
EPTCS 397

Proceedings of the

Sixth International Conference on

Applied Category Theory 2023

University of Maryland, 31 July - 4 August 2023

Edited by: Sam Staton and Christina Vasilakopoulou

Published: 14th December 2023

DOI: 10.4204/EPTCS.397

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . iii

Bicategories of Automata, Automata in Bicategories . 1

Guido Boccali, Andrea Laretto, Fosco Loregian and Stefano Luneia

Subsumptions of Algebraic Rewrite Rules . 20

Thierry Boy de la Tour

Collages of String Diagrams . 39

Dylan Braithwaite and Mario Román

The Algebraic Weak Factorisation System for Delta Lenses . 54

Bryce Clarke

Normalizing Resistor Networks . 70

Robin Cockett, Amolak Ratan Kalra and Priyaa Varshinee Srinivasan

Monoidal Structures on Generalized Polynomial Categories . 84

Joseph Dorta, Samantha Jarvis and Nelson Niu

Syntax Monads for the Working Formal Metatheorist . 98

Lawrence Dunn, Val Tannen and Steve Zdancewic

A Categorical Model for Classical and Quantum Block Designs . 118

Paulina L. A. Goedicke and Jamie Vicary

Constructor Theory as Process Theory . 137

Stefano Gogioso, Vincent Wang-Maścianica, Muhammad Hamza Waseem,

Carlo Maria Scandolo and Bob Coecke

Optics for Premonoidal Categories . 152

James Hefford and Mario Román

Overdrawing Urns using Categories of Signed Probabilities . 172

Bart Jacobs and Dario Stein

Effectful Semantics in 2-Dimensional Categories: Premonoidal and Freyd Bicategories 190

Hugo Paquet and Philip Saville

ii

Structured and Decorated Cospans from the Viewpoint of Double Category Theory 210

Evan Patterson

Obstructions to Compositionality . 226

Caterina Puca, Amar Hadzihasanovic, Fabrizio Genovese and Bob Coecke

Posetal Diagrams for Logically-Structured Semistrict Higher Categories . 246

Chiara Sarti and Jamie Vicary

String Diagrams with Factorized Densities . 260

Eli Sennesh and Jan-Willem van de Meent

Approximate Inference via Fibrations of Statistical Games . 279

Toby St Clere Smithe

Unifilar Machines and the Adjoint Structure of Bayesian Filtering . 299

Nathaniel Virgo

S. Staton, C. Vasilakopoulou (Eds.):

Applied Category Theory 2023 (ACT2023)

EPTCS 397, 2023, pp. iii–iii, doi:10.4204/EPTCS.397.0

© S. Staton, C. Vasilakopoulou

This work is licensed under the

Creative Commons Attribution License.

Preface

Sam Staton Christina Vasilakopoulou

The Sixth International Conference on Applied Category Theory took place at the University of

Maryland on 31 July – 4 August 2023, following the previous meetings at Leiden (2018), Oxford (2019),

MIT (2020, fully online), Cambridge (2021) and Strathclyde (2022). It was preceded by the Adjoint

School 2023 (24 – 28 July), a collaborative research event in which junior researchers worked under

the mentorship of experts. The conference comprised 59 contributed talks, a poster session, an industry

showcase session, four tutorial sessions and a session where junior researchers who had attended the

Adjoint School presented the results of their research at the school. Information regarding the conference

may be found at https://act2023.github.io/.

ACT 2023 was a hybrid event, with physical attendees present in Maryland and other participants

taking part online. All talks were streamed to Zoom and with synchronous discussion on Zulip.

Submission to ACT2023 had three tracks: extended abstracts, software demonstrations, and pro-

ceedings. The extended abstract and software demonstration submissions had a page limit of 2 pages,

and the proceedings track had a page limit of 12 pages. Only papers submitted to the proceedings track

were considered for publication in this volume. In total, there were 81 submissions, of which 59 were

accepted for presentation and 18 for publication in this volume. Publication of accepted submissions

in the proceedings was determined by personal choice of the authors and not based on quality. Each

submission received a review from three different members of the programming committee, and papers

were selected based on discussion and consensus by these reviewers.

The contributions to ACT2023 ranged from pure to applied and included contributions in a wide

range of disciplines in science and engineering. ACT2023 included talks in linguistics, functional pro-

gramming, classical mechanics, quantum physics, probability theory, electrical engineering, epidemiol-

ogy, thermodynamics, engineering, and logic. Many of the submissions had software demonstrating their

work or represented work done in collaboration with industry or a scientific organization. The industry

session included 9 invited talks by practitioners using category theory in private enterprise.

ACT2023 included four tutorials: David Jaz Myers on Lenses, Paolo Perrone on Markov categories,

Dorette Pronk on Double categories, and Evan Patterson and Owen Lynch on AlgebraicJulia.

We are grateful to Angeline Aguinaldo, James Fairbanks, Joe Moeller, and Priyaa Varshinee Srini-

vasan who played various roles in the ACT organization.

ACT2023 was sponsored by AARMS (Atlantic Association for Research in the Mathematical Sci-

ences), Conexus, DeepMind, NIST (National Institute of Standards and Technology), PIMS (Pacific

Institute for the Mathematical Sciences), Quantinuum, University of Florida and 20 Squares.

Sam Staton and Christina Vasilakopoulou

Chairs of the ACT 2023 Programme Committee

http://dx.doi.org/10.4204/EPTCS.397.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://act2023.github.io/

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 1–19, doi:10.4204/EPTCS.397.1

© Boccali, Laretto, Loregian, Luneia
This work is licensed under the
Creative Commons Attribution License.

Bicategories of Automata, Automata in Bicategories

Guido Boccali†
Università di Torino, Torino, Italy

Andrea Laretto~

Tallinn University of Technology, Tallinn, Estonia

Fosco Loregian♣
Tallinn University of Technology, Tallinn, Estonia∗

Stefano Luneia♥
Università di Bologna, Bologna, Italy

We study bicategories of (deterministic) automata, drawing from prior work of Katis-Sabadini-
Walters, and Di Lavore-Gianola-Román-Sabadini-Sobociński, and linking their bicategories of ‘pro-
cesses’ to a bicategory of Mealy machines constructed in 1974 by R. Guitart. We make clear the
sense in which Guitart’s bicategory retains information about automata, proving that Mealy machines
à la Guitart identify to certain Mealy machines à la K-S-W that we call fugal automata; there is a
biadjunction between fugal automata and the bicategory of K-S-W. Then, we take seriously the motto
that a monoidal category is just a one-object bicategory. We define categories of Mealy and Moore
machines inside a bicategory B; we specialise this to various choices of B, like categories, relations,
and profunctors. Interestingly enough, this approach gives a way to interpret the universal property of
reachability as a Kan extension and leads to a new notion of 1- and 2-cell between Mealy and Moore
automata, that we call intertwiners, related to the universal property of K-S-W bicategory.

1 Introduction

The profound connection between category theory and automata theory is easily explained: one of the
founders of the first wrote extensively about the second [23, 24]. A more intrinsic reason is that category
theory is a theory of systems and processes. Morphisms in a category can be considered a powerful
abstraction of ‘sequential operations’ performed on a domain/input to obtain a codomain/output. Hence
the introduction of categorical models for computational machines has been rich in results, starting from
the elegant attempts by Arbib and Manes [2, 7, 5, 6, 8, 59] –cf. also [3, 20, 22] for exhaustive monographs–
and Goguen [28, 29, 30], up to the ultra-formal –and sadly, under-appreciated– experimentations of
[9, 10, 32, 33, 35] using hyperdoctrines, 2-dimensional monads, bicategories, lax co/limits. . . up to the
modern coalgebraic perspective of [38, 62, 63, 67]; all this, without mentioning categorical approaches to
Petri nets [54], based essentially on the same analogy, where the computation of a machine is concurrent
–as opposed to single-threaded.

Furthermore, many constructions of computational significance often, if not always, have a math-
ematical counterpart in terms of categorical notions: the transition from a deterministic machine to a
non-deterministic one is reflected in the passage from automata in a monoidal category (cf. [22, 55]),
to automata in the Kleisli category of an opmonoidal monad (cf. [34, 40]; this approach is particularly
useful to capture categorically stochastic automata, [19, 7, 15] as they appear as automata in the Kleisli
category of a probability distribution monad); minimisation can be understood in terms of factorisation
systems (cf. [18, 30]); behaviour as an adjunction (cf. [56, 57]).

The present work starts from the intuition, first presented in [45, 60], that the analogy between
morphisms and sequential machines holds up to the point that the series and parallel composition of
automata should itself be reflected in the ‘series’ and ‘parallel’ composition of morphisms in a category.
As a byproduct of the ‘Circ’ construction in op. cit., one can see how the 1-cells of a certain monoidal
bicategory specialise exactly a Mealy machines 𝐸 𝑑←− 𝐸 ⊗ 𝐼 𝑠−→𝑂 with inputs and outputs 𝐼 and 𝑂.

∗Loregian was supported by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

http://dx.doi.org/10.4204/EPTCS.397.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Bicategories of Automata, Automata in Bicategories

Outline of the paper. The first result we present in section 2 is that this category relates to another
bicategory constructed by R. Guitart in [32]. Guitart observes that one can use certain categories
Mac(M,N) of spans as hom categories of a bicategory Mac, and shows that Mac admits a concise
description as the Kleisli bicategory of the monad of diagrams [32, §1] (cf. also [35], by the same author,
and [58] for a more modern survey); Mealy machines shall be recognisable as the 1-cells of Mac between
monoids, regarded as categories with a single object. The fundamental assumption in [32] is that a Mealy
machine 𝐸 𝑑←− 𝐸 ⊗𝑀 𝑠−→ 𝑁 satisfies a certain property of compatibility with the action of 𝑑 on 𝐸 , cf.
(2.8), that we call being a fugal automaton:

𝑠(𝑒,𝑚 ·𝑚′) = 𝑠(𝑒,𝑚) · 𝑠(𝑑 (𝑒,𝑚),𝑚′).

This notion can be motivated in the following way: if 𝑠 satisfies the above equation, then it lifts to a
functor E[𝑑] → 𝑁 defined on the category of elements of the action 𝑑, and in fact, defines a ‘relational
action’ in its own right, compatible with 𝑑 (formally speaking, E[𝑑] is a displayed category [4] over
𝑁). We show that there is a sub-bicategory Mly♭Set of MlySet made of fugal automata and that Mly♭Set is
biequivalent (actually, strictly) to the 1-full and 2-full sub-bicategory of Mac spanned by monoids.

The second result we propose in this paper is motivated by the motto for which a monoidal category is
just a bicategory with a single object: what are automata inside a bicategory B with more than one object,
where instead of input/output objects 𝐼,𝑂 we have input/output 1-cells, arranged as 𝑒

𝛿⇐ 𝑒 ◦ 𝑖 𝜎⇒ 𝑜?
Far from being merely formal speculation (a similar idea was studied in a short, cryptic note [10] to
describe behaviour through Kan extensions: we take it seriously and present it as a quite straightforward
observation in Remark 3.6), we show how this allows for a concise generalisation of ‘monoidal’ machines.

Related work. A word on related work and how we fit into it: the ideas in section 2 borrow heavily
from [45, 60] where bicategories of automata (or ‘processes’) are studied in fine detail; in section 2 we
carry on a comparison with a different approach to bicategories of automata, present in [32] but also in
[33, 35]; in particular, our proof that there is an adjunction between the two bicategories is novel –to the
best of our knowledge– and it hints at the fact that the two approaches are far from being independent. At
the level of an informal remark, the idea of approaching automata via (spans where one leg is a) fibrations
bears some resemblance to Walters’ work on context-free languages through displayed categories in [69],
and the requirement to have a fibration as one leg of the span should be thought as mirroring determinism
of the involved automata: if 〈𝑠, 𝑑〉 : 𝐸 ×𝑀 → 𝑁 × 𝐸 is fugal and 𝑠 defines a fibration over 𝑁 , then 𝐸
is a 𝑀-𝑁-bimodule, not only an 𝑀-set; there is extensive work of Betti-Kasangian [12, 11, 42] and
Kasangian-Rosebrugh [43] on ‘profunctorial’ models for automata, their behaviour, and the universal
property enjoyed by their minimisation: spans of two-sided fibrations [64, 65] and profunctors are well-
known to be equivalent ways to present the same bicategory of two-sided fibrations. Carrying on our
study will surely determine a connection between the two approaches.

For what concerns section 3, the idea of valuing a Mealy or a Moore machine in a bicategory seems
to be novel, although in light of [60] and in particular of their concrete description of C = ΩΣ(K,⊗) it
seems that both MlyB and MreB allow defining tautological functors into C. How these two bicategories
relate is a problem we leave for future investigation: [60] proves that when K is Cartesian monoidal,
MlyK is ΩΣ(K,×). The conjecture is that our MlyB is ΩB under some assumptions on the bicategory B:
our notion of intertwiner seems to hint in that direction. Characterising ‘behaviour as a Kan extension’ is
nothing but taking seriously the claim that animates applications of coalgebra theory [39, 40] to automata;
the –apparently almost unknown– work of Bainbridge [10] bears some resemblance to our idea, but his
note is merely sketched, no plausibility for his intuition is given. Nevertheless, we recognise the potential
of his idea and took it to its natural continuation with modern tools of 2-dimensional algebra.

Boccali, Laretto, Loregian, Luneia 3

1.1 Mealy and Moore automata

The scope of the following subsection is to introduce the main characters studied in the paper:1 categories
of automata valued in a monoidal category (K,⊗) (in two flavours: ‘Mealy’ machines, where one
considers spans 𝐸← 𝐸 ⊗ 𝐼→𝑂, and ‘Moore’, where instead one consider pairs 𝐸← 𝐸 ⊗ 𝐼, 𝐸→𝑂.

The only purpose of this short section is to fix the notation for section 2 and 3; comprehensive classical
references for this material are [3, 22].

For the entire subsection, we fix a monoidal category (K,⊗,1).
Definition 1.1 (Mealy machine). A Mealy machine inK of input object 𝐼 and output object𝑂 consists of a
triple (𝐸, 𝑑, 𝑠) where 𝐸 is an object ofK and 𝑑, 𝑠 are morphisms in a span 𝔢 :=

(
𝐸 𝐸 ⊗ 𝐼𝑑oo 𝑠 // 𝑂

)
.

Remark 1.2 (The category of Mealy machines). Mealy machines of fixed input and output 𝐼,𝑂 form a
category, if we define a morphism of Mealy machines 𝑓 : 𝔢 = (𝐸, 𝑑, 𝑠) → (𝐹, 𝑑 ′, 𝑠′) = 𝔣 as a morphism
𝑓 : 𝐸→ 𝐹 in K such that

• 𝑑 ′ ◦ (𝑓 ⊗ 𝐼) = 𝑓 ◦ 𝑑;
• 𝑠′ ◦ (𝑓 ⊗ 𝐼) = 𝑠.

Composition and identities are performed in K.
The category of Mealy machines of input and output 𝐼,𝑂 is denoted as MlyK (𝐼,𝑂).

Definition 1.3 (Moore machine). A Moore machine in K of input object 𝐼 and output object 𝑂 is a
diagram 𝔪 :=

(
𝐸 𝐸 ⊗ 𝐼 ; 𝐸𝑑oo 𝑠 // 𝑂

)
.

Remark 1.4 (The category of Moore machines). Moore machines of fixed input and output 𝐼,𝑂 form a
category, if we define a morphism of Moore machines 𝑓 : 𝔢 = (𝐸, 𝑑, 𝑠) → (𝐹, 𝑑 ′, 𝑠′) = 𝔣 as a morphism
𝑓 : 𝐸→ 𝐹 in K such that

• 𝑑 ′ ◦ (𝑓 ⊗ 𝐼) = 𝑓 ◦ 𝑑;
• 𝑠′ ◦ 𝑓 = 𝑠.

Remark 1.5 (Canonical extension of a machine). If (K,⊗) has countable coproducts preserved by each
𝐴⊗ then the span Definition 1.1, considering for example Mealy machines, can be ‘extended’ to a span

𝐸 𝐸 ⊗ 𝐼∗𝑑∗oo 𝑠∗ // 𝑂 (1.1)

where 𝑑∗, 𝑠∗ can be defined inductively from components 𝑑𝑛, 𝑠𝑛 : 𝐸 ⊗ 𝐼⊗𝑛→ 𝐸,𝑂; if K is closed, the
map 𝑑∗ corresponds, under the monoidal closed adjunction, to the monoid homomorphism 𝐼∗→ [𝐸,𝐸]
induced by the universal property of 𝐼∗ =

∑
𝑛≥0 𝐼

⊗𝑛.

2 Bicategories of automata

Let (K,×) be a Cartesian category. There is a bicategory MlyK defined as follows (cf. [60] where
this is called ‘Circ’ and studied more generally, in case the base category has a non-Cartesian monoidal
structure):
Definition 2.1 (The bicategory MlyK , [60]). The bicategory MlyK has

• its 0-cells 𝐼,𝑂,𝑈, . . . are the same objects of K;

1An almost identical introductory short section appears in [13], of which the present note is a parallel submission –although
related, the two manuscripts are essentially independent, and the purpose of this repetition is the desire for self-containment.

4 Bicategories of Automata, Automata in Bicategories

• its 1-cells 𝐼 → 𝑂 are the Mealy machines (𝐸, 𝑑, 𝑠), i.e. the objects of the category MlyK (𝐼,𝑂) in
Remark 1.2, thought as morphisms 〈𝑠, 𝑑〉 : 𝐸 × 𝐼→𝑂 ×𝐸 in K;

• its 2-cells are Mealy machine morphisms as in Remark 1.2;
• the composition of 1-cells ¸ is defined as follows: given 1-cells 〈𝑠, 𝑑〉 : 𝐸 × 𝐼 → 𝐽 × 𝐸 and
〈𝑠′, 𝑑 ′〉 : 𝐹 × 𝐽 → 𝐾 × 𝐹 their composition is the 1-cell 〈𝑠′, 𝑑 ′ḑ〉 : (𝐹 × 𝐸) × 𝐼 → 𝐾 × (𝐹 × 𝐸),
obtained as

𝐹 ×𝐸 × 𝐼𝐹×〈𝑠,𝑑〉// 𝐹 × 𝐽 ×𝐸〈𝑠
′,𝑑′〉×𝐸// 𝐾 ×𝐹 ×𝐸 ; (2.1)

• the vertical composition of 2-cells is the composition of Mealy machine morphisms 𝑓 : 𝐸→ 𝐹 as
in Remark 1.2;

• the horizontal composition of 2-cells is the operation defined thanks to bifunctoriality of ¸ :
MlyK (𝐵,𝐶) ×MlyK (𝐴, 𝐵) →MlyK (𝐴,𝐶);

• the associator and the unitors are inherited from the monoidal structure of K.
Remark 2.2. Spelled out explicitly, the composition of 1-cells in Equation 2.1 corresponds to the
following morphisms (where we freely employ 𝜆-notation available in any Cartesian closed category):

𝑑2ḑ1 : 𝜆𝑒 𝑓 𝑎.〈𝑑2(𝑓 , 𝑠1(𝑒, 𝑎)), 𝑑1(𝑒, 𝑎)〉 𝑠21 : 𝜆𝑒 𝑓 𝑎.𝑠2(𝑓 , 𝑠1(𝑒, 𝑎)) (2.2)

Remark 2.3 (Kleisli extension of automata as base changes). If 𝑃 : K → K is a commutative monad
[48, 49], we can lift the monoidal structure (K,⊗) to a monoidal structure (Kl(𝑃), ⊗̄) on the Kleisli
category of 𝑃; this leads to the notion of 𝑃-non-deterministic automata or 𝑃𝜆-machines studied in [34,
§2, Définition 6]. Nondeterminism through the passage to a Kleisli category is a potent idea that developed
into the line of research on automata theory through coalgebra theory [40], cf. in particular Chapter 2.3
for a comprehensive reference, or the self-contained [38].

We do not investigate the theory of 𝑃𝜆-machines apart from the following two results the proof of
which is completely straightforward: we content ourselves with observing that the results expounded in
[44, 60], and in general the language of bicategories of processes, naturally lends itself to the generation
of base-change functors, of which the following two are particular examples.
Proposition 2.4. The correspondence defined at the level of objects by sending (𝐸, 𝑑, 𝑠) ∈ MlyK (𝐼,𝑂) to

𝑃𝐸 𝐸
𝜂𝐸oo 𝐸 ⊗ 𝐼𝑑oo 𝑠 // 𝑂

𝜂𝑂 // 𝑃𝑂 (2.3)

extends to a functor 𝐿 : MlyK (𝐼,𝑂) →MlyKl(𝑃) (𝐼,𝑂).
Proposition 2.5. The correspondence sending (𝐸, 𝑑, 𝑠) ∈ MlyKl(𝑃) (𝐼,𝑂) into

𝑃𝐸 𝑃𝑃𝐸
𝜇𝐸oo 𝑃𝐸 ⊗ 𝑃𝐼𝑃𝑑◦𝐷oo 𝑃𝑠◦𝐷 // 𝑃𝑃𝑂

𝜇𝑂 // 𝑃𝑂 (2.4)

extends to a functor (−)e : MlyKl(𝑃) (𝐼,𝑂) →MlyK (𝑃𝐼, 𝑃𝑂).
More precisely, the proof of the following result is straightforward –only slightly convoluted in terms

of notational burden– so much so that we feel content to enclose it in a remark.
Remark 2.6. Let H ,K be cartesian monoidal categories, then we can define 2-categories MlyH ,MlyK
as in Definition 2.1; let 𝐹 : H → K be a lax monoidal functor. Then, there exists a ‘base change’
pseudofunctor 𝐹∗ : MlyH→MlyK , which is the 1-cell part of a 2-functor Cat×→ Bicat defined on objects
as K ↦→ MlyK , from (Cartesian monoidal categories, product-preserving functors, Cartesian natural
transformations), to (bicategories, pseudofunctors, oplax natural transformations).

As a corollary, we re-obtain the functors of Proposition 2.5 and Proposition 2.4 from the free and
forgetful functors 𝐹𝑃 :K → Kl(𝑃) and𝑈𝑃 : Kl(𝑃) → K.

Boccali, Laretto, Loregian, Luneia 5

2.1 Fugal automata, Guitart machines

A conceptual construction for MlyK in Definition 2.1 is given as follows in [44]: it is the category
ΩΣ(K,⊗) of pseudofunctors N→ Σ(K,×) and lax transformations, where Σ is the ‘suspension’ of
(K,⊗), i.e. K regarded as a one-object bicategory; a universal property for MlyK is provided in [45]
(actually, for anyΩΣ(K,⊗)): it is the free category with feedbacks (op. cit., Proposition 2.6, see also [51])
on K. The bicategory MlyK addresses the fundamental question of whether one can fruitfully consider
morphisms in a category as an abstraction of ‘sequential operations’ performed on a domain/input to
obtain a codomain/output, and up to what point the analogy between morphisms and sequential machines
holds up (composing 1-cells in MlyK accounts for the sequential composition of state machines, where
the state 𝐸 is an intrinsic part of the specification of a machine/1-cell 〈𝑠, 𝑑〉).

Twenty eight years before [45], however, René Guitart [32] exhibited another bicategory Mac of
‘Mealy machines’, defined as a suitable category of spans, of which one leg is a fibration, and its universal
property: Mac is the Kleisli bicategory of the diagram monad (monade des diagrammes in [32, §1], cf.
[47, 58]) Cat// .2

Definition 2.7 (The bicategory Macs, adapting [32]). Define a bicategory Macs as follows:

• 0-cells are categories A,B,C. . . ;

• 1-cells (E; 𝑝, 𝑆) :A→B consist of spans

A E𝑝oooo 𝑆 // B (2.5)

where 𝑝 : E →A is a discrete opfibration;

• 2-cells 𝐻 : (E; 𝑝, 𝑆) ⇒ (F ;𝑞,𝑇) are pairs where 𝐻 : E → F is a morphism of opfibrations (cf. [37,
dual of 1.7.3.(i)]): depicted graphically, a 2-cell is a diagram

E

𝐻

𝑆 //

𝑝
����

B

A F
𝑞
oooo

𝑇

OO

(2.6)

where both triangles commute and 𝐻 is an opCartesian functor (it preserves opCartesian mor-
phisms);

• composition of 1-cellsA
𝑝
←− E 𝑆−→B and B

𝑞
←− F 𝑇−→ C is via pullbacks, as it happens in spans, and

all the rest of the structure is defined as in spans.

Given this, a natural question that might arise is how do the two bicategories of Definition 2.1 and
Definition 2.7 interact, if at all?

In the present section, we aim to prove the existence of an adjunction (cf. Theorem 2.18) between a
suitable sub-bicategory of Macs and a sub-bicategory of MlySet spanned over what we call fugal Mealy

2Guitart’s note [32] is rather obscure with respect of the fine details of his definition, as he chooses for 2-cells the 𝐻 for which
the upper triangle in (2.6) is only laxly commutative, and when it comes to composition of 1-cells he invokes a produit fibré
canonique; apparently, this can’t be interpreted as a strict pullback, or there would be no way to define horizontal composition
of 2-cells; using a comma object instead of a strict pullback, the lax structure is given by the universal property –observe that
the functor that must be an opfibration is indeed an opfibration, thanks to [37, Exercise 1.4.6], but this opfibration does not
remember much of the opfibration 𝑞 one pulled back. Our theorem involves a strict version of Guitart’s Mac, because the functor
Π of Theorem 2.17 factors through Macs ⊆ Mac.

6 Bicategories of Automata, Automata in Bicategories

machines between monoids (cf. Definition 2.11).3
Since the construction of Macs outlined in [32] requires some intermediate steps (and it is written in

French), we deem it necessary to delve into the details of how its structure is presented. To fix ideas, we
keep working in the category of sets and functions.

Notation 2.8. In order to avoid notational clutter, we will blur the distinction between a monoid 𝑀 and
the one-object category it represents; also, given the 𝑑 part of a Mealy machine, we will denote as 𝑑∗ both
the extension 𝐸 × 𝐼∗→ 𝐸 of Remark 1.5, which is a monoid action of 𝐼∗ on 𝐸 , and the functor 𝐼∗→ Set
to which the action corresponds.

Remark 2.9. In the notation above, a Mealy machine 𝔢 = (𝐸, 𝑑, 𝑠) yields a discrete opfibration (cf. [1, 37])
E[𝑑∗] → 𝐼∗ over the monoid 𝐼∗, and E[𝑎] is the translation category of an 𝑀-set 𝑎 : 𝑀 × 𝑋 → 𝑋 (cf.
[14] for the case when 𝑀 is a group: clearly, E[𝑎] is the category of elements of the action 𝑎 : 𝑀→ Set
regarded as a functor), i.e. the category having

• objects the elements of 𝐸 ;

• a morphism 𝑚 : 𝑒→ 𝑒′ whenever 𝑒′ = 𝑑∗(𝑒,𝑚).
Composition and identities are induced by the fact that 𝑑∗ is an action.

Remark 2.10. The hom-categories Macs(A,B) of Definition 2.7 fit into strict pullbacks

Macs(A,B) //

��

Cat/B

��
opFib/A // Cat

(2.7)

where Cat/B is the usual slice category of Cat over B.

Definition 2.11 (Fugal automaton). Let 𝑀,𝑁 be monoids; a Mealy machine 〈𝑠, 𝑑〉 : 𝐸 ×𝑀 → 𝑁 ×𝐸 is
fugal if its 𝑠 part satisfies the equation

𝑠(𝑒,𝑚 ·𝑚′) = 𝑠(𝑒,𝑚) · 𝑠(𝑑 (𝑒,𝑚),𝑚′). (2.8)

Remark 2.12. This definition appears in [32, §2] and it looks an ad-hoc restriction for what an output
map in a Mealy machine shall be; but (2.8) can be motivated in two ways:

• A fugal Mealy machine 〈𝑠, 𝑑〉 : 𝐸 ×𝑀→ 𝑁 ×𝐸 induces in a natural way a functor Σ : E[𝑑∗] → 𝑁

because (2.8) is exactly equivalent to the fact that Σ defined on objects in the only possible way,
and on morphisms as Σ(𝑒→ 𝑑∗(𝑒,𝑚)) = 𝑠(𝑒,𝑚) preserves (identities and) composition;

• given a generic Mealy machine 〈𝑠, 𝑑〉 : 𝐸 × 𝐴→ 𝐵×𝐸 one can produce a ‘universal’ fugal Mealy
machine 〈𝑠, 𝑑〉♭ = 〈𝑠♭, 〉 : 𝐸 × 𝐴∗ → 𝐵∗ × 𝐸 , and this construction is well-behaved for 1-cell
composition in MlySet, in the sense that (𝑠21)♭ = 𝑠♭2

♭
1.

The remainder of this section is devoted to making these claims precise (and prove them). In particular,
the ‘universality’ of 〈𝑠, 𝑑〉♭ among fugal Mealy machines obtained from 〈𝑠, 𝑑〉 is clarified by the following
Lemma 2.13 and by Theorem 2.18, where we prove that there is a 2-adjunction between MlySet and Mly♭Set.

Lemma 2.13. Given sets 𝐴, 𝐵, denote with 𝐴∗, 𝐵∗ their free monoids; then, there exists a ‘fugal extension’
functor ()♭

𝐴,𝐵
: MlySet(𝐴, 𝐵) →Mly♭Set(𝐴∗, 𝐵∗).

3A fugue is ‘a musical composition in which one or two themes are repeated or imitated by successively entering voices and
contrapuntally developed in a continuous interweaving of the voice parts’, cf. [68]. In our case, the interweaving is between 𝑠, 𝑑
in a Mealy machine.

Boccali, Laretto, Loregian, Luneia 7

Proof. The proof is deferred to the appendix, p. 16. In particular, the map 𝑠♭ is constructed inductively
as {

𝑠♭ (𝑒, []) = []
𝑠♭ (𝑒, 𝑎 :: 𝑎𝑠) = 𝑠(𝑒, 𝑎) :: 𝑠♭ (𝑑 (𝑒, 𝑎), 𝑎𝑠)

(2.9)

and it fits in the Mealy machine 〈𝑠♭, 𝑑∗〉 : 𝐸 × 𝐴∗→ 𝐵∗×𝐸 where 𝑑∗ is as in (1.1). The proof that 〈𝑠♭, 𝑑∗〉
is fugal in the sense of (2.8) can be done by induction and poses no particular difficulty. �

Lemma 2.14. Given sets 𝐴, 𝐵 there exists a commutative square

Mly♭Set(𝐴∗, 𝐵∗) //

��

Cat/𝐵∗

��
opFib/𝐴∗ // Cat.

(2.10)

Proof of Lemma 2.14. Given a fugal Mealy machine 〈𝑠, 𝑑〉 : 𝐸 × 𝐴∗ → 𝐵∗ × 𝐸 between free monoids,
from the action 𝑑 we obtain a discrete opfibration E[𝑑] → 𝐴∗, and from the map 𝑠 : 𝐸 × 𝐴∗→ 𝐵∗ we
obtain a functor Σ : E[𝑑∗] → 𝐵∗ as in Remark 2.12. So, one can obtain a span

𝐴∗ E[𝑑∗]𝐷oooo Σ // 𝐵∗ (2.11)

where the leg 𝐷 : E[𝑑∗] → 𝐴∗ is as in Remark 2.9 and Σ is an in Remark 2.12. The functors opFib/𝐴∗←
Mly♭Set(𝐴∗, 𝐵∗) → Cat/𝐵∗ project to each of the two legs. �

Corollary 2.15. The universal property of the hom-categories Macs(A,B) exposed in Remark 2.10
yields the right-most functor in the composition

Γ𝐴,𝐵 : MlySet(𝐴, 𝐵)
()♭

𝐴,𝐵 // Mly♭Set(𝐴∗, 𝐵∗)
Π𝐴,𝐵 // Macs(𝐴∗, 𝐵∗) (2.12)

Lemma 2.16 (Fugal extension preserves composition). Let 𝐴, 𝐵,𝐶 be sets, 𝑠1 : 𝐸 × 𝐴→ 𝐵 and 𝑠2 :
𝐹 ×𝐵→ 𝐶 parts of Mealy machines 〈𝑠1, 〉 and 〈𝑠2, 〉; then (𝑠21)♭ = 𝑠♭2

♭
1.

Proof. The proof is deferred to the appendix, p. 16.4 �

This, together with the fact that the identity 1-cell 1×𝐴→ 𝐴×1 is fugal (the proof is straightforward),
yields that there exists a 2-subcategory Mly♭Set of MlySet where 0-cells are monoids, 1-cells are the 〈𝑠, 𝑑〉
where 𝑠 is fugal in the sense of Definition 2.11, and we take all 2-cells.

Theorem 2.17. The maps Γ𝐴,𝐵 of Corollary 2.15 constitute the action on 1-cells of a 2-functor Γ :
MlySet→Macs. More precisely, there are 2-functors ()♭ : MlySet→Mly♭Set and Π : Mly♭Set→Macs whose
composition is Γ.

Proof. The proof is deferred to the appendix, p. 17. �

Theorem 2.18. The 2-functor ()♭ : MlySet→Mly♭Set admits a right 2-adjoint; the 2-functor Π : Mly♭Set→
Macs identifies Mly♭Set as the 1-full and 2-full subcategory of Macs spanned by monoids.

4The argument is straightforward but tedious (the difficult part is that the condition to verify on (𝑠21)♭ involves 𝑑2ḑ1, the
expression of which we recall from (2.2), is the 𝜆-term 𝜆𝑒 𝑓 𝑎.〈𝑑2 (𝑓 , 𝑠1 (𝑒, 𝑎)), 𝑑1 (𝑒, 𝑎)〉).

8 Bicategories of Automata, Automata in Bicategories

Proof. The proof is deferred to the appendix, p. 17. The last statement essentially follows from (2.11):
the span (𝐷,Σ) is essentially equivalent to the fugal Mealy machine 〈𝑠, 𝑑〉, since its left leg 𝐷 determines
a unique action of 𝐴∗ on the set of objects E[𝑑∗]0, and Σ and 𝑠 are mutually defined. �

3 Bicategory-valued machines

A monoidal category is just a bicategory with a single 0-cell; then, do Definition 1.1 and Definition 1.3
admit a generalisation when instead of K we consider a bicategory B with more than one object? The
present section answers in the positive. We also outline how, passing to automata valued in a bicategory,
a seemingly undiscovered way to define morphisms between automata, different (from (1.2) and) from
the categories of ‘variable’ automata described in [22, §11.1]: we study this notion in Definition 3.12.

In our setting, ‘automata’ become diagrams of 2-cells in B, between input, output and state 1-cells,
in contrast with previous studies where automata appeared as objects, and with [60] (and our section 2),
where they appear as diagrams of 1-cells between input, output and state 0-cells. This perspective
suggests that 2-dimensional diagrams of a certain shape can be thought of as state machines -so, they
carry a computational meaning; but also that state machines can be fruitfully interpreted as diagrams: in
Example 3.11 we explore definitions of an automaton where input and output are relations, or functors
(in Example 3.9), or profunctors (in Example 3.10); universal objects that can be attached to the 2-
dimensional diagram then admit a computational interpretation (cf. (3.9) where a certain Kan extension
resembles a ‘reachability’ relation).

This idea is not entirely new: it resembles an approach contained in [10, 9] where the author models
the state space of abstract machines as a functor, of which one can take the left/right Kan extension along
an ‘input scheme’. However, Bainbridge’s works are rather obscure (and quite ahead of their time), so
we believe we provide some advancement to state of the art by taking his idea seriously and carrying to
its natural development –while at the same time, providing concrete examples of bicategories in which
inputs/outputs automata can be thought of as 1-cells, and investigating the structure of the class of all
such automata as a global object.
Definition 3.1. Adapting from Definition 1.1 verbatim, if B is a bicategory with 0-cells 𝐴, 𝐵, 𝑋,𝑌, . . . ,
1-cells 𝑖 : 𝐴→ 𝐵,𝑜 : 𝑋→ 𝑌, . . . and 2-cells 𝛼, 𝛽, . . . the kind of object we want in MlyB(𝑖, 𝑜) is a span of
the following form:

𝑒 𝑒 ◦ 𝑖𝛿ks 𝜎 +3 𝑜 (3.1)

for 1-cells 𝑖 : 𝑋→𝑌 , 𝑒 : 𝐴→ 𝐵, 𝑜 :𝐶→ 𝐷. Note that with ◦ , we denote the composition of 1-cells in
B, which becomes a monoidal product in B has a single 0-cell.
Remark 3.2. The important observation here is that the mere existence of the span (𝛿,𝜎) ‘forces the
types’ of 𝑖, 𝑜, 𝑒 in such a way that 𝑖 must be an endomorphism of an object 𝐴 ∈ B, and 𝑒, 𝑜 : 𝐴→ 𝐵 are
1-cells. Interestingly, these minimal assumptions required even to consider an object like (3.1) make
iterated compositions 𝑖 ◦ · · · ◦ 𝑖 as meaningful as iterated tensors 𝐼 ⊗ · · · ⊗ 𝐼, and in fact, the two concepts
coincide when B has a single object ∗ and hom-category B(∗,∗) =K.

In the monoidal case, the fact that an input 1-cell stands on a different level from an output was
completely obscured by the fact that every 1-cell is an endomorphism.

Let us turn this discussion into a precise definition.
Definition 3.3 (Bicategory-valued Mealy machines). Let B be a bicategory, and fix two 1-cells 𝑖 : 𝐴→ 𝐴

and 𝑜 : 𝐴→ 𝐵; define a category MlyB(𝑖, 𝑜) as follows:
bml1) the objects are diagrams of 2-cells as in (3.1);
bml2) the morphisms (𝑒, 𝛿,𝜎) → (𝑒′, 𝛿′,𝜎′) are 2-cells 𝜑 : 𝑒⇒ 𝑒′ subject to conditions similar to Re-

mark 1.2:

Boccali, Laretto, Loregian, Luneia 9

• 𝜎′ ◦ (𝜑 ∗ 𝑖) = 𝜎;
• 𝛿′ ◦ (𝜑 ∗ 𝑖) = 𝜑 ◦ 𝛿.

Definition 3.4 (Bicategory-valued Moore machines). Define a category MreB(𝑖, 𝑜) as follows:
bmo1) the objects are pairs of 2-cells in B, 𝛿 : 𝑒 ◦ 𝑖⇒ 𝑒 and 𝜎 : 𝑒⇒ 𝑜;
bmo2) the morphisms (𝑒, 𝛿,𝜎) → (𝑒′, 𝛿′,𝜎′) are 2-cells 𝜑 : 𝑒⇒ 𝑒′ such that diagrams of 2-cells similar

to those in Definition 3.3 are commutative.
Notation 3.5. In the following, an object of MlyB(𝑖, 𝑜) (resp., MreB(𝑖, 𝑜)) will be termed a bicategorical
Mealy machine (resp., a bicategorical Moore machine) of input cell 𝑖 and output cell 𝑜, and the objects
𝐴, 𝐵 are the base of the bicategorical Mealy machine (𝑒, 𝛿,𝜎). To denote that a bicategorical Mealy
machine is based on 𝐴, 𝐵 we write (𝑒, 𝛿,𝜎)𝐴,𝐵.

In [10] the author models the state space of abstract machines as follows: fix categories 𝐴, 𝑋, 𝐸 and a
functor Φ : 𝑋→ 𝐴, of which one can take the left/right Kan extension along an ‘input scheme’ 𝑢 : 𝐸→ 𝑋;
a machine with input scheme 𝑢 is a diagram of 2-cells in Cat(𝐸, 𝐴) of the formM = (𝐼 ⇒ Φ◦𝑢⇒ 𝐽),
and the behaviour 𝐵(M) ofM is the diagram of 2-cells Lan𝑢 𝐼⇒Φ⇒ Ran𝑢𝐽.

All this bears some resemblance to the following remark, but at the same time looks very mysterious,
and not much intuition is given in op. cit. for what the approach in study means; we believe our
development starts from a similar point (the intuition that a category of machines is, in the end, some
category of diagrams –a claim we substantiate in Proposition 3.8) but rapidly takes a different turn (cf.
Definition 3.12), and ultimately gives a cleaner account of Bainbridge’s perspective (see also [9] of the
same author).
Remark 3.6 (Behaviour as a Kan extension). A more convenient depiction of the span in bmo1 will shed
light on our Definition 3.3 and 3.4, giving in passing a conceptual motivation for the convoluted shape of
finite products in MreK (𝐼,𝑂) and MlyK (𝐼,𝑂) (cf. [22, Ch. 11]): a bicategorical Moore machine in B of
fixed input and output 𝑖, 𝑜 consists of a way of filling the dotted arrows in the diagram

𝐴

𝑖

��
𝑒
��

𝑜

��

;C𝜎

𝐴
𝑒

//

+3𝛿

𝐵

(3.2)

with 𝑒 : 𝐴→ 𝐵 and two 2-cells 𝛿,𝜎. But then the ‘terminal way’ of filling such a span can be characterised
by the right extension of the output object along a certain 1-cell obtained from the input 𝑖. Let us investigate
how.

First of all, we have to assume something on the ambient hom-categories B(𝐴, 𝐴), namely that each
of these admits a left adjoint to the forgetful functor

B(𝐴, 𝐴) // Mnd/𝐴 (3.3)

(cf. [21, Ch. II]) so that every endo-1-cell 𝑖 : 𝐴→ 𝐴 has an associated extension to an endo-1-cell
𝑖♮ : 𝐴→ 𝐴 with a unit map 𝑖⇒ 𝑖♮ that is initial among all 2-cells out of 𝑖 into a monad in B; 𝑖♮ is usually
called the free monad on 𝑖.
Construction 3.7. Now, fix 𝑖, 𝑜 as in Definition 3.4; we claim that the terminal object of MreB(𝑖, 𝑜) is
obtained as the right extension in B of the output 𝑜 along 𝑖♮. We can obtain

• from the unit 𝜼 : id𝐴⇒ 𝑖♮ of the free monad on 𝑖, a canonical modification Ran𝑖 ⇒ Ranid = id𝐴,
with components at 𝑜 given by 2-cells 𝜎 : Ran𝑖𝑜⇒ 𝑜; this is a choice of the right leg for a diagram
like bmo1;

10 Bicategories of Automata, Automata in Bicategories

• from the multiplication 𝝁 : 𝑖♮ ◦ 𝑖♮ ⇒ 𝑖♮ of the free monad on 𝑖, a canonical modification Ran𝑖♮ ⇒
Ran𝑖♮ ◦Ran𝑖♮ , whose components at 𝑜 mate to a 2-cell 𝛿0 : Ran𝑖♮𝑜 ◦ 𝑖♮⇒ Ran𝑖♮𝑜; the composite

𝛿 : Ran𝑖♮𝑜 ◦ 𝑖
Ran

𝑖♮
𝑜∗𝜼
+3 Ran𝑖♮𝑜 ◦ 𝑖♮ +3 Ran𝑖♮𝑜 (3.4)

The left leg is now chosen for a diagram like bmo1.
Together, (Ran𝑖♮𝑜, 𝛿,𝜎) is a bicategorical Mealy machine, and the universal property of the right Kan
extension says it is the terminal such. A similar line of reasoning yields the same result for MlyB(𝑖, 𝑜),
only now 𝜎 is the 2-cell obtained as mate of 𝜖 ◦ (Ran𝑖♮𝑜 ∗ 𝜼) : Ran𝑖♮𝑜 ◦ 𝑖⇒ Ran𝑖♮𝑜 ◦ 𝑖♮ ⇒ 𝑜 from the
counit of ◦ 𝑖♮ a Ran𝑖♮ .
Proposition 3.8 (MreB(𝒊, 𝒐) and MlyB(𝒊, 𝒐) as categories of diagrams.). There exists a 2-category P and
a pair of strict 2-functors 𝑊,𝐺 : P → B such that bicategorical Moore machines with ‘variable output
1-cell’ i.e. the 2-dimensional diagrams like in (3.2) where 𝑜 is variable, can be characterised as natural
transformations𝑊 ⇒ 𝐺.

Proof. The proof is deferred to the appendix, p. 18.
As explained therein, bicategorical Moore machines with fixed output 𝑜 can be characterised as

particular such natural transformations that take value 𝑜 on one argument.
Also, minor adjustments to the shape of𝐺 yield a similar result for bicategorical Mealy machines. �

Example 3.9 (Bicategorical machines in Cat). Consider a span C 𝐼←− C 𝑂−→ D in the strict 2-category
Cat of categories, functors and natural transformations, whereD is a 𝜅-complete category. The category
MreCat(𝐼,𝑂) has objects the triples (𝐸, 𝛿,𝜎) where 𝐸 : C → D is a functor and 𝜎,𝛿 are natural trans-
formations arranged as in (3.2); assuming enough limits in D, we can compute the action of the right
Kan extension of 𝑂 along 𝐼♮ (the free monad on the endofunctor 𝐼, cf. [46], whose existence requires
additional assumptions on C) on an object 𝐶 ∈ C as the equaliser

𝑅𝐶 //∏
𝐶∈C𝑂𝐶

C(𝐴,𝐼 ♮𝐶) //
//
∏
𝐶→𝐵𝑂𝐵

C(𝐴,𝐼 ♮𝐶) (3.5)

or (better, cf. [52, 2.3.6]) as the end5 𝐴 ↦→
∫
𝐶
𝑂𝐶C(𝐴,𝐼

♮𝐶) , i.e. as the ‘space of fixpoints’ for the conjoint
action of the functor 𝑂 and of the presheaf 𝐶 ↦→ C(𝐴, 𝐼♮𝐶) on objects of C; the free monad 𝐼♮ sends an
object 𝐶 to the initial algebra of the functor 𝐴 ↦→ 𝐶 + 𝐼 𝐴, so that 𝐼♮𝐶 � 𝐶 + 𝐼 (𝐼♮𝐶).

For the sake of simplicity, let us specialise the discussion whenD is the category of sets and functions:
the input 𝐼 and the output 𝑂 of the state machine in Definition 1.1 are now variable objects ‘indexed’
over the objects of C, and the behaviour of the terminal machine can be described as a known object:
unpacking the end (3.5) we obtain the functor

𝐴
� // [C,Set] (C(𝐴, 𝐼♮),𝑂) (3.6)

sending an object 𝐴 to the set of natural transformations 𝛼 : C(𝐴, 𝐼♮) ⇒𝑂; the intuition here is that to
each generalised 𝐴-element of 𝐼♮𝐶 corresponds an element of the output space Υ𝐶 (𝑢) ∈ 𝑂𝐶, and that
this association is natural in 𝐶.
Example 3.10 (Bicategorical machines in profunctors). We can reason similarly in the bicategory of
categories and profunctors of [41, 16, 17], [52, Ch. 5]; now an endo-1-cell 𝐼 : C → C on a category C

5Recall that if 𝑆 is a set and 𝐶 is an object of a category C with limits, by 𝐶𝑆 we denote the power of 𝐶 and 𝑆, i.e. the
iterated product

∏
𝑠∈𝑆𝐶 of as many copies of 𝐶 as there are elements in 𝑆.

Boccali, Laretto, Loregian, Luneia 11

consists of an ‘extension’ of the underlying graph of𝑈C to a bigger graph (𝑈C)+,6 and the free promonad
𝐼♮ (cf. [50, §5]) corresponds to the quotient of the free category on (𝑈C)+ where ‘old’ arrows compose
as in C, and ‘new’ arrows compose freely; moreover, all right extensions 〈𝑃/𝑄〉 :X Y of 𝑄 :A Y
along 𝑃 :A X exist in the bicategory Pr of , as they are computed as the end in [52, 5.2.5],

〈𝑃/𝑄〉 : (𝑋,𝑌) � //
∫
𝐴

Set(𝑃(𝑌, 𝐴),𝑄(𝑋, 𝐴)). (3.7)

Example 3.11 (Bicategorical machines in relations). When it is instantiated in the (locally thin) bicategory
of relations between sets, i.e. {0,1}-profunctors, given 𝐼 : 𝐴 𝐴,𝑂 : 𝐴 𝐵, 𝐼♮ is the reflexive-transitive
closure of 𝐼, and the above Kan extension is uniquely determined as the maximal 𝐸 such that 𝐸 ⊆ 𝑂 and
𝐸 ◦ 𝐼♮ ⊆ 𝐸 (here ◦ is the relational composition). So 𝑅 = Ran𝐼 ♮𝑂 is the relation defined as

(𝑎, 𝑏) ∈ 𝑅 ⇐⇒ ∀𝑎′ ∈ 𝐴.((𝑎′, 𝑎) ∈ 𝐼♮⇒ (𝑎′, 𝑏) ∈ 𝑂). (3.8)

This relation expresses reachability of 𝑏 from 𝑎: it characterises the sub-relation of 𝑂 connecting those
pairs (𝑎, 𝑏) for which, for every other 𝑎′ ∈ 𝐴, if there is a finite path (possibly of length zero, i.e. 𝑎 = 𝑎′)
connecting 𝑎′, 𝑎 through 𝐼-related elements, then (𝑎′, 𝑏) ∈ 𝑂. In pictures:

𝑎 𝑅 𝑏 ⇐⇒
(
(𝑎′ = 𝑎) ∨ (𝑎′ 𝐼−→ 𝑎1

𝐼−→ . . .
𝐼−→ 𝑎𝑛

𝐼−→ 𝑎) ⇒ 𝑎′𝑂 𝑏
)

(3.9)

When the above example is specialised to the case when 𝐴 = ∗ is a singleton, there are only two possible
choices for 𝐼 (both reflexive and transitive), and 𝑂 identifies to a subset of 𝐵; a bicategorical Moore
machine is then a subset 𝑅 ⊆ 𝑂, and thus for both choices of 𝐼, MreRel(𝐼,𝑂)∗,𝐵 = 2𝑂. One can reason in
the same fashion for Mealy machines.

3.1 Intertwiners between bicategorical machines

In passing from MlyK (𝐼,𝑂) to MlyB(𝑖, 𝑜) we gain an additional degree of freedom by being able to index
the category over pairs of 0-cells of B, and this is particularly true in the sense that the definition of
MlyB(𝑖, 𝑜) and its indexing over pairs of objects 𝐴, 𝐵 of K leads to a seemingly undiscovered way to
define morphisms between automata:
Definition 3.12 (Intertwiner between bicategorical machines). Consider two bicategorical Mealy ma-
chines (𝑒, 𝛿,𝜎)𝐴,𝐵, (𝑒′, 𝛿′,𝜎′)𝐴′,𝐵′ on different bases (so in particular (𝑒, 𝛿,𝜎)𝐴,𝐵 ∈ MlyB(𝑖, 𝑜) and
(𝑒′, 𝛿′,𝜎′)𝐴′,𝐵′ ∈ MlyB(𝑖′, 𝑜′)); an intertwiner (𝑢, 𝑣) : (𝑒, 𝛿,𝜎)# (𝑒′, 𝛿′,𝜎′) consists of a pair of 1-cells
𝑢 : 𝐴→ 𝐴′, 𝑣 : 𝐵→ 𝐵′ and a triple of 2-cells 𝜄, 𝜖 ,𝜔 disposed as in (A.2), to which we require to satisfy
the identities in (A.1) (we provide a ‘birdseye’ view of the commutativities that we require, as (A.2) is
unambiguous about how the 2-cells 𝜄, 𝛿,𝜎, 𝜖,𝜔 can be composed).
Remark 3.13. Interestingly enough, when it is spelled out in the case when B has a single 0-cell, this
notion does not reduce to Remark 1.2, as an intertwiner between a Mealy machine (𝐸, 𝑑, 𝑠)𝐼 ,𝑂 and another
(𝐸 ′, 𝑑 ′, 𝑠′)𝐼 ′,𝑂′ consists of a pair of objects𝑈,𝑉 ∈ K, such that
ic1) there exist morphisms 𝜄 : 𝐼 ′ ⊗𝑈→𝑉 ⊗ 𝐼, 𝜖 : 𝐸 ′ ⊗𝑈→𝑉 ⊗ 𝐸,𝜔 :𝑂 ′ ⊗𝑈→𝑉 ⊗𝑂;
ic2) the following two identities hold:

𝜖 ◦ (𝑑 ′ ⊗𝑈) = (𝑉 ⊗ 𝑑) ◦ (𝜖 ⊗ 𝐼) ◦ (𝐸 ′ ⊗ 𝜄)
𝜔 ◦ (𝑠′ ⊗𝑈) = (𝑉 ⊗ 𝑠) ◦ (𝜖 ⊗ 𝐼) ◦ (𝐸 ′ ⊗ 𝜄)

6More precisely, to the underlying graph of C, made of ‘old’ arrows, we adjoin a directed edge 𝑒𝑥 : 𝐶 → 𝐶 ′ for each
𝑥 ∈ 𝐼 (𝐶,𝐶 ′).

12 Bicategories of Automata, Automata in Bicategories

In the single-object case, this notion does not trivialise in any obvious way, and –in stark contrast
with the notion of morphism of automata given in (1.2)– intertwiners between machines support a notion
of higher morphisms even in the monoidal case.

Definition 3.14 (2-cell between machines). In the same notation of Definition 3.12, let (𝑢, 𝑣), (𝑢′, 𝑣′) :
(𝑒, 𝛿,𝜎) # (𝑒′, 𝛿′,𝜎′) be two parallel intertwiners between bicategorical Mealy machines; a 2-cell
(𝜑,𝜓) : (𝑢, 𝑣) ⇒ (𝑢′, 𝑣′) consists of a pair of 2-cells 𝜑 : 𝑢⇒ 𝑢′, 𝜓 : 𝑣⇒ 𝑣′ such that the identities in (A.3)
hold true.

Remark 3.15. When it is specialised to the monoidal case, Definition 3.14 yields the following notion:
a 2-cell (𝑓 , 𝑔) : (𝑈,𝑉) ⇒ (𝑈 ′,𝑉 ′) as in Remark 3.13 consists of a pair of morphisms 𝑓 :𝑈 →𝑈 ′ and
𝑔 : 𝑉 → 𝑉 ′ subject to the conditions that the two squares in (A.4) commute: intuitively speaking, in
this particular case, the machine 2-cells correspond to pairs (𝑓 , 𝑔) of K-morphisms such that both pairs
(𝐸 ′ ⊗ 𝐼 ′ ⊗ 𝑓 , 𝐸 ′ ⊗ 𝑓) and (𝑔 ⊗ 𝐸 ⊗ 𝐼, 𝑔 ⊗ 𝐸) form morphisms in the arrow category of K.

Remark 3.16. Let B be a bicategory; in [44] the authors exploit the universal property of a bicategory
ΩB = Psd(N,B) as the category of pseudofunctors, lax natural transformations and modifications with
domain the monoid of natural numbers, regarded as a single object category. The typical object of ΩB
is an endomorphism 𝑖 : 𝐴→ 𝐴 of an object 𝐴 ∈ B, and the typical 1-cell consists of a lax commutative
square

𝐴 //

��
|�

𝐴

��
𝐵 // 𝐵.

(3.10)

This presentation begs the natural question of whether there is a tautological functor MlyB→ ΩB given
by ‘projection’, sending (𝑖, 𝑜; (𝑒, 𝛿,𝜎)) into 𝑖; the answer is clearly affirmative, and in fact such functor
mates to a unique 2-functor N�MlyB→ B under the isomorphism given by Gray tensor product [31];
this somehow preserves the intuition (cf. [66, §1]) of ΩB as a category of ‘lax dynamical systems’.

4 Conclusions

We sketch some directions for future research.

Conjecture 4.1. Given a monad 𝑇 on Set and a quantale V [25, Ch. 2] we can define the locally
thin bicategory (𝑇,V)-Pr of as in [36, Ch. III]; as (𝑇,V) vary we generate a plethora of bicategories,
yielding the categories of topological spaces, approach spaces [53], metric and ultrametric, and closure
spaces as the (𝑇,V)-categories of [36, §III.1.6]. We conjecture that when instantiated in (𝑇,V)-Pr of ,
Equation 3.9 yields a 2-categorical way to look at topological, metric and loosely speaking ‘fuzzy’
approaches to automata theory.

Conjecture 4.2. From Example 3.9 and 3.10 we argue that the ‘non-determinism via Kleisli category’
approach of [34] can be carried over for the presheaf construction on Cat and its Kleisli bicategory Pr of :
if automata (classically intended) in the Kleisli category of the powerset monad are nondeterministic
automata in Set, bicategorical automata in the Kleisli bicategory of the presheaf construction (cf. [26])
are nondeterministic bicategorical automata: passing from Example 3.9 to Example 3.10 accounts for a
form of non-determinism. But then one might be able to address nondeterministic bicategorical automata
in B as deterministic bicategorical automata in a generic proarrow equipment [61, 70, 71] for B!

Boccali, Laretto, Loregian, Luneia 13

References
[1] J. Adámek, H. Herrlich, and G.E. Strecker. Abstract and concrete categories: the Joy of cats, volume 17 of

Reprints in Theory and Applications of Categories. Theory and Applications of Categories, 2006. Available
online at http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf.

[2] J. Adámek. Realization theory for automata in categories. Journal of Pure and Applied Algebra, 9:281–296,
1977. doi:10.1016/0022-4049(77)90071-8.

[3] J. Adámek and V. Trnková. Automata and Algebras in Categories. Kluwer, 1990.
[4] B. Ahrens and P. L. Lumsdaine. Displayed Categories. Logical Methods in Computer Science, Volume

15, Issue 1, March 2019. URL: https://lmcs.episciences.org/5252, doi:10.23638/LMCS-15(1:
20)2019.

[5] M.A. Arbib and E.G. Manes. Adjoint machines, state-behavior machines, and duality. Journal of Pure and
Applied Algebra, 6(3):313–344, 1975. doi:10.1016/0022-4049(75)90028-6.

[6] M.A. Arbib and E.G. Manes. A categorist’s view of automata and systems. In Lecture Notes in Computer
Science, pages 51–64. Springer Berlin Heidelberg, 1975. doi:10.1007/3-540-07142-3_61.

[7] M.A. Arbib and E.G. Manes. Fuzzy machines in a category. Bulletin of the Australian Mathematical Society,
13(2):169–210, 1975. doi:10.1017/S0004972700024412.

[8] M.A. Arbib and E.G. Manes. Machines in a category. Journal of Pure and Applied Algebra, 19:9–20,
December 1980. doi:10.1016/0022-4049(80)90090-0.

[9] E.S. Bainbridge. A unified minimal realization theory, with duality, for machines in a hyperdoctrine. In
Technical Report. Computer and Communication Sciences Department, University of Michigan, 1972.

[10] E.S. Bainbridge. Addressed machines and duality. In Ernest Gene Manes, editor, Category Theory Applied
to Computation and Control, pages 93–98, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

[11] R. Betti and S. Kasangian. A quasi-universal realization of automata. Università degli Studi di Trieste.
Dipartimento di Scienze Matematiche, 1981.

[12] R. Betti and S. Kasangian. Una proprietà del comportamento degli automi completi. Università degli Studi
di Trieste. Dipartimento di Scienze Matematiche, 1982.

[13] G. Boccali, A. Laretto, F. Loregian, and S. Luneia. Completeness for categories of generalized automata. mar
2023. arXiv:2303.03867.

[14] R Brown. Topology and groupoids. www.groupoids.org, rev., updated, and expanded version edition, 2006.
[15] E. Burroni. Lois distributives. applications aux automates stochastiques. Theory and Applications of Cate-

gories, 22:199–221, 2009.
[16] J. Bénabou and T. Streicher. Distributors at work. Lecture notes written by Thomas Streicher, 2000.
[17] G.L. Cattani and G. Winskel. Profunctors, open maps and bisimulation. Mathematical Structures in Computer

Science, 15(03):553–614, 2005.
[18] T. Colcombet and D. Petrisan. Automata Minimization: a Functorial Approach. In 7th Conference on Algebra

and Coalgebra in Computer Science (CALCO 2017), volume 72 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 8:1–8:16, Dagstuhl, Germany, 2017. doi:10.4230/LIPIcs.CALCO.2017.8.

[19] P.R. D’Argenio and J.-P. Katoen. A theory of stochastic systems part i: Stochastic automata. Information and
Computation, 203(1):1–38, November 2005. doi:10.1016/j.ic.2005.07.001.

[20] M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. Springer Berlin Heidelberg,
2009. doi:10.1007/978-3-642-01492-5.

[21] E.J. Dubuc. Kan extensions in enriched category theory. Lecture Notes in Mathematics, Vol. 145. Springer-
Verlag, Berlin-New York, 1970. doi:10.1007/BFb0060485.

[22] H. Ehrig, K.-D. Kiermeier, H.-J. Kreowski, and W. Kühnel. Universal theory of automata. A categorical
approach. doi:10.1007/978-3-322-96644-5.

[23] S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, New York, 1974.

http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf
https://doi.org/10.1016/0022-4049(77)90071-8
https://lmcs.episciences.org/5252
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.1016/0022-4049(75)90028-6
https://doi.org/10.1007/3-540-07142-3_61
https://doi.org/10.1017/S0004972700024412
https://doi.org/10.1016/0022-4049(80)90090-0
https://arxiv.org/abs/2303.03867
https://doi.org/10.4230/LIPIcs.CALCO.2017.8
https://doi.org/10.1016/j.ic.2005.07.001
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/BFb0060485
https://doi.org/10.1007/978-3-322-96644-5

14 Bicategories of Automata, Automata in Bicategories

[24] S. Eilenberg and J.B. Wright. Automata in general algebras. Information and Control, 11(4):452–470, October
1967. doi:10.1016/s0019-9958(67)90670-5.

[25] P. Eklund, J. Gutiérrez Garciá, U. Höhle, and J. Kortelainen. Semigroups in Complete Lattices. Springer
International Publishing, 2018. doi:10.1007/978-3-319-78948-4.

[26] M. Fiore, N. Gambino, M. Hyland, and G. Winskel. Relative pseudomonads, kleisli bicategories, and
substitution monoidal structures. Selecta Mathematica, 24(3):2791–2830, November 2017. doi:10.1007/
s00029-017-0361-3.

[27] T.M. Fiore. Pseudo Limits, Biadjoints, And Pseudo Algebras: Categorical Foundations of Conformal Field
Theory. Memoirs AMS 860. American Mathematical Society, 2006.

[28] J.A. Goguen. Realisation is universal. Mathematical System Theory, 6(4), 1973.
[29] J.A. Goguen. Discrete-time machines in closed monoidal categories. I. Journal of Computer and System

Sciences, 10(1):1–43, February 1975. doi:10.1016/s0022-0000(75)80012-2.
[30] J.A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Factorizations, congruences, and the de-

composition of automata and systems. In Lecture Notes in Computer Science, pages 33–45. Springer Berlin
Heidelberg, 1975. doi:10.1007/3-540-07162-8_665.

[31] J.W. Gray. Formal Category Theory: Adjointness for 2-Categories. Springer Berlin Heidelberg, 1974.
doi:10.1007/bfb0061280.

[32] R. Guitart. Remarques sur les machines et les structures. Cahiers de Topologie et Géométrie Différentielle
Catégoriques, 15:113–144, 1974.

[33] R. Guitart. Des machines aux bimodules. Univ. Paris 7, apr 1978. URL: http://rene.guitart.
pagesperso-orange.fr/textespublications/rg30.pdf.

[34] R. Guitart. Tenseurs et machines. Cahiers de topologie et géométrie différentielle, 21(1):5–62, 1980. URL:
http://www.numdam.org/item/CTGDC_1980__21_1_5_0/.

[35] R. Guitart and L. Van den Bril. Décompositions et Lax-complétions. Cahiers de topologie et géométrie
différentielle, 18(4):333–407, 1977. URL: http://www.numdam.org/item/CTGDC_1977__18_4_333_0/.

[36] D. Hofmann, G.J. Seal, and W. Tholen. Monoidal Topology: A Categorical Approach to Order, Metric, and
Topology, volume 153. Cambridge University Press, 2014. doi:10.1017/CBO9781107517288.

[37] B. Jacobs. Categorical Logic and Type Theory. Number 141 in SLFM. Elsevier, 1999.
[38] B. Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages. In Algebra,

Meaning, and Computation, pages 375–404. Springer Berlin Heidelberg, 2006. doi:10.1007/11780274_
20.

[39] B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic. Logical Methods
in Computer Science, 11(3):76, 2015. Id/No 24. doi:10.2168/LMCS-11(3:24)2015.

[40] B. Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2016. doi:10.1017/CBO9781316823187.

[41] M. B. Justesen. Bikategorien af profunktorer. Naturvidenskabelig embedseksamen, Aarhus University, 1968.
[42] S. Kasangian, G.M. Kelly, and F. Rossi. Cofibrations and the realization of non-deterministic automata.

Cahiers de topologie et géométrie différentielle catégoriques, 24(1):23–46, 1983.
[43] S. Kasangian and R. Rosebrugh. Glueing enriched modules and composition of automata. Cahiers de

topologie et géométrie différentielle catégoriques, 31(4):283–290, 1990.
[44] P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of processes. Journal of Pure and Applied Algebra,

115(2):141–178, February 1997. doi:10.1016/s0022-4049(96)00012-6.
[45] P. Katis, N. Sabadini, and R.F.C. Walters. Feedback, trace and fixed-point semantics. RAIRO - Theoretical

Informatics and Applications - Informatique Théorique et Applications, 36(2):181–194, 2002. URL: http:
//www.numdam.org/articles/10.1051/ita:2002009/, doi:10.1051/ita:2002009.

[46] G.M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated
sheaves, and so on. Bulletin of the Australian Mathematical Society, 22(01):1–83, 1980. doi:10.1017/
S0004972700006353.

https://doi.org/10.1016/s0019-9958(67)90670-5
https://doi.org/10.1007/978-3-319-78948-4
https://doi.org/10.1007/s00029-017-0361-3
https://doi.org/10.1007/s00029-017-0361-3
https://doi.org/10.1016/s0022-0000(75)80012-2
https://doi.org/10.1007/3-540-07162-8_665
https://doi.org/10.1007/bfb0061280
http://rene.guitart.pagesperso-orange.fr/textespublications/rg30.pdf
http://rene.guitart.pagesperso-orange.fr/textespublications/rg30.pdf
http://www.numdam.org/item/CTGDC_1980__21_1_5_0/
http://www.numdam.org/item/CTGDC_1977__18_4_333_0/
https://doi.org/10.1017/CBO9781107517288
https://doi.org/10.1007/11780274_20
https://doi.org/10.1007/11780274_20
https://doi.org/10.2168/LMCS-11(3:24)2015
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1016/s0022-4049(96)00012-6
http://www.numdam.org/articles/10.1051/ita:2002009/
http://www.numdam.org/articles/10.1051/ita:2002009/
https://doi.org/10.1051/ita:2002009
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1017/S0004972700006353

Boccali, Laretto, Loregian, Luneia 15

[47] A. Kock. Limit monads in categories. The University of Chicago, 1967.
[48] A. Kock. Closed categories generated by commutative monads. J. Austral. Math. Soc., 12:405–424, 1971.
[49] A. Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23(1):113–120, 1972.
[50] S. Lack. Note on the construction of free monoids. Applied Categorical Structures, 18(1):17–29, October

2008. doi:10.1007/s10485-008-9167-y.
[51] E. Di Lavore, A. Gianola, M. Román, N. Sabadini, and P. Sobociński. A canonical algebra of open transition

systems. In Gwen Salaün and Anton Wijs, editors, Formal Aspects of Component Software - 17th International
Conference, FACS 2021, Virtual Event, October 28-29, 2021, Proceedings, volume 13077 of Lecture Notes
in Computer Science, pages 63–81. Springer, 2021. doi:10.1007/978-3-030-90636-8_4.

[52] F. Loregian. Coend Calculus, volume 468 of London Mathematical Society Lecture Note Series. Cambridge
University Press, first edition, jul 2021. ISBN 9781108746120.

[53] R. Lowen. Approach Spaces: The Missing Link in the Topology-uniformity-metric Triad. Oxford mathematical
monographs. Clarendon Press, 1997.

[54] J. Meseguer and U. Montanari. Petri nets are monoids. Information and Computation, 88(2):105–155,
October 1990. doi:10.1016/0890-5401(90)90013-8.

[55] J. Meseguer and I. Sols. Automata in semimodule categories. In Lecture Notes in Computer Science, pages
193–198. Springer Berlin Heidelberg, 1975. doi:10.1007/3-540-07142-3_81.

[56] G. Naudé. On the adjoint situations between behaviour and realization. Quaestiones Mathematicae, 2:245–
267, 1977. doi:10.1080/16073606.1977.9632546.

[57] G. Naudé. Universal realization. Journal of Computer and System Sciences, 19(3):277–289, 1979. doi:
10.1016/0022-0000(79)90005-9.

[58] P. Perrone and W. Tholen. Kan extensions are partial colimits. Applied Categorical Structures, 30(4):685–753,
January 2022. doi:10.1007/s10485-021-09671-9.

[59] I. Pohl and M.A. Arbib. Theories of abstract automata. Mathematics of Computation, 24(111):760, jul 1970.
doi:10.2307/2004866.

[60] R. Rosebrugh, N. Sabadini, and R.F.C. Walters. Minimal realization in bicategories of automata. Mathematical
Structures in Computer Science, 8(2):93–116, 1998. doi:10.1017/S0960129597002454.

[61] R. Rosebrugh and R.J. Wood. Proarrows and cofibrations. Journal of Pure and Applied Algebra, 53(3):271–
296, 1988. doi:10.1016/0022-4049(88)90128-4.

[62] J.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–80, October
2000. doi:10.1016/s0304-3975(00)00056-6.

[63] S. Singh and S.P. Tiwari. On the category of L-fuzzy automata, coalgebras and dialgebras. Fuzzy Sets and
Systems, 420:1–28, September 2021. doi:10.1016/j.fss.2020.07.013.

[64] R. Street. Fibrations and Yoneda lemma in a 2-category. In G.M. Kelly, editor, Proceedings Sydney Category
Theory Seminar 1972/1973, volume 420 of Lecture Notes in Mathematics, pages 104–133. Springer, 1974.
doi:10.1007/BFb0063096.

[65] R. Street. Fibrations in bicategories. Cahiers de topologie et géométrie différentielle catégoriques, 21(2):111–
160, 1980.

[66] M. Tierney. Categorical Constructions in Stable Homotopy Theory. Springer Berlin Heidelberg, 1969.
doi:10.1007/bfb0101425.

[67] Y. Venema. Automata and fixed point logic: A coalgebraic perspective. Information and Computation,
204(4):637–678, April 2006. doi:10.1016/j.ic.2005.06.003.

[68] VV.AA. Fugal: definition & meaning. URL: https://www.merriam-webster.com/dictionary/fugal.
[69] R.F.C. Walters. A note on context-free languages. Journal of Pure and Applied Algebra, 62(2):199–203,

December 1989. doi:10.1016/0022-4049(89)90151-5.
[70] R.J. Wood. Abstract pro arrows I. Cahiers de topologie et géométrie différentielle, 23(3):279–290, 1982.

URL: http://www.numdam.org/item/CTGDC_1982__23_3_279_0/.

https://doi.org/10.1007/s10485-008-9167-y
https://doi.org/10.1007/978-3-030-90636-8_4
https://doi.org/10.1016/0890-5401(90)90013-8
https://doi.org/10.1007/3-540-07142-3_81
https://doi.org/10.1080/16073606.1977.9632546
https://doi.org/10.1016/0022-0000(79)90005-9
https://doi.org/10.1016/0022-0000(79)90005-9
https://doi.org/10.1007/s10485-021-09671-9
https://doi.org/10.2307/2004866
https://doi.org/10.1017/S0960129597002454
https://doi.org/10.1016/0022-4049(88)90128-4
https://doi.org/10.1016/s0304-3975(00)00056-6
https://doi.org/10.1016/j.fss.2020.07.013
https://doi.org/10.1007/BFb0063096
https://doi.org/10.1007/bfb0101425
https://doi.org/10.1016/j.ic.2005.06.003
https://www.merriam-webster.com/dictionary/fugal
https://doi.org/10.1016/0022-4049(89)90151-5
http://www.numdam.org/item/CTGDC_1982__23_3_279_0/

16 Bicategories of Automata, Automata in Bicategories

[71] R.J. Wood. Proarrows II. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 26(2):135–168,
1985. URL: http://www.numdam.org/item/CTGDC_1985__26_2_135_0/.

A Appendix A: Proofs

A.1 Diagrams

=𝛿 𝛿′𝜖
𝜖

𝜄
=𝜎 𝜎′𝜔

𝜖

𝜄

and ; (A.1)

𝐴

|� 𝜄

𝑢 //

𝑖
��

𝐴′

𝑖′

��

𝐴

|� 𝜖

𝑢 //

𝑒

��

𝐴′

𝑒′

��

𝐴

|� 𝜔

𝑢 //

𝑜

��

𝐴′

𝑜′

��
𝐴

𝑢
// 𝐴′ 𝐵

𝑣
// 𝐵′ 𝐵

𝑣
// 𝐵′

(A.2)

𝜄′

𝜑

𝜄

𝜑

= 𝜖 ′

𝜑

𝜖

𝜓

= 𝜔′

𝜑

𝜔

𝜓

= (A.3)

𝐸 ′ ⊗ 𝐼 ′ ⊗𝑈 𝑑′⊗𝑈 //

𝐸′⊗𝐼 ′⊗ 𝑓
��

𝐸 ′ ⊗𝑈
𝐸′⊗ 𝑓
��

𝑉 ⊗ 𝐸 ⊗ 𝐼 𝑉 ⊗𝑑 //

𝑔⊗𝐸⊗𝐼
��

𝑉 ⊗ 𝐸
𝑔⊗𝐸
��

𝐸 ′ ⊗ 𝐼 ′ ⊗𝑈 ′
𝑑′⊗𝑈 ′

// 𝐸 ′ ⊗𝑈 ′ 𝑉 ′ ⊗ 𝐸 ⊗ 𝐼
𝑉 ′⊗𝑑

// 𝑉 ′ ⊗ 𝐸
(A.4)

A.2 Proofs

Proof of Lemma 2.13. In order to prove that the assignment 𝑠 ↦→ 𝑠♭ is well defined in the set of fugal
automata, we proceed by induction on the length of a string ℓ. We have to prove that

𝑠♭ (𝑒, ℓ ++ 𝑎𝑠) = 𝑠♭ (𝑒, ℓ) ++ 𝑠♭ (𝑑∗(𝑒, ℓ), 𝑎𝑠) (A.5)

The base case ℓ = [] is evidently true, so suppose that ℓ = 𝑥 :: 𝑥𝑠 is not empty and the claim is true for
every choice of a shorter 𝑥𝑠: then,

𝑠♭ (𝑒, (𝑥 :: 𝑥𝑠) ++ 𝑎𝑠) = 𝑠♭ (𝑒, (𝑥 :: 𝑥𝑠) ++ 𝑎𝑠)
= 𝑠♭ (𝑒, 𝑥 :: (𝑥𝑠 ++ 𝑎𝑠))
= 𝑠(𝑒, 𝑥) :: 𝑠♭ (𝑑 (𝑒, 𝑥), 𝑥𝑠 ++ 𝑎𝑠)
= 𝑠(𝑒, 𝑥) ::

(
𝑠♭ (𝑑 (𝑒, 𝑥), 𝑥𝑠) ++ 𝑠♭ (𝑑∗(𝑒, 𝑥𝑠), 𝑎𝑠)

)
=
(
𝑠(𝑒, 𝑥) :: 𝑠♭ (𝑑 (𝑒, 𝑥), 𝑥𝑠)

)
++ 𝑠♭ (𝑑 (𝑥, 𝑑∗(𝑒, 𝑥𝑠)), 𝑎𝑠)

= 𝑠♭ (𝑒, 𝑥 :: 𝑥𝑠) ++ 𝑠♭ (𝑑∗(𝑒, 𝑥 :: 𝑥𝑠), 𝑎𝑠)
= 𝑠♭ (𝑒, ℓ) ++ 𝑠♭ (𝑑∗(𝑒, ℓ), 𝑎𝑠).

We now have to show that any 2-cell 𝑓 : (𝐸, 𝑑, 𝑠) → (𝐹, 𝑐, 𝑡) is in fact a 2-cell (𝐸, 𝑑∗, 𝑠♭) → (𝐹, 𝑐∗, 𝑡♭).
This can be done by induction as well, with completely similar reasoning. �

http://www.numdam.org/item/CTGDC_1985__26_2_135_0/

Boccali, Laretto, Loregian, Luneia 17

Proof of Lemma 2.16. We have to prove that

(𝑠21)♭ = 𝑠♭2
♭
1. (A.6)

The two functions coincide on the empty list by definition; hence, let ℓ = 𝑎 :: 𝑎𝑠 be a nonempty list and
(𝑒, 𝑓) ∈ 𝐸 ×𝐹 a generic element. The right-hand side of the equation is

(𝑠♭2
♭
1) ((𝑒, 𝑓), 𝑎 :: 𝑎𝑠) = 𝑠♭2(𝑓 , 𝑠

♭
1(𝑒, 𝑎 :: 𝑎𝑠))

= 𝑠♭2
(
𝑓 , 𝑠1(𝑒, 𝑎) :: 𝑠♭1(𝑑1(𝑒, 𝑎), 𝑎𝑠)

)
= 𝑠2(𝑓 , 𝑠1(𝑒, 𝑎)) :: 𝑠♭2(𝑑2(𝑓 , 𝑠1(𝑒, 𝑎)), 𝑠♭1(𝑑1(𝑒, 𝑎), 𝑎𝑠))
= (𝑠21) ((𝑒, 𝑓), 𝑎) :: (𝑠21)♭ ((𝑑2ḑ1) ((𝑒, 𝑓), 𝑎), 𝑎𝑠)

which concludes the proof. �

Proof of Theorem 2.17. Similarly to Lemma 2.16, we have to prove that 𝑑∗2ḑ∗1 = (𝑑2ḑ1)∗ whenever 𝑑2, 𝑑1
are two dynamic maps of composable Mealy machines 〈𝑠1, 𝑑1〉 : 𝐸 ×𝑀→ 𝑁 ×𝐸 and 〈𝑠2, 𝑑2〉 : 𝐹 ×𝑁→
𝑃×𝐹. This, together with Lemma 2.16, will establish functoriality on 1-cells of ()♭. Functoriality on
2-cells is very easy to establish. For what concerns Π, the proof amounts to showing that the composition
of (fugal) Mealy machines gets mapped into the composition of spans in Macs; this can be checked with
ease and follows from the fact that the translation category of the action 𝑑2ḑ1 as defined in (2.2) has the
universal property of the pullbackZ in

Z
##{{

E[𝑑∗1] Σ1

##
𝐷1

{{

E[𝑑∗2] Σ2

##
𝐷2

{{
𝑀 𝑁 𝑅.

(A.7)

This is a straightforward check, and it is also straightforward to see that the composition of Σ2 with
the right projection from Z coincides with the ‘Sigma’ functor induced by 𝑠21, which concludes the
proof. �

Proof of Theorem 2.18. It is worthwhile to recall what a biadjunction is

𝐹 : C
//

⊥ D : 𝐺oo (A.8)

if C,D are bicategories (cf. [27, Ch. 9]): for each two objects 𝐶,𝐷 we are given an equivalence between
hom-categories D(𝐹𝐶,𝐷) ' C(𝐶,𝐺𝐷), i.e. a pair of functors 𝐻 : D(𝐹𝐶,𝐷) � C(𝐶,𝐺𝐷) : 𝐾 whose
composition in both directions is isomorphic to the identity functor of the respective hom-category –and
all this depends naturally on 𝐶,𝐷.

In order to prove this, let’s fix a set 𝐴 and a monoid 𝑀 , let’s build functors

Mly♭Set(𝐴∗, 𝑀)
𝐻 // MlySet(𝐴,𝑈𝑀) MlySet(𝐴,𝑈𝑀)

𝐾 // Mly♭Set(𝐴∗, 𝑀) (A.9)

and prove that they form an equivalence of categories by explicitly showing that 𝐻𝐾 and 𝐾𝐻 are
isomorphic to the respective identities. We’ll often adopt the convenient notation 〈𝑠, 𝑑〉 : 𝐸 × 𝑋→ 𝑌 ×𝐸
for a Mealy machine of input 𝑋 and output 𝑌 .

18 Bicategories of Automata, Automata in Bicategories

• Let 〈𝑠, 𝑑〉 : 𝐸 × 𝐴∗→ 𝑀 ×𝐸 be a fugal Mealy machine; 𝐻〈𝑠, 𝑑〉 is defined as the composition

𝐸 × 𝐴 𝐸×𝜂𝐴 // 𝐸 × 𝐴∗ 〈𝑠,𝑑〉 // 𝑀 ×𝐸 (A.10)

where 𝜂𝐴 : 𝐴→ 𝐴∗ is the unit of the free-forgetful adjunction between Set and monoids. In simple
terms, 𝐻 acts ‘restricting’ a fugal Mealy machine to the set of generators of its input.

• Let 〈𝑠0, 𝑑0〉 : 𝐹× 𝐴→𝑈𝑀 ×𝐹 be any Mealy machine on Set, where𝑈𝑀 means that 𝑀 is regarded
as a mere set; 𝐾 〈𝑠0, 𝑑0〉 is defined as the composition

𝐹 × 𝐴∗ 〈𝑠0,𝑑0 〉♭// (𝑈𝑀)∗×𝐹 𝜀×𝐹 // 𝑀 ×𝐹 (A.11)

where 𝜀 : (𝑈𝑀)∗→ 𝑀 is the counit of the free-forgetful adjunction between Set and monoids, and
〈𝑠0, 𝑑0〉♭ is the fugal extension of Lemma 2.13.

The claim is now that the fugal Mealy machine 𝐾𝐻〈𝑠, 𝑑〉 coincides with 〈𝑠, 𝑑〉, and that the generic Mealy
machine 𝐻𝐾 〈𝑠0, 𝑑0〉 coincides with 〈𝑠0, 𝑑0〉.

Both statements depend crucially on the following fact: if 𝑠 : 𝐸×𝑀→ 𝑁 satisfies Equation (2.8), then
for all 𝑒 ∈ 𝐸 the element 𝑠(1𝑀 , 𝑒) is idempotent in 𝑁 . In particular, if 𝑁 is free on a set 𝐵, 𝑠(1𝑀 , 𝑒) = []
is the empty list, and more in particular, for a generic Mealy machine 〈𝑠, 〉 the fugal extension 𝑠♭ is such
that for all 𝑒 ∈ 𝐸 , 𝑠♭ ([], 𝑒) = [].

Given this, observe that the Mealy machine 𝐻𝐾 〈𝑠0, 𝑑0〉 coincides with 〈𝑠♭0 ◦ (𝐹 ×𝜂𝐴), 𝑑
∗
0 ◦ (𝐹 ×𝜂𝐴)〉;

now clearly the composition 𝑑∗0 ◦ (𝐹 × 𝜂𝐴) coincides with 𝑑0 : 𝐹 × 𝐴→ 𝐹 and the two maps determine
each other. As for 𝑠♭0 ◦ (𝐹 ×𝜂𝐴), we have that for all (𝑓 , 𝑎) ∈ 𝐹 × 𝐴

𝑠♭0 ◦ (𝐹 ×𝜂𝐴) (𝑓 , 𝑎) = 𝑠
♭
0(𝑓 , 𝑎 :: [])

= 𝑠0(𝑓 , 𝑎) :: 𝑠♭0(𝑓 , [])
= 𝑠0(𝑓 , 𝑎) :: []

Reasoning similarly, one proves that the fugal Mealy machine 𝐾𝐻〈𝑠, 𝑑〉 has components 〈(𝑠 ◦ (𝐸 ×
𝜂𝐴))♭, (𝑑 ◦ (𝐸 × 𝜂𝐴))∗〉: again, since functions 𝐸 × 𝐴→ 𝐸 correspond bijectively to monoid actions
𝐸 × 𝐴∗→ 𝐸 , the map (𝑑 ◦ (𝐸 ×𝜂𝐴))∗ coincides with 𝑑; as for (𝑠 ◦ (𝐸 ×𝜂𝐴))♭, we can argue by induction
that

(𝑠 ◦ (𝐸 ×𝜂𝐴))♭ (𝑒, []) = [] = 𝑠(𝑒, [])
(𝑠 ◦ (𝐸 ×𝜂𝐴))♭ (𝑒, 𝑎 :: 𝑎𝑠) = 𝑠(𝑒, 𝑎) :: (𝑠 ◦ (𝐸 ×𝜂𝐴))♭ (𝑑 (𝑎, 𝑒), 𝑎𝑠)

= 𝑠(𝑒, 𝑎) :: 𝑠(𝑑 (𝑎, 𝑒), 𝑎𝑠)
= 𝑠(𝑒, 𝑎 :: 𝑎𝑠)

where the last equality uses that 𝑠 was fugal to start with. This concludes the proof. �

Proof of Proposition 3.8. The category P is in fact 2-discrete (it has no 2-cells) and its objects and
morphisms are arranged as follows:

1 0
𝑦

oo
𝑥oo 𝑧 //

𝑡
// 2 (A.12)

For lack of a better name, P is the generic double span.
The functors𝑊,𝐺 are then constructed as follows:

Boccali, Laretto, Loregian, Luneia 19

• 𝐺 : P → Cat is constant on objects at the category K(𝐴, 𝐵), and chooses the double span

K(𝐴, 𝐵) K(𝐴, 𝐵)
id
oo

idoo ◦𝑖 //
id
// K(𝐴, 𝐵); (A.13)

• 𝑊 : P → Cat chooses the double span

{0→ 1} {♥,♠}
𝑗

oo
𝑗oo 𝑐0 //

𝑐1
// {0→ 1} (A.14)

where {♥,♠} is a discrete category with two objects, 𝑗 =
(♥↦→0
♠↦→1

)
, and 𝑐𝑘 is constant at 𝑘 ∈ {0,1}.

Now, it is a matter of unwinding the definition of a natural transformation 𝛼 :𝑊 ⇒ 𝐺 to find that we are
provided with maps

{𝑒,#} = 𝛼0 :𝑊0→K(𝐴, 𝐵)
𝜎 = 𝛼1 :𝑊1→K(𝐴, 𝐵) (A.15)
𝛿 = 𝛼2 :𝑊2→K(𝐴, 𝐵)

and with commutative diagrams arising from naturality as follows, if we agree to label 𝛼0(♥) = 𝑒 and
𝛼0(♠) = 𝑜, and we blur the distinction between 𝛼0 and the embedding of its image {𝑒, 𝑜} in K(𝐴, 𝐵):

{𝑒, 𝑜}
𝑗 //

𝛼0

��

{0→ 1}

𝛼1

��

{𝑒, 𝑜} 𝑐0 //

𝛼0

��

{0→ 1}

𝛼2

��

{𝑒, 𝑜} 𝑐1 //

𝛼0

��

{0→ 1}

𝛼2

��
K(𝐴, 𝐵) K(𝐴, 𝐵) K(𝐴, 𝐵) ◦𝑖

// K(𝐴, 𝐵) K(𝐴, 𝐵) K(𝐴, 𝐵)

(A.16)

Altogether, we have that these data yield a diagram of 2-cells

𝐴

𝑖

��
𝑒
��

𝑜

��

;C𝜎

𝐴
𝑒

//

+3𝛿

𝐵

(A.17)

as in (3.2). Modifications between these natural transformations correspond to suitable arrangements of
2-cells, in such a way that we recover the notion of morphism of bicategorical Moore machine given in
bmo2.

In case the output 𝑜 is fixed, we just constrain 𝛼0(♠) to be mapped in 𝑜 and modifications to be the
identity at ♠.

For bicategorical Mealy machines, redefine𝐺𝑥 =𝐺𝑧 = ◦ 𝑖 and the rest of the argument is unchanged.
�

Discussion A.1. In a world of war and crippling inflation bytes are expensive, so page limits shorten by
the month. This forces authors to shrink their papers, and the only way to do that is remove text.

A simple interpolation suggests that one day, the average submission will consist of just the picture of
a cat surrounded by a circle and a square; already today, we feel constrained to push in the appendix the
email addresses of the authors: †guidoboccali@gmail.com, ~anlare@ttu.ee, ♣folore@ttu.ee,
and ♥stefano.luneia@gmail.com.

S. Staton, C. Vasilakopoulou (Eds.):

Applied Category Theory 2023 (ACT2023)

EPTCS 397, 2023, pp. 20–38, doi:10.4204/EPTCS.397.2

© T. Boy de la Tour

This work is licensed under the

Creative Commons Attribution License.

Subsumptions of Algebraic Rewrite Rules

Thierry Boy de la Tour

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

thierry dot boy-de-la-tour at imag.fr

What does it mean for an algebraic rewrite rule to subsume another rule (that may then be called a

subrule)? We view subsumptions as rule morphisms such that the simultaneous application of a rule

and a subrule (i.e. the application of a subsumption morphism) yields the same result as a single

application of the subsuming rule. Simultaneous applications of categories of rules are obtained by

Global Coherent Transformations and illustrated on graphs in the DPO approach. Other approaches

are possible since these transformations are formulated in an abstract Rewriting Environment, and

such environments exist for various approaches to Algebraic Rewriting, including DPO, SqPO and

PBPO.

1 Introduction

In Global Transformations [16] rules may be seen as pairs (L,R) of graphs (or objects in a category C)

that are applied simultaneously to an input graph (as in L-systems [10] and cellular automata [9]). Such

rules are related by pairs of C -morphisms. These morphisms come from representing possible overlaps

of rules as subrules whose applications are induced by the overlapping applications of rules, therefore

establishing a link between these. By computing a colimit of a diagram involving the morphisms between

occurrences of right-hand sides, Global Transformations offer the possibility to merge items (vertices or

edges) in these occurrences of right-hand sides.

This form of rules has the advantage of simplicity, first because rule morphisms are those of the

product category C ×C , and second because the input object is completely removed. Indeed, when all

occurrences of L have been found in the input graph G, the output graph H is produced solely from the

corresponding occurrences of R, thus effectively removing G. In particular, if no L has any match in G

then H is the empty graph. If G is, say, a relational database, this may be inconvenient.

More standard approaches to algebraic rewriting use rules for replacing matched parts of the input

object by new parts. These substitutions are performed by first removing the matched part and then

adding the new part, this last operation being performed by a pushout. But since there is no general

algebraic way of removing parts of a C -object, several approaches have been devised, from DPO [7] to

PBPO [4] rules, for defining the context (a C -object) in which R can be “pushed”. These rules always

have an interface K with a pair of C -morphisms from K to L and R (a span), but can be more complicated.

Hence the necessity of a general notion of morphism between rules that does not depend on a specific

shape of rules.

In Section 3 an intuitive analysis of rule subsumptions on a simple example with DPO-rules leads to

a natural definition of subsumption morphisms between DPO-rules, and of corresponding subsumption

morphisms between direct DPO-transformations. This leads in Section 4 to a general notion of Rewriting

Environment that provides the relevant categories of rules and of direct transformations, and functors

between them and to a category of partial transformations.

Section 5 is devoted to the Global Coherent Transformation. It derives from the Parallel Coherent

Transformations defined in [2] (only for a variant of DPO-rules), where sets or rules can be applied

http://dx.doi.org/10.4204/EPTCS.397.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

T. Boy de la Tour 21

simultaneously on an input object. The first step defines the global context as a limit of a diagram that

involves the subsumption morphisms.

One important problem is that overlapping applications of rules (i.e., overlapping direct transforma-

tions) may conflict as one transformation deletes an item of G that another transformation preserves.

Note that conflicts cannot happen with Global Transformations since they preserve nothing. Only non

conflicting, so called coherent transformations can be applied simultaneously, hence the notion of Par-

allel Coherence from [2] must be adapted in order to embrace subsumption morphisms. The adapted

definition ensures that the right-hand sides of the rules can be pushed in the global context by means of

a colimit.

Section 6 is devoted to the analysis of Rewriting Environments, and yields natural definitions of en-

vironments for the SqPO and PBPO approaches. Future work and open questions are found in Section 7.

2 Notations

Embeddings are injective functors, all other notions are compatible with [15]. We also use meets and

sums of functors, see [12].

For any category C , we write G ∈ C to indicate that G is a C -object, and |C | is the discrete category

on C -objects. Then G also denotes the functor from the terminal category 1 to |C | that maps the object

of 1 to G. ∅ denotes the initial object of C , if any. The slice category C \G has as objects C -morphisms

of codomain G, and as morphisms h : f → g C -morphisms such that g ◦ h = f . The coslice category

G \C has as objects C -morphisms of domain G, and as morphisms h : f → g C -morphisms such that

h◦ f = g.

We will use the standard notion of graphs with multiple directed edges. In the running example we

will use graphs with 2 to 3 vertices and 0 to 4 edges denoted directly by their drawings, as in • •
and • •• . In order to avoid naming vertices, they will always be depicted from left to right, and

we will use at most two monomorphisms from one graph to another: one (depicted as a plain arrow) that

maps the leftmost (resp. rightmost) vertex of the domain graph to the leftmost (resp. rightmost) vertex

of the codomain graph, and one (dotted arrow) that swaps these vertices. For example we consider only

two possible morphisms:

• • • ••

The two morphisms from • • to • • will be distinguished similarly:

• • • •

3 Subrules in DPO Graph Transformations

The notion of a rule ρ being a subrule of a rule ρ ′, or more generally of a subsumption morphism

σ : ρ → ρ ′, covers the idea that ρ represents a part (specified by σ) of what ρ ′ achieves, and therefore

that any application of ρ ′ entails and subsumes a particular application (obtained through σ) of ρ . We

first try to make this idea more precise with DPO-rules.

Definition 3.1 (DPO rules and direct transformations, gluing condition). A DPO-rule ρ in a category C

is a span diagram

22 Subsumptions of Algebraic Rewrite Rules

L K R
l r

in C , where l is monic. Diagrams in C are functors from an index category to C , and it will sometime

be convenient to refer to the objects and morphisms of this index category; they will be denoted by the

corresponding roman letters (here ρL = L, ρ l = l, etc.)

We say that an item (edge or vertex) of a graph G is marked for removal by a matching m : L→G for

a rule ρ if it has a preimage by m that has none by l (see [3]). The gluing condition for m, ρ states that

{

all items marked for removal have only one preimage by m, (GC1)

if a vertex adjacent to an edge is marked for removal, then so is this edge. (GC2)

A direct DPO-transformation δ in C is a diagram

L K R

G D H

l r

f g

m k n

in C such that l is monic and the two squares are pushouts.

It is well known (see [8, 6]) that in the category of graphs, given ρ and m : L→ G, there exists a

direct DPO-transformation δ with ρ and m iff the gluing condition holds. The pushout complement D is

then a subgraph of G (f is monic) and contains all the items of G that are not marked for removal.

Example 3.2. In the running example we transform every directed edge in a graph into a pair of consec-

utive edges. This can be expressed as the following rule

• • • • • •• (ρ ′)

We do not wish to transform loops in this way, hence we adopt the DPO approach restricted to monic

matchings. We also wish to create only one middle vertex for parallel edges, so that the input graph

G = • • in our running example shall be transformed into H = • •• . In order to merge

the two vertices created by the two simultaneous applications of ρ ′ on G we need to link them through

the application of a common subrule on their overlap. Consider the rule

• • • • • •• (ρ)

The right hand side expresses the fact that the middle vertex is created depending on the overlap • •
and not on the edges of G. Thus we need to link the middle vertices from ρ and ρ ′ right-hand sides

through a morphism σ+ : ρ → ρ ′, given as three C -morphisms:

• • • • • ••

• • • • • ••

σ+
1 σ+

2
σ+

3 (σ+)

T. Boy de la Tour 23

The two square diagrams commute, and we easily understand that this is necessary for ρ to be a

subrule of ρ ′. But commutation would also hold if the interface graph of ρ were ∅, and then ρ would

remove the overlap • • . This would conflict with ρ ′ that preserves this part of G. We need the two

rules to behave similarly on the overlap, which means that the interface of the subrule ρ is determined

by the way the interface of ρ ′ intersects the overlap. This can be expressed by stating that the left square

should be a pullback.

Definition 3.3 (categories RDPO, RDPOm). For any category C , let RDPO be the category whose ob-

jects are the DPO-rules and morphisms (or subsumptions) σ : ρ → ρ ′ are triples σ = (σ1,σ2,σ3) of

C -morphisms such that

L K R

L′ K′ R′

l r

l′ r′

σ1 σ2 σ3

(where L′ = ρ ′L etc.) commutes in C and the left square is a pullback. Composition is componentwise

and the obvious identities are 1ρ = (1L, 1K , 1R) (this is a subcategory of C ·←·→·). Let RDPOm be the

subcategory of RDPO with all rules and all morphisms σ such that σ1 and σ2 are monics.

Example 3.4. We consider two morphisms of rules, σ+ above and σ− : ρ → ρ ′ that swaps the left and

right vertices:

• • • • • ••

• • • • • ••

σ−1 σ−2 σ−3 (σ−)

We now see that the gluing condition is inherited (backward) along the morphisms of RDPOm.

Proposition 3.5. If C is the category of graphs, σ : ρ→ ρ ′ is a morphism in RDPO such that σ1 is monic

and m′ : L′→ G satisfies the gluing condition for ρ ′ then so does m′ ◦σ1 : L→ G for ρ .

Example 3.6. There are two obvious matchings m′1 and m′2 of ρ ′ in G, and they induce two matchings of

ρ in G, say m+ = m′1 ◦σ+
1 = m′2 ◦σ+

1 and m− = m′1 ◦σ−1 = m′2 ◦σ−1 . We see that m′1 and m′2 satisfy the

gluing condition, hence they have a pushout complement by l′ and so do m+ and m− by l. We therefore

get two DPO-transformations of G by ρ (below left), one with (m+
,k+,n+, f ,g) and the other with

(m−,k−,n−, f ,g), and two DPO-transformations of G by ρ ′ (below right), one with (m′1,k
′
,n′, f ′1,g

′) and

the other with (m′2,k
′
,n′, f ′2,g

′).

• •

• • • •

• •

• ••

• ••

k′ n′m′1 f ′1
m′2

f ′2

g′

• •

• • • •

• •

• ••

• ••
f g

m+ k+ n+m− k− n−

The following result reveals the relationship induced by morphisms σ : ρ→ ρ ′ on the corresponding

direct DPO-transformations.

Proposition 3.7. If C is the category of graphs, σ : ρ → ρ ′ is a morphism in RDPO, m′ : L′→ G and

m′ ◦σ1 : L→ G have pushout complements as below, then there is a unique graph morphism d such that

24 Subsumptions of Algebraic Rewrite Rules

G

G

L

L′

K

K′

D

D′

=

σ1
σ2

d

l

m′

f

f ′

kl′

k′

commutes.

The existence of d means that all items marked for removal by m′ ◦σ1, i.e., removed by the subrule

ρ , are also removed by ρ ′. In Example 3.6 we have f = 1G, hence with m′ = m′i we get d = f ′i . We also

see that there are no morphisms between the results of the transformations of G by ρ and ρ ′, in either

direction. This is due to the fact that subrules remove less, but also add less. Subsumptions of rules

cannot be deduced from the properties of the transformation functions (from |C | to |C |) they induce.

Definition 3.8 (categories DDPO, DDPOm, functors RDPO, RDPOm). Let DDPO be the category whose

objects are direct DPO-transformations in a category C and whose morphisms (or subsumptions) µ :

δ → δ ′ are 4-tuples (µ1,µ2,µ3,µ4) of C -morphisms such that the following diagram

G

G′

L

L′

K

K′

D

D′

R

R′

=

µ1
µ2

µ4

l

m

m′

f

f ′

k
l′

k′

r

µ3

r′

commutes and the top left square is a pullback, with componentwise composition (but due to the con-

travariance of µ4 we are not in a functor category anymore). Let RDPO be the obvious functor from

DDPO to RDPO, i.e. such that (RDPOδ)L = δL etc. and RDPOµ = (µ1,µ2,µ3). Let DDPOm be the full

subcategory of DDPO whose objects are the direct transformations δ such that δm is monic, and let

RDPOm : DDPOm→RDPOm be the corresponding restriction of RDPO.

4 Rewriting Environments

Given an input object G and a category of rules, we are left with the problem of finding all relevant

transformations of G by these rules. We cannot simply rely on the matchings of their left-hand sides in

G (as in [16]) since they may not have pushout complements, or they may have several non isomorphic

ones. We will therefore use the relevant direct transformations, albeit in an abbreviated version that do

not contain L, since we don’t use matchings, nor H since they are not relevant to subsumption.

Definition 4.1 (category Cpt, functors In, PDPOm). A partial transformation τ in C is a diagram

G D K R
f k r

For any category C , let Cpt be the category whose objects are partial transformations and morphisms

ν : τ → τ ′ are triples (ν1,ν2,ν3) such that

T. Boy de la Tour 25

G D K R

G′ D′ K′ R′

f k r

f ′ k′ r′

= ν1 ν2 ν3

commutes in C , with obvious composition and identities.

Let In : Cpt → |C | be the input functor defined as Inτ = G. Let PDPO : DDPO → Cpt and PDPOm :

DDPOm→ Cpt be the obvious functors (such that (PDPOδ)G = δG etc. and PDPOµ = (µ4,µ2,µ3)).

Using inverse images along PDPOm and RDPOm we can easily focus on the direct transformations of

concern (and the morphisms between them), i.e., the transformations of a graph by a rule.

Definition 4.2 (Rewriting Environments, rule systems, notations Dδ , π1µ . . .). For any category C , a

Rewriting Environment for C consists of a category D of direct transformations, a category R of rules

and two functors

R D Cpt
R P

A rule system in a Rewriting Environment is a category S with an embedding I : S →R (alternately,

S is a subcategory of R and I is the inclusion functor).

Given a rule system and an input C -object G, we build the categories D |G, D |SG and functors IG, IS ,

R|SG as meets of previous functors:

S R

D |C |

1

Cpt

D |GD |SG

R

I

P In

GIG

IS

R|SG

For any δ ∈ D |SG we write Dδ for (PIGIS δ)D and similarly fδ etc. For any µ : δ → δ ′ in D |SG we

write π1µ for the first coordinate of PIGIS µ and similarly π2µ , π3µ .

Example 4.3. For S we take the subcategory ρ ρ ′
σ+

σ−

of RDPO. To the matchings m′1 and m′2 of ρ ′

in G correspond two1 transformations in DDPOm that will be denoted δ ′1 and δ ′2 (depicted on the right in

Example 3.6). To the matchings m+ and m− of ρ in G correspond another two transformations denoted

δ+ and δ− (on the left in Example 3.6). To each i = 1,2 correspond one morphism µ+
i : δ+→ δ ′i such

that RDPOmµ+
i = σ+ and one morphism µ−i : δ−→ δ ′i such that RDPOmµ−i = σ−. Thus DDPOm|

S
G is the

following subcategory of DDPOm.

δ ′1

δ ′2

δ+ δ−
µ+

1 µ−1

µ+
2 µ−2

1We consider transformations only up to isomorphisms, see Footnote 2.

26 Subsumptions of Algebraic Rewrite Rules

5 Global Coherent Transformations

As stated above we will use the partial transformations that are accessible from D |SG through P◦ IG ◦ IS
(a restriction of P). We first need to build a context between the input G and the expected output H . In

Parallel Coherent Transformation [2] the context is obtained as a limit of the morphisms fδ : Dδ → G

(that need not be monics) for all δ in a set ∆ of direct transformations, hence of a diagram that is a sink

to G and thus corresponds to a discrete diagram in C \G. In Global Coherent Transformations the global

context (denoted C∆ below) is obtained similarly, but now ∆ is a category and the diagram contains the

morphisms π1µ : fδ ′ → fδ for all µ : δ → δ ′ in ∆ (since fδ ◦π1µ = fδ ′).

Definition 5.1 (functor P←∆ , limit f∆ : C∆→ G, limit cone γ∆). For any subcategory ∆ of D |SG let P←∆ :

∆op→ C \G be the contravariant functor that maps every δ ∈ ∆ to fδ : Dδ → G and every morphism µ

of ∆ to π1µ : fδ ′ → fδ . Let f∆ : C∆→ G be the limit of P←∆ and γ∆ be the limit cone from f∆ to P
←
∆ .

Note that if ∆ is empty then the limit f∆ of the empty diagram is the terminal object of C \G, that is

1G, hence C∆ = G.

Example 5.2. Let ∆ =DDPOm|
S
G . The diagram on the left below corresponds to the functor P←∆ together

with the morphisms fδ±i
: Dδ±i

→ G (objects in C \G). The limit of this diagram yields C∆ = • •
and the limit cone is represented on the right.

• •

• •

• • • •G

Dδ ′1

Dδ ′2

Dδ+ Dδ−

π1µ+
1 π1µ−1

π1µ+
2 π1µ−2

• •

• •

• • • •C∆

Dδ ′1

Dδ ′2

Dδ+ Dδ−

We next need to check that the transformations in ∆ do not conflict with each other, i.e., that for all

δ ∈ ∆ the image of Kδ in G is not only preserved by δ (in Dδ) but also by all other transformations

δ ′ ∈ ∆. This is ensured by finding (natural) cones from these Kδ to the Dδ ′ , which we shall formulate

with P
←
∆ , hence in C \G.

Definition 5.3 (coherent system of cones, morphisms cδ , global coherence). A coherent system of cones

for ∆ is a set of cones γδ from fδ ◦ kδ to P
←
∆ such that γδ δ = kδ for all δ ∈ ∆, and γδ = γδ ′ ◦π2µ for

all µ : δ → δ ′ in ∆. ∆ is globally coherent if there exists a coherent system of cones for ∆. We then let

cδ : fδ ◦kδ → f∆ be the unique morphism in C \G such that γδ = γ∆ ◦ cδ .

Note that if γδ ′ is a cone from fδ ′ ◦kδ ′ to P
←
∆ then γδ ′ ◦π2µ is a cone from fδ ◦kδ to P

←
∆ , hence global

coherence means that we should find cones for overlapping direct transformations (say δ ′1 and δ ′2), with

the constraint that they should be compatible on their common subtransformations δ ′1← δ → δ ′2. If S

and therefore ∆ are discrete, this amounts to parallel coherence (that generalizes parallel independence

in DPO, see [2]).

Example 5.4. On our example the four graphs Kδ±i
are equal to • • . It is easy to build the four

cones from the four morphisms from Kδ ′i
to Dδ ′i

depicted below, by composing them with the π1µ±i on

the left and the π2µ±i on the right. On the right are also depicted the morphisms cδ±i
.

T. Boy de la Tour 27

• •

• •

• • • •G

Dδ ′1

Dδ ′2

Dδ+ Dδ−

Kδ ′1

Kδ ′2

Kδ+ Kδ−C∆

π1µ+
1 π1µ−1

π1µ+
2 π1µ−2

π2µ+
1 π2µ−1

π2µ+
2 π2µ−2

cδ+

cδ−

cδ ′1

cδ ′2

γδ ′1

γδ ′2

The reader may check that γδ ′1
◦π2µ+

1 = γδ ′2
◦π2µ+

2 (this is γδ+) and γδ ′1
◦π2µ−1 = γδ ′2

◦π2µ−2 (= γδ−).

The morphisms cδ specify where the right-hand sides Rδ should be pushed in the global context.

Definition 5.5 (morphisms hδ : C∆→ Hδ). If ∆ is globally coherent for all δ ∈ ∆ then cδ can be viewed

as a C -morphism cδ : Kδ → C∆, and we consider the following pushout in C .

Kδ

C∆ Hδ

Rδ

rδ

cδ nδ

hδ

Example 5.6. On our example we get:

Kδ ′i

C∆ • ••

• ••
rδ ′i

cδ ′i
nδ ′i

hδ ′i

Kδ+

C∆ • ••

• ••
rδ+

cδ+ nδ+

hδ+

Kδ−

C∆ • ••

• ••
rδ−

cδ− nδ−

hδ−

Thanks to the coherent system of cones we can turn h into a functor.

Proposition 5.7. For every µ : δ → δ ′ in ∆ there exists a unique hµ such that

C∆

Hδ

Hδ ′

Rδ

Rδ ′

hδ

hδ ′

nδ

nδ ′

π3µhµ

commutes.

Corollary 5.8. By unicity we get hµ ′◦µ = hµ ′ ◦hµ .

Example 5.9. For instance the morphisms µ−i : δ−→ δ ′i yield the morphisms hµ−i
depicted below.

C∆

• ••

• ••

• ••

• ••

hδ−

hδ ′i

nδ−

nδ ′i

π3µ−i
hµ−i

28 Subsumptions of Algebraic Rewrite Rules

The final step of the Global Coherent Transformation, symmetric to the first step, consists in taking

the colimit in the coslice category C∆ \C of the covariant diagram of index ∆ with objects hδ and

morphisms hµ : hδ → hδ ′ for all µ : δ → δ ′ in ∆.

Definition 5.10 (functor P→∆ , colimit h∆ : C∆→ H∆). If ∆ is globally coherent let P→∆ : ∆→ C∆ \C be

the functor defined by P
→
∆ δ = hδ (interpreted as an object of C∆ \C) and P

→
∆ µ = hµ for all µ : δ → δ ′

in ∆. Let h∆ : C∆→ H∆ be the colimit2 of P→∆ , then the C -span G
f∆
←− C∆

h∆−→ H∆ is a Global Coherent

Transformation by ∆.

If ∆ is empty then the colimit h∆ of the empty diagram is the initial object of C∆ \C , that is 1C∆
,

hence H∆ = C∆ = G. Generally, the functor P→∆ depends on the choice of cones γδ for δ ∈ ∆, hence h∆

is not determined by ∆.

Example 5.11. The functor P→∆ applied to ∆ yields the following diagram

• ••

• ••

• •• • ••C∆

Hδ ′1

Hδ ′2

Hδ+ Hδ−

hµ+
1

hµ−1

hµ+
2

hµ−2

The leftmost vertices of these five graphs are connected as images or preimages of each other, and simi-

larly for the five right vertices, and the four middle vertices. The four edges are not likewise connected,

hence the colimit of this diagram is the expected result H = • •• . We therefore see that the

two middle vertices created in δ ′1 and δ ′2 are merged by their common subtransformation δ+ (or δ−),

but also that the two middle vertices created in δ+ and δ− are merged by their common subsuming

transformation δ ′1 (or δ ′2).

If we apply S to the graph G′ = • • then rule ρ ′ does not apply to G′ and hence the two

matchings of ρ in G′ apply independently, thus adding two vertices to G′. We can merge them by adding

to S the following rule morphism σ : ρ → ρ that swaps the left and right vertices:

• • • • • ••

• • • • • ••

σ1 σ2 σ3

We have σ 2 = 1ρ hence σ is an automorphism of ρ . Adding σ to S means that the symmetric

applications of ρ , i.e., direct transformations with matchings m and m ◦σ , shall be merged (this seems

to generalize to the algebraic context the notion of Parallel Rewriting Modulo Automorphism devised in

an algorithmic approach in [1]). Since σ+ ◦σ = σ− and σ− ◦σ = σ+, the new rule system is

S
′ = ρ ρ ′

σ+

σ−

σ

2 Global Coherent Transformations are obtained as limits and colimits of diagrams whose index category is ∆, hence are not

affected by isomorphisms in ∆, which can therefore be replaced by its skeleton.

T. Boy de la Tour 29

If we apply S ′ to G, we add two new morphisms in DDPOm|
S
G , i.e,

∆′ = DDPOm|
S ′

G =

δ ′1

δ ′2

δ+ δ−
µ+

1 µ−1

µ+
2 µ−2

It is easy to see that the Global Coherent Transformation by ∆′ is the same as above with ∆. This is due

to the fact that δ+ and δ− are already related in ∆ through δ ′1 (or δ ′2).

We finally prove that, apart from this mechanism of sharing common subtransformations, isolated

transformations always subsume their subtransformations, so that morphisms in R are rule subsumptions

as intended.

Proposition 5.12. If ∆′ is restricted to δ ′ and ∆ to µ : δ → δ ′ (or more generally if δ ′ is terminal in ∆)

then ∆ and ∆′ are globally coherent and H∆ ≃ H∆′ .

6 Some Rewriting Environments and Their Properties

An obvious property of Rewriting Environments is that they can be combined: if R1
R1←−D1

P1−→ Cpt and

R2
R2←−D2

P2−→ Cpt are Rewriting Environments for C then so is R1 +R2
R1+R2←−−−−D1 +D2

[P1,P2]
−−−−→ Cpt. It

is therefore possible to mix rules of different approaches to transform a graph, though of course rules of

distinct approaches cannot subsume each other.

A property that one might reasonably expect is that when a rule applies and yields a direct trans-

formation then its subrules also apply and yield subtransformations. We express this by means of the

following notion.

Definition 6.1 (right-full). A functor F : A → B is right-full3 if for all a′ ∈ A , all b ∈ B and all

g : b→ Fa′, there exist a ∈A and f : a→ a′ such that F f = g.

It is obvious that right-fullness is closed by composition.

Lemma 6.2. IG is a full and right-full embedding.

Proposition 6.3. If R is right-full (resp. faithful) then so is R|SG for every rule system S and G ∈ C .

Hence when R is right-full and faithful every morphism σ : ρ → ρ ′ in S is reflected by a morphism

in D |SG whenever ρ ′ is reflected by a direct transformation δ ′ (i.e., whenever ρ ′ applies to G), and this

morphism is uniquely determined by σ and δ ′.

6.1 Double-Pushouts

Definitions 3.3, 3.8 and 4.1 provide two Rewriting Environments that we may call DPO and DPOm. By

Proposition 3.7 it is obvious that RDPO and RDPOm are faithful when C is the category of graphs. This is

easily seen to generalize to all adhesive categories [11]. Proposition 3.7 generalizes as follows:

Proposition 6.4. If C is adhesive, δ ,δ ′ ∈ DDPO and σ : RDPOδ → RDPOδ ′ such that m = m′ ◦σ1 then

there exists a unique µ : δ → δ ′ such that RDPOµ = σ .

3This is named after the symmetric definition of left-full functors in [17, p. 63].

30 Subsumptions of Algebraic Rewrite Rules

According to Proposition 3.5 it is obvious that RDPOm is right-full (when C is the category of graphs).

It is easy to see that RDPO is not right-full (with σ1 not monic, see Proposition 3.5).

One drawback with span rules is that every item matched by m that is not removed must be preserved

in the result, hence cannot be removed by an overlapping rule, by the requirement of global coherence.

In [2] we have defined weak DPO-rules by inserting a second interface I between K and L. A weak DPO

transformation is a diagram

L I K R

G D D H

l i r

m k

f

k ◦ i

g

n

=

so that the images of items in I are not removed by this transformation, but only images of items in K

may not be removed by any simultaneous transformation. In cellular automata we need items in I that

match the states of the neighbour cells, but there should be none in K since these states may be modified

by overlapping rules (see [2, Example 3], note that K and I are swapped).

It is easy to define subsumption morphisms between weak DPO-rules (as 4-tuples of C -morphisms

with commuting properties and a pullback as in Definition 3.3), and corresponding morphisms between

direct transformations of weak DPO-rules (as 5-tuples of C -morphisms with commuting properties and

a pullback as in Definition 3.8). This yields a Rewriting Environment for weak double-pushouts.

6.2 Sesqui-Pushouts

We now consider the case of Sesqui-Pushouts [5]. It is based on the notion of final pullback complement

that allows not only to remove parts of the input G but also to make copies of parts of G.

Definition 6.5 (category RSqPO, direct SqPO-transformations). A SqPO-rule ρ in C is a span diagram

L
l
←− K

r
−→ R. Let RSqPO be the category whose objects are the SqPO-rules and morphisms σ : ρ → ρ ′

are triples σ = (σ1,σ2,σ3) such that

L K R

L′ K′ R′

l r

l′ r′

σ1 σ2 σ3

commutes in C and the left square is a pullback, with obvious composition and identities. Let RSqPOm

be the subcategory with morphisms σ such that σ1 and σ2 are monics.

A final pullback complement of (m, l) is a pair (f ,k) such that (k, l) is a pullback of (f ,m) and for

every pullback (k′, l ◦ c) of any (f ′,m) there exists a unique d such that

G

G

L

L

K

K′

D

D′

=

=
c

d

l

m

m

f

f ′

kl ◦c

k′

T. Boy de la Tour 31

commutes.

A direct SqPO-transformation in C is a diagram

L K R

G D H

l r

f g

m k n

such that (f ,k) is a final pullback complement of (m, l) and the right square is a pushout.

Proposition 6.6. For every direct SqPO-transformations δ , δ ′ with corresponding SqPO-rules ρ , ρ ′,

every σ : ρ→ ρ ′ in RSqPO such that m = m′ ◦σ1, there exists a unique C -morphism d such that

G

G′

L

L′

K

K′

D

D′

=

σ1
σ2

d

l

m

m′

f

f ′

kl′

k′

commutes.

Here the existence of d means not only that ρ ′ removes at least as much as its subrule ρ , but also

that it makes at least as many copies of the items of G. Note that when, among two simultaneous

transformations, one makes p copies of an item and the other makes q copies of the same item, the global

context must contain pq copies of this item, unless there is a subsumption morphism between them. In

such a case all the copies made by the subsumed transformation are simply merged with those made by

the subsuming one (as witnessed by Proposition 5.12). Hence the necessary symmetry between the first

and last steps of the Global Coherent Transformation.

It is then easy to define the category DSqPO of direct SqPO-transformations, the category DSqPOm

of direct SqPO-transformations with monic matches and faithful functors RSqPO : DSqPO →RSqPO and

RSqPOm : DSqPOm→RSqPOm, as in Definition 3.8. We leave this to the reader.

Proposition 6.7. In the category of graphs RSqPOm is right-full.

Another notion of subrule in the Sesqui-Pushout approach can be found in [14, Definition 8], where a

rule ρ ′ is defined as a (σ1,σ3)-extension of ρ if two conditions are met. The first is that σ3 ◦ρ = ρ ′ ◦σ1,

where σ1 stands for the span L
1L←− L

σ1−→ L′ (and similarly for σ3) and ◦ is the standard composition of

spans (using pullbacks, see [14, Definition 3]). The products σ3 ◦ρ , ρ ′ ◦σ1 yield

L K R′

K R

R

l

1K

σ3

r

r 1R

L K R′

L K′

L′

1L r′

σ2

σ1 l′

32 Subsumptions of Algebraic Rewrite Rules

hence the equality between these two bottom spans is equivalent to the existence of (σ1,σ2,σ3) : ρ→ ρ ′,

i.e. that the left square in Definition 6.5 is a pullback and the right square commutes. This means that

any extension of a rule according to [14, Definition 8] subsumes this rule according to Definition 6.5.

The converse is false since the extension requires a second condition, namely that (σ1, l) has a final

pullback complement. This ensures that the extension can be decomposed as a product of two spans [14,

Proposition 9], but this is relevant to sequential rewriting and not to the present notion of subsumption.

6.3 Pullback-Pushouts

We next consider the case of PBPO-rules [4], that also enables copies of parts of G but with better control

of the way they are linked together and to the rest of G. The drawback is that matchings of the left-hand

side of a rule into G should be completed with a co-match from G to a given “type” of the left-hand side.

Definition 6.8 (category DPBPO, direct PBPO-transformations). A PBPO-rule ρ in C is a commuting

diagram

L K R

TL TK TR

l r

u v

tL tK tR

A morphism σ : ρ → ρ ′ is a 5-tuple (σ1,σ2,σ3,σ4,σ5) of C -morphisms such that

L K R

TL TK

l r

u

tL tK

L′ K′ R′

TL′ TK′

l′ r′

u′

tL′
tK ′

σ1 σ2 σ3

σ4 σ5

commutes. Let DPBPO be the category of PBPO-rules on C and their morphisms, with obvious compo-

sition and identities.

A direct PBPO-transformation in C is a commuting diagram

L K R

G D H

TL TK TR

m k n

f g

tG tD tH

l r

u v

tL tK tR

with lower left pullback and upper right pushout.

To every direct PBPO-transformation obviously corresponds a PBPO-rule and a partial transforma-

tion.

