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Preface

The Fifth International Conference on Applied Category Theory took place at the University of

Strathclyde on 18–22 July 2022, following the previous meetings at Leiden (2018), Oxford (2019),

MIT (2020, fully online), and Cambridge (2021). It was preceded by the Adjoint School 2022 (11–15

July), a collaborative research event in which junior researchers worked on cutting-edge topics under

the mentorship of experts. The conference comprised 59 contributed talks, a poster session, an indus-

try showcase session, and a session where junior researchers who had attended the Adjoint School

presented the results of their research at the school. Information regarding the conference may be

found at https://msp.cis.strath.ac.uk/act2022.

ACT 2022 was a hybrid event, with physical attendees present in Glasgow and other partici-

pants taking part online. All talks were streamed to YouTube and with synchronous discussion on

Zulip. Links to recordings of the talks as well as notes taken during the conference may be found at

https://statebox.tv/act2022.

Submission to ACT2022 had three tracks: extended abstracts, software demonstrations, and pro-

ceedings. The extended abstract and software demonstration submissions had a page limit of 2 pages,

and the proceedings track had a page limit of 14 pages. Only papers submitted to the proceedings

track were considered for publication in this volume. ACT2022 was the first year with a software

demonstration track. In total, there were 97 submissions, of which 59 were accepted for presentation

and 24 for publication in this volume. Publication of accepted submissions in the proceedings was

determined by personal choice of the authors and not based on quality. Each submission received a

review from three different members of the programming committee, and papers were selected based

on discussion and consensus by these reviewers.

The contributions to ACT2022 ranged from pure to applied and included contributions in a wide

range of disciplines in science and engineering. ACT2022 included talks in linguistics, functional

programming, classical mechanics, quantum physics, probability theory, electrical engineering, epi-

demiology, thermodynamics, engineering, and logic. The quality of submissions to ACT2022 was

very high, containing both cutting-edge category theory and a high degree of relevance to the chosen

application. Many of the submissions had software demonstrating their work or represented work

done in collaboration with industry or a scientific organization. The industry session included 10

invited talks by practitioners using category theory in private enterprise. ACT2022 was sponsored by

Huawei, Protocol Labs, Cambridge Quantum, Conexus, Topos, and SICSA (Scottish Informatics and

Computer Science Alliance).

ACT2022 was the first meeting since the inaugural which was not severely affected by COVID-

19. The conference saw the community return in full force with more attendees, submissions, and

general initiatives than previous editions of the conference. In particular, we were inspired by how

many new people from a very wide range of backgrounds have joined in research with the applied

category theory community. We hope that ACT, the conference and the community, continue to grow

in future years. We are excited to see the new developments at ACT2023.

Jade Master and Martha Lewis

Chairs of the ACT 2022 Programme Committee

http://dx.doi.org/10.4204/EPTCS.380.0
https://msp.cis.strath.ac.uk/act2022
https://statebox.tv/act2022
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We define a notion of grading of a monoid T in a monoidal category C , relative to a class of mor-
phisms M (which provide a notion of M -subobject). We show that, under reasonable conditions
(including that M forms a factorization system), there is a canonical grading of T. Our application
is to graded monads and models of computational effects. We demonstrate our results by character-
izing the canonical gradings of a number of monads, for which C is endofunctors with composition.
We also show that we can obtain canonical grades for algebraic operations.

1 Introduction

This paper is motivated by quantitative modelling of computational effects from mathematical program-
ming semantics. It is standard in this domain to model notions of computational effect, such as nondeter-
minism or manipulation of external state, by (strong) monads [11]. In many applications, however, it is
useful to be able to work with quantified effects, e.g., how many outcomes a computation may have, or to
what degree it may read or overwrite the state. This is relevant, for example, for program optimizations
or analyses to assure that a program can run within allocated resources. Quantification of effectfulness
is an old idea and goes back to type-and-effect systems [8]. Mathematically, notions of quantified effect
can be modelled by graded (strong) monads [13, 10, 4].

It is natural to ask if there are systematic ways for refining a non-quantitative model of some effect
into a quantitative version, i.e., for producing a graded monad from a monad. In this paper, we answer
this question in the affirmative. We show how a monad on a category can be graded with any class
of subfunctors (intuitively, predicates on computations) satisfying reasonable conditions, including that
it forms a factorization system on some monoidal subcategory of the endofunctor category. Moreover,
this grading is canonical, namely universal in a certain 2-categorical sense. We also show that algebraic
operations of the given monad give rise to flexibly graded algebraic operations [5] of the canonically
graded monad. Instead of working concretely with monads on a category, we work abstractly with
monoids in a (skew) monoidal category equipped with a factorization system.

The structure of the paper is this. In Section 2, we introduce the idea of grading by subobjects for
general objects and instantiate this for grading of functors. We then proceed to gradings of monoids and
monads in Section 3. In Section 4, we explore the specific interesting case of grading monads canonically
by subsets of their sets of shapes. In Section 5, we explain the emergence of canonical flexibly graded
algebraic operations for canonical gradings of monads. One longer proof is in Appendix A.

We introduce the necessary concepts regarding the classical topics of monads, monoidal categories
and factorization systems. For additional background on the more specific concepts of graded monad
and skew monoidal category, which we also introduce, we refer to [4, 2] and [14, 7] as entry points.

http://dx.doi.org/10.4204/EPTCS.380.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 Canonical Gradings of Monads

2 Grading objects and functors

As a first step towards gradings of monoids, we introduce the notion of a grading of an object of a
category C with respect to a class of morphisms M in C . We show that every object T has a canonical
such grading. The case we care most about is when C is a category of endofunctors, so that, in the next
section, where we extend these results to gradings of monoids, the monoids are exactly monads.
Definition 2.1. Let G be a category, whose objects e we call grades. A G -graded object of a category
C is a functor G : G → C .

Let M be a class of morphisms of a category C , and T be an object of C . There is a category M /T ,
which has as objects M -subobjects of T , i.e., pairs (S,s) of an object S and an M -morphism s : S � T .
Morphisms f : (S,s)→ (S′,s′) are C -morphisms f : S→ S′ such that s = s′ ◦ f . We then have a M /T -
graded object TM of C , defined by TM (S,s) = S. This graded object forms an M -grading in the sense
of the following definition, and is in fact the canonical M -grading (see Theorem 2.3 below).
Definition 2.2. Let M be a class of morphisms of a category C . An M -grading (G ,G,g) of an object
T of C consists of a category G , a functor G : G → C (= a G -graded object of C ), and a natural
transformation typed gd : Gd � T whose components are all in M . A morphism (F, f ) : (G ,G,g)→
(G ′,G′,g′) between such gradings is a functor F : G → G ′ equipped with a natural isomorphism f :
G′ ·F ∼= G, such that gd ◦ fd = g′Fd .

G 1

G ′ C

F

G′

G Tf

g
=

G 1

G ′ C

F

G′

T

g′

A 2-cell β : (F, f )⇒ (F ′, f ′) between such morphisms is a natural transformation β : F ⇒ F ′ such that
f ′ ◦ (G′ ·β ) = f . These form a 2-category GradeM T .

We organize gradings into a 2-category so that we can prove a universal property (the following
theorem) that characterizes the canonical grading. The characterization is up to equivalence; there is no
reason to distinguish between isomorphic grades, therefore we can work with gradings that are equiv-
alent to the canonical one. Working up to equivalence has the added benefit that, since M /T is often
equivalent to a small category, we often have a canonical grading with a small set of grades.
Theorem 2.3. Let M be a class of a morphisms of a category C , and let T be an object of C . The data
(M /T,TM ,snd), where TM (S,s) = S and snd(S,s) = s, make a grading of T . This grading is canonical
in the sense that it is the pseudoterminal object of GradeM T . Explicitly, for every other M -grading
(G ,G,g) of T :

• there is a morphism (F, f ) : (G ,G,g)→ (M /T,TM ,snd) of M -gradings;

• this morphism is essentially unique in the sense that there is a natural assignment of an isomor-
phism (F ′, f ′)∼= (F, f ) to every (F ′, f ′) : (G ,G,g)→ (M /T,TM ,snd).

Proof. For existence, define (F, f ) : (G ,G,g)→ (M /T,TM ,snd) by

Fd = (Gd,gd) Fh = Gh fd = idGd

For uniqueness, given (F ′, f ′), we have 2-cells β(F ′, f ′) : (F ′, f ′)⇒ (F, f ) and β
−1
(F ′, f ′) : (F, f )⇒ (F ′, f ′)

given by β(F ′, f ′),d = f ′d and β
−1
(F ′, f ′),d = f ′−1

d . These are clearly natural in (F ′, f ′) and inverse to each
other, so we can use β as the required natural isomorphism (F ′, f ′)∼= (F, f ).
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Remark 2.4. In this paper, we discuss the problem of constructing canonical gradings, but one can also
consider the dual problem of constructing canonical degradings. For graded monads, this problem is
discussed in [1, 9]. In the setting of this section, the initial degrading of a functor G : G → C would
be the colimit colimG, together with the morphisms ine : Ge→ colimG (when the colimit exists). The
data (G ,G, in) is then an M -grading of colimG whenever ine is in M for all e (which is the case for
our examples). This grading will typically not be the canonical grading of colimG however. (For graded
monads the situation is more complex: one does not take an ordinary colimit, but instead a colimit in a
2-category of monoidal categories, as discussed in [1].)

2.1 Canonical gradings of endofunctors on Set

We give several examples for the case where C = [Set,Set] and M is the class of natural transformations
whose components are injective functions. In this case, every M -subobject of an endofunctor T : Set→
Set is isomorphic in M /T to a unique M -subobject s : S � T in which each injection sX is an inclusion.
In other words, s is a choice of a subset SX ⊆ T X for every set X , closed under the action of T in the
sense that x ∈ SX implies T f x ∈ SY for every f : X→Y . Below we characterize M /T up to equivalence
for various endofunctors T , using the fact that we need only consider the case where s is a family of
inclusions.

Example 2.5. The category M /Id is equivalently the poset {⊥ ≤ >}, with ⊥ corresponding to the
M -subobject S given by SX = /0 for all X , and > corresponding to SX = X for all X .

Example 2.6. Consider the endofunctor M×T−, where M is a set and T is an endofunctor on Set. The
category M /(M×T−), is equivalent to the category (M /T )M, in which objects are M-indexed families
(Σz ∈M /T )z∈M of M -subobjects of T . This is the case because, from every S �M×T− in which each
component is an inclusion, we can construct such a family ΣΣΣ[S], and this construction forms a bijection
with inverse S[−].

ΣΣΣ[S]zX = {x ∈ T X | (z,x) ∈ SX} S[Σ]X = {(z,x) ∈M×T X | x ∈ ΣzX}

In the special case T = Id, we have M /(M× (−)) ' (M /Id)M ' {⊥ ≤ >}M ' (PM,⊆), so the M -
subobjects of M× (−) are equivalently the subsets of M, ordered by inclusion.

Example 2.7. Consider the endofunctor V ⇒ (−) (the underlying functor of the reader monad on Set),
where V is a fixed set, and let M be the class of componentwise injective natural transformations.
The M -subobjects of V ⇒ (−), and hence the objects of the canonical M -grading of V ⇒ (−), are
equivalently upwards-closed sets of equivalence relations on V .

To explain this in more detail, let EquivV be the set of equivalence relations R on V , considered
as subsets R ⊆ V ×V . A function f : V → X respects R ∈ EquivV when vRv′ implies f v = f v′ for
all v,v′ ∈ V , equivalently, when f factors through the quotient [−]R : V → V/R. A set Σ ⊆ EquivV of
equivalence relations is upwards-closed when R ∈ Σ implies R′ ∈ Σ for all R,R′ ∈ EquivV with R ⊆ R′.
Every such Σ induces a subfunctor S[Σ]�V ⇒ (−), defined by

S[Σ]X = { f : V → X | f respects some R ∈ Σ}

To go in the other direction, consider a subfunctor S � V ⇒ (−) in which every component of the
M -morphism is an inclusion. We obtain an upwards-closed ΣΣΣ[S]⊆ EquivV :

ΣΣΣ[S] = {R ∈ EquivV | [−]R ∈ S(V/R)}
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This is upwards-closed because if R ⊆ R′ then [−]R′ : V → V/R′ factors through [−]R : V → V/R, and
since S forms a functor, the family S is closed under postcomposition. These two constructions are in
bijection, with S[ΣΣΣ[S]] = S and ΣΣΣ[S[Σ]] = Σ. It follows that M /(V ⇒ (−)) is equivalent to the poset
of upwards-closed sets Σ⊆ EquivV , ordered by inclusion, and hence that this poset forms the canonical
M -grading of V ⇒ (−).
Example 2.8. Consider the endofunctor V ⇒V×(−) (the underlying functor of the state monad), where
V is a set. Since V ⇒ V × (−) ∼= (V ⇒ V )× (V ⇒ (−)), we can combine Examples 2.6 and 2.7
to characterize the M -subobjects of V ⇒ V × (−). Every such subobject equivalently consists of
an upwards-closed set Σp ⊆ EquivV for each function p : V → V . These can also be seen as subsets
Σ ⊆ (V ⇒ V )×EquivV such that {R | (p,R) ∈ Σ} is upwards-closed for each p : V → V . Given such a
Σ, the corresponding M -subobject S[Σ]� (V ⇒V × (−)) is

S[Σ]X = { f : V →V ×X | ∃(p,R) ∈ Σ. π1 ◦ f = p ∧ π2 ◦ f respects R}

3 Grading monoids and monads

We proceed to grading monoids. To define the notion of grading of a monoid, we need an appropriate
multiplication operation on the grades. The obvious idea to to ask for the grades to form a monoidal
category instead of just a category, and much of the previous work on graded monads (such as [10]) does
exactly this. However, in some of examples we do not get a monoidal category of grades, but only a skew
monoidal category [14] of grades.

Definition 3.1. A (left-)skew monoidal category is a category C with a distinguished object I, a functor
⊗ : C ×C → C and three natural transformations λ , ρ , α typed

λX : I⊗X → X ρX : X → X⊗ I αX ,Y,Z : (X⊗Y )⊗Z→ X⊗ (Y ⊗Z)

satisfying the equations

(m1)
I⊗ I

I I

λIρI (m2)
(X⊗ I)⊗Y X⊗ (I⊗Y )

X⊗Y X⊗Y

αX ,I,Y

X⊗λYρX⊗Y

(m3)
(I⊗X)⊗Y I⊗ (X⊗Y )

X⊗Y

αI,X ,Y

λX⊗Y λX⊗Y

(m4)
(X⊗Y )⊗ I X⊗ (Y ⊗ I)

X⊗Y

αX ,Y,I

ρX⊗Y X⊗ρY

(m5)
(X⊗ (Y ⊗Z))⊗W X⊗ ((Y ⊗Z)⊗W )

((X⊗Y )⊗Z)⊗W (X⊗Y )⊗ (Z⊗W ) X⊗ (Y ⊗ (Z⊗W ))

αX ,Y⊗Z,W

X⊗αY,Z,WαX ,Y,Z⊗W

αX⊗Y,Z,W αX ,Y,Z⊗W

(C , I,⊗) is partially normal if one or several of λ , ρ or α is a natural isomorphism. In particular, it is
left-normal if λ is an isomorphism. A monoidal category is a fully normal skew monoidal category.

A right-skew monoidal category is given by (C , I,⊗,λ ,ρ,α) such that the data (C , I,⊗rev,ρ,λ ,α),
where X⊗rev Y = Y ⊗X , form a left-skew monoidal category.
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Definition 3.2. A monoid in a skew monoidal category (C , I,⊗) is an object T of C equipped with
morphisms

η : I→ T µ : T ⊗T → T

satisfying the equations

T I⊗T T ⊗T

T ⊗ I

T ⊗T T

ρT

λT η⊗T

µ

T⊗η
µ

(T ⊗T )⊗T T ⊗T

T ⊗ (T ⊗T )

T ⊗T T

αT,T,T

µ⊗T

µ

T⊗µ
µ

The concept of lax monoidal functor between skew monoidal categories is defined as for monoidal
categories; the same applies to the concept of monoidal transformations between lax monoidal functors.
Definition 3.3. Given a skew monoidal category G= (G , I,�), a G-graded monoid in a skew monoidal
category C = (C , I,⊗) is the same as a lax monoidal functor G : G→ C. Explicitly, it is a functor
G : G → C with a morphism η : I→GI and a natural transformation typed µd,d′ : Gd⊗Gd′→G(d�d′)
subject to equations similar to those of a monoid.
Definition 3.4. Let T= (T,η ,µ) be a monoid in a skew monoidal category C= (C , I,⊗), and let M be a
class of morphisms of C . An M -grading (G,G,g) of the monoid T consists of a skew monoidal category
G, a lax monoidal functor G : G→C (= a G-graded monoid in C), and a monoidal transformation typed
gd : Gd � T , whose components are all in M . A morphism (F, f ) : (G,G,g)→ (G′,G′,g′) between such
gradings is a lax monoidal functor F : G→ G′ equipped with a monoidal isomorphism f : G′ ·F ∼= G,
such that gd ◦ fd = g′Fd . A 2-cell β : (F, f )⇒ (F′, f ′) is a monoidal transformation β : F⇒ F′ such that
f ′ ◦ (G′ ·β ) = f . We write GradeMT for this 2-category.
Example 3.5. The situation we are mainly interested in is when C = [D ,D ] is the category of endofunc-
tors on some D , with the identity for I and functor composition for ⊗. In this case, monoids in C are
exactly monads on D , and a lax monoidal functor G : G→ C (a G-graded monoid in C) is a G-graded
monad on D , in the sense of [13, 10, 4]. Explicitly, the unit and multiplication of G have the form

ηX : X → GIX µe,e′,X : Ge(Ge′X)→ G(e� e′)X

For a concrete example, let V be a set (of states), and let T be the state monad over V :

T X =V ⇒V ×X ηX xv = (v,x) µX f v = gv′ where (v′,g) = f v

We give a M -grading (G,G,g) of T, where M is componentwise injective natural transformations. Let
G be the poset of subsets of {get,put} ordered by inclusion, which forms a strict monoidal category with
/0 for the unit I and e∪ e′ for the tensor e� e′. We then define G by

Ge = { f : V→V ×X
| get 6∈ e⇒ (π1 ◦ f is a constant function or idV ∧ π2 ◦ f is a constant function)
∧ put 6∈ e⇒ π1 ◦ f is idV}

with unit and multiplication defined as for T. This forms an M -grading with the inclusions for g.
This grading is suitable for interpreting a Gifford-style effect system [8] for global state. A function

f : V →V ×X is a computation f ∈ T X , sending an initial state to a pair of a final state and a result. A
grade e gives the set of operations that a computation may use when it is executed, so GeX is the subset of
T X on the computation that only use the operations in e. For example, G{get}X contains computations
that may use the initial state, but do not change the state (with put).



6 Canonical Gradings of Monads

We turn now to the canonical grading of a monoid T in a skew monoidal category C. Since the
category M /T forms the canonical grading of the object T , we show that (under the conditions explained
below), we can make M /T into a skew monoidal category, using the monoid structure of T.

First consider the slice category C /T (where we do not restrict to M -morphisms). This already
forms a skew monoidal category, with

I
η−→ T S⊗S′ s⊗s′−−→ T ⊗T

µ−→ T

for the unit and tensor of (S,s) and (S′,s′) (see for example Kelly [6]). In general this skew monoidal
structure will not restrict to M /T , because the morphism µ is not in M for many of our examples.
However, we can make M /T into a skew monoidal category by adapting the skew monoidal structure
on C /T . The idea is to just factorize the morphisms we use in the tensor and unit of C /T to obtain
morphisms in M . Hence we ask that M forms an orthogonal factorization system in the usual sense.
Definition 3.6. An (orthogonal) factorization system on a category C is a pair (E ,M ) of classes of
morphisms of C , such that

• both E and M contain all isomorphisms, and are closed under composition;

• E -morphisms are orthogonal to M -morphisms: for every commuting square in C as on the left
below, with e∈ E and m∈M , there is a unique d making the diagram on the right below commute.

X Y

X ′ Y ′

e

f g

m

X Y

X ′ Y ′

e

f gd

m

• every morphism f : X → Y in C has an (E ,M )-factorization: there exist an object S, an E -
morphism e : X � S, and an M -morphism m : S � Y such that the diagram below commutes.

X Y

S

f

e m

Example 3.7. Writing Mor for the class of all morphisms and Iso for the class of isomorphisms, every
category has (Mor,Iso) and (Iso,Mor) as factorization systems. On Set, the classes of surjective and
of injective functions form a factorization system (Surj,Inj). To factorize a function f : X → Y in this
case, we let S = { f x | x ∈ X} be the image of f , and define X S Ye m by ex = f x and my =
y. On the category Poset of partially ordered sets and monotone functions, we have a factorization
system (Surj,Full), where Surj is the class of surjective monotone functions and Full is the class of full
functions, i.e. monotone functions m : S→ Y such that mx≤ my implies x≤ y. Factorizations are given
as in Set, with the order on S inherited from the order on Y .

We are primarily interested in canonically grading monads, which are monoids in the endofunctor
category C = [D ,D ], with functor composition as the tensor. We therefore want a factorization system
on [D ,D ]. We give the most standard option for this as the following example, but there are others we
are interested in (see Lemma 4.2 below). In models of computational effects we in fact usually want
a strong monad. If D is monoidal, then a strong endofunctor on D is a functor F : D → D equipped
with a strength, i.e. a natural transformation strΓ,X : Γ⊗D FX → F(Γ⊗D X) satisfying two laws for
compatibility with the left unitor and associator of D . These form a monoidal category [D ,D ]s, in which
morphisms are strength-preserving natural transformations and the tensor is composition. Strong monads
are monoids in [D ,D ]s. Below we consider non-strong monads for simplicity, but we can also apply our
results to strong monads using a factorization system on [D ,D ]s.
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Example 3.8. If (E ,M ) is a factorization system on a category D , then the endofunctor category [D ,D ]
has a factorization system (componentwise-E ,componentwise-M ). Factorizations F � S � G of nat-
ural transformations are componentwise. If D is monoidal and E is closed under Γ⊗D (−) for all Γ

then (componentwise-E ,componentwise-M ) is a factorization system on [D ,D ]s. Morphisms are again
factorized componentwise; for the construction of the strength for S see [3, Section 2.2].

Forming a factorization system (E ,M ) is merely a property of a class M of morphisms, because
E is necessarily the class of all morphisms e that are orthogonal to all M -morphisms. Factorizations of
morphisms are unique up to unique isomorphism.

If M forms a factorization system (E ,M ), then for a given monoid T we construct a unit J and a
tensor � for the category M /T by factorizing morphisms as follows:

I T

J

η

q

S⊗S′ T ⊗T T

S�S′

s⊗s′

qS,S′

µ

To construct the required structural morphisms, we make the additional assumption that E is closed
under (−)⊗S for every S � T . Under this assumption, the following squares, which all commute, have
a unique diagonal, and these diagonals are the required structural morphisms.

S1⊗S′1 S1 �S′1

S2⊗S′2

S2 �S′2 T

qS1 ,S
′
1

f⊗ f ′

f� f ′

qS2 ,S
′
2

where

S1 S2

T

f
S′1 S′2

T

f ′

are morphisms in M /T

I⊗S J⊗S J�S

S T

q⊗S

λS

qJ,S

`S

S S

S⊗ I

S⊗J

S�J T

ρS

rSS⊗q

qS,J

(S⊗S′)⊗S′′ (S�S′)⊗S′′ (S�S′)�S′′

S⊗ (S′⊗S′′)

S⊗ (S′�S′′)

S� (S′�S′′) T

qS,S′⊗S′′

αS,S′,S′′

qS�S′,S′′

aS,S′,S′′S⊗qS′,S′′

qS,S′�S′′

If λ is a natural isomorphism, then so is `. This does not apply to ρ and α unless E is also closed
under S⊗ (−) for all S � T .

Theorem 3.9. Let T be a monoid in a skew monoidal category C = (C , I,⊗), and let (E ,M ) be a
factorization system on C . If E is closed under (−)⊗ S for every M -subobject S � T , then M /T =
(M /T,J,�) is a skew monoidal category. If C is left-normal, then so is M /T. If E is also closed under
S⊗ (−) for every S � T and C is monoidal, then M /T is monoidal.

Proof. See Appendix A.
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Remark 3.10. Closure of E under T ⊗ (−) does not in general imply closure of E under S⊗ (−) for
S� T . Consider the factorization system (E ,M )= (componentwise surjective,componentwise full) on
[Poset,Poset], with composition as⊗. For an endofunctor F : Poset→Poset, closure of E under F⊗(−)
amounts to closure of Surj under F . The class Surj is closed under V ⇒ (−) exactly when V is discrete.
Hence, while this property holds for {0,1}⇒ (−), it does not hold for {0≤ 1}⇒ (−)� {0,1}⇒ (−).

There are cases in which E is closed under S⊗ (−) for all S � T even if E is not closed under
F ⊗ (−) for general F : for example every M -subobject of the endofunctor M× (−) on Poset has the
form S× (−) for some S � M, and functors of the form S× (−) send surjections to surjections.

Our task is now to show that the skew monoidal category M /T= (M /T,J,�) forms the canonical
grading (M /T,TM ,snd) of the monoid T when E is closed under S⊗ (−) for each S � T . The lax
monoidal functor TM : M /T→ C is given on objects by

TM (S,s : S � T ) = S

and has as unit and multiplication the E -morphisms from the construction of J and �:

I TM J
q

TM (S,s)⊗TM (S′,s′) TM ((S,s)� (S′,s′))
qS,S′

That this is lax monoidal is immediate from the definition of the structural morphisms of M /T. Finally,
the monoidal transformation snd : TM ⇒ T is given by snd(S,s) = s. Monoidality of snd is immediate
from the definitions of J and �. Hence (M /T,TM ,snd) is a grading of T. Canonicity is the following
theorem.

Theorem 3.11. Let T be a monoid in a skew monoidal category C = (C , I,⊗), and let (E ,M ) be a
factorization system on C such that E is closed under (−)⊗ S for each M -subobject S of T . The
grading (M /T,TM ,snd) is canonical in the sense that it is the pseudoterminal object of GradeMT.
Explicitly, for every M -grading (G,G,g) of the monoid T:

• there is a morphism (F, f ) : (G,G,g)→ (M /T,TM ,snd), of M -gradings of T;

• this morphism is essentially unique in the sense that there is a natural assignment of an isomor-
phism (F′, f ′)∼= (F, f ) to every (F′, f ′) : (G,G,g)→ (M /T,TM ,snd).

Proof. We have done most of the proof already as Theorem 2.3; we fill in the remaining parts. Recall
from there that we define

Fd = (Gd,gd) Fh = Gh fd = idGd

We make F into a lax monoidal functor by using the unique diagonals of the following squares as the
unit and multiplication. The squares commute because G is lax monoidal.

I J

GI T

q

η η

gI

Gd⊗Gd′ Gd �Gd′

G(d�d′) T

qGd,Gd′

µd,d′ µd,d′

gd�d′

This definition immediately implies that f is monoidal, and hence that (F, f ) is a morphism of M -
gradings of T. Finally, given (F′, f ′), we show that βd = f ′d defines an isomorphism β : (F′, f ′)∼= (F, f ).
For this it remains to show that β is monoidal (it follows automatically that the inverse β−1 is monoidal).
For compatibility with the multiplications, this amounts to showing that the square on the left below
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commutes. For this it is enough to show both paths in that square provide the unique diagonal of the
square on the right, and this follows from the fact that f ′ is monoidal.

F ′d �F ′d′ Gd �Gd′

F ′(d�d′) G(d�d′)

f ′d� f ′d′

µd,d′ µd,d′

f ′d�d′

F ′d⊗F ′d′ F ′d �F ′d′

Gd⊗Gd′

G(d�d′) T

qF ′d,F ′d′

f ′d⊗ f ′d′

µd,d′

gd�d′

Compatibility with the units is similar.

Example 3.12. Let (M,ε, ·) be a monoid in the cartesian monoidal category Set, and let T be the cor-
responding writer monad, which has endofunctor T X = M×X , unit ηX x = (ε,x), and multiplication
µX(z,(z′,x)) = (z · z′,x). Then T is a monoid in the monoidal category of endofunctors on Set, with
functor composition. Consider the factorization system (E ,M ) on [Set,Set] in which E (respectively
M ) is componentwise surjective (resp. injective) natural transformations. The class E is closed under
functor composition on both sides, so M /T is monoidal and provides the canonical grading of T. We
show in Example 2.6 that M -subobjects of T are equivalently subsets Σ ⊆M. Under this equivalence,
the monoidal structure on M /T is given by J = {ε} and Σ�Σ′ = {z · z′ | z ∈ Σ,z′ ∈ Σ′}. The graded
monad TM is given by

TM Σ = Σ×X ηX x = (ε,x) µΣ,Σ′,X(z,(z′,x)) = (z · z′,x)

Example 3.13. We show in Example 2.8 that, when M is componentwise injective natural transfor-
mations and T = V ⇒ V × (−), the objects of M /T are equivalently subsets Σ ⊆ (V ⇒ V )×EquivV
satisfying a closure condition. When T is the state monad, these form a monoidal category M /T, and
the graded monad TM has underlying functor

TM ΣX = { f : V →V ×X | ∃(p,R) ∈ Σ. p = π1 ◦ f ∧ (π2 ◦ f ) respects R}

Example 3.5 provides another grading of T, in which the grades are subsets of {get,put}. By Theo-
rem 3.11, we obtain a morphism (F, f ) of gradings. Under the characterization of grades as subsets Σ,
the underlying functor F sends e⊆ {get,put} to Fe⊆ (V ⇒V )×EquivV as follows:

F /0 = {(idV ,V ×V )} F{get,put}= (V ⇒V )×EquivV

F{get}= {(idV ,R) | R ∈ EquivV} F{put}= {(p,V ×V ) | p is a constant function or idV}

4 Canonical grading by sets of shapes

When assigning grades to computations t ∈ T X , where T is a monad on Set, we are often interested only
in the shape of the computation. A shape is an element of T 1, where 1 is the one-element set; and the
shape of the computation t ∈ T X is T ! t ∈ T 1, where ! is the unique function X → 1. A grade in this case
is a subset e⊆ T 1 of the set of shapes, and a computation has grade e when its shape T ! t is in e.

More generally, if T is a monad on a category D with a terminal object 1, then the object of shapes
is T 1. Given a class M of morphisms of D , we can consider grading by M -subobjects of T 1. We show
in this section that these grades can be considered canonical, using a suitable class M ′ of morphisms of
[D ,D ].
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Definition 4.1. Let A be a category. A natural transformation f : F ⇒ G : A →D is cartesian if all of
its naturality squares are pullbacks. If A has pullbacks, then a functor F : A → D is cartesian when it
preserves pullbacks.

Lemma 4.2. Let (E ,M ) be a factorization system on a category D with pullbacks, and let A be a
category with a terminal object. Then we have a factorization system (E ′,M ′) on [A ,D ] as follows:

E ′ = natural transformations e such that e1 ∈ E

M ′ = cartesian natural transformations m such that m1 ∈M

For every functor G : A →D , there is an equivalence of categories M ′/G'M /G1.

Before giving the proof, we note that Kelly [6] considers (E ′,M ′) in the case (E ,M ) = (Iso,Mor).

Proof. That E ′ and M ′ are closed under isomorphisms and composition is straightforward. To factorize
a natural transformation τ : F⇒G, we first factorize τ1 using (E ,M ), as on the bottom of the following
diagram.

FX SX GX

F1 S G1

F!

eX

τX

mX

G!
e

τ1

m

We then factorize any component τX as on the top, by taking as (SX ,mX) the pullback of (S,m) along G!,
and taking as eX the unique map from FX to this pullback. The objects SX form a functor using unique
maps into pullbacks, and the morphisms eX and mX are natural transformations. When X = 1 we have
eX ∈ E and mX ∈M because the vertical morphisms in the diagram are all isomorphisms. Hence we
have the required factorization of τ into e ∈ E ′ and m ∈M ′. For orthogonality, unique diagonal fill-ins
are constructed as unique maps to pullbacks.

The required equivalence of categories exists because every M ′-subobject m : S � G is determined
up to isomorphism by the component m1. The latter is the corresponding object of M /G1.

Lemma 4.2 provides a construction of a factorization system (E ′,M ′) in particular on endofunctor
categories [D ,D ] when D has pullbacks and a terminal object. In this case the M ′-subobjects of T
are M -subobjects of T 1. However, E ′ is often closed under neither (−) · S nor S · (−) for S � T , and
M ′/T is neither left-skew nor right-skew monoidal for a monad T. In the following example, left-skew
monoidality fails, but we do get right-skew monoidality.

Example 4.3. Consider the factorization system (E ,M ) = (Surj,Inj) on A = D = Set. Surjections
in Set are preserved by any functor S, therefore the class E ′ of the factorization system (E ′,M ′) on
[Set,Set] is closed under S · (−) for any S (as (S · e)1 = Se1). Given a set monad T, the category M ′/T
obtains a right-skew monoidal structure by the “reversal” of Theorem 3.9.

Let T be the state monad for a set of states V :

T =V ⇒V × (−) ηX xv = (v,x) µX f v = gv′ where (v′,g) = f v

Since T 1∼=V ⇒V , we have M ′/T ' Inj/(V ⇒V ), so that the canonical grades are equivalently subsets
of Σ ⊆ V ⇒ V , ordered by inclusion. A subset Σ corresponds to the M ′-subobject S[Σ]� T given by
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S[Σ]X = { f : V → V ×X | π1 ◦ f ∈ Σ}. Given such a subset, define Cl(Σ′) = { f : V → V ×X | ∀v.∃g ∈
Σ′.π1( f v) = gv}. The right-skew monoidal category of canonical grades Σ has unit J= {idV} and tensor
Σ�Σ′=Σ ◦̂Cl(Σ′), where Σ ◦̂Σ′= { f ′◦ f | f ∈Σ, f ′ ∈Σ′}. There is no left unitor for a left-skew monoidal
structure, because J�Σ′ = Cl(Σ′) is not in general equal to Σ′.

The failure of left-skew monoidality in this example can be traced back to the failure of E ′ to be
closed under (−) · S for endofunctors S � T . We had no such problem for the componentwise lifting
of (E ,M ). When (E ,M ) is stable (Definition 4.6 below) and one restricts [A ,D ] to cartesian natu-
ral transformations (and optionally further also to cartesian functors), then the componentwise lifting
actually coincides with (E ′,M ′), as we show in the next few lemmata. This then provides sufficient
conditions for E ′ to be closed under (−) ·S. We give an example in which these conditions are satisfied
in Example 4.10 below, where we actually obtain a monoidal structure on the category of grades.

