
EPTCS 398

Proceedings of the

14th International Conference on

Automated Deduction in Geometry

Belgrade, Serbia, 20-22th September 2023

Edited by: Pedro Quaresma and Zoltán Kovács

Published: 22nd January 2024

DOI: 10.4204/EPTCS.398

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . iii

Pedro Quaresma and Zoltán Kovács

Invited Presentation: Formalization, Arithmetization and Automatization of Geometry 1

Julien Narboux

Invited Presentation: Formalization, Automatization and Visualization of Hyperbolic Geometry . . 2

Filip Marić

Invited Presentation: OK Geometry . 3

Zlatan Magajna

Towards Automatic Transformations of Coq Proof Scripts . 4

Nicolas Magaud

Towards Automated Readable Proofs of Ruler and Compass Constructions . 11

Vesna Marinković, Tijana Šukilović and Filip Marić

Automated Completion of Statements and Proofs in Synthetic Geometry: an Approach based on

Constraint Solving . 21

Salwa Tabet Gonzalez, Predrag Janičić and Julien Narboux

Using GXWeb for Theorem Proving and Mathematical Modelling . 38

Philip Todd and Danny Aley

Showing Proofs, Assessing Difficulty with GeoGebra Discovery . 43

Zoltán Kovács, Tomás Recio and M. Pilar Vélez

Open Source Prover in the Attic . 53

Zoltán Kovács and Alexander Vujic

Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers 62

Milan Banković

Towards an Independent Version of Tarski’s System of Geometry . 73

Pierre Boutry, Stéphane Kastenbaum and Clément Saintier

Considerations on Approaches and Metrics in Automated Theorem Generation/Finding in Geometry 85

Pedro Quaresma, Pierluigi Graziani and Stefano M. Nicoletti

ii

Solving with GeoGebra Discovery an Austrian Mathematics Olympiad problem: Lessons Learned . 101

Belén Ariño-Morera, Zoltán Kovács, Tomás Recio and Piedad Tolmos

Solving Some Geometry Problems of the Náboj 2023 Contest with Automated Deduction in

GeoGebra Discovery . 110

Amela Hota, Zoltán Kovács and Alexander Vujic

Using Java Geometry Expert as Guide in the Preparations for Math Contests . 124

Ines Ganglmayr and Zoltán Kovács

The Locus Story of a Rocking Camel in a Medical Center in the City of Freistadt 132

Anna Käferböck and Zoltán Kovács

3D Space Trajectories and beyond: Abstract Art Creation with 3D Printing . 142

Thierry Dana-Picard, Matias Tejera and Eva Ulbrich

Theorem Discovery Amongst Cyclic Polygons . 153

Philip Todd

Improving Angular Speed Uniformity by Piecewise Radical Reparameterization 165

Hoon Hong, Dongming Wang and Jing Yang

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. iii–v, doi:10.4204/EPTCS.398.0

© Pedro Quaresma & Zoltán Kovács
This work is licensed under the
Creative Commons Attribution License.

Preface

Automated Deduction in Geometry (ADG) is a forum to exchange ideas and views, to present re-
search results and progress, and to demonstrate software tools at the intersection between geometry and
automated deduction. Relevant topics include (but are not limited to): polynomial algebra, invariant and
coordinate-free methods; probabilistic, synthetic, and logic approaches, techniques for automated geo-
metric reasoning from discrete mathematics, combinatorics, and numerics; interactive theorem proving
in geometry; symbolic and numeric methods for geometric computation, geometric constraint solving,
automated generation/reasoning and manipulation with diagrams; design and implementation of geom-
etry software, automated theorem provers, special-purpose tools, experimental studies; applications in
mechanics, geometric modelling, CAGD/CAD, computer vision, robotics, and education.

Traditionally, the conference is held every two years. The previous editions of ADG were held in
Hagenberg 2021, postponed from 2020, and held online due to the COVID-19 pandemic, Nanning in
2018, Strasbourg in 2016, Coimbra in 2014, Edinburgh in 2012, Munich in 2010, Shanghai in 2008,
Pontevedra in 2006, Gainesville in 2004, Hagenberg in 2002, Zurich in 2000, Beijing in 1998, and
Toulouse in 1996.

The 14th edition, ADG 2023, was held in Belgrade, Serbia, in September 20-22, 2023 (https:
//adg2023.matf.bg.ac.rs/). This edition of ADG had an additional special focus topic: Deduction
in Education.

The invited speakers at ADG 2023 were:

Julien Narboux, University of Strasbourg, France

Filip Marić, University of Belgrade, Serbia

Zlatan Magajna, University of Ljubljana, Slovenia

The quality of research articles submitted for this proceedings of ADG was very high. Out of seven-
teen full-papers submitted, fifteen were accepted. Each submission was carefully reviewed by, at least,
three reviewers. Therefore this volume consists of fifteen articles, bringing exciting new ideas, spanning
various areas of automated deduction in geometry, and showing the current state-of-the-art research in
this field.

The conference programme and this volume can be roughly divided into 3 parts:

Automated and interactive theorem proving in geometry The effort of formalise many areas of
mathematics using deduction tools such as proof assistants is a huge undertaking, the area of geometry is
part of that effort. The two invited talks, by Julien Narbox, Formalisation, arithmetization and automa-
tisation of geometry and by Filip Marić, Automatization, formalization and visualization of hyperbolic
geometry gave a very good account of those efforts with the second also introducing an important subject,
somehow less common to see, of the non-Euclidean geometries.

The subject of readability of the proofs when automated or interactive theorem prover are used is
addressed in several contributions. Nicolas Magaud addresses the problem by presenting a framework to
carry out a posteriori script transformations of Coq proof sxcripts. Vesna Marinković et al. demonstrate
how their triangle construction solver ArgoTriCS can cooperate with automated theorem provers for

http://dx.doi.org/10.4204/EPTCS.398.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://adg2023.matf.bg.ac.rs/
https://adg2023.matf.bg.ac.rs/

iv Preface

first order logic and coherent logic so that it generates construction correctness proofs, that are both
human-readable and formal. Salwa Tabet Gonzalez et al. present a framework for completing incomplete
conjectures and incomplete proofs. The proposed framework can also help in completing a proof sketch
into a human-readable and machine-check-able proofs.

The systems combining dynamic geometry and automated deduction are very important, when the
aim is to reach a larger audience than the automated deduction experts. A first paper by Zoltán Kovács
et al. describes some on-going improvements concerning the automated reasoning tools developed in
GeoGebra Discovery. A second paper by Zoltán Kovács et al. describes the efforts that are being made
to resume the development of JGEX, a system that combines the dynamic geometry system with several
automated theorem provers and with natural language, with links to visual animations, human-readable
proofs.

Milan Banković presents an approach to automated solving of triangle ruler-and-compass construc-
tion problems using finite-domain constraint solvers. Pierre Boutry et al. present their progress towards
obtaining an independent version of Tarski’s System of Geometry, in the form of a variant of Gupta’s
system. Pedro Quaresma et al. make some considerations on Approaches and Metrics in Automated
Theorem Generation/Finding in Geometry, addressing Wos’ Problem 31, about the properties that can
be identified to permit an automated reasoning program to find new and interesting theorems.

The special focus topic Deduction in Education This special focus topic addresses the several dif-
ficulties, or should we say, opportunities, that must be addressed to open the field of automated deduc-
tion to a wider audience, namely to the education community. The talks were all around the tools and
problems crossing dynamic geometry systems and automated deduction. In the invited talk by Zlatan
Magajna, OK Geometry, he presents a tool for analysing dynamic geometric constructions, observing
invariants of dynamic geometric constructions, and generating conjectures. Philip Todd and Danny Aley
present GXWeb in the context of proving and mathematical modelling, Zoltán Kovács and other re-
searchers use GeoGebra, GeoGebra Discovery and JGEX to address several problems in mathematical
competitions. In two STEAM activities, Anna Käferböck and Zoltán Kovács present an activity, finding
the locus of a rocking camel and Thierry Dana-Picard et al. present the visualisation of 2D and 3D curves,
with various technologies to use the motivational fascination of outer space from students to connect to
mathematical modelling.

Algebraic methods in automated reasoning in geometry Philip Todd examine a class of geometric
theorems on cyclic 2n-gons, proving that if n disjoint pairs of sides are taken, each pair separated by
an even number of polygon sides, then there is a linear combination of the angles between those sides
which is constant. Hoon Hong et al. present a piece-wise rational reparameterization of curves obtaining
a more uniform angular speed obtaining a better rational parameterization of those curves.

The quality of this proceedings is due to the invited lecturers and the authors of submitted papers,
but also to the reviewers, the members of the program committee, and all the organisers of ADG 2023.

General Chair Predrag Janičić (University of Belgrade, Serbia)

Program Committee
Francisco Botana (University of Vigo, Spain)
Xiaoyu Chen (Beihang University, China)
Thierry Dana-Picard (Jerusalem College of Technology, Israel)

Pedro Quaresma & Zoltán Kovács v

Jacques Fleuriot (University of Edinburgh, UK)
Tetsuo Ida (University of Tsukuba, Japan)
Zoltán Kovács (The Private University College of Education of the Diocese of Linz, Austria)
— Co-chair
Claudia Nalon (University of Brası́lia, Brazil)
Pavel Pech (University of South Bohemia, České Budějovice, Czechia)
Pedro Quaresma (University of Coimbra, Portugal) — Co-Chair
Tomás Recio (Universidad Antonio de Nebrija, Spain)
Vanda Santos (University of Aveiro, Portugal)
Steven van Vaerenbergh (University of Cantabria, Spain)
Marı́a Pilar Vélez (Universidad Antonio de Nebrija, Spain)
Dingkang Wang (Chinese Academy of Sciences, China)
Dongming Wang (Beihang University/Guangxi University for Nationalities, China)
Jing Yang (Guangxi University for Nationalities, China)

Additional Reviewers

Christopher Brown (United States Naval Academy, USA)
Xiuquan Ding (University of Chinese Academy of Sciences, China)
Bo Huang (Beihang University, China)
Dongchen Jiang (Beijing Forestry University, China)
Dong Lu (Southwest Jiaotong University, China)
Weifeng Shang (Beihang University, China)
Fanghui Xiao (Hunan Normal University, China)

Local Chair Vesna Marinković (Faculty of Mathematics, University of Belgrade,Serbia)

Track-chair for Deduction in Education Filip Marić (University of Belgrade, Serbia)

ADG Steering Committee

Zoltán Kovács (JKU Linz School of Education, Austria), chair
Xiaoyu Chen (Beihang University, China)
Predrag Janičić (University of Belgrade, Serbia)
Hongbo Li (Chinese Academy of Sciences, China)
Vesna Marinković (University of Belgrade, Serbia)
Pedro Quaresma (University of Coimbra, Portugal)
Dongming Wang (Beihang University, China)
Jing Yang (Guangxi University for Nationalities, China)

We would like to express our gratitude to all participants at ADG 2023 and to all those that helped the
organisation of ADG 2023 in some way. We would also like to thank the EPTCS staff for their support
and efficiency.

January 2024
Pedro Quaresma, Zoltán Kovács
ADG 2023 Program Committee Chairs

P. Quaresma and Z. Kovács (Ed.): Automated Deduction

in Geometry 2023 (ADG 2023).

EPTCS 398, 2024, pp. 1–1, doi:10.4204/EPTCS.398.1

© J. Narboux

This work is licensed under the

Creative Commons Attribution License.

Formalization, Arithmetization and Automatization of

Geometry*

Julien Narboux

University of Strasbourg, France
jnarboux@narboux.fr

In this talk we will present an overview of our work (with Michael Beeson, Pierre Boutry, Gabriel

Braun and Charly Gries) about formalization and automation of geometry and the GeoCoq library. We

will delve into the axiomatic systems of influential mathematicians such as Euclid, Hilbert and Tarski and

present formalization issues. A special focus will be placed on the formalization of continuity axioms

and parallel postulates.

We will highlight details and issues that can be seen only through the lens of a proof assistant and

intuitionist logic. We will present a syntactic proof of the independence of the parallel postulate.

From axiomatic foundations to computer-assisted proofs, we will explore the intricate interplay be-

tween synthetic and analytic geometry, and different kinds of automation.

*Slides of the presentation: https://adg2023.matf.bg.ac.rs/downloads/slides/InvitedTalkNarboux.pdf

http://dx.doi.org/10.4204/EPTCS.398.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://adg2023.matf.bg.ac.rs/downloads/slides/InvitedTalkNarboux.pdf

P. Quaresma and Z. Kovács (Ed.): Automated Deduction

in Geometry 2023 (ADG 2023).

EPTCS 398, 2024, pp. 2–2, doi:10.4204/EPTCS.398.2

© F. Marić

This work is licensed under the

Creative Commons Attribution License.

Formalization, Automatization and Visualization of

Hyperbolic Geometry*

Filip Marić

Faculty of Mathematics, University of Belgrade, Serbia
filip@matf.bg.ac.rs

In this talk we describe our experiences with the formalization, automation and visualization of non-

Euclidean geometries.

We start with a formalization of the complex projective line CP(1) (also known as the extended

complex plane), its objects (points and circlines) and transformations (Möbius transformations). An

algebraic approach is used, where points are described with homogeneous coordinates, circlines are

described with Hermitean matrices and Möbius transformations are described using regular matrices.

We use the unit disk in CP(1) for the formalization of the Poincaré disk model of hyperbolic geometry

and show that it satisfies all Tarski axioms of geometry (with the negated Euclidean axiom).

We also analyze the problem of automatic construction of triangles in absolute and hyperbolic ge-

ometry. For this purpose we adapt the software ArgoTriCS. For the visualization of the generated con-

structions we use ArgoDG: a lightweight JavaScript library for dynamic geometry.

Finally, we introduce the formalization of gyrogroups and gyrovector spaces introduced by Abraham

Ungar, which is an alternative approach to formalize hyperbolic geometry inspired by Einstein’s special

theory of relativity.

*Slides of the presentation: https://adg2023.matf.bg.ac.rs/downloads/slides/FormalizationFilip.pdf

http://dx.doi.org/10.4204/EPTCS.398.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://adg2023.matf.bg.ac.rs/downloads/slides/FormalizationFilip.pdf

P. Quaresma and Z. Kovács (Ed.): Automated Deduction

in Geometry 2023 (ADG 2023).

EPTCS 398, 2024, pp. 3–3, doi:10.4204/EPTCS.398.3

© Z. Magajna

This work is licensed under the

Creative Commons Attribution License.

OK Geometry*

Zlatan Magajna

University of Ljubljana, Slovenia:

Zlatan.Magajna@pef.uni-lj.si

Automated observation of dynamic constructions is based on numerical checks of a variety of ge-

ometric properties performed on multiple instances of dynamic constructions, where all free points are

continuously dragged. Unlike most dynamic geometry systems that incorporate some elements of ob-

servation, OK Geometry is a tool developed specifically for the purpose of automated observation of

dynamic constructions. The goal of the observations is not to prove facts, but to generate plausible

hypotheses about the properties of the observed construction.

In the presentation, we focused on two aspects of observation in addition to the very concept of

automated observation. Firstly, we considered the necessary functionalities of software for automated

observation. The functionalities range from the possibility of importing dynamic constructions from

different dynamic systems, to the management of a database of geometric facts, objects and properties

to be considered during the observation, from the possibility of creating implicitly defined geometric

objects to the importance of controlling computational errors in numerical checks.

The second focus of the presentation was on the relationship between automated observation, proving

and automated provers. Automated observation can be helpful in proving geometric facts as it brings to

light properties of a configuration that one may not be aware of. In classroom practice, however, students

have difficulty selecting the relevant facts among those automatically observed. It seems that automated

observation is particularly useful in combination with automated provers when exploring geometric con-

figurations. Automated observation generates (many) plausible hypotheses about the properties of a

geometric configuration that can be proved with a prover.

*Slides of the presentation: https://adg2023.matf.bg.ac.rs/downloads/slides/OKGeometryMagajna.pdf

http://dx.doi.org/10.4204/EPTCS.398.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://adg2023.matf.bg.ac.rs/downloads/slides/OKGeometryMagajna.pdf

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 4–10, doi:10.4204/EPTCS.398.4

Towards Automatic Transformations of Coq Proof Scripts

Nicolas Magaud
Lab. ICube UMR 7357 CNRS Université de Strasbourg, France

magaud@unistra.fr

Proof assistants like Coq are increasingly popular to help mathematicians carry out proofs of the
results they conjecture. However, formal proofs remain highly technical and are especially difficult
to reuse. In this paper, we present a framework to carry out a posteriori script transformations. These
transformations are meant to be applied as an automated post-processing step, once the proof has
been completed. As an example, we present a transformation which takes an arbitrary large proof
script and produces an equivalent single-line proof script, which can be executed by Coq in one single
step. Other applications, such as fully expanding a proof script (for debugging purposes), removing
all named hypotheses, etc. could be developed within this framework. We apply our tool to various
Coq proof scripts, including some from the GeoCoq library.

1 Motivations

Proof assistants like Coq [1, 4] are increasingly popular to help mathematicians carry out proofs of the
results they conjecture. However, formal proofs remain highly technical and are especially difficult to
reuse. Once the proof effort is done, the proof scripts are left as they are and they often break when
upgrading to a more recent version of the prover. To reduce the burden of maintaining the proof scripts
of Coq, we propose a tool to post-process the proof scripts to make them cleaner and easier to reuse.
The first transformation that we focused on consists in compacting a several-step proof script into a
single-step proof script. Even though our framework can be used to implement other proof script trans-
formations, this one is of special interest to us. Indeed, we recently designed a prover for projective
incidence geometry [3, 12] which relies on the concept of rank to carry out proofs of geometric theorems
such as Desargues or Dandelin-Gallucci automatically. This prover produces a trace (a large Coq proof
script containing several statements and their proofs). We hope to use the proof transformation tool to
shape up the automatically generated proofs and make them easier to reuse and integrate in larger proof
repositories.

More generally, proof maintenance and reuse tools have been studied extensively by Talia Ringer et
al. [11, 10]. Contrary to our approach, their tools aim at fixing the issues when they occur. In our setting,
we think it is better to try and improve the proof scripts so that they are less likely to break, even after
several years and numerous updates of the components.

Outline of the paper The paper is organized as follows. In Sect. 2, we present a simple example of a
proof script transformation. In Sect. 3, we describe the implementation of our tool as well as the future
extensions we currently develop. In Sect. 4, we present some concluding remarks and the perspectives
of this work.

http://dx.doi.org/10.4204/EPTCS.398.4

N. Magaud 5

Lemma foo : forall A B C : Prop, A ∨ (B ∧ C) → (A∨ B)∧ (A∨ C).

Proof.
intros; destruct H.
split.
left; assumption.
left; assumption.
destruct H.
split.
right; assumption.
right; assumption.
Qed.

Proof.
intros; destruct H;

[split;
[left; assumption
| left; assumption]

| destruct H ;
split;
[right; assumption
| right; assumption]].

Qed.

Figure 1: A user-written script (left) and the equivalent single-step script (right)

2 Transforming Large Proof Scripts into One-line Scripts

The Coq tactic language [5] features tacticals to execute some tactics in a sequence tac1;tac2;tac3

or to try and execute different tactics on the same goal solve [tac1 | tac2 | tac3]. Moreover
these tacticals can be combined. E.g. tac0 ; [tac1 | tac2 | tac3] runs the first tactic tac0 which
should yield 3 subgoals. The first one is solved using tac1, the second one using tac2 and the third one
using tac3. Once a proof script is written (as several steps) by the user, we can use these tacticals to
build an equivalent proof script, which can be executed in a single step.

Let us consider a simple example, proving the distributivity of the connective or (∨) over the con-
nective and (∧) as shown in the statement of figure 1.

The left-hand side presents the proof script that one may expect from a master student, factorizing
some parts but still decomposing the reasoning in several steps. On the right-hand side, we propose a
one-line script to carry out exactly the same proof.

In Coq, writing directly the right-hand side is almost impossible, whereas it is fairly easy to generate
it automatically from the left-hand side. In the Coq standard library, several lemmas are proved using a
single one-line tactic. The main advantage is that it provides concise and structured proofs but it has the
drawback that, when something goes wrong, it is hard to debug and fix it.

3 Experiments, Limitations and Results

3.1 Implementation

We choose to implement our tool in OCaml, using the serialisation mechanism serapi [6] developed by
Emilio Gallego Arias for communication with the Coq proof assistant. Our tool uses anonymous pipes
to communicate with serapi, which itself sends requests to Coq and retrieves the answers. Commands
are kept as in the input file. Tactics are aggregated using tacticals such as ;, [and]. At each step of the
proof, we compare the current number of subgoals to the number of subgoals right before the execution
of the current tactic. If it is the same, we simply concatenate the tactics with a ; between them. If the
number of goals increases, we open a square bracket [and push into the stack the previous number of
goals. Each time a goal is solved, we check whether some goals remain to be proved at this level. If yes,
we add another ; and then focus on the next subgoal. If there are no more subgoals at this level, we pop

6 Towards Automatic Transformations of Coq Proof Scripts

the 0 from the top of the stack, thus closing the current level with a] and carry on with subgoals of the
previous level.

The source code1 as well as some examples are freely available online. It is developped using Coq

8.17.0 and the corresponding serapi version 8.17.0+0.17.0.

3.2 Limitations

So far, commands and tactics are told apart simply by assuming commands start with a capital letter
[A-Z] and tactics with a small letter [a-z]. This convention is well-known in Coq, however in some
developments (e.g. GeoCoq), some ad-hoc user tactics may start with a capital letter. Handling this
properly requires additional developments and is currently under way.

To make the transformation easier, a first phase could be added to our proof script transformer to
remove all commands which lay among the proof steps (e.g. Check, Print or Locate) and make sure
all tactics names start with a small letter.

Finally, Coq proof scripts can be structured using bullets (+, -, *) as well as curly brackets to identify
some subproofs. In addition, one can direct work on a goal which is not the current one using the 2:

tac. notation which performs the tactic tac on the second goal of the subgoals. We still need to devise
a way to deal properly with such partially-structured proof script.

3.3 Successful Transformations

In addition to our test suite examples, we consider more challenging proof scripts. We successfully
transformed a library file from the Standard Library of Coq: Cantor.v2 from the Arith library as well as
some large files from the GeoCoq library [2, 8] (e.g. orthocenter.v3). As the tool gets more mature, we
plan to transform more files, and we shall especially focus on the GeoCoq library which features several
different proof styles and thus shall allow us to evaluate the robustness of our tool.

3.4 Refactoring Proof Scripts Automatically Generated by our Prover for Projective In-
cidence Geometry

We recently developed a new way [3, 12], based on ranks, to automatically prove statements in projective
incidence geometry. Our approach works well but produces proof scripts which are very large and often
feature several auxiliary lemmas. Figure 2 presents a very simple example LABC, which is formally
proven by our tool but yields a fairly verbose proof script using one intermediate lemma LABCD (see
appendix A for details).

We plan to use our script transformation tool to refactor automatically generated proof scripts, in-
lining auxiliary lemmas and thus making proof scripts more concise and hopefully more readable for
humans.

3.5 Next steps

To fully evaluate the tool, we need to handle larger examples, outside of the standard library of Coq. The
next step consists in improving Coq options handling (e.g. -R) to our script transformation tool to tackle
other formal proof libraries.

1https://github.com/magaud/coq-lint
2https://github.com/coq/coq/blob/master/theories/Arith/Cantor.v
3https://github.com/GeoCoq/GeoCoq/blob/master/Highschool/orthocenter.v

https://github.com/magaud/coq-lint
https://github.com/coq/coq/blob/master/theories/Arith/Cantor.v
https://github.com/GeoCoq/GeoCoq/blob/master/Highschool/orthocenter.v

N. Magaud 7

A

D

B

C

• Informal statement
Assume that ABD is a triangle,
Assume that C is a point on AD, such that C6= A and C6= D,
Then ABC is a triangle.

• Expressed using ranks

∀A,B,C,D : Point,
rk{A,D,B}= 3 → rk{A,C,D}= 2 →
rk{C,A}= 2 → rk{C,D}= 2 →
rk{A,C,B}= 3.

Figure 2: An example of a statement in projective geometry, formalized using ranks

We also plan to propose the reciprocal script transformation, turning a single-step proof script into a
more detailed (easier to debug) proof script. This could especially be useful when porting formal proofs
from one version of Coq to the next one.

Other applications of interest could be to remove the names of all variables or hypotheses from the
scripts, or at least to force them to be explicitly introduced. The script snippet intros; apply H could
be replaced by a more precise one intros n p H; apply H. This way, we could ensure that the proofs
are not broken when the names of automatic variables change. From a reliability point of view, it would
be even better to use the tactic intros; assumption. Although its cost is higher (because we need to
search the correct hypothesis among all of them every time we run the tactic), it does not depend on some
arbitrary variable names.

Finally, regarding our current implementation, it would be interesting to benchmark the transforma-
tion to see whether transforming the whole standard library of Coq into single-step proof scripts could
improve the compilation time of this library.

4 Conclusions and perspectives

We build a proof script transformation tool, which transforms an arbitrary large proof script into a single-
step one-Coq-tactic proof script. This tool has been successfully experimented on some significant
library files from the Coq ecosystem.

This first example shows that the approach is sound and we plan to extend it to integrate tactic
languages such as ssreflect [7], Ltac2 [9] or Mtac [13] in our framework. In the longer term, we expect
to design some new proof script transformations and combine them in order to build more reliable proof
developments which can last longer and would be easier to maintain. Among these transformations,
we shall start with a mechanism to transform a proof script into a sequence of atomic proof steps (to
make debugging easier when the proof breaks). We may also study how to transform proofs carried
out automatically by their actual traces, avoiding recomputing the proof search each time the proof is
re-runned.

8 Towards Automatic Transformations of Coq Proof Scripts

References

[1] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Coq’Art : The Calculus
of Inductive Constructions. Texts in Theoretical Computer Science, An EATCS Series, Springer-Verlag,
Berlin/Heidelberg (May 2004), 469 pages

[2] Boutry, P., Gries, C., Narboux, J., Schreck, P.: Parallel postulates and continuity axioms: a
mechanized study in intuitionistic logic using Coq. Journal of Automated Reasoning p. 68 (2017).
https://doi.org/10.1007/s10817-017-9422-8

[3] Braun, D., Magaud, N., Schreck, P.: Two new ways to formally prove dandelin-gallucci’s the-
orem. In: Chyzak, F., Labahn, G. (eds.) ISSAC ’21: International Symposium on Symbolic
and Algebraic Computation, Virtual Event, Russia, July 18-23, 2021. pp. 59–66. ACM (2021).
https://doi.org/10.1145/3452143.3465550

[4] Coq development team: The Coq Proof Assistant Reference Manual, Version 8.13.2. INRIA (2021), http:
//coq.inria.fr

[5] Delahaye, D.: A Tactic Language for the System Coq. In: Parigot, M., Voronkov, A. (eds.) Logic for Pro-
gramming and Automated Reasoning, 7th International Conference, LPAR 2000, Reunion Island, France,
November 11-12, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1955, pp. 85–95. Springer
(2000). https://doi.org/10.1007/3-540-44404-1_7

[6] Gallego Arias, E.J.: SerAPI: Machine-Friendly, Data-Centric Serialization for Coq. Tech. rep., MINES Paris-
Tech (Oct 2016), https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408

[7] Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J. Formaliz. Reason. 3(2),
95–152 (2010). https://doi.org/10.6092/issn.1972-5787/1979

[8] Narboux, J.: Mechanical Theorem Proving in Tarski’s geometry. In: Eugenio Roanes Lozano, F.B. (ed.)
Automated Deduction in Geometry 2006. LNCS, vol. 4869, pp. 139–156. Francisco Botana, Springer, Pon-
tevedra, Spain (Aug 2006). https://doi.org/10.1007/978-3-540-77356-6

[9] Pédrot, P.M.: Ltac2: Tactical Warfare. In: Krebbers, R., Sergey, I. (eds.) Proceedings of the CoqPL workshop
2019 (2019)

[10] Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., Tatlock, Z.: QED at large: A survey of
engineering of formally verified software. Found. Trends Program. Lang. 5(2-3), 102–281 (2019).
https://doi.org/10.1561/2500000045

[11] Ringer, T., Yazdani, N., Leo, J., Grossman, D.: Adapting proof automation to adapt proofs. In: Andron-
ick, J., Felty, A.P. (eds.) Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018. pp. 115–129. ACM (2018).
https://doi.org/10.1145/3167094

[12] Schreck, P., Magaud, N., Braun, D.: Mechanization of incidence projective geometry in higher dimensions, a
combinatorial approach. In: Janicic, P., Kovács, Z. (eds.) Proceedings of the 13th International Conference on
Automated Deduction in Geometry, ADG 2021, Hagenberg, Austria/virtual, September 15-17, 2021. EPTCS,
vol. 352, pp. 77–90 (2021). https://doi.org/10.4204/EPTCS.352.8

[13] Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: A monad for typed tactic
programming in coq. J. Funct. Program. 25 (2015). https://doi.org/10.1017/S0956796815000118

A Proof Script for our basic example

Lemma LABCD : forall A B C D ,
rk(A:: C:: nil) = 2 → rk(A:: B:: D:: nil) = 3 →
rk(C:: D:: nil) = 2 → rk(A:: C:: D:: nil) = 2 →
rk(A:: B:: C:: D:: nil) = 3.

http://coq.inria.fr
http://coq.inria.fr
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408

N. Magaud 9

Proof.
intros A B C D

HACeq HABDeq HCDeq HACDeq .
assert(HABCDm2 : rk(A:: B:: C:: D:: nil) >= 2).
{

assert(HACmtmp : rk(A:: C:: nil) >= 2)
by (solve_hyps_min HACeq HACm2).

assert(Hcomp : 2 <= 2) by (repeat constructor).
assert(Hincl : incl (A:: C:: nil) (A:: B:: C:: D:: nil))

by (repeat clear_all_rk;my_inO).
apply (rule_5 (A:: C:: nil) (A:: B:: C:: D:: nil) 2 2 HACmtmp Hcomp Hincl).

}
assert(HABCDm3 : rk(A:: B:: C:: D:: nil) >= 3).
{

assert(HABDmtmp : rk(A:: B:: D:: nil) >= 3)
by (solve_hyps_min HABDeq HABDm3).

assert(Hcomp : 3 <= 3)
by (repeat constructor).

assert(Hincl : incl (A:: B:: D:: nil) (A:: B:: C:: D:: nil))
by (repeat clear_all_rk;my_inO).

apply (
rule_5 (A:: B:: D:: nil) (A:: B:: C:: D:: nil) 3 3 HABDmtmp Hcomp Hincl

).
}
assert(HABCDM : rk(A:: B:: C:: D:: nil) <= 3)

by (solve_hyps_max HABCDeq HABCDM3).
assert(HABCDm : rk(A:: B:: C:: D:: nil) >= 1)

by (solve_hyps_min HABCDeq HABCDm1).
intuition.
Qed.

Lemma LABC : forall A B C D ,
rk(A:: C:: nil) = 2 → rk(A:: B:: D:: nil) = 3 →
rk(C:: D:: nil) = 2 → rk(A:: C:: D:: nil) = 2 →
rk(A:: B:: C:: nil) = 3.
Proof.
intros A B C D

HACeq HABDeq HCDeq HACDeq .

assert(HABCm2 : rk(A:: B:: C:: nil) >= 2).
{

assert(HACmtmp : rk(A:: C:: nil) >= 2)
by (solve_hyps_min HACeq HACm2).

assert(Hcomp : 2 <= 2)
by (repeat constructor).

assert(Hincl : incl (A:: C:: nil) (A:: B:: C:: nil))
by (repeat clear_all_rk;my_inO).

apply (
rule_5 (A:: C:: nil) (A:: B:: C:: nil) 2 2 HACmtmp Hcomp Hincl

).
}
assert(HABCm3 : rk(A:: B:: C:: nil) >= 3).

10 Towards Automatic Transformations of Coq Proof Scripts

{
assert(HACDMtmp : rk(A:: C:: D:: nil) <= 2)

by (solve_hyps_max HACDeq HACDM2).
assert(HABCDeq : rk(A:: B:: C:: D:: nil) = 3)

by

(apply LABCD with (A := A) (B := B) (C := C) (D := D) ; assumption).
assert(HABCDmtmp : rk(A:: B:: C:: D:: nil) >= 3)

by (solve_hyps_min HABCDeq HABCDm3).
assert(HACmtmp : rk(A:: C:: nil) >= 2)

by (solve_hyps_min HACeq HACm2).
assert(Hincl :

incl (A:: C:: nil)
(list_inter (A:: B:: C:: nil) (A:: C:: D:: nil)))

by (repeat clear_all_rk;my_inO).
assert(HT1 :

equivlist (A:: B:: C:: D:: nil)
(A:: B:: C:: A:: C:: D:: nil))

by (clear_all_rk;my_inO).
assert(HT2 :

equivlist (A:: B:: C:: A:: C:: D:: nil)
((A:: B:: C:: nil) ++ (A:: C:: D:: nil))

) by (clear_all_rk;my_inO).
rewrite HT1 in HABCDmtmp;rewrite HT2 in HABCDmtmp.
apply (
rule_2

(A:: B:: C:: nil) (A:: C:: D:: nil) (A:: C:: nil)
3 2 2 HABCDmtmp HACmtmp HACDMtmp Hincl

).
}
assert(HABCM : rk(A:: B:: C:: nil) <= 3)

by (solve_hyps_max HABCeq HABCM3).
assert(HABCm : rk(A:: B:: C:: nil) >= 1)

by (solve_hyps_min HABCeq HABCm1).
intuition.
Qed.

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 11–20, doi:10.4204/EPTCS.398.5

Towards Automated Readable Proofs of
Ruler and Compass Constructions

Vesna Marinković
Faculty of Mathematics, University of Belgrade

vesna.marinkovic@matf.bg.ac.rs

Tijana Šukilović
Faculty of Mathematics, University of Belgrade

tijana.sukilovic@matf.bg.ac.rs

Filip Marić
Faculty of Mathematics, University of Belgrade

filip.maric@matf.bg.ac.rs

Although there are several systems that successfully generate construction steps for ruler and com-
pass construction problems, none of them provides readable synthetic correctness proofs for gener-
ated constructions. In the present work, we demonstrate how our triangle construction solver Ar-
goTriCS can cooperate with automated theorem provers for first order logic and coherent logic so
that it generates construction correctness proofs, that are both human-readable and formal (can be
checked by interactive theorem provers such as Coq or Isabelle/HOL). These proofs currently rely
on many high-level lemmas and our goal is to have them all formally shown from the basic axioms
of geometry.

1 Introduction

Geometry construction problems are usually solved in four phases:

1. Analysis: In this phase, the geometric figure to be constructed is analyzed. The specific constraints
that apply to this figure and the relationships between its elements are identified. By understanding
the requirements and constraints, the steps required to construct the desired figure can be deter-
mined.

2. Construction: Once the problem is analyzed, the sequence of ruler and compass construction steps
used to construct the figure is identified.

3. Proof : After the figure is constructed, it should be proved that it satisfies the properties and con-
ditions given by the specification. Proofs in ruler and compass constructions often involve using
geometric principles, such as the properties of angles, congruence, or similarity. A formal proof
can be used to demonstrate the validity of the construction and ensure that it meets the desired
criteria.

4. Discussion: The discussion phase involves reflection on the construction, its properties, and the
relevant insights. It is often discussed under which condition does the solution exist and whether
it is unique. Non-degeneracy conditions are also identified.

In our previous work we have described our system ArgoTriCS that can perform triangle construc-
tions both in Euclidean geometry [6] and in absolute and hyperbolic geometry [8]. Problems from the
Wernick’s list [10] are analyzed and in Euclidean setting ArgoTriCS manages to solve 66 out of 74 non-
isomorphic problems. Essentially it performs the problem analysis based on its internal set of definitions

http://dx.doi.org/10.4204/EPTCS.398.5

12 Towards Automated Readable Proofs of Ruler and Compass Constructions

and lemmas, and finds a series of construction steps required to construct a triangle with a given set
of significant points (e.g., vertices, orthocenter, centroid, centers of inscribed and circumscribed circles
etc.). However it did not generate classic, readable, synthetic construction proofs. In her PhD thesis [7],
Marinković describes how theorem provers, based on algebraic methods such as Wu’s method [11] and
Gröbner basis method [1], and semi-synthetic methods such as area method [4], integrated within GLCL
tool [2] and OpenGeoProver [5], could be employed to check the construction correctness. The problem
with this approach is that generated proofs are not human-readable. Since the main usage scenario of
automated construction solver is in education, it is vital that students understand why some construction
is correct. Therefore, obtaining human-readable proofs is of a great importance.

In the current work, we describe how an automated system such as ArgoTriCS can be combined with
first-order logic and coherent logic provers so that each generated construction is accompanied by its
human-readable proof of correctness. This is a work in progress, and we will describe our approach,
prototype implementation, and preliminary results for a small set of selected problems.

2 Examples

Example 2.1. Consider constructing a triangle ABC given its vertex A, altitude foot Ha and circumcenter
O. ArgoTriCS finds the following construction, illustrated in Figure 1:

1. Construct the line l1 = AHa.

2. Construct the line l2 such that it is perpendicular to the line l1 and that it contains Ha.

3. Construct the circle c centered at O containing A.

4. Let B and C be the intersections of the line l2 and the circle c.

A

Ha

O

l1

l2

c

B C

Fig. 1: Construction of the triangle ABC given the points A, O, and Ha.

Proof. We need to show that A is the vertex of the constructed triangle ABC (which is trivial), that Ha is
its altitude foot and that O is its circumcenter. This proof is rather straightforward.

V. Marinković, T. Šukilović & F. Marić 13

By construction, the circle c contains all three vertices A, B, and C, so it must be the circumcircle of
the triangle ABC (since the circumcircle of a triangle is unique). The O is the center of c, so it must be
the circumcenter (since the center of any circle is unique).

By construction the line l2 contains the vertices B and C, so it must be equal to the side a of the
triangle ABC (since the triangle side through the points B and C is unique). By construction the line l1
contains A and is perpendicular to l2 = a, so it must be equal to the altitude ha (since there is a unique
altitude from the vertex A). Since by construction Ha belongs both to l2 = a and l1 = ha it must be the
altitude foot Ha (since it is the unique intersection of a and ha).

If we analyze the previous proof, we see that it essentially relies on several uniqueness lemmas and
that it merely reverses the chain of deduction steps used in the analysis phase.

In some cases, however, the proof is very different from the analysis.

Example 2.2. Consider constructing a triangle ABC given its vertex A, circumcenter O and centroid G.
The construction that ArgoTriCS finds is the following (see Figure 2):

1. Construct the point P1 such that −→AG :−→AP1 = 2 : 3.

2. Construct the point P2 such that −→OG :−−→OP2 = 1 : 3.

3. Construct the line l1 = AP2.

4. Construct the line l2 such that it is perpendicular to the line l1 and that it contains P1.

5. Construct the circle c centered at O containing A.

6. Let B and C be the intersections of the line l2 with the circle c.

A

G

O

P1

P2

l1

c

l2B C

Fig. 2: Construction of the triangle ABC given the points A, O, and G.

Please note that there is a simpler solution to this construction problem, but we wanted to discuss this
solution because the proof here is quite different from the construction.

14 Towards Automated Readable Proofs of Ruler and Compass Constructions

Proof. We need to prove that A is the vertex of the triangle ABC (which is trivial), that G is its cen-
troid and that O is its circumcenter. The latter is very simple (similar to the previous proof), since by
construction all points A, B, and C lie on the circle c centered at O.

The line l2 is equal to the triangle side a, since it contains the vertices B and C (and the triangle side
through the points B and C is unique). By construction l1 contains A and is perpendicular to l2 = a, so it
must be equal to the altitude ha (since the altitude from vertex A is unique).

Consider line l3 = OP1. We shall prove that it is parallel to the line l1 = ha. Since by construction it
holds that −→OG : −−→OP2 = 1 : 3, by the elementary properties of vector ratio it also holds that −→OG : −−→GP2 =
1 : 2. Similarly, it holds that −−→P1G : −→GA = 1 : 2. The angles OGP1 and OGP2 are opposite and therefore
congruent. Hence triangles OGP1 and P2GA are similar, and angles OP1G and GAP2 are always equal, so
the lines OP1 = l3 and AP2 = l1 = ha are parallel.

Since ha is perpendicular to l2 = a, so must be l3 = OP1. Therefore, the line l3 must be the perpendic-
ular bisector of the segment BC (since it is the unique line containing circumcenter O that is perpendicular
to a). Consequently, the point P1 must be equal to Ma – the midpoint of BC (as it is the unique inter-
section of the segment with its pependicular bisector). Finally, the point G must be the centroid of ABC
since the centroid is the unique point for which it holds that −→AG :−−→AMa = 2 : 3.

3 Automation

Our main goal is to obtain proofs such as the previous ones automatically, using coherent logic provers.

3.1 Problem Statement and Lemmas

The first step would be to make ArgoTriCS generate the problem statement, along with the construction
steps. For example, the problem statement for the first problem can be given as follows:

inc(A, l1)∧ inc(H ′a, l1)∧
perp(l2, l1)∧ inc(H ′a, l2)∧
circle(O′,A,c)∧
inc(B, l2)∧ inc(C, l2)∧ inc c(B,c)∧ inc c(C,c)∧B 6=C =⇒
H ′a = Ha∧O′ = O

The predicate inc(P, l) denotes that the point P is incident to the line l i.e., P ∈ l, inc c(P,c) denotes
that the point P is incident to the circle c i.e., P ∈ c, circle(O,P,c) denotes that c is the circle centered
at the point O passing through the point P, and perp(l1, l2) denotes that lines l1 and l2 are perpendicular.
The point O is the real circumcenter of the triangle ABC (this is implicitly given by the lemmas that are
given to the prover along with the problem statement), and Ha is the real altitude foot. For simplicity
various non-degeneracy conditions are added to the problem statement (e.g., the conditions H ′a 6= A,
A 6= B, A 6=C, etc.) before it is given to the automated theorem prover.

Along with the problem statement, automated prover is given a series of carefully chosen lemmas,
that are treated as axioms. Most of those lemmas follow from the general geometric knowledge, but are
instantiated for the significant points, lines and circles of the triangle ABC. Each significant object is
denoted by a constant (e.g., bc for the side BC, O for the circumcenter, Ma for the midpoint of BC, ha

for the altitude from A, Ha for its foot, c◦ for the circumcircle etc.). Lemmas that encode properties of

V. Marinković, T. Šukilović & F. Marić 15

those objects are used both in analysis (by the ArgoTriCS) and in proofs (by automated theorem provers).
Some of those lemmas are:

inc(B,bc) ∧ inc(C,bc)

inc(A,ha) ∧ perp(ha,bc)
−→AG :−−→AMa = 2 : 3

inc c(A,c◦) ∧ inc c(B,c◦)∧ inc c(C,c◦)

However, proofs require additional lemmas that guarantee uniqueness of objects. For example:

(∀l)(inc(A, l)∧perp(l,bc) =⇒ l = ha)

(∀c)(inc c(A,c)∧ inc c(B,c)∧ inc c(C,c) =⇒ c = c◦)

Notice that uniqueness lemmas are given in instantiated way, meaning that they hold for some specific
objects. This choice was made in order to follow the implementation of ArgoTriCS, where most of the
knowledge is given in an instantiated way. However, the uniqueness axioms could be given also in more
general way.

Some general lemmas about properties of basic geometric predicates are also needed. For example:

(∀l1, l2)(perp(l1, l2) =⇒ perp(l2, l1))

(∀P1,P2)(∃l)(inc(P1, l) ∧ inc(P2, l))

All those lemmas are formulated as axioms and the problem statement is formulated as a conjecture
in TPTP format.1 That file is then given to some automated theorem prover. In our experiments we
used Vampire [9] and Larus [3]. Vampire is a very efficient, award winning FOL theorem prover. Its
main drawback is that it cannot generate readable proofs. We also used Larus [3] that is a coherent-logic
prover able to generate readable proofs and also formal proofs that can be checked by interactive theorem
provers such as Isabelle/HOL or Coq.

Our second example uses the notion of ratio of vectors. However neither Vampire nor Larus have
a native support for arithmetic calculations. Therefore we introduced separate predicates for ratios that
frequently occur in geometric constructions (e.g., 1 : 2, 1 : 3, 2 : 3) and added lemmas that connect those
ratios. For example:

(∀A,B,C)(ratio13(A,B,A,C) =⇒ ratio12(A,B,B,C))

The proof uses a result that follows from triangle similarity. We encoded this in the following lemma:

(∀A,M,B,X ,Y,ax,by)

(ratio21(A,M,M,B)∧ ratio21(X ,M,M,Y)∧
line(A,X ,ax)∧ line(B,Y,by) =⇒ para(ax,by))

Also, in Euclidean geometry there are clear connections between parallel and perpendicular lines.

(∀l1, l2,a) (perp(l1,a)∧para(l1, l2) =⇒ perp(l2,a))

1https://www.tptp.org/

https://www.tptp.org/

16 Towards Automated Readable Proofs of Ruler and Compass Constructions

3.2 Using Automated Provers

The conjecture of the construction problem considered in Example 2.1 can be formulated in TPTP format
in the following way:

fof(th_A_Ha_O, conjecture, ((inc(pA,ha1) & inc(pHa1,ha1)

& perp(ha1,a1) & inc(pHa1,a1) & inc_c(pA,cc1) & center(pOc1,cc1)

& inc_c(pB,cc1) & inc(pB,a1) & inc_c(pC,cc1) & inc(pC,a1))

=> (pHa = pHa1 & pOc = pOc1))).

where pHa and pOc are defined by the axioms as the foot of the altitude from vertex A to side BC and
circumcenter of triangle ABC, respectively.

Larus successfully proved given conjecture as two separate statements, one for each of the facts in
the conclusion. Key fragment of generated readable proof is given below (all used geometry axioms are
listed, others are the ones implied by equality):

Axioms:

1. bc unique : ∀L (inc(pB,L)∧ inc(pC,L)⇒ L = bc)

2. haA : ∀H (perp(H,bc)∧ inc(pA,H)⇒ ha = H)

3. pHa def : ∀H1 (inc(H1,ha)∧ inc(H1,bc)⇒ H1 = pHa)

4. cc unique : ∀C (inc c(pA,C)∧ inc c(pB,C)∧ inc c(pC,C)⇒C = cc)

5. center unique : ∀C ∀C1 ∀C2 (center(C1,C)∧ center(C2,C)⇒C1 =C2)

Example 3.1. th A Ha O0 :
inc(pA,ha1) ∧ inc(pHa1,ha1) ∧ perp(ha1,a1) ∧ inc(pHa1,a1) ∧ inc c(pA,cc1)
∧ center(pOc1,cc1) ∧ inc c(pB,cc1) ∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1)
⇒ pHa = pHa1

Proof:

1. pHa = pHa (by MP, using axiom eqnativeEqSub0; instantiation: A 7→ pHa, B 7→ pHa, X 7→ pHa)

2. a1 = bc (by MP, from inc(pB,a1), inc(pC,a1) using axiom bc unique; instantiation: L 7→ a1)

3. perp(ha1,bc) (by MP, from perp(ha1,a1), a1 = bc using axiom perpEqSub1; instantiation: A 7→ ha1, B 7→ a1, X 7→ bc)

4. ha = ha1 (by MP, from perp(ha1,bc), inc(pA,ha1) using axiom haA; instantiation: H 7→ ha1)

5. inc(pHa1,ha) (by MP, from inc(pHa1,ha1), ha = ha1 using axiom incEqSub1; instantiation: A 7→ pHa1, B 7→ ha1, X 7→ ha)

6. inc(pHa1,bc) (by MP, from inc(pHa1,a1), a1 = bc using axiom incEqSub1; instantiation: A 7→ pHa1, B 7→ a1, X 7→ bc)

7. pHa1 = pHa (by MP, from inc(pHa1,ha), inc(pHa1,bc) using axiom pHa def; instantiation: H1 7→ pHa1)

8. pHa = pHa1 (by MP, from pHa1 = pHa, pHa = pHa using axiom eqnativeEqSub0; instantiation: A 7→ pHa, B 7→ pHa1, X 7→
pHa)

9. Proved by assumption! (by QEDas)

Example 3.2. th A Ha O1 :
inc(pA,ha1) ∧ inc(pHa1,ha1) ∧ perp(ha1,a1) ∧ inc(pHa1,a1) ∧ inc c(pA,cc1)
∧ center(pOc1,cc1) ∧ inc c(pB,cc1) ∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1)
⇒ pOc = pOc1

V. Marinković, T. Šukilović & F. Marić 17

Proof:

1. center(pOc,cc) (by MP, using axiom centerEqSub1; instantiation: A 7→ pOc, B 7→ cc, X 7→ cc)

2. cc1 = cc (by MP, from inc c(pA,cc1), inc c(pB,cc1), inc c(pC,cc1) using axiom cc unique; instantiation: C 7→ cc1)

3. center(pOc1,cc) (by MP, from center(pOc1,cc1), cc1 = cc using axiom centerEqSub1; instantiation: A 7→ pOc1, B 7→ cc1, X 7→
cc)

4. pOc = pOc1 (by MP, from center(pOc,cc), center(pOc1,cc) using axiom center unique; instantiation: C 7→ cc, C1 7→ pOc, C2 7→
pOc1)

5. Proved by assumption! (by QEDas)

Correctness proof of the generated construction for the problem considered in Example 2.2 is given
in Appendix.

4 Results

We considered the subset of problems from Wernick’s corpus, over vertices of the triangle, midpoints
of triangle sides, feet of altitudes, centroid, circumcenter and orthocenter of the triangle. It consists
of 35 non-isomorphic location triangle problems. For each of these problems, we tried to prove the
correctness of constructions found by ArgoTriCS using FOL prover Vampire and coherent logic prover
Larus. Vampire succesfully proved 31 of these problems, while Larus proved 20 problems, and for
remaining ones it could not prove it in given timelimit.

5 Conclusion

Although this is a work-in-progress, we have managed to show that this approach is plausible and can
be used to automatically obtain readable proofs of correctness for geometric constructions. This is very
important in the context of mathematical education, where students need to know why a geometric state-
ment holds. In our previous work, we have described ArgoTriCS – a system that is able to perform
ruler and compass construction steps for almost all solvable problems in the Wernick’s corpus [6, 10].
The main step in the ArgoTriCS implementation was to formulate a good set of lemmas to be used for
analysing and finding the construction. This work shows that an identified set of lemmas is not sufficient
to generate correctness proofs, and that the proof phase requires an additional set of lemmas (mainly the
lemmas that guarantee uniqueness, but also some other equally important lemmas). However, once these
lemmas are identified, they can be passed to general-purpose theorem provers, which can then generate
fully synthetic proofs of correctness. Although the coherent logic solvers we have tested are not yet as
powerful as the FOL solvers such as Vampire, if they succeed in solving the given problem, they provide
us with human-readable proofs.

A very important issue is the correctness of the used lemmas. Indeed, if some lemmas are incorrect
(e.g., if a precondition or a non-degeneracy condition is missing), a contradiction may arise and the
theorem could be proved from this contradiction. We examined all the generated proofs, and all of them
were correct. To be completely sure that our lemmas are correct, we formalize them in Isabelle/HOL
and prove them using the axioms of geometry. Since Larus can output Isabelle/HOL proofs, we will
eventually have a system capable of generating proofs of construction that are fully mechanically verified
starting from the axioms.

18 Towards Automated Readable Proofs of Ruler and Compass Constructions

In the present work we have not considered degenerate cases and the existence of constructed ob-
jects (we have simply assumed that everything is non-degenerate and that all constructed objects exist).
However, we plan to pay more attention to this issue and extend our tools to perform the final discussion
phase where they would automatically identify the necessary non-degeneracy conditions.

Coherent logic prover, Larus, used in this research is currently unable to find all correctness proofs
fully automatically. We have worked around this by giving it hints in the form of lemmas. We plan to use
other coherent logic provers, and we are in contact with the Larus developers so that they can improve
their prover using the feedback they have received from our problems.