T. Boy de la Tour 33

Proposition 6.9. For every direct PBPO-transformations δ , δ ′ with corresponding PBPO-rules ρ , ρ ′,

every σ : ρ → ρ ′ in DPBPO such that m = m′ ◦σ1 and tG = σ4 ◦ tG′ , there exists a unique C -morphism d

such that

L K

G D

TL TK

l

u

f

m
k

tG tD

L′ K′

G′ D′

TL′ TK′

f ′

l′

u′

m′

tG′

k′

tD′

σ1 σ2

σ4 σ5

= d

commutes.

We leave it to the reader to define a Rewriting Environment for PBPO-rules and transformations,

with a right-full faithful functor RPBPO : DPBPO→RPBPO (provided C has pushouts and pullbacks).

7 Conclusion and Future Work

Global Coherent Transformations are built from partial transformations in a way pertaining both to Par-

allel Coherent Transformations [2], by the use of limits on local contexts, and to Global Transformations

[16] by applying categories of rules. The partial transformations involved in a Global Coherent Transfor-

mation are extracted from a Rewriting Environment that provide a category of rules and a corresponding

category of direct transformations. Their morphisms can be understood as subsumptions due to Prop-

erty 5.12, i.e., that any subsumed transformation as defined by a morphism removes or adds nothing

more than the subsuming transformation. This is valid even when rules are able to make multiple copies

of parts of the input.

We have provided Rewriting Environments for the most common approaches to algebraic rewriting,

except the Single Pushout [13], which will be done in a future paper (where we will see that the interface

and right-hand side provided in a partial transformation are not necessarily those of the applied rule). We

also intend to show that Global Transformations can be obtained as Global Coherent Transformations in

a suitable environment (except when ∆ is empty). Expressiveness of Global Coherent Transformations

should be investigated further, and possibly enhanced.

The notion of Rewriting Environment is as simple as required to define Global Coherent Transfor-

mations, but does not guarantee some properties that the user might reasonably expect. In particular it

does not prevent the categories R and D from being discrete. Of course this is correct if no subsumption

is possible, but is there a way to characterize such properties? It may also seem strange that, through Cpt,

rules are not assumed to have left-hand sides and direct transformations are not assumed to use match-

ings. Thus we may need to enhance Rewriting Environments with a notion of matching in order to better

understand their structure. We also need to further analyze the properties of the Rewriting Environments

in Section 6: when C is an adhesive category it is an open question whether RDPOm is right-full.

Acknowledgements We thank Rachid Echahed for helpful discussions and an anonymous reviewer in

particular for suggesting the generalization of Proposition 5.12.

34 Subsumptions of Algebraic Rewrite Rules

References

[1] T. Boy de la Tour & R. Echahed (2020): Parallel Rewriting of Attributed Graphs. Theoretical Computer

Science 848, pp. 106–132, doi:10.1016/j.tcs.2020.09.025.

[2] T. Boy de la Tour & R. Echahed (2021): Parallel Coherent Graph Transformations. In: Recent Trends in

Algebraic Development Techniques, 25th International Workshop, WADT 2020, Revised Selected Papers,

LNCS 12669, Springer, pp. 75–97, doi:10.1007/978-3-030-73785-6 5.

[3] Thierry Boy de la Tour (2023): Algebraic Monograph Transformations, doi:10.48550/ARXIV.2303.01137.

[4] Andrea Corradini, Dominique Duval, Rachid Echahed, Frédéric Prost & Leila Ribeiro (2019):

The PBPO graph transformation approach. J. Log. Algebr. Meth. Program. 103, pp. 213–231,

doi:10.1016/j.jlamp.2018.12.003.

[5] Andrea Corradini, Tobias Heindel, Frank Hermann & Barbara König (2006): Sesqui-Pushout Rewriting. In:

ICGT 2006, LNCS 4178, Springer, pp. 30–45, doi:10.1007/11841883 4.

[6] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel & Michael Löwe (1997):

Algebraic Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout Approach.

In Grzegorz Rozenberg, editor: Handbook of Graph Grammars and Computing by Graph Transformations,

Volume 1: Foundations, World Scientific, pp. 163–246, doi:10.1142/9789812384720 0003.

[7] Hartmut Ehrig (1979): Introduction to the algebraic theory of graph grammars (a survey). In Volker Claus,

Hartmut Ehrig & Grzegorz Rozenberg, editors: Graph-Grammars and Their Application to Computer Science

and Biology, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–69, doi:10.1007/BFb0025714.

[8] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006): Fundamentals of Algebraic

Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series, Springer,

doi:10.1007/3-540-31188-2.

[9] Alexandre Fernandez, Luidnel Maignan & Antoine Spicher (2021): Cellular Automata and Kan Exten-

sions. In Alonso Castillo-Ramirez, Pierre Guillon & Kévin Perrot, editors: 27th IFIP WG 1.5 International

Workshop on Cellular Automata and Discrete Complex Systems, AUTOMATA 2021, OASIcs 90, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, pp. 7:1–7:12, doi:10.4230/OASIcs.AUTOMATA.2021.7.

[10] Alexandre Fernandez, Luidnel Maignan & Antoine Spicher (2022): Non-Determinism in Lindenmayer Sys-

tems and Global Transformations. In Stefan Szeider, Robert Ganian & Alexandra Silva, editors: 47th Inter-

national Symposium on Mathematical Foundations of Computer Science, MFCS 2022, LIPIcs 241, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, pp. 49:1–49:13, doi:10.4230/LIPIcs.MFCS.2022.49.

[11] Stephen Lack & Pawel Sobocinski (2005): Adhesive and quasiadhesive categories. Informatique Théorique

et Applications 39(3), pp. 511–545, doi:10.1051/ita:2005028.

[12] F. W. Lawvere (1963): Functorial Semantics of Algebraic Theories. Ph.D.

thesis, Columbia University, doi:10.1073/pnas.50.5.869. Available at

http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html.

[13] Michael Löwe (1993): Algebraic Approach to Single-Pushout Graph Transformation. Theoretical Computer

Science 109, pp. 181–224, doi:10.1016/0304-3975(93)90068-5.

[14] Michael Löwe (2015): Polymorphic Sesqui-Pushout Graph Rewriting. In Francesco Parisi-Presicce & Bern-

hard Westfechtel, editors: Graph Transformation - 8th International Conference, ICGT 2015, Lecture Notes

in Computer Science 9151, Springer, pp. 3–18, doi:10.1007/978-3-319-21145-9 1.

[15] Saunders Mac Lane (1997): Categories for the Working Mathematician, 2nd edition. Graduate Texts in

Mathematics 5, Springer-Verlag, New York, doi:10.1007/978-1-4757-4721-8. (1st ed., 1971).

[16] Luidnel Maignan & Antoine Spicher (2015): Global Graph Transformations. In Detlef Plump, editor: Pro-

ceedings of the 6th International Workshop on Graph Computation Models, CEUR Workshop Proceedings

1403, CEUR-WS.org, pp. 34–49. Available at http://ceur-ws.org/Vol-1403/paper4.pdf.

[17] Peter Selinger (1997): Functionality, Polymorphism, and Concurrency: a Mathematical Investigation of

Programming Paradigms. Ph.D. thesis, University of Pennsylvania. Technical Report No. IRCS-97-17.

https://doi.org/10.1016/j.tcs.2020.09.025
https://doi.org/10.1007/978-3-030-73785-6_5
https://doi.org/10.48550/ARXIV.2303.01137
https://doi.org/10.1016/j.jlamp.2018.12.003
https://doi.org/10.1007/11841883_4
https://doi.org/10.1142/9789812384720_0003
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.7
https://doi.org/10.4230/LIPIcs.MFCS.2022.49
https://doi.org/10.1051/ita:2005028
https://doi.org/10.1073/pnas.50.5.869
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
https://doi.org/10.1016/0304-3975(93)90068-5
https://doi.org/10.1007/978-3-319-21145-9_1
https://doi.org/10.1007/978-1-4757-4721-8
http://ceur-ws.org/Vol-1403/paper4.pdf

T. Boy de la Tour 35

Appendix: Proofs

Proof of Proposition 3.5. If σ : ρ→ ρ ′ in RDPO such that σ1 is monic and m′ : L′→G satisfies the gluing

condition for ρ ′ then so does m′ ◦σ1 : L→ G for ρ .

We use the fact that the pullback K of l′, σ1 is isomorphic to en equalizer in L×K′.

(GC1) Let x be an item in L such that m′ ◦σ1(x) is marked for removal for ρ , hence such that x has no

preimage by l, and let x′ in L such that m′ ◦σ1(x) = m′ ◦σ1(x
′). If σ1(x) had a preimage y by l′ then

x and y would have a common preimage in the pullback K, a contradiction. Hence σ1(x) has no

preimage by l′ so that m′(σ1(x)) is marked for removal by m′, hence σ1(x) = σ1(x
′) by the (GC1)

for m′, ρ ′, hence x = x′.

(GC2) Let v be a vertex of L that has no preimage by l and is adjacent to an edge e in L, then as above

σ1(v) has no preimage by l′. If e had a preimage e′ by l then l′ ◦σ2(e
′) = σ1 ◦ l(e′) = σ1(e), i.e.,

σ1(e) would have a preimage by l′ in contradiction with (GC2) for m′, ρ ′. Hence m′ ◦σ1(e) is

marked for removal by m′ ◦σ1 for ρ ′.

Proof of Proposition 3.7. If σ : ρ→ ρ ′ in RDPO, m′ : L′→ G and m′ ◦σ1 : L→G have pushout comple-

ments as below, then there is a unique d such that

G

G

L

L′

K

K′

D

D′

=

σ1
σ2

d

l

m′

f

f ′

kl′

k′

commutes.

The front and back faces are pushouts. For all item x in D′, f ′(x) is not marked for removal by m′

and we show that is also the case by m′ ◦σ1. Suppose otherwise, then f ′(x) has a preimage y by m′ ◦σ1

that has no preimage by l. However, σ1(y) has a preimage y′ by l′, and since the top face is a pullback

there should be a common preimage of y and y′ in K, a contradiction. Thus we let d(x) be the unique

preimage of f ′(x) by f , so that d is unique such that f ◦d = f ′. We easily see that f ◦ k = f ◦d ◦ k′ ◦σ2

hence the right face of the cube commutes.

Proof of Proposition 5.7. For every µ : δ → δ ′ in ∆ there exists a unique hµ such that

C∆

Hδ

Hδ ′

Rδ

Rδ ′

hδ

hδ ′

nδ

nδ ′

π3µhµ

commutes.

Since γ∆ ◦ cδ = γδ = γδ ′ ◦π2µ = γ∆ ◦ cδ ′ ◦π2µ then by the unicity of cδ the left face of the following

cube commutes.

36 Subsumptions of Algebraic Rewrite Rules

C∆

C∆

Kδ

Kδ ′

Rδ

Rδ ′

Hδ

Hδ ′

=

π2µ
π3µ

hµ

rδ

cδ

cδ ′

hδ

hδ ′

nδrδ ′

nδ ′

Since the top and front faces also commute then nδ ′ ◦π3µ ◦ rδ = hδ ′ ◦ cδ , and since the back face is a

pushout we get the result.

Proof of Proposition 5.12. If ∆′ is restricted to δ ′ and δ ′ is terminal in ∆ then ∆ and ∆′ are globally

coherent and H∆ ≃ H∆′ .

For any δ ∈ ∆ let δ ! be the unique morphism δ ! : δ → δ ′. Since (π1δ !, π2δ !, π3δ !) : PIGIS δ →
PIGIS δ ′ is a morphism in Cpt, then fδ ◦π1δ ! = fδ ′ and hence π1δ ! : fδ ′ → fδ is a morphism in C \G.

Since δ ′ is initial in ∆op there is a unique cone γ∆ from P
←
∆ δ ′ = fδ ′ to P

←
∆ (defined by γ∆δ = π1δ ! for

all δ ∈ ∆) and any cone γ from any f ∈ C \G to P
←
∆ can be written γ = γ∆ ◦ γδ ′, hence γ∆ is a limit cone

of P←∆ (see [15, Exercise III.4.3]), so that f∆ ≃ fδ ′ and C∆ ≃Dδ ′ .

Let γδ = γ∆ ◦ kδ ′ ◦π2δ ! (where π2δ ! : fδ ◦ kδ → fδ ′ ◦ kδ ′ and kδ ′ : fδ ′ ◦ kδ ′ → fδ ′ are morphisms in

C \G as above), this is a cone from fδ ◦kδ to P
←
∆ such that γδ δ = π1δ ! ◦kδ ′ ◦π2δ ! = kδ . Besides, for

every µ : δ1→ δ2 we have γδ1
= γδ2

◦π2µ since δ2! ◦ µ = δ1!. Hence (γδ)δ∈∆ is a coherent system of

cones for ∆, which is therefore globally coherent.

Since δ ′ is terminal in ∆ there is as above a colimit cone from P
→
∆ to P

→
∆ δ ′ = hδ ′ : C∆→ Hδ ′ , hence

H∆ ≃Hδ ′ (the pushout of rδ ′ and cδ ′ = kδ ′ ◦π2δ ′! = kδ ′). We finally note that δ ′ is terminal in ∆′.

Proof of Lemma 6.2. IG is a full and right-full embedding.

The functor G : 1→|C | is a full embedding hence so is IG. For all δ ′ ∈D |G, δ ∈D and µ : δ → IGδ ′

we have InPδ = IGInPδ ′ = G hence InPµ = 1G. Since G and 1G also have preimages by functor G there

must be preimages δ ′1 ∈D |G and µ1 : δ ′1→ δ ′ in D |G such that IGµ1 = µ , hence IG is right-full.

Proof of Proposition 6.3. If R is right-full (resp. faithful) then so is R|SG .

For all δ ′ ∈D |SG , ρ ∈S and σ : ρ→ ρ ′, where ρ ′=R|SG δ ′, we have Iρ ′=RIGIS δ ′ and Iσ : Iρ→ Iρ ′

in R, and since by Lemma 6.2 R◦ IG is right-full then there exists δ ′1 ∈D |G and µ1 : δ ′1→ IS δ ′ such that

RIGµ1 = Iσ . Thus Iρ and Iσ have preimages by I and R◦ IG, hence they must have preimages δ ∈D |SG
and µ : δ → δ ′ such that IGµ = µ1 and R|SG µ = σ .

If R is faithful, since IG is faithful then so is R◦ IG, and hence so is R|SG .

Proof of Proposition 6.4. If C is adhesive, δ ,δ ′ ∈DDPO and σ : RDPOδ → RDPOδ ′ such that m = m′ ◦σ1

then there exists a unique µ : δ → δ ′ such that RDPOµ = σ .

Let G = InPδ = InPδ ′, we consider the following diagram

T. Boy de la Tour 37

G

G

L

L′

K

K′

D

D′ P

=

σ1
σ2

l

m

m′

f

f ′

kl′

k′

x

y

z

where the bottom face is a pullback. By [11, Lemma 4.2] monics are stable under pushouts hence f and

f ′ are monics and therefore also x and y. By the commuting properties we have f ◦k = f ′ ◦k′ ◦σ2, hence

there exists a unique z such that y◦ z = k and x◦ z = k′ ◦σ2.

The front face is a pushout along the monic l, hence it is a pullback [11, Lemma 4.3], as is the top

face, hence by composition the square formed by l, m, f ′, k′ ◦σ2 is also a pullback.

The back face is a pushout along the monic l, hence it is a VK-square and bottom face of the com-

muting cube below

K

L

K

K

P

D′

D

G

l

1
x

f

z

1

l

k

m

yk′ ◦σ2

f ′

Its front and right faces are pullbacks. Since l is monic then its left face is a pullback, and since y is monic

its back face is also a pullback. Hence its top face is a pushout, and since isomorphisms are preserved by

pushouts, x is an isomorphism.

Let d = y ◦ x−1, we see that f ◦ d = f ′ and d ◦ k′ ◦σ2 = y ◦ z = k, so that µ = (σ1,σ2,σ3,d) is a

morphism from δ to δ ′ in DDPO such that RDPOµ = σ . Its unicity is obvious.

Proof of Proposition 6.6. For every direct SqPO-transformations δ , δ ′ with corresponding SqPO-rules

ρ , ρ ′, every σ : ρ → ρ ′ in RSqPO such that m = m′ ◦σ1, there exists a unique d such that

G

G′

L

L′

K

K′

D

D′

=

σ1
σ2

d

l

m

m′

f

f ′

kl′

k′

commutes.

By composition of pullbacks (k′ ◦σ2, l) is a pullback of (f ′,m), and since (f ,k) is a final pullback

complement of (m, l) then there is a unique d : D′→ D such that f ′ = f ◦d and k = d ◦ k′ ◦σ2.

38 Subsumptions of Algebraic Rewrite Rules

Proof of Proposition 6.7. In the category of graphs RSqPOm is right-full.

For all δ ′ ∈DSqPOm and σ : ρ→ RSqPOmδ ′ in RSqPOm, the matching m′ ◦σ1 : L→ G is monic hence

by [5, Construction 6] (m′ ◦σ1, l) has a final pullback complement, hence there is a δ ∈ DSqPOm with

m = m′ ◦σ1 and RSqPOmδ = ρ , and by Proposition 6.6 there is a (unique) µ : δ → δ ′ in DSqPOm such that

RSqPOmµ = σ .

Proof of Proposition 6.9. For every direct PBPO-transformations δ , δ ′ with corresponding PBPO-rules

ρ , ρ ′, every σ : ρ → ρ ′ in DPBPO such that m = m′ ◦σ1 and tG = σ4 ◦ tG′ , there exists a unique d such

that

L K

G D

TL TK

l

u

f

m
k

tG tD

L′ K′

G′ D′

TL′ TK′

f ′

l′

u′

m′

tG′

k′

tD′

σ1 σ2

σ4 σ5

= d

commutes.

By hypothesis the two front, back, left faces commute, as well as the top and bottom faces. Thus

u◦σ5 ◦ tD′ = σ4 ◦u′ ◦ tD′ = σ4 ◦ tG′ ◦ f ′ = tG ◦ f ′,

and since D is a pullback then there exists a unique d such that the right and top face of the bottom cube

commute. This also means that (D, f , tD) is a mono-source, and since

{

f ◦d ◦ k′ ◦σ2 = f ′ ◦ k′ ◦σ2 = m′ ◦ l′ ◦σ2 = m′ ◦σ1 ◦ l = m◦ l = f ◦ k

tD ◦d ◦ k′ ◦σ2 = σ5 ◦ tD′ ◦ k′ ◦σ2 = σ5 ◦ tK′ ◦σ2 = tK = tD ◦ k

then d ◦ k′ ◦σ2 = k.

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 39–53, doi:10.4204/EPTCS.397.3

© Braithwaite and Román
This work is licensed under the
Creative Commons Attribution License.

Collages of String Diagrams

Dylan Braithwaite
University of Strathclyde

dylan.braithwaite@strath.ac.uk

Mario Román
Tallinn University of Technology

mroman@ttu.ee

We introduce collages of string diagrams as a diagrammatic syntax for gluing multiple monoidal
categories. Collages of string diagrams are interpreted as pointed bimodular profunctors. As the main
examples of this technique, we introduce string diagrams for bimodular categories, string diagrams
for functor boxes, and string diagrams for internal diagrams.

1 Introduction

String diagrams are a convenient and intuitive, sound and complete syntax for monoidal categories [26].
Monoidal categories are algebras of processes composing in parallel and sequentially [30]; string dia-
grams formalize the process diagrams of engineering [5, 7]. Formalization is not only of conceptual
interest: it means we can sharpen our reasoning, scale our diagrams, or explain them to a computer [37].

However, the formal syntax of monoidal categories is not enough for all applications and, sometimes,
we need to extend it. Functor boxes allow us to reason about translations between theories of processes
[13, 32], ownership [34], higher-order processes [1], or programming effects [38]. Quantum combs
not only model some classes of supermaps [10, 14, 21], but they coincide with the monoidal lenses of
functional programming [4, 11, 45] and compositional game theory [20, 6]. Premonoidal categories,
which appear in Moggi’s semantics of programming effects [33, 27, 46], are now within the realm of
string diagrammatic reasoning [42]. Internal diagrams extend the syntax of monoidal categories allowing
us to draw diagrams inside tubular cobordisms and reason about topological quantum field theories [3],
but also coends [41] and traces [24].

Figure 1: Examples from the literature. From left to right: functor boxes [32], premonoidal categories
[42], internal diagrams [3], and combs or optics [10, 11, 21].

The extensions showcase the expressive power of string diagrams on surprisingly diverse application
domains. At the same time, these different ideas could be regarded as separate ad-hoc extensions: they
belong to different fields; they use different categorical formalisms. The overhead of learning and com-
bining each one of them prevents the exchange of ideas between the different domains of application:
e.g. an idea about topological quantum field diagrams does not transfer to premonoidal diagrams.

http://dx.doi.org/10.4204/EPTCS.397.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

40 Collages of String Diagrams

Collages. This manuscript claims that this division is only apparent and that all these extensions are
particular instances of the same encompassing idea: that of glueing multiple string diagrams into what
we call a collage of string diagrams. We introduce a formal notion of collage (Section 4.4) and employ
string diagrammatic syntaxes for them, based on the calculus of bicategories (Sections 2.1, 3.1 and 5).

Even though collages of string diagrams are our novel contribution, collages are not yet another new
concept to category theory. “Collage” was Bob Walters’ term for a lax colimit in a module-like category
[47]. This can be considered as a glueing of objects together along the action of a scalar. For example,
given two sets A and B, with an action of a monoid M, we can construct their tensor product A⊗M B,
where (a ·m)⊗b = a⊗ (m ·b) for any scalar m ∈M. Categorifying this idea in a possible direction we
obtain monoidal categories acting on bimodular categories. The following is the takeaway of this work.

Collages of string diagrams consist of multiple string diagrams of different monoidal categories glued
together. Collages can be interpreted as pointed bimodular profunctors between bimodular categories.

A bimodular category, sometimes referred to as a biactegory [9], is to a bimodule what a monoidal
category is to a monoid. This is, a plain category A endowed with a left action of a monoidal category
(.) : M×A→ A and a right action of another, possibly different, monoidal category (/) : A×N→ A. We
can collage two bimodular categories along a common monoidal category that acts on both. Later on
the paper, exploiting a second axis of categorification, we pass from bimodular categories to bimodular
profunctors, which are a kind of 2-dimensional bimodule, and we define their collage. This structure
facilitates glueing categories together in 2-dimensions: we can represent complexes of morphisms from
different categories and glue them together. Collages of string diagrams are the syntactic representations
of this glueing, in the same sense that ordinary string diagrams represent tensors in monoidal categories.

We observe that collages of bimodular categories embed into a tricategory of pointed bimodules.
This provides a versatile setting where we can interpret many syntaxes already present in the literature.

Contributions. We introduce string diagrams of bimodular categories and we prove they construct the
free bimodular category on a signature (Theorem 2.6). We introduce novel string diagrammatic syntax
for functor boxes and we prove it constructs the free lax monoidal functor on a suitable signature (Theo-
rem 3.4). We describe the tricategory of pointed bimodular profunctors (Definition 4.6) and, in terms of
it, we explain the semantics of functor boxes (Proposition 4.9) and internal diagrams (Theorem 5.3), for
which we also provide a novel explicit formal syntax (Definition 5.2).

2 String Diagrams of Bimodular Categories

We introduce string diagrams for bimodular categories in terms of the better-known string diagrams of
bicategories. In algebra, a bimodule is a structure with a compatible left and right action. Bimodular
categories are to bimodules what monoidal categories are to monoids. Explicitly this means a category,
C, acted on by two monoidal categories, M and N [48]. Bimodular categories have also been known as
“biactegories” [9, 31], while the name “bimodule category” typically refers to actions of certain vector
enriched categories [17]. For our purposes, we consider a bimodular category C, as gluing together the
two acting categories, M and N.

To simplify the presentation, we limit ourselves to considering only strict structure, but we expect
that all of the results considered hold analogously in the weaker setting. In the following, we assume all
monoidal, bimodular, and 2-categories to be strict, along with the associated functors between them.

Braithwaite and Román 41

Definition 2.1. A bimodular category (C,M,N) is a category C endowed with a left monoidal action
(.) : M×C→C, and a right monoidal action (/) : C×N→C, which are compatible in that M.(X /N) =
(M .X)/N.

Bimodular categories over arbitrary monoidal categories form a category, Bimod. The morphisms
(F,H,K) : (C,M,N)→ (D,P,Q) consist of two monoidal functors H : M→ P and K : N→ Q and a
functor F : C→ D that strictly preserves monoidal actions according to H and K.

Every monoidal category (C,⊗, I) is a (C,C)-bimodular category with its own tensor product defin-
ing the two actions.

2.1 Signature of a Bimodular Category

The next sections exhibit a sound and complete string diagram syntax for bimodular categories. Bimod-
ular string diagrams consist of two monoidal regions glued by a bimodular wire. We begin by defining
a notion of bimodular signature and then construct an adjunction (Theorem 2.7) using the notion of
collages.

Definition 2.2. A bimodular graph (A ,M ,N) (the bimodular analogue of a multigraph [43]) is given
by three sets of objects (Aob j,Mob j,Nob j) and three different types of edges:

• the left-acting edges, a set M (~M;~P) for each pair of lists of objects ~M,~P ∈M ∗
ob j,

• the right-acting edges, a set N (~N;~Q) for ~N, ~Q ∈N ∗
ob j;

• the central edges, a set of edges A (~M,A,~N ; ~P,B, ~Q), for each ~M, ~P ∈M ∗
ob j; each ~N, ~Q ∈N ∗

ob j
and each A, B ∈Aob j.

Figure 2: Left, right, and central edges of a bimodular graph.

Proposition 2.3. Bimodular graphs form a category bmGraph. We define a morphism of bimodular
graphs (l, f ,g) : (A ,M ,N)→ (A ′,M ′,N ′) to be a triple of functions on objects, (lob j, fob j,gob j),
that extend to the morphism sets. There exists a forgetful functor U : Bimod→ bmGraph.

This provides a syntactic presentation of bimodular categories. We would like to additionally, con-
struct a free model from a syntactic presentation. We make use of the well-known similar result for
2-categories, exhibiting bimodular categories as certain bicategories: explicitly, those which are the col-
lage of a bimodular category.

2.2 The Collage of a Bimodular Category

Each profunctor induces a collage category; analogously a bimodular category induces a collage 2-
category. This section proves that constructing the collage of a bimodular category is left adjoint to
considering the bimodular hom-category between any two cells of a 2-category.

42 Collages of String Diagrams

Definition 2.4. The collage of an (M,N)-bimodular category C is a 2-category, CollC. This 2-category
has two 0-cells, M and N. The hom-categories are given by CollC(M,M) = M, CollC(N,N) = N, and
CollC(M,N) = C; and finally CollC(N,M) is the empty category. The composition of 1-cells is given by
the monoidal products and actions.

Definition 2.5. The category of bipointed 2-categories, 2Cat2, has as objects (A,M,N), 2-categories A
with two chosen 0-cells on it, M ∈ A and N ∈ A. A morphism of 2Cat2 is a 2-functor preserving the
chosen 0-cells.

Theorem 2.6. There exists an adjunction CollC : Bimod � 2Cat2 : Chosen given by the collage, and by
picking the hom-category between the chosen 0-cells. Moreover, the unit of this adjunction is a natural
isomorphism.

2.3 String Diagrams of Bimodular Categories, via Collages

We have the two ingredients for bimodular string diagrams: sound complete string diagrams for 2-
categories, and an embedding of bimodular categories into 2-categories by taking the collage. We com-
bine results to provide an adjunction from bimodular graphs to bimodular categories.

2Graph 2Graph2 bmGraph

2Cat 2Cat2 Bimod

Str U Str2 U2

u

i

Chosen

Coll

bmStr Ua a a
a

a

Figure 3: Summary of adjunctions for the string diagrams of bimodular categories.

Theorem 2.7. There exists an adjunction between bimodular graphs and bimodular categories. The
left adjoint finds the bimodular category whose collage is the free 2-category on the bimodular graph,
bmStr : bmGraph→ Bimod. The right adjoint is the forgetful functor U : Bimod→ bmGraph.

This result provides a basis for a graphical syntax for bimodular categories. We now sketch an
example of how these string diagrams can be of interest, but a larger class of examples come from
premonoidal and effectful categories [42].

2.4 Example: Shared State

In the same way that premonoidal categories are particularly well-suited to describe stateful computa-
tions, bimodular categories are particularly well-suited to describe shared state between two processes.
These processes can be different and even live in different categories. As an example, consider the gen-
erators in Figure 4. They represent two different process theories that access a common state with get
and put operations.

Figure 4: Signature generators for the bimodular theory of shared state.

Braithwaite and Román 43

In the same way that monoidal categories are a good setting for defining monoids and comonoids,
bimodular categories are a good setting for defining bimodules. To capture interacting shared state,
the generators of Figure 4 are quotiented by the equations of a pair of semifrobenius modules with
compatible comonoid actions and semimonoid actions.

Figure 5: Race condition in bimodular string diagrams.

This setup is enough to exhibit one of the most salient features of shared state: race conditions.
Race conditions were first studied by Huffman in 1954, who used diagrams to show how the behavior
of a shared state is dependent on the relative timing of the actions of the parties [25]. We employ string
diagrams of bimodular categories to show how two different timings of the actions – the leftmost and
rightmost sides of the equation in Figure 5 – result in two different executions: even when the two
get statements are compatible (i), the two put statements interact causing the earlier of the two to be
discarded (ii, iii, iv); this causes the discrepancy with the intended protocol (v).

Figure 6: Binary semaphore in bimodular string diagrams.

Race conditions have a commonly accepted workaround: the binary semaphore [44]. Dijkstra de-
scribed general semaphores with the aid of flow diagrams [16]; we instead use bimodular categories
to model a binary semaphore (Figure 6). We consider a signature with two object generators, free and
locked, for our bimodular category. Each operation must suitably lock or unlock the semaphore, render-
ing race conditions ill-typed, and leaving most of the interaction equations of the theory of shared state
unnecessary.

String diagrams of bimodular categories model a pair of interacting monoidal categories. We can also
model an arbitrary number of interacting monoidal categories via a general collage construction.These
collages can be subsumed into a ‘universe of collages’ that we describe in Section 4: the tricategory
of pointed bimodular profunctors. To motivate this, we study a second example: the syntax of functor
boxes.

3 String Diagrams of Functor Boxes

Functor boxes are an extension of the string diagrammatic notation that represents plain functors, lax,
oplax and strong monoidal functors. Functor boxes were introduced by Cockett and Seely [13] and later
studied by Melliès [32]. We introduce here a syntactic presentation of (op)lax functor boxes that has the

44 Collages of String Diagrams

advantage of treating each piece of the box as a separate entity in a 2-category and applying the string
diagrammatic calculus of 2-categories.

3.1 Functor box signatures

Definition 3.1. A functor box signature F = (A ,X ,F•,F •) consists of a pair of sets, Aob j and Xob j,
and four different types of edges:

• the plain edges, A (A0, . . . ,An;B0, . . . ,Bm) for any objects A0, . . . ,An,B0, . . . ,Bm ∈Aob j;
• the functor box edges, X (X0, ...,Xn;Y 0, ...,Ym) for any objects X0, . . . ,Xn,Y0, . . . ,Ym ∈Xob j;
• the in-box edges, F•(A0, ...,An;Y 0, ...,Ym) for any A0, ...,An ∈Aob j and Y 0, ...,Ym ∈Xob j

• the out-box edges, F •(X0, ...,Xn;B0, ...,Bm) for any B0, ...,Bm ∈Aob j and X0, ...,Xn ∈Xob j.

A functor box signature morphism (h,k, l) : (A ,X ,F)→ (B,Y ,G) is a pair of functions between the
object sets, hob j : Aob j→Bob j and kob j : Xob j→ Yob j, that extend to a function between the edge sets;

• h : A (A0, ...,An;B0, ...,Bm)→B(h(A0), ...,h(An);h(B0), ...,h(Bm));

• k : X (X0, ...,Xn;Y 0, ...,Ym)→ Y (k(X0), ...,k(Xn);k(Y 0), ...,k(Ym));

• l• : F•(A0, ...,An;Y 0, ...,Ym)→ G•(h(A0), ...,h(An);k(Y 0), ...,k(Ym));

• l• : F •(X0, ...,Xn;B0, ...,Bm)→ G •(k(X0), ...,k(Xn);h(B0), ...,h(Bm)).

Functor box signatures and homomorphisms form a category, Fbox.

Figure 7: Syntactic 2-category of a lax monoidal functor box signature.

Definition 3.2. The syntactic 2-category of a functor box signature F = (A ,X ,F•,F •) is the 2-
category freely presented by Figure 7, which we call SA ,X ,F .

In other words, the 2-category SA ,X ,F contains exactly two 0-cells, labelled A and X ; it contains
a 1-cell A : A → A for each A ∈ Aob j, a 1-cell X : X →X for each X ∈Xob j and, moreover, a pair
of adjoint 1-cells F↑ : A →X and F↓ : X → A . Finally, it contains a pair of 2-cells witnessing the
adjunction F↑ a F↓, given by n : id→ F↑ # F↓ and e : F↓ # F↑→ id which additionally satisfy the snake
equations; and it also contains

• a 2-cell, f ∈ S(A ,A)(A0 # . . . #An; B0 # . . . #Bm), for each plain edge;

• a 2-cell, g ∈ S(X ,X)(X0 # ... #Xn; Y 0 # ... #Ym), for each functor box edge;

• a 2-cell, u ∈ S(A ,A)(A0 # ... #An; F↑ #Y 0 # ... #Ym #F↓) for each in-box edge; and

• a 2-cell, v ∈ S(A ,A)(F↑ #X0 # ... #Xn #F↓; B0 # . . . #Bm) for each out-box edge.

Braithwaite and Román 45

3.2 Lax Monoidal Functor Semantics

Definition 3.3 (Lax functors category). An object of the lax functors category, Lax, is a pair of mo-
noidal categories (A,X) together with a lax monoidal functor between them, (F,ε,µ); that is, a func-
tor F : X→ A endowed with two natural transformations ε : I → FI, and µ : FX ⊗FY → F(X ⊗Y),
satisfying associativity (µ ⊗ id) # µ = (id ⊗ µ) # µ , left unitality (ε ⊗ id) # µ = id and right unitality
(id⊗ ε) # µ = id.

A morphism of the lax functors category, from (A,X,F,εF ,µF) to (B,Y,G,εG,µG) is a pair of monoi-
dal functors H : X→ A and K : A→B such that F #K = H #G and such that K(εF) = εG and K(µF) = µG.

Theorem 3.4. There exists an adjunction between the category of functor box signatures, Fbox, and the
category of pairs of monoidal categories with a lax monoidal functor between them, Lax. The free side
of this adjunction is given by the syntax of Figure 7.

Collages, by themselves, explained the 2-region diagrams of bimodular categories; collages will also
explain the two-region diagrams of functor boxes in Section 4.5. However, as currently defined, collages
are only sufficient to encode the vertical boundaries. To additionally represent boundaries along the
horizontal axis we can make use of profunctors between bimodular categories and extend our notion of
collage to these structures. Following this thread we find that collages embed into a tricategory of pointed
bimodular profunctors, described in the next section, which we consider a universe of interpretation for
all of the graphical theories described.

4 Bimodular Profunctors

Where can we interpret all these string diagrams and provide compositional semantics for them? In this
section, we introduce a single structure where all the previous calculi take semantics.

We will need two different ingredients: coends and bimodularity. Coends and profunctors [29, 30],
far from being obscure concepts from category theory, can be seen as the right tool to glue together
morphisms from different categories [15, 41]; we follow an explicitly pointed version of coend calculus,
which keeps track of the transformation between profunctors we are constructing (Section 4.3). In a
similar sense, bimodular categories tensor together objects from different monoidal categories. Both
ideas combine into the calculus of pointed bimodular profunctors.

4.1 Bimodular Profunctors

Consider C and D, both (M,N)-bimodular categories. A natural notion of morphism between them is a
functor C→ D which preserves both actions. However, there is another notion of morphism between
them, which is a generalization of a profunctor between categories to this bimodular setting. Bimodular
profunctors are a generalized reformulation of the Tambara modules of Pastro and Street [36].

Definition 4.1. Let M and N be two monoidal categories and let C and D be two (M,N)-bimodular
categories. A bimodular profunctor from C to D is a profunctor T : Cop×D→ Set with a natural family
of strengths,

tM : T (X ,Y)→ T (M .X ,M .Y), and tN : T (X ,Y)→ T (X /N,Y /N),

such that the actions are associative, tM # tM′ = tM⊗M′ and tN # tN′ = tN⊗N′ , unital tI = id and tI = id, and
compatible, tM # tN = tN # tM, up to the coherence isomorphisms of the monoidal category.

46 Collages of String Diagrams

Proposition 4.2. For any pair of monoidal categories, M and N, there is a 2-category MModN of (M,N)-
bimodular categories, bimodular profunctors, and natural transformations between them.

These will form the hom-bicategories of the tricategory we later define. The other significant piece
of data we require is a family of tensors ⊗ : MModN×NModO→ MModO, which we now study.

4.2 Tensor of Bimodular Profunctors

The tensor of bimodular categories is similar to the tensor of modules over a monoid in classical algebra:
we consider pairs of elements and we quotient out the action of a common scalar [35]. In this case, the
quotienting is substituted by an appropriate structural isomorphism: the equilibrator.
Definition 4.3 (Tensor of bimodular categories, [35]). Let C be a (M,N)-bimodular category and let D
be a (N,O)-bimodular category. Their tensor product, C⊗N D, is a category with the same objects as
C×D: we write them as X⊗N Y . The category is presented by the morphisms of C×D and a free family
of natural isomorphisms, called the equilibrators,

τX ,N,Y : (X /N)⊗N Y → X⊗N (N .Y), for each N ∈ N,X ∈ C,Y ∈ D,

which are additionally quotiented by the following equations up to the structure isomorphisms of the
monoidal actions, τX ,M⊗N,Y = τX/M,N,Y # τX ,M,N.Y , and τX ,I,Y = id.
Definition 4.4. Let C and C′ be two (M,N)-bimodular categories and let D and D′ be a (N,O)-bimodular
categories. Given two bimodular profunctors, T : C→ C′ and R : D→ D′, their tensor is a bimodular
profunctor, T ⊗N R : C⊗N D→ C′⊗N D′, defined by

(T ⊗N R)(X⊗N Y ;X ′⊗N Y ′) = T (X ;X ′)×R(Y,Y ′)/(∼),

where (∼) is the equivalence relation generated by (tN(x),y)∼ (x, tN(y)).

4.3 Pointed Profunctors

Profunctors deal with families of morphisms, and their natural isomorphisms determine correspondences
between these families. However, when we use profunctors for the semantics of string diagrams, we most
often want to single out a particular morphism between a particular pair of objects. A simple technique
to achieve this is to use pointed profunctors instead of simply profunctors: this technique was explicitly
described by this second author [41] although it has implicit appearances in the literature [3, 24].
Definition 4.5. A pointed profunctor (P, p) : (A,X)→ (B,Y) between two pointed categories with a
chosen object X ∈ Aob j and Y ∈ Bob j is a profunctor P : A→ B together with an element p ∈ P(A,B) of
the profunctor evaluated on the chosen object of the categories.

From now on, we work using pointed profunctors instead of plain profunctors.

4.4 The Tricategory of Pointed Bimodular Profunctors

We call collages of string diagrams to the diagrams of the tricategory of pointed bimodular profunctors.
Definition 4.6. The tricategory of pointed bimodular profunctors, BmProfpt, has as 0-cells the monoidal
categories, M,N,O, The 1-cells between two monoidal categories M and N are pointed bimodular cat-
egories, (A,.,/,A), consisting of a (M,N)-bimodular category with two actions (A,.,/) and some object
of that category, A ∈ A. Pointed bimodular categories compose by the tensor of bimodular categories,

(A,.,/,A)⊗N (B,.,/,B) = (A⊗N B,.,/,A⊗N B).

Braithwaite and Román 47

The 2-cells between two pointed bimodular categories (A,.,/,A) and (B,.,/,B) are pointed bimodu-
lar profunctors (P, t, p), consisting of a profunctor P : A→ B together with a point p ∈ P(A,B) that
are moreover bimodular with compatible natural transformations tM : P(A;B)→ P(M .A;M .B), and
tN : P(A;B)→ P(A /N;B /N). These 2-cells compose by profunctor composition and by the tensor of
bimodular profunctors.

Finally, the 3-cells between two pointed bimodular profunctors (P, t, p) and (Q,r,q) are bimodular
natural transformations that preserve the point, consisting of a natural transformation α : P→ Q such
that the α(p) = q and, moreover, tM #α = α # rM and tN #α = α # rN .

Remark 4.7. At the moment of writing, it is unclear to the authors whether a string diagrammatic calculus
for tricategories, described by transformations of the string diagrammatic calculus of bicategories, has
been fully described and proved sound and complete. However, there seems to be a consensus that this
would be the right language for tricategories: much literature assumes it. Let us close this section by
tracking explicitly the assumptions we need to employ a diagrammatic syntax for bimodular profunctors.

Conjecture 4.8. The previous data satisfies all coherence conditions of a tricategory. Moreover, we
can reason with tricategories using the calculus of deformations of string diagrams, extending the string
diagrams for quasistrict monoidal 2-categories of Bartlett [2].

4.5 Functor Boxes via Collages of String Diagrams

The following Figure 8 details how to interpret functor boxes as collages of string diagrams. The colored
region represents the domain of the lax monoidal functor; the white region represents the codomain.
Morphisms of both categories are interpreted as elements of their respective hom-profunctors, and the
laxators are used to merge colored regions. The only element that we will explicitly detail is the bimod-
ular category that appears in the closing and opening wires of a functor box.

Figure 8: Semantics for functor boxes in terms of pointed bimodular profunctors.

Proposition 4.9 (Bimodular categories of a lax monoidal functor). Let X and A be two monoidal cat-
egories and let F : X→ A be a monoidal functor between them, endowed with natural transformations
ψ0 : J→ FI and ψ2 : FX ⊗FY → F(X ⊗Y). The following profunctors, AoF X : A×X→ A×X and

48 Collages of String Diagrams

XnF A : X×A→ X×A determine two promonads, and therefore two Kleisli categories.

AoF X(A,X ;B,Y) =
∫ M∈X

A(A;B⊗FM)×X(M⊗X ;Y);

XnF A(X ,A;Y,B) =
∫ M∈X

A(A;FM⊗B)×X(M⊗A;B);

These two Kleisli categories are (A,X) and (X,A)-bimodular, respectively.

5 String Diagrams of Internal Diagrams

The tubular 3-dimensional cobordisms of internal diagrams are first described as a Frobenius algebra
by Bartlett, Douglas, Schommer-Pries and Vicary [3]. We are indebted to this first introduction, which
made internal diagrams into a convenient graphical notation in topological quantum field theory [3].
Internal diagrams themselves were later given explicit semantics in a monoidal bicategory of pointed
profunctors; this was the subject of this second author’s contribution to Applied Category Theory 2020
[40]. An important aspect of the syntax of internal diagrams is their 3-dimensional nature: the syntax
not only contains string diagrams but also reductions between them.

We introduce here a novel syntactic presentation of internal diagrams that has the advantage of
treating each piece of an internal diagram (including the closing and opening of tubes) as a separate
entity in a tricategory. That is, the identity tube or the multiplication and comultiplication tubes are
constructed out of smaller pieces in Figure 9. As a consequence, we are later able to introduce, for the
first time, a more refined semantics in terms of a tricategory of pointed bimodular profunctors.

Figure 9: Syntax for open internal diagrams.

Definition 5.1. A polygraph, G , is the signature for the string diagrams of a monoidal category. It
consists of a set of objects, Gob j, and a set of morphisms G (A0, ...,An;B0, ...,Bm) between any two lists
of objects, A0, ...,An,B0, ...,Bm ∈ Gob j.

Braithwaite and Román 49

Definition 5.2. The syntactic 3-category of internal diagrams over a polygraph G is the 3-category G
presented by the cells in Figure 9. In other words, it contains two 0-cells, I and G , in white and blue
in the figure, respectively. It contains a 1-cell A : G → G for each object A ∈ Gob j and two 1-cells,
L• : I → G and R• : G → I forming two 2-adjunctions (L•) a (R•) and (R•) a (L•) up to a 3-cell. It
contains the following 2-cells,

• two 2-cells n1 : id→ L• #R• and e1 : R• #L•→ id witnessing the 2-adjunction (L•) a (R•) and two
2-cells n2 : 1→ R• # L• and e2 : L• # R•→ id witnessing the 2-adjunction (R•) a (L•) – see Vicary
and Heunen [22] for a reference on 2-adjunctions and the swallowtail equations;

• two 2-cells, Ay : L• # A # R•→ id and Ay : id→ L• # A # R•, forming an adjunction Ay a Ay for each
object A∈Gob j; and a 2-cell, f : A0 # ...#An→B0 # ...#Bm, for each edge f ∈G (A0, ...,An;B0, ...,Bm).

Finally, it contains the following 3-cells,
• two invertible 3-cells, α1 : (1⊗ n1) # (e1⊗ 1)→ 1 and β 1 : (n1⊗ 1) # (1⊗ e1)→ 1, witnessing

the 2-adjunction (L•) a (R•) and satisfying the swallowtail equations; and two invertible 3-cells,
α ′2 : (1⊗n2)#(e2⊗1)→ 1 and β 2 : (n1⊗1)#(1⊗e1)→ 1, witnessing the 2-adjunction (R•)a (L•)
and and satisfying the swallowtail equations;

• two 3-cells, c : Ay # Ay → 1 and i : 1→ Ay # Ay, witnessing the adjunction Ay a Ay and satisfying
the snake equations;

• two 3-cells, ui : n1 # e2→ 1 and vi : 1→ e2 #n1 witnessing an adjunction e2 a n1 and satisfying the
snake equations; two 3-cells u j : 1→ n2 # e1 and vi : e1 # n2→ 1 witnessing an adjunction n2 a e1
and satisfying the snake equations.

Theorem 5.3. For any interpretation of a polygraph into a monoidal category, there exists a 3-functor
from the syntactic tricategory of internal diagrams into pointed bimodular profunctors that preserves
this interpretation.
Remark 5.4. This syntax can be exemplified by evaluating a quantum comb [10], or a monoidal lens
[39] with a morphism, in terms of internal string diagrams [24], see Figure 10. It has been used more
generally to reason about coends in monoidal categories [41] and topological quantum field theory [3].

Figure 10: Evaluating a comb in terms of internal string diagrams.

6 Conclusions

Collages of string diagrams provide an abundant graphical calculus. Functor boxes, tensors of bimodular
categories and internal diagrams all exist in the graphical calculus of collages. Their technical underpin-
ning is complex: we characterized them as diagrams of pointed bimodular profunctors, but these arrange
themselves into a tricategory, which may be difficult to reason about.

50 Collages of String Diagrams

Apart from introducing the technique of collages and formalizing multiple extensions to string dia-
grams, we would like to call attention to the techniques we use: most of our results on soundness and
completeness of diagrams are arranged into adjunctions, which allows us to prove them by reusing the
better-known results on soundness and completeness for monoidal categories and bicategories.

Related work. An important line of research revolves around module categories and fusion categories,
some specific enriched categories with actions with applications in topological quantum field theories
[17, 18, 35]. Especially relevant and recent is Hoek’s work, which constructs diagrams for a bimodule
category [23, Theorem 3.5.2]. We follow the more elementary notion of bimodular category, called
“biactegory” in the taxonomy of Capucci and Gavranović [9]. Cockett and Pastro [12] have used instead
linear actions for concurrency, and even when we take inspiration from their work, their approach is
more sophisticated and expressive than our toy example demonstrating bimodular categories (Figure 5).

Most work has been presented for some particular cases of collages: functor boxes have been ex-
tensively employed, but never reduced to string diagrams [13, 32]; internal diagrams have served both
quantum theory and category theory [3, 24, 28], and can be given semantics into pointed profunctors
[40], but again a presentation as string diagrams was missing. A convenient algebra of lenses [39], a
particular type of incomplete diagram, has been recently introduced [19], but this is still independent of
the semantics of arbitrary internal diagrams.

Finally, the first author has published a blog post that accompanies this manuscript [8].

Further work. It should be possible to “destrictify” many of the results of this paper. We have only
presented a 1-adjunction between strict bimodular categories and bipointed 2-categories, but a higher
adjunction would allow us to reuse coherence for bicategories to automatically obtain coherence for
bimodular categories. We indicated along the paper the conjectures where further work is warranted.

We conjecture that pointed bimodular profunctors form a compact closed tricategory, with the dual
of each monoidal category being the reverse monoidal category, A⊗Rev B = B⊗A. Even when it may be
conceptually clear what a compact tricategory should be, it is technically challenging to come up with a
concrete definition for it in terms of coherence equations.

Acknowledgements

The authors want to thank David A. Dalrymple for discussion on the string diagrammatic interpretation
of functor boxes; and Matteo Capucci for several insightful conversations about notions of 2-dimensional
profunctor, that helped us understand how to tie disparate aspects of this story together. The authors thank
John Baez, the editors, and the anonymous reviewers at ACT23 for multiple comments and suggestions
that improved this manuscript.

Dylan Braithwaite was supported by an Industrial CASE studentship from the UK Engineering and
Physical Sciences Research Council (EPSRC) and the National Physical Laboratory. Mario Román
was supported by the European Union through the ESF Estonian IT Academy research measure (2014-
2020.4.05.19-0001).

Braithwaite and Román 51

References

[1] Mario Alvarez-Picallo, Dan R. Ghica, David Sprunger & Fabio Zanasi (2021): Functorial String Diagrams
for Reverse-Mode Automatic Differentiation. arXiv:2107.13433.

[2] Bruce Bartlett (2014): Quasistrict symmetric monoidal 2-categories via wire diagrams. arXiv:1409.2148.

[3] Bruce Bartlett, Christopher L. Douglas, Christopher J. Schommer-Pries & Jamie Vicary (2015): Modular
categories as representations of the 3-dimensional bordism 2-category. arXiv:1509.06811.

[4] Guillaume Boisseau & Jeremy Gibbons (2018): What you needa know about Yoneda: profunctor op-
tics and the Yoneda lemma (functional pearl). Proc. ACM Program. Lang. 2(ICFP), pp. 84:1–84:27,
doi:10.1145/3236779.

[5] Guillaume Boisseau & Pawel Sobocinski (2021): String Diagrammatic Electrical Circuit Theory. In Kohei
Kishida, editor: Proceedings of the Fourth International Conference on Applied Category Theory, ACT 2021,
Cambridge, United Kingdom, 12-16th July 2021, EPTCS 372, pp. 178–191, doi:10.4204/EPTCS.372.13.

[6] Joe Bolt, Jules Hedges & Philipp Zahn (2019): Bayesian open games. CoRR abs/1910.03656.
arXiv:1910.03656.

[7] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński & Fabio Zanasi (2019): Diagram-
matic algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL), pp. 25:1–25:28,
doi:10.1145/3290338.

[8] Dylan Braithwaite (2023): Diagrams for Actegories. Available at https://dylanbraithwaite.github.
io/2023/01/31/diagrams-for-actegories.html.

[9] Matteo Capucci & Bruno Gavranović (2022): Actegories for the working amthematician. arXiv preprint
arXiv:2203.16351.

[10] Giulio Chiribella, Giacomo Mauro D’Ariano & Paolo Perinotti (2009): Theoretical framework for quantum
networks. Phys. Rev. A 80, p. 022339, doi:10.1103/PhysRevA.80.022339.

[11] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski, Emily Pillmore & Mario
Román (2022): Profunctor Optics, a Categorical Update. arXiv:2001.07488.

[12] Robin B. Cockett & Craig A. Pastro (2009): The logic of message-passing. Science of Computer Program-
ming 74(8), pp. 498–533, doi:10.1016/j.scico.2007.11.005.

[13] Robin B. Cockett & Robert A. G. Seely (1999): Linearly distributive functors. Journal of Pure and Applied
Algebra 143(1-3), pp. 155–203, doi:10.1016/S0022-4049(98)00110-8.

[14] Bob Coecke, Tobias Fritz & Robert W. Spekkens (2016): A mathematical theory of resources. Information
and Computation 250, pp. 59–86, doi:10.1016/j.ic.2016.02.008.

[15] Elena Di Lavore, Giovanni de Felice & Mario Román (2022): Monoidal Streams for Dataflow Programming.
In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22,
Association for Computing Machinery, New York, NY, USA, p. 14, doi:10.1145/3531130.3533365.

[16] Edsger W. Dijkstra (1962): Over de sequentialiteit van procesbeschrijvingen. Unpublished. Transcribed
by Gerrit Jan Veltink for the E.W. Dijkstra Archive, Center for American History. Available at https:
//www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF.

[17] Christopher L. Douglas, Christopher Schommer-Pries & Noah Snyder (2019): The balanced tensor product
of module categories. Kyoto Journal of Mathematics 59(1), doi:10.1215/21562261-2018-0006.

[18] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych & Victor Ostrik (2010): On braided fusion categories I.
Selecta Mathematica 16(1), pp. 1–119, doi:10.1007/s00029-010-0017-z.

[19] Matt Earnshaw, James Hefford & Mario Román (2023): The Produoidal Algebra of Process Decomposition.
arXiv:2301.11867.

[20] Neil Ghani, Jules Hedges, Viktor Winschel & Philipp Zahn (2018): Compositional Game Theory. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, Association
for Computing Machinery, New York, NY, USA, p. 472–481, doi:10.1145/3209108.3209165.

https://arxiv.org/abs/2107.13433
https://arxiv.org/abs/1409.2148
https://arxiv.org/abs/1509.06811
https://doi.org/10.1145/3236779
https://doi.org/10.4204/EPTCS.372.13
https://arxiv.org/abs/1910.03656
https://doi.org/10.1145/3290338
https://dylanbraithwaite.github.io/2023/01/31/diagrams-for-actegories.html
https://dylanbraithwaite.github.io/2023/01/31/diagrams-for-actegories.html
https://doi.org/10.1103/PhysRevA.80.022339
https://arxiv.org/abs/2001.07488
https://doi.org/10.1016/j.scico.2007.11.005
https://doi.org/10.1016/S0022-4049(98)00110-8
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1145/3531130.3533365
https://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF
https://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF
https://doi.org/10.1215/21562261-2018-0006
https://doi.org/10.1007/s00029-010-0017-z
https://arxiv.org/abs/2301.11867
https://doi.org/10.1145/3209108.3209165

52 Collages of String Diagrams

[21] James Hefford & Cole Comfort (2022): Coend Optics for Quantum Combs. arXiv:2205.09027.

[22] Chris Heunen & Jamie Vicary (2019): Categories for Quantum Theory: an introduction. Oxford University
Press, doi:10.1093/oso/9780198739623.001.0001.

[23] Keeley Hoek (2019): Drinfeld centers for bimodule categories. Ph.D. thesis, MSc. thesis, The Australian
National University.

[24] Nick Hu & Jamie Vicary (2021): Traced Monoidal Categories as Algebraic Structures in Prof. In Ana
Sokolova, editor: Proceedings 37th Conference on Mathematical Foundations of Programming Semantics,
MFPS 2021, Hybrid: Salzburg, Austria and Online, 30th August - 2nd September, 2021, EPTCS 351, pp.
84–97, doi:10.4204/EPTCS.351.6.

[25] David A Huffman (1954): The Synthesis of Sequential Switching Circuits. Journal of the Franklin Institute
257(3), pp. 161–190, doi:10.1016/0016-0032(54)90574-8.

[26] André Joyal & Ross Street (1991): The geometry of tensor calculus, I. Advances in Mathematics 88(1), pp.
55–112, doi:10.1016/0001-8708(91)90003-P.

[27] Paul Blain Levy (2022): Call-by-Push-Value. ACM SIGLOG News 9(2), p. 7–29,
doi:10.1145/3537668.3537670.

[28] Leo Lobski & Fabio Zanasi (2022): String Diagrams for Layered Explanations. CoRR abs/2207.03929,
doi:10.48550/arXiv.2207.03929.

[29] Fosco Loregian (2021): (Co)end Calculus. London Mathematical Society Lecture Note Series, Cambridge
University Press, doi:10.1017/9781108778657.

[30] Saunders Mac Lane (1971): Categories for the Working Mathematician. Graduate Texts in Mathematics 5,
Springer Verlag, doi:10.1007/978-1-4757-4721-8.

[31] Paddy McCrudden (2000): Categories of representations of coalgebroids. Advances in Mathematics 154(2),
pp. 299–332, doi:10.1006/aima.2000.1926.

[32] Paul-André Melliès (2006): Functorial Boxes in String Diagrams. In Zoltán Ésik, editor: Computer Sci-
ence Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hun-
gary, September 25-29, 2006, Proceedings, Lecture Notes in Computer Science 4207, Springer, pp. 1–30,
doi:10.1007/11874683 1.

[33] Eugenio Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), pp. 55–92,
doi:10.1016/0890-5401(91)90052-4.

[34] Chad Nester (2020): A Foundation for Ledger Structures. In Emmanuelle Anceaume, Christophe
Bisière, Matthieu Bouvard, Quentin Bramas & Catherine Casamatta, editors: 2nd International Con-
ference on Blockchain Economics, Security and Protocols, Tokenomics 2020, October 26-27, 2020,
Toulouse, France, OASIcs 82, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 7:1–7:13,
doi:10.4230/OASIcs.Tokenomics.2020.7.

[35] Victor Ostrik (2003): Module categories, weak Hopf algebras and modular invariants. Transformation
groups 8, pp. 177–206, doi:10.1007/s00031-003-0515-6.

[36] Craig Pastro & Ross Street (2007): Doubles for monoidal categories. arXiv preprint arXiv:0711.1859.

[37] Evan Patterson, David I. Spivak & Dmitry Vagner (2021): Wiring diagrams as normal forms for computing
in symmetric monoidal categories. Electronic Proceedings in Theoretical Computer Science 333, pp. 49–64,
doi:10.4204/eptcs.333.4.

[38] Maciej Piróg & Nicolas Wu (2016): String diagrams for free monads (functional pearl). In Jacques Gar-
rigue, Gabriele Keller & Eijiro Sumii, editors: Proceedings of the 21st ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, ACM, pp. 490–501,
doi:10.1145/2951913.2951947.

[39] Mitchell Riley (2018): Categories of optics. arXiv preprint arXiv:1809.00738.

[40] Mario Román (2020): Comb Diagrams for Discrete-Time Feedback. CoRR abs/2003.06214.
arXiv:2003.06214.

https://arxiv.org/abs/2205.09027
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.4204/EPTCS.351.6
https://doi.org/10.1016/0016-0032(54)90574-8
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1145/3537668.3537670
https://doi.org/10.48550/arXiv.2207.03929
https://doi.org/10.1017/9781108778657
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1006/aima.2000.1926
https://doi.org/10.1007/11874683_1
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.4230/OASIcs.Tokenomics.2020.7
https://doi.org/10.1007/s00031-003-0515-6
https://doi.org/10.4204/eptcs.333.4
https://doi.org/10.1145/2951913.2951947
https://arxiv.org/abs/2003.06214

Braithwaite and Román 53

[41] Mario Román (2020): Open Diagrams via Coend Calculus. In David I. Spivak & Jamie Vicary, editors: Pro-
ceedings of the 3rd Annual International Applied Category Theory Conference 2020, ACT 2020, Cambridge,
USA, 6-10th July 2020, EPTCS 333, pp. 65–78, doi:10.4204/EPTCS.333.5.

[42] Mario Román (2022): Promonads and String Diagrams for Effectful Categories. CoRR abs/2205.07664,
doi:10.48550/arXiv.2205.07664. arXiv:2205.07664.

[43] Michael Shulman (2016): Categorical logic from a categorical point of view. Available on the web. Available
at https://mikeshulman.github.io/catlog/catlog.pdf.

[44] Abraham Silberschatz, Peter Baer Galvin & Greg Gagne (2018): Operating System Concepts, 10th Edition.
Wiley. Available at http://os-book.com/OS10/index.html.

[45] David I. Spivak (2022): Generalized Lens Categories via functors C op→ Cat. arXiv:1908.02202.
[46] Sam Staton & Paul Blain Levy (2013): Universal properties of impure programming languages. In Roberto

Giacobazzi & Radhia Cousot, editors: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, ACM, pp. 179–192,
doi:10.1145/2429069.2429091.

[47] Ross Street (1981): Cauchy characterization of enriched categories. Rendiconti del Seminario Matematico
e Fisico di Milano 51(1), pp. 217–233, doi:10.1007/BF02924823.

[48] Zoran Škoda (2009): Some equivariant constructions in noncommutative algebraic geometry. Georgian
Mathematical Journal 16(1), pp. 183–202, doi:10.1515/GMJ.2009.183. arXiv:0811.4770.

https://doi.org/10.4204/EPTCS.333.5
https://doi.org/10.48550/arXiv.2205.07664
https://arxiv.org/abs/2205.07664
https://mikeshulman.github.io/catlog/catlog.pdf
http://os-book.com/OS10/index.html
https://arxiv.org/abs/1908.02202
https://doi.org/10.1145/2429069.2429091
https://doi.org/10.1007/BF02924823
https://doi.org/10.1515/GMJ.2009.183
https://arxiv.org/abs/0811.4770

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 54–69, doi:10.4204/EPTCS.397.4

© B. Clarke
This work is licensed under the
Creative Commons Attribution License.

The Algebraic Weak Factorisation System for Delta Lenses

Bryce Clarke
Inria Saclay

Palaiseau, France
bryce.clarke@inria.fr

Delta lenses are functors equipped with a suitable choice of lifts, and are used to model bidirectional
transformations between systems. In this paper, we construct an algebraic weak factorisation system
whose R-algebras are delta lenses. Our approach extends a semi-monad for delta lenses previously
introduced by Johnson and Rosebrugh, and generalises to any suitable category equipped with an
orthogonal factorisation system and an idempotent comonad. We demonstrate how the framework
of an algebraic weak factorisation system provides a natural setting for understanding the lifting
operation of a delta lens, and also present an explicit description of the free delta lens on a functor.

1 Introduction

Delta lenses were first introduced by Diskin, Xiong, and Czarnecki [17] as an algebraic framework
for bidirectional transformations [1, 13] between systems, particularly in the context of model-driven
engineering [16, 28]. The original motivation behind delta lenses came from adapting the classical
notion of a lens [19] from a “state-based” setting to a “delta-based” setting. Instead of treating a system
as a mere set of states, it should be regarded as a category, whose objects are the states of the system and
whose morphisms are the updates (or deltas) between them. The purpose of delta lenses is to model the
notion of synchronisation between systems through specifying how certain updates between states are
propagated.

A delta lens is a functor f : A→ B equipped with a lifting operation, see (1), that satisfies certain
axioms. The lifting operation specifies, for each object a in A and for each morphism u : f a→ b in B,
a morphism ϕ(a,u) : a→ a′, often called the chosen lift, such that f ϕ(a,u) = u. The axioms placed
on the lifting operation ensure that it respects identities and composition. Thus a delta lens is a functor
equipped with additional algebraic structure, and it is natural to wonder if delta lenses arise as algebras
for a monad. In this paper, we provide an answer in the affirmative.

{0} A

{0→ 1} B

a

f

u

ϕ(a,u) (1)

The question of asking whether certain kinds of lenses are algebras for a monad is not new. Clas-
sical state-based lenses [19] were characterised by Johnson, Rosebrugh, and Wood [26] as algebras for
a monad on the slice category Set/B. The same authors later introduced the notion of a c-lens [25],
better known as a split opfibration, and characterised them as algebras for a monad, first introduced by
Street [29], on the slice category Cat/B. Delta lenses generalise state-based lenses and split opfibra-
tions [24], however they were only shown by Johnson and Rosebrugh [23] to be certain algebras for a
semi-monad (a monad without a unit) on Cat/B. One of the contributions of the current paper is resolve
this gap in the literature.

http://dx.doi.org/10.4204/EPTCS.397.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

B. Clarke 55

Although it is generally useful to know when a mathematical structure arises as an algebra for a
monad, in isolation this result provides limited benefit towards a deeper understanding of lenses. One
reason is that we wish to study lenses as morphisms of a category, rather than objects in a category of
algebras. The knowledge that lenses are morphisms with algebraic structure does not provide any infor-
mation of how to sequentially compose them, nor justification for why this algebraic structure encodes a
notion of lifting.

Cofunctors1 are a natural kind of morphism between categories [2, 22] which fundamentally involve
a lifting operation and admit a straightforward sequential composition. The characterisation of delta
lenses as a compatible functor and cofunctor [3, 7], together with related characterisations of state-based
lenses and split opfibrations [8], provides a clear understanding of their composition and lifting, and has
led to several fruitful developments in the study of lenses in applied category theory [6, 10, 14]. However
the question remains: why do lenses frequently arise as algebras for a monad?

An algebraic weak factorisation system [4], also known as a natural weak factorisation system [21],
generalises the notion of an orthogonal factorisation system (OFS) on a category. An algebraic weak fac-
torisation system (AWFS) on a category C consists of a comonad (L,ε,∆) and a monad (R,η ,µ) on C2 that
are suitably compatible. The categories of L-coalgebras and R-algebras of an AWFS (L,R) replace the
usual left and right classes of morphisms of an OFS. In particular, every morphism factors into a cofree
L-coalgebra followed by free R-algebra, and every lifting problem (2), where (f , p) is a L-coalgebra and
(g,q) is a R-algebra, admits a chosen lift ϕ f ,g〈h,k〉 making the diagram commute. Crucially, these cho-
sen lifts also induce a canonical composition of R-algebras [4, Section 2.8]. Both classical state-based
lenses and split opfibrations arise as R-algebras for an AWFS on Set and Cat, respectively.

A C

B D

h

(f , p) (g,q)

k

ϕ f ,g〈h,k〉 (2)

The main contribution of this paper is to construct an algebraic weak factorisation system (L,R) on
Cat whose R-algebras are precisely delta lenses. The principal benefit is a new framework for understand-
ing lenses as algebras for a monad that naturally incorporates the fundamental aspects of composition and
lifting. In addition, we are able to generalise the notion of delta lens to any suitable category equipped
with an orthogonal factorisation system and idempotent comonad, as well as present an explicit descrip-
tion of the free delta lens on the functor. This approach to lenses as algebras for a monad also highlights
an interesting duality with their recent characterisation as coalgebras for a comonad [9].

Overview of the paper. In Section 2 we review the necessary background material on delta lenses
and factorisation systems. In particular, we recall two important structures on Cat, the comprehensive fac-
torisation system (Example 6) and the discrete category comonad (Example 12), which are generalised in
our main constructions to an orthogonal factorisation system and an idempotent comonad, respectively.
In Section 3 we utilise these structures on a category C to build a semi-monad on C2 (Proposition 13), and
show that when C = Cat (Example 15), we recover delta lenses as certain algebras for this semi-monad
(Theorem 17 and Appendix A). In Section 4 we enhance this construction to a monad (Theorem 19) using
pushouts in C, and prove that when C= Cat, the algebras for this monad are delta lenses (Theorem 23).
We also describe the free delta lens on a functor (Example 27). Section 5 completes the construction of
an algebraic weak factorisation system on C (Theorem 29) and shows how delta lenses lift against the
L-coalgebras when C= Cat. Section 6 presents some concluding remarks and avenues for future work.

1The term retrofunctor proposed by Di Meglio [14] is preferred, but not yet in widespread use.

56 The Algebraic Weak Factorisation System for Delta Lenses

2 Background

2.1 Delta lenses

We introduce the category Lens whose objects are delta lenses, which we will later show is the category
of algebras for a monad on Cat2. For further details and examples, we refer the reader to [11, Chapter 2].
Definition 1. A delta lens (f ,ϕ) : A→ B consists of a functor f : A→ B together with a lifting operation

(a ∈ A,u : f a→ b ∈ B) 7−→ ϕ(a,u) : a→ p(a,u),

where p(a,u) = cod(ϕ(a,u)), that satisfies the following three axioms:
(L1) f ϕ(a,u) = u

(L2) ϕ(a,1 f a) = 1a

(L3) ϕ(a,v◦u) = ϕ(p(a,u),v)◦ϕ(a,u)
Example 2. A discrete opfibration is a functor f : A→ B such that for each pair (a ∈ A,u : f a→ b ∈ B)
there is a unique morphism f̄ (a,u) : a→ a′ in A for which f f̄ (a,u) = u. Thus each discrete opfibration
f admits a unique lifting operation f̄ such that the pair (f , f̄) is a delta lens. Conversely, the underlying
functor f of a delta lens (f ,ϕ) is a discrete opfibration if ϕ(a, f w) = w for all morphisms w : a→ a′ in A.
Definition 3. Let Lens denote the category whose objects are delta lenses and whose morphisms 〈h,k〉
from (f ,ϕ) to (g,ψ) consist of a pair of functors h and k such that k◦ f = g◦h and hϕ(a,u) = ψ(ha,ku).

A C

B D

h

(f ,ϕ) (g,ψ)

k

!
{0} A C

{0→ 1} B D

a

f

h

g

u

ϕ(a,u)

k

=

{0} C

{0→ 1} D

ha

g

ku

ψ(ha,ku)

Let U : Lens→ Cat2 denote the canonical forgetful functor that sends (f ,ϕ) to f .

2.2 Factorisation systems

We recall two related notions of factorisation system on a category: orthogonal factorisations systems
[20] and algebraic weak factorisation systems [4, 21]. For a full account, we refer the reader to [4].
Definition 4. An orthogonal factorisation system (E,M) on a category C consists of two classes of
morphisms E and M, both containing the isomorphisms and closed under composition, such that:

(i) Factorisation: Every morphism f of C admits a factorisation f = m◦ e with e ∈ E and m ∈M;

(ii) Orthogonality: For each solid commutative square in C below such that e ∈ E and m ∈M, there
exists a unique morphism h such that f = h◦ e and g = m◦h.

A C

B D

f

e m

g

∃!
h

Notation 5. As an aid when diagram-chasing, the morphisms in the left class E and the right class M of
an orthogonal factorisation system on C will be decorated in the remainder of the paper as follows.

• •e∈E • •m∈M

B. Clarke 57

Example 6. A functor f : A→ B is called initial if, for each object b ∈ B, the comma category f/b is
connected. The comprehensive factorisation system [31] is an orthogonal factorisation system (E,M) on
Cat in which E is the class of initial functors and M is the class of discrete opfibrations.
Lemma 7. If (E,M) be an orthogonal factorisation system on C, then the following properties hold:

(1) The class E is stable under pushouts in C.

(2) If g◦ f and f are in E, then g is in E. Dually, if g◦ f and g are in M, then f is in M.
Definition 8. A functorial factorisation (L,E,R) on a category C is a section (L,E,R) : C2→ C3 to the
composition functor C3→ C2. The factorisation of a morphism in C2 is denoted as follows.

A C

B D

h

f g

k

7−→

A C

E f Eg

B D

h

L f

f

Lg

g
E〈h,k〉

R f Rg

k

Remark 9. Each functorial factorisation (L,E,R) on C induces a copointed endofunctor (L,ε) and a
pointed endofunctor (R,η) on C2, where the components of ε : L⇒ 1 and η : 1⇒ R at f are given
below.

A A

E f B

L f f

R f

A E f

B B

L f

f R f (3)

Definition 10. [4, Section 2.2] An algebraic weak factorisation system (L,R) on a category C consists
of:

(i) A functorial factorisation (L,E,R) on C;

(ii) An extension of (L,ε) to a comonad (L,ε,∆) on C2;

(iii) An extension of (R,η) to a monad (R,η ,µ) on C2;

(iv) A distributive law λ : LR⇒ RL of the comonad L over the monad R with λ f = 〈∆ f ,µ f 〉.

2.3 Idempotent comonads and weak equivalences

Given an idempotent comonad (M, ι) on a category C, let W = { f ∈ C | M f is invertible} denote the
class of morphisms in C whose members are called weak equivalences. This class satisfies the 2-out-of-3
property, and contains the isomorphisms, thus making C a category with weak equivalences [18]. Since
the comonad M is idempotent, each counit component ιA is inverted by M and therefore a morphism
of W. If M preserves pushouts, the morphisms in W are stable under pushout along morphisms in C.
Notation 11. As a visual aid when diagram-chasing, the morphisms in the class W of weak equivalences
of a category C will be decorated in the remainder of the paper as follows.

• •∼
w∈W

Example 12. Let (−)0 : Cat→ Cat denote the idempotent comonad that assigns a category A to its
corresponding discrete category A0 with counit component ιA : A0 → A. The endofunctor (−)0 has a
right adjoint (the codiscrete category monad) and therefore preserves all colimits. A functor f : A→ B
is called bijective-on-objects if f0 is invertible; these are the weak equivalences with respect to (−)0.

58 The Algebraic Weak Factorisation System for Delta Lenses

3 Delta lenses as certain algebras for a semi-monad

Throughout this section, let (E,M) be an orthogonal factorisation system on a category C, and let (M, ι)
be an idempotent comonad on C with corresponding class W of weak equivalences.

3.1 Constructing a semi-monad for delta lenses

We now construct a semi-monad (T,ν) on the category C2, for a category C equipped with an idempotent
comonad (M, ι) and an orthogonal factorisation system (E,M). We show that when C = Cat equipped
with the discrete category comonad and the comprehensive factorisation system, this specialises to the
semi-monad defined on Cat2 by Johnson and Rosebrugh [23, Section 6].

We begin by constructing an endofunctor T : C2→ C2. Given a morphism f : A→ B in C, we first
pre-compose with the counit component ιA : MA→ A and then choose an (E,M)-factorisation of the
resulting morphism as depicted in commutative square (i) below; this defines the action of T on objects
in C2. Given a morphism 〈h,k〉 : f → g in C2, there exists a unique morphism J〈h,k〉 : J f → Jg in C by
applying the orthogonality property; the action of T on the morphism 〈h,k〉 is given by the commutative
square (ii) depicted below. Note that the equation (4) holds by naturality of ι : M⇒ 1 at the morphism h.

MA A C

J f

B B D

ιA
∼

S f

(i) f

h

g

T f

k

=

MA MC C

J f Jg

B C C

S f

Mh

Sg

ιC
∼

g

T f

J〈h,k〉

(ii) T g

k

(4)

Applying the functor T to the morphism T f : J f →B and using the orthogonality property, we obtain
the component ν f of the multiplication ν : T 2⇒ T at f as depicted in the commutative square (iii) below.
Naturality of ν at follows from noticing in (5) that J〈h,k〉 ◦ν f = νg ◦ J〈J〈h,k〉,k〉 by orthogonality.

MJ f J f Jg

JT f

B B D

ST f

ιJ f

∼

T f

J〈h,k〉

T g

T 2 f

ν f

(iii)

k

=

MJ f MJg Jg

JT f JT g

B D D

ST f

MJ〈h,k〉 ιJg

∼

ST g

T g
J〈J〈h,k〉,k〉

T 2 f T 2g

νg

k

(5)

The associative law for ν follows from observing in (6) that ν f ◦νT f = ν f ◦ J〈ν f ,1B〉 by orthogonality.

MJT f JT f J f

JT 2 f

B B B

ST 2 f

ιJT f

∼

T 2 f

ν f

T f

T 3 f

νT f

=

MJT f MJ f J f

JT 2 f JT f

B B B

ST 2 f

Mν f ιJ f

∼

ST f

T f
J〈ν f ,1B〉

T 3 f T 2 f

ν f

(6)

We have thus constructed an endofunctor T : C2→ C2 with an associative multiplication ν : T 2⇒ T .

B. Clarke 59

Proposition 13. The pair (T,ν) is a semi-monad on C2.
Corollary 14. The semi-monad (T,ν) on C2 restricts to a semi-monad in the 2-category CAT/C on the
codomain functor cod: C2→ C. In particular, (T,ν) induces a semi-monad on each slice category C/B.
Example 15. Consider the category Cat equipped with the comprehensive factorisation system and the
discrete category comonad. Given a functor f : A→ B, the category J f defined in (4) is given by the
coproduct ∑a∈A0 f a/B of the coslice categories indexed by the discrete category A0. The objects in J f
are pairs (a ∈ A,u : f a→ b ∈ B), while morphisms 〈1a,v〉 : (a,u1)→ (a,u2) are given by morphisms
v ∈ B such that u2 = v◦u1. The functor S f : A0� J f has an assignment on objects a 7→ (a,1 f a), and is
an initial functor since each slice category S f/(a,u) is isomorphic to the terminal category and hence
connected. The functor T f : J f � B is given by the codomain projection with assignment on objects
(a,u) 7→ cod(u), and is a discrete opfibration. In this setting, restricting the semi-monad (T,ν) to the slice
categories Cat/B coincides with semi-monad for delta lenses defined by Johnson and Rosebrugh [23].

3.2 Delta lenses as certain semi-monad algebras

An algebra (f , p) for the semi-monad (T,ν) on the codomain functor cod: C2→ C (or, equivalently, on
the slice category C/B) consists of a pair of morphisms f : A→ B and p : J f → A such that the following
diagrams commute.

J f A

B B

p

T f f

JT f J f

J f A

J〈p,1B〉

ν f p

p

(7)

Johnson and Rosebrugh (JR) introduced an additional condition on the algebras for the semi-monad
(T,ν) on Cat/B which we now adapt to our more general setting under the name JR-algebra. The
intuition is that this additional condition replaces the missing “unit law” that an algebra for a monad
would satisfy.
Definition 16. A JR-algebra is an algebra (f , p) for the semi-monad (T,ν) on the codomain functor
cod: C2→ C such that the following diagram commutes.

MA A

J f

S f

ιA
∼

p
(8)

A morphism 〈h,k〉 : (f , p)→ (g,q) of algebras for the semi-monad (T,ν) consists of a pair of mor-
phisms h and k such that the following equation in C2 holds.

J f A C

B B D

p

T f f

h

g

k

=

J f Jg C

B D D

J〈h,k〉

T f

q

T g g

k

(9)

Let Alg(T,ν) denote the category of algebras for the semi-monad (T,ν) on the codomain functor
cod: C2→ C, and let AlgJR(T,ν) denote the full subcategory of JR-algebras.
Theorem 17. If C= Cat equipped with the discrete category comonad and the comprehensive factorisa-
tion system, then there is an isomorphism of categories Lens∼=AlgJR(T,ν).

Proof. This result is due to Johnson and Rosebrugh [23]. See Appendix A for a proof in our notation.

60 The Algebraic Weak Factorisation System for Delta Lenses

4 Delta lenses as algebras for a monad

Throughout this section, let (E,M) be an orthogonal factorisation system on a category C with (chosen)
pushouts, and let (M, ι) be an idempotent comonad on C such that M : C→ C preserves pushouts.

4.1 Constructing a monad for delta lenses

We now extend the semi-monad (T,ν) to a monad (R,η ,µ) on C2, for a category C as described above.
Our approach is to utilise the universal properties of pushouts and orthogonal factorisation systems,
as well as properties of the class of weak equivalences for the idempotent comonad, to construct the
necessary data for the monad from that of the semi-monad (T,ν).

We begin by constructing an endofunctor R : C2 → C2. Given a morphism f : A→ B in C, first
construct the pushout of ιA along S f from (4), and then use the universal property of the pushout to
define R f : E f → B as depicted on the left below; this defines the action of R on objects in C2.

MA A

J f E f

B B

ιA
∼

S f
p

f

L f

T f

α f

∼

R f

ME f E f

JR f ER f

B B

ιE f

∼

SR f
p
LR f

R f

T R f

αR f

∼

R2 f

(10)

Given a morphism 〈h,k〉 : f → g in C2, there exists a unique morphism E〈h,k〉 : J f → Jg in C, as depicted
below, by the universal property of the pushout, where J〈h,k〉 is defined in (4). It is not difficult to show
through diagram-chasing that Rg◦E〈h,k〉= k ◦R f , thus defining the action of R on morphisms of C2.

MA A

J f E f C

Jg Eg

ιA
∼

S f
p

hL f

J〈h,k〉

α f

∼
E〈h,k〉

Lg

αg

∼

=

MA A

J f MC C

Jg Eg

ιA
∼

S f Mh h

J〈h,k〉

ιC
∼

Sg
p

Lg

αg

∼

(11)

Lemma 18. The triple (L,E,R) constructed in (10) and (11) is functorial factorisation on C.
By Remark 9, this functorial factorisation induces a pointed endofunctor (R,η) on C2 where the

component of η at f is given by the morphism L f : A→ E f as depicted in (3). To extend this pointed
endofunctor to a monad, all that remains is to define a suitable multiplication µ : R2⇒ R.

To construct this multiplication, we first observe that the morphism α f : J f → E f constructed in (10)
is a weak equivalence, and therefore the morphism Mα f : MJ f →ME f is invertible. It follows from the
orthogonality property that the morphism J〈α f ,1B〉 : JT f → JR f is invertible as depicted below.

MJ f ME f

J f E f

B B

Mα f

∼=
ιJ f ∼ ιE f∼

α f

∼

T f R f

=

MJ f ME f

JT f JR f

B B

Mα f

∼=
ST f SR f

J〈α f ,1B〉
∼=

T 2 f T R f

(12)

B. Clarke 61

Using the universal property of the pushout, the morphism ν f defined in (5), and the morphism J〈α f ,1B〉−1

defined in (12), we obtain the component µ f of the multiplication µ : R2⇒ R at f as depicted below.

ME f E f

JR f ER f

JT f J f E f

ιE f

∼

SR f
p
LR f

J〈α f ,1B〉−1 ∼=

αR f

∼
µ f

ν f α f

∼

=

ME f E f

JR f MJ f

JT f J f E f

ιE f

∼

SR f (Mα f)
−1

∼=

J〈α f ,1B〉−1 ∼=
ST f

ιJ f∼

ν f α f

∼

(13)

A tedious, yet routine, exercise in diagram-chasing using the morphisms defined in (11) and (13), and
applying the universal property of the pushout shows that R f ◦µ f = R2 f and that µ is natural as depicted
below.

ER f E f Eg

B B D

R2 f

µ f

R f

E〈h,k〉

Rg

k

=

ER f ERg Eg

B D D

R2 f

E〈E〈h,k〉,k〉

R2g

µg

Rg

k

Showing that the diagrams below commute, and thus establishing that the multiplication µ is unital and
associative, is also a straightforward application of definitions and the universal property of the pushout.

E f ER f E f

E f

LR f

µ f

E〈L f ,1B〉
ER2 f ER f

ER f E f

E〈µ f ,1B〉

µR f µ f

µ f

Theorem 19. The triple (R,η ,µ) is a monad on C2.

Corollary 20. The monad (R,η ,µ) on C2 restricts to a monad in the 2-category CAT/C on the codomain
functor cod: C2→ C. In particular, (R,η ,µ) induces a monad on each slice category C/B.

Remark 21. The morphisms α f defined as pushout injections in (10) assemble into a natural transfor-
mation α : T ⇒ R which underlies a morphism of semi-monads (T,ν)→ (R,µ). We conjecture that
(R,η ,µ) is actually the free monad on the semi-monad (T,ν), in a suitable sense, however leave this for
future work.

4.2 Delta lenses as monad algebras

We now construct the algebras for the monad (R,η ,µ) on C2 and show they are the same as JR-algebras
for the semi-monad (T,ν). When C= Cat equipped with the comprehensive factorisation system and the
discrete category comonad, this result establishes that delta lenses are algebras for the monad (R,η ,µ).

An algebra (f , p̂) for the monad (R,η ,µ) on C2 consists of a pair of morphisms f : A→ B and
p̂ : E f → A such that the following diagrams commute:

A A

E f B

L f f

R f

p̂
ER f E f

E f A

E〈p̂,1B〉

µ f p̂

p̂

(14)

62 The Algebraic Weak Factorisation System for Delta Lenses

A morphism 〈h,k〉 : (f , p̂)→ (g, q̂) of algebras for the monad (R,η ,µ) consists of a pair of morphisms h
and k such that the following equation in C2 holds.

E f A C

B B D

p̂

R f f

h

g

k

=

E f Eg C

B D D

E〈h,k〉

R f

q̂

Rg g

k

(15)

Let Alg(R,η ,µ) denote the category of algebras for the monad (R,η ,µ).

Proposition 22. There is an isomorphism of categories AlgJR(T,ν)∼=Alg(R,η ,µ).

Proof. Let (f : A→ B, p : J f → A) be a JR-algebra for the semi-monad (T,ν). Using the diagram (8)
and the universal property of the pushout, we obtain a morphism [p,1A] : E f → A as depicted below.

MA A

J f E f

A

ιA
∼

S f
p

L f
1A

α f

∼

p

[p,1A]

Using the universal property of the pushout and the axioms for the JR-algebra (f , p), it is straightforward
to prove that the pair (f , [p,1A]) is an algebra for the monad (R,η ,µ).

Now consider an algebra (f : A→ B, p̂ : E f → A) for the monad (R,η ,µ). Pre-composing the struc-
ture map of the algebra with α f we obtain a morphism p̂◦α f : J f → B. Using the axioms for the algebra
(f , p̂) and appropriate pasting of commutative diagrams, one may easily show that the pair (f , p̂◦α f) is
a JR-algebra for the semi-monad (T,ν).

The JR-algebras for (T,ν) and the algebra for (R,η ,µ) are in bijective correspondence with each
other, since [p̂◦α f ,1A] = p̂ by the universal property of the pushout, and [p,1A]◦α f = p by construction.
One may extend this correspondence to the morphisms (9) and (15) of the respective categories and show
it is functorial, thus establishing the stated isomorphism of categories.

The following theorem establishes a key result of the paper: delta lenses are algebras for a monad.

Theorem 23. There is an isomorphism of categories Lens∼=Alg(R,η ,µ).

Proof. Follows directly from Theorem 17 and interpreting Proposition 22 in the setting of C = Cat
equipped with the discrete category comonad and the comprehensive factorisation system.

Corollary 24. The forgetful functor U : Lens→ Cat2 is strictly monadic.

4.3 The free delta lens on a functor

We now construct a left adjoint to the functor U : Lens→ Cat2 which defines the free delta lens on a
functor f : A→ B. This amounts to providing an explicit description of the category E f together with a
lifting operation on the functor R f : E f → B. First we recall [7, Corollary 20] the following result which
represents an delta lens as a certain commutative diagram (see [11, Section 2.4] for a detailed proof).

B. Clarke 63

Proposition 25. Each delta lens (f ,ϕ) : A→ B determines a commutative diagram in Cat, as depicted
on the left below, such that ϕ is bijective-on-objects and f ϕ is a discrete opfibration.

Λ(f ,ϕ)

A B

ϕ

∼
f ϕ

f

X

A B

g
∼

f g

f

Conversely, each commutative diagram on the right above, where g is bijective-on-objects and f g is a
discrete opfibration, uniquely determines a delta lens structure on f .
Remark 26. The above result may be understood as a consequence of an equivalence of double categories
[11, Section 3.4], however the details are outside the scope of this paper.

Using Proposition 25, the free delta lens on a functor f : A→ B corresponds to the following com-
mutative diagram in Cat constructed in (10). An immediate benefit of this presentation of the free delta
lens is that it condenses the three commutative diagrams (14) for the (free) R-algebra to a single diagram.

J f

E f B

α f
∼

T f

R f

In Example 15, we unpacked the definition of the category J f and the discrete opfibration T f . We
now provide an explicit characterisation of the category E f and the delta lens structure on R f : E f → B.
Example 27. The objects of E f are pairs (a ∈ A,u : f a→ b ∈ B). The morphisms are generated by
pairs 〈w, f w〉 : (a,1 f a)→ (a′,1 f a′) and 〈1a,v〉 : (a,u)→ (a,v ◦ u) for w ∈ A and v ∈ B, respectively, as
depicted below. The identity morphisms are well-defined since f (1a) = 1 f a. As J f has the same objects
as E f and consists of morphisms of the form 〈1a,v〉, the functor α f : J f → E f is identity-on-objects and
faithful.

a a′

f a f a′

f a f a′

w

1 f a

f (w)

1 f a′

f w

a a

f a f a

b b′

1a

u

f (1a)

v◦u

v

(16)

The functor R f : E f → B is projection in the second component; on the generators this is given by
R f 〈w, f w〉 = f w and R f 〈1a,v〉 = v. The lifting operation on R f takes an object (a,u) in E f and a
morphism v : cod(u)→ b in B to the chosen lift 〈1a,v〉 : (a,u)→ (a,v◦u) in E f .

Although, in principle, the morphisms in E f are finite sequences of the generators (16), one may
show that each morphism (a1,u1)→ (a2,u2) is actually just one of the following two kinds depicted be-
low: either a retraction v of u1 followed by morphism w : a1→ a2, or a morphism v : cod(u1) → cod(u2)
such that v◦u1 = u2. The functor R f sends these morphisms to u2 ◦ f w◦ v and v, respectively.

a1 a1 a2 a2

f a1 f a1 f a2 f a2

b1 f a1 f a2 b2

w

u1 � 1

f (w)

1 u2

v f w u2

a1 a2

f a1 f a2

b1 b2

u1 � u2

v

64 The Algebraic Weak Factorisation System for Delta Lenses

5 Delta lenses as the R-algebras of an algebraic weak factorisation system

In this section, let (E,M) be an orthogonal factorisation system on a category C with (chosen) pushouts,
and let (M, ι) be an idempotent comonad on C such that M : C→ C preserves pushouts.

5.1 Constructing the AWFS for delta lenses

Thus far we have constructed a functorial factorisation (L,E,R) on C (Lemma 18), and extended the
pointed endofunctor (R,η) to a monad (R,η ,µ) on C2 (Theorem 19). We now show that the copointed
endofunctor (L,ε) extends to a comonad (L,ε,∆), therefore completing the data required to describe an
algebraic weak factorisation system on C. For C = Cat equipped with the comprehensive factorisation
system and the discrete category monad, this yields an AWFS whose R-algebras are precisely delta lenses.

First we construct the morphism L2 f : A→ EL f as on the left below. Using this diagram and (10), it
follows that T L f ◦SL f = L f ◦ ιA = α f ◦S f and there is solid commutative diagram as on the right below.
By the orthogonality property, there exists a unique morphism δ f : J f → JL f as shown.

MA A

JL f EL f

E f E f

ιA
∼

SL f
p

L2 f

L f
αL f

∼

T L f RL f

MA JL f

J f E f

SL f

S f T L f
α f

∼

δ f (17)

Using the diagrams (17) and the universal property of the pushout, we obtain the component ∆ f of
the comultiplication ∆ : L⇒ L2 at f as depicted below. For each morphism 〈h,k〉 : f → g in C2, we may
show that ∆g ◦E〈h,k〉= E〈h,E〈h,k〉〉 ◦∆ f , providing us with a well-defined transformation ∆ : L⇒ L2.

MA A

J f E f

JL f EL f

ιA
∼

S f
p

L f L2 f
α f

∼

δ f

∆ f

αL f

∼

=

MA A

J f

JL f EL f

ιA
∼

S f

p

SL f L2 f

δ f
αL f

∼

Showing that the diagrams below commute, and thus establishing that the comultiplication ∆ is counital
and coassociative, is a straightforward application of definitions and the universal property of a pushout.

E f

E f EL f E f

∆ f

RL f 〈1A,R f 〉

E f EL f

EL f EL2 f

∆ f

∆ f ∆L f

E〈1A,∆ f 〉

Proposition 28. The triple (L,ε,∆) is a comonad on C2.
Theorem 29. The pair (L,R) is an algebraic weak factorisation system on C.

Proof. The data of the algebraic weak factorisation system follows from Lemma 18, Theorem 19, and
Proposition 28. Checking that there is a distributive law λ : LR⇒ RL of the comonad L over the monad R
with components λ f = 〈∆ f ,µ f 〉 involves routine diagram-chasing and applying universal properties.

B. Clarke 65

5.2 Coalgebras and lifting

A coalgebra (f ,q) for the comonad (L,ε,∆) consists of a pair of morphisms f : A→ B and q : B→ E f
such that the following diagrams commute:

A E f

B B

f

L f

R f
q

B E f

E f EL f

q

q ∆ f

E〈1A,q〉

Remark 30. In contrast to the algebras for the monad (R,η ,µ), the coalgebras above cannot be easily
simplified since q is a morphism into a pushout. For C = Cat, one may show that for a functor f to
admit a coalgebra structure, it must be a left-adjoint-right-inverse (LARI) and is therefore also injective-
on-objects and fully faithful. A complete characterisation of the L-coalgebras is left for future work.

We now provide a simple diagrammatic proof that delta lenses, in the form of Proposition 25 rather
than as R-algebras, lift against L-coalgebras. Consider a morphism 〈h,k〉 : f → g such that (f ,q) is an
L-coalgebra and (g,ψ) is a delta lens. Since ψ is bijective-on-objects, ψ0 is invertible, and there is a
morphism ιΛ ◦ψ

−1
0 ◦ h0 : A0 → Λ(g,ψ) making the diagram, depicted below, commute. Then by the

orthogonality property, there exists a unique morphism ` : J f → Λ(g,ψ) such that `◦S f = ιΛ ◦ψ
−1
0 ◦h0

and g ◦ψ ◦ ` = k ◦ R f ◦α f . Finally, by the universal property of the pushout, there exists a unique
morphism [ψ ◦ `,h] : E f → C. Thus, there is a specified morphism q ◦ [ψ ◦ `,h] : B→ C as on the left
below.

A C

B D

h

f g

k

q◦ [ψ ◦`,h]

Λ(g,ψ)

A0 A C

J f E f D

ψ∼
g◦ψ

ιΛ ◦ψ
−1
0 ◦h0

ιA
∼

S f
p

h

L f g
α f

∼

ψ◦l,h

k◦R f

Therefore we have shown that delta lenses lift against functors with the structure of a L-coalgebra, which
is stronger than one would expect from their simple axiomatic definition. It also demonstrates how the
notion of lifting is intrinsic to delta lenses as the R-algebras of an AWFS. The sequential composition of
delta lenses as R-algebras may also be defined from this notion of lifting against L-coalgebras, providing
further clarification of this essential operation.

6 Concluding remarks and future work

In this paper, we have shown that delta lenses are algebras for a monad (R,η ,µ), and that this monad
arises from an algebraic weak factorisation system on Cat. Moreover, we have shown that this AWFS

exists on any suitable category equipped with an orthogonal factorisation system and an idempotent
comonad which preserves pushouts. These results generalise immediately to internal lenses [7, 8] using
the internal comprehensive factorisation system [30], however an analogous result for enriched lenses
[12] or weighted lenses [27] is unknown. There are many avenues for future work. One example is the
relationship between the proxy pullbacks [14] of delta lenses and the canonical pullback of R-algebras [4].
Another is the connection between spans of delta lenses [9] and the categories of weak maps for an

66 The Algebraic Weak Factorisation System for Delta Lenses

AWFS [5]. The double category of delta lenses [11], which is naturally induced by the AWFS, provides a
rich setting studying the properties of delta lenses previously considered in a 1-categorical setting [6, 15].

Acknowledgements. This research first appeared in Chapter 6 of my PhD thesis [11], and I would
like to thank my supervisor, Michael Johnson, for his helpful feedback during my PhD studies. I am
also very grateful to Richard Garner who first sketched the construction of the free delta lens, and also
suggested the approach using AWFS, after I presented this work at the Australian Category Seminar. I
would also like to thank John Bourke, Matthew Di Meglio, Tim Hosgood, and Noam Zeilberger for
sharing useful insights which contributed to the development of this research.

References
[1] Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna & Perdita Stevens (2018): Introduction

to Bidirectional Transformations. In Jeremy Gibbons & Perdita Stevens, editors: Bidirectional Transforma-
tions, Lecture Notes in Computer Science 9715, pp. 1–28, doi:10.1007/978-3-319-79108-1_1.

[2] Marcelo Aguiar (1997): Internal categories and quantum groups. Ph.D. thesis, Cornell University. Available
at http://pi.math.cornell.edu/~maguiar/thesis2.pdf.

[3] Danel Ahman & Tarmo Uustalu (2017): Taking Updates Seriously. In Romina Eramo & Michael Johnson,
editors: Proceedings of the 6th International Workshop on Bidirectional Transformations, CEUR Workshop
Proceedings 1827, pp. 59–73. Available at https://ceur-ws.org/Vol-1827/paper11.pdf.

[4] John Bourke & Richard Garner (2016): Algebraic weak factorisation systems I: Accessible AWFS. Journal
of Pure and Applied Algebra 220(1), doi:10.1016/j.jpaa.2015.06.002.

[5] John Bourke & Richard Garner (2016): Algebraic weak factorisation systems II: Categories of weak maps.
Journal of Pure and Applied Algebra 220(1), doi:10.1016/j.jpaa.2015.06.003.

[6] Emma Chollet, Bryce Clarke, Michael Johnson, Maurine Songa, Vincent Wang & Gioele Zardini (2022):
Limits and Colimits in a Category of Lenses. In Kohei Kishida, editor: Proceedings of the Fourth International
Conference on Applied Category Theory, Electronic Proceedings in Theoretical Computer Science 372, pp.
164–177, doi:10.4204/EPTCS.372.12.

[7] Bryce Clarke (2020): Internal lenses as functors and cofunctors. In John Baez & Bob Coecke, editors:
Proceedings Applied Category Theory 2019, Electronic Proceedings in Theoretical Computer Science 323,
pp. 183–195, doi:10.4204/EPTCS.323.13.

[8] Bryce Clarke (2020): Internal split opfibrations and cofunctors. Theory and Applications of Categories
35(44). Available at http://www.tac.mta.ca/tac/volumes/35/44/35-44abs.html.

[9] Bryce Clarke (2021): Delta Lenses as Coalgebras for a Comonad. In Leen Lambers & Meng Wang, editors:
9th International Workshop on Bidirectional Transformations, CEUR Workshop Proceedings 2999, pp. 18–
27. Available at https://ceur-ws.org/Vol-2999/bxpaper2.pdf.

[10] Bryce Clarke (2021): A diagrammatic approach to symmetric lenses. In David I. Spivak & Jamie Vicary,
editors: Proceedings of the 3rd Annual International Applied Category Theory Conference 2020, Electronic
Proceedings in Theoretical Computer Science 333, pp. 79–91, doi:10.4204/EPTCS.333.6.

[11] Bryce Clarke (2022): The double category of lenses. Ph.D. thesis, Macquarie University,
doi:10.25949/22045073.v1.

[12] Bryce Clarke & Matthew Di Meglio (2022): An introduction to enriched cofunctors. arXiv:2209.01144.
[13] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr & James F. Terwilliger

(2009): Bidirectional Transformations: A Cross-Discipline Perspective. In Richard F. Paige, editor:
Theory and Practice of Model Transformations, Lecture Notes in Computer Science 5563, pp. 260–283,
doi:10.1007/978-3-642-02408-5_19.

[14] Matthew Di Meglio (2021): The category of asymmetric lenses and its proxy pullbacks. Master’s thesis,
Macquarie University, doi:10.25949/20236449.v1.

https://doi.org/10.1007/978-3-319-79108-1_1
http://pi.math.cornell.edu/~maguiar/thesis2.pdf
https://ceur-ws.org/Vol-1827/paper11.pdf
https://doi.org/10.1016/j.jpaa.2015.06.002
https://doi.org/10.1016/j.jpaa.2015.06.003
https://doi.org/10.4204/EPTCS.372.12
https://doi.org/10.4204/EPTCS.323.13
http://www.tac.mta.ca/tac/volumes/35/44/35-44abs.html
https://ceur-ws.org/Vol-2999/bxpaper2.pdf
https://doi.org/10.4204/EPTCS.333.6
https://doi.org/10.25949/22045073.v1
https://arxiv.org/abs/2209.01144
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.25949/20236449.v1

B. Clarke 67

[15] Matthew Di Meglio (2022): Coequalisers under the Lens. In Kohei Kishida, editor: Proceedings of the
Fourth International Conference on Applied Category Theory, Electronic Proceedings in Theoretical Com-
puter Science 372, pp. 149–163, doi:10.4204/EPTCS.372.11.

[16] Zinovy Diskin & Tom Maibaum (2012): Category Theory and Model-Driven Engineering: From Formal
Semantics to Design Patterns and Beyond. In Ulrike Golas & Thomas Soboll, editors: Proceedings Seventh
ACCAT Workshop on Applied and Computational Category Theory, Electronic Proceedings in Theoretical
Computer Science 93, pp. 1–21, doi:10.4204/EPTCS.93.1.

[17] Zinovy Diskin, Yingfei Xiong & Krzysztof Czarnecki (2011): From State- to Delta-Based Bidi-
rectional Model Transformations: the Asymmetric Case. Journal of Object Technology 10(6),
doi:10.5381/jot.2011.10.1.a6.

[18] William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan & Jeffrey H. Smith (2004): Homotopy Limit Func-
tors on Model Categories and Homotopical Categories. Mathematical Surveys and Monographs 113, Amer-
ican Mathematical Society, doi:10.1090/surv/113.

[19] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce & Alan Schmitt (2007):
Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem. ACM
Transactions on Programming Languages and Systems 29(3), doi:10.1145/1232420.1232424.

[20] P.J. Freyd & G.M. Kelly (1972): Categories of continuous functors I. Journal of Pure and Applied Algebra
2(3), doi:10.1016/0022-4049(72)90001-1.

[21] Marco Grandis & Walter Tholen (2006): Natural weak factorization systems. Archivum mathematicum
42(4). Available at https://www.emis.de/journals/AM/06-4/tholen.pdf.

[22] Philip J. Higgins & Kirill C. H. Mackenzie (1993): Duality for base-changing morphisms of vector bundles,
modules, Lie algebroids and Poisson structures. Mathematical Proceedings of the Cambridge Philosophical
Society 114(3), doi:10.1017/S0305004100071760.

[23] Michael Johnson & Robert Rosebrugh (2013): Delta Lenses and Opfibrations. In Perdita Stevens & James F.
Terwilliger, editors: Proceedings of the Second International Workshop on Bidirectional Transformations,
Electronic Communications of the EASST 57, pp. 1–18, doi:10.14279/tuj.eceasst.57.875.

[24] Michael Johnson & Robert Rosebrugh (2016): Unifying Set-Based, Delta-Based and Edit-Based Lenses. In
Anthony Anjorin & Jeremy Gibbons, editors: Proceedings of the Fifth International Workshop on Bidirec-
tional Transformations, CEUR Workshop Proceedings 1571, pp. 1–13. Available at https://ceur-ws.
org/Vol-1571/paper_13.pdf.

[25] Michael Johnson, Robert Rosebrugh & R. J. Wood (2012): Lenses, fibrations and universal translations.
Mathematical Structures in Computer Science 22(1), doi:10.1017/S0960129511000442.

[26] Michael Johnson, Robert Rosebrugh & Richard Wood (2010): Algebras and Update Strategies. Journal of
Universal Computer Science 16(5), doi:10.3217/jucs-016-05-0729.

[27] Paolo Perrone (2021): Lifting couplings in Wasserstein spaces. arXiv:2110.06591.

[28] Alberto Rodrigues da Silva (2015): Model-driven engineering: A survey supported by the unified conceptual
model. Computer Languages, Systems & Structures 43, doi:10.1016/j.cl.2015.06.001.

[29] Ross Street (1974): Fibrations and Yoneda’s lemma in a 2-category. In G. M. Kelly, editor: Category
Seminar, Lecture Notes in Mathematics 420, pp. 104–133, doi:10.1007/BFb0063102.

[30] Ross Street & Dominic Verity (2010): The comprehensive factorization and torsors. Theory and Applications
of Categories 23(3). Available at http://www.tac.mta.ca/tac/volumes/23/3/23-03abs.html.

[31] Ross Street & R. F. C. Walters (1973): The comprehensive factorization of a functor. Bulletin of the American
Mathematical Society 79(5), doi:10.1090/S0002-9904-1973-13268-9.

https://doi.org/10.4204/EPTCS.372.11
https://doi.org/10.4204/EPTCS.93.1
https://doi.org/10.5381/jot.2011.10.1.a6
https://doi.org/10.1090/surv/113
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1016/0022-4049(72)90001-1
https://www.emis.de/journals/AM/06-4/tholen.pdf
https://doi.org/10.1017/S0305004100071760
https://doi.org/10.14279/tuj.eceasst.57.875
https://ceur-ws.org/Vol-1571/paper_13.pdf
https://ceur-ws.org/Vol-1571/paper_13.pdf
https://doi.org/10.1017/S0960129511000442
https://doi.org/10.3217/jucs-016-05-0729
https://arxiv.org/abs/2110.06591
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1007/BFb0063102
http://www.tac.mta.ca/tac/volumes/23/3/23-03abs.html
https://doi.org/10.1090/S0002-9904-1973-13268-9

68 The Algebraic Weak Factorisation System for Delta Lenses

A Appendix

In this section, we provide a proof of Theorem 17. The correspondence between JR-algebras and delta
lenses was first shown by Johnson and Rosebrugh [23, Proposition 3]; we reprove this correspondence
in our notation, and extend it to an isomorphism of categories. We refer the reader to Example 15 for an
explicit description of the category J f and the functor T f : J f → B.

Theorem 31. If C= Cat equipped with the discrete category comonad and the comprehensive factorisa-
tion system, then there is an isomorphism of categories Lens∼=AlgJR(T,ν).

We prove this theorem in two parts: first defining the functor Lens→AlgJR(T,ν), then defining the
functor AlgJR(T,ν)→ Lens and showing that they are mutually inverse.

Proof. We begin by constructing a functor Lens→AlgJR(T,ν).
Given a delta lens (f ,ϕ) : A→ B as in Definition 1, we define a functor p : J f → B whose assignment

on morphisms 〈1a,v〉 : (a,u1)→ (a,u2) is given below, where we recall that p(a,u) = cod(ϕ(a,u)).

a a

f a f a

b1 b2

u1 � u2

v

7−→ p(a,u1) p(a,u2)
ϕ(p(a,u1),v) (18)

This functor preserves identities and composition by the axioms (L2) and (L3) of a delta lens, respec-
tively. Moreover, the equation f ◦ p = T f from the left diagram of (7) is satisfied by axiom (L1). The
equation p◦S f = ιA from the diagram (8) also holds since S f (a) = (a,1 f a) and p(a,1 f a) = a by axiom
(L2).

To verify the remaining condition for a JR-algebra given by the right diagram of (7), we first describe
the category JT f and the functors ν f ,〈p,1B〉 : JT f → J f .

The category JT f has objects given by triples (a∈A,u : f a→ b,u′ : b→ b′) and morphisms given by
triples 〈1a,1b,v〉 as depicted below. The functor ν f has an assignment on objects (a,u,u′) 7→ (a,u′ ◦ u)
and an assignment on morphisms 〈1a,1b,v〉 7→ 〈1a,v〉, while the functor 〈p,1B〉 has corresponding as-
signments on objects and morphisms given by (a,u,u′) 7→ (p(a,u),u′) and 〈1a,1b,v〉 7→ 〈1p(a,u),v〉which
are well-defined by (L1). The equation p ◦ µ f = p ◦ 〈p,1B〉 holds since p(a,u′ ◦ u) = p(p(a,u),u′) by
axiom (L3). Therefore, we have a JR-algebra (f , p) and the functor Lens→AlgJR(T,ν) is well-defined
on objects.

a a

f a f a

b b

b′1 b′2

u u

u′1 � u′2

v

(19)

Consider a pair of delta lenses (f ,ϕ) : A→ B and (g,ψ) : C→ D with corresponding JR-algebras
(f , p) and (g,q), respectively. Given a morphism of delta lenses 〈h,k〉 : (f ,ϕ) → (g,ψ), we want
to show that there is a morphism of JR-algebras 〈h,k〉 : (f , p) → (g,q). First note that the functor

B. Clarke 69

J〈h,k〉 : J f → Jg has an assignment on objects (a,u) 7→ (ha,ku) and an assignment on morphisms
〈1a,v〉 7→ 〈1ha,kv〉. As we have hϕ(a,u) = ψ(ha,ku) by the definition of a morphism of delta lenses,
it follows that hp(a,u) = cod(hϕ(a,u)) = cod(ψ(ha,ku)) = q(ha,ku). A similar argument on mor-
phisms of E f establishes that q◦ J〈h,k〉= h◦ p and thus the equation (9) for a morphism of JR-algebras
holds.

Proof. We now construct a functor AlgJR(T,ν)→Lens and show that it is inverse to Lens→AlgJR(T,ν).
Given a JR-algebra determined by the pair of functors f : A→ B and p : J f → A, we define a delta

lens (f ,ϕ) : A→ B whose lifting operation ϕ is given below, where p(a,1 f a) = a by (8).

a a

f a f a

f a b

1 f a u

u

7−→ p(a,1 f a) = a p(a,u)
p〈1a,u〉 (20)

By (8) on morphisms, it follows that axiom (L2) for a delta lens holds. By the left diagram of (7), it is
also immediate that axiom (L1) holds. For axiom (L3) to hold, we need to show that

p〈1a,v◦u〉= p〈1a,v〉 ◦ p〈1a,u〉= p〈1p(a,u),v〉 ◦ p〈1a,u〉.

This amounts to proving that the morphism p〈1a,v〉 : p(a,u)→ p(a,v ◦ u) is equal to the morphism
p〈1p(a,u),v〉 : p(p(a,u),1b)→ p(p(a,u),v), which follows directly from the right diagram in (7).

Given a morphism of JR-algebras 〈h,k〉 : (f , p)→ (g,q), we have hp〈1a,u〉 = q〈1ha,ku〉 from (9).
Therefore there is a well-defined morphism 〈h,k〉 between the corresponding delta lenses.

To show that the functors Lens→ AlgJR(T,ν) and AlgJR(T,ν)→ Lens are inverse, it is enough to
show it holds on the objects as the morphisms consist of the same data.

First consider a delta lens (f ,ϕ) and define a functor p : J f → B as in (18). Applying this functor at
a morphism 〈1a,u〉 : (a,1 f a)→ (a,u) in J f , we obtain ϕ(p(a,1 f a),u) = ϕ(a,u) by (L2) as desired. Now
consider a JR-algebra (f , p) and define a lifting operation ϕ for a delta lens as in (20). Defining a functor
p̂ : J f → A from this delta as in (18) and applying it to a morphism 〈1a,v〉 : (a,u1)→ (a,u2) we find that
p̂〈1a,v〉= p〈1p(a,u),v〉= p〈1a,v〉 by the right diagram in (7) as desired. This completes the proof.

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 70–83, doi:10.4204/EPTCS.397.5

© R.Cockett, A.R Kalra, P. Srinivasan
This work is licensed under the
Creative Commons Attribution License.

Normalizing Resistor Networks

Robin Cockett
Department of Computer Science

University of Calgary
Alberta, Canada

robin@ucalgary.ca

Amolak Ratan Kalra
Institute for Quantum Computing (IQC)
Cheriton School of Computer Science

University of Waterloo
Ontario, Canada

arkalra@uwaterloo.ca

Priyaa Varshinee Srinivasan
University of Calgary

Alberta, Canada
National Institute of Standards and Technology,

Maryland, USA
priyaavarshinee@gmail.com

Star to mesh transformations are well-known in electrical engineering, and are reminiscent of lo-
cal complementation for graph states in qudit stabilizer quantum mechanics. This paper describes a
rewriting system for resistor circuits over any positive division rig using general star to mesh trans-
formations. We show how these transformations can be organized into a confluent and terminating
rewriting system on the category of resistor circuits. Furthermore, based on the recently established
connections between quantum and electrical circuits, this paper pushes forward the quest for ap-
proachable normal forms for stabilizer quantum circuits.

1 Introduction

Electrical circuits are well-studied and, indeed, the basis of an eponymous engineering discipline. One
would therefore expect that there is not much more that can be usefully said about the simplest and
most basic of these circuits, namely circuits consisting of just resistors. However, it turns out that there
is always more to say! Indeed, it seems possible that modern mathematical methods can even provide
new insight into what is an old and well-studied subject. Furthermore, by considering resistor networks
with resistance values in finite fields – which is not the most natural direction of generalization from an
electrical engineering perspective – has a tantalizing connection to the theory of qudit stabilizer quantum
mechanics.

A categorical description for electrical circuits was provided in Brendan Fong’s thesis [8], described
in a paper with John Baez [3], and was also the subject of Brandon Coya’s thesis [7]. Following the work
of Cole Comfort and Alex Kissinger [6], the current authors with Shiroman Prakash investigated the
relationship between electrical circuits and quantum circuits [5]. There it was noted that the structure of
parity check matrices arising from resistor networks and graph states are precisely the same. This work,
in turn, relied on the developments of Graphical Linear Algebra [4] where it was realized that there was
a natural encoding of resistors (and electrical circuits) into categories of linear relations.

Resistor networks (or circuits) form a hypergraph category, [9], which we call Resist: this is a sym-
metric monoidal category in which each object is a commutative Fröbenius algebra (coherent with the
tensor product). It is an open issue as to whether the equality of maps in Resist can in general be resolved
by a simple rewriting system [2]. We resolve this question in this article for resistor circuits over a posi-
tive division rig. Our rewriting system uses an important identity for electrical circuits of resistors called

http://dx.doi.org/10.4204/EPTCS.397.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

R.Cockett, A.R Kalra, P. Srinivasan 71

the star/mesh or (Y/∆) identity, which asserts that a “star-shaped” circuit (with n-points) is equivalent
to a “mesh-shaped” circuit (on n points). This is a classical observation in electrical engineering with
proofs going back almost a century [16].

While it is well-known that the (Y/∆)3 transform for three nodes is a two-way identity, in the sense
that any three pointed star can be transformed into a triangular mesh and conversely any such mesh can be
transformed into a star, this fails for n > 3. It fails for a simple reason: meshes of resistors with n-nodes
when n > 3 have more degrees of freedom than stars with n-nodes. Meshes on n-nodes have n(n−1)/2
resistors while stars have only n: only at n = 3 do they have the same number of resistors! Thus, it is
not the case that every n-mesh is be equivalent to a n-star for n > 3. However, it does remain the case
that (for every n ∈ N) every n-star can be transformed into an equivalent n-mesh, thereby, suggesting a
natural orientation for these identities.

Not surprisingly the normalizing procedure we introduce using the general star/mesh identity is ori-
ented in the star to mesh direction: we prove that this forms part of a confluent rewriting system on the
category of resistor circuits, Resist. Regrettably, this rewriting does not make the circuits more efficient
in terms of hardware real-estate, however, it certainly does provide a simple, easily automated, decision
procedure for equality. The resulting normal form for circuits is a family of meshes (with “extra inputs”);
a form foreshadowed not only by the work in [8, 3, 7] but also in the work using parity matrices [5].

While this paper provides a rewriting system for resistor circuits in which the conductances are taken
from an arbitrary positive division rig, a more desirable objective would be to show that our results
hold for all division rigs. All fields, including finite fields, are examples of division rigs. Resistors
over finite fields can be interpreted as (special) stabilizer quantum circuits [12]: thus, obtaining such a
generalization would provide normal forms for these quantum circuits which in turn could possibly be
generalized to arbitrary stabilizer circuits.

We choose positive rigs in our formulation because the normalization procedure demand division by
sums, hence, in a non-positive rig one can possibly run into a division by zero situation during rewriting.
Clearly, R>0, the usual “base” for resistors in electrical engineering is a positive division rig. For our
normalization procedure, we have also chosen to using conductances rather than impedances (or resis-
tances) of resistors in an attempt to simplify the calculations. However, the calculation in its impedance
form may also provide some advantages as there is only one case in which division by a sum may occur
— during a parallel rewrite. Unfortunately, simply switching to impedance form does not quite suffice
to allow the generalization to arbitrary division rigs!

Reducing resistor networks using series, parallel, and (Y-∆) transformations, or a combination of
these to eliminate the internal nodes of the network is a well-studied problem in electrical engineering.
Indeed, there exist several studies on general methods and efficient algorithms to automate the reduction
process of large resistor networks [15, 10, 11, 14]. However, to the best of our knowledge, a terminating
confluent rewriting system for such networks is yet to be found and have been suggested not to exist
due to the inherent directionality of the reduction rules [2]. The main contributions of this paper are
a categorical presentation of resistor networks as hypergraph categories, and a terminating confluent
rewriting system for these networks based on star-mesh transformations.

Notation: Throughout this paper composition is written in diagrammatic order: f g means apply f
followed by g. The string diagrams are to be read from top to bottom (following the direction of gravity)
or left to right.

72 Normalizing Resistor Networks

2 Background

2.1 Spider Rewriting

A category is a hypergraph category in case it is a symmetric monoidal category in which every object
is coherently a special commutative Fröbenius algebra, [9], see Appendix A for details. There is a well-
known rewriting system on any hypergraph category, often called “spider” rewriting, which normalizes
Fröbenius operations, ◦m

n , called “spiders” which have m inputs and n outputs (whose order does not
matter). Within this rewriting system, two spiders which are connected can then be amalgamated to form
a bigger spider, see equation Spider-(a). The “special” rule allows loops, to be eliminated, see equation
Spider-(b). The main rewriting rules for spiders are:

[Spider] (a) (b)

The following unusual rewrite is an expansion which replaces a wire with a wire with a ◦1
1 junction:

[Expansion]

Clearly this, as a rewrite, can be performed indefinitely, however, an expansion is only used when
there are no rewrites which can immediately undo it: thus, expansion rules are used only irreducibly. For
example, an expansion of a wire on which there is already a spider can always be reduced and so is not
irreducible.

The spiders ◦0
1, ◦1

0, and ◦1
1 are given by the unit, the counit, and the identity maps respectively. The

spiders ◦0
2 and ◦2

0 are given as follows:

R.Cockett, A.R Kalra, P. Srinivasan 73

A few examples of the spider rewriting are as follows:

(a) (b)

2.2 Rigs

The category ResistR is built atop a rig, R, which must satisfy some special properties: the elements of
the rig will represent conductances (recall we shall work with conductances rather than impedances) as
this makes for slightly simpler calculations. This means that the rule for amalgamating parallel resistors
is achieved by simply adding their conductances. However, composing resistors in series then becomes
more complicated and uses the ability to “divide”.

Recall that a rig is a “ring without negatives” in the sense that, under addition it is a commutative
monoid, and under multiplication a monoid. These operations must satisfy the distributive laws: r · (p+
q) = r · p+ r ·q, (p+q) · r = p · r+q · r, and 0 · r = 0 = s ·0. Here we shall consider only commutative
rigs in which p ·q = q · p. The paradigmatic and initial rig is the rig of natural numbers N.

A division rig is a rig in which all non-zero elements have a multiplicative inverse. Fields are clearly
examples of division rigs as are the positive rationals, Q>0, and the positive reals, R>0. Furthermore, the
two element lattice with join as addition and meet as multiplication is also a division rig.

A rig is positive if x+y = 0 implies that both x = 0 and y = 0. Q≥0, R≥0, and the two element lattice
are all positive division rigs in this sense. However, fields and, in particular, finite fields are not positive
rigs.

Another important example of a positive division rig is the so called “tropical” rig, (R∪{−∞},∨,+),
where the addition of the rig uses the maximum (with unit −∞) and multiplication uses addition (with
−∞ as a zero).

Below we show how to build a category of resistors based on a positive division rig, R.

3 The category ResistR

Definition 3.1. The category ResistR, where R is a positive division rig, is a hypergraph category that
consists of:
Objects: Natural numbers

Maps: Generated by conductances y : 1−→ 1 where y ∈ R with y 6= 0 and “junctions” ◦n
m.

Together with the [Spider] rules, the maps satisfy the following three identities (and a family of
star-mesh identities):

[Self−adjoint] [Short circuit]

74 Normalizing Resistor Networks

[Parallel]

Thus, resistors are self-adjoint. The [Short circuit] rule states that if there is an infinite conductance
in parallel with a conductance of any finite value, the current would take the path of “least resistance” can
flow through the infinite conductance wire. The [Parallel rule] is used to collapse a number of parallel
conductance into one conductance. A wire may be thought of as a resistor with infinite conductance.

The resistors in addition satisfy a family of star-mesh identities, (Y/∆)n. Each of these identities
equates a star resistor network, that is a network which has one internal node (a node which has connec-
tions only within the circuit) to a completely connected graph of resistors with no internal nodes which
is referred to as a mesh.