Lemma 4.4. If A has pullbacks, m : S⇒ G : A → D is a cartesian natural transformation, and G is
cartesian, then S is also cartesian.

Proof. Every pullback square in A , as on the left below, induces a cube in D , as on the right below.
Four of the faces of this cube are pullbacks because m is cartesian, and the face on the right is a pullback
because G is cartesian. It follows that the left face is also a pullback.

X X ′

Y Y ′

x

f ′f

y

SX GX

SX ′ GX ′

SY GY

SY ′ GY ′

S f
G f

mX

mY

Gx

G f ′

Gy

mY ′
Sy

Sx

S f ′

mX ′

Lemma 4.5. If A has pullbacks, then any factorization system on [A ,D ]cartnt (all functors, but only
cartesian natural transformations) restricts to a factorization system on [A ,D ]cart (cartesian functors
and cartesian natural transformations).

Proof. It suffices to show that [A ,D ]cart is closed under factorizations of cartesian natural transforma-
tions. This a consequence of the previous lemma: if τ : F⇒G is a morphism in [A ,D ]cart that factorizes
as (S,e,m), then S is cartesian because G and m are.

Definition 4.6. If D has pullbacks, then a factorization system (E ,M ) on D is stable when E is closed
under pullbacks along arbitrary morphisms.

(The analogous property for M is true in every factorization system.)

Lemma 4.7. Assume that D has pullbacks, and let (E ,M ) be a stable factorization system on D . The
componentwise lifting of (E ,M ) to [A ,D ] restricts to a factorization system on [A ,D ]cartnt.

Proof. We need to check that, if a cartesian natural transformation τ : F⇒G factorizes as (S,e,m) using
(E ,M ) componentwise, then e and m are cartesian natural transformations. Given any f : X → Y , we
can consider the naturality square of τ for f , which is by assumption cartesian. It breaks into naturality
squares of e and m for f . We can then pull back (SY,mY ) along G f and be certain that the resulting
morphism is in M . The unique morphism from FX to the pullback vertex • is a pullback of (FY,eY )
along S f by the pullback lemma, and is therefore in E by stability. We therefore have two factorizations
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of τX : one through SX and one through •. Factorizations are unique up to isomorphism, and hence the
naturality squares of both e and m are pullbacks.

FX SX GX

•

FY SY GY

F f

eX

τX

mX

S f G f

eY

τY

mY

We also need to check that the diagonal fill-ins of cartesian squares built using (E ,M ) componen-
twise are cartesian. This holds because the pullback lemma provides a two-out-of-three property for
cartesian natural transformations: if m◦d and m are cartesian, then d is also cartesian.

Lemma 4.7 enables us to restrict the componentwise lifting of a factorization system to [A ,D ]cartnt.
The following lemma enables us to restrict the factorization system (E ′,M ′) defined at the beginning of
this section.

Lemma 4.8. Let (E ,M ) be any factorization system on [A ,D ]. If all natural transformations in M
are cartesian, then (E ,M ) restricts to a factorization system on [A ,D ]cartnt.

Proof. If τ = m◦ e and τ and m are cartesian, then e is cartesian by the pullback lemma.

Lemmata 4.7 and 4.8 provide two constructions of a factorization system on [A ,D ]cartnt: the com-
ponentwise lifting of a factorization system on D , and the factorization system (E ′,M ′) of Lemma 4.2.
We now show that the two coincide.

Proposition 4.9. Let (E ,M ) be a stable factorization system on a category D with pullbacks, and let
A be a category with a terminal object. The factorization system (E ′,M ′) on [A ,D ] from Lemma 4.2
and the componentwise lifting of (E ,M ) to [A ,D ] both restrict to the same factorization system on
[A ,D ]cartnt.

Proof. By stability of (E ,M ), for each cartesian natural transformation e, having e1 ∈ E is equivalent
to having eX ∈ E for all X . Hence when restricted to [A ,D ]cartnt, the E ′-morphisms are exactly the
[A ,D ]cartnt-morphisms whose components are in E , and similarly for M ′.

When A has pullbacks it follows, using Lemma 4.5, that the two factorization systems also restrict
to the same factorization system on [A ,D ]cart. When A = D , the latter forms a monoidal category
with functor composition as tensor, and E ′ is closed under (−) · S for every cartesian endofunctor S.
Hence we can construct canonical gradings of cartesian monads (monoids in [D ,D ]cart) by Theorem 3.11.
The grades of the canonical grading of a cartesian monad T are equivalently M -subobjects of T 1, by
Lemma 4.2.

Example 4.10. Let us return to the factorization system (E ,M ) = (Surj,Inj) on A = D = Set, which
is stable. Let (E ′,M ′) be the factorization system on [Set,Set]cart just discussed. Then E ′ is closed
both under (−) · S and under S · (−) for any cartesian set functor S. Hence M ′/T acquires a monoidal
structure for any cartesian set monad T.
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Let T be the list monad on Set, so T X is the set of lists over X , the unit is ηX x = [x], and the
multiplication is µX [xs1, . . . ,xsn] = xs1++ · · ·++xsn, where (++) is concatenation of lists. This monad is
cartesian. There is an isomorphism T 1∼= N, so shapes are equivalently natural numbers (corresponding
to the length of the list). Then M ′-subobjects of T are equivalently subsets Σ⊆ N. By the above, these
form the canonical M ′-grading of T. The monoidal structure on these subsets is given by

J= {1} Σ�Σ′ = {∑n
i=1 mi | n ∈ Σ,m1, . . . ,mn ∈ Σ′}

The graded monad TM ′ is given on objects by TM ′ΣX = {xs | |xs| ∈ Σ}, where |xs| is the length of xs.

5 Algebraic operations

In models of computational effects, we usually do not just want a (strong) monad T; we also want to
equip T with a collection of algebraic operations in the sense of Plotkin and Power [12]. The latter
provide interpretations of the constructs that cause the effects. When modelling computations using a
graded monad, we similarly want algebraic operations for the graded monad; such a notion of algebraic
operation was introduced in [5]. In this section, we therefore investigate the problem of constructing
algebraic operations for the graded monad TM , given algebraic operations for the monad T.

Throughout this section, we assume a monoidal category C = (C , I,⊗) that has finite products, for
example, endofunctors on a category with finite products. When we write T n below, we mean the product
of n-many copies of T . We work only with normal (i.e., non-skew) monoidal categories in this section.
The notion of algebraic operation for a graded monoid (e.g., a graded monad) that we use below works
for monoidal categories, but the appropriate notion for skew monoidal categories would be more com-
plicated. (It would use a list of grades ei instead of a single grade e in the definition below.) Hence when
we consider the canonical gradings below, we work under the assumption that they form a monoidal
category (for example, when E is closed under ⊗ in both arguments).

The following definition generalizes the notion of algebraic operation for a monad to monoids.
Definition 5.1. Let T = (T,η ,µ) be a monoid in C. An n-ary algebraic operation for T, where n is a
natural number, is a morphism φ : T n→ T such that

T n⊗T (T ⊗T )n T n

T ⊗T T

φ⊗T

〈πi⊗T 〉i µn

φ

µ

Definition 5.2. Let G= (G,η ,µ) : G→ C be a G-graded monoid in C. A (d1, . . . ,dn;d′)-ary algebraic
operation for G, where d1, . . . ,dn,d′ ∈G, is a natural transformation ψe : ∏i G(di� e)⇒ G(d′� e) such
that, for all e,e′ ∈ G ,

(∏i G(di� e))⊗Ge′ ∏i(G(di� e)⊗Ge′) ∏i G((di� e)� e′) ∏i G(di� (e� e′))

G(d′� e)⊗Ge′ G((d′� e)� e′) G(d′� (e� e′))

〈πi⊗Ge′〉i

ψe⊗Ge′

∏i µdi�e,e′ Gα

ψe�e′

µd′�e,e′ Gα

Example 5.3. Let C be the cartesian monoidal category Set. Then an n-ary algebraic operation for a
monoid T is a function φ : T n→ T such that the multiplication of the monoid distributes over φ from the
right. For example, if T is natural numbers with ordinary multiplication, then φ(x1, . . . ,xn) = x1+ · · ·+xn

is an n-ary algebraic operation.
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Definition 5.4. Let (G,G,g) be an M -grading of a monoid T, where M is a class of morphisms in C .
We say that a (d1, . . . ,dn;d′)-ary algebraic operation ψ for G is a grading of an n-ary algebraic operation
φ for T when the following diagram commutes for all e ∈G.

∏i G(di� e) G(d′� e)

T n T

ψe

∏i gdi�e gd′�e

φ

Suppose that T is a monoid in C, and that (E ,M ) is a factorization system on C such that E is
closed under (−)⊗S for all S � T . Then T has a canonical grading TM : M /T→C by Theorem 3.11.
Suppose in addition that the skew monoidal category M /T is actually monoidal (which is the case when
E is closed also under S⊗ (−) for all S � T ). We keep these assumptions without repeating them for
the rest of this section.

Our goal in the rest of this section is to show that we can assign canonical grades to algebraic oper-
ations for T. To be more precise, let φ : T n→ T is an n-ary algebraic operation for T, and let R1, . . . ,Rn

be a list of grades (M -subobjects of T ). We show how to construct a grade R′ and an algebraic operation

ψ : ∏iTM (Ri �−)→ TM (R′�−)

of arity (R1, . . . ,Rn;R′) for TM , such that ψ grades φ . The grade R′ is in a sense canonical (see Theo-
rem 5.6 below), and in fact every component of ψ is in E .

To do this, we make the following two further assumptions about E for the rest of the section. Firstly,
we assume that E contains the canonical morphisms 〈πi⊗Y 〉i : (∏i Xi)⊗Y → ∏i(Xi⊗Y ). This is the
case in particular when ⊗ preserves finite products on the left (because E contains all isomorphisms);
when ⊗ is composition of endofunctors this is automatically true. Secondly, we assume that E is closed
under finite products, i.e. that ∏i ei : ∏i Xi→∏iYi is in E whenever all of the morphisms ei : Xi � Yi are
in E . This is the case for all of the factorization systems we consider above.

The key lemma that enables us to construct ψ is the following, which characterizes algebraic opera-
tions for the canonical grading TM of T.
Lemma 5.5. Let φ : T n → T be an n-ary algebraic operation for T, and let R1, . . . ,Rn,R′ be M -
subobjects of T . There is a bijection between (1) morphisms p : ∏i Ri→ R′ such that

∏i Ri R′

T n T

p

φ

and (2) (R1, . . . ,Rn;R′)-ary algebraic operations ψ for TM that grade φ .

Proof. Given a morphism p as in (1), the following square commutes because φ is algebraic, and the
square hence has a unique diagonal ψS. Further applications of orthogonality show that ψ is an algebraic
operation. It is a grading of φ by definition.

(∏i Ri)⊗S ∏i(Ri⊗S) ∏i(Ri �S)

R′⊗S T n

R′�S T

〈πi⊗S〉i

p⊗S

∏i qRi ,S

ψS

qR′,S φ
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In the other direction, given ψ , we have a morphism p as follows; this p makes the diagram required for
(1) commute because ψ is a grading of φ .

p : ∏i Ri
∏i rRi−−−→∏i(Ri �J)

ψJ−→ R′�J
r−1

R′−−→ R′

From algebraicity of ψ it follows that this p makes the upper triangle of the above square commute and
hence, by uniqueness of the diagonal, that ψ is the only grading of φ that induces this p. The construction
of p from ψ is therefore injective. The following diagram chase shows that constructing a new p from
the ψ constructed from a given p yields the same p, hence the constructions form a bijection.

∏i Ri

(∏i Ri)⊗J ∏i(Ri⊗J) ∏i(Ri �J)

R′⊗J R′�J

R′

p

∏i rRi

ψJ

rR′

p⊗J
〈πi⊗J〉i ∏i qRi ,J

qR′,J
(R′⊗q)◦ρR′

(∏i Ri⊗q)◦ρ∏i Ri

Now given an n-ary algebraic operation φ for T and a fixed tuple R1, . . . ,Rn of M -subobjects of T ,

we construct the canonical R′ by factorizing ∏i Ri T n T
φ

as ∏i Ri R′ T
p

. The preceding
lemma then provides us with an (R1, . . . ,Rn;R′)-algebraic operation ψ for TM .

Theorem 5.6. Let φ : T n→ T be an n-ary algebraic operation for T.

1. The construction above defines an (R1, . . . ,Rn;R′)-ary algebraic operation ψ for TM , and ψ

grades φ . Every component ψS is in E .

2. For any M -subobject R′′� T and (R1, . . . ,Rn;R′′)-ary algebraic operation ψ ′ for TM , such that
ψ ′ grades φ , there is a unique f : R′→ R′′ in M /T such that ( f �S)◦ψS = ψ ′S for all S.

Proof. The first sentence of (1) is immediate from Lemma 5.5. Each ψS is in E because we have ψS ◦e =
e′ for some e,e′ ∈ E (this is the upper triangle in the definition of ψS, using the fact that p is in E ). This
implies ψS ∈ E because E -morphisms satisfy a two-out-of-three property. For (2), given ψ ′, we obtain
from Lemma 5.5 a morphism p′ : ∏i Ri→ R′′ making the diagram on the left below commute.

∏i Ri R′′

T n T

p′

φ

∏i Ri R′

R′′ T

p

p′ f

For a morphism f : R′→ R′′ in M /T , the condition that ( f �S)◦ψS = ψ ′S for all S implies (using S = J)
that f ◦ p = p′. The converse also holds, using orthogonality. Hence the conditions on the morphism f
are equivalent to commutativity of the square on the right above. The outside of the square commutes
and p is in E , so there exists a unique f .

Example 5.7. Consider the writer monad given by T = M× (−) from Example 3.12. Every z ∈ M
induces a unary algebraic operation φz : T → T , defined by φz,X(z′,x) = (z · z′,x). When M is the class
of componentwise injective natural transformations, the canonical M -grading of T has subsets Σ ⊆M
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as grades, and TM Σ = Σ× (−). Every input grade P⊆M induces a canonical output grade P′z ⊆M and
algebraic operation ψz,Σ : TM (P�Σ)⇒ TM (P′z �Σ), and these turn out to be:

P′z = {z · z′ | z′ ∈ P} ψz,Σ,X(z′,x) = (z · z′,x)

Example 5.8. Let T be the list monad on Set. This has a binary algebraic operation (++) : T ×T ⇒ T
that concatenates a pair of lists. As we explain in Example 4.10, subsets Σ ⊆ N provide a canonical
grading of T. If P1,P2 are subsets of N, then the grade we construct for the algebraic operation (++) as
above is P′= {n1+n2 | n1 ∈P1,n2 ∈P2}, and the algebraic operation for TM is the natural transformation
TM (P1 �−)×TM (P2 �−)⇒ TM (P′�−) that maps (xs1,xs2) to xs1 ++ xs2.

6 Conclusion and future work

We have demonstrated that factorization systems provide a unifying framework for the grading of monads
by subfunctors, in fact, monoids with subobjects. Skew monoidal categories turn out to be a more robust
setting for this than monoidal categories, which means, among other things, that this framework will be
directly applicable also to relative monads.

The abstract framework is pleasingly elegant, but for applications we would like obtain a stronger
intuition for its reach. We intend to explore this first by working out the canonical gradings with (strong)
subfunctors of further standard example (strong) monads from programming semantics, for the factor-
ization systems considered in this paper and possibly others. Indeed, the examples may point to further
factorization systems of interest. The outcomes of this exploration will hopefully lead to some new
heuristics for the construction of graded monads for applications such as type-and-effect systems.

Programming semantics applications also suggest trying grading with subfunctors on (strong) lax
monoidal functors (“applicative functors”) and (strong) monads in Prof (“arrows”). Comonads can be
graded with quotient functors.
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A Proof of Theorem 3.9

Given a monoidal category (C , I,⊗,λ ,ρ,α) with a monoid object (T,η ,µ) and an orthogonal factoriza-
tion system (E ,M ). We assume that E is closed under (−)⊗X for all (X ,x) ∈M /T .

Our aim is to show M /T carries a left-skew monoidal category structure ((J, j),�, `,r,a).

The unit (J, j) and tensor (X �Y,x� y) of two objects (X ,x), (Y,y) are defined as the factorizations
shown in the diagrams below.

I T

J

η

q j

X⊗Y T ⊗T T

X �Y

x⊗y

qx,y

µ

x�y

The functorial action of � on two morphisms f : (X ,x)→ (X ′,x′) and g : (Y,y)→ (Y ′,y′) is a mor-
phism f � g : (X �Y,x� y)→ (X ′�Y ′,x′� y′) defined as the diagonal fill-in of the commuting square
below.

X⊗Y X �Y

T ⊗T T

X ′⊗Y ′ X ′�Y ′

f⊗g

x⊗y

qx,y

f�g

x�y

µ

x′⊗y′

qx′,y′

x′�y′

The left unitor ` and associator a are also defined as the diagonal fill-ins for suitable commuting
squares. The right unitor is just a composition of morphisms.

Definition of `:

I⊗X J⊗X J�X

I⊗T T ⊗T T

X T

λX

I⊗x

q⊗X

j⊗x

q j,x

j�x
`x

λT

η⊗T µ

x

Definition of r:

X T

T ⊗ I T ⊗T T

X⊗ I X⊗J X �J

rx

ρX

x

ρT

T⊗η µ

x⊗I

X⊗q

x⊗ j

qx, j

x� j
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Definition of a:

(X⊗Y )⊗Z (X �Y )⊗Z (X �Y )�Z

(T ⊗T )⊗T T ⊗T

T

T ⊗ (T ⊗T ) T ⊗T

X⊗ (Y ⊗Z) X⊗ (Y �Z) X � (Y �Z)

αX ,Y,Z

(x⊗y)⊗z

qx,y⊗Z

(x�y)⊗z

qx�y,z

ax,y,z

(x�y)�z

αT,T,T

µ⊗T

µ

T⊗µ

µ

x⊗(y⊗z)

X⊗qy,z

x⊗(y�z)

qx,y�z

x�(y�z)

The proofs of functoriality of � and naturality of `, r and a are easy and omitted.
The equations (m1)–(m5) for `, r, a are each proved from the respective equations of λ , ρ , α using

the properties of �, `, r, a arising from their construction (the two triangles that the fill-in breaks the
square into). For each equation lhs = rhs, the two sides lhs and rhs are both shown to be the diagonal
fill-in of a square of the form s◦e = s′ ◦ f where e is a suitable E -morphism and s and s′ are the common
domain resp. codomain of lhs and rhs as morphisms in M /T . Below are the diagram chases for the
triangles lhs◦ e = f = rhs◦ e; the triangles s′ ◦ lhs = s = s′ ◦ rhs are straightforward.

Proof of (m1):

I J J⊗ I

I⊗ I J⊗J J�J

I J I⊗J

ρI

q
ρJ

r j

J⊗q

λI

q⊗I

I⊗q
q j, j

` j

q λJ

q⊗J

Proof of (m2):

(J⊗Y )⊗Z (J�Y )⊗Z (J�Y )�Z

J⊗ (Y ⊗Z) J⊗ (Y �Z) J� (Y �Z)

(I⊗Y )⊗Z I⊗ (Y ⊗Z) I⊗ (Y �Z)

Y ⊗Z Y �Z

(J⊗Y )⊗Z (J�Y )⊗Z (J�Y )�Z

αJ,Y,Z

q j,y⊗Z q j�y,z

a j,y,z

J⊗qy,z q j,y�z

`y�z
αI,Y,Z

(q⊗Y )⊗Z

λY⊗Z

(q⊗Y )⊗Z

q⊗(Y⊗Z)

λY⊗Z

I⊗qy,z

q⊗(Y�Z)

λY�Z

qy,z

q j,y⊗Z

`y⊗Z
qy◦`y ,z

q j�y,z

`y�Z
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Proof of (m3):

X �Y (X �Y )⊗ I (X �Y )⊗J (X �Y )�J

(X⊗Y )⊗ I (X⊗Y )⊗J

X⊗Y

X⊗ (Y ⊗ I) X⊗ (Y ⊗J) X⊗ (Y �J)

X �Y X � (Y ⊗ I) X � (Y ⊗J) X � (Y �J)

ρX�Y

rx�y

(X�Y )⊗q qx�y, j

ax,y, jαX ,Y,I

qx,y⊗I

(X⊗Y )⊗q

αX ,Y,J

qx,y⊗J

qx,y qx,y� j◦qy, j◦Y⊗q◦ρY

X⊗ρY

ρX⊗Y

qx,y

X⊗(Y⊗q) X⊗qy, j

qx,y� j

X�ρY

X�ry

X�(Y⊗q) X�qy, j

Proof of (m4):

X �Z (X⊗ I)�Z (X⊗J)�Z (X �J)�Z

X⊗Z (X⊗ I)⊗Z (X⊗J)⊗Z (X �J)⊗Z

X⊗Z X⊗ (I⊗Z) X⊗ (J⊗Z) X⊗ (J�Z)

X �Z X � (I⊗Z) X � (J⊗Z) X � (J�Z)

ρX�Z

rx�Z

(X⊗q)�Z qx, j�Z

ax, j,z

ρX⊗Z

qx,z

qx� j◦qx, j◦X⊗q◦ρX ,z

αX ,I,Z

(X⊗q)⊗Z

αX ,J,Z

qx, j⊗Z
qx� j,z

qx,z

X⊗λZ

qx,z◦λZ

qx, j�z◦q j,z◦q⊗Z

X⊗(q⊗Z) X⊗q j,z

qx, j�Z

X�λZ X�(q⊗Z) X�q j,z

X�`z
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Proof of (m5):

((X �Y )⊗Z)⊗W ((X �Y )�Z)⊗W ((X �Y )�Z)�W

(X⊗Y )⊗ (Z⊗W ) (X �Y )⊗ (Z⊗W ) (X �Y )⊗ (Z �W ) (X �Y )� (Z �W )

(X⊗Y )⊗ (Z �W )

(X⊗Y )⊗Z)⊗W X⊗ (Y ⊗ (Z⊗W )) X⊗ (Y ⊗ (Z �W )) X⊗ (Y � (Z �W )) X � (Y � (Z �W ))

X⊗ ((Y ⊗Z)⊗W ) X⊗ ((Y �Z)⊗W ) X⊗ ((Y �Z)�W ) X � ((Y �Z)�W )

(X⊗ (Y ⊗Z))⊗W (X⊗ (Y �Z))⊗W (X � (Y �Z))⊗W (X � (Y �Z))�W

((X �Y )⊗Z)⊗W ((X �Y )�Z)⊗W ((X �Y )�Z)�W

αX�Y,Z,W

qx�y,z⊗W q(x�y)�z,w

ax�y,z,w

αX ,Y,Z⊗W

(X⊗Y )⊗qz,w

qx,y⊗(Z⊗W ) (X�Y )⊗qz,w qx�y,z�w

ax,y,z�w

αX ,Y,Z�W

qx,y⊗(Z�W )

αX⊗Y,Z,W

(qx,y⊗Z)⊗W

αX ,Y,Z⊗W

(qx,y⊗Z)⊗W

X⊗(Y⊗qz,w)X⊗(Y⊗qz,w) X⊗qy,z�wX⊗qy,z�w qx,y�(z�w)

X⊗αY,Z,W

X⊗(qy,z⊗W ) X⊗qy�z,w

X⊗ay,z,w
qx,(y�z)�w

X�ay,z,w

αX ,Y⊗Z,W

(X⊗qy,z)⊗W

αX ,Y�Z,W

qx,y�z⊗W qx�(y�z),w

ax,y�z,w

qx�y,z⊗W

ax,y,z⊗W

qy(x�y)�z,w

ax,y,z�W
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In many engineering applications it is useful to reason about “negative information”. For example,
in planning problems, providing an optimal solution is the same as giving a feasible solution (the
“positive” information) together with a proof of the fact that there cannot be feasible solutions better
than the one given (the “negative” information). We model negative information by introducing the
concept of “norphisms”, as opposed to the positive information of morphisms. A “nategory” is a cate-
gory that has “nom”-sets in addition to hom-sets, and specifies the interaction between norphisms and
morphisms. In particular, we have composition rules of the form morphism+norphism→ norphism.
Norphisms do not compose by themselves; rather, they use morphisms as catalysts. After providing
several applied examples, we connect nategories to enriched categtory theory. Specifically, we prove
that categories enriched in de Paiva’s dialectica categories GC, in the case C= Set and equipped with
a modified monoidal product, define nategories which satisfy additional regularity properties. This
formalizes negative information categorically in a way that makes negative and positive morphisms
equal citizens.

1 Introduction

1.1 Manipulation of negative information is important in applications of category theory

Our research group’s background is in robotics and systems theory. In these fields, we have found
that category theory can describe well many of the structures in our problems, but something is often
missing: we find ourselves in the position of reasoning and writing algorithms that manipulate “negative
information”, but we do not know what is an appropriate categorical concept for it. We give some
examples.

Robot motion planning can be formalized as the problem of finding a trajectory through an envi-
ronment, respecting some constraint (e.g., avoiding obstacles). One can think of the robot configuration
manifold M as a category where the objects are elements of the tangent bundle and the morphisms are the
feasible paths according to the problem constraints. The output of planning problems has an intuitive rep-
resentation in category theory, if the problem is feasible. A path planning algorithm is given two objects
and must compute a morphism as a solution. A motion planning algorithm would compute a trajectory,
which could be seen as a functor F from the manifold [0,T ] to M with F(0) =A and F(T ) =B. However,
if the problem is infeasible–if no morphisms between two points can be found—if the algorithm must
present a certificate of infeasibility–what is the equivalent concept in category theory?

In many cases, the problems are not binary (either a solution exists or not, either a proposition is true
or not) but we care about the performance of solutions. For example, consider the case of the weighted
shortest path problem in dynamic programming. The problem is to find a path through a graph that
minimizes the sum of the weights of the edges on the path. In robotics, this can be used for planning
problems, where the weights could represent the time, the distance, or the energy required by a robot to
traverse an edge, and the nodes are either regions of space or, more generally, joint states of the world and
environment. Proving that a path is optimal means producing the path together with a proof that there
are no shorter paths. This is called a “certificate of optimality” and, like certificates of infeasibility, is
negative information as it consists in negating the existence of a certain class of paths. Interestingly, one
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can see algorithms such as Dijkstra’s algorithm as constructing both positive and negative information at
the same time, such that when a path is finally found, we are sure that there are no shorter ones [5].

In some cases, the negative information is a first-class citizen which is critical to the efficiency.
Algorithms such as A* require the definition of heuristic functions, which is negative information: they
provide a lower bound on the cost of a path between two points. And better heuristics make the algorithm
faster. Again, we ask, what could be the categorical counterpart of heuristics?

In co-design [6, 2], a morphism F→ R describes what functionality can be achieved with which
resources. They are characterized as boolean profunctors, that is, monotone functions Fop×R→ Bool.
The negative information would be a “nesign” problem that characterizes an impossibility. For example,
if F = R = Energy, we expect that in this universe we cannot find a realizable morphism d that satisfies
d(2J,1J) (obtaining 2 Joules from 1 Joule). Can this be expressed as some sort of morphism? In which
category does it live?

1.2 Our approach: “Categorification” of negative information

We briefly describe our thought process in finding a formalization for dealing with negative information.
One approach could have been to build structure on top of a category, at a higher level, using logic.

We eschew this approach because of the belief that we should find a duality between positive and negative
information that puts them “at the same level”.

Our approach has been one in the spirit of “categorification”: representing the negative information
with a concrete structure for which to find axioms and inference rules.

An early influence in our thinking was the paper of Shulman about “proofs and refutations” [8].
What follows is a simplified explanation of one of the concepts of the paper. Consider a category where
objects are propositions and morphisms X → Y are propositions X ⇒ Y (with the particular case of
X ' (>→ X)). We can then consider the type P(X→Y ) of proofs and the type R(X→Y ) of refutations,
which correspond to positive and negative information. According to intuitionist logic, P(X → Y ) =
(P(X)→ P(Y ))× (R(Y )→ R(X)): a proof of X ⇒ Y is a way to convert a proof of X into a proof of Y
together with a way to convert a refutation of Y into a refutation of X .

In that paper, proofs and refutations, positive and negative information, are treated at the same level
but not symmetrically—proof and refutations have different semantics, and P and R map products and
coproducts (∨, ∧) to different linear logic operators. This led to the idea that negative information should
be at the same level of positive information: if positive information is represented by morphisms, then
also the negative information should be described as “negative arrows” between objects, which we called
norphisms (for negative morphisms).

We also realized that the positive/negative information duality we are looking for is richer than the
structure of proofs/refutations in logic. In (classical/intuitionistic) logic, one expects the existence of
either a proof of a proposition A, a refutation of A, or neither, but not both. Instead, in our formaliza-
tion, norphisms are a more general notion, which can coexist with morphisms and give complementary
information, as in the planning examples in the introduction.

An initial idea was to consider for each category a “twin” category, whose morphisms would be
the norphisms we were looking for to represent the negative information; however, this idea failed. In
the course of the paper, it will be clear that positive/negative information cannot be decoupled, because
negative information cannot be composed independently of positive information. In the end, we unite
them by viewing them as part of a single enrichement structure.

1.3 Plan of the paper

This paper follows an inductive exposition and is divided in two parts.
In the first part we provide the motivation and several examples of representing negative infor-

mation with “norphism” structure. In Section 2 we consider the case of a thin category. In this simple
setting we can already see that norphisms compose differently than morphisms, and that we need two
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composition rules for them. In Section 3 we state our main definition, that of a “nategory”, and in Section
4 we show some canonical ways to build a nategory out of a category. In Sections 5 and 6 we discuss
two examples, Berg and DP, which have norphism structures in which norphisms and morphisms are
not mutually exclusive.

In the second part our goal is to provide an elegant way to think of norphisms and their com-
position by using enriched category theory. By doing so, we show that the additional structure of
norphisms and their composition, rules which might initially appear “funky”, is not an arbitrary struc-
ture, but rather it is as “natural” as the positive information of morphisms. In Section 7 we introduce
the dialectica category GSet [3, 1] and define a monoidal product for it which is slightly different than
the ones usually used as linear logic connectives. Then, in Section 8, we prove that GSet-enriched
categories encode nategories which satisfy some additional compatibilities between morphisms and nor-
phisms. These additional compatibilities are not satisfied in certain examples of interest to us, therefore
we have refrained from including them directly in our definition of nategory.

2 Building intuition: the case of thin categories

To build an intuition about norphisms, we look at the case of “thin” categories, in which each hom-set
contains at most one morphism. Thin categories are essentially pre-orders. To aid the interpretation, one
can think of a pre-order as defining a reachability relation, in which a morphism X→Y represents “I can
reach Y from X”. Or, we can think of morphisms as (proof-irrelevant) implications: X → Y represents
“I can prove Y from X”. In a thin category, negative information is limited to indicate the refutation of
positive information. Therefore, a norphism n : X 99K Y is equivalent to “There are no morphisms from
X to Y ”. Particularly, this means “I cannot reach Y from X” or “I cannot prove Y from X”.

We will later see that, in general, norphisms need not necessarily be mutually exclusive with mor-
phisms. Still, this example is sufficient to get us started in appreciating how morphisms and norphisms
compose differently. The composition rule for morphisms reads:

f : X → Y g : Y → Z .
( f #g) : X → Z (1)

Mimicking this, one could start with two norphisms n : X 99KY and m : Y 99K Z and expect to be able to
say something about a norphism X 99K Z, with a composition rule of the form:

n : X 99K Y m : Y 99K Z .
??? : X 99K Z (2)

However, norphisms do not compose this way. In fact, one can derive the following rule:

o : X 99K Z Y : ObC .
(n : X 99K Y )∨ (m : Y 99K Z) (3)

This rule is “the dual” of (1) in the same sense as these two axioms are dual:

> ,
X → X

X 99K X ,
⊥ (4)

that is, in the sense of flipping vertically and negating the propositions.
We read (3) as saying that if there is no morphism X → Z, it is because, for every possible interme-

diate Y , there cannot be a morphism X → Y or Y → Z. Note that composition goes in the “opposite”
direction meaning that from one norphism, we get some information about the existence of one or two
in a pair. The composition (3) is not constructive: from the “∨”, we do not know which side we can cre-
ate. Indeed, this composition highlights the asymmetry between morphisms and norphisms: morphisms
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compose constructively by themselves (i.e., without taking into account norphisms); norphisms, instead,
do not “compose”, but rather “decompose” by themselves. To construct norphisms, we need to start from
a norphism and a morphism that acts as a “catalyst”.

When interpreting a thin category as a graph, if there is a norphism n : X 99KY , it means that for any
Y , the path X → Y → Z must be interrupted in one part or the other, because otherwise we would have a
contradiction. Indeed, if we know that morphisms f : X →Y and g : Y → Z exist, then their composition
f #g : X→ Z must exist, and therefore no norphism n : X 99K Z can exist. This observation can be turned
around in a constructive way. Starting from a morphism f : X → Y and a norphism n : X 99K Z (i.e.,
morphisms and norphisms with the same source), we can infer a norphism f n : Y 99K Z (i.e., there
cannot be a morphism Y → Z):

Z

Y

X f

n

Z

Y

X

f n

f

n=⇒ Y
f←X

n
99K Z .

Y
f n
99K Z

(5)

Symmetrically, starting from a morphism g : Y → Z and a norphism n : X 99K Z (i.e., morphisms and
norphisms with the same target), we can infer a norphism n f : X 99K Y :

Z

Y

X

g

n

Z

Y

X

g

n g
n=⇒ X

n
99K Z

g←Y .

X
n g
99K Y

(6)

Note that the new norphism is pointing in the “same direction” as the starting one, meaning that
either source or target are preserved.

3 Describing negative information: nategories

In this section we make the notion of norphisms more precise, by defining the additional structure which
a category must have in order to encode negative information.
Definition 1 (Nategory). A locally small nategory C is a locally small category with the following addi-
tional structure. For each pair of objects X ,Y ∈ ObC, in addition to the set of morphisms HomC(X ;Y ),
we also specify:

• A set of norphisms NomC(X ;Y ).
• An incompatibility relation, which we write as a binary function

iXY : NomC(X ;Y )×HomC(X ;Y )→{⊥,>}. (7)

For all triples X ,Y ,Z, in addition to the morphism composition function

#XY Z : HomC(X ;Y )×HomC(Y ;Z)→ HomC(X ;Z), (8)

we require the existence of two norphism composition functions

XY Z : HomC(X ;Y )×NomC(X ;Z)→ NomC(Y ;Z),

XY Z : NomC(X ;Z)×HomC(Y ;Z)→ NomC(X ;Y ),
(9)

and we ask that they satisfy two “equivariance” conditions:

iY Z( f n,g)⇒ iXZ(n, f #g), (equiv-1)
iXY (n g, f )⇒ iXZ(n, f #g). (equiv-2)
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n

f

X → Z X 99K Z

X → Y X 99K Y

Y → Z Y 99K Z

catalyst morphism

need to find a norphism here

the norphism

(a) Starting situation.

