselves to the most well-known devices:

Chomsky generative grammars and finite automata. Regular languages are classically represented by:

regular or right-linear grammars, many variants of finite automata, regular expressions, logical or al-

gebraic formalisms. Due to their limited expressiveness, some of these models have been extended to

more complex models such that the old model is just a particular case of the extended one. For instance,

context-free grammars are natural extensions of regular or right-linear grammars, finite automata with

valences [15], jumping automata [29], automata with translucent letters [31] are extensions of finite au-

tomata able to accept non-regular languages, etc. In their turn, context-free languages are classically

represented by: context-free grammars, pushdown automata, logical and algebraic formalisms. Mainly,

by the same reason as above, there have been proposed various extensions like context-sensitive gram-

mars, grammars with regulated rewriting [11], etc.

In this work, we recall a measure for evaluating the degree of extension of a two such models, namely

the context-free grammar as an extension of regular grammar, and the extended finite automaton over

groups as an extension of the finite automaton. A similar measure is also considered for finite automata

with translucent letters. Roughly speaking, this measure is defined as follows:

(i) by counting the maximal number of non-regular rules used in a derivation [6],

(ii) by evaluating the group memory used by the extended automata over groups [1].

(iii) by counting the number of jumping moves used by a finite automata with translucent letters.

*This work was performed through the Core Program within the National Research, Development and Innovation Plan

2022-2027, carried out with the support of MRID, project no. 23020101(SIA-PRO), contract no 7N/2022, and project no.

23020301(SAFE-MAPS), contract no 7N/2022.

http://dx.doi.org/10.4204/EPTCS.386.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

V. Mitrana, M. Păun 13

As far as the first measure is concerned, it is worth noting that similar investigations have been reported

from the time of introducing the classes of regular and context-free languages. Here are several results

giving sufficient conditions for a context-free grammar and a context-sensitive grammar to generate a

regular and context-free language, respectively:

• Each context-free grammar that is not self-embedding generates a regular language [8].

• An arbitrary grammar in which no terminal is used as context and every rule generates at least one

terminal, generates a context-free language [19].

• An arbitrary grammar generates a context-free language if the left side of every rule contains only

one nonterminal, with terminal words as the only context [5].

• If every rule of an arbitrary grammar has as left context a word of terminal symbols at least as long

as the right context, then the language generated is context-free [5].

• A grammar which has a partial ordering on its symbols, such that in every rule of the grammar

every symbol on the left side is “smaller” than some symbol on the right generates a context-free

language [21].

• In a grammar, the sets of terminal words generated by “one-way” and “two-ways” derivations are

context-free [26, 27, 28] and [13].

• An arbitrary grammar such that in each of its non-context-free rules, the right side contains a word

of terminals longer than any terminal word appearing between two nonterminals in the left side,

generates a context-free language [2].

As one can see, some of the above conditions can be immediately checked, namely by examining the

rules. In many cases, the complexity of a device generating a language is a function with nonnegative

integer values: rational index [4], initial index [16], index of a context-free grammar [7], height of

derivational trees [10], etc. Similar approaches have been reported in [6] for context-free and context-

sensitive grammars, and [1] for extended automata over groups. In the sequel, we survey the most

important results of these papers.

2 Preliminaries

We assume the reader is familiar with the basic definitions and concepts in formal language and au-

tomata theory and combinatorial algebra such as monoids and groups, presentations and generating sets,

etc. For further details, we refer to [33] (for formal languages and automata theory), and [24, 32] (for

combinatorial algebra).

We denote by N the set of nonnegative integers. An alphabet is a finite set of letters or symbols.

For a set A we denote by card(A) the cardinality of A. For a finite set V , called alphabet, we denote by

(V ∗, ·,ε) the free monoid generated by V under the operation of concatenation with the neutral element

ε . The elements of V ∗ are called words and ε is the empty word. For a word x ∈V ∗ we denote by al ph(x)
the smallest subset of V such that x ∈ al ph∗(x). Given a set A, we denote by P f (A) the family of all

finite subsets of A. The free semigroup generated by V with concatenation is denoted by V+. The length

of x ∈ V ∗ is denoted by |x|, |x|a is the number of occurrences of a in x, whereas |x|B is the number of

occurrences of symbols B ⊆V in x. For a word w = a1a2 . . .an, n ≥ 1, ai ∈V for all 1 ≤ i ≤ n, we write

w̃ = an . . .a2a1.

By regular grammar we mean a grammar that is right-linear, hence a regular rule should be under-

stood as a right-linear rule of one of the forms A → wB, and A → w, with A,B being nonterminals and w

14 On the Degree of Extension

being a word of terminals, possibly the empty word. In what follows we also use the regular expressions

for defining regular languages. A context-free grammar G = (N,T,S,P) is a reduced grammar if for any

X ∈ N we have the derivations S =⇒∗ αXβ , for some α ,β ∈ (N ∪T)∗ (X is said to be accessible), and

X =⇒∗ u, with u ∈ T ∗ (X is said to be co-accessible). A context-free grammar is proper if it has no

λ -production (i.e. X → λ , X ∈ N) and no chain-production (i.e., X →Y , X ,Y ∈ N). It is known that for

every context-free grammar (which does not generate λ) there exists an equivalent proper and reduced

context-free grammar.

For an arbitrary grammar G = (N,T,S,P) we denote by

• G(A) = (N,T,A,P), A ∈ N the grammar in which the axiom S was replaced by another nontermi-

nal, A.

• Greg = (N,T,S,Preg) the grammar obtained from G by considering the set Preg ⊆ P of regular

productions of P only.

• Gc f = (N,T,S,Pc f) the grammar obtained from G by considering the set Pc f ⊆ P of context-free

productions of P only.

We denote by REG and CF the class of regular and context-free languages, respectively.

A finite multiset over a finite set A is a mapping σ : A −→ IN; σ(a) expresses the number of copies

of a ∈ A in the multiset σ . In what follows, a multiset containing the elements b1,b2, . . . ,br, any element

possibly being repeated one or more times in the sequence, will be denoted by 〈b1,b2, . . . ,br〉. Each

multiset σ over a set A of cardinality n may also be viewed as an array of size n with non-negative

entries.

For two functions f ,g : N−→ N we say that f (n) ∈ O(g(n)) iff there is a constant c > 0 and n0 ≥ 1

such that f (n) ≤ cg(n) for all n ≥ n0. Equivalently, f (n) ∈ O(g(n)) iff lim
n→∞

sup
f (n)

g(n)
< ∞. Following

[3], we say that f (n) ∈ Ω(g(n)) iff lim
n→∞

sup
f (n)

g(n)
> 0. Furthermore, we say that f (n) ∈ o(g(n)) iff

lim
n→∞

f (n)

g(n)
= 0.

3 The degree of non-regularity

Given a context-free grammar G = (N,T,S,P) a derivation step in G by using the rule r ∈ P is denoted

by ⇒r. For a derivation in G

D = (S ⇒r1
w1 ⇒r2

w2 · · · ⇒rm
wm = w),

where w ∈ T ∗ and ri ∈ P for 1 ≤ i ≤ m, we define the degree of non-regularity of w with respect to D by

dnregG(w,D) = card{i | ri /∈ Preg,1 ≤ i ≤ m}.

Less formally, dnregG(w,D) is the number of non-regular rules applied in the derivation D of w in the

grammar G. The degree of non-regularity of a terminal word w with respect to the grammar G is

dnregG(w) =

{
min{dnregG(w,D) | D is a derivation of w in G},
0, if w /∈ L(G).

In other words, the degree of non-regularity of a word with respect to a grammar is computed by taking

into consideration the “least non-regular derivation” if there is one.

V. Mitrana, M. Păun 15

The degree of non-regularity of a context-free grammar G as above is a mapping from N to N defined

by

dnregG(n) = max{dnregG(w) | |w|= n,w ∈ T+}.
As one can see, the most “non-regular” word of each length is considered.

For a function f : N→ N we now define the complexity class

DNREG(f (n)) = {L | L = L(G) for some context-free grammar G and

dnregG(n) ∈ O(f (n))}.

Otherwise stated, a language has the degree of non-regularity f (n) if and only if it belongs to

DNREG(f (n)).
In the sequel we recall the main results about the degree on non-regularity. A simple remark turns

out to be useful. If G is an arbitrary context-free grammar and G1 is the reduced grammar obtained from

G, dnregG(n) = dnregG1
(n) holds for all n, because none of the removed productions contributes in any

derivation of a terminal word in G. By several considerations, a similar situation holds if G is not proper

and G1 is the proper grammar obtained from G. Therefore, the context-free grammars considered in the

sequel are reduced and proper.

A context-free grammar is said to be in quasi normal form if all its rules of are of the following

forms:

(i) A → a, where a is a terminal,

(ii) A → aB, where a is a terminal and B is a nonterminal,

(iii) A → α , where α is a word of nonterminals of length at least 2.

Proposition 1 For every context-free grammar G there exists an equivalent context-free grammar G′ in

quasi normal form such that dnregG(n) = dnregG′(n) for all n.

If the length of α is exactly 2 in every rule A → α of a grammar in quasi normal form, we say that

the grammar is in quasi Chomsky normal form. If we have a grammar in quasi normal form, each rule

A → α , with |α | ≥ 3 can be replaced by a sequence of rules with the right-hand side of length 2. Hence,

each grammar in quasi normal can be replaced by an equivalent grammar in quasi Chomsky normal form

at a price of a constant number of times higher degree of non-regularity.

Let G be a context-free grammar and c be a positive integer; we define the language

L(G,≤ c) = {w ∈ L(G) | dnregG(w)≤ c}.

Clearly, if dnregG(n)≤ c for any n ≥ 1, then L(G,≤ c) = L(G) holds.

Theorem 1 DNREG(1) = REG. A language generated by a context-free grammar is finitely-non-

regular if and only if it is regular.

Theorem 2 For any given context-free grammar G and a positive integer c, one can algorithmically

decide whether dnregG(n)≤ c.

It is worth mentioning that dnregG(n) ≤ c, for a context-free grammar G and a positive integer c,

implies that L(G) is regular. However, if dnregG(n)> c, then nothing can be said about the regularity of

L(G). Even more, if L(G) is regular, it does not generally follow that dnregG(n) ∈ O(1).

16 On the Degree of Extension

Theorem 3 Given an unambiguous context-free grammar G, one can algorithmically decide whether

dnregG(n) ∈ O(1).

The problem turns out to be undecidable even for arbitrary linear context-free grammars. It is worth

mentioning that this problem is not equivalent to the problem of whether or not a given context-free

grammar generates a regular language, which is known to be undecidable.

Theorem 4 Given a linear context-free grammar G, it is undecidable whether dnregG(n) ∈ O(1).

If L is a language generated by a context-free grammar such that every derivation of each word w ∈ L

of length n needs a number of non-regular productions at most linear in n, then the language is said to be

“at most linearly non-regular”.

Theorem 5 CF ⊆ DNREG(n). Every context-free language is at most linearly-non-regular.

The next result gives an evaluation of the degree of non-regularity of unambiguous context-free

grammar generating a non-regular language.

Theorem 6 Let G be an unambiguous context-free grammar generating a non-regular language. Then

dnregG(n) ∈ Ω(n).

In [6] one defines a complexity measure on pushdown automata which is related, to some extent, to

the pushdown space complexity of languages introduced in [17].

Let Γ = (Q,V,U,δ ,q0,Z0,F) be a pushdown automaton with the set of states Q, the input alphabet

V , the stack alphabet U , the transition mapping δ , the initial state q0, the initial stack symbol Z0 and the

set of accepting states F . We say that a transition (s,α) ∈ δ (q,a,A), with q,s ∈ Q, a ∈V ∪{λ}, A ∈U ,

α ∈ U∗, is a push move, if |α | ≥ 2, it is a pop move if α = λ , and it is a neutral move if α ∈ U . In

[6] one defines the push complexity of a language as the number of push moves needed by a pushdown

automaton to accept that language. Let w ∈V ∗ and

C : (qo,w,Z0) ⊢∗ (a,λ ,λ)

be a computation in Γ accepting the input word w with empty stack, see, e.g., Chapter 6 in [25]. Then,

the number of push moves in the computation C, is denoted by pushΓ(w,C). Furthermore, for every word

w ∈V ∗ we define

pushΓ(w) =





min{pushΓ(w,C) |C is a computation accepting w},
if w is accepted by Γ,

0, if w is not accepted by Γ.

We now define the function pushΓ : N−→ N by

pushΓ(n) = max{pushΓ(w) | |w|= n}.

This function is called the push complexity of Γ. Note that if a pushdown automaton has stack space

complexity f (n), its push complexity is a function g(n) such that f (n) ∈ O(g(n)). As for the degree of

non-regularity we set

PUSHλ(f (n)) = {L | L = L(Γ) for some pushdown automaton Γ

accepting with empty stack and pushΓ(n) ∈ O(f (n))}.

V. Mitrana, M. Păun 17

Analogously, we define

PUSH f (f (n)) = {L | L = L(Γ) for some pushdown automaton Γ

accepting with final states and pushΓ(n) ∈ O(f (n))}.

It is known how a pushdown automaton accepting with final states can be transformed into an equiv-

alent one accepting with empty stack (Theorem 5.1 in [22]), and conversely (Theorem 5.2 in [22]). By

these constructions the equality PUSHλ(f (n)) = PUSH f (f (n)).
The push measure will turn out to be very useful for our further investigation. Indeed, we claim that

the two classes of languages PUSHλ (f (n)) and DNREG(f (n)) are identical.

Theorem 7 Let L be a deterministic context-free language that is not regular. If L ∈ DNREG(f (n)),
then f (n) ∈ Ω(n).

Theorem 8 Both families DNREG(
√

n) and DNREG(logn) contain non-regular languages.

A very natural problem arises: Are there other sublinear functions f such that DNREG(f) does

contain non-regular languages? The problem of finding other sublinear functions f such that DNREG(f)
contains non-regular languages is of interest from a computational point of view as well. By the next

theorem, functions like logp(n), for some p ≥ 2, are of a special interest.

Theorem 9 Let G be a context-free grammar in quasi Chomsky normal form generating a non-regular

language such that dnregG(n) ≤ f (n). Then L(G) is recognizable in O(n · p f (n)) time, where p is the

number of nonterminals of G.

4 The degree of extension of finite automata over groups

Let (M, ·,1) be a group under an operation denoted by · with the neutral element denoted by 1. An

extended finite automaton (EFA shortly) A over the group (M, ·,1) is defined formally as follows. A =
(Q,V,M, f ,q0,F), where Q,V,q0,F have the same meaning as in a usual finite automaton, namely the

set of states, the input alphabet, the initial state and the set of final states, respectively, and f : Q×V −→
P f (Q×M). This is actually the extension of finite automata with additive or multiplicative valences to

an arbitrary group, see [15] and the references therein.

This type of automaton can be viewed as a finite automaton having a register in which any element

of M can be stored, let us call it “group memory”. The relation (q,m) ∈ f (s,a), q,s ∈ Q, a ∈V, m ∈ M

means that the automaton A changes its current state s into q, by reading the symbol a on the input tape,

and stores x ·m in the register, where x is the former content of the register. The initial value stored in the

register is 1.

We shall use the notation

(q,aw,m) |=A (s,w,mr) iff (s,r) ∈ f (q,a)

for all s,q ∈ Q a ∈V, m,r ∈ M. The reflexive and transitive closure of the relation |=A is denoted by |=∗
A.

Sometimes, the subscript identifying the automaton will be omitted when it is self-understood.

The word x ∈ V ∗ is accepted by the automaton A if, and only if, there is a final state q such that

(q0,x,1) |=∗ (q,ε ,1). In other words, a string is accepted if the automaton completely reads the string

and reaches a final state with the content of the register being the neutral element of M. The language

accepted by an EFA A over a group as above is denoted by L(A).

18 On the Degree of Extension

The following simple observation will be useful in what follows. If L is a language accepted by an

EFA over some group M, there exists a finitely generated subgroup N of M such that L is accepted by

an EFA over N. Indeed, since the EFA over some group has finitely many transitions, only finitely many

elements of the group can be associated with these transitions. Consequently, the register can only ever

hold values in the subgroup of the initial group generated by these elements, so it suffices to view the

automaton as an EFA over this subgroup.

It is clear that some words in the language accepted by an EFA over a group can be accepted by

computations containing “non-regular transitions”, that is transitions that change the contents of the

group memory. The use of these transitions can make EFA more powerful than

nite automata. A very simple example is a finite automaton that accepts the language {anbm | n,m ≥
1}. If we extend this automaton such that each transition reading an a add the value 1 to its register

and each transition reading a b subtracts 1 from the register, the new automaton is an EFA over the

additive group of integers that accepts the non-regular language {anbn | n ≥ 1}. Consequently, EFA

over groups are able to accept non-regular languages or even not context-free languages, see, e.g.,[12].

In the remainder of the present work we study “how much” group memory, defined as the number of

non-regular transitions, needs an EFA for accepting a non-regular language.

Given an EFA A = (Q,V,M, f ,q0,F) over a group (M, ·,1), w ∈ L(A), and a computation

CA(w) : (q0,w0,m0) |=A (q1,w1,m1) |=A (q2,w2,m2) |=A . . . |=A (qs,ε ,ms),

for some s≥ 1, where w0 =w, m0 =ms = 1, we define the multiset E(CA(w))= 〈m−1
i mi+1 | 0≤ i≤ s−1〉.

In words, E(CA(w)) contains all the elements of M used in the computation CA(w), each element appear-

ing in exactly the same number of copies as that of times that element was used during the computation.

Further on, let N(CA(w)) be the integer defined by

N(CA(w)) = ∑
x∈M,x6=1

E(CA(w))(x).

We now define the group memory complexity of the computation of A on the word w by

gmcA(w) =

{
min{N(CA(w)) |CA(w) is a computation of A on w}
0, if w /∈ L(A).

In other words, the group memory complexity of a word with respect to an EFA over M is computed

by taking into consideration the “least non-regular computation” if there is one. The group memory

complexity of an EFA as above is a mapping from IN to IN defined by

gmcA(n) = max{gmcA(w)||w|= n,w ∈V ∗}.

As one can see, the most “non-regular” word of each length is considered.

Let A be an arbitrary EFA over some group and c be a positive integer; we define the language

L(A,≤ c) = {w ∈ L(A) | gmcA(w) ≤ c}. Clearly, if gmcA(n) ≤ c for any n ≥ 1, then L(A,≤ c) = L(A)
holds. A natural question arises: Are there EFA accepting non-regular languages with a constant group

memory complexity? We give a negative answer to the question through the following result:

Theorem 10 Given an EFA A and a positive integer c, the language L(A,≤ c) is regular.

Theorem 11 Let M be a group such that all its finitely generated subgroups are finite. Then the language

accepted by any EFA over M is regular.

V. Mitrana, M. Păun 19

It is worth mentioning that the proof of Theorem 10 is effective, that is a finite automaton recognizing

L(A,≤ c) can effectively be constructed. On the other hand, it is known that a pushdown automaton may

be seen as an EFA over a free group [12, 9] or an EFA over a polycyclic monoid [8, 18]. Starting from

these results we prove the next result.

Theorem 12 For every EFA A over a free group or a polycyclic monoid and a positive integer c, the

problem of whether or not gmcA(n)≤ c is decidable.

Are there other classes of groups for which the question in the previous statement is decidable? Yes,

actually this happens for every finitely generated abelian group. The reason is a fundamental result in

the group theory.

Theorem 13 Every finitely generated abelian group is the direct product of a finite number of cyclic

groups.

Consequently, the language accepted by an EFA over a finitely generated abelian group is either regular

or is a language accepted by an EFA over a group ZZ
k ×H , where k is a positive integer and H is a finite

abelian group. Moreover, ZZk is the additive group of vectors of size k with integer entries. We now make

use of the next result (Theorem 7 in [30]):

Theorem 14 The language accepted by an EFA over an abelian group can be: (1) regular, (2) accepted

by an EFA over by ZZ
k, (3) accepted by an EFA over the multiplicative group of rationals.

It follows that if a language L accepted by an EFA over a finitely abelian group is not regular, then

there exists a positive integer k such that L is accepted by an EFA over ZZk. We can now state

Theorem 15 For every EFA A over a finitely generated abelian group and a positive integer c, the

problem of whether or not gmcA(n)≤ c is algorithmically decidable.

We now provide an EFA over an abelian group that accept non-regular languages and has a sublinear

group memory complexity, namely a function in O(
√

n).

Lemma 1 There exists an EFA A over ZZ×ZZ2 such that L(A) is not regular and gmcA(n) ∈ O(
√

n).

Inspired by the Goldstine language:

G = {an1 ban2 b . . .anpb | p ≥ 1,ni ≥ 0, and n j 6= j for some j,1 ≤ j ≤ p},
we define the non-regular language

L = {bai1 bai2 b . . .aik bcm | k ≥ 1, i1, i2, . . . , ik > 0, and

there exists 1 ≤ j ≤ k such that i j 6= j and m =

{
j− i j, if j > i j,
1, if j < i j

}.

It can be routinely proved that L is not regular.

As it suffices to use Theorem 7 from [30] to simply replace the group ZZ×ZZ2 by ZZ in the statement

of previous lemma, we can state:

Theorem 16 Let M be a group having at least one infinite cyclic subgroup. There exists an EFA A over

M such that L(A) is not regular and gmcA(n) ∈ O(
√

n).

By using a similar idea to that used in the proof of Lemma 1 we prove the next result, where IF2 is

the free group of rank 2.

20 On the Degree of Extension

Lemma 2 There exists an EFA A over the group IF2 ×ZZ2 such that L(A) is not regular and gmcA(n) ∈
O(log n).

As ZZ2 is a finite group, we state:

Theorem 17 There exists an EFA A over the group IF2 such that L(A) is not regular and gmcA(n) ∈
O(log n).

We now give an example of a non-regular language such that any EFA over some group that accepts

this language has a group memory complexity in Ω(n).

Theorem 18 If L(A) = {anbn | n ≥ 1}, where A is an EFA over some group, then gmcA(n) ∈ Ω(n).

Along these lines, two problems remain open here:

1. Are there other abelian or non-abelian groups for which the aforementioned problem is decidable?

2. Give a class of groups M such that for any group M ∈ M and an EFA A over M the problem of

whether or not the group memory complexity of A is finite is decidable/undecidable.

We have provided examples of EFA over some groups that accept non-regular languages and have

a sublinear group memory complexity, namely a function in O(
√

n) or O(log n). Is it true that for any

sublinear integer-valued function f , there is an EFA A over some group M such that L(A) is not regular

and gmcA(n) ∈ O(f (n))?
Theorem 18 provides a non-regular language such that any EFA over some group that accepts it has

a linear group memory complexity.

It is worth mentioning that we have not considered here the deterministic variants of EFA over groups

which will be investigated in another work.

5 Jumping complexity of finite automata with translucent letters

A noneterministic finite automaton with translucent letters (FATL) is a NFA M as above, such that the

transition relation is defined in the following way. First, we define the partial relation � on the set of

all configurations of M: (s,xay) � (p,xy) iff p ∈ δ (s,a), and δ (s,b) is not defined for any b ∈ al ph(x),
s, p ∈ Q, a,b ∈V , x ∈V+, y ∈V ∗. We now write

(p,x) |=M (q,y), if either (p,x)→ (q,y) or (p,x) � (q,y).

The subscript M is omitted when it is understood from the context.

The language accepted by M is defined by

L(M) = {x ∈V ∗ | (q0,x) |=∗ (f ,ε), f ∈ F}.

We want to stress that the automaton has been introduced in [31], with a slightly different definition.

Actually, our definition is an FATL in the normal form in [31] without a marker for the end of the input

word. This automaton is also related to the one way jumping automaton introduced in [29] with the

difference that after each jump it returns to its previous position and does not make shift of the jumped

part to the end of the word.

Let M be an FATL; we consider w ∈ L(M), and the accepting computation in M on the input w:

CM(w) : (q0,w) |= (q1,w1) |= (q2,w2) |= . . . |= (qm,ε),

V. Mitrana, M. Păun 21

with qi ∈ Q, 1 ≤ i ≤ m, and qm ∈ F . We define

jc(CM(w)) = {i ≥ 1 | (qi−1,wi−1)� (qi,wi)}.

In words, jc(CM(w)) contains all the jumping steps in the computation CM(w).

We now define the jumping complexity of the computation of M on the word w by

jcM(w) =

{
min{card(jc(CM(w))) |CM(w) is a computation of M on w}
0, if w /∈ L(M).

In other words, the jumping complexity of a word with respect to M is computed by taking into

consideration the “least non-regular computation” if there is one. Equivalently, the jumping complexity

of a word with respect to M is the number of jumping steps of a computation with the minimal number

of jumping steps.

The jumping complexity of an automaton M as above is a mapping from IN to IN defined by

jcM(n) = max{ jcM(w)||w|= n,w ∈V ∗}.

As one can see, the most “non-regular” word of each length is considered. It is clear that jcM(n)≤ n for

every jumping automaton M as one letter is consumed in every step of a computation.

Let f be a function from IN to IN; we define the family of languages

LJC((f (n)) = {L | ∃ FATL M such that L = L(M) and jcM(n) ∈ O(f (n))}.

Let M be an arbitrary jumping automaton and c be a positive integer; we define the language L(M,≤
c) = {w ∈ L(M) | jcM(w) ≤ c}. Clearly, if jcM(n) ≤ c for any n ≥ 1, then L(M,≤ c) = L(M) holds.

A natural question arises: Are there FATL accepting non-regular languages with a constant jumping

complexity? We give a negative answer to the question through the following result:

Lemma 3 Given an FATL M and a positive integer c, the language L(M,≤ c) is regular.

Consequently, we have

Theorem 19 JCL(1) equals the class of regular languages.

By Lemma 3, a sufficient condition for an FATL to accept a regular language is to be of constant jumping

complexity. Is this condition necessary as well? Were this the case, the problem of deciding whether or

not the jumping complexity of a given FATL is constant would be undecidable. Indeed, this decidability

problem would be equivalent to decide whether or not the language accepted by an FATL is a regular

language, which is not decidable, see Proposition 8 in [31]. As it was expected, the condition is not

necessary. It suffices to consider the FATL M defined by the transition mapping:

δ (q0,b) = q1,δ (q1,b) = q1,δ (q1,c) = q2,δ (q2,a) = q3,

with the final state q3. The language accepted by this automaton is L = {bnabmc | n+m ≥ 1}∪{bnca |
n ≥ 1}, which is regular. On the other hand, jcM(abnc) = n, for any n ≥ 1.

However, the decidability status of the following related problem can be partially settled: Given an

FATL M and a positive integer c, is it decidable whether or not jcM(n) ≤ c for all n ≥ 1? By modifying

the construction in the proof of Lemma 3 we may infer:

22 On the Degree of Extension

Lemma 4 Given a deterministic FATL M, there exists a deterministic FATL M′ such that L(M′) = {w ∈
L(M) | jcM(w)≥ 1}.

This lemma is crucial for the next result.

Theorem 20 Given a deterministic FATL M and a positive integer c, it is algorithmically decidable

whether or not the jumping complexity of M is bounded by c.

It is worth mentioning that even with this result, the decidability status of the problem ”Is the jumping

complexity of a deterministic FATL finite?” is still open.

Obviously, each FATL has a jumping complexity which is situated between the constant function

and the identity function. In other words, JCL(n) equals the class of all languages accepted by FATL. It

remains to investigate what happens between these two extremes. First, we show that there are languages

which require a jumping complexity in Ω(n).

Theorem 21 If L(M) = {w | |w|a = |w|b = n ≥ 1}, where M is an FATL, then jcM(n) ∈ Ω(n).

Corollary 1 JCL(n)\ JCL(1) 6= /0.

6 Final remarks

There are still some attractive problems, in our opinion, that remained unsolved here. One of the most

intriguing is the existence of a lower bound for the degree of non-regularity for context-free languages

which are not regular. As we have seen, there are context-free languages which are not regular having

a sublinear degree of non-regularity. We strongly suspect a more general result: REG ⊂ DNREG(f),
strict inclusion, for any function f that is not a constant. We mention a few other problems excepting the

problem discussed before Theorem 9. Given a context-free grammar G, is it decidable whether or not G

has the least degree of non-regularity among all grammars generating L(G)?
As far as the degree of extension of finite automata over groups is concerned, we have proved that

given an EFA A over a free group, a polycyclic monoid, or a finitely generated abelian group and a

constant c, one can algorithmically decide whether or not the group memory complexity of A is bounded

by c. Along these lines, two problems remain open here:

1. Are there other abelian or non-abelian groups for which the aforementioned problem is decidable?

2. Give a class of groups M such that for any group M ∈ M and an EFA A over M the problem of

whether or not the group memory complexity of A is finite is decidable/undecidable.

We have provided examples of EFA over some groups that accept non-regular languages and have

a sublinear group memory complexity, namely a function in O(
√

n) or O(log n). Is it true that for any

sublinear integer-valued function f , there is an EFA A over some group M such that L(A) is not regular

and gmcA(n) ∈ O(f (n))?
Theorem 18 provides a non-regular language such that any EFA over some group that accepts it has

a linear group memory complexity. It is worth mentioning that [1] has not considered the deterministic

variants of EFA over groups which is to be further investigated.

Some of the above problems remained open as well as regards the jumping complexity of finite

automata with translucent letters.

Generally, this could be a measure for investigating the degree of extension of many mechanisms that

extend a less expressive one like context-free grammars with regulated rewriting, extended various types

of finite automata and tree automata over groups, jumping automata, automata with translucent letters,

etc. A first step in this direction has already been done in [14].

V. Mitrana, M. Păun 23

References

[1] F. Arroyo, V. Mitrana, A. Păun, M. Păun & J.R. Sánchez Couso (2020): On the group memory com-

plexity of extended finite automata over groups. J. Log. Algebraic Methods Program. 117, p. 100605,

doi:10.1016/j.jlamp.2020.100605.

[2] B.S. Baker (1974): Non-context-free grammars generating context-free languages. Information and Control

24, pp. 231 – 246, doi:10.1016/S0019-9958(74)80038-0.

[3] J.L. Balcazar, J. Diaz & J. Gabarró (1995): Structural Complexity. Springer-Verlag, Berlin,

doi:10.1007/978-3-642-79235-9.

[4] L. Boasson, B. Courcelle & M. Nivat (1981): The rational index, a complexity measure for languages. SIAM

J. Computing 10, pp. 284 – 296, doi:10.1137/0210020.

[5] R.V. Book (1972): Terminal context in context-sensitive grammars. SIAM J. Computing 1, pp. 20 – 30,

doi:10.1137/0201003.

[6] H. Bordihn & V. Mitrana (2020): On the degrees of non-regularity and non-context-freeness. J. Comput.

Syst. Sci. 108, pp. 104 – 117, doi:10.1016/j.jcss.2019.09.003.

[7] B. Brainerd (1968): An analog of a theorem about context-free languages. Information and Control 11, pp.

561 – 567, doi:10.1016/S0019-9958(67)90771-1.

[8] N. Chomsky & M. P. Schützenberger (1963): The algebraic theory of context-free languages. In:

Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, pp. 118–161,

doi:10.1016/S0049-237X(08)72023-8.

[9] J. M. Corson (2005): Extended finite automata and word problems. J. Algebra Comput. 15, pp. 455 – 466,

doi:10.1142/S0218196705002360.

[10] K. Culik & H. Maurer (1978): On the Derivation of Trees. TR Vol, 18, Institut für Informationsverarbeitung

(Graz).

[11] J. Dassow & G. Păun (1989): Regulated Rewriting in Formal Language Theory. Springer Berlin, Heidelberg,

doi:10.1007/978-3-642-74932-2.

[12] J. Dassow & V. Mitrana (2000): Finite automata over free groups. J. Algebra Comput. 10, pp. 725 – 737,

doi:10.1142/S0218196700000315.

[13] R. Evey (1963): The Theory and Application of Pushdown Store Machines. Doctoral Dissertation, Harvard

University.

[14] S. Z. Fazekas, R. Mercaş & O. Wu (2022): Complexities for jumps and sweeps. Journal of Automata,

Languages and Combinatorics 27, pp. 131–149, doi:10.25596/jalc-2022-131.

[15] H. Fernau & R. Stiebe (2002): Sequential grammars and automata with valences. Theoret. Comput. Sci.

276, pp. 377 – 405, doi:10.1016/S0304-3975(01)00282-1.

[16] J. Gabarro (1983): Initial index:a new complexity function for languages. In: International Collo-

quium on Automata, Languages, and Programming ICALP, LNCS 154 Springer Verlag, pp. 226–236,

doi:10.1007/BFb0036911.

[17] J. Gabarro (1984): Pushdown space complexity and related full-A.F.L.s. In: Annual Symposium

on Theoretical Aspects of Computer Science STACS, LNCS 166 Springer Verlag, pp. 250–259,

doi:10.1007/3-540-12920-0 23.

[18] R. H. Gilman & M. Shapiro (1998): On groups whose word problem is solved by a nested stack automaton.

arXiv:math.GR/9812028, doi:10.48550/arXiv.math/9812028.

[19] S. Ginsburg & S. Greibach (1966): Mappings which preserve context-sensitive languages. Information and

Control 9, pp. 563 – 582, doi:10.1016/S0019-9958(66)80016-5.

[20] J. Goldstine (1972): Substitution and bounded languages. J. Comput. Syst. Sci. 6, pp. 9 – 29,

doi:10.1016/S0022-0000(72)80038-2.

https://doi.org/10.1016/j.jlamp.2020.100605
https://doi.org/10.1016/S0019-9958(74)80038-0
https://doi.org/10.1007/978-3-642-79235-9
https://doi.org/10.1137/0210020
https://doi.org/10.1137/0201003
https://doi.org/10.1016/j.jcss.2019.09.003
https://doi.org/10.1016/S0019-9958(67)90771-1
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1142/S0218196705002360
https://doi.org/10.1007/978-3-642-74932-2
https://doi.org/10.1142/S0218196700000315
https://doi.org/10.25596/jalc-2022-131
https://doi.org/10.1016/S0304-3975(01)00282-1
https://doi.org/10.1007/BFb0036911
https://doi.org/10.1007/3-540-12920-0{_}23
https://doi.org/10.48550/arXiv.math/9812028
https://doi.org/10.1016/S0019-9958(66)80016-5
https://doi.org/10.1016/S0022-0000(72)80038-2

24 On the Degree of Extension

[21] T. Hibbard (1966): Scan Limited Automata and Context Limited Grammars. Doctoral Dissertation, University

of California at Los Angeles.

[22] J.E. Hopcroft & J.D. Ullman (1979): Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading, Mass.

[23] M. Kambites (2006): Word problems recognisable by deterministic blind monoid automata. Theoret. Comput.

Sci. 362, pp. 232 – 237, doi:10.1016/j.tcs.2006.06.026.

[24] R. C. Lyndon & P. E. Schupp (1977): Combinatorial Group Theory. Springer-Verlag, Berlin,

doi:10.1007/978-3-642-61896-3.

[25] C. Martı́n-Vide, V. Mitrana & Gh. Păun (2003): Formal Languages and Applications. Springer Verlag,

doi:10.1007/978-3-540-39886-8.

[26] G. Matthews (1963): Discontinuity and asymmetry in phrase structure grammars. Information and Control

6, pp. 137–146, doi:10.1016/S0019-9958(63)90179-7.

[27] G. Matthews (1964): A note on asymmetry in phrase structure grammars. Information and Control 7, pp.

360–365, doi:10.1016/S0019-9958(64)90406-1.

[28] G. Matthews (1967): Two-way languages. Information and Control 10, pp. 111–119,

doi:10.1016/S0019-9958(67)80001-9.

[29] A. Meduna & P. Zemek (2012): Jumping finite automata. Int. J. Found. Comput. Sci. 23, pp. 1555–1578,

doi:10.1142/S0129054112500244.

[30] V. Mitrana & R. Stiebe (2001): Extended finite automata over groups. Discrete Appl. Math. 108, pp. 287 –

300, doi:10.1016/S0166-218X(00)00200-6.

[31] B. Nagy & L. Kovács (2014): Finite automata with translucent letters applied in natural and formal language

theory. In: Transactions on Computational Collective Intelligence, LNCS 8790 Springer Verlag, pp. 107–

127, doi:10.1007/978-3-662-44994-3 6.

[32] J. J. Rotman (1995): An Introduction to the Theory of Groups. Springer-Verlag, Berlin,

doi:10.1007/978-1-4612-4176-8.

[33] G. Rozenberg & A. Salomaa (1997): Handbook of Formal Languages. Springer Verlag,

doi:10.1007/978-3-642-59136-5.

https://doi.org/10.1016/j.tcs.2006.06.026
https://doi.org/10.1007/978-3-642-61896-3
https://doi.org/10.1007/978-3-540-39886-8
https://doi.org/10.1016/S0019-9958(63)90179-7
https://doi.org/10.1016/S0019-9958(64)90406-1
https://doi.org/10.1016/S0019-9958(67)80001-9
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.1016/S0166-218X(00)00200-6
https://doi.org/10.1007/978-3-662-44994-3{_}6
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/978-3-642-59136-5

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 25–34, doi:10.4204/EPTCS.386.4

© E. Barcucci, A. Bernini, S. Bilotta & R. Pinzani
This work is licensed under the
Creative Commons Attribution License.

A Construction for Variable Dimension
Strong Non-Overlapping Matrices

Elena Barcucci
University of Florence

Italy
elena.barcucci@unifi.it

Antonio Bernini
University of Florence

Italy
antonio.bernini@unifi.it

Stefano Bilotta
University of Florence

Italy
stefano.bilotta@unifi.it

Renzo Pinzani
University of Florence

Italy
renzo.pinzani@unifi.it

We propose a method for the construction of sets of variable dimension strong non-overlapping
matrices basing on any strong non-overlapping set of strings.

1 Introduction

Intuitively, two matrices do not overlap if it is not possible to move one over the other in a way such
that the corresponding entries match. In some recent works ([2],[3],[4]) the matrices are constructed by
imposing some constraints on their rows which must avoid some particular consecutive patterns or must
have some fixed entries in particular positions. The matrices of the sets there defined have the same fixed
dimension.

In the present paper, we deal with matrices having different dimensions and we construct them by
means a different approach: we move from any strong non-overlapping set W of strings, defined over a
finite alphabet, and, in a very few words, the strings of W becomes the rows of our matrices. The method
is general and once the cardinality of the strings of W with a same length is known, the cardinality of the
set of matrices is straightforward.

This work could fit in the theory of bidimensional codes, as well as non overlapping sets of strings do
in the theory of codes. Moreover, if the latter have been used in telecommunication systems both theory
and engineering [1, 13], the matrices of our sets could be useful in the field of digital image processing,
and a possible (future) application of this kind of sets is in the template matching which is a technique to
discover if small parts of an image match a template image.

2 Preliminaries

Let Mm×n be the set of all the matrices with m rows and n columns. Given a matrix A ∈Mm×n, we
consider a block partition

A = (Ai, j) =

A11 . . . A1k
... . . .

...
Ah1 . . . Ahk

 . (1)

http://dx.doi.org/10.4204/EPTCS.386.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

26 Strong Non-Overlapping Matrices

Let us define f r(Ai j) the frame of a block Ai j of A. Intuitively, it is a set tracking the borders of the
block which lie on the top (t), left (l), right (r) and bottom (b) border of the matrix A. More precisely,
the set f r(Ai, j) is a subset of {t,b, l,r} defined as follows:
Definition 1.

f r(Ai, j)⊇


t, if i = 1
b, if i = h
l, if j = 1
r, if j = k

.

For example, if A =
[
A11 A12 A13

]
(h = 1 and k = 3) then f r(A11) = {t,b, l}, f r(A12) = {t,b}, and

f r(A13) = {t,b,r} since i = h = 1. But if

A =

A11 A12 A13
A21 A22 A23
A31 A32 A33


then f r(A11) = {t, l}, f r(A12) = {t}, f r(A13) = {t,r} and similarly for the other blocks. Note that in
this case f r(A22) = /0.

Definition 2. Given two matrices A ∈Mm×n and B ∈Mm′×n′ , they are said overlapping if there exist
two suitable block partitions A = (Ai j) , B = (Bi′ j′), and some i, j, i′, j′ such that

• Ai, j = Bi′ j′ , and

• f r(Ai j)∪ f r(Bi′ j′) = {t, l,r,b}.
In the case A = B, the matrix is said self-overlapping.

To illustrate the definition, the following examples are given:
• Given the two matrices

A =


1 2 1 1 2
0 1 0 3 0
3 2 1 0 2
0 1 3 1 3

 and B =

 2 1
1 1
0 3

 ,

they overlap since the entries of the blocks A12 and B21 coincide. Moreover, we have f r(A12) =
{t}, f r(B21) = {l,b,r} so that f r(A12)∪ f r(B21) = {l, t,b,r}.

• If B =

[
3 1 2
2 0 1

]
the matrix A (as before) and the matrix B again overlap since A11 = B12 and

f r(A11)∪ f r(B12) = {l,r,b, t} being f r(A11) = {l, t} and f r(B12) = {t,r,b}.

• Note that if B =

[
1 2 3
0 1 2

]
, even if A11 = B11, we have f r(A11) = {l, t} and f r(B11) = {l, t,b}

so that f r(A11)∪ f r(B11) = {l,b, t} 6= {l, t,b,r}. Nevertheless, the two matrices are overlapping

since, considering the block partitions B =

[
B11 B12
B21 B22

]
=

[
1 2 3
0 1 2

]
and

A =

[
A11 A12
A21 A22

]
=


1 2 1 1 2
0 1 0 3 0
3 2 1 0 2
0 1 3 1 3

 ,

E. Barcucci, A. Bernini, S. Bilotta & R. Pinzani 27

we have A11 = B22 and f r(A11)∪ f r(B22) = {l, t,b,r}.

• As a further example we consider the particular case where A = [A11] and B =

B11 B12 B13
B21 B22 B23
B31 B32 B33


with B22 = A11. Here, we have f r(A11)∪ f r(B22) = {t,b, l,r} ∪ { /0} = {t,b, l,r} and the two
matrices are overlapping.

• We conclude this list of examples showing two matrices A and B such that, even if they have two
equal blocks (A11 = B11), they are not overlapping since the second condition on the frames of the
blocks of Definition 2 is not fulfilled (since f r(A11)∪ f r(B11) = {t, l} 6= {t,b, l,r}):

A =


1 2 1 1 2
0 1 0 3 0
3 2 1 0 2
0 1 3 1 3

 , B =

 1 2 3
0 1 1
1 0 3

 .

From these examples, it should be clear that if two matrices are overlapping, then the common block
naturally induces a block partition (Ai, j) for A (and a block partition (Bi, j)) such that the number of
blocks in each its row and column can be not larger than 3. Figure 1 shows two examples of the least fine
block partitions for two overlapping matrices A and B induced by the (gray) common block. Therefore,
the block partitions 1 involved in Definition 2 are such that h,k ∈ {1,2,3}.

A11 A12 = B21 A13

B11

B31

A11 A12

A21
A22 = B11

B21 B22

B12

A
A

B B

Figure 1: The least fine block partition in two examples of two overlapping matrices

We note that if a matrix is completely contained in the other, then the two matrices are overlapping
according to Definition 2, as in the second to last example of the above list. In the context of strings,
the scenario is different, as illustrated in the following. Two strings are said overlapping if there is a
proper prefix of one that is equal to a proper suffix of the other. Consequently, they are said to be non-
overlapping if there is no a proper prefix of one that is equal to a proper prefix of the other (these defi-
nitions are more formally recalled, later in this section). It can happen that, given two non-overlapping
strings, one of them is an inner factor of the other, as in the case of the two binary strings 1111000 and
10. If this is not allowed, then the strings are said strong non-overlapping (i.e. two strings are strong
non-overlapping if they are non-overlapping and if one of them is not an inner factor of the other), as in

28 Strong Non-Overlapping Matrices

the case of the two binary strings 1111000 and 10100. In short, being non-overlapping strings or strong
non-overlapping strings are different concepts.

In our framework, if two matrices A and B are not overlapping then it can not happen that one of
them (say B) is completely contained in the other. Indeed, if this were the case, then the smaller matrix B
could be trivially partitioned in one block B = B11 so that f r(B11) = {t,b, l,r}). Moreover, it would be
B11 = Ai j for some block Ai j of the matrix A, and the matrices A and B would be overlapping, whatever
the block Ai, j.

Therefore, when two matrices are not overlapping, we prefer to call them strong non-overlapping
matrices (instead of simply non-overlapping matrices), in order to emphasize that certainly neither is
contained in the other. Then, we give the following formal definitions characterizing two such matrices
and a set of strong non-overlapping matrices:

Definition 3. The matrices A and B are said strong non-overlapping if there does not exist any block
partition for A and B, and any i, j, i′, j′ such that Ai, j = Bi′, j′ or, if such block partitions exist, then
f r(Ai j)∪ f r(Bi′ j′) 6= {t, l,r,b}.

Definition 4. A set P of matrices is said to be strong non-overlapping if each matrix is self non-
overlapping and if for any two matrices in P they are strong non-overlapping.

For completeness, let us recall some notions about non-overlapping and strong non-overlapping sets of
strings.

Given a finite alphabet Σ, a string v ∈ Σ∗ is said to be self non-overlapping (often said unbordered or
equivalently bifix-free) if any proper prefix of v is different from any proper suffix of v (for more details
see [11]).

Two self non-overlapping strings v, v′ ∈ Σ∗ are said to be non-overlapping (or equivalently cross
bifix-free) if any proper prefix of v is different from any proper suffix of v′, and vice versa. A set of
strings is said to be a non-overlapping set (or cross bifix-free set) of strings if each element of the set is
slef non-overlapping and if any two strings are non-overlapping.

Definition 5. Two non-overlapping strings v and v′ are said to be strong non-overlapping if there do not
exist α,β ∈ Σ∗, with α and β not both empty, such that v′ = αvβ (or v = αv′β).

In other words, the strong non-overlapping property requires that the shortest string between v and
v′ (if any) does not occur as an inner factor in the other one ([6, 12]). For example, if v = 1100 and v′ =
11100100, then v and v′ are non-overlapping but they are not strong non-overlapping since v′ contains an
occurrence of v (in bold).

Definition 6. A set of strings is said to be a strong non-overlapping set if any two strings of the set are
strong non-overlapping.

3 Construction of the set of matrices

Let Vn =
⋃
s≤n

V s be a variable dimension strong non-overlapping set of strings where each V s is a non-

overlapping set of strings of length s, for s0 ≤ s≤ n, where s0 ≥ 2 is the minimum string length. We now
define a set of variable dimension matrices, using strings of a same length s of V s as rows of a matrix.

E. Barcucci, A. Bernini, S. Bilotta & R. Pinzani 29

In the following, the two matrices C and D of dimension m1× s and m2× t, respectively, are constructed
with the rows Cs

i ∈V s and Dt
j ∈V t , with i = 1,2, . . . ,m1 and j = 1,2, . . . ,m2.

C =


Cs

1
Cs

2
...
...

Cs
m1

 D =


Dt

1
Dt

2
...

Dt
m2



It is not difficult to show that if C and D have a different number of columns (then s 6= t) they can not
be overlapping (see next proposition).

Unfortunately, in the case C and D have the same number of columns (s = t), then the two matrices
can present a “vertical" overlap. More precisely:

• the matrix D could be equal to a sub-matrix of C constituted by m2 consecutive rows of C (or vice
versa):

C =

C11
C12
C13

=

C11
D

C13


(with either blocks C11 or C13 possibly empty).

• the first (last) ` rows of D could be equal to the last (first) ` rows of C (or vice versa):

C =

[
C11
C12

]
=



C11

Dt
1

Dt
2

...
Dt
`


D =

[
D11
D12

]
=



Dt
1

Dt
2

...
Dt
`

D12

 .

In order to avoid the situations described above, we introduce a constraint for the first and the last row of
each matrix: all the matrices with the same number s of columns must have the same first row T s ∈ V s

and the same last row Bs ∈V s, with T s 6= Bs. Also, these two selected rows cannot appear as inner rows
of any other matrix with that number s of columns. In other words, we force:

• the top row T s of all the matrices with the same number s of columns to be the same;

• the bottom row Bs of all the matrices with the same number s of columns to be the same;

• T s 6= Bs;

• the rows T s and Bs not to occur in any other line of the matrix.

Formally, the matrices C with the same number s of columns must have the following structures:

30 Strong Non-Overlapping Matrices

C =



T s

Cs
2
...
...

Cs
m1−1

Bs


with Cs

j 6= T s,Bs, for j = 2,3, . . . ,m1−1, and Cs
j,T

s,Bs ∈V s.

We can now define the set V
(≤)

m×n of variable-dimension matrices as follows:

Definition 7. Let Vn =
⋃
s≤n

V s be a variable dimension strong non-overlapping set of strings where each

V s is a non-overlapping set of strings of length s, for s0 ≤ s ≤ n, where s0 ≥ 2 is the minimum string
length. Moreover, let

V
(≤)

m×n =
⋃

M

be the union of the matrices M where M ∈Mh×s, with 2≤ h≤ m and s0 ≤ s≤ n, such that

M =




T s

As
2
...

As
h−1
Bs




with As

j,T
s,Bs ∈V s and As

j 6= T s,Bs for j = 2,3, . . . ,h−1 .

The matrices M ∈ V
(≤)

m×n have at most m rows and n columns. They are constructed by means of
h ≤ m strings of length s ≤ n belonging to Vn. All the matrices M with the same number s of columns
have the same bottom row Bs and the same top row Ts, which are not the same. Moreover, each inner
row is different from Ts and Bs.

We have the following proposition:

Proposition 1. The set V
(≤)

m×n is a strong non-overlapping set of variable-dimension matrices.

Proof. Let C,D ∈ V
(≤)

m×n and suppose that C and D are two overlapping matrices: then there exists a
block matrix E ∈Mr×c such that E = Ci, j = Di′, j′ fore some two blocks Ci, j and Di′ j′ in two suitable
block partitions of C and D, and with f r(Ci, j)∪ f r(Di′ j′) = {l, t,r,b}. We have

E =

e11 . . . e1c
... . . .

...
er1 . . . erc

 .

For each row e`, with `= 1,2, . . . ,r, there exist two rows Ci,D j ∈ Vn such that one of the following
cases occurs:

E. Barcucci, A. Bernini, S. Bilotta & R. Pinzani 31

• Ci = ue`v and D j = e`, with either u or v possibly empty, where u,v ∈ Σ∗;

• Ci = ue` and D j = e`v;

• Ci = e`v and D j = ue`.

In any case, the strings Ci and D j are not strong non-overlapping strings (since they overlap over e`)
against the hypothesis Ci,D j ∈ Vn .

We note that in the case Vn is a variable dimension non-overlapping set of strings (i.e. the non-
overlapping property is not required to be strong), the resulting matrices are not strong non-overlapping
according to Definition 2, since it is possible that one of the two matrices is completely contained in the
other one as a suitable block. If we did not contemplate this possibility in Definition 2, then two matrices
constructed with such a Vn could be considered still non-overlapping (according to a different definition
of non-overlapping matrices).

Moreover, if Vn contains strings all of the same lengths, then Proposition 1 still holds: the matrices
will have all the same number of columns.

Finally, if |V s| denotes the cardinality of the non-overlapping set V s, it is straightforward to deduce
the following formula for the cardinality of V

(≤)
m×n:

|V (≤)
m×n|= ∑

h≤m
∑
s≤n

(|V s|−2)h−2 . (2)

The two terms−2 in the above formula take into account that the first and the last row in the matrices
with s columns are fixed and can not occur as inner rows.

For the sake of clearness, we propose an example for the construction of a set of variable dimension
strong non-overlapping matrices. Let V 3 = {110,210,310,320} and V 5 = {22000,23000,33000} be
two sets of non-overlapping strings over the alphabet Σ = {0,1,2,3}. It is easily seen that V 3∪V 5 is a
strong non-overlapping code. Then, we construct

V
(≤)

4×5 = M
(≤)
2×3∪M

(≤)
3×3∪M

(≤)
4×3∪M

(≤)
2×5∪M

(≤)
3×5∪M

(≤)
4×5

where:

M2×3 =

{(
1 1 0
3 2 0

)}

M3×3 =


1 1 0

2 1 0
3 2 0

 ,

1 1 0
3 1 0
3 2 0


M4×3 =




1 1 0
2 1 0
2 1 0
3 2 0

 ,


1 1 0
2 1 0
3 1 0
3 2 0

 ,


1 1 0
3 1 0
2 1 0
3 2 0

 ,


1 1 0
3 1 0
3 1 0
3 2 0




M2×5 =

{(
2 2 0 0 0
3 3 0 0 0

)}

32 Strong Non-Overlapping Matrices

M3×5 =


2 2 0 0 0

2 3 0 0 0
3 3 0 0 0


M4×5 =




2 2 0 0 0
2 3 0 0 0
2 3 0 0 0
3 3 0 0 0




The reader can easily check that V
(≤)

4×5 is a set of variable dimension strong non-overlapping matrices
having cardinality 10 according to (2).

4 Conclusions

The paper provides a simple and general method to generate a set of strong non-overlapping matrices
over a finite alphabet, once a strong non-overlapping set of strings (over the same alphabet) is at our
disposal. The crucial point is the constraint on the first and last rows which must be the same for all the
matrices with the same number of columns.

Using the variable length strong non-overlapping sets of strings defined in [12] and [6], two different
set of strong non-overlapping matrices arise which could be compared in terms of cardinality or its
asymptotic behaviour.

Moreover, the construction we proposed, in the case of fixed dimension matrices, gives the possibility
to list them in a Gray code sense, following the studies started in [2, 5, 7, 8, 9, 10] where different Gray
codes are defined for several set of strings and matrices.

In this case, we generate the matrices moving from a set of non-overlapping strings V s of length s
and we suppose that there exists a Gray code GV s for V s:

GV s = {w1,w2. . . . ,wt ,wt+1,wt+2} with t > 0 .

Note that we require |V s| ≥ 3. We choose two strings from GV s. Without loss of generality, we choose
wt+1 and wt+2 and we define the set of matrices Mh+2,s with h+2 rows and s columns where the first and
last rows are, respectively, the strings wt+1 and wt+2:

Mh+2,s =




wt+1
Cs

1
...

Cs
h

wt+2


∣∣∣∣∣Cs

i ∈V s \{wt+1,wt+2}


.

Let Nh,s be the set of matrices obtained by Mh+2,s removing the first and last rows:

Nh,s =


Cs

1
...

Cs
h

∣∣∣∣∣Cs
i ∈V s \{wt+1,wt+2}

 .

Clearly, the cardinality of Nh,s and Mh+2,s is the same and denoting it by q it is q = th.

E. Barcucci, A. Bernini, S. Bilotta & R. Pinzani 33

We now recursively define a Gray code GNh,s for the set Nh,s. If h = 1, then the list GN1,s =
(w1),(w2), . . . ,(wt) is a Gray code (since it is obtained by GV s where the strings are read as matrices of
dimension 1× s). Suppose now that GNh,s = A1,A2, . . . ,Aq is a Gray code where h≥ 1 and Ai ∈ Nh,s, for
i = 1,2, . . . ,q. The following list GNh+1,sof matrices, defined as block matrices,

GNh+1,s =

[
w1

A1

]
· · ·

[
w1

Aq

][
w2

Aq

]
· · ·

[
w2

A1

]
· · · · · ·

[
wt

A`

]
· · ·

[
wt

Aq+1−`

]
,

where

`=

{
q, if t is even
1, if t is odd

,

is easily seen to be a Gray code since the lists A1,A2, . . . ,Aq and w1,w2, . . . ,wt are Gray codes for hy-
pothesis.

Finally, adding the strings wt+1 and wt+2, respectively, as first and last rows to all the q matrices
A1,A2, . . . ,Aq of GNh,s we obtain a Gray code GMh+2,s for the set Mh+2,s:

GMh+2,s =


wt+1

A1

wt+2

 · · · · · · · · ·


wt+1

Aq

wt+2

 .

References

[1] D. Bajic & J. Stojanovic (2004): Distributed sequences and search process. In: 2004 IEEE International Con-
ference on Communications (IEEE Cat. No.04CH37577), 1, pp. 514–518, doi:10.1109/ICC.2004.1312542.

[2] E. Barcucci, A. Bernini, S. Bilotta & R. Pinzani (2015): Cross-bifix-free sets in two dimensions. Theoret.
Comput. Sci. 664, pp. 29–38, doi:10.1016/j.tcs.2015.08.032.

[3] E. Barcucci, A. Bernini, S. Bilotta & R. Pinzani (2017): Non-overlapping matrices. Theoret. Comput. Sci.
658, pp. 36–45, doi:10.1016/j.tcs.2016.05.009.

[4] E. Barcucci, A. Bernini, S. Bilotta & R. Pinzani (2018): A 2D non-overlapping code over a q-ary alphabet.
Cryptogr. Commun. 10, pp. 667–683, doi:10.1007/s12095-017-0251-8.

[5] E. Barcucci, A. Bernini & R. Pinzani (2018): A Gray code for a regular language. In: GASCom 2018, CEUR
Workshop Proceedings, 2113, pp. 87–93. Available at https://ceur-ws.org/Vol-2113/paper8.pdf.

[6] E. Barcucci, A. Bernini & R. Pinzani (2021): A Strong non-overlapping Dyck Code. In: DLT 2021, Lecture
Notes in Comput. Sci., 12811, pp. 43–53, doi:10.1007/978-3-030-81508-0_4.

[7] A. Bernini, S. Bilotta, R. Pinzani, A. Sabri & V. V. Vajnovszki (2014): Prefix partitioned Gray codes for
particular cross-bifix-free sets. Cryptogr. Commun. 6, pp. 359–369, doi:10.1007/s12095-014-0105-6.

[8] A. Bernini, S. Bilotta, R. Pinzani, A. Sabri & V. V. Vajnovszki (2015): Gray code orders for q-ary words
avoiding a given factor. Acta Inform. 52, pp. 573–592, doi:10.1007/s00236-015-0225-2.

[9] A. Bernini, S. Bilotta, R. Pinzani & V. V. Vajnovszki (2015): A trace partitioned Gray code
for q-ary generalized Fibonacci strings. J. Discrete Math. Sci. Cryptogr. 18, pp. 751–761,
doi:10.1080/09720529.2014.968360.

[10] A. Bernini, S. Bilotta, R. Pinzani & V. V. Vajnovszki (2017): A Gray code for cross-bifix-free sets. Math.
Structures Comput. Sci. 27, pp. 184–196, doi:10.1017/S0960129515000067.

https://doi.org/10.1109/ICC.2004.1312542
https://doi.org/10.1016/j.tcs.2015.08.032
https://doi.org/10.1016/j.tcs.2016.05.009
https://doi.org/10.1007/s12095-017-0251-8
https://ceur-ws.org/Vol-2113/paper8.pdf
https://doi.org/10.1007/978-3-030-81508-0_4
https://doi.org/10.1007/s12095-014-0105-6
https://doi.org/10.1007/s00236-015-0225-2
https://doi.org/10.1080/09720529.2014.968360
https://doi.org/10.1017/S0960129515000067

34 Strong Non-Overlapping Matrices

[11] J. Berstel & D. Perrin (1985): Theory of codes. Academic Press, Orlando.
[12] S. Bilotta (2017): Variable-length non-overlapping codes. IEEE Trans. Inform. Theory 63, pp. 6530–6537,

doi:10.1109/TIT.2017.2742506.
[13] A. J. de Lind van Wijngaarden, T. J. & Willink (2000): Frame synchronization using distributed sequences.

IEEE Trans. Comm 48, pp. 2127–2138, doi:10.1109/26.891223.

https://doi.org/10.1109/TIT.2017.2742506
https://doi.org/10.1109/26.891223

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 35–50, doi:10.4204/EPTCS.386.5

© J. Bell, D. Smertnig, & H. Tamm

This work is licensed under the

Creative Commons Attribution License.

Duality of Lattices Associated to Left and Right Quotients

Jason Bell*

Department of Pure Mathematics
University of Waterloo, Canada

jpbell@uwaterloo.ca

Daniel Smertnig†

Institute for Mathematics and Scientific Computing
University of Graz, Austria

daniel.smertnig@uni-graz.at

Hellis Tamm‡

Department of Software Science
Tallinn University of Technology, Estonia

hellis@cs.ioc.ee

We associate lattices to the sets of unions and intersections of left and right quotients of a regular

language. For both unions and intersections, we show that the lattices we produce using left and

right quotients are dual to each other. We also give necessary and sufficient conditions for these

lattices to have maximal possible complexity.

1 Introduction

Within the study of formal languages, a common theme is associating invariants that provide a measure

of complexity of the language. A key example of this type is the entropy of languages (cf. Chomsky and

Miller [4]), which gives a measure of their growth.

When one restricts to regular languages, one of the most essential notions of complexity comes from

the observation that, given a finite alphabet Σ, a language L ⊆ Σ∗ is regular if and only if the number of

its distinct left quotients is finite, where the left quotient of L by a word w ∈ Σ∗ is the language

w−1L = {x ∈ Σ
∗:wx ∈ L}.

In this sense, the number of distinct left quotients of a regular language provides a measure of its com-

plexity (see the survey article [1] and references therein for more on quotient complexity). One can

analogously define the right quotient of a language L by a word v ∈ Σ∗ to be the language

Lv−1 = {u ∈ Σ
∗:uv ∈ L},

and again, L is regular exactly when it has a finite number of distinct right quotients. In particular,

this gives an analogous notion of complexity. It should be noted, however, that these two notions of

complexity do not coincide. For example, if Σ = {a,b} and L = {ε ,a,a2,ba}, then the left quotients of

L are the languages L,{ε ,a},{a},{ε},∅, while the right quotients are the languages L,{ε ,a,b},{ε},∅.

The purpose of this paper is to show that when one instead forms lattices1 associated with the left

and right quotients of a regular language in a natural way, then a duality arises that provides a left-right

*Supported by NSERC grant RGPIN RGPIN-2022-02951.
†Supported by the Austrian Science Fund (FWF): P 36742-N.
‡Supported by the Estonian Research Council grant PRG1210.
1A lattice is simply a partially ordered set (Λ,6) with the property that finite subsets have unique least upper bounds and

unique greatest lower bounds; thus lattices have a join, ∨, and meet, ∧, which are binary operations corresponding to taking

respectively the least upper bound and greatest lower bound of two elements of Λ.

http://dx.doi.org/10.4204/EPTCS.386.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

36 Duality of Lattices

symmetric measure of the complexity of the language in terms of quotients. To make this precise, we ob-

serve that if L ⊆ Σ∗ is a regular language with left quotients L0, . . . ,Ln−1 and right quotients R0, . . . ,Rm−1,

then one can consider the following four lattices.

• The left quotient union lattice, Latt(L,∪,L):

the lattice whose elements are all sets that can be formed by taking a (possibly empty) union of

left quotients L0, . . . ,Ln−1.

• The right quotient union lattice, Latt(L,∪,R):

the lattice whose elements are all sets that can be formed by taking a (possibly empty) union of

right quotients R0, . . . ,Rm−1.

• The left quotient intersection lattice, Latt(L,∩,L):

the lattice whose elements are all sets that can be formed by taking a (possibly empty) intersection

of left quotients L0, . . . ,Ln−1.

• The right quotient intersection lattice, Latt(L,∩,R):

the lattice whose elements are all sets that can be formed by taking a (possibly empty) intersection

of right quotients R0, . . . ,Rm−1.

We observe that the above sets are partially ordered by inclusion and have a join operation, ∨, and a meet

operation, ∧. In the case of Latt(L,∪,L) and Latt(L,∪,R), the join of A and B is the union and the meet

is the union of all elements of the set that are contained in A∩B, where an empty union is the empty

set. These two lattices have a unique smallest element (the empty set, which is the empty union) and a

unique largest element, consisting of the union of all left (respectively right) quotients.

Similarly, in the case of Latt(L,∩,L) and Latt(L,∩,R), the meet is just the intersection and the join

of two intersections of quotients, A and B, is the intersection of all quotients that contain the union

A ∪ B, where an empty intersection is taken to be Σ∗. Then these two lattices again have a unique

maximal element Σ∗ and a unique minimal element given by the intersection of all left (respectively

right) quotients.

As a simple example, consider again the finite regular language L = {ε ,a,a2,ba} ⊆ {a,b}∗. Then

the left quotients are the languages

L0 = {ε ,a,a2,ba}, L1 = {a}, L2 = {ε ,a}, L3 = {ε}, L4 =∅ (1)

while the right quotients are

R0 =∅, R1 = {ε}, R2 = {ε ,a,b}, R3 = {ε ,a,a2,ba} (2)

and we construct the four lattices we consider in this paper from these left and right quotients of

{ε ,a,a2,ba} in Figures 1 and 2.

Figures 1 and 2 hint at an unexpected duality. We recall that if Λ is a lattice, then we have a dual

lattice Λ∗, which is Λ as a set, but where the partial order on Λ is reversed and the meet and join are

exchanged. Intuitively, one can think of this as simply taking the lattice Λ and writing it “upside-down”;

J. Bell, D. Smertnig, & H. Tamm 37

∅

{ε} {a}

{ε ,a}

{ε ,a,a2,ba} {ε ,a,a2,b,ba}

{ε ,a,b} {ε ,a,a2,ba}

{ε}

∅

Figure 1: The lattices Latt(L,∪,L) (left) and Latt(L,∪,R) (right) for L = {ε ,a,a2,ba}.

∅

{ε} {a}

{ε ,a}

{ε ,a,a2,ba}

Σ∗ Σ∗

{ε ,a,b} {ε ,a,a2,ba}

{ε ,a}

{ε}

∅

Figure 2: The lattices Latt(L,∩,L) (left) and Latt(L,∩,R) (right) for L = {ε ,a,a2,ba}.

in particular, the two lattices in Figure 1 are duals of each other and similarly for the two lattices in Figure

2.

We recall that two lattices Λ and Λ′ are isomorphic (written Λ ∼= Λ′) if there is a bijection f : Λ → Λ′

such that x < y in Λ if and only if f (x) < f (y) in Λ′ and such that f (x∨ y) = f (x)∨ f (y) and f (x∧ y) =
f (x)∧ f (y) for all x,y ∈ Λ. Our main theorem shows that the duality occurring in Figures 1 and 2 is part

of a general phenomenon.

Theorem 1. Let L ⊆ Σ∗ be a regular language. Then we have:

(a) Latt(L,∪,L) is isomorphic to the dual lattice of Latt(L,∪,R);

(b) Latt(L,∩,L) is isomorphic to the dual lattice of Latt(L,∩,R).

We note that the isomorphism given in Theorem 1(b), while not stated, can be obtained from the work

of Im and Khovanov [5], if one carefully analyzes their constructions. In particular, it would also be

interesting to know whether the isomorphism in Theorem 1(a) has any relevance to one-dimensional

topological theories.

The outline of this paper is as follows. In §2 we present basic concepts needed from the theory of

finite-state automata. In §3 we provide an overview of the theory of atoms of regular languages and in §4

we describe a key relationship between quotients and atoms. In §5 and §6 we give the proof of Theorem

1(a) and (b) respectively. In §7 we relate our results to Boolean semimodules and describe the duality

algebraically. In §8 we present a brief analysis of when the lattices we construct are of maximal possible

complexity, and §9 concludes the paper.

38 Duality of Lattices

2 Automata and languages

A nondeterministic finite automaton (NFA) is a quintuple

N = (Q,Σ,δ , I,F),

where Q is a finite, non-empty set of states, Σ is a finite non-empty alphabet, δ : Q× Σ → 2Q is the

transition function, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. We can naturally

extend the transition function to functions

δ
′ : Q×Σ

∗ → 2Q
δ
′′ : 2Q ×Σ

∗ → 2Q,

which corresponds to taking elements of Σ∗ as input for our automata and read them left-to-right to

determine whether or not they are accepted; we henceforth use δ to denote all of these functions.

The left language of a state q of N is

{w ∈ Σ
∗:q ∈ δ (I,w)}, (3)

and the right language of q is

{w ∈ Σ
∗:δ (q,w)∩F 6=∅}. (4)

A state q of N is reachable if its left language is non-empty, and it is empty if its right language is empty.

The language accepted by an NFA N is L(N) = {w ∈ Σ∗:δ (I,w)∩F 6=∅}, and we say that two NFAs

are equivalent if they accept the same language. The reverse of an NFA N = (Q,Σ,δ , I,F) is the NFA

N R = (Q,Σ,δ R,F, I), where q ∈ δ R(p,a) if and only if p ∈ δ (q,a) for p,q ∈ Q and a ∈ Σ. The reverse

of an NFA N accepts the reverse of the language accepted by N .

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ,δ ,q0,F), where Q, Σ, and F are as

in an NFA, δ : Q×Σ → Q is the transition function, and q0 is the initial state.

We recall that a language L is regular if it is accepted by some DFA (or equivalently by an NFA). It

is well known that the left quotients of the language L are precisely the right languages of the states of a

minimal DFA for L. Any NFA N can be determinized by the well-known subset construction, yielding

a DFA N D that has only reachable states. We note that one can iteratively perform the reverse and

determinization procedures; indeed, this plays a key role in the fundamental work of Brzozowski [2],

and the following result is a slightly modified version of his work.

Proposition 2. If an NFA N has no empty states and N R is deterministic, then N D is a minimal DFA.

We note that by Proposition 2, for any NFA N , the DFA N RDRD is the minimal DFA equivalent to

N ; this result is known as Brzozowski’s double-reversal method for DFA minimization.

3 Atoms of a regular language

Let L be a non-empty regular language with left quotients L0, . . . ,Ln−1. Given a subset S ⊆{0, . . . ,n−1}
we can form a left atomic intersection

IS :=

(

⋂

i∈S

Li

)

∩





⋂

j∈{0,...,n−1}\S

L j



 , (5)

where Li is the complement of Li in Σ∗.

J. Bell, D. Smertnig, & H. Tamm 39

A non-empty left atomic intersection is called a left atom of L [3].2 A left atom is initial if it is

contained in L and it is final if it contains the empty word ε . There is exactly one final left atom; namely

the atom IT where T is the set of i for which ε ∈ Li.

If L0 ∩ ·· · ∩ Ln−1 is a left atom, then it is called the negative atom, with all other left atoms called

positive. Thus left atoms of L are pairwise disjoint languages uniquely determined by L and they define

a partition of Σ∗.

One can do a similar construction using right quotients: if R0, . . . ,Rm−1 are the right quotients of L,

then for each subset T ⊆ {0, . . . ,m−1} we can form a right atomic intersection

JT :=

(

⋂

i∈T

Ri

)

∩





⋂

j∈{0,...,m−1}\T

R j



 , (6)

and we define right atoms of L to be the non-empty right atomic intersections.

We note that the left (resp., right) atoms of a language L are precisely the atoms of the Boolean

algebra (regarded as a partially ordered set), generated by the left (resp., right) quotients of L.

As an example, if we take L = {ε ,a,a2,ba} then the left atoms in this case are given by the partition

A0 = {ε ,a,a2,ba}, A1 = {a2,ba}, A2 = {a}, A3 = {ε} (7)

of Σ∗. These left atoms can be expressed as left atomic intersections as follows:

{ε ,a,a2,ba}= {ε ,a,a2,ba}∩{a}∩{ε ,a}∩{ε}∩∅= L0 ∩L1 ∩L2∩L3 ∩L4, (8)

{a2,ba} = {ε ,a,a2,ba}∩{a}∩{ε ,a}∩{ε}∩∅= L0 ∩L1 ∩L2 ∩L3∩L4, (9)

{a} = {ε ,a,a2,ba}∩{a}∩{ε ,a}∩{ε}∩∅= L0 ∩L1 ∩L2 ∩L3∩L4, (10)

and

{ε}= {ε ,a,a2,ba}∩{a}∩{ε ,a}∩{ε}∩∅= L0 ∩L1 ∩L2 ∩L3∩L4. (11)

Here, the left atom {ε ,a,a2,ba} is negative, while the remaining left atoms are both positive and

initial and the left atom {ε} is the unique final atom.

On the other hand, the right atoms are given by the partition

B0 = {ε}, B1 = {b}, B2 = {a}, B3 = {ba,a2}, B4 = {ε ,a,a2,b,ba}, (12)

and they are obtained as right atomic intersections as

{ε}=∅∩{ε}∩{ε ,a,b}∩{ε ,a,a2,ba} = R0 ∩R1 ∩R2 ∩R3, (13)

{b}=∅∩{ε}∩{ε ,a,b}∩{ε ,a,a2,ba} = R0 ∩R1 ∩R2 ∩R3, (14)

{a}=∅∩{ε}∩{ε ,a,b}∩{ε ,a,a2,ba} = R0 ∩R1 ∩R2 ∩R3, (15)

{ba,a2}=∅∩{ε}∩{ε ,a,b}∩{ε ,a,a2,ba} = R0 ∩R1 ∩R2 ∩R3, (16)

2In the literature, one generally just uses the term atom when speaking of what we call left atoms. However, to achieve our

duality results it is convenient to use the adjective left when speaking of atoms obtained from left quotients.

40 Duality of Lattices

s0

s1 s2

s3

a,b

b

a,b

a,b

a q0

q1

q2

q3

q4

b

a

a

b

b

a

a,b

a,b

Figure 3: The átomaton (left) and the minimal DFA (right) for L = {ε ,a,a2,ba}.

and

{ε ,a,a2,b,ba} =∅∩{ε}∩{ε ,a,b}∩{ε ,a,a2,ba} = R0 ∩R1 ∩R2 ∩R3. (17)

We note that every left quotient of L (including L itself) is a (possibly empty) union of left atoms and

similarly every right quotient is a union of right atoms.

It is well known that left quotients of L are in a one-to-one correspondence with the equivalence

classes of the Nerode right congruence ≡L of L [8] defined as follows: for x,y ∈ Σ∗, x ≡L y if for every

v ∈ Σ∗, xv ∈ L if and only if yv ∈ L. Left atoms of L are the classes of the left congruence L≡ of L:

for x,y ∈ Σ∗, x L≡ y if for every u ∈ Σ∗, ux ∈ L if and only if uy ∈ L [6]. Also, right quotients are in a

one-to-one correspondence with the equivalence classes of the left congruence.

Let A0, . . . ,Am−1 denote the left atoms of L where we index so that Am−1 is the final atom, and let I

denote the set of initial atoms.

The átomaton A of L is the NFA whose set of states is the set

S = {s0, . . . ,sm−1}, (18)

which can be thought of as parameterizing the set of left atoms of L. More precisely, we take

A = (S,Σ,α , I,{sm−1}),

where s j ∈ α(si,a) if and only if A j ⊆ a−1Ai, for i, j ∈ {0, . . . ,m−1} and a ∈ Σ. (We refer the reader to

[3] for further details on átomata.)

In the running example in which we take L = {ε ,a,a2,ba}, by Equation (7), the left atoms are the

sets

A0 = {ε ,a,a2,ba}, A1 = {a2,ba}, A2 = {a}, A3 = {ε},

and we see that the átomaton associated to L is given in Figure 3 on the left, where the states s1,s2,s3 are

initial.

Observe that if we adopt the labelling given in Equations (2) and (7), then the right languages of the

átomaton in Figure 3 are

A0 = {a,b}∗ ·
(

{b}∪{a,b}2 · {a}
)

= {ε ,a,a2,ba}

J. Bell, D. Smertnig, & H. Tamm 41

(for the state s0), A1 = {a2,ba} (for the state s1), A2 = {a} (for the state s2), and A3 = {ε} (for the state

s3), which are precisely the left atoms of the language given in Equation (7).

On the other hand, the left languages are R0 = ∅ (for the state s0), R1 = {ε} (for the state s1),

R2 = {ε ,a,b} (for the state s2), R3 = {ε ,a,a2,ba} (for the state s3), and these are precisely the right

quotients of L, as given in Equation (2).

In fact, these observations are part of general phenomena, as shown by Brzozowski and Tamm [3],

which we record in the following proposition.

Proposition 3. Let L be a non-empty regular language. Then the following hold:

(i) the left quotients of L are precisely the right languages of the minimal DFA accepting L;

(ii) the left atoms of L are precisely the right languages of the átomaton A associated to L;

(iii) the right quotients of L are precisely the left languages of A ;

(iv) the right atoms of L are precisely the left languages of the minimal DFA accepting L.

In particular, we have set bijections

{left atoms of L}↔ {right quotients of L}

and

{right atoms of L}↔ {left quotients of L},

where in the first case we view a left atom of L as the right language of a state of A and then send it to

the left language of this state and in the second case we view a right atom of L as the left language of a

state of the minimal DFA of L and then send it to the right language of this state.

Proof. Item (i) is well known. It was shown in [3] that the left atoms of a regular language L are precisely

the right languages of the states of the associated átomaton, so (ii) holds.

A modification of the isomorphism result from [3] shows that if D is the minimal DFA accepting L

with state set Q = {q0,q1, . . . ,qn−1}, then the átomaton, A , associated to L is isomorphic to DRDR as

NFAs, via an isomorphism induced by the map which sends a state si ∈ S from the state set of A to the

set {q j: j ∈ S}, where S ⊆ {0, . . . ,n−1} has the property that Ai is the left atomic intersection IS. Since

by Proposition 2, the DFA DRD is the minimal DFA of the reverse language of L, the left languages of

DRDR ∼= A are exactly the right quotients of L, which establishes (iii).

Finally, [3] shows that the reverse NFA of the átomaton of L is the minimal DFA of the reverse

language of L, and so (iv) now follows, and the bijections are immediate from (i)–(iv). �

We again consider the regular language L = {ε ,a,a2,ba} as an example. Then the automaton in

Figure 3 on the right is the minimal DFA accepting L with the state set {q0,q1,q2,q3,q4}.

Observe that for this DFA, if we adopt the labellings from Equations (1) and (12), the left language

of q0 is B0 = {ε} and the right language is L0 = L; the left language of q1 is the right atom B1 = {b}
and the right language is the left quotient L1 = {a}; the left language of q2 is B2 = {a} and the right

language is L2 = {ε ,a}; the left language of q3 is B3 = {ba,a2} and the right language is L3 = {ε}; and

finally the left language of q4 is B4 = ({ab,b2}∪{a2,ba}{a,b}){a,b}∗ = {ε ,a,b,a2,ba} and the right

language is L4 =∅. Similarly, the remarks preceding Proposition 3 give the bijection between left atoms

and right quotients. We record these bijections in Figure 4, where A is the átomaton and D is the DFA

from Figure 3.

42 Duality of Lattices

State of D Left quotient of {ε ,a,a2,ba} Right atom of {ε ,a,a2,ba}

q0 {ε ,a,a2,ba} {ε}

q1 {a} {b}

q2 {ε ,a} {a}

q3 {ε} {ba,a2}

q4 ∅ {ε ,a,b,a2,ba}

State of A Right quotient of {ε ,a,a2,ba} Left atom of {ε ,a,a2,ba}

s0 ∅ {ε ,a,a2,ba}

s1 {ε} {a2,ba}

s2 {ε ,a,b} {a}

s3 {ε ,a,a2,ba} {ε}

Figure 4: Tables giving the bijections described in Proposition 3 between left quotients and right atoms

and between right quotients and left atoms for the language L = {ε ,a,a2,ba}.

4 Relationships between quotients and atoms

In this section, we give key bijections between left quotients and right atoms and similarly for right

quotients and left atoms.

We find it convenient to introduce notation that we will use in proving Theorem 1. The main aim

of this notation is to capture the isomorphisms described in Proposition 3 and we henceforth adopt this

notation in all results we prove.

Notation 4. We introduce the following notation.

(i) We let L be a non-empty regular language in Σ∗ with Σ a finite alphabet.

(ii) We let A denote the átomaton of L and let D denote the minimal DFA accepting L on states

q0, . . . ,qn−1.

(iii) We let L0, . . . ,Ln−1 denote the left quotients of L.

(iv) We let R0, . . . ,Rm−1 denote the right quotients of L.

(v) We let A0, . . . ,Am−1 denote the left atoms of L, where we index so that Ai corresponds to Ri under

the bijection given in Proposition 3.

(vi) We let B0, . . . ,Bn−1 be the right atoms of L, where we index so that Bi corresponds to Li under the

bijection given in Proposition 3.

Remark 5. We note that in our running example where L = {ε ,a,a2,ba}, this notation is consistent with

the labellings given in Equations (1), (2), (7), and (12), as shown by Figure 4.

J. Bell, D. Smertnig, & H. Tamm 43

The following proposition gives a precise relationship between the left and right quotients of a regular

language L and the left and right atoms of L.

Proposition 6. Let i ∈ {0, . . . ,m−1}, and let j ∈ {0, . . . ,n−1}. Then

Ri =
⋃

{k:Ai⊆Lk}

Bk and L j =
⋃

{ℓ:B j⊆Rℓ}

Aℓ.

In particular, Ai ⊆ L j if and only if B j ⊆ Ri.

Proof. As noted in the proof of Proposition 3, the modified argument of [3] shows that the NFAs A and

DRDR are isomorphic, with a state si in A corresponding to a set {qi: i∈ S} for some set S⊆{0, . . . ,n−1}
with the property that the left atom Ai is the (left) atomic intersection IS described in Equation (5). By

Proposition 3, the right quotients of L are the left languages of DRDR and the right atoms of L are the left

languages of D . Hence, it is clear that the first equality holds.

The second equality is proved analogously, now using that the left quotients of L are the right lan-

guages of D and the left atoms of L are the right languages of A ∼= DRDR by Proposition 3. The “in

particular” clause follows immediately from these equalities. �

Lemma 7. Let X be a union of left atoms of L, and let Y be a union of right atoms of L. Then we have:

(1)
⋃

{i:Ai 6⊆X}Ri =
⋃

{ j:L j 6⊆X}B j,

(2)
⋂

{ j:A j⊆X}R j =
⋃

{i:X⊆Li}Bi,

(3)
⋃

{i:Bi 6⊆Y}Li =
⋃

{ j:R j 6⊆Y} A j,

(4)
⋂

{ j:B j⊆Y} L j =
⋃

{i:Y⊆Ri}Ai.

Proof. We consider the union of the right quotients U =
⋃

Ai 6⊆X Ri, corresponding to the left atoms not

contained in X .

Consider a left quotient L j that is not contained in X . Then there is some left atom Ai such that

Ai ⊆ L j and Ai 6⊆ X . By Proposition 6, Ai ⊆ L j gives that B j ⊆ Ri, and hence U contains all right atoms

B j such that L j is not a subset of X , and so U contains
⋃

{ j:L j 6⊆X}B j.

On the other hand, if L j ⊆ X and Ai 6⊆ X , then Ai 6⊆ L j, which by Proposition 6 gives that B j 6⊆ Ri.

Hence, B j 6⊆U if L j ⊆ X , and so we get the reverse containment, establishing (1).

By Proposition 6 we see that for each left quotient Li, the inclusion X ⊆ Li holds if and only if

Bi ⊆
⋂

{ j:A j⊆X}R j holds and so we obtain (2).

The proofs of (3) and (4) are done similarly to (1) and (2). �

A convenient tool for capturing much of this information comes from the quotient-atom matrix [7, 9].

If we adopt the notation of Notation 4, then this matrix is the n×m zero-one matrix whose (i, j)-entry

(where we start our indices at zero) is 1 exactly when i ∈ S, where S ⊆ {0,1, . . . ,n−1} is the set giving

the left atom A j as a left atomic intersection IS. Equivalently, this is the case when A j ⊆ Li.

In the case that L is the regular language {ε ,a,a2,ba}, the left quotients and left atoms are given

in Equations (1) and (7), and the expressions for left atoms as left atomic intersections are given in

Equations (8)–(11). Using these data, we see that the quotient-atom matrix for L = {ε ,a,a2,ba} is given

in Figure 5.

We note that one can do an analogous construction with right atoms and right quotients and one will

then obtain the transpose of the quotient-atom matrix. The quotient-atom matrix allows one to understand

non-empty intersections of non-empty sets of left and right quotients in terms of maximal grids of the

quotient-atom matrix [7, 9].

44 Duality of Lattices













0 1 1 1

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0













(19)

Figure 5: The quotient-atom matrix for L = {ε ,a,a2,ba}.

5 The isomorphism Latt(L,∪,L) ∼= Latt(L,∪,R)∗

In this section, we give the proof of Theorem 1(a).

We define a set map

Ψ : Latt(L,∪,L)→ Latt(L,∪,R) (20)

by declaring that for X ∈ Latt(L,∪,L),

Ψ(X) :=
⋃

{i:Ai 6⊆X}

Ri. (21)

We can similarly define a map

Ψ
′ : Latt(L,∪,R)→ Latt(L,∪,L), (22)

where for Y ∈ Latt(L,∪,R), we define

Ψ
′(Y) :=

⋃

{i:Bi 6⊆Y}

Li. (23)

We shall show that the maps Ψ and Ψ′ are inverses of each other and that Ψ induces a lattice isomorphism

between Latt(L,∪,L) and Latt(L,∪,R)∗.

To continue with the example when L = {ε ,a,a2,ba}, it can be checked that the map Ψ is defined by

the assignments Ψ(∅) = {ε ,a,a2,b,ba}, Ψ({ε}) = {ε ,a,b}, Ψ({a}) = {ε ,a,a2,ba}, Ψ({ε ,a}) = {ε},

and Ψ({ε ,a,a2,ba}) =∅, which is capturing the dual structure of the lattices in Figure 1.

Lemma 8. Let Ψ and Ψ′ be the maps defined in Equations (21) and (23). Then Ψ and Ψ′ are set-

theoretic inverses of each other.

Proof. Let X ∈ Latt(L,∪,L). Then Y := Ψ(X) is the union of all Ri such that Ai 6⊆ X . Using Lemma 7

we then see

Ψ(X) =
⋃

{ j:L j 6⊆X}

B j. (24)

Then Ψ′(Y) =
⋃

Bk 6⊆Y Lk. Since right atoms are disjoint, from Equation (24) we see that B j is not a subset

of Y if and only if L j ⊆ X . Thus Ψ′(Y) is the union of all left quotients L j contained in X , which is

precisely X as X is a union of left quotients.

The fact that Ψ◦Ψ′ is the identity of Latt(L,∪,R) is proved with a symmetric argument, again using

Lemma 7. �

Lemma 9. Let Ψ and Ψ′ be the maps defined in Equations (21) and (23). If U1 and U2 are unions of left

quotients of L, then the following hold:

J. Bell, D. Smertnig, & H. Tamm 45

(1) U1 ⊆U2 ⇐⇒ Ψ(U2)⊆ Ψ(U1);

(2) Ψ(U1 ∪U2) is the largest union of right quotients that is contained in the intersection Ψ(U1)∩
Ψ(U2);

(3) if V is the largest union of left quotients contained in U1 ∩U2, then Ψ(V) = Ψ(U1)∪Ψ(U2).

Proof. It is immediate from the definition that if U1 ⊆U2 then Ψ(U2) ⊆ Ψ(U1). Similarly, if V1 and V2

are unions of right quotients of L, then if V2 ⊆V1 then Ψ′(V1)⊆ Ψ′(V2). Taking Vi = Ψ(Ui) for i = 1,2,

by Lemma 8, if Ψ(U2)⊆ Ψ(U1) then U1 ⊆U2, which establishes (1).

To see (2), observe that since Ψ reverses inclusions, we have Ψ(U1 ∪U2) ⊆ Ψ(U1)∩Ψ(U2). Now

suppose that Ri is a right quotient that is contained in Ψ(U1)∩Ψ(U2). Then since Ψ reverses inclusions

and Ψ′ is the inverse of Ψ, we have that Ψ′ also reverses inclusions and so Ψ′(Ri)⊇U1 since Ri ⊆ Ψ(U1),
and similarly Ψ′(Ri) ⊇ U2. Hence Ψ′(Ri) ⊇ U1 ∪U2 and so applying Ψ and using once more that it

reverses inclusions, we see that Ri is contained in Ψ(U1 ∪U2). Thus Ψ(U1 ∪U2) is the largest union of

right quotients contained in Ψ(U1)∩Ψ(U2), which shows (2).

We now prove (3). Let V be the union of all left quotients contained in U1 ∩U2. Then since Ψ

reverses inclusions, we have Ψ(V) ⊇ Ψ(U1) and similarly Ψ(V) ⊇ Ψ(U2), which shows that Ψ(V) ⊇
Ψ(U1)∪Ψ(U2). To show equality, notice that if Ψ(V) strictly contains Ψ(U1)∪Ψ(U2), then there is

some right atom Bk contained in Ψ(V) that is neither contained in Ψ(U1) nor in Ψ(U2). Then since

Bk ⊆ Ψ(V), we have Lk 6⊆ V by Equation (21) and Lemma 7. But the fact that Bk is not contained in

Ψ(U1) gives that Lk ⊆U1 and similarly Lk ⊆ U2. Hence Lk ⊆ U1 ∩U2. But this contradicts the fact that

we chose V to be the union of left quotients contained in U1 ∩U2. Thus we get (3). �

Proof of Theorem 1(a). The fact that Ψ gives a poset isomorphism between the lattice Latt(L,∪,L) and

the dual lattice Latt(L,∪,R)∗ follows from Lemmas 8 and 9 (1). Lemma 9 (2) and (3) show that Ψ

preserves respectively the meet and join operations on these posets, as described in the definitions. �

6 The isomorphism Latt(L,∩,L) ∼= Latt(L,∩,R)∗

The aim of this section is to prove Theorem 1(b) involving intersections of left and right quotients.

We now define maps

Φ : Latt(L,∩,L)→ Latt(L,∩,R) (25)

and

Φ
′ : Latt(L,∩,R)→ Latt(L,∩,L) (26)

as follows. If X ∈ Latt(L,∩,L), we define

Φ(X) =
⋂

A j⊆X

R j, (27)

and if Y is an intersection of right quotients of L, we define

Φ
′(Y) =

⋂

B j⊆Y

L j. (28)

The following lemmas can be proved in a similar manner to the method of proof for Lemmas 8 and 9.

Lemma 10. Let Φ and Φ′ be the maps defined in Equations (27) and (28). Then Φ and Φ′ are set-

theoretic inverses of each other.

46 Duality of Lattices

Lemma 11. Let Φ and Φ′ be the maps defined in Equations (27) and (28). If U1 and U2 are intersections

of left quotients of L, then the following hold:

(1) U1 ⊆U2 ⇐⇒ Φ(U2)⊆ Φ(U1);

(2) Φ(U1 ∩U2) is the smallest intersection of right quotients that contains the union Φ(U1)∪Φ(U2);

(3) if V is the smallest intersection of left quotients that contains U1∪U2, then Φ(V) =Φ(U1)∩Φ(U2).

Proof of Theorem 1(b). This is proved similarly to Theorem 1(a), but where we now use Lemmas 10 and

11. �

7 Semimodules and semilattices

In this section, we reinterpret our results algebraically and note connections with work of Im and Kho-

vanov [5].

Let B denote the Boolean semiring, which is the set {0,1} endowed with binary operations + and ·
as in the tables from Figure 6.

+ 0 1

0 0 1

1 1 1

· 0 1

0 0 0

1 0 1

Figure 6: Addition and multiplication tables for the Boolean ring B.

A Boolean semimodule M is a commutative monoid (written additively and with an identity element

0M) equipped with a scalar multiplication map

· : B×M → M

satisfying

1 ·m = m for all m ∈ M, 0 ·m = 0M for all m ∈ M and b · (m+ n) = b ·m+ b · n and (b+ c) ·m =
b ·m+ c ·m for all b,c ∈ B and all m,n ∈ M.

In particular, if M is a Boolean semimodule then for m ∈ M we have m+m = (1+1) ·m = 1 ·m = m,

and so all elements of M are idempotent. A Boolean semimodule can be viewed as a join-semilattice

(that is a partially ordered set in which any two elements have a least upper bound) as follows. Given a

Boolean semimodule M we can define a partial order 6 on M by declaring that m6 n whenever m+n= n.

We can then define a join operation on M by declaring that m∨n := m+n. It is straightforward to check

that this gives M the structure of a join semilattice. Conversely, given a join semilattice Λ with a least

element m0, one can endow Λ with the structure of a Boolean semimodule by taking the join operation to

be addition and taking m0 to be the zero element. In case M is a finite semimodule, M is in fact a lattice

with meet defined by taking m∧ n to be the join of all elements q that are less than or equal to both m

and n, and with unique maximal element given by taking the join of all elements of the lattice.

Given a Boolean semimodule M, one has a dual module M∗ = HomB(M,B), where HomB(M,B) is

the set of B-linear maps from M to B. We observe that M∗ is itself a Boolean semimodule, since we can

add maps and have a zero map. We then have a natural B-bilinear pairing 〈 , 〉 : M ×M∗ → B given by

〈m, f 〉 = f (m) for m ∈ M and f ∈ M∗. For a finite Boolean semimodule M, viewed as a semilattice, M∗

is just the dual semilattice of M.

J. Bell, D. Smertnig, & H. Tamm 47

We note that for a finite alphabet Σ, we can construct the Boolean lattice Bool(Σ) := 2Σ∗
, consisting

of subsets of Σ∗ partially ordered by inclusion and where meet and join are given by intersection and

union respectively. Then given a regular language L ⊆ Σ∗, we have a B-bilinear map, which we call the

Im-Khovanov pairing with respect to L,

〈 , 〉L : Bool(Σ)×Bool(Σ)→ B

defined by

〈A,B〉L =

{

1 if there exists w ∈ A,v ∈ B such that wv ∈ L;

0 otherwise,
(29)

for A,B ⊆ Σ∗. From its definition, this is easily seen to be B-bilinear and this pairing appears in the work

of Im and Khovanov [5, §4].

For the remainder of this section, we adopt the notation of Notation 4 and let 〈 , 〉 denote the Im-

Khovanov pairing with respect to L. Then by Proposition 3, Bi is the left language of a state qi of the

minimal DFA accepting L, and Li is the corresponding right language of qi. Therefore, 〈Bi,A j〉 = 1 if

and only if A j ∩ Li 6= ∅. Similarly, using the átomaton of L, we obtain that the property 〈Bi,A j〉 = 1

is equivalent to Bi ∩R j 6= ∅. On the other hand, left quotients are unions of left atoms and left atoms

are disjoint, and so A j ∩Li is non-empty if and only if A j ⊆ Li, and we have an analogous fact for right

quotients and right atoms. Hence, we have the equivalences

〈Bi,A j〉= 1 ⇐⇒ Bi ⊆ R j ⇐⇒ A j ⊆ Li, (30)

which can be thought of as an algebraic reformulation of Proposition 6. In general, if X is a union of

left atoms, then we have 〈Bi,X〉 = 0 ⇐⇒ X ∩ Li = ∅, and if Z is a union of right atoms, we have

〈Z,A j〉= 0 ⇐⇒ Z ∩R j =∅.

The pairing 〈 , 〉 restricts to pairings

〈 , 〉 : Latt(L,∪,R)×Latt(L,∪,L)→ B

and

〈 , 〉 : Latt(L,∩,R)×Latt(L,∩,L)→ B.

We now give a description of the maps Ψ and Φ from Equations (21) and (27) in terms of the Im-

Khovanov pairing. In order to express this, for a subset Y of Σ∗, we let Y⊥ denote the orthogonal

complement of Y , which is the subset of Σ∗ consisting of words w with the property that 〈Y,{w}〉 = 0.

Proposition 12. Let Ψ and Φ be the maps given in Equations (21) and (27). Then we have the following:

(1) for X a union of left quotients, Ψ(X) =
⋃

{k:〈Bk ,X〉=1}Bk;

(2) for Z an intersection of left quotients, Φ(Z) =
⋃

{k : Z∩B⊥
k =∅}Bk.

Proof. Let X be a union of left quotients. Then by Equation (21),

Ψ(X) =
⋃

{ j:A j 6⊆X}

R j.

Since each right quotient is a union of right atoms, and since right atoms are disjoint, we see that Ψ(X)
is uniquely expressible as a union of right atoms. Then Bk ⊆ Ψ(X) if and only if there is some j such

that A j 6⊆ X and Bk ⊆ R j. Notice that since X is a union of left atoms, A j 6⊆ X if and only if A j ⊆ X ,

48 Duality of Lattices

and so we see by Equation (30) that Bk ⊆ Ψ(X) if and only if there is an index j such that A j ⊆ X and

〈Bk,A j〉= 1. Finally, bilinearity of our pairing says that

Bk ⊆ Ψ(X) ⇐⇒ 〈Bk,X〉= 1.

This completes the proof of (1).

Next let Z be an intersection of left quotients. Then by Equation (27) we have

Φ(Z) =
⋂

{ j:A j⊆Z}

R j.

Notice that since right atoms are disjoint and since each right quotient is a union of right atoms, Bk ⊆
Φ(Z) if and only if Bk ⊆ R j for all j such that A j ⊆ Z. Again, by Equation (30), this is equivalent to

〈Bk,A j〉= 1 for all j such that A j ⊆ Z. Notice that 〈Bk,A j〉= 1 if and only if A j is completely contained in

Lk, and hence if 〈Bk,A j〉= 1, then 〈Bk,Y 〉= 1 for all non-empty subsets Y of A j. Hence this is equivalent

to saying that Z does not intersect the orthogonal complement of Bk, and so the result follows. �

One can also interpret the quotient-atom matrix in terms of the Im-Khovanov pairing, if one views

the entries of the matrix as living in the Boolean semiring B. For the quotient-atom matrix, the (i, j)-
entry is 1 if Li appears in the atomic intersection giving A j. Equivalently, the (i, j)-entry is 1 precisely

when A j ⊆ Li, which by Equation (30) occurs precisely when 〈Bi,A j〉 = 1. In particular, we have the

following reinterpretation of the quotient-atom matrix.

Proposition 13. The quotient-atom matrix is the n×m matrix whose (i, j)-entry is 〈Bi,A j〉.

8 Complexity

In this section, we look at when the lattices we construct can be in some sense as large as possible.

If we adopt the notation of Notation 4, then there are at most 2n unions of left quotients and at most

2m unions of right quotients of L. By Theorem 1, the number of unions of left quotients is equal to the

number of unions of right quotients, and hence there are at most 2min(m,n) unions of left/right quotients

of L.

It is also not difficult to see that if L has 2n − 1 positive atoms—that is, all possible positive atoms

exist—then there are 2n unions of left quotients. We show, however, to realize this maximal complexity,

only n left atoms of L are required.

Proposition 14. There are 2n unions of left quotients of L if and only if all the left atomic intersections

with one uncomplemented and n−1 complemented left quotients are non-empty.

Proof. Let us suppose that all the left atomic intersections with one uncomplemented and n−1 comple-

mented left quotients of L are non-empty. That is, for every i ∈ {0, . . . ,n−1}, the left atomic intersection

I{i} is non-empty. Hence, for each left quotient Li, there is at least one atom, namely I{i}, contained in Li

and not contained in any other left quotient. Since the left atoms are pairwise disjoint, this implies that

there are 2n distinct unions of left quotients of L.

Conversely, if I{i} is empty for some i, then it is easily checked that

⋃

j 6=i

L j =
⋃

j

L j

and so the number of unions of left quotients of L is strictly less than 2n. �

A similar result can be achieved for the complexity of intersections of left quotients of L.

J. Bell, D. Smertnig, & H. Tamm 49

Proposition 15. There are 2n intersections of left quotients of L if and only if all the left atomic intersec-

tions with n−1 uncomplemented and one complemented left quotients are non-empty.

Proof. First, let us assume that for every k ∈ {0, . . . ,n−1}, Zk := I{0,...,n−1}\{k} is non-empty.

Now, consider any intersection of left quotients X = Li1 ∩·· ·∩Lis . Then one can verify that Zk ⊆ X if

and only if k 6∈ {i1, . . . , is} for k ∈ {0, . . . ,n−1}. Thus by checking which of the left atoms Z0, . . . ,Zn−1

are subsets of an intersection of left quotients, we can uniquely recover the left quotients appearing in

the intersection and so we obtain 2n distinct intersections.

Conversely, suppose that for some k, the intersection Zk is empty. Then
⋂

j 6=k L j has empty intersec-

tion with Lk and thus is contained in Lk. Hence

⋂

j 6=k

L j =
⋂

j

L j,

and so the number of intersections of left quotients of L is strictly smaller than 2n. �

We get the following result as an immediate consequence of Propositions 14 and 15.

Corollary 16. Let n > 2. Then the 2n atoms of L, described in Propositions 14 and 15, are necessary

and sufficient to obtain the equalities

|Latt(L,∪,L)|= |Latt(L,∩,L)|= 2n.

9 Conclusions and further work

Corollary 16 gives an efficient means for checking that the lattices we obtain are of maximal possible

complexity. It would be interesting to know whether other lattice-theoretic properties for the lattices

we consider can be efficiently checked or even characterized in terms of the associated automata. Of

particular interest is the question of when our lattices are distributive. In the framework considered by

Im and Khovanov [5], the distributive property is key for associating topological quantum field theories

to regular languages.

References

[1] J. Brzozowski, Towards a theory of complexity of regular languages. J. Autom. Lang. Comb. 23 (2018), no.

1–3, pp. 67–101, doi:10.25596/jalc-2018-067.

[2] J. Brzozowski, Canonical regular expressions and minimal state graphs for definite events. Proc. Sympos.

Math. Theory of Automata (New York, 1962), Polytechnic Press of the Polytechnic Inst. of Brooklyn, Brook-

lyn, N.Y., pp. 529–561, 1963.

[3] J. Brzozowski and H. Tamm, Theory of átomata. Theoret. Comput. Sci. 539 (2014), pp. 13–27, doi:10.1016/

j.tcs.2014.04.016.

[4] N. Chomsky and G. A. Miller, Finite state languages. Information and Control 1 (1958), pp. 91–112, doi:10.

1016/S0019-9958(58)90082-2.

[5] M. S. Im and M. Khovanov, Topological theories and automata, doi:10.48550/arXiv.2202.13398,

arXiv:2202.13398.

[6] S. Iván, Complexity of atoms, combinatorially. Inform. Process. Lett. 116 (2016), no. 5, pp. 356–360, doi:10.

1016/j.ipl.2016.01.003.

http://dx.doi.org/10.25596/jalc-2018-067
http://dx.doi.org/10.1016/j.tcs.2014.04.016
http://dx.doi.org/10.1016/j.tcs.2014.04.016
http://dx.doi.org/10.1016/S0019-9958(58)90082-2
http://dx.doi.org/10.1016/S0019-9958(58)90082-2
http://dx.doi.org/10.48550/arXiv.2202.13398
http://dx.doi.org/10.1016/j.ipl.2016.01.003
http://dx.doi.org/10.1016/j.ipl.2016.01.003

50 Duality of Lattices

[7] T. Kameda and P. Weiner, On the state minimization of nondeterministic finite automata. IEEE Trans. Com-

put. C-19 (1970), no. 7, pp. 617–627, doi:10.1109/T-C.1970.222994.

[8] A. Nerode, Linear automaton transformations. Proc. Amer. Math. Soc. 9 (1958), pp. 541–544, doi:10.1090/

S0002-9939-1958-0135681-9.

[9] H. Tamm, New interpretation and generalization of the Kameda-Weiner method. 43rd International Collo-

quium on Automata, Languages, and Programming, Art. No. 116, 12 pp., LIPIcs. Leibniz Int. Proc. Inform.,

55, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016, doi:10.4230/LIPIcs.ICALP.2016.116.

http://dx.doi.org/10.1109/T-C.1970.222994
http://dx.doi.org/10.1090/S0002-9939-1958-0135681-9
http://dx.doi.org/10.1090/S0002-9939-1958-0135681-9
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.116

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 51–66, doi:10.4204/EPTCS.386.6

© M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen

This work is licensed under the

Creative Commons Attribution License.

Approximate State Reduction of Fuzzy Finite Automata*

Miroslav Ćirić Ivana Micić Stefan Stanimirović

University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, Niš, Serbia

miroslav.ciric@pmf.edu.rs, ivana.micic@pmf.edu.rs, stefan.stanimirovic@pmf.edu.rs

Linh Anh Nguyen

Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland, and
Faculty of Information Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam

nguyen@mimuw.edu.pl

In this paper we introduce a new type of approximate state reductions where the behaviors of the

reduced and the original automaton do not have to be identical, but they must match on all words

of length less than or equal to some given natural number. We provide four methods for performing

such reductions.

1 Introduction

Minimization and state reduction are related problems that belong to the fundamental problems of au-

tomata theory and have many significant applications. Minimization is the problem of finding an au-

tomaton with a minimal number of states equivalent to a given automaton. However, this problem cannot

be solved efficiently (in polynomial time) for fuzzy finite or nondeterministic finite automata as their

particular type (cf. [7] for more details). Therefore, the so-called state reduction problem for fuzzy finite

automata is studied instead, where the goal is to find an automaton equivalent to the given automaton

that is not necessarily minimal, but that can be treated sufficiently small or close enough to the minimal

one when comparing the number of states. In turn, the state reduction algorithm can be performed ef-

ficiently. Ćirić et al. discussed this problem in [4], and then in [5], [17] and [16], where they proposed

state reduction methods that construct sequences of fuzzy matrices. The drawback of these methods

is that these sequences can be infinite when the underlying structure of truth values is not locally fi-

nite. However, even when the sequences of matrices are finite, the number of different elements in

sequences can be high. For the reasons above, different authors have proposed an approximate approach

not only in the context of state reduction but also in some other close contexts, such as containment and

equivalence of fuzzy automata, as well as simulations and bisimulations between fuzzy automata (see

[3, 8, 9, 10, 11, 13, 12, 15, 18, 19, 21] and articles cited there).

In the approximate state reduction problem, the main goal is to construct an automaton with a smaller

number of states than a given automaton with behaviour that does not have to be identical to the behavior

of a given automaton, but “close enough” to it. Dominantly, scholars have defined the closeness between

the behaviors of two automata by the concept of the degree of equality of fuzzy sets [3, 21, 19, 11].

However, when we take membership values from the real unit interval, the conventional metric on that

interval can also be used to define closeness [8, 20]. Furthermore, a different fuzzy similarity measure

has been proposed recently in [15, 14] via relational lifting. In this paper, we approach approximate state

*This research was supported by the Science Fund of the Republic of Serbia, Grant no 7750185, Quantitative Automata

Models: Fundamental Problems and Applications - QUAM

http://dx.doi.org/10.4204/EPTCS.386.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

52 Approximate state reduction of fuzzy finite automata

reductions differently. Namely, we require that the behaviors of a given automaton and its reduced one

may not be strictly equivalent, but equivalent for all words with length not exceeding a given natural

number k. This relaxation from the strict equivalence comes naturally, as when working with fuzzy

automata in practical situations, one encounters words with finite (bounded) length. It is important to

emphasize that Nguyen et al. recently employed a similar idea in [12] to generalize fuzzy simulations

and fuzzy bisimulations for fuzzy automata [11]. In this paper, k-equivalence means the equivalence of

a given fuzzy automaton and its reduced one for all words not exceeding length k. Similarly, k-reduction

means a state reduction resulting in an automaton k-equivalent to the given automaton.

This paper provides four k-reduction methods based on state reduction methods developed in [17]

that output a fuzzy automaton strictly equivalent to the given fuzzy automaton. Precisely, the first two

methods consist of constructing a descending sequence of fuzzy quasi-order matrices. Theorems 4.1

and 4.2 prove that the fuzzy automaton formed by the different row vectors of the kth member of that

sequence of matrices (the numbering starts from 0) is k-equivalent to the given fuzzy automaton. More-

over, if the number of different elements in this sequence is not greater than k, then the resulting fuzzy

automaton is also strictly equivalent to the given fuzzy automaton. In locally finite structures, such as

the Gödel or Łukasiewicz structure, the sequence necessarily has a finite number of different elements.

Therefore, we can always pick a sufficiently high k ∈ N in these structures, so the resulting fuzzy au-

tomaton is also strictly equivalent to the given fuzzy automaton. On the other hand, for some non-locally

structures satisfying some additional conditions [4, 17], such as the product structure, a reduced fuzzy

automaton strictly equivalent to the original fuzzy automaton can be constructed from different row

vectors of the infimum of this sequence. Therefore, by choosing the kth member of the sequence, the re-

sulting k-equivalent reduced fuzzy automaton can be regarded as an approximation of the reduced fuzzy

automaton strictly equivalent to the original fuzzy automaton.