Figure 1: n-node star network

Given an n-node star network as shown in Figure 1, the corresponding mesh network consists of a
completely connected graph with nodes 1,2,3, · · · ,n in which the edge between each pair of nodes i and
j have conductance value,

Yi j =
yiy j

∑
n
k=1 yk

(3.1)

A few special cases of the star-mesh transformation are shown below:

(Y/∆)0 (Y/∆)1 (Y/∆)2 (Y/∆)3

4 Rewriting for ResistR

Given any resistor circuit with non-zero conductance on each wire, one can reduce the circuit to a family
of meshes, thus to a normal form, by removing all the parallel resistors and the internal nodes using the
identities of ResistR. Our goal in this section is to prove that the resulting rewriting systems terminates
and is confluent, which is the main result of this paper. In order to prove the main result, we observe the
following.

R.Cockett, A.R Kalra, P. Srinivasan 75

Lemma 4.1. The unit and star-mesh critical pairs in ResistR resolve.

Proof. Consider the star network composed on one of its outgoing edges with the unit, see circuit (a).

(a) (b)

To rewrite circuit (a), node b shall be eliminated first by applying (Y/∆)1 or node a shall be elimi-
nated first by applying (Y/∆)m+1, thereby resulting in a critical pair.

Resolving the node b first by applying (Y/∆)1 results in an m-node star network (with one internal
node a), see circuit (b) above. Applying (Y/∆)m to circuit (b) to eliminate node a results in a mesh in
which for each pair of nodes 1 ≤ i, j ≤ m, the resistor edge connecting them has conductance Y ba

i j with
value:

Y ba
i j =

yiy j

∑
m
k yk

On the other hand, resolving node a first by applying (Y/∆)m+1 results in a mesh network with m
external nodes, each one of which are connected to the internal node b, see the figure below. In the
resulting circuit, each external node i is connected to node b via a resistor with conductance Y a

ix, see
equation 4.1-(a). Every pair of external nodes i and j are connected by a resistor with conductance Y a

i j,
see 4.1-(b).

(a) Y a
i j =

yiy j

∑
m
k yk + x

(b) Y a
ix =

yix
∑

m
k yk + x

(4.1)

Now, applying (Y/∆)m to resolve node b in the resulting circuit, leads to parallel conductances Y a
i j

and Y ab
i j between any two nodes 1≤ i, j ≤ m, see the diagram below.

The value of Y ab
i j is computed as follows:

Y ab
i j =

Y a
ixY

a
jx

∑
m
k Y a

kx
=

yixy jx
(∑m

k yk+x)2

∑
m
k ykx

(∑m
k yk+x)

=

yiy jx
(∑m

k yk+x)

(∑m
k yk)

=
yiy jx

(∑m
k yk)(∑

m
k yk + x)

Combining the parallel edges,

Y a
i j +Y ab

i j =
yiy j

∑
m
k yk + x

+
yiy jx

(∑m
k yk)(∑

m
k yk + x)

=
yiy j(∑

m
k yk)+ yiy jx

(∑m
k yk)(∑

m
k yk + x)

=
yiy j(∑

m
k yk + x)

(∑m
k yk)(∑

m
k yk + x)

=
yiy j

(∑m
k yk)

= Y ba
i j

76 Normalizing Resistor Networks

Thus the two orders of rewriting the circuit in diagram (a) produce equivalent results.

Lemma 4.2. The parallel and star-mesh critical pairs in ResistR resolve.

Proof. Consider the star network composed with two of its edges connected in parallel, see circuit (a).

(a) (b)

To rewrite circuit (a), one can first apply [Parallel] rewrite rule resulting in circuit (b). Applying
(Y/∆)n−1 on circuit (b) results in a mesh with n− 1 nodes with conductance value between any two
nodes as follows: For all 2≤ j,k ≤ n−1,

(a) Y1k =
(y1 + y2)yk

∑
n
i yi

(b) Yjk =
y jyk

∑
n
i yi

Alternatively, to rewrite circuit (a), one can apply the spider [Expansion] rule resulting in circuit (c)
shown below. Applying, (Y/∆)n on circuit (c), results in n-node mesh with a parallel edge of infinite
conductance between nodes 1 and s as shown in circuit (d). Applying [Short circuit] rule on circuit (d)
results in parallel edge between node 1, and any other node k where 2 ≤ k ≤, see circuit (f). In the
pictures below we use σ to denote the sum of the conductances, σ = ∑

n
i=1 yi

(c) (d) (f)

Using [Parallel] rule in the mesh, for all 2≤ k ≤ n−1,

Y1k =
(y1 + y2)yk

∑
n
i yi

Moreover, by (Y/∆)n rule, for all 2≤ j,k ≤ n−1,

Yjk =
y jyk

∑
n
i yi

Lemma 4.3. The star-mesh critical pairs in ResistR can be resolved.

Proof. Consider the circuit shown below. We must show that eliminating node a first by applying
(Y/∆)m+1 and then node b by applying (Y/∆)n+m yields the same result as eliminating node b first
by applying (Y/∆)n+1 and then node a by applying (Y/∆)n+m.

R.Cockett, A.R Kalra, P. Srinivasan 77

Note that, in order to rewrite a star network all its arms must have non-zero conductances (these
would result in an open circuit) nor can there be any infinite conductances (these would be a bare wire).

We first develop a general algorithm for naming the new edges resulting from each rewrite of the
circuit. The algorithm is as follows:

Algorithm for labelling edges:

1. At each step, the new edges always carry the names of the eliminated nodes as superscript in the
order of their elimination.

2. The subscripts (in general) refer to the index of resistors being combined – Y a
i j is given by combin-

ing yi and y j by eliminating a with i ≤ j; combining the edges Y a
ix and Y a

jx by eliminating b gives
Y ab

i j ; Y a
ix is given by combining the edge yi with x eliminating node a.

3. Whenever only ‘yi’ resistors are combined create to a new edge, the new edge carries label ‘Y’
with appropriate super and subscripts; label ‘ϕ’ means a y and a u resistor are combined; label ‘U’
means only u resistors have been combined.

To make the naming procedure clear, we consider a simple case shown in Figure 2:

Figure 2: Node a and node b connected by resistor x

Two possible ways of reducing the circuit in Figure 2 are shown below:
Eliminate internal node a followed by internal node b:

(Y/∆)3
====⇒ (Y/∆)4

====⇒ [Parallel]
=====⇒

Eliminate internal node b followed by internal node a:

(Y/∆)3
====⇒ (Y/∆)4

====⇒ [Parallel]
=====⇒

78 Normalizing Resistor Networks

The two ways of reducing the circuit are equal if:

for 1≤ i, j ≤ 2, ϕ
ab
i j = ϕ

ba
i j

for 1≤ i, j ≤ 2, Uab
i j =Ub+ba

i j

for 1≤ i, j ≤ 2, Y a+ab
i j = Y ba

i j

Following this approach, the two ways of reducing the general circuit (given in the beginning of this
proof) are equal if:

for 1≤ i≤ m, 1≤ j ≤ n ϕ
ab
i j = ϕ

ba
i j (4.2)

for 1≤ i, j ≤ n Uab
i j =Ub+ba

i j (4.3)

for 1≤ i, j ≤ m Y a+ab
i j = Y ba

i j (4.4)

where,

for 1≤ i, j ≤ m, Y a+ab
i j = Y a

i j +Y ab
i j for 1≤ i, j ≤ n, Uba+a

i j =Ub
i j +Uba

i j

for 1≤ i≤ m and 1≤ j ≤ n, ϕ
ab
i j =

Y a
ixu j

∑
n
k uk +∑

m
k Y a

kx

for 1≤ i≤ m and 1≤ j ≤ n, ϕ
ba
i j =

yb
i Ub

jx

∑
m
k yk +∑

n
k Ub

kx

for 1≤ i, j ≤ m, Y ab
i j =

Y a
ixY

a
jx

∑
n
k uk +∑

m
k Y a

kx

for 1≤ i, j ≤ n, Uab
i j =

uiu j

∑
n
k uk +∑

m
k Y a

kx

for 1≤ i, j ≤ m, Y a
i j =

yiy j

∑
m
k yk + x

for 1≤ i≤ m, Y a
ix =

yix
∑

m
k yk + x

for 1≤ i, j ≤ n, Uba
i j =

Ub
ixU

b
jx

∑
m
k yk +∑

n
k Ub

kx

for 1≤ i, j ≤ m, Y ba
i j =

ya
i ya

j

∑
m
k yk +∑

n
k Ub

kx

for 1≤ i, j ≤ n, Ub
i j =

uiu j

∑
n
k uk + x

for 1≤ i≤ n, Ub
ix =

uix
∑

n
k uk + x

Now, proving 4.2, ϕab
i j = ϕba

i j :

ϕ
ab
i j =

yix
∑

m
k yk+x u j

∑
n
k uk +∑

m
k

ykx
yk+x

=
yixu j

(∑n
k uk)(∑

m
k yk + x)+∑

m
k ykx

=
yixu j

(∑m
k yk)(∑

n
k uk)+∑

n
k ukx+∑

m
k ykx

=
yixu j

∑
n
k ukx+∑

m
k yk(∑

n
k uk + x)

=

yixu j

∑
n
k uk+x

∑
n
k ukx

∑
n
k uk+x +∑

m
k yk

=
yiUb

jx

∑
n
k Ub

kx +∑
m
k yk

= ϕ
ba
i j

Now, proving 4.3, Uab
i j =Ub+ba

i j :

R.Cockett, A.R Kalra, P. Srinivasan 79

Uab
i j =

uiu j

∑
n
k uk +∑

m
k Y a

kx
=

uiu j

∑
n
k uk +

∑
m
k Ykx

∑
m
k yk+x

=
uiu j

∑
n
k uk(∑

m
k yk + x)+∑

m
k Ykx

(∗)
=

uiu j

∑
m
k yk(∑

n
k uk + x)+∑

n
k ukx

=

uiu j

∑
n
k uk+x(∑

m
k yk + x)

∑
m
k yk +

∑
n
k ukx

∑
n
k uk+x

(4.5)

For step (∗), see computation of denominator in the proof of 4.2, ϕab
i j = ϕba

i j .

Ub+ba
i j =Ub

i j +Uba
i j =

uiu j

∑
n
k uk + x

+

uiu jx2

(∑n
k uk+x)2

∑
m
k yk +

∑
n
k ukx

∑
n
k uk+x

=
uiu j

(
∑

m
k yk +

∑
n
k ukx

∑
n
k uk+x

)
+
(

uiu jx2

∑
n
k uk+x

)
(∑n

k uk + x)
(

∑
m
k yk +

∑
n
k ukx

∑
m
k yk+x

)
=

uiu j

(
∑

m
k yk +

∑
n
k ukx

∑
n
k uk+x +

x2

∑
n
k uk+x

)
(∑n

k uk + x)
(

∑
m
k yk +

∑
n
k ukx

∑
n
k uk+x

) =

uiu j

∑
n
k uk+x

(
∑

m
k yk +

∑
n
k ukx

∑
n
k uk+x +

x2

∑
n
k uk+x

)
(

∑
m
k yk +

∑
n
k ukx

∑
n
k uk+x

) (4.6)

The denominators of equations 4.5 and 4.6 are the same. Hence, multiplying the numerators of these
equations by ∑

n
k uk+x
uiu j

, it suffices to prove that:

m

∑
k

yk +
∑

n
k ukx

∑
n
k uk + x

+
x2

∑
n
k uk + x

=
m

∑
k

yk + x
(

∑
n
k uk + x

∑
n
k uk + x

)
=

m

∑
k

yk + x (4.7)

The proof for equation 4.4 is analogous.

The following is the main result of this paper:
Theorem 4.4. ResistR has a confluent terminating rewriting system on maps.

Proof. First observe that the reduction using rewriting rules of ResistR must terminate. This may be
observed by keeping track of the number of nodes N (after expansion) and the number of parallel arrows P
and using lexicographical ordering on the pairs (N,P). The [Spider] and [Parallel] rules reduce both N and
P. The star-mesh family of identities reduce the number of nodes N as an internal node is always removed
– note that the star-mesh rule, on the other hand, can increase the number of parallel connections. As
the lexicographical ordering on N×N is a well-ordering, this shows that the reduction process must
eventually terminate.

Since the rewriting terminates, local confluence, that is resolutions of diverging single step rewrites,
implies global confluence. Hence, it suffices to prove the local confluence property for the distinct pairs
of terms produced by overlapping divergent one step rewrites: these are often called critical pairs. This
amounts to proving that the order of reducing overlapping rewrites does not matter. The critical pairs
(excluding the spider rewrites) that occur in the this rewriting system are drawn below:

(a) Overlapping [Parallel] rewrites:
Rewriting the network on the left requires m− 1 overlapping
applications of the [Parallel] rule. Since, combining two par-
allel resistors involves adding their conductances, and addition
is associative, all the orders of application of the [Parallel] rule
yield the same final circuit. Hence, local confluence holds in
this case.

80 Normalizing Resistor Networks

(b) Overlapping (Y/∆)1 and (Y/∆)2 rewrite:
To rewrite the network on the left, one may apply (Y/∆)1 to
eliminate node b first, or apply (Y/∆)2 to eliminate node a first.
This results in a critical pair ((Y/∆)1,(Y/∆)2) in the rewriting
process of such networks. However, the critical pair is locally
confluent, see below:

(Y ∆)2
===⇒ (Y ∆)1

===⇒

(Y ∆)1
===⇒ (Y ∆)1

===⇒

(c) Overlapping (Y/∆)1 and star-mesh rewrite:
To rewrite the network on the left, one may apply (Y/∆)1
to eliminate node b first (and then apply (Y/∆)m to elimi-
nate a), or apply (Y/∆)m+1 to eliminate node a first (and then
apply (Y/∆)m to eliminate b). This results in a critical pair
((Y/∆)1,(Y/∆)m) in the rewriting of such networks. However,
by Lemma 4.1, local confluence holds for this critical pair.

(d) Overlapping [Parallel] and star-mesh rewrites:
To rewrite the network on the left, [Parallel] to combine resis-
tors y1 and y2 first (followed by (Y/∆)n−1 to eliminate node
x), or apply (Y/∆)n may be applied to eliminate node x first.
This results in a critical pair ([Parallel],(Y/∆)n) in the rewrit-
ing process of such networks. However, by Lemma 4.2, local
confluence holds for this critical pair.

(e) Overlapping two star-mesh rewrites:
To rewrite the network on the left, (Y/∆)n+1 may be applied
first to eliminate node b first (followed by (Y/∆)m+n to elimi-
nate node a), or (Y/∆)m+1 may be applied to eliminate node a
first (followed by (Y/∆)m+n to eliminate node b). This results
in a critical pair ((Y/∆)n+1,(Y/∆)m+1) in the rewriting process
of such networks. However, by Lemma 4.3, local confluence
holds for this critical pair.

An immediate consequence is:

Corollary 4.5. Modulo the decidability of the positive division rig R, ResistR has a decidable equality
by reduction to normal form.

R.Cockett, A.R Kalra, P. Srinivasan 81

5 Discussion

In this paper we have provided a normal form for resistor networks over a positive division rig and,
thereby, a decision procedure for equality of resistor circuits (given decidability of equality for the rig).
Even though modest, as far as we know, ours is the first such result in the literature.

Of course, our motivation came from the difficulty of working with the existing ‘normal forms’ for
stabilizer circuits [1]. As pointed out by Kissinger in [13], these normal forms for stabilizer circuits are
hard to work with and “almost a decade after completeness was proven for the stabiliser fragment of the
ZX calculus, new ideas are still needed”. Based on the recently established connection between quantum
and electrical circuits [6, 5], our thought was that, studying simpler cases such as resistor circuits might
provide new insights into normal forms for stabilizer circuits.

An interesting and a more challenging question is whether the results in this paper can be generalized
to arbitrary division rigs so as to cover the ‘resistor’ case arising from qudit stabilizer quantum mechanics.
As has been mentioned, to apply these ideas to stabilizer circuits a necessary step is to generalize these
results to division rigs and so, in particular, to finite fields. The technical difficulty of applying these
ideas verbatim is the question of how one handles zeros and divisions by zero.

An example of this difficulty over a finite field, arises when resolving the critical pair (Y/∆)1 with
(Y/∆)n (for n≥ 3) (essentially Lemma 4.1 above). The rewriting of the n-star to an n-mesh can involve
a division by zero (when ∑

n
i=1 yi = 0): it is tempting to think that this should be interpreted as giving

“infinite conductances” in the mesh. However, removing a point of the star using (Y/∆)1 will also
remove the division by zero in the subsequent (Y/∆)n−1 rewriting showing such an interpretation is not
valid.

The point is that for finite fields and division rings the star/mesh transformations are only valid when
the sum of the conductances of the star is non-zero. This, of course complicates the rewriting story and
also reopens the question what a convenient presentation of resistor circuits over finite fields might be!
We leave resolving these issues for future work.

A surprisingly basic – and as far as we know open – question which arises from this work concerns
whether there is a finite presentation of ResistR in terms of generators and relation. In order to provide
a presentation for ResistR, we assume an infinite family of star-mesh identities, (Y/∆)n, for each n ∈ N.
While we have shown that this infinite set of identities completely characterize equality between circuits,
it is an open question whether there is a finite presentation of the category. We conjecture that there isn’t
one.

6 Acknowledgements

ARK would like to thank NTT Research for financial and technical support. Research at IQC is supported
in part by the Government of Canada through Innovation, Science and Economic Development Canada
(ISED).

82 Normalizing Resistor Networks

References
[1] Miriam Backens (2016): Completeness and the ZX-calculus. Ph.D. thesis, Oxford University,

doi:10.48550/arXiv.1602.08954. ArXiv preprint arXiv:1602.08954.
[2] John Baez & Brendan Fong (2015): Circuits, Categories and Rewrite rules. Available at https://math.

ucr.edu/home/baez/networks_warsaw/circuits_web_warsaw.pdf. Higher-Dimensional Rewriting
and Applications, Warsaw, June 2015.

[3] John C Baez & Brendan Fong (2015): A compositional framework for passive linear networks. arXiv preprint
arXiv:1504.05625, doi:10.48550/arXiv.1504.05625.

[4] Filippo Bonchi, Robin Piedeleu, Pawel Sobociński & Fabio Zanasi (2019): Graphical Affine Alge-
bra. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12,
doi:10.1109/LICS.2019.8785877.

[5] Robin Cockett, Amolak Ratan Kalra & Shiroman Prakash (2022): Categories of Kirchhoff relations. arXiv
preprint arXiv:2205.05870, doi:10.48550/arXiv.2205.05870.

[6] Cole Comfort & Aleks Kissinger (2021): A graphical calculus for Lagrangian relations. arXiv preprint
arXiv:2105.06244, doi:10.4204/EPTCS.372.24.

[7] Brandon Coya (2018): Circuits, Bond Graphs, and Signal-Flow Diagrams: A Categorical Perspective,
doi:10.48550/ARXIV.1805.08290. Available at https://arxiv.org/abs/1805.08290.

[8] Brendan Fong (2016): The algebra of open and interconnected systems. arXiv preprint arXiv:1609.05382,
doi:10.48550/arXiv.1609.05382.

[9] Brendan Fong & David I Spivak (2019): Hypergraph categories. Journal of Pure and Applied Algebra
223(11), pp. 4746–4777, doi:10.48550/arXiv.1806.08304.

[10] D. J. Frank & C. J. Lobb (1988): Highly efficient algorithm for percolative transport studies in two dimen-
sions. Phys. Rev. B 37, pp. 302–307, doi:10.1103/PhysRevB.37.302. Available at https://link.aps.
org/doi/10.1103/PhysRevB.37.302.

[11] Ghassan George Batrouni & Alex Hansen (1988): Fourier acceleration of iterative processes in disordered
systems. Journal of statistical physics 52, pp. 747–773, doi:10.1007/BF01019728.

[12] Amolak Ratan Kalra (2022): The Category of Kirchhoff Relations. Master’s thesis, University of Calgary,
doi:10.11575/PRISM/39953.

[13] Aleks Kissinger (2022): Phase-free ZX diagrams are CSS codes (... or how to graphically grok the surface
code). arXiv preprint arXiv:2204.14038, doi:10.48550/arXiv.2204.14038.

[14] Henning Arendt Knudsen & Sándor Fazekas (2006): Robust algorithm for random resistor net-
works using hierarchical domain structure. Journal of computational physics 211(2), pp. 700–718,
doi:10.1016/j.jcp.2005.06.007.

[15] Joost Rommes & Wil HA Schilders (2009): Efficient methods for large resistor networks. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 29(1), pp. 28–39,
doi:10.1109/TCAD.2009.2034402.

[16] D. W. C. Shew (1947): XXVII. Generalized star and mesh transformations. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 38(279), pp. 267–275,
doi:10.1080/14786444708521594.

https://doi.org/10.48550/arXiv.1602.08954
https://math.ucr.edu/home/baez/networks_warsaw/circuits_web_warsaw.pdf
https://math.ucr.edu/home/baez/networks_warsaw/circuits_web_warsaw.pdf
https://doi.org/10.48550/arXiv.1504.05625
https://doi.org/10.1109/LICS.2019.8785877
https://doi.org/10.48550/arXiv.2205.05870
https://doi.org/10.4204/EPTCS.372.24
https://doi.org/10.48550/ARXIV.1805.08290
https://arxiv.org/abs/1805.08290
https://doi.org/10.48550/arXiv.1609.05382
https://doi.org/10.48550/arXiv.1806.08304
https://doi.org/10.1103/PhysRevB.37.302
https://link.aps.org/doi/10.1103/PhysRevB.37.302
https://link.aps.org/doi/10.1103/PhysRevB.37.302
https://doi.org/10.1007/BF01019728
https://doi.org/10.11575/PRISM/39953
https://doi.org/10.48550/arXiv.2204.14038
https://doi.org/10.1016/j.jcp.2005.06.007
https://doi.org/10.1109/TCAD.2009.2034402
https://doi.org/10.1080/14786444708521594

R.Cockett, A.R Kalra, P. Srinivasan 83

A Hypergraph categories

A category is a hypergraph category in case it is a symmetric monoidal category in which every object
is coherently a special commutative Fröbenius algebra, [9]. This means that each object X in the category
has an associated special Fröbenius algebra structure (X ,∇X : X ⊗X −→ X ,ηX : I −→ X ,∆X : X −→ X ⊗
X ,εX : X −→ I), whose identities are graphically depicted below (with ◦ indicating both the multiplication,
comultiplication, and units):

The comultiplication, the counit, the multiplication and the unit are drawn as follows:

The maps satisfy the following equations and their vertically flipped image:

(a) (b) (c)

(e) (f) (A.1)

The Frobenius structure is not natural but is “coherent” in the sense that the multiplication on the
tensor of two objects is given by ∆X⊗Y := (X⊗Y)⊗(X⊗Y) ex−−→

'
(X⊗X)⊗(Y ⊗Y) ∆X ⊗∆Y−−−−−→ X⊗Y and

the comultiplication and units are similarly given.
Hypergraph categories are automatically compact closed: each object is self-dual. This has the effect

that the directionality of inputs and outputs is not as important as the connectivity.

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 84–97, doi:10.4204/EPTCS.397.6

© J. Dorta, S. Jarvis, and N. Niu
This work is licensed under the
Creative Commons Attribution License.

Monoidal Structures on Generalized Polynomial Categories

Joseph Dorta
Louisiana State University

Baton Rouge, LA, USA
jdorta1@lsu.edu

Samantha Jarvis
CUNY Graduate Center

New York, NY, USA
sjarvis@gradcenter.cuny.edu

Nelson Niu
University of Washington

Seattle, WA, USA
nsniu@uw.edu

Recently, there has been renewed interest in the theory and applications of de Paiva’s dialectica cat-
egories and their relationship to the category of polynomial functors. Both fall under the theory of
generalized polynomial categories, which are free coproduct completions of free product comple-
tions of (monoidal) categories. Here we extend known monoidal structures on polynomial functors
and dialectica categories to generalized polynomial categories. We highlight one such monoidal
structure, an asymmetric operation generalizing composition of polynomial functors, and show that
comonoids with respect to this structure correspond to categories enriched over a related free coprod-
uct completion. Applications include modeling compositional bounds on dynamical systems.

1 Introduction

Categories whose morphisms (often referred to as lenses) model bidirectional data flows are ubiquitous
in applied category theory, with applications to such diverse fields as logic [21, 27], database manage-
ment [3, 11, 14], game theory [4, 5, 13], dynamical and distributed systems [16, 19, 23–25], and machine
learning [7, 9, 10]. Moss observed that we can obtain a general class of such categories via free prod-
uct and coproduct completions, universal constructions with convenient concrete characterizations [18].
That is, starting from a category C, we can form a category ΣΠC whose objects are formal coproducts of
products of objects in C, or polynomials in C for short; then the morphisms between these coproducts of
products naturally have both a forward component and a backward component in addition to subsuming
the original morphisms from C. Examples of such generalized polynomial categories include the cate-
gory Poly of polynomial functors, which may be used to model interaction protocols [20]; and a category
whose homogeneous polynomials span a full subcategory equivalent to de Paiva’s dialectica category on
sets, a model for intuitionistic linear logic [21]. We review the construction of ΣΠC and exhibit these
examples in Section 2.

The utility of these examples lies not only in their bidirectional morphisms but also in the assorted
ways in which such morphisms can be combined via monoidal products. There are several ways to lift
a monoidal structure on C to a monoidal structure on ΣΠC. We present two such ways in Section 3—
one classical, given by an iterated Day convolution [8]; and one we believe is new in the literature,
generalizing functor composition in Poly.

Many applications of polynomial functors (such as those in [20]) depend on a remarkable result by
Ahman and Uustalu [2, 3]: the category of comonoids in Poly with respect to the composition product
is equivalent to the category whose objects are small categories and whose morphisms are cofunctors,
as introduced by Aguiar [1]. Our main result, Theorem 4.3, is that Ahman and Uustalu’s statement
naturally generalizes to ΣΠC. By replacing Poly with ΣΠC equipped with our generalized composition
product, comonoids become small enriched categories whose base of enrichment is ΣCop with Day
convolution. Then morphisms of these comonoids generalize cofunctors to the enriched setting in a way

http://dx.doi.org/10.4204/EPTCS.397.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

J. Dorta, S. Jarvis, and N. Niu 85

that coincides with Clarke and Di Meglio’s recent definition of enriched cofunctors [6]. We review the
necessary definitions before presenting this correspondence in Section 4 via an explicit construction.

In Section 5, we take C to be the extended nonnegative reals to demonstrate how morphisms in ΣΠC
may be used to model dynamical systems with boundedness conditions preserved by the generalized
composition product. Such morphisms can be lifted to enriched cofunctors via a right adjoint to the
forgetful functor from comonoids to their underlying objects; we review a few examples before stating
the general result as Theorem 5.6. Finally, we suggest directions for future work in Section 6.

Acknowledgments

The authors are indebted to the mentorship of Valeria de Paiva at the 2022 AMS MRC and to insight and
feedback from our fellow mentees: Charlotte Aten, Colin Bloomfield, Eric Bond, Matteo Capucci, Bruno
Gavranović, Jérémie Koenig, Abdullah Malik, Francisco Rios, Jan Rooduijn, and Jonathan Weinberger.
Additionally, the authors are grateful for the comments provided by the anonymous reviewers.

This material is based upon work supported by the National Science Foundation under Grant Number
DMS 1641020. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National Science Foundation.

2 Free (co)product completions and polynomial categories

We begin by recalling two constructions on a category C: the free product completion and its dual, the
free coproduct completion. Here we follow Moss [18]; we omit proofs for standard results.

Definition 2.1. The free product completion of a category C is the category ΠC, where
• an object, denoted ∏i∈I ci, consists of

– a set I;
– for each i ∈ I, an object ci in C;

• a morphism ϕ : ∏i∈I ci→∏ j∈J d j consists of
– a function ϕ] : J→ I;
– for each j ∈ J, a morphism ϕ j : cϕ] j→ d j in C. ♦

The category C embeds into ΠC as a full subcategory via c 7→Π∗∈1c, where 1 := {∗} is the singleton
set. As implied by the name “free product completion,” the category ΠC equipped with the embedding
C ↪→ΠC is universal among categories D with small products equipped with functors C→ D.

We may alternatively characterize ΠC as follows, using the fact that [C,Set]op equipped with the
Yoneda embedding C ↪→ [C,Set]op is the free limit completion of C and restricting to products.

Proposition 2.2. The category ΠC is equivalent to the full subcategory of [C,Set]op spanned by products
of representable functors.

Definition 2.3. The free coproduct completion of a category C is the category ΣC, where
• an object, denoted ∑i∈I ci, consists of

– a set I;
– for each i ∈ I, an object ci in C;

• a morphism ϕ : ∑i∈I ci→ ∑ j∈J d j consists of
– a function ϕ : I→ J;
– for each i ∈ I, a morphism ϕi : ci→ dϕi in C. ♦

86 Monoidal Structures on Generalized Polynomial Categories

There is a fully faithful functor C ↪→ ΣC sending c 7→∑∗∈1 c. Comparing the definitions, we find that
(ΣCop)op ≈ΠC; in particular, dualizing Proposition 2.2 yields the following.

Proposition 2.4. The category ΣC is equivalent to the full subcategory of [Cop,Set] spanned by coprod-
ucts of representable functors.

The category ΣC equipped with the embedding C ↪→ ΣC is universal among categories D with small
coproducts equipped with functors C→D; in particular ΣC has small coproducts. As for products in ΣC,
we have the following proposition.

Proposition 2.5. If C has all small products, then ΣC has all small products given by a distributive law

∏
i∈I

∑
j∈Ji

ci, j ∼= ∑
j∈∏

i∈I
Ji

∏
i∈I

ci, ji
. (1)

Proof. Eq. (1) holds in Set, so since (co)products are computed pointwise in [Cop,Set], it holds there as
well. When every ci, j is representable, the right hand side is a coproduct of representables, as products of
representables are themselves representable. Hence Eq. (1) also holds in the full subcategory of [Cop,Set]
spanned by coproducts of representables. Then the conclusion follows from Proposition 2.4.

If we freely add products, then freely add coproducts, we obtain the central construction of this paper.

Definition 2.6. The category ΣΠC of polynomials in C is the category where
• an object, denoted ∑i∈I ∏a∈Ai ci,a, consists of

– a set I of positions;
– for each i ∈ I, a set Ai of directions at i;
– a doubly-indexed family (ci,a)i∈I,a∈A of objects of C, called predicates;

• a morphism ϕ : ∑i∈I ∏a∈Ai ci,a→ ∑ j∈J ∏b∈B j d j,b consists of
– an on-positions function ϕ : I→ J;
– for each i ∈ I, an on-directions function ϕ

]
i : Bϕi→ Ai;

– for each i ∈ I and b ∈ Bϕi, an on-predicates map ϕi,b : ci,ϕ]
i b→ dϕi,b. ♦

Unraveling the definitions, we see that ΣΠC is indeed the free coproduct completion of the free
product completion of C. The following characterization of the hom-sets of ΣΠC is immediate.

Proposition 2.7. The hom-sets of ΣΠC are given by

ΣΠC
(
∑
i∈I

∏
a∈Ai

ci,a,∑
j∈J

∏
b∈B j

d j,b

)
∼= ∏

i∈I
∑
j∈J

∏
b∈B j

∑
a∈Ai

C(ci,a,d j,b).

Even though we added products before we added coproducts, Proposition 2.5 ensures that ΣΠC has
small products in addition to having small coproducts and that these products distribute over coproducts.

The construction of ΣΠC generalizes two particularly versatile categories: the category of polynomial
functors and one of de Paiva’s dialectica categories [21]. In the remainder of this section, we review each
of these categories in turn, observing how they arise from categories of polynomials.

The category of polynomial functors

We consider ΣΠC a generalized polynomial category because it generalizes the category Poly of poly-
nomial functors, which we recall below.

J. Dorta, S. Jarvis, and N. Niu 87

Definition 2.8. A polynomial functor p : Set→ Set is a coproduct of representable functors. That is,
there exist I ∈ Set and p[i] ∈ Set for each i ∈ I such that, for yp[i] := Set(p[i],−),

p∼= ∑
i∈I

yp[i].

We call the elements of p(1)∼= I the positions of p and the elements of p[i] the directions of p at i.1 We
denote the category of polynomial functors and the natural transformations between them by Poly. ♦

It turns out that Poly is the category of polynomials in the terminal category 1, consisting of one
object and no non-identity morphisms.

Proposition 2.9. Poly≈ ΣΠ1.

Proof. By definition, Π1 ≈ Setop. Then Proposition 2.4 implies that ΣΠ1 is the full subcategory of
[Set,Set] spanned by coproducts of representables.

Viewing Poly as ΣΠ1, we can characterize the morphisms of Poly as follows.

Example 2.10. A morphism ϕ : p→ q in Poly≈ ΣΠ1 consists of
• an on-positions function ϕ1 : p(1)→ q(1);2

• for each i ∈ p(1), an on-directions function ϕ
]
i : q[ϕi]→ p[i]. ♦

The dialectica category on sets

Rather than working with the entire category of polynomials in C, it is sometimes easier to work with
one of its full subcategories, which we define below.

Definition 2.11. A polynomial in C is homogeneous3 if it can be written in the form

∑
i∈I

∏
a∈A

ui,a,

where the set A does not depend on i ∈ I. We let Hmg(C) denote the full subcategory of ΣΠC spanned
by homogeneous polynomials. ♦

As an example, let 2 denote the walking arrow category, which has two objects ⊥ and > and one
non-identity arrow ⊥→>.

Example 2.12. In the category Hmg(2),
• an object, denoted ∑i∈I ∏a∈A ci,a, consists of

– two sets, I and A;
– for each (i,a) ∈ I×A, an object ci,a ∈ {⊥,>};

• a morphism ϕ : ∑i∈I ∏a∈A ci,a→ ∑ j∈J ∏b∈B d j,b consists of
– a function ϕ : I→ J;
– a function ϕ] : I×B→ A; such that
– for each i ∈ I and b ∈ B, if ci,ϕ](i,b) =>, then dϕi,b =>. ♦

This is precisely de Paiva’s original dialectica category on Set [21].

Proposition 2.13. Hmg(2)≈ Dial(Set).
1The “positions” and “directions” terminology for polynomial functors was introduced by Spivak [25].
2We use a subscript 1 for the on-positions function as it is the 1-component of ϕ as a natural transformation [20].
3The terminology comes from algebra, where a homogeneous polynomial is one whose summands all have the same degree.

88 Monoidal Structures on Generalized Polynomial Categories

3 Monoidal structures on polynomial categories

Most of the applications of Poly and Dial(Set) rely on their monoidal structures; in this section, we will
generalize such structures to ΣΠC. Throughout, let (C,e, ·) be a monoidal category with unit e ∈ C and
product · : C×C→ C. The monoidal structure on C then induces monoidal structures on ΣΠC.

3.1 The parallel product

A monoidal product · on C always induces a monoidal product� on the free colimit completion [Cop,Set]
of C: the Day convolution [8], which agrees with · on the full subcategory C ↪→ [Cop,Set].
Proposition 3.1. The Day convolution � on [Cop,Set] restricts to a monoidal product on the free co-
product completion ΣC of C, yielding a distributive monoidal category (ΣC,e,�).

Proof. The Day convolution is a coend construction and thus preserves coproducts. Hence ΣC is closed
under �, and � distributes over coproducts:(

∑
i∈I

ci

)
�
(

∑
j∈J

d j

)
∼= ∑

i∈I
∑
j∈J

(ci�d j)∼= ∑
(i, j)∈I×J

(ci ·d j). (2)

Eq. (2) tells us how to evaluate � on arbitrary objects in ΣC. We dualize this construction to obtain
an analogous monoidal product on ΠC≈ (ΣCop)op.

Proposition 3.2. There is a monoidal structure on ΠC with unit e whose monoidal product} is given by(
∏
a∈A

ca

)
}
(

∏
b∈B

db

)
∼= ∏

(a,b)∈A×B
(ca ·db).

Thus, to obtain a monoidal structure on ΣΠC, we may first lift the monoidal structure on C to ΠC,
then lift the monoidal structure on ΠC to ΣΠC.

Proposition 3.3. There is a monoidal structure on ΣΠC with unit e whose monoidal product, which we
call the parallel product and denote by ⊗, is given by(

∑
i∈I

∏
a∈Ai

ci,a

)
⊗
(

∑
j∈J

∏
b∈B j

d j,b

)
∼= ∑

i∈I
∑
j∈J

∏
a∈Ai

∏
b∈B j

(ci,a ·d j,b).

Proof. Apply Proposition 3.2 on (C,e,�) to obtain (ΠC,e,}), then apply Proposition 3.1 on (ΠC,e,})
to obtain (ΣΠC,e,⊗).

Example 3.4. To justify our use of the name “parallel product," we consider an example. Let C := 1,
whose unique object we call y. There is a unique monoidal structure on C given by y ·y= y.

Following [20], in ΣΠ1 ≈ Poly, an object ∑i∈I ∏a∈Ai y, which we denote by ∑i∈I y
Ai for short, can

be thought of as an interface, with a number of possible positions from I it could expose and, according
to the position i ∈ I it is currently exposing, a number of possible directions from Ai it could receive.
A morphism ϕ : ∑i∈I y

Ai → ∑i′∈I′ y
A′i′ in Poly can then be viewed as an interaction protocol between

interfaces. On positions, ϕ converts any position i ∈ I that the domain could expose to a position ϕi ∈ I′

for the codomain to expose; then on directions, ϕ converts any direction a′ ∈ A′
ϕi that the codomain could

receive to a direction ϕ
]
i a′ ∈ Ai for the domain to receive.

Then taking the parallel product of two such interaction protocols yields a single interaction protocol
that models the two original protocols simultaneously—or in parallel. More concretely, given interaction

J. Dorta, S. Jarvis, and N. Niu 89

protocols ϕ : ∑i∈I y
Ai → ∑i′∈I′ y

A′i′ and ψ : ∑ j∈J y
B j → ∑ j′∈J′ y

B′j′ , their parallel product ϕ⊗ψ converts
a pair of positions (i, j) ∈ I× J from its domain(

∑
i∈I

yAi
)
⊗
(

∑
j∈J

yB j
)
∼= ∑

(i, j)∈I×J
(y ·y)Ai×B j ∼= ∑

(i, j)∈I×J
yAi×B j

to the pair of positions (ϕi,ψ j) ∈ I′× J′ from its codomain(
∑
i′∈I′

yA′i′
)
⊗
(

∑
j′∈J′

y
B′j′
)
∼= ∑

(i′, j′)∈I′×J′
y

A′i′×B′j′

by applying the on-positions functions of ϕ and ψ in parallel; then converts a pair of directions (a′,b′) ∈
A′

ϕi×B′
ψ j from its codomain to the pair of directions (ϕ]

i a′,ψ]
jb
′) from its domain by applying the on-

directions functions of ϕ and ψ in parallel. ♦

3.2 The composition product

Here we introduce another monoidal structure on ΣΠC induced by the monoidal product on C.

Definition 3.5. The composition product / of two objects in ΣΠC is given by(
∑
i∈I

∏
a∈Ai

ui,a

)
/
(

∑
j∈J

∏
b∈B j

v j,b

)
:= ∑

i∈I
∏
a∈Ai

∑
j∈J

∏
b∈B j

(ui,a · v j,b). ♦

We call this the composition product as it generalizes the composition operation on polynomial func-
tors when C = 1: composing ∑i∈I ∏a∈Ai y with ∑ j∈J ∏b∈B j y yields the functor ∑i∈I ∏a∈Ai ∑ j∈J ∏b∈B j y.
Distributivity, as given by Eq. (1), yields the following alternate form for this product.

Lemma 3.6. The composition product can be rewritten as(
∑
i∈I

∏
a∈Ai

ui,a

)
/
(

∑
j∈J

∏
b∈B j

v j,b

)
∼= ∑

i∈I
∑

j : Ai→J
∏
a∈Ai

∏
b∈B ja

(ui,a · v ja,b).

Proposition 3.7. There is a monoidal category (ΣΠC,e,/).

Proof. Routine, but we will describe the behavior of / on morphisms: given

ϕ : ∑
i∈I

∏
a∈Ai

ui,a→ ∑
k∈K

∏
c∈Ck

wk,c and ψ : ∑
j∈J

∏
b∈B j

v j,b→ ∑
`∈L

∏
d∈D`

x`,d ,

the morphism

ϕ /ψ : ∑
i∈I

∑
j : Ai→J

∏
a∈Ai

∏
b∈B ja

(ui,a · v ja,b)→ ∑
k∈K

∑
` : Ck→L

∏
c∈Ck

∏
d∈D`c

(wk,c · x`c,d)

(whose domain and codomain we have rewritten using Lemma 3.6) consists of the following data:

90 Monoidal Structures on Generalized Polynomial Categories

• an on-positions function ϕ /ψ : ∑i∈I JAi → ∑k∈K LCk consisting of:
– a function I→ K given by ϕ;
– for each i∈ I, a function JAi→ LCϕi given by precomposing ϕ

]
i : Cϕi→ Ai and postcomposing

ψ : J→ L;
• for each i ∈ I and j : Ai→ J, sent to ϕi ∈ K and ψ jϕ]

i : Cϕi→ L by the on-positions function, an
on-directions function (ϕ /ψ)]i, j : ∑c∈Cϕi D

ψ jϕ]
i c→ ∑a∈Ai B ja consisting of:

– a function Cϕi→ Ai given by ϕ
]
i ;

– for each c ∈Cϕi, a function D
ψ jϕ]

i c→ B jϕ]
i c given by ψ

]

jϕ]
i c

;

• for each i ∈ I, j : Ai→ J,c ∈Cϕi, and d ∈D
ψ jϕ]

i c, sent to ϕ
]
i : Cϕi→ Ai and ψ

]

jϕ]
i c

: D
ψ jϕ]

i c→ B jϕ]
i c

by the on-directions function, an on-predicates map (ϕ /ψ)i, j,c,d : ui,ϕ]
i c · v j′,ψ]

j′d
→ wϕi,c · xψ j′,d

(here j′ := jϕ]
i c) given by ϕi,c ·ψ j′,d .

4 Composition comonoids as enriched categories

Our main result concerns the category of comonoids in (ΣΠC,e,/). We will show that it is equivalent to
a category whose objects are enriched categories and whose morphisms are enriched cofunctors. While
the former may be more familiar than the latter, we review both these definitions here.

Recall the definition of a category enriched over a monoidal category from Kelly [15]. We restate it
here for the special case where the enriching category is (ΣCop,e,�).
Definition 4.1. A small (ΣCop,e,�)-enriched category A, with� defined as in Proposition 3.1, consists
of the following data:

• a set ObA (or just A) of objects;
• for each x,y ∈ ObA, a hom-family ∑ f : x→y | f | ∈ ΣCop consisting of:

– a set A(x,y) of morphisms, i.e. a hom-set, with f ∈A(x,y) denoted by f : x→ y;
– for each morphism f : x→ y, a weight | f | ∈ C;

• for each x ∈ ObA, a morphism e→ ∑ f : x→x | f | in ΣCop consisting of:
– an identity morphism idx : x→ x;
– an identity map ηx : | idx| → e from C;

• for each x,y,z ∈ ObA, a morphism

∑
f : x→y

∑
g : y→z

(| f | · |g|)→ ∑
h : x→z

|h|

in ΣCop consisting of, for each f : x→ y and g : y→ z:
– a composite morphism g f : x→ z;
– a composite map µ f ,g : |g f | → | f | · |g| from C.

Here w,x,y,z ∈ ObA and f : w→ x, g : x→ y, and h : y→ z must satisfy the following:
• unitality, that f idw = f = idx f and the following diagram commutes in C, up to unitors:

| idw| · | f | | f | | f | · | idx|

| f |
ηw·| f |

µidw , f µ f ,idx

| f |·ηx

J. Dorta, S. Jarvis, and N. Niu 91

• associativity, that (hg) f = h(g f) and the following commutes in C, up to associators:

|hg f | | f | · |hg|

|g f | · |h| | f | · |g| · |h|

µ f ,hg

µg f ,h | f |·µg,h

µ f ,g·|h|

♦

By Proposition 3.1, the monoidal category (ΣCop,e,�) is distributive, so there exists a notion of a
(ΣCop,e,�)-enriched cofunctor as introduced by Clarke and Di Meglio [6]. We restate the definition of
an enriched cofunctor in this special case here.

Definition 4.2. A (ΣCop,e,�)-enriched cofunctor Φ : A 9 B between small (ΣCop,e,�)-enriched
categories A and B consists of the following data:

• a function Φ : ObA→ ObB;
• for each a ∈A,b ∈ B, and morphism f : Φa→ b from B:

– a morphism Φ
]
a f : a→ x from A with Φx = b;

– a morphism Φa, f : |Φ]
a f | → | f | from C.

Here a,x ∈A; b,b′ ∈ B; f : Φa→ b with Φ
]
a f : a→ x; and g : b→ b′ must satisfy:

• preservation of identities, that Φ
]
a(idΦa) = ida and the following commutes in C:

| ida| | idΦa|

e
ηa

Φa,idΦa

ηΦa

• preservation of composites, that Φ
]
a(g f) = Φ

]
x(g)Φ

]
a(f) and the following commutes in C:

|Φ]
a(g f)| |Φ]

a f | · |Φ]
xg|

|g f | | f | · |g|

Φa,g f

µ
Φ
]
a f ,Φ]

xg

Φa, f ·Φx,g

µ f ,g

♦

There is then a category whose objects are small (ΣCop,e,�)-enriched categories and whose mor-
phisms are (ΣCop,e,�)-enriched cofunctors. While enriched cofunctors differ from enriched functors, it
is nevertheless the case that an isomorphism in this category corresponds to our usual notion of isomor-
phism of enriched categories as defined by a pair of invertible enriched functors.

The following is a generalization of a result by Ahman and Uustalu [2, 3]: that the category of
polynomial comonads is equivalent to the category of small categories and cofunctors, corresponding to
the case where C = 1 (the Set-enriched case, for Σ1op ≈ Set) in the theorem below.

Theorem 4.3. The category of comonoids in the monoidal category (ΣΠC,e,/) is equivalent to the
category of small (ΣCop,e,�)-enriched categories and enriched cofunctors.

Proof. First, we describe how to construct a comonoid in (ΣΠC,e,/) from each (ΣCop,e,�)-enriched
category; the inverse construction will then be evident. Given a small (ΣCop,e,�)-enriched category A,

92 Monoidal Structures on Generalized Polynomial Categories

define a polynomial in C with positions ObA, directions Ai := ∑ j∈AA(i, j) for i ∈A, and predicate
|a| ∈C for i∈A and (j,a : i→ j)∈Ai. In other words: positions are objects, directions are morphisms of
a given domain, and predicates are the morphisms’ weights. We endow this polynomial ∑i∈A ∏a : i→_ |a|
(where a : i→ _ denotes a morphism a in A with domain i and arbitrary codomain) with a comonoid
structure as follows. Its counit

ε : ∑
i∈A

∏
a : i→_

|a| → e

is trivial on positions, the assignment i 7→ idi on directions, and the identity map ηi : | idi| → e on predi-
cates. Meanwhile its comultiplication

δ : ∑
i∈A

∏
a : i→_

|a| →
(

∑
i∈A

∏
b : i→_

|b|
)
/
(

∑
j∈A

∏
c : j→_

|c|
)
∼= ∑

i∈A
∑

j : Ai→ObA
∏

b : i→_
∏

c : jb→_
|b| · |c|

is the assignment i 7→ (i,cod) on positions, where cod: Ai→ ObA sends each morphism a : i→ j to its
codomain j; morphism composition on directions, sending b : i→ _ and c : cod(b)→ _ to cb : i→ _;
and the composite map µb,c : |cb| → |b| · |c| on predicates. The counitality and coassociativity of the
comonoid follow from the unitality and associativity of the enriched category, as well as the equations
cod(idi) = i and cod(cb) = cod(c). Moreover, from any comonoid we can recover its corresponding
enriched category up to isomorphism.

Next, we describe how to construct a morphism of comonoids in (ΣΠC,e,/) from each (ΣCop,e,�)-
enriched cofunctor; again the inverse construction will then be evident. Given a (ΣCop,e,�)-enriched
cofunctor Φ : A9B between small (ΣCop,e,�)-enriched categories A and B, we construct a structure-
preserving morphism

ϕ : ∑
i∈A

∏
a : i→_

|a| → ∑
j∈B

∏
b : j→_

|b|

in ΣΠC between the comonoids corresponding to A and B like so. On positions, set ϕi := Φi ∈ B for
i ∈A; on directions, set ϕ

]
i b := (Φ]

i b : i→ _) in A for i ∈A and b : Φi→ _ in B; and on predicates, set
ϕi,b := (Φi,b : |Φ]

i b| → |b|) in C for i ∈A and b : Φi→ _ in B. That ϕ preserves counits and comultipli-
cations follows from the fact that Φ preserves identities and composites and that Φ(cod(Φ]

i a)) = cod(a).
Moreover, from any comonoid morphism we can recover its corresponding enriched cofunctor.

5 Application: compositional bounds on dynamical systems

Here we give an example of how the structure of ΣΠC may be used to model open dynamical systems and
their invariants. This case study is by no means comprehensive; we seek only to hint at the possibilities
of how ΣΠC may be used.

Throughout, we let (C,e, ·) := ([0,∞]≤,0,+), the poset of nonnegative extended reals ordered by ≤
viewed as a category and endowed with the additive monoidal structure. We take the free coproduct
completion of its opposite category and endow it with a monoidal structure ⊕ given by Day convolution.
Then a (Σ[0,∞]≥,0,⊕)-enriched category is an additively weighted category [12].

J. Dorta, S. Jarvis, and N. Niu 93

Definition 5.1. An additively weighted category (or weighted category) X is a small (Σ[0,∞]≥,0,⊕)-
enriched category. It thus consists of the following data:

• a set ObX of objects or points;
• for each x,y ∈ ObX, an object ∑p : x→y |p| ∈ Σ[0,∞]≥ consisting of:

– a set X(x,y) of morphisms or paths, with p ∈X(x,y) denoted by p : x→ y;
– for each path p : x→ y, a weight or cost |p| ∈ [0,∞];

• for each x ∈ ObX, a morphism 0→ ∑ f : x→x | f | in Σ[0,∞]≥ consisting of:
– a constant path idx : x→ x,
– satisfying nonpositivity: | idx| ≤ 0, and thus | idx|= 0;

• for each x,y,z ∈ ObX, a morphism

∑
f : x→y

∑
g : y→z

(| f |+ |g|)→ ∑
h : x→z

|h|

in Σ[0,∞]≥ consisting of, for each f : x→ y and g : y→ z:
– a composite path g f : x→ z,
– satisfying the triangle inequality: |g f | ≤ | f |+ |g|. ♦

A weighted category X with |X(x,y)|= 1 for all x,y ∈ ObX is a Lawvere metric space [17].
By Theorem 4.3, a weighted category X, defined above as an enriched category, is equivalently a

comonoid in (ΣΠ[0,∞]≤,0,/). Then we can define a discrete dynamical system on X in terms of the
category ΣΠ[0,∞]≤ as follows.

Definition 5.2. A discrete dynamical system on a weighted category X, viewed as a comonoid object
X ∈ ΣΠ[0,∞]≤, is a morphism ϕ : X→ ∞ in ΣΠ[0,∞]≤. It thus consists of the following data:

• a trivial on-positions function ϕ : ObX→ 1;
• for each point x ∈ObX, an on-directions function ϕ

]
x : 1→∑y∈XX(x,y) that picks out a path ϕ

]
x

from x to some other point,
• satisfying the trivial inequality |ϕ]

x | ≤ ∞. ♦

In other words, a discrete dynamical system on X assigns to each point x in X a path ϕ
]
x : x→ x1 out

of that point. The intuition is that starting from x, the system moves to a new point x1 along the path ϕ
]
x

in one time step. We can “run” the system by taking the n-fold composition product ϕ/n for n ∈ N and
composing with the canonical n-ary comultiplication δ n−1 of X provided by its comonoid structure:4

X
δ n−1

−−→X/n ϕ/n

−−→ ∞
/n ∼= ∞+ · · ·+∞∼= ∞. (3)

This is a new discrete dynamical system that assigns to each point x in X the n-fold composite of paths

x
ϕ
]
x−→ x1

ϕ
]
x1−−→ x2

ϕ
]
x2−−→ ·· ·

ϕ
]
xn−1−−−→ xn (4)

from X, mapping out the evolution of the dynamical system after n time steps. Similarly, given another
discrete dynamical system ψ : X→∞, we can compose it with the first to obtain a third system that runs
one before the other:

X
δ−→X /X

ϕ /ψ−−−→ ∞/∞∼= ∞.

Furthermore, we could repackage the data of a discrete dynamical system as an enriched cofunctor by
the following proposition, where X is a weighted category viewed as a comonoid object X ∈ ΣΠ[0,∞]≤.

4We inductively define δ 1 := δ and δ n := (idX/(n−1) /δ)◦δ n−1.

94 Monoidal Structures on Generalized Polynomial Categories

Proposition 5.3. There is a natural correspondence between discrete dynamical systems ϕ : X → ∞

and enriched cofunctors Φ : X 9 ∏n∈N ∞, whose codomain is the one-object (Σ[0,∞]≥,0,⊕)-enriched
category with hom-set N, addition as composition, and all weights infinite.

Proof. Given ϕ , construct Φ by setting Φ
]
x(n) to the composite path defined in (4) for x ∈ ObX and

n ∈ N (with Φ
]
x(0) := idx); the cofunctor laws follow immediately. Conversely, given Φ, construct ϕ by

setting ϕ
]
x := Φ

]
x(1). These constructions are natural and mutually inverse.

Thus discrete dynamical systems on X are precisely enriched cofunctors X 9 ∏n∈N ∞. We could
generalize how these systems run by replacing N with some other monoid, or indeed by replacing the
entire codomain by a different weighted category, which could in turn be acted on via an enriched co-
functor to another weighted category, and so forth—suggesting the versatility of comonoids in ΣΠC for
modeling general interactions.

So far, the examples we have described could have been done in ΣΠ1≈ Poly (indeed, the material so
far is adapted from [20, 25]); we have yet to make use of the enriched structure. Now we will put finite
weights in the codomains of our systems to bound their behavior.

Definition 5.4. A discrete dynamical system ϕ : X→ ∞ is bounded (above) by r ∈ [0,∞] if ϕ factors
through the morphism r→∞ in [0,∞]≤ ⊂ ΣΠ[0,∞]≤. Equivalently, for each point x ∈ObX, the path ϕ

]
x

has cost at most r. ♦

Boundedness is well-behaved under composition: if ϕ : X→∞ factors through r as ϕ : X→ r, then
the n-fold composition product ϕ/n : X/n → ∞/n ∼= ∞ factors through r/n ∼= nr as ϕ

/n : X/n → r/n.
Hence the n-fold composite dynamical system ϕ/n ◦ δ n−1 from (3) must factor through nr as well, so
it is a discrete dynamical system bounded by nr. This coincides with our intuition: if the cost of every
time step of a dynamical system is bounded above by r, then the cost of n successive time steps must be
bounded above by nr. We thus have the following result, generalizing Proposition 5.3.

Proposition 5.5. There is a natural correspondence between discrete dynamical systems ϕ : X → ∞

bounded above by r ∈ [0,∞] and enriched cofunctors Φ : X 9 ∏n∈N nr, whose codomain is the one-
object (Σ[0,∞]≥,0,⊕)-enriched category with hom-set N, addition as composition, and weights |n| := nr.

Proof. The construction mirrors the one in the proof of Proposition 5.3; we need only verify that the
additional restrictions on costs are satisfied. Given ϕ bounded by r, the n-fold composite path from (4)
has cost at most nr, ensuring |Φ]

x(n)| ≤ nr. Conversely, given Φ, we have |ϕ]
x |= |Φ]

x(1)| ≤ r.

The preceding material is only a sample of how ΣΠ[0,∞]≥ and, by extension, ΣΠC may be used to
model compositional behavioral patterns of dynamical systems. We could generalize the codomain of our
discrete dynamical systems beyond one-position, one-direction polynomials in C; we could generalize
C beyond mere posets; and so forth. Indeed, Propositions 5.3 and 5.5 are special cases of a far more
general result.

Theorem 5.6. The forgetful functor from comonoids in (ΣΠC,e,/) to their underlying polynomials has
a right adjoint, yielding cofree (ΣCop,e,�)-enriched categories on polynomials in C.

Sketch of proof. The construction follows the analogous result for cofree polynomial comonads as de-
tailed in [20]. There the cofree category on a given polynomial has tuples of the polynomial’s directions
as morphisms; we then assign each tuple a weight in C equal to the monoidal product of the predicates
of the directions in the tuple.

J. Dorta, S. Jarvis, and N. Niu 95

6 Future directions

We close with future directions for research in addition to the potential applications already suggested.

Foundations of polynomial categories

Spivak surveys categorical properties and structures on Poly≈ ΣΠ1 in [26]; in addition to those we have
already covered, it would be instructive to examine which of these properties and structures carry over to
ΣΠC, perhaps requiring various conditions on C. Similarly, we could investigate how known structures
on Dial(Set)≈Hmg(2) carry over to Hmg(C).

Interaction between monoidal structures on polynomials

Spivak observed that / is duoidal over ⊗ in the case of C := 1, i.e. there is a natural transformation
(− /−)⊗ (− /−)→ (−⊗−) / (−⊗−) satisfying various coherence conditions [25]. Shapiro and
Spivak go on to leverage this duoidality to model compositional dependence [22]. We hope to generalize
their results to the parallel and compositional products on ΣΠC.

Other monoidal structures on polynomials

Given a monoidal category (C,e, ·), there are at least two other monoidal structures on ΣΠC with unit e:
one given by (

∑
i∈I

∏
a∈Ai

ui,a

)
1
(

∑
j∈J

∏
b∈B j

v j,b

)
:= ∑

i∈I
∑
j∈J

∏
a : J→Ai

∏
b : I→B j

(ui,a j · v j,bi)

and another given by(
∑
i∈I

∏
a∈Ai

ui,a

)
o
(

∑
j∈J

∏
b∈B j

v j,b

)
:= ∑

i∈I
∑
j∈J

∏
a : J→Ai

∏
b∈B j

(ui,a j · v j,b).

We would like to know if there are interpretations or applications for these monoidal products as there
are for the parallel and composition products.

Recovering categories and cofunctors enriched over any distributive category

Theorem 4.3 recovers the category of small categories and cofunctors enriched over a free coproduct
completion with Day convolution as the category of comonoids of a particular monoidal category. Yet
Clarke and Di Meglio described how cofunctors may be enriched over any distributive monoidal category
[6]. The free coproduct completion with Day convolution gives us a way to freely construct a distributive
monoidal category from any monoidal category, but not every distributive monoidal category arises this
way. We would like to know if our theorem may be generalized to recover categories of small categories
and cofunctors enriched over any distributive monoidal category as some category of comonoids.

96 Monoidal Structures on Generalized Polynomial Categories

References

[1] Marcelo Aguiar (1997): Internal categories and quantum groups, PhD thesis. Cornell University.
Available at https://pi.math.cornell.edu/~maguiar/thesis2.pdf.

[2] Danel Ahman & Tarmo Uustalu (2016): Directed Containers as Categories. Electronic Proceed-
ings in Theoretical Computer Science. 207, pages 89–98, doi: 10.4204/eptcs.207.5.

[3] Danel Ahman & Tarmo Uustalu (2017): Taking Updates Seriously. In BX@ETAPS. Available at
https://iris.rais.is/en/publications/taking-updates-seriously.

[4] Robert Atkey, Bruno Gavranović, Neil Ghani, Clemens Kupke, Jérémy Ledent & Fredrik Nord-
vall Forsberg (2021): Compositional Game Theory, Compositionally. Electronic Proceedings in
Theoretical Computer Science. 333, pages 198–214, doi: 10.4204/eptcs.333.14.

[5] Matteo Capucci (2023): Diegetic Representation of Feedback in Open Games. Electronic Pro-
ceedings in Theoretical Computer Science. 380, pages 145–158, doi: 10.4204/eptcs.380.9.

[6] Bryce Clarke & Matthew Di Meglio (2022): An introduction to enriched cofunctors, doi: 10.
48550/arXiv.2209.01144.

[7] Geoffrey SH Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson & Fabio Zanasi (2022): Cat-
egorical foundations of gradient-based learning. In Programming Languages and Systems: 31st
European Symposium on Programming, ESOP 2022, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2–7, 2022,
Proceedings, Springer International Publishing Cham, pages 1–28, doi: 10.1007/978-3-030-
99336-8_1.

[8] Brian Day (1970): Construction of biclosed categories, PhD thesis. University of New South
Wales. doi: 10.26190/unsworks/8048.

[9] Brendan Fong & Michael Johnson (2019): Lenses and Learners, doi: 10.48550/arXiv.1903.
03671.

[10] Brendan Fong, David Spivak & Rémy Tuyéras (2019): Backprop as Functor: A compositional
perspective on supervised learning. In 2019 34th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, IEEE, pages 1–13, doi: 10.1109/LICS.2019.8785665, arXiv: 1711.10455.

[11] Jeremy Gibbons & Michael Johnson (2012): Relating Algebraic and Coalgebraic Descriptions of
Lenses. Proc. of 1st Int. Wksh. on Bidirectional Transformations, BX 2012 (Tallinn, March 2012).
49, doi: 10.14279/tuj.eceasst.49.726.

[12] Marco Grandis (2006): Categories, norms and weights, doi: 10.48550/arXiv.math/0603298.
[13] Jules Hedges (2017): Coherence for lenses and open games, doi: 10.48550/arXiv.1704.02230.
[14] Michael Johnson, Robert Rosebrugh & R. J. Wood (2012): Lenses, fibrations and universal trans-

lations. Mathematical Structures in Computer Science. 22(1), pages 25–42, doi: 10/bn76vr.
[15] G. Max Kelly (1982): Basic concepts of enriched category theory. Lecture Notes in Mathemat-

ics, Cambridge University Press. Available at http://www.tac.mta.ca/tac/reprints/
articles/10/tr10abs.html. Reprinted in Reprints in Theory and Applications of Categories.

[16] Elena Di Lavore, Wilmer Leal & Valeria de Paiva (2022): Dialectica Petri nets, doi: 10.48550/
arXiv.2105.12801.

[17] F. William Lawvere (1973): Metric spaces, generalized logic, and closed categories. Rendiconti
del seminario matématico e fisico di Milano. 43, pages 135–166, doi: 10.1007/BF02924844.
Available at http://www.tac.mta.ca/tac/reprints/articles/1/tr1abs.html. Reprinted
in Reprints in Theory and Applications of Categories.

https://pi.math.cornell.edu/~maguiar/thesis2.pdf
https://doi.org/10.4204/eptcs.207.5
https://iris.rais.is/en/publications/taking-updates-seriously
https://doi.org/10.4204/eptcs.333.14
https://doi.org/10.4204/eptcs.380.9
https://doi.org/10.48550/arXiv.2209.01144
https://doi.org/10.48550/arXiv.2209.01144
https://doi.org/10.1007/978-3-030-99336-8_1
https://doi.org/10.1007/978-3-030-99336-8_1
https://doi.org/10.26190/unsworks/8048
https://doi.org/10.48550/arXiv.1903.03671
https://doi.org/10.48550/arXiv.1903.03671
https://doi.org/10.1109/LICS.2019.8785665
https://arxiv.org/abs/1711.10455
https://doi.org/10.14279/tuj.eceasst.49.726
https://doi.org/10.48550/arXiv.math/0603298
https://doi.org/10.48550/arXiv.1704.02230
https://doi.org/10/bn76vr
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
https://doi.org/10.48550/arXiv.2105.12801
https://doi.org/10.48550/arXiv.2105.12801
https://doi.org/10.1007/BF02924844
http://www.tac.mta.ca/tac/reprints/articles/1/tr1abs.html

J. Dorta, S. Jarvis, and N. Niu 97

[18] Sean Moss (2022): Dependent products of polynomials. Workshop on Polynomial Functors. Avail-
able at https://youtu.be/tw08TmO0RRo&t=7190s.

[19] David Jaz Myers (2021): Double Categories of Open Dynamical Systems (Extended Abstract).
Electronic Proceedings in Theoretical Computer Science. 333, pages 154–167, doi: 10.4204/
eptcs.333.11.

[20] Nelson Niu & David I. Spivak (2023): Polynomial Functors: A General Theory of Interaction.
Available at https://topos.site/poly-book.pdf. In preparation.

[21] Valeria Correa Vaz de Paiva (1991): The Dialectica categories, technical report UCAM-CL-TR-
213. University of Cambridge, Computer Laboratory. doi: 10.48456/tr-213.

[22] Brandon T. Shapiro & David I. Spivak (2022): Duoidal Structures for Compositional Dependence,
doi: 10.48550/arXiv.2210.01962.

[23] Brandon T. Shapiro & David I. Spivak (2023): Dynamic Operads, Dynamic Categories: From
Deep Learning to Prediction Markets. Electronic Proceedings in Theoretical Computer Science.
380, pages 183–202, doi: 10.4204/eptcs.380.11.

[24] Toby St. Clere Smithe (2023): Open Dynamical Systems as Coalgebras for Polynomial Func-
tors, with Application to Predictive Processing. Electronic Proceedings in Theoretical Computer
Science. 380, pages 307–330, doi: 10.4204/eptcs.380.18.

[25] David I. Spivak (2020): Poly: An abundant categorical setting for mode-dependent dynamics, doi:
10.48550/arXiv.2005.01894.

[26] David I. Spivak (2023): A reference for categorical structures on Poly, doi: 10.48550/arXiv.
2202.00534.

[27] Davide Trotta, Matteo Spadetto & Valeria de Paiva (2022): Dialectica logical principles: not only
rules. Journal of Logic and Computation. 32(8), pages 1855–1875, doi: 10 . 1093 / logcom /
exac079.

https://youtu.be/tw08TmO0RRo&t=7190s
https://doi.org/10.4204/eptcs.333.11
https://doi.org/10.4204/eptcs.333.11
https://topos.site/poly-book.pdf
https://doi.org/10.48456/tr-213
https://doi.org/10.48550/arXiv.2210.01962
https://doi.org/10.4204/eptcs.380.11
https://doi.org/10.4204/eptcs.380.18
https://doi.org/10.48550/arXiv.2005.01894
https://doi.org/10.48550/arXiv.2202.00534
https://doi.org/10.48550/arXiv.2202.00534
https://doi.org/10.1093/logcom/exac079
https://doi.org/10.1093/logcom/exac079

S. Staton, C. Vasilakopoulou (Eds.):

Applied Category Theory 2023 (ACT2023)

EPTCS 397, 2023, pp. 98–117, doi:10.4204/EPTCS.397.7

© L. Dunn, V. Tannen & S. Zdancewic

This work is licensed under the

Creative Commons Attribution License.

Syntax Monads for the Working Formal Metatheorist

Lawrence Dunn

University of Pennsylvania
Philadelphia, USA

dunnla@seas.upenn.edu

Val Tannen

University of Pennsylvania
Philadelphia, USA

val@cis.upenn.edu

Steve Zdancewic

University of Pennsylvania
Philadelphia, USA

stevez@cis.upenn.edu

Formally verifying the properties of formal systems using a proof assistant requires justifying numer-

ous minor lemmas about capture-avoiding substitution. Despite work on category-theoretic accounts

of syntax and variable binding, raw, first-order representations of syntax, the kind considered by

many practitioners and compiler frontends, have received relatively little attention. Therefore appli-

cations miss out on the benefits of category theory, most notably the promise of reusing formalized

infrastructural lemmas between implementations of different systems. Our Coq framework Tealeaves

provides libraries of reusable infrastructure for a raw, locally nameless representation and can be ex-

tended to other representations in a modular fashion. In this paper we give a string-diagrammatic

account of decorated traversable monads (DTMs), the key abstraction implemented by Tealeaves.

We define DTMs as monoids of structured endofunctors before proving a representation theorem à

la Kleisli, yielding a recursion combinator for finitary tree-like datatypes.

1 Introduction

Machine-certified proofs of the properties of programming languages, type theories, and other formal

systems are increasingly critical for establishing confidence in the design and implementation of com-

puter systems. Much of this reasoning is overtly concerned with the manipulation of syntactical struc-

tures, especially variable-binding constructs, making the representation of these structures a key issue in

formal metatheory [6]. As implementations scale in complexity to realistic formalizations of compilers

[39] and programming languages [24], often with many kinds of variables, the bookkeeping required to

manipulate variables correctly becomes nearly prohibitive.

Category-theoretic accounts of syntax with variable binding (e.g. [8, 16, 17, 18, 2]) offer the tan-

talizing benefit of formalizing tedious syntax “infrastructure” once and for all over an abstract choice

of signature, instead of repeating this effort for the particular syntax of each new system. However, the

kind of syntax usually considered by theorists—often intrinsically well-typed with well-scoped de Bruijn

indices—is different from what many working semanticists and compilers actually implement. Conse-

quently, the benefits of a principled categorical framework are not yet available to many applications.

This work lays the foundations of a category-theoretic account of variable binding as it often looks in

practice, with the aim of building certified libraries of generic syntax infrastructure that can be used (and

reused) in real-world applications.

Contributions. This manuscript makes two contributions.

• We introduce the strict monoidal category DecTravW of decorated-traversable endofunctors on

Set for some monoid W (Definition 3.16) and define decorated-traversable monads (DTMs) as

monoids in this category (Definition 3.17). Examples of decorated-traversable functors come from

the signature functors of languages with variable binding; the free monads they generate are DTMs.

These structures admit a string-diagram calculus, which aids in equational reasoning.

http://dx.doi.org/10.4204/EPTCS.397.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

L. Dunn, V. Tannen & S. Zdancewic 99

• We prove an equivalence (Theorem 4.2) between monoids in DecTravW and a Kleisli-style pre-

sentation (Definition 4.1) that describes a structured recursion combinator for abstract syntax trees.

As with ordinary (strong) monads [29], the Kleisli presentation is of more immediate utility from a

functional programming or formal metatheory perspective, in part because the definition requires check-

ing fewer axioms. In a previous, tool-oriented paper [15] we introduced Kleisli-presented DTMs and

used them to derive generic syntax infrastructure for first-order representations of variable binding in

Coq. However, that paper did not explain why the seemingly ad-hoc equational axioms should be con-

sidered “correct.” This paper justifies the robustness of the axioms by proving their equivalence with a

more clearly principled, string-diagrammatic set of axioms. The results in this paper have been formal-

ized in Coq and are available in our GitHub repository.1

Layout. The rest is laid out as follows. Section 2 contains background on first-order representations of

variable binding. We recall that abstract syntax trees, parameterized by the data in the leaves, naturally

give rise to a (free) monad. For such monads, the Kleisli axiomatization provides a theory of naı̈ve

substitution, but this is not expressive enough to define the capture-avoiding substitution operations

considered by different representations of variables. Section 3 introduces the endofunctor categories

DecW , Trav, and DecTravW . Section 4 derives a Kleisli-style characterization of monoids in DecTravW

and explains why this abstraction solves the problems identified in Section 2. Section 5 contrasts our

approach with related work. Section 6 concludes.

Functors in this paper have type Set → Set and typically represent parameterized container types like

lists, binary trees, and abstract syntax trees. We recall that EndSet is the strict monoidal category whose

objects are endofunctors on Set, whose arrows are natural transformations, and whose tensor product is

given by composition of functors.

2 First-order Representations of Variable Binding

The modern formal metatheorist has many options for representing and manipulating terms with variable

binding in a proof assistant. The first choice is whether to employ a first-order or higher-order approach.

Higher-order strategies represent variable-binding constructors in the object language as higher-order

functions in the metatheory; this sidesteps thorny issues like variable capture but does not shed much

light on syntax as defined in, say, a compiler. We are interested in things like verified compilers, so

we consider a first-order approach. This style is also simple, intuitive, and well supported by general-

purpose proof assistants like Coq [36]. Theoretically it lends itself to the theory of initial algebras, the

category-theoretic take on structural recursion [11].

A more or less orthogonal question is whether to consider an intrinsic or extrinsic (also called raw)

representation. For instance, intrinsically well-scoped terms exist in some context Γ and can only men-

tion free variables declared in Γ, while instrinsically well-typed terms essentially carry around their own

typing judgment. The raw approach posits that a single set of terms simply exists, including ones that are

ill-formed and untypable in the formal system. Properties like being well-scoped in Γ are then defined

post-hoc as predicates on terms by structural recursion. We consider an extrinsic representation, though

in future work we could investigate an intrinsic approach.

Finally, one has a choice about how to represent free and bound variables, i.e. the datatype stored in

the leaves of syntax trees. Encoding strategies go by names like fully named, de Bruijn indices, de Bruijn

levels, locally named, locally nameless, and variations. DTMs capture what is tree-like about syntax

1https://github.com/dunnl/tealeaves

https://github.com/dunnl/tealeaves

100 Syntax Monads for the Working Metatheorist

without saying anything about the type of data in the leaves, and for now we shall remain agnostic about

this choice. Figure 1 displays a first-order definition of the set of raw lambda terms. The only unusual

part of this definition is that we parameterize the set of terms by a representation of variables V and

binder annotations B. These parameters will be fixed by a variable encoding strategy in Section 2.1.

Inductive term (B V : Set) : Set :=

| Var: V -> term B V

| App: term B V -> term B V -> term B V

| Lam: B -> term B V -> term B V.

Figure 1: Syntax of the lambda calculus in Coq

bind f (Varv) = f v

bind f (Appt1 t2) = App (bind f t1) (bind f t2)
bind f (Lambt) = Lamb (bind f t)

Figure 2: bind instance for term

To concentrate on term as functor in V , we shall typeset B as a subscript. Associated to the lambda

calculus is a signature functor

Σλ
BX

de f
= X ×X +B×X

encoding the domain of the two constructors of term besides Var. termBV is defined as the least fixpoint

µX .
(

V +Σλ
BX

)

, i.e. as the smallest solution to the following equation:

termBV ≃V +termBV ×termBV +B×termBV.

It is well known that, by its least fixed point construction, a datatype like termB (for any B) naturally

forms a monad. We present monads string-diagrammatically alongside a conventional equational pre-

sentation. A general introduction to string diagrams is outside the scope of this paper, but the interested

reader may consult [19, 22]. In this paper our calculus depicts a monad T with a blue wire.

Definition 2.1. A monad T is a functor equipped with two natural transformations

T retT : ∀(A : Set) ,A → TA
T

T

T joinT : ∀(A : Set) ,T (TA)→ TA

subject to the following laws.

TTT

T

= joinT · retT = id (2.1)

TTT

T

= joinT ·mapT
(

retT
)

= id (2.2)

T

T

T

T

T

T

T

T= joinT · joinT = joinT ·mapT
(

joinT
)

(2.3)

The retT operation constructs a tree from a single leaf—for term this is the Var constructor. joinT

flattens a tree-of-trees into a tree by grafting the layers together. mapT applies a function to each of the

leaves. This presentation is visually pleasing, but fairly abstruse for our purposes. For applications, the

following definition is more pragmatic.

Definition 2.2. A Kleisli-presented monad T : Set → Set is a set-forming operation equipped with two

polymorphic operations

ret : ∀(A : Set) , A → TA

bind : ∀(A B : Set) , (A → T B)→ TA → T B

L. Dunn, V. Tannen & S. Zdancewic 101

subject to the following three laws (implicitly universally quantified over all relevant variables).

bind ret = id (2.4)

bind f · ret = f (2.5)

bind g ·bind f = bind (bind g · f) (2.6)

The equivalence of these definitions is well-known [26].

Lemma 2.3 (Manes, 1976). Definitions 2.1 and 2.2 are equivalent.

Figure 2 gives the bind instance for term. We note that bind f t merely applies f to each variable oc-

currence in t, replacing it with a subterm. We call this simple replacement operation a naı̈ve substitution.

(2.4) stipulates that replacing all variables with themselves yields the original t. (2.5) is the definition

of bind on Var. (2.6) governs the composition of multiple substitutions. The limitations of this naı̈ve

notion of substitution become apparent when we turn our attention to situations involving both free and

bound variables.

2.1 Variable Encodings

We discuss two exemplary techniques for representing variables.

Fully named A fully named approach assigns names, represented as atoms a ∈A, to both free and

bound variables, hence V = A. Variable-binding constructs are labeled with the names they introduce,

so B =A. The set termAA corresponds to the following pen-and-paper syntax of lambda terms:

t ::= a|tt|λa.t

Consider the main axiom of lambda calculus, the beta conversion rule (λx.t1) t2 =β t1{t2/x}, where

t1{t2/x} stands for the capture-avoiding substitution of t2 in place of free occurrences of x in t1. For

instance:

(λx.xz){z/x} =β λx.xz (λy.xz){z/x} =β λy.zz (λ z.xz){z/x} =β λy.zy

In the first case, x occurs bound and is not replaced, while in the second and third cases it occurs free

and is replaced with z. In the last case, z also happens to be the name of the distinct entity introduced by

the λ , so a naı̈ve substitution would incorrectly result in the term λ z.zz. Therefore we rename this entity,

and all variables bound to it, to a non-conflicting name, say y. Renaming variables like this complicates

a fully named representation, and it also complicates the theory of DTMs. Therefore this manuscript

focuses on representations that do not require binder renaming, but see future work in Section 6.

Locally nameless The locally nameless strategy represents free variables as atoms, as before, but

represents bound variables as de Bruijn indices [13], natural numbers that describe the “distance” from

the occurrence to the abstraction that introduced it, indexing from 0. For example, λx.λy.xyz becomes

λλ10z. Thus V is the (tagged) union A+N. For clarity, we use fvar and bvar as the names of the left

and right injections (respectively) into V .

Because the representation of a bound variable is canonical, there is no need to give arbitrary names

to bound variables, hence no need to rename them to avoid conflicts. Lambda abstractions do not need to

be annotated with names either, which we formally represent by annotating them with type B = 1 = {⋆},

the singleton. This gives the set term1 (A+N), corresponding to the following grammar:

t ::= a|n|tt|λ t

A benefit of locally nameless is that substitution of free variables is particularly simple: a variable is free

exactly when it is an atom, so it can never be mistaken for a bound variable. Due to this special simplicity,

102 Syntax Monads for the Working Metatheorist

subst xu (Varv) =

{

u if v = fvarx

Varv else

subst xu (Appt1 t2) = App (subst xut1) (subst xut2)

subst xu (Lam ⋆ t) = Lam ⋆ (subst xut)

(a) Structurally recursive definition

subst x u t = bind (substloc x u) t

substloc x u v =

{

u if v = fvar x

ret v else

(b) Definition abstract over a choice of monad

Figure 3: Substitution of atoms in a locally nameless representation

the “correct” notion of substitution for free variables, subst (Figure 3a), happens to be expressible using

bind. This operation has the following type, where subst x u t replaces x in t with u:

subst : A→ term1 (A+N)→ term1(A+N)→ term1 (A+N)

Figure 3b defines subst in terms of bind and a function substloc that prescribes the “local” effect of

substitution on individual occurrences. Decomposing subst like this practical value because substloc does

not depend on the particulars of term, so this definition is given abstractly over a monad T . This also

means we can employ the monad laws to reason about it, exemplified in the following lemma.

Lemma 2.4. Let T be any monad, let x 6= y be atoms, and let t[x 7→ u] denote subst x u t, defined

abstractly in T . Substitution has the following properties:2

x[x 7→ t] = t t[x 7→ x] = t t[x 7→ u1][y 7→ u2] = t
[

x 7→ u1[y 7→ u2];y 7→ u2

]

Lemma 2.4 is easily proven abstractly over T by appealing to equations (2.4)–(2.6). On the other

hand, here is a lemma that cannot even be stated, much less proven, abstractly over T :

Lemma 2.5 (fresh-subst). If an atom x does not occur in t, then t[x 7→ u] = t.

Lemma 2.5 cannot be formulated abstractly because we lack a mechanism for defining what it means

for an atom to occur in a term—occurrence is a predicate, and bind does not provide a mechanism for

defining predicates. We can of course prove the lemma for term in particular by structural recursion,

but this is no longer generic over a choice of T and cannot be shared by users formalizing a different

syntax. In order to reason about syntax as a container (of occurrences of variables) like this, we define

traversable monads in Section 3.2. This definition admits a generic proof of Lemma 2.5.

However, subst is not the main operation of locally nameless. That distinction belongs instead to an

operation called opening, defined in Figure 4a. This operation is used to define β -reduction, with the

β -conversion rule taking the form (λ t)u =β tu. Here, tu stands for the opening of t by u, defined by

replacing all indices in t previously bound to the outermost λ with u. (Note that the replaced variables

are actually de Bruijn indices rather than free variables, hence this is not a substitution of atoms.) Unlike

with atoms, the replaced indices do not have to share a common representation, as the representation

of an index bound to the outer lambda depends on how many other abstractions are in scope at the

occurrence—both 0 and 1 in λ (0λ1) point to the outermost λ , for instance. Therefore open is defined

with an auxiliary function that maintains a count of how many binders we have gone under during

2Where x is used as a term, it is understood as the atomic term ret (fvar x). In the third equation, the right side mentions the

parallel substitution that simultaneously replaces all x with u1[y 7→ u2] and y with u2.

L. Dunn, V. Tannen & S. Zdancewic 103

open : term1(A+N)→ term1(A+N)→ term1(A+N)

open u t = open0 u t

LC : term1(A+N)→ 2

LC t = LC0 t

openn u (Varv) =

{

u if v = bvarn

Varv else

openn u (Appt1 t2) = App (openn ut1) (openn ut2)
openn u (Lam ⋆ t) = Lam ⋆

(

openn+1 ut
)

(a) Opening a lambda term by u

LCn (Var v) =

{

⊥ if v = bvar m and n ≤ m

⊤ else

LCn (App t1 t2) = LCn t1 ∧ LCn t2
LCn (Lam ⋆ t) = LCn+1 t

(b) Testing for local closure

Figure 4: Operations on locally nameless terms

recursion. In order to define operations that maintain an “accumulator” argument like this, we introduce

decorated monads in Section 3.1.

As a final example, some locally nameless terms, e.g. λ (01), do not correspond to ordinary lambda

terms because they have indices (in this example, the 1) that do not “point” to any abstraction. Therefore

one restricts attention to terms that are locally closed, defined in Figure 4b. Like open, LC is defined

with a helper function that counts the number of binders gone under during recursion. Unlike open,

LC computes a boolean (2 = {⊤,⊥}) instead of a term. To define and reason about LC, one must

integrate both concepts above to define decorated-traversable functors and DTMs. Σλ
B is an example

of a decorated-traversable functor, and termB is a DTM. As we have shown with Tealeaves [15], this

abstraction suffices to prove a large suite of infrastructural lemmas about the operations above.

3 Decorated Traversable Functors

We introduce decorated and traversable monads separately before incorporating both to form DTMs.

We present definitions type-theoretically alongside a diagrammatic calculus. For ease of reading, the

different sorts of wires in our graphical calculus, which play different roles, are typeset with high-contrast

colors.

3.1 Decorations

The category DecW (Definition 3.4) of decorated functors is parameterized by some monoid W , which

we take as given. In Tealeaves, W is typically the free monoid list B, representing the list of the binders

in scope at some occurrence. In brief, decorated functors arise from the elementary fact that any monoid

W in Set forms a unique bimonoid—a coherent combination of a monoid and a comonoid on the same

set. The “product-with” embedding,

X 7→ (X ×−) : Set → EndSet

is strong monoidal,3 meaning it preserves monoids, comonoids, and indeed bimonoids, making (W×−)
a bimonad. Decorated functors are precisely the right comodules of this bimonad, which, by adapting

3As opposed to merely lax or oplax monoidal, not to be confused with tensorial strength.

104 Syntax Monads for the Working Metatheorist

a construction from abstract algebra (see Section 4.1 of [7]), form a monoidal category. This means we

can consider monoids of decorated functors, or decorated monads. Now we step throw this slowly.

As a first step, consider any set E . It is an exercise in definitions to verify that E is the carrier of

exactly one comonoid, the duplication comonoid over E . This structure captures aspects of classical

information and its fundamental operations of duplication and deletion.

Definition 3.1. The duplication comonoid over E : Set is given by the following operations.

del : E → 1 del e = ⋆
∆ : E → E ×E ∆ e = (e,e)

The duplication comonoid induces a comonad on (E ×−) known to functional programmers as the

environment or reader comonad. In this paper, these wires, which we think of as carrying “contextual”

information, are drawn in red.

Definition 3.2. The environment comonad over E : Set is given by the product functor (E ×−) equipped

with the following operations of extraction and duplication.

E×

extrE× : ∀(A : Set) , E ×A → A

extrE×

A (e,a) = a (3.1)

E×

E×

E×

dupE× : ∀(A : Set) , E ×A → E × (E ×A)

dupE×

A (e,a) = (e,(e,a)) (3.2)

The co-Kleisli arrows of the environment comonad have the form E ×A → B. In functional pro-

gramming, this comonad captures computations A → B that additionally can read, but not modify, an

environment of type E , such as a user-supplied configuration file. This is a classic example of the gen-

eral intuition that while monads can be used to structure computations with “effects”, comonads represent

notions of computation that depend on a “context” [37].

Now consider our monoid W = 〈W, ·,1W 〉. The duplication comonoid exists on the underlying set of

W , so in particular (W ×−) is an instance of the reader comonad. Additionally, mirroring the comonoid

structure, the monoid on W gives rise to a monad structure on (W ×−) known variously as the writer or

logger monad.

Definition 3.3. The writer monad over W : Set is given by the product functor (W ×−) equipped with

the following operations.

W×

retW× : ∀(A : Set) , A →W ×A

retW×
A a = (1W ,a) (3.3)

W×

W×

W×

joinW× : ∀(A : Set) , W × (W ×A)→W ×A

joinW×
A (w1,(w2,a)) = (w1 ·w2,a) (3.4)

If one thinks about functors as functional data structures, then “decorated” funtors are ones whose

elements each occur in a context of type W .

Definition 3.4. A decorated functor T : Set → Set is a right coalgebra of the writer bimonad (W×−).
Explicitly, it is a functor equipped with a natural transformation

T

T

W×
decT : ∀(A : Set) ,TA → T (W ×A)

subject to the following two laws:

L. Dunn, V. Tannen & S. Zdancewic 105

T T=
T

T mapTextrW× ·decT = id (3.5)

=
T

T
W×

T

T

W×

W×

W×

decT ·decT = mapTdupW× ·decT (3.6)

Intuitively, (3.5) states that computing the context of every element and immediately deleting it is the

same as doing nothing. (3.6) states that computing each context once and making a copy of it is the same

as computing each context twice.

Example 3.5. The functor Σλ
B is decorated by listB, the free monoid over B. The operation is defined

as follows (where by abuse of notation we give constructors of Σλ the same name as corresponding

constructors of term):

decX : Σλ
BX → Σλ

B (listB×X)

dec (App x1 x2) = App ([],x1) ([],x2)
dec (Lam b x) = Lam b ([b],x)

Notation: [] is the empty list, while [b] is a singleton.

The decoration in Example 3.5 encodes the policy determining which constructors act as binders

in which arguments. The policy states that an abstraction λb.x adds b to the binding context of all

occurrences in its body, but applications contribute nothing to the binding context of variables.

Technically, we have not yet used the monoid structure assumed of W . A related fact is that we have

only defined decorated functors, but our term functor T is a monad. How should these structures be

related to each other? The answer comes from the recognition that decorated functors form a monoidal

category much like EndSet.

Lemma 3.6. The category DecW of decorated functors is given by the following data:

• Objects are endofuntors T : Set → Set paired with a decoration

• Morphisms are natural transformations T1 ⇒ T2 that commute with the decorations of T1 and T2

φT1

T2

W×

φ

T1

T2

W×
= decT2 ·φ = φ ·decT1 (3.7)

That this constitutes a category is clear. Slightly less obvious is that DecW is a strict monoidal

category. Like EndSet, the tensor operation is composition of functors, but we must explain how to

decorate the composition. Likewise, the tensor unit is the identity functor, whose decoration must also

be defined.

Lemma 3.7. DecW is a monoidal category by the following data:

• The tensor unit is the identity functor paired with the “null” decoration

1

W×

1 1

W×

1de f
≡

dec1 = retW
×

(3.8)

106 Syntax Monads for the Working Metatheorist

• Tensor product is given by composition of functors, with decorations added monoidally

de f
≡

T1

T2

W×

T2

T1

T1 ·T2

W×

T1 ·T2

decT1·T2 = mapT1

(

mapT2

(

joinW×
)

· st
T2

W

)

·decT1 ·mapT1decT2 (3.9)

Above, st
T2

W : ∀(A : Set) ,W ×T2 A → T2 (W ×A) is the tensorial strength operation, depicted as cross-

ing a red wire over a functor. That (3.8) and (3.9) satisfy axioms (3.5)—(3.6) is easily verified, as are the

laws governing the tensor operation.

Since DecW is a monoidal category, it makes sense to consider monoids in this category. Such a

structure must be both an ordinary monad and a decorated functor. The new detail is that the monad

operations must also satisfy (3.7), given the operations defined in Lemma 3.7. This yields two additional

equations.

Definition 3.8. A decorated monad is a monoid in DecW . Explicitly, it is equipped with the structures of

both a decorated functor and a monad such that the following equations are also satisfied.

=
W×

T

W×

T

decT · retT = retT · retW
×

(3.10)

=
T

T W×

T T

T

T

W×

decT · joinT = joinT·W×
·decT ·mapT

(

decT
)

(3.11)

In (3.11), joinT·W×
is an abbreviation for

joinT ·mapT
(

mapT
(

joinW×
)

· stTW

)

: ∀(A : Set),T (W ×T(W ×A))→ T (W ×A)

Indeed, this operation is part of a monad instance on T · (W ×−).

In the context of syntax metatheory, (3.10) states that an atomic term (some Var x) has no binders—

the context of x is the monoid unit, typically the empty list or the natural number 0. (3.11) governs

how decoration behaves when we compose constructors to form complex syntax trees. It states that the

context of each variable instance is the concatenation of the context contributed by each constructor. That

is, binders accumulate as one recurses down a syntax tree, as in the recursive operations from Figure 4.

Example 3.9. The monad termB is decorated by listB. The operation annotates each variable with

the list of B values encountered on the unique path from root of the syntax tree to the variable occurrence.

We show examples using fully named and locally nameless variables:

dec : termAA→ termA (listA×A)

λx.λy.yx 7→ λx.λy.([x,y],y)([x,y],x)

(λx.yλy.z) 7→ (λx.([x],y)λy.([x,y],z))

dec : term1 (A+N)→ term1 (N× (A+N))

λλ01 7→ λλ (2,0)(2,1)

(λ0) (λλ1) 7→ (λ (1,0)) (λλ (2,1))

Note that in the locally nameless example we make the implicit identification list1 ≃ N.

The payoff of this definition will be explained after we consider the separate issue of traversability.

L. Dunn, V. Tannen & S. Zdancewic 107

3.2 Traversals

Intuitively, a traversable data structure is a finitary container we can “iterate” [21] over, such as a list or

tree type. McBride and Paterson [28] defined traversable functors as those equipped with a distributive

law over applicative functors (i.e. lax monoidal endofunctors on Set). Subsequent work [21, 23] refined

the notion by supplying an appropriate set of axioms for this operation.

Definition 3.10. An applicative functor is a set-forming operation F : Set → Set with operations

pureF : ∀(A : Set) , A → FA

(⊛)F : ∀(AB : Set) , F (A → B)→ FA → FB

subject to the following equations (note that ⊛ is left-associative).

pure id ⊛a = a (3.12)

pure f ⊛pure a = pure (f a) (3.13)

g⊛ (f ⊛a) = pure (·)⊛g⊛ f ⊛a (3.14)

f ⊛pure a = pure (f 7→ f a)⊛ f (3.15)

This class includes the identity functor 1 and is closed under composition. An important special case

are constant applicatives: these must map all sets to some monoid M, with the operations and axioms

coinciding with those of monoids.

Definition 3.11. An applicative morphism φ : F ⇒ G is a natural transformation between applicative

functors that commutes with pure and (⊛) in an obvious way.

Traversable functors are those that distribute over any choice of applicative functor in a well-behaved

way.

Definition 3.12. A traversable functor is equipped with an operation

T

F

F

T

distT : ∀(F : Applicative) (A : Set) ,T (FA)→ F(TA)

subject to the following axioms (φ ranging over applicative morphisms).

=T T

1

1

TT distT
1 = id (3.16)

= T T

F

G

F

G

F

G

F

G

T T distTF·G = mapF
(

distTG
)

·distTF (3.17)

=
φ

T

F

G

T

φ
T

F

G

T distTG ·mapT (φA) = φA ·distTF (3.18)

The connection between traversability and container-like properties is best exemplified by choosing

F to be a constant functor over a monoid M. Then, the type of dist reduces to T M → M. Intuitively, T

contains a finite number of elements, so that when all elements have type M, we can combine them to-

gether using multiplication in M. Gibbons and Oliveira [21] pointed out that (3.16) forbids this operation

108 Syntax Monads for the Working Metatheorist

from “skipping” any elements in T , while Jaskelioff and Rypacek [23] pointed out that (3.17) forbids

this operation from “double counting” any elements.

Waern [38] defined the monoidal category of traversable functors. An arrow in this category is a

natural transformation between traversable functors that commutes with dist, in an obvious way.

Lemma 3.13 (Category Trav). The category Trav of traversable functors is given by the following data:

• Objects are endofunctors T : Set → Set paired with a distributive law over applicative functors

• Morphisms are natural transformations ψ : T1 ⇒ T2 that commute with distribution.

ψψ = T2

F

F

T1T2

F

F

T1 dist
T2

F ·ψ = mapF (ψ) ·dist
T1

F (3.19)

The identity functor is trivially traversable, and the composition of traversables is traversable just by

composing the distributions. Hence, traversable functors Trav forms a monoidal category. As before,

we can consider monoids in this category. These are monads that are also traversable and whose monad

operations satisfy (3.19).

Definition 3.14. A traversable monad T is a monoid in Trav. Explicitly, T has the structures of both a

traversable functor and a monad and satisfies the following equations:

=
F

T

F

T

F

F

distT
F · retT = mapF

(

retT
)

(3.20)

=T

F

T

T

T

F

T

F

T

F

distTF · joinT = mapF
(

joinT
)

·distTF ·mapT
(

distTF
)

(3.21)

Though the laws appear opaque, for syntax metatheory, (3.20) states that a term formed from ret/Var
contains only a single variable. (3.21) implies that substituting a subterm u for x in t adds the occurrences

in u to the set of occurrences of t. This concept is more thoroughly examined in [15].

3.3 Decorated Traversable Functors

For functors that are both traversable and decorated, it is necessary to impose one more condition relating

the decoration and distribution operations. For the following definition, we note that (W×−) is uniquely

traversable.

Definition 3.15. A decorated-traversable functor is equipped with the structure of both a decorated and

traversable functor (Definitions 3.4 and 3.12), subject to the following extra condition:

=T

F

T

W

F

T

F

T

W

F

mapF
(

decT
)

·distT
F = distT

F ·mapT
(

distW×

F

)

·decT (3.22)

L. Dunn, V. Tannen & S. Zdancewic 109

Lemma 3.16 (Category DecTravW). The strict monoidal category DecTravW of decorated-traversable

functors is given by the following data:

• Objects are decorated traversable functors

• Morphisms are natural transformations satisfying both (3.7) and (3.19).

• The tensor product is given by composition of decorated-traversable functors, with the identity

functor serving as the tensor unit.

Definition 3.17. A decorated traversable monad (DTM) is a monoid in DecTravW .

The force of Definition 3.17 is that a DTM is simultaneously an instance of Definitions 3.8, 3.14, and

3.16. A self-contained summary of the axioms can be found in the appendix.

4 Kleisli Representation for DTMs

Definition 3.17 is phrased in terms of principled categorical abstractions, but this is not the most conve-

nient presentation when working in a theorem prover. Just proving that a syntax forms a DTM is tedious,

requiring five operations and 19 equations. The following Kleisli-style definition, mirroring Definition

2.2, is more economical and more useful to program with.

Definition 4.1 (DTMs, Kleisli-style). A Kleisli-presented DTM is a set-forming operation T equipped

with two operations of the following types

ret : ∀(A : Set) , A → TA

binddt : ∀(F : Applicative) (A : Set) , (W ×A → F(T B))→ TA → F (T B)

subject to the following laws (where φ is quantified over applicative morphisms φ : F ⇒ G)

binddt
1

(

retT · extrW×
)

= id (4.1)

binddtF f · retT = f · retW× (4.2)

mapF (binddtG g) · (binddtF f) = binddtF·G

(

λ (w,a).mapF (binddtG (g⊙w)) f (w,a)
)

(4.3)

φ ·binddtF f = binddtG (φ · f) (4.4)

In (4.3), (⊙) is defined (g⊙w1)(w2,b)
de f
= g (w1 ·w2,b).

The following theorem speaks to the robustness of Definition 4.1.

Theorem 4.2. Definitions 3.17 and 4.1 are equivalent.

Proof. The ret operation is the same for both presentations. Given map, join, dec, and dist, we define

binddt as follows:

binddtF f
de f
= mapF

(

joinT
)

·distTF ·mapT f ·dec. (4.5)

Given ret and binddt, we define the operations of DTMs thus:

map f
de f
= binddt

1

(

retT · f · extrW×
)

dec
de f
= binddt

1

(

retT
)

join
de f
= binddt

1

(

extrW×
)

dist
de f
= binddtF

(

retT · extrW×
)

Besides verifying these definitions satisfy the appropriate equations, that starting with either represen-

tation and completing a roundtrip returns the original set of operations. A full proof of this fact can be

found in our GitHub repository. The appendix contains a string-diagrammatic derivation of (4.1)—(4.4)

(Lemma A.1).

110 Syntax Monads for the Working Metatheorist

Example 4.3. The binddt operation for termB is defined as follows (for any f : W ×A → F(T B)):

binddtF f (Var v) = f ([],v)
binddtF f (App t1 t2) = pureF App ⊛binddtF f t1 ⊛binddtF f t2
binddtF f (Lam b t) = pureF (Lam b) ⊛binddtF (f ⊙ [b]) t

Like bind, binddt can be seen as a template for defining structurally recursive operations on abstract

syntax trees. However, it is appreciably more expressive, introducing two new features. First, the first

argument of f is now a list of binders in scope at each variable. Second, the output of f is wrapped in

an applicative functor, and all function application is replaced with “idiomatic” application (⊛). Incor-

porating these aspects greatly expands the range of operations we can define generically.

4.1 Substitution Metatheory

Figure 6 contains generic versions of the opening operation and local closure, relating to Figure 4 as

Figure 3b does to 3a. The definition of LC in particular requires full use of the expressiveness of binddt,.

Here, 2 stands for the constant applicative functor over the monoid 〈2,∧,⊤〉, which provides a form of

universal quantification over variables. As instances of binddt, we can reason about these operations

axiomatically.

openloc : T (A+N)→ N× (A+N)→ T(A+N)

openloc u (n,fvara) = ret (fvara)

openloc u (n,bvarm) =

{

u if n = m

retT (bvarm) else

open u = binddtT
1 (openloc u)

LCloc : N× (A+N)→ 2

LCloc (n,fvara) =⊤

LCloc (n,bvarm) =

{

⊥ if n ≤ m

⊤ else

LC = binddtT
2 LCloc

Figure 6: Generic locally nameless operations for a DTM T

The adequacy of Definition 4.1 for the needs of working metatheorists is an empirical question

demonstrated by formalizing generic syntax metatheory with it. For comparison, Weirich and Aydemir

previously introduced LNgen [5], a code generator that accepts a grammar and synthesizes files con-

taining locally nameless infrastructure for it in Coq. Using Tealeaves, we were able to formalize all of

the infrastructure lemmas defined in [5], as well as others, statically and generically over a choice of

arbitrary DTM. We have not found any lemmas of the locally nameless representation that we cannot

prove in this fashion. The advantage of Tealeaves over LNgen is that our lemmas are proven once and

for all, while LNgen generates proofs specific to a given signature. Because it relies on heuristics and

Ltac [14] (Coq’s incompletely specified proof automation language), the authors have reported in pri-

vate correspondence that LNgen can fail to prove some lemmas. Additionally they have reported long

compile times which must be re-endured after any changes to the user’s syntax. These downsides do not

apply to Tealeaves because it is a static Coq library rather than a program. The cost of entry is to furnish

a proof of (4.1)–(4.4), which we hope to automate in future work.

We have also developed a generalization of DTMs for languages with multiple sorts of variables, and

re-derived the same locally nameless infrastructure, now extended to reason about operations affecting

different sorts of variables.

L. Dunn, V. Tannen & S. Zdancewic 111

5 Related Work

Bellegarde and Hook [8] first considered term monads in the context of formal metatheory. They defined

substitution for a de Bruijn encoding in terms of a combinator Ewp (“extend with policy”) which is

similar in spirit to, but strictly less expressive than, binddt,. Lacking axioms comparable to (4.1)–(4.4),

they were unable to reason about substitution generically.

Subsequent work has generally considered intrinsically well-scoped [4] and well-typed [10, 27, 3]

representations using heterogeneous datatypes [9]. Leveraging the metatheory’s type system to constrain

object terms will tend to lead to a more dependently-typed style of programming where operations and

their correctness properties are woven together. Building on this line of work, Ahrens et al. [2] have re-

cently proposed an intrinisically typed language formalization framework in Coq. The goal of Tealeaves

is to support raw syntax, which involves defining operations first and reasoning about them post factum.

Fiore and collaborators [16, 17] have developed a presheaf-theoretic account of syntax. Subsequent

work by Power and Tanaka axiomatized and expanded the presheaf-theoretic approach [31, 32]. The

basic idea is that intrinsically scoped terms are stratified by a context—the set of all contexts is then used

as the indexing category for the presheaves. In our development, syntax is parameterized by types V and

B for representations of variables and binder annotations. These are fixed by a particular representation

strategy (e.g. locally nameless) and one is left with a single set of terms rather than a presheaf. Fiore and

Szamozvancev have proposed a intrinsically well-scoped, well-typed, syntax formalization framework

in Agda [18] which takes inspiration from the presheaf approach.

Approaches that differ more dramatically from ours include strategies based on nominal sets [20]

and variations of higher-order abstract syntax [30, 12].

Besides LNgen, utilities similar in spirit to Tealeaves include GMeta [25] and Autosubst [34, 35].

GMeta is a Coq framework for generic raw, first-order syntax. Like Tealeaves, it is parameterized by a

variable encoding strategy. GMeta resorts to proofs by induction on a universe of representable types,

while Tealeaves is based on a principled equational theory. Autosubst is an equational framework for

reasoning about de Bruijn indices in Coq based on explicit substitution calculi [1, 33]. Our binddt, can

express de Bruijn substitution; it may be enlightening to consider DTMs vis-à-vis these calculi.

6 Conclusion and Future Work

We have presented decorated traversable monads, an enrichment of monads on the category of sets that

can be used to reason equationally about raw, first-order representations of variable binding.

As presented, DTMs are not equipped with a binder-renaming operation necessary to implement a

fully named binding strategy. A first step in this direction is to recognize that term is also a functor in B

besides V , yielding an operation

bmap : ∀(V B1 B2 : Set) ,(B1 → B2)→ termB1
V → termB2

V

We are investigating an extension of DTMs that incorporates the functor instance in B. One intended

application is to provide a certified generic translation between a named and locally nameless represen-

tation, which could be used as part of a certified compiler, for example.

Imposing a distributive law over all applicative functors imposes an order on variable occurrences,

which may be unnecessarily strong. Some process calculi, for example, feature a notion of parallel

composition | such that formulas p1|p2 and p2|p1 should be taken as syntactically identical. To support

quotiented syntax, one might require a distributive law only over commutative applicative functors.

112 Syntax Monads for the Working Metatheorist

References

[1] M. Abadi, L. Cardelli, P.-L. Curien & J.-J. Lévy (1991): Explicit substitutions. Journal of Functional Pro-

gramming 1(4), p. 375–416, doi:10.1017/S0956796800000186.

[2] Benedikt Ahrens, Ralph Matthes & Anders Mörtberg (2022): Implementing a Category-Theoretic Frame-

work for Typed Abstract Syntax. In: Proceedings of the 11th ACM SIGPLAN International Conference on

Certified Programs and Proofs, CPP 2022, Association for Computing Machinery, New York, NY, USA, p.

307–323, doi:10.1145/3497775.3503678.

[3] Guillaume Allais, James Chapman, Conor McBride & James McKinna (2017): Type-and-Scope Safe Pro-

grams and Their Proofs. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and

Proofs, CPP 2017, Association for Computing Machinery, New York, NY, USA, p. 195–207, doi:10.1145/

3018610.3018613.

[4] Thorsten Altenkirch & Bernhard Reus (1999): Monadic Presentations of Lambda Terms Using Generalized

Inductive Types. In: Proceedings of the 13th International Workshop and 8th Annual Conference of the

EACSL on Computer Science Logic, CSL ’99, Springer-Verlag, Berlin, Heidelberg, p. 453–468, doi:10.

1007/3-540-48168-0_32.

[5] Brian Aydemir & Stephanie Weirich (2010): LNgen: Tool Support for Locally Nameless Representations.

Technical Report, University of Pennsylvania, Department of Computer and Information Science. Available

at https://repository.upenn.edu/handle/20.500.14332/7902.

[6] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter

Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich & Steve Zdancewic (2005): Mech-

anized Metatheory for the Masses: The PoplMark Challenge. In: Proceedings of the 18th International

Conference on Theorem Proving in Higher Order Logics, TPHOLs’05, Springer-Verlag, Berlin, Heidelberg,

p. 50–65, doi:10.1007/11541868_4.

[7] Tørris Koløen Bakke (2007): Hopf Algebras and Monoidal Categories. Master’s thesis, University of Tromsø.

Available at https://munin.uit.no/bitstream/handle/10037/1084/finalthesis.pdf.

[8] Françoise Bellegarde & James Hook (1994): Substitution: A Formal Methods Case Study Using Monads and

Transformations. Sci. Comput. Program. 23(2–3), p. 287–311, doi:10.1016/0167-6423(94)00022-0.

[9] Richard Bird & Lambert Meertens (1998): Nested datatypes. In: In MPC’98, volume 1422 of LNCS,

Springer-Verlag, pp. 52–67, doi:10.1007/BFb0054285.

[10] Richard Bird & Ross Paterson (1999): de Bruijn notation as a nested datatype. Journal of Functional Pro-

gramming 9, pp. 77 – 91, doi:10.1017/S0956796899003366.

[11] R. M. Burstall (1969): Proving Properties of Programs by Structural Induction. The Computer Journal 12(1),

pp. 41–48, doi:10.1093/comjnl/12.1.41.

[12] Adam Chlipala (2008): Parametric Higher-Order Abstract Syntax for Mechanized Semantics. In: Proceed-

ings of the 13th ACM SIGPLAN International Conference on Functional Programming, ICFP ’08, Associa-

tion for Computing Machinery, New York, NY, USA, p. 143–156, doi:10.1145/1411204.1411226.

[13] N.G de Bruijn (1972): Lambda calculus notation with nameless dummies, a tool for automatic formula

manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae (Proceedings)

75(5), pp. 381–392, doi:10.1016/1385-7258(72)90034-0.

[14] David Delahaye (2000): A Tactic Language for the System Coq. In Michel Parigot & Andrei Voronkov,

editors: Logic for Programming and Automated Reasoning, Springer Berlin Heidelberg, Berlin, Heidelberg,

pp. 85–95, doi:10.1007/3-540-44404-1_7.

[15] Lawrence Dunn, Val Tannen & Steve Zdancewic (2023): Tealeaves: Structured Monads for Generic First-

Order Abstract Syntax Infrastructure. In Adam Naumowicz & René Thiemann, editors: 14th International

Conference on Interactive Theorem Proving (ITP 2023), Leibniz International Proceedings in Informatics

(LIPIcs) 268, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 14:1–14:20,

doi:10.4230/LIPIcs.ITP.2023.14.

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1145/3497775.3503678
https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1007/3-540-48168-0_32
https://repository.upenn.edu/handle/20.500.14332/7902
https://doi.org/10.1007/11541868_4
https://munin.uit.no/bitstream/handle/10037/1084/finalthesis.pdf
https://doi.org/10.1016/0167-6423(94)00022-0
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1093/comjnl/12.1.41
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.4230/LIPIcs.ITP.2023.14

L. Dunn, V. Tannen & S. Zdancewic 113

[16] M. Fiore, G. Plotkin & D. Turi (1999): Abstract syntax and variable binding. In: Proceedings. 14th Sympo-

sium on Logic in Computer Science (Cat. No. PR00158), pp. 193–202, doi:10.1109/LICS.1999.782615.

[17] Marcelo Fiore (2008): Second-Order and Dependently-Sorted Abstract Syntax. In: Proceedings of the 2008

23rd Annual IEEE Symposium on Logic in Computer Science, LICS ’08, IEEE Computer Society, USA, p.

57–68, doi:10.1109/LICS.2008.38.

[18] Marcelo Fiore & Dmitrij Szamozvancev (2022): Formal Metatheory of Second-Order Abstract Syntax. Proc.

ACM Program. Lang. 6(POPL), doi:10.1145/3498715.

[19] Brendan Fong & David I Spivak (2018): Seven Sketches in Compositionality: An Invitation to Applied Cate-

gory Theory. doi:10.48550/arXiv.1803.05316.

[20] Murdoch J. Gabbay & Andrew M. Pitts (2002): A New Approach to Abstract Syntax with Variable Binding.

Form. Asp. Comput. 13(3–5), p. 341–363, doi:10.1007/s001650200016.

[21] Jeremy Gibbons & Bruno Oliveira (2009): The essence of the Iterator pattern. J. Funct. Program. 19, pp.

377–402, doi:10.1017/S0956796809007291.

[22] Ralf Hinze & Dan Marsden (2023): Introducing String Diagrams: The Art of Category Theory. Cambridge

University Press, doi:10.1017/9781009317825.

[23] Mauro Jaskelioff & Ondrej Rypacek (2012): An Investigation of the Laws of Traversals. Electronic Proceed-

ings in Theoretical Computer Science 76, doi:10.4204/EPTCS.76.5.

[24] Ramana Kumar, Magnus O. Myreen, Michael Norrish & Scott Owens (2014): CakeML: a verified imple-

mentation of ML. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pp. 179–192, doi:10.1145/2535838.

2535841.

[25] Gyesik Lee, Bruno C. D. S. Oliveira, Sungkeun Cho & Kwangkeun Yi (2012): GMeta: A Generic

Formal Metatheory Framework for First-Order Representations. In Helmut Seidl, editor: Programming

Languages and Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 436–455, doi:10.1007/

978-3-642-28869-2_22.

[26] Ernest G. Manes (1976): Algebraic Theories. Springer New York, doi:10.1007/978-1-4612-9860-1.

[27] Conor McBride (2005): Type-Preserving Renaming and Substitution. Unpublished note.

[28] Conor McBride & Ross Paterson (2008): Applicative Programming with Effects. J. Funct. Program. 18(1),

p. 1–13, doi:10.1017/S0956796807006326.

[29] Eugenio Moggi (1988): Computational Lambda-Calculus and Monads. IEEE Computer Society Press, pp.

14–23, doi:10.1109/LICS.1989.39155.

[30] Frank Pfenning & Conal Elliott (1988): Higher-Order Abstract Syntax. 23, pp. 199–208, doi:10.1145/

960116.54010.

[31] John Power (2003): A Unified Category Theoretic Approach to Variable Binding. In: Proceedings of the 2003

ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Variable Binding, MERLIN

’03, Association for Computing Machinery, New York, NY, USA, p. 1–9, doi:10.1145/976571.976578.

[32] John Power & Miki Tanaka (2008): Category Theoretic Semantics for Typed Binding Signatures with Recur-

sion. Fundam. Informaticae 84, pp. 221–240. Available at http://content.iospress.com/articles/

fundamenta-informaticae/fi84-2-05.

[33] Steven Schäfer, Gert Smolka & Tobias Tebbi (2015): Completeness and Decidability of de Bruijn Substitu-

tion Algebra in Coq. In: Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP ’15,

Association for Computing Machinery, New York, NY, USA, p. 67–73, doi:10.1145/2676724.2693163.

[34] Steven Schäfer, Tobias Tebbi & Gert Smolka (2015): Autosubst: Reasoning with de Bruijn Terms and Parallel

Substitutions. In Xingyuan Zhang & Christian Urban, editors: Interactive Theorem Proving - 6th Interna-

tional Conference, ITP 2015, Nanjing, China, August 24-27, 2015, LNAI, Springer-Verlag, doi:10.1007/

978-3-319-22102-1_24.

https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1145/3498715
https://doi.org/10.48550/arXiv.1803.05316
https://doi.org/10.1007/s001650200016
https://doi.org/10.1017/S0956796809007291
https://doi.org/10.1017/9781009317825
https://doi.org/10.4204/EPTCS.76.5
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-642-28869-2_22
https://doi.org/10.1007/978-3-642-28869-2_22
https://doi.org/10.1007/978-1-4612-9860-1
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1145/960116.54010
https://doi.org/10.1145/960116.54010
https://doi.org/10.1145/976571.976578
http://content.iospress.com/articles/fundamenta-informaticae/fi84-2-05
http://content.iospress.com/articles/fundamenta-informaticae/fi84-2-05
https://doi.org/10.1145/2676724.2693163
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1007/978-3-319-22102-1_24

114 Syntax Monads for the Working Metatheorist

[35] Kathrin Stark, Steven Schäfer & Jonas Kaiser (2019): Autosubst 2: Reasoning with Multi-Sorted de Bruijn

Terms and Vector Substitutions. In: Proceedings of the 8th ACM SIGPLAN International Conference on

Certified Programs and Proofs, CPP 2019, Association for Computing Machinery, New York, NY, USA, p.

166–180, doi:10.1145/3293880.3294101.

[36] The Coq Development Team (2023): The Coq Proof Assistant, doi:10.5281/zenodo.8161141.

[37] Tarmo Uustalu & Varmo Vene (2008): Comonadic Notions of Computation. Electronic Notes in Theoretical

Computer Science 203(5), pp. 263–284, doi:10.1016/j.entcs.2008.05.029. Proceedings of the Ninth

Workshop on Coalgebraic Methods in Computer Science (CMCS 2008).

[38] Love Waern (2019): Cofree Traversable Functors. Bachelor’s thesis. Available at https://uu.

diva-portal.org/smash/record.jsf?pid=diva2:1369180.

[39] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin & Steve Zdancewic (2012): Formalizing the LLVM

Intermediate Representation for Verified Program Transformations. In: Proceedings of the 39th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’12, Association

for Computing Machinery, New York, NY, USA, p. 427–440, doi:10.1145/2103656.2103709.

https://doi.org/10.1145/3293880.3294101
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1016/j.entcs.2008.05.029
https://uu.diva-portal.org/smash/record.jsf?pid=diva2:1369180
https://uu.diva-portal.org/smash/record.jsf?pid=diva2:1369180
https://doi.org/10.1145/2103656.2103709

L. Dunn, V. Tannen & S. Zdancewic 115

A Appendix

TT

A Bf

mapf

T

ret

T

T

T

join

T

T

W×

dec

T

F

F

T

dist

T

T

T

T

T

T

T

T=

joinT · joinT = joinT ·mapT
(

joinT
)

TTT

T

= = T

T

joinT · retT = id = joinT ·mapT
(

retT
)

T T=
T

T

mapTextrW× ·decT = id

=
T

T
W×

T

T

W×

W×

W×

decT ·decT = mapTdupW× ·decT

=
W×

T

W×

T

decT · retT = retT · retW×

=
T

T W×

T T

T

T

W×

decT · joinT = joinT·W×
·decT ·mapT

(

decT
)

=T T

1

1

TT

distT
1 = id

=T T

F

G

F

G

F

G

F

G

T T

distTF·G = mapF
(

distT
G

)

·distTF

=
φ

T

F

G

T

φ

T

F

G

T

distTG ·mapT (φA) = φA ·distT
F

=
F

T

F

T

F

F

distTF · retT = mapF
(

retT
)

=T

F

T

T

T

F

T

F

T

F

distTF · joinT = mapF
(

joinT
)

·distT
F ·mapT

(

distTF
)

=T

F

T

W

F

T

F

T

W

F

mapF
(

decT
)

·distTF = distT
F ·mapT

(

distW×

F

)

·decT

Figure 7: String diagrammatic presentation of DTMs

116 Syntax Monads for the Working Metatheorist

Lemma A.1. Every DTM gives rise to a Kleisli-presented DTM according to the following definition of

binddt.

A B

T

f

T

F

binddtF f = mapF
(

joinT
)

·distT
F ·mapT f ·decT

Proof. Proof of Equation (4.1):

A B
f

T

F

=

A B
f

T

F

Apply the decoration cup law (3.10).

=

A B
f

T

F

Pull the unit across F (3.20).

=
A B

f T

F

Apply the left monad unit law (2.1).

Proof of Equation (4.2):

A A

T T
1

1

=

A A

T T
1

1

Apply unit and counit laws (3.5) (2.2).

=

A A

T T Apply traversal unitary law (3.16).

L. Dunn, V. Tannen & S. Zdancewic 117

Proof of Equation (4.3):

A
B

T

f
C

g
T

G

F

=

A

T

f
C

g
T

G

F

Apply the butterfly law (3.11).

=

A

T

f
C

g
T

G

F

Drag operations past distributions (3.21) (3.22).

=

A

T

f
C

g

T

G

F

Apply (co)associativity (2.3) (3.6).

=

A

T

f
C

g

T

G

F

Apply traversal composition law (3.17).

Proof of Equation (4.4):

A B

T

f

T
φ

G

F

=

A B

T

f

T

Gφ

F Slide the applicative morphism (3.18).

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 118–136, doi:10.4204/EPTCS.397.8

A Categorical Model for Classical
and Quantum Block Designs

Paulina L. A. Goedicke
Institute for Theoretical Physics

University of Cologne
goedicke@thp.uni-koeln.de

Jamie Vicary
Department of Computer Science

University of Cambridge
jamie.vicary@cl.cam.ac.uk

Classical block designs are important combinatorial structures with a wide range of applications in
Computer Science and Statistics. Here we give a new abstract description of block designs based on
the arrow category construction. We show that models of this structure in the category of matrices and
natural numbers recover the traditional classical combinatorial objects, while models in the category
of completely positive maps yield a new definition of quantum designs. We show that this generalizes
both a previous notion of quantum designs given by Zauner and the traditional description of block
designs. Furthermore, we demonstrate that there exists a functor which relates every categorical
block design to a quantum one.

1 Introduction

Combinatorial design theory has a variety of applications in computer science and statistics. Its main
focus lies on finite discrete structures, such as (hyper)graphs, finite projective and affine planes, block
designs, orthogonal arrays and Latin squares that fulfil certain constraints on the arrangement of elements
[15]. With the development of quantum computing, it is natural to ask how combinatorial objects fit into
quantum information theory. Many interesting intersections between these fields are already known; for
example, it has been shown that the problem of constructing mutually orthogonal Latin squares of order
d is equivalent to constructing a 2-uniform state of N qudits of d levels having d2 positive terms [5].

Some combinatorial objects have an analogous quantum form, which can lead to rich insights. For
instance, Vicary et al. have introduced the notion of quantum Latin squares (QLS), a quantum analogue
of Latin squares with which one can build a new construction scheme for unitary error bases [10]. Based
on this, Goyeneche et al. introduced quantum orthogonal arrays and showed that they are related to
QLSs, in the same way that orthogonal arrays are related to Latin squares [6], [4]. Quantum Latin squares
also play a role in the classification of other biunitary constructions such as Hadamard matrices [12],
quantum teleportation and error correction [10], and also give a new construction scheme for mutually
unbiased bases (MUBs) as shown by Musto [9]. Only recently, Życzkowski et al. have found a quantum
solution to the famous Euler’s problem of thirty six officers, i.e. classically no two orthogonal Latin
squares of order six exist, by constructing two orthogonal QLS of order six [11]. Other examples of
the connection between classical and quantum combinatorics include the work by Wocjan and Beth
on mutually unbiased basis construction from orthogonal Latin squares [18], and Wooter’s description
of affine plane constructions of mutually unbiased bases [19]. However, a unified perspective on the
relationship between classical and quantum combinatorics remains elusive.