A Appendix

Larus cannot currently prove the whole theorem only if no guidance is provided. Therefore, we first
derive several lemmas and then use those lemmas to prove the main theorem. The first part of the
conjecture is easily proved:

Axioms:

1. cc unique : ∀C (inc c(pA,C)∧ inc c(pB,C)∧ inc c(pC,C)⇒C = cc)

2. center unique : ∀C ∀C1 ∀C2 (center(C1,C)∧ center(C2,C)⇒C1 =C2)

3. bc unique : ∀L (inc(pB,L)∧ inc(pC,L)⇒ L = bc)

4. haA : ∀H (perp(H,bc)∧ inc(pA,H)⇒ ha = H)

5. inc line : ∀P1 ∀P2 ∀L (inc(P1,L)∧ inc(P2,L)∧P1 6= P2⇒ line(P1,P2,L))

6. ex line : ∀P1 ∀P2 (∃L (line(P1,P2,L)))

7. ratio21 para : ∀A ∀G ∀Ma ∀H ∀Oc ∀Lba ∀Lha (ratio21(A,G,G,Ma)∧ ratio21(H,G,G,Oc)∧
line(Oc,Ma,Lba)∧ line(A,H,Lha)⇒ para(Lba,Lha))

8. perp para : ∀Lba ∀Lha ∀A (perp(Lha,A)∧ para(Lba,Lha)⇒ perp(Lba,A))

9. perp unique : ∀P ∀L ∀L1 ∀L2 (perp(L1,L)∧ inc(P,L1)∧ perp(L2,L)∧ inc(P,L2)⇒ L1 = L2)

10. pMa is interect bisa bc : ∀P (inc(P,bc)∧ inc(P,bisa)⇒ P = pMa)

Example A.1. th A O G 1:
ratio23(pA, pG1, pA, pMa1) ∧ ratio23(pH1, pG1, pH1, pOc1) ∧ inc(pA,ha1) ∧ inc(pH1,ha1)
∧ inc(pMa1,a1) ∧ perp(a1,ha1) ∧ center(pOc1,cc1) ∧ inc c(pA,cc1) ∧ inc c(pB,cc1)
∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1) ∧ pA 6= pH1 =⇒ pOc1 = pOc

Proof:

1. cc1 = cc (by MP, from inc c(pA,cc1), inc c(pB,cc1), inc c(pC,cc1) using axiom cc unique; instantiation: C 7→ cc1)

2. center(pOc1,cc) (by MP, from center(pOc1,cc1), cc1 = cc using axiom centerEqSub1; instantiation: A 7→ pOc1, B 7→ cc1, X 7→
cc)

3. pOc1 = pOc (by MP, from center(pOc1,cc) using axiom center unique; instantiation: C 7→ cc, C1 7→ pOc1, C2 7→ pOc)

4. Proved by assumption! (by QEDas)

Then, the facts a1 = bc and ha1 = ha can be derived:

V. Marinković, T. Šukilović & F. Marić 19

Example A.1. lm A O G 2:
ratio23(pA, pG1, pA, pMa1) ∧ ratio23(pH1, pG1, pH1, pOc1) ∧ inc(pA,ha1) ∧ inc(pH1,ha1)
∧ inc(pMa1,a1) ∧ perp(a1,ha1) ∧ center(pOc1,cc1) ∧ inc c(pA,cc1) ∧ inc c(pB,cc1)
∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1) ∧ pA 6= pH1 =⇒ a1 = bc

Proof:

1. a1 = bc (by MP, from inc(pB,a1), inc(pC,a1) using axiom bc unique; instantiation: L 7→ a1)

2. Proved by assumption! (by QEDas)

Example A.2. lm A O G 3:
ratio23(pA, pG1, pA, pMa1) ∧ ratio23(pH1, pG1, pH1, pOc1) ∧ inc(pA,ha1) ∧ inc(pH1,ha1)
∧ inc(pMa1,a1) ∧ perp(a1,ha1) ∧ center(pOc1,cc1) ∧ inc c(pA,cc1) ∧ inc c(pB,cc1)
∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1) ∧ pA 6= pH1 =⇒ ha1 = ha

Proof:

1. a1 = bc (by MP, from inc(pB,a1), inc(pC,a1) using axiom bc unique; instantiation: L 7→ a1)

2. perp(bc,ha1) (by MP, from perp(a1,ha1), a1 = bc using axiom perpEqSub0; instantiation: A 7→ a1, B 7→ ha1, X 7→ bc)

3. ha = ha1 (by MP, from perp(bc,ha1), inc(pA,ha1) using axiom haA; instantiation: H 7→ ha1)

4. ha1 = ha (by MP, from ha = ha1 using axiom eq sym; instantiation: A 7→ ha, B 7→ ha1)

5. Proved by assumption! (by QEDas)

Now the conclusions of these lemmas can be added to the set of premises, and the next lemma can
be proved:

Example A.3. lm A O G 4 :
ratio23(pA, pG1, pA, pMa1) ∧ ratio23(pH1, pG1, pH1, pOc1) ∧ inc(pA,ha1) ∧ inc(pH1,ha1)
∧ inc(pMa1,a1) ∧ perp(a1,ha1) ∧ center(pOc1,cc1) ∧ inc c(pA,cc1) ∧ inc c(pB,cc1)
∧ inc(pB,a1) ∧ inc c(pC,cc1) ∧ inc(pC,a1) ∧ pA 6= pH1 ∧ pOc1 = pOc ∧ a1 = bc ∧ ha1 = ha
=⇒ line(pOc1, pMa1,bisa)

Proof:

1. inc(pOc1,bisa) (by MP, from pOc1 = pOc using axiom incEqSub0; instantiation: A 7→ pOc, B 7→ bisa, X 7→ pOc1)

2. Let w be such that line(pOc1, pMa1,w) (by MP, using axiom ex line; instantiation: P1 7→ pOc1, P2 7→ pMa1)

3. line(pA, pH1,ha1) (by MP, from inc(pA,ha1), inc(pH1,ha1), pA 6= pH1 using axiom inc line; instantiation: P1 7→ pA, P2 7→
pH1, L 7→ ha1)

4. para(w,ha1) (by MP, from ratio23(pA, pG1, pA, pMa1), ratio23(pH1, pG1, pH1, pOc1), line(pOc1, pMa1,w), line(pA, pH1,ha1)

using axiom ratio21 para; instantiation: A 7→ pA, G 7→ pG1, Ma 7→ pMa1, H 7→ pH1, Oc 7→ pOc1, Lba 7→ w, Lha 7→ ha1)

5. perp(ha1,bc) (by MP, from ha1 = ha using axiom perpEqSub0; instantiation: A 7→ ha, B 7→ bc, X 7→ ha1)

6. perp(w,bc) (by MP, from perp(ha1,bc), para(w,ha1) using axiom perp para; instantiation: Lba 7→ w, Lha 7→ ha1, A 7→ bc)

7. w = bisa (by MP, from perp(w,bc), line(pOc1, pMa1,w), inc(pOc1,bisa) using axiom perp unique; instantiation: P 7→ pOc1, L 7→
bc, L1 7→ w, L2 7→ bisa)

8. line(pOc1, pMa1,bisa) (by MP, from line(pOc1, pMa1,w), w = bisa using axiom lineEqSub2; instantiation: A 7→ pOc1, B 7→
pMa1, C 7→ w, X 7→ bisa)

9. Proved by assumption! (by QEDas)

20 Towards Automated Readable Proofs of Ruler and Compass Constructions

Finally, with the conclusion of this lemma added to the premises, we can prove the final statament:

Example A.2. th A O G 5:
ratio23(pA, pG1, pA, pMa1) ∧ ratio23(pH1, pG1, pH1, pOc1) ∧ inc(pA,ha1) ∧ inc(pH1,ha1) ∧

inc(pMa1,a1) ∧ perp(a1,ha1) ∧ center(pOc1,cc1) ∧ inc c(pA,cc1) ∧ inc c(pB,cc1) ∧ inc(pB,a1)
∧ inc c(pC,cc1) ∧ inc(pC,a1) ∧ pA 6= pH1 ∧ pOc1 = pOc ∧ a1 = bc ∧ ha1 = ha ∧ pOc = pOc1 ∧
line(pOc1, pMa1,bisa) =⇒ pG = pG1

Proof:

1. inc(pMa1,bc) (by MP, from inc(pMa1,a1), a1 = bc using axiom incEqSub1; instantiation: A 7→ pMa1, B 7→ a1, X 7→ bc)

2. pMa1= pMa (by MP, from inc(pMa1,bc), line(pOc1, pMa1,bisa) using axiom pMa is interect bisa bc; instantiation: P 7→ pMa1)

3. ratio23(pA, pG1, pA, pMa) (by MP, from ratio23(pA, pG1, pA, pMa1), pMa1 = pMa using axiom ratio23EqSub3; instantia-

tion: A 7→ pA, B 7→ pG1, C 7→ pA, D 7→ pMa1, X 7→ pMa)

4. pG = pG1 (by MP, from ratio23(pA, pG1, pA, pMa) using axiom ratio23 Ma Gsat0; instantiation: X 7→ pG1)

5. Proved by assumption! (by QEDas)

References
[1] Bruno Buchberger (2006): An algorithm for finding the basis elements of the residue class ring

of a zero dimensional polynomial ideal. Journal of Symbolic Computation 41(3), pp. 475–511,
doi:10.1016/j.jsc.2005.09.007.

[2] Predrag Janičić (2006): GCLC – A Tool for Constructive Euclidean Geometry and More than That. In:
Proceedings of International Congress of Mathematical Software (ICMS 2006), Lecture Notes in Computer
Science 4151, pp. 58–73, doi:10.1007/11832225 6.

[3] Predrag Janičić & Julien Narboux (2021): Automated Generation of Illustrations for Synthetic Geometry
Proofs. In: Proceedings of the 13th International Conference on Automated Deduction in Geometry, ADG
2021, EPTCS 352, pp. 91–102, doi:10.4204/EPTCS.352.9.

[4] Predrag Janičić, Julien Narboux & Pedro Quaresma (2012): The Area Method - a recapitulation. Journal of
Automated Reasoning 48(4), pp. 489–532, doi:10.1007/s10817-010-9209-7.

[5] Filip Marić, Ivan Petrović, Danijela Petrović & Predrag Janičić (2012): Formalization and Implementation
of Algebraic Methods in Geometry. In: Proceedings First Workshop on CTP Components for Educational
Software, Electronic Proceedings in Theoretical Computer Science 79, pp. 63–81, doi:10.4204/EPTCS.79.4.

[6] Vesna Marinković (2017): ArgoTriCS – Automated Triangle Construction Solver. Journal of Experimental
& Theoretical Artificial Intelligence 29(2), pp. 247–271, doi:10.1080/0952813X.2015.1132271.

[7] Vesna Marinković (2015): Automated Solving of Construction Problems in Geometry. Ph.D. thesis, Univer-
sity of Belgrade.

[8] Vesna Marinković, Tijana Šukilović & Filip Marić (2023): Automated Triangle Constructions in Hyperbolic
Geometry. to appear in Annals of Mathematics and Artificial Intelligence, doi:10.1007/s10472-023-09850-5.

[9] Alexandre Riazanov & Andrei Voronkov (2002): The design and implementation of Vampire. AI Communi-
cations 15(2,3), pp. 91–110.

[10] William Wernick (1982): Triangle Constructions with Three Located Points. Mathematics Magazine 55(4),
pp. 227–230, doi:10.1080/0025570X.1985.11976988.

[11] Wen Tsun Wu (1978): On the Decision Problem and the Mechnization of Theorem-proving in Elementary
Geometry. Scientia Sinica 21(2), pp. 159–172.

https://doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1007/11832225_6
https://doi.org/10.4204/EPTCS.352.9
https://doi.org/10.1007/s10817-010-9209-7
https://doi.org/10.4204/EPTCS.79.4
https://doi.org/10.1080/0952813X.2015.1132271
https://doi.org/10.1007/s10472-023-09850-5
https://doi.org/10.1080/0025570X.1985.11976988

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 21–37, doi:10.4204/EPTCS.398.6

Automated Completion of Statements and Proofs in Synthetic
Geometry: an Approach based on Constraint Solving

Salwa Tabet Gonzalez
UMR 7357 CNRS

University of Strasbourg
Pôle API, Bd Sébastien Brant

BP 10413
67412 Illkirch, France

tabetgonzalez@unistra.fr

Predrag Janičić
Department for Computer Science

Faculty of Mathematics
University of Belgrade

Studentski trg 16
11000 Belgrade, Serbia

janicic@matf.bg.ac.rs

Julien Narboux
UMR 7357 CNRS

University of Strasbourg
Pôle API, Bd Sébastien Brant

BP 10413
67412 Illkirch, France
narboux@unistra.fr

Conjecturing and theorem proving are activities at the center of mathematical practice and are dif-
ficult to separate. In this paper, we propose a framework for completing incomplete conjectures
and incomplete proofs. The framework can turn a conjecture with missing assumptions and with an
under-specified goal into a proper theorem. Also, the proposed framework can help in completing a
proof sketch into a human-readable and machine-checkable proof. Our approach is focused on syn-
thetic geometry, and uses coherent logic and constraint solving. The proposed approach is uniform
for all three kinds of tasks, flexible and, to our knowledge, unique such approach.

1 Introduction

Automated theorem provers take as input the formal statement of a conjecture in a theory described by
axioms and lemmas, and try to generate a proof or a counter-example for this conjecture. In the field
of geometry, several efficient automated theorem proving approaches have been developed, including
algebraic ones such as Wu’s method, Gröbner bases method, and semi-synthetic methods such as the
area method. In these approaches, typically, the conjecture and the axioms being considered are fixed.
However, in mathematical practice, in the context of education and also in mathematical research, the
conjecturing and proving activities are not separated but interleaved. The practitioner may try to prove a
statement which is valid only assuming some implicit or unknown assumptions, while the list of lemmas
and theorem which can be used may not be complete. In education, for some kind of exercises, a precise
formulation of the statement to be proved is also left to the student, with questions such as: “What is
the nature of the quadrilateral ABCD?”. Hence, the conjecture can contain unknown assumptions called
abducts, and the goal may be not completely specified. One may also ask for a proof using a particular
theorem or an intermediate fact, i.e., a proof partially specified using constraints specifying some proof
steps.

In this paper, we consider the problems of (simultaneously) completing (a) the assumptions of the
conjecture; (b) the goal of the conjecture; (c) a proof sketch for the conjecture. The completion process
should lead to a proof that is both machine-checkable and human-readable. Because we aim at produc-
ing intelligible and readable proofs, with a similar level of granularity as paper-and-pencil proofs, our
approach is logic-based, uses a fragment of first-order logic called coherent logic, and is focused on
synthetic geometry (in contrast to algebraic methods). Our approach for dealing with partial conjectures
and partial proofs is implemented as an extension of the automated theorem prover Larus developed
previously [14]. The approach is uniform for all three kinds of completion tasks, flexible and, to our
knowledge, unique such approach.

http://dx.doi.org/10.4204/EPTCS.398.6

22 Automated Completion of Statements and Proofs in Synthetic Geometry

A

B

C
D

E

F

G

H

A

B

C

D

E

F

G

H A

B

C

D

E

F
G

H

Figure 1: Illustrations for five problems related to Varignon’s theorem, respectively: Problem 1; Problem
2; Problem 3.

We list five high-school level synthetic geometry problems related to Varignon’s theorem (Figure 1),
that we will try to solve using our approach.

Problem 1 (Fully specified statement) Consider a quadrilateral ABCD, let E, F , G and H be the mid-
points of AB, BC, CD, DA respectively. Prove that the quadrilateral EFGH is a parallelogram
(assuming that there are no two sides that are aligned).

Problem 2 (First inverse problem) Consider a quadrilateral ABCD, let E, F , and G be the midpoints
of AB, BC and CD respectively. Let H be a point. Under which assumption is the quadrilateral
EFGH a parallelogram?

Problem 3 (Second inverse problem) Consider a quadrilateral ABCD, let E, F , G and H be the mid-
points of AB, BC, CD, DA respectively. Under which assumption is the quadrilateral EFGH a
rectangle?

Problem 4 (Partially specified goal) Consider a quadrilateral ABCD, let E, F , G and H be the mid-
points of AB, BC, CD, DA respectively. What is the nature of the quadrilateral EFGH?

Problem 5 (Partially specified proof) Consider a quadrilateral ABCD, let E, F , G and H be the mid-
points of AB, BC, CD, DA respectively. We have that EG = FH. Prove that EFGH is a rectangle
using the axiom “If the diagonals of a parallelogram are congruent, then it’s a rectangle”.

The above examples are inspired by exercises given in a teacher training session. A more detailed
discussion about how these examples can be used in a didactic context, issues related to the formalization
can be found in [11, 19]

2 Background

This section provides some necessary background information on a fragment of first-order logic called
coherent logic that our approach uses. There are several automated provers for coherent logic, including
Larus, which is based on “theorem proving as constraint solver” paradigm.

2.1 Coherent Logic

A formula of first-order logic is said to be coherent if it has the following form:

A0(~x)∧ . . .∧An−1(~x)⇒∃~y(B0(~x,~y)∨ . . .∨ Bm−1(~x,~y))

Gonzalez & Janičić & Narboux 23

where universal closure is assumed, and where~x denotes a sequence of variables x0,x1, . . . ,xk−1; Ai (for
0≤ i≤ n−1) denotes an atomic formula (involving zero or more variables from~x);~y denotes a sequence
of variables y0,y1, . . . ,yl−1; B j (for 0≤ j ≤ m−1) denotes a conjunction of atomic formulae (involving
zero or more of the variables from~x and~y) [14]. If there are no formulae Ai, then the left-hand side of the
implication is assumed to be >. If there are no formulae B j, then the right-hand side of the implication
is assumed to be ⊥. There are no function symbols with arity greater than zero. Coherent formulae do
not involve the negation connective. A coherent theory is a set of sentences, axiomatized by coherent
formulae, and closed under derivability. A number of theories and theorems can be formulated directly
and simply in coherent logic (CL). In addition, any first-order theory can be translated into CL, possibly
with additional predicate symbols [12, 21]. Synthetic geometry can be expressed easily using CL. For
example, the central part of axioms system of Euclid (as formalized by Beeson et al. [3]), or Hilbert
(as formalized by Braun et al. [6]), or Tarski [26] can be expressed in first-order logic without function
symbols, and the axioms are mostly in CL form.

Translation of FOL formulae into CL involves elimination of the negation connectives: negations
can be kept in place and new predicates symbols for corresponding sub-formula have to be introduced,
or negations can be pushed down to atomic formulae [21]. In the latter case, for every predicate symbol
R (that appears in negated form), a new symbol R is introduced that stands for ¬R, and the following
axioms are introduced: ∀~x(R(~x)∧R(~x)⇒⊥), ∀~x(R(~x)∨R(~x)).

In contrast to resolution-based theorem proving, in forward reasoning for CL, the conjecture being
proved is kept unchanged and proved without using refutation, Skolemization and clausal form. Thanks
to this, CL is suitable for producing human-readable synthetic proofs and also machine verifiable proofs
[4, 12]. The problem of provability in CL is semi-decidable. CL admits a simple proof system, a sequent-
based variant is as follows [27]:

Γ,ax,A0(~a), . . . ,An−1(~a),B0(~a,~b)∨ . . .∨Bm−1(~a,~b) ` P

Γ,ax,A0(~a), . . . ,An−1(~a) ` P
MP

Γ,B0(~c) ` P . . . Γ,Bm−1(~c) ` P

Γ,B0(~c)∨ . . .∨Bm−1(~c) ` P
QEDcs (case split)

Γ,Bi(~a,~b) ` ∃~y(B0(~a,~y)∨ . . .∨ Bm−1(~a,~y))
QEDas (assumption)

Γ,⊥ ` P
QEDefq (ex falso quodlibet)

In the rules given above, it is assumed: ax is a formula A0(~x)∧ . . .∧ An−1(~x) ⇒ ∃~y(B0(~x,~y)∨ . . .∨
Bm−1(~x,~y));1 ~a,~b, ~c denote sequences of constants (possibly of length zero); in the rule MP (extended
modus ponens),~b are fresh constants; ~x and ~y denote sequences of variables (possibly of length zero);
Ai(~x) (respectively Bi(~x,~y)) have no free variables other than from ~x (respectively ~x and ~y); Ai(~a) are
ground atomic formulae; Bi(~a,~b) and Bi(~c) are conjunctions of ground atomic formulae; Φ denotes the
list of conjuncts in Φ if Φ is conjunction, and otherwise Φ itself. In the proving process, the rules are

1Notice the hidden link between the formulae Bi(~a,~b) from the rule MP and the formula ax: the formulae Bi(~a,~b) from the
rule are instances of the formulae Bi(~x,~y) from ax.

24 Automated Completion of Statements and Proofs in Synthetic Geometry

read from bottom to top, i.e., by a rule application one gets the contents (new sub-goals) above the line.
For a set of coherent axioms AX and the statement A0(~x) ∧ . . . ∧ An−1(~x) ⇒ ∃~y(B0(~x,~y) ∨ . . . ∨

Bm−1(~x,~y)) to be proved, within the above proof system one has to derive the following sequent (where~a
denotes a sequence of new symbols of constants): AX,A0(~a), . . . ,An−1(~a)`∃~y(B0(~a,~y)∨. . .∨ Bm−1(~a,~y)).

Notice that, in the above proof system, case split may occur only at the end of a (sub)proof. However,
it is not a substantial restriction: any proof with unrestricted use of case split can be transformed to such
form.

2.2 Theorem Proving as Constraint Solving and the Larus System

“Theorem proving as constraint solving” is a paradigm for automated theorem proving recently proposed
[14]. In contrast to common automated theorem proving approaches, in which the search space is a set
of some formulae and what is sought is again a (goal) formula, this new approach is based on searching
for a proof (of a given length) as a whole. Namely, a proof of a formula in a fixed logical setting can be
encoded as a sequence of natural numbers obeying some constraints. A suitable solver can find such a
sequence and from that sequence a sought proof can be reconstructed. This approach is implemented in
C++, within an open-source prover Larus,2 specialized in proofs in coherent logic and using SAT, SMT,
and CSP solvers for solving sets of constraints. Larus can generate readable, human understandable
proofs in natural language and also machine-verifiable proofs for the interactive provers Coq, Isabelle,
and Mizar.

Each CL proof consists of several proof steps, while each of them has one of the following kinds
(with obvious meaning): ASSUMPTION, MP, FIRSTCASE, SECONDCASE, QEDBYCASES, QED-
BYASSUMPTION, QEDBYEFQ. The information relevant for MP steps include: AxiomApplied, From
(the ordinal numbers of proof steps justifying premises of the axiom applied), Instantiation (of the
variables in the axiom), Contents (the atoms in formula in the proof step), etc. Nesting denotes the
nesting of the proof step (the nesting of the first step is 1).

The proof can be represented by a sequence of numbers, meeting some constraints (that correspond
to definitions of inference steps given in Section 2.1). For instance, if the proof step s is of the kind
QEDBYEFQ, then the following conditions must hold (given almost in verbatim as in our C++ code):3

1. StepKind (s) = QEDBYEFQ;

2. s > 0;

3. Contents (s−1)(0) =⊥;

4. Goal (s);

5. Nesting (s) = Nesting (s−1).

The above conditions can be understood in the following way: if there is a proof of the given conjecture,
the proof step s in that proof is of the kind QEDBYEFQ iff the natural number StepKind (s) equals the
code for QEDBYEFQ, s > 0 (since there must be a previous step), the contents of the previous proof
step is ⊥, the contents of the step is the goal itself, and the nesting of the steps s−1 and s is the same.

Each proof step has one of the listed kinds and meet corresponding conditions. There are also some
additional, global constraints, like that the last proof step has Nesting equal 1.

2https://github.com/janicicpredrag/Larus
3The corresponding C++ implementation is an improved version of the implementation presented earlier [14].

https://github.com/janicicpredrag/Larus

Gonzalez & Janičić & Narboux 25

Larus works in the following way. If there is a set of axioms, a conjecture, and a proof length, a
corresponding proof can be represented as a sequence of natural numbers, still unknown, so they will be
represented by variables V . The constraints that have to be met for each proof step and for the proof as
a whole can be expressed in terms of these variables V . If a solver can find a model for the constraint,
from it the proof in logical terms can be reconstructed. All constraints involved are linear constraints
over natural numbers. Since linear arithmetic is decidable, decision procedures for it can decide, for
each input constrains, whether or not it has a model. For this purpose, Larus can use SAT, SMT, and CSP
solvers. For input, Larus uses axioms and conjectures stored in a file in TPTP/fof format.

3 Abducts and Completing Assumptions

There are three major types of logical inference: induction, deduction, and abduction. The concept of
abduction has been introduced by Peirce [20]. In deduction, everything inferred is necessarily true, while
it is not the case with the remaining two types of inference. Induction tries to infer general rules based
on individual instances. The aim of abduction is to produce additional hypotheses to explain observed
facts. Abduction has a wide spectrum of implicit or explicit applications – in everyday life, in education,
and in scientific reasoning, including in building mathematical theories, or in software verification. One
definition of abduct is given below.

Definition 1 Given a theory T and a formula G (the goal to be proved), such that T 6|=G, an explanations
or abduct is a formula A meeting conditions: T,A |= G and T,A 6|=⊥.

It is clear that some abducts are not interesting, so there are often some additional restrictions given.
There is no general agreement about such restrictions, but two types are most usual: syntactical restric-
tions (abducts should be of a specific syntactical form) and minimality restrictions (for any other abduct
A′, if T,A |= A′ then A≡ A′). It is reasonable to ask that A is not G, as it is trivial. Some authors also add
stronger a restriction that A 6|= G (i.e., at least one axiom of T has to be used to prove G).

Approaches for Computing Abducts. Various algorithms to produce different kind of abducts have
been developed [1]. In abductive logic programming, techniques for abductive reasoning are developed
in the context of logic programming. Rules are considered to be Horn clauses [8]. According to Russo
et al. [25], some systems assume that predicate symbols appearing in abducts do not appear in the con-
clusion of any rule and that negation does not appear in the conclusion of any rule. This restriction is
not realistic in the context of geometry. In our example, we want to accept geometric predicate symbols
both in abducts, and in the assumptions and conclusion of theorems. Some approaches are based on
Robinson’s resolution algorithm, extended such that when no more clauses can be produced, the atomic
clauses are considered as a potential abduct and consistency if checked [17]. There are also approaches
developed for the context of SMT solving, dealing with decidable theories like linear arithmetic [10, 23]

In the context of geometry, some algebraic algorithms can generate additional assumptions for the
statement to be true. For example, Wu’s method [28] can produce non-degeneracy conditions. Algebraic
methods can also be used to generate more general abducts [22]. These methods are more efficient than
ours, but more specific so cannot be used for arbitrary geometric theories. Also, they cannot generate
readable proofs. Moreover, expressing algebraic non-degeneracy conditions in simple geometrical terms
is not easy and not always possible [7].

26 Automated Completion of Statements and Proofs in Synthetic Geometry

Abduction in Synthetic Euclidean Geometry. In this paper, the theory T from Definition 1 is a syn-
thetic Euclidean geometry. In this context, automated finding of proofs allowing abducts may have
several applications. For instance, an automated system may help a student or a researcher who tries
to prove (or formalize) a theorem with a missing assumption. Barbosa et al. have proposed such goal
(although not for geometry) in the context of interactive proof assistants where conjectures are sent to an
SMT solver [2].

Non-degeneracy conditions are often overlooked and missing in informal geometry statements. Ab-
ductive reasoning is also a task which can be asked explicitly to students. The answer expected by the
teacher for Problem 2 is that H should be the midpoint of AD.

Finding Abducts using Larus. In this paper, we restrict consideration of abduction only to coherent
logic and only to abducts that are conjunctions of ground atomic formulae. Larus was not implemented
with abduction in mind, yet implementation of support for abduction turned out to be very simple, almost
trivial, and took less than 100 lines of C++ code. In order to find abducts using Larus, we treat them as a
special case of proof steps, in the main proof branch, just after assumptions. We have to add constraints
on what such an abduct can be:

1. the abduct is treated as an assumption;

2. the nesting of the abduct equals 1;

3. the abduct is an atomic formula (no branching);

4. the predicate symbol is one of the predicate symbols in the signature;

5. the arguments are among existing symbols of constants;

6. the abduct is not the goal itself;

7. the abduct is not ⊥.

The given conditions may be written in the following way, assuming that the abduct is placed in i-th
step of the proof:

1. StepKind (i) =ASSUMPTION

2. Nesting (i) = 1

3. Cases (i) = false

4. ContentsPredicate (i,0)< sizeo f (Signature)

5. for each argument j (up to maximal arity): ContentsArgument (i,0, j)< sizeo f (Constants)

6. Goal (i) = false

7. ContentsPredicate (i,0) 6=⊥

One can also choose a number of abducts, each leading to the constraints given above. With such
additional constraints for each abduct (for additional proof steps in specific positions in a proof sought),
with a given set of axioms and a conjecture, and with a concrete proof length, we run Larus as usual.
The solving/proving process is the same as without abducts: the constraint solver finds a way to specify
a full proof, including the abducts, i.e., under-specified assumptions.

In the above list of conditions, the last two do not follow the basic definition of abduct. Like in some
other variants of the definition, the abduct may not be equal to the goal atom because such abducts are
trivial. Also, the abduct may not be equal to ⊥, since it is inconsistent. It is important to discard other

Gonzalez & Janičić & Narboux 27

inconsistent abducts early, so we add one more restriction: the proof of T,A |= G should not end with
QEDBYEFQ. Some constructed abducts may still be inconsistent with other assumptions, and we use
an external, more efficient automatic theorem prover, Vampire [16], to discard such abducts.

Example 1 For the first inverse problem (Problem 2 from Section 1), Larus produces two consistent,
symmetric abducts (the proof obtained with the first abduct is presented in Appendix 7.2):

• “H is the midpoint of AD”

• “H is the midpoint of DA”

Example 2 For the second inverse problem (Problem 3 from Section 1), Larus produces more than 150
consistent abducts, most of which give degenerate cases, hence are less interesting. Apart from such
abducts, we obtained the following abducts and their symmetric variants (the proof with the first abduct
is presented in Appendix 7.3):

• “the diagonals HF and EG are congruent”

• “ 6 FGH is a right angle”

• “ 6 EHG is a right angle”

• “ 6 HEF is a right angle”

• “ 6 EFG is a right angle”

4 Deducts and Completing Goals

Non-trivial first-order logic theories have infinite number of theorems. Approaches based on refutation
cannot be used with under-specified goals and, hence, cannot be used for completing them. In principle,
a controlled forward-reasoning (for instance, based on some kind of breadth-first search) can enumerate
all theorems of a theory. However, such a systematic approach can be hardly useful for some practical
applications, like looking for possible conjectures of a specific form. Our framework allows (but does not
require) specifying partially the form of the goal: for instance, one may specify the dominant predicate
symbol in the goal atom, or some of its arguments.

Finding Deducts in Synthetic Euclidean Geometry. In the field of geometry, deduct candidates can
also be guessed based on an illustration, giving a concrete model. However, these deduct candidates still
have to be verified i.e., proved. Potential deducts could also be listed as large disjunctions of atomic
formulae, but this method does not scale when the list of potential deducts is too long.

Finding Deducts using Larus. In Larus, if the goal is given i.e., fully specified, corresponding con-
straints are added to the full constraint representing a proof sought. Let us assume that the final step
of the proof is (some fixed) n and, for simplicity, let us assume that the goal is just a single atom. The
corresponding constraint then includes:

1. Nesting (n) = 1

2. Cases (n) = false

3. ContentsPredicate (n,0) = the goal predicate symbol

28 Automated Completion of Statements and Proofs in Synthetic Geometry

4. for each argument j (except for existentially quantified variables):
ContentsArgument (n,0, j) = the argument from the given goal instantiated.

If the goal is under-specified, for instance, if the predicate symbol is not given (it is given as _ in the
TPTP file), the third condition is just ignored. The same holds for the arguments.4 During the solving
process, if there is a model, these slots are filled-in by some concrete values, giving a concrete goal.
Overall, support for finding under-specified deducts is very simple. The current implementation finds
one possible deduct, but it can be extended to list all possible deducts, similarly as for abducts (as
explained in Section 3).

Example 3 For Problem 4 from Section 1, Larus produces the deduct “EF ‖ GH”. The proof obtained
with such deduct is presented in Appendix 7.4.

5 Hints and Completing Proofs

Informal proofs, for instance from textbooks, are often partial and incomplete. They may even provide
only a part of a full proof, or some instructions like for filling gaps by analogy. Reconstructing proofs
using such hints is very important task, as discussed by Gowers and Hales [13]: “One dream was to
develop an automated assistant that would function at the level of a helpful graduate student. The senior
mathematician would suggest the main lines of the proof, and the automated grad student would fill in
the details.”

Completing Proofs in Synthetic Euclidean Geometry. In the context of geometry, completing proofs
could be interesting either as a way to render the formalization process simpler (automation would bring
in all the details that are overlooked in pen and paper proofs), or as a tool working behind the scene
for providing guidance for what could be the next step in the proof. This objective has been studied
by Richard et al. [24]. In geometry, hints can also be based on some observations from an associated
illustration.

Completing Proofs using Larus. Larus can be instructed to look for a proof of a given conjecture
(also possibly only partially specified) meeting some conditions (that we call “hints”) [14]. Therefore,
Larus can try, for instance, to reconstruct a proof given only in outline (like proofs in textbooks). Larus
use hints in a much more general way than just splitting the problem into sub-problems: for instance,
some hint may be used in just one proof branch and cannot be proved itself. Hints do not have to be
ordered (one can ask for a proof using X and Y in no particular order), they can be vague, imposed only
by partial constraints (“find a proof that uses this particular predicate symbol”, or “find a proof using
some specific axiom”, without the way it is instantiated, etc.).

Completing proofs in Larus is supported similarly as for abducts and under-specified goals – by
modifying the corresponding constraints. The main difference is that abducts and incomplete goals
are under-specified, so some constraints have to be omitted, while partial proof introduce additional
constraints, on top of the common constraints that must be met by all proof steps. For expressing hints,
we slightly extended the language TPTP/fof to allow a simple but still quite expressible semantics. Some
kinds of hints (not all) are illustrated below.

4Actually, underspecified arguments can be also handled using existential quantification.

Gonzalez & Janičić & Narboux 29

fof(hintname0, hint, r(_,_), _ , _).

fof(hintname1, hint, r(_,_), 5 , _).

fof(hintname2, hint, _, 5, ax2(_,_)).

The first hint specifies that some proof step will have an atom of the form r(. . . , . . .). The second hint
specifies that the 5th proof step will have atom of the form r(. . . , . . .). The third hint specifies that in the
5th proof step the axiom ax2 is applied.

Example 4 For Problem 5 from Section 1, Larus was able to find a proof around 20% faster with a
suitable hint presented in Appendix 7.5.

6 Conclusion and Future Work

In this paper we have shown how a prover using the “theorem proving as constraint solving” paradigm
can be extended such that it can complete partially specified conjectures and partially specified proofs.
This extension is simple, and the implementation update is very small. The completion algorithm is uni-
form, since all three completion tasks (completing assumptions, completing goals, completing proofs) are
handled in the same spirit – in terms of adding or deleting some constraints. To our knowledge, this ap-
proach is new, and we are not aware of other systems that can address all three sorts of completion tasks.
The presented approach is flexible as different variations of completion tasks can be supported. The
strength of this approach is also that it can generate both proofs that are human-readable and machine-
checkable. The proposed framework has two main limitations. First, in current stage, it can deal only
with coherent logic, hence the theories cannot involve function symbols, which excludes geometry proof
that use (non-trivial) arithmetic. Second, the framework cannot deal with conjectures whose proofs are
long (say, longer than 50 proof steps).

To our knowledge, there is only one other approach in which some kind of proof is encoded, and
reconstructed from a model for the corresponding set of constraints – the approach in which rigid con-
nection tableaux are encoded as SAT and SMT instances [9, 5, 18]. However, in this line of research,
neither machine verifiable or readable proofs, nor any of completion tasks are considered.

The presented work can be extended in several directions. One of our goals is to use our framework to
help transfer geometry knowledge from informal sources to proof assistants and between proof assistants,
while keeping its high-level structure. In informal sources, statements of theorems may be incomplete,
while proofs may be given just in outline. Still, using our approach such contents can be, at least in some
cases, completed and turned into a verifiable form. For transferring knowledge from a proof assistant,
one would need to go into its specifics, but only to grab (some) proof steps and make hints out of them.
We are still to explore these ideas on a larger scale, like one geometry textbook. In the same spirit as
the work proposed by Jiang et al. [15], our approach could be combined with large language models
to perform automatic formalization by extracting data from natural language proofs. More specific to
abduction, we are planning to make an in-depth comparison (both qualitative and quantitative) of our
tool to other tools for generating abducts.

Acknowledgement. The work related to this paper has been partially supported by the European Cost
project CA20111 EUROProofNet. The second author has been partially supported by the Ministry of
Science of Serbia contract 451-03-47/2023-01/200104.

30 Automated Completion of Statements and Proofs in Synthetic Geometry

References

[1] Aliseda Atocha (2006): ABDUCTIVE REASONING. Synthese Library 330, Kluwer Academic Publishers,
Dordrecht, doi:10.1007/1-4020-3907-7.

[2] Haniel Barbosa, Chantal Keller, Andrew Reynolds, Arjun Viswanathan, Cesare Tinelli & Clark Barrett
(2023): An Interactive SMT Tactic in Coq using Abductive Reasoning. In: EPiC Series in Computing,
94, EasyChair, pp. 11–22, doi:10.29007/432m. ISSN: 2398-7340.

[3] Michael Beeson, Julien Narboux & Freek Wiedijk (2019): Proof-checking Euclid. Annals of Mathematics
and Artificial Intelligence 85(2-4), pp. 213–257, doi:10.1007/s10472-018-9606-x.

[4] Marc Bezem & Thierry Coquand (2005): Automating Coherent Logic. In Geoff Sutcliffe & Andrei Voronkov,
editors: 12th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning —
LPAR 2005, Lecture Notes in Computer Science 3835, Springer, pp. 246–260, doi:10.1007/11591191 18.

[5] Jeremy Bongio, Cyrus Katrak, Hai Lin, Christopher Lynch & Ralph Eric McGregor (2008): En-
coding First Order Proofs in SMT. Electron. Notes Theor. Comput. Sci. 198(2), pp. 71–84,
doi:10.1016/j.entcs.2008.04.081.

[6] Gabriel Braun & Julien Narboux (2012): From Tarski to Hilbert. In Tetsuo Ida & Jacques Fleuriot, ed-
itors: Post-proceedings of Automated Deduction in Geometry 2012, LNCS 7993, Springer, pp. 89–109,
doi:10.1007/978-3-642-40672-0 7.

[7] XueFeng Chen & DingKang Wang (2004): The Projection of Quasi Variety and Its Application on Geo-
metric Theorem Proving and Formula Deduction. In Automated Deduction in Geometry, 4th International
Workshop, ADG 2002, Lecture Notes in Computer Science 2930, Springer, pp. 21–30, doi:10.1007/978-3-
540-24616-9 2.

[8] Marc Denecker & Antonis C. Kakas (2002): Abduction in Logic Programming. In Computational Logic:
Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part I, Lecture Notes in Computer
Science 2407, Springer, pp. 402–436, doi:10.1007/3-540-45628-7 16.

[9] Todd Deshane, Wenjin Hu, Patty Jablonski, Hai Lin, Christopher Lynch & Ralph Eric McGregor (2007):
Encoding First Order Proofs in SAT. In Automated Deduction - CADE-21, 21st International Conference on
Automated Deduction, Lecture Notes in Computer Science 4603, Springer, pp. 476–491, doi:10.1007/978-
3-540-73595-3 35.

[10] Isil Dillig & Thomas Dillig (2013): Explain: A Tool for Performing Abductive Inference. In Computer Aided
Verification, Lecture Notes in Computer Science, Springer, pp. 684–689, doi:10.1007/978-3-642-39799-8 -
46.

[11] Viviane Durand-Guerrier, Paolo Boero, Nadia Douek, Susanna S. Epp & Denis Tanguay (2012): Examining
the Role of Logic in Teaching Proof. In Proof and Proving in Mathematics Education, New ICMI Study
Series 15, Springer, pp. 369–389, doi:10.1007/978-94-007-2129-6 16.

[12] Roy Dyckhoff & Sara Negri (2015): Geometrization of first-order logic. The Bulletin of Symbolic Logic 21,
pp. 123–163, doi:10.1017/bsl.2015.7.

[13] Thomas Hales (2019): An argument for controlled natural languages in mathematics. Available at https:
//jiggerwit.wordpress.com/2019/06/20/an-argument-for-controlled-natural-language

s-in-mathematics/.

[14] Predrag Janičić & Julien Narboux (2022): Theorem Proving as Constraint Solving with Coherent Logic.
Journal of Automated Reasoning 66(4), pp. 689–746, doi:10.1007/s10817-022-09629-z.

[15] Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix,
Yuhuai Wu & Guillaume Lample (2023): Draft, Sketch, and Prove: Guiding Formal Theorem Provers with
Informal Proofs, doi:10.48550/arXiv.2210.12283. ArXiv:2210.12283 [cs].

[16] Laura Kovács & Andrei Voronkov (2013): First-Order Theorem Proving and Vampire. In Computer Aided
Verification - 25th International Conference, CAV 2013, Lecture Notes in Computer Science 8044, Springer,
pp. 1–35, doi:10.1007/978-3-642-39799-8 1.

http://dx.doi.org/10.1007/1-4020-3907-7
http://dx.doi.org/10.29007/432m
http://dx.doi.org/10.1007/s10472-018-9606-x
http://dx.doi.org/10.1007/11591191_18
http://dx.doi.org/10.1016/j.entcs.2008.04.081
http://dx.doi.org/10.1007/978-3-642-40672-0_7
http://dx.doi.org/10.1007/978-3-540-24616-9_2
http://dx.doi.org/10.1007/978-3-540-24616-9_2
http://dx.doi.org/10.1007/3-540-45628-7_16
http://dx.doi.org/10.1007/978-3-540-73595-3_35
http://dx.doi.org/10.1007/978-3-540-73595-3_35
http://dx.doi.org/10.1007/978-3-642-39799-8_46
http://dx.doi.org/10.1007/978-3-642-39799-8_46
http://dx.doi.org/10.1007/978-94-007-2129-6_16
http://dx.doi.org/10.1017/bsl.2015.7
https://jiggerwit.wordpress.com/2019/06/20/an-argument-for-controlled-natural-languages-in-mathematics/
https://jiggerwit.wordpress.com/2019/06/20/an-argument-for-controlled-natural-languages-in-mathematics/
https://jiggerwit.wordpress.com/2019/06/20/an-argument-for-controlled-natural-languages-in-mathematics/
http://dx.doi.org/10.1007/s10817-022-09629-z
http://dx.doi.org/10.48550/arXiv.2210.12283
http://dx.doi.org/10.1007/978-3-642-39799-8_1

Gonzalez & Janičić & Narboux 31

[17] P. Marquis (1991): Extending abduction from propositional to first-order logic. In Fundamentals of Artificial
Intelligence Research, Springer, doi:10.1007/3-540-54507-7 12.

[18] Ralph Eric McGregor (2011): Automated Theorem Proving Using SAT. PhD Thesis, Clarkson University.
Available at https://search.proquest.com/openview/b87467cab0987f591010cf19dc554fa3/1?p
q-origsite=gscholar&cbl=18750&diss=y.

[19] Julien Narboux & Viviane Durand-Guerrier (2022): Combining pencil/paper proofs and formal proofs, a
challenge for Artificial Intelligence and mathematics education. In: Mathematics Education in the Age of
Artificial Intelligence, Mathematics Education in the Digital Era 17, Springer, doi:10.1007/978-3-030-86909-
0 8.

[20] Charles Peirce (1932): Collected papers of Charles Sanders Peirce. Belknap Press.
[21] Andrew Polonsky (2011): Proofs, Types and Lambda Calculus. Ph.D. thesis, University of Bergen.
[22] T. Recio & M. P. Vélez (1999): Automatic Discovery of Theorems in Elementary Geometry. J. Autom.

Reason. 23(1), pp. 63–82, doi:10.1023/A:1006135322108.
[23] Andrew Reynolds, Haniel Barbosa, Daniel Larraz & Cesare Tinelli (2020): Scalable Algorithms for Ab-

duction via Enumerative Syntax-Guided Synthesis. In Automated Reasoning - 10th International Joint
Conference, IJCAR 2020, Part I, Lecture Notes in Computer Science 12166, Springer, pp. 141–160,
doi:10.1007/978-3-030-51074-9 9.

[24] Philippe R. Richard, Josep Maria Fortuny, Michel Gagnon, Nicolas Leduc, Eloi Puertas & Michèle Tessier-
Baillargeon (2011): Didactic and theoretical-based perspectives in the experimental development of an in-
telligent tutorial system for the learning of geometry. ZDM 43(3), pp. 425–439, doi:10.1007/s11858-011-
0320-y.

[25] Alessandra Russo & Bashar Nuseibeh (2001): On The Use Of Logical Abduction In Software Engineering.
In Handbook of Software Engineering and Knowledge Engineering, doi:10.1142/9789812389718 0037.

[26] Wolfram Schwabhäuser, Wanda Szmielew & Alfred Tarski (1983): Metamathematische Methoden in der
Geometrie. Springer. doi:10.1007/978-3-642-69418-9.

[27] Sana Stojanović, Julien Narboux, Marc Bezem & Predrag Janičić (2014): A Vernacular for Coherent Logic.
In Intelligent Computer Mathematics, Lecture Notes in Computer Science 8543, Springer, pp. 388–403,
doi:10.1007/978-3-319-08434-3 28.

[28] Wen-Tsun Wu (1978): On the Decision Problem and the Mechanization of Theorem-Proving in Elementary
Geometry. 21, Scientia Sinica, pp. 157–179.

7 Appendix

In this appendix, we provide a complete list of lemmas and axioms (in coherent logic form) used in
our examples, and the results obtained using Larus. The results were obtained on a PC computer with
Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz processor running under Linux (the time spent should
give just a general picture of the efficiency of the system).

7.1 Problem 1: Varignon’s Theorem

The TPTP file used for Problem 1 is the following:

fof(triangle_mid_par_strict, axiom, (! [A, B, C, P, Q] : (((~ col(A,B,C)) & midpoint(B,P

,C) & midpoint(A,Q,C)) => par(A,B,Q,P)))).

fof(lemma_par_trans, axiom, (! [A, B, C, D, E, F] : ((par(A,B,C,D) & par(C,D,E,F) & (~col

(A,B,E))) => par(A,B,E,F)))).

http://dx.doi.org/10.1007/3-540-54507-7_12
https://search.proquest.com/openview/b87467cab0987f591010cf19dc554fa3/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/b87467cab0987f591010cf19dc554fa3/1?pq-origsite=gscholar&cbl=18750&diss=y
http://dx.doi.org/10.1007/978-3-030-86909-0_8
http://dx.doi.org/10.1007/978-3-030-86909-0_8
http://dx.doi.org/10.1023/A:1006135322108
http://dx.doi.org/10.1007/978-3-030-51074-9_9
http://dx.doi.org/10.1007/s11858-011-0320-y
http://dx.doi.org/10.1007/s11858-011-0320-y
http://dx.doi.org/10.1142/9789812389718_0037
http://dx.doi.org/10.1007/978-3-642-69418-9
http://dx.doi.org/10.1007/978-3-319-08434-3_28

32 Automated Completion of Statements and Proofs in Synthetic Geometry

fof(defparallelogram2,axiom, (! [A,B,C,D] : ((par(A,B,C,D) & par(A,D,B,C)) => ((pG(A,B,C,

D)))))).

fof(lemma_parallelNC,axiom, (! [A,B,C,D] : ((par(A,B,C,D)) => ((~ (col(A,B,C)) & ~ (col(A

,C,D)) & ~ (col(B,C,D)) & ~ (col(A,B,D))))))).

fof(lemma_parallelflip,axiom, (! [A,B,C,D] : ((par(A,B,C,D)) => ((par(B,A,C,D) & par(A,B,

D,C) & par(B,A,D,C)))))).

fof(lemma_parallelsymmetric,axiom, (! [A,B,C,D] : ((par(A,B,C,D)) => ((par(C,D,A,B)))))).

fof(midpoint_sym, axiom, (! [A, B, I] : (midpoint(A,I,B) => midpoint(B,I,A)))).

fof(lemma_tP_trans, axiom, (! [A, B, C, D, E, F] : ((tP(A,B,C,D) & tP(C,D,E,F)) => tP(A,

B,E,F)))).

fof(th_varignon,conjecture,(! [A,B,C,D,E,F,G,H] : (((~(col(B,D,A))) & (~(col(B,D,C))) &

(~(col(A,C,B))) & (~(col(A,C,D))) & (~ (col(E,F,G))) & midpoint(A,E,B) & midpoint(B,F

,C) & midpoint(C,G,D) & midpoint(A,H,D)) => pG(E,F,G,H)))).

If Larus is invoked as: ./larus -l100 -m8 (-l100 means the time limit is 100s, -m8 means that
we look for a proof with 8 or fewer steps), it produces the following proof in 2s:

Consider arbitrary a, b, c, d, e, f , g, h such that:

• ¬col(b,d,a),

• ¬col(b,d,c),

• ¬col(a,c,b),

• ¬col(a,c,d),

• ¬col(e, f ,g),

• b 6= d,

• a 6= c,

• mid point(a,e,b),

• mid point(b, f ,c),

• mid point(c,g,d),

• mid point(a,h,d).

It should be proved that pG(e, f ,g,h).

1. par(a,c,h,g) (by MP, from ¬col(a,c,d), mid point(c,g,d), mid point(a,h,d) using axiom triangle mid par strict; instantiation:

A 7→ a, B 7→ c, C 7→ d, P 7→ g, Q 7→ h)

2. par(b,d, f ,g) (by MP, from ¬col(b,d,c), mid point(c,g,d), mid point(b, f ,c) using axiom triangle mid par strict; instantiation:

A 7→ b, B 7→ d, C 7→ c, P 7→ g, Q 7→ f)

3. par(a,c,e, f) (by MP, from ¬col(a,c,b), mid point(b, f ,c), mid point(a,e,b) using axiom triangle mid par strict; instantiation:

A 7→ a, B 7→ c, C 7→ b, P 7→ f , Q 7→ e)

4. par(b,d,e,h) (by MP, from ¬col(b,d,a), mid point(a,h,d), mid point(a,e,b) using axiom triangle mid par strict; instantiation:

A 7→ b, B 7→ d, C 7→ a, P 7→ h, Q 7→ e)

5. par(e, f ,g,h) (by MP, from par(a,c,e, f), par(a,c,h,g), ¬col(e, f ,g) using axiom lemma par trans; instantiation: A 7→ e, B 7→
f , C 7→ a, D 7→ c, E 7→ g, F 7→ h)

Gonzalez & Janičić & Narboux 33

6. par(f ,g,h,e) (by MP, from par(b,d, f ,g), par(b,d,e,h), par(e, f ,g,h) using axiom lemma par trans; instantiation: A 7→ f , B

7→ g, C 7→ d, D 7→ b, E 7→ h, F 7→ e)

7. pG(e, f ,g,h) (by MP, from par(e, f ,g,h), par(f ,g,h,e) using axiom defparallelogram2; instantiation: A 7→ e, B 7→ f , C 7→ g,

D 7→ h)

8. Proved by assumption! (by QEDas)

7.2 Problem 2: First Inverse Problem

The list of axioms used for the first inverse problem (Problem 2) is the same as in Section 7.1. Only the
conjecture is different – the assumption midpoint(A,H,D) is ommitted:

fof(th_varignon,conjecture,(! [A,B,C,D,E,F,G,H] : (((~(col(B,D,A))) & (~(col(B,D,C))) &

(~(col(A,C,B))) & (~(col(A,C,D))) & (~ (col(E,F,G))) & (B != D) & (A != C) & midpoint

(A,E,B) & midpoint(B,F,C) & midpoint(C,G,D)) => pG(E,F,G,H)))).

If Larus is invoked as: ./larus -l100 -m8 -b1 (-l100 means the time limit is 100s, -m8 means
that we look for a proof with 8 or fewer steps, -b1 means that we look for one atomic formula as an
abduct), it finds a first consistent abduct (after two inconsistent ones) and produces the following human-
readable proof in 3.26 seconds (the abduct found is highlighted):

Consider arbitrary a, b, c, d, e, f , g, h such that:

• ¬col(b,d,a),

• ¬col(b,d,c),

• ¬col(a,c,b),

• ¬col(a,c,d),

• ¬col(e, f ,g),

• b 6= d,

• a 6= c,

• mid point(a,e,b),

• mid point(b, f ,c),

• mid point(c,g,d).

It should be proved that pG(e, f ,g,h).
Abducts found:

• mid point(d,h,a)

1. par(a,c,e, f) (by MP, from ¬col(a,c,b), mid point(b, f ,c), mid point(a,e,b) using axiom triangle mid par strict; instantiation:

A 7→ a, B 7→ c, C 7→ b, P 7→ f , Q 7→ e)

2. par(b,d, f ,g) (by MP, from ¬col(b,d,c), mid point(c,g,d), mid point(b, f ,c) using axiom triangle mid par strict; instantiation:

A 7→ b, B 7→ d, C 7→ c, P 7→ g, Q 7→ f)

34 Automated Completion of Statements and Proofs in Synthetic Geometry

3. par(b,d,e,h) (by MP, from ¬col(b,d,a), mid point(d,h,a), mid point(a,e,b) using axiom triangle mid par strict; instantiation:

A 7→ b, B 7→ d, C 7→ a, P 7→ h, Q 7→ e)

4. par(a,c,h,g) (by MP, from ¬col(a,c,d), mid point(c,g,d), mid point(d,h,a) using axiom triangle mid par strict; instantiation:

A 7→ a, B 7→ c, C 7→ d, P 7→ g, Q 7→ h)

5. par(e, f ,g,h) (by MP, from par(a,c,e, f), par(a,c,h,g), ¬col(e, f ,g) using axiom lemma par trans; instantiation: A 7→ e, B 7→
f , C 7→ a, D 7→ c, E 7→ g, F 7→ h)

6. par(e,h,g, f) (by MP, from par(b,d,e,h), par(b,d, f ,g), par(e, f ,g,h) using axiom lemma par trans; instantiation: A 7→ e, B

7→ h, C 7→ b, D 7→ d, E 7→ g, F 7→ f)

7. pG(e, f ,g,h) (by MP, from par(e, f ,g,h), par(e,h,g, f) using axiom defparallelogram2; instantiation: A 7→ e, B 7→ f , C 7→ g,

D 7→ h)

8. Proved by assumption! (by QEDas)

7.3 Problem 3: Second Inverse Problem

The list of axioms used for the second inverse problem (Problem 3) is the same as in section 7.1, extended
with the following axioms.

fof(defmidpoint,axiom, (! [A,B,C] : ((midpoint(A,B,C)) => ((betS(A,B,C) & cong(A,B,B,C)))

))).

fof(defmidpoint2,axiom, (! [A,B,C] : ((betS(A,B,C) & cong(A,B,B,C)) => ((midpoint(A,B,C))

)))).

fof(midpoint_NC, axiom, (! [A, B, I] : ((midpoint(A,I,B) & (A != B)) => ((A != I) & (B

!= I))))).

fof(defrectangle,axiom, (! [A,B,C,D] : ((rectangle(A,B,C,D)) => ((pG(A,B,C,D) & per(A,B,C

) & per(B,C,D) & per(C,D,A) & per(D,A,B)))))).

fof(defrectangle2a,axiom, (! [A,B,C,D] : ((pG(A,B,C,D) & per(A,B,C)) => rectangle(A,B,C,D

)))).

fof(defrectangle2b,axiom, (! [A,B,C,D] : ((pG(A,B,C,D) & per(B,C,D)) => rectangle(A,B,C,D

)))).

fof(defrectangle2c,axiom, (! [A,B,C,D] : ((pG(A,B,C,D) & per(C,D,A)) => rectangle(A,B,C,D

)))).

fof(defrectangle2d,axiom, (! [A,B,C,D] : ((pG(A,B,C,D) & per(D,A,B)) => rectangle(A,B,C,D

)))).

fof(defrectangle2e,axiom, (! [A,B,C,D] : ((per(A,B,C) & per(B,C,D) & per(C,D,A) & per(D,A

,B)) => rectangle(A,B,C,D)))).