The other two methods for performing state reduction introduced in [17] consist of constructing

a family of fuzzy quasi-order matrices such that a reduced fuzzy automaton built from different row

vectors of the infimum of this family is strictly equivalent to the original fuzzy automaton. These methods

generally give better reductions than the first two, but their time complexity is generally higher. Here we

transform that family into a sequence of fuzzy quasi-order matrices and prove that the fuzzy automaton

formed by different row vectors of the kth member of that sequence (the numbering again starts from 0)

is k-equivalent to the original automaton (Theorems 4.3 and 4.4). We also point out the advantages and

disadvantages of the four proposed methods.

2 Preliminaries

Throughout this paper, N will denote the set of all natural numbers (including the zero).

A resuduated lattice is defined as an algebra L=(L,∨,∧,⊗,→,0,1), with four binary operations and

two constants 0 and 1, which satisfies the following conditions:

(R1) (L,∨,∧,0,1) is a bounded lattice with the least element 0 and the greatest element 1;

(R2) (L,⊗,1) is a commutative semigroup with the identity 1;

(R3) the pair (⊗,→) satisfies the adjunction or residuation property: for all a,b,c ∈ L,

a⊗b 6 c ⇔ a 6 b → c.

Here 6 stands for the ordering in the lattice from (R1). The operation → is called the residuum, and

⊗ is called the multiplication. If the bounded lattice from (R1) is complete, then L is called a complete

residuated lattice. As it is customary in the theory of algebraic structures to use the same notation for an

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 53

algebra and its carrier set, here we denote the residuated lattice and its carrier set with the same symbol

L as well.

The main examples of complete residuated lattices are those whose carrier set is the real unit interval

I= [0,1] and the multiplication is some triangular norm on I, such as, for example, the Gödel structure,

product structure and Łukasiewicz structure. For more information about complete residuated lattices

and the mentioned structures on I we refer to the books [2, 1] and other papers listed below, in the list of

references.

Let L be an arbitrary complete residuated lattice. For arbitrary m,n ∈ N \ {0}, by L
m×n we denote

the set of all m×n matrices with entries in L, and by L
n the set of all vectors of size n with entries in L

(by the size of a vector we mean the number of its coordinates). A fuzzy subset of a non-empty set A is

defined as any function α : A → L, and a fuzzy relation on A is defined as any fuzzy subset of A×A, that

is, as any function M : A×A → L. For a ∈ A, the value α(a) is called the membership degree of a in the

fuzzy set α . Here we deal mostly with fuzzy subsets of a finite set, as well as with fuzzy relations on a

finite set, and then, when dealing with a finite set A = {a1,a2, . . . ,an}, a fuzzy subset α of A is identified

with a vector from L
n whose ith coordinate is α(ai), while a fuzzy relation M on A is identified with a

matrix from L
n×n whose (i, j)-entry is M(ai,a j). Without risk of confusion, the vector corresponding to

the fuzzy subset α is denoted by the same symbol α , and its ith coordinate is denoted by α(i), while

the matrix corresponding to the fuzzy relation M is denoted by the same symbol M, and its (i, j)-entry is

denoted by M(i, j).
For a matrix M ∈ L

n×n and a fixed i ∈ [1..n], where [1..n] = {1,2, . . . ,n}, the vector whose jth coor-

dinate is M(i, j), for any j ∈ [1..n], is called the ith row vector of M, and for a fixed j ∈ [1..n], the vector

whose ith coordinate is M(i, j), for any i ∈ [1..n], is called the jth column vector of M.

The product M ·N of two matrices M,N ∈ L
n×n (fuzzy relations on A) is a matrix from L

n×n (a fuzzy

relation on A) defined by

(M ·N)(i, j) =
n∨

s=1

M(i,s)⊗N(s, j),

for all i, j ∈ [1..n], the products α ·M and M ·β of vectors α ,β ∈ L
n (fuzzy subsets of A) and a matrix

M ∈ L
n×n (fuzzy relation on A) are vectors from L

n (fuzzy subsets of A) defined by

(α ·M)(i) =
n∨

s=1

α(s)⊗M(s, i), (M ·β)(i) =
n∨

s=1

M(i,s)⊗β (s),

for every i ∈ [1..n], and the product α ·β of two vectors from L
n (fuzzy subsets of A) is the element from

L defined by

α ·β =
n∨

s=1

α(s)⊗β (s).

The last product α ·β is called the scalar product or dot product of vectors (fuzzy subsets) α and β .

The ordering 6 on L
n×n is defined entrywise by

M 6 N ⇔ M(i, j)6 N(i, j), for all i, j ∈ [1..n],

for all M,N ∈ L
n×n, and similarly, the ordering 6 on L

n is defined coordinatewise by

α 6 β ⇔ α(i)6 β (i), for each i ∈ [1..n],

54 Approximate state reduction of fuzzy finite automata

for all α ,β ∈ L
n. It is easy to verify that these orderings on L

n×n and L
n are compatible with matrix

products and vector-matrix products, that is,

α 6 β ⇒ α ·M 6 β ·M, M ·α 6 M ·β

M 6 N ⇒ K ·M 6 K ·N, M ·K 6 N ·K, α ·M 6 α ·N, M ·α 6 N ·α

for all α ,β ∈ L
n and K,M,N ∈ L

n×n. The supremum and infimum of a family {Ms}s∈I of matrices from

L
n×n are respectively matrices from L

n×n defined by

(∨

s∈I

Ms

)
(i, j) =

∨

s∈I

Ms(i, j),
(∧

s∈I

Ms

)
(i, j) =

∧

s∈I

Ms(i, j),

for all i, j ∈ [1..n].
The matrix In ∈ L

n×n defined by In(i, j) = 1, for i = j, and In(i, j) = 0, for i 6= j, i, j ∈ [1..n], is

called the identity matrix of order n. A matrix M ∈ L
n×n is reflexive if In 6 M, it is transitive if M2 6 M,

where M2 = M ·M, and it is symmetric if M(i, j) = M(j, i), for all i, j ∈ [1..n]. A reflexive and transitive

matrix is called a fuzzy quasi-order matrix, and a symmetric fuzzy quasi-order matrix is called a fuzzy

equivalence matrix.

For matrices M,N ∈ L
n×n, the right residual of N by M is a matrix M\N ∈ L

n×n defined by

(M\N)(j,k) =
n∧

i=1

M(i, j)→ N(i,k), (1)

for all j,k ∈ [1..n], and the left residual of N by M is a matrix N/M ∈ L
n×n defined by

(N/M)(i, j) =
n∧

k=1

M(j,k)→ N(i,k), (2)

for all i, j ∈ [1..n]. Matrix residuals are related with matrix multiplication by the following residuation

(adjunction) property:

K ·M 6 N ⇔ M 6 K\N ⇔ K 6 N/M, (3)

for all K,M,N ∈ L
n×n. Next, for α ,β ∈ L

n, the right residual of β by α is a matrix α\β ∈ L
n×n given by

(α\β)(i, j) = α(i)→ β (j), (4)

for all i, j ∈ [1..n], and the left residual of β by α is a matrix β/α ∈ L
n×n given by

(β/α)(j, i) = α(i)→ β (j), (5)

for all i, j ∈ [1..n]. It is clear that α\β = (β/α)⊤, that is, β/α = (α\β)⊤ (here M⊤ denotes the trans-

pose of a matrix M). The residuation property for these residuals is

α ·M 6 β ⇔ M 6 α\β , M ·α 6 β ⇔ M 6 β/α , (6)

for all α ,β ∈ L
n and M ∈ L

n×n.

The representation of the matrix M ∈ L
m×n in the form of the product M = L ·R, where L ∈ L

m×r

and R ∈ L
r×n, is called the r-factorization of that matrix M. The smallest number r for which there is an

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 55

r-factorization of the matrix M is denoted by ρ(M) and is called the Schein’s rank or factor rank of M.

The concepts of r-factorization and Schein’s rank are defined for arbitrary matrices, but have particularly

good properties when applied to fuzzy quasi-order matrices (cf. [16]). As shown in [6, 17], a fuzzy

quasi-order matrix Q has the same number of different row vectors and different column vectors, which

is denoted by d(Q). In the general case, ρ(Q) 6 d(Q), but for every fuzzy quasi-order matrix Q with

entries in a complete residuated lattice L in which for all a,b ∈ L from a∨b = 1 it follows a = 1 or b = 1

(for instance, this holds if L is linearly ordered), we have that ρ(Q) = d(Q) (cf. [16]).

For undefined notions and notation we refer to [2, 1].

3 Fuzzy finite automata and the state reduction problem

Throughout this paper, if not noted otherwise, L will denote an arbitrary complete residuated lattice

and X will denote an arbitrary non-empty alphabet. By X∗ we denote the free monoid over X , whose

identity, called the empty word, is denoted by ε , while by X+ we denote the free semigroup over X , i.e.,

X+ = X∗ \{ε}.

A fuzzy finite automaton over L and X is defined as a tuple A = (A,σ ,δ ,τ), where A is a non-empty

finite set, while σ , τ and δ are functions such that σ ,τ : A →L and δ : A×X ×A → L. The function δ is

often replaced by the family of functions {δx}x∈X , where δx : A×A →L is given by δx(a,b) = δ (a,x,b),
for all a,b ∈ A and x ∈ X . We call A the set of states, σ the fuzzy set of initial states, τ the fuzzy set of

terminal states, and δ and δx, x ∈ X , the fuzzy transition functions. The number of states of A will be

denoted by |A |.
The behavior of the fuzzy finite automaton A is a function JAK : X∗ → L (i.e., a fuzzy subset of X∗)

defined by

JAK(u) =
∨

(a0,a1,...,ak)∈Ak+1

σ(a0)⊗δ (a0,x1,a1)⊗δ (a1,x2,a2) · · ·δ (ak−1,xk,ak)⊗ τ(ak), (7)

for u = x1x2 . . .xk ∈ X+, x1,x2, . . . ,xk ∈ X , and

JAK(ε) =
∨

a∈A

σ(a)⊗ τ(a). (8)

We say that JAK is the fuzzy language recognized (accepted) by the fuzzy finite automaton A , or in short

just the fuzzy language of A .

As we noted in the previous section, fuzzy subsets of a finite set with n elements can be treated as

fuzzy vectors. i.e., as vectors from L
n, while fuzzy relations on such a set can be treated as fuzzy matrices,

i.e. as matrices from L
n×n. When such a way of viewing is applied to the fuzzy finite automaton A , then

σ and τ are treated as vectors from L
n, called respectively the initial fuzzy vector and terminal fuzzy

vector, while δx, x ∈ X , are treated as matrices from L
n×n, called the transition fuzzy matrices. Then the

tuple is called the linear representation of the fuzzy finite automaton A , while n is called the dimension

of A . Such a way of looking at σ , τ and δx’s will be applied here as well. In the vector-matrix form, the

behavior of the fuzzy finite automaton A is represented as follows:

JAK(u) = σ ·δx1
·δx2

· · ·δxs
· τ = σ ·δu · τ , (9)

for u = x1x2 . . .xs ∈ X+, x1,x2, . . . ,xs ∈ X , where δu = δx1
·δx2

· · ·δxk
, and

JAK(ε) = σ · τ . (10)

56 Approximate state reduction of fuzzy finite automata

As can be seen, here we treat σ as a row vector and τ as a column vector.

Two fuzzy finite automata A and B over L and X are said to be equivalent if

JAK(u) = JBK(u), for every u ∈ X∗, (11)

i.e., if JAK = JBK, and for an arbitrary k ∈N, we say that A and B are k-equivalent if

JAK(u) = JBK(u), for every u ∈ X∗ such that |u|6 k. (12)

If A and B are equivalent or k-equivalent, we also say that A is equivalent to or k-equivalent to B , and

vice versa.

Let Q ∈ L
n×n be an arbitrary fuzzy quasi-order matrix. Let 1 ≤ i1 ≤ . . . ≤ ik ≤ n be the smallest

indices of all pairwise distinct rows of Q. As mentioned earlier [6, 17], they are also the smallest indices

of all pairwise distinct columns of Q. Let Qr ∈ L
k×n (respectively, Qc ∈ L

n×k) be the matrix consisting of

the rows (respectively, columns) i1, . . . , ik of Q. Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over L

and X with n states. Then, a new fuzzy finite automaton, with the linear representation

AQ = (k,σ Q,{δ Q
x }x∈X ,τ

Q),

is defined by putting that

σ Q = σ ·Qc,

δ Q
x = Qr ·δx ·Qc, for all x ∈ X ,

τQ = Qr · τ .

It is clear that σ Q,τQ ∈L
k and δ Q

x ∈ L
k×k, for each x ∈ X , so AQ is a well-defined fuzzy finite automaton.

Since Q = Qc ·Qr (cf. [16, Theorem 4.1], the behavior of AQ is given in the vector-matrix form by

JAQK(u) = σ ·Q ·δx1
·Q ·δx2

· · · · ·Q ·δxs
·Q · τ , (13)

for every u = x1x2 . . .xs ∈ X+, where x1,x2, . . . ,xs ∈ X , and

JAQK(ε) = σ ·Q · τ . (14)

As we mentioned earlier, fuzzy matrices can be identified with fuzzy relations between finite sets. Since

in the theory of fuzzy sets, the ”rows” of fuzzy relations are known as aftersets, and the ”columns” are

known as foresets, the fuzzy finite automaton AQ was called in [17] the afterset automaton of A corres-

ponding to the fuzzy quasi-order matrix Q, but it can also be rightly called the row automaton. It was

also shown in [17] that if in the construction of the automaton AQ instead of the rows (aftersets) of the

matrix Q we use its columns (foresets), then essentially nothing changes, because an isomorphic fuzzy

finite automaton is obtained.

Let us note that the number of states of AQ is d(Q)6 n, that is, AQ has less than or equal number of

states with A . Therefore, by constructing the automaton AQ we can reduce the number of states of the

automaton A , provided that these two automata are equivalent. Consequently, the main question here is

under what conditions on Q the automaton AQ is equivalent to A? This question can also be formulated

as: under what conditions on Q the construction of AQ preserves the fuzzy language of the automaton

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 57

A? More answers to these questions were provided in [5] and [17]. Right invariant matrices were defined

in [5, 17] as solutions of the system of matrix equations

(ri-1) U · τ 6 τ ;

(ri-2) U ·δx 6 δx ·U, for all x ∈ X ,

where U is an unknown matrix taking values in L
n×n, and left invariant matrices were defined as solutions

of the system

(li-1) σ ·U 6 σ ;

(li-2) δx ·U 6U ·δx, for all x ∈ X .

It was proved in [5] that both right and left invariant fuzzy equivalence matrices provide equivalence

between A and the corresponding row automaton, while the same for fuzzy quasi-order matrices was

proved in [17]. At the same time, it has been proven that fuzzy quasi-order matrices give better reductions

than fuzzy equivalence matrices, in the sense that they produce fuzzy finite automata with a smaller

number of states.

Procedures for computing the greatest right and left invariant matrices, which are necessarily fuzzy

quasi-order matrices, were provided in [17]. For right invariant matrices, the procedure consists of

building a decreasing sequence of matrices, which is defined in the next section by formula (17). When

there are two equal consecutive members of that sequence, the sequence is finite and stabilizes at some

member which is the greatest right invariant matrix. For instance, if L is the Gödel structure or Boolean

algebra, then every such sequence is finite and the greatest right invariant matrix can be computed in

a finite number of steps. However, there are also cases when this sequence is infinite and the greatest

right invariant matrix can not be computed in a finite number of steps. For example, this may happen

when L is the product structure. All this also applies to left-invariant matrices, where the procedure for

computing the greatest such matrix is based on the decreasing sequence of matrices defined in the next

section by formula (20).

In paper [17], another way was also provided to get a fuzzy quasi-order matrix Q for which the con-

struction of AQ will preserve the language of A . Weakly right invariant matrices were defined in as

solutions of the system of matrix equations

(wri) U · τu 6 τu, for all u ∈ X∗,

where U is an unknown matrix taking values in L
n×n and τu = δu · τ , and weakly left invariant matrices

were defined as solutions of the system

(wli) σu ·U 6 σu, for all u ∈ X∗,

where σu = σ · δu. As shown in [17], both for any weakly right invariant or weakly left invariant fuzzy

quasi-order matrix Q, the row automaton AQ is equivalent to A , and the greatest weakly right invariant

fuzzy quasi-order, i.e., the greatest solution of (wri), can be expressed as
∧

u∈X∗

τu/τu, (15)

while the greatest weakly left invariant fuzzy quasi-order, i.e., the greatest solution of (wli), can be ex-

pressed as
∧

u∈X∗

σu\σu. (16)

58 Approximate state reduction of fuzzy finite automata

In general, the greatest weakly right invariant fuzzy quasi-order matrix provides better reduction than the

greatest right invariant one, but its computation may be significantly more complex. There may also be a

problem of efficient computation of these matrices, because the families {τu | u ∈ X∗} and {σu | u ∈ X∗}
can be infinite, and even when they are finite, the number of their members can be too large.

All the mentioned problems that concern the computation of the greatest invariant and weakly in-

variant fuzzy quasi-order matrices actualize the issue of approximate state reductions of fuzzy finite

automata, which will be discussed in the next section.

Note that in [16] a method for additional reduction of the number of states of the automaton AQ is

offered, which is based on the r-factorization of the fuzzy quasi-order matrix Q. Namely, let Q = L ·R
be an r-factorization of Q, i.e., L ∈ L

n×r and R ∈ L
r×n. Then we can construct a fuzzy finite automaton

AL|R with the linear representation

AL|R = (r,σ L|R,{δ
L|R
x }x∈X ,τ

L|R),

where

σ L|R = σ ·L,

δ
L|R
x = R ·δx ·L, for all x ∈ X ,

τL|R = R · τ .

Then σ L|R,τL|R ∈ L
r and δ

L|R
x ∈ L

r×r, so AL|R is a well-defined fuzzy finite automaton with r states.

According to (13), (14) and Q = L · R we have that JAL|RK = JAQK. Therefore, when we reduce the

number of states of the fuzzy finite automaton A using the greatest fuzzy quasi-order matrix Q, an addi-

tional reduction of the number of states could be performed with the help of an r-factorization of Q.

Clearly, the smallest number of states we can obtain in this way is ρ(Q), the Schein’s rank of Q.

4 Approximate state reduction: k-reduction

As we already noted in the introduction, there were already several articles dealing with approximate state

reduction, mainly in the context of studying approximate simulations and bisimulations between fuzzy

finite automata. The approach used in those articles was to, starting from a given fuzzy finite automaton,

construct a new fuzzy finite automaton with a smaller number of states, whose fuzzy language does not

have to be identical to the fuzzy language of the original automaton, but is sufficiently similar to that

fuzzy language, in relation to a certain measure of similarity. In most papers, that measure was based on

subsethood and equality degrees between fuzzy sets.

In this paper, we use a different approach. We require that between fuzzy languages of the original

and the reduced fuzzy finite automaton there is an exact match for all words of length less than or equal to

k, while membership degrees for longer words do not matter to us. In the terminology from the previous

section, this means that these fuzzy languages are k-equivalent. Such an approach is quite natural if we

keep in mind that in practical applications of automata the length of input words is always limited, so

the only thing that matters to us is that the membership degrees match for words whose length does not

exceed that limit.

A procedure for reduction of the number of states of a fuzzy finite automaton A , which results in

a fuzzy finite automaton that is k-equivalent to A , will be called a k-reduction. The following theorem

provides such a procedure that is based on the procedure for reduction of the number of states, provided

in [17], that results in an automaton which is strictly equivalent to the original automaton.

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 59

Theorem 4.1 Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over L and X with n states.

Let us inductively define a sequence of matrices {Qk}k∈N ⊂ L
n×n as follows:

Q0 = τ/τ , Qk+1 = Qk ∧
∧

x∈X

[(δx ·Qk)/δx], for every k ∈ N. (17)

Then for an arbitrary k ∈ N the following statements hold:

(a) Qk is a fuzzy quasi-order matrix;

(b) AQk
is k-equivalent to A;

(c) if Qk = L ·R is an r-factorization of Qk, for some r 6 d(Qk), then AL|R is k-equivalent to A;

(d) if Qs = Qs+1, for some s 6 k, then Qk = Qs and both AQk
and AL|R are equivalent to A .

Proof. (a) By its definition, Q0 is the greatest solution of the inequation U · τ 6 τ , where U is an un-

known matrix taking values in L
n×n. Since In is also a solution to this inequation, we conclude that

In 6 Q0. Moreover, we have that

Q2
0 · τ = Q0 ·Q0 · τ 6 Q0 · τ 6 τ ,

which means that Q2
0 is also a solution of U ·τ 6 τ , and since Q0 is the greatest solution to this inequation,

we conclude that Q2
0 6 Q0. This proves that Q0 is a fuzzy quasi-order matrix.

Suppose that Qs is a fuzzy quasi-order matrix, for some s ∈ N0. Let us observe that for every x ∈ X

the matrix Mx = (δx ·Qs)/δx is the greatest solution of the inequation U ·δx 6 δx ·Qs, with an unknown

matrix U . We also have that In 6 Qs, whence

In ·δx = δx · In 6 δx ·Qs,

which means that In is also a solution to the inequation U ·δx 6 δx ·Qs, and consequently, In 6 Mx, since

Mx is the greatest solution of this inequation.

On the other hand, we have that

M2
x ·δx = Mx ·Mx ·δx 6 Mx ·δx ·Qs 6 δx ·Qs ·Qs = δx ·Q

2
s = δx ·Qs,

which means that M2
x is also a solution of U ·δx 6 δx ·Qs, and thus, M2

x 6 Mx. Hence, Mx = (δx ·Qs)/δx

is a fuzzy quasi-order matrix, for each x ∈ X , and the matrix Qs+1 is also a fuzzy quasi-order matrix,

as the intersection of the family of fuzzy quasi-order matrices Mx = (δx ·Qs)/δx, x ∈ X , and the fuzzy

quasi-order matrix Qs.

Let us also note that Qs+1 is the greatest solution of the system of linear matrix inequations

U ·δx 6 δx ·Qs, x ∈ X , (18)

contained in Qs, where U is an unknown matrix taking values in L
n×n.

(b) According to (17), we have that Q0 · τ 6 τ and Qt+1 ·δx 6 δx ·Qt , for arbitrary t ∈ N0 and x ∈ X .

On the other hand, from Qt 6 Q0 it follows that Qt · τ 6 Q0 · τ 6 τ , whereas from In 6 Qt we obtain that

τ = In · τ 6 Qt · τ . Furthermore, since Qt+1 ·δx 6 δx ·Qt , Q2
t = Qt and In 6 Qt+1, we have that

Qt+1 ·δx ·Qt 6 δx ·Q
2
t = δx ·Qt , δx ·Qt = In ·δx ·Qt 6 Qt+1 ·δx ·Qt .

Therefore, we have proved that

Qt · τ = τ , Qt+1 ·δx ·Qt = δx ·Qt , (19)

60 Approximate state reduction of fuzzy finite automata

for all t ∈ N0 and x ∈ X .

Now we have that

JAQk
K(ε) = σ ·Qk · τ = σ · τ = JAK(ε),

and for u = x1x2 . . .xs ∈ X+, where x1,x2, . . . ,xs ∈ X and s 6 k, we have that

JAK(u) = σ ·δx1
·δx2

· . . . ·δxs
· τ 6 σ ·Qk ·δx1

·Qk ·δx2
· . . . ·Qk ·δxs

·Qk · τ = JAQk
K(u),

and

JAQk
K(u) = σ ·Qk ·δx1

·Qk ·δx2
· . . . ·Qk ·δxs

·Qk · τ 6 σ ·Qs ·δx1
·Qs−1 ·δx2

· . . . ·Q1 ·δxs
·Q0 · τ

= σ ·δx1
·Qs−1 ·δx2

· . . . ·Q1 ·δxs
·Q0 · τ = σ ·δx1

·δx2
· . . . ·Q1 ·δxs

·Q0 · τ

= . . .= σ ·δx1
·δx2

· . . . ·δxs
·Q0 · τ = σ ·δx1

·δx2
· . . . ·δxs

· τ = JAK(u).

Therefore, we have proved that JAQk
K(u) = JAK(u), for every u ∈ X∗ such that |u|= s 6 k, which means

that the fuzzy automaton AQk
is k-equivalent to A .

(c) This follows by the fact that JAQk
K = JAL|RK (cf. [16]).

(d) Assume that Qs = Qs+1, for some s 6 k. As shown in [17], then Qs = Qt , for every t > s, t ∈ N0,

and JAQs
K = JAK holds. Therefore, we have that Qk = Qs, so JAQk

K = JAL|RK = JAQs
K = JAK.

It is worth noting that in assertion (c) of Theorem 4.1 we are talking about the r-decomposition of

the matrix Qk for some r ∈ N for which ρ(Qk) 6 r 6 d(Qk), rather than on the ρ(k)-decomposition,

which would give a smallest row automaton. The reason is that the r-decomposition could be done

using an algorithm provided in [16], which consists in removing those row vectors of Qk that can be

represented as linear combinations of other row vectors. The result of that procedure strongly depends

on the choice and order of the vectors we remove, so that one can get an r-decomposition for any r such

that ρ(Qk)6 r 6 d(Qk).
Let us also note that the use of the r-decompositions in k-reductions (and reductions in general) is

useless if the underlying complete residuated lattice L satisfies the condition that a∨ b = 1 implies that

a = 1 or b = 1, since in this case we have that ρ(Qk) = d(Qk) (as shown in [16]), so there is no reduction

whatsoever. For instance, this holds when L is linearly ordered, what includes all the cases when L is

the structure defined on the real unit interval by means of triangular norms.

Similarly to Theorem 4.1, we can prove the following theorem, which provides an alternative way

for k-reduction.

Theorem 4.2 Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over L and X with n states.

Let us inductively define a sequence of matrices {Pk}k∈N ⊂ L
n×n as follows:

P0 = σ\σ , Pk+1 = Pk ∧
∧

x∈X

[δx\(Pk ·δx)], for every k ∈N. (20)

Then for an arbitrary k ∈ N the following statements hold:

(a) Pk is a fuzzy quasi-order matrix;

(b) APk
is k-equivalent to A;

(c) if Pk = L ·R is an r-factorization of Pk, for some r 6 d(Pk), then AL|R is k-equivalent to A;

(d) if Ps = Ps+1, for some s 6 k, then Pk = Ps and both APk
and AL|R are equivalent to A .

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 61

The third way to perform the k-reduction is given by the next theorem.

Theorem 4.3 Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over L and X with n states.

Let us define a sequence of matrices {Q̂k}k∈N ⊂ L
n×n as follows:

Q̂k =
∧

|u|6k

τu/τu, (21)

for each k ∈ N. Then for an arbitrary k ∈ N0 the following statements hold:

(a) Q̂k is a fuzzy quasi-order matrix and Qk 6 Q̂k, where Qk is as in Theorem 4.1;

(b) A
Q̂k

is k-equivalent to A;

(c) if Q̂k = L ·R is an r-factorization of Q̂k, for some r 6 d(Q̂k), then AL|R is k-equivalent to A .

Proof. (a) We have that Q̂k is a fuzzy quasi-order matrix as the infimum of a family of fuzzy quasi-order

matrices τu/τu, u ∈ X∗, |u|6 k.

Consider an arbitrary u ∈ X∗ such that |u|6 k. Then u = x1x2 . . .xs, where x1,x2, . . . ,xs ∈ X and s 6 k,

and we get

Qk · τu = Qk ·δx1
·δx2

· . . . ·δxs
· τ 6 Qs ·δx1

·δx2
· . . . ·δxs

· τ 6 δx1
·Qs−1 ·δx2

· . . . ·δxs
· τ

6 δx1
·δx2

·Qs−2 · . . . ·δxs
· τ 6 . . .6 δx1

·δx2
· . . . ·Q1 ·δxs

· τ 6 δx1
·δx2

· . . . ·δxs
·Q0 · τ

6 δx1
·δx2

· . . . ·δxs
· τ = τu.

Therefore, Qk · τu 6 τu. i.e., Qk 6 τu/τu, for every u ∈ X∗ such that |u|6 k, so

Qk 6
∧

|u|6k

τu/τu = Q̂k.

(b) According to the definition of Q̂k we obtain that Q̂k · τu 6 τu, for every u ∈ X∗, |u|6 k, and since

τu = In · τu 6 Q̂k · τu, we conclude that

Q̂k · τu = τu, for every u ∈ X∗, |u|6 k. (22)

Consider again an arbitrary u ∈ X∗ such that |u|6 k. According to (22) we get

JA
Q̂k

K(u) = σ · Q̂k ·δx1
· Q̂k ·δx2

· Q̂k · . . . · Q̂k ·δxs
· Q̂k · τ = σ · Q̂k ·δx1

· Q̂k ·δx2
· Q̂k · . . . · Q̂k ·δxs

· τ

= σ · Q̂k ·δx1
· Q̂k ·δx2

· Q̂k · . . . · Q̂k · τxs
= σ · Q̂k ·δx1

· Q̂k ·δx2
· Q̂k · . . . · τxs

= . . .

= σ · Q̂k ·δx1
· Q̂k ·δx2

· Q̂k · τx3...xs
= σ · Q̂k ·δx1

· Q̂k ·δx2
· τx3...xs

=

= σ · Q̂k ·δx1
· Q̂k · τx2x3...xs

= σ · Q̂k ·δx1
· τx2x3...xs

= σ · Q̂k · τx1x2x3...xs

= σ · τx1x2x3...xs
= σ · τu = JAK(u).

Therefore, we have proved that A
Q̂k

is k-equivalent to A .

(c) This is proved in the same way as the statement (c) in Theorem 4.1.

In a similar way we can prove the theorem that provides the fourth way to perform the k-reduction.

Theorem 4.4 Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over L and X with n states.

Let us define a sequence of matrices {P̂k}k∈N ⊂ L
n×n as follows:

P̂k =
∧

|u|6k

σu\σu, (23)

for every k ∈ N.

62 Approximate state reduction of fuzzy finite automata

Then for an arbitrary k ∈ N the following statements hold:

(a) P̂k is a fuzzy quasi-order matrix and Pk 6 P̂k, where Pk is as in Theorem 4.2;

(b) A
P̂k

is k-equivalent to A;

(c) if P̂k = L ·R is an r-factorization of P̂k, for some r 6 d(P̂k), then AL|R is k-equivalent to A .

The previous four theorems provide four different methods for k-reduction of fuzzy finite automata.

The question naturally arises: Do we really need all four methods? In other words, are any of these

methods better than others, so that others are not necessary? In the sequel, we will show that each of

these methods has some advantages, but also some disadvantages in relation to the others, as well as in

relation to methods for full state reduction (reduction that ensures full equivalence) provided in [17].

First we note that the sequence of matrices we use in computing the greatest right invariant (and

also left invariant) fuzzy quasi-order matrix may be infinite, and in such cases, the efficiency of reduc-

tions using such matrices becomes questionable. In contrast, k-reductions by means of the kth members

of sequences defined by (17) and (20) can always be realized in a finite number of steps. In addition,

members of those arrays with smaller indices produce automata with fewer states than members with

larger indices (see example below), which means that k-reductions generally yield fewer fuzzy finite

automata than reductions that result in strictly equivalent fuzzy finite automata.

Regarding k-reductions by means of the kth members of sequences defined by (17) and (21), by

Qk 6 Q̂k it follows that Q̂k generally yields better reduction than Qk (see Example 4.5), for each k ∈ N0.

However, computing the matrix Q̂k can be significantly more difficult than computing the matrix Qk,

because it requires computing the vectors τu, for u ∈ X∗, |u| 6 k, and their the number can be more than

mk, where m is the number of input letters.

Finally, as far as k-reductions by means of the kth members of sequences defined by (17) and (20) are

concerned, they are not comparable. In some cases one of them will give better results, and in other cases

the another one. In Example 4.5 we have a case where Pk, for each k > 1, does not perform reduction,

while Qk does, but the opposite would happen on the reverse automaton of the automaton considered in

that example. The same can be said for k-reductions by means of the kth members of sequences defined

by (21) and (23).

In the following example, we assumed the structure of membership values to be the two-element

Boolean algebra B. The reason why we decided so is that B is a subalgebra of every complete residua-

ted lattice, and every automaton over the two-element Boolean algebra B can also be considered an

automaton over an arbitrary complete residuated lattice.

Example 4.5 Let A = (A,σ ,δ ,τ) be a fuzzy finite automaton over the two-element Boolean algebra
B= {0,1} and an inpit alphabet X = {x,y} given by

σ =
[
1 1 0 0 0 1

]
, δx =




1 0 0 0 0 0

0 0 1 0 1 0

1 0 1 1 0 0

0 1 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1



, δy =




1 0 0 0 0 0

1 1 0 0 0 0

1 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 0 0

1 0 1 1 0 0



, τ =




1

1

0

1

0

1



.

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 63

Applying formula (17) we get

Q0 =




1 1 1 1 1 1

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1



, Q1 =




1 1 1 1 1 1

0 1 0 0 0 0

0 0 1 0 1 0

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1



, Q2 =




1 1 1 1 1 1

0 1 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 0

1 1 1 1 1 1



,

Q3 = Q4 =




1 1 1 1 1 1

0 1 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 0 0 0 1 0

1 1 1 1 1 1



,

with d(Q0) = 2, d(Q1) = 3, d(Q2) = 4 and d(Q3) = 5, where Q3 = Q4 is the greatest right invariant
fuzzy quasi-order matrix, and applying (21) we get

Q̂0 =




1 1 1 1 1 1

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1



, Q̂1 =




1 1 1 1 1 1

0 1 0 0 0 0

0 0 1 0 1 0

1 1 1 1 1 1

0 0 1 0 1 0

1 1 1 1 1 1



,

with d(Q̂0) = 2 and d(Q̂1) = 3, where Q̂1 is the greatest weakly right invariant fuzzy quasi-order matrix.

We have that AQk
is k-equivalent to A , for each k ∈ {0,1,2}, while AQ3

is strictly equivalent to A ,

and we also have that |AQ0
|< |AQ1

|< |AQ2
|< |AQ3

|. On the other hand, A
Q̂0

is 0-equivalent to A , while

A
Q̂1

is strictly equivalent to A . We see that Q̂1 provides better reduction than Q3.

The sequence computed according to formula (20) is the following:

P0 =




1 1 0 0 0 1

1 1 0 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 0 0 0 1



, P1 =




1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 1 1 1 0 0

1 0 1 0 1 1

1 0 0 0 0 1



, P2 = P3 =




1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1



,

with d(P0) = 2, d(P1) = 6 and d(P2) = 6, P2 = P3 is the greatest left invariant fuzzy quasi-order matrix,
while the sequence computed using (23) is the following:

P̂0 =




1 1 0 0 0 1

1 1 0 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 0 0 0 1



, P̂1 =




1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 1 1 1 0 0

1 0 1 0 1 1

1 0 0 0 0 1



, P̂2 = P̂3 =




1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1



,

with d(P̂0) = 2, d(P̂1) = 6 and d(P̂2) = 6, while P̂2 is the greatest weakly left invariant fuzzy quasi-order

matrix. Although AP1
and A

P̂1
are 1-equivalent to A , and AP2

and A
P̂2

are strictly equivalent to A , this is

of no significance as there is no any reduction.

64 Approximate state reduction of fuzzy finite automata

5 Complexity issues

Let n denote the number of states of a fuzzy finite automaton A = (A,σ ,δ ,τ) and m the number of letters

in the input alphabet X , and let c∨, c∧, c⊗ and c→ be respectively computational costs of the operations

∨, ∧, ⊗ and → in the underlying complete residuated lattice L. If L is linearly ordered, we can assume

that c∨ = c∧ = 1, and if L is the Gödel structure, we can also assume that c⊗ = c→ = 1.

First we consider the computational time of the procedure from Theorem 4.1 (or Theorem 4.2), for a

given k ∈ N. It is clear that the time required to compute Q0 is O(n2c→). When we have computed Qs,

for some s ∈ N, s < k, and we are computing Qs+1 from Qs, we have the following:

1) For a fixed x ∈ X , the time required to compute the product δx ·Qs is O(n3(c⊗+ c∨)), and when

this product is computed, we need an additional time O(n3(c→ + c∧)) to compute the residual

(δx ·Qs)/δx. Thus, the total time required to compute (δx ·Qs)/δx is O(n3(c→+ c∧+ c⊗+ c∨)).

2) Now, to compute (δx ·Qs)/δx for all x ∈ X we need time O(mn3(c→+ c∧+ c⊗+ c∨)).

3) Next, when all matrices from 2) have been computed, to compute all infima in Qs ∧
∧

x∈X (δx ·
Qs)/δx and obtain Qs+1 we need time O(n2mc∧).

4) Finally, the total time required to compute Qs+1 from Qs is O(mn3(c→+ c∧+ c⊗+ c∨)).

Therefore, the time required to compute all matrices Q0, Q1, . . . , Qk, i.e., the total computational time

of the procedure from Theorem 4.1, amounts O(kmn3(c→+ c∧+ c⊗+ c∨)). This is also the total com-

putational time of the procedure from Theorem 4.2. That computational time can be even better in cases

where Qs = Qs+1, for some s < k, because then we do not have to compute all the matrices between Qs+1

and Qk which are all equal to each other. However, to achieve that better computational time, after com-

puting the matrix Qs+1 we need to check whether Qs+1 =Qs. The time required for such a check is O(n2),
and for all such checks it is at most O(kn2), which obviously does not affect the total computational time

order of our procedure.

Next we consider the computational time of the procedure from Theorem 4.3 (or Theorem 4.4), for

a given k ∈ N. To compute Q̂k we have to compute the family of vectors {τu}|u|6k. That family forms

a perfect m-ary tree with the root corresponding to the vector τ , and computing the members of the

family is reduced to filling that tree level by level, starting from the root. Consequently, the number of

members of that family is at most O(mk). When a vector τu, for some u ∈ X∗, |u| < k, is computed,

then for each x ∈ X we compute τxu according to the formula τxu = δx · τu. Therefore, the time needed

to compute this product, i.e., the time nedded to compute each member of the considered family, is

O(n2(c⊗ + c∨)). Moreover, when τu, for some u ∈ X+, |u| 6 k, is computed, the residual τu/τu can

be computed in time O(n2c→), so the time required to compute a single τu and the residual τu/τu is

O(n2(c⊗+c∨+c→)), and the total time required to compute the whole family {τu}|u|6k and all residuals

τu/τu, for u ∈ X∗, |u|6 k, amounts O(mkn2(c⊗+c∨+c→)). Finally, to compute Q̂k we have to apply the

operation ∧ between matrices τu/τu, u ∈ X∗, |u| 6 k, at most O(mk) times, and since the computational

time for a single application of the operation ∧ is O(n2c∧), the total computational time for all such

operations is O(mkn2c∧). Hence, the total time required to compute Q̂k, i.e., the total computational time

of the procedure from Theorem 4.3 is O(mkn2(c⊗+ c∨+ c→+ c∧)). This is also the total computational

time of the procedure from Theorem 4.4.

Applying the technique of [12], the procedures from Theorems 4.1–4.4 can be improved so that the

factor n2 in their complexity estimate is reduced to the sum of n and the number of non-zero fuzzy

transitions of the input fuzzy automaton A .

M. Ćirić, I. Micić, S. Stanimirović & L. A. Nguyen 65

References

[1] Radim Bělohlávek & Vilém Vychodil (2005): Fuzzy Equational Logic. In: Fuzzy Equational Logic, Studies

in Fuzziness and Soft Computing 186, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 139–170, doi:10.

1007/11376422_3.

[2] Radim Bělohlávek (2002): Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Pub-

lishers, USA, doi:10.1007/978-1-4615-0633-1.

[3] Radim Bělohlávek & Michal Krupka (2009): On Approximate Minimization of Fuzzy Automata. Journal of

Multiple-Valued Logic and Soft Computing 15(2-3), pp. 125–135, doi:10.1142/9789812709677_0194.

[4] Miroslav Ćirić, Aleksandar Stamenković, Jelena Ignjatović & Tatjana Petković (2007): Factorization of

Fuzzy Automata. In Erzsébet Csuhaj-Varjú & Zoltán Ésik, editors: Fundamentals of Computation Theory,

Lecture Notes in Computer Science 4639, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 213–225,

doi:10.1007/978-3-540-74240-1_19.

[5] Miroslav Ćirić, Aleksandar Stamenković, Jelena Ignjatović & Tatjana Petković (2010): Fuzzy relation equa-

tions and reduction of fuzzy automata. Journal of Computer and System Sciences 76, pp. 609–633, doi:10.

1016/j.jcss.2009.10.015.

[6] Jelena Ignjatović, Miroslav Ćirić, Branimir Šešelja & Andreja Tepavčević (2015): Fuzzy relational inequali-

ties and equations, fuzzy quasi-orders, closures and openings of fuzzy sets. Fuzzy Sets and Systems 260, pp.

1–24, doi:10.1016/j.fss.2014.05.006.

[7] Lvzhou Li & Daowen Qiu (2015): On the State Minimization of Fuzzy Automata. IEEE Transactions on

Fuzzy Systems 23(2), pp. 434–443, doi:10.1109/TFUZZ.2014.2315620.

[8] Yongming Li (2008): Approximation and robustness of fuzzy finite automata. International Journal of Ap-

proximate Reasoning 47(2), pp. 247–257, doi:10.1016/j.ijar.2007.05.004.

[9] Ivana Micić, Zorana Jančić & Stefan Stanimirović (2022): Computation of solutions to certain nonlinear sys-

tems of fuzzy relation inequations. In Dimitros Poulakis & George Rahonis, editors: Algebraic Informatics,

9th International Conference, CAI 2022, Lecture Notes in Computer Science 13706, Thessaloniki, Greece,

pp. 192–202, doi:10.1007/978-3-031-19685-0_14.

[10] Ivana Micić, Linh Anh Nguyen & Stefan Stanimirović (2022): Characterization and computation of approx-

imate bisimulations for fuzzy automata. Fuzzy Sets and Systems 442, pp. 331–350, doi:10.1016/j.fss.

2022.05.003.

[11] Linh Anh Nguyen (2023): Fuzzy simulations and bisimulations between fuzzy automata. International Jour-

nal of Approximate Reasoning, pp. 113–131, doi:10.1016/j.ijar.2023.02.002.

[12] Linh Anh Nguyen, Ivana Micić & Stefan Stanimirović (2023): Depth-Bounded Fuzzy Simulations and Bisim-

ulations between Fuzzy Automata, doi:10.48550/arXiv.2307.03318. arXiv:2307.03318.

[13] Linh Anh Nguyen, Ivana Micić & Stefan Stanimirović (2023): Fuzzy minimax nets. IEEE Transactions on

Fuzzy Systems 31(8), pp. 2799–2808, doi:10.1109/TFUZZ.2023.3237936.

[14] Sha Qiao, Ping Zhu & Jun e Feng (2022): Fuzzy bisimulations for nondeterministic fuzzy transition systems.

IEEE Transactions on Fuzzy Systems 31(7), pp. 2450–2463, doi:10.1109/TFUZZ.2022.3227400.

[15] Sha Qiao, Ping Zhu & Witold Pedrycz (2023): Approximate bisimulations for fuzzy-transition systems. Fuzzy

Sets and Systems, p. 108533, doi:10.1016/j.fss.2023.108533.

[16] Aleksandar Stamenković, Miroslav Ćirić & Milan Bašić (2018): Ranks of fuzzy matrices. Applications in

state reduction of fuzzy automata. Fuzzy Sets and Systems 333, pp. 124–139, doi:10.1016/j.fss.2017.

05.028.

[17] Aleksandar Stamenković, Miroslav Ćirić & Jelena Ignjatović (2014): Reduction of fuzzy automata by means

of fuzzy quasi-orders. Information Sciences 275, pp. 168–198, doi:10.1016/j.ins.2014.02.028.

[18] Stefan Stanimirović & Ivana Micić (2022): On the solvability of weakly linear systems of fuzzy relation

equations. Information Sciences 607, pp. 670–687, doi:10.1016/j.ins.2022.05.111.

https://doi.org/10.1007/11376422_3
https://doi.org/10.1007/11376422_3
https://doi.org/10.1007/978-1-4615-0633-1
https://doi.org/10.1142/9789812709677_0194
https://doi.org/10.1007/978-3-540-74240-1_19
https://doi.org/10.1016/j.jcss.2009.10.015
https://doi.org/10.1016/j.jcss.2009.10.015
https://doi.org/10.1016/j.fss.2014.05.006
https://doi.org/10.1109/TFUZZ.2014.2315620
https://doi.org/10.1016/j.ijar.2007.05.004
https://doi.org/10.1007/978-3-031-19685-0_14
https://doi.org/10.1016/j.fss.2022.05.003
https://doi.org/10.1016/j.fss.2022.05.003
https://doi.org/10.1016/j.ijar.2023.02.002
https://doi.org/10.48550/arXiv.2307.03318
https://arxiv.org/abs/2307.03318
https://doi.org/10.1109/TFUZZ.2023.3237936
https://doi.org/10.1109/TFUZZ.2022.3227400
https://doi.org/10.1016/j.fss.2023.108533
https://doi.org/10.1016/j.fss.2017.05.028
https://doi.org/10.1016/j.fss.2017.05.028
https://doi.org/10.1016/j.ins.2014.02.028
https://doi.org/10.1016/j.ins.2022.05.111

66 Approximate state reduction of fuzzy finite automata

[19] Stefan Stanimirović, Ivana Micić & Miroslav Ćirić (2022): Approximate bisimulations for fuzzy automata

over complete Heyting algebras. IEEE Transactions on Fuzzy Systems 30(2), pp. 437–447, doi:10.1109/

TFUZZ.2020.3039968.

[20] Chao Yang & Yongming Li (2018): ε-bisimulation relations for fuzzy automata. IEEE Transactions on Fuzzy

Systems 26(4), pp. 2017–2029, doi:10.1109/TFUZZ.2017.2760278.

[21] Chao Yang & Yongming Li (2020): Approximate bisimulations and state reduction of fuzzy automata under

fuzzy similarity measures. Fuzzy Sets and Systems 391, pp. 72–95, doi:10.1016/j.fss.2019.07.010.

https://doi.org/10.1109/TFUZZ.2020.3039968
https://doi.org/10.1109/TFUZZ.2020.3039968
https://doi.org/10.1109/TFUZZ.2017.2760278
https://doi.org/10.1016/j.fss.2019.07.010

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 67–81, doi:10.4204/EPTCS.386.7

© N. Damljanović, M. Ćirić & J. Ignjatović

This work is licensed under the

Creative Commons Attribution License.

Weighted Automata over Vector Spaces*

Nada Damljanović

University of Kragujevac, Faculty of Technical Sciences, Svetog Save 65, Čačak, Serbia

nada.damljanovic@ftn.kg.ac.rs

Miroslav Ćirić Jelena Ignjatović

University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, Niš, Serbia

miroslav.ciric@pmf.edu.rs jelena.ignjatovic@pmf.edu.rs

In this paper we deal with three models of weighted automata that take weights in the field of real

numbers. The first of these models are classical weighted finite automata, the second one are crisp-

deterministic weighted automata, and the third one are weighted automata over a vector space. We

explore the interrelationships between weighted automata over a vector space and other two models.

1 Introduction

Weighted automata belong to the fundamental models of computation in computer science. They can be

understood as an extension of conventional automata in which the transitions and states carry numeri-

cal or other values called weights. These weights may model quantitative properties like the cost, the

amount of resources needed for the execution of a transition, the reliability or probability of the success-

ful execution of the transitions, or many other things. Different models of weighted automata differ in

the algebraic structures within which the weights are taken, as well as in the way in which these weights

are manipulated.

In this paper, we deal with weighted automata that take weights in the field of real numbers. Such

automata have been the subject of study since the very beginning of the theory of weighted automata,

since the seminal work of Schützenberger [23] who studied weighted automata over the field. Today, they

are very popular due to their significant applications, primarily in formal specification and verification of

systems, as well as in the field of machine learning, where they are successfully used as an alternative to

recurrent neural networks. We discuss three models of weighted automata with weights taken in the field

of real numbers.

The first of these models are classical weighted finite automata. The common way of viewing deter-

ministic and nondeterministic finite automata as labelled graphs has also been used for weighted finite

automata from the very beginning of their studying. From such a point of view, a weighted finite au-

tomaton is represented by a directed multi-graph whose edges carry two labells, the input letter and the

weight, while nodes carry two weights, the initial and terminal weight. The computation along a path

in the graph is performed by concatenation of the input letters and multiplication of the initial weight

of the starting node, the weights of edges along the path, and the terminal weight of the final node, and

then the sum of the weights of all paths labelled with the same input word is computed and assigned

to this input word. This determines the behavior of the considered weighted finite automaton, that is,

the word function computed by that automaton. Such an understanding of the behaviour can be called

*This research was supported by the Science Fund of the Republic of Serbia, Grant no 7750185, Quantitative Automata

Models: Fundamental Problems and Applications - QUAM

http://dx.doi.org/10.4204/EPTCS.386.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

68 Weighted Automata over Vector Spaces

the dept-first semantics. Another way of looking at weighted finite automata, through vector and matrix

operations, has also been present since their very beginnings. From that point of view, the behaviour of

a weighted finite automaton can be expressed as the product of the row vector representing the initial

weights, matrices representing the weights of the transitions induced by input letters, and the column

vector representing the terminal weights. Such a representation of a weighted finite automaton is called a

linear representation, while such an understanding of the behaviour can be called the breadth-first seman-

tics. In the case of weighted finite automata over a semiring these two semantics are the same. The linear

algebraic approach proved to be extremely powerful and useful, especially in the study of simulations

and bisimulations, as well as in the reduction of the number of states. That approach was successfully

applied to nondeterministic finite automata [8], fuzzy finite automata [9, 10, 11, 25, 24] and weighted

finite automata over an additively-idempotent semiring [13], and research is underway in which that ap-

proach is applied in the context of weighted automata over the max-plus semiring and the field of real

numbers. The mentioned approach also plays a key role in this paper.

The second model of weighted automata that we deal with here are the so-called crisp-deterministic

weighted automata. These are classical automata with a single initial state and deterministic transitions

in which the set of terminal states is replaced by a function which assigns a terminal weight to each

state. When such an automaton starts working from the initial state and performs a sequence of transi-

tions conducted by a given input word, the weight assigned to that word is the terminal weight of the

destination state. Those automata were studied for the first time in [16], in the context of fuzzy automata,

and the most general definition of crisp-deterministic weighted automata was given in [17]. The name

crisp-deterministic was introduced in [7] to distinguish it from a related type of automata for which the

name deterministic weighted automata is used. An extensive study of crisp-deterministic weighted au-

tomata was carried out in [17], and in [7, 16, 18, 19, 20, 22] various procedures for converting a weighted

finite automaton into an equivalent crisp-deterministic weighted automaton were provided. Such proce-

dures are called crisp-determinization. If we allow a crisp-deterministic weighted automaton to have an

infinite set of states, as we do in this paper, then any weighted finite automaton can be converted into

an equivalent crisp-deterministic weighted automaton, and the basic problem is to perform such a con-

version that will provide an equivalent crisp-deterministic weighted automaton with a finite number of

states, as small as possible. For information on crisp-determinization of weighted tree automata we refer

to [14, 15].

The main role in the crisp-determinization is played by the concept of the Nerode automaton assigned

to the weighted finite automaton that is determinized. The construction of the Nerode automaton was first

introduced in [16] as a counterpart to the accessible subset construction on which the determinization

of classical nondeterministic finite automata is based. According to that construction, the states of a

Nerode automaton are vectors with entries from the underlying structure of weights, but in the mentioned

papers dealing with crisp-determinization, such nature of states was neglected, and the Nerode automaton

was considered as an ordinary crisp-deterministic weighted automaton. If the vector nature of states is

taken into account, this leads us to the third model of weighted automata that is considered here, to

weighted automata over a vector space or weighted automata with vector states. Various forms of such

automata were studied in [2, 3, 4, 5, 12, 21], and a related model of automata, called automata with

fuzzy states, was studied within the framework of fuzzy automata theory (see [26] and sources cited

there). The concept of a weighted automaton over a vector space discussed here differs slightly from

the corresponding concepts studied in the cited articles. The first difference concerns the underlying

vector space. Except in [12], in all the other mentioned articles, it is assumed that this vector space is

finite-dimensional. Here we not only allow that space to be infinite-dimensional, but also introduce an

extremely interesting weighted automaton over an infinite-dimensional space, the so-called derivative

N. Damljanović, M. Ćirić & J. Ignjatović 69

automaton. The second difference concerns the set of states of these automata. In all the mentioned

articles, except in [4], states are assumed to be all vectors from the underlying vector space V . However,

in that case the set of states is always infinite and a huge number of states are unreachable from the initial

state, and therefore redundant. For this reason, we take the set of states to be a subset of V , which can be

both finite and infinite. The third difference relates to transition functions. In almost all cited articles, the

transition functions induced by the input letters were required to be linear operators on V . In [21], a more

general model of weighted automata over a vector space was proposed, where the transition functions do

not have to be linear. This leads to the distinction between linear and nonlinear weighted automata over

a vector space. Here we give a definition of a linear weighted automaton over a vector space which also

includes the cases when the set of states is not the entire vector space and when the underlying vector

space is infinite-dimensional.

This paper is the beginning of our extensive investigations of weighted automata with weights taken

in the field of real numbers, and our aim here is to examine some general relations between weighted

automata over vector spaces and other two models. First, by Theorem 4.1, we show that any crisp-de-

terministic weighted automaton can be naturally turned into a language-equivalent weighted automaton

over a vector space, where the set of vector states can be any set of vectors that has the same cardinal-

ity as the set of states of that crisp-deterministic weighted automaton. Then by Theorem 4.2 we show

that any finite-dimensional linear weighted automaton over a vector space can be turned into a com-

pletely language-equivalent weighted finite automaton, and conversely, any weighted finite automaton

can be turned into a completely language-equivalent finite-dimensional linear weighted automaton over

a vector space. Actually, we show that the previously mentioned Nerode automaton of a weighted finite

automaton A is a finite-dimensional linear weighted automaton over a vector space that is completely

equivalent to A . Theorem 4.3 gives us an elegant procedure for checking whether a given finite weighted

automaton over a vector space is linear. At the end of the paper, we introduce the concept of the derivative

automaton of a given word function and prove that it is a linear weighted automaton over a vector space

that computes this word function and generates its prefix closure. In addition, we show that the derivative

automaton is a minimal weighted automaton over a vector space which computes this word function.

2 Preliminaries

Throughout this paper, N denotes the set of all natural numbers (without zero) and R denotes the field of

real numbers. For i, j ∈ N such that i ≤ j we use the notation [i.. j] = {k ∈N | i ≤ k ≤ j}.

A vector space over R is a triple (V,+, ·) such that:

∗ V is a non-empty set, whose members are called vectors;

∗ + : V ×V →V given by + : (α ,β) 7→ α +β , for α ,β ∈V , is the vector addition operation;

∗ · : R×V →V given by · : (r,α) 7→ r ·α , for r ∈R, α ∈V , is the scalar multiplication operation;

∗ vector addition and scalar multiplication satisfy the following axioms:

(V1) (V,+) is a commutative group,

(V2) r · (α +β) = r ·α + r ·β ,

(V3) (r+ s) ·α = r ·α + s ·α ,

(V4) (r · s) ·α = r · (s ·α),

(V5) 1 ·α = α ,

for all r,s ∈ R and α ,β ∈V .

70 Weighted Automata over Vector Spaces

Note that a vector space over an arbitrary field can be defined in the same way.

The basic example of a vector space over R is the vector space R
n consisting of all n-tuples of

real numbers, with vector addition and scalar multiplication defined coordinatewise. Another example

of a vector space over R that is important here is the vector space R
T consisting of all functions from

a set T into R, with vector addition and scalar multiplication defined by (α +β)(t) = α(t)+β (t) and

(r ·α)(t) = r ·α(t), for all α ,β ∈ R
T , r ∈ R and t ∈ T . Such vector spaces are called function spaces.

Let V and W be vector spaces over R. A function h : V → W is called a homomorphism or linear

transformation of V into W if h(α + β) = h(α) + h(β) and h(r ·α) = r · h(α), for all α ,β ∈ V and

r ∈ R. If h is a bijective homomorphism, then it is called an isomorphism of V into W , and we say

that V and W are isomorphic vector spaces. A vector space V over R is said to be finite-dimensional if it

is isomorphic to the vector space R
n, for some n ∈ N. In this case n is the unique natural number having

this property and it is called the dimension of V . A vector space which is not finite-dimensional is called

inifinite-dimensional. A homomorphism (linear transformation) of a vector space V into itself is called a

linear operator on V .

Let V be a vector space over R. A linear combination of vectors α1,α2, . . . ,αk ∈V is any expression

of the form r1 ·α1 + r2 ·α2 + · · ·+ rk ·αk, where r1,r2, . . . ,rk ∈ R. For any set S ⊆V , the set of all linear

combinations of vectors from S is called the span of S and denoted by span(S). In other words,

span(S) = {α ∈V |(∃k ∈N)(∃α1,α2, . . . ,αk ∈ S)(∃r1,r2, . . . ,rk ∈R)α = r1 ·α1+r2 ·α2+ · · ·+rk ·αk}.

It is well-known that span(S) is a vector space with vector addition and scalar multiplication inherited

from V , i.e., it is a subspace of V .

Given natural numbers m,n ∈ N. A matrix of type m×n with entries in the field of real numbers R,

or a real m×n-matrix, is defined as a mapping M : [1..m]× [1..n] → R. For a pair (i, j) ∈ [1..m]× [1..n]
the value M(i, j) is called the (i, j)-entry of the matrix M. The set of all real matrices of type m× n is

denoted by R
m×n. Similarly, a vector of length n with entries in R, or real vector is defined as a mapping

ν : [1..n] → R. For each i ∈ [1..n] the value ν(i) is called the ith entry or ith coordinate of the vector ν .

The set of all real vectors of length n is denoted by R
n.

The zero matrix of type m× n, denoted by Om×n, is a matrix of type m× n whose all entries are 0.

Similarly, the zero vector of length n, denoted by on, is a vector of length n whose all entries are 0. For

each n ∈ N, a matrix of type n× n is called a square matrix of order n. The identity matrix of order n,

denoted by In, is a square matrix of order n which satisfies In(i, i) = 1, for each i ∈ [1..n], and In(i, j) = 0,

for all i, j ∈ [1..n] such that i 6= j. The transpose of a matrix M is denoted by M⊤. For a matrix M ∈R
m×n

and k ∈ [1..n], by ck(M) we denote the kth column vector of M.

For all pairs of matrices from R
m×n the matrix addition is defined pointwise:

(M+N)(i, j) = M(i, j)+N(i, j), (1)

for all M,N ∈ R
m×n

, i ∈ [1..m] and j ∈ [1..n]. It is an associative and commutative operation on R
m×n,

and in particular, (Rm×n
,+,Om×n) forms a commutative monoid. The matrix product is defined between

matrices from R
m×n and R

n×p as follows: for M ∈ R
m×n and N ∈R

n×p their product is a matrix M ·N ∈
R

m×p with entries given by

(M ·N)(i,k) =
n

∑
j=1

M(i, j) ·M(j,k), (2)

for all (i, j) ∈ [1..m]× [1..p]. The matrix product is associative whenever it is defined, i.e., (M ·N) ·P =
M · (N ·P), for all M ∈ R

m×n, N ∈ R
n×p and P ∈ R

p×q. In particular, (Rn×n
,+, ·,On×n, In) is a semiring.

N. Damljanović, M. Ćirić & J. Ignjatović 71

Given a matrix M ∈ R
m×n and vectors µ ∈ R

m and ν ∈ R
n. When µ is treated as a matrix of type 1×m

(row vector) and ν as a matrix of type n× 1 (column vector), the vector-matrix product µ ·M and the

matrix-vector product M ·ν are defined as matrix products. The scalar product or dot product of vectors

µ ,ν ∈ R
n is an element of R given by

µ ·ν =
n

∑
i=1

µ(i) ·ν(i). (3)

A matrix M ∈ R
m×n is said to be in the row echelon form if it satisfies the following properties:

∗ If a row of M does not consist entirely of zeros, then the first nonzero entry in this row is 1. It is

called a leading 1.

∗ If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of

the matrix M.

∗ In any two successive rows of M that do not consist entirely of zeros, the leading 1 in the lower

row occurs farther to the right than the leading 1 in the higher row.

Moreover, M is said to be in the reduced row echelon form if, in addition to these three properties, it also

satisfies the condition

∗ Every column of M that contains a leading 1 has zeros everywhere else.

Every matrix N ∈ R
m×n can be transformed to a row echelon form or a reduced row echelon form by

applying some sequence of elementary row operations (multiplying a row by a nonzero scalar, inter-

changing two rows, and adding a multiple of one row to another). It should be noted that the reduced

row echelon form of the matrix N is unique, in the sense that reducing the matrix N to the reduced row

echelon form by applying any sequence of elementary row operations always yields the same matrix

in the reduced row echelon form. This matrix will be denoted by RREF(N). The rank of a matrix N,

denoted by rank(N), is defined as the number of nonzero rows in RREF(N).

For matrices M1 ∈ R
m×n1 , M2 ∈ R

m×n2 , . . . , Mk ∈ R
m×nk , where k,m,n1,n2, . . . ,nk ∈ N, by concate-

nating them from left to right we obtain a matrix [M1 |M2 | . . . |Mk]∈R
m×n, where n= n1+n2+ · · ·+nk,

which is called the augmented matrix (obtained from M1, M2,. . . , Mk).

For undefined notions and notation concerning vector spaces, vectors and matrices we refer to the

book [1].

3 Three models of weighted automata

In terms of real matrices and their properties, we will investigate three models of weighted automata with

weights in the field of real numbers.

3.1 Weighted finite automata

Let X be an alphabet. A weighted finite automaton over R and X is defined as a tuple A = (A,σ ,δ ,τ),
where A is a non-empty finite set, while σ ,τ : A → R and δ : A×X ×A → R. The function δ is often

replaced by the family of functions {δx}x∈X , where δx : A×A → R is given by δx(a,b) = δ (a,x,b), for

all a,b ∈ A and x ∈ X . We call A the set of states, σ the initial weights function, τ the terminal weights

function, and δ and δx, x ∈ X , the transition weights functions.

72 Weighted Automata over Vector Spaces

The behavior of the weighted finite automaton A is a word function JAK : X∗ → R defined by

JAK(u) = ∑
(a0,a1,...,ak)∈Ak+1

σ(a0) ·δ (a0,x1,a1) ·δ (a1,x2,a2) · · ·δ (ak−1,xk,ak) · τ(ak), (4)

for u = x1x2 . . .xk ∈ X+, x1,x2, . . . ,xk ∈ X , and

JAK(ε) = ∑
a∈A

σ(a) · τ(a). (5)

We say that A computes the function JAK.

Assume that n is the number of elements of A, i.e., A = {a1,a2, . . . ,an}. In many situations, instead

of as functions, it is more convenient to treat σ and τ as vectors in R
n, and δx, x ∈ X , as n× n matrices

with entries in R. In other words, σ will be identified with a vector in R
n whose ith coordinate is σ(ai),

and τ will be identified with a vector in R
n whose ith coordinate is τ(ai). In order to clearly distinguish

between matrices and vectors, we will use capital letters of the Latin alphabet to denote matrices, while

vectors will be denoted by small letters of the Greek alphabet. Therefore, {Mx}x∈X will be a family of

n×n matrices over R such that the (i, j)-entry of Mx is equal to δx(ai,a j). A weighted finite automaton

A is then treated as a tuple A = (n,σ ,{Mx}x∈X ,τ), where we cal n the dimension, σ the initial weights

vector, τ the terminal weights vector, and Mx, x ∈ X , the transition weights matrices of A . We cal this

tuple the linear representation of the weighted finite automaton A .

When A is given by the linear representation, its behavior is represented by

JAK(u) = σ ·Mx1
·Mx2

· · ·Mxk
· τ = σ ·Mu · τ , (6)

for u = x1x2 . . .xk ∈ X+, x1,x2, . . . ,xk ∈ X , where Mu = Mx1
·Mx2

· · ·Mxk
, and

JAK(ε) = σ · τ . (7)

In applications of automata in the theory of discrete event systems, apart from the function JAK
computed by the automaton A , another function plays an important role – the function JAKg generated

by the automaton A . For a weighted finite automaton A = (n,σ ,{Mx}x∈X ,τ) this function can be defined

with:

JAKg(u) = ‖σu‖∞, (8)

for every u ∈ X∗, where σu = σ ·Mu, for u ∈ X+, and σε = σ , while ‖ · ‖∞ denotes the maximum norm

(called also a uniform norm) on R
n that is given by

‖α‖∞ = max
i∈[1..n]

|αi|, (9)

for each α = (α1,α2, . . . ,αn) ∈ R
n.

Let us note that in the case of convential nondeterministic finite automata, JAKg is the language con-

sisting of all words for which a transition is defined, i.e., of all words which ”lead somewhere”(cf. [6]). A

nondeterministic finite automaton can be considered as a weighted finite automaton over the two-element

Boolean semiring, and then JAKg consists of all words u for which σu is a non-zero Boolean vector, i.e.,

for which

max
i∈[1..n]

|αi|= 1,

N. Damljanović, M. Ćirić & J. Ignjatović 73

where σu = (α1,α2, . . . ,αn) ∈ {0,1}n. From conventional nondeterministic finite automata, such a defi-

nition was also extended to the case of fuzzy finite automata, where JAKg(u) is interpreted as the degree

to which the word u leads somewhere. A similar interpretation can be given here as well, when it comes

to weighted finite automata over the field of real numbers, where JAKg(u) = ‖σu‖∞ could be interpreted

as the maximal probability of the existence of a transition determined by u, i.e. the probability that u

leads somewhere. In order for this to be consistent with the conventional view of probability, the values

for ‖σu‖∞, which are always non-negative, can be translated by some monotone function (for example,

by the function 1− e−x), to values from the real unit interval [0,1].

3.2 Crisp-deterministic weighted automata

Another model of weighted automata is a crisp-deterministic weighted automaton, which is defined as a

tuple D = (D,d0,∆,θ), where D is a non-empty set of states, d0 ∈ D is a distinguished state that is called

the initial state, ∆ : D×X → D is a function called the transition function, and θ : D → R is a function

called the terminal weights function, or the terminal weights vector, if θ is considered as a vector in the

space R
D. Here it is not necessary that the set D is finite, so we will also allow the possibility that D is

infinite. If the set of states D is finite, then D is called a finite crisp-deterministic weighted automaton

A finite crisp-deterministic weighted automaton can be considered as a special weighted finite au-

tomaton A = (D,σ ,δ ,τ) in which for every a ∈ D and x ∈ X there exists a′ = ∆(a,x) ∈ D such that

δ (a,x,a′) = 1, while δ (a,x,b) = 0, for every b ∈ D \ {a′}, and there exists a ∈ D such that σ(a) = 1,

while σ(b) = 0, for every b ∈ D \ {a} (then we assume that d0 = a). In other words, a finite crisp-

deterministic weighted automaton is a weighted finite automaton with a single initial state and a deter-

ministic transition function, in which all weights are concentrated in the terminal weights vector.

The transition function ∆ of a crisp-deterministic weighted automaton D = (D,d0,∆,θ) extends to a

function ∆∗ : D×X∗ → D by putting ∆∗(a,ε) = a and ∆∗(a,ux) = ∆(∆∗(a,u),x), for all a ∈ D, u ∈ X∗

and x ∈ X , and the behavior JDK : X∗ → R of D is given by

JDK(u) = θ(∆∗(d0,u)), (10)

for every u ∈ X∗.

From the transition function ∆∗ : D×X∗ → D we can extract a family of functions {∆u}u∈X∗ , where

∆u : D → D is defined by ∆u(a) = ∆∗(a,u), for all u ∈ X∗ and a ∈ D. These functions will be also called

transition functions. If u = x1x2 . . .xk, for x1,x2, . . . ,xk ∈ X , then

∆u(a) = ∆xk
(. . . (∆x2

(∆x1
(a)))),

for every a ∈ D, that is, ∆u is the composition ∆u = ∆x1
∆x2

· · ·∆xk
of transition functions ∆x1

,∆x2
, . . . ,∆xk

.

3.3 Weighted automata over a vector space

Let V be a vector space over the field R of real numbers. The third model of weighted automata is a

weighted automaton over a vector space (with vector states), defined as a tuple A = (S,σ ,δ ,Θ), where

S ⊆ V is a nonempty set of vectors, called the set of vector states, σ ∈ S is a vector called the initial

vector state, δ : S×X → S is a deterministic transition function, and Θ : S → R is a function called the

terminal weights function. Here we also allow S to be infinite. Furthermore, in some sources S is taken

to be the entire space V , but here we allow S to be only a subset of the space V to enable it to be finite. If

the set S of vector states is finite, then A is called a finite weighted automaton over a vector space, and

74 Weighted Automata over Vector Spaces

if V is a finite-dimensional vector space of dimension n, then A is also said to be a finite-dimensional

weighted automaton over a vector space of dimension n. If the cardinality of the set of states of A is less

than or equal to the cardinality of the set of states of any other weighted automaton over the vector space

V , that we say that A is a minimal weighted automaton over the vector space V .

As with crisp-deterministic weighted automata, δ can be extended to a function δ ∗ : S×X∗ → S by

δ ∗(α ,ε) = α and δ ∗(α ,ux) = δ (δ ∗(α ,u),x), for all α ∈ S, u∈ X∗
,x ∈ X , and the function δ ∗ determines

a family of functions {δu}u∈X∗ , where δu : S → S is defined by δu(α) = δ ∗(α ,u), for all u∈X∗ and α ∈ S.

These functions are also called transition functions. If u = x1x2 . . .xk, for x1,x2, . . . ,xk ∈ X , then

δu(α) = δxk
(. . . (δx2

(δx1
(α)))),

for every α ∈ V , that is, δu is the composition δu = δx1
δx2

· · ·δxk
of transition functions δx1

,δx2
, . . . ,δxk

.

Then A can be equivalently represented as a tuple A = (S,σ ,{δx}x∈X ,Θ). In addition, for every u ∈ X∗,

with σu we denote a vector from S given by σu = δ ∗(σ ,u) = δu(σ).
The behavior JAK : X∗ → R of the weighted automaton A over a vector space V is given by

JAK(u) = Θ(δ ∗(σ ,u)), (11)

for every u ∈ X∗. On the other hand, the function JAKg generated by A is defined with

JAKg(u) = ‖δ ∗(σ ,u)‖ = ‖δu(σ)‖, (12)

for each u ∈ X∗, where ‖ ·‖ denotes some norm on the vector space V . If V is a finite-dimensional space

we will assume that ‖ · ‖ is the maximum norm ‖ · ‖∞ (see (9)), and if V = R
T is some function space

(later we will consider the function space R
X∗

), then we will assume that ‖ · ‖ is the supremum norm

‖ · ‖∞ (also called the uniform norm) that is given by

‖ f‖∞ = sup
t∈T

| f (t)|,

for every f : T → R (clearly, for T = [1..n] we obtain (9), i.e., the maximum norm).

4 Relationships between different types of weighted automata

Let A and B be weighted automata of any of the three types discussed in the previous section, where

they can be of different types. If JAK = JBK, then A and B are said to be language-equivalent. On the

other hand, if each of these automata is a weighted finite automaton or a weighted automaton over a

vector space, where they do not have to be of the same type, and if JAK= JBK and JAKg = JBKg, then A

and B are said to be completely language-equivalent.

Theorem 4.1 Let D = (D,d0,∆,θ) be a crisp-deterministic weighted automaton over R, let V be a

vector space and let S ⊆V be a set of vectors which has the same cardinality as D.

Then D can be turned into a language-equivalent weighted automaton over the vector space V

having S as its set of states.

Proof. Let φ : S → D be an arbitrary bijective function between S and D. Then we can define an initial

vector state σ ∈ S by

σ = φ−1(d0).

N. Damljanović, M. Ćirić & J. Ignjatović 75

Let {δx}x∈X be a family of transition functions defined in the following way: For each x ∈ X ,

δx(α) = φ−1(∆(φ(α),x)), for every α ∈ S.

Let the terminal weights function Θ : S → R be defined by

Θ(α) = θ(φ(α)), for every α ∈ S.

Then A = (S,σ ,{δx}x∈X ,Θ) is a weighted automaton over the vector space V having S as its set of states.

Clearly, for each α ∈ S and u ∈ X∗ we have

δu(α) = φ−1(∆(φ(α),u).

Furthermore, for every u ∈ X∗ the following holds

JAK(u) = Θ(δ ∗(σ ,u)) = Θ(δu(σ)) = θ(φ(δu(σ))) = θ(φ(φ−1(∆(φ(σ),u)))) =

= θ(φ(φ−1(∆(φ(φ−1(d0)),u)))) = θ(∆(d0,u)) = JDK(u)

and therefore, A and D are language-equivalent.

T. Li, G. Rabusseau and D. Precup in [21] defined a nonlinear weighted finite automaton over the

field of real numbers R as a tuple (σ ,{δx}x∈X ,Θ), where σ ∈R
n is a vector of initial weights, {δx}x∈X is

a family of transformations such that δx : Rn →R
n, for each x ∈ X , which are called transition functions,

and θ :Rn →R is a termination function. This definition is almost identical to our definition of a weighted

automaton over a vector space. The difference is that the set S of vector states is not explicitly stated in

the mentioned paper, but we can assume that S is the smallest set of vectors from R
n that contains σ and

is closed for all transformations from the family {δx}x∈X , that is, S = {σu}u∈X∗ , where σu = δ ∗(σ ,u) =
δu(σ), for each u ∈ X∗. Another difference is that the transformations {δx}x∈X are defined on R

n, but

nothing changes significantly if we replace them with their restrictions on S. The third difference is that

Lee, Rabusseau and Precup considered automata over the finite-dimensional vector space R
n, while in

our definition we provide the possibility that the underlying vector space V be also infinite-dimensional.

Therefore, the concepts of a nonlinear weighted finite automaton and a weighted automaton over a vector

space are almost the same. Let us note that the adjective ”finite” in the name of nonlinear weighted finite

automata does not refer to the finiteness of the set S of vector states, as in our definition, but to the finite

dimension of the space Rn. In addition, regardless of the adjective nonlinear in the name, in the nonlinear

weighted finite automaton among the transformations δx, x ∈ X , there can be both linear and nonlinear

ones.

Here, a weighted automaton A = (S,σ ,{δx}x∈X ,Θ) over a vector space V is defined to be linear if

for any x ∈ X the function δx is the restriction of some linear operator δ ′
x : span(S)→ span(S) to the set

S, and also, Θ is the restriction of some linear functional (linear form) Θ′ : span(S)→ R to the set S, i.e.,

δ ′
x (sα + tβ) = sδ ′

x (α)+ tδ ′
x (β), Θ′(sα + tβ) = sΘ′(α)+ tΘ′(β), (13)

for all x ∈ X , α ,β ∈ span(S) and s, t ∈ R. Otherwise, if some of the mappings δx, x ∈ X , and Θ can not

be represented in this way, then A is said to be a nonlinear weighted automaton over a vector space. If

V ⊆ R
n, for some n ∈ N, then A is linear if and only if for each x ∈ X there is a matrix Mx ∈ R

n×n such

that δx(α) = α ·Mx, for each α ∈ S, and there is also a vector τ ∈ R
n such that Θ(α) = α · τ , for each

α ∈ S (here α · τ denotes the scalar product of α and τ).

76 Weighted Automata over Vector Spaces

Let us note that our linear weighted automata over a vector space are almost identical to automata

studied by Balle, Gourdeau and Panangaden in [3] (which are called there only weighted finite au-

tomata), the only difference is that there V was assumed to be a finite-dimensional space and S = V .

However, even this small difference concerning the set of vector states can be significant. Namely, let

A = (S,σ ,{δx}x∈X ,Θ) be any linear weighted automaton over the vector space V = R
n with the set of

vector states S ⊂V such that span(S) 6=V , for each x ∈ X let δx be the restriction of some linear operator

δ ′
x : span(S)→ span(S) to the set S, and let Θ be the restriction of some linear functional Θ′ : span(S)→R

to the set S. Then we can easily extend any δ ′
x to an operator δ ′′

x : V →V which is not linear, for example,

by taking δ ′′
x to concide with δ ′

x on span(S) and

δ ′′
x

([

s1 s2 . . . sn

])

=
[

s2
1 s2

2 . . . s2
n

]

,

for every
[

s1 s2 . . . sn

]

∈ V \ span(S), and we can extend Θ′ to a non-linear function Θ′′ : V → R.

Therefore, A ′′ = (V,σ ,{δ ′′
x }x∈X ,Θ

′′) is a non-linear weighted automaton over the vector space V with

the set of vector states V , but if we assume that the set of vector states is S, then A ′′ becomes linear.

The following theorem explains the connection between finite-dimensional linear weighted automata

over a vector space and weighted finite automata.

Theorem 4.2 Every finite-dimensional linear weighted automaton over a vector space can be turned

into a completely language-equivalent weighted finite automaton.

Conversely, every weighted finite automaton can be turned into a completely language-equivalent

finite-dimensional linear weighted automaton over a vector space.

Proof. Let A = (S,σ ,δ ,Θ) be a finite-dimensional linear weighted automaton over a vector space V of

dimension n. Since A is linear, we have that for each x ∈ X there exists a matrix Mx ∈ R
n×n such that

σ ·Mx = δ (σ ,x), and moreover, there exists a vector τ ∈R
n such that Θ(σ) =σ ·τ . In this way, we obtain

a weighted finite automaton A ′ which is given by the linear representation A ′ = (n,σ ,{Mx}x∈X ,τ).
Now, for every u ∈ X+ such that u = x1x2 · · ·xk, where x1,x2, . . . ,xk ∈ X , we have

JA ′K(u) = σ ·Mx1
·Mx2

· · · · ·Mxk
· τ = σ ·Mu · τ = δ ∗(σ ,u) · τ = Θ(δ ∗(σ ,u)) = JAK(u),

and

JA ′K(ε) = σ · τ = δ ∗(σ ,ε) · τ = Θ(δ ∗(σ ,ε)) = JAK(ε).

Finally, we have that

JA ′Kg(u) = ‖σu‖∞ = ‖σ ·Mu‖∞ = ‖δ ∗(σ ,u)‖∞ = JAKg(u),

for every u ∈ X∗.

Therefore, we have proved that the finite-dimensional linear weighted automaton A is completely

language-equivalent to the weighted finite automaton A ′.

Conversely, let A = (A,σ ,δ ,τ) be a weighted finite automaton with n states. We define a weighted

automaton AN = (SN ,σ
N
,δ N

,ΘN) over the vector space R
n in the following way: we set

SN = {σu |u ∈ X∗}, σ N = σ ,

and we define functions δ N : SN ×X → SN and ΘN : SN → R by

δ N(σu,x) = σu ·δx = σux, ΘN(σu) = σu · τ ,

N. Damljanović, M. Ćirić & J. Ignjatović 77

for every u∈X∗. The automaton AN is obviously well-defined and is called in [17] the Nerode automaton

of the automaton A . It remains to prove that the Nerode automaton AN is completely language-equivalent

to the original weighted finite automaton A .

For an arbitrary word u ∈ X∗ we have that

JANK(u) = ΘN((δ N)∗(σ ,u)) = ΘN(σu) = σu · τ = JAK(u).

and also,

JANKg(u) = ‖(δ N)∗(σ ,u)‖∞ = ‖σu‖∞ = JAKg(u).

Therefore, the Nerode automaton AN of A is completely language-equivalent to A .

Let A = (S,σ ,{δx}x∈X ,Θ) be a finite weighted automaton over the vector space V = R
n, and let

us assume that S = {α1,α2, . . . ,αm} and X = {x1,x2, . . . ,xs}. Let us form m× n-matrices N and Nxi
,

i ∈ [1..s], and a column vector (1×m-matrix) ϑ such that rows in N are α1,α2, . . . ,αm, rows in Nxi
are

δxi
(α1),δxi

(α2), . . ., δxi
(αm), and entries in ϑ are Θ(α1),Θ(α2), . . . ,Θ(αm), in that order, i.e.

N =











α1

α2

...

αm











, Nxi
=











δxi
(α1)

δxi
(α2)
...

δxi
(αm)











, i ∈ [1..s], ϑ =











Θ(α1)
Θ(α2)

...

Θ(αm)











We will call N the state matrix and ϑ the terminal vector, while for each i ∈ [1..s], we call Nxi
the desti-

nation matrix corresponding to the input letter xi.

The following theorem provides a procedure for testing the linearity of a finite weighted automaton

over a finite-dimensional vector space.

Theorem 4.3 Let A = (S,σ ,{δx}x∈X ,Θ) be a finite weighted automaton over the vector space V ⊆ R
n.

Then A is linear if and only if the matrix N has the same rank as the augmented matrix

[N | Nx1
| Nx2

| . . . | Nxs
| ϑ].

Proof. First we prove that A is linear if and only if each of the following equations is solvable

N ·X1 = Nx1
, N ·X2 = Nx2

, . . . , N ·Xs = Nxs
, N ·χ = ϑ , (14)

where X1,X2, . . . ,Xn are unknown n×n-matrices, and χ is an unknown vector taking values in R
n.

Assume that A is linear, i.e., that there are matrices Mxi
∈ R

n×n, for each i ∈ [1..s], and a vector

τ ∈ R
n such that

δxi
(α j) = α j ·Mxi

, for all i ∈ [1..n], j ∈ [1..m], Θ(α j) = α j · τ , for each j ∈ [1..m]. (15)

According to the well-known row rule for matrix multiplication we obtain that

N ·Mxi
=









α1 ·Mxi

α2 ·Mxi

· · ·
αm ·Mxi









=









δxi
(α1)

δxi
(α2)
· · ·

δxi
(αm)









= Nxi
, N · τ =









α1 · τ
α2 · τ
· · ·

αm · τ









=









Θ(α1)
Θ(α2)
· · ·

Θ(αm)









= ϑ , (16)

78 Weighted Automata over Vector Spaces

for every i ∈ [1..s], and we conclude that X1 = Mx1
, X2 = Mx2

, . . . , Xs = Mxs
and χ = τ are solutions of

equations from (14).

Conversely, let any of the equations from (14) is solvable, and assume that Xi = Mxi
, for i ∈ [1..s],

and χ = τ , are solutions to these equations. From there we obtain that (16) holds, which further implies

that (15) holds, and therefore, A is a linear weighted automaton over a vector space V .

Next we prove that each of the equations from (14) is solvable if and only if the rank of N is equal

to the rank of the augmented matrix N∗ = [N | Nx1
| Nx2

| . . . | Nxs
| ϑ]. Let R be the reduced row echelon

form of the augmented matrix N∗, and let R be partitioned as follows:

R = [R0 |R1 |R2 | . . . |Rs |ν]

where R0,R1,R2, . . . ,Rs are m× n-matrices and ν is a column vector of dimension m. Then R0 is the

reduced row echelon form of N, for each i ∈ [1..s], [R0 |Ri] is the reduced row echelon form of [N |Nxi
],

and [R0 |ν] is the reduced row echelon form of [N |ϑ].
For an arbitrary i ∈ [1..s] we have that the equation N ·Xi = Nxi

is solvable if and only the equation

N · ck(Xi) = ck(Nxi
) is solvable for every k ∈ [1..n]. On the other hand, for every k ∈ [1..n] we have that

N · ck(Xi) = ck(Nxi
) is solvable if and only if rank(N) = rank([N |ck(Nxi

)]), and this holds if and only if

for every j ∈ [1..m] for which the jth row of R0 is the zero vector it follows that the jth coordinate of

ck(Nxi
) is equal to zero. Similarly, the equation N · χ = ϑ is solvable if and only if for every j ∈ [1..m]

for which the jth row of R0 is the zero vector it follows that the jth coordinate of ϑ is equal to zero.

Therefore, we conclude that all equations in (14) are solvable if and only if for every j ∈ [1..m] for

which the jth row of R0 is the zero vector, we have that all remaining entries in the jth row of the matrix

R = [R0 |R1 |R2 | . . . |Rs |ν] are equal to zero, and this is equivalent to rank(N) = rank(N∗).
Let us note that if R0 does not have zero rows then all equations in (14) are solvable if and only if

rank(N) = rank(N∗) = rank([N |Nxi
]) = rank([N |ϑ]) = rank([N |ck(Nxi

)]) = m (6 n),

for all i ∈ [1..s] and k ∈ [1..n]. This completes the proof of the theorem.

Example 4.4 Let A = (S,σ ,{δx}x∈X ,Θ) be a finite weighted automaton with three vector states over the

vector space R
2 and an alphabet X = {x,y}, where the vector states σ = α1, α2 and α3, and the terminal

vector ϑ are given with

σ = α1 =
[

1 0
]

, α2 =
[

0 1
]

, α3 =
[

1 1
]

, ϑ =





0

0

1





,

while the transition graph is the one given in Figure 1.

Then the augmented matrix N∗ = [N | Nx | Ny | ϑ] and its reduced row echelon form RREF(N∗) are

given by

N∗ =





1 0 0 1 1 1 0

0 1 0 1 0 1 0

1 1 1 1 0 1 1





, RREF(N∗) =





1 0 0 1 1 1 0

0 1 0 1 0 1 0

0 0 1 −1 −1 −1 1





,

and it is clear that rank(N) = 2 6= 3 = rank(N∗). From there we get that A is nonlinear.

Let us also note that the equations (14) become




1 0

0 1

1 1



 ·

[

x11 x12

x21 x22

]

=





0 1

0 1

1 1





,





1 0

0 1

1 1



 ·

[

y11 y12

y21 y22

]

=





1 1

0 1

0 1





,





1 0

0 1

1 1



 ·

[

x

y

]

=





0

0

1





.

N. Damljanović, M. Ćirić & J. Ignjatović 79

α1 α2

α3

x

y y

x,y

x

Figure 1: The transition graph of the automaton A from Example 4.4

It can be seen that none of these equations has a solution.

For a word function f : X∗ → R and a word u ∈ X∗, a word function fu : X∗ → R defined by

fu(v) = f (uv), for every v ∈ X∗
, (17)

is called the derivative of f with respect to u. Derivatives of conventional languages are also known as

right quotients, quotients or residuals of languages.

We define a weighted automaton A f = (S f ,σ
f
,δ f

,Θ f) over a vector space RX∗
as follows: the set S f

of vector states is given by S f = { fu |u ∈ X∗}, σ f = f , and functions δ f : S f ×X → S f and Θ f : S f →R

are given by

δ f (g,x) = gx, Θ f (g) = g(ε), for all g ∈ S f and x ∈ X . (18)

It is clear that A f is well-defined, and we will call it the derivative automaton of the word function f .

For a word function f : X∗ → R, the prefix closure of f is a word function f : X∗ → R defined by

f (u) = sup
v∈X∗

| f (uv)| = ‖ fu‖∞, (19)

for every u ∈ X∗.

Theorem 4.5 The derivative automaton A f of a word function f ∈ R
X∗

is a linear weighted automaton

over the vector space R
X∗

that computes f and generates the prefix closure f of f .

In addition, A f is a minimal weighted automaton over a vector space which computes f .

Proof. For the sake of simplicity, let us assume that RX∗
=V .

First, we prove that A f is linear. To that end, define functions δx : V → V , for every x ∈ X , and

Θ : V → R as follows: δx(g) = gx and Θ(g) = g(ε), for all g ∈V and x ∈ X . Further, consider arbitrary

g,h ∈V and s, t ∈ R. Then for arbitrary x ∈ X and u ∈ X∗ we have that

(sg+ th)x(u) = (sg+ th)(xu) = sg(xu)+ th(xu) = sgx(u)+ thx(u) = (sgx + thx)(u),

so we conclude that (sg+ th)x = sgx + thx, and now we have that

δx(sg+ th) = (sg+ th)x = sgx + thx = sδx(g)+ tδx(h),

Θ(sg+ th) = (sg+ th)(ε) = sg(ε)+ th(ε) = sΘ(g)+ tΘ(h).

80 Weighted Automata over Vector Spaces

Hence, δx, x ∈ X , and Θ are linear operators on V , and it is clear that δ
f

x (where δ
f

x (g) = δ f (g,x)) is the

restriction of δx to S f , for each x ∈ X , and Θ f is the restriction of Θ on S f . This means that A f is a linear

weighted automaton over the vector space V . Next, for an arbitrary u ∈ X∗ we have that

JA f K(u) = Θ((δ f)∗(σ f
,u)) = Θ((δ f)∗(f ,u)) = Θ(fu) = fu(ε) = f (uε) = f (u),

JA f Kg(u) = ‖(δ f)∗(σ f
,u)‖∞ = ‖(δ f)∗(f ,u)‖∞ = ‖ fu‖∞ = f (u),

which means that the automaton A f computes f and generates f .

Let A = (S,σ ,δ ,Θ) be an arbitrary weighted automaton over a vector space that computes f , and

let S′ = {σu |u ∈ X∗} ⊆ S. Define a function φ : S′ → S f by putting that φ(σu) = fu, for every u ∈ X∗.

First we prove that φ is well-defined, i.e., that for any u,v ∈ X∗, from σu = σv it follows fu = fv. Thus,

consider u,v ∈ X∗ such that σu = σv, and an arbitrary w ∈ X∗. Then

fu(w) = f (uw) = JAK(uw) = Θ(δ ∗(σ ,uw)) = Θ(δ ∗(δ ∗(σ ,u),w))

= Θ(δ ∗(σu,w)) = Θ(δ ∗(σv,w)) = Θ(δ ∗(δ ∗(σ ,v),w))

= Θ(δ ∗(σ ,vw)) = JAK(vw) = f (vw) = fv(w),

so we conclude that fu = fv. Therefore, we get that φ is a well-defined function, and it is obvious that φ is

surjective. This means that the cardinality of S f is less than or equal to the cardinality of S′, which is less

than or equal to the cardinality of S. From there, we conclude that A f is a minimal weighted automaton

over a vector space which computes f .

References

[1] Howard Anton & Robert C. Busby (2023): Contemporary Linear Algebra, 2nd edition. John Wiley & Sons.

[2] Borja Balle, Pascale Gourdeau & Prakash Panangaden (2017): Bisimulation metrics for weighted automata.

In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn & Anca Muscholl, editors: 44th International Collo-

quium on Automata, Languages, and Programming (ICALP 2017), 80, Leibniz International Proceedings in

Informatics (LIPIcs), pp. 103:1–103:14, doi:10.4230/LIPIcs.ICALP.2017.103.

[3] Borja Balle, Pascale Gourdeau & Prakash Panangaden (2022): Bisimulation metrics and norms for real-

weighted automata. Information and Computation 282, p. 104649, doi:10.1016/j.ic.2020.104649.

[4] Filippo Bonchi, Marcello Bonsangue, Michele Boreale, Jan Rutten & Alexandra Silva (2012): A coalgebraic

perspective on linear weighted automata. Information and Computation 211, pp. 77–105, doi:10.1016/j.

ic.2011.12.002.

[5] Michele Boreale (2009): Weighted bisimulation in linear algebraic form. In M. Bravetti & G. Zavattaro,

editors: CONCUR 2009 – Concurrency Theory, 20th Intern. Conference, Lecture Notes in Computer Science

5710, Springer, Bologna, Italy, pp. 163–177, doi:10.1007/978-3-642-04081-8_12.

[6] Christos G. Cassandras & Stéphane Lafortune (2008): Introduction to Discrete Event Systems. Springer,

doi:10.1007/978-0-387-68612-7.

[7] Miroslav Ćirić, Manfred Droste, Jelena Ignjatović & Heiko Vogler (2010): Determinization of weighted

finite automata over strong bimonoids. Information Sciences 180, pp. 3497–3520, doi:10.1016/j.ins.

2010.05.020.

[8] Miroslav Ćirić, Jelena Ignjatović, Milan Bašić & Ivana Jančić (2014): Nondeterministic automata: equiv-

alence, bisimulations, and uniform relations. Information Sciences, pp. 185–218, doi:10.1016/j.ins.

2013.07.029.

[9] Miroslav Ćirić, Jelena Ignjatović, Nada Damljanović & Milan Bašić (2012): Bisimulations for fuzzy au-

tomata. Fuzzy Sets and Systems 186, pp. 100–139, doi:10.1016/j.fss.2011.07.003.

https://doi.org/10.4230/LIPIcs.ICALP.2017.103
https://doi.org/10.1016/j.ic.2020.104649
https://doi.org/10.1016/j.ic.2011.12.002
https://doi.org/10.1016/j.ic.2011.12.002
https://doi.org/10.1007/978-3-642-04081-8_12
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1016/j.ins.2010.05.020
https://doi.org/10.1016/j.ins.2010.05.020
https://doi.org/10.1016/j.ins.2013.07.029
https://doi.org/10.1016/j.ins.2013.07.029
https://doi.org/10.1016/j.fss.2011.07.003

N. Damljanović, M. Ćirić & J. Ignjatović 81

[10] Miroslav Ćirić, Jelena Ignjatović, Ivana Jančić & Nada Damljanović (2012): Computation of the greatest

simulations and bisimulations between fuzzy automata. Fuzzy Sets and Systems 208, pp. 22–42, doi:10.

1016/j.fss.2012.05.006.

[11] Miroslav Ćirić, Aleksandar Stamenković, Jelena Ignjatović & Tatjana Petković (2010): Fuzzy relation equa-

tions and reduction of fuzzy automata. Journal of Computer and System Sciences 76, pp. 609–633, doi:10.

1016/j.jcss.2009.10.015.

[12] Thomas Colcombet & Daniela Petrisan (2017): Automata and minimization. ACM SIGLOG News 4(2), pp.

4–27, doi:10.1145/3090064.3090066.

[13] Nada Damljanović, Miroslav Ćirić & Jelena Ignjatović (2014): Bisimulations for weighted automata over

an additively idempotent semiring. Theoretical Computer Science 534, pp. 86–100, doi:10.1016/j.tcs.

2014.02.032.

[14] Mandfed Droste, Zoltán Fülöp, Dávid Kószó & Heiko Vogler (2020): Crisp-determinization of weighted tree

automata over additively locally finite and past-finite monotonic strong bimonoids is decidable. In Galina

Jirásková & Giovanni Pighizzini, editors: DCFS 2020, Lecture Notes in Computer Science 12442, pp. 39–51,

doi:10.1007/978-3-030-62536-8_4.

[15] Zoltán Fülöp, Dávid Kószó & Heiko Vogler (2021): Crisp-determinization of weighted tree automata over

strong bimonoids. Discrete Mathematics and Theoretical Computer Science 23(1), doi:10.46298/dmtcs.

5943.

[16] Jelena Ignjatović, Miroslav Ćirić & Stojan Bogdanović (2008): Determinization of fuzzy automata with mem-

bership values in complete residuated lattices. Information Sciences 178, pp. 164–180, doi:10.1016/j.

ins.2007.08.003.

[17] Jelena Ignjatović, Miroslav Ćirić, Stojan Bogdanović & Tatjana Petković (2010): Myhill-Nerode type theory

for fuzzy languages and automata. Fuzzy Sets and Systems 161, pp. 1288–1324, doi:10.1016/j.fss.

2009.06.007.

[18] Zorana Jančić & Miroslav Ćirić (2014): Brzozowski type determinization for fuzzy automata. Fuzzy Sets and

Systems 249, pp. 73–82, doi:10.1016/j.fss.2014.02.021.

[19] Zorana Jančić, Jelena Ignjatović & Miroslav Ćirić (2011): An improved algorithm for determinization of

weighted and fuzzy automata. Information Sciences 181, pp. 1358–1368, doi:10.1016/j.ins.2010.12.

008.

[20] Zorana Jančić, Ivana Micić, Jelena Ignjatović & Miroslav Ćirić (2016): Further improvements of deter-

minization methods for fuzzy finite automata. Fuzzy Sets and Systems 301, pp. 79–102, doi:10.1016/j.

fss.2015.11.019.

[21] Tianyu Li, Guillaume Rabusseau & Doina Precup (2018): Nonlinear weighted finite automata. In: Proceed-

ings of the Twenty-First International Conference on Artificial Intelligence and Statistics, Proceedings of

Machine Learning Research 84, pp. 679–688.

[22] Ivana Micić, Zorana Jančić, Jelena Ignjatović & Miroslav Ćirić (2015): Determinization of fuzzy automata

by means of the degrees of language inclusion. IEEE Transactions on Fuzzy Systems 23(6), pp. 2144–2153,

doi:10.1109/TFUZZ.2015.2404348.

[23] Marcel-Paul Schützenberger (1961): On the definition of a family of automata. Information and Control, pp.

245–270, doi:10.1016/S0019-9958(61)80020-X.

[24] Aleksandar Stamenković, Miroslav Ćirić & Milan Bašić (2018): Ranks of fuzzy matrices. Applications in

state reduction of fuzzy automata. Fuzzy Sets and Systems 333, pp. 124–139, doi:10.1016/j.fss.2017.

05.028.

[25] Aleksandar Stamenković, Miroslav Ćirić & Jelena Ignjatović (2014): Reduction of fuzzy automata by means

of fuzzy quasi-orders. Information Sciences 275, pp. 168–198, doi:10.1016/j.ins.2014.02.028.

[26] Aleksandar Stamenković, Miroslav Ćirić & Jelena Ignjatović (2015): Different models of automata with fuzzy

states. Facta Universitatis, Series Mathematics and Informatics 30(3), pp. 235–253.

https://doi.org/10.1016/j.fss.2012.05.006
https://doi.org/10.1016/j.fss.2012.05.006
https://doi.org/10.1016/j.jcss.2009.10.015
https://doi.org/10.1016/j.jcss.2009.10.015
https://doi.org/10.1145/3090064.3090066
https://doi.org/10.1016/j.tcs.2014.02.032
https://doi.org/10.1016/j.tcs.2014.02.032
https://doi.org/10.1007/978-3-030-62536-8_4
https://doi.org/10.46298/dmtcs.5943
https://doi.org/10.46298/dmtcs.5943
https://doi.org/10.1016/j.ins.2007.08.003
https://doi.org/10.1016/j.ins.2007.08.003
https://doi.org/10.1016/j.fss.2009.06.007
https://doi.org/10.1016/j.fss.2009.06.007
https://doi.org/10.1016/j.fss.2014.02.021
https://doi.org/10.1016/j.ins.2010.12.008
https://doi.org/10.1016/j.ins.2010.12.008
https://doi.org/10.1016/j.fss.2015.11.019
https://doi.org/10.1016/j.fss.2015.11.019
https://doi.org/10.1109/TFUZZ.2015.2404348
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/j.fss.2017.05.028
https://doi.org/10.1016/j.fss.2017.05.028
https://doi.org/10.1016/j.ins.2014.02.028

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 82–95, doi:10.4204/EPTCS.386.8

© S.Z. Fazekas, S.Seki
This work is licensed under the
Creative Commons Attribution License.

Freezing 1-Tag Systems with States

Szilárd Zsolt Fazekas*

Akita University
Akita, Japan

szilard.fazekas@ie.akita-u.ac.jp

Shinnosuke Seki†

University of Electro-Communications
Tokyo, Japan

s.seki@uec.ac.jp

We study 1-tag systems with states obeying the freezing property that only allows constant bounded
number of rewrites of symbols. We look at examples of languages accepted by such systems, the
accepting power of the model, as well as certain closure properties and decision problems. Finally
we discuss a restriction of the system where the working alphabet must match the input alphabet.

1 Introduction

Tag systems are a class of deterministic string rewriting systems. In each step they read out the first letter,
say a, of the current word along with the succeeding n−1 letters (where n is a system parameter), refer
to the system’s transition table (function) δ with the letter read as a key, and append the word δ (a) at the
end of the current word. The system stops if the key is a special halting symbol or if there are less than
n letters left in the word. A system in this class is often called an n-tag system including the value of n
explicitly. It is well known that n-tag systems are capable of simulating Turing machines for any n ≥ 2
(see, e.g., [2, 3]). The initial definition is stateless, has no additional storage or intricate rules describing
its dynamics; hence such systems are ideal for being simulated in other computational models such as
1D cellular automata or molecular computation models, particularly in their early stage of development
wherein knowledge and techniques for programming are yet to be developed.

Recently, the oritatami model of RNA co-transcriptional folding has been introduced [5]. In this
model, an abstract RNA sequence folds upon itself greedily while being synthesized in order to achieve
various computational tasks in-silico. These tasks are usually relatively simple from the viewpoint of
computational complexity theory, such as, the detection of some specific molecule for gene expression
regulation [15].

The cyclic variant of tag systems (cts) introduced by Cook [3] has been simulated in the oritatami
model in order to prove its Turing completeness [5]; periodicity supposed for the sequence to be folded in
the oritatami computation also favored this variant. With more tools available for oritatami programming
including finite state control [12] and the molecular implementation of the oritatami model within view, a
class of tag systems or their functional enhancements with extra features that are not as computationally
powerful as the Turing machine gets more significant.

Including states enables even 1-tag systems to simulate Turing machines and they characterize the
class of context-sensitive languages if all appended words are restricted to be of length at most 1, that
is, the word never gets strictly longer than the initial one. This was shown a long time ago [17], with
such 1-tag systems with states being referred to as circular automata. A primary source of computability
even under this restriction is that each “cell” of the input tape can be rewritten endlessly in an arbitrary

*Szilárd Zsolt Fazekas was supported by JSPS KAKENHI Grant Number JP23K10976.
†Shinnosuke Seki was supported by JSPS KAKENHI Grant-in-Aids for Scientific Research (B) 20H04141 and (C)

20K11672.

http://dx.doi.org/10.4204/EPTCS.386.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

S.Z. Fazekas, S.Seki 83

manner. As it is experimentally not trivial to implement arbitrarily-rewritable media, it makes sense to
suppose the freezing property, under which a letter can be replaced with only a smaller letter according
to some pre-determined order.

Many types of machines processing their input using some first-in-first-out storage have been inves-
tigated starting with queue automata and various restrictions thereof [9]. Such models use queues in
addition to their input tape and are generally quite powerful, whereas freezing 1-tag systems (Fr1TASS)
are towards the lower end of computational complexity, as we will see. A model that is rather close in
spirit to our subject is the iterated uniform finite transducer [8]. Such transducers can simulate freezing
1-tag systems in a straightforward manner, but are much more powerful in the general case due to the
lack of the freezing property. However, limiting the number of so-called ‘sweeps’ performed by these
transducers by a function that is linear in the length of the input might produce systems that are similar
in accepting power to our tag systems, although the bound on sweeps does not directly translate into
the constant bound on the number of rewritings per position. Another recent computing device with a
similarity to freezing tag systems is the one-way jumping automaton, which reads and erases letters on a
circular tape [1], a behavior that can be simulated by freezing tag systems, but it is easy to see that those
automata are strictly weaker than our current model.

In this paper, we explore basic properties of freezing 1-tag systems. In Section 2 we define the model
and two different accepting modes borrowed from the theory of pushdown automata. We show that the
accepting modes are equivalent in the general case. In Section 3 we start the study of the accepting power
of the model. We can prove that it is between the regular and the context-sensitive languages and that it
is not included in the context-free class, but at present we cannot show that the inclusion does not hold in
the other direction either. Next, in Section 4 we show that the class of languages accepted is closed under
Boolean operations and that with a simple idea one can trade off description size for time complexity
when constructing systems for intersection or union. In Section 5 we study some fundamental decision
problems such as emptiness, universality, equivalence, and show that they are not decidable by reduction
to the Post Correspondence Problem. In Section 6 we discuss a restriction of Fr1TASS where the tape
alphabet is the same as the input alphabet. In their restricted form these systems are much weaker and
we can use a ‘computation flattening’ argument to prove negative results about systems with accepting
state mode. We conclude the paper with some remarks and suggestions for future research in Section 7.

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ be a set of all words over Σ including the empty word λ . The length of
a word w ∈ Σ∗ is the number of letters that occur in w, and is denoted by |w|.

A 1-tag system with states (1TASS) is a string rewriting system denoted by a tuple (Σ,Γ,Q,q0,F,δ),
where Σ is a finite input alphabet, Γ is a finite tape alphabet that includes Σ as its subset, Q is a finite
set of states including the initial state q0, F ⊆ Q is a set of accepting states, and δ : Q×Γ→ Q×Γ∗

is a transition function. The transition function is freezing if, for all q ∈ Q, a ∈ Γ, and (p,u) ∈ δ (q,a),
we have |u| ≤ 1 (length-non-increasing), and furthermore, either u = λ or u≤ a according to some pre-
defined order ≤ over the elements of Γ. In this case, the 1TASS itself is also said to be freezing. We will
refer to these systems as Fr1TASS.

A configuration of a freezing 1TASS M = (Σ,Γ,Q,q0,F,δ ,τ) is a pair (q,w) of the current state
q ∈ Q and a current word w ∈ Γ∗. Suppose this system is in the configuration (p,a1a2 · · ·an) for some
p ∈ Q, n≥ 0, and a1,a2, . . . ,an ∈ Γ. Then it can transfer to a configuration (q,v) if (q,b) ∈ δ (p,a1) and
v = a2 · · ·anb; in this case, we write (p,a1 · · ·an)→M (q,v). The reflexive and transitive closure of the

84 Freezing 1-Tag Systems with States

relation →M is denoted by →∗M. In the 1TASS, a word can be considered as being written on a cyclic
tape along which a finite-state control moves in the clockwise direction while rewriting.
Empty tape vs accepting state. The model above can be introduced with or without deletion, which as
we will see shortly, does not make a difference with respect to the accepting power. In the first case we
allow transitions in which a letter is replaced by the empty word, effectively erasing the cell from the
tape. In this scenario we can define acceptance conditions similar to pushdown automata: the machine
accepts when the tape is empty (ET) or when the machine enters an accepting state (AS). Formally,
starting from an initial configuration (q0,w), M can accept an input word w ∈ Σ∗ in two different modes:
by an accepting state if (q0,w)→∗M (q f ,v) for some accepting state q f ∈ F and a word v ∈ Γ∗, while by
the empty tape if (q0,w)→∗M (q,λ) for some q ∈ Q. Where the distinction is necessary, the languages
accepted by the system M by accepting state and by empty tape will be denoted by L(M)AS and L(M)ET ,
respectively. Note that the AS mode as defined here introduces a technical problem: a system in this
mode either does not accept the empty word or it accepts every input. This is due to fact that accepting
the empty word requires that the initial state is final, as well. However, then such a system accepts any
input right away as it is already in a final state. Therefore, to simplify the presentation we allow AS mode
systems to have a special transition from the initial state to a final state on reading λ and require that
such transition is only used when the input is empty. This allows stating our results in a more general
form without emphasizing this caveat whenever talking about AS mode Fr1TASS.

First we show that the two conditions lead to the same computational power, which simplifies our
exposition further on as we will not have to specify the accepting mode. The following technical lemma
states that AS mode machines do not actually need to erase any symbol from their tape.

Lemma 1. For any Fr1TASS A = (Σ,Γ1,Q1,q1,F1,δ1) there exists a Fr1TASS B = (Σ,Γ2,Q1,q1,F1,δ2)
such that L(A)AS = L(B)AS and the transition function of B does not erase symbols, that is, δ2(q,a) =
(q′,λ) is not allowed for any q,q′ ∈ Q and a ∈ Γ2 .

Proof. The proof is straightforward. If A does not erase symbols, then B = A concludes the argument.
If it does, then B simulates all non-erasing transition of A and for each erasing transition of A of the
form δ1(q,a) = (q′,λ) we set δ2(q,a) = (q′,�), where � ∈ Γ2 \Γ1 is a new symbol standing in for the
positions erased by A. We set � to be the smallest letter in Γ2 and we add a loop δ2(q,�) = (q,�) to
each state q, ensuring that B performs the same computations as A.

We now show that accepting modes ET and AS are equivalent.

Lemma 2 (ET simulates AS). For any Fr1TASS A = (Σ,Γ1,Q1,q1,F1,δ1) there exists a Fr1TASS B =
(Σ,Γ2,Q1,q1,F1,δ2) such that L(A)AS = L(B)ET .