A prominent example of combinatorial designs are balanced incomplete block designs (BIBDs) [15],
combinatorial designs with special balance constraints on the arrangement of elements, and Zauner has
extended this to give a more general notion of quantum design [20]. In this paper we develop a category-
theoretical model for both classical and quantum designs, using the language of arrow categories. We

http://dx.doi.org/10.4204/EPTCS.397.8

Paulina Goedicke and Jamie Vicary 119

will start by reviewing classical design theory and Zauner’s notion of quantum designs. We then develop
a categorical framework based on arrow categories, that transfers the intrinsic properties of block designs
to a pointed monoidal dagger category. Applied to the categories Mat(N) and CP[FHilb], this framework
yields a categorical model for both block designs and quantum designs. This not only leads to a more
general description of both classical and quantum designs via completely positive maps, but also allows
us to relate classical to quantum designs via a functor. Moreover, we will use these techniques to define
a category of mutually-unbiased bases.

1.1 Structure of the paper

This paper is organised as follows. In Section 2 and Section 3 we will summarise the central math-
ematical concepts that are used in the paper, covering elementary combinatorics, quantum designs as
they were defined by Zauner, and elements from category theory. Moreover, we give the definition of a
category of BIBDs, namely Block and a category of general designs, namely Design. In Section 4 we
will develop the design construction that describes the design structures discussed in Section 2.1 via an
abstract operation on a pointed monoidal dagger category. By applying this construction to Mat(N), we
then show in the beginning of Section 5 that this recovers the category theoretical description of clas-
sical designs, namely Design[Mat(N)], and we show that there exists a functor from the subcategory
BDesign[Mat(N)] to Block. Furthermore, we define a category QDesign of quantum designs by ap-
plying the design construction to CP[FHilb], and show that it contains a subcategory where objects are
uniform and regular quantum designs of degree 1. This also allows us to define a category of MUBs. Fi-
nally, we construct a functor between BDesign[Mat(N),FSet] and QDesign, yielding a relation between
categorical block designs and quantum design in accordance with earlier results given by Zauner [20].

Throughout the paper we will only consider finite dimensional Hilbert spaces.

1.2 Open questions

It would be interesting to know if the more general quantum designs that we define have an application in
quantum computing, and in particular if the trace-preserving examples are interesting to use as quantum
channels. The same holds for the CP-maps representing classical designs, which can be interpreted in
terms of statistical mechanics.1 Moreover, a category theoretical perspective might lead to new insights
on the problem of finding the maximal number of MUBs in arbitrary dimension, a problem which has
already been approached by Musto using categorical techniques [9]. Especially in this context, it would
be relevant to know how one can embed Latin squares into our model, which may also give new insights
on how QLS relate to quantum designs. Finally, one could ask how one can embed mutually unbiased
measurements (MUMs) into this framework.

1.3 Acknowledgements.

The first author has been supported by Germany’s Excellence Strategy Cluster of Excellence Matter and
Light for Quantum Computing (ML4Q) EXC 2004/1 390534769. The second author acknowledges sup-
port from the Royal Society. We are grateful to the reviewers for their excellent and insightful comments
which improved our paper considerably.

1This is because they are morphisms of CPc[FHilb] (see Section 3).

120 A Categorical Model for Classical and Quantum Block Designs

2 Design Theory

In this section we recall the definition of balanced incomplete block designs, following Stinson [15] and
Buekenhout [1]. We then review Zauner’s definition of quantum designs [20].

2.1 Classical designs

We begin with the definition of designs.

Definition 2.1. A design is given by a set V = {1, ..,v} of points, and a set B = {1, . . . ,b} of blocks and
an incidence relation I between them.

Designs can also be viewed as bipartite graphs on the partitioned set given by the disjoint union of the
blocks and points. More concretely, we can represent a design as an incidence matrix, a v×b matrix χ

with χi, j = 1 if and only if (i, j) ∈ I, and χi, j = 0 otherwise. Throughout the paper we will mainly use
the incidence matrix representations of designs.

Definition 2.2. A design χ : b−→ v is called

• k-uniform, if every block contains exactly k points:

v

∑
i=1

χi, j = k, for all j = 1, ..,b

• r-regular, if every point appears in exactly r blocks:

b

∑
j=1

χi, j = r for all i = 1, ..,v

Definition 2.3. A k-uniform and r-regular designs is called λ -balanced, if any two points are contained
in exactly λ blocks. We then have:

χ ·χT = λ

(
Ev×v− Iv×v

)
+ rIv×v

Here χT is the transpose incidence matrix, Ev×v denotes the v×v-matrix in which every entry is equal to
1, and Iv×v denotes the v× v identity matrix.

The last expression from above means that by multiplying χ with its transpose one obtains a matrix
where every off-diagonal entry is equal to λ and every diagonal entry is equal to r. These properties
combine to give the important notion of block design.

Definition 2.4. A block design, or a (v,k,r,b,λ)-design, is a design χ : b −→ v which is k-uniform,
r-regular and λ -balanced.2

By simple counting arguments, one can easily derive the following equational properties ([15], p.
4-5):

Lemma 2.5. For a (v,k,r,b,λ)-design, the following equations hold:

b · k = r · v (1)

λ (v−1) = r(k−1) (2)
2What we define here is actually known as a balanced incomplete block design (BIBD) in the literature, whereas block

designs define a more general concept. For the sake of simplicity we will call BIBD’s block designs.

Paulina Goedicke and Jamie Vicary 121

Definition 2.6. A (v,k,r,b,λ)-design is symmetric when v = b; that is, when there are as many points as
blocks. Lemma 2.5 then implies that r = k.
Example 2.7 ([15], p.27). Consider a finite projective plane of order d. We then have v = d2 + d + 1
points and b = d2+d+1 lines such that there are k = d+1 points on each line and each point appears on
r = d +1 lines. Moreover, every pair of lines intersect in exactly one point. Hence we have a symmetric
block design with parameters v = b = d2 +d +1, r = k = d +1 and λ = 1.

We now consider the appropriate notion of homomorphism of block design.
Definition 2.8. Consider two designs χ : b−→ v and χ ′ : b′ −→ v′. A design homomorphism f : χ→ χ ′

is a pair of functions fv : v→ v′ and fb : b→ b′ such that the following diagram commutes:

b b′

v v′
χ

fb

χ ′

fv

We can use this to obtain categories of designs and block designs, as follows.
Definition 2.9. The category Design has designs as objects, and design homomorphisms as morphisms.
The category Block is the full subcategory on the block designs.
This definition could alternatively be given in terms of points and blocks, but we define it in this abstract
way to better relate the categorical machinery to follow. A related definition was given by Dörfler and
Waller [2] who explored categories of hypergraphs. Since hypergraphs generalise relations, designs are
instances of hypergraphs. In their definition they use the power-set functor to assign to each edge (block)
the set of vertices (points) it is incident with. For our notion of a block design we do not make explicit use
of the power-set functor; however, this could be an interesting approach since the category of relations is
the Kleisli category of the power-set functor, and we would like to consider it in future work.

2.2 Quantum designs

A notion of quantum design has been presented by Zauner in his PhD thesis [20]. Here we recall that
definition, adapting the terminology slightly for consistency.
Definition 2.10. A quantum (v,b)-design is a set D= {p1, ..., pv} of complex orthogonal b×b projection
matrices pi on a b-dimensional Hilbert space Cb, i.e. pi = p†

i = p2
i for all i ∈ {1, . . . ,v}.

As for classical designs above, we introduce certain properties for quantum designs.
Definition 2.11. A quantum (v,b)-design is called

• r-regular if there exists some r ∈ N with Tr(pi) = r for all i ∈ {1, . . . ,v};
• k-uniform if there exists some k ∈ R with ∑

v
i=1 pi = k · Ib×b.

Definition 2.12. Given a quantum (v,b)-design, its degree is the cardinality of the set {Tr(pi p j)|i, j ∈
{1, . . . ,v}, i 6= j}.
It follows that a quantum design has degree 1 just when there exists some λ ∈ R such that

Tr(pi p j) = λ ∀i, j = 1, ...,v with i 6= j. (3)

We will call such a quantum design λ -balanced. That λ is real in this case follows from a simple
argument: λ = Tr(pi p j) = Tr((pi p j)

†)∗ = Tr(p†
j p†

i)
∗ = Tr(p j pi)

∗ = Tr(pi p j)
∗ = λ ∗.

The following lemma can then be established analogous to Lemma 2.5 for classical designs.

122 A Categorical Model for Classical and Quantum Block Designs

Lemma 2.13. For a k-uniform, r-regular and λ -balanced quantum design D = {p1, ..., pv} with pi ∈Cb

the following equations hold:

b · k = v · r (4)

λ (v−1) = r(k−1) (5)

The proof for this lemma can be found in Appendix B.

Definition 2.14. A quantum design is commutative when all projection matrices pairwise commute.

Theorem 2.15 ([20], Theorem 1.10). A commutative quantum design is equivalent to a classical block
design.3

A prominent example of a uniform and regular quantum design with degree 2 are mutually unbiased
bases (MUBs). These objects play a significant role in quantum information theory.

Example 2.16 (MUBs.). Mutually unbiased bases are a pair of bases {|ai〉}i=0,...,d−1,{|bi〉}i=0,...,d−1 for
a d-dimensional Hilbert space H, such that the inner products 〈ai|b j〉 are equal for all i, j = 0, ...,d−1.
A uniform and regular quantum design of degree 2 with parameters r = 1, b = d, v = d ·k and Λ = { 1

d ,0}
defines a set of k MUB’s in a d-dimensional Hilbert space H. To see that, note that the d ·k projectors all
have trace one and satisfy the following condition, where a labels the different orthogonal classes, and i
labels the projectors within an orthogonal class:

k

∑
a=1

d

∑
i=1

pa
i = k · I (6)

Moreover, the following holds:

tr(pa
i pb

j) =
1
d
(1−δab)+δi jδab

It is easy to see that we get a complete set of MUBs if v equals d (d+1), as we then have k = d+1.4

3 Category Theory

In this section we give the definition of an arrow category, and explain the CP-construction. We will as-
sume familiarity with basic concepts in category theory and the graphical calculus, and refer to Maclane [7]
and Heunen and Vicary [16] for further background.

The categories we will mostly use in this paper are the category of matrices and natural numbers,
Mat(N), and the category of finite dimensional Hilbert spaces and bounded linear maps, FHilb.

Example 3.1. (i) ([16], p. 16) The category FHilb has as objects finite dimensional Hilbert spaces
and as morphisms bounded linear maps between Hilbert spaces. Composition is the composition
of linear maps as ordinary functions and the identity morphisms are given by identity linear maps.
The monoidal product is given by the tensor product on Hilbert spaces and the unit object is the
one-dimensional Hilbert space C.

3This holds because every commutative design is unitarily equivalent to a design comprised of diagonal matrices; as the
projections are idempotent, the diagonal entries must therefore be 0 or 1 [20].

4Complete means that we have d +1 MUBs in a d-dimensional Hilbert space.

Paulina Goedicke and Jamie Vicary 123

(ii) ([13], p. 4) The category Mat(N) of matrices over N has objects given by natural numbers. For
m,n ∈ N, the Hom-set HomMat(N)(m,n) is the set of all n×m-matrices over N, composition being
matrix multiplication. The monoidal product on objects is given by the multiplication of num-
bers and on morphisms by the Kronecker product of matrices. The monoidal unit is the natural
number 1.

Definition 3.2 (See [13], p. 23-24). For a category C , its arrow category Arr[C] is defined as follows:
• objects are triples (A,B,h) with h : A→ B in C ;

• morphisms φ : (A,B,h)→ (A′,B′,h′) are pairs of morphisms φA : A→ A′ and φB : B→ B′ in C
such that the following diagram commutes:

A A′

B B′
h

φA

h′

φB

3.1 The CP construction

The concept of completely positive maps is well-established [8]. Here we use Selinger’s categorical
description of completely positive maps [14], as follows, exploiting the notion of dagger Frobenius
structure, which is standard in the categorical quantum mechanics literature [16].
Definition 3.3. In a monoidal dagger category, let (A,µA,ηA) and (B,µB,ηB) be dagger Frobenius struc-
tures.5 A morphism f : A→ B satisfies the CP-condition if there exists some object X and some mor-
phism g : A⊗B→ X such that the following equation holds:

∆

µ

f =
g

g†

One can show that, in a symmetric monoidal dagger category, a morphism that satisfies this condition
constitutes a CP-map [16].
Example 3.4. In FHilb, consider a POVM consisting of b projections pi : H → H. One can define a
completely positive map ϕ :Cb→H⊗H∗ that sends the computational basis vector |i〉 to pi. Graphically,
we can represent ϕ as follows, where bH : C→ H∗⊗H is the evaluation map:

b

∑
i=1

H H∗

pi

b†
H

i

5A dagger Frobenius structure is a monoid structure which, together with its dagger, satisfies a Frobenius condition. For an
introduction to dagger Frobenius structures we refer to Heunen and Vicary [16].

124 A Categorical Model for Classical and Quantum Block Designs

Proposition 3.5. Let (C ,⊗C ,IC) be a monoidal dagger category. There is a category CP[C] in which

• objects are special symmetric dagger Frobenius structures in C

• morphisms are morphisms of C that satisfy the CP-condition.

Example 3.6. In CP[FHilb] objects are finite dimensional H∗-algebras, i. e. an algebra A that is also
a Hilbert space with an anti-linear involution † : A→ A satisfying 〈ab|c〉= 〈b|a†c〉= 〈a|cb†〉, and mor-
phisms are completely positive maps.

Proposition 3.7. The category CPc[C] with classical structures, i.e. special commutative dagger Frobe-
nius structures in C , as objects and completely positive maps between these structures as morphisms, is
a subcategory of CP[C].

Proposition 3.8 ([16], p. 241). The category CPc[FHilb] is monoidally equivalent to Mat(N).
An interpretation of these constructions is the following: C models pure state quantum mechanics,
CP[C] models mixed state quantum mechanics, while CPc[C] describes statistical mechanics [16].

The final piece of structure we require is that of pointed monoidal category.

Definition 3.9. A pointed monoidal category is a monoidal category for which every object A is equipped
with a canonical morphism pA : I→ A.

Example 3.10. We obtain examples as follows from the categories we have been considering:

(i) The category CP[C] has a pointed structure given by the adjoint of the trace map V ⊗V ∗→ I.
(ii) In Mat(N) a pointed structure is given by a column matrix with a 1 at every entry: pn : 1→ n.

4 Categorical Block Designs

In this section we will develop a construction that gives an abstract notion of the uniformity-, regularity-
and λ -balanced condition from Section 2.1 in an arbitrary rigid monoidal category. We will call this the
design construction.

Definition 4.1 (Design construction). Let F : D ↪→ C be a faithful monoidal functor between pointed
monoidal dagger categories. The category Design[C ,D] is the subcategory of Arr[C] where the mor-
phisms are given by pairs of morphisms of C which are in the image of the functor F ; we omit F from
the notation, ensuring it is clear from the context. Where F = id, we simply write Design[C].

Definition 4.2. The category RUDesign[C ,D] is the subcategory of Design[C ,D] where objects f : A→ D
are r-regular and k-uniform, for scalars r, k ∈Hom(IC ,IC), with the pointed structure and its dagger rep-
resented by a black dot:

D

f = r

D

A

f
= k

A

Lemma 4.3. In RUDesign[C ,D] for any k-uniform, r-regular object f : A→D, the following equations
hold:

k ·dim(D) = r ·dim(A) (7)

where dim(A) = p†
A ◦ pA for A ∈ obj(C). Here pA : 1→ A is the pointed structure of C .

Paulina Goedicke and Jamie Vicary 125

Proof. Via composition with p†
D and pA respectively, the regularity and uniformity condition become:

f = k ·dim(A) f = r ·dim(D)

Hence Eq. 7 holds.

Definition 4.4. The category BDesign[C ,D] is the subcategory of RUDesign[C ,D] where all k-uniform
and r-regular objects f : A→ D are λ -balanced for scalars λ ∈ Hom(IC ,IC):

f †

f
= λ

 −

 + r

Lemma 4.5. In BDesign[C ,D] for any k-uniform, r-regular object f : A→ D, the following equation
holds, where dim(D) = p†

D ◦ pD for D ∈ obj(C):

λ · (dim(D)−1) = k · (r−1) (8)

Proof. To prove Eq. 8, we concatenate the λ -condition with both pA and p†
A which gives:

f †

f
= λ (dim(D)2−dim(D))+ r dim(D)

On the other hand we have:

f †

f
= k

f
= k r

If we now concatenate with p†
D, we get:

f †

f
= k r dim(D)

From this we can easily deduce Eq. 8.

126 A Categorical Model for Classical and Quantum Block Designs

5 Classical and Quantum Models

In this section we will apply the design-constructions from Section 4 to our model categories Mat(N)
and CP[FHilb] and show that this gives us a categorical model of both classical quantum designs.

5.1 The Category of Block Designs

Writing FSet for the category of finite sets and functions, there is a faithful functor FSet ↪→Mat(N)
which takes every set to the natural number given by its cardinality. Moreover, we have that FSet ↪→
Mat(N) ∼= CPc[FHilb] (see Theorem 3.8). In the following we will prove that there exists a func-
tor from the category BDesign[Mat(N),FSet] to the category Block. Moreover, we will show that
BDesign[Mat(N),FSet] is equivalent to BDesign[CPc[FHilb],FSet].

Theorem 5.1. There exists a functor G : BDesign[Mat(N),FSet]−→ Block.

Proof. We first note that the morphisms in BDesign[Mat(N),FSet] are given by pairs of functions. The
functor sends each object in BDesign[Mat(N),FSet] to an incidence matrix in Block by sending each
matrix entry greater than 0 to 1. The uniformity, regularity and λ -balance conditions of the design
construction ensure that the incidence matrix we obtain that way, represents a uniform, regular and λ -
balanced design. On morphisms the functor acts as the identity.

Similarly, one can argue that the following holds.

Theorem 5.2. There exists a functor G : Design[Mat(N),FSet]−→ Design.

Note that this indicates that the categories Design[Mat(N),FSet] and BDesign[Mat(N),FSet] actu-
ally define a more general concept of (block)design. We will refer to it as categorical (block)designs.

Lemma 5.3. The category BDesign[Mat(N),FSet] is equivalent to BDesign[CPc[FHilb],FSet].

Proof. According to Proposition 3.8 the categories CPc[FHilb] and Mat(N) are equivalent. Using The-
orem A.5 from Appendix A, this gives rise to an equivalence between their arrow categories.

5.2 The Category of Quantum Designs

In this section we will define a category of quantum designs by applying the design construction to the
category CP[FHilb]. Moreover, we will show that this category contains two important subcategories:
QDesignB which has objects that are uniform and regular quantum designs of degree 1, and QDesignRU
that has uniform and regular quantum designs as objects. We will demonstrate that the latter actually
contains a subcategory MUB, with objects that are sets of mutually unbiased bases.

Recall from Section 3 that CP[FHilb] is comprised of finite dimensional H∗-algebras and com-
pletely positive maps. Applying the design construction using the identity functor, we get a category
Design[CP[FHilb]], with objects that are CP-maps between finite dimensional H∗-algebras, and mor-
phisms that are pairs of CP-maps.

Definition 5.4. The category QDesign is defined to be the category Design[CP[FHilb]].

Definition 5.5. The subcategory RUDesign[CP[FHilb]] of QDesign is called QDesignRU. Its objects
are uniform and regular quantum designs.

Definition 5.6. The subcategory BDesign[CP[FHilb]] of QDesignRU is called QDesignB. Its objects are
uniform and regular quantum designs with degree 1.

Paulina Goedicke and Jamie Vicary 127

Example 5.7. Consider the subcategory of QDesignB where all objects are CP-maps between matrix
algebras: φ : H⊗H∗→ K⊗K∗ where dim(H) = b and dim(K) = v. Because H is a special Frobenius
algebra, we get dim(H) = tr(idH). We then have the following uniformity and regularity conditions:

H H∗

φ

dK

= k

H H∗

dH
dH

K K∗

φ

b†
K

= r

K K∗

dK

b†
K

The λ -condition is given by:

φ †

φ

= λ

 dK

b†
K

−

 + r

Let H = C2 = K and consider the CP-map ϕ : C2⊗C2→ C2⊗C2 with matrix representation:
1 0 0 1
0 1

2
1
2 0

0 1
2

1
2 0

1 0 0 1


This map represents a quantum design with parameters λ = k = r = 2 = v = b.
Theorem 5.8. Every 1-uniform, r-regular and λ -balanced quantum design of the form S : H ⊗H∗ →
K⊗K∗ defines a superoperator.

Proof. By definition, S is completely positive. Applying the uniformity condition to S(ρ), where ρ is a
an arbitrary state in H⊗H∗ shows that S is also trace-preserving.

In the previous example we have considered completely positive maps from a non-commutative
algebra to a non-commutative algebra in FHilb. We can also consider CP-maps from a commutative
algebra to a non-commutative algebra, i. e. maps of the form: ϕ : H → K∗⊗K. In fact, we can encode
uniform and regular quantum designs of degree 1 according to Zauner’s notion via these maps.
Theorem 5.9. There exists a subcategory of QDesignB that has objects that represent uniform and
regular quantum designs of degree 1 according to Zauner’s notion.

Proof. Consider a uniform, regular and λ -balanced quantum design D = {p1, ..., pv}, where each pi is
a b×b projection matrix in a Hilbert space Cb. Following Example 3.4, these projections pi : Cb→ Cb

then give rise to a completely positive map φ : Cv→ Cb⊗Cb in FHilb. This is valid because imposing
uniformity, regularity and being λ -balanced on the projector has no impact on the CP-condition. Now
take φ ′ = φ † : Cb⊗Cb→ Cv, i. e.

pi

dCb

i

∑
v
i=1

128 A Categorical Model for Classical and Quantum Block Designs

Then we find:

φ ′ = k
dCb

φ ′

bCb

= r

φ †′

φ ′

= λ

 −

 + r

These coincide with the conditions given by the design construction applied to FHilb. Moreover, we
can recover Eq. 4 and Eq. 5 from Lemma 2.13 as dim(Cv) = v and dim(Cb) = b and Eq. 7 and Eq. 8
hold.

Theorem 5.10. There exists a subcategory MUB of QDesignRU with objects that are collections of
MUBs and morphisms that are pairs of functions.

Proof. Consider the CP-map M : Ck·d ∼= Cd⊗Ck→ Cd⊗Cd :

M =
k

∑
a=1

d

∑
i=1

i a

dCd

pa
i

This map satisfies the following equations:

M = k
dCd

M

bCd

=

M†

M
=

1
d

 −

 +

Here the last equation can be understood as a generalised λ -equation. Restricting QDesignRU to objects
of this form, we get a category that has objects that are 1-uniform and k-regular quantum designs of
degree 2 where Λ = { 1

d ,0}, i. e. k MUBs in dimension d.

Paulina Goedicke and Jamie Vicary 129

5.3 Relating BDesign to QDesign

In this section we will construct a functor between BDesign[Mat(N),FSet] and QDesignB.

Proposition 5.11. There exists a functor Q : BDesign[Mat(N),FSet]→QDesignB that relates a gener-
alized balanced incomplete block designs to uniform, regular and λ -balanced quantum designs.

Proof. According to Lemma 5.3 the categories BDesign[Mat(N),FSet] and BDesign[CPc[FHilb],FSet]
are equivalent. So we can actually represent an arbitrary object χ : b→ v in BDesign[Mat(N),FSet] via
a uniform, regular and λ -balanced CP-map χ : Cb → Cv. The functor Q acts on objects by sending
each object χ : Cb→ Cv in BDesign[Mat(N),FSet] with parameters k, r and λ to the map φ = χ ◦L :
Cb⊗Cb→Cb→Cv, where the map L : Cb⊗Cb→Cb is the so-called Cayley embedding, which in our
case simply becomes the multiplication µ : Cb⊗Cb → Cb as we have that A = Cb ∼= (Cb)∗ = A∗. Its
conjugate L† is just the comultiplication ∆ : Cb→ Cb⊗Cb. The resulting map φ is as concatenation of
completely positive maps also completely positive. We depict this via the following string diagram:

µ

χ

= φ

Via concatenation, each morphism in BDesign[Mat(N),FSet]

Cb Cb′

Cv Cv′

χ

ξ ′

χ ′

ξ

gets mapped to a morphism in QDesignB, as follows:

Cb⊗Cb Cb′⊗Cb′

Cb Cb′

Cv Cv′

µ

ξ ′⊗ξ ′

µ

χ

ξ ′

χ ′

ξ

This diagram commutes, because ξ ′ can be extended to a morphism of monoids as ξ ′ is a function. It is
easy to verify that this functor respects composition and sends the identity morphism in BDesign[Mat(N),FSet],
i. e. idψ = (id, id), to the identity morphism idQ(ψ) = (id⊗ id, id⊗ id) in QDesignB. The regularity con-
dition then becomes:

k
dCb

= k µ =
χ

µ
= φ

130 A Categorical Model for Classical and Quantum Block Designs

which is exactly the regularity condition in QDesignB. Note that we have used the fact that Cb is a
special Frobenius algebra in the first step. in the second step. For uniformity we find:

r =

χ

∆

µ =

φ

∆

=
φ

bCb

which is precisely the uniformity condition in QDesignB. In a similar way one can verify that the
λ -condition in BDesign[Mat(N),FSet] gets mapped to the λ -condition in QDesignB.

In this construction every classical design gives rise to a uniform and regular quantum design of
degree 1, analogously to Theorem 2.15. However, it is straightforward to verify that the functor Q does
not yield an equivalence of categories, as it is not essentially surjective.

A widely-discussed topic is the existence of MUBs in non-primepower dimensions. One can ask if it
is possible to extend the functor Q to a functor Q̃ : BDesign[Mat(N),FSet]→MUB that maps a classical
design to a set of MUBs. We conjecture that there does not exist a classical design that gets sent to a
MUB via Q.

Paulina Goedicke and Jamie Vicary 131

References
[1] F. Buekenhout. Handbook of Incidence Geometry. Buildings and Foundations. North-Holland, 1995.
[2] Willibald Dörfler and D. A. Waller. A category-theoretical approach to hypergraphs. Archiv der Mathematik,

34:185–192, 1980.
[3] Paulina L. A. Goedicke and Jamie Vicary. On structures in arrow categories, 2023. arXiv:2309.15544.
[4] D. Goyeneche and Karol Życzkowski. Genuinely multipartite entangled states and orthogonal arrays. Phys-

ical Review A, 90, 04 2014. doi:10.1103/PhysRevA.90.022316.
[5] Dardo Goyeneche, Daniel Alsina, José I. Latorre, Arnau Riera, and Karol Życzkowski. Absolutely maximally

entangled states, combinatorial designs, and multiunitary matrices. Phys. Rev. A, 92:032316, Sep 2015. URL:
https://link.aps.org/doi/10.1103/PhysRevA.92.032316, doi:10.1103/PhysRevA.92.032316.

[6] Dardo Goyeneche, Zahra Raissi, Sara Di Martino, and Karol Życzkowski. Entanglement and quantum com-
binatorial designs. Physical Review A, 97(6), Jun 2018. doi:10.1103/physreva.97.062326.

[7] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5.
Springer, 2013.

[8] Gerald Murphy. C star Algebras and Operator Theory. Academic Press, 1990.
[9] Benjamin Musto. Constructing mutually unbiased bases from quantum Latin squares. Electronic Proceedings

in Theoretical Computer Science, 236:108–126. doi:10.4204/eptcs.236.8.
[10] Benjamin Musto and Jamie Vicary. Quantum Latin squares and unitary error bases, 2016. arXiv:1504.

02715.
[11] Suhail Ahmad Rather, Adam Burchardt, Wojciech Bruzda, Grzegorz Rajchel-Mieldzioć, Arul Lakshmi-

narayan, and Karol Życzkowski. Thirty-six entangled officers of Euler: Quantum solution to a classically
impossible problem. Physical Review Letters, 128(8), 2022. doi:10.1103/physrevlett.128.080507.

[12] David J. Reutter and Jamie Vicary. Biunitary constructions in quantum information, 2019. arXiv:1609.

07775.
[13] Steven Roman. An Introduction to the Language of Category Theory. Birkhäuser, 2017.
[14] Peter Selinger. Dagger compact closed categories and completely positive maps. Electronic Notes in Theo-

retical Computer Science, 170:139–163, 03 2007. doi:10.1016/j.entcs.2006.12.018.
[15] Douglas R. Stinson. Combinatorial Designs: Construction and Analysis. Springer, 2013.
[16] Jamie Vicary and Chris Heunen. Categories for Quantum Theory. Oxford University Press, 2020.
[17] David White and Donald Yau. Arrow categories of monoidal model categories, 2018. arXiv:1703.05359.
[18] Pawel Wocjan and Thomas Beth. New construction of mutually unbiased bases in square dimensions. Quan-

tum Information and Computation, 5, 08 2004.
[19] William Wootters. Quantum measurements and finite geometry. Foundations of Physics, 36:112–126, 02

2006. doi:10.1007/s10701-005-9008-x.
[20] G. Zauner. Quantum designs. foundations of a non-commutative design theory. University of Vienna, 1999.

https://arxiv.org/abs/2309.15544
https://doi.org/10.1103/PhysRevA.90.022316
https://link.aps.org/doi/10.1103/PhysRevA.92.032316
https://doi.org/10.1103/PhysRevA.92.032316
https://doi.org/10.1103/physreva.97.062326
https://doi.org/10.4204/eptcs.236.8
https://arxiv.org/abs/1504.02715
https://arxiv.org/abs/1504.02715
https://doi.org/10.1103/physrevlett.128.080507
https://arxiv.org/abs/1609.07775
https://arxiv.org/abs/1609.07775
https://doi.org/10.1016/j.entcs.2006.12.018
https://arxiv.org/abs/1703.05359
https://doi.org/10.1007/s10701-005-9008-x

132 A Categorical Model for Classical and Quantum Block Designs

A Arrow categories

In this section we will review the concept of arrow categories and derive some facts about arrow cate-
gories which we believe to be new. We will focus only on content relevant for the overall purpose of this
paper. However, there are more results on that topic, covering Hopf algebras, Frobenius structures and
topological field theories in arrow categories which can be found in [3].

Definition A.1 (See [13], pages 23-24). For a category C , its arrow category Arr[C] is defined as
follows:

• objects are triples (A,B,h) with h : A→ B in C ;

• morphisms φ : (A,B,h)→ (A′,B′,h′) are pairs of morphisms φA : A→ A′ and φB : B→ B′ in C
such that the following diagram commutes in C :

A A′

B B′
h

φA

h′

φB

In the following we will show that an arrow category inherits certain structures from their underlying
category. This includes functors, natural transformations and the monoidal product.

Proposition A.2. Given a functor F : C → D , we apply the arrow construction to obtain a functor
F̃ : Arr[C]→ Arr[D].

Proof. Given a functor F : C → D , we can define a functor F̃ : Arr[C]→ Arr[D] as follows. On
objects, we map f : A→ B in Arr[C] to an object F(f) : F(A)→ F(B) in Arr[D]. On morphisms, we
map (φ ,ψ) : f → f ′ in Arr[C] to a morphism F̃(φ ,ψ) = (F(φ),F(ψ)) : F(f)→ F(f ′) in Arr[D]. This
is valid because the diagram

F(A) F(A′)

F(B) F(B′)

F(φ)

F(f) F(f ′)

F(ψ)

commutes due to functoriality of F . Moreover, we have

F̃(idA, idB) = (F(idA),F(idB)) = (idF(A), idF(B)), (9)

where (idA, idB) is the identity morphism in Arr[C]. Due to functoriality of F and because the concatena-
tion of two commuting diagrams yields again a commuting diagram, F̃ also preserves composition.

Similarly, a contravariant functor F : C →D gives rise to a contravariant functor F̃ : Arr[C]→Arr[D].

Proposition A.3. Let F,G : C → D be two functors between two categories C and D , and let F̃ , G̃ :
Arr[C]→Arr[D] be the induced functors on the arrow categories. A natural transformation η : F ⇒ G
induces a natural transformation η̃ : F̃ ⇒ G̃.

Paulina Goedicke and Jamie Vicary 133

Proof. Let η : F ⇒ G be a natural transformation that assigns to every object A in C a morphism ηA :
F(A)→ G(A), such that for any morphism f : A→ B in C the following diagram (naturality condition)
commutes:

F(A) G(A)

F(B) G(B)

ηA

F(f) G(f)

ηB

One can use the naturality of η to define a natural transformation η̃ : F̃ ⇒ G̃ that assigns to every object
f : A→ B in Arr[C] a morphism η̃ f = (ηA,ηB) : F̃(f)→ G̃(f) via the commutative diagram from above,
such that for any morphism (φ ,ψ) : f → f ′ in Arr[C]:

A A′

B B′

φ

f f ′

ψ

the following diagram (naturality condition in the arrow category) commutes:

F(A) G(A)

F(A′) G(A′)

F(B) G(B)

F(B′) G(B′)

F(φ)

ηA

F(f)

G(φ)

G(f)
ηA′

F(f ′)

G(f ′)

F(ψ)

ηB

G(ψ)

ηB′

Here the the top, the back, the front and the bottom face commute due to naturality of η and the two
side faces commute by definition. Hence the whole diagram commutes and we have defined a natural
transformation η̃ : F̃ ⇒ G̃.

Proposition A.4. If η : F ⇒ G is a natural isomorphism, then so is η̃ : F̃ ⇒ G̃.

Theorem A.5. Let C and D be equivalent categories; that is, there exist functors F : C → D and
G : D → C and natural isomorphisms F ◦G∼= idD and G◦F ∼= idC . Then Arr(C) and Arr(D) are also
equivalent.

Proof. By Proposition A.2 the functors F : C → D and G : D → C give rise to functors F̃ : Arr[C]→
Arr[D] and G̃ : Arr[D]→Arr[C]. From Proposition A.4 we know that the natural isomorphisms F ◦G∼=
idD and G◦F ∼= idC give rise to natural isomorphisms F̃ ◦ G̃∼= idArr[D] and G̃◦ F̃ ∼= idArr[C]. Hence we
have an equivalence.

134 A Categorical Model for Classical and Quantum Block Designs

One can show that the same theorems apply to monoidal functors and monoidal natural transforma-
tions [3]. Moreover, one can define a monoidal product in the arrow category of a monoidal category as
the following proposition will show. However, this result is not necessarily new and can be in fact found
in a similar notion in [17].

Proposition A.6. For a monoidal category C , we can define a monoidal product on Arr[C], written �,
as follows:

• on objects, f �g := f ⊗g;

• on morphisms, (p,q)� (p′,q′) := (p⊗ p′,q⊗q′).

Proof. We will show that the pentagon and the triangle axiom are satisfied. The pentagon axiom holds
due to the following diagram, where the front and the back face commute because α satisfies the ordinary
pentagon axiom. The two side faces commute due to the definition of the monoidal product and naturality
of the associator, and the top and bottom faces commute due to naturality of the associator:

A1⊗(A2⊗(A3⊗A4)) (A1⊗A2)⊗(A3⊗A4) ((A1⊗A2)⊗A3)⊗A4

B1⊗(B2⊗(B3⊗B4)) (B1⊗B2)⊗(B3⊗B4) ((B1⊗B2)⊗B3)⊗B4

A1⊗((A2⊗A3)⊗A4) (A1⊗(A2⊗A3))⊗A4

B1⊗((B2⊗B3)⊗B4) (B1⊗(B2⊗B3))⊗B4

f1⊗(f2⊗(f3⊗ f4))

α

idA1⊗α

(f1⊗ f2)⊗(f3⊗ f4)

α

((f1⊗ f2)⊗ f3)⊗ f4
α⊗idA4

α

idB1⊗α

α

α

f1⊗(f2⊗ f3)⊗ f4)

α

(f1⊗(f2⊗ f3))⊗ f4

α

The triangle axiom for Arr[C] is given by the following diagram:

(A⊗ I)⊗A′ A⊗ (I⊗A′)

A⊗A

(B⊗ I)⊗B′ B⊗ (I⊗B′)

B⊗B′

(f⊗idI)⊗ f ′

ρ⊗idA′

α

f⊗(idI⊗ f ′)
idA⊗λ

f⊗ f ′

ρ⊗idB′

α

idB⊗λ

Here the top and the bottom faces commute due to the the triangle identity and the two side faces com-
mute due to the definition of the monoidal product in Arr[C] and due to naturality of the left and right
unitors in C . Finally, the back face commutes because of the naturality of the associator.

Paulina Goedicke and Jamie Vicary 135

B Proof for Lemma 2.13

Proof. Consider an r-uniform, k-regular and λ -balanced quantum design D = {p1, ..., pv} with pi ∈ Cb.
By applying the trace function to the regularity condition, we get:

Tr
(v

∑
i=0

pi

)
=

v

∑
i=0

Tr(pi) = k ·Tr(Ib×b). (10)

Using the uniformity condition this expression becomes:

v

∑
i=0

Tr(pi) =
v

∑
i=0

r = v · r = k ·Tr(Ib×b) = k ·b. (11)

This proves Eq. 4.
In order to prove Eq. 5, we start with the following expression:

b = Tr(Ib×b) = Tr(I2
b×b). (12)

Using the regularity condition, we get:

Tr(I2
b×b) =

1
k2 Tr

(v

∑
i=0

pi

v

∑
j=0

pi

)
=

1
k2

v

∑
i, j=0

Tr(pi p j) =
1
k2

v

∑
i, j=0, j 6=i

λ +
1
k2

v

∑
i

r =
1
k2 (λv(v−1)+ vr) (13)

Here we have used the uniformity and the λ -condition in the third step. Hence we have:

b =
1
k2 (λv(v−1)+ vr)⇔ (14)

b · k
v
· k = λ (v−1)+ r (15)

Using Eq. 4, we obtain:

r · k = λ (v−1)+ r (16)

This is equivalent to Eq. 5.

136 A Categorical Model for Classical and Quantum Block Designs

C Structures in RUDesign and QDesign

In the following we will discuss some structures of the categories RUDesign and QDesign.

Theorem C.1. The category RUDesign[Mat(N),FSet] is a monoidal category with monoidal product
given by the Kronecker product between matrices. In particular, for objects χ : b −→ v and χ ′ : b′ −→
v′ with parameters k resp. k′ and r resp. r′ we have that χ ⊗ χ ′ : b⊗ b′ −→ v⊗ v′ is an object in
RUDesign[Mat(N),FSet] with parameters k · k′ and r · r′.

Proof. Since Mat(N) is a monoidal category, we can apply Prop. A.6 from Appendix A to get a monoidal
product on Arr[Mat(N)]. If we now restrict to matrices representing uniform and regular designs, every
χ⊗χ ′ : b ·b′ −→ v ·v′, where χ : b−→ v and χ ′ : b′ −→ v′ are objects in Arr[Mat(N)] with parameters k
resp. k′ and r resp. r′, fulfils the uniformity and regularity conditions with parameters k ·k′ and r · r′.

Similarly, one can argue that the following can be derived from Prop. A.6:

Theorem C.2. The category Design[Mat(N),FSet] is a monoidal category, with monoidal product given
by the Kronecker product between matrices.

As the Kronecker product of two matrices not necessarily fulfils the λ -condition, the category
BDesign is not monoidal in general.

Proposition C.3. There exists a functor D̃ : RUDesign[Mat(N),FSet] −→ RUDesign[Mat(N),FSet]
that maps each k-uniform and r-regular design χ to its dual χT which is a r-uniform and k-regular
design and each pair of functions (NV ,NB) : χ −→ χ ′ to its transpose (NT

V ,N
T
B) : χ ′ −→ χ .

Proof. We can define a functor D : Mat(N) −→Mat(N) that sends each natural number to itself and
each matrix to its transpose. By remark A.2 this functor then gives rise to a contravariant functor D̃ :
Arr[Mat(N)] −→ Arr[Mat(N)] that maps each object, i.e. a matrix, to its transpose and each pair of
morphisms, i. e. a pair of matrices, to its transpose. If we now restrict to the subcategory where each
object represents a uniform and regular design and all morphisms are pairs of functions, we get a functor:
D̃ : RUDesign[Mat(N),FSet]−→ RUDesign[Mat(N),FSet].

Just as in the classical case, QDesign is also equipped with some structure.

Theorem C.4. The category QDesignRU is a monoidal category.

Proof. The category CP[FHilb] is monoidal [16]. According to Prop. A.6 this gives rise to a monoidal
product in Arr[CP[FHilb]]. If we now restrict to the case where the objects in Arr[CP[FHilb]] encode
uniform and regular quantum designs and the morphisms are pairs of functions, i. e. to the category
QDesignRU , it is straightforward to verify that the tensor product of two uniform and regular CP-maps
with parameters k,r and k′,r′ respectively, again fulfils the uniformity and regularity condition with
parameters k · k′ and r · r′.

Similarly, one can argue that the following has to hold:

Theorem C.5. The category QDesign is a monoidal category.

The monoidal product of two CP-maps satisfying the λ -condition does not satisfy the λ -condition in
general and hence one cannot define a monoidal product in QDesignB in general.

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 137–151, doi:10.4204/EPTCS.397.9

© S. Gogioso, V. Wang-Maścianica,
M. H. Waseem, C. M. Scandolo and B. Coecke
This work is licensed under the
Creative Commons Attribution License.

Constructor Theory as Process Theory

Stefano Gogioso
Hashberg Ltd

University of Oxford

stefano.gogioso@cs.ox.ac.uk

Vincent Wang-Maścianica
Quantinuum Ltd

University of Oxford

vincent.wang@cambridgequantum.com

Muhammad Hamza Waseem
Quantinuum Ltd

University of Oxford

hamza.waseem@physics.ox.ac.uk.

Carlo Maria Scandolo
University of Calgary

carlomaria.scandolo@ucalgary.ca

Bob Coecke
Quantinuum Ltd

bob.coecke@quantinuum.com

Constructor theory is a meta-theoretic approach that seeks to characterise concrete theories of physics
in terms of the (im)possibility to implement certain abstract “tasks” by means of physical processes.
Process theory, on the other hand, pursues analogous characterisation goals in terms of the compo-
sitional structure of said processes, concretely presented through the lens of (symmetric monoidal)
category theory. In this work, we show how to formulate fundamental notions of constructor the-
ory within the canvas of process theory. Specifically, we exploit the functorial interplay between
the symmetric monoidal structure of the category of sets and relations, where the abstract tasks live,
and that of symmetric monoidal categories from physics, where concrete processes can be found to
implement said tasks. Through this, we answer the question of how constructor theory relates to the
broader body of process-theoretic literature, and provide the impetus for future collaborative work
between the fields.

1 Introduction

Constructor theory [17, 18, 30] is a metatheoretic approach that seeks to characterise concrete theories of
physics and information in terms of the possibility and impossibility of tasks, which are transformations
between systems. Transformations may require auxiliary inputs other than the system to be transformed:
the task of turning black shoes into white shoes may require a stock of white paint as an auxiliary input in
addition to the black shoes themselves. Tasks transform states of systems into other states, and attributes
of systems—such as the blackness of a shoe—into other attributes. In our universe, we will eventually run
out of white paint for this task, but if we had a mathematically ideal paintbrush with infinite white paint,
we could reuse it for as many instances of the task as we’d like; such non-exhaustible auxiliary catalysts
for tasks are called constructors. A task is possible when it is partnered with a constructor that allows the
task to be performed arbitrarily many times, and the task is impossible otherwise. Though constructors
and tasks are abstract, they provide explanatory value; constructor theory seeks to characterise physical
theories in terms of what tasks are possible. As a metatheory, constructor theory is implementation-
agnostic, and one can choose whatever formal system of mathematics they like as a concrete language to
interpret the italic terms above.

http://dx.doi.org/10.4204/EPTCS.397.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

138 Constructor theory as Process Theory

Process theories provide one such mathematically formal language, one particularly well-suited to
describe the composition of processes in space-time. Moreover, process theories are expressed in terms
of string diagrams, which are an aesthetic, intuitive, flexible, and rigorous metalinguistic syntax, em-
powering the modeller by allowing them to operate at a level of abstraction of their choice. This means
that the same abstract diagrams provide a common syntactic foundation for fields as disparate as linear
and affine algebra [6, 5], first order logic [24], electrical circuits [4], digital circuits [21], database opera-
tions [26, 35], spatial relations [34], game theory [25], petri nets [3], hypergraphs [2], probability theory
[8, 20], causal reasoning [28], machine learning [16], and quantum theory [15, 14], to name just a few.

In this short paper, we provide a formal interpretation of constructor-theoretic terminology and ideas
within the string-diagrammatic setting of process theories, with the intent to build a bridge between
the two communities. We caution against the view that constructor theory is “just” a class of process
theories, in the same sense as it would be misguided to claim that prime numbers are “just” integers.
Process theory merely provides a rigorous mathematical language for constructor theorists to tell their
stories.

For the process theorists in our audience, we wish to stress that the pedagogical mathematical pre-
sentation of this paper is for the sake of constructor theorists who might be approaching our field for the
first time. Regardless, we offer you a Rosetta stone for constructor theory within what we understand to
be the de rigueur mathematics of the field, transliterated into diagrams with as few embellishments and
interpretational choices as possible. For the constructor theorists in our audience, we extend a warm in-
vitation to join the process-theoretic community: to the best of our knowledge, this is the most attractive
and general formal arena available within which to explore the ramifications of constructor theory.

2 Conceivable Tasks

Constructor theory is concerned with the study of physical theories in terms of the question “which
tasks are performable within this physical theory?”: there is an abstract notion of conceivable tasks and
a concrete notion of possible tasks. In seminal work by Deutsch [17], it was remarked that, in full
generality, the only real requirement on conceivable tasks is arbitrary composability in sequence and
in parallel, i.e. that they form a symmetric monoidal category (SMC). 1 Back then, however, the same
author made a specific choice to model tasks as relations between sets: constructor theory literature has
stuck by this choice ever since, and so will we.

Remark 2.1. In this work, we take all monoidal categories to be strict, and in particular we assume that
objects obj(D) in a monoidal category D form a strict monoid. In the case of the SMCs Rel and Set,
considered in Definition 2.2 below, this implies a choice of singleton set 1 := {∗} to act as a strict unit
for the Cartesian product:

X×1 = X = 1×X

This also affords us the freedom to write triples (and other tuples) without having to care about nesting:

X×Y ×Z = {(x,y,z) | x ∈ X ,y ∈ Y,z ∈ Z}

1It is possible that Deutsch meant for substrates to have an individual identity as physical systems, rather than just a “type”:
that is, it is possible that Deutsch would prefer for “this qubit” and “that qubit” to be modelled by different—albeit isomorphic—
objects in a process theory. In this case, it would make no sense to consider parallel compositions of tasks involving the “same”
physical system, and partially-monoidal categories as defined in [22] would be preferable as a process-theoretical universe.

S. Gogioso, V. Wang-Maścianica, M. H. Waseem, C. M. Scandolo and B. Coecke 139

Note that strictness does not extend to symmetry isomorphisms: we have that X ×Y ∼= Y ×X , but this
doesn’t mean that X ×Y = Y ×X . As a consequence, the monoid formed by objects in a strict SMC is
not generally commutative.

We take the theory of conceivable tasks to be Rel, the †-SMC of sets and relations. We write A :
X → Y for a task/relation A ⊆ X ×Y , where the set X labels legitimate input states for the task and the
set Y labels legitimate output states. To help distinguish between pairs/tuples of elements in a Cartesian
product and pairs of domain/codomain elements in a relation, we reserve pair/tuple notation for the
former and adopt maplet notation for the latter:

x 7→ y :≡ (x,y) x A7→ y :≡ (x,y) ∈ A

We omit A from A7→ when clear from context. The sequential composition B◦A : X→ Z of task B : Y →
Z after A : X → Y is defined as follows:

B◦A :=
{

x 7→ z
∣∣∣ ∃y ∈ Y.x A7→ y and y B7→ z

}
Sequential composition in diagrammatic language:

BA

X Y Z

Composite sets of states are obtained by Cartesian product X×Y :

X×Y := {(x,y) | x ∈ X and y ∈ Y}

The parallel composition A×B : X ×Z → Y ×W of tasks A : X → Y and B : Z →W is defined as
follows:

A×B :=
{
(x,z) 7→ (y,w)

∣∣∣ x A7→ y and z B7→ w
}

Parallel composition in diagrammatic language:

A

B

X Y

Z W

The transpose A† : Y → X of a task A : X → Y is defined as follows:

A† :=
{

y 7→ x
∣∣∣ x A7→ y

}
Transposition in diagrammatic language:

A†

XY

140 Constructor theory as Process Theory

Finally, there are symmetry isomorphisms (aka swaps) σX ,Y : X×Y
∼=→ Y ×X :

σX ,Y := {(x,y) 7→ (y,x) | x ∈ X and y ∈ Y}

Symmetry isomorphisms in diagrammatic language:

X

Y

Y

X

The symmetry isomorphisms are a structural feature of the category, making it possible to compose
relations into acyclic networks, where outputs of relations can be connected to inputs of other relations.
This is made possible by the following properties of the symmetry isomorphisms:

∀XY =

X

Y

X

YX

Y X

Y

∀WXY Z

∀A : X → Y

∀B : Z→W B

A B

A

=

X

YZ Z

X

Y

WW

Remark 2.2. The sets X and Y are allowed to be distinct, for sake of generality. Asking that they are
always equal is equivalent to restricting the theory of conceivable tasks to be the †-SMC EndoRel of sets
and endo-relations R : X → X , which is a sub-†-SMC of Rel.

If we restrict our attention to the total deterministic relations in Rel, we obtain the sub-SMC Set
of sets and functions between them. Functions are closed under acyclic network composition (sequen-
tial and parallel, including the usage of symmetry isomorphisms), but not under transpose. Important
examples of functions are the copy map δX : X → X×X and discarding map εX : X 7→ 1 on a set X :

δX := {x 7→ (x,x) | x ∈ X}
εX := {x 7→ ∗ | x ∈ X}

S. Gogioso, V. Wang-Maścianica, M. H. Waseem, C. M. Scandolo and B. Coecke 141

Copy and delete maps in diagrammatic language:

X
X

X

δX εX

X

Copies are indistinguishable under swaps and repeated copies, and deleting a copy results in the identity:

=

=

=

The transposes of the copy and discarding map are not functions. The transpose δ
†
X : X ×X → X is the

match map, a partial function which returns the common value of its inputs when they’re equal and is
otherwise undefined:

δ
†
X := {(x,x) 7→ x | x ∈ X}

Match map in diagrammatic language:

X
X

X

δ
†
X

Relations S : 1→ X , such as the transpose ε
†
X : 1→ X of the discarding map, can be identified with all

possible attributes of states in X , i.e. with all possible subsets S⊆ X :

S∼= {∗ 7→ x | x ∈ S}

States and attributes have the same notation in diagrammatic language, since states x∈X can be identified
with singleton subsets {x} ⊆ X :

S X

The transpose ε
†
X : 1→ X of the discarding map is the trivial attribute, corresponding to subset X ⊆ X :

ηX := ε
†
X = {∗ 7→ x | x ∈ X}

142 Constructor theory as Process Theory

Trivial attribute in diagrammatic language:

ηX

X

Attributes can be used to condition tasks to specific input states.
Definition 2.3. Let A : X × Z → Y be a task and let S ⊆ Z be an attribute on states in Z. The pre-
conditioned task is defined to be the task obtained by forgetting all information about the Z input of A
other than the fact that the input state has attribute S:

A

X

Z
S

Y

A◦(idX×S)

=
{

x 7→ y
∣∣∣ ∃z ∈ S.(x,z) A7→ y

}

As a special case, we can discard the Z input entirely, by pre-conditioning against the trivial attribute ηZ:

A

X

Z

Y

A◦(idX×ηZ)

=
{

x 7→ y
∣∣∣ ∃z ∈ Z.(x,z) A7→ y

}

The object 1 is terminal in Set: there is a unique function εX : X → 1 for any set X . However, it is
not terminal in Rel: the relations X → 1 are exactly the transposes S† : X → 1 of the attributes S : 1→ X .
Explicitly, they are the constant partial functions with the attribute S as their domain:

S† := {x 7→ ∗ | x ∈ S}

The transposes of attributes are tests, which can be used to condition tasks to specific output states.
Definition 2.4. Let A : X → Y × Z be a task and let S ⊆ Z be an attribute on states in Z. The post-
conditioned task is defined to be the task obtained by forgetting all information about the Z output of A
other than the fact that the output state has attribute S:

A

X

Z
S

Y

(idX×S†)◦A

=
{

x 7→ y
∣∣∣ ∃z ∈ S.x A7→ (y,z)

}

As a special case, we can discard the Z output of the task entirely, by post-conditioning against the trivial
attribute on Z:

A

X

Z

Y

(idX×εZ)◦A

=
{

x 7→ y
∣∣∣ ∃z ∈ Z.x A7→ (y,z)

}

S. Gogioso, V. Wang-Maścianica, M. H. Waseem, C. M. Scandolo and B. Coecke 143

Remark 2.5. We can simultaneously pre-condition a task A : X×Z→Y ×W against an attribute P⊆ Z
and post-condition it against an attribute Q⊆W :

A

P Q

X Y

Z W
(idX×Q†)◦A◦(idX×P)

=
{

x 7→ y
∣∣∣ ∃p ∈ P,q ∈ Q.(x, p) A7→ (y,q)

}

3 Possible Tasks

Conceivable tasks are a theory-independent concept: they provide a formal universe within which to
formulate principles and derive constraints. On the other hand, possible tasks are theory-dependent,
induced by the constructors physically available to implement them. In order to determine which tasks
are possible, we need to make a choice of substrates within a theory of processes.

Definition 3.1. A choice of substrates (C,Σ,Γ) comprises:

1. A reference theory of processes, in the form of a strict SMC C = (obj(C) ,⊗, I). For example,
this could be the theory of finite-dimensional quantum systems and unitary transformations.

2. A choice of substrates, in the form of a subset Σ⊆ obj(C) of systems in the theory of processes.

3. A choice of sets of substrate states, in the form of a family Γ = (ΓH)H∈Σ
where ΓH ⊆ statesC(H)

is a set of states in C for each substrate H ∈ Σ.

We require that the choice of substrates be closed under parallel composition: I ∈ Σ and H⊗ K ∈ Σ for
all H,K ∈ Σ. We further require that the set of substrate states respects parallel composition of substrates:
ΓI = 1 and ΓH⊗K = ΓH×ΓK for all H,K ∈ Σ.

Given two substrates H,K ∈ Σ, we consider tasks ΓH → ΓK and ask which ones are possible within
the given theory of processes: in short, a task is possible when there is a constructor which acting as a
catalyst enables the task to be performed. Expanding on this, we come to the following definitions.

Definition 3.2. Let (C,Σ,Γ) be a choice of substrates and consider two substrates H,K ∈ Σ. A process
f : H→ K is task-inducing if it maps states in ΓH to states in ΓK:

∀ρ ∈ ΓH. f (ρ) ∈ ΓK

We write b f c for the task induced by f :

b f c := {ρ 7→ f (ρ) | ρ ∈ ΓH}

Definition 3.3. Let (C,Σ,Γ) be a choice of substrates and consider a task A : ΓH→ ΓK. We say that A is
possible if there are:

(i) a substrate C (acting as a constructor for the task)

(ii) an attribute P⊆ ΓC (singling out the relevant constructor states)

(iii) a task-inducing process f : H⊗C→ K⊗C (actually performing the task)

such that the following two conditions are satisfied:

144 Constructor theory as Process Theory

1. Task A is obtained from the induced task b f c by requiring that the input constructor state has
attribute P and discarding the constructor output:

A=
P

b f c

ΓH ΓK

ΓC ΓC

(idΓK
×εΓC

)◦b f c◦(idΓH
×P)

=
{

ρ 7→ ρ
′ ∣∣ ∃γ ∈ P,γ ′ ∈ ΓC. f (ρ⊗ γ) = ρ

′⊗ γ
′}

2. The attribute P is preserved by the induced task b f c. While a particular constructor state γ ∈ P
may be modified to become γ ′ by the underlying process of the induced task b f c, γ ′ remains a
constructor state for the same induced task b f c, i.e. γ ′ ∈ P. In Rel, this constraint is equivalently
expressed as the induced task b f c sending the set of constructors P to a subset of itself, regardless
of the input and output on the substrates H,K:

b f c

ΓKΓH

ΓCΓC
P

⊆ P

(εΓK
×idΓC

)◦b f c◦(ηΓH
×P)⊆P

We write (C,Σ,Γ)X for the set of possible tasks under the given choice of substrates.

The main result of this section is that possible tasks for a choice of substrate form a sub-SMC of Rel,
i.e. that they are closed under composition in arbitrary (acyclic) networks.

Proposition 3.4. The possible tasks (C,Σ,Γ)X for a given choice of substrates form a sub-SMC of Rel.

Proof. Write C = (obj(C) ,⊗, I). The identity tasks and swap tasks for all systems are made possible by
the identity and symmetry isomorphisms of C, with trivial constructor C := I:

ΓHΓH

ΓH

ΓK

ΓK

ΓH

The sequential composition B◦A of possible tasks A and B, with constructors C and D respectively, is

S. Gogioso, V. Wang-Maścianica, M. H. Waseem, C. M. Scandolo and B. Coecke 145

possible with constructor C⊗D: 2

AB

A B

ΓK

ΓD

ΓL

ΓD

ΓH ΓK

ΓC ΓC

◦ =

ΓK

ΓD

ΓC

ΓC

ΓH ΓL

ΓC×ΓD ΓC×ΓD

The parallel composition B×A of possible tasks A and B, with constructors C and D respectively, is
possible with constructor C⊗D: 3

A B

ΓL

ΓD

ΓM

ΓD

ΓH ΓK

ΓC ΓC

× =

ΓH×ΓL ΓK×ΓM

ΓC×ΓD ΓC×ΓD

A

B

This completes our proof.

4 Attributes as states

More modern perspectives in constructor theory argue that tasks should be defined on the attributes of
a substrate, rather than on the underlying states. This captures the idea that the abstract specification of
(possible) tasks—the basis upon which constructor theorists judge other theories of physics—should be
based on the observable “macrostates” of a physical system (attributes/subsets of a set), rather than on
the unobserved “microstates” which constitute them (states/elements of a set). In this section, we show
how the attribute-based perspective can be derived from the state-based perspective, in a compositionally
sound way, by performing a suitable coarse-graining.

To start with, we define a notion of “coarse-graining” for tasks, moving from tasks defined on
states (the “microstates”, to stick to the thermodynamical metaphor) to tasks defined on attributes (the
“macrostates”, using the same metaphor). We allow for the attributes involved to have non-trivial
overlap—that is, we don’t ask for them to form a partition—but we disallow nesting S ⊂ T of different
attributes; formally, we require for the set of attributes involved to form an “antichain” in the inclusion
order ⊆.

2This step of the proof becomes more complicated if constructors are forced to have individual identities (i.e. in a partially
monoidal category) and the same constructor must be reused by task B after being used by task A. We leave the handling of
this more sophisticated process-theoretic interpretation of constructor theory to future work.

3This step of the proof becomes more complicated if constructors are forced to have individual identities and the same
constructor must be simultaneously used by task B and task A. We leave the handling of this more sophisticated process-
theoretic interpretation of constructor theory to future work.

146 Constructor theory as Process Theory

Definition 4.1. Let X be a set. A set X̄ ⊆P(X) of attributes on X is an antichain if no two attributes
are nested into each other:

∀S,T ∈ X̄ .S⊆ T ⇒ S = T

Having fixed a choice of attributes X̄ on X and Ȳ on Y , any task A : X→Y induces a “coarse-grained
task” on the sets of attributes, as follows: for attributes S ∈ X̄ and T ∈ Ȳ , we say that S 7→ T in the
coarse-grained task if whenever an input state x ∈ X has attribute S, i.e. whenever x ∈ S, then at least
one of the possible outputs states

{
y ∈ Y

∣∣∣ x A7→ y
}

has attribute T , i.e. ∃y ∈ T.x A7→ y. Put it another way,
S 7→ T in the coarse-grained task means that the output of task A can have attribute T whenever the input
has attribute S.

Definition 4.2. Let A : X → Y be a task. Let X̄ ⊆P(X) and Ȳ ⊆P(Y) be sets of attributes of X and Y
respectively. Then the coarse-grained task A|ȲX̄ : X̄ → Ȳ is defined as follows:

A|ȲX̄ :=
{

S 7→ T
∣∣ S ∈ X̄ , T ∈ Ȳ , S⊆ A† ◦T

}
We conclude this section with three results, piecing the coarse-graining story together. Firstly, we

prove that given any process theory of tasks—including, amongst many others, the theory of all con-
ceivable tasks and all theories of possible tasks—the coarse-grainings of the tasks can themselves be
arranged into a process theory. This shows that tasks defined on attributes are just as compositionally
sound as those defined on states. Secondly, we remark how the original ordinary tasks, defined on states,
can be compositionally embedded into the universe of coarse-grained tasks, proving that the latter are a
sound generalisation of the former. Finally, we remark that coarse-grained tasks can be embedded back
into the universe of ordinary tasks, proving that ordinary tasks are as expressive as coarse-grained ones.

Proposition 4.3. Let C be a sub-SMC of Rel, i.e. a collection of systems and tasks closed under parallel
and sequential composition. The following defines a SMC C , which we refer to as the theory of coarse-
grained tasks associated to C :

• objects are all possible antichains of attributes for all possible sets of states:

obj
(
C
)

:=
⋃

X∈obj(C)

{X̄ ⊆P(X) | X̄ antichain}

• morphisms X̄ → Ȳ in C̄ are coarse-grained tasks corresponding to tasks X → Y :

C (X̄ ,Ȳ) :=
{
A|ȲX̄

∣∣∣ A : X C−→ Y
}

• sequential composition ◦ is inherited from C

• parallel composition � on objects is defined as:

X̄� Ȳ := {S×T | S ∈ X̄ , T ∈ Ȳ}

• parallel composition � on morphisms arises by coarse-graining from that of C :

A|ȲX̄ �B|W̄Z̄ := (A×B) |Ȳ�W̄
X̄�Z̄

• identity and symmetry isomorphisms arise by coarse-graining from those of C :

idX |X̄X̄ = idX̄ σX ,Y |Ȳ�X̄
X̄�Ȳ = σX̄ ,Ȳ

S. Gogioso, V. Wang-Maścianica, M. H. Waseem, C. M. Scandolo and B. Coecke 147

In particular, morphisms are well-defined, i.e. whenever X̄ = X̄ ′ and Ȳ = Ȳ ′ we have:{
Ā
∣∣ A : X → Y

}
=
{
Ā
∣∣ A : X ′→ Y ′

}
Proof. Objects are clearly well-defined, but well-definition of morphisms requires proof. Let X and Y
be sets, let X̄ ⊆P(X) and Ȳ ⊆P(Y) be antichains. It suffices to show the following for X ′ :=

⋃
X̄ ⊆ X

and Y ′ :=
⋃

Ȳ ⊆ Y : {
A|ȲX̄

∣∣∣ A : X → Y
}
=
{
A|ȲX̄

∣∣∣ A : X ′→ Y ′
}

Write πX ′ := {x 7→ x|x∈ X ′} : X→ X and πY ′ := {y 7→ y|y∈Y ′} : Y →Y . If S ∈ X̄ and T ∈ Ȳ , then S⊆ X ′

and T ⊆ Y ′, and hence:

S⊆ A† ◦T ⇔ S⊆ πX ′ ◦A† ◦T ⇔ S⊆ πX ′ ◦A† ◦πY ′ ◦T

Observing that πY ′ ◦A◦πX ′ is a task X ′→ Y ′ completes the proof that morphisms are well-defined. For
identities, we want to show that idX |X̄X̄ = idX̄ , and this is exactly the definition of X̄ being an antichain:

idX |X̄X̄ = idX̄ ⇔ [S⊆ T ⇒ S = T]

For symmetry isomorphisms, we want to show that σX ,Y |X̄×Ȳ
X̄×Ȳ = σX̄ ,Ȳ , and this again follows from the

antichain requirement:

σX ,Y |X̄�Ȳ
X̄�Ȳ = σX̄ ,Ȳ ⇔

[(
S×T ⊆ σ

†
X ,Y ◦ (T

′×S′)
)
⇒
(
S = S′ and T = T ′

)]
⇔
[(

S⊆ S′ and T ⊆ T ′
)
⇒
(
S = S′ and T = T ′

)]
For sequential composition to be well-defined, we need to show that S ⊆ A† ◦T and T ⊆B† ◦U imply
S⊆ (B◦A)† ◦U :

U ⊇ T S⊇A B A

For parallel composition to be well-defined, we need to show that S ⊆ A† ◦U and T ⊆ B† ◦V imply
S×T ⊆ (A�B)† ◦ (U×V):

U S

⊇

V T

X̄

Z̄

Ȳ

W̄

X̄

Z̄

A

B

The remaining checks are all straightforward, on similar lines.

Remark 4.4. Any sub-SMC C of Rel embeds into the associated theory of coarse-grained tasks C . The
embedding is the functor—faithful and injective on objects—defined by sending each set to the set of its
singleton subsets:

F(X) := {{x} | x ∈ X}

F (A : X → Y) := A|ȲX̄ =
{
{x} 7→ {y}

∣∣∣ x A7→ y
}

148 Constructor theory as Process Theory

It is straightforward to check that the mapping defined above is a strict monoidal functor, i.e. that it
preserves both sequential and parallel composition exactly (as well as identities, and symmetry isomor-
phisms, in this case).

Remark 4.5. Let C be a sub-SMC of Rel. The associated theory of coarse-grained tasks C embeds back
into Rel, via the identity functor:

F(X̄) := X̄ F
(
A|ȲX̄
)

:= A|ȲX̄

The functor is strict monoidal when restricted to (the embedding of) C (into C). It is not strict (or strong)
monoidal in general, because the tensor product on sets of attributes is not the same as the tensor product
on sets of states:

X̄� Ȳ := {S×T | S ∈ X̄ , T ∈ Ȳ} 6= {(S,T) | S ∈ X̄ , T ∈ Ȳ}= X̄× Ȳ

It is, however, lax monoidal, with the following structure morphisms:

[(S,T) 7→ S×T] : X̄× Ȳ → X̄� Ȳ [{∗} 7→ ∗] : 1̄→ 1

To see this, it suffices to observe that not only do S⊆ A† ◦U and T ⊆B† ◦V imply S×T ⊆ (A�B)† ◦
(U×V), but also S×T ⊆ (A�B)† ◦ (U×V) implies both S⊆ A† ◦U and T ⊆B† ◦V .

5 Conclusion and historical remarks

We have given categorical semantics for constructor theory in its most general form, interpreting to the
best of our ability the desired mathematical foundations both set out in Deutsch’s original paper [17] and
expressed to us by current practitioners. We remark, without further comment, that the diagrammatic
syntax we have used to formally incarnate constructor theory is also interpretable in other symmetric
monoidal categories. A long form presentation of the same content with worked examples from the
constructor theory literature is in preparation.

We close with two historical case studies intended to inform constructor theorists of the topically-
relevant history of process theories as applied to quantum theory, and to encourage the pursuit of the
possible-impossible dichotomy by illustrating some of the fruitful outcomes that may result.

Process theories arose from counterfactual reasoning. Possibility, read as what could happen, is at
the heart of constructor theory: here, constructor theory and process theories share a lineage of counter-
factual reasoning, tracing back to Aristotle’s distinction between “actual” and “potential”. One ancestor
of process theories along this lineage is the Geneva school of quantum logic [32, 29], which defined
the properties of physical systems in terms of experiments that could be performed [31], resulting in the
linearity of physical processes [19] due to an adjunction between cause and consequence (cf. weakest
precondition semantics in computer science [27]). This led to the development of a process-theoretic
framework for quantum theory, which encoded the structural consequences of an adjunction between
causes and consequences in terms of a quantaloid [11]. The underlying structure of spaces (= quantum
logics) was induced at the level of processes, and efforts were made to cast the composition of systems
in those terms through process-state duality [9]. However, the current success of process theories re-
lies on dumping quantum logics and replacing them with specially chosen processes (cf. cups and caps
[1]). A process theory, when formulated as a concrete symmetric monoidal category, is about possible

S. Gogioso, V. Wang-Maścianica, M. H. Waseem, C. M. Scandolo and B. Coecke 149

and impossible processes that obey the axioms of the corresponding category. Reconstructions of quan-
tum theory in terms of process theories turn these categorical axioms into physical postulates that are
considered more reasonable by some [23, 33].

Quantum from no-cloning. In constructor theory, the cut between possible and impossible tasks is
used to define theories, and it has been suggested that the impossibility to clone should yield quantum
theory, at least in a broad sense. In categorical quantum mechanics [1, 15, 14], dating back to at least
2006, classicality was indeed defined by the ability to clone [13]: this has resulted in the development
of spiders [12] and the ZX-calculus [10], now a prominent formalism in quantum foundations, quantum
computation, and general education on quantum theory.

Acknowledgements

With many thanks to Maria Violaris and Anicet Tibau Vidal for their clarity and patience when pre-
senting constructor theory at the Wolfson quantum foundations discussion, and to Nicola Pinzani for his
insights in conversation with one of the authors.

References

[1] S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Proceed-
ings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 415–425,
doi:10.5555/1018438.1021878. arXiv:quant-ph/0402130.

[2] Mario Alvarez-Picallo, Dan Ghica, David Sprunger & Fabio Zanasi (2022): Rewriting for Monoidal Closed
Categories: 7th International Conference on Formal Structures for Computation and Deduction, FSCD
2022. 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022),
doi:10.4230/LIPIcs.FSCD.2022.29. Available at http://www.scopus.com/inward/record.url?scp=
85133671634&partnerID=8YFLogxK. Publisher: Schloss Dagstuhl.

[3] John C. Baez & Jade Master (2020): Open Petri Nets. Mathematical Structures in Computer Science 30(3),
pp. 314–341, doi:10.1017/S0960129520000043. Available at http://arxiv.org/abs/1808.05415.
ArXiv:1808.05415 [cs, math].

[4] Guillaume Boisseau & Paweł Sobociński (2022): String Diagrammatic Electrical Circuit Theory. Electronic
Proceedings in Theoretical Computer Science 372, pp. 178–191, doi:10.4204/EPTCS.372.13. Available at
http://arxiv.org/abs/2106.07763. ArXiv:2106.07763 [cs].

[5] Filippo Bonchi, Robin Piedeleu, Pawel Sobociński & Fabio Zanasi (2019): Graphical Affine Alge-
bra. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12,
doi:10.1109/LICS.2019.8785877.

[6] Filippo Bonchi, Pawel Sobocinski & Fabio Zanasi (2017): Interacting Hopf Algebras. Journal of Pure and
Applied Algebra 221(1), pp. 144–184, doi:10.1016/j.jpaa.2016.06.002. Available at http://arxiv.org/
abs/1403.7048. ArXiv:1403.7048 [cs, math].

[7] Filippo Bonchi, Pawel Sobociński & Fabio Zanasi (2014): A Categorical Semantics of Signal Flow Graphs.
CONCUR 2014 - Concurrency Theory - 25th International Conference, doi:10.1007/978-3-662-44584-6 30.
Available at https://hal.science/hal-02134182.

[8] Kenta Cho & Bart Jacobs (2019): Disintegration and Bayesian Inversion via String Diagrams. Mathematical
Structures in Computer Science 29(7), pp. 938–971, doi:10.1017/S0960129518000488. Available at http:
//arxiv.org/abs/1709.00322. ArXiv:1709.00322 [cs].

https://doi.org/10.5555/1018438.1021878
https://doi.org/10.4230/LIPIcs.FSCD.2022.29
http://www.scopus.com/inward/record.url?scp=85133671634&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85133671634&partnerID=8YFLogxK
https://doi.org/10.1017/S0960129520000043
http://arxiv.org/abs/1808.05415
https://doi.org/10.4204/EPTCS.372.13
http://arxiv.org/abs/2106.07763
https://doi.org/10.1109/LICS.2019.8785877
https://doi.org/10.1016/j.jpaa.2016.06.002
http://arxiv.org/abs/1403.7048
http://arxiv.org/abs/1403.7048
https://doi.org/10.1007/978-3-662-44584-6_30
https://hal.science/hal-02134182
https://doi.org/10.1017/S0960129518000488
http://arxiv.org/abs/1709.00322
http://arxiv.org/abs/1709.00322

150 Constructor theory as Process Theory

[9] B. Coecke (2000): Structural characterization of compoundness. International Journal of Theoretical Physics
39, pp. 585–594, doi:10.1023/A:1003677418744.

[10] B. Coecke & R. Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics.
New Journal of Physics 13, p. 043016, doi:10.1088/1367-2630/13/4/043016. arXiv:quant-ph/09064725.

[11] B. Coecke, D.J. Moore & I. Stubbe (2001): Quantaloids describing causation and propagation of physical
properties. Foundations of Physics Letters 14, pp. 133–146, doi:10.1023/A:1012377520222. ArXiv:quant-
ph/0009100.

[12] B. Coecke, É. O. Paquette & D. Pavlović (2010): Classical and quantum structuralism. In S. Gay &
I. Mackie, editors: Semantic Techniques in Quantum Computation, Cambridge University Press, pp. 29–
69, doi:10.1017/CBO9781139193313.003. arXiv:0904.1997.

[13] B. Coecke & D. Pavlovic (2007): Quantum measurements without sums. In G. Chen, L. Kauffman & S. La-
monaco, editors: Mathematics of Quantum Computing and Technology, Taylor and Francis, pp. 567–604,
doi:10.1201/9781584889007. arXiv:quant-ph/0608035.

[14] Bob Coecke & Stefano Gogioso (2023): Quantum in Pictures: A New Way to Understand the Quantum
World. Cambridge Quantum.

[15] Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory
and Diagrammatic Reasoning. Cambridge University Press, Cambridge, doi:10.1017/9781316219317.
Available at https://www.cambridge.org/core/books/picturing-quantum-processes/

1119568B3101F3A685BE832FEEC53E52.

[16] Geoffrey SH Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson & Fabio Zanasi (2022): Categorical
foundations of gradient-based learning. In: Programming Languages and Systems: 31st European Sympo-
sium on Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceedings, Springer International Publish-
ing Cham, pp. 1–28, doi:10.1007/978-3-030-99336-8 1.

[17] David Deutsch (2013): Constructor theory. Synthese 190(18), pp. 4331–4359, doi:10.1007/s11229-013-
0279-z.

[18] David Deutsch & Chiara Marletto (2015): Constructor theory of information. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 471, p. 20140540, doi:10.1098/rspa.2014.0540.

[19] C.-A. Faure, D. J. Moore & C. Piron (1995): Deterministic evolutions and Schrödinger flows. Helvetica
Physica Acta 68(2), pp. 150–157.

[20] Tobias Fritz, Tomáš Gonda & Paolo Perrone (2021): De Finetti’s Theorem in Categorical Probability. Journal
of Stochastic Analysis 2(4), doi:10.31390/josa.2.4.06. Available at http://arxiv.org/abs/2105.02639.
ArXiv:2105.02639 [cs, math, stat].

[21] Dan R. Ghica & Achim Jung (2016): Categorical semantics of digital circuits. In: Proceedings of the 16th
Conference on Formal Methods in Computer-Aided Design, FMCAD ’16, FMCAD Inc, Austin, Texas, pp.
41–48, doi:10.1109/FMCAD.2016.7886659.

[22] Stefano Gogioso (2019): A process-theoretic church of the larger hilbert space. arXiv preprint
arXiv:1905.13117, doi:10.48550/arXiv.1905.13117.

[23] L. Hardy (2011): Foliable operational structures for general probabilistic theories. In H. Halvorson, editor:
Deep Beauty: Understanding the Quantum World through Mathematical Innovation, Cambridge University
Press, pp. 409–442, doi:10.1017/CBO9780511976971.013. arXiv:0912.4740.

[24] Nathan Haydon & Paweł Sobociński (2020): Compositional Diagrammatic First-Order Logic. In Ahti-
Veikko Pietarinen, Peter Chapman, Leonie Bosveld-de Smet, Valeria Giardino, James Corter & Sven Linker,
editors: Diagrammatic Representation and Inference, Lecture Notes in Computer Science, Springer Interna-
tional Publishing, Cham, pp. 402–418, doi:10.1007/978-3-030-54249-8 32.

[25] Jules Hedges (2015): String diagrams for game theory, doi:10.48550/arXiv.1503.06072. Available at http:
//arxiv.org/abs/1503.06072. ArXiv:1503.06072 [cs, math].

https://doi.org/10.1023/A:1003677418744
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1023/A:1012377520222
https://doi.org/10.1017/CBO9781139193313.003
https://doi.org/10.1201/9781584889007
https://doi.org/10.1017/9781316219317
https://www.cambridge.org/core/books/picturing-quantum-processes/1119568B3101F3A685BE832FEEC53E52
https://www.cambridge.org/core/books/picturing-quantum-processes/1119568B3101F3A685BE832FEEC53E52
https://doi.org/10.1007/978-3-030-99336-8_1
https://doi.org/10.1007/s11229-013-0279-z
https://doi.org/10.1007/s11229-013-0279-z
https://doi.org/10.1098/rspa.2014.0540
https://doi.org/10.31390/josa.2.4.06
http://arxiv.org/abs/2105.02639
https://doi.org/10.1109/FMCAD.2016.7886659
https://doi.org/10.48550/arXiv.1905.13117
https://doi.org/10.1017/CBO9780511976971.013
https://doi.org/10.1007/978-3-030-54249-8_32
https://doi.org/10.48550/arXiv.1503.06072
http://arxiv.org/abs/1503.06072
http://arxiv.org/abs/1503.06072

S. Gogioso, V. Wang-Maścianica, M. H. Waseem, C. M. Scandolo and B. Coecke 151

[26] James Hefford, Vincent Wang & Matthew Wilson (2020): Categories of Semantic Concepts,
doi:10.48550/arXiv.2004.10741. Available at http://arxiv.org/abs/2004.10741. ArXiv:2004.10741
[quant-ph].

[27] C. A. R. Hoare & J. He (1987): The weakest prespecification. Information Processing Letters 24, pp. 127–
132, doi:10.1016/0020-0190(87)90106-2.

[28] Bart Jacobs, Aleks Kissinger & Fabio Zanasi (2019): Causal Inference by String Diagram Surgery,
doi:10.48550/arXiv.1811.08338. Available at http://arxiv.org/abs/1811.08338. ArXiv:1811.08338
[cs, math].

[29] J. M. Jauch (1968): Mathematical Foundations of Quantum Mechanics. Addison-Wesley.
[30] Chiara Marletto (2021): The Science of Can and Can’t: A Physicist’s Journey Through the Land of Counter-

factuals. Allen Lane, doi:10.1016/S0262-4079(21)00658-8.
[31] D. J. Moore (1999): On state spaces and property lattices. Studies in History and Philosophy of Modern

Physics 30(1), pp. 61–83, doi:10.1016/S1355-2198(98)00033-1.
[32] C. Piron (1976): Foundations of quantum physics. W. A. Benjamin.
[33] J. H. Selby, C. M. Scandolo & B. Coecke (2018): Reconstructing quantum theory from diagrammatic postu-

lates. arXiv preprint arXiv:1802.00367, doi:10.22331/q-2021-04-28-445.
[34] Vincent Wang-Mascianica & Bob Coecke (2021): Talking Space: inference from spatial linguistic meanings,

doi:10.48550/arXiv.2109.06554. Available at http://arxiv.org/abs/2109.06554. ArXiv:2109.06554
[cs].

[35] Matthew Wilson, James Hefford, Guillaume Boisseau & Vincent Wang (2021): The Safari of Update
Structures: Visiting the Lens and Quantum Enclosures. Electronic Proceedings in Theoretical Computer
Science 333, pp. 1–18, doi:10.4204/EPTCS.333.1. Available at http://arxiv.org/abs/2005.05293.
ArXiv:2005.05293 [quant-ph].

https://doi.org/10.48550/arXiv.2004.10741
http://arxiv.org/abs/2004.10741
https://doi.org/10.1016/0020-0190(87)90106-2
https://doi.org/10.48550/arXiv.1811.08338
http://arxiv.org/abs/1811.08338
https://doi.org/10.1016/S0262-4079(21)00658-8
https://doi.org/10.1016/S1355-2198(98)00033-1
https://doi.org/10.22331/q-2021-04-28-445
https://doi.org/10.48550/arXiv.2109.06554
http://arxiv.org/abs/2109.06554
https://doi.org/10.4204/EPTCS.333.1
http://arxiv.org/abs/2005.05293

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 152–171, doi:10.4204/EPTCS.397.10

© J. Hefford and M. Román
This work is licensed under the
Creative Commons Attribution License.

Optics for Premonoidal Categories

James Hefford
University of Oxford, UK

james.hefford@cs.ox.ac.uk

Mario Román
Tallinn University of Technology, Estonia

mroman@ttu.ee

We further the theory of optics or “circuits-with-holes” to encompass premonoidal categories: mo-
noidal categories without the interchange law. Every premonoidal category gives rise to an effectful
category (i.e. a generalised Freyd-category) given by the embedding of the monoidal subcategory of
central morphisms. We introduce “pro-effectful” categories and show that optics for premonoidal
categories exhibit this structure.

Pro-effectful categories are the non-representable versions of effectful categories, akin to the
generalisation of monoidal to promonoidal categories. We extend a classical result of Day to this set-
ting, showing an equivalence between pro-effectful structures on a category and effectful structures
on its free tight cocompletion. We also demonstrate that pro-effectful categories are equivalent to
prostrong promonads.

1 Introduction

Monoidal categories play a central role in many categorical models, from programming semantics [3], to
quantum theory [2, 15], to electrical circuits [8], for they provide the necessary mathematical structure to
describe the interaction of systems over time (by composition) and space (by tensor product). Monoidal
categories have a graphical calculus known as string diagrams [30] which provides a formalisation of
circuit diagrams. There has been much interest in studying the categorical structure of circuits-with-
holes [12, 32, 48] over a given monoidal category C ; that is, incomplete diagrams in C .

g

f

u v

a

b
b′

a′

∼

g

f

u v

a

b
b′

a′

Figure 1: Optics equivalence relation.

The categorical methods required to describe these circuits-
with-holes have their roots in the study of strong profunctors, or
Tambara modules [46, 6]. These modules are the algebras for a
certain promonad [35] with the resulting category of free algebras
known as the category of optics by the functional programming
community, where it is used to model various bidirectional data
accessors [14, 40, 41]. The category Optic(C) has objects given
by pairs (a,a′) of objects of C and homs Optic(C)((a,a′),(b,b′))
given by the quotiented sets of the form in Figure 1 [35, 40, 14].
The idea is to produce a category of holes in circuits from C ,
where two circuits are equivalent if they can be rewritten into each
other by sliding boxes. This equivalence relation is handled by the coend

∫ xy C (a,x⊗ b⊗ y)×C (x⊗
b′⊗y,a′). Outside of functional programming, this category has been suggested as a way to model holes
in general monoidal categories [42]. In particular, incomplete diagrams have applications in quantum
theory where they are known as combs [12] and capture a certain subset of the more general quantum
supermaps [13]: optics have been suggested to formalise these structures [25].

What is still missing is a full description of optics for premonoidal categories. Informally, pre-
monoidal categories are like monoidal categories but dropping the interchange law so that in general

http://dx.doi.org/10.4204/EPTCS.397.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

J. Hefford and M. Román 153

(1⊗ f)(g⊗ 1) 6= (g⊗ 1)(1⊗ f). Such categories are useful in the modelling of computational side-
effects and it was with precisely this motivation that Power and Robinson introduced them [38]. This
manuscript is indebted to the research into premonoidal categories [29, 34, 36, 39, 45].

Since not all morphisms in a premonoidal category interchange, there is now an additional subtlety to
formalising optics. The coends that are usually used to quotient to allow for the sliding of morphisms can
now only be taken over the centre ZC of the premonoidal category C - the wide monoidal subcategory
comprised of the morphisms that interchange with all others.

f

g

a
a′

b
b′

c

c′

,

h

g

f

a′
a

b
b′

c′

c

Figure 2: Left: ⊗H , Right: ⊗V .

g

f

u v

a

b
b′

a′

∼

g

f

u v

a

b
b′

a′

Figure 3: Premonoidal optics equivalence relation.

In this article, we will develop the machinery required to deal with optics for premonoidal categories.
There is a category OpticZC (C) with objects given by pairs (a,a′) of those of C and homs given by the
sets of the form in Figure 3, handled by the coend

∫ xy∈ZC C (a,x⊗ b⊗ y)×C (x⊗ b′⊗ y,a′). While
premonoidal optics can be seen to be a special case of generalised optics for an actegory [14, 40], the full
monoidal-like structure of the category has not been discussed before. Optics over a monoidal category
C are equipped with two promonoidal tensor products, ⊗H ,⊗V : Optic(C)×Optic(C) −7→ Optic(C),
which capture the horizontal and vertical composition of holes (see Figure 2). These two tensors interact
to make Optic(C) into a produoidal category [21].

Over a premonoidal category C we might hope to equip OpticZC (C) with two tensors analogous to
those in Figure 2. While the vertical tensor ⊗V poses no immediate difficulties, the horizontal tensor ⊗H

does: we cannot expect this to be promonoidal because C does not satisfy interchange. This requires
us to introduce the notion of a pro-effectful category which combines the structures of premonoidal and
promonoidal categories together – this is our main technical contribution.

We prove that pro-effectful categories are equivalently: (i) prostrong promonads; (ii) biproactegories
(two-sided actions in the category of profunctors) which suitably extend a canonical action on the centre
of the category; and (iii) pseudomonoids in the bicategory of tight V 2-profunctors.

Each of these gives a different perspective on pro-effectful categories, connecting them, respectively,
with monads; the action definition of Freyd-categories given by Levy [34]; the pseudomonoid definition
of effectful categories given by Román [43] and the work on closed effectful categories due to Power
[36, 37]. In particular, this final perspective demonstrates that pro-effectful categories are equivalent
to closed effectful categories on the free tight cocompletion, where the effectful structure is given by a
version of Day convolution.

Finally, there is an additional challenge with premonoidal optics: there is the category Optic(ZC) of
optics over the monoidal centre and an embedding, Optic(ZC) −→ OpticZC (C), of these central optics
into the optics over the entire premonoidal category. Optic(ZC) is equipped with the two promonoidal
structures, ⊗H and ⊗V , and we would like to understand how these behave in relation to any tensors

154 Optics for Premonoidal Categories

we can define on OpticZC (C). This requires us to keep track of the centre and understand fully how it
behaves in relation to the rest of the premonoidal category.

2 Premonoidal and Effectful Categories

Let us start by formally defining premonoidal categories enriched over a fixed cosmos V , taken to be
bicomplete and closed symmetric monoidal. We take some space to spell this out as there are some tech-
nicalities involved which do not appear to have been explicitly discussed elsewhere. Unless otherwise
indicated “category,” “functor,” “natural transformation” etc. should be taken to mean V -category etc.
We write ⊗ for the tensor of V and for the enriched tensor of categories [31].

Definition 1 (Binoidal Category). A category C is binoidal when, for each object a, it is equipped with
a pair of functors an− : C −→ C and −oa : C −→ C such that for all a and b, anb = aob.

Remark. In the case of V = Set, the previous definition is equivalent to the one in terms of the funny
tensor product [23, 47], though this must be avoided in the enriched case because it relies on the discrete
category C0 of objects of a category C which is ill-defined over arbitrary V .

We now generalize the notion of central natural transformation to the enriched case.

Definition 2 (Central Natural Transformation). Let C be a binoidal category and F,G : D −→ C be
two functors. Let η : F −→ G be a natural transformation, so that we have a family of morphisms ηa :
IV −→ C (Fa,Ga) of V satisfying the usual naturality diagrams. The component ηa is central when the
following diagram commutes for all objects c and d, and η is central when all components are central.

C (c,d)⊗ IV C (c,d)⊗C (Fa,Ga) C (Gan c,Gand)⊗C (Fao c,Gao c)

C (c,d) C (Fao c,Gaod)

IV ⊗C (c,d) C (Fa,Ga)⊗C (c,d) C (Faod,Gaod)⊗C (Fan c,Fand)

1⊗ηa (Gan−)⊗(−oc)

◦ρ

λ

ηa⊗1 (−od)⊗(Fan−)

◦

Binoidal categories give us the necessary machinery to define premonoidal categories.

Definition 3 (Premonoidal Category). A premonoidal category C is a binoidal category endowed with
an object i and central natural isomorphisms, (a⊗ b)⊗ c ∼= a⊗ (b⊗ c) and a⊗ i ∼= a ∼= i⊗ a, such that
the triangle and pentagon equations hold.

As we have just seen, enriched premonoidal categories are require some care to define formally -
since the coherence isomorphisms need to be central we are required to define binoidal categories first
so that we can make sense of this centrality. Even in the case V = Set, the 2-category Cat fails to
be monoidal under the funny tensor product because the funny tensor of natural transformations is not
well-defined unless the components are all central [38]. This prevents the swift and elegant definition “a
premonoidal category is a pseudomonoid in Cat�.”

Power realised that premonoidal categories are more algebraically well-defined when one shifts to
working with premonoidal categories with a specified subcategory of central morphisms [36]. We call
these effectful categories [43]. In order to define them we first need to give the definition of a functor
between premonoidal categories.

J. Hefford and M. Román 155

Definition 4 (Centre Piece). Let C be a binoidal category. A centre piece at objects (a,b) in C is an
object U(a,b) in V , endowed with an arrow ι : U(a,b) −→ C (a,b), such that for any objects (c,d) the
following diagrams commute.

U(a,b)⊗C (c,d) C (a,b)⊗C (c,d) C (ao c,bo c)⊗C (bn c,bnd)

C (a,b)⊗C (c,d) C (aod,bod)⊗C (an c,and) C (ao c,bod)

ι⊗1

ι⊗1

(−oc)⊗(bn−)

◦σ

(−od)⊗(an−) ◦

C (c,d)⊗U(a,b) C (c,d)⊗C (a,b) C (coa,d oa)⊗C (d na,d nb)

C (c,d)⊗C (a,b) C (cob,d ob)⊗C (cna,cnb) C (coa,d ob)

1⊗ι

1⊗ι

(−oa)⊗(dn−)

◦σ

(−ob)⊗(cn−) ◦

Definition 5 (Premonoidal Functor). A premonoidal functor F : C −→D between premonoidal categories
is a functor which preserves the centre pieces of C such that for all centre pieces ι : U(a,b)−→ C (a,b),

composition with F gives a centre piece U(a,b) ι−→ C (a,b)
Fa,b−−→ D(Fa,Fb) at (Fa,Fb) in D . Further-

more F must preserve the premonoidal structure up to natural transformations Fa⊗Fb−→ F(a⊗b) and
i−→ Fi subject to coherence conditions like those for a monoidal functor. A premonoidal functor is strict
when these transformations are identities.

Definition 6 (Effectful Category). An effectful category consists of a monoidal category C0, a pre-
monoidal category C1 with the same objects as C0 and a strict, identity on objects, premonoidal functor
J : C0 −→ C1.

Remark. If C0 is cartesian, then an effectful category is known as a Freyd category [45, 34]. At least
one good reason to relax from requiring cartesian structure to arbitrary monoidal structure concerns
applications of effectful categories outside of computer science. For instance, there has been interest in
effectful structure for models of spacetime and quantum theory where products are not the canonical way
of taking joint systems [16, 26], and in the study of Petri nets [4].

Effectful categories can be seen as particular instances of actegories [34] - that is, a category with an
action by a monoidal category [5, 11]. An effectful category J : C0 −→ C1 specifies a left and right C0-
action on C1, making C1 into a C0-C0-biactegory. These actions n : C0⊗C1 −→ C1 and o : C1⊗C0 −→
C1, are special because they preserve the canonical actions of C0 on itself, i.e. J extends the action
J�=n(1⊗ J) and J�=o(J⊗1), and preserves the coherence isomorphisms.

Effectful categories are also precisely the same thing as strong promonads [27, 24, 43]. Given a
strong promonad T : C −7→ C there is a canonical premonoidal structure on the Kleisli category KlT
which on objects acts like the tensor of C . The free functor F : C −→ KlT then constitutes an effectful
category. Conversely, given an effectful category J : C0 −→ C1, there is a promonad C1(J−,J−) : C0 −7→
C0 which can be shown to be strong with strengths induced by the action of C0 on C1.

Effectful Categories as Pseudomonoids

In this section, we show that effectful categories are pseudomonoids in the category of V 2-enriched
categories equipped with a modified version of the funny tensor product, where V 2 = [−→,V] is the
category of arrows and commutative squares in V . In doing so we place effectful categories on the
same footing as monoidal and promonoidal categories, showing that they are representations of the same

156 Optics for Premonoidal Categories

underlying algebraic data. This builds upon the work of Power who first studied the algebraicity of
effectful categories in V 2-Cat [36, 37].

Proposition 1. Let V be a complete, cocomplete, closed symmetric monoidal category. Then V 2 is also
a complete, cocomplete, closed symmetric monoidal category and therefore constitutes a cosmos.

Since V 2 is a cosmos, we can consider categories enriched in V 2 [37]. A V 2-category consists of
a pair of categories C0 and C1 with the same objects, and an identity on objects functor J : C0 −→ C1.
A V 2-functor F : JC −→ JD consists of a pair of functors F0 : C0 −→ D0 and F1 : C1 −→ D1 such that
F1JC = JDF0. A V 2-natural transformation η : F ⇒ G between V 2-functors F,G : JC −→ JD consists
of natural transformations η0 : F0 ⇒ G0 and η1 : F1 ⇒ G1 with components that satisfy JD(η

0
c) = η1

c .
When JD is an embedding, we can think of this transformation simply as having central components, in
D0.

There is a bicategory V 2-Cat of V 2-categories, V 2-functors and V 2-natural transformations. This
bicategory has an interesting tensor that arises as a slight modification of the funny tensor product.

Definition 7 (Funny Tensor of V 2-Categories). Given two V 2-categories JC and JD , their funny tensor
JC�D : C0⊗D0 −→ C1 � D1 is the identity on objects functor given by the diagonal of the following
pushout in V -Cat.

C0⊗D0 C1⊗D0

C0⊗D1 C1 �D1

JC⊗1

1⊗JD i0

i1

p
(1)

The pushout exists because V is cocomplete and thus V -Cat is also cocomplete [49]. Given V 2-functors
F : JA −→ JB and G : JC −→ JD their funny tensor F � G has components (F � G)0 = F0⊗G0 and
(F � G)1 = F1 � G1 given by the unique arrow induced by the pushout. The funny tensor is also well-
behaved on V 2-natural transformations because their components JD(η

0
c) = η1

c are central and thus
interchange with all other morphisms in C �D .

Theorem 1. V 2-Cat is a monoidal 2-category under the funny tensor �.

Proof sketch. In Appendix A.1.

This leads to the main theorem of this section. Theorem 2 is equivalent to the result of Román [43]:
effectful categories are pseudomonoids in the bicategory of promonads, promonad homomorphisms and
promonad modifications.

Theorem 2. An effectful category is a pseudomonoid in V 2-Cat�.

Proof sketch. A pseudomonoid in V 2-Cat� consists of a V 2-category J : C0 −→ C1 equipped with V 2-

functors � : J � J −→ J and I : 1 −→ J, such that there are V 2-natural isomorphisms �(�⊗ 1)
α∼= �(1⊗

�) and � (I⊗1)
λ∼= 1

ρ∼=�(1⊗ I).
Note that � consists of two functors �0 : C0⊗C0 −→ C0 and �1 : C1 � C1 −→ C1 such that J�0 =

⊗1JC�C . �0 together with I0 and the natural isomorphisms α0,ρ0 and λ0, give a monoidal structure on
C0.

The C0-biaction on C1 is given by the compositions n := �i1 and o := �i0. That J preserves
the canonical actions given by ⊗0 on C0 follows by the diagram (1) and the equality J⊗0 = ⊗1JC�C ,
together with the fact that α1,ρ1 and λ1 have components in the image of J. The coherence equations

J. Hefford and M. Román 157

of the biaction are a consequence of those of α1,ρ1 and λ1: for instance α1 is a natural isomorphism
between functors with type C1 � C1 � C1 −→ C1. This amounts to “separate” naturality in each C1 of the
domain which in turns induces the left, bimodule and right coherences for the biaction.

Theorem 3. There is an equivalence of bicategories V 2-Cat� ∼= V -Promonad between the bicategories
of V 2-categories under the funny tensor product and the bicategory of promonads.

Proof sketch. The result follows upon unwinding the definitions [43] and comparing the rest of the defi-
nitions there with those of the present section. Promonads use the “pure tensor” in [43].

3 Closed Effectful Categories

Now that we have a thorough understanding of effectful categories, we can start to work towards their
“pro-” analogue. To start, recall that a promonoidal category is equivalently a closed monoidal presheaf
category. This suggests we should turn our attention to the closure of effectful categories, which will be
the focus of this section.

Power gave the following definition of closure for effectful categories, where there is still an adjunc-
tion between tensoring and the internal-hom, but only for the centre [36].

Definition 8 (Closed Effectful Category [36]). An effectful category J : C0 −→ C1 is right-closed when
for each object X , J(−)⊗X : C0 −→ C1 has a right adjoint [X ,−] : C1 −→ C0. An effectful category is
left-closed when for each X , X ⊗ J(−) : C0 −→ C1 has a right adjoint. We say an effectful category is
closed if it is both left and right-closed.

Power proved the following result which generalises Day’s result that every monoidal category em-
beds into a closed monoidal category [18].

Theorem 4 ([36]). Every (small) effectful category embeds into a closed effectful category.

We say that an effectful category J : C0 −→C1 is small when both C0 and C1 are small. Given small J,
we can take the strong promonad T (−,−) := C1(J−,J−) : C0 −7→ C0 and lift it to a strong cocontinuous
monad on the presheaf category T̂ : Ĉ0 −→ Ĉ0. The Kleisli category KlT̂ has as objects presheaves F :
C op

0 −→ V and homs KlT̂ (F,G) = Ĉ0(F, T̂ G). Moreover, Ĉ0 is monoidal under Day convolution while
KlT̂ is premonoidal. As a result there is an effectful category given by the identity on objects functor
Ĉ0 −→ KlT̂ .

Power gave another characterisation of the effectful category Ĉ0−→KlT̂ as the free tight cocompletion
of the V 2-category J : C0 −→ C1 - that is, the cocompletion in only V -colimits, not all V 2-colimits. In
the case of V = Set these are precisely the “conical” colimits. The name “tight” was first suggested in
[33] where the theory of categories enriched in Cat2 is studied in some detail.

Theorem 5 ([37]). The free tight cocompletion of a small V 2-category J : C0 −→ C1 is the bijective on
objects functor LanL

Jop : Ĉ0 −→ C1 induced by the functor LanJop : Ĉ0 −→ Ĉ1, via its canonical factorisation
into a bijective on objects functor followed by a fully faithful functor (its bo-ff factorisation).

The category C1 := Im(LanJop) given by the bo-ff factorisation of LanJop has as objects presheaves
F : C op

0 −→ V and as homs C1(F,G) = Ĉ1(LanJopF,LanJopG). By the adjunction between extension and
restriction of presheaves along J there is a natural isomorphism

KlT̂ (F,G) = Ĉ0(F, T̂ G)∼= Ĉ1(LanJopF,LanJopG) = C1(F,G)

158 Optics for Premonoidal Categories

Thus to give a natural transformation F ⇒ T̂ G is equivalent to giving one LanJopF ⇒ LanJopG. This
demonstrates an isomorphism C1 ∼= KlT̂

As a consequence, the following diagram commutes, giving a factorisation (yL,yR) of the Yoneda
embedding y : J −→ [Jop,V 2], via the free V -cocompletion.

C0 C1

Ĉ0 C1

[Jop,V 2]0 [Jop,V 2]1

J

yL
0

y0

yL
1

y1
LanL

Jop

yR
0 yR

1

So we now have an effectful category LanL
Jop into which J embeds. The last thing to do is to check that

it is closed, which follows by noting that LanJop is left adjoint to the functor which restricts presheaves
along J, and taking bo-ff factorisations ensures that LanL

Jop is also a left adjoint [38].

4 V 2-Profunctors

In the previous Section we studied the notion of closure for effectful categories. At this point we
could stop and define pro-effectful categories as “closed effectful presheaf categories” in analogy to
promonoidal categories. In fact, this definition is more subtle than it might first appear and it is certainly
worth taking a little care. In particular, given that the closed effectful embedding of any effectful category
J is given by the free tight cocompletion LanL

Jop and not the free cocompletion [Jop,V 2], we must take
care of what we mean by “presheaf” category here. Furthermore, we would like to place pro-effectful
categories on the same footing as promonoidal categories - as pseudomonoids in some form of bicategory
of profunctors.

This will be the aim of this Section; to study the structure of V 2-profunctors P : Jop
D � JC −→ V 2.

By the following result we are able to unpack P into a pair of V -profunctors together with a natural
transformation between them. The V 2-natural transformations φ : P⇒Q can also be similarly unpacked.

Proposition 2. Let P : Jop
D ⊗ JC −→ V 2 be a V 2-profunctor. Then P is a triple of:

1. a V -profunctor P0 : Dop
0 ⊗C0 −→ V ,

2. a V -profunctor P1 : Dop
1 ⊗C1 −→ V ,

3. a V -natural transformation η : P0⇒ P1(Jop⊗ J).

A V 2-natural transformation φ : P⇒ Q consists of V -natural transformations φ0 : P0 ⇒ Q0 and φ1 :
P1⇒ Q1 such that (φ1(Jop⊗ J))ηP = ηQφ0.

Proof. This follows by applying a V -enriched version of a result by Power [37, Prop. 24] to the functor
category [Jop

D ⊗ JC ,V
2]∼= Prof(JC ,JD).

The next proposition demonstrates that the coend of a V 2-profunctor P is given by the coends of P0
and P1 together with a canonical arrow between them.

Proposition 3. Let P : Jop⊗ J −→ V 2 be a V 2-endoprofunctor. Then the coend
∫ c P(c,c) is given by the

arrow
∫ c P0(c,c)−→

∫ c P1(c,c) induced by η and the adjunction yJ a yJ in V -Prof.

J. Hefford and M. Román 159

Proof. In Appendix A.2.

V 2-endoprofunctors and the V 2-natural transformations assemble into a V 2-category [Jop⊗J,V 2]∼=
Prof(J,J). The category Prof(J,J)0 consists of the V 2-profunctors and V 2-natural transformations as
outlined in Proposition 2, while Prof(J,J)1 has homs consisting of only the components φ1 of the natural
transformations. The identity on objects functor Prof(J,J)0 −→ Prof(J,J)1 forgets the φ0 components.

As with any other category of endoprofunctors Prof(J,J) has a closed monoidal structure given by
composition of the profunctors. Given P = (P0,P1,ηP) and Q = (Q0,Q1,ηQ), their composition is given
by QP = (Q0P0,Q1P1,ηQP) - we compose the underlying profunctors and take ηQP to be given by∫ c

Q(−,c)⊗P(c,−)
∫

ηQ⊗ηP
=====⇒

∫ c∈C0

Q(J−,Jc)⊗P(Jc,J−) yJayJ

===⇒
∫ c∈C1

Q(J−,c)⊗P(c,J−).

4.1 Tight Profunctors

In Section 3 we saw that effectful structure on J : C0 −→ C1 induced a closed effectful structure on the
free tight cocompletion of J. It turns out that this effectful structure on J is only a sufficient and not
necessary condition for closed effectful structure on the free tight cocompletion of J. Analogously to the
case of monoidal categories where, in order for the presheaf category Ĉ to be closed monoidal it is only
necessary that the category C is promonoidal [18, 17], we only require J to be a “pro-effectful” category.
To define these categories we need firstly to study the class of profunctors which factor through the tight
cocompletion. This will be the aim of this section.

To define pro-effectful categories we would like to replace the functors of a effectful category with
profunctors, but we have a problem: we cannot consider arbitrary V 2-profunctors P : Jop

D ⊗ JC −→ V 2

because these assign arbitrary presheaves Jop
D −→ V 2 to objects of JC . These presheaves will not in

general be contained in the free tight cocompletion. Thus, we need a restricted class of profunctors,
those that we call the tight profunctors.

Definition 9 (Tight V 2-Profunctor). A tight V 2-profunctor P : JC −7→ JD is a V 2-functor P : JC −→ JD ,
where JD

∼= LanL
Jop
D

is the free tight cocompletion of JD .

Remark. Tight V 2-profunctors can be unpacked component-wise analogously to Proposition 2, to see
that they are precisely the V 2-profunctors where η is a natural isomorphism.

Similarly to how a profunctor P : C −7→ D is equivalently a cocontinuous functor between free
cocompletions P̂ : Ĉ −→ D̂ , tight V 2-profunctors are tightly cocontinuous functors between free tight
cocompletions.

Definition 10 (Tightly Cocontinuous Functor). A V 2-functor F : JC −→ JD between tightly cocomplete
categories is tightly cocontinuous if it preserves all tight colimits.

Theorem 6 ([31]). Let JC be the closure of JC in [Jop
C ,V 2] under tight colimits and write yL : JC −→ JC

for the inclusion. Then for tightly cocomplete JD , there is an equivalence

LanyL : [JC ,JD]∼= Coconttight(JC ,JD)

where the right-hand is the category of tightly cocontinuous functors. This exhibits JC as the free tight
cocompletion of JC .

Indeed, yL is fully faithful so that there is a natural isomorphism F ∼= (LanyLF)yL. Consequently, we
can think of a tight V 2-profunctor P : JC −→ JD as a tightly cocontinuous functor P̃ : JC −→ JD . We can
now define the following bicategory of tight V 2-profunctors.

160 Optics for Premonoidal Categories

Definition 11. Denote by V 2-ProfTight the bicategory that has

• 0-cells the V 2-categories J : C0 −→ C1,

• 1-cells, P : JC −7→ JD , the tight V 2-profunctors P : JC −→ JD ,

• 2-cells the V 2-natural transformations.

Composition of 1-cells is given by taking the left Kan extension along yL and composing the functors we
obtain Q◦P = (LanyLQ)P.

Remark. We could also have defined tight V 2-profunctors JC −→ JD as usual V 2-profunctors JC −→
[Jop

D ,V 2] that factorise via the embedding yR : JD −→ [Jop
D ,V 2]. Their usual composition as profunctors

coincides (up to natural isomorphism) with the composition defined previously because yR is fully faithful
and thus the unit of the Kan extension along yR is an isomorphism, F ∼= (LanyRF)yR. It follows that

Q◦P = (LanyQ)P = (LanyRyLQ)P∼= (LanyRLanyLQ)P = (LanyRLanyLQ)yRP′ ∼= (LanyLQ)P′.

Remark. There is a more abstract but cleaner way to define the bicategory V 2-ProfTight, by noting that
it is the Kleisli bicategory of a certain relative pseudomonad on V 2-Cat. Relative pseudomonads were
introduced in [22] where it was also demonstrated that Prof is the Kleisli bicategory of the relative
pseudomonad (̂·) of presheaves, which freely adds colimits by acting on 0-cells as C 7→ Ĉ . Due to size
issues, (̂·) is a relative pseudomonad and not just a plain pseudomonad: (̂·) sends small categories to
locally small categories and so it is only a relative pseudomonad over the inclusion Cat −→ CAT of the
2-category of small categories into the 2-category of locally small categories.

In the same fashion there is a relative pseudomonad (·) over the inclusion V 2-Cat−→ V 2-CAT which
sends a small V 2-category to its free tight cocompletion. It is then fairly straightforward to check that
V 2-ProfTight is the Kleisli bicategory of this relative pseudomonad and therefore also check that it is
indeed a bicategory.

V 2-ProfTight has an interesting tensor product given by generalising the funny tensor product.

Proposition 4 (External Tensor Product). Let JC and JD be V 2-categories and write JC and JD be their
free tight cocompletions. Then there is a V 2-functor

⊗̂ : JC � JD −→ JC�D (2)

with components that act on objects as (F⊗̂G)(c,d) := Fc⊗Gd.

Proof. In Appendix A.3.

Definition 12 (Funny Tensor Product of Tight V 2-Profunctors). On categories the funny tensor acts like
in V 2-Cat. On tight V 2-profunctors P : JA −→ JB and Q : JC −→ JD we define their funny tensor to be
given by their funny tensor in V 2-Cat composed with the external tensor of free tight cocompletions (2):

JA � JC JB � JD JB�D
P�Q ⊗̂

Theorem 7. V 2-ProfTight is a monoidal bicategory under the funny tensor product.

Proof sketch. V 2-ProfTight is the Kleisli bicategory of the relative pseudomonad (·) that adds tight col-
imits. Under the funny tensor product on V 2-Cat, this pseudomonad is monoidal, and therefore its
Kleisli bicategory is also monoidal.

J. Hefford and M. Román 161

5 Pro-effectful Categories

Finally in this Section we are in a position to define pro-effectful categories: as pseudomonoids in
V 2-ProfTight� , placing them on equal footing algebraically with monoidal, promonoidal and effectful
categories.

Definition 13. A pro-effectful category is a pseudomonoid in V 2-ProfTight� . Explicitly, a pro-effectful
category JC is a V 2-category equipped with a tensor product tight V 2-profunctor P : JC�C −7→ JC and a

unit tight V 2-profunctor I : 1−7→ JC , together with V 2-natural isomorphisms P(P� 1)
α∼= P(1� P) and

P(I � 1)
λ∼= 1

ρ∼= P(1� I) such that the triangle and pentagon equations hold.

Like their effectful counterparts, pro-effectful categories also have an “actegorical definition” - they
are a particular instance of a category equipped with an action by a promonoidal category. This requires
us firstly to weaken actegories to proactegories.

Definition 14 (Proactegory). A left proactegory is a promonoidal category (C0,P, I) and a category C1
equipped with a left proaction by C0, that is, a profunctor L : C0⊗C1 −7→ C1 and natural isomorphisms∫ X∈C1

L(A,B,X)⊗L(X ,C,D)
a∼=
∫ X∈C0

L(A,X ,D)⊗P(X ,B,C),
∫ X∈C0

L(A,X ,B)⊗ I(X)
l∼= C1(A,B),

satisfying similar coherence diagrams as for an actegory. A biproactegory is simultaneously a left and
right proactegory with an additional natural isomorphism∫ X

R(D,X ,C)⊗L(X ,A,B)
b∼=
∫ X

L(D,A,X)⊗R(X ,B,C)

satisfying similar coherences as for a biactegory.

The following result generalises the equivalence between effectful categories and certain actegories
[34] to the pro-effectful case.

Proposition 5. A pro-effectful category is equivalently the following data:

• a promonoidal category (C0,P0, I0),

• a category C1 with the same objects as C0 and an identity on objects functor J : C0 −→ C1,

• left and right C0-proactions on C1, PL
1 : C0⊗C1 −7→ C1 and PR

1 : C1⊗C0 −7→ C1, which extend the
canonical proactions of C0 on itself:

C0⊗C0 C0

C0⊗C1 C1

P0p
1⊗yJ p yJp

PL
1

p

C0⊗C0 C0

C1⊗C0 C1

P0p
yJ⊗1p yJp

PR
1

p

(3)

• a natural isomorphism PR
1 (P

L
1 ⊗1)∼= PL

1 (1⊗PR
1) making C1 into a C0-C0-biproactegory.

Proof. In Appendix A.4.

The next proposition generalises the equivalence between effectful categories and strong promonads
[27, 24, 43] to the pro-effectful case. The proof methods are related to those for promonoidal monads in
[19].

162 Optics for Premonoidal Categories

Proposition 6. A pro-effectful category is equivalently a prostrong promonad.

Proof. Take a prostrong promonad T : C −7→ C . We will show we have the data of Proposition 5.
T has a Kleisli category in V -Prof and there is an identity on objects free functor F : C −→ KlT .

By assumption C has a promonoidal structure (P0, I0) and we can use the left and right prostrengths
to define left and right proactions of C on KlT . On objects the left proaction acts as PL

1 (−,c,Fc′) :=∫ xKlT (−,Fx)⊗P0(x,c,c′) extending the canonical proaction on the centre, so that (3) commutes. Its
action on homs is induced by the strength

∫ c P0(−,−,c)⊗T (c,−)⇒
∫ c T (−,c)⊗P0(c,−,−).

Conversely, suppose we are given a pro-effectful category J : C0−→C1. Then T (−,=) :=C1(J−,J=)
a promonad on C0 where the promonad multiplication and units are given by composition in C1. More-
over, C1 is precisely the Kleisli category of T . Now, since J is pro-effectful, C0 is promonoidal and we
are left to show that T is prostrong over this structure. By Proposition 5, we have left and right proactions
of C1 on C0 which preserve the canonical proaction on the centre and from these one can construct the
prostrength of T .

Pro-effectful categories are also exactly what is required to place a closed effectful structure on
the free tight cocompletion of a V 2-category. This generalises Day’s theorem [18, 17] from monoidal to
effectful categories, thus also generalising the result of Power on closed effectful embeddings of effectful
categories [36, 37]. The result follows by generalising the methods of Day’s original proof, and from the
folklore results regarding Day convolution for actegories, see [28, 10].

Theorem 8. There is an equivalence between pro-effectful structures on J and closed effectful structures
on the free tight cocompletion J = LanL

Jop .

Proof. In Appendix A.5.

Finally, we note some connections between pro-effectful categories and the premulticategories of
Staton and Levy [45], which generalise multicategories by dropping the interchange law. Just as how
promonoidal categories are examples of (co)multicategories [20], pro-effectful categories are examples
of (co)premulticategories. Given a pro-effectful category J : C0 −→ C1, there is a co-premulticategory C
with objects given by those of C1. For a,b ∈ C the class of arrows is given by C(a;b) := C1(a,b) and
for a,b,c ∈ C the class of arrows is given by C(a;b,c) := P1(a,b,c). The rest of the classes of arrows are
defined inductively.

It is worth noting that there exist examples of pro-effectful categories which provide non-degenerate
examples of premulticategories where the interchange law does not hold (in contrast to promonoidal and
monoidal categories which are multicategories) and where the “tensor” is not representable (in contrast
to monoidal and premonoidal categories). For instance, the premonoidal optics introduced in the next
section are an example of such a category.

6 Premonoidal Optics

In a seminal work on optics, Riley [40] introduced the notion of “effectful optics”: optics over the Kleisli
category of a strong monad. These optics allow the emergence of side-effects, and extend the optics
of pure functional programming to other programming languages with effects; with a similar purpose,
Abou-Saleh et al [1] have introduced “monadic lenses”. More recently, much applied category theory
has been written about optics that create effects in different categories [7, 9, 14, 44].

J. Hefford and M. Román 163

We introduce a novel definition of optic over an effectful category that justifies this previous termi-
nology: optics over the Kleisli category of a strong monad are particular cases of our effectful optics.
We also introduce a proeffectful algebra over them that had been previously neglected. In this section we
will present the category of optics over a premonoidal category and outline its two tensor-like structures,
analogous to those in Figure 2.

Suppose we fix a premonoidal category C and write J : ZC −→ C for the inclusion of the centre.
There is a V 2-category Optic(J) with objects given by pairs a := (a,a′) of those of J, i.e. pairs of those
of the underlying premonoidal category C . The homs are given by

∫ xy ZC (a,x⊗ b⊗ y)⊗ZC (x⊗ b′⊗
y,a′) −→

∫ xy∈ZC C (a,x⊗ b⊗ y)⊗C (x⊗ b′⊗ y,a′), as in Figure 4. Thus Optic(J)0 = Optic(ZC) is the
usual category of optics over the centre and Optic(J)1 = OpticZC (C) is the category of optics given
by the action of the centre ZC on the whole premonoidal category C . The identity on objects functor
Optic(ZC)−→ OpticZC (C) is the one induced by J.

Theorem 9. Optic(J) is a promonoidal V 2-category. The V 2-profunctors forming the tensor product
P : Optic(J)⊗Optic(J) −7→ Optic(J) and unit I : 1 −7→ Optic(J) have components given in Figures 5
and 6. These are explicitly,

P0(c,a,b) =
∫ xx′yy′

ZC (c,x⊗a⊗ x′)⊗ZC (x⊗a′⊗ x′,y⊗b⊗ y′)⊗ZC (y⊗b′⊗ y′,c′),

P1(c,a,b) =
∫ xx′yy′∈ZC

C (c,x⊗a⊗ x′)⊗C (x⊗a′⊗ x′,y⊗b⊗ y′)⊗C (y⊗b′⊗ y′,c′),

I0(a) = ZC (a,a′), I1(a) = C (a,a′).

Proof. In Appendix A.6.

g

f

a

b
b′

a′

−→

g

f

a

b
b′

a′

Figure 4: Homs.

f

a′

a

−→ f

a′

a

Figure 5: Promonoidal unit I.

h

g

f

a′
a

b
b′

c′

c

−→

h

g

f

a′
a

b
b′

c′

c

Figure 6: Promonoidal tensor P.

Now let us turn our attention to another tensor-like structure on Optic1ZC
(J), this one induced by the

premonoidal structure on C .

Theorem 10. Optic(J) is a pro-effectful category. The tight V 2-profunctors forming the tensor product
P : Optic(J)⊗Optic(J)−→Optic(J) and unit I : 1−→Optic(J) have components which act on objects as,

P0(c,a,b) = P1(c,a,b) =
∫ xyz

ZC (c,x⊗a⊗ y⊗b⊗ z)⊗ZC (x⊗a′⊗ y⊗b′⊗ z,c′),

I0(a) = I1(a) = ZC (a,a′).
(4)

164 Optics for Premonoidal Categories

Proof. In Appendix A.7.

On the homs of ZC , P0 and I0 act in the expected way, essentially by nesting of optics. On the homs
of C , P1 and I1 act somewhat unusually. Formally non-central optics are sent to natural transformations
between left Kan extensions of the expressions in (4), that is between presheaves of the form:

(LanJop⊗JP0)(c,a,b)∼=
∫ wvxyz

C (c,Jw)⊗ZC (w,x⊗a⊗ y⊗b⊗ z)⊗ZC (x⊗a′⊗ y⊗b′⊗ z,v)⊗C (Jv,c′)

∼=
∫ xyz∈ZC

C (c,x⊗a⊗ y⊗b⊗ z)⊗C (x⊗a′⊗ y⊗b′⊗ z,c′)

(LanJop⊗JI0)(a)∼=
∫ xy

C (a,Jx)⊗ZC (x,y)⊗C (Jy,a′)∼=
∫ x∈ZC

C (a,x)⊗C (x,a′)

This justifies thinking of the pro-effectful structure as having the components described in Figures 7 and
8.

f

g

a
a′

b
b′

c

c′

−→

f

g

a
a′

b
b′

c

c′

Figure 7: Pro-effectful tensor.

f

a′

a

−→ f

a′

a

Figure 8: Pro-effectful unit.

Acknowledgements

The authors want to thank Matt Earnshaw and Matt Wilson for discussion; the authors also want to thank
the anonymous reviewers at ACT23 for multiple suggestions that improved this article. James Hefford is
supported by University College London and the EPSRC [grant number EP/L015242/1]. Mario Román
is supported by the European Union through the ESF Estonian IT Academy research measure (2014-
2020.4.05.19-0001).

References

[1] Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna & Perdita Stevens (2016):
Reflections on Monadic Lenses. In: A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, Lecture Notes in Computer
Science 9600, Springer, pp. 1–31, doi:10.1007/978-3-319-30936-1_1.

[2] Samson Abramsky & Bob Coecke (2004): A categorical semantics of quantum protocols. In:
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004, pp. 415–
425, doi:10.1109/LICS.2004.1319636.

[3] Andrea Asperti & Guiseppe Longo (1991): Categories, Types, and Structures. MIT Press.

[4] John C. Baez, John Foley & Joe Moeller (2019): Network Models from Petri Nets with Catalysts.
Compositionality 1, doi:10.32408/compositionality-1-4.

https://doi.org/10.1007/978-3-319-30936-1_1
https://doi.org/10.1109/LICS.2004.1319636
https://doi.org/10.32408/compositionality-1-4

J. Hefford and M. Román 165

[5] Jean Bénabou (1967): Introduction to bicategories. In: Reports of the Midwest Category Seminar,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–77, doi:10.1007/BFb0074299.