%fof(defrectangle3a,axiom, (! [A,B,C,D] : (? [X] : ((rectangle(A,B,C,D)) => cong(A,C,B,D)

& midpoint(A,X,C) & midpoint(B,X,D))))).

fof(defrectangle3b,axiom, (! [A,B,C,D,X] : ((cong(A,C,B,D) & midpoint(A,X,C) & midpoint(B

,X,D)) => rectangle(A,B,C,D)))).

fof(defrectangle4a,axiom, (! [A,B,C,D] : ((rectangle(A,B,C,D)) => (pG(A,B,C,D) & cong(A,C

,B,D))))).

fof(defrectangle4b,axiom, (! [A,B,C,D] : ((pG(A,B,C,D) & cong(A,C,B,D)) => rectangle(A,B,

C,D)))).

fof(lemma_8_2,axiom, (! [A,B,C] : ((per(A,B,C)) => ((per(C,B,A)))))).

fof(varignon_th,axiom,(! [A,B,C,D,E,F,G,H] : (((~(col(B,D,A))) & (~(col(B,D,C))) & (~(

col(A,C,B))) & (~(col(A,C,D))) & (~ (col(G,F,E))) & (B != D) & (A != C) & midpoint(A,

E,B) & midpoint(B,F,C) & midpoint(C,G,D) & midpoint(A,H,D)) => pG(E,F,G,H)))).

Gonzalez & Janičić & Narboux 35

The conjecture is also different – the goal is to find under which assumption the quadrilateral EFGH
is a rectangle.

fof(th_varignon_rect,conjecture,(! [A,B,C,D,E,F,G,H] : (((~(col(B,D,A))) & (~(col(B,D,C)

)) & (~(col(A,C,B))) & (~(col(A,C,D))) & (~ (col(G,F,E))) & (B != D) & (A != C) &

midpoint(A,E,B) & midpoint(B,F,C) & midpoint(C,G,D) & midpoint(A,H,D)) => rectangle(E

,F,G,H)))).

If Larus is invoked as: ./larus -l100 -m8 -b1, it produces the following human-readable proof
in 14s (the abduct found is highlighted):

Consider arbitrary a, b, c, d, e, f , g, h such that:

• ¬col(b,d,a),

• ¬col(b,d,c),

• ¬col(a,c,b),

• ¬col(a,c,d),

• ¬col(f ,g,e),

• b 6= d,

• a 6= c,

• mid point(a,e,b),

• mid point(b, f ,c),

• mid point(c,g,d),

• mid point(a,h,d).

It should be proved that rectangle(e, f ,g,h).
Abducts found:

• cong(e,g,h, f)

1. mid point(b,e,a) (by MP, from mid point(a,e,b), mid point(a,e,b) using axiom defmidpoint2; instantiation: A 7→ b, B 7→ e, C

7→ a)

2. pG(e, f ,g,h) (by MP, from ¬col(b,d,a), ¬col(b,d,c), ¬col(a,c,b), ¬col(a,c,d), ¬col(f ,g,e), b 6= d, a 6= c, mid point(b,e,a),

mid point(b, f ,c), mid point(c,g,d), mid point(a,h,d) using axiom varignon th; instantiation: A 7→ a, B 7→ b, C 7→ c, D 7→ d, I 7→ e,

J 7→ f , K 7→ g, L 7→ h)

3. rectangle(e, f ,g,h) (by MP, from pG(e, f ,g,h), cong(e,g,h, f) using axiom defrectangle4b; instantiation: A 7→ e, B 7→ f , C

7→ g, D 7→ h)

4. rectangle(e, f ,g,h) (by MP, from rectangle(e, f ,g,h), rectangle(e, f ,g,h), rectangle(e, f ,g,h), rectangle(e, f ,g,h) using

axiom defrectangle2e; instantiation: A 7→ e, B 7→ f , C 7→ g, D 7→ h)

5. Proved by assumption! (by QEDas)

36 Automated Completion of Statements and Proofs in Synthetic Geometry

7.4 Problem 4: Partially Specified Goal

The list of axioms used for Problem 4 is the same as presented in Section 7.1. Only the conjecture is
different: the goal does not have the predicate symbol specified:

fof(th_varignon,conjecture,(! [A,B,C,D,E,F,G,H] : (((~(col(B,D,A))) & (~(col(B,D,C))) &

(~(col(A,C,B))) & (~(col(A,C,D))) & (~ (col(E,F,G))) & (B != D) & (A != C) & midpoint

(A,E,B) & midpoint(B,F,C) & midpoint(C,G,D) & midpoint(A,H,D)) => _(E,F,G,H)))).

If Larus is invoked as ./larus -l100 -m8, it produces the following human-readable proof (for the
goal par(e, f ,g,h), highlighted in the proof) in 2s:

Consider arbitrary a, b, c, d, e, f , g, h such that:

• ¬col(b,d,a),

• ¬col(b,d,c),

• ¬col(a,c,b),

• ¬col(a,c,d),

• ¬col(e, f ,g),

• b 6= d,

• a 6= c,

• mid point(a,e,b),

• mid point(b, f ,c),

• mid point(c,g,d),

• mid point(a,h,d).

It should be proved that (e, f ,g,h).

1. par(a,c,e, f) (by MP, from ¬col(a,c,b), mid point(b, f ,c), mid point(a,e,b) using axiom triangle mid par strict; instantiation:

A 7→ a, B 7→ c, C 7→ b, P 7→ f , Q 7→ e)

2. par(a,c,h,g) (by MP, from ¬col(a,c,d), mid point(c,g,d), mid point(a,h,d) using axiom triangle mid par strict; instantiation:

A 7→ a, B 7→ c, C 7→ d, P 7→ g, Q 7→ h)

3. par(e, f ,g,h) (by MP, from par(a,c,e, f), par(a,c,h,g), ¬col(e, f ,g) using axiom lemma par trans; instantiation: A

7→ e, B 7→ f , C 7→ a, D 7→ c, E 7→ g, F 7→ h)

4. Proved by assumption! (by QEDas)

7.5 Problem 5: Partially Specified Proof

The list of axioms used for Problem 5 is as presented in Section 7.3 (with the axiom defrectangle3a

deleted). The conjecture is the same plus the abduct as an assumption, but we add the following hint:

Gonzalez & Janičić & Narboux 37

fof(hint1,hint,_,_,defrectangle4b(4,5,6,7)).

If Larus is invoked as ./larus -l100 -m8, it produces the same proof as in Section 7.3 in 4s, while if
the hint is omitted, it takes 5s.

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 38–42, doi:10.4204/EPTCS.398.7

© P.H. Todd & D. Aley
This work is licensed under the
Creative Commons Attribution License.

Using GXWeb for Theorem Proving
and Mathematical Modelling

Philip Todd
Saltire Software

Portland OR USA
philt@saltire.com

Danny Aley
Saltire Software

Portland OR USA
dannya@saltire.com

GXWeb is the free browser based version of the symbolic geometry software Geometry Expressions.
We demonstrate its use in an educational setting with examples from theorem proving, mathematical
modelling and loci and envelopes.

1 Introduction

One approach to introducing automated geometrical deduction into an educational environment is to take
an existing well accepted Dynamic Geometry System (DGS) and create add-on modules which embody
algorithms in automated geometry theorem proving [1]. An advantage of this approach is that new UI can
be added incrementally to a familiar DGS, reducing the overhead for the user of adopting a new tool. An
advantage of using GeoGebra specifically as a platform is that its open source nature allows researchers
to focus on the geometry theorem automation, leaving the broader geometry interface to others.

In this presentation, we demonstrate software with a fundamentally different architecture, which
achieves many of the same goals, but with its own distinct advantages and disadvantages. We focus on
the use of GXWeb in education in the context of geometry theorem proving, and two problems in applied
optics.

2 GXWeb

GXWeb [2] is the free browser based version of the symbolic geometry system Geometry Expressions-
[3]. It maintains both a numeric model of the geometry (similar to that maintained by a typical DGS),
but in parallel it also maintains a symbolic model. User interface is provided (Figure 1) which allows
both models to be accessed. Symbolic inputs are facilitated by a constraint based layer which sits on top
of the underlying DGS. This layer allows distances and angles to be assigned symbolic values in a very
natural way. In parallel to this, a numeric value is maintained for each indeterminate in the symbolic
model. These values control the relation between the symbolic model and the diagram. Numeric values
assigned to variables may be modified in the numeric panel (Figure 1) and output measurements from
the numeric model displayed.

The symbolic panel provides access to the symbolic model. Measurements made in this panel are
symbolic rather than numeric. In a theorem proving context, we may use the fact that the distance
between a point and a line is symbolically 0 as proof that the point lies on the line. The symbolic panel
can do more than verify relations, however, when non trivial formulas are generated, the user can migrate
from exploration into interactive theorem discovery.

To create a locus in GXWeb, one needs to select a point and specify which parameter should vary.
For an envelope one needs instead to select a line or line segment.

http://dx.doi.org/10.4204/EPTCS.398.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

P.H. Todd & D. Aley 39

Figure 1: The circumcenter D, incenter J and orthocenter G of triangle ABC are constructed on the
diagram. The numeric panel, to the right shows values for lengths a, b, c, and for the ratio |JG|/|GD|
The symbolic panel, below shows exact values for the distance between J and GD, along with |DG|, |JG|
and their ratio.

In this presentation we demonstrate these features in four educational explorations. In the first we
look at the classical geometry result involving the relative positions of three triangle centers. We see first
how GXWeb can be used in the role of proving a postulated theorem. We then examine how the symbolic
features can be used to suggest further avenues of exploration. In the second example, we use the numeric
model to make hypotheses about tritangent radii for Pythagorean triangles. These hypotheses can be
confirmed in the symbolic panel. In the third example we look at a geometrical model of a box solar
cooker and use GXWeb to help us find the best angle to open the lid. Finally we pursue an exploration
of the caustic curves caused by reflection in a cylinder (the famous coffee cup caustic).

3 Examples

3.1 Euler Line

In figure 1, the sides of a triangle ABC are specified by symbolic lengths a, b and c, displayed as dimen-
sion symbols on the diagram. The numeric values of these variables are displayed in the numeric panel
to the right. The orthocenter is constructed as the intersection between two altitudes, the incenter as the

40 Using GXWeb

Figure 2: Triangle ABC has side lengths a,b,c. The incircle and the three excircles are constructed.
Numerical radii are shown for these circles where a = 3, b = 4, c = 5. Symbolic values for two of the
radii and for the area of the triangle are shown.

intersection between two medians, and the circumcenter as the center of the constructed circumcircle. To
prove that the three centers are collinear, the user should join two of the points, and inquire, symbolically,
for the distance between the third center and this line. A result of 0 proves the collinearity.

The distances between pairs of centers are complicated formulas involving a, b and c. However, their
ratio is simple. Viewed in the symbolic panel, it is a constant. Viewed in the numeric panel, its value
does not vary as the numeric values of the indeterminates vary.

3.2 Tritangent Circles and Pythagorean Triples

Numerical experimentation with radii of tritangent circles (Figure 2) leads to a conjecture that for
Pythagorean triples, these circles have integer radii. Examination of the formulas for the radii gives
a starting point for a proof of this conjecture. It also suggests that multiplying the four radii will pro-
vide a significant simplification. This leads to a further conjecture which may be tested numerically, and
proved symbolically.

3.3 Box Solar Cooker

A simple solar cooker is a box with a reflective lid [4]. The lid is held open at some angle, and reflected
rays are captured in the box. An interesting theoretical question with this simple apparatus is this: for
given angle of the sun, and assuming the base of the box is on level ground, what is the best angle for the

P.H. Todd & D. Aley 41

Figure 3: A geometric model of a box solar cooker with incident ray at angle φ to the horizontal and box
lid open at angle θ .

lid.
A geometrical model assumes the sun is at angle φ to the horizontal and the lid is opened at angle θ .

The angle between the ray reflected from the end of the lid to the base can be derived from the model.
Some consideration leads to the postulate that the best angle should reflect light from the outer edge of
the lid to the outer edge of the box, thus capturing as many rays as possible, but not spilling any. The
angle value generated by GXWeb can be used to set up a linear equation whose solution yields the ideal
angle.

3.4 Coffee Cup Caustic

A catacaustic of a curve is the envelope of the reflected rays from some point source (or from a family
of parallel rays). Figure 4 shows a geometric construction of this curve. Where the light source lies on
the circumference, we can derive an implicit equation for the curve. For general position of the curve,
the parametric equations are more helpful. By grasping the correspondence between the location on the
curve and the parameter of the point of reflection on the circle, students can conjecture the location of
points on the cusps of the curve, and discover geometric relations between these points.

4 Conclusion

GXWeb has some distinct features which can be advantageous in an educational setting. The constraint
based user interface provides a clean way of setting up and specifying exact geometry problems. The
parallel symbolic and numeric model provide flexibility in moving between a numeric and an algebraic

42 Using GXWeb

Figure 4: The caustic curve due to reflection in a circle of light emanating from point C inside the circle.

view of a problem. Loci and envelopes are cleanly defined in terms of a single varying parameter.
Both implicit and parametric equations of the curve may be computed. Both have their use in different
circumstances.

References
[1] Francisco Botana, Markus Hohenwarter, Predrag Janičić, Zoltán Kovács, Ivan Petrović, Tomás Recio & Simon

Weitzhofer (2015): Automated theorem proving in GeoGebra: Current achievements. Journal of Automated
Reasoning 55(1), pp. 39–59, doi:10.1007/s10817-015-9326-4.

[2] Saltire Software Inc.: GXWeb. Available at https://www.geometryexpressions.com/GXWeb.
[3] Philip Todd (2020): A Symbolic Dynamic Geometry System Using the Analytical Geometry Method. Mathe-

matics in Computer Science 14(4), pp. 693–726, doi:10.1007/s10472-023-09841-6.
[4] Philip Todd, Aleta Kandle & Ariel Chen (2010): Aligning Solar Cookers: a case study in the use of symbolic

geometry and CAS to investigate a real world problem. Electronic Journal of Mathematics & Technology 4(1).

https://doi.org/10.1007/s10817-015-9326-4
https://www.geometryexpressions.com/GXWeb
https://doi.org/10.1007/s10472-023-09841-6

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 43–52, doi:10.4204/EPTCS.398.8

© Z. Kovács et al.
This work is licensed under the
Creative Commons Attribution License.

Showing Proofs, Assessing Difficulty
with GeoGebra Discovery*

Zoltán Kovács
The Private University College of Education of the Diocese of Linz, Austria

zoltan.kovacs@ph-linz.at

Tomás Recio
Escuela Politécnica Superior, Universidad Antonio de Nebrija, Madrid, Spain

trecio@nebrija.es

M. Pilar Vélez
Escuela Politécnica Superior, Universidad Antonio de Nebrija, Madrid, Spain

pvelez@nebrija.es

In our contribution we describe some on-going improvements concerning the Automated Reasoning
Tools developed in GeoGebra Discovery, providing different examples of the performance of these
new features. We describe the new ShowProof command, that outputs both the sequence of the
different steps performed by GeoGebra Discovery to confirm a certain statement, as well as a number
intending to grade the difficulty or interest of the assertion. The proposal of this assessment measure,
involving the comparison of the expression of the thesis (or conclusion) as a combination of the
hypotheses, will be developed.

1 Introduction

In the past years we have been developing and including, both in the standard version of GeoGebra (GG)
as well as in the fork version GeoGebra Discovery,1 different automated reasoning tools. See [1] for a
general description and references.

The goal of the current contribution is to present some ongoing work regarding two different, but
related, important improvements of GeoGebra Discovery. One, to visualize the different steps that GG
Discovery performs with a given geometric statement until it declares its truth (or failure). Two, to test,
through different elementary examples, the suitability of an original proposal to evaluate the interest,
complexity or difficulty of a given statement. Let us advance that our proposal involves the notion of
syzygy of a set of polynomials.

The relevance of showing details about each of the steps performed by our automated reasoning
algorithms implemented in GG Discovery is quite evident. In fact, as a consequence of the result in [2],
describing the formalization of the arithmetization of Euclidean plane geometry, proofs of geometric
statements obtained using algebraic geometry algorithms are also valid on the synthetic geometry realm.
Although it might seem obvious that synthetic proofs facilitate human understanding of a geometric
statement, as compared with the difficult interpretation associated to algebraic proofs, this assertion
could be a matter of discussion if considered for statements (and for human minds) of a certain level,

*Authors supported by a grant PID2020-113192GB-I00 (Mathematical Visualization: Foundations, Algorithms and Appli-
cations) from the Spanish MICINN.

1See project page https://github.com/kovzol/geogebra-discovery.

http://dx.doi.org/10.4204/EPTCS.398.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/kovzol/geogebra-discovery

44 Showing Proofs, Assessing Difficulty with GeoGebra Discovery

a discussion that it is out of the scope of the present paper, and that could be the subject of a future
research, in an educational context.

On the other hand, the evaluation of the difficulty of geometric statements is an old subject, regardless
of its relation to automated proving. We can mention the work of Lemoine on the number of steps
required by a geometric construction (a higher number of steps = a more complicated construction), a
proposal that has been thoroughly studied, adapted to the Dynamic Geometry context, and exemplified
in different repositories, e.g., in several recent works by Quaresma and collaborators, such as [3, 4].

But the complexity of a geometric construction is not, in general, a good measure to establish the
difficulty of a statement involving the same construction: one can make a very complicated figure and
then conjecture some obvious property, easy to derive from the construction steps.

Thus, in this paper we make a preliminary report of our current work aiming to establish some
difficulty criteria, that profits from our algebraic approach to proving geometric statements. Roughly: we
propose to label as more difficult those statements where:

1. first of all, the polynomial involved in the description of the thesis (or conclusion) is a sum of
products of the hypotheses polynomials multiplied by some other polynomials (thus, the statement
is just formally true). These other polynomials are usually named as syzygies,

2. else, there is a combination of 1 as a sum of products of the hypotheses polynomials and of the
negation of the thesis T (expressed as T · t− 1) multiplied by some other polynomials (thus, the
statement is, by reductio ad absurdum, geometrically true, meaning that a power of the thesis is a
combination of the hypotheses). Again, these other polynomials that multiply the negation of the
thesis and the hypotheses, are usually named as syzygies,

3. these expressions of the thesis (or of 1) as a combination of the hypotheses (of the hypotheses and
the negation of the thesis) requires higher degree polynomials, i.e. more complicated syzygies.

Of course, although we are aware that difficulty and interest are not identical concepts, let us recall
that this notion, the interestingness of theorems, is also subject to current research (see [5, 6, 7, 8])
in different contexts (A.I., Big Data, etc.), sometimes explicitly referring to our particular automated
reasoning in geometry approach.

In what follows we will describe, mostly through some examples, our ongoing work on these two
subjects.

2 ShowProof Command

Unfortunately, till now, the algebraic geometry nature of the algorithms behind the automatic reasoning
tools implemented in GeoGebra or GeoGebra Discovery do not allow providing readable arguments jus-
tifying their outputs. Computations are performed in the background, using some embedded Computer
Algebra System, such as Giac [10]. The user only gets a kind of yes/no answer.

The ShowProof command is a first attempt to enhance the visibility of the proofs achieved by Ge-
oGebra Discovery, by showing the result of the different steps performed by GeoGebra Discovery to
confirm a certain statement: algebraic translation of the geometric input construction, numerical special-
ization of the coordinates of some free points, automatic inclusion of non-degeneracy conditions, and
writing – using the concept of syzygy and its computation – the expression of 1 as a combination of the
hypotheses and the negation of the thesis (thus proving the statement by reductio ad absurdum), or of the
thesis as a combination of the hypotheses (direct proof of the statement).

Z. Kovács et al. 45

Visualizing the output of most of these steps is just a question of improving the user interface, as it
does not involve any new computation. This is so except for the (most important) last two items: the
concrete expression of 1 (or of the thesis) as a combination of other polynomials. Indeed, to decide that a
statement is generally true [1] GeoGebra Discovery just has to perform some elimination of the ideal of
hypotheses plus the negation of the thesis, and to verify that it is not zero. Then, adding to the hypotheses
ideal the negation of some of the generators g of this elimination (using Rabinowitsch trick, as g · t−1),
it is obvious that the (new hypotheses + negation of thesis) ideal contains 1, since it will include both g
and g · t−1.

But the user, who has not any concrete evidence about the result of the previous elimination (for
example, expressing the added non-degeneracy condition as a combination of the (given hypotheses
+ negation of thesis) ideal, probably would appreciate handling an expression of 1 as a combination
of the (new hypotheses + negation of thesis) ideal. Or, even more impacting, viewing the thesis as
a combination of the hypotheses. Notice that the first possibility just means that over the complexes
the thesis vanishes over all points satisfying the new hypotheses (the given ones and the added non-
degeneracy condition) and, thus, that a power of the thesis is a combination of the hypotheses. We can
say that the statement is, in this case, geometrically true, while, if the thesis itself is a combination of the
hypotheses, we can declare we have a formally true statement.

Both issues are now addressed through the ShowProof command, using the concept of syzygy
(e.g. [9], page 104):

Given any G = (g1, . . . ,gs) ∈ k[x1, . . . ,xn]
s, we can define a syzygy on G to be an s-tuple S =

(h1, . . . ,hs) ∈ k[x1, . . . ,xn]
s, such that ∑i hi ·gi = 0.

In particular, if we include 1 (respectively, the thesis) as the first element of the collection of poly-
nomials G, and the remaining elements are the generators of the ideal of the new hypotheses plus the
negation of the thesis (respectively, of the new hypotheses), then we will get (if the statement is geo-
metrically true, respectively, symbolically true) syzygies of the kind (1,−h2, . . . ,−hs), allowing us to
output a concrete expression of 1 (respectively, the thesis) as a combination of the new hypotheses plus
the negation of the thesis (respectively, of the new hypotheses).

The next figures illustrate the current output of the ShowProof command. Figure 1 displays, first,
the automatically and internally assigned coordinates of the free vertices of the triangle A,B,C; then,
the equations of the different heights; finally, the thesis (the fact that the last height goes through the
intersection of the other two).

Next, following our algorithm and without loss of generality, the program automatically specializes
the given free coordinates, to reduce the number of variables before starting the computations. This is
shown in figure 2, that ends declaring that the statement is geometrically true by explicitly showing 1
as a combination of the negation of the thesis and the hypotheses equations (thus, 1 = 0, since all these
equations are equal to zero). Finally, the last line declares that this statement is of difficulty 2, a measure
that we will roughly describe in the next section.

3 Interestingness

Although the precise formulation of the following reflections require a serious and future research anal-
ysis, that is not the goal of the present paper, we dare to consider quite evident that showing argu-
ments for the truth of a geometric statement is important in the scientific and educational context, even
more relevant nowadays, in a context of close collaboration (or leadership?) of machine-driven learning.
Analogously, under the dominance and ubiquitousness of machine learning environments, very prone to

46 Showing Proofs, Assessing Difficulty with GeoGebra Discovery

Figure 1: Viewing proof of the Intersection of heights theorem through ShowProof. Initial steps.

Figure 2: Viewing proof of the Intersection of heights theorem through ShowProof. Specialized equa-
tions, conclusion and difficulty.

Z. Kovács et al. 47

Figure 3: Automated Geometer: relevant (e.g. Theorem 7, medians intersect at a common point) and
trivial (e.g. Theorem 1, midpoint F of AB in the line AB, or Theorem 9, midpoint F is equidistant from
A and B) results.

automatically produce large amounts of geometric information, we think it is very relevant to develop
instruments that allow humans to assess the relevance of the obtained results.

For example, GeoGebra Discovery has already a Discover command that automatically finds all
statements of a certain kind that hold over some element of a construction (and a more general com-
mand in a web version, the Automated Geometer,2 automatically finding all the statements of a selected
kind (collinearity of three points, equality of distances between two points, etc., as declared in the dark
box below the geometric figure in figure 3) holding over all elements of a figure.) See also the recent
StepwiseDiscovery command, that discovers automatically all statements involving each of the new
elements that the user is adding in each construction step. Now, it happens that a great number of such
discovered statements are just obvious! See figure 3, for some examples.

Thus, we dare to introduce, as a measure of the complexity of a result, the following definition:
We say that a statement H ⇒ T is of complexity d if d is the maximum degree of the syzigies

expressing T (or 1) as a combination of the hypotheses (correspondingly, of the hypotheses and the
negation of the thesis).

In what follows we will describe different examples, towards analyzing the potential of this proposal
for the concept of an interesting statement.

2http://autgeo.online/ag/automated-geometer.html?offline=1

http://autgeo.online/ag/automated-geometer.html?offline=1

48 Showing Proofs, Assessing Difficulty with GeoGebra Discovery

3.1 Example 1

Let us build a point F as the midpoint of AB (see Figure 3), and ask about Discover(F). The program
discovers (among other, really interesting statements), that the length of segment FA is equal to the length
of FB. But, since the definition of F as midpoint of the segment with extremes A(a1,a2),B(b1,b2) is that
the coordinates of F are ((a1+b1)/2,(a2+b2)/2), it immediately follows that FA = ((a1−b1)/2,(a2−
b2)/2) and FB = (b1−a1)/2,(b2−a2)/2). Obviously, from these coordinates, it follows that the length
of both segments is identical, it only requires to simplify ((a1 − b1)/2)2 + ((a2 − b2)/2)2 − (((b1 −
a1)/2)2 +((b2− a2)/2)2), yielding 0. Thus, we could roughly declare that this thesis is just the trivial
equation 0 = 0 and thus it is always a combination of whatever set of hypotheses multiplied by zero.
Thus the degree of the zero polynomial 0 (that some algebraist consider as a negative number) could be
a measure of the complexity of this highly trivial statement.

3.2 Example 2

On a different example about elements in the same figure, if we consider the coordinates of point
G(g1,g2), the intersection of the line that goes from A to the midpoint E(e1,e2) of side BC, and of
the line that goes from B to the midpoint D(d1,d2) of side AC, where C(c1,c2), we have:

• Coordinates of E,D:
H1,H2 : e1 = (b1 + c1)/2,e2 = (b2 + c2)/2, (1)

H3,H4 : d1 = (a1 + c1)/2,d2 = (a2 + c2)/2. (2)

• Equations of lines A,E and B,D

line AE : (x−a1) · (e2−a2)− (y−a2) · (e1−a1) = 0, (3)

line BD : (x−b1) · (d2−b2)− (y−b2) · (d1−b1) = 0. (4)

• Thus, when we declare G as the intersection of these two lines, we introduce the equations

H5 : line AE : (g1−a1) · (e2−a2)− (g2−a2) · (e1−a1) = 0, (5)

H6 : line BD : (g1−b1) · (d2−b2)− (g2−b2) · (d1−b1) = 0. (6)

• Moreover, let us recall that midpoint F of side AB has coordinates:

H7,H8 : f1 = (a1 +b1)/2, f2 = (a2 +b2)/2. (7)

• Finally, the Theorem 6 in figure 3, namely, G ∈CF , means that

Thesis: G ∈ line CF : (g1− c1) · (f2− c2)− (g2− c2) · (f1− c1) = 0. (8)

Z. Kovács et al. 49

Now, after some involved computations on the syzygies of the set

(Thesis,H1,H2, . . . ,H8),

here we use the same notation for the Thesis and the hypotheses Hi, but considering just the involved
polynomials, not the equality to zero. We find that we can express the Thesis as a combination of
(H1,H2, . . . ,H8) multiplied by linear polynomials in the involved variables

a1,a2,b1,b2,c1,c2,d1,d2,e1,e2, f1, f2,g1,g2,

namely, the thesis is equal to

Thesis = (−g1 + f1) ·G[1]+ (− f2 +g2) ·G[2]+ (1) ·G[7] (9)

where G[1],G[2],G[7] are elements of the Gröbner basis of the hypotheses ideal with respect to the
plex order, and can be expressed, respectively, as sums of products of [0,0,0,−1/2,0,−1/2,0,1/2],
[0,0,−1/2,0,−1/2,0,1/2,0], [0,2 ·g2−2,−2 ·g1,−2 ·g2,0,2,2 ·g1,−2], times [H1,H2, . . . ,H8].

In summary, the thesis is a combination of the hypotheses multiplied by polynomials of degree at
most 1. This degree 1, vs. the negative degree of the syzygies in the previous statement shows, it is our
proposal, that this second statement, about the coincidence of the intersection of the three medians of a
triangle, is more difficult than the statement about the equality of lengths of the two segments determined
by the mid-point.

Let us remark that this same statement, but specializing vertices A= (0,0), B= (0,1), leads to degree
2 syzygies

Thesis = (−c1/2+g1/2) ·G[1]+ (−g2 + c2) ·G[2]+ (−g1) ·G[6]

+ (g2−1/2) ·G[7]−1 ·G[8] (10)

where, again, G[1],G[2],G[6],G[7],G[8] are elements of the Gröbner basis of the (specialized) hypothe-
ses ideal with respect to the tdeg order, and can be expressed, respectively, as sums of products of
[0,0,0,0,2,0,0,0], [1,0,0,0,0,0,0,0], [0,0,0,0,0,0,−2,0], [0,2 ·g2−2,−2 ·g1,−2 ·g2,0,2,2 ·g1,−2],
[0,2 ·(g2−1) ·g2,−2 ·g1 ·g2,−2 ·(g2−1) ·g2,0,2 ·g2,2 ·g1 ·g2,−2 ·g2+2], times [H1,H2, . . . ,H8], notice
that only the summand involving G[7] rises the degree to degree two.

3.3 Example 3

As a third example, let us start (see Figure 1) with a triangle with vertices A(v13,v14), B(v15,v16),
C(v17,v18). Then, consider the perpendicular line through A to side BC. Considering P(v19,v20) as the
coordinates of a generic point P in this line, we obtain the equation

H1 : (v19− v13) · (v17− v15)+(v20− v14) · (v18− v16) = 0. (11)

Similarly for the other two heights.
Thus, the statement the three heights of a triangle have a common intersection is a matter of con-

sidering two hypotheses (the equation of height from A and from, say, B) with a common generic point
P. And the thesis is also one equation, namely, showing that this generic point P satisfies that line PC is
perpendicular to line AB. More precisely:

• Hypotheses:

50 Showing Proofs, Assessing Difficulty with GeoGebra Discovery

– Height from A:

(v19− v13) · (v17− v15)+(v20− v14) · (v18− v16) = 0. (12)

– Height from B:

(v19− v15) · (v17− v13)+(v20− v16) · (v18− v14) = 0. (13)

• Thesis:
(v19− v17) · (v15− v13)+(v20− v18) · (v16− v14) = 0. (14)

Notice that these equations seem different from those describing this statement in figure 1. There, the
height from A is described by considering the coordinates of point X(v19,v20) in this line, and regarding
such point as the translation of A by a vector AX perpendicular to BC so that −v20+ v17− v15+ v14 =
0,−v19−v18+v16+v13 = 0. Finally, Equation (17) in figure 1, describes a generic point (v25,v26) of
this line, verifying v25 · v20− v26 · v19− v25 · v14+ v19 · v14+ v26 · v13− v20 · v13 = 0.

But let us remark that this equation is practically the same as the one above introduced for the height
from A, replacing there generic point coordinates (v19,v20) by (v25,v26) and, in the new equation,
v20 = v17− v15+ v14,v19 = v16+ v13− v18, yielding

v25 · v20− v26 · v19− v25 · v14+ v19 · v14+ v26 · v13− v20 · v13 =

= v25 · (v17− v15+ v14)− v26 · (v16+ v13− v18)− v25 · v14+

(v16+ v13− v18) · v14+ v26 · v13− (v17− v15+ v14) · v13 =

= (v15− v17) · (v13− v25)+(v16− v18) · (v14− v26).

Similarly, the thesis is now, with the notation of figure 1:

v25 · v24− v26 · v23− v25 · v18+ v23 · v18+ v26 · v17− v24 · v17 = 0 (15)

that belongs to the new ideal of hypotheses 〈−v20+ v17− v15+ v14,−v19− v18+ v16+ v13,−v22−
v17+ v16+ v13,−v21+ v18+ v15− v14,−v24+ v18+ v15− v13,−v23+ v17− v16+ v14,v25 · v20−
v26 · v19− v25 · v14+ v19 · v14+ v26 · v13− v20 · v13,v25 · v22− v26 · v21− v25 · v16+ v21 · v16+ v26 ·
v15− v22 · v15〉.

The interesting point here is that the complexity of the statement is different if one considers the
previous equations or the ones in figure 1. In the first case, it is immediate to see that the thesis is the
difference of the height from B minus the height from A. The same result holds if we do specialize
numerically A,B, as it is usual in GeoGebra Discovery, considering A(0,0),B(0,1), so that the above
hypotheses turn out to be:

• Height from A:
(v19−0) · (v17−0)+(v20−0) · (v18−1) = 0. (16)

• Height from B:
(v19−0) · (v17−0)+(v20−1) · (v18−0) = 0. (17)

• Thesis:
(v19− v17) · (0−0)+(v20− v18) · (1−0) = 0. (18)

Z. Kovács et al. 51

So we could say that here the syzygies are of degree 0, and thus we can declare the complexity of the
statement is 0, as the thesis is just a linear combination of the hypotheses (multiplied by constants).

But, with the equations in figure 1, using the same tdeg order, one gets the thesis as a combination
of the hypothesis multiplied by polynomials of degree at most one, so the complexity rises one element
and, if we do specialize A(0,0),B(0,1) in the equations of figure 1, we get that the syzygies have to be
of degree 2, as stated in figure 2!

4 Conclusions

The explicit visualization of the algebraic expression that connects hypotheses and thesis (or expresses
number 1 as a combination of hypotheses and the negation of the thesis) seems a relevant improvement
of GeoGebra Discovery automated reasoning tools, allowing the user not only to be able to personally
confirm the truth of the given statement, but also to measure its difficulty.

Of course, the proposal of this measure is just on its initial steps and requires much further research.
For example, extending the already considered examples, including others of higher difficulty, such
as those concerning Mathematics Olympiad problems. Indeed, we have already verified with some
of them that our measure of the computed difficulty agrees that they are much more difficult than the
traditional school problems, but analyzing more problems from different sources, comparing our rank
and the behavior of the olympic teams on the same problems, is still on-going work [11].

Moreover, the proposed research should not just be restricted to producing benchmarks, but to reflect
on several more conceptual issues, such as the role, on the measure of the complexity, of the different
ways to express the same statement (as remarked in the previous examples). Ditto, for the specializa-
tion of some variables, for choosing different ordering for computing syzygies, etc. We also need to
understand the difference, or the connection, between the complexity of expressing a statement and the
complexity of deciding its truth, the relation between the complexity of the statement and the complexity
of the associated ideal membership problem, etc.

Indeed, we think there is plenty of work in this context and it is our intention to address such issues
in a near future.

References
[1] Kovács, Z.; Recio, T.; Vélez, M. P.: Automated reasoning tools with GeoGebra: What are they? What are

they good for? In: P. R. Richard, M. P. Vélez, S. van Vaerenbergh (eds): Mathematics Education in the
Age of Artificial Intelligence: How Artificial Intelligence can serve mathematical human learning. Series:
Mathematics Education in the Digital Era, Vol. 17, 23–44. Springer Cham (2022). doi:10.1007/978-3-030-
86909-0_2

[2] Boutry, P.; Braun, G.; Narboux, J.: Formalization of the arithmetization of Euclidean plane geometry and
applications. Journal of Symbolic Computation 90, 149–168 (2019). doi:10.1016/j.jsc.2018.04.007

[3] Quaresma, P.; Santos, V.; Graziani, P.; Baeta, N.: Taxonomy of geometric problems. Journal of Symbolic
Computation 97, 31–55 (2020). doi:10.1016/j.jsc.2018.12.004

[4] Santos, V.; Baeta, N.; Quaresma, P.: Geometrography in Dynamic Geometry. The International Journal for
Technology in Mathematics Education, vol. 26, no. 2, June 2019, 89–96 (2019).

[5] Gao, H.; Goto, Y.; Cheng, J.: A set of metrics for measuring interestingness of theorems in automated
theorem finding by forward reasoning: A case study in NBG set theory. Proceedings of the International
Conference on Intelligence Science and Big Data Engineering (2015). Part II. Lecture Notes in Computer
Science 9243, 508–517 (2015). doi:10.1007/978-3-319-23862-3_50

https://doi.org/10.1007/978-3-030-86909-0_2
https://doi.org/10.1007/978-3-030-86909-0_2
https://doi.org/10.1016/j.jsc.2018.04.007
https://doi.org/10.1016/j.jsc.2018.12.004
https://doi.org/10.1007/978-3-319-23862-3_50

52 Showing Proofs, Assessing Difficulty with GeoGebra Discovery

[6] Gao, H.; Li, J.; Cheng J.: Measuring Interestingness of Theorems in Automated Theorem Finding by Forward
Reasoning Based on Strong Relevant Logic. In: 2019 IEEE International Conference on Energy Internet
(ICEI), 356–361 (2019). doi:10.1109/ICEI.2019.00069

[7] Puzis, Y.; Gao, Y.; Sutcliffe G.: Automated generation of interesting theorems. In G. Sutcliffe and R. Goebel,
editors: Proceedings of the 19th International FLAIRS Conference, AAAI Press, Menlo Park, 49–54 (2006).

[8] Colton, S.; Bundy, A.; Walsh, T.: On the notion of interestingness in automated mathematical discovery.
International Journal of Human-Computer Studies Volume 53, Issue 3, September 2000, 351–375 (2000).
doi:10.1006/ijhc.2000.0394

[9] Greuel, G-M.; Pfister, G.: A Singular introduction to commutative algebra. Springer Berlin, Heidelberg.
Second Edition (2008). doi:10.1007/978-3-540-73542-7

[10] Kovács, Z.; Parisse, B.: Giac and GeoGebra – improved Gröbner basis computations. Presentation at RICAM
Special semester on Applications of Algebra and Number Theory, Workshop 3 on Computer Algebra and
Polynomials. https://www.ricam.oeaw.ac.at/specsem/specsem2013/workshop3/slides/pariss
e-kovacs.pdf. November (2013).

[11] Ariño-Morera, B.; Recio, T.; Tolmos, P.: Olympic geometry problems: human vs. machine. Communication
to the CADGME (Digital Tools in Mathematics Education) 2022 Conference. Abstracts available at https:
//drive.google.com/file/d/1qF4ceMg6gNklOPa1JVkgKND1dOqNmyka/view.

https://doi.org/10.1109/ICEI.2019.00069
https://doi.org/10.1006/ijhc.2000.0394
https://doi.org/10.1007/978-3-540-73542-7
https://www.ricam.oeaw.ac.at/specsem/specsem2013/workshop3/slides/parisse-kovacs.pdf
https://www.ricam.oeaw.ac.at/specsem/specsem2013/workshop3/slides/parisse-kovacs.pdf
https://drive.google.com/file/d/1qF4ceMg6gNklOPa1JVkgKND1dOqNmyka/view
https://drive.google.com/file/d/1qF4ceMg6gNklOPa1JVkgKND1dOqNmyka/view

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 53–61, doi:10.4204/EPTCS.398.9

© Z. Kovács & A. Vujic
This work is licensed under the
Creative Commons Attribution License.

Open Source Prover in the Attic

Zoltán Kovács
The Private University College of Education of the Diocese of Linz, Austria

zoltan.kovacs@ph-linz.at

Alexander Vujic
The Private University College of Education of the Diocese of Linz, Austria

alexander.vujic@ph-linz.at

The well known JGEX program became open source a few years ago, but seemingly, further devel-
opment of the program can only be done without the original authors. In our project, we are looking
at whether it is possible to continue such a large project as a newcomer without the involvement of
the original authors. Is there a way to internationalize, fix bugs, improve the code base, add new
features? In other words, to save a relic found in the attic and polish it into a useful everyday tool.

Keywords: JGEX, Java development, open source, education, Dynamics Geometry Systems.

1 Introduction

Wide access to computers in education opens a new horizon in applying automated reasoning tools in
the classroom. Many software tools exist already, that are of different levels of maturity, and several
issues can be found that prevent direct use of them in education. One of the most mature tools is Java
Geometry Expert (JGEX, [11–13]), which has its roots in Wichita State University and was developed
by the automated geometry reasoning school, led by Chou and Gao, and programmed (mostly) by Ye.

JGEX is a remarkable summary of several decades of pioneering work [2]. It consists of more than
108,000 lines of Java code in more than 230 files. It has been open-sourced, however, just a couple of
years ago (in 2016), and it was published on GitHub.1 Since then, more than 80 forks were created and
the project was starred by more than 400 users. These numbers clearly show the popularity of JGEX,
even if the original authors discontinued their work: Ye’s latest (very minor) change was committed in
July 2018. Therefore, in our work, we raise the question, if it is still possible to contribute to this project
significantly.

Why are further contributions necessary? First of all, the software tool supports only a couple of
languages. For educational use, a translation for native speakers seems unavoidable: young learners may
have difficulties with languages. Second, a modern user interface may be more appealing for the new
generation of users. Third, science is clearly at a more mature state-of-the-art now, so some updates in
the used algorithms seem important after a while. Fourth, it turned out that some minor, annoying bugs
still exist in the program – they should be fixed someday: it is very important for a tool that is expected
to be error-free in all matters when it is about theorem proving.

In our paper we discuss the possibility of continuing an existing tool for automated proving without
the possibility to contact the original authors. Our discussion focuses on translating JGEX into German
and Serbian, and on extending its capabilities to provide a better user experience. Also, we discuss how

1https://github.com/yezheng1981/Java-Geometry-Expert

http://dx.doi.org/10.4204/EPTCS.398.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/yezheng1981/Java-Geometry-Expert

54 Open Source Prover in the Attic

difficult it is to build the program with the newest development tools available, and what changes have
to be done to be somewhat up-to-date in this concern.

We think this research is important for a whole community, in particular, to save the achieved al-
gorithms and implementations for the next generation. In other words, our research is a survival guide
which aims at supporting the community for automated geometry reasoning.

2 Expectations

In this section we give an overview of the expected updates and further improvements.

2.1 Translations

JGEX’s final mainstream version supports the Chinese, English, Italian and Persian languages. Our
research team, after forking the mainstream version in the repository,2 decided to add further translations:
German, Portuguese and Serbian.

It turned out that the translation, technically speaking, is a simple process of creating a text file,
similar to the CSV (comma separated values) format, that consists of a text ID integer, the English
keyword (because in most cases it is used for the lookup, instead of the ID), the translated text, and
(optionally) a tooltip. With minor edits, a new text file can easily be added to the source files and it can
be inserted in the menu system.

Unfortunately, it also turned out that the tooltip entries are completely missing for all languages
(except for English, but those translations are already given in the Java source code). On the other hand,
some translations are completely missing by design: such expressions are short phrases like “by HYP”
(which means: “by assumption”, “by hypothesis”) and “because”. We had to add such phrases in the
CSV databases, and modify the Java source code to search for the phrases also in the CSV files.

Also, two additional lists of phrases are hardcoded in the original source code. They belong to the
Geometry Deduction Database (GDD, [3,12]) and the rule database for the Full Angle method [3]. These
are given only in English. It is an ongoing work to move these phrases in the CSV database, instead of
using the Java files to store the English version, and, in our fork, the German and Serbian translations as
well.

Why are all translations stored in one CSV database? There would be a more efficient way of
translating the user interface into different languages. Nevertheless, a variety of languages have already
been translated in the CSV database, therefore it was more accessible for the team to continue working
with CSV. In our case, the most extensive work was dedicated to the Serbian translation. Our translation
team, led by the second author, started to make a copy of the German translation (because of the better
knowledge of German than English). After finishing translation of the phrases in the CSV file, it turned
out that, in addition, both rule databases need to be translated. Then, some additional phrases were found
in the Java source code that had to be translated too. To make a quality work, the translated phrases had
to be double-checked by native speakers who were also experts in geometry. Unfortunately, by doing the
translation in three different steps, every participant had to work three times: once for the CSV entries,
once for the rule databases, and again for the unexpected phrases shown up randomly in the source code.
This made the work quite inefficient and unexpectedly long.

Overall, it would have been better to unify the translation system first, and only after then start a
concentrated work on doing the real effort in translating the phrases. But this was, actually, not really

2https://github.com/kovzol/Java-Geometry-Expert

https://github.com/kovzol/Java-Geometry-Expert

Z. Kovács & A. Vujic 55

possible: JGEX has no full documentation, and it cannot be therefore assumed that any users (either
newcomers or experienced ones) have a complete overview of all phrases used in the program.

We also learned that in many cases, unfortunately, the English translation contains spelling errors.
As a consequence, the translation keys have spelling problems too. This makes it difficult to modify all
erroneous translation keys in all CSV files and the Java source code at the same time.

In fact, there are sophisticated translation systems like gettext. We will consider changing the trans-
lation system in a next round of possible updates.

2.2 Modern Interface

First author invited a group of prospective mathematics teachers at the Private University College of
Education of the Diocese of Linz (PHDL) to give some feedback on the usability of JGEX. While most
feedback was positive, several students mentioned that JGEX had an unusual user interface, and an
old-fashioned look. Many features were difficult to find. Among others, to obtain a proof that is easy to
understand in the classroom, the user needed to find an appropriate example in the database of showcases.
The general method of showing the proof is to fix the objects and to select the relevant one from them,
and use the right mouse click to access the proof. In certain cases, such as “08_9point.gex” the students
may access the proof by right clicking on “SHOW: CYCLIC D G E F” and selecting “Prove”.

To solve such difficulties, several ideas were suggested by the students, and the authors of this paper.
One simple possibility is to create tutorials in both textual and video format. On the other hand, a sim-
plified view of the most useful capabilities for classroom use could be helpful. Here we refer to another
software package, OK Geometry [7], which comes in different editions (Easy, Basic, Plus modes). Also,
a more extensive use of tooltips could tear down some barriers. Another option is to force the user into
a workflow: first, she had to create or load a construction, second, point to the searched properties, and
third, to obtain the proof.

Today’s users are more familiar with web applications and mobile phone apps than native applica-
tions. In fact, the original version of JGEX comes with no installer: the user needs to download the
source code, and it is her own task to compile and run it with an appropriate Java Development Kit
(JDK) and Java Runtime Environment (JRE). First author maintains a ZIP package for Windows and
Mac systems (based on the packr utility3) by providing all required files to run JGEX without any further
preparation.4 Also, a Linux Snap version of JGEX is also available.5 As of May 2023 there are 175
installations world-wide registered from 48 territories. Anyway, these packages are just one step towards
simplifying the access to JGEX – we think it is unavoidable to make JGEX available as an embeddable
web application by compiling its codebase to JavaScript.

In fact, Ye’s version of JGEX does not even compile automatically when the newest Java version is
used. Some minor updates are required on the source code: Either the Java version must be downgraded
to 8, or some small changes need to be done to avoid compiler errors. These requirements have been,
luckily, also identified by other contributors who forked JGEX. On the other hand, the Java technology,
selected by the Chinese experts, has proven to be a good choice, because with just minor modifications,
it is easy to import the project into today’s favorite Java Integrated Desktop Environment (IDE), IntelliJ
IDEA.

Finally, we think it is unavoidable to make it possible to import GeoGebra [4] figures in JGEX, and
to export them in GeoGebra format, since GeoGebra became the de facto standard of dynamic geometry

3https://github.com/libgdx/packr
4https://github.com/kovzol/Java-Geometry-Expert/releases
5https://snapcraft.io/jgex

https://github.com/libgdx/packr
https://github.com/kovzol/Java-Geometry-Expert/releases
https://snapcraft.io/jgex

56 Open Source Prover in the Attic

during the last decade [10]. Even if JGEX supports a wide set of drawing tools, for newcomers, it can be
difficult to learn its toolset quickly enough.

2.3 State-of-the-art Mathematics

JGEX implements several mathematical algorithms. One of the supported algorithms is the Gröbner
basis method [5] that is known to be slower than the other methods, in a substantial set of input cases.
Meanwhile, however, major speedups have been reported in some implementations of computing Gröb-
ner bases. One of the successful implementations is included in GeoGebra’s embedded computer algebra
system Giac [6].

In fact, the Gröbner basis method, when using elimination, is known to provide better non-degeneracy
conditions than the faster algebraic method, Wu’s approach. This result could also be incorporated into
JGEX. It’s important to note that in many cases, the degeneracy conditions output by Wu’s method are
necessary for the theorems to hold, and they help distinguish the cases when the theorem is true and
when it is false. This result could also be incorporated into JGEX.

2.4 Fixing Bugs and Adding Improvements

Even for mature software tools, there is always room to improve minor problems. Among other minor
issues, the proof protocol shown for the GDD method, could be improved by reducing the number of
output lines and showing the hierarchy of the proof in addition. We show this concept below.

We take the example 1_TOP_TEN/08_9point: It constructs a figure to illustrate the nine-point circle
theorem (Figure 1). We assume a classroom situation to get a readable proof of the fact that the three
midpoints (E, F, G) of an arbitrary triangle ABC and a perpendicular foot point D (of vertex A, projected
on side BC) are concyclic.

Now, by issuing some improvements on the source code (further details6), we can communicate the
proof in a simpler way (Figure 2).

In fact, the change being performed to get this improvement is quite simple. Of course, one needs to
have a deeper knowledge in the Java language and eventually in the mathematical background to achieve
such changes in a feasible time. But, we can report that it is possible, and it does not require a high
amount of time. Thus, a follow-up and continuation of the stopped work seems more than possible

Here we highlight that a tree structure for the obtained GDD proofs cannot always be accomplished.
For example, Figure 3 shows the example 1_TOP_TEN/10_5cir which states the concyclicity of points
M1, M2, M3 and M4 in the given figure. Here we can learn that node 20 is used in nodes 13 and 15
too, so the whole subtree of node 20 is repeated in the subtrees of nodes 13 and 15. The presence of this
duplication may be inconvenient for some users. Therefore, an option to switch forcing the structure off,
could be a solution, or, even better, a different way of visualization might be applied. One possibility to
do that is the embedding of the GraphViz library,7 to provide a professional look of the outline of the
proof structure (Figure 4).

Structured proofs may be beneficial when explaining the proof steps directly in the classroom. Of
course, proofs that consist of a large number of steps, may be inappropriate for most students, but rather
for gifted learners, mostly as preparations or training exercises for mathematical contests. Even so,
providing a structured view of the proofs obtained by the GDD algorithm seems to be a substantial
improvement for many classroom situations.

6https://github.com/kovzol/Java-Geometry-Expert/commit/bc91b9ec916f97e38a100c08bec5bfda0c49de8d
7https://graphviz.org/

https://github.com/kovzol/Java-Geometry-Expert/commit/bc91b9ec916f97e38a100c08bec5bfda0c49de8d
https://graphviz.org/

Z. Kovács & A. Vujic 57

Figure 1: JGEX proves a part of the nine-point theorem by using the GDD method. Its user interface is
set to German.

3 Conclusion

JGEX is an eminent software tool that summarizes several decades of pioneer work. Unfortunately, its
main authors no longer maintain the code base. In our research we studied the question if it is possible
to continue their work in some sense, and forward their legacy to the new generations.

According to our case study, we think that such a follow-up is possible, however, it is not straight-
forward. Several problems, mostly technical ones, can occur. The free availability of the source code is,
however, a great help. With enough time and patience, the original version can be extended in a direction
that seems fruitful for the long term.

We need to mention the quality of the code base. Unfortunately, the number of comments is very
low. On the other hand, the variable names and the naming system for the Java methods are quite
straightforward. That is, with little work, it is possible to learn the internals of the Java source code.
Some parts of the code, however, require a major restructuring. Among others, the way of how the
translations are handled, needs to be improved significantly. Also, some Java coding standards like
capitalization of the source files, seem to be ignored. Nevertheless, by using modern refactoring tools,
these issues could be solved with minimal efforts.

58 Open Source Prover in the Attic

Figure 2: The output of the GDD method is visualized as a tree.

We remark that a general inspection process in IntelliJ IDEA 2023.1.2 found 269 errors, 9645 warn-
ings, 430 weak warnings, 181 grammar errors and 16449 typos in JGEX’s code base. Even if many of
the items of such reports can be of a matter of taste and coding style, a detailed study of these messages
seems unavoidable for the long term.