JXZ(n) n

f

X → Z X 99K Z

X → Y X 99K Y

Y → Z Y 99K Z

we find incompatibility with n

(b) Find incompatibility with n.

JXZ(n) n

f

X → Z X 99K Z

X → Y X 99K Y

Y → Z Y 99K Zpre−1
f

we pull back incompatible morphisms

(c) Pulling back incompatible morphisms.

n

f

X → Z X 99K Z

X → Y X 99K Y

Y → Z Y 99K Z

JXZ( )

pre−1
f

nf f n

(d) JY Z( f n)⊆ pre−1
f (JXZ(n)).

Figure 1

We write n : X 99K Y to say that n ∈ NomC(X ;Y ).
Definition 2 (Exact nategory). If the two conditions (equiv-1) and (equiv-2) are satisfied with “⇔”
instead of just “⇒”, we say that the nategory is exact.

Condition (equiv-1) says that the norphism f n can exclude the morphism g only if f #g is excluded
by n. The idea is that such a g should not be excluded for any “additional reasons”, but only on the
grounds that f #g is excluded by n.

We draw some figures to develop further intuition (Fig. 1). Let JXY denote the function which maps
a norphism to the set of morphisms with which it is incompatible:

JXY : NomC(X ;Y ) → Pow(HomC(X ;Y )),
n 7→ { f ∈ HomC(X ;Y ) : iXY (n, f )}. (10)

We start in Fig. 1a with a norphism n : X 99K Z and a morphism f : X → Y . In Fig. 1b we apply JXZ to
find the set of incompatible morphisms JXZ(n). In Fig. 1c we use the precomposition map

pre f : HomC(Y ;Z) → HomC(X ;Z),

g 7→ f #g,
(11)

to obtain the set of morphisms
pre−1

f (JXZ(n)). (12)

These are to be prohibited because when pre-composed with f they give a morphism that is forbidden
by n. Now, in principle, it could be that our norphism inference is so powerful that f n manages to
exclude all of these:

JY Z( f n) = pre−1
f (JXZ(n)). (13)

In general, we are happy with the composition operation if it excludes part of those (but not more):

JY Z( f n)⊆ pre−1
f (JXZ(n)). (14)
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It can readily be checked that (14) is equivalent to (equiv-1). Similarly, (equiv-2) is equivalent to requir-
ing

JY Z(n g)⊆ post−1
g (JXZ(n)), (15)

where postg is the map “post-composition with g”.

4 Canonical nategory constructions

Here are three canonical constructions that allow us to get a nategory out of a category in a more or less
straightforward way:

1. Setting the norphism sets to be empty (Example 3);
2. Setting the norphism sets to be singletons that negate the entire respective hom-sets (Example 4);
3. Setting the norphism sets to be the powerset of the respective hom-sets (Example 5).

Example 3 (A nategory with no norphisms). For any category C, let

NomC(X ;Y ) := /0. (16)

For all pairs X ,Y the function iXY is uniquely defined as it has an empty domain. The functions , also
have empty domains. The conditions (equiv-1) and (equiv-2) are trivially verified. A nategory with no
norphisms is just a category.

Example 4 (Singleton norphism sets negating all morphisms). In this construction, we turn a category
into a nategory by making the choice that a norphism is a witness for the fact that the corresponding
hom-set is empty. For any category C, let

NomC(X ;Y ) := {•}, (17)

and for any pair X ,Y and any f : X → Y let

iXY (•, f ) =>. (18)

In this case, the element • is a witness for “HomC(X ;Y ) is empty”. Next, we need to define the two
maps:

: HomC(X ;Y )×NomC(X ;Z)→ NomC(Y ;Z), (19)
: NomC(X ;Z)×HomC(Y ;Z)→ NomC(X ;Y ). (20)

The choice is forced, as there is only one norphism in the codomains. We obtain:

f •= •, (21)
• g = •. (22)

The conditions (equiv-1) and (equiv-2) are easily verified because iXY always evaluates to >.

Example 5 (Norphism sets are subsets of hom-sets). For any category C, let

NomC(X ;Y ) = Pow(HomC(X ;Y )). (23)

Set the incompatibility relation as
iXY (n, f ) = f ∈ n. (24)

Define the composition operations as

f n = pre−1
f (n), (25)

n g = post−1
g (n), (26)
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where pre f and postg are the pre- and post-composition maps

pre f : HomC(Y ;Z) → HomC(X ;Z),

g 7→ f #g,
(27)

postg : HomC(X ;Y ) → HomC(X ;Z),

f 7→ f #g.
(28)

Let’s check the condition (equiv-1): iY Z( f n,g)⇒ iXZ(n, f #g). Using our definitions, we get

g ∈ f n ⇒ f #g ∈ n. (29)

Expanding the left-hand side we find

g ∈ pre−1
f (n) ⇒ f #g ∈ n. (30)

Another expansion shows that both sides are the same:

f #g ∈ n ⇒ f #g ∈ n. (31)

Checking condition (equiv-2) is analogous. Note that this nategory is exact.

Finally, we provide an example of a nategory that we will use later as a counter-example.

Example 6 (Very weak composition operations). For any category C, as in the previous example, use
subsets of morphisms as the norphisms

NomC(X ;Y ) = Pow(HomC(X ;Y )), (32)

and set the incompatibility relation as

iXY (n, f ) = f ∈ n. (33)

However, define the composition operations as

f n = /0, (34)
n g = /0. (35)

The equivariance conditions are still satisfied. For example condition (equiv-1),

iY Z( f n,g)⇒ iXZ(n, f #g), (36)

becomes
g ∈ /0 ⇒ f #g ∈ /0, (37)

which is vacuously satisfied, because the premise is always false.

5 Example: hiking on the Swiss mountains

In this section we present an example of planning, giving a more concrete description of the path planning
problems mentioned in the introduction. We describe Berg, a category whose morphisms are hiking paths
of various difficulty on a mountain. We then consider the problem of finding paths of minimum length.

Definition 7 (Berg). Let h : R2→ R be a C1 function, describing the elevation of a mountain. The set
with elements 〈a, b, h(a, b)〉 is a manifold M that is embedded in R3. Let σ = [σL, σU]⊂ R be a closed
interval of real numbers. The category Bergh,σ is specified as follows:
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1. An object X is a pair 〈p, v〉 ∈ T M, where p = 〈px, py, pz〉 is the position, v is the velocity, and
T M is the tangent bundle of the manifold.

2. Morphisms are C1 paths f : [0,τ]→M on the manifold satisfying evident boundary conditions
(here τ ∈ R may vary). We also define, formally by decree, that for each 〈p, v〉 there is a trivial
path “[0,0]→M” which is C1, has trace p, and velocity v.
At each point p = f (t) of a path we define the steepness via the formula

s(〈p, v〉) := vz/
√

v2
x +v2

y , (38)

where v= d
dt f (t). We choose as morphisms only the paths that have the steepness values contained

in the interval σ :

HomBergh,σ
(X ;Y ) = { f is a C1 path from X to Y and s( f )⊆ σ}, (39)

3. Morphism composition is given by concatenation of paths.
4. Identity morphisms are given by trivial paths.

M

T M

X

Y v

The steepness interval σ allows considering different categories on the same mountain, with possible
hikes varying in difficulty, measured via minimum/maximum steepness. For example, a good hiker can
handle σ = [−0.57, 0.57] (positive/negative 30◦ slope). If σ = [−0.57, 0], we are only allowed to climb
down. If σ = [0, 0], we can only walk along isoclines.

Interpretation of norphisms in Berg What might a norphism be in this case?
One possibility is to let a norphism n : X 99K Y mean “there exists no path from X to Y ”. This is a

simple choice that is similar to Example 4 and that makes morphisms and norphisms mutually exclusive.
We can obtain a more useful theory by letting norphisms carry information that is complementary to

morphisms by interpreting them as lower bounds on distances. To see how this can work, let the set of
norphisms be the real numbers completed by positive infinity:

NomBerg(X ;Y ) := R≥0∪{+∞}. (40)

Let length( f ) be the length of the path (according to the manifold metric). Then we interpret a norphism
n : X 99K Y as a witness of “for all paths f : X → Y , we have length( f ) ≥ n”. The case n = ∞ negates
any path from X to Y . The incompatibility relation iXY can be written as follows:

iXY (n, f ) = length( f )< n. (41)

To say that a path f is optimal means saying that f is feasible and that length( f ) is a norphism:

f : X → Y length( f ) : X 99K Y .
f is optimal (42)
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Z

Y

X

max{n− length( f ),0}

f

n

(a)

Z

Y

X

g

n

max{n− length(g),0}

(b)

Figure 2: Composition of morphisms and norphisms in the case of paths and lengths.

Composition rules for norphisms Next, we define the following two composition rules
f n = max{n− length( f ),0},
n g = max{n− length(g),0}, (43)

which are the equivalent of (5) and (6). See Fig. 2. Our reasoning is as follows. If for example f is a
path from X to Y , and we know that going from X to Z has a distance of at least n, then any path from Y
to Z must be at least n− length( f ) long. In this case,

JXZ( f n) = {g : length(g)< max{n− length( f ),0}}. (44)
If n < length( f ), then JXZ( f n) is empty, which differs from

pre−1
f (JXY (n)) = {g : length(g)+ length( f )< n}. (45)

The nategory is not exact. However, since
{g : length(g)< max{n− length( f ),0}} ⊆ {g : length(g)+ length( f )< n}, (46)

the nategory satisfies (equiv-1). The check for (equiv-2) is analogous.
Example 8. As a variant of the above, if we set

NomBerg(X ;Y ) := R∪{+∞}, (47)
and define the composition operations as

f n = n− length( f ),
n g = n− length(g),

(48)

then the nategory is exact. Indeed, for this case one has
JXZ( f n) = {g : length(g)< n− length( f )},

= {g : length(g)+ length( f )< n}
= pre−1

f (JXY (n)).
(49)

Example 9. We may also think of a variation in which the norphisms are integers:
NomBerg(X ;Y ) := Z∪{+∞}. (50)

In this case we are limited to express constraints of the type
length( f )≥ 0, length( f )≥ 1, length( f )≥ 2, . . . (51)

We then define the composition rules as
f n = floor(n− length( f )),
n g = floor(n− length(g)).

(52)

In this case, (equiv-1) is satisfied, however our nategory is not exact, because in general
JXZ( f n) = {g : length(g)< floor(n− length( f ))}

( {g : length(g)< n− length( f )}
= pre−1

f (JXY (n)),
(53)

since floor(n− length( f ))+ length( f ) ≤ n. An analogous reasoning applies to (equiv-2). We note that
using round(−) or ceil(−) in (52) would violate (equiv-1) and (equiv-2).
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Norphism schemas So far, we have not discussed heuristics for actually choosing a set Nom for each
pair of objects in Berg. Here are some different ways.

1. Non-negativity of lenths. Since path lengths cannot be negative, for all pair of objects X ,Y we
can say that we have a norphism

0: X 99K Y . (54)

If these are our only norphisms, we are providing no new information about paths.
2. Bound based on distance in R3. Any path along the mountain cannot be shorter than the distance

of a straight line (“as the crow flies”). Therefore, for two objects 〈p1, v1〉, 〈p2, v2〉, we might
choose the distance ‖p1−p2‖ in R3

‖p1−p2‖ : 〈p1, v1〉 99K 〈p2, v2〉. (55)

as a norphism.
3. Bound based on geodesic distance. More accurate bounds are given by taking geodesic distance

as our norphisms. This is defined using the metric dM of the manifold:

dM(p1,p2) : 〈p1, v1〉 99K 〈p2, v2〉. (56)

4. Bound based on steepness interval. A different kind of norphism is to encode steepness infor-
mation, and relate it to the steepness of paths, instead of their length. Given two objects 〈p1, v1〉,
〈p2, v2〉, we can use one of the following bounds

p1
z −p2

z < 0 ,
|p1

z −p2
z |/σU : 〈p1, v1〉 99K 〈p2, v2〉 (57)

p1
z −p2

z > 0 .
|p1

z −p2
z |/σL : 〈p1, v1〉 99K 〈p2, v2〉 (58)

6 Example: co-design

The next example revolves around the construction of norphisms for the category of design problems DP [2,
6]; this is called FeasBool in [6]. The objects of DP are posets. The morphisms are design problems (also
referred to as feasibility relations or boolean profunctors). A design problem (DP) d : P−7→Q is a mono-
tone map of the form d : Pop × Q→Pos Bool, where P,Q are arbitrary posets and Bool denotes the poset
with elements {⊥,>}, with ⊥≤>.

The semantics for a DP is that it describes a process which provides a certain functionality, by
requiring certain resources. A design problem d is a monotone map, since lowering the requested func-
tionalities will not require more resources, and increasing the available resources will not provide less
functionalities.

Morphism composition is defined as follows. Given DPs d : P−7→Q and e : Q−7→R, their composite
is

(d # e) : Pop × R →Pos Bool,

〈p, r〉 7→
∨

q∈Q
d(p,q)∧ e(q,r). (59)

For any poset P, the identity DP idP : P−7→P is the monotone map

idP : Pop × P →Pos Bool,
〈p1, p2〉 7→ p1 �P p2.

(60)
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Interpretation of norphisms in DP Given that the morphisms of DP are feasibility relations, we
expect that the norphisms of DP (“nesign problems” NP), should be infeasibility relations. We define a
nesign problem n : F −7→ R to be a monotone map n : F × Rop→ Bool, and we interpret n( f ,r) = > to
mean that it is not possible to produce f from r. The idea is that if 〈 f1, r1〉 is infeasible, then f1 � f2
implies that 〈 f2, r1〉 is also infeasible and r2 � r1 implies that 〈 f1, r2〉 is also infeasible. Note that the
source poset of a nesign problem is the op of the source poset for a design problem.

Compatibility of morphisms and norphisms Consider a DP d : F−7→R and a NP n : F −7→ R. The
compatibility relation between DP and NP should ensure that there are no contradictions. We ask that,
for any pair of functionality/resources 〈 f , r〉, it cannot happen that they are declared feasible by the DP
(d( f ,r)) and declared infeasible by the NP (n( f ,r)):

iFR(n,d) = ∃ f ∈ F,r ∈ R : d( f ,r)∧n( f ,r). (61)

Composition rules for norphisms Given a NP n : P −7→ Q and a DP d : R−7→Q, one can compose
them to get a NP n d : P−7→ R:

(n d)(p,r) =
∨

q∈Q
n(p,q)∧d(r,q). (62)

And given a DP d : Q−7→P and a NP n : Q−7→ R, one can compose them to get a NP d n : P−7→ R:

(d n)(p,r) =
∨

q∈Q
d(q, p)∧n(q,r). (63)

The composition rules satisfy (equiv-1) and (equiv-2) and are exact, as may easily be checked.
Example 10. Consider the posets P =

〈
N[kg pears],≤

〉
, Q =

〈
R≥0,[CHF],≤

〉
, and R =

〈
N[kg raisins],≤

〉
.

Consider the design problem d : R−7→Q and the nesign problem n : P−7→Q given, respectively, by the
(in)feasibility relations

d(r,q) ,
r ·10≤ q

n(p,q) .
p ·5 > q

These say that it is possible to buy raisins at 10 CHF/kg or more, and never possible to buy pears at less
than 5 CHF/kg. We can evaluate the composition (n d) : P−7→R in a particular point to understand its
meaning. For instance:

(n d)(10,4) =
∨

q∈Q
n(10,q)∧d(4,q)

=
∨

q∈Q
(40≤ q < 50) =>.

This equation is saying that we cannot get 10 kilos of pears from 4 kilos of raisins. The rationale is that,
if I could, then I would be able to start with 40 CHF and use d to get 4 kilos of raisins, which I could
then use to obtain 10 kilos of pears. But this would contradict the norphism n, because n(10,40) = >
holds and this means that it is infeasible to exchange 40 CHF for 10 kilos of pears.

Norphism schemas Considerations about how to define norphisms might follow from specific knowl-
edge about particular designs that we know are (in)feasible, as well as from more general principles of
physics or information theory. One very general rule that is arguably valid across all fields: in this uni-
verse, physically realizable designs can never produce strictly more of the same resource than one started
with. This rule can be encoded as a norphism. For each object P, we postulate a NP

nP : P−7→ P, (64)
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such that
nP(q, p) = p≺P q, (65)

where p≺P q = (p�P q)∧ (p 6= q).
Interestingly, starting from any morphism

d : F−7→R, (66)

one can directly obtain two NPs that go in the opposite direction, R−7→ F. These are

(nR d)(r, f ) =
∨

r′∈R
nR(r,r′)∧d( f ,r′), (67)

(d nF)(r, f ) =
∨
f ′∈F

d( f ′,r)∧nF( f ′, f ). (68)

which gives two impossibility results. The first states infeasibility because, while it is possible to get f
from r′ via d for a certain r′, it is not possible to obtain r from r′. The second states infeasibility because,
while it is possible to get f ′ from r via d for a certain f ′, it is not possible to obtain f ′ from f . In this
nategory, we see that positive information induces negative information in the other direction.

7 The category GSet

The dialectica construction GC is due to De Paiva [3, 4], and its instantiation in the case C = Set has
been studied from a “questions and answers” perspective, for example in [1]. We will focus on GSet,
however our discussion is also interesting for other cases of the GC construction.
Definition 11 (GSet). An object of GSet is a tuple

〈Q, A,C〉, (69)

where Q and A are sets, and C : Q→Rel A is a relation.
A morphism r : 〈Q1, A1,C1〉 →GC 〈Q2, A2,C2〉 is a pair of maps

r =〈r[, r]〉, (70)
r[ : Q1←Set Q2, (71)

r] : A1→Set A2, (72)

that satisfy the property

∀q2 : Q2 ∀a1 : A1 r[(q2)C1 a1 ⇒ q2C2 r](a1). (73)

Morphism composition is defined component-wise

(r # s)[ = s[ # r[, (74)

(r # s)] = r] # s], (75)

and satisfies (73) via composition of implications.
The identity at 〈Q, A,C〉 is id〈Q, A,C〉 = 〈idQ, idA〉.

Remark 12. Our notation was chosen to facilitate a “questions and answers” interpretation [1]. In this
perspective, an object of GSet is a “problem”: a relation C between a set of questions Q and a set of
answers A. For a particular question q ∈ Q and answer a ∈ A, qC a means that the answer is correct for
the question. A morphism r : 〈Q1, A1,C1〉 →GC 〈Q2, A2,C2〉 is a reduction of problem 2 to problem 1,
in the sense that we can use a solution to problem 1 to solve problem 2. The idea is that we start from
a question q2 and transform it to a question q1 = r[(q2) of the first problem. Assuming we can find an
answer a1 to q1, we can then transform it in an answer of the second problem a2 = r](a1). The condition
(73) ensures that the answer so produced is correct for the second problem.
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We now rewrite the objects of GSet in a slightly different way. Instead of

C : Q→Rel A, (76)

we can write this relation as a boolean function

κ : Q×A→{⊥,>}. (77)

Letting Bool denote the category with two objects “⊥” and “>” and a single non-identity morphism
⇒ : ⊥→ Bool>, we can rewrite (77) again as

κ : Q×A→ ObBool. (78)

And then condition (73) can be rewriten as a dependent function

r∗ : {q2 : Q2,a1 : A1}→ κ1(r[(q2),a1)→Bool κ2(q2,r](a1)). (79)

The value r∗(q2,a1) is a morphism in Bool that witnesses an implication.
Remark 13. One idea that we find interesting is to replace Bool with some other category B (on which
we may wish to place suitable assumptions) and can consider maps of the form

κ : Q×A→ ObB. (80)

If B is some category whose morphisms are “proofs”, the analogue of (79) chooses a proof which is just
one among many possible proofs (and such proofs might themselves be ordered by relevance or other
criteria).

7.1 A monoidal product for GSet

The categories GC have a very rich structure. In particular they provide models of linear logic with
four distinct monoidal products ⊗,

&
, ⊕, and &. We define here a monoidal product t for GSet which

one might say is “in between” the the multiplicative connectives ⊗ and
&

(which are denoted � and �,
respectively, in [3, 4]).
Definition 14 (Monoidal product t). On objects,

〈Q1, A1, κ1〉t 〈Q2, A2, κ2〉= 〈QA2
1 ×QA1

2 , A1×A2, κ1tκ2〉, (81)

where
κ1tκ2 : 〈〈q1, q2〉, 〈a1, a2〉〉 7→ κ1(q1(a2),a1)∨κ2(q2(a1),a2). (82)

The product of morphisms r : 〈Q1, A1, κ1〉 → 〈Q3, A3, κ3〉 and s : 〈Q2, A2, κ2〉 → 〈Q4, A4, κ4〉 is

rt s : 〈QA2
1 ×QA1

2 , A1×A2, κ1tκ2〉 → 〈QA4
3 ×QA3

4 , A3×A4, κ3tκ4〉, (83)

with

(rt s)[ = 〈s] #− # r[, r] #− # s[〉, (84)

(rt s)] = r]× s], (85)

(rt s)∗ : 〈〈q3, q4〉, 〈a1, a2〉〉 7→ r∗(s] #q3(a2),a1)∨ s∗(r] #q3(a1),a2). (86)

The monoidal unit is
1t = 〈{•}, {•},⊥〉, ⊥ : 〈•, •〉 7→ ⊥. (87)

For the associator and unitors we make the canonical choices, which are easily inferred from their signa-
tures. We refrain from writing them out explicitly here. For reasons of space we also omit the the proof
that 〈GSet, t〉 is indeed a monoidal category.
Remark 15. In the generalization where we replace Bool with some category B, the operation ∨ and the
object ⊥ in Bool which are used in the above definition would be replaced by suitable substitutes in B.
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8 Describing nategories using enrichment

We recall the following standard definition of enriched category [7], for easy reference and to fix notation.

Definition 16 (Enriched category). Let 〈V,⊗⊗⊗, 1, as, lu, ru〉 be a monoidal category.
A V-enriched category E is a tuple 〈ObE, α , β , γ〉, where

1. ObE is a collection of objects.
2. α is a function such that, for all pairs of objects X ,Y ∈ObE, its value αXY is an object of V, called

a hom-object.
3. β is a function such that, for all X ,Y ,Z ∈ ObE, there exists a morphism βXY Z of V

βXY Z : αXY⊗⊗⊗αY Z →V αXZ, (88)

called a composition morphism.
4. γ is a function such that, for each X ∈ ObE, there exists a morphism of V

γX : 1→V αXX , (89)

called an identity-choosing morphism.
Moreover, for any X ,Y ,Z,U ∈ ObE, the following diagrams must commute.

(αXY⊗⊗⊗αY Z)⊗⊗⊗αZU αXY⊗⊗⊗ (αY Z⊗⊗⊗αZU)

αXZ⊗⊗⊗αZU αXU αXY⊗⊗⊗αYU

βXY Z⊗⊗⊗ idαZU

as

idαXY ⊗⊗⊗βY ZU

βXZU βXYU
(90)

αXY⊗⊗⊗αYY αXY αXX⊗⊗⊗αXY

αXY⊗⊗⊗1 1⊗⊗⊗αXY

βXYY βXXY

ruidαXY ⊗⊗⊗ γY lu
γX⊗⊗⊗ idαXY

(91)

Recall that specifying the data of an ordinary (locally small) category is equivalent to specifying a
category enriched in the monoidal category P = 〈Set,×, 1〉. In this case, both the enriched category
and the ordinary category have the same objects, the hom-objects of the enriched category correspond to
the hom-sets of the ordinary category, the composition morphisms encode the composition operations,
and the identity-choosing morphisms select an element of each of the hom-sets of the type αXX , corre-
sponding to identity morphisms. The diagrams (90) and (91) encode the associativity of the composition
operations, and that the identity morphisms act neutrally for composition.

The proof of our main result below follows a similar pattern – we show that to specify a nategory
which satisfies some additional conditions it is sufficient to specify a category enriched in the monoidal
category 〈GSet, t〉. We will denote 〈GSet, t〉 by PN, which stands for “positive” and “negative”.

Proposition 17. A PN-enriched category provides the data necessary to specify a nategory. However, not
all nategories can be specified by the data of a PN-enriched category, because the nategory produced has
the following additional properties, which encode a covariant and a contravariant “action” of morphisms
on norphisms.
Identities act neutrally:

id n = n, (neut-1)
n id = n. (neut-2)
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Compatibility with composition:

( f #g) n = g ( f n), (covar)
n (g #h) = (n h) g. (contravar)

The actions commute:

f (n h) = ( f n) h. (comm)

These conditions are not satisfied by all nategories.

Proof. Suppose somebody has provided us with a PN-enriched category E = 〈ObE, α , β , γ〉. Using this
data we will describe a nategory C with the above-stated properties.

For the objects of C, we set ObC := ObE.
For every pair of objects X ,Y ∈ ObC, we have an object αXY of PN. This is a tuple

αXY = 〈Q, A, κ〉, (92)

which we interpret as
αXY = 〈NomC(X ;Y ), HomC(X ;Y ), iXY 〉, (93)

thereby setting NomC(X ;Y ) := Q, HomC(X ;Y ) := A, and iXY := κ .
Next, for each X ∈ Ob we have an identity-choosing morphism

γX : 1PN→PN αXX . (94)

Because 1PN = 〈{•}, {•},⊥〉, this is a morphism

γX : 〈{•}, {•},⊥〉→PN 〈NomC(X ;X), HomC(X ;X), iXX〉, (95)

which consists of three functions 〈r[, r], r∗〉. The forward map r] : {•} → HomC(X ;X) chooses our
(candidate) identity morphism, so we set idX := r](•). The backward map r[ : NomC(X ;X)→ {•} is
uniquely determined and does not carry any information. As for r∗, it is a dependent function of the type

r∗ : {q2 : NomC(X ;X),a1 : {•}}→⊥(r[(q2),a1)→Bool iXX(q2,r](a1)). (96)

Evaluated at q2 = n and a1 = •, we have

r∗(n,•) :⊥→Bool iXX(n, idX). (97)

Because⊥ is an initial object in Bool, such a morphism always exists, no matter what the right-hand side
is. Therefore, this condition does not carry any additional information.

Now let us fix three objects X ,Y ,Z and consider the composition morphism

βXY Z : αXY⊗⊗⊗PN αY Z →PN αXZ. (98)

Rewriting the hom-objects as tuples and using abbreviated notation we have

βXY Z : 〈NXY , HXY , iXY 〉⊗⊗⊗PN 〈NY Z, HY Z, iY Z〉 →PN 〈NXZ, HXZ, iXZ〉. (99)

Expanding using the definition of⊗⊗⊗PN we find

βXY Z : 〈NXY
HY Z ×NY Z

HXY , HXY ×HY Z, iXY t iY Z〉 →PN 〈NXZ, HXZ, iXZ〉. (100)

Such a morphism corresponds to three maps 〈s[, s], s∗〉. The forward map s] has type

s] : HomC(X ;Y )×HomC(Y ;Z)→ HomC(X ;Z), (101)
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and we use it to define morphism composition “ #C” in our nategory. The backward map s[ has type

s[ : NXZ → NXY
HY Z ×NY Z

HXY , (102)

which, after splitting into two maps (using the universal property of the product) and currying, specifies
two maps

: NXZ×HY Z → NXY , (103)
: HXY ×NXZ → NY Z. (104)

As for the dependent function s∗, given n : NXZ , f : HXY , g : HY Z we have

s∗(n,〈 f , g〉) : (iXY t iY Z)(〈(n −), (− n)〉,〈 f , g〉)→Bool iXZ(n, f #g). (105)

Expanding more,

s∗(n,〈 f , g〉) : iXY (n g, f )∨ iY Z( f n,g)→Bool iXZ(n, f #g), (106)

which is equivalent to having two maps

s∗1(n,〈 f , g〉) : iXY (n g, f )→Bool iXZ(n, f #g), (107)
s∗2(n,〈 f , g〉) : iY Z( f n,g)→Bool iXZ(n, f #g). (108)

These witness the implications which give us (equiv-1) and (equiv-2).
Next we move to the commutative diagrams in the definition of enriched category. As a general

observation, we note that for diagrams in GSet we only need to consider commutativity on the level of
“forward maps” and “backward maps” respectively. We do not need to worry about the conditions (73),
because for any two parallel morphisms this condition is the same, and hence “commutativity” is trivially
satisfied.

Conditions from the associativity diagram for enriched categories We now consider the diagram
(90), in the case of PN. On the level of “forward” maps, this commutative diagram encodes that mor-
phism composition must be associative. One the level of “backward” maps, it implies that the following
diagram must commute:

(
QAY Z

XY ×QAXY
Y Z

)AZU
×QAXY×AY Z

ZU QAY Z×AZU
XY ×

(
QAZU

Y Z ×QAY Z
ZU

)AXY

QAZU
XZ ×QAXZ

ZU QXU QAYU
XY ×QAXY

YU

as[

(βXY Z t idZU)[

βXZU [ βXYU [

(idXY tβY ZU)[

Let us look at the two different routes through this diagram. For the left-hand route, note that

(βXY Z t idZU)[ = 〈idU
] # (−) #βXY Z[, βXY Z

] # (−) # idZU [〉
= 〈(−) #βXY Z[, βXY Z

] # (−)〉,
(109)

and so

βY ZU [ # (βXY Z t idZU)[ : QXU → QAZU
XZ ×QAXZ

ZU →
(

QAY Z
XY ×QAXY

Y Z

)AZU
×QAXY×AY Z

ZU

q 7→ 〈q (−), (−) q〉 7→ 〈q (−) #βXY Z[, βXY Z
] # (−) q〉.

(110)
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For the right-hand route, note that

(idXY tβY ZU)[ = 〈βY ZU
] # (−) # idXY [, idXY

] # (−) #βY ZU [〉
= 〈βY ZU

] # (−), (−) #βY ZU [〉,
(111)

and so

βXYU [ # (idXY tβY ZU)[ : QXU → QAYU
XY ×QAXY

YU → QAY Z×AZU
XY ×

(
QAZU

Y Z ×QAY Z
ZU

)AXY

q 7→ 〈q (−), (−) q〉 7→ 〈βY ZU
] #q (−), (−) q #βY ZU [〉.

(112)

Instead of now applying as[ directly, which is an obvious map but messy to write down, we evaluate
the functions we obtained from our calculations for the left- and right-hand routes. Given 〈 f , g, h〉 ∈
AXY ×AY Z×AZU , evaluating the two components of (110) we find

(q (−) #βXY Z[)(h) = βXY Z[(q h) : 〈g, f 〉 7→ 〈(q h) g, f (q h)〉, (113)

and
(βXY Z

] # (−) q)(〈 f , g〉) = ( f #g) q, (114)
respectively.

For the right-hand route, evaluating (112) gives

(βY ZU
] #q (−))(〈g, h〉) = q (g #h), (115)

and
((−) q #βY ZU [)( f ) = βY ZU [( f q) : 〈h, g〉 7→ 〈(g q) f , g ( f q)〉. (116)

By comparing the two routes, we obtain the conditions

( f #g) q = g ( f q),
q (g #h) = (q h) g,

f (q h) = ( f q) h.
(117)

Conditions from the unitality diagrams for enriched categories Consider the right-hand portion of
the diagram (91), now for the case of PN. On the level of forward maps, this diagram encodes the
condition that idX #a = a for any morphism a : X →Y . On the level of backward maps, it amounts to the
commutative diagram

QXY QAXY
XX ×QAXX

XY

1AXY ×Q1
XY

βXXY [

lu[
(γX t idαXY )[

Computing the right-hand route, we have

(γX t idαXY )[ : QAXY
XX ×QAXX

XY → 1AXY ×Q1
XY

〈ϕXX , ϕXY 〉 7→ 〈!, γX
] #ϕXY # idαXY [〉= 〈!, • 7→ ϕXX(idX)〉,

(118)

and
((γX t idαXY ) #βXXY )[ : QXY → QAXY

XX ×QAXX
XY → 1AXY ×Q1

XY

q 7→ βXXY
](q) = 〈q (−), (−) q〉

7→ 〈idαXY
] #q (−) # γX [, γX

] # (−) q # idαXY [〉
= 〈!, • 7→ (idX q)〉,

(119)
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which, when compared with lu[ : q 7→ 〈!, • 7→ q〉, gives the condition

id q = q. (120)

The left-hand portion of the diagram (91) may be treated analogously and gives rise the to the condi-
tions

a # idY = a and q id = q. (121)

Remark 18. Exact nategories are those in which the implications in (equiv-1) and (equiv-2) are in fact
equivalences. In the above proof, this corresponds to the morphisms (107) and (108) in Bool being
identities.

(17) begs the question as to why we don’t include the additional properties stated there as part of our
definition of what a nategory is. Our reason is that these properties fail for examples of interest to us.

For example, in applications it is normal that physical measurements and numerical representations
on a computer are given only to a certain accuracy. This motivates (9), where we only allow integer values
for norphisms. However, in that example, the properties (contravar) and (covar) are not satisfied. To see
this, consider (contravar)and consider morphisms g and h in Berg with length(g) = length(h) = 1.5. For
a norphism q of the appropriate signature we have

q (g #h) = floor(q− length(g # f )) = floor(q−3) (122)

on the one hand, and
(q h) g = floor(floor(q−1.5)−1.5) (123)

on the other. If we choose q = 10, for instance, the previous expressions evaluate to 7 and 6, respectively.
As a different example, the properties (neut-1) and (neut-2) fail in Example 6. Indeed, there idX n=

/0 and n idY = /0, even though, in general, we would have n 6= /0.

9 Conclusions

This work showed that we can encode negative information in a categorical manner such that norphisms
(negative arrows) and morphisms (positive arrows) are equal citizens in the theory. Norphisms and
morphisms are, in general, not mutually exclusive; they give complementary information.

We have seen how, in the category Berg, norphisms can represent negative results such as lower
bounds on distances between two locations. A path planning algorithm must construct a morphism (a
path) and construct a norphism (a bound) to prove that the path is optimal. We have also seen how, in
the category DP, norphisms can represent design impossibility results.