Proof. In this case the ET machine will be almost identical to the AS one. To get the ET machine
accepting the same language, we simply add erasing loops δ (f ,a) = (f ,λ) to all accepting states f for
all tape symbols a. By the definition of AS, when the machine reaches an accepting state, it halts, so we
may assume w.l.o.g. that in A there are no outgoing transitions from any accepting state, so adding the
aforementioned transitions does not introduce non-determinism. If the AS machine reaches a final state
by an input, the same input will take the ET machine into the same state, whereby it will erase all the
remaining symbols from the tape. Conversely, by Lemma 1 we may assume that A never erases its tape,
therefore the only words leading to an empty tape in B will be the ones accepted by A.

Lemma 3 (AS simulates ET). For any Fr1TASS A = (Σ,Γ1,Q1,q1,F1,δ1) there exists a Fr1TASS B =
(Σ,Γ2,Q1,q1,F1,δ2) such that L(A)ET = L(B)AS.

S.Z. Fazekas, S.Seki 85

1 2 3

5

4
a/A

a/λ

A/A

a/a

A/A a/λ

Figure 1: Fr1TASS accepting the language {a2n | n≥ 0}.

Proof. Similar to the argument in Lemma 1, we can replace erasing transitions δ1(q,a) = (q′,λ) with
δ2(q,a) = (q′,�) for some newly introduced smallest letter �, and add �-labeled loops to all states. We
create two copies of the tape alphabet of A, marked and unmarked. Because of this, when the computation
begins, B can mark the first letter to keep track of the start of the input. All operations on that symbol
will be done with marked symbols. We duplicate the whole state diagram of A, such that the two copies
of the states will ‘remember’ whether some symbol other than � was read since last passing the marked
start. If the marked start is read twice with no non-� symbol in between, it means that on the given input
A erased the tape, so B will transition to an accepting state.

2.1 Examples

Example 1. Even over a unary alphabet the ability to repeatedly read the tape allows freezing 1TASS
to accept complex languages, such as the well-known non-context-free language {a2n | n ≥ 0}. The tag
system in Fig. 1 is intuitive and is essentially the same as for iterated uniform finite state transducers ([8],
Lemma 20). The system erases every second occurrence of a which means that in each sweep it halves
the length of the remaining tape content. Together with marking the first position with a special symbol
at the start this allows Fr1TASS to process correct inputs in logarithmically many sweeps in the length
of the input.
Example 2. Our next example is the marked copy language {#w#w | w ∈ {a,b}∗}. It is well known
that the language is not context-free by a simple application of the Bar-Hillel pumping lemma. A simple
Fr1TASS as in Fig. 2 can accept this language by matching and erasing pairs of letters at the same
distance from the two special markers # iteratively, accepting the language in linearly many sweeps.
Example 3: accepting nondeterministic context-free languages. As will be detailed later, we were
not able to prove that Fr1TASS cannot accept the language of palindromes, even though we conjecture
that is the case. Our next idea was that perhaps such systems cannot even detect positions of the input at
a certain ratio of the length from the beginning. Somewhat surprisingly, though, this proved to be false.
Let us explain how a freezing 1TASS can detect the center of a given input. The idea can be adapted to
detect positions at other linearly defined distances from the start. The problem is formalized as follows:
modify a given a freezing 1TASS so that, given an input w = a0a1 · · ·an−1 of length n ≥ 0, it can mark
abn/2c as a preprocess.

Solving this problem is equivalent to marking the letters in the first half somehow. Let k = bn/2c.
The following algorithm first marks k letters of w (Step 2), and then move each mark “rightward” across
the first letter a0, which is distinguished from the other letters (Step 1).

1. Mark the first letter as s0a1 · · ·an−1.

2. Mark every other letter as s0a1a2a3 · · · . This results in s0a1a2a3 · · ·an−2an−1 if n is even, or
s0a1a2a3 · · ·an−2an−1 if n is odd.

86 Freezing 1-Tag Systems with States

I S

A

B

1

2

M 3 4

Halt

#/$

a/λ

b/λ

#/#

a/a, b/b

#/#

a/λ

b/λ

a/a, b/b
$/$

a/λ

b/λ

#/#

$/$

#/#

a/a, b/b

Figure 2: Fr1TASS accepting the language {#w#w | w ∈ {a,b}∗}.

The following steps will be repeated until step 3 is unsuccessful, i.e., no overlined position is preceded
by an unoverlined one. The read-write head starts at s0, after finishing steps 1 and 2.

3. Find the first overlined letter, say a j, after at least one unoverlined one.

4. Remove the overline as a j→ a′j (prime is must due to the freezing property).

5. Scan the tape until s0, which might be overlined.

6. Overline the first unoverlined letter, which might have been primed.

One overline per iteration is shifted to the first half of the word. After repeating Steps 3-6 k times, Step
3 fails to find an unoverlined letter prior to an overlined one; thus the system escapes from this loop. At
this point, the k overlines have been all moved to the left half of the word as s0a′1a2a′3 · · ·a′k−1ak · · ·an−1.
The first unoverlined letter is abn/2c.

3 Power of Fr1TASS

Let Σ = {1, . . . ,k} be the ordered alphabet of a 1TASS A and consider an input w = a1 · · ·an, where
ai ∈ Σ. We can perceive the computation performed by A as happening in ‘sweeps’ on a circular tape.
A sweep starts at the first position and ends when we reach that position again. Formally, the length of
a sweep of computation can be defined inductively. Let r1 = n and then ri (for i > 1) is defined as the
length of the remaining input wi after i− 1 sweeps, i.e., if m = ∑

i−1
`=1 r`, then for some q ∈ Q we have

(q0,w)→m (q,wi) and we set ri = |wi|. Assuming that the computation stops, the freezing property of A
imposes that one of the following is true for each i > 1:

1. ri < ri−1.

S.Z. Fazekas, S.Seki 87

2. wi−1 = b1 · · ·bri and wi = c1 · · ·cri with c j ≤ b j for each j ∈ {1, . . . ,ri}, and there exists some
j ∈ {1, . . . ,ri} such that c j < b j.

3. wi−1 = wi, but the sweeps i−1 and i start in different states.

From here, we can put an upper bound on the number of sweeps in a computation, and therefore an upper
bound on the number of steps. Case 1 can happen at most n times. From Case 3 we get that there can
be at most |Q| consecutive sweeps that do not change the tape. The number of times Case 2 occurs is
bounded by the total number of possible rewritings. If the tape content is w= b1 · · ·bn with bi ∈ {1, . . . ,k}
for all 1≤ i≤ n, then each letter can be rewritten to a smaller letter at most k−1 times, which means that
Case 2 cannot occur more than ∑

n
`=1 b` times, and ∑

n
`=1(b`−1)≤ n(k−1). This means that the number

of sweeps performed on an input of length n is O(n). In each sweep we make at most n steps to the right
and a Turing machine simulating Fr1TASS would need to make at most n steps to the left at the end of
each sweep to return to the beginning. Thus we can conclude that the class of languages accepted by
freezing 1TASS is included in DTIME(n2).

The class of languages accepted by Fr1TASS strictly includes the class of regular languages. We
can see that the inclusion is strict (even for unary languages) from the examples of the previous section.
In order to show that the inclusion holds, we simulate a deterministic finite automaton by an AS mode
Fr1TASS. The construction is simple but we need to bear in mind the fact that if the Fr1TASS reaches a
final state reading a word w consisting only of symbols of the input alphabet, that results in the system
accepting any word from the language wΣ∗ according to the definition.

Lemma 4. For any regular language R there exists a Fr1TASS A such that L(A)AS = R.

Proof. Let M =(Σ,Q,q0,F,δ) be a deterministic finite automaton accepting R. We construct the Fr1TASS
A= (Σ,Σ∪{�},Q∪{ fA},q0,{ fA},δ ′), where � /∈ Σ, fA /∈Q, as follows. For each transition δ (q,a) = q′

of the DFA, the Fr1TASS has a transition δ ′(q,a) = (q′,�). For each f ∈ F we add the transitions
δ ′(f ,�) = (fa,λ). The system A walks the same path in the transition diagram as M does, but it replaces
each letter by the � symbol to mark it read. If reading the input takes the original system to a final state
then the simulating Fr1TASS will have a �-labeled transition to a final state of its own.

Due to the AS and ET modes being equivalent, we can also construct an ET mode Fr1TASS for
any regular language. At the other extreme, it is easy to see that linear bounded automata can simulate
Fr1TASS, which means that the class of languages accepted by these systems is included in the class of
context-sensitive languages. With respect to the other classes of the Chomsky hierarchy, we conjecture
that the power of Fr1TASS is incomparable, but we lack the tools to show both sides of such statements.
The examples from the previous section demonstrate that not every Fr1TASS language is context-free.
We found the ability of Fr1TASS to mark the middle letter of a word counterintuitive, due to the fact
that although (even one turn) pushdown automata can accept the related language of words with a in the
middle, it needs non-determinism to do so, as we will prove below. As Fr1TASS are deterministic, they
cannot guess the middle and match the length of prefixes and suffixes. Nevertheless, nondeterminism is
not required for Fr1TASS to mark the middle as shown in Example 3.

Consider La = {uav | |u| = |v|}. As we will show now, this language is not a deterministic context-
free language. We will use the so-called DCFL pumping lemma below, due to Yu [16].

Lemma 5. Let L be a deterministic context-free language. Then there exists a constant n for L such that
for any pair of words w,w′ ∈ L if

1. w = xy and w′ = xz, |x|> n, and

2. first letter of y = first letter of z,

88 Freezing 1-Tag Systems with States

then either 3. or 4. holds:

3. there is a factorization x = x1x2x3x4x5, with |x2x4| ≥ 1 and |x2x3x4| ≤ n, such that for all i≥ 0 we
have that x1x2

ix3x4
ix5y and x1x2

ix3x4
ix5z are in L;

4. there exist factorizations x = x1x2x3,y = y1y2y3 and z = z1z2z3, with |x2| ≥ 1 and |x2x3| ≤ n, such
that for all i≥ 0 we have that x1x2

ix3y1y2
iy3 and x1x2

ix3z1z2
iz3 are in L.

Theorem 6. La = {uav | |u|= |v|} is not a deterministic context-free language.

Proof. Suppose that La were a DCFL and hence, that Lemma 5 applied. Let n be the constant from the
lemma and consider the words x = bn+2abn+1, y = a and z = ab2n+4. It is easy to see that both xy and
xz are in La and long enough to meet the two conditions of the lemma, and the first letter of both y and
z is a. Now we will show that assuming either conclusion of the lemma leads to a contradiction. First,
suppose conclusion 3. is true. Depending on the factorization of x, we have the following cases:

1. x1,x2,x4,x5 ∈ b∗, x3 ∈ b∗ab∗: for x1x0
2x3x0

4x5y to be in La, we need |x2| = |x4| and from the
lemma we know they are not empty, so let x2 = x4 = bk for some positive k ≤ n

2 . However, then
x1x0

2x3x0
4x5z = x1x0

2x3x0
4x5ab2n+4, where the length of x1x0

2x3x0
4x5 = 2n+4−2k, so the letter at the

middle of the word is b, contradicting x1x0
2x3x0

4x5z ∈ La.

2. x1 or x5 contains a. In both cases x1x0
2x3x0

4x5y will result in a word with fewer b’s on one side of
the first a than the other, a contradiction.

3. x2 or x4 has an a. In both cases x1x0
2x3x0

4x5y will have only one a, at the end of the word, a
contradiction.

Now suppose conclusion 4. is true. Since the factorization x = x1x2x3 has the property |x2x3| < n and
|x2| ≥ 1, we know that x2 = bk, for some positive k ≤ n. However, this means that for any factorization
y = y1y2y3, the word x1x0

2x3y1y0
2y3 is of the form bn+2abn+1−k or bn+2abn+1−ka. As neither of those

is in La, because k ≥ 1, we arrived at a contradiction again. Consequently, La is not a deterministic
context-free language.

4 Closure properties

We can show that the class of languages accepted by Fr1TASS forms a Boolean algebra, i.e., it is closed
under union, intersection and complement. For the first two, we can adapt the classical construction
used in the case of finite automata: the machine simulating the union/intersection of two others will have
pairs of states representing the states of the starting machines and its alphabet will also consist of pairs
of letters, to keep track of the tape of both simulated machines.

Theorem 7. The class of languages accepted by Fr1TASS is closed under union and intersection.

Proof. Consider two languages, accepted by A = (Σ,Γ1,Q1,q1,F1,δ1) and B = (Σ,Γ2,Q2,q2,F2,δ2),
respectively. We construct the system

C = (Σ,Σ∪ (Γ1×Γ2),Q1×Q2,(q1,q2),F1×F2,δ)

accepting the language L(A)∩L(B) as follows. The computation of C will simulate the computations of
A and B in parallel, similar to the classical finite automaton construction. By Lemma 1 we may assume
that the systems A and B do not erase any symbols, so the length of the word on the tape is the same
throughout the computation, making the parallel simulation possible. The difference is that here we have

S.Z. Fazekas, S.Seki 89

to observe the freezing property, so the ordering of the tape alphabet Γ and the transition function δ need
to be carefully defined. Let the total orderings of Γ1 and Γ2 be ≤1 and ≤2, respectively. Those two total
orderings naturally define the partial order ≤12 on Γ1×Γ2 as (a,b) ≤12 (c,d) if a ≤1 c and b ≤2 d. By
Szpilrajn’s theorem [14], every partial order has a linear extension, and we can efficiently construct such
a linear order compatible with ≤12 by any well-known topological sorting algorithm (e.g. Kahn’s [7]),
since ≤1 and ≤2 are finite. We define the transition function of C as δ ((q1,q2),a) = ((q′1,q

′
2),(b1,b2))

where

((q′1,b1),(q′2,b2)) =

{
(δ1(q1,a),δ2(q2,a)) if a ∈ Σ

(δ1(q1,a1),δ2(q2,a2)) if a = (a1,a2) /∈ Σ
.

By the definition of δ we can be certain that the freezing property is preserved, that is, symbols of Γ2
are rewritten respecting the linear extension of ≤12. The proof for the union follows the same line with
some small changes. Since the computations are done in parallel, it may happen that one of the machines
gets stuck, i.e., it has no outgoing transition from its current state for the current input letter. However,
if the other machine accepts, the input should be accepted. To handle such situations we introduce pairs
of states (q1,⊥) and (⊥,q2) for all q1 ∈ Q1,q2 ∈ Q2, where having ⊥ as one of the state components
means the respective machine could not continue its computation. We can reach such states by transitions
δ ((q1,q2),a) = ((q′1,⊥),b) when δ1(q1,a) = (q′1,b) and δ2(q2,a) is undefined, and then add transitions
of the form δ ((q′1,⊥),a) = ((q′′1,⊥),(b,b)) if δ1(q′1,a) = (q′′1,(b,b)) and their counterpart for the (⊥,q2)
states. This way the state component tracking the stuck machine’s state will be frozen while the other
can continue the computation.

Theorem 8. The class of languages accepted by Fr1TASS is closed under complement.

Proof. For any Fr1TASS that halts on all inputs, it is enough to switch final and non-final states to
accept the complement of its language. However, these systems may go into infinite loops, so a system
accepting the complement needs to be able to detect that behavior. Each Fr1TASS can be completed
with a ‘sink state’, that is a state from which no other is reachable, and we can direct the transitions
for any previously missing state-letter pair into that state. Additionally, we make n+ 1 copies of each
state p, say, p1, . . . , pn+1, where n is the number of states originally. For each i, the states indexed
with i are connected among them according to the original transition function, that is δ ′(pi,a) = (qi,b) if
δ (p,a)= (q,b), where δ and δ ′ are the transition functions of the original machine and of the machine for
the complement, respectively. In the beginning, we mark the start of the input word with a special symbol
to be able to keep track of it. Since the first symbol may need to be changed during the computation of
the original machine, we add a marked copy of the original tape alphabet which will only be used to
rewrite the first position. Whenever we read the start symbol in some state pi, we continue on the pi+1
states until one of two things happens:

• We change one of the cells on the tape. In this case we continue the computation on the p1 copies
of the states until we reach the start mark.

• We reach the start mark from a pn+1 state. This means that the machine made n sweeps without
changing any cell on the tape, so the original machine would go into an infinite loop. Instead, here
we can simply transition to the sink state defined earlier.

The machine for the complement will have the newly introduced sink state as its only final state.

Interestingly, the state complexity of intersection and union can be reduced at the expense of time
complexity. This is because we can process the input twice instead of simulating both machines in

90 Freezing 1-Tag Systems with States

parallel. First we process it according to the rules of the first machine, and then do so according to the
rules of the second one. In order to do this, the number of states in the simulating system only needs
to be the sum of the size of state sets of the two starting machines, instead of their product. Moreover,
if we ‘recycle’ the states, the size of the machine for the intersection/union need not increase beyond a
constant plus the size of the larger machine participating in the intersection/union. When constructing the
machine C to accept L(A)∩L(B) (or L(A)∪L(B), respectively), we can reuse the states of the machine
by having a tape alphabet with two tracks, say blue and red. Then, we can draw the red transitions
completely independent of the blue transitions using the same states as vertices, therefore realizing C
on max{|A|, |B|}+ k states. The additive constant term k is needed, because after we finish simulating
the first machine, we need to freeze the first track of the tape which requires some extra states to cycle
through the input and mark each position frozen in the first track. We need to keep track of whether
the first machine accepted or rejected the input. We can achieve this without extra states, though, by
performing short-circuit evaluation: if the operation is intersection and the first machine rejects then we
can reject right away; hence, if the simulation continues to the second machine, we know the first was
accepted. The case for union can be treated analogously.

Regarding the regular operations concatenation and Kleene-star, the class of languages accepted by
Fr1TASS is probably not closed, but we do not have the tools at present to prove that. In particular, we
do not have any necessary conditions for a language to be accepted by Fr1TASS beyond the time com-
plexity bound O(n2) mentioned earlier, and that bound is not enough to prove negative results regarding
closure. The reason we think that the class is not closed under concatenation and Kleene-star is that in
general such closure results require either non-deterministically guessing a decomposition of the input
into factors of the constituent languages or the possibility of trying all possible decompositions. Neither
option seems possible with Fr1TASS.

5 Decision problems and minimal Fr1TASS

Using a construction similar to the freezing 1TASS accepting {#w#w | w ∈ Σ∗}, we will show how to
reduce the Post Correspondence Problem (PCP) to the emptiness of freezing 1TASS languages. From
that we can deduce that emptiness, universality (= Σ∗) and equivalence are undecidable for this model.
We will argue that the undecidability of equivalence also strongly suggests that finding minimal freezing
1TASS for a given language cannot be algorithmically accomplished.

An instance of PCP consists of two sets of words U = {u1, . . . ,un} and V = {v1, . . . ,vn} and the
instance is positive if there exists some finite sequence k1, . . . ,k` (a solution), with ki ∈ {1, . . . ,n}, such
that uk1 · · ·uk` = vk1 · · ·vk` . It is a well-known fact that it is undecidable whether an instance of PCP is
positive ([13]).

Let us fix the alphabet of the PCP instance as Γ, that is, U,V ⊆ Γ∗, and let Γ′ = {1, . . . ,n}∪Γ. The
alphabet of the machine will be Σ = {#}∪

⋃
a∈Γ′{a,a}. Choose any ordering of the alphabet such that

a < a for each a ∈ Γ′. We construct a freezing 1TASS that accepts the language

{#k1 · · ·k`#uk1 · · ·uk`#vk1 · · ·vk` | uk1 · · ·uk` = vk1 · · ·vk`},

where ki,ui,vi ∈ (
⋃

a∈Γ′{a})∗. The machine needs to check whether the input satisfies the following
three conditions: (1) the middle part is indeed uk1 · · ·uk` , (2) the last part is indeed vk1 · · ·vk` and (3) check
whether uk1 · · ·uk` = vk1 · · ·vk` . As (2) can be done the same way as (1) and in parallel to it, and (3) has
been illustrated before as the machine for {#w#w}, we will only detail (1). Figure 3 illustrates the part
of the system for checking (1). Since the factor between the second and third # and the one after the

S.Z. Fazekas, S.Seki 91

(1) si ci di

diei

(2)

s j c j d j

d je j

i/i

n/n

#/#
ui / ui

a/a

#/#

#/#

i/i

#/#

a/a

a/a

n/n

#/# u j/u j

a/aa/a

j/ j

n/n
j/ j

#/#
a/a

n/n

j/ j
#/# #/#

i/i

Figure 3: The parts of the 1TASS for matching the first portion of the input containing the numbers,
k1 · · ·k`, to the second portion, uk1 · · ·uk` . If the number read is i, that is, the symbol i, then we continue
from si, if it is j then continue from s j, and so on. Then, the machine looks for the # symbol after which
it ignores the already matched parts of uk1 · · ·uk` . Finding the first unmatched symbols, it matches them
against ui, after which it returns to the beginning and reads the next number.

third # needs to be checked twice, first for (1) and (2), respectively, then for (3), all the input except the
separators # needs to be marked by overlines at the beginning.

1. Checking whether a word equals ui = x1 · · ·xm is easy: we set up m+1 states q0, . . . ,qm such that
δ (qi,xi) = (qi+1,xi). For all a 6= xi, the state qi has no outgoing transitions, therefore immediately
rejecting the input on reading those letters.

2. We read the first unmatched number after the first #, say i. We move without changing over all
following symbols until we reach the next #. Then move over all matched symbols, i.e., symbols
without overline. From the first symbol with overline, we match ui to the input, as above. If
successful, move over all following symbols until we meet the second #. Move over all symbols
without overline and start the process again.

This 1TASS will accept the solutions to the PCP instance, if any. Since PCP is undecidable, deciding
whether the language accepted by a freezing 1TASS is empty, is also undecidable. This means that lan-
guage equivalence is undecidable: if we let freezing 1TASS A and B be such that A does not accept any
input, while B accepts the solutions of a PCP instance, then deciding equivalence amounts to deciding
whether the PCP instance is positive. Similarly, if we let L(C) = Σ∗ \L(B), where B accepts the solutions
to a PCP instance, then a decision algorithm that could tell whether L(C) = Σ∗, would decide whether

92 Freezing 1-Tag Systems with States

the PCP instance has solutions, so universality is also undecidable.

Minimization of 1TASS. From the undecidability of the language equivalence, we can draw certain
conclusions regarding the minimization of such systems. Say we define minimal 1TASS as ones having
the fewest number of states and/or transitions. We instantly get that the following statements cannot both
be true, otherwise equivalence would be decidable by the same isomorphism checking method as for
DFA:

1. For each freezing 1TASS A there is a unique (up to renaming the states) minimal 1TASS B with
L(A) = L(B).

2. There is an algorithm to find for each freezing 1TASS A a minimal freezing 1TASS B with L(A) =
L(B).

If 1. holds then we cannot find the unique minimal system. Therefore we could assume that 1. does
not hold and try to devise and algorithm for finding a minimal system.

Another possibility is to define minimal systems more tightly, in which case minimization algorithms
might exist. We suggest the following possible alternative definitions for a freezing 1TASS A to be min-
imal:
1. A does not contain strongly equivalent states, i.e., states p,q such that δ (p,a) = δ (q,a) for all a ∈ Σ.
This case is straightforward to deal with along with any unreachable states, but yields little information
about the similarity of Fr1TASS.
2. No proper subset of the system (removed transitions or states) accepts L(A). Even the question whether
minimality is decidable under this definition is nontrivial, let alone finding such a minimal system for a
given Fr1TASS.

6 Fr1TASS with no auxiliary symbols

In this section we look at Fr1TASS that cannot have ‘auxiliary’ symbols (which cannot appear in the
input, but can occur on the tape during the computation), that is, Σ = Γ. This type of restriction leads to
dramatic changes in computing power even in the case of machines that can rewrite cells arbitrarily many
times [6]. For these systems we can show that AS mode is incomparable to ET mode. Simulating AS
with ET mode as done in the general case in Lemma 2 does not work. This is because we can no longer
assume that the AS mode machines do not erase their tapes, as the technique used in Lemma 1 is not
applicable anymore due to the lack of symbols that can stand in for erased ones. In fact, unary languages
provide the proof that under the no-auxiliary-symbols restriction, AS and ET are incomparable.

Lemma 9. For each Fr1TASS A = ({a},{a},Q,q0,F,δ), the language L(A)AS accepted with accepting
state is of the form {an | n ≥ k} for some fixed k, and the language L(A)ET accepted with empty tape is
either finite or equal to a∗.

Proof. Just like in the case of deterministic finite automata, such systems A have a transition diagram of
a loop with a ‘handle’, due to determinism. There are two types of transitions possible: erasing, that is,
δ (q,a) = (q′,λ) and non-erasing, that is, δ (q,a) = (q′,a). In AS mode the system accepts and halts as
soon as it reaches a final state which means that any input longer than the distance from the initial state
to the first final state will be accepted. In fact, any input with more letters than the number of erasing
transitions on the path from initial to final state will also be accepted. In ET mode for the system to

S.Z. Fazekas, S.Seki 93

1 2

a/λ

b/λ

a/ab/b

Figure 4: Fr1TASS accepting {w | |w|b ≤ |w|a ≤ |w|b +1} without auxiliary symbols in ET mode.

Figure 5: Flattening the computation of an AS mode system with no auxiliary symbols.

accept anything other than the empty word, it needs to have at least one erasing transition. If the only
such transitions are on the ‘handle’, then the accepted language is finite, since the system can only erase
finitely many symbols from the tape. If there is an erasing transition in the loop, then all inputs on which
the machine reaches the loop will be accepted, since the machine will keep looping until all letters are
erased.

We can also show that AS mode cannot be strictly stronger than ET mode when the tape alphabet is
at least binary. Consider the language Lab = {w | |w|b ≤ |w|a ≤ |w|b + 1}. A machine in ET mode can
easily accept this language by reading an a, erasing it, moving to the right until it finds a corresponding
b, erasing it and iterating this process (Fig. 4). However, using a ‘computation flattening’ argument we
can prove that a machine in AS mode cannot accept this language.

Lemma 10. There is no Fr1TASS A = (Σ,Σ,Q,q0,F,δ) such that L(A)AS = Lab.

Proof. Assume there is a Fr1TASS A as above that accepts Lab. Take any w ∈ Lab and let the word on
the tape in sweep i of the accepting computation on w be wi, as defined in the preliminaries. As the
word is accepted, there are finitely many, say k, sweeps. If we concatenate the words in the sweeps,
we get w′ = w1 · · ·wk. The obtained word w′ is a valid input word, because the system can only use the
symbols of the input alphabet. On the input w′, the system A reaches the same accepting state as on
the input w; thus w′ is accepted, and the computation requires a single sweep. Moreover, the same final
state is reached on input w′aa, too. However, this is a contradiction, since w′aa cannot have the required
numbers of letter occurrences if w′ did.

Language of palindromes. A very challenging problem is whether the Fr1TASS model can accept the
language of palindromes over a non-unary alphabet. Intuitively the model should not be able to accept
such a language for the reason described below, but we do not have a proof for this due to the lack of
applicable necessary conditions. To verify whether the input is a palindrome, a machine would need
to match pairs of letters at the same distance from the middle or from the start and end, respectively.
Moreover, the matched pairs would need to be marked to keep track of which parts still need matching.
However, in this model, we can only mark symbols after a pattern has been identified. This means that if

94 Freezing 1-Tag Systems with States

we start matching letters at the same distance from the middle, then the machine could not guess which
is the next unmatched letter in the left half. Conversely, if the machine matches pairs based on their
distance from the left and right end, respectively, then it could not guess the next unmatched letter in the
right half of the input.

For the restricted model with no auxiliary symbols in AS mode, we can prove that the language
of palindromes cannot be accepted, by using the computation flattening argument seen earlier. Let Lpal
denote the language of palindromes over the binary alphabet {a,b}, that is, Lpal = {w∈ {a,b}∗ |w=wR}
where wR is the reverse of w, that is, if w = a1 · · ·an then wR = an · · ·a1.

Theorem 11. For any Fr1TASS A = (Σ,Γ,Q,q,F,δ) we have Lpal 6= L(A)AS.

Proof. Suppose that there were a Fr1TASS A=(Σ,Γ,Q,q,F,δ) that accepts Lpal in accepting state mode.
Consider a long palindrome of the form anbwban, where n > |Q|, which is accepted by the system in k
sweeps. Again, let wi denote the word on the tape at the beginning of sweep i. Concatenating those
words yields the valid input w′ = w1 · · ·wk, which will be accepted with the same transitions as w, but
all in one sweep. Since w′ is accepted, it must be a palindrome by our assumption, which means that its
suffix must be ban. Due to the fact that n is larger than the number of states in A, while reading the suffix
an, the system must enter some state p more than once, reading a` for some `≥ 1, between the first two
traversals of p. However, this means that the system accepts also words of the form w′ai`, for all i ≥ 0.
This results in a contradiction for i = 1, because the suffix of w′a` is ban+` while its prefix is anb. Thus,
non-palindromes would be also accepted by A.

7 Concluding remarks

Apart from the decision problems in Section 5, our results have mostly been positive. To establish the
limits of the accepting power of Fr1TASS we need negative results separating Fr1TASS languages from
other language classes. Although these systems can process symbols in the same position repeatedly, we
think that the freezing property allows some form of a pumping lemma, perhaps in combination with a
computation flattening argument seen in Section 6. Obtaining such a tool seems quite challenging and
will be our main focus in future studies on the topic.

Perhaps with a tool as described above or adapting the Kolmogorov complexity argument of Li et
al. [10], one could prove that the language of palindromes is not a Fr1TASS language. This is intuitively
a fundamental limitation of such systems with first-in-first-out (FIFO) nature of processing and such
questions have proved interesting in their own right with respect to other FIFO style models [11]. If
indeed palindromes cannot be accepted with Fr1TASS, then the language class is in some sense a natural
counterpart of the class of context-free languages: membership is decidable efficiently and it contains the
FIFO-like copy language instead of the LIFO-like palindromes. Interestingly, if one allows Fr1TASS to
have non-determinism, then this FIFO limitation seems to vanish: such Fr1TASS could now guess which
letters form pairs at equal distance from a reference point (middle or the ends) and verify the guess by
marking symbols. The power of nondeterministic Fr1TASS is another topic worth further exploration in
our opinion.

Finally, we would like to mention a computational complexity aspect that could be investigated with
respect to Fr1TASS. The computation happens in sweeps and those sweeps are a natural resource to mea-
sure as the complexity of a given computation. Based on the amount of this resource used, one can define
and study asymptotic complexity classes similarly to the case of iterated uniform finite transducers [8]
and one-way jumping finite automata [4].

S.Z. Fazekas, S.Seki 95

References
[1] Hiroyuki Chigahara, Szilárd Zsolt Fazekas & Akihiro Yamamura (2016): One-Way Jumping Finite Automata.

Int. J. Found. Comput. Sci. 27(3), p. 391, doi:10.1142/S0129054116400165.
[2] John Cocke & Marvin Minsky (1964): Universality of Tag Systems with P = 2. Journal of the ACM 11(1),

pp. 15–20, doi:10.1145/321203.321206.
[3] Matthew Cook (2004): Universality in Elementary Cellular Automata. Complex Systems 15, pp. 1–40,

doi:10.25088/ComplexSystems.15.1.1.
[4] Szilárd Zsolt Fazekas, Robert Mercas & Olívia Wu (2022): Complexities for Jumps and Sweeps. J. Autom.

Lang. Comb. 27(1-3), pp. 131–149, doi:10.25596/jalc-2022-131.
[5] Cody Geary, Pierre-Étienne Meunier, Nicolas Robertabanel & Shinnosuke Seki (2018): Proving the

Turing Universality of Oritatami Co-Transcriptional Folding. In: Proceedings of the 29th Inter-
national Symposium on Algorithms and Computation (ISAAC 2018), LIPIcs 123, pp. 23:1–23:13,
doi:10.4230/LIPIcs.ISAAC.2018.23.

[6] Lane A. Hemaspaandra, Proshanto Mukherji & Till Tantau (2005): Context-Free Languages Can Be
Accepted with Absolutely No Space Overhead. Information and Computation 203(2), pp. 163–180,
doi:10.1016/j.ic.2005.05.005.

[7] A. B. Kahn (1962): Topological Sorting of Large Networks. Commun. ACM 5(11), p. 558–562,
doi:10.1145/368996.369025.

[8] Martin Kutrib, Andreas Malcher, Carlo Mereghetti & Beatrice Palano (2022): Descriptional Com-
plexity of Iterated Uniform Finite-State Transducers. Information and Computation 284, p. 104691,
doi:10.1016/j.ic.2021.104691. Selected Papers from DCFS 2019, the 21st International Conference on De-
scriptional Complexity of Formal Systems.

[9] Martin Kutrib, Andreas Malcher & Matthias Wendlandt (2018): Queue Automata: Foundations and Devel-
opments, pp. 385–431. Springer International Publishing, Cham, doi:10.1007/978-3-319-73216-9_19.

[10] Ming Li, Luc Longpré & Paul Vitányi (1992): The Power of the Queue. SIAM Journal on Computing 21(4),
pp. 697–712, doi:10.1137/0221042.

[11] J. Andres Montoya (2015): Open Problems Related to Palindrome Recognition: Are There Open Problems
Related to Palindrome Recognition? J. Autom. Lang. Comb. 20(1), p. 5–25, doi:10.25596/jalc-2015-005.

[12] Daria Pchelina, Nicolas Schabanel, Shinnosuke Seki & Guillaume Theyssier (2022): Oritatami Systems
Assemble Shapes No Less Complex Than Tile Assembly Model (aTAM). In: Proceedings of the 39th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2022), LIPIcs 219, pp. 51:1–51:23,
doi:10.4230/LIPIcs.STACS.2022.51.

[13] Emil L. Post (1946): A Variant of a Recursively Unsolvable Problem. Bull. Amer. Math. Soc. 52, pp. 264–
268, doi:10.1090/S0002-9904-1946-08555-9.

[14] Edward Szpilrajn (1930): Sur l’extension de l’ordre partiel. Fundamenta Mathematicae 16, pp. 386–389,
doi:10.4064/fm-16-1-386-389.

[15] Kyle E. Watters, Eric J. Strobel, Angela M. Yu, John T. Lis & Julius B. Lucks (2016): Cotranscriptional
Folding of a Riboswitch at Nucleotide Resolution. Nature Structural and Molecular Biology 23(12), pp.
1124–1131, doi:10.1038/nsmb.3316.

[16] Sheng Yu (1989): A Pumping Lemma for Deterministic Context-Free Languages. Information Processing
Letters 31(1), pp. 47–51, doi:10.1016/0020-0190(89)90108-7.

[17] Charles Zaiontz (1976): Circular Automata. In: Proceedings of the 14th Annual Southeast Regional Confer-
ence (ACM-SE 14), pp. 350–354, doi:10.1145/503561.503635.

https://doi.org/10.1142/S0129054116400165
https://doi.org/10.1145/321203.321206
https://doi.org/10.25088/ComplexSystems.15.1.1
https://doi.org/10.25596/jalc-2022-131
https://doi.org/10.4230/LIPIcs.ISAAC.2018.23
https://doi.org/10.1016/j.ic.2005.05.005
https://doi.org/10.1145/368996.369025
https://doi.org/10.1016/j.ic.2021.104691
https://doi.org/10.1007/978-3-319-73216-9_19
https://doi.org/10.1137/0221042
https://doi.org/10.25596/jalc-2015-005
https://doi.org/10.4230/LIPIcs.STACS.2022.51
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.4064/fm-16-1-386-389
https://doi.org/10.1038/nsmb.3316
https://doi.org/10.1016/0020-0190(89)90108-7
https://doi.org/10.1145/503561.503635

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 96–111, doi:10.4204/EPTCS.386.9

© H. Fernau, L. Kuppusamy, and I. Raman
This work is licensed under the
Creative Commons Attribution License.

When Stars Control a Grammar’s Work

Henning Fernau
Abteilung Informatikwissenschaften

Universität Trier, Germany
fernau@uni-trier.de

Lakshmanan Kuppusamy
School of Computer Science and Engineering

VIT, Vellore, India
klakshma@vit.ac.in

Indhumathi Raman
Department of Computing Technologies,

School of Computing, SRMIST, Chennai, India
indhumar2@srmist.edu.in

Graph-controlled insertion-deletion (GCID) systems are regulated extensions of insertion-deletion
systems. Such a system has several components and each component contains some insertion-
deletion rules. The components are the vertices of a directed control graph. A rule is applied to
a string in a component and the resultant string is moved to the target component specified in the
rule. The language of the system is the set of all terminal strings collected in the final component.
We impose the restriction in the structure of the underlying graph to be a star structure where there is
a central, control component which acts like a master and transmits a string (after applying one of its
rules) to one of the components specified in the (applied) rule. A component which receives the string
can process the obtained string with any applicable rule available in it and sends back the resultant
string only to the center component. With this restriction, we obtain computational completeness for
some descriptional complexity measures.

1 Introduction

Insertion-deletion systems are part of formal languages which are extensively analyzed. The motivation
for the systems comes from both linguistics [14, 16] and molecular biology. The action of inserting or
deleting some strands do occur often in DNA processing [17] and RNA editing [2]. These two operations
together were introduced as a formal languages theory framework in [11] and further studied in [10, 19].
The corresponding grammatical mechanism is called insertion-deletion system (abbreviated as ins-del
system). The insertion operation means inserting a string η in between the strings w1 and w2, whereas
the deletion operation is deleting a substring δ from the string w1δw2.

In the literature, several variants of ins-del systems have been considered. We refer to the survey
article [20] for details concerning the state-of-the-art around 2010. One of the important variants of ins-
del systems is graph-controlled ins-del systems (abbreviated as GCID systems), introduced in [6] and
further studied in [8]. In such a system, the concept of components is introduced, which are associated
with insertion or deletion rules. The transition is performed by choosing any applicable rule from the set
of rules of the current component and by moving the resultant string to the target component specified
in the rule in order to continue processing it. Several restrictions of graph control have been studied,
e.g., matrix ins-del systems (see [18, 5] and more papers cited there), time-varying ins-del systems [1],
or path-controlled ins-del systems [4]. In this paper, we consider star control (which also has been
considered in [9] in an implicit way when dealing with graph-controlled systems with two components.
This models a kind of master-slave system in the sense that the central component always dispatches
work to the slave components who, after finishing their work, return the result to the master component.

http://dx.doi.org/10.4204/EPTCS.386.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

H. Fernau, L. Kuppusamy, and I. Raman 97

k = the number of components
n = max{|η | : (i,(u,η ,v)I, j) ∈ R} m = max{|δ | : (i,(u,δ ,v)D, j) ∈ R}
i′ = max{|u| : (i,(u,η ,v)I, j) ∈ R} j′ = max{|u| : (i,(u,δ ,v)D, j) ∈ R}
i′′ = max{|v| : (i,(u,η ,v)I, j) ∈ R} j′′ = max{|v| : (i,(u,δ ,v)D, j) ∈ R}

Table 1: Size (k;n, i′, i′′;m, j′, j′′) of a GCID system

Graph-controlled insertion-deletion systems whose underlying control graph is a tree are equivalent to
ins-del P systems [13, 8]. Hence, our restriction can be viewed as a special case of ins-del P systems. We
want to point to one technicality here: with P systems (and similarly with several restrictions of graph
control), there is the possibility to stay in the same membrane with the here command (which corresponds
to allowing loops in graph control); in the model that we consider in this paper, this is disallowed: when
the master saw the ‘current work’ (and worked on it one step), it has to pass it to some slave immediately,
and after the slave performed one step, the work is handed back to the master, etc. Therefore, results in
the literature concerning seemingly related models do not always compare well to this star model.

The descriptional complexity of a GCID system is measured by its size s=(k;n, i′, i′′;m, j′, j′′), where
the parameters represent resource bounds as given in Table 1. Slightly abusing notation, the language
class generated by GCID systems of size s is denoted by GCID(s). We attach subscripts P and S when
referring to path-controlled or star-controlled GCID systems, respectively.
The main results of this paper are the following ones.

1. (Theorem 9) RE = GCIDS(6;1,1,0;2,0,0) = GCIDS(6;1,0,1;2,0,0);

2. (Theorem 11) RE = GCIDS(4;2,1,1;1,0,0).

Our proofs are based on the Special Geffert Normal Form of type-0 grammars, which characterizes
the class RE, the recursively enumerable languages. Formal definitions follow in the next section.

2 Preliminaries

We assume that the readers are familiar with the standard notations used in formal language theory. Here,
we recall a few notations for the understanding of the paper. Let N denote the set of positive integers,
and [` . . .k] = {i ∈ N : `≤ i≤ k}. Given an alphabet (finite set) Σ, Σ∗ denotes the free monoid generated
by Σ. The elements of Σ∗ are called strings or words; λ denotes the empty string. For a string w ∈ Σ∗,
|w| is the length of w and wR denotes the reversal (mirror image) of w. LR and L R are also understood
for languages L and language families L , collecting all reversals of words from L and all reversals of
languages from L , respectively. For the computational completeness results, as our main tool we use
the fact that type-0 grammars in Special Geffert Normal Form (SGNF) describe RE.

Definition 1 A type-0 grammar G = (N,T,P,S) is said to be in SGNF if

• N decomposes as N = N′∪N′′, where N′′ = {A,B,C,D} and N′ contains at least the two nonter-
minals S and S′;

• the only non-context-free rules in P are AB→ λ and CD→ λ ;

• the context-free rules are of the form (i) S′→ λ , or (ii) X → Y1Y2, where X ∈ N′ \{S′} and Y1Y2 ∈
((N′ \{X})(T ∪{B,D}))∪ ({A,C}(N′ \{X})).

98 When Stars Control a Grammar’s Work

The way the normal form is constructed is described in [6], based on [7]. We can assume that S′

does not appear on the left-hand side of any non-erasing rule. This also means that the derivation in G
undergoes two phases. In phase I, only context-free rules are applied. This phase ends with applying the
context-free deletion rule S′ → λ (which is the only rule that has S′ on its left-hand side). Then only,
non-context-free deletion rules AB→ λ and CD→ λ are applied in phase II. Notice that the symbol
from N′, as long as present, separates A and C from B and D; this prevents a premature start of phase II.
One of the features of SGNF derivations is that any string that can be derived can contain at most one
substring AB or CD in its so-called center. If such a substring is present, the derivation is in phase II;
also, then no nonterminal from N′ occurs. In phase I, exactly one such nonterminal is present (in the
center). Therefore, we can differentiate two cases within (ii) for X ,Y ∈ N′ \ {S′} with X 6= Y : either,
we have a rule X → bY , with b ∈ {A,C}, or we have a rule X → Y b, with b ∈ T ∪{B,D}. This case
distinction is often necessary when simulating type-0 grammars in SGNF, as we will see later.

We write⇒r to denote a single derivation step using rule r, and⇒G (or⇒ if no confusion arises)
denotes a single derivation step using any rule of G. Then, L(G) = {w ∈ T ∗ | S⇒∗ w}, where⇒∗ is the
reflexive transitive closure of⇒.

2.1 Graph-Controlled Insertion-Deletion Systems

Definition 2 A graph-controlled insertion-deletion system (GCID for short) with k components is a con-
struct Π = (k,V,T,A,H, i0,F,R), where (i) k is the number of components, (ii) V is an alphabet, (iii)
T ⊆V is the terminal alphabet, (iv) A⊂V ∗ is a finite set of strings, called axioms, present in the initial
component, (v) H is a set of labels associated (in a one-to-one manner) to the rules in R, (vi) i0 ∈ [1 . . .k]
is the initial component, (vii) F ⊆ [1 . . .k] is the set of final components and (viii) R is a finite set of rules
of the form l : (i,r, j), where l ∈H is the label of the rule, r is an insertion rule of the form (u,η ,v)I , with
insertion string η and context (u,v), or deletion rule of the form (u,δ ,v)D, with deletion string δ and
context (u,v), where u,v ∈V ∗, η ,δ ∈V+ and i, j ∈ [1 . . .k].

Often, the component is part of the label name. This will also (implicitly) define H. We shall omit the
label l of the rule wherever it is not necessary for the discussion.

We now describe how GCID systems work. Applying an insertion rule of the form (u,η ,v)I means
that the string η is inserted between u and v; this corresponds to the rewriting rule uv→ uηv. Similarly,
applying a deletion rule of the form (u,δ ,v)D means that the string δ is deleted between u and v; this
corresponds to the rewriting rule uδv→ uv. A configuration of Π is represented by (w)i, where i∈ [1 . . .k]
is the number of the current component and w ∈V ∗ is the current string. We also say that w has entered
or moved to component Ci. We write (w)i⇒l (w′) j if there is a rule l : (i,r, j) in R, and w′ is obtained
by applying the insertion or deletion rule r to w. For brevity, we write (w)i ⇒ (w′) j if there is some
rule l in R such that (w)i⇒l (w′) j. To avoid confusion with traditional grammars, we write⇒∗ for the
transitive reflexive closure of⇒ between configurations. The language L(Π) generated by Π is defined
as {w ∈ T ∗ | (x)i0 ⇒∗ (w)i f for some x ∈ A and some i f ∈ F}.

The underlying control graph of a GCID system Π with k components is defined to be a graph with
k nodes labelled C1 through Ck and there exists a directed edge from Ci to C j if there exists a rule
of the form (i,r, j) in R of Π. We also associate an undirected graph on k nodes to a GCID system
of k components as follows: there is an undirected edge from a node Ci to C j if there exists a rule of
the form (i,r1, j) or (j,r2, i) in R of Π. We call a GCID system with k components star-controlled if
its underlying undirected control graph has the edge set {{C1,Ci} | i ∈ [2 . . .k]}. This means that the
corresponding directed control graph may contain arcs like (C1,Ci), (Ci,C1), but no loops.

H. Fernau, L. Kuppusamy, and I. Raman 99

Below, we provide a few examples for a better understanding of how the above-defined system works.
As star-controlled systems have to have at least two components to produce anything non-trivial, it is
interesting to observe that even with only two components, non-regular languages can be obtained.

Example 3 The language {anbn | n ≥ 0} can be generated by a star-controlled insertion-deletion sys-
tem with two components, alphabet {a,b,A,B}, the axiom set {AB} in C1, final component {C1} and
the following rules: r1.1 : (1,(A,a,λ)I,2), r2.1 : (2,(B,b,λ)I,1), r1.2 : (1,(λ ,A,λ)D,2) and r2.2 :
(2,(λ ,B,λ)D,1). A possible derivation of a terminal string is:

(AB)1⇒r1.1 (AaB)2⇒r2.1 (AaBb)1⇒r1.2 (aBb)2⇒r2.2 (ab)1.

Observe that (aBb)2⇒r2.1 (aBbb)1 is possible, but now the derivation is stuck, as any rule in C1 checks
for the presence of the nonterminal A. Yet, as the nonterminal B is present, the configuration (aBbb)1
cannot lead to a terminal word. The size of this system is (2;1,1,0;1,0,0). A very similar system can
be given for this language that is of size (2;1,0,1;1,0,0). For the very similar language {anbn | n≥ 1},
even a system with two rules r1 : (1,(a,a,λ),2) and r2 : (2,(b,b,λ),1) would suffice, with axiom ab.

Recall that the class REG of regular languages is the lowest class of the Chomsky hierarchy. It can
be characterized by right-linear grammars whose rules have the form A→ Ba or A→ λ for nonterminal
symbols A,B and a terminal symbol a. We use this characterization to prove that star-controlled GCID
systems can generate all regular languages. The previous example then shows that even non-regular
languages can be generated.

Theorem 4 Each regular language (and also some non-regular languages) can be generated by a
GCIDS system of size (2;3,0,1;2,0,0), where the initial component C1 is also the only final one.

Later, we will see that with both components being final, many more languages can be described.
Proof We only sketch the construction in the following. For each rule of the form A→ aB of a right-linear
grammar G that we start with, we introduce the insertion rule (λ ,aB$,A) into the first component of the
simulating GCIDS system Π. For each erasing rule A→ λ , we add the insertion rule (λ ,a$,A) into the
first component of Π. In both cases, $ is a special marker symbol that is taken care of in the second
component that contains all possible deletion rules of the form (λ ,$A,λ) for any nonterminal A of G.
For instance, if G contains the rules S→ aX and X → λ , enabling the derivation S⇒ aX ⇒ a, then the
simulation is performed as follows: (S)1⇒ (aX$S)2⇒ (aX)1⇒ (a$X)2⇒ (a)1 . �

By adding more nonterminal symbols, one can also achieve this result with GCIDS systems of size
(2;2,0,1;2,0,0). We leave it open if GCIDS systems with only two components and only one final
component can generate each recursively enumerable language.

Example 5 The copy language {ww | w ∈ {a,b}∗} can be generated by a star-controlled insertion-
deletion system Π = (3;{a,b,A,B},{a,b},{AB},H,1,{1},R), where H = {r1.1,r1.2,r1.3,r2.1,r2.2,
r3.1} and R is the set of rules depicted in Table 2; Π has size (3;1,0,1;1,0,0). Starting with the axiom AB
in C1, if we apply r1.3, then we can apply r2.2 only in C2 and that produces λ in C1. The nonterminals A
and B serve as markers and if an a is introduced to the left of A in C1 (by r1.1), then one a is introduced
to the left of B (by r2.1) in C2. Similarly, if one b is introduced to the left of A in C1 (by r1.2), then a b
is introduced to the left of B (by r3.1) in C3. This guarantees to have the pattern of the copy language
produced by the system Π. But, there is a caveat here. If one can apply r1.1 in C1, then in C2, r2.2 can
also be applied and in such a case, the pattern of the copy language is not followed. However, then back
in C1, only r1.3 can be applied, which means for the string to move to C2 and there, the derivation stops.

100 When Stars Control a Grammar’s Work

Component C1 Component C2 Component C3
r1.1 : (1,(λ ,a,A)I,2) r2.1 : (2,(λ ,a,B)I,1) r3.1 : (3,(λ ,b,B)I,1)
r1.2 : (1,(λ ,b,A)I,3) r2.2 : (λ ,A,λ)D,1)
r1.3 : (1,(λ ,B,λ)D,2)

Table 2: Star-controlled ins-del system for generating Copya,b = {ww | w ∈ {a,b}∗}.

C3C1C2

(a) Star-shaped control graphs underlying the
star-controlled systems depicted in Exam-
ple 5.

C6 C4

C3

C5

C1C2

(b) Control graphs underlying the star-
controlled systems in our main theorems.

Figure 1: Control graphs underlying different GCID systems in this paper.

As C2 is not a final component, by definition the strings over the terminal alphabet {a,b} that are not
also leading into the final component are not collected into the language generated by Π.

A sample derivation for aabaab is given below.

(AB)1⇒r1.1 (aAB)2⇒r2.1 (aAaB)1⇒r1.1 (aaAaB)2⇒r2.1 (aaAaaB)1⇒r1.2 (aabAaaB)3

⇒r3.1 (aabAaabB)1⇒r1.3 (aabAaab)2⇒r2.2 (aabaab)1.

The control graph underlying the construction is shown in Figure 1.

3 Computational Completeness

In this section, we present the main results of our paper. First, we discuss some limitations for getting
computational completeness results and then, we describe two important cases of resource restrictions
that characterize RE.

3.1 GCIDS systems with insertion and deletion length one

In [19], it has been proved that ins-del systems with size (1,1,1;1,1,1) characterize RE. Notice that it is
proved in [12, 15] that ins-del systems of size (1,1,1;1,1,0) or (1,1,0;1,1,1) cannot characterize RE.
It is therefore obvious that we need at least 2 components in a graph-controlled ins-del system of sizes
(1,1,1;1,1,0) and (1,1,0;1,1,1) to characterize RE. In [3], we characterized RE by path-controlled
GCID systems of size (k;1, i′, i′′;1, j′, j′′) for different combinations of k ≥ 1, i′, i′′, j′, j′′.

However, if we impose star structure as the underlying control graph and the resultant string has to
move in/move out during every derivation step, then it is interesting to notice that the context-free rules
of SGNF, namely p : X → bY , q : X → Y b and h : S′ → λ can never be directly simulated by rules of
GCIDS(k;1, i′, i′′;1, j′, j′′) for any value of k ≥ 2, i′, i′′, j′, j′′ ≥ 0. Here, by a direct simulation of a rule r,
we mean that, assuming a sentential form w may yield the sentential form v by applying rule r within the
original grammar (which is, in our case, in SGNF), then the simulating star-controlled GCID system will

H. Fernau, L. Kuppusamy, and I. Raman 101

start in the central component C1 with the sentential form w and derive after a number of steps, possibly,
during the simulation, introducing and deleting symbols specific to r (called markers in the following),
the sentential form v and moving back to C1 to be ready for the next simulation step.

Proposition 6 The context-free rules of a grammar in SGNF, namely p : X → bY and q : X → Y b (with
X 6= Y), as well as h : S′→ λ , can never be directly simulated by rules of GCIDS(k;1, i′, i′′;1, j′, j′′) for
any value of k ≥ 2, i′, i′′, j′, j′′ ≥ 0.

Proof To directly simulate p : X → bY using insertion-deletion rules, we need two insertion rules (one to
insert b and one to insert Y ; here we recall that the insertion length is 1) and one deletion rule to delete X .
Hence, we need three basic insertion-deletion rules. Further, if we need to introduce r ≥ 1 markers, then
we can insert only one marker at a time using an insertion rule which will account for r insertion rules.
At the end of the derivation, we need to delete all the r markers using r deletion rules (since we can only
delete one symbol at a time). This amounts to having r insertion rules and r deletion rules to deal with
the markers and 3 basic insertion-deletion rules to simulate p : X → bY . This sums up to 2r+3 rules.

We need to distribute these 2r+ 3 rules among the k components of the GCID system. Let C1 be
the central (initial and final) component. As the system is star-structured, in a rule (i,(x,y,z)δ , j),δ ∈
{I,D}, i, j ∈ [1 . . .k], we have i 6= j, as loops are not allowed, and |{i, j}∩{1}| = 1. Hence, the order
of rule applications in any derivation will start at the central node and then alternate between central
and non-central nodes. Therefore, (i) the last rule of the simulation should be placed in a non-central
component and not in C1 and (ii) the total number of rules for simulation is even. Since 2r+ 3 is not
even, the statement follows. �

By its definition, a derivation of a GCIDS system has to alternate between the central component and
any other component. By putting exactly the same rules in two components and declaring one of the two
components as being central, while both are final, one obtains:

Proposition 7 GCID(1;n, i′, i′′;m, j′, j′′)⊆GCIDS(2;n, i′, i′′;m, j′, j′′) holds for any value of i′, i′′, j′, j′′≥
0 and n,m≥ 1.

For example, this entails GCIDS(2;1,1,1;1,1,1) = RE and similar computational completeness re-
sults based on what is known for ins-del systems. By way of contrast, computational completeness results
for 2-component graph-controlled systems do not necessarily carry over to our star-controlled systems,
as there, ‘loops’ might be allowed.

3.2 GCIDs systems with insertion or deletion length of more than one

To simplify the presentation and proofs of our further results, the following observations from [3] are
used, adapted to our case.

Proposition 8 [3] Let k,n, i′, i′′,m, j, j′′ be non-negative integers.

1. GCIDS(k;n, i′, i′′;m, j′, j′′) = [GCIDS(k;n, i′′, i′;m, j′′, j′)]R;

2. RE = GCIDS(k;n, i′, i′′;m, j′, j′′) iff RE = GCIDS(k;n, i′′, i′;m, j′′, j′).

Theorem 9 RE = GCIDS(6;1,1,0;2,0,0) and RE = GCIDS(6;1,0,1;2,0,0).

Proof Consider a type-0 grammar G = (N,T,P,S) in SGNF as in Definition 1. We construct a GCID
system Π = (6,V,T,{S},H,1,{1},R) of size (6;1,1,0;2,0,0) such that L(Π) = L(G). The alphabet V
contains rule markers, apart from the symbols of G. More specifically, for each rule γ→ δ ∈ P labeled r,
we have r ∈ V . Moreover, if γ → δ 6= S′→ λ , we also have single-primed markers r′ ∈ V . Finally, for

102 When Stars Control a Grammar’s Work

C1 C2 C3
p1.1 : (1,(X , p,λ)I,2) p2.1 : (2,(λ ,X ,λ)D,1) p3.1 : (3,(p′, pv,λ)I,1)
p1.2 : (1,(p, p′,λ)I,3) p2.2 : (2,(λ , p′′p′′′,λ)D,1)
p1.3 : (1,(p′,b,λ)I,5)

p1.4 : (1,(λ , pp′,λ)D,4)
p1.5 : (1,(p′′′, piv,λ)I,4)
p1.6 : (1,(p′′′,Y,λ)I,2)
q1.1 : (1,(X ,q,λ)I,2) q2.1 : (2,(λ ,X ,λ)D,1) q3.1 : (3,(q′,b,λ)I,1)
q1.2 : (1,(q,q′,λ)I,3)
q1.3 : (1,(q′,Y,λ)I,4)
h1.1 : (1,(S′,h,λ)I,2) h2.1 : (2,(λ ,S′h,λ)D,1)
f 1.1 : (1,(A, f ,λ)I,6) f 2.1 : (2,(λ ,A f ′,λ)D,1)

f 1.2 : (1,(λ , f B,λ)D,2)
g1.1 : (1,(C,g,λ)I,6) g2.1 : (2,(λ ,Cg′,λ)D,1)

g1.2 : (1,(λ ,gD,λ)D,2)
C4 C5 C6

p4.1 : (4,(p′′, p′′′,λ)I,1) p5.1 : (5,(b, p′′,λ)I,1)
p4.2 : (4,(λ , piv pv,λ)D,1)
q4.1 : (4,(λ ,qq′,λ)D,1)

f 6.1 : (6,(B, f ′,λ)I,1)
g6.1 : (6,(D,g′,λ)I,1)

Table 3: Star-controlled GCIDS(6;1,1,0;2,0,0) simulating the rules of SGNF.

context-free rules of the form X → bY , even markers r′′,r′′′,riv,rv ∈V . We refer to Table 3, showing the
simulation of the different rule types of SGNF. The columns of the table correspond to the components
of Π. The rows of Table 3 correspond to the rules simulating the ‘linear rules’ p : X→ bY and q : X→Y b,
with X ∈ N′ and b ∈ N′′∪T , h : S′→ λ , as well as f : AB→ λ and g : CD→ λ .

We now prove that L(G) ⊆ L(Π) as follows. We show that if w⇒ w′ in G, then (w)1 ⇒∗ (w′)1
according to Π. The claim then follows by induction.
Context-free rule q : X → Y b. Here, w = αXβ and w′ = αY bβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗.
The simulation performs as follows:

(αXβ)1 ⇒q1.1 (αXqβ)2⇒q2.1 (αqβ)1⇒q1.2 (αqq′β)3⇒q3.1 (αqq′bβ)1

⇒q1.3 (αqq′Y bβ)4⇒q4.1 (αY bβ)1 .

Context-free rule p : X → bY . Here, w = αXβ and w′ = αbY β for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗.
The simulation performs as follows:

(αXβ)1 ⇒p1.1 (αX pβ)2⇒p2.1 (α pβ)1⇒p1.2 (α pp′β)3⇒p3.1 (α pp′pv
β)1

⇒p1.3 (α pp′bpv
β)5⇒p5.1 (α pp′bp′′pv

β)1⇒p1.4 (αbp′′pv
β)4⇒p4.1 (αbp′′p′′′pv

β)1

⇒p1.5 (αbp′′p′′′piv pv
β)4⇒p4.2 (αbp′′p′′′β)1⇒p1.6 (αbp′′p′′′Y β)2⇒p2.2 (αbY β)1 .

H. Fernau, L. Kuppusamy, and I. Raman 103

One might wonder that the h : S′ → λ and the f : AB→ λ rules could easily be simulated by the
rules (1,(λ ,S′,λ)D,1) and (1,(λ ,AB,λ)D,1), respectively. However, the underlying control graph of
our star-controlled GCID forbids loops and hence, we have given a different simulation for these rules.
Since the correctness of the h-rule simulation is trivial, it remains to discuss the simulation of the rule
f : AB→ λ . The simulation of g : CD→ λ is similar and hence omitted.
Non-context-free rules f : AB→ λ . This means that we expect w = αABβ and w′ = αβ for some α ∈
{A,C}∗, β ∈ ({B,D}∪T)∗. Within Π, this can be simulated as follows.

(αABβ)1⇒ f 1.1 (αA f Bβ)6⇒ f 6.1 (αA f B f ′β)1⇒ f 1.2 (αA f ′β)2⇒ f 2.1 (αβ)1 .

Conversely, a derivation (w)1⇒∗ (w′)1, with w 6= w′ and w,w′ ∈ {A,C}∗(N′∪{λ})({B,D}∪T)∗ has
to start like (w)1 ⇒ (v) j in Π. If some rule from C1 is applied to w, the rule will insert a rule marker
into the string w and branch to C2 (when simulating context-free rules) or to C3 (when simulating non-
context-free rules). The introduction of rule markers in C1 will take care of the non-interference among
the non-context-free and context-free rules. We now discuss the possibilities in detail. In our discussion,
we distinguish between sentential forms containing or not containing a symbol from N′.

Our inductive arguments will also show that, in Π, no sentential form is derivable that contains two
occurrences of symbols from N′. More generally, we can show the following. Assume that we can
derive some configuration (w)1 in Π such that the string v contains no marker symbols, where v = µ(w)
is obtained by applying the morphism µ that acts like the identity on V apart from the letters f , f ′,g,g′

that will be erased. Then the sentential form v is also derivable in G. In particular, if w ∈ T ∗, then v = w,
i.e., each word in L(Π) also belongs to L(G).

We will also prove by induction that, if (w)1 is derivable in Π and if w contains at most one occurrence
of N′ and no markers but possibly f , f ′,g,g′, then also µ(w) is derivable in Π and then, only using
the rules f 1.1, f 6.1, g1.1 and g6.1, we can derive µ(w) in Π from w. This also means that, in each
such string w derivable in Π, the number of occurrences of symbols from { f ,g} equals the number of
occurrences of symbols from { f ′,g′}. We also call this the balance condition. Therefore, we can start
our inductive hypothesis with strings that can be derived both in G and in Π and observe the maintenance
of the balance condition along our arguments.

Let us first assume (by induction) that the sentential form w1 = αXβ for some α ∈ {A,C}∗, β ∈
({B,D} ∪ T)∗ and X ∈ N′ is derivable in G and the configuration (w1)1 is derivable in Π. We will
prove (as induction step) that if (w1)1⇒∗ (u)1, w1 6= u, and u ∈ {A,C}∗(N′∪{λ})({B,D}∪T)∗ is the
first sentential form from {A,C}∗(N′∪{λ})({B,D}∪T)∗ that appears in a derivation of Π in C1, then
w1⇒ u holds in G, except from a premature start of simulating non-context-free rules also discuss below
and where we argue that the balance condition is maintained.
Applying f 1.1 to w1 = αXβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗ and X ∈ N′, the only nonterminal
from N′, is possible but unintended. (A similar discussion applies to g1.1.) A successful application
yields the configuration (w2)6, with w2 = α1A f α2Xβ , where α1Aα2 = α . Now, the only applicable
rules are f 6.1 or g6.1.We get a configuration (w3)1 with µ(w3) = w1. It can be observed that on w3,
neither f 1.2 nor g1.2 are applicable, as these rules require AB or CD sitting in the center of w1, which
was not the case by assumption. Therefore, we could either continue our journey with inserting further
markers f , f ′,g,g′ (but always maintaining the balance condition) or finally apply r1.1, belonging to a
context-free rule r. Now, observe that, instead of applying r1.1 and then r2.1 (because f 2.1 and g2.1 are
inapplicable), yielding a configuration (u)1, we could also first apply r1.1 and r2.1 to w1, and then the
same f - and g-simulation rules as before, arriving at (u)1 in a different way. This proves (here as part of
the induction step) that, as claimed, we can exchange the sequence of rule applications in a way that we

104 When Stars Control a Grammar’s Work

apply f - and g-simulation rules after the other rules that are meant to simulate the context-free rules. We
also see by induction that the balance condition is always maintained.

Applying q1.1 to w1 = αXβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗ and X ∈ N′, the only nonterminal
from N′, yields the configuration (w2)2 with w2 = αXqβ . In C2, all rules (except q2.1 and p2.1) are
guarded by markers and the only applicable rule are q2.1 or p2.1 (in case there is a rule X → b′Y ′

in P) which delete X , yielding (w3)1 = (αqβ)1. Due to the rule markers, apart from the intended rule
q1.2, one could also apply f 1.1 or g1.1. In that case, having moved to C6, f 6.1 or g6.1 are applicable,
yielding some configuration (w′)1 with µ(w′) = w3. As discussed before, we can even continue like
this, but in order to make any further progress, we will have to apply q1.2 in some configuration (w′′)1
with µ(w′′) = w3. As we could also apply the non-context-free simulation rules afterwards, it suffices
to discuss what happens if we apply q1.2 to w3 as intended. Hence, we arrive at the configuration
(w4)3 with w4 = αqq′β . The required rule markers cause q3.1 to be the only applicable rule as desired.
Therefore, we arrive at the configuration (w5)1 = (αqq′bβ)1. Clearly, one could now (again) apply f 1.1
or g1.1, but this would only lead to prematurely introducing the markers f , f ′,g,g′ similar as discussed
before, again always maintaining the balance condition. Therefore, the only applicable rule that needs
to be discussed (apart from the intended one, which is q1.3) is q1.2 (again). With the string αqq′q′bβ ,
we are back to C3. Now, there are two possible subsequent configurations: (a) (αqq′bq′bβ)1, or (b)
(αqq′q′bbβ)1. In Case (a), we claim that there is no way to delete the second occurrence of q′ in the
future. Namely, the only way to delete q′ is if left to it, q is sitting. But as now some b ∈ {B,D}∪T is
to the left of q′, there is no way to introduce q in this position later, because the marker q always works
as a symbol that replaces the former N′-symbol. Therefore, a derivation following (a) cannot terminate.
The situation is different in Case (b). For instance, we can apply q1.3 to string αqq′q′bbβ , followed by
q4.1. Again, we have two configurations to study: (A) (αq′Y bbβ)1 or (B) (αY q′bbβ)1. In Case (A),
we can argue similarly to Case (a) above to see that this configuration cannot lead to a terminal string:
left to q′ will sit some symbol A or C. Case (B) is indeed different. Assuming that only rules of the
form Z→ b′Z′ are simulated subsequently, there may be a derivation Y ⇒∗ γX with γ ∈ {A,C}+ that is
simulated by the GCID system as intended. Hence, we see now a configuration (αγXq′bbβ)1 and then,
after a short excursion into C2, we see (αγqq′bbβ)1. Now, we can actually terminate by using the rules
q1.3 and q4.1, leading to (αγY bbβ)1. However, we would arrive at the same string if we had followed
our intended plan. Then, we could get from (αY bβ)1 via (αγXbβ)1 to (αγqbβ)1. Now, after applying
q1.2 and q2.2 as intended, we can also see (αγqq′bbβ)1 and continue as above. This argument is also
valid (by a separate yet straightforward induction) if we happen to produce a string (αq(q′)kbkβ)1 for an
arbitrary k > 1. Therefore, we can avoid this process that we call rule inversion, and always follow our
standard derivation instead. We can hence assume that we apply q1.3 to w5 as desired. Therefore, we
arrive at the configuration (w5)1 = (αqq′Y bβ)4. If we actually apply q4.1, then we arrive at (αY bβ)1 as
intended, proving the inductive step in this case. But by the very structure of this component, no other
rules are applicable.

Applying p1.1 to w1 = αXβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗ and X ∈ N′, the only nonterminal
from N′, will insert a marker p to the right of X , yielding (w2)2 = (αX pβ)2. Recall that we are trying to
simulate the rule X → bY for some X ,Y ∈ N′ and b ∈ {A,C}. In C2, all rules (except p2.1 and q2.1) are
guarded by markers and the only applicable rule are q2.1 or p2.1 (in case there is a rule X → b′Y ′ in P)
which delete the nonterminal X , yielding a string w3 = α pβ , i.e., we arrive at the configuration (w3)1.
Since X is deleted in the previous step and there is no p′, p′′, the only applicable rule is p1.2 which inserts
a p′ after p, yielding the configuration (w4)3 = (α pp′β)3. In C3, guarded by rule markers, we have to
apply p3.1 as intended. Hence, we arrive at (w5)1 = (α pp′pvβ)1. If we re-apply p1.2, we achieve

H. Fernau, L. Kuppusamy, and I. Raman 105

an imbalance of the number of occurrences of p and p′. This is problematic insofar, as pp′ is deleted
together. Also, we would have to then re-apply p3.1 again, creating another imbalance. Alternatively, we
could apply f 1.1 or g1.1, which introduces a pair of non-primed and primed f /g-markers prematurely,
but maintaining their balance. This brings us to the conclusion that we should apply p1.3 in (w5)1.

Hence, we arrive at (w6)5 = (α pp′bpvβ)5, with b ∈ {A,C}. In C5, we have to apply a rule that puts
some marker r′′ to the right of an occurrence of b. As b ∈ {A,C}, the b occurring between p′ and pv is
the rightmost of all occurrences of A,C within w6. Let us first discuss what happens if we do apply some
r5.1 (but possibly r 6= p) to this described rightmost occurrence and mark the situation when some b
within α is affected as (∗), not to forget its discussion. We get to (w7)1 = (α pp′br′′pvβ)1. Apart from
now applying f 1.1 or g1.1, we could also apply p1.2 or p1.3, and finally also p1.4 (as intended). The
scenario of prematurely introducing the f /g-markers has been sufficiently discussed before. If we apply
rule p1.2, we again create an imbalance concerning p/p′. Let us defer the discussion of applying p1.3
at this configuration (w7)1 a bit as (+); we rather discuss applying p1.4. We arrive at the configuration
(w8)4 = (αbr′′pvβ)4. Now, only r4.1 would be applicable, leading to (w9)1 = (αbr′′r′′′pvβ)1. We are
now in safer waters, as we have to use rule r1.5 to get to (w10)4 = (αbr′′r′′′riv pvβ)4, because if we apply
p1.6 directly, we have no chance to delete pv in the future. If we apply r4.1 again on w10, we create
an imbalance between the number of r′′ and r′′′, but this balance is necessary for deleting these markers
in C2. By using r4.2 alternatively on w10, one can see that the only chance to continue the route is when
we have r = p. In that case, we move to C1 with w11 = αbp′′p′′′β . If we now re-apply p1.5, at C4, we
have to apply p4.1 and create an imbalance between p′′ and p′′′, hence preventing us from a terminating
derivation. If we introduce f - or g-markers, we are forced to introduce primed versions in C6; we have
discussed these premature but balanced introductions of these markers before. Hence, we have to discuss
applying p1.6 as intended. We enter C2 with w12 = αbp′′p′′′Y β . Now, we can either delete Y with some
fitting rule s2.1 and return to the configuration (w11)1, hence making no progress, or we apply p2.2 as
intended, finally getting to the configuration (w12)1 = (αbY β)1 as desired.

In order to conclude that the induction step has been shown, we still have to consider two scenarios,
marked as (∗) and (+) above. In (+), we look at (w7)1 = (α pp′br′′pvβ)1 ⇒p1.3 (α pp′bbr′′pvβ)5 .
Assume we apply a rule s5.1 next. As the case when we find b ∈ {A,C} within α is similar to the
discussion (∗) that is still to come, we focus on two cases of configurations: (1) (α pp′bs′′br′′pvβ)1 or
(2) (α pp′bbs′′r′′pvβ)1. In both configurations, we can again apply p1.3, but this makes the whole case
fail even more. We can now derive (under the conclusion that r = p) in the same way as in the main line
of derivation, leading to (αbs′′bY β)1 (Case (1)) or to (αbbs′′Y β)1 (Case (2)). In both cases, there is no
way to make use of s′′, because this means we have to move to C4, or we mis-use another p-type rule
at some point, when p1.4 makes us enter C4 again, but then continuing with the s-markers (using s4.1).
Let us clarify this by assuming that we simulate t : Y → b′Y ′ next. Following the standard simulation up
to t1.4, we get (αbs′′bb′t ′′tvβ)4 (Case (1)) or (αbbs′′b′t ′′tvβ)4 (Case (2)). We could now use s4.1, s1.6
and s2.2 to introduce another nonterminal from N′ at the position of s′′, but behold: we have now another
left-over double-primed marker t ′′ whose removal can only be achieved by switching between two rule
simulations in the ‘next round’. Therefore, we will never be able to terminate this derivation.

For scenario (∗), we reconsider (w6)5 = (α pp′bpvβ)5, with α = α1bα2, so that for a suitable rule r
that should introduce Z ∈ N′, (w7)1 = (α1br′′α2 pp′bpvβ)1. We could try to continue with (w7)1⇒p1.4

(α1br′′α2bpv
β)4⇒r4.1 (α1br′′r′′′α2bpv

β)1⇒r1.6 (α1br′′r′′′Zα2bpv
β)2⇒r2.2 (α1bZα2bpv

β)1

but then there is never a chance to lose pv again. Therefore, also this scenario will never see a derivation
producing a terminal string.

106 When Stars Control a Grammar’s Work

Component C1 Component C2 Component C3 Component C4 Component C5
p1.1 : (1,(X , p,λ)I,2) p2.1 : (2,(λ ,X ,λ)D,1) p3.1 : (3,(λ , p′′,λ)D,1) p4.1 : (4,(p, p′,λ)I,1) p5.1 : (5,(λ , pp′,λ)D,1)
p1.2 : (1,(p, p′′,λ)I,4)
p1.3 : (1,(p′,b,λ)I,5)
p1.4 : (1,(p′′,Y,λ)I,3)

Table 4: A direct simulation attempt for a p-rule p : X → bY .

We are now discussing a string w derivable in G and as configuration (w)1 in Π, with w = αABβ , with
α ∈ {A,C}∗ and β ∈ ({B,D}∪T)∗. The case of a string of the form αCDβ can be discussed in a very
similar fashion. First observe that we cannot apply any rule p1.x or q1.x or h1.x due to the absence of
nonterminals from N′ or of required markers. We could in fact start with g1.1, followed by g6.1, and
even repeat this, so that some g-markers are attached to C-occurrences. Similarly, we can consider such
derivations to occur prematurely, because finally we have to use the f -rule as explained next.
Applying f 1.1 to w = αABβ , we get a string w1 by inserting f anywhere after an A-occurrence within w.
Let αA = α1Aα2 indicate this position, i.e., w1 = α1A f α2Bβ . w1 is transferred to component C6. So,
f 6.1 is applied and the string, yielding w2 = α1A f α2β1B f ′β2, which enters C1, where Bβ = β1Bβ2.
Notice that the configuration (w2)1 could have also been created by a premature application of f 1.1
and f 6.1 in some earlier phase of the derivation. This explains how a string that satisfies the balance
condition could finally yield a terminal string, although it is not following the standard simulation as
described in the beginning of the proof. As α2 cannot contain any B-occurrence, now applying f 1.2
necessitates α2 = β1 = λ , and then, w3 = α1A f ′β2 is sent to C2. There, the only applicable rule is f 2.1
as intended, producing w4 = α1β2, sent to C1 as intended. As mentioned at several places, instead of
applying f 1.2 on w2, one could also possibly apply f 1.1 again, or also g1.1. We can consider all these
attempts as premature ones, they only affect the left part of the string and have to be finally successfully
matched by using rules f 1.2 or g1.2, followed by executing another deletion rule in C2.
It could be that a string w = αβ was derived in G (and hence possibly the configuration (w)1 in Π by
induction) with α ∈ {A,C}∗ and β ∈ ({B,D}∪T)∗ and neither α ends with A and β starts with B nor
α ends with C and β starts with D. We can still apply rules f 1.1 or g1.1, moving the resultant string to
C6, where f 6.1 or g6.1 are applicable, moving us back to C1. Yet, the crucial observation is that neither
f 1.2 nor g1.2 are ever applicable now, as they require the presence of the substring AB or CD (within w),
respectively. Only then, the substrings f B or gD can be created.

This concludes our argument concerning the inductive step of the correctness proof of our suggested
simulation.

Finally, Proposition 8 shows that star-controlled GCID systems of size (6;1,0,1;2,0,0) are compu-
tationally complete, as well. �

Remark 10 The reader might wonder if it would be possible to merge some of the components of the
previous construction (Theorem 9), but this will create malicious derivations in each case. Also, the
simulation of a p-rule cannot follow a simple pattern as that of the q-rule (see Rem. 10), as we want to
avoid the derivation of strings with more than one occurrence of a symbol from N′. Here, we explain
why a simple, not complex looking and seeming correct p : X → bY rule simulation does not work with
the size (5;1,1,0;2,0,0). Consider, if we attempt to construct a p-rule simulation for Π as in Table 4.

A sample derivation of p-rule with the size (5;1,1,0;2,0,0) is as follows.

(αXβ)1⇒p1.1 (αX pβ)2⇒p2.1 (α pβ)1⇒p1.2 (α pp′′β)4⇒p4.1 (α pp′p′′β)1⇒p1.3 (α pp′bp′′β)5

⇒p5.1 (αbp′′β)1⇒p4 (αbp′′Y β)3⇒p1.4 (αbY β)1.

H. Fernau, L. Kuppusamy, and I. Raman 107

However, the simulation does not always work in the intended way as one need not apply p1.3 and
instead p1.4 can be applied first. Therefore, the corresponding b is not inserted, however the Y has been
inserted. With suitable a Y -rule that (finally) creates X again, later one could eliminate the markers pp′

together and that will be a problem as a malicious string could be generated. For example, consider the
grammar G contains the rules p : X → bY and u : Y → b′X, b,b′ ∈ {A,C}, b 6= b′, besides some other
rules. Then, with the rules of Table 4, we can have the following derivation.

(αXβ)1⇒p1.1,p2.1,p1.2,p4.1,p1.4,p3.1 (α pp′Y β)1⇒∗simulating
Y→b′X (α pp′b′Xβ)1⇒∗as earlier for X (α pp′b′pp′Y β)1

⇒p1.3 (α pp′b′pp′bY β)5⇒p5.1 (αb′pp′bY β)1⇒p1.3 (αb′pp′bbY β)5⇒p5.1 (αb′bbY β)1.

We are supposed to get αbb′bY β with G, but we could derive αb′bbY β with Π, but not in G.

Our next computational completeness result even further reduces the deletion complexity, making it
context-free.

Theorem 11 RE = GCIDS(4;2,1,1;1,0,0).

Component C1 Component C2 Component C3 Component C4
p1.1 : (1,(λ , p,X)I,2) p2.1 : (2,(λ ,X ,λ)D,1) p3.1 : (2,(λ , p,λ)D,1)
p1.2 : (1,(p,bY,λ)I,3)
q1.1 : (1,(λ ,q,X)I,2) q2.1 : (2,(λ ,X ,λ)D,1) q3.1 : (2,(λ ,q,λ)D,1)
q1.2 : (1,(q,Y b,λ)I,3)
h1.1 : (1,(λ ,hh′,S′)I,2) h2.1 : (3,(λ ,S′,λ)D,1) h3.1 : (3,(λ ,h,λ)D,1)
h1.2 : (1,(λ ,h′,λ)D,3)
f 1.1 : (1,(λ , f ′,A)I,2) f 2.1 : (2,(A, f ,B)I,1) f 3.1 : (3,(3,(λ , f ′′,λ)D,1) f 4.1 : (4,(f ′, f ′′ f 2, f)I,1)
f 1.2 : (1,(λ ,A,λ)D,4) f 2.2 : (2,(B, f 4,λ)I,1) f 3.2 : (3,(λ , f ′,λ)D,1) f 4.2 : (4,(f 2, f ′′′ f 3, f 4)I,1)
f 1.3 : (1,(λ , f ,λ)D,2) f 2.3 : (λ , f 2,λ)D,1)
f 1.4 : (1,(λ ,B,λ)D,4)
f 1.5 : (1,(λ , f 3,λ)D,3)
f 1.6 : (1,(λ , f ′′′,λ)D,3)
f 1.7 : (1,(λ , f 4,λ)D,2)

Table 5: Star-controlled GCID of size (4;2,1,1;1,0,0) simulating rules of SGNF.

Proof Consider a type-0 grammar G = (N,T,P,S) in SGNF as in Definition 1. We construct a GCID
system Π=(4,V,T,{S},H,1,{1},R) of size (4;2,1,1;1,0,0) such that L(Π)= L(G). The set V contains
the symbols of G as well as some rule markers. We refer to Table 5 for the direct simulation of SGNF. The
rules simulating g : CD→ λ are similar to the ones simulating the f : AB→ λ rule and hence omitted.

We now prove that L(G)⊆ L(Π). We show that if w⇒ w′ in G, then (w)1⇒∗ (w′)1 according to Π.
From this fact, the claim follows by a simple induction, split into different cases, as discussed now.
Context-free rule p : X → bY . Here, w = αXβ and w′ = αbY β for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗.
The simulation performs as follows:

(w)1 = (αXβ)1⇒p1.1 (α pXβ)2⇒p2.1 (α pβ)1⇒p1.2 (α pbY β)3⇒p3.1 (αbY β)1 = w′.

Context-free rule q : X → Y b is simulated in a similar fashion to the simulation of the p-rule.
Context-free rule h : S′→ λ is simulated as follows for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗:

(w)1 = (αS′β)1⇒h1.1 (αhh′S′β)2⇒h2.1 (αhh′β)1⇒h1.2 (αhβ)3⇒h3.1 (αβ)1 = w′.

108 When Stars Control a Grammar’s Work

Non-context-free rule f : AB→ λ . This means that we expect w = αABβ and w′ = αβ for some α ∈
{A,C}∗, β ∈ ({B,D}∪T)∗. Within Π, this can be simulated as follows.

(αABβ)1⇒ f 1.1 (α f ′ABβ)2⇒ f 2.1 (α f ′A f Bβ)1⇒ f 1.2 (α f ′ f Bβ)4⇒ f 4.1 (α f ′ f ′′ f 2 f Bβ)1⇒ f 1.3 (α f ′ f ′′ f 2Bβ)2

⇒ f 2.2 (α f ′ f ′′ f 2B f 4
β)1⇒ f 1.4 (α f ′ f ′′ f 2 f 4

β)4⇒ f 4.2 (α f ′ f ′′ f 2 f ′′′ f 3 f 4
β)1⇒ f 1.5 (α f ′ f ′′ f 2 f ′′′ f 4

β)3

⇒ f 3.1 (α f ′ f 2 f ′′′ f 4
β)1⇒ f 1.6 (α f ′ f 2 f 4

β)3⇒ f 3.2 (α f 2 f 4
β)1⇒ f 1.7 (α f 2

β)2⇒ f 2.3 (αβ)1.

We next prove that L(Π) ⊆ L(G). More precisely, we show the following (by induction). If (u)1 is
a configuration that is derivable in Π such that u contains the same number of markers from { f ′,g′} as
from { f 4,g4} (we call this property of the symbols from { f ′,g′, f 4,g4} also a balanced situation) and
such that the word u′ that is obtained from u by deleting all symbols from { f ′,g′, f 4,g4} belongs to
(N ∪T)∗, then u is derivable in G. In particular, by induction we can assume that any such u that we
discussed for proving the inductive step satisfies u′ ∈ {A,C}∗(N′∪{λ})({B,D}∪T)∗. To avoid clumsy
formulations, we will discuss the markers from { f ′,g′, f 4,g4} only in particular situations and argue why
we maintain the property of being in a balanced situation. Hence, consider a derivation (w)1⇒∗ (w′)1,
with w 6= w′ and w,w′ ∈ {A,C}∗(N′∪{λ})({B,D}∪T)∗; it has to start like (w)1⇒ (v) j in Π. If some
rule from C1 is applied to w, the rule will insert a rule marker into the string w and move to C2, or an A
or B is deleted and the string moves to C4. The introduction of rule markers in C1 will take care of the
non-interference among the non-context-free and context-free rules. We will now discuss more details.

Let us first assume (by induction) that the sentential form w1 = αXβ for some α ∈ {A,C}∗, β ∈
({B,D}∪ T)∗ and X ∈ N′ is derivable in G and the configuration (w1)1 is derivable in Π. We prove
(as induction step) that if (w1)1 ⇒∗ (u)1, w1 6= u, and u ∈ {A,C}∗(N′ ∪{λ})({B,D}∪T)∗ is the first
sentential form in {A,C}∗(N′∪{λ})({B,D}∪T)∗ that appears in a Π-derivation, then w1⇒ u in G.

Caveat: The reader might wonder why a context-free deletion of A or B as in rules f 1.2 or f 1.4 could
work at all. But notice that in C4, which is the target component of these rules, the presence of f -style
markers is checked in each of the rules. This prevents any successful derivation that interferes with, say,
a p-rule derivation by deleting an A or a B in the first component, simply because there are no p-rule
simulation rules in C4. We will hence tacitly assume that f 1.2 etc. are not applied within p-simulations.

Applying p1.1 to w1 = αXβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪ T)∗ and as X ∈ N′ being the only
nonterminal of N′ that is in w1, the marker p will be inserted to the left of X , yielding (w2)2 = (α pXβ)2.
In C2, the only available and applicable rule among the rules meant to simulate context-free rules deletes
the nonterminal X (which is not S′) of N′. This results in (w3)1 = (α pβ)1. Alternatively, rule f 2.2 (or
g2.2) would be applicable in C2, bringing the string back to C1. There, one could return to C2 by using
f 1.1, g1.1, f 1.7 or g1.7. The last two possibilities (if applicable at all) would just undo the previous
step and hence offer no progress in the derivation, or they would exchange an occurrence of g4 with
an occurrence of f 4 or vice versa. The first two mentioned rules would add a symbol from { f ′,g′} to
the string obtained from w3 by previously adding a symbol from { f 4,g4}. Hence, if we think of the
statement that our inductive argument should prove, we keep up a balanced situation as required. Now,
in C1, the rule p1.1 cannot be applied again, as no X ∈ N′ is present. So, the only applicable rule
(within the rules in C1 that are meant to deal with simulating context-free rules) is p1.2 which results in
(w3)3 = (α pbY β)3. In C3, the introduced marker p is deleted and the resultant string w4 = αbY β is sent
to C1, thus the intended and desired derivation is correctly simulated. Notice that we could also apply
f 3.2 or g3.2 instead of p3.1, which would delete some f ′ or g′ that might have been introduced earlier.
However, this would then create an imbalanced situation, with less occurrences of symbols from { f ′,g′}
than from { f 4,g4} within a string in C1. As we will see, such an imbalance can never be resolved, so

H. Fernau, L. Kuppusamy, and I. Raman 109

that such a string will not yield a terminal string. There is one possibility after applying p1.1 and p2.1
that still needs to be discussed. It might be possible to apply f 1.1 on w3 = α pβ . This is only possible if
α = α1Aα2, so that we arrive at (u4)2 = (α1 f ′Aα2 pβ)2. Now, f 2.2 or g2.2 may be applicable, bringing
us back to C1. However, this will maintain a balanced situation as claimed. Moreover, as the reader can
check, this is indeed the only possible continuation, keeping in mind that AB will not occur as a substring
in the present string due to SGNF. So, in various ways, along with a simulation of a context-free rule, we
may add symbols from { f ′,g′, f 4,g4}, but this always happens in a balanced way if it might be fruitful.

The correctness of the simulation of the h-rule is easily seen. Notice that there are again possibilities to
introduce or delete symbols from { f ′,g′, f 4,g4} similar as discussed above for simulating p-rules.

Applying f 1.1 to w1 = αXβ for some α ∈ {A,C}∗, β ∈ ({B,D}∪T)∗ and X ∈ N′, the marker f ′ will
be inserted to the left of some occurrence of A, yielding (w2)2 = (α1 f ′Aα2Xβ)2, with α = α1Aα2. As
w1 = αXβ indicates that we are simulating phase I of the work of the SGNF grammar G, the substring
AB is absent, preventing us from applying f 2.1. We might continue with f 2.2 or g2.2, though, which
introduces an occurrence of f 4 or g4, respectively. This is one possibility how we can obtain ‘pairs’ of
occurrences of symbols from { f ′,g′} and { f 4,g4}, but we clearly maintain a balanced situation. Still,
we might delete X with p2.1, say, but then we arrive at a typical imbalanced situation. We would have
to apply f 1.1 or f 1.2 or f 1.4 next, as no markers from the context-free rule simulations are present. In
the first case, we see that we maintain an imbalanced situation of which we can never get rid, while in
the second and third case, the derivation is blocked in C4 because of the lack of appropriate f -markers.

We could lead a similar discussion for applying f 1.7 to a string that contains one occurrence of N′-
symbols and at least one occurrence of f 4; in particular, the arguments concerning (im)balance remain
the same, because for this condition, it does not matter whether we add f ′ or delete f 4.

We shall discuss the cases for the f -rule simulation next, including that the rules f 1.i were applied in
a wrong manner. Recall the discussion of the Caveat above which ruled out a premature application
of f 1.2 or of f 1.4. We cannot start with any rules that require the presence of f -markers, apart from
those stemming from a balanced situation that we will discuss below. We therefore discuss a derivation
starting with f 1.1 on w1 as intended. Again by the absence of the marker f ′′, we have to apply f 2.1
next, shifting the discussion of a balanced situation as created after applying f 2.2 to what we say further
down. The role of rule f 2.1 is crucial insofar as it checks that the substring AB is present in the current
string. It is one of the important properties of SGNF that this substring can only occur once in a derived
string, and this also means that we are in phase II of the SGNF derivation. By induction, we can assume
this property also to hold for the string w1 that is under discussion. In other words, we can assume that
w1 = αABβ . Then, after applying f 1.1 and f 2.1, we are in the configuration (w2)1 = (α ′ f ′α ′′A f Bβ)1
with α = α ′α ′′, and α ′′ being a string that is either empty or it starts with an A. The intention would be
to apply f 1.2 on w2. As the marker f 2 is absent, we have to apply f 4.1 now. This is only possible if
α ′′ is empty. Hence, (w2)1 = (α f ′A f Bβ)1, and after applying f 1.2 and f 4.1, we necessarily arrive at
the configuration (w3)1 = (α f ′ f ′′ f 2 f Bβ)1. We now check the other possibilities in configuration (w2)1.
Due to the absence of f 3, f ′′′ and f 4, only f 1.1, f 1.3, or f 1.4 are applicable. If we apply f 1.1, then as
there is no second substring AB nor the f -marker f 2 present, we have to introduce f 4 next to obtain a
configuration (u)1 where u contains two occurrences of f ′ and one occurrence of f and one of f 4. So, on
(u)1, we might apply f 1.2, followed by f 4.1. As argued above for the main line of derivation, this means
that we arrive at a configuration (v)1 with v = α1 f ′α2 f ′ f ′′ f 2 f β1B f 4β2, with α1α2 = α and β1Bβ2 = β .
In fact, we could continue now with the derivation, closely following the main line, the only difference
being an additional f ′ and f 4 being present in the string. This indicates that balanced situations are not
necessarily a problem and also shows how they can arise. On applying f 1.3, we can delete f , but this

110 When Stars Control a Grammar’s Work

takes us back to (w2)2. This analysis tells us that, in configuration (w2)1, we have to apply f 1.2.
Now, we study the configuration (w3)1 = (α f ′ f ′′ f 2 f Bβ)1. If we apply f 1.1, we again have to

introduce an occurrence of f 4 and can then follow the main line of derivation, which will finally lead
to a balanced situation. If we delete A or B, the derivation is stuck in C4. Hence, the only applicable,
promising rule is f 1.3, deleting f and moving to C2. After deleting f 2, we get back to C1 with nearly
the same (im)possibilities as just discussed, except that f 1.3 is no longer available. Therefore, such a
derivation cannot lead to a terminal string. Hence, in C2 the rule f 2.2 must be applied, giving, with
β ′β ′′ = β and β ′ being empty or ending with B, (w3)1 = (α f ′ f ′′ f 2 f Bβ ′ f 4β ′′)1. Again, we might add a
second f ′ with no fruitful continuation now, except for possibly creating other balanced situations finally.
If we delete A, then the derivation is stuck in C4. If we delete f 4 with f 1.7, we have to delete f 2 in C2
(unless we want to un-do f 1.7 by applying f 2.2) and then, whatever we apply next (f 1.1 or f 1.2 or f 1.4),
the derivation is stuck, ignoring the possibility to add more and more occurrences of f ′ and f 4. Therefore,
on w3, we have to apply f 1.4 which deletes one B. In C4, we can only apply any rule if β ′ is empty,
so that f 4.2 is applicable, resulting in (w4)1 = (α f ′ f ′′ f 2 f ′′′ f 3 f 4β)1. The next six rule applications will
delete all six f -markers; several ways to do this are possible. What could go wrong? Introducing a
second f ′-occurrence is again not interesting: it has to be matched by adding a f 4-occurrence; if we
delete f 2 instead, then the addition of f 4 is indirect insofar, as f 1.7 need not be executed to delete f 2.
After applying f 1.5, f 3.1, f 1.6 and f 3.2, we end up with a string from which one could delete any A-
or B-occurrence and try to restart with f 4.2. Yet, now the symbols f ′′′ and f 3 can only be deleted if one
introduces two additional occurrences of { f ′, f ′′}, requiring a complete re-start of the simulation; it is
not possible to get rid of f ′′′ and f 3 otherwise. Such a re-start would require the substring AB which is
currently not present. Hence, (α f 2 f 4β)1 can only be continued as intended, applying f 1.7 and f 2.3.
More on balanced situations. As we have been mentioning these over and over again in the previous argu-
ments, let us briefly discuss possibilities when we do have some balanced occurrences from { f ′,g′, f 4,g4}
in configuration (w1)1, e.g., w1 = αABβ where α ∈ {A,C}∗{ f ′} and β contains exactly one occurrence
from { f 4,g4}. Then, instead of applying f 1.1, we could start the derivation with f 1.7 or g1.7. Notice
that this yields a configuration (w2)2 that could have also been obtained when starting from (α ′ABβ ′)1
and applying f 1.1, where α ′ is obtained from α by deleting f ′ and β ′ is obtained from β by deleting
the unique occurrence of either f 4 or g4. This shows that balanced situations can lead to terminal strings
finally, as they may converge again to the main line of derivation. Importantly, no new terminal strings
can be derived that are not following the possibilities given by G.

This concludes the main arguments concerning the inductive step and hence the claim follows. �

4 Summary and Open Problems

In this paper, we focused on examining the computational power of graph-controlled ins-del systems
with a star as a control graph. We lowered the resource requirements to describe RE, all recursively
enumerable languages. We leave it open to explore the following possibilities.

1. GCIDS(k;2, i′, i′′;1, j′, j′′) ?
= RE for i′+ i′′ ≤ 1 and j′+ j′′ ≤ 1 and some k as small as possible,

2. GCIDS(k′;2,0,0;1, i′, i′′) ?
= RE for i′+ i′′ ≤ 1 and some k′ as small as possible.

Here we only considered GCID systems where the underlying graph is star-controlled and does not
contain loops. One may also consider a tree structure and / or the possibility to allow loops (i.e., rules
have option ‘here’ and the resultant string can stay back in the same component if such rules are applied),
which may give additional power and connect closer to ins-del P systems and also to the results of [9].

H. Fernau, L. Kuppusamy, and I. Raman 111

References

[1] A. Alhazov, R. Freund, S. Ivanov & S. Verlan (2022): Regulated Insertion-Deletion Systems. Journal of
Automata, Languages and Combinatorics 27(1-3), pp. 15–45, doi:10.25596/jalc-2022-015.

[2] R. Benne, editor (1993): RNA Editing: The Alteration of Protein Coding Sequences of RNA. Ellis Horwood.

[3] H. Fernau, L. Kuppusamy & I. Raman (2017): On the computational completeness of graph-
controlled insertion-deletion systems with binary sizes. Theoretical Computer Science 682, pp. 100–121,
doi:10.1016/j.tcs.2017.01.019.

[4] H. Fernau, L. Kuppusamy & I. Raman (2019): On path-controlled insertion-deletion systems. Acta Infor-
matica 56(1), pp. 35–59, doi:10.1007/s00236-018-0312-2.

[5] H. Fernau, L. Kuppusamy & I. Raman (2021): On the generative capacity of matrix insertion-deletion sys-
tems of small sum-norm. Natural Computing 20(4), pp. 671–689, doi:10.1007/s11047-021-09866-y.

[6] R. Freund, M. Kogler, Y. Rogozhin & S. Verlan (2010): Graph-Controlled Insertion-Deletion Systems. In
I. McQuillan & G. Pighizzini, editors: Proceedings Twelfth Annual Workshop on Descriptional Complexity
of Formal Systems, DCFS, EPTCS 31, pp. 88–98, doi:10.4204/EPTCS.31.11.

[7] V. Geffert (1991): Normal forms for phrase-structure grammars. RAIRO Informatique théorique et Appli-
cations/Theoretical Informatics and Applications 25, pp. 473–498, doi:10.1051/ita/1991250504731.

[8] S. Ivanov & S. Verlan (2014): About One-Sided One-Symbol Insertion-Deletion P Systems. In A. Alhazov,
S. Cojocaru, M. Gheorghe, Y. Rogozhin, G. Rozenberg & A. Salomaa, editors: Membrane Computing - 14th
Int. Conf., CMC 2013, LNCS 8340, Springer, pp. 225–237, doi:10.1007/978-3-642-54239-8_16.

[9] S. Ivanov & S. Verlan (2017): Universality and Computational Completeness of Controlled Leftist Insertion-
Deletion Systems. Fundamenta Informaticae 155(1-2), pp. 163–185, doi:10.3233/FI-2017-1580.

[10] L. Kari, Gh. Păun, G. Thierrin & S. Yu (1999): At the crossroads of DNA computing and formal languages:
Characterizing recursively enumerable languages using insertion-deletion systems. In: Discrete Mathematics
and Theretical Computer Science, DIMACS 48, AMS, pp. 329–338, doi:10.1090/dimacs/048/23.

[11] L. Kari & G. Thierrin (1996): Contextual Insertions/Deletions and Computability. Information and Compu-
tation 131(1), pp. 47–61, doi:10.1006/inco.1996.0091.

[12] A. Krassovitskiy, Y. Rogozhin & S. Verlan (2008): Further Results on Insertion-Deletion Systems with One-
Sided Contexts. In C. Martín-Vide, F. Otto & H. Fernau, editors: Language & Automata Theory & Applica-
tions, LATA, LNCS 5196, Springer, pp. 333–344, doi:10.1007/978-3-540-88282-4_31.

[13] S. N. Krishna & R. Rama (2002): Insertion-Deletion P Systems. In N. Jonoska & N. C. Seeman, editors:
DNA Computing, 7th Int. Workshop on DNA-Based Computers, 2001, LNCS 2340, Springer, pp. 360–370,
doi:10.1007/3-540-48017-X_34.

[14] S. Marcus (1969): Contextual grammars. Revue Roumaine de Mathématiques Pures et Appliquées 14, pp.
1525–1534.

[15] A. Matveevici, Y. Rogozhin & S. Verlan (2007): Insertion-Deletion Systems with One-Sided Contexts. In:
MCU, LNCS 4664, Springer, pp. 205–217, doi:10.1007/978-3-540-74593-8_18.

[16] Gh. Păun (1997): Marcus Contextual Grammars. Studies in Linguistics and Philosophy 67, Kluwer,
doi:10.1007/978-94-015-8969-7_4.

[17] Gh. Păun, G. Rozenberg & A. Salomaa (1998): DNA Computing: New Computing Paradigms. Springer,
doi:10.1007/978-3-662-03563-4.

[18] I. Petre & S. Verlan (2012): Matrix insertion-deletion systems. Theoretical Computer Science 456, pp. 80–88,
doi:10.1016/j.tcs.2012.07.002.

[19] A. Takahara & T. Yokomori (2003): On the computational power of insertion-deletion systems. Natural
Computing 2(4), pp. 321–336, doi:10.1023/B:NACO.0000006769.27984.23.

[20] S. Verlan (2010): Recent Developments on Insertion-Deletion Systems. The Computer Science Journal of
Moldova 18(2), pp. 210–245.

https://doi.org/10.25596/jalc-2022-015
https://doi.org/10.1016/j.tcs.2017.01.019
https://doi.org/10.1007/s00236-018-0312-2
https://doi.org/10.1007/s11047-021-09866-y
https://doi.org/10.4204/EPTCS.31.11
https://doi.org/10.1051/ita/1991250504731
https://doi.org/10.1007/978-3-642-54239-8_16
https://doi.org/10.3233/FI-2017-1580
https://doi.org/10.1090/dimacs/048/23
https://doi.org/10.1006/inco.1996.0091
https://doi.org/10.1007/978-3-540-88282-4_31
https://doi.org/10.1007/3-540-48017-X_34
https://doi.org/10.1007/978-3-540-74593-8_18
https://doi.org/10.1007/978-94-015-8969-7_4
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1016/j.tcs.2012.07.002
https://doi.org/10.1023/B:NACO.0000006769.27984.23

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 112–126, doi:10.4204/EPTCS.386.10

© N. Gribovskaya, I. Virbitskaite

This work is licensed under the

Creative Commons Attribution License.

Comparative Transition System Semantics for

Cause-Respecting Reversible Prime Event Structures

Nataliya Gribovskaya Irina Virbitskaite

A.P. Ershov Institute of Informatics Systems
the Siberian Branch of the Russian Academy of Sciences
6, Acad. Lavrentiev avenue, 630090, Novosibirsk, Russia

{natamosk,virbitskaite}@gmail.com

Reversible computing is a new paradigm that has emerged recently and extends the traditional

forwards-only computing mode with the ability to execute in backwards, so that computation can

run in reverse as easily as in forward. Two approaches to developing transition system (automaton-

like) semantics for event structure models are distinguished in the literature. In the first case, states

are considered as configurations (sets of already executed events), and transitions between states are

built by starting from the initial configuration and repeatedly adding executable events. In the second

approach, states are understood as residuals (model fragments that have not yet been executed), and

transitions are constructed by starting from the given event structure as the initial state and delet-

ing already executed (and conflicting) parts thereof during execution. The present paper focuses on

an investigation of how the two approaches are interrelated for the model of prime event structures

extended with cause-respecting reversibility. The bisimilarity of the resulting transition systems is

proved, taking into account step semantics of the model under consideration.

1 Introduction

Reversible computations, extensively studied during in recent years, is an unconventional form of compu-

tations that can be performed in the forward direction as easily as in the reverse direction. Any sequence

of actions executed by the system can subsequently be canceled for some reason (for example, in case

of an error), which allows the system to restore previous consistent states, as if these canceled actions

were not executed at all. Reversible computing is attracting interest for its applications in many fields

including program analysis and debugging [20], programming abstractions for reliable systems [11, 23],

modelling biochemical reactions [18], hardware design and quantum computing [12], and etc.

Despite the fact that reversing computations in concurrent/distributed systems has many promising

applications, it also involves many technical and conceptual challenges. One of the most essential issues

that arise concerns the techniques that should be applied when moving backwards. Several different

styles of the undoing of computation have been identified recently. The most prominent of these are

backtracking [26], causal reversibility [25, 26], and out-of-causal-order reversibility [26, 28], that differ

in the order of executing actions in backward direction. Backtracking is generally understood as the

ability to execute past actions in the exact reverse order in which they were executed. Causal reversibility

in concurrent systems means that actions that cause others can only be undone after the caused actions

are undone first, and that actions which are independent of each other can be reversed in an arbitrary

order. Out-of-causal reversibility, a form of reversal most characteristic of biochemical systems, does

not preserve causes. The interplay between reversibility and concurrency has been widely studied in

various models: parallel rewriting systems [1], cellular automata [16], process calculi [11, 19], Petri nets

[6, 13, 26], event structures [24, 27, 30], membrane systems [29], and etc.

http://dx.doi.org/10.4204/EPTCS.386.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

N. Gribovskaya, I. Virbitskaite 113

Event structures are a well-established model of concurrency. They were originally proposed by

Winskel in his PhD dissertation [32] and were considered as an intermediate abstraction between Scott

domains (i.e., a denotational model) and Petri nets (i.e., an operational model). Basically, event structures

are collections of possible events, some of which are conflicting (i.e., the execution of an event forbids

the execution of other events), while others are causally dependent (i.e., an event cannot be executed if

it has not been preceded by other ones), and events that are neither in causal dependency nor in conflict

are treated as concurrent. Events are often labelled with actions, to represent different occurrences of the

same action. Prime Event Structures (written PESs) are the earliest and simplest form of event structures,

where causality is a partial order and conflict between events is inherited by their causal successors. The

association of transition system (automaton-like) models with event structures has proved to contribute

to studying and solving various problems in the analysis and verification of concurrent systems. It is

distinguished two methods of providing transition system semantics for event structures: a configuration-

based and a residual-based method. In the first case (see [2, 3, 31, 15, 17, 32, 33] among others), states

are understood as sets of events, called configurations, and state transitions are built by starting with

the initial configuration and enlarging configurations by already executed events. In the second more

‘structural’ method (see [5, 9, 10, 17, 21] among others), states are understood as event structures, and

transitions are built by starting with the given event structure as an initial state and removing already

executed (and conflicting) parts thereof in the course of execution. In the literature, configuration-based

transition systems seem to be predominantly used as the semantics of event structures, and residual-

based transition systems are actively used in providing operational semantics of process calculi and in

demonstrating the consistency of operational and denotational semantics. The two kinds of transition

systems have occasionally been treated alongside each other (see [17] as an example), but their general

relationship has not been studied for a wide range of existing models. In a seminal paper, viz. [22],

bisimulations between configuration-based and residual-based transition systems have been proved to

exist for prime event structures [33]. The result of [22] has been extended in [7] to more complex event

structure models with asymmetric conflict. The paper [8] demonstrated that when using non-executable

events, the removal operators defined in [22, 7] to obtain residuals can be tightened in such a way that

isomorphisms, rather than just bisimulations, between the two types of transition systems belonging to

a single event structure can be obtained, for a full spectrum of semantics (interleaving, step, pomset,

multiset).

Reversible event structures extend event structures to represent reversible computational processes,

capable of undoing executed actions by allowing configurations to evolve by eliminating events. In

[27, 30], Phillips et. al. determined causal and out-of-causal reversible forms of prime, asymmetric

and general event structures and showed the correspondence between their configurations and traditional

ones when there are no reversible events. In [4], Aubert and Cristescu have provided a true concurrent se-

mantics of a reversible extension of CCS, RCCS (without auto-concurrency, auto-conflict, or recursion),

in terms of configuration structures. In [14], Graversen et. al. have developed a category of reversible

bundle event structures with symmetric conflict and used the causal subcategory to model semantics of

another reversible extension of CCS, CCSK. They also modified CCSK to control reversibility with a

rollback primitive, and gave, by exploiting the capacity for out-of-causal reversibility, semantics of this

kind of CCSK in terms of reversible bundle event structures with asymmetric conflict. Constructions as-

sociating causal reversible prime event structures to reversible occurrence nets and vice versa have been

proposed within causal reversibility in [25], as well as within out-of-causal reversibility in [24].

The aim of this paper is to identify two (configuration-based and residual-based) types of transition

system semantics for cause-respecting reversible prime event structures and to understand how these

types relate to each other, which can assist in the construction of algebraic calculi to describe and verify

114 Comparative Transition System Semantics for Cause-Respecting RPESs

reversible concurrent processes.

This paper is structured as follows. In Section 2, we start with recalling the syntax of prime and

reversible prime event structures and their (step) semantics in terms of configurations and traces. In Sec-

tion 3, we define a removal operator, which is useful for constructing model residuals, and demonstrate

the correctness of the operator. In Section 4, we develop two types of transition system semantics for

cause-respecting reversible prime event structures and establish bisimulation results between the seman-

tics. In Section 5, we provide some concluding remarks. The proofs of the propositions presented here

can be found at www.iis.nsk.su/virb/proofs-AFL-2023.

2 Reversing in Prime Event Structures

In this section, we first recall the notion of prime event structures (PESs) [32] labeled over the set L =
{a,b,c, . . .} of actions, and then formulate the concept of reversible prime event structures (RPESs) [27]

and consider their (step) semantics and properties.

The behavior of concurrent systems is formally modelled by event structure models where units

of the behavior are represented by events. There are different ways to relate events. In prime event

structures (PESs), the dependency between events, called causality, is given by a partial order, and the

incompatibility is determined by a conflict relation. Two events which are neither in causal dependency

nor in conflict are considered independent (concurrent).