Some recent work [1,8,9] confirm that continuing the pioneer work being put in JGEX is an important
step towards the more general use of automated reasoning in the classroom. One possibility is to copy the
algorithms and modify them accordingly (this way was chosen by Baeta and Quaresma, using C++), but
another option (we chose this) is to use the original source code and do the modifications on it directly.

As a final conclusion, we think it is possible to save the heritage of the Chinese experts, and con-
tinue the hard work of popularizing JGEX and extending the user community of automated deduction in
geometry.

4 Acknowledgments

The first author was partially supported by a grant PID2020-113192GB-I00 (Mathematical Visualization:
Foundations, Algorithms and Applications) from the Spanish MICINN.

We acknowledge the kind support of translators Benedek Kovács, Alexander Thaller, Engelbert
Zeintl (German), Jorge Cassio (Portuguese), Amela Hota, Predrag Janičić and Jelena Marković (Ser-

Z. Kovács & A. Vujic 59

Figure 3: The GDD method finds a proof that is not a tree. The interface is set to German and the
connecting edges of the graph are not shown.

bian).
We sincerely appreciate Amela Hota for her support in crafting a presentation of a preliminary version

of this paper.

References

[1] N. Baeta & P. Quaresma (2023): Towards a Geometry Deductive Database Prover. Annals of Mathematics
and Artificial Intelligence, doi:10.1007/s10472-023-09839-0.

[2] S.C. Chou (1987): Mechanical Geometry Theorem Proving. Kluwer Academic Publishers, Norwell, MA,
USA, doi:10.1007/978-94-009-4037-6.

[3] S.C. Chou, X.S. Gao & J.Z. Zhang (2000): A Deductive Database Approach to Automated Geometry Theorem
Proving and Discovering. Journal of Automated Reasoning 25, pp. 219–246, doi:10.1023/A:1006171315513.

[4] M. Hohenwarter (2002): GeoGebra — Ein Softwaresystem für Dynamische Geometrie und Algebra der
Ebene. Ph.D. thesis, University of Salzburg, Austria.

https://doi.org/10.1007/s10472-023-09839-0
https://doi.org/10.1007/978-94-009-4037-6
https://doi.org/10.1023/A:1006171315513

60 Open Source Prover in the Attic

Figure 4: A better visualization of the GDD proof by using GraphViz.

[5] D. Kapur (1986): Using Gröbner Bases to Reason About Geometry Problems. Journal of Symbolic Compu-
tation 2(4), pp. 399–408, doi:10.1016/S0747-7171(86)80007-4.

[6] Z. Kovács & B. Parisse (2015): Giac and GeoGebra – Improved Gröbner Basis Computations. In: Computer
Algebra and Polynomials, Lecture Notes in Computer Science, pp. 126–138, doi:10.1007/978-3-319-15081-
9_7.

[7] Z. Magajna (2011): An Observation Tool as an Aid for Building Proofs. The Electronic Journal of Mathe-
matics and Technology 5(3), pp. 251–260.

[8] P. Quaresma & V. Santos (2022): Four Geometry Problems to Introduce Automated Deduction in Secondary
Schools. In: EPTCS 354, pp. 27–42, doi:10.4204/EPTCS.354.3.

[9] J. Teles, V. Santos & P. Quaresma (2023): A Rule Based Theorem Prover: An Introduction to Proofs in
Secondary Schools. In: EPTCS 375, pp. 24–37, doi:10.4204/EPTCS.375.3.

[10] A. Thaller & Z. Kovács (2021): Online Generation of Proofs Without Words. In: Automated Deduction in
Geometry (ADG 2021) EPTCS 352, pp. 103–105, doi:10.4204/EPTCS.352.10.

https://doi.org/10.1016/S0747-7171(86)80007-4
https://doi.org/10.1007/978-3-319-15081-9_7
https://doi.org/10.1007/978-3-319-15081-9_7
https://doi.org/10.4204/EPTCS.354.3
https://doi.org/10.4204/EPTCS.375.3
https://doi.org/10.4204/EPTCS.352.10

Z. Kovács & A. Vujic 61

[11] Z. Ye, S.C. Chou & X.S. Gao (2010): Visually Dynamic Presentation of Proofs in Plane Geometry, Part
1: Basic Features and the Manual Input Method. Journal of Automated Reasoning 45, pp. 213–241,
doi:10.1007/s10817-009-9162-5.

[12] Z. Ye, S.C. Chou & X.S. Gao (2010): Visually Dynamic Presentation of Proofs in Plane Geometry, Part
2: Automated Generation of Visually Dynamic Presentations with the Full-Angle Method and the Deductive
Database Method. Journal of Automated Reasoning 45, pp. 243–266, doi:10.1007/s10817-009-9163-4.

[13] Z. Ye, S.C. Chou & X.S. Gao (2011): An Introduction to Java Geometry Expert – (Extended Abstract).
In: Automated Deduction in Geometry – 7th International Workshop, ADG 2008, Shanghai, China,
September 22-24, 2008. Revised Papers. Lecture Notes in Computer Science 6301, Springer, pp. 189–195,
doi:10.1007/978-3-642-21046-4_10.

https://doi.org/10.1007/s10817-009-9162-5
https://doi.org/10.1007/s10817-009-9163-4
https://doi.org/10.1007/978-3-642-21046-4_10

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 62–72, doi:10.4204/EPTCS.398.10

© Milan Banković
This work is licensed under the
Creative Commons Attribution License.

Automation of Triangle Ruler-and-Compass Constructions
Using Constraint Solvers

Milan Banković
Faculty of Mathematics, University of Belgrade, Serbia

milan.bankovic@matf.bg.ac.rs

In this paper, we present an approach to automated solving of triangle ruler-and-compass construction
problems using finite-domain constraint solvers. The constraint model is described in the MiniZinc
modeling language, and is based on the automated planning. The main benefit of using general con-
straint solvers for such purpose, instead of developing dedicated tools, is that we can rely on the
efficient search that is already implemented within the solver, enabling us to focus on geometric as-
pects of the problem. We may also use the solver’s built-in optimization capabilities to search for the
shortest possible constructions. We evaluate our approach on 74 solvable problems from the Wer-
nick’s list, and compare it to the dedicated triangle construction solver ArgoTriCS. The results show
that our approach is comparable to dedicated tools, while it requires much less effort to implement.
Also, our model often finds shorter constructions, thanks to the optimization capabilities offered by
the constraint solvers.

1 Introduction

One of the oldest and the most studied classes of problems in geometry is the class of construction
problems: given some elements of a figure (such as a triangle), we want to find a sequence of steps to
construct the remaining elements of the figure using the available tools – typically a ruler1 and a compass.
The beauty of this class of problems is that each problem is different and requires a specific, often very
deep geometric knowledge to be solved. Moreover, many problems are even proven to be unsolvable.

Although geometricians love to deal with such problems by hand, for computer scientists (who also
love geometry) it is tempting to try to automate the solving of construction problems. From the algo-
rithmic point of view, the construction problems are search problems, and the search space is usually
very large. There are two main lines of approaches here: one is to develop a specific search algorithm
in some programming language with required geometric knowledge compiled into it, and the other is to
use existing artificial intelligence tools that are good in solving search problems in general. In the second
case, one should only specify the problem and its constraints using some input language and then leave
the search to the tool.

In this paper, we advocate the second approach. More specifically, we show how finite-domain
constraint solvers [6] may be used for such purpose. We develop a constraint model in the MiniZinc
modeling language [4], based on the automated planning [2]. There are two main benefits of using
constraint solvers for this purpose:

• the constraint solvers are very efficient search engines, and by using them we may focus on geo-
metric aspects of the problem and on modeling the geometric knowledge required for its solving,
and leave the search to the tool that is good at it.

1A more accurate term would be straightedge, since a ruler is usually equipped with measuring marks, so it can be used to
measure lengths, which is typically not allowed in geometric constructions. Nevertheless, in this paper we use the term ruler
and consider it as a synonym for a straightedge.

http://dx.doi.org/10.4204/EPTCS.398.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Milan Banković 63

• the constraint solvers are usually equipped with optimization capabilities, enabling us to search for
a construction that is the best in some sense (for instance, the shortest possible construction may
be required). This can be done with the minimal effort, compared to developing specific search
algorithms with optimization capabilities (such as branch-and-bound algorithms).

We compare our approach to the state-of-the-art tool for automated generation of triangle construc-
tions ArgoTriCS [3], developed in the Prolog programming language. A detailed evaluation is performed
on 74 solvable problems from the Wernick’s set of triangle construction problems [7].

The rest of this paper is organized as follows. In Section 2, we introduce needed concepts and
notation used in the rest of this paper. In Section 3 we describe our constraint model. Section 4 provides
a detailed evaluation of the approach. Finally, in Section 5, we give some conclusions and mention some
directions of the further work.

2 Background

2.1 Ruler-and-Compass Constructions

In this paper, we consider ruler-and-compass triangle constructions, where the goal is to construct all
vertices of a triangle, assuming that some elements of the triangle (points, lines or angles) are given in
advance. A construction consists of a sequence of steps, where in each step some new objects (points,
lines, angles or circles) are constructed based on the objects constructed in previous steps. Constructions
performed in each of the steps are usually elementary ones, such as constructing the line passing through
two given points, or the point that is the intersection of two given lines, or the circle centered at a
given point that contains another given point. However, in order to simplify the description of a triangle
construction, some higher-level construction steps are also considered, such as constructing the tangents
to a given circle from a given point, or the line perpendicular or parallel to a given line and passing
through a given point, etc. Such higher-level constructions are called compound constructions, since
they can be easily decomposed into sequences of elementary construction steps.

In this paper, we focus on the Wernick’s list of triangle construction problems [7], where the fol-
lowing set of 16 characteristic points of a triangle is considered: the triangle vertices (A, B, C), the
circumcenter O, the incenter I, the orthocenter H, the centroid G, the feet of the altitudes (Ha, Hb, Hc),
the feet of the internal angles bisectors (Ta, Tb, Tc) and the midpoints of the triangle sides (Ma, Mb, Mc).
Each problem from the list assumes that three different points from this set are given, and the goal is
to construct all the vertices of the triangle. There are 560 such point triplets, but only 139 among them
represent significantly different problems (that is, mutually non-symmetric). Among these, only 74 prob-
lems are proven to be solvable by a ruler and a compass (others either contain redundant points, or are
undetermined, i.e. may have infinitely many solutions, or are proven to be unsolvable). In our work, we
consider only these 74 solvable problems from the Wernick’s list.

In further text, we rely on the notation used by Marinković [3]. We also assume the geometric
knowledge presented in [3], as well as the set of elementary and compound construction steps used in
that work.

2.2 Constraint Solving

In this work, we reduce triangle construction problems to constraint solving [6]. A finite-domain con-
straint satisfaction problem (CSP) consists of a finite set of variables X = {x1, . . . ,xn}, each taking

64 Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

values from its given finite domain Di = D(xi), and a finite set of constraints C = {C1, . . . ,Cm}, which
are relations over subsets of these variables. A solution of a CSP is an assignment (x1 = d1, . . . ,xn = dn)
of values to variables (di ∈Di), such that all the constraints of that CSP are satisfied. A CSP is satisfiable
if it has at least one solution, otherwise is unsatisfiable. The optimization version of CSP, known as
a constrained optimization problem (COP) additionally assumes a function f over the variables of the
problem that should be minimized (or maximized), with respect to the constraints from C .

Tools that implement procedures for solving CSPs (and COPs) are called constraint solvers. They
are usually based on a combination of a backtrack-based search and constraint propagation [6]. Con-
straint solvers have been successfully used for solving many real-world problems in many fields, such as
scheduling, planning, timetabling, combinatorial design, and so on.

An important step in using constraint solvers is constraint modeling, that is, representing a real-
world problem in terms of variables and constraints. A constraint model is usually described using
an appropriate modeling language. One such language supported by many modern constraint solvers
is MiniZinc [4]. This language offers a very flexible high-level environment for modeling different
kinds of constraints, enabling a compact and elegant way to represent some very complex problems.
Examples of some high level language elements include tuples, multi-dimensional arrays, sets, aggregate
functions, finite quantification and so on. Since most of these high level constructs are not supported by
backend solvers, each MiniZinc model must be translated into an equivalent FlatZinc form, containing
only primitive language constructs and constraints supported by a chosen backend solver. MiniZinc
supports modeling of both CSPs and COPs.

In MiniZinc, we distinguish variables from parameters. MiniZinc variables correspond to the vari-
ables of a CSP, i.e. we declare their domains and expect from the solver to find their values satisfying
the constraints. On the other hand, parameters are just named constants, and their values must be known
when the model is translated to the FlatZinc form (i.e. before the solving starts). Parameters are the
language’s construct that allow us to specify a general model for a class of problems, and then to choose
a specific instance of the problem by fixing the values of the model’s parameters. Parameter values are
usually provided in separate files (called data files), so that we can easily combine the same model with
different data.

In our work, we use MiniZinc as a modeling language.

2.3 Automated Planning

In our approach, triangle construction problems are considered as problems of automated planning [2].
An automated planning problem consists of the following:

• a set S of possible states, which are usually encoded by a set of variables V and the values
assigned to them. One distinguished state S0 ∈S is the initial state.

• a set of operators O, where each operator o ∈ O consists of a precondition Co describing the con-
ditions (in terms of the variables from V) that must be satisfied in the current state for the operator
to be applied, and a set of effects Eo (represented as variable-value assignments) describing how
the current state is changed when o is applied to it. The state obtained by applying an operator o
to some state S is denoted by o(S).

• a goal G, describing the conditions (in terms of the variables from V) that must be satisfied in the
final state.

The objective of automated planning is to find a plan, that is, a finite sequence of operators o1, . . . ,on

from O that can be successively applied to the initial state S0 (i.e. for each i ∈ {1, . . . ,n}, we have

Milan Banković 65

Si = oi(Si−1), and the state Si−1 satisfies the precondition Coi) producing the final state Sn satisfying the
goal G. The number n of operators used in a plan is called the length of the plan.

The problem of checking whether a plan (of any finite length) exists is PSPACE-complete in general
[1]. For a fixed plan length n, the problem is NP-complete in general, and can be encoded as a CSP [2, 5].

The optimization variant of the planning problem (i.e. finding a plan of the minimal possible length)
can be solved by successively checking for existence of plans of lengths n = 1,2,3, . . ., that is, by solving
the corresponding sequence of CSPs until a satisfiable one is encountered.

3 Model Description

The triangle construction problems that we consider in this paper can be naturally described as problems
of automated planning:

• states correspond to the sets of constructed objects, and the initial state is the set consisting of the
given elements of the triangle (three points in case of Wernick’s problems).

• operators correspond to the construction steps; the precondition for each operator is that objects
used in the corresponding construction step are already constructed (i.e. belong to the current
state), and that corresponding non-degeneracy and determination conditions are satisfied (e.g. two
lines must be distinct and non-parallel in order to construct their intersection); the effect of each
operator is the addition of the objects constructed by the corresponding construction step to the
current state.

• the goal condition is that vertices A, B and C belong to the final state.

The corresponding planning problem for a fixed plan (construction) length is encoded as a CSP using
the MiniZinc language.2 In the rest of this section, we discuss different aspects of the encoding in more
detail.

3.1 Encoding of Geometric Knowledge

Encoding objects. We consider four types of objects: points, lines, circles and angles. Each of these
types is encoded as an enumeration type in MiniZinc (Point, Line, Circle and Angle, respectively),
and each object is represented by one enumerator of the corresponding type. The enumerated objects
are the only objects that can be constructed. This means that we have to anticipate in advance the set of
objects that might be needed during the construction.

Encoding relations. Different relations between the enumerated objects are encoded by the parameters
of the model, using MiniZinc’s arrays, sets and tuples. These relations are used to statically encode the
geometric knowledge used in the constructions. We define the following types of relations:

• incidence relations: we define two arrays of sets, inc_lines and inc_circles, indexed by
points. The set inc_lines[p] contains the lines incident with the point p, and the set inc_-
circles[p] contains the circles incident with the point p.

• relations between lines: we define two arrays of sets, perp_lines and paralell_lines, in-
dexed by lines. The set perp_lines[l] contains the lines perpendicular to the line l, and the set
parallel_lines[l] contains the lines parallel to the line l.

2The model is available at: https://github.com/milanbankovic/constructions/.

https://github.com/milanbankovic/constructions/

66 Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

• circle tangents, diameters and centers: the array of points circle_center indexed by circles
contains information about circle centers; the array circle_diameter of point pairs indexed by
circles contains information about circle diameters; the array tangent_lines of sets of lines is
indexed by circles, and the set tangent_lines[c] contains the lines that are tangents of the circle
c.

• vector ratios: we use the array known_ratio_triplets of point triplets to store the information
about the triplets of collinear points (X ,Y,Z) such that the ratio −→XY/−→Y Z is known. The exact value
of the ratio is not encoded, since it is not important for the search (it is only important to know that
we can construct one of the points if the remaining two are already constructed). Similarly, we use
the array known_ratio_quadruplets to encode quadruplets of points (X ,Y,Z,W) such that the
ratio −→XY/−→ZW is known.

• angles between the lines: we use the array angle_defs of Line×Line×Angle triplets, to encode
the information about the angles between the lines. A triplet (p,q,φ) means that the angle between
the lines p and q is determined by φ (e.g. is equal to φ/2 or φ +π/2). Such information can be
used in two directions: if we have constructed p and q, we can construct the angle φ ; also if we
have constructed p and φ , and the intersection point X of p and q, we can then construct the line q.

• perpendicular bisectors of segments: we use the array perp_bisectors of Point×Point×Line
triplets to encode the information about the perpendicular bisectors of line segments.

• harmonic conjugates: we use the array harmonic_quadruplets of point quadruplets, where a
quadruplet (X ,Y ;Z,W) encodes that the points X and Y are harmonic conjugates of each other
with respect to the pair (Z,W).

• loci of points: we use the array locus_defs of Point×Point×Angle×Circle tuples, where
a tuple (X ,Y,φ ,c) encodes that the locus of points such that the segment XY is seen at an angle
determined by φ is an arc of the circle c.

• homothetic images of lines: we use the array homothety_triplets of Point× Line× Line

triplets, where a triplet (X , p,q) encodes that the line q is the image of the line p by homothety
centered in the point X (again, homothety coefficient is not stored in the database).

3.2 Encoding of the Planning Problem

Encoding of states. Let n be the length of a plan that we are searching for, let S0 be the initial state, and
let Si be the state after the ith step. To encode these states, we introduce arrays of variable sets known_-
points, known_lines, known_circles and known_angles, where, for instance, known_points[i]
(i ∈ {0, . . . ,n}) denotes the set of points belonging to the state Si (similarly for other arrays). The initial
state S0 is fixed in advance by appropriate constraints (for instance known_points[0] = {A,G,O}).

Encoding the plan. We define the enumeration type ConsType, with one enumerator for each sup-
ported type of construction step. We also define the array construct of variables of type ConsType

(with indices in {1, . . . ,n}) encoding operators used in each step (i.e. the construction step types). For
each step, we also need additional information to fully determine the actual construction (for instance, if
we choose to construct the intersection of two lines, we must also choose the lines that we want to in-
tersect). For this reason, we also introduce additional two-dimensional arrays of variables: for instance,
points[i][j] denotes the jth point used in the ith construction step (similarly we have lines[i][j],
circles[i][j] and angles[i][j]).

Milan Banković 67

Encoding the state transitions. Finally, to glue the whole plan together, we must add the constraints
that connect the state variables in the successive states, depending on the chosen operator in the corre-
sponding step. This must be done for each i ∈ {1, . . . ,n}, and that is where MiniZinc’s finite universal
quantification comes in handy:

constraint forall(i in 1..n)

(

construct[i] = LineIntersect ->

% Precondition

(lines[i,1] in known_lines[i-1] /\

lines[i,2] in known_lines[i-1] /\

lines[i,1] != lines[i,2] /\

not (lines[i,1] in parallel_lines[lines[i,2]]) /\

lines[i,1] in inc_lines[points[i,1]] /\

lines[i,2] in inc_lines[points[i,1]] /\

not (points[i,1] in known_points[i-1]) /\

% Effects

known_points[i] = known_points[i-1] union { points[i,1] } /\

known_lines[i] = known_lines[i-1] /\

known_circles[i] = known_circles[i-1] /\

known_angles[i] = known_angles[i - 1]

)

);

That is, for all i ∈ {1, . . . ,n}, if the chosen operator is LineIntersect (constructing the intersection
of two lines), then the chosen two lines lines[i,1] and lines[i,2] must belong to the current state
Si−1 (i.e. they must have been already constructed), they must be distinct and not parallel. Also, the
chosen point points[i,1] must belong to both chosen lines (i.e. it must be their intersection), and it
must not belong to the current state (we do not want to construct a point that is already constructed).
If all these preconditions are met, then the effect is that the set known_points[i] is obtained by adding
the intersection point points[i,1] to the set known_points[i− 1] (the sets of lines, circles and angles
remain the same). Similar constraints are defined for all other types of construction steps.

Encoding the goal. The goal is encoded simply by adding the constraints that require that the vertices
A, B and C belong to the set known_points[n]:

{ A, B, C } subset known_points[n];

4 Evaluation

The model described in the previous section is evaluated on 74 solvable instances from Wernick’s set
[7]. The experiments were performed on a computer with 3.1GHz processor and 8Gb of RAM. We used
official MiniZinc distribution3 for experiments (version 2.7.2). We have experimented with different

3https://www.minizinc.org/software.html

https://www.minizinc.org/software.html

68 Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

backend constraint solvers provided within MiniZinc distribution, and by far the best results were ob-
tained by the chuffed4 solver. Therefore, in the rest of this section, we present only the results obtained
by chuffed.

We looked for plans of minimal lengths (i.e. constructions with the minimal possible numbers of
steps). We used three different setups:

• linear setup: for each of the problems, we successively look for plans of length n = 1,2,3, . . ., and
stop when we encounter a satisfiable CSP, or when some upper limit maxSteps is exceeded. This is
the usual way for finding plans of minimal lengths in automated planning [5]. In our experiments,
the upper limit for the plan length was set to 11, since our preliminary experiments had shown that
all the problems that our model could solve had been solved in at most 11 steps. Note that in this
setup the value of maxSteps does not affect the solving time for problems that our model can solve
(that is, using a greater value of maxSteps would not slow down the search).

• minimization setup: we reformulate our model such that the plan length n is not fixed. Instead, n
is a variable with a domain {1, . . . ,maxSteps} and we are trying to minimize the value of n (that
is, we are solving a constrained optimization problem). The problem with this approach is how
to determine the value of maxSteps parameter, since in this setup greater values of this parameter
make the model larger and the search becomes slower, even for problems that can be solved in
a small number of steps. In our experiments, we used the value maxSteps = 11, but this was
somewhat artificial choice, since we used the previous knowledge to choose the minimal possible
number of steps sufficient to solve all the problems that our model was able to solve.

• incremental setup: just like in the previous setup, we reformulate our model such that we are
trying to minimize n, but this time the domain for n is some interval {l, . . . ,u}, where l and u are
parameters. Now we successively solve constrained optimization problems for intervals {1, . . . ,k},
{k+ 1, . . . ,2k},{2k+ 1, . . . ,3k},. . . , until some of them turns out to be satisfiable, or until some
upper limit maxSteps is exceeded. Like in the first setup, the choice for the value of the parameter
maxSteps does not affect the solving time for the problems that are solvable by our model. On the
other hand, the number of COPs solved is smaller roughly by the factor k, compared to the first
setup. We have experimented with multiple choices for k, and the best results were obtained for
k = 3.

In Table 1, we provide the main results of our evaluation. We have evaluated all three setups described
above. We also compared our approach to the results obtained by the ArgoTriCS dedicated triangle
construction solver developed by Marinković [3]. ArgoTriCS is implemented in Prolog programming
language, but it uses a very similar knowledge base and an almost identical set of available construction
steps.

Setup # solved Avg. time Median time Avg. time on solved Avg. length
linear 63 97.9 22.0 58.5 6.3

minimization 63 43.8 10.8 29.7 6.3
incremental (k = 3) 63 66.1 12.0 39.9 6.3

ArgoTriCS 65 54.5 21.6 54.4 7.5

Table 1: Overall results for different setups, compared to ArgoTriCS. Times are given in seconds

4https://github.com/chuffed/chuffed

https://github.com/chuffed/chuffed

Milan Banković 69

Note that the choice of the setup does not affect how many problems from Wernick’s list will be
solved, since this depends only on the geometric knowledge that is compiled into our model.5 In total,
we managed to solve 63 of 74 problems (for the remaining 11 problems, the constraint solver reported
unsatisfiability). On the other hand, ArgoTriCS solved 2 problems more. This is because we missed to
incorporate some of the objects and lemmas known to ArgoTriCS to our model.

The best average solving time is obtained by the minimization setup. However, as we mentioned
earlier, the average solving time in this setup greatly depends on the choice for the maximal possible
value of n. The results shown in Table 1 are obtained for maxSteps = 11. We also experimented with
some greater values. For instance, for maxSteps = 20 the average solving time was over 100 seconds,
that is, more than twice greater (of course, the number of solved problems remained the same).

The linear setup has shown the worst performance. This is because in this setup we were solving
many unsatisfiable CSPs until we possibly reached some satisfiable CSP. Unsatisfiable CSPs tend to
consume more time, especially those that are “almost satisfiable”, that is, that are close to some phase
transition point. This phenomenon is well-known in automated planning [5].

Figure 1: Per-instance comparison of different setups. Times are given in seconds

The performance of the incremental setup was much better on average than in case of the linear
setup, and a little worse than in case of the minimization setup, but still comparable. A more detailed,
per-instance comparison is shown in Figure 1. We can see that the incremental setup was uniformly
better than linear setup, and was also better than the minimization setup on easier instances, but it was
outperformed by the minimization setup on harder problems. Overall, the incremental setup seems as a
good choice in a realistic context, when we do not know in advance the value of maxSteps parameter.

The overall performance of the ArgoTriCS solver was comparable to our approach, when the average
solving time is concerned. However, we may notice that its median solving time was almost twice

5This means that we can improve our results by carefully examining the knowledge needed for solving the unsolved prob-
lems, and incorporating that knowledge into our model. However, such enrichment of the model enlarges the search space and
makes the solving slower even for the problems that are already solvable by our model.

70 Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Figure 2: Survival plot for all three setups, compared to ArgoTriCS. Times are given in seconds

greater than in case of our minimization or incremental setup. Also, the average solving time on solved
instances was much better in our approach. This suggests that our approach performed better than (or
comparable to) ArgoTriCS on problems for which it managed to find a construction plan, especially on
easier instances. This is confirmed in Figure 2, which shows the survival plot for all three setups and
ArgoTriCS. The minimization setup was clearly the best, while the linear setup was the worst. When
compared to ArgoTriCS, the incremental setup was cumulatively better on more than 60 instances, which
were roughly all the instances that our model managed to solve. This means that if our model can find a
solution, it can do it fast, while its performance is much worse when it comes to the instances that are out
of its reach (that is, when the corresponding CSPs are unsatisfiable). On the other hand, the performance
of ArgoTriCS had much smaller variance – it performed almost equally solid on all instances (as it can
be seen from Table 1, the average solving time on solved instances for ArgoTriCS is almost the same as
the average solving time on all instances).

The final comparison between ArgoTriCS and our approach concerns the lengths of the obtained
constructions. Table 1 shows that the average plan length in our approach was 6.3 (again, this does not
depend on the chosen setup). On the other hand, the average number of steps in ArgoTriCS’s construc-
tions was 7.5. Notice that these numbers are comparable, since the sets of available construction steps
in both systems are almost identical. A more detailed, per-instance comparison is shown in Figure 3.
The plot clearly confirms that our approach is by far superior when finding the shortest constructions
is concerned. However, for the sake of fairness, we must stress that ArgoTriCS was not designed with
that optimization in mind, that is, it does not even search for the shortest solutions. We guess that such
a capability could be integrated in ArgoTriCS, but with much more effort, since it would have to be
manually implemented in Prolog (just like the search itself). On the other hand, in our approach, we rely
on the built-in capabilities of constraint solvers to solve optimization problems efficiently, imposing the
minimal possible effort on our side.

Milan Banković 71

Figure 3: A per-instance comparison of construction (plan) lengths between ArgoTriCS and our approach

5 Conclusions and Further Work

In this paper we presented and evaluated a method for automated triangle construction based on con-
straint solving. We compared our method to the state-of-the-art dedicated triangle construction solver
ArgoTriCS, developed in Prolog programming language. We advocate that our approach has two impor-
tant advantages. First, our approach is much simpler to implement, since we rely on powerful constraint
solvers which can efficiently do the search for us, and we may focus only on modeling. On the other side,
in the ArgoTriCS solver the search is implemented by hand, in more than 500 lines of code. Second, we
can easily employ the optimization capabilities of modern constraint solvers to search for the shortest
possible constructions, while implementing such functionality in ArgoTriCS would require much more
effort.

We evaluated our approach on 74 solvable problems from the Wernick’s list. The results showed that
our approach is comparable to ArgoTriCS when solving time is concerned. On the other hand, our model
often finds shorter constructions, due to built-in optimization capability which is missing in ArgoTriCS.

For further work, we plan to extend our model to support construction problems from other sets.
This should not be a hard task in the technical sense, since the model is developed such that it can be
easily extended (that is, we can easily add new objects, relations and construction step types). The real
challenge is to recognize and integrate the geometric knowledge needed for such constructions into the
model. Of course, this is a job for geometricians, and our goal was to provide them with (what we hope
is) a useful tool that can free them from the tedious task of programming, and let them focus on what
they do the best and love the most.

72 Automation of Triangle Ruler-and-Compass Constructions Using Constraint Solvers

Acknowledgements. This work was partially supported by the Serbian Ministry of Science grant
174021. We are very grateful to the anonymous reviewers whose insightful comments and remarks
helped us to make this paper much better.

References
[1] Tom Bylander (1994): The computational complexity of propositional STRIPS planning. Artificial Intelligence

69(1-2), pp. 165–204, doi:10.1016/0004-3702(94)90081-7.
[2] Malik Ghallab, Dana Nau & Paolo Traverso (2004): Automated Planning: theory and practice. Elsevier.
[3] Vesna Marinković (2017): ArgoTriCS–automated triangle construction solver. Journal of Experimental &

Theoretical Artificial Intelligence 29(2), pp. 247–271, doi:10.1080/0952813X.2015.1132271.
[4] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck & Guido Tack

(2007): MiniZinc: Towards a standard CP modelling language. In: Principles and Practice of Constraint
Programming–CP 2007: 13th International Conference, CP 2007, Providence, RI, USA, September 23-27,
2007. Proceedings 13, Springer, pp. 529–543, doi:10.1007/978-3-540-74970-7_38.

[5] Jussi Rintanen (2009): Planning and SAT. Handbook of Satisfiability 185, pp. 483–504.
[6] Francesca Rossi, Peter Van Beek & Toby Walsh (2006): Handbook of constraint programming. Elsevier.
[7] William Wernick (1982): Triangle constructions with three located points. Mathematics Magazine 55(4), pp.

227–230, doi:10.1080/0025570X.1985.11976988.

https://doi.org/10.1016/0004-3702(94)90081-7
https://doi.org/10.1080/0952813X.2015.1132271
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1080/0025570X.1985.11976988

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 73–84, doi:10.4204/EPTCS.398.11

© P. Boutry et al.
This work is licensed under the
Creative Commons Attribution License.

Towards an Independent Version of
Tarski’s System of Geometry

Pierre Boutry
Centre Inria d’Université Côte d’Azur, Sophia Antipolis, France

pierre.boutry@inria.fr

Stéphane Kastenbaum
No affiliation

stephane.kastenbaum@gmail.com

Clément Saintier
No affiliation

clement.saintier@gmail.com

In 1926–1927, Tarski designed a set of axioms for Euclidean geometry which reached its final form
in a manuscript by Schwabhäuser, Szmielew and Tarski in 1983. The differences amount to simpli-
fications obtained by Tarski and Gupta. Gupta presented an independent version of Tarski’s system
of geometry, thus establishing that his version could not be further simplified without modifying
the axioms. To obtain the independence of one of his axioms, namely Pasch’s axiom, he proved
the independence of one of its consequences: the previously eliminated symmetry of betweenness.
However, an independence model for the non-degenerate part of Pasch’s axiom was provided by
Szczerba for another version of Tarski’s system of geometry in which the symmetry of betweenness
holds. This independence proof cannot be directly used for Gupta’s version as the statements of the
parallel postulate differ.

In this paper, we present our progress towards obtaining an independent version of a variant of
Gupta’s system. Compared to Gupta’s version, we split Pasch’s axiom into this previously eliminated
axiom and its non-degenerate part and change the statement of the parallel postulate. We verified the
independence properties by mechanizing counter-models using the Coq proof-assistant.

1 Introduction

The independence1 of axioms for geometry has often been an important topic in the field of geometry.
For centuries, many mathematicians believed that Euclid’s fifth postulate was rather a theorem which
could be derived from the first four of Euclid’s postulates. History is rich with incorrect proofs of
Euclid’s fifth postulate. In 1763, Klügel provided, in his dissertation, a survey of about 30 attempts
to “prove Euclid’s parallel postulate” [13]. The question was finally settled in 1832 and 1840, when
Bolyai [5] and Lobachevsky [14] exhibited models of hyperbolic geometry, thus establishing that this
postulate was independent. Later, Hilbert dedicated the second section of his famous Grundlagen der
Geometrie [12] to independence properties. Then, when working out the final version [22] of the axioms
for Metamathematische Methoden in der Geometrie [19], commonly referred to as SST, independence
results proved very helpful.

So it is a surprise that, now that we have access to tools like proof assistants which we believe to
be perfectly suited for the task, the only independence to be mechanized was the one for Euclid’s fifth
postulate [18]. To the best of our knowledge, the most recent work on the topic is the formalization of
the Poincaré disk model in Isabelle/HOL [20].

1We recall that an axiom is said to be independent from a set of axiom if it is not derivable from the axioms in this set.

http://dx.doi.org/10.4204/EPTCS.398.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

74 Towards an Independent Version of Tarski’s System of Geometry

In this paper, we study independence properties linked to SST [19]. SST has the advantage of being
expressed in the first-order language rather than natural language which leaves room for interpretation
leading to possible problems [8].2 There are several ways to prove independence results [4]. Here we
focus on independence through counter-model, i.e. constructing a model where the axiom to be proven
independent will not hold while all the others will.

In 1965, Gupta presented an independent version of Tarski’s system of geometry [11]. To obtain
the independence of one of his axioms, namely Pasch’s axiom, he proved the independence of one
of its consequences: the previously eliminated symmetry of betweenness. However, an independence
model for the non-degenerate part of Pasch’s axiom was provided by Szczerba for another version of
Tarski’s system of geometry in which the symmetry of betweenness holds [21]. This independence
proof cannot be directly used for Gupta’s version as the statements of the parallel postulate differ. This
can be remedied by carefully choosing the statement of the parallel postulate amongst the ones known
to be equivalent [7]. We aim to verify that splitting Pasch’s axiom into its non-degenerate part and
the symmetry of betweenness in addition to changing the statement of the parallel postulate allows to
obtain a system that is still independent. So we go in the opposite direction of what Makarios did
by removing the need of the reflexivity properties for congruence thanks to a modification to the five-
segment property [17]. Indeed, our view is that an axiom should capture a limited and well-defined
property, instead of trying to minimize the needed number of axioms at any cost.

We remark that a small change in the statement of an axiom can change whether or not it holds in
a specific model. This makes a computer very well suited to the verification that an axiom holds in a
model. So we chose to mechanize the various counter-models needed for this task in the Coq proof-
assistant [23].

The rest of the paper is structured as follows. First, in Sec. 2, we present the system we will be
working on throughout the rest of this paper. Then, in Sec. 3, we show how to build a model of Tarski’s
axiom. Finally, before concluding on the achieved results, we present an example of independence proof
in Sec. 4.

2 A Variant of Tarski’s System of Geometry

In this section, we start by recalling the axioms of Tarski’s system of geometry. Then, we present the
modification Gupta made to it to obtain a fully independent system [11]. Finally, we describe how to
modify his system to combine his results and the ones from Szczerba [21].

2.1 Tarski’s System of Geometry

Tarski’s axiom system is based on a single primitive type depicting points and two predicates, namely
congruence and betweenness. AB≡CD states that the segments AB and CD have the same length.
A B C means that A, B and C are collinear and B is between A and C (and B may be equal to A or C).
For an explanation of the axioms and their history see [22]. Table 1 lists the axioms for planar Euclidean
geometry.

2A possible interpretation of Hilbert’s axiom could lead to a degenerate model for first two groups of Hilbert’s axioms.

P. Boutry et al. 75

A1 Symmetry AB≡BA
A2 Pseudo-Transitivity AB≡CD∧AB≡EF ⇒CD≡EF
A3 Cong Identity AB≡CC⇒ A = B
A4 Segment construction ∃E,A B E ∧BE≡CD
A5 Five-segment AB≡A′B′∧BC≡B′C′∧

AD≡A′D′∧BD≡B′D′∧
A B C∧A′ B′ C′∧A 6= B⇒CD≡C′D′

A6 Between Identity A B A⇒ A = B
A7 Inner Pasch A P C∧B Q C⇒∃X ,P X B∧Q X A
A8 Lower Dimension ∃ABC,¬A B C∧¬B C A∧¬C A B
A9 Upper Dimension AP≡AQ∧BP≡BQ∧CP≡CQ∧P 6= Q⇒

A B C∨B C A∨C A B
A10 Euclid A D T ∧B D C∧A 6= D⇒

∃XY,A B X ∧A C Y ∧X T Y
A11 Continuity (∃A,(∀XY,Ξ(X)∧ϒ(Y)⇒ A X Y))⇒

∃B,(∀XY,Ξ(X)∧ϒ(Y)⇒ X B Y)

Table 1: Tarski’s axiom system for planar Euclidean geometry.

2.2 Gupta’s Contribution

The problem of the independence of Tarski’s axiom system, as defined in Table 1, remains open. Let
us introduce the modifications Gupta made to it to obtain an independent system. He reintroduced the
inner transitivity of betweenness A153 in Table 2. Having added this axiom, the identity axiom for
betweenness A6 became a theorem and could then be removed from the system. Finally A2, A9 and A11
are replaced by A2’, A9’ and A11’. We omit the details of how to mechanize in Coq that this system,
consisting of A1, A2’, A3-A5, A7, A8, A9’, A10, A11’ and A15,4 and Tarski’s system are equivalent.
Gupta proves that this system is independent. To prove that A7 is independent in this system, he shows
that A14, a consequence of A7 in this system, does not hold. However, Szczerba [21] found that A7
does not hold when A14 and all the other axioms, with the exception of A10, in Gupta’s system do. So
this would suggest that A7 can be split into A14 and a variant of A7 while still having an independent
system.

2.3 An Independent System for Planar Geometry

The system that we want to prove independent is very close to the one Gupta studied in his thesis [11].
We split Pasch’s axiom A7 into its non-degenerate part A7’ and A14, change the version of the parallel
postulate A10 and add one axiom (for reasons explained later). A7’ excludes from A7 the degenerate
cases where the triangle ABC is flat or when P or Q are respectively not strictly between A and C or B
and C. We cannot use A10 as it does not hold in the counter-model found by Szczerba [21]. We chose
Proclus postulate,5 denoted as A10’ in Table 2, verified to be equivalent to it when assuming A0-A9,
using Coq [7], as it holds in all the counter-models provided by Gupta as well as in the one found by

3We number them as in [22].
4Actually the statement for A7 differs in [22] but the change is not important here.
5Col ABC and AB ‖CD denotes that A, B and C are collinear and that lines AB and CD are parallel according to the

definitions given in SST [19].

76 Towards an Independent Version of Tarski’s System of Geometry

A0 Point equality decidability X = Y ∨X 6= Y
A2’ Pseudo-Transitivity AB≡EF ∧CD≡EF ⇒ AB≡CD
A7’ Inner Pasch A P C∧B Q C∧

A 6= P∧P 6=C∧B 6= Q∧Q 6=C∧
¬(A B C∨B C A∨C A B)⇒
∃X ,P X B∧Q X A

A9’ Upper Dimension AP≡AQ∧BP≡BQ∧CP≡CQ∧
P 6= Q∧A 6= B∧A 6=C∧B 6=C⇒
A B C∨B C A∨C A B

A10’ Proclus AB‖CD∧Col ABP∧¬Col ABQ⇒
∃Y,Col C DY ∧Col PQY

A11’ Continuity (∃A,(∀XY,Ξ(X)∧ϒ(Y)⇒ A X Y))⇒
∃B,(∀XY,Ξ(X)∧ϒ(Y)⇒

X = B∨B = Y ∨X B Y)
A14 Between Symmetry A B C⇒C B A
A15 Between Inner Transitivity A B D∧B C D⇒ A B C

Table 2: Added axioms to Tarski’s system of geometry.

Szczerba, thanks to Theorem 1 in [21]. Finally, the formal development found in SST [19] is essentially
classical due to the many case distinctions found in the proofs of its lemmas. However, the decidability
of point equality is sufficient to obtain the arithmetization of geometry in an intuitionistic setting [6]. So
we add the decidability of point equality A0 so that we can work in an intuitionistic setting. The reader
not familiar with the difference between classical and intuitionistic logic may refer to [1]. This system,
consisting of A0, A1, A2’, A3-A5, A7’, A8, A9’, A10’, A11’, A14 and A15, and Tarski’s system are
equivalent. Again, we do not detail how to mechanize this fact in Coq.

3 A model of Tarski’s system of geometry

In this section, we present our proof that Cartesian planes over a Pythagorean ordered field form a model
of the variant of Tarski’s system of geometry that we have introduced in the previous section. First, we
present the structure that we used to define this model. Then we define the model that we used, that is,
the way we instantiated the signature of this system. Finally, we detail the proofs of some of the more
interesting axioms.

3.1 The Real Field Structure

The structure that was used to define this model was built by Cohen [9]. The real field structure results
of the addition of operators to a discrete6 field: two boolean comparison functions (for strict and non-
strict order) and a norm operator. Elements of this real field structure verify the axioms listed in Table 3.
Finally, the elements of a real field structure are all comparable to zero. We should remark that this field
is not necessarily Pythagorean. In fact, there is no defined structure in the Mathematical Components li-
brary [15] for Pythagorean fields. This can however be added much more easily than before thanks to the

6Discrete fields are fields with a decidable equality.

P. Boutry et al. 77

Subadditivity of the norm operator |x+ y| ≤ |x|+ |y|
Compatibility of the addition with the strict comparison 0 < x∧0 < y⇒ 0 < x+ y

Definiteness of the norm operator |x|= 0⇒ x = 0
Comparability of positive numbers 0≤ x∧0≤ y⇒ (x≤ y)||(y≤ x)

The norm operator is a morphism for the multiplication |x∗ y|= |x| ∗ |y|
Large comparison in terms of the norm (x≤ y) = (|y− x|== y− x)7

Strict comparison in terms of the large comparison (x < y) = (y ! = x)&&(x≤ y)

Table 3: Axioms of the real field structure.

recent modification of the Mathematical Components library to make use of the Hierarchy Builder [10].
However, the Pythagorean property is only required for the proof of the segment construction axiom A4.
So we chose to prove that this axiom holds in our model by admitting an extra axiom which was defined
in this library: the real closed field axiom. It states that intermediate value property holds for polynomial
with coefficients in the field. While it is much stronger than Pythagoras’ axiom, we only used it to be
able to define the square root of a number which is a sum of squares and would therefore have a square
root in a Pythagorean field. Finally, we did not yet prove that A11 holds in our model since it would
require a much more involved effort. Indeed, this is similar to verifying that Tarski’s system of geometry
admits a quantifier elimination procedure.

3.2 The Model

Let us now define our model. Being based on a single primitive type and two predicates, the signature
of Tarski’s system of geometry is rather simple. However, this system has the advantage of having a
n-dimensional variant. To obtain this variant, one only needs to change the dimension axioms. So far, we
have restricted ourselves to the planar version of this system. With a view to extend the GeoCoq library
to its n-dimensional variant, we wanted to define a model in which we could prove all but the dimension
axioms in an arbitrary dimension to be able to construct a model of the n-dimensional variant by only
proving the new dimension axioms. Hence we chose to define Tpoint as a vector of dimension n+1 with
coefficient in the real field structure F (we used the real field structure for all the development with the
exception of the proof of the segment construction axiom) for a fixed integer n, that is 'rV[R]_(n.+1).
We adopted Gupta’s definition [11] for the congruence cong, namely that AB≡CD if the squares of the
Euclidean norms of B−A and D−C are equal. Actually Gupta also proved that any model of the n-
dimensional variant of Tarski’s system of geometry is isomorphic to his model. He defined that A B C
holds if and only if there exists a k ∈ F such that 0 ≤ k ≤ 1 and B−A = k(C−A). In fact, if such a k
exists, it can be computed. By letting A = (ai)1≤i≤n+1, B = (bi)1≤i≤n+1 and C = (ci)1≤i≤n+1, if A 6= C
then there exists a i ∈ N such that 1 ≤ i ≤ n+ 1 and ai 6= ci and in this case we set k to bi−ai

ci−ai
and if

A = C we set k to zero. Therefore we defined a function ratio that computes the possible value for
k, thus allowing us to define the betweenness by the boolean equality test. This was actually important
as it permitted to directly manipulate the definition for betweenness by rewriting since we defined it as
a boolean test. Finally, as it was often necessary to distinguish whether or not A B C holds due to
a degeneracy, we split the definition bet of the betweenness into two predicates: the first one, betS,
capturing the general case of k being strictly between 0 and 1 and the second one, betE, capturing the
three possible degenerate cases, namely either A = B, B =C or A = B and B =C.

7== denotes the boolean equality test for the elements of the field.

78 Towards an Independent Version of Tarski’s System of Geometry

Formally, we consider the following model:

Variable R : realFieldType.

Variable n : nat.

Implicit Types (a b c d : 'rV[R]_(n.+1)).

Definition cong a b c d := (b - a) *m (b - a)^T == (d - c) *m (d - c)^T.

Definition betE a b c := [|| [&& a == b & b == c], a == b | b == c].

Definition ratio v1 v2 :=

if [pick k : 'I_(n.+1) | v2 0 k != 0] is Some k

then v1 0 k / v2 0 k else 0.

Definition betR a b c := ratio (b - a) (c - a).

Definition betS a b c (r := betR a b c) :=

[&& b - a == r *: (c - a), 0 < r & r < 1].

Definition bet a b c := betE a b c || betS a b c.

3.3 Proof that the Axioms hold in the Model

Now that we have defined the model, we focus on the proof that the axioms of the system from Sec. 2.3
hold in this model. However, we omit the details of the proofs for axioms A1, A2’, A3 and A14 since
they are rather straightforward. For the same reason, we do not cover the decidability of point equality
A0.

Let us start by focusing on axioms A7’ and A15 as the proofs that they hold in our model are quite
similar. In the case of axiom A15 we know that A B D and B C D so let k1 ∈F be such that 0< k1 < 1
and B−A = k1(D−A) (the degenerate case of this axiom is trivial so we only consider the general case)
and k2 ∈ F be such that 0 < k2 < 1 and C−B = k2(D−B). In order to prove that A B C we need to
find a k ∈ F such that 0 < k < 1 and B−A = k(C−A). By calculation we find that k = k1

k1+k2−k1k2
and

we can verify that 0 < k < 1. In a similar way, for axiom A7’, we know that A P C and B Q C so
let k1 ∈ F be such that 0 < k1 < 1 and P−A = k1(C−A) (the hypotheses imply that 0 < k1 < 1 because
A 6= P and P 6= C) and k2 ∈ F be such that 0 < k2 < 1 and Q−B = k2(C−B). In order to prove that
there exists a point X such that P X B and Q X A we need to find a k3 ∈ F and a k4 ∈ F such that
0 < k3 < 1, 0 < k4 < 1 and k3(B−P)+P = k4(A−Q)+Q. By calculation we find that k3 =

k1(1−k2)
k1+k2−k1k2

and k4 =
k2(1−k1)

k1+k2−k1k2
and we can verify that 0 < k3 < 1 and 0 < k4 < 1. In both of these proof, the ratios

are almost identical to the point that it suffices to prove the following lemma:

Lemma ratio_bet a b c k1 k2 k3 :

0 < k1 -> 0 < k2 -> k1 < 1 -> 0 < k3 -> k3 < k1+k2-k1*k2 ->

b - a == ((k1+k2-k1*k2)/k3)^-1 *: (c - a) -> bet a b c.

It allows to prove quite easily both of these axioms. For axiom A4, we proceeded in a analogous
way: it suffices to set the point E that can be constructed using this axiom to ‖D−C‖

‖B−A‖ (B−A)+A and to
verify this point satisfies the desired properties by calculation.

P. Boutry et al. 79

We now turn to axiom A5. We followed Makarios’ approach for the proof that this axiom holds in
our model [16]. In his proof he used the cosine rule: in a triangle whose vertices are the vectors A, B and
C we have

‖C−B‖2 = ‖C−A‖2 +‖B−A‖2−2(B−A) · (C−A).

As noted by Makarios, using the cosine rule allows to avoid defining angles and properties about them.
Applying the cosine rule for the triangles BCD and B′C′D′ allows to prove that ‖D−C‖2 = ‖D′−C′‖2

by showing that
(C−B) · (D−B) = (C′−B′) · (D′−B′)

which can be justified, by applying the cosine rule again, this time in the triangles ABD and A′B′D′, if

‖D−A‖−‖D−B‖−‖A−B‖= ‖D′−A′‖−‖D′−B′‖−‖A′−B′‖

which we know from the hypotheses and if the ratios corresponding to the betweenness A B C and
A′ B′ C′ are equal which can be obtained by calculation.

Next, let us consider axiom A10.8 From the hypotheses we have two ratios k1 ∈ F and k2 ∈ F such
that 0 < k1 < 1, 0 < k2 < 1, D−A = k1(T −A) and D−B = k2(C−B). Using these ratios, it suffices to
define X such that B−A = k1(X −A) and Y such that C−A = k1(Y −A). So we know by construction
that A B X and A C Y and we easily get that T −X = k2(Y −X) by calculation, thus proving that
X T Y . Since A10 and A10’ are equivalent when A0, A1, A2’, A3-A5, A7’, A8, A9’, A11’, A14 and
A15 hold, this allows to prove that A10’ holds in our model.

Finally the remaining two axioms are treated in a slightly different setting since they are the dimen-
sion axioms. Formally we fix the value of n to 1. In order to simplify the many rewriting steps needed
for these proofs we started by establishing the following two lemmas:

Definition sqr_L2_norm_2D a b :=

(b 0 0 - a 0 0) ^+ 2 + (b 0 1 - a 0 1) ^+ 2.

Lemma congP a b c d :

reflect (sqr_L2_norm_2D a b = sqr_L2_norm_2D c d) (cong a b c d).

Lemma betSP' a b c (r := betR a b c) :

reflect ([/\ b 0 0 - a 0 0 = r * (c 0 0 - a 0 0),

b 0 1 - a 0 1 = r * (c 0 1 - a 0 1), 0 < r & r < 1])

(betS a b c).

The reader familiar with SSREFLECT will have recognized the reflect predicate, described in [9]
for example. In practice, these lemmas allowed to spare many steps that would have been repeated in
almost every proof concerning the dimension axioms. It was much more straightforward to prove that
axiom A8 holds in our model than for axiom A9’. In fact, it is enough to find three non-collinear points.
We simply took the points (0,0), (0,1) and (1,0):

Definition row2 {R : ringType} (a b : R) : 'rV[R]_2 :=

\row_p [eta \0 with 0 |-> a, 1 |-> b] p.

8Similarly to A7, when we were proving Euclid’s axiom, we realized that the same kind of distinctions was also needed.
The degenerate cases are implied by the other betweenness axioms so it suffices to show that A10 holds when the angle ∠BAC
is non-flat and when D is different from T .

80 Towards an Independent Version of Tarski’s System of Geometry

Definition a : 'rV[R]_(2) := row2 0 0.

Definition b : 'rV[R]_(2) := row2 0 1.

Definition c : 'rV[R]_(2) := row2 1 0.

It was then an easy matter to verify that axiom A8 holds in our model. For axiom A9, the idea of the
proof that we formalized was to first show that, by letting M be the midpoint of P and Q, the equation
(xP−xM)(xM−xX)+(yP−yM)(yM−yX) = 0, capturing the property that the points P, M, and X form a
right angle with the right angle at vertex M, was verified when X would be equal to A, B or C:

Lemma cong_perp (a p q : 'rV[R]_(2)) (m := (1 / (1 + 1)) *: (p + q)) :

cong a p a q ->

(p 0 0 - m 0 0) * (m 0 0 - a 0 0) +

(p 0 1 - m 0 1) * (m 0 1 - a 0 1) = 0.

Next, we demonstrated that for three points A, B and C verifying (xA−xB)(yB−yC)− (yA−yB)(xB−
xC) = 0 are collinear in the sense that A B C∨B C A∨C A B:

Lemma col_2D a b c :

(a 0 0 - b 0 0) * (b 0 1 - c 0 1) ==

(a 0 1 - b 0 1) * (b 0 0 - c 0 0) ->

(bet a b c \/ bet b c a \/ bet c a b).

Using the equations implied by cong_perp we could derive that

(xP− xM)(yM− yP)((xA− xB)(yB− yC)− (yA− yB)(xB− xC)) = 0.