[6] Guillaume Boisseau (2020): String Diagrams for Optics. In Zena M. Ariola, editor: 5th Inter-
national Conference on Formal Structures for Computation and Deduction (FSCD 2020), Leibniz
International Proceedings in Informatics (LIPIcs) 167, Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik, Dagstuhl, Germany, pp. 17:1–17:18, doi:10.4230/LIPIcs.FSCD.2020.17.

[7] Joe Bolt, Jules Hedges & Philipp Zahn (2019): Bayesian open games,
doi:10.48550/arXiv.1910.03656. arXiv:1910.03656.

[8] Filippo Bonchi, Robin Piedeleu, Pawel Sobociński & Fabio Zanasi (2019): Graphical affine alge-
bra. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE,
pp. 1–12, doi:10.1109/LICS.2019.8785877.

[9] Dylan Braithwaite & Jules Hedges (2022): Dependent Bayesian Lenses: Categories of Bidi-
rectional Markov Kernels with Canonical Bayesian Inversion, doi:10.48550/arXiv.2209.14728.
arXiv:2209.14728.

[10] Alexander Campbell (2018): Skew-Enriched Categories. Applied Categorical Structures 26, p.
597–615, doi:10.1007/s10485-017-9504-0.

[11] Matteo Capucci & Bruno Gavranović (2022): Actegories for the Working Amthematician,
doi:10.48550/arXiv.2203.16351. arXiv:2203.16351.

[12] Giulio Chiribella, Giacomo Mauro D’Ariano & Paolo Perinotti (2008): Quantum Circuit Architec-
ture. Physical Review Letters 101(6), doi:10.1103/physrevlett.101.060401.

[13] Giulio Chiribella, Giacomo Mauro D’Ariano & Paolo Perinotti (2008): Transforming quantum
operations: Quantum supermaps. EPL (Europhysics Letters) 83(3), p. 30004, doi:10.1209/0295-
5075/83/30004.

[14] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski, Emily Pillmore
& Mario Román (2020): Profunctor optics, a categorical update, doi:10.48550/arXiv.2001.07488.
arXiv:2001.07488.

[15] Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.

[16] Marc Comeau (2012): Premonoidal *-Categories and Algebraic Quantum Field Theory. Ph.D.
thesis, University of Ottawa, doi:10.20381/ruor-5524.

[17] Brian Day (1970): Construction of Biclosed Categories. Ph.D. thesis, University of New South
Wales, doi:10.26190/unsworks/8048.

[18] Brian Day (1970): On closed categories of functors. In: Reports of the Midwest Category Seminar
IV, 137, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–38, doi:10.1007/BFb0060438.

[19] Brian Day (1977): Note on monoidal monads. Journal of the Australian Mathematical Society
23(3), p. 292–311, doi:10.1017/S1446788700018929.

[20] Brian Day, Elango Panchadcharam & Ross Street (2005): On centres and lax centres for
promonoidal categories. In: Colloque International Charles Ehresmann: 100 ans.

[21] Matt Earnshaw, James Hefford & Mario Román (2023): The Produoidal Algebra of Process De-
composition, doi:10.48550/ARXIV.2301.11867. arXiv:2301.11867.

https://doi.org/10.1007/BFb0074299
https://doi.org/10.4230/LIPIcs.FSCD.2020.17
https://doi.org/10.48550/arXiv.1910.03656
https://arxiv.org/abs/1910.03656
https://doi.org/10.1109/LICS.2019.8785877
https://doi.org/10.48550/arXiv.2209.14728
https://arxiv.org/abs/2209.14728
https://doi.org/10.1007/s10485-017-9504-0
https://doi.org/10.48550/arXiv.2203.16351
https://arxiv.org/abs/2203.16351
https://doi.org/10.1103/physrevlett.101.060401
https://doi.org/10.1209/0295-5075/83/30004
https://doi.org/10.1209/0295-5075/83/30004
https://doi.org/10.48550/arXiv.2001.07488
https://arxiv.org/abs/2001.07488
https://doi.org/10.1017/9781316219317
https://doi.org/10.20381/ruor-5524
https://doi.org/10.26190/unsworks/8048
https://doi.org/10.1007/BFb0060438
https://doi.org/10.1017/S1446788700018929
https://doi.org/10.48550/ARXIV.2301.11867
https://arxiv.org/abs/2301.11867

166 Optics for Premonoidal Categories

[22] Marcelo Fiore, Nicola Gambino, Martin Hyland & Glynn Winskel (2018): Relative pseudomonads,
Kleisli bicategories, and substitution monoidal structures. Selecta Mathematica 24, p. 2791–2830,
doi:10.1007/s00029-017-0361-3.

[23] François Foltz, Christian Lair & Gregory M. Kelly (1980): Algebraic categories with few mo-
noidal biclosed structures or none. Journal of Pure and Applied Algebra 17, pp. 171–177,
doi:10.1016/0022-4049(80)90082-1.

[24] Richard Garner & Ignacio López Franco (2016): Commutativity. Journal of Pure and Applied
Algebra 220(5), pp. 1707–1751, doi:10.1016/j.jpaa.2015.09.003.

[25] James Hefford & Cole Comfort (2023): Coend Optics for Quantum Combs. EPTCS 380, pp. 63–76,
doi:10.4204/EPTCS.380.4.

[26] James Hefford & Aleks Kissinger (2023): On the Pre- and Promonoidal Structure of Spacetime.
EPTCS 380, pp. 284–306, doi:10.4204/EPTCS.380.17.

[27] Bart Jacobs, Chris Heunen & Ichiro Hasuo (2009): Categorical semantics for arrows. Journal of
Functional Programming 19(3-4), p. 403–438, doi:10.1017/S0956796809007308.

[28] G. Janelidze & G.M. Kelly (2001): A Note On Actions of a Monoidal Category. Theory and
Applications of Categories 9(4), p. 61–91.

[29] Alan Jeffrey (1997): Premonoidal categories and flow graphs. In: Second Workshop on Higher-
Order Operational Techniques in Semantics, HOOTS 1997, Stanford, CA, USA, December 8-12,
1997, Electronic Notes in Theoretical Computer Science 10, Elsevier, p. 51, doi:10.1016/S1571-
0661(05)80688-7.

[30] André Joyal & Ross Street (1991): The geometry of tensor calculus, I. Advances in Mathematics
88(1), pp. 55–112, doi:10.1016/0001-8708(91)90003-P.

[31] Gregory Kelly (1982): Basic Concepts of Enriched Category Theory. Cambridge University Press.

[32] Aleks Kissinger & Sander Uijlen (2019): A categorical semantics for causal structure. Logical
Methods in Computer Science, doi:10.23638/LMCS-15(3:15)2019.

[33] Stephen Lack & Michael Shulman (2012): Enhanced 2-categories and limits for lax morphisms.
Advances in Mathematics 229(1), pp. 294–356, doi:10.1016/j.aim.2011.08.014.

[34] Paul Levy (2003): Call-By-Push-Value. Springer Dordrecht, doi:10.1007/978-94-007-0954-6.

[35] Craig Pastro & Ross Street (2008): Doubles for Monoidal Categories. Theory and Applications of
Categories 21(4), pp. 61–75.

[36] John Power (2002): Premonoidal categories as categories with algebraic structure. Theoreti-
cal Computer Science 278(1), pp. 303–321, doi:10.1016/S0304-3975(00)00340-6. Mathematical
Foundations of Programming Semantics 1996.

[37] John Power (2006): Generic models for computational effects. Theoretical Computer Science
364(2), pp. 254–269, doi:10.1016/j.tcs.2006.08.006.

[38] John Power & Edmund Robinson (1997): Premonoidal categories and notions of computation.
Mathematical Structures in Computer Science 7(5), p. 453–468, doi:10.1017/S0960129597002375.

[39] John Power & Hayo Thielecke (2002): Closed Freyd-and κ-categories. In: Automata, Languages
and Programming: 26th International Colloquium, ICALP’99 Prague, Czech Republic, July 11–15,
1999 Proceedings, Springer, pp. 625–634.

https://doi.org/10.1007/s00029-017-0361-3
https://doi.org/10.1016/0022-4049(80)90082-1
https://doi.org/10.1016/j.jpaa.2015.09.003
https://doi.org/10.4204/EPTCS.380.4
https://doi.org/10.4204/EPTCS.380.17
https://doi.org/10.1017/S0956796809007308
https://doi.org/10.1016/S1571-0661(05)80688-7
https://doi.org/10.1016/S1571-0661(05)80688-7
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.23638/LMCS-15(3:15)2019
https://doi.org/10.1016/j.aim.2011.08.014
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1016/S0304-3975(00)00340-6
https://doi.org/10.1016/j.tcs.2006.08.006
https://doi.org/10.1017/S0960129597002375

J. Hefford and M. Román 167

[40] Mitchell Riley (2018): Categories of Optics, doi:10.48550/arXiv.1809.00738. arXiv:1809.00738.

[41] Mario Román (2020): Profunctor optics and traversals, doi:10.48550/arXiv.2001.08045.
arXiv:2001.08045.

[42] Mario Román (2021): Open Diagrams via Coend Calculus. EPTCS 333, pp. 65–78,
doi:10.4204/eptcs.333.5.

[43] Mario Román (2023): Promonads and String Diagrams for Effectful Categories. EPTCS 380, pp.
344–361, doi:10.4204/EPTCS.380.20.

[44] David I. Spivak (2019): Generalized Lens Categories via functors C op → Cat,
doi:10.48550/arXiv.1908.02202. arXiv:1908.02202.

[45] Sam Staton & Paul Blain Levy (2013): Universal Properties of Impure Programming Languages.
SIGPLAN Not. 48(1), p. 179–192, doi:10.1145/2480359.2429091.

[46] Daisuke Tambara (2006): Distributors on a tensor category. Hokkaido Mathematical Journal 35(2),
pp. 379 – 425, doi:10.14492/hokmj/1285766362.

[47] Mark Weber (2013): Free Products of Higher Operad Algebras. Theory and Applications of Cate-
gories 28(2).

[48] Matt Wilson, Giulio Chiribella & Aleks Kissinger (2022): Quantum Supermaps are Characterized
by Locality, doi:10.48550/ARXIV.2205.09844. arXiv:2205.09844.

[49] Harvey Wolff (1974): V-cat and V-graph. Journal of Pure and Applied Algebra 4(2), pp. 123–135,
doi:10.1016/0022-4049(74)90018-8.

A Proofs

A.1 Proof of Theorem 1

Proof sketch. The behaviour of the funny tensor on functors is encapsulated by the following cube.

B0⊗D0 B1⊗D0

A0⊗C0 A1⊗C0

B0⊗D1 B1 �D1

A0⊗C1 A1 � C1

F0⊗G0

F1⊗G0

p
F0⊗G1

F1�G1p

Functoriality of � on 1-cells follows by pasting of cubes and the uniqueness of the arrows induced by
the pushout.

Explicitly, we have (α : F ⇒ F ′) � (β : G⇒ G′) has components (α � β)0
cd = (α0

c ,β
0
d) and (α �

β)1
cd = (α1

c ,β
1
d) = (Jα0

c ,Jβ 0
d). Naturality of this transformation follows from naturality of α and β and

from the centrality of the components.

https://doi.org/10.48550/arXiv.1809.00738
https://arxiv.org/abs/1809.00738
https://doi.org/10.48550/arXiv.2001.08045
https://arxiv.org/abs/2001.08045
https://doi.org/10.4204/eptcs.333.5
https://doi.org/10.4204/EPTCS.380.20
https://doi.org/10.48550/arXiv.1908.02202
https://arxiv.org/abs/1908.02202
https://doi.org/10.1145/2480359.2429091
https://doi.org/10.14492/hokmj/1285766362
https://doi.org/10.48550/ARXIV.2205.09844
https://arxiv.org/abs/2205.09844
https://doi.org/10.1016/0022-4049(74)90018-8

168 Optics for Premonoidal Categories

A.2 Proof of Proposition 3

Proof. Suppose we have a V 2-extranatural family wc : P(c,c) −→ d. Then we have the following com-
mutative diagram:

C1(c,c′)⊗P1(c′,c) P1(c′,c′)

C0(c,c′)⊗P0(c′,c) P0(c′,c′)

P0(c,c) d0

P1(c,c) d1

w1
c′

J⊗ηc′c

w0
c′

ηc′c′

w0
cηcc d

w1
c

In particular, the families w0
c : P0(c,c)−→ d0 and w1

c : P1(c,c)−→ d1 are V -extranatural and thus factorise
via their respective coends giving arrows

∫ c P0(c,c) −→ d0 and
∫ c P1(c,c) −→ d1 making the obvious dia-

grams commute. Now note that the arrows P0(c,c)
ηcc−→ P1(c,c)

coprc−−−→
∫ c P1(c,c) are V -extranatural, this

induces a arrow
∫ c P0(c,c)−→

∫ c P1(c,c).

A.3 Proof of Proposition 4

Proof. To give (2) is to give a pair of functors such that the following square commutes:

Ĉ0⊗ D̂0 C1 �D1

Ĉ0⊗D0 C1 �D1

⊗̂0 ⊗̂1

LanL
Jop
C�D

The tensor ⊗̂0 acts on objects following the formula (F⊗̂G)(c,d) := Fc⊗Gd and on morphisms in the
obvious way. The tensor ⊗̂1 also acts following the same formula, note that a morphism of C1 � D1 is
a free composition of natural transformations α : LanJop

C
F ⇒ LanJop

C
F ′ and β : LanJop

D
G⇒ LanJop

D
G′ with

(1;β)(α;1) 6= (α;1)(1;β) in general. Each such arrow induces a natural transformation LanJop
C�D

(F ⊗
G)⇒ LanJop

C�D
(F ′⊗G′), for instance:

LanJop
C�D

(F⊗G)∼= Laniop
1
(LanJop

C
F⊗G)

Laniop
1
(α⊗1)

=======⇒ Laniop
1
(LanJop

C
F ′⊗G)∼= Laniop

0
(F ′⊗LanJop

D
G)

Laniop
0
(1⊗β)

=======⇒ Laniop
0
(F ′⊗LanJop

D
G′)∼= LanJop

C�D
(F ′⊗G′)

A.4 Proof of Proposition 5

Proof. Fix a pro-effectful category (J,P, I). J is a V 2-category so we have two categories C0 and C1
with the same objects and an identity on objects functor J : C0 −→ C1.

The tight V 2-profunctor P : JC�C −7→ JC consists of a profunctor P0 : C0⊗C0 −7→ C0 and a functor
P1 : C1 � C1 −→ C1. Similarly, the tight V 2-profunctor I : 1−7→ JC consists of presheaves I0 : C op

0 −→ V
and I1 = LanJopI0 : C op

1 −→ V . (P0, I0) induce a promonoidal structure on C0.

J. Hefford and M. Román 169

P1 induces the left and right proactions of C0 on C1. Starting with the left proaction, P1 induces a
functor yR

1 P1i1 =: PL
1 : C0⊗C1 −→ Ĉ1. It follows that:

PL
1 (1⊗ J) = yR

1 P1i1(1⊗ J) = yR
1 P1JC�C = LanJop⊗1⊗1P0

showing that (3) commutes and that the left proaction extends the canonical one on C0. A similar argu-
ment holds for the right proaction.

Suppose now that we start with the data specified in the proposition. The equalities (3) together with
the universal property of the pushout induce a functor P1 : C1 � C1 −→ C1

C0⊗C0 C1⊗C0

C0⊗C1 C1 � C1

C1

J⊗1

1⊗J i0 PR
1

i1

PL
1

P1

and it follows that P1JC�C = LanL
JopP0 making (P0,P1) the components of a tight V 2-profunctor P :

JC�C −7→ JC . The presheaf I0 : C op
0 −→ V together with its Kan extension I1 := LanJopI0 give the com-

ponents of a V 2-profunctor I : 1 −7→ J. Checking all the coherences is a long but ultimately routine
calculation.

A.5 Proof of Theorem 8

Proof. Suppose J : C0 −→ C1 is a pro-effectful category. We will show that LanL
Jop : Ĉ0 −→ C1 is a closed

premonoidal category. Since C0 is promonoidal, Ĉ0 is closed monoidal under Day convolution.
As for the premonoidal structure on C1: on objects it is the same as on Ĉ0. On morphisms, suppose

we are given a η : F ⇒ G in C1. Then we have a η : LanJopF ⇒ LanJopG and we can describe the left
hand part of the premonoidal structure by

LanJop(F ?F ′)(−)∼=
∫ abc

C1(−,Jc)⊗P0(c,a,b)⊗Fa⊗F ′b∼=
∫ ab

PR
1 (−,Ja,b)⊗Fa⊗F ′b

∼=
∫ bc

PR
1 (−,c,b)⊗ (LanJopF)(c)⊗F ′b

∫
η

==⇒
∫ bc

PR
1 (−,c,b)⊗ (LanJopG)(c)⊗F ′b∼= LanJop(G?F ′)(−)

and similarly for the right hand part. It is easily seen that LanL
Jop factorises through the centre of this

premonoidal structure.
The internal-hom of the left-closed premonoidal structure, [G,−] : C1 −→ Ĉ0 is given by

[G,H](a)∼=
∫

cd
V

(
PL

1 (c,a,d),V
(
(LanJopG)(d),(LanJopH)(c)

))
while the right-closed structure is similar, replacing PL

1 with PR
1 . In both cases, checking we have the

required adjunction is a matter of standard coend calculus.

170 Optics for Premonoidal Categories

Suppose now that LanL
Jop is a closed effectful category. Then it follows that Ĉ0 is a closed monoidal

category because:

Ĉ0
(
−, [G,LanL

Jop(=)]
)∼= C1

(
LanL

Jop(−)�G,LanL
Jop(=)

)
= C1

(
LanL

Jop(−⊗G),LanL
Jop(=)

)
∼= Ĉ0

(
−⊗G,Jop∗(LanL

Jop(=))
)∼= Ĉ0 (−⊗G,=)

where Jop∗ is the right adjoint to LanL
Jop , both of which are ioo. Therefore C0 is a promonoidal category.

The left C0-proaction on C1 is given by PL
1 (−,a,b) := yL

0(a)� yL
1(b) = �i1(yL

0(a),y
L
1(b)) and simi-

larly for the right. These extend the canonical proaction because:

PL
1 (−,a,Jb) =�i1(yL

0(a),y
L
1(Jb)) =�i1(yL

0(a),LanL
JopyL

0(b)) =�i1(1⊗V LanL
Jop)(yL

0(a),y
L
0(b))

= LanL
Jop⊗(yL

0(a),y
L
0(b)) = LanL

JopP0(−,a,b)

where we have written the monoidal operation ⊗ on Ĉ0 and the premonoidal operation � on C1 with
prefix notation.

A.6 Proof of Theorem 9

Proof. J has commutative left and right actions by the monoidal V 2-category 1ZC : ZC −→ ZC . Consider
the V 2-category Tamb(J) of Tambara modules on J [35, 14], whose objects are the V 2-endoprofunctors
P : J −7→ J equipped with left and right strengths over the action by 1ZC . The morphisms are the bistrong
V 2-natural transformations. We can use Proposition 2 to unpack Tamb(J) into two V -categories and
an identity on objects functor, Tamb(J)0 −→ Tamb(J)1. The objects of Tamb(J)0 and Tamb(J)1 are the
bistrong endoprofunctors P : J −7→ J which are equivalently triples (P0 : ZC −7→ ZC ,P1 : C −7→ C ,η :
P0⇒ P1(Jop⊗ J)). Tamb(J)0 has arrows φ : P⇒ Q given by pairs (φ0 : P0⇒ Q0,φ1 : P1⇒ Q1) while
Tamb(J)1 has only the φ1 as arrows.

It is known that the category of Tambara modules is equivalent to the presheaf category of the cat-
egory of optics [35, 14], which in this particular case implies [Optic(J)op,V 2] ∼= Tamb(J). The V 2-
category Optic(J) has objects given by pairs a = (a,a′) of Optic(J) and homs given by

Optic(J)(a,b) =
∫ xy∈1ZC

J(a,x⊗b⊗ y)⊗ J(x⊗b′⊗ y,a′)

where J(−,−) := ZC (−,−)−→ C (−,−) is the hom of J as a V 2-category and the coend is taken in this
fully enriched setting. By Proposition 3 this coend is given by the following arrow.∫ xy

ZC (a,x⊗b⊗ y)⊗ZC (x⊗b′⊗ y,a′)−→
∫ xy∈ZC

C (a,x⊗b⊗ y)⊗C (x⊗b′⊗ y,a′)

As a result, the identity on objects functor equivalent to Optic(J) is given by Optic(ZC)−→OpticZC (C)
as expected.

Now, since Tamb(J) has a closed monoidal structure given by composition of the profunctors, there
is an induced promonoidal structure on Optic(J). To arrive at the explicit expressions claimed in the
Theorem, take objects a and b of Optic(J) and consider the tensor (i.e. composition as profunctors) of
the associated representable presheaves.

(ya⊗ yb)(−)∼=
∫ wxyz∈1ZC

J(−,w⊗a⊗ x)⊗ J(w⊗a′⊗ x,y⊗b⊗ z)⊗ J(y⊗b′⊗ z,−)

This can be unpacked by Proposition 3 to give the result.
Finally note that the unit of the monoidal structure on Tamb(J) is 1J : J −7→ J, which is (1ZC ,1C ,η :

1ZC ⇒ yJyJ).

J. Hefford and M. Román 171

A.7 Proof of Theorem 10

Proof. The free tight cocompletion of Optic(J) is given by [Optic(ZC)op,V] −→ OpticZC (C). We will
show that this is a closed effectful category and then by Theorem 8 we will be done.

Start by considering the effectful category Jop⊗ J : ZC op⊗ZC −→ C op⊗C . The free tight cocom-
pletion of this category is LanL

Jop⊗J : Prof(ZC)−→ Prof(C) which is closed effectful. The domain is the
duoidal category Prof(ZC) of endoprofunctors on ZC and it has a closed monoidal structure given by
Day convolution over the monoidal structure of ZC :

P∗Q :=
∫ aa′bb′

ZC (−,a⊗a′)⊗P(a,b)⊗Q(a′,b′)⊗ZC (b⊗b′,−) (5)

The premonoidal structure on Prof(C) is given on objects by (5), and on homs, given a η : P⇒ P′ in
Prof(C) (that is, a η : LanJop⊗JP⇒ LanJop⊗JP′) the left side of the premonoidal structure is given by:

LanJop⊗J(P∗Q)∼=
∫ aa′bb′

C (−,J(a⊗a′))⊗P(a,b)⊗Q(a′,b′)⊗C (J(b⊗b′),−)

∼=
∫ a′b′∈ZC ,cd∈C

C (−,coa′))⊗ (LanJop⊗JP)(c,d)⊗Q(a′,b′)⊗C (d ob′,−)
∫

η
==⇒

∫ a′b′∈ZC ,cd∈C
C (−,coa′))⊗ (LanJop⊗JP′)(c,d)⊗Q(a′,b′)⊗C (d ob′,−)

∼= LanJop⊗J(P′ ∗Q)

Since LanL
Jop⊗J is a left adjoint, it follows that it is a closed effectful category.

There is a V 2-category Tamb(ZC)−→Tamb(C) with objects given by the Tambara modules on ZC .
The homs of Tamb(ZC) are the bistrong natural transformations while the homs of Tamb(C) are the
bistrong natural transformations between the left Kan extensions along Jop⊗ J of the Tambara modules.
This V 2-category inherits a closed effectful structure from LanL

Jop⊗J given by a certain quotient of (5)
which acts to normalise the duoidal structure on Prof(ZC) [24, 21].

Finally note that the presheaf category of optics is equivalent to the category of Tambara modules,
̂Optic(ZC)op ∼= Tamb(ZC) [14], and we can finally check that we also have OpticZC (C) ∼= Tamb(C).

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 172–189, doi:10.4204/EPTCS.397.11

© B. Jacobs & D. Stein
This work is licensed under the
Creative Commons Attribution License.

Overdrawing Urns using Categories of Signed Probabilities

Bart Jacobs and Dario Stein
iHub, Radboud University Nijmegen

December 14, 2023

bart.jacobs@ru.nl dario.stein@ru.nl

A basic experiment in probability theory is drawing without replacement from an urn filled with
multiple balls of different colours. Clearly, it is physically impossible to overdraw, that is, to draw
more balls from the urn than it contains. This paper demonstrates that overdrawing does make sense
mathematically, once we allow signed distributions with negative probabilities. A new (conservative)
extension of the familiar hypergeometric (‘draw-and-delete’) distribution is introduced that allows
draws of arbitrary sizes, including overdraws. The underlying theory makes use of the dual basis
functions of the Bernstein polynomials, which play a prominent role in computer graphics. Negative
probabilities are treated systematically in the framework of categorical probability and the central
role of datastructures such as multisets and monads is emphasised.

1 Introduction

For drawing (multiple) coloured balls from a statistical urn, we distinguish three well-known modes:

1. hypergeometric or draw-and-delete, which is drawing a ball from the urn without replacement, so
that the urn shrinks;

2. multinomial or draw-and-replace: drawing with replacement, so that the urn remains the same;

3. Pólya or draw-and-duplicate, which is drawing a ball from the urn and replacing it together with
an additional ball of the same colour, so that the urn grows.

Multinomial and Pólya draws may be of arbitrary size, but hypergeometric draws are limited in size by
the number of balls in the urn. In this paper we lift this limitation and allow hypergeometric draws of
arbitrary size, including ‘overdraws’, containing more balls than in the urn. Physically this is strange,
but, as will show, mathematically it makes sense once we allow negative probabilities.

Negative probabilities have emerged in quantum physics (e.g. in double slit experiments) and have
been discussed in the work of famous physicists like Wigner, Dirac, and Feynman (see e.g. [7] and the
references mentioned there). There are also ‘classical’ (non-quantum) examples, such as the one of
Piponi (discussed in [1]) or of Székely [22] with two half coins, involving infinitely many both positive
and negative probabilities, whose (convolution) sum is an ordinary (fair) coin. Also, negative probabil-
ities have come up in finance, see e.g. [20]. Despite the lack of the clear operational meaning that their
nonnegative counterparts have, negative probabilities appear as convenient tools in a variety of contexts
in mathematics and physics, see [2, 23, 1, 7].

We briefly explain the nature of our extension, already using some notation that will be explained
below. The Pólya distribution can be expressed as a mixture of multinomial draws; that is, we can break
up such a draw into two stages: first sample a random distribution ω from the Dirichlet distribution,
and then make independent (multinomial) draws from ω . The self-reinforcing behaviour of Pólya’s
urn is entirely captured by the latent Dirichlet distribution. In the Kleisli category of the Giry-monad,

http://dx.doi.org/10.4204/EPTCS.397.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

B. Jacobs & D. Stein 173

with (Kleisli) morphisms called channels, this corresponds to a factorisation of the Pólya channel pol [K]
through the multinomial channel mn[K], with draws of size K.

pol [K] = M [N](X) D(X) M [K](X)Dir mn[K]
(1)

We write M [N](X) for the space of multisets (urns) on a set X of size N, and D(X) is the set of finite
distributions. Since such factorisations arise from De Finetti’s famous theorem, we call (1) a De Finetti
factorisation for the Pólya’s distribution (e.g. [15]).

The hypergeometric distribution does not admit such a De Finetti factorisation since an urn contain-
ing N balls is exhausted after N draws. However, there is a way out, if we extend our notion of probability
to allow negative (signed) probabilities. Such models satisfy the usual axioms of categorical probability,
and we can find a De Finetti factorization of the hypergeometric channel hg[K], for draws of size K, of
the form:

hg[K] = M [N](X) D(X) M [K](X)DDir mn[K]
(2)

It uses a signed ‘Dual Dirichlet’ distribution DDir which we develop in analogy to the Dirichlet distribu-
tion occurring in Pólya’s urn. Existence of the factorisation can be deduced from earlier work [16, 5, 18]
connecting finite versions of De Finetti’s theorem to signed probability. In this case, the factorisation (2)
is not unique. We claim that a canonical choice is given by the Dual Bernstein polynomials, which have
been studied widely in computer graphics [19, 6, 24, 17], but their appearance in a probabilistic context is
novel. Evaluating (2) for overdraws K ≥N defines a signed extension of the hypergeometric distributions
which includes overdraws, while agreeing with the usual distribution for ordinary draws K ≤ N.

Our contributions are:

1. a principled approach to signed probability (discrete and continuous) using multisets and monads;

2. conceptualizing dual Bernstein polynomials as signed probability densities;

3. defining signed hypergeometric distributions that conservatively extend hypergeometric draws
while preserving good properties;

4. explicating the dual Dirichlet distribution and its conjugate prior relationships via string diagrams.

2 Multisets

A multiset, also known as bag, is like a subset except that elements may occur multiple times. We shall
use ket notation n1|x1 〉+ · · ·+nk|xk 〉 to describe a multiset with k elements, where element xi, say from a
set X , occurs ni ∈N many times. Equivalently, such a multiset may be described as a function ϕ : X→N
with finite support supp(ϕ) := {x ∈ X | ϕ(x) 6= 0}. The number ϕ(x) ∈ N is the multiplicity of x ∈ X ; it
says how many times x occurs in the multiset ϕ .

We shall write M (X) for the set of multisets with elements from a set X , and Mfs(X)⊆M (X) for
the subset of multisets ϕ with full support, that is, with supp(ϕ) = X . The latter only makes sense when
X is a finite set. As canonical finite sets we write nnn := {0,1, . . . ,n−1}, for n ∈ N.

The size ‖ϕ‖ of a multiset ϕ is the total number of elements, including multiplicities. Thus, ‖ϕ‖ :=
∑x ϕ(x), or, in ket notation, ‖∑i ni|xi 〉‖= ∑i ni. We write M [K](X) :=

{
ϕ ∈M (X)

∣∣ ‖ϕ‖= K
}

for the
set of multisets of size K ∈ N. When the set X has n ≥ 1 elements, the number of multisets of size K
in M [K](X) is

((n
K

))
=
(n+K−1

K

)
= (n+K−1)!

K!·(n−1)! . For instance, for a set X = {a,b,c} with three elements

there are
((3

3

))
= 5!

3!·2! = 10 multisets of size K = 3, namely: 3|a〉, 3|b〉, 3|c〉, 2|a〉+1|b〉, 2|a〉+1|c〉,

174 Overdrawing Urns with Signed Probabilities

1|a〉+ 2|b〉, 2|b〉+ 1|c〉, 1|a〉+ 2|c〉, 1|b〉+ 2|c〉, 1|a〉+ 1|b〉+ 1|c〉. Only the last one has full
support. The factorial n! and binomial coefficients

(n
m

)
and

((n
m

))
are extended from numbers to multisets

(as in [13]).

Definition 1 Let ϕ,ψ ∈M (X) be two multisets. We define
1. ϕ := ∏x ϕ(x)!;

2. (ϕ) := ‖ϕ‖!
ϕ

;

3. ϕ ≤ ψ iff ϕ(x)≤ ψ(x) for each x ∈ X, and ϕ ≤K ψ iff ϕ ≤ ψ and ‖ϕ‖= K;

4. (ψ−ϕ)(x) = ψ(x)−ϕ(x), when ϕ ≤ ψ;

5.
(

ψ

ϕ

)
:= ψ

ϕ ·(ψ−ϕ)
= ∏x

(
ψ(x)
ϕ(x)

)
, when ϕ ≤ ψ;

6.
((

ψ

ϕ

))
:= (ψ+ϕ−1

ϕ ·(ψ−1)
= ∏x

((
ψ(x)
ϕ(x)

))
when ψ has full support, where 1 = ∑x 1|x〉 is the multiset of

singletons.

3 Discrete distributions

A discrete probability distribution ∑i ri|xi 〉 looks like a multiset, except that the multiplicities ri are
now in the unit interval [0,1] ⊆ R and add up to one: ∑i ri = 1. We write D(X) for the set of such
distributions with xi ∈ X . Alternatively, like for multisets, elements ω ∈ D(X) may be described as
functions ω : X → [0,1] with finite support and with ∑x ω(x) = 1. When the set X is finite, we write
Dfs(X)⊆D(X) for the discrete distributions with full support: supp(ω) = X . An example is the uniform
distribution ∑x∈X

1
n |x〉, where n ≥ 1 is the number of elements of a non-empty set X . Concretely, a fair

coin is described by the distribution 1
2 |H 〉+

1
2 |T 〉 for X = {H,T}.

Each non-empty multiset ϕ ∈M (X) can be turned into a distribution via normalisation. We call this
frequentist learning, since it involves learning a distribution by counting, and write it as:

flrn(ϕ) :=
ϕ

‖ϕ‖
= ∑

x∈X

ϕ(x)
‖ϕ‖

∣∣x〉 ∈ D(X). (3)

This frequentist learning is natural in X , but it is not a map of monads, from (non-empty) multisets to
distributions.

The set D(nnn) of distributions on nnn = {0, . . . ,n− 1} can be identified with the simplex ∆n ⊆ Rn,
where:

∆n :=
{
(r0, . . . ,rn−1) ∈ R≥0

∣∣ ∑i ri = 1
}
. (4)

This is commonly called the n−1 simplex.
There are three famous ‘draw’ distributions, called multinomial, hypergeometric and Pólya. We

briefly describe them in the style of [14] and refer there for more information. These distributions are all
parameterised by a draw size K and form distributions on the set M [K](X) of multisets (as draws). One
may think of X as a set of colors.

Definition 2 We fix a set X and a number K ∈ N.
1. For a distribution ω ∈ D(X), used as abstract urn, the multinomial distribution mn[K](ω) ∈

D
(
M [K](X)

)
is defined as:

mn[K](ω) := ∑
ϕ∈M [K](X)

(ϕ) ·∏
x∈X

ω(x)ϕ(x)
∣∣ϕ 〉.

B. Jacobs & D. Stein 175

2. For an ‘urn’ multiset υ ∈M (X), with size L := ‖υ‖ ≥ K there is a hypergeometric distribution
hg[K](υ) ∈D

(
M [K](X)

)
with:

hg[K](υ) := ∑
ϕ≤Kυ

(
υ

ϕ

)(L
K

) ∣∣ϕ 〉.
The size restriction K ≤ L excludes overdraws.

3. Similarly, for a multiset υ ∈M [L](X) with full support, there is the Pólya distribution pol [K](υ)∈
D
(
M [K](X)

)
with:

pol [K](υ) := ∑
ϕ∈M [K](X)

((
υ

ϕ

))((L
K

)) ∣∣ϕ 〉.
Intuitively, in the multinomial case drawn balls are returned to the urn, so that the urn does not

change and can be described abstractly as a discrete distribution. In the hypergeometric case a drawn
ball is removed from the urn, and in the Pólya case the drawn ball is returned together with a new ball
of the same colour. Thus in the hypergeometric case the urns shrinks, whereas in the Pólya case the urn
grows.

Given two distributions ω ∈ D(X) and ρ ∈ D(Y) we can form a parallel (tensor) product ω ⊗ρ ∈
D(X×Y), via (ω⊗ρ)(x,y) = ω(x) ·ρ(y).

The mapping X 7→D(X) is a monad on the category of sets. We will not spell out what this means,
but we will use the resulting Kleisli category K `(D), whose maps c : X→D(Y) will be called channels
and written as c : X → Y . For instance, the distributions from Definition 2 can be described as channels
mn[K] : D(X)→M [K](X), hg[K] : M [L](X)→M [K](X) and pol [K] : Mfs(X)→M [K](X).

For a channel c : X → Y and a distribution ω ∈ D(X) on the domain X we can form a distribution
c =�ω on the codomain Y via pushforward (also called state transformation):(

c =�ω
)
(y) := ∑

x∈X
ω(x) · c(x)(y).

Given another channel d : Y → Z one can form a composite channel d ◦· c : X → Z via (d ◦· c)(x) := d =�
c(x). Notice that we use a special circle ◦· , with a dot, for composition of channels.

A basic channel is DD : M [K+1](X)→M [K](X), where DD stands for draw-delete. It probabilis-
tically draws and removes one ball from an urn υ ∈M [K+1](X) with K+1 balls, via:

DD(υ) := ∑
x∈supp(υ)

υ(x)
‖υ‖

∣∣υ−1|x〉
〉
. (5)

We recall, without proof, the following basic properties of draw distributions, mostly from [13],
expressed in terms of channels.

Proposition 3 1. flrn ◦· hg[K] = flrn;

2. flrn ◦· mn[K] = sam , where sam : D(X)→ X is the identity map, considered as channel;

3. hg[K]◦· mn[K+L] = mn[K];

4. hg[K]◦· hg[K+L] = hg[K];

5. hg[K]◦· DD = hg[K];

176 Overdrawing Urns with Signed Probabilities

6. DD ◦· hg[K+1] = hg[K];

7. DD ◦· mn[K+1] = mn[K];

8. DD ◦· pol [K+1] = pol [K]. J

The last two items express that multinomial and Pólya form cones for the infinite chain of draw-
delete channels that appears in a categorical perspective on De Finetti’s theorem, see [15] and [16]. This
fails in the hypergeometric case since the draw size K must remain smaller than the size of the urn.

4 Continuous distributions

In the previous section, we have seen finite discrete probability distributions over an arbitrary set. There
are also continuous distributions, defined on measurable spaces. Here we need such distributions only on
one particular kind of spaces, namely on simplices ∆n, see (4). The only distributions that we need are
given by (polynomial) functions f : ∆n→ R with

∫
∆n f = 1. Such an f is called a (probability) density

function. It gives rise to probability measure Φ that sends a measurable subset M ⊆ ∆n to the probability∫
M f ∈ [0,1]. Such measures are elements of the set G

(
∆n
)
, where G is the Giry monad, see e.g. [21, 11]

for further information. At first we require that such density functions are nonnegative, so f ≥ 0, but
later we drop this requirement, for so-called signed distributions (see the next section).

Definition 4 Let υ ∈Mfs(nnn) be an urn with full support (for n≥ 1).

1. It gives rise to the Dirichlet density dir(υ) : ∆n→ R≥0 given on rrr ∈ ∆n by:

dir(υ)(rrr) :=
(‖υ‖−1)!
(υ−1n)

·∏
i∈nnn

rυ(i)−1
i where 1n := ∑

0≤i<n
1| i〉 ∈ Mfs(nnn).

We shall drop the index n from 1n when it is clear from the context.

2. The associated probability measure Dir(υ) is defined on measurable subsets M ⊆ ∆n as:

Dir(υ)(M) :=
∫

rrr∈M
dir(υ)(rrr) drrr.

The function dir(υ) in (1) is a proper probability density because of the following standard equation
that explains the form of the Dirichlet normalisation constant, for υ ∈Mfs(nnn).∫

rrr∈∆n
∏
i∈nnn

rυ(i)−1
i drrr =

(υ−1)
(‖υ‖−1)!

. (6)

We use Dirichlet for urns υ with positive natural numbers as multiplicities. This can be generalised to
urns with positive real numbers as multiplicities — using the Gamma function instead of factorials —
but that is not needed in the current setting.

In the sequel we shall use the bind notation c =�Φ also for continuous measures, but in a very
restricted form, namely for measures Φ on ∆n given by a probability density function f and for channels
c : D(nnn)→M [K](nnn). Categorically, this bind is the Kleisli extension for the Giry monad G , see e.g. [21,
8] for details. We will not elaborate this background and will simply use the relevant equation, which is
of the following form, for ϕ ∈M [K](nnn),

c =�Φ := ∑
ϕ∈M [K](nnn)

(∫
rrr∈∆n

c(rrr)(ϕ) · f (rrr) drrr
)∣∣ϕ 〉, where we identify D(nnn) and ∆n. (7)

B. Jacobs & D. Stein 177

=

pol [K]Dir

mn[K]

Dir

+
=

ufD(nnn)

mn[K]

1
1

=

pol [K]

Dir

+

11

=

Dir

+

ufM [K](nnn)

1

=

pol [K]Dir

mn[K]

Dir

+

Figure 1: On the left the equation expressing that multinomial is a sufficient statistic for Dirichlet; on
the right the string diagrammatic proof that the dagger of Dirichlet is multinomial, with the uniform
distribution as prior, see Theorem 5 for details. The boxed 1 is the point/singleton distribution 1|1〉.
Such point distributions commute with copiers.

The next result summarises the close relationship between multinomial, Pólya, and Dirichlet distri-
butions. The first two points are well-known, but the third one probably a bit less — although it follows
easily from the conjugate prior situation (see also [12]). We use string diagrammatic notation, with flows
from bottom to top, since it best displays what is going on, see [8] for details. Proofs are in Appendix B.

Theorem 5 Let υ ∈Mfs(nnn) be a multiset / urn with full support, of size L := ‖υ‖, where n≥ 1, and let
K be an arbitrary number.

1. Multinomial over Dirichlet is Pólya: mn[K] =�Dir(υ) = pol [K](υ).

2. Multinomial is conjugate prior of Dirichlet: updating Dir(υ) with the predicate / likelihood
mn[K](−)(ϕ) is Dir

(
υ +ϕ

)
. This is expressed diagrammatically on the left in Figure 1.

3. Multinomial is the dagger of Dirichlet w.r.t. the uniform distribution ufD(nnn) on D(nnn). In the lan-

guage / notation of [4, 3] this is expressed as: mn[K] = Dir
(
1+−

)†
ufD(nnn)

.

4. When we slightly massage the sample channel from Proposition 3 (2) to sam : ∆n → nnn given by
sam(rrr) = ∑i∈nnn ri| i〉, then: sam =�Dir(υ) = flrn(υ). J

The first item of Theorem 5 tells that Pólya is multinomial over Dirichlet. This is an important
starting point for this paper, since we asked ourselves the question whether there is also a distribution, like
Dirichlet, such that multinomial over it is hypergeometric. We shall see below that the so-called ‘signed’
Dirichlet distributions achieve this. But first we need to set the scene for these signed distributions.

5 Signed distributions

We now introduce signed distribution, both in the discrete case and in the continuous case. As before,
we only need continuous distributions on simplices.

Definition 6 1. A signed discrete probability distribution on a set X is a function σ : X → R with
finite support supp(σ) := {x ∈ X | σ(x) 6= 0} and with ∑x∈X σ(x) = 1. We may equivalently write
such a signed discrete distribution in ket notation as a finite formal sum ∑i ri|xi 〉 where ri ∈ R
satisfy ∑i ri = 1. We shall write S (X) for the set of signed discrete probability distributions on X.

2. A signed continuous probability distribution, on a simplex ∆n, is given by a signed density function
f : ∆n→ R with

∫
rrr∈∆n f (rrr) drrr = 1.

178 Overdrawing Urns with Signed Probabilities

An example of a signed discrete distribution is 1
2 |a〉−

1
4 |b〉+

3
4 |c〉. We do not offer an operational

explanation for what such negative probabilities mean but treat signed distributions as mathematical
objects of their own. It is not hard to see that signed discrete distributions S form a monad on the
category of sets and functions. It is affine, in the sense that S (111)∼= 111, but it differs from D for instance
because it is not strongly affine, as defined in [10].

6 Dual bases

The probability mass function of the multinomial distribution is of a particularly tractable form, namely
a polynomial function ∆n→ R, on the simplex ∆n.

Definition 7 For ϕ ∈M [K](nnn), we define the multinomial mϕ as

mϕ(xxx) := (ϕ) · xxxϕ = (ϕ) ·∏
i∈nnn

xϕ(i)
i with ‘monomial’ xxxϕ := ∏

i∈nnn
xϕ(i)

i .

For every probability vector rrr ∈ ∆n, one has mϕ(rrr) = mn[K](rrr)(ϕ), via the identification ∆n ∼=D(nnn).

Definition 8 For numbers n,K we write PK(∆
n) for the real vector space of polynomial functions ∆n→R

of degree K. The multinomials mϕ for ϕ ∈M [K](nnn) form a basis of this space, and so we have as
dimension dim

(
PK(∆

n)
)
=
((n

K

))
. This vector space PK(∆

n) is a Hilbert space via an inner product
defined on f ,g : ∆n→ R as:

〈 f ,g〉 :=
∫

rrr∈∆n
f (rrr) ·g(rrr) drrr. (8)

The dual of a basis (bi) of a space V is generally understood as a basis of the dual space V ∗. In
a Hilbert space such a dual basis can be described as the elements (di) of the space itself which are
uniquely determined by the relationship 〈bi,d j 〉= δi j, so that 〈bi,di 〉= 1 and 〈bi,d j 〉= 0 for i 6= j.

Definition 9 The dual multinomials (dϕ) are defined as the dual basis of PK(∆
n) to the multinomials

(mϕ), and are as such uniquely characterised by the property ϕ,ψ ∈M [K](nnn),

〈mϕ ,dψ 〉 = δϕ,ψ =

{
1 if ϕ = ψ

0 if ϕ 6= ψ,
(9)

What do we know about this dual basis? Of course we can express the dual basis vectors dψ in terms
of the original basis, say via scalars cχ,ψ satisfying, for each ψ ∈M [K](nnn),

dψ = ∑
χ∈M [K](nnn)

cχ,ψ · xxxχ = ∑
χ∈M [K](nnn)

cχ,ψ

(χ)
·mχ . (10)

By exploiting the equations (9) and using the linearity of the inner product in each of its arguments
(i.e. bilinearity), we obtain the equation

δϕ,ψ = 〈mϕ ,dψ 〉 = ∑
χ∈M [K](nnn)

cχ,ψ ·
〈mϕ ,mχ 〉

(χ)
. (11)

We note that:

〈mϕ ,mχ 〉
(8)
= (ϕ) · (χ) ·

∫
rrr∈∆n

(
∏
i∈nnn

rϕ(i)
i

)
·

(
∏
i∈nnn

rχ(i)
i

)
drrr = (ϕ) · (χ) ·

∫
rrr∈∆n

∏
i∈nnn

r(ϕ+χ)(i)
i drrr

(6)
= (ϕ) · (χ) · (ϕ +χ)

(2K+n−1)!

B. Jacobs & D. Stein 179

There are three square matrices at hand, of size
((n

K

))
×
((n

K

))
, with multisets as indices, namely:

C =
(

cϕ,ψ

)
ϕ,ψ∈M [K](nnn)

FS =
(
(ϕ +ψ)

)
ϕ,ψ∈M [K](nnn)

D =
(
(ϕ) ·δϕ,ψ

)
ϕ,ψ∈M [K](nnn)

.

This C is the matrix of scalars that we are looking for, FS contains the factorials-of-sums of multisets,
and D is a diagonal matrix with multiset coefficients. Equation (11) can now be written as:

(2K+n−1)! ·δϕ,ψ = ∑
χ∈M [K](nnn)

(ϕ) ·FS ϕ,χ ·Cχ,ψ =
(

D ·FS ·C
)

ϕ,ψ
.

We then get (2K +n−1)! ·FS−1 ·D−1 =C, so that the coefficients that we seek are obtained as:

cϕ,ψ =
(2K+n−1)!

(ψ)
·
(

FS−1
)

ϕ,ψ
. (12)

These matrix inverses FS−1 exist since FS is a symmetric positive definite matrix. We give an extended
example calculation in the appendix (Example 19).

The following is a crucial property of dual bases, as introduced in Definition 9.

Proposition 10 Each dual basis function dψ ∈ PK(∆
n), associated with a multiset ψ ∈M [K](nnn), is a

continuous signed probability density on ∆n, that is:∫
rrr∈∆n

dψ(rrr) drrr = 1.

Proof We use that multinomial distributions mn[K] form a probability distribution; this means that the
multinomials mϕ form a partition of unity, i.e. for all rrr ∈ ∆n:

∑
ϕ∈M [K](nnn)

mϕ(rrr) = 1.

Hence we obtain∫
rrr∈∆n

dψ(rrr) drrr =
∫

rrr∈∆n
1 ·dψ(rrr) drrr =

∫
rrr∈∆n

(
∑

ϕ∈M [K](nnn)
mϕ(rrr)

)
·dψ(rrr) drrr

= ∑
ϕ∈M [K](nnn)

∫
rrr∈∆n

mϕ(rrr) ·dψ(rrr) drrr

(8)
= ∑

ϕ∈M [K](nnn)
〈mϕ ,dψ 〉

(9)
= ∑

ϕ∈M [K](nnn)
δϕ,ψ = 1. J

In the beginning of this proof, we use that the pointwise sum of the multinomial basis functions mϕ ,
for ϕ ∈M [K](nnn), is equal to the constant-one function 1 : ∆n→ R. The sum of the dual basis functions
dϕ is also constant.

Proposition 11 Fix numbers n,K and consider the dual basis function dϕ ∈ PK(∆
n), for ϕ ∈M [K](nnn).

Then their pointwise sum is a constant function:

∑
ϕ∈M [K](nnn)

dϕ =
(K +n−1)!

K!
.

180 Overdrawing Urns with Signed Probabilities

Proof Since the vectors dϕ form a basis we can express the constant-one function 1 : ∆n → R with
respect to this basis, say as: 1 = ∑ϕ∈M [K](nnn) aϕ · dϕ , for certain coefficients aϕ . For a fixed multiset
ψ ∈M [K](nnn) we compute the constant aψ as follows.

aψ = ∑
ϕ∈M [K](nnn)

aϕ ·δψ,ϕ = ∑
ϕ∈M [K](nnn)

aϕ · 〈mψ ,dϕ 〉 = 〈mψ , ∑
ϕ∈M [K](nnn)

aϕ ·dϕ 〉

= 〈mψ ,1〉 =
∫

rrr∈∆n
mψ(rrr) drrr = (ψ) ·

∫
rrr∈∆n

rrrψ(rrr) drrr
(6)
=

K!
ψ
· ψ

(K+n−1)!
=

K!
(K+n−1)!

.

Thus, all these constants aψ are the same. As a result:

1 = ∑
ϕ∈M [K](nnn)

K!
(K+n−1)!

·dϕ =
K!

(K+n−1)!
· ∑

ϕ∈M [K](nnn)
dϕ .

By moving the fraction to the other side we are done. J

7 Dual Dirichlet and signed hypergeometric

In the previous section we have introduced the dual basis vectors dϕ as duals to the multinomial vectors
mϕ and have seen that each of these dϕ forms a signed probability density. We can now start harvesting
results, first by defining the associated continuous probability measure.

Definition 12 Let υ ∈M (nnn) be an multiset (thought of as an urn).

1. We write DDir(υ) for the signed probability measure on ∆n given by the density dυ . We call it the
dual Dirichlet distribution.

2. For each number K we define the signed hypergeometric channel as the composite with multino-
mial draws

shg[K] := mn[K]◦· DDir : M (nnn)→S
(
M [K](nnn)

)
.

This means:

shg[K](υ) = mn[K] =�DDir(υ) = ∑
ϕ∈M [K](nnn)

(∫
rrr∈∆n

mϕ(rrr) ·dυ(rrr) drrr
) ∣∣ϕ 〉.

In Example 20 in Appendix A a signed hypergeometric distribution is computed concretely. In the
multivariate case we do not have an explicit formula, as exists in the bivariate case, see Equation (13) in
Appendix C for details.

The next result shows that when there is no overdrawing, there is no difference between signed and
ordinary hypergeometric probabilities. This means that the dual Dirichlet distribution confirms the ques-
tion that we originally set ourselves: there is a distribution over which multinomials yield hypergeometric
distributions, in analogy with Theorem 5 (1).

Theorem 13 Let urn υ ∈M (nnn) have size L = ‖υ‖. Then shg[K](υ) = hg[K](υ), for each K ≤ L.

This says that when the size of the draw is at most the size of the urn — so when there are no
overdraws — signed hypergeometric coincides with ordinary hypergeometric. In particular, in this case
no negative probabilities appear in the signed hypergeometric.

B. Jacobs & D. Stein 181

Proof We first note that:

1
(9)
= 〈mυ ,dυ 〉 =

∫
rrr∈∆n

mυ(rrr) ·dυ(rrr) drrr
(7)
=
(

mn[L] =�DDir(υ)
)
(υ).

As a result: mn[L] =�DDir(υ) = 1|υ 〉. By combining this fact with Proposition 3 (3) we are done:

hg[K](υ) = hg[K] =�1|υ 〉 = hg[K] =�
(

mn[L] =�DDir(υ)
)

=
(

hg[K]◦· mn[L]
)

=�DDir(υ) = mn[K] =�DDir(υ). J

Corollary 14 Let υ ∈M [L](nnn) be a multiset/urn of size L≥ 1.

1. For each multiset ϕ ≤K υ , that is, for each ϕ ∈M [K](nnn) with ϕ ≤ υ , and thus K ≤ L,∫
rrr∈∆n

rrrϕ ·dυ(rrr) drrr =
υ · (L−K)!
(υ−ϕ) ·L!

.

2. In particular, for each i ∈ supp(υ)⊆ nnn.∫
rrr∈∆n

ri ·dυ(rrr) drrr = flrn(υ)(i).

Proof 1. Since:∫
rrr∈∆n

rrrϕ ·dυ(rrr) drrr =
1

(ϕ)
·
∫

rrr∈∆n
mϕ(rrr) ·dυ(rrr) drrr =

1
(ϕ)
·
(

mn[K] =�DDir(υ)
)
(ϕ)

=
1

(ϕ)
·hg[K](υ)(ϕ) =

ϕ

K!
·

(
υ

ϕ

)(L
K

) =
υ · (L−K)!
(υ−ϕ) ·L!

.

2. We apply the previous point with ϕ = 1| i〉 of size 1. Then:∫
rrr∈∆n

ri ·dυ(rrr) drrr =
∫

rrr∈∆n
rrr1| i 〉 ·dυ(rrr) drrr =

υ · (L−1)!
(υ−1| i〉) ·L!

=
υ(i)

L
=

υ(i)
‖υ‖

= flrn(υ)(i). J

Proposition 15 1. We write 0 for the empty multiset and 1 for the multiset of singletons, say on
nnn = {0, . . . ,n−1}. Then DDir(0) = Dir(1) is the uniform measure on ∆n.

2. The sample channel sam : ∆n→D(nnn) from Theorem 5 (4) gives, like for ordinary Dirichlet,

sam =�DDir(υ) = flrn(υ).

Proof 1. For K = 0 the set M [K](nnn) of multisets of size 0 contains the empty multiset 0 as sole
element. The associated factor sum matrix FS from (12) is thus the singleton matrix (1), with (1)
as inverse. Hence the only coefficient c0,0 of the polynomial d0 in (12) is (n−1)!. This makes d0
the constant function rrr 7→ (n−1)!, which is the density of the uniform measure Dir(1) on ∆n.

2. Using Corollary 14 (2), the reasoning is precisely as in the proof of Theorem 5 (4). J

Theorem 13 says that the signed hypergeometric distribution is a ‘conservative’ extension of the
ordinary hypergeometric distribution in the sense that these distributions coincide for draws of size below
the size of the urn. We now illustrate draws of arbitrary size, also bigger than the size of the urn. The
physical interpretation of such overdraws is unclear. But mathematically all works well.

We continue with some basic properties of signed hypergeometric distributions, as analogues of
(some of the items of) Proposition 3.

182 Overdrawing Urns with Signed Probabilities

Proposition 16 1. shg[K](0) is the uniform distribution on M [K](nnn);

2. flrn ◦· shg[K] = flrn;

3. shg[K]◦· mn[L+K] = mn[K];

4. shg[K]◦· shg[K+L] = shg[K];

5. DD ◦· shg[K+1] = shg[K].

The last equation shows that the signed hypergeometric form a cone for the draw-delete maps and
thus fit in a categorial approach to ‘De Finetti’, following [15]. The equation hg[K]◦· DD = hg[K] from
Proposition 3 (5) holds for ordinary hypergeometric, but its analogue for signed hypergeometric fails.

Proof 1. Via Proposition 15 (1): shg[K](0) = mn[K] =�DDir(0) = mn[K] =�Dir(1) = pol [K](1).
The latter Pólya distribution on M [K](nnn) is uniform, see Theorem 5.

2. By combining Proposition 3 (2) with Proposition 15 (2) we get: flrn ◦· shg[K] = flrn ◦· mn[K] ◦·
DDir = sam ◦· DDir = flrn .

3. In the composite shg[K]◦· mn[L+K] the signed hypergeometric draws of size K are applied to the
urns that appear as draws of size L+K coming out of the multinomial mn[L+K]. Hence the draw
size is less than the urn size, so Theorem 13 applies, and the signed hypergeometric is an ordinary
hypergeometric. Thus Proposition 3 (3) gives: shg[K]◦· mn[L+K] = hg[K]◦· mn[L+K] = mn[K].

4. By the previous point: shg[K]◦· shg[L+K] = shg[K]◦· mn[L+K]◦· DDir = mn[K]◦· DDir = shg[K].

5. Via Proposition 3 (7): DD ◦· shg[K+1] = DD ◦· mn[K+1]◦· DDir = mn[K]◦· DDir = shg[K]. J

8 Signed hypergeometric channels as Bayesian inversion

This section shows that the signed hypergeometric channel shg[K] : M (nnn) → S
(
M [K](nnn)

)
can be

obtained as dagger, that is as Bayesian inversion, see [4, 3]. For this we need the following new signed
distribution, that builds on the result from Proposition 11 that the sum of dual basis functions is constant.

Definition 17 For a distribution ω ∈D(nnn) we define signed dual multinomial distribution dmn[K](ω)∈
S
(
M [K](nnn)

)
as:

dmn[K](ω) := ∑
ϕ∈M [K](nnn)

K!
(K+n−1)!

·dϕ(ω)
∣∣ϕ 〉.

We thus get a ‘signed’ channel dmn[K] : D(nnn)→S
(
M (nnn)

)
.

For instance:

dmn[2]
(

1
2 |0〉+

1
6 |1〉+

1
3 |2〉

)
= −1

4

∣∣∣ 2|0〉
〉
+ 1

6

∣∣∣ 1|0〉+1|1〉
〉
− 1

4

∣∣∣ 2|1〉
〉
+ 11

6

∣∣∣ 1|0〉+1|2〉
〉
+ 1

6

∣∣∣ 1|1〉+1|2〉
〉
− 2

3

∣∣∣ 2|2〉
〉
.

We have no (operational) interpretation for these distributions, but they do make sense mathematically,
as in the next result.

B. Jacobs & D. Stein 183

Theorem 18 1. There is an equality of string diagrams which involves swapping dual and ordinary
Dirichlet distributions

ufM [L](nnn)ufM [K](nnn)

DDir Dir(1+−)

dmn[K]

=

mn[L]

2. The signed hypergeometric channel shg[L] : M [K](nnn)→S
(
M [L](nnn)

)
is the dagger of the com-

posite dmn[K]◦· Dir(1+−) : M [L](nnn)→S
(
M [K](nnn)

)
with the uniform distribution ufM [L](nnn) as

prior. In a formula:

shg[L] =
(

dmn[K]◦· Dir(1+−)
)†

ufM [L](nnn)

.

Proof 1. Let ϕ ∈M [K](nnn) and ψ ∈M [L](nnn).(
〈dmn[K]◦· Dir(1+−), id 〉 =�ufM [L](nnn)

)
(ϕ,ψ) =

1((n
L

)) ·∫
rrr

K!
(K+n−1)!

·dϕ(ω) · (L+n−1)!
ψ

· rrrψ drrr

=
K! · (n−1)!
(K+n−1)!

·
∫

rrr
dϕ(ω) · L!

ψ
· rrrψ drrr

=
1((n
K

)) ·∫
rrr
dϕ(rrr) ·mψ(rrr) drrr

=
1((n
K

)) ·(mn[L] =�DDir(ϕ)
)
(ψ)

=
(
〈id ,mn[L]◦· DDir〉 =�ufM [K](nnn)

)
(ϕ,ψ).

2. This is a reformulation of the previous point, using that shg[L] = mn[L] ◦· DDir , occurring in the
above string diagram on the left of the equation. J

In Definition 12 we have introduced the signed hypergeometric shg[L] as mn[L]◦· DDir via the dual
Dirichlet distribution DDir . The above result tells that we can also obtain shg[L] as dagger from ordinary
Dirichlet Dir (plus the dual multinomial distribution dmn). This diagrammatic description of the dagger
coincides with the one on right in Figure 1.

9 Conclusions and further work

This paper covers a fascinating topic, namely negative probabilities. It does not offer operational mean-
ing, but it does provide a solid mathematical basis for the emergence of negative probabilities in classical,
non-quantum probability theory. The techniques of categorical probability provide the toolbox for de-
scribing the relevant properties.

There is plenty of further work. High on our list is an explicit formula for the dual basis vectors
in the general multivariate case (like in the bivariate case). Also, we would like to develop a deeper
understanding of the conjugate situation described in the string diagrams in Theorem 18.

184 Overdrawing Urns with Signed Probabilities

References

[1] S. Abramsky & A. Brandenburger (2014): An Operational Interpretation of Negative Probabilities and
No-Signalling Models. In F. van Breugel, E. Kashefi, C. Palamidessi & J. Rutten, editors: Horizons of
the Mind. A Tribute to Prakash Panangaden, Lect. Notes Comp. Sci. 8464, Springer, Berlin, pp. 59–75,
doi:10.1007/978-3-319-06880-0_3.

[2] A. Blass & Y. Gurevich (2021): Negative probabilities: what are they for? Journal of Physics A: Mathemat-
ical and Theoretical 54(31), p. 315303, doi:10.1088/1751-8121/abef4d.

[3] K. Cho & B. Jacobs (2019): Disintegration and Bayesian inversion via string diagrams. Math. Struct. in
Comp. Sci. 29(7), pp. 938–971, doi:10.1017/s0960129518000488.

[4] F. Clerc, F. Dahlqvist, V. Danos & I. Garnier (2017): Pointless learning. In J. Esparza & A. Murawski, editors:
Foundations of Software Science and Computation Structures, Lect. Notes Comp. Sci. 10203, Springer,
Berlin, pp. 355–369, doi:10.1007/978-3-662-54458-7_21.

[5] P. Diaconis (1977): Finite forms of De Finetti’s theorem on exchangeability. Synthese 36(2), pp. 271–281,
doi:10.1007/BF00486116.

[6] W. Dong-Bing (1993): Dual bases of a Bernstein polynomial basis on simplices. Computer aided geometric
design 10(6), pp. 483–489, doi:10.1016/0167-8396(93)90025-X.

[7] R. Feynman (1987): Negative Probability. In B. Hiley & F. Peat, editors: Quantum Implications, Essays in
Honor of David Bohm, Routledge and Kegan Paul, London, pp. 235–246, doi:10.1063/1.2811503.

[8] T. Fritz (2020): A synthetic approach to Markov kernels, conditional independence, and theorems on suffi-
cient statistics. Advances in Math. 370, p. 107239, doi:10.1016/J.AIM.2020.107239.

[9] J. Hoschek & D. Lasser (1993): Fundamentals of computer aided geometric design. AK Peters, Ltd.

[10] B. Jacobs (2016): Affine Monads and Side-Effect-Freeness. In I. Hasuo, editor: Coalgebraic Methods in Com-
puter Science (CMCS 2016), Lect. Notes Comp. Sci. 9608, Springer, Berlin, pp. 53–72, doi:10.1007/978-3-
319-40370-0_5.

[11] B. Jacobs (2018): From Probability Monads to Commutative Effectuses. Journ. of Logical and Algebraic
Methods in Programming 94, pp. 200–237, doi:10.1016/j.jlamp.2016.11.006.

[12] B. Jacobs (2020): A Channel-Based Perspective on Conjugate Priors. Math. Struct. in Comp. Sci. 30(1), pp.
44–61, doi:10.1017/S0960129519000082.

[13] B. Jacobs (2021): From Multisets over Distributions to Distributions over Multisets. In: Logic in Computer
Science, IEEE, Computer Science Press, doi:10.1109/lics52264.2021.9470678.

[14] B. Jacobs (2022): Urns & Tubes. Compositionality 4(4), doi:10.32408/compositionality-4-4.

[15] B. Jacobs & S. Staton (2020): De Finetti’s construction as a categorical limit. In D. Petrişan & J. Rot, editors:
Coalgebraic Methods in Computer Science (CMCS 2020), Lect. Notes Comp. Sci. 12094, Springer, Berlin,
pp. 90–111, doi:10.1007/978-3-030-57201-3_6.

[16] E. Jaynes (1982): Some applications and extensions of the De Finetti representation theorem. Bayesian
Inference and Decision Techniques with Applications: Essays in Honor of Bruno de Finetti. North-Holland
Publishers.

[17] B. Jüttler (1998): The dual basis functions for the Bernstein polynomials. Adv. Computational Mathematics
8, pp. 345–352, doi:10.1023/A:1018912801267.

[18] G. Kerns & G. Székely (2006): De Finetti’s Theorem for abstract finite exchangeable sequences. Journal of
Theoretical Probability 19(3), pp. 589–608, doi:10.1007/s10959-006-0028-z.

[19] G. Lorentz (2013): Bernstein polynomials. American Mathematical Soc.

[20] G. Meissner & M. Burgin (2011): Negative Probabilities in Financial Modeling. Wilmott Magazine,
doi:10.2139/ssrn.1773077.

[21] P. Panangaden (2009): Labelled Markov Processes. Imperial College Press, London, doi:10.1142/p595.

https://doi.org/10.1007/978-3-319-06880-0_3
https://doi.org/10.1088/1751-8121/abef4d
https://doi.org/10.1017/s0960129518000488
https://doi.org/10.1007/978-3-662-54458-7_21
https://doi.org/10.1007/BF00486116
https://doi.org/10.1016/0167-8396(93)90025-X
https://doi.org/10.1063/1.2811503
https://doi.org/10.1016/J.AIM.2020.107239
https://doi.org/10.1007/978-3-319-40370-0_5
https://doi.org/10.1007/978-3-319-40370-0_5
https://doi.org/10.1016/j.jlamp.2016.11.006
https://doi.org/10.1017/S0960129519000082
https://doi.org/10.1109/lics52264.2021.9470678
https://doi.org/10.32408/compositionality-4-4
https://doi.org/10.1007/978-3-030-57201-3_6
https://doi.org/10.1023/A:1018912801267
https://doi.org/10.1007/s10959-006-0028-z
https://doi.org/10.2139/ssrn.1773077
https://doi.org/10.1142/p595

B. Jacobs & D. Stein 185

[22] G. Székely (2005): Half of a Coin: Negative Probabilities. Wilmott Magazine, pp. 66–68.

[23] H. Tijms & K. Staats (2007): Negative probabilities at work in the M/D/1 queue. Probability in the Engineer-
ing and Informational Sciences 21(1), pp. 67–76, doi:10.1017/S0269964807070040.

[24] K. Zhao & J. Sun (1988): Dual bases of multivariate Bernstein-Bézier polynomials. Computer aided geo-
metric design 5(2), pp. 119–125, doi:10.1016/0167-8396(88)90026-X.

Appendix

A Examples

We elaborate two examples: first we illustrate how to actually compute a dual basis, and then how to
compute signed hypergeometric distributions.

Example 19 We take n = 3 and K = 2 so that we have
((n

K

))
= 4!

2!·2! = 6 multisets in M [2](333), namely:
2|0〉, 1|0〉+ 1|1〉, 2|1〉, 1|0〉+ 1|2〉, 1|1〉+ 1|2〉, 2|2〉. Using this order of multisets we get a 6× 6
matrix:

FS =
(
(ϕ +ψ)

)
ϕ,ψ∈M [2](333)

=



24 6 4 6 2 4
6 4 6 2 2 2
4 6 24 2 6 4
6 2 2 4 2 6
2 2 6 2 4 6
4 2 4 6 6 24


so FS−1 =

1
60



6 −8 1 −8 2 1
−8 44 −8 −6 −6 2
1 −8 6 2 −8 1
−8 −6 2 44 −6 −8
2 −6 −8 −6 44 −8
1 2 1 −8 −8 6


Notice that negative values appear in this inverse matrix, without clear pattern.

We can now compute the dual basis vectors by combining (10) and (12). We elaborate the case of
the first multiset 2|0〉. For (r0,r1,r2) ∈ ∆3, that is, for r0,r1,r2 ∈ [0,1] with r0 + r1 + r2 = 1 we get
d2|0 〉 ∈ P2(∆

3) determined as:

d2|0 〉(r0,r1,r2)
(10)
= ∑

ϕ∈M [2](333)
cϕ,2|0 〉 · (r0,r1,r2)

ϕ (12)
= ∑

ϕ∈M [2](333)

6!
(2|0 〉) ·

(
FS−1

)
ϕ,2|0 〉

· rϕ(0)
0 · rϕ(1)

1 · rϕ(2)
2

= 12
(

6r2
0−8r1

0r1
1 +1r2

1−8r1
0r1

2 +2r1
1r1

2 +1r2
2

)
= 72r2

0−96r0r1 +12r2
1−96r0r2 +24r1r2 +12r2

2.

Similarly, for the other multisets in M [2](333),

d1|0 〉+1|1 〉(r0,r1,r2) = −48r2
0 +264r0r1−48r2

1−36r0r2−36r1r2 +12r2
2

d2|1 〉(r0,r1,r2) = 12r2
0−96r0r1 +72r2

1 +24r0r2−96r1r2 +12r2
2

d1|0 〉+1|2 〉(r0,r1,r2) = −48r2
0−36r0r1 +12r2

1 +264r0r2−36r1r2−48r2
2

d1|1 〉+1|2 〉(r0,r1,r2) = 12r2
0−36r0r1−48r2

1−36r0r2 +264r1r2−48r2
2

d2|2 〉(r0,r1,r2) = 12r2
0 +24r0r1 +12r2

1−96r0r2−96r1r2 +72r2
2.

Then indeed, 〈mϕ ,dψ 〉= δϕ,ψ for all ϕ,ψ ∈M [2](333).

https://doi.org/10.1017/S0269964807070040
https://doi.org/10.1016/0167-8396(88)90026-X

186 Overdrawing Urns with Signed Probabilities

We check the claim of Proposition 11, that the sum of the dual base vectors is a particular constant.
Let’s abbreviate the (pointwise) sum of the above dual basis functions as: d := ∑ϕ∈M [2](333) dϕ . Then,
using the above descriptions, for (r0,r1,r2) ∈ ∆3,

d(r0,r1,r2) = 12r2
0 +24r0r1 +12r2

1 +24r0r2 +24r1r2 +12r2
2

= 12
(
(r0 + r1)

2 +2(r0 + r1)r2 + r2
2

)
= 12

(
r0 + r1 + r2

)2
= 12.

Hence the sum of the dual basis functions is indeed a constant and equals (K+n−1)!
K! = 4!

2! = 12.

Example 20 Let’s take as urn υ = 1|0〉+ 1|1〉+ 1|2〉 with one ball of each color in 333 = {0,1,2}. By
drawing two balls we remain within the world of ordinary hypergeometric distributions, by Theorem 13
and get the following distribution over draws.

shg[2](υ) = hg[2](υ) = 1
3

∣∣1|0〉+1|1〉
〉
+ 1

3

∣∣1|0〉+1|2〉
〉
+ 1

3

∣∣1|1〉+1|2〉
〉
.

We can also draw three balls; in that case, the outcome is certain to be the whole urn:

shg[3](υ) = hg[3](υ) = 1
∣∣1|0〉+1|1〉+2|1〉

〉
= 1

∣∣υ 〉.
Drawing four balls, more than in the urn, is only possible with the signed hypergeometric. It leads to
negative probabilities in:

shg[4](υ) = 7
126

∣∣4|0〉〉− 14
126

∣∣3|0〉+1|1〉
〉
− 21

126

∣∣2|0〉+2|1〉
〉
− 14

126

∣∣1|0〉+3|1〉
〉
+ 7

126

∣∣4|1〉〉
− 14

126

∣∣3|0〉+1|2〉
〉
+ 84

126

∣∣2|0〉+1|1〉+1|2〉
〉
+ 84

126

∣∣1|0〉+2|1〉+1|2〉
〉

− 14
126

∣∣3|1〉+1|2〉
〉
− 21

126

∣∣2|0〉+2|2〉
〉
+ 84

126

∣∣1|0〉+1|1〉+2|2〉
〉

− 21
126

∣∣2|1〉+2|2〉
〉
− 14

126

∣∣1|0〉+3|2〉
〉
− 14

126

∣∣1|1〉+3|2〉
〉
+ 7

126

∣∣4|2〉〉.
There is no apparent ‘logic’ in these probabilities, for instance in terms of draw probabilities. In par-
ticular, an intuitive explanation is missing for why certain probabilities are negative. But, as explained
above, these distributions are constructed in a systematic manner, via dual bases.

Clarification: the outcomes of the signed hypergeometric given above are obtained via elementary
Python scripts that perform matrix inversion — as in (12) — to obtain representations of dual basis
vectors and to perform integration over simplices. Our Python scripts produce real numbers as proba-
bilities, but they are so close to the above fractions in shg[4](υ) that we write these fractions instead, for
the sake of readability.

B Missing proofs

In the body of the article we left out the proofs of several basis properties of ordinary draws.

Proof (of Theorem 5)

B. Jacobs & D. Stein 187

1. Via (7), for arbitrary ϕ ∈M [K](nnn),

(
mn[K] =�Dir(υ)

)
(ϕ) =

∫
rrr∈∆n

mn[K](rrr)(ϕ) ·dir(υ)(rrr) drrr

=
∫

rrr∈∆n
(ϕ) ·∏

i∈nnn
rϕ(i)

i · (L−1)!
(υ−1)

·∏
i∈nnn

rυ(i)−1
i drrr

=
∫

rrr∈∆n

K! · (L−1)!
ϕ · (υ−1)

·∏
i∈nnn

rυ(i)+ϕ(i)−1
i drrr

=

((
υ

ϕ

))((L
K

)) ·∫
rrr∈∆n

(L+K−1)!
(υ+ϕ−1)

·∏
i∈nnn

r(υ+ϕ)(i)−1
i drrr

(6)
= pol [K](υ)(ϕ).

2. This can be computed in a similar manner, but the details are beyond the scope of this paper.

3. We have already seen that the set M [K](nnn) has
((n

K

))
elements, so that the uniform distribution

ufM [K](nnn) on this set is ∑ϕ∈M [K](nnn)
1

((n
K))

∣∣ϕ 〉. This uniform distribution equals pol [K](1), where

1 = ∑i∈nnn 1| i〉. Hence we can reason diagrammatically, as on the right in Figure 1. The uniform
distribution ufD(nnn) on the left in this chain of equations is Dir(1) on ∆n, with density rrr 7→ (n−1)!,
since

∫
rrr∈∆n 1 drrr = 1

(n−1)! by (6).

4. Consider an urn υ of size L and a number j ∈ nnn. We write υ j := υ + 1| j 〉 of size L+ 1. Then,
using (7), (

sam =�Dir(υ)
)
(j) =

∫
rrr∈∆n

r j ·
(L−1)!
(υ−1)

·∏
i∈nnn

rυ(i)−1
i drrr

=
υ(j)

L
·
∫

rrr∈∆n

L!
(υ j−1)

·∏
i∈nnn

rυ j(i)−1
i drrr

(6)
=

υ(j)
L
·1

= flrn(υ). J

C The bivariate case

In the previous sections we have elaborated the multivariate case, involving multiple variables. The
bivariate case, for n = 2, can be done slightly differently, using the isomorphisms D(222) ∼= [0,1] and
M [K](222) ∼= {0,1, . . . ,K} ∼= KKK+++111. The binomial channel bn[K] : [0,1]→ {0, . . . ,K} is thus related via
the general multinomial one via the following square.

[0,1] ◦
bn[K]

//

∼=
��

{0, . . . ,K}

D(222) ◦
mn[K]

//M [K](222)

∼=
OO

188 Overdrawing Urns with Signed Probabilities

Explicitly, for r ∈ [0,1], we have

bn[K](r) = ∑
0≤i≤K

(
K
i

)
· ri · (1− r)K−i

∣∣ i〉.
The polynomials involved are known as Bernstein polynomials, namely

bi(r) :=
(

K
i

)
· ri · (1−r)K−i = ∑

0≤ j≤K−i

(
K
i

)
·
(

K−i
j

)
· ri ·1 j · (−r)K−i− j

= ∑
0≤ j≤K−i

(
K
i

)
·
(

K−i
j

)
· (−1)K−i− j · rK− j.

These polynomials are widely studied in Computer Graphics and Computer Aided Geometric Design [9],
but also in areas such as approximation theory [19] and probability. They appear not only as probability
mass functions for the binomial distributions (as described above), but also as density function of the
(continuous) Beta distributions, rescaled by a normalisation factor.

The Hilbert space PK(∆
2) can be identified with the space of univariate polynomials, as functions

[0,1]→ R, spanned by the monomial basis (ri : 0≤ i≤ K). The (n+1)× (n+1) matrix B that represents
the above polynomials bi in this basis has entries

Bi,K− j =

(
K
i

)
·
(

K−i
j

)
· (−1)K−i− j.

Below we plot several Bernstein polynomials (on the left) and their dual bases (on the right).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

40

20

0

20

40

We write S for the matrix with inner products of the base vectors, so:

Si, j := 〈ri,r j 〉 =
∫

r∈[0,1]
ri · r j dr = 1

i+ j+1 .

The dual basis of the binomial polynomials bi are then given by the matrix inverse (BT ·S)−1. It has been
studied in a Computer Graphics context [6] [24], and formulas for computing the dual basis are known,
see [17] for an overview.

This explicit formulation of the dual basis allows us to describe the bivariate signed hypergeometric
channel bshg[L,K] : {0, . . . ,L}→S

(
{0, . . . ,K}), in the following commuting diagram.

{0, . . . ,L}∼=
��

◦
bshg[L,K]

// {0, . . . ,K}

M [L](222) ◦
shg[K]

//M [K](222)−∼=

OO

B. Jacobs & D. Stein 189

We include the parameter L in writing bshg[L,K] since it cannot be derived from an input j ∈ {0, . . . ,L}.
In contrast, writing this parameter explicitly is not needed in the multivariate case, since the size of the
urn can be computed from the urn itself.

The explicit formula for this bivariate signed hypergeometric bshg[L,K] is:

bshg[L,K](j)

:= ∑
0≤i≤K

(K
i

)
(K+L+1) ·

(L
j

) (∑
0≤`≤L

(−1) j+`(K+L
i+`

) ∑
0≤k≤min(j,`)

(2k+1)
(

L+k+1
L− j

)(
L−k
L− j

)(
L+k+1

L−`

)(
L−k
L−`

))∣∣ i〉
(13)

This bshg[L,K] is defined on 0 ≤ j ≤ L, corresponding to urn j|0〉+ (L− j)|1〉. The complicated
character of this formula is not helpful for an operational interpretation in terms of draw probabilities.
But it does allow us to compute (truely) exact distributions.

Example 21 Let’s take an urn size L = 3 with 2 balls of colour 0. Thus, in a multivariate scenario we
would write this as urn υ = 2|0〉+1|1〉. We first look at a draw of size K = 4. Using the formula from
Figure C we get a bivariate signed hypergeometric distribution of the form:

bshg[3,4](2) = 17
210

∣∣0〉− 34
105

∣∣1〉+ 17
35

∣∣2〉+ 106
105

∣∣3〉− 53
210

∣∣4〉.
The number i in | i〉 refers to the number of balls of colour 0 that are drawn (out of K in total), with
corresponding (positive or negative) probability.

Similarly, for K = 5 we have:

bshg[3,5](2) = 1
6

∣∣0〉− 3
7

∣∣1〉+ 1
21

∣∣2〉+ 16
21

∣∣3〉+ 37
42

∣∣4〉− 3
7

∣∣5〉.

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 190–209, doi:10.4204/EPTCS.397.12

© H. Paquet, P. Saville
This work is licensed under the
Creative Commons Attribution License.

Effectful Semantics in 2-Dimensional Categories:
Premonoidal and Freyd Bicategories

Hugo Paquet
LIPN, Université Sorbonne Paris Nord

Paris, France
paquet@lipn.univ-paris13.fr

Philip Saville
University of Oxford

Oxford, UK
philip.saville@cs.ox.ac.uk

Premonoidal categories and Freyd categories provide an encompassing framework for the semantics
of call-by-value programming languages. Premonoidal categories are a weakening of monoidal
categories in which the interchange law for the tensor product may not hold, modelling the fact that
effectful programs cannot generally be re-ordered. A Freyd category is a pair of categories with the
same objects: a premonoidal category of general programs, and a monoidal category of ‘effect-free’
programs which do admit re-ordering.

Certain recent innovations in semantics, however, have produced models which are not categories
but bicategories. Here we develop the theory to capture such examples by introducing premonoidal
and Freyd structure in a bicategorical setting. The second dimension introduces new subtleties, so
we verify our definitions with several examples and a correspondence theorem—between Freyd
bicategories and certain actions of monoidal bicategories—which parallels the categorical framework.

1 Introduction

A fundamental aspect of call-by-value functional programming languages is the distinction between
values and computations. While values are ‘pure’ program fragments that can be passed around safely,
computations may interact with their environment in the form of effects (such as raising exceptions,
interacting with state, or behaving probabilistically), and must therefore be manipulated with care.

Values and computations obey different algebraic properties, and in particular only computations are
sensitive to the evaluation order. For instance print "a"; print "b" is not equivalent to print "b";

print "a". This is reflected in the denotational semantics of call-by-value languages, which consists of a
pair of categories: a monoidal category of values, and a premonoidal category of computations. These are
related by an identity-on-objects functor coercing values into effect-free computations, and the resulting
structure is called a Freyd category ([38, 26]).

In this paper we generalize these notions from categories to bicategories. The resulting theory includes
models of programming languages in which the morphisms are themselves objects with structure—spans,
strategies, parameter spaces, profunctors, open systems, etc.—for which the notion of composition
uses a universal construction, such as a pullback or a pushout. In these models, the 2-cells play a
central role in characterizing the composition operation for morphisms, and additionally provide refined
semantic information (see e.g. [17, 8, 48, 34, 22]).

1.1 Bicategorical models

A bicategory is a 2-dimensional category in which the associativity and unit laws for the composition of
morphisms are replaced by invertible 2-cells satisfying coherence axioms [2]. Bicategories have recently
found prominence as models of computational processes: see e.g. [31, 6, 12, 1]. We illustrate this with

http://dx.doi.org/10.4204/EPTCS.397.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

H. Paquet, P. Saville 191

two simple examples: spans of sets, and graded monads. For reasons of space we have omitted definitions
of the basic notions in bicategory theory, such as pseudofunctors, pseudonatural transformations, and
modifications. For a textbook account, see e.g. [2].

Bicategories of spans. The bicategory Span(Set) has objects sets and 1-cells A B spans of
functions A←− S−→ B. We can compose pairs of morphisms A←− S−→ B and B←− R−→C using a
pullback in the category of sets, as on the left below:

R◦S

S R

A B C

y

•

•

• • •

• • • •

y

y
•

•

• • •

• • • •

y

y

This composition correctly captures a notion of ‘plugging together’ spans, but is only associative in a
weak sense, since the two ways of taking pullbacks (on the right above) are not generally equal. But, by
the universal property of pullbacks, they are canonically isomorphic as spans.

Kleisli bicategories for graded monads. For another example we consider monads graded by
monoidal categories. Formally, a graded monad on a category C consists of a monoidal category (E,•, I)
of grades and a lax monoidal functor T : E→ [C,C] (see e.g. [43, 30, 21]). In particular, this gives a
functor Te : C→ C for every e ∈ E, and natural transformations µe,e′ : Te′ ◦Te⇒ Te•e′ and η : id⇒ TI

corresponding to a multiplication and unit.
Previous Kleisli-like constructions for graded monads have used presheaf-enriched categories (e.g. [10,

28]), but there is also a natural bicategorical construction. The objects are those of C and 1-cells A B
consist of a grade e and a map f : A→ TeB in C. The 2-cells (e, f)⇒ (e′, f ′) are re-gradings: maps
γ : e→ e′ in E such that Tγ(B)◦ f = f ′. The composition and identities use the multiplication and unit, as
for a Kleisli category. But, unless E is strict monoidal, this operation is only weakly associative and unital.

A concrete instance of this is the coPara construction on a monoidal category C ([9, 5]), equivalently
defined as the Kleisli bicategory for the monad graded by C itself and given by TC(A) = A⊗C.

The broader context for this work is the recent occurrence of bicategories in the semantics of program-
ming languages. Bicategories of profunctors are now prominent in the analysis of linear logic and the
λ -calculus ([7, 11, 22]), and game semantics employs a variety of span-like constructions that compose
weakly ([31, 3]). These models have also influenced the development of 2-dimensional type theories
([8, 34]). This paper supports these developments from the perspective of call-by-value languages. (The
connection to linear logic explains our insistence on monoidal rather than cartesian Freyd bicategories.)

1.2 Monoidal bicategories

A monoidal bicategory is a bicategory equipped with a unit object and a tensor product which is only
weakly associative and unital. In the categorical setting ‘weakly’ typically means ‘up to isomorphism’; in
bicategory theory it typically means ‘up to equivalence’.

Definition 1. An equivalence between objects A and B in a bicategory B is a pair of 1-cells f : A→ B
and f • : B→ A together with invertible 1-cells u : IdA⇒ f • ◦ f and c : f ◦ f •⇒ IdB. This is an adjoint
equivalence if the witnessing 2-cells u and c satisfy the usual triangle laws for an adjunction (see e.g. [24]).

192 Premonoidal and Freyd Bicategories

((AB)C)D (AB)(CD) A(B(CD))

(A(BC))D A((BC)D)

α

αD p

α

α

Aα

AB

(AI)B A(IB)

ρB

α

Aλ

m

(IA)B I(AB)

AB

α

λ

λB
l

(AB)I A(BI)

AB

α

ρ

Aρ
r

Figure 1: The structural modifications of a monoidal bicategory

It is common in bicategory theory for definitions to ask for adjoint equivalences: these are easier to
work with and no stronger than asking for just equivalences (see e.g. [24, Proposition 1.5.7]).

The bicategorical version of a natural isomorphism is a pseudonatural (adjoint) equivalence: a
pseudonatural transformation in which each 1-cell component has the structure of an (adjoint) equivalence.
Definition 2 (e.g. [45]). A monoidal bicategory is a bicategory B equipped with a pseudofunctor
⊗ : B×B→B and an object I ∈B, together with:

• pseudonatural adjoint equivalences α,λ and ρ with components αA,B,C : (A⊗B)⊗C→A⊗ (B⊗C)
(the associator), λA : I⊗A→ A, and ρA : A⊗ I→ A (the unitors); and

• invertible modifications p, l,m and r with components as in Figure 1, subject to coherence axioms.
Monoidal bicategories have a technical algebraic definition but nonetheless arise naturally. For

example, the cartesian product on the category Set induces a monoidal structure on the bicategory
Span(Set). Many other examples appear in a similar fashion: see [49].

Coherence theorems. A careful reader might observe that the diagrams in Figure 1 are not, strictly
speaking, well-typed: for example, the anti-clockwise route around the diagram for p could denote
(Aα ◦α)◦αD or Aα ◦ (α ◦αD). This is justified by a suitable coherence theorem.

Typically, coherence theorems show that any two parallel 2-cells built out of the structural data are
equal. Appropriate coherence theorems apply to bicategories [27], pseudofunctors [14], and (symmetric)
monoidal bicategories ([13, 14, 15]). These results justify writing simply ∼= for composites of structural
data in commutative diagrams of 2-cells, in much the same way as one does for monoidal categories.

As is common in the field, we rely heavily on the coherence of bicategories and pseudofunctors when
writing pasting diagrams of 2-cells. We omit all compositors and unitors for pseudofunctors, and ignore
the weakness of 1-cell composition. Thus, even though our diagrams do not strictly type-check, coherence
guarantees the resulting 2-cell is the same no matter how one fills in the structural details. For example,
for a pseudofunctor T on a monoidal bicategory we may write T l as a 2-cell of type T (λB)⇒ T λ ◦T α .
For a detailed justification see e.g. [14, Remark 4.5] or [40, §2.2].

1.3 Premonoidal categories and Freyd categories

Premonoidal categories generalize monoidal categories in that the tensor product ⊗ is only functorial
in each argument separately [37]. The lack of a monoidal “interchange law” reflects the fact that one
cannot generally re-order the statements of an effectful program, even if the data flow permits it. As
a consequence, one can directly model effectful programs in a premonoidal category, in the sense that
a typed program (Γ `M : A) is modelled directly as an arrow Γ→ A and the result of substituting M

into another effectful program (∆,x : A ` N : B) is modelled by the composite ∆⊗Γ
∆⊗M−−−→ ∆⊗A N−→ B.

Thus, the composition of morphisms in a premonoidal category should be understood as encoding control
flow. This is illustrated in Figure 2 using the graphical calculus for premonoidal categories ([20, 39]),
where the dashed red line indicates control flow. This direct interpretation contrasts with monadic
approaches ([32, 33]), which rely on a monad whose structure may not be reflected in the syntax.

H. Paquet, P. Saville 193

M

N

P

Γ ∆

C

6= M

N

P

Γ ∆

C

Γ⊗∆

A⊗∆ Γ⊗B

A⊗B

C

M⊗∆

A⊗N

P

Γ⊗N

M⊗B

6=

Figure 2: Failure of interchange
in a premonoidal category.

We can axiomatize the morphisms for which interchange does hold.
Let D be a category equipped with functors Ao (−) : D −→ D and
(−)nB : D −→ D for every A,B ∈ D, such that AoB = AnB. We
write A⊗B, or just AB, for their joint value, and (D,o,n) is called a
binoidal category. A map f : A→A′ in D is central if the two diagrams

AB AB′

A′B A′B′

Aog

fnB fnB′

A′og

BA B′A

BA′ B′A′

gnA

Bo f B′o f

gnA′

(1)

commute for every g : B→ B′. Semantically, f corresponds to a
computation which may be run at any point without changing the
observable result.

A premonoidal category is a binoidal category (D,o,n) with cen-
tral structural isomorphisms α,λ and ρ similar to those in a monoidal
category. Unlike with monoidal categories, however, the associator
α cannot be a natural transformation in all arguments simultaneously,
because ⊗ is not a functor on D. Instead, we must ask for naturality in each argument separately, so the
following three diagrams commute:

(AB)C (A′B)C

A(BC) A′(BC)

(fnB)nC

α α

fn(BC)

(AB)C (AB′)C

A(BC) A(B′C)

α

(Aog)nC

α

Ao(gnC)

(AB)C (AB)C′

A(BC′) A(BC′)

α

(AB)oh

α

Ao(Boh)

(2)

Definition 3 ([37]). A premonoidal category is a binoidal category (D,o,n) equipped with a unit object
I and central isomorphisms ρA : AI→ A, λA : IA→ A and αA,B,C : (AB)C→ A(BC) for every A,B,C ∈ D,
natural in each argument separately and satisfying the axioms for a monoidal category.

One important contribution of this paper is to bicategorify the notion of central morphism. We will see
that as we move from categories to bicategories centrality evolves from property to structure (Definition 5).

Freyd categories. When modelling call-by-value languages in premonoidal categories, it is natural to
think of the values as effect-free computations. Semantically, this is captured by Freyd categories [38],
which are premonoidal categories together with a choice of effect-free maps.

Precisely, a Freyd category consists of a monoidal category V (often cartesian monoidal), a pre-
monoidal category C, and an identity-on-objects functor J : V→ C that strictly preserves the tensor
product and structural morphisms, and such that every morphism J(f) is central in C.

Although every premonoidal category D canonically induces a Freyd category Z (D) ↪→ D, where
Z (D) is the subcategory of central maps (called the centre), there are several reasons to consider Freyd
categories directly. First, it does not always make sense to regard all central maps as values: for instance,
in a language with commutative effects (e.g. probability), all computations are central. Second, functors
between binoidal categories do not in general preserve central maps, whereas morphisms of Freyd
categories include a functor between the categories of values specifying how values are sent to values.

194 Premonoidal and Freyd Bicategories

Relationship to monad models. Freyd categories encompass the strong monad semantics of call-by-
value proposed by Moggi ([32, 33]). Indeed, if (C,⊗, I) is symmetric monoidal, then any strength for a
monad (T,µ,η) on C induces a premonoidal structure on the Kleisli category CT , and η ◦ (−) : C→ CT

becomes a Freyd category. Conversely, a Freyd category corresponds to a monad whenever J has a right
adjoint [37]. This adjoint is necessary if the programming language has higher-order functions, but some
‘first-order’ Freyd categories are not known to arise from a monad (e.g. [47, 36, 44]).

1.4 Contributions and outline

The central aim of this paper is to introduce definitions of premonoidal bicategories (Definition 6) and
Freyd bicategories (Definition 16). Premonoidal structure relies on an adequate notion of centrality for
1-cells and 2-cells in a bicategory (Definition 5). Freyd bicategories then require a coherent assignment of
centrality data, which leads to subtle compatibility issues, outlined in Section 2 and Section 3.

As ever with bicategorical definitions (see e.g. [40, §2.1]), the main difficulty is in ensuring the
right axioms on the 2-cells. We therefore give further justification for our definitions. On the one hand,
we show that our definitions are not too strict: they capture natural examples, presented in Section 2.1
and Section 3.1. On the other hand, we show that our definitions are not too weak: the well-known
correspondence between Freyd categories and actions [25] lifts to our setting (Section 4). We note that our
definition of action is extracted from standard higher-categorical constructions, and so our work connects
to an already-existing and well-understood body of theory.

The definition of premonoidal bicategory presented here is based on that in the ArXiv preprint [35].
For reasons of space, we sketch only the proof of the main theorem Theorem 23 here. For more proofs,
see the longer version of this paper, available on the authors’ webpages.

2 Premonoidal bicategories

Just as in the categorical setting (e.g. [37]), our starting point is binoidal structure.
Definition 4. A binoidal bicategory (B,o,n) is a bicategory B with pseudofunctors Ao(−) and (−)nB
for every A,B ∈B, such that AoB = AnB. We write A⊗B, or just AB, for the joint value on objects.

As is standard when moving from categories to bicategories, the category-theoretic property of
centrality becomes extra structure in a binoidal bicategory. For the definition, we observe that the
diagrams defining centrality (1) amount to requiring that f induces two natural transformations:

lc f : Ao (−)⇒ A′o (−) , lc f
B :=

(
AoB = AnB

fnB−−→ A′nB = A′oB
)

rc f : (−)nA⇒ (−)nA′ , rc f
B :=

(
BnA = BoA

Bo f−−→ BoA′ = BnA′
) (3)

This lifts naturally to the bicategorical setting, and gives an immediate notion of centrality for 2-cells.

Definition 5. Let (B,o,n) be a binoidal bicategory. A central 1-cell is a
1-cell f : A→ A′ equipped with invertible 2-cells as on the right for every
g : B→ B′, such that the 1-cells in (3) are the components of pseudonatural
transformations lc f : Ao (−)⇒ A′o (−) and rc f : (−)nA⇒ (−)nA′.
A central 2-cell σ between central 1-cells (f , lc f , rc f) and (f ′, lc f ′ , rc f ′)
is a 2-cell σ : f ⇒ f ′ such that the 2-cells σ nB and Boσ (for B ∈B)
define modifications lc f ⇒ lc f ′ and rc f ⇒ rc f ′ , respectively.

AB AB′

A′B A′B′

Aog

fnB fnB′lc f
g

A′og

BA B′A

BA′ B′A′

gnA

Bo f B′o frc f
g

gnA′

H. Paquet, P. Saville 195

Every monoidal bicategory (B,⊗, I) has a canonical binoidal structure, with o and n directly induced
from the monoidal structure by fixing one argument. Every 1-cell f in B is canonically central, with lc f

g

given by the interchange isomorphism induced by the pseudofunctor structure of ⊗, and rc f
g by (lcg

f)
−1:

lc f
g :=

(
(f ⊗B′)◦ (A⊗g)

∼=
=⇒ (f ⊗g)

∼=
=⇒ (A′⊗g)◦ (f ⊗B)

)
. (4)

By the functoriality of ⊗, every 2-cell is central with respect to this structure.
We will define premonoidal bicategories as binoidal bicategories with central structural equivalences.

As in Definition 3, the associator α for the tensor product can only be pseudonatural in each argument
separately, because ⊗ is not a functor of two arguments. We therefore need a family of equivalences
αA,B,C : (A⊗B)⊗C→ A⊗ (B⊗C) together with invertible 2-cells α f ,B,C,αA,g,C and αA,B,h filling the
three squares in (5), so that we get three families of pseudonatural transformations:

(α−,B,C,α−,B,C) : (−nB)nC⇒ (−)n (B⊗C)

(αA,−,C,αA,−,C) : (Ao−)nC⇒ Ao (−nC) (5)

(αA,B,−,αA,B,−) : (A⊗B)o (−)⇒ Ao (Bo−)

A premonoidal bicategory also involves structural modifications corresponding to those of Figure 1.
Here the 2-dimensional structure introduces new subtleties. For example, one side of modification l in
Figure 1 uses the pseudonatural transformation with components λA⊗B : (IA)B→ AB. For g : B→ B′, the
2-cell witnessing pseudonaturality of this transformation is the canonical isomorphism that interchanges
λA and g. This 2-cell does not exist in a premonoidal bicategory, so instead we must use the centrality
witness lcλA

g for λA. Thus, we define l to be a family of 2-cells lA,B : (λA nB)⇒ λA⊗B ◦αI,A,B, pictured on
the left below, inducing modifications in Hom(B,B) of both types on the right below:

(IA)B AB

I(AB)

λnB

αI,A,B

lA,B
λA⊗B

(I o−)oB (−nB)

I o (−nB)

λnB

αI,−,B
l−,B

λ−nB

(IA)o (−) (Ao−)

I o (An−)

lcλ

αI,A,−
lA,−

λAo−

Notice that the middle diagram appears exactly as in the definition of a monoidal bicategory; no adjust-
ments are necessary because each transformation is pseudonatural in the open argument without any
assumptions of centrality.

Modulo the subtleties just outlined, our main definition is a natural extension of the categorical one.
We abuse notation by saying “ f is central” to mean f comes with chosen lc f and rc f making (f , lc f , rc f)
a central 1-cell and saying “the pseudonatural transformation η is central” to mean each 1-cell component
ηA is central.

Definition 6. A premonoidal bicategory is a binoidal bicategory (B,o,n) equipped with a unit object
I ∈B, together with the following data:

1. For every A ∈B, central pseudonatural adjoint equivalences λA : I oA→ A and ρA : An I→ A;

2. For every A,B,C ∈B, an adjoint equivalence αA,B,C : (A⊗B)⊗C→ A⊗ (B⊗C) with 2-cells as
in (5) inducing central pseudonatural equivalences in each component separately;

3. For each A,B,C,D∈B, invertible central 2-cells pA,B,C,D,mA,B, lA,B and rA,B, forming modifications
in each argument as in Figure 3 or, if not shown there, as in a monoidal bicategory.

This data is subject to the same equations between 2-cells as in a monoidal bicategory.

196 Premonoidal and Freyd Bicategories

(−B)(CD)

((−B)C)D (−)(B(CD))

(−(BC))D (−)((BC)D)

α−,B,CDα−B,C,D

α−,B,CD
p−,B,C,D

α−,BC,D

rcα

(AB)(C−)

((AB)C)(−) A(B(C−))

(A(BC))(−) A((BC)(−))

αA,B,C−αAB,C,−

lcα

pA,B,C,−

αA,BC,−

AαB,C,−

(−)B

(−I)B (−)(IB)

ρB

α−,I,B

rcλ

m−,B

A(−)

(AI)(−) A(I−)

lcρ

αA,I,−

Aλ

mA,−

(IA)(−) I(A−)

A(−)

αI,A,−

λ

lcλ
lA,−

(−B)I (−)(BI)

AB

α−,B,I

ρ−B

rcρ
r−,B

Figure 3: Modification axioms for the structural 2-cells of a premonoidal bicategory, where they differ
from those of a monoidal bicategory. (To save space we suppress o and n: these can be inferred.)

Note that we cannot ask for the 2-cell components of the structural transformations to be central: for
example, ρ f has type ρA′ ◦ (f n I)⇒ f ◦ρA, but f may not be a central map. Also note that, although we
have changed the conditions for p,m, l and r to be modifications, their type as 2-cells has not changed,
and thus the equations for a monoidal bicategory are still well-typed.

Just as every premonoidal category has a centre, so does every premonoidal bicategory.

Definition 7. For a premonoidal category (B,o,n, I), denote by Z (B) the bicategory with the same
objects, whose 1-cells and 2-cells are the central 1-cells and central 2-cells in B. Composition is defined
using composition in Hom(B,B), and the identity on A is IdA with the identity transformations.

The pseudofunctors Ao (−) and (−)nB lift to the centre. Because Ao (−) is a pseudofunctor, then
for any central 1-cell (f , lc f , rc f) we already have pseudonatural transformations Ao lc f and Ao rc f in B.
To disambiguate between these transformations and the action of Ao (−) on central 1-cells, we denote
the latter by Ao (f , lc f , rc f) := (Ao f , lcAo f , rcAo f), and likewise for (−)nB.

Proposition 8. Let (B,o,n, I) be a premonoidal bicategory. For every A,B ∈B the operations Ao (−)
and (−)nB induce pseudofunctors on Z (B).

Proof sketch. We only sketch the action of X o (−) and (−)nX on a central 1-cell (f , lc f , rc f) : A→ A′.
For g : B→ B′, the 2-cell lcXo f

g is uniquely determined by the equation

(X f)B

(XA′)g

α

α

X(A′g)

X(f B′)α

(X f)B′
(XA)g

lcXo f
g α

α

=

(X f)B α

X(A′g)

X(f B′)α

(XA)g

X(f B)α

X(Ag′)

Xolc f
gα

α

(6)

in which, for clarity, we have omitted object names and left implicit the functors o,n, which can be
inferred. This is a valid definition for lcXo f

g because α is an equivalence, and all 2-cells involved are
invertible. We similarly construct 2-cells lc fnX

g , rcXo f
g , rc fnX

g . The rest of the proof consists of routine
verifications.

H. Paquet, P. Saville 197

2.1 Examples of premonoidal bicategories

State-passing style. Power & Robinson motivate their definition of premonoidal categories by consider-
ing an uncurried version of the State monad [37]: for a symmetric monoidal category (C,⊗, I) and an
object S ∈C modelling a set of states, one can model a program from A to B interacting with the state as a
morphism S⊗A→ S⊗B. The same applies bicategorically.

Lemma 9 (c.f. [37], [26, Example A.1]). Let (B,⊗, I) be a symmetric monoidal bicategory (e.g. [45]) and
S ∈B. Define a bicategory K with the same objects as B, hom-categories K (A,B) := B(S⊗A,S⊗B),
and composition and identities as in B. Then K admits a canonical premonoidal structure.

For the binoidal structure, one whiskers with the canonical pseudonatural equivalences:

f nB :=
(
S(AB) '−→ (SA)B

f⊗B−−→ (SA′)B '−→ S(A′B)
)

Aog :=
(
S(AB) '−→ A(SB)

A⊗g−−→ A(SB′) '−→ S(AB′)
) (7)

The structural transformations are then given by composing the structural transformations in B with the
naturality 2-cells for the equivalences in (7).

Bistrong graded monads. It is well-known that if a monad T on a monoidal category (C,⊗, I) is
bistrong, meaning that it is equipped with a left strength tA,B : A⊗T B→ T (A⊗B) and a right strength
sA,B : T (A)⊗B→ T (A⊗B), and these strengths are compatible in the sense that the two canonical maps
(A⊗T (B))⊗C→ T

(
A⊗ (B⊗C)

)
are equal, then CT is premonoidal (see e.g. [29]). (This definition is

obscured in the symmetric setting, because if C is symmetric every strong monad is canonically bistrong.)
A similar fact applies to the Kleisli bicategory KT for a graded monad defined in Section 1.1. To state
this we need to define bistrong graded monads: we make a small adjustment to Katsumata’s definition of
strong graded monads [21, Definition 2.5]. An endofunctor T : C→ C equipped with two strengths t and
s which are compatible in the sense above is called bistrong (see e.g. [29]).

Definition 10. A bistrong graded monad on a monoidal category (C,⊗, I) consists of a monoidal category
(E,•, I) of grades and a lax monoidal functor T : E→ [C,C]bistrong, where [C,C]bistrong is the category of
bistrong endofunctors and natural transformations that commute with both strengths (see e.g. [29]).

Thus, a bistrong graded monad is a graded monad equipped with natural transformations te
A,B :

A⊗Te(B)→ Te(A⊗B) and se
A,B : Te(A)⊗B→ Te(A⊗B) for every grade e, compatible with the graded

monad structure and with maps between grades. One then obtains strict pseudofunctors Ao(−),(−)nB :
KT →KT for every A,B ∈KT , defined similarly to the premonoidal structure on a Kleisli category:

Aog =
(
AB

A⊗g−−→ ATe(B′)
te

−→ Te(AB′)
)

, f nB =
(
AB

f⊗B−−→ Te(A′)B
se

−→ Te(A′B)
)
.

Moreover, every f ∈ C(A,A′) determines a ‘pure’ 1-cell in KT , as f̃ :=
(
A

f−→ A′
ηA′−−→ TIA′

)
. This 1-cell

canonically determines a central 1-cell, with lc f̃ and rc f̃ given by the canonical isomorphism in C; in
particular, lc f̃

g̃ = (rcg̃
f̃
)−1 for every g ∈ C(B,B′). The structural transformations are then all of the form σ̃

for σ a structural transformation in E, and the structural modifications are all canonical isomorphisms of
the form I⊗i ∼=−→ I⊗ j for i, j ∈ N. Summarizing, we have the following.

Proposition 11. Let (T,µ,η) be a bistrong graded monad on (C,⊗, I) with grades (E,•, I). Then the
bicategory KT has a canonical choice of premonoidal structure.

198 Premonoidal and Freyd Bicategories

Unnatural transformations. For any category C the category [C,C]u of functors and unnatural trans-
formations (i.e. families of maps σC : FC→ GC with no further conditions) is strictly premonoidal. This
is almost by definition, because Power & Robinson define a strict premonoidal category to be a monoid
with respect to the funny tensor product ⊗ on the category Cat [37]. A version holds bicategorically.

Lemma 12 (c.f. [37]). For any bicategory B, let [B,B]u denote the bicategory with objects pseudofunc-
tors F : B→B, 1-cells F → G families of maps {σB : FB→ GB | B ∈B}, and 2-cells σ ⇒ τ families
of 2-cells {mB : σB⇒ τB | B ∈B}. Then [B,B]u admits a premonoidal structure given by composition.

3 Freyd bicategories

We build up to our definition of Freyd bicategories in stages. Although the bicategories of values and
computations have the same objects and their structures are tightly connected, bicategories offer a range
of levels of strictness, so we must make careful choices.

We begin with a useful technical notion for relating two pseudofunctors which agree on objects:

Definition 13 ([23]). For pseudofunctors F,G : B→ C which agree on objects, an icon θ : F → G is an
oplax natural transformation whose 1-cell components are all identity. More explicitly, θ is a family of
2-cells θ f : F(f)→ G(f) indexed by 1-cells of B, subject to naturality, identity and composition laws.

Using this, we define a notion of strict morphism between binoidal bicategories.

Definition 14. Let (V ,o,n) and (B,o,n) be binoidal bicategories. A
0-strict binoidal pseudofunctor is a pseudofunctor J : V →B together
with families of invertible icons θ A and ζ A (for A ∈B) as on the right;
their existence implicitly requires that J(A⊗B) = JA⊗JB.

V V V

B B B

ζ∼=
A

(−)nA

J J θ∼=
A

Ao(−)

J

(−)nJA JAo(−)

It is crucial that we take preservation up to icons, and not up to identity. In the context of Lemma 9,
for instance, we get a 0-strict binoidal pseudofunctor S⊗ (−) : B→K with icons θ and ζ constructed
using the pseudonaturality of the equivalences in (7). However, these icons do strictly commute with the
premonoidal structure of K by the coherence of symmetric monoidal bicategories [15]. This suggests the
following; for simplicity we focus on the case where J is identity-on-objects.

Definition 15. Let (V ,o,n, I) and (B,o,n, I) be premonoidal bicategories with the same objects
and unit I. An identity-on-objects, 0-strict premonoidal pseudofunctor V →B is a 0-strict binoidal
pseudofunctor (J,θ ,ζ) such that J is identity-on-objects and the following axioms hold:

1. J strictly preserves the components of the structural transformations: for each A,B,C ∈B we have
JαA,B,C = αA,B,C,JλA = λA, and JρA = ρA;

2. J preserves structural 2-cells up to the icons θ and ζ , according to the axioms in Figure 4.

A Freyd bicategory is an identity-on-objects 0-strict premonoidal pseudofunctor from a monoidal
bicategory of values to a premonoidal bicategory of computations, together with a choice of centrality
witnesses for every value. This choice must be functorial, coherent, and compatible with the interchange
law whenever two values are being interchanged. We formalize this in terms of a strict factorization
through the centre Z (B), as is done for Freyd categories [26]. (Unlike for Freyd categories, this
factorization is additional structure and not a property of the premonoidal pseudofunctor.)

H. Paquet, P. Saville 199

Definition 16. A Freyd bicategory F consists of a monoidal bicategory (V ,⊗, I), a premonoidal bicate-
gory, (B,o,n, I), an identity-on-objects, 0-strict premonoidal pseudofunctor J : V →B, and a binoidal
pseudofunctor JZ factoring J through the centre of B, as pictured below,

V B

Z (B)

forget

J

JZ

such that the following axioms hold, where we write (J f , lcJ f , rcJ f) for JZ (f):
1. The chosen centrality witnesses for the structural 1-cells agree with those in the premonoidal

structure of B.

2. For each value f : A→ A′, the chosen lcJ f satisfies the following compatibility law for every
g ∈B(B,B′) and X ∈B. (This complements the constructions of Proposition 8.)

(f B)X α

A′(gX)

f (B′X)α

(Ag)X

(A′g)X

(f B′)X α

α

αlcJ f
g nX

=

(f B)X α

A′(gX)

f (B′X)α

(Ag)X

f (BX)α

A(gX)

α lcJ f
gnX

α

3. For values x : X → X ′ and y : Y → Y ′, lcJx
Jy and rcJy

Jx are determined by the interchange law in V (4):

XY XY ′ X ′Y ′

X ′Y
J(x)nY

J(Xy)

X ′oJy

J(xY ′)

θ ζ

rcJy
Jx

∼=

J(xy)

= XY X ′Y X ′Y ′
J(xY) J(X ′y)

X ′oJyJ(x)nY

θζ

∼=

J(xy)

=

XY XY ′ X ′Y ′

X ′Y
J(x)nY

J(Xy)

X ′oJy

J(xY ′)

θ ζ

lcJx
Jy

∼=

J(xy)

3.1 Examples of Freyd bicategories

Two of the examples of premonoidal bicategories from Section 2.1 naturally yield Freyd bicategories. First,
in the context of Lemma 9, we have a pseudofunctor S⊗ (−) : B→K and icons θ and ζ constructed
using the equivalences defining the binoidal structure (recall (7)). Moreover, coherence for symmetric
monoidal bicategories [15] gives a unique choice of 2-cell for each lcS⊗ f

g and rcS⊗ f
g , so S⊗ (−) factors

through the centre, yielding the following.
Lemma 17. Let (B,⊗, I) be a symmetric monoidal bicategory and let K be the premonoidal bicategory
defined in Lemma 9. Then the pseudofunctor S⊗ (−) defines a Freyd bicategory B→K .

Similarly, for a bistrong graded monad T , we can think of morphisms in the base monoidal category
C as parameterized maps with trivial parameter space, to construct a Freyd bicategory. The identity-on-
objects pseudofunctor has action on morphisms determined by J(f) := f̃ = η ◦ f . The structural icons θ

and ζ are the identity, and J factors strictly through the centre because every f̃ has a canonical choice of
centrality data.

200 Premonoidal and Freyd Bicategories

Proposition 18. Let (T,η ,µ) be a bistrong graded monad on (C,⊗, I) with grades (E,•, I). Then, writing
dC for the monoidal category C viewed as a locally-discrete monoidal 2-category, there exists a canonical
choice of pseudofunctor J making J : dC→KT a Freyd bicategory.

Finally, recall the unnatural transformations discussed in Section 2.1: although one could expect the
inclusion ι : [B,B] ↪→ [B,B]u to be a Freyd bicategory, this is not true even in the categorical setting: it
is not the case that every natural transformation is central, so ι does not factor through the centre.

4 Freyd bicategories and actions

Freyd categories may equivalently be defined as certain actions of monoidal categories (e.g. [25]). In this
section we show that this is also possible in the two-dimensional setting.

We first define actions of monoidal bicategories. As observed in [19], a left action on a category is
equivalently a bicategory with two objects and certain hom-categories taken to be trivial. We therefore
define a left action on a bicategory so it is equivalently a tricategory (see [13]) with two objects and
certain hom-bicategories taken to be trivial. It follows from the coherence of tricategories ([13, 14]) that
every diagram of 2-cells constructed using the structural data of an action must commute.

Definition 19. A left action of a monoidal bicategory (V ,⊗, I) on a bicategory B consists of a pseudo-
functor . : V ×B→B, together with the following data:

• Pseudonatural adjoint equivalences λ̃A : I .A→ A and α̃X ,Y,C : (X⊗Y).C→ X . (Y .C);

• Invertible modifications as shown below, satisfying the same coherence axioms as p,m, and l in a
monoidal bicategory (e.g. [45]):

((XY)Z).D (XY). (Z .D) X . (Y . (Z .D))

(X(Y Z)).D X . ((Y Z).D)

α̃

α.D p̃

α̃

α̃

X.α̃

X .C

(XI).C X . (I .C)

ρ.C

α̃

X.λ̃

m̃

(IY).C I . (Y .C)

Y .C

α̃

λ̃

λ.C
l̃

A right action / : B×V →B can be defined analogously, with a right unitor ρ̃A : A / I → A, an
associator α̃A,X ,Y : (A/X)/Y → A/ (X⊗Y), and 2-dimensional structural data.

Every monoidal bicategory V has canonical left and right actions on itself given by the monoidal
data. As we will see, a Freyd bicategory J : V →B corresponds to a pair of actions . : V ×B→B
and / : B×V →B that extend the canonical actions: this mirrors the categorical situation. To that end,
we consider a category V -act0s of actions of V and identity-on-objects pseudofunctors that preserve the
action strictly on objects, but weakly on morphisms. (This is a very special case of a more canonical
notion of map between actions.)

Definition 20. Let V be a monoidal bicategory and let (B,.) and (B′,I) be
left actions of V . A 0-strict morphism of actions from (B,.) to (B′,I) is an
identity-on-objects functor J : B→B′ satisfying λ̃ .

A = J(λ̃IA) and α̃.
A,B,C =

J(α̃IA,B,C) for every A,B,C ∈B, equipped with an icon as on the right, which
relates the structural data for the actions according to the axioms below:

V ×B V

V ×B′ B

.

V ×J J

I

θ

H. Paquet, P. Saville 201

IB B

IB′ B′

Jλ̃ .

Jλ̃ .

Jb
IIJb

θ J(λ̃ .)b
=

IB B

IB′ B′

λ̃I

λ̃I

JbIIJb (λ̃I)Jb

(AB)C A(BC)

(A′B′)C′ A′(B′C′)

Jα̃.

Jα̃.

J(f I(gIc))J(α̃.) f ,g,Jc(f⊗g)IJc θ =
(AB)C A(BC)

(A′B′)C′ A′(B′C′)

α̃I

α̃I

(α̃I) f ,g,Jc θf Iθ

(IA)B I(AB)

AB

Jα̃.

Jλ̃ .

λ IB

θ

J̃l. =

(IA)B I(AB)

AB

α̃I

λ̃Iλ IB
l̃I

(AI)B A(IB)

AB

Jα̃.

J(A.λ̃ .)

ρ IB

m̃.

θ

=
(AI)B A(IB)

AB

α̃I

J(A.λ̃ .)

ρ IB
m̃I

θ

((AB)C)D

(A(BC))D

(AB)(CD)

A((BC)D)

A(B(CD))

Jα̃.

Jα̃.

Jα̃.

α ID

AI α̃I

Jp̃.

θ

θ

=

((AB)C)D

(A(BC))D

(AB)(CD)

A((BC)D)

A(B(CD))

α̃I

α̃I

α̃I

α ID

AI α̃I

p̃I

A key example is the following:

Definition 21. For a monoidal bicategory (V ,⊗, I), a left extension of the canonical action of V on itself
is a V -action (B,.), together with a 0-strict morphism (J,θ) : (V ,⊗)→ (B,.) such that θ is invertible.
(We say this is an extension along J.)

We define a right extension analogously; this involves a right action / : B×V →B and an invertible
icon with components ζ f ,g : f / Jg⇒ J(f ⊗ g). The rest of this section is devoted to showing Freyd
bicategories may be equivalently presented as pairs of extensions, which we call Freyd actions.

Definition 22. A Freyd action consists of an identity-on-objects pseudofunctor J : V →B from a monoidal
bicategory (V ,⊗, I) to a bicategory B, together with:

1. A left extension (.,θ) and right extension (/,ζ) along J of the canonical actions of V on itself;

2. A pseudonatural adjoint equivalence κ with 1-cell components κX ,B,Z = J(αX ,B,Z) : (X .B)/Z→
X . (B/Z), subject to the equation below and additional axioms given in Appendix A:

(XY)Z X(Y Z)

(X ′Y ′)Z′ X ′(Y ′Z′)

(f.Jg)/h

κ

κ

J(f⊗(g⊗h))κ f ,Jg,h X ′.ζ θ =

(XY)Z X(Y Z)

(X ′Y ′)Z′ X ′(Y ′Z′)

(f.Jg)/h

J(α)

J(α)

J(f⊗(g⊗h))J(α f ,g,h)θ/Z ζ

We construct an equivalence of categories between Freyd actions and Freyd bicategories, over a fixed
identity-on-objects pseudofunctor J : V →B. (The corresponding categorical result is a bijection, but we
must work modulo the structural isomorphisms, and hence lose the strictness.)

On one side, the category FreydAct(J) has objects Freyd actions (.,θ ,/,ζ ,κ) with underlying
pseudofunctor J. Morphisms ((.,θ),(/,ζ),κ)→ ((.′,θ ′),(/′,ζ),κ ′) are pairs of icons ϑ : .⇒ .′ and

202 Premonoidal and Freyd Bicategories

IB B

IB′ B′

Jλ

Jλ

Jg
IoJg

θ Jλ g =
IB B

IB′ B′

λ

λ

JgIoJg λ Jg

AI A

A′I A′

Jρ

Jρ

J f
J fnI

θ Jρ f =
AI A

A′I A′

ρ

ρ

J fJ fnI ρJ f

(AB)C A(BC)

(A′B)C A′(BC)

Jα

Jα

Jα f ,B,CζζnC =

(AB)C A(BC)

(A′B)C A′(BC)

α

α

J(f (BC))α f ,B,C ζ

(AB)C A(BC)

(AB′)C A(B′C)

Jα

Jα

JαA,g,CζθnC =

(AB)C A(BC)

(AB)C′ A(BC′)

α

α

J(A(gC))αA,g,C Aoζ θ

(AB)C A(BC)

(AB)C′ A(BC′)

Jα

Jα

ABoJh θ JαA,B,h =

(AB)C A(BC)

(AB)C′ A(BC′)

α

α

J(A(Bh))αA,B,h Aoθ θ

(a) Compatibility rules for structural transformations

(IA)B I(AB)

AB

Jα

J(λB)
Jλ

λnB

ζ

Jl =

(IA)B I(AB)

AB

α

λλnB
l

(AB)I A(BI)

AB

Jα

Jρ
AoJρ

Aoρ

θ

Jr =

(AB)I A(BI)

AB

α

Aoρρ

r

(AI)B A(IB)

AB

Jα

J(Aλ)

ρnB Aoλ

J(ρB)
Jm

θζ

=

(AI)B A(IB)

AB

α

AoλρnB
m

((AB)C)D
(A(BC))D

(AB)(CD)

A((BC)D)

A(B(CD))

Jα

Jα

Jα

αnD

Aoα

Jp

ζ

θ

=

((AB)C)D
(A(BC))D

(AB)(CD)

A((BC)D)

A(B(CD))

α

α

α

αnD

Aoα

p

(b) Compatibility rules for structural modifications

Figure 4: Compatibility laws for Definition 15

χ : /⇒ /′ fitting in the diagram in V -act0s as on the left below, such that κ is preserved as on the right:

(B,.) (V ,⊗) (B,/)

(B,.′) (B′,/′)

(idB,ϑ)
(J,θ ′)

(J,θ)

(idB,χ)

(J,ζ ′)

(J,ζ)

(AB)C A(BC)

(A′B′)C′ A′(B′C′)

κ ′

κ ′

f.′(b/′h)χϑ/h (κ ′) f ,b,h
=

(AB)C A(BC)

(A′B′)C′ A′(B′C′)

κ

κ

(f.b)/h κ f ,b,h f.χ ϑ

On the other side, the category FreydBicat(J) has objects Freyd bicategories whose underlying
pseudofunctor is J; these are determined by a premonoidal structure on B and families of icons θ =
{θ A | A ∈B} and {ζ A | A ∈B} making the pseudofunctor J premonoidal. Morphisms (o,n,θ ,ζ)→
(o′,n′,θ ′,ζ ′) are families of icons ϑ A : (Ao−)⇒ (Ao′−) and χA : (−nA)⇒ (−n′ A) making

H. Paquet, P. Saville 203

the identity pseudofunctor B → B premonoidal and such that (J,θ ′,ζ ′) ◦ (idB,ϑ ,χ) = (J,θ ,ζ) as
premonoidal pseudofunctors.