Definition 1. A (labeled) prime event structure (PES) (over the set L of actions) is a tuple E = (E, <, ♯,

l, C0), where

• E is a countable set of events;

• < ⊆ E ×E is an irreflexive partial order (the causality relation) satisfying the principle of finite

causes: ∀e ∈ E ⋄ ⌊e⌋ = {e′ ∈ E | e′ < e} is finite;

• ♯⊆ E ×E is an irreflexive and symmetric relation (the conflict relation) satisfying the principle of

hereditary conflict: ∀e,e′,e′′ ∈ E ⋄ e < e′ and e ♯ e′′ then e′ ♯ e′′;

• l : E → L is a labeling function;

• C0 = /0 is the initial configuration(1) .

So, the PES is a simple event-based model of concurrent and nondeterministic computations where

events labeled over the set L of actions are considered as atomic, indivisible and instantaneous action

occurrences, some of which can only be executed after another (i.e. there is a causal dependency repre-

sented by a partial order ≤ between the events) and some of which might not be executed together (i.e.

there is a binary conflict ♯ between the events). In addition, the principle of finite causes and the principle

of conflict inheritance are required.

The PES progresses by executing events, thus moving from one state to another, starting from the

initial state, which is an empty set. A state called a configuration is a set of events that have occurred. A

subset of events X ⊆ E is left-closed under < iff for all e ∈ X it holds that ⌊e⌋ ⊆ X ; is conflict-free iff for

all e,e′ ∈ X it holds that ¬(e ♯ e′), and we denote it with CF(X). A subset C ⊆ E is a configuration of E

iff C is finite, left-closed under < and conflict-free.

Reversible prime event structures (RPESs) [27, 30] are based on a weaker form of PESs because

conflict inheritance may not hold when adding reversibility to PESs. Also, in RPESs, some events are

(1)We add the initial configuration as an empty set to the classical PES definition, but this does not affect the behavior of the

structure in any way, because the PES progresses by moving from one configuration to another and starting from an empty set.

N. Gribovskaya, I. Virbitskaite 115

categorised as reversible, and two relations are added: the reverse causality relation and the prevention

relation. The first one is a dependency relation in the backward direction: to reverse an event in the

current configuration there must be other events on which the event reversibly depends. The second

relation, on the contrary, identifies those events whose presence in the current configuration prevents the

event being reversed.

Definition 2. A (labeled) reversible prime event structure (RPES) (over L) is a tuple E = (E, <, ♯, l, F,

≺, ✄, C0), where

• E is a countable set of events;

• ♯⊆ E ×E is an irreflexive and symmetric relation (the conflict relation);

• <⊆E×E is an irreflexive partial order (the causality relation) satisfying: ⌊e⌋ is finite and conflict-

free, for every e ∈ E;

• l : E → L is a labeling function;

• F ⊆ E are reversible events being denoted by the set F = {e | e ∈ F} such that F ∩E = /0;

• ≺⊆ E ×F is the reverse causality relation satisfying: a ≺ a and {e ∈ E | e ≺ a} is finite and

conflict-free, for every a ∈ F;

• ✄⊆ E ×F is the prevention relation such that ✄∩≺= /0;

• ≪ is the transitive sustained causation relation: a ≪ b is defined to mean that a < b and if a ∈ F

then b✄a. ♯ is hereditary w.r.t. the sustained causation ≪: if a ♯ b ≪ c then a ♯ c;

• C0 ⊆ E is the initial configuration which is finite, left-closed under < and conflict-free.

It is straightforward to check that any PES is also an RPES with F = /0 and C0 = /0. Then, any concept

defined for RPESs applies to PESs as well.

Example 1. Consider the structure E0 = (E0, <0, ♯0, l0, F0, ≺0, ✄0, C0
0), where E0 = {a,b,c,d,e};

<0= {(b,d),(c,e)}; ♯0 = {(a,b),(b,a),(b,c), (c,b)}; l0 is the identical function; F0 = {b,c}; ≺0=
{(b,b),(c,c)}; ✄0 = /0; C0

0 = /0. It is easy to make sure that the components of the structure E0 meet the

requirements of the corresponding items of Definition 2. In particular, we see that ≺0= {(b,b),(c,c)}
and (b,b),(c,c) 6∈ ✄0. Notice that ♯0 is not hereditary w.r.t. <0 because a ♯0 b <0 d and ¬(a ♯0 d),
b ♯0 c <0 e and ¬(b ♯0 e), c ♯0 b <0 d and ¬(c ♯0 d). From Definition 2, we know that x and y are in

the sustained causation relation iff x causes y, and x cannot be reversed as long as y is present. In E0, the

pairs (b,d) and (c,e) are in the causality relation <0, and the prevention relation ✄0 is empty. Therefore,

the sustained causation relation ≪0 is empty. It is easy to see that ♯0 is hereditary w.r.t. ≪0. So, the

structure E0 is indeed an RPES. ✸

The RPES progresses by executing events and/or by undoing previously executed events, thus mov-

ing from one configuration to another. The act of moving is a computation step. Reachable configurations

are subsets of events which can be reached from the initial configuration by executing computation steps.

A sequence of computation steps is a trace of the RPES.

Definition 3. Given an RPES E = (E,<,♯, l,F,≺,✄,C0), and C ⊆ E such that CF(C),

• for A ⊆ E and B ⊆ F, we say that A∪B is enabled at C if

a) A∩C = /0, B ⊆C, CF(C∪A);

b) ∀e ∈ A, ∀e′ ∈ E : if e′ < e then e′ ∈ (C \B);

c) ∀e ∈ B, ∀e′ ∈ E : if e′ ≺ e then e′ ∈ (C \ (B\{e}));

116 Comparative Transition System Semantics for Cause-Respecting RPESs

d) ∀e ∈ B, ∀e′ ∈ E : if e′✄ e then e′ 6∈ (C∪A).

If A∪B is enabled at C then C
A∪B
−→C′ = (C\B)∪A. We shall write l(A∪B) = M iff M is a multiset

over the set L of actions, defined as follows: M(a) =| {e ∈ (A∪B) | l(e) = a} | for all a ∈ L.

• C is a forwards reachable configuration of E (from C0) iff for all i = 1, . . . ,n (n ≥ 0), there exists a

finite set Ai ⊆ E such that Ci−1
Ai∪ /0i−→ Ci and Cn =C.

• C is a (reachable) configuration of E (from C0) iff for all i = 1, . . . ,n (n ≥ 0), there exist finite sets

Ai ⊆ E and Bi ⊆ F such that Ci−1
Ai∪Bi−→ Ci and Cn = C. In this case, t = (A1 ∪B1) . . . (An ∪Bn)

(n ≥ 0) is a trace of E and last(t) =Cn. The set of (reachable) configurations of E is denoted by

Con f (E), and the set of traces of E — by Traces(E). Clearly, any configuration C ∈Con f (E) is

conflict-free, and any prefix of any trace t ∈ Traces(E) belongs to Traces(E).

• Two traces t = (A1 ∪B1) . . . (An ∪Bn) (n ≥ 0) and t ′ = (A′
1 ∪B′

1) . . . (A
′
m ∪B′

m) (m ≥ 0) of E are

called to be equivalent w.r.t. ∼ (denoted t ∼ t ′) iff last(t) = last(t ′).

The last two items of Definition 3 lead to the following auxiliary

Lemma 1. Given an RPES E = (E,<,♯, l,F,≺,✄,C0), it holds:

(i) {last(t) | t ∈ Traces(E)}= Conf (E);

(ii) for any t ∈ Traces(E), if t(A∪B) ∈ Traces(E) then last(t)
A∪B
→ last(t(A∪B));

(iii) for any t, t ′ ∈ Traces(E), if last(t)
A∪B
→ last(t ′) then t(A∪B) ∈ Traces(E) and t(A∪B)∼ t ′.

Example 2. First, recall the RPES E0 = (E0, <0, ♯0, l0, F0, ≺0, ✄0, C0
0) (see Example 1) with the

components: E0 = {a,b,c,d,e}; <0= {(b,d),(c,e)}; ♯0 = {(a,b),(b,a),(b,c),(c,b)}; l0 is the identical

function; F0 = {b,c}; ≺0= {(b,b),(c,c)}; ✄0 = /0; C0
0 = /0. We shall check if the sequence t = ({b}∪

/0)({d}∪ /0)(/0∪{b})({c}∪ /0)({e}∪ /0)(/0∪{c}) is a trace of E0, using Definition 3. First, we need to

show that ((A1 = {b})∪ (B1 = /0)) is enabled at C0
0 . Item a) is true because (A1 = {b})∩ (C0

0 = /0) = /0,

B1 = /0 ⊆C0
0 , and (/0∪{b}) is conflict-free. Item b) is correct, since the event b has no causes, i.e. there

is no e′ ∈ E0 such that e′ <0 b. As B1 = /0, items c) and d) are met. Then, we have C0
0

{b}∪ /0
−→ C0

1 = {b}.

Second, verify if ((A2 = {d})∪ (B2 = /0)) is enabled at C0
1 . We see that (A2 = {d})∩ (C0

1 = {b}) = /0,

B2 = /0 ⊆C0
1 , and {b,d} is conflict-free. Hence, item a) is correct. Item b) is met because d has the only

cause b belonging to C0
1 \B2. Due to B2 = /0, items c) and d) are true. So, we get C0

1

{d}∪ /0
−→ C0

2 = {b,d}.

Third, make sure that ((A3 = /0)∪ (B3 = {b})) is enabled at C0
2 . Items a) is fulfilled thanks to A3 = /0,

B3 = {b} ⊆ C0
2 , and C0

2 is conflict-free. Clearly, item b) is true. Item c) holds because the only reverse

cause for the event b is the event itself, which is in {b,d} = (C0
2 \ (B3 \ {b})). As ✄0 = /0, item d) is

correct. Hence, we obtain C0
2

/0∪{b}
−→ C0

3 = {d}. Fourth, demonstrate that ((A4 = {c})∪(B4 = /0)) is enabled

at C0
3 . We see that (A4 = {c})∩ (C0

3 = {d}) = /0, B4 = /0 ⊆C0
3 , and C0

3 ∪A4 = {c,d} is conflict-free. This

means that item a) is correct. Item b) is met thanks to the fact that c has no causes. Because of B4 = /0,

items c) and d) are met. Therefore, C0
3

{c}∪ /0
−→ C0

4 = {c,d} is true. Fifth, check that ((A5 = {e})∪ (B5 = /0))
is enabled at C0

4 . Since (A5 = {e})∩(C0
4 = {c,d}) = /0, B5 = /0⊆C0

4 , (C0
4 ∪A5) = {c,d,e} is conflict-free,

item a) is correct. As e has the only cause c belonging C0
4 \B5, item b) is met. Due to B5 = /0, items c)

and d) are true. Hence, we get C0
4

{e}∪ /0
−→ C0

5 = {c,d,e}. Finally, we examine if ((A6 = /0)∪ (B6 = {c})) is

enabled at C0
5 . Item a) is fulfilled thanks to A6 = /0, B6 = {c} ⊆ C0

5 , and C0
5 is conflict-free. Obviously,

item b) is true. Item c) holds because the only reverse cause for the event c is the event itself, which is in

N. Gribovskaya, I. Virbitskaite 117

{c,d,e} = (C0
5 \ (B6 \{c})). Because of ✄0 = /0, item d) is correct. So, we obtain C0

5

/0∪{c}
−→ C0

6 = {d,e}.

Thus, t is indeed a trace of E0.

Reasoning analogously, we get the following configurations of E0: /0, {a}, {b}, {c}, {d}, {e}, {b,d},

{c,e}, {c,d}, {b,e}, {d,e}, {b,d,e}, {c,d,e}. Since the event a is independent with each of the events c,

d, e, we get the additional configurations: {a,c}, {a,d}, {a,e}, {a,c,e}, {a,c,d}, {a,d,e}, {a,c,d,e}.

Since the pair (a,b) ((b,c)) is in the conflict relation ♯0, the events a and b (b and c) cannot occur

together in any configuration. Therefore, all the configurations of E0 are listed above. Some of the maxi-

mal traces of E0 are: (t1t2)
∗({a}∪ /0)t2t4t2, (t1t2)

∗t4(t1t2)
∗({a,c}∪ /0)t5, (t1t2)

∗t3(t1t2)
∗t4(t1t2)

∗({a,c}∪
/0)t5, (t1t2)

∗t3(t1t2)
∗({c}∪ /0)({a,e}∪ /0)t5, where t1 = (({b}∪ /0)(/0∪{b}))∗, t2 = (({c}∪ /0)(/0∪{c}))∗,

t3 = ({b}∪ /0)({d}∪ /0)(/0∪{b}), t4 = ({c}∪ /0)({e}∪ /0)(/0∪{c}), t5 = (/0∪{c})({c}∪ /0).

Second, consider the structure E1 = (E1, <1, ♯1, l1, F1, ≺1, ✄1, C1
0), where E1 = {a,b}; <1= {(a,b)};

♯1 = /0; l1 is the identical function; F1 = {a}; ≺1= {(a,a)}; ✄1 = /0; C1
0 = /0. It is easy to see that E1 is an

RPES. As the only pair (a,b) is in the causality relation <1, i.e., the event a has no cause and it causes the

event b, the event a can occur first and only after that b can happen. Then, we obtain the forward steps:

/0
({a}∪ /0)
→ {a}

({b}∪ /0)
→ {a,b}. The intended meaning of a ≺1 a is that the event a can be undone if it has

occurred in a configuration. In this regard, the reverse step {a}
(/0∪{a})
→ /0 is possible, thanks to (b,a) 6∈≺1

and ✄1 = /0. Moreover, the event a can be undone in the configuration {a,b} even though the event b is

present because (b,a) 6∈ ✄1. This means that we can move backwards from {a,b} to {b} by executing

the step (/0∪{a}). Therefore, the configurations of E1 are /0, {a}, {b}, {a,b}, and the traces of E1 are all

prefixes of the trace (({a}∪ /0)(/0∪{a}))∗({a}∪ /0)({b}∪ /0)((/0∪{a})({a}∪ /0))∗(/0∪{a}).

Third, examine the structure RPES E2 = (E2, <2, ♯2, l2, F2, ≺2, ✄2, C2
0), where E2 = {a,b}; <2= /0;

♯2 = /0; l2 is the identical function; F2 = {a}; ≺2= {(a,a)}; ✄2 = {(b,a)}; C2
0 = /0. It is not difficult to

check that E2 is an RPES. As the causality relation <2 and the conflict relation ♯2 are empty, the events

a and b are independent, and, therefore, they can take place in any order. This leads to the following

forward steps: /0
({a}∪ /0)
→ {a}

({b}∪ /0)
→ {a,b} and /0

({b}∪ /0)
→ {b}

({a}∪ /0)
→ {a,b}. Since b✄2 a, we conclude that

b prevents the undoing of a, i.e. a cannot be undone if b is present. So, we can go back from {a} to /0

by executing the step (/0∪{a}) and cannot move backwards from {a,b}. The configurations of E2 are /0,

{a}, {b}, {a,b}, and the traces of E2 are all prefixes of the traces (({a}∪ /0)(/0∪{a}))∗({a}∪ /0)({b}∪
/0), (({a}∪ /0)(/0∪{a}))∗({a,b}∪ /0), (({a}∪ /0)(/0∪{a}))∗({b}∪ /0)({a}∪ /0).

It is not difficult to verify the truth of Lemma 1 for all the RPESs discussed above. ✸

RPESs are able to model such a peculiarity of reversible computation as causal-consistent reversibil-

ity which relates reversibility with causality: an event can be undone provided that all of its effects have

been undone. This allows the system to get back to a past state, which could only be reached by forward

computation. This notion of reversibility is natural in reliable concurrent systems since when an error

occurs the system tries to go back to a past consistent state.

Definition 4. An RPES E = (E,<,♯, l,F,≺,✄,C0) is called

• cause-respecting if for any e,e′ ∈ E, if e < e′ then e ≪ e′;

• causal if for any e ∈ E and u ∈ F it holds: e ≺ u iff e = u, and e✄u iff u < e.

Informally, in the cause-respecting and causal RPES, causes can be only undone if their effects are

not present in the current configuration. Clearly, if the RPES is causal, then it is cause-respecting as well.

Example 3. First, recall the RPES E0 (see Examples 1 and 2) with the components: E0 = {a,b,c,d,e};

<0= {(b,d),(c,e)}; ♯0 = {(a,b),(b,a),(b,c), (c,b)}; l0 is the identical function; F0 = {b,c}; ≺0=

118 Comparative Transition System Semantics for Cause-Respecting RPESs

{(b,b),(c,c)}; ✄0 = /0; C0
0 = /0. We know from Example 1 that the sustained causation relation ≪0

is empty, because the causality relation <0 contains the pairs (b,d) and (c,e) and the prevention relation

✄0 is empty. Since ≪0 6=<0, we have that this RPES is neither cause-respecting nor causal.

Second, consider the RPES E1 (see Example 2) with the components: E1 = {a,b}; <1= {(a,b)};

♯1 = /0; l1 is the identical function; F1 = {a}; ≺1= {(a,a)}; ✄1 = /0; C1
0 = /0. It is easy to see that ≪1= /0,

since <1= {(a,b)} and (b,a) 6∈✄1. Then, we obtain <1 6=≪1. So, this RPES is neither cause-respecting

nor causal.

Third, examine the RPES E2 = (E2, <2, ♯2, l2, F2, ≺2, ✄2, C2
0) (see Example 2) with the components:

E2 = {a,b}; <2= /0; ♯2 = /0; l2 is the identical function; F2 = {a}; ≺2= {(a,a)}; ✄2 = {(b,a)}; C2
0 = /0.

The RPES is cause-respecting, because the causality relation <2 is empty, and, hence, for the only

reversible event a of E3, the set of its effects is empty, which implies <2=≪2= /0. On the other hand, E2

is not causal, because there are the events a and b such that b✄2 a and a ≮2 b.

Fourth, treat the RPES E3 = (E3, <3, ♯3, l3, F3, ≺3, ✄3, C3
0), where E3 = {a,b,c,d}; <3= {(b,d),

(c,d)}; ♯3 = {(a,c), (c,a), (a,d), (d,a)}; l3 is the identical function; F3 = {b}; ≺3= {(a,b), (b,b)};

✄3 = {(d,b)} and C3
0 = {b}. Since for the only reversible event b, the set of its effects is equal to {d} and

d✄3 b is true, we conclude that the RPES is cause-respecting, whereas it is not causal because (a,b)∈≺3

and a 6= b.

Finally, consider the RPES E4 = (E4, <4, ♯4, l4, F4, ≺4, ✄4, C4
0), where E4 = {a,b,c,d}; <4=

{(c,d)}; ♯4 = {(a,c), (c,a), (a,d), (d,a)}; l4 is the identical function; F4 = {c,b}; ≺4= {(b,b), (c,c)};

✄4 = {(d,c)}, C4
0 = {b,c}. The RPES is causal and therefore cause-respecting. This is because <4=

{(c,d)} and ✄4 = {(d,c)}, and the reverse cause for the undoing of the only reversible event is the event

itself, since we have F4 = {b,c} and ≺4= {(b,b),(c,c)}. ✸

Any cause-respecting RPES with the empty initial configuration can be presented as a PES. On the

other hand, any PES can be converted into a causal and therefore cause-respecting RPES with the empty

initial configuration, once we specify which events are to be reversible. The following facts are slight

modifications of Propositions 3.36 and 3.37 from [27].

Proposition 1.

(i) If E = (E,<,♯, l,F,≺,✄, /0) is a cause-respecting RPES then φ(E) = (E,<,♯, l, /0) is a PES.

(ii) If E = (E,<,♯, l, /0) is a PES and F ⊆ E then ϕ(E ,F) = (E,<,♯, l,F,≺,✄, /0) is a causal RPES,

where e ≺ e for any e ∈ F, and e ✄ e′ for any e ∈ E and e′ ∈ F such that e′ < e. Moreover,

φ(ϕ(E ,F)) = E .

The following lemma states specific features of the configurations of the cause-respecting RPES,

which are left-closed w.r.t. causality and forwards reachable. Thanks to Definitions 2 and 3, the truth

of item (i) follows from Proposition 3.38(1) [27], and the truth of item (ii) — from Proposition 3.40(2)

[27].

Lemma 2. Given a cause-respecting E and its configuration C ∈Con f (E), it holds:

(i) C is left-closed under <;

(ii) if C is reachable, then C is forwards reachable.

The below example explains the above lemma.

Example 4. Recall the non-cause-respecting RPES E0 (with <0= {(b,d),(c,e)}) from Examples 1–

3. We know that {d}, {e}, {b,e}, {c,d}, {d,e}, {b,d,e}, {c,d,e}, {a,d}, {a,e}, {a,c,d}, {a,d,e},

{a,c,e,d} are configurations of E0. Clearly, these configurations are not left-closed under <0. Also,

N. Gribovskaya, I. Virbitskaite 119

we can reach the configurations only by using a combination of forward and reverse steps, i.e. the

configurations are reachable but not forwards reachable.

Consider the non-cause-respecting RPES E1 (with <1= {(a,b)}) from Examples 2–3. The configu-

rations of E1 are /0, {a}, {b}, {a,b}. We see that the configuration {b} is not left-closed under <1. In

addition, the configuration {b} can only be reached with a combination of forward and reverse steps, but

this is not possible when doing only forward steps.

It is easy to check that in the cause-respecting RPES E2 from Examples 2–3, all its configurations

are left-closed under its causality relation and, moreover, forwards reachable. ✸

3 Residuals

The removal operator, the concept of which is based on deleting already executed configurations (traces)

and events that conflict with the events presenting in the configurations (traces), is necessary for residual

semantics.

Introduce the definition of the removal operator for RPESs by using their traces.

Definition 5. For an RPES E = (E,<,♯, l,F,≺,✄,C0) and its trace t = (A1 ∪ B1) . . . (An ∪ Bn) ∈
Traces(E) (n ≥ 0), the residual E \ t of E after t under the removal operator \ is defined by induc-

tion on 0 ≤ i ≤ n as follows:

i = 0. E \ (t0 = ε) = E .

i > 0. E \ ti = (E i, <i=<i−1 ∩ (E i ×E i), ♯i = ♯i−1 ∩ (E i ×E i), li = li−1 |E i , F i, ≺i=≺i−1 ∩ (E i ×F i),
✄

i =✄
i−1 ∩ (E i ×F i), Ci

0), with

– E i = E i−1 \ (Ãi ∪ ♯i−1(Ãi)), where

Ãi = (Ai \F i−1) ∪ (⌊(Ai \F i−1)⌋∩F i−1 = {ã ∈ F i−1 | ∃a ∈ Ai \F i−1 : ã <i−1 a}),
♯i−1(Ãi) = {a ∈ E i−1 | ∃ã ∈ Ãi : a ♯i−1 ã};

– F i = (F i−1 ∩E i)\
(
Âi ∪

ˆ̂Ai

)
, where

Âi = {e ∈ F i−1 | ∃a ∈ ♯i−1(Ãi) : a ≺i−1 e},
ˆ̂Ai = {e ∈ F i−1 | ∃a ∈ Ãi : a✄i−1 e};

– Ci
0 = ((Ci−1

0 \Bi)∪Ai)∩E i.

E \ t = E \ tn.

The intuitive interpretation of the above definition is as follows. In the process of constructing the

residual of the RPES after a trace, all the irreversible events occurred in the current computation step,

their reversible causes and conflicting events thereof are removed, yielding a reduction of all the relations,

the labelling function and the initial configuration in the residual. This is due to the fact that all these

removed events will never be able to occur in any subsequent step. In addition, reversible events become

irreversible, whenever at least one of their reverse causes and/or at least one of the events preventing their

undoing are eliminated because the reversible events can never be undone afterwards. At the same time,

the other reversible events presented in the current step are retained, since they can be reversed in next

steps.

It should be emphasized that for any trace t of the RPES ϕ(E , /0)(2), where E is a PES, the residual

ϕ(E , /0)\ t coincides with the residual E \′ last(t), where \′ is the removal operator defined in [22](3).

(2)See Proposition 1(ii).
(3)In [22], for the PES E = (E,<,♯, l) and its configuration C ∈Con f (E), the residual E \′ C is defined as follows: E \′ C =

(E ′ = E \ (C∪ ♯(C)), ≤ ∩(E ′×E ′), ♯∩ (E ′×E ′), l |E ′), where ♯(C) denotes the events conflicting with the events in C.

120 Comparative Transition System Semantics for Cause-Respecting RPESs

We illustrate the application of the above removal operator with

Example 5. Consider the RPES E2 = (E2, <2, ♯2, l2, F2, ≺2, ✄2, C2
0) (see Examples 2–4) with the

components: E2 = {a,b}; <2= /0; ♯2 = /0; l2 is the identical function; F2 = {a}; ≺2= {(a,a)}; ✄2 =
{(b,a)}; C2

0 = /0. From Example 2 we know that the traces of E2 are (({a}∪ /0)(/0∪{a}))∗, (({a}∪ /0)(/0∪
{a}))∗({a}∪ /0), (({a}∪ /0)(/0∪{a}))∗({a}∪ /0)({b}∪ /0), (({a}∪ /0)(/0∪{a}))∗({a,b}∪ /0), (({a}∪
/0)(/0∪{a}))∗({b}∪ /0), (({a}∪ /0)(/0∪{a}))∗({b}∪ /0)({a}∪ /0).

Applying the removal operator to the RPES E2 and its traces, we obtain the following structures:

– Ẽ2 = E2 \ (A1 = {a} ∪ B1 = /0) = (Ẽ = E2, <̃ =<2, ♯̃ = ♯2, l̃ = l2, F̃ = F2, ≺̃ =≺2, ✄̃ = ✄2,

C̃0 = {a}), because (Ã1 ∪ ♯2(Ã1)) = /0, due to a ∈ F2, and C̃0 = ((C2
0 = /0)∪ (A1 = {a}))∩ (Ẽ =

{a,b}) = {a};

– Ê2 = E2 \ (A1 = {a}∪B1 = /0)(A2 = /0∪B2 = {a}) = E2, since (Ã2 ∪ ♯̇(Ã2)) = /0, thanks to a ∈ F̃ ,

and ((C̃0 = {a})\B2 = {a})∩ Ê2 = /0;

– Ĕ2 = E2 \ (A1 = {a}∪B1 = /0)(A2 = {b}∪B2 = /0) = (Ĕ = {a}, <̆ = /0, ♯̆ = /0; l̆ = l2|{a}; F̆ = /0;

≺̆ = /0; ✄̆ = /0, C̆0 = {a}), because Ã2 = {b}, due to b ∈ A2 \ F̃ , a 6∈ F̆ , due to (b,a) ∈ ✄̃, and

C̆0 = ((C̃0 = {a})∪ (A2 = {b}))∩ (Ĕ = {a}) = {a};

– Ě2 = E2 \(A1 = {a,b}∪B1 = /0) = Ĕ2, since Ã1 = {b}, due to b∈ A1 \F2, a 6∈ F̌ , due to (b,a)∈✄2,

and Č0 = ((C0
2 = /0)∪ (A1 = {a,b}))∩ (Ě = {a}) = {a} = C̆0;

– Ė2 = E2 \(A1 = {b}∪B1 = /0) = (Ė = {a}, <̇= /0, ♯̇= /0, l̇ = l2|{a}, Ḟ = /0, ≺̇= /0, ✄̇= /0, Ċ0 = /0),

because Ã1 = {b}, due to b ∈ A1 \F2, a 6∈ Ḟ , due to (b,a) ∈ ✄2, and Ċ0 = ((C0
2 = /0)∪ (A1 =

{b}))∩ (Ė = {a}) = /0;

– Ë2 = E2 \ (A1 = {b}∪B1 = /0)(A2 = {a}∪B2 = /0) = (Ë = /0, <̈ = /0, ♯̈= /0, l̈ = /0, F̈ = /0, ≺̈ = /0,

✄̈= /0, C̈0 = /0), since Ã2 = {a}, due to a∈ A2\ Ḟ , and C̈0 = ((Ċ0 = /0)∪(A2 = {a}))∩(Ė = /0) = /0.

Notice that the removal operator produces the same residuals after the different traces. For example,

it is easy to see that:

E2 \ ({a}∪ /0)(/0∪{a}) = E2 \ (({a}∪ /0)(/0∪{a}))∗,

E2 \ ({a}∪ /0) = E2 \ (({a}∪ /0)(/0∪{a}))∗({a}∪ /0),
E2 \ ({a}∪ /0)({b}∪ /0) = E2 \ (({a}∪ /0)(/0∪{a}))∗({a}∪ /0)({b}∪ /0),
E2 \ ({a,b}∪ /0) = E2 \ (({a}∪ /0)(/0∪{a}))∗({a,b}∪ /0),
E2 \ ({b}∪ /0) = E2 \ (({a}∪ /0)(/0∪{a}))∗({b}∪ /0),
E2 \ ({b}∪ /0)({a}∪ /0) = E2 \ (({a}∪ /0)(/0∪{a}))∗({b}∪ /0)({a}∪ /0). ✸

Below are some technical facts specific to the removal operator for RPESs.

Lemma 3. Given a cause-respecting RPES E = (E,<,♯, l,F,≺,✄,C0), a trace t = (A1∪B1) . . . (An∪Bn)

(C0

A1∪B1

→ C1 . . . Cn−1

An∪Bn

→ Cn) (n ≥ 0) of E , and E \ t = (En, <n, ♯n, ln, Fn, ≺n, ✄n, Cn
0), it holds:

(i) E j ⊆ E i, F j ⊆ F i, l j ⊆ li, ∇ j ⊆ ∇i (∇ ∈ {<,♯,≺,✄}), for any 0 ≤ i ≤ j ≤ n;

(ii) E \ ti is a cause-respecting RPES, for any 0 ≤ i ≤ n;

(iii) Bi ⊆ F i−1, for any 1 ≤ i ≤ n;

(iv) Ai ⊆ E i−1, for any 1 ≤ i ≤ n;

(v) Ãi ⊆Cn, for any 1 ≤ i ≤ n;

(vi) Cn
0 =Cn ∩En.

N. Gribovskaya, I. Virbitskaite 121

The following two statements demonstrate compositional properties of the residual operator for

cause-respecting RPESs.

Proposition 2. Given a cause-respecting RPES E with a trace t ∈ Traces(E) and its residual E ′ = E \ t

with a trace t ′ ∈ Traces(E ′), it holds that tt ′ ∈ Traces(E), and, moreover, E \ tt ′ = E ′ \ t ′.

So, it turned out that the concatenation of any trace t of the cause-respecting RPES E and any trace

t ′ of the residual E \ t is a trace of E , and, moreover, the residuals E \ tt ′ and E \ t \ t ′ coincide.

Example 6. First, consider the non-cause-respecting E0 = (E0, <0, ♯0, l0, F0, ≺0, ✄0, C0
0) from Ex-

amples 1–4, where E0 = {a,b,c,d,e}; <0= {(b,d),(c,e)}; ♯0 = {(a,b),(b,a),(b,c),(c,b)}; l0 is the

identical function; F0 = {b,c}; ≺0= {(b,b),(c,c)}; ✄0 = /0; C0
0 = /0. As was demonstrated in Example 2,

the sequences ({b}∪ /0), ({b}∪ /0)({d}∪ /0) are traces of E0. Construct the following residuals of E0:

– Ė0 = E0 \ (A1 = {b}∪B1 = /0) = (Ė0 = E0, <̇0 =<0, ♯̇0 = ♯0, l̇0 = l0, Ḟ0 = F0, ≺̇0 =≺0, ✄̇0 =✄0,

Ċ0 = {b}), because (Ã1 ∪ ♯0(Ã1)) = /0, due to b ∈ F0, and, moreover, Ċ0 = ((C0
0 = /0)∪ (A1 =

{b}))∩ (Ė0 = {a,b,c,d,e}) = {b};

– Ë0 = E0 \(A1 = {b}∪B1 = /0)(A2 = {d}∪B2 = /0) = Ë0 = {e}, <̈0 = /0, ♯̈0 = /0, l̈0 = l̇0|{e}, F̈0 = /0,

≺̈0 = /0, ✄̈0 = /0, C̈0 = /0), because Ã2 = {b,d} thanks to d ∈ A2 \ Ḟ0, (b,d) ∈ <̇0 and b ∈ Ḟ0, and

♯̇0(Ã2) = {a,c}, due to (a,b),(b,c) ∈ ♯̇0, and, moreover, Ċ0 = ((Ċ0 = {b})∪ (A2 = {d}))∩ (Ė0 =
{e}) = /0.

It is easy to see that ({e}∪ /0) is a trace of Ë0, whereas the sequence ({b}∪ /0)({d}∪ /0)({e}∪ /0) is

not a trace of E0.

Using Examples 2–5, it is not difficult to make sure that Proposition 2 holds for the cause-respecting

RPES E2. ✸

It is stated below that any suffix t ′ of any trace tt ′ of the cause-respecting RPES E is a trace of the

residual E \ t.

Proposition 3. Given a cause-respecting RPES E with traces t ′, t ′t ′′ ∈ Traces(E), t ′′ ∈ Traces(E \ t ′)
holds.

Example 7. Examine the non-cause-respecting RPES E1 from Examples 2–4, with the components:

E1 = {a,b}; <1= {(a,b)}; ♯1 = /0; l1 is the identical function; F1 = {a}; ≺1= {(a,a)}; ✄1 = /0; C1
0 = /0.

We know that t ′ = ({a}∪ /0)({b}∪ /0) and t = ({a}∪ /0)({b}∪ /0)(/0∪{a})({a}∪ /0) are traces of E1. Let

t ′′ = (/0∪{a})({a}∪ /0). Using Definition 5, we obtain the RPES E1 \t ′ = (E ′
1 = /0, <′

1= /0, ♯′1 = /0, l′1 = /0,

F ′
1 = /0, ≺′

1= /0, ✄′
1 = /0, C′1

0 = /0). It is clear that Traces(E1 \t ′)= /0. Therefore, we get t ′′ 6∈ Traces(E1 \t ′).

Using Examples 2–5, it is not difficult to check that Proposition 3 holds for the cause-respecting

RPES E2. ✸

4 Transition System Semantics for Cause-Respecting RPESs

In this section, we first give some basic definitions concerning labeled transition systems. Then, we

define the mappings TC(E) and TR(E), which associate two distinct kinds of transition systems – one

whose states are configurations and one whose states are residuals – with the RPES E labeled over the

set L of actions.

A transition system T = (S,→, i) labeled over a set L of labels consists of a set of states S, a

transition relation →⊆ S×L ×S, and an initial state i ∈ S. Two transition systems labeled over L are

122 Comparative Transition System Semantics for Cause-Respecting RPESs

isomorphic if their states can be mapped one-to-one to each other, preserving transitions and initial states.

We call a relation R ⊆ S×S′ a bisimulation between transition systems T = (S,→, i) and T ′ = (S′,→′, i′)
over L iff (i, i′) ∈ R, and for all (s,s′) ∈ R and l ∈L : if (s, l,s1)∈→ then (s′, l,s′1)∈→

′ and (s1,s
′
1) ∈ R,

for some s′1 ∈ S′; and if (s′, l,s′1) ∈→
′ then (s, l,s1) ∈→ and (s1,s

′
1) ∈ R, for some s1 ∈ S. Two transition

systems over L are bisimilar if there is a bisimulation between them.

For a fixed set L of actions in RPESs, define the set L :=NL
0 (the set of multisets over L, or functions

from L to the non-negative integers). The set L will be used as the set of labels in transition systems.

We are ready to define transition systems (labeled over L) with configurations as states.

Definition 6. For an RPES E = (E,<,♯, l,F,≺,✄,C0) over L,

TC(E) is a transition system (Conf (E), ⇁, C0) over L,

where C
M
⇁C′ iff C

(A∪B)
→ C′ in E and M = l(A∪B)(4).

Let us explain the above definition with

Example 8. Consider the cause-respecting RPES E2 from Examples 2–5. In Example 2, we can see that

C2
0 = /0 and Conf (E2) = { /0, {a}, {b}, {a,b}}. Using Definition 6, we obtain ⇁= {(/0,({a}∪ /0),{a}),

({a},(/0∪{a}), /0), ({a},({b}∪ /0),{a,b}), (/0,({b}∪ /0),{b}), ({b},({a}∪ /0),{a,b}), (/0, ({a,b}∪ /0),
{a,b})}. A graphical representation of the configuration transition system TC(E2) is shown in Fig. 1. ✸

/0

{a}

{b}

{a,b}

({
a,

b}
∪

/0)

({
a
}
∪

/0
)

(/0
∪
{

a
}
)

({b}∪ /0)

({b}∪ /0)

({
a
}
∪

/0
)

Figure 1: The configuration transition system TC(E2)

We next propose the definition of labeled transition systems over L with RPESs as states.

Definition 7. For an RPES E = (E,<,♯, l,F,≺,✄,C0) over L,

TR(E) is a transition system (Reach(E), ⇀, E) over L,

where F
M
⇀ F ′ iff F ′ = F \ (A∪B) and M = l(A∪B), and Reach(E) = {F | ∃E0, . . . ,Ek (k ≥ 0) s.t.

E0 = E \ ε , Ek = F , and Ei
l(A∪B)
⇀ Ei+1 (0 ≤ i < k)}.

We illustrate the above definition with

Example 9. Consider the RPES E2 from Examples 2–5. Using Definitions 5 and 7, we construct the

residual transition system TR(E2) which is depicted in Fig. 2. It is easy to check that the configuration

transition system TC(E2) (see Fig. 1) and the residual transition system TR(E2) are bisimilar but not

isomorphic. ✸

We establish the relationships between the states and transitions of the configuration-based and

residual-based transition systems of the RPES.

(4)See Definition 3.

N. Gribovskaya, I. Virbitskaite 123

E2 = E2 \ ((({a}∪ /0)(/0∪{a}))∗

Ẽ2 = E2 \ ((({a}∪ /0)(/0∪{a}))∗({a}∪ /0)

Ė2 = E2 \ (({a}∪ /0)(/0∪{a}))∗({b}∪ /0)

Ĕ2 = Ě2 = E2 \ ((({a}∪ /0)(/0∪{a}))∗({a}∪ /0)({b}∪ /0) = E2 \ ((({a}∪ /0)(/0∪{a}))∗({a,b}∪ /0)

Ë2 = E2 \ ((({a}∪ /0)(/0∪{a}))∗({b}∪ /0)({a}∪ /0)
({

b
}
∪

/0
)

(/0
∪
{a
})

({
a
}
∪

/0
)

({a,b}∪
/0)

({
b}

∪
/0)

({
a}

∪
/0)

Figure 2: The residual transition system TR(E2)

Proposition 4. Given a cause-respecting RPES E = (E,<,♯, l,F,≺,✄,C0) over L,

(i) for any last(t) ∈Con f (E), E \ t ∈ Reach(E);

(ii) for any E ′ ∈ Reach(E), there is last(t) ∈Con f (E) such that E ′ = E \ t;

(iii) for any last(t), last(t ′) ∈ Con f (E), if last(t)
l(A∪B)
⇁ last(t ′) then E \ t

l(A∪B)
⇀ E \ t(A ∪ B) and

last(t(A∪B)) = last(t ′);

(iv) for any E ′,E ′′ ∈ Reach(E), if E ′ l(A∪B)
⇀ E ′′ then, for any last(t) ∈Con f (E) such that E ′ = E \ t,

there is last(t ′) ∈Con f (E) such that E ′′ = E \ t ′ and last(t)
l(A∪B)
⇁ last(t ′).

Theorem 1. Given a cause-respecting RPES E over L, TC(E) and TR(E) are bisimilar and in general

not isomorphic.

Proof. From Example 9 we know that, for the cause-respecting RPES E2, TC(E2) and TR(E2) are not

isomorphic.

We shall check that TC(E) and TR(E) are bisimilar for an arbitrary cause-respecting RPES E = (E ,

<, ♯, L, l, F , ≺, ✄, C0). Due to Lemma 1(i) and Propositions 4(i), we can define a relation R ⊆
Conf (E)×Reach(E) as follows: R = {(last(t),E \ t) | t ∈ Traces(E)}.

We need to show that R is a bisimulation between TC(E) and TR(E). Clearly, we have that ε ∈
Traces(E), and, moreover, C0 = last(ε) ∈ Conf (E) and E = E \ ε ∈ Reach(E). So, (C0,E) ∈ R holds.

Take an arbitrary (last(t),E \ t) ∈ R. Suppose that last(t)
l(A∪B)
⇁ C′ in TC(E) for some C′ ∈ Con f (E).

By Lemma 1(i), there is t ′ ∈ Traces(E) such that C′ = last(t ′). According to Proposition 4(iii), it is true

that E \ t
l(A∪B)
⇀ E \ t(A∪B) and last(t(A∪B)) = last(t ′). Thanks to Lemma 1(i), we have t(A∪B) ∈

Traces(E). Hence, (C′ = last(t(A∪B)),E \ t(A∪B)) ∈ R holds. In the opposite direction, assume that

124 Comparative Transition System Semantics for Cause-Respecting RPESs

E \t
l(A∪B)
⇀ E ′ in TR(E) for some E ′ ∈ Reach(E). Due to Propositions 4(iv), for last(t) ∈Con f (E), there

is last(t ′) ∈Con f (E) such that E ′ = E \ t ′ and last(t)
l(A∪B)
⇁ last(t ′). Due to Lemma 1(i), t ′ ∈ Traces(E)

is true. This implies that (last(t ′),E \ t ′ = E ′) ∈ R holds. Hence, R is indeed a bisimulation.

5 Concluding Remarks

In this paper, we dealt with two different – configuration-based and residual-based – ways of giving

(step) transition system semantics for cause-respecting reversible prime event structures which encom-

pass prime event structures. For this purpose, we firstly defined (step) semantics from [27], which is

based on configurations/traces obtained by starting with the initial configuration and by executing events

and/or undoing previously executed events, and, secondly, developed a removal operator which is useful

for constructing residuals (model fragments) by retaining an appropriate amount of structure during the

execution of the model. We also stated some correctness criteria for the removal operator. The mean-

ing of the correctness properties is that the obtained residuals do not allow configurations/traces that are

disallowed by the original structure. Also, in some sense, this signifies some compositionality proper-

ties of the removal operator. It turned out that in the context of PESs, the removal operator developed

here produces the same residuals as the removal operator proposed in [22]. As our main result, we

have obtained a (step) bisimulation between configuration-based and residual-based transition systems

of the models under consideration. The configuration-based method discussed here can be useful in an-

alyzing the state space of reversible concurrent systems whose behavior is represented as RPESs, and

the proposed residual-based method can be suitable for specification and visualization of changes in the

structures of reversible concurrent processes during their simulation in tools. Due to the good compo-

sitionality properties of the residual-based transition systems of RPESs and their complementarity and

consistency with the configuration-based ones, it is hoped that the results obtained here may be helpful in

demonstrating the correspondence between operational and denotational semantics of algebraic calculi

of reversible concurrent processes, similar to how the results from [5, 9, 17] have found their application

in traditional (irreversible) process algebras.

As for future work, we plan to broaden the list of studied models by adding flow/bundle/general

event structures with symmetric and asymmetric conflict. Work on extending our approach to out-of-

causal reversible prime event structures is under way and has yielded promising intermediate results.

Another future line of our research is to generalize the model of reversible prime event structures with

non-executable (impossible) events (for example, by dropping the transitivity/acyclicity of causality, as

well as the principles of finite causes) in order to obtain isomorphisms between the two types of transi-

tion systems of the models, as was done for the corresponding extension of PESs in the paper [8]. There,

the authors have been able to argue that non-executable events are useful in comparative semantics,

facilitating the elimination of non-fundamental inconsistencies between models. Furthermore, isomor-

phisms between the transition system semantics are expected to allow one to relate those constructed on

configurations and those derived from denotational semantics of process calculi in a tight way.

References

[1] Bogdan Aman & Gabriel Ciobanu (2018): Controlled Reversibility in Reaction Systems. In Marian Ghe-

orghe, Grzegorz Rozenberg, Arto Salomaa & Claudio Zandron, editors: Membrane Computing, Springer

International Publishing, Cham, pp. 40–53, doi:10.1007/978-3-319-73359-3_3.

https://doi.org/10.1007/978-3-319-73359-3_3

N. Gribovskaya, I. Virbitskaite 125

[2] Youssef Arbach, David Karcher, Kirstin Peters & Uwe Nestmann (2015): Dynamic Causality in Event

Structures. In Susanne Graf & Mahesh Viswanathan, editors: Formal Techniques for Distributed Ob-

jects, Components, and Systems, Springer International Publishing, Cham, pp. 83–97, doi:10.1007/

978-3-319-19195-9_6.

[3] Abel Armas-Cervantes, Paolo Baldan & Luciano Garcia-Banuelos (2016): Reduction of event structures

under history preserving bisimulation. Journal of Logical and Algebraic Methods in Programming 85(6), pp.

1110–1130, doi:10.1016/j.jlamp.2015.10.004.

[4] Clement Aubert & Ioana Cristescu (2017): Contextual equivalences in configuration structures and re-

versibility. Journal of Logical and Algebraic Methods in Programming 86(1), pp. 77–106, doi:10.1016/

j.jlamp.2016.08.004.

[5] Christel Baier & Mila Majster-Cederbaum (1994): The connection between an event structure semantics and

an operational semantics forTCSP. Acta Informatica 31(1), doi:10.1007/BF01178923.

[6] Kamila Barylska, Anna Gogolinska, Lukasz Mikulski, Anna Philippou, Marcin Piatkowski & Kyriaki Psara

(2022): Formal Translation from Reversing Petri Nets to Coloured Petri Nets. In Claudio Antares Mezzina &

Krzysztof Podlaski, editors: Reversible Computation, Springer International Publishing, Cham, pp. 172–186,

doi:10.1007/978-3-031-09005-9_12.

[7] Eike Best, Nataliya Gribovskaya & Irina Virbitskaite (2017): Configuration- and Residual-Based Transi-

tion Systems for Event Structures with Asymmetric Conflict. In Bernhard Steffen, Christel Baier, Mark

van den Brand, Johann Eder, Mike Hinchey & Tiziana Margaria, editors: SOFSEM 2017: Theory and

Practice of Computer Science, Springer International Publishing, Cham, pp. 132–146, doi:10.1007/

978-3-319-51963-0_11.

[8] Eike Best, Nataliya Gribovskaya & Irina Virbitskaite (2018): From Event-Oriented Models to Transition

Systems. In Victor Khomenko & Olivier H. Roux, editors: Application and Theory of Petri Nets and Concur-

rency, Springer International Publishing, Cham, pp. 117–139, doi:10.1007/978-3-319-91268-4_7.

[9] Gérard Boudol (1990): Flow event structures and flow nets. In Irène Guessarian, editor: Semantics of

Systems of Concurrent Processes, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 62–95, doi:10.1007/

3-540-53479-2_4.

[10] Silvia Crafa, Daniele Varacca & Nobuko Yoshida (2012): Event Structure Semantics of Parallel Extrusion

in the π-Calculus. In Lars Birkedal, editor: Foundations of Software Science and Computational Structures,

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 225–239, doi:10.1007/978-3-642-28729-9_15.

[11] Vincent Danos & Jean Krivine (2005): Transactions in RCCS. In Martı́n Abadi & Luca de Alfaro, edi-

tors: CONCUR 2005 – Concurrency Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 398–412,

doi:10.1007/11539452_31.

[12] Alexis De Vos, Stijn De Baerdemacker & Yvan Van Rentergem (2018): Synthesis of Quantum Cir-

cuits vs. Synthesis of Classical Reversible Circuits, first edition. Springer Cham, doi:10.1007/

978-3-031-79895-5.

[13] David de Frutos Escrig, Maciej Koutny & Łukasz Mikulski (2019): Reversing Steps in Petri Nets. In Su-

sanna Donatelli & Stefan Haar, editors: Application and Theory of Petri Nets and Concurrency, Springer

International Publishing, Cham, pp. 171–191, doi:10.1007/978-3-030-21571-2_11.

[14] Eva Graversen, Iain Phillips & Nobuko Yoshida (2021): Event structure semantics of (controlled) reversible

CCS. Journal of Logical and Algebraic Methods in Programming 121, p. 100686, doi:10.1016/j.jlamp.

2021.100686.

[15] P.W. Hoogers, H.C.M. Kleijn & P.S. Thiagarajan (1996): An event structure semantics for general Petri nets.

Theoretical Computer Science 153(1), pp. 129–170, doi:10.1016/0304-3975(95)00120-4.

[16] Jarkko Kari (2018): Reversible Cellular Automata: From Fundamental Classical Results to Recent Develop-

ments. New Generation Computing 36(3), pp. 145–172, doi:10.1007/s00354-018-0034-6.

[17] Joost-Pieter Katoen (1996): Quantitative and Qualitative Extensions of Event Structures. Ph.D. thesis, Uni-

versity of Twente, Netherlands.

https://doi.org/10.1007/978-3-319-19195-9_6
https://doi.org/10.1007/978-3-319-19195-9_6
https://doi.org/10.1016/j.jlamp.2015.10.004
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.1007/BF01178923
https://doi.org/10.1007/978-3-031-09005-9_12
https://doi.org/10.1007/978-3-319-51963-0_11
https://doi.org/10.1007/978-3-319-51963-0_11
https://doi.org/10.1007/978-3-319-91268-4_7
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/978-3-642-28729-9_15
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/978-3-031-79895-5
https://doi.org/10.1007/978-3-031-79895-5
https://doi.org/10.1007/978-3-030-21571-2_11
https://doi.org/10.1016/j.jlamp.2021.100686
https://doi.org/10.1016/j.jlamp.2021.100686
https://doi.org/10.1016/0304-3975(95)00120-4
https://doi.org/10.1007/s00354-018-0034-6

126 Comparative Transition System Semantics for Cause-Respecting RPESs

[18] Stefan Kuhn, Bogdan Aman, Gabriel Ciobanu, Anna Philippou, Kyriaki Psara & Irek Ulidowski (2020):

Reversibility in Chemical Reactions, pp. 151–176. Springer International Publishing, Cham, doi:10.1007/

978-3-030-47361-7_7.

[19] Ivan Lanese, Claudio Antares Mezzina & Jean-Bernard Stefani (2016): Reversibility in the higher-order

π-calculus. Theoretical Computer Science 625, pp. 25–84, doi:10.1016/j.tcs.2016.02.019.

[20] Ivan Lanese, Adrián Palacios & Germán Vidal (2019): Causal-Consistent Replay Debugging for Message

Passing Programs. In Jorge A. Pérez & Nobuko Yoshida, editors: Formal Techniques for Distributed Ob-

jects, Components, and Systems, Springer International Publishing, Cham, pp. 167–184, doi:10.1007/

978-3-030-21759-4_10.

[21] Rom Langerak (1991): Bundle event structures: a non-interleaving semantics for LOTOS. In Michel Diaz

& Roland Groz, editors: Formal Description Techniques V, IFIP transactions C, Communication systems,

North Holland, Netherlands, pp. 331–346. 5th International Conference on Formal Description Techniques

for Distributed Systems and Communications Protocols, FORTE 1992.

[22] Mila Majster-Cederbaum & Markus Roggenbach (1998): Transition systems from event structures revisited.

Information Processing Letters 67(3), pp. 119–124, doi:10.1016/S0020-0190(98)00105-7.

[23] Doriana Medić, Claudio Antares Mezzina, Iain Phillips & Nobuko Yoshida (2020): Towards a Formal Ac-

count for Software Transactional Memory. In Ivan Lanese & Mariusz Rawski, editors: Reversible Computa-

tion, Springer International Publishing, Cham, pp. 255–263, doi:10.1007/978-3-030-52482-1_16.

[24] Hernan Melgratti, Claudio Antares Mezzina & G. Michele Pinna (2021): A distributed operational view of

Reversible Prime Event Structures. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer

Science (LICS), pp. 1–13, doi:10.1109/LICS52264.2021.9470623.

[25] Hernan Melgratti, Claudio Antares Mezzina, Iain Phillips, G. Michele Pinna & Irek Ulidowski (2020):

Reversible Occurrence Nets and Causal Reversible Prime Event Structures. In Ivan Lanese & Mariusz

Rawski, editors: Reversible Computation, Springer International Publishing, Cham, pp. 35–53, doi:10.

1007/978-3-030-52482-1_2.

[26] Anna Philippou & Kyriaki Psara (2020): Reversible Computation in Cyclic Petri Nets. CoRR

abs/2010.04000, doi:10.48550/arXiv.2010.04000.

[27] Iain Phillips & Irek Ulidowski (2015): Reversibility and asymmetric conflict in event structures. Journal

of Logical and Algebraic Methods in Programming 84(6), pp. 781–805, doi:10.1016/j.jlamp.2015.07.

004.

[28] Iain Phillips, Irek Ulidowski & Shoji Yuen (2013): A Reversible Process Calculus and the Modelling of the

ERK Signalling Pathway. In Robert Glück & Tetsuo Yokoyama, editors: Reversible Computation, Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 218–232, doi:10.1007/978-3-642-36315-3_18.

[29] Giovanni Michele Pinna (2017): Reversing steps in membrane systems computations. In M. Gheorghe,

G. Rozenberg, A. Salomaa & C. Zandron, editors: Membrane Computing, 10725, Springer International

Publishing, Cham, pp. 245–261, doi:10.1007/978-3-319-73359-3_16.

[30] Irek Ulidowski, Iain Phillips & Shoji Yuen (2018): Reversing event structures. New Generation Computing

36(3), pp. 281–306, doi:10.1007/s00354-018-0040-8.

[31] R.J. van Glabbeek & G.D. Plotkin (2009): Configuration structures, event structures and Petri nets. Theo-

retical Computer Science 410(41), pp. 4111–4159, doi:10.1016/j.tcs.2009.06.014.

[32] Glynn Winskel (1980): Events in computation. Ph.D. thesis, University of Edinburgh.

[33] Glynn Winskel (1989): An introduction to event structures. In J. W. de Bakker, W. P. de Roever & G. Rozen-

berg, editors: Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 364–397, doi:10.1007/BFb0013026.

https://doi.org/10.1007/978-3-030-47361-7_7
https://doi.org/10.1007/978-3-030-47361-7_7
https://doi.org/10.1016/j.tcs.2016.02.019
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1016/S0020-0190(98)00105-7
https://doi.org/10.1007/978-3-030-52482-1_16
https://doi.org/10.1109/LICS52264.2021.9470623
https://doi.org/10.1007/978-3-030-52482-1_2
https://doi.org/10.1007/978-3-030-52482-1_2
https://doi.org/10.48550/arXiv.2010.04000
https://doi.org/10.1016/j.jlamp.2015.07.004
https://doi.org/10.1016/j.jlamp.2015.07.004
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/s00354-018-0040-8
https://doi.org/10.1016/j.tcs.2009.06.014
https://doi.org/10.1007/BFb0013026

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 127–141, doi:10.4204/EPTCS.386.11

© M. Holzer & C. Rauch

This work is licensed under the

Creative Commons Attribution License.

On Minimal Pumping Constants for Regular Languages

Markus Holzer Christian Rauch

Institut für Informatik, Universität Giessen, Arndstr. 2, 35392 Giessen, Germany

holzer@informatik.uni-giessen.de christian.rauch@informatik.uni-giessen.de

The study of the operational complexity of minimal pumping constants started in [J. DASSOW and

I. JECKER. Operational complexity and pumping lemmas. Acta Inform., 59:337–355, 2022], where

an almost complete picture of the operational complexity of minimal pumping constants for two

different variants of pumping lemmata from the literature was given. We continue this research by

considering a pumping lemma for regular languages that allows pumping of sub-words at any posi-

tion of the considered word, if the sub-word is long enough [S. J. SAVITCH. Abstract Machines and

Grammars. 1982]. First we improve on the simultaneous regulation of minimal pumping constants

induced by different pumping lemmata including Savitch’s pumping lemma. In this way we are able

to simultaneously regulate four different minimal pumping constants. This is a novel result in the

field of descriptional complexity. Moreover, for Savitch’s pumping lemma we are able to completely

classify the range of the minimal pumping constant for the operations Kleene star, reversal, comple-

ment, prefix- and suffix-closure, union, set-subtraction, concatenation, intersection, and symmetric

difference. In this way, we also solve some of the open problems from the paper that initiated the

study of the operational complexity of minimal pumping constants mentioned above.

1 Introduction

Pumping lemmata are fundamental to the study of formal languages. An annotated bibliography on

variants of pumping lemmata for regular and context-free languages is given in [9]. One variant of

the pumping lemma states that for any regular language L, there exists a constant p (depending on L)

such that any word w in the language of length at least p can be split into three parts w = xyz, where y

is non-empty, and xytz is also in the language, for every t ≥ 0—see Lemma 1. By the contrapositive

one can prove that certain languages are not regular. Since the aforementioned pumping lemma is only

a necessary condition, it may happen that such a proof fails for a particular language such as, e.g.,

{ambncn | m ≥ 1 and n ≥ 0}∪{bmcn | m,n ≥ 0}. The application of pumping lemmata is not limited to

prove non-regularity. For instance, they also imply an algorithm that decides whether a regular language

is finite or not. A regular language L is infinite if and only if there is a word of length at least p, where p

is the aforementioned constant of the pumping lemma.1 Here a small p is beneficial. Thus, for instance,

the question arises on how to determine a small or smallest value for the constant p such that the pumping

lemma is still satisfied.

For a regular language L the value of p in the above-mentioned pumping lemma can always be chosen

to be the number of states of a finite automaton, regardless whether it is deterministic or nondeterministic,

accepting L. Consider the unary language ana∗, where all values p with 0 ≤ p ≤ n do not satisfy the

property of the pumping lemma, but p = n+1 does. A closer look on some example languages reveals

that sometimes a much smaller value suffices. For instance, consider the language

L = a∗+a∗bb∗+a∗bb∗aa∗+a∗bb∗aa∗bb∗,

1For the other pumping lemma constants p considered in this paper, the statement on infiniteness can be strengthened to: a

regular language L is infinite if and only if there is a word of length ℓ with p < ℓ ≤ 2p. This also holds true if p refers to the

deterministic state complexity of a language.

http://dx.doi.org/10.4204/EPTCS.386.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

128 On Minimal Pumping Constants for Regular Languages

which is accepted by a (minimal) deterministic finite automaton with five states, the sink state included,

but already for p = 1 the statement of the pumping lemma is satisfied. It is easy to see that regardless

whether the considered word starts with a or b, this letter can be readily pumped. Thus, the minimal

pumping constant satisfying the statement of pumping lemma for the language L is 1, because the case

p = 0 is equivalent to L = /0. This leads to the notation of a minimal pumping constant for a language L

w.r.t. a particular pumping lemma, which is the smallest number p such that the pumping lemma under

consideration for the language L is satisfied.

Recently minimal pumping lemmata constants were investigated from a descriptional complexity

perspective in [2]. Besides basic facts on these constants for two specific pumping lemmata [1, 6, 8, 10]

their relation to each other and their behaviour under regularity preserving operations was studied in

detail. In fact, it was proven that for three natural numbers p1, p2, and p3 with 1 ≤ p1 ≤ p2 ≤ p3, there is

a regular language L over a growing size alphabet such that mpc(L) = p1, mpl(L) = p2, and sc(L) = p3,

where mpc (mpl, respectively) refers to the minimal pumping constant induced by the pumping lemma

from [8] (from [1, 6, 10], respectively) and sc is the abbreviation of the deterministic state complexity.

This simultaneous regulation of three measures is novel in descriptional complexity theory. For the exact

statements of the pumping lemmata mentioned above we refer to Lemma 1 and its following paragraph.

The operational complexity of pumping or pumping lemmata for an n-ary regularity preserving opera-

tion ◦ undertaken in [2] is in line with other studies on the operational complexity of other measures for

regular languages such as the state complexity or the accepting state complexity to mention a few. The

operational complexity of pumping is the study of the set g◦(k1,k2, . . . ,kn) of all numbers k such that

there are regular languages L1,L2, . . . ,Ln with minimal pumping complexity k1,k2, . . . ,kn, respectively,

and the language L1 ◦L2 ◦ · · · ◦Ln has minimal pumping complexity k. In [2] a complete picture for the

operational complexity w.r.t. the pumping lemma from [8] (measure mpc) for the operations Kleene clo-

sure, complement, reversal, prefix and suffix-closure, circular shift, union, intersection, set-subtraction,

symmetric difference, and concatenation was given—see Table 1 on page 138. However, for the pumping

lemma from [1, 6, 10] (measure mpl) some results from [2] are only partial (set-subtraction and sym-

metric difference) and others even remained open (circular shift and intersection); for comparison see

the table mentioned above. The behaviour of these measures differ with respect to finiteness/infinity of

ranges, due to the fact that for the pumping lemma from [1, 6, 10] the pumping has to be done within a

prefix of bounded length.

This is the starting point of our investigation. As a first step we improve on the above mentioned

result on the simultaneous regulation of minimal pumping constants showing that already a binary lan-

guage suffices. If we additionally also consider a fourth measure (mps) induced by the pumping lemma

from [11], we obtain a similar result for a quinary language. Thus, we are able to regulate four de-

scriptional complexity measures simultaneously on a single regular language. Savitch’s pumping lemma

allows pumping of sub-words at any position of the considered word, if the sub-word is long enough—

see Lemma 3. Moreover, the outcome of our study on the operational complexity of pumping presents

a comprehensive view for the previously mentioned operations. In passing, we can also solve all the

partial and open problems from [2], completing the overall picture for the three pumping lemmata in

question—see the gray shaded entries in Table 1 on page 138. This provides a full understanding of the

operational complexity of these pumping lemmata. it is worth mentioning that the obtained result are

very specific to the considered pumping lemmata—compare with [3, 5] where descriptional and compu-

tational complexity aspects of Jaffe’s pumping lemma [7] are considered. For instance, the simultaneous

regulation of pumping constants involving those satisfying Jaffe’s pumping lemma seems to be much

more complicated, since only the deterministic state complexity can serve as an upper bound, while the

nondeterministic state complexity becomes incomparable. Due to space constraints almost all proofs are

M. Holzer & C. Rauch 129

omitted; they can be found in the full version of this paper.

2 Preliminaries

We recall some definitions on finite automata as contained in [4]. Let Σ be an alphabet. Then, as usual Σ∗

refers to the set of all words over the alphabet Σ, including the empty word λ , and Σ≤k denotes the set of

all words of length at most k. For a word w = a1a2 . . .an ∈ Σ∗ and a natural number k ≥ 1 we refer to the

word a1a2 . . .ak, if k ≤ n, and a1a2 . . .an, otherwise, as the k-prefix of w. If k = 0, then λ is the unique

0-prefix of any word. Analogously one can define the k-suffix of a word w.

A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ, · ,q0,F), where Q is the finite set

of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting

states, and the transition function · maps Q×Σ to Q. The language accepted by the DFA A is defined

as L(A) = {w ∈ Σ∗ | q0 ·w ∈ F }, where the transition function is recursively extended to a mapping

Q×Σ∗ → Q in the usual way. Finally, a finite automaton is unary if the input alphabet Σ is a singleton set,

that is, Σ = {a}, for some input symbol a. The deterministic state complexity of a finite automaton A with

state set Q is referred to as sc(A) := |Q| and the deterministic state complexity of a regular language L

is defined as

sc(L) = min{sc(A) | A is a DFA accepting L, i.e., L = L(A)}.

A finite automaton is minimal if its number of states is minimal with respect to the accepted lan-

guage. It is well known that each minimal DFA is isomorphic to the DFA induced by the Myhill-Nerode

equivalence relation. The Myhill-Nerode equivalence relation ∼L for a language L ⊆ Σ∗ is defined as

follows: for u,v ∈ Σ∗ let u ∼L v if and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ Σ∗. The equivalence class

of u is referred to as [u]L or simply [u] if the language is clear from the context and it is the set of all

words that are equivalent to u w.r.t. the relation ∼L, i.e., [u]L = {v | u ∼L v}.

Regular languages satisfy a variety of different pumping lemmata—for a comprehensive list of pump-

ing or iteration lemmata we refer to [9]. A well known pumping lemma variant can be found in [8,

page 70, Theorem 11.1]:

Lemma 1. Let L be a regular language over Σ. Then, there is a constant p (depending on L) such that

the following holds: If w ∈ L and |w| ≥ p, then there are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that

w = xyz and xytz ∈ L for t ≥ 0—it is then said that y can be pumped in w. Let mpc(L) denote the smallest

number p satisfying the aforementioned statement.

The above lemma can be slightly modified with the condition |xy| ≤ p, which can be found in [10,

page 119, Lemma 8], [1, page 252, Folgerung 5.4.10], and [6, page 56, Lemma 3.1]. Analogously, to mpc

one defines mpl(L), as the smallest number p satisfying the statement of the modified pumping lemma.

Recently, pumping lemmata were considered in [2], where besides some simple facts such as

1. mpc(L) = 0 if and only if mpl(L) = 0 if and only if L = /0,

2. for every non-empty finite language L we have mpc(L) = mpl(L) = 1+max{|w| | w ∈ L},

3. mpc(L) = 1 implies λ ∈ L, and

4. if mpl(L) = 1, then L is suffix closed,2

2A language L ⊆ Σ∗ is suffix closed if L = {x | yx ∈ L, for some y ∈ Σ∗ }, i.e., the word x is a member of L whenever yx is

in L, for some y ∈ Σ∗.

130 On Minimal Pumping Constants for Regular Languages

also the inequalities

mpc(L)≤ mpl(L)≤ sc(L)

and results on the operational complexity w.r.t. these minimal pumping constants were shown. The upper

bound on the minimal pumping constants by the deterministic state complexity is obvious. Moreover,

in [2] it was also proven that for three natural numbers p1, p2, and p3 with 1 ≤ p1 ≤ p2 ≤ p3, there is a

regular language L such that mpc(L) = p1, mpl(L) = p2, and sc(L) = p3. The witness language to prove

this result is in almost all cases, except for p2 = p3,

L = bp1−1(ap2−p1+1)∗+ c∗1 + c∗2 + · · ·+ c∗p3−p2−1,

while for the remaining case a unary language is given. Hence, L is a language over an alphabet of

growing size. We improve on this result, showing that already a binary language can be used. Moreover,

we also fix a simple flaw3 on the size of the automaton in case p1 = p2 = 1 and p2 < p3 in the original

proof given in [2].

Theorem 2. Let p1, p2, and p3 be three natural numbers with 1 ≤ p1 ≤ p2 ≤ p3. Then, there is a regular

language L over a binary alphabet such that mpc(L) = p1, mpl(L) = p2, and sc(L) = p3.

Proof. First we define some useful languages. For k ≥ 1 let

B
(+)
k =

{

b+(a∗b∗)(k−1)/2, if k is odd,

b+(a∗b∗)(k−2)/2a∗, if k is even,

and

B
(∗)
k =

{

b∗(a∗b∗)(k−1)/2, if k is odd,

b∗(a∗b∗)(k−2)/2a∗, if k is even,

be languages over the alphabet Σ = {a,b}. Observe that in all cases there are k−1 alternations between

the blocks. Thus, e.g., B
(∗)
3 = b∗a∗b∗ and B

(+)
4 = b+a∗b∗a∗. In case k = 0 the languages B

(+)
k and B

(∗)
k

are set to /0. Observe that B
(+)
k +λ is not equal to B

(∗)
k .

Now we are ready for the proof. We distinguish whether p2 = 1 (this implies that p1 = p2 = 1)

or p2 = p3 (which implies p1 ≤ p2 = p3) or p2 /∈ {1, p3}.

1. Case p1 = p2 = 1. For p3 = 1,2 we simply use the DFAs accepting the languages Σ∗, a∗, respec-

tively, for Σ = {a,b} being the input alphabet of those automata. For p3 ≥ 3 we observe that the

languages B
(∗)
p3−1 fulfill mpc(B

(∗)
p3−1) = mpl(B

(∗)
p3−1) = p1 = p2 = 1 since each accepted word can

be pumped by its first letter. Additionally those languages are accepted by the DFA A shown in

Figure 1—the non-accepting sink state is not shown. It is not hard to see that for each state of A

3For 1 ≤ p1 ≤ p2 ≤ p3 let

L = bp1−1(ap2−p1+1)∗+c∗1 +c∗2 + · · ·c∗p3−p2−1,

over the alphabet {a,b} ∪ {ci | 1 ≤ i ≤ p3 − p2 − 1}. For p1 = p2 = 1 consider the above given language. In case p3 = 2

we get the language L = a∗ over the alphabet {a,b}, which requires a minimal DFA with 2 states and in case p3 ≥ 3 we

have L = a∗+ c∗1 + c∗2 + · · ·+ c∗p3−2 over the alphabet {a,b}∪ {ci | 1 ≤ i ≤ p3 − 2}. Note that p3 − 2 ≥ 1 since p3 ≥ 3 and

therefore the latter set in the union of the alphabet letters is non-empty. Thus, the minimal DFA accepting the language L

has p3 +1 states, which are responsible for the Myhill-Nerode equivalence classes [λ] = {λ}, [a] = a+, [c1] = c+1 , [c2] = c+2 ,

. . . , [cp3−2] = c+p3−2, and finally the equivalence class [b] = {w | w ∈ b+ or w contains at least two different letters}. Observe,

that all equivalence classes are accepting, except the class [b], which represents the non-accepting sink state. Hence in case

p1 = p2 = 1 and p2 < p3 the statement on the number of states of the minimal DFA accepting the language L presented in [2]

is off by one state. The claims on the minimal pumping constants mpc and mpl for L are correct. Note that the case p3 = 1 is

shown in [2] with the help of a unary language.

M. Holzer & C. Rauch 131

q0 q1 q2 q3 qp3−2
a b a

ab a b a

Figure 1: The automaton A for p1 = p2 = 1 and p3 − 1 even, where the non-accepting sink state qp3−1

and all transitions to it are not shown. Recall, that the letter on the transition to qp3−2 depend on the

parity of p3 −2.

there is a unique shortest word that maps the state onto the non-accepting state. Therefore we have

that A is minimal and sc(B
(∗)
p3−1) = sc(A) = p3.

2. Case p1 ≤ p2 = p3. In this case we define the unary DFA

A = ({q0,q1, . . . ,qp3−1},{a}, ·A ,q0,{qp1−1}),

with qi ·A a = qi+1 mod p3
, for 0 ≤ i ≤ p3−1. By inspecting Figure 2 which shows A it is not hard to

see that L(A) = {ap2·i+p1−1 | i ≥ 0} and that A is already minimal; thus sc(L(A)) = p3. So every

q0 q1 qp1−1 qp1
qp3−1

a a a a

a

Figure 2: The unary automaton A for p1 < p2 = p3.

word in the language L(A) that has length greater or equal p1 contains the sub-word ap2 which

implies that it is pumpable. On the other hand the word ap1−1 cannot be pumped since it is the

shortest accepting word; hence it cannot be shortened by pumping. Therefore mpc(L(A)) = p1

and mpl(L(A)) = p2.

3. Case p2 /∈ {1, p3}. We define the language

L = bp1−1(ap2−p1+1)∗(B
(+)
p3−p2−1 +λ).

This language is accepted by the DFA shown in Figure 3; again the non-accepting sink state is

not shown. Observe that each state qi, for i ∈ {0,1, . . . , p2 − 1} \ {p1 − 1}, is only mapped by

one letter onto a state that is unequal to the sink state while this is not true for each state qi,

for i ∈ {p2, p2 +1, . . . , p3 −3, p1 −1}. Then one can easily prove that this DFA is minimal. Thus,

the automaton A has p3 states. Further we observe that the word bp1−1 is in L but it cannot be

pumped since no shorter word is in L. Therefore, mpc(L) ≥ p1. Additionally we observe that

w ∈ bp1−1(ap2−p1+1)+ is a word in L which is only pumpable by ap2−p1+1. Since the shortest

prefix of w that ends with ap2−p1+1 has length p2 we obtain that mpl(L) ≥ p2. Clearly we can

pump all words in bp1−1(ap2−p1+1)+B
(+)
p3−p2−1 in the same way which implies that none of these

words has an impact on mpc(L) and mpl(L). Last we see that all words in bp1−1B
(+)
p3−p2−1 can be

pumped by their first letter or by their (p1 +1)th letter, respectively, for p1 = p2 and p1 < p2. So

we obtain that all words in L which have length at least p1 can be pumped by a sub-word in their

prefix of length at most p2. Thus, we have mpc(L) = p1 and mpl(L) = p2.

132 On Minimal Pumping Constants for Regular Languages

q0 q1 qp1−1 qp1
qp2−1

qp2
qp2+1 qp3−2

b b a a

a

b

a

b a b

Figure 3: The automaton A for the language L in case p3 − p2 −1 is odd, where the non-accepting sink

state qp3−1 and all transitions to it are not shown. In case p3− p2−1 is even the lower sub-chain of states

looks similar by alternatively reading a’a and b’s, has appropriate self-loops on the states, and end with

the letter a.

This completes the construction and proves the stated claim for languages over a binary alphabet.

The previous theorem is best possible w.r.t. the alphabet size, because for unary languages there

are infinitely many combinations of minimal pumping constants like, e.g., mpc(L) = mpl(L) = 1 and

sc(L)≥ 2, which cannot be achieved by any unary language L. This is due to the fact that if mpl(L) = 1,

then the language L is suffix-closed, and {a}∗ is the only suffix-closed unary language. It is not hard to

prove that Theorem 2 is also valid if the nondeterministic state complexity instead of the deterministic

state complexity is considered.

3 Results on Sub-Word Pumping

Let us first introduce a pumping lemma which is a straight forward generalization of Lemma 1 with the

additional |xy| ≤ p condition. The lemma can be found in [11, page 49, Theorem 3.10] and reads as

follows— roughly speaking, this pumping lemma allows pumping of sub-words, whose length is large

enough, at any position of the considered word; hence we sometimes speak of sub-word pumping.

Lemma 3. Let L be a regular language over Σ. Then there is a constant p (depending on L) such that

the following holds: If w̃ = uwv ∈ L and |w| ≥ p, where u and v are any (possibly empty) words, then

there are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz, |xy| ≤ p, and uxyt zv ∈ L for t ≥ 0.

Similarly as for the aforementioned pumping lemmata, one can define the minimal pumping con-

stant mps(L), for a regular language, as the smallest number p that satisfies the condition of Lemma 3

when considering L. Observe, that the condition of the lemma requires that any sub-word that is long

enough can be pumped.

3.1 Comparing mps to Other Minimal Pumping Constants

We first prove some basic properties:

Lemma 4. Let L be a regular language over Σ. Then

• mps(L) = 0 if and only if L = /0, and

• mps(L) = 1, implies that L is prefix- and suffix-closed.4

4Moreover, mps(L) = 1, also implies that L is factor-closed. A regular language L is factor-closed if L contains all factors

of all words w ∈ L. We call wi1 wi2 . . .wik a factor of the word w1w2 . . .wn if 1 ≤ i1 < i2 < · · ·< ik ≤ n are natural numbers.

M. Holzer & C. Rauch 133

Proof. First we observe that there are no words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that |xy| ≤ 0. This

implies directly that the statement of Lemma 3 is fulfilled for p = 0 and the language L if and only

if L = /0. Next we have that mps(L) = 1 implies that for all w with |w| ≥ 1 and all words u,v ∈ Σ∗ such

that w̃ = uwv ∈ L there are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz, |xy| ≤ 1, and uxyt zv ∈ L

for t ≥ 0. In especially this holds for w ∈ Σ which implies that y = w. Since uxy0zv = uxzv ∈ L for all

letters y = w ∈ Σ and all (possibly empty) words u and v we obtain that each word w̃ of L can be pumped

by each of its letters, i.e, by each letter of each prefix and each suffix of w̃. Hence, L is prefix- and

suffix-closed.

Next we want to compare mps with the other minimal pumping constants considered in [2]. We find

the following situation—similarly as in Theorem 2 the nondeterministic state complexity is also an upper

bound:

Theorem 5. Let L be a regular language L over Σ. Then mpc(L)≤ mpl(L)≤ mps(L)≤ sc(L).

Proof. It suffices to show mpl(L) ≤ mps(L) ≤ sc(L). For the first inequality observe that if we set u =
v = λ in Lemma 3 we obtain statement of Lemma 1 with the additional length condition |xy| ≤ p, which

implies that mpl(L) ≤ mps(L). Finally, the sc(L) upper bound is immediate by the proof of the lemma

given in [11, page 49, Theorem 3.10].

Now the question arises whether we can come up with a similar result as stated in Theorem 2, but

now also taking the minimal pumping constant w.r.t. Lemma 3 into account. The following Theorem

will be very useful for this endeavor; a similar statement was shown in [5] for the minimal pumping

constant w.r.t. Jaffe’s pumping lemma [7], a pumping lemma that is necessary and sufficient for regular

languages.

Theorem 6. Let A = (Q,Σ, ·A ,q0,F) be a minimal DFA, state q ∈ Q, and letter a ∈ Σ. Define the finite

automaton B = (Q,Σ, ·B ,q0,F) with the transition function ·B that is equal to the transition function

of ·A, except for the state q and the letter a, where q ·B a = q. Then, K(L(B)) ≤ K(L(A)) for K ∈
{mpc,mpl,mps}.

Proof. Obviously we have that in each word of the form w = xaz with q0 ·B x = q the (|x|+1)st letter can

be pumped, because by construction

w = xazv ∈ L(B) if and only if xatzv ∈ L(B),

for all t ≥ 0 and each v ∈ Σ∗. On the other hand the change of the a-transition of q does not affect

all other words not satisfying the above property. On these words the pumping is that of the pumping

induced by the device A. Thus, we conclude that the three mentioned minimal pumping constants for the

language L(B) are bounded by the according ones of A.

Observe, that the statement of Lemma 3 for the constant n can also be understood as follows: for

each word w̃ in L and each sub-word w of w̃ with length at least n there is a sub-word y of w such that y

can be pumped in w̃. We will use this alternative version of Lemma 3 in the lemmata to come without

further notice.

Theorem 7. Let p1, p2, p3, and p4 be four natural numbers with 1 ≤ p1 ≤ p2 ≤ p3 ≤ p4. Then, there

is a regular language L over a quinary alphabet such that mpc(L) = p1, mpl(L) = p2, mps(L) = p3, and

sc(L) = p4 holds.

134 On Minimal Pumping Constants for Regular Languages

Proof. By taking an intense look at the constructions shown in the proof of Theorem 2 we observe

that mpl(L) = mps(L) holds for all used languages L. Therefore we safely assume for the rest of the

proof that p2 < p3. On the other hand we distinguish for the proof whether p3 ≤ p4 − 1 or p3 = p4. In

the former case we additionally differ between p1 = 1 or p1 ≥ 2. Since the constructions in all cases are

adaptions of the case p3 ≤ p4 −1 and p1 ≥ 2 we give all constructions next.

We define the automaton A = ({q0,q1, . . . ,qp4−1},{a,b,c,d,e}, · ,q0,{qp1−1}∪F) with the state set

F = {qi | p3 ≤ i ≤ p4 − 2}, if p1 = 1, and F = {qi | p3 − 1 ≤ i ≤ p4 − 2}, otherwise. The transition

function of A depends on the relation of p3 and p4. For p3 = p4 we set

q2i ·a = q2i+1, for 0 ≤ i ≤ (p3 −2)÷2,

q2i+1 · c = q2i+2, for 0 ≤ i ≤ (p3 −3)÷2,

qi ·b = qi−1, for 1 ≤ i ≤ p3 −1,

qi ·d = qi+1 mod p2
, for 0 ≤ i ≤ p2 −1.

On the other hand we set for p3 ≤ p4 −1 and p1 ≥ 2,

q2i ·a = q2i+1, for 0 ≤ i ≤ (p3 −3)÷2,

q2i+1 ·a = q2i+1, for 0 ≤ i ≤ (p3 −3)÷2,

qi ·b = qi−1, for 1 ≤ i ≤ p3 −2,

q2i−1 · c = q2i, for 1 ≤ i ≤ (p3 −2)÷2,

q2i · c = q2i, for 0 ≤ i ≤ (p3 −2)÷2,

qp3+2i−1 · c = qp3+2i, for 0 ≤ i ≤ (p4 − p3 −1)/2−1,

qp3+2i · c = qp3+2i, for 0 ≤ i ≤ (p4 − p3 −1)/2−1,

qi ·d = qi+1 mod p2
, for 0 ≤ i ≤ p2 −1,

q0 · e = qp3−1,

qp3+2i−1 · e = qp3+2i−1, for 0 ≤ i ≤ (p4 − p3 −1)/2−1,

qp3+2i · e = qp3+2i+1, for 0 ≤ i ≤ (p4 − p3 −1)/2−1.

For p3 ≤ p4 − 1 and p1 = 1 we elongate the chain of states which are reachable by applying words

from {a,c}∗ to q0 by setting

q2i ·a = q2i+1, for 0 ≤ i ≤ (p3 −2)÷2

q2i+1 ·a = q2i+1, for 0 ≤ i ≤ (p3 −2)÷2,

qi ·b = qi−1, for 1 ≤ i ≤ p3 −1

q2i−1 · c = q2i, for 1 ≤ i ≤ (p3 −1)÷2,

q2i · c = q2i, for 0 ≤ 0 ≤ (p3 −1)÷2,

qp3+2i · c = qp3+2i+1, for 0 ≤ i ≤ (p4 − p3 −1)/2−1,

qp3+2i−1 · c = qp3+2i−1, for 1 ≤ i ≤ (p4 − p3 −1)/2−1,

qi ·d = qi+1 mod p2
, for 0 ≤ i ≤ p2 −1,

q0 · e = qp3
,

qp3+2i · e = qp3+2i, for 0 ≤ i ≤ (p4 − p3 −1)/2−1,

qp3+2i−1 · e = qp3+2i, for 1 ≤ i ≤ (p4 − p3 −1)/2−1.

M. Holzer & C. Rauch 135

Additionally to the previously explicitly given transitions we set all other transitions to be transitions

to the non-accepting sink state qp4−1 for p3 ≤ p4 −1 and for p3 = p4 we set them to be self-loops. The

automaton A is depicted in Figure 4 for the case p3 ≤ p4 −1, p1 ≥ 2 (on top), if p3 ≤ p4 −1, p1 = 1 (in

the middle) and for the case p3 = p4 (on the bottom). We will use small claims for making it easier to

q0 q1 q2 q3 qp1−2 qp1−1 qp2−2 qp2−1 qp2

qp3−3qp3−2

qp3−1 qp3
qp4−2

a,d

b,c

c,d

a

b

a,d

c

b

a

b

c,d
a

b

c

b

c,d
a

b

a

c

b

a

b

a

b

c

c

b

e

e

c

c

c

c

c

c

d

q0 q1 q2 q3 qp2−2 qp2−1 qp2
qp3−2 qp3−1

qp3
qp3+1 qp4−2

a,d

b,c

c,d

a

b

a,d

c

b

a

b

c,d
a

b

a

c

b

a

b

a

b

c

c

b
e

e

c

c

c

c c

d

q0 q1 q2 q3 qp2−2 qp2−1 qp2
qp4−2 qp4−1

a,d

b,c

c,d

a

b

a,d

c

b

a

b

c,d
a

b

a

c

b

a,d

b

a,d

b

c

a,c,d

b

d

Figure 4: The automaton A for the case p3 ≤ p4−1, p1 ≥ 2 (on top), if p3 ≤ p4−1, p1 = 1 (in the middle)

and for the case p3 = p4 (on the bottom). For the first two cases the state qp4−1 is a non-accepting sink

state and all not shown transitions are mappings onto qp4−1. In the case p3 = p4 the letter e is not needed.

Recall, that the a-, c-, and e-transitions in all cases depend on the parity of p3−2 and p4−2, respectively.

prove that the language L := L(A) fulfills the requested properties.

Claim 1. The automaton A is minimal.

Proof. We observe that for all states in S1 := {q0, q1, . . . , qp1−2} there is a unique shortest word in {a,c}∗

mapping the state onto qp1−1. The analogue is true for the states in S2 := {qp1−1, qp1
, . . . , qp3−2} and the

set {b}∗. Therefore the above mentioned states cannot contain a pair of equivalent states. Additionally

for all states S3 := {qp3
, qp3+1, . . . , qp4−2,q0} there is a unique shortest word in {c,e}∗ mapping the state

onto the state qp4−2 which implies S3 cannot contain equivalent states. Since S1 ·b
p1 = {q0} and S3 ·b

p1 =
{qp4−1} we obtain that there are no states in S1 ∪ S2 ∪ S3 ∪{qp4−1} which are equivalent. Indeed this

directly implies that A is minimal.

136 On Minimal Pumping Constants for Regular Languages

Claim 2. We have mpl(L) = p2.

Proof. Due to the fact that L∩{d}∗ = ({d}p2)∗{d}p1−1 we have that the word dp2+p1−1 is only pumpable

by the sub-word dp2 and no shorter sub-word. Indeed this implies that mpl(L) ≥ p2. We will show that

each word w̃∈ L of length at least p1 is pumpable by a sub-word of its p2-prefix. Therefore we distinguish

between the several beginnings of w̃:

• The first letter of w̃ is an a or a d. Here we observe that either w̃ contains one of the words ab, cb,

db, aa or cc in its p2-prefix or its p2-prefix w1 is from {a,c,d}p2 such that q0 ·w1 = q0.

If w̃ contains one of the words ab, cb, db, aa or cc in its p2-prefix then w̃ can be pumped by the

sub-words ab, cb, db, a and c, respectively.

If w̃ has a p2-prefix w1 which is from {a,b,c}p2 such that q0 ·w1 = q0 then we can pump w̃ by w1

since q0 ·w
i
1 = q0 for all i ≥ 0.

• The word w̃ starts with the letter b or c. It is obvious that w̃ is pumpable by its first letter.

• If the word w̃ has e as its first letter we observe that w̃ ∈ {e,c}∗. For p2 = 1 we can pump w̃

by its first letter since q0 · c = q0 and q0 · e
i = qp3−1 for all i ≥ 1, which are both accepting states.

For p2 ≥ 2 we can pump w̃ by its second letter since qp3
·ci = qp3

and qp3−1 ·e
i = qp3−1 for all i≥ 0.

Claim 3. We have mpc(L) = p1.

Proof. Since we have shown that each word of length at least p1 is pumpable by its p2−prefix it remains

to observe that the word dp1−1 is not pumpable since L∩{d}∗ = ({d}p2)∗{d}p1−1.

Claim 4. We have mps(L) = p3.

Proof. Observe that for p1 = 1 and p3 ≤ p4−1 the chain of non-sink states which are reachable from the

initial state in A by applying a word in {a,c}∗ is exactly one state longer as for p1 ≥ 2 and p3 ≤ p4 −1.

Therefore we have that w̃ = (ac)(p3−2÷2)ap3−2 mod 2bp3−2e is not pumpable by any sub-word of w =
bp3−2e for p1 ≥ 2 and w̃ = (ac)(p3−1÷2)ap3−1 mod 2bp3−1 is not pumpable by any sub-word of w = bp3−1

for p1 = 1 which implies that mps(L) ≥ p3. We now distinguish between all possible words w ∈ Σ∗

with |w|= p3 and the words w̃ which can contain them to give a sub-word y of w such that w̃ is pumpable

by y:

• If w contains aa or cc then w̃ can be pumped by y = a and c, respectively.

• In the case w contains a sub-word in {xb | x ∈ {a,c,d}} then we can pump w̃ by y = x if x induces

a self-loop for the according state or by y = b if b from xb induces a self-loop on the according

state or by xb otherwise. The last way of pumping is possible since xb induces a self-loop on the

according state.

• The case that w contains a sub-word from {bx | x ∈ {a,c,d}} can be treated similarly as above.

• If w contains a sub-word y from {a,c,d}∗ with length p2 such that w̃ = uxyzv and w = xyz for

words u,x,z,v ∈ Σ∗, q0 ·ux ∈ {q0,q1, . . . ,qp2
} and q0 ·uxy = q0 ·ux. Clearly w̃ can be pumped by y.

• The word w contains the letter b = y such that w̃ = uxyzv and w = xyz for words u,x,z,v ∈ Σ∗,

and q0 · ux = q0. Then w̃ can be pumped by y = b because q0 · uxy = q0 · yi = q0 · bi = q0 for

all i ≥ 0.

• If the word w contains the sub-word ec or ee then we can pump w̃ by y = c or y = e, respectively.

M. Holzer & C. Rauch 137

It remains to observe that w has to contain one of the previously mentioned sub-words. Therefore we

study how long the longest prefix w′ of w in {a,b,c,d}∗ can be such that none of the above-mentioned

sub-words are contained. Afterwards we elongate this prefix by a word in Σ∗.

First one may understand that for any given state q of A the longest word w′ in {a,b,c,d}∗ , that

cannot be decomposed into w′ = xyz for words x, y, z ∈ Σ∗ such that |y| ≥ 1 and q · x = q · xy, has length

at most p3 −1 for p3 = p4 and length at most p3 −2 for p3 ≤ p4 −1. Roughly speaking this can be seen

by observing that the longest such word has to map the state q onto each of the states q0,q1, . . . ,qp3−1

for p3 = p4 and onto each of the states q0,q1, . . . ,qp3−2 for p3 ≤ p4−1. The only possibilities to elongate

such a word w′ are to either violate the previously described decomposing property or to elongate w′ by

the letter e. Due to the construction of the automaton the word w′e can only be a sub-word of a word w̃∈ L

iff w̃= uw′ew′′v for q0 ·uw′e= qp3
, w′′,v ∈ Σ∗, and w =w′ew′′. Again the transition mapping of A implies

that w′′ is empty or starts with one of the letters c and e. Indeed this implies that w = w′ew′′ either has

length |w|= |w′e| ≤ p3−1 for w′′ = λ or contains one of the sub-words ee or ec and is therefore pumpable

by its p3-th letter.

One observes that if we choose w′ to be not maximal it similarly that w either has length less than p3

or it contains one of the sub-words y mentioned above such that that w̃ is pumpable by y.

In conclusion we have that mpc(L) = p1, mpl(L) = p2, mps(L) = p3, and sc(L) = p4 for p3 ≤
p4 − 1. Due to Theorem 6 we directly obtain for p3 = p4 that the according pumping constants have

to be at most equal to the pumping constants in the case p3 ≤ p4 − 1. In turn we observe that the

witnesses for mpc(L) ≥ p1 and mpl(L) ≥ p2 can also applied for p3 = p4. Additionally the word w̃ =
(ac)(p3−1÷2)ap3−1 mod 2bp3−1 with w= bp3−1 witnesses mps(L)≥ p3 for p3 = p4. The minimality of A can

be shown similarly as for p3 ≤ p4−1. Therefore we conclude that mpc(L) = p1, mpl(L) = p2, mps(L) =
p3, and sc(L) = p4.

3.2 Operational Complexity of Sub-Word Pumping

We study the effect of regularity preserving standard formal language operations on the minimal pumping

constant w.r.t. Lemma 3 and compare them to previously obtained results [2] for the other minimal

pumping constants. To this end we need some notation: let ◦ be a regularity preserving n-ary function on

languages and K ∈ {mpc,mpl,mps}. Then, we define gK
◦ (k1,k2, . . . ,kn) as the set of all numbers k such

that there are regular languages L1,L2, . . . ,Ln with K(Li) = ki, for 1 ≤ i ≤ n and K(◦(L1,L2, . . . ,Ln)) = k.

Results for some regularity preserving operations on mpc and mpl can be found in the comprehensive

Table 1. The set of all natural numbers not including zero is denoted by N; if zero is included, then we

write N0 instead. The gray shaded entries in Table 1 are new results, left open results, or corrected results

from [2]. We only give the proofs for two of these new results, namely Kleene star and intersection.

Let us start with the Kleene star operation. In [2] it was shown that for the Kleene star operation the

following results hold:

g
mpc
∗ (n) = {1} and g

mpl
∗ (n) =

{

{1}, if n = 0,

{1,2, . . . ,n}, otherwise,

for every n ≥ 0. For the minimal pumping constant mps a larger set of numbers is attainable as we show

next.

Theorem 8. It holds

g
mps
∗ (n) =

{

{1}, if n = 0,

{1,2, . . . ,2n−1}, otherwise.

1
3
8

O
n

M
in

im
al

P
u
m

p
in

g
C

o
n
st

an
ts

fo
r

R
eg

u
la

r
L

an
g
u
ag

es

Minimal pumping constant

Operation mpc mpl mps

Kleene star {1}
{1}, if n = 0,

{1,2, . . . ,n}, otherwise.

{1}, if n = 0,

{1,2, . . . ,2n−1}, otherwise.

Reversal {n}
{0}, if n = 0,

N, otherwise.
{n}

Complement

{1}, if n = 0,

N0 \{1}, if n = 1,

N, otherwise.

{1}, if n = 0

N0 \{1}, if n = 1,

N, otherwise.

{1}, if n = 0,

N0 \{1}, if n = 1,

N, otherwise.

Prefix-Closure
{0}, if n = 0,

N, otherwise.

{0}, if n = 0,

{1,2, . . . ,n}, otherwise.

{0}, if n = 0,

{1,2, . . . ,n}, otherwise.

Suffix-Closure
{0}, if n = 0,

N, otherwise.

{0}, if n = 0,

{1}, if n = 1,

N, otherwise.

{0}, if n = 0,

{1,2, . . . ,n}, otherwise.

Union
max{m,n}, if m = 0 or n = 0,

{1,2, . . . ,max{m,n}}, otherwise.

max{m,n}, if m = 0 or n = 0,

{1,2, . . . ,max{m,n}}, otherwise.

max{m,n}, if m = 0 or n = 0,

{1,2, . . . ,max{m,n}}, otherwise.

Set-Subtraction

{0}, if m = 0,n ≥ 0,

{m}, if m ≥ 0,n = 0,

N0 \{1}, if m ≥ 1,n = 1,

N0, otherwise.

{0}, if m = 0,n ≥ 0,

{m}, if m ≥ 0,n = 0,

N0 \{1}, if m ≥ 1,n = 1,

N0, otherwise.

{0}, if m = 0,n ≥ 0,

{m}, if m ≥ 0,n = 0,

N0 \{1}, if m ≥ 1,n = 1,

N0, otherwise.

Concatenation
{0}, if m = 0 or n = 0,

{1,2, . . . ,m+n−1}, otherwise.

{0}, if m = 0 or n = 0,

{1,2, . . . ,m+n−1}, otherwise.

{0}, if m = 0 or n = 0,

{1,2, . . . ,m+n−1}, otherwise.

Intersection

{0}, if m = 0 or n = 0,

N0 \{2}, if m = n = 1,

N0, otherwise.

{0}, if m = 0 or n = 0,

{1}, if m = n = 1,

N0, otherwise.

{0}, if m = 0 or n = 0,

{1}, if m = n = 1,

N0, otherwise.

Symmetric Difference

max{m,n}, if m = 0 or n = 0,

N0 \{1}, if m = n = 1,

N0, if m = n > 1,

N, otherwise.

max{m,n}, if m = 0 or n = 0,

N0 \{1}, if m = n = 1,

N0, if m = n > 1,

N, otherwise.

max{m,n}, if m = 0 or n = 0,

N0 \{1}, if m = n = 1,

N0, if m = n > 1,

N, otherwise.

Table 1: Results on the operational complexity of the minimal pumping constants mpc, mpl, and mps. The results for the former two minimal

pumping constants are from [2]. Gray shaded entries indicate new results, previous left open results, or corrected ones. Here N refers to the set

of all natural number not including zero; if zero is included we refer to this set as N0.

M. Holzer & C. Rauch 139

Proof. First we look at the case where n = 0. Afterwards we argue why, for n ≥ 1, no value in N0 \
{1,2, . . . ,2n−1} can be reached, and at last we define languages Ln,k with the property that mps(Ln,k) = n

and for the Kleene star of Ln,k we have mps(L∗
n,k) = k.

For mps(L0,k) = n = 0 we observe that L0,k = /0. So we have that mps(L0,k) = n = 0 implies that k =
mps(L∗

0,k) = mps(/0∗) = mps({λ}) = 1. Next we show that for any language L with mps(L) = n we

have that mps(L∗) ≤ 2n − 1. We observe that each non-empty word w̃ ∈ L∗ is equal to w̃1w̃2 . . . w̃t ,

for w̃1, w̃2, . . . , w̃t ∈ L. We know for each of those words that each of their sub-words of length n can be

pumped by a sub-word of length at most n. Assume that mps(L∗) ≥ 2n and the sub-word w of w̃ is a

witness for that, which means there are words u and v in Σ∗ such that w̃ = uwv ∈ L∗ cannot be pumped

by a sub-word of the 2n− 1-prefix of w. W.l.o.g. we assume that the words w̃1, w̃2, . . . , w̃t ∈ L are not

empty. Obviously, we have that

w̃ = w̃1w̃2 . . . w̃t = w̃1w̃2 . . . w̃i−1w′
iww′

jw̃ j+1 . . . w̃t

for w′
iww′

j = w̃iw̃i+1 . . . w̃ j−1w̃ j. We know that each sub-word of length n of w̃i and w̃i+1 can be pumped

by one of its sub-words. Especially this holds for the n-suffix of w̃i. If this suffix is contained in w

than uwv = w̃ can be pumped by that sub-word of w which contradicts the assumption that w is a witness

for mps(L∗) ≥ 2n. The analogue holds true if the n-prefix of w̃i+1 is contained in w. Additionally, if w̃i

(or w̃i+1, respectively) is completely contained in w and has length less than n, then word uwv = w̃

can be pumped by w̃i (or w̃i+1, respectively). Again this contradicts the assumption that w is a witness

for mps(L∗)≥ 2n. Due to the fact that |w| ≥ 2n−1 one of the previously described cases must occur. In

conclusion we have that w cannot be a witness for mps(L∗)≥ 2n. Therefore, mps(L∗)≤ 2n−1.

Now we prove the reachability of the above-mentioned values for k. We distinguish the cases

whether n > k, n = k, or n < k:

1. Case n > k: let Ln,k = {ai | 0 ≤ i ≤ n−1}∪{bk} which is a finite language and thus mps(Ln,k) = n.

Observe, that L∗
n,k is the language of all words that contain only b-blocks with lengths that are

divisible by k. Therefore the word w = bk cannot be pumped by a sub-word of length at most k−1

which implies that mps(L∗
n,k) ≥ k. Assume there is a word w ∈ {a,b}∗ witnessing mps(L∗

n,k) > k

then there are words u,v ∈ {a,b}∗ such that uwv cannot be pumped by a sub-word of the k-prefix y

of w. Due to the structure of L∗
n,k we know that uwv can be pumped by a sub-word of y, if y contains

an a or it contains the sub-word bk. Since |y| = k one of the conditions must be fulfilled which

implies that mps(Ln,k) = k.

2. Case k = n: Let L = (an)∗ = L∗. Then mps(L) = mps(L∗) = n = k.

3. Case n < k: Let Ln,k = (an)∗∪ (bk−n+1)∗. We have mps(Ln,k) = n, since k−n+1 ≤ (2n−1)−n+
1 = n due to the fact that k ∈ {1,2, . . . ,2n− 1}. On the other hand we have that L∗

n,k contains all

words which only contain a- and b-blocks whose length are divisible by n and k− n+ 1, respec-

tively. Therefore the word w= an−1bk−n cannot be pumped by a sub-word of length n−1+k−n=
k − 1, which implies that mps(L∗

n,k) ≥ k. So we assume that there is a word w ∈ {a,b}∗ wit-

nessing mps(L∗
n,k) > k, which implies that there are words u,v ∈ {a,b}∗ such that uwv cannot be

pumped by a sub-word of the k-prefix y of w. Since |y|= k ≥ n ≥ k−n+1 the word y must contain

the sub-word an or bk−n+1, which implies that uwv can be pumped by that sub-word of y. Since

this contradicts the assumption that w is a witness for mps(L∗
n,k) > k we have that mps(L∗

n,k) ≤ k.

In summary mps(L∗
n,k) = k as desired.

This proves the stated claim.

140 On Minimal Pumping Constants for Regular Languages

For the intersection operation it was left open in [2], which numbers are reachable for the pumping

constant mpl. We close this gap and show that for mpc, mpl, and mps the same set of numbers is

reachable.

Theorem 9. For K ∈ {mpl,mps} we have

gK
∩(m,n) =











{0}, if m = 0 or n = 0,

{1}, if m = n = 1,

N0, otherwise,

Proof. Obviously we have that L ∩ /0 = /0 ∩ L = /0 for each regular language L. Assume that L, L′

are regular languages with mpl(L) = mpl(L′) = 1. Given a word w̃ ∈ L∩ L′ such that w̃ is a witness

for mpl(L∩L′) ≥ 2 then w̃ cannot be pumped by its first letter. On the other side we know that w̃ can

be pumped in L and in L′ by its first letter since mpl(L) = mpl(L′) = 1. This implies that each word

we obtain from w̃ by pumping its first letter is in L and L′; therefore in L∩L′. Hence, we can pump w̃

in L∩L′ by its first letter which is a contradiction to the assumption on w̃. The previously shown reason-

ing also applies similarly for mps(L) = mps(L′) = 1 because with this property each word in L and L′ can

be pumped by any of its letters. The value k = 0 is unreachable for n = m = 1 because each language L

with mpl(L)= 1 or mps(L) = 1 contains the letter λ due to Lemma 4 and the remark after Lemma 1. Next

we construct languages such that all values k ≥ 0 can be achieved in the general case for m and n. Here

we distinguish whether k is equal to zero, one or an odd or an even value which is at least two—notice

that the construction for k = 1 also applies for m = n = 1:

• For k = 0 we define Lm,k = {am−1} and Ln,k = {bn−1} which are finite languages and therefore

fulfill mpl(Lm,k) = mps(Lm,k) = m and mpl(Ln,k) = mps(Ln,k) = n. Clearly Lm,k ∩Ln,k = /0 which

provides mpl(/0) = mps(/0) = 0 = k.

• In the case k= 1 we define Lm,k = {am−1}∪{b}∗ and Ln,k = {cn−1}∪{b}∗ which fulfill mpl(Lm,k)=
mps(Lm,k)=m and mpl(Ln,k)= mps(Ln,k)= n because am−1 ∈ Lm,k and cn−1 ∈ Ln,k are not pumpable

by any of their sub-words. Obviously we have Lm,k ∩ Ln,k = {b}∗ which suffices mpl({b}∗) =
mps({b}∗) = 1 = k.

• Now we study the case where k ≥ 2 is an even integer. If k ≥ 2 one of the values m and n must be

at least equal to two. Since the intersection of regular languages is symmetric in its arguments we

assume without loss of generality that m ≥ 2 and n ≥ 1.

We set Lm,k = {cm−1}∪{ba}∗{b}{ad}∗ ∪{da}∗{d} and Ln,k = {en−1}∪B
(∗)
k−2{d}∗. We observe

that cm−1 ∈ Lm,k and en−1 ∈ Ln,k are not pumpable which implies that m ≤ mpl(Lm,k)≤ mps(Lm,k)
and n ≤ mpl(Ln,k) ≤ mps(Ln,k). Since each word in Ln,k is pumpable by each of its letters ex-

cept en−1 we obtain n = mpl(Ln,k) = mps(Ln,k). Further each word in w̃ ∈ {ba}∗{b}{ad}∗ ∪
{da}∗{d} is pumpable by a sub-word y of each sub-word w of w̃ with |w| ≥ 2. This can be seen by

looking at the different cases for the prefixes of length two of w which is done next. For the sake

of simplicity we assume |w|= 2. We will give for each case the word y and then verify that w̃ can

be pumped by y by distinguishing between the words w̃ which can contain w:

– For w= ab we can choose y= ab which is observed by understanding that {ba}∗{b}{ad}∗ =
{b}{ab}+{ad}∗ ∪{b}{ad}∗.

– For w = ba we can choose y = ba. First let w̃ = (ba)ib(ad) j ∈ {ba}∗{b}{ad}∗ . If w̃ =
(ba)i′w(ba)i′′b(ad) j for i= i′+ i′′+1 then we obtain by pumping w̃ via y a word (ba)i+ℓb(ad)∗

for −1 ≤ ℓ. For w̃ = (ba)iwd(ad) j−1 we obtain by pumping w̃ via y a word (ba)i+ℓb(ad)∗

for 0 ≤ ℓ and the word d(ad) j−1 = (da) j−1d ∈ {da}∗{d} for ℓ=−1.

M. Holzer & C. Rauch 141

– For w = ad we can choose y = ad which is easy to confirm for each word in {ba}∗{b}{ad}∗

and each word in {da}∗{d}= {d}{ad}∗.

– For w = da we can choose y = da because {ba}∗{b}{ad}∗ = {ba}∗{b}{a}{da}∗{d} ∪
{ba}∗{b} and for the words in {ba}∗{b}{a}{da}∗{d} ∪ {da}∗{d} it is obvious that they

can be pumped by y = da.

In conclusion each word w̃ in Lm,k can be pumped by a sub-word y of every sub-word w of w̃

if |w| ≥ 2. Therefore we obtain that mpl(Lm,k) = mps(Lm,k) = m.

We observe that Lm,k ∩ Ln,k = ({cm−1}∪ {ba}∗{b}{ad}∗ ∪{da}∗{d})∩ ({en−1}∪B∗
k−2{d}∗) =

{(ba)id | 0 ≤ i ≤ (k− 2)/2} which is a finite language and therefore suffices mpl(Lm,k ∩Ln,k) =
mps(Lm,k ∩ Ln,k) = k. This is due to the fact that the longest word in this language is w̃ =
(ba)(k−2)/2d which fulfills |w̃|= 2 · (k−2)/2+1 = k−1.

• In the case that k ≥ 2 is an odd integer we adapt the language Lm,k shown in the previous case to be

equal to {cm−1}∪{ba}∗{bd}∗ ∪{da}∗{d}. Indeed the property mpl(Lm,k) = mps(Lm,k) = m can

be proven in the same style as in the previous case. Additionally we have Lm,k ∩Ln,k = ({cm−1}∪
{ba}∗{bd}∗∪{da}∗{d})∩({en−1}∪B∗

k−2{d}∗) = {(ba)ibd | 0 ≤ i≤ (k−3)/2}, which is a finite

language and therefore suffices mpl(Lm,k ∩Ln,k) = mps(Lm,k ∩Ln,k) = k. Here the longest word in

this language is w̃ = (ba)(k−3)/2bd which fulfills |w̃|= 2 · (k−3)/2+2 = k−1.

References

[1] W. Brauer (1984): Automatentheorie: Eine Einführung in die Theorie endlicher Automaten. Leitfäden und

Monographien der Informatik, Teubner Stuttgart, doi:10.1007/978-3-322-92151-2. (in German).

[2] J. Dassow & I. Jecker (2022): Operational complexity and pumping lemmas. Acta Inform. 59, pp. 337––355,

doi:10.1007/s00236-022-00431-3.

[3] H. Gruber, M. Holzer & C. Rauch (2023): The Pumping Lemma for Regular Languages is Hard. In B. Nagy,

editor: Proceedings of the 27th International Conference on Implementation and Application of Automata,

LNCS 14151, Springer, Famagusta, Cyprus. Accepted for publication.

[4] M. A. Harrison (1978): Introduction to Formal Language Theory. Addison-Wesley.

[5] M. Holzer & C. Rauch (2023): On Jaffe’s Pumping Lemma, Revisited. In H. Bordihn, N. Tran & G. Vaszil,

editors: Proceedings of the 25th International Conference on Descriptional Complexity of Formal Systems,

LNCS 13918, Springer, Potsdam, Germany, pp. 65–78, doi:10.1007/978-3-031-34326-1_5.

[6] J. E. Hopcroft & J. D. Ullman (1979): Introduction to Automata Theory, Languages and Computation.

Addison-Wesley.

[7] J. Jaffe (1978): A necessary and sufficient pumping lemma for regular languages. SIGACT News 10(2), pp.

48–49, doi:10.1145/990524.990528.

[8] D. C. Kozen (1997): Automata and Computability. Undergraduate Texts in Computer Science, Springer,

doi:10.1007/978-1-4612-1844-9.

[9] A. Nijholt (1982): YABBER—Yet Another Bibliography: Pumping Lemma’s. An Annotated Bibliography of

Pumping. Bull. EATCS 17, pp. 34–53.