After defining nategories as categories with extra structure, we showed a way to encode this new
concept using categories enriched in the dialecta category GSet. This approach, however, introduces
some compatibility properties for norphism composition that we do not wish to include in our general
notion of nategory. Future work includes exploring if nategories might be recovered, on the nose, via a
different enrichment, as well as studying various typical categorical concepts in the context of nategories.
We would also be very happy to discover further interesting examples.
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We introduce a categorical formalism for rewriting surface-embedded graphs. Such graphs can
represent string diagrams in a non-symmetric setting where we guarantee that the wires do
not intersect each other. The main technical novelty is a new formulation of double pushout
rewriting on graphs which explicitly records the boundary of the rewrite. Using this boundary
structure we can augment these graphs with a rotation system, allowing the surface topology
to be incorporated.

1 Introduction
String diagrams [17] are a graphical formalism to reason about monoidal categories. Equational
reasoning in symmetric string diagrams can be implemented as graph or hyper-graph rewriting
subject to various side conditions to capture the precise flavour of the monoidal category intended
[5, 6, 7, 14, 2, 1]. We want to use string diagrammatic reasoning for monoidal categories which are
not necessarily symmetric. Informally, the lack of symmetry is often stated as “the wires cannot
cross” – but what does that mean when the string diagram is a graph or other combinatorial
object? Where is this “crossing” taking place? To make sense of this we must move beyond the
situation where only the connectivity matters and add some topological information.

In this paper we make two steps in that direction. Firstly we borrow a tool from topological
graph theory – rotation systems – and use it to define a category of graphs which are embedded
in some surface. Secondly, we introduce a new refinement of double pushout rewriting [9] which
is adapted to this category. This refinement was motivated by the desire to do rewriting on
rotation systems, however it works on conventional directed graphs equally well, and removes
many annoyances encountered when using standard techniques from algebraic graph rewriting in
string diagrams. This is an important step towards formalising non-symmetric string diagrams
and their rewriting theory.

Our motivation is also twofold. From the abstract point of view, non-symmetric string
diagrams can capture a larger class of theories, including both the symmetric case and the
braided monoidal one. A more practical motivation comes from the area of quantum computing,
where string diagrams are often used to model quantum circuits [3], their connectivity restrictions
imposed by the qubit architecture [4] require a theory without implicit SWAP gates, and can
involve circuits defined on quite complex surfaces.

Curiously, Joyal and Street’s original work [12] formalised monoidal categories as plane
embedded diagrams, and used the plane to carry the categorical structure. Our work goes in the
opposite direction: to recover the topology from the combinatorial structure.

Graph Embeddings Graphs can be drawn on surfaces, and the same graph be drawn different
ways on the same surface, as shown below.

http://dx.doi.org/10.4204/EPTCS.380.3
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If, like the one on the right, the drawing does not intersect itself then it defines an embedding of
the graph into the surface. If a graph can be embedded in the plane (or equivalently surface of
the sphere) it is called planar. However in this work we will be concerned with graphs with a
given embedding into some closed compact surface, which need not be the plane.

Dealing with lines and points as submanifolds of some surface (up to homeomorphism) is
quite unwieldy, so we use a combinatorial representation of graph embeddings called rotation
systems. A rotation system imposes an order on the edges incident at vertex (called a rotation).
The rotation information at each vertex is enough to fix the embedding of the graph into some
surface, as it defines the faces of the embedding uniquely. This is a well studied topic in graph
theory and we refer to the literature for more details [10].

Theorem 1.1. A rotation system determines the embedding of a connected graph into a minimal
surface up to homeomorphism [11, 8, 10].

Note that different rotation systems for the same graph may have different minimal surfaces,
which need not be the plane.

Boundary Graphs and Partitioning Spans When using string diagrams, graphs as usually
defined are not the most natural object; rather, we often think about open graphs which have
“half-edges” or “dangling wires” which represent the domain and codomain of the morphism
in question. The half-edges therefore provide the interface along which morphisms compose,
and also where substitutions can be made in rewriting. Unfortunately half-edges don’t work
particularly well with double pushout rewriting, necessitating various workarounds encoding
the “wires” as special vertices in a graph [7] or hypergraph [1]. This in turn leads to its own
complications when we consider the identity morphism, and other natural transformations which
are naturally “all string”; equations which should be trivial are no longer so. Surface embedded
graphs suggest a different approach to this question.

Naively, when picturing a rewrite on a surface embedded graph, we picture a disc-like region
of the surface which is removed and replaced. The edges which cross the boundary of this region
define the interface and we naturally require that the removed disc and its replacement should
have the same interface. From the outside, this disc is homeomorphic to a point, so it can be
treated as if it was a vertex equipped with a rotation system. However, the perspective from
inside and outside the region are completely equivalent, so we can dually view the rest of the
graph as a single vertex connected to the interior of the disc. We think of and draw a graph with
boundary in three different ways:
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Figure 1: Example of a partitioning span, drawn in a region- and a vertex-style (edge directions
are omitted for readability)

On the left, the graph is depicted as a region of the surface with its outside being the rest of the
surface. In the middle, graph and its surrounding are both regions of the surface, and on the
right we have drawn the boundary as a vertex with the interconnecting edges attached.

This leads naturally to our notion of boundary graph: we contract both subgraphs on either
side of the boundary to points, leaving a two-vertex graph whose edges specify the connections
crossing the boundary. Boundary graphs form the vertex of partitioning spans, which specify the
whole graph as the two parts, as shown in Figure 1; the pushout of a partitioning span is the
original graph.

This formalism allow us to use a simple definition of graph, although our morphisms are
now built from partial functions, which introduces some complications around the required
injectivity properties to preserve the type of the vertices, which is essential if these graphs are to
be interpreted as string diagrams.

Limitations The astute reader will have noted that Theorem 1.1 applies only to connected
graphs. To specify an embedding of a disconnected graph a rotation system does not suffice. We
would also need to take into account the relationship between components and faces of the graph.
We have made no attempt to do so here.

2 A Suitable Category of Graphs

In this section we will introduce a category of directed graphs without reference to any topological
structure. The main difficulty here is arriving at the correct notion of graph morphism: our
intent here is that the graphs represent terms in some monoidal category – i.e. string diagrams
– and the morphisms represent embeddings of subterms. This implies that certain structures
should be preserved which conventional graph rewriting does not worry about. Our choices here
are also influenced by the variant of double-pushout rewriting we will define in the next section.
In later sections we will show how to incorporate the plane topology by adding rotation systems.

A total graph is a functor G : (•⇒ •) → Set. Concretely, such a graph is a pair of sets V
and E, of vertices and edges respectively, and a pair of functions s and t assigning source and
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target vertices to each edge.
E V.

s

t

In the functor category [•⇒ •,Set], a morphism of graphs is a pair of functions fV : V → V ′,fE :
E→ E′, such that the following squares commute:

E E′

V V ′

s

fE

s′

fV

E E′

V V ′

t

fE

t′

fV

(1)

Sadly for us, this simple and elegant definition will not suffice.
We want to consider graph morphisms which can replace vertices with subgraphs, and

therefore forget these vertices, as shown below:

To achieve this we could operate in a subcategory of [•⇒ •,Pfn], the category of partial graphs
and maps, with only the total graphs as objects. However this is not quite enough. Commutation
of the naturality squares (1) in this category is strict, meaning it includes equality of the domains
of definition. Therefore if a morphism forgets a vertex it must also forget all the incident edges
at that vertex. This is no use. We address this issue by using the poset enrichment of Pfn, and
work in the category [•⇒ •,Pfn]≤ of functors and lax natural transformations:

E E′

V V ′

s

fE

≤ s′

fV

E E′

V V ′

t

fE

≤ t′

fV

(2)

The lax commutation allows the vertex component of a morphism to be undefined at some vertex
v while its incident edges may be preserved. However, if an edge is “forgotten” then its source
and target vertices must also be so. We’ll need more, but let’s take [•⇒ •,Pfn]≤ as our ambient
category for now.
Proposition 2.1. The category Pfn of sets and partial functions has pushouts.

Proof. Given a span L B Cl c , the elements of the pushout are the same as in for Set, but
restricted to a subset B′ ⊆B, with both l(b) and c(b) defined for b ∈B′. This is the only way the
square commutes for elements in B′, and the universal property of the pushout can be derived
from Set.

Proposition 2.2. The category Inj of sets and injective functions does not have pushouts.

Proof. If pushouts in Inj exist, they have to coincide with those of Set. Consider the span
{∗} ∅ {∗}, and commuting squares:
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{∗} ∅

{∗,∗} {∗}

{∗}

id

m

id

In the square all morphisms are injective, but the mediating map out of the pushout m : {∗,∗}→
{∗} is not.

We would like to be able to accommodate two further properties in our notion of graph
morphism: Firstly, since vertices represent morphisms of a monoidal category, their type should
be preserved. Secondly, we want to specify when a morphism is a graph embedding, which
requires an injectivity property. Merely asking for injectivity of the vertex and edge component
is not enough though, our setup requires the edge component to be non-injective, i.e. to represent
the identity morphism (or similar circumstances):
Example 2.3. A graph morphism with a non-injective edge component:

Both of the above requirements turn out to be properties of the connection points between
vertices and their incident edges, called flags:
Definition 2.4. Given a graph (V,E,s, t) its set of flags is defined

F = {(e,s(e)) : e ∈ E}+{(e, t(e)) : e ∈ E}

Given a graph morphism f : G→G′ there is an induced flag map, fF : F → F ′,

fF = (fE×fV ) + (fE×fV )

Note that the flag map is in general a partial map: it is undefined on (e,v), whenever fV is
undefined on v. Whenever fF is injective we say that f is flag injective.

Flag injectivity allows edges to be combined but prevents a morphism from decreasing a
vertex degree in the process. However, nothing said so far forbids a morphism from increasing
the degree of a vertex: we require a notion of flag surjectivity. Given f : G→G′, it doesn’t suffice
to require the flag map fF to be surjective, since in general G′ will contain more vertices than G,
and hence more flags. The resulting definition is unfortunately unintuitive.
Definition 2.5. Let f : G→G′ be a morphism between two total graphs; we say that f is flag
surjective if the two diagrams below commute laxly,

V V ′

P (E) P (E′)

fV

s−1 s′−1≥

P (fE)

V V ′

P (E) P (E′)

fV

t−1 t′−1≥

P (fE)

(3)

where s−1 and t−1 are the preimage maps of s and t respectively, and P is the powerset functor.
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If a flag surjective morphism f is defined on a vertex v, it will ensure that all edges attached
to v′ = fV (v) are in the image of fE , thus no additional edges can be attached to v′ in the process.
An example of a morphism which is not flag surjective can be found in Figure 9 in Appendix B.
We’ll call a morphism which is both flag injective and flag surjective a flag bijection. This is
quite a strong property; it’s almost enough to make the vertex map injective, but not quite.
Lemma 2.6. Let f : G→G′ be a flag bijection, and suppose that fV (v1) = fV (v2) and both are
defined; then degv1 = degv2 = 0.

Proof. Let v′ = fV (v1) = fV (v2); since f is flag injective, the set of flags at v′ must contain (the
image of) the disjoint union of the flags at v1 and v2; hence degv′ ≥ degv1 + degv2. Since (by
(2)) fE is defined on all the flags at v1, flag surjectivity implies that degv1 ≥ degv′, and similarly
for v2. Hence degv′ = degv1 = degv2 = 0.

Lemma 2.7. Let G and G′ be total graphs, and let f : G→G′ be a flag bijection. For all v ∈ V ,
if fV (v) is defined, then fE defines a bijection between the flags at v and those incident at fV (v);
in consequence degv = degfV (v).

Proof. Let v′ = fV (v). The edges incident at v are given by the disjoint union of s−1(v) and
t−1(v), and likewise at v′. Since f is flag injective, fE is injective on the subset of flags defined
by v. Since f is flag surjective all the flags at v′ are in the image of fE(s−1(v)) + fE(t−1(v)).
Note that since fV (v) is defined then fE is defined for all e ∈ s−1(v) and all e ∈ t−1(v) by Eq. (2).
Hence we have a bijection as required.

Lemma 2.8. Let f : G→H and g : H → J be flag bijections; then g ◦f is a flag bijection.

Proof. See Appendix A.

By the preceding lemma, and by observing that the identity is a flag bijection, we may
conclude that the flag bijections define a wide subcategory of [•⇒ •,Pfn]≤, which we will call B.

Example 2.3 suggests a confounding special case: the vertex of a self loop can be forgotten.
Here is another one:
Example 2.9. Let G be the (unique) total graph with one vertex and one edge; let G′ be the
(unique) partial graph with no vertices and a single edge. Define f : G→ G′ by fV = ∅ and
fE = id1. This is a valid flag bijection in B.

While it is tempting to restrict to the subcategory defined by the total graphs, and ban such
monsters by fiat, they do occur quite naturally in the rewrite theory we propose, albeit in quite
restricted circumstances. So they must be tamed. To do so, we extend the definition of graph
with circles: closed edges which have neither a source nor a target vertex1. Unfortunately the
definition of graph morphism will get more complex and the resulting category is no longer a
functor category, as we shall now see.

1This notion of graph has a long history; see, for example, the work of Kelly and Laplaza on compact closed
categories [13].



M. Altenmüller & R. Duncan 47

Definition 2.10. A graph with circles is a 5-tuple G = (V,E,O,s, t) where (V,E,s, t) is a total
graph and O is a set of circles. For notational convenience we define the set of arcs as the disjoint
union A = E +O.

A morphism f : G→G′ between two graphs with circles consists of two (partial) functions
fV : V ⇀ V ′ as above, and fA : A→ A′, satisfying the conditions listed below. Note that any
such fA factors as four maps,

fE : E→ E′ fEO : E→O′

fOE : O→ E′ fO : O→O′

The following conditions must be satisfied:
1. fA : A→A′ is total;
2. the component fOE : O→ E′ is the empty function;
3. the pair (fV ,fE) forms a flag surjection between the underlying graphs in B.

If, additionally, the following three conditions are satisfied, we call the morphism an embedding:
4. fV : V ⇀ V ′ is injective;
5. the component fO is injective;
6. the pair (fV ,fE) forms a flag bijection between the underlying graphs.

It’s worth noticing that if some fA maps an edge e to a circle, then fE(e) is undefined, but
fEO(e) is defined. This, by the lax naturality property, implies that fV is undefined on both
s(e) and t(e). Various examples and non-examples of morphisms and embeddings of graphs with
circles can be found in Appendix B.
Lemma 2.11. Defining composition point-wise, the composite of two morphisms of graphs
with circles is again such a morphism. Additionally, if both morphisms are embeddings, their
composition is an embedding as well.

Proof. See Appendix A.

We finally have introduced all the necessary structure to define our suitable category of graphs.
Definition 2.12. Let G be the category whose objects are graphs with circles, and whose arrows
are morphisms as per Definition 2.10.

There is an obvious and close relationship between G and the category of partial graphs and
flag bijections, B. We can make this precise.
Definition 2.13. We define a forgetful functor U : G → B by

U : (V,E,O,s, t) (V,E,s, t)

U : (V ′,E′,O′,s′, t′) (V ′,E′,s′, t′)

U :(fV ,fA) 7→ (fV ,fE)

Example 2.14. Returning to Example 2.9, we see how this degenerate case fits in to the
framework. We start with G, the unique total graph with a single vertex and a single edge (and
no circles). There a single valid way to erase the vertex in G.

Firstly observe that G′= (∅,{e},∅,∅,∅) as in the earlier example is not an object in G. However
G′′ = (∅,∅,{e},∅,∅) is a valid graph, and the map f : G→G′′ which is undefined on the vertex
and sends the edge to the circle is a valid morphism, indeed the only one.

Finally observe that the image of UG′′ is the empty graph and Uf is the empty function.
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The term “graph with circles” is unacceptably cumbersome, so henceforth we will simply say
“graph” and refer to G as the category of graphs. In practice the circles are rarely important,
although we will devote a disappointingly large amount of this paper to them.

3 DPO Rewriting in the Suitable Category
Double pushout rewriting [9] is an approach to formalising equational theories over graphs by
rewriting. Each equation is formalised as a rewrite rule L⇒R, and the substitution G[R/L] is
computed via a double pushout as shown below.

L B R

G C H

m

rl

q p

The upper span embeds a boundary graph B into both L and R; ensures that both graphs have
the same connectivity, and hence that R can validly replace L. The map m : L→G is the match,
an embedding of L into G, which shows where the rewrite will occur. The first pushout square is
completed by C, the context graph; it is basically G with L removed. In the DPO approach, C is
computed as a pushout complement. Finally the graph H = G[R/L] is the graph resulting from
performing the rewrite L⇒R in G; it is computed as a pushout.

In the algebraic graph literature the notion of adhesive category [15, 16] is commonly used,
as DPO rewriting behaves well in such categories. However, adhesivity is not suitable for our
purposes, since the monomorphisms of G don’t play any special role in our formalism. We will
instead consider a specific case of maps in the DPO diagram only, and in that context show
the existence of pushouts and the existence and uniqueness of pushout complements, which are
similar properties to those of an adhesive categories. The key to this approach is to recognise
that B and C are in some sense partial graphs, as to a lesser extent are L and R; our handling
of this partiality is one of the main novelties of this paper.
Notation 3.1. Almost every map in this section is an embedding of a small object into a larger
one. Wherever unambiguous to do so, we will treat these embeddings as actual inclusions so, for
example, we may write mE(e) = e despite the fact that the domain and codomain of the map
are different graphs.

In our approach the graphs L and R that make up a rewrite rule have an additional
distinguished vertex, the boundary vertex ∂, which represents the rest of the world, from the
perspective of L (or R). The incident edges at ∂ represent the interface between L and the rest of
the graph it occurs in. The context graph C also has a distinguished vertex, the dual boundary
∂̄ which represents its interface. In our formalism, the graph B in the middle exists only to say
that these interfaces must be compatible.
Definition 3.2. A boundary graph is a graph with exactly two vertices, ∂ and ∂̄ (called
respectively the boundary and dual boundary vertices), where s(e) 6= t(e) for all its edges e, and
there are no circles.
Definition 3.3. A partitioning span is a span L B Cl c in G, where B is a boundary graph,
the vertex component lV is defined on ∂ and undefined on ∂̄ and, dually, cV is undefined on ∂
and defined on ∂̄. Further, we require l and c to be embeddings.
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An example of a partitioning span and its pushout in G is depicted in Figure 2. The name
partitioning span arises from the fact that each of the maps out of the boundary graph replaces
one half of it. Hence each graph has two regions, connected via the edges present in the boundary
graph.

L B

G C

m

l

c

g

q

Figure 2: Pushout of the partitioning span from Figure 1, drawn in two different ways

Lemma 3.4. Let L B Cl c be a partitioning span and suppose that e = lE(e1) = lE(e2) in L
for distinct e1 and e2 in EB. Then e is a self-loop at ∂ in L and for all other e3 6= e1 6= e2 we
have e 6= lE(e3). The same holds mutatis mutandis for C.

Proof. By flag bijectivity all the flags at ∂ must be preserved, including distinct flags for lE(e1)
and lE(e2). By hypothesis these two edges are identified so necessarily sB(e1) = ∂ and sB(e2) = ∂̄
or vice versa. Hence e is a self loop. Suppose further that lE(e3) = e; then l is not flag bijective,
which is a contradiction.

Self-loops in partitioning spans indicate that the boundary is connected back to itself without
an intervening vertex. This is responsible for the failure of injectivity on edges and gives rise to
degeneracy when constructing pushouts. We can study them using a dual perspective.

Definition 3.5. The pairing graph for a partitioning span L B Cl c is a labelled directed
graph whose vertices are EB; each vertex receives a polarity: + if sB(e) = ∂, − if sB(e) = ∂̄.
We draw a blue edge between e1 and e2 if lE(e1) = lE(e2) i.e. if e1 and e2 form self-loop in L;
similarly we draw a red edge between e1 and e2 if they form a self-loop in C. Blue edges are
directed from positive to negative polarity; red edges the reverse.

An example of a pairing graph is shown in Figure 3. The pairing graph is always bipartite:
it’s immediate from the definition that vertices of the same polarity are never connected. Further,
due to Lemma 3.4, each vertex can have a maximum of one edge of each colour incident to it. In
consequence every connected component is just a path, possibly of length zero, possibly a cycle.
From these properties, we have the following immediate corollary.

Corollary 3.6. Let P be the pairing graph of the partitioning span L B Cl c ; then each
connected component p of P determines an edge-disjoint path on B. For those components which
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are not cycles, if the first vertex of p is positive, then the path starts at ∂; if negative the path
starts at ∂̄. Conversely, if the last vertex of p is positive, the path ends at ∂̄ and vice versa.

The reader may already suspect that when we form the pushout of a partitioning span, the
components of the pairing graph determine which edges in B will be identified. This is indeed
the case; it forms an intermediate result (Lemma A.3) in the proof of the next theorem.

Figure 3: Example of a partitioning span with its pairing graph

Theorem 3.7. In G, pushouts of partitioning spans exist. Further, the maps into the pushout
are embeddings.

Proof. See Appendix A.

Since pushouts of partitioning spans are the basis of the rewrite theory we wish to pursue, for
the rest of the paper the term “pushout” should be understood to imply “of partitioning span”.

We now move on to the other required ingredient for DPO rewriting: pushout complements.
Just as we did with partitioning spans and pushouts, we will introduce a specific kind of embedding
for which the complement must exist.

Definition 3.8. A boundary embedding is a pair of maps B L Gl m in G, where B is a
boundary graph, where : (i) lV (∂) is defined but lV (∂̄) is undefined; and (ii) (mV ◦ lV )(∂) is
undefined. Further, L has to be a connected graph, and m an embedding.

Definition 3.9. Given a boundary embedding B L Gl m we can immediately construct half
a pairing graph P , consisting of only the blue edges using the mapping l : B→ L. The re-pairing
problem is to construct the other half (the red edges) so that the connected components map to
the edges of G (cf. Lemma A.3). See Figure 5 for examples.

Figure 4: Example of a boundary embedding
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Figure 5: Two different solutions to the same re-pairing problem, together with the corresponding
pairing graphs.

Lemma 3.10. Given a boundary embedding B L Gl m a solution to the re-pairing problem
always exists, but it is not necessarily unique.

Proof. See Appendix A.

Theorem 3.11. In G, pushout complements of boundary embeddings exist, and give rise to
partitioning spans.

Proof. We’ll use the boundary embedding B L Gl m to construct the complement C such
that L B Cl c is a partitioning span, and show that G is indeed the pushout of this span.

Let C have vertex set VC = (VG \VL)+{∂̄}. We’ll construct the edge set, and the source and
target maps, in three steps.

1. Let EC contain all the edges of the induced subgraph of G defined by the vertices VC , and
define the source and target maps on those edges correspondingly.

2. Let OC contain OG \m−1
O (OG).

3. Finally we add the edges between ∂̄ and the rest of the graph, and simultaneously define the
map c : B→C. Let P be a solution to the re-pairing problem given by B L Gl m . If in
P there is a red edge between e1 and e2 in create a self-loop e at ∂̄ and set c(e1) = c(e2) = e.
If there is any vertex e in P which has no incident red edge, add e to EC ; if its polarity is
positive set

sC(e) = (sG ◦mE ◦ lE)(e) tC(e) = ∂̄

and if the polarity is negative, the source and target are reversed. We define cE(e) = e.
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The resulting span L B Cl c is evidently partitioning, and by construction has G as its
pushout, as a consequence of Lemma A.3

Theorem 3.12. In G, pushout complements are unique up to the solution of the re-pairing
problem.

Proof. Suppose that both B C Gc g and B C ′ Gc′ g′ are pushout complements for the
boundary embedding B L Gl m . Observe that given the boundary embedding, a solution to
the re-pairing problem determines the map c : B→ C and vice versa. Let’s assume for now a
that im(c) = im(c′) and hence they both correspond to the same pairing graph.

Since m is an embedding, it follows that every part of C not in im(c) is preserved isomorphically
in G, and similarly for C ′. Since we have assumed im(c) = im(c′) this implies that C ' C ′.

Further, observe that different solution of the re-pairing also have the same number of edges,
and hence produce the same number of self loops at ∂̄. Hence the difference between different
solutions is just the labels on the edges incident at ∂̄.

4 A Category of Rotation Systems

Despite some suggestive illustrations, up to this point we have operated in a purely combinatorial
setting, but now we introduce some topological information in the form of rotation systems. A
rotation system for a graph determines an embedding of the graph into a surface by fixing a
cyclic order of the incident edges, or more precisely the flags, at every vertex.

We augment our category of graphs with this extra structure, in the form of cyclic lists of
flags for each vertex, and strengthen the property of flag surjectivity (Equation 3). The requisite
categorical properties for DPO rewriting will follow more or less immediately from those of the
underlying category of directed graphs.
Definition 4.1. Let CList : Set→ Set be the functor where CListX is the set of circular lists
whose elements are drawn from X.
Definition 4.2. A rotation system R for a graph with circles (V,E,O,s, t) is a total function
inc : V → CListE such that :

• e ∈ inc(s(e))
• e ∈ inc(t(e))
• t−1(v) +s−1(v)∼= inc(v) (when considering inc(v) as a set)

We call inc(v) the rotation at v.
Note that inc(v) is actually a cyclic ordering on the set of flags at v.
Definition 4.3. A homomorphism of rotation systems f : R→ R′ is a G-morphism (fA,fV )
between the underlying graphs, satisfying the following additional condition.

V V ′

CListE CListE′

inc

fV

inc′

CListfE

≥ (4)
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This condition requires the preservation of the edges ordering on vertices where fV is defined;
it implies flag surjectivity (Equation 3). Morphisms therefore either preserve a vertex with its
rotation exactly, or forget about it.
Definition 4.4. LetR be the category whose objects are tuples (V,E,O,s, t, inc) where (V,E,O,s, t)
is an object of the category of graphs, G (see Def. 2.10) and inc is a rotation system for this
graph. The morphisms of R are homomorphisms of rotation systems.
There is an evident forgetful functor U ′ :R→G; this is especially clean since the morphisms of
R are just G-morphisms which satisfy an additional condition. Further, since we demand require
the inc structure to be preserved exactly, pushouts and complements are very easily defined here.

Definition 4.5. In R, objects B, spans L B Cl c and composites B L Gl m are respec-
tively boundary graphs, partitioning spans, and boundary embeddings if their underlying graphs
in G satisfy those definitions (respectively Definitions 3.2, 3.3, and 3.8).
Lemma 4.6. In R pushouts of partitioning spans exist.

Proof. The pushout candidate is the one in the underlying category (see Theorem 3.7), together
with the rotation system:

incG(v) =
{

incC(v), if v ∈ VC

incL(v), if v ∈ VL

The vertex set of the pushout is the disjoint union of vertices from both input graphs, VG =
(VL +VC)\VB. Therefore, by the mediating map from Theorem 3.7, incG is indeed the pushout
of the rotations.

Lemma 4.7. In R pushout complements of boundary embeddings exist, and are unique up to
the solution of the re-pairing problem.

Proof. This follows from the underlying construction in G; see Theorem 3.12. Note that the
rotation for every vertex of C is determined by either those of G or of B, so there is no choice
about the additional structure.

Remark 4.8. We must sound a cautionary note about the “up to” in the preceding statement.
While in G pushout complements that arise from different pairing graphs are essentially the
same, this is not so in R. Since the rotation around ∂̄ is preserved exactly by c : B→C, different
choices for which edges to merge as self loops will result in different local topology at ∂̄. In
particular it can happen that a re-pairing problem can have planar and non-planar solutions; see
Figure 5 for an example.

With that caveat noted, since R has pushouts and their complements, specialised to the
setting where the rewrite rules explicitly encode the connectivity at their boundary, we can use
it as a setting for DPO rewriting of surface embedded graphs.
Remark 4.9. As illustrated in Figure 5, we have adopted a particular convention for drawing
the pairing graphs: the vertices are drawn in a row, with the red edges above and the blue edges
below. If the vertices are drawn in an order compatible with incB(∂) then the blue edges (partly)
reproduce the local topology at ∂ in L. Any edge crossings imply the region around ∂ is not
planar. This is sufficient but not necessary for L to be non-planar. Isomorphic statements can
be made for ∂̄ in C.
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5 On Planarity
Since the graphs of R are equipped with rotation systems they carry information about their
topology along with them. As the previous section showed, R admits DPO rewriting, but we
might ask for more, for example, to maintain a topological invariant. Concretely, we might ask: if
L, R, and G are all plane embedded is G[R/L] also plane? We have already seen, in Remark 4.8
above, that the re-pairing problem can have topologically distinct solutions.

Focussing on plane graphs, it’s possible that the re-pairing problem has distinct plane solutions,
for example :

It may also occur that there is no plane solution. Consider a rewrite rule:

This is a legitimate rewrite rule for plane graphs, and expanding it into a span for the top of a
double pushout diagram makes sense.

Further it’s clear that the left-hand side can be embedded into a circle, which is trivially plane.
However when we apply the rewrite something goes wrong.

In this example we match the left hand side of the rule to the graph with one circle and no
vertices, and compute the complement and the result of substituting the right hand side into
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the context graph. When computing the pushout complement of this boundary embedding, we
notice that there is only one solution to the re-pairing problem, and that this solution is not
plane. In a setting where all embeddings are plane this is an unwanted case.

However in this case, solving the re-pairing problem and computing the pushout complement
already alerts us to the problem, since this graph is not plane. Notice first that the graph G not
carrying a rotation system itself. The circle is seemingly plane, but with the flags in L fixed,
there is no way this circle can be drawn on the plane without edges crossing.

Secondly, observe that the right hand side of the rewrite plays no role: all the toplogical
information is in the boundary embedding. Thus we have a checkable condition to detect when
a rewrite will fail to preserve the surface. We might hope for a necessary and sufficient condition,
or a stronger result allowing us to compute how matching a given boundary into a graph alters
the surface it is embedded in.

6 Conclusions and Further Work

In this work we have made some significant progress towards a purely combinatorial formalisation
of surface embedded strings diagrams. Along the way we have introduced a new representation for
symmetric string diagrams and PROPs which removes several annoyances of earlier approaches.

An obvious next step, already underway, is to formalise string diagrams using the graph
representation described here. Unlike the situation we have discussed in this paper, a morphism
in a monoidal category is not a closed surface – it has a boundary, and it has wires which impinge
on that boundary. Fortunately, the technology of boundary vertices developed in Section 3 can be
easily adapted for this purpose. At this point one could generalise to the situation of a diagram
on a surface with multiple boundaries.

However to build a complete theory of diagrams on surfaces we must address two major
topological questions. The first was already described in Section 5: the preservation of planarity by
rewrites. The second was briefly mentioned in the introduction: disconnected graphs. Minimally
we must record the relationships between components and faces of other components, and consider
how these relationships change under rewrites. Many other details arise, such as the orientation
of circles.

A much simpler modification to the theory would be to consider the undirected case. This is
relatively easy, since undirected graphs can be obtained by a forgetful functor from the directed
ones. However some details also change. For example the repairing problem has more solutions
in the undirected setting than the directed. However we expect no major difficulties here.

Finally, a computerised implementation of this representation would be most helpful for
experiments and applications.
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A Proofs

From Section 2

Lemma 2.8 Let f : G→H and g : H → J be flag bijections; then g ◦f is a flag bijection.

Proof. For flag injectivity, we assume injectivity of the flag maps induced by f and g. If fV is
undefined, so is the flag map. Consider flags (e,v) and (e′,v′) where (fE×fV ) is defined, v = s(e),
v′ = s(e′), and assume gF (fF (e,v)) = gF (fF (e′,v′)). Because f is a flag surjection and defined on
the given flags, Equation 3 holds strictly on v and v′. Therefore we get: fE(e) = sH(fV (v)) and
fE(e′) = sH(fV (v′)). This lets us apply flag injectivity of g to get fF (e,v) = fF (e′,v′), and flag
injectivity of f to reach (e,v) = (e′,v′). The argument applies equally to the target map.

For flag surjectivity we assume lax commutation of Equation 3 for f and g and show that
the composite diagram also commutes laxly.

VG VH VJ

P (EG) P (EH) P (EJ)

s−1
G

fV

≥

gV

s−1
H

≥ s−1
J

P (fE) P (gE)

VG VH VJ

P (EG) P (EH) P (EJ)

s−1
G

fV

≥

gV

s−1
J

P (fE) P (gE)

In the case of either fV or gV being undefined, the composite (gV ◦fV ) is also undefined and
the diagram commutes laxly immediately. If both fV and gV are defined, both their diagrams
commute strictly, and by diagram gluing, their composite does as well.

Lemma 2.11 Defining composition point-wise, the composite of two morphisms of graphs
with circles is again such a morphism. Additionally, if both morphisms are embeddings, their
composition is an embedding as well.

Proof. Let f : G→ G′ and g : G′→ G′′ be two morphisms; then g ◦ f = ((gV ′ ◦ fV ),(gA′ ◦ fA));
since composition of partial functions is associative, we need only check that the four properties
of Definition 2.10 are preserved.

Conditions 1 and 4 follow from the properties of partial functions, and condition 6 (which
includes condition 3) follows from Lemma 2.8. Observe that

(g ◦f)O = [gEO,gO]◦ (fOE +fO)
= (gEO ◦fOE) + (gO ◦fO)
= (gEO ◦∅) + (gO ◦fO)
= gO ◦fO

hence (g ◦ f)O is injective since fO and gO are, satisfying condition 5. Finally, by a similar
argument we have

(g ◦f)EO = [gEO,gO]◦ (fE +fEO)
= (gEO ◦fE) + (gO ◦fEO)
= (∅◦fE) + (gO ◦∅)
= ∅

hence the remaining condition 2 is satisfied.
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From Section 3

Theorem 3.7 In G, pushouts of partitioning spans exist. Further, the maps into the pushout
are embeddings.

Proof. The proof will proceed via several intermediate results. First we will explicitly define
the pushout candidate L G Cm g (Definition A.1), show the constructed object G is a valid
graph, (Lemmas A.2 and A.4), show that m and g are indeed embeddings in G (Lemma A.5),
and finally show that the required universal property holds in in G (Lemma A.6). This suffices
to prove the theorem.

Definition A.1. Given the partitioning span L B Cl c , we define the pushout candidate
L G Cm c as follows.

We construct the underlying sets and functions by pushout in Pfn,

VL {∂, ∂̄}

VG VC

mV

lV

cV

gV

q

AL EB

AG AC

mA

lA

cA

gA

q
(5)

so explicitly we have
VG = (VC +VL)\VB AG = (AL +AC)/∼

where ∼ is the least equivalence relation such that lE(e) = cE(e) for e ∈ EB. Next we define the
source map by

sG(e′) =


sL(e), if e′ = mA(e) and sL(e) is defined and sL(e) 6= ∂

sC(e), if e′ = gA(e) and sC(e) is defined and sC(e) 6= ∂̄
undefined otherwise.