Our correspondence theorem is then as follows.

Theorem 23. For any monoidal bicategory (V ,⊗, I), bicategory B, and identity-on-objects pseudofunctor
J : V →B, the categories FreydAct(J) and FreydBicat(J) are equivalent.

5 Conclusions

Summary. We have introduced bicategorical versions of premonoidal categories (Definition 6) and
Freyd categories (Definition 16). Along the way we have observed subtleties that arise only in the
2-dimensional setting, and discussed simple canonical examples. Finally, we have connected our theory
to the existing literature by showing our definition is equivalent to certain actions in the expected way.

This paper develops abstract categorical notions, but these are intended to be immediately practical.
Specifically, the literature contains no satisfying account of call-by-value languages in bicategories of
games ([31, 3]), spans [6], or profunctors [7], and this work offers a technical basis to fill that gap. Our
next steps will be in this direction.

Perspectives. This work takes place in a broader line of research on bicategorical semantic structures,
and there are several avenues to explore. We expect a tight connection between Freyd bicategories and
recently-developed notions of strength for pseudomonads on monoidal bicategories ([46, 35, 42]). Freyd
bicategories should also be related to a 2-dimensional notion of arrows, based on Cat-valued profunctors,
yet to be developed ([16, 4]).

In particular, the Kleisli bicategory of a strong pseudomonad should be premonoidal, and the canonical
functor from the base category should give a Freyd structure, and conversely, a closed Freyd bicategory
should be equivalent to a strong pseudomonad together with Kleisli exponentials. From a syntactic
perspective, we expect cartesian Freyd bicategories to have an internal language similar to fine-grained
call-by-value λ -calculus [26], with the addition of rewrites between terms (c.f. [41, 17, 18, 8]).

In a more theoretical direction, although the centre of a premonoidal category is always a monoidal
category, this does not happen in the bicategorical setting. Roughly speaking, for central f and g, the
interchange of f and g is witnessed independently by 2-cells lc f

g and (rcg
f)
−1. This leads to ambiguity

and it is not clear how to define the pseudofunctor ⊗; indeed, it is not even clear that these 2-cells are
themselves central. In this paper we have shown that the centre is a binoidal bicategory, and in further
work we will give a more complete description of its structure, along with an alternative presentation of
Freyd bicategories in terms of centrality witnesses.

Acknowledgements. HP was supported by a Royal Society University Research Fellowship and by a
Paris Region Fellowship co-funded by the European Union (Marie Skłodowska-Curie grant agreement
945298). PS was supported by the Air Force Office of Scientific Research under award number FA9550-
21-1-0038. Both authors thank D. McDermott, N. Arkor, and the Oxford PL group for useful discussions.

References

[1] J. C. Baez, B. Fong & B. S. Pollard (2016): A compositional framework for Markov processes. Journal of
Mathematical Physics 57(3), doi:10.1063/1.4941578.

https://doi.org/10.1063/1.4941578

204 Premonoidal and Freyd Bicategories

[2] J. Bénabou (1967): Introduction to bicategories. In: Reports of the Midwest Category Seminar, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 1–77, doi:10.1007/BFb0074299.

[3] S. Castellan, P. Clairambault, S. Rideau & G. Winskel (2017): Games and Strategies as Event Structures.
Logical Methods in Computer Science Volume 13, Issue 3, doi:10.23638/LMCS-13(3:35)2017.

[4] Alexander S Corner (2016): Day convolution for monoidal bicategories. Ph.D. thesis, University of Sheffield.

[5] G. S. H. Cruttwell, B. Gavranović, N. Ghani, P. Wilson & F. Zanasi (2022): Categorical Foundations of
Gradient-Based Learning. In: Programming Languages and Systems, doi:10.1007/978-3-030-99336-8_1.

[6] J. L. Fiadeiro & V. Schmitt (2007): Structured Co-spans: An Algebra of Interaction Protocols. In: Algebra
and Coalgebra in Computer Science, pp. 194–208, doi:10.1007/978-3-540-73859-6_14.

[7] M. Fiore, N. Gambino, M. Hyland & G. Winskel (2007): The cartesian closed bicategory of generalised species
of structures. Journal of the London Mathematical Society 77(1), pp. 203–220, doi:10.1112/jlms/jdm096.

[8] M. Fiore & P. Saville (2019): A type theory for cartesian closed bicategories. In: 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), doi:10.1109/LICS.2019.8785708.

[9] B. Fong, D. Spivak & R. Tuyeras (2019): Backprop as Functor: A compositional perspective on su-
pervised learning. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
doi:10.1109/lics.2019.8785665.

[10] M. Gaboardi, S. Katsumata, D. Orchard & T. Sato (2021): Graded Hoare Logic and its Categorical Semantics.
In: Programming Languages and Systems, pp. 234–263, doi:10.1007/978-3-030-72019-3_9.

[11] Z. Galal (2020): A Profunctorial Scott Semantics. In: 5th International Conference on Formal Structures for
Computation and Deduction (FSCD 2020), doi:10.4230/LIPICS.FSCD.2020.16.

[12] F. R. Genovese, J. Herold, F. Loregian & D. Palombi (2021): A Categorical Semantics for Hierarchical Petri
Nets. Electronic Proceedings in Theoretical Computer Science 350, pp. 51–68, doi:10.4204/eptcs.350.4.

[13] R. Gordon, A. J. Power & R. Street (1995): Coherence for tricategories. Memoirs of the American Mathemat-
ical Society, doi:10.1090/memo/0558.

[14] N. Gurski (2013): Coherence in Three-Dimensional Category Theory. Cambridge University Press,
doi:10.1017/CBO9781139542333.

[15] N. Gurski & A. Osorno (2013): Infinite loop spaces, and coherence for symmetric monoidal bicategories.
Advances in Mathematics 246, pp. 1 – 32, doi:10.1016/j.aim.2013.06.028.

[16] C. Heunen & B. Jacobs (2006): Arrows, like Monads, are Monoids. In: 22nd Annual Conference on
Mathematical Foundations of Programming Semantics (MFPS), doi:10.1016/j.entcs.2006.04.012.

[17] B. P. Hilken (1996): Towards a proof theory of rewriting: the simply typed 2λ -calculus. Theoretical Computer
Science 170(1), pp. 407–444, doi:10.1016/S0304-3975(96)80713-4.

[18] T. Hirschowitz (2013): Cartesian closed 2-categories and permutation equivalence in higher-order rewriting.
Logical Methods in Computer Science 9, pp. 1–22, doi:10.2168/LMCS-9(3:10)2013.

[19] G. Janelidze & G. M. Kelly (2001): A note on actions of a monoidal category. Theory and Applications of
Categories 9(4), pp. 61–91. Available at tac.mta.ca/tac/volumes/9/n4/n4.pdf.

[20] A. Jeffrey (1997): Premonoidal categories and a graphical view of programs.

[21] S. Katsumata (2014): Parametric effect monads and semantics of effect systems. In: 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), doi:10.1145/2535838.2535846.

[22] A. Kerinec, G. Manzonetto & F. Olimpieri (2023): Why Are Proofs Relevant in Proof-Relevant Models?
Proceedings of the ACM on Programming Languages (POPL), doi:10.1145/3571201.

[23] S. Lack (2008): Icons. Applied Categorical Structures 18(3), pp. 289–307, doi:10.1007/s10485-008-9136-5.

[24] T. Leinster (2004): Higher operads, higher categories. London Mathematical Society Lecture Note Series
298, Cambridge University Press, doi:10.1017/CBO9780511525896.

[25] P. B. Levy (2003): Call-By-Push-Value: A Functional/Imperative Synthesis. Springer Netherlands,
doi:10.1007/978-94-007-0954-6.

https://doi.org/10.1007/BFb0074299
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.1007/978-3-030-99336-8_1
https://doi.org/10.1007/978-3-540-73859-6_14
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.1109/LICS.2019.8785708
https://doi.org/10.1109/lics.2019.8785665
https://doi.org/10.1007/978-3-030-72019-3_9
https://doi.org/10.4230/LIPICS.FSCD.2020.16
https://doi.org/10.4204/eptcs.350.4
https://doi.org/10.1090/memo/0558
https://doi.org/10.1017/CBO9781139542333
https://doi.org/10.1016/j.aim.2013.06.028
https://doi.org/10.1016/j.entcs.2006.04.012
https://doi.org/10.1016/S0304-3975(96)80713-4
https://doi.org/10.2168/LMCS-9(3:10)2013
tac.mta.ca/tac/volumes/9/n4/n4.pdf
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/3571201
https://doi.org/10.1007/s10485-008-9136-5
https://doi.org/10.1017/CBO9780511525896
https://doi.org/10.1007/978-94-007-0954-6

H. Paquet, P. Saville 205

[26] P. B. Levy, J. Power & H. Thielecke (2003): Modelling environments in call-by-value programming languages.
Information and Computation 185(2), pp. 182–210, doi:10.1016/s0890-5401(03)00088-9.

[27] S. Mac Lane & R. Paré (1985): Coherence for bicategories and indexed categories. Journal of Pure and
Applied Algebra 37, pp. 59 – 80, doi:10.1016/0022-4049(85)90087-8.

[28] D. McDermott & T. Uustalu (2022): Flexibly Graded Monads and Graded Algebras. In: Lecture Notes in
Computer Science, Springer International Publishing, pp. 102–128, doi:10.1007/978-3-031-16912-0_4.

[29] D. McDermott & T. Uustalu (2022): What Makes a Strong Monad? Electronic Proceedings in Theoretical
Computer Science 360, pp. 113–133, doi:10.4204/eptcs.360.6.

[30] P.-A. Melliès (2012): Parametric monads and enriched adjunctions. Available at https://www.irif.fr/
~mellies/tensorial-logic/8-parametric-monads-and-enriched-adjunctions.pdf.

[31] P.-A. Melliès (2021): Asynchronous Template Games and the Gray Tensor Product of 2-Categories. In: 36th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), doi:10.1109/lics52264.2021.9470758.

[32] E. Moggi (1989): Computational lambda-calculus and monads. In: Proceedings, Fourth Annual Symposium
on Logic in Computer Science, IEEE Comput. Soc. Press, doi:10.1109/lics.1989.39155.

[33] E. Moggi (1991): Notions of computation and monads. Information and Computation 93(1), pp. 55–92,
doi:10.1016/0890-5401(91)90052-4.

[34] F. Olimpieri (2021): Intersection Type Distributors. In: 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), doi:10.1109/lics52264.2021.9470617.

[35] H. Paquet & P. Saville (2023): Strong pseudomonads and premonoidal bicategories. arXiv:2304.11014.

[36] J. Power (2002): Premonoidal categories as categories with algebraic structure. Theoretical Computer
Science 278(1-2), pp. 303–321, doi:10.1016/s0304-3975(00)00340-6.

[37] J. Power & E. Robinson (1997): Premonoidal categories and notions of computation. Mathematical Structures
in Computer Science 7(5), pp. 453–468, doi:10.1017/s0960129597002375.

[38] J. Power & H. Thielecke (1997): Environments, continuation semantics and indexed categories. In: Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp. 391–414, doi:10.1007/bfb0014560.

[39] M. Román (2022): Promonads and String Diagrams for Effectful Categories. CoRR abs/2205.07664,
doi:10.48550/arXiv.2205.07664. arXiv:2205.07664.

[40] C. J. Schommer-Pries (2009): The Classification of Two-Dimensional Extended Topological Field Theories.
Ph.D. thesis, University of California. Available at https://arxiv.org/pdf/1112.1000.pdf.

[41] R. A. G. Seely (1987): Modelling Computations: A 2-Categorical Framework. In: 2nd Annual IEEE Symp.
on Logic in Computer Science (LICS).

[42] A. Slattery (2023): Pseudocommutativity and Lax Idempotency for Relative Pseudomonads. arXiv:2304.14788.

[43] A. L. Smirnov (2008): Graded monads and rings of polynomials. Journal of Mathematical Sciences 151(3),
pp. 3032–3051, doi:10.1007/s10958-008-9013-7.

[44] S. Staton (2017): Commutative Semantics for Probabilistic Programming. In: Programming Languages and
Systems, Springer Berlin Heidelberg, pp. 855–879, doi:10.1007/978-3-662-54434-1_32.

[45] M. Stay (2016): Compact Closed Bicategories. Theories and Applications of Categories 31(26), pp. 755–798.
Available at http://www.tac.mta.ca/tac/volumes/31/26/31-26.pdf.

[46] M. Tanaka (2005): Pseudo-Distributive Laws and a Unified Framework for Variable Binding. Ph.D. thesis, Uni-
versity of Edinburgh. Available at https://www.lfcs.inf.ed.ac.uk/reports/04/ECS-LFCS-04-438/
ECS-LFCS-04-438.pdf.

[47] H. Thielecke (1997): Continuation Semantics and Self-adjointness. Electronic Notes in Theoretical Computer
Science 6, pp. 348–364, doi:10.1016/s1571-0661(05)80149-5.

[48] T. Tsukada, K. Asada & C.-H. L. Ong (2018): Species, Profunctors and Taylor Expansion Weighted
by SMCC. In: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
doi:10.1145/3209108.3209157.

https://doi.org/10.1016/s0890-5401(03)00088-9
https://doi.org/10.1016/0022-4049(85)90087-8
https://doi.org/10.1007/978-3-031-16912-0_4
https://doi.org/10.4204/eptcs.360.6
https://www.irif.fr/~mellies/tensorial-logic/8-parametric-monads-and-enriched-adjunctions.pdf
https://www.irif.fr/~mellies/tensorial-logic/8-parametric-monads-and-enriched-adjunctions.pdf
https://doi.org/10.1109/lics52264.2021.9470758
https://doi.org/10.1109/lics.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1109/lics52264.2021.9470617
https://arxiv.org/abs/2304.11014
https://doi.org/10.1016/s0304-3975(00)00340-6
https://doi.org/10.1017/s0960129597002375
https://doi.org/10.1007/bfb0014560
https://doi.org/10.48550/arXiv.2205.07664
https://arxiv.org/abs/2205.07664
https://arxiv.org/pdf/1112.1000.pdf
https://arxiv.org/abs/2304.14788
https://doi.org/10.1007/s10958-008-9013-7
https://doi.org/10.1007/978-3-662-54434-1_32
http://www.tac.mta.ca/tac/volumes/31/26/31-26.pdf
https://www.lfcs.inf.ed.ac.uk/reports/04/ECS-LFCS-04-438/ECS-LFCS-04-438.pdf
https://www.lfcs.inf.ed.ac.uk/reports/04/ECS-LFCS-04-438/ECS-LFCS-04-438.pdf
https://doi.org/10.1016/s1571-0661(05)80149-5
https://doi.org/10.1145/3209108.3209157

206 Premonoidal and Freyd Bicategories

[49] L. Wester Hansen & M. Shulman (2019): Constructing symmetric monoidal bicategories functorially.
arXiv:1910.09240.

A Missing coherence axioms for Definition 22

We complete the list of coherence equations for Definition 22. In the diagrams that follow, we consider
b : B→ B′ and c : C→C′ in B and, for f : A→ A′ and g : B→ B′ in V , we write ν for the composite

J f /g
ζ
=⇒ J(f ⊗g) θ

=⇒ f .Jg. In Theorem 23, κ represents the pseudonaturality of the associator α in its
middle argument, and these axioms enforce the appropriate modification conditions (c.f. Figure 3).

(IA)B AB

(IA′)B I(AB) A′B

I(A′B)

α λ

α λ

a/B

λ/B

l̃.

ν

κ I,a,B λ̃ . =

(IA)B AB

(IA′)B A′B

I(A′B)

(I.a)/B

α λ

λ/B

λ/B

λ̃ ./B

l̃.

ν

(AB)I AB

(AB′)I A(BI) AB′

A(B′I)

α
A.ρ

A.b

ρ

α
r̃/

ν

κA,b,I A.ρ̃/ =

(AB)I AB

(AB′)I AB′

A(B′I)

(A.b)/I

α A.ρ

ρ

ρ

ν

r̃/

ρ̃/

((AB)C)D ((AB′)C)D

(A(BC)))D (A(B′C))D

A((BC)D) A((B′C)D)

A(B(CD)) A(B′(CD))

((A.b)/C)/D

α/D

A/α

α◦α

α/D

α

A.α

A.(b/CD)

ν

p̃/

κA,b,C/D

κA,b/C,D

A.α̃/

=

((AB)C)D ((AB′)C)D

(A(BC)))D (AB)(CD) (AB′)(CD)

A((BC)D)

A(B(CD)) A(B′(CD))

((A.b)/C)/D

α/D

α

A.α

A.(b/CD)

α

α

α

α

ν

κA,b,CD

α̃/

p̃/

((AB)C)D ((AB)C′)D

(A(BC)))D (A(BC′))D

A((BC)D) A((BC′)D)

A(B(CD)) A(B(C′D))

(AB.c)/D

α/D

A/α

α◦α

α/D

α

A.α

A.(B.(c/D)

ν

p̃/

α̃./D

κA,B.c,D

A.κB,c,D

=

((AB)C)D ((AB)C′)D

(A(BC)))D (AB)(CD) (AB)(C′D)

A((BC)D)

A(B(CD)) A(B(C′D))

((AB.c)/D

α/D

α

A.α

A.(B.(c/D)

α

α

α

α

ν

α̃.

κAB,c,D

p̃/

B Proofs for Section 4

B.1 From Freyd action to Freyd bicategory

Fix a Freyd action (.,θ ,/,ζ ,κ) over J : V → B. We construct a Freyd bicategory with the same
underlying pseudofunctor. For the unit of the premonoidal structure we take the unit I for V . Next define
Ao (−) := A. (−) and (−)nB := (−)/B. The icons θ and ζ for the Freyd action then determine the
required icons component-wise:

Ao J(−) = A. (−)
θA,−
==⇒ J(A⊗−) , J(−)nB = J(−)/B

ζ−,B
==⇒ J(−⊗B).

https://arxiv.org/abs/1910.09240

H. Paquet, P. Saville 207

The left- and right unitors are given by λ̃ . : IA→ A and λ̃ / : AI → A respectively, and the associator
by J(α) with 2-cell components given by the witnessing 2-cells for α̃., κ , and α̃/. The compatibility
laws of a Freyd action immediately give the compatibility laws of a Freyd bicategory. Similarly, the
structural modifications are wholly determined by the definition of a Freyd bicategory: for example, the
pentagonator p in B is J(p) composed with θ and ζ as in Definition 16. The axioms of a premonoidal
bicategory are then checked using the compatibility laws and the corresponding axioms in V .

It remains to show that the 2-cell components of θ and ζ are central and that J factors through the
centre. The former is a short direct calculation. For the latter, for f : X → X ′ in V and a : A→ A′ in
B we define lc f

a using θ ,ζ and the interchange laws for the pseudofunctors underlying the actions as

in the diagram to the right; rc f
a is similar. We write ν for the composite J f / g

ζ
=⇒ J(f ⊗ g) θ

=⇒ f . Jg.

lcJ f
a :=

XA X ′A

XA′ X ′A′

X.a X ′.a

f.A′

J(f)/A

f.A

J(f)/A′

∼=

ν

ν

Thus, we define J′(f) := (f , lcJ f , rcJ f). For any 2-cell σ : f ⇒ f ′ in
V , we get that J(σ) is natural by naturality of all the data defining
lcJ f and rcJ f . Finally, one shows that the unit and compositor for J are
central using the identity and composition laws of the icons θ and ζ .

In summary, we have the following:
Proposition 24. Every Freyd action with underlying pseudofunctor
J : V →B determines a Freyd bicategory with the same underlying
pseudofunctor.

B.2 From Freyd bicategory to Freyd action

Let F =(V
J−→B) be a Freyd bicategory. First we shall show how to construct a left action . : V ×B→B;

the right action is constructed similarly. Thereafter we shall show how to construct the rest of the data for
a Freyd action.

XB

X ′B X ′′B

X ′B′ X ′′B′ X ′′B′′

J(f)nB

X ′nb

J(f ′)nB′ X ′′ob

J(f ′)nB

X ′′ob

J(f ′ f)nB

X ′′o(b′b)
lcJ f ′

b

∼=

∼=

From Freyd bicategory to a left action. We get a left action
. : V ×B→ V as follows. On objects, we set X .B := X⊗B.

The action on 1-cells is f . b :=
(
XB

J(f)nB−−−−→ X ′B X ′ob−−−→ X ′B′
)

with the evident action on 2-cells. The unitor is constructed from
the unitors for the premonoidal structure, but the compositor
relies on centrality. We define φx,b as on the right, where we
write just ∼= for the compositors.

Next note that X .b = (X ob)◦ (JIdX nB) so the unitor also gives a canonical structural isomorphism
(X .b)∼= (X ob) yielding an icon (X .−)⇒ (X o−). So we may define the unitor to be the composite

λ̃ := (I .−)
∼=
=⇒ (I o−) λ

=⇒ id. For the associator, we take the 1-cell components to be as for the

premonoidal structure in B, so that α̃X ,Y,C := αX ,Y,C, and define the 2-cell components using θ ,ζ , and the
associator for the premonoidal structure:

α̃ f ,g,c :=

(XY)C (X ′Y ′)C (X ′Y ′)C′

(X ′Y)C

X(YC) X ′(YC) X ′(Y ′C) X ′(Y ′C′)

J(f⊗g)nC

α

J(f)n(YC)

(X ′Y ′)oa

X ′o(J(g)nC) X ′n(Y ′na)

α
(XJ(g))C(J(f)Y)C αX ′,Y ′,c

αJ f ,Y,C αX ′,Jg,C

∼=
θCζC

208 Premonoidal and Freyd Bicategories

The compatibility laws on λ̃ and α̃ hold by the corresponding compatibility laws of a Freyd bicategory.
Turning now to the structural modifications, because the structural transformations agree with those of
B on 1-cells, we take the corresponding modifications for the premonoidal structure. Showing these are
indeed modifications relies on the condition that lcJ f

Jg = (rcJg
J f)
−1. Consider the case of m̃. As 2-cells,

m̃A,B =mA,B but m̃ is required to be a modification in two arguments, while the axioms of a premonoidal
bicategory make mA,B a modification in each argument separately: in one argument, using rcλ , and in the
other argument using lcρ . Unpacking the equations for showing m̃ is a modification at maps a : A→ A′

and x : X → X ′, we get an instance of lcJa
λ

arising from the compositor for .. To apply the modification
law for m, therefore, we first need to pass through the equality lcJa

λ
= lcJa

Jλ
= (rcJλ

Ja)
−1.

The axioms of an action hold immediately from the axioms of a premonoidal bicategory. The proof

for the right action case is analogous, except one sets a/g :=
(
AY anY−−→ A′Y

A′oJg−−−→ A′Y ′
)

and defines the
compositor using right centrality. In summary, therefore, we have the following.

Proposition 25. Every Freyd bicategory (V
J−→B) determines a left action . : V ×B→B and a right

action / : B×V → V .

From Freyd bicategory to Freyd action. It remains to show the actions just constructed extend the
canonical action of V on itself, and show they are compatible.

X ′Y

XY X ′Y ′

J(f)nY X ′oJ(g)

J(f⊗g)

ζ θ∼=

First we define icons θ ′ and ζ ′ by noting that f .J(g) = (X ′o
J(g)) ◦ (J(f)nY) = J(f) / g so that we can set θ ′f ,g and ζ ′f ,g
both to be the composite diagram on the right. In particular,
θ ′f ,Y and ζ ′X ,g are just θ f and ζg, respectively, composed with
structural isomorphisms.

Now we define κ . On 1-cells we take just α , but on 2-cells we take a definition similar to the proof of
naturality in the 1-dimensional case: for f : X → X ′ and h : Z→ Z′ in V and b : B→ B′ in B we take:

κ f ,b,h :=

(XB)Z (X ′B′)Z (X ′B′)Z′

(X ′B)A

X(BZ) X ′(BZ) X ′(B′Z) X ′(B′Z′)

X ′o(b/h)

∼=

f.(b/h)

(f.b)/h

(J(f)B)Z

(f.b)nZ

(Xob)Z

α

J(f)n(BZ)

(X ′B′)oJh

X ′o(bnZ) X ′n(B′nJh)

ααX ′,B′,Jh

∼=

αJ f ,B,Z αX ′,b,Z

The rest of the equations to check for the Freyd action are proven by applying the various compatibility
laws to massage the statement into the corresponding axiom given by the definition of a Freyd bicategory.
This completes the proof of the following.

Proposition 26. Every Freyd bicategory (V
J−→B) determines a Freyd action with the same underlying

pseudofunctor.

H. Paquet, P. Saville 209

B.3 The correspondence theorem

Theorem 23. For any monoidal bicategory (V ,⊗, I), bicategory B, and identity-on-objects pseudofunctor
J : V →B, the categories FreydAct(J) and FreydBicat(J) are equivalent.

Proof. We define functors F : FreydAct� FreydBicat : G given on objects by the constructions in
Proposition 24 and Proposition 26 respectively. So suppose (ϑ ,χ) is a map in FreydAct. Then F(ϑ ,χ) :=
(Fϑ ,Fχ) is defined by taking

(Fϑ)A
f :=

(
(Ao f) = (IdA . f)

ϑIdA , f
===⇒ (IdA .

′ f) = (Ao′ f)
)

(Fχ)A
f :=

(
(f nA) = (f / IdA)

χ f ,IdA===⇒ (f /′ IdA) = (f nA)
)

Conversely, given a map (ϑ ,χ) in FreydBicat we define G(ϑ ,χ) := (Gϑ ,Gχ) to be

(Gϑ) f ,b := XB X ′B X ′B′
J fnB

J fn′B

X ′ob

X ′o′b

ϑ X ′
b

χB
J f

f.b

∼=

∼=

f.′b

, (Gχ)a,g := AX A′X A′X ′
anX

an′X

A′oJg

A′o′Jg

ϑ A′
JgχX

a

a/g

∼=

∼=

a/′g

One shows both F and G are well-defined by a long calculation using the compatibility properties on one
side to show the required compatibility condition on the other side.

We now show that GF ∼= id and FG ∼= id. Given an action A := (.,θ ,/,ζ ,κ), the composite
GF(A) has left action .′ given by f .′ b = (IdX ′ . b) ◦ (J f / IdB) and right action /′ given by a /′ g =
(IdA′ .Jg)◦ (a/ IdY) so we get an obvious choice of icons .′⇒ . and /′⇒ / given by

XB X ′B X ′B′
IdX ′.b

J f/IdB

f.IdB

ζ

θ

∼=

f.b

AY A′Y A′Y ′
a/IdY

IdA′.Jg

IdA′/g

θ

ζ

∼=

a/g

These commute with all the data because θ and ζ do, and forms a natural isomorphism GF(A) ∼= A
because morphisms in FreydAct commute with the icons of the actions.

Finally, to show that FG ∼= id consider a Freyd bicategory F := (o,θ ,n,ζ). Then FG(F) has
an′ B := (X ′o JIdB)◦ (anB) and Ao′ b := (Aob)◦ (JIdA nB) so we have evident structural isomor-
phisms (an′ B)∼= (anB) and (Ao′ b)∼= (Aob). These commute with all the data and define a natural
isomorphism FG(F)∼= F by straightforward applications of coherence.

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 210–225, doi:10.4204/EPTCS.397.13

Structured and Decorated Cospans from the Viewpoint of
Double Category Theory

Evan Patterson
Topos Institute

evan@epatters.org

Structured and decorated cospans are broadly applicable frameworks for building bicategories or
double categories of open systems. We streamline and generalize these frameworks using central
concepts of double category theory. We show that, under mild hypotheses, double categories of
structured cospans are cocartesian (have finite double-categorical coproducts) and are equipments.
The proofs are simple as they utilize appropriate double-categorical universal properties. Maps
between double categories of structured cospans are studied from the same perspective. We then
give a new construction of the double category of decorated cospans using the recently introduced
double Grothendieck construction. Besides its conceptual value, this reconstruction leads to a natural
generalization of decorated cospans, which we illustrate through an example motivated by statistical
theories and other theories of processes.

1 Introduction

A central theme of applied category theory is the mathematical modeling of open systems: physical or
computational systems that interact with each other along boundaries or interfaces. Within this tradition,
mathematical models of open systems are most commonly based on spans or cospans, an idea now at least
twenty-five years old [17, 22]. Two general frameworks for building open systems using cospans have
emerged: structured cospans [5, 11] and decorated cospans [6, 12]. Complementing the mathematical
theory, structured cospans have been implemented in the programming framework Catlab.jl and used to
create software tools for epidemiological modeling based on open Petri nets [7, 18] and open stock and
flow diagrams [3]. Structured and decorated cospans are now essential tools of applied and computational
category theory.

The categorical description of open systems based on cospans has evolved over time. Some early
works studied categories of cospans, which compose by taking pushouts. Because pushouts are defined
only up to isomorphism, the morphisms of these categories must be isomorphism classes of cospans.
This is unfaithful to implementation, where one always computes with representatives of an equivalence
class, rather than the equivalence class itself. More fundamentally, systems generally have morphisms of
their own—for example, Petri nets come with homomorphisms between them—and these are lost if open
systems are taken to be morphisms, rather than objects, of a category.

Both problems are solved by passing from categories to a two-dimensional categorical structure, of
which the best-studied are bicategories. Yet this presents its own difficulties. In addition to composing
along their boundaries, open systems generally admit a symmetric monoidal product that juxtaposes
two of them “in parallel.” One then needs to construct not just a bicategory but a symmetric monoidal
bicategory of open systems. Monoidal bicategories are inherently complicated because they are properly
a three-dimensional categorical structure (namely, tricategories with one object). It was noticed that rather
than constructing a monoidal bicategory directly, it can be easier to first construct a monoidal double

http://dx.doi.org/10.4204/EPTCS.397.13
https://github.com/AlgebraicJulia/Catlab.jl

Evan Patterson 211

category and then obtain the monoidal bicategory from the globular cells of the double category [16, 24].
But since a double category is at least as good as a bicategory, one may as well consider double categories
of open systems. That is now what is typically done. In recent work, both structured cospans [5] and
decorated cospans [6] have been assembled into symmetric monoidal double categories.

The thesis of this paper is that viewing open systems as double categories is not merely a technical
device or a means to constructing bicategories, but a source of mathematical insights that cannot be
obtained at the 1-categorical or even bicategorical levels. To understand why, consider the philosophy
behind the modern theory of double categories, as developed principally by Grandis and Paré, beginning
with an account of double limits and colimits [15], and exposited recently by Grandis [14]. Another
important expression of this viewpoint is Shulman’s theory of equipments [23].

A double category is succinctly defined as a pseudocategory in Cat.1 Thus, a double category D
consists of a category of objects,D0; a category of morphisms,D1; source and target functors, src, tgt :
D1⇒D0; and external composition and identity operations, � :D1×D0 D1→D1 and id :D0→D1,
which obey the category axioms up to coherent globular isomorphisms inD1. The objects of the category
D0 are called the objects of the double categoryD, the morphisms ofD0 the arrows ofD, the objects of
D1 the proarrows of D, and the morphisms of D1 the cells of D. In particular, on this definition, the
proarrows of a double category are first and foremost the objects of a category, which happen to have a
source and target. In important examples of double categories, such as those of spans, cospans, relations,
matrices, profunctors, and bimodules, the proarrows are best thought of in precisely this way, as objects
that happen to have a source and target. Crucially, this also applies to double categories of open systems,
which are systems that happen to have boundaries. Shulman calls such double categories (or rather their
underlying bicategories) “M od-like” after the bicategory of bimodules between rings [23].

Whether one thinks of proarrows primarily as objects or morphisms may seem a small matter of
perspective, but it gains significance through the modern theory of double categories, where proarrows
play the role of objects in all of the main concepts, such as natural transformations, limits and colimits,
commas, adjunctions, and the Grothendieck construction. The theory is thus well suited to describe open
systems, including those based on spans and cospans. In this paper, we study structured and decorated
cospans from the viewpoint of double category theory.2

After reviewing their structure as a double category, we show that structured cospans form a cocartesian
double category, a statement that is stronger yet easier to prove than being a symmetric monoidal double
category. We also show that structured cospans are an equipment, so altogether form a cocartesian
equipment (Section 2). Here we see the advantages of double-categorical universal properties. We then
turn to decorated cospans (Section 3), reconstructing the double category of decorated cospans as an
application of the double Grothendieck construction [10]. As a byproduct, we also generalize decorated
cospans in several directions, which we illustrate through an example motivated by categorical statistics.

2 Structured Cospans as a Cocartesian Equipment

Structured cospans represent open systems as cospans whose feet are restricted compared with the apex
[5, 11]. A simple example is open graphs with boundaries restricted to be discrete graphs. Compared
with other techniques, structured cospans have the advantage of being particularly easy to use, as the

1Some authors call this structure a pseudo double category but since all double categories in this paper are pseudo, we prefer
to omit the adjective. Likewise, our double functors are pseudo by default. For complete definitions of these concepts, see [14].

2This paper synthesizes a series of blog posts by the author: “Grothendieck construction for double categories” (2022),
“Decorated cospans via the Grothendieck construction” (2022), “Structured cospans as a cocartesian equipment” (2023).

https://topos.site/blog/2022/05/grothendieck-construction-for-double-categories/
https://topos.site/blog/2022/05/decorated-cospans-via-the-grothendieck-construction/
https://topos.site/blog/2023/03/structured-cospans-as-a-cocartesian-equipment/

212 Structured and Decorated Cospans via Double Category Theory

hypotheses for the construction are often easy to check in examples. However, proofs that the construction
itself works are more involved because the mathematical object being constructed—a symmetric monoidal
double category—is complicated, involving a large number of coherence conditions. Three different
correctness proofs for structured cospans have been given: the first one by direct but lengthy verification
of the axioms [9] and two later ones by more conceptual routes that however import other sophisticated
concepts. These concepts are pseudocategories in the 2-category of symmetric monoidal categories [5]
and symmetric monoidal bifibrations [6].

Such difficulties can be bypassed by viewing structured cospans in a different light, as forming a
cocartesian double category, even a cocartesian equipment. Just as a cartesian or cocartesian category
can be given the structure of a symmetric monoidal category by making a choice of finite products or
coproducts, so can a cartesian or cocartesian double category be given the structure of a symmetric
monoidal double category. It is, however, much easier to prove cocartesianness than to directly construct
the symmetric monoidal product. This circumstance highlights a recurring tension in category theory:
that between universal properties and algebraic structures. Although algebraic structure is arguably more
flexible, universal properties, when they can be found, are extremely powerful because many consequences
and coherences flow directly from the defining existence and uniqueness statement, which is often easy to
verify in particular situations. Both cocartesian double categories and equipments are defined by universal
properties, whereas a symmetric monoidal product is a structure on a double category.

2.1 Double Category of Structured Cospans

We begin by reviewing the definition of structured cospans and their structure as a double category [5].
Proposition 2.1. Let L : A→ X be a functor into a category X with pushouts. Then there is a double
category LCsp(X) that has

• as objects, the objects of A;
• as arrows, the morphisms of A;
• as proarrows a 7→ b, L-structured cospans with feet a and b, which are cospans in X of the form

La→ x← Lb;

• as cells
a b

c d

xp
f g

yp
, morphisms of L-structured cospans with foot maps f and g, which are mor-

phisms of cospans in X of the form

L(a) x L(b)

L(d) y L(c)

L f h Lg .

Composition in the categories LCsp(X)0 and LCsp(X)1 is by composition in A andCsp(X)1, respectively,
and external composition in LCsp(X) is given by that in Csp(X), i.e., by pushout in X.

We take this result as given. The proof is straightforward because the double category structure of
L-structured cospans is inherited from that of cospans in X. For details, see [5, Theorem 2.3].

2.2 Cocartesian Equipment of Structured Cospans

We now prove that structured cospans form an equipment, then a cocartesian double category, and hence
a cocartesian equipment. The reader may find it helpful to review the definitions of cocartesian double

Evan Patterson 213

categories and equipments in Appendix A.
Proposition 2.2. Let L : A→ X be a functor into a category X with pushouts. Then the double category
of L-structured cospans is an equipment.

Proof. To restrict an L-structured cospan (c,Lc→ y← Ld,d) along arrows f : a→ c and g : b→ d in A,
simply restrict the underlying cospan in X along L f and Lg, using the fact that Csp(X) is an equipment
(Example A.3). The universal property holds as a special case of the universal property in Csp(X):

La′ x Lb′

La Lb

Lc y Ld
` r

Lg′L f ′

h

L f Lg

=

La′ x Lb′

La y Lb

Lc y Ld

L f

L f ′ Lg′

Lg

` r

`◦L f r◦Lg

h

For the double category of L-structured cospans to be cocartesian, extra assumptions are needed.
Clearly, the category A must itself have finite coproducts. Also, these must preserved by the functor
L : A→ X. The latter is often is easy to verify in examples by exhibiting L as a left adjoint.
Theorem 2.3. Suppose A is a category with finite coproducts, X is a category with finite colimits, and
L : A→ X is a functor that preserves finite coproducts. Then the double category of L-structured cospans
is cocartesian, hence also a cocartesian equipment.

Proof. Because the categories A and X have finite coproducts, there are canonical comparison maps

La,a′ := [L(ιa),L(ιa′)] : L(a)+L(a′)→ L(a+a′), a,a′ ∈ A,

and L0 := !L(0) : 0X→ L(0A). For any maps f : a→ c and f ′ : a′→ c in A, the comparisons satisfy

L(a)+L(a′) L(a+a′)

L(c)
[L f ,L f ′] L([f , f ′])

La,a′

as shown by precomposing both sides with the coprojections ιLa and ιLa′ to obtain L f and L f ′, respectively.
Since by assumption L preserves finite coproducts, the comparisons La,a′ and L0 are, in fact, isomorphisms.

We now prove that the categories underlying LCsp(X) are cocartesian. By assumption, the category
LCsp(X)0 = A has finite coproducts. Since the comparison L0 is an isomorphism, L(0A) is initial in X
and the initial L-structured cospan is (0A, idL(0A),0A). Furthermore, the coproduct of two L-structured
cospans (a,La→ x← Lb,b) and (a′,La′→ x′← Lb′,b′), denoted

(a+a′, L(a+a′)→ x+ x′← L(b+b′), b+b′),

is obtained from the pointwise coproduct of cospans in X by restriction along the inverse comparisons
L−1

a,a′ and L−1
b,b′ . The universal property of coproducts in LCsp(X)1 then takes the form:

L(a+a′) L(a)+L(a′) x+ x′ L(b)+L(b′) L(b+b′)

L(c) L(c) y L(d) L(d)

L−1
a,a′ L−1

b,b′

L([f , f ′]) [h,h′][L f ,L f ′] [Lg,Lg′] L([g,g′]) .

214 Structured and Decorated Cospans via Double Category Theory

We have shown that both categories underlying LCsp(X) have finite coproducts, and it is immediate that
the source and target functors preserve them.

Finally, the comparison cells in LCsp(X) interchanging finite coproducts with external composition
and identity (Definition A.1) are all isomorphisms because they are defined by the same maps in X as the
comparison cells in Csp(X), which we already know to be isomorphisms (Example A.3).

As a corollary, every double category of L-structured cospans satisfying the hypotheses of the theorem
can be given the structure of a symmetric monoidal double category, by making choices of coproducts in
both underlying categories. This follows abstractly because any cocartesian object in a 2-category with
finite 2-products is a symmetric pseudomonoid in a canonical way [24, Remark 2.11]. Cocartesian double
categories are cocartesian objects in the 2-category Dbl, whereas symmetric monoidal double categories
are symmetric pseudomonoids in Dbl.

2.3 Maps Between Structured Cospan Double Categories

We complete the essential theory of structured cospans by showing how to construct maps between
cocartesian equipments of structured cospans. These maps are cocartesian double functors (Definition A.4).
Compared with the original results [5, Theorems 4.2 and 4.3], the theorem below is slightly more general,
treating the lax case as well as the pseudo one, and slightly stronger, yielding cocartesian double functors
instead of symmetric monoidal ones.

Theorem 2.4. Suppose we have a diagram in Cat of the form

A X

A′ X′

L

L′

F1F0
α ,

where the categories X and X′ have pushouts. Then there is a lax double functorF : LCsp(X)→ L′Csp(X′)
that has underlying functor F0 = F0 and acts on proarrows as

(a,L(a) `−→ x r←−L(b),b) 7→ (F0(a),L′(F0(a))
αa−→F1(L(a))

F1(`)−−−→F1(x)
F1(r)←−−−F1(L(b))

αb←−L′(F0(b)),F0(b))

and on cells as

L(a) x L(b)

L(a′) x′ L(b′)

` r

L f

`′ r′

Lgh 7→
L′(F0(a)) F1(x) L′(F0(b))

L′(F0(a′)) F1(x′) L′(F0(b′))

F1(`)◦αa F1(r)◦αb

L′(F0(f))

F1(`
′)◦αa′ F1(r′)◦αb′

L′(F0(g))F1(h) .

Moreover, F is a pseudo double functor whenever F1 preserves pushouts and α is a natural isomorphism.
Suppose further that all of the categories in question have finite coproducts and that L and L′ preserve

them, so that both double categories LCsp(X) and L′Csp(X′) are cocartesian. Then the lax double functor
F is cocartesian if and only if both functors F0 and F1 are cocartesian. In particular, F is a cocartesian
pseudo double functor whenever F0 preserves finite coproducts, F1 preserves finite colimits, and α is a
natural isomorphism.

Evan Patterson 215

As a substantial application of the theorem, we have formulated the generalized Lokta-Volterra model
as a cocartesian lax double functor from open signed graphs to open parameterized dynamical systems [1].

We prove the theorem by decomposing the lax double functor F into three simpler ones. Taken
together, the lemmas also implicitly give formulas for the laxators and unitors of F, which we omitted in
the theorem statement.
Lemma 2.5. Let X be a category with pushouts and let A0

F0−→ A
L−→ X be functors. Then there is a strict

double functor F0Csp(X) : L◦F0Csp(X)→ LCsp(X) given by F0 on objects and arrows and by the identity
on the cospans and maps of cospans underlying proarrows and cells.

Furthermore, the double functor F0Csp(X) is cocartesian whenever A0, A, and X have finite coproducts
and the functors L and F0 preserve them.

The proof is immediate from the definitions. The next lemma is slightly more involved.

Lemma 2.6. Let X and X′ be categories with pushouts and let A L−→ X
F1−→ X′ be functors. Then there is a

normal lax double functor LCsp(F1) : LCsp(X)→ F1◦LCsp(X′) that is the identity on objects and arrows
and acts on proarrows and cells by postcomposing the underlying diagrams in X with F1 : X→ X′.

The laxators are given by the universal property of pushouts in X′, and LCsp(F1) is pseudo if and
only if F1 preserves pushouts. Furthermore, when A, X, and X′ have finite coproducts and L preserves
them, LCsp(F1) is cocartesian if and only if F1 is cocartesian.

Proof. The proposed lax double functor LCsp(F1) : LCsp(X)→ F1◦LCsp(X′) acts on cospans and maps
of cospans in exactly the same way as the lax double functor Csp(F1) :Csp(X)→Csp(X′) reviewed in
Example A.5. The proof thus carries over directly.

In the final lemma, we isolate the maps between structured cospan double categories induced by
natural transformations between the structuring functors.
Lemma 2.7. Let X be a category with pushouts and let α : L′⇒ L : A→ X be a natural transformation.
Then there is a lax double functor α∗ : LCsp(X)→ L′Csp(X) that acts

• on objects and arrows, as the identity;
• on proarrows a 7→ b, by restricting the underlying cospan L(a)→ x← L(b) along the components

αa : L′(a)→ L(a) and αb : L′(b)→ L(b);

• on cells
a b

c d

mp
f g

np
, by pasting the naturality squares for f and g:

L′(a) L(a) x L(b) L′(b)

L′(c) L(c) y L(d) L′(d)

L(f)

αa

L′(f)

αc

αb

L(g)h L′(g)

αd

.

The laxator α∗m,n : α∗(m)�α∗(n)→ α∗(m� n) for proarrows m = (a, L(a)→ x← L(b), b) and n =
(b, L(b)→ y← L(c), c) has apex map given by the universal property of the pushout over L′(b):

y

L′(b) L(b) x+L′(b) y x+L(b) y

x
ιx

ι ′x

ι ′y

ιy

αb .

216 Structured and Decorated Cospans via Double Category Theory

The unitor α∗a : id′a→ α∗(ida) for object a ∈ A has apex map αa : L′(a)→ L(a). The lax double functor
α∗ is pseudo whenever α is a natural isomorphism, and it is automatically cocartesian whenever the
structured cospan double categories are cocartesian.

Proof. The laxators and unitors obey the coherence axioms by the uniqueness part of the universal
property. Importantly, the last statement about cocartesianness holds because natural transformations
automatically commute with coproducts. That is, if A and X have finite coproducts, then, using the
notation of the proof of Theorem 2.3, the following diagrams commute for all objects a,b ∈ A:

L′(a)+L′(b) L′(a+b)

L(a)+L(b) L(a+b)

L′a,b

αa+αb αa+b

La,b

and

L′(0A)

0X

L(0A)

L′0

L0

α0 .

Restricting along the components of α thus commutes with restricting along the inverse comparison maps
and so also commutes with coproducts of structured cospans.

Proof of Theorem 2.4. Using the three lemmas, the lax double functor F : LCsp(X)→ L′Csp(X′) is
realized as the composite

F : LCsp(X)
LCsp(F1)−−−−−→ F1◦LCsp(X′)

α∗−→ L′◦F0Csp(X′)
F0Csp(X′)
−−−−−−→ L′Csp(X′).

3 Decorated Cospans as a Double Grothendieck Construction

Decorated cospans represent open systems as cospans with apexes decorated by extra data [6, 12]. For
example, open dynamical systems comprise a cospan of finite sets along with a dynamical system whose
set of state variables is the apex set [7]. In contrast to structured cospans, the symmetric monoidal product
of decorated cospans need not satisfy a universal property such as cocartesianness. Decorated cospans are
therefore applicable in certain situations where structured cospans are not, at the expense of requiring
more data to construct.

The Grothendieck construction
∫

F of a functor F : A→ Cat can be thought to decorate the objects
of A with data from F , inasmuch as the objects of

∫
F consist of an object a ∈ A together with an object

x ∈ F(a) (the “decoration”). So one might suppose that decorated cospans arise from a Grothendieck
construction. For that to be the case, the cospans being decorated must be the objects of a category.
Fortunately, as we emphasized in Section 1, that is precisely how cospans are seen by the modern theory
of double categories. In this section, we reconstruct and generalize the double category of decorated
cospans using the double-categorical analogue of the Grothendieck construction.

3.1 Double Grothendieck construction

In their study of double fibrations [10], Cruttwell, Lambert, Pronk, and Szyld introduced a Grothendieck
construction for double categories, taking as input a lax double functor into Span(Cat).3

3In its most general form, the double Grothendieck construction takes as input a lax double pseudo functor into Span(Cat),
analogous to how the Grothendieck construction takes a pseudofunctor into Cat. For simplicity, we eschew this aspect but see
[10, Definition 3.12].

Evan Patterson 217

Before stating the construction, we unpack some of the considerable amount of data contained in a lax
double functor F :A→ Span(Cat). First, there are natural transformations

σ : apex◦F1⇒ F0 ◦ src :A1→ Cat and τ : apex◦F1⇒ F0 ◦ tgt :A1→ Cat

whose components are the functors σm and τm defined by

F1(m) =:
(

F0(a) = ftL(F1(m))
σm←− apex(F1(m))

τm−→ ftR(F1(m)) = F0(b)
)

for each proarrow m : a 7→ b inA. The naturality squares for σ and τ are precisely the maps of spans

F1(α) =


F0(a) ftL(F1(m)) apex(F1(m)) ftR(F1(m)) F0(b)

F0(c) ftL(F1(n)) apex(F1(n)) ftR(F1(n)) F0(d)

apex(F1(α))

σm

F0(f)

σn

ftL(F1(α))

τm

τn

ftR(F1(α)) F0(g)


for each cell

a b

c d

mp
f g

np
α in A. Writing Fm,n : F(m)�F(n)→ F(m� n) and Fa : idFa → F(ida) for the

laxators and unitors of F , there are also natural families of functors

Φm,n := apex(Fm,n) : apex(F(m))
τm
×σn apex(F(n))→ apex(F(m�n))

and Φa := apex(Fa) : F(a)→ apex(F(idx)), indexed by proarrows a m7→ b n7→ c and objects a inA.
Using this notation, the double Grothendieck construction [10, Theorem 3.51] appears as:

Theorem 3.1. Given a lax double functor F :A→ Span(Cat), there is a double category
∫

F, the double
Grothendieck construction of F, with underlying categories (

∫
F)0 =

∫
F0 and (

∫
F)1 =

∫
(apex◦F1).

Explicitly, the double category
∫

F has
• as objects, pairs (a,x) where a is an object ofA and x is an object of F(a);

• as arrows (a,x)→ (b,y), pairs (f ,φ) where f : a→ b is an arrow ofA and φ : F(f)(x)→ y is a
morphism of F(b);

• as proarrows (a,x) 7→ (b,y), pairs (m,s) where m : a 7→ b is a proarrow ofA and s is an object of
apex(F(m)) such that σm(s) = x and τm(s) = y;

• as cells
(a,x) (b,y)

(c,w) (d,z)

(m,s)
p

(f ,φ) (g,ψ)

(n,t)
p

, pairs (α,ν) such that
a b

c d

mp
f g

np
α is a cell inA and ν : apex(F(α))(s)→ t

is a morphism of apex(F(n)) such that σn(ν) = φ and τn(ν) = ψ .
External composition and identities in

∫
F are as follows.

• The composite of proarrows (a,x)
(m,s)7→ (b,y)

(n,t)7→ (c,z) is (m�n,Φm,n(s, t)) : (a,x) 7→ (b,y).

• The external composite of cells is

(a,x) (b,y) (c,z)

(a′,x′) (b′,y′) (c′,z′)

(m,s)
p

(n,t)
p

(m′,s′)
p

(f ,φ)

(n′,t ′)
p

(g,ψ) (h,η)(α,µ) (β ,ν) :=

(a,x) (c,z)

(a′,x′) (c′,z′)

(f ,φ) (h,η)

(m�n,Φm,n(s,t))p

(m′�n′,Φm′,n′ (s
′,t ′))

p

(α�β ,Φm′,n′ (µ,ν)) .

218 Structured and Decorated Cospans via Double Category Theory

• The identity proarrow at object (a,x) is (ida,Φa(x)).

• The identity cell at arrow (f ,φ) : (a,x)→ (b,y) is (id f ,Φb(φ)).
Moreover, there is a canonical projection πF :

∫
F →A, which is a strict double functor.

3.2 A Modular Reconstruction of Decorated Cospans

To define decorated cospans, we apply the double Grothendieck construction in the case that the base
double categoryA is a double category of cospans. Specifically, let A be a category with pushouts and let
F :Csp(A)→ Span(Cat) be a lax double functor. Then the double category of F-decorated cospans,
denoted FCsp, is the double Grothendieck construction

∫
F .

This notion of decorated cospan is more general than the established one [6, §2] in two different ways.
First, the decorations assigned to a cospan may depend on the whole cospan, not just on its apex. Second,
the feet of the cospans receive their own decorations, which can be extracted from the cospan decorations
using the transformations denoted σ and τ above. For two decorated cospans to be composable, not
only must the feet of the cospans be compatible, so must be the decorations on the feet. We will see an
application that takes advantage of this extra generality shortly. Before that, we show how to recover the
original notion of decorated cospan based on lax monoidal functors into (Cat,×).
Corollary 3.2. Let A be a category with finite colimits and let F : (A,+)→ (Cat,×) be a lax monoidal
functor. Then there is a double category FCsp that has

• as objects, the objects of A;
• as arrows, the morphisms of A;
• as proarrows a 7→ b, F-decorated cospans with feet a and b, which are cospans p = (a→ m← b)

in A together with a decoration s ∈ F(m);

• as cells
a b

c d

(p,s)
p

f g

(q,t)
p

where p = (a→ m← b) and q = (c→ n← d), morphisms of F-decorated

cospans with foot maps f and g, which are morphisms of cospans in A of the form

a m c

b n d

f gh

together with a decoration morphism ν : F(h)(s)→ t in F(n).

The composite of proarrows a
(p,s)7→ b

(q,t)7→ c, where p = (a→m← b) and q = (b→ n← c), is the proarrow
(p�q,Φm,n(s, t)), where the cospan p�q is given by pushout in A and the functor Φm,n is the composite

Φm,n : F(m)×F(n)
Fm,n−−→ F(m+n)

F([ιm,ιn])−−−−−→ F(m+b n).

The identity proarrow at a ∈ A is (ida,Φa), where Φa is the composite 1
F0−→ F(0)

F(!)−−→ F(a).
Moreover, there is a canonical projection πF : FCsp→Csp(A), which is a strict double functor.

Proof. We construct the double category FCsp in a modular fashion by applying the double Grothendieck
construction to a lax double functor F̃ :Csp(A)→ Span(Cat) that is itself the composite of three simpler
lax double functors:

F̃ :Csp(A)
Apex−−−→B(A,+)

BF−−→B(Cat,×) Apex∗−−−→ Span(Cat).

Evan Patterson 219

Let us explain each of these. First, any monoidal category (C,⊗, I) can be regarded as a double categoryD
whose category of objects is trivial,D0 = 1; whose category of morphisms isD1 = C; and whose external
composition and identity are the monoidal product and unit [14, §3.3.4]. Lax monoidal functors then induce
lax double functors between such degenerate double categories, and monoidal natural transformations
induce natural transformations of those, so altogether there is a 2-functor B : MonCatlax→ Dbllax. In
particular, the lax monoidal functor F : (A,+)→ (Cat,×) induces a lax double functor BF .

Next, given a category A with finite colimits, the lax double functor Apex :Csp(A)→B(A,+) has
the unique map Apex0 : A !−→ 1 between categories of objects and the functor Apex1 := A{•→•←•}

apex−−→ A
between categories of morphisms. The laxators

Apexp,q : Apex(p)+Apex(q) = m+n
[ιm,ιn]−−−→ m+b n = Apex(p�n)

for proarrows p = (a→ m← b) and q = (b→ n← c), and the unitors Apexa : 0 !−→ a for objects a ∈ A,
are all given by the universal properties of the colimits involved.

Finally, given a category C with finite limits, the double functor Apex∗ : B(C,×)→ Span(C) has
underlying functors (Apex∗)0 : 1→C picking out the terminal object 1 of C and (Apex∗)1 :C→C{•←•→•}

sending each object c ∈ C to the span 1 !←− c !−→ 1. This double functor is pseudo because products are
isomorphic to pullbacks over the terminal object. By making reasonable choices of products and pullbacks,
we can even assume that the double functor is strict.

The double category FCsp is precisely the double Grothendieck construction of F̃ (Theorem 3.1).
This follows from the formulas for the laxators and unitors of a composite lax double functor [14, Equation
3.63]. In terms of the notation in the corollary statement, the laxators and unitors of the composite F̃ are
F̃p,q = Apex∗(ΦApex(p),Apex(q)) and F̃a = Apex∗(Φa).

This result was first proved in [6, Theorem 2.1]. Our reconstruction solves a lingering conceptual
puzzle about the composition law for decorated cospans: why does it involve two operations, instead
of just one? As the proof shows, the reason is that decorated cospans implicitly use a composite of lax
double functors. Specifically, laxators from the lax monoidal functor F combine with laxators from the
lax double functor Apex to give the distinctive formula for composing decorations of decorated cospans.

3.3 Application: Double Category of Process Theories

An early and recurring theme of applied category theory is the mathematical modeling of physical or
computational processes by monoidal categories, often with extra structure [4]. To describe a process
syntactically, one can define, say by generators and relations, a small category T with the relevant structure,
and then choose a particular morphism p in T. The category T defines the basic material for the process
and the morphism p specifies the process itself. Regarding the category T as a theory in the sense of
the categorical logic, the pair (T, p) might be called a theory of a process, or process theory for short.
For example, in the author’s thesis [20], a statistical theory is defined to be a small Markov category
[13] equipped with extra linear algebraic structure, together with a distinguished morphism p : θ → x
representing the data generating process for a statistical model.

To be more precise, process theories are defined relative to a concrete 2-category, by which we
mean a 2-category C equipped with a 2-functor |− | : C→ Cat, giving the underlying category of C.
This 2-functor will often satisfy additional properties, such as being locally faithful, but we need not
assume that. Given a morphism F : X→ Y in a concrete 2-category, we will write F(x) := |F |(x) and
F(f) := |F |(f) for the action of the underlying functor of F on the objects and morphisms of |X|. As

220 Structured and Decorated Cospans via Double Category Theory

an example, statistical theories are based on the concrete 2-category of small linear algebraic Markov
categories, structure-preserving monoidal functors, and monoidal natural transformations [20].

Process theories can be composed once their underlying theories are made open. In the context of
statistics, this composition corresponds to making hierarchical statistical models, where samples from one
model become parameters of the next. To express this mathematically, we construct a double category of
process theories. We need two main ingredients: the double Grothendieck construction, and an extension
of the familiar construction of comma categories to a lax double functor. We now review the latter, which
is interesting in its own right.

There is a lax double functor Comma :Csp(Cat)→ Span(Cat) that is the identity on objects and
arrows and sends a cospan of categories (A

i−→ X
o←− B) to the span of categories (A

πA←− i/o
πB−→ B)

comprising the comma category i/o with its canonical projections.4 It acts on maps of cospans as

A X B

A′ X′ B′

i o

H F K

i′ o′

7→
A i/o B

A′ i′/o′ B′

πA πB

H F̃ K

πA′ πB′

,

where the functor denoted F̃ sends an object (a, i(a)
f−→ o(b), b) of the comma category i/o to

(H(a), i′(H(a)) = F(i(a))
F(f)−−→ F(o(b)) = o′(H(b)), H(b))

and a morphism (h,k) to (H(h),K(k)).

To describe the laxators, let m = (A
i−→ X

o←− B) and n = (B
j−→ Y

p←− C) be composable cospans of
categories and let ιX : X→ X+BY and ιY : Y→ X+BY be the inclusions into the pushout of categories.
Then the apex map of the laxator Commam,n is the functor

(i/o)×B (j/p)→ (ιX ◦ i)/(ιY ◦ p)

that sends a pair of objects (a, f ,b) and (b,g,c) with o(b) = j(b) to (a, ιY(g)◦ ιX(f),c), which is well-
defined since ιX(o(b)) = ιY(j(b)) in X+BY. This functor sends a pair of maps (h,k) and (k, `) to the
map (h, `). Finally, given a category A, the apex map of the unitor CommaA is the functor A→ 1A/1A
that sends an object a ∈ A to (a,1a,a) and a morphism h to (h,h).

Proposition 3.3. Let C be a concrete 2-category with pushouts. Then there is a double category that has

• as objects, an object A in C together with an object a ∈ |A|;

• as arrows (A,a)→ (A′,a′), a morphism H : A→ A′ in C together with a morphism h′ : H(a)→ a′

in |A′|;

• as proarrows (A,a) 7→ (B,b), a cospan in C of form m = (A
i−→ X

o←− B) along with a morphism
f : i(a)→ o(b) in |X|;

4The lax double functor Comma :Csp(C)→ Span(C) even generalizes from C = Cat to any 2-category C with comma
objects, pushouts, and pullbacks [14, §4.5.9], although we will not use that.

Evan Patterson 221

• as cells
(A,a) (B,b)

(A′,a′) (B′,b′)

(m, f)
p

(H,h′) (K,k′)

(m′, f ′)
p

, a morphism F :X→X′ forming a map of cospans
A X B

A′ X′ B′

i o

H F K

i′ o′

in C and making the following square in |X′| commute:

i′(H(a)) F(i(a)) F(o(b)) o′(K(b))

i′(a′) o′(b′)

F(f)

f ′
i′(h′) o′(k′) .

Two proarrows (A,a)
(m, f)7→ (B,b)

(n,g)7→ (C,c), with m = (A
i−→ X

o←− B) and n = (B
j−→ Y

p←− C), have
composite (m�n,h) : (A,a) 7→ (C,c), where m�n is the composite cospan in C with apex X+BY and h
is given by first composing the images of f and g in |X|+|B| |Y| and then applying the canonical functor
|X|+|B| |Y| → |X+BY|. The identity proarrow at (A,a) is (idA,1a).

Proof. Apply the double Grothendieck construction to the composite lax double functor

Csp(C)
Csp(|−|)−−−−−→Csp(Cat) Comma−−−−→ Span(Cat).

Here the lax double functor Csp(|− |) is a particular case of Example A.5.

4 Conclusion

We have revisited structured and decorated cospans from the perspective of double category theory,
showing that double categories of structured cospans form cocartesian equipments and that their maps are
cocartesian double functors. We have also reconstructed and generalized double categories of decorated
cospans using the double Grothendieck construction.

Looking to future developments, we have presented a reasonably complete and self-contained treatment
of the theory of structured cospans, but less so for the theory of decorated cospans. We have not shown
how to construct maps between double categories of decorated cospans, along the lines of Baez et al’s
[6, Theorem 2.5]. Just as the classical Grothendieck construction for categories is 2-functorial [21, §6],
so should be the Grothendieck construction for double categories, which should in turn directly produce
maps between decorated cospan double categories and natural transformations between those. Equally
importantly, we have not recovered the symmetric monoidal product of decorated cospans, an absence
clearly felt in our example of the double category of process theories. Monoidal products should be
obtained as a corollary of a hypothetical Grothendieck construction for monoidal double categories,
combining the monoidal and double Grothendieck constructions [10, 19]. In these and other ways, we
expect the further development of the theory of double categories to immediately impact the study of open
systems, simplifying known constructions, suggesting new ones, and enabling practitioners to focus on
applications rather than general theoretical issues.

Acknowledgments This project was partially supported by the Air Force Office of Scientific Research
(AFOSR) Young Investigator Program (YIP) through Award FA9550-23-1-0133. I thank Nathanael Arkor,
John Baez, and Brandon Shapiro for helpful conversations. I am also grateful to Brandon Shapiro for
comments on early versions of this work.

222 Structured and Decorated Cospans via Double Category Theory

References

[1] Rebekah Aduddell, James Fairbanks, Amit Kumar, Pablo S. Ocal, Evan Patterson & Brandon T.
Shapiro (2023): A compositional account of motifs, mechanisms, and dynamics in biochemical
regulatory networks, arXiv: 2301.01445.

[2] Evangelia Aleiferi (2018): Cartesian double categories with an emphasis on characterizing spans,
PhD thesis. Dalhousie University, arXiv: 1809.06940.

[3] John Baez, Xiaoyan Li, Sophie Libkind, Nathaniel Osgood & Evan Patterson (2022): Compositional
modeling with stock and flow diagrams. In Proceedings of the Applied Category Theory Conference
2022, arXiv: 2205.08373. In press.

[4] John Baez & Mike Stay (2010): Physics, topology, logic and computation: a Rosetta Stone. In New
structures for physics, pages 95–172. doi: 10.1007/978-3-642-12821-9_2, arXiv: 0903.0340.

[5] John C. Baez & Kenny Courser (2020): Structured cospans. Theory and Applications of Category
Theory. 35(48), pages 1771–1822, arXiv: 1911.04630. Available at http://www.tac.mta.ca/
tac/volumes/35/48/35-48abs.html.

[6] John C. Baez, Kenny Courser & Christina Vasilakopoulou (2022): Structured versus decorated
cospans. Compositionality. 4(3), doi: 10.32408/compositionality-4-3, arXiv: 2101.09363.

[7] John C. Baez & Blake S. Pollard (2017): A compositional framework for reaction networks.
Reviews in Mathematical Physics. 29(09), page 1750028, doi: 10.1142/S0129055X17500283,
arXiv: 1704.02051.

[8] Aurelio Carboni, G. Max Kelly & Richard J. Wood (1991): A 2-categorical approach to change of
base and geometric morphisms I. Cahiers de topologie et géométrie différentielle catégoriques.
32(1), pages 47–95.

[9] Kenny Courser (2020): Open systems: A double categorical perspective, PhD thesis. University of
California, Riverside, arXiv: 2008.02394.

[10] Geoffrey Cruttwell, Michael Lambert, Dorette Pronk & Martin Szyld (2022): Double Fibrations.
Theory and Applications of Categories. 38(35), pages 1326–1394, arXiv: 2205.15240. Available
at http://www.tac.mta.ca/tac/volumes/38/35/38-35abs.html.

[11] José Luiz Fiadeiro & Vincent Schmitt (2007): Structured co-spans: an algebra of interaction
protocols. In International Conference on Algebra and Coalgebra in Computer Science (CALCO
2007), pages 194–208, doi: 10.1007/978-3-540-73859-6_14.

[12] Brendan Fong (2015): Decorated cospans. Theory and Applications of Categories. 30(33), pages 1096–
1120, arXiv: 1502.00872. Available at http://www.tac.mta.ca/tac/volumes/30/33/30-
33abs.html.

[13] Tobias Fritz (2020): A synthetic approach to Markov kernels, conditional independence and theo-
rems on sufficient statistics. Advances in Mathematics. 370, page 107239, doi: 10.1016/j.aim.2020.107239,
arXiv: 1908.07021.

[14] Marco Grandis (2019): Higher dimensional categories: From double to multiple categories. World
Scientific. doi: 10.1142/11406.

[15] Marco Grandis & Robert Paré (1999): Limits in double categories. Cahiers de topologie et géométrie
différentielle catégoriques. 40(3), pages 162–220. Available at http://www.numdam.org/item/
CTGDC_1999__40_3_162_0/.

[16] Linde Wester Hansen & Michael Shulman (2019): Constructing symmetric monoidal bicategories
functorially, arXiv: 1910.09240.

https://arxiv.org/abs/2301.01445
https://arxiv.org/abs/1809.06940
https://arxiv.org/abs/2205.08373
https://doi.org/10.1007/978-3-642-12821-9_2
https://arxiv.org/abs/0903.0340
https://arxiv.org/abs/1911.04630
http://www.tac.mta.ca/tac/volumes/35/48/35-48abs.html
http://www.tac.mta.ca/tac/volumes/35/48/35-48abs.html
https://doi.org/10.32408/compositionality-4-3
https://arxiv.org/abs/2101.09363
https://doi.org/10.1142/S0129055X17500283
https://arxiv.org/abs/1704.02051
https://arxiv.org/abs/2008.02394
https://arxiv.org/abs/2205.15240
http://www.tac.mta.ca/tac/volumes/38/35/38-35abs.html
https://doi.org/10.1007/978-3-540-73859-6_14
https://arxiv.org/abs/1502.00872
http://www.tac.mta.ca/tac/volumes/30/33/30-33abs.html
http://www.tac.mta.ca/tac/volumes/30/33/30-33abs.html
https://doi.org/10.1016/j.aim.2020.107239
https://arxiv.org/abs/1908.07021
https://doi.org/10.1142/11406
http://www.numdam.org/item/CTGDC_1999__40_3_162_0/
http://www.numdam.org/item/CTGDC_1999__40_3_162_0/
https://arxiv.org/abs/1910.09240

Evan Patterson 223

[17] Piergiulio Katis, Nicoletta Sabadini & Robert F. C. Walters (1997): Span(Graph): A categorical
algebra of transition systems. In Algebraic Methodology and Software Technology. AMAST 1997,
Springer, pages 307–321, doi: 10.1007/BFb0000479.

[18] Sophie Libkind, Andrew Baas, Micah Halter, Evan Patterson & James P. Fairbanks (2022): An
algebraic framework for structured epidemic modelling. Philosophical Transactions of the Royal
Society A. 380(2233), page 20210309, doi: 10.1098/rsta.2021.0309, arXiv: 2203.16345.

[19] Joe Moeller & Christina Vasilakopoulou (2020): Monoidal Grothendieck construction. Theory
and Applications of Categories. 35(31), pages 1159–1207, arXiv: 1809.00727. Available at
http://www.tac.mta.ca/tac/volumes/35/31/35-31abs.html.

[20] Evan Patterson (2020): The algebra and machine representation of statistical models, PhD thesis.
Stanford University, arXiv: 2006.08945.

[21] George Peschke & Walter Tholen (2020): Diagrams, fibrations, and the decomposition of colimits,
arXiv: 2006.10890.

[22] Robert Rosebrugh, Nicoletta Sabadini & Robert F. C. Walters (2005): Generic commutative separa-
ble algebras and cospans of graphs. Theory and Applications of Categories. 15(6), pages 164–177.
Available at http://www.tac.mta.ca/tac/volumes/15/6/15-06abs.html.

[23] Michael Shulman (2008): Framed bicategories and monoidal fibrations. Theory and Applications
of Categories. 20(18), pages 650–738, arXiv: 0706.1286. Available at http://www.tac.mta.
ca/tac/volumes/20/18/20-18abs.html.

[24] Michael Shulman (2010): Constructing symmetric monoidal bicategories, arXiv: 1004.0993.

A Cocartesian Equipments

In this appendix, we review cocartesian double categories and equipments, and the maps between them.
This material is known but may not be straightforward to access in the literature. It is included for the
reader’s convenience.

Just as a cocartesian category is (on one standard definition) a category with finite coproducts, a
cocartesian double category is a double category with finite double-categorical coproducts. A highly
conceptual way to make this precise is to define a cocartesian double category to be a cocartesian object
in the 2-category Dbl of double categories, double functors, and natural transformations. Thus, a double
categoryD is cocartesian if the diagonal and terminal double functors, ∆D :D→D×D and !D :D→ 1,
have left adjoints in Dbl. This is (dual to) the approach taken by Aleiferi in her PhD thesis on cartesian
double categories [2]. It will be convenient for us to have a more concrete description.5

Definition A.1. A double categoryD is cocartesian if its underlying categoriesD0 andD1 have finite
coproducts; the source and target functors src, tgt :D1⇒D0 preserve finite coproducts; and the external
composition � :D1×D0 D1→D1 and unit id :D0→D1 also preserve finite coproducts, meaning that

for all proarrows x m7→ y n7→ z and x′ m′7→ y′ n′7→ z′ and objects x and x′ inD, the canonical comparison cells

x+ x′ z+ z′

x+ x′ z+ z′

(m�n)+(m′�n′)
p

(m+m′)�(n+n′)
p

[ιm�ιn,ιm′�ιn′]
and

x+ x′ x+ x′

x+ x′ x+ x′

idx+idx′p

idx+x′
p

[idιx ,idιx′
]

5The equivalence of the two definitions follows from a general result about double adjunctions [14, Corollary 4.3.7].

https://doi.org/10.1007/BFb0000479
https://doi.org/10.1098/rsta.2021.0309
https://arxiv.org/abs/2203.16345
https://arxiv.org/abs/1809.00727
http://www.tac.mta.ca/tac/volumes/35/31/35-31abs.html
https://arxiv.org/abs/2006.08945
https://arxiv.org/abs/2006.10890
http://www.tac.mta.ca/tac/volumes/15/6/15-06abs.html
https://arxiv.org/abs/0706.1286
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html
https://arxiv.org/abs/1004.0993

224 Structured and Decorated Cospans via Double Category Theory

given by the universal property of binary coproducts, as well as the comparison cells 0D1

!−→ 0D1�0D1

and 0D1

!−→ id0D0
given by the universal property of initial objects, are all isomorphisms inD1.

An equipment, also known as a fibrant double category or a framed bicategory, is a double category in
which proarrows can be restricted or extended along pairs of arrows in a universal way. Equipments can
be defined in at least three equivalent ways [23, Theorem 4.1], including as follows.

Definition A.2. An equipment is a double category D such that the pairing of the source and target
functors, 〈s, t〉 :D1→D0×D0, is a fibration.

Elaborating the definition, a double categoryD is an equipment if every niche inD of the form on the
left can be completed to a cell as on the right

x y

w z

f g

np

x y

w z

f g

np

res f
g (n)p
res

called a restriction cell, with the universal property that for every pair of arrows h : x′→ x and k : y′→ y,
each cell α of the form on the left factors uniquely through the restriction cell as on the right:

x′ y′

x y

w znp
f g

h k

m′p

α =

x′ y′

x y

w z

f g

np

res f
g (n)p

h k

m′p

res

∃!

Finally, a cocartesian equipment is a double category that is both cocartesian and an equipment. We
emphasize again that being a cocartesian equipment is a property of, not a structure on, a double category.

Example A.3 (Cospan double categories). The prototypical example of a cocartesian equipment is none
other than Csp(S), the double category of cospans in a category S with finite colimits. Let us sketch the
proof behind this statement. For a more detailed proof, one can dualize the proof in Aleiferi’s thesis that
Span(S), for a category S with finite limits, is a cartesian equipment [2].

Finite coproducts in the category Csp(S)0 = S exist by assumption, and finite coproducts in the
functor category Csp(S)1 = S{•→•←•} are computed pointwise in S. So the source and target functors
ftL, ftR :Csp(S)1→ S, extracting the left and right feet, preserve coproducts. The comparison cells are
isomorphisms because colimits commute with colimits (specifically, pushouts commute with coproducts)
up to canonical isomorphism. Thus, the double category of cospans is cocartesian.

It is also an equipment. To restrict a cospan c `−→ y r←− d along a pair of morphisms f : a→ c and
g : b→ d, simply compose the morphisms with the legs of the cospan. The restriction cell is trivial:

a y b

c y d
` r

f

`◦ f r◦g

g .

Evan Patterson 225

We turn now to maps between cocartesian double categories and equipments. Since a cocartesian
category is a cocartesian object in Dbl, a map between cocartesian double categories can be defined
abstractly as a cocartesian morphism between cocartesian objects [8, §5.2]. As before, this definition
reduces to a more concrete one:

Definition A.4. A double functor F :D→E between cocartesian double categories is cocartesian if
both underlying functors F0 :D0→E0 and F1 :D1→E1 preserve finite coproducts.

Note that we will apply this definition to lax as well as pseudo double functors.
Perhaps surprisingly, no extra conditions on double functors between equipments are required. Any

(op)lax double functor between equipments automatically preserves restriction (respectively, extension)
cells, as proved by Shulman [23, Proposition 6.4]. In particular, a pseudo double functor between
equipments preserves all the operations afforded by an equipment.

Example A.5 (Maps between cospan double categories). The construction of the double category of
cospansCsp(S) extends to a 2-functorCsp : Catpo→Dbllax, where Catpo is the 2-category of categories
with chosen pushouts, arbitrary functors, and natural transformations and Dbllax is the 2-category of
double categories, lax double functors, and natural transformations [14, §C3.11].

Let us describe the lax double functor Csp(F) :Csp(S)→Csp(S′) induced by a functor F : S→ S′

between categories with pushouts. We have Csp(F)0 = F on objects and arrows, while Csp(F)1 post-
composes with F the diagrams defining cospans and maps of cospans in S. Since functors preserve
identities, Csp(F) is a normal lax double functor, meaning that it preserves identity proarrows strictly.
Given cospans m = (a→ x← b) and n = (b→ y← c) in S, the laxator

Csp(F)m,n :Csp(F)(m)�Csp(F)(n)→Csp(F)(m�n)

has apex map given by the universal property of the pushout in S′:

Fb

Fx Fy

Fx+Fb Fy

F(x+b y)

ιFx ιFy
y

F(ιx) F(ιy)

.

Clearly, Csp(F) is pseudo if and only if F preserves pushouts.
Suppose that S and S′ have all finite colimits, so that their double categories of cospans are cocartesian.

Since coproducts of cospans are computed pointwise, Csp(F) is a cocartesian lax double functor exactly
when F preserves finite coproducts. Altogether, Csp(F) is a cocartesian (pseudo) double functor if and
only if F preserves all finite colimits.

S. Staton, C. Vasilakopoulou (Eds.):

Applied Category Theory 2023 (ACT2023)

EPTCS 397, 2023, pp. 226–245, doi:10.4204/EPTCS.397.14

Obstructions to Compositionality

Caterina Puca

Quantinuum*

caterina.puca@quantinuum.com

Amar Hadzihasanovic
1 Quantinuum*

2 Tallinn University of Technology

amar.hadzihasanovic@quantinuum.com

Fabrizio Genovese

20squares

noreply@20squares.xyz

Bob Coecke

Quantinuum*

bob.coecke@quantinuum.com

Compositionality is at the heart of computer science and several other areas of applied category the-

ory such as computational linguistics, categorical quantum mechanics, interpretable AI, dynamical

systems, compositional game theory, and Petri nets. However, the meaning of the term seems to vary

across the many different applications. This work contributes to understanding, and in particular

qualifying, different kinds of compositionality.

Formally, we introduce invariants of categories that we call zeroth and first homotopy posets,

generalising in a precise sense the π0 and π1 of a groupoid. These posets can be used to obtain a

qualitative description of how far an object is from being terminal and a morphism is from being

iso. In the context of applied category theory, this formal machinery gives us a way to qualitatively

describe the “failures of compositionality”, seen as failures of certain (op)lax functors to be strong,

by classifying obstructions to the (op)laxators being isomorphisms.

Failure of compositionality, for example for the interpretation of a categorical syntax in a seman-

tic universe, can both be a bad thing and a good thing, which we illustrate by respective examples in

graph theory and quantum theory.

Acknowledgements A.H. was supported by the ESF funded Estonian IT Academy research measure

(project 2014-2020.4.05.19-0001) and by the Estonian Research Council grant PSG764. We thank Sean

Tull and Robin Lorenz for helpful comments on an earlier draft.

Introduction

Compositionality is probably the most relevant principle in applied category theory (ACT) research.

While there is no unified definition [11, 9, 3], it refers, broadly speaking, to certain forms of relation

between properties, behaviours, or observations of a composite system on one hand, and those of its

components on the other. A common concern, in this context, is whether it is possible to derive proper-

ties of the whole from properties of its parts, and vice versa. In some cases, both directions are viable

and inverse to each other, in which case a property is “fully compositional”. More frequently, only one

direction is viable.

The need to formally quantify and/or qualify compositionality has been widely discussed in the ACT

community at least since 2018 [8], as researchers became increasingly aware of various “failures of

compositionality”, and wished to classify them beyond a simple yes-or-no statement.

Let us be more precise. Much research in ACT has been devoted to the study of open systems, that is,

entities with open interfaces that can be composed with other entities of the same kind. This approach

*17 Beaumont Street, Oxford OX1 2NA, United Kingdom

http://dx.doi.org/10.4204/EPTCS.397.14

Puca, Hadzihasanovic, Genovese, Coecke 227

has been pervasive, and has been applied in the study of categorical quantum mechanics [1], natural

language [4], dynamical systems [7], Petri nets [2], game theory [9] and many other subjects. When

studying open systems, it is not rare to define functors mapping a “theory of boxes” — in the form

of a monoidal category or bicategory — where the composition rules of the systems are defined, to a

certain “semantic universe” of properties or behaviours of the systems. The properties of these functors

reflect how well the information that they capture adheres to the composition rules: a lax functor P, with

structural laxator morphisms in the direction P f #Pg→ P(f #g), means that one can derive information

on the whole system from information on its components; an oplax functor, with structural morphisms

in the direction P(f # g)→ P f #Pg, means that one can derive information on the components from

information on the whole; while a strong functor means that the information on components and the

information on the whole completely determine each other.

For example, the functor sending open graphs to their reachability relation (see Section 3.1) is lax,

which tells us that the reachability relation of a composition of open graphs can be strictly bigger than

the composition of the reachability relations defined on its parts. This is considered undesirable from a

computational viewpoint, as it means that one cannot reconstruct the reachability of a graph by separately

computing the reachability of its components.

On the other hand, in “Schrödinger compositionality” (covered in Section 3.2), quantum-mechanical

behaviour arises from the laxity of the functor mapping each object to its set of states. This laxity implies

that not all quantum states are separable, which is desirable, as it unlocks the use of entanglement as a

resource unavailable in classical mechanics.

In both cases, laxity represents a “failure of compositionality” which has both practical and founda-

tional importance: the “gap” between a lax and a strong functor represents the gap between what we can

compute compositionally with a “divide-and-conquer” strategy and what we cannot, or the gap between

a classical and non-classical theory of processes. In this light, the question: how can we qualify (failures

of) compositionality? becomes the question: how far is a lax functor from being strong?1 In this paper,

we attempt to give a structured answer to the question. Our chain of reasoning is the following.

Definition 1. A lax functor is strong when all the components of its laxators are isomorphisms.

Thus, we can think of reducing our question to the more general one: how far is a morphism from

being an isomorphism?2 Let us use the following, well-known characterisation of isomorphisms.

Proposition 1. A morphism f : X → Y in a category C is an isomorphism if and only if it is terminal as

an object of the slice category C/Y .

This allows us to reduce further to the question: how far is an object from being terminal? Terminality

can be split into the following pair of properties.

Definition 2. An object 1 in a category C is

• weak terminal if, for all objects X of C, there exists a morphism X → 1;

• subterminal if, for all parallel pairs of morphisms f ,g : X → 1, we have f = g.

Hence, to describe how far 1 is from being terminal, we can separately describe how far 1 is from

being weak terminal and subterminal, respectively.

Following this chain of reasoning, we focus on classifying obstructions to weak terminality and sub-

terminality for objects in arbitrary categories. Surprisingly, it turns out that there exists a natural way of

1We will focus on lax functors in our discussion, but everything can be dualised to oplax functors.
2This approach, and the fact that it could be investigated with homotopical methods, was first suggested to us by Jules

Hedges.

228 Obstructions to Compositionality

associating certain pointed posets to a pointed category (category with a chosen object), which we call

the zeroth and first homotopy poset, because in a precise sense they generalise the π0 and π1 of a pointed

groupoid seen as a homotopy 1-type. This opens up the possibility of an invariant-based approach to the

formal study of compositionality: the homotopy posets contain no information that is not already in the

functors and categories, but put it in a form which may be more tractable and intelligible.

In Section 1, we give the definitions of homotopy posets and state their basic properties, demonstrating

in which sense they answer our question about terminal objects. In Section 2, going backwards in our

chain of reasoning, we apply them to the study of obstructions to morphisms being iso. Finally, in

Section 3, we sketch through a couple of simple examples how our framework can be applied to the

study of failures of compositionality, seen as failures of certain (op)lax functors to be strong. Some

particularly involved proofs are collected in the Appendix; we refer to the extended version [13] for

other proofs and further details.

1 Homotopy posets

To begin, we focus on obstructions to weak terminality. Having fixed a category C, we interpret objects

of a category C as points, and morphisms between them as paths. From this point of view, a weak

terminal object is an object that is always reachable from any generic object x in C.

Intuitively, we can fix a “weak terminal object candidate”3
1 and consider any object x such that there

is no morphism x→ 1 as an obstruction to weak terminality. Moreover:

• If x,y are obstructions for 1, and there are morphisms x→ y and y→ x, we regard them as equiva-

lent: if there were a morphism x→ 1 there would be a morphism y→ 1, and vice versa.

• If x,y are obstructions for 1 and there is a morphism x→ y, then we regard x as a “more fundamen-

tal obstruction than y”. This is because, if there were a morphism y→ 1, we would automatically

obtain a morphism x→ 1 by composition (one can “go from x to y and then to 1”), while the

opposite is not true.

We will devote this section to making this intuition formal.

Definition 3 (Poset reflection). Let Pos be the large4 category of posets and order-preserving maps.

There is a full and faithful functor ı : Pos →֒ Cat, whose image consists of the categories that are

• thin (each hom-set contains at most one morphism), and

• skeletal (every isomorphism is an automorphism).

The poset reflection ‖C‖ of a category C is its image under the left adjoint ‖−‖ : Cat→ Pos to ı:

• the elements of ‖C‖ are equivalence classes ‖x‖ of objects x of C, where ‖x‖ = ‖y‖ if and only if

there exist morphisms x→ y and y→ x in C, and

• ‖x‖ ≤ ‖y‖ if and only if there exists a morphism x→ y in C.

Proposition 2. Let C be a category and 1 an object in C. The following are equivalent:

(a) 1 is a weak terminal (respectively, initial) object in C;

3In this paper, we will use 1 to denote “terminal object candidates”, that is, objects for which we want to investigate how

far they are from being terminal. For an object that we know or presume to be terminal, we will instead use the notation 1.
4We will denote categories in italics and large categories in bold. Note that in our constructions, what matters is only the

relative size: a construction which associates a poset to a category can be applied to a large category, producing a large poset.

Puca, Hadzihasanovic, Genovese, Coecke 229

(b) ‖1‖ is the greatest (respectively, least) element of ‖C‖.

Definition 4 (Arrow category). Let ~I be the “walking arrow” category, that is, the free category on the

graph

0 1
a

.

The arrow category of a category C is the functor category C
~I . Explicitly, the objects of C

~I are morphisms

of C, while morphisms of C
~I are commutative squares in C. There are functors dom, cod : C

~I→C which,

given a morphism (h0,h1), return h0, respectively, h1.

Definition 5 (Category of pointed objects). Let C be a category with a chosen terminal object 1. A

pointed object (x,v) of C is an object x of C together with a morphism v : 1→ x, called its basepoint.

The category of pointed objects of C — denoted by C• — is the coslice category 1/C.

Proposition 3 (Functoriality of arrow and pointed objects categories). Let F : C→ D be a functor. Then

F lifts to a functor F
~I : C

~I → D
~I using the pointwise action of F on C.

If moreover C and D have a chosen terminal object, and if F preserves it, then it also lifts to a functor

F• : C•→ D• sending a pointed object (x,v) of C to (Fx,Fv), a pointed object of D.

Definition 6 (Quotient of an object by a morphism). Let C be a category with chosen pushouts and a

terminal object 1. Given a morphism f : x→ y, the quotient of y by f is the pushout

x 1

y y� f

!

f [x]

y

where ! : x→ 1 is the unique morphism from x to the terminal object.

Proposition 4 (Functoriality of the quotient). If C has chosen pushouts and a terminal object 1, then for

each morphism f : x→ y in C Definition 6 determines a pointed object Q(f) := (y � f , [x]) of C. This

extends to a functor Q : C
~I → C•. If both C and D have chosen pushouts and a chosen terminal object 1,

and if F preserves them, then F induces a commutative square of functors

C
~I C•

D
~I D•.

Q

F
~I

Q

F•

The categories Cat and Pos have all limits and colimits, so in particular they have pushouts and

a terminal object. The poset reflection functor ‖− ‖ : Cat→ Pos sends the terminal category to the

terminal poset, and preserves pushouts, since it is a left adjoint. The preservation can be made strict

with respect to a choice on both sides. We are in the conditions of Proposition 4: there is a commutative

square

Cat
~I Cat•

Pos
~I Pos•.

Q

‖−‖
~I

Q

‖−‖•
(1)

230 Obstructions to Compositionality

We are now ready to define the object of interest of this section.

Definition 7 (Zeroth homotopy poset). Let C be a category and x an object in C. The zeroth homotopy

poset of C over x is the pointed poset

(π0(C/x), [x])

obtained by applying the functor Cat
~I → Pos• from Equation 1 to the slice projection functor

dom: C/x→ C.

Let us unravel the definition of π0(C/x) to a more explicit form. We start from the projection functor

dom: C/x→C. To this we may either apply Q or ‖−‖
~I . Since quotients in Pos are simpler to compute

than quotients in Cat, we apply poset reflection first, which gives us an order-preserving map

‖dom‖ : ‖C/x‖ → ‖C‖.

Unravelling the explicit definition of poset reflection for C/x, we see that:

• an element of ‖C/x‖ is an equivalence class ‖ f : y→ x‖ of morphisms of C with codomain x,

where ‖ f‖= ‖g‖ if and only if f factors through g and g factors through f , and

• ‖ f‖ ≤ ‖g‖ if and only if f factors through g.

The map ‖dom‖ sends ‖ f‖ to ‖dom f‖. The image of ‖dom‖ is then the set

{‖y‖ | there exists a morphism f : y→ x in C},

which is, equivalently, the lower set of ‖x‖ in ‖C‖.

Applying Q : Pos
~I → Pos• to this map produces the quotient of ‖C‖ with all elements of this set

identified, pointed with the element resulting from their identification, which we denote by [x]. Hence,

an element of π0(C/x) is either [x], or it is ‖y‖ for some object y such that there exists no morphism

f : y→ x in C. The order relation is defined as follows, by case distinction:

• [x]≤ [x] trivially;

• [x]≤ ‖y‖ if and only if there exists a span (x
f
←− z

g
−→ y) in C;

• it is never the case that ‖y‖ ≤ [x];

• ‖y‖ ≤ ‖z‖ if and only if there exists a morphism f : y→ z in C.

Notice that [x] is always minimal in π0(C/x).
The partial order on π0(C/x) ranks obstructions to weak terminality by “size”: if we removed an

obstruction ‖y‖, adding a morphism y→ x, we would also have to remove all the “smaller” obstructions

‖z‖ ≤ ‖y‖. The minimal element [x] represents the “non-obstructions”:

Proposition 5. Let C be a category and x an object in C. The following are equivalent:

(a) π0(C/x) = {[x]};

(b) x is a weak terminal object in C.

The notation and terminology is suggestive of the π0 of a pointed topological space or groupoid, that is,

its set of connected components, pointed with the connected component of the basepoint. The following

result shows that, indeed, the notions coincide when C happens to be a groupoid.

Puca, Hadzihasanovic, Genovese, Coecke 231

Proposition 6 (π0(G/x) for a groupoid). Let G be a groupoid and x an object in G. Then

1. π0(G/x) is a “set”, that is, a discrete poset, and

2. as a pointed set, it is isomorphic to the set π0(G) of connected components of G, pointed with the

connected component of x.

Now, we investigate obstructions to subterminality. Our main strategy will be to recast subterminality

in a way that allows us to leverage Definition 7. We know that an object 1 fails to be subterminal when,

for an object x, the arrow x→ 1 is not unique. As such, we will describe obstructions to subterminality

as pairs of parallel, unequal arrows.

Definition 8 (Category of parallel arrows over an object). Let C be a category and x an object in C. The

category of parallel arrows in C over x is the category Par(C/x) where:

• Objects are pairs of morphisms (f0, f1 : y→ x) with codomain x.

• A morphism from (f0, f1 : y→ x) to (g0,g1 : z→ x) is a morphism h : y→ z such that f0 = h # g0

and f1 = h #g1.

This comes with a projection functor dom: Par(C/x)→ C sending a parallel pair to its domain.

Proposition 7. Let C be a category and 1 an object in C. The following are equivalent:

(a) 1 is subterminal in C;

(b) (id1, id1) is a terminal object in Par(C/1);

(c) (id1, id1) is a weak terminal object in Par(C/1).

Proposition 7 allows us to reduce the study of obstructions to subterminality of an object 1 in C to the

study of obstructions to weak terminality of (id1, id1) in Par(C/1).

Definition 9 (First homotopy poset). Let C be a category and x an object in C. The first homotopy poset

of C over x is the pointed poset

(π1(C/x), [x]) :=
(

π0(Par(C/x)/(idx, idx)), [(idx, idx)]
)

.

Putting together the description of the 0th homotopy poset, the definition of Par(C/x) in Definition 8,

and Proposition 7, we see that an element of π1(C/x) is either [x], or ‖(f ,g)‖ for some parallel pair of

morphisms f ,g : y→ x in C with f 6= g. The order relation is defined as follows:

• [x]≤ [x] trivially;

• [x]≤ ‖(f ,g : y→ x)‖ if and only if there exists a morphism h : z→ y in C equalising (f ,g), that is,

satisfying h # f = h #g;

• it is never the case that ‖(f ,g)‖ ≤ [x];

• ‖(f ,g : y→ x)‖ ≤ ‖(f ′,g′ : y′ → x)‖ if and only if there exists a morphism h : y→ y′ such that

f = h # f ′ and g = h #g′ in C.

Proposition 8. Let C be a category and x an object in C. The following are equivalent:

(a) π1(C/x) = {[x]};

(b) x is subterminal in C.

Corollary 1. Let C be a category and x an object in C. The following are equivalent:

232 Obstructions to Compositionality

(a) π0(C/x) = {[x]} and π1(C/x) = {[x]},

(b) x is a terminal object in C.

Remark 1. Recall that the (underlying set of the) fundamental group of a pointed topological space

(X ,x) is defined by

π1(X ,x) := π0(Ω(X ,x),cx)

where Ω(X ,x) is the space of loops in X based at x, and cx is the constant path at x. For a pointed

groupoid, which may be seen as the fundamental groupoid of a pointed space, this reduces to the set of

automorphisms of the object x, pointed with the identity automorphism.

The definition of π1(C/x) is made in analogy with this, letting the category of parallel arrows over

x replace the space of loops based at x, and a pair of identity morphisms replace the constant path.

The following result proves that, just like the zeroth homotopy poset, the first homotopy poset is a

generalisation of its groupoidal analogue.

Proposition 9 (π1(G/x) for a groupoid). Let G be a groupoid and x an object in G. Then:

1. π1(G/x) is a “set”, that is, a discrete poset, and

2. as a pointed set, it is isomorphic to the underlying pointed set of the group π1(G,x) = HomG(x,x).

Remark 2. We mention here that the field of directed algebraic topology [10, 5] has also produced

“non-invertible” versions of π1, namely, the fundamental category and monoids, that apply to directed

spaces. If applied to a category, these pick out “tautologically” the category itself and its monoids of

endomorphisms. To our knowledge, there is no strong relation to our line of research.

To conclude this section, we show in what way the homotopy posets are functorial in the pair (C,x) of

a category and an object.

Proposition 10 (Functoriality of the homotopy posets). Let C be a category, i ∈ {0,1}. Then:

1. the assignment x 7→ πi(C/x) extends to a functor πi(C/−) : C→ Pos•;

2. a functor F : C→ D induces a natural transformation πi(F) : πi(C/−)⇒ πi(D/F−).

Given another functor G : D→ E, this assignment satisfies

πi(F #G) = πi(F) #πi(G), πi(idC) = idπi(C/−).

A concise way of packaging this information is to say that πi defines a functor from Cat to the lax

slice Cat 1 Pos•, where Cat is the “huge” category of possibly large categories. The objects of the lax

slice are pairs of a possibly large category C and a functor C→ Pos•, and the morphisms are triangles

of functors commuting up to a natural transformation. Indeed, given F : C→ D, we have a triangle

C Pos•

D

F
πi(D/−)

πi(C/−)

πi(F)

commuting up to the natural transformation πi(F).

Remark 3 (Dual invariants). As usual, all the constructions can be dualised to Cop. This will replace the

slice over an object and its domain opfibration with the slice under an object and its codomain fibration,

producing invariants classifying obstructions to initiality of the object.

Puca, Hadzihasanovic, Genovese, Coecke 233

2 Obstructions to a morphism being iso

As remarked in the Introduction, one of our main motivations for introducing homotopy posets was

measuring how far a generic morphism is from being iso. Just as we could separate obstructions to

terminality into obstructions to weak terminality and subterminality, we can separate obstructions to a

morphism being iso into obstructions to a morphism being split epi and mono, respectively.

Proposition 11. Let f : X →Y be a morphism in a category C. Then:

• f is split epi in C if and only if f is weak terminal in C/Y ,

• f is mono in C if and only if f is subterminal in C/Y .

Corollary 2. Let f : X →Y be a morphism in a category C. Then:

• f is split epi if and only if π0((C/Y)/ f) is trivial;

• f is mono if and only if π1((C/Y)/ f) is trivial, and:

• f is iso if and only if both π0((C/Y)/ f) and π1((C/Y)/ f) are trivial.

Furthermore, when the homotopy posets associated to a morphism f are not trivial, they give us precise

information about why f fails to be split epi and mono.

To make this more concrete, let us spell out precisely how to compute the invariants associated to a

function between sets, where split epi (assuming choice) means surjective and mono means injective.

This amounts to calculating π0((Set/Y)/ f) and π1((Set/Y)/ f) for some function f : X →Y .

Proposition 12. Let f : X → Y be a function between sets. ‖Set/Y‖ is isomorphic, as a poset, to the

power set PY , via the assignment (S ⊆ Y) 7→ ‖ıS‖, where ıS is the injective function including S into Y .

Through this bijection, ‖ f‖ corresponds to the image f (X) of f .

Using this correspondence and quotienting by the lower set of f (X), which contains in particular ∅,

we may identify π0((Set/Y)/ f) with the subposet of PY whose elements are either ∅ or subsets of Y

that contain at least one element y /∈ f (X). The “minimal obstructions”, that is, the minimal elements in

the complement of the basepoint, are the singletons {y} with y ∈ Y \ f (X). This poset is trivial if and

only if f (X) = Y , that is, iff f is surjective.

Example 1. Let f : {0,1}→ {0,1,2,3} be the function mapping 0 7→ 0 and 1 7→ 1. The homotopy poset

π0((Set/{0,1,2,3})/ f) has the following structure:

{0,1,2,3}

{0,1,2} {0,2,3} {1,2,3} {0,1,3}

{0,2} {1,2} {2,3} {0,3} {1,3}

{2} {3}

∅

The minimal obstructions {2} and {3} are in bijection with the elements not in the image of f .

234 Obstructions to Compositionality

Proposition 13. Let X× f X be the pullback of f along itself — that is, the set {(x0,x1) | f (x0) = f (x1)}
— and let p f : X× f X →Y be the function (x0,x1) 7→ f (x0) = f (x1). Then:

1. ‖Par((Set/Y)/ f)‖ is isomorphic to P(X × f X) via the assignment (S⊆X× f X) 7→ ‖(p0|S, p1|S)‖,
where pi|S are the projections X × f X → Y , restricted to S, seen as morphisms p f |S → f in

‖Par((Set/Y)/ f)‖;

2. through this bijection, ‖(id f , id f)‖ is identified with the diagonal ∆X.

Using this correspondence, we may identify π1(Set/X) with the subposet of P(X × f X) whose ele-

ments are either ∅, or contain at least one pair (x0,x1) such that x0 6= x1. This poset is trivial if and only

if f is injective. Notice that the minimal obstructions to injectiveness of f are in bijection with pairs

(x0,x1) where x0 6= x1 but f (x0) = f (x1).

Example 2. Let f : {0,1} → {∗} be the function mapping 0 7→ ∗, 1 7→ ∗. Then {0,1}× f {0,1} is the

set {(0,0),(0,1),(1,0),(1,1)}, and π1((Set/{∗})/ f) has the following structure:

{(0,0),(0,1),(1,0),(1,1)}

{(0,0),(0,1),(1,1)} {(0,1),(1,0),(1,1)} {(0,0),(0,1),(1,0)} {(0,0),(1,0),(1,1)}

{(1,1),(0,1)} {(0,0),(0,1)} {(0,1),(1,0)} {(1,1),(1,0)} {(0,0),(1,0)}

{(0,1)} {(1,0)}

∅

Notice that, via the isomorphism Set≃ Set/{∗}, this is isomorphic to π1(Set/{0,1}).

To conclude, suppose that two morphisms are both components of the same natural transformation.

Is there a relation between the associated invariants? The following result answers this question in the

affirmative.

Proposition 14 (Covariance over the domain of a natural transformation). Let F,G : C → D be two

functors and let α : F⇒ G be a natural transformation. For all i ∈ {0,1}, the assignment

x 7→ πi((D/Gx)/αx
)

extends to a functor C→ Pos•.

Notice that this is not simply a consequence of Proposition 10, that is, it does not arise from the gen-

eral functoriality result by pre-composition with another functor.5 It implies that we can naturally map

obstructions for αx to obstructions for αy along a morphism f : x→ y in C; we can think of morphisms

in C as inducing a “flow” of obstructions to the components of α , under which a non-trivial obstruction

may be trivialised, but it can never be the case that a non-obstruction is “un-trivialised”.

5There is a unifying perspective on the two functoriality results, involving the theory of fibrations and cofibrations of

categories; this will be discussed in an extended technical paper.

Puca, Hadzihasanovic, Genovese, Coecke 235

3 Qualifying compositionality

Now let P : C→ D be a lax functor of bicategories. This means that, for all triples of objects X ,Y,Z in

C, we have two functors

(P−) # (P−), P(− #−) : HomC(X ,Y)×HomC(Y,Z)→ HomD(PX ,PZ)

connected by a natural transformation, the laxator ϕ : (P−) #(P−)⇒P(− #−).6 As a special case, when

C and D are monoidal categories seen as one-object bicategories, P is a lax monoidal functor, and the

laxator is a natural transformation (P−)⊗ (P−)⇒ P(−⊗−).

By Proposition 14, we obtain functors HomC(X ,Y)×HomC(Y,Z)→Pos• sending a pair of morphisms

(f : X →Y,g : Y → Z) to the homotopy posets

πi((HomD(PX ,PZ)/P(f #g))/ϕ f ,g)

associated to the component ϕ f ,g of the laxator.

In the scenario sketched in the Introduction, the failure of ϕ f ,g to be iso is a failure of the “semantic”

functor P to be “fully compositional” with respect to the composition f # g. Thus the elements of these

homotopy posets may be seen as local obstructions to compositionality of P. Most interestingly, these

obstructions are covariant with respect to the 2-morphisms of C; thus we can think of “modifying f and

g” by acting on them with a 2-morphism, and see how that affects the obstructions.

3.1 Open Graphs

We apply our framework to a couple of tangible examples. Open graphs, defined in [6], can be thought

of as graphs with interfaces. Formally, open graphs are (isomorphism classes of) decorated cospans with

decorations in the category Graph of graphs and homomorphisms. Intuitively, they are depicted as in

the examples below, with input vertices on the left and output vertices on the right:

1 1

2

3 1

1

2

3

1

1

Indeed, there is a bicategory OpenGraph that has sets as objects, open graphs as morphisms, and

interface-preserving graph homomorphisms as 2-morphisms. For instance, the first and second open

graphs above correspond to morphisms G : {1} → {1,2,3} and H : {1,2,3} → {1}. These morphisms

can be composed, resulting in the morphism G #H : {1} → {1} corresponding to the third open graph in

the picture above.

Every graph can be mapped to its reachability relation7: this is a relation on the vertexes of the graph,

where two vertexes are considered related iff there is a path between them. Reachability can be recast as

a lax functor OpenGraph→ Rel to the bicategory of sets, relations, and inclusions of relations, which

maps an open graph G : X →Y to the relation RG : X →Y defined by

RG(x,y) if and only if there is a path between the input vertex x and the output vertex y.

6Technically, the laxators are a family of natural transformations indexed by X ,Y,Z, but we will leave the indexing implicit.
7Cfr. [12], for the similar example of open causal models and causal influence.

236 Obstructions to Compositionality

Because Rel is locally posetal, to define R on 2-morphisms it suffices to verify that, if f : G→ G′ is a

graph homomorphism, then RG⊆ RG′. The laxators are also uniquely defined.

We can see that this functor is not strong. In the example above we have that RG ⊆ {1}×{1,2,3}
only contains the pair (1,1), since there are no paths from 1 to 2 and from 1 to 3 in G. Similarly,

RH ⊆ {1,2,3} × {1} only contains the pair (3,1). It follows that RG #RH : {1} → {1} is the empty

relation, but R(G #H) : {1} → {1} is total, so RG #RH (R(G #H).

The result is that, if we want to compute the reachability relation of G #H by looking at the reachability

relations of G and H separately, we are going to miss something. This “compositionality gap” is tracked

by the π0 associated to the laxator components ϕG,H : RG #RH ⊆R(G #H) (because these are all injective,

the π1 will always be trivial).

In our example, π0((HomRel({1},{1})/R(G #H))/ϕG,H) is isomorphic to the poset (∅ < {(1,1)})
pointed with ∅, so there is exactly one non-trivial obstruction. Using covariance, we can think of “re-

moving the obstruction” by modifying one or both of the parts G or H with a 2-morphism, that is, with a

graph homomorphism. For example, we can act on G with the homomorphism which identifies the output

vertices 1 and 3. The resulting graph G′ has RG′ = {(1,1),(1,3)}, so RG′ #RH = R(G′ #H) = {(1,1)};
correspondingly, we obtain a map of pointed posets from the π0 associated to ϕG,H to the π0 associated

to ϕG′,H , which “trivialises all obstructions”.

3.2 Schrödinger Compositionality

The name Schrödinger compositionality was introduced in [3] to refer to the form of compositionality

that exists in quantum mechanics, where non-separable states are present, to disambiguate it from others.
8 In the following, we will focus on the special case of a state that can be “more than its parts”. This

is arguably what makes composition interesting in quantum mechanics: it makes entanglement possible,

which Schrödinger described as “the characteristic trait of quantum mechanics” [14]. In contrast with

the example of open graphs, where the “compositionality gap” represents an obstacle to a computation

strategy, here it can be seen as a positive feature. Our approach can be used in both contexts; we will

focus on the case study of non-separable states, recasting it as the failure of a lax functor to be strong.

In the context of monoidal categories, a state is a morphism I → A, where I is the monoidal unit.

We say that a state ψ : I→ A⊗B is separable if there exist states ψA : I→ A and ψB : I→ B such that

ψ = ψA⊗ψB.

Definition 10. Let (C,⊗, I) be a monoidal category. The state functor of C is the representable functor

HomC(I,−) : C→ Set.

Proposition 15 (Laxity of the state functor). The state functor lifts to a lax monoidal functor from

(C,⊗, I) to (Set,×,{∗}), with laxator components

ϕA,B : HomC(I,A)×HomC(I,B)→ HomC(I,A⊗B)

(ψA,ψB) 7→ ψA⊗ψB.

Recall that a monoidal category is semicartesian if its monoidal unit is terminal. The following result

is a consequence of the general fact that a functor from a semicartesian to a cartesian monoidal category

has a canonical oplax monoidal structure.

8For the purposes of this work, we are leaving out of the present analysis the aspects of Schrödinger compositionality

regarding the “ontological interpretation", originally presented in [3].

Puca, Hadzihasanovic, Genovese, Coecke 237

Proposition 16 (Oplaxity of the state functor). Let (C,⊗,1) be a semicartesian category. Then the state

functor lifts to an oplax monoidal functor from (C,⊗,1) to (Set,×,{∗}).

Clearly, there are cases where the state functor is not just lax or oplax, but strong. The following result

captures the well-known fact that in a cartesian monoidal category every state is separable.

Proposition 17 (Strongness of the state functor). If (C,×,1) is cartesian, then the state functor is strong

monoidal.

Having turned Schrödinger compositionality into a question about (op)laxity of a functor, we can put

our framework to good work. By Proposition 14, we have functors C×C→Pos• sending pairs of objects

(A,B) of C to the homotopy posets

πi((Set/HomC(I,A⊗B))/ϕA,B), i ∈ {0,1}. (2)

Using the description of homotopy posets for slices of Set from Section 2, we see that

• minimal obstructions in π0 are in bijection with non-separable states of A⊗B,

• minimal obstructions in π1 are in bijection with pairs of pairs of states ((ψA,ψB),(χA,χB)) such

that ψA⊗ψB = χA⊗ χB.

For example, in (VectC,⊗,C), the monoidal category of complex vector spaces with their tensor product,

whenever A and B are at least 2-dimensional, we have instances of both:

• the state 1 7→

(

1

0

)

⊗

(

1

0

)

+

(

0

1

)

⊗

(

0

1

)

of C2⊗C2 is non-separable,

• given any pair of states (ψA,ψB) and any non-zero λ ∈ C, the pair (χA,χB) := (λψA,λ
−1ψB)

satisfies ψA⊗ψB = χA⊗ χB.

We can derive a few simple, immediate consequences from the covariance of (2) in the pair (A,B).

1. Given morphisms f : A→ A′, g : B→ B′, the induced maps of posets preserve the basepoint, that

is, map “non-obstructions” to “non-obstructions”. In this case, this implies that it is not possible to

entangle a separable state by local actions, that is, by applying morphisms on A and B separately.

2. On the other hand, it is, in principle, possible for the induced maps to send non-trivial obstructions

to the basepoint. For example, in complex vector spaces, acting on A or B with a rank-1 linear map

always has a separating effect.

Conclusion

We have introduced our new invariants of categories and stated their fundamental properties, before

sketching, through a couple of simple examples, how they may be used to obtain a more fine-grained

analysis of “failures of compositionality” than a simple yes-or-no judgement. In an extended technical

paper, we will study their formal aspects more in depth, including criteria for the existence of joins and

meets, induced monoidal structures, and finer aspects of functoriality.

Most importantly, we hope to have opened a new avenue in “formal compositionality theory”. The

greatest challenge will be to graduate from proof-of-concept examples to ones that reveal more interest-

ing structure, perhaps in non-Set-like categories where a split epi or mono is not simply a surjective or

injective map. We have been looking at case studies of this sort, which nevertheless have manageable

combinatorics permitting an exhaustive study of their homotopy posets, and we hope to discuss them in

future work.

238 Obstructions to Compositionality

References

[1] Samson Abramsky & Bob Coecke (2009): Categorical quantum mechanics. Handbook of quantum logic and

quantum structures 2, pp. 261–325, doi:10.1016/B978-0-444-52869-8.50010-4.

[2] John C Baez, Fabrizio Genovese, Jade Master & Michael Shulman (2021): Categories of nets. In: 2021

36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, pp. 1–13, doi:10.1109/
LICS52264.2021.9470566.

[3] Bob Coecke (2021): Compositionality as we see it, everywhere around us. arXiv preprint arXiv:2110.05327.

arXiv:2110.05327.

[4] Bob Coecke (2021): The mathematics of text structure. Joachim Lambek: The Interplay of Mathematics,

Logic, and Linguistics, pp. 181–217.

[5] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram & Martin Raussen (2016): Directed

algebraic topology and concurrency. 138, Springer, doi:10.1007/978-3-319-15398-8.

[6] Brendan Fong (2015): Decorated Cospans. arXiv preprint arXiv:1502.00872 30(33), pp. 1096–1120.

arXiv:1502.00872.

[7] Brendan Fong & David I. Spivak (2019): An invitation to applied category theory: seven sketches in compo-

sitionality. Cambridge University Press, Cambridge; New York, NY, doi:10.1017/9781108668804.

[8] Fabrizio Romano Genovese (2018): Modularity vs compositionality: a history of misunderstandings.

Online article, https://blog.statebox.org/modularity-vs-compositionality-a-history-of-
misunderstandings-be0150033568. Accessed 17 July 2023.

[9] Neil Ghani, Jules Hedges, Viktor Winschel & Philipp Zahn (2018): Compositional game theory. In: Proceed-

ings of the 33rd annual ACM/IEEE symposium on logic in computer science, pp. 472–481, doi:10.1145/
3209108.3209165.

[10] Marco Grandis (2009): Directed algebraic topology: models of non-reversible worlds. 13, Cambridge Uni-

versity Press, doi:10.1017/CBO9780511657474.

[11] Wolfram Hinzen, Edouard Machery & Markus Werning, editors (2012): The Oxford Handbook of Composi-

tionality. Oxford Handbooks in Linguistics, Oxford University Press, Oxford; New York, NY.

[12] Robin Lorenz & Sean Tull (2023): Causal models in string diagrams. arXiv preprint arXiv:2304.07638.

arXiv:2304.07638.

[13] Caterina Puca, Amar Hadzihasanovic, Fabrizio Genovese & Bob Coecke (2023): Obstructions to Composi-

tionality. arXiv preprint arXiv:2307.14461v1. arXiv:2307.14461v1.

[14] Erwin Schrödinger (1935): Discussion of Probability Relations between Separated Systems. Math-

ematical Proceedings of the Cambridge Philosophical Society 31(4), p. 555–563, doi:10.1017/
S0305004100013554.

https://doi.org/10.1016/B978-0-444-52869-8.50010-4
https://doi.org/10.1109/LICS52264.2021.9470566
https://doi.org/10.1109/LICS52264.2021.9470566
https://arxiv.org/abs/2110.05327
https://doi.org/10.1007/978-3-319-15398-8
https://arxiv.org/abs/1502.00872
https://doi.org/10.1017/9781108668804
https://blog.statebox.org/modularity-vs-compositionality-a-history-of-misunderstandings-be0150033568
https://blog.statebox.org/modularity-vs-compositionality-a-history-of-misunderstandings-be0150033568
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1017/CBO9780511657474
https://arxiv.org/abs/2304.07638
https://arxiv.org/abs/2307.14461v1
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1017/S0305004100013554

Puca, Hadzihasanovic, Genovese, Coecke 239

Appendix

Proof of Proposition 10

Proving Proposition 10 requires to build a hefty amount of theory, which is why we reserve the Appendix

for this.

Definition 11 (Past extension). Let A be a category. A past extension of A is a functor ı : A →֒ B with the

following property: there exists a functor χA : B→~I such that

A 1

B ~I

!

ı

χA

1

y

(3)

is a pullback in Cat.

Remark 4. The following is an equivalent characterisation of past extensions: there exist a category Ā

and a profunctor H : Āop×A→ Set such that

1. B is isomorphic to the collage, also known as cograph, of H, and

2. ı is, up to isomorphism, the inclusion of A into the collage.

A technical name for a functor satisfying the condition on ı is codiscrete coopfibration; it is one leg of a

two-sided codiscrete cofibration of categories.

The idea is that ı embeds A into a larger category, whose objects outside of the image of A only have

morphisms pointing towards A, hence are “in the past” of A if we interpret the direction of morphisms

as a time direction. Notice that the fact that (3) is a pullback implies that ı is injective on objects and

morphisms, using their representation as functors from 1 and~I, respectively.

The following picture illustrates the bipartition of B induced by χA, with the fibre Ā of 0 “in the past”

of the fibre A of 1:

B Ā • • A

• •

• •

~I 0 1

χA

a

Definition 12 (Category of past extensions). Let A be a category. The category of past extensions of A

is the large category Past(A) whose

• objects are past extensions ı : A →֒ B, and

• a morphism from (ı : A →֒ B) to (j : A →֒ B′) is a factorisation of j through ı, that is, a functor

K : B→ B′ such that j = ı #K.

Proposition 18 (The indexed category of past extensions of functors). Let A and C be categories. Then

there exists a functor

ExtA
C : Past(A)op×CA→ Cat

240 Obstructions to Compositionality

whose object part is defined as follows: given a past extension ı : A →֒ B and a functor F : A→C, the

category ExtA
C(ı,F) is the subcategory of CB whose

• objects are (strict) extensions of F along ı, that is, functors F̃ : B→C such that

A C

B

ı

F

F̃

strictly commutes, and

• morphisms from F̃1 to F̃2 are natural transformations τ : F̃1⇒ F̃2 that restrict along ı to the identity

natural transformation on F.

Proof. Given a morphism K : (ı : A →֒ B)→ (j : A →֒ B′) in Past(A),

K∗ := ExtA
C(K,F) : ExtA

C(j,F)→ ExtA
C(ı,F)

is the functor that acts by precomposition, sending

• F̃ : B′→C to K # F̃ : B→C, and

• τ : F̃1⇒ F̃2 to K # τ : K # F̃1⇒ K # F̃2.

This is well-defined as

ı #K # F̃= j # F̃= F, ı #K # τ = j # τ = idF.

Moreover, it is straightforward to check that

(idı)
∗ = id

ExtA
C(ı,F)

, (K #L)∗ = L∗ #K∗

for any composable pair K,L of morphisms in Past(A).
Given a natural transformation α : F⇒ G between functors F,G : A→C, the functor

α∗ := ExtA
C(ı,α) : ExtA

C(ı,F)→ ExtA
C(ı,G)

is defined as follows. Given an object F̃ : B→C of ExtA
C(ı,F), the functor α∗F̃ : B→C is defined, on

each morphism f : x→ y in B, by

α∗F̃(f) :=











G(f ′) if χA(f) = 1 and f = ı(f ′),

F̃(f) #αy′ if χA(f) = a and y = ı(y′),

F̃(f) if χA(f) = 0.

By construction ı #α∗F̃= G. The following picture illustrates the definition.

Gy GA

•

F̃Ā = α∗F̃Ā F̃x Fy •

• •

• • FA

F̃ f

αy

α∗F̃ f

Puca, Hadzihasanovic, Genovese, Coecke 241

Let us show that α∗F̃ is well-defined as a functor.

1. Given an identity idx in B, necessarily χA(idx) = 0, in which case

α∗F̃(idx) = F̃(idx) = id
F̃(x),

or χA(idx) = 1, in which case

α∗F̃(idx) = G(idx′) = idG(x′),

where x′ is the unique lift of x to A. Thus α∗F̃ preserves identities.

2. Given a composable pair f : x→ y, g : y→ z, we have the following cases.

• If χA(f) = χA(g) = 1, then χA(f #g) = 1, and

α∗F̃(f) #α∗F̃(g) = G(f ′) #G(g′) = G(f ′ #g′) = α∗F̃(f #g),

where f ′,g′ are the unique lifts of f ,g to A.

• If χA(f) = χA(g) = 0, then χA(f #g) = 0, and

α∗F̃(f) #α∗F̃(g) = F̃(f) # F̃(g) = F̃(f #g) = α∗F̃(f #g).

• If χA(f) = 0 and χA(g) = a, then χA(f #g) = a, and

α∗F̃(f) #α∗F̃(g) = F̃(f) # F̃(g) #αz′ = F̃(f #g) #αz′ = α∗F̃(f #g),

where z′ is the unique lift of z to A.

• If χA(f) = a and χA(g) = 1, then χA(f #g) = a, and

α∗F̃(f) #α∗F̃(g) = F̃(f) #αy′ #G(g
′) = F̃(f) #F(g′) #αz′ ,

where g′ : y′→ z′ is the unique lift of g to A, and we used naturality of α .

Since F(g′) = F̃(ı(g′)) = F̃(g), this is equal to

F̃(f) # F̃(g) #αz′ = α∗F̃(f #g).

No other cases are possible.

This proves that α∗F̃ is well-defined.

Given a morphism τ : F̃1⇒ F̃2 of ExtA
C(ı,F), the natural transformation α∗τ : α∗F̃1⇒ α∗F̃2 is defined,

on each object x in B, by

(α∗τ)x :=

{

idG(x′) if χA(x) = 1 and x = ı(x′),

τx if χA(x) = 0.

To show that this is well-defined as a natural transformation, consider a morphism f : x→ y in B.

• If χA(f) = 1 and f ′ : x′→ y′ is the unique lift of f to A, then

α∗F̃1(f) # (α∗τ)y = G(f ′) # idG(y′) = idG(x′) #G(f ′) = (α∗τ)x #α∗F̃2(f).

242 Obstructions to Compositionality

• If χA(f) = a and y′ is the unique lift of y to A, then

α∗F̃1(f) # (α∗τ)y = F̃1(f) #αy′ # idG(y′) = F̃1(f) # τy #αy′

since τy = τı(y′) = idF(y′). By naturality of τ , this is equal to

τx # F̃2(f) #αy′ = (α∗τ)x #α∗F̃2(f).

• If χA(f) = 0, then

α∗F̃1(f) # (α∗τ)y = F̃1(f) # τy = τx # F̃2(f) = (α∗τ)x #α∗F̃2(f).