[10] M. O. Rabin & D. Scott (1959): Finite Automata and Their Decision Problems. IBM J. Res. Dev. 3, pp.

114–125, doi:10.1147/rd.32.0114.

[11] W. J. Savitch (1982): Abstract Machines and Grammars. Little, Brown and Company.

https://doi.org/10.1007/978-3-322-92151-2
https://doi.org/10.1007/s00236-022-00431-3
https://doi.org/10.1007/978-3-031-34326-1_5
https://doi.org/10.1145/990524.990528
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1147/rd.32.0114

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 142–154, doi:10.4204/EPTCS.386.12

© M. Kutrib, A. Malcher

Reversible Two-Party Computations

Martin Kutrib and Andreas Malcher
Institut für Informatik, Universität Giessen

Arndtstr. 2, 35392 Giessen, Germany
{kutrib,andreas.malcher}@informatik.uni-giessen.de

Deterministic synchronous systems consisting of two finite automata running in opposite directions
on a shared read-only input are studied with respect to their ability to perform reversible computa-
tions, which means that the automata are also backward deterministic and, thus, are able to uniquely
step the computation back and forth. We study the computational capacity of such devices and obtain
on the one hand that there are regular languages that cannot be accepted by such systems. On the
other hand, such systems can accept even non-semilinear languages. Since the systems communicate
by sending messages, we consider also systems where the number of messages sent during a compu-
tation is restricted. We obtain a finite hierarchy with respect to the allowed amount of communication
inside the reversible classes and separations to general, not necessarily reversible, classes. Finally,
we study closure properties and decidability questions and obtain that the questions of emptiness,
finiteness, inclusion, and equivalence are not semidecidable if a superlogarithmic amount of commu-
nication is allowed.

1 Introduction

Watson-Crick automata have been introduced in [7] as a formal model for DNA computing. The motiva-
tion for such automata comes from processes observed in nature and laboratories. Basically, the idea is
to consider finite automata with two reading heads that run on either strand of a double stranded DNA-
molecule. It is noted in [20] that in nature enzymes moving along DNA strands may obey the biochemical
direction of the single strands of the DNA sequence. Hence, so-called 5′→ 3′ Watson-Crick automata
have been introduced in [20], which are two-head finite automata where the heads start at opposite ends
of a strand and move in opposite physical directions. It is known that no additional information is en-
coded in the second strand provided that the complementarity relation of the double stranded sequence
is one-to-one. In this case, 5′→ 3′ Watson-Crick automata share a common input sequence.

Watson-Crick automata and 5′ → 3′ Watson-Crick automata have intensively been investigated in
the last years from different points of view. Descriptional complexity aspects of Watson-Crick automata
are studied in [6]. 5′ → 3′ Watson-Crick automata with several runs, which means that both heads
are sweeping between both ends of the input, are investigated in [18] and a hierarchy with respect to
the number of runs has been obtained. The aspect of the amount of communication between the two
heads that is necessary in accepting computations is highlighted in [12] where 5′ → 3′ Watson-Crick
automata with restricted communication are introduced and a finite hierarchy concerning the amount of
communication could be obtained. The concept of sensing heads, where one head can sense the presence
of the other head, has been applied to 5′→ 3′ Watson-Crick automata in [21, 24]. The concept of jumping
automata, where the input is processed in a discontinuous way, has been introduced and investigated for
5′→ 3′ Watson-Crick automata in [9]. Finally, the impact of replacing the underlying devices of finite
automata by finite transducers or pushdown automata is studied in [23] and in [5, 22], respectively.

Another line of research in recent years is the study of reversible devices. Here, a computation is con-
sidered reversible if every configuration has at most one unique successor configuration and at most one

http://dx.doi.org/10.4204/EPTCS.386.12

M. Kutrib, A. Malcher 143

unique predecessor configuration. The study of such devices that perform logically reversible computa-
tions is motivated by Landauer’s question of whether logical irreversibility is an unavoidable feature of
useful computers. This question is of particular interest, since Landauer has demonstrated that whenever
a physical computer throws away information about its previous state it must generate a corresponding
amount of entropy that results in heat dissipation. A detailed discussion and suitable references can
be found in [2]. Reversible variants of many computational models have been studied in the literature.
For Turing machines the first investigations on reversible computations date back to the sixties of the
last century. It is shown in the work of Lecerf [17] and Bennett [2] that it is possible for every Turing
machine to construct an equivalent reversible Turing machine. Hence, every irreversible computation
can be made reversible. This is no longer true if finite automata are considered. On the one hand, it is
known that reversible one-way deterministic finite automata are computationally weaker than one-way
deterministic finite automata in general [1] (cf. also [8]). On the other hand, two-way deterministic finite
automata and reversible two-way deterministic finite automata are equally powerful [10]. Similar results
are known for multihead finite automata. In case of one-way motion, the reversible variant is compu-
tationally weaker than the general model ([14]), whereas in case of two-way motion the computational
power of the reversible variant and the general model coincides [19]. Several more types of devices as,
for example, queue automata [16], one-way counter machines with multiple counters [15], and parallel
communicating finite automata [3] have been investigated with respect to reversibility. An overview of
the topic is given in [11].

The aspect of reversibility has been studied for Watson-Crick automata in [4]. One result is that
every regular language can be accepted by a reversible Watson-Crick automaton. Here, it is essential
that the complementarity relation of the double stranded sequence is not one-to-one. If the comple-
mentarity relation is one-to-one, another result of [4] gives that the computational power of reversible
Watson-Crick automata and reversible two-head finite automata ([14]) coincides. In this paper, we study
5′ → 3′ Watson-Crick automata having a one-to-one complementarity relation and to differentiate the
notation from other variants we will call the devices in question two-party Watson-Crick systems. This
paper can be seen as a continuation of [12] where communication restricted two-party Watson-Crick
systems are introduced and a strict four-level hierarchy depending on the number of messages sent
was established, where the levels are given by O(1), O(log(n)), O(

√
n), and O(n) messages allowed.

Moreover, it could be shown that the questions of emptiness, finiteness, inclusion, and equivalence are
not semidecidable, that is, not recursively enumerable, even if the communication is reduced to a limit
O(log(n) · log(log(n))). Here, we complement these results. After defining the model and giving two
illustrating examples in Section 2 we show in Section 3 that there are regular languages which can not be
accepted by any reversible two-party Watson-Crick systems with any amount of communication. This
is in strong contrast to general two-party Watson-Crick systems where no communication is necessary
to accept regular languages. This result can be used in Section 4 in which closure properties are inves-
tigated. It turns out that reversible two-party Watson-Crick systems are closed under complementation
and reversal, whereas they are not closed under union, intersection, intersection with regular languages,
concatenation, iteration, length-preserving homomorphism, and inverse homomorphism. In Section 5,
we can extend the strict four-level hierarchy depending on the number of messages sent from [12] to
reversible two-party Watson-Crick systems. Moreover, we obtain that for every level the reversible sys-
tems are computationally weaker than the general systems. Finally, we discuss in Section 6 decidability
questions. In a first step, we show that the questions of emptiness, finiteness, inclusion, and equiva-
lence are not semidecidable for reversible two-party Watson-Crick systems essentially disregarding the
number of messages communicated. In a second step, we refine the argumentation and apply and adapt
a result from [14] which enables us to show that the questions of emptiness, finiteness, inclusion, and

144 Reversible Two-Party Computations

equivalence are not semidecidable for reversible two-party Watson-Crick systems even if the number of
messages allowed is bounded by O(log(n) · log(log(n))).

2 Definitions and Preliminaries

We denote the set of nonnegative integers by N. We write Σ∗ for the set of all words over the finite
alphabet Σ. The empty word is denoted by λ , and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

A two-party Watson-Crick system is a device of two finite automata working independently and in
opposite directions on a common read-only input data. The automata communicate by broadcasting mes-
sages. The transition function of a single automaton depends on its current state, the currently scanned
input symbol, and the message currently received from the other automaton. Both automata work syn-
chronously and the messages are delivered instantly. Whenever the transition function of (at least) one
of the single automata is undefined the whole systems halts. The input is accepted if at least one of the
automata is in an accepting state. A formal definition is as follows.

A deterministic two-party Watson-Crick system (DPWK) is a construct A = 〈Σ,M,B,C,A1,A2〉,
where Σ is the finite set of input symbols, M is the set of possible messages, B /∈ Σ and C /∈ Σ are
the left and right endmarkers, and each Ai = 〈Qi,Σ,δi,µi,q0,i,Fi〉, i ∈ {1,2}, is basically a determin-
istic finite automaton with state set Qi, initial state q0,i ∈ Qi, and set of accepting states Fi ⊆ Qi.
Additionally, each Ai has a broadcast function µi : Qi× (Σ∪ {B,C})→ M ∪ {⊥} which determines
the message to be sent, where ⊥ /∈ M means nothing to send, and a (partial) transition function
δi : Qi× (Σ∪{B,C})× (M∪{⊥})→ Qi×{0,+}, where + means to move the head one square and 0
means to keep the head on the current square.

The automata A1 and A2 are called components of the system A , where the so-called upper compo-
nent A1 starts at the left end of the input and moves from left to right, and the lower component A2 starts
at the right end of the input and moves from right to left. A configuration of A is represented by a string
Bv1
−→p xv2y q←−v3C, where v1xv2yv3 is the input and it is understood that component A1 is in state p with

its head scanning symbol x, and component A2 is in state q with its head scanning symbol y. System A
starts with component A1 in its initial state scanning the left endmarker and component A2 in its initial
state scanning the right endmarker. So, for input w ∈ Σ∗, the initial configuration is −→q0,1BwCq0,2←−

. A

computation of A is a sequence of configurations beginning with an initial configuration. One step from
a configuration to its successor configuration is denoted by `. Let w = a1a2 · · ·an be the input, a0 = B,
and an+1 =C, then we set

a0 · · ·ai−1
−→p ai · · ·a j q←−a j+1 · · ·an+1 ` a0 · · ·ai′−1

−→p1ai′ · · ·a j′q1←−a j′+1 · · ·an+1,

for 0 ≤ i, j ≤ n+ 1, iff δ1(p,ai,µ2(q,a j)) = (p1,d1) and δ2(q,a j,µ1(p,ai)) = (q1,d2), i′ = i+ d1 and
j′ = j−d2. As usual we define the reflexive, transitive closure of ` by `∗.

A computation halts when the successor configuration is not defined for the current configuration.
This may happen when the transition function of one component is not defined. The language L(A)
accepted by a DPWK A is the set of inputs w ∈ Σ∗ such that there is some computation beginning with
the initial configuration for w and halting with at least one component being in an accepting state.

Now we turn to reversible two-party Watson-Crick systems. Basically, reversibility is meant with
respect to the possibility of stepping the computation back and forth. So, the system has also to be back-
ward deterministic. That is, any configuration must have at most one predecessor which, in addition, is

M. Kutrib, A. Malcher 145

computable by a two-party Watson-Crick system. In particular for the read-only input tape, the machines
reread the input symbol which they have been read in a preceding forward computation step. Therefore,
for reverse computation steps the head of the upper component is either moved to the left or stays sta-
tionary, whereas the head of the lower component is either moved to the right or stays stationary. One
can imagine that in a forward step, first the input symbol is read and then the input head is moved to its
new position, whereas in a backward step, first the input head is moved to its new position and then the
input symbol is read.

So, a deterministic two-party Watson-Crick system A is said to be reversible (REV-PWK) if and only
if there exist reverse transition functions δ←i : Qi× (Σ∪{B,C})× (M∪{⊥})→ Qi×{0,−} and reverse
broadcast functions µ←i : Qi× (Σ∪{B,C})→M∪{⊥} inducing a relation `← from a configuration to
its predecessor configuration, such that

a0 · · ·ai′−1
−→p1ai′ · · ·a j′q1←−a j′+1 · · ·an+1 `← a0 · · ·ai−1

−→p ai · · ·a j q←−a j+1 · · ·an+1

if and only if

a0 · · ·ai−1
−→p ai · · ·a j q←−a j+1 · · ·an+1 ` a0 · · ·ai′−1

−→p1ai′ · · ·a j′q1←−a j′+1 · · ·an+1.

In the following, we study the impact of communication in deterministic two-party Watson-Crick
systems. The communication is measured by the total number of messages sent during a computation,
where it is understood that ⊥ means no message and, thus, is not counted.

Let f : N→N be a mapping. If all w∈ L(A) are accepted with computations where the total number
of messages sent is bounded by f (|w|), then A is said to be communication bounded by f . We denote
the class of DPWKs that are communication bounded by f by DPWK(f). In case of reversible DPWKs
we have to consider the number of messages sent in reverse computations as well. If all w ∈ L(A) are
accepted with computations where the total number of messages sent in forward computations and in
reverse computations is each bounded by f (|w|), then A is said to be communication bounded by f and
the corresponding class of REV-PWKs is denoted by REV-PWK(f).

In general, the family of languages accepted by devices of type X is denoted by L (X). To illustrate
the definitions we start with two examples.
Example 1. The non-regular language L = {anbn | n ≥ 1} is accepted by a REV-PWK. The principal
idea of the construction is that the upper component starts with one time step delay and then moves its
head with maximum speed to the right, whereas the lower component immediately starts to move its
head with maximum speed to the left. Both components communicate in every time step the symbol they
read. When the lower component has read the rightmost a of the a-block after having passed the b-block,
the transition functions ensure that the upper component has to read the leftmost b of the b-block after
having passed the a-block. When the lower component has reached the left endmarker, it waits for one
time step. To accept the input, the upper component has to read the right endmarker in the final step.
In the backward computation the upper component immediately starts, whereas the lower component
starts with with one time step delay. When the upper component has read the rightmost a of the a-block
after having passed the b-block, the transition functions ensure that the lower component has to read the
leftmost b of the b-block after having passed the a-block. Finally, when the upper component has reached
the right endmarker, it waits for one time step. To reach the initial configuration the lower component
has to read the left endmarker in the next time step.

For the precise construction of a REV-PWK accepting the language L = {anbn | n ≥ 1} we define
A = 〈{a,b},{a,b,B,C},B,C,A1,A2〉 where

A1 = 〈{p0, p1, . . . , p5},{a,b},δ1,µ1, p0,{p5}〉 and A2 = 〈{q0,q1, . . . ,q5},{a,b},δ2,µ2,q0,{}〉.

146 Reversible Two-Party Computations

The broadcast functions µ1,µ2 and the reverse broadcast functions µ←1 ,µ←2 are defined as
µ1(p,x) = µ←1 (p,x) = x and µ2(q,x) = µ←2 (q,x) = x for all p ∈ {p0, p1, . . . , p5}, q ∈ {q0,q1, . . . ,q5},
and x ∈ {a,b,B,C}. The transition functions δ1,δ2 and δ←1 ,δ←2 are as follows.

A1 forward
(1) δ1(p0,B,C) = (p1,0)
(2) δ1(p1,B,b) = (p2,+)

(3) δ1(p2,a,b) = (p2,+)

(4) δ1(p2,a,a) = (p3,+)

(5) δ1(p3,b,a) = (p3,+)

(6) δ1(p3,b,B) = (p4,+)

(7) δ1(p4,C,B) = (p5,0)

A1 backward
(1) δ←1 (p1,B,C) = (p0,0)
(2) δ←1 (p2,B,b) = (p1,−)
(3) δ←1 (p2,a,b) = (p2,−)
(4) δ←1 (p3,a,a) = (p2,−)
(5) δ←1 (p3,b,a) = (p3,−)
(6) δ←1 (p4,b,C) = (p3,−)
(7) δ←1 (p5,C,B) = (p4,0)

A2 forward
(1) δ2(q0,C,B) = (q1,+)

(2) δ2(q1,b,B) = (q2,+)

(3) δ2(q2,b,a) = (q2,+)

(4) δ2(q2,a,a) = (q3,+)

(5) δ2(q3,a,b) = (q3,+)

(6) δ2(q3,B,b) = (q4,0)
(7) δ2(q4,B,C) = (q5,0)

A2 backward
(1) δ←2 (q1,C,B) = (q0,−)
(2) δ←2 (q2,b,B) = (q1,−)
(3) δ←2 (q2,b,a) = (q2,−)
(4) δ←2 (q3,a,a) = (q2,−)
(5) δ←2 (q3,a,b) = (q3,−)
(6) δ←2 (q4,B,b) = (q3,0)
(7) δ←2 (q5,B,C) = (q4,0)

We note that it is shown in [13] that L = {anbn | n≥ 1} is not accepted by any reversible pushdown
automaton. �

Example 2. The non-context-free language L′= {wwRa|w| |w∈ {a,b}∗ } is accepted by a REV-PWK.
Here, the principal idea is that the upper component waits at the left endmarker, while the lower com-
ponent moves across the a-block. Having reached the second $, both components move with maximum
speed and test the structure w$wR by communicating in every time step they read. If no error occurred,
the upper component moves to the second $, while the lower component waits at the first $. Finally, both
components move with maximum speed and test the length of w equals the length of the a-block. The
moving of the components in the backward computation is straightforward. �

3 Reversibility versus Irreversibility

We now turn to the question of whether reversible two-party Watson-Crick systems are weaker than
irreversible ones or not; it turns out that they are. In fact, there are languages accepted by irreversible
two-party Watson-Crick systems that do not need any communication which cannot be accepted by any
reversible two-party Watson-Crick system regardless of the number of communications. To show this
claim, we will use regular witness languages. Let Σ ⊇ {a,b} be an alphabet and I ⊆ Σ∗ be regular such
that I = IR. Then we define LI = {am1bvbam2 | m1,m2 ≥ 0,v ∈ b∗ or v ∈ I }. So, the words in LI have a
nonempty prefix of a’s, followed by a b, followed by a factor of b’s or a factor from I, followed by a b,
followed by a nonempty suffix of a’s.

Theorem 3. Let Σ⊇ {a,b} and I ⊆ Σ∗. Then language LI is not accepted by any REV-PWK.

M. Kutrib, A. Malcher 147

Proof. Assume for the purpose of contradiction that LI is accepted by some REV-PWK A . Since we
do not limit the number of possible communications, we simply assume that both components send a
message at every time step. In this case, for the sake of easier writing, we can assume that there is one
common finite-state control for both components. This control receives a pair of input symbols in every
step, changes the state, and moves the components if required. Now we can argue that the system is
irreversible if there are two reachable states that have a common successor state for the same pair of
input symbols.

We denote this system M, its set of states Q, and its transition function δ . We now consider accepting
computations on words w = axbyaz ∈ LI , where x,y,z are long enough. In a first phase of such a compu-
tation, eventually at least one component has to start to move across the a-prefix or a-suffix. Otherwise
the overall computation would loop forever. Since LI = LR

I , we can safely assume that the upper com-
ponent moves. The lower component may move across the a-suffix or stay stationary on the endmarker
or some a. We choose x and z large enough such that M runs into a state cycle in this phase. Moreover,
we choose z that large that the upper component arrives at the first b after the a-prefix before the lower
component has passed the a-suffix. Let p1, p2, . . . , pk be the state cycle. We can adjust the length of the
prefix such that M moves the upper component on the first b while entering state pk. So, we have a con-
figuration of the form pk : Baa · · ·a−→b b · · ·baa · · · σ←−·· · , where the state of M is written in front ofB, and
σ = a or σ = C, and the components are scanning the symbols indicated by the arrows. Next, we can
enlarge z such that M runs again in a state loop while the upper component is reading b’s and the lower
component is readingC or a’s. Assume that the sequence of states passed through is extended from pk by
p′1, p′2, . . . , p′i, p′′1, . . . p′′j , p′′1 . Then we know δ (p′i,(b,σ1)) = (p′′1,d1,d2) and δ (p′′j ,(b,σ2)) = (p′′1,d1,d2),
where d1,d2 indicate whether the components are moved or not. Since M is reversible, we derive
p′1, p′2, . . . , p′i, p′′1, . . . p′′j , p′′1 = p1, p2, . . . , pk, p1 or (b,σ1) 6= (b,σ2) and, thus, σ1 6= σ2 and, hence, σ1 =C
and σ2 = a. Dependent on whether the loop on the (a,σ)’s is continued on the (b,σ)’s, or the second
possibility, we distinguish two cases. A similar distinction will be made in several sub-cases.

Case A The system M continues to loop through the states p1, p2, . . . , pk while reading (b,σ)’s.
Recall that the current state determines the last movements of the components. Therefore, the upper
component moves across the b’s. Moreover, we can choose y and z again large enough such that the upper
component runs through several loops and M moves the upper component on the first a of the suffix while
entering state pk. So, we have a configuration of the form pk : Baa · · ·abb · · ·b−→a a · · ·a σ←−·· · . Now, we
can repeat the argument from above and distinguish the two sub-cases that M continues to loop through
the states p1, p2, . . . , pk, p1, or (a,σ1) 6= (a,σ2) and, thus, σ1 6= σ2 and, hence, σ1 =C and σ2 = a.

Case A.1 The system M continues to loop through the states p1, p2, . . . , pk while reading (a,σ)’s. In
this sub-case the upper component may reach the right endmarker before the lower component reaches
the b before the a-suffix. Then the remaining computation of M is that of a finite automaton, that is, of
the lower component. Since the language a∗b∗a∗ is not accepted by any reversible DFA, we obtain a
contradiction.

Therefore, the upper component may reach the right endmarker not before the lower component
reaches the b before the a-suffix. Now, again we can repeat the argument from above and distinguish
the two sub-cases that M continues to loop through the states p1, p2, . . . , pk while moving the lower
component or (a,σ1) must not be equal to (a,σ2) which can be violated by adjusting the value of z. In
this way σ1 = σ2 = a, a contradiction. If, however, M continues to loop through the states p1, p2, . . . , pk,
by almost the same arguments as before we can obtain a contradiction unless M continues to loop through
the states p1, p2, . . . , pk until the lower component has reached the left endmarker. In this case, the
language {a,b}+ is accepted.

148 Reversible Two-Party Computations

Case A.2 The sequence of states passed through to reach the configuration
pk : Baa · · ·abb · · ·b−→a a · · ·a σ←−·· · is extended from state pk by the states q′1,q

′
2, . . . ,q

′
i′ ,q
′′
1, . . .q

′′
j′ ,q
′′
1 , and

we have δ (q′i′ ,(a,σ1)) = (q′′1,d1,d2) and δ (q′′j′ ,(a,σ2)) = (q′′1,d1,d2), and therefore (a,σ1) 6= (a,σ2)
which implies σ1 =C and σ2 = a.

Now, the upper component may or may not reach the right endmarker before the lower component
reaches the b before the a-suffix. We obtain a contradiction almost literally as in Case A.1.

Case B The sequence of states passed through to reach the configurationBaa · · ·a−→b b · · ·baa · · · σ←−·· ·
in state pk is extended from pk by p′1, . . . , p′i, p′′1, . . . p′′j , p′′1 . Then we have δ (p′i,(b,σ1)) = (p′′1,d1,d2) and
δ (p′′j ,(b,σ2)) = (p′′1,d1,d2), and therefore, (b,σ1) 6= (b,σ2) which implies σ1 =C and σ2 = a.

Case B.1 If the upper component moves in the state cycle p′′1, . . . p′′j , then we can choose z again large
enough such that the upper component reaches the first a after the b-factor before the lower component
reaches the b before the a-suffix. So, a configuration Baa · · ·abb · · ·b−→a a · · · a←−·· · is reached in some
state from the cycle. We obtain a contradiction along the argumentation as in Case A.1.

Case B.2 If the upper component does not move in the state cycle p′′1, . . . p′′j , then a configuration

· · ·−→b b · · · b←−aa · · · is reached in some state from the cycle.
Assume that from here the computation continues in the same state cycle until the lower component

has reached the left endmarker. Then the upper component stays on the current input in this phase,
and the remaining computation of M is that of a finite automaton, that is, of the upper component on
its remaining input of the form b∗a∗, which is not accepted by any reversible DFA. So, we obtain a
contradiction.

We conclude that the computation cannot continue in the same state cycle. If it continues in some
state cycle q′1,q

′
2, . . . ,q

′
i′ ,q
′′
1, . . .q

′′
j′ ,q
′′
1 while both components read b’s, then we have δ (q′i′ ,(b,b)) =

(q′′1,d1,d2) and δ (p′′j′ ,(b,b)) = (p′′1,d1,d2) which violates the reversibility.
If the computation continues in some state cycle q′1,q

′
2, . . . ,q

′
i′ ,q
′′
1, . . .q

′′
j′ ,q
′′
1 after at least one com-

ponent has passed across the b-factor, we obtain a similar contradiction with input pairs (a,b), (b,a),
or (a,a).

This concludes the case analysis. Since in any possible case a contradiction is derived, the initial
assumption that LI is accepted by some REV-PWK is wrong and the assertion follows.

The result of Theorem 3 that there is a regular language that is not accepted by any REV-PWK to-
gether with Example 1 showing that the non-regular language {anbn | n≥ 1} is accepted by a REV-PWK
proves that the class of languages accepted by REV-PWK and the regular languages are incomparable.
Since {anbn | n≥ 1} is a linear and real-time deterministic context-free language, we immediately obtain
the incomparability to the linear context-free languages as well as to the real-time deterministic context-
free languages. It is shown in [13] that every regular language can be accepted by a reversible pushdown
automaton. Moreover, it is shown that the language {anbn | n≥ 1} cannot be accepted by any reversible
pushdown automaton. Hence, the classes of languages accepted by REV-PWK and reversible pushdown
automata are incomparable as well.

4 Closure Properties

The goal of this section is to collect some closure properties of the families L (REV-PWK). For this pur-
pose, the regular languages LI can be used very well in several cases. In particular, we consider Boolean
operations (complementation, union, intersection) and AFL operations (union, intersection with regu-

M. Kutrib, A. Malcher 149

lar languages, homomorphism, inverse homomorphism, concatenation, iteration). The positive closure
under reversal is trivial. The results are summarized in Table 1 at the end of the section.

Proposition 4. The family L (REV-PWK) is closed under complementation.

Proposition 5. The family L (REV-PWK) is not closed under union, intersection, and intersection with
regular languages.

Proof. Let Σ= {a,b}. For I = /0, we consider the regular language L /0 = {am1bbm3bam2 |m1,m2,m3≥ 0}.
By Theorem 3, the regular language L /0 does not belong to the family L (REV-PWK). On the other
hand, the language Σ∗ does belong to the family. Since Σ∗ ∩L /0 = L /0, we obtain the non-closure under
intersection with regular languages.

The non-closure under intersection is witnessed by the languages, L1 = {ambbv |m≥ 0,v ∈ {a,b}∗ }
and L2 = {vbbam | m≥ 0,v ∈ {a,b}∗ }.

We show that L1 is accepted by some more or less trivial REV-PWK without any communication as
follows.

The lower component does nothing, that is, it loops in its non-accepting initial state on the right
endmarker. The behavior of the upper component is depicted as a state graph in Figure 1. If and only
if the component has seen a correct prefix of the form a∗bb it halts in an accepting state (the rest of the
input cannot affect the computation result any more and, by definition, there is no need to read it).

q0 q1 q2 q3
▷

a

b bstart

Figure 1: State graph of the upper component of a REV-PWK accepting L1.

Since L2 = LR
1 and the closure of L (REV-PWK) under reversal, we conclude that L2 belongs to

L (REV-PWK) as well. However, L1 ∩ L2 = LI for I = b{a,b}∗b and, thus, the non-closure under
intersection follows.

The non-closure under union follows from the closure under complementation and the non-closure
under intersection by De Morgan’s law.

Proposition 6. The family L (REV-PWK) is not closed under concatenation and iteration.

Proof. The witness language for both operations is L = {anbn | n≥ 1} which belongs to L (REV-PWK)
by Example 1.

For the concatenation we consider L ·L and for the iteration we consider L∗.
Essentially, using a different but similar language, in [18] it is shown that for n long enough both

components have to scan some symbol from each two factors whose lengths have to be compared simul-
taneously. This argument applies also here. However, the two components can simultaneously stay in
two corresponding factors at most for one such pair. This implies that neither the language L ·L nor the
language L∗ is accepted even by any not necessarily reversible DPWK.

Proposition 7. The family L (REV-PWK) is not closed under length-preserving homomorphisms.

Proposition 8. The family L (REV-PWK) is not closed under inverse homomorphisms.

150 Reversible Two-Party Computations

Family ∪ ∩ ∩reg · ∗ hlen.pres. h−1 R

REV-PWK 3 7 7 7 7 7 7 7 3

Table 1: Closure properties of the language families discussed.

5 Restricted Communication

The REV-PWK considered in the previous sections may communicate arbitrarily often. In this section,
we want to consider DPWK and REV-PWK with a restricted amount of communications. According
to the definition in Section 2 we have a function f : N→ N and define that a DPWK is communication
bounded by f if all words w in the language are accepted with computations where the total number
of messages sent is bounded by f (|w|). A REV-PWK is communication bounded by f if, in addition,
the total number of messages sent in reverse computations is bounded by f (|w|) as well. Here, we
will study the language class with constant communication, where f ∈ O(1), the class with logarithmic
communication, where f ∈O(log(n)), the class with square root communication, where f ∈O(

√
n), and

the class with arbitrary, i.e., linear communication, where f ∈ O(n). The relations of these classes have
been investigated for DPWK in [12]. Here, we will complement the results for REV-PWK and clarify
the relations between reversible and general, possibly irreversible, devices. We start with an example
presenting a non-semilinear language that is accepted by a REV-PWK(O(log(n))).

Example 9. The language Lexpo = {a20
ba22

b · · ·ba22m
ca22m+1

b · · ·ba23
ba21 | m ≥ 1} is accepted by a

REV-PWK. The rough idea of the construction is that in a first phase the components compare the
lengths 20 with 21, 22 with 23, . . . , and 22m with 22m+1. The first phase ends when both components
reach the center symbol c. In a second phase, the components compare the length 22m with 22m−1, 22m−2

with 22m−3, . . . , and 22 with 21. To achieve this the lower component has to wait on the c until the upper
component has moved across the block a22m+1

. To realize the comparisons, the upper component moves
across its a-blocks with half speed, whereas the lower component moves across its a-blocks with full
speed, that is, one square per step. The length comparisons in the first and second phase are checked by
communicating when a b, c, or the right endmarker is reached which must happen synchronously.

The length of an accepted input is n = 22m+2 + 2m. There are communications only on symbols
b, c, and C both in forward computations and reverse computations. Hence, there are at most 2m+ 3
communications in forward computations as well as in reverse computations. Thus, the REV-PWK
constructed is a REV-PWK(O(log(n))) and Lexpo belongs to L (REV-PWK(O(log(n)))). �
Lemma 10. The language Llin = {wcwR | w ∈ {0,1}∗ } belongs to L (REV-PWK(O(n))).

Proof. A REV-PWK accepting Llin will move its both components synchronously towards the middle
marker c as long as the input symbol read and communicated in every step is equal. In case of in-
equivalence the computation halts non-accepting. If both components reach the middle marker c at
the same time, the first task is nearly accomplished. It remains for the lower component to read the
input completely and to halt non-accepting in case of another symbol c occurring. Since both com-
ponents move synchronously and communicate in every step, it is clear that Llin can be accepted by a
REV-PWK(O(n)).

As a combination of Example 9 and Lemma 10 we obtain the following lemma.
Lemma 11. L̂expo = {a20

x1a22
x2 · · ·xma22m

ca22m+1
xm · · ·x2a23

x1a21 | m ≥ 1 and xi ∈ {0,1},1 ≤ i ≤ m}
belongs to L (REV-PWK(O(log(n)))).

M. Kutrib, A. Malcher 151

Proof. It can be observed from the construction in Example 9 that in the first phase both components
communicate on every symbol b and c. So, on the corresponding input from L̂expo both components
can communicate on every symbol 0, 1, and c in order to simulate the REV-PWK accepting Llin as a
subtask.

With similar ideas it is possible to show the following lemma.
Lemma 12. L̂poly = {ax1a5x2 · · ·xma4m+1ca4m+3xm · · ·x2a7x1a3 | m≥ 0 and xi ∈ {0,1},1 ≤ i ≤ m} be-
longs to L (REV-PWK(O(

√
n))).

It is shown in [12] that Llin does not belong to L (DPWK(O(f))) if f ∈ n
ω(log(n)) . Hence, Llin

does not belong to L (REV-PWK(O(
√

n))). It is also shown in [12] that L̂poly does not belong to
L (DPWK(O(f))) if f ∈ O(log(n)). Thus, L̂poly does not belong to L (REV-PWK(O(log(n)))). Fi-
nally, it is known due to [12] that every language in L (DPWK(O(1))) is semilinear. Since L̂expo is
not semilinear, it does not belong to L (REV-PWK(O(1))). Together with Lemma 10, Lemma 11, and
Lemma 12 we obtain the following proper hierarchy:

L (REV-PWK(O(1)))⊂L (REV-PWK(O(log(n))))⊂
L (REV-PWK(O(

√
n)))⊂L (REV-PWK(O(n)))

Theorem 3 presents a regular language that is not accepted by any REV-PWK(O(n)). Since the regu-
lar languages belong to L (DPWK(O(1))) we immediately obtain proper inclusions between reversible
and general language classes with the same amount of communication. These results and the other results
of this section are summarized in Figure 2.

L (REV-PWK(O(n))) L (DPWK(O(n)))

L (REV-PWK(O(
√
n))) L (DPWK(O(

√
n)))

L (REV-PWK(O(log(n)))) L (DPWK(O(log(n))))

L (REV-PWK(O(1))) L (DPWK(O(1)))

REG

Figure 2: Relationships between language families induced by two-party Watson-Crick systems. An
arrow between families indicates a strict inclusion.

6 Decidability Questions

In this section, we will discuss several decidability questions for REV-PWK. It has been shown in [12]
that the questions of emptiness, finiteness, inclusion, and equivalence are decidable for general, possibly
irreversible, DPWK in case of a finite number of communications. This result leads immediately to the
following decidability results for REV-PWK in case of a finite number of communications.

152 Reversible Two-Party Computations

Theorem 13. Let k ≥ 0 be a constant. Then emptiness, finiteness, inclusion, and equivalence are decid-
able for REV-PWK(k).

Next, we want to obtain that the decidability questions become undecidable if a non-constant number
of communications is used. In a first step, we show that the questions of emptiness, finiteness, inclusion,
and equivalence are undecidable and, moreover, not even semidecidable for REV-PWK in case of a linear
number of communications used. In a second step, we will obtain the same non-semidecidability results
with a superlogarithmic number of communications used.

It has been shown in [14] that the questions of testing emptiness, finiteness, inclusion, and equiva-
lence are not semidecidable for reversible two-head finite automata. The difference between such au-
tomata and DPWK is that the former move their two heads in the same direction from left to right,
whereas the latter move both heads in opposite directions. Now, the idea is to simulate a reversible
two-head finite automaton by a REV-PWK.

The non-semidecidability results for reversible two-head finite automata are obtained by showing
that the set VALCM of suitably encoded valid computations of a deterministic linearly space bounded
one-tape, one-head Turing machine M, so-called linear bounded automaton (LBA) can be accepted by a
reversible two-head finite automaton. It should be noted that the due to technical reasons the definition
of the set VALCM in [14] considers valid computations on inputs of length at least 2.

Now, we will construct a REV-PWK(O(n)) that accepts the set VALC′M = {wRcw | w ∈ VALCM },
where the set VALCM is defined over some alphabet A and c 6∈ A is a new symbol.

Lemma 14. Let M be an LBA. Then, a REV-PWK(O(n)) accepting VALC′M can effectively be con-
structed.

Proof. Let M be an LBA. A REV-PWK M′ accepting VALC′M has to accomplish two tasks. First, M′ will
test the structure wRcw disregarding whether w belongs to VALCM or not. To achieve this task we use
a similar approach as described in the proof of Lemma 10. Both components will move synchronously
towards the middle marker c as long as the input symbol read and communicated in every step is equal.
The structure wRcw is correctly tested, if both components reach the middle marker c at the same time.
Then, the first task is nearly accomplished, but it remains for the lower component, while accomplishing
the second task, to read the input completely and to halt non-accepting in case of another symbol c
occurring. Since both components move synchronously and communicate in every step, it is clear that
the first task can be realized by a REV-PWK(O(n)).

For the second task, we first observe that the remaining input for both components is the same
word w and it remains to be checked whether or not w belongs to VALCM. This can now be realized
by implementing the construction given in [14] for two-head finite automata. The head 1 is simulated
by the upper component and head 2 is simulated by the lower component, whereby the middle marker c
is interpreted as the left endmarker for the two-head finite automaton. In this construction the lower
component reads the input completely and can halt non-accepting if another symbol c is read. Since the
two-head finite automaton is reversible, the second task and, therefore, the complete construction can be
realized by a REV-PWK(O(n)).

This leads immediately to the following non-semidecidability results.

Theorem 15. The problems of testing emptiness, finiteness, inclusion, and equivalence are not semide-
cidable for a given REV-PWK(O(n)).

Proof. Let M be an LBA accepting inputs over the alphabet Σ. According to Lemma 14 we can effec-
tively construct a REV-PWK(O(n)) M′ accepting VALC′M. Clearly, L(M′) = VALC′M is empty if and

M. Kutrib, A. Malcher 153

only if VALCM is empty if and only if L(M) is either empty or contains some words from the finite
set {λ} ∪ Σ. The latter words have to be considered, since M may accept words of length less than
two. Since the word problem is decidable for LBAs and emptiness is not semidecidable for LBAs, the
non-semidecidability of emptiness follows.

We also obtain that L(M′) = VALC′M is finite if and only if VALCM is finite if and only if L(M) is
finite. Since finiteness is not semidecidable for LBAs, the non-semidecidability of finiteness follows.

Finally, it is easy to effectively construct a REV-PWK(1) that accepts nothing. Hence, the non-
semidecidability of equivalence and inclusion follows immediately.

Our next step is to obtain these non-semidecidability results also for REV-PWK with less communi-
cation. Our approach is to define another variant of VALC′M in which the length of each configuration
is enlarged while the same amount of communication is being kept. A similar approach has been used
in [12] for general, possibly irreversible, DPWK. However, here the details are quite different and more
complicated since the construction has to be reversible. The detailed and lengthy construction is omitted
here. With all these prerequisites it is possible to show the following theorem.

Theorem 16. The problems of testing emptiness, finiteness, inclusion, and equivalence are not semide-
cidable for a given REV-PWK(O(log(n) · log(log(n)))).

References

[1] Dana Angluin (1982): Inference of reversible languages. J. ACM 29(3), pp. 741–765,
doi:10.1145/322326.322334.

[2] Charles H. Bennett (1973): Logical Reversibility of Computation. IBM J. Res. Dev. 17, pp. 525–532,
doi:10.1147/rd.176.0525.

[3] Henning Bordihn & György Vaszil (2021): Reversible parallel communicating finite automata systems. Acta
Inf. 58(4), pp. 263–279, doi:10.1007/s00236-021-00396-9.

[4] Kingshuk Chatterjee & Kumar Sankar Ray (2017): Reversible Watson-Crick automata. Acta Inf. 54(5), pp.
487–499, doi:10.1007/s00236-016-0267-0.

[5] Kingshuk Chatterjee & Kumar Sankar Ray (2017): Watson-Crick pushdown automata. Kybernetika 53(5),
pp. 868–876, doi:10.14736/kyb-2017-5-0868.

[6] Elena Czeizler, Eugen Czeizler, Lila Kari & Kai Salomaa (2009): On the descriptional complexity of Watson-
Crick automata. Theor. Comput. Sci. 410, pp. 3250–3260, doi:10.1016/j.tcs.2009.05.001.

[7] Rudolf Freund, Gheorghe Păun, Grzegorz Rozenberg & Arto Salomaa (1997): Watson-Crick Finite Au-
tomata. In: DIMACS Workshop on DNA Based Computers, University of Pennsylvania, Philadelphia, pp.
305–317, doi:10.1090/dimacs/048/22.

[8] Markus Holzer, Sebastian Jakobi & Martin Kutrib (2018): Minimal Reversible Deterministic Finite Au-
tomata. Int. J. Found. Comput. Sci. 29, pp. 251–270, doi:10.1142/S0129054118400063.

[9] Radim Kocman, Zbynek Krivka, Alexander Meduna & Benedek Nagy (2022): A jumping 5′ → 3′ Watson-
Crick finite automata model. Acta Inf. 59(5), pp. 557–584, doi:10.1007/s00236-021-00413-x.

[10] Attila Kondacs & John Watrous (1997): On the Power of Quantum Finite State Automata. In: Foundations
of Computer Science (FOCS 1997), IEEE Computer Society, pp. 66–75, doi:10.1109/SFCS.1997.646094.

[11] Martin Kutrib (2014): Aspects of Reversibility for Classical Automata. In C. S. Calude, G. R. Freivalds &
K. Iwama, editors: Computing with New Resources, LNCS 8808, Springer, pp. 83–98, doi:10.1007/978-3-
319-13350-8 7.

https://doi.org/10.1145/322326.322334
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1007/s00236-021-00396-9
https://doi.org/10.1007/s00236-016-0267-0
https://doi.org/10.14736/kyb-2017-5-0868
https://doi.org/10.1016/j.tcs.2009.05.001
https://doi.org/10.1090/dimacs/048/22
https://doi.org/10.1142/S0129054118400063
https://doi.org/10.1007/s00236-021-00413-x
https://doi.org/10.1109/SFCS.1997.646094
https://doi.org/10.1007/978-3-319-13350-8_7
https://doi.org/10.1007/978-3-319-13350-8_7

154 Reversible Two-Party Computations

[12] Martin Kutrib & Andreas Malcher (2011): Two-Party Watson-Crick Computations. In: Implementation and
Application of Automata (CIAA 2010), LNCS 6482, Springer, pp. 191–200, doi:10.1007/978-3-642-18098-
9 21.

[13] Martin Kutrib & Andreas Malcher (2012): Reversible Pushdown Automata. J. Comput. Syst. Sci. 78, pp.
1814–1827, doi:10.1016/j.jcss.2011.12.004.

[14] Martin Kutrib & Andreas Malcher (2017): One-way reversible multi-head finite automata. Theor. Comput.
Sci. 682, pp. 149–164, doi:10.1016/j.tcs.2016.11.006.

[15] Martin Kutrib & Andreas Malcher (2022): Reversible Computations of One-Way Counter Automata. In
Henning Bordihn, Géza Horváth & György Vaszil, editors: NCMA 2022, EPTCS 367, pp. 126–142,
doi:10.4204/EPTCS.367.9.

[16] Martin Kutrib, Andreas Malcher & Matthias Wendlandt (2016): Reversible Queue Automata. Fund. Inform.
148, pp. 341–368, doi:10.3233/FI-2016-1438.

[17] Yves Lecerf (1963): Logique Mathématique: Machines de Turing réversible. C. R. Séances Acad. Sci. 257,
pp. 2597–2600.

[18] Peter Leupold & Benedek Nagy (2010): 5′→ 3′ Watson-Crick Automata with Several Runs. Fund. Inform.
104, pp. 71–91, doi:10.3233/FI-2010-336.

[19] Kenichi Morita (2011): Two-Way Reversible Multi-Head Finite Automata. Fund. Inform. 110, pp. 241–254,
doi:10.3233/FI-2011-541.

[20] Benedek Nagy (2007): On 5′ → 3′ Sensing Watson-Crick Finite Automata. In: DNA Computing, LNCS
4848, Springer, pp. 256–262, doi:10.1007/978-3-540-77962-9 27.

[21] Benedek Nagy (2013): On a hierarchy of 5′ → 3′ sensing Watson-Crick finite automata languages. J. Log.
Comput. 23, pp. 855–872, doi:10.1093/logcom/exr049.

[22] Benedek Nagy (2020): 5′→3′ Watson-Crick pushdown automata. Inf. Sci. 537, pp. 452–466,
doi:10.1016/j.ins.2020.06.031.

[23] Benedek Nagy & Zita Kovács (2021): On deterministic 1-limited sensing 5′ → 3′ Watson-Crick finite-state
transducers. RAIRO Theor. Informatics Appl. 55, p. 5, doi:10.1051/ita/2021007.

[24] Benedek Nagy, Shaghayegh Parchami & Hamid Mir Mohammad Sadeghi (2017): A New Sensing 5′ → 3′

Watson-Crick Automata Concept. In Erzsébet Csuhaj-Varjú, Pál Dömösi & György Vaszil, editors: AFL
2017, EPTCS 252, pp. 195–204, doi:10.4204/EPTCS.252.19.

https://doi.org/10.1007/978-3-642-18098-9_21
https://doi.org/10.1007/978-3-642-18098-9_21
https://doi.org/10.1016/j.jcss.2011.12.004
https://doi.org/10.1016/j.tcs.2016.11.006
https://doi.org/10.4204/EPTCS.367.9
https://doi.org/10.3233/FI-2016-1438
https://doi.org/10.3233/FI-2010-336
https://doi.org/10.3233/FI-2011-541
https://doi.org/10.1007/978-3-540-77962-9_27
https://doi.org/10.1093/logcom/exr049
https://doi.org/10.1016/j.ins.2020.06.031
https://doi.org/10.1051/ita/2021007
https://doi.org/10.4204/EPTCS.252.19

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 155–169, doi:10.4204/EPTCS.386.13

© A. Maletti, N. O. Nuernbergk

This work is licensed under the

Creative Commons Attribution License.

Pumping Lemmata for Recognizable Weighted Languages

over ARTINIAN Semirings

Andreas Maletti

Universität Leipzig
Faculty of Mathematics and Computer Science

PO Box 100 920, 04009 Leipzig, Germany

maletti@informatik.uni-leipzig.de

Nils Oskar Nuernbergk

nils.nuernbergk@gmail.com

Pumping lemmata are the main tool to prove that a certain language does not belong to a class of

languages like the recognizable languages or the context-free languages. Essentially two pumping

lemmata exist for the recognizable weighted languages: the classical one for the BOOLEAN semi-

ring (i.e., the unweighted case), which can be generalized to zero-sum free semirings, and the one

for fields. A joint generalization of these two pumping lemmata is provided that applies to all AR-

TINIAN semirings, over which all finitely generated semimodules have a finite bound on the length

of chains of strictly increasing subsemimodules. Since ARTINIAN rings are exactly those that satisfy

the Descending Chain Condition, the ARTINIAN semirings include all fields and naturally also all fi-

nite semirings (like the BOOLEAN semiring). The new pumping lemma thus covers most previously

known pumping lemmata for recognizable weighted languages.

1 Introduction

The class of recognizable languages [28] is certainly the best-studied and one of the most useful classes

of languages. It has excellent closure properties, and all standard decision problems for it are decidable.

Applications of the recognizable languages are too numerous to list, but include pattern matching [2,

Chapter 10], lexical analysis [1], input validation [25], network protocols [18], and DNA sequence anal-

ysis [26]. Pumping lemmata are statements of the form that given a suitably long word in the language,

we can always identify a subword that can be iterated (or pumped) at will without leaving the language.

Such statements exist for many language classes including the recognizable [28] and context-free lan-

guages [6], and they allow a relatively straightforward proof that a given language does not belong to the

class (e.g., is not recognizable).

In several applications [3, 7, 15], the purely qualitative yes/no-decision of languages is completely

insufficient. This led to the introduction of weighted languages [24] (see [21] for an excellent survey), in

which each word is assigned a weight from a semiring [12, 11]. The classical recognizable languages are

reobtained by considering the support of the recognizable weighted languages over the BOOLEAN semi-

ring ({0,1},max,min,0,1). The theory of recognizable weighted languages is also very well developed

and several textbooks [22, 16, 9] provide excellent introductions.

Determining whether a given weighted language is recognizable is often even more difficult than

in the unweighted case, and we again mostly rely on pumping lemmata [13, 20] to prove that a given

weighted language is not recognizable. However, the coverage situation is very unsatisfactory. The

classical pumping lemma for unweighted languages can be lifted to all zero-sum free semirings [12, 11]

(i.e., semirings in which a+b = 0 implies a = 0 = b) by means of a semiring homomorphism from such

a semiring into the BOOLEAN semiring [27] and a construction that avoids zero-divisors [14]. On the

other hand, the pumping lemmata of [13, 20] require the semiring to be a field, which necessarily is not

http://dx.doi.org/10.4204/EPTCS.386.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

156 Pumping Lemmata for ARTINIAN Semirings

zero-sum free. Despite their similarities, the two recalled pumping lemmata thus apply to completely

disjoint sets of semirings, which do not even cover all semirings (e.g., the finite ring Z4 is not zero-sum

free and not a field). Indeed it is well-known [10] how to handle finite semirings like Z4 (by encoding the

weights into the states), so that the classical unweighted pumping lemma becomes applicable. Similarly,

it is known how to handle semirings like Z that embed into a field, but there are also infinite semirings

that are not zero-sum free and not (embeddable into) a field like the ring Q[x]/(x2) of rational linear

polynomials. The ring Q[x]/(x2) cannot embed into a field since it has zero-divisors (e.g., x ·x = 0), but it

fulfills the requirements for our pumping lemma. Hence there are semirings for which we currently have

no available pumping lemma, as well as different semirings that permit essentially the same pumping

lemma for their recognizable weighted languages but with totally different justifications.

Let us recall the statement of these pumping lemmata. Let L : Σ∗ → S be a recognizable weighted

language, which assigns to each word w ∈ Σ∗ a weight L(w) ∈ S in the semiring S. The support of L is

the set supp L = {w ∈ Σ∗ | L(w) 6= 0} of nonzero-weighted words in L. The pumping lemma states that

given a sufficiently long word w ∈ supp L, there exists a decomposition w = uxv such that uxkv ∈ supp L

for infinitely many k ∈ N. In other words, uxkv is also nonzero-weighted in L for infinitely many k ∈ N,

where uxkv = ux · · ·xv with k repetitions of x.

In this contribution we will establish such a pumping lemma for a class of semirings that includes all

fields and all finite semirings. Thus, we directly cover both the pumping lemmata of [13, 20] as well as

the classical pumping lemma [19, Lemma 2]. We achieve this by following the general approach of [20]

while trying to avoid the vector space structure utilized there. This requires some minor adjustments

and, in particular, a replacement for the dimension, for which we use the length of a semimodule. A

semimodule has finite length if there is a finite bound on the length of strictly increasing chains of

subsemimodules. This notion also allows us to define the ARTINIAN semirings that we consider. A

semiring is ARTINIAN if each finitely generated semimodule has finite length. The ARTINIAN semirings

include all fields and all finite semirings, but not all zero-sum free semirings. However, the mentioned

approach for zero-sum free semirings (applying the homomorphism into the BOOLEAN semiring and

avoiding zero-divisors) naturally also works with our pumping lemma.

We first show that any endomorphism of a semimodule over an ARTINIAN semiring is surjective if

and only if it is injective, which is a generalization of a well-known statement for vector spaces. Fol-

lowing the approach of [20], we introduce pseudoregular endomorphisms using 2 of the 5 characterizing

properties utilized in [20, Proposition 1]. Fortunately, these are the two main properties needed for the

proof of our pumping lemma, and the remaining 3 properties rely on infrastructure that is not generally

available in our semimodules (instead of the vector spaces used in [20]). The argument that a sufficiently

long composition of endomorphisms needs to contain a pseudoregular endomorphism can be taken over

mostly unchanged from [13], which then almost directly yields our main pumping lemma. Finally, we

also briefly consider pumping lemmata for infinite alphabets.

2 Preliminaries

We denote the non-negative integers by N and the positive integers by N+ = N \ {0}. Moreover, we

let Q>0 = {q ∈Q | q > 0} be the set of non-negative rational numbers. For every alphabet Σ we denote

the free monoid over Σ by Σ∗, i.e., Σ∗ is the set of all finite words with letters in Σ. We write ε for the

empty word (the neutral element of the free monoid). Additionally, we let Σ+ = Σ∗ \{ε}. For all sets A,

B, and C and all maps f : A → B and g : B → C, we let idA = {(a,a) | a ∈ A} and (g f) : A → C be the

map such that (g f)(a) = g(f (a)) for every a ∈ A. Finally, if A = B, then we let f 0 = idA and f k+1 = f f k

A. Maletti, N. O. Nuernbergk 157

for every k ∈ N.

A (commutative) semiring [12, 11] is an algebraic structure (S,+, ·,0,1), in which S is a set, called

carrier, (S,+,0) and (S, ·,1) are commutative monoids, called additive and multiplicative monoid re-

spectively, and

r · (s+ t) = (r · s)+ (r · t), (distributivity)

0 · r = 0 (absorption of 0)

for all r,s, t ∈ S. We will refer to the semiring (S,+, ·,0,1) simply by its carrier set S and denote multi-

plication by juxtaposition as usual. For the rest of the contribution, let S be a commutative semiring.

A (commutative) ring is simply a semiring in which every element has an additive inverse, and a

(commutative) semifield is similarly a semiring in which every element s ∈ S \{0} has a multiplicative

inverse. As usual, a (commutative) field is a ring that is also a semifield. The BOOLEAN semifield

is B= ({0,1},max,min,0,1).

An S-semimodule [12, 11] is a tuple (M,⊕,0M ,⊙) consisting of a commutative monoid (M,⊕,0M)
and a mapping ⊙ : S×M → M such that

(r · s)⊙u = r⊙ (s⊙u), (associativity)

r⊙ (u⊕ v) = (r⊙u)⊕ (r⊙ v), (left distributivity)

(r+ s)⊙u = (r⊙u)⊕ (s⊙u), (right distributivity)

0⊙u = 0M (absorption of 0)

for all semiring elements r,s ∈ S, also called scalars, and semimodule elements u,v ∈ M. As before, we

write just M for the semimodule (M,⊕,0M,⊙), and due to the compatibility axioms presented above, we

can safely stop distinguishing the semimodule addition ⊕ and semiring addition +, writing just + for

both, as well as mixed multiplication ⊙ and semiring multiplication ·, writing · for both, and the additive

neutral element 0M of the semimodule and its corresponding element 0 of the semiring, writing 0 for

both. Finally, we let su = s · u for all s ∈ S and u ∈ M. It is clear that the semiring S itself forms a

semimodule, semimodules over rings are simply modules, and semimodules over fields are vector spaces.

A subsemimodule of M is a subset N ⊆ M such that 0 ∈ N, m+n ∈ N for all m,n ∈ N, and r ·n ∈ N for

all r ∈ S and n ∈ N. In other words, a subsemimodule is a subset that forms a semimodule itself with

respect to the operations of M suitably restricted to N. We write N � M if N is a subsemimodule of M.

For every subset V ⊆ M we write 〈V 〉 for the span of V (i.e., the smallest subsemimodule of M that

contains V) and say that 〈V 〉 is generated by V .

Let M and N be two semimodules and ϕ : M → N a mapping. Then ϕ is linear (or a semimodule

homomorphism) if

s ·ϕ(u) = ϕ(s ·u) and ϕ(u+ v) = ϕ(u)+ϕ(v)

for all s ∈ S and u,v ∈ M. Note that ϕ(0) = 0 if ϕ is linear by the former condition. If ϕ is bijective and

linear, then we call ϕ an isomorphism and say that M and N are isomorphic, which we write as M ∼= N.

We let kerϕ = {m ∈ M | ϕ(m) = 0} be the kernel of ϕ and imϕ = {ϕ(m) | m ∈ M} be the image of ϕ

in N, which is always a subsemimodule of N provided that ϕ is linear. The first isomorphism theorem [4,

p. 162, Corollary 5.16] states that M/kerϕ ∼= imϕ for every ring S and linear map ϕ . Here, M/kerϕ is

the set of equivalence classes M/∼ with the equivalence relation ∼ given by m ∼ n if m−n ∈ kerϕ and

addition and scalar multiplication defined by [m]+ [n] = [m+n] and s[m] = [sm] (where [m] denotes the

equivalence class of m). Thus, over a ring S, the linear map ϕ is injective if and only if ker ϕ = {0}.

158 Pumping Lemmata for ARTINIAN Semirings

Moreover, we let

Hom(M,N) = {ϕ : M → N | ϕ is linear}, End(M) = Hom(M,M), and M∨ = Hom(M,S),

which form semimodules with pointwise addition and scalar multiplication. The semimodule End(M)
contains the endomorphisms of M, and M∨ is called the dual semimodule of M.

Let Q be an arbitrary set. Then

SQ = { f : Q → S | ker f is co-finite}

forms a semimodule with pointwise addition and scalar multiplication that we call the free semimod-

ule over Q (unique up to isomorphism as usual). This is justified by the fact [11, p. 194] that for

any semimodule M every mapping ϕ : Q → M uniquely extends to a linear map ϕ̃ : SQ → M such

that ϕ̃(ιq) = ϕ(q), where ιq ∈ SQ is the mapping given for every p ∈ Q by

ιq(p) =

{
1 if p = q

0 otherwise.

In particular, if imϕ generates M, then ϕ̃ is surjective. If S is a field, then every semimodule (i.e., vector

space) is free, but the same is not true for arbitrary semirings S. If Q is finite, then we say that SQ is of

rank n = |Q| and will often identify SQ with the semimodule Sn.

The spaces Hom(M,N), End(M), and M∨ are particularly easy to describe when M and N are free of

finite rank [11, p. 195]. These are exactly the matrix spaces

Hom(SQ,SP)∼= SP×Q, End(SQ)∼= SQ×Q, and (SQ)∨ ∼= S{1}×Q ∼= SQ.

Note also that SQ itself can be identified with the matrix space SQ×{1}. Matrix multiplication (i.e., compo-

sition of linear maps) is then defined as follows: for every M ∈ SP×Q and NQ×R, the matrix M ·N ∈ SP×R

is given for all p ∈ P and r ∈ R by

(M ·N)pr = ∑
q∈Q

Mpq ·Nqr.

We will usually state theorems in terms of linear maps instead of matrices due to their greater generality

(non-free semimodules do not generally permit descriptions by matrices) and clarity of presentation.

Let Σ be an alphabet. A weighted language over Σ is a function L : Σ∗ → S. Given w ∈ Σ∗ and

a weighted language L : Σ∗ → S, we occasionally write Lw instead of L(w). The support of L is the

set supp L = {w ∈ Σ∗ | Lw 6= 0}.

A linear representation [10] of a weighted language L : Σ∗ → S is a tuple (Q, in,out,µ), where Q is

a finite set of states, in ∈ (SQ)∨ is an input vector, out ∈ SQ is an output vector, and µ : Σ∗ → End(SQ)
is a monoid homomorphism (where the monoid structure on End(SQ) is given by composition of maps),

such that for every w ∈ Σ∗

Lw = in ·µ(w) ·out.

If a weighted language L admits a linear representation, then we call L recognizable. This definition of

recognizability is equivalent to other common definitions given in terms of weighted automata [21].

A. Maletti, N. O. Nuernbergk 159

3 Semimodules of Finite Length

We recall that the dimension of a finite dimensional vector space V provides an upper bound on the

number of proper inclusions in any chain of subspaces of V ; i.e., if V0 � ·· · �Vr is a chain of subspaces

of V and r > dimV , then there is at least one 0 6 i < r such that Vi =Vi+1.

In this spirit, we define the length ℓ(M) ∈ N∪{∞} of a semimodule M to be the (possibly infinite)

least upper bound on the number of proper inclusions in any chain of subsemimodules of M; i.e.,

ℓ(M) = sup{r | M0 ≺ ·· · ≺ Mr is a chain of strictly increasing subsemimodules of M}.

Clearly, dimV = ℓ(V) for every finite dimensional vector space V . However, the length is distinct from

the rank of a free module even if S is a ring. For example, Z has rank 1 as a Z-module, but ℓ(Z) = ∞

since

〈km〉 ≺ 〈km−1〉 ≺ · · · ≺ 〈k〉

is a chain of strictly increasing submodules of Z for every k ∈ Z\{0,1,−1} and m > 2.

Definition 3.1. We say that a semimodule M has finite length if ℓ(M) ∈ N; i.e., ℓ(M) is finite. �

Let us provide some examples of semimodules that have finite length.

Example 3.2.

(i) Finite dimensional vector spaces over fields have finite length.

(ii) Finite semimodules have finite length.

(iii) We consider the commutative monoid M =Q>0 ∪{∞} with u+∞ = ∞ for all u ∈ M and addition

defined as in Q otherwise. Then M is a semimodule over Q>0 via

m⊙u =





0 if m = 0

∞ if m 6= 0 and u = ∞

m ·u otherwise.

We can easily see that the only subsemimodules of M are {0}, {0,∞}, Q>0 and M itself. By

considering the inclusions among these subsemimodules, we obtain ℓ(M) = 2. Notably, this is an

example of an infinite semimodule that has finite length, but cannot be embedded into a module

over a ring. The embedding fails since ∞ is additively absorptive (i.e., u+∞ = ∞ for all u ∈ M,

which yields that ∞ cannot be inverted). �

Let M be a semimodule that has finite length. Next we show that the image imϕ of a linear

map ϕ : M → N necessarily has finite length as well.

Lemma 3.3. Let M and N be semimodules and ϕ : M → N be a linear map. Then ℓ(imϕ)6 ℓ(M).

Proof. If ℓ(M) = ∞, then the statement holds automatically. Therefore, suppose that ℓ(M) ∈ N is finite.

We recall that the preimage ϕ−1(L) of a subsemimodule L � N is a subsemimodule of M. To see this,

let u,v ∈ ϕ−1(L). Then ϕ(u+ v) = ϕ(u)+ϕ(v) ∈ L, and thus u+ v ∈ ϕ−1(L). Similarly, for every s ∈ S

we have ϕ(su) = sϕ(u) ∈ L, and thus su ∈ ϕ−1(L). Thus, any chain N0 � ·· · � Nr of subsemimod-

ules of imϕ induces a chain ϕ−1(N0) � ·· · � ϕ−1(Nr) of subsemimodules of M. Next, we establish

that ϕ−1(Ni) ≺ ϕ−1(Ni+1) for every 0 6 i < r such that Ni ≺ Ni+1. To this end, let u ∈ Ni+1 \Ni and

select v ∈ ϕ−1({u}), which is possible because Ni+1 � imϕ . Obviously, v /∈ ϕ−1(Ni), which proves

that v ∈ ϕ−1(Ni+1) \ϕ−1(Ni) and thus ϕ−1(Ni) ≺ ϕ−1(Ni+1). Hence, ℓ(imϕ) 6 ℓ(M) follows immedi-

ately from the definition.

160 Pumping Lemmata for ARTINIAN Semirings

The preceding lemma already suggests that semimodules of finite length share nice properties with

finite dimensional vector spaces. In order to harness these, it would be very desirable for the class of

finite length semimodules to have good closure properties. However, it is not even closed under direct

sums, as the following example demonstrates.

Example 3.4. Consider the semifield S = Qmax = (Q>0,max, ·,0,1). As usual, Qmax is a semimodule

over itself, and the presence of multiplicative inverses immediately yields that ℓ(Qmax) = 1 because its

only subsemimodules are {0} and Qmax: if H � Qmax and H 6= {0}, there is an h ∈ H with h 6= 0,

so s = s · h−1 · h ∈ Qmax for all s ∈ Qmax; whereby H = Qmax (indeed, this argument works for any

semifield).

Now we consider the direct sum M = Qmax ⊕Qmax of two copies of Qmax, which consists of pairs

of rational numbers with the maximum applied coordinate-wise. Clearly, M is also a Qmax-semimodule

via a coordinate-wise product. However, M does not have finite length over Qmax by the following

lemma. �

Lemma 3.5. The Qmax-semimodule Qmax ⊕Qmax has length ℓ(Qmax ⊕Qmax) = ∞.

Proof. Let M = Qmax ⊕Qmax. First, we define the function q : M → Q such that q
(
〈a,b〉

)
= a

b
for

every a,b ∈Qmax. Obviously,

q
(
s〈a,b〉

)
= q

(
〈sa,sb〉

)
=

sa

sb
=

a

b
= q

(
〈a,b〉

)
(1)

for all 〈a,b〉 ∈ M and s ∈Qmax. Additionally, for all 〈a,b〉,〈c,d〉 ∈ M we have

q
(

max
(
〈a,b〉,〈c,d〉

))
6 max

(
q
(
〈a,b〉

)
,q
(
〈c,d〉

))
(2)

because
a

max(b,d)
6

a

b
= q

(
〈a,b〉

)
and

c

max(b,d)
6

c

d
= q

(
〈c,d〉

)
,

which yield

q
(

max
(
〈a,b〉,〈c,d〉

))
=

max(a,c)

max(b,d)
= max

(a

max(b,d)
,

c

max(b,d)

)
6 max

(
q
(
〈a,b〉

)
,q
(
〈c,d〉

))
.

For every i ∈ N let ui = 〈i,1〉 and Mi = 〈{u0, . . . ,ui}〉 be the subsemimodule generated by {u0, . . . ,ui}.

Due to the properties (1) and (2) of q, we have q(u) 6 q(ui) for every u ∈ Mi. This immediately

yields Mi ≺ Mi+1 for every i ∈ N and thus M0 ≺ ·· · ≺ Mi ≺ ·· · is an infinite chain of strictly increasing

subsemimodules.1

Fortunately, for rings S the situation does not look nearly as bleak and the expected equalities for

length hold, as expressed in the next theorem.

Theorem 3.6. Suppose that S is a ring.

(i) Let M and N be modules such that N � M. If N and M/N both have finite length, then M has finite

length and ℓ(M) = ℓ(N)+ ℓ(M/N).

1In fact, this is an example of a more general pathology of semimodules. Finite length semimodules are NOETHERIAN

since they satisfy the Ascending Chain Condition (i.e., every ascending chain of subsemimodules terminates). This proof

demonstrates that NOETHERIAN semimodules, unlike NOETHERIAN modules over rings, are not closed under direct sums.

The same is true for the Descending Chain Condition, which can be seen by setting vi = (1, i) and Ni = 〈{v0, . . . ,vi}〉 for all

i ∈ N. Then the chain N0 ≻ ·· · ≻ Ni ≻ ·· · does not terminate by the same argument as above.

A. Maletti, N. O. Nuernbergk 161

(ii) If M and N are finite-length modules, then ℓ(M⊕N) = ℓ(M)+ ℓ(N).

(iii) If S has finite length, then every module generated by n ∈ N elements has length at most n · ℓ(S).

Proof.

(i) The proof idea for the inequality ℓ(M) 6 ℓ(N)+ ℓ(M/N) draws from a proof of the analogous

fact for NOETHERIAN rings [17, 10f, Proposition 3.3]. For the sake of a contradiction, assume

that ℓ(M) > r, where r = ℓ(N)+ ℓ(M/N)+ 1. Then there exists a chain L0 ≺ ·· · ≺ Lr of strictly

increasing submodules of M. In the corresponding chain

N +L0

N
� ·· · �

N +Lr

N

of r + 1 submodules of M/N, at most ℓ(M/N) inclusions are proper, so ℓ(N)+ 1 inclusions are

not. Similarly, in the chain L0 ∩N � ·· · � Lr ∩N of submodules of N, at most ℓ(N) inclusions are

proper, so ℓ(M/N)+1 inclusions are not. By the pigeonhole principle, there exists 0 6 i < r such

that

Li ∩N = Li+1 ∩N and N +Li = N +Li+1.

We note that the latter result relies on the fact that N 6 H 6 K and H/N = K/N together im-

ply H = K (since if k ∈K and [h] = [k] for some h∈H , then k−h∈N �H , so k = h+(k−h)∈H).

Now, let u ∈ Li+1 be arbitrary. By the second equation above, we have u = n+ v for some n ∈ N

and v ∈ Li. This yields n = u− v ∈ Li+1 ∩N = Li ∩N and thus u ∈ Li. Therefore, Li+1 = Li, which

is the desired contradiction.

Thus, we have shown that ℓ(M) 6 ℓ(N)+ ℓ(M/N). It remains to show the converse inequality.

Note that any submodule of M/N has the form L/N for some L � M such that N � L since N is

the preimage of [0] ∈ L/N. This claim was already shown in a more general setting in the proof of

Lemma 3.3. Therefore, let N0 ≺ ·· · ≺Nn with n = ℓ(N) and L0/N ≺ ·· · ≺ Lm/N with m = ℓ(M/N)
be chains of strictly increasing submodules of N and M/N, respectively, which exist by the defini-

tion of the respective length. These chains can be concatenated to obtain a chain

N0 ≺ ·· · ≺ Nn � L0 ≺ ·· · ≺ Lm

of submodules of M. Any proper inclusion in the original chains must also be a proper inclusion

in the concatenated chain. Thus, ℓ(M)> n+m = ℓ(N)+ ℓ(M/N).

(ii) Let us consider N0 = {(0,n) | n ∈ N}. Then (M⊕N)/N0
∼= M and N0

∼= N, which yields the claim

by Statement (i).

(iii) Let M be a module generated by n elements. Hence M is a linear image of the free module Sn,

which by iteration of Statement (ii) satisfies ℓ(Sn) = n ·ℓ(S). Thus, the claim follows directly from

Lemma 3.3.

Hence every finite-length ring has the property that all its finitely generated modules also have finite

length. Naturally, there are other semirings that enjoy this property. Trivially, every finitely generated

semimodule over a finite semiring (such as the BOOLEAN semifield B) is also finite and therefore of

finite length. The following definition establishes the property just discussed, which is fulfilled in all

rings and all finite semirings.

Definition 3.7. We say that S is ARTINIAN if every finitely generated semimodule has finite length. �

162 Pumping Lemmata for ARTINIAN Semirings

As demonstrated in the proof of Theorem 3.6(iii), in order to establish that S is ARTINIAN it suf-

fices to show that free semimodules of finite rank have finite length. Our naming ARTINIAN is a slight

abuse of traditional notions since the term is usually used to characterize those modules that satisfy the

Descending Chain Condition (i.e., every descending chain of submodules terminates). However, in rings

these two notions coincide. Any ring that satisfies the Descending Chain Condition (DCC) also satis-

fies the Ascending Chain Condition (ACC) [5, p. 90, Theorem 8.5], and any module that satisfies both

DCC and ACC has finite length [5, p. 77, Propositions 6.7 and 6.8]. By Theorem 3.6(iii), all finitely

generated modules over a finite-length ring also have finite length. The converse implication is trivial.

In general, for semirings this equivalence need not hold (see footnote to Lemma 3.5), but since the DCC

is nowhere as important for semirings as it is for rings, the authors believe that our use of terminology is

harmless.

ARTINIAN semirings retain a very convenient property of endomorphisms of vector spaces, which

will be crucial for our approach.

Theorem 3.8. Suppose that S is ARTINIAN, and let M be a finite-length semimodule and α ∈ End(M).
Then α is surjective if and only if α is injective.

Proof. The proof simply combines the well-known facts that surjective endomorphisms of NOETHE-

RIAN modules are injective, and injective endomorphisms of modules that satisfy the Descending Chain

Condition (i.e., ARTINIAN in the traditional sense) are surjective. These two facts are established here

for our semimodules.

We start with necessity. Suppose that α is surjective. For every endomorphism ϕ ∈ End(M), we let

Kerϕ = {(u,v) ∈ M⊕M | ϕ(u) = ϕ(v)}.

Then Kerϕ is a subsemimodule of M⊕M by the linearity of ϕ . Let r = ℓ(M⊕M) and consider the chain

{0} ≺ Kerα0 � Kerα1 � ·· · � Kerαr.

The first strictness is justified by Kerα0 = KeridM = {(u,u) | u ∈ M} ≻ {0}. Thus, by the finite length r,

there exists some 0 6 i < r such that Kerα i = Kerα i+1.

To prove injectivity, let u,v ∈ M such that α(u) = α(v). Recall that compositions of surjective func-

tions are surjective. By the surjectivity of α and α i, there exist x,y ∈M such that α i(x) = u and α i(y) = v.

Consequently, α i+1(x) = α i+1(y) and thus (x,y) ∈ Kerα i+1 = Kerα i by our choice of i. However,

(x,y) ∈ Kerα i directly yields u = α i(x) = α i(y) = v. Hence, α is injective.

We continue with sufficiency, so let α be injective. We show for all j ∈N that the condition u /∈ imα j

implies α(u) /∈ imα j+1. For the sake of a contradiction, suppose that j ∈ N and u ∈ M \ imα j are such

that α(u) ∈ imα j+1. Clearly, there exists v ∈ M such that α(u) = α j+1(v) = (αα j)(v) = α
(
α j(v)

)
.

Next we utilize the injectivity of α to conclude u = α j(v), which yields u ∈ imα j and our desired

contradiction. Thus, α(u) /∈ imα j+1.

Suppose that α is not surjective. Then there exists u ∈ M such that u /∈ imα . A straightfor-

ward induction utilizing the statement proved in the previous paragraph can now be used to show

that α j(u) /∈ imα j+1 for all j ∈ N. However, this yields that the chain

M = imα0 � imα1 � ·· · � imα j � ·· ·

has infinitely many proper inclusions, which contradicts that M has finite length. Therefore, α must

be surjective. We note that for sufficiency we only used that M has finite length (not that S is actually

ARTINIAN).

A. Maletti, N. O. Nuernbergk 163

4 Pseudoregular Endomorphisms

At this point we have established sufficient background for our main notion, pseudoregular endomor-

phisms, that will be successfully utilized in our pumping lemmata. The special properties that define

them are established in the next lemma.

Lemma 4.1 (see [20, Proposition 1]). Let M be a semimodule and α ∈ End(M). The following are

equivalent:

(i) imα = imα2.

(ii) There exist γ ,β ∈ End(M) such that α = γβ and imβ = im(βγβ).

Proof.

• We start with the implication (i) → (ii). To this end, we select γ = idM and β = α and observe that

α = idMα = γβ and imβ = imα = imα2 = im(α idMα) = im(βγβ).

• For the converse implication (ii) → (i), let γ ,β ∈ End(M) such that α = γβ and imβ = im(βγβ).
Then

imα2 = im(γβγβ) = γ
(
im(βγβ)

)
= γ(imβ) = im(γβ) = imα .

Definition 4.2. Let M be a semimodule. An endomorphism α ∈ End(M) satisfying the conditions of

Lemma 4.1 is called pseudoregular. �

REUTENAUER [20, Proposition 1] provides further characterizations of pseudoregular endomor-

phisms that hold for a field S. It is worthwhile to consider the following consequence. Let α be a nonzero

pseudoregular endomorphism of a finite dimensional vector space V . Then there exists k 6 dimV and a

basis B of V such that the matrix representation of α with respect to B is a block matrix

(
A 0(n−k)×k

0k×(n−k) 0(n−k)×(n−k)

)
,

where A is an invertible k× k-matrix and 0m×n is the m×n-zero matrix for every m,n ∈N+.

Using Theorem 3.8 we can adapt another characterization mentioned in [20, Proposition 1] to AR-

TINIAN semirings.

Lemma 4.3. Suppose that S is ARTINIAN, and let M be a semimodule that has finite length. Then

α ∈ End(M) is pseudoregular if and only if α∗ : imα → imα , which is defined for every u ∈ imα

by α∗(u) = α(u), is an isomorphism. If S is a ring, then this is equivalent to imα ∩kerα = {0}.

Proof. Clearly, imα = imα2 is equivalent to surjectivity of α∗, so the result follows from Theorem 3.8.

If S is a ring, then imα ∩kerα = {0} is equivalent to injectivity of α∗, and thereby surjectivity.

Next we show a generalization of [13, Theorem 2.2]. The general proof idea is largely unchanged,

but the lack of vector space structure requires some adjustments in the details. The same theorem can

be shown for vector spaces in a much more straightforward manner using linear recurrences (see [20,

Lemma 1]), but as this proof relies on the existence of characteristic polynomials of endomorphisms, it

cannot be directly adapted to more general semirings.

164 Pumping Lemmata for ARTINIAN Semirings

Theorem 4.4 (see [13, Theorem 2.2]). Let M be a semimodule such that its dual M∨ has finite length.

Moreover, let α ∈ End(M) be pseudoregular, and let f ∈ M∨ = Hom(M,S) and v ∈ M. We consider the

sequence (sk)k∈N of elements of S given for every k ∈ N by

sk = f
(
αk(v)

)
.

If s1 6= 0, then sk 6= 0 for infinitely many k ∈ N. More precisely, at most ℓ(M∨) values of sk vanish in a

row.

Proof. We prove this statement in three steps.

(i) As before, we define α∗ : imα → imα for every u ∈ imα by α∗(u) = α(u). Since α∗ is surjective,

we can find a right inverse α∗ : imα → imα such that α∗α∗ = id(imα).
2 Next, we define ρ to be

the map that sends each element g : M → S of M∨ to its restriction g|imα
to imα ; i.e.,

ρ : M∨ → (imα)∨ with ρ(g) = g|im α

for all g ∈ M∨ = Hom(M,S). Clearly, ρ is linear, so imρ has finite length by Lemma 3.3. Fix

some n0 ∈ N+ and let fi = ρ(f αn0+i) for every i ∈ N. Then

fi = ρ(f αn0+i) = ρ(f αn0+i)idM = ρ(f αn0+i)α∗α∗ = ρ(f αn0+i+1)α∗ = fi+1α∗

for every i ∈N.

(ii) Let r = ℓ(imρ) + 1 and Mi = 〈{ fr, . . . , fr−i}〉 be the subsemimodule of imρ that is generated

by { fr, . . . , fr−i} for every 06 i6 r. We consider the chain M0 �M1 � . . .�Mr. Since r >ℓ(imρ),
at least one of these inclusions is not proper. Let 0 < i 6 r. If Mi−1 = Mi, then Mi = Mi+1, which

we prove as follows. Since Mi = Mi−1, there exist coefficients λ0, . . . ,λr ∈ S such that

fr−i =
i−1

∑
j=0

λ j fr− j

and thus

fr−(i+1) = fr−i−1 = fr−iα
∗ =

(i−1

∑
j=0

λ j fr− j

)
α∗ =

i−1

∑
j=0

λ j fr− j−1 =
i

∑
j=1

λ j−1 fr− j.

Therefore, fr−(i+1) ∈ 〈{ fr−1, . . . , fr−i}〉 � Mi, so we have Mi+1 = Mi by the construction of Mi. A

straightforward induction then proves that Mr = Mr−1. Hence, there are coefficients µ1, . . . ,µr ∈ S

such that

f0 =
r

∑
j=1

µ j f j. (†)

(iii) Finally, let s1 6= 0. Assume by way of contradiction that there are only finitely many k ∈ N such

that sk 6= 0. Then there is some n ∈ N such that sn 6= 0 and sk = 0 for all k > n. In particu-

lar, sn+1 = · · ·= sn+r = 0. Set n0 = n−1 and define fi as above. Then

sn = f0

(
α(v)

)
=

(r

∑
j=1

µ j f j

)(
α(v)

)
=

r

∑
j=1

µ j f j

(
α(v)

)
=

r

∑
j=1

µ jsn+ j = 0

2In the most general setting, finding a right inverse of a surjective function requires the Axiom of Choice. In all cases of

interest to us, this is not necessary. If S is ARTINIAN, then α∗ is bijective, so there is a unique both-sided linear inverse. If

imα is free of finite rank, then it suffices to choose finitely many preimages for the free generators of imα .

A. Maletti, N. O. Nuernbergk 165

by (†), which contradicts the choice of n. Therefore, there must be infinitely many k ∈ N such

that sk 6= 0. In particular, we have shown that at most r− 1 = ℓ(imρ) 6 ℓ(M∨) values of sk can

vanish in a row.

We note that the previous proof relies crucially on the commutativity of S, since M∨ need not be a

semimodule in the non-commutative case. Semimodules of finite length allow us to determine that an

endomorphism is pseudoregular simply by looking at its factorizations. We will later use a statement of

this kind for the proof of our pumping lemma. However, one similar proposition can already be adapted

directly from the theory of vector spaces without any further work.

Lemma 4.5 (see [13, Proposition 2.1]). Let M be a finite-length semimodule and α ∈ End(M). Then

αℓ(M) is pseudoregular.

Proof. Consider the chain

M = imα0 � imα1 � imα2 � . . .� imαℓ(M) � 0.

By definition at least one of these inclusions is not proper. Let 0 < i 6 ℓ(M). If imα i−1 = imα i, then in-

deed also imα i = imα i+1, so by another straightforward induction we also obtain imαℓ(M) = imα2ℓ(M),

which yields that αℓ(M) is pseudoregular. If only the last inclusion is improper (i.e., imαℓ(M) = {0}),

then αℓ(M) is the zero morphism and thereby trivially pseudoregular as well. This concludes all cases

and in each case αℓ(M) is pseudoregular.

5 Pumping Lemmata

In this final section, we combine our derived results to provide a pumping lemma for recognizable

weighted languages. In general, pumping lemmata are used to prove that a (weighted) language is not

recognizable. For illustration, we recall the classical pumping lemma for recognizable languages, which

is the main tool to prove that a given language is not recognizable [28].

Theorem 5.1 (see [19, Lemma 2]). Let L be a recognizable language. Then there exists n ∈ N such that

for every w ∈ L with |w|> n there is a factorization w = uxv with x 6= ε such that uxkv ∈ L for all k ∈N.

Next, we show a similar result for recognizable weighted languages, which was originally proven for

fields in [13, Theorem 5], although we adapted our proof using the ideas of [20, Theorem 2]. These ideas

directly yield the basic approach using our Theorem 4.4. Given a linear representation (Q, in,out,µ) of a

weighted language L : Σ∗ → S such that (i) SQ has finite length, (ii) µ(x) is pseudoregular for some x∈ Σ∗,

and (iii) uxv ∈ supp L for some u,v ∈ Σ∗, then for infinitely many k ∈N,

L(uxkv) = in ·µ(uxkv) ·out 6= 0.

We use that SQ ∼= (SQ)∨; i.e., that SQ and (SQ)∨ are isomorphic, yielding finite length for (SQ)∨. Ad-

ditionally, we note that we do not conclude that L(uxkv) 6= 0 for all k ∈ N (as in Theorem 5.1), but

rather the inequality only holds for infinitely many k ∈ N. However, to make this approach applicable

to any recognizable weighted language, we still need to identify suitable conditions that enforce that

a given word w ∈ Σ∗ contains a nontrivial subword x ∈ Σ∗ with pseudoregular image µ(x). A simple

combinatorial argument following [20] shows that if w is long enough, then there always exists a factor-

ization w = uxy with x 6= ε such that µ(x) is pseudoregular.

166 Pumping Lemmata for ARTINIAN Semirings

Definition 5.2 (see [20]). Let Σ be a finite alphabet, w ∈ Σ∗, and n ∈N. We recursively define when w is

a quasipower of order n.

(i) If n = 0 and w 6= ε , then w is a quasipower of order 0.

(ii) If n > 0 and w = uvu for some u,v ∈ Σ∗ such that u is a quasipower of order n− 1, then w is a

quasipower of order n. �

Next, we recall that given any order r ∈N we can identify a bound Nr such that words whose length is

at least Nr necessarily contain a quasipower of order r. Indeed the constant Nr can be recursively defined

for every r ∈N by

N0 = 1 and Nr+1 = Nr · (1+ |Σ|Nr).

Lemma 5.3 (see [23, IV. 5] as cited in [20, Lemma 2]). Let Σ be a finite alphabet and r ∈N. There exists

an integer Nr ∈N such that every word w ∈ Σ∗ with |w|> Nr contains a subword that is a quasipower of

order r.

Next, still following [20], we show that quasipowers of suitably large order are sufficient to establish

the existence of a subword x such that µ(x) is pseudoregular.

Lemma 5.4 (see [13] as cited in [20, Theorem 1]). Let Σ be a finite alphabet, M a semimodule that has

finite length, and µ : Σ∗ → End(M) a monoid homomorphism. Every word w ∈ Σ∗ that is a quasipower

of order r = ℓ(M)+1 contains a subword x 6= ε such that µ(x) is pseudoregular.

Proof. Let w∈Σ∗ be a quasipower of order r, and let ur =w. There are words u0, . . . ,ur−1,v1, . . . ,vn ∈ Σ+

such that ui = ui−1viui−1 for all 1 6 i 6 r. Thus,

im µ(ui) = im µ(ui−1viui−1)� im µ(ui−1),

so we obtain the chain

im µ(ur)� im µ(ur−1)� . . .� im µ(u0)

of r+1 subsemimodules of M. Therefore, im µ(ui) = im µ(ui−1) for some 1 6 i 6 r, which yields

im µ(ui−1) = im µ(ui) = im µ(ui−1viui−1) = im
(
µ(ui−1)µ(vi)µ(ui−1)

)
.

By Lemma 4.1(ii) we obtain that µ(vi)µ(ui−1) = µ(viui−1) is pseudoregular. Hence, we set x = viui−1

to complete the proof.

Our pumping lemma now follows directly. The next main theorem still contains the technical restric-

tion that the semimodule SQ has finite length, where Q is the set of states of a linear representation for

a given recognizable weighted language. A slightly more direct statement is expressed in the corollary

that follows the next theorem.

Theorem 5.5 (see [13, Theorem 5] as cited in [20, Theorem 2]). Let Σ be a finite alphabet. More-

over, let (Q, in,out,µ) be a linear representation for the weighted language L : Σ∗ → S. If SQ has finite

length, then there exists an integer N ∈ N such that for every w ∈ supp L with |w| > N there exists a

factorization w = uxv with x 6= ε such that

{uxkv | k ∈ N}∩ suppL

is infinite.

A. Maletti, N. O. Nuernbergk 167

Proof. Let r = ℓ(M)+1 and N = Nr as in Lemma 5.3. Since |w|> N, the word w contains a quasipower

of order r by Lemma 5.3, and by Lemma 5.4 there exists a factorization w = uxv such that x 6= ε and

µ(x) is pseudoregular. Moreover, in ·µ(u) ∈ (SQ)∨ and µ(v) ·out ∈ SQ. By assumption we have

Lw = in ·µ(u)µ(x)µ(v) ·out 6= 0.

Since SQ ∼= (SQ)∨ and SQ has finite length, we can apply Theorem 4.4 to obtain that for infinitely

many k ∈N, (
in ·µ(u)

)
·µ(x)k ·

(
µ(v) ·out

)
6= 0.

Since µ(x)k = µ(xk), this completes the proof.

By extending this theorem from its original statement for fields to more general semirings, we have

identified a unified framework for the classical pumping lemma by RABIN and SCOTT [19] (for the

BOOLEAN semifield) and the pumping lemma for recognizable weighted languages over fields by JA-

COB [13]. In practice, it is useful to be able to reason about recognizability without knowing the number

of states a potential linear representation might have, which makes the requirement that SQ has finite

length troublesome. This can be remedied by requiring our semiring S to be ARTINIAN, which of course

still subsumes all the cases covered by the already mentioned pumping lemmata.

Corollary (of Theorem 5.5). Let Σ be a finite alphabet, S be an ARTINIAN semiring, and L be a recog-

nizable weighted language L : Σ∗ → S. Then there exists an integer N ∈N such that for every w ∈ supp L

with |w|> N there exists a factorization w = uxv with x 6= ε such that

{uxkv | k ∈ N}∩ suppL

is infinite.

Example 5.6. Directly generalizing a classical example of a non-regular language, there is no recog-

nizable weighted language L over an ARTINIAN semiring such that supp L = {anbn | n ∈ N}. Sup-

pose that there is an ARTINIAN semiring S and a recognizable weighted language L : {a,b}∗ → S such

that suppL = {anbn | n ∈ N}. By the Corollary of Theorem 5.5 there exists N ∈ N such that w = aNbN

admits a decomposition w = uxv with x 6= ε such that {uxkv | k ∈N}∩supp L is infinite. Obviously this is

a contradiction since no suitable subword x 6= ε (consider the cases x = am, x = bm, and x = ambn) exists.

We note that such a recognizable weighted language L over a non-commutative semiring exists. �

If we drop the assumption that the alphabet Σ is finite, then we obtain a notion of recognizable

weighted languages that is useful when applying the same pumping techniques to weighted tree lan-

guages (see, for example, [8, Theorem 9.2]). One result that would be an ideal candidate for extension to

semimodules is recalled next. Its extension would immediately yield pumping lemmata of various forms

(e.g. [20, Theorem 4]).

Theorem 5.7 (see [20, Theorem 3]). Let Σ be a (not necessarily finite) alphabet and V a vector space

of finite nonzero dimension. There is an integer N such that for each homomorphism µ : Σ∗ → End(V),
every word w ∈ Σ∗ with |w|> N contains a subword x 6= ε such that µ(x) is pseudoregular.

Unfortunately, the proof of this theorem uses the relationship of nonvanishing elements of exte-

rior powers of V to their components’ linear independence. This cannot be easily extended even to

(non-integral) rings. We conclude this section by stating two weak pumping lemmata for recognizable

weighted languages over infinite alphabets.

168 Pumping Lemmata for ARTINIAN Semirings

Theorem 5.8. Let Σ be a (possibly infinite) alphabet and L : Σ∗ → S be a recognizable weighted lan-

guage with linear representation (Q, in,out,µ) such that SQ has finite length N = ℓ(SQ). If there ex-

ists w ∈ supp L with w = abNc, then the set {abkc | k ∈ N}∩ suppL is infinite.

Proof. By Lemma 4.5, µ(bN) = µ(b)N is pseudoregular. Then the claim follows exactly as in Theo-

rem 5.5.

Theorem 5.9. Let the semiring S be finite, Σ a (possibly infinite) alphabet, and L : Σ∗ → S be a recog-

nizable weighted language with linear representation (Q, in,out,µ). There is an integer N such that for

every w ∈ supp L with |w|> N there exists a factorization w = uxv with x 6= ε such that

{uxkv | k ∈ N}∩ suppL

is infinite.

Proof. Since End(SQ) is finite, we can reduce to the case of finite alphabets. To this end, we define the

relation ∼=Ker µ on Σ (where Ker µ is defined as in Theorem 3.8). Clearly, ∼ is an equivalence relation.

From each of the finite number of equivalence classes [m] we choose a representative rm. Now, we

let Γ = {rm | m ∈ Σ} and extend the mapping m 7→ rm to the unique monoid homomorphism ψ : Σ∗ → Γ∗.

By definition of ∼, it is obvious that µ(w) = µ(ψ(w)) for all w ∈ Σ∗.

Since |End(SQ)|6 |S||Q|2 (consider matrices), we have |Γ|6 |S||Q|2 . Let N be as in Theorem 5.5. For

every w ∈ Σ∗ with |w|> N. there exists a factorization w = uxv with x 6= ε and infinite

{ψ(uxkv) | k ∈N}∩ suppL.

By definition of ψ , it is clear that this implies the infiniteness of the set

{uxkv | k ∈ N}∩ suppL.

References

[1] Alfred V. Aho, Ravi Sethi & Jeffrey D. Ullman (1985): Compilers: Principles, Techniques, and Tools.

Addison-Wesley.

[2] Alfred V. Aho & Jeffrey D. Ullman (1992): Foundations of Computer Science. W.H. Freeman.

[3] Jürgen Albert & Jarkko Kari (2009): Digital Image Compression. In Handbook of Weighted Automata [9],

chapter 11, pp. 453–479, doi:10.1007/978-3-642-01492-5_11.

[4] Paolo Aluffi (2009): Algebra: Chapter 0. Graduate Studies in Mathematics 104, American Mathematical

Society, doi:10.1090/gsm/104/01.

[5] Michael F. Atiyah & Ian G. MacDonald (1994): Introduction To Commutative Algebra. Addison-Wesley

Series in Mathematics, Avalon Publishing.

[6] Jean-Michel Autebert, Jean Berstel & Luc Boasson (1997): Context-free Languages and Pushdown Au-

tomata. In Grzegorz Rozenberg & Arto Salomaa, editors: Handbook of Formal Languages, chapter 3, 1,

Springer, pp. 111–174, doi:10.1007/978-3-642-59136-5_3.

[7] Christel Baier, Marcus Größer & Frank Ciesinski (2009): Model Checking Linear-Time Properties of

Probabilistic Systems. In Handbook of Weighted Automata [9], chapter 13, pp. 519–570, doi:10.1007/

978-3-642-01492-5_13.

[8] Jean Berstel & Christophe Reutenauer (1982): Recognizable Formal Power Series on Trees. Theoretical

Computer Science 18(2), pp. 115–148, doi:10.1016/0304-3975(82)90019-6.

https://doi.org/10.1007/978-3-642-01492-5_11
https://doi.org/10.1090/gsm/104/01
https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/978-3-642-01492-5_13
https://doi.org/10.1007/978-3-642-01492-5_13
https://doi.org/10.1016/0304-3975(82)90019-6

A. Maletti, N. O. Nuernbergk 169

[9] Manfred Droste, Werner Kuich & Heiko Vogler (2009): Handbook of Weighted Automata. Monographs in

Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/978-3-642-01492-5.

[10] Manfred Droste & Dietrich Kuske (2021): Weighted Automata. In Jean-Eric Pin, editor: Handbook of

Automata Theory, chapter 4, 1, EMS Press, pp. 113–150, doi:10.4171/automata-1/4.

[11] Jonathan S. Golan (1999): Semirings and their Applications. Kluwer Academic, Dordrecht, doi:10.1007/

978-94-015-9333-5.

[12] Udo Hebisch & Hanns J. Weinert (1998): Semirings—Algebraic Theory and Applications in Computer Sci-

ence. Series in Algebra 5, World Scientific, doi:10.1142/3903.

[13] Gerard Jacob (1980): Un théorème de factorisation des produits d’endomorphismes de Kn. Journal of Alge-

bra 63(2), pp. 389–412, doi:10.1016/0021-8693(80)90080-0.

[14] Daniel Kirsten (2011): The Support of a Recognizable Series over a Zero-sum Free, Commutative Semiring

is Recognizable. Acta Cybernetica 20(2), pp. 211–221, doi:10.14232/actacyb.20.2.2011.1.

[15] Kevin Knight & Jonathan May (2009): Applications of Weighted Automata in Natural Language Processing.

In Handbook of Weighted Automata [9], chapter 14, pp. 571–596, doi:10.1007/978-3-642-01492-5_14.

[16] Werner Kuich & Arto Salomaa (1986): Semirings, Automata, Languages. Monographs in Theoretical Com-

puter Science. An EATCS Series, Springer, doi:10.1007/978-3-642-69959-7.

[17] James Milne (2020): A Primer of Commutative Algebra. https://www.jmilne.org/math/xnotes/CA.

pdf.

[18] Antonio Munoz, Sakir Sezer, Dwayne Burns & Gareth Douglas (2011): An Approach for Unifying Rule

Based Deep Packet Inspection. In: Proc. IEEE Int. Conf. on Communications, IEEE, pp. 1–5, doi:10.1109/

icc.2011.5963095.

[19] Micheal O. Rabin & Dana Scott (1959): Finite Automata and Their Decision Problems. IBM Journal of

Research and Development 3(2), pp. 114–125, doi:10.1147/rd.32.0114.

[20] Christophe Reutenauer (1980): An Ogden-like Iteration Lemma for Rational Power Series. Acta Informatica

13(2), pp. 189–197, doi:10.1007/bf00263993.

[21] Jacques Sakarovitch (2009): Rational and Recognisable Power Series. In Handbook of Weighted Automata

[9], chapter 4, pp. 105–174, doi:10.1007/978-3-642-01492-5_4.

[22] Arto Salomaa & Matti Soittola (1978): Automata-Theoretic Aspects of Formal Power Series. Texts and

Monographs in Computer Science, Springer, doi:10.1007/978-1-4612-6264-0.

[23] Marcel-Paul Schützenberger (1961): On a Special Class of Recurrent Events. The Annals of Mathematical

Statistics 32(4), pp. 1201–1213, doi:10.1214/aoms/1177704860.

[24] Marcel-Paul Schützenberger (1961): On the Definition of a Family of Automata. Information and Control

4(2–3), pp. 245–270, doi:10.1016/S0019-9958(61)80020-X.

[25] Mark P. J. van der Loo & Edwin de Jonge (2021): Data Validation Infrastructure for R. Journal of Statistical

Software 97(10), pp. 1–31, doi:10.18637/jss.v097.i10.

[26] Gunnar von Heijne (1987): Sequence Analysis in Molecular Biology. Academic Press, doi:10.1016/

B978-0-12-725130-1.X5001-2.

[27] Huaxiong Wang (1997): On Characters of Semirings. Houston Journal of Mathematics 23(3), pp. 391–405.

[28] Sheng Yu (1997): Regular Languages. In Grzegorz Rozenberg & Arto Salomaa, editors: Handbook of

Formal Languages, chapter 2, 1, Springer, pp. 41–110, doi:10.1007/978-3-642-59136-5_2.

https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.4171/automata-1/4
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1142/3903
https://doi.org/10.1016/0021-8693(80)90080-0
https://doi.org/10.14232/actacyb.20.2.2011.1
https://doi.org/10.1007/978-3-642-01492-5_14
https://doi.org/10.1007/978-3-642-69959-7
https://www.jmilne.org/math/xnotes/CA.pdf
https://www.jmilne.org/math/xnotes/CA.pdf
https://doi.org/10.1109/icc.2011.5963095
https://doi.org/10.1109/icc.2011.5963095
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1007/bf00263993
https://doi.org/10.1007/978-3-642-01492-5_4
https://doi.org/10.1007/978-1-4612-6264-0
https://doi.org/10.1214/aoms/1177704860
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.18637/jss.v097.i10
https://doi.org/10.1016/B978-0-12-725130-1.X5001-2
https://doi.org/10.1016/B978-0-12-725130-1.X5001-2
https://doi.org/10.1007/978-3-642-59136-5_2

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 170–184, doi:10.4204/EPTCS.386.14

© Benedek Nagy
This work is licensed under the
Creative Commons Attribution License.

State-deterministic Finite Automata with Translucent Letters
and Finite Automata with Nondeterministically Translucent

Letters

Benedek Nagy
Department of Mathematics, Faculty of Arts and Sciences

Eastern Mediterranean University
99628 Famagusta, North Cyprus, Mersin-10, Turkey

and
Department of Computer Science, Institute of Mathematics and Informatics,

Eszterházy Károly Catholic University
Eger, Hungary

nbenedek.inf@gmail.com

Deterministic and nondeterministic finite automata with translucent letters were introduced by Nagy
and Otto more than a decade ago as Cooperative Distributed systems of a kind of stateless restarting
automata with window size one. These finite state machines have a surprisingly large expressive
power: all commutative semi-linear languages and all rational trace languages can be accepted by
them including various not context-free languages. While the nondeterministic variant defines a
language class with nice closure properties, the deterministic variant is weaker, however it contains
all regular languages, some non-regular context-free languages, as the Dyck language, and also some
languages that are not even context-free. In all those models for each state, the letters of the alphabet
could be in one of the following categories: the automaton cannot see the letter (it is translucent),
there is a transition defined on the letter (maybe more than one transition in nondeterministic case)
or none of the above categories (the automaton gets stuck by seeing this letter at the given state and
this computation is not accepting).

State-deterministic automata are recent models, where the next state of the computation deter-
mined by the structure of the automata and it is independent of the processed letters. In this paper our
aim is twofold, on the one hand, we investigate state-deterministic finite automata with translucent
letters. These automata are specially restricted deterministic finite automata with translucent letters.

In the other novel model we present, it is allowed that for a state the set of translucent letters
and the set of letters for which transition is defined are not disjoint. One can interpret this fact
that the automaton has a nondeterministic choice for each occurrence of such letters to see them
(and then erase and make the transition) or not to see that occurrence at that time. Based on these
semi-translucent letters, the expressive power of the automata increases, i.e., in this way a proper
generalization of the previous models is obtained.

Keywords: finite state machines, automata with translucent letters, determinism vs. nondeterminism,
state-determinism

1 Introduction

The history of automata with translucent letters has begun using the technical name cooperative dis-
tributed systems of stateless restarting automata with window size one [27], while the term finite state
acceptors with translucent letters appeared in [16] reinterpreting the aforementioned technical name. Ba-
sically (formal definitions will be recalled in Section 2), in a finite automaton with translucent letters,

http://dx.doi.org/10.4204/EPTCS.386.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Benedek Nagy 171

in each state some of the letters of the alphabet are translucent, and the automaton sees the first occur-
rence of a non-translucent letter (after the occurrences of translucent letters in the prefix of the remaining
input in the given configuration, if any) and if there is a transition defined on this letter (say, the letter
is readable) in the actual state, after erasing this letter, the next state is chosen according to the transi-
tion function, and the computation continues. It may happen that there are only translucent letters (or
no letters at all) in the remained input, then the computation is accepting if the actual state is a final
state. Automata with translucent letters can be applied in linguistics [26], and also modelling various
trace languages used to describe parallel processes [4, 10, 13, 25] based on commutations and partial
commutations [2, 18].

In fact, there are various models in automata theory where the processing on the input may not go
strictly left to right. One of these models is the restarting automata which is developed for linguistical
motivation to do analysis by reduction: in a nutshell, these automata have a read-write window and they
are searching for some specific pattern in the window to reduce, i.e., shorten its content, and then they are
restarting the computation on the new content of the tape. It may also happen that the automaton accepts
based on what is in its window. Interested readers may be referred to [9, 36] to see the various models,
their computations, accepted languages and their properties. Restarting R automata with window size one
can do only one type of reduction, to erase the letter in the window, hereby shortening the tape. Stateless
deterministic variants of them are the simplest models of restarting automata. Instead of adding states to
the system, their cooperative distributed systems (shortly CD systems) are developed [27, 30] and found
to be very interesting with a surprisingly large expressive power as, e.g., they are able to accept all rational
trace languages. The components of such systems play the role of the states in the reinterpreted model,
in the nondeterministic finite automata with translucent letter. Two types of deterministic models of the
CD systems of restarting R automata with window size one are also studied [29]: In strictly deterministic
models, the next component is uniquely defined by the actual component and it does not depend on the
letter being processed (i.e., erased) in the actual computation step. However, in globally deterministic
CD systems of restarting R automata with window size one the next component is deterministically
chosen based on the actual component and on the erased letter, somewhat similarly as it is in the usual
deterministic finite automata. Consequently, this letter model is equivalent, by the reinterpretation, to the
deterministic finite automata with translucent letters.

Other models not consuming the input from left to right are various 2-head models that process the
input parallely from both extremes [6, 12, 17, 20, 21, 39]. Some of these finite state models are capable
to accept exactly the linear context-free languages. Moreover, in the bio-inspired models named 5′→ 3′

Watson-Crick finite automata, the automaton with its both heads may read strings in a computation
step [23, 34, 35]. There are various interesting concepts related to determinism introduced and studied
for these 5′ → 3′ Watson-Crick finite automata models. The deterministic variant where the concept
of determinism fits well to the usual concept of determinism is less powerful in the sense that only a
proper subset of the class of the linear context-free languages can be accepted by them. This class is
called 2detLIN, and it is incomparable with the class detLIN containing the languages that are accepted
by deterministic one-turn pushdown automata [33, 37]. The model where the next state is uniquely
defined by the actual state and does not depend on what is being processed from the input in this step of
computation is called state-deterministic and studied in [22]. At 5′→ 3′ Watson-Crick finite automata,
the state-deterministic variants are very restricted, but they may do some nondeterministic computations,
and thus, the language class accepted by them is incomparable with 2detLIN. Other type of determinism,
the quasi-determinism is introduced and studied in [24]. In these automata, even if the state of the next
configuration is uniquely determined by the actual configuration (actual state and remaining input), there
could be more than one possible next configuration. The quasi-deterministic 5′→ 3′ Watson-Crick finite

172 Nondeterministically translucent letters and state-determinism

automata accept a superclass of languages of both the classes accepted by state-deterministic and by
deterministic 5′→ 3′ Watson-Crick finite automata.

There are other models of computations which process the input not strictly left to right, including
various jumping automata [3, 14, 11] and input revolving automata [1], just to mention a few more
models. These models became very popular in the last decades. The combination of the mentioned 2-
head finite state model with translucent letters allow to accept all linear trace languages [32]. Pushdown
automata with translucent letters can be used to characterise context-free trace languages [28].

In this paper, on the one hand, we investigate the state-deterministic finite automata with translucent
letters and give some results on the class of languages accepted by them.

On the other hand, we investigate finite automata with translucent letters by relaxing the condition
that for a state the set of translucent and readable letters is disjoint. In this way, the translucency becomes
nondeterministic and thus, we may expand both the deterministic and nondeterministic finite automata
with translucent letters to allow nondeterministic translucency. Our other main result is that we can show
that this model is a real expansion of the basic models, the class of accepted languages is a superclass of
the class languages of the original model.

Recently another extension of the finite automata with translucent letters was investigated in which in
the computation the head is not restarting after erasing a symbol, but continues from the position where
this letter has been erased [15]. We believe that our new type of restrictions and extensions are also
giving some new interesting insights and results to this particular field of automata theory.

The structure of the paper is as follows. In the next section we recall some formal preliminaries and
the basic definitions of finite automata with translucent letters. Section 3 is devoted to a restricted class
of deterministic models, namely, to the state-deterministic finite automata with translucent letters; while
in Section 4 we present our other new concept by allowing nondeterminism based on translucency. We
show that this model is more powerful than the original model, however, still only semi-linear languages
can be accepted. Finally, conclusions close the paper.

2 Preliminaries

We assume that the reader is familiar with the basic concepts of formal languages and automata [7, 8],
however, to fix our notations, we formally recall some basic definitions. We denote the empty word by
λ .

We say that the languages L1 and L2 are letter equivalent, if for any word x ∈ L1 we may find a
word y ∈ L2 such that y is obtained from x by reordering (permuting) its letters and also for any word
x ∈ L2 we may find a word y ∈ L1 with the same property. It is known that a language is semi-linear
if there is a regular language that is letter equivalent with it. All context-free languages are semi-linear
[38] and there are context-sensitive languages that are not semi-linear. We do not detail here partial
commutations, commutations, traces and trace languages, interested readers may be referred to [2, 4]
and for their relations to automata with translucent letters to [27, 28, 32].

A nondeterministic finite automaton (NFA) is a pentuple A = (Q,Σ, I,F,δ), where Q is the finite set
of internal states, Σ is the finite alphabet containing the input letters, I ⊆ Q is the set of initial states,
F ⊆Q is the set of final (or accepting) states, and δ : Q×Σ→ 2Q is the transition relation. If |I|= 1 and
|δ (q,a)| ≤ 1 holds for all q ∈ Q and all a ∈ Σ, then A is a deterministic finite automaton (DFA). Notice
that, in general, in NFAs we allow multiple initial states, but we do not allow transitions by the empty
word.

An NFA A works as follows. Let an input string w ∈ Σ∗ be given, then A starts its computation in

Benedek Nagy 173

a state q0 that is chosen nondeterministically from the set I of all initial states. This configuration is
encoded as q0w (for simplicity, we may assume that Q∩Σ = /0). Now A reads the first letter of w, say a
(let w = au), thereby deleting (consuming) this occurrence of letter a, and it changes its internal state to
a state q1 that is chosen nondeterministically from the set δ (q0,a), formally we may write that the new
configuration q1u is reached. However, it may happen that δ (q0,a) is empty, then A gets stuck and this
computation fails in this input. Otherwise, A continues the computation from the configuration q1u by
reading the input letter by letter until either w has been consumed completely or the computation fails
(similarly as we have described). We say that A accepts w from the initial configuration q0w if it reaches a
configuration q f ·λ in a computation starting from q0w, where q f ∈ F is a final state. By L(A) we denote
the set of all strings w ∈ Σ∗ for which A has an accepting computation in the sense described above.

It is well-known that the class of languages that are accepted by NFAs coincides with the class of
regular languages, and that DFAs accept exactly the same languages.

Now we recall the nondeterministic finite automata with translucent letters from [16].
A finite state automaton with translucent letters (NFAwtl) is defined as A = (Q,Σ,$,τ, I,F,δ), where

Q, Σ, I and F are the same as at an NFA; $ 6∈ Σ is a special symbol that is used technically as an
endmarker, τ : Q→ 2Σ is the translucency mapping, and δ : Q×Σ→ 2Q is the transition relation that
satisfies the following condition:

∀q ∈ Q ∀a ∈ τ(q) : δ (q,a) = /0.

For each state q ∈ Q, the letters from the set τ(q) are translucent for q, that is, in state q the automaton
A does not see these letters. A is called deterministic finite state automaton with translucent letters,
abbreviated as DFAwtl, if |I|= 1 and if |δ (q,a)| ≤ 1 for all q ∈ Q and all a ∈ Σ.