(6)

for all e′ ∈AG. The target map tG is defined similarly. (Strictly speaking we have defined s and
t on all of A; they will be restricted to E when we have defined that.) Finally we divide the arcs
into edges and circles by setting

EG = {e ∈AG : both sG(e) and tG(e) are defined } (7)
OG = AG \EG (8)

There are two properties that need to be checked to ensure that the definition above yields a
valid graph. The source and target maps should be well-defined partial functions; and all arcs
should either have two end points (i.e. they are edges) or none (they are circles).
Lemma A.2. Equation (6) defines a partial function: if sG(e′) is defined, it is single-valued.

Proof. There are two things to check. First we show that if the first or second clause of the
definition applies it is single valued. We then show that at most one of those clauses can apply.

Suppose that in L we have distinct e1, e2 such that mA(e1) = mA(e2) and sL(e1) 6= ∂. Since
they are distinct in L and identified in G, we must have distinct e1,e2 ∈B such that cA(e1) = cA(e2)
in C. By Lemma 3.4 this gives a self-loop at ∂̄ in C, which in turn implies that sL(e2) = ∂. Hence



M. Altenmüller & R. Duncan 59

L provides at most one candidate source vertex for every edge in G, and a similar argument can
be made for C.

Now suppose mA(e1) = gA(e2), and that sL(e1) 6= ∂ and sC(e2) 6= ∂̄. Since the edges are
identified in G they are both present in B. Since sL(e1) 6= ∂ we have sB(e1) = ∂̄, from which
sC(e1) = ∂̄. Since sC(e2) 6= ∂̄, e1 and e2 are distinct in C. Therefore we must have e1 and e2
identified in L; therefore, by Lemma 3.4, e1 must be a self-loop at ∂ which contradicts our
original assumption. Therefore there is at most one candidate source vertex and the map sG is
well defined in (6).

The preceding argument applies equally to the target map tG.

Lemma A.3. Let P be the pairing graph of the partitioning span L B Cl c , and let G be
its pushout candidate.

1. Suppose e and e′ are edges in B; if e and e′ are in the same component of P then
(mA ◦ lE)(e) = (mA ◦ lE)(e′).

2. Let e be any arc in AG; then its preimage in B is either empty or is exactly one connected
component of P.

Proof. (1) Suppose that e and e′ are the same component of P . We use induction on the length
of the path from e to e′ in P. If the path is length zero, then e = e′ and the property holds
trivially. Otherwise, let e′′ be the predecessor of e′. By induction, and (5), we have

(mA ◦ lE)(e′′) = (mA ◦ lE)(e) = (gA ◦ cE)(e) = (gA ◦ cE)(e′′)

Since e′ and e′′ are adjacent in P we must have either lE(e′) = lE(e′′) or cE(e′) = cE(e′′) depending
on the colour of the edge. From this the result follows.

(2) Let e ∈AG and suppose that e1 ∈ (mA ◦ lE)−1(e) in B. Either e1 is a component on its
own, or it has a neighbour e2. By the definition of P either lE(e1) = lE(e2) or cE(e1) = cE(e2)
depending on the colour of the edge. Therefore we have

(mA ◦ lE)(e2) = (mA ◦ lE)(e1) = e

so e2 is also in the pre-image of e. By induction, the entire component containing e1 must also
be included in the pre-image.

For the converse, recall that AG = (AL + AC)/∼ where ∼ is the least equivalence relation
such that lE(ei) = cE(ei) for ei ∈ EB. Therefore if distinct e′ and e′′ ∈ EB both belong to the
preimage of e ∈AG, there necessarily exists a chain of equalities

lE(e′) = lE(e1), cE(e1) = cE(e2), lE(e2) = lE(e3), . . . , cE(en) = cE(e′′)

to place them in the same equivalence class. Such a chain of equalities precisely defines a path
from e′ to e′′ in P , hence if two edges of B are identified in the pushout, they belong to the same
component in the pairing graph.

Lemma A.4. Let G be the pushout candidate defined above. For all arcs e ∈ AG either both
sG(e) and tG(e) are defined or neither is.
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Proof. Consider the preimage of e in B; if it is empty then e is simply included in G from either
L or C, along with both its end points.

Otherwise, by Lemma A.3, e corresponds to a connected component p of the pairing graph
P. By corollary 3.6 such components can be either line graphs or closed loops. If p is a closed
loop, for all ei ∈ p we have

sL(lE(ei)) = tL(lE(ei)) = ∂ and sC(cE(ei)) = tC(cE(ei)) = ∂̄

so, by (6), neither sG(e) nor tG(e) is defined. If, on the other hand, p forms a path e1,e2, . . . ,en,
its ends provide the source and target. Specifically, if e1 positive in P then sC(cE(e1)) 6= ∂̄ and if
it is negative sL(lE(e1)) 6= ∂; if en is positive tL(lE(en)) 6= ∂, and if en is negative tC(cE(en)) 6= ∂̄.

Hence sG(e) is defined if and only if tG(e) is defined. Therefore the division of AG into edges
and circles is correct and G is indeed a valid graph.

Lemma A.5. The arrows of the cospan L G Cm g defined by the pushout candidate are
embeddings in G.

Proof. We will show the result for m; the proof for g is the same. Note that Properties 4 and 1
are automatic from the underlying pushouts in Pfn. Since the graph B has no circles, the mO

component is injective by construction (Property 5) and since no arc gets a source or target in G
unless its preimage had one, the component mOE is empty as required (Property 2). Finally
we have to show that the induced map (mV ,mE) is a flag bijection. First note that if mE(e) is
undefined then e is necessarily a self-loop at ∂, and mV (∂) is always undefined, so the squares
(2) commute. Otherwise if (fV ◦ sL)(e) is defined then the square commutes directly by the
definition of sG above, and similarly for tG. Finally for all v 6= ∂ ∈ VL, we have that mV (v) is
defined. By the definition of sG and tG, e is a flag at v if and only if mE(e) is a flag at mV (v).
Flag injectivity and flag surjectivity follow immediately. Hence m is an embedding in G.

Lemma A.6. the cospan L G Cm g has the required universal property.

L B

G C

G′

m

l

m′
c

g

f

q

g′

Proof. Since the underlying sets and functions are constructed via pushout the required mediating
map f = (fV ,fA) exists; we need to show that it is a morphism of G. Property 1 follows from
m′ and g′ satisfying it as well. For the fOE to be empty (Property 2), use the fact that m′OE

and g′OE are empty for circles in L and C, because they are morphisms in G. The remaining
case for a circle to appear in G is as the pushout of some edges in B being identified in one
instance of the re-pairing problem. In this case, because the outer square has to commute for
the edge component, these edges have to be identified, and hence form a circle, in G′, too. This
makes fOE empty. For flag surjectivity between the underlying graphs (Property 3), observe that
the vertex set VG is the disjoint union of vertex sets VL and VC . Because m′ and g′ are valid
morphisms in G, they are flag surjective, and therefore so is f .

This completes the proof of Theorem 3.7.
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Lemma 3.10 Given a boundary embedding B L Gl m a solution to the re-pairing problem
always exists, but it is not necessarily unique.

Proof. Note that any half-pairing graph has connected components of at most two vertices, linked
by a (blue) edge from a positive vertex to a negative one. Define the component of an arc by

k(a) = (mA ◦ lA)−1(a) for all a ∈AG

Note that this defines a partition of the set EB '
∑

a∈AG
k(a), and each (non-empty) k(a)

determines a connected component of the solution to the re-pairing problem. We’ll abuse
notation and use k(a) to also denote the subgraph of the half-pairing graph whose vertices are
k(a). There are two cases depending whether a is a circle or an edge.

1. Suppose a∈OG; we form a closed loop involving all e∈ k(a), by adding red edges as follows.
Pick a degree-one positive vertex p follow the incident blue edge to the negative vertex n;
now pick another a degree-one positive vertex p′ which is not connected to n. Add a red
edge from n to p′. Repeat the process starting from p′. When no more vertices remain,
close the loop by adding a red edge from the final negative vertex back to p. Since a is a
circle, k(a) necessarily contains an even number of vertices, so closing the loop is always
possible.

2. The case when a is an edge is slightly more complex because edges have end points; k(a)
may contain zero, one, or two degree-zero vertices depending how many of its end points
are defined by vertices in L. We will connect the vertices as previously, but in a line, rather
than a loop. Since we can only add red edges, and only one at each vertex, the degree-zero
vertices will necessarily be the end points of this line.
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B Examples
This collection captures some of the corner cases we do or do not want to allow as morphisms in
the category of graphs with circles as described in Definition 2.10.

Figure 6: A flag surjective, but not flag bijective map. This is a valid of G.

Figure 7: An example of a flag surjective but not flag bijective morphism of G.

Figure 8: An example of an embedding (hence a flag bijective morphism) in G.

Figure 9: This map is not flag surjective and therefore not a valid morphism in G.

Figure 10: This example is not a valid morphism in G because it does not respect Condition 2.
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We compare two possible ways of defining a category of 1-combs, the first intensionally as coend
optics and the second extensionally as a quotient by the operational behaviour of 1-combs on lower-
order maps. We show that there is a full and bijective on objects functor quotienting the intensional
definition to the extensional one and give some sufficient conditions for this functor to be an isomor-
phism of categories. We also show how the constructions for 1-combs can be extended to produce
polycategories of n-combs with similar results about when these polycategories are equivalent. The
extensional definition is of particular interest in the study of quantum combs and we hope this work
might produce further interest in the usage of optics for modelling these structures in quantum theory.

1 Introduction

The traditional way in which physical systems are modelled is by considering a state space which evolves
according to processes which act on that space. For example, a quantum circuit is traditionally viewed in
terms of linear operators being applied to a Hilbert space; electrical circuits in terms of certain operators
acting on phase space; probabilistic theories in terms of stochastic maps acting on probability spaces.

This approach has proven to be amenable to categorical analysis. For example, the ZX-calculus
[15, 32], graphical affine algebra [6, 5, 18] and markov categories [20] have all been successful in for-
mally modelling these respective classes of systems using the theory of monoidal categories. Moreover,
categorical quantum mechanics [1, 14, 21] and the framework of generalised/operational probabilistic
theories [2, 11] provide semantics for modelling more general quantum-like theories.

However, the approach of modelling systems merely in terms of the action of operators on the state
space may not fully capture the behaviour of the system. When the collection of operators is itself
regarded as the state space, this traditional approach gives little insight into the evolution of this new,
“higher order” state space. What is missing is a theory of second order processes, a theory of processes
which themselves act on (first order) processes. Or indeed a theory of nth order processes which act on
(n−1)th order processes.

In the theory of quantum circuits, the domain which we are chiefly interested in this paper, these
higher order processes are known as quantum supermaps [9, 24]. In their most abstract formulation, it is
known that there exist quantum supermaps, such as the quantum switch, which go beyond the standard
quantum circuit model by not possessing a factorisation as a circuit with definite causal ordering of
gates and no time-loops [12, 7]. Yet there is a class of supermaps which can be adequately modelled by
“circuits with holes” [8, 10] where one has a framework quantum circuit with slots that can be filled with
first-order maps. Indeed, all second-order deterministic single-party supermaps on quantum channels
possess a factorisation as a circuit [9, 19, 24].

In this paper we restrict our attention to these “circuits with holes”, otherwise known as n-combs

http://dx.doi.org/10.4204/EPTCS.380.4
https://creativecommons.org
https://creativecommons.org/licenses/by-sa/4.0/
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[8, 10]. For example, 1-combs are often drawn suggestively as diagrams of the form:

A

A′

B

B′

=

g

f

B

B′

A
A′E (1)

Some care is needed though to make these drawings rigorous and to demonstrate that a suitable
(possibly symmetric monoidal) category of combs can be defined. In much of the quantum literature it
is assumed that the base category of first order processes is compact closed, or at least embeds into one.
In this case it is possible to bend input and output wires to express combs as maps without holes and use
the drawing (1) in an unambiguous way; for example, see [8, 24]. Outside of the quantum literature there
are approaches to defining comb diagrams without the assumption of closure [29, 27], but it is not clear
when this coincides with the quantum definition.

In this article we focus on defining categories of combs without any assumptions of closure on the
category of first order processes. In Section 2, we compare two constructions which take an arbitrary
symmetric monoidal category and produce a symmetric monoidal category of combs. Both of these
constructions represent a comb as a pair of morphisms ( f ,g) from the theory of first order processes,
quotiented by their behaviour on first-order processes.

The first construction, which we define in Subsection 2.1, Comb : SymMonCat→ SymMonCat,
quotients combs by their extensional behaviour: two combs are equal when they produce the same output
on all first-order inputs. In other words this identifies two combs when they appear to be the same when
probed with all first order processes λ :

( f ,g)∼comb ( f ′,g′) when

g

f

λ =

g′

f ′

λ ∀λ

This equivalence relation has been discussed before [16] 1 and is perhaps the one that would be most
immediate to those studying quantum theory.

The second construction, which we review in Subsection 2.2, is that of the category of coend optics,
Optic : SymMonCat→ SymMonCat (which we shall henceforth just call optics) [13, 26, 28, 25]. Optics
are used to encompass bidirectional data accessors familiar to the computer science community such as
lenses, prisms and grates, amongst many others. Their usage to model combs and more general “circuits
with holes” has been described in [29, 27]. In contrast to the previous construction this quotients the
combs by their intensional behaviour, allowing first-order maps to slide along the shared environment

1we note that our category of combs is distinct from that developed there: the objects of their category being different than
those studied in this document
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connecting the two factors together:

g

f

v

∼opt

g

f

v

In Subsection 2.3 we show that there is always a full and bijective on objects monoidal functor from
optics to the extensional definition, Optic(C )−→ Comb(C ). We then give some sufficient conditions for
this functor to exhibit an isomorphism of symmetric monoidal categories. In particular we show that
when the category of first-order processes is cartesian and there exists a state for every type or when it is
compact closed, the two definitions coincide. We also show that in the case of the category of unitaries
between Hilbert spaces, the definitions again coincide. This case (alongside compact closed categories)
is particularly important for quantum theory. We leave it as future work to fully characterise when
Optic(C ) ∼= Comb(C ) and note that there are important cases of combs not covered by the sufficient
conditions proven in this work.

In section 3 we specialise to the case where the base category C is †-compact closed and restrict
to the subcategory where the maps constituting the combs are the daggers of each other, that is where
g = f † in (1). This subcategory of the extensional category of combs collapses to the CPM-construction
[30] which is used to generate a category of generalised completely positive maps from some underlying
category.

In the final section 4 we turn our attention to n-combs, which map n first-order processes into first-
order process. These combs naturally form a polycategory and we show that in the presence of compact
closure, the extensional and intensional definitions once again coincide.

2 Combs

In this section we define two notions of factorisable 1st order single input combs. These categories are
given by functors SymMonCat→ SymMonCat whose morphisms are given by pairs of maps composable
along an interface, as per the right hand side of (1). In Subsection 2.1 we establish the extensional
definition; in Subsection 2.2 we review the intensional definition of optics; and in Subsection 2.3 we give
sufficient conditions under which both definitions coincide.

2.1 Extensional combs

Let us begin by considering possible extensional definitions of combs. Firstly, one could ask that the
combs are equal as morphisms in the original category when we extend their inputs:

( f ,g)∼σ ( f ′,g′) ⇐⇒
f

g

A

A′

E

B′

B

f ′

g′

A

A′

E ′

B′

B

= (2)
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While this is an equivalence relation on pairs of morphisms, it is not a congruence with respect to com-
position. Suppose ( f ,g)∼σ ( f ′,g′) and (h,k)∼σ (h′,k′). Then (h,k)◦ ( f ,g) = ((1⊗h) f ,g(1⊗ k))∼σ

((1⊗h′) f ,g(1⊗ k′)) = (h′,k′)◦ ( f ,g) which is not in general equivalent to (h′,k′)◦ ( f ′,g′).
We could instead ask that two combs are equivalent if they are equal on all inputs to the comb:

( f ,g)∼τ ( f ′,g′) ⇐⇒ λ

f

g

A

A′

E
B′

B
λ

f ′

g′

A

A′

E ′
B′

B
=∀λ : B−→ B′

This also forms an equivalence relation on pairs of morphisms, although it is too coarse. Consider
the free symmetric monoidal category generated by one object A, two states φ ,ψ : I→ A and an effect
! : A→ I such that !◦φ = !◦ψ = 1I . Then (1I⊗ψ,1I⊗ !)∼τ (1I⊗φ ,1I⊗ !); however evaluating these
combs on the braid one finds,

ψ

!
ψ

!

= 6=
φ

!
φ

!

=

So if we want comb to behave compatibly with the monoidal structure of the category, we need
something stronger than equality on all inputs.

Definition 1 (Extensional Comb Equivalence). We say that two combs are equivalent if they are equal
on all extended inputs:

( f ,g)E ∼comb ( f ′,g′)E ′ ⇐⇒ λ

f

g

A Λ

A′ Λ′

E
B′

B
λ

f ′

g′

A Λ

A′ Λ′

E ′
B′

B
=∀Λ,Λ′

∀λ : B⊗Λ−→ B′⊗Λ′
(3)

This definition subsumes both of the previous definitions, but in the compact closed case (2) is
sufficient to recover the full extensional equivalence.

Proposition 1. When C is compact closed ( f ,g)∼comb ( f ′,g′) ⇐⇒ ( f ,g)∼σ ( f ′,g′).

Proof. The forwards direction is immediate. The backwards direction follows by graphical manipula-
tion:

f

g

A

A′

E

B′

B

f ′

g′

A

A′

E ′

B′

B

= λ

f

g

A Λ

A′ Λ′

E ==⇒ λ

f ′

g′

A Λ

A′ Λ′

E ′
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Definition 2. Given a symmetric monoidal category C , the symmetric monoidal category of extensional
combs Comb(C ) has:

Objects: pairs (A,A′) of objects of C .

Morphisms: ( f ,g) : (A,A′)−→ (B,B′) are equivalence classes of pairs of morphisms f : A−→ E⊗B and
g : E⊗B′ −→ A′ of C under the comb equivalence relation ∼comb.
Composition of morphisms is given by ( f ′,g′)◦ ( f ,g) = ((1⊗ f ′) f ,g(1⊗g′)).

Monoidal structure: On objects (A,A′)⊗ (B,B′) = (A⊗B,A′⊗B′) and on morphisms:

f

g

A

A′

E
B′

B

h

k

C

C′

F
D′

D
⊗ =

f

g

A

A′

E B′

B

h

k

C

C′

F D′

D

The unit object is (I, I) with structural isomorphisms given by (λ ,λ−1) : (A,A′)⊗ (I, I) = (A⊗
I,A′⊗ I)−→ (A,A′) and (ρ,ρ−1).
The symmetry is defined similarly.

Lemma 1. Comb defines a functor SymMonCat→ SymMonCat.

2.2 Optics

Optics provide another potential definition of combs; albeit an intensional one, as opposed to the exten-
sional one described in the previous subsection.

We will use the graphical calculus of internal string diagrams/pointed profunctors to work with op-
tics. Internal string diagrams were first introduced in the Vect-enriched case in [3] and further explored
in [23]. The same sort of graphical calculus was described in [29] where the author shows that they form
a 2-category of pointed profunctors.

Internal string diagrams consist of usual string diagrams for monoidal categories bounded inside
cobordisms. For example the identity, contravariant and covariant embeddings of the tensor product and
tensor unit are drawn as follows:

f f f f f (4)

The internal diagrams can be manipulated and composed as usual, but they are constrained by the
topology of the cobordisms. Moreover, when we compose these diagrams together, we are allowed to
slide morphisms between them as follows:

f

∼
f
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The shapes in (4) are associative monoids and comonoids and there exist the following 2-cells which
allow us to “pop bubbles” (as well as some extra coherence conditions):

f

g
⇒

f

g
, f g ⇒ f g

,
g

f

⇒
f

g
, ⇒ (5)

There is much more to say about pointed profunctors, but we will omit the technical discussion and
refer the interested reader to [3] and [29] for a more in-depth discussion.

We are now in a position to give the definition of the category of optics.
Definition 3 (Category of optics [25, 13]). Given a symmetric monoidal category C , the category of
optics Optic(C ), has the same objects as Comb(C ). Morphisms are pairs ( f ,g)E like in Comb(C )
however, instead of quotienting the morphisms by the equivalence relation∼comb, we quotient morphisms
by the equivalence relation ∼opt imposed by embedding the combs inside the cobordisms:

g

f

v

∼opt

g

f

v

(6)

The string diagrams can be freely moved around the interior of the cobordism, but can not pass through
the surface: as a result we are able to slide maps on the environment wire between the two halves with
the equivalence relation generated by ((v⊗1) f ,g)E ′ ∼ ( f ,g(v⊗1))E .

Composition, identities, and symmetric monoidal structure is as in Comb(C ). That∼opt is a congru-
ence and that the composite of two optics is another optic (i.e. that the composite of the comb-shaped
cobordisms in (6) can be manipulated to give another comb-shaped cobordism) follows by a composition
of the 2-cells in (5), see e.g. [26] for more details.

2.3 Equivalence of the Definitions

In this section we consider the question of when Optic(C ) and Comb(C ) are equivalent. It is fairly
straightforward to show that there is always a functor Optic(C ) −→ Comb(C ) turning the intensional
combs into extensional combs.
Proposition 2. Given a symmetric monoidal category C , there is a bijective on objects, full symmetric
monoidal functor Optic(C )−→ Comb(C ).

Proof. For each λ there is a mapping:

g

f

v

7→

g

f

B

B′

v λ

Λ′

Λ

This preserves the sliding of morphisms v along the ancillary wire.
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Remark. Formally, the mapping above gives a cowedge for C (A,−⊗B)×C (=⊗B′,A′) and must there-
fore factor uniquely via the coend.

It is not immediately obvious whether the functor of the previous proposition is faithful and thus
witnesses an equivalence of categories.
Counterexample 1. Consider the free commutative monoidal category generated by one object A and a
single idempotent f : A−→ A. Then (1A, f )I �opt ( f ,1A)I but (1A, f )I ∼comb ( f ,1A)I and thus Optic(C )�
Comb(C ) in this case.

We now explore some classes of categories where there is an equivalence Optic(C )∼= Comb(C ).
Proposition 3. Given a compact closed category C , there is a symmetric monoidal isomorphism of
categories Optic(C )∼= Comb(C ).

Proof.

g

f

=

g

f

∼opt

g

f

=

g′

f ′

∼opt

g′

f ′

=

g′

f ′

So we have established that comb equivalence implies optic equivalence. This is sufficient to show
that the functor of proposition 2 is also faithful.

Remark. The previous result could also be established by Yoneda reduction (see e.g. [27, Sec. 4.2]) as
follows:∫ E

C (A,E⊗B)×C (E⊗B′,A′)∼=
∫ E

C (A,E⊗B)×C (E,B′∗⊗A′)∼= C (A,B′∗⊗A′⊗B)

∼= C (A⊗B′,A′⊗B)

Note that ( f ,g)E ∼comb ( f ′,g′)E ′ implies ( f ,g)E ∼σ ( f ′,g′)E ′ which ensures they are the same element
of the set C (A⊗B′,A′⊗B).
Proposition 4. Given a Cartesian category C where each type is inhabited, there is a symmetric monoidal
isomorphism of categories Optic(C )∼= Comb(C ).

Proof. Suppose ( f ,g)E ∼comb ( f ′,g′)E ′ . We know that these combs are equal on the braid:

f

g

A

A′

E

B′

B

f ′

g′

A

A′

E ′

B′

B

=

By the universal property of the product, this map is completely determined by its projections into A′ and
B. The former gives:

f

g

A

A′

E

B′

f ′

g′

A

A′

E ′

B′

=

! !

∈ C (A×B′,A′) (7)
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while the latter gives

f

g

!

A

E

B′

B

f ′

g′

!

A

E ′

B′

B

= =⇒
f !

!

A

E

B′

B

f ′ !

!

A

E ′

B′

B

=

Pick a map φ : I→ A, then

f

φ

!
!

A

E

B

f ′

φ

!
!

A

E ′

B

=
f ′

!

A

E ′

B

=
f

!

A

E

B

= (8)

Thus:

g

f

=

g

∆

f f

! !

∼

g

∆

f

f

!

!

=

g′

∆

f ′

f ′

!

!

∼

g′

∆

f ′ f ′
! !

=

g′

f ′

Remark. The final part of the proof can also be derived by Yoneda reduction (see e.g. [13, Sec. 3.1]):

∫ E
C (A,E×B)×C (E×B′,A′)∼=

∫ E
C (A,E)×C (A,B)×C (E×B′,A′)∼= C (A,B)×C (A×B′,A′)

and then noting that the projections (7) and (8) precisely determine an element of C (A,B)×C (A×B′,A′).

Proposition 5. There is a symmetric monoidal isomorphism Optic(Unitary) ∼= Comb(Unitary), where
Unitary is the category of unitary maps between (not necessarily finite dimensional) Hilbert spaces.

Proof. f : A −→ E⊗B is a unitary and thus A ∼= E⊗B are isomorphic as Hilbert spaces. Similarly from
f ′ we see A ∼= E ′⊗B and from g and g′, A′ ∼= E⊗B′ ∼= E ′⊗B′. This means there must exist a unitary
U : E⊗B−→ E ′⊗B such that f ′ =U f and a unitary V : E ′⊗B′ −→ E⊗B′ such that g′ = gV .

Using the fact that ( f ,g)E ∼comb ( f ′,g′)E ′ and that f and g have two-sided inverses, we see that for



J. Hefford & C. Comfort 71

all λ :

λ

f

g

A Λ

A′ Λ′

E
B′

B
λ

f

g

A Λ

A′ Λ′

E ′=

U

V

=⇒ λ

Λ

Λ′

E

B′

B

λ

Λ

Λ′

E ′=

U

V

E

E B

B′E

(9)

Taking λ = σ we arrive at the following equality:

=U V−1

There exists a faithful embedding of Unitaries into Hilb where we can pick any state |ψ〉 and effect 〈e|
with 〈e|ψ〉= 1 to see that:

=U V−1

ψ

e

As a result U can be seen to ⊗-separate as U =U ′⊗1 where U ′ := (1⊗e)V−1(1⊗ψ) must be a unitary
else U could not be unitary and we would have a contradiction. Analagously one can show that V ⊗-
separates as V ′⊗1. Inserting these factorisations into the right hand side of (9) one can see that V ′U ′ = 1.

Therefore:

g′

f ′

=

g

f

U ′

V ′

∼opt

g

f

U ′

V ′

=

g

f

3 The CPM construction as optics

In this section we show that over a †-compact closed category, the CPM construction embeds within
optics.
Definition 4 (CPM construction [30]). Given a †-compact closed category C , the category CPM(C ) of
completely positive maps has the same objects as C . A morphism f : A−→ B in CPM(C ) is a morphism
of type A∗⊗A−→ B∗⊗B in C of the form

f ∗ f

A∗ A

B∗ B

(10)
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where (−)∗ : C → C is the conjugation functor. Composition and identities are inherited from C .

Example 1. The †-symmetric monoidal category CPM(FHilb) is equivalent to the category of density
operators between finite dimensional Hilbert spaces.

The Optic and Comb constructions provide another route to defining the category of completely
positive maps. We write Optic†(C ) and Comb†(C ) for the subcategories of Optic(C ) and Comb(C )
respectively, generated by representatives of the form ( f , f †)E . The following proposition follows:

Proposition 6. When C is †-compact closed, there is a symmetric monoidal isomorphism of categories
Optic†(C )∼= Comb†(C )∼= CPM(C ).

Proof. (Sketch). The isomorphism Optic†(C )∼= Comb†(C ) follows by proposition 3. The isomorphism
Comb†(C ) ∼= CPM(C ) is given by sending (A,A) 7→ A on objects and ( f , f †)E to (10). Fullness is
obvious and one can see it is faithful by inserting the braid into the comb equivalence relation (3).

There have been attempts to generalise the CPM construction to infinite dimensional quantum sys-
tems where one does not have compact closure. For instance, in [17] the CP∞ construction is developed
which turns any monoidal †-category into a category of completely positive maps. The category CP∞(C )
is very similar to the category Comb(C ), the only difference being that CP∞ only quantifies over the pos-
itive maps in the equivalence relation (3) (as opposed to all maps λ ). In the case that C is †-compact
closed it is known that CPM(C )∼= CP∞(C ) and thus the CP∞ construction produces an isomorphic cate-
gory to Optic† and Comb†. Dropping compact closure, but keeping the †-symmetric monoidal structure,
Optic† and Comb† yield two potential candiates for generalised categories of completely positive maps.

4 n-Combs

In this section we consider generalisations of the Optic and Comb constructions to encompass n-combs.
There are several categorical structures that could provide an adequate semantics for dealing with the
many inputs and outputs that a generalised n-comb could have. Here we will use polycategories to
handle n-combs.

A candidate definition of such an n-comb was suggested in [27] as a generalisation of the Optic
construction. We generalise this even further, obtaining a polycategory. Our definition of the combs
themselves is similar, but crucially our notion of composition is very different and coincides more closely
with that of [16].

Definition 5. Given a symmetric monoidal category C , the polycategory of n-combs OPTIC(C ) has:

Objects: Pairs of objects in C .

Morphisms: The polymorphisms of type [(A1,A′1), . . . ,(An,A′n)]→ [(B1,B′1), . . . ,(Bm,B′m)] are elements
of the set (where the zero-fold tensor in C is the tensor unit):

∫ X0,...,Xn+1

C

(
n⊗

i=1

Bi,X0

)
×

n

∏
i=1

C (Xi−1,Xi⊗Ai)×C (Xi⊗A′i,Xi+1)×C

(
Xn+1,

n⊗
i=1

B′i

)

For example consider the string diagram for a polymorphism of this type (drawn from left to right
to conserve space):
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(〈 f1, . . . , fn|g1, . . . ,gn〉X1,...,Xn : [(A1,A′1), . . . ,(An,A′n)]→ [(B1,B′1), . . . ,(Bm,B′m)]) :=

...

.....
.

×

×

×

×B1

B2

Bm

B′1

B′2

B′mA1 A2 AnA′1 A′n−1 A′n
f1 f2 fng1 gn−1 gn

⊗

⊗

⊗

The identities are the same as in optics. Given a map as above and another map

〈h0, . . . ,h`|k0, . . . ,kn〉Y1,...,Y` : [(C1,C′1), . . . ,(C`,C′`)]→ [(D1,D′1), . . . ,(Dp,D′p)]

where (Cq,C′q) = (B j,B′j) for some 0≤ q≤ `, 0≤ j ≤ m. Then the composite

〈 f1, . . . , fn|g1, . . . ,gn〉X1,...,Xn ◦(B j,B′j) 〈h0, . . . ,h`|k0, . . . ,kn〉Y1,...,Y`

is given by plugging the first comb into the (B j,B′j) hole and the collapsing the bubble. This can
be verified to produce a diagram of the same shape via a lengthy, yet elementary application of the
coend calculus, or equivalently a composition of the 2-cells (5) and associators.

There is also a polycategory of n-combs that generalises the Comb construction,

Definition 6. Given a symmetric monoidal category C , the polycategory of n-combs COMB(C ) has the
same objects as OPTIC(C ). The polymorphisms are given by tuples of maps under a generalisation of
the comb equivalence relation where two combs are equivalent if they are equal on all extended inputs:

f1 g1 f2 gn−1 fn gn
. . ....

...
λ1 λ2 λn−1 λn. . .

. . .

f ′1 g′1 f ′2 g′n−1 f ′n g′n
. . ....

...
λ1 λ2 λn−1 λn. . .

. . .

=∀λ1, . . . ,λn

Composition and identities are the same as in COMB(C ).

As in the case of 1-combs we can always quotient the intensional optics definition to get the exten-
sional comb definition:

Proposition 7. There is a full and bijective on objects polyfunctor OPTIC(C )−→ COMB(C ).

Proof. (Sketch) The proof is similar to proposition 2: removing the cobordisms and evaluating the comb
on the given λ1, . . . ,λn gives a cowedge and thus factorises uniquely via the coend.

Lemma 2. When C is compact closed, OPTIC(C ) and COMB(C ) are ∗-polycategories.

Proof. (Sketch) In OPTIC(C ), the unit and counits which generate the *-polycategory structure are
given by the following (rotated) internal string diagrams:

η := ε :=

The ∗-polycategory structure of COMB(C ) is transported along the polyfunctor in Proposition 7.
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Proposition 8. When C is compact closed there is an isomorphism of polycategories OPTIC(C ) ∼=
COMB(C ).

Proof. (Sketch) The isomorphism is shown in a similar way to the proof of Proposition 3, by pulling all
of the circuits into the same bubble.

5 Conclusion and future work

In this article we have considered some categorical approaches to modelling combs with a particular
focus on the operational motivations typically pursued in the quantum literature. There are several lines
of future work we are actively investigating:

• It would be clarifying to pin down precisely when Optic(C )∼=Comb(C ), or at least know whether
this holds in cases beyond the few investigated here. Particularly for quantum theory we would like
to know what happens in the case of Isometry and CPTP. The cases of ∗-autonomous categories
and monoidally closed categories would also be interesting so we could better understand any
connections with the Caus-construction [24].

• It may be possible to use profunctors to capture the causal structure of maps. Informally, one
can replace causal graphs with profunctor tubes whose topology acts to restrict the families of
maps that are compatible with the causal structure, for instance by enforcing one-way signalling
constraints.

• We have reason to believe that the category of Tambara modules [31] (equivalently the presheaf
category of optics [25]) is a good setting for modelling quantum supermaps more generally, pos-
sibly allowing for the modelling of maps like the quantum switch alongside combs. There are
several operational principles one might ask of a quantum supermap to ensure that it is compatible
with the monoidal structure of the category of first-order maps. These principles seem to translate
pleasingly into the structure of Tambara module homomorphisms.

• Given a V -enriched category C , it is not clear to us whether the category Comb(C ) inherits the
enrichment. This is relevant to quantum theory because taking probabilistic mixures of quantum
processes can be modelled by enrichment in the category CMon of commutative monoids [22, 21].
On the other hand, it is immediate that Optic(C ) inherits the enrichment of C and thus might be a
better setting for modelling quantum combs.

• In section 4 we provided a polycategorical semantics for n-combs. We are also persuing the pos-
sibility of a double categorical framework which might be cleaner and possibly more expressive.
Indeed, as we were writing this article we became aware of [4] where such a framework is devel-
oped.
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Stock and flow diagrams are widely used in epidemiology to model the dynamics of populations.
Although tools already exist for building these diagrams and simulating the systems they describe,
we have created a new package called StockFlow, part of the AlgebraicJulia ecosystem, which uses
ideas from category theory to overcome notable limitations of existing software. Compositionality is
provided by the theory of decorated cospans: stock and flow diagrams can be composed to form larger
ones in an intuitive way formalized by the operad of undirected wiring diagrams. Our approach also
cleanly separates the syntax of stock and flow diagrams from the semantics they can be assigned. We
consider semantics in ordinary differential equations, although others are possible. As an example,
we explain code in StockFlow that implements a simplified version of a COVID-19 model used in
Canada.