We were then left with three cases: either the abscissas of P and M are equal in which case the ordinate
of A, B and C were equal thus sufficing to complete the proof, or the ordinates of P and M are equal in
which case the abscissas of A, B and C were equal thus completing the proof, or (xA− xB)(yB− yC)−
(yA− yB)(xB− xC) = 0 corresponding to the lemma that we had proved and again allowing to conclude.

Putting everything together, we could prove that Cartesian planes over a Pythagorean ordered field
form a model of the variant of Tarski’s system of geometry, thus proving the satisfiability of the theory.9

Global Instance Rcf_to_T2D : Tarski_2D Rcf_to_T_PED.

Global Instance Rcf_to_T_euclidean : Tarski_euclidean Rcf_to_T_PED.

4 An Example of Independence Proof

To illustrate how we obtain formal proofs of independence we present an example. We start by defining
the counter-model we will use to prove the independence of axiom A10’. We then provide the sketch of
the formal proof.

9Tarski_euclidean is the type class that captures the theory consisting of axioms A0-A10.

P. Boutry et al. 81

4.1 Klein’s Model

To prove Euclid’s Parallel Postulate independent from the other axiom we work in Klein’s model as
defined in SST [19]:

Variable R : realFieldType.

Variable n : nat.

Definition Vector := 'rV[R]_(n.+1).

Definition Point : Type := {p : Vector | (p *m p^T) 0 0 < 1}.

Notation "#" := proj1_sig.

Implicit Types (a b c d : Point).

Implicit Types (v w x y : Vector).

Definition bet' a b c := bet (#a) (#b) (#c).

Definition omd_v v w := (1 - (v *m (w)^T) 0 0).

Definition cong_v v w x y :=

(omd_v v w)^+2/(omd_v v v * omd_v w w) ==

(omd_v x y)^+2/(omd_v x x * omd_v y y).

Definition cong' a b c d := cong_v (#a) (#b) (#c) (#d).

Here, Point is the type of Vector, vectors of dimension n+ 1 with coefficient in the real field
structure, lying inside the unit disk and # the projection allowing to recover the coordinate part of this
dependent type. In Klein’s model, b is said to be between a and c iff their coordinate parts can be said to
be bet in the model from Sec. 3 and line-segments ab and cd are said to be congruent iff

(1−#a ·#b)2

(1−#a ·#a)(1−#b ·#b)
=

(1−#c ·#d)2

(1−#c ·#c)(1−#d ·#d)

where · denotes the dot product of two vectors.

4.2 Independence of Euclid’s Parallel Postulate via Klein’s Model

Here we only detail the proof that A10’ does not hold in this model. Mechanizing the following proof
sketch allows to derive.

Lemma euclid : ~ euclidP (@Point R 1) (@bet' R 1).

To make sure that we did not introduce any change in the axioms between the various models we
relied on predicates such as euclidP, which depend on possibly the type for points and the predicate(s)
for betweenness and/or congruence.

Theorem 1. Axiom A10’ does not hold in Klein’s model.

Proof. Since Klein’s model forms a model of neutral geometry,10 it suffices to prove that any version
of the parallel postulate, proven equivalent to A10’ in Coq when assuming A0-A9, does not hold. We

10Neutral geometry is defined by the set of axioms of Euclidean geometry from which the parallel postulate has been re-
moved.

82 Towards an Independent Version of Tarski’s System of Geometry

choose to work with A10. Picking a, b, c, d and t to be of coordinates (0,0), (0, 1
2), (

1
2 ,0), (

1
4 ,

1
4) and

(1
2 ,

1
2), some computations allow to verify that #a #d #t, #b #d #c b 6= d, d 6= c and ¬Col #a#b#c.

So, to prove that this version does not hold, it is enough to show that for any x and y such that x lies inside
the unit disk, #a #b #x, #a #c #y and #x #t #y, it holds that y is not a Point, meaning that it lies
outside the unit disk. Let us first eliminate the case where b = x as it would lead to a contradiction. Here,
we use the algebraic characterization of collinearity11 to obtain that, if b = x, the ordinate of x would
need to be equal to both 0 and 1

2 which is impossible. Now let us pose b′ to be the vector x+a−b. It is
an easy matter to check that #a #b′ #x so let us pose k1 to be the ratio associated to this betweenness.
We can verify that k1 ≤ 1

2 since x is supposed to belong to the unit disk. We can then take d′ at ratio k1
from a to t. Applying what was proven to show that A10’ holds in Cartesian planes over a Pythagorean
ordered field, we can show that y′ at ratio 1

k1
from a to c is such that #a #c #y′ and #x #t #y′. If we

can prove that y = y′ we will be done as y′ lies outside of the unit disk because k1 ≤ 1
2 so 2≤ 1

k1
. Finally,

to prove that y = y′ we can reason by uniqueness of the intersection of lines which is valid in neutral
geometry.

5 Conclusion

We defined ten out of the eleven counter-models present in Gupta’s thesis [11], thus obtaining the Coq
formal proof of the independence of ten out of the thirteen axioms of the system presented in Sec. 2.3.
This seems to indicate that Pasch’s axiom could indeed be split into two meaningfully different parts as
done in this paper while still having an independent system. However, we will only be sure of this once
we will have formalized the missing three counter-models. These can be found in Gupta’s thesis [11],
Szczerba’s paper [21], and Beeson’s section The recursive model in [2].

Five of the formalized models are finite and the other five are modifications of the model presented
in Sec. 3. We highlight that, for the latter five, A11’ is not verified for the same reason as for the model
from Sec. 3.. All these models are available in the GeoCoq library12 and represent about 4k lines of
formal proof.

We are currently extending this work by proving the independence of a more constructive version13

of the axioms which would also allow to capture n-dimensional geometry. For this extension we could
not rely on A9(n) from [22]. Indeed, we found that it can only be assumed as an upper n-dimensional
axiom when n = 2 or 3. A9(n) is stated as follows.

∧
1≤i≤ j≤n

Pi 6= Pj ∧
n∧

i=2

AP1≡APi∧
n∧

i=2

BP1≡BPi∧
n∧

i=2

CP1≡CPi⇒ Col ABC

By taking Pi = (cos 2iπ
n ,sin 2iπ

n ,0, . . . ,0) for 1 ≤ i ≤ n then (0,0,x3,x4, . . . ,xn) satisfies the premises for
any x3,x4, . . . ,xn in the standard n-dimensional model while triplets of points of this form are not nec-
essarily collinear. The various modifications did not allow to reuse some of the counter-models already
mechanized, so new ones are necessary.

We are convinced that using a proof-assistant is crucial when proving the independence of a system,
where small changes in a statement are critical. Actually, there was a typo in Gupta’s counter-model for

11Here we use the converse of col_2D.
12http://geocoq.github.io/GeoCoq/
13We replace point equality decidability by point equality “stability”, namely ∀XY,¬¬X = Y ⇒ X = Y , which allows to

prove equality of points by contradiction but does not allow case distinctions. We do not go as far as in [3] where not even
“stability” is assumed. We also apply the same modifications made to obtain what is called “continuous Tarski geometry” in [1].

http://geocoq.github.io/GeoCoq/

P. Boutry et al. 83

A2 and we just exhibited a problem with axiom A9(n) from [22]. The GeoCoq library also proved very
useful as it allowed us to combine the algebraic and geometric14 reasoning.

Acknowledgments: We would like to thank Marius Hinge for his contribution to the early stage of
this work.

References
[1] Beeson, M.: A Constructive Version of Tarski’s Geometry. Annals of Pure and Applied Logic 166(11),

1199–1273 (2015). doi:10.1016/j.apal.2015.07.006

[2] Beeson, M.: Constructive Geometry and the Parallel Postulate. Bulletin of Symbolic Logic 22(1), 1–104
(2016). doi:10.1017/bsl.2015.41

[3] Beeson, M.: Brouwer and Euclid. Indagationes Mathematicae 29(1), 483–533 (2018).
doi:10.1016/j.indag.2017.06.002

[4] Beeson, M., Boutry, P., Narboux, J.: Herbrand’s theorem and non-Euclidean geometry. The Bulletin of
Symbolic Logic 21(2), 111–122 (2015). doi:10.1017/bsl.2015.6

[5] Bolyai, J.: Appendix, Scientiam Spatii absolute veram exhibens: a veritate aut falsitate Axiomatis XI. Eu-
clidei (a priori haud unquam decidenda) independentem; adjecta ad casum falsitatis, quadratura circuli geo-
metrica. Auctore Johanne Bolyai de eadem, Geometrarum in Exercitu Caesareo Regio Austriaco Castrensium
Capitaneo. Coll. Ref. (1832)

[6] Boutry, P., Braun, G., Narboux, J.: Formalization of the Arithmetization of Euclidean Plane Geometry and
Applications. Journal of Symbolic Computation (2018). doi:10.1016/j.jsc.2018.04.007

[7] Boutry, P., Gries, C., Narboux, J., Schreck, P.: Parallel Postulates and Continuity Axioms: A Mechanized
Study in Intuitionistic Logic Using Coq. Journal of Automated Reasoning (2017), doi:10.1007/s10817-017-
9422-8

[8] Braun, G., Boutry, P., Narboux, J.: From Hilbert to Tarski. In: Narboux, J., Schreck, P., Streinu, I. (eds.) Pro-
ceedings of the Eleventh International Workshop on Automated Deduction in Geometry. pp. 78–96 (2016),
https://hal.inria.fr/hal-01332044

[9] Cohen, C.: Formalized algebraic numbers: construction and first-order theory. Theses, Ecole Polytechnique
X (Nov 2012), https://pastel.archives-ouvertes.fr/pastel-00780446

[10] Cohen, C., Sakaguchi, K., Tassi, E.: Hierarchy Builder: Algebraic hierarchies Made Easy in Coq with Elpi
(System Description). In: 5th International Conference on Formal Structures for Computation and Deduction
(FSCD 2020). vol. 167, pp. 34:1–34:21. Paris, France (Jun 2020). doi:10.4230/LIPIcs.FSCD.2020.34

[11] Gupta, H.N.: Contributions to the Axiomatic Foundations of Geometry. Ph.D. thesis, University of Califor-
nia, Berkeley (1965)

[12] Hilbert, D.: Les fondements de la géométrie. Dunod, Jacques Gabay edn. (1971), edition critique avec intro-
duction et compléments préparée par Paul Rossier

[13] Klugel, G.S.: Conatuum praecipuorum theoriam parallelarum demonstrandi recensio. Ph.D. thesis, Schultz,
Göttingen (1763), German translation available: http://www2.math.uni-wuppertal.de/~volkert/

versuch.html

[14] Lobatschewsky, N.: Geometrische Untersuchungen zur Theorie der Parallellinien, pp. 159–223. Springer
Vienna, Vienna (1985). doi:10.1007/978-3-7091-9511-6_4

[15] Mahboubi, A., Tassi, E.: Mathematical Components. Zenodo (Sep 2022), doi:10.5281/zenodo.7118596

[16] Makarios, T.J.M.: A Mechanical Verification of the Independence of Tarski’s Euclidean Axiom. Master’s
thesis, Victoria University of Wellington (2012)

14Such as the use of the uniqueness of the intersection in our proof of Theorem 1.

http://dx.doi.org/10.1016/j.apal.2015.07.006
http://dx.doi.org/10.1017/bsl.2015.41
http://dx.doi.org/10.1016/j.indag.2017.06.002
http://dx.doi.org/10.1017/bsl.2015.6
http://dx.doi.org/10.1016/j.jsc.2018.04.007
http://dx.doi.org/10.1007/s10817-017-9422-8
http://dx.doi.org/10.1007/s10817-017-9422-8
https://hal.inria.fr/hal-01332044
https://pastel.archives-ouvertes.fr/pastel-00780446
http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.34
http://www2.math.uni-wuppertal.de/~volkert/versuch.html
http://www2.math.uni-wuppertal.de/~volkert/versuch.html
http://dx.doi.org/10.1007/978-3-7091-9511-6_4
http://dx.doi.org/10.5281/zenodo.7118596

84 Towards an Independent Version of Tarski’s System of Geometry

[17] Makarios, T.J.M.: A further simplification of Tarski’s axioms of geometry. arXiv: Logic (2013).
doi:10.1285/i15900932v33n2p123.

[18] Narboux, J., Janicic, P., Fleuriot, J.: Computer-assisted Theorem Proving in Synthetic Geometry. In:
Sitharam, M., John, A.S., Sidman, J. (eds.) Handbook of Geometric Constraint Systems Principles. Dis-
crete Mathematics and Its Applications, Chapman and Hall/CRC (2018). doi:10.1201/9781315121116-2,
https://inria.hal.science/hal-01779452

[19] Schwabhäuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der Geometrie. Springer-
Verlag (1983)

[20] Simić, D., Marić, F., Boutry, P.: Formalization of the Poincaré Disc Model of Hyperbolic Geometry. Journal
of Automated Reasoning 65(1), 31–73 (Apr 2020). doi:10.1007/s10817-020-09551-2

[21] Szczerba, L.W.: Independence of Pasch’s axiom. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18,
491–498 (1970)

[22] Tarski, A., Givant, S.: Tarski’s System of Geometry. The Bulletin of Symbolic Logic 5(2), 175–214 (1999).
doi:10.2307/421089

[23] Team, T.C.D.: The Coq Proof Assistant, version 8.15 (2022), doi:10.5281/zenodo.5846982

http://dx.doi.org/10.1285/i15900932v33n2p123
http://dx.doi.org/10.1201/9781315121116-2
https://inria.hal.science/hal-01779452
http://dx.doi.org/10.1007/s10817-020-09551-2
http://dx.doi.org/10.2307/421089
http://dx.doi.org/10.5281/zenodo.5846982

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 85–100, doi:10.4204/EPTCS.398.12

© P. Quaresma, P. Graziani & S.M. Nicoletti
This work is licensed under the
Creative Commons Attribution License.

Considerations on Approaches and Metrics in Automated
Theorem Generation/Finding in Geometry

Pedro Quaresma*

CISUC / Department of Mathematics,
University of Coimbra, Portugal

pedro@mat.uc.pt

Pierluigi Graziani†

Department of Pure and Applied Sciences, University of Urbino, Italy

pierluigi.graziani@uniurb.it

Stefano M. Nicoletti‡

Formal Methods and Tools, University of Twente, Enschede, the Netherlands

s.m.nicoletti@utwente.nl

The pursue of what are properties that can be identified to permit an automated reasoning program
to generate and find new and interesting theorems is an interesting research goal (pun intended).
The automatic discovery of new theorems is a goal in itself, and it has been addressed in specific
areas, with different methods. The separation of the “weeds”, uninteresting, trivial facts, from the
“wheat”, new and interesting facts, is much harder, but is also being addressed by different authors
using different approaches. In this paper we will focus on geometry. We present and discuss different
approaches for the automatic discovery of geometric theorems (and properties), and different metrics
to find the interesting theorems among all those that were generated. After this description we will
introduce the first result of this article: an undecidability result proving that having an algorithmic
procedure that decides for every possible Turing Machine that produces theorems, whether it is able
to produce also interesting theorems, is an undecidable problem. Consequently, we will argue that
judging whether a theorem prover is able to produce interesting theorems remains a non deterministic
task, at best a task to be addressed by program based in an algorithm guided by heuristics criteria.
Therefore, as a human, to satisfy this task two things are necessary: an expert survey that sheds light
on what a theorem prover/finder of interesting geometric theorems is, and—to enable this analysis—
other surveys that clarify metrics and approaches related to the interestingness of geometric theorems.
In the conclusion of this article we will introduce the structure of two of these surveys —the second
result of this article— and we will discuss some future work.

1 Introduction

In Automated Reasoning: 33 Basic Research Problems, Larry Wos, wrote about the problems that com-
puter programs that reason face. Problem 31 is still open and object of active research [56, 57]:

Wos’ Problem 31—What properties can be identified to permit an automated reasoning pro-
gram to find new and interesting theorems, as opposed to proving conjectured theorems?

Two problems in a single sentence: new and interesting theorems. The automatic discovery of new
theorems is a goal in itself, it has been addressed in specific areas, with different methods. The separation

*Partially supported by FCT – Foundation for Science and Technology, I.P., within the scope of the project CISUC –
UID/CEC/00326/2020 and by European Social Fund, through the Regional Operational Program Centro 2020.

†Partially supported by Italian Ministry of Education, University and Research through the PRIN 2017 project “The Manifest
Image and the Scientific Image” prot. 2017ZNWW7F 004.

‡Funded by ERC Consolidator Grant 864075 (CAESAR).

http://dx.doi.org/10.4204/EPTCS.398.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

86 Considerations on Approaches and Metrics in ATG/F in Geometry

of the “weeds”, uninteresting, trivial facts, from the “wheat”, new and interesting facts, is much harder,
but is being addressed also, by different authors using different approaches.

Paraphrasing, again, Wos, “since a reasoning program can be instructed to draw some (possible large)
set of conclusions” what should be the “criteria that permit the program to select from those the ones (if
any) that correspond to interesting results.”

Different fields have come across the finding of new and interesting theorems’ questions.
Regarding the novelty side: there are different views of approaching new mathematical results. One

of those approaches is the systematic exploration of a given broad area of mathematical knowledge, gen-
erating, by different means, new theorems and expecting to find interesting ones among those generated
(that will be analysed in section 4) [14, 15, 19, 25, 30, 35, 36, 46]. Another approach is given by the
pursue of mathematical discovery in specific areas, e.g. Computing Locus Equations [1, 9], Automated
Discovery of Angle Theorems [54], Automated Discovery of Geometric Theorems Based on Vector Equa-
tions [42], Automated Generation of Geometric Theorems from Images of Diagrams [13], Automatic
Discovery of Theorems in Elementary Geometry [48]. These approaches do not aim to address the prob-
lem of automated theorem finding in itself but, for example, to find complementary hypotheses for a
given geometric statements to become true [48] i.e. automatic discovery for specific areas.1

Regarding the interestingness side we are aware that relevant literature can be found in different areas.
For example in automated theorem proving [19, 25, 30, 46] and in sociological studies on the concept of
proving [20, 39, 40], in cognitive and educational science studies on the concept of proving [2, 11, 21,
33, 45, 52] and in semiotics and epistemology of mathematics [3, 4, 5, 8, 12].

Despite the cited studies, the Wos’ problem is still on the table. On the contrary, a new result of
undecidability can be added to the problem, i.e. having an algorithmic procedure that decides for every
possible Turing Machine that produces theorems, whether it is able to produce also interesting theorems,
is an undecidable problem. Consequently, we can argue that judging whether a theorem prover is able to
produce interesting theorems remains a non deterministic task, at best a task to be addressed by program
based in an algorithm guided by heuristics criteria. Therefore, as a human, to satisfy this task we need
expert survey that sheds light on what a theorem prover/finder of interesting geometric theorems is, and—
to enable this analysis—other surveys that clarify metrics and approaches related to the interestingness
of geometric theorems.

Structure of the paper. In section 2 the issue of Automated Theorem Generation (ATG) is dis-
cussed. In section 3 we discuss the deductive approach in ATG. In section 4 the issue of Automated
Theorem Finding (ATF) is analysed. In section 5 we present an undecidability result concerning the
problem of finding interesting theorems and its conceptual consequences. In section 6 we will introduce
the structure of two surveys to empirically explore the interestingness of theorems in geometry and its
potential application in theorem proving/finding (a third survey). Finally, we will discuss some future
work.

2 Automated Theorem Generation

Automated theorem generation, independently of being interesting, or not, can be addressed in several
ways [46].

1We left aside the notion of discovery in education, given that, in that area, the goal is the student’s discovery of “new” (for
them) theorems, giving the student the possibility of freely making conjectures and having an interactive/automatic deduction
support in the exploration of those “new” theorems [10, 32, 37, 38].

P. Quaresma, P. Graziani & S.M. Nicoletti 87

The Inductive approach, is a natural approach. Conclusions are drawn by going from the specific to
the general. Exploring a given domain, seeking for properties that emerge from a set of particular cases
and making a conjecture about the general case.

Dynamic Geometry Software (DGS) can be seen as software environments to inductively explore
new knowledge. Making a geometric construction, constrained by a given set of geometric properties,
and then moving the free point around will show all the fix-points, conjecturing if those new fixed re-
lations between objects are true in all cases, or not. For example the Pappus’ Theorem, in this case, a
well-known theorem: are the intersection points (see Figure 1) G, H and I, collinear? By moving, in the
DGS, the free-points it seems that they are, it remains to prove it.

Figure 1: Pappus’ Theorem

The inductive approach has the advantage of being stimulated by observations in the domain. but has
the disadvantage that induction is unsound. A famous example of such unsound inductive approach can
be seen in the Euclid Parallel lines Postulate, that nevertheless was very fruitful, giving raise to different
geometries.

The Generative approach, i.e. the generation of conjectures, testing them for theorem-hood. The
simplest form of generation is syntactic, in which conjectures are created by mechanical manipulation
of symbols, e.g. [44]. The MCS program generates conjectures syntactically and filters them against
models of the domain [59]. A stronger semantically based approach is taken by the HR program, which
generates conjectures based on examples of concepts in the domain [18]. A theory exploration system
called QuickSpec, works by interleaving term generation with random testing to form candidate con-
jectures [34]. In [34] the conjecture generation approaches are classified into three categories: heuristic
rule-based systems, term generation-and-testing and neural network-based systems. The RoughSpec sys-
tem adds to QuickSpec the notion of shapes of theorems, specifying the shapes of conjectures the user is
interested in, and thus limiting the search [22].

Like induction, generation is unsound. However, if the rules by which the generation is performed are
sufficiently conservative then this approach may generate a higher fraction of theorems than the inductive
approach.

The Manipulative Approach, conjectures are generated from existing theorems. An existing theorem
is modified by operations such as generalisation, specialisation, combination, etc. This approach is used
in abstraction mapping, which converts a theorem to a simpler theorem, and uses a solution to the simpler

88 Considerations on Approaches and Metrics in ATG/F in Geometry

theorem to help find a solution to the original theorem [43]. Manipulation of ATP theorems has also been
used to produce new theorems for testing the robustness of ATP systems’ performances [55].

An advantage of the manipulative approach is that, if the manipulations are satisfiability preserving,
then theorems, rather than conjectures, are produced from existing theorems. However, the conjectures
produced by the manipulative approach are typically artificial in nature, and thus uninteresting.

The Deductive Approach, consequences are generated by application of sound inference rules to the
axioms and previously generated logical consequences. This can be done by an appropriately configured
saturation-based ATP system.

The advantage of this approach is that only logical consequences are ever generated. The challenge
of this approach is to avoid the many uninteresting logical consequences that can be generated.

3 The Deductive Approach

Some systems addresses, explicitly, the generation of new geometric results using different approaches.
In the following some of these approaches are described.

3.1 Strong Relevant Logic-based Forward Deduction Approach

In [27] the authors argue for the fundamental difference between the Automated Theorem Proving (ATP)
and the Automated Theorem Finding (ATF). ATP is the process of finding a justification for an explicitly
specified statement from given premises which are already known facts or previously assumed hypothe-
ses. ATF is the process to find out or bring to light that which was previously unknown. Where ATP is
all about known (old) facts, ATF is about previously unknown conclusions from given premises. Jingde
Cheng [15] claims that classical mathematical logic, its various classical conservative extensions, and
traditional (weak) relevant logics cannot satisfactorily underlie epistemic processes in scientific discov-
ery, presenting an approach based on strong relevant logic. Hongbiao Gao et al. have followed this
approach applying it for several domains such as NBG set theory, Tarski’s Geometry and Peano’s Arith-
metic [26, 27, 29, 30]

3.2 Rule Based Systems

The rule-based automated deduction system are often used when the proof itself is an object of interest
(and not only the end result), given that the proofs are developed from the hypothesis and sets of axioms,
to the conclusion by application of the inference rules, the proofs are “readable”.

Example of such approaches can be seen in systems like QED-Tutrix [23, 24] and JGEx [58], both
for geometry. In the tutorial system QED-Tutrix, the rule based automated theorem prover goal is to
find the many possible branches of the proof tree, in order to be able to help the student approaching the
proof of a geometric conjecture. In the JGEx system we can have the proof in a “readable” and “visual”
renderings and also the set of all properties that can be deduced from the construction.

One of the ATP built-in in JGEx is an implementation of the geometry deductive database method [16,
58]. Using a breadth-first forward chaining a fix-point for the conjecture at hand is reached. For that ge-
ometric construction and the rules of the method, the fix-point gives us all the properties that can be
deduced, some already known facts, but also new facts (not necessary interesting ones).

P. Quaresma, P. Graziani & S.M. Nicoletti 89

The geometry deductive database method proceeds by using a simple algorithm where, starting from
the geometric construction D0, the rules, R, are applied over and over till a fix-point, Dk is reached:

D0
R
⊂ D1

R
⊂ ·· ·

R
⊂ Dk (fix-point) (1)

In figure 2 an example, using JGEx, is shown. On the right, the geometric construction, on the left,
the fix-point, with all the facts that were found for that construction.

Figure 2: Fix-point in JGEx

A new open source implementation of this method, OGP-GDDM,2 is described in [7]. It will be
integrated in the Open Geometry Prover Community Project (OGPCP) [6]. One of the medium-term
goals of the OGP-GDDM project, is to develop a meta-prover, a program capable to receive different
sets of rules and synthesise a specific ATP for those rules.

3.3 Algebraic Approaches

A similar approach is taken in the well-known dynamic geometry system GeoGebra.3 The GeoGebra
Discovery version4 has the capability to find, from a user defined geometric construction, properties
about that construction. GeoGebra Discovery reports some facts that were systematically checked from
a list of possible features including identical points, parallel or perpendicular lines, equal long segments,
collinearity or concyclicity. This is not a deductive method so the generation process must be externally
verified, GeoGebra Discovery do that by recurring to a built-in algebraic automated theorem prover based
in the Gröbner bases method [35, 36].

2https://github.com/opengeometryprover/OpenGeometryProver
3https://www.geogebra.org/
4https://github.com/kovzol/geogebra-discovery

https://github.com/opengeometryprover/OpenGeometryProver
https://www.geogebra.org/
https://github.com/kovzol/geogebra-discovery

90 Considerations on Approaches and Metrics in ATG/F in Geometry

4 Automated Theorem Finding

Apart from our research goal of finding the interesting geometric theorems among all those that were
automatically generated, the pursue of measures of interestingness has applicability in the interactive
and automated theorem proving area. In that area a common use of interestingness is to improve the
efficiency of the programs, tailoring the search space, making the search depth limited and guaranteeing
that only comprehensible concepts are produced [19].

A goal, pursued with different approaches by many researchers, is the creation of strong AI meth-
ods capable of complex research-level proofs, mathematical discovery, and automated formalisation of
today’s vast body of mathematics [47]. The MATHsAiD (Mechanically Ascertaining Theorems from
Hypotheses, Axioms and Definitions) project aimed to build a tool for automated theorem-discovery,
from a set of user-supplied axioms and definitions. In the words of its authors, MATHsAiD 2.0 can
conjecture and prove interesting Theorems in high-level theories, including Theorems of current math-
ematical significance, without generating an unacceptable number of uninteresting theorems [41]. The
TacticToe system, combines reinforcement-learning with Monte-Carlo proof search on the level of HOL4
tactics [31]. The ENIGMA-NG system uses efficient neural and gradient-boosted inference guidance for
the ATP E, improving its efficiency [17]. This two systems, one for interactive provers and the other to
automatic provers, are examples of systems that uses discovery and filtering for improving the efficiency
of automated deduction systems.

4.1 The Deductive Approach Algorithm

The different approaches found in the literature [18, 27, 46] share, in their general lines, the same algo-
rithm: for a given logical fragment, select a initial set of facts and then a cycle of generation/filtering is
applied until some stopping condition is matched (see Fig. 4.1).

4.2 Filtering Interesting Theorems

A first level of filtering (run-time filter) should discard the obvious tautologies and also conjectures
proved false by empirical evidence.

The filtering for interesting theorems or for uninteresting conjectures, two sides of the same coin,
is done by application of a series of filters. These filters are still to be validated, being of speculative
nature [19, 29, 30, 46].

Obviousness: the number of inferences in its derivation. Obviousness estimates the difficulty of proving
a formula, it can be given by the number of inferences in its derivation.

Weight: the effort required to read a formula. The weight score of a formula is the number of symbols
it contains.

Complexity: the effort required to understand a formula, the number of distinct function and predicate
symbols it contains.

Surprisingness: measures new relationships between concepts and properties.

Intensity: measures how much a formula summarises information from the leaf ancestors in its deriva-
tion tree.

Adaptivity: measures how tightly the universally quantified variables of a formula are constrained (for
formulae in clause normal form).

P. Quaresma, P. Graziani & S.M. Nicoletti 91

List of axioms/deduction rules
for a given logic fragment

New Fact List:
hypothesis + interesting theorems

•

•

New Fact
Exist?

Apply
Deduction

Run-time
Filter

Interesting Theorems
Filter

List of
Interesting Theorems

yes

no

Interesting Theorem

(added)

(discarded)
no

(discarded)

tautologies/false conj.

Figure 3: New and Interesting Theorems Algorithm

Focus: measures the extent to which a formula is making a positive or negative statement about the
domain of application.

Usefulness: measures how much an interesting theorem has contributed to proofs of further interesting
theorems.

In spite of the relevance of these metrics, it would be appropriate to construct an expert survey with
which we could validate them by referring to a significant public of experts. We believe this kind of
survey would be relevant not only to face Wos’ problem, but also to better understand how to construct
and evaluate software that generates/finds interesting theorems. Despite having only relevant metrics and
approaches regarding Wos’ problem, while not yet having formal results, we can prove a relevant result
that concerns the second issue, i.e., the question regarding Interesting Turing Machines, i.e., programs
capable of generating interesting new geometric results.

5 Undecidability Result

In section 4.2 the application of filters was discussed, these filters are based on some measures of inter-
estingness that are still to be validated and that are applied in an heuristic way. Is it possible to have a
deterministic approach, i.e., is it possible to write a computer program that in a deterministic way, find
interesting theorems? We show, as an application of the Rice’s theorem [49, 50, 51] (see Lemma 1), that
it is undecidable to determine, for a given Turing Machine, whether the language recognised by it has
the (non-trivial) property of finding interesting theorems.

Definition 1 (Non-Trivial Property). A property p of a formal language is non-trivial if:

92 Considerations on Approaches and Metrics in ATG/F in Geometry

• there exist a recursively enumerable language having the property p;

• there exist a recursively enumerable language not having the property p.

Lemma 1 (Rice’s Theorem). Let p be any non-trivial property of the language of a Turing machine. The
problem of determining whether a given Turing machine’s language has property p is undecidable.

Theorem 1 (Undecidability Result). For any given Turing Machine, it is undecidable to determine,
whether the language recognised by it has the property of finding interesting theorems.

Proof. All programs (Turing machines) capable of automated theorem proving and by extension gen-
erating/finding geometric theorems rely on a formal language to describe the geometric constructions,
conjectures and proofs. For example we can consider the (full) First-Order Form (FOF)5 of TPTP [53]
and the formal axiomatic theories for geometry based on that language.6

Let p be the property of that language that says that theorem t is interesting, for any conceivable
definition of interestingness, then there exist a recursively enumerable language having the property p.
It will be enough to restrict the language in such a way that the theorem t, and only this, would be
recognised. But, it also exist a recursively enumerable language not having the property p. It would be
enough to restrict that language in such a way that only tautologies would be recognised. Tautologies
are, for any conceivable definition of interestingness, uninteresting. We have proved that p, the property
that can establish if a given theorem is interesting, is a non-trivial property.

Having establish that the property p is non-trivial, then, by application of Rice’s theorem, it is un-
decidable to determine for any given Turing machine M, whether the language recognised by M has the
property p.

In other words, it is undecidable to have a deterministic program that can find interesting problems.
At best this is a task to be addressed by programs based on algorithms guided by heuristics criteria.

6 Designing Interesting Surveys

In light of our undecidability result, to understand what experts mean by, “a program that is able to
also prove interesting theorems”, must be done referring to empirical data, via the formulation of an
expert survey. However, for it to be fulfilled, one has to first reach a minimal degree of agreement on
the definition of interestingness of theorems. How could one speak about programs that produce such
theorems? In order to achieve this agreement, an empirical exploration of the notion of interestingness
and of what it concretely entails is paramount. This exploration requires to situate the notion of inter-
estingness historically and socio-culturally, considering logical, epistemological, sociological, cognitive,
semiotic and pedagogical aspects of the issue. Probably—and as Wos already implies—interestingness
entails different tangible properties, which differ in given centuries, geographical locations and societies.
Moreover, in some cases we say that a theorem is interesting for what we can call global reasons e.g.,
Euclid’s theorem on the infinitude of the set of prime numbers, Zorn’s lemma and Gödel’s Theorems are
interesting due to their role in mathematics, logic and computer science. Other times for local reasons
e.g., in relation to what we are teaching our students at that moment. In order to assess which tangible
properties—both global and local—interestingness entails today, we are proposing to conduct two expert
surveys with two statistically significant pools of participants.

5http://tptp.cs.miami.edu/TPTP/QuickGuide/
6TPTP Axioms Files for geometry, https://www.tptp.org/cgi-bin/SeeTPTP?Category=Axioms, e.g. Tarski geom-

etry axiom, GEO001 and GEO002, Deductive Databases Method in Geometry, GEO012.

http://tptp.cs.miami.edu/TPTP/QuickGuide/
https://www.tptp.org/cgi-bin/SeeTPTP?Category=Axioms

P. Quaresma, P. Graziani & S.M. Nicoletti 93

Influencing factors. Gao et al. performed an extensive analysis of areas like Set Theory, Peano’s arith-
metic and Tarski’s Geometry, looking for the relevance of structural factors, such as the degree of logical
connectives in the theorem, the propositional schema of the formula formalising the theorem, the abstract
level of predicates and functions in the theorem and the deduction distance of a theorem [19, 28, 30, 46].
Some of these structural aspects might be related to our cognitive dynamics. But also the epistemologi-
cal role of a theorem with respect to other theorems might be a relevant feature; or the educational role
that some theorems have with respect to some notions might influence their interestingness. Finally, the
history of a theorem—e.g. Fermat’s last theorem—could add points to its interestingness, which, in the
case of Fermat’s last theorem, might be already caused by the technicalities of the proof itself.

Designing the surveys. Taking all these factors into consideration, we would propose to design three
surveys that question experts from different fields.

Before describing the surveys below some clarifications are necessary. We will use the term “expert”
to mean mathematics teachers at primary, middle, and high schools, and professors or researchers in pure
and applied mathematics at universities or at research centres. Furthermore, we will focus on the case
study of geometry, hence interesting theorems in geometry. The reasons for this restriction to geometry
are as follows: on the one hand, considering all fields of research in mathematics might require a too large
number of experts and could produce too many divergent ideas. On the other hand, having in mind an
application of the results in automatic theorem proving as a target, it seems appropriate to move into an
area were there are many different methods and many automated provers implementing those methods.
Finally, geometry is a kind of language common to many areas of mathematics and has been a domain
for reflection since the early years of mathematics teaching.

Finally, these surveys are intended to involve mathematics teachers, but their outcome does not target
mathematics education. Of course, this is a possible target, but it is not the primary goal of these starting
surveys.

6.1 Three Surveys

In the first survey, we will ask the experts both to indicate some situations in which they remember to have
used the adjective interesting concerning a theorem, and to explain the use of this expression. In addition,
we will ask experts to list several geometric theorems they find interesting, and to list several geometric
theorems they find not interesting, both from elementary and higher geometry, explaining the reasons for
their answers (see Appendix A). This first survey is already under way, the steering committee is already
approaching it and the authors of accepted papers in the conference, 14th International Conference on
Automated Deduction in Geometry (ADG 2023)7, were invited to participate. We are planning to enlarge
it to our network of contacts and we invite the interested reader to also participate, answering it.8 We are
planning to begin collect and analyse the answers in February, 2024.

We will use the information from this survey to define a list of characteristics (A,B,C, . . .) of a
theorem that offer sufficient reasons to attribute interestingness to it. We will assign weights to the
various characteristics by considering the answers to this first survey.

After the first survey, we will implement a second one. This second survey will consider a list of
theorems that, in different percentages, have the characteristics inferred from the first survey. We will

7ADG 2023, 14th International Conference on Automated Deduction in Geometry, Belgrade, Serbia, September 20-22,
2023.

8https://docs.google.com/forms/d/e/1FAIpQLScIXZbLPBHTLvmQ28P30Cm_-lkOrM7e6rab7ho0WrAFwf_mbQ/

viewform?usp=sf_link

https://docs.google.com/forms/d/e/1FAIpQLScIXZbLPBHTLvmQ28P30Cm_-lkOrM7e6rab7ho0WrAFwf_mbQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScIXZbLPBHTLvmQ28P30Cm_-lkOrM7e6rab7ho0WrAFwf_mbQ/viewform?usp=sf_link

94 Considerations on Approaches and Metrics in ATG/F in Geometry

submit the second survey to a set of experts different from those used in the first survey. We will ask these
experts whether they find the theorems listed interesting or not. We will ask them to rate, using a Likert
scale,9 the degree of impact that having certain characteristics plays in their attribution of interestingness
(see Appendix B).

This second group will allow us to understand whether the characteristics isolated through the first
survey are sufficient conditions to affirm that a theorem is interesting.

With an agreement on what an interesting theorem is, based on empirical research, we could query
experts in theorem generators/finders design, with another survey (the third survey) asking how to design
software able to produce these interesting theorems.

After that, we will focus our empirical inquiry on programs, driven by heuristics based on our find-
ings, able to find interesting theorems.

We have established a steering committee to design the surveys and who will oversee the submission
of the surveys to experts around the world.

The steering committee consists of the following scholars:

• Thierry Dana-Picard, Jerusalem College of Technology, Jerusalem, Israel;

• James Davenport, University of Bath, United Kingdom;

• Pierluigi Graziani, University of Urbino, Urbino, Italy;

• Pedro Quaresma, University of Coimbra, Coimbra, Portugal;

• Tomás Recio, University Antonio de Nebrija, Madrid, Spain.

7 Conclusions

The pursuit of new and interesting theorems in geometry, by automatic means is an interesting open
problem. From the point of view of generating new information the deductive approach seems the most
appropriated, given that: only logical consequences are ever generated and also the paths to those new
theorems can be analysed from the point of view of the geometric theory used, i.e. in the process of
generating new facts, geometric proofs of their validity are produced. Already existing implementations,
e.g. the deductive databases method (DDM) implemented in JGEx, and new implementations, e.g. the
GeoGebra Discovery and the new implementation of the DDM, the OGPCP-GDDM prover, can be used.
The separation of the uninteresting, trivial facts, from the new and interesting facts is much harder. The
current approaches are based in ad-hoc measures, proposed by experts from the field, but nevertheless,
not substantiated by any study approaching that problem. Our goal is to fulfil that gap, to produce a
comprehensive survey, supported in a large set of mathematicians, in order to be able to return to that
question and to develop filters supported by the findings of that survey.

Acknowledgements The authors wish to thank Francisco Botana, Thierry Dana-Picard, James Daven-
port and Tomás Recio for their support in the pursue of this long term project.

9A Likert scale is a question which is a five-point or seven-point scale. The choices range from Strongly Agree to Strongly
Disagree so the survey maker can get a holistic view of people’s opinions. It was developed in 1932 by the social psychologist
Rensis Likert.

P. Quaresma, P. Graziani & S.M. Nicoletti 95

References

[1] Miguel Á. Abánades, Francisco Botana, Antonio Montes & Tomás Recio (2014): An algebraic
taxonomy for locus computation in dynamic geometry. Computer-Aided Design 56, pp. 22–33,
doi:10.1016/j.cad.2014.06.008.

[2] Gilles Aldon, Pierre-Yves Cahuet, Viviane Durand-Guerrier, Mathias Front, Didier Krieger, Michel Mizony
& Claire Tardy C (2010): Expérimenter des problèmes innovants en mathématiques à l’école. INRP. Avail-
able at https://hal.archives-ouvertes.fr/hal-00989132.

[3] Ferdinando Arzarello & Cristina Sabena (2010): Semiotic and theoretic control in argumentation and proof
activities. Educational Studies in Mathematics 77(2-3), pp. 189–206, doi:10.1007/s10649-010-9280-3.

[4] Michael Aschbacher (2005): Highly complex proofs and implications of such proofs. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363(1835), pp. 2401–2406,
doi:10.1098/rsta.2005.1655.

[5] Jeremy Avigad (2006): Mathematical Method and Proof. Synthese 153(1), pp. 105–159,
doi:10.1007/s11229-005-4064-5. Available at http://www.jstor.org/stable/27653412.

[6] Nuno Baeta & Pedro Quaresma (2021): Open Geometry Prover Community Project. Electronic Proceedings
in Theoretical Computer Science 352, pp. 129–138, doi:10.4204/EPTCS.352.14.

[7] Nuno Baeta & Pedro Quaresma (2023): Towards a Geometry Deductive Database Prover. Annals of Math-
ematics and Artificial Intelligence 91(6), pp. 851–863, doi:10.1007/s10472-023-09839-0.

[8] Henk Barendregt & Freek Wiedijk (2005): The challenge of computer mathematics. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363(1835), pp. 2351–2375,
doi:10.1098/rsta.2005.1650.

[9] Francisco Botana, Miguel A. Abánades & Jesús Escribano (2007): Computing Locus Equations for Standard
Dynamic Geometry Environments. In Yong Shi, G. Dick van Albada, Jack Dongarra & Peter M. A. Sloot, edi-
tors: International Conference on Computational Science, Lecture Notes in Computer Science 4488, Springer
Berlin Heidelberg, pp. 227–234, doi:10.1007/978-3-540-72586-2 32.

[10] Francisco Botana & José L. Valcarce (2002): A dynamic-symbolic interface for geometric theorem discovery.
Computers and Education 38(1-3), pp. 21–35, doi:10.1016/S0360-1315(01)00089-6.

[11] Alan Bundy, Mateja Jamnik & Andrew Fugard (2005): What is a proof? Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences 363(1835), pp. 2377–2391,
doi:10.1098/rsta.2005.1651.

[12] Tyler Burge (1998): Computer proof, apriori knowledge, and other minds: The sixth philosophical perspec-
tives lecture. Philosophical perspectives 12, pp. 1–37, doi:10.1093/acprof:oso/9780199672028.003.0013.

[13] Xiaoyu Chen, Dan Song & Dongming Wang (2014): Automated generation of geometric theorems from im-
ages of diagrams. Annals of Mathematics and Artificial Intelligence 74(3-4), pp. 1–26, doi:10.1007/s10472-
014-9433-7.

[14] Jingde Cheng (1995): Entailment calculus as the logical basis of automated theorem finding in scientific
discovery. In: Systematic Methods of Scientific Discovery: Papers from the 1995 Spring Symposium, AAAI
Press, pp. 105–110.

[15] Jingde Cheng (2000): A Strong Relevant Logic Model of Epistemic Processes in Scientific Discovery. In
E. Kawaguchi, H. Kangassalo, H. Jaakkola & I.A. Hamid, editors: Information Modelling and Knowledge
Bases XI, Frontiers in Artificial Intelligence and Applications 61, IOS Press, pp. 136–159, doi:10.1007/3-
540-49292-5 42.

[16] Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (2000): A Deductive Database Approach to Auto-
mated Geometry Theorem Proving and Discovering. Journal of Automated Reasoning 25(3), pp. 219–246,
doi:10.1023/A:1006171315513.

http://dx.doi.org/10.1016/j.cad.2014.06.008
https://hal.archives-ouvertes.fr/hal-00989132
http://dx.doi.org/10.1007/s10649-010-9280-3
http://dx.doi.org/10.1098/rsta.2005.1655
http://dx.doi.org/10.1007/s11229-005-4064-5
http://www.jstor.org/stable/27653412
http://dx.doi.org/10.4204/EPTCS.352.14
http://dx.doi.org/10.1007/s10472-023-09839-0
http://dx.doi.org/10.1098/rsta.2005.1650
http://dx.doi.org/10.1007/978-3-540-72586-2_32
http://dx.doi.org/10.1016/S0360-1315(01)00089-6
http://dx.doi.org/10.1098/rsta.2005.1651
http://dx.doi.org/10.1093/acprof:oso/9780199672028.003.0013
http://dx.doi.org/10.1007/s10472-014-9433-7
http://dx.doi.org/10.1007/s10472-014-9433-7
http://dx.doi.org/10.1007/3-540-49292-5_42
http://dx.doi.org/10.1007/3-540-49292-5_42
http://dx.doi.org/10.1023/A:1006171315513

96 Considerations on Approaches and Metrics in ATG/F in Geometry

[17] Karel Chvalovský, Jan Jakubův, Martin Suda & Josef Urban (2019): ENIGMA-NG: Efficient Neural and
Gradient-Boosted Inference Guidance for E. In: Lecture Notes in Computer Science, Springer International
Publishing, pp. 197–215, doi:10.1007/978-3-030-29436-6 12.

[18] Simon Colton (2002): The HR Program for Theorem Generation. In Andrei Voronkov, editor: Automated
Deduction—CADE-18, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 285–289, doi:10.1007/3-540-
45620-1 24.

[19] Simon Colton, Alan Bundy & Toby Walsh (2000): On the notion of interestingness in automated
mathematical discovery. International Journal of Human-Computer Studies 53(3), pp. 351–375,
doi:10.1006/ijhc.2000.0394.

[20] Richard A De Millo, Richard J Lipton & Alan J Perlis (1979): Social processes and proofs of theorems and
programs. Communications of the ACM 22(5), pp. 271–280, doi:10.1145/359104.359106.

[21] Bruno D’Amore & MI Fandiño Pinilla (2016): Una formula per la misurazione oggettiva della difficoltà di
comprensione di un testo di matematica da parte degli studenti. Uso valutativo e uso didattico. La matematica
e la sua didattica, 1 2, pp. 59–78.

[22] Sólrún Halla Einarsdóttir, Nicholas Smallbone & Moa Johansson (2020): Template-based Theory Ex-
ploration: Discovering Properties of Functional Programs by Testing. In: IFL 2020: Proceed-
ings of the 32nd Symposium on Implementation and Application of Functional Languages, ACM,
doi:10.1145/3462172.3462192.

[23] Ludovic Font (2021): Génération automatique de preuves pour un logiciel tuteur en géométrie. phdthesis,
Polytechnique Montréal. Available at https://publications.polymtl.ca/9090/.

[24] Ludovic Font, Philippe R. Richard & Michel Gagnon (2018): Improving QED-Tutrix by Automating the
Generation of Proofs. In Pedro Quaresma & Walther Neuper, editors: Proceedings 6th International
Workshop on Theorem proving components for Educational software, Gothenburg, Sweden, 6 Aug 2017,
Electronic Proceedings in Theoretical Computer Science 267, Open Publishing Association, pp. 38–58,
doi:10.4204/EPTCS.267.3.

[25] Hongbiao Gao & Jingde Cheng (2015): An epistemic programming approach for automated theorem finding.
In: 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCIxCC),
IEEE, doi:10.1109/ICCI-CC.2015.7259365.

[26] Hongbiao Gao & Jingde Cheng (2017): Measuring Interestingness of Theorems in Automated Theorem Find-
ing by Forward Reasoning: A Case Study in Peano’s Arithmetic. In Ngoc Thanh Nguyen, Satoshi Tojo,
Le Minh Nguyen & Bogdan Trawinski, editors: Intelligent Information and Database Systems, Lecture Notes
in Computer Science 10192, Springer International Publishing, pp. 115–124, doi:10.1007/978-3-319-54430-
4 12.

[27] Hongbiao Gao, Yuichi Goto & Jingde Cheng (2014): A systematic methodology for automated theorem
finding. Theoretical Computer Science 554, pp. 2–21, doi:10.1016/j.tcs.2014.06.028.

[28] Hongbiao Gao, Yuichi Goto & Jingde Cheng (2015): A Set of Metrics for Measuring Interestingness of
Theorems in Automated Theorem Finding by Forward Reasoning: A Case Study in NBG Set Theory. In:
Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques, Springer Inter-
national Publishing, pp. 508–517, doi:10.1007/978-3-319-23862-3 50.

[29] Hongbiao Gao, Jianbin Li & Jingde Cheng (2018): Measuring Interestingness of Theorems in Automated
Theorem Finding by Forward Reasoning: A Case Study in Tarski's Geometry. In: 2018 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, doi:10.1109/SmartWorld.2018.00064.

[30] Hongbiao Gao, Jianbin Li & Jingde Cheng (2019): Measuring Interestingness of Theorems in Automated
Theorem Finding by Forward Reasoning Based on Strong Relevant Logic. In: 2019 IEEE International
Conference on Energy Internet (ICEI), IEEE, pp. 356–361, doi:10.1109/ICEI.2019.00069.

http://dx.doi.org/10.1007/978-3-030-29436-6_12
http://dx.doi.org/10.1007/3-540-45620-1_24
http://dx.doi.org/10.1007/3-540-45620-1_24
http://dx.doi.org/10.1006/ijhc.2000.0394
http://dx.doi.org/10.1145/359104.359106
http://dx.doi.org/10.1145/3462172.3462192
https://publications.polymtl.ca/9090/
http://dx.doi.org/10.4204/EPTCS.267.3
http://dx.doi.org/10.1109/ICCI-CC.2015.7259365
http://dx.doi.org/10.1007/978-3-319-54430-4_12
http://dx.doi.org/10.1007/978-3-319-54430-4_12
http://dx.doi.org/10.1016/j.tcs.2014.06.028
http://dx.doi.org/10.1007/978-3-319-23862-3_50
http://dx.doi.org/10.1109/SmartWorld.2018.00064
http://dx.doi.org/10.1109/ICEI.2019.00069

P. Quaresma, P. Graziani & S.M. Nicoletti 97

[31] Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar & Michael Norrish (2021): TacticToe:
Learning to Prove with Tactics. Journal of Automated Reasoning 65(2), pp. 257–286, doi:10.1007/s10817-
020-09580-x.

[32] Gila Hanna, David Reid & Michael de Villiers, editors (2019): Proof Technology in Mathematics Research
and Teaching. Springer, doi:10.1007/978-3-030-28483-1.

[33] Kirsti Hemmi, Erika Julin & Ray Pörn (2017): Misconceptions and developmental proof. In: CERME 10.

[34] Moa Johansson & Nicholas Smallbone (2021): Automated Conjecturing in QuickSpec. In: 1st Mathematical
Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

[35] Zoltán Kovács, Tomás Recio & M. Pilar Vélez (2021): Automated reasoning tools in GeoGebra discovery.
ACM Communications in Computer Algebra 55(2), pp. 39–43, doi:10.1145/3493492.3493495.

[36] Zoltán Kovács & Jonathan H. Yu (2022): Automated Discovery of Geometrical Theorems in GeoGebra.
In João Marcos, Walther Neuper & Pedro Quaresma, editors: Proceedings 10th International Workshop on
Theorem Proving Components for Educational Software, Electronic Proceedings in Theoretical Computer
Science 354, pp. 1–12, doi:10.4204/EPTCS.354.1.

[37] Fou-Lai Lin, Feng-Jui Hsieh, Gila Hanna & Michael de Villiers, editors (2009): Proceedings of the ICMI
Study 19 conference: Proof and Proving in Mathematics Education. 1, The Department of Mathematics,
National Taiwan Normal University.

[38] Fou-Lai Lin, Feng-Jui Hsieh, Gila Hanna & Michael de Villiers, editors (2009): Proceedings of the ICMI
Study 19 conference: Proof and Proving in Mathematics Education. 2, The Department of Mathematics,
National Taiwan Normal University.

[39] Donald MacKenzie (1995): The automation of proof: A historical and sociological exploration. IEEE Annals
of the History of Computing 17(3), pp. 7–29, doi:10.1109/85.397057.

[40] Donald MacKenzie (1999): Slaying the Kraken: The sociohistory of a mathematical proof. Social studies of
science 29(1), pp. 7–60, doi:10.1177/030631299029001002.

[41] R. L. McCasland, A. Bundy & P. F. Smith (2017): MATHsAiD: Automated mathematical theory exploration.
Applied Intelligence 47(3), pp. 585–606, doi:10.1007/s10489-017-0954-8.

[42] Xicheng Peng, Qihang Chen, Jingzhong Zhang & Mao Chen (2021): Automated Discovery of Geo-
metric Theorems Based on Vector Equations. Journal of Automated Reasoning 65(6), pp. 711–726,
doi:10.1007/S10817-021-09591-2.

[43] D. A. Plaisted (1980): Abstraction mappings in mechanical theorem proving. In: 5th Conference on
Automated Deduction Les Arcs, France, July 8–11, 1980, Springer Berlin Heidelberg, pp. 264–280,
doi:10.1007/3-540-10009-1 21.

[44] David A. Plaisted (1994): The search efficiency of theorem proving strategies. In: Automated Deduction —
CADE-12, Springer Berlin Heidelberg, pp. 57–71, doi:10.1007/3-540-58156-1 5.

[45] George Polya (2004): How to solve it: A new aspect of mathematical method. 246, Princeton university
press.

[46] Yury Puzis, Yi Gao & G. Sutcliffe (2006): Automated Generation of Interesting Theorems. In: FLAIRS
Conference.

[47] Markus N. Rabe & Christian Szegedy (2021): Towards the Automatic Mathematician. In André Platzer &
Geoff Sutcliffe, editors: Automated Deduction – CADE 28, Springer International Publishing, pp. 25–37,
doi:10.1007/978-3-030-79876-5 2.