An NFAwtl A = (Q,Σ,$,τ, I,F,δ) works as follows. Let w ∈ Σ∗ be an input word. A starts in a
nondeterministically chosen initial state q ∈ I with the word w · $ on its input tape, that is q0w$ is an
initial configuration. A computation step of A is defined as follows. Assume that w = a1a2 · · ·an for
some n ≥ 1 and a1, . . . ,an ∈ Σ. Then A looks for the first occurrence from the left of a letter that is not
translucent (say visible) for the current state q, more precisely, if w = uav such that u ∈ (τ(q))∗ and
a 6∈ τ(q), then A nondeterministically chooses a state q′ ∈ δ (q,a), erases the letter a from the tape thus
producing the tape contents uv ·$, and its internal state is set to q′. Therefore after this computation step
the configuration is q′uv$ and the computation continues from this configuration by looking for the first
visible letter of uv at state q′. However, it may happen that δ (q,a) = /0 for the first visible letter a, A
halts without accepting, this computation fails. Finally, if w ∈ (τ(q))∗ for a configuration qw$ (including
the possibility that the configuration is in fact q ·λ ·$), then A reaches the $-symbol and the computation
halts. In this case A accepts if q ∈ F is a final state; otherwise, it does not accept. A word w ∈ Σ∗ is
accepted by A if there exists an initial state q0 ∈ I and an accepting computation from q0w · $. Further,
the empty word λ is accepted by A if there exists an initial state q0 ∈ Q such that q0 is also a final state.
Now L(A) = {w ∈ Σ∗ | w is accepted by A} is the language accepted by A. Notice that the endmarker is,
in fact, needless; we kept it only for traditional reason.

The classical nondeterministic finite automata (NFA) is obtained from the NFAwtl by removing
the endmarker $ and by ignoring the translucency relation τ , and the deterministic finite-state acceptor
(DFA) is obtained from the DFAwtl in the same way. Thus, the NFA (DFA) can be interpreted as a
special type of NFAwtl (DFAwtl). Accordingly, all regular languages are accepted by DFAwtl. Moreover,
DFAwtls are much more expressive than standard DFAs as shown by the following example.

Example 1 Consider the DFAwtl A = (Q,Σ,$,τ, I,F,δ), where Q = {q0,q,qa,qb,qc,qd}, I = {q0}, F =

174 Nondeterministically translucent letters and state-determinism

{q}, Σ = {a,b,c,d}, and the functions τ and δ are defined as follows:

τ(q0) = {b,c,d}, δ (q0,a) = {qa},
τ(q) = /0, δ (q,a) = {qa}, δ (q,b) = {qb}, δ (q,c) = {qc}, δ (q,d) = {qd},

τ(qa) = {a,c,d}, δ (qa,b) = {q},
τ(qb) = {b,c,d}, δ (qb,a) = {q},
τ(qc) = {a,b,c}, δ (qc,d) = {q},
τ(qd) = {a,b,d}, δ (qd ,c) = {q}.

Further, δ (p,x)= /0 for all other pairs (p,x)∈Q×Σ. Firstly, the input must have an a, which is consumed
in the first step of the computation, then a b is consumed. One may see that after that the automaton reads
the first letter of the remaining input and depending on what it was, in the next step consumes the first
occurrence of a letter that is a pair of the previously erased one, where pairs are a-s with b-s and c-s with
d-s. Consequently A accepts the language Lab = {w ∈ {a,b,c,d}∗ | |w|a = |w|b > 0 and |w|c = |w|d}.
Similarly, by permuting the roles of the letters, e.g., the language Lac = {w ∈ {a,b,c,d}∗ | |w|a = |w|c >
0 and |w|b = |w|d} is also accepted by a DFAwtl. However, the union of these two languages can be
accepted by an NFAwtl, but cannot with any DFAwtl. This latter fact can be shown somewhat analogously
to the fact that the context-free language {anbncmdm}∪{anbmcmdn} is not deterministic context-free. We
skip the formal proof because the lack of space.

As we have already described NFAwtl and DFAwtl are reformulations of cooperative distributed
systems of stateless deterministic restarting R automata with window size one. The DFAwtl, in fact, are
reinterpretations of stateless globally deterministic CD-R(1)-systems [29].

Recently various concepts about deterministic computations have been emerged, therefore, we recall
the concept of state-determinism from [22].

An automaton is state-deterministic if for each of its state q ∈ Q, if there is a transition from q and
it goes to state p (i.e., p ∈ δ (q,a)), then every transition from q goes to p, that is, if an automaton has
state q in its actual configuration, then, if the computation continues, the state of the next configuration
is uniquely determined and it is p.

We are continuing the paper in this line.

3 On state-deterministic finite automata with translucent letters

As our first result, we investigate the state-deterministic FAwtl (SFAwtl for short) by applying this type
of concept of determinism to NFAwtl.

First, we recall the concept of stateless strictly deterministic CD-R(1)-systems [29]. In these systems
there is only one initial state, and there is exactly one successor component for each component. One
may think, that in the terminology of finite automata with translucent letters we can interpret it with
the conditions |I| = 1 and for each q ∈ Q, |

⋃
a∈Σ δ (q,a)| = 1 which may lead to a very similar concept

as state-determinism. However, this is not exactly the case, stateless strictly deterministic CD-R(1)-
systems and the state-deterministic FAwtl are in close relation, but in a CD-R(1)-system one may use
the computation step “Accept” at any component on a given non translucent letter, while in NFAwtl the
acceptance condition is defined in a different way. We are showing some explicit difference of these
models in this section.

We present an example to show that these restricted automata are still able to accept non trivial
languages.

Benedek Nagy 175

Example 2 Let A = (Q,Σ,$,τ, I,F,δ), where Q = {q0,q1}, I = {q0}= F, Σ = {0,1}, and the functions
τ and δ are defined as follows:

τ(q0) = /0, δ (q0,0) = {q1},
τ(q1) = {0}, δ (q1,1) = {q0}.

By observing the structure of this automaton, it is clearly state-deterministic. Considering the accepted
language, it is the Dyck language, where 0 refers to opening and 1 to closing brackets.

Example 3 Let A = (Q,Σ,$,τ, I,F,δ), where Q = {q0,q1,q2,q3}, I = {q0} = F, Σ = {a,b,c,d}, and
the functions τ and δ are defined as follows:

τ(q0) = /0, δ (q0,a) = {q1},
τ(q1) = {a,c,d}, δ (q1,b) = {q2},
τ(q2) = {a,b,d}, δ (q2,c) = {q3},
τ(q3) = {a,b,c}, δ (q3,d) = {q0}.

Further, δ (q,x) = /0 for all other pairs (q,x) ∈ Q×Σ. On the one hand, it is easy to check that A is
a DFAwtl which is, in fact, also state-deterministic. On the other hand, the language accepted by A
intersected by the regular language a∗d∗c∗b∗ is the non context-free language {andncnbn | n ≥ 0}, and
thus A accepts a language that is not context-free.

From this example, using the fact that any language accepted by NFAwtl has a letter-equivalent
sublanguage that is regular [27] (but the language {andncnbn | n≥ 0} does not), we can deduce that:

Proposition 1 The language class accepted by state-deterministic FAwtl is not closed under intersection
with regular languages.

Based on [22], we know that state-deterministic FAwtl have the graph structure with no branching,
that is, either a line graph (starting from the sole initial state) or a line graph with an additional edge from
the last state to a state.

Clearly languages like a∗, b∗, a+aaa, ab+ba are accepted by state-deterministic FAwtl with 1, 1, 4
and 3 states, respectively. For ab+ba translucency can be used in the initial state, e.g., a is translucent
and transition with b leads to the next state, from which the computation may continue by reading an a
to reach the final state.

Now, we present a relatively simple example language that is not accepted by any SFAwtl.

Example 4 The regular language described by a∗+b∗ is not accepted by any state-deterministic FAwtl.
It is easy to see that, by assuming that an SFAwtl A accepts the given language, after reading an a or
a b, A must be in the same state, however, the possible computations after erasing an a or erasing a b
must not be the same, since this would lead to accept words containing both a and b, contradicting to
our assumption on the accepted language.

Based on the above example, we may deduce the following closure property:

Proposition 2 The language class accepted by SFAwtl is not closed under union.

We may also summarize some hierarchy type results based on the previously shown examples.

Proposition 3 State-deterministic FAwtl are deterministic, i.e., they are also DFAwtl.
Further, the language class accepted by SFAwtl includes some non context-free languages, but on the
other hand, does not include all regular languages.

176 Nondeterministically translucent letters and state-determinism

We recall from [31] that the language class accepted by stateless strictly deterministic CD-R(1)-
systems is closed under complement. We show that this is not the case with the state-deterministic
FAwtl, thus, in this way, we also show that the new concept is not a reinterpretation of these CD systems.
Proposition 4 The language class accepted by SFAwtl is not closed under complement.
Proof On the one hand, as we have described, the Dyck language over {0,1} is accepted by state-
deterministic FAwtl. Now, on the other hand, we show that its complement Lc is not. Let as assume
towards a contradiction that there is an SFAwtl A that accepts Lc. Since λ is not in Lc, the initial state q0
is not a final state of A. Let us consider the cases by seeing which of the letters could be translucent at
q0.

• Clearly, it cannot happen that both 0 and 1 are translucent, since then, no words would be accepted.

• In case either 0 or 1 is translucent, there must be a transition with the other letter from q0, to
another state, say state q1. Now, on the one hand, the input 01 should not be accepted, but the
input 10 should be. However, in this case, both of these inputs lead to the same configuration after
the first step of the computation. This leads to a contradiction, since from here either both of them
are accepted by A, or none of them.

• The last possibility is when there are no translucent letters at q0. Since A must accept words starting
with 0, e.g., 0,00,000,001,010 and also words starting with 1, e.g., 1,10,11,100, the transition
with both 0 and 1 must go an accepting state q1, i.e., δ (q0,a) = δ (q0,b) = q1. Considering the
possible input words 01 and 11, thus we reach the same configuration q11$, however, the former
word should not be accepted, while the latter one is in Lc. By this contradiction, the proof has been
finished.

•
Proposition 5 The language class accepted by SFAwtl is not closed under concatenation.
Proof Let us consider the languages a+aaa and b which both are accepted by state-deterministic FAwtl.
Let us consider now their concatenation Lc = {ab,aaab}. Let us assume that there is an SFAwtl A that
accepts Lc. In its initial state q0, there are the following options:

• There is no translucent letters for q0, then there must be a transition with a to a state q1(6= q0) and
no other transition from q0. Neither q0, nor q1 is a final state. Now, at q1 A should be able to read
a b and it must reach an accepting state q2. Now there are two subcases:

– If there is no translucency used at q1, it must also have a transition with a (to q2) allowing to
process the word aaab, however, in this case there would be a false acceptance of aa by A
arriving to a contradiction.

– In the second subcase, a must be translucent in q1, and thus from the original input aaab, the
remaining was aab and in this way the last letter b could be read, and then the remaining aa
should be accepted. However, in this case A would also accept the word abaa with a similar
computation as aaab contradicting to the fact that it accepts Lc.

• If a is translucent at q0, then we must have a transition with b, then from q1 A should able to accept
the remaining word a. However, in this case a similar computation would accept also ba as the
computation for ab. Contradiction.

• If b is translucent at q0, then we must have a transition with a, leading to the state q1, similarly as
in the first case. For q1 the proof works in exactly in the same way as in that case.

• If both a and b are translucent in q0, no transition can be defined, consequently, the nonempty
language Lc cannot be accepted in this way.

•

Benedek Nagy 177

4 The new models with nondeterministic translucency

In this section, first we provide the formal definition of the new automata models and their work.
A (deterministic) finite state automaton with nondeterministically translucent letters, abbreviated

as (DFAwntl) NFAwntl, is defined as a septuple A = (Q,Σ,$,τ, I,F,δ), similarly to NFAwtl (DFAwtl),
respectively, but without the condition that ∀q ∈ Q ∀a ∈ τ(q) : δ (q,a) = /0. That is, for an NFAwntl
(DFAwntl) it is allowed that for a state q ∈ Q and for a letter a ∈ Σ both a ∈ τ(q) and δ (q,a) 6= /0 hold.
Notice that at a DFAwntl, there is only one initial state, and there is at most one transition defined for any
input letter, as at DFAwtl.

A computation step of A is defined as follows. Assume that w = a1a2 · · ·an for some n ≥ 1 and
a1, . . . ,an ∈ Σ and A is in state q. Then A looks for an occurrence of a letter (say ai = b) for which a
transition is defined, i.e., δ (q,b) 6= /0 such that each letter a j ∈ τ(q) with j < i. In this way, the actual
configuration can be written as q ·ubv$ with letter b in the position of ai, u ∈ τ(q)∗, v ∈ Σ∗, and the next
configuration could be p ·uv$ for a state p ∈ δ (q,b).
On the other hand, it may happen that such letter ai does not exist, i.e., there is a letter ai = c 6∈ τ(q) such
that for each j < i a j ∈ τ(q) and δ (q,ak) = /0 (for all k ≤ j) including δ (q,c) = /0. In this case A halts
without accepting; this computation fails.
Further, if w ∈ (τ(q))∗ for a configuration qw$ with q ∈ F , then A reaches the $-symbol and the compu-
tation halts by accepting.
Finally, w∈ (τ(q))∗, q 6∈ F and there is no letter in w for which a transition has been defined (δ (q,ai) = /0
for each i, or w = λ), then the computation fails: A does not accept.

A word w ∈ Σ∗ is accepted by A if there exists an initial state q0 ∈ I and an accepting computation
from q0w ·$. Now L(A) = {w ∈ Σ∗ | w is accepted by A} is the language accepted by A.

Based on these definitions, we can define four categories of NFAwtl:

translucency \ transition mapping deterministic nondeterministic
disjoint DFAwtl NFAwtl
nondeterministic DFAwntl NFAwntl

As we will show although the model DFAwntl seems deterministic by its transition function, we may
easily cheat by the nondeterminism allowed by translucency.

Example 5 Let A = (Q,Σ,$,τ, I,F,δ), where Q = {q0,qa,qb,qc}, I = {q0}, F = {qc}, Σ = {a,b,c}, and
the functions τ and δ are defined as follows:

τ(q0) = /0, δ (q0,a) = {qa},δ (q0,b) = {qb},δ (q0,c) = {qc},
τ(qa) = {a,b,c}, δ (qa,b) = {q0},
τ(qb) = {a,b,c}, δ (qb,a) = {q0},
τ(qc) = /0.

Further, δ (q,x) = /0 for all other pairs (q,x) ∈ Q×Σ. It is easy to check that A is a DFAwntl.
Let us see how A works. Since there are no translucent letters in q0, A consumes the first letter of the
remaining input always in this state. If it was an a, then it erases a b from anywhere in the tape; if A
consumes a b at state q0, then in the next computation step A erases an a from anywhere in the tape.
Finally, the input is accepted if only a c remains on the tape and A is in state q0, then it reaches the
accepting state qc.

Thus, for every accepted word the number of its a-s and b-s are the same and it contains a c. Let us
write such a word in the form vcu with v,u ∈ {a,b}∗. It is also easy to see that A may accept various

178 Nondeterministically translucent letters and state-determinism

words where |v| ≥ |u|, but no words with |v|< |u|. On the other hand, let us see which words are accepted
with the property |v|= |u|. By the work of A, the conditions |v|a = |u|b and |v|b = |u|a must hold, i.e., in
v the number of a-s is the same as the number of b-s in u and vice versa.

Now we are arguing that the same language cannot be accepted by any NFAwtl without using non-
deterministic translucency (due to lack of space we skip some parts of the formal proof). Let us assume
that there is an NFAwtl B that accepts the same language as A. Let the number of states of B is n. Let
us consider a word w = akb`ca`bk ∈ L(A) with k, ` > 2n. By our assumption B accepts w, thus consider
an accepting computation on w by B. Clearly, there are two cases based on the first n+ 1 steps of the
computation.

• If letter c is erased during these computation step, then it can be shown that some words vcu with
|v| < |u| would also be accepted by B having all the letters processed after the step in which c is
read after the c in the original input word.

• If c is not read during the first n+ 1 steps, only a-s and b-s before the c (in part v) are accessed
and processed in the first n+ 1 steps. However, by the pigeon-hole principle, a state is repeated
during these steps, meaning that there are also values i and j (0≤ i, j ≤ n+1, i+ j > 0) such that
from input w′ = ak−ib`− jca`bk in n+ 1− i− j steps exactly the same configuration is reached as
from w in n+ 1 steps. In this case, by continuing the computation on w′ in the same way as the
accepting computation on w, the word w′ will also be accepted.

Now, in both cases, we have reached contradiction by accepting words of the form vcu for which |v|< |u|.

4.1 Hierarchy of the accepted languages

In this subsection our aim is to give some hierarchy like results by establishing where the new families
of languages are comparing them to various other classes.

First, we note that, in fact, the following inclusions hold by definition.

Proposition 6 Every NFAwtl is an NFAwntl and every DFAwtl is a DFAwntl.
Moreover, every DFAwntl is an NFAwntl.

Based on Example 5, we can also state some hierarchy results on the accepted language classes.

Proposition 7 The language class accepted by NFAwtl is a proper subclass of the language class ac-
cepted by NFAwntl.
The language class accepted by DFAwtl is a proper subclass of the language class accepted by DFAwntl.

Here, we leave open the question if NFAwntl is more efficient and expressive than DFAwntl.
On the one hand, we have seen that we can construct DFAwntl that accept some non context-free

languages. Now, on the other hand, let us show some of their limitations.
To compare the new language classes with some classical classes of formal languages we establish

the following result.

Lemma 1 For every language accepted by an NFAwntl (DFAwntl), there is a letter equivalent sublan-
guage that is accepted by an NFAwtl (DFAwtl, resp.).

Proof In case there is no such letter in any state which is both in the set of translucent letters and there
is also a transition on it, the automaton is in fact, an NFAwtl (also a DFAwtl in deterministic case) and
its language, as its own sublanguage, fulfils the statement of the lemma.

Benedek Nagy 179

Now, let us assume that automaton A is an NFAwntl, but it is not an NFAwtl. On the one hand, since
there is no “forced” way not to see a letter for which a transition is defined, A may always consumes
the first occurrence of such a letter and in fact accepts words of a language that is also accepted by
an NFAwtl. More precisely, by removing those letters from the translucency set of a state for which
transitions are defined, an NFAwtl (DFAwtl) A′ can be obtained. Clearly all words that A′ may accept are
also accepted by A with a similar computation.

To see that this language is letter equivalent to the originally accepted language, consider a compu-
tation on any of the accepted word by A. Since the automaton never knows if the consumed letter in a
computation step is the first or only reached through some translucent letters, we may reorder the input
according to an accepting computation, and in this way for each accepted word there will be a letter
equivalent word that has also been accepted by A′. •

Moreover, if, by chance, the letters of the input are ordered in exactly the way as they are consumed
during an accepting computation, then, in fact, an NFAwntl is working in the same way as an NFA, thus
we may also establish the following fact:

Lemma 2 For every language accepted by an NFAwntl, there is a letter equivalent regular sublanguage.

From the previous lemma we can conclude:

Corollary 1 All languages accepted by NFAwntl are semi-linear.

This could be interesting in the mirror of the fact, that by changing the window size of an R automata
from 1 to 2 (like allowing to have the translucency and transitions not letter by letter, but somehow by
pairs of consecutive letters), the corresponding model, the CD system of stateless deterministic R(2)
automata is able to accept some non semi-linear languages [19].

On the other hand, as the linear context-free language {anbn} does not have any letter equivalent
regular sublanguage, there is no NFAwntl that could accept it. Since {anbn} is deterministic linear and
also in 2detLIN (accepted by deterministic 2-head finite automata consuming the input letters from the
two extremes until they are meeting [33]), we have the following incomparability results.

Theorem 1 The language classes accepted by NFAwntl and DFAwntl properly include the class of reg-
ular languages. Further, the language classes accepted by NFAwntl and DFAwntl are incomparable to
each of the following classes of languages: deterministic linear, 2detLIN, linear context-free, determin-
istic context-free, context-free.

Finally, we analyse the computations of DFAwntl.

4.2 Simulating nondeterministic computations with DFAwntl

In this section our aim is to show that although seemingly by the transition function, DFAwntl seem to
be deterministic automata, they have some real nondeterministic features.

Example 6 As we mentioned in Example 1, there are DFAwtl that accept the languages

Lab = {w ∈ {a,b,c,d}∗ | |w|a = |w|b > 0 and |w|c = |w|d},

Lac = {w ∈ {a,b,c,d}∗ | |w|a = |w|c > 0 and |w|b = |w|d}

and
Lad = {w ∈ {a,b,c,d}∗ | |w|a = |w|d > 0 and |w|b = |w|c}.

180 Nondeterministically translucent letters and state-determinism

Let these automata be having the set of states Qab = {qab
0 ,qab

a ,qab
b ,qab

c ,qab
d ,qab}; Qac = {qac

0 ,qac
a ,qac

b ,qac
c ,

qac
d ,qac} and Qad = {qad

0 ,qad
a ,qad

b ,qad
c ,qad

d ,qad}, respectively.
The union of these languages cannot be accepted by any DFAwtl. Let us define now a DFAwntl as

follows.
A = (Q,Σ,$,τ, I,F,δ), where Q = Qab∪Qac∪Qad∪{q0}, I = {q0}, F = {qab,qac,qad}, Σ = {a,b,c,

d}, and the functions τ and δ are defined as follows:

τ(q0) = {a,b,c,d}, δ (q0,a) = /0,δ (q0,b) = {qab
b },δ (q0,c) = {qac

c },δ (q0,d) = {qad
d }

for the newly added initial state and they are inherited from the respective automata for each other state.
Now, for any input, A nondeterministically guesses in which of the three languages the input is: as

τ(q0)=Σ it has access to any occurrence of a b, a c or a d as transitions are defined for these letters in q0.
By guessing the input belonging to Lab, it should have at least one b, thus by reading a b in the first step,
the subautomaton accepting Lab is chosen such that a b has already been processed. Now, it is easy to
see that after this nondeterministic choice in the first step, the computation continues in a deterministic
manner. The other nondeterministic choices in the first step of the computation are: by consuming a
c anywhere from the input A chooses to check whether the input belongs to Lac, and by consuming a d
anywhere from the input in the first step of the computation, A chooses to check whether the input belongs
to Lad . If the guess was correct, the input will be accepted. Otherwise, A must use another computation
to accept the given input, if any. Consequently the DFAwntl A accepts Lab∪Lac∪Lad .

We left open if NFAwntl can accept more languages than DFAwntl (the properness of the inclusion
relation of these two language classes is open). It is known (see [31], for the proof) that DFAwtl cannot
accept all rational trace languages, and this fact was used to prove the properness of the hierarchy between
NFAwtl and DFAwtl. Actually, it was shown that the language {w∈ {a,b}∗ | |w|a = |w|b or 2|w|a = |w|b}
cannot be accepted by any DFAwtl. Here we show that with a similar method as in Example 6, DFAwntl
is able to accept this language. The automaton is shown in Figure 1. In each state the indicated set, if
any, shows the translucent letters of the given state. The other notation is standard, e.g., double circles
for final states, etc.

Last, but not least, we present some closure properties.

Proposition 8 The class of languages accepted by NFAwntl is closed under union.

Proof Wlog. we may assume that the two languages are over the same alphabet Σ. Now, having
two NFAwntl, say A1 = (Q1,Σ,$,τ1, I1,F1,δ1) and A2 = (Q2,Σ,$,τ2, I2,F2,δ2) with Q1 ∩Q2 = /0, we

construct A = (Q1∪Q2,Σ,$,τ, I1∪ I2,F1∪F2,δ), where τ(q) =
{

τ1(q), if q ∈ Q1;
τ2(q), if q ∈ Q2.

and for each a ∈

Σ, δ (q,a) =
{

δ1(q,a), if q ∈ Q1;
δ2(q,a), if q ∈ Q2.

. Then A may choose nondeterministically among the possible

initial states, depending on if the chosen state is in I1 or I2, A will do a computation that is similar to a
computation of A1 or A2, respectively. •

It is known that the language class accepted by DFAwtl is not closed under union [30]. On the
other hand, we have also seen, that DFAwntl may also be able to compute the union of some languages
accepted by DFAwntl, however, in general we leave open the problem if this class is closed under union.

On the other hand, the language class of NFAwtl is closed under concatenation, and the proof was
based on guessing when the last occurrence of the letters are consumed to give a construction when the

Benedek Nagy 181

 a

 a {a,b} a {a,b} a {a} b {a} b {a}

 b

 b b b a b

 {a,b} {a,b} a {a} b {a} b {a} {b}

 a b b b b

 a

 {a,b} {a} b {a}

 b

 b

 b a b b b

 {a} a {b}

 a {a,b} {b}

 b

 b a

 a a a

 {b} {b} {b} {a}

 b b

 a b {a}

 a b

 {a} b {a}

 b

Figure 1: A DFAwntl accepting {w ∈ {a,b}∗ | |w|a = |w|b or 2|w|a = |w|b}.

last occurrence of any letter was consumed without using any translucency [30]. As in the new model,
generally, we may not be sure when the last occurrence is consumed (maybe even in the first step), the
original construction definitely does not work. Thus, the closure of the new classes under concatenation
is also left as an open problem.

The fact that each accepted language must have a letter equivalent regular sublanguage and the ex-
amples shown lead also to the following non-closure property:

Proposition 9 Language classes accepted by NFAwntl and DFAwtl are not closed under intersection
with regular sets, and thus they are not closed under intersection.

5 Conclusions

Recently, another extension of the finite automata with translucent letters was investigated in which in the
computation the head is not restarting after erasing a symbol, but continues from the position where this
letter has been erased (or by reaching the endmarker, it starts from the beginning again) [15]. This model
is defining some new interesting classes of languages that are superclasses of the classes of languages
of the original model, as the new model is able to simulate the original nondeterministic finite automata
with translucent letters. Our extensions, the FAwntl, are such extensions that the original deterministic

182 Nondeterministically translucent letters and state-determinism

and nondeterministic finite automata with translucent letters are special cases of our new models (we may
not need to simulate them as they are included in our new classes of automata), thus the computational
power of the original models has been increased by relaxing the condition of disjointness of the sets of
letters for a state which is containing the translucent letters of the given state and which is containing the
letters that can be read in the given state. However, we left open if nondeterministic transitions are more
powerful in case we allow nondeterministic translucency (the author guesses/conjectures that the model
DFAwntl is weaker than NFAwntl in terms of accepted languages). It is also left open if DFAwntl are
able to accept all rational trace languages.

Although the expressive power has been increased, the new model still has various limitations, as the
accepted languages must always have a letter equivalent regular sublanguage. As the class is not closed
under intersection with regular languages, transduced-input variants can be investigated and studied in
the future similarly to [5]. Various closure properties of the new classes of languages are left open, they
are also subjects of future studies.

We believe that the combination of the new directions by continuing the computation from the posi-
tion of the erased letter and by using nondeterministic translucency, can fruitfully be considered also in
the future.

In the other newly investigated model we have applied the state-deterministic restriction for FAwtl
showing that this model is accepting an interesting family of languages. Combining state-determinism
and nondeterministic translucency and/or the non-returning feature could also be a nice topic for future
research.

Acknowledgements

The comments of the anonymous reviewers are gratefully acknowledged.

References

[1] Henning Bordihn, Markus Holzer & Martin Kutrib (2005): Revolving-Input Finite Automata. In Clelia
de Felice & Antonio Restivo, editors: Developments in Language Theory, 9th International Conference, DLT
2005, Palermo, Italy, July 4-8, 2005, Proceedings, Lecture Notes in Computer Science 3572, Springer, pp.
168–179, doi:10.1007/11505877_15.

[2] P. Cartier & D. Foata (1969): Problèmes combinatoires de commutation et réarrangements. Springer,
doi:10.1007/BFb0079468.

[3] Hiroyuki Chigahara, Szilárd Zsolt Fazekas & Akihiro Yamamura (2016): One-Way Jumping Finite Automata.
Int. J. Found. Comput. Sci. 27(3), p. 391, doi:10.1142/S0129054116400165.

[4] Volker Diekert & Gregorz (eds.) Rozenberg (1995): The Book of Traces. World Scientific, Singapore,
doi:10.1142/2563.

[5] Madeeha Fatima & Benedek Nagy (2020): Transduced-Input Automata with Translucent Letters. Comptes
rendus de l’Académie bulgare des Sciences 73(1), pp. 33–39, doi:10.7546/CRABS.2020.01.04.

[6] Rudolf Freund, Gheorghe Paun, Grzegorz Rozenberg & Arto Salomaa (1997): Watson-Crick finite automata.
In Harvey Rubin & David Harlan Wood, editors: DNA Based Computers, Proceedings of a DIMACS Work-
shop, Philadelphia, Pennsylvania, USA, June 23-25, 1997, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 48, DIMACS/AMS, pp. 297–327, doi:10.1090/dimacs/048/22.

[7] M. A. Harrison (1978): Introduction to Formal Language Theory. Addison-Wesley.

https://doi.org/10.1007/11505877_15
https://doi.org/10.1007/BFb0079468
https://doi.org/10.1142/S0129054116400165
https://doi.org/10.1142/2563
https://doi.org/10.7546/CRABS.2020.01.04
https://doi.org/10.1090/dimacs/048/22

Benedek Nagy 183

[8] J.E. Hopcroft & J.D. Ullman (1979): Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, M.A.

[9] Petr Jancar, Frantisek Mráz, Martin Plátek, Martin Procházka & Jörg Vogel (1995): Restarting Automata,
Marcus Grammars and Context-Free Languages. In Jürgen Dassow, Grzegorz Rozenberg & Arto Salomaa,
editors: Developments in Language Theory II, At the Crossroads of Mathematics, Computer Science and
Biology, Magdeburg, Germany, 17-21 July 1995, World Scientific, Singapore, pp. 102–111.

[10] Ryszard Janicki, Jetty Kleijn, Maciej Koutny & Lukasz Mikulski (2019): Classifying invariant structures of
step traces. J. Comput. Syst. Sci. 104, pp. 297–322, doi:10.1016/j.jcss.2017.05.002.

[11] Radim Kocman, Zbynek Krivka, Alexander Meduna & Benedek Nagy (2022): A jumping $5’\rightarrow 3’$
Watson-Crick finite automata model. Acta Informatica 59(5), pp. 557–584, doi:10.1007/s00236-021-00413-
x.

[12] Roussanka Loukanova (2007): Linear Context Free Languages. In Cliff B. Jones, Zhiming Liu & Jim
Woodcock, editors: Theoretical Aspects of Computing - ICTAC 2007, 4th International Colloquium, Macau,
China, September 26-28, 2007, Proceedings, Lecture Notes in Computer Science 4711, Springer, pp. 351–
365, doi:10.1007/978-3-540-75292-9_24.

[13] Alexandru Mateescu, Kai Salomaa & Sheng Yu (2000): On Fairness of Many-Dimensional Trajectories. J.
Autom. Lang. Comb. 5(2), pp. 145–157, doi:10.25596/jalc-2000-145.

[14] Alexander Meduna & Petr Zemek (2012): Jumping Finite Automata. Int. J. Found. Comput. Sci. 23(7), pp.
1555–1578, doi:10.1142/S0129054112500244.

[15] Frantisek Mráz & Friedrich Otto (2022): Non-Returning Finite Automata With Translucent Letters. In Hen-
ning Bordihn, Géza Horváth & György Vaszil, editors: Proceedings 12th International Workshop on Non-
Classical Models of Automata and Applications, NCMA 2022, Debrecen, Hungary, August 26-27, 2022,
EPTCS 367, pp. 143–159, doi:10.4204/EPTCS.367.10.

[16] B. Nagy & F. Otto (2011): Finite-state acceptors with translucent letters. In G. Bel-Enguix, V. Dahl & A.O.
De La Puente, editors: BILC 2011: AI Methods for Interdisciplinary Research in Language and Biology,
Proc.; in ICAART 2011: 3rd International Conference on Agents and Artificial Intelligence, SciTePress,
Portugal, pp. 3–13.

[17] Benedek Nagy (2008): On 5′→ 3′ Sensing Watson-Crick Finite Automata. In Max H. Garzon & Hao Yan,
editors: DNA Computing, 13th International Meeting on DNA Computing, DNA13, Memphis, TN, USA,
June 4-8, 2007, Revised Selected Papers, Lecture Notes in Computer Science 4848, Springer, pp. 256–262,
doi:10.1007/978-3-540-77962-9_27.

[18] Benedek Nagy (2009): Languages generated by context-free grammars extended by type AB → BA rules.
Journal of Automata, Languages and Combinatorics 14, pp. 175–186.

[19] Benedek Nagy (2011): On CD-Systems of Stateless Deterministic R(2)-Automata. J. Autom. Lang. Comb.
16(2-4), pp. 195–213, doi:10.25596/jalc-2011-195.

[20] Benedek Nagy (2012): A class of 2-head finite automata for linear languages. Triangle 8 (Languages.
Mathematical Approaches), pp. 89–99.

[21] Benedek Nagy (2013): On a hierarchy of 5′→ 3′ sensing Watson-Crick finite automata languages. J. Log.
Comput. 23(4), pp. 855–872, doi:10.1093/logcom/exr049.

[22] Benedek Nagy (2021): State-deterministic 5′ → 3′ Watson-Crick automata. Nat. Comput. 20(4), pp. 725–
737, doi:10.1007/s11047-021-09865-z.

[23] Benedek Nagy (2009): On a hierarchy of 5′→ 3′ sensing WK finite automata languages. In: Mathematical
Theory and Computational Practice, CiE, Abstract Booklet, Heidelberg, Germany, pp. 266–275.

[24] Benedek Nagy (2022): Quasi-deterministic 5′ → 3′ Watson-Crick Automata. In Henning Bordihn, Géza
Horváth & György Vaszil, editors: Proceedings 12th International Workshop on Non-Classical Models of
Automata and Applications, NCMA 2022, Debrecen, Hungary, August 26-27, 2022, EPTCS 367, pp. 160–
176, doi:10.4204/EPTCS.367.11.

https://doi.org/10.1016/j.jcss.2017.05.002
https://doi.org/10.1007/s00236-021-00413-x
https://doi.org/10.1007/s00236-021-00413-x
https://doi.org/10.1007/978-3-540-75292-9_24
https://doi.org/10.25596/jalc-2000-145
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.4204/EPTCS.367.10
https://doi.org/10.1007/978-3-540-77962-9_27
https://doi.org/10.25596/jalc-2011-195
https://doi.org/10.1093/logcom/exr049
https://doi.org/10.1007/s11047-021-09865-z
https://doi.org/10.4204/EPTCS.367.11

184 Nondeterministically translucent letters and state-determinism

[25] Benedek Nagy & Arif A. Akkeles (2017): Trajectories and Traces on Non-traditional Regular Tessellations
of the Plane. In Valentin E. Brimkov & Reneta P. Barneva, editors: Combinatorial Image Analysis - 18th
International Workshop, IWCIA 2017, Plovdiv, Bulgaria, June 19-21, 2017, Proceedings, Lecture Notes in
Computer Science 10256, Springer, pp. 16–29, doi:10.1007/978-3-319-59108-7_2.

[26] Benedek Nagy & László Kovács (2014): Finite Automata with Translucent Letters Applied in Natural and
Formal Language Theory. In: Transactions on Computational Collective Intelligence XVII, Lecture Notes in
Computer Science 8790, Springer, pp. 107–127, doi:10.1007/978-3-662-44994-3_6.

[27] Benedek Nagy & Friedrich Otto (2010): CD-Systems of Stateless Deterministic R(1)-Automata Accept
All Rational Trace Languages. In Adrian-Horia Dediu, Henning Fernau & Carlos Martín-Vide, editors:
Language and Automata Theory and Applications, 4th International Conference, LATA 2010, Trier, Ger-
many, May 24-28, 2010. Proceedings, Lecture Notes in Computer Science 6031, Springer, pp. 463–474,
doi:10.1007/978-3-642-13089-2_39.

[28] Benedek Nagy & Friedrich Otto (2011): An Automata-Theoretical Characterization of Context-Free Trace
Languages. In Ivana Cerná, Tibor Gyimóthy, Juraj Hromkovic, Keith G. Jeffery, Rastislav Královic, Marko
Vukolic & Stefan Wolf, editors: SOFSEM 2011: Theory and Practice of Computer Science - 37th Conference
on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 22-28,
2011. Proceedings, Lecture Notes in Computer Science 6543, Springer, pp. 406–417, doi:10.1007/978-3-
642-18381-2_34.

[29] Benedek Nagy & Friedrich Otto (2011): Globally Deterministic CD-Systems of Stateless R(1)-Automata. In
Adrian-Horia Dediu, Shunsuke Inenaga & Carlos Martín-Vide, editors: Language and Automata Theory and
Applications - 5th International Conference, LATA 2011, Tarragona, Spain, May 26-31, 2011. Proceedings,
Lecture Notes in Computer Science 6638, Springer, pp. 390–401, doi:10.1007/978-3-642-21254-3_31.

[30] Benedek Nagy & Friedrich Otto (2012): On CD-systems of stateless deterministic R-automata with window
size one. J. Comput. Syst. Sci. 78(3), pp. 780–806, doi:10.1016/j.jcss.2011.12.009.

[31] Benedek Nagy & Friedrich Otto (2013): Globally deterministic CD-systems of stateless R-automata with
window size 1. Int. J. Comput. Math. 90(6), pp. 1254–1277, doi:10.1080/00207160.2012.688820.

[32] Benedek Nagy & Friedrich Otto (2020): Linear automata with translucent letters and linear context-free
trace languages. RAIRO Theor. Informatics Appl. 54, p. 3, doi:10.1051/ita/2020002.

[33] Benedek Nagy & Shaghayegh Parchami (2021): On deterministic sensing 5′ → 3′ Watson-Crick finite au-
tomata: a full hierarchy in 2detLIN. Acta Informatica 58(3), pp. 153–175, doi:10.1007/s00236-019-00362-6.

[34] Benedek Nagy & Shaghayegh Parchami (2022): 5′→ 3′ Watson-Crick automata languages – without sensing
parameter. Nat. Comput. 21(4), pp. 679–691, doi:10.1007/s11047-021-09869-9.

[35] Benedek Nagy, Shaghayegh Parchami & Hamid Mir Mohammad Sadeghi (2017): A New Sensing 5′ → 3′

Watson-Crick Automata Concept. In Erzsébet Csuhaj-Varjú, Pál Dömösi & György Vaszil, editors: Proceed-
ings 15th International Conference on Automata and Formal Languages, AFL 2017, Debrecen, Hungary,
September 4-6, 2017, EPTCS 252, pp. 195–204, doi:10.4204/EPTCS.252.19.

[36] Friedrich Otto (2006): Restarting Automata. In Zoltán Ésik, Carlos Martín-Vide & Victor Mitrana, editors:
Recent Advances in Formal Languages and Applications, Studies in Computational Intelligence 25, Springer,
pp. 269–303, doi:10.1007/978-3-540-33461-3_11.

[37] Shaghayegh Parchami & Benedek Nagy (2018): Deterministic Sensing 5′ → 3′ Watson-Crick Automata
Without Sensing Parameter. In Susan Stepney & Sergey Verlan, editors: Unconventional Computation and
Natural Computation - 17th International Conference, UCNC 2018, Fontainebleau, France, June 25-29, 2018,
Proceedings, Lecture Notes in Computer Science 10867, Springer, pp. 173–187, doi:10.1007/978-3-319-
92435-9_13.

[38] R. J. Parikh (1961): Language generating devices. MIT Res. Lab., Quarterly Progress Report 60, pp. 199–
212.

[39] Gheorghe Paun, Grzegorz Rozenberg & Arto Salomaa (1998): DNA Computing - New Computing Paradigms.
Texts in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/978-3-662-03563-4.

https://doi.org/10.1007/978-3-319-59108-7_2
https://doi.org/10.1007/978-3-662-44994-3_6
https://doi.org/10.1007/978-3-642-13089-2_39
https://doi.org/10.1007/978-3-642-18381-2_34
https://doi.org/10.1007/978-3-642-18381-2_34
https://doi.org/10.1007/978-3-642-21254-3_31
https://doi.org/10.1016/j.jcss.2011.12.009
https://doi.org/10.1080/00207160.2012.688820
https://doi.org/10.1051/ita/2020002
https://doi.org/10.1007/s00236-019-00362-6
https://doi.org/10.1007/s11047-021-09869-9
https://doi.org/10.4204/EPTCS.252.19
https://doi.org/10.1007/978-3-540-33461-3_11
https://doi.org/10.1007/978-3-319-92435-9_13
https://doi.org/10.1007/978-3-319-92435-9_13
https://doi.org/10.1007/978-3-662-03563-4

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 185–199, doi:10.4204/EPTCS.386.15

© Y. Nakamura & R. Sin’ya
This work is licensed under the
Creative Commons Attribution License.

Words-to-Letters Valuations for Language Kleene Algebras
with Variable Complements

Yoshiki Nakamura
Tokyo Institute of Technology, Japan

nakamura.yoshiki.ny@gmail.com

Ryoma Sin’ya
Akita University, Japan

ryoma@math.akita-u.ac.jp

We investigate the equational theory of Kleene algebra terms with variable complements—(language)
complement where it applies only to variables—w.r.t. languages. While the equational theory w.r.t.
languages coincides with the language equivalence (under the standard language valuation) for Kleene
algebra terms, this coincidence is broken if we extend the terms with complements. In this paper, we
prove the decidability of some fragments of the equational theory: the universality problem is coNP-
complete, and the inequational theory t ≤ s is coNP-complete when t does not contain Kleene-star.
To this end, we introduce words-to-letters valuations; they are sufficient valuations for the equational
theory and ease us in investigating the equational theory w.r.t. languages. Additionally, we prove that
for words with variable complements, the equational theory coincides with the word equivalence.

1 Introduction

Kleene algebra (KA) [3, 6] is an algebraic system for regular expressions consisting of union (∪), com-
position (·), Kleene-star (_∗), emptiness (⊥), and identity (I). In this paper, we consider KAs w.r.t.
languages (a.k.a., language models of KAs, language KAs). Interestingly, the equational theory of KAs
w.r.t. languages coincides with the language equivalence under the standard language valuation (see also,
e.g., [1, 11]): for all KA terms (i.e., regular expressions) t,s, we have

LANG |= t = s ⇐⇒ [t] = [s]. (†)

Here, we write LANG |= t = s if the equation t = s holds for all language models (i.e., each variable x
maps to not only the singleton language {x} but also any languages); we write [u] for the language of a
regular expression u (i.e., each variable x maps to the singleton language {x}). Since the valuation [_]
is an instance of valuations in LANG, the direction =⇒ is trivial (this direction always holds even if we
extend KA terms with some extra operators). The direction ⇐= is a consequence of the completeness
of KAs (see Appendix A for an alternative proof not relying on the completeness of KAs). However,
the direction ⇐= fails in general when we extend KA terms with extra operators. Namely, the equa-
tional theory w.r.t. languages does not coincide with the language equivalence in general (see below for
complements). The equational theory of KAs with some operators w.r.t. languages was studied, e.g.,
with reverse [2], with tests [7] (where languages are of guarded strings, not words), with intersection [1],
and with universality (>) [11]. Nevertheless, to the best of authors’ knowledge, variable complements
(and even complements) w.r.t. languages has not yet been investigated, while those w.r.t. binary relations
were studied, e.g., in [10] (for complements; cf. Tarski’s calculus of relations [13]) and [9] (for variable
complements).

In this paper, we investigate the equational theory of KA terms with variable complements (x−)—
(language) complement, where it applies only to variables (we use x to denote variables)—w.r.t. lan-

http://dx.doi.org/10.4204/EPTCS.386.15
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

186 Words-to-Letters Valuations for Language Kleene Algebras with Variable Complements

guages. For KA terms with variable complements, (†) fails. The following is an example:

LANG 6|= x− = x− · x− [x−] = [x− · x−].

(For LANG 6|=, consider a valuation such that x− maps to the language {a}.) As the example above (see
also Remark 1, for more examples) shows, the equational theory of KAs with variable complements
w.r.t. languages significantly differs from the language equivalence under the standard language valua-
tion. While the language equivalence problem of KA terms with variable complements is decidable in
PSPACE by a standard automata construction [14] (and hence, PSPACE-complete [5, 8, 12]), it remains
whether the equational theory w.r.t. languages is decidable.

We prove the decidability and complexity of some fragments of the equational theory of KA terms
with variable complements w.r.t. languages: the universality problem is coNP-complete (Cor. 18), and the
inequational theory t ≤ s is coNP-complete when t does not contain Kleene-star (Cor. 29). To this end, we
introduce words-to-letters valuations. Words-to-letters valuations are sufficient for the equational theory
of KA terms with variable complements w.r.t. languages (words-to-letters-valuation property; Cor. 30):
for all terms t,s, if there is some language valuation such that it refutes t = s, there is some words-to-
letters valuation such that it refutes t = s. This property eases us in investigating the equational theory
w.r.t. languages.

Additionally, by using words-to-letters valuations, we prove a completeness theorem for words with
variable complements: the equational theory coincides with the word equivalence (Thm. 32). A limi-
tation of words-to-letters valuations is that the number of letters is not bounded; so, they cannot apply
to the equational theory over LANGn (language models over sets of cardinality at most a natural num-
ber n). Nevertheless, by giving another valuation, we can show the coincidence for one-variable words
(Thm. 36). We leave open for the many-variable words.

Outline

In Sect. 2, we briefly give basic definitions, including the syntax and semantics of KA terms with variable
complements. Additionally, we give languages for KA terms with variable complements (Sect. 2.3). In
Sects. 3–5, we consider fragments of the equational theory of KA terms with variable complements
w.r.t. languages, step-by-step. In Sect. 3, we consider the identity inclusion problem (LANG |= I ≤ t?).
This problem is relatively easy but contains the coNP-hardness result (Cor. 6). In Sect. 4, we consider
the variable inclusion problem (LANG |= x ≤ t?) and the universality problem (LANG |= > ≤ t?). In
Sect. 5, we consider the word inclusion problem (LANG |= w ≤ t?). This section proceeds in the same
way as Sect. 4, thanks to words-to-letters valuations (Def. 21). Consequently, the inequational theory
t ≤ s is coNP-complete when t does not contain Kleene-star (Cor. 29). Additionally, we prove the
words-to-letters valuation property (Cor. 30) for the equational theory of (full) KA terms with variable
complements w.r.t. languages. In Sect. 6, we consider the equational theory of words with variable
complements and show a completeness theorem (Thm. 32). Sect. 7 concludes this paper.

2 Preliminaries

We write N for the set of non-negative integers. For a set X , we write #(X) for the cardinality of X and
℘(X) for the power set of X .

For a set X (of letters), we write X∗ for the set of words over X : finite sequences of elements of X .
We write I for the empty word. We write wv for the concatenation of words w and v. A language over

Y. Nakamura & R. Sin’ya 187

X is a subset of X∗. We use w,v to denote words and use L,K to denote languages, respectively. For
languages L,K ⊆ X∗, the composition L ·K and the Kleene star L∗ is defined by:

L ·K =∆ {wv | w ∈ L ∧ w ∈ K};
L∗ =∆ {w0 . . .wn−1 | ∃n ∈ N,∀i < n, wi ∈ L}.

2.1 Syntax: KA terms with variable complements

Let V be a set of variables. The set of Kleene algebra (KA) terms with variable complements (x−) is
defined by the following grammar:

T 3 t,s,u ::= x | I | ⊥ | t · s | t ∪ s | t∗ | x− (x ∈ V)

We use parentheses in ambiguous situations. We often abbreviate t · s to ts. We write > for the term
x∪ x−, where x is any variable.

An equation t = s is a pair of terms. An inequation t ≤ s is an abbreviation of the equation t ∪ s = s.

2.2 Semantics: language models

Consider the signature S =∆ {I(0),⊥(0), ·(2),∪(2),_∗(1),_−(1)}. An S-algebra A is a tuple 〈|A|,{ f A} f(k)∈S〉,
where |A| is a non-empty set and f A : |A|k → |A| is a k-ary map for each f(k) ∈ S. A valuation v on an
S-algebra A is a map v : V→ |A|. For a valuation v, we write v̂ : T→ |A| for the unique homomorphism
extending v.

The language model A over a set X is an S-algebra such that |A|=℘(X∗) and for all L,K ⊆ X∗,

IA = {I} L ·A K = L ·K L∗
A
= L∗

⊥A = /0 L∪A K = L∪K L−
A
= X∗ \L.

We write LANG for the class of all language models. A language valuation over a set X is a valuation
on some language model over X . For an equation t = s, we let

LANG |= t = s ⇐⇒∆ v̂(t) = v̂(s) holds for all language valuations v.

The equational theory w.r.t. languages is the set of all equations t = s such that LANG |= t = s.
Additionally, the language [t]⊆ V∗ of a term t is defined by:

[x] =∆ {x} [I] =∆ {I} [t · s] =∆ [t] · [s] [t∗] =∆ [t]∗

[⊥] =∆ /0 [t ∪ s] =∆ [t]∪ [s] [t−] =∆ V∗ \ [t].

By definition, we have [t] = v̂(t) if v is the valuation on the language model over the set V defined by
v(x) = {x} for all x ∈ V. Hence, for all t,s, we have

LANG |= t = s =⇒ [t] = [s]. (‡)

Remark 1. The converse direction fails1; for example, when x 6= y,

LANG 6|= y≤ x− [y]⊆ [x−].

1The failure can be also shown by that the universality > can be expressed by x∪ x−; see also [11, Remark. 3.6].

188 Words-to-Letters Valuations for Language Kleene Algebras with Variable Complements

Here t ≤ s denotes the equation t ∪ s = s (so, indeed, an equation). For LANG 6|= y ≤ x−, consider a
language valuation v such that a ∈ v(x) and a ∈ v(y); then we have a ∈ v̂(y)\ v̂(x−). [y]⊆ [x−] is shown
by [y] = {y} ⊆ V∗ \{x}= [x−]. More generally, for any word w over V such that w 6= x,

LANG 6|= w≤ x− [w]⊆ [x−].

Moreover, for example, there are the following examples (for LANG 6|=, consider a valuation such that
both x and y map to the language X∗ \{a}, where X is a set and a ∈ X):

LANG 6|= x− = x− · x− [x−] = [x− · x−]
LANG 6|=>= x− · y− [>] = [x− · y−]
LANG 6|=>= x−∪ y− [>] = [x−∪ y−].

As the examples above show, for KA terms with variable complements, the equational theory w.r.t.
languages (LANG |= t = s?) significantly differs from the language equivalence problem ([t] = [s]?).

In the sequel, we focus on the equational theory w.r.t. languages and investigate its fragments. We
prepare a useful tool (Lem. 2), which enables us to decompose terms into languages of words.

2.3 Languages for KA terms with variable complements

Let V′ = {x,x− | x ∈V}. For a term t, we write [t]V′ for the language of t where t is viewed as the regular
expression over V′. Each word over V′ is a term such that both the union (∪) and the Kleene-star (_∗)
do not occur. Note that [x−]V′ = {x−}, cf. [x−] = V∗ \{x}. For a language valuation v and a language L
over V′, we define

v̂(L) =∆
⋃

w∈L

v̂(w).

By using the distributive law of · w.r.t. ∪, for all languages L,K and language valuations v, we have:

v̂(L∪K) = v̂(L)∪ v̂(K) v̂(L ·K) = v̂(L) · v̂(K) v̂(L∗) = v̂(L)∗.

We can decompose each term t to the set [t]V′ of words over V′ as follows:

Lemma 2. Let v be a language valuation. For all terms t, we have

v̂(t) = v̂([t]V′).

Proof. By easy induction on t using the equations above. Case t = x,x−, I: Clear, by [t]V′ = {t}. Case
t = ⊥: By v̂(⊥) = /0 = v̂([⊥]V′). Case t = s∪ u, Case t = s · u, Case t = s∗: By IH with the equations
above. For example, when t = s ·u, we have

v̂(s ·u) = v̂(s) · v̂(u) = v̂([s]V′) · v̂([u]V′) (IH)

= v̂([s]V′ · [u]V′) = v̂([s ·u]V′).

3 The identity inclusion problem

We first consider the identity inclusion problem w.r.t. languages:

Given a term t, does LANG |= I≤ t?

Y. Nakamura & R. Sin’ya 189

This problem is relatively easily solvable. Since LANG |= I ≤ t iff I ∈ v̂(t) for all language valuation v,
it suffices to consider the membership of the empty word I. We use the following facts.

Proposition 3. For all languages L,K, we have:

I ∈ L∪K ⇐⇒ I ∈ L∨ I ∈ K

I ∈ L ·K ⇐⇒ I ∈ L∧ I ∈ K

I ∈ L∗ ⇐⇒ True.

Proof. Clear, by definition.

Lemma 4. Let v,v′ be language valuations. Assume that for all variables x, I ∈ v(x) iff I ∈ v′(x). For all
terms t,

I ∈ v̂(t) ⇐⇒ I ∈ v̂′(t).

Proof. By easy induction on t using Prop. 3. Case t = x,x−: Clear by the assumption. Case t is a
constant: Trivial. For inductive cases, e.g., Case t = s∪u: By using Prop. 3, we have

I ∈ v̂(s∪u) ⇐⇒ I ∈ v̂(s)∨ I ∈ v̂(u) ⇐⇒ I ∈ v̂′(s)∨ I ∈ v̂′(u) (IH)

⇐⇒ I ∈ v̂′(s∪u).

(Similarly for the other inductive cases.)

By using Lem. 4, it suffices to consider a finite number of valuations, as follows.

Theorem 5. For all terms t, the following are equivalent:

1. LANG |= I≤ t (i.e., v̂(I)⊆ v̂(t), for all language valuations v);

2. v̂(I)⊆ v̂(t), for all language valuations v over the empty set s.t. for all x, v(x)⊆ {I}.

Proof. 1⇒2: Trivial. 2⇒1: We prove the contraposition. By LANG 6|= I≤ t, there is a language valuation
v s.t. v̂(I) 6⊆ v̂(t) (i.e., I 6∈ v̂(t)). Let v〈〉 be the language valuation over the empty set defined by:

v〈〉(x) =∆ {I | I ∈ v(x)}.

Then by Lem. 4, I 6∈ v̂〈〉(t) holds; thus, we have v̂〈〉(I) 6⊆ v̂〈〉(t).

Corollary 6. The identity inclusion problem (given a term t, does LANG |= I ≤ t?) is decidable and
coNP-complete for KA terms with variable complements.

Proof. (in coNP): Thm. 5 induces the following non-deterministic polynomial algorithm:

1. Pick up a language valuation v over the empty set s.t. for all x, v(x)⊆ {I}, non-deterministically.

2. If v̂(I) 6⊆ v̂(t), then return True; otherwise return False.

Then LANG 6|= I ≤ t if some execution returns True; and LANG |= I ≤ t otherwise. Hence, the identity
inclusion problem is decidable in coNP (as its complemented problem is in NP).

(coNP-hard): Because this problem subsumes the validity problem of propositional formulas in dis-
junctive normal form, which is a well-known coNP-complete problem [4]. More precisely, given a
propositional formula ϕ in disjunctive normal form, let t be the term obtained from ϕ by replacing each
conjunction ∧ with · and each disjunction ∨ with ∪ (where we map each positive literal x to the variable

190 Words-to-Letters Valuations for Language Kleene Algebras with Variable Complements

x and each negative literal x− to the complemented variable x−); for example, if ϕ = (x∧ y−)∨ (y∨ x−),
then t =(x ·y−)∪(y∪x−). Then, for all language valuations v (over the empty set s.t. for all x,v(x)⊆{I}),
we have: v̂(I)⊆ v̂(t) holds iff ϕ is True on the valuation v′, where v′ is the map mapping each x to True if
I ∈ v(x) and False otherwise. Thus by Thm. 5, LANG |= I≤ t iff ϕ is valid. Hence, the identity inclusion
problem is coNP-hard.

Remark 7. Under the standard language valuation, the identity inclusion problem—given a term t, does
[I]⊆ [t]? (i.e., does I ∈ [t]?)—is decidable in P (because we can compute “I ∈ [t]?” by induction on t, as
I 6∈ [x] and I ∈ [x−] for every variable x). Hence, for KA terms with variable complements, the identity
inclusion problem w.r.t. languages is strictly harder than that under the standard language valuation unless
P = NP.

4 The variable inclusion problem and the universality problem

Next, we consider the variable inclusion problem:

Given a variable x and a term t, does LANG |= x≤ t?

In the identity inclusion problem, if w ∈ v̂(I)\ v̂(t), then w = I should hold; so it suffices to consider the
membership of the empty word I. However, in the variable inclusion problem, this situation changes: if
w ∈ v̂(x)\ v̂(t), then w is possibly any word.

Nevertheless, we can overcome the problem above for KA terms with variable complements; more
precisely, from a language valuation v s.t. w ∈ v̂(x)\ v̂(t) for some word w, we can construct a language
valuation v′ s.t. ` ∈ v̂′(x)\ v̂′(t) for some letter `. If such v′ can be constructed from v, then considering
the membership of letters suffices because we have

LANG 6|= x≤ t ⇐⇒ w ∈ v̂(x)\ v̂(t) for some language valuation v and word w (By definition)

⇐⇒ ` ∈ v̂′(x)\ v̂′(t) for some language valuation v′ and letter `
(=⇒: By the condition of v′. ⇐=: Trivial by letting v= v′.)

Such a language valuation v′ can be defined as follows:

Definition 8. For a language valuation v over a set X and a word w over X , the language valuation vw

over the set {`} (where ` is a letter) is defined as follows:

vw(x) =∆ {I | I ∈ v(x)}∪{` | w ∈ v(x)}.

In the following, we prove that vw satisfies the condition of v′ above, that is, the following conditions:

• w ∈ v̂(x) =⇒ ` ∈ v̂w(x);

• w 6∈ v̂(t) =⇒ ` 6∈ v̂w(t).

The first condition is clear by the definition of vw. We prove the second condition in Lem. 10. We prepare
the following fact:

Proposition 9 (cf. Prop. 3). For all languages L,K and letters a, we have:

a ∈ L∪K ⇐⇒ a ∈ L∨a ∈ K

a ∈ L ·K ⇐⇒ (a ∈ L∧ I ∈ K)∨ (I ∈ L∧a ∈ K)

a ∈ L∗ ⇐⇒ a ∈ L.

Y. Nakamura & R. Sin’ya 191

Proof. Clear, by definition.

Lemma 10 (cf. Lem. 4). Let v be a language valuation and w be a word. For all terms t, we have:

` ∈ v̂w(t) =⇒ w ∈ v̂(t).

Proof. By induction on t.
Case t = x,x−: By the construction of vw, ` ∈ v̂w(x) iff w ∈ v̂(x). (Hence, we also have ` ∈ v̂w(x−)

iff w ∈ v̂(x−).)
Case t =⊥, I: By ` 6∈ v̂w(t).
Case t = s∪u: We have:

` ∈ v̂w(s)∪ v̂w(u)⇐⇒ ` ∈ v̂w(s)∨ ` ∈ v̂w(u) (Prop. 9)

=⇒ w ∈ v̂(s)∨w ∈ v̂(u) (IH)

=⇒ w ∈ v̂(s)∪ v̂(u).

Case t = s ·u: We have:

` ∈ v̂w(s) · v̂w(u)⇐⇒ (` ∈ v̂w(s)∧ I ∈ v̂w(u))∨ (I ∈ v̂w(s)∧ ` ∈ v̂w(u)) (Prop. 9)

=⇒ (w ∈ v̂(s)∧ I ∈ v̂(u))∨ (I ∈ v̂(s)∧w ∈ v̂(u)) (IH with Lem. 4)

=⇒ w ∈ v̂(s) · v̂(u)

Case t = s∗: We have:

` ∈ v̂w(s)∗⇐⇒ ` ∈ v̂w(s) (Prop. 9)

=⇒ w ∈ v̂(s) (IH)

=⇒ w ∈ v̂(s)∗

Thus we have obtained the expected condition for vw as follows:

Corollary 11. Let v be a language valuation and w be a word. For all variables x and terms t,

w ∈ v̂(x)\ v̂(t) =⇒ ` ∈ v̂w(x)\ v̂w(t).

Proof. For ` ∈ v̂w(x): By the construction of vw, ` ∈ v̂w(x) iff w ∈ v̂(x). For ` 6∈ v̂w(t): By Lem. 10.

Theorem 12. For all variables x and terms t, the following are equivalent:

1. LANG |= x≤ t;

2. v̂(x)⊆ v̂(t) for all language valuations v over the set {`} s.t. v(y)⊆ {I, `} for all y;

3. v̂w(x)⊆ v̂w(t) for all language valuations v and words w.

Proof. 1⇒2, 2⇒3: Trivial, as v̂w(y)⊆{I, `} for all y. 3⇒1: The contraposition is shown by Cor. 11.

Corollary 13. The variable inclusion problem (given a variable x and a term t, does LANG |= x≤ t?) is
decidable and coNP-complete for KA terms with variable complements.

192 Words-to-Letters Valuations for Language Kleene Algebras with Variable Complements

Proof. (in coNP): By the condition 2 of Thm. 12, we can give an algorithm as with Cor. 6. (coNP-hard):
We give a reduction from the validity problem of propositional formulas in disjunctive normal form, as
with Cor. 6. Given a propositional formula ϕ in disjunctive normal form, let t be the term obtained by the
translation in Cor. 6; so, we have that ϕ is valid iff LANG |= I≤ t. Then we also have that LANG |= I≤ t
iff LANG |= z≤ z · t (where z is a fresh variable); the direction =⇒ is shown by the congruence law, and
the direction⇐= is shown by the substitution law. Therefore, we have that ϕ is valid iff LANG |= z≤ z ·t;
thus, the variable inclusion problem is coNP-hard.

4.1 Generalization from variables to composition-free terms

The proof above applies to not only variables but also terms t having the following property: For all
language valuations v,

for all non-empty words w, w ∈ v̂(t) =⇒ ` ∈ v̂w(t). (L1)

(This condition is intended for composition-free terms (Lem. 15). This is generalized to (Ln) in Sect. 5.1.)
If t satisfies the condition (L1), then combining with Lem. 10 (and with Lem. 4 for the empty word I)
yields that for all language valuations v and words w,

w ∈ v̂(t)\ v̂(s) =⇒

{
` ∈ v̂w(t)\ v̂w(s) (if w 6= I)

I ∈ v̂w(t)\ v̂w(s) (if w = I)
.

Hence, we have the following:

Theorem 14 (cf. Thm. 12). For all terms t,s, if t satisfies (L1), then the following are equivalent:

1. LANG |= t ≤ s;

2. v̂(t)⊆ v̂(s) for all language valuations v over the set {`} s.t. v(x)⊆ {I, `} for all x;

3. v̂w(t)⊆ v̂w(s) for all language valuations v and words w.

Proof. As with Thm. 12 (use the above, instead of Cor. 11).

Thm. 14 can apply to composition-free terms. We say that a term t is composition-free if composition
(·) nor Kleene-star (_∗) does not occur in t.

Lemma 15. Every composition-free terms t satisfies the condition (L1).

Proof. By easy induction on t. Case t = x,x−: By the definition of vw. Case t = I: By that w 6∈ v̂(I)
holds for all non-empty words w. Case t =⊥: By w 6∈ v̂(⊥) always. Case t = s∪u: By IH, we have that
w ∈ v̂(s)∪ v̂(u) ⇐⇒ w ∈ v̂(s)∨w ∈ v̂(u) =⇒ ` ∈ v̂w(s)∨ ` ∈ v̂w(u) ⇐⇒ ` ∈ v̂w(s)∪ v̂w(u).

Corollary 16. The following problem is coNP-complete for KA terms with variable complements:

Given a composition-free term t and a term s, does LANG |= t ≤ s hold?

Proof. (coNP-hard): By Cor. 6, as t is possibly I. (in coNP): By Thm. 14 with Lem. 15, we can give an
algorithm (from the condition 2 of Thm. 14) as with Cor. 13.

Remark 17. Lem. 15 fails for non-composition-free terms. For example, when v(x) = {a}, we have

aa ∈ v̂(xx) ` 6∈ v̂aa(xx).

(Note that v̂aa(xx) = /0, as v̂aa(x) = /0 by v(x) = {a}.)

Y. Nakamura & R. Sin’ya 193

4.2 The universality problem

The universality problem is the following problem:
Given a term t, does LANG |=>≤ t?

As a consequence of Cor. 16, the universality problem is also decidable and coNP-complete.
Corollary 18. The universality problem is decidable and coNP-complete for KA terms with variable
complements.

Proof. (in coNP): We can apply Cor. 16 because the term x∪ x− is composition-free and LANG |=>=
x∪ x− holds. (coNP-hard): Similar to Cor. 13. Given a propositional formula ϕ in disjunctive normal
form, let t be the term obtained by the translation in Cor. 6; so, we have that ϕ is valid iff LANG |= I≤ t.
Then we also have that LANG |= I ≤ t iff LANG |= > ≤ > · t, which is proved as follows. =⇒: By
the congruence law. ⇐=: We prove the contraposition. Assume LANG 6|= I ≤ t; then I 6∈ v̂(t) for some
language valuation v. Then I 6∈ v̂(>· t) holds; thus, LANG 6|=>≤>· t. Hence, the universality problem
is coNP-complete.

Remark 19. In the standard language equivalence, because [V∗] = [>] (and the constant > is usually not
a primitive symbol of regular expressions), the universality problem is always of the form: [V∗] = [t].
However, LANG |= V∗ ≤ t is different from LANG |=>≤ t, as LANG 6|= V∗ =>.
Remark 20. Under the standard language equivalence, the universality problem—given a term t, does
[>] ⊆ [t]? (i.e., does [t] = V∗?)—is PSPACE-hard [5, 8, 12]. Hence, for KA terms with variable com-
plements, the universality problem w.r.t. languages is strictly easier (cf. Remark 7) than that under the
standard language equivalence unless NP = PSPACE.

5 The word inclusion problem

Let V′ = {x,x− | x ∈ V}. The word inclusion problem is the following problem:
Given a word w over V′ and a term t, does LANG |= w≤ t?

As Remark 17 shows, we cannot apply the method given in Sect. 4 straightforwardly. Nevertheless, we
can solve this problem by generalizing the language valuation of Def. 8, as follows. The valuations in
Defs. 8, 21 are given by the first author.
Definition 21 (words-to-letters valuations). For a language valuation v over a set X and words w0, . . . ,wn−1
over X (where n ≥ 0), the language valuation v〈w0,...,wn−1〉 over the set {`0, . . . , `n−1} (where `0, . . . , `n−1
are pairwise distinct letters) is defined as follows:

v〈w0,...,wn−1〉(x) =∆ {`i . . . ` j−1 | 0≤ i≤ j ≤ n ∧ wi . . .w j−1 ∈ v(x)}.

(Note that the language valuation vw (Def. 8) is the case n = 1 of Def. 21 and the language valuation v〈〉

in the proof of Thm. 5 is the case n = 0 of Def. 21.)
By using words-to-letters valuations, we can naturally strengthen the results in Sect. 4 from variables

to words. We prepare the following fact:
Proposition 22 (cf. Prop. 9). For all languages L,K and words w,

w ∈ L∪K ⇐⇒ w ∈ L∨w ∈ K

w ∈ L ·K ⇐⇒ ∃v,v′ s.t. w = vv′, v ∈ L∧ v′ ∈ K

w ∈ L∗ ⇐⇒ ∃n ∈ N,∃v0, . . . ,vn−1 s.t. w = v0 . . .vn−1,∀i < n, vi ∈ L.

194 Words-to-Letters Valuations for Language Kleene Algebras with Variable Complements

Proof. By definition.

Lemma 23 (cf. Lem. 10). Let v be a language valuation and w0, . . . ,wn−1 be words (where n≥ 0). For
all terms t and 0≤ i≤ j ≤ n, we have:

`i . . . ` j−1 ∈ v̂〈w0,...,wn−1〉(t) =⇒ wi . . .w j−1 ∈ v̂(t).

Proof. By induction on t.
Case t = x,x−: By the construction of v〈w0,...,wn−1〉, `i . . . ` j−1 ∈ v̂〈w0,...,wn−1〉(x) iff wi . . .w j−1 ∈ v̂(x).

(Hence, we also have `i . . . ` j−1 ∈ v̂〈w0,...,wn−1〉(x−) iff wi . . .w j−1 ∈ v̂(x−).)
Case t =⊥, Case t = I where i < j: By `i . . . ` j−1 6∈ v̂〈w0,...,wn−1〉(t).
Case t = I where i = j: By I ∈ v̂(I).
Case t = s∪u: We have

`i . . . ` j−1 ∈ v̂〈w0,...,wn−1〉(s∪u)⇐⇒ `i . . . ` j−1 ∈ v̂〈w0,...,wn−1〉(s)∨ `i . . . ` j−1 ∈ v̂〈w0,...,wn−1〉(u) (Prop. 22)

=⇒ wi . . .w j−1 ∈ v̂(s)∨wi . . .w j−1 ∈ v̂(u) (IH)

=⇒ wi . . .w j−1 ∈ v̂(s∪u).

Case t = s ·u: We have

`i . . . ` j−1 ∈ v̂〈w0,...,wn−1〉(s ·u)⇐⇒
∨

i≤k≤ j

(`i . . . `k−1 ∈ v̂〈w0,...,wn−1〉(s)∧ `k . . . ` j−1 ∈ v̂〈w0,...,wn−1〉(u))

(Prop. 22)

=⇒
∨

i≤k≤ j

(wi . . .wk−1 ∈ v̂(s)∧wk . . .w j−1 ∈ v̂(u)) (IH)

=⇒ wi . . .w j−1 ∈ v̂(s ·u).

Case t = s∗: We have

`i . . . ` j−1 ∈ v̂〈w0,...,wn−1〉(s∗)⇐⇒∃m ∈ N,
∨

i=k0≤k1≤···≤km= j

m∧
l=1

(`kl−1 . . . `kl−1 ∈ v̂〈w0,...,wn−1〉(s)) (Prop. 22)

=⇒∃m ∈ N,
∨

i=k0≤k1≤···≤km= j

m∧
l=1

(wkl−1 . . .wkl−1 ∈ v̂(s)) (IH)

=⇒ wi . . .w j−1 ∈ v̂(s∗).

Corollary 24 (cf. Cor. 11). Let v be a language valuation, w be a word, w0, . . . ,wn−1 be words s.t.
w = w0 . . .wn−1. For all words v over V′ of length n and all terms t,

w ∈ v̂(v)\ v̂(t) =⇒ `0 . . . `n−1 ∈ v̂〈w0,...,wn−1〉(v)\ v̂〈w0,...,wn−1〉(t).

Proof. For `0 . . . `n−1 ∈ v̂〈w0,...,wn−1〉(v): Let v = x0 . . .xn−1. For each i < n, by the construction of
v〈w0,...,wn−1〉, `i ∈ v̂〈w0,...,wn−1〉(xi) iff wi ∈ v̂(xi). Thus, we have that `0 . . . `n−1 ∈ v̂〈w0,...,wn−1〉(v). For
`0 . . . `n−1 6∈ v̂〈w0,...,wn−1〉(t): By Lem. 23.

Theorem 25 (cf. Thm. 12). For all words v over V′ of length n and all terms t, the following are
equivalent:

Y. Nakamura & R. Sin’ya 195

1. LANG |= v≤ t;

2. v̂(v)⊆ v̂(t) for all language valuations v s.t. v(x)⊆ {`i . . . ` j | 0≤ i≤ j ≤ n} for all x;

3. v̂〈w0,...,wn−1〉(v)⊆ v̂〈w0,...,wn−1〉(t) for all language valuations v and words w0, . . . ,wn−1.

Proof. 1⇒2, 2⇒3: Trivial. 3⇒1: The contraposition is shown by Cor. 24.

Corollary 26 (cf. Cor. 13). The word inclusion problem (given a word w and a term t, does LANG |=
w≤ t?) is decidable and coNP-complete for KA terms with variable complements.

Proof. (coNP-hard): By Cor. 6, as w is possibly I. (in coNP): By the condition 2 of Thm. 25, we can
give an algorithm as with Cor. 13.

5.1 Generalization from words to star-free terms

We can apply Thm. 25 to not only words over V′ but also terms t having the following property:

For all language valuations v and non-empty words w, for some w0, . . . ,wn−1 s.t. w = w0 . . .wn−1,

w ∈ v̂(t) =⇒ `0 . . . `n−1 ∈ v̂〈w0,...,wn−1〉(t). (Ln)

If t satisfies the condition (Ln), then combining with Lem. 23 (and with Lem. 4 for the empty word I)
yields that for all language valuations v and words w, for some words w0, . . . ,wn−1 s.t. w = w0 . . .wn−1,
we have:

w ∈ v̂(t)\ v̂(s) =⇒

{
`0 . . . `n−1 ∈ v̂〈w0,...,wn−1〉(t)\ v̂〈w0,...,wn−1〉(s) (if w 6= I)

I ∈ v̂〈w0,...,wn−1〉(t)\ v̂〈w0,...,wn−1〉(s) (if w = I)
.

Hence, we have the following:

Theorem 27 (cf. Thm. 14). For all terms t,s, if t satisfies (Ln), the following are equivalent:

1. LANG |= t ≤ s;

2. v̂(t) ⊆ v̂(s) for all language valuations v over the set {`0, . . . , `n−1} s.t. v(x) ⊆ {`i . . . ` j | 0 ≤ i ≤
j ≤ n} for all x;

3. v̂〈w0,...,wn−1〉(t)⊆ v̂〈w0,...,wn−1〉(s) for all language valuations v and words w0, . . . ,wn−1.

Proof. As with Thm. 25 (use the above, instead of Cor. 24).

By using Thm. 27, we can generalize Cor. 26 from words to star-free terms. We say that a term t is
star-free if the Kleene-star (_∗) does not occur in t.

Lemma 28 (cf. Lem. 15). Every star-free term t satisfies (Ln) for some n.

Proof. Because the set [t]V′ is finite as t is star-free, let n be the maximal length among words in [t]V′ .
Let v be a language valuation and let w be a non-empty word such that w ∈ v̂(t). Since v̂(t) = v̂([t]V′)
(Lem. 2), there is a word v ∈ [t]V′ such that w ∈ v̂(v). Let v = x0 . . .xm−1 (note that m ≥ 1, as w is
non-empty and w ∈ v̂(v)). Since w ∈ v̂(x0 . . .xm−1), there are w0, . . . ,wm−1 of w = w0 . . .wm−1 such that
wi ∈ v̂(xi) for every i. Let v′ =∆ v〈w0,...,wm−1,I,...,I〉, where the length of the sequence is n. Then, we have
`i ∈ v̂′(xi) for every 0 ≤ i ≤ m− 2 and `m−1`m . . . `n−1 ∈ v̂′(xm−1); thus, `0 . . . `n−1 ∈ v̂′(x0 . . .xm−1) =
v̂′(v)⊆ v̂′(t). Hence, this completes the proof.

196 Words-to-Letters Valuations for Language Kleene Algebras with Variable Complements

Corollary 29. The following problem is coNP-complete for KA terms with variable complements:

Given a star-free term t and a term s, does LANG |= t ≤ s?

Proof. (coNP-hard): By Cor. 6, as t is possibly I. (in coNP): By Lem. 28, we can give an algorithm as
with Cor. 26.

5.2 words-to-letters valuation property

Finally, we show the following property; thus, we have that words-to-letters valuations are sufficient for
the equational theory of (full) KA terms with variable complements.

Corollary 30 (words-to-letters valuation property). For all terms t,s, the following are equivalent:

1. LANG 6|= t ≤ s;

2. there is a words-to-letters valuation v such that v̂(t) 6⊆ v̂(s).

Proof. 2⇒1: Trivial. 1⇒2: Since LANG 6|= t ≤ s, there is a language valuation v such that v̂(t) 6⊆ v̂(s).
Since v̂(t) = v̂([t]V′) (Lem. 2), there is a word v ∈ [t]V′ such that v̂(v) 6⊆ v̂(s) (i.e., LANG 6|= v≤ s). Let n
be the length of v. By Thm. 25, there are a words-to-letters valuation v and words w0, . . . ,wn−1 such that
v̂〈w0,...,wn−1〉(v) 6⊆ v̂〈w0,...,wn−1〉(s). Thus v̂〈w0,...,wn−1〉(t) 6⊆ v̂〈w0,...,wn−1〉(s), as v ∈ [t]V′ (Lem. 2). Hence this
completes the proof.

6 On the equational theory of words with variable complements

We prove that the equational theory of words over V′ coincides with the word equivalence (Thm. 32).
We give language valuations for separating two distinct words based on words-to-letters valuations.

Lemma 31. Let w = x0 . . .xn−1 and v = y0 . . .ym−1 be words over V′, where n≤ m. Let v be a language
valuation over {`0, . . . , `n−1} such that

• for all i < n, `i ∈ v̂(xi);

• for all i < m and i≤ j ≤ n, `i . . . ` j−1 ∈ v̂(yi) iff (yi = xi∧ j = i+1).

If w 6= v, then `0 . . . `n−1 ∈ v̂(w)\ v̂(v). Such a language valuation v always exists.

Proof. Since `i ∈ v(xi) for all i, we have `0 . . . `n−1 ∈ v̂(w). Assume that `0 . . . `n−1 ∈ v̂(y0 . . .ym−1).
For i = 0, by the condition of v̂(yi) (i.e., `i . . . ` j−1 6∈ v̂(yi) unless j = i+ 1), we should have `i ∈ v̂(yi),
`i+1 . . . `n−1 ∈ v̂(yi+1 . . .ym−1), and yi = xi. By using the same argument iteratively, the condition above
should hold for all i < n; thus, we have I ∈ v̂(yn . . .ym−1) and y0 . . .yn−1 = x0 . . .xm−1. Since I 6∈ v̂(yn), we
have yn . . .ym−1 = I; thus, m = n. However this yields w = x0 . . .xn−1 = y0 . . .ym−1 = v, which contradicts
the assumption. Hence `0 . . . `n−1 ∈ v̂(w)\ v̂(v). Additionally, such a language valuation v always exists
as follows. If some conditions conflict, then the first condition (`i ∈ v̂(xi)) and the second condition
when j = i+ 1 (`i ∈ v̂(yi)) are for some i. If yi = xi, then `i ∈ v̂(yi) = v̂(xi), so it does not conflict to
the condition `i ∈ v̂(xi); If yi = x−i (or y−i = xi), then `i 6∈ v̂(yi), so it does not conflict to the condition
`i ∈ v̂(xi). Otherwise, they are not conflicted, as the variables occurring in xi and yi are different. Thus,
in either case, conditions are not conflicted. Hence, this completes the proof.

Theorem 32 (Completeness for words with variable complements). For all words w,v over V′,

LANG |= w = v ⇐⇒ w = v.

Y. Nakamura & R. Sin’ya 197

Proof. ⇐=: Clear. =⇒: The contraposition is shown by Lem. 31.

Remark 33. Since [w]V′ = {w}, Thm. 32 also shows that: for all words w,v over V′,

[w]V′ = [v]V′ ⇐⇒ LANG |= w = v.

However, for general terms, the direction⇐= fails: For example, when x 6= y,

LANG |= x∪ x− = y∪ y− [x∪ x−]V′ 6= [y∪ y−]V′ .

(The direction =⇒ always holds by Lem. 2.) Thus, we need more axioms to characterize the equational
theory.
Remark 34. As (‡) and Remark 1, for all words w,v over V′,

LANG |= w = v =⇒ [w] = [v].

However, the converse direction fails even for words (e.g., w = x− and v = x−x−).

6.1 Separating one-variable words with small number of letters

We write LANGn for the class of language models over a set of cardinality at most n. We write

LANGn |= t = s ⇐⇒∆ v̂(t) = v̂(s) holds for all (language) valuations v on S-algebras in LANGn.

Notice that words-to-letters valuations need an unbounded number of letters; so the proof of Thm. 32
cannot directly apply to the class LANGn. Nevertheless, for one-variable words (i.e., words over the set
{z,z−} where z is a variable), we can show completeness theorems (cf. Thm. 32) of the equational theory
over LANGn, as Thms. 35, 36. The valuation in the proof of Thm. 36 is given by the second author.

For a word w = x0 . . .xn−1 ∈ {z,z−}∗ and x ∈ {z,z−}, we write ‖w‖x for the number #({0 ≤ i < n |
xi = x}). For a letter a and n ∈ N, we write an for the word a . . .a of length n.

Theorem 35. For all words w,v ∈ {z,z−}∗, we have:

LANG1 |= w = v ⇐⇒ ‖w‖z = ‖v‖z ∧ ‖w‖z− = ‖v‖z− .

Proof. ⇐=: By the following commutative law: for all language valuations v over a set of cardinality at
most 1, v̂(zz−) = v̂(z−z). =⇒: If ‖w‖z < ‖v‖z, then let v be the language valuation defined by v(z) = {a}.
Then a‖w‖z ∈ v̂(w)\ v̂(v); thus LANG1 6|= w = v. If ‖w‖z− < ‖v‖z− , then let v be the language valuation
defined by v(z) = {a}∗ \ {a}. Then a‖w‖z− ∈ v̂(w) \ v̂(v). If ‖w‖z > ‖v‖z (resp. ‖w‖z− > ‖v‖z−), then
similarly to the cases above.

Theorem 36. For all words w,v ∈ {z,z−}∗, we have:

LANG2 |= w = v ⇐⇒ LANG |= w = v ⇐⇒ w = v.

Proof. The two ⇐= are clear by definition. We prove w 6= v =⇒ LANG2 6|= w = v. By Thm. 35, it
suffices to show the case when ‖w‖z = ‖v‖z and ‖w‖z− = ‖v‖z− . Let n =∆ ‖w‖z− = ‖v‖z− and let w,v be
as follows:

w = zc0z−zc1 . . .z−zcn

v = zd0z−zd1 . . .z−zdn .

198 Words-to-Letters Valuations for Language Kleene Algebras with Variable Complements

Since w 6= v, there is i≤ n such that c j = d j for all j < i and ci 6= di. Without loss of generality, we can
assume ci < di. Now, we consider the following language valuation v over A =∆ {a,b}:

v(z) =∆ [(aA∗)∩ (A∗a)] = {c0 . . .cn−1 ∈ {a,b}∗ | n≥ 1,c0 = a,cn−1 = a}.

Then a(∑
i
j=0 c j)ba(∑

n
j=i+1 c j) ∈ v̂(w), as a ∈ v̂(z) and I,b ∈ v̂(z−). Assume, towards contradiction, that

a(∑
i
j=0 c j)ba(∑

n
j=i+1 c j) ∈ v̂(v). Each z occurring in v should map to a, as (∑n

j=0 c j) = (∑n
j=0 d j) and every

word in v(z) except for a has at least two occurrences of a. The (∑i
j=0 c j)-th occurrence and ((∑i

j=0 c j)+

1)-th occurrence of z− are adjacent (since (∑i
j=0 c j)< (∑i

j=0 d j)). Combining them yields b ∈ v̂(I), thus

reaching a contradiction. Hence, a(∑
i
j=0 c j)ba(∑

n
j=i+1 c j) ∈ v̂(w)\ v̂(v). This completes the proof.

The proof of Thms. 35, 36 only applies to one-variable words. We leave open Thms. 35, 36 for many
variables words (cf. Thm. 32).

7 Conclusion and future work

We have introduced words-to-letters valuations. By using them, we have shown the decidability and com-
plexity of the identity/variable/word inclusion problems (Cors. 6, 13, 26) and the universality problem
(Cor. 18) of the equational theory of KA terms with variable complements w.r.t. languages; in particular,
the inequational theory t ≤ s is coNP-complete when t does not contain Kleene-star (Cor. 29). Addi-
tionally, we have proved a completeness theorem for words with variable complements w.r.t. languages
(Thm. 32); moreover, for one-variable words, the equational theory over LANG coincides with that over
LANG2 (Thm. 36).

A natural interest is to extend our decidability results, e.g., for full KA terms with variable com-
plements. As Cor. 30 shows, even for full terms, words-to-letters valuations are sufficient valuations in
investigating the equational theory. The first author conjectures that the equational theory of KA terms
with variable complements is decidable, possibly by combining the technique like saturable paths [9]
(which were introduced for the equational theory w.r.t. binary relations). Additionally, we leave open
the (finite) axiomatizability of the equational theory (including that over sets of bounded cardinality; cf.
Sect. 6.1).

Acknowledgement

We would like to thank the anonymous reviewers for their useful comments. This work was supported
by JSPS KAKENHI Grant Number JP21K13828 and JST ACT-X Grant Number JPMJAX210B, Japan.

References
[1] Hajnal Andréka, Szabolcs Mikulás & István Németi (2011): The equational theory of Kleene lattices. Theo-

retical Computer Science 412(52), pp. 7099–7108, doi:10.1016/J.TCS.2011.09.024.
[2] S. L. Bloom, Z. Ésik & Gh. Stefanescu (1995): Notes on equational theories of relations. algebra universalis

33(1), pp. 98–126, doi:10.1007/BF01190768.
[3] John H. Conway (1971): Regular Algebra and Finite Machines. Chapman and Hall.
[4] Stephen A. Cook (1971): The complexity of theorem-proving procedures. In: STOC, ACM, p. 151–158,

doi:10.1145/800157.805047.

https://doi.org/10.1016/J.TCS.2011.09.024
https://doi.org/10.1007/BF01190768
https://doi.org/10.1145/800157.805047

Y. Nakamura & R. Sin’ya 199

[5] Harry B. Hunt III, Daniel J. Rosenkrantz & Thomas G. Szymanski (1976): On the equivalence, containment,
and covering problems for the regular and context-free languages. Journal of Computer and System Sciences
12(2), pp. 222–268, doi:10.1016/S0022-0000(76)80038-4.

[6] S. C. Kleene (1951): Representation of Events in Nerve Nets and Finite Automata. Technical Report, RAND
Corporation. Available at https://www.rand.org/pubs/research_memoranda/RM704.html.

[7] Dexter Kozen & Frederick Smith (1996): Kleene algebra with tests: Completeness and decidability. In:
CSL, LNCS 1258, Springer, pp. 244–259, doi:10.1007/3-540-63172-0_43.

[8] A. R. Meyer & L. J. Stockmeyer (1972): The equivalence problem for regular expressions with squaring
requires exponential space. In: SWAT, IEEE, pp. 125–129, doi:10.1109/SWAT.1972.29.

[9] Yoshiki Nakamura (2023): Existential Calculi of Relations with Transitive Closure: Complexity and Edge
Saturations. In: LICS, IEEE, pp. 1–13, doi:10.1109/LICS56636.2023.10175811.

[10] Kan Ching Ng (1984): Relation algebras with transitive closure. Ph.D. thesis, University of California.
[11] Damien Pous & Jana Wagemaker (2022): Completeness Theorems for Kleene Algebra with Top. In: CON-

CUR, 243, Schloss Dagstuhl, pp. 26:1–26:18, doi:10.4230/LIPICS.CONCUR.2022.26.
[12] Larry J. Stockmeyer & Albert R. Meyer (1973): Word problems requiring exponential time (Preliminary

Report). In: STOC, ACM, pp. 1–9, doi:10.1145/800125.804029.
[13] Alfred Tarski (1941): On the Calculus of Relations. The Journal of Symbolic Logic 6(3), pp. 73–89,

doi:10.2307/2268577.
[14] Ken Thompson (1968): Programming Techniques: Regular expression search algorithm. Communications

of the ACM 11(6), pp. 419–422, doi:10.1145/363347.363387.

A A direct proof of the coincidence between the equational theory w.r.t.
languages and the language equivalence for KA terms

(In this section, we use the notations of Sect. 2.)
We say that a term t is a KA term if the complement (_−) does not occur in t. Recall language

valuations for languages in Sect. 2.3.

Lemma 37 (cf. Lem. 2). Let v be a language valuation. For all KA terms t, we have

v̂(t) = v̂([t]).

Proof. By Lem. 2, as [t] = [t]V′ (since KA terms do not contain the complement).

Theorem 38. For all KA terms t,s,

LANG |= t = s ⇐⇒ [t] = [s].

Proof. We have

LANG |= t = s =⇒ [t] = [s] ([_] is an instance of language valuations)

=⇒ for all language valuations v, v̂([t]) = v̂([s])

⇐⇒ for all language valuations v, v̂(t) = v̂(s) (Lem. 37)

⇐⇒ LANG |= t = s. (By definition)

https://doi.org/10.1016/S0022-0000(76)80038-4
https://www.rand.org/pubs/research_memoranda/RM704.html
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1109/LICS56636.2023.10175811
https://doi.org/10.4230/LIPICS.CONCUR.2022.26
https://doi.org/10.1145/800125.804029
https://doi.org/10.2307/2268577
https://doi.org/10.1145/363347.363387

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 200–214, doi:10.4204/EPTCS.386.16

© Andreea-Teodora Nász

This work is licensed under the

Creative Commons Attribution License.

Solving the Weighted HOM-Problem

With the Help of Unambiguity

Andreea-Teodora Nász

Leipzig University
Leipzig, Germany

Faculty of Mathematics and Computer Science
PO box 100 920, 04009 Leipzig, Germany

nasz@informatik.uni-leipzig.de

The HOM-problem, which asks whether the image of a regular tree language under a tree homomor-

phism is again regular, is known to be decidable by [Godoy, Giménez, Ramos, Àlvarez: The HOM

problem is decidable. STOC (2010)]. Research on the weighted version of this problem, however, is

still in its infancy since it requires customized investigations. In this paper we address the weighted

HOM-problem and strive to keep the underlying semiring as general as possible. In return, we restrict

the input: We require the tree homomorphism h to be tetris-free, a condition weaker than injectivity,

and for the given weighted tree automaton, we propose an ambiguity notion with respect to h. These

assumptions suffice to ensure decidability of the thus restricted HOM-problem for all zero-sum free

semirings by allowing us to reduce it to the (decidable) unweighted case.

1 Introduction

Over the past decades, various extensions to the well-known model of finite-state automata have been

proposed. These acceptors were taken to the next level when their qualitative evaluation was generalized

to a quantitative one, which led to the concept of weighted automata [29]. Such devices assign a weight to

each input word, thus computing so-called formal power series. Weighted automata are commonly used

to model numerical factors related to the input, such as costs, probabilities and consumption of resources

or time, and enjoy consistent attention from the research community focused on automata theory [8, 28].

The favored algebraic structure for performing weight calculations are semirings [14, 16], as they are

quite general while still being computationally efficient due to their distributivity.

Another dimension for generalizing finite-state automata lifts their input to more complex data struc-

tures such as infinite words [20, 26], trees [2], graphs [1] and pictures [11, 27]. Particularly, finite-state

tree automata were introduced independently in [5, 31, 32]. The so-called regular tree languages they

recognize have been studied extensively [2], and find applications in a variety of areas like natural lan-

guage processing [17], picture generation [6] and compiler construction [33]. In many cases, applica-

tions require both types of generalizations, and so several models of weighted tree automata (WTA) and

the regular tree series they recognize continue to be studied [9].

The price to pay for the simplicity of tree automata lies in their significant limitations. For instance,

they cannot ensure that certain subtrees of input trees are equal [10], much like the classical (string)

automata cannot ensure that the number of a’s and b’s in a word is equal. This defect was tackled with

extensions proposed in [25] and [3, 12, 13] where tree automata with constraints can explicitly require

or forbid certain subtrees to be equal. Such devices have played a crucial part in deciding the HOM-

problem: This long-standing open question [2] asks, given a regular tree language and a tree homomor-

phism, whether the image is again regular. A tree homomorphism performs a transformation on trees

http://dx.doi.org/10.4204/EPTCS.386.16
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Andreea-Teodora Nász 201

and can duplicate subtrees, therefore the trees in the homomorphic image might have certain identical

subtrees, which calls for the constraints mentioned above. In [12], the authors first represent this homo-

morphic image of a regular tree language by a tree automaton with explicit constraints, and then decide

algorithmically if the language it recognizes is regular despite the constraints it imposes.

The nature of the weighted HOM-problem, where a regular tree series and a tree homomorphism

are given as input, requires an individual investigation for different semirings. Recently, the approach

from [12] was adjusted to the special case of nonnegative integers [23], but so far, the question remains

open for other semirings. In this paper, we reverse the strategy and impose conditions on the input in

order to decide the thus restricted HOM-problem for a larger class of semirings. More precisely, we

require our protagonist – the weighted tree automaton with constraints – to be unambiguous, and reduce

the question of its regularity to the unweighted case from [12] for any zero-sum free (commutative)

semiring. Afterwards, we phrase a condition on the input of the HOM-problem which ensures that our

reduction is applicable.

This article consists of five sections including its introduction. Our main contributions can be sum-

marized as follows:

• In Section 2 we establish notations and recall the main objects that will play a role throughout

the paper, primarily the weighted tree automata with hom-constraints (WTAh) which are used to

represent homomorphic images of regular tree series.

• In Section 3 we prove that regularity is decidable for the unambiguous devices of this type over

zero-sum free semirings. We achieve this by reducing the question to the unweighted case where

regularity is known to be decidable [12].

• In Section 4 we integrate this decidability result into the HOM-problem. To this end, we phrase a

condition on the input of the HOM-problem which guarantees that the WTAh constructed for this

instance is unambiguous. Thus, the HOM-problem with input restricted accordingly is decidable

for any zero-sum free semiring.

• Finally, in Section 5 we briefly summarize our results and discuss further research that will extend

the present work.

2 Preliminaries and Technical Background

We begin as usual with the necessary background for this paper.

General Notation

We denote the set {0,1,2, . . .} of nonnegative integers by N, and we let [k] = {1, . . . ,k} for every k ∈ N.

Let A and B be sets. We write |A| for the cardinality of A, and A∗ for the set of finite strings over A. The

empty string is ε and the length of a string w is |w|. For a mapping f : A→ B and S ⊆ B we denote the

inverse image of S under f by f−1(S), and we write f−1(b) instead of f−1({b}) for every b ∈ B.

Trees

A ranked alphabet is a pair (Σ, rk) that consists of a finite set Σ and a rank mapping rk : Σ→ N. For

every k ≥ 0, we define Σk = rk−1(k), and we sometimes write σ (k) to indicate that σ ∈ Σk. We often

abbreviate (Σ, rk) by Σ leaving rk implicit. Let Z be a set disjoint with Σ. The set of Σ-trees over Z,

202 Unambiguity in the Weighted HOM-Problem

denoted TΣ(Z), is the smallest set T such that (i) Σ0 ∪Z ⊆ T and (ii) σ(t1, . . . , tk) ∈ T for every k ∈ N,

σ ∈ Σk and t1, . . . , tk ∈ T . We abbreviate TΣ(/0) simply to TΣ, and call any subset L⊆ TΣ a tree language.

Consider t ∈ TΣ(Z). The set pos(t) ⊆ N
∗ of positions of t is defined inductively by pos(t) = ε for

every t ∈ Σ0∪Z, and by

pos
(

σ(t1, . . . , tk)
)

= {ε}∪
⋃

i∈[k]

{ip | p ∈ pos(ti)}

for all k ∈ N, σ ∈ Σk and t1, . . . , tk ∈ TΣ(Z). The set of positions of t inherits the lexicographic order ≤lex

from N
∗. The size |t| and height ht(t) of t are defined as

|t| = |pos(t)| and ht(t) = max
p∈pos(t)

|p| .

For p ∈ pos(t), the label t(p) of t at p, the subtree t|p of t at p and the substitution t[t ′]p of t ′ into t at p

are defined

• for t ∈ Σ0∪Z by t(ε) = t|ε = t and t[t ′]ε = t ′, and

• for t = σ(t1, . . . , tk) by t(ε) = σ , t(ip′) = ti(p′), t|ε = t, t|ip′ = ti|p′ , t[t ′]ε = t ′, and

t[t ′]ip′ = σ(t1, . . . , ti−1, ti[t
′]p′ , ti+1, . . . , tk)

for all k ∈ N, σ ∈ Σk, t1, . . . , tk ∈ TΣ(Z), i ∈ [k] and p′ ∈ pos(ti).

For every subset S⊆Σ∪Z, we let posS(t) = {p∈ pos(t) | t(p)∈ S} and we abbreviate pos{s}(t) by poss(t)
for every s∈ Σ∪Z. Let X = {x1,x2, . . .} be a fixed, countable set of formal variables. For k∈N we denote

by Xk the subset {x1, . . . ,xk}. For any t ∈ TΣ(X) we let

var(t) = {x ∈ X | posx(t) 6= /0} .

Finally, for t ∈ TΣ(Z), a subset V ⊆ Z and a mapping θ : V → TΣ(Z), we define the substitution tθ applied

to t by vθ = θ(v) for v ∈V , zθ = z for z ∈ Z \V , and

σ(t1, . . . , tk)θ = σ
(

t1θ , . . . , tkθ
)

for all k ∈ N, σ ∈ Σk and t1, . . . , tk ∈ TΣ(Z). If V = {v1, . . . ,vn}, we write the substitution θ explicitly

as [v1← θ(v1), . . . ,vn← θ(vn)], and abbreviate it further to [θ(x1), . . . ,θ(xn)] if V = Xn.

Semirings and Tree Series

A (commutative) semiring [14, 15] is a tuple (S,+, · ,0,1) such that (S,+,0) and (S, · ,1) are commuta-

tive monoids, · distributes over +, and 0 · s = 0 for all s ∈ S. Examples include

• the Boolean semiring B=
(

{0,1},∨,∧,0,1
)

,

• the semiring N=
(

N,+, · ,0,1
)

,

• the semiring Z=
(

Z,+, · ,0,1
)

,

• the tropical semiring T=
(

N∪{∞},min,+,∞,0
)

, and

• the arctic semiring A=
(

N∪{−∞},max,+,−∞,0
)

.

When there is no risk of confusion, we refer to a semiring (S,+, · ,0,1) simply by its carrier set S. We

call S zero-sum free if a+b = 0 implies a = b = 0 for all a,b ∈ S. All semirings listed above except for Z

are zero-sum free. Let Σ be a ranked alphabet and Z a set. Any mapping ϕ : TΣ(Z)→ S is called a tree

series or weighted tree language over S, and its support is the set supp(ϕ) = {t ∈ TΣ(Z) | ϕ(t) 6= 0}.

Andreea-Teodora Nász 203

Tree Homomorphisms

Given ranked alphabets Σ and ∆, let h′ : Σ→ T∆(X) be a mapping that satisfies h′(σ)∈ T∆(Xk) for all k∈N
and σ ∈ Σk. We extend h′ to h : TΣ→ T∆ by h(α) = h′(α) ∈ T∆(X0) = T∆ for all α ∈ Σ0 and

h(σ(s1, . . . ,sk)) = h′(σ)[x1← h(s1), . . . ,xk← h(sk)]

for all k ∈N, σ ∈ Σk, and s1, . . . ,sk ∈ TΣ. The mapping h is called the tree homomorphism induced by h′,

and we identify h′ and its induced tree homomorphism h. We call h

• nonerasing if h(σ) /∈ X for all σ ∈ Σ,

• nondeleting if σ ∈ Σk implies var(h′(σ)) = Xk for all k ∈ N, and

• input-finitary if the preimage h−1(t) is finite for every t ∈ T∆.

If a tree homomorphism h : TΣ→ T∆ is nonerasing and nondeleting, then for every s∈ h−1(t), it is |s| ≤ |t|.
In particular, h is then input finitary.

Consider a tree series A : TΣ → S. Its homomorphic image under h is the tree series hA : T∆ → S

defined for every t ∈ T∆ by

hA(t) = ∑
s∈h−1(t)

A(s) .

This definition relies on the tree homomorphism to be input-finitary, otherwise the above sum is not

finite, so the value hA(t) might not be well-defined. For this reason, we will only consider nondeleting

and nonerasing tree homomorphisms.

Weighted Tree Automata with Constraints

Recently it was shown [21, 22] that such homomorphic images of regular tree languages can be repre-

sented efficiently using weighted tree automata with hom-constraints (WTAh). These devices were first

introduced for the unweighted case in [12] and defined for zero-sum free commutative semirings in [21].

Definition 1 (cf. [22, Definition 1]). Let S be a commutative semiring. A weighted tree automaton over S

with hom-constraints (WTAh) is a tuple A =
(

Q,Σ,F,R,wt
)

such that Q is a finite set of states, Σ is a

ranked alphabet, F ⊆ Q is the set of final states, R is a finite set of rules of the form (ℓ,q,E) such that

ℓ ∈ TΣ(Q) \Q, q ∈ Q and E is an equivalence relation on posQ(ℓ), and wt: R→ S assigns a weight to

each rule.

Rules of a WTAh are typically depicted as r = ℓ
E
−→wt(r) q. The components of such a rule are

the left-hand side ℓ, the target state q, the set E of hom-constraints and the weight wt(r). A hom-

constraint (p, p′) ∈ E is listed as “ p = p′ ”, and if p and p′ are distinct, then p, p′ are called con-

strained positions. The equivalence class of p in E is denoted [p]≡E
. We typically omit the trivial

constraints (p, p) ∈ E .

Example 2. Let Σ be the ranked alphabet {a(0),g(1),k(2)}. Consider the WTAh A =
(

Q,Σ,F,R,wt
)

over Z with Q = {q,q f }, F = {q f } and the set of rules and weights

R =
{

a→1 q , g(q)→2 q , k
(

q,g(q)
) 1=21
−→1 q f } .

The only constrained positions are 1 and 21 in the rule with left-hand side k
(

q,g(q)
)

.

204 Unambiguity in the Weighted HOM-Problem

The WTAh is a weighted tree grammar (WTG) if E is the identity relation for every rule ℓ
E
−→ q, and

a WTA in the classical sense [2] if additionally posΣ(ℓ) = {ε}. WTG and WTA are equally expressive,

as WTG can be translated straightforwardly into WTA using additional states.

In this work, we are particularly interested in a specific subclass of WTAh, namely the eq-restricted

WTAh [22]. In such a device, there is a designated sink-state whose sole purpose is to neutrally process

copies of identical subtrees. More precisely, whenever different subtrees are mutually constrained, there

is one leading copy among them that can be processed with arbitrary states and weights, while every

other copy is handled exclusively by the weight-neutral sink-state.

Definition 3. A WTAh
(

Q,Σ,F,R,wt
)

is eq-restricted if it has a sink state ⊥ ∈ Q\F such that

• for all σ ∈ Σ, the rule σ(⊥, . . . ,⊥)→1 ⊥ belongs to R, and no other rule targets ⊥, and

• for every rule ℓ
E
−→ q with q 6=⊥, the following conditions hold:

Let posQ(ℓ) = {p1, . . . , pn} and qi = ℓ(pi) for i ∈ [n].

1. For each i ∈ [n], there exists q′ ∈Q\{⊥} with {q j | p j ∈ [pi]≡E
}\{⊥}= {q′}.

2. There exists exactly one p j ∈ [pi]≡E
such that q j = q′.

In other words, among each E-equivalence class of positions of a left-hand side ℓ, there is only

one occurrence of a state different from ⊥, every other related position is labelled by ⊥. Moreover, ⊥
processes every possible tree with weight 1. Whenever we consider an eq-restricted WTAh, we denote

its state set by Q∪̇{⊥} instead of Q ∋⊥ to point out the sink-state.

Example 4. Recall the WTAc A from Example 2. It is not eq-restricted since the constrained posi-

tions 1 and 21 are both labeled by the same state, which is not a sink state. Instead, let us add a

non-final state ⊥ to Q, replace the rule k
(

q,g(q)
) 1=21
−→1 q f with k

(

q,g(⊥)
) 1=21
−→1 q f and add the re-

quired rules targeting ⊥ to obtain an eq-restricted WTAh A ′. More precisely, we have the eq-restricted

WTAh A ′ =
(

{q,q f ,⊥},∆,{q f },R
′,wt′

)

with the set of rules and weights

R′ =
{

a→1 q, g(q)→2 q, k
(

q,g(⊥)
) 1=21
−→1 q f

}

∪ {a→1 ⊥, g(⊥)→1 ⊥, k(⊥,⊥)→1 ⊥} .

Next, let us recall the semantics of WTAh from [22, Definitions 2 and 3].

Definition 5. Let A =
(

Q,Σ,F,R,wt
)

be a WTAh. A run of A is a tree over the ranked alphabet Σ∪R

where the rank of a rule is rk(ℓ
E
−→ q) = |posQ(ℓ)|, and it is defined inductively. Consider t1, . . . , tn ∈ TΣ,

q1, . . . ,qn ∈ Q and suppose that ρi is a run of A for ti to qi with weight wt(ρi) = ai for each i ∈ [n].

Assume that there is a rule of the form ℓ
E
−→a q in R such that ℓ= σ(ℓ1, . . . , ℓm), posQ(ℓ) = {p1, . . . , pn}

with ℓ(pi) = qi and that for all pi = p j ∈ E, it is ti = t j. Then the following is a run of A for the tree

t = ℓ[t1]p1
· · · [tn]pn

to q:

ρ =
(

ℓ
E
−→a q

)

(ℓ1, . . . , ℓm)[ρ1]p1
· · · [ρn]pn

.

Its weight wt(ρ) is computed as a ·∏i∈[n] ai. If wt(ρ) 6= 0, then ρ is valid, and if in addition, q ∈ F for

its target state q, then ρ is accepting. We call A unambiguous if for every t ∈ TΣ there is at most one

accepting run. The value wtq(t) is the sum of all weights wt(ρ) of runs of A for t to q. Finally, the tree

series recognized by A is defined simply by

JA K : TΣ→ S, t 7→ ∑
q∈F

wtq(t) .

Andreea-Teodora Nász 205

Since the weights of rules are multiplied, we can assume wlog. that wt(r) 6= 0 for all r ∈ R, which we

will do from now on. Finally, two WTAh are said to be equivalent if they recognize the same tree series.

Example 6. Recall the WTAh A and A ′ from Examples 2 and 4 and consider the tree k
(

g2(a),g3(a)
)

.

The accepting runs ρ and ρ ′ of A and A ′, respectively, for it are the following:

ρ : k
(

q,g(q)
) 1=21
−→1 q f

g(q)→2 q

g(q)→2 q

a→1 q

g

g(q)→2 q

g(q)→2 q

a→1 q

ρ ′ : k
(

q,g(⊥)
) 1=21
−→1 q f

g(q)→2 q

g(q)→2 q

a→1 q

g

g(⊥)→1 ⊥

g(⊥)→1 ⊥

a→1 ⊥ .

It is wt(ρ) = 24 while wt′(ρ ′) = 22 because in the eq-restricted WTAh A ′, every constrained subtree

except for one (pending from position 1) is processed exclusively in the state ⊥ with weight 1.

Both WTAh are unambiguous, so it is impossible for different accepting runs with complementary

weights to cancel out. Thus for a tree t ∈ TΣ it is t ∈ suppJA K iff. A has an accepting run for t, and the

same is true for A ′. In fact, it is

suppJA K = suppJA ′K =
{

k
(

gna,gn+1(a)
)

| n ∈N
}

.

If a tree series is recognized by a WTA, it is called regular, if it is recognized by some WTAh, then it is

called constraint-regular, and if it is recognized by an eq-restricted WTAh, then it is called hom-regular.

This choice of name hints at the fact that eq-restricted WTAh are tailored to represent homomorphic

images of regular tree series. For an illustration of this feature, consider the following example.

Example 7. Let Σ = {a(0),g(1), f (1)} and A : TΣ→ N defined for every s ∈ TΣ by

A(s) =

{

2n if s = f
(

gn(a)
)

0 else.

A simple WTA recognizing the tree series A is A =
(

{q,q f },Σ,{q f },R,wt
)

with the rules and

weights R =
{

a→1 q, g(q)→2 q, f (q)→1 q f

}

. Consider ∆ = {a(0),g(1),k(2)} and the input-finitary

tree homomorphism h : TΣ→ T∆ induced by the mapping h(a) = a, h(g) = g(x1) and h(f) = k
(

x1,g(x1)
)

.

The homomorphic image hA is the tree series given for all t ∈ T∆ by

hA(t) =

{

2n if t = k
(

gn(a),gn+1(a)
)

0 else.