This concludes the definition of α∗. It is straightforward to check that

(idF)∗ = id
ExtA

C(ı,F)
, (α #β)∗ = α∗ #β∗

for all pairs of natural transformations α ,β composable as morphisms in CA. Finally, one can verify that,

for all morphisms K : ı→ j in Past(A) and α : F→ G in CA, the diagram of functors

ExtA
C(j,F) ExtA

C(ı,F)

ExtA
C(j,G) ExtA

C(ı,G)

K∗

α∗

K∗

α∗

commutes in Cat. Thus we can define ExtA
C(K,α) as either path in the commutative diagram, and

conclude that ExtA
C is well-defined as a functor. �

Proposition 19 (Covariance of the ExtA
C). The assignment C 7→ ExtA

C extends to a functor

ExtA : Cat→ Cat 1Cat.

Proof. Given a functor P : C→ D, post-composition with P defines a functor P∗ : CA→ DA. Then there

is a natural transformation

Past(A)op×CA Cat

Past(A)op×DA

id×P∗
ExtA

D

ExtA
C

ExtA
P

(4)

defined as follows: given a past extension ı : A →֒ B and a functor F : A→C, the functor

ExtA
P(ı,F) : ExtA

C(ı,F)→ ExtA
D(ı,F #P)

acts both on objects and on morphisms by post-composition with P. It is straightforward to check that

the assignment P 7→ ExtA
P respects identities and composition in Cat. �

Puca, Hadzihasanovic, Genovese, Coecke 243

Remark 5 (General functoriality pattern). A fixed morphism K in Past(A) is classified by a functor
~I→ Past(A). Evaluating ExtA

C at K thus determines a functor

ExtA
C(K,−) : ~I×CA→ Cat,

which we can curry to obtain a functor

Λ.ExtA
C(K,−) : CA→ Cat

~I. (5)

Given a functor P : C→ D, we can also “curry the natural transformation” in (4) to obtain a diagram

CA Cat
~I

DA

P∗

Λ.ExtA
D(K,−)

Λ.ExtA
C(K,−)

Λ.ExtA
P(K,−) (6)

which is part of a functor Cat→ Cat 1Cat
~I .

Post-composing with the functor Cat
~I → Pos• from (1) we obtain a covariant family of functors

CA→ Pos•.

We will show that, for suitable choices of A and K, the image of these functors is included in the sub-

category of Pos• on the zeroth and first homotopy posets of C or categories associated with C, exhibiting

various kinds of functorial dependence of homotopy posets.

Proposition 10 (Functoriality of the homotopy posets). Let C be a category, i ∈ {0,1}. Then:

1. the assignment x 7→ πi(C/x) extends to a functor πi(C/−) : C→ Pos•;

2. a functor F : C→ D induces a natural transformation πi(F) : πi(C/−)⇒ πi(D/F−).

Given another functor G : D→ E, this assignment satisfies

πi(F #G) = πi(F) #πi(G), πi(idC) = idπi(C/−).

Proof. We will derive the results for both i ∈ {0,1} from the general functoriality pattern of Remark 5.

First we consider the case i = 0. Let 1 be the terminal category. The inclusion K0 of the endpoints of

the walking arrow induces a morphism in Past(1), depicted as follows:

• • • •

1

1+1 ~I
K0

ı1 1

We claim that, up to isomorphism of categories,

Λ.Ext1
C(K0,−) : C1→ Cat

~I

sends an object x of C1 — which is, equivalently, an object of C — to the slice projection functor

dom: C/x→C.

The domain of Λ.Ext1
C(K0,x) is the category Ext1

C(1,x) whose

244 Obstructions to Compositionality

• objects are functors f : ~I→C such that

1 C

~I

1

x

f

commutes, which are in bijection with morphisms f of C whose codomain is x, and

• morphisms from f to g are natural transformations h : f ⇒ g — which are in bijection with com-

mutative squares

y z

x x

f

h1

h0

g

in C — that restrict to the identity along 1: 1 →֒~I, that is, are such that h1 = idx. These are in

bijection with factorisations of f through g.

This establishes an isomorphism between Ext1
C(1,x) and C/x. The codomain of Λ.Ext1

C(K0,x) is the

category Ext1
C(ı1,x) whose

• objects are functors (y0,y1) : 1+1→C such that

1 C

1+1

ı1

x

(y0,y1)

commutes, which are in bijection with pairs of objects (y0,y1) of C such that y1 = x, which are in

bijection with objects of C, and

• morphisms from (y,x) to (z,x) are in bijection with pairs of morphisms

y z

x x
h1

h0

in C that restrict to the identity along ı1, that is, are such that h1 = idx. These are in bijection with

morphisms y→ z.

This establishes an isomorphism between Ext1
C(ı1,x) and C. The functor Ext1

C(K0,x) acts by restriction

of f : ~I→C along K0 : 1+1 →֒~I; through the isomorphisms, this acts by mapping f : y→ x to its domain

y. This is, by inspection, the same as the action of dom.

We define

π0(C/−) : C→ Pos•

to be the post-composition of Λ.Ext1
C(K0,−) with the functor of Equation 1. It follows from our argu-

ment that, up to isomorphism, this sends x to the homotopy poset π0(C/x). The covariance in C then

Puca, Hadzihasanovic, Genovese, Coecke 245

follows as an instance of Equation 6: given a functor F : C→ D, we whisker the natural transformation

Λ.Ext1
F(K0,−) with the functor of (1) to obtain π0(F) : π0(C/−)⇒ π0(D/F−).

Now, let us focus on the first homotopy poset. The functor K1 identifying two parallel arrows also

induces a morphism in Past(1), depicted as follows:

• • • •

1

Par ~I
K1

c 1

Here, Par denotes the “walking parallel pair of arrows”. We claim that, up to isomorphism of categories,

Λ.Ext1
C(K1,−) : C→ Cat

~I

sends an object x of C to the slice projection functor

dom: Par(C/x)/(idx, idx)→ Par(C/x).

We have already established that the domain of Λ.Ext1
C(K1,x), which is the category Ext1

C(1,x), is iso-

morphic to C/x, which can be shown to be isomorphic to Par(C/x)/(idx, idx) using Proposition 7.

The codomain of Λ.Ext1
C(K1,x) is the category Ext1

C(c,x) whose

• objects are functors (f0, f1) : Par→C such that

1 C

Par

c

x

(f0, f1)

commutes, which are in bijection with pairs of morphisms (f0, f1) of C whose codomain is x, and

• morphisms from the pair (f0, f1) to (g0,g1) are natural transformations h : (f0, f1)⇒ (g0,g1) that

restrict to the identity along c, which are in bijection with morphisms h such that f0 = h;g0 and

f1 = h;g1.

This establishes an isomorphism between Ext1
C(c,x) and Par(C/x).

The functor Ext1
C(K1,x) acts by precomposing f : ~I→C with K1 : Par→~I, which through the isomor-

phisms sends a pair (f , f) with its unique morphism to (idx, idx) to the pair (f , f) on its own. This is, by

inspection, the same as the action of dom.

We define

π1(C/−) : C→ Pos•

to be the post-composition of Λ.Ext1
C(K1,−) with the functor of Equation 1. It follows from our argu-

ment that, up to isomorphism, this sends x to the homotopy poset π1(C/x). Again, we obtain covariance

in C by whiskering instances of Equation 6. This completes the proof. �

S. Staton, C. Vasilakopoulou (Eds.):

Applied Category Theory 2023 (ACT2023)

EPTCS 397, 2023, pp. 246–259, doi:10.4204/EPTCS.397.15

© C. Sarti, J. Vicary

This work is licensed under the

Creative Commons Attribution License.

Posetal Diagrams for Logically-Structured

Semistrict Higher Categories

Chiara Sarti

Computer Laboratory
University of Cambridge

cs2197@cam.ac.uk

Jamie Vicary

Computer Laboratory
University of Cambridge

jamie.vicary@cl.cam.ac.uk

We now have a wide range of proof assistants available for compositional reasoning in monoidal or

higher categories which are free on some generating signature. However, none of these allow us to

represent categorical operations such as products, equalizers, and similar logical techniques. Here we

show how the foundational mathematical formalism of one such proof assistant can be generalized,

replacing the conventional notion of string diagram as a geometrical entity living inside an n-cube

with a posetal variant that allows exotic branching structure. We show that these generalized dia-

grams have richer behaviour with respect to categorical limits, and give an algorithm for computing

limits in this setting, with a view towards future application in proof assistants.

1 Introduction

The development of proof assistants for category theory and higher category theory has recently been a

active area for the applied category theory community, in particular from a string diagrammatic perspec-

tive. Recent work has included the CARTOGRAPHER tool of Sobocinski, Wilson and Zanasi applying

hypergraph rewriting for symmetric monoidal diagrams [15]; the DISCOPY python library from de Fe-

lice et al for string diagram manipulation [7]; the REWALT tool by Hadzihasanovic and Kessler for

rewriting with diagrammatic sets [8]; the WIGGLE.PY tool due to Burton for 3d string diagram render-

ing [5]; the QUANTOMATIC system developed by Dixon, Duncan, Kissinger and others for applying the

ZX calculus in quantum information [6]; and the GLOBULAR [2, 3] and HOMOTOPY.IO [10, 13] web-

based systems for finitely-generated semistrict n-categories rendered as higher string diagrams. While

these tools represent a wide range of perspectives and use-cases, they share a common goal of allowing

the user to manipulate terms in a monoidal or higher categorical structure which is freely generated un-

der composition from some signature, perhaps with additional algebraic elements (for example, such as

Frobenius algebras, in the case of QUANTOMATIC.)

The geometrical essence of these proof assistants allows the user to avoid some of the bureaucracy

associated with some algebraic approaches to higher categories. However, much of the power of category

theory arises from methods that go beyond direct composition, such as products, equalizers, colimits, and

other standard categorical structures. These cannot be represented with any of the current family of string

diagrammatic proof assistants.

Here we explore an alternative foundation for such proof assistants which may suggest a path to-

wards new classes of tools, with the potential to combine the clarity and usability of string diagrammatic

techniques, with the power of algebraic categorical methods. We illustrate our approach with the zigzag

construction, a simple combinatorial model of higher string diagram that forms the basis of the proof as-

sistant HOMOTOPY.IO. This construction depends on a contravariant equivalence between the augmented

simplex category ∆+, of finite total orders and monotone functions; and the category ∆= of non-empty

http://dx.doi.org/10.4204/EPTCS.397.15
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

C. Sarti, J. Vicary 247

a

b

R{}

Sa

R{a}

Sb

R{a,b}

R{}

Sa

R{a}

Sb

R{a,b}

Sa,b
y

Figure 1: The linear zigzag over the total order {a→ b}.

finite total orders, with monotone functions preserving min and max elements. Elegantly described by

Wraith [17], the equivalence is representable, acting as ∆+(−,{⊥→⊤}) : ∆
op
+ → ∆=.

The idea of the zigzag construction is sketched in Figure 1, for the 2-element total order {a→ b} ∈ ∆+.

On the left, the two elements of {a→ b} appear as singular heights Sa, Sb. These are interlaced vertically

with the three elements of its dual ∆+({a→ b},{⊥ → ⊤}) written as regular heights R{}, R{a}, R{a,b},

with the subscript indicating the preimage of ⊤. On the right, we equip the singular heights with maps

into the adjacent regular heights.1 We see an alternating pattern of regular and singular heights, drawn as

dashed and solid lines; reading from bottom to top, we can consider these as “time slices” of the linear

geometry of the diagram, which tell us that a happens first, and then b. For every category C we have

a zigzag category Z(C), and an n-dimensional string diagram is simply an object of Zn(C) over some

suitable base category. For every zigzag category, a functor R : Z(C)→ ∆= projects down to the total

order of regular heights. Concerning the existence of limits in Z(C), a decision procedure has recently

been presented [13], which supplies the following necessary condition: for a diagram in Z(C) to have a

limit, its projection in ∆= must have a limit. This rules out wide classes of limits in Z(C), since the limit

structure of ∆= is meagre. In particular, products do not exist in ∆= for sets of cardinality greater than 1,

so there can be no notion of product for nontrivial higher string diagrams.

However, the duality ∆
op
+ ≃∆= extends further. In particular, Wraith’s original paper further exhibited

a duality FPosop ≃ FDLat, where FPos is the category of finite posets, and FDLat is the category of

finite distributive lattices and meet- and join- preserving functors; this can be considered a finitised

version of Stone Duality, and is sometimes known as the Birkhoff Representation Theorem [4, 17]. This

equivalence is again representable as FPos(−,{⊥→⊤}), and extends the duality considered above,

given the obvious full and faithful embeddings ∆+ →֒ FPos and ∆= →֒ FDLat.

Here we exploit this duality to put forward a posetal zigzag construction, directly generalizing the

existing linear zigzag construction. While the linear zigzag construction yields a notion of higher cate-

gory which is purely compositional, we conjecture that the posetal zigzag construction will yield a notion

of higher category with richer categorical structure, but retaining a geometrical essence which could in

principle be implemented in a similar tool to HOMOTOPY.IO. Establishing this conjecture will require

considerable future work.

In this paper we take the first steps, giving the first detailed investigation of posetal zigzags. We begin

1These maps are going in the opposite direction than in some previous literature, a technical choice we made following [9]

which makes our development here more straightforward.

248 Posetal Diagrams for Semistrict Higher Categories

x y

[{},{}]

[{},{y}]

[{y},{y}]

[{y},{x,y}]

[{},{x,y}]

[{},{x}]

[{x},{x}]

[{x},{x,y}]

[{x,y},{x,y}]

[{},{}]

[{},{x}]

[{x},{x}]

[{},{y}]

[{x},{x,y}]

[{y},{y}]

[{y},{x,y}]

[{x,y},{x,y}]

[{},{x,y}] y

y

y

y

Figure 2: The posetal zigzag over the poset {x | y}.

here with an informal illustration of posetal zigzags, generalizing the linear example of Figure 1 above.

In Figure 2 we illustrate the posetal zigzag construction for the poset {x | y}, with two disconnected

objects. While the linear zigzags in Figure 1 had a linear sequence of time slices (since a must precede

b), here a richer structure appears, with x and y now interpreted as “events” that can occur in either order.

Now we have a dual distributive lattice D = FPos({x y},{⊥ → ⊤}) with elements {}, {x}, {y}, {x,y}
under the subset order, once again denoting in braces the preimage of ⊤. Our regular and singular levels

are indexed by pairs of related elements [A,B] in D, which we call intervals; by construction, A,B will

be subsets of the original poset, with A⊆ B. For this example there are 9 such intervals, and we list them

on the left of Figure 2, once again considering them as distinct “time slices”. For example, [{x},{x,y}]
represents the time slice in which x has already occurred, and y is in the moment of occurring. More

generally, one can interpret any interval [A,B] as the time slice in which the events A has already occurred,

and the events B\A are occurring at that exact moment.

On the right of Figure 2, we present these 9 intervals in a different way, as nodes on a diamond

grid, interpreted as a diagram in an underlying process category C. Morphisms arise as interval refine-

ments, and we observe the presence of 4 squares, which are required to commute. As we move from

the bottom to the top node by various paths, we observe different sequences of time slices: moving

clockwise we observe the sequence [{},{}], [{},{x}], [{x},{x}], [{x},{x,y}], [{x,y},{x,y}], interpreted

as x occurring before y; moving anticlockwise we observe the sequence [{},{}], [{},{y}], [{y},{y}],
[{y},{x,y}], [{x,y},{x,y}], interpreted as y occurring before x; and moving vertically one observes the

sequence [{},{}], [{},{x,y}], [{x,y},{x,y}], in which x and y occur simultaneously. The posetal zigzag

diagram provides semantic data in the base category C for all of these possibilities. The fact that the 4

squares commute means that whatever sequence one chooses, the semantic effect in C is the same. The

fact that the squares are pullbacks means that much of this data is in fact redundant; the central part,

drawn in gray, can be considered as “filler data” that need not be explicitly stored. Figure 1 contained

similar redundant filler data, with the singular level Sa,b required to arise as a pullback of Sa and Sb.

This account is of course informal, and intended to give intuition ahead of the precise mathematical

development that follows. In Section 2 we introduce the notion of interval for a poset, and give a notion

of labelled diagram structure, with label data assigned to all intervals, but with no pullback conditions

imposed on filler data. In Section 3 we introduce the more refined posetal zigzag construction P(C),
where the filler data is now obtained canonically via pullback, yielding a well-behaved conservative

C. Sarti, J. Vicary 249

extension of the traditional linear zigzag formalism. In Section 4 we consider the construction of limits

in posetal zigzag categories, giving an explicit construction procedure, and establishing our main result,

Corollary 4.12, which states that if C has all finite limits, then so does P(C).
In this way, we establish the posetal zigzag construction as a potential foundation for a new class

of geometrical proof assistant, with additional expressive power. In this setting, higher string diagrams

would retain their semistrict geometrical essence, yet also exhibit new posetal features such as branches,

sinks and forks; n-dimensional diagrams are no longer inscribed neatly within the n-cube, as with tra-

ditional higher string diagrams. Depending on the poset structure, the sequencing of morphisms within

the string diagram would be dynamic, with re-sequencing steps appearing as higher cells. While the

future applications of these ideas of course remain speculative, we hope our work may lead to further

development of geometrical proof assistants with exciting new capabilities.

Acknowledgements.

We thank Lukas Heidemann, Alex Rice and Calin Tataru for many insightful discussions. We also thank

the anonymous reviewers for their invaluable feedback. The first author acknowledges funding from

King’s College Cambridge. The second author acknowledges funding from the Royal Society.

2 The Interval Construction

2.1 From Posets to Labelled Intervals

Our formal development begins with a reconstruction of the categorical origins of the zigzag construc-

tion, which we generalise to poset shapes. We will initially focus our analysis on the combinatorial

aspects of our theory, setting solid foundations for the establishing the theoretical results of Section 4,

and allowing for the geometric content of our theory to emerge organically as a by-product of our cate-

gorical analysis.

In our discussion, we study the maps of our diagrams as factored or decomposed in two parts: one

which may change the posetal shape but not the labels, and another which may change the labels, but

fixes the shape. By adding the possibility of extra “filler data” in our diagrams, this relabelling map

can be specified as a natural transformation between two functors. This sort of decomposition can be

expressed naturally in the language of Grothendieck fibrations, unlocking powerful theoretical tools.

Without getting too ahead of our formal development, this Section will build up to a formal description

of the construction we depicted in Figure 1 and Figure 2, starting from the following key idea:

Definition 2.1 (Interval). An interval in a poset P is a pair [a,a′] of a,a′ ∈ P with a≤ a′. We denote the

set of intervals in P by [P] and order it by the precision relation ⊇

[a,a′]⊇ [b,b′] :←→ (a≤ b)∧ (b′ ≤ a′)

The strict counterpart of this relation is denoted ⊃.

Proposition 2.2. For every finite poset P, [P] is also a finite poset.

Proof. Finiteness is evident. We must show that [P] inherits transitivity, reflexivity and anti-symmetry

from P. For transitivity, if we have [a,a′]⊇ [b,b′] and [b,b′] ⊇ [c,c′], then we must have a ≤ b ≤ c and

c′ ≤ b′ ≤ a′, so by transitivity of P, we have a≤ c and c′ ≤ a′, and hence [a,a′]⊇ [c,c′].
Reflexivity is evident, and for anti-symmetry, if we have [a,a′] ⊇ [b,b′] and [b,b′] ⊇ [a,a′], then we

must have a≤ b≤ a and b′ ≤ a′ ≤ b′, and hence a = b and a′ = b′ by anti-symmetry of P.

250 Posetal Diagrams for Semistrict Higher Categories

Example 2.3. The interval construction [P] on the poset P = {a < (b | c) < d < e} is depicted as the

left-most diagram below. The data of the intervals below the gray arrows is easily rendered as the posetal

string diagram on the right. This requires us to ignore the witnesses from the higher intervals, which

have no clear interpretation on the diagrammatic side.

[a,e]

[a,d] [b,e] [c,e]

[a,b] [a,c] [b,d] [c,d] [d,e]

[a,a] [b,b] [c,c] [d,d] [e,e]

fg

gf

h

With anti-symmetry in mind, we specialise our terminology as follows:

Definition 2.4 (Degenerate Intervals). We refer to an interval [a,a′] in P as a degenerate, if a = a′, or

non-degenerate, if a < a′.

In the account of this construction offered in [13], degenerate intervals are called regular heights,

and non-degenerate intervals are called singular heights. Though the alternative choice of terminology

is supported by good motivation, we avoid it in our discussion to spare the reader from unnecessary

confusion.

Definition 2.5 (Map of Intervals). Let f : P→Q be a monotone function between posets. The associated

map of interval posets [f] : [P]→ [Q] is the function sending an interval [a,a′] in P to [f (a), f (a′)].

Proposition 2.6. Let f : P→ Q be a monotone function between posets. Then [f] is a well-defined

monotone map, and moreover, [−] defines an endofunctor on FPos.

Proof. Let f : P→Q be a monotone map. Then a≤ a′ implies f (a)≤ f (a′), hence if [a,a′] is an interval

in P, [f][a,a′] is an interval in Q. Moreover, if we have [a,a′] ⊇ [b,b′], i.e. a ≤ b and b′ ≤ a′, then

f (a) ≤ f (b) and f (b′) ≤ f (a′), and thus [f][a,a′] ⊇ [f][b,b′], which shows [f] is monotone. Finally,

the assignment P 7→ [P] and f 7→ [f] respects identities and composites, and thus makes [−] into an

endofunctor FPos.

Lemma 2.7. The functor [−] preserves products.

Proof. Let P and Q be finite posets. An interval in P×Q is a pair of pairs [(a,b),(a′,b′)] with a ≤ a′

and b≤ b′, and thus defines two intervals [a,a′] and [b,b′]. Moreover, the assignment and its inverse are

monotone:

[(a,b),(a′ ,b′)]⊇ [(c,d),(c′,d′)]←→ (a,b) ≤ (c,d)∧ (c′,d′)≤ (a′,b′)

←→ a≤ c∧b≤ d∧ c′ ≤ a′∧d′ ≤ b′

←→ [a,a′]⊇ [c,c′]∧ [b,b′]⊇ [d,d′].

C. Sarti, J. Vicary 251

We now identify FPos with a corresponding full subcategory of Cat, by identifying each poset P with

the category P with the elements of P for objects, and arrows a→ a′, whenever a ≤ a′. Note that under

this identification, the interval construction is isomorphic to the twisted arrow construction [11, §2]. The

above data is combined as follows:

Definition 2.8 (Labelled Interval Category). Let C be a category. The category L(C) of intervals labelled

in C is defined as the Grothendieck construction of the functor

LC : FPosop −→ Cat

P 7−→ Func([P],C),

f 7−→ −◦ [f].

Explicitly, the objects of L(C) are pairs (P,X), with P ∈ FPos, a shape poset, and X : [P]→ C, a

labelling of [P] in C. As for the morphisms, they are given by pairs (f ,α), with f : P→ Q, a change of

shape map, and α : X →Y ◦ [f] a relabelling natural transformation.

Example 2.9. Let P be the poset {a < (b |c) < d < e} of Example 2.3 and C be the thin category

generated by {x < (f |g |h) < (α |β |γ) < µ}. Then the pair (P,X) defines an object of L(C), where

X : [P]→ C is the functor represented in the diagram below:

g x f β

x α µ x h x

f x g γ

Example 2.10. As shapes for cells in a higher category, labelled intervals can admit extremely undesir-

able behaviour: they need not even be connected. For instance, if P := 1+1 is the discrete two-element

poset, then [P]∼= P and thus a labelled interval of shape P simply picks out two objects of C.

Example 2.11. A map of labelled intervals can be decomposed as a change of shape monotone function

and a relabelling natural transformation. In the diagram below, the monotone map is between the posets

P := {⊥ →⊤} and Q := {a < (b | c) < d}, and acts by ⊥ 7→ a,⊤ 7→ d. The relabelling has components

idx, f → g and idy.

g y y

x f y

x x g

x f y

By virtue of its definition through a Grothendieck construction, we have an underlying shape functor

U : L(C)→ FPos, which is a Grothendieck fibration. If we adopt the convention of writing (x0,x1) for the

components of an object x ∈ L(C), and similarly for morphisms, then the action of U is simply specified

by taking first projections x 7→ x0, f 7→ f 0.

252 Posetal Diagrams for Semistrict Higher Categories

Given a functor F : C→D, we may define a post-composition with F mapping L(F) : L(C)→ L(D),
which acts by (P,X) 7→ (P,F ◦X) and (f ,α) 7→ (f ,Fα). Then L(F) is a functor, and moreover it allows

us to make an assignment L(−) : C 7→ L(C),F 7→ L(F), which is an endofunctor on Cat, with the usual

caveats about size concerns we trust our readers to judge unproblematic. In particular, this allows us

to iterate the construction, as L(C) can itself be taken as a category of labels, and we may thus define

iterated versions of this construction by setting L
n+1(C) := L(Ln(C)).

It seems useful at this point, before drawing this Section to an end, to briefly summarise our progress

towards the overarching goal of posetal diagrams. The interval construction introduced in Definition

2.1 captures the combinatorial aspect of our intended construction remarkably well. Unfortunately, as

we have seen in Example 2.3, the interval construction introduces labels which are foreign to the dia-

grammatic calculus. In keeping with our aim of being able to reconstruct the combinatorial object from

the geometric representation, we need to ensure that those labels do not carry information that cannot

be inferred from the explicit datum of a diagram. We will see in the next Section that this canonicity

requirement can be succinctly stated in terms of limit constructions.

3 Posetal Diagrams

3.1 Posetal Diagrams as Local Functors

In the previous Section we have presented the construction of the category of labelled intervals, arguing

that it correctly captures the desiderata combinatorics our theory. However, this approach requires too

much filler data to be specified, preventing a clean diagrammatic presentation of our structures. In

drawing intuition from Example 2.3, we wish to find technical conditions under which the missing filler

data in the diagrams can be faithfully reconstructed.

A close inspection of Example 2.3 and Example 2.9 shows that all the intervals whose data we wish

to suppress satisfy the universal property of being a pullback in [P]. This would suggest we consider

labellings X : [P]→C which preserve pullbacks. However, this condition is far too strong for our interest:

[P] is a thin category, and thus every arrow is monic. If X were to preserve all pullbacks, it could only

involve monic arrows in C, which is exceedingly restrictive, especially in light of our wishes to iterate

the construction. We will thus exercise some care in determining exactly which pullbacks in [P] should

be preserved:

Definition 3.1 (Atomic Cospan, Local Functor). Let J, C be categories. A cospan (a
f
→ x

g
← b) in J is

atomic if for any cospan (a
f ′

→ y
g′

← b) and map h : y→ x with h ◦ f = f ′ and h ◦ g = g′, then h is an

isomorphism. We say a functor X : J→ C is local if it preserves all pullbacks of atomic cospans.

Example 3.2. If f is not an isomorphism, then (a
f
→ x

f
← a) is never atomic. Hence non-iso monic

arrows need not be preserved by local functors.

Example 3.3. The cospan [b,e]⊃ [e,e] ⊂ [c,e] in our Example 2.3 is also not atomic.

Example 3.4. The labelling of the diamond {a < (b |c) < d} in Set depicted below is a local functor:

1+1

1 1+1 1+1 1

1 1 1 1

C. Sarti, J. Vicary 253

Though this technical condition seems cumbersome to check explicitly, a remarkable fact about our

formalism is that for a rather large class of poset shapes we almost never actually need to do this. We will

prove in the remainder of the paper that so long as the diagrams are constructed by taking finite limits of

other local diagrams of the right shape, we will remain within this fragment of our framework. For our

interest in using this combinatorial framework as the basis of a future proof assistant, this shows we can

maintain strong invariants on our data structures, so that any actual implementation of our procedures

could drastically reduce the data it needs to explicitly keep track of.

Another, even more surprising property of our formalism is that this class of well-behaved poset

shapes can be morally taken to be the whole of FPos, albeit viewed through a looking glass. This

is because we may take our well-behaved posets to be finite distributive lattices, by which we mean

posets P admitting finite meets and joins and that satisfying the condition that for all a,b,c ∈ P we

have a∧ (b∨ c) = (a∨ b)∧ (a∨ c) and a∨ (b∧ c) = (a∧ b)∨ (a∧ c). Such posets assemble into a

non-full subcategory FDLat of FPos by taking as maps monotone functions f : P→ Q preserving finite

meets and joins. Note that, in particular, our lattices are always bounded, and moreover if f is a lattice

homomorphism then we must have f (⊥) =⊥ and f (⊤) =⊤. Although in our formal development some

individual results would hold with weaker regularity conditions, the category FDLat enjoys the property

of being equivalent to FPosop by the Birkhoff Representation Theorem [17, page 262]. The sum of these

wonderful properties suggests us the following definition:

Definition 3.5 (Labelled Posetal Diagram). The category P(C) of posetal diagrams labelled in C is de-

fined to be the subcategory of labelled intervals L(C) with objects pairs (P,X) with P being a distributive

lattice and X a local functor, and morphisms pairs (f ,α), with f a lattice homomorphism.

3.2 Intervals in Lattices

Having formally introduced our key notion of posetal diagrams in Section 3.1, we will now embark a

fine-grained analysis of the relation between logical properties of a poset P and the locality property of

the labelled interval with shape P. Our key result for this Section will be an explicit characterisation of

atomic cospans in [P] for distributive lattices. This will allow us to extract useful consequences about

preservation of locality under proposition by interval maps associated with lattice homomorphisms. To

do this, however, we first require some intermediate lemmas.

Lemma 3.6. Let P be a finite poset with binary meets and joins. Then, for any two intervals [a,a′] and

[b,b′] in [P], the meet [a,a′]∧ [b,b′] exists and is given by [a∧b,a′∨b′].

Proof. We have a∧b≤ a and a′ ≤ a′∨b′, and similarly for [b,b′], hence [a∧b,a′∨b′] is an interval and

[a∧ b,a′ ∨ b′] ⊇ [a,a′], [b,b′]. Moreover, for any other interval [c,c′] in P with [c,c′] ⊇ [a,a′], [b,b′], we

must have c≤ a and c≤ b, and thus c≤ a∧b. The dual calculation shows [c,c′]⊇ [a∧b,a′∨b′].

Lemma 3.7. Let P be a finite poset with binary meets and joins. Then, for any two intervals [a,a′] and

[b,b′] in [P], the join [a,a′]∨ [b,b′] exists iff a∨b≤ a′∧b′, in which case it is given by [a∨b,a′∧b′].

Proof. Assume [a,a′]∨ [b,b′] exists and equal to some interval [c,c′]. Then in particular we have a ≤ c

and b≤ c, and thus a∨b≤ c, and dually c′ ≤ a′∧b′. Since c≤ c′, we must have a∨b≤ a′∧b′.

We establish the other direction by verifying the universal property of the interval [a∨ b,a′ ∧ b′],
whenever it exists. We have [a,a′] ⊇ [a∨ b,a′ ∧ b′], and similarly for [b,b′], and moreover for every

interval [c,c′] satisfying the containments [a,a′]⊇ [c,c′]⊆ [b,b′], we must have [a∨b,a′∧b′]⊇ [c,c′] by

the above verifications.

254 Posetal Diagrams for Semistrict Higher Categories

Proposition 3.8. Let P be a finite lattice. Then a cospan [a,a′] ⊇ [b,b′] ⊆ [c,c′] in [P] is atomic iff

a∨ c≤ a′∧ c′ and [b,b′] = [a∨ c,a′∧ c′].

Proof. In the forward direction, we have that a≤ b and c≤ b, hence a∨ c≤ b and dually b′ ≤ a′∧ c′. In

particular, [a∨c,a′∧c′]⊇ [b,b′], and thus we have [a∨c,a′∧c′] = [b,b′] by atomicity and anti-symmetry.

The backward direction is given by the universal property of a∨ c and a′∧ c′.

This yields an immediate but essential consequence for our forthcoming study of limits of posetal

diagrams in Section 4.2:

Corollary 3.9. If f : P→Q is a lattice homomorphism, [f] preserves atomic cospans and their pullbacks.

Proof. By Proposition 3.8, a cospan [a,a′] ⊇ [b,b′] ⊆ [c,c′] is atomic iff [b,b′] = [a∨ c,a′ ∧ c′]. But

lattice homomorphisms preserve binary meets and joins, so [f][b,b′] = [f (a)∨ f (c), f (a′)∧ f (c′)], hence

the cospan [f][a,a′] ⊇ [f][b,b′] ⊆ [f][c,c′] is atomic. Moreover, [P] is a thin category, so the pullback

of our atomic cospan coincides with the product of [a,a′] and [c,c′]. By Lemma 3.6, this is given by

[a∧ c,a′∨ c′], and thus it is preserved by f .

4 Limits of Posetal Diagrams

4.1 Limit Procedure

Having given the construction of the category L(C) in our preceding Section, we will now describe a

procedure to compute limits in L(C) from limits in C and FPos. By taking the category of labels C to be

a suitable n-fold iterate of the labelled interval construction L
n(D), this procedure provides a recursive

strategy for computing limits entirely in terms of those in the base category D.

Before we describe the limit procedure, since we are interested in stating our results for categories

which may be fail to admit many limits, we need to fix some terminology. Recall that for functors

F : J→ C and G : C→ D, we say that G preserves F-limits if whenever (L,η : ∆L → F) is a limit for

F , (GL,Gη) is a limit for G◦F . We also say that G reflects F-limits if whenever we have a cone (L,η)
over F such that (GL,Gη) is a limit for G◦F , then (L,η) is a limit for F [14, 3.3.1].

Definition 4.1 (Pointwise Limit). Let (L,η) be a limit for a diagram F : J→ Func(C,D). We say (L,η)
is pointwise if for each c ∈ C, it is preserved by the evaluation at c functor evc : Func(C,D)→ D.

If D has all J-limits, every J-limit in Func(C,D) is pointwise, but this need not be the case otherwise,

and our analysis will necessitate the distinction.

Construction 4.2 (Limit Procedure). Given a category of labels C and a finite diagram F : J→ L(C), we

compute the limit of F or fail according to the following procedure:

1. We take the limit (L,ρ) of the diagram U ◦F : J→ L(C)→ FPos,

2. We use ρ to produce from F a diagram G : J→ Func([L],C),

3. For each j ∈ J, we take G j := (F j)1 ◦ [ρ j],

4. For each h ∈ J(j, j′), we take Gh : G j→ G j′ to have components

(Gh)[a,b] := (Fh)1
[ρ j][a,b]

: (F j)1[ρ j][a,b] −→ (F j′)1[ρ j′][a,b],

5. We define ε : (∆L,G)→ F to have components ε j := (ρ j, id(G j)1),

C. Sarti, J. Vicary 255

(L,L)

(L,G j) F j

(L,G j′) F j′ L(C)

L (F j)0 FPos

(F j′)0

Fh

(ρ j ,id)

(ρ j′ ,id)

(idL,Gh)

ρ j

ρ j′

(F f)0

(idL,η)

U

Figure 3: A diagrammatic presentation of Construction 4.2.

6. For each interval [a,b] in L, we take the limit (L[a,b],η[a,b]) of ev[a,b] ◦G : J→ C, if it exists, and

fail if not,

7. For each pair [a,b]⊇ [c,d] of intervals in L, we use naturality of ev− to get cones (L[a,b],ev[a,b]⊇[c,d] ◦
η[a,b]) over ev[c,d] ◦G,

8. We get cone maps L[a,b]⊇[c,d] : L[a,b]→ L[c,d] via the u.p. of (L[c,d],η[c,d]),

9. We assemble the above into a limit cone (L,η) with L : [a,b] 7→ L[a,b], ([a,b]⊇ [c,d]) 7→ L[a,b]⊇[c,d]

and (η j)[a,b] := (η[a,b]) j.

10. We return the cone ((L,L),η ◦ ε) as a limit for F .

The end-to-end procedure is depicted in Figure 3.

Lemma 4.3. For every finite diagram F : J→ L(C), Construction 4.2 is well-defined.

Proof. The limit at Step (1) exists because FPos is finitely complete [1, 12.6.1]. Since (L,ρ) is a cone,

for every h ∈ J(j, j′), we have (Fh)0 ◦ρ j = ρ j′ , hence Gh is well-defined. Moreover, since F and [−] are

functors, G respects identities, and since for h ∈ J(j, j′) and h′ ∈ J(j′, j′′), we have (F(h′ ◦h)1)[ρ j][a,b] =

(F(h′)◦ [ρ j′])◦Fh)1)[ρ j][a,b], G respects composites and thus is a functor. The naturality condition for ε

in Step (5) follows by unwinding definitions. Functoriality of L in Step (9) follows by uniqueness of the

cone maps, and finally, naturality of η holds along J due to (η−)[a,b] := η[a,b] being a cone, and along [P]
due to L(−⊇−) being a map of cones.

Proposition 4.4. Let f : P→Q be a monotone function and C a category. Then −◦ [f] : Func([Q],C)→
Func([P],C) preserves all pointwise limits which exist in Func([Q],C).

Proof. Let (L,η) be a pointwise limit for a diagram G : J→ L(Q), and let (K,χ) be a cone over G◦ [f].
We define a natural transformation γ : K→ L ◦ [f] by taking for each interval [a,b] in P, the component

γ[a,b] to be the unique map of cones (K[a,b],ev[a,b]χ)→ (L f [a,b],ev[f][a,b]η), which is given by the

universal property of the pointwise limit. Naturality and uniqueness of γ then follow both by uniqueness

of the components.

Theorem 4.5. Let C be a category. If F : J→ L(C) is a finite diagram, and Construction 4.2 succeeds

for F, its output ((L,L),ε ◦η) is a limit for F.

256 Posetal Diagrams for Semistrict Higher Categories

Proof. By Lemma 4.3, Construction 4.2 is well-defined. Let ((K,K),γ) be a cone over F . Since L is a

limit for U ◦F , we have a unique map k : K→ L. Since (L,η) is a pointwise limit, by Proposition 4.4,

−◦ [k] preserves it, so we have a unique map of cones χ : K→ L, so we take (k,χ) as our map.

Corollary 4.6. Let J be a finite category. If a category C has J-limits, then so does L(C).

Proof. This is a known result about fibred categories, see e.g. [16, Thm.1], which we can extract as a

consequence of Theorem 4.5. Since C has J-limits, so will each functor category Func([P],C), as they

inherit the pointwise limits from C. Hence Construction 4.2 will succeed for all diagrams F : J→ L(C),
and thus by Theorem 4.5 every such diagram has a limit.

For a converse statement, we can prove that if C has an initial object, then our Construction 4.2 is

searching for a limit in the correct fibre:

Proposition 4.7. Let C be a category with an initial object 0 ∈ C. The fibration U : L(C) → FPos

preserves all existing limits.

Proof. The functor U has a left-adjoint F : FPos→ L(C), which acts as P 7→ (P,∆0 : [P]→ C) and

f 7→ (f , !), where ∆0 is the constant functor on 0 ∈ C.

The following lemma allows us to safely invoke completion arguments:

Lemma 4.8. Let F : C→D be a functor. If F preserves, resp. reflects, all J-limits which exist in C, resp.

D, then L(F) : L(C)→ L(D) preserves, resp. reflects, all J-limits produced by Construction 4.2.

Proof. For preservation, let ((L,L),η) be a limit for a diagram G : J→ L(C) obtained via Construction

4.2. Then L(F) sends this limit to ((L,F ◦L),ε), where ε := (η0
j ,Fη1

j). Since F preserves J-limits in C,

this cone matches the output of Construction 4.2 for L(F)◦G, and thus by Theorem 4.5 is limiting.

For reflection, let ((L,L),η) be a cone over a diagram G : J→ L(C) which is mapped under L(F) to

the limit cone ((K,K),ε) obtained via Construction 4.2 on L(F)◦G. Since L(F) acts only on labels, we

must have L = K. Moreover, since the limit (L,K) is pointwise and F reflects J-limits in D, ((L,L),η)
satisfies the specification of Construction 4.2, and thus is a limit for G.

4.2 Limits of Posetal Diagrams

Having presented a procedure for computing limits in L(C), we will conclude our technical exposition

with a study of the corresponding limit procedure for the subcategory P(C), and extract some conse-

quence for local diagrams. A lot of the heavy lifting of our results in this section hinges on the following

lemma, which allows a translation of Construction 4.2 from labelled intervals to posetal diagrams.

Lemma 4.9. The subcategory inclusion FDLat→ FPos preserves finite limits.

Proof. Let (L,η) be a limit cone for a finite diagram F : J→ FDLat. By the Birkhoff Representation

Theorem [17, page 262], the functors FPos(−,2) : FPosop→ FDLat and FDLat(−,2) : FDLatop→ FPos

form an adjoint equivalence, where 2 denotes the two-element distributive lattice {⊥→⊤} and the hom-

sets are equipped with their respective pointwise orders. Since FDLat(−,2) is a right adjoint, it preserves

the limit (L,η), sending it to the colimit of FDLat(F−,2) : Jop→ FPos.

It suffices now to show that the composite of the dualising functor FPos(−,2) and subcategory in-

clusion FDLat→ FPos preserves finite colimits. But this is just given by the internal contravariant hom

FPos(−,2) : FPosop→ FPos for the Cartesian closed category FPos [1, 27.3.1]. By the enriched variant

C. Sarti, J. Vicary 257

of the familiar continuity result [12, 3.29], this sends the colimit (FDLat(L,2),FDLat(η ,2)) to the limit

(FPos(FDLat(L,2),2),FPos(FDLat(η ,2),2)) of the composite diagram J→ FPos, which, by the duality,

is isomorphic to the image of the initial cone under the inclusion FDLat→ FPos.

Proposition 4.10. If C has all equalisers, then P(C) is closed under equalisers taken in L(C).

Proof. Let us identify P(C) with its image in L(C), and consider the parallel pair (f ,α),(g,β) : (P,X)→
(Q,Y) of posetal maps. Let (E,e : E ⊆ P) be the equaliser of f and g in FPos, where E is identified with

its image in P under e, and (W,γ) be the equaliser of α[e] and β[e] in Func([E],C). We wish to show

W is local, so let [a,a′] ⊇ [b,b′] ⊆ [c,c′] be an atomic cospan of intervals in E with pullback [d,d′]. By

Lemma 4.9, e is a lattice homomorphism, so by Corollary 3.9, the image of the cospan under e is an

atomic cospan in P with pullback [d,d′], and similarly for [f][d,d′] under f ◦ e = g◦ e. Since X and Y

are local, we are left to prove that the square W ([d,d′] ⊇ [a,a′], [c,c′] ⊇ [b,b′]) of pointwise equalisers

of two pullback squares is again a pullback. Our result hence follows either by general preservation of

limits by limits, or by a diagram chase on the following:

Y [f][d,d′] Y [f][a,a′]

X [d,d′] X [a,a′]

W [d,d′] W [a,a′]

Y [f][c,c′] Y [f][b,b′]

X [c,c′] X [b,b′]

W [c,c′] W [b,b′]

y

y

Proposition 4.11. Let C be a category with finite products. The subcategory P(C) is closed under finite

products taken in L(C).

Proof. Let (P,X),(Q,Y) be posetal diagrams, and denote their product in L(C) by (P×Q,W). By

Lemma 2.7, we have an isomorphism [P×Q] ∼= [P]× [Q], under which W acts by ([a,a′], [b,b′]) 7→
X [a,a′]×Y [b,b′]. By Lemma 4.9, P×Q is a lattice, and thus by Corollary 3.9 the projections [P×Q]→
[P], [Q] preserve atomic cospans and their pullbacks. Since X ,Y are local, so is W . Furthermore, the

terminal object (1,∆1) is always local, so the result holds.

Corollary 4.12. If C has all finite limits, then P(C) has all finite limits.

Proof. By Proposition 4.10 and Proposition 4.11, P(C) is closed under arbitrary finite limits in L(C).
But by Corollary 4.6, L(C) is finitely complete, hence so is P(C).

258 Posetal Diagrams for Semistrict Higher Categories

References

[1] Jiri Adamek, Horst Herrlich & George E. Strecker (1990): Abstract and concrete categories: the

joy of cats. Pure and applied mathematics, Wiley, New York.

[2] Krzysztof Bar, Aleks Kissinger & Jamie Vicary (2018): Globular: an online proof assis-

tant for higher-dimensional rewriting. Logical Methods in Computer Science 14(1), pp. 1–16,

doi:10.23638/LMCS-14(1:8)2018. Publisher: Episciences. org.

[3] Krzysztof Bar & Jamie Vicary (2017): Data structures for quasistrict higher categories. Pro-

ceedings of the 32nd ACM/IEEE Symposium on Logic in Computer Science (LICS 2017),

doi:10.1109/lics.2017.8005147. arXiv:1610.06908.

[4] Garrett Birkhoff (1937): Rings of sets. Duke Mathematical Journal 3(3), pp. 443–454,

doi:10.1215/S0012-7094-37-00334-X. Publisher: Duke University Press.

[5] Simon Burton (2023): String diagrams for higher mathematics with wig-

gle.py. Presented at the 11th Symposium on Compositional Structures (SYCO),

https://www.youtube.com/watch?v=WLRXkFXaoAM.

[6] Lukas Dixon & Ross Duncan (2008): Graphical Reasoning in Compact Closed Cat-

egories for Quantum Computation. Annals of Mathematics and Artificial Intelligence,

doi:10.1007/s10472-009-9141-x. arXiv:0902.0514. Special Issue on Artificial Intelligence and

Symbolic Computation.

[7] Giovanni de Felice, Alexis Toumi & Bob Coecke (2020): DisCoPy: Monoidal Categories in

Python. Proceedings of the 3rd International Conference in Applied Category Theory (ACT 2020),

doi:10.48550/arXiv.2005.02975. arXiv:2005.02975.

[8] Amar Hadzihasanovic & Diana Kessler (2023): Higher-dimensional subdiagram matching. Pro-

ceedings of the 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2023),

doi:10.1109/LICS56636.2023.10175726. arXiv:2304.09216.

[9] Lukas Heidemann (2023): Framed Combinatorial Topology with Labels in ∞-Categories,

doi:10.48550/arXiv.2305.06288. In preparation.

[10] Lukas Heidemann, David Reutter & Jamie Vicary (2022): Zigzag normalization for associative n-

categories. Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS 2022), doi:10.1145/3531130.3533352. arXiv:2205.08952.

[11] Peter Johnstone & J Giraud (1999): A Note on Discrete Conduché Fibrations. Theory and Appli-

cations of Categories 5(1), pp. 1–11.

[12] Gregory Maxwell Kelly (1982): Basic concepts of enriched category theory. London Mathematical

Society Lecture Notes 64, Cambridge University Press, Cambridge. Basic concepts of enriched

category theory.

[13] David Reutter & Jamie Vicary (2019): High-level methods for homotopy construction in associa-

tive n-categories. Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer

Science (LICS 2019), doi:10.1109/LICS.2019.8785895. arXiv:1902.03831.

[14] Emily Riehl (2016): Category theory in context. Aurora: Dover Modern Math Originals, Dover

Publications, Mineola, New York.

https://doi.org/10.23638/LMCS-14(1:8)2018
https://doi.org/10.1109/lics.2017.8005147
https://arxiv.org/abs/1610.06908
https://doi.org/10.1215/S0012-7094-37-00334-X
https://www.youtube.com/watch?v=WLRXkFXaoAM
https://doi.org/10.1007/s10472-009-9141-x
https://arxiv.org/abs/0902.0514
https://doi.org/10.48550/arXiv.2005.02975
https://arxiv.org/abs/2005.02975
https://doi.org/10.1109/LICS56636.2023.10175726
https://arxiv.org/abs/2304.09216
https://doi.org/10.48550/arXiv.2305.06288
https://doi.org/10.1145/3531130.3533352
https://arxiv.org/abs/2205.08952
https://doi.org/10.1109/LICS.2019.8785895
https://arxiv.org/abs/1902.03831

C. Sarti, J. Vicary 259

[15] Pawel Sobocinski, Paul W. Wilson & Fabio Zanasi (2019): CARTOGRAPHER: A Tool for String

Diagrammatic Reasoning (Tool Paper) 139, pp. 20:1–20:7. doi:10.4230/LIPIcs.CALCO.2019.20.

Available at http://drops.dagstuhl.de/opus/volltexte/2019/11448.

[16] Andrzej Tarlecki, Rod M. Burstall & Joseph A. Goguen (1991): Some fundamental al-

gebraic tools for the semantics of computation: Part 3. indexed categories. Theoreti-

cal Computer Science 91(2), pp. 239–264, doi:10.1016/0304-3975(91)90085-G. Available at

https://www.sciencedirect.com/science/article/pii/030439759190085G.

[17] Gavin Wraith (1993): Using the generic interval. Cahiers de topologie et géométrie différentielle

catégoriques 34(4), pp. 259–266.

https://doi.org/10.4230/LIPIcs.CALCO.2019.20
http://drops.dagstuhl.de/opus/volltexte/2019/11448
https://doi.org/10.1016/0304-3975(91)90085-G
https://www.sciencedirect.com/science/article/pii/030439759190085G

S. Staton, C. Vasilakopoulou (Eds.):

Applied Category Theory 2023 (ACT2023)

EPTCS 397, 2023, pp. 260–278, doi:10.4204/EPTCS.397.16

© E. Sennesh & J-W. van de Meent

This work is licensed under the

Creative Commons Attribution License.

String Diagrams with Factorized Densities

Eli Sennesh

Khoury College of Computer Science
Northeastern University

Boston, Massachusetts, United States of America

sennesh.e@northeastern.edu

Jan-Willem van de Meent

Amsterdam Machine Learning Lab (AMLab)
University of Amsterdam

Amsterdam, the Netherlands

j.w.vandemeent@uva.nl

A growing body of research on probabilistic programs and causal models has highlighted the need

to reason compositionally about model classes that extend directed graphical models. Both proba-

bilistic programs and causal models define a joint probability density over a set of random variables,

and exhibit sparse structure that can be used to reason about causation and conditional independence.

This work builds on recent work on Markov categories of probabilistic mappings to define a category

whose morphisms combine a joint density, factorized over each sample space, with a determinis-

tic mapping from samples to return values. This is a step towards closing the gap between recent

category-theoretic descriptions of probability measures, and the operational definitions of factorized

densities that are commonly employed in probabilistic programming and causal inference.

1 Introduction

Statisticians and machine learners analyze observed data by synthesizing models of those data. These

models take a variety of forms, with several of the most widely used being directed graphical models,

probabilistic programs, and structural causal models (SCMs). Applications of these frameworks have

included cognitive modeling [7, 20], simulation-based inference [9], and model-based planning [12,

21]. Unfortunately, the richer the model class, the weaker the mathematical tools available to reason

rigorously about it: SCMs built on linear equations with Gaussian noise admit easy inference, while

graphical models have a clear meaning and a wide array of inference algorithms but encode a limited

family of models. Probabilistic programs can encode any computably sampleable distribution, but the

definition of their densities commonly relies on operational analogies with directed graphical models.

In recent years, category theorists have developed increasingly sophisticated ways to reason diagram-

matically about a variety of complex systems. These include (co)parameterized categories of systems

that may modify their parameters [5] and hierarchical string diagrams for rewriting higher-order com-

putations [1]. Recent work on Markov categories of probabilistic mappings has provided denotational

semantics to probabilistic programs [32, 18], abstract categorical descriptions of conditioning, disinte-

gration, sufficient statistics, conditional independence [8, 13], and generalized causal models [14, 15].

This paper will take a step towards closing the gap between categorical probability and operational

practice in probabilistic programming and applied Bayesian statistics. Denotational semantics for prob-

abilistic programs define a measure over return values of a program given its inputs [32, 18]. To reason

about inference methods, practitioners need to consider the joint distribution of internal random variables,

as well as its density’s factorization into conditionals. Section 2 will review basic definitions from prob-

ability and measure theory necessary to do so. Section 3 will then develop a category whose morphisms

express joint (rather than marginal) distributions with factorized joint densities. Section 4 will show

that generalized causal models can factorize these densities and admit interventional and counterfactual

queries. Section 5 will work through a pair of examples and summarize the paper’s developments.

http://dx.doi.org/10.4204/EPTCS.397.16
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

E. Sennesh & J-W. van de Meent 261

Appendix A reviews the measure-theoretic concepts employed here; Appendix B reviews parametric

and coparametric categories [5]; and Appendix C reviews free copy/delete and Markov categories.

Notation The notation (C ,⊗, I) will range over strict symmetric monoidal categories (SMC’s for

short). We denote composition as g◦ f or equivalently as f #g, write (X∗,⊙,()) for the finite list monoid

on X ’s, and overload ⊗ and ⊕ for direct products and sums. We draw string diagrams from the top

(domain) to the bottom (codomain), showing products from left to right. Given a Markov category C we

will draw deterministic maps in Cdet ⊂ C (which commute with copy) as rectangles and stochastic ones

as ellipses/circles. We nest brackets with parentheses ([]) equivalently.

2 Background: abstract and concrete categorical probability

This section will review the background on which the rest of the paper builds. Categorical probability

begins from an abstract notion of nondeterminism: processes with a notion of “independent copies”.

Categorical probability then refines from a setting in which those nondeterministic processes “happen”

whether observed or not, to a refined setting in which processes only “happen” when they affect an

observed output. Categories of probability kernels, taking into account the details of measure theory (see

Appendix A), will form a concrete instance of the abstract setting.

Definition 1 represents nondeterministic processes abstractly. A copy/delete category is an SMC

whose morphisms generate information which can be copied or deleted freely.

Definition 1 (Copy/delete category). A copy-delete or CD-category is an SMC (C ,⊗, I) in which every

object X ∈Ob(C) has a commutative comonoid structure copyX : C (X ,X⊗X) and delX : C (X , I) which

commutes with the monoidal product structure.

Definition 2 then refines the abstract setting of CD categories to require that deleting the only result

of a nondeterministic process is equivalent to deleting the process itself.

Definition 2 (Markov category). A Markov category is a semicartesian CD-category (C ,⊗, I), so that

the comonoidal counit is natural (∀ f : C (Z,X), f #delX = I) and makes I ∈ Ob(C) a terminal object.

Example 1 gives the canonical Markov category, consisting of measurable spaces and maps.

Example 1 (Measurable spaces and functions form a category [33]). Measurable spaces and functions

form a Cartesian category Meas with objects (X ,ΣX) ∈ Ob(Meas) consisting of sets X ∈ Ob(Set) and

their σ -algebras1 ΣX and morphisms Meas((Z,ΣZ),(X ,ΣX)) =
{

f ∈ XZ | ∀σX ∈ ΣX , f−1(σX) ∈ ΣZ

}

consisting of measurable functions between measurable spaces.

Meas acquires its Markov comonoid structure from its Cartesian structure. Definition 3 below pro-

vides the canonical Markov category for measure-theoretic probability.

Definition 3 (Category of measurable spaces and Markov kernels). The category Stoch = Kl(P)(Meas)
of measurable spaces and Markov kernels is the Kleisli category of the Giry monad [17] over Meas,

having measurable spaces as objects and Markov kernels (Definition 19) between them as morphisms.

Much of this paper will require a strict Markov category as in Definition 4 below.

Definition 4 (Strict Markov category). A strict Markov category is one whose underlying SMC (with

comonoid structure thrown away) is strict monoidal (its associator and unitors are identity).

1Collections of “measurable subsets” closed under complements, countable unions, and countable intersections

262 String Diagrams with Factorized Densities

Theorem 10.17 in Fritz [13] showed that every Markov category is comonoid equivalent to a strict

one, licensing us to work with strictified Markov categories Meas and Stoch without further concern.

Unless otherwise mentioned, this paper will work with Meas and Stoch as strict, causal Markov

categories2 . When the ambient category and σ -algebra is clear from context, f : Z X will abbreviate

f : Stoch((Z,ΣZ),(X ,ΣX)). In the concrete case of Stoch, measurable maps give the deterministic maps

Meas ≃ Stochdet ⊆ Stoch. While Markov categories provide a compositional setting for nondetermin-

istic processes, Markov kernels in these categories only provide probability measures for their outputs

given their inputs. By design, they “forget” (i.e. marginalize over) all intermediate randomness in long

chains of composition. Section 3 will build up a novel setting that “remembers” (i.e. does not marginalize

over) joint distributions over all intermediate random variables through long chains of composition, and

will show when there exist probability densities with respect to the joint distributions thus formed.

3 Joint distributions and densities for string diagrams

Statisticians cannot utilize input-output (parameter to distribution) mappings alone, except for maximum

likelihood estimation. Instead, these typically appear as conditional probability distributions in a larger

probability model. This larger model necessarily encodes a joint distribution over all relevant random

variables, both those observed as data and the latent variables that give rise to observations. Practical

probabilistic reasoning then consists of applying the laws of probability (product law for conjunctions,

sum law for disjunctions, marginalization for unconditional events, Bayesian inversion) to numerical

densities representing the joint distribution. This section will model the algebra of joint probability

densities in a novel Markov category Joint constructed on the underlying Markov category Stoch.

Section 3.1 will first review an abstraction for categories in which morphisms act by “pushing for-

ward” an internal “parameter space” and then instantiate that abstraction on a Markov category to yield a

Markov category Joint of joint distributions. Section 3.2 will give the conditions for a concrete Markov

kernel to admit a density. Section 3.3 will use those preliminaries to define a Markov category whose

morphisms generate and push forward a joint probability density.

3.1 Accumulating random variables into joint distributions

Structural graphical models and probabilistic programs separate between the functions and variables

they allow into deterministic and random ones [24]. Representing deterministic mechanisms categori-

cally requires assuming that each nondeterministic process consists of a deterministic mechanism and a

(potentially conditional) distribution over a random variable. This subsection will exploit “cybernetic”

constructions (overviewed in Appendix B) for parameterization of deterministic mechanisms by random

inputs and “writing out” of internal joint distributions as coparameters.

Proposition 1 will show the concrete category Stoch supports those constructions.

Proposition 1 (Stoch forms a symmetric monoidal M -actegory3). The concrete category Stoch forms

a symmetric monoidal M -actegory for M = Stoch and C = Stoch.

Proof. Any SMC C forms a symmetric monoidal M -actegory for M =C with the product functor M •
C = C ×C from the product category. Any Markov category is also an SMC, and so Stoch suffices.

In this trivial case, Definition 25 simplifies so that Definition 5 will form an SMC.

2The latter property is shown in Example 11.35 of Fritz [13]
3Definition 24 in Appendix B

E. Sennesh & J-W. van de Meent 263

Definition 5 (Symmetric monoidal parametric categories). Given a strict SMC (C ,⊗, I), the symmetric

monoidal parametric (bi)category Para⊗(C) has as objects those of C and as morphisms the pairs

Para⊗(C)(A,B) = {(M,k) ∈ Ob(C)×C (M⊗A,B)}. Composition for the two parameterized mor-

phisms (M,k) : Para⊗(C)(A,B) and (M′,k′) : Para⊗(C)(B,C) consists of (M′⊗M,k′ ◦ (idM′ ⊗ k)));
identities on objects A consist of (I, idA); and (Para⊗(C),⊗, I) inherits its monoidal structure from C 4.

Para⊗(Stoch) will suffice for Definition 6 to model a Markov kernel over a joint distribution. The

jointly random residual (M,ΣM) ∈Ob(Stoch) will parameterize the deterministic map k.

Definition 6 (Joint Markov kernel). A joint Markov kernel is a pair of a Markov kernel with a determin-

istic mapping parameterized by that Markov kernel, up to permutation of residual components

Joint(Z,X) := {(f , [M,k]) : Stoch(Z,M)×Para⊗(Stochdet)(Z,X)} .

As implied by the hom-set notation above, joint Markov kernels will form a category of nondeter-

ministic processes. Since the residuals of joint distributions only contribute to downstream processes

through their local outputs, Theorem 1 will show this to be a copy/delete category.

Theorem 1 (Joint Markov kernels form a copy/delete category). Joint is a strict copy/delete category

having Ob(Joint) = Ob(Stoch) and joint Markov kernels as morphisms.

Proof. Joint must admit the typical requirements of a category as well as deterministic, copy-delete

symmetric monoidal structure. We can demonstrate the necessary deterministic structure by exhibiting

joint kernels (I,k) : Para⊗(Stochdet)(Z,X) =⇒ ([I,k],delZ) : Joint(Z,X) for any noiseless causal mech-

anism. Setting k = copyX or k = delZ yields the necessary copy and delete maps. Setting k = swapZ⊗X

gives the necessary symmetry of the monoidal product. It remains to show that Joint has a monoidal

product over morphisms and that its hom-sets are closed under composition.

Given two joint Markov kernels (f1, [M1,k1]) : Joint(Z,X) and (f2, [M2,k2]) : Joint(W,Y), their

monoidal product is formed by pairing their causal mechanisms and noise distributions

(f1, [M1,k1])⊗ (f2, [M2,k2]) := (f1⊗Stoch f2, [M1,k1]⊗Para⊗(Stochdet) [M2,k2]) : Joint(Z⊗W,X ⊗Y).

Composing two joint Markov kernels (f1, [M1,k1]) : Joint(Z,X) and (f2, [M2,k2]) : Joint(X ,Y) along

their intermediate object involves composing their parametric maps and taking a conditional product of

their stochastic kernels to form the composite joint distribution

(f1, [M1,k1]) # (f2, [M2,k2]) :=

























Z

f1

k1

f2

M1 M2

,

















M1⊗M2,

M1 M2 Z

k1

k2

Y









































: Joint(Z,Y). (1)

Anything called a joint Markov kernel ought to expose its internal joint distribution in a structured

way. Definition 7 will link the composition of joint distributions to the cybernetics literature.

4see Proposition 6

264 String Diagrams with Factorized Densities

Definition 7 (Symmetric monoidal coparametric categories5). Given a strict SMC (C ,⊗, I), the symmet-

ric monoidal coparametric (bi)category CoPara⊗(C) has as objects those of C and as morphisms the

pairs CoPara⊗(C)(A,B) = {(M,k) ∈ Ob(C)×C (A,M⊗B)} of a residual object and a morphism from

A to M⊗B. Composition for the morphisms (M,k) : CoPara⊗(C)(A,B) and (M′,k′) : CoPara⊗(C)(B,C)
consists of (M′⊗M,(idM⊗ k′)◦ k)); identities on objects A consist of (I, idA); and (CoPara⊗(C),⊗, I)
inherits its monoidal structure from C 6.

Joint serves to work with joint distributions compositionally rather than marginalizing them out.

Theorem 2 will show how mapping from Joint→ CoPara⊗(Stoch) exposes the full joint distribution.

Theorem 2 (Joint Markov kernels coparameterize joint distributions). There exists a full, identity-on-

objects Markov functor J·K : Joint→CoPara⊗(Stoch) which maps the residual of a joint Markov kernel

in Joint onto the residual of its image in CoPara⊗(Stoch).

Proof. The required functor sends morphisms J·K : Joint(Z,X)→ CoPara⊗(Stoch)(Z,X) to coparame-

terized Markov kernels whose codomain is the joint distribution over the residual and the output

J(f , [M,k])K =





















M,

Z

f

k

M X





















.

This functor is trivially full, since any morphism f : CoPara⊗(Stoch)(Z,X) embeds trivially into Joint

by setting the corresponding deterministic k = idM⊗X . It is not faithful: multiple “divisions of labor”

between f and k can yield the same Markov kernel in CoPara⊗(Stoch).

Corollary 3 will give the trivial extension of marginalizing over the residual.

Corollary 3 (Marginalizing a joint Markov kernel’s residual yields a Markov kernel). There exists a full,

identity-on-objects functor J : Joint→ Stoch.

Proof. The required functor J just applies J·K and then forgets the residual by composition with delM: its

action on morphisms is J((f , [M,k])) = J(f , [M,k])K # (delM⊗ idX).

This subsection has considered arbitrary, unstructured joint distributions Joint. Section 3.2 will

examine the special case in which the residual object is a standard Borel space and the conditional

distribution into it meets the necessary conditions to admit a probability density.

3.2 Base measures and densities over standard Borel spaces

Applied probability typically works not with probability measures but with probability densities, func-

tions over a finite-dimensional sample space giving the “derivative” of a probability measure at a point.

However, probability densities only exist for measures that meet the conditions of the Radon-Nikodym

Theorem, and only relative to a specified base measure over the sample space. This section will restrict

5See Definition 26 for the more general case
6See Proposition 6

E. Sennesh & J-W. van de Meent 265

the residual objects or internal noises of joint Markov kernels to standard Borel sample spaces admitting

probability densities, and then show that this restriction still admits a broad class of joint Markov kernels.

Definition 8 provides a suitable ambient category for base measures.

Definition 8 (Category of measure spaces). The category of measure spaces M has as objects the mea-

sure spaces (X ,ΣX ,µ) (Definition 22) and as morphisms the measure-preserving maps

M((Z,ΣZ,µZ),(X ,ΣX ,µX)) =
{

f : Meas((Z,ΣZ),(X ,ΣX)) | ∀σX ∈ ΣX ,µZ(f−1(σX)) = µX (σX)
}

.

Applications typically deal with probability densities over finite-dimensional Euclidean spaces and

countable sets. In Meas, these can be characterized by the standard Borel spaces Sbs ⊂Meas, which

are unique for each cardinality up to uncountability. Assigning these their canonical base measures will

provide a suitable setting of measure spaces for characterizing densities.

However, the Radon-Nikodym Theorem requires that the sample space admit not only a measure

but a σ -finite (Definition 20) base measure. Proposition 2 and Proposition 3 will therefore character-

ize the algebraic operations under which σ -finite measure spaces are closed. Proposition 2 below will

characterize the base measures for joint probability densities.

Proposition 2 (σ -finite measure spaces have finite direct products). Let I ∈Ob(FinSet) be a set and let

there be an I-indexed family of σ -finite measure spaces (Xi,ΣXi
,µXi

)i∈I ∈ Ob(M). Then there exists a

σ -finite direct product measure space
⊗

i∈I(Xi,ΣXi
,µXi

) = (X ,ΣX ,µX).

Proof. The product
⊗

i∈I(Xi,Σi)∈Ob(Meas) exists thanks to Meas being Cartesian, so that the resulting

set is that of Cartesian products and the σ -algebra is also that of Cartesian products. Letting πi be the

projection indexed by i ∈ I of a Cartesian product, we write the σ -finite product measure (which exists

and is unique when (Xi,ΣXi
,µXi

) are σ -finite [33]7) as µX (σX) = ∏i∈I µXi
({πi(x) : x ∈ σX}), yielding the

direct product (
⊗

i∈I Xi,
⊗

i∈I ΣXi
,µX) ∈Ob(M).

The reader can check that the direct product of measure spaces does not form a categorical product:

the pairing required to witness the universal property will not be measure-preserving, with intervals of

different lengths in the real line providing a counterexample.

Proposition 3 will then characterize the base measures for mixture probability densities.

Proposition 3 (σ -finite measure spaces have countable direct sums [11]8). Let I ∈ Ob(Set) be a count-

able set and (Xi,ΣXi
,µXi

)i∈I ∈ Ob(M) be a family of σ -finite measure spaces indexed by I. Then there

exists a σ -finite direct sum measure space
⊕

i∈I(Xi,ΣXi
,µXi

) ∈ Ob(M).

Proof. The direct sum
⊕

i∈I(Xi,ΣXi
,µXi

) = (X ,ΣX ,µX) ∈ Ob(M) of the indexed family consists of the

set X =
⋃

i∈I (Xi×{i}), the σ -algebra ΣX = {σX : σX ⊆ X ,∀i ∈ I,{x : (x, i) ∈ σX} ∈ ΣXi
}, and the sum

measure µX(σX) = ∑i∈I µXi
({x : (x, i) ∈ σX}).

The reader can check that the direct sum of measure spaces does not form a categorical coproduct:

the copairing required to witness the universal property will not be measure-preserving.

The above propositions characterized the algebra of σ -finite measure spaces, which thus now re-

quires base cases. Restricting our attention to the standard Borel spaces, we can take the singleton set

(I,B(I),µ#) equipped with the counting measure µ# and the real line (R,B(R),λ) with the Lebesgue

measure as those base cases. An n-fold or countable direct sum of the singleton set gives finite and

7Definition 1.7.4, page 161
8214L, page 38

266 String Diagrams with Factorized Densities

countable discrete measure spaces, whose counting measure is σ -finite, while an n-fold product of the

real line gives the Euclidean spaces, whose n-dimensional Lebesgue measures are σ -finite. Definition 9

will therefore formally give the class of measure spaces suitable for forming probability densities.

Definition 9 (σ -finite standard Borel measure space). The subcategory MB ⊂M restricts the category

of measure spaces to the σ -finite standard Borel measure spaces freely generated by finite direct products

⊗ (Proposition 2) and countable direct sums⊕ (Proposition 3) of the counting-measured singleton space

(1,B(1),µ#) and the Lebesgue-measured reals (R,B(R),λ).

Definition 9 covers the most common sample spaces and their base measures, as instances of a

more general construction assigning base measures to finite-dimensional manifolds as sample spaces

for probability densities [27]. The above only allows finite products, since the product-of-Lebesgues

measure on the Hilbert cube R
N (via the Borel isomorphism R ≃ [0,1]) fails to be σ -finite [2]. The rest

of the paper will therefore work with measure spaces MB, whose isomorphisms preserve base measures.

Having a class of measure spaces suitable for stating probability densities with respect to count,

length, area, volume, etc., Definition 10 gives the class of Markov kernels which will admit densities.

Definition 10 (Density kernel). A standard Borel density kernel is a σ -finite (Definition 20) Markov

kernel f : Z X whose codomain forms a σ -finite standard Borel measure space (X ,ΣX ,µX)∈Ob(MB)
and which is absolutely continuous ∀z, f (z)≪ µX with respect to the base measure µX

Dens((Z,ΣZ),(X ,ΣX)) := {(f ,µX) : (Z X)×M(X) | (X ,ΣX ,µX) ∈ Ob(MB),∀z ∈ Z, f (z)≪ µx} .

Probability (and arbitrary measure) densities p(x | z) also admit an alternative interpretation as mea-

sure kernels Z×X ×ΣI → [0,∞] whose integration under the base measure yields the normalizing con-

stant. Proposition 4 verifies that density kernels in fact admit probability densities.

Theorem 4 (Density kernels admit densities). Every density kernel (f ,µX) : (Z X)×M(X) (Defini-

tion 10) into a standard Borel measure space admits a density with respect to the base measure µX .

Proof. σ -finiteness of the kernel f and the base measure µX , plus absolute continuity, give the necessary

conditions for the classical Radon-Nikodym theorem: a Radon-Nikodym derivative therefore exists

d f (z)

dµX

: Meas(X ,R≥0) f (z)(σX) =

∫

x∈σX

d f (z)

dµX

(x) µX (dx).

The Radon-Nikodym derivative is the measure-theoretic notion of a probability density function

d f

dµX

: Meas(Z×X ,R≥0), p f (· | ·) : Meas(X ×Z,R≥0), p f (x | z) :=
d f (z)

dµX

(x) .

The conditions on density kernels are therefore sufficient to yield probability densities.

Despite the hom-set notation used for convenience, density kernels do not form a category: identity

Markov kernels are Dirac delta measures that only admit densities in discrete spaces. They do, however,

support all compositional structure under which the resulting base measure still indexes a standard Borel

measure space. Definition 11 lays the foundation for this structure.

Definition 11 (Precomposition of a density kernel). Given a density kernel (f ,µX) : (Z X)×M(X)
and a Markov kernel h : W Z, their precomposition is (f ,µX)◦Dens h = (f ◦Stoch h,µX).

The above precomposition gives a definition for the composition of two density kernels: given (f ,µX)
and (g,µY) their composite will just be (g◦ f ,µY). The existence of precomposition supports a product

and coproduct algebra of density kernels, as expected based on the probability algebra itself.

E. Sennesh & J-W. van de Meent 267

Theorem 5 (Density kernels admit products and coproducts). Density kernels have products (f ,µX)⊗
(g,µY) and coproducts (f ,µX)⊕ (g,µY), witnessed by a pairing and copairing.

Proof. Any two density kernels (f ,µX) : Dens((Z,ΣZ),(X ,ΣX)) and (g,µY) : Dens((Z,ΣZ),(Y,ΣY)) ad-

mit a pairing via precomposition with copying and the product measure space (X ,ΣX ,µX)⊗(Y,ΣY ,µY) =
(X ×Y,ΣX ×ΣY ,µX ⊗µY) ∈Ob(MB)

(copyZ # (f ⊗g),µx⊗µY) : Dens((Z,ΣZ),(X ,ΣX)⊗ (Y,ΣY)).

Any two density kernels (f ,µY) : Dens((Z,ΣZ),(Y,ΣY)) and (g,µY) : Dens((X ,ΣX),(Y,ΣY)) also admit

a copairing
((f ,µY)
(g,µY)

)

=
(

(

f
g

)

,µY

)

via the copairing of their Markov kernels in Stoch.

The above theorems demonstrate that density kernels represent probability densities compositionally.

However, density kernels do not admit post-composition with arbitrary Markov kernels. Section 3.3 will

remedy this issue by applying density kernels to generate the residuals in joint Markov kernels.

3.3 Joint densities over joint distributions

Density kernels are not closed under pushforwards, and they do not form a category. Joint cannot apply

directly to them. Definition 12 therefore gives an appropriate definition for joint density kernels.

Definition 12 (Joint density kernel). A joint density kernel between objects Z,X ∈ Ob(Stoch) is a pair

of a density kernel into (M,ΣM,µM) ∈Ob(MB) with a deterministic map parameterized by the residual

∂Joint(Z,X) := {((f ,µM), [M,k]) : Dens(Z,M)×Para⊗(Stochdet)(Z,X) | (M,ΣM,µM) ∈ Ob(MB)} .

Hom-set notation once again implies these kernels form a category, which in fact they will. First,

Corollary 6 shows density kernels are closed under the joint distribution construction of Equation 1.

Corollary 6 (Density kernels admit joint distributions as conditional products). Given a density kernel

(f1,µM1
) : Dens(Z,M1), a measurable map k1 : Stochdet(Z ⊗M1,X), and a density kernel (f2,µM2

) :

Dens(X ,M2), composing them according to the diagram in Equation 1 forms a joint density kernel

(

copyZ # ((copyM1
◦ f1)⊗ idZ) # (idM1

⊗ (f2 ◦ k1)),µM1
⊗µM2

)

: Dens(Z,M1⊗M2).

Theorem 7 will show that joint density kernels form a category, and characterize them as joint Markov

kernels with the extra data of a base measure on the residual.

Theorem 7 (Joint density kernels form a category). Joint density kernels ∂Joint form a wide subcategory

of the restriction JointBorelStoch of Joint to standard Borel Markov kernels in BorelStoch.

Proof. First we show the joint density kernels form a subcategory, then show that subcategory is wide.

Corollary 6 shows that density kernels are closed under the composition of Joint (Equation 1), and

so along with the obvious identity morphisms and associativity law they form a category. Theorem 5

shows that this category inherits the product and coproduct structure of Joint. The structure morphisms

in Joint all have the unit I for their residual, which admits a trivial density as a finite standard Borel

space; ∂Joint therefore inherits the copy/delete structure of Joint. This implies ∂Joint⊂ JointBorelStoch .

Objects and structure morphisms are inherited from Joint, so the subcategory is wide.

268 String Diagrams with Factorized Densities

The theorem above gives a copy/delete categorical structure for joint density kernels, whose base and

probability measures will be σ -finite (Definition 20) as conditions for Radon-Nikodym. There is then

a precise class of measures formed by pushing forward a σ -finite measure [34]: the s-finite measures

(Definition 23). Proposition 4 shows that such s-finite measure kernels form a copy/delete category.

Proposition 4 (s-finite measure kernels form a CD-category [8]9). s-finite measure kernels (Defini-

tion 23) between measurable spaces form a CD-category sfKrn with Ob(sfKrn) = Ob(Meas) and hom-

sets given by sfKrn((Z,ΣZ),(X ,ΣX)) = { f : Z×ΣX → [0,∞] | ∀z, f (z) is s-finite}.

sfKrn only forms a copy/delete category, not a Markov category, since different measure kernels

may have different normalizing constants, including an infinite normalizing constant. Corollary 8 shows

that restricting to probability kernels forms a Markov category.

Corollary 8 (s-finite probability kernels form a Markov category). The s-finite probability kernels f :

sfKrn((Z,ΣZ),(X ,ΣX)), for which ∀z ∈ Z, f (z,X) = 1, form a Markov category sfStoch ⊂ Stoch.

Proof. The restriction of all kernels to normalize to measure 1 renders every map delZ unique, making I

a terminal object and the resulting subcategory sfStoch a Markov category.

Having a categorical setting capturing the Markov kernels used in computable applications, the re-

mainder of this paper will interpret morphisms in ∂Joint into s-finite Markov kernels sfStoch(Z,X) with

densities sfKrn(Z⊗X , I). Theorem 9 shows that the joint Markov kernels of ∂Joint are s-finite and

admit densities jointly measurable in the parameter and the residual.

Theorem 9 (Joint density kernels give s-finite probability kernels and densities). Joint density kernels

(f , [M,k]) : ∂Joint((Z,ΣZ),(X ,ΣX)) admit probability kernels p : sfStoch((Z,ΣZ),(X ,ΣX)) marginaliz-

ing out their randomness and probability densities p f (· | ·) : sfKrn((Z,ΣZ)⊗ (M,ΣM), I).

Proof. Any density kernel f : Dens((Z,ΣZ),(M,ΣM)) gives a σ -finite probability measure and any

(M,k) : Para⊗(Stochdet)(Z,X) pushes it forward. Every pushforward of a σ -finite Markov kernel is

s-finite (Proposition 5), so ∂Joint consists entirely of s-finite joint Markov kernels. Being s-finite,

joint density kernels admit the required probability kernels p : sfStoch((Z,ΣZ),(X ,ΣX)) with p(z,σX) =
f (z,k(z)−1(σX)) and densities p f (· | z) : M×ΣI → [0,∞] measurable in z and m. Proposition 4 defines

these as the Radon-Nikodym derivative p f (m | z)({∗}) =
d f (z)
dµM

(m).

Theorem 7 and Theorem 9 finally gives a desirable categorical setting: one which supports composi-

tion, products, and coproducts as a copy/delete category should, while decomposing into a deterministic

causal mechanism applied to a random variable with a joint density as a structural causal model should.

Section 4 will put together the machinery in this section with existing work on factorizing string diagrams

syntactically to interpret those factorizations as generalizing directed graphical models.

4 Diagrams as causal factorizations of joint distributions and densities

This section demonstrates that string diagrams with factorized densities support the full “ladder of cau-

sation” [25] as probabilistic models: factorized distributions, interventions, and counterfactual queries.

Section 3 presented the ∂Joint construction for building up joint densities while still expressing arbitrary

pushforward measures over them. Reasoning about directed graphical models or probabilistic programs

compositionally requires providing a graphical syntax interpretable into ∂Joint. Recent work [14, 15]

9Example 7.2

E. Sennesh & J-W. van de Meent 269

treated a combinatorial syntax of string diagrams as generalized causal models. This section first reviews

the definitions of a generalized causal model and its factorization of a Markov kernel, then applies that

syntax to this paper’s novel constructions. Doing so will enable show that via generalized causal mod-

els, joint density kernels admit factorization of their densities (Theorem 10), interventional distributions

(Theorem 11), and counterfactual distributions (Theorem 12).

Generalized causal models [14] provide several advantages over causal Bayesian networks as a rep-

resentation of causal structure in probability models. They allow for global inputs to and outputs from a

causal model, making explicit the interface necessary to reason compositionally about causal structures.

It also makes explicit the grouping of “nodes” (in the underlying graph or hypergraph) into Markov

kernels, clarifying how the joint distribution decomposes into random variables and causal mechanisms.

Definition 13 will now describe a generalized causal model.

Definition 13 (Generalized causal model [15]). A generalized causal model ϕ over Σ ∈ FinHyp10 is a

string diagram p→ dom(τ)← q : FreeMarkovΣ(n,m) for n,m ∈N with a bijection q on wires.

Any generalized causal model p→ dom(τ)← q is equivalent to a morphism [14]

ϕ : FreeMarkovΣ

(

n
⊗

i=1

τ(p(i)),
m
⊗

j=1

τ(q(j))

)

.

Definition 14 will capture factorization of a Markov kernel by a generalized causal model; Fritz and

Klinger [14] called it causal compatibility in their Definition 11.

Definition 14 (Factorization of a Markov kernel by a causal model [14]). A factorization (f ,ϕ ,F) in

Stoch consists of a morphism with decomposed domain and codomain f : Stoch
(
⊗n

i=1 Di,
⊗m

j=1C j

)

, a

causal model ϕ : FreeMarkovΣ(n,m), and a strict Markov functor F : FreeMarkovΣ→ Stoch such that

f = F(ϕ), ∀i ∈ [1..n],Di = F(dom(ϕ)i), and ∀ j ∈ [1..m],C j = F(cod(ϕ) j).

The joint density kernels ∂Joint(Z,X) have an important difference from the simple Markov kernels

factorized by generalized causal models in Definition 14: the density to factorize is not over x ∈ X but

over the extra structure of the residual m ∈M. This subsection will show how to add this extra structure

to a factorization, then show how to access that structure to show that generalized causal models over

joint density kernels support causal inference as such: interventions and counterfactual reasoning.

Definition 15 will require a factorization to label each box’s residual to apply to joint Markov kernels.

Definition 15 (Joint factorization functor). A joint factorization functor for a signature Σ ∈ FinHyp is a

labeling of boxes with residual wires r : B(Σ)→W (Σ)∗ and a strict Markov functor F : FreeMarkovΣ→
Joint respecting ∀b ∈ B(Σ),F(b) = ([

⊗

w∈r(b) F(w),k], f) : Joint(F(dom(b)),F(cod(b))).

Joint factorizations label residuals in the signature and also map to joint density kernels. Theorem 10

shows they factorize the implied joint density of a causal model.

Theorem 10 (Joint density kernels admit factorized densities). Given a signature Σ ∈ FinHyp, a strict

Markov functor F : FreeMarkovΣ→ ∂Joint gives a joint density p f (· | · ∈ F(dom(ϕ))) for every causal

model ϕ : FreeMarkovΣ(n,m).

Proof. Definition 15 requires for any sub-diagram ϕ ′ ⊆ ϕ there will be some F(ϕ ′) = (f , [M,k]). Theo-

rem 9 then gives a density over the residual, while the functoriality of F and Corollary 6 together imply

that products of individual joint-densities yield the complete joint density.

10see Appendix C

270 String Diagrams with Factorized Densities

Theorem 11 then shows that by assigning boxes optional points in their codomains, joint factoriza-

tions also admit interventional distributions.

Theorem 11 (Joint factorizations admit interventional distributions). Consider a joint factorization

(f ,ϕ ,F) over a signature Σ. Then any intervention do : ∏b:B(Σ) I⊕Cdet(I,F(cod(b)) induces a func-

tor Int : FreeMarkovΣ→ Joint and an interventional distribution Int(ϕ).

Proof. Any single-box free string diagram has an image F(〈b〉). We define the required functor Int :

FreeMarkovΣ→ Joint by extension of a hypergraph morphism α : Σ→ hyp(Joint) following Fritz and

Liang [15] (see their Remark 4.3). α will be identity on wires and intervene on boxes

α(b) : B(Σ)→ B(hyp(Joint))

α(b) =

{

hyp(([I,deldom(b)],deldom(b) # x)) do(b) = inr(x)

hyp(F(〈b〉)) do(b) = inl(I)
.

Finally, Theorem 12 employs similar reasoning to model counterfactual queries over jointly factor-

ized causal models, given fixed values for random variables and an intervention.

Theorem 12 (Joint factorizations give counterfactuals). Consider a signature Σ ∈ FinHyp and a joint

factorization (f ,ϕ ,F). Then any intervention do : ∏b:B(Σ) I ⊕Cdet(I,F(cod(b)) and any assignment

U : B(Σ)→ [0,1] of uniform random variates to boxes induces a functor If : FreeMarkovΣ→ Joint and

a counterfactual distribution If(ϕ).

Proof. We work as above, but this time explicitly consider the structure of the image F(〈b〉)= (f , [M,k]).
f gives a standard Borel probability measure, so the Randomization Lemma [3] demonstrates equality

of f with a pushforward F(〈b〉)1 = f (·) = g(·,z)∗(U)(du) of the uniform distribution U(du) by a deter-

ministic map g(·,z). Our hypergraph morphism utilizes that fact

α(b) =

{

hyp(([I,deldom(b)],deldom(b) # x)) do(b) = inr(x)

hyp(δU(b)(g(b, ·))) do(b) = inl(I)
.

Together, Theorems 10, 11, and 12 demonstrate that joint density kernels, jointly factorized by a gen-

eralized causal model, support the properties that have made directed graphical models so widely useful.

With these theorems as “sanity checks”, Section 5 will summarize the paper’s overall contributions, give

some worked examples applying ∂Joint, and discuss future work.

5 Discussion

This paper started from the existing work on copy/delete categories, Markov categories, and the factor-

ization of morphisms in those categories by generalized causal models. From there, Section 3 constructed

a novel Markov category Joint whose morphisms keep internal track of the joint distribution they denote,

defined a subcategory ∂Joint⊂ Joint whose morphisms support only joint densities over standard Borel

spaces as their internal distributions. Section 4 then demonstrated that Joint supports factorization by

generalized causal models, that these factorize joint densities ∂Joint, and that these support the inter-

ventional and counterfactual reasoning necessary for causal inference. This section will discuss some

short worked examples of using ∂Joint for real probability models (Section 5.1), and then move on to

speculate what future work could spring from the paper’s developments (Section 5.2).

E. Sennesh & J-W. van de Meent 271

u
wv

p

∆

R

}
�~ =

p

∆⊕δ0

π

2 R

(a) The wiring diagram in ∂Joint of a mixture

model between a delta and a Gaussian, and its im-

age in Stoch with a coproduct projection

u
wwv

R
2×2

u

R R

}
��~ =

R
2×2

U

k

[0,2π] R R

(b) A Markov kernel in ∂Joint projecting a sample

from the uniform circle through a linear transfor-

mation, and its image in Stoch

Figure 1: Example joint density kernels (Definition 12): a mixture model between a constant and a

Gaussian distribution depending on a coin flip (left) and a Markov kernel projecting a random angle onto

a parametrically skewed ellipse (right). The J·K functor (Corollary 3) maps into Stoch.

5.1 Worked examples

The previous sections have focused on formalism. Section 3 defined a Markov category ∂Joint of joint

density kernels in Stoch (rather than the typical restriction to FinStoch) whose residuals (by construc-

tion) admit probability densities. Section 4 then established that the generalized causal models recently

described in the categorical probability literature can indeed apply to ∂Joint morphisms, factorizing their

joint densities and providing for causal reasoning. This subsection will apply the ∂Joint formalism to

the models shown in Figure 1, taken from Wu et al [36] and Radul and Alexeev [27].

Figure 1a shows a generative model in which we detect fake coins by placing an even number of coins

on a well-calibrated balance. The presence of a fake coin, whose weight deviates from the others, will

tip the balance away from the neutral position. p determines whether the a fake coin is present, which

in turn determines whether the balance position is distributed according to a Gaussian ∆∼N (1,0.5) or

according to a Dirac measure ∆∼ δ0. The joint distribution shown on the right-hand side of the equation

admits a density with respect to the standard Borel measure space (2,B(2),µ#)⊗ ((R,B(R),λ)⊕
(1,B(1),µ#)), whereas the marginal on R lacks a density for the Lebesgue measure λ .

Figure 1b shows the example from Radul and Alexeev [27] in which a sample from U(0,2π) is

projected onto a non-isotropic ellipse. Those authors calculate a probability density on the ellipse via the

projection’s Jacobian. Figure 1b shows the two components of a ∂Joint morphism: how the uniformly

random angle U and a linear transformation R
2×2 parameterize the the geometric projection k. The

equation shows how J·K maps the single box in ∂Joint (left) to the Markov kernel in Stoch (right).

The two examples in Figure 1 both show how the ∂Joint construction can compactly encode com-

plex, parameterized joint probability densities linked by deterministic causal mechanisms. Section 5.2

will discuss potential future work extending this paper’s construction and conclude.

5.2 Future work and conclusion

This paper’s mathematical constructions could generalize or be strengthened in a number of ways. It

would be desirable to obtain a category in which Markov kernels admit common-sense densities without

having to separate into a density over a standard Borel space and a pushforward through a deterministic

map; the Lebesgue decomposition of arbitrary measures into mutually singular absolutely-continuous,

diffuse, and atomic portions suggests a possible route to that goal. Up to a normalization constant, every

272 String Diagrams with Factorized Densities

reference measure in M is a Hausdorff measure. This suggests densities could be obtained by considering

manifolds, standardizing on the Hausdorff measure as Radul and Alexeev [27] suggest, and then defining

density kernels on that foundation. Finally, Definition 9 forms an endofunctor in the category of measure

spaces whose algebras and coalgebras may prove of interest. For example, recent work by Dash [10]

explored defining probability measures on quasi-Borel spaces as pushforwards of a uniform distribution

on the Hilbert cube, an element of the endofunctor’s terminal coalgebra.

Future work can go in a number of directions to unify the formalisms of applied probabilistic reason-

ing. Instantiating this paper’s constructions in a Markov category in which all randomness arises from an

independent noise source would transform any causal factorization of a joint (density) kernel into a struc-

tural causal model [24], unifying causal Bayes nets with structural equation models. In the application

area of probabilistic programming, this paper has only described “first-order” probabilistic programming

languages lacking general stochastic recursion [22], corresponding to non-closed Markov categories. A

combinatorial syntax for hierarchical string diagrams [1] would extend our reasoning in this paper to the

closed Markov categories such as QBS [18] that provide denotations for higher-order probabilistic pro-

gramming languages. We intend to extend this paper’s formalism to categorify Sequential Monte Carlo

methods [23] for generalized causal models of unnormalized distributions. We aim to apply the ∂Joint

construction alongside recent work on unique name generation [28] to model heterogeneous tracing in

probabilistic programming. Recent work on free string diagrams [35] has also suggested ways to map

from free string diagrams to free diagrams of optics; equipping joint density kernels with optic structure

would follow up on the work of Smithe [31] and Schauer [29].

Acknowledgements We would like to thank the anonymous reviewers for their feedback and advice

in refining the paper for camera-ready. We would also like to thank the ACT 2023 program chairs for

their careful shepherding of the review process. We thank Tobias Fritz, Luke Ong, Sam Staton, and

Matthijs Vákár for laying the categorical foundations of s-finite Markov kernels. Finally, we would like

to extensively thank Alex Lew for early discussions and cooperation on preliminary work to this paper.

Eli Sennesh was supported by NSF award 2047253.

References

[1] Mario Alvarez-picallo, Dan Ghica, David Sprunger & Fabio Zanasi (2022): Rewriting for Monoidal Closed

Categories. In: 7th International Conference on Formal Structures for Computation and Deduction (FSCD

2022), 228, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, pp. 29:1–

29:0, doi:10.4230/LIPIcs.FSCD.2022.29.

[2] Richard Baker (1991): “Lebesgue measure” on R
∞. Proceedings of the American Mathematical Society

113(4), pp. 1023–1029, doi:10.2307/2048779.

[3] V. I. Bogachev (2007): Measure theory. Springer, Berlin; New York, doi:10.1007/978-3-540-34514-5.

[4] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński & Fabio Zanasi (2016): Rewriting

modulo symmetric monoidal structure. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic

in Computer Science, ACM, New York NY USA, p. 710–719, doi:10.1145/2933575.2935316. Available

at https://dl.acm.org/doi/10.1145/2933575.2935316.

[5] Matteo Capucci, Bruno Gavranović, Jules Hedges & Eigil Fjeldgren Rischel (2021): Towards foundations

of categorical cybernetics. In: Applied Category Theory Conference (ACT 2021), EPTCS, pp. 235–248.

Available at http://arxiv.org/abs/2105.06332.

[6] Matteo Capucci & Bruno Gavranović (2022): Actegories for the Working Amthematician.

https://doi.org/10.4230/LIPIcs.FSCD.2022.29
https://doi.org/10.2307/2048779
https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.1145/2933575.2935316
https://dl.acm.org/doi/10.1145/2933575.2935316
http://arxiv.org/abs/2105.06332

E. Sennesh & J-W. van de Meent 273

[7] Nick Chater, Joshua B Tenenbaum & Alan Yuille (2006): Probabilistic models of cognition: Conceptual

foundations. Trends in cognitive sciences 10(7), pp. 287–291, doi:10.1016/j.tics.2006.05.008.

[8] Kenta Cho & Bart Jacobs (2019): Disintegration and Bayesian inversion via string diagrams. Mathematical

Structures in Computer Science 29(7), pp. 938–971, doi:10.1017/S0960129518000488.

[9] Kyle Cranmer, Johann Brehmer & Gilles Louppe (2020): The frontier of simulation-based inference.

Proceedings of the National Academy of Sciences 117(48), pp. 30055–30062, doi:10.1073/pnas.

1912789117.

[10] Swaraj Dash, Younesse Kaddar, Hugo Paquet & Sam Staton (2023): Affine monads and lazy structures for

bayesian programming. Proceedings of the ACM on Programming Languages 7(POPL), pp. 1338–1368,

doi:10.1145/3571239.

[11] David H. Fremlin (2010): Measure theory. 2: Broad foundations, 2. ed edition. Torres Fremlin, Colchester.

[12] Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck & Giovanni Pezzulo (2017):

Active inference: a process theory. Neural computation 29(1), pp. 1–49, doi:10.1162/NECO_a_00912.

[13] Tobias Fritz (2020): A synthetic approach to Markov kernels, conditional independence and theorems on

sufficient statistics. Advances in Mathematics 370, p. 107239, doi:10.1016/j.aim.2020.107239.

[14] Tobias Fritz & Andreas Klingler (2023): The d-Separation Criterion in Categorical Probability. Journal of

Machine Learning Research 24(46), pp. 1–49.

[15] Tobias Fritz & Wendong Liang (2023): Free gs-Monoidal Categories and Free Markov Categories. Applied

Categorical Structures 31(2), p. 21, doi:10.1007/s10485-023-09717-0.

[16] Giorgio Gallo, Giustino Longo, Stefano Pallottino & Sang Nguyen (1993): Directed hypergraphs and appli-

cations. Discrete Applied Mathematics 42(2–3), p. 177–201, doi:10.1016/0166-218X(93)90045-P.

[17] Michèle Giry (1982): A categorical approach to probability theory. In B. Banaschewski, editor: Categorical

Aspects of Topology and Analysis, Springer Berlin Heidelberg, Berlin, Heidelberg, p. 68–85, doi:10.1007/

BFb0092872.

[18] Chris Heunen, Ohad Kammar, Sam Staton & Hongseok Yang (2017): A convenient category for higher-order

probability theory. In: Proceedings - Symposium on Logic in Computer Science, pp. 1–12, doi:10.1109/

LICS.2017.8005137. ArXiv: 1701.02547 Citation Key: Heunen2017 ISSN: 10436871.

[19] Kiyosi Itô et al. (1984): An Introduction to Probability Theory. Cambridge University Press, doi:10.1017/

9781139171809.

[20] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum & Samuel J Gershman (2017): Building

machines that learn and think like people. Behavioral and brain sciences 40, p. e253, doi:10.1017/

S0140525X16001837.

[21] Sergey Levine (2018): Reinforcement learning and control as probabilistic inference: Tutorial and review.

arXiv preprint arXiv:1805.00909.

[22] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang & Frank Wood (2018): An introduction to proba-

bilistic programming. arXiv preprint arXiv:1809.10756.

[23] Christian A Naesseth, Fredrik Lindsten & Thomas B Schon (2019): Elements of Sequential Monte Carlo.

Foundations and Trends in Machine Learning 12(3), pp. 187–306, doi:10.1561/2200000074.

[24] Judea Pearl (2012): The causal foundations of structural equation modeling. Handbook of structural equation

modeling, pp. 68–91.

[25] Judea Pearl & Dana Mackenzie (2018): The book of why: the new science of cause and effect. Basic books.

[26] Paolo Perrone (2019): Notes on Category Theory with examples from basic mathematics. arXiv preprint

arXiv:1912.10642.

[27] Alexey Radul & Boris Alexeev (2021): The Base Measure Problem and its Solution. In: Proceedings of the

24th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021, 130, Proceedings of

Machine Learning Research, San Diego, California, p. 3583–3591.

https://doi.org/10.1016/j.tics.2006.05.008
https://doi.org/10.1017/S0960129518000488
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1145/3571239
https://doi.org/10.1162/NECO_a_00912
https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.1007/s10485-023-09717-0
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1109/LICS.2017.8005137
https://doi.org/10.1109/LICS.2017.8005137
https://doi.org/10.1017/9781139171809
https://doi.org/10.1017/9781139171809
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1561/2200000074

274 String Diagrams with Factorized Densities

[28] Marcin Sabok, Sam Staton, Dario Stein & Michael Wolman (2021): Probabilistic programming semantics

for name generation. Proceedings of the ACM on Programming Languages 5(POPL), pp. 1–29, doi:10.

1145/3434292.

[29] Moritz Schauer & Frank van der Meulen (2023): Compositionality in algorithms for smoothing. arXiv

preprint arXiv:2303.13865.

[30] Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann,

Sean K. Moss, Chris Heunen & Zoubin Ghahramani (2017): Denotational Validation of Higher-Order

Bayesian Inference. Proc. ACM Program. Lang. 2(POPL), doi:10.1145/3158148.

[31] Toby St Clere Smithe (2020): Bayesian updates compose optically. arXiv preprint arXiv:2006.01631.

[32] Sam Staton (2017): Commutative Semantics for Probabilistic Programming, p. 855–879. Lec-

ture Notes in Computer Science 10201, Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.

1007/978-3-662-54434-1_32. Available at https://link.springer.com/10.1007/

978-3-662-54434-1_32.

[33] Terence Tao (2011): An introduction to measure theory. Graduate studies in mathematics 126, American

Mathematical Society, Providence, R.I, doi:10.1090/gsm/126/02.

[34] Matthijs Vákár & Luke Ong (2018): On S-Finite Measures and Kernels. Available at http://arxiv.org/

abs/1810.01837. ArXiv:1810.01837 [math].

[35] Paul Wilson & Fabio Zanasi (2023): Data-Parallel Algorithms for String Diagrams. arXiv:2305.01041.

[36] Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du & Stuart Russell (2018): Discrete-Continuous Mix-

tures in Probabilistic Programming: Generalized Semantics and Inference Algorithms. In: Proceedings of

the 35th International Conference on Machine Learning, PMLR, p. 5343–5352. Available at https://

proceedings.mlr.press/v80/wu18f.html.

https://doi.org/10.1145/3434292
https://doi.org/10.1145/3434292
https://doi.org/10.1145/3158148
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1007/978-3-662-54434-1_32
https://link.springer.com/10.1007/978-3-662-54434-1_32
https://link.springer.com/10.1007/978-3-662-54434-1_32
https://doi.org/10.1090/gsm/126/02
http://arxiv.org/abs/1810.01837
http://arxiv.org/abs/1810.01837
https://arxiv.org/abs/2305.01041
https://proceedings.mlr.press/v80/wu18f.html
https://proceedings.mlr.press/v80/wu18f.html

E. Sennesh & J-W. van de Meent 275

A Measure theory background

Measure theory studies ways of assigning a “size” to a set (beyond its cardinality); these can include

count, length, volume, and probability. Definition 16 begins with a nice class of measurable spaces.

Definition 16 (Standard Borel space). Let (X ,TX) ∈ Ob(Top) be a separable complete metric space

or homeomorphic to one. Equipping X with its Borel σ -algebra B(X) generated by complements,

countable unions, and countable intersections of open subsets U ∈ T yields a standard Borel space

(X ,B(X)) ∈ Ob(Sbs), which is also a measurable space since Sbs⊂Meas.

The paper uses standard Borel spaces as a basis for its category of measure spaces (Definition 9).

Example 2 is such a space.

Example 2 (The unit interval). The closed unit interval [0,1] with its Borel σ -algebra of open sets

B(0,1) forms a standard Borel space ([0,1],B(0,1)).

Having a category of measurable spaces and some nice examples, Definition 17 formally defines

what it means to assign a “size” to a measurable set.

Definition 17 (Measure). A measure µ : M(Z) on a measurable space (Z,ΣZ) ∈Ob(Meas) is a function

µ : ΣZ→ [0,∞] that is null on the empty set (µ(/0) = 0) and countably additive over pairwise disjoint sets

{σk ∈ ΣZ}k∈N ∀k ∈ N,n ∈ N,n 6= k =⇒ σk∩σn = /0

µ (
⋃

k∈N σk) = ∑k∈N µ(σk)

Reasoning compositionally about measure requires a class of maps between a domain and a codomain

that form measures. The Giry monad [17] sends a measurable space (X ,ΣX) to its space of measures

M(X) and probability measures P(X) ⊂M(X). Definition 18 defines maps into those spaces, treating

the domain as a parameter space for a measure over the codomain.

Definition 18 (Measure kernel). A measure kernel between two measurable spaces (Z,ΣZ),(X ,ΣX) ∈
Ob(Meas) is a function f : Z×ΣX → [0,∞] such that ∀z ∈ Z, f (z, ·) : M(X) is a measure and ∀σX ∈
ΣX , f (·,σX) : Meas((Z,ΣZ),([0,∞],Σ[0,∞])) is measurable.

Measure kernels serve both to define Markov kernels below, and to form a broader class of copy/delete

categories, which in Theorem 9 are seen to admit probability densities as morphisms. Definition 19 spe-

cializes to measure kernels yielding only normalized probability measures.

Definition 19 (Markov kernel). A Markov kernel is a measure kernel f : Z×ΣX → [0,∞] whose measure

is a probability measure so that ∀z ∈ Z, f (z, ·) : P(X) and ∀z ∈ Z, f (z,X) = 1.

The Giry monad, restricted to probability spaces, yields Markov kernels as its Kleisli morphisms

Meas((Z,ΣZ),M(X)), forming the main category of Markov kernels in this paper (Stoch, Definition 3).

Describing densities categorically then requires invoking the Radon-Nikodym Theorem, which deter-

mines when probability measures have densities. The next two definitions give the Theorem’s conditions,

which must be satisfied for a density to exist.

Definition 20 will formalize the condition that both the base measure and a probability measure

consist of sums over countable partitions of the sample space.

Definition 20 (σ -finite measure kernel). A σ -finite measure kernel f : Z× ΣX → [0,∞] is a measure

kernel which at every parameter z ∈ Z splits its codomain into countably many measurable sets X =
⋃

n∈N Xn ∈ ΣX , each of which has finite measure f (z)(Xn)< ∞.

Definition 21 will now formalize the further requirement that for a probability measure to admit a

density function, it must have only the same null-sets as the underlying base measure.

276 String Diagrams with Factorized Densities

Definition 21 (Absolute continuity). One σ -finite measure kernel f : Z×ΣX → [0,∞] is absolutely con-

tinuous (f ≪ g) with respect to another σ -finite measure kernel over the same codomain g : Y ×ΣX →
[0,∞] when ∀z ∈ Z,y ∈ Y,σX ∈ ΣX ,g(y)(σX) = 0 =⇒ f (z)(σX) = 0.

The conditions in Definition 20 and Definition 21 are necessary and sufficient for the existence of a

probability density via the Radon-Nikodym Theorem, as used in density kernels in Definition 10. Density

kernels use measure spaces as their codomains: these group together the desired topology, dimensional-

ity, and base measure. Definition 22 below formally defines measure spaces, which the paper uses in the

specific form of standard Borel measure spaces (Definition 9).

Definition 22 (Measure space). A measure space is a pair ((X ,ΣX),µ) of a measurable space (X ,ΣX) ∈
Ob(Meas) with a measure µ : M(X) on that space.

The measure spaces just defined form objects in a category which Definition 8 describes. Passing

from the category of measurable spaces Meas to the category of measure spaces M requires the resulting

morphisms to respect the chosen measure, so that measurable sets do not “grow” or “shrink”.

Having given the conditions for densities to exist, the paper passes from density kernels to joint

density kernels. Definition 23 will give a class of Markov kernels encompassing all those in this paper,

particularly joint density kernels.

Definition 23 (s-finite measure kernel). An s-finite measure kernel f : Z× ΣX → [0,∞] is a measure

kernel (as in Definition 18 above) which decomposes into a sum of finite kernels f = ∑n∈N fn such that

∀n ∈ N, fn : Z×ΣX → [0,∞] and ∀n ∈ N,∃rn ∈ R≥0,∀z ∈ Z, fn(z,X)≤ rn.

Proposition 5 will demonstrate that the class of s-finite kernels (Definition 23) includes all pushfor-

wards of σ -finite kernels, and therefore the pushforwards of all measure kernels admitting densities.

Proposition 5 (s-finite kernels are pushforwards of σ -finite kernels [34, 32]). A measure kernel f :

Z×ΣX → [0,∞] is s-finite if and only if it is a pushforward f = copyZ # (p⊗ idZ) #k of a σ -finite measure

kernel p through a deterministic k.

The above proposition includes trivial pushforwards, so every σ -finite (Definition 20) measure kernel

is s-finite (Definition 23) but not the other way around.

B Parametric and coparametric categories

This section will review the definitions of parametric and coparametric (bi)categories, first given in the

categorical cybernetics literature [5]. For the sake of rigor, the reader can also see a recent review on

actegories [6]. As a starting point, Definition 24 will describe how a symmetric monoidal category

(SMC) can “act upon” another category functorially.

Definition 24 (M -actegory). Consider a symmetric monoidal category (M ,J,⊙) and a category C . An

M -actegory is a pair of the two with a functor • : M ×C → C from the product category and natural

transformations ε : J •X ≃ X and δ : (M •N)•X = M • (N •X).

Definition 25 will then apply the actegory concept to define a bicategory whose morphisms accumu-

late parameters in the course of composition.

Definition 25 (Parametric categories [5]). Given an M -actegory C , the parametric (bi)category Para•(C)
has as objects those of C and as morphisms the pairs Para•(C)(A,B)= {(M,k) ∈ Ob(M)×C (M •A,B)}.
Composition for morphisms (M,k) : Para•(C)(A,B) and (M′,k′) : Para•(C)(B,C) consists of (M′⊙
M,k′ ◦ (idM′ • k))) while identities on objects A consist of (I, idA).

E. Sennesh & J-W. van de Meent 277

Parametric (bi)categories of course have a dual, definable as Para•(C
op)op. Definition 26 will de-

scribe this category, whose morphisms admit “coparameters” accumulate extra elements of the codomain.

Definition 26 (Coparametric categories [5]). Given an M -actegory C , the coparametric category

CoPara•(C) ∈Ob(Cat)

has as objects those of C and as morphisms CoPara•(C)(A,B) the pairs (M, f) ∈ Ob(M)×C (A,M •
B). Composition for (M, f) : CoPara•(C)(A,B) and (M′,g) : CoPara•(C)(B,C) consists of (M ⊙
M′,(idM •g)◦ f)) while identities on objects A consist of (I, idA).

The coparametric category construction generalizes the idea of a writer monad to more than one

object, and represents morphisms that “log” or “leave behind” a cumulative effect. Definition 27 will

describe symmetric monoidality for the M -actegory on C when (C ,⊗I) is symmetric monoidal.

Definition 27 (Symmetric monoidal M -actegory). A symmetric monoidal M -actegory is an M -actegory

C equipped with a symmetric monoidal structure and a natural isomorphism κM,X ,Y : M • (X ⊗Y) ≃
X ⊗ (M •Y), satisfying coherence laws similar to those of a costrong comonad.

Finally, Proposition 6 will demonstrate that given a symmetric monoidal actegory as in Definition 27,

the constructions above admit symmetric monoidal structure themselves.

Proposition 6 (Parametric and coparametric categories admit monoidal structure [6]11). Given a symmet-

ric monoidal M -actegory (C ,⊗, I), the parametric bicategory Para•(C) and coparametric bicategory

CoPara•(C) form symmetric monoidal bicategories (Para•(C),⊗, I) and (CoPara•(C),⊗, I).

C Free copy/delete and Markov categories

Generalized causal models [14] employ hypergraphs, which “flip” the status of nodes and edges relative

to ordinary graphs: “hypernodes” are drawn as wires and “hyperedges” connecting them as boxes. These

hypergraphs represent string diagrams combinatorially; restricting hypergraphs to conditions matching

certain kinds of categories defines “free” categories of those kinds. This subsection will build up free

copy/delete and Markov categories with generalized causal models as morphisms.

Definition 28 defines hypergraphs via sets [16]; Bonchi et al [4] provides categorical intuition.

Definition 28 (Hypergraph). A hypergraph is a 4-tuple (W,B,dom,cod) consisting of a set of vertices,

nodes, or “wires” W; a set of hyperedges or “boxes” B; a function dom : B→W ∗ assigning a domain

to each box; and a function cod : B→W ∗ assigning a codomain to each box.

We abuse notation and write individual boxes b ∈ B : dom(b)→ cod(b).

Definition 29 specifies relabelings of one hypergraph’s wires and boxes with those of another.

Definition 29 (Hypergraph morphism). Given hypergraphs G,H, a hypergraph morphism α : G→ H is

a pair of functions assigning wires to wires and boxes to boxes, the latter respecting the former

Hyp(G,H) :=
{

(αW ,αB) ∈W (H)W(G)×B(H)B(G) | ∀b ∈ B(G),αB(b) : αW (dom(b))→ αW (cod(b))
}

.

As implied by the hom-set notation, hypergraphs and their morphisms form a category Hyp [4], and

our application will employ the full subcategory FinHyp in which W and B both have finite cardinality.

Finally, a hypergraph H is discrete when B(H) = /0; n denotes a discrete hypergraph with n ∈ N wires.

11Example 5.1.8

278 String Diagrams with Factorized Densities

Any monoidal category has a (potentially infinite) underlying hypergraph, which we denote hyp(·) :

MonCat→Hyp following Fritz and Liang [15].

Often a finite hypergraph Σ ∈ FinHyp denotes the generating objects and morphisms of a free

monoidal category, or the primitive types and functions of a domain-specific programming language.

We call such a finite hypergraph a monoidal signature. Definition 30 formally defines the copy/delete

category freely generated by a signature Σ, which Definition 31 will restrict to free Markov categories.

Definition 30 (Free copy/delete category for the signature Σ [15]). The free CD category FreeCDΣ for

Σ ∈ FinHyp is a subcategory FreeCDΣ ⊆ cospan(FinHyp/Σ) where

• Objects are the pairs (n,σ) ∈ N×n→ Σ assigning outer wires of a string diagram to wires in Σ;

• Morphisms are isomorphism classes of cospans, given combinatorially

FreeCDΣ((n,σn),(m,σm)) =

{p→ dom(τ)← q ∈ FinHyp(n,dom(τ))×Ob(FinHyp/Σ)×FinHyp(m,dom(τ))} ,

such that τ : G→ Σ∈Ob(FinHyp/Σ) is a hypergraph morphism from an acyclic G and every wire

w ∈W (G) has at most one “starting place” as the diagram’s input or a box’s output

|p−1(w)|+ ∑
b∈B(G)

∑
w′∈cod(b)

I[w′ = w]≤ 1.

Intuitively, a morphism in FreeCDΣ is syntax specifying a string diagram with no looping or merg-

ing wires, whose boxes and wires are labeled by Σ. Definition 31 passes to the free Markov category

FreeMarkovΣ just by syntactically enforcing the naturality of delZ .

Definition 31 (Free Markov category for the signature Σ). The free Markov category FreeMarkovΣ for

Σ ∈ FinHyp is the wide subcategory of FreeCDΣ restricted to morphisms in which every output from

every box connects to somewhere else

connects(w,G,q) := I[∃b ∈ B(G) : w ∈ cod(b) =⇒ q−1(w) 6= /0∨∃b′ ∈ B(G) : w ∈ dom(b′)]

FreeMarkovΣ(n,m) :=

{p→ dom(τ)← q ∈ FreeCDΣ(n,m) | ∀w ∈W (dom(τ)),connects(w,dom(τ),q)} ,

and with composition redefined to syntactically enforce this by iterating the deletion of discarded boxes

to a fixed-point after composition in FreeCDΣ.

S. Staton, C. Vasilakopoulou (Eds.):
Applied Category Theory 2023 (ACT2023)
EPTCS 397, 2023, pp. 279–298, doi:10.4204/EPTCS.397.17

© T. St Clere Smithe
This work is licensed under the Creative Commons
Attribution-Share Alike License.

Approximate Inference via Fibrations of Statistical Games

Toby St Clere Smithe
VERSES Research

Topos Institute

q@tsmithe.net

We characterize a number of well known systems of approximate inference as loss models: lax
sections of 2-fibrations of statistical games, constructed by attaching internally-defined loss functions
to Bayesian lenses. Our examples include the relative entropy, which constitutes a strict section,
and whose chain rule is formalized by the horizontal composition of the 2-fibration. In order to
capture this compositional structure, we first introduce the notion of ‘copy-composition’, alongside
corresponding bicategories through which the composition of copy-discard categories factorizes.
These bicategories are a variant of the Copara construction, and so we additionally introduce
coparameterized Bayesian lenses, proving that coparameterized Bayesian updates compose optically,
as in the non-coparameterized case.

1 Introduction

In previous work [1], we introduced Bayesian lenses, observing that the Bayesian inversion of a composite
stochastic channel is (almost surely) equal to the ‘lens composite’ of the inversions of the factors; that
is, Bayesian updates compose optically (‘BUCO’) [2]. Formalizing this statement for a given category
C all of whose morphisms (‘channels’) admit Bayesian inversion, we can observe that there is (almost
surely) a functor p´q: : C Ñ BayesLenspC q from C to the category BayesLenspC q whose morphisms
pX ,Aq ÞÑ pY,Bq are Bayesian lenses: pairs pc,c1q of a channel XÑ‚ Y with a ‘state-dependent’ inverse
c1 : C pI,XqÑ C pB,Aq. Bayesian lenses constitute the morphisms of a fibration πLens : BayesLenspC qÑ
C , since BayesLenspC q is obtained as the Grothendieck construction of (the pointwise opposite of) an
indexed category Stat : C op Ñ Cat of ‘state-dependent channels’ (recalled in Appendix A), and the
functor p´q: is in fact a section of πLens, taking c : XÑ‚ Y to the lens pc,c:q : pX ,Xq ÞÑ pY,Y q, where c:

is the almost-surely unique Bayesian inversion of c (so that the projection πLens can simply forget the
inversion, returning again the channel c).

The functor p´q: picks out a special class of Bayesian lenses, which we may call exact (as they
compute ‘exact’ inversions), but although the category BayesLenspC q has many other morphisms, the
construction is not extravagant: by comparison, we can think of the non-exact lenses as representing
approximate inference systems. This is particularly necessary in computational applications, because
computing exact inversions is usually intractable, but this creates a new problem: choosing an
approximation, and measuring its performance. In this paper, we formalize this process, by attaching loss
functions to Bayesian lenses, thus creating another fibration, of statistical games. Sections of this latter
fibration encode compositionally well-behaved systems of approximation that we call loss models.

A classic example of a loss model will be supplied by the relative entropy, which in some sense
measures the ‘divergence’ between distributions: the game here is then to minimize the divergence
between the approximate and exact inversions. If π and π 1 are two distributions on a space X , with
corresponding density functions pπ and pπ 1 (both with respect to a common measure), then their relative

http://dx.doi.org/10.4204/EPTCS.397.17
https://creativecommons.org
https://creativecommons.org/licenses/by-sa/4.0/

280 Statistical Games

entropy Dpπ,π 1q is the real number given by Ex„π rlog pπpxq´ log pπ 1pxqs1. Given a pair of channels
α,α 1 : AÑ‚ B (again commensurately associated with densities), we can extend D to a map Dα,α 1 : AÑR`
in the natural way, writing a ÞÑD

`

αpaq,α 1paq
˘

. We can assign such a map Dα,α 1 to any such parallel pair
of channels, and so, following the logic of composition in C , we might hope for the following equation to
hold for all a : A and composable parallel pairs α,α 1 : AÑ‚ B and β ,β 1 : BÑ‚ C,:

Dβ‚α,β 1‚α 1paq “ E
b„αpaq

“

Dβ ,β 1pbq
‰

`Dα,α 1paq

The right-hand side is known as the chain rule for relative entropy, but, unfortunately, the equation
does not hold in general, because the composites β ‚α and β 1 ‚α 1 involve an extra expectation (by the
‘Chapman-Kolmogorov’ rule for channel composition). However, we can satisfy an equation of this form
by using ‘copy-composition’: if we write B to denote the canonical ‘copying’ comultiplication on B, and
define β ‚2 α :“ pidBbβ q‚ B ‚α , then Dβ‚2α,β 1‚2α 1paq does equal the chain-rule form on the right-hand
side. This result exhibits a general pattern about “copy-discard categories” [3] such as C : composition ‚
can be decomposed into first copying , and then discarding . If we don’t discard, then we retain the
‘intermediate’ variables, and this results in a functorial assignment of relative entropies to channels.

The rest of this paper is dedicated to making use of this observation to construct loss models,
including (but not restricted to) the relative entropy. The first complication that we encounter is that
copy-composition is not strictly unital, because composing with an identity retains an extra variable.
To deal with this, in §2, we construct a bicategory of copy-composite channels, extending the Copara
construction [4, §2], and build coparameterized (copy-composite) Bayesian lenses accordingly; we also
prove a corresponding BUCO result. In §3, we then construct 2-fibrations of statistical games, defining
loss functions internally to any copy-discard category C that admits “bilinear effects”. Because we are
dealing with approximate systems, the 2-dimensional structure of the construction is useful: loss models
are allowed to be lax sections. We then characterize the relative entropy, maximum likelihood estimation,
the free energy, and the ‘Laplacian’ free energy as such loss models.

Assuming C is symmetric monoidal, the constructions here result in monoidal (2-)fibrations, but due
to space constraints we defer the presentation of this structure (and its exemplification by the foregoing
loss models) to Appendix B.
Remark 1.1. Much of this work is situated amongst monoidal fibrations of bicategories, the full theory of
which is not known to the present author. Fortunately, enough structure is known for the present work
to have been possible, and where things become murkier—such as in the context of monoidal indexed
bicategories and their lax homomorphisms—the way largely seems clear. For this, we are grateful to
Baković [5], Johnson and Yau [6], and Moeller and Vasilakopoulou [7] in particular for lighting the way;
and we enthusiastically encourage the further elucidation of these structures by category theorists.
Remark 1.2. For reasons of space, detailed proofs are not included in the proceedings version of this
paper; however, they are included in an appendix to the conference submission, which is available on the
arXiv repository with the paper ID 2306.17009v1.

2 ‘Copy-composite’ Bayesian lenses

2.1 Copy-composition by coparameterization

In a locally small copy-discard category C , every object A is equipped with a canonical comonoid
structure p A, Aq, and so, by the comonoid laws, it is almost a triviality that the composition function

1For details about this ‘expectation’ notation E, see 3.11.

https://arxiv.org/abs/2306.17009v1

T. St Clere Smithe 281

‚ : C pB,CqˆC pA,Bq Ñ C pA,Cq factorizes as

C pB,CqˆC pA,Bq
pidBb´qˆC

´

idA, B

¯

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ C pBbB,BbCqˆC pA,BbBq ¨ ¨ ¨

¨ ¨ ¨
‚
ÝÑ C pA,BbCq

C pidA,projCq
ÝÝÝÝÝÝÝÑ C pA,Cq

where the first factor copies the B output of the first morphism and tensors the second morphism with the
identity on B, the second factor composes the latter tensor with the copies, and the third discards the extra
copy of B2. This is, however, only almost trivial, since it witnesses the structure of ‘Chapman-Kolmogorov’
style composition in categories of stochastic channels such as K `pDq, the Kleisli category of the (finitary)
distributions monad D : SetÑ Set. There, given channels c : AÑ‚ B and d : BÑ‚ C, the composite d ‚ c is
formed first by constructing the ‘joint’ channel d ‚2 c defined by pd ‚2 cqpb,c|aq :“ dpc|bqcpb|aq, and then
discarding (marginalizing over) b : B, giving

pd ‚ cqpc|aq “
ÿ

b:B

pd ‚2 cqpb,c|aq “
ÿ

b:B

dpc|bqcpb|aq .