[48] T. Recio & M. P. Vélez (1999): Automatic Discovery of Theorems in Elementary Geometry. J. Autom. Rea-
son. 23, pp. 63–82, doi:10.1023/A:1006135322108. Available at http://dl.acm.org/citation.cfm?
id=594128.594243.

[49] H. G. Rice (1953): Classes of recursively enumerable sets and their decision problems. Transactions of the
American Mathematical Society 74(2), pp. 358–366, doi:10.2307/1990888.

[50] Hartley Rogers Jr (1987): Theory of recursive functions and effective computability. MIT press.

http://dx.doi.org/10.1007/s10817-020-09580-x
http://dx.doi.org/10.1007/s10817-020-09580-x
http://dx.doi.org/10.1007/978-3-030-28483-1
http://dx.doi.org/10.1145/3493492.3493495
http://dx.doi.org/10.4204/EPTCS.354.1
http://dx.doi.org/10.1109/85.397057
http://dx.doi.org/10.1177/030631299029001002
http://dx.doi.org/10.1007/s10489-017-0954-8
http://dx.doi.org/10.1007/S10817-021-09591-2
http://dx.doi.org/10.1007/3-540-10009-1_21
http://dx.doi.org/10.1007/3-540-58156-1_5
http://dx.doi.org/10.1007/978-3-030-79876-5_2
http://dx.doi.org/10.1023/A:1006135322108
http://dl.acm.org/citation.cfm?id=594128.594243
http://dl.acm.org/citation.cfm?id=594128.594243
http://dx.doi.org/10.2307/1990888

98 Considerations on Approaches and Metrics in ATG/F in Geometry

[51] Michael Sipser (1997): Introduction to the Theory of Computation. PWS Publishing Company.

[52] Andreas J Stylianides & Guershon Harel (2018): Advances in mathematics education research on proof and
proving: An international perspective. Springer, doi:10.1007/978-3-319-70996-3.

[53] Geoff Sutcliffe (2017): The TPTP Problem Library and Associated Infrastructure. Journal of Automated
Reasoning 59(4), pp. 483–502, doi:10.1007/s10817-017-9407-7.

[54] Philip Todd (2021): A Method for the Automated Discovery of Angle Theorems. In: Proceedings of ADG
2021, 352, Open Publishing Association, pp. 148–155, doi:10.4204/EPTCS.352.17.

[55] Andrei Voronkov (2000): CASC-16-1/2. Preprint Series CSSPP-4, The University of Manchester. Available
at http://www.s.man.a.uk/preprints/index.html.

[56] Larry Wos (1988): Automated Reasoning: 33 Basic Research Problems. Prentice-Hall.

[57] Larry Wos (1993): The problem of automated theorem finding. Journal of Automated Reasoning 10(1), pp.
137–138, doi:10.1007/BF00881868.

[58] Zheng Ye, Shang-Ching Chou & Xiao-Shan Gao (2011): An Introduction to Java Geometry Expert. In
Thomas Sturm & Christoph Zengler, editors: Automated Deduction in Geometry, Lecture Notes in Computer
Science 6301, Springer Berlin Heidelberg, pp. 189–195, doi:10.1007/978-3-642-21046-4 10.

[59] Jian Zhang (1999): System Description: MCS: Model-Based Conjecture Searching. In: Automated Deduc-
tion — CADE-16, Springer Berlin Heidelberg, pp. 393–397, doi:10.1007/3-540-48660-7 37.

A First Survey—Interesting Theorems

With this survey the goal will be to find the characteristics that make a theorem interesting, or not. A list
of questions about geometric theorems found to be interesting, or not interesting.

For an initial pool of expert on the area it is our intention to use the network created for the submission
of the COST proposal, iGEOMXXI.10 This survey will be available online, based on an online survey
tool.11

A.1 Interesting and Why?

A list of situations/explanations about interesting theorems.

10OC-2020-1-24509, Building a Networked Environment for Geometric Reasoning (iGEOMXXI), The submitted Action
(not funded) focused on the exploration of new paradigms and methodologies for supporting formal reasoning in the field of
Geometry. A network of 49 experts from 19 countries.

11e.g. LimeSurvey, https://www.limesurvey.org/

http://dx.doi.org/10.1007/978-3-319-70996-3
http://dx.doi.org/10.1007/s10817-017-9407-7
http://dx.doi.org/10.4204/EPTCS.352.17
http://www.s.man.a.uk/preprints/index.html
http://dx.doi.org/10.1007/BF00881868
http://dx.doi.org/10.1007/978-3-642-21046-4_10
http://dx.doi.org/10.1007/3-540-48660-7_37
https://www.limesurvey.org/

P. Quaresma, P. Graziani & S.M. Nicoletti 99

Can you describe in detail a situation (during classes or lectures) in which you have used the adjective
interesting applied to a theorem in geometry?

nth Situation

Can you explain in detail the reasons why you used the adjective interesting in the first situation?

nth Explanation

A.2 Five Interesting Theorems in Geometry

A list of 5 questions, each about an interesting theorem.

Can you list at least five theorems in geometry that you consider interesting?

Theorem n

Can you explain in detail the reason for your choice by listing at least five adjectives that describe
characteristics of the previous theorem making it interesting?

A.3 Five Not Interesting Theorems in Geometry

A list of 5 questions, each about a not interesting theorem.

100 Considerations on Approaches and Metrics in ATG/F in Geometry

Can you list at least five theorems in geometry that you consider NOT interesting?

Theorem n

Can you explain in detail the reason for your choice by listing at least five adjectives that describe
characteristics of the previous theorem making it NOT interesting?

B Second Survey—Characteristics of Interesting Theorems

This survey will only be designed after studying the results of the first survey. The second survey will
propose theorems (taken from the first survey) and will provide characteristics (taken from the first
survey) for each of them. The survey will ask the participants to express their opinion on characteristics
that (presumably) make the theorems interesting or not interesting.

This survey will be available online, based on an online survey tool.9

Please express whether you consider the following theorems interesting or not, and why?

Is Theorem n interesting?
� YES � NO

Why? Because it has the characteristic A.
� Strongly disagree � Disagree � Neutral � Agree � Strongly Agree

Why? Because it has the characteristic B.
� Strongly disagree � Disagree � Neutral � Agree � Strongly Agree

Why? Because it has the characteristic C.
� Strongly disagree � Disagree � Neutral � Agree � Strongly Agree

Why? Because it has the characteristic D.
� Strongly disagree � Disagree � Neutral � Agree � Strongly Agree

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 101–109, doi:10.4204/EPTCS.398.13

© B. Ariño-Morera et al.
This work is licensed under the
Creative Commons Attribution License.

Solving with GeoGebra Discovery an Austrian Mathematics
Olympiad Problem: Lessons Learned

Belén Ariño-Morera
Departamento de Economía Financiera y Contabilidad, Universidad Rey Juan Carlos, Madrid, Spain

belen.arino@urjc.es

Zoltán Kovács
The Private University College of Education of the Diocese of Linz, Austria*

zoltan.kovacs@ph-linz.at

Tomás Recio
Escuela Politécnica Superior, Universidad Antonio de Nebrija, Madrid, Spain

trecio@nebrija.es

Piedad Tolmos
Departamento de Economía Financiera y Contabilidad, Universidad Rey Juan Carlos, Madrid, Spain

piedad.tolmos@urjc.es

We address, through the automated reasoning tools in GeoGebra Discovery, a problem from a re-
gional phase of the Austrian Mathematics Olympiad 2023. Trying to solve this problem gives rise to
four different kind of feedback: the almost instantaneous, automated solution of the proposed prob-
lem; the measure of its complexity, according to some recent proposals; the automated discovery of
a generalization of the given assertion, showing that the same statement is true over more general
polygons than those mentioned in the problem; and the difficulties associated to the analysis of the
surprising and involved high number of degenerate cases that appear when using the LocusEquation
command in this problem. In our communication we will describe and reflect on these diverse is-
sues, enhancing its exemplar role for showing some of the advantages, problems, and current fields
of development of GeoGebra Discovery.

1 Introduction

In the past years we have been developing and including, both in the standard version of GeoGebra1

as well as in the fork version GeoGebra Discovery2, different automated reasoning tools (ART) [1].
Mathematics Olympiads problems provide an interesting benchmark for testing the performance of such
instruments. Interesting, from multiple perspectives: by itself, as a source of challenging mathematical
questions that our ART should be able to deal with; as a test to measure and compare the performance of
humans and machines on the same problems [2],[3]; as a test on the suitability of the recently proposed
intrinsic measure of complexity of a geometric statement [4].

In this communication we will focus on how our ART behave concerning some of these issues, when
addressing an interesting problem recently proposed in a regional phase of the Austrian Mathematics

*The work was partially supported by the grant PID2020-113192GB-I00 from the Spanish MICINN.
1www.geogebra.org
2https://kovzol.github.io/geogebra-discovery/

http://dx.doi.org/10.4204/EPTCS.398.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
www.geogebra.org
https://kovzol.github.io/geogebra-discovery/

102 GeoGebra Discovery and an Austrian Mathematics Olympiad Problem

Figure 1: Problem 2. Österreichische Mathematik-Olympiade Regionalwettbewerb für Fortgeschrittene
30. März 2023.

Olympiad 2023. Namely, Problem 2 at the 54. Austrian Mathematics Olympiad 2023,3 stated as follows
(see Figure 1):

Sei ABCD eine Raute mit 6 BAD < 90◦. Der Kreis durch D mit Mittelpunkt A schneide
die Gerade CD ein zweites MaI im Punkt E. Der Schnittpunkt der Geraden BE und AC sei
S.

Man beweise, dass die Punkte A,S,D und E auf einem Kreis liegen.

that is

Let ABCD be a rhombus with 6 BAD< 90◦. The circle through D with center A intersects
straight line CD a second time at point E. The intersection of the lines BE and AC is S.

Prove that the points A,S,D and E lie on a circle.

In the next section we will show how GeoGebra Discovery is able to confirm (by proving internally,
in a mathematically rigorous way) the truth of the proposed problem.

2 Solving the Problem

In what follows, to exemplify how GeoGebra Discovery handles this problem, we will use in different
moments, the web version GeoGebra Discovery 6 or the app GeoGebra Discovery 5. To start with,
Figure 2 shows how GeoGebra Discovery version 6.0.641.0-2023Apr22 confirms the truth of the given
statement.

3Österreichische Mathematik-Olympiade Regionalwettbewerb für Fortgeschrittene, 30. März 2023. https://oemo.at/
OeMO/Termine/2023/

https://oemo.at/OeMO/Termine/2023/
https://oemo.at/OeMO/Termine/2023/

B. Ariño-Morera et al. 103

Figure 2: Confirming the truth of the statement in Problem 2.

First, we have chosen some free points A,B, then the circle c centered at A through B, then another
point D on this circle, such that 6 BAD < 90◦. Next, we have built the (hidden) segment f = BD, and
point C as the symmetrical of A with respect to f . Thus, ABCD is a rhombus. Finally, points E,S are
displayed, following the hypotheses, as the intersection of line CD and c (ditto, as the intersection of line
BE and AC).

Then we have introduced the commands

Prove(AreConcyclic(A,S,D,E))

and

ProveDetails(AreConcyclic(A,S,D,E)),

yielding in both cases just the declaration that the statement is true. See items a,b in the input column in
the Figure 2 or in Figure 3. Notice that Figure 3 displays the circle through A,S,D,E, even if the angle
6 BAD > 90◦. Indeed, we have not made any formal implementation of such restriction, and this implies
the statement holds even without such conditions. Thus, we can say we have already proved an extended
version of the given problem.

Let us conclude by remarking two more things: one, that the internal proof is mathematically rigor-
ous, dealing with symbolic computation algorithms (not through a numerical or probabilistic approach);
two, that the complexity of the involved computation has made impossible to output the list of asso-
ciated degeneracy conditions (i.e. geometric situations that must be avoided for the statement to hold
true, like having ABCD aligned) that could have been displayed (in simpler cases) on the output of the
ProveDetails command.

104 GeoGebra Discovery and an Austrian Mathematics Olympiad Problem

Figure 3: Confirming the truth of the statement in Problem 2 and showing the circle through A,S,D,E.

3 Generalizing the Problem

Conceptually speaking, GeoGebra Discovery is prone to offer tools that help, not only to check the
truth/falsity of a given assertion, but to automatically test the verification of a large collection of prop-
erties among the elements that the user is adding in the construction of the geometric figure. That is,
to help the user discovering different properties holding under the given hypotheses. Figure 4 shows,
in colors, different properties that the program has discovered, after enabling the StepwiseDiscovery

command, along each of the steps towards the construction of the rhombus, of the points E,S, etc.
For instance, just after introducing free points A,B and point D in the circle c, GeoGebra Discovery

tells the user that segments f = DA, t = BA have equal length, a trivial result, since A is the center
of circle c and B,D are points on c. Perhaps more interesting is to learn that circle d contains points
A,B,C,E, i.e. that these points are concyclic; or that t = BS, a = AS, b = DS have equal length, a couple
of non-trivial results that GeoGebra Discovery outputs automatically towards the end of the construction,
without being asked to consider such specific relations.

We would like to focus on some other way, perhaps less automatic but more relevant for the user, of
discovering results with GeoGebra Discovery. Namely, let us assume the user is interested in a precise
question: finding necessary conditions for the converse of the given Problem 2. This can be addressed
through the LocusEquation(AreConcyclic(D,E,A,S),C) command. Figure 5 shows the output of
this command, a very complicated degree-10-equation that (seems) to be the product of eight lines and
the circle c. The locus described by this equation includes all positions of a free point C such that
A,S,D,E are concyclic (where A,S,D,E are defined repeating the construction of the previous figures,
except for point C, that here is just a free point, not the mirror of A with respect to the line BD).

Let us remark that the output is a numerical equation, with coefficients depending on the coordinates

B. Ariño-Morera et al. 105

Figure 4: Confirming the truth of the statement in Problem 2, and many others, through the Stepwise-
discover command.

Figure 5: Locus of C (in red color) for the concyclicity of A,S,D,E, assuming only that B,D are in a
circle centered at A.

106 GeoGebra Discovery and an Austrian Mathematics Olympiad Problem

Figure 6: Visually checking the validity of the locus of C for the bisector line of BD.

of the free points A,B,D in the construction. So, it is neither a symbolic geometric object, nor an object
we could enter in the ART to check if placing C over some of the components implies A,S,D,E are
concyclic. We would have to learn how to build the locus starting from A,B,D, we would have to find
some intrinsic geometric description of the locus, say, the analysis and discussion of the different lines.

In this particular case is not difficult to state that placing C in the circle yields a degenerate case (since
then C = E = S). And the same happens for several of the lines, except for the line that is perpendicular
to BD, see Figure 6 and, for a rigorous verification, Figure 7, displaying the original construction, but
now ABCD forms a kite, since C is placed anywhere on the bisector line of BD.

Leaving aside the curious fact that, using GeoGebra Discovery ART we have been able to solve, and
to generalize, an Olympiad Problem, we consider it is important to reflect on some other consequences—
on the educational context—of the sequence of facts we have described in this section.

Indeed, it is well known the use of locus computation as a relevant methodology in mathematics
education. For example, let us refer to the recent chapter [5], where the authors describe an experience
involving over 200 secondary education students from Sicily (Italy), analyzing in detail the impact of
GeoGebra on the performance of the students that had to find and to describe different geometric loci.

We have realized (see [6]) that the use of GeoGebra Discovery ART for accomplishing the same tasks,
would imply a substantial methodological change: looking for most of the considered loci would turn
out to be quite trivial, if it is just required finding the equation or displaying the graph of the locus. On
the other hand, we think that the considered rich learning environment remains if the proposed activities
focus, instead, on the description of the intrinsic geometric features of the obtained locus, as well as
on their construction, two tasks that GeoGebra Discovery is not able to address automatically, but can
contribute to its achievement.

In this context, we consider that the extended version of Problem 2 we have considered in this sec-

B. Ariño-Morera et al. 107

Figure 7: Proving the validity of Problem 2 extended by placing C just on the bisector line of BD.

tion, provides another excellent environment for exploring geometric locus with the help of automated
reasoning tools, showing both their limitations as well as their useful features.

4 Grading Problem 2

Very recently we have proposed an algorithmic way to associate, to each geometry statement, a grade
that intends to estimate its difficulty or interest. It is yet a proposal in a very initial state—although
already implemented in the last version of GeoGebra Discovery, through the ShowProof command—
that, roughly speaking, computes (a bound on) the degree of the polynomials gi expressing the thesis
polynomial T as a combination of the hypotheses polynomials hi, i.e. T = ∑i gi ·hi.

We refer to [4] for further details and examples. Let us just mention here that most classical, ele-
mentary theorems (e.g. Pythagoras, Intersection of Medians, Intersection of Heights, etc.) get grades 1
or 2. Or a partial formulation of the 9-point circle theorem gets complexity 4 (see Figure 8) while this
Problem 2 of the Austrian Mathematical Olympiad has got grade 10! See Figure 9.

To obtain this grade, GeoGebra Discovery internally computes a Gröbner basis of the hypotheses
ideal (with respect to a certain degree ordering: the impact of the choice of order is still under study),
with 13 elements. This computation outputs, as well, the expression of each element of the basis in
terms of the hypotheses, with coefficients of degree bounded by 8. Then the expression of the thesis
as a combination of the elements in the Gröbner basis is computed. Let us remark that in this formula,
the degree of the multiplier polynomials is bounded by 3, but considering more precisely the sum of
the involved degrees (of the polynomial multiplying a certain element of the Gröbner basis times the
maximum of the degrees of the polynomials expressing this element in terms of the hypotheses), the
bound is limited to 10, a number that we think is adequate to be associated to a Mathematical Olympiad

108 GeoGebra Discovery and an Austrian Mathematics Olympiad Problem

Figure 8: Estimating the complexity of proving the concyclicity of the midpoints of the sides and the feet
of a height in a triangle.

Figure 9: Estimating the complexity of Problem 2.

B. Ariño-Morera et al. 109

Problem of an intermediate level of difficulty.

5 Conclusions

In our communication we have illustrated, considering just a single problem from the Austrian Mathe-
matical Olympiad 2023, several facts concerning the use of GeoGebra Discovery in the classroom:

1. the ability of GeoGebra Discovery Automated Reasoning Tools (ART) to immediately solve a
problem presented at a regional Mathematics Olympiad, that the recent GeoGebra ART complexity
measure ranks quite highly,

2. the use of GeoGebra Discovery as a decisive auxiliary tool to develop and confirm new, non-trivial,
conjectures, such as the generalization of the proposed problem,

3. the need to change the methodological focus when working with locus computation in the class-
room with Dynamic Geometry programs, from finding equations and displaying its graph, to an-
alyzing and obtaining the geometric characteristics of the involved locus, and its construction, by
using GeoGebra Discovery ART.

The opportunity to consider simultaneously all these items around a single problem, is probably the
most relevant contribution of this communication.

References
[1] Kovács, Z.; Recio, T.; Vélez, M. P.: Automated reasoning tools with GeoGebra: What are they? What are

they good for? In: P. R. Richard, M. P. Vélez, S. van Vaerenbergh (eds): Mathematics Education in the
Age of Artificial Intelligence: How Artificial Intelligence can serve mathematical human learning. Series:
Mathematics Education in the Digital Era, Vol. 17, pp. 23–44. Springer Cham (2022). doi:10.1007/978-3-030-
86909-0_2

[2] Ariño-Morera, B.; Recio, T.; Tolmos, P.: Olympic geometry problems: human vs. machine. Communication
to the CADGME (Digital Tools in Mathematics Education) 2022 Conference. Abstracts available at https:
//drive.google.com/file/d/1qF4ceMg6gNklOPa1JVkgKND1dOqNmyka/viewpp

[3] Ariño-Morera, M. B.: GeoGebra Discovery at EGMO 2022. Revista Do Instituto GeoGebra Internacional De
São Paulo, 11(2), 005-016.2022. doi:10.23925/2237-9657.2022.v11i2p005-016

[4] Kovács, Z.; Recio, T.; Vélez, M. P.: Showing proofs, assessing difficulty with GeoGebra Discovery.
Communication to the ADG (Automated Deduction in Geometry) Conference, Belgrade, 2023. https:
//adg2023.matf.bg.ac.rs/downloads/slides/ShowingProofsZoltanRecioVelez.pdf

doi:10.13140/RG.2.2.31885.31205
[5] Mammana, M.F.; Pennisi, M.; Taranto, E.: Teaching Intriguing Geometric Loci with DGS. In: Aldon, G.,

Hitt, F., Bazzini, L., Gellert, U. (Eds). Mathematics and Technology. Advances in Mathematics Education.
Springer, Cham (2017). doi:10.1007/978-3-319-51380-5_26

[6] Ariño-Morera, B.; Recio, T.; Tolmos, P.: Teaching Intriguing Geometric Loci with GeoGebra Discovery.
Communication to the CADGME (Digital Tools in Mathematics Education) 2023 Conference. https://si
tes.google.com/view/cadgme2023/program

https://doi.org/10.1007/978-3-030-86909-0_2
https://doi.org/10.1007/978-3-030-86909-0_2
https://drive.google.com/file/d/1qF4ceMg6gNklOPa1JVkgKND1dOqNmyka/viewpp
https://drive.google.com/file/d/1qF4ceMg6gNklOPa1JVkgKND1dOqNmyka/viewpp
https://doi.org/10.23925/2237-9657.2022.v11i2p005-016
https://adg2023.matf.bg.ac.rs/downloads/slides/ShowingProofsZoltanRecioVelez.pdf
https://adg2023.matf.bg.ac.rs/downloads/slides/ShowingProofsZoltanRecioVelez.pdf
https://doi.org/10.13140/RG.2.2.31885.31205
https://doi.org/10.1007/978-3-319-51380-5_26
https://sites.google.com/view/cadgme2023/program
https://sites.google.com/view/cadgme2023/program

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 110–123, doi:10.4204/EPTCS.398.14

© A. Hota et al.
This work is licensed under the
Creative Commons Attribution License.

Solving Some Geometry Problems of the Náboj 2023 Contest
with Automated Deduction in GeoGebra Discovery

Amela Hota
The Private University College of Education of the Diocese of Linz, Austria

amela.hota@ph-linz.at

Zoltán Kovács
The Private University College of Education of the Diocese of Linz, Austria

zoltan.kovacs@ph-linz.at

Alexander Vujic
The Private University College of Education of the Diocese of Linz, Austria

alexander.vujic@ph-linz.at

In this article, we solve some of the geometry problems of the Náboj 2023 competition with the
help of a computer, using examples that the software tool GeoGebra Discovery can calculate. In
each case, the calculation requires symbolic computations. We analyze the difficulty of feeding the
problem into the machine and set further goals to make the problems of this type of contests even
more tractable in the future.

1 Introduction

With the everyday rise of Artificial Intelligence (AI), the power of computers has become tangible for the
masses. Yes, it can do your homework (not just in maths), but it can also pass your A-level exams.1 A
long series of ad-hoc studies have shed light on what the present can offer: often instant and perfect an-
swers to questions that take years of learning to solve by human means. This raises a number of research
questions, such as whether the current school system is still needed, whether teachers are still needed,
or whether it is enough to have AI.2 Of course, alongside the praise, there are also many criticisms: AI
sometimes makes mistakes, especially in textual problem settings where the question is formulated in a
challenging way.

Automatic geometrical derivations, on the other hand, are perfect and, as such, there is no such a
major possibility of error. The answer is not derived from a statistically computed result (as is so often
the case with AI-based algorithms), but a verifiable derivation is given in each case. We do not claim
that the two directions cannot meet once, and indeed, ultimately, AI should refer to, i.e. use, the ADG
algorithm as a subroutine. There are already prototypes working in this direction, e.g. the WolframAlpha
system has been successfully coupled with an AI frontend.3

1See https://telex.hu/tech/2023/05/09/chatgpt-bing-mesterseges-intelligencia-matematika-erett
segi.

2See Bill Gates’ notes at https://www.gatesnotes.com/ASU-and-GSV?WT.mcid=20230419100000ASU-GSV-2023B
G-EM.

3See Stephen Wolfram’s notes at https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram
-superpowers/.

http://dx.doi.org/10.4204/EPTCS.398.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://telex.hu/tech/2023/05/09/chatgpt-bing-mesterseges-intelligencia-matematika-erettsegi
https://telex.hu/tech/2023/05/09/chatgpt-bing-mesterseges-intelligencia-matematika-erettsegi
https://www.gatesnotes.com/ASU-and-GSV?WT.mc_id=20230419100000_ASU-GSV-2023_BG-EM_
https://www.gatesnotes.com/ASU-and-GSV?WT.mc_id=20230419100000_ASU-GSV-2023_BG-EM_
https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/
https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/

A. Hota et al. 111

In this contribution, we aim for less. We are just trying to solve competitive problems with an ADG
algorithm in the background. However, we leave the exact task setting to the user. This means that it
is up to the user to provide the exact flow of the editing task with concrete steps. This must be done in
GeoGebra Discovery4. However, for the inference, which requires a symbolic calculation in the tasks,
the ADG algorithm steps in and, as we will see, gives the correct result in all cases. In the second half of
the paper, we propose how the range of problems that can be solved in this way can be further extended.

2 The Náboj Contest

According to naboj.org, Náboj is an international mathematical competition designed for teams of five
high-school students that represent their schools, which lasts 120 minutes and where they are trying to
solve as many given problems as possible. As soon as the team correctly solves any of the problems,
they receive new ones. The solutions of the problems are usually numerical. The team that solves most
problems correctly in the given time limit wins. The Náboj problems in contrast to the most school
exercises require a certain amount of inventiveness and ingenuity.

Traditionally, many geometric tasks require proving. Checking if a proof is correct may be a difficult
process for the organizers, so it is usually avoided to set proof related problems during contests like
Náboj. Instead, problem settings require computing fractions, or better, providing a non-trivial algebraic
number. As a consequence, geometric problems in Náboj are mostly non-geometric, or if still so, they
are set in a way to require a numerical result.

All the problems we discuss in this paper will have exact answers, non-trivial fractions or some root
expressions. It is clear that the exact definition of the latter requires symbolic computation. By default,
software that allows a geometric problem to be well visualized (GeoGebra in particular) provides only
numerical support for measuring the quantity in question. However, the software presented here, the
GeoGebra fork GeoGebra Discovery, is capable of making measurements symbolically. This also means
that a full proof has already been created in the background, but the user is not informed about this.

The use of electronic aids in the Náboj competition has recently been restricted since the competition
is on-site again. In the long term, electronic assistance will certainly not be eliminated. It is a fact that
students are turning to AI for quick help, and the tasks set must take this into account. It may seem like
fun, but the rapid pace of the modern age also poses a huge challenge for assignment writers: is the task
set difficult enough to prevent the AI from giving a quick, accurate, complete answer? But the task setter
is not only fighting the AI, but also the ADG algorithm: cannot the task be solved in a flash if the right
data is entered into the right software in the right way and the right button is pressed?

Overall, we conclude that the tasks set should be tested with different software before they are an-
nounced, in order to avoid embarrassing surprises. Even if we manage to keep the students working with
paper and pencil only for the 2 hours of the competition, i.e. to exclude electronic assistance, it raises
serious questions about what the AI and ADG algorithms can achieve with the tasks set. In the prelimi-
nary analysis of problems, but also in retrospect, when we return to the correct solution of problems in
mathematics class or in a specialised course, it may be useful to use the electronic method.

4GeoGebra Discovery is freely available at https://kovzol.github.io/geogebra-discovery.

www.naboj.org
https://kovzol.github.io/geogebra-discovery

112 Solving Some Geometry Problems of the Náboj 2023 Contest with GeoGebra Discovery

Figure 1: Problem setting 6 and the official solution of Náboj 2023

3 Mathematical Background

The method used by GeoGebra Discovery is essentially the Recio-Vélez method [1], complemented by
the algorithm given in [2]. For the problems of the Náboj competition we are discovering a ratio of two
lengths, it is therefore worth using an elimination method.

As an illustration, we show how the program solves Problem 6 of Náboj 2023 (Fig. 1).
When drawing the figure in GeoGebra Discovery (Fig. 2), we learn that the problem can be simplified

to three squares. First, an arbitrary square ABCD is drawn. Then midpoint E of AC is defined. This point
will be then reflected about A to get E ′ and about B to get E ′1. Now a second square E ′E ′1FG is drawn.
Finally, by reflecting E about E ′ and E ′1 we get points E ′2 and E ′3, respectively, and create the square
E ′2E ′3HI as well. By defining s = AC, t = E ′2E ′3 and P = 4t, we can use GeoGebra Discovery’s Relation
tool to compare s and P and we learn (after pressing the button “More. . .” to obtain a symbolic analysis)
that P = 8

√
2 ·s. The report of the symbolic analysis of Problem 6 in GeoGebra Discovery shows that “It

is generally true that: P = (8
√

2) · s under the condition: the construction is not degenerate” (see Fig. 3).
The construction steps in GeoGebra Discovery for Problem 6 can be taken from Table 1. (These extra
explanations are listed in the Appendix.)

Here we highlight that the problem setting could be further simplified by skipping the construction of
the two latter squares. In fact, only the reflection points matter. Also, we used the fact that the perimeter
of a square equals to four times the length of a side, but this piece of information could have been ignored
and asked the program to learn this on its own.

At this point, we will jump to the last steps and assuming that it is possible to do that without
loss of generality, GeoGebra Discovery, in the background (in an invisible way for the normal user,
but in a verifiable way via its debug messages), decides to substitute A = (0,0). This will simplify the
computations and the final question is if e21 : m · v24 = 4v23 holds for a given value of m. This can be
answered by eliminating all variables but m from all of the equations e1,e2, . . . ,e14,e18, . . . ,e21, and we
learn that m2 = 128. That is, by assuming that m > 0, we obtain that m = 8

√
2.

The algebraic solution is, of course, quite complicated. Also, the way used in GeoGebra Discovery
by constructing all the required objects, may still be very complicated when compared to the quick
official solution.

A. Hota et al. 113

Figure 2: Sketching Problem 6 in GeoGebra Discovery

4 Problems that can be Solved with GeoGebra Discovery

In this section we list four additional problems that can be solved with GeoGebra Discovery, assuming
some effort. In fact, some other Náboj 2023 problems can be supported as well, but they may require
some additional steps. See the next section for more details.

4.1 Pentominos (Problem 15)

The problem setting can be seen in Fig. 4.
At a first look, it seems complicated to draw a figure that describes the problem setting adequately.

Some attempts may lead to Fig. 5: lines g1 = EK and (after extending the large pentomine with square
DINF) l1 =HN help finding point O. Then, segment m1 =EO will be one side of the small X-pentomino,
and it will be possible to compare it to one of the sides of the large pentomino. For more details about
the construction steps have a look at Table 2.

Now, asking the relation between m1 and f we obtain that f = 1
2 ·
√

10 ·m1. Even if GeoGebra
Discovery cannot compare areas symbolically in a direct way, we can still conclude that the ratio of the

114 Solving Some Geometry Problems of the Náboj 2023 Contest with GeoGebra Discovery

Figure 3: Report of a symbolic analysis of Problem 6 in GeoGebra Discovery

Figure 4: Problem setting 15

Figure 5: Problem setting 15 in GeoGebra Discovery

A. Hota et al. 115

Figure 6: Problem setting 23

areas must be
f 2 : m1

2 = 10 : 4 = 5 : 2.

We remark here that a sophisticated way to do the construction may give a quicker result than the
official solution. It may be, however, not trivial to find this alternative solution.

4.2 A Right Triangle (Problem 23)

The problem setting can be seen in Fig. 6.
We use some recent features of GeoGebra Discovery to solve this problem. Most importantly, a

square is created based on free points A = (0,0) and B = (1,0). They must not be defined with the help
of any axes, because in that case the background proof will fail and no output will be obtained. Here,
instead of copying the initial square several times, we use the Dilate tool to stretch the segment AB and
AC to get B′ and C′ accordingly. Another trick is to create the diagonal j = AD of the initial square. Now
the intersection E of k = B′C′ and j is the searched point. Finally, projecting E on n = AB′ and obtaining
intersection point F of perpendicular l and line n, comparison of m = EF and f = AB is to be done. And,
indeed m = 253/34, as expected. (See the sketch in Fig. 7 in GeoGebra Discovery.)

Here we remark that finding the rational value 253/34 (it is approximately 7.44) seems very difficult
unless one does not solve the problem explicitly (as shown in the official solution, by using an equation).
If a user has some routine in GeoGebra, sketching the problem may take a shorter time than finding the
required equation (even if it is a linear one). The construction steps can be found in Table 3.

4.3 A Triangle and a Circle (Problem 47)

Problem 47 was not even accessible during the contest for most of the teams because it was almost the
last problem in the list and they were not that fast.

The problem setting can be seen in Fig. 8.
The official solution of Problem 47 required some non-trivial ideas. When using GeoGebra Discov-

ery, we may face the question how the problem setting can be constructed, which is shown on Table 4.
Since the lengths AD = 8 and BD = 3 are given, it seems reasonable to create AB arbitrarily and create
D by using the command Dilate(B, 8/11, A). Now, we create another point A′ in a similar way, by
placing A′ on AB and letting AA′ = 7. This helps us restricting the position of O because it must be

116 Solving Some Geometry Problems of the Náboj 2023 Contest with GeoGebra Discovery

Figure 7: Sketch for Problem 23

Figure 8: Problem setting 47

on the circumcircle of the circle c with center A and radius AA′. On the other hand, O must lie on the
perpendicular bisector g of AB. At this point we already know the position of O = c∩g. (In fact, there
may be two solutions here, but they are identical in the sense of symmetry.)

Now, by reflecting D about O we obtain E. By having E, we already know the line BC. To get the
point C we only have to intersect this line with the circumcircle c. (Again, there are two solutions, but
the other one C′ leads to a degenerate case because it yields A =C′. To force getting the non-degenerate
case we need to click near the intersection point with the mouse. Otherwise GeoGebra Discovery will
compute with both cases at the same time.)

As a final step, we designate the unit length. Luckily, DA′ is exactly 1. So we just have to compare
j = AE and i = DA′. As expected, the result is j = 4/7 ·

√
21 · i. Thus, CE = j = 4

√
21

7 .
The sketch can be seen in Fig. 9.

5 Problems that Require Further Improvements

In this section we take an overview of other examples that cannot be fully solved in simple steps in Geo-
Gebra Discovery. Some hints may be, however, obtained. Instead of getting such hints, we summarize
how the software tool could be extended to be able to give full solutions for such problems.

A first set of problems (4, 25 and 58, see Fig. 10, 12 and 16) are related with angles, another
set (Problems 18, 30, 34, 43 and 58, see Fig. 11, 13, 14, 15 and 16) is about areas. Angle support (via
symbolic computation) is very poor in GeoGebra Discovery: this has roots in a non-bijective relationship
between angles and their algebraic counterparts. Area support is also somewhat minimal, because it is
restricted to triangles, and the expected way of use is not polished yet in the software tool.

A. Hota et al. 117

Figure 9: Sketch for Problem 47

Figure 10: Problem 4

Figure 11: Problem 18

118 Solving Some Geometry Problems of the Náboj 2023 Contest with GeoGebra Discovery

Figure 12: Problem 25

Figure 13: Problem 30

Figure 14: Problem 34

Figure 15: Problem 43

A. Hota et al. 119

Figure 16: Problem 58

One can find that Problems 25 and 58 have some common roots. They can be formulated with
“implicit assumptions”.

We have a closer look at Problem 25. Let point F be the next bounce, when we assume that a
laser beam starts from point P. Now, a command like LocusEquation(F==B,∠DCP) could address
the question (but having angles in the second parameter is not implemented). In fact, we may already
get the exact position of P when applying consecutive reflections. According to Fig. 17, when reflect-
ing P about CD, and intersecting the line connecting D and the mirror image P′ with the semicircle,
we can obtain E. Another reflection can yield P′′ and the final visualization can be achieved with
LocusEquation(AreCollinear(E,P′′,B),P). Since GeoGebra Discovery shows 5 isolated points,
one can conjecture that there is something to do with a regular pentagon. Here, unfortunately, the factor-
ization of the obtained polynomial does not help, because the interesting quadratic numbers are appearing
just approximately. A deeper symbolic study shows that (by assuming A = (0,0) and B = (1,0)) for the
x-coordinate of P is one of the roots of the polynomial 64x5−128x4 +80x3−17x2 + x, and they are

0,
1
16
· (−2 ·

√
5+6),

1
4
,

1
16
· (2 ·
√

5+6),1,

and to these values belong the α values

0o,36o,60o,288o,360o,

the latter two ones without real geometrical meaning. Finally we can conclude that α = 36o, this is the
only meaningful solution. But, all of this derivation requires some additional steps, GeoGebra Discovery
alone does not bring a satisfactory final answer.

Finally, we show a wrong conjecture for Problem 58, based on GeoGebra Discovery. Like Problem
25, an implicit locus equation seems here helpful. Let us, first, create a regular triangle AB′C with
A = (0,0), B = (1,0), and reflect A about B′ to get B. Clearly, these preparations are sufficient to
ensure assumptions AB : AC = 2 : 1 and ∠BAC = 60o (See Fig. 18). This dummy triangle has the area√

3
2 . Now, we create an arbitrary point P and connect it with points A, B and C, to get segments i, j

and k, respectively. We create two locus equations with the commands LocusEquation(j/k==5/2,P)
and LocusEquation(i/k==sqrt(3)/2,P). Now, we want to find the correct position for P, so we
consider the intersection of the two locus curves visually. After zooming in, we learn that for P =
(0.4739140532,0.24828147621) we obtain k = 0.618294458 which seems to be close enough to the
well known number f =

√
5−1
2 . If so, the triangle must be enlarged by a factor 1/ f ·2 which is twice the

golden ratio, 2ϕ =
√

5+1. Finally, the triangle will have the area
√

3
2 · (
√

5+1)≈ 9.06913 . . .
Assuming that the golden ratio plays a role here is, however, incorrect. The correct solution is

6+7·
√

3
2 ≈ 9.06217 . . .5 Note that the ratio between the two values is 1.000767 . . . which is remarkably

small difference.
5See https://math.old.naboj.org/archive/problems/pdf/math/2023ensol.pdf for a full computation.

https://math.old.naboj.org/archive/problems/pdf/math/2023_en_sol.pdf

120 Solving Some Geometry Problems of the Náboj 2023 Contest with GeoGebra Discovery

Figure 17: A possible approach to solve Problem 25

Figure 18: Obtaining an incorrect conjecture to solve Problem 58

A. Hota et al. 121

6 Conclusion

The last section showed that GeoGebra Discovery can be a useful tool to get a correct conjecture if the
right steps are taken to finish the solution, but it can also be misleading in some delicate situations. On
the other hand, several contest problems can be handled and solved with minimal effort by using this
tool. We need to admit that a good knowledge of the software is unavoidable. However, experienced
users may need just a couple of steps to achieve the solution.

For a future improvement, full support of computing angles and areas seems to be a great step for-
ward. Some sophisticated problems, however, may need further developments towards symbolic com-
putations that are based on implicit assumptions.

7 Acknowledgements

The second author was partially supported by a grant PID2020-113192GB-I00 (Mathematical Visualiza-
tion: Foundations, Algorithms and Applications) from the Spanish MICINN.

References
[1] Recio, T., Vélez, M.P.: Automatic discovery of theorems in elementary geometry. Journal of Automated

Reasoning 23, 63–82 (1999). doi:10.1023/A:1006135322108
[2] Vajda, R., Kovács, Z.: GeoGebra and the realgeom reasoning tool. In: Fontaine, P., Korovin, K., Kotsireas,

I.S., Rümmer, P., Tourret, S. (eds.) PAAR+SC-Square 2020. Workshop on Practical Aspects of Automated
Reasoning and Satisfiability Checking and Symbolic Computation Workshop 2020. pp. 204–219 (6 2020),
https://ceur-ws.org/Vol-2752/paper15.pdf

8 Appendix

In this Appendix, we provide the construction protocols in GeoGebra Discovery for the problems pre-
sented above.

Table 1: Construction protocol in GeoGebra Discovery for Prob-
lem 6

No. Name Toolbar Icon Description

1 Polygon poly1 Polygon(A, B, 4)
2 Point E Midpoint of A, C
3 Point E’ E mirrored at A
4 Point E’_1 E mirrored at B
5 Polygon poly2 Polygon(E’, E’_1, 4)
6 Point E’_2 E mirrored at E’
7 Point E’_3 E mirrored at E’_1
8 Polygon poly3 Polygon(E’_2, E’_3, 4)
9 Segment t Segment E’_2, E’_3

10 Segment s Segment A, C

https://doi.org/10.1023/A:1006135322108
https://ceur-ws.org/Vol-2752/paper15.pdf

122 Solving Some Geometry Problems of the Náboj 2023 Contest with GeoGebra Discovery

Table 1: Construction protocol in GeoGebra Discovery for Prob-
lem 6

No. Name Toolbar Icon Description

11 Number P 4t

Table 2: Construction protocol for Problem 15

No. Name Toolbar Icon Description Value

1 Polygon poly1 Polygon(A, B, 4) poly1 = 7.33
2 Segment f Segment A, B f = 2.71
3 Polygon poly2 Polygon(D, C, 4) poly2 = 7.33
4 Polygon poly3 Polygon(C, B, 4) poly3 = 7.33
5 Polygon poly4 Polygon(A, D, 4) poly4 = 7.33
6 Polygon poly5 Polygon(B, A, 4) poly5 = 7.33
7 Segment g_1 Segment E, K g1 = 8.56
8 Polygon poly6 Polygon(I, D, 4) poly6 = 7.33
9 Segment l_1 Segment N, H l1 = 8.56

10 Point O Intersection of g_1 and
l_1

O = (1.18,3.29)

11 Segment m_1 Segment O, E m1 = 1.71

Table 3: Construction protocol for Problem 23

No. Name T. Icon Description Value

1 Point A A = (0,0)
2 Point B B = (1,0)
3 Point B’ B dilated by factor 23 from A B′ = (23,0)
4 Segment n Segment A, B’ n = 23
5 Polygon poly1 Polygon(B, A, 4) poly1 = 1
6 Segment f Segment B, A f = 1
7 Line j Line D, A j :−x−1y = 0
8 Point C’ C dilated by factor 11 from A C′ = (0,−11)
9 Segment k Segment C’, B’ k = 25.5

10 Point E Intersection of j and k E =
(7.44,−7.44)

11 Line l Line through E perpendicular to
n

l : x = 7.44

12 Point F Intersection of l and n F = (7.44,0)

A. Hota et al. 123

Table 3: Construction protocol for Problem 23

No. Name T. Icon Description Value

13 Segment m Segment F, E m = 7.44

Table 4: Construction protocol for Problem 47

No. Name T. Icon Description Value

1 Point B B = (−5.41,−5.8)
2 Point A A = (−0.78,4.18)
3 Line g Perpendicular Bisector of AB g : 4.63x+9.98y =

−22.4
4 Point D B dilated by factor 8/11 from A D =

(−4.15,−3.08)
5 Point A’ A dilated by factor 1/8 from D A′ =

(−3.73,−2.17)
6 Circle c Circle through A’ with center A c : (x + 0.78)2 +

(y−4.18)2 = 49.04
7 Point O Intersection of c and g O = (0.84,−2.63)
8 Circle d Circle through A with center O d : (x − 0.84)2 +

(y+2.63)2 = 49.04
9 Point E D mirrored at O E = (5.82,−2.19)

10 Line h Line A, E h : 6.37x + 6.6y =
22.63

11 Segment f Segment A, B f = 11
12 Segment i Segment D, A’ i = 1
13 Point C Intersection of d and h C = (7.7,−4.01)
14 Segment j Segment C, E j = 2.62

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 124–131, doi:10.4204/EPTCS.398.15

© I. Ganglmayr & Z. Kovács
This work is licensed under the
Creative Commons Attribution License.

Using Java Geometry Expert as Guide
in the Preparations for Math Contests

Ines Ganglmayr
The Private University College of Education of the Diocese of Linz, Austria

ines.ganglmayr@ph-linz.at

Zoltán Kovács
The Private University College of Education of the Diocese of Linz, Austria

zoltan.kovacs@ph-linz.at

We give an insight into Java Geometry Expert (JGEX) in use in a school context, focusing on the
Austrian school system. JGEX can offer great support in some classroom situations, especially for
solving mathematical competition tasks. Also, we discuss some limitations of the program.

1 Introduction

The use of technical media in Austrian mathematics lessons is largely limited to the GeoGebra medium.
GeoGebra [5] proved to be a great tool to visualize and analyze classroom problems, but certain tasks
like proving geometric facts rigorously by using a visual explanation is not supported by GeoGebra. As
an alternative approach, we focus on introducing JGEX [6] as opposed to GeoGebra, specifically in the
area of competition tasks.

Geometric proofs are no longer an important part of secondary school curriculum in Austria and
many other countries. Formerly, however, Euclidean plane geometry and proving more complicated
facts was a part of the expected knowledge of secondary level. There are, however, some initiatives, that
call for rethinking school curriculum, by focusing on structured thinking again.

According to the Ministry of Education and Science in Portugal, for example, structured thinking is
one of the main goals for teaching mathematics. It is also anchored in Austrian curricula that the qualita-
tive development of tasks requires various dimensions of content, dimensions of action and dimensions
of complexity, which hierarchically structure the understanding and learning of students. Analytically
consistent thinking and the acquisition of mathematical skills are in the foreground. A central concern of
mathematics is learning processes and techniques to acquire connections as well as insights and to solve
problems [3].1

One method to achieve this can be done by examining properties of certain structures. To achieve
this, a concept of hierarchical structures is developed, and a systematic investigation is attempted. This
form of working out is part of hypothetical-deductive thinking, which can be equated with mathemati-
cal thinking. But beyond that, inductive reasoning is also part of mathematical understanding, since it
enables assumptions and conclusions [2].

According to Duval, three cognitive processes are involved in learning geometry. These are visual-
ization, construction and reasoning. Those can be activated separately but also together. They may or

1New version of the curriculum from Portugal: https://eurydice.eacea.ec.europa.eu/national-education-s
ystems/portugal/national-reforms-school-education.

http://dx.doi.org/10.4204/EPTCS.398.15
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://eurydice.eacea.ec.europa.eu/national-education-systems/portugal/national-reforms-school-education
https://eurydice.eacea.ec.europa.eu/national-education-systems/portugal/national-reforms-school-education

I. Ganglmayr & Z. Kovács 125

may not be interdependent. Indeed, Duval emphasizes that these three processes necessary for mathe-
matical understanding and the mastery of geometry are closely related. JGEX can contribute to this and
support children and young people in these three processes [4].

In the context of a university course organized for prospective mathematics teachers at the Private
University College of Education of the Diocese of Linz during the winter semester of 2022, some pre-
liminary work was conducted to assess whether JGEX could be used to aid in solving geometric proof
problems. This university course, under the guidance of the second author, primarily emphasized solving
a broad spectrum of contest problems. As we will later demonstrate, JGEX proved to be an outstanding
software tool for conducting such experiments. Additionally, participants in this university course at-
tended a preparatory session for the Mathematics Olympiad in February 2023. During this session, they
had the opportunity to gain firsthand experience and interact with young learners and their instructors,
enabling them to derive conclusions regarding the feasibility of preparing for contest problems without
technological assistance.

On the preparation day for the Mathematics Olympiad at Johannes Kepler University of Linz, Aus-
tria (JKU), 70 young learners geared up for a mathematics competition. The teaching staff focused on
prime numbers and the pigeonhole principle as part of their preparations. The day commenced with an
introduction to the content, followed by a 90-minute group exercise session facilitated by students [1].

Even if the topic of prime numbers and the pigeonhole principle have not much to do with geometry,
the tasks sometimes required a geometric overview and therefore structured thinking. The learners were
sometimes overwhelmed with the processing of the geometric tasks. This observation was concluded by
the participating prospective mathematics teachers, including the first author of this paper. A deficit in
the three categories of visualization, construction and reasoning when solving the competition tasks with
geometrical connections, was recognizable. The students often asked for help or verbally communicated
their helplessness. While this is not yet covered with our research, it seems a plausible reason that
structured thinking may require further support at all levels of school mathematics education.

In this paper and the related research, we assumed that JGEX can offer support in improving struc-
tured thinking. This geometry program may offer some missing steps in the visualization. Also, it can
lead to constructions and above all it may provide various possibilities for arguments. Java Geometry
Expert often guides students to solve more complex problems.

When solving competition tasks, the focus is on recognizing connections and grouping arguments
for solutions. For this reason, JGEX is ideal in combination with competitive tasks.

We highlight that this paper is just a first report on our experiments, and it requires further research.
However, we think that the first experiences are already promising.

2 Testing of Competition Tasks Using JGEX

JGEX is a complex software system that supports geometric proofs on “equational” properties of a planar
figure. This means that ratios of quantities (like lengths of segments or size of angles) can be proven.
Also, perpendicularity, parallelism, collinearity, concyclicity and related properties can be checked and
proved. This limitation arises from the methods employed within JGEX, which encompass polynomial
techniques such as Wu’s method, the Gröbner basis method, as well as the Geometry Deductive Database
method. Consequently, properties involving inequalities are not accommodated.

We show two examples. Below is a competition task that can be solved using JGEX and another
task that is “equational” but JGEX does not provide any useful information on how to solve it. The tasks
are preparatory materials for the mathematical competition in the field of geometry, collected by teacher

126 Using Java Geometry Expert as Guide in the Preparations for Math Contests

Ralf Roupec from the Bundesrealgymnasium Freistadt, a well-known expert and team member for the
preparations for math contests in Upper Austria.

2.1 A Solvable Problem

We consider a Problem of BAMO (Bay Area Mathematical Olympiad2) 1999:

Set O = (0,0), A = (0,a), B = (0,b), where 0 < a < b. Let k be the circle with diameter
AB, and let P be an arbitrary point on k. The line PA intersects the x-axis at point Q.

Show that ∠BQP = ∠BOP.

A solution via JGEX. Here JGEX supports step-by-step solving through important properties that lead
to the proof process. By collecting the various insights, students are supported in solving the problem.
See figures 1–5.

Draw the construction
and then press Fix (be-
low).

Figure 1: A step-by-step solution provided by JGEX, step 1

Open the folder: Con-
gruent angles.

Figure 2: A step-by-step solution provided by JGEX, step 2

When performing further observations, JGEX can provide detailed information. See figures 6–8.

2.2 A Problem that is Difficult to Solve Automatically

We consider another problem from Roupec’s collection:
2The web page of the Bay Area Mathematical Olympiad is at https://www.bamo.org.

https://www.bamo.org

I. Ganglmayr & Z. Kovács 127

Figure 3: A step-by-step solution provided by JGEX, step 3

Select ∠[BQP] =
∠[BQA] and then right
click Prove.

Figure 4: A step-by-step solution provided by JGEX, step 4

The steps of proof are
shown.

Figure 5: A step-by-step solution provided by JGEX, step 5

128 Using Java Geometry Expert as Guide in the Preparations for Math Contests

Observation: Right angle
in triangle BPA.

Figure 6: Detailed information provided by JGEX, step 1

Observation: persistence
of the right angle. (Right
angle also in triangle
BQP.)

Figure 7: Detailed information provided by JGEX, step 2

Observation: Circle
through the points B, P,
Q, O.
Proof using the periph-
eral angle theorem:
The red circle shows the
existence of the periph-
eral angle theorem.
This is made possible by
the chord BP and con-
cludes that the ∠BQP =
∠BOP.

Figure 8: Detailed information provided by JGEX, step 3

I. Ganglmayr & Z. Kovács 129

Let ABC be an acute triangle with circumcircle k. Let be X the midpoint of the arc BC, that
does not contain A. The points Y and Z are defined analogously.

Show that the orthocenter of XY Z is center of the incircle of ABC.

See figure 9 for a graphical explanation.

Figure 9: A sketch of problem setting.

An attempt for getting the solution via JGEX. Figure 10 shows that, after creating the figure in
JGEX, there is a list provided by some fixed properties of the figure. There is, however, no automation
provided to detect the property asked by the problem setting. One can try, however, other ways to
formulate the problem, but an intuitive and quick way to obtain the required property (and its proof) does
not seem to be accessible.

Here we highlight that JGEX provides several ways to construct the figure, we chose an intuitive one
among the possible methods. For young learners, however, it may be challenging or even impossible to
find the required formulation to achieve the expected property.

3 Conclusion

JGEX comes with a sophisticated user interface, however, the lack of support of languages (currently
English, Chinese, German, Portuguese, Persian and Serbian are supported) and some other difficulties
of its intuitive usage may make JGEX challenging to be used in classroom situations out-of-the-box.
Among others, beginners may find difficult to look for the fixed properties of the given construction.

In our discussions during the university course activities, it turned out that JGEX can be indeed useful
for the introduction of geometric topics in the classroom, including demonstrating the steps of visual
proofs. After some technical introduction, students could construct simple figures and show connections
with a mouse click.

Even though, it remains a challenging task to formulate the problem setting in a way that JGEX can
provide a step-by-step proof. In our presentation we will show further examples in which JGEX can be
of help, and in which it cannot provide a proof. For young learners, avoiding such limitations seems to
be crucial for the everyday use.

An outlook for further research activities would be further work into how this program could be used
in regular classes in a compliant manner.

130 Using Java Geometry Expert as Guide in the Preparations for Math Contests

Figure 10: An attempt to collect some fixed properties in JGEX.

4 Acknowledgements

The second author was partially supported by a grant PID2020-113192GB-I00 (Mathematical Visualiza-
tion: Foundations, Algorithms and Applications) from the Spanish MICINN.