1 Introduction

The theoretical advantages of compositionality and functorial semantics are widely recognized among
applied category theorists. Compositionality means, at the very least, that systems can be described
one piece at a time, with a clear formalism for composing these pieces. This formalism can appear in
various styles: composing morphisms in a category, tensoring objects in a monoidal category, composing
operations in an operad, etc. Functorial semantics then means that the map from system descriptions
(“syntax”) to their behavior (“semantics”) preserves all the relevant forms of composition.

While these principles are elegant, in many fields it is still a challenge to produce useful software that
takes advantage of them and is embraced by the intended users. This is one of the main challenges of
applied category theory. Here we focus on developing software suited to one particular field: epidemi-
ological modeling. At present this software is additionally capable of modeling a wide class of systems
studied in the System Dynamics modeling discipline [12, 29].

The AlgebraicJulia ecosystem of software implements compositionality and functorial semantics in
a thorough-going way [1]. Decorated and structured cospans are broad mathematical frameworks for
turning “closed” system descriptions into “open” ones that can be composed along their boundaries
[10, 3, 4]. One part of AlgebraicJulia, called Catlab [22], provides a generic interface for working with
such cospans, among other categorical abstractions. With the help of Catlab, a tool called AlgebraicPetri
was developed to work with one approach to epidemiological modeling based on Petri nets [18]. Here
we explain a new tool, StockFlow, which handles a more flexible and more widely used formalism for
epidemiological modeling: stock and flow diagrams.

http://dx.doi.org/10.4204/EPTCS.380.5
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In Section 2 we review how stock and flow diagrams are used in epidemiological modeling, and
discuss some shortcomings of existing software for working with these diagrams. In Section 3 we first
use decorated cospans to formalize a simple class of open stock and flow diagrams and their differential
equation semantics, and then sketch how to extend this class to the full-fledged diagrams actually used in
our software. In Section 4 we describe the software package, StockFlow, that we have developed to work
with stock-flow diagrams compositionally and implement a functorial semantics for them. The reader can
find the StockFlow repository on GitHub at https://github.com/AlgebraicJulia/StockFlow.
jl.

2 Epidemiological modeling with stock and flow diagrams

Effective decision-making regarding prevention, control, and service delivery to address the health needs
of the population involves reasoning about diverse complexities: policy resistance, feedbacks, hetero-
geneities, multi-condition interactions, and nonlinearities that collectively give rise to counterintuitive
results [28, 30]. For over a century, researchers and practitioners have used epidemiology models to ad-
dress such challenges. Since dynamic epidemiological modeling was first applied to communicable dis-
eases [17, 24, 25], it has both deepened its reach in that area [2, 8] and spread to many other subdomains
of epidemiology, including chronic, behavioural, environmental, occupational, and social epidemiology,
as well as spheres such as mental health and addictions. Reflecting a world in which growing global
interconnection is juxtaposed with increasing ecosystem encroachment and climate stresses, the rise of
the “One Health” perspective [7, 21] has motivated such modeling to increasingly incorporate dynamics
from domains such as ecology, veterinary and agricultural health, and social dynamics and inequities.
Such efforts have come to define the field of mathematical and computational epidemiology.

The earliest and still most common epidemiological models are sets of ordinary differential equa-
tions, typically used to characterize epidemiological dynamics in an aggregate fashion [2]. Delay and
partial differential equations have also been widely applied. Recent decades have witnessed a rapid
growth in use of agent-based models. Although the techniques explored here may be more widely appli-
cable, we focus on aggregate models described using differential equations.

Contemporary aggregate-level modeling involves widespread informal use of diagrams, with the
most prevalent type of such diagrams being transition diagrams and their richer and more formal cousins,
“stock and flow diagrams” [29], as depicted in Figure 1. Transition diagrams are a minimalist box-and-
arrow formalism which draws state variables as boxes and transitions as arrows. Traditionally, most
mathematical epidemiologists have focused directly on the underlying differential equations, regarding
such diagrams only as an informal presentation of the equations. Thus, diagrams are commonly treated
either as ephemeral artifacts useful for thinking out structures and then discarded, or as an expedient aid
for communication.

Amongst the notable minority of health modelers who employ stock and flow diagrams (also called
“Forrester diagrams”, and termed here “stock-flow diagrams” for brevity), these diagrams play roles at
different stages of the modeling process. Stock-flow diagrams depict state variables as stocks (rectan-
gles), changes to those stocks as flows (thick arrows also termed “material connections”), constants and
auxiliary variables (also called “dynamic variables”), and links (arrows sometimes called “informational
connections” or simply “connections”) characterizing instantaneous dependencies.

Stock-flow diagrams serve as the central formalism in the modeling tradition of System Dynamics,
initiated by Forrester in the 1950s [12, 29]. Since the 1980s, System Dynamics software has provided re-
fined, visually accessible, declarative user interfaces for interactively building, and browsing stock-flow

https://github.com/AlgebraicJulia/StockFlow.jl
https://github.com/AlgebraicJulia/StockFlow.jl
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Figure 1: An example stock-flow diagram. This stock-flow diagram has three stocks labeled “Sus-
ceptible”, “Infective”, and “Recovered”; three flows labeled “Infection”, “Recovery”, and “Waning of
Immunity”; many auxiliary variables including “Force of Infection” and “Total Population”; and links
depicted by blue arrows.

diagrams [23]. While such packages are designed to ensure transparency of model structure to modelers
and stakeholders [23], they also serve as simulation tools. For that purpose, the System Dynamics tradi-
tion universally interprets stock-flow diagrams as characterizing ordinary differential equations. Stocks
represent the state variables; their formulation requires specifying an initial value. Flows represent the
differentials associated with stocks, and are each associated with a modeler-specified mathematical ex-
pression specifying the flow rate (quantity per unit time) as a function of other variables. Each constant
variable is associated with a real scalar. Auxiliary variables generally reflect quantities of domain signif-
icance that depend instantaneously on other model quantities. Each such auxiliary variable is associated
with a modeler-specified expression characterizing the value of that auxiliary as a function of the current
value of other variables (stocks, flows, constants and other auxiliary variables).

Reflecting the strong emphasis that System Dynamics practice places on stakeholder engagement
and participatory model building, models built in the stock-flow paradigm are routinely shown to stake-
holders without modeling background—be they domain experts from a modeling team, stakeholders, or
community members—to elicit critiques and suggestions [15, 23, 31]. System Dynamics has also long
sought to recognize, codify, and exploit widespread use of modeling idioms. Thus, researchers and prac-
titioners have formalized dozens of simple stock-flow diagrams called “molecules” for reuse in modeling
[14]. Some simulation packages provide molecules as pre-specified templates defined by the software,
and mechanisms for for directly incorporating built-in templates for such molecules into models. When a
molecule is added to a model, the elements of the molecule—such as stocks and flows—are simply added
as elements of the surrounding diagram, rather than being reused as higher level abstractions. Moreover,
because such libraries of molecules are fixed, such molecules cannot be created or packaged up by the
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user.
Software packages for stock-flow diagrams have as a central feature the simulation, via numerical

integration, of the system of ordinary differential equations described by these diagrams. Many such
packages also offer additional forms of model analysis, including identification of feedback loops, per-
forming tests of dimensional homogeneity based on modeler unit annotations, sensitivity analysis and
calibration. Some tools support more sophisticated forms of analysis, such as those involving Markov
Chain Monte Carlo and extended Kalman filtering. But while existing stock-flow modeling tools offer
refined interfaces for building, exploring and simulating models, their support for modern modeling prac-
tice is hampered by significant rigidity and several additional shortcomings. The present paper focuses
on addressing two limitations of contemporary tools.

First, and most notable from a categorical perspective, existing tools lack support for composition
of models, despite there being several natural ways in which models might be composed. Instead, each
model is currently treated in isolation. If models are composed at all, it is by either outputting data files
from one and importing such data into another, or by creating, via an ad hoc process, a third model that
contains both of the original models.

Second, existing stock-flow modeling tools privilege a single semantics associated with stock-flow
diagrams: the interpretation of these diagrams as ordinary differential equations. While alternative inter-
pretations can sometimes be force-fit—for example, a difference equation interpretation by using Euler
integration, or a stochastic differential equation interpretation using formulas for flows drawing from
suitable probability distributions—they are commonly awkward, obscure, and error-prone. Although
particular packages allow for select additional analyses—for example, identification of feedback loops—
such features are hard-coded, and many analysis tools demonstrated as valuable by research [13, 16, 26]
have not been incorporated in extant software packages.

We turn next to a mathematical framework that provides a remedy for these deficiencies: an explicitly
compositional framework where “open” stock-flow diagrams become morphisms in a category and where
semantics is described as a functor from this category to some other category. For reasons of space we
only describe one choice of semantics, but the clear separation of syntax and semantics permits swapping
out this choice for others.

3 The mathematics of stock-flow diagrams

Stock-flow diagrams come in many variants. To illustrate our methodology we begin with a very simple
kind. In our code we have implemented a more sophisticated variant with additional features, but the
ideas are easier to explain without those features. Our main goal is to study open stock-flow diagrams—
that is, stock-flow diagrams in which various stocks are specified as “interfaces.” We can treat open
stock-flow diagrams with two interfaces as morphisms of a category. Composing these morphisms then
lets us build larger diagrams from smaller ones. Alternatively, we can compose stock-flow diagrams
with any number of interfaces using an operad. Both approaches let us describe the differential equation
semantics for open stock-flow diagrams following a paradigm already explored for open Petri nets with
rates [4, 5]. We describe that paradigm here.

3.1 A category of stock-flow diagrams

As a first step, we define “primitive” stock-flow diagrams with stocks, flows, and links but not the all-
important functions that describe the rate of each flow. For this, we consider a category H freely generated
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by these objects and morphisms:

flow stock

link

u

d

t s

We call a functor F : H→ FinSet a primitive stock-flow diagram. It amounts to the following:

• a finite set of stocks F(stock),

• a finite set of flows F(flow),

• functions F(u),F(d) : F(flow)→ F(stock) assigning to each flow the stock upstream from it, and
the stock downstream from it,

• a finite set of links F(link),

• functions F(s) : F(link)→ F(stock),F(t) : F(link)→ F(flow) assigning to each link its source,
which is a stock, and its target, which is a flow.

Given f ∈ F(flow), we say f flows from the upstream stock F(u)( f ) and flows to the downstream stock
F(d)( f ). We say that a link ` ∈ F(link) points from its source F(s)(`) and points to its target F(t)(`).
There is a category of primitive stock-flow diagrams, FinSetH, where the objects are functors from H to
FinSet and a morphism from F : H→ FinSet to G : H→ FinSet is a natural transformation.

Primitive stock-flow diagrams are useful for qualitative aspects of modeling, since they clearly show
which flows depend on which stocks; as such, they can be seen as a restricted form of system structure
diagrams [20, 9] used in System Dynamics practice. But they become useful for quantitative modeling
and simulation only when we equip them with functions saying how the rate of each flow depends on
the value of each stock. Thus, we define a stock-flow diagram to be a pair (F,φ) consisting of an object
F ∈ FinSetH and a continuous function called a flow function

φ f : RF(t)−1( f )→ R

for each flow f ∈ F(flow), where F(t)−1( f ) is the set of links with target f :

F(t)−1( f ) = {` ∈ F(link) | F(t)(`) = f}.

The idea is that the flow function φ f says how the rate of the flow f depends on the values of all the
stocks with links pointing to it. We make this precise in Section 3.4 when we introduce a semantics that
maps each stock-flow diagram to a first-order differential equation. But rates and values play no formal
role in this section.

To define a category of stock-flow diagrams, we need to define morphisms between them. What
is a morphism from (F,φ) to (G,ψ)? It is a natural transformation α : F ⇒ G with an extra property.
Because α is natural, we get a commutative square

F(link) G(link)

F(flow) G(flow).

α(link)

F(t) G(t)

α(flow)
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Figure 2: At left is a stock-flow diagram (F,φ) with stocks S, I,R,D corresponding to susceptible, in-
fected, recovered and deceased populations and flows i,r,d corresponding to infection, recovery and
death. Links are shown in blue. At right we see a simpler stock-flow diagram (G,ψ) where recov-
ered and deceased populations are lumped into a single “removed” stock E, and recovery and death are
lumped into a single “removal” flow e. There is an evident morphism α : (F,φ)→ (G,ψ) sending R and
D to E and sending r and d to e.

Thus, letting g = α(flow)( f ) for f ∈ F(flow), we get a map

α(link) : F(t)−1( f )→ G(t)−1(g)

and thus a linear map
α(link)∗ : RG(t)−1(g)→ RF(t)−1( f )

given by precomposition:
α(link)∗(x) = x◦α(link).

We say that α is a morphism of stock-flow diagrams from (F,φ) to (G,ψ) if

ψg = ∑
f∈α(flow)−1(g)

φ f ◦α(link)∗ (1)

for every g∈G(flow). This equation expresses rates of flows in (G,ψ) as sums of rates of flows in (F,φ).
For example, Figure 2 shows a morphism of stock-flow diagrams in which two flows, “recovery” r and
“death” d, are mapped to a single “removal” flow e. The above equation implies that

ψe = φr ◦α(link)∗+φd ◦α(link)∗.

This equation says that the rate of the flow e is the sum of the rates of r and d.
Composition of morphisms between stock-flow diagrams is just composition of their underlying

natural transformations; one can show that indeed the composite of two natural transformations obeying
Eq. (1) again obeys this equation. We thus obtain a category of stock-flow diagrams, which we call
StockFlow.

3.2 Open stock-flow diagrams

We can build larger stock-flow diagrams by gluing together smaller ones. There are a number of choices
of how to formalize this. Here we glue together two stock-flow diagrams by identifying two collections
of stocks to serve as “interfaces.” Thus, we define an open stock-flow diagram with finite sets X and Y
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as interfaces to be a stock-flow diagram (F,φ) equipped with functions from X and Y to its set of stocks:

F(stock)

X Y

i o

We call this an open stock-flow diagram from X to Y and write it tersely as (F,φ) : X → Y , despite the
maps i and o being a crucial part of the structure.

We can compose open stock-flow diagrams from X to Y and from Y to Z to obtain one from X to
Z. To formalize this composition process we use Fong’s theory of decorated cospans [10]. However, to
make composition associative and get a category we need to use isomorphism classes of open stock-flow
diagrams. Two open stock-flow diagrams (F,φ) and (F ′,φ ′) from X to Y are isomorphic if there is an
isomorphism of stock-flow diagrams α : (F,φ)→ (F ′,φ ′) such that this diagram commutes:

F(stock)

X Y

F ′(stock)

α(stock)

i

i′

o

o′

Using the theory of decorated cospans, we obtain:

Theorem 3.1. There is a category Open(StockFlow) such that:

• An object is a finite set X.

• A morphism from X to Y is an isomorphism class of open stock-flow diagrams from X to Y .

This is a symmetric monoidal category, indeed a hypergraph category.

Proof Sketch. This follows from the theory of decorated cospans [10] once we check the following facts.
For each finite set there is a category C(S) whose

• objects are stock-flow diagrams with S as their set of stocks, and

• morphisms are morphisms α of stock-flow diagrams where α(stock) is the identity on S.

Let C(S) be the set of isomorphism classes of objects in this category. A map of finite sets f : S→ S′

functorially determines a map from C(S) to C(S′), and the resulting functor C is symmetric lax monoidal
from (FinSet,+) to (Set,×), where the laxator

γ : C(S)×C(S′)→C(S+S′)

maps a pair of stock-flow diagrams to their “disjoint union.” It follows from [10, Prop. 3.2] that we
get the desired symmetric monoidal category Open(StockFlow), and from [10, Thm. 3.4] that this is a
hypergraph category.

The point of making open stock-flow diagrams into the morphisms of a hypergraph category is that
it gives ways of composing these diagrams that are more flexible than just composing them “end-to-end”
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(ordinary composition of morphisms) and “side-by-side” (a parallel arrangement expressed by tensor-
ing). Indeed, hypergraph categories are algebras of an operad, sometimes called the operad of undirected
wiring diagrams, that encapsulates a wide range of composition strategies [11]. We use this approach in
our code, and instead of working with cospans we actually use multicospans [19, 27], a mild generaliza-
tion that allows for open stock-flow diagrams with any number of interfaces, not just two.

We conclude with a technical remark on Theorem 3.1. In fact there is a symmetric lax monoidal
functor C : (FinSet,+)→ (Cat,×) that sends each finite set S to a category of stock-flow diagrams
with S as their set of stocks. Theorem 2.2 of [4] thus gives a symmetric monoidal double category
Open(StockFlow) where objects are finite sets and horizontal 1-cells are actual open stock-flow dia-
grams, not mere isomorphism classes of these.

This double category allows us to work with maps between open stock-flow diagrams. This should
be useful for mapping several stocks to a single stock in a simplified stock-flow diagram, as in Figure
2, or embedding a stock-flow diagram in a more complicated one. However, StockFlow currently does
not attempt to support maps between open stock-flow diagrams, so Theorem 3.1 suffices for us. Indeed,
when working with a mere category of open stock-flow diagrams, as opposed to a double category,
we can define an isomorphic category using structured rather than decorated cospans: for open stock-
flow diagrams, the difference only becomes visible at the double category level. Thus, our treatment
using decorated cospans looks forward to a future where we work with maps between open stock-flow
diagrams.

3.3 Open dynamical systems

Our next goal is to define a semantics for stock-flow diagrams mapping each such diagram to a dynamical
system: a system of differential equations that describes the continuous-time evolution of the value of
each stock. This semantics is implicit in the usual applications of stock-flow diagrams; indeed, the stock-
flow diagram is sometimes regarded merely as a convenient notation for a dynamical system. While
we illustrate the choice of a semantics for stock-flow diagrams using the continuous dynamical system
interpretation, this semantics holds no privileged status, and there are several other semantics of practical
value that could be employed instead.

In fact, our semantics is more general than suggested above: we describe a map from open stock-
flow diagrams to open dynamical systems. Our strategy for defining this semantics closely follows the
strategy already used for open Petri nets with rates [3, 4, 5] and implemented for epidemiological models
using AlgebraicJulia [18].

For Petri nets with rates, the dynamics is typically described by the “law of mass action,” which only
produces dynamical systems that are polynomial-coefficient vector fields on Rn. In stock-flow diagrams
this restriction is dropped, but the rate of any flow out of its upstream stock equals the rate of flow into
its downstream stock, so the total value of all stocks is conserved. However, the more general stock-flow
diagrams of Section 3.5 no longer obey this conservation law, since they allow “inflows” and “outflows”
to the diagram as a whole. With these generalizations, stock-flow diagrams become strictly more general
than Petri nets with rates—at least in terms of the dynamical systems they can describe.

We begin by defining a dynamical system on a finite set S to be a continuous vector field v : RS→RS.
In our applications, S will be the set of stocks of some stock-flow model, and the vector field v is used to
write down a differential equation describing the dynamics:

dx(t)
dt

= v(x(t))
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where at each time t, the vector x(t) ∈ RS describes the value of each stock at time t. Since the vector
field is continuous, the Peano existence theorem implies that, for any initial value x(0) ∈ RS, the above
equation has a solution for all t in some interval (−ε,ε). However, the solution may not be unique unless
we require that v be nicer. The theory we develop now can be modified to add extra restrictions, simply
by replacing continuous functions with functions of a suitably nicer sort.

We define an open dynamical system from the finite set X to the finite set Y to be a pair (S,v),
consisting of a finite set S and a dynamical system v on S, together with functions from X and Y into S.
We depict this as follows:

S v ∈ D(S)

X Y

i o

where D(S) is the set of all dynamical systems on S. Two open dynamical systems (S,v) and (S′,v′) from
X to Y are isomorphic if there is a bijection β : S→ S′ such that the following diagram commutes:

S v ∈ D(S)

X Y

S′ v′ ∈ D(S′)

β

i

i′

o

o′

and β∗ ◦ v◦β ∗ = v′, where β∗ : RS→ RS′ is the pushforward map defined by

β∗(x)(σ ′) = ∑
σ∈β−1(σ ′)

x(σ) ∀x ∈ RS, σ
′ ∈ S′.

We can then construct a category where objects are finite sets and morphisms from X to Y are isomor-
phism classes of open dynamical systems from X to Y . This was done in [5, Theorem 17] by applying
Fong’s theory of decorated cospans to a functor D : FinSet→ Set sending any finite set S to the set D(S)
of dynamical systems on S:
Theorem 3.2 (Baez–Pollard). There is a category Open(Dynam) such that:

• An object is a finite set X.

• A morphism from X to Y is an isomorphism class of open dynamical systems from X to Y .
This is a symmetric monoidal category, indeed a hypergraph category.

In fact, there is a symmetric lax monoidal functor D : (FinSet,+)→ (Cat,×) that maps any set S
to the discrete category on the set D(S) described above. The theory of decorated cospans then gives a
symmetric monoidal double category Open(Dynam) where objects are finite sets and horizontal 1-cells
are open dynamical systems. This is discussed in [4, Sec. 6.4].

3.4 Open dynamical systems from open stock-flow diagrams

Next we describe a functor sending any open stock-flow diagram to an open dynamical system. Suppose
we have an open stock-flow diagram (F,φ) : X → Y , equipped with the cospan

S

X Y

i o
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where S = F(stock). Then there is an open dynamical system v(F,φ) on S given by

v(F,φ)(x)(σ) = ∑
f∈F(d)−1(σ)

φ f (x◦F(s)) − ∑
f∈F(u)−1(σ)

φ f (x◦F(s)) ∀x ∈ RS,σ ∈ S. (2)

This formula looks a bit cryptic, so let us explain it. Taking the expression RS seriously, we can think
of x ∈ RS as a real-valued function on the set S of stocks. Each flow f ∈ F(flow) has a set F(t)−1( f ) of
links with f as target, so there is an inclusion of sets F(t)−1( f ) ↪→ F(link), and we can thus form the
composite

F(t)−1( f ) ↪→ F(link)
F(s)−−→ F(stock) x−→ R

which for short we call simply
x◦F(s) ∈ RF(t)−1( f ).

For each link ` with f as its target, this composite gives the value of the stock that is `’s source. Applying
the function φ f : RF(t)−1( f )→ R, we obtain the rate of the flow f :

φ f (x◦F(s)) ∈ R.

This quantity has the effect of increasing the stock d( f ) and also decreasing the stock u( f ). Thus the
rate of change of any stock σ ∈ S is

∑
f∈F(d)−1(σ)

φ f (x◦F(s))− ∑
f∈F(u)−1(σ)

φ f (x◦F(s)).

This gives our formula for v(F,φ) in Equation (2).
Now, recall that in Theorem 3.1 the category of open stock-flow diagrams was defined as a decorated

cospan category using the functor C : FinSet→ Set, while in Theorem 3.2 the category of open dynam-
ical systems was defined in a similar way using the functor D : FinSet→ Set. According to the theory
[10], to obtain a semantics mapping open stock-flow diagrams to open dynamical systems, we need to
define a natural transformation θ : C⇒ D. We do this as follows: for each finite set S, define θ(S) to
map the isomorphism class (F,φ) in C(S) to the isomorphism class of v(F,φ) in D(S).
Theorem 3.3. There is a functor

v : Open(StockFlow)→ Open(Dynam)

sending

• any finite set to itself,

• the isomorphism class of the stock-flow diagram (F,φ) made open as follows:

F(stock)

X Y

i o

to the isomorphism class of the open dynamical system

F(stock) v(F,φ) ∈ D(S).

X Y

i o
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This is a symmetric monoidal functor, indeed a hypergraph functor.

Proof Sketch. By [10, Thm. 4.1] it suffices to check that θ : C⇒ D is indeed a natural transformation
and furthermore a monoidal natural transformation.

With more work one can extend the natural transformation v to a monoidal natural transformation
between the 2-functors C : FinSet→Cat and D : FinSet→Cat. By [4, Thm. 2.5], this gives a symmetric
monoidal double functor from Open(StockFlow) to Open(Dynam). However, we do not need this yet in
our code.

3.5 Full-fledged stock-flow diagrams

In Section 3.1 we defined a simple category of stock-flow diagrams, called StockFlow. Stock-flow di-
agrams of this type capture two main features of the diagrams used by practitioners: (1) flows between
stocks and (2) links that represent the dependency of flow rates on the values of particular stocks. How-
ever, the stock-flow diagrams used in epidemiological modeling have additional useful features. Our
“full-fledged” stock-flow diagrams include auxiliary variables, sum variables, and partial flows.

Auxiliary variables are quantities on which flow functions can depend. An auxiliary variable is
linked to stocks and other auxiliary variables and is equipped with an arbitrary continuous function of
the values of stocks and variables to which it is linked. In Figure 1, “Fractional Prevalence”, “Force
of Infection”, and “Infection” are all examples of auxiliary variables. Auxiliary variables are important
to practitioners for several reasons. First, they simplify model specification because they are reusable:
instead of computing each flow rate directly as a function of stocks, we can often compute them more
simply with the help of auxiliary variables. Many flow rates can depend on a single auxiliary variable.
Second, they often represent quantities that are of interest to stakeholders; representing these quantities
explicitly make them easier to track throughout a simulation, such as for comparison with empirical
data. Third, they are practical for the communication and revision of models. Auxiliary variables give a
meaningful decomposition of the flow functions, and changing a single auxiliary variable automatically
revises all the flow functions that depend on it, which eliminates the need to revise all these flow functions
separately.

While not explicitly distinguished in current stock-flow modeling packages, flow functions often rely
on a special case of auxiliary variables called sum variables. Such a variable equals the sum of the values
of some subset of the stocks. In epidemiology, this frequently corresponds to the size of a population or
sub-population. For example, “Total Population” in Figure 1 is a sum variable. In general, a sum variable
may link to only a subset of stocks. Sum variables can be seen as a particular type of auxiliary variable
in which the function merely sums the values of the stocks to which it is linked—and thanks to this fact,
we do not need to label sum variables with functions.

Finally, in the simple stock-flow diagrams described earlier, each flow must have an upstream stock
and a downstream stock. However, practitioners often use diagrams including partial flows, which may
have only an upstream stock or only a downstream stock. These represent the creation or the destruction
of some resource, and are commonly used to represent open populations.

Figure 3 presents the category H f used to define full-fledged stock-flow diagrams. A full-fledged
stock-flow diagram is a pair (F,φ) consisting of:

• a functor F : H f → FinSet such that the functions F(if) and F(of) are injective;

• a continuous function φv : RF(lv)−1(v)×RF(slv)−1(v)→ R for each v ∈ F(variable), called an auxil-
iary function.
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sum link sum variable

stock variable link sum variable link

inflow outflow variable

flow

slv
is

if of

os

fv

lv

Figure 3: The free category on this diagram, called H f , is used to define full-fledged stock-flow diagrams.
We have named only some of the arrows here.

The elements of F(variable) are called auxiliary variables. The idea is that in a full-fledged stock-flow
diagram each flow has its rate equal to some auxiliary variable. Each auxiliary variable can depend on
any finite multiset of sum variables and stocks, and each sum variable can depend on any finite multiset
of stocks.

Given an inflow f ∈ F(inflow), we say that the stock F(is)( f ) is the upstream stock of the flow
F(if)( f ). Similarly, given an outflow f ∈ F(outflow), the stock F(os)( f ) is the downstream stock of
the flow F(of)( f ). The injectivity of F(if) and F(of) ensure that each flow has at most one upstream
stock and at most one downstream stock. Flows having an upstream stock but not a downstream stock or
vice versa are called partial flows.

Following the ideas of Section 3.1, we can define a category StockFlow f of full-fledged stock-flow
diagrams. It is useful to glue together such diagrams not only along stocks but also along sum variables
and sum links, for example to keep track of the total population in an epidemiological model. We can
still do this using decorated cospans if we introduce the category FinSetG, where G is the free category
on this diagram:

stock sum link sum variable.

There is an evident inclusion functor ι : G→ H f , so any functor F ∈ FinSetH f restricts to a functor
F ◦ ι ∈ FinSetG, and we define an open full-fledged stock-flow diagram to be a full-fledged stock-flow
diagram (F,φ) equipped with a cospan

F ◦ ι

X Y

i o

where X ,Y ∈ FinSetG. With this adjustment we can define a category Open(StockFlow f ) of open full-
fledged stock-flow diagrams following the ideas in Section 3.2. Most importantly, in analogy to Theo-
rem 3.3, there is a functor

v : Open(StockFlow f )→ Open(Dynam)

providing a semantics for open full-fledged stock-flow diagrams. We have implemented full-fledged
stock-flow diagrams and this semantics in our Julia package StockFlow (below)—but for simplicity,
Section 4 only discusses the simpler stock-flow diagrams treated in Sections 3.1–3.3.
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4 Implementing stock-flow diagrams in AlgebraicJulia

Existing tools for building stock-flow diagrams and simulating the systems they represent suffer from
several limitations. In Section 2, we singled out two: an absence of compositionality, which it makes
it difficult to build complex models in an intelligible manner, and a blurring of the distinction between
syntax and semantics, which inhibits the reusability and interoperability of stock-flow diagrams in dif-
ferent contexts. In Section 3, we addressed both these problems at the mathematical level, the first by
constructing a category of open stock-flow diagrams, and the second by constructing a functor from this
category into a category of open dynamical systems, whose morphisms describe systems of differential
equations. We now describe our implementation of these mathematical structures as new software for
System Dynamics modeling.

Our software, available at https://github.com/AlgebraicJulia/StockFlow.jl as the open
source package StockFlow, is implemented using AlgebraicJulia [1], a family of packages for applied
category theory written in the Julia programming language [6]. The AlgebraicJulia ecosystem consists
of Catlab, which implements many standard abstractions in category theory, and a collection of pack-
ages which apply these abstractions to specific domains of science and engineering. Most relevant to
this article are AlgebraicDynamics [19], implementing open dynamical systems based on ordinary and
delay differential equations, and AlgebraicPetri [18], implementing Petri nets with rates and their ODE
semantics.

Existing capabilities within AlgebraicJulia, based on general category-theoretic abstractions, enable
us to give an economical implementation of stock-flow diagrams. The combinatorial essence of stock-
flow diagrams—what we called primitive stock-flow diagrams in Section 3.1—are set-valued functors
on a certain category H, or H-sets. Such structures are encompassed by the paradigm of categorical
databases, for which Catlab has extensive support [22]. Subject to one caveat, stock-flow diagrams—
including the flow functions—can also be implemented as categorical databases. In this way, stock-flow
diagrams become combinatorial data structures that can be manipulated algorithmically through high-
level operations such as limits and colimits. Currently, Catlab has better support for structured cospans
than decorated cospans. The latter have some theoretical advantages, as mentioned in Section 3.2, but
luckily the two formalisms are equivalent for the tasks carried out here [4]. Thus, at present we use
structured cospans to implement open stock-flow diagrams in StockFlow. We elaborate on this in the
following subsections.

4.1 Stock-flow diagrams as categorical databases

In Section 3.1 we defined a primitive stock-flow diagram to be a finite H-set for a certain category H,
called the schema for these diagrams. In Catlab, we present this schema as:

@present SchPrimitiveStockFlow(FreeSchema) begin

(Stock, Flow, Link)::Ob

(up, down)::Hom(Flow, Stock)

src::Hom(Link, Stock)

tgt::Hom(Link, Flow)

end

To define stock-flow diagrams, we need to add a data attribute for the flow functions. In general, data
attributes [22] are a practical necessity and the main feature that distinguishes categorical databases from
the standard mathematical notion of a C-set, meaning a functor from C to Set. In this case, we extend
the schema with an attribute type and a data attribute:

https://github.com/AlgebraicJulia/StockFlow.jl
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@present SchStockFlow <: SchPrimitiveStockFlow begin

FlowFunc::AttrType

flow::Attr(Flow, FlowFunc)

end

Having defined the schema, we can generate a Julia data type for stock-flow diagrams with this single
line of code:

@acset_type StockFlow(SchStockFlow, index=[:up, :down, :src, :tgt])

where the indices are generated for morphisms in the schema to enable fast traversal of stock-flow dia-
grams. A stock-flow diagram will then have the Julia type StockFlow{Function}, where Function

is the built-in type for functions in Julia. We see that there is a gap between the mathematical definition
of stock-flow diagrams and the present implementation: the domains of the flow functions should be
constrained by the links, but this constraint is not yet expressible in the data model supported by Catlab.
In practice this is not a major obstacle to using stock-flow diagrams, but it could motivate future work
toward increasing the expressivity of database schemas and instances in Catlab.

The full-fledged stock flow diagrams described in Section 3.5 are implemented similarly.

4.2 Composition using structured cospans

While the mathematics described in Section 3 uses decorated cospans, we can also describe open stock-
flow diagrams using structured cospans [3, 4]. A structured cospan is a diagram of the form

X

L(A) L(B)

i o

in some category X, where A,B are objects in some other category A, and L : A→ X is a functor. When
L is a left adjoint, we can equivalently think of a structured cospan as a diagram

R(X)

A B

i o

where R is the right adjoint of L.
For example, we can take A = FinSet, take X = FinSetH, and take R : FinSetH→ FinSet to be the

functor sending any primitive stock-flow diagram to its set of stocks. In this case, a structured cospan
amounts to an open primitive stock-flow diagram, that is a primitive stock-flow diagram F : H →
FinSet together with functions

F(stock)

A B.

i o

With more work we can define a structured cospan category equivalent to Open(StockFlow). The ad-
vantage of this change in viewpoint is that Catlab already provides a generic framework for working
with structured cospans and multicospans—and it implements the composition operations available in
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both the hypergraph category of structured cospans and the operad algebra of structured multicospans. In
addition, Catlab includes a concrete instantiation of structured cospans for systems defined by attributed
C-sets. This makes it possible, for a broad class of systems, to use structured cospans in just a few lines of
code. This is the approach taken in StockFlow and also its companion package AlgebraicPetri. In order
to support the implementation of full-fledged stock-flow diagrams, we expanded the implementation of
structured multicospans in Catlab so that the feet in a multicospan can be arbitrary C-sets as opposed to
merely finite sets.

4.3 Composing epidemiological models: an example

Figure 4: Example of composing a COVID-19 model from three smaller models
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Figure 5: The undirected wiring diagram representing composing structured multicospans

The Julia package StockFlow implements both the open stock-flow diagrams of Section 3.2 and
the full-fledged open stock-flow diagrams of Section 3.5. We now illustrate the use of this package by
constructing a simplified version of a COVID-19 model that has has been employed during the pandemic
for daily reporting and planning throughout the Province of Saskatchewan, and for weekly reporting by
the Public Health Agency of Canada for each of Canada’s ten provinces, as well as by First Nations and
Inuit Health for reporting to provincial groupings of First Nations Reserves.