Of course, the channel d ‚2 c is not a morphism AÑ‚ C, but rather AÑ‚ BbC; that is, it is coparameterized by
B. Moreover, as noted above, ‚2 is not strictly unital: we need a 2-cell that discards the coparameter, and
hence a bicategory, in order to recover (weak) unitality. We therefore construct a bicategory Copara2pC q
as a variant of the Copara construction [4, §2], in which a 1-cell AÑ B may be any morphism AÑ‚ MbB
in C , and where horizontal composition is precisely copy-composition.

Theorem 2.1. Let pC ,b, Iq be a copy-discard category. Then there is a bicategory Copara2pC q as
follows. Its 0-cells are the objects of C . A 1-cell f : AÝÑ

M
B is a morphism f : AÑMbB in C . A 2-cell

ϕ : f ñ f 1, with f : A ÝÑ
M

B and f 1 : A ÝÑ
M1

B, is a morphism ϕ : AbMbBÑM1 of C , satisfying the

change of coparameter axiom:

f 1A

B

M1

“ fA

B

M1
ϕ

The identity 2-cell id f : f ñ f on f : AÝÑ
M

B is given by the projection morphism projM : AbMbBÑM

obtained by discarding A and B, as in footnote 2. The identity 1-cell idA on A is given by the inverse of
the left unitor of the monoidal structure on C , i.e. idA :“ λ

´1
A : AÝÑ

I
A, with coparameter thus given by

the unit object I.
Given 2-cells ϕ : f ñ f 1 and ϕ 1 : f 1ñ f 2, their vertical composite ϕ 1dϕ : f ñ f 2 is given by the

string diagram on the left below. Given 1-cells f : A ÝÑ
M

B then g : B ÝÑ
N

C, the horizontal composite

g˝ f : AÝÝÝÝÝÝÑ
pMbBqbN

C is given by the middle string diagram below. Given 2-cells ϕ : f ñ f 1 and γ : gñ g1

between 1-cells f , f 1 : AÝÑ
M

B and g,g1 : BÝÑ
N

C, their horizontal composite γ ˝ϕ : pg˝ f q ñ pg1 ˝ f 1q is

2 We define projC :“ BbC BbidC
ÝÝÝÝÝÑ IbC λC

ÝÑC, using the comonoid counit and the left unitor of C ’s monoidal structure.

282 Statistical Games

defined by the string diagram on the right below.

ϕ ϕ 1 fA g
C

N

M

B ϕ

γ

A

M

B

N

C

N1

B

M1

Remark 2.2. When C is symmetric monoidal, Copara2pC q inherits a monoidal structure, elaborated in
Proposition B.1.

Remark 2.3. In order to capture the bidirectionality of Bayesian inversion we will need to conside
left- and right-handed versions of the Copara2 construction. These are formally dual, and when C is
symmetric monoidal (as in most examples) they are isomorphic. Nonetheless, it makes formalization
easier if we explicitly distinguish Coparal

2pC q, in which the coparameter is placed on the left of the
codomain (as above), from Coparar

2pC q, in which it is placed on the right. Aside from the swapping of
this handedness, the rest of the construction is the same.

We end this section with three easy (and ambidextrous) propositions relating C and Copara2pC q.

Proposition 2.4. There is an identity-on-objects lax embedding ι : C ãÑCopara2pC q, mapping f : X ÑY
to f : X ÝÑ

I
Y (using the unitor of the monoidal structure on C). The laxator ιpgq˝ ιp f qÑ ιpg˝ f q discards

the coparameter obtained from copy-composition.

Proposition 2.5. There is a ‘discarding’ functor p´q : Copara2pC q Ñ C , which takes any coparameter-
ized morphism and discards the coparameter.

Proposition 2.6. ι is a section of p´q . That is, idC “ C
ι

ãÝÑ Copara2pC q
p´q
ÝÝÝÑ C .

2.2 Coparameterized Bayesian lenses

In order to define (bi)categories of statistical games, coherently with loss functions like the relative
entropy that compose by copy-composition, we first need to define coparameterized (copy-composite)
Bayesian lenses. Analogously to non-coparameterized Bayesian lenses, these will be obtained by applying
a Grothendieck construction to an indexed bicategory [5, Def. 3.5] of state-dependent channels.

Definition 2.7. We define the indexed bicategory Stat2 : Coparal
2pC q

coop Ñ Bicat fibrewise as follows.

(i) The 0-cells Stat2pXq0 of each fibre Stat2pXq are the objects C0 of C .

(ii) For each pair of 0-cells A,B, the hom-category Stat2pXqpA,Bq is defined to be the functor category
Cat

`

discC pI,Xq,Coparar
2pC qpA,Bq

˘

, where disc denotes the functor taking a set to the associated
discrete category.

(iii) For each 0-cell A, the identity functor idA : 1Ñ Stat2pXqpA,Aq is the constant functor on the identity

on A in Coparar
2pC q; i.e. discC pI,Xq !

ÝÑ 1 idA
ÝÑ Coparar

2pC qpA,Aq.

T. St Clere Smithe 283

(iv) For each triple A,B,C of 0-cells, the horizontal composition functor ˝A,B,C is defined by

˝A,B,C : Stat2pXqpB,CqˆStat2pXqpA,Bq ¨ ¨ ¨

¨ ¨ ¨
“
ÝÑ Cat

`

discC pI,Xq,Coparar
2pC qpB,Cq

˘

ˆCat
`

discC pI,Xq,Coparar
2pC qpA,Bq

˘

¨ ¨ ¨

¨ ¨ ¨
ˆ
ÝÑ Cat

`

discC pI,Xq2,Coparar
2pC qpB,CqˆCoparar

2pC qpA,Bq
˘

¨ ¨ ¨

¨ ¨ ¨
Cat

´

,˝
¯

ÝÝÝÝÝÝÑ Cat
`

discC pI,Xq,Coparar
2pC qpA,Cq

˘

¨ ¨ ¨

¨ ¨ ¨
“
ÝÑ Stat2pXqpA,Cq

where Catp ,˝q indicates pre-composition with the universal (Cartesian) copying functor in
pCat,ˆ,1q and post-composition with the horizontal composition functor of Coparar

2pC q.

For each pair of 0-cells X ,Y in CoparalpC q, we define the reindexing pseudofunctor Stat2,X ,Y :
CoparalpC qpX ,Y qop Ñ Bicat

`

Stat2pY q,Stat2pXq
˘

as follows.

(a) For each 1-cell f in CoparalpC qpX ,Y q, we obtain a pseudofunctor Stat2p f q : Stat2pY qÑ Stat2pXq
which acts as the identity on 0-cells.

(b) For each pair of 0-cells A,B in Stat2pY q, the functor Stat2p f qA,B is defined as the precom-
position functor Cat

`

discC pI, f q,Coparar
2pC qpA,Bq

˘

, where p´q is the discarding functor
Coparal

2pC q Ñ C of Proposition 2.5.

(c) For each 2-cell ϕ : f ñ f 1 in Coparal
2pC qpX ,Y q, the pseudonatural transformation Stat2pϕq :

Stat2p f 1q ñ Stat2p f q is defined on 0-cells A : Stat2pY q by the discrete natural transformation with
components Stat2pϕqA :“ idA, and on 1-cells c : Stat2pY qpA,Bq by the substitution natural transfor-
mation with constitutent 2-cells Stat2pϕqc : Stat2p f qpcq ñ Stat2p f 1qpcq in Stat2pXq which acts by
replacing Cat

`

discC pI, f q,Coparar
2pC qpA,Bq

˘

by Cat
`

discC pI, f 1 q,Coparar
2pC qpA,Bq

˘

; and
which we might alternatively denote by Cat

`

discC pI,ϕ q,Coparar
2pC qpA,Bq

˘

.

Notation 2.8. We will write f : A X
ÝÑ
M
‚ B to denote a state-dependent coparameterized channel f with

coparameter M and state-dependence on X .

In 1-category theory, lenses are morphisms in the fibrewise opposite of a fibration [8]. Analogously,
our bicategorical Bayesian lenses are obtained as 1-cells in the bicategorical Grothendieck construction
[5, §6] of (the pointwise opposite of) the indexed bicategory Stat2.

Definition 2.9. Fix a copy-discard category pC ,b, Iq. We define the bicategory of coparameterized
Bayesian lenses in C , denoted BayesLens2pC q or simply BayesLens2, to be the bicategorical
Grothendieck construction of the pointwise opposite of the corresponding indexed bicategory Stat2,
with the following data:

(i) A 0-cell in BayesLens2 is a pair pX ,Aq of an object X in Coparal
2pC q and an object A in Stat2pXq;

equivalently, a 0-cell in BayesLens2 is a pair of objects in C .

(ii) The hom-category BayesLens2
`

pX ,Aq,pY,Bq
˘

is the product category Coparal
2pC qpX ,Y q ˆ

Stat2pXqpB,Aq.

(iii) The identity on pX ,Aq is given by the pair pidX , idAq.

284 Statistical Games

(iv) For each triple of 0-cells pX ,Aq,pY,Bq,pZ,Cq, the horizontal composition functor is given by

BayesLens2
`

pY,Bq,pZ,Cq
˘

ˆBayesLens2
`

pX ,Aq,pY,Bq
˘

“ Coparal
2pC qpY,ZqˆStat2pY qpC,BqˆCoparal

2pC qpX ,Y qˆStat2pXqpB,Aq
„
ÝÑ

ÿ

g:Coparal
2pC qpY,Zq

ÿ

f :Coparal
2pC qpX ,Y q

Stat2pY qpC,BqˆStat2pXqpB,Aq

ř

g
ř

f Stat2p f qC,Bˆid
ÝÝÝÝÝÝÝÝÝÝÝÝÑ

ÿ

g:Coparal
2pC qpY,Zq

ÿ

f :Coparal
2pC qpX ,Y q

Stat2pXqpC,BqˆStat2pXqpB,Aq

ř

˝
Coparal

2pC q
˝Stat2pXq

ÝÝÝÝÝÝÝÝÝÝÝÝÑ
ÿ

g˝ f :Coparal
2pC qpX ,Zq

Stat2pXqpC,Aq

„
ÝÑ BayesLens2

`

pX ,Aq,pZ,Cq
˘

where the functor in the penultimate line amounts to the product of the horizontal composition
functors on Coparal

2pC q and Stat2pXq.

Remark 2.10. When C is symmetric monoidal, Stat2 acquires the structure of a monoidal indexed
bicategory (Definition B.2 and Theorem B.3), and hence BayesLens2 becomes a monoidal bicategory
(Corollary B.4).

2.3 Coparameterized Bayesian updates compose optically

So that our generalized Bayesian lenses are worthy of the name, we should also confirm that Bayesian
inversions compose according to the lens pattern (‘optically’) also in the coparameterized setting. Such
confirmation is the subject of the present section, and so we first introduce a new “coparameterized Bayes’
rule”.

Definition 2.11. We say that a coparameterized channel γ : AÑ‚ MbB admits Bayesian inversion if there
exists a dually coparameterized channel ρπ : BÑ‚ AbM satisfying the graphical equation (with string
diagrams read from bottom to top)

γ

π

A M B

“ ρπ

γ

π

A M B

.

In this case, we say that ρπ is the Bayesian inversion of γ with respect to π .

With this definition, we can supply the desired result that “coparameterized Bayesian updates compose
optically”.

Theorem 2.12. Suppose pγ,γ:q : pA,AqÝÑ
M
| pB,Bq and pδ ,δ :q : pB,BqÝÑ

N
| pC,Cq are coparameterized

Bayesian lenses in BayesLens2. Suppose also that π : IÑ‚ A is a state on A in the underlying category of
channels C , such that γ

:
π is a Bayesian inversion of γ with respect to π , and such that δ

:
γπ is a Bayesian

T. St Clere Smithe 285

inversion of δ with respect to pγπq ; where the notation p´q represents discarding coparameters. Then
γ
:
π ‚δ

:
γπ is a Bayesian inversion of δ ‚ γ with respect to π . (Here ‚ denotes copy-composition.) Moreover,

if pδ ‚γq
:
π is any Bayesian inversion of δ ‚γ with respect to π , then γ

:
π ‚δ

:
γπ is pδγπq -almost-surely equal

to pδ ‚ γq
:
π : that is, pδ ‚ γq

:
π

pδγπq
„ γ

:
π ‚δ

:
γπ .

In order to satisfy this coparameterized Bayes’ rule, a Bayesian lens must be of ‘simple’ type.

Definition 2.13. We say that a coparameterized Bayesian lens pc,c1q is simple if its domain and codomain
are ‘diagonal’ (duplicate pairs of objects) and if the coparameter of c is equal to the coparameter of c1. In
this case, we can write the type of pc,c1q as pX ,XqÝÑ

M
| pY,Y q or simply XÝÑ

M
| Y .

3 Statistical games for local approximate inference

3.1 Losses for lenses

Statistical games are obtained by attaching to Bayesian lenses loss functions, representing ‘local’
quantifications of the performance of approximate inference systems. Because this performance depends
on the system’s context (i.e., the prior π : IÑ‚ X and the observed data b : B), a loss function at its most
concrete will be a function C pI,XqˆBÑ R`. To internalize this type in C , we may recall that, when C
is the category sfKrn of s-finite kernels or the Kleisli category K `pDď1q of the subdistribution monad, a
density function pc : XˆY Ñ r0,1s for a channel c : XÑ‚ Y corresponds to an effect (or costate) XbYÑ‚ I.
In this way, we can see a loss function as a kind of state-dependent effect B X

ÝÑ‚ I.
Loss functions will compose by sum, and so we need to ask for the effects in C to form a monoid.

Moreover, we need this monoid to be ‘bilinear’ with respect to channels, so that Stat-reindexing (cf.
Definition A.1) preserves sums. These conditions are formalized in the following definition.

Definition 3.1. Suppose pC ,b, Iq is a copy-discard category. We say that C has bilinear effects if the
following conditions are satisfied:

(i) effect monoid: there is a natural transformation ` : C p´, IqˆC p“, Iq ñ C p´b“, Iq making
ř

A:C C pA, Iq into a commutative monoid with unit 0 : IÑ‚ I;

(ii) bilinearity: pg`g1q ‚ ‚ f “ g‚ f `g1 ‚ f for all effects g,g1 and morphisms f such that pg`g1q ‚
‚ f exists.

A trivial example of a category with bilinear effects is supplied by any Cartesian category, such as
Set. If M is any monoid in Set, then a less trivial example is supplied by the Kleisli category of the
corresponding free module monad; bilinearity follows from the module structure. A related non-example
is K `pDď1q: the failure here is that the effects only form a partial monoid3. More generally, the category
sfKrn of s-finite kernels [10] has bilinear effects (owing to the linearity of integration), and we will
assume this as our ambient C for the examples below.

Given such a category C with bilinear effects, we can lift the natural transformation `, and hence the

3Indeed, an effect algebra is a kind of partial monoid [9, §2], but we do not need the extra complication here.

286 Statistical Games

bilinear effect structure, to the fibres of StatC , using the universal property of the product of categories:

`X : StatpXqp´, IqˆStatpXqp“, Iq ùù Set
`

C pI,Xq,C p´, Iq
˘

ˆSet
`

C pI,Xq,C p“, Iq
˘

p¨,¨q
ùùñ Set

`

C pI,Xq,C p´, IqˆC p“, Iq
˘

Set
`

C pI,Xq,`
˘

ùùùùùùùùùñ Set
`

C pI,Xq,C p´b“, Iq
˘

“
ùñ StatpXqp´b“, Iq

Here, p¨, ¨q denotes the pairing operation obtained from the universal property. In this way, each StatpXq
has bilinear effects. Note that this lifting is (strictly) compatible with the reindexing of Stat, so that `p´q
defines an indexed natural transformation. This means in particular that reindexing distributes over sums:
given state-dependent effects g,g1 : B Y

ÝÑ‚ I and a channel c : XÑ‚ Y , we have pg`Y g1qc “ gc`X g1c. We will
thus generally omit the subscript from the lifted sum operation, and just write `.

We are now ready to construct the bicategory of statistical games.
Definition 3.2. Suppose pC ,b, Iq has bilinear effects, and let BayesLens2 denote the corresponding
bicategory of (copy-composite) Bayesian lenses. We will write SGameC to denote the following
bicategory of (copy-composite) statistical games in C :

• The 0-cells are the 0-cells pX ,Aq of BayesLens2;

• the 1-cells, called statistical games, pX ,Aq Ñ pY,Bq are pairs pc,Lcq of a 1-cell c : pX ,Aq ÞÑ pY,Bq
in BayesLens2 and a loss Lc : B X

ÝÑ‚ I in StatpXqpB, Iq;

• given 1-cells pc,Lcq,pc1,Lc1q : pX ,Aq Ñ pY,Bq, the 2-cells pc,Lcq ñ pc1,Lc1q are pairs pα,Kαq of a
2-cell α : cñ c1 in BayesLens2 and a loss Kα : B X

ÝÑ‚ I such that Lc “ Lc1`Kα ;

• the identity 2-cell on pc,Lcq is pidc,0q;

• given 2-cells pα,Kαq : pc,Lcq ñ pc1,Lc1q and pα 1,Kα 1q : pc1,Lc1q ñ pc2,Lc2q, their vertical
composite is pα 1 ˝α,Kα 1`Kαq, where ˝ here denotes vertical composition in BayesLens2;

• given 1-cells pc,Lcq : pX ,Aq Ñ pY,Bq and pd,Ldq : pY,Bq Ñ pZ,Cq, their horizontal composite is
pc˝| d,Ld

c `Lc ˝dcq; and
– given 2-cells pα,Kαq : pc,Lcq ñ pc1,Lc1q and pβ ,Kβ q : pd,Ldq ñ pd1,Ld1q, their horizontal

composite is pβ ˝| α,Kβ
c ` Kα ˝ dcq, where ˝| here denotes horizontal composition in

BayesLens2.
Theorem 3.3. Definition 3.2 generates a well-defined bicategory.

The proof of this result is that SGameC is obtained via a pair of bicategorical Grothendieck
constructions [5]: first to obtain Bayesian lenses; and then to attach the loss functions. The proof
depends on the intermediate result that our effect monoids can be ‘upgraded’ to monoidal categories; we
then use the delooping of this structure to associate (state-dependent) losses to (state-dependent) channels,
after discarding the coparameters of the latter.
Lemma 3.4. Suppose pC ,b, Iq has bilinear effects. Then, for each object B, C pB, Iq has the structure of a
symmetric monoidal category. The objects of C pB, Iq are its elements, the effects. If g,g1 are two effects,
then a morphism κ : gÑ g1 is an effect such that g“ g1`κ; the identity morphism for each effect idg is
then the constant 0 effect. Likewise, the tensor of two effects is their sum, and the corresponding unit
is the constant 0. Precomposition by any morphism c : AÑ‚ B preserves the monoidal category structure,
making the presheaf C p´, Iq into a fibrewise-monoidal indexed category C op ÑMonCat.

T. St Clere Smithe 287

As already indicated, this structure lifts to the fibres of Stat.
Corollary 3.5. For each object X in a category with bilinear effects, and for each object B,
StatpXqpB, Iq inherits the symmetric monoidal structure of C pB, Iq; note that morphisms of state-
dependent effects are likewise state-dependent, and that tensoring (summing) state-dependent effects
involves copying the parameterizing state. Moreover, Statp´qp“, Iq is a fibrewise-monoidal indexed
category

ř

X :C op StatpXqop ÑMonCat.

3.2 Local inference models

In the context of approximate inference, one often does not have a single statistical model to evaluate, but
a whole family of them. In particularly nice situations, this family is actually a subcategory D of C , with
the family of statistical models being all those that can be composed in D . The problem of approximate
inference can then be formalized as follows. Since both BayesLens2 and SGameC were obtained by
bicategorical Grothendieck constructions, we have a pair of 2-fibrations SGameC

πLoss
ÝÝÑBayesLens2

πLens
ÝÝÝÑ

Coparal
2pC q. Each of πLoss, πLens, and the discarding functor p´q can be restricted to the subcategory D .

The inclusion D ãÑ Coparal
2pDq is a section of this restriction of p´q ; the assignment of inversions to

channels in D then corresponds to a 2-section of the 2-fibration πLens (restricted to D); and the subsequent
assignment of losses is a further 2-section of πLoss. This situation is depicted in the following diagram of
bicategories:

SGameD SGameC

BayesLens2|D BayesLens2

Coparal
2pDq Coparal

2pC q

D C

πLoss

πLens

πLoss|D

πLens|D

|D

This motivates the following definitions of inference system and loss model, although, for the sake of our
examples, we will explicitly allow the loss-assignment to be lax. Before giving these new definitions, we
recall the notion of essential image of a functor.
Definition 3.6 ([11]). Suppose F : C Ñ D is an n-functor (a possibly weak homomorphism of weak
n-categories). The image of F is the smallest sub-n-category of D that contains Fpαq for all k-cells α in
C , along with any pk`1q-cells relating images of composites and composites of images, for all 0ď kď n.
We say that a sub-n-category D is replete if, for any k-cells α in D and β in C (with 0ď k ă n) such that
f : α ñ β is a pk`1q-isomorphism in C , then f is also a pk`1q-isomorphism in D . The essential image
of F , denoted impFq, is then the smallest replete sub-n-category of D containing the image of F .
Definition 3.7. Suppose pC ,b, Iq is a copy-delete category. An inference system in C is a pair pD , `q
of a subcategory D ãÑ C along with a section ` : impιq Ñ BayesLens2|D of πLens|D , where impιq is the
essential image of the canonical lax inclusion ι : D ãÑ Coparal

2pDq.
Definition 3.8. Suppose pC ,b, Iq has bilinear effects and B is a subbicategory of BayesLens2. A loss
model for B is a lax section L of the restriction πLoss|B of πLoss to B. We say that L is a strict loss model
if it is in fact a strict 2-functor, and a strong loss model if it is in fact a pseudofunctor.
Remark 3.9. We may often be interested in loss models for which B is in fact the essential image of an
inference system, but we do not stipulate this requirement in the definition as it is not necessary for the
following development.

288 Statistical Games

Since lax functors themselves collect into categories, and using the monoidality of `, we have the
following easy proposition that will prove useful below.

Proposition 3.10. Loss models for B constitute the objects of a symmetric monoidal category
`

LosspBq,`,0
˘

. The morphisms of LosspBq are icons (identity component oplax transformations
[6, §4.6]) between the corresponding lax functors, and they compose accordingly. The monoidal structure
is given by sums of losses.

3.3 Examples

Each of our examples involves taking expectations of log-densities, and so to make sense of them it first
helps to understand what we mean by “taking expectations”.

Notation 3.11 (Expectations). Written as a function, a density p on X has the type X ÑR`; written as an
effect, the type is XÑ‚ I. Given a measure or distribution π on X (equivalently, a state π : IÑ‚ X), we can
compute the expectation of p under π as the composite p‚π . We write the resulting quantity as Eπ rps, or
more explicitly as Ex„π

“

ppxq
‰

. We can think of this expectation as representing the ‘validity’ (or truth
value) of the ‘predicate’ p given the state π [12].

3.3.1 Relative entropy and Bayesian inference

For our first example, we return to the subject with which we opened this paper: the compositional
structure of the relative entropy. We begin by giving a precise definition.

Definition 3.12. Suppose α,β are both measures on X , with α absolutely continuous with respect to
β . Then the relative entropy or Kullback-Leibler divergence from α to β is the quantity DKLpα,β q :“
Eα

”

log α

β

ı

, where α

β
is the Radon-Nikodym derivative of α with respect to β .

Remark 3.13. When α and β admit density functions pα and pβ with respect to the same base measure
dx, then DKLpα,β q can equally be computed as Ex„α

“

log pαpxq´ log pβ pxq
‰

. It it this form that we will
adopt henceforth.

Proposition 3.14. Let B be a subbicategory of simple lenses in BayesLens2, all of whose channels
admit density functions with respect to a common measure and whose forward channels admit Bayesian
inversion (and whose forward and backward coparameters coincide), and with only structural 2-cells. Then
the relative entropy defines a strict loss model KL : BÑ SGame. Given a lens pc,c1q : pX ,Xq ÞÑ pY,Y q,
KL assigns the loss function KLpc,c1q : Y X

ÝÑ‚ I defined, for π : IÑ‚ X and y : Y , by the relative entropy
KLpc,c1qπpyq :“ DKL

`

c1πpyq,c
:
πpyq

˘

, where c: is the exact inversion of c.

Successfully playing a relative entropy game entails minimizing the divergence from the approximate
to the exact posterior. This divergence is minimized when the two coincide, and so KL represents a form
of approximate Bayesian inference.

3.3.2 Maximum likelihood estimation

A statistical system may be more interested in predicting observations than updating beliefs. This is
captured by the process of maximum likelihood estimation.

Definition 3.15. Let pc,c1q : pX ,Xq ÞÑ pY,Y q be a simple lens whose forward channel c admits a density
function pc. Then its log-likelihood is the loss function defined by MLEpc,c1qπpyq :“´ log pc ‚πpyq.

T. St Clere Smithe 289

Proposition 3.16. Let B be a subbicategory of lenses in BayesLens2 all of which admit density functions
with respect to a common measure, and with only structural 2-cells. Then the assignment pc,c1q ÞÑ
MLEpc,c1q defines a lax loss model MLE : BÑ SGame.

Successfully playing a maximum likelihood game involves maximizing the log-likelihood that the
system assigns to its observations y : Y . This process amounts to choosing a channel c that assigns high
likelihood to likely observations, and thus encodes a valid model of the data distribution.

3.3.3 Autoencoders via the free energy

Many adaptive systems neither just infer nor just predict: they do both, building a model of their
observations that they also invert to update their beliefs. In machine learning, such systems are known
as autoencoders, as they ‘encode’ (infer) and ‘decode’ (predict), ‘autoassociatively’ [13]. In a Bayesian
context, they are known as variational autoencoders [14], and their loss function is the free energy [15].

Definition 3.17. The free energy loss model is the sum of the relative entropy and the likelihood loss
models: FE :“ KL`MLE. Given a simple lens pc,c1q : pX ,Xq ÞÑ pY,Y q admitting Bayesian inversion and
with densities, FE assigns the loss function

FEpc,c1qπpyq “ pKL`MLEqpc,c1qπpyq

“ DKL
`

c1πpyq,c
:
πpyq

˘

´ log pc ‚πpyq

Remark 3.18. Beyond its autoencoding impetus, another important property of the free energy is its
improved computational tractability compared to either the relative entropy or the likelihood loss. This
property is a consequence of the following fact: although obtained as the sum of terms which both depend
on an expensive marginalization4, the free energy itself does not. This can be seen by expanding the
definitions of the relative entropy and of c:π and rearranging terms:

FEpc,c1qπpyq “ DKL
`

c1πpyq,c
:
πpyq

˘

´ log pc ‚πpyq

“ E
px,mq„c1πpyq

“

log pc1π px,m|yq´ log pc:π
px,m|yq

‰

´ log pc ‚πpyq

“ E
px,mq„c1πpyq

“

log pc1π px,m|yq´ log pc:π
px,m|yq´ log pc ‚πpyq

‰

“ E
px,mq„c1πpyq

“

log pc1π px,m|yq´ log
pcpm,y|xqpπpxq

pc ‚πpyq
´ log pc ‚πpyq

‰

“ E
px,mq„c1πpyq

“

log pc1π px,m|yq´ log pcpm,y|xq´ log pπpxq
‰

“ DKL
`

c1πpyq,πb1
˘

´ E
px,mq„c1πpyq

“

log pcpm,y|xq
‰

Here, 1 denotes the measure with density 1 everywhere. Note that when the coparameter is trivial,
FEpc,c1qπpyq reduces to

DKL
`

c1πpyq,π
˘

´ E
x„c1πpyq

“

log pcpy|xq
‰

.

Remark 3.19. The name free energy is due to an analogy with the Helmholtz free energy in
thermodynamics, as we can write it as the difference between an (expected) energy and an entropy

4Evaluating the pushforward c ‚π involves marginalizing over the intermediate variable; and evaluating c:
πpyq also involves

evaluating c ‚π .

290 Statistical Games

term:

FEpc,c1qπpyq “ E
px,mq„c1πpyq

“

´ log pcpm,y|xq´ log pπpxq
‰

´SXbM
“

c1πpyq
‰

“ E
px,mq„c1πpyq

“

Epc,πqpx,m,yq
‰

´SXbM
“

c1πpyq
‰

“U´T S

where we call Epc,πq : XbMbY X
ÝÑ‚ I the energy, and where SXbM : I XbM

ÝÝÝÑ‚ I is the Shannon entropy. The
last equality makes the thermodynamic analogy: U here is the internal energy of the system; T “ 1 is the
temperature; and S is again the entropy.

3.3.4 The Laplace approximation

Although optimizing the free energy does not necessitate access to exact inversions, it is still necessary to
compute an expectation under the approximate inversion, and unless one chooses wisely5, this might also
be difficult. One such wise choice established in the computational neuroscience literature is the Laplace
approximation [17], in which one assumes Gaussian channels and posteriors with small variance. Under
these conditions, the expectations can be approximated away.

Definition 3.20. We will say that a channel c is Gaussian if cpxq is a Gaussian measure for every x in its
domain. We will denote the mean and variance of cpxq by µcpxq and Σcpxq respectively.

Proposition 3.21 (Laplace approximation). Let the ambient category of channels C be restricted to
that generated by Gaussian channels between finite-dimensional Cartesian spaces, and let B denote the
corresponding restriction of BayesLens2. Suppose pγ,ρq : pX ,Xq ÞÑ pY,Y q is such a lens, for which,
for all y : Y and Gaussian priors π : IÑ‚ X , the eigenvalues of Σρπ

pyq are small. Then the free energy
FEpγ,ρqπpyq can be approximated by the Laplacian free energy

FEpγ,ρqπpyq « LFEpγ,ρqπpyq (1)

:“ Epγ,πq
`

µρπ
pyq,y

˘

´SXbM
“

ρπpyq
‰

(2)

“´ log pγpµρπ
pyq,yq´ log pπpµρπ

pyq|Xq´SXbM
“

ρπpyq
‰

where we have written the argument of the density pγ in ‘function’ style; where p´qX denotes the
projection onto X ; and where SXbMrρπpyqs “ Epx,mq„ρπpyqr´ log pρπ

px,m|yqs is the Shannon entropy of
ρπpyq. The approximation is valid when Σρπ

satisfies

Σρπ
pyq “

´

B2
px,mqEpγ,πq

¯

`

µρπ
pyq,y

˘´1
. (3)

We call Epγ,πq the Laplacian energy.

Remark 3.22. The usual form of the Laplace model in the literature omits the coparameters. It is of
course easy to recover the non-coparameterized form by taking M “ 1.

Proposition 3.23. Let B be a subbicategory of BayesLens2 of Gaussian lenses whose backward channels
have small variance. Then LFE defines a lax loss model BÑ SGame.

Effectively, this proposition says that, under the stated conditions, the free energy and the Laplacian
free energy coincide. Consequently, successfully playing a Laplacian free energy game has the same
autoencoding effect.

5In machine learning, optimizing variational autoencoders using stochastic gradient descent typically involves a
“reparameterization trick” [16, §2.5].

T. St Clere Smithe 291

4 Future work

This paper only scratches the surface of the structure of statistical games. One avenue for further
investigation is the link between this structure and the similar structure of diegetic open (economic) games
[18], a recent reformulation of compositional game theory [19]. Notably, the composition rule for loss
functions appears closely related to the Bellman equation, suggesting that algorithms for approximate
inference (such as expectation-maximization) and reinforcement learning (such as backward induction)
are more than superficially similar.

Another avenue for further investigation concerns mathematical neatness. First, we seek an abstract
characterization of copy-composition and Copara2; it has been suggested to us6 that the computation by
compilers of “static single-assignment form” [20] by compilers may have a similar structure. Second,
the explicit constraint defining simple coparameterized Bayesian lenses is inelegant; we expect that
using dependent optics [21–23] may help to encode this constraint in the type signature, at the cost of
higher-powered mathematical machinery. Finally, we seek further examples of loss models, and more
abstract (and hopefully universal) characterizations of those we already have; for example, it is known
that the Shannon entropy has a topological origin [24] via a “nonlinear derivation” [25], and we expect
that we can follow this connection further.

5 References

[1] Toby St Clere Smithe. “Cyber Kittens, or Some First Steps Towards Categorical Cybernetics”. In:
Electronic Proceedings in Theoretical Computer Science. Applied Category Theory 2020. Vol. 333.
02/08/2021, pp. 108–124. DOI: 10.4204/EPTCS.333.8. (Visited on 09/29/2023).

[2] Toby St Clere Smithe. Bayesian Updates Compose Optically. 05/31/2020. arXiv: 2006.01631
[math.CT]. preprint.

[3] Kenta Cho and Bart Jacobs. “Disintegration and Bayesian Inversion via String Diagrams”. In: Math.
Struct. Comp. Sci. 29 (2019) 938-971 (08/29/2017). DOI: 10.1017/S0960129518000488.

[4] Matteo Capucci et al. “Towards Foundations of Categorical Cybernetics”. In: Electronic Proceed-
ings in Theoretical Computer Science. Applied Category Theory 2021. Vol. 372. 11/03/2022,
pp. 235–248. DOI: 10.4204/EPTCS.372.17. (Visited on 09/29/2023).

[5] Igor Baković. “Fibrations of Bicategories”. In: (2010). URL: https://www2.irb.hr/korisnici/
ibakovic/groth2fib.pdf.

[6] Niles Johnson and Donald Yau. 2-Dimensional Categories. 06/17/2020. arXiv: 2002.06055
[math]. URL: http://arxiv.org/abs/2002.06055 (visited on 11/03/2022). preprint.

[7] Joe Moeller and Christina Vasilakopoulou. “Monoidal Grothendieck Construction”. In: Theory and
Applications of Categories 35.31 (2020), pp. 1159–1207. arXiv: 1809.00727v2 [math.CT].

6This suggestion is due to Owen Lynch.

https://doi.org/10.4204/EPTCS.333.8
https://arxiv.org/abs/2006.01631
https://arxiv.org/abs/2006.01631
https://doi.org/10.1017/S0960129518000488
https://doi.org/10.4204/EPTCS.372.17
https://www2.irb.hr/korisnici/ibakovic/groth2fib.pdf
https://www2.irb.hr/korisnici/ibakovic/groth2fib.pdf
https://arxiv.org/abs/2002.06055
https://arxiv.org/abs/2002.06055
http://arxiv.org/abs/2002.06055
https://arxiv.org/abs/1809.00727v2

292 Statistical Games

[8] David I. Spivak. Generalized Lens Categories via Functors C Op � Cat. 08/06/2019. arXiv:
1908.02202 [math.CT]. preprint.

[9] Bart Jacobs and Bram Westerbaan. “An Effect-Theoretic Account of Lebesgue Integration”. In:
Electronic Notes in Theoretical Computer Science 319 (12/2015), pp. 239–253. DOI: 10.1016/j.
entcs.2015.12.015.

[10] Matthijs Vákár and Luke Ong. On S-Finite Measures and Kernels. 10/03/2018. arXiv: 1810.01837
[math.PR]. preprint.

[11] nLab authors. Essential Image. 05/2023. URL: https://ncatlab.org/nlab/show/essential+
image.

[12] Bart Jacobs and Fabio Zanasi. “The Logical Essentials of Bayesian Reasoning”. In: Foundations
of Probabilistic Programming. Ed. by Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva.
1st ed. Cambridge University Press, 12/03/2020, pp. 295–332. ISBN: 978-1-108-77075-0 978-1-
108-48851-8. DOI: 10.1017/9781108770750.010. (Visited on 09/29/2023).

[13] Mark A. Kramer. “Nonlinear Principal Component Analysis Using Autoassociative Neural
Networks”. In: AIChE Journal 37.2 (02/1991), pp. 233–243. ISSN: 0001-1541, 1547-5905. DOI:
10.1002/aic.690370209. (Visited on 05/02/2023).

[14] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 12/20/2013. arXiv:
1312.6114 [stat.ML]. preprint.

[15] Peter Dayan et al. “The Helmholtz Machine”. In: Neural Computation 7.5 (09/1995), pp. 889–904.
DOI: 10.1162/neco.1995.7.5.889. URL: http://dx.doi.org/10.1162/neco.1995.7.5.
889.

[16] Diederik P. Kingma. “Variational Inference & Deep Learning. A New Synthesis”. PhD thesis.
University of Amsterdam, 2017. URL: https://hdl.handle.net/11245.1/8e55e07f-e4be-
458f-a929-2f9bc2d169e8.

[17] K. Friston et al. “Variational Free Energy and the Laplace Approximation”. In: Neuroimage 34.1
(01/2007), pp. 220–234. DOI: 10.1016/j.neuroimage.2006.08.035. pmid: 17055746.

[18] Matteo Capucci. “Diegetic Representation of Feedback in Open Games”. In: Electronic Proceedings
in Theoretical Computer Science. Applied Category Theory 2022. Vol. 380. 08/07/2023, pp. 145–
158. DOI: 10.4204/EPTCS.380.9. (Visited on 09/29/2023).

[19] Neil Ghani et al. “Compositional Game Theory”. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. LICS ’18: 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science. Oxford United Kingdom: ACM, 07/09/2018, pp. 472–481. ISBN:
978-1-4503-5583-4. DOI: 10.1145/3209108.3209165. (Visited on 09/29/2023).

https://arxiv.org/abs/1908.02202
https://doi.org/10.1016/j.entcs.2015.12.015
https://doi.org/10.1016/j.entcs.2015.12.015
https://arxiv.org/abs/1810.01837
https://arxiv.org/abs/1810.01837
https://ncatlab.org/nlab/show/essential+image
https://ncatlab.org/nlab/show/essential+image
https://doi.org/10.1017/9781108770750.010
https://doi.org/10.1002/aic.690370209
https://arxiv.org/abs/1312.6114
https://doi.org/10.1162/neco.1995.7.5.889
http://dx.doi.org/10.1162/neco.1995.7.5.889
http://dx.doi.org/10.1162/neco.1995.7.5.889
https://hdl.handle.net/11245.1/8e55e07f-e4be-458f-a929-2f9bc2d169e8
https://hdl.handle.net/11245.1/8e55e07f-e4be-458f-a929-2f9bc2d169e8
https://doi.org/10.1016/j.neuroimage.2006.08.035
17055746
https://doi.org/10.4204/EPTCS.380.9
https://doi.org/10.1145/3209108.3209165

T. St Clere Smithe 293

[20] Richard A. Kelsey. “A Correspondence between Continuation Passing Style and Static Single
Assignment Form”. In: Papers from the 1995 ACM SIGPLAN Workshop on Intermediate
Representations. POPL95: 22nd ACM Symposium on Principles of Programming Languages.
San Francisco California USA: ACM, 03/1995, pp. 13–22. ISBN: 978-0-89791-754-4. DOI: 10.
1145/202529.202532. (Visited on 05/02/2023).

[21] Dylan Braithwaite et al. Fibre Optics. 12/21/2021. arXiv: 2112.11145 [math.CT]. preprint.

[22] Pietro Vertechi. “Dependent Optics”. In: Electronic Proceedings in Theoretical Computer Science.
Applied Category Theory 2022. Vol. 380. 08/07/2023, pp. 128–144. DOI: 10.4204/EPTCS.380.8.
(Visited on 09/29/2023).

[23] Matteo Capucci. Seeing Double through Dependent Optics. 04/22/2022. arXiv: 2204.10708
[math.CT]. preprint.

[24] Tai-Danae Bradley. “Entropy as a Topological Operad Derivation”. In: Entropy 23.9 (09/09/2021),
p. 1195. ISSN: 1099-4300. DOI: 10.3390/e23091195. URL: https://www.mdpi.com/1099-
4300/23/9/1195 (visited on 05/02/2023).

[25] Tom Leinster. Entropy and Diversity: The Axiomatic Approach. 1st ed. Cambridge University Press,
04/30/2021. ISBN: 978-1-108-96355-8 978-1-108-83270-0 978-1-108-96557-6. DOI: 10.1017/
9781108963558. (Visited on 09/29/2023).

A State-dependent channels

In this section, we review the indexed category Stat : C op Ñ Cat of state-dependent channels in C , from
which Bayesian lenses are obtained. We can think of Stat as a decategorified, non-coparameterized,
version of Stat2, in which the hom-sets StatpXqpA,Bq of each fibre are given by Set

`

C pI,Xq,C pA,Bq
˘

.
Reindexing is again by pre-composition, although simplified as there are now no coparameters to discard.

Definition A.1. Let pC ,b, Iq be a monoidal category. Define the C -state-indexed category Stat : C op Ñ

Cat as follows.

Stat : C op Ñ Cat

X ÞÑ StatpXq :“

¨

˚

˚

˝

StatpXq0 :“ C0
StatpXqpA,Bq :“ Set

`

C pI,Xq,C pA,Bq
˘

idA : StatpXqpA,Aq :“
"

idA : C pI,Xq Ñ C pA,Aq
ρ ÞÑ idA

˛

‹

‹

‚

(4)

f : C pY,Xq ÞÑ

¨

˚

˚

˚

˚

˝

Statp f q : StatpXq Ñ StatpY q

StatpXq0 “ StatpY q0

SetpC pI,Xq,C pA,Bqq Ñ Set
`

C pI,Y q,C pA,Bq
˘

α ÞÑ f ˚α :
`

σ : C pI,Y q
˘

ÞÑ
`

αp f ‚σq : C pA,Bq
˘

˛

‹

‹

‹

‹

‚

Composition in each fibre StatpXq is as in C . Explicitly, indicating morphisms C pI,Xq Ñ C pA,Bq in

https://doi.org/10.1145/202529.202532
https://doi.org/10.1145/202529.202532
https://arxiv.org/abs/2112.11145
https://doi.org/10.4204/EPTCS.380.8
https://arxiv.org/abs/2204.10708
https://arxiv.org/abs/2204.10708
https://doi.org/10.3390/e23091195
https://www.mdpi.com/1099-4300/23/9/1195
https://www.mdpi.com/1099-4300/23/9/1195
https://doi.org/10.1017/9781108963558
https://doi.org/10.1017/9781108963558

294 Statistical Games

StatpXq by A X
ÝÑ‚ B, and given α : A X

ÝÑ‚ B and β : B X
ÝÑ‚ C, their composite is β ˝α : A X

ÝÑ‚ C :“ ρ ÞÑ β pρq‚αpρq,
where here we indicate composition in C by ‚ and composition in the fibres StatpXq by ˝. Given f : YÑ‚ X
in C , the induced functor Statp f q : StatpXq Ñ StatpY q acts by pre-composition.

The category of non-coparameterized Bayesian lenses is then obtained as the (1-categorical)
Grothendieck construction of the pointwise opposite of Stat, following Spivak [8].

B Monoidal statistical games

In this section, we exhibit the monoidal structures on copy-composite Bayesian lenses, statistical games,
and loss models, as well as demonstrating that each of our loss models is accordingly monoidal. We begin
by expressing the monoidal structure on Copara2pC q.

Proposition B.1. If the monoidal structure on C is symmetric, then Copara2pC q inherits a monoidal
structure pb, Iq, with the same unit object I as in C . On 1-cells f : AÝÑ

M
B and f 1 : A1 ÝÑ

M1
B1, the tensor

f b f 1 : AbA1 ÝÝÝÝÑ
MbM1

BbB1 is defined by

f
A

f 1
A1

M

M1

B

B1

.

On 2-cells ϕ : f ñ g and ϕ 1 : f 1ñ g1, the tensor ϕbϕ 1 : p f b f 1qñ pgbg1q is given by the string diagram

ϕ

ϕ 1

A

A1

M

M1

B

B1
N1

N

.

Next, we define the notion of monoidal indexed bicategory.

Definition B.2. Suppose pB,b, Iq is a monoidal bicategory. We will say that F : B coop Ñ Bicat is
a monoidal indexed bicategory when it is equipped with the structure of a weak monoid object in the
3-category of indexed bicategories, indexed pseudofunctors, indexed pseudonatural transformations, and
indexed modifications.

More explicitly, we will take F to be a monoidal indexed bicategory when it is equipped with

(i) an indexed pseudofunctor µ : Fp´qˆFp“qÑ Fp´b “q called the multiplication, i.e.,

(a) a family of pseudofunctors µX ,Y : FXˆFY Ñ FpXbY q, along with
(b) for any 1-cells f : X Ñ X 1 and g : Y Ñ Y 1 in B, a pseudonatural isomorphism µ f ,g : µX 1,Y 1 ˝

pF f ˆFgq ñ Fp f bgq ˝µX ,Y ;

(ii) a pseudofunctor η : 1Ñ FI called the unit;

T. St Clere Smithe 295

as well as three indexed pseudonatural isomorphisms — an associator, a left unitor, and a right unitor —
which satisfy weak analogues of the coherence conditions for a monoidal indexed category [7, §3.2], up
to invertible indexed modifications.

Using this notion, we can establish that Stat2 is monoidal. (So as to demonstrate the structure, we do
not omit the proof sketch.)

Theorem B.3. Stat2 is a monoidal indexed bicategory.

Proof sketch. The multiplication µ is given first by the family of pseudofunctors µX ,Y : Stat2pXq ˆ
Stat2pY q Ñ Stat2pXbY q which are defined on objects simply by tensor

µX ,Y pA,Bq “ AbB

since the objects do not vary between the fibres of Stat2, and on hom categories by the functors

Stat2pXqpA,BqˆStat2pY qpA1,B1q

“ Cat
`

discC pI,Xq,Coparar
2pC qpA,Bq

˘

ˆCat
`

discC pI,Y q,Coparar
2pC qpA

1,B1q
˘

– Cat
`

discC pI,XqˆdiscC pI,Y q,Coparar
2pC qpA,BqˆCoparar

2pC qpA
1,B1q

˘

CatpdiscC pI,projX qˆdiscC pI,projY q,bq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Cat

`

discC pI,XbY q2,Coparar
2pC qpAbA1,BbB1q

˘

Catp ,idq
ÝÝÝÝÝÝÑ CatpdiscC pI,XbY q,Coparar

2pCqpAbA1,BbB1q

“ Stat2pXbY qpAbA1,BbB1q .

where Catp , idq indicates pre-composition with the universal (Cartesian) copying functor. For all
f : X Ñ X 1 and g : Y Ñ Y 1 in Coparal

2pC q, the pseudonatural isomorphisms

µ f ,g : µX 1,Y 1 ˝
`

Stat2p f qˆStat2pgq
˘

ñ Stat2p f bgq ˝µX ,Y

are obtained from the universal property of the product ˆ of categories. The unit η : 1Ñ Stat2pIq is the
pseudofunctor mapping the unique object of 1 to the monoidal unit I. Associativity and unitality of this
monoidal structure follow from the functoriality of the construction, given the monoidal structures on C
and Cat.

Just as the monoidal Grothendieck construction induces a monoidal structure on categories of lenses
for monoidal pseudofunctors [7], we obtain a monoidal structure on the bicategory of copy-composite
bayesian lenses.

Corollary B.4. The bicategory of copy-composite Bayesian lenses BayesLens2 is a monoidal bicategory.
The monoidal unit is the object pI, Iq. The tensorb is given on 0-cells by pX ,AqbpX 1,A1q :“ pXbX 1,Ab
A1q, and on hom-categories by

BayesLens2
`

pX ,Aq,pY,Bq
˘

ˆBayesLens2
`

pX ,Aq,pY,Bq
˘

“ Coparal
2pC qpX ,Y qˆStat2pXqpB,AqˆCoparal

2pC qpX
1,Y 1qˆStat2pX 1qpB1,A1q

„
ÝÑ Coparal

2pC qpX ,Y qˆCoparal
2pC qpX

1,Y 1qˆStat2pXqpB,AqˆStat2pX 1qpB1,A1q
bˆµ

op
X ,X1

ÝÝÝÝÝÑ Coparal
2pC qpXbX 1,Y bY 1qˆStat2pXbX 1qpBbB1,AbA1q

“ BayesLens2
`

pX ,AqbpX 1,A1q,pY,BqbpY 1,B1q
˘

.

296 Statistical Games

And similarly, we obtain a monoidal structure on statistical games.

Proposition B.5. The bicategory of copy-composite statistical games SGame is a monoidal bicategory.
The monoidal unit is the object pI, Iq. The tensor b is given on 0-cells as for the tensor of Bayesian lenses,
and on hom-categories by

SGame
`

pX ,Aq,pY,Bq
˘

ˆSGame
`

pX 1,A1q,pY 1,B1q
˘

“ BayesLens2
`

pX ,Aq,pY,Bq
˘

ˆStatpXqpB, Iq

ˆBayesLens2
`

pX 1,A1q,pY 1,B1q
˘

ˆStatpX 1qpB1, Iq
„
ÝÑ BayesLens2

`

pX ,Aq,pY,Bq
˘

ˆBayesLens2
`

pX 1,A1q,pY 1,B1q
˘

ˆStatpXqpB, IqˆStatpX 1qpB1, Iq
bˆµX ,X1
ÝÝÝÝÝÑ BayesLens2

`

pX ,AqbpX 1,A1q,pY,BqbpY 1,B1q
˘

ˆStatpXbX 1qpBbB1, Ib Iq
„
ÝÑ SGame

`

pX ,AqbpX 1,A1q,pY,BqbpY 1,B1q
˘

where here µ indicates the multiplication of the monoidal structure on Stat [Smithe2022Mathematical].

We give natural definitions of monoidal inference system and monoidal loss model, which we elaborate
below.

Definition B.6. A (lax) monoidal inference system is an inference system pD , `q for which ` is a lax
monoidal pseudofunctor. A (lax) monoidal loss model is a loss model L which is a lax monoidal lax
functor.

Remark B.7. We say ‘lax’ whenever a morphism (of any structure) only weakly preserves a monoidal
operation such as composition of any order; this includes as a special case lax monoidal functors (since a
monoidal category is a one-object bicategory). In this respect, we differ from [7, §2.2], who use ‘weak’ in
the latter case; we prefer to maintain consistency. Following [6, Def. 4.2.1], we will continue to say lax
when the witness to laxness maps composites of images to images of composites (and oplax when the
witness maps images of composites to composites of images).

These conventions mean that a loss model L : BÑ SGame is lax monoidal when it is equipped with
strong transformations

BˆB SGameˆSGame

B SGame

bB bG

LˆL

L

λ and
1

B SGame

pI,Iq

pI,Iq

L

λ0

where bB and bG denote the monoidal products on B ãÑ BayesLens2 and SGame respectively, and
when λ and λ0 are themselves equipped with invertible modifications satisfying coherence axioms, as in
Moeller and Vasilakopoulou [7, §2.2].

Note that, because L must be a (lax) section of the 2-fibration πLoss|B : SGame|B ÑB, the unitor
λ0 is forced to be trivial, picking out the identity on the monoidal unit pI, Iq. Likewise, the laxator
λ : Lp´qbLp“qñ Lp´b“q must have 1-cell components which are identities:

LpX ,AqbLpX 1,Aq “ pX ,AqbpX 1,A1q “ pXbX 1,AbA1q “ L
`

pX ,AqbLpX 1,Aq
˘

The interesting structure is therefore entirely in the 2-cells. We follow the convention of [6, Def.
4.2.1] that a strong transformation is a lax transformation with invertible 2-cell components. Supposing

T. St Clere Smithe 297

that pc,c1q : pX ,Aq ÞÑ pY,Bq and pd,d1q : pX 1,A1q ÞÑ pY 1,B1q are 1-cells in B, the corresponding 2-cell
component of λ has the form λc,d : L

`

pc,c1qbpd,d1q
˘

ñ Lpc,c1qbLpd,d1q, hence filling the following
square in SGame:

pX ,AqbpX 1,A1q pY,BqbpY 1,B1q

pX ,AqbpX 1,A1q pY,BqbpY 1,B1q

Lpc,c1qbLpd,d1q

Lppc,c1qbpd,d1qq

λc,d

Intuitively, these 2-cells witness the failure of the tensor Lpc,c1qbLpd,d1q of the parts to account for
correlations that may be evident to the “whole system” L

`

pc,c1qbpd,d1q
˘

.

Just as we have monoidal lax functors, we can have monoidal lax transformations; again, see [7, §2.2].

Proposition B.8. Monoidal loss models and monoidal icons form a subcategory MonLosspBq of LosspBq,
and the symmetric monoidal structure p`,0q on the latter restricts to the former.

B.1 Examples

In this section, we present the monoidal structure on the loss models considered above. Because loss
models L are (lax) sections, following Remark B.7, this monoidal structure is given in each case by
a lax natural family of 2-cells λc,d : L

`

pc,c1q b pd,d1q
˘

ñ Lpc,c1q b Lpd,d1q, for each pair of lenses
pc,c1q : pX ,Aq ÞÑ pY,Bq and pd,d1q : pX 1,A1q ÞÑ pY 1,B1q. Such a 2-cell λc,d is itself given by a loss function

of type BbB1 XbX 1
ÝÝÝÑ‚ I satisfying the equation L

`

pc,c1qbpd,d1q
˘

“ Lpc,c1qbLpd,d1q`λc,d . Following [6,
Eq. 4.2.3], lax naturality requires that λ satisfy the following equation of 2-cells, where K denotes the
laxator (with respect to horizontal composition ˛) with components Kpe,cq : Le˛Lcñ Lpe˝| cq:

pY,BqbpY 1,B1q

pX ,AqbpX 1,A1q pZ,CqbpZ1,C1q

Lpcbdq Lpeb f q

L
´

pe˝|cqbp f˝|dq
¯

Lpe˝|cqbLp f˝|dq

Kpeb f ,cbdq

λpe˝|c, f˝|dq

“

pY,BqbpY 1,B1q

pX ,AqbpX 1,A1q pY,BqbpY 1,B1q pZ,CqbpZ1,C1q

Lpcbdq Lpeb f q

Lpe˝|cqbLp f˝|dq

LcbLd LebL f

λpc,dq λpe, f q

Kpe,cqbKp f ,dq

298 Statistical Games

Since vertical composition in SGame is given on losses by `, we can write this equation as

λ pe˝| c, f ˝| dq`Kpeb f ,cbdq

“ λ pe, f q ˛λ pc,dq`Kpe,cqbKp f ,dq

“ λ pe, f qcbd`λ pc,dq ˝ pe1b f 1qcbd`Kpe,cqbKp f ,dq . (5)

In each of the examples below, therefore, we establish the definition of the laxator λ and check that it
satisfies equation 5.

We will often use the notation p´qX to denote projection onto a factor X of a monoidal product.

B.1.1 Relative entropy

Proposition B.9. The loss model KL of Proposition 3.14 is lax monoidal. Supposing that pc,c1q : pX ,Xq ÞÑ
pY,Y q and pd,d1q : pX 1,X 1q ÞÑ pY 1,Y 1q are lenses in B, the corresponding component λKLpc,dq of the
laxator is given, for ω : IÑ‚ XbX 1 and py,y1q : Y bY 1, by

λ
KLpc,dqωpy,y1q :“ E

px,x1,m,m1q„
pc1ωX

bd1ωX1
qpy,y1q

„

log
pωXbωX1

px,x1q
pωpx,x1q



` log
ppcbdq ‚ωpy,y1q

ppcbdq ‚pωXbωX1 q
py,y1q

.

B.1.2 Maximum likelihood estimation

Proposition B.10. The loss model MLE of Proposition 3.16 is lax monoidal. Supposing that pc,c1q :
pX ,Xq ÞÑ pY,Y q and pd,d1q : pX 1,X 1q ÞÑ pY 1,Y 1q are lenses in B, the corresponding component λMLEpc,dq
of the laxator is given, for ω : IÑ‚ XbX 1 and py,y1q : Y bY 1, by

λ
MLEpc,dqωpy,y1q :“ log

ppcbdq ‚pωXbωX1 q
py,y1q

ppcbdq ‚ωpy,y1q
.

B.1.3 Free energy

Corollary B.11. The loss model FE of Definition 3.17 is lax monoidal. Supposing that pc,c1q : pX ,Xq ÞÑ
pY,Y q and pd,d1q : pX 1,X 1q ÞÑ pY 1,Y 1q are lenses in B, the corresponding component λFEpc,dq of the
laxator is given, for ω : IÑ‚ XbX 1 and py,y1q : Y bY 1, by

λ
FEpc,dqωpy,y1q :“ E

px,x1q„pc1ωX
bd1ωX1

qpy,y1q

„

log
pωXbωX1

px,x1q
pωpx,x1q



.

B.1.4 Laplacian free energy

Proposition B.12. The loss model LFE of Propositions 3.21 and 3.23 is lax monoidal. Supposing that
pc,c1q : pX ,Xq ÞÑ pY,Y q and pd,d1q : pX 1,X 1q ÞÑ pY 1,Y 1q are lenses in B, the corresponding component
λLFEpc,dq of the laxator is given, for ω : IÑ‚ XbX 1 and py,y1q : Y bY 1, by

λ
LFEpc,dqωpy,y1q :“ log

pωXbωX1
pµpcbdq1ω py,y

1qXX 1q

pωpµpcbdq1ω py,y
1qXX 1q

where µpcbdq1ω py,y
1qXX 1 is the pXbX 1q-mean of the Gaussian distribution pc1ωX

bd1ωX1
qpy,y1q.

S. Staton, C. Vasilakopoulou (Eds.):

Applied Category Theory 2023 (ACT2023)

EPTCS 397, 2023, pp. 299–317, doi:10.4204/EPTCS.397.18

© Nathaniel Virgo

This work is licensed under the

Creative Commons Attribution License.

Unifilar Machines and the Adjoint Structure of Bayesian

Filtering

Nathaniel Virgo

Earth-Life Science Institute (ELSI), Tokyo Instutute of Technology

nathanielvirgo+science@gmail.com

We elucidate the mathematical structure of Bayesian filtering, and Bayesian inference more broadly,

by applying recent work on category theoretical probability, specifically the concept of a strongly

representable Markov category. We show that filtering, along with related concepts such as conjugate

priors, arise from an adjunction: the process of taking a hidden Markov process is right adjoint to a

forgetful functor. This has an interesting consequence. In practice, filtering is usually implemented

using parametrised families of distributions. The Kalman filter is a particularly important example,

which uses Gaussians. Rather than calculating a new posterior each time, the implementation only

needs to udpate the parameters. This structure arises naturally from our adjunction; the correctness

of such a model is witnessed by a map from the model into the system being modelled. Conjugate

priors arise from this construction as a special case.

In showing this we define a notion of unifilar machine, which has its origins in the literature

on ǫ-machines. Unifilar machines are useful as models of the ‘observable behaviour’ of stochastic

systems; we show additionally that in the Kleisli category of the distribution monad there is a terminal

unifilar machine, and its elements are controlled stochastic processes, mapping sequences of the input

alphabet probabilistically to sequences of the output alphabet.

1 Introduction

This paper is concerned with the mathematical structure of Bayesian filtering, which is a common prob-

lem in applications of Bayesian inference. The idea is that there is some system with known dynamics

(which in general are stochastic) but an unknown hidden state. The goal is to keep track of a Bayesian

prior over the states of the system, updating it to a posterior whenever a new observation is made. This

is useful if we want to be able to control the hidden state, as in solving a partially observable Markov

decision process (POMDP), for example.

To reveal the underlying mathematical structure we make use of recent results in synthetic probabil-

ity, which allows us to write proofs at the category theoretic level without using measure theory directly.

We work in the framework of Markov categories [8], and in particular we make use of the concept of

strongly representable Markov category as defined in [10]. Strongly representable Markov categories in-

clude BorelStoch (whose objects are standard Borel spaces and whose morphisms are Markov kernels)

and the Kleisli category of the (real-valued) distribution monad, which we refer to as Dist. Therefore

most of our results apply to both measure-theoretic probability and finitely supported probability.

We model a system with a hidden state as a certain kind of stochastic Moore machine (essentially a

hidden Markov model); we refer to this informally as a dynamical model of the system. There is then a

functor B that takes such a dynamical model and maps it to an epistemic model. This lives in a different

category of machines that we call unifilar machines, whose outputs are stochastic but whose state updates

are deterministic. Its state space consists of probability distributions over the hidden states of the system,

and its dynamics are given by Bayesian updating.

https://dx.doi.org/10.4204/EPTCS.397.18
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

300 Adjoint Structure of Bayesian Filtering

Our main technical result is theorem 2.7, which states that this functor is right adjoint to a forgetful

functor in the opposite direction. This has an interesting consequence. The functor B maps a dynamical

model κ to what could be called its universal epistemic model, B(κ). By this we mean that if we consider

another unifilar machine α equipped with a morphism α → B(κ), we can also consider this an epistemic

model of κ , in a sense that we describe next.

In applications, one doesn’t necessarily want to keep track of the Bayesian distribution directly.

Instead, one uses a parametrised family of distributions, chosen such that the update step only needs

to update the parameters to produce the posterior distribution. For this to work, the Bayesian posterior

must always be in the same family of distributions as the prior. An example with enormous practical

importance is the Kalman filter, example 2.8. Here the prior is a multivariate Gaussian and the posterior

is always also a multivariate Gaussian. The filter’s state space consists of the parameters of such a

Gaussian, and the update step simply maps them to their new values. In our framework this kind of

structure arises from considering a morphism α → B(κ). The state space of B(κ) consists of probability

distributions, and the state space of α consists of values that parametrise them in a consistent way.

This idea is closely related to the notion of conjugate prior, which was previously studied in a

category-theoretic context in [13]. The definition in that paper is essentially our eq. (24), which arises

from our framework in a very natural way. The connection between Bayesian filtering and Bayesian

inference is explored in section 2.1, where we also briefly touch on connections to recent work on de

Finetti’s theorem within a category-theoretic context [15, 9].

A secondary contribution of our paper is an exploration of the possible generalisations of Moore

machines to the stochastic case. Our result involves two different generalisations of Moore machine,

which we term comb machine (definition 2.2) and unifilar machine (definition 2.4). Unifilar machines in

particular are of independent interest. They are based on an idea from the literature on ǫ-machines [2].

They are defined such that their output map is stochastic but their update map is (almost surely) deter-

ministic given their input and their output. This means that their states map more directly to ‘behaviours’

than the states of a more general stochastic machine. Indeed, we show in section 3 that in Dist the cate-

gory of unifilar machines has a terminal object, which consists of the collection of ‘controlled stochastic

processes,’ also known as ‘stochastic streams’ [6]. In general, if a category of unifilar machines has a

terminal object then it can be seen as an “object of behaviours” of stochastic systems.

Our Bayesian filtering machines have a strong resemblance to Bayesian lenses as presented in [20, 4]

(see also [17], which develops the idea in a way that makes all of the relevant maps measurable). Our

work is closely related, since the machine B(κ) described above has the same data as a Bayesian lens.

However, general unifilar machines do not seem to compose like lenses, and working out the precise

relationship is a task for future work.

Our work also seems related to the notion of determinisation from automata theory. Here one takes a

nondeterministic automaton (one that may have more than one transition from a given state, but with no

notion of probability assigned to them) and turns it into a deterministic automaton whose state space is the

power set of the original automaton. Determinisation has been studied and generalised in a coalgebraic

context [19, 1]; understanding the exact relation to our work is also a task for future work.

Bayesian filtering and its connection to conjugate priors was previously considered in a Markov

category context by the author and colleagues in [23]. A related approach to Bayesian filtering in Markov

categories was presented at the conference [7]; the present work was developed independently. The novel

contribution of the present paper is to reveal more of the abstract categorical structure underlying the

idea, including the definitions of comb machine, unifilar machine and the adjoint structure involving the

functor B, as well as the brief discussion of terminal unifilar machines in section 3.

Nathaniel Virgo 301

1.1 Background on Representable Markov categories

We will use the machinery of representable Markov categories and in particular, strongly representable

Markov categories, both defined in [10].1 For general background on Markov categories we refer to [8].

Definitions in this section are from the literature, except for definition 1.2, which is a slight generalisation

of the usual category-theoretic definition of ‘almost surely.’

Recall from [10] that given an object X in a Markov category C, a distribution object is an object

PX equipped with a map sampX : PX → X such that for every morphism f : A → X there is a unique

deterministic morphism f ��� : A → PX such that f ��� # sampX = f . A Markov category is then called rep-

resentable if every object has a distribution object. Representable Markov categories often arise as the

Kleisli categories of monads obeying conditions spelt out in [10].

The two examples we will use are BorelStoch (the Kleisli category of the Giry monad, restricted to

standard Borel spaces) and the Kleisli category of the (real-valued) distribution monad, which we will

call Dist. These are both shown to be representable in [10].

We recall also the following results about representable Markov categories: When every object has

a distribution object, P extends to a functor P : C → Cdet. Restricting the domain of this functor we

obtain a functor Pdet : Cdet → Cdet, which will also be written as P, except when we wish to explicitly

disambiguate. The functor Pdet can be made into a monad on Cdet, and the Kleisli category of this

monad is C. The unit has components δX = id���

X : X → PX , and the multiplication has components

µX = P(sampX) : PPX → PX .

This monad arises from an adjunction: the functor P is right adjoint to the inclusion functor Cdet →֒C.

Its unit has components δX and its counit has components given by the sampling map sampX : PX → P.

In string diagrams we will draw sampX as a white dot. Additionally, if a morphism is known to be

deterministic ([8], definition 2.2) we indicate this with a black bar at its right-hand edge, so we can write

A f X = PX
A f ���

X . (1)

We will need the definition of a strongly representable Markov category. For this we first recall some

more definitions from [8] and [10].

Definition 1.1 (conditionals; [8], definition 11.5). Let f : A→X⊗Y be a morphism in a Markov category

C. We say that a morphism c : X ⊗A →Y is a conditional of f if

A f
Y

X
=

A

f

c Y

X
. (2)

We say C has conditionals if every morphism of the appropriate type has a conditional.

The intuition is that for every value of the parameter A, the morphism f defines a joint distribution

between X and Y , and eq. (2) represents a factorisation of this joint distribution into the marginal distri-

bution over X and a conditional distribution of Y given X . Recall from [8] that Dist and BorelStoch both

have conditionals, but Stoch does not. Conditionals are in general not unique when they exist; see [8],

proposition 11.15 and the discussion surrounding it.

The following is essentially definition 13.1 of [8] (‘almost surely’), but we generalise it slightly.

1The definitions of strongly representable Markov categories and ‘deterministic given X’ appear in version 2 of the arXiv

preprint [10] but not in the published version of the same paper ([11]) or version 3 of the preprint. The author understands that

the removal was for reasons of narrative structure rather than any technical defect.

302 Adjoint Structure of Bayesian Filtering

Definition 1.2 (generalised almost surely). Given a morphism p : A⊗C → X in a Markov category C,

we say morphisms f ,g : X ⊗A →Y are p-generalised-almost-surely equal or p-g.a.s. equal if

A

B

p

f Y

X
=

A

B

p

g Y

X
. (3)

The idea is that in a measure-theoretic context such as Stoch or BorelStoch, for a values A, the values

of f and g can differ only on subsets of X that have measure zero according to p. In Dist it means that

f (y | x,b,a) = g(y | x,b,a) whenever p(x | a)> 0.

The category-theoretic definition of almost-surely in [8] allows p but not f or g to depend on a pa-

rameter, so this is a slight generalisation. We avoid calling our version “almost surely” to avoid confusion

with the usual definition, as used in [8], [10] and other works.

Definition 1.3 (deterministic given X ; [10], definition 6.4). Let f : A → X ⊗Y be a morphism in a

Markov category C, and let f be such that a conditional c : X ⊗A → Y exists. The morphism f is said

to be deterministic given X if the conditional is f -generalised-almost-surely deterministic, in the

sense that

A

f

c
Y

Y

X

=
A

f

c

c

Y

Y

X

. (4)

If f : A → X ⊗Y is known to be deterministic given X we write it as f .

In [10] it is shown that if eq. (4) holds for one conditional of f then it holds for all conditionals, so

that this definition is independent of the choice of conditional c.

For both BorelStoch and Dist, if eq. (4) holds then c is f -generalised-almost-surely equal

to a deterministic morphism ([10], example 6.12), so for most purposes it will not hurt to think of such

conditionals as genuinely deterministic, though only defined up to f -g.a.s. equivalence.

Definition 1.4. [Strongly representable Markov category; [10], definition 6.7] A strongly representable

Markov category is a representable Markov category in which for every morphism f : A → X ⊗Y there

is a unique morphism f ♦ : A → X ⊗PY such that (i) f ♦ is deterministic given X , and (ii)

A f
Y

X
= PYA f ♦

Y

X
. (5)

(This definition is less efficient than the one given in [10], which doesn’t include an assumption that

the category is representable, since this can be proven from weaker assumptions.) A strongly repre-

sentable Markov category necessarily has conditionals, because f ♦ has a conditional by the definition of

deterministic given X , and if c : X ×A → PY is such a conditional then c # sampY is a conditional of f .

BorelStoch is shown to be strongly representable in example 6.12 of [10]. For completeness we

provide a proof that Dist is strongly representable in appendix A.1, where we also give an explicit

construction for f ♦ in Dist.

As a consequence of definition 1.4, in a strongly representable Markov category, if we have mor-

phisms f ,g : A → X ⊗PY that are known to be deterministic given X then

PY
A f Y

X
=

PY
A g

Y

X
=⇒

A f PY

X
=

A g
PY

X
. (6)

This will be used in the proofs of proposition 2.6 and theorem 2.7. The condition that f and g are

deterministic given X is needed to cancel sampling maps in this way, since sampling maps are not usually

epimorphisms.

Nathaniel Virgo 303

2 Machines and Bayesian Filtering

The following definitions are all relative to a Markov category (C,⊗,1) and a choice of objects called

the input space I and output space O, which we will assume to be fixed throughout this section.

For most of the following we will work with what we call “comb machines,” which are a generali-

sation of Moore machines. However, many of the results also carry over to the case of Mealy machines,

which we define first because they are simpler. The following definition is standard:

Definition 2.1 (Stochastic Mealy machine). A stochastic Mealy machine is an object S of C called the

state space, together with a morphism α : I⊗S → O⊗S in C. A morphism of Mealy machines (S,α)→

(T,β) is a morphism f : S → T in C such that I⊗S
α
−→ O⊗S

idO⊗ f
−−−→ O⊗T = I⊗S

idI⊗ f
−−−→ I⊗T

β
−→ O⊗T .

The category of Mealy machines will be written Mealy(I,O).

The idea is that a Mealy machine starts in some state in S, receives an input in I, and then produces an

output in O while simultaneously transitioning to a new state. The output may depend on the input and

may be correlated with the new state. We don’t require morphisms of Mealy machines to be deterministic.

We now briefly discuss Moore machines and their generalisation to the stochastic context. In a

Cartesian category, a Moore machine consists of a state space S and two maps: a readout map S → O and

an update map I×S → S. An obvious way to generalise this to the stochastic case is to let both maps be

stochastic, so that the update map has type I⊗S → S. However, machines with this definition tend not to

be very well behaved, and in practice other definitions tend to be used.

One way to make stochastic Moore machines well behaved is to make the readout map deterministic.

Machines of this kind can be expressed in terms of generalised lenses [21]; this is the approach taken in

[18], for example. Intuitively, requiring a deterministic readout map allows the update map to “know”

what the machine’s last output was, since this can be inferred from the current value of S. However, for

the present work we need the readout map to be stochastic, so we take a different approach:

Definition 2.2 (Comb machine). A comb machine in a Markov category C is an object S of C (the state

space), together with a morphism α : I ⊗S → O⊗S in C and a morphism α• : S → O such that

S

I
α

O
=

S

I

α•
O

. (7)

A morphism of comb machines (S,α) → (T,β) is a morphism f : S → T in C that commutes with

α and β in the same way as for a Mealy machine. The category of comb machines will be written

CombMachine(I,O).

Comb machines take their name from comb elements, as defined in a probability context in [14]. We

avoid calling them Moore machines in order to avoid confusion with the more usual definition.

Equation (7) expresses the idea that the output of a comb machine cannot directly depend on the

input. Consequently a comb machine α could be seen as a Mealy machine that obeys an extra condition,

namely the existence of α• such that eq. (7) holds. However, we will often think of them differently. If

C has conditionals then a comb machine α can always be factored as

S

I

α S

O
=

I ⊗S

α

u S

O
=

S

I

α•

u S

O
, (8)

where u is a conditional of α as shown. We refer to α• as the readout map and u as an update map of

the comb machine (S,α), analogously to the maps that define a Moore machine. If f : (S,α)→ (T,β) is

a morphism of comb machines, then we have f #α• = β •, which we show in appendix A.2.

304 Adjoint Structure of Bayesian Filtering

The readout map α• has the same type as in a Moore machine, S → O, but the update map has type

O⊗ I ⊗ S → S and is only defined up to α•-g.a.s. equality. This allows the next state and the output to

be correlated for a given previous state and input, while still requiring the output to be independent of

the input. Although update maps are not uniquely defined, their behaviour can only differ on measure

zero subsets of the output space. In Dist this means their behaviour can differ only on outputs o ∈ O that

cannot occur at all in a given state, i.e. for which α•(o | s) = 0.

We think of comb machines as giving their output first and then receiving their input, in contrast to

Mealy machines, which first receive an input and then give an output.2 The picture to have in mind for a

comb machine is this:

S

I

α S

O
=

S

I

α S

O
,

S

I

α
O

=
S

I

α•
O

. (9)

We now introduce the concept of a unifilar machine. A unifilar machine has a stochastic readout

map but a deterministic update map. (Or at least, a generalised-almost-surely deterministic one.) The

term “unifilar” comes from the literature on computational mechanics, where it can be used to define ǫ-

machines [22]. In particular it appears in a machine-like context in [2], proposition 5. The formal context

is different, in part because we don’t assume stationarity or irreducibility, but our definition achieves the

same idea. We define unifilar machines in Mealy machine and comb machine flavours:

Definition 2.3 (unifilar Mealy machine). A unifilar Mealy machine in a Markov category is a Mealy

machine (S,α) with the condition that α is deterministic given O. Additionally, we require morphisms

of unifilar mealy machines to be deterministic. The category of unifilar Mealy machines will be written

as UnifilarMealy(I,O).

Definition 2.4 (unifilar comb machine). A unifilar comb machine in a Markov category is a comb ma-

chine (S,α ,α•) with the condition that α is deterministic given O. As with unifilar Mealy machines,

we require morphisms of unifilar comb machines to be deterministic. The category of unifilar comb

machines will be written as UnifilarComb(I,O).

Note that α must admit a conditional O⊗ I⊗S → S in order to satisfy either definition.

When we say “unifilar machine” without qualification we mean a unifilar comb machine.

The idea of a unifilar machine (of either type) is that all of the randomness comes from the choice

of output. A unifilar comb machine factors according to eq. (8), with the additional feature that the

conditional u is α•-generalised-almost-surely deterministic. We interpret this as follows: first the output

O is chosen stochastically (via α• : S → O), and then the state updates α•-g.a.s. deterministically as a

function of the output and the input. As for comb machines in general, the behaviour of an update map

is uniquely specified on all but α•-measure-zero subsets of the output space.

If C is Cartesian then Mealy machines and unifilar Mealy machines coincide, as do comb machines

and unifilar comb machines, both of which coincide with Moore machines. So both comb machines and

unifilar comb machines can claim to be a generalisation of Moore machines to the stochastic case.

It is worth saying something about the meaning of morphisms in these categories. The following

can be made formal using the machinery we introduce in section 3, but for now we state it informally.

We can think of a non-unifilar machine (of either flavour) as inducing a stochastic map from infinite

sequences of inputs to infinite sequences of outputs, subject to a causality condition that each output can

2This raises the question of whether we can interpose some other morphism in between α• and u, so that the machine

receives an input that can depend on its output, and perhaps also on the outputs of other machines. Answering this in the most

general case is rather involved and we will not address it in this paper. However, in the case where C is FinStoch, [14] provides

a way to compose 2-combs, of which comb machines are a special case.

Nathaniel Virgo 305

only depend on inputs that were received at earlier points in time. (Recall that for Mealy machines we

consider the input to be received before the output, and vice versa for comb machines.) We refer to this

map as the machine’s behaviour. For Mealy machines and comb machines, a morphism (S,α)→ (T,β)
witnesses that β is capable of exhibiting all of the externally observable behaviours that α can exhibit.

Using a stochastic map makes sense because the states are unobserved and change randomly; we consider

distributions over states to exhibit behaviours, as well as states themselves.

The interpretation of morphisms between unifilar machines is similar, but we require the morphisms

to be deterministic. A morphism of unifilar machines witnesses not only that their externally observable

behaviour is the same, but also that there is a mapping between their internal states that preserves this

behaviour. This makes sense conceptually because we will generally consider the state of a unifilar

machine to be observable.

Our first result concerns the existence of an adjunction between the categories CombMachine(I,O)
and UnifilarComb(I,O), from which Bayesian filtering arises. A similar result holds for Mealy(I,O)
and UnifilarMealy(I,O), which we will state at the end. Its proof is largely the same.

We first note that there is a forgetful functor F : UnifilarComb(I,O) → CombMachine(I,O) that

embeds unifilar comb machines into comb machines. On objects it forgets that the machine obeys the

deterministic-given-O condition, and it also forgets that morphisms are deterministic.

If C is strongly representable we can construct a functor in the opposite direction. We first define it

and then prove that it lands in UnifilarComb(I,O) and is a functor.

Definition 2.5. Suppose that C is a strongly representable Markov category. Then we define a putative

functor B : CombMachine(I,O)→ UnifilarComb(I,O). On objects it maps (S,α) 7→ (PS,Bα), where

Bα = (idI ⊗ sampS #α)♦ is the unique morphism such that Bα is deterministic given O and

SPS

I

α S

O
=

PSPS

I

Bα S

O
. (10)

On morphisms, B maps a morphism of comb machines with underlying map f : S → T to a morphism of

unifilar machines with underlying deterministic map P f : PS → PT.

Proposition 2.6. Let C be a strongly representable Markov category. Then definition 2.5 yields a functor

B : CombMachine(I,O)→ UnifilarComb(I,O).

Proof. The mapping respects composition and identities by functoriality of P, but to prove B is a functor

we have to show (i) that Bα is indeed a unifilar comb machine, and (ii) that that P f is indeed a morphism

of unifilar comb machines. For (i) we show that if eq. (7) holds for α then it holds for Bα :

PS
PS

I

Bα
O

=
SPS

I

α
O

=
PS

I

α•
O

=
PS

I

Pα•
O

. (11)

For (ii), since f is a morphism of comb machines we have

PS

I
α f T

O
=

PS

I

f β T

O

PS

I

B(α) f T

O
=

PS

I

P f β T

O

PS

I

B(α) P f T

O
=

PS

I

P f B(β) T

O
.

(12)

306 Adjoint Structure of Bayesian Filtering

We can then use the defining property of a strongly representable Markov category in the form of eq. (6)

to cancel off the sampling maps and conclude

PS

I

B(α) P f PT

O
=

PS

I

P f B(β) PT

O
, (13)

i.e. P f is a morphism of unifilar machines.

We think of the functor B as taking a dynamical model (in the form of a comb machine) and convert-

ing it into an epistemic model in the form of a unifilar machine. To unpack this, first consider a comb

machine (H,κ) as a dynamical model: we think of H as a set of hidden states and κ as a dynamical

process that emits outputs and stochastically changes the hidden state as a function of the input.

Then B((H,κ)) is a unifilar machine. In order to view it as an epistemic model, we write it using

eq. (11) as

B

(

H

I

κ H

O
)

=

PH

I

Pκ•

u PH

O
, (14)

in which the conditional u is (Pκ• # samp)-g.a.s. deterministic as well as (Pκ• # samp)-g.a.s. unique. We

will think of the state space PH as the space of “beliefs about H ,” and the update map u as updating those

beliefs using Bayesian filtering.

We imagine these beliefs to be held by an idealised Bayesian reasoner, whose prior at any given time

is an element of the state space, PH . This Bayesian reasoner does not interact with the machine κ , it only

observes the inputs that κ receives and the outputs it emits in response, updating its prior to a posterior

at each time step.

The output map PH
sampH−−−→ H

κ•

−→ O = PH
Pκ•

−−→ PO
sampO−−−→ O “simulates” the output of κ . The map

Pκ• maps the reasoner’s prior beliefs about H to its beliefs about the next output it will observe.

The update map u performs Bayesian filtering. It takes as input a probability measure over the hidden

states along with an input and an output, and it returns a new probability measure over hidden states. We

think of it as taking a prior over the current value hidden state and returning a posterior distribution

over the next value of the hidden state, conditioned on the observed output. It thus combines Bayesian

updating with “simulating” the stochastic change in H .

The output from u is the posterior distribution. It is only defined up to almost sure equivalence. In

the case where O is finite this is because for a given output o ∈ O and a given belief b ∈ PH we might

have (b # Pκ•)(o) = 0, i.e. the output o is “subjectively impossible” according to the agent’s current

epistemic state. In this case calculating the Bayesian posterior in the usual way would lead to a division

by zero, so there is no consistent value that the posterior distribution could take. Since the update map u

is only defined up to (Pκ• # samp)-g.a.s. equality its output only matters in those cases where this doesn’t

happen.

As one would expect from a Bayesian filter, instances of the map u can be chained together in such a

way that, given an initial distribution over H and a sequence of inputs, we can recover the posterior over

H for a given observed sequence of outputs. We give a precise statement of this in appendix A.3, though

we omit the proof for reasons of space.

We can thus regard the functor B as taking a dynamical model as input and turning it into an epistemic

model. We remark that a similar operation is performed in the process of solving a partially observable

Markov decision process (POMDP). A POMDP consists of some kind of machine — for simplicity let

us say a comb machine (H,κ) — together with a reward function. This machine is a dynamical model of

Nathaniel Virgo 307

some environment, and the goal is to find a “policy” that maximises the expected amount of reward that

is accumulated over time, usually with an exponential discounting factor. (We will not consider reward

functions in the present work.) A common solution technique involves converting the POMDP into a

Markov decision process (MDP), which is a simpler class of problem. In an MDP the state space is

assumed to be fully observed, so that there is no need to consider outputs. In an MDP the machine only

takes inputs, and changes state stochastically as a function of its input, so it can be seen as an object of

CombMachine(I,1). Again there is an associated reward function, which we will not consider in detail.

To turn a POMDP into an MDP one forms the so-called “belief MDP”, whose state space is given by

probability distributions over H . In our framework it is given by
O

PH

I
B(κ) PH

. Note that

this is a stochastic map in general. For an approach to POMDPs that is closely related to the present

work, see [3].

The following is our main technical result.

Theorem 2.7. When C is a strongly representable Markov category, the functor B is right adjoint to the

forgetful functor F,

CombMachine(I,O) UnifilarComb(I,O).
F

B

⊥⊥⊥

Proof. We show that if f : S → H is the map in C underlying a morphism F((S,α))→ (H,κ) in Comb-

Machine(I,O) then f ��� : S → PH is the deterministic map underlying a morphism (S,α)→ B((H,κ)) in

UnifilarComb(I,O), and vice versa. This will form the natural isomorphism of hom-sets needed for an

adjunction.

Suppose f : S → H is the map underlying a morphism F((S,α))→ (H,κ) in CombMachine(I,O).
Then we have the following (where, as always, all diagrams are in C):

S

I

F(α) f H

O
=

S

I

f κ H

O

S

I

F(α) f ���

H

O
=

S

I

f ��� κ H

O

S

I
α f ���

H

O
=

S

I

f ��� B(κ) H

O
.

(15)

We can then use representability of C in the form of eq. (6) again to conclude that

S

I
α f ���

H

O
=

S

I

f ��� B(κ) H

O
, (16)

so that f ��� underlies a morphism (S,α) → B((H,κ)) in UnifilarComb(I,O). Each of these steps can

be reversed, so this gives a bijection CombMachine(I,O)(F(−),=) ∼= UnifilarComb(I,O)(−,B(=)).
Naturality follows from the naturality of the sampling map.

This adjunction is related to the one between P : Cdet → C and Cdet →֒ C in a representable Markov

category, and it shares the same unit and counit. The unit has components δX : X → PX and the counit

has components sampX : PX → X , where PX = BX on objects.

The existence of this adjunction has some interesting consequences. We have already established

that the unifilar machine B((H,κ)) can be seen as an epistemic model of the comb machine (H,κ), seen

as a dynamical model. But now consider a morphism (S,α) → B((H,κ)) in UnifilarComb(I,O) from

308 Adjoint Structure of Bayesian Filtering

some other unifilar machine into B((H,κ)). We argue that when equipped with such a morphism, (S,α)
also deserves to be seen as modelling (H,κ).

To see this we consider its adjoint map F((S,α)) → (H,κ), which is given by an underlying map

ψ : S → H in C such that

S

I

ψ κ H

O
=

S

I
α ψ H

O
, (17)

or

S

I

ψ κ H

O
=

S

I

α•

u ψ H

O

, (18)

where u is an update map for α . By marginalising both sides (i.e. post-composing with idO ⊗ delH) we

have α• = ψ #κ•, so this equation becomes

S

I

ψ κ H

O
=

S

I

ψ κ•

u ψ H

O

, (19)

where u is ψ # κ•-g.a.s. deterministic. This is a Bayesian filtering version of Jacobs’ [13] definition of

conjugate priors. It is not quite the same as the one in [23] because in that paper u is not assumed to be

almost-surely deterministic, so a stronger equation is needed. However, it is conceptually the same.

The morphism ψ can be regarded as what the author and colleagues called an interpretation map

in [23]. This means we think of the update map u as a physical machine whose job is to keep track of an

epistemic model of κ . At each step it receives both the input that was given to κ and the output that κ

emitted in response. The machine’s physical state (S) then updates in a (ψ #κ•-g.a.s.) deterministic way.

Equation (19) expresses the idea that when the machine receives a new piece of information in the

form of an (i,o) pair it should update its beliefs in a consistent way. The left-hand side can be seen as

the agent’s current beliefs about the next output and the next value of the hidden state, as a function of

the next input. The equation says that after receiving an input and output pair, its new beliefs about the

current hidden state should equal a conditional of its prior beliefs, conditioned on i and o.

The adjoint map ψ ��� : S → PH can then be seen as mapping the unifilar machine’s physical state to a

probability measure over H that we think of as “the machine’s beliefs about H ,” i.e. its current Bayesian

prior. Since ψ ��� underlies a morphism (S,α) → B((H,κ)) it means that α’s updates have to be able to

‘simulate’ the idealised Bayesian filtering that B((H,κ)) performs. The map ψ ��� can thus be seen as

assigning a semantic meaning to the states of the unifilar machine.

We now state the corresponding result for Mealy machines: as for comb machines there are functors

Mealy(I,O)
B

⇄
F

UnifilarMealy(I,O) such that F is left adjoint to B. The definitions and proofs are the

same as for comb machines and unifilar comb machines, except that we don’t need to care about the

comb condition. These functors can be thought of in the same terms, with B mapping a dynamical model

to a corresponding epistemic model. The Mealy machine version of eq. (19) is

S

I

ψ κ H

O
= H H

S

I

ψ κ

u ψ H

O
. (20)

An example with enormous practical importance in control theory is the Kalman filter. Although

Kalman [16] originally derived it in terms of error minimisation it is well known that it can also be

constructed as a Bayesian filter. (See [12] for a somewhat informal exposition, for example.)

Nathaniel Virgo 309

Here we give only the briefest sketch of how the Kalman filter can be formulated in our framework.

We consider a version with measurement noise but no input signal. Unlike most treatments we allow the

measurement noise and the process noise to be correlated.

Example 2.8 (Kalman filter). Let C = BorelStoch and let I = 1,H = ℝn,O = ℝm. Consider a comb

machine (H,κ) where κ(− | h) is normally distributed according to κ(− | h)∼N(Ah,Σ), where A is an

(m+n)×n matrix and the (m+n)×(m+n) covariance matrix Σ doesn’t depend on h. Taking (H,κ) as a

dynamical model of a process, we want to construct a unfilar comb machine that will act as an epistemic

model.

To do this, we first note that if p : 1 → H is a normal distribution with mean h̄ and covariance matrix

Σp, then p κ is also Gaussian, with mean s̄ and covariance Σ′ := AΣpAT +Σ. (See section 6 of

[8], for example.) Writing Σ′ in block form as Σ′ =
(Σ′

OO Σ′
OH

Σ′
HO Σ′

HH

)

, this distribution p # κ has a conditional

c : O → H given by

c(− | o)∼N(Σ′
HOΣ′−

OOo , Σ′
HH −Σ′

HOΣ′−
OOΣ′

OH), (21)

where Σ′−
OO is the Moore-Penrose pseudoinverse of Σ′

OO. (See example 11.8 of [8].)

Let us therefore define a unifilar machine (S,α) where S is the set of pairs (h̄,Σp), where h̄ ∈ ℝn

and Σp is an n× n positive definite matrix. To define α : S → O× S we first define the map ψ : S → H ,

which maps (h̄,Σp) to a Gaussian with mean h̄ and covariance Σp. We can define α : S → O× S by

the readout function S α• O = ψ κ , and a deterministic update map u : O×S → S that

maps ((h̄,Σp),o) to (Σ′
HOΣ′−

OOo , Σ′
HH −Σ′

HOΣ′−
OOΣ′

OH), as in eq. (21).

By construction, the maps u, ψ , α• and κ obey eq. (19), and we can conclude that ψ ��� is a map of

unfilar machines from (S,α) to B((H,κ)).

The update map u is a version of the Kalman filter. Its state space H parametrises Gaussian distribu-

tions via the map ψ ��� . The machine (H,κ) is such that for a Gaussian prior the posterior will also be a

Gaussian, and therefore the deterministic map u only has to update the parameters upon receiving new

data. We note a similarity between Kalman filtering and the category Gauss defined in [8], which we

referred to in deriving it.

2.1 Bayesian Inference and Conjugate Priors

Up to now we have considered a version of Bayesian filtering in which the systems being modelled have

the form of a comb machine. In this section we consider an important special case of this, in which the

system being modelled simply emits independent and identically distributed outputs. This corresponds

to the standard setting of Bayesian inference, where we receive independent samples from a known

distribution with an unknown (but fixed) value for its parameters, and wish to use this data to make

inferences about the parameters.

In this section we primarily consider machines whose input space is the terminal object in C. In

this case the distinction between comb machines and Mealy machines isn’t relevant, and we refer

to such machines as generators, defining Generator(X) = Mealy(1,X) ∼= UnifilarMachine(1,X) and

UnifilarGenerator(X) = UnifilarMealy(1,X)∼= UnifilarComb(1,X).

To model Bayesian inference in our setup we consider objects of Generator(X) represented by

morphisms in C of the following special form:

Θ f ◦ Θ

X
:=

Θ

f

Θ
X . (22)

310 Adjoint Structure of Bayesian Filtering

In this setting we call X the sample space and Θ the parameter space, and we think of f as a statistical

model, that is, a family of distributions over X parametrised by Θ.

Applying the functor B we get

PΘ B(f ◦) PΘ

X
=

PΘ

P f

Bayes f PΘ

X
, (23)

where we have called the conditional Bayes f because that is what it does: it takes in a prior over the

parameters together with some data x ∈ X , and returns the Bayesian posterior over the parameters, ac-

cording to the model f . We give a precise statement and proof for this claim in appendix A.4.

If we consider a map ψ ��� into this machine from some other unifilar machine (S,α), we obtain exactly

the notion of a conjugate prior. Its adjoint map of comb machines, ψ : F((S,α))→ f ◦, obeys

S ψ

f

Θ

X
=

S

ψ f

u ψ Θ

X
, (24)

which is the equation given in [13] as a definition of conjugate prior. The only minor difference is that

here the update map is only defined up to (ψ # f)-g.a.s. equality, instead of being a specified deterministic

function. We think of ψ : S → Θ as a statistical model and say that it is a conjugate prior for f . Its

parameter space S is referred to as the space of hyperparameters. Obtaining this more abstract perspective

on the definition from [13] was one of the main motivations of this work.

It is worth briefly mentioning the further special case in which f is the sampling map, although we

will not make use of it.

B
(

PX PX

X
)

=
PX

PPX BayesX PPX

X
. (25)

Here BayesX also performs Bayesian updating, corresponding to inference about an unknown distribu-

tion. It takes a distribution over distributions over X , representing a prior, along with a sample from the

unknown distribution. Its output is the Bayesian posterior over distributions, conditioned on the sample.

We note that all the generators in this section obey the property of exchangeability, specifically the

version of that concept defined in [15] in the context of de Finetti’s theorem. That is, they are all machines

(S,α) such that

S α α S

O
O

=
S α α S

O
O

. (26)

In our context, one of the results of [15] is that in Stoch (and hence also in BorelStoch) the cate-

gory Generator({0,1}) has a terminal object, given by
P2 P2

2 , which is part of their category-

theoretic treatment of de Finetti’s theorem. (A much more general version of de Finetti’s theorem is

proved for BorelStoch in [9], though in a less machine-like context.)

In the context of the machines in eq. (23) and eq. (25), exchangeability amounts to the idea that a

Bayesian reasoner should reach the same posterior from the same data, regardless of the order in which

the data are presented. (Except that here this is subject to the usual generalised-almost-surely condition.)

There is much more that can be said about exchangeability and its relationship to Bayesian inference

within the framework of unifilar machines, but we will leave the topic here and return to the more general

case of non-exchangeable machines in the next section.

Nathaniel Virgo 311

3 Terminal objects as “objects of behaviours”

If UnifilarComb(I,O) has a terminal object then it can be seen as an “object of behaviours,” in much the

same manner as a final coalgebra. If such a terminal object exists we call it an object of transducers. The

intuition is that if we can meaningfully talk about its elements then they can be thought of as stochastic

maps from infinite sequences of inputs to infinite sequences of outputs, subject to the causality condition

described above, that each output can only depend on inputs that were received prior to it.

To illustrate this idea we prove that transducer objects always exist in Dist, and their elements indeed

have the form of stochastic maps between sequences. For this we will need the definition of a controlled

stochastic process. This is a classical idea, but the category theoretic definition we give is similar to

definition 9.12 of [6]. For further generalisations with a slightly different flavour, see section 7 of [8].

Definition 3.1 (controlled stochastic process). In a Markov category C, we define an output-first con-

trolled stochastic process with input space I and output space O as a family of morphisms pn : In−1 → On

for n ≥ 1, subject to the condition that

n

1

n n−1

0

I
I

...

I

pn

O

...

O

=

n−1

1

n−1

0

I

...

I

pn−1

O

...

O

, (27)

where the labels on the wires represent the indexes of the inputs and outputs. (Note that the indices for

the inputs start from 1 while the indices for the outputs start from 0, so that pn has n− 1 inputs and n

outputs. We use this convention because we consider the first output to occur “at time 0,” before the

first input.) An input-first controlled stochastic process is defined similarly, but with the outputs indexed

starting from 1 instead of 0, so that pn has type In−1 → On−1.

When we say “controlled stochastic process” without qualification, we mean an output-first con-

trolled stochastic process. The condition says both that the family of distributions has to be consistent

with each other, and that each output can only depend on inputs that were received prior to it.

Proposition 3.2 (Dist has transducer objects). In Dist, the terminal object (ω ,T) of UnifilarComb(I,O)
exists and is as follows. T is the set of all output-first controlled stochastic processes (in Dist). ω is

composed of the following readout and update maps: the readout map sends a controlled stochastic

process p to the distribution p1, which is a distribution over O with no input. Given i ∈ I, o ∈ O and a

controlled stochastic process p, the update map sends (i,o, p) to a delta distribution concentrated on a

new controlled stochastic process pi,o given by

pi,o
n (o0, . . . ,on | i1, . . . , in) =

1

p1(o)
pn+1(o,o0, . . . ,on | i, i1, . . . , in) (28)

if p1(o)> 0, and to some arbitrary distribution over controlled stochastic processes otherwise. (As such

it is defined up to the appropriate generalised-almost-surely condition.)

Proof. Given a unifilar machine (S,α) and a state s ∈ S, one can show inductively that under any mor-

phism of unifilar machines (S,α) → (T,ω), the state s must map to the controlled stochastic process

given by

n

1

n

0

I

...

I

pn

O

...

O

=

n

1 0

n n−1
I

...

I

s α . . . α α• O

O

...

O

. (29)

312 Adjoint Structure of Bayesian Filtering

We give the details in appendix A.5

The update map of (T,ω) performs Bayesian conditioning: it returns a new map from input se-

quences to output sequences, formed by fixing the first input and conditioning on the first output.

As usual a similar result holds for Mealy machines: UnifilarMealy(I,O) has a terminal object in

Dist, whose objects can be seen as input-first controlled stochastic processes. The proof is similar and

doesn’t involve the comb condition.

One advantage of formulating transducers internally in this way is that we can consider probability

distributions over them. In particular, since (T,ω) is a terminal object it is equipped with an algebra of

the monad F #B arising from the adjunction in theorem 2.7. This means that we can think of the unique

map B(F((T,ω))) → (T,ω) as taking a probability distribution over transducers and returning a new

transducer that represents its ‘average’ or ‘expected’ behaviour. This will work in any suitable Markov

category, whenever a terminal object of UnifilarComb(I,O) exists.

On the other hand, in BorelStoch the category UnifilarMealy(ℝ,{0,1}) does not have a terminal

object. Consider those machines with trivial state spaces, whose output depends only on the current

input. Specifying the behaviour of such a machine amounts to specifying a measurable map ℝ→ [0,1].
But there is no measurable space of such functions, so there is no measurable space that includes the

behaviours of all such machines. However, we conjecture that BorelStoch has terminal objects for

UnifilarComb(I,O) and UnifilarMealy(I,O) when I is a countable or finite set.

Acknowledgements

The author thanks Martin Biehl, Matteo Capucci and the anonymous reviewers for insightful comments

on the manuscript, and Martin Biehl, Simon McGregor, Timorl, Matteo Capucci and Toby Smithe for

discussions that stimulated the work. This paper was made possible through the support of Grant 62229

from the John Templeton Foundation. The opinions expressed in this publication are those of the au-

thor(s) and do not necessarily reflect the views of the John Templeton Foundation.

References

[1] Jiřı́ Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius & Alexandra Silva (2012):

A coalgebraic perspective on minimization and determinization. In: Foundations of Software Science and

Computational Structures: 15th International Conference, FOSSACS 2012, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24–April 1,

2012. Proceedings 15, Springer, pp. 58–73, doi:10.1007/978-3-642-28729-9_4.

[2] Nix Barnett & James P. Crutchfield (2015): Computational Mechanics of Input-Output Processes: Structured

Transformations and the ǫ-Transducer. Journal of Statistical Physics 161(2), pp. 404–451, doi:10.1007/

s10955-015-1327-5.

[3] Martin Biehl & Nathaniel Virgo (2023): Interpreting Systems as Solving POMDPs: A Step Towards a Formal

Understanding of Agency. In: Active Inference. IWAI 2022. Communications in Computer and Information

Science, Springer, pp. 16–31, doi:10.1007/978-3-031-28719-0_2.

[4] Dylan Braithwaite, Jules Hedges & Toby St Clere Smithe (2023): The Compositional Structure of Bayesian

Inference, doi:10.48550/ARXIV.2305.06112. Available at https://arxiv.org/abs/2305.06112.

[5] Kenta Cho & Bart Jacobs (2017): Disintegration and Bayesian Inversion via String Diagrams, doi:10.

48550/ARXIV.1709.00322. Available at https://arxiv.org/abs/1709.00322.

https://doi.org/10.1007/978-3-642-28729-9_4
https://doi.org/10.1007/s10955-015-1327-5
https://doi.org/10.1007/s10955-015-1327-5
https://doi.org/10.1007/978-3-031-28719-0_2
https://doi.org/10.48550/ARXIV.2305.06112
https://arxiv.org/abs/2305.06112
https://doi.org/10.48550/ARXIV.1709.00322
https://doi.org/10.48550/ARXIV.1709.00322
https://arxiv.org/abs/1709.00322

Nathaniel Virgo 313

[6] Elena Di Lavore, Giovanni de Felice & Mario Román (2022): Coinductive Streams in Monoidal Categories,

doi:10.48550/ARXIV.2212.14494. Available at https://arxiv.org/abs/2212.14494.

[7] T Fritz, A Klinger, D. McNeely, A. Shah-Mohammed & Y. Wang (2023): Hidden Markov Models and the

Bayes Filter in Categoryical Probability. Available at https://act2023.github.io/papers/paper73.

pdf. Abstract presented at Applied Category Theory 2023.

[8] Tobias Fritz (2020): A synthetic approach to Markov kernels, conditional independence and theorems on

sufficient statistics. Advances in Mathematics 370, p. 107239, doi:10.1016/j.aim.2020.107239.

[9] Tobias Fritz, Tomáš Gonda & Paolo Perrone (2021): De Finetti’s Theorem in Categorical Probability. Journal

of Stochastic Analysis 2(4), doi:10.31390/josa.2.4.06.

[10] Tobias Fritz, Tomáš Gonda, Paolo Perrone & Eigil Fjeldgren Rischel (2020): Representable Markov Cate-

gories and Comparison of Statistical Experiments in Categorical Probability (v2), doi:10.48550/ARXIV.

2010.07416. Available at https://arxiv.org/abs/2010.07416v2. The material on strongly repre-

sentable Markov categories appears in version 2 of the preprint but not in version 3.

[11] Tobias Fritz, Tomáš Gonda, Paolo Perrone & Eigil Fjeldgren Rischel (2023): Representable Markov cate-

gories and comparison of statistical experiments in categorical probability. Theoretical Computer Science

961, p. 113896, doi:10.1016/j.tcs.2023.113896.

[12] Ramakrishna Gurajala, Praveen B. Choppala, James Stephen Meka & Paul D. Teal (2021): Derivation of the

Kalman filter in a Bayesian filtering perspective. In: 2nd International Conference on Range Technology

(ICORT), pp. 1–5, doi:10.1109/ICORT52730.2021.9581918.

[13] B. Jacobs (2020): A channel-based perspective on conjugate priors. Mathematical Structures in Computer

Science 30(1), pp. 44–61, doi:10.1017/s0960129519000082.

[14] Bart Jacobs, Aleks Kissinger & Fabio Zanasi (2019): Causal Inference by String Diagram Surgery. In

Mikołaj Bojańczyk & Alex Simpson, editors: Foundations of Software Science and Computation Structures,

Springer International Publishing, Cham, pp. 313–329, doi:10.1007/978-3-030-17127-8_18.

[15] Bart Jacobs & Sam Staton (2020): De Finetti’s Construction as a Categorical Limit. In D. Petrişan & J. Rot,

editors: Coalgebraic Methods in Computer Science, Springer International Publishing, pp. 90–111, doi:10.

1007/978-3-030-57201-3_6.

[16] Rudolph Emil Kalman (1960): A New Approach to Linear Filtering and Prediction Problems. Transactions

of the ASME–Journal of Basic Engineering 82(Series D), pp. 35–45, doi:10.1115/1.3662552.

[17] Kotaro Kamiya & John Welliaveetil (2021): A category theory framework for Bayesian learning, doi:10.

48550/ARXIV.2111.14293. Available at https://arxiv.org/abs/2111.14293.

[18] David Jaz Myers (2022): Categorical Systems Theory. Unpublished book draft. Available at http://

davidjaz.com/Papers/DynamicalBook.pdf.

[19] Alexandra Silva, Filippo Bonchi, Marcello Bonsangue & Jan Rutten (2013): Generalizing determinization

from automata to coalgebras. Logical Methods in Computer Science Volume 9, Issue 1, doi:10.2168/

lmcs-9(1:9)2013.

[20] Toby St. Clere Smithe (2020): Bayesian Updates Compose Optically, doi:10.48550/ARXIV.2006.01631.

Available at https://arxiv.org/abs/2006.01631.

[21] David I. Spivak (2019): Generalized Lens Categories via functors C op → Cat, doi:10.48550/ARXIV.1908.

02202. Available at https://arxiv.org/abs/1908.02202.

[22] Nicholas F. Travers & James P. Crutchfield (2011): Equivalence of History and Generator Epsilon-Machines,

doi:10.48550/ARXIV.1111.4500. Available at https://arxiv.org/abs/1111.4500.

[23] Nathaniel Virgo, Martin Biehl & Simon McGregor (2021): Interpreting Dynamical Systems as Bayesian

Reasoners. In: International Workshops of ECML PKDD 2021, Springer, pp. 726–762, doi:10.1007/

978-3-030-93736-2_52.

https://doi.org/10.48550/ARXIV.2212.14494
https://arxiv.org/abs/2212.14494
https://act2023.github.io/papers/paper73.pdf
https://act2023.github.io/papers/paper73.pdf
https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.31390/josa.2.4.06
https://doi.org/10.48550/ARXIV.2010.07416
https://doi.org/10.48550/ARXIV.2010.07416
https://arxiv.org/abs/2010.07416v2
https://doi.org/10.1016/j.tcs.2023.113896
https://doi.org/10.1109/ICORT52730.2021.9581918
https://doi.org/10.1017/s0960129519000082
https://doi.org/10.1007/978-3-030-17127-8_18
https://doi.org/10.1007/978-3-030-57201-3_6
https://doi.org/10.1007/978-3-030-57201-3_6
https://doi.org/10.1115/1.3662552
https://doi.org/10.48550/ARXIV.2111.14293
https://doi.org/10.48550/ARXIV.2111.14293
https://arxiv.org/abs/2111.14293
http://davidjaz.com/Papers/DynamicalBook.pdf
http://davidjaz.com/Papers/DynamicalBook.pdf
https://doi.org/10.2168/lmcs-9(1:9)2013
https://doi.org/10.2168/lmcs-9(1:9)2013
https://doi.org/10.48550/ARXIV.2006.01631
https://arxiv.org/abs/2006.01631
https://doi.org/10.48550/ARXIV.1908.02202
https://doi.org/10.48550/ARXIV.1908.02202
https://arxiv.org/abs/1908.02202
https://doi.org/10.48550/ARXIV.1111.4500
https://arxiv.org/abs/1111.4500
https://doi.org/10.1007/978-3-030-93736-2_52
https://doi.org/10.1007/978-3-030-93736-2_52

314 Adjoint Structure of Bayesian Filtering

A Proof Details

A.1 Dist is strongly representable

For a morphism f : A → B in Dist we write f (b | a) for the probability assigned to b by the morphism f

when given a as an input. We have that for a given a there only finitely many elements of b for which

f (b | a)> 0, and we have ∑b∈B f (b | a) = 1.

For a set A the distribution object PA is the set of all finitely supported probability distributions over

A. In other words it is the set of functions A → [0,1] that satisfy the properties above, i.e. functions that

have a finite support and sum to 1. The sampling map sampA : PA → A is given by sampA(a | p) = p(a).
We now consider an arbitrary morphism f : A → X ⊗Y and a morphism f ♦ : A → X ⊗PY such that

f ♦ is deterministic given X and such that eq. (5) holds. We can factor f ♦(x, p | a) as

A f ♦

PY

X
=

A

f •

c PY

X
, (30)

or f •(x | a)c(p | x,a), for some conditional c.

For f ♦ to be deterministic given X means that the conditional c must be f •-generalised-almost-surely

deterministic (eq. (4)), which in Dist means that c(− | x,a) is a delta distribution whenever f •(x | a)> 0.

For this to be true we must have that that whenever a and x are such that f •(x | a) > 0 there exists a

distribution px,y ∈ PY such that

f ♦(x, p | a) =

{

f •(x | a) if p = pa,x

0 otherwise.
(31)

In Dist, eq. (5) (the definition of f ♦) amounts to

f (x,y | a) = ∑
p∈PY

f ♦(x, p | a)sampY (y | p)

= ∑
p∈PY

f ♦(x, p | a)p(y)

= f •(x | a)px,a(y).

(32)

To show that Dist is strongly representable we have to show that px,a is uniquely defined whenever

f •(x | a)> 0. But this follows immediately because we have, from eq. (32),

px,a(y) =
f (x,y | a)

f •(x | a)
, (33)

which completes the proof.

Explicitly, the only choices for f ♦ are those of the form

f ♦(x, p | a) =















{

f •(x | a) if p = f (x,−|a)
f •(x|a)

0 otherwise

}

if f •(x | a)> 0,

arbitrary otherwise.

(34)

The arbitrary values are subject to the constraint that ∑x,p f (x, p | a) = 1, as always. They occur only

outside the support of f •(− | a), which in Dist means that all possible choices for f ♦ are f •-g.a.s. equal,

as required.

We note that the last step in the proof, eq. (33), would not be valid in example 3.23 of [10], in which

the probabilities are not real-valued.

Nathaniel Virgo 315

A.2 Comb machines morphisms commute with readout maps

We want to show that if f : (S,α) → (T,β) is a morphism of comb machines, then α• = f # β •. By

marginalising the definition of a morphism of comb machines and then substituing the definition of α•

and β • we have

S

I
α f

O
=

S

I

f β
O

S

I

α•
O

=
S

I
f β •

O

(35)

and the result follows.

A.3 Filtering on sequences

Our claim is that given a dynamical model in the form of a comb machine (H,κ), an initial distribution

over H , a sequence of inputs (an element of In), and an observed sequence of outputs (an element of On),

the Bayesian filter (i.e. an update map for B((H,κ))) allows us to recover the posterior distribution over

H , given the observations.

To make this formal let us define

PH

In

κn
H

On

:=

PH

I
I

...

I

κ . . . κ κ H

O
O

...

O

. (36)

What we seek is a conditional of κn, that is c : On ⊗ In ⊗PH → H such that

PH

In

κn
H

On

=

PH

In

κn

c H

On

. (37)

Then c, or rather c��� : On × In ×PH → PH , is the map that takes the observed output sequence, the input

sequence and returns the prior over H to the posterior over H . Our claim is that such a conditional c is

given by composing n instances of u as follows,

PH

In
On

c H

:=

PH

I

...

I
O

...

O

u . . . u H

(38)

where u is an update map for B((H,κ)).
The proof of this is by induction and can be expressed as a lengthy but straightforward string diagram

calculation; we omit it for reasons of space. A similar result holds in the Mealy machine case.

A proof of a similar statement was given previously by the author and colleagues in [23] (proposition

2 in appendix B.2), although with somewhat different definitions since that paper does not consider

representable Markov categories.

316 Adjoint Structure of Bayesian Filtering

It is worth remarking that the omitted proof uses the fact that u is (Pκ• # samp)-g.a.s. deterministic,

since this fact is not directly used in the proofs of our other results. (The assumption is nevertheless

needed, in order to apply the defining property of a strongly representable Markov category.)

A.4 Bayes f does Bayes

We want to show that the morphism Bayes f in the expression

B

(

Θ

f

Θ

X
)

=
PΘ

P f

Bayes f PΘ

X
(39)

can be seen as performing a Bayesian update.

For this we recall the definition of a Bayesian inverse from [5], which we generalise slightly by

allowing the prior to depend on a parameter. In a Markov category C, given a morphism f : Θ → X and

a morphism p : Φ → Θ called the prior, we say that f †
p : X → Θ is a Bayesian inverse of f : Θ → X with

respect to p if

Φ p

f

Θ

X
=

Φ

p f

f †
p Θ

X
. (40)

If C has conditionals then such Bayesian inverse exists for any f and p. It is not necessarily unique, but

like any conditional it is unique up to (p # f)-g.a.s. equivalence.

If C is representable we can take Φ = PΘ and p = sampΘ, yielding

PΘ

f

Θ
X =

PΘ

f

f †
samp Θ

X

=

PΘ

P f

f †
samp Θ

X
.

(41)

The morphism f †
samp can be thought of as performing a Bayesian inversion of f with respect to any prior,

since it takes an element of PΘ as an input.

If C is strongly representable, then from the definition of Bayes f we have

PΘ

f

Θ
X =

PΘ

P f

Bayes f Θ

X
. (42)

We conclude that up to P f # samp-g.a.s. equivalence, Bayes f is the same as (f †
samp)

��� , the deterministic

version of f †
samp. It takes as input a prior in PΘ and a data point from X , and gives as output the Bayesian

posterior as an element of PΘ.

A.5 Dist has transducers

We write ω• : T → O for the readout map of the unifilar machine (T,ω) defined in proposition 3.2. We

want to show that this unifilar machine is the terminal object of UnifilarComb(I,O).
We note that the existence of the terminal object could be proven in a different way, by noting that

comb machines in Dist can be formulated as coalgebras of a polynomial functor on Set. The existence of

Nathaniel Virgo 317

a terminal object (a.k.a. final coalgebra) is then a standard result. However, the proof below leads more

directly to the probabilistic interpretation in terms of controlled stochastic processes.

As mentioned in the main text we will show that given a unifilar machine (S,α) and a state s ∈
S, under any morphism of unifilar machines (S,α) → (T,ω), the state s must map to the controlled

stochastic process given by

n

1

n

0

I

...

I

pn

O

...

O

=

n

1 0

n n−1
I

...

I

s α . . . α α• O

O

...

O

. (43)

It is straightforward to show inductively that for p ∈ T we have

n

1

n

0

I

...

I

pn

O

...

O

=

n

1 0

n n−1
I

...

I

p ω . . . ω ω• O

O

...

O

, (44)

where ω• is the readout map of (T,ω).
Now suppose we are given a unifilar machine (S,α), and write α• : S → O for its readout map.

Consider a map of unifilar machines h : (S,α) → (T,ω). Our goal is to show that such a map always

exists and is uniquely defined. Let s ∈ S be state of α and let p = h(s) be the transducer that it maps to

under h. We then calculate

n

1

n

0

I

...

I

pn

O

...

O

=

n

1 0

n n−1
I

...

I

s h ω . . . ω ω• O

O

...

O

=

n

1 0

n n−1
I

...

I

s α . . . α h ω• O

O

...

O

=

n

1 0

n n−1
I

...

I

s α . . . α α• O

O

...

O

. (45)

The second equality is by induction, moving h to the right across the chain of n morphisms.

This leaves us with exactly one choice for p = h(s) for each s ∈ S, and we conclude that the map

h : (S,α)→ (T,ω) is unique.

	1 Introduction
	2 Bicategories of automata
	3 Bicategory-valued machines
	4 Conclusions
	A Appendix A: Proofs
	Introduction
	Notations
	Subrules in DPO Graph Transformations
	Rewriting Environments
	Global Coherent Transformations
	Some Rewriting Environments and Their Properties
	Double-Pushouts
	Sesqui-Pushouts
	Pullback-Pushouts

	Conclusion and Future Work
	Introduction
	String Diagrams of Bimodular Categories
	Signature of a Bimodular Category
	The Collage of a Bimodular Category
	String Diagrams of Bimodular Categories, via Collages
	Example: Shared State

	String Diagrams of Functor Boxes
	Functor box signatures
	Lax Monoidal Functor Semantics

	Bimodular Profunctors
	Bimodular Profunctors
	Tensor of Bimodular Profunctors
	Pointed Profunctors
	The Tricategory of Pointed Bimodular Profunctors
	Functor Boxes via Collages of String Diagrams

	String Diagrams of Internal Diagrams
	Conclusions
	Introduction
	Background
	Delta lenses
	Factorisation systems
	Idempotent comonads and weak equivalences

	Delta lenses as certain algebras for a semi-monad
	Constructing a semi-monad for delta lenses
	Delta lenses as certain semi-monad algebras

	Delta lenses as algebras for a monad
	Constructing a monad for delta lenses
	Delta lenses as monad algebras
	The free delta lens on a functor

	Delta lenses as the R-algebras of an algebraic weak factorisation system
	Constructing the awfs for delta lenses
	Coalgebras and lifting

	Concluding remarks and future work
	Appendix
	Introduction
	Background
	Spider Rewriting
	Rigs

	The category ResistR
	Rewriting for ResistR
	Discussion
	Acknowledgements
	Hypergraph categories
	Introduction
	Free (co)product completions and polynomial categories
	Monoidal structures on polynomial categories
	Composition comonoids as enriched categories
	Application: compositional bounds on dynamical systems
	Future directions
	1 Introduction
	2 First-order Representations of Variable Binding
	2.1 Variable Encodings

	3 Decorated Traversable Functors
	3.1 Decorations
	3.2 Traversals
	3.3 Decorated Traversable Functors

	4 Kleisli Representation for DTMs
	4.1 Substitution Metatheory

	5 Related Work
	6 Conclusion and Future Work
	A Appendix
	Introduction
	Structure of the paper
	Open questions
	Acknowledgements.

	Design Theory
	Classical designs
	Quantum designs

	Category Theory
	The CP construction

	Categorical Block Designs
	Classical and Quantum Models
	The Category of Block Designs
	The Category of Quantum Designs
	Relating BDesign to QDesign

	Arrow categories
	Proof for Lemma 2.13
	Structures in RUDesign and QDesign
	Introduction
	Conceivable Tasks
	Possible Tasks
	Attributes as states
	Conclusion and historical remarks
	Introduction
	Premonoidal and Effectful Categories
	Closed Effectful Categories
	V2-Profunctors
	Tight Profunctors

	Pro-effectful Categories
	Premonoidal Optics
	Proofs
	Proof of Theorem 1
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10

	1 Introduction
	2 Multisets
	3 Discrete distributions
	4 Continuous distributions
	5 Signed distributions
	6 Dual bases
	7 Dual Dirichlet and signed hypergeometric
	8 Signed hypergeometric channels as Bayesian inversion
	9 Conclusions and further work
	A Examples
	B Missing proofs
	C The bivariate case
	Introduction
	Bicategorical models
	Monoidal bicategories
	Premonoidal categories and Freyd categories
	Contributions and outline

	Premonoidal bicategories
	Examples of premonoidal bicategories

	Freyd bicategories
	Examples of Freyd bicategories

	Freyd bicategories and actions
	Conclusions
	Missing coherence axioms for Definition 22
	Proofs for Section 4
	From Freyd action to Freyd bicategory
	From Freyd bicategory to Freyd action
	The correspondence theorem

	1 Introduction
	2 Structured Cospans as a Cocartesian Equipment
	2.1 Double Category of Structured Cospans
	2.2 Cocartesian Equipment of Structured Cospans
	2.3 Maps Between Structured Cospan Double Categories

	3 Decorated Cospans as a Double Grothendieck Construction
	3.1 Double Grothendieck construction
	3.2 A Modular Reconstruction of Decorated Cospans
	3.3 Application: Double Category of Process Theories

	4 Conclusion
	References
	A Cocartesian Equipments
	Homotopy posets
	Obstructions to a morphism being iso
	Qualifying compositionality
	Open Graphs
	Schrödinger Compositionality

	1 Introduction
	2 The Interval Construction
	2.1 From Posets to Labelled Intervals

	3 Posetal Diagrams
	3.1 Posetal Diagrams as Local Functors
	3.2 Intervals in Lattices

	4 Limits of Posetal Diagrams
	4.1 Limit Procedure
	4.2 Limits of Posetal Diagrams

	Introduction
	Background: abstract and concrete categorical probability
	Joint distributions and densities for string diagrams
	Accumulating random variables into joint distributions
	Base measures and densities over standard Borel spaces
	Joint densities over joint distributions

	Diagrams as causal factorizations of joint distributions and densities
	Discussion
	Worked examples
	Future work and conclusion

	Measure theory background
	Parametric and coparametric categories
	Free copy/delete and Markov categories
	Introduction
	`Copy-composite' Bayesian lenses
	Copy-composition by coparameterization
	Coparameterized Bayesian lenses
	Coparameterized Bayesian updates compose optically

	Statistical games for local approximate inference
	Losses for lenses
	Local inference models
	Examples
	Relative entropy and Bayesian inference
	Maximum likelihood estimation
	Autoencoders via the free energy
	The Laplace approximation

	Future work
	References
	State-dependent channels
	Monoidal statistical games
	Examples
	Relative entropy
	Maximum likelihood estimation
	Free energy
	Laplacian free energy

	Introduction
	Background on Representable Markov categories

	Machines and Bayesian Filtering
	Bayesian Inference and Conjugate Priors

	Terminal objects as ``objects of behaviours''
	Proof Details
	Dist is strongly representable
	Comb machines morphisms commute with readout maps
	Filtering on sequences
	Bayes-f does Bayes
	Dist has transducers