References

[1] F. Bitter & F. Baksa (2023): Rechnen macht Spaß: Vorbereitungstag für die Mathematik-Olympiade. https:
//www.jku.at/news-events/news/detail/news/rechnen-macht-spass-vorbereitungstag-fue

r-die-mathematik-olympiade.

[2] Bundesministerium für Finanzen (2023): Bundesrecht konsolidiert: Gesamte Rechtsvorschrift für Lehrpläne
– allgemeinbildende höhere Schulen, Fassung vom 08.06.2023. https://www.ris.bka.gv.at/Geltende
Fassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008568.

[3] E. Básico (2013): Programa e Metas Curriculares Matemática. https://www.dge.mec.pt/sites/defau
lt/files/Basico/Metas/Matematica/programa_matematica_basico.pdf.

[4] R. Duval (1998): Geometry from a cognitive point of view. In C. Mammana & V. Villani, editors: Perspec-
tives on the Teaching of Geometry for the 21st Century, Kluwer Academic Publishers, Dordrecht, pp. 37–52,
doi:10.1007/978-94-011-5226-6_3.

[5] M. Hohenwarter (2002): GeoGebra – ein Softwaresystem für dynamische Geometrie und Algebra der Ebene.

[6] Z. Ye, S.C. Chou & X.S Gao (2011): An introduction to Java Geometry Expert. In: Automated Deduction
in Geometry, 7th International Workshop, ADG 2008, Shanghai, China, September 22-24, 2008, Revised

https://www.jku.at/news-events/news/detail/news/rechnen-macht-spass-vorbereitungstag-fuer-die-mathematik-olympiade
https://www.jku.at/news-events/news/detail/news/rechnen-macht-spass-vorbereitungstag-fuer-die-mathematik-olympiade
https://www.jku.at/news-events/news/detail/news/rechnen-macht-spass-vorbereitungstag-fuer-die-mathematik-olympiade
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008568
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008568
https://www.dge.mec.pt/sites/default/files/Basico/Metas/Matematica/programa_matematica_basico.pdf
https://www.dge.mec.pt/sites/default/files/Basico/Metas/Matematica/programa_matematica_basico.pdf
https://doi.org/10.1007/978-94-011-5226-6_3

I. Ganglmayr & Z. Kovács 131

Papers, Lecture Notes in Computer Science. Volume 6301, Springer-Verlag, p. 189–195, doi:10.1007/978-3-
642-21046-4_10.

https://doi.org/10.1007/978-3-642-21046-4_10
https://doi.org/10.1007/978-3-642-21046-4_10

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 132–141, doi:10.4204/EPTCS.398.16

© A. Käferböck & Z. Kovács
This work is licensed under the
Creative Commons Attribution License.

The Locus Story of a Rocking Camel
in a Medical Center in the City of Freistadt

Anna Käferböck
The Private University College of Education of the Diocese of Linz, Austria

anna.kaeferboeck@gmx.at

Zoltán Kovács
The Private University College of Education of the Diocese of Linz, Austria

zoltan.kovacs@ph-linz.at

We give an example of automated geometry reasoning for an imaginary classroom project by using
the free software package GeoGebra Discovery. The project is motivated by a publicly available toy,
a rocking camel, installed at a medical center in Upper Austria. We explain how the process of a false
conjecture, experimenting, modeling, a precise mathematical setup, and then a proof by automated
reasoning could help extend mathematical knowledge at secondary school level and above.

1 Introduction

Automated reasoning in geometry is available in various software tools for several years, mostly in prover
packages. In this paper we pay our attention to a non-trivial presence of a geometry prover in the software
tool GeoGebra Discovery [4, 5] that aims at reaching secondary schools with its intuitive user interface.

Most importantly, we give a report on a STEM/STEAM project that was discussed in a group of
prospective mathematics teachers at the Private University College of Education of the Diocese of Linz
in Upper Austria during the winter semester 2022/23, in the frame of a course that focuses on exploiting
technology in mathematics education (36 students in 2 working groups). This project consisted of sev-
eral other experiments that were already communicated by the second author. The discussed activity, a
detailed study of the movement of a rocking camel, is however, completely new. Also, some major im-
provements in the underlying software tool (implemented by the second author with a substantial help of
the students’ feedback), makes it much easier to model similar project setups and conclude mathematical
knowledge in an automated way.

2 GeoGebra Discovery and its Automated Reasoning Tools

GeoGebra Discovery is a fork of GeoGebra,12 a de facto standard tool that supports mathematics edu-
cation at various levels of learners. GeoGebra 5.0 and above come with a built-in automated reasoning
subsystem. The supported commands: Prove, ProveDetails, LocusEquation and Envelope are further
developed in GeoGebra Discovery by an addition of various other commands like Discover, Compare
and RealQuantifierElimination. Also, several improvements of the existing commands are included.

1GeoGebra is an interactive geometry, algebra, statistics and calculus application, intended for learning and teaching math-
ematics and science from primary school to university level, available at https://geogebra.org.

2GeoGebra Discovery is available at https://kovzol.github.io/geogebra-discovery.

http://dx.doi.org/10.4204/EPTCS.398.16
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://geogebra.org
https://kovzol.github.io/geogebra-discovery

A. Käferböck & Z. Kovács 133

Figure 1: The exhibited toy in the medical center of the city of Freistadt, Upper Austria.

Most importantly, we focus on the symbolic support of the Dilate command and tool that was added
in GeoGebra Discovery version 2023Feb01.3 It can be used to dilate an object from a point (which is
the dilation center point), using a given factor, a rational number. This makes it easy to divide a line
segment in a given ratio. Formerly, for such constructions the intercept theorem, or a consecutive use of
midpoints, reflections or rotations had to be used. As a further result, the user can use the slider feature
of GeoGebra (which is a numerical tool) and at the same time precise discovery and proofs (which are
symbolic tools) can be automatically obtained now.

Our paper argues for the possible classroom use of GeoGebra Discovery on the one hand, and also
for activities that combine real-life applications and automated geometry reasoning.

3 A Rocking Camel

The toy shown in figure 1 is exhibited in a medical center in Freistadt, Upper Austria. It is installed for
amusement purposes for children who are waiting for medical treatments. An obvious question is, from
the mathematical point of view, to identify the movement of certain points of the camel. Clearly, some
points of the camel move on circular paths. For example, the suspension points, close to the legs, move
along a circle. When asking for a general point of the camel, however, some non-trivial movements
can show up. For example, the movement of the hump of the camel seems to move on an elliptical
path, after the first experiments are performed by using a former version of the GeoGebra applet at
https://geogebra.org/m/b8mbjxcz (Fig. 2).

Here we can also note that points E and H (they are the above-mentioned suspension points close to
the legs of the camel) indeed move on a circular path. In fact, here the lengths of the quadrilateral ABHE
are given with the segments f and g, and point M was constructed by consecutive use of midpoints
and a rotation by 90 degrees. At a later point of our paper we will use a better approach, based on the
improvements on the Dilate command.

3See https://github.com/kovzol/geogebra/releases/tag/v5.0.641.0-2023Feb01.

https://geogebra.org/m/b8mbjxcz
https://github.com/kovzol/geogebra/releases/tag/v5.0.641.0-2023Feb01

134 The Locus Story of a Rocking Camel in a Medical Center in the City of Freistadt

Figure 2: A former version of a GeoGebra applet that suggests that the motion of the hump of the camel
is a part of an ellipse.

3.1 The History of the Rocking Camel

As a part of our project we researched after on how the camel got to the medical center. In fact, the camel
was in the attic for many decades and no one knew what it was all about. It was probably passed down
from generation to generation. Unfortunately, this much is known about it.

How many more toys are there in the attic that have a nice mathematical background but we have
forgotten about them? How many forgotten mathematical books, writings and ideas are there that the
modern age has put aside and not even superficially exploited their excitement?

We believe that our contribution will help dust off these forgotten gems and put them at the service
of education today.

4 A STEM Activity

The abbreviation STEM stands for “science, technology, engineering and mathematics” [8]. It is a popu-
lar approach to teach mathematics via real-life applications. Sometimes STEM is extended with an “A”
(“arts”) and it becomes the abbreviation “STEAM”. Later we will learn how this engineering experiment
can be extended to an artistic activity.

Now, the main question of the activity, raised to the prospective mathematics students, was to describe
the movement of the hump of the camel by following the steps below:

1. Make an exact measurement of the toy and its parts. (As a first approach, this was prepared by
a student by providing photos. Later, with another student, more exact data was collected in the
medical center, by using measuring tapes, a camera and some graphical analysis with technology.)

A. Käferböck & Z. Kovács 135

Figure 3: A small lamp mounted on a battery with cables. It can be attached to a moving object by a glue
tape.

2. Model the toy in GeoGebra and trace the movement of the hump. (The students already had an
acceptable background of GeoGebra knowledge to make it possible to do experiments on their
own.)

3. Make a conjecture. (Here most students conjectured that the movement was an ellipse.)

4. Show the locus of the trace points. (We will see later that the conjecture was wrong, because the
trace shows a different curve, namely, something like a form “8”).

5. Make a second conjecture. (This was a very difficult question, since an 8-formed curve is not
present in the curriculum, neither at secondary nor university level.)

6. Compute the mathematical equation of the locus. (This is easy by using the command or tool
LocusEquation. Without this step, no satisfactory conjecture can be done.)

7. Check the conjectures. (This is possible by setting up an equation system by using pencil and
paper, and then compute the locus curve by using technological means. For this problem, however,
the students skipped this step. It was used to check a different problem, publicized in the LEGO
4094 set as the “moving monkey” [7].)

8. Generalize the problem with different inputs. (In general, we have a 4-bar linkage problem [2] that
leads to a sextic movement.)

In the next subsections we give some details on the steps described above.

4.1 Exact Measurements

After measuring the distances among the most significant parts of the camel we mounted a small lamp
with a battery on the camel (Fig. 3). Then we switched the light off and recorded the movement with
a camera of a mobile phone. When attaching the lamp to the top of the camel, we can get a motion
like shown in figure 4. These pictures were created after saving individual frames (25 images) with

136 The Locus Story of a Rocking Camel in a Medical Center in the City of Freistadt

Figure 4: Motion of the lamp, by using two steps of preprocessing.

Figure 5: An attempt to identify the motion as an ellipse.

the VLC media player4 and then opening them in GIMP.5 Then the individual layers were edited with
the “Exposure” function by changing the value of Black level to 0.1 (instead of 0.0). Furthermore the
background of all layers was removed with the help of the function “Color by Alpha”, so that only the
red light was left and the single layers did not cover each other anymore.

4.2 Modeling in GeoGebra

An option to continue with is to try to fit a curve on the output. This is well-supported in GeoGebra
by the possibility to insert a transparent figure, making it as a background picture, and then create some
free points by hand that approximately cover the curve. GeoGebra’s ImplicitCurve command can find
the best fitting implicit polynomial (see figure 5 or https://geogebra.org/m/c93pegab for an
online applet): for a curve of degree n one needs to enter n·(n+3)

2 input points. That is, if we expect that
the motion follows an ellipse (which is of degree 2), then 5 points are required. During the university
course, however, we followed a different path. In GeoGebra we constructed the drawing as in figure 2
by creating free points A = (0,0), B = (15,0), then creating a segment CD with length f = 5.5, drawing
a circle c with center A and radius f , and another circle d with center B and radius f . Then we attached
point E on c, and after this step we created another segment FG with length g = 12. Next, we drew a
third circle e with center E and radius g. One of the intersection points of d and e was designated to be
point H. Then, as mentioned above, point M was created with some further steps by halving and rotating
some additional points.

4VLC media player is a free and open-source, portable, cross-platform media player software and streaming media server
developed by the VideoLAN project, available at https://www.videolan.org/vlc.

5GIMP (GNU Image Manipulation Program) is a free and open-source raster graphics editor used for image manipulation
(retouching) and image editing, free-form drawing, transcoding between different image file formats, and more specialized
tasks, available at https://www.gimp.org.

https://geogebra.org/m/c93pegab
https://www.videolan.org/vlc
https://www.gimp.org

A. Käferböck & Z. Kovács 137

Figure 6: Dragging point E in an unrealistic position to disprove that the searched motion is elliptical.

We remark that this construction is a special case of a planar 4-bar linkage, which is well-known in
the study of mechanisms, and has important applications like Watt’s steam engine or a pumpjack.

An exact GeoGebra model helped the students to make experiments with the linkage without visiting
the medical center and making their own measurements.

4.3 A First Conjecture

The students had one week of working time to make a conjecture. Several learners made a false con-
jecture, however, because they had no idea that there could be a solution other than the ellipse. This
also raises the general question of the pedagogical consequences of oversimplifying the mathematical
modeling of world problems.

4.4 A Numerical Locus

Some students, however, continued dragging point E to unrealistic positions and they obtained visual
evidence that the searched curve is clearly not an ellipse (Fig. 6). This can also be checked in the above
mentioned applet by enabling the “Locus” checkbox.

4.5 A Second Conjecture

At this point, a second conjecture could be made, but due to the lack of ideas, we more or less skipped
this step. In fact, if you do not know the concept of higher degree curves, there is no chance to have a
conjecture that the output is a polynomial curve.

4.6 A Symbolic Locus

This step can be reproduced by enabling the “LocusEquation” checkbox in the above mentioned ap-
plet. We obtain, by using some computer algebra (which is not further explained in this step) a sextic
polynomial equation,

256 ·1014x6−1152 ·1017x5y2−768 ·1014x4y2−312 ·1015x4y+ . . .= 0

138 The Locus Story of a Rocking Camel in a Medical Center in the City of Freistadt

Figure 7: Obtaining a symbolic locus equation.

(Fig. 7). Here the students can only rely on the underlying computer algebra system, it is just a black
box, but the coincidence of the numerical and symbolic loci can confirm, at least, partially, that the
computations are hopefully correct.

4.7 A Proof

Now we need to prove that the obtained curve is indeed a sextic. To achieve this, we can set up an
equation system with equations a2+b2 = 5.52 (here E = (a,b)), (c−15)2+d2 = 5.52 (here H = (c,d)),
(a− c)2 +(b− d)2 = 122, and for obtaining the coordinates M we might compute the coordinates of
the midpoint I of segment EH and then rotate E around H by −90 degrees to get E ′. Having E ′, the
midpoint J of IE ′ can help to create the midpoint K of JE ′, and midpoint L of KE ′. Finally, M is the
midpoint of LM. This process is, of course, quite complicated, but it shows how we can be arbitrarily
close to any point of the camel, by using just simple geometric operations. Later, by using dilations, this
will be easier.

Now, by using elimination from algebraic geometry we can obtain the locus equation by using Geo-
Gebra’s Eliminate command. This is still a black box operation, but at least the students can have an idea
what the exact input is, and the teacher can argue that by using the first three basic operations (addition,
subtraction and multiplication), there is a finite algorithm [1] that indeed produces the result.

And this is actually a proof, in the deepest sense of the notion. Even if the atomic steps of the
computation remain hidden, a reliable computer algebra system on reliable hardware will indeed compute
the expected equation of the searched curve.

Let us highlight this fact even more. In classical geometry we are used to proofs that give arguments
why the studied outputs are certain curves like lines, circles or maybe ellipses. The argumentation is
sometimes purely synthetic, but sometimes analytic. Here we cannot really give a synthetic argumen-
tation why a sextic curve appears. Only an analytic proof is applicable. But, because of the technical
difficulty of the proof there is no way to check each step in a manual way. Therefore, a computer assisted
proof is required, and as such, the automated way of elimination is satisfactory.

A. Käferböck & Z. Kovács 139

Figure 8: Generalization with sliders via the Dilate command.

4.8 Generalization

With some feedback from the students it was possible to improve GeoGebra Discovery to support gener-
alizing the problem setting in the following way: How does the output curve change when the lamp has
a different position than the hump of the camel?

To achieve this, the Dilate command in GeoGebra required symbolic support. The applet at https:
//matek.hu/zoltan/camel.php (see figure 8) allows the user to conveniently change the length
of the bars AE and BH (they are still equally long) and the bar EH. By using dilation and sliders, the
background computation requires less variables, because instead of 4 free variables just one needs to
be used. This speeds up the computation substantially. To avoid the difficult way of defining M we
introduced two sliders Mx and My that help find the position of M in an intuitive way. In addition,
the user is notified immediately when the locus equation changes by using GeoGebra’s JavaScript API6

(Fig. 9). This applet was created by the use of the Dilate command. Dilation allows the user to create
an arbitrary linear combination of two vectors. The coefficients of the linear combination can usually
be rational numbers. Using one direct step to define ratios of certain quantities, instead of using the
intercept theorem or utilizing midpoints, helps simplify the construction and avoid slow computation
because of the high amount of variables. As well-known, elimination may be double exponentially slow
in the number of variables in its worst case [6]. Therefore each optimization step may be crucial.

As a conclusion, the students can have a general conjecture after some further experiments, that 4-
bar linkages usually yield sextic curves [3]. Of course, such experiments are insufficient to get a general

6Available at https://wiki.geogebra.org/en/Reference:GeoGebra_Apps_API.

https://matek.hu/zoltan/camel.php
https://matek.hu/zoltan/camel.php
https://wiki.geogebra.org/en/Reference:GeoGebra_Apps_API

140 The Locus Story of a Rocking Camel in a Medical Center in the City of Freistadt

Figure 9: A particular sextic equation, the corresponding curve is plotted in figure 8.

proof for all possible parameters. And, in fact, in some degenerate cases these results are actually not
true, for example if the construction collapses into one point.

5 Final Thoughts and Conclusion

Automated geometric proofs may play an even more important role as before at secondary school level
and above. The concept of analytic proofs (instead of synthetic ones) can already be familiar with
algebraization of the geometric setup. For example, the well-known theorem by Thales that highlights a
connection between right triangles and their circumcircles, can be easily translated into an algebraic setup
and proven without difficulty. Indeed, let A = (−1,0), B = (1,0), C = (x,y), and assume that x2+y2 = 1,
that is, C lies on a circle whose diameter is segment AB. Now, checking if AC is perpendicular to BC
means exactly that (x− (−1)) · (x−1)+(y−0) · (y−0) = 0, and this is equivalent with our assumption
on the sum of squares. That is, after making sure that the algebraization is performed correctly and
generally enough, some algebraic manipulation will give the required argumentation.

Such an easy derivation is, unfortunately, not always possible. But we can learn that it is possible
to formulate also the converse of the statement, that is, to ask: What is the geometric locus of points
(x,y) such that AC is perpendicular to BC, when A and B are fixed? And here we conclude that the
searched equation is x2 + y2 = 1, a quadratic one, in particular, the equation of a circle. In general,
however, we may obtain non-linear and non-quadratic results as well. In our example in this paper we
obtained a sextic equation, with huge coefficients. And this can happen in many other situations. Real
life examples (of study of mechanisms, or optics) are full of higher degree polynomial curves. Here we
mention conchoids, cissoids, strophoids (of degree 3) or cardioids, deltoids or lemniscates (of degree 4),
many of them already well-known by the ancient Greek mathematicians.

In such higher degree cases, a proof that a certain curve is the expected result is nothing else than a
long elimination process. Even if the computations are hidden, we expect that each step of the derivation
is performed correctly, and therefore the result is correct.

That is, STEM/STEAM education cannot avoid such proofs in the long term. But, luckily, the exist-
ing tools are already safe and rich enough to support the learners in both the exploration and verification.

Acknowledgments

We are grateful to students Eva Erhart and Engelbert Zeintl for their help in many aspects of this paper.
Benedek Kovács kindly helped us in preparing the photo of the rocking camel for further work in Geo-
Gebra. He also helped in the preparation of the mounted small lamp. The second author was partially

A. Käferböck & Z. Kovács 141

supported by a grant PID2020-113192GB-I00 (Mathematical Visualization: Foundations, Algorithms
and Applications) from the Spanish MICINN.

References
[1] Bruno Buchberger (2006): Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements

of the residue class ring of a zero dimensional polynomial ideal. Journal of Symbolic Computation 41, pp.
475–511, doi:10.1016/j.jsc.2005.09.007.

[2] Kenneth Henderson Hunt (1990): Kinematic Geometry of Mechanisms, 2 edition. 7, Oxford Engineering
Science Series.

[3] Zoltán Kovács, Tomás Recio & M. Pilar Vélez (2020): Reasoning about linkages with dynamic geometry.
Journal of Symbolic Computation 97, pp. 16–30, doi:10.1016/j.jsc.2018.12.003.

[4] Zoltán Kovács, Tomás Recio & M. Pilar Vélez (2021): Automated reasoning tools in GeoGebra Discovery.
ACM Communications in Computer Algebra 55(2), pp. 39–43, doi:10.1145/3493492.3493495.

[5] Zoltán Kovács, Tomás Recio & M. Pilar Vélez (2021): GeoGebra Discovery in Context. In Predrag Janičić
& Zoltán Kovács, editors: Proceedings of the 13th International Conference on Automated Deduction in Ge-
ometry, Hagenberg, Austria/virtual, September 15-17, 2021, Electronic Proceedings in Theoretical Computer
Science 352, Open Publishing Association, pp. 141–147, doi:10.4204/EPTCS.352.16.

[6] Ernst W. Mayr & Albert R. Meyer (1982): The Complexity of the Word Problem for Commutative Semigroups
and Polynomial Ideals. Advances in Mathematics 46, pp. 305–329, doi:10.1016/0001-8708(82)90048-2.

[7] Reinhard Oldenburg (2008): FeliX – mit Algebra Geometrie machen. Computeralgebra Rundbrief, Sonderheft
zum Jahr der Mathematik. Available at http://www.fachgruppe-computeralgebra.de/data/JdM-200
8/Sonderheft.pdf.

[8] Bryan Edward Penprase (2020): STEM Education for the 21st Century. Springer Cham, doi:10.1007/978-3-
030-41633-1.

https://doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1016/j.jsc.2018.12.003
https://doi.org/10.1145/3493492.3493495
https://doi.org/10.4204/EPTCS.352.16
https://doi.org/10.1016/0001-8708(82)90048-2
http://www.fachgruppe-computeralgebra.de/data/JdM-2008/Sonderheft.pdf
http://www.fachgruppe-computeralgebra.de/data/JdM-2008/Sonderheft.pdf
https://doi.org/10.1007/978-3-030-41633-1
https://doi.org/10.1007/978-3-030-41633-1

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 142–152, doi:10.4204/EPTCS.398.17

© T. Dana-Picard, M. Tejera & E. Ulbrich
This work is licensed under the
Creative Commons Attribution License.

3D Space Trajectories and beyond:
Abstract Art Creation with 3D Printing

Thierry Dana-Picard
Jerusalem College of Technology

Jerusalem, Israel
ndp@jct.ac.il

Matias Tejera Eva Ulbrich
Johannes Kepler University

Linz, Austria
Mathias.Tejera@jku.at Eva.Ulbrich@jku.at

We present simple models of trajectories in space, both in 2D and in 3D. The first examples, which
model bicircular moves in the same direction, are classical curves (epicycloids, etc.). Then, we
explore bicircular moves in reverse direction and tricircular moves in 2D and 3D, to explore complex
visualisations of extraplanetary movements. These moves are studied in a plane setting. Then, adding
increasing complexity, we explore them in a non planar setting (which is a closer model of the real
situation). The exploration is followed by using these approaches for creating mathematical art in 2D
and 3D printed objects, providing new ways of mathematical representations. Students’ activities are
organized around this exploration.

1 Introduction

All over the world, newspapers and TV news are full of reports about launching satellites, the Interna-
tional Space Station, the Chinese space station, Mars exploration and the Artemis project to establish a
permanent human presence on the Moon. Nowadays, the NASA offers the public to send their names
on a probe to be launched in 2024 and arrive to Encelade, an icy moon of Jupiter, in 2030. With such
an ubiquitous topic, students asked a lot of questions, about spacecrafts, their trajectories, their trajec-
tories, why these are curved and sometimes complicated, etc. Numerous dedicated websites are freely
accessible, showing representations of trajectories of extraplanetary objects. These are connected to the
students’ cultural background, on which it is worth to rely in order to attract students to mathematics,
and to show applications in real world [4]. This paper explores mathematical situations with a STEAM
approach visualising curves in 2D and 3D with various technologies to use the motivational fascination
of outer space from students to connect to mathematical modelling.

When asking about spacecrafts, they wish to understand the trajectories. Not all the news items
include graphs and maps of the trajectories, but they frequently do so and can be the source of ques-
tions, whence of mathematical activities. These are good reasons for mathematics educators to be part
of this atmosphere, showing complex real world applications of mathematics. Examples could be curves
describing trajectories or calculating the speed of objects in an accessible way by interactive visualiza-
tions and explanatory animations. Students have the opportunity to create and explore these trajectories
themselves by visualising them using mathematical modelling and certain technologies and we present
possible approaches in 2D and 3D.

According to the 1st Kepler’s law (see [8], p. 127), the orbit of a planet around the Sun is an ellipse,
with the Sun at one of the foci. As the foci are very close, actually both inside the Sun,1 in order to make

1Actually, in a system of two objects, both orbit their common center of gravity. The system Sun-Earth’s center of gravity is
inside the Sun, therefore considering the Earth as orbiting the Sun is acceptable. Of course, every other pair Sun-Planet presents
the same situation.

http://dx.doi.org/10.4204/EPTCS.398.17
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

T. Dana-Picard, M. Tejera & E. Ulbrich 143

the example as simple as possible, we consider an approximation of the orbits as coplanar concentric
circles. Kepler’s 2nd law is illustrated by figure 1, taken from [8] p. 129: the areas of the shaded sectors,
covered by the radius in equal times (i.e. it takes equal times to travel distances AB, CD and EF), are
equal.

Figure 1: Kepler’s 2nd law of planetary motion

In our simplified model, we consider motion with constant angular velocity on circular orbits. We
compute the velocities according to the year length of the planet, with Earth year equal to 1. Note that Ta-
ble 1 displays just the eight official planets acknowledged by the international astronomical organization.
According to the 3rd Kepler’s law, the orbital velocity is a function of the distance to the Sun.

Planet Distance to the Sun (km) Period (1=terrestrial year)
Mercury 57.91 106 km 0.2408
Venus 108.2 106 km 0.6152
Earth 149.6 106 km 1
Mars 227.9 106 km 1.8808

Jupiter 778.5 106 km 11.862
Saturn 1.434 109 km 29.457
Uranus 2.871 109 km 84.018
Neptune 4.495 109 km 164.78

Table 1: Some orbital data

Because of the huge differences between the distances and the hardware constraints2 (we mean
mostly the size of the screen and the number of available pixels), we will consider examples with Earth
and Mars only. The same activities can be done with the pair Venus-Earth, they will produce the same
family of curves. Note that in order to make the first examples easy, we use approximations less precise
than in Table 1.

The visualisations we explore in this paper are created by two softwares called GeoGebra and Maple
to utilise their respective strengths. We use GeoGebra,3 whose main characteristic is devoted to Dynamic
Geometry. For some applications, including automated determination of loci and envelopes, it can be
supplemented with the package GeoGebra-Discovery.4 A general analysis of the automated methods for

2A general study of constraints, either of the hardware or of the software can be found in [9], with some extension in [2].
3Freely downloadable from http://www.geogebra.org.
4Look for the last version, freely downloadable from https://github.com/kovzol/geogebra-discovery.

http://www.geogebra.org
https://github.com/kovzol/geogebra-discovery

144 3D Space Trajectories, Art and 3D Printing

loci and envelopes is given in [6]. We will also use the Computer Algebra System Maple for its specific
animated affordances, which are different from those of GeoGebra.

Exploration of curves obtained as trajectories of points modeling moves in space, such as midpoint
or center of gravity of two planets, is described and analyzed in [3,5]. The present paper is a new contri-
bution, with more complex constructions. Its goal is to present mathematical situations with a STEAM5

approach, where plane curves, either algebraic or not, are presented and some of their properties explored
using technology. We see this kind of study as an opportunity to connect to the classical families of plane
curves in a motivating manner for students and can be used as a unifying frame for cases previously seen
as separate cases. Later, space curves given by similar parametric equations are explored, also modelling
spatial phenomenon. The ratio of the mean radii of two neighboring planets (such as Venus-Earth, or
Earth-Mars) is huge, and still more the ratio between the mean radius of the Earth orbit around the Sun
(about 149 Mkm) and the radius of the Moon’s orbit around the Earth (about 360,000 km), it is impos-
sible to represent both on a computer screen. Therefore, we chose to work with arbitrary6 coefficients,
whose variations provide different curves. We explore the composition of two circular movements in the
same direction (the general case in the Solar System). Figure 2 shows a simplified model of a spacecraft
flying to Mars, without explicit presentation of the orbiting direction around Mars.7

Figure 2: Trajectory from the Earth to the Mars orbit

We also consider the composition of 3 circular movements, inspired by lunar orbiters and observed
also from the Sun: they orbit the Moon, which orbits the Earth, which in its turn orbits the Sun. In
Subsection 2.2, we explore the composition of 3 circular movements, all in the same direction. In Sub-
section 2.3, we explore also models of a composition of movements, two in one direction and the 3rd

5STEAM = acronym for Science, Technology, Engineering, Arts and Mathematics.
6By arbitrary, we mean coefficients enabling a representation on the screen, not taken from the orbital data.
7Credit: NASA/JPL, https://marspedia.org/File:InSight_Trajectory.jpg

https://marspedia.org/File:InSight_Trajectory.jpg

T. Dana-Picard, M. Tejera & E. Ulbrich 145

in reversed direction. The motivation for this is provided by the trajectories of spacecrafts to the Moon;
figure 3 shows a diagram of the trajectory of the Artemis 1 spacecraft, elliptic around the Earth, followed
by a transfer orbit made of arcs of ellipses, then elliptic around the Moon in reversed direction.8 The
geometric locus of the moving object around the Moon, when observed from the Sun, may be an epicy-
cloid, a hypocycloid or another already known curve. Here, more “exotic” curves are also explored and
plotted; in particular, rotational symmetries of order 7, 11, 13, etc. may be discovered. This provides an
opportunity for an interactive exploration of such symmetries.

Figure 3: Artemis orbit to the Moon and around (Credit: NASA)

Jablonski [7] says that “Mathematical modelling is characterized through its interplay of reality and
mathematics. It offers a way to integrate references to reality into the classroom and shows students
where in everyday life their mathematical knowledge can be applied.” Therefore, we started from real
world situations utilizing the amazement created by media reports. The first examples provide some
understanding of how the orbit of the Moon around the Sun looks like, but quickly we explored compo-
sitions of movements without a connection to reality. Changing the parameters (either ratio of radii or
ratio of angular velocities) induces important changes on the shape and topology of the curves. Tricir-
cular moves are inspired by, for example, lunar orbiters (which orbit the Moon, which orbits the Earth,
which in its turn orbits the Sun), or Mars orbiters. As already mentioned, figure 2 shows the trajectory
of Mars Orbiter, from start to arrival: at first ellipses around the Earth, then a transfer orbit (made of arcs
of ellipses), then elliptic orbits around Mars. This can be explained to students.

Instead of returning from models to the real world situation, which had to be understood, numerous
new directions are possible. As an example, curves of degree 8, obtained from a construction discon-
nected from the physical data, have been explored recently; see [6].

Finally, we explore artistic creation using these mathematical models. We obtain curves presenting
non usual symmetries and explore them using our software.

In the real world of the software may change. The exploration of the curves is an important incentive
to 3D print them. We quote once again Jablonski [7]: “The idea of involving real objects in mathematical
modelling leads to the question of how much the way in which a real object is introduced might influ-
ence the modelling processes of students. Despite its actual physical presence in reality, a real object
could be introduced through different representations and provided artefacts, e.g., newspaper articles,

8The trajectories of future Artemis missions will be different from this one, but based on the same principle.

146 3D Space Trajectories, Art and 3D Printing

photographs, videos, 3D print replications or combinations. Potentially, the different representations of
the real object might lead to differences in the modelling activities of students and motivate a comparison
of them.”

2 Classical Curves and beyond

In all the examples we consider a planet (let us call it the Earth, orbiting the Sun at distance 1 (a reference
to 1 astronomical unit, 1 AU) at constant velocity, and completing 1 orbit in 1 year. The other coefficients
describe the mean radius of another planet and the length of its own year. The is described by the
following parametric presentation:

(x,y) = (cosu, sinu) , u ∈ R. (1)

For the animations with software, u ∈ [−0,2π] is enough with repetitive animation. We denote the pa-
rameter by u, as in GeoGebra t has a special role. The second planet is described by

(x,y) = r
(
cos

u
h
, sin

u
h

)
, u ∈ R, (2)

where r > 0 denotes the radius of the planet’s orbit and h encodes the length of its year.

2.1 Epicycloids in 2D and Extension towards 3D

Figure 4 shows a screenshot of a dedicated GeoGebra applet.9 The parameters can be changed with
slider bars. The figure on the left shows the trajectories in the plane containing the Sun, the planet and
its satellite. Here the satellite orbits the planet 12 times a year, almost modelling the Moon around the
Earth. The figure on the right shows a simulation when the Sun travels on a straight line; note that the 3
objects remain all the time in a plane which moves according to the Sun. For the 2D representation, the
orbits can be either plotted in a non-animated way using GeoGebra’s Locus command or to be animated
using the corresponding option of the slider bar. Nite that other way to animate the constructions are
available.

As already mentioned, the Sun is also mobile, it has its own orbit. Figure 4(a) shows a model where
the Sun moves along a segment of line. The planet and its satellite move in a plane containing the 3
objects (this plane is visible in blue). The commands are similar in 3D as in 2D. Note that the projection
on the plane is on display in the adjacent window. This is due to the total synchronisation of the 3D and
2D windows in GeoGebra. This task was an incitement to go to 3D printing.

A similar animation can be programmed with Maple. The code is easy: each object is defined in a
separate plot[animate] command, them all together they are displayed using the display command. The
Sun has two commands: one for plotting a large dot, the other one to plot the trajectory. An animated
gif can be obtained with a right-click on the output of the display command. A screenshot is shown in
figure 4(b).

c1 := spacecurve([cos(t) + 1/5*cos(12*t), sin(t) + 1/5*sin(12*t), t],
t = 0 .. 4*Pi, thickness = 3, labels = [x, y, z]):

sun := plots[animate](spacecurve, [[0, 0, t], t = 0 .. A], A = 0 .. 4*Pi,
thickness = 3, color = yellow)

sunplo := plots[animate](pointplot3d, [[0, 0, A]], A = 0 .. 4*Pi,

9See https://www.geogebra.org/m/ksyd6hat.

https://www.geogebra.org/m/ksyd6hat

T. Dana-Picard, M. Tejera & E. Ulbrich 147

(a) GeoGebra (b) Maple

Figure 4: A satellite around a planet orbiting the Sun

color = orange, symbol = sphere)
planet := plots[animate](spacecurve, [[cos(t), sin(t), t], t = 0 .. A],
A = 0 .. 4*Pi, thickness = 3, color = navy)
sat := plots[animate](spacecurve, [[cos(t) + 1/5*cos(12*t), sin(t)

+ 1/5*sin(12*t), t], t = 0 .. A], A = 0 .. 4*Pi,
color = sienna, labels = [x, y, z]):

display(sun, planet, sat, sunplo)

2.2 Three Circular Movements with Constant Angular Velocity – Same Direction

Figure 5 shows snapshots of GeoGebra sessions based on the Locus command. Subfigure (c) is a snap-
shot of a GeoGebra applet10 with 2 parameters encoding the distances. A further step consists in adding
parameters to change the ratios of angular velocities.

(a) (b) (c)

Figure 5: Screenshots of a tricircular motion in the same direction

10See https://www.geogebra.org/m/sagpjzzb.

https://www.geogebra.org/m/sagpjzzb

148 3D Space Trajectories, Art and 3D Printing

2.3 Three Circular Movements with Constant Angular Velocity – One in Reverse Direc-
tion

Figure 6 displays 3 curves obtained with the Locus command, in an applet11 where all the parameters
can vary. In what follows, we explore the symmetries of the obtained curves. These symmetries are often
of odd order, a situation which is not frequent in classroom.

(a) A 4-star (b) A strange star (c) A bat curve

Figure 6: Screenshots of a tricircular motion with the middle in reversed direction

We consider now the family of curves whose parametric equations are as follows:

(x,y,z) = (cosu,sinu) +
1
3

(cosau,sinau) +
1
2

(sinbu,ccosbu), (3)

where a,b encode the ratios of circular velocities. In the applet https://www.geogebra.org/m/jug
rcbx5, their increment is defined to be 1.

For a = b = 1, the curve is an ellipse. But there are other cases, maybe more interesting. Figure
7(a) has been obtained for (a,b) = (6,14) with the Curve command. It presents a 5-fold rotational
symmetry, i.e. it is invariant under a rotation whose center is the origin and of angle 2π/5. This has been
checked with a plot of the parametric equations for u ∈ [0,2π/5], the applying the automated command
for rotations. The colors have to be manually adapted to create visualisations that are easier to interpret
where each curve has a unique style. Part of GeoGebra’s algebraic display can be seen in figure 7(a) to
illustrate what has been done. The curve can also be plotted defining a variable point depending on the
parameter u, then applying the Locus command. The definition of a variable point provides a dynamic
plot of the curve, but both in this case and with the Locus command, the output is not a geometric object
on which a plane transformation can be applied.

Other cases have to be cautiously explored for symmetries. For example, the case (a,b) = (10,14)
shows a 3-fold symmetry (see figure 7(b). Experomentation will show that this also true for (a,b) = (7,14)
and (a,b) = (7,17).

2.4 Math Art Creation

The applet mentioned in the previous subsection has been opened, running animations for the parameters
a and b separately. Exploration has been preformed according the following steps:

• The entire curve is plotted, using Trace On;

• Analyzing the graphical display, the existence of rotational symmetry is conjectured;

11See https://www.geogebra.org/m/xgrx7ntx.

https://www.geogebra.org/m/jugrcbx5
https://www.geogebra.org/m/jugrcbx5
https://www.geogebra.org/m/xgrx7ntx

T. Dana-Picard, M. Tejera & E. Ulbrich 149

(a) 5-fold (b) 3-fold

Figure 7: Tricircular moves creating multicolor curves with rotational symmetries

• The rotational symmetry is checked by first reducing the plot to a subset of the interval chosen
for the parameter; we mean taking an interval of the form [0,2π/m], where m is te order of the
conjectured symmetry, and then using the automated command for a rotation about the origin with
angle 2π/m.

• Of course, this has to be checked afterwards by symbolic means, using a substitution.

Later, an experiment has been made, choosing an arbitrary number m, not the order of the rotational sym-
metry which has been discovered. The obtained multicolor plot does not describe a specific mathematical
situation. Some of the results are displayed in figure 8.

(a) (b) (c)

Figure 8: Some random math art creations

Discovering such creations has been greeted with enthusiasm by the audience of lectures delivered
by the authors, whose topics was linked to curves and math art.

3 Some More Remarks

The starting point of the study is STEAM oriented, namely using a scientific model from an item in
the news. Students may have prior interest in the domain, without having a strong knowledge. The
present topic offers an opportunity to collaborate between educators, between man and machine, of
course between students. The study output is multiple, and among the “rewards” we have:

150 3D Space Trajectories, Art and 3D Printing

• Acquisition of new mathematical knowledge: classical curves (epicycloids, epitrochoids, etc.),
which are not part of the regular curriculum, have been discovered and studied. Epitrochoids are
members of a larger family of curves, which involves roses, epicycloids, etc. Activities as in this
work may be a nice incitement to explore other situations and to broaden horizons. The literature
describes generally the epitrochoids for integer values of the parameters, and our experimentations
showed also more general settings.

• Discovery of new curves; we mean curves which do not appear in the catalogues such as [10].

• Emphasis on the importance of the data precision (in space, contrary to most classrooms, nothing
is measured by integers) and of rounding. We considered non integer ratios of radii of orbits, and
of orbital angular velocity, approximations and rounding became an important issue. We could
discover that different precisions in the approximation yield very different output. This is probably
a central outcome of this work: students do not always believe that mastering errors is important,
and they believe that the answers provided by a numerical calculator are always accurate. Asking
them which answer is true among the cases that we studied with different rounding should lead at
least to some questioning.

• Development on new technological skills, which are part of the new mathematical knowledge [1].

• Emphasis on multidisciplinary tasks, whence development of STEAM skills.

Note that generally, modeling is intended to construct mathematical descriptions of a concrete situa-
tion. Then, the model is applied to enhance more understanding of the concrete situation. The process is
summarized in figure 9.

Figure 9: A classical diagram for a modelling process

In the present paper, we go in a totally different way in this case: modeling a concrete astronomical
situation (orbits), the activities provide more abstract curves without a physical meaning. Finally 3D
printing could provide both outcomes: a concrete object modeling planets and trajectories, and also

T. Dana-Picard, M. Tejera & E. Ulbrich 151

some pieces of visual art, either in 2D or in 3D to apply constructivist as well as constructionist ideas.
This is summarized in figure 10.

Figure 10: A modelling process leading in other directions

We performed the same experiments and constructions using Maple. The characteristics of the work
CAS is slightly different.

• After a command line to define a parametric curve, an animate command has to be entered. Its
output is not immediately visible.

• A left-click on the graphical window is necessary, and it switches automatically to the row of
graphical buttons.

• Here too, the relevant values for the parameters (number of frames, speed, etc.), in order to obtain
a significant graphical output have to be experimentally looked for, using the buttons.

• Other modifications of the output may require changes in the written commands.

After having presented some of the applets to a certain audience, the authors decided to 3D print
part of them, together with some other cases. In parallel, tasks have been defined for groups of students,
either gifted High-School students having benefit of an extension of the curriculum, or undergraduates.
These students belong to two different countries. The tasks include the 3D printing of some examples.
The transfer of the CAS output to a 3D printer requested the translation of this output into a language
that the 3D printer understands. In our presentation, we will report on the math part and on the outcome
of the activities with students.

4 Acknowledgements

The first author was partially supported by the CEMJ Chair at JCT.

152 3D Space Trajectories, Art and 3D Printing

References
[1] M. Artigue (2002): Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instru-

mentation and the Dialectics between Technical and Conceptual Work. International Journal of Computers
for Mathematical Learning 7(3), pp. 245–274, doi:10.1023/A:1022103903080.

[2] T. Dana-Picard (2007): Motivating constraints of a pedagogy embedded Computer Algebra System. Interna-
tional Journal of Science and Mathematics Education 5(2), pp. 217–235, doi:10.1007/s10763-006-9052-9.

[3] T. Dana-Picard (2022): The loci of virtual points constructed with elementary models of planetary orbits. In:
Electronic Proceedings of the Asian Conference on Technology in Mathematics ACTM 2021, Mathematics
and Technology.

[4] T. Dana-Picard & S. Hershkovitz (2022): STEAM Education: technological skills, students’ cultural back-
ground and Covid-19 crisis. Open Education Studies 2(1), pp. 171–179, doi:10.1515/edu-2020-0121.

[5] T. Dana-Picard & S. Hershkovitz (2024): From Space to Maths and to Arts: Virtual Art in Space with
Planetary Orbits. to appear in Electronic Journal of Mathematics & Technology.

[6] T. Dana-Picard & T. Recio (2023): Dynamic construction of a family of octic curves as geometric loci. AIMS
Mathematics 8(8), pp. 19461–19476, doi:10.3934/math.2023993.

[7] S. Jablonski (2023): Is it all about the setting? – A comparison of mathematical modelling with real objects
and their representation. Educational Studies in Mathematics 113(2), doi:10.1007/s10649-023-10215-2.

[8] H. Karttunen, P. Kröger, H. Oja, M. Poutanen & K.J. Donner, editors (2008): Fundamental Astronomy.
Springer, doi:10.1007/978-3-662-53045-0.

[9] L. Trouche (2000): La parabole du gaucher et de la casserole à bec verseur: étude des processus
d’apprentissages dans un environnement de calculatrices symboliques. Educational Studies in Mathemat-
ics 41(3), pp. 239–264, doi:10.1023/A:1003939314034.

[10] R. Yates (1947): A Handbook on Curves and their Properties. J.W. Edwards, MI: Ann Arbor.

https://doi.org/10.1023/A:1022103903080
https://doi.org/10.1007/s10763-006-9052-9
https://doi.org/10.1515/edu-2020-0121
https://doi.org/10.3934/math.2023993
https://doi.org/10.1007/s10649-023-10215-2
https://doi.org/10.1007/978-3-662-53045-0
https://doi.org/10.1023/A:1003939314034

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 153–164, doi:10.4204/EPTCS.398.18

© P.H. Todd
This work is licensed under the
Creative Commons Attribution License.

Theorem Discovery Amongst Cyclic Polygons

Philip Todd
Saltire Software

Portland OR USA
philt@saltire.com

We examine a class of geometric theorems on cyclic 2n-gons. We prove that if we take n disjoint pairs
of sides, each pair separated by an even number of polygon sides, then there is a linear combination
of the angles between those sides which is constant. We present a formula for the linear combination,
which provides a theorem statement in terms of those angles. We describe a program which uses this
result to generate new geometry proof problems and their solutions.

1 Introduction

In [8], a characterization is made of linear systems involving angle bisection conditions which are not
full rank. In such a system, one of the conditions is implied by the remainder, and, if the angle bisections
are interpreted geometrically, this dependence may be stated in a number of different ways as a geometry
theorem. The characterization leads to a catalog of such linear systems. An approach to theorem dis-
covery is proposed wherein a linear system is initially selected, and then interpreted geometrically as a
theorem. In [7], a program is described which applies this approach, constructing a particular geometry
theorem corresponding to a randomly selected linear system from the catalog. In order to reduce diagram
complexity, the program is biased in favor of constructing cyclic polygons wherever possible. In the case
where it is able to construct a cyclic polygon using all the rows of the linear system, the theorem which is
produced has the following form. Given a cyclic 2n-gon, where n−1 specified pairs of sides are parallel,
then a final specified pair of sides is also parallel. For example, in a cyclic hexagon, with two pairs of
opposite sides parallel, the third pair of sides is also parallel. (In passing, we note thet this theorem is not
true for a cyclic octagon, but is for a cyclic decagon.)

In this presentation, we consider a generalization of the above class of theorems, where instead of
making line pairs parallel, we allow line pairs to be given non zero, but determined angles. While there
is no geometric meaning to a parallel relationship between consecutive sides, replacing the parallelism
by a defined non-zero angle permits adjacent sides of the polygon to be related. We examine the case of
a 2n-gon, with the angles between n pairs of sides named. We show that if the pairs share no side, and
if the sides in each pair are either adjacent or seperated by an even number of polygon sides, then the
named angles satisfy a particular linear relation.

An approach to theorem discovery in this context mirrors and illustrates that described in [8] and [7].
As a first step, a value of n is chosen, and a set of line pairs conforming to our criterion selected from
a catalog containing all such sets. A diagram is produced directly which allows the coefficients of the
constant linear combination to be computed.

2 Cyclic Polygons and Angle Bisectors

Let P be a polygon whose vertices lie on the unit circle centered at the origin whose vertices p1, . . . , pn

have position vectors u1, . . . ,un.

http://dx.doi.org/10.4204/EPTCS.398.18
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

154 Theorem Discovery

Figure 1: θ0 . . .θ6 are angles of position vectors. θ6 = θ1 +2π . φi =
1
2(θi−1 +θi)

We define u0 = un.
Let α(u,v) be the directed angle between vector u and vector v. We define θ0 = 0 and for i from 1 to

n:

θi = θi−1 +α(ui−1,ui)

As u0 = un, θn = θ0 +2πW where W is the winding number of the polygon about the origin. For i from
1 to n we define

φi =
1
2
(θi +θi−1)

For i and j from 1 to n we define

δi j = φ j−φi

Define Li to be the line passing through points pi−1 and pi . We will define qi j to be the intersection of
Li and L j. We define the angle

ψi j = 6 pi−1qi j p j

2.1 Cyclic Quadrilateral

We first examine the cyclic quadrilateral (Figure 2).
In the figure, the quadrilateral has winding number 1 about the circle center, hence θ4 = θ0 + 2π .

The two indicated opposite angles of the quadrilateral have values π−δ12 and π−δ34.

P.H. Todd 155

Figure 2: A cyclic quadrilateral with winding number 1.

The figure may be expressed by the following matrix equation:

1 1 0 0 0 −2 0 0 0
0 1 1 0 0 0 −2 0 0
0 0 1 1 0 0 0 −2 0
0 0 0 1 1 0 0 0 −2
−1 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 −1 1

θ0
θ1
θ2
θ3
θ4
φ1
φ2
φ3
φ4

=

0
0
0
0

2π

δ12
δ34

(1)

We transform the matrix equation by performing the following row operations:
R1← R1+R5, R2← R2+2×R6, and R3← R3+2×R7, which, after eliminating the zero columns,

gives this matrix equation:

1 0 0 1 −2 0
1 1 0 0 −2 0
0 1 1 0 0 −2
0 0 1 1 0 −2

θ1
θ2
θ3
θ4
φ1
φ3

=

2π

2δ12
0

2δ34

 (2)

The matrix can be triangularized using the algorithm of [2]. Let Ri be the i’th row of the original matrix,
and Ti the i’th row of the triangularized matrix, then T1 = R1, and for i from 2 to n:

Ti = Ri−Ti−1 (3)

156 Theorem Discovery

Using this algorithm, our triangularized matrix equation is:

1 0 0 1 −2 0
0 1 0 −1 0 0
0 0 1 1 0 −2
0 0 0 0 0 0

θ1
θ2
θ3
θ4
φ1
φ3

=

2π

2δ12−2π

−2δ12 +2π

2δ34 +2δ12−2π

 (4)

Consistency of this system requires

2δ34 +2δ12−2π = 0 (5)

or

δ34 +δ12 = π (6)

In terms of ψ12 and ψ34

π−ψ12 +π−ψ34 = π (7)

Hence ψ12 +ψ34 = π , which is the familiar result that the opposite angles of a cyclic quadrilateral are
supplementary.

2.2 General Theorem

The following general theorem may be proved by an analogous approach to that employed in the above
section.

Theorem 2.1. Given a cyclic 2n-gon with winding number W about the circumcircle’s center, and n
ordered pairs (a1,b1) . . .(an,bn) such that
{ai}∪{bi}= {1 . . .2n}, bi > ai and bi−ai is odd for each i

n

∑
i=1

(−1)biδaibi =Wπ (8)

Proof. Let Pi, j =−2 where j = ai or j = bi and 0 otherwise, let Q1 = 2πW . For i > 1, let Q j = 2δai,bi if
j = bi and 0 otherwise.

Analogous to equation (2) we have:

1 0 · · · 0 1 P1,1 · · · Pn,1
1 1 · · · 0 0 P1,2 · · · Pn,2
...

...
. . .

...
...

...
...

...
0 0 · · · 1 1 P1,2n · · · Pn,2n

θ1
θ2
...

θ2n−1
θ2n

φ1
...

φn

=

Q1
Q2
...

Q2n

 (9)

P.H. Todd 157

Triangulation yields a matrix equation analogous to that of (4(

(
...

...
...

...
...

...
0 · · · 0 R1 · · · Rn

)

θ1
...

θ2n

φ1
...

φn

=

(
...
S

)
(10)

where

Ri =
2n

∑
j=1

(−1) jPi, j (11)

and

S =
2n

∑
j=1

(−1) jQ j (12)

Hence
Ri = (−1)bi +(−1)ai (13)

and

S =
n

∑
i=1

(−1)bi2δaibi−2Wπ (14)

As bi−ai is odd, Ri = 0 for all i. Hence for consistency S = 0. Hence the result.

3 Automated Discovery of Cyclic Polygon Theorems

We describe a mechanized process for automatic theorem generation for angles in cyclic polygons. Each
theorem will establish a relationship between angles in a cyclic polygon. The process breaks down into
three steps. First a set of side pairs is chosen which satisfy the criteria of Theorem 2.1. Secondly, a
specific location is decided for the vertices of the polygon.and a geometry diagram created. Angles
between the side pairs are given names and drawn on the diagram. Thirdly, (8) is expressed in terms of
these angle names, yielding the conclusion of our theorem statement.

3.1 Choosing Side Pairs

In order to use theorem 2.1 to create cyclic polygon theorems, we need to first find a set of ordered pairs
(a1,b1) . . .(an,bn) such that {ai}∪{bi}= {1, . . . ,2n} and |bi−ai| is odd for each i

We then sort the elements so that ai < bi. Each pair (ai,bi) contains an odd and an even integer. Hence
any set of pairs corresponds to a 1-1 mapping between A = {1,3, . . . ,2n−1} and B = {2,4, . . . ,2n}. A
random such mapping is selected. Applying theorem 2.1 yields an expression for a linear combination
of the differences in direction δaibi .

The number of such mappings is n!. However, when considered as pairings between sides of a cyclic
polygons, there are many which are simply rotated or reflected images. The number of non-isomorphic
patterns for n = 2 to 7 are 1,3,5,17,53,260 [3]. Figure 3 depicts these patterns for n equal to 3 and 4.

158 Theorem Discovery

Figure 3: Graphs representing possible conforming sets of edge pairs for n = 3,4. Vertices on these
graphs correspond to polygon sides. Edges indicate the side pairs whose angles will be specified

3.2 Diagram Creation

A diagram should be constructed containing the circle and the cyclic polygon. Points qaibi should be
computed and angles ψaibi should be marked on the diagram and named. We need to relate the named
angles: ψaibi to the angles treated in our theorem: δaibi .