We build this simplified model as the composite of three component models: (A) a model of the
natural history of infection, pathogen transmission, and hospitalization, (B) a model of vaccination, and
(C) a model of the natural history of infection among asymptomatic or oligosymptomatic individuals. To
exhibit the ideas with a minimum of complexity, we use the simpler open stock-flow diagrams discussed
in Sections 3.1-3.4, not the full-fledged ones.

The top of Figure 4 shows the open stock-flow diagrams for three models. Although the flow func-
tions are omitted from the figure, they are defined in the Jupyter notebook implementing this example.1

Model (A) is the SEIRH (Susceptible-Exposed-Symptomatic Infectious-Recovered-Hospitalized) model,
which simulates the disease transmission from, course of infection amongst, and hospitalization of symp-
tomatically infected individuals. The stocks labelled “HICU” and “HNICU” represent the populations
of hospitalized ICU and non-ICU patients, respectively. Model (B) characterizes vaccination-related dy-
namics. The stock “VP” represents individuals who are partially protected via vaccination, due to having
been administered only a first dose or to waning of previously full vaccine-induced immunity. In con-
trast, the stock “VF” represents individuals who are fully vaccinated by virtue of having received two or
more doses of the vaccine. Notably, neither partially or fully vaccinated individuals are considered fully
protected from infection. Thus, there are flows from stock “VP” and “VF” to “E” that represent new
infection of vaccinated individuals. Model (C) characterizes the natural history of infection in individ-
uals who are persistently asymptomatic. The stock “IA” indicates the infected individuals without any
symptoms.

1Readers interested in the code for this example can refer to https://github.com/AlgebraicJulia/StockFlow.

jl/blob/master/examples/primitive_schema_examples/Covid19_composition_model_in_paper.ipynb on the
GitHub repository for StockFlow.

https://github.com/AlgebraicJulia/StockFlow.jl/blob/master/examples/primitive_schema_examples/Covid19_composition_model_in_paper.ipynb
https://github.com/AlgebraicJulia/StockFlow.jl/blob/master/examples/primitive_schema_examples/Covid19_composition_model_in_paper.ipynb
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Figure 6: A simulation of the composite COVID-19 model

The ODEs finally generated from the composite stock-flow diagram are as follows:

Ṡ =
R
tw

+
VP

tw
− βSI

N
− rvS Ė =

βSI
N

+
β (1− ep)IVP

N
+

β (1− e f )IVF

N
− riaE− riE

İ = riE−
I
tr

Ṙ =
(1− fH)I

tr
+

IA

tr
+

HNICU

tH
− R

tw

İA = riaE− IA

tr
V̇F = rvVP−

VF

tw
−

β (1− e f )IVF

N

ḢICU =
fH fICUI

tr
− HICU

tICU
V̇P = rvS+

VF

tw
− VP

tw
− rvVP−

β (1− ep)IVP

N

ḢNICU =
HICU

tICU
+

fH(1− fICU)I
tr

− HNICU

tH

where for simplicity we use 1/tr to stand for the rate at which infected individuals proceed to the next
stage (stocks R, HICU or HNICU), and assume this is also the rate at which asymptomatic infected
individuals go to the next stage (stock R). A plot of a solution of these equations is shown in Figure
6. In our software, the initial values and values of parameters are defined separately from the stock-
flow diagram. This design enables the users to flexibly define and explore multiple scenarios involving
the same dynamical system, in a manner similar to some existing stock-flow modeling packages. For
example, the parameter values used in Figure 6 are from Canada’s population. We can efficiently run this
model on other populations (e.g., the United States) by changing these parameter values.2

This particular COVID-19 model simplifies the structure and assumptions of the model used in prac-
tice. Our example omits features such as characterization of active case-finding, diagnosis and report-
ing, mortality, and transmission by asymptomatic/oligosymptomatic individuals, because the simplified
stock-flow diagrams do not support auxiliary variables, sum variables, and partial flows. However, our
StockFlow package implements the full-fledged stock-flow diagrams defined in Section 3.5, and hence
enables the application of these additional features.

2Readers interested in the code for this example can refer to https://github.com/AlgebraicJulia/StockFlow.

jl/blob/master/examples/primitive_schema_examples/Covid19_composition_model_in_paper.ipynb on the
GitHub repository for StockFlow.

https://github.com/AlgebraicJulia/StockFlow.jl/blob/master/examples/primitive_schema_examples/Covid19_composition_model_in_paper.ipynb
https://github.com/AlgebraicJulia/StockFlow.jl/blob/master/examples/primitive_schema_examples/Covid19_composition_model_in_paper.ipynb
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4.4 Future work

Three lines of work are underway to extend the work described here: extending the Julia application pro-
gramming interface (API), constructing a graphical user interface, and training modelers to use Stock-
Flow.

For the first, key priorities include supporting within-diagram constants in the diagrams and allowing
auxiliary variables to depend on other auxiliary variables in an acyclic fashion. Approaches are also
being explored to allow hierarchical composition of diagrams and ensure consistency of the functions
governing flows, in the sense of dimensional analysis.

Second, we aim to help modelers use the software without needing to know category theory. Thus,
building atop the API, we are currently constructing a declarative, real-time graphical user interface
(GUI) for collaboratively constructing, manipulating, composing and packaging stock-flow diagrams.

Third, we are training both students and professional modelers in the use of Stockflow, and will ramp
up these efforts soon, once the GUI achieves sufficient functionality to offer practical utility. This will
both build a user base and provide useful feedback as to how epidemiological modelers interact with the
software.
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We show that the category of optics in a monoidal category arises naturally from the free cornering
of that category. Further, we show that the free cornering of a monoidal category is a natural setting
in which to work with comb diagrams over that category. The free cornering admits an intuitive
graphical calculus, which in light of our work may be used to reason about optics and comb diagrams.

Introduction

Optics in a monoidal category are a notion of bidirectional transformation, and have been something
of a hot topic in recent years. In particular lenses, which are optics in a cartesian monoidal category,
play an important role in the theory of open games [8], compositional machine learning [5], dialectica
categories [16], functional programming [17, 3], the theory of polynomial functors [21], and of course
in the study of bidirectional transformations [15, 6].

We recall the elementary presentation of the category OpticA of optics in a monoidal category A.
Objects (A,B) are pairs of objects of A. Arrows 〈α | β 〉M : (A,B)→ (C,D) consist of arrows α : A→
M⊗C and β : M⊗D→ B of A. It is helpful to visualize this as follows:

Arrows are subject to equations of the form 〈α( f ⊗1C) | β 〉N = 〈α | ( f ⊗1D)β 〉M for f : M→ N in A.
This is often visualized as a sort of sliding between components, as in:

Equivalently, the hom-sets of OpticA can be given as a coend of hom-functors of A:

OpticA((A,B),(C,D))∼=
∫ M

A(A,M⊗C)×A(M⊗D,B)

Composition is given by 〈α | β 〉M〈γ | δ 〉N = 〈α(1M⊗ γ) | (1M⊗δ )β 〉M⊗N . Visually:
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Identity arrows are given by 1(A,B) = 〈1A | 1B〉I .
Originally studied as an approach to concurrency by Nester [14], the free cornering of a monoidal

category is the double category obtained by freely adding companion and conjoint structure to it. The
usual string diagrams for monoidal categories extend to an intuitive graphical calculus for the free cor-
nering. The free cornering is the main piece of mathematical machinery in our development, and we give
a detailed introduction to it in Section 1.

Our main contribution is a characterisation of optics in a monoidal category in terms of its free
cornering. More exactly, in Theorem 1 we show that the category of optics is a full subcategory of the
horizontal cells of the free cornering. In addition to shedding some light on the nature of optics, this
allows us to reason about them using the graphical calculus of the free cornering. We demonstrate this
by using the graphical calculus to prove Lemmas 3, 4, 5, and 6, which are a series of results originally
due to Riley [18] concerning the lens laws. This occupies Section 3.

Optics in a monoidal category can be seen as a special case of comb diagrams in that category. Comb
diagrams arose in the theory of quantum circuits [2], and have since appeared in algebraic investigations
of causal structure [11, 10]. We suspect comb diagrams to be widely applicable, but there is not yet a
commonly accepted algebra of comb diagrams. In Section 4 we give a notion of (single-sided) comb
diagram in terms of the free cornering that coincides with the notion of comb diagram present in the
work of Román [19]. We demonstrate that the free cornering is a natural setting in which to work with
comb diagrams, and consider this a further contribution of the present work.

Our results are consequences of Lemma 2, which characterises cells of the free cornering with a
certain boundary shape in terms of coends. In particular, we make use of the soundness result for the
graphical calculus of the free cornering due to Myers [13]. The relevant definitions and the lemma itself
are presented in Section 2. The reader need not be familiar with coends to follow our development.
While coends connect the free cornering to the wider literature through Lemma 2, our work offers an
alternate perspective that is conceptually simpler.

In summary, we give a novel characterisation of optics and comb diagrams in a monoidal category
in terms of the free cornering of that category. The graphical calculus of the free cornering allows one to
work with these structures more easily. In addition to telling us something about the nature of optics and
comb diagrams, our results suggest that the free cornering is worthy of further study in its own right.

1 Double Categories and the Free Cornering

In this section we set up the rest of our development by presenting the theory of single object double
categories and the free cornering of a monoidal category. In this paper we consider only strict monoidal
categories, and in our development the term “monoidal category” should be read as “strict monoidal
category”. That said, we imagine that our results will hold in some form for arbitrary monoidal categories
via the coherence theorem for monoidal categories [12].

A single object double category is a double category D with exactly one object. In this case D
consists of a horizontal edge monoid DH = (DH ,⊗, I), a vertical edge monoid DV = (DV ,⊗, I), and a
collection of cells

where A,B ∈DH and X ,Y ∈DV . We write D(X
A
BY) for the cell-set of all such cells in D. Given cells α,β
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where the right boundary of α matches the left boundary of β we may form a cell α|β – their horizontal
composite – and similarly if the bottom boundary of α matches the top boundary of β we may form α

β
–

their vertical composite – with the boundaries of the composite cell formed from those of the component
cells using ⊗. We depict horizontal and vertical composition, respectively, as in:

and

Horizontal and vertical composition of cells are required to be associative and unital. We omit wires of
sort I in our depictions of cells, allowing us to draw horizontal and vertical identity cells, respectively, as
in:

and

Finally, the horizontal and vertical identity cells of type I must coincide – we write this cell as �I and
depict it as empty space, see below on the left – and vertical and horizontal composition must satisfy the
interchange law. That is, α

β
| γ

δ
= α|γ

β |δ , allowing us to unambiguously interpret the diagram below on the
right:

Every single object double category D defines strict monoidal categories VD and HD, consisting of
the cells for which the DH and DV valued boundaries respectively are all I, as in:

and

That is, the collection of objects of VD is DH , composition in VD is vertical composition of cells, and
the tensor product in VD is given by horizontal composition:

In this way, VD forms a strict monoidal category, which we call the category of vertical cells of D. Sim-
ilarly, HD is also a strict monoidal category (with collection of objects DV ) which we call the horizontal
cells of D.

Next, we introduce the free cornering of a monoidal category.
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Definition 1 ([14]). Let A be a monoidal category. We define the free cornering of A, written pxAqy, to be
the free single object double category on the following data:

• The horizontal edge monoid pxAqyH = (A0,⊗, I) is given by the objects of A.

• The vertical edge monoid pxAqyV = (A0 ×{◦,•})∗ is the free monoid on the set A0 ×{◦,•} of
polarized objects of A – whose elements we write A◦ and A•.

• The generating cells consist of vertical cells px f
q
y for each morphism f : A→ B of A subject to

equations as in:

along with the following corner cells for each object A of A:

which are subject to the yanking equations:

For a precise development of free double categories see [4]. Briefly, cells are formed from the
generating cells by horizontal and vertical composition, subject to the axioms of a double category in
addition to any generating equations. The corner structure has been heavily studied under various names
including proarrow equipment, connection structure, and companion and conjoint structure. A good
resource is the appendix of [20].

We understand elements of pxAqyV as A-valued exchanges. Each exchange X1⊗ ·· · ⊗Xn involves a
left participant and a right participant giving each other resources in sequence, with A◦ indicating that
the left participant should give the right participant an instance of A, and A• indicating the opposite.
For example say the left participant is Alice and the right participant is Bob. Then we can picture the
exchange A◦⊗B•⊗C• as:

Alice  Bob

Think of these exchanges as happening in order. For example the exchange pictured above demands that
first Alice gives Bob an instance of A, then Bob gives Alice an instance of B, and then finally Bob gives
Alice an instance of C.

Cells of pxAqy can be understood as interacting morphisms of A. Each cell is a method of obtaining the
bottom boundary from the top boundary by participating in A-valued exchanges along the left and right
boundaries in addition to using the arrows of A. For example, if the morphisms of A describe processes
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involved in baking bread, we might have the following cells of pxAqy:

The cell on the left describes a procedure for transforming dough into nothing by kneading it and
sending the result away along the right boundary, and the cell in the middle describes a procedure for
transforming an oven into bread and an oven by receiving dough along the left boundary and then using
the oven to bake it. Composing these cells horizontally results in the cell on the right via the yanking
equations. In this way the free cornering models concurrent interaction, with the corner cells capturing
the flow of information across different components.

The vertical cells of the free cornering involve no exchanges, and as such are the cells of the original
monoidal category:

Lemma 1 ([14]). There is an isomorphism of categories V pxAqy ∼= A.

In comparison, the horizontal cells of the free cornering are not well understood. In the sequel we
will see that H pxAqy contains OpticA as a full subcategory.

2 Alternation and Coends

In this section we prove a technical lemma characterizing certain cell-sets of pxAqy as coends.

Definition 2. An element of pxAqyV is said to be •◦-alternating in case it is of the form A•1⊗B◦1⊗ ·· ·⊗
A•n⊗B◦n for some n ∈ N such that n > 0. The alternation length of a •◦-alternating element is defined to
be the evident n ∈ N. For example:

• B•⊗A◦ is •◦-alternating with alternation length 1.

• A•⊗B◦⊗C•⊗A◦ is •◦-alternating with alternation length 2.

• (A⊗B)•⊗ I◦ is •◦-alternating with alternation length 1.

• None of the following are •◦-alternating:

I A•⊗B◦⊗C◦ A•⊗B• A• (A⊗B)◦⊗B• A•⊗B◦⊗C•

Definition 3. A cell-set of the form p
xAqy(I

I
I X) is said to be right-•◦-alternating in case X is •◦-alternating.

The alternation depth of a right-•◦-alternating cell-set is the alternation length of its right boundary.

Lemma 2. If pxAqy(I
I
I X) is right-•◦-alternating with alternation depth n and X = A•1⊗B◦1⊗·· ·⊗A•n⊗B◦n

then
p
xAqy
(

I
I

I
X

)
∼=
∫ M1,...,Mn−1 n

∏
i=1

A(Mi−1⊗Ai,Mi⊗Bi)

where M0 = Mn = I.
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Proof. By inspecting the generating cells of pxAqy and making use of Lemma 1 we find that any cell of
p
xAqy(I

I
I X) is necessarily of the form:

Thus cells of pxAqy(I
I
I X) may be written as n-tuples 〈 f1 | · · · | fn〉. As a consequence of Myers’ soundness

result for the graphical calculus [13], we know that two cells 〈 f1 | · · · | fn〉 and 〈g1 | · · · | gn〉 of pxAqy(I
I
I X)

are equal iff they are deformable into each other modulo the equations of A. Consider that all local
deformations 〈· · · | fi | fi+1 | · · · 〉= 〈· · · | gi | gi+1 | · · · 〉 are of the form:

where fi = gi(m⊗1) and gi+1 = (m⊗1) fi+1. Now, the only way 〈 f1 | · · · | fn〉 and 〈g1 | · · · | gn〉 can be
equal is by (repeated) parallel local deformation of the associated diagrams, as in:

Thus, pxAqy(I
I
I X) is the set of (appropriately typed) n-tuples 〈 f1 | · · · | fn〉 of morphisms of A, quotiented

by equations of the form:

〈 f1(m2⊗1) | f2(m3⊗1) | · · · | fn〉= 〈 f1 | (m2⊗1) f2 | · · · | (mn⊗1) fn〉

which is precisely to say that the claim holds.
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Remark 1. There is an obvious dual notion of left-◦•-alternating cell-set for which a version of Lemma 2
holds.

3 Optics and the Free Cornering

In this section we use Lemma 2 to show that OpticA is a full subcategory of H pxAqy for any monoidal
category A. We then briefly discuss lenses, and illustrate the power of the graphical calculus for pxAqy
by reproving a correspondence between lenses satisfying the the lens laws and lenses that are comonoid
homomorphisms with respect to a certain comonoid structure. These results about lenses are originally
due to Riley [18], and were also used to demonstrate Boisseau’s approach to string diagrams for op-
tics [1]. We end with Observation 1, which discusses the relation of teleological categories [9] to the free
cornering.

Theorem 1. Let A be a monoidal category. Then OpticA is the full subcategory of H pxAqy on objects of
the form A◦⊗B• for A,B ∈ A0.

Proof. We begin by noticing that

H pxAqy(A◦⊗B•,C◦⊗D•)∼= pxAqy(I
I

I
A•⊗C◦⊗D•⊗B◦)

via:

7→ and 7→

This cell-set is right-•◦-alternating of depth 2, and so we have:

p
xAqy
(

I
I

I
A•⊗C◦⊗D•⊗B◦

)
∼=
∫ M∈A

A(A,M⊗C)×A(M⊗D,B)

Now we already know that∫ M∈A
A(A,M⊗C)×A(M⊗D,B)∼= OpticA((A,B),(C,D))

and so we have a correspondence between arrows of H pxAqy and arrows of OpticA:

H pxAqy(A◦⊗B•,C◦⊗D•)∼= OpticA((A,B),(C,D))

In particular, we know that arrows in H pxAqy(A◦⊗B•,C◦⊗D•) are equivalently optics 〈α | β 〉M as below
left, and that the equations between optics – below right – capture all equations in H pxAqy(A◦⊗B•,C◦⊗
D•):
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Next, given arrows 〈α | β 〉M : (A,B)→ (C,D) and 〈γ | δ 〉N : (C,D)→ (E,F) of OpticA, we find that
composing the corresponding arrows of H pxAqy yields the arrow corresponding to 〈α(1M ⊗ γ) | (1M ⊗
δ )β 〉M⊗N = 〈α | β 〉M〈γ | δ 〉N as in:

Further, the identity on A◦⊗B• in H pxAqy corresponds to the 1(A,B) = 〈1A | 1B〉I in OpticA as in:

The result is thus proven.

Remark 2. Following Remark 1, a similar argument gives that if A is symmetric monoidal then H pxAqy
op

also contains OpticA as the full subcategory on those objects of the form A•⊗B◦.

Remark 3. If A is a symmetric monoidal category then OpticA is itself monoidal [18]. We remark that
while OpticA remains a subcategory of H pxAqy in this case, it is not a monoidal subcategory. That is, the
tensor product of optics is not given by the tensor product in H pxAqy.

As an illustration of our approach, we consider the characterisation of the lens laws given in [18].
Say that an optic is homogeneous in case it is contained in the full subcategory of OpticA on objects
(A,A) for some A ∈ A0. Notice that every object of this subcategory is a comonoid in H pxAqy , with the
comultiplication and counit given as in:

where the comonoid axioms hold as in:

Definition 4 ([18]). A homogeneous optic h : (A,A)→ (B,B) of OpticA is called lawful in case the
following equations hold in H pxAqy:

That is, in case h is a comonoid homomorphism with respect to the comonoid structure given above.

Lemma 3 ([18]). If h = 〈α | β 〉M : (A,A)→ (B,B) in OpticA with α and β mutually inverse, then h is
lawful.
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Proof.

and

Recalling the algebraic characterisation of cartesian monoidal categories [7], we denote the commu-
tative comonoid structure in a cartesian monoidal category as follows:

This structure must satisfy the commutative comonoid axioms:

Must further be coherent with respect to the monoidal structure:

And every morphism f of the category in question must be a comonoid homomorphism:

Lemma 4 ([18]). Let A be a cartesian monoidal category, and let h = 〈α | β 〉M : (A,A)→ (B,B) be a
homogeneous optic in A. Then there exist arrows get : A→ B and put : A⊗B→ A of A such that:

Proof. We have:
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and so the claim follows via:

Homogeneous optics in cartesian monoidal categories are called lenses. We write [put | get] :
(A,A)→ (B,B) for the lens specified by appropriate put and get arrows in the above manner.

Definition 5 ([6]). A lens [put | get] : (A,A)→ (B,B) is is said satisfy the lens laws in case:

Lemma 5 ([18]). If a lens h = [put | get] : (A,A)→ (B,B) satisfies the lens laws then it is lawful.

Proof. For the counit we have:

And for the comultiplication:

Lemma 6 ([18]). If a lens h = [put | get] : (A,A)→ (B,B) is lawful and B is inhabited in the sense that
there is an arrow k : 1→ B in A, then it satisfies the lens laws.

Proof. The first lens law holds as in:
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The second lens law holds as in:

and the third lens law holds as in:

Observation 1 (Teleological Categories). H pxAqy contains structure reminiscent of teleological cate-
gories [9], which were introduced to allow well-founded diagrammatic reasoning about lenses. Analo-
gous to the dualizable morphisms of a teleological category are those of the form f ◦, defined as below
left, with duals f •, defined as below right:

Standing in for the counits of a teleological category we have the following cell for each A ∈ A:

We then obtain an analogue of the condition that the counits be extranatural as in:

Notice that all arrows A◦→ B◦ of H pxAqy are of the form f ◦ for some f : A→ B in A and that dually all
arrows B•→ A• are of the form f •, further characterising our analogue of the dualizable morphisms.

In light of this, we suggest that teleological categories are a shadow of the fact that A◦ is formally
left adjoint to A• in H pxAqy. We also point out that teleological categories do not contain enough of the
relevant structure to prove Lemmas 5 and 6, which require the unit of the formal adjunction between A◦

and A• as well as the counit.
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4 Comb Diagrams

In this section we discuss comb diagrams in the free cornering. The basic idea is that we would like
to have higher-order diagrams for our monoidal categories, pictured below on the left. Supplying the
appropriate first-order string diagrams to a higher-order diagram results in a first-order diagram, pictured
below on the right:

These higher-order diagrams have been called (right) comb diagrams due to their appearance.
In the free cornering of a monoidal category A, elements of right-•◦-alternating cell-sets are a good

notion of right comb diagram, with the alternation depth corresponding to the number of gaps between
the teeth:

! !

Lemma 2 tells us that this notion of comb diagram coincides with the notion of comb diagram developed
by Román in the more general framework of open diagrams [19]. The free cornering admits common
comb diagram operations beyond inserting morphisms into the gaps. First, we may insert a comb diagram
into one of the gaps to form another comb diagram:

! !

Next, following Remarks 1 and 2 there is an dual notion of left comb diagrams in the free cornering
corresponding to the left-◦•-alternating cell-sets. In certain cases it makes sense to compose a right
comb diagram with a left comb diagram by interleaving their teeth. The free cornering supports this as
well:

! !

Thus, the free cornering is a natural setting in which to work with comb diagrams in a monoidal category.



G. Boisseau, C. Nester & M. Román 109

References

[1] G. Boisseau (2020): String Diagrams for Optics. In Zena M. Ariola, editor: 5th International Conference
on Formal Structures for Computation and Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France
(Virtual Conference), LIPIcs 167, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 17:1–17:18,
doi:10.4230/LIPIcs.FSCD.2020.17.

[2] G. Chiribella, G. M. D’Ariano & P. Perinotti (2008): Quantum Circuit Architecture. Physical Review Letters
101(6), doi:10.1103/physrevlett.101.060401.
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We present a computational implementation of diagrammatic sets, a model of higher-dimensional

diagram rewriting that is “topologically sound”: diagrams admit a functorial interpretation as homo-

topies in cell complexes. This has potential applications both in the formalisation of higher algebra

and category theory and in computational algebraic topology. We describe data structures for well-

formed shapes of diagrams of arbitrary dimensions and provide a solution to their isomorphism

problem in time O(n3 logn). On top of this, we define a type theory for rewriting in diagrammatic

sets and provide a semantic characterisation of its syntactic category. All data structures and algo-

rithms are implemented in the Python library rewalt, which also supports various visualisations of

diagrams.

Introduction

This article concerns the computational implementation of higher-dimensional diagrams in the sense of

higher category theory, and contains some first steps in the computational complexity theory of diagram-

matic rewriting in arbitrary dimensions.

Higher-dimensional rewriting, as emergent from the theory of polygraphs [5] – see [12] for a survey –

is founded on an interpretation of rewrites as directed homotopies. A particular aim of our work is prov-

able topological soundness, namely, the existence of a functorial interpretation of rewrite systems as cell

complexes, and of rewrites as homotopies. This ensures that our implementation of higher-dimensional

rewriting can act as a formal system for homotopical algebra and higher category theory in all generality.

With this aim, we turn to the diagrammatic set model [13] developed by the first author as a combi-

natorial alternative to polygraphs. Diagrammatic sets have a dual nature as higher-dimensional rewrite

systems and “combinatorial directed cell complexes”. They support a model of weak higher categories

and, unlike polygraphs, are topologically sound.

Beside the formalisation of higher algebra and category theory, potential applications are manifold.

String diagram rewriting, which is a form of 3-dimensional rewriting, is arguably the characteristic

computational mechanism of applied category theory. It has been suggested [4] that even “classical”

forms of rewriting are more faithfully represented as diagram rewriting: for example, term rewriting

implemented as rewriting in monoidal categories with cartesian structure explicitates the “hidden costs”

of copying and deleting terms. In these contexts, it is important to have a grasp on the computational

complexity of the basic operations of diagram rewriting, to ensure that one’s cost model for a machine

operating by diagram rewriting is reasonable.

Via topological soundness, we also envisage applications to computational algebraic topology. Direct-

edness of cells gives an algebraic grip on their pasting, which lends itself better to computation. Directed

cell complexes are also equipped with an orientation on their cells, which makes them naturally suited to

the computation of cellular homology.

http://dx.doi.org/10.4204/EPTCS.380.7
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Structure of the paper

In Section 1, we present some basic data structures from the theory of diagrammatic sets, together with

their formal encoding: in particular, oriented graded posets which are used to encode shapes of diagrams.

In Section 2, we focus on the implementation of regular molecules, the inductive subclass of oriented

graded posets corresponding to well-formed shapes of diagrams. To construct regular molecules, we

need to decide their isomorphism problem; for general oriented graded posets, this is equivalent to the

graph isomorphism problem (Proposition 2.11), not known to be in P. Our main result is a solution to

the isomorphism problem for regular molecules in time O(n3 logn) (Theorem 2.19), which also gives us

a canonical form, hence a unique representation of shapes of diagrams.

In Section 3, we move on to the formalisation of diagrams and diagrammatic sets. We present this

in the form of a type theory DiagSet living “on top” of our implementation of shapes of diagrams: the

terms, corresponding to diagrams, are “filtered by regular molecules”. This allows us to define formal

semantics and give a semantic characterisation of our formal system (Theorem 3.10).

Related work

A number of type theories for higher-categorical structures of arbitrary dimension have been defined in

recent years: most notably, Finster and Mimram’s CaTT [8], implementing the Maltsiniotis model of

weak higher categories [3], together with its “strictly associative” [10] and “strictly unital” [9] variants;

and the opetopic type theories by Ho Thanh, Curien, and Mimram [15, 6].

The former are not particularly concerned with diagram rewriting, and focus instead on the imple-

mentation of coherent globular composition; the link to our work is tenuous. The latter have some

commonality, albeit with a focus on a more restrictive class of shapes. In fact, DiagSet takes some inspi-

ration not from one of the published opetopic type theories, but from a privately communicated variant

due to Curien, which similarly rests on a “black-boxed” implementation of opetopic shapes.

Most closely related is the work by Vicary, Bar, Dorn, and others on quasistrict [2] and later associative

[7, 17] n-categories, serving as the foundation of the homotopy.io proof assistant. While the aim is nearly

the same, we believe that our framework has a number of advantages over associative n-categories.

From a theoretical perspective, it is only conjectural that associative n-categories, in general, are topo-

logically sound or satisfy the homotopy hypothesis. They also currently lack connections with other

models of higher categories and a clear functorial viewpoint. On the other hand, diagrammatic sets are

topologically sound, satisfy a version of the homotopy hypothesis, and support a model of weak higher

categories with concrete functorial ties to well-established models.

From a user perspective, the main point of divergence is that diagrams in associative n-categories have

“strict units” but “weak interchange”, while our diagrams have “strict interchange” but need weak units

to model “nullary” inputs or outputs. For rewrite systems with many “nullary” generators, associative

n-categories may have a practical advantage, while diagrammatic sets are otherwise favoured.

Finally, in associative n-categories, diagram shapes are essentially descriptions of cubical tilings, and

by lack of strict interchange, each rewrite gets by default its own “layer” in the tiling. This makes it so a

“local” rewrite on a portion of a diagram leads to an inefficient “global” duplication of information. Our

“face poset” representation of diagrams, on the other hand, allows local rewrites to stay local, which is

more efficient and will be beneficial to the parallelisability of diagram rewriting.
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Implementation

All data structures, algorithms, and systems discussed in this article were implemented by the authors as

part of a Python library for higher-dimensional rewriting and algebra, called rewalt.1 An example of

rewalt code is included in Example 3.13. The library also supports various kinds of visualisation for

diagrams, optionally in the form of TikZ output. All the Hasse and string diagrams in this article were

generated by rewalt and included here with no subsequent retouching.
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1 Basic data structures

1.1. In the theory of diagrammatic sets, the shape of a pasting diagram is encoded by its face poset,

recording whether a cell is located in the boundary of another cell, together with orientation data which

specifies whether an (n− 1)-dimensional cell is in the input or output half of the boundary of an n-di-

mensional cell. We call the mathematical structure containing these data an oriented graded poset. This

is essentially the same as what Steiner calls a directed precomplex [18] and Forest an ω-hypergraph [11].

1.2 (Graded poset). Let P be a finite poset with order relation ≤ and let P⊥ be P extended with a least

element ⊥. We say that P is graded if, for all x ∈ P, all directed paths from x to ⊥ in the Hasse diagram

H P⊥, with edges going from covering to covered elements, have the same length. If this length is n+1,

we let dim(x) := n be the dimension of x. We write Pn for the subset of n-dimensional elements of P.

1.3 (Oriented graded poset). An orientation on a finite poset P is an edge-labelling of its Hasse diagram

with values in {+,−}. An oriented graded poset is a finite graded poset with an orientation.

Implementation 1.4. If we linearly order the elements of an oriented graded poset in each dimension,

each element x is uniquely identified by a pair of integers (n,k), where n is the dimension of x, and k is

the position of x in the linear ordering of n-dimensional elements.

We then represent an oriented graded poset as a pair (face_data,coface_data) of arrays of arrays of

pairs of sets of integers, where

1. j ∈ face_data[n][k][i] if and only if (n−1, j) is covered by (n,k), and

2. j ∈ coface_data[n][k][i] if and only if (n+1, j) covers (n,k)

with orientation − (i= 0) or + (i = 1). We may implement the sets of integers as sorted arrays, or another

data type which supports binary search in logarithmic time. This defines a data type OgPoset.

This representation is essentially an adjacency list representation of the poset’s Hasse diagram, with

vertices separated according to their dimension, and incoming and outgoing edges separated according

to their label. If EP is the set of edges of the Hasse diagram of P, the OgPoset representation of P takes

space O(|P|+ |EP|).
Storing both face_data and coface_data is redundant since these are uniquely determined by each

other. However, most of the computations we need to perform on oriented graded posets require regular

access both to faces (covered elements) and cofaces (covering elements) of a given element, so it is

advantageous to be able to access them in constant time.

1Code: https://github.com/ahadziha/rewalt . Documentation: https://rewalt.readthedocs.io .

https://github.com/ahadziha/rewalt
https://rewalt.readthedocs.io
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Example 1.5. Consider a diagram formed of one 2-cell with two input 1-cells and a single output 1-cell,

whiskered to the right with a single 1-cell. The following are representations of its shape as

• an oriented face poset, pictured as a Hasse diagram with input faces pointing upwards (in magenta)

and output faces downwards (in blue);

• a string diagram (0-cells are unlabelled, but correspond to bounded regions of the plane);

• the pair of face_data and coface_data (rows are outer array indices and columns inner array in-

dices).

0 1 2 3

0 1 2 3

0

3

2

10

0

face_data:

([], []) ([], []) ([], []) ([], [])
([0], [1]) ([1], [2]) ([2], [3]) ([0], [2])
([0,1], [3])
coface_data:

([0,3], []) ([1], [0]) ([2], [1,3]) ([], [2])
([0], []) ([0], []) ([], []) ([], [0])
([], [])

Remark 1.6. The representation of an oriented graded poset (up to isomorphism) is not unique: any

permutation of the linear order on elements in each dimension leads to an equivalent representation.

1.7. Many important computations are performed on (downwards) closed subsets, rather than the whole

of an oriented graded poset. In particular, the structure of an oriented graded poset supports a purely

combinatorial definition of the input and output boundary of a closed subset.

1.8 (Closed subsets). Let P be an oriented graded poset and U ⊆ P. We say that U is closed if, for all

y ∈U and x ∈ P, if x≤ y then x ∈U . The closure of U is the subset clU := {x ∈ P | ∃y ∈U x≤ y}.
We let dim(U) be the maximum of dim(x) for x ∈U , or −1 if U is empty.

1.9 (Input and output boundaries). Let P be an oriented graded poset and U ⊆ P a closed subset. For all

α ∈ {+,−} and n ∈ N, let

• ∆α
n U ⊆U be the subset of elements x such that dim(x) = n and, if y ∈U covers x, then it covers it

with orientation α ;

• MnU ⊆U be the subset of elements x such that dim(x) = n and x is maximal in U (not covered by

any other element of U ).

The input (α :=−) or output (α :=+) n-boundary of U is the closed subset

∂ α
n U := cl

(
∆α

n U ∪
⋃

k<n

MkU
)
.

We let ∂nU := ∂+
n U ∪∂−n U and omit n when n = dim(U)−1. For all x ∈ P, we let ∂ α

n x := ∂ α
n cl{x}.

Remark 1.10. It is convenient to also let ∂ α
−1U = ∂ α

−2U := /0, so that ∂ αU is defined for all U ⊆ P.