The natural eq-restricted WTAh that recognizes hA is A ′ =
(

{q,q f ,⊥},∆,{q f },R
′,wt′

)

from Example 4

with

R′ =
{

a→1 q, g(q)→2 q, k
(

q,g(⊥)
) 1=21
−→1 q f

}

∪ {a→1 ⊥, g(⊥)→1 ⊥, k(⊥,⊥)→1 ⊥} .

206 Unambiguity in the Weighted HOM-Problem

The new rules in R′ are obtained from the rules in R by applying the tree homomorphism to their left-hand

sides. The duplicated subtree below k targets the sink state ⊥ instead of q to avoid distorting the weight

with an additional factor 2n.

More formally, the following statement was shown in [22]. We include a condensed version of the

proof as we will refer to a technical detail below.

Lemma 8 (cf. [22, Theorem 5]). Let S be a commutative semiring, A =
(

Q,Σ,F,R,wt
)

a WTA over S

and h : TΣ→ T∆ a nondeleting and nonerasing tree homomorphism. There is an eq-restricted WTAh A ′

that recognizes hJA K.

Proof. An eq-restricted WTAh A ′ for hJA K is constructed in two stages.

First, we define A ′′ =
(

Q∪̇{⊥},∆∪∆×R,F′′,R′′,wt′′
)

such that for every r = σ(q1, . . . ,qk)→wt(r) q

in R and h(σ) = u = δ (u1, . . . ,un), we include

r′′ =
(

〈δ ,r〉(u1, . . . ,un)Jq1, . . . ,qkK
E
−→wt′′(r′′) q

)

∈ R′′ with E =
⋃

i∈[k]

posxi
(u)2

where the substitution 〈δ ,r〉(u1, . . . ,un)Jq1, . . . ,qkK replaces for every i ∈ [k] only the ≤lex-minimal oc-

currence of xi in 〈δ ,r〉(u1, . . . ,un) by qi and all other occurrences by ⊥. We set wt′′(r′′) = wt(r). Ad-

ditionally, we let r′′δ = δ (⊥, . . . ,⊥)→⊥ ∈ R′′ with wt′′(r′′δ) = 1 for every k ∈ N and δ ∈ ∆k. No other

productions are in R′′. Finally, we let F ′′ = F .

We can now delete the annotation: We use a deterministic relabeling to remove the second compo-

nents of labels of ∆×R, adding up the weights of now identical rules. Since hom-regular languages are

closed under relabelings [22, Theorem 4], we obtain an eq-restricted WTAh A ′=
(

Q∪̇{⊥},∆,F ′,R′,wt′
)

recognizing hJA K.

The WTAh constructed for the homomorphic image of a WTA preserves the original state behaviour

in its leading copies of duplicated subtrees. Using the notation from the proof of Lemma 8, we want to

define a mapping that traces the runs of the input WTA to its homomorphic image.

Definition 9. Let A ,h and A ′ be as in Lemma 8, let r =σ(q1, . . . ,qk)→ q∈R and h(σ)= δ (u1, . . . ,un).

We let hR(r) be the rule δ (u1, . . . ,un)Jq1, . . . ,qkK
E
−→ q of the WTAh A ′.

The assignment hR extends naturally to the runs of A : For a run of the form ρ = r = (α → q) with

α ∈ Σ0, we set hR(ρ) = hR(r). For a run of A of the form ρ = r(ρ1, . . . ,ρk) with r = σ(q1, . . . ,qk)→ q

and h(σ) = δ (u1, . . . ,un) we set

hR(ρ) =
(

hR(r)
)

(u1, . . . ,un)JhR(ρ1), . . . ,h
R(ρk)K ;

here, the substitution JhR(ρ1), . . . ,h
R(ρk)K replaces for every i ∈ [k] only the ≤lex-minimal occurrence

of xi in
(

hR(r)
)

(u1, . . . ,un) by hR(ρi) and all other occurrences by the respective unique run to ⊥ for the

unique tree that satisfies the constraint E.

Using the notation above, the assignment hR : R→ R′ is well-defined, but not necessarily injective,

and its image is hR(R) = {r′ ∈ R′ | r′ targets some q 6=⊥}. Let us see how it acts on our running example.

Example 10. Recall the WTA A and WTAh A ′ from Example 7. The mapping hR assigns

hR : f (q)→ q f 7→ k
(

q,g(⊥)
) 1=21
−→ q f ,

and for the unique run of A for the tree f
(

g(a)
)

, it is

Andreea-Teodora Nász 207

hR :

f (q)→ q f

g(q)→ q

a→ q

7→

k
(

q,g(⊥)
) 1=21
−→ q f

g(q)→ q

a→ q

g

g(⊥)→⊥

a→⊥ .

When discussing the behaviour of a WTAh A , we often argue with the help of runs ρ , so it is a

nuisance that we might have wt(ρ) = 0. This anomaly can occur even if wt(r) 6= 0 for all rules r of A

due to the presence of zero-divizors, that is, elements s,s′ ∈ S \{0} such that s · s′ = 0. Fortunately, we

can avoid this altogether using a construction of [18], which is based on DICKSON’s Lemma [4]. It was

first lifted to tree automata in [7] and later to WTAh in [21, 22]. Here, we slightly adjust the proof of

Lemma 3 in [22] such that it preserves the eq-restriction of the input WTAh.

Lemma 11. (cf. [22, Lemma 3]) Let S be a commutative semiring. For every eq-restricted WTAh A

over S there exists an eq-restricted WTAh A ′ equivalent to A such that wtA ′(ρ ′) 6= 0 for all runs ρ ′

of A ′. For each t ∈ suppJA K, the accepting (i.e. of non-zero weight and targeting a final state) runs

of A for t translate bijectively into the accepting runs ρ ′ of A ′ for t, and the weights are preserved.

Proof. Let A be the eq-restricted WTAh
(

Q∪̇{⊥},Σ,F,R,wt
)

. Obviously, (S, ·,1,0) is a commutative

monoid with zero. Let (s1, . . . ,sn) be an enumeration of the finite set wt(R)\{1} ⊆ S. We consider the

monoid homomorphism h : Nn→ S, which is given for every m1, . . . ,mn ∈ N by

h(m1, . . . ,mn) =
n

∏
i=1

s
mi

i .

According to DICKSON’s lemma [4], the set min
(

h−1(0)
)

is finite, where the partial order is the stan-

dard pointwise order on N
n. Hence there is u ∈ N such that min

(

h−1(0)
)

⊆ {0, . . . ,u}n = U . We de-

fine the operation ⊕ : U2 →U by (v⊕ v′)i = min(vi + v′i,u) for every v,v′ ∈U and i ∈ [n]. Moreover,

for every i ∈ [n] we let 1si
∈ U be the vector such that (1si

)i = 1 and (1si
)a = 0 for all a ∈ [n] \ {i}.

Let V = U \ h−1(0). We construct the equivalent eq-restricted WTAh A ′ =
(

Q′∪̇{⊥},Σ,F ′,R′,wt′
)

such that Q′ = Q×V , F ′ = F×V , and R′ and wt′ are given as follows. Consider a rule r = ℓ
E
−→ q ∈ R,

let posQ(ℓ) = {p1, . . . , pk} ordered lexicographically and let qi = ℓ(pi) for all i ∈ [k]. Note that we do

not consider the leaves of ℓ that are labeled by ⊥. For all choices of v1, . . . ,vk ∈ V such that the value

v = 1wt(r)⊕
⊕k

i=1 vi is again in V , the production

ℓ[〈q1,v1〉]p1
. . . [〈qk,vk〉]pk

E
−→ 〈q,v〉

belongs to R′ and its weight is wt′(p′) = wt(r). No further rules are in R′.

By annotating the power vectors vi to the states q 6=⊥, we suitably (for the purpose of zero-divisors)

track the weight of runs as v. If attaching another rule adopted from R to so far valid runs of A ′ would

evaluate the overall weight to zero, then we exclude this rule from R′. Consequently, every run of A ′ is

valid. To preserve the eq-restriction, we only annotate power vectors vi to the non-sink states. It is safe

to omit ⊥ in this construction since ⊥ only ever processes the neutral weight 1.

208 Unambiguity in the Weighted HOM-Problem

From here on, we silently assume that each WTAh avoids zero-divizors.

A main result proved in this article is deciding regularity for unambiguous WTAh over zero-sum

free commutative semirings. We achieve this by reducing the problem to the unweigted (i.e. boolean)

case solved in [12]. For this, we must relate our WTAh model to the tree automata with HOM equality

constraints used by [12] which differ slightly from our WTAh over the boolean semiring. Fortunately,

the two are closely related and the translation is rather simple: We merely eliminate the sink state and

drop the weight assignment.

Lemma 12. Let S be a commutative semiring and A =
(

Q∪̇{⊥},Σ,F,R,wt
)

an eq-restricted WTAh

over S. If A is unambiguous or S is zero-sum free, then there is a tree automaton with HOM equality

constraints (TAhom) [12] A B that recognizes the tree language suppJA K. If A is a WTA (i.e. without

constraints), then A B is also a TA without constraints.

Proof. Let q ∈ Q and consider a rule ℓ
E
−→a q of A . Suppose that {p1

1, . . . , p1
n1
}, . . . ,{pm

1 , . . . , pm
nm
}

are the equivalence classes of E , and wlog. let pi
1 be the unique representative such that ℓ(pi

1) 6= ⊥ for

each i ∈ [m]. Then we include the unweighted rule

ℓ [ℓ(p1
1)]p1

2
· · · [ℓ(p1

1)]p1
n1
· · · [ℓ(pm

1)]pm
2
· · · [ℓ(pm

1)]pm
nm

E
−→ q

in RB, that is, we replace every occurrence of ⊥ by the unique state from Q that labels a related position.

This is necessary because the definition of TAhom requires E-related positions to be labelled with the

same state. We proceed this way for every rule of A , discarding the rules that target ⊥, and obtain the

(unweighted) TAhom A B =
(

Q,Σ,F,RB
)

. Since A avoids zero-divizors, the conditions in the statement

are each sufficient to ensure that t ∈ suppJA K iff. there exists an run of A for t to a final state, so A B

recognizes suppJA K.

Example 13. Reconsider the WTAh A ′ from Example 7. To obtain the TAhom (A ′)B, we remove the sink

state ⊥, all rules that target ⊥ and the weight assignment, and replace the rule k
(

q,g(⊥)
) 1=21
−→1 q f with

the unweighted rule k
(

q,g(q)
) 1=21
−→ q f .

3 Deciding Regularity for Unambiguous WTAh

In this section, we prove that regularity is decidable for unambiguous eq-restricted WTAh over zero-sum

free semirings. To this end, we reduce this problem to regularity in the unweighted case, which was

proved decidable in [12].

We begin by defining the linearization of eq-restricted WTAh, which was introduced for the boolean

case in [12] and adapted to the weighted model in [23]. The linearization of a WTAh A by the num-

ber h is a WTG lin(A ,h) that approximates A : It simulates all runs of A which only enforce the

equality of subtrees of height at most h. This is achieved by instantiating the constrained Q-positions of

every rule ℓ
E
−→ q in A with compatible trees of height at most h, while the Q-positions of ℓ that are

unconstrained by E remain unchanged.

Formally, the linearization is defined following [12, Definition 7.1].

Definition 14 (cf. [23, Definition 12]). Let S be a commutative semiring. Consider an eq-restricted

WTAh A = (Q∪̇{⊥},Σ,F,R,wt) over S, and let h ∈ N be a nonnegative integer. The linearization of A

by h is the WTG lin(A ′,h) =
(

Q,Σ,F,Rh,wth
)

, where Rh and wth are defined as follows.

Andreea-Teodora Nász 209

For ℓ′ ∈ TΣ(Q∪̇{⊥}) and q∈Q, we include the rule (ℓ′→ q) in Rh iff. there exist a rule (ℓ
E
−→ q)∈R,

positions p1, . . . , pk ∈ posQ∪̇{⊥}(ℓ), and trees t1, . . . , tk ∈ TΣ such that

• {p1, . . . , pk}=
⋃

p∈pos⊥(ℓ)
[p]E , that is, E constrains exactly the positions p1, . . . , pk,

• (pi, p j) ∈ E implies ti = t j for all i, j ∈ [k],

• ℓ′ = ℓ[t1]p1
· · · [tk]pk

, and

• wtℓ(pi)(ti) 6= 0 and ht(ti)≤ h for all i ∈ [k].

For every such production ℓ′→ q we set wth(ℓ
′→ q) as the sum over all weights

wt(ℓ
E
−→ q) ·∏

i∈[k]

wtℓ(pi)(ti)

for all (ℓ
E
−→ q) ∈ R, p1, . . . , pk ∈ posQ∪̇{⊥}(ℓ) and t1, . . . , tk ∈ TΣ as above.

Note that the linearization is a WTG without constraints, so it recognizes a regular tree series. Let us

apply this construction to our running example.

Example 15. We recall the WTAh A ′ from Example 7 and set h= 2. The linearization of A ′ by 2 instan-

tiates every constrained position by compatible trees of maximal height 2, keeping track of the weights,

and removes ⊥ and the rules that target it. More precisely, lin(A ′,2) =
(

{q,q f },∆,{q f },R2,wt2
)

with

the set of rules and weights

R2 =
{

a→1 q, g(q)→2 q, k
(

a,g(a)
)

→1 q f ,

k
(

g(a),g(g(a))
)

→2 q f , k
(

g(g(a)),g(g(g(a)))
)

→4 q f

}

.

This example illustrates that the larger we choose h, the better lin(A ′,h) approximates JA ′K. In

this particular case however, there will always be a tree t such that JA ′K(t) 6= Jlin(A ′,h)K(t), say, the

tree k
(

gh+1(a),gh+2(a)
)

. For eq-restricted WTAh A over B or N it is known [12, 22] that JA K is regular

iff. Jlin(A ,h)K = JA K for a certain parameter h. For other semirings, a customized investigation is

necessary, but unambiguous WTAh allow us to decide regularity by applying the boolean case directly.

To this end, the following lemma is fundamental.

Lemma 16. Let S be a commutative semiring, A an eq-restricted WTAh over S and h ∈ N. For each

t ∈ suppJA K, there are at most as many accepting runs of lin(A ,h) for t as there are accepting runs

of A for t. In particular, if A is unambiguous, then so is its linearization, and for every t ∈ suppJA K it

is either Jlin(A ,h)K(t) = JA K(t), or there are no accepting runs of lin(A ,h) for t.

Proof. The linearization lin(A ,h) is defined in such a way that it simulates every run ρ of A with the

following property: Say ρ processes t ∈ TΣ, then for every rule ℓ
E
−→ q used in ρ at position p (that is, at

the root of t|p), and for every position p̄ constrained by E , it is ht(t|pp̄) ≤ h. Different runs of A might

be merged into the same run of lin(A ,h), but for a particular run of A it is uniquely determined which

run of lin(A ,h) will incorporate it.

We need yet another technical ingredient for the reduction to the unweighted case: to interchange

the linearization of a WTAh and its projection onto the boolean TAhom. The linearization for TAhom was

defined in [12, Definition 7] and indeed, the following holds.

Lemma 17. Consider an unambiguous, eq-restricted WTAh A over a commutative semiring. Let A B

the TAhom for suppJA K defined in Lemma 12 and linearize(A B,h) in turn the linearization of A B by h

as introduced in [12, Definition 7.1]. Then it is lin(A ,h)B = linearize(A B,h).

210 Unambiguity in the Weighted HOM-Problem

We are now ready for the main result of this section: the reduction of regularity for eq-restricted

WTAh over zero-sum free semirings to the unweighted case.

Theorem 18. Let S be a zero-sum free commutative semiring and A an unambiguous eq-restricted

WTAh over S. The tree series JA K is regular iff. suppJA K is a regular tree language.

Proof. Suppose first that JA K is regular, thus there is a WTA B equivalent to A . Since S is zero-sum

free, we can apply Lemma 12 to B and obtain that suppJBK = suppJA K is regular.

Next, suppose that JA K is not regular. In particular, the regular WTG lin(A ,h) is not equivalent

to A for any h ∈N. Thus by Lemma 16, it is suppJA K 6= suppJlin(A ,h)K. By Lemma 12, lin(A ,h)B

recognizes the regular language supp Jlin(A ,h)K, and together with Lemma 17, it is

JA BK = suppJA K 6= Jlin(A ,h)BK = Jlinearize(A B,h)K,

that is, the boolean linearization of the TAhom A B is not equivalent to it for any h ∈ N. This, however,

implies that JA BK = suppJA K is not regular as proved in [22, Lemma 7.3].

Note that we only used zero-sum freeness of the semiring for the first part of the statement, as

Lemma 12 holds for unambiguous WTAh over arbitrary commutative semirings. With this result, regu-

larity of eq-restricted WTAh is decidable.

Corollary 19. Let S be a zero-sum free commutative semiring. Given an unambiguous eq-restricted

WTAh A over S as input, it is decidable whether JA K is regular.

Proof. By Theorem 18, JA K is regular iff. suppJA K is regular. A TAhom recognizing the latter can be

constructed with Lemma 12, for which, in turn, regularity is decidable [12, Section 7].

4 A Sufficient Condition and the HOM-Problem

So far, the assumption we make for deciding regularity is imposed on the WTAh. Meanwhile the HOM-

problem has a WTA A and a tree homomorphism h as input. In this section, we propose conditions

on A and h which ensure that the strategy of the previous section is applicable to the corresponding

instance of the HOM-problem. We begin with a condition for h which generalizes injectivity.

Definition 20. Let Σ and ∆ be ranked alphabets and h : TΣ → T∆ a nondeleting and nonerasing tree

homomorphism. We call h tetris-free if for all s,s′ ∈ TΣ with h(s) = h(s′), it is pos(s) = pos(s′) and for

all p ∈ pos(s), we have h
(

s(p)
)

= h
(

s′(p)
)

.

In other words, h : TΣ→ T∆ is tetris-free if we cannot combine the building blocks h(σ), σ ∈ Σ in dif-

ferent ways to build the same tree. In contrast, Figure 1 below shows the well-known Tetriminos®© [19]

violating (and thus naming) the tetris-free condition.

Let us discuss a short example and counter-example.

Example 21. Let Σ = {a(0),b(0),g(1)} and ∆ = {c(0),k(2)}. Consider the tree homomorphism h : TΣ→ T∆

induced by h(a) = h(b) = c and h(g) = k(x1,x1). While h is not injective, it is tetris-free. However, the

tree homomorphism ĥ : TΣ → T∆ induced by ĥ(a) = c, ĥ(b) = k(c,c) and ĥ(g) = k(x1,c) is not: The

trees g(a) and b violate the tetris-free condition.

Intuitively, if a tree homomorphism h is tetris-free, then any non-injective behaviour of h is located

entirely at the symbol level. This allows the construction of the WTAh to cancel the non-injectivity of h.

For this, however, we also need to make an assumption on the input WTA A , which leads us to this

augmented version of unambiguity for A .

Andreea-Teodora Nász 211

Figure 1: The game of Tetris®© [19] being non-tetris-free by nature.

Definition 22. Let A be a WTA over a commutative semiring S and Σ, and h : TΣ→ T∆ a nondeleting

and nonerasing, tetris-free tree homomorphism. We say that A is h-unambiguous if for all trees s,s′ ∈ TΣ

such that h(s) = h(s′), all accepting runs ρ ,ρ ′ of A for s and s′, respectively, and all p ∈ pos(s), the

target states of the rules applied in ρ and ρ ′ at p, respectively, coincide.

Remark 23. The condition of h-unambiguity is stronger than unambiguity: For s = s′ ∈ suppJA K we

obtain that A has at most one accepting run for s (since runs of WTA are uniquely determined by the

processed symbol and the target state at every position). A similar reasoning applies if we choose s 6= s′

with h(s) = h(s′): While the unique runs of A for s and s′ may read different symbols, the states they

pass through coincide at every position.

Imposing these conditions on the input of the HOM-problem allows us to build on it with the argu-

ments from the previous section.

Proposition 24. Let A be a WTA over a commutative semiring S and Σ, and h : TΣ→ T∆ a nondeleting

and nonerasing tree homomorphism. If h is tetris-free and A is h-unambiguous, then the eq-restricted

WTAh A ′ for hJA K constructed in Lemma 8 is unambiguous.

Proof. Let ϑ and ϑ ′ be accepting runs of A ′ for the same t ∈ T∆. We prove the statement by contra-

diction, so assume that ϑ 6= ϑ ′. Then there are two distinct runs ρ and ρ ′ of A such that ϑ = hR(ρ)
and ϑ ′ = hR(ρ ′) as introduced in Definition 9. The mapping hR does not modify the target states of runs,

so both ρ and ρ ′ are accepting as well, and since A is unambiguous, they must process distinct trees s

and s′, respectively, with h(s) = h(s′). By the premises of the statement, at every p ∈ pos(s) = pos(s′) it

is h
(

s(p)
)

= h
(

s′(p)
)

, and the target states of ρ and ρ ′ at p coincide, so although ρ 6= ρ ′, after applying h

it is ϑ = hR(ρ) = hR(ρ ′) = ϑ ′, which contradicts our assumption.

We want to illustrate the role played by our two conditions, the h-unambiguity and the tetris-freeness.

Let us discuss this with the help of two counter-examples.

Example 25. Consider the ranked alphabets Σ = {a(0),b(0),g(1)} and ∆ = {c(0),k(2)}. Let h : TΣ→ T∆

be the tetris-free tree homomorphism from Example 21 induced by h(a) = h(b) = c and h(g) = k(x1,x1).
Moreover, let A =

(

Q,Σ,Q,R,wt
)

be the WTA over the arctic semiring A with Q = {qa,qb} and the

following rules and weights:

R =
{

a→0 qa , b→0 qb , g(qa)→1 qa , g(qb)→2 qb

}

.

212 Unambiguity in the Weighted HOM-Problem

The WTA A is unambiguous, but not h-unambiguous, since the runs for a and b target different states

despite h(a) = h(b). Evaluating the weights in A, we obtain the tree series JA K defined by

JA K : s 7→

{

n if s = gn(a)

2n if s = gn(b)

The WTAh A ′ =
(

Q∪̇{⊥},∆,Q,R′,wt′
)

recognizing hJA K which is obtained from Lemma 8 has the

following rules and weights:

R =
{

c→0 qa , c→0 qb , k(qa,⊥)
1=2
−→1 qa , k(qb,⊥)

1=2
−→2 qb

}

∪
{

c→0 ⊥ , k(⊥,⊥)→0 ⊥
}

.

Because of the different target states, the rules c→ qa and c→ qb are not merged in A ′, therefore A ′ is

not unambiguous.

On the other hand, let ĥ be the homomorphism from Example 21 induced by ĥ(a) = c, ĥ(b) = k(c,c)
and ĥ(g) = k(x1,c). Recall that h is not tetris-free because h

(

g(a)
)

= h(b) although pos
(

g(a)
)

6= pos(b).

Moreover, consider the WTA ˆA =
(

{q},Σ,{q}, R̂,ŵt
)

over N with the following rules and weights:

R̂ =
{

a→2 q , b→3 q , g(q)→1 q
}

.

The WTA ˆA only has one state, so it is deterministic and thus unambiguous. It recognizes the tree

series J ˆA K defined by

J ˆA K : s 7→ 2|posa(s)|+3|posb(s)| .

However, the WTAh ˆA ′ =
(

{q,⊥},∆,{q}, R̂′,ŵt
′)

for hJA K has the following rules and weights:

R̂′ =
{

c→2 q , k(c,c)→3 q , k(q,c)→1 q
}

∪
{

c→1 ⊥ , k(⊥,⊥)→1 ⊥
}

.

Since ĥ performs no duplications, the rules targeting ⊥ are not used in any accepting run, so we can

safely ignore them. Although this time, no two rules of ˆA ′ (that are used in an accepting run) share a

left-hand side, the tree k(c,c) = ĥ
(

g(a)
)

= ĥ(b) still has two different runs, which stem directly from the

non-tetris-freeness of ĥ.

As a concequence of Proposition 24, our restricted version of the HOM-problem is decidable.

Corollary 26. Let S be a zero-sum free, commutative semiring. For a nondeleting and nonerasing, tetris-

free tree homomorphism h and an h-unambiguous WTA A over S as input, it is decidable whether the

tree series hJA K is regular.

5 Conclusion and Future Work

Homomorphic images of regular tree series can be represented using an extension of WTA, the so-called

eq-restricted WTAh [22]. In this paper, we have shown that regularity is decidable for unambiguous

devices of this type over zero-sum free commutative semirings. For this, we reduced this question to

the unweighted setting, where regularity is known to be decidable [12]. Moreover, we have phrased

Andreea-Teodora Nász 213

a condition on the input WTA A and tree homomorphism h that ensures unambiguity of the WTAh

representing the image hJA K. Thus the HOM-problem over zero-sum free semirings which, given A

and h as input, asks whether hJA K is regular, is decidable if the input satisfies our condition.

Notably, the zero-sum freeness of the semiring is only used in Theorem 18 to show that if the tree

series recognized by an unambiguous eq-restricted WTAh A is regular, then its support is also regular.

It is plausible that the zero-sum freeness is not needed: Its purpose is to ensure that different accepting

runs of A for the same tree t cannot cancel out, leaving t /∈ supp JA K despite A having accepting runs

for t. This, however, should not be a concern if A is unambiguous. To discard the zero-sum freeness

assumption, it suffices to prove this simple statement: If A is an unambiguous eq-restricted WTAh

and JA K is regular, then there is an unambiguous WTA equivalent to A . In fact, the linearization of A ,

which is unambiguous by Lemma 16, is a promising candidate. Thus we conjecture that Theorem 18

holds for arbitrary commutative semirings, as do then Corollaries 19 – stating that regularity is decidable

for unambiguous eq-restricted WTAh – and 26 – stating that the HOM-problem is decidable under our

assumptions on A and h.

Recently, the disambiguation of weighted (string) automata from [24] was lifted to trees [30]. Here,

the authors assume a variation of the twins property which restricts the behaviour of related states of a

WTA. This allows them to construct an equivalent unambiguous WTA. A natural question is whether

this proof can be adjusted to provide even an h-unambiguous WTA, say, by refining the twins property

with respect to h. That way, we could lift our result to a larger class of input WTA.

References

[1] Symeon Bozapalidis & Antonios Kalampakas (2008): Graph automata. Theoretical Computer Science

393(1-3), pp. 147–165, doi:10.1016/j.tcs.2007.11.022.

[2] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison & M. Tommasi (2007):

Tree Automata — Techniques and Applications.

[3] Carles Creus, Adrià Gascón, Guillem Godoy & Lander Ramos (2012): The HOM problem is EXPTIME-

complete. In: Proc. 27th Annual IEEE Symp. Logic in Computer Science, IEEE, pp. 255–264, doi:10.

1109/LICS.2012.36.

[4] Leonard E. Dickson (1913): Finiteness of the odd perfect and primitive abundant numbers with n distinct

prime factors. Amer. J. Math. 35(4), pp. 413–422, doi:10.2307/2370405.

[5] John Doner (1970): Tree acceptors and some of their applications. J. Comput. System Sci. 4(5), pp. 406–451,

doi:10.1016/S0022-0000(70)80041-1.

[6] Frank Drewes (2006): Grammatical picture generation. Springer.

[7] Manfred Droste & Doreen Heusel (2015): The supports of weighted unranked tree automata. Funda. Inform.

136(1–2), pp. 37–58, doi:10.3233/FI-2015-1143.

[8] Manfred Droste & Dietrich Kuske (2021): Weighted automata.

[9] Zoltán Fülöp & Heiko Vogler (2009): Weighted tree automata and tree transducers. In: Handbook of

Weighted Automata, chapter 9, Springer, pp. 313–403, doi:10.1007/978-3-642-01492-5_9.

[10] Ferenc Gécseg & Magnus Steinby (2015): Tree Automata. Technical Report 1509.06233, arXiv.

[11] Dora Giammarresi & Antonio Restivo (1992): Recognizable picture languages. International Journal of

Pattern Recognition and Artificial Intelligence 6(02n03), pp. 241–256, doi:10.1142/S021800149200014X.

[12] Guillem Godoy & Omer Giménez (2013): The HOM problem is decidable. J. ACM 60(4), pp. 1–44, doi:10.

1145/2508028.2501600.

https://doi.org/10.1016/j.tcs.2007.11.022
https://doi.org/10.1109/LICS.2012.36
https://doi.org/10.1109/LICS.2012.36
https://doi.org/10.2307/2370405
https://doi.org/10.1016/S0022-0000(70)80041-1
https://doi.org/10.3233/FI-2015-1143
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.1142/S021800149200014X
https://doi.org/10.1145/2508028.2501600
https://doi.org/10.1145/2508028.2501600

214 Unambiguity in the Weighted HOM-Problem

[13] Guillem Godoy, Omer Giménez, Lander Ramos & Carme Àlvarez (2010): The HOM problem is decidable.

In: Proc. 42nd ACM symp. Theory of Computing, ACM, pp. 485–494, doi:10.1145/1806689.1806757.

[14] Jonathan S. Golan (1999): Semirings and their Applications. Kluwer Academic, Dordrecht, doi:10.1007/

978-94-015-9333-5.

[15] Udo Hebisch & Hanns J. Weinert (1998): Semirings. World Scientific, doi:10.1142/3903.

[16] Udo Hebisch & Hanns Joachim Weinert (1998): Semirings: algebraic theory and applications in computer

science. 5, World Scientific, doi:10.1142/9789812815965_bmatter.

[17] Dan Jurafsky & James H. Martin (2008): Speech and language processing. Prentice Hall.

[18] Daniel Kirsten (2011): The support of a recognizable series over a zero-sum free, commutative semiring is

recognizable. Acta Cybernet. 20(2), pp. 211–221, doi:10.14232/actacyb.20.2.2011.1.

[19] Tetris Holding; The Tetris Company LLC (1985): Tetris. Available at https://tetris.com.

[20] Christof Loding & Wolfgang Thomas (2000): Alternating Automata and Logics over Infinite Words. In

Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses & Takayasu Ito, editors: Theoretical

Computer Science: Exploring New Frontiers of Theoretical Informatics, Springer Berlin Heidelberg, doi:10.

1007/3-540-44929-9_36.

[21] Andreas Maletti & Andreea-Teodora Nász (2022): Weighted tree automata with constraints. In: Develop-

ments in Language Theory: 26th International Conference, DLT 2022, Tampa, FL, USA, May 9–13, 2022,

Proceedings, Springer, pp. 226–238, doi:10.1007/978-3-031-05578-2_18.

[22] Andreas Maletti & Andreea-Teodora Nász (2023): Weighted Tree Automata with Constraints. Technical

Report 2302.03434, arXiv. Available at https://arxiv.org/abs/2302.03434.

[23] Andreas Maletti, Andreea-Teodora Nász & Erik Paul (2023): Weighted HOM-Problem for Nonnegative Inte-

gers. arXiv:2305.04117.

[24] Mehryar Mohri & Michael D. Riley (2017): A disambiguation algorithm for weighted automata. Theo-

retical Computer Science 679, pp. 53–68, doi:10.1016/j.tcs.2016.08.019. Available at https://www.

sciencedirect.com/science/article/pii/S0304397516304376. Implementation and Application of

Automata.

[25] J. Mongy-Steen (1981): Transformation de noyaux reconnaissables d’arbres. Forêts RATEG. Ph.D. thesis,

Université de Lille.

[26] Dominique Perrin (1984): Recent results on automata and infinite words. In: Proc. 11th Int. Symp. Mathe-

matical Foundations of Computer Science, LNCS 176, Springer, pp. 134–148, doi:10.1007/BFb0030294.

[27] Azriel Rosenfeld (2014): Picture languages: formal models for picture recognition. Academic Press.

[28] Arto Salomaa & Matti Soittola (1978): Automata-Theoretic Aspects of Formal Power Series. Texts and

Monographs in Computer Science, Springer, doi:10.1007/978-1-4612-6264-0.

[29] Marcel Paul Schützenberger (1961): On the definition of a family of automata. Inform. and Control 4(2–3),

pp. 245–270, doi:10.1016/S0019-9958(61)80020-X.

[30] Kevin Stier & Markus Ulbricht (2021): Disambiguation of Weighted Tree Automata. In Yo-Sub Han & Sang-

Ki Ko, editors: Descriptional Complexity of Formal Systems, Springer International Publishing, Cham, pp.

163–175, doi:10.1007/978-3-030-93489-7_14.

[31] James W. Thatcher (1967): Characterizing Derivation Trees of Context-Free Grammars through a

Generalization of Finite Automata Theory. J. Comput. Syst. Sci. 1(4), pp. 317–322, doi:10.1016/

S0022-0000(67)80022-9.

[32] James W. Thatcher & Jesse B. Wright (1968): Generalized finite automata theory with an application to a

decision problem of second-order logic. Math. Systems Theory 2(1), pp. 57–81, doi:10.1007/BF01691346.

[33] Reinhard Wilhelm, Helmut Seidl & Sebastian Hack (2013): Compiler Design - Syntactic and Semantic

Analysis. Springer, doi:10.1007/978-3-642-17540-4.

https://doi.org/10.1145/1806689.1806757
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1142/3903
https://doi.org/10.1142/9789812815965_bmatter
https://doi.org/10.14232/actacyb.20.2.2011.1
https://tetris.com
https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1007/978-3-031-05578-2_18
https://arxiv.org/abs/2302.03434
https://arxiv.org/abs/2305.04117
https://doi.org/10.1016/j.tcs.2016.08.019
https://www.sciencedirect.com/science/article/pii/S0304397516304376
https://www.sciencedirect.com/science/article/pii/S0304397516304376
https://doi.org/10.1007/BFb0030294
https://doi.org/10.1007/978-1-4612-6264-0
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1007/978-3-030-93489-7_14
https://doi.org/10.1016/S0022-0000(67)80022-9
https://doi.org/10.1016/S0022-0000(67)80022-9
https://doi.org/10.1007/BF01691346
https://doi.org/10.1007/978-3-642-17540-4

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 215–227, doi:10.4204/EPTCS.386.17

© G. Pighizzini & L. Prigioniero

This work is licensed under the

Creative Commons Attribution License.

Once-Marking and Always-Marking 1-Limited Automata

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano, Italy

pighizzini@di.unimi.it

Luca Prigioniero

Department of Computer Science
Loughborough University, UK

l.prigioniero@lboro.ac.uk

Single-tape nondeterministic Turing machines that are allowed to replace the symbol in each tape

cell only when it is scanned for the first time are also known as 1-limited automata. These devices

characterize, exactly as finite automata, the class of regular languages. However, they can be ex-

tremely more succinct. Indeed, in the worst case the size gap from 1-limited automata to one-way

deterministic finite automata is double exponential.

Here we introduce two restricted versions of 1-limited automata, once-marking 1-limited au-

tomata and always-marking 1-limited automata, and study their descriptional complexity. We prove

that once-marking 1-limited automata still exhibit a double exponential size gap to one-way deter-

ministic finite automata. However, their deterministic restriction is polynomially related in size to

two-way deterministic finite automata, in contrast to deterministic 1-limited automata, whose equiv-

alent two-way deterministic finite automata in the worst case are exponentially larger. For always-

marking 1-limited automata, we prove that the size gap to one-way deterministic finite automata

is only a single exponential. The gap remains exponential even in the case the given machine is

deterministic.

We obtain other size relationships between different variants of these machines and finite au-

tomata and we present some problems that deserve investigation.

1 Introduction

In 1967, with the aim of generalizing the concept of determinism for context-free languages, Hibbard

introduced limited automata, a restricted version of Turing machines [3]. More precisely, for each fixed

integer d ≥ 0, a d-limited automaton is a single-tape nondeterministic Turing machine that is allowed to

replace the content of each tape cell only in the first d visits.

Hibbard proved that, for each d ≥ 2, d-limited automata characterize the class of context-free lan-

guages. For d = 0 these devices cannot modify the input tape, hence they are two-way finite automata,

so characterizing regular languages. Furthermore, also 1-limited automata are no more powerful than

finite automata. The proof of this fact can be found in [19, Thm. 12.1].

The investigation of these models has been reconsidered in the last decade, mainly from a descrip-

tional point of view. Starting with [8, 9], several works investigating properties of limited automata

and their relationships with other computational models appeared in the literature (for a recent survey

see [7]).

In this paper we focus on 1-limited automata. We already mentioned that these devices are no more

powerful than finite automata, namely they recognize the class of regular languages. However, they can

be dramatically more succinct than finite automata. In fact, a double exponential size gap from 1-limited

automata to one-way deterministic finite automata has been proved [8]. In other words, every n-state

1-limited automaton can be simulated by a one-way deterministic automaton with a number of states

which is double exponential in n. Furthermore, in the worst case, this cost cannot be reduced.

http://dx.doi.org/10.4204/EPTCS.386.17
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

216 Once-Marking and Always-Marking 1-Limited Automata

As pointed out in [8], this double exponential gap is related to a double role of the nondeterminism

in 1-limited automata. When the head of a 1-limited automaton reaches for the first time a tape cell, it

replaces the symbol in it according to a nondeterministic choice. Furthermore, the set of nondeterministic

choices allowed during the next visits to the same cell depends on the symbol written in the first visit and

that cannot be further changed, namely it depends on the nondeterministic choice made during the first

visit.

With the aim of better understanding this phenomenon, we started to investigate some restrictions

of 1-limited automata. On the one hand, we are interested in finding restrictions that reduce this double

exponential gap to a single exponential. We already know that this happens for deterministic 1-limited

automata [8]. So the problem is finding some restrictions that, still allowing nondeterministic transi-

tions, avoid the double exponential gap. On the other hand, we are also interested in finding some very

restricted forms of 1-limited automata for which a double exponential size gap in the conversion to one-

way deterministic automata remains necessary in the worst case.

A first attempt could be requiring deterministic rewritings, according to the current configuration of

the machine, every time cells are visited for the first time, still keeping nondeterministic the choice of

the next state and head movement. Another attempt could be to allow nondeterministic choices for the

symbol to rewrite, but not for the next state and the head movement. In both cases the double expo-

nential gap to one-way deterministic finite automata remains possible. Indeed, in both cases, different

computation paths can replace the same input prefix on the tape with different strings, as in the original

model. Actually, we noticed that the double exponential gap can be achieved already for 1-limited au-

tomata that, in each computation, have the possibility to mark just one tape cell leaving the rest of the

tape unchanged. This inspired us to investigate machines with such a restriction, which we call once-

marking 1-limited automata. We show that the double exponential size gap to one-way deterministic

finite automata remains possible even for once-marking 1-limited automata that are sweeping (namely,

change the head direction only at the left or right end of the tape) and that are allowed to use nonde-

terminism only in the first visit to tape cells. Comparing the size of once-marking 1-limited automata

with other kinds of finite automata, we prove an exponential gap to two-way nondeterministic automata.

The situation changes significantly when nondeterministic transitions are not possible. Indeed, we prove

that every deterministic once-marking 1-limited automaton can be converted into an equivalent two-way

deterministic finite automaton with only a polynomial size increasing. The costs we obtain concerning

once-marking 1-limited automata are summarized in Figure 2.

As mentioned above, the double exponential gap from 1-limited automata to one-way deterministic

finite automata is related to the fact that different computation paths can replace the same input prefix

on the tape with different strings. This suggested the idea of considering a different restriction, which

prevents this possibility, by requiring the replacement of each input symbol a with a symbol that depends

only on a. To this aim, here we introduce always-marking 1-limited automata, that in the first visit

replace each symbol with a marked version of it. We show that in this case the gap from these devices,

in the nondeterministic version, to one-way deterministic finite automata reduces to a single exponential.

The same gap holds when converting always-marking 1-limited automata into one-way nondeterministic

finite automata, but even when converting deterministic always-marking 1-limited automata into two-way

nondeterministic finite automata. The bounds we obtain concerning always-marking 1-limited automata

are summarized in Figure 3.

The paper is organized as follows. After presenting in Section 2 the preliminary notions used in the

paper and, in particular, the definition of 1-limited automata with the fundamental results on their de-

scriptional complexity, in Section 3 we introduce once-marking and always-marking 1-limited automata,

G. Pighizzini & L. Prigioniero 217

together with some witness languages that will be useful to obtain our results. Sections 4 and 5 are

devoted to the investigation of the descriptional complexity of these models. We conclude the paper

presenting some final remarks and possible lines for future investigations.

2 Preliminaries

In this section we recall some basic definitions useful in the paper. Given a set S, #S denotes its cardinality

and 2S the family of all its subsets. Given an alphabet Σ, a string w ∈ Σ∗, and a symbol a ∈ Σ, |w| denotes

the length of w, Σk the set of all strings on Σ of length k,
•
a the marked versions of a, and

•

Σ = {
•
a | a ∈ Σ}

the set of the marked versions of the symbols in Σ.

We assume the reader familiar with notions from formal languages and automata theory, in particular

with the fundamental variants of finite automata (1DFAs, 1NFAs, 2DFAs, 2NFAs, for short, where 1/2

mean one-way/two-way and D/N mean deterministic/nondeterministic, respectively). For any unfamiliar

terminology see, e.g., [4].

A 1-limited automaton (1-LA, for short) is a tuple A = (Q,Σ,Γ,δ ,qI ,F), where Q is a finite set of

states, Σ is a finite input alphabet, Γ is a finite work alphabet such that Σ∪{⊲,⊳} ⊆ Γ, ⊲,⊳ /∈ Σ are two

special symbols, called the left and the right end-markers, and δ : Q×Γ → 2Q×(Γ\{⊲,⊳})×{−1,+1} is the

transition function. At the beginning of the computation, the input word w ∈ Σ∗ is stored onto the tape

surrounded by the two end-markers, the left end-marker being in position zero and the right end-marker

being in position |w|+1. The head of the automaton is on cell 1 and the state of the finite control is the

initial state qI .

In one move, according to δ and the current state, A reads a symbol from the tape, changes its state,

replaces the symbol just read from the tape by a new symbol, and moves its head to one position forward

or backward. Furthermore, the head cannot pass the end-markers, except at the end of computation, to

accept the input, as explained below. Replacing symbols is allowed to modify the content of each cell

only during the first visit, with the exception of the cells containing the end-markers, which are never

modified. Hence, after the first visit, a tape cell is “frozen”.1

The automaton A accepts an input w if and only if there is a computation path that starts from the

initial state qI with the input tape containing w surrounded by the two end-markers and the head on the

first input cell, and that ends in a final state q ∈ F after passing the right end-marker. The device A is

said to be deterministic (D-1-LA, for short) whenever #δ (q,σ)≤ 1, for any q ∈ Q and σ ∈ Γ.

Two-way finite automata are limited automata in which no rewritings are possible. On the other

hand, one-way finite automata can scan the input in a one-way fashion only. A finite automaton is, as

usual, a tuple (Q,Σ,δ ,qI ,F), where, analogously to 1-LAs, Q is the finite set of states, Σ is the finite

input alphabet, δ is the transition function, qI is the initial state, and F is the set of final states. We point

out that for two-way finite automata we assume the same accepting conditions as for 1-LAs.

Two-way machines in which the direction of the head can change only at the end-markers are said to

be sweeping [18].

In this paper we are interested to compare the size of machines. The size of a model is given by the

total number of symbols used to write down its description. Therefore, the size of 1-LAs is bounded by

1More technical details can be found in [8]. However, a syntactical restriction forcing 1-LAs to replace in the first visit to

each tape cell the input symbol in it with another symbol from an alphabet Γ1 disjoint from Σ, was given. Here we drop this

restriction, in order to be able to see once-marking 1-LAs as a restriction of 1-LAs. It is always possible to transform a 1-LA into

an equivalent 1-LA satisfying such a syntactical restriction, just extending Γ with a marked copy of Σ and suitably modifying

the transition function.

218 Once-Marking and Always-Marking 1-Limited Automata

D-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

�
�

�
�

�
��✠

exp

❄

≤expexp
≥exp

(a)

❅
❅
❅
❅
❅
❅❅❘
≥ exp

(b)

❍❍❍❍❍❍❍❍❍❍❍❍❍❥

expexp

❅
❅

❅
❅

❅
❅❅■

exp

�
�
�
�
�
��✒

exp

✟✟✟✟✟✟✟✟✟✟✟✟✟✯

exp

Figure 1: Size costs of conversions of 1-LAs and D-1-LAs into equivalent one-way and two-way deter-

ministic and nondeterministic finite automata. For all the costs upper and matching lower bounds have

been proved, with the only exception of (a) and (b), for which the best known lower and upper bounds

are, respectively, exponential and double exponential.

a polynomial in the number of states and of work symbols, while, in the case of finite automata, since

no writings are allowed, the size is linear in the number of instructions and states, which is bounded by

a polynomial in the number of states and in the number of input symbols.

The size costs of the simulations from 1-LAs to finite automata have been studied in [8] and are

summarized in Figure 1.

3 Witness Languages and Variants of 1-Limited Automata

As mentioned in the introduction, 1-LAs can be very succinct. In fact, for some languages the size gap to

1DFA is double exponential. We already observed that this gap is related to nondeterminism. Indeed, if

nondeterministic choices are not possible, the gap reduces to a single exponential (see Figure 1). How-

ever, we want to understand better on the one hand how much we can restrict the model, still keeping

this double exponential gap and, on the other hand, if there is a restriction that, still allowing some kind

of nondeterminism, reduces the gap to a single exponential.

In our investigations, the following language, which is defined with respect to an integer parame-

ter n > 0, will be useful:

Kn = {x1 · · ·xk · x | k > 0, x1, . . . ,xk,x ∈ {a,b}n, ∃ j ∈ {1, . . . ,k}, x j = x} .

We point out that each string in the language is a list of blocks of length n. We ask the membership of

the last block to the list of previous ones.

Theorem 1. The language Kn is accepted by a 1-LA with O(n) states that, in each accepting computa-

tion, replaces the content only of one cell.

Proof. A 1-LA M can scan the tape from left to right, marking a nondeterministically chosen tape cell.

In this scan, M can also verify that the input length is a multiple of n. Furthermore, the marking can be

done in the last cell of a block of length n. For this phase O(n) states are enough.

G. Pighizzini & L. Prigioniero 219

Then the machine has to compare the symbols in the last block with the symbols in the chosen one,

namely the block which ends with the marked cell. This can be done by moving the head back and forth

from the last block to the chosen block, comparing the symbols in the corresponding positions in the two

blocks, and rejecting in case of mismatch. Again, this can be implemented, using a counter modulo n,

with O(n) states.

Using standard distinguishability arguments, it can be proved that to accept Kn, a 1DFA requires

a number of states double exponential in n (state lower bounds for Kn are summarized in Theorem 2

below).

Hence, the language Kn is a witness of the double exponential gap from 1-LAs to 1DFAs. From

Theorem 1, we can notice that this gap is obtained by using the capabilities of 1-LAs in a very restricted

way: during each accepting computation, only the content of one cell is modified. This suggested us to

considering the following restricted version of 1-LAs:

Definition 1. A 1-LA is said to be once marking if in each computation there is a unique tape cell whose

input symbol σ is replaced with its marked version
•
σ , while all the remaining cells are never changed.

In the following, for brevity, we indicate once-marking 1-LAs and once-marking D-1-LAs as OM-1-

LAs and D-OM-1-LAs, respectively.

We shall consider another restriction, in which the 1-LA marks, in the first visit, every cell reached

by the head.

Definition 2. A 1-LA is said to be always marking if, each time the head visits a tape cell for the first

time, it replaces the input symbol σ in it with its marked version
•
σ .

In the following, for brevity, we indicate always-marking 1-LAs and always-marking D-1-LAs as

AM-1-LAs and D-AM-1-LAs, respectively.

We point out that OM-1-LAs and AM-1-LAs use the work alphabet Γ = Σ∪
•

Σ∪{⊲,⊳}. Hence, the

relevant parameter for evaluating the size of these devices is their number of states, differently than

1-LAs, in which the size of the work alphabet is not fixed.

We present another language that will be used in the paper. As Kn, it is defined with respect to a fixed

integer n > 0:

Jn = {x · x1 · · ·xk | k > 0, x1, . . . ,xk,x ∈ {a,b}n, ∃ j ∈ {1, . . . ,k}, x j = x} .

Even in this case, a string is a list of blocks of length n. Here we ask the membership of the first block to

the subsequent list. Notice that Jn is the reversal of Kn.

We have the following lower bounds:

Theorem 2. Let n > 0 be an integer.

• To accept Jn, 1DFAs and 1NFAs need at least 2n states, while 2NFAs need at least 2
n−1

2 states.

• To accept Kn, 1DFAs need 22n

states, 1NFAs need at least 2n states, and 2NFAs need at least 2
n−1

2

states.

Proof. (sketch) The lower bounds for one-way machines can be proved using standard distinguishabil-

ity arguments and the fooling set technique [1] (see [8, 13] for similar proofs with slightly different

languages).

Using a standard conversion, from a k-state 2NFA accepting Kn we can obtain an equivalent 1DFA

with no more than 2k+k2

states [14, 16]. Since every 1DFA accepting Kn should have at least 22n

states, we

220 Once-Marking and Always-Marking 1-Limited Automata

get that k+ k2 ≥ 2n. Hence k grows as an exponential in n. In particular, it can be verified that k > 2
n−1

2 .

Since from each 2NFA accepting a language we can easily obtain a 2NFA with a constant amount of extra

states accepting the reversal of such a language, we can conclude that the number of states of each 2NFA

accepting Jn or Kn must be at least exponential in n.

4 Once-Marking 1-Limited Automata

During each computation, once-marking 1-limited automata are able to mark just one input cell.

From Theorem 1, we already know that the language Kn can be accepted by a OM-1-LA with O(n)
states. We now show that such a machine can be turned in a even more restricted form:

Theorem 3. The language Kn is accepted by a OM-1-LA with O(n) states that is sweeping and uses

nondeterministic transitions only in the first traversal of the tape.

Proof. We discuss how to modify the O(n)-state OM-1-LA M described in the proof of Theorem 1 in

order obtain a sweeping machine that uses nondeterministic transitions only in the first sweep. M makes

a first scan of the input, exactly as described in the proof of Theorem 1. In this scan the head direction

is never changed. When the right end-marker is reached, M makes n iterations, which in the following

description will be counted from 0 to n−1.

The purpose of the iteration i, i = 0, . . . ,n− 1, is to compare the (n− i)th symbols of the last block

and of the chosen one. To this aim, the iteration starts with the head on the right end-marker, and uses a

counter modulo n, initialized to (i+1) mod n. The counter is decremented while moving to the left. In

this way, it contains 0 exactly while visiting the (n− i)th cell of each input block. Hence, the automaton

can easily locate the (n− i)th symbols of the last block and of the chosen one and check if they are equal.

Once the left end-marker is reached, M can cross the tape from left to right, remembering the number i

of the iteration. Notice that M does not need to keep this number while moving from right to left. Indeed

the value of i can be recovered from the value of the counter when the left end-marker is reached.

Once the iteration i is completed, if the last check was unsuccessful then M can stop and reject.

Otherwise it can start the next iteration, if i < n−1, or accepts.

From the discussion above, it can be easily verified that M is sweeping, makes nondeterministic

choices only in the first sweep, and has O(n) many states.

We now study the size relationships between OM-1-LAs and finite automata. First, we observe that

OM-1-LAs can be simulated by 1NFAs and by 1DFAs at the costs of an exponential and a double expo-

nential increase in the number of states, respectively. These upper bounds derive from the costs of the

simulations of 1-LAs by finite automata presented in [8, Thm. 2]. By considering the language Kn, we

can conclude that these costs cannot be reduced:

Theorem 4. Let M be a n-state OM-1-LAs. Then M can be simulated by a 1NFA and by a 2NFA with

a number of states exponential in n, and by a 1DFA with a number of states double exponential in n. In

the worst case these costs cannot be reduced.

Proof. The upper bounds derive from the cost of the simulations of 1-LAs by 1NFAs and 1DFAs given

in [8, Thm. 2]. For the lower bounds we consider the language Kn. As proved in Theorem 3, this

language can be accepted by a OM-1-LA with O(n) states. Furthermore, according to Theorem 2, it

requires a number of state exponential in n to be accepted by 1NFAs or 2NFAs, and a number of states

double exponential in n to be accepted by 1DFAs.

G. Pighizzini & L. Prigioniero 221

From Theorem 4, it follows that the ability of marking only once can give already a huge descrip-

tional power. Furthermore, from Theorem 3, we can observe that this power is achievable even with a

sweeping machine that does not use nondeterminism after the first sweep. From the size costs of the

simulation of 1-LAs by finite automata (see Figure 1), we already know that nondeterminism is essential

to obtain this huge descriptional power. We now prove that, without nondeterminism, the descriptional

power on OM-1-LAs dramatically reduces:

Theorem 5. For each n-state D-OM-1-LA there exists an equivalent 2DFA with O
(

n3
)

states.

Proof. Let A = (Q,Σ,Γ,δ ,qI ,F) be a n-state D-OM-1-LA. We give a construction of an equivalent

2DFA A ′. Before doing that, let us introduce, from an high-level perspective, how the simulating ma-

chine works.

The 2DFA A ′ operates in different modes.

In the first part of the computation, before A marks one cell, A ′ is in beforeMarking mode, in which

it simulates directly each transition of A .

When A ′ has to simulate the transition δ (s,σ) = (
•

σ ,d) used by A for marking a cell, besides

changing its state and moving its head according to the transition, A ′ switches to afterMarking mode

and stores in its finite control the symbol σ that has been marked and the state s in which A was

immediately before the marking.

While in afterMarking mode, every time a cell is visited, A ′ has to select which transition of A

to simulate depending on the symbol a scanned by the input head. There are two possibilities: if the

scanned symbol is different than the symbol σ that has been marked, then the transition is simulated

directly. Otherwise, A ′ switches to backwardSimulation mode (described later) to verify whether the

current cell is the one that has been marked by A . If this is the case, then A ′ simulates the transition

of A on the marked symbol
•
σ , otherwise it simulates the transition on σ . In both cases A ′ keeps

working in afterMarking mode, so selecting transitions according to the strategy described above, until

there are no more moves to simulate. Therefore A ′ accepts if the last simulated transition corresponds

to a right transition passing the right end-marker while simulating a final state of A .

We now give some details on the backwardSimulation mode, which is the core of the simulation. We

remind the reader that A ′ switches to this mode when, being in afterMarking mode, the input head is

on a cell containing the symbol σ , which has been saved at the end of the beforeMarking mode. Let us

indicate by j the current position of the head, namely the position that has to be verified.

The 2DFA A ′ has to verify whether j is the cell that has been marked by A . To make this check, A ′

can verify whether the computation path of A on the given input reaches, from the initial configuration,

a configuration with state s and the head on the currently scanned cell j (we remind the reader that s and

σ have been saved in the control of A ′ when switching from beforeMarking to afterMarking mode),

whose position, however, cannot be saved in the control.

To be sure that the machine does not “loses track” of the position j while performing this search, we

use the following strategy:

• A ′ simulates a backward computation from the state s and the current position j.

• If the initial configuration of A is reached, then the cell from which the check has started is the

one where the marking transition has been executed.

• At that point, the position j is recovered by “rolling back” the backward computation. This is

done by repeating the (forward) computation of A from the initial configuration until a marking

transition is used. In fact, since A is deterministic and once marking, this transition is necessarily

222 Once-Marking and Always-Marking 1-Limited Automata

the one that, from the state s, marked σ . In other words, the forward computation of A that is

simulated here is the same simulated in beforeMarking mode.

As we shall explain later, even in the case the initial configuration of A is not reached (namely the veri-

fication is not successful), our technique allows to recover the head position j from which the backward

simulation started,

It is important to observe two key points for which this approach works. The first one is that OM-1-

LAs mark only one cell during their computation. The second observation is that the simulated machine

is deterministic. Therefore, along every accepting computation path from the initial configuration, it

occurs only once that the symbol σ is scanned while A is in state s, which is when A makes a marking

transition.

To make such a verification, and in particular the backward search, we use a technique originally

introduced by Sipser [17]. This simulation has been then refined by Geffert, Mereghetti, and Pighizzini,

which proved that 2DFAs can be made halting with a linear increase of the number of states [2]. In

the following, we shall refer to the latter simulation as the original simulation and use the notation and

terminology contained in [2], to which we address the interested reader for missing details.

The main difference with the original simulation is that there the simulating machine starts from the

final configuration of the simulated device, because the goal is to verify the presence of an accepting

computation path. In our case, the machine A ′ starts the backward simulation from the state s and the

cell containing σ that has to be checked.

In the following, a configuration is a pair (q, i), where q is the current state and i is the position of

the tape head.

Consider the graph whose nodes represent configurations and edges computation steps. Since A is

deterministic, the component of the graph containing (s, j) is a tree rooted at this configuration, with

backward paths branching to all possible predecessors of (s, j). In addition, no backward path starting

from (s, j) can loop (hence, it is of finite length), because the marking configuration (s, j) cannot be

reached by a forward path from a loop (due to the fact that the machine is deterministic).

The simulating machine A ′ can perform a depth-first search of this tree in order to detect whether

the initial configuration (qI ,0) belongs to the predecessors of (s, j). If this is the case, then the machine

returns to the position j, by performing a forward simulation of A from (qI ,0) until when s is entered

while reading the symbol σ . We stress that this approach works because the simulated machine is

deterministic. After that, the simulation of A in afterMarking mode is recovered by performing a move

on the symbol
•
σ . On the other hand, if the whole tree has been examined without reaching (qI ,0), then

the cell in position j is not the marked one, so the machine simulates a move of A ′ on σ from the cell in

position j, again switching back to afterMarking mode. Notice that this case occurs when there are no

more predecessors of (s, j) to visit. So, in this case, the machine A ′ completes the depth-first search on

the cell in position j, while looking for further nodes of the graph reachable from the configuration (s, j).
Hence, no extra steps are required to retrieve the position j.

In conclusion, A ′ has three state components of size O(n): one used in beforeMarking and after-

Marking for the direct simulation of the transitions of A , one for storing the state s and the symbol σ ,

and one used in backwardSimulation mode. So, the total number of states of A ′ is O
(

n3
)

.

In Figure 2 the state costs of the conversions involving OM-1-LAs are summarized. In particular, we

proved that the size gap from OM-1-LAs to 2NFAs is exponential and to 1DFAs is double exponential,

while D-OM-1-LAs and 2DFAs are polynomially related in size.

Some questions remain open, in particular about the costs of the simulations of OM-1-LAs by D-

OM-1-LAs and by 2DFAs. At the moment, from the above mentioned results, we can derive double

G. Pighizzini & L. Prigioniero 223

D-OM-1-LA

1NFA/2NFA 2DFA 1DFA

OM-1-LA

�
�

�
�

�
��✠

exp
(b)

❄

≤expexp
≥exp

(c)

❅
❅
❅
❅
❅
❅❅❘
≥ exp

(d)

❍❍❍❍❍❍❍❍❍❍❍❍❍❥

expexp
(a)

❅
❅

❅
❅

❅
❅❅■

poly
(e)

�
�
�
�
�
��✒

poly
(f)

✟✟✟✟✟✟✟✟✟✟✟✟✟✯

exp
(g)

Figure 2: Size costs of conversions involving OM-1-LAs. The gaps (a) and (b) derive from Theorem 4.

For (c) and (d) the lower bound derives from the lower bound of the language Kn on 2NFAs (Theorem 2);

the best known upper bound derives from (a). The bounds (e) and (f) are from Theorem 5. The upper

bound for (g) derives from the conversion from D-1-LAs and the lower bound from the conversion from

2DFAs.

exponential upper bounds and exponential lower bounds. The same questions are open for the simulation

of 1-LAs by D-1-LAs and by 2DFAs, namely by dropping the once-marking restriction. We point out that

these questions are related to the problem of the cost of the elimination of nondeterminism from two-way

finite automata, proposed by Sakoda and Sipser in 1978 [15], which is still open.

5 Always-Marking 1-Limited Automata

Always-marking 1-limited automata replace, when they visit each cell for the first time, the input symbol

with its marked version. In this section we study the descriptional complexity of these devices.

First of all, we prove that AM-1-LAs cannot achieve the same succinctness as 1-LAs. In fact, the size

gap to 1DFAs reduces from double exponential for 1-LAs to single exponential.

Theorem 6. Each n-state AM-1-LA can be simulated by a 1NFA with at most n · 2n2

states and by a

complete 1DFA with at most (2n −1) ·2n2

+1 states.

Proof. Let M = (Q,Σ,Γ,δ ,q0,F) be a given n-state AM-1-LA. We adapt the argument used in [8]

to convert 1-LAs into 1NFAs and 1DFAs, which is derived from the technique to convert 2DFAs into

equivalent 1DFAs, presented in [16], and based on transitions tables.

Roughly, transition tables represent the possible behaviors of M on frozen tape segments. More

precisely, given z ∈ Γ∗ , the transition table associated with z is the binary relation τz ⊆ Q×Q, consisting

of all pairs (p,q) such that M has a computation path that starts in the state p on the rightmost symbol

of the tape segment containing ⊲z, ends entering the state q by leaving the same tape segment to the

right side, i.e., by moving from the rightmost cell of the segment to the right, and does not visit any cell

outside the segment.

First, we can apply the conversion presented in [8] from 1-LAs to 1NFAs, in order to obtain from M

an equivalent 1NFA A, whose computations simulate the computations of M by keeping in the finite

state control two components:

224 Once-Marking and Always-Marking 1-Limited Automata

• The transition table associated with the part of the tape at the left of the head. This part has been

already visited and, hence, it is frozen.

• The state in which the simulated computation of M reaches the current tape position for the first

time.

For details we address the reader to [8, Thm. 2]. Since the number of transition tables is at most 2n2

, the

number of states in the resulting 1NFA A is bounded by n ·2n2

.

Applying the subset construction, this automaton can be converted into an equivalent deterministic

one, with an exponential increase of the number of states, so obtaining a double exponential number of

states in n. In the general case, this increasing cannot be reduced. This is due to the fact that different

computations of A, after reading the same input, could keep in the control different transitions tables,

depending on the fact that M can replace the same input by different strings.

However, under the restriction we are considering, along different computations, each input string x

is always replaced by the same string
•
x, which is obtained by marking every symbol of x. Hence, at each

step of the simulation, the transition table stored by A depends only on the input prefix already inspected.

The only part that can change is the state of the simulated computation of M after reading x.

This allows to obtain from A a 1DFA A′, equivalent to M that, after reading a string x, has in its finite

state control the transition table associated with
•
x, and the set of states that the computations of M can

reach after reading x. In other words, the automaton A′ is obtained from A by keeping the first component

of the control, which is deterministic, and making a subset construction for the second one.

By summarizing, the possible values of the first component are 2n2

, while the values of the second

one are 2n, namely the possible subsets of the state set of M . This gives a 2n · 2n2

upper bound. We

can slightly reduce this number, by observing that when the second component contains the empty set,

i.e., each computation of M (or equivalently of A) stops before entering it, then the input is rejected,

regardless the first component. Hence, we can replace all the pairs having the empty set as a second

component with a unique sink state, so reducing the upper bound to (2n −1) ·2n2

+1

The asymptotical optimality of the upper bounds in Theorem 6 derives from the optimality of the

conversions from 2NFAs to 1NFAs and to 2DFAs [14, 16, 5].

We now show that AM-1-LAs can be more succinct than 2NFAs, even in the deterministic case. In

particular we prove the following:

Theorem 7. The language Jn is accepted by a D-AM-1-LA with O(n) states, while it cannot be accepted

by any 2NFA with less than 2
n−1

2 states.

Proof. The lower bound for 2NFAs has been given in Theorem 2. The possibility of marking the already-

visited cells allows to reduce this cost, even without making use of the nondeterminism, as we now

describe. An always marking D-1-LA M can firstly visit and mark the first n tape cells. Then, it starts

to inspect the next block of length n. When the head reaches for the first time a cell, M remembers the

scanned symbol σ in it and moves the head back to the left end-marker and then to the corresponding

cell in the first block (this can be implemented with a counter modulo n). If the symbol in this cell is

not σ then M has to skip the remaining symbols in the block under inspection and inspect the next block,

if any. This can be done moving the head to the left end-marker and then, starting to count modulo n,

moving to the right until finding the first symbol of the next block. This symbol can be located using

the value of the counter and the fact that it has not been marked yet. Otherwise, if the symbol in the cell

coincides with σ and the block is not completely inspected (see below), M moves the head to the right

to search the next symbol of the block under inspection, namely the first unmarked symbol.

G. Pighizzini & L. Prigioniero 225

D-AM-1-LA

1NFA/2NFA 2DFA 1DFA

AM-1-LA

�
�

�
�

�
��✠

exp

❄

≤ exp
(a)

❅
❅
❅
❅
❅
❅❅❘

exp

❍❍❍❍❍❍❍❍❍❍❍❍❍❥

exp

❅
❅

❅
❅

❅
❅❅■

exp

�
�
�
�
�
��✒

exp

✟✟✟✟✟✟✟✟✟✟✟✟✟✯

exp

Figure 3: State costs of conversions involving AM-1-LAs. All the exponential upper bounds derive from

Theorems 6 and 8, while the lower bounds derive from Theorem 7. For (a) we do not know if in the

worst case an exponential size is also necessary.

When locating a symbol, M can also check and remember if it is in position n. This is useful to detect

whether a block has been completely scanned, which also means that the block has been successfully

scanned, otherwise the machine would have already rejected. Hence, in this case, M can move the

head to the right to finally reach the accepting configuration. However, according to the definition of Jn,

before doing that, M needs to verify that the input has length multiple of n. All these steps can be

implemented with a fixed number of variables and a counter modulo n. This allows to conclude that M

can be implemented with O(n) states.

In Theorem 7 we proved an exponential gap from D-AM-1-LAs to 2NFAs and hence also to one-way

finite automata. This allows to conclude that the following upper bounds, that are immediate conse-

quences of the corresponding upper bounds for D-1-LAs [8, Thm. 2], cannot be significantly reduced:

Theorem 8. Each n-state D-AM-1-LA can be simulated by a 1DFA and by a 1NFA with no more than n ·
(n+1)n states.

From the discussion above and Theorem 8, we have the same state gap from D-AM-1-LAs and from

D-1-LAs to one-way automata.

The state costs of the conversions involving AM-1-LAs are summarized in Figure 3.

Even in the case of AM-1-LAs, as well as in the cases of 1-LAs and of OM-1-LAs, we do not know how

much the elimination of the nondeterminism costs. Here, we have an exponential upper bound for the

conversion of AM-1-LAs into D-AM-1-LAs but, at the moment, we do not have a matching lower bound.

Considering the conversion of AM-1-LAs into 2DFAs, unlikely the analogous conversions from 1-LAs

and OM-1-LAs, here we have matching exponential upper and lower bounds. As already mentioned at

the end of Section 4, these questions are related to the open question of Sakoda and Sipser.

6 Conclusion

We study the costs of the simulations of OM-1-LAs and AM-1-LAs by finite automata. Figures 2 and 3

give a summary of the results we obtained. They can be compared with the costs of the simulations

226 Once-Marking and Always-Marking 1-Limited Automata

concerning 1-LAs, in Figure 1.

We observed that AM-1-LAs cannot reach the same succinctness as 1-LAs and OM-1-LAs

(see Theorems 4 and 6). In particular, in Theorem 3 we have shown that the language Kn can be ac-

cepted by a OM-1-LA with O(n) states. Hence, it requires an exponential number of states on AM-1-LAs

due to the fact that a double exponential number of states on 1DFAs is necessary (see Theorem 2). It is

not difficult to describe a 2NFA accepting Kn with an exponential number of states. We point out that

such a machine is also a AM-1-LA. Hence, by summarizing, the language Kn is accepted by a OM-1-LA

with O(n) states, by an AM-1-LA with a number of states exponential in n, and by a 1DFA with a number

of states double exponential in n. All these costs cannot be reduced.

Since in the nondeterministic case the gaps from OM-1-LAs to finite automata are the same as from

1-LAs, a natural question is to ask if OM-1-LAs are always as succinct as 1-LAs. Intuitively the answer

to this question is negative. For instance we do not see how to recognize the language whose strings are

concatenations of blocks of length n, in which two blocks are equal, with a OM-1-LA with O(n) states,

while it is not hard to accept it using a 1-LA with such a number of states. We leave the study of this

question for a future work.

Another candidate for studying this question is the unary language (a2n

)∗. We proved that this lan-

guage can be accepted by a D-1-LA with O(n) states and a work alphabet of cardinality O(n), and by a

D-1-LA with O
(

n3
)

states and work alphabet of size not dependent on n [10, 12]. As pointed out in [10],

each 2NFA accepting it requires at least 2n states. Hence, by Theorem 5 even each D-OM-1-LA accepting

it requires an exponential number of states. We do not see how to reduce this number even by allowing

the use of nondeterminism on OM-1-LAs or on AM-1-LAs.

More in general, the comparisons between the sizes of these restricted versions of 1-LAs deserve

further investigation, even in the unary case where the cost of several simulations are still unknown [10].

In a recent paper, we investigated forgetting 1-LAs, another restriction of 1-LAs in which there is a

unique symbol X that is used to replace input symbols. Therefore, during the first visit to a cell, its

original content is always replaced by X [11].

Finally, we would like to mention once again the problem of the cost of removing nondeterminism

from 1-LAs, OM-1-LAs, and AM-1-LAs (see Sections 4 and 5), which is connected to the main question

of the cost of the elimination of nondeterminism from two-way finite automata, raised longtime ago by

Sakoda and Sipser and still open [15] (for a survey, see [6]).

References

[1] Jean-Camille Birget (1992): Intersection and Union of Regular Languages and State Complexity. Inf. Pro-

cess. Lett. 43(4), pp. 185–190, doi:10.1016/0020-0190(92)90198-5.

[2] Viliam Geffert, Carlo Mereghetti & Giovanni Pighizzini (2007): Complementing two-way finite automata.

Inf. Comput. 205(8), pp. 1173–1187, doi:10.1016/j.ic.2007.01.008.

[3] Thomas N. Hibbard (1967): A Generalization of Context-Free Determinism. Inf. Control. 11(1/2), pp. 196–

238, doi:10.1016/S0019-9958(67)90513-X.

[4] John E. Hopcroft & Jeffrey D. Ullman (1979): Introduction to Automata Theory, Languages and Computa-

tion. Addison-Wesley.

[5] Christos A. Kapoutsis (2005): Removing bidirectionality from nondeterministic finite automata. In:

MFCS 2005, Lecture Notes in Computer Science 3618, Springer, pp. 544–555, doi:10.1007/11549345_47.

[6] Giovanni Pighizzini (2013): Two-Way Finite Automata: Old and Recent Results. Fundam. Inform. 126(2-3),

pp. 225–246, doi:10.3233/FI-2013-879.

https://doi.org/10.1016/0020-0190(92)90198-5
https://doi.org/10.1016/j.ic.2007.01.008
https://doi.org/10.1016/S0019-9958(67)90513-X
https://doi.org/10.1007/11549345_47
https://doi.org/10.3233/FI-2013-879

G. Pighizzini & L. Prigioniero 227

[7] Giovanni Pighizzini (2019): Limited Automata: Properties, Complexity and Variants. In: DCFS 2019,

Lecture Notes in Computer Science 11612, Springer, pp. 57–73, doi:10.1007/978-3-030-23247-4_4.

[8] Giovanni Pighizzini & Andrea Pisoni (2014): Limited Automata and Regular Languages. Int. J. Found.

Comput. Sci. 25(7), pp. 897–916, doi:10.1142/S0129054114400140.

[9] Giovanni Pighizzini & Andrea Pisoni (2015): Limited Automata and Context-Free Languages. Fundam.

Inform. 136(1-2), pp. 157–176, doi:10.3233/FI-2015-1148.

[10] Giovanni Pighizzini & Luca Prigioniero (2019): Limited automata and unary languages. Inf. Comput. 266,

pp. 60–74, doi:10.1016/j.ic.2019.01.002.

[11] Giovanni Pighizzini & Luca Prigioniero (2023): Forgetting 1-Limited Automata. In: NCMA 2023, Electronic

Proceedings in Theoretical Computer Science. To appear. A preliminary version is available at https://

doi.org/10.48550/arXiv.2307.16700.

[12] Giovanni Pighizzini & Luca Prigioniero (2023): Two-way Machines and de Bruijn Words. In: CIAA 2023,

Lecture Notes in Computer Science 14151, pp. 254–265, doi:10.1007/978-3-031-40247-0_19.

[13] Giovanni Pighizzini, Luca Prigioniero & Simon Šádovský (2022): 1-Limited Automata: Witness Languages

and Techniques. J. Autom. Lang. Comb. 27(1-3), pp. 229–244, doi:10.25596/jalc-2022-229.

[14] Michael O. Rabin & Dana S. Scott (1959): Finite Automata and Their Decision Problems. IBM J. Res. Dev.

3(2), pp. 114–125, doi:10.1147/rd.32.0114.

[15] William J. Sakoda & Michael Sipser (1978): Nondeterminism and the Size of Two Way Finite Automata. In:

STOC 1978, ACM, pp. 275–286, doi:10.1145/800133.804357.

[16] John C. Shepherdson (1959): The Reduction of Two-Way Automata to One-Way Automata. IBM J. Res. Dev.

3(2), pp. 198–200, doi:10.1147/rd.32.0198.

[17] Michael Sipser (1980): Halting Space-Bounded Computations. Theor. Comput. Sci. 10, pp. 335–338,

doi:10.1016/0304-3975(80)90053-5.

[18] Michael Sipser (1980): Lower Bounds on the Size of Sweeping Automata. J. Comput. Syst. Sci. 21(2), pp.

195–202, doi:10.1016/0022-0000(80)90034-3.

[19] Klaus W. Wagner & Gerd Wechsung (1986): Computational complexity. D. Reidel Publishing Company,

Dordrecht.

https://doi.org/10.1007/978-3-030-23247-4_4
https://doi.org/10.1142/S0129054114400140
https://doi.org/10.3233/FI-2015-1148
https://doi.org/10.1016/j.ic.2019.01.002
https://doi.org/10.48550/arXiv.2307.16700
https://doi.org/10.48550/arXiv.2307.16700
https://doi.org/10.1007/978-3-031-40247-0_19
https://doi.org/10.25596/jalc-2022-229
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1145/800133.804357
https://doi.org/10.1147/rd.32.0198
https://doi.org/10.1016/0304-3975(80)90053-5
https://doi.org/10.1016/0022-0000(80)90034-3

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 228–242, doi:10.4204/EPTCS.386.18

© J. Shallit and S. L. Shan
This work is licensed under the
Creative Commons Attribution License.

A General Approach to Proving Properties of Fibonacci
Representations via Automata Theory

Jeffrey Shallit* and Sonja Linghui Shan
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

shallit@uwaterloo.ca, slshan@uwaterloo.ca

We provide a method, based on automata theory, to mechanically prove the correctness of many nu-
meration systems based on Fibonacci numbers. With it, long case-based and induction-based proofs
of correctness can be replaced by simply constructing a regular expression (or finite automaton)
specifying the rules for valid representations, followed by a short computation. Examples of the
systems that can be handled using our technique include Brown’s lazy representation (1965), the far-
difference representation developed by Alpert (2009), and three representations proposed by Hajnal
(2023). We also provide three additional systems and prove their validity.

1 Introduction

Given an increasing sequence (sn)n≥0 of positive integers, a numeration system is a way of expressing
natural numbers as a linear combination of the sn. Many different numeration systems, such as represen-
tation in base k, or the more exotic systems based on the Fibonacci numbers, have been proposed. For
example, recall that the Fibonacci numbers, sequence A000045 in the On-Line Encyclopedia of Integer
Sequences (OEIS), are defined by the recurrence Fn = Fn−1+Fn−2 for n≥ 2 and the initial values F0 = 0,
F1 = 1. Consider writing a non-negative integer n as a sum of distinct Fibonacci numbers Fi for i ≥ 2.
Some numbers, such as 12, have only one such representation (12 = 8+ 3+ 1 = F6 +F4 +F2), while
others have many: 8 = F6 = F5 +F4 = F5 +F3 +F2.

There are two very desirable characteristics of a numeration system. First, completeness: every
natural number should have a representation. Second, unambiguity: no natural number should have
two or more different representations. These two goals are typically achieved by restricting the types of
representations that are considered valid within the system. If a system achieves both goals, we say it is
perfect. For Fibonacci representations, various perfect systems have been proposed.

Among all possible perfect systems based on Fibonacci numbers, one is particularly useful: the
Zeckendorf or greedy representation. This representation can be computed as follows: first, choose the
largest index i such that Fi ≤ n. Then the representation for n is Fi plus the (recursively-computed)
representation for n−Fi. The representation for 0 is the empty sum of 0 Fibonacci numbers. A simple
induction now shows that the greedy algorithm produces a representation for every natural number, which
is evidently unique.

This representation was originally noted by Zeckendorf, but was first published by Lekkerkerker
[12] and only later by Zeckendorf himself [20]. It was also anticipated, in much more general form, by
Ostrowski [15].

An alternative (but equivalent) definition of Zeckendorf representation is to impose a condition that
valid representations must obey. For example, we could require that a representation be valid if and only
if no two consecutive Fibonacci numbers appear in the sum.

*Research funded by a grant from NSERC, 2018-04118.

http://dx.doi.org/10.4204/EPTCS.386.18
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://oeis.org/A000045

J. Shallit and S. L. Shan 229

It is convenient to express arbitrary sums of distinct Fibonacci numbers as strings of digits over a
finite alphabet (in analogy with base-k representation). Let x = a1 · · ·at be a string (or word) made up of
integer digits. We define its value as a Fibonacci representation as follows:

[x]F := ∑
1≤i≤t

aiFt+2−i. (1)

Note that these strings are in “most-significant-digit” first format. For example, [2101]F = 2F5 +F4 +
F2 = 14.

It is also useful to define a (partial) inverse to [x]F . By (n)F we mean the binary string x such that x
is the Zeckendorf representation of n; alternatively, such that [x]F = n and x contains no occurrence of
the block 11. In what follows, we adopt this string-based point of view almost exclusively. We can think
of the condition “no occurrence of the block 11” as a rule, specifying which representations are valid,
adopted precisely to guarantee both completeness and unambiguity.

In formal language theory, a language L is a (finite or infinite) collection of strings. A rule is then
encoded by the language or set of strings that obey the rule. Completeness then becomes the assertion
that for all n there exists a string x ∈ L such that [x]F = n, while unambiguity becomes the assertion that
there do not exist distinct strings x,y ∈ L such that [x]F = [y]F . 1

Let us look at another example involving the Fibonacci numbers, one that is much less well known:
the so-called lazy representation [3]. In this system, representation as a sum of Fibonacci numbers
corresponds (via Eq. (1)) to a binary string having no occurrence of the block 00 (where leading zeros
are not even considered). Once again, this rule provides a numeration system that is both complete
and unambiguous [3]. Table 1 gives both greedy (Zeckendorf) and lazy representations for the first few
natural numbers.

n 0 1 2 3 4 5 6 7 8 9 10 11
greedy ε 1 10 100 101 1000 1001 1010 10000 10001 10010 10100

lazy ε 1 10 11 101 110 111 1010 1011 1101 1110 1111

Table 1: Greedy and lazy Fibonacci representations.

The greedy and lazy representations are certainly not the only possible perfect numeration systems
based on the Fibonacci numbers. In fact, there are uncountably many such systems! These result from
making a choice, for all n having at least two different representations as sums of distinct Fibonacci
numbers, about which particular representation is chosen to be valid. (By a result of Robbins [17],
“most” numbers have more than one representation as a sum of distinct Fibonacci numbers.)

If we demand that the set of valid representations forms a regular language—that is, accepted by a
finite automaton; see Section 2—there are still infinitely many different systems (although only countably
many). For example, consider choosing the t’th largest possible representation for n in lexicographic
order (if there are at least t), and otherwise the lexicographically first. It will follow from results below
that, for each t ≥ 0, this choice gives a regular language Lt of valid representations.

Some natural questions then arise: given a language L encoding the “rule” a representation must
obey (such as no occurrence of the block 11, or no occurrence of the block 00), how can we determine if
the corresponding set of Fibonacci representations is complete and unambiguous? And if it is complete,

1We adopt the convention that two strings are considered to be the same if they differ only in the number of leading zeros.
Thus, for example, [100]F = [0100]F = 3 are the same representation.

230 Fibonacci Representations via Automata

how can we efficiently find a representation for a given number n? Up to now, each new system proposed
required a new proof, often a rather tedious case-based proof by induction. In this paper we provide a
general framework for answering these questions “automatically", via an algorithm, in the case where
the language of valid representations is regular.

These ideas are capable of generalization. For example, we can also consider representations for all
integers Z, instead of just the natural numbers N. This can be achieved in two distinct ways:

• By allowing a larger digit set, say, {−1,0,1};
• By using the so-called negaFibonacci system, based on the Fibonacci numbers of negative index

F−n for n≥ 1.

Once again, we would like a choice of valid representations that is complete and unambiguous.
In this paper we show how to decide these properties, provided that the set of valid representations

forms a regular language (which is indeed the case for all the proposed systems in the literature).
Here is an outline of the paper. In Section 2, we explain the basics of automata theory needed

to understand the rest of the paper. In Section 3, we discuss how to test completeness and ambiguity
for systems using digits 0 and 1 only. In Section 4 we discuss systems using digits −1,0,1 only. In
Section 5 we discuss representations for all integers, not just the natural numbers. In Section 6 we
discuss an entirely new type of Fibonacci representation based on dictionary order. Finally, in Section 7
we describe a few of the new Fibonacci representations we found through exhaustive search of small
automata.

2 The decision procedure and Walnut

We assume the reader is familiar with the basics of automata theory as discussed, for example, in [10].
The following particular case of a theorem of Büchi [6] (as later corrected by Bruyère et al. [5] is

our principal tool in the paper.

Theorem 1. There is a decision procedure that, given a first-order logical formula F involving natural
numbers, comparisons, automata, and addition, and no free variables, will decide the truth or falsity of
F. Furthermore, if F has free variables, the procedure constructs a DFA accepting those values of the
free variables (in Fibonacci representation) that make F evaluate to TRUE.

For more information about the specific case of the decision procedure for Fibonacci representation,
see [14].

We should explain how automata can process pairs, triples, and generally k-tuples of inputs. This

is done by replacing the input alphabet Σ with the alphabet

k times︷ ︸︸ ︷
Σ×Σ×·· ·×Σ . In other words, inputs are

k-tuples of alphabet symbols. The i’th input then corresponds to the concatenation of the i’th components
of all the k-tuples. Of course, this means that all k inputs have to have the same length; this is achieved
by padding shorter inputs, if necessary, with leading zeros.

The decision procedure of Theorem 1 has been implemented in free software called Walnut, origi-
nally created by Hamoon Mousavi [13]; also see the book [19]. We recall some of the basics of Walnut
syntax:

• eval evaluates a formula with no free variables and returns TRUE or FALSE; def defines an au-
tomaton for future use; reg defines a regular expression.

• In a regular expression, the period is an abbreviation for the entire alphabet.

J. Shallit and S. L. Shan 231

• & is logical AND, | is logical OR, => is logical implication, <=> is logical IFF, ~ denotes logical
NOT.

• A denotes ∀ (for all); E denotes ∃ (there exists).
• ?msd_fib tells Walnut to evaluate an arithmetic expression using Fibonacci representation.

We use Walnut to do the computations needed to verify that a given system is complete and unam-
biguous. For much more about Walnut, including a link to download it, visit

https://cs.uwaterloo.ca/~shallit/walnut.html .

3 Representation of natural numbers using digits 0 and 1 only

In this section we consider representations of the natural numbers by Fibonacci numbers using digits 0
and 1 only.

The first step is to find an automaton that can convert from an arbitrary Fibonacci representation to
the greedy or Zeckendorf representation. To do this we use the following simple observation:

Proposition 2. We can convert a binary string x to a Zeckendorf representation y for the same number
using the following algorithm: first append a 0 on the front, if necessary. Then scan the string from left
to right, replacing each occurrence of “ 011" successively with “ 100".

Proof. Clearly each such replacement does not change the value of [x]F . The algorithm terminates
because each replacement lowers the total number of 1’s by 1. Finally, the algorithm clearly cannot
result in two consecutive 1’s, because it introduces two consecutive 0’s, only the second of which can
later change to a 1.

We can implement this idea as a DFA C that takes two inputs in parallel, x and y, and accepts if and
only if both [x]F = [y]F and y is a valid Zeckendorf representation; that is, it contains no two consecutive
1’s. It suffices to keep track of [x′]F − [y′]F for the prefix x′ of x seen so far, and similarly for the prefix
y′ of y seen so far. Note that we assume that x and y have the same length, with the shorter of the two
prefixed by leading zeros, if necessary. We can think of this as a “converter” or “normalizer” that allows
us to turn arbitrary Fibonacci representations into Zeckendorf representations. It is depicted in Figure 1.
This automaton was given by Berstel [2] in a slightly different form. Also see [18].

Figure 1: DFA C for conversion to the Zeckendorf representation.

As an example, consider the input [0,1][1,0][1,0][1,1][0,0] to C, whose first components spell out
x = 01110 and whose second components spell out y = 10010. Starting in state 0, the automaton visits,
successively, states 1,2,0,3,0, and hence accepts—as it should, since [x]F = [y]F .

We now state one of our main results.

https://cs.uwaterloo.ca/~shallit/walnut.html

232 Fibonacci Representations via Automata

Theorem 3. There is an algorithm that, given rules that specify which representations are valid (in the
form of a regular language L of all valid representations), will decide if the corresponding numeration
system based on the Fibonacci numbers is complete and unambiguous for N.

Proof. Using Theorem 1, it suffices to express the properties of completeness and unambiguity as a
first-order logic formula F . Once this is done, the decision algorithm can determine if F is true or false.

Completeness says every integer has a representation in L. We can express this as follows:

∀n ∃x x ∈ L ∧ [x]F = n, (2)

Unambiguity says that no integer has two distinct representations in L. We can express this as follows:

¬∃x,y ∈ L (¬equal(x,y)) ∧ [x]F = [y]F . (3)

Here equal means that x and y are the same, up to leading zeros.

Furthermore, if L is a regular language that provides a system that is complete, we can find a rep-
resentation in L for n efficiently. The first step is to represent n in Fibonacci representation, say using
the greedy algorithm. Construct a new automaton from fcanon by using two intersections. The first
intersection is with an automaton with a first component that belongs to L, while the second component
is arbitrary. The second intersection is with an automaton where the first component is arbitrary, and the
second is of the form 0∗(n)F . This gives a new automaton of O(logn) states, and it now suffices to find
any accepting path (a path from the initial state to the final state). This can be done in linear time in the
number of states using depth-first or breadth-first search. This gives us an O(logn) algorithm to find a
representation. Thus we have proved:

Theorem 4. Suppose L is a regular language. If L is complete, we can find a representation for an
integer n in O(logn) time.

Remark 5. Here we use the convention of the so-called “word RAM" model, where we assume that n
fits in a single machine word, or more generally that we can perform basic operations on integers with
O(logn) bits in unit time.

All this can be carried out mechanically with Walnut. Here all we have to do is define the language L
of valid representations (say, with a regular expression) and type in the Walnut commands corresponding
to the two logical assertions (2) and (3). We illustrate this with two examples.

The first is the lazy representation mentioned previously, and discussed first by Brown [3]. The first
step is to give a regular expression defining a valid representation in Brown’s system:

reg lazyExclude {0,1} "0*1(0|1)*00(0|1)*":

def lazy "~$lazyExclude(s)":

This gives a 4-state automaton testing the lazy criterion that is depicted in Figure 2.
We test the completeness and unambiguity for Brown’s system as follows.

reg equal {0,1} {0,1} "([0,0]|[1,1])*":

eval brown1 "?msd_fib An Es $fcanon(s,n) & $lazy(s)":

eval brown2 "?msd_fib ~En,s,t $lazy(s) & $lazy(t) & (~$equal(s,t))

& $fcanon(s,n) & $fcanon(t,n) ":

Both return TRUE. Given these results, we have now proven that the lazy representation is complete and
unambiguous.

For a second example, see the Appendix.

J. Shallit and S. L. Shan 233

0

0

11

1

20
1

Figure 2: DFA for Brown’s lazy representation.

4 Representation using digits −1, 0, and 1

We now turn to representations using digits −1, 0, and 1 in the Fibonacci system.
Recently, Hajnal [9] described three Fibonacci representations using Eq. (1) to associate a string

x = etet−1 · · ·e2 ∈ {−1,0,1}∗ with a natural number n: alternating, even, and odd. Using induction and
a case-based argument, he proved that each of these three representations is complete and unambiguous.

Using automata, we can replace his rather long arguments with our general approach. We first de-
scribe each of his systems, and show that the set of valid representations for all natural numbers is a
regular language.

The alternating representation requires a representation to fulfill four conditions:

1. the most significant nonzero term is positive,
2. two adjacent nonzero terms cannot be of the same sign,
3. two adjacent nonzero terms have at least one zero in between, and
4. if there are two or more nonzero terms, then there has to be at least two zeros between the last and

the second last nonzero terms.

We denote a number n in this representation as [n]A. For example, [9]A = 101̄001, where 1̄ is used for
−1.

For the alternating representation, we can use the following Walnut code:

reg altInclude1 {-1,0,1} "(0*|0*1.*)":

reg altExclude1 {-1,0,1} ".*(10*1|[-1]0*[-1]).*":

reg altExclude2 {-1,0,1} ".*(1[-1]|[-1]1).*":

reg altInclude2 {-1,0,1} "(0*|0*10*|.*(100+[-1]|[-1]00+1)0*)":

def alt "~$altExclude1(s) & ~$altExclude2(s) & $altInclude1(s) & $altInclude2(s)":

The result is an automaton of 12 states that checks whether an input over the alphabet {−1,0,1} is
alternating, and is illustrated in Figure 3.

The even representation requires three conditions:

1. the most significant nonzero term is positive,
2. only positions indexed with even numbers, such as e2, can have nonzero terms, and
3. two adjacent nonzero terms cannot both be −1.

We denote a number n in this representation as [n]E . For example, [14]E = 101̄0001.

234 Fibonacci Representations via Automata

0

0

1

1

20
3-1

4

0

50

0
6

-1

7
0

81

90

1

0

10

0

0

1

-1

11
0

-1

0

Figure 3: DFA for the alternating condition.

reg evenInclude {-1,0,1} "(0*|0*1(0[-1]|01|00)*)":

reg evenExclude {-1,0,1} ".*[-1]0*[-1].*":

def even "$evenInclude(s) & ~$evenExclude(s)":

This gives us a 5-state automaton to check the even condition, which is illustrated in Figure 4.

0

0

11
20

0, 1

3-1

4

0

1 0

Figure 4: DFA for the even condition.

The odd representation adds an epsilon term to the sum in Eq. (1), therefore associating a string
etet−1 · · ·e2ε , where ε ∈ {−1,0}, with a number n. The odd representation requires the string to meet
three conditions:

1. the most significant nonzero term is positive,
2. only positions indexed with odd numbers (such as e3) and the epsilon term are allowed to be

nonzero, and
3. two adjacent nonzero terms cannot both be −1.

We denote a number n in this representation as [n]O. For example, [14]O = 1000101̄, where 1̄ is used for
ε =−1.

We express the odd representation conditions in Walnut as follows. Notice we relax the third con-
dition (required in [9]) slightly by limiting its application to only the string etet−1 · · ·e2 without the ε

term.

reg oddInclude {-1,0,1} "(0*|0*10([-1]0|10|00)*)":

reg oddExclude {-1,0,1} ".*[-1]0*[-1].*":

def odd "$oddInclude(s) & ~$oddExclude(s)":

J. Shallit and S. L. Shan 235

0

0

11
20

0, 1

3-1

4

0

1 0

Figure 5: DFA for the odd condition.

This gives us a 5-state automaton to check the odd condition, which is illustrated in Figure 5.
It now remains to use our technique to show that these representations are all complete and unam-

biguous. In order to do this, we need a “converter” automaton that can compare representations using
digits −1,0,1 to ordinary Zeckendorf representation. We can construct such an automaton based on
fcanon as follows. The idea is to use one automaton to “select” the positive digits of a representation,
another one to “select” the negative digits, and then do an (implicit) subtraction to obtain the value of the
representation.

reg posdigits {-1,0,1} {0,1} "([1,1]|[-1,0]|[0,0])*":

reg negdigits {-1,0,1} {0,1} "([-1,1]|[1,0]|[0,0])*":

def fcanon2 "?msd_fib Et,u,w,s $negdigits(x,t) & $posdigits(x,u) &

$fcanon(t,w) & $fcanon(u,s) & z+w=s":

This gives a 24-state automaton fcanon2, the analogue of fcanon, for doing the conversion.
Let us now check that the alternating representation of Hajnal is both complete and unambiguous.

reg same {-1,0,1} {-1,0,1} "([-1,-1]|[0,0]|[1,1])*":

eval altRep1 "?msd_fib An Es $fcanon2(s,n) & $alt(s)":

evaluates to TRUE, 4 ms

eval altRep2 "?msd_fib ~En,s,t $alt(s) & $alt(t) & (~$same(s,t))

& $fcanon2(s,n) & $fcanon2(t,n)":

evaluates to TRUE, 31 ms

Similarly, we can check the even and odd representations, as follows:

eval evenRep1 "?msd_fib An Es $fcanon2(s,n) & $even(s)":

evaluates to TRUE, 1 ms

eval evenRep2 "?msd_fib ~En,s,t $even(s) & $even(t) & (~$same(s,t))

& $fcanon2(s,n) & $fcanon2(t,n)":

evaluates to TRUE, 4 ms

eval oddRep1 "?msd_fib An (Es $fcanon2(s,n) & $odd(s)) |

(Et $fcanon2(t,n+1) & $odd(t))":

evaluates to TRUE, 7 ms

eval oddRep2 "~En,s,t $odd(s) & $odd(t) & (~$same(s,t))

& $fcanon2(s,n) & $fcanon2(t,n)":

evaluates to TRUE, 4 ms

This completes our proof that all three systems of Hajnal are complete and unambiguous.

236 Fibonacci Representations via Automata

Remark 6. We noticed, by testing the following, that this representation is also complete if ε ∈ {1,0}
instead of ε ∈ {−1,0} as required in [9].

eval oddRep3 "?msd_fib An

(Es $fcanon2(s,n) & $odd(s)) | (Et $fcanon2(t,n-1) & $odd(t))":

evaluates to TRUE, 4 ms

5 Representations for all integers

In this section we investigate two different ways to represent all integers (not just the natural numbers)
using Fibonacci representations.

Alpert [1] described a far-difference representation for Fibonacci numbers that writes every integer
(not just the natural numbers), with a Fibonacci numeration system using the digits −1,0,1. In Alpert’s
system, the far-difference representation requires the string to have

1. at least three zeros between any two nonzero terms of the same sign, and
2. at least two zeros between any two nonzero terms of different signs.

We use [n]A to denote a natural number in this representation: for example, [−38]A = 1̄0001̄001. One
nice feature of Alpert’s system is that it is very easy to negate an integer: all we have to do is change the
sign of each digit.2

We express the far-difference representation conditions in Walnut as follows.

reg exclude1 {-1, 0, 1} ".*([-1][-1]|[-1]0[-1]|[-1]00[-1]|11|101|1001).*":

reg exclude2 {-1, 0, 1} ".*([-1]1|1[-1]|10[-1]|[-1]01).*":

def alpert "~$exclude1(s) & ~$exclude2(s)":

This gives a 7-state automaton that checks the Alpert condition, as illustrated in Figure 6.

0

0

1

-1

2
1

30

40
5

0

60
0 1

0

-1

Figure 6: DFA for the Alpert conditions.

To check completeness and ambiguity, we have to check positive and negative integers separately.
In addition to fcanon2, we need an automaton fcanon2_neg that takes a string x over the alphabet
{−1,0,1} and a natural number n≥ 0 as input and accepts if [x]F =−n.

2The three systems proposed by Hajnal also exhibit this property. Therefore, if we exclude the condition stating "the most
significant nonzero term is positive" from the three systems, they can be perfect representations for all integers.

J. Shallit and S. L. Shan 237

def fcanon2_neg "?msd_fib Et,u,w,s $negdigits(x,t) & $posdigits(x,u) &

$fcanon(t,w) & $fcanon(u,s) & z+s=w":

We can then prove the completeness and unambiguity of this system as follows.

eval farDiff1_pos "?msd_fib An Es $fcanon2(s,n) & $alpert(s)":

eval farDiff1_neg "?msd_fib An Es $fcanon2_neg(s,n) & $alpert(s)":

both evaluate to TRUE, 3 ms

eval farDiff2_pos "?msd_fib ~En,s,t $alpert(s) & $alpert(t)

& (~$same(s,t)) & $fcanon2(s,n) & $fcanon2(t,n)":

eval farDiff2_neg "?msd_fib ~En,s,t $alpert(s) & $alpert(t)

& (~$same(s,t)) & $fcanon2_neg(s,n) & $fcanon2_neg(t,n)":

both evaluate to TRUE, 9 ms

Thus we have easily verified the correctness of Alpert’s conditions.
Bunder [7] invented a different numeration system for all integers, called the negaFibonacci system.

In this system, we write integers as a sum of distinct Fibonacci numbers with negative indices, subject to
the condition that no two consecutive Fibonacci numbers can be used. Since F−n = (−1)n+1Fn for n≥ 1,
this is the same as enforcing the requirement in a Fibonacci representation atFt + · · ·+a2F2 +a1F1 with
digits ai ∈ {−1,0,1}, (a) only the terms with odd indices are allowed to be positive and only the terms
with even indices are allowed to be negative and (b) no two consecutive nonzero digits can appear. We
can enforce this condition as follows:

reg bunder1 {-1,0,1} ".*1.(..)*":

reg bunder2 {-1,0,1} ".*[-1](..)*":

reg bunder3 {-1,0,1} ".*((1[-1])|([-1]1)).*":

def bunder "~$bunder1(x) & ~$bunder2(x) & ~$bunder3(x)":

which gives the automaton in Figure 7. We can then check completeness and unambiguity much as

0

0
1-1 2

1

30 4
0-1

0
10

Figure 7: DFA for the Bunder conditions.

we did for Alpert’s system, but there is a new wrinkle: representations have an extra digit at the end,
corresponding to the term a1F1, that must be taken care of. To do this we introduce a “shifter" automaton
that shifts a representation to the right, and a “lastbit" that determines if the last bit of a representation is
1 or 0. The shifter is called rshiftfib and is displayed in Figure 8.

Then Bunder’s representation can be verified to be complete and unambiguous, as follows:

reg lastbit {-1,0,1} {0,1} "([0,0]|[1,0]|[-1,0])*([1,1]|[0,0])":

def fcanon3 "?msd_fib Et,u,m $rshiftfib(x,t) &

238 Fibonacci Representations via Automata

0

[0,0] 1[-1,0]

2[1,0]
[0,-1]

[-1,-1]

[1,-1]

[0,1]

[-1,1]

[1,1]

Figure 8: Shifter automaton.

$lastbit(x,u) & $fcanon2(t,m) & z=m+u":

def fcanon3_neg "?msd_fib Et,u,m $rshiftfib(x,t) &

$lastbit(x,u) & $fcanon2_neg(t,m) & z=m-u":

eval bunder1_pos "?msd_fib An Es $fcanon3(s,n) & $bunder(s)":

eval bunder1_neg "?msd_fib An Es $fcanon3_neg(s,n) & $bunder(s)":

both evaluate to TRUE, 1 ms

eval bunder2_pos "?msd_fib ~En,s,t $bunder(s) & $bunder(t)

& (~$same(s,t)) & $fcanon3(s,n) & $fcanon3(t,n)":

eval bunder2_neg "?msd_fib ~En,s,t $bunder(s) & $bunder(t)

& (~$same(s,t)) & $fcanon3_neg(s,n) & $fcanon3_neg(t,n)":

both evaluate to TRUE, 12 ms

6 Maximum dictionary order representation

In this section we consider an entirely new Fibonacci representation based on dictionary order. We first
introduce how strings are compared in dictionary order. Let s = s1s2 · · ·sm and t = t1t2 · · · tn where m≤ n
be two strings. Let i such that 1≤ i≤m be the first position where si 6= ti. If si < ti, then s< t in dictionary
order; otherwise s > t. For example, 1011 < 1100, but 1011 > 1001. If there is no such position i, then
either s = t or s is a proper prefix of t. In this latter case we say s < t. For example, 110 = 110 and
110 < 1100.

Consider a representation of natural numbers by always choosing the largest string representation
in dictionary order for every number. Since every number has a Fibonacci-based representation, the
representation is complete. Since we choose only one Fibonacci-based representation for each number,
the representation is unambiguous. Representations of the first few numbers are given in Table 2.

n 1 2 3 4 5 6 7 8 9 10 11
(n)D 1 10 11 101 110 111 1010 1100 1101 1110 1111

Table 2: Representations for the first few numbers.

We now show that

J. Shallit and S. L. Shan 239

Theorem 7. The set of largest Fibonacci representations in dictionary order forms a regular language.

Proof. The idea is to construct a comparator DFA CD that can take two representations in parallel and
decide if one is greater than the other, in dictionary order.

In order to take two representations in parallel, they would have to be the same length, and therefore
the shorter one would have to be padded with leading zeros to make it the same length as the longer one.
In this case, it is not hard to see that no automaton can do the needed comparison.

However, in our case, we can take advantage of the following fact: two Fibonacci representations for
the same number cannot be of wildly different lengths.

Lemma 8. The lengths of two Fibonacci-based representation strings for the same natural number differ
by one at most (not counting leading zeros).

Proof. Let s and t be two Fibonacci representations for a natural number m. Without loss of generality,
assume that s is longer. Suppose the leading 1 digit of s corresponds to Fi. If s and t differ in length by
more than one, then t is a sum of some Fj’s where j≤ i−2. Now a classic identity on Fibonacci numbers
states that ∑0≤ j≤n Fj = Fn+2−1. Using this relation, we conclude that ∑

i−2
j=2 Fj = Fi−2 < Fi. Therefore

s and t do not represent the same number.

Using this fact, it is indeed possible to compare two strings in dictionary order with an automaton.
It is shown in Fig. 9 and takes two inputs in parallel, s′ and t ′. Let s and t be s′ and t ′ without leading

Figure 9: DFA CD for comparing strings in dictionary order.

zeros. The DFA CD accepts if and only if s is greater than t in dictionary order. We have three cases to
consider: |s|> |t|, |s|< |t|, and |s|= |t|. We now discuss how the 8 states of CD relate to these 3 cases.

• State 0 is the initial state.
• State 1 is reached if |s|> |t|; that is, if s′ starts with 1 and t ′ starts with 01.
• State 2 is reached when |s|> |t|, s ends in 1, and based on the inputs so far, t is a proper prefix of

s therefore s > t.
• State 3 is reached when |s|> |t|, s ends in 0, and based on the inputs so far, t is a proper prefix of

s therefore s > t.
• State 4 is reached when |s|< |t| and t ends in 1, and based on the inputs so far, s is a proper prefix

of t therefore s < t.

240 Fibonacci Representations via Automata

• State 5 is reached when |s|< |t| and t ends in 0, and based on the inputs so far, s is a proper prefix
of t therefore s < t.

• State 6 is reached when |s|= |t| and, based on the inputs so far, we have s = t.
• State 7 is one of the accepting states. It is reached when we can identify a position i such that

si > ti . Additional symbols read, starting from this state, cannot change the comparison result.

It is now easy to verify that the transitions maintain the invariants corresponding to each state, and we
leave this to the reader.

Using the comparator automaton, we can build a DFA D that finds the maximum dictionary order
representation for each natural number. The automaton D takes two inputs in parallel: a number n in
Zeckendorf representation and a string s ∈ {0,1}∗; and it only accepts if, out of all Fibonacci-based
representations of n, the string s is the greatest based on dictionary order. We implement D in Walnut as
follows.

def dictOrder "$fcanon(s,n) & (At $fcanon(t,n) => ($dGreater(s,t)|$equal(s,t)))":

Here dictOrder implements the automaton D; fcanon, the automaton C; and dGreater, the automaton
CD. The resulting automaton has 7 states and is depicted in Figure 10.

0

[0,0]
1[1,0]

2

[1,1]

3
[0,1]

4
[0,0]

[1,1]
5[0,1]

[1,1]

[0,0]

6[1,1]
[0,0]

Figure 10: DFA D for converting to dictionary order representation.

7 Finding new perfect systems of small complexity via exhaustive search

We see that a Fibonacci-based representation of natural numbers can be represented by a language over
the binary alphabet {0,1}. If the language is regular, we can express it with a DFA and test its com-
pleteness and unambiguity in Walnut. For example, the Zeckendorf representation can be expressed as
a 3-state DFA and the Brown one, a 4-state DFA. Therefore we were curious about whether there exist
other DFAs with a small number of states that can qualify as complete and unambiguous representations.
We conducted an exhaustive search to find such automata and found a surprising number of them. If
we allow up to 7 states, we found more than 28 new complete and unambiguous representations.3 We
present two interesting examples out of the seven new 6-state representations.

Theorem 9. Let L = 0∗(ε|1|10(ε|0|1)1∗(01+)∗(ε|0)). Then L is complete and unambiguous.

Proof. We use the following Walnut code:

3There could be more as the heuristics we used to trim our search tree can sometimes exclude eligible representations if, for
two numbers m,n where m < n, the representation of m is longer than that of n.

J. Shallit and S. L. Shan 241

reg one0sq {0,1} "0*(()|1|10(()|0|1)1*(01+)*(()|0))":

eval one0sqTestC "?msd_fib An Ex $one0sq(x) & $fcanon(x,n)":

eval one0sqTestU "?msd_fib ~En,x,y $one0sq(x) & $one0sq(y)

& (~$equal(x,y)) & $fcanon(x,n) & $fcanon(y,n)":

Both returned TRUE. Here one0sq tests membership in L.

Notice this representation allows 100 at the very beginning but no other consecutive 0’s are allowed.
This restriction on 00 blocks is very similar to Brown’s. In fact, Brown’s can be expressed, in the form
of a regular expression, as

0∗(ε|11∗(01+)∗(ε|0)) = 0∗(ε|1|10(ε|0|1)1∗(01+)∗(ε|0)).
We can imagine that a new representation could be generated for allowing a block of 00 after the

second 1, or the third, or after both the first and third 1, or the first and fourth, etc. This offers another
construction of infinitely many perfect representations.

Theorem 10. Let L be the language accepted by the DFA Z. Then L is complete and unambiguous.

Figure 11: The DFA Z.

Proof. We use the following Walnut code:

eval azTestC "?msd_fib An Ex $az(x) & $fcanon(x,n)":

eval azTestU "?msd_fib ~En,x,y $az(x) & $az(y) & (~$equal(x,y))

& $fcanon(x,n) & $fcanon(y,n)":

Both returned TRUE. Here az tests membership in L.

The strings in L can end with a single 1 or the block 11 or an odd number of 0’s, but not an even
number of 0’s. Additionally, the strings cannot contain the block “11” anywhere but the end. This
restriction on “11” is reminiscent of the Zeckendorf representation.

8 Final remarks

The ideas in this paper can be extended in many different ways. For example, we could consider rep-
resentations in terms of Fibonacci numbers of both positive and negative index with various constraints
[16], or representations in terms of sums of the Lucas numbers [4], or other linear recurrences, such as
the Pell numbers [11] or Tribonacci numbers [8]. The automaton-based approach can be used in all of
these cases.

242 Fibonacci Representations via Automata

References
[1] H. Alpert (2009): Differences of multiple Fibonacci numbers. INTEGERS 9, doi:10.1515/INTEG.2009.061.

Paper #A57.
[2] J. Berstel (2001): An exercise on Fibonacci representations. RAIRO Inform. Théor. App. 35, pp. 491–498,

doi:10.1051/ita:2001127.
[3] J. L. Brown, Jr. (1965): A new characterization of the Fibonacci numbers. Fibonacci Quart. 3(1), pp. 1–8.
[4] J. L. Brown, Jr. (1969): Unique representation of integers as sums of distinct Lucas numbers. Fibonacci

Quart. 7, pp. 243–252.
[5] V. Bruyère, G. Hansel, C. Michaux & R. Villemaire (1994): Logic and p-recognizable sets of integers. Bull.

Belgian Math. Soc. 1, pp. 191–238, doi:10.36045/bbms/1103408547. Corrigendum, Bull. Belg. Math. Soc. 1
(1994), p. 577.