One straightforward approach is to create a polygon whose vertices are arranged clockwise around
the circle, making a single circuit, but at non-regular intervals. Constraints may be set on the location
of the polygon vertices to ensure that the angle between chosen side-pairs is not too small for their
intersection to appear on the diagram. This intersection would be displayed, along with a named angle
(Figure 5).

3.3 Geometric Angle Conclusion

The relation between δi j and ψi j depends on whether the circle center is on the same side of wi and w j

and whether a rotation from wi to w j is clockwise or counter-clockwise.
When the polygon is convex and has a winding number of 1 around the circumcenter, the formula is

as follows
Let s = sgn(wi∧w j) and

δi j = π− s · (ψi j) (15)

4 Example

As an example, we start with one of the sets of pairings for the decagon: {(1,2),(3,10),(4,7),(5,8),(6,9)}
(Figure 4).

P.H. Todd 159

Figure 4: Graph for the set of side pairings {(1,2),(3,10),(4,7),(5,8),(6,9)}

Applying Theorem 2.1 to this set of side pairings, and assuming a winding number of 1 gives the
following:

δ1,2 +δ3,10−δ4,7 +δ5,8−δ6,9 = π (16)

A cyclic decagon is drawn, where the vertices are placed at random subject to constraints that the
polygon does not self-intersect, the sides are not too small, and the winding number is 1. Angles between
the five side pairs are marked and named. In the case of non-contiguous sides, the sides are extended in
the diagram to their intersection (Figure 5). As their angles are counter-clockwise, we have:

Figure 5: Cyclic decagon with angles marked for side pairings {(1,2),(3,10),(4,7),(5,8),(6,9)}

δ1,2 = π−ψ1,2
δ4,7 = π−ψ4,7
δ5,8 = π−ψ5,8
δ6,9 = π−ψ6,9

(17)

160 Theorem Discovery

However, the angle for side pair (3,10) is clockwise, so

δ3,10 = π +ψ3,10 (18)

Substituting these values into (16) gives the following

π−ψ1,2 +π +ψ3,10− (π−ψ4,7)+π−ψ5,8− (π−ψ6,9) = π (19)

which can be presented as this theorem conclusion

ψ3,10 +ψ4,7 +ψ6,9 = ψ1,2 +ψ5,8 (20)

We note that it would be possible to draw a polygon such that the angle between lines 3 and 10 is
clockwise. In this case (21) becomes

δ3,10 = π−ψ3,10 (21)

and the theorem conclusion (20) becomes

ψ4,7 +ψ6,9 = ψ1,2 +ψ5,8 +ψ3,10 (22)

5 An Automated Problem Generator

Figure 6: (a) Given convex cyclic hexagon ABCDEF , 6 ABC+ 6 CDE + 6 EFA = 2π . (b) Given convex
cyclic pentagon ABCDE, 6 ABC+ 6 CDE− 6 ECA = π . (c) Given convex cyclic hexagon ABCDE with
center O, 6 ABC+ 6 CDE + 6 OEA = 3π

2 .

An automated problem generator based on the above approach was created [5], and introduces further
elaborations. First, rather than the vertices of the polygon lying in order around the circle, we allow any
permutation of the vertices. With any but the identity permutation, the polygon will be self-intersecting
and will, in fact, be made up of some subset of the sides and diagonals of a convex polygon.

A theorem for a polygon with an odd number of sides may be constructed from a polygon with one
more side by merging a pair of points in the larger polygon. For example, figure 6 (a) shows a theorem

P.H. Todd 161

linking three alternating angles of cyclic polygon ABCDEF . Figure 6(b) shows the result of merging
points F and C of the hexagon. Edges EF and FA now become the diagonals EC and CA of a cyclic
pentagon ABCDE, and the theorem relates two angles of the pentagon and an angle between two of its
diagonals. If the points which are merged share an edge of the larger polygon, that edge will be replaced
by a line joining the center of the circle to the merged point, and the theorem statement will be altered
by π

2 . Figure 6(c) shows the result of merging points F and E of the hexagon ABCDEF . Angle AFE
becomes, in the limit, the angle between AE and the tangent to the circle at E, which differs from OE by
π

2 (where O is the circle center).
In addition to presenting the theorems, our problem generator [5] can create a human readable proof

by propagating a handful of simple angle generation rules. A single step of the proof generator proceeds
by finding all the angles determined by the application of the following set of rules to the known angles:

1. If AD is between AB and AC then 6 BAC = 6 DAB+ 6 DAC.

2. The angles of a triangle add to π .

3. Two angles which form a line add to π .

4. Two angles on the same side of the same chord of a circle are the same.

5. Opposite angles of a cyclic quadrilateral add to π .

6. The angle at the center of a circle is twice the angle on the same chord at the circumference.

7. If AB is a chord of circle centered O then 6 OAB = 6 OBA = 1
2(π− 6 AOB).

Figure 7: Automatically generated diagram with problem statement: Let ABCDEF be a cyclic hexagon
with center O. Prove that BDE = ACE +AFB

162 Theorem Discovery

Our theorems can all be expressed as a linear combination of the angles and π . The result of each
angle generation rule is a linear combination of its inputs and π . Hence a convenient way of storing the
computed value of any angle is as a vector of coefficients of the given angles and π . The proof generator
is started with the known angles and proceeds to compute values for all angles which can be computed
from those by application of the above rules (breadth first). The angle value is stored, as a vector of
coefficients of the known angles and π . Along with the value, a reference is stored to the rule which was
fired, and the arguments it was applied to. If the process finds a new value for a given angle, this new
value can be equated to the given angle yielding a linear expression. The sequence of rule applications
used to reach the final expression may be turned into the words of a proof.

For example, in figure 7, we set 6 BDE = (1,0,0,0), 6 ACE = (0,1,0,0) , 6 AFB = (0,0,1,0).
Applying (4) to 6 AFB gives 6 ACB = (0,0,1,0).
Applying (4) to 6 BDE gives 6 BCE = (1,0,0,0).
Applying (1) to 6 BCE and 6 ACE gives 6 ACB = (1,−1,0,0).
But we already have 6 ACB = (0,0,1,0) so our linear relation can be expressed as (1,−1,−1,0) = 0.
This would result in the following proof.
Let BDE = x. Let ACE = y. LetAFB = z.
As AFB and ACB stand on the same chord, ACB = AFB, so ACB = z.
As BDE and BCE stand on the same chord, BCE = BDE, so BCE = x.
As ACE = y, ACB = x− y.
But ACB = z, so x− y = z, or x = y+ z, or BDE = ACE +AFB.
If the proof generator does not run to completion, additional geometry is added to the diagram in

two phases. First, missing line segments are added, which allow additional angles to be derived (angles
are only computed when the line segments joining their vertices are present). A second step is for an
additional angle to be specified as known, and given a name. As long as the new angle is not in the span
of the known angles, it cannot show up in the eventual linear relation, and hence is guaranteed to simplify
out in the course of the proof.

For example the following is the proof generated for the theorem stated in figure 8.

Theorem 5.1. Let ABCDE be a cyclic pentagon with center O. Let F be the intersection of AE and
DC. Let G be the intersection of OE and CB. Let H be the intersection of ED and BA. BGE +AHE =
DFE +90.

Proof. Draw line BE.
Let 6 DFE = x. Let 6 BGE = y. Let 6 AHE = z.
Let 6 AEH = w.
As6 AHE = z, 6 EAH = 180− z−w.
As 6 EAH = 180− z−w, 6 EAB = z+w.
As 6 AEH = w, 6 HEF = 180−w.
As 6 FEH = 180−w, 6 FED = w.
As 6 DEF = w, 6 EDF = 180− x−w.
As 6 EDF = 180− x−w, 6 EDC = x+w.
As CDEB is a cyclic quadrilateral, 6 CBE = 180− 6 CDE, so 6 CBE = 180− x−w.
As 6 EBG = 180− x−w, 6 BEG = x+w− y.
As triangle BEO is isosceles, 6 BOE = 2y−2x−2w+180.
As 6 BOE is at the center of a circle on the same chord, but in the opposite direction to 6 BAE,

6 BOE = 360−2BAE, so 6 BAE = x+w− y+90.
But 6 BAE = z+w, so x+w−y+90= z+w, or x+90= y+z, or 6 DFE+90= 6 BGE+ 6 AHE.

P.H. Todd 163

Figure 8: Let ABCDE be a cyclic pentagon with center O. Let F be the intersection of AE and DC. Let
G be the intersection of OE and CB. Let H be the intersection of ED and BA. Prove that BGE +AHE =
DFE +90.

Automated proofs can be simply adapted to provide step-by-step solutions to problems framed in
terms of determining an unknown angle, either numerically or algebraically.

Our generator can be set to create problem collections. It is important for such collections to eliminate
problems which are simply rotated or reflected duplicates. For a hexagon, for example, we see from
figure 3 that there are 3 different pair patterns. When we combine this with the different permutations of
6 points, and remove rotated and reflected duplicates, we end up with 49 distinct diagrams.

For the pentagon, we can choose any pair of points to merge, but again need to avoid duplication by
keeping track not only of the diagrams which have been produced, but also of their rotated and reflected
images. The pentagon yields 54 distinct diagrams. [4] shows the complete collection of pentagon and
hexagon theorems generated in this way.

A heptagon theorem may be generated from an octagon theorem by merging a pair of points. A
hexagon theorem may be formed from the heptagon theorem by merging a further pair of points. Ad-
mitting such “four angle” hexagon theorems expands the number of possibilities to hundreds. Admitting
octagons and heptagons expands the possible theorem count to thousands. [6] is a collection of 200
random theorems and their proofs generated by [5] .

6 Conclusion

The angles considered in this paper are not the full angles which have their own place in automated
deduction in geometry [1], and which are largely impervious to changes in the diagram caused by simply

164 Theorem Discovery

positioning the points in different locations. The angles we use are well defined: an angle ABC means
the non-reflex undirected angle defined by the line segments AB and BC. While the angle is well defined,
its relationship to the directed angle, which is the basis of, for example, (16) is highly dependent on the
relative location of the points on the diagram. When an angle passes through π , the relation between
the ordered angle and the unordered non-reflex angle changes and, in our setting, the theorem statement.
This is both a blessing and a curse. A curse because it is difficult to give a succinct general theorem
statement without a complicated set of side conditions. In the context of automated problem generation,
however, the curse becomes a blessing, as it proliferates the number of distinct examples which may be
generated.

From a pedagogical standpoint, the problems generated have several advantages. They can all be
solved by applying a small set of geometric facts, however some ingenuity in applying them is called
for. Algebraically, the problems require only the manipulation of linear equations. Problems can be
phrased as the determination of unknown quantities, either numerically or symbolically, or as proof
problems. Finally the availability of machine generated human-readable proofs gives a convenient means
of scaffolding.

References
[1] Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (1996): Automated generation of readable proofs

with geometric invariants. II. Theorem proving with full-angles. Journal of Automated Reasoning 17(3), pp.
349–370, doi:10.1007/BF00283134.

[2] B. D. Saunders (2015): Matrices with two nonzero entries per row. In: Proceedings of the 2015 ACM on Inter-
national Symposium on Symbolic and Algebraic Computation, pp. 323–330, doi:10.1109/TIT.1986.1057137.

[3] N. J. A. Sloane: Sequences A357442 in "The On-Line Encyclopedia of Integer Sequences.". Available at
https://oeis.org/A357442.

[4] P. H. Todd (2023): The Complete Set of Automatically Generated Angle Problems for Cyclic Hexagon and
Pentagon. Saltire Technical Report 23-1. Available at https://saltire.com/download/TR2023-1.pdf.

[5] P. H. Todd (2023): Cyclic Polygon Angle Problem Generator. Available at https://www.saltire.com/
ProblemGenerator.

[6] P. H. Todd (2023): A Set of 200 Cyclic Polygon Angle Problems. Saltire Technical Report 23-2. Available at
https://saltire.com/download/TR2023-2.pdf.

[7] P. H. Todd & D. Aley (2023): A program to create new geometry proof problems. Annals of Mathematics and
Artificial Intelligence, pp. 779–795, doi:10.1007/s10472-023-09854-1.

[8] Philip Todd (2023): Automated Discovery of Angle Theorems. Annals of Mathematics and Artificial Intelli-
gence, doi:10.1007/s11786-020-00490-0.

https://doi.org/10.1007/BF00283134
https://doi.org/10.1109/TIT.1986.1057137
https://oeis.org/A357442
https://saltire.com/download/TR2023-1.pdf
https://www.saltire.com/ProblemGenerator
https://www.saltire.com/ProblemGenerator
https://saltire.com/download/TR2023-2.pdf
https://doi.org/10.1007/s10472-023-09854-1
https://doi.org/10.1007/s11786-020-00490-0

P. Quaresma and Z. Kovács (Ed.): Automated Deduction
in Geometry 2023 (ADG 2023).
EPTCS 398, 2024, pp. 165–178, doi:10.4204/EPTCS.398.19

© H. Hong, D. Wang & J. Yang
This work is licensed under the
Creative Commons Attribution License.

Improving Angular Speed Uniformity
by Piecewise Radical Reparameterization

Hoon Hong
Department of Mathematics

North Carolina State University
Box 8205, Raleigh, NC 27695, USA

hong@ncsu.edu

Dongming Wang
LMIB – IAI – School of Mathematical Sciences

Beihang University
Beijing 100191, China

Dongming.Wang@cnrs.fr

Jing Yang*

SMS – HCIC – School of Mathematics and Physics
Center for Applied Mathematics of Guangxi

Guangxi Minzu University
Nanning 530006, China

yangjing0930@gmail.com

For a rational parameterization of a curve, it is desirable that its angular speed is as uniform as
possible. Hence, given a rational parameterization, one wants to find re-parameterization with better
uniformity. One natural way is to use piecewise rational reparameterization. However, it turns out that
the piecewise rational reparameterization does not help when the angular speed of the given rational
parameterization is zero at some points on the curve. In this paper, we show how to overcome the
challenge by using piecewise radical reparameterization.

1 Introduction

Parametric curves and surfaces are fundamental objects that are most frequently used in computer aided
geometric design. A given curve or surface may have many different parameterizations, of which some
may possess better properties and thus are more suitable for certain applications than the others. Thus,
one often needs to convert one parameterization into another, i.e., to re-parameterize the given parame-
terization (see, e.g., [1, 2, 3, 5, 6, 7, 8, 9, 10]). In this paper, we focus our investigation on an important
class of parameterizations, called uniform (angular-speed) parameterizations, where the distribution of
points are determined by the local curvature and show how to construct such reparameterizations for a
specific class of curves.

Uniform parameterization has been studied in a series of papers (see [4, 6, 8, 11, 14, 13, 12] and
references therein). The authors have defined a function of angular speed uniformity to measure the
quality of any given parameterization of a plane curve and proposed a method to compute its uniform
reparameterization. However, the computed reparameterization is irrational in most cases (with straight
lines as exceptions). For the sake of efficiency, a framework has been proposed for the computation of
rational approximations of uniform parameterizations [4]. Four different methods of reparameterization
(i.e., optimal reparameterization with fixed degree, C0 and C1 optimal piecewise reparameterization,
and nearly optimal C1 piecewise reparameterization) have been integrated into this framework. They
have also been generalized to compute uniform quasi-speed reparameterizations of parametric curves in
n-dimensional space.

*Corresponding author.

http://dx.doi.org/10.4204/EPTCS.398.19
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

166 Piecewise Radical Reparameterization

However, there is still a major challenge: all the above-mentioned methods do not work well when
the angular speed of the given rational parameterization is zero at some points on the curve. This is due
to an intrinsic property of the angular speed function [13]:

Let ωp be an angular speed function of a curve p and r be a proper transformation. Then

ωp◦r = (ωp ◦ r) · r′. (1)

Uniformizing the angular speed can be seen as modifying the angular speed value at each point under the
constraint (1) iteratively until all the values are equal to the average. However, the constraint indicates
that ωp◦r will never reach the average value for any rational r′ when ωp(t) = 0 for some t.

In this paper, we propose to overcome the challenge by using radical transformations instead of
rational ones. We show that radical transformations allow one to increase the angular speed toward the
average value at the points where the angular speed is zero. Then we adapt the idea of piecewise Möbius
transformation from [11] and the strategies in [12] to optimally improve the uniformity of angular speed.

Experiments show that the proposed approach can improve the angular speed uniformity significantly
when the angular speed of the given parameterization vanishes at some point on the curve.

The rest of the paper is structured as follows. In Section 2, we formulate the problem precisely.
For this, we also introduce all the needed notations and notions. In Section 3, we develop mathemat-
ical theory to tackle the problem. In particular, we show how to use piecewise radical transformation
to transform an angular speed function with zeros into one without zero in such a way that the param-
eters involved are also optimized. In Section 4, we summarize the theoretical results into an algorithm
and illustrate its performance on an example. In Section 5, we briefly discuss implementational is-
sues/suggestions when floating point arithmetic is used.

2 Problem

Consider a regular parametric curve

p = (x1(t), . . . ,xn(t)) : R 7→ Rn.

Its angular speed ωp is given by the following expression (see [4]):1

ωp =

√
∑

1≤i< j≤n

∣∣∣∣ x′′i x′′j
x′i x′j

∣∣∣∣2
n
∑

i=1
x′i2

. (2)

Recall that the mean µp and the variation σ2
p of ωp are given by

µp =
∫ 1

0
ωp(t)dt, and σ

2
p =

∫ 1

0
(ωp(t)−µp)

2 dt.

Definition 1 The angular speed uniformity up of a parameterization p is defined as

up =

1

1+σ2
p/µ2

p
if µp 6= 0,

1 otherwise.
(3)

1The concept of angular speed is defined in the same manner as the one in physics but for p′(t). The reason is to make the
angular speed independent of the origin.

H. Hong, D. Wang & J. Yang 167

Example 2 (Running) Consider the parametric curve p = (t, t3). Then

ωp =
6 t

9 t4 +1
,

µp
.
= 1.249 and up

.
= 0.846. The goal is to find a proper parameter transformation r over [0,1] in order

to increase the uniformity.

Recall the following results from [4]. For any proper parameter transformation r over [0,1], we have

ωp◦r(s) = (ωp ◦ r)(s) · r′(s) (4)

and

up◦r =
µ2

p

ηp,r
, where ηp,r =

∫ 1

0

ω2
p

(r−1)′
(t)dt. (5)

By [13, Theorem 2], one can construct a uniform reparameterization from p, but such a reparameter-
ization is irrational in most cases. Therefore, we proposed several methods in [4] to improve the angular
speed uniformity by computing piecewise rational reparameterizations. However, those methods are not
applicable to curves whose angular speed may vanish over [0,1]. Intuitively speaking, uniformizing the
angular speed over [0,1] can be viewed as getting all the values of ωp(t) (for all t ∈ [0,1]) as close to µp

as possible.
If r is a continuous rational function over [0,1], then r′ is bounded. Suppose that ωp(t0) = 0 for some

t0 ∈ [0,1] and µp 6= 0. Then by (4), there must exist some s0 ∈ [0,1] such that ωp◦r(s0) = 0, which is
not close to µp at all. This makes rational proper parameter transformations invalid. In what follows,
we resort to radical transformations and develop a new approach to uniformize the angular speed of
parametric curves which has zeros over [0,1].

Let p be a parametric curve. Without loss of generality, we assume that

p′(t) = (x′1(t), . . . ,x
′
n(t)) =

(X1(t)
W (t)

, · · · , Xn(t)
W (t)

)
,

where Xi(t),W (t) ∈ R[t] and gcd(X1(t), . . . ,Xn(t),W (t)) = 1. One can verify that

ωp =

√
F

∑
i

Xi
2 , where F = ∑

i 6= j

∣∣∣∣ X ′i X ′j
Xi X j

∣∣∣∣2 .
Let F be written as F =

(
∏

k
i=0(t− t̃i)2 µi

)
ζ (t) for positive k. Note that {t̃i : t̃i < t̃i+1 for 0≤ i< k} contains

all the zeros of F over [0,1]. It is allowed that some ti’s are not the roots of F . The positive integer µi ∈N
is called the multiplicity of t̃i in ωp and denoted by mult(ωp, t̃i). If ωp(t̃i) 6= 0, then mult(ωp, t̃i) = 0.

Let
T = (t0, . . . , tN), S = (s0, . . . ,sN), Z = (z0, . . . ,zN), α = (α0, . . . ,αN−1)

be sequences such that

• 0 = t0 < · · ·< tN = 1, 0 = z0 < · · ·< zN = 1, 0 = s0 < · · ·< sN = 1, 0 < αi < 1;

• at most one of ωp(ti) = 0 and ωp(ti+1) = 0 holds for 0≤ i < N, that is, the successive appearance
of two zeros of ωp are not allowed;

• the multiplicity of ti in ωp is µi;

168 Piecewise Radical Reparameterization

• ωp(t) 6= 0 for all t ∈ (ti, ti+1).

Definition 3 (Elementary Piecewise Radical Transformation) Let p be a parametric curve with T,S
defined above. Then ϕ is called an elementary piecewise radical transformation associated to p if ϕ has
the following form:

ϕ(s) =

...

ϕi(s) if s ∈ [si,si+1],
...

where

ϕi(s) =

ti +∆ti

µi+1
√

s̃ if ωp(ti) = 0;

ti +∆ti(1− µi+1+1
√

1− s̃) if ωp(ti+1) = 0;

ti +∆ti · s̃ otherwise,

(6)

and ∆ti = ti+1− ti, ∆si = si+1− si, s̃ = (s− si)/∆si.

Remark 4

1. It can be verified that ϕ(si) = ti and ϕ(si+1) = ti+1, which implies that ϕ is with C0 continuity.

2. It is allowed that more than one intermediate point lie between two zeros of ωp because it can
reduce the number of radical pieces and thus enhance the efficiency of generating points with the
new parameterization.

It can be shown that ωp◦ϕ(s) 6= 0 (see Theorem 7). Next let q = p ◦ϕ and thus q has no inflation
point. We adapt the reparameterization methods from [12] to increase the uniformity of ωq to any value
close to 1. For this purpose, we recall the following piecewise Möbius transformation.

Definition 5 (Piecewise Möbius Transformation) Let p be a parametric curve with S,Z,α defined
above. Then m is called a piecewise Möbius transformation associated to p if m has the following
form:

m(z) =

...

mi(z) if z ∈ [zi,zi+1],
...

where

mi(z) = si +∆si ·
(1−αi)z̃

(1−αi)z̃+αi(1− z̃)
(7)

and ∆zi = zi+1− zi, ∆si = si+1− si, z̃ = (z− zi)/∆zi.

The problem addressed in this paper may be formulated as follows.

Problem 6 Given a parametric curve p with ωp(t) = 0 for some t ∈ [0,1], find a radical piecewise
transformation ϕ and an optimal piecewise Möbius transformation m over [0,1] such that

• up◦ϕ◦m
.
= 1;

• ∀s ∈ [0,1], ωp◦ϕ◦m(s) 6= 0.

H. Hong, D. Wang & J. Yang 169

3 Theory

3.1 Property of ϕ

Theorem 7 For any s ∈ [0,1], ωp◦ϕ(s) 6= 0.

Proof: Taking derivative of ϕi, we have

ϕ
′
i (s) =

∆ti
µi +1

· 1
µi+1
√

s̃µi
· 1

∆si
if ωp(ti) = 0;

∆ti
µi+1 +1

· 1
µi+1+1
√

(1− s̃)µi+1
· 1

∆si
if ωp(ti+1) = 0;

∆ti
∆si

otherwise.

Next we show that in the above three cases, ωp◦ϕ(s) 6= 0.

Case 1: ωp(ti) = 0.
Assume that µi = mult(ωp, ti). Then ωp can be written as

ωp = |t− ti|µi · ζ̃ (t),

where ζ̃ (t)> 0 for t ∈ [ti, ti+1]. Therefore,

ωp◦ϕ(s) = |ϕi(s)− ti|µi · (ζ̃ ◦ϕi)(s) ·ϕ ′i (s)

= (∆tis̃
1

µi+1)µi · (ζ̃ ◦ϕi)(s) ·
[

∆ti
µi +1

· 1
µi+1
√

s̃µi
· 1

∆si

]
=

∆tµi+1
i

µi +1
· (ζ̃ ◦ϕi)(s) ·

1
∆si

=
∆tµi+1

i
µi +1

· 1
∆si
· ζ̃ (t) 6= 0

for s ∈ [si,si+1].

Case 2: ωp(ti+1) = 0.
Assume that µi+1 = mult(ωp, ti+1). Then ωp can be written as

ωp = |ti+1− t|µi+1 · ζ̃ (t),

where ζ̃ (t)> 0 for t ∈ [ti, ti+1]. Therefore,

ωp◦ϕ(s) = |ti+1−ϕi(s)|µi+1 · (ζ̃ ◦ϕi)(s) ·ϕ ′i (s)

=
∆ti

µi+1 +1
· 1

µi+1+1
√
(1− s̃)µi+1

· 1
∆si

= [∆ti(1− s̃)
1

µi+1+1]µi+1

· (ζ̃ ◦ϕi)(s) ·
∆ti

µi+1 +1
· 1

µi+1+1
√
(1− s̃)µi+1

· 1
∆si

=
∆tµi+1+1

i
µi+1 +1

· (ζ̃ ◦ϕi)(s) ·
1

∆si

=
∆tµi+1+1

i
µi+1 +1

· ζ̃ (t) · 1
∆si
6= 0.

170 Piecewise Radical Reparameterization

Case 3: ωp(ti)ω(ti+1) 6= 0.
Combining ωp(t) 6= 0 for t ∈ [ti, ti+1], ∆ti > 0 and ∆si > 0, we have

ωp◦ϕ(s) = (ωp ◦ϕ)(s) ·ϕ ′(s) = ωp(t) ·
∆ti
∆si
6= 0.

To sum up, we have ωp◦ϕ(s) 6= 0 when s ∈ [si,si+1]. �

Example 8 (Continued from Example 2) For the cubic curve p = (t, t3) whose angular speed is ωp =
6 t

9 t4 +1
, it is easy to see that t = 0 is a zero of ωp with multiplicity 1. Let T = (0,1) and S = (0,1). Then

the constructed ϕ is ϕ(s) =
√

s. It follows that

ωp◦ϕ(s) = (ωp ◦ϕ)(s) ·ϕ ′(s) = 6
√

s
9s2 +1

· 1
2
√

s
=

3
9s2 +1

which is nonzero over [0,1].

Remark 9 It may be further deduced that ωp◦ϕ(s) is discontinuous at s = si.

3.2 Choice of T

By Definition 3, T should contain all the zeros of ωp over [0,1] and some intermediate points in the
subintervals separated by the zeros of ωp. One question is how to choose intermediate points to make
the uniformity improvement as significant as possible. In this subsection, we present a strategy similar
to the one introduced in [12] for determining such points.

Recall [13, Theorem 2] which states that the uniformizing parameter transformation rp of p satisfies

(rp)
−1 =

∫ t

0
ωp(γ)dγ/µp.

Let ϕ be a piecewise radical transformation associated to p. If (rp)
−1 and ϕ−1 share some common

properties, we say informally that rp and ϕ are similar to each other.
First of all, the following can be derived:

ϕ
−1(t) =

si +∆si · t̃µi+1 if ωp(ti) = 0;

si +∆si · [1− (1− t̃)µi+1+1] if ωp(ti+1) = 0;

si +∆si · t̃ otherwise,

(8)

where t̃ = (t− ti)/∆ti. Furthermore,

[
ϕ
−1]′ =

∆si

∆ti
· (µi +1) · t̃µi if ωp(ti) = 0;

∆si

∆ti
· (µi+1 +1) · (1− t̃)µi+1 if ωp(ti+1) = 0;

∆si

∆ti
otherwise;

H. Hong, D. Wang & J. Yang 171

[
ϕ
−1]′′ =

∆si

∆t2
i
· (µi +1)µi · t̃µi−1 if ωp(ti) = 0;

−∆si

∆t2
i
· (µi+1 +1)µi+1 · (1− t̃)µi+1−1 if ωp(ti+1) = 0;

0 otherwise.

Note that ϕ has the properties listed below.

• ϕ−1(0) = 0, ϕ−1(1) = 1.

• ϕ
−1
i is monotonic over (ti, ti+1) because (ϕ−1

i)′(t)≥ 0 for all t ∈ (ti, ti+1); since ϕ−1 is continuous
over [0,1], ϕ−1 is monotonic over [0,1].

• [ϕ−1
i]′ is monotonic over (ti, ti+1) because [ϕ−1

i]′′ has a constant sign over (ti, ti+1).

The above properties indicate that ϕ is composed of some monotonically increasing convex or con-
cave pieces. Moreover, it can be verified that

• r−1
p (0) =

∫ 0
0 ωp(γ)dγ/µp = 0, r−1

p (1) =
∫ 1

0 ωp(γ)dγ/µp = 1;

• r−1
p is monotonic over [0,1] because (r−1

p)′(t) = ωp(t)/µp ≥ 0.

One may observe that ϕ shares the first two properties with rp. If rp possesses the third property of
ϕ , then rp and ϕ are expected to be similar. This inspires us to divide [0,1] into some monotonic intervals
of (r−1

p)′(t) (i.e., ωp). Thus we may try to choose the intermediate ti in T by solving

ωp(ti)ω ′p(ti) = 0.

Note that ωp(t) is nonnegative. Thus 0 is the local minimum value of ωp. In this sense, T consists of all
the local extreme points of ωp and the two boundary points of the unit interval.

With the above operation, rp is divided into some monotonically increasing/decreasing convex or
concave pieces with each piece having a corresponding one in ϕ . Therefore, T can be obtained by
collecting and inserting the zeros of ωp and ω ′p into [0,1] in order.

Example 10 (Continued from Example 8) One may compute that

ω
′
p(t) =−

6(27 t4−1)
(9 t4 +1)2 .

Then the solution of ωp(t)ω ′p(t) = 0 over [0,1] gives us a partition of [0,1], i.e.,

T .
= (0,0.439,1).

Furthermore, one may check that the multiplicities of t0, t1, t2 as roots of ωp are 1,0 and 0, respectively.

3.3 Determination of S

Once a partition T of [0,1] is obtained, one can compute the sequence S in various ways. In this subsec-
tion, we present an optimization strategy for the computation of S.

When T is fixed, up◦ϕ becomes a function of si (i = 1, . . . ,N−1). The following theorem provides a
formula for computing the optimal values for si’s.

172 Piecewise Radical Reparameterization

Theorem 11 The uniformity up◦ϕ reaches the maximum when

si = s∗i =
∑

i−1
k=0
√

Lk

∑
N−1
k=0
√

Lk
, (9)

where

Lk =

∆tk
∫ tk+1

tk

ω2
p(t)

(µk +1)t̃µk
dt if ωp(tk) = 0;

∆tk
∫ tk+1

tk

ω2
p(t)

(µk+1 +1)(1− t̃)µk+1
dt if ωp(tk+1) = 0;

∆tk
∫ tk+1

tk ω2
p(t)dt otherwise.

(10)

The maximum value of up◦ϕ is

u∗p◦ϕ = µ
2
p
/

η
∗
p,ϕ , where η

∗
p,ϕ =

(
N−1

∑
i=0

√
Li

)2

.

Proof: Recall (5). Since µp is a constant for any given p, the problem of maximizing up◦ϕ can be reduced
to that of minimizing

ηp,ϕ =
∫ 1

0

ω2
p

(ϕ−1)′
(t)dt =

N−1

∑
i=0

∫ ti+1

ti

ω2
p

(ϕ−1
i)′

(t)dt.

We first simplify each component in the above equation. Denote
∫ ti+1

ti

ω2
p

(ϕ−1
i)′

(t)dt by Ii. Note that

1
(ϕ−1

i)′(t)
=

∆ti
∆si
· 1

µi +1
· 1

t̃µi
if ωp(ti) = 0;

∆ti
∆si
· 1

µi+1 +1
· 1
(1− t̃)µi+1

if ωp(ti+1) = 0;

∆ti
∆si

otherwise.

When ωp(ti) = 0,

Ii =
∆ti
∆si
· 1

µi +1

∫ ti+1

ti

ω2
p

t̃µi
dt = Li/∆si.

Similarly, when ωp(ti+1) = 0,

Ii =
∆ti
∆si
· 1

µi+1 +1

∫ ti+1

ti

ω2
p

(1− t̃)µi+1
dt = Li/∆si.

When ωp(ti) ·ωp(ti+1) 6= 0,

Ii =
∆ti
∆si
·
∫ ti+1

i

ω
2
p dt = Li/∆si.

It is obvious that ηp,ϕ = ∑
N−1
i=0 Ii > 0; it increases to +∞ when si approaches the boundary of the feasible

set of parameters. Now we compute the extrema of ηp,ϕ . Let

∂ηp,ϕ

∂ si
= 0,

H. Hong, D. Wang & J. Yang 173

i.e.,
Li

∆s2
i
− Li−1

∆s2
i−1

= 0,

where Li is as in (10). Solving the above equation, we obtain

∆si = ∆s∗i = ∆s∗0
√

Li/L0.

Note that ∑
N−1
i=0 ∆s∗i = 1. Thus

∆s∗0 =

(
N−1

∑
k=0

√
Lk/L0

)−1

, s∗i =
i−1

∑
k=0

∆s∗k =
∑

i−1
k=0

√
Lk/L0

∑
N−1
k=0

√
Lk/L0

=
∑

i−1
k=0
√

Lk

∑
N−1
k=0
√

Lk
.

Therefore,

∆s∗i =
√

Li

∑
N−1
k=0
√

Lk
.

Moreover, the optimal value of ηp,ϕ is

ηp,ϕ = η
∗
p,ϕ =

N−1

∑
i=0

Li

∆s∗i
=

N−1

∑
k=0

Li√
Li

∑
N−1
i=0
√

Lk

=

(
N−1

∑
k=0

√
Lk

)2

,

from which it follows that the optimal value of up◦ϕ is

up◦ϕ = u∗p◦ϕ =
µ2

p

η∗p,ϕ
=

µ2
p(

∑
N−1
k=0
√

Lk
)2 .

The proof is completed. �

Example 12 (Continued from Example 10) By using (10), we compute the values of L0 and L1 and
obtain

L0
.
= 0.439

∫ 0.439

0

(
6 t

9 t4 +1

)2

2 · t−0
0.439

dt .
= 0.276,

L1
.
= (1−0.439)

∫ 1

0.439

(
6 t

9 t4 +1

)2

dt .
= 0.590.

By (9), we have s1 = 0.406. Thus S .
= (0,0.406,1). Furthermore, one may calculate the optimal value of

up◦ϕ and obtain u∗p◦ϕ
.
= 0.932.

3.4 Determination of Z and α

Once a partition S of [0,1] is obtained, one can compute the sequence Z. In this subsection, we give
explicit formulae for the optimal values of Z and α which are directly computed from the sequence T .
For this purpose, we first recall the the following result from [11].

174 Piecewise Radical Reparameterization

Theorem 13 Let q be a rational parameterization such that ωq(s) 6= 0 over [0,1] and m be a piecewise
Möbius transformation determined by S, Z and α . For a given sequence S, the uniformity uq◦m reaches
the maximum when

αi = α
∗
i =

1
1+
√

Ci/Ai
, zi = z∗i =

∑
i−1
k=0
√

Mk

∑
N−1
k=0
√

Mk
, (11)

where

Ai =
∫ si+1

si

ω
2
q · (1− s̃)2ds, Bi =

∫ si+1

si

ω
2
q ·2s̃(1− s̃)ds,

Ci =
∫ si+1

si

ω
2
q · s̃2ds, Mk = ∆sk

(
2
√

AkCk +Bk

)
.

Let m∗ be the piecewise Möbius transformation determined by S, Z∗ and α∗. Then the maximum value
of uq◦m is uq◦m∗ = µ2

q/ηq,m∗ where

ηq,m∗ =

(
N−1

∑
i=0

√
Mk

)2

.

Remark 14 Let ϕ be an elementary radical transformation as in Definition 3 and q = p◦ϕ . Note that

µq =
∫ 1

0
ωqds =

∫ 1

0
ωp◦ϕds =

∫ 1

0
(ωp ◦ϕ)(s) ·ϕ ′(s)ds =

∫ 1

0
ωpdt = µp.

Thus

up◦ϕ◦m∗ = uq◦m∗ = µ
2
q/ηq,m∗ = µ

2
p

/(N−1

∑
i=0

√
Mk

)2

.

Let ϕ and q be defined as before. By Theorem 7, ωq 6= 0 over [0,1]. One may compute the optimal
values of S, α and Z by Theorems 11 and 13. However, p ◦ϕ is a composition of radical function and
rational function and the composition will cause an increase of complexity because ωq is radical. In what
follows, we simplify the formulae for Ai,Bi and Ci with the goal of computing the values of Ai,Bi and Ci

directly from p.
The formula of Ai (0≤ i≤ N−1) is derived via the following steps:

Ai =
∫ si+1

si

ω
2
q · (1− s̃)2ds

=
∫ si+1

si

[(ωp ◦ϕ)(s)]2 · [ϕ ′(s)]2 · (1− s̃)2ds

=
∫ si+1

si

[(ωp ◦ϕ)(s)]2 · [ϕ ′(s)] · (1− s̃)2 [
ϕ
′(s)ds

]
=
∫ ti+1

ti

ω2
p

(ϕ−1)′
(t) ·

(
1− ϕ−1− si

∆si

)2

dt by (8)

=

∫ ti+1
ti

ω2
p

(ϕ−1)′
(t) · (1− t̃µi+1)2dt if ω(ti) = 0;

∫ ti+1
ti

ω2
p

(ϕ−1)′
(t) · (1− t̃)2(µi+1+1)dt if ω(ti+1) = 0;

∫ ti+1
ti

ω2
p

(ϕ−1)′
(t) · (1− t̃)2dt otherwise;

H. Hong, D. Wang & J. Yang 175

=

∆ti
∆si

∫ ti+1
ti

ω2
p(t)

(µi +1)t̃µi
· (1− t̃µi+1)2dt if ω(ti) = 0;

∆ti
∆si

∫ ti+1
ti

ω2
p(t)

µi+1 +1
· (1− t̃)µi+1+2dt if ω(ti+1) = 0;

∆ti
∆si

∫ ti+1
ti ω2

p(t) · (1− t̃)2dt otherwise.

Similarly, we have

Bi =

∆ti
∆si

∫ ti+1
ti

ω2
p(t)

µi +1
·2t̃(1− t̃µi+1)dt if ω(ti) = 0;

∆ti
∆si

∫ ti+1
ti

ω2
p(t)

µi+1 +1
·2[1− (1− t̃)µi+1+1](1− t̃)dt if ω(ti+1) = 0;

∆ti
∆si

∫ ti+1
ti ω2

p(t) · (1− t̃)2dt otherwise;

Ci =

∆ti
∆si

∫ ti+1
ti

ω2
p(t)

µi +1
· t̃µi+2dt if ω(ti) = 0;

∆ti
∆si

∫ ti+1
ti

ω2
p(t)

(µi+1 +1)(1− t̃)µi+1
· [1− (1− t̃)µi+1+1]2dt if ω(ti+1) = 0;

∆ti
∆si

∫ ti+1
ti ω2

p(t) · (1− t̃)2dt otherwise.

Example 15 (Continued from Example 12) With the above formulae and T , S as in Examples 10 and
12, one may obtain the following:

A0
.
= 0.258, B0

.
= 0.229, C0

.
= 0.193,

A1
.
= 0.518, B1

.
= 0.317, C1

.
= 0.159.

Thus

M0
.
= 0.406(2

√
0.258 ·0.193+0.229) .

= 0.274,

M1
.
= (1−0.406)(2

√
0.518 ·0.159+0.317) .

= 0.529.

By Theorem 13, we obtain

α0
.
= 1/(1+

√
0.193/0.258) .

= 0.536,

α1
.
= 1/(1+

√
0.159/0.518) .

= 0.643,

and z∗1
.
= 0.419. Thus α

.
= (0.536,0.643) and Z .

= (0, .419,1). One may further calculate

uq◦m∗
.
=

1.2492

(
√

0.274+
√

0.529)2
.
= 0.997.

4 Algorithm

In this section, we summarize the above ideas and results as Algorithm 1 and illustrate how the algorithm
works for the cubic curve in Example 2.

176 Piecewise Radical Reparameterization

Algorithm 1: Optimal_Radical_Transformation

Input: p, a rational parameterization of a plane curve.

Output: r, the optimal piecewise radical transformation of p such that up◦r > up.

1. Compute ωp and µp using (2), up using (3) and ω ′p.

2. Solve ωpω ′p = 0 and get T .

3. Compute S, Z, α and u using (9) and (11).

4. Construct ϕ with T , S and m with S, Z, α using (6) and (7).

5. r← ϕ ◦m.

6. Return r.

Example 16 (Continued from Example 15) Given p = (t, t3), after the above calculation, one may
obtain

T .
= (0,0.439,1), S .

= (0,0.406,1), Z .
= (0, .419,1), α

.
= (0.536,0.643).

Then one may construct ϕ with T and S, and m with S, Z and α , and obtain

ϕ
.
=

{
0.688

√
s if 0.000≤ s≤ 0.406;

0.055+0.945s if 0.406≤ s≤ 1.000;

m .
=

−0.450z

0.172z−0.536
if 0.000≤ z≤ 0.049;

−0.165z+0.192z
0.492z−0.849

if 0.419≤ z≤ 1.000.

Then the optimal transformation r is constructed below.

r = ϕ ◦m .
=

0.462

√
− z

0.172z−0.536
if 0.000≤ z≤ 0.419;

−0.129z−0.228
0.492z−0.849

if 0.419≤ z≤ 1.000.

With the optimal radical transformation r, one may construct p◦ r and obtain

p◦ r .
=

(
−0.079

√
z(z−3.116)

(−0.172z+0.5359)3/2 ,
0.098z3/2

(−0.172z+0.536)3/2

)
if 0.000≤ z≤ 0.419;(

−0.129z−0.228
0.492z−0.849

,−0.002 (z+1.771)3

(0.492z−0.849)3

)
if 0.419≤ z≤ 1.000.

The angular speed function of p◦ r is

wp◦r
.
=

0.781

z2−0.420z+0.655
if 0.000≤ z≤ 0.4187;

−1.379 (z+1.771)(z−1.725)
(z2−1.456z+0.899)(z2−4.876z+9.888)

if 0.4187≤ z≤ 1.000.

H. Hong, D. Wang & J. Yang 177

Furthermore, one may calculate its uniformity up◦r
.
= 0.997.

The plots of p and p◦ r as well as the behavior of their angular speed functions are shown below:

where

• the left plot shows the equi-sampling of the original parameterization p (green);

• the middle plot shows the equi-sampling of the optimal piecewise radical reparameterization p◦ r
(red);

• the right plot shows the angular speed functions of p and p◦ r.

It is seen that the angular speed uniformity is greatly improved by the piecewise radical reparameteriza-
tion.

5 Implementational Issues/Suggestions

If one chooses to implement the proposed algorithm using floating-point arithmetic, then, as usual, one
should be careful to avoid numerical instability.

For instance, if Li is computed by (10) naively, then it leads to instability. For example, ti = 1/
√

2 is
a zero of ωp with multiplicity 1, so

ωp(t) = |t−1/
√

2| ·m(t),

where m(1/
√

2) 6= 0. The numeric solution over [0,1] is ti = 0.707. Thus

Li = ∆ti
∫ ti+1

ti

ω2
p(t)

(µi +1)t̃µi
dt = ∆t2

i

∫ ti+1

ti

(t−1/
√

2)2 ·m2(t)
2(t−0.707)

dt.

During integration, it is necessary to evaluate the integral at t = 0.707. When t approaches 0.707, the
integral quickly increases to +∞, causing numerical instability.

To avoid such cases, one could adopt a technique from symbolic computation to represent algebraic
numbers. Suppose that t = γ is a zero of ωp(t) with multiplicity µi and ti is its numerical approximation.
By (2), ω2

p(t) is a rational function. Let G and H be its numerator and denominator. Then t = γ is a zero
of G with multiplicity 2 µi. Carrying out the Euclidean division with G as the dividend and (t− γ)2 µi as
the divisor, we obtain

G(t) = (t− γ)2 µiQ(t,γ)+R(t,γ).

Since t = γ is a zero of G with multiplicity 2 µi, it is also a zero of R(t,γ) with multiplicity at least 2 µi.
Given that deg(R, t)< 2 µi, R(t,γ) must be zero, which leads to the following conclusion:

Li = ∆ti
∫ ti+1

ti

ω2
p(t)

(µi +1) t̃µi
dt .

=
∆tµi+1

i
µi +1

·
∫ ti+1

ti

Q(t, ti)(t− ti)µi

H(t)
dt.

178 Piecewise Radical Reparameterization

Acknowledgements Hoon Hong’s work was supported by National Science Foundations of USA un-
der Grant No. 1813340 and Jing Yang’s work was supported by National Natural Science Foundation of
China under Grant Nos. 11526060 and 12261010.

References
[1] P. Costantini, R. T. Farouki, C. Manni & Sestini A (2001): Computation of optimal composite

re-parameterizations. Computer Aided Geometric Design 18(9), pp. 875–897, doi:10.1016/S0167-
8396(01)00071-1.

[2] G. Farin (2006): Rational quadratic circles are parametrized by chord length. Computer Aided Geometric
Design 23(9), pp. 722–724, doi:10.1016/j.cagd.2006.08.002.

[3] R. T. Farouki (1997): Optimal parameterizations. Computer Aided Geometric Design 14(2), pp. 153–168,
doi:10.1016/S0167-8396(96)00026-X.

[4] H. Hong, D. Wang & J. Yang (2013): A framework for improving uniformity of parameterizations of curves.
Science China Information Sciences 56(10), pp. 1–22, doi:10.1007/s11432-013-4924-4.

[5] B. Jüttler (1997): A vegetarian approach to optimal parameterizations. Computer Aided Geometric Design
14(9), pp. 887–890, doi:10.1016/S0167-8396(97)00044-7.

[6] M. Kosters (1991): Curvature-dependent parameterization of curves and surfaces. Computer-Aided Design
23(8), pp. 569–578, doi:10.1016/0010-4485(91)90058-5.

[7] X. Liang, C. Zhang, L. Zhong & Y. Liu (2005): C1 continuous rational re-parameterization using monotonic
parametric speed partition. In: Ninth International Conference on Computer Aided Design and Computer
Graphics, IEEE Computer Society, Los Alamitos, CA, USA, pp. 16–21, doi:10.1109/CAD-CG.2005.23.

[8] R. Patterson & C. Bajaj (1989): Curvature adjusted parameterization of curves. Technical Report CSD-TR-
907, Department of Computer Science, Purdue University, US. Available at https://docs.lib.purdue.
edu/cstech/773/.

[9] J. R. Sendra & C. Villarino (2001): Optimal reparameterization of polynomial algebraic curves. International
Journal of Computational Geometry & Applications 11(04), pp. 439–453, doi:10.1142/S0218195901000572.

[10] J. R. Sendra, F. Winkler & S. Pérez-Díaz (2008): Rational algebraic curves. A computer algebra approach.
Algorithms and Computation in Mathematics 22, Springer Verlag, doi:10.1007/978-3-540-73725-4.

[11] J. Yang, D. Wang & H. Hong (2012): Improving angular speed uniformity by optimal C0 piecewise repa-
rameterization. In V. P. Gerdt, W. Koepf, E. W. Mayr & E. V. Vorozhtsov, editors: Computer Algebra in
Scientific Computing, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 349–360, doi:10.1007/978-3-642-
32973-9_29.

[12] J. Yang, D. Wang & H. Hong (2013): Improving angular speed uniformity by C1 piecewise reparameteriza-
tion. In T. Ida & J. Fleuriot, editors: Automated Deduction in Geometry, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 33–47, doi:10.1007/978-3-642-40672-0_3.

[13] J. Yang, D. Wang & H. Hong (2013): Improving angular speed uniformity by reparameterization. Computer
Aided Geometric Design 30(7), pp. 636–652, doi:10.1016/j.cagd.2013.04.001.

[14] J. Yang, D. Wang & H. Hong (2014): ImUp: a Maple package for uniformity-improved reparameterization
of plane curves. In R. Feng, W. Lee & Y. Sato, editors: Computer Mathematics, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 437–451, doi:10.1007/978-3-662-43799-5_29.

https://doi.org/10.1016/S0167-8396(01)00071-1
https://doi.org/10.1016/S0167-8396(01)00071-1
https://doi.org/10.1016/j.cagd.2006.08.002
https://doi.org/10.1016/S0167-8396(96)00026-X
https://doi.org/10.1007/s11432-013-4924-4
https://doi.org/10.1016/S0167-8396(97)00044-7
https://doi.org/10.1016/0010-4485(91)90058-5
https://doi.org/10.1109/CAD-CG.2005.23
https://docs.lib.purdue.edu/cstech/773/
https://docs.lib.purdue.edu/cstech/773/
https://doi.org/10.1142/S0218195901000572
https://doi.org/10.1007/978-3-540-73725-4
https://doi.org/10.1007/978-3-642-32973-9_29
https://doi.org/10.1007/978-3-642-32973-9_29
https://doi.org/10.1007/978-3-642-40672-0_3
https://doi.org/10.1016/j.cagd.2013.04.001
https://doi.org/10.1007/978-3-662-43799-5_29

	Motivations
	Transforming Large Proof Scripts into One-line Scripts
	Experiments, Limitations and Results
	Implementation
	Limitations
	Successful Transformations
	Refactoring Proof Scripts Automatically Generated by our Prover for Projective Incidence Geometry
	Next steps

	Conclusions and perspectives
	Proof Script for our basic example
	Introduction
	Examples
	Automation
	Problem Statement and Lemmas
	Using Automated Provers

	Results
	Conclusion
	Appendix
	Introduction
	Background
	Coherent Logic
	Theorem Proving as Constraint Solving and the Larus System

	Abducts and Completing Assumptions
	Deducts and Completing Goals
	Hints and Completing Proofs
	Conclusion and Future Work
	Appendix
	Problem 1: Varignon's Theorem
	Problem 2: First Inverse Problem
	Problem 3: Second Inverse Problem
	Problem 4: Partially Specified Goal
	Problem 5: Partially Specified Proof

	Introduction
	GXWeb
	Examples
	Euler Line
	Tritangent Circles and Pythagorean Triples
	Box Solar Cooker
	Coffee Cup Caustic

	Conclusion
	Introduction
	ShowProof Command
	Interestingness
	Example 1
	Example 2
	Example 3

	Conclusions
	Introduction
	Expectations
	Translations
	Modern Interface
	State-of-the-art Mathematics
	Fixing Bugs and Adding Improvements

	Conclusion
	Acknowledgments
	Introduction
	Background
	Ruler-and-Compass Constructions
	Constraint Solving
	Automated Planning

	Model Description
	Encoding of Geometric Knowledge
	Encoding of the Planning Problem

	Evaluation
	Conclusions and Further Work
	1 Introduction
	2 A Variant of Tarski's System of Geometry
	2.1 Tarski's System of Geometry
	2.2 Gupta's Contribution
	2.3 An Independent System for Planar Geometry

	3 A model of Tarski's system of geometry
	3.1 The Real Field Structure
	3.2 The Model
	3.3 Proof that the Axioms hold in the Model

	4 An Example of Independence Proof
	4.1 Klein's Model
	4.2 Independence of Euclid’s Parallel Postulate via Klein's Model

	5 Conclusion
	Introduction
	Automated Theorem Generation
	The Deductive Approach
	Strong Relevant Logic-based Forward Deduction Approach
	Rule Based Systems
	Algebraic Approaches

	Automated Theorem Finding
	The Deductive Approach Algorithm
	Filtering Interesting Theorems

	Undecidability Result
	Designing Interesting Surveys
	Three Surveys

	Conclusions
	First Survey—Interesting Theorems
	Interesting and Why?
	Five Interesting Theorems in Geometry
	Five Not Interesting Theorems in Geometry

	Second Survey—Characteristics of Interesting Theorems
	Introduction
	Solving the Problem
	Generalizing the Problem
	Grading Problem 2
	Conclusions
	Introduction
	The Náboj Contest
	Mathematical Background
	Problems that can be Solved with GeoGebra Discovery
	Pentominos (Problem 15)
	A Right Triangle (Problem 23)
	A Triangle and a Circle (Problem 47)

	Problems that Require Further Improvements
	Conclusion
	Acknowledgements
	Appendix
	Introduction
	Testing of Competition Tasks Using JGEX
	A Solvable Problem
	A Problem that is Difficult to Solve Automatically

	Conclusion
	Acknowledgements
	Introduction
	GeoGebra Discovery and its Automated Reasoning Tools
	A Rocking Camel
	The History of the Rocking Camel

	A STEM Activity
	Exact Measurements
	Modeling in GeoGebra
	A First Conjecture
	A Numerical Locus
	A Second Conjecture
	A Symbolic Locus
	A Proof
	Generalization

	Final Thoughts and Conclusion
	Introduction
	Classical Curves and beyond
	Epicycloids in 2D and Extension towards 3D
	Three Circular Movements with Constant Angular Velocity – Same Direction
	Three Circular Movements with Constant Angular Velocity – One in Reverse Direction
	Math Art Creation

	Some More Remarks
	Acknowledgements
	Introduction
	Cyclic Polygons and Angle Bisectors
	Cyclic Quadrilateral
	General Theorem

	Automated Discovery of Cyclic Polygon Theorems
	Choosing Side Pairs
	Diagram Creation
	Geometric Angle Conclusion

	Example
	An Automated Problem Generator
	Conclusion
	Introduction
	Problem
	Theory
	Property of
	Choice of T
	Determination of S
	Determination of Z and

	Algorithm
	Implementational Issues/Suggestions