[6] J. R. Büchi (1960): Weak second-order arithmetic and finite automata. Zeitschrift für mathematische Logik
und Grundlagen der Mathematik 6, pp. 66–92, doi:10.1002/malq.19600060105. Reprinted in S. Mac Lane
and D. Siefkes, eds., The Collected Works of J. Richard Büchi, Springer-Verlag, 1990, pp. 398–424.

[7] M. W. Bunder (1992): Zeckendorf representations using negative Fibonacci numbers. Fibonacci Quart. 30,
pp. 111–115.

[8] L. Carlitz, R. Scoville & V.E. Hoggatt, Jr. (1972): Fibonacci representations of higher order. Fibonacci
Quart. 10, pp. 43–69, 94.

[9] P. Hajnal (2023): A short note on numeration systems with negative digits allowed. Bull. Inst. Combin. Appl.
97, pp. 54–66.

[10] J. E. Hopcroft & J. D. Ullman (1979): Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley.

[11] A. F. Horadam (1993): Zeckendorf representations of positive and negative integers by Pell numbers. In
G. E. Bergum, A. N. Philippou & A. F. Horadam, editors: Applications of Fibonacci Numbers, 5, Kluwer,
pp. 305–316, doi:10.1007/978-94-011-2058-6_29.

[12] C. G. Lekkerkerker (1952): Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci.
Simon Stevin 29, pp. 190–195.

[13] H. Mousavi (2016): Automatic theorem proving in Walnut. Arxiv preprint arXiv:1603.06017 [cs.FL], avail-
able at http://arxiv.org/abs/1603.06017.

[14] H. Mousavi, L. Schaeffer & J. Shallit (2016): Decision Algorithms for Fibonacci-Automatic Words, I: Basic
Results. RAIRO Inform. Théor. App. 50, pp. 39–66, doi:10.1051/ita/2016010.

[15] A. Ostrowski (1922): Bemerkungen zur Theorie der Diophantischen Approximationen. Abh. Math. Sem.
Hamburg 1, pp. 77–98,250–251, doi:10.1007/BF02940595. Reprinted in Collected Mathematical Papers,
Vol. 3, pp. 57–80.

[16] H. Park, B. Cho, D. Cho, Y. D. Cho & J. Park (2020): Representations of integers as sums of Fibonacci
numbers. Symmetry 12(10), doi:10.3390/sym12101625. Paper 1625.

[17] N. Robbins (1996): Fibonacci partitions. Fibonacci Quart. 34, pp. 306–313.
[18] J. Shallit (2021): Robbins and Ardila meet Berstel. Inform. Process. Lett. 167, doi:10.1016/j.ipl.2020.106081.

Paper 106081.
[19] J. Shallit (2022): The Logical Approach to Automatic Sequences: Exploring Combinatorics on

Words with Walnut. London Math. Soc. Lecture Notes Series 482, Cambridge University Press,
doi:10.1017/9781108775267.

[20] E. Zeckendorf (1972): Représentation des nombres naturels par une somme de nombres de Fibonacci ou de
nombres de Lucas. Bull. Soc. Roy. Liège 41, pp. 179–182.

https://doi.org/10.1515/INTEG.2009.061
https://doi.org/10.1051/ita:2001127
https://doi.org/10.36045/bbms/1103408547
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1007/978-94-011-2058-6_29
http://arxiv.org/abs/1603.06017
https://doi.org/10.1051/ita/2016010
https://doi.org/10.1007/BF02940595
https://doi.org/10.3390/sym12101625
https://doi.org/10.1016/j.ipl.2020.106081
https://doi.org/10.1017/9781108775267

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 243–252, doi:10.4204/EPTCS.386.19

© N. Tran
This work is licensed under the
Creative Commons Attribution License.

Separating Words from Every Start State
with Horner Automata

Nicholas Tran
Santa Clara University

Santa Clara, CA 95053

ntran@scu.edu

We show that a well-known family of deterministic finite automata Hb,m can be used to distinguish
distinct binary strings of the same length from every start state. Further, we establish a lower bound of
Ω(
√

n/ logn) and an upper bound of O(
√

n logn log logn) on the number of states of Hb,m necessary
to achieve this type of separation. Our latter result improves the currently best known O(n) upper
bound for arbitrary DFA.

1 Introduction

Given two distinct strings (or words) over some alphabet, we are interested in the minimum size of
deterministic finite automata that end in different states after reading the strings for every (common) start
state. We call this the ∀-separation distance between strings, and when the alphabet is nonunary, we use
D∀(n) to denote the largest ∀-separation distance between two distinct strings of length n. This variant
of the separating words problem was recently introduced and studied in [9], where a lower bound of
Ω(logn) and an upper bound of n+ 1 on D∀(n) were established. The main result of this paper is an
improved O(

√
n logn log logn) upper bound on D∀(n).

The original separating words problem was studied in [4, 6, 3, 10, 2]. The standard notion of sepa-
ration words by deterministic finite automata requires one string to be accepted and the other rejected. It
is clearly equivalent to the definition of separation stated initially in [4] that does not involve accepting
states: a deterministic finite automaton separates two strings if it ends in different states after reading
the strings for some (common) start state. We use D∃(n) to denote the largest separation distance of this
type between two distinct strings of length n for nonunary alphabets. The best known upper bound on
D∃(n) is O(n1/3 log7 n) [2], and the best known lower bound on D∃(n) is Ω(logn) [3]. It is known that
the separation distances are tightly bound by logn for strings of different lengths m < n (in particular,
for distinct strings over unary alphabets), and that D∃(n) and D∀(n) do not depend on the (nonunary)
alphabet size. Table 1 lists values of D∃(n) and D∀(n) for small values of n, obtained via exhaustive
search1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
D∃(n) 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5
D∀(n) 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5

Table 1: Values of D∃(n) and D∀(n) for 1≤ n≤ 18.

1These results were computed using a C++ program running on a Linux workstation with Intel® Core™ i7-4790S CPU @
3.20GHz and 16 GB RAM.

http://dx.doi.org/10.4204/EPTCS.386.19
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

244 Separating words from every start state with Horner automata

If the separating automaton is required to end in different states for every pair of start states, then
the largest so-called ∀2-separation distance between two distinct strings of length n is exactly n+1 and
unbounded between strings of different lengths (i.e., they may not be separable). At the other extreme,
if the separating automaton is required to end in different states for some pair of start states, then the
largest so-called ∃2-separation distance between two distinct strings (regardless of lengths) is 2. These
and other results can be found in [9].

The best lower bound of Ω(logn) on D∃(n) applies trivially to D∀(n); it is not known if a stronger
lower bound holds for the latter. On the other hand, the best upper bound of O(n1/3 log7 n) on D∃(n) does
not readily apply to D∀(n). In fact, it is not immediately clear how to establish even a looser upper bound
such as n+ 1. In this paper we show how to adapt the technique of counting the number of cyclotomic
factors of certain polynomials [10, 2] to obtain an O(

√
n logn log logn) upper bound on D∀(n). Our result

improves the currently best known O(n) upper bound obtained in [9].
Specifically, we interpret each nonempty binary string s as the representation of an integer Ns,b in

some base b and show how to compute Ns,b mod m for some modulus m using a familiar deterministic
finite automaton Hb,m with m states and dependent only on b and m. We then show that if s and t are dis-
tinct binary strings of length n≥ 1, then Nb,s 6≡Nb,t (mod m) for some 0≤ b<m∈O(

√
n logn log logn).

Hence Hb,m ∃-separates s and t, and in fact we show that Hb,m ∀-separates s and t. On the other hand, we
show that for every n≥ 1, there are distinct binary strings s and t of length n such that the smallest Hb,m
that ∀-separates s and t have Ω(

√
n/ logn) states.

The rest of this paper is organized as follows. Section 2 reviews basic definitions about separat-
ing words with automata and states some useful number-theoretic facts. The next section contains the
main results: Subsection 3.1 presents so-called Horner automata Hb,m and shows how to use them to
∀-separate strings, Subsection 3.2 proves an Ω(

√
n/ logn) lower bound on the size of Hb,m required to

∀-separate two distinct binary strings of length n, and Subsection 3.3 establishes an O(
√

n logn log logn)
corresponding upper bound. Section 4 discusses ideas for future work.

2 Preliminaries

The symbols of a string s of length n ≥ 1 from left to right are denoted by s0,s1, . . . ,sn−1. The natural
and binary logarithms are denoted by ln and log respectively. We use the following simplified definition
of deterministic finite automata that does not specify an initial state or accepting states:

Definition 1. A deterministic finite automaton (DFA) is a triple

M = (Q,Σ,δ),

where Q is a finite set of states, Σ is an alphabet, and δ : Q×Σ→ Q is a transition function. We use |M|
to denote the number of states of M and refer to it as the size of M.

The extended transition function δ ′ : Q×Σ∗→ Q is defined recursively:

1. δ ′(q,ε) = q, where ε is the empty string, for q ∈ Q;

2. δ ′(q,xa) = δ (δ ′(q,x),a) for a ∈ Σ, x ∈ Σ∗ and q ∈ Q.

The first and last states in the sequence of states that M enters when reading a string from left to right are
called the start and end state respectively.

Definition 2. Let x and y be strings over an alphabet Σ. We say a DFA M

• ∃-separates x and y if δ ′(s,x) 6= δ ′(s,y) for some s ∈ Q;

N. Tran 245

• ∀-separates x and y if δ ′(s,x) 6= δ ′(s,y) for every s ∈ Q.

Example 1. Let s = 0000 0000 and t = 1111 1100.
The two-state DFA in Fig. 1 (left) ∃-separates s and t because a = δ ′(a,s) 6= δ ′(a, t) = b, and it is

clearly a smallest such automaton. On the other hand, this DFA does not ∀-separate s and t because
δ ′(b,s) = δ ′(b, t) = b.

The four-state DFA in Fig. 1 (right) ∀-separates s and t because

a = δ
′(a,s) 6= δ

′(a, t) = b,

b = δ
′(b,s) 6= δ

′(b, t) = a,

c = δ
′(c,s) 6= δ

′(c, t) = a,

d = δ
′(d,s) 6= δ

′(d, t) = a.

It is shown to be a smallest such automaton in [9].

Figure 1: The DFA on the left ∃-separates 0000 0000 and 1111 1100 but does not ∀-separate them. The
DFA on the right ∀-separates the strings.

The following facts can be found in standard texts on number theory, e.g., [5]. The Prime Number
Theorem states that π(x), the number of primes less than or equal to x, is approximately x/ lnx, i.e.,

lim
x→∞

π(x)
x

lnx
= 1.

Bertrand’s postulate states that for every n > 1, there is a prime p such that n < p < 2n. For every
integer n ≥ 1, the nth cyclotomic polynomial Φn(x) is defined as the polynomial whose zeros are the
primitive nth roots of unity:

Φn(x) = ∏
1≤k≤n

gcd(k,n)=1

(x− e2πik/n).

We list relevant properties of cyclotomic polynomials here. The coefficients of Φn(x) are integers, and
its degree is φ(n), the Euler’s totient function; it is known that φ(n) ∈ Ω(n/ log logn) [7] and that the
function x/ log logx is increasing when x ≥ 6 (e.g., Wolfram|Alpha). The cyclotomic polynomials are
irreducible and co-prime over Q, i.e., gcd(Φn(x),Φm(x)) = 1 for n 6= m. Finally, Φn(x) divides xn−1 for
all n≥ 1.

246 Separating words from every start state with Horner automata

Example 2. The properties listed above can be seen to hold for the first few cyclotomic polynomials:

Φ1(x) = x−1,

Φ2(x) = x+1,

Φ3(x) = x2 + x+1,

Φ4(x) = x2 +1,

Φ5(x) = x4 + x3 + x2 + x+1,

Φ6(x) = x2− x+1.

The set of integers modulo m is denoted Zm, and the set of polynomials in x with integer coefficients
is denoted Z[X]. A polynomial P(x) ∈ Z[X] is said to vanish modulo m if P(x) ≡ 0 (mod m) for all
x ∈ Z. Lagrange’s theorem states that if P(x) ∈ Z[X] has degree n≥ 1 and p is a prime, then either P(x)
has at most n zeros modulo p, or all coefficients of P(x) are divisible by p. By Fermat’s little theorem,
xp− x vanishes modulo p when p is prime.

We associate with each binary string s of length n≥ 1 the polynomial

s(x) =
n−1

∑
j=0

s jxn−1− j

with coefficients in Z2. If s and t are distinct binary strings of length n ≥ 1, s(x)− t(x) is a nonzero
polynomial of degree at most n−1 with coefficients in {−1,0,1}.
Example 3. Again, let s = 0000 0000 and t = 1111 1100. The associated polynomials are s(x) = 0 and
t(x) = x7 + x6 + x5 + x4 + x3 + x2. Their difference s(x)− t(x) is −(x7 + x6 + x5 + x4 + x3 + x2).

This difference polynomial vanishes modulo 2 because

−(07 +06 +05 +04 +03 +02) = 0 ≡ 0 (mod 2),

−(17 +16 +15 +14 +13 +12) =−6 ≡ 0 (mod 2).

Similarly, it also vanishes modulo 3 because

−(07 +06 +05 +04 +03 +02) = 0 ≡ 0 (mod 3),

−(17 +16 +15 +14 +13 +12) =−6 ≡ 0 (mod 3),

−(27 +26 +25 +24 +23 +22) =−252 ≡ 0 (mod 3).

However, s(x)− t(x) does not vanish modulo 5 because

−(17 +16 +15 +14 +13 +12) =−6 6≡ 0 (mod 5).

We will see in the next section that the above observation can be deduced by noting that

x5− x = x(x−1)(x+1)(x2 +1)

does not divide s(x)− t(x) over the rationals:

−(x7 + x6 + x5 + x4 + x3 + x2) = −x2(x+1)(x2− x−1)(x2 + x+1).

N. Tran 247

3 Main Results

In this section we introduce Horner automata and show how to use them to ∀-separate strings. We then
establish almost matching lower bound and upper bound on the size of the smallest Horner automata that
∀-separate two distinct binary strings of length n.

3.1 Horner automata and ∀-separation

For 0≤ b < m, let Hb,m be the deterministic finite automaton with m states 0, 1, . . ., m−1 and transition
function δ (i,a) = (ib+a) mod m for a ∈ {0,1}; note that the input alphabet is binary. The special cases
H2,m are usually introduced in an introductory course on automata theory to recognize binary strings
representing integers divisible by m. They are named Horner automata in [8], because on binary input
s and start state 0, they compute the value of the associated polynomial s(b) using Horner’s rule and end
in state s(b) mod m:

δ
′(0,s) = ((· · ·((0b+ s0)b+ s1)b+ · · ·+ sn−2)b+ sn−1) mod m = s(b) mod m.

In other words, these automata “compute” Ns,b mod m, where Ns,b is the integer represented by binary
string s in base b (but they are not the smallest ones to do so [1]). We prove a slightly stronger statement
of this fact in the following lemma.

Lemma 1. Let 0 ≤ b, i < m be integers and s be a binary string of length n ≥ 1. Starting in state i, the
Horner automaton Hb,m ends in state (ibn + s(b)) mod m after reading s.

Proof. By induction on n. When n = 1, the string s is just symbol s0, and the associated polynomial s(x)
is the constant polynomial s0. Starting in state i, Mb,m ends in state

δ
′(i,s0) = (ib+ s0) mod m = (ib1 + s(b)) mod m,

after reading s, so the lemma holds.
Assume that the lemma holds for n and let s = s0s1 . . .sn be a binary string of length n+1. Starting

in state i on input s, the automaton Hb,m ends in state

δ
′(i,s) = δ

′(i,s0 . . .sn−1sn)

= δ (δ ′(i,s0 . . .sn−1),sn)

= δ ((ibn +
n−1

∑
j=0

s jbn−1− j) mod m,sn)

= (ibn+1 +
n−1

∑
j=0

(s jbn− j)+ sn) mod m

= (ibn+1 +
n

∑
j=0

s jbn− j) mod m

= (ibn+1 + s(b)) mod m.

248 Separating words from every start state with Horner automata

Example 4. Fig. 2 shows the automaton H2,5 on the left. On input s = 10 1111 and start state 0, it ends
in state s(2) mod 5 = 25 +23 +22 +21 +20 = 47 mod 5 = 2. In contrast, on input t = 11 1011 and start
state 0, it ends in state t(2) mod 5 = 25+24+23+21+20 = 59 mod 5 = 4. Thus, H2,5 ∃-separates s and
t, and in fact, it ∀-separates s and t due to Lemma 1. We demonstrate in general this important property
of Horner automata below.

Figure 2: Horner automata H2,5 (left) and H1,2 (right)

It is natural to study the separation distance between two binary strings of the same length by Horner
automata. We define this notion formally and study its properties here.

Definition 3.

1. The Horner distance between two distinct binary strings s and t, denoted by dH(s, t), is the smallest
m such that Hb,m ∃-separates s and t for some 0≤ b < m.

2. The Horner separation distance, denoted by DH(n), is the maximum Horner distance over all pairs
of distinct binary strings s and t of length n, for n≥ 1.

We now show that the Horner distance between two distinct binary strings s and t of the same length
is always defined, and furthermore, it is an upper bound of the ∀-distance between s and t.

Lemma 2. Let s and t be binary strings of length n. The following are equivalent:

1. s and t are distinct;

2. s and t are ∃-separated by Hb,m for some 0≤ b < m≤ 2n;

3. s and t are ∀-separated by Hb,m for some 0≤ b < m≤ 2n.

Proof. (1)⇒ (2): Let s and t be two distinct binary strings of length n. When n = 1, there is only one
pair of distinct strings 0 and 1, and they are ∃-separated by H1,2 (shown in Fig. 2 on the right) when
started in state 0. For n > 1, by Bertrand’s postulate, there is a prime p such that n < p < 2n. The
polynomial d(x) = s(x)− t(x) has degree at most n−1, coefficients in {−1,0,1}, and not all coefficients
are zero, because s and t are distinct. Thus, by Lagrange’s theorem d(x) has at most n− 1 zeros in Zp,
so there exists 0≤ b < p such that d(b) 6≡ 0 (mod p). Since d(b) = s(b)− t(b), we have s(b)− t(b) 6≡ 0
(mod p), or s(b) 6≡ t(b) (mod p). Thus, Hb,p ∃-separates s and t on start state 0.

(2) ⇒ (3): Suppose Hb,m separates binary strings s and t of length n on start state i0 for some
0≤ b, i0 < m≤ 2n. By Lemma 1, i0bn+s(b) 6≡ i0bn+ t(b) (mod m), so ibn+s(b) 6≡ ibn+ t(b) (mod m)
for all 0≤ i < m. Thus, s and t are ∀-separated by Hb,m.

(3) ⇒ (1): Suppose s and t are binary strings of length n that are ∀-separated by Hb,m for some
0≤ b < m≤ 2n. Then s(b) 6≡ t(b) (mod m), so s(x) 6= t(x), and hence s 6= t.

N. Tran 249

3.2 Lower bound on the Horner separation distance DH(n)

We use a simple information-theoretic argument to show that the Horner separation distance DH(n) is at
least Ω(

√
n/ logn).

Theorem 1. DH(n) ∈Ω(
√

n/ logn) for n≥ 1.

Proof. Let s and t be distinct binary strings of length n. If they cannot be ∃-separated by a Horner
automaton of size M or less, the values of their polynomials s(x) and t(x) must be congruent modulo m
for all 0 ≤ b < m and 2 ≤ m ≤ M. The congruence classes of these values can be encoded in a binary
string (called a signature) of length at most

M

∑
m=2

m−1

∑
b=0

(logm)≤
M

∑
m=2

m−1

∑
b=0

(logM) ∈ O(M2 logM) ∈ O(M2 logn)

due to the upper bound on M in terms of n given by Lemma 2. There are 2O(M2 logn) such signatures and
2n binary strings of length n, so to ensure that different s and t have different signatures and ∃-separable
by a Horner automaton of size DH(n), we must have 2n≤ 2O(D2

H(n) logn), or n∈O(D2
H(n) logn), and hence

DH(n) ∈Ω(
√

n/ logn).

3.3 Upper bound on the Horner separation distance DH(n)

We begin with an observation that for large enough prime p, a polynomial P(x) whose coefficients are in
{−1,0,1} vanishes modulo p if and only it is divisible by xp− x.

Lemma 3. Let P(x) = ∑
n
j=0 p jx j be a polynomial of degree n≥ 0 with coefficients p j ∈ {−1,0,1}, and

let p ≥ 1+
√

n be a prime. The polynomial P(x) vanishes modulo p if and only if P(x) = (xp− x)Q(x)
for some Q(x) ∈ Z[x].

Proof. Suppose P(x) = (xp−x)Q(x) for some polynomial Q(x)∈Z[x]. By Fermat’s little theorem, xp−x
vanishes modulo p, so P(x) also vanishes modulo p.

Conversely, suppose P(x) vanishes modulo p. Since P(0) = p0 ≡ 0 (mod p), and p0 ∈ {−1,0,−1},
we have p0 = 0. The division algorithm for integral polynomials says that

P(x) = (xp− x)Q(x)+R(x)

for some Q(x) = ∑
n−p
j=0 q jx j, R(x) = ∑

p−1
j=0 r jx j ∈ Z[x], where the degree of R(x) is less than p. Since both

P(x) and xp−x vanish modulo p, so does R(x). Because R(x) has p zeros modulo p but its degree is less
than p, by Lagrange’s theorem, all coefficients of R(x) must be divisible by p. We now show that the
coefficients of R(x) have absolute values at most p−1, and hence must all be zeros, i.e., R(x) = 0.

Expanding term by term both sides of P(x) = (xp− x)Q(x)+R(x), we have

n

∑
j=0

p jx j =
n−p

∑
j=0

q jx j+p−
n−p

∑
j=0

q jx j+1 +
p−1

∑
j=0

r jx j

=
n

∑
j=n−p+2

q j−px j +
n−p+1

∑
j=p

(q j−p−q j−1)x j +
p−1

∑
j=1

(r j−q j−1)x j + r0.

250 Separating words from every start state with Horner automata

Comparing coefficients on the left and right sides, we see that the constant coefficient of R(x) is 0, and
the absolute values of the leftmost p−1 coefficients of Q(x) are bounded by 1, because

r0 = p0 = 0

|q j−p| = |p j| ≤ 1, n− p+2≤ j ≤ n

Similarly, we see that the next leftmost p− 1 coefficients of Q(x) have absolute values bounded by 2,
because their differences with the first leftmost p−1 coefficients are bounded in absolute value by 1, as
can be seen below after changing the range of j:

|q j−p−q j−1| ≤ 1, n−2p+3≤ j ≤ n− p+1

|q j−2p+1−q j−p| ≤ 1, n− p+2≤ j ≤ n

Repeating this argument, we conclude that the next leftmost p−1 coefficients of Q(x) have absolute
values bounded by 3, and so on. Since there are d n

p−1e such groups (the constant coefficient is zero),
we conclude that the absolute values of coefficients of R(x) are bounded by d n

p−1e and hence by p− 1
because ⌈

n
p−1

⌉
≤

⌈
n

1+
√

n−1

⌉
=

⌈√
n
⌉

< 1+
√

n

≤ p.

Example 5. Let s = 0000 1010 0000 0000 and t = 0000 0000 0010 1000. The associated polynomials
are s(x) = x11 + x9 and t(x) = x5 + x3. The polynomial P(x) = s(x)− t(x) = x11 + x9− x5− x3 has the
following irreducible factors over the rationals:

P(x) = x11 + x9− x5− x3 = x3(x−1)(x+1)(x2 +1)(x2− x+1)(x2 + x+1).

Primes 5, 7, 11 are all greater than 1+
√

11. Since

x5− x = x(x−1)(x+1)(x2 +1) | P(x),

x7− x = x(x−1)(x+1)(x2− x+1)(x2 + x+1) | P(x),

x11− x = x(x−1)(x+1)(x4− x3 + x2− x+1)(x4 + x3 + x2 + x+1) 6 | P(x),

it follows from Lemma 3 that P(x) vanishes modulo 5 and 7, but not modulo 11. Exhaustive search
shows that dH(s, t) = 9 while d∀(s, t) = 4.

We are now ready to prove an O(
√

n logn log logn) upper bound on DH(n) using Lemma 3. Let s and
t be distinct binary strings of length n, and let P(x) = s(x)− t(x), whose degree is at most n−1. If P(x)
vanishes modulo p for some p ≥ 1+

√
n−1, then P(x) is divisible by xp− x, which is in turn divisible

by Φp−1(x). Since these cyclotomic polynomials are co-prime, the sum δ of their degrees is bounded
above by n−1, which implies the stated upper bound on dH(s, t).

N. Tran 251

Theorem 2. DH(n) ∈ O(
√

n logn log logn).

Proof. Let s and t be distinct binary strings of length n, and suppose the Horner distance dH(s, t) is M
√

n,
so that P(x) = s(x)− t(x), whose degree is at most n−1, is congruent to the zero polynomial mod p for
all primes p < M

√
n.

By Lemma 2, M
√

n≤ 2n, so M ≤ 2
√

n. By Lemma 3, for each such prime p >
√

n, P(x) is divisible
by xp− x = x(xp−1− 1) and hence divisible by the cyclotomic polynomial Φp−1(x), whose degree is
φ(p−1) ∈ Ω((p−1)/ log log(p−1)). Since these cyclotomic polynomials are co-prime, the sum δ of
their degrees is at most n−1. There are approximately

M
√

n
ln(M

√
n)
−
√

n
ln
√

n
>

M
√

n
ln(2
√

n
√

n)
−
√

n
ln
√

n
≥ α

M
√

n
logn

primes p in the range [
√

n,M
√

n] by the Prime Number Theorem, for some constant α . Because the
function x/ log logx is eventually increasing, each Φp−1(x) contributes at least β

√
n/ log log(

√
n), for

some constant β , to the degree sum δ , which is at most n−1, so(
αM
√

n
logn

)(
β
√

n
log logn

)
=

(
αβMn

logn log logn

)
≤ δ < n.

It follows that M ∈ O(logn log logn), and hence dH(s, t) ∈ O(
√

n logn log logn). Since this holds for
arbitrary pairs of distinct binary strings of length n, we conclude that DH(n) ∈O(

√
n logn log logn).

Because the more restrictive separation distance DH(n) is an upper bound on D∀(n), we obtain our
main result.

Theorem 3. D∀(n) ∈ O(
√

n logn log logn).

4 Conclusion

We show how to use Horner automata Hb,m to ∀-separate two distinct binary strings of length n and
establish almost matching lower and upper bounds on the minimum value of such m. Closing the gap
between these two bounds is an interesting open problem, as is the question of whether other families of
automata can be designed to achieve better lower and upper bounds on the ∀-separation distance.

Acknowledgments

Detailed comments and suggestions by the anonymous referees help improve the presentation of this
paper.

References

[1] B. Alexeev (2004): Minimal DFA for Testing Divisibility. Journal of Computer and System Sciences 69(2),
p. 235–243, doi:10.1016/j.jcss.2004.02.001.

[2] Z. Chase (2021): Separating Words and Trace Reconstruction. In: Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pp. 21–31, doi:10.1145/3406325.3451118.

https://doi.org/10.1016/j.jcss.2004.02.001
https://doi.org/10.1145/3406325.3451118

252 Separating words from every start state with Horner automata

[3] E. D. Demaine, S. Eisenstat, J. Shallit & D. A. Wilson (2011): Remarks on Separating Words. In M. Holzer,
M. Kutrib & G. Pighizzini, editors: Proceedings of the 13th International Workshop on Descriptional Com-
plexity of Formal Systems (DCFS), Lecture Notes in Computer Science 6808, Springer, Berlin, Heidelberg,
pp. 147–157, doi:10.1007/978-3-642-22600-7.

[4] P. Goralčík & V. Koubek (1986): On Discerning Words by Automata. In L. Kott, editor: Proceedings of
the 13th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in
Computer Science 226, Springer, Berlin, Heidelberg, pp. 116–122, doi:10.1007/3-540-16761-7_61.

[5] I. Niven, H. S. Zuckerman & H. L. Montgomery (1991): An Introduction to the Theory of Numbers. Wiley.
[6] J. M. Robson (1989): Separating strings with small automata. Information Processing Letters 30(4), pp.

209–214, doi:10.1016/0020-0190(89)90215-9.
[7] J. B. Rosser & L. Schoenfeld (1962): Approximate formulas for some functions of prime numbers. Illinois

Journal of Mathematics 6(1), pp. 64–94, doi:10.1215/ijm/1255631807.
[8] K. Sutner (2009): Divisibility and State Complexity. The Mathematica Journal 11(3), pp. 430–445,

doi:10.3888/tmj.11.3-8.
[9] N. Tran (2022): Variations of the Separating Words Problem. In P. Caron & L. Mignot, editors: Proceedings

of the 26th International Conference on Implementation and Application of Automata (CIAA), Lecture Notes
in Computer Science 13266, Springer, Berlin, Heidelberg, pp. 165–176, doi:10.1007/978-3-031-07469-1_13.

[10] M. N. Vyalyi & R. A. Gimadeev (2014): Separating words by occurrences of subwords. Journal of Applied
and Industrial Mathematics 8(2), pp. 293–299, doi:10.1134/S1990478914020161.

https://doi.org/10.1007/978-3-642-22600-7
https://doi.org/10.1007/3-540-16761-7_61
https://doi.org/10.1016/0020-0190(89)90215-9
https://doi.org/10.1215/ijm/1255631807
https://doi.org/10.3888/tmj.11.3-8
https://doi.org/10.1007/978-3-031-07469-1_13
https://doi.org/10.1134/S1990478914020161

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International

Conference on Automata and Formal Languages (AFL 2023)

EPTCS 386, 2023, pp. 253–268, doi:10.4204/EPTCS.386.20

© B. Truthe

This work is licensed under the

Creative Commons Attribution License.

Strictly Locally Testable and Resources Restricted Control

Languages in Tree-Controlled Grammars

Bianca Truthe

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany

bianca.truthe@informatik.uni-giessen.de

Tree-controlled grammars are context-free grammars where the derivation process is controlled in

such a way that every word on a level of the derivation tree must belong to a certain control lan-

guage. We investigate the generative capacity of such tree-controlled grammars where the control

languages are special regular sets, especially strictly locally testable languages or languages restricted

by resources of the generation (number of non-terminal symbols or production rules) or acceptance

(number of states). Furthermore, the set theoretic inclusion relations of these subregular language

families themselves are studied.

1 Introduction

In the monograph [5] by Jürgen Dassow and Gheorghe Păun, Seven Circumstances Where Context-Free

Grammars Are Not Enough are presented. A possibility to enlarge the generative power of context-free

grammars is to introduce some regulation mechanism which controls the derivation in a context-free

grammar. In some cases, regular languages are used for such a regulation. They are rather easy to handle

and, used as control, they often lead to context-sensitive or even recursively enumerable languages while

the core grammar is only context-free.

One such control mechanism was introduced by Karel Čulik II and Hermann A. Maurer in [16] where

the structure of derivation trees of context-free grammars is restricted by the requirement that the words

of all levels of the derivation tree must belong to a given regular (control) language. This model is called

tree-controlled grammar.

Gheorghe Păun proved that the generative capacity of such grammars coincides with that of context-

sensitive grammars (if no erasing rules are used) or arbitrary phrase structure grammars (if erasing rules

are used). Thus, the question arose to what extend the restrictions can be weakened in order to obtain

‘useful’ families of languages which are located somewhere between the classes of context-free and

context-sensitive languages.

In [6, 7, 8, 9, 27, 29, 30], many subregular families of languages have been investigated as classes

for the control languages. In this paper, we continue this research with further subregular language fam-

ilies, especially strictly locally testable languages or languages restricted by resources of the generation

(number of non-terminal symbols or production rules) or acceptance (number of states). Furthermore,

the set theoretic inclusion relations of these subregular language families themselves are studied.

2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the basic concepts of the theory of

automata and formal languages. For details, we refer to [23]. Here we only recall some notation and the

definition of contextual grammars with selection which form the central notion of the paper.

http://dx.doi.org/10.4204/EPTCS.386.20
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

254 Strictly Locally Testable & Resources Restricted Control Languages in Tree-Controlled Grammars

2.1 Languages, grammars, automata

Given an alphabet V , we denote by V ∗ and V+ the set of all words and the set of all non-empty words

over V , respectively. The empty word is denoted by λ . By V k, and V≤k for some natural number k, we

denote the set of all words of the alphabet V with exactly k letters and the set of all words over V with at

most k letters, respectively. For a word w and a letter a, we denote the length of w by |w| and the number

of occurrences of the letter a in the word w by |w|a. For a set A, we denote its cardinality by |A|.
A right-linear grammar is a quadruple G = (N,T,P,S) where N is a finite set of non-terminal sym-

bols, T is a finite set of terminal symbols, P is a finite set of production rules of the form A → wB

or A → w with A,B ∈ N and w ∈ T ∗, and S ∈ N is the start symbol. Such a grammar is called regular, if

all the rules are of the form A → xB or A → x with A,B ∈ N and x ∈ T or S → λ . The language generated

by a right-linear or regular grammar is the set of all words over the terminal alphabet which are obtained

from the start symbol S by a successive replacement of the non-terminal symbols according to the rules

in the set P. A non-terminal symbol A is replaced by the right-hand side w of a rule A → w ∈ P in order

to derive the next sentential form. The language generated consists of all sentential forms without a

non-terminal symbol. Every language generated by a right-linear grammar can also be generated by a

regular grammar.

A deterministic finite automaton is a quintuple A = (V,Z,z0,F,δ) where V is a finite set of input

symbols, Z is a finite set of states, z0 ∈ Z is the initial state, F ⊆ Z is a set of accepting states, and δ is

a transition function δ : Z ×V → Z. The language accepted by such an automaton is the set of all input

words over the alphabet V which lead letterwise by the transition function from the initial state to an

accepting state.

A regular expression over an alphabet V is defined inductively as follows:

1. /0 is a regular expression;

2. every element x ∈V is a regular expression;

3. if R and S are regular expressions, so are the concatenation R · S, the union R∪ S, and the Kleene

closure R∗;

4. for every regular expression, there is a natural number n such that the regular expression is obtained

from the atomic elements /0 and x ∈V by n operations concatenation, union, or star.

The language L(R) which is described by a regular expression R is also inductively defined: L(/0) = /0;

L(x) = {x} for each x ∈V ; and L(R ·S) = L(R) ·L(S), L(R∪S) = L(R)∪L(S), and L(R∗) = (L(R))∗ for

regular expressions R and S.

The set of all languages generated by some right-linear grammar coincides with the set of all lan-

guages accepted by a deterministic finite automaton and with the set of all languages described by a

regular expression. All these languages are called regular and form a family denoted by REG. Any

subfamily of this set is called a subregular language family.

A context-free grammar is a quadruple G = (N,T,P,S) where N, T , and S are as in a right-linear

grammar but the production rules in the set P are of the form A → w with A ∈ N and w ∈ (N ∪T)∗.

The language generated by a context-free grammar is the set of all words over the terminal alphabet

which are obtained from the start symbol S by replacing sequentially the non-terminal symbols according

to the rules in the set P. A language is called context-free if it is generated by some context-free grammar.

The family of all context-free languages is denoted by CF.

With a derivation of a terminal word by a context-free grammar, we associate a derivation tree which

has the start symbol in its root and where every node with a non-terminal A ∈ N has as children nodes

with symbols which form, read from left to right, a word w such that A → w is a rule of the grammar

B. Truthe 255

(if A → λ , then the node with A has only one child node and this is labelled with λ). Nodes with terminal

symbols or λ have no children. With any derivation tree t of height k and any number 0 ≤ j ≤ k, we

associate the word of level j and the sentential form of level j which are given by all nodes of depth j

read from left to right and all nodes of depth j and all leaves of depth less than j read from left to right,

respectively. Obviously, if two words w and v are sentential forms of two successive levels, then w =⇒∗ v

holds and this derivation is obtained by a parallel replacement of all non-terminal symbols occurring in

the word w.

A context-sensitive grammar is a quadruple G = (N,T,P,S) where N is a finite set of non-terminal

symbols, S ∈ N is the start symbol, T is a finite set of terminal symbols, and P is a finite set of production

rules of the form α → β with α ∈ (N ∪T)+ \T ∗, β ∈ (N ∪T)∗, and |β | ≥ |α | with the only exception

that S → λ is allowed if the sysmbol S does not occur on any right-hand side of a rule. The language

generated by a context-sensitive grammar is the set of all words over the terminal alphabet which are

obtained from the start symbol S by replacing sequentially subwords according to the rules in the set P.

A language is called context-sensitive if it is generated by some context-sensitive grammar. The family

of all context-sensitive languages is denoted by CS. For every context-sensitive language L, there is a

context-sensitive grammar G = (N,T,P,S) with L(G) = L, where all rules in P are of the form

AB →CD, A → BC, A → B, or A → a

with A,B,C,D ∈ N and a ∈ T , or S → λ if S does not occur on the right-hand side of a rule. Such a

grammar is said to be in Kuroda normal form ([17]).

We also mention here four classes of languages without a definition since they are mentioned only

in the summary of existing results: By MAT, we denote the family of all languages generated by matrix

grammars with appearance checking and without erasing rules; by MATfin, we denote the family of all

such languages where the matrix grammar is of finite index ([5], [23]). By E0L (ET0L), we denote the

family of all languages generated by extended (tabled) interactionless Lindenmayer systems ([22]).

2.2 Complexity measures and resources restricted languages

Let G = (N,T,P,S) be a right-linear grammar, A = (V,Z,z0,F,δ) be a deterministic finite automaton,

and L be a regular language. Then, we recall the following complexity measures from [4]:

State(A) = |Z|,Var(G) = |N|,Prod(G) = |P|,

State(L) = min{State(A) | A is a det. finite automaton accepting L} ,

VarRL(L) = min{Var(G) | G is a right-linear grammar generating L} ,

ProdRL(L) = min{Prod(G) | G is a right-linear grammar generating L} .

We now define subregular families by restricting the resources needed for generating or accepting their

elements:

RLV
n = {L | L ∈ REG with VarRL(L)≤ n} ,

RLP
n = {L | L ∈ REG with ProdRL(L)≤ n} ,

REGZ
n = {L | L ∈ REG with State(L)≤ n} .

2.3 Subregular language families based on the structure

We consider the following restrictions for regular languages. Let L be a language over an alphabet V .

256 Strictly Locally Testable & Resources Restricted Control Languages in Tree-Controlled Grammars

With respect to the alphabet V , the language L is said to be

• monoidal if and only if L =V ∗,

• nilpotent if and only if it is finite or its complement V ∗ \L is finite,

• combinational if and only if it has the form L =V ∗X for some subset X ⊆V ,

• definite if and only if it can be represented in the form L = A∪V ∗B where A and B are finite subsets

of V ∗,

• suffix-closed (or fully initial or multiple-entry language) if and only if, for any two words x ∈ V ∗

and y ∈V ∗, the relation xy ∈ L implies the relation y ∈ L,

• ordered if and only if the language is accepted by some deterministic finite automaton

A = (V,Z,z0,F,δ)

with an input alphabet V , a finite set Z of states, a start state z0 ∈ Z, a set F ⊆ Z of accepting states

and a transition mapping δ where (Z,�) is a totally ordered set and, for any input symbol a ∈V ,

the relation z � z′ implies δ (z,a) � δ (z′,a),

• commutative if and only if it contains with each word also all permutations of this word,

• circular if and only if it contains with each word also all circular shifts of this word,

• non-counting (or star-free) if and only if there is a natural number k ≥ 1 such that, for every three

words x ∈V ∗, y ∈V ∗, and z ∈V ∗, it holds xykz ∈ L if and only if xyk+1z ∈ L,

• power-separating if and only if, there is a natural number m ≥ 1 such that for every word x ∈V ∗,

either Jm
x ∩L = /0 or Jm

x ⊆ L where Jm
x = { xn | n ≥ m },

• union-free if and only if L can be described by a regular expression which is only built by product

and star,

• strictly locally k-testable if and only if there are three subsets B, I, and E of V k such that any

word a1a2 . . .an with n ≥ k and ai ∈V for 1 ≤ i ≤ n belongs to the language L if and only if

a1a2 . . .ak ∈ B,

a j+1a j+2 . . .a j+k ∈ I for every j with 1 ≤ j ≤ n− k−1 and

an−k+1an−k+2 . . .an ∈ E,

• strictly locally testable if and only if it is strictly locally k-testable for some natural number k.

We remark that monoidal, nilpotent, combinational, definite, ordered, union-free, and strictly lo-

cally (k-)testable languages are regular, whereas non-regular languages of the other types mentioned

above exist. Here, we consider among the commutative, circular, suffix-closed, non-counting, and power-

separating languages only those which are also regular.

Some properties of the languages of the classes mentioned above can be found in [24] (monoids), [11]

(nilpotent languages), [13] (combinational and commutative languages), [19] (definite languages), [12]

and [2] (suffix-closed languages), [25] (ordered languages), [3] (circular languages), [18] (non-counting

and strictly locally testable languages), [26] (power-separating languages), [1] (union-free languages).

By FIN, MON, NIL, COMB, DEF, SUF, ORD, COMM, CIRC, NC, PS, UF, SLTk (for any natural

number k ≥ 1), and SLT , we denote the families of all finite, monoidal, nilpotent, combinational, defi-

nite, regular suffix-closed, ordered, regular commutative, regular circular, regular non-counting, regular

B. Truthe 257

power-separating, union-free, strictly locally k-testable, and strictly locally testable languages, respec-

tively.

For any natural number n ≥ 1, let MONn be the set of all languages that can be represented in the

form A∗
1 ∪A∗

2 ∪ ·· ·∪A∗
k with 1 ≤ k ≤ n where all Ai (1 ≤ i ≤ k) are alphabets. Obviously,

MON = MON1 ⊂ MON2 ⊂ ·· · ⊂ MON j ⊂ ·· · .

A strictly locally testable language characterized by three finite sets B, I, and E as above which

includes additionally a finite set F of words which are shorter than those of the sets B, I, and E is

denoted by [B, I,E,F].

As the set of all families under consideration, we set

F= {FIN,NIL,COMB,DEF,SUF,ORD,COMM,CIRC,NC,PS,UF}

∪{ MONk | k ≥ 1 }∪{SLT}∪{ SLTk | k ≥ 1 }

∪{ RLV
n | n ≥ 1 }∪{ RLP

n | n ≥ 1 }∪{ REGZ
n | n ≥ 1 }.

2.4 Hierarchy of subregular families of languages

In this section, we present a hierarchy of the families of the aforementioned set F with respect to the set

theoretic inclusion relation. A summary is depicted in Figure 1.

Before this, we prove some relations of the classes of strictly locally k-testable languages to the

subregular language families restricted by resources, which have not been considered in the literature

yet.

For this purpose, we first introduce some languages which serve later as witness languages for proper

inclusions and incomparabilities.

Lemma 2.1 The language L1 = {a}∗{b}{a,b}∗ belongs to REGZ
2 \SLT.

Proof. The language L1 is accepted by the automaton with two states whose transition function is given

in the following diagram (double-circled states are accepting):

z0start z1
b

a a,b

Suppose, the language L1 is strictly locally k-testable for some natural number k ≥ 1. Then, there

exist sets B ⊆ V k, I ⊆ V k, E ⊆ V k, and F ⊆ V≤k−1 such that L1 = [B, I,E,F]. Since the word a2kba2k

belongs to the language L1, we know that ak ∈ B∩ I ∩E . But then, also the word a2k belongs to the

language which is a contradiction. �

Lemma 2.2 The language L2 = [{a,b},{b,c},{a,c}, /0] belongs to SLT1 \REGZ
4 .

Proof. By definition, L2 ∈ SLT1.

We now prove that L2 is not accepted by an deterministic finite automaton with less than five states.

Let L = L2 and let RL be the Myhill-Nerode equivalence relation (see [15]): two words x and y are in this

relation if and only if, for all words z, either both words xz and yz belong to the language L or none of

them. The words λ , a, b, c, and aa are pairwise not in this relation, as one can check.

Therefore, the index of the language L is at least five. Hence, at least five states are necessary for

accepting the language L. �

258 Strictly Locally Testable & Resources Restricted Control Languages in Tree-Controlled Grammars

Lemma 2.3 For each natural number n ≥ 2, let Vn = {a1,a2, . . . ,an−1} be an alphabet with n−1 pair-

wise different letters and let L3,n = {a1a2 . . .an−1}. Then, every language L3,n for n ≥ 2 belongs to the

set SLT2 \REGZ
n .

Proof. The statement L3,n ∈ SLT2 for n ≥ 2 can be seen as follows. If n = 2, then L3,n = [/0, /0, /0,{a1}],

otherwise L3,n = [{a1a2},{ apap+1 | 2 ≤ p ≤ n−3 },{an−2an−1}, /0].

For accepting any language L3,n for n ≥ 2, at least n+ 1 states are necessary (follows from the fact

that the n partial words a1 . . .ai for 0≤ i≤ n−1 and a1a1 are pairwise not in the Myhill-Nerode relation).

�

Lemma 2.4 For each natural number n ≥ 1, let L4,n = {an}. Then L4,n belongs to the set RLP
1 \SLTn.

Proof. The single word an can be generated with one rule, hence, L4,n ∈ RLP
1 .

Assume that such a language is strictly locally n-testable. Then, it is L4,n = [B, I,E,F] for suitable

sets B, I, E , and F . From L4,n = {an}, it follows that B = E = {an}. But then, also the word an+1 belongs

to the language L4,n which is a contradiction. �

Lemma 2.5 For each natural number n ≥ 1, let Vn = {a1,a2, . . . ,an} be an alphabet with n pairwise

different letters and let L5,n =V ∗
n . Then, for n ≥ 1, the language Ln belongs to the set SLT1 \RLP

n .

Proof. The language L5,n can be represented as L5,n = [V,V,V,{λ}]. Hence, L5,n ∈ SLT1 for n ≥ 1.

For generating a language L5,n for some number n ≥ 1, at least a non-terminating rule is necessary

for every letter ai (1 ≤ i ≤ n) and additionally a terminating rule. Hence, L5,n /∈ RLP
n . �

Lemma 2.6 The language L6 = {a} belongs to RLV
1 \SLT1.

Proof. The language L6 can be generated with a single rule and, hence, with one non-terminal only.

Assume that L6 is strictly locally 1-testable and can be represented as [B, I,E,F]. Then B = E = {a}.

But then, also the word aa belongs to the language which is a contradiction. �

Lemma 2.7 The language L7 = {a}{b}∗{a}∪{a} belongs to SLT1 \RLV
1 .

Proof. The language L7 is strictly locally 1-testable and can be represented as [{a},{b},{a}, /0].

Assume that the language L7 is generated by a right-linear grammar with one non-terminal symbol

only. Let m be the maximal length of the right-hand side of a rule: m = max({ w | S → w ∈ P }). Then,

the word abma cannot be derived in one step. Hence, there is a derivation S =⇒ abpS =⇒∗ abma for some

number p with 0 ≤ p ≤ m− 2. But then, also the derivation S =⇒ abpS =⇒ abpabpS =⇒∗ abpabma is

possible which yields a word which does not belong to the language L7. Due to this contradiction, we

obtain that L7 /∈ RLV
1 . �

Lemma 2.8 The language L8 = { a3m | m ≥ 1 } belongs to RLV
1 \SLT.

Proof. The language L8 is generated by the right-linear grammar G = ({S},{a},{S → a3S, S → a3},S).
Hence, L8 ∈ RLV

1 .

Assume that the language L8 is generated by a strictly locally k-testable grammar for some num-

ber k ≥ 1. Then, L8 has a representation as [B, I,E,F] with B∪ I ∪ E ⊆ {a}k and F ⊆ {a}≤k−1. Since

the word a3k belongs to the language L8, we obtain that B, I, and E contain the word ak. But then, also

the word a3k+1 belongs to the language L8 which is a contradiction. �

B. Truthe 259

Lemma 2.9 For each natural number n ≥ 1, let Vn = {a1,a2, . . . ,an+1} be an alphabet with n+1 pair-

wise different letters and let L9,n = {a1}
+{a2}

+ · · · {an+1}
+. Then, for n ≥ 1, the language L9,n belongs

to the set SLT2 \RLV
n .

Proof. The language L9,n can be represented as

L9,n = [{a1a1,a1a2},{ apap | 1 ≤ p ≤ n+1 }∪{ apap+1 | 1 ≤ p ≤ n },{anan+1,an+1an+1}, /0].

Hence, L9,n ∈ SLT2 for n ≥ 1.

For generating a language L9,n for some number n ≥ 1, at least a non-terminal symbol is necessary

for every letter ai (1 ≤ i ≤ n+1). Hence, L9,n /∈ RLV
n . �

We now prove inclusion relations and incomparabilities.

Lemma 2.10 The class SLT1 is properly included in the class REGZ
5 .

Proof. We first prove the inclusion SLT1 ⊆ REGZ
5 .

Let L be a strictly locally 1-testable language. Then L = [B, I,E,F] with B ⊆ V , I ⊆ V , E ⊆ V ,

and F ⊆ {λ}. We construct the following deterministic finite automaton:

A = (V,{z0,z1, . . . ,z4},z0,Zf,δ)

where

Zf = {z1,z2}∪

{

{z0}, if λ ∈ F,

/0, otherwise,

and the transition function δ is given by the following diagram (z0 is an accepting state if and only

if λ ∈ F):

z0start

z1 z2

z3 z4

B∩
E

B\EV
\

B

I
\

E

E \ I

V
\ (E

∪
I)

E ∩ I

V

E
∩

I

E
\ I

V \ (E ∪ I)

I \E V

Due to space reasons, we leave the proof that L(A) = L to the reader. From the construction follows

the inclusion SLT1 ⊆ REGZ
5 .

A witness language for the properness of this inclusion is the language L1 = {a}∗{b}{a,b}∗ from

Lemma 2.1. �

Lemma 2.11 The class SLT1 is incomparable to the classes REGZ
i for i ∈ {2,3,4}.

Proof. Due to the inclusion relations, it suffices to show that there is a language in the set REGZ
2 \SLT1

and a language in the set SLT1 \REGZ
4 . A language for the first case is L1 = {a}∗{b}{a,b}∗ as shown in

Lemma 2.1. A language for the second case is L2 = [{a,b},{b,c},{a,c}, /0] as shown in Lemma 2.2. �

Lemma 2.12 The classes SLTk for k ≥ 2 and SLT are incomparable to the classes REGZ
n for n ≥ 2.

260 Strictly Locally Testable & Resources Restricted Control Languages in Tree-Controlled Grammars

Proof. Due to the inclusion relations, it suffices to show that there is a language in the set REGZ
2 \SLT

and a language in each set SLT2 \REGZ
n for n ≥ 2. A language for the first case is L1 = {a}∗{b}{a,b}∗ as

shown in Lemma 2.1. Languages for the second case are L3,n = {a1a2 . . .an−1} as shown in Lemma 2.3.

�

Lemma 2.13 The classes SLTk for k ≥ 1 are incomparable to the classes RLP
n for n ≥ 1.

Proof. Due to the inclusion relations, it suffices to show that there is a language in the set RLP
1 \SLTk for

every k ≥ 1 and a language in each set SLT1 \RLP
n for n ≥ 1. Languages for the first case are L4,k = {ak}

for k ≥ 1 as shown in Lemma 2.4. Languages for the second case are L5,n = {a1,a2, . . . ,an}
∗ as shown

in Lemma 2.5. �

Lemma 2.14 The class SLT1 is properly included in the class RLV
2 .

Proof. Let L = [B, I,E,F] be a strictly locally 1-testable language over an alphabet T . We construct a

right-linear grammar G = ({S,S′},T,P,S) with the rules

• S → w for every word w ∈ F ∪ (B∩E),

• S → wS′ for every word w ∈ B,

• S′ → wS′ for every word w ∈ I, and

• S′ → w for every word w ∈ E .

The language L(G) generated is F ∪ (B∩E)∪ (BI∗E) which is L. Hence, L ∈ RLV
2 and SLT1 ⊆ RLV

2 . A

witness language for the properness of the inclusion is L6 = {a} for which was proved in Lemma 2.6

that it belongs to the set RLV
1 and therefore also to RLV

2 but not to SLT1. �

Lemma 2.15 The class SLT1 is incomparable to the class RLV
1 .

Proof. There is a language in the set RLV
1 \ SLT1, namely L6 = {a} as shown in Lemma 2.6, and a

language in the set SLT1 \RLV
1 , namely L7 = {a}{b}∗{a}∪{a} as shown in Lemma 2.7. �

Lemma 2.16 The classes SLTk for k ≥ 2 and SLT are incomparable to the classes RLV
n for n ≥ 1.

Proof. Due to the inclusion relations, it suffices to show that there is a language in the set RLV
1 \SLT and a

language in the set SLT2\RLV
n for every number n≥ 1. A language for the first case is L8 = { a3m |m≥ 1 }

as shown in Lemma 2.8. A language for the second case is L9,n = {a1}
+{a2}

+ · · · {an+1}
+ as shown in

Lemma 2.9. �

A summary of the inclusion relations is given in Figure 1. An edge label in this figure refers to the

paper or lemma above where the respective inclusion is proved.

Theorem 2.17 The inclusion relations presented in Figure 1 hold. An arrow from an entry X to an

entry Y depicts the proper inclusion X ⊂ Y ; if two families are not connected by a directed path, then

they are incomparable.

B. Truthe 261

REG

PS

NC

ORD

DEF

COMBNIL

FIN

SUF

COMM

CIRC

SLT1

SLT2

...

SLT

RLV
1

RLV
2

...

REGZ
2

...

REGZ
5

...

RLP
1

RLP
2

RLP
3

RLP
4

... UF

REGZ
1

MON

[31]

[28]

[28]

[28]

[28] [28]

[28]

[10]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[31]

[28]

[13]
[28]

[28]

[10]

[21]

[10]

2.10

2.14

[21]

[21]

[18]

[25]

[14]

[10]

[28]

[26]

[14]

[14]

[14]

[14]

[14]

Figure 1: Hierarchy of subregular language families

2.5 Tree-controlled grammars

A tree-controlled grammar is a quintuple G = (N,T,P,S,R) where

• (N,T,P,S) is a context-free grammar with a set N of non-terminal symbols, a set T of terminal

symbols, a set P of context-free non-erasing rules (with the only exception that the rule S → λ is

allowed if S does not occur on a right-hand side of a rule), and an axiom S,

• R is a regular set over N ∪T .

The language L(G) generated by a tree-controlled grammar G = (N,T,P,S,R) consists of all such

words z ∈ T ∗ which have a derivation tree t where z is the word obtained by reading the leaves from left

to right and the words of all levels of t – besides the last one – belong to the regular control language R.

Let F be a subfamily of REG. Then, we denote the family of languages generated by tree-controlled

grammars G = (N,T,P,S,R) with R ∈ F by T C (F).

Example 2.18 As an example, we consider the tree-controlled grammar

G1 = ({S},{a},{S → SS,S → a},S,{S}∗).

262 Strictly Locally Testable & Resources Restricted Control Languages in Tree-Controlled Grammars

Since the terminal symbol a is not allowed to appear before the last level, on all levels before, any

occurrence of S is replaced by SS. Finally, any letter S is replaced by a. Therefore, the levels of an allowed

derivation tree consist of the words S, SS, SSSS, . . . , S2n

, a2n

for some n≥ 0. Thus, L(G1)= { a2n

| n≥ 0 }.

Due to the structure of the control language which is monoidal and can be generated by a grammar with

one non-terminal symbol and two rules, we further obtain

L(G1) ∈ T C (MON)∩T C (RLV
1)∩T C (RLP

2).

Example 2.19 We now consider the tree-controlled grammar

G2 = ({S,A,B,C},{a,b,c},P,S,{S,aAbBcC})

with

P = {S → aAbBcC,A → aA,B → bB,C → cC,A → a,B → b,C → c}.

By the definition of the control language, any derivation in G2 has the form

S =⇒ aAbBcC =⇒ aaAbbBccC =⇒ . . .=⇒ an−1Abn−1Bcn−1C =⇒ anbncn

with n ≥ 2. Thus, the tree-controlled grammar G2 generates the non-context-free language

L(G2) = {anbncn}n ≥ 2.

Due to the structure of the control language which is finite and can be generated by a grammar with one

non-terminal symbol and two rules, we further obtain

L(G2) ∈ T C (FIN)∩T C (RLV
1)∩T C (RLP

2).

In [20] (see also [5]), it has been shown that a language L is generated by a tree-controlled grammar

if and only if it is generated by a context-sensitive grammar.

Theorem 2.20 ([20], [5]) It holds T C (REG) = CS.

In subsequent papers, tree-controlled grammars have been investigated where the control language

belongs to some subfamily of the class REG ([6, 7, 8, 9, 27, 29, 30]). In this paper, we continue this

research with further subregular language families.

From the definition follows that the subset relation is preserved under the use of tree-controlled

grammars: if we allow more, we do not obtain less.

Lemma 2.21 For any two language classes X and Y with X ⊆ Y , we have the inclusion

T C (X)⊆ T C (Y).

A summary of the inclusion relations known so far is given in Figure 2. An arrow from an entry X to

an entry Y depicts the inclusion X ⊆ Y ; a solid arrow means proper inclusion; a dashed arrow indicates

that it is not known whether the inclusion is proper. If two families are not connected by a directed path,

then they are not necessarily incomparable. An edge label in this figure refers to the paper where the

respective inclusion is proved.

B. Truthe 263

CF

E0L
[9]
= T C (MON1)

[6]
= T C (REGZ

1)

T C (COMB)T C (FIN)
[9]
= MATfin

T C (NIL)

T C (DEF)

T C (REGZ
2)T C (MON≥2)

[6]
= ET0L

T C (COMM)
[9]
= MAT T C (REGZ

4)

CS
[20]
= T C (REG)

[9]
= T C (CIRC)

[9]
= T C (SUF)

[9]
= T C (ORD)

[9]
= T C (NC)

[9]
= T C (PS)

[6]
= T C (REGZ

≥5)

[22]

[7]

[9]

[9]

[5]

[22]

[5]
[6]

[5]

Figure 2: Hierarchy of subregularly tree-controlled language families

3 Results

We insert the classes T C (SLTk) for k ≥ 1, T C (SLT), T C (RLV
n) for n ≥ 1, and T C (RLP

n) for n ≥ 1

into the existing hierachy (see Figure 2).

The inclusions follow from the inclusion relations of the respective families of the control languages

(see Figure 1 and Lemma 2.21).

In most cases, we obtain that any context-sensitive language can be generated by a tree-controlled

grammar where the control language is taken from that family.

Theorem 3.1 We have T C (SLTk) = CS for k ≥ 2 and T C (SLT) = CS.

Proof. Let L be a context-sensitive language. Then, there is a context-sensitive grammar G = (N,T,P,S)
with L(G) = L which is in Kuroda normal form, where the rule set P can be divided into two sets P1

and P2 such that all rules of P1 are of the form A → BC or A → B or A → a with A,B,C,D ∈ N and a ∈ T

and all rules of P2 are of the form AB →CD with A,B,C,D ∈ N.

We will construct a tree-controlled grammar Gtc which simulates the grammar G. Since Gtc has only

context-free rules, the non-context-free rules of G have to be substituted by context-free rules and some

control such that the parts of a non-context-free rule which are independent from the view of the core

grammar of Gtc remain connected.

We label the non-context-free rules and associate the non-terminal symbols of their left-hand sides

with new non-terminal symbols which are marked with the rule label and the position (first or second

letter). The context-free rules can be freely applied also in the tree-controlled grammar. A non-context-

free rule p : AB →CD will be simulated by context-free rules

A → Ap,1, B → Bp,2, Ap,1 →C, and Bp,2 → D.

264 Strictly Locally Testable & Resources Restricted Control Languages in Tree-Controlled Grammars

The control language ensures that the rules which belong together (here A → Ap,1 and B → Bp,2) are

applied together (at the same time and next to each other). If a terminal symbol is produced in a sen-

tential form of the grammar G, then it remains there until the whole terminal word is produced. In the

tree-controlled grammar Gtc, one has to keep track of terminal symbols because they ‘disappear’ (once

produced, they are not present in the next level anymore) and then two non-terminal symbols appear next

to each other, although they are not neighbours in the sentential form. So, the tree-controlled grammar

should produce placeholders for terminal symbols and replace them by the actual terminal symbols only

in the very end. In a tree-controlled grammar, from one level to the next, all non-terminal symbols are

replaced. This can be seen as some kind of shortcut where production rules which are independent from

each other are applied in parallel.

We construct such a tree-controlled grammar Gtc = (Ntc,T,Ptc,S,Rtc). The terminal alphabet and

start symbol are the same as in the grammar G. We now give the rules; the non-terminal symbols will be

collected later from the rules. At the end, we will give the control language Rtc.

In order to simulate the context-free rules directly, we take all non-terminating rules of them from G

as they are:

Pcf = P∩ ({ A → BC | A,B,C ∈ N }∪{ A → B | A,B ∈ N }).

Instead of the terminating rules, we take rules with a placeholder (for each terminal symbol a, we

introduce a unique non-terminal symbol â), but finally, those placeholders have to be terminated:

Pt = { A → â | A ∈ N,a ∈ T,A → a ∈ P }∪{ â → a | a ∈ T }.

We give also rules which can delay the derivation such that not everything needs to be replaced in

parallel:

Pd = { A → A | A ∈ N }∪{ â → â | a ∈ T }.

For simulating the non-context-free rules, first rules are applied which mark the position of the in-

tended application such that the control language has the chance to check whether the plan is alright (if it

is not, then the derivation will block). In the next step, the markers will be replaced by their actual target

non-terminal symbols:

Pcs =
⋃

p:AB→CD∈P

{A → Ap,1, B → Bp,2, Ap,1 →C, Bp,2 → D}.

Other rules are not needed, hence,

Ptc = Pcf ∪Pt ∪Pd∪Pcs.

The set Ntc of non-terminal symbols results as follows:

Ncf = N ∪{ â | a ∈ T }, N1 = { Ap,1 | p : AB →CD ∈ P }, N2 = { Bp,2 | p : AB →CD ∈ P },

N12 = { Ap,1Bp,2 | p : AB →CD ∈ P }, Ntc = Ncf ∪N1∪N2.

A derivation can go wrong only if the simulation of a non-context-free rule is not properly planned.

Hence, as control language, we take

Rtc = (Ncf ∪N12)
∗.

Since the context-free rules of the grammar G can be applied independently from each other and do

not have to be applied at a certain time (thanks to the rules from the subset Pd) and the correct simulation

B. Truthe 265

of the non-context-free rules is ensured by the control language Rtc, it is not hard to see that the generated

languages L(G) and L(Gtc) coincide.

The control language Rtc is strictly locally 2-testable as can be seen from the following representation:

Let

B = N2
cf ∪NcfN1 ∪N12, I = N2

cf ∪NcfN1 ∪N12∪N2Ncf ∪N2N1,

E = N2
cf ∪N12 ∪N2Ncf, F = Ncf ∪{λ}.

Then Rtc = [B, I,E,F].

Altogether, we obtain CS ⊆ T C (SLT2) ⊆ T C (SLTk) ⊆ T C (SLT) ⊆ CS for k ≥ 3. Thus, it

holds T C (SLTk) = CS for k ≥ 2 and T C (SLT) = CS. �

Theorem 3.2 We have T C (RLV
n) = CS for n ≥ 1.

Proof. The control language Rtc = (Ncf ∪N12)
∗ from the tree-controlled grammar Gtc in the proof of

Theorem 3.1 can be generated by a right-linear grammar G′ = ({S′},Ntc,P
′,S′) where

P′ = { S′ → xS′ | x ∈ Ncf ∪N12 }∪{ S′ → x | x ∈ Ncf ∪N12 }.

Hence, CS ⊆ T C (RLV
1) ⊆ T C (RLV

n) ⊆ CS for n ≥ 2. Thus, we conclude T C (RLV
n) = CS for n ≥ 1.

�

From the proof of Theorem 3.1, we conclude also the following statement.

Theorem 3.3 We have T C (UF) = CS.

Proof. Let L = {w1,w2, . . . ,wn} be a finite language. Then L∗ = ({w1}
∗{w2}

∗ · · ·{wn}
∗)∗ and is there-

fore union-free.

The control language Rtc = (Ncf ∪N12)
∗ from the tree-controlled grammar Gtc in the proof of Theo-

rem 3.1 is the Kleene closure of a finite language and, hence, it is union-free. �

Regarding the classes T C (RLP
n) for n≥ 1, the situation is different since the number of rules depends

on the size of the alphabet (which is not necessarily the case for the number of non-terminal symbols or

the number of states).

If the control language is generated with one rule only, then either the control language is the empty

set (if the right-hand side of the rule contains a non-terminal symbol) or it contains exactly one terminal

word. Since the start symbol of the tree-controlled grammar always forms the first level of the derivation

tree, it must be contained in the control language (otherwise, the derivation would be blocked right from

the beginning). Therefore, we obtain the following result.

Lemma 3.4 Let G = (N,T,P,S,R) a tree-controlled grammar with R ∈ RLP
1 . Then, the generated lan-

guage is

L(G) =

{

{ w | w ∈ T ∗ and S → w ∈ P }, if R = {S},

/0, otherwise.

Proof. If R = {S}, then every level but the last one of the derivation tree is S and the last level is a

terminal word which is produced by S. On the other hand, all terminal words derived from S belong to

the generated language.

If R 6= {S}, then S /∈ R since R contains at most one word because R ∈ RLP
1 . Since S is the word of

the first level of the derivation tree, there is no derivation possible. Hence, L(G) is empty. �

From this result, the next one immediately follows.

266 Strictly Locally Testable & Resources Restricted Control Languages in Tree-Controlled Grammars

Theorem 3.5 We have T C (RLP
1) = FIN.

Proof. The inclusion T C (RLP
1)⊆ FIN follows from Lemma 3.4. The inclusion FIN ⊆ T C (RLP

1) can

also be seen from Lemma 3.4: Let L be a finite language over an alphabet T . Then, construct a tree-

controlled grammar G = ({S},T,{ S → w | w ∈ L },S,{S}). It holds L(G) = L and L(G) ∈ T C (RLP
1).
�

If the control language is taken from the family T C (RLP
2), then already context-sensitive languages

can be generated as the Examples 2.18 and 2.19 show.

Theorem 3.6 We have T C (RLP
1)⊂ T C (RLP

2).

Proof. The inclusion follows from Theorem 2.17 and Lemma 2.21. According to Theorem 3.5, the

family T C (RLP
1) contains finite languages only. As shown in the Examples 2.18 and 2.19, the fam-

ily T C (RLP
2) contains non-context-free languages. �

A summary of all the inclusion relations is given in Figure 3. An arrow from an entry X to an entry Y

depicts the inclusion X ⊆ Y ; a solid arrow means proper inclusion; a dashed arrow indicates that it is not

known whether the inclusion is proper. If two families are not connected by a directed path, then they

are not necessarily incomparable. An edge label in this figure refers to the paper or theorem above where

the respective inclusion is proved.

T C (RLP
1)

3.5
= FIN

CF

E0L
[9]
= T C (MON1)

[6]
= T C (REGZ

1)

T C (COMB)T C (FIN)
[9]
= MATfin

T C (NIL)

T C (DEF)

T C (SLT1) T C (REGZ
2)T C (MON≥2)

[6]
= ET0L

T C (COMM)
[9]
= MAT T C (REGZ

4)

T C (RLP
2)

T C (RLP
n)

CS
[20]
= T C (REG)

[9]
= T C (CIRC)

[9]
= T C (SUF)

[9]
= T C (ORD)

[9]
= T C (NC)

[9]
= T C (PS)

[6]
= T C (REGZ

≥5)
3.3
= T C (UF)

3.1
= T C (SLT≥2)

3.1
= T C (SLT)

3.2
= T C (RLV

≥1)

[22]

[7]

[23]

3.6

[9]

[9]

[5]

[22]

[5]
[6]

[5]

Figure 3: New Hierarchy of subregularly tree-controlled language families

B. Truthe 267

4 Conclusion

There are several families of languages generated by tree-controlled grammars where we do not have a

characterization by some other language class. The strictness of some inclusions and the incomparability

of some families remain as open problems.

In the present paper, we have only considered tree-controlled grammars without erasing rules. For

tree-controlled grammars where erasing rules are allowed, several results have been published already

(see, e. g., [7, 29, 30]). Also in this situation, there are some open problems.

Another direction for future research is to consider other subregular language families or to relate

the families of languages generated by tree-controlled grammars to language families obtained by other

grammars/systems with regulated rewriting.

References

[1] Janusz A. Brzozowski (1962): Regular Expression Techniques for Sequential Circuits. Ph.D. thesis, Princeton

University, Princeton, NJ, USA.

[2] Janusz A. Brzozowski, Galina Jirásková & C. Zou (2014): Quotient complexity of closed languages. Theory

of Computing Systems 54, pp. 277–292, doi:10.1007/s00224-013-9515-7.

[3] Jürgen Dassow (1979): On the circular closure of languages. Elektronische Informationsverarbeitung und

Kybernetik/Journal of Information Processing and Cybernetics 15(1–2), pp. 87–94.

[4] Jürgen Dassow, Florin Manea & Bianca Truthe (2011): On contextual grammars with subregular selection

languages. In Markus Holzer, Martin Kutrib & Giovanni Pighizzini, editors: Descriptional Complexity of

Formal Systems – 13th International Workshop, DCFS 2011, Gießen/Limburg, Germany, July 25 – 27, 2011.

Proceedings, LNCS 6808, Springer-Verlag, pp. 135–146, doi:10.1007/978-3-642-22600-7_11.

[5] Jürgen Dassow & Gheorghe Păun (1989): Regulated Rewriting in Formal Language Theory. EATCS Mono-

graphs in Theoretical Computer Science 18, Springer-Verlag, doi:10.1007/978-3-642-74932-2.

[6] Jürgen Dassow, Ralf Stiebe & Bianca Truthe (2009): Two collapsing hierarchies of subregularly tree con-

trolled languages. Theoretical Computer Science 410(35), pp. 3261–3271, doi:10.1016/j.tcs.2009.03.

005.

[7] Jürgen Dassow, Ralf Stiebe & Bianca Truthe (2010): Generative capacity of subregularly tree controlled

grammars. International Journal of Foundations of Computer Science 21(5), pp. 723–740, doi:10.1142/

S0129054110007520.

[8] Jürgen Dassow & Bianca Truthe (2008): On two hierarchies of subregularly tree controlled languages. In

Cezar Câmpeanu & Giovanni Pighizzini, editors: Descriptional Complexity of Formal Systems, 10th Interna-

tional Workshop, Charlottetown, Prince Edward Island, Canada, July 16–18, 2008, Proceedings, University

of Prince Edward Island, pp. 145–156.

[9] Jürgen Dassow & Bianca Truthe (2008): Subregularly tree controlled grammars and languages. In Erzsébet

Csuhaj-Varjú & Zoltán Ésik, editors: Automata and Formal Languages, 12th International Conference, AFL

2008, Balatonfüred, Hungary, May 27–30, 2008, Proceedings, Computer and Automation Research Institute,

Hungarian Academy of Sciences, pp. 158–169.

[10] Jürgen Dassow & Bianca Truthe (2022): On the generative capacity of contextual grammars with strictly

locally testable selection languages. In Henning Bordihn, Géza Horváth & György Vaszil, editors: 12th

International Workshop on Non-Classical Models of Automata and Applications (NCMA 2022), Debrecen,

Hungary, August 26 – 27, 2022. Proceedings, EPTCS 367, Open Publishing Association, pp. 65–80, doi:10.

4204/EPTCS.367.5.

[11] Ferenc Gécseg & István Peák (1972): Algebraic Theory of Automata. Academiai Kiado, Budapest.

https://doi.org/10.1007/s00224-013-9515-7
https://doi.org/10.1007/978-3-642-22600-7_11
https://doi.org/10.1007/978-3-642-74932-2
https://doi.org/10.1016/j.tcs.2009.03.005
https://doi.org/10.1016/j.tcs.2009.03.005
https://doi.org/10.1142/S0129054110007520
https://doi.org/10.1142/S0129054110007520
https://doi.org/10.4204/EPTCS.367.5
https://doi.org/10.4204/EPTCS.367.5

268 Strictly Locally Testable & Resources Restricted Control Languages in Tree-Controlled Grammars

[12] Arthur Gill & Lawrence T. Kou (1974): Multiple-entry finite automata. Journal of Computer and System

Sciences 9(1), pp. 1–19, doi:10.1016/S0022-0000(74)80034-6.

[13] Ivan M. Havel (1969): The theory of regular events II. Kybernetika 5(6), pp. 520–544.

[14] Markus Holzer & Bianca Truthe (2015): On relations between some subregular language families. In Rudolf

Freund, Markus Holzer, Nelma Moreira & Rogério Reis, editors: Seventh Workshop on Non-Classical Mod-

els of Automata and Applications (NCMA), Porto, Portugal, August 31 – September 1, 2015, Proceedings,

books@ocg.at 318, Österreichische Computer Gesellschaft, pp. 109–124.

[15] John E. Hopcroft & Jeffrey D. Ullman (1979): Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley, Reading.

[16] Karel Čulik II & Hermann A. Maurer (1977): Tree controlled grammars. Computing 19(2), pp. 129–139,

doi:10.1007/BF02252350.

[17] Sige Yuki Kuroda (1964): Classes of languages and linear bounded automata. Information and Control 7(2),

pp. 207–223, doi:10.1016/S0019-9958(64)90120-2.

[18] Robert McNaughton & Seymour Papert (1971): Counter-Free Automata. MIT Press, Cambridge, USA.

[19] Micha A. Perles, Michael O. Rabin & Eliahu Shamir (1963): The theory of definite automata. IEEE Trans.

Electronic Computers 12, pp. 233–243, doi:10.1109/PGEC.1963.263534.

[20] Gheorghe Păun (1979): On the generative capacity of tree controlled grammars. Computing 21, pp. 213–220,

doi:10.1007/BF02253054.

[21] Stefano Crespi Reghizzi & Pierluigi San Pietro (2011): From regular to strictly locally testable languages.

In Petr Ambrož, Štěpán Holub & Zuzana Masáková, editors: 8th International Conference WORDS 2011,

EPTCS 63, pp. 103–111, doi:10.4204/EPTCS.63.14.

[22] Grzegorz Rozenberg & Arto Salomaa (1980): The Mathematical Theory of L Systems. Academic Press.

[23] Grzegorz Rozenberg & Arto Salomaa, editors (1997): Handbook of Formal Languages. Springer-Verlag,

Berlin.

[24] Huei-Jan Shyr (1991): Free Monoids and Languages. Hon Min Book Co., Taichung, Taiwan.

[25] Huei-Jan Shyr & Gabriel Thierrin (1974): Ordered automata and associated languages. Tankang Journal of

Mathematics 5(1), pp. 9–20.

[26] Huei-Jan Shyr & Gabriel Thierrin (1974): Power-separating regular languages. Mathematical Systems

Theory 8(1), pp. 90–95, doi:10.1007/BF01761710.

[27] Ralf Stiebe (2008): On the complexity of the control language in tree controlled grammars. In Jürgen Dassow

& Bianca Truthe, editors: Colloquium on the Occasion of the 50th Birthday of Victor Mitrana, Otto-von-

Guericke-Universitäat Magdeburg, Germany, June 27, 2008, Proceedings, Otto-von-Guericke-Universitäat

Magdeburg, Germany, pp. 29–36.

[28] Bianca Truthe (2018): Hierarchy of Subregular Language Families. Technical Report, Justus-Liebig-

Universität Giessen, Institut für Informatik, IFIG Research Report 1801.

[29] Sherzod Turaev, Jürgen Dassow, Florin Manea & Mohd Hasan Selamat (2012): Language classes generated

by tree controlled grammars with bounded nonterminal complexity. Theoretical Computer Science 449, pp.

134–144, doi:10.1016/j.tcs.2012.04.013.

[30] György Vaszil (2012): On the nonterminal complexity of tree controlled grammars. In Henning Bordihn,

Martin Kutrib & Bianca Truthe, editors: Languages Alive – Essays Dedicated to Jürgen Dassow on the Oc-

casion of His 65th Birthday, LNCS 7300, Springer, pp. 265–272, doi:10.1007/978-3-642-31644-9_18.

[31] Barbara Wiedemann (1978): Vergleich der Leistungsfähigkeit endlicher determinierter Automaten. Diplom-

arbeit, Universität Rostock.

https://doi.org/10.1016/S0022-0000(74)80034-6
https://doi.org/10.1007/BF02252350
https://doi.org/10.1016/S0019-9958(64)90120-2
https://doi.org/10.1109/PGEC.1963.263534
https://doi.org/10.1007/BF02253054
https://doi.org/10.4204/EPTCS.63.14
https://doi.org/10.1007/BF01761710
https://doi.org/10.1016/j.tcs.2012.04.013
https://doi.org/10.1007/978-3-642-31644-9_18

Zs. Gazdag, Sz. Iván, G. Kovásznai (Eds.): 16th International
Conference on Automata and Formal Languages (AFL 2023)
EPTCS 386, 2023, pp. 269–280, doi:10.4204/EPTCS.386.21

© M. Ziiatdinov, A. Khadieva & A. Yakaryılmaz
This work is licensed under the
Creative Commons Attribution License.

GAPs for Shallow Implementation of Quantum Finite
Automata

Mansur Ziiatdinov
Kazan Federal University, Kazan 420008, Russia

gltronred@gmail.com

Aliya Khadieva
Faculty of Computing, University of Latvia, Rı̄ga, Latvia

Kazan Federal University, Kazan 420008, Russia

aliya.khadi@gmail.com

Abuzer Yakaryılmaz
Faculty of Computing, University of Latvia, Rı̄ga, Latvia

abuzer.yakaryilmaz@lu.lv

Quantum fingerprinting is a technique that maps classical input word to a quantum state. The ob-
tained quantum state is much shorter than the original word, and its processing uses less resources,
making it useful in quantum algorithms, communication, and cryptography. One of the examples of
quantum fingerprinting is quantum automata algorithms for MODp = {ai·p | i≥ 0} languages, where
p is a prime number.

However, implementing such an automaton on the current quantum hardware is not efficient.
Quantum fingerprinting maps a word x ∈ {0,1}n of length n to a state |ψ(x)〉 of O(logn) qubits,
and uses O(n) unitary operations. Computing quantum fingerprint using all available qubits of the
current quantum computers is infeasible due to a large number of quantum operations.

To make quantum fingerprinting practical, we should optimize the circuit for depth instead of
width in contrast to the previous works. We propose explicit methods of quantum fingerprinting
based on tools from additive combinatorics, such as generalized arithmetic progressions (GAPs),
and prove that these methods provide circuit depth comparable to a probabilistic method. We also
compare our method to prior work on explicit quantum fingerprinting methods.

1 Introduction

A quantum finite state automaton (QFA) is a generalization of classical finite automaton [16, 4]. Here
we use the known simplest QFA model [12]. Formally, a QFA is 5-tuple M = (Q,A∪{¢,$}, |ψ0〉 ,U ,
Hacc), where Q = {q1, . . . ,qD} is a finite set of states, A is the finite input alphabet, ¢,$ are the left and
right end-markers, respectively. The state of M is represented as a vector |ψ〉 ∈H , where H is the D-
dimensional Hilbert space spanned by {|q1〉 , . . . , |qD〉} (here

∣∣q j
〉

is a zero column vector except its j-th
entry that is 1). The automaton M starts in the initial state |ψ0〉 ∈H , and makes transitions according to
the operators U = {Ua | a ∈ A} of unitary matrices. After reading the whole input word, the final state
is observed with respect to the accepting subspace Hacc ⊆H .

Quantum fingerprinting provides a method of constructing automata for certain problems. It maps
an input word w ∈ {0,1}n to much shorter quantum state, its fingerprint |ψ(w)〉=Uw |0m〉, where Uw is
the single transition matrix representing the multiplication of all transition matrices while reading w and
|0m〉 = |0〉⊗ · · ·⊗ |0〉︸ ︷︷ ︸

m times

. Quantum fingerprint captures essential properties of the input word that can be

useful for computation.

http://dx.doi.org/10.4204/EPTCS.386.21
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

270 GAPs for Shallow Implementation of QFA

One example of quantum fingerprinting applications is the QFA algorithms for MODp language [3].
For a given prime number p, the language MODp is defined as MODp = {ai | i is divisible by p}. Let us
briefly describe the construction of the QFA algorithms for MODp.

We start with a 2-state QFA Mk, where k ∈ {1, . . . , p− 1}. The automaton Mk has two base states
Q = {q0,q1}, it starts in the state |ψ0〉= |q0〉, and it has the accepting subspace spanned by |q0〉. At each
step (for each letter) we perform the rotation

Ua =


cos

2πk
p

sin
2πk

p

−sin
2πk

p
cos

2πk
p

 .

It is easy to see that this automaton gives the correct answer with probability 1 if w ∈MODp. However,
if w /∈MODp, the probability of correct answer can be close to 0 rather than 1 (i.e., bounded below by
1− cos2(π/p)). To boost the success probability we use d copies of this automaton, namely Mk1 , . . . ,
Mkd , as described below.

The QFA M for MODp has 2d states: Q = {q1,0,q1,1, . . . ,qd,0,dd,1}, and it starts in the state |ψ0〉 =
1√
d ∑

d
i=1 |qi,0〉. In each step, it applies the transformation defined as:

|qi,0〉 7→ cos
2πki

p
|qi,0〉+ sin

2πki

p
|qi,1〉 (1)

|qi,1〉 7→ −sin
2πki

p
|qi,0〉+ cos

2πki

p
|qi,1〉 (2)

Indeed, M enters into equal superposition of d sub-QFAs, and each sub-QFA applies its rotation. Thus,
quantum fingerprinting technique associates the input word w = a j with its fingerprint

|ψ〉= 1√
d

d

∑
i=1

cos
2πki j

p
|qi,0〉+ sin

2πki j
p
|qi,1〉 .

Ambainis and Nahimovs [3] proved that this QFA accepts the language MODp with error probability
that depends on the choice of the coefficients ki’s. They also showed that for d = 2log(2p)/ε there is at
least one choice of coefficients ki’s such that error probability is less than ε . The proof uses a probabilistic
method, so these coefficients are not explicit. They also suggest two explicit sequences of coefficients:
cyclic sequence ki = gi (mod p) for primitive root g modulo p and more complex AIKPS sequences
based on the results of Ajtai et al. [2].

While quantum fingerprinting is versatile and has different applications [6, 1], it is not practical for
the currently available real quantum computers. The main obstacle is that quantum fingerprinting uses
an exponential (in the number m of qubits) circuit depth (e.g., see [11, 5, 15] for some implementations
of the aforementioned automaton M). Therefore, the required quantum volume1 VQ is roughly 2|w|·2

m
.

For example, IBM reports [8] that its Falcon r5 quantum computer has 27 qubits with a quantum volume
of 128. It means that we can use only 7 of 27 qubits for the fingerprint technique.

In this paper, we investigate how to obtain better circuit depth by optimizing the coefficients used by
M: k1, . . . ,kd . We use generalized arithmetic progressions for generating a set of coefficients and show
that such sets have a circuit depth comparable to the set obtained by the probabilistic method.

1Quantum volume is an exponent of the maximal square circuit size that can be implemented on the quantum computer [7,
18].

M. Ziiatdinov, A. Khadieva & A. Yakaryılmaz 271

Table 1: Comparison of different methods.
Method Width Depth Source Note
Cyclic pc/ log log p pc/ log log p [3] for some constant c > 0
AIKPS log2+3ε p (1+2ε) log1+ε p log log p [14]
Probabilistic 4 log(2p)/ε 2log(2p)/ε [3]
GAPs p/ε2 dlog p−2logεe+2 this paper

We summarize the previous and our results in Table 1. Note that p is exponential in the number of
qubits m. The depth of the circuits is discussed in Section 3.

The rest of the paper is organized as follows. In Section 2 we give the necessary definitions and results
on quantum computation and additive combinatorics to follow the rest of the paper. Section 3 contains
the construction of the shallow fingerprinting function and the proof of its correctness. Then, we present
certain numerical simulations in Section 4. We conclude the paper with Section 5 by presenting some
open questions and discussions for further research.

2 Preliminaries

Let us denote by H 2 two-dimensional Hilbert space, and by (H 2)⊗m 2m-dimensional Hilbert space
(i.e., the space of m qubits). We use bra- and ket-notations for vectors in Hilbert space. For any natural
number N, we use ZN to denote the cyclic group of order N.

Let us describe in detail how the automaton M works. As we outlined in the introduction, the au-
tomaton M has 2d states: Q = {q1,0,q1,1, . . . ,qd,0,dd,1}, and it starts in the state |ψ0〉 = 1√

d ∑
d
i=1 |qi,0〉.

After reading a symbol a, it applies the transformation Ua defined by (1), (2):

|qi,0〉 7→ cos
2πki

p
|qi,0〉+ sin

2πki

p
|qi,1〉

|qi,1〉 7→ −sin
2πki

p
|qi,0〉+ cos

2πki

p
|qi,1〉

After reading the right endmarker $, it applies the transformation U$ defined in such way that U$ |ψ0〉=
|q1,0〉. The automaton measures the final state and accepts the word if the result is q1,0.

So, the quantum state after reading the input word w = a j is

|ψ〉= 1√
d

d

∑
i=1

cos
2πki j

p
|qi,0〉+ sin

2πki j
p
|qi,1〉 .

If j≡ 0 (mod p), then |ψ〉= |ψ0〉, and U$ transforms it into accepting state |q1,0〉, therefore, in this case,
the automaton always accepts. If the input word w /∈ MODp, then the quantum state after reading the
right endmarker $ is ∣∣ψ ′〉= 1

d

(d

∑
i=1

cos
2πki j

p

)
|q1,0〉+ . . . ,

and the error probability is

Pe =
1
d2

(d

∑
i=1

cos
2πkix

p

)2
.

272 GAPs for Shallow Implementation of QFA

In the rest of the paper, we denote by m the number of qubits in the quantum fingerprint, by d = 2m

the number of parameters in the set K, by p the size of domain of the quantum fingerprinting function,
and by Ua(K) the transformation defined above, which depends on the set K.

Let us also define a function ε : Zd
p→ R as follows:

ε(K) = max
x∈Zp

(
1
d2

∣∣∣ d

∑
j=1

exp
2πik jx

p

∣∣∣2).
Note that Pe ≤ ε(K).

We also use some tools from additive combinatorics. We refer the reader to the textbook by Tao and
Vu [17] for a deeper introduction to additive combinatorics.

An additive set A ⊆ Z is a finite non-empty subset of Z, an abelian group with group operation +.
We refer Z as the ambient group.

If A,B are additive sets in Z, we define the sum set A+B = {a+b | a ∈ A,b ∈ B}. We define additive
energy E(A,B) between A,B to be

E(A,B) =
∣∣∣∣{(a,b,a′,b′) ∈ A×B×A×B | a+b = a′+b′

}∣∣∣∣.
Let us denote by e(θ) = e2πiθ , and by ξ · x = ξ x/p bilinear form from Zp×Zp into R/Z. Fourier

transform of f : Zp→ Zp is f̂ (ξ) = Ex∈Z f (x)e(ξ · x).
We also denote the characteristic function of the set A as 1A, and we define PZ(A) = 1̂A(0) = |A|/|Z|.

Definition 1 ([17]). Let Z be a finite additive group. If A⊆ Z, we define Fourier bias ‖A‖U of the set A
to be

‖A‖U = sup
ξ∈Z\{0}

|1̂A(ξ)|

There is a connection between the Fourier bias and the additive energy.

Theorem 1 ([17]). Let A be an additive set in a finite additive group Z. Then

‖A‖4
U ≤

1
|Z|3

E(A,A)−PZ(A)4 ≤ ‖A‖2
U PZ(A)

Definition 2 ([17]). Generalized arithmetic progression (GAP) of dimension d is a set

A = {x0 +n1x1 + . . .+ndxd | 0≤ n1 ≤ N1, · · · ,0≤ nd ≤ Nd},

where x0,x1, . . . ,xd ,N1, . . . ,Nd ∈ Z. The size of GAP is a product N1 · · ·Nd . If the size of set A, |A|, equals
to N1 · · ·Nd , we say that GAP is proper.

3 Shallow Fingerprinting

Quantum fingerprint can be computed by the quantum circuit given in Figure 1. The last qubit is rotated
by a different angle 2πk jx/q in different subspaces enumerated by | j〉. Therefore, the circuit depth is
|K|= t = 2m. As the set K is random, it is unlikely that the depth can be less than |K|.

M. Ziiatdinov, A. Khadieva & A. Yakaryılmaz 273

. . .

. . .

. . .

. . .

. . .

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 U1 U2 U3 U4 Ut

Figure 1: Deep fingerprinting circuit example. Gate U j is a rotation Ry(4πk jx/p). Controls in controlled
gates run over all binary strings of length s

Let us note that fingerprinting is similar to quantum Fourier transform. Quantum Fourier transform
computes the following transformation:

|x〉 7→ 1
N

N−1

∑
k=0

ω
xk
N |k〉 , (3)

where ωN = e(1/N). Here is the quantum fingerprinting transform:

|x〉 7→ 1
t

t

∑
j=1

ω
k jx
N |k〉 .

The depth of the circuit that computes quantum Fourier transform is O((logN)2), and it heavily
relies on the fact that in Eq. (3) the sum runs over all k = 0, . . . ,N−1. Therefore, to construct a shallow
fingerprinting circuit we desire to find a set K with special structure.

Suppose that we construct a coefficient set K ⊂ Zp in the following way. We start with a set T =
{t1, . . . , tm} and construct the set of coefficients as a set of sums of all possible subsets:

K =
{

∑
t∈S

t | S⊆ T
}
,

where we sum modulo p.
The quantum fingerprinting function with these coefficients can be computed by a circuit of depth

O(m) [9] (see Figure 2).
Finally, let us prove why the construction of the set K ⊂ Zp works.

Theorem 2. Let ε > 0, let m = dlog p−2logεe and d = 2m.
Suppose that the number t0 ∈ Zp and the set T = {t1, . . . , tm} ⊂ Zp are such that

B = {2t0 +n1t1 + · · ·+nmtm | 0≤ n1 < 3, . . . ,0≤ nm < 3}

is a proper GAP.
Then the set A defined as

A =

{
t0 +∑

t∈S
t | S⊆ T

}
has ε(A)≤ ε .

274 GAPs for Shallow Implementation of QFA

. . .

. . .

. . .

. . .

|0〉 H

|0〉 H

|0〉 H

|0〉 R1 R2 Rm R0

Figure 2: Shallow fingerprinting circuit example. Gate R j is a rotation Ry(4πt jx/p)

Let us outline the proof of this theorem. Firstly, we estimate the number of solutions to a+ b = n.
Secondly, we use it to bound the additive energy E(A,A) of the set A. Thirdly, we bound the Fourier bias
‖A‖U . Finally, we get a bound on ε(A) in terms of p and m.

Proof. Let us denote a set Rn(A) of solutions to a+b = n, where a,b ∈ A and n ∈ Zp:

Rn(A) = {(a,b) | a+b = n; a,b ∈ A}.

Note that we have E(A,A) = ∑n∈Z Rn(A)
2.

Suppose that n is represented as n = 2t0 +∑
m
i=1 γiti, γi ∈ {0,1,2}. If such representation exists, it is

unique, because B is a proper GAP. Let us denote c0 := {i | γi = 0}, c1 := {i | γi = 1}, c2 := {i | γi = 2}.
It is clear that c0] c1] c2 = [m].

Now suppose that n = a+b for some a,b ∈ A. But a = t0+∑i αiti and b = t0+∑i βiti, αi,βi ∈ {0,1}.
We get that if i ∈ c0 or i ∈ c2 then the corresponding coefficients αi and βi are uniquely determined.
Consider i ∈ c1. Then we have two choices: either αi = 1;βi = 0, or αi = 0;βi = 1. Therefore, we have
Rn(A) = 2|c1(n,A)|.

We have that
E(A,A) = ∑

n∈Z
Rn(A)

2 = ∑
n∈Z

22|c1(n,A)|.

Using the fact that |c0(n,A)|+ |c1(n,A)|+ |c2(n,A)|= m, we see that

E(A,A) = ∑
n∈Z

22|c1(n,A)| =
m

∑
j=0

(
m
j

)
2m− j22 j =

m

∑
j=0

(
m
j

)
2m+ j ≤ 23m

We can bound the Fourier bias by Theorem 1:

‖A‖4
U ≤

1
|Z|3

E(A,A)−PZ(A)4 ≤ ‖A‖2
U PZ(A)

‖A‖4
U ≤

23m

23·2m −
24m

24·2m =
d3

23d −
d4

24d

‖A‖U ≤
d3/4

p3/4

Finally, we have

ε(A) =
(p

d
‖A‖U

)2
≤ p1/2

d1/2 .

By substituting the definitions of d and m, we prove the theorem.

M. Ziiatdinov, A. Khadieva & A. Yakaryılmaz 275

Corollary 1. The depth of the circuit that computes Ua(A) is dlog p−2logεe.

Theorem 3 (Circuit depth for AIKPS sequences). For given ε > 0, let

R = {r | r is prime,(log p)1+ε/2 < r < (log p)1+ε},
S = {1,2, . . . ,(log p)1+2ε},
T = {s · r−1 | r ∈ R,s ∈ S},

where r−1 is the inverse of r modulo p.
Then the depth of the circuit that computes Ua(T) is less than (1+2ε) log1+ε p log log p.

Proof. Let us denote the elements of R by r1,r2, Let S · {r−1} be a set {s · r−1 | s ∈ S}.
Consider the following circuit C j (see Figure 3) with w = d(1+2ε) log log pe+1 wires.

. . .

. . .

. . .

. . .

|0〉 H

|0〉 H

|0〉 H

|0〉 R j,1 R j,2 R j,w−1 R j

Figure 3: Circuit C j for AIKPS subsequence. Gate R j is a rotation Ry(4π(r−1
j)/p). Gate R j,k is a rotation

Ry(2k−1 ·4π(r−1
j)/p)

The circuit C j has depth d(1+2ε) log log pe+1 and computes the transformation Ua(S · {r−1
j }). By

repeating the same circuit for all r j ∈ R we get the required circuit for Ua(T) (see Figure 4).
Since |R|< (log p)1+ε , we obtain that the depth of the circuit Ua(T) is less than

(1+2ε) log1+ε p log log p.

4 Numerical Experiments

We conduct the following numerical experiments. We compute sets of coefficients K for the automaton
for the language MODp with minimal computational error.

Finding an optimal set of coefficients is an optimization problem with many parameters, and the
running time of a brute force algorithm is large, especially with an increasing number m of control qubits
and large values of parameter p. Then, the original automaton has 2d states, where d = 2m. We observe
circuits for several m values and use a heuristic method for finding the optimal sets K with respect to an
error minimization. For this purpose, the coordinate descend method [19] is used.

We find an optimal sets of coefficients for different values of p and m and compare computational
errors of original and shallow fingerprinting algorithms for the automaton (see Figure 5). Namely, we set
m = 3,4,5 and find sets using the coordinate descend method for each case. Even heuristic computing,
for s > 5, takes exponentially more computational time and it is hard to implement on our devices.

276 GAPs for Shallow Implementation of QFA

.

.

.

.

.

.

.

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 R1,1 R1,2 R1,w−1 R1 R2,1 R2,2 R2,w−1 R2 R|T |

Figure 4: Circuit for Ua(T). Gate R j is a rotation Ry(4π(r−1
j)/p). Gate R j,k is a rotation Ry(2k−1 ·

4π(r−1
j)/p)

One can note that difference between errors becomes bigger with increasing m, especially for big
values p. The program code and numerical data are presented in a git repo [10].

The graphics in Figure 6 show a proportion of the errors of the original automaton over the errors of
the shallow automaton for m = 3,4,5 and the prime numbers until 1013.

As we see, for a number of control qubits m = 3, the difference between the original and shallow
automata errors is approximately constant. The ratio of values fluctuates between 1 and 1.2. In the case
m = 4, this ratio is approximately 1.5 for almost all observed values p. The ratio of errors is nearly
between 1.5 and 3, for m = 5.

According to the results of our experiments, the circuit depth m+1 is enough for valid computations,
while the original circuit uses O(2m) gates. Since the shallow circuit is much simpler than the original
one, its implementation on real quantum machines is much easier. For instance, in such machines as
IBMQ Manila or Baidu quantum computer, a “quantum computer” is represented by a linearly related
sequence of qubits. CX-gates can be applied only to the neighbor qubits. For such a linear structure
of qubits, the shallow circuit can be implemented using 3m+ 3 CX-gates. Whereas a nearest-neighbor
decomposition [13] of the original circuit requires O(d logd) = O(m2m) CX-gates.

5 Conclusions

We show that generalized arithmetic progressions generate some sets of coefficients ki for the quantum
fingerprinting technique with provable characteristics. These sets have large sizes, however, their depth
is small and comparable to the depth of sets obtained by the probabilistic method. These sets can be used
in the implementations of quantum finite automata suitable for running on the current quantum hardware.

We run numerical simulations. They show that the actual performance of the coefficients found by
our method for quantum finite automata is not much worse than the performance of the other methods.

Optimizing quantum finite automata implementation for depth also poses an open question. The

M. Ziiatdinov, A. Khadieva & A. Yakaryılmaz 277

Figure 5: Computational errors for m = 3,4,5 of original and shallow automata

278 GAPs for Shallow Implementation of QFA

Figure 6: Proportions of the shallow automaton errors over the original automaton errors for m = 3,4,5
and different values of p

M. Ziiatdinov, A. Khadieva & A. Yakaryılmaz 279

lower bound for the size of K in terms of p and ε is known [1]. Therefore, for given p and ε , quantum
finite automata cannot have less than O(log p/ε) states. But, to our knowledge, a lower bound for the
circuit depth of the transition function implementation is not known. So, we pose an open question: is it
possible to implement a transition function with depth less than O(log p)? What is the lower bound for
it?

6 Acknowledgments

Yakaryılmaz was partially supported by the ERDF project Nr. 1.1.1.5/19/A/005 “Quantum computers
with constant memory” and the project “Quantum algorithms: from complexity theory to experiment”
funded under ERDF programme 1.1.1.5.

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Pro-
gram ("PRIORITY-2030"). Research in Section 4 were supported by the subsidy allocated to Kazan
Federal University for the state assignment in the sphere of scientific activities, project No. 0671-2020-
0065.

References

[1] Farid Ablayev, Marat Ablayev, Alexander Vasiliev & Mansur Ziatdinov (2016): Quantum Fingerprinting and
Quantum Hashing. Computational and Cryptographical Aspects. Baltic Journal of Modern Computing 4(4),
pp. 860–875, doi:10.22364/bjmc.2016.4.4.17.

[2] Miklós Ajtai, Henryk Iwaniec, János Komlós, János Pintz & Endre Szemerédi (1990): Construction of a
thin set with small Fourier coefficients. Bulletin of the London Mathematical Society 22(6), pp. 583–590,
doi:10.1112/blms/22.6.583.

[3] Andris Ambainis & Nikolajs Nahimovs (2009): Improved constructions of quantum automata. Theoretical
Computer Science 410(20), pp. 1916–1922, doi:10.1016/j.tcs.2009.01.027.

[4] Andris Ambainis & Abuzer Yakaryılmaz (2021): Automata and quantum computing. In Jean Éric Pin, editor:
Handbook of Automata Theory, chapter 39, 2, European Mathematical Society Publishing House, pp. 1457–
1493, doi:10.4171/Automata-2/17.

[5] Utku Birkan, Özlem Salehi, Viktor Olejar, Cem Nurlu & Abuzer Yakaryılmaz (2021): Implementing Quan-
tum Finite Automata Algorithms on Noisy Devices. In: International Conference on Computational Science,
Springer, pp. 3–16, doi:10.1007/978-3-030-77980-1_1.

[6] Harry Buhrman, Richard Cleve, John Watrous & Ronald de Wolf (2001): Quantum Fingerprinting. Physical
Review Letters 87(16), p. 167902, doi:10.1103/PhysRevLett.87.167902. arXiv:0102001.

[7] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation & Jay M. Gambetta (2019): Val-
idating quantum computers using randomized model circuits. Physical Review A 100, p. 032328,
doi:10.1103/PhysRevA.100.032328.

[8] IBM (2022): Eagle’s quantum performance progress. Available at https://research.ibm.com/blog/
eagle-quantum-processor-performance.

[9] Martin Kālis (2018): Kvantu Algoritmu Realizācija Fiziskā Kvantu Datorā (Quantum Algorithm Implemen-
tation on a Physical Quantum Computer). Master’s thesis, University of Latvia.

[10] Aliya Khadieva: Optimal Parameters Computing Code. Available at https://github.com/aliyakhadi/
Parameters_counting.

[11] Aliya Khadieva & Mansur Ziatdinov (2023): Deterministic Construction of QFAs Based on the
Quantum Fingerprinting Technique. Lobachevskii Journal of Mathematics 44(2), pp. 713–723,
doi:10.1134/S199508022302021X.

https://doi.org/10.22364/bjmc.2016.4.4.17
https://doi.org/10.1112/blms/22.6.583
https://doi.org/10.1016/j.tcs.2009.01.027
https://doi.org/10.4171/Automata-2/17
https://doi.org/10.1007/978-3-030-77980-1_1
https://doi.org/10.1103/PhysRevLett.87.167902
https://arxiv.org/abs/0102001
https://doi.org/10.1103/PhysRevA.100.032328
https://research.ibm.com/blog/eagle-quantum-processor-performance
https://research.ibm.com/blog/eagle-quantum-processor-performance
https://github.com/aliyakhadi/Parameters_counting
https://github.com/aliyakhadi/Parameters_counting
https://doi.org/10.1134/S199508022302021X

280 GAPs for Shallow Implementation of QFA

[12] Cristopher Moore & James P Crutchfield (2000): Quantum automata and quantum grammars. Theoretical
Computer Science 237(1-2), pp. 275–306, doi:10.1016/S0304-3975(98)00191-1.

[13] Mikka Möttönen & Juha J Vartiainen (2006): Decompositions of general quantum gates. Trends in Quantum
Computing Research, doi:10.48550/ARXIV.QUANT-PH/0504100.

[14] Alexander Razborov, Endre Szemerédi & Avi Wigderson (1993): Constructing small sets that are
uniform in arithmetic progressions. Combinatorics, Probability and Computing 2(4), pp. 513–518,
doi:10.1017/S0963548300000870.

[15] Özlem Salehi & Abuzer Yakaryılmaz (2021): Cost-efficient QFA Algorithm for Quantum Computers,
doi:10.48550/arXiv.2107.02262.

[16] A. C. Cem Say & Abuzer Yakaryılmaz (2014): Quantum finite automata: A modern introduction. In: Com-
puting with New Resources, Springer, pp. 208–222, doi:10.1007/978-3-319-13350-8_16.

[17] Terence Tao & Van Vu (2006): Additive combinatorics. Cambridge Studies in Advanced Mathematics 105,
Cambridge University Press, doi:10.1017/CBO9780511755149.

[18] Andrew Wack, Hanhee Paik, Ali Javadi-Abhari, Petar Jurcevic, Ismael Faro, Jay M. Gambetta & Blake R.
Johnson (2021): Quality, Speed, and Scale: three key attributes to measure the performance of near-term
quantum computers, doi:10.48550/ARXIV.2110.14108.

[19] Stephen J Wright (2015): Coordinate descent algorithms. Mathematical programming 151(1), pp. 3–34,
doi:10.1007/s10107-015-0892-3.

https://doi.org/10.1016/S0304-3975(98)00191-1
https://doi.org/10.48550/ARXIV.QUANT-PH/0504100
https://doi.org/10.1017/S0963548300000870
https://doi.org/10.48550/arXiv.2107.02262
https://doi.org/10.1007/978-3-319-13350-8_16
https://doi.org/10.1017/CBO9780511755149
https://doi.org/10.48550/ARXIV.2110.14108
https://doi.org/10.1007/s10107-015-0892-3

	Introduction
	Preliminaries
	Simulations of BFAs and AFAs by MNFAs, NFAs, and DFAs
	Operational Complexity on Boolean and Alternating Finite Automata
	Introduction
	Preliminaries
	The degree of non-regularity
	The degree of extension of finite automata over groups
	Jumping complexity of finite automata with translucent letters
	Final remarks
	Introduction
	Preliminaries
	Construction of the set of matrices
	Conclusions
	Introduction
	Automata and languages
	Atoms of a regular language
	Relationships between quotients and atoms
	The isomorphism Latt(L,, L).5-.5.5-.5.5-.5.5-.5Latt(L,, R)*
	The isomorphism Latt(L,, L).5-.5.5-.5.5-.5.5-.5Latt(L,, R)*
	Semimodules and semilattices
	Complexity
	Conclusions and further work
	Introduction
	Preliminaries
	Fuzzy finite automata and the state reduction problem
	Approximate state reduction: bold0mu mumu kkkkkk-reduction
	Complexity issues
	Introduction
	Preliminaries
	Three models of weighted automata
	Weighted finite automata
	Crisp-deterministic weighted automata
	Weighted automata over a vector space

	Relationships between different types of weighted automata
	Introduction
	Preliminaries
	Examples

	Power of Fr1TASS
	Closure properties
	Decision problems and minimal Fr1TASS
	Fr1TASS with no auxiliary symbols
	Concluding remarks
	Introduction
	Preliminaries
	Graph-Controlled Insertion-Deletion Systems

	Computational Completeness
	GCID_S systems with insertion and deletion length one
	GCID_s systems with insertion or deletion length of more than one

	Summary and Open Problems
	Introduction
	Reversing in Prime Event Structures
	Residuals
	Transition System Semantics for Cause-Respecting RPESs
	Concluding Remarks
	1 Introduction
	2 Preliminaries
	3 Results on Sub-Word Pumping
	3.1 Comparing mps to Other Minimal Pumping Constants
	3.2 Operational Complexity of Sub-Word Pumping

	Introduction
	Definitions and Preliminaries
	Reversibility versus Irreversibility
	Closure Properties
	Restricted Communication
	Decidability Questions
	Introduction
	Preliminaries
	Semimodules of Finite Length
	Pseudoregular Endomorphisms
	Pumping Lemmata
	Introduction
	Preliminaries
	On state-deterministic finite automata with translucent letters
	The new models with nondeterministic translucency
	Hierarchy of the accepted languages
	Simulating nondeterministic computations with DFAwntl

	Conclusions
	Introduction
	Preliminaries
	Syntax: KA terms with variable complements
	Semantics: language models
	Languages for KA terms with variable complements

	The identity inclusion problem
	The variable inclusion problem and the universality problem
	Generalization from variables to composition-free terms
	The universality problem

	The word inclusion problem
	Generalization from words to star-free terms
	words-to-letters valuation property

	On the equational theory of words with variable complements
	Separating one-variable words with small number of letters

	Conclusion and future work
	A direct proof of the coincidence between the equational theory w.r.t. languages and the language equivalence for KA terms
	Introduction
	Preliminaries and Technical Background
	Deciding Regularity for Unambiguous WTAh
	A Sufficient Condition and the HOM-Problem
	Conclusion and Future Work
	Introduction
	Preliminaries
	Witness Languages and Variants of 1-Limited Automata
	Once-Marking 1-Limited Automata
	Always-Marking 1-Limited Automata
	Conclusion
	Introduction
	The decision procedure and Walnut
	Representation of natural numbers using digits 0 and 1 only
	Representation using digits -1, 0, and 1
	Representations for all integers
	Maximum dictionary order representation
	Finding new perfect systems of small complexity via exhaustive search
	Final remarks
	Introduction
	Preliminaries
	Main Results
	Horner automata and -separation
	Lower bound on the Horner separation distance D_H(n)
	Upper bound on the Horner separation distance D_H(n)

	Conclusion
	Introduction
	Preliminaries
	Languages, grammars, automata
	Complexity measures and resources restricted languages
	Subregular language families based on the structure
	Hierarchy of subregular families of languages
	Tree-controlled grammars

	Results
	Conclusion
	Introduction
	Preliminaries
	Shallow Fingerprinting
	Numerical Experiments
	Conclusions
	Acknowledgments