Example 1.11. Let U be the oriented face poset of Example 1.5. Then

∂−1 U = {(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2)},

∂+
1 U = {(0,0),(0,2),(0,3),(1,2),(1,3)},

∂−0 U = {(0,0)}, ∂+
0 U = {(0,3)}.
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Implementation 1.12. We represent a set of elements of an OgPoset as an array of sets of positions,

indexed by dimensions. This allows us to access the subset of elements of a given dimension in constant

time. The size of arrays can be fixed to be equal to the dimension of a specific OgPoset, or dynamically

adjusted to the dimension of each set of elements. Sets of positions can again be implemented as sorted

arrays. This defines a data type GrSet (for graded set).

1.13 (Map of oriented graded posets). A map f : P→ Q of oriented graded posets is a function of their

underlying sets that satisfies ∂ α
n f (x) = f (∂ α

n x) for all x ∈ P, n ∈N, and α ∈ {+,−}. We call an injective

map an inclusion. Oriented graded posets and their maps form a category ogPos.

Example 1.14. A closed subset of an oriented graded poset inherits the structure of an oriented graded

poset by restriction. Its subset inclusion is an inclusion of oriented graded posets.

Implementation 1.15. We represent a map f : P→ Q as an array of arrays of pairs of integers mapping,

together with pointers source,target to OgPoset representations of P and Q. This defines a data type

OgMap. As an array of arrays, mapping has the same size of P’s face_data, and is defined by

mapping[n][k] = (m, j) if and only if f ((n,k)) = (m, j).

This representation takes space O(|P|).

2 Unique representation of shapes of diagrams

2.1. In the theory of diagrammatic sets, shapes of diagrams form an inductively generated class of ori-

ented graded posets, called regular molecules after Steiner [18].

2.2 (Round subset). Let U be a closed subset of an oriented graded poset, n := dim(U). We say that U is

round if, for all k < n,

∂+
k U ∩∂−k U = ∂k−1U.

Remark 2.3. Roundness is called “spherical boundary” in [13].

Example 2.4. Shapes of 2-dimensional diagrams, as oriented face posets, are round precisely when

1. their string diagram representation is connected, and

2. all nodes of the string diagram have at least one input and one output wire.

For example, the oriented graded poset of Example 1.5 is not round: we have

∂0U = {(0,0),(0,3)} ( ∂+
1 U ∩∂−1 U = {(0,0),(0,2),(0,3)}.

On the other hand, the following oriented graded poset is round:

0 1 2 3

0 1 2 3 4

0 1
4

3

2

1
0

0

1

2.5 (Regular molecules). The class of regular molecules is generated by the following clauses.
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• (Point). The terminal oriented graded poset • is a regular molecule.

• (Atom). Let U,V be round regular molecules such that dim(U) = dim(V ) and, for all α ∈ {+,−},
∂ αU is isomorphic to ∂ αV . Then U ⇒ V is a regular molecule, where U ⇒ V is the essentially

unique oriented graded poset U ⇒V with the property that

1. U ⇒V has a greatest element, and

2. ∂−(U ⇒V ) is isomorphic to U , while ∂+(U ⇒V ) is isomorphic to V .

• (Paste). Let U,V be regular molecules and k <min(dim(U),dim(V )), such that ∂+
k U is isomorphic

to ∂−k V . Then the pushout U #k V of the span ∂+
k U →֒U , ∂+

k U
∼
→֒ ∂−k V →֒V is a regular molecule.

A regular molecule is an atom if it has a greatest element; these are precisely the molecules whose final

generating clause is (Point) or (Atom).

The submolecule relation U ⊑V is the preorder generated by U,V ⊑U ⇒V and U,V ⊑U #kV .

Comment 2.6. The properties of regular molecules are explored in [13, Sections 1, 2]. Importantly, the

following results ensure that §2.5 is a valid definition:

1. the category ogPos has pushouts of inclusions;

2. if U and V are isomorphic regular molecules, they are isomorphic in a unique way;

3. input and output boundaries of regular molecules are regular molecules;

4. if U and V are round, then a pair of isomorphisms between ∂ αU and ∂ αV for α ∈ {+,−} extends

uniquely to an isomorphism between ∂U and ∂V .

The first three imply that U #k V is well-defined and does not depend on a choice of isomorphism between

∂+
k U and ∂−k V . The fourth implies that U ⇒ V can be uniquely constructed by extending the isomor-

phisms ∂ αU
∼
→֒ ∂ αV to an isomorphism ∂U

∼
→֒ ∂V , then gluing U and V along this isomorphism, and

finally adding a greatest element with the appropriate orientation.

Example 2.7. Let arrow := (• ⇒ •) and binary := ((arrow #0 arrow)⇒ arrow). The shape of the dia-

gram of Example 1.5 is generated as binary #0 arrow, while the oriented graded poset of Example 2.4 is

generated as (cobinary #0 arrow)#1 (arrow #0binary), where cobinary := (arrow⇒ (arrow #0 arrow)).

Remark 2.8. As discussed in [13, §2.1], the pasting constructions − #k− satisfy the equations of compo-

sition in strict ω-categories up to unique isomorphism. It follows that the “same” regular molecule may

be constructed in different ways. For example, letting globe := (arrow⇒ arrow), we have

(globe #0 arrow)#1 (arrow #0 globe) ≃ globe#0 globe ≃ (arrow #0 globe)#1 (globe #0 arrow).

0 1 2

0 1 2 3

0 1

32

10

0 1

Implementation 2.9. We want to implement regular molecules as a subtype Shape of OgPoset with a

nullary constructor point and partial binary constructors atom(−,−) and pastek(−,−) for k ∈ N. In

order to implement the constructors, we need to be able to perform the following operations:

1. compute input and output k-boundaries;



A. Hadzihasanovic & D. Kessler 117

2. check if a closed subset is round;

3. determine if two regular molecules are isomorphic;

4. compute the pushout of a span of inclusions.

The first, second, and fourth of these admit straightforward algorithms of low-degree polynomial time

complexity, that do not rely on any special properties of regular molecules. The third problem, however,

is non-trivial. Indeed, the isomorphism problem generalised to all oriented graded posets is equivalent to

the graph isomorphism (GI) problem, which is not known to be in P; the best known algorithm, due to

Babai, runs in quasipolynomial time [1].

Remark 2.10. As customary in this context, a graph is a simple graph (no loops or multiple edges).

Proposition 2.11 — The isomorphism problem for oriented graded posets is GI-complete.

Proof. Deciding isomorphism of oriented graded posets is equivalent to deciding isomorphism of their

Hasse diagrams with {+,−}-labelled edges. The isomorphism problem for edge-labelled finite graphs

is an instance of the isomorphism problem for finite relational structures, which is GI-complete [16].

Conversely, a directed graph can be represented by its “oriented incidence poset”: the 0-dimensional

elements are the vertices, the 1-dimensional elements are the edges, the only input face of an edge is

its source, and the only output face of an edge is its target. Two directed graphs are isomorphic if and

only if their oriented incidence posets are isomorphic. Since GI reduces to the isomorphism problem for

directed graphs, it reduces to the isomorphism problem for 1-dimensional oriented graded posets. �

Nevertheless, in the special case of regular molecules, we can do much better. Our strategy is to

describe a deterministic traversal algorithm, where the traversal order depends only on the intrinsic

structure of a regular molecule as an oriented graded poset and not on its representation.

Given U,V : OgPoset representing regular molecules, we traverse both U and V , and then reorder

their elements in each dimension according to their traversal order. If U ′,V ′ : OgPoset are the reordered

versions of U,V , we then have

U ≃V if and only if U ′ ≡V ′.

We will show that, with this strategy, we can solve the isomorphism problem for regular molecules in

time O(n3 log n). A more precise upper bound is given in Theorem 2.19 below.

In addition to solving the isomorphism problem for regular molecules, the traversal order gives us a

canonical form for regular molecules in OgPoset form. If we implement the constructors of Shape in

such a way that they always produce an OgPoset in traversal order, we obtain that

for all U,V : Shape, U ≃V if and only if U ≡V ,

that is, we have a unique representation for shapes of diagrams.

The algorithm is described in Figure 1. At each iteration of the main loop (line 4), the current state is

fully described by the stack – including its top element, the focus – and by the list of marked elements.

Lemma 2.12 — Let V be an item on the stack. Then V is a regular molecule. If W is below V on the

stack, then V is a proper subset of W .

Proof. Initially, the stack only contains U , which is a regular molecule by assumption. Assume, induc-

tively, that the statement is true at the beginning of the current iteration with focus V , and that a set V ′ is

pushed onto the stack at the end. Then either

1. V ′ = ∂ αV for some α ∈ {+,−}, or
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procedure TRAVERSE(U : regular molecule)

marked← []
stack← [U ]
while stack is not empty do

5: focus← top of stack

dim← dim(focus)
if focus⊆marked then

pop focus from top of stack

else

10: if ∂−focus 6⊆marked then

push ∂−focus to top of stack

else

if focus= cl{x} for some x then

append x to marked

15: pop focus from top of stack

if ∂+focus 6⊆marked then

push ∂+focus on top of stack

else

y← first item of dimension dim− 1 in marked such that

20: y has an unmarked input coface in focus

x← unique input coface of y in focus

push cl{x} on top of stack

return marked

Figure 1: The traversal algorithm.

2. V ′ = cl{x} for some x ∈V .

In both cases, V ′ is a regular molecule and a proper subset of V (hence also of each item below V ), under

the assumption that V is a regular molecule. �

Remark 2.13. In fact, any V that appears on the stack is either ∂−k U , which we call “U -linked”, or it is

cl{x} or ∂ α
k x, which we call “x-linked”, for some x ∈U . In the latter case, V is round, which implies that

it is also pure [13, Lemma 1.35]: its maximal elements all have the same dimension.

Lemma 2.14 — Suppose V is on the stack. Then all elements of V must be marked before any item below

V is accessed, or before any proper superset of V becomes the focus.

Proof. By Lemma 2.12, as long as V is on the stack, only V and its proper subsets can be on top. It

follows that, for a proper superset of V to be the focus, V must be popped from the stack at the end of an

iteration where V is the focus. There are only two ways this can happen:

• V was already fully marked before the current loop iteration, or

• ∂−V was fully marked and V = cl{x} for some x which is marked at the current loop iteration.

In both cases, ∂−V was already fully marked before the current loop iteration. In the latter case, if ∂+V

is already fully marked, then V = {x} ∪ ∂−V ∪ ∂+V is also fully marked. Otherwise, ∂+V ( V gets

pushed onto the stack to replace V , and must be popped before any superset of V becomes the focus. By

the same case distinction, whenever ∂+V is popped, either

• it was fully marked, in which case V was fully marked, or
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• it is of the form cl{y} for some y which is marked at the current loop iteration.

Either way, since all regular molecules satisfy the globularity property ∂ α(∂+V ) = ∂ α(∂−V )⊆ ∂−V , we

know that ∂+V , hence V , is fully marked at the end of the iteration, and nothing is added to the stack. �

Lemma 2.15 — Any subset V of U can be pushed onto the stack at most once.

Proof. Suppose V is pushed onto the stack. As long as V is on the stack, any subsequent addition to the

stack must be a proper subset of V , so it cannot be equal to V .

If V is popped from the stack, by Lemma 2.14, it must be fully marked before any item below it is

accessed. Since the algorithm checks if a set is fully marked before pushing it onto the stack, V can never

appear again. �

Lemma 2.16 — Let V be the focus, n := dim(V ). Then either V is fully marked, or there exists an

n-dimensional element of V which is unmarked.

Proof. First, we prove a weaker result: either V is fully marked, or there exists a maximal element of V

which is unmarked.

Let x ∈V be marked. At some prior iteration, cl{x} must have been the focus, and by Lemma 2.14, in

order for V to become the focus, cl{x} must have been fully marked as well. Because

V =
⋃

k≤n

clMkV =
⋃

k≤n

⋃

x∈MkV

cl{x},

it follows that V is fully marked if and only if its maximal elements are all marked.

Now, V has one of the two forms in Remark 2.13. If V is of the second form, its maximal elements all

have the top dimension, so we only need to consider the case V = ∂−k U .

At the start of the algorithm, U, . . . ,∂−0 U are all consecutively added to the stack. So ∂−k U becomes

the focus either at this stage, in which case all its elements are unmarked, or after ∂−k−1U is fully marked.

In the latter case, any maximal element of ∂−k U of dimension strictly smaller than k also belongs to

∂−k−1U . �

Theorem 2.17 — The traversal algorithm is correct: given a regular molecule U, it terminates returning

a unique linear ordering of the elements of U.

Proof. As a particular case of Lemma 2.14, U must be fully marked before the stack is emptied. There-

fore, the algorithm either terminates after all elements have been traversed, or it does not terminate.

To prove that the algorithm does always terminate, it suffices to show that, unless all elements are

already marked, it always finds an element to mark. First of all, observe that, from any state, the algorithm

first goes through the following sequence of steps:

1. popping all fully marked subsets from the top of the stack;

2. once it reaches a subset which is not fully marked, successively pushing its lower-dimensional

input boundaries that are not fully marked onto the stack.

At the end of this sequence, we always reach a state in which the focus V is not fully marked, but ∂−V

is fully marked. Let us call such a V a proper focus.

We proceed by induction on dimension and proper subsets of a proper focus. If dim(V ) = 0, since a

0-molecule always consists of a single element, V = {x}, and x gets marked at the current iteration.
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Let n := dim(V ). By Lemma 2.16, there is an unmarked x ∈Vn. If V = cl{x}, then x is marked at the

current iteration, and we are done. Otherwise, we prove that there always exists a pair (y,x) where x ∈Vn

is unmarked, and y is a marked input face of x. By [13, Lemma 1.16] applied to V , the coface x is unique

given y, so among such pairs we can pick the one where y comes earliest in the list of marked elements,

and this selects a unique x.

Let x ∈Vn be unmarked. By a dual version of [ibid., Lemma 1.37], there exists a sequence

y0→ x0→ . . .→ ym→ xm = x

where y0 ∈ ∆−n−1V , xi ∈Vn, yi is an input face of xi, and yi+1 is an output face of xi. Since V is a proper

focus, y0 is marked. Let k be the smallest index such that xk is unmarked; because xm is unmarked, such

a k exists. Then xi is marked for all i < k, hence cl{xi} is also marked. It follows that yk ∈ ∂+xk−1 is

marked, and the pair (yk,xk) satisfies our requirement.

Thus, the algorithm will find a unique x ∈ Vn and push cl{x} onto the stack. The next proper focus

will necessarily be a proper subset of V , and we conclude by the inductive hypothesis. �

2.18. In what follows, for a fixed regular molecule U , we let |En| be the number of edges between n and

(n−1)-dimensional elements in the Hasse diagram of U , and we let

|Umax| := max
n
|Un|, |Emax| := max

n
|En|.

Theorem 2.19 — The traversal algorithm admits an implementation running in time

O
(
|U |2(|Emax| · log |Emax|+ |Umax| · log |Umax|)

)
.

Proof. First of all, we represent any closed set on the stack with its graded set of maximal elements. To

initialise the algorithm, we only need to compute the maximal elements of U . This can be done in time

O(|U |) by going through the elements of U and checking if their set of cofaces is empty.

Next, let us find an upper bound for the number of iterations of the main loop (line 4). Let V be a set

on the stack, n := dim(V ). Then V can become the focus

• at most once before pushing ∂−V onto the stack (line 11),

• at most once before pushing cl{y} onto the stack for each y ∈Vn (line 22), and

• at most once to be popped from the stack (line 8),

after which, by Lemma 2.15, it can never appear again. Thus, the number of loop iterations with V as

focus is bounded by |Vn|+2.

By Remark 2.13, every set V on the stack is either “U -linked” or “x-linked” for some x ∈U . There are

(dim(U)+1) many U -linked focusses and (2dim(x)+1) many x-linked focusses. Then

• the number of loop iterations with U -linked focusses is bounded by |U |+2dim(U)+2, and

• for each x, the number of iterations with x-linked focusses is bounded by |cl{x}|+4dim(x)+2.

Since there are |U | elements, |cl{x}| ≤ |U |, and dim(x) ≤ dim(U), we have a coarse upper bound of

(|U |+1)(|U |+4dim(U)+2) on the total number of iterations, which is O(|U |2).
Next, in our implementation, we split the list of marked elements into three objects: a list order (for the

total traversal order), an array of lists grorder (for the traversal order split by dimension), and a graded

set marked (for the set of marked elements).

Consider a single loop iteration with focus V , n := dim(V ).
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(Line 7). By Lemma 2.16, to check if V is fully marked, it suffices to check whether Vn ⊆ markedn.

Since both are sorted arrays of integers, they can be compared in time linear in |Vn|+ |markedn|, which is

O(|Un|). At this stage, we may also record the unmarked n-dimensional elements of V in a sorted array

unmarked without affecting the complexity.

(Line 10). To compute the maximal elements of ∂−V and ∂+V , we may use different strategies depend-

ing on whether V is “U -linked” or not.

If V = ∂−n U , we compute the (n−1)-dimensional elements of ∂−V = ∂−n−1U simply by going through

the elements of Un−1 and checking which ones have empty sets of output cofaces, in time O(|Un−1|).
Lower-dimensional maximal elements are shared between V and ∂−V , so we may then point from the

latter to the former, at no extra cost.

If V is not U -linked, V and its boundaries are pure, so the set of maximal elements of ∂ αV is equal

to ∆αV , and each of its elements is covered by an element of Vn. To compute it, we add all the in-

put and output faces of all x ∈ Vn to sets in_faces and out_faces, respectively, then use the relations

∆−V = in_faces\out_faces and ∆+V = out_faces\ in_faces.

There are O(|En|) faces of elements of Vn, and we can sort in_faces and out_faces, remove duplicates,

and compute their difference in time O(|En| · log |En|).
At this stage, we also create an associative array candidates as follows: whenever x ∈ Vn is in

unmarked, and y is an input face of x, we add the position of x as a value to candidates, indexed by

the position of y. We then sort the indices of candidates. This also takes time O(|En| · log |En|) so it does

not affect the overall complexity.

(Lines 10, 16). By the same reasoning applied to line 7, checking if ∂−V and ∂+V are fully marked

takes time O(|Un−1|).

(Line 14). If Vn has a single element that we mark, adding it to order and grorder takes constant time

with an appropriate implementation of lists. Adding it to marked takes O(|Un|).
(Lines 19—21). To select the next focus we traverse grordern−1 starting from the first item and search

for each item in the indices of candidates until we find a hit y. This takes time O(|Un−1| · log |Un−1|) in

the worst case. The next focus will be cl{x}, where x is the value corresponding to index y.

Overall, the worst-case complexity is O(|Un|+ |En| · log |En|+ |Un−1| · log |Un−1|). Using the bounds

|Un|, |Un−1| ≤ |Umax| and |En| ≤ |Emax|, and multiplying by our bound on the number of iterations, we

conclude. �

3 A type theory for higher-dimensional rewriting

3.1. We rapidly go through the definitions of diagrammatic sets and some related notions. For a thorough

treatment, we refer to [13, Section 4 and onwards], and to [14, Section V] for diagrammatic complexes

as presentations of higher-dimensional theories.

3.2 (Diagrammatic set). Let (to be read atom) be a skeleton of the full subcategory of ogPos on

the atoms of every dimension. A diagrammatic set is a presheaf on . Diagrammatic sets and their

morphisms of presheaves form a category Set.

3.3. We identify with a full subcategory →֒ Set via the Yoneda embedding. With this identi-

fication, we use morphisms in Set as our notation for both elements and structural operations of a

diagrammatic set X :

• x ∈ X(U) becomes x : U → X , and

• for each map f : V →U in , X( f )(x) ∈ X(V ) becomes f ;x : V → X .
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The embedding →֒ Set extends along pushouts of inclusions to the full subcategory of ogPos on the

regular molecules.

3.4 (Diagrams and cells). Let X be a diagrammatic set and U a regular molecule. A diagram of shape

U in X is a morphism x : U → X . A diagram is a cell if U is an atom. For all n ∈ N, we say that x is an

n-diagram or an n-cell when dim(U) = n.

If U decomposes as U1 #k U2, we write x = x1 #k x2 for xi := ıi;x, where ıi is the inclusion Ui →֒U for

i∈ {1,2}. Let ıαk : ∂ α
k U →֒U be the inclusions of the k-boundaries of U . The input k-boundary of x is the

diagram ∂−k x := ı−k ;x and the output k-boundary of x is the diagram ∂+
k x := ı+k ;x. We write x : y−⇒ y+

to express that ∂ α
k x = yα for each α ∈ {+,−}.

3.5 (Diagrammatic complex). For each n ∈ N, let n be the full subcategory of on the atoms of

dimension ≤ n, and let −1 be the empty subcategory. The restriction functor Set→ PSh( n) has a

left adjoint; let σ≤n be the comonad induced by this adjunction. The n-skeleton of a diagrammatic set X

is the counit σ≤nX → X . For all k ≤ n, the k-skeleton factors uniquely through the n-skeleton of X .

A diagrammatic complex is a diagrammatic set X together with a set X = ∑n∈NXn of generating

cells such that, for all n ∈ N,

⊔
x∈Xn

∂U(x)

σ≤nXσ≤n−1X

⊔
x∈Xn

U(x)

(∂x)x∈Xn
(x)x∈Xn

is a pushout in Set, where U(x) denotes the shape of x. A diagrammatic complex is finite if X is finite.

3.6 (Support-based diagrammatic complex). Each cell in a diagrammatic complex (X ,X ) is uniquely of

the form (p : U ։V, x : V →X), where p is a surjective map of atoms and x∈X . We let supp(p,x) := x,

the support of (p,x).
A support-based diagrammatic complex is the quotient of a diagrammatic complex by the relations

x∼ y if and only if supp(ı;x) = supp(ı;y) for all inclusions of atoms ı : V →֒U, (1)

for all atoms U and cells x,y : U → X . We let Cpxfsb denote the category of finite, support-based

diagrammatic complexes with morphisms of their underlying diagrammatic sets.

3.7. We define a dependent type theory for diagrammatic sets – more precisely, for finite, support-based

diagrammatic complexes – that relies on an underlying unique representation of regular molecules and

their maps, treated as a “black box”. Of course, in the previous section we have provided such an

implementation and proved that it is computationally feasible. Nevertheless, it is useful to separate its

abstract properties from the implementation details.

3.8 (DiagSet). Let V be an infinite set of variables. We define a type theory DiagSet as follows.

Terms. A term t is a pair of a regular molecule U , the shape of t, and a function t : U → V. We write

t/U to express that t is a term of shape U . Maps p : U →V act on terms by precomposition: if t/V is a

term, then p∗t := (p; t)/U . In particular, we let ∂ α
k t := (ıαk ; t)/∂ α

k V for all k ∈ N and α ∈ {+,−}.
Types. A type A is either ∅ or an expression t ⇒ s where t,s are terms. We may annotate a term t of

shape U with the type A :=∅ if U ≡ •, and A := ∂−t⇒ ∂+t otherwise.

Contexts. A context Γ is a list x1 : A1, . . . ,xn : An of typed variables. We consider two contexts to be

equal if they are equal up to a permutation. If x : A is a typed variable, we say that x has shape • if A≡∅,

and U ⇒V if A≡ t/U ⇒ s/V . We write x/U : A to express that x : A has shape U .
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Substitutions. A substitution σ is a list x1 7→ t1, . . . ,xn 7→ tn of assignments of terms to variables. We

consider two substitutions to be equal if they are equal up to a permutation.

Judgments. We consider three kinds of judgments:

• Γ ⊢ meaning that Γ is a well-formed context,

• Γ ⊢ t meaning that t is a well-formed term in context Γ, and

• ∆ ⊢ σ : Γ meaning that σ is a well-formed substitution from context ∆ to context Γ.

The inference rules of DiagSet are the following. We use 〈〉 to indicate the empty list.

Rules for contexts.

init

〈〉 ⊢

Γ ⊢
pt

Γ, x : ∅ ⊢

Γ ⊢ t/U : r−⇒ r+ Γ ⊢ s/V : r−⇒ r+ U,V round
gen

Γ, x : t⇒ s ⊢

(where x ∈ V is fresh)

Rules for terms.

Γ ⊢ (x/V : A) ∈ Γ U atom p : U ։V surjective
cell

Γ ⊢ p∗x̂/U

Γ ⊢ t/U Γ ⊢ s/V ∂+
k t ≡ ∂−k s

pastek, k < min(dim(U),dim(V ))
Γ ⊢ (t #k s)/(U #k V )

Rules for substitutions.

Γ ⊢
id

Γ ⊢ 〈〉 : Γ

∆ ⊢ σ : Γ Γ, x : s/U ⇒ r/V ⊢ ∆ ⊢ t/U ⇒V : s[σ ]⇒ r[σ ]
ext

∆ ⊢ 〈σ , x 7→ t〉 : (Γ, x : s⇒ r)

In the rules cell and paste, the terms x̂ and t #k s are defined as follows:

• x̂ is the unique term of shape V which sends the greatest element of V to x, and, if A ≡ t ⇒ s, is

equal to t on ∂−V and to s on ∂+V ;

• t #k s is the unique term of shape U #k V that is equal to t on U →֒ (U #k V ) and to s on V →֒ (U #k V ).

The side conditions for gen and paste ensure that this is well-defined.

To define the action t[σ ] of a well-formed substitution σ on a term t, we extend σ to a function V→V

as follows: for all x ∈ V, if (x 7→ t/U) ∈ σ , we let σ(x) := t(⊤), where ⊤ is the greatest element of

U ; otherwise, σ(x) := x. Then t[σ ] is the composite of t : U → V and σ : V→ V. Note that this is

well-defined because a well-formed substitution assigns to each variable a term whose shape is an atom.

3.9 (Syntactic category). The syntactic category Ctx[DiagSet] has

• well-formed contexts Γ as objects, and

• well-formed substitutions as morphisms from ∆ to Γ,

with the obvious composition of substitutions, and empty substitutions as identities.

Theorem 3.10 — The category Ctx[DiagSet]op
is equivalent to Cpxfsb.
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Sketch of proof. We define an encoding enc of finite support-based diagrammatic complexes, diagrams,

and morphisms as contexts, terms, and substitutions. Given (X ,X ), we pick an injective function

name : X → V, assigning unique variable names to the generating cells of X .

For all diagrams d : U → X , we define a term enc(d) as follows: for all x ∈U , we let enc(d)(x) be

equal to name(supp(d|cl{x})). Since (X ,X ) is support-based, enc(d)≡ enc(d′) implies d = d′.

Let n be the greatest dimension in which Xn is non-empty, and pick a linear ordering x1, . . . ,xmk
of

Xk for all k ≤ n. We let enc(X ,X ) := Γ0, . . . ,Γn, where

Γk := name(x1) : enc(∂−x1)⇒ enc(∂+x1), . . . , name(xmk
) : enc(∂−xmk

)⇒ enc(∂+xmk
).

By the construction of X as a colimit of its generating cells, any map X → Y is uniquely determined by

what it does on X . Given a map f : (X ,X )→ (Y,Y ) in Cpxfsb, we let enc( f ) be the substitution

〈nameX(x) 7→ encY ( f (x))〉x∈X .

Conversely, we define an interpretation J−K of well-formed contexts, terms, and substitutions by induc-

tion on inference rules of DiagSet. At each step the interpretation JΓK of a well-formed context is a

support-based diagrammatic complex with one generator Jx̂K of shape U for each variable x/U in Γ.

• (init) The interpretation of the empty context is the initial diagrammatic set.

• (pt) Suppose JΓK is defined. The interpretation of Γ, x : ∅ is the coproduct JΓK+•. The interpre-

tation of x̂ is the inclusion • →֒ JΓK+•.

• (gen) Suppose JΓK and Jt/UK,Js/V K are defined. The interpretation of Γ, x : t ⇒ s is the pushout

of ∂ Jx̂K : ∂ (U ⇒ V )→ JΓK and ∂ (U ⇒ V ) →֒ (U ⇒ V ), quotiented by the equations (1), where

∂ Jx̂K is equal to JtK on ∂−(U ⇒V ) and to JsK on ∂+(U ⇒V ).

• (cell) Suppose JΓK is defined and has a generating cell Jx̂K. The interpretation of p∗x̂ is p;Jx̂K.

• (pastek) Suppose JΓK and JtK,JsK are defined with ∂+
k JtK = J∂+

k tK = J∂−k sK= ∂−k JsK. The interpre-

tation of t #k s is the diagram JtK #k JsK.

• (id) The interpretation of the empty substitution in context Γ is the identity of JΓK.

• (ext) Suppose JσK and JtK are defined, where Jx̂K and JtK both have the same shape U . By the

construction of JΓ,xK as a colimit of JΓK and U , the pair of JσK : JΓK→ J∆K and JtK : U → JΓK
induces a unique morphism Jσ ,x 7→ tK : JΓ,xK→ J∆K.

It is routine to check that enc and J−K define contravariant functors between Cpxfsb and Ctx[DiagSet],
and that they are each other’s inverse up to natural isomorphism. �

Remark 3.11. The proof of Theorem 3.10 gives a semantic characterisation of well-formed terms as
diagrams in a diagrammatic set. An immediate consequence is that the following rule is admissible:

Γ ⊢ t/V p : U →V map
pb

Γ ⊢ p∗t/U

where p is an arbitrary map of regular molecules.

Comment 3.12. A sticking point in our type theory is the fact that cell is parametrised by an arbitrary

surjective map of atoms p. This is necessary to access the “weak units” and degenerate cells which in

our framework are needed, among other things, to model nullary operations in an algebraic theory.
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In practice, however, this is the one point in which the underlying implementation of regular molecules

and their maps has to be explicitly accessed in order to define p and its domain. To avoid this, in a

practical implementation, we want to include explicitly some extra admissible rules, corresponding to

the application of useful maps that are parametric in their codomain.

In particular, we want to explicitly include

• the trivial case p≡ idU :

Γ ⊢ (x/U : A) ∈ Γ
cell′

Γ ⊢ x̂/U

,

• unit rules, modelling [13, §4.16]:

Γ ⊢ t/U
unit

Γ ⊢ unit(t) := τ∗(t) : t⇒ t
,

• left and right unitor rules, modelling [ibid., §4.17]:

Γ ⊢ t/U V ⊑ ∂−U round
lunitor

Γ ⊢ lunitorV (t) := (ℓ−V →֒U )
∗t

Γ ⊢ t/U V ⊑ ∂+U round
runitor

Γ ⊢ runitorV (t) := (r−V →֒U)
∗t

where V can be specified, for example, by the set of positions of its maximal elements.

We may also have extra rules for simplex and cube degeneracy maps and for cube connection maps, in

the case where U is an oriented simplex or cube as in [ibid., §3.33]. All of these are implemented as

diagram methods in rewalt.

Example 3.13. As an example, we give a presentation in DiagSet of the theory of a left-unital binary

operation, together with its implementation in rewalt. In the framework of diagrammatic sets, a many-

sorted “monoidal theory” is presented by a diagrammatic complex with a single 0-cell; this is analogous

to the way a monoidal category is a bicategory with a single 0-cell. The sorts are generating 1-cells, the

basic operations are generating 2-cells, and “oriented equations” are generating 3-cells.

First, we add a single 0-cell x and a single sort a.

init

〈〉 ⊢
pt

x : ∅
cell′

x : ∅ ⊢ x̂

x : ∅ ⊢ x̂ x : ∅ ⊢ x̂
gen

x : ∅, a : x̂⇒ x̂ ⊢
cell′

x : ∅, a : x̂⇒ x̂ ⊢ â

1 import rewalt
2 Lun = rewalt.DiagSet ()
3 x = Lun.add(’x’)
4 a = Lun.add(’a’, x, x)

Let Γ := x : ∅, a : x̂⇒ x̂. We add a binary operation m.

Γ ⊢ â Γ ⊢ â
paste0

Γ ⊢ â #0 â Γ ⊢ â
gen

Γ, m : â #0 â⇒ â ⊢
cell′

Γ, m : â#0 â⇒ â ⊢ m̂

5 m = Lun.add(’m’, a.paste(a), a)

Let Γ′ := Γ, m : â #0 â⇒ â. We produce a weak unit on x and add a nullary operation u.

Γ′ ⊢ x̂
unit

Γ′ ⊢ unit(x̂) Γ′ ⊢ â
gen

Γ′, u : unit(x̂)⇒ â ⊢
cell′

Γ′, u : unit(x̂)⇒ â ⊢ û

6 u = Lun.add(’u’, x.unit (), a)
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Let Γ′′ := Γ′, u : unit(x̂)⇒ â. We produce a left unitor 2-cell on a, and add an “oriented equation”

exhibiting the fact that u is a left unit for m.

Γ′′ ⊢ û Γ′′ ⊢ â
paste0

Γ′′ ⊢ û #0 â Γ′′ ⊢ m̂
paste1

Γ′′ ⊢ (û #0 â)#1 m̂

Γ′′ ⊢ â/arrow
lunitor

Γ′′ ⊢ lunitor∂−arrow(â)
gen

Γ′′, lu : ((û #0 â)#1 m̂)⇒ lunitor∂−arrow(â) ⊢

7 lu = Lun.add(’lu’, u.paste(a).paste(m), a.lunitor ())

The following is a representation of lu as a term of DiagSet, that is, an oriented graded poset la-

belled with names, together with string diagram representations of lu, its input boundary, and its output

boundary, and the rewalt code that generated them.

0,x 1,x 2,x

0,x 1,a 2,a 3,a

0,u 1,m 2,a

0,lu
a

mu

lu

a

a

a
x

u

m
a

ax

8 lu.hasse(tikz =True )
9 lu.draw(bgcolor =’gray !10 ’, tikz =True )

10 lu.input.draw (bgcolor=’gray !10’, tikz =True )
11 lu.output.draw (bgcolor=’gray !10’, tikz=True )

Comment 3.14. Provided we have a unique underlying representation of shapes, as described in Section

2, every term of DiagSet also has a unique representation. In this sense, terms of DiagSet are “noncom-

putational”: all the computation, which consists exclusively of computing and matching shapes, happens

under the hood before a term is even created, so the equality theory of terms is trivial.

This is intended. Rather than a computational theory in itself, DiagSet is intended as a substrate for

computational theories according to the paradigm of higher-dimensional rewriting. A term t : r−⇒ r+

can be seen as a rewrite of the “lower-dimensional” term r− to the term r+, and the extension of t via the

pastek rules establishes how the rewrite can happen in a wider context. In this sense, every well-formed

context in DiagSet contains its own internal computational theory on terms of each dimension.

Remark 3.15. While “rewrites in context” can be built with the pastek rules, this is quite impractical. In

practice, one wants to start from a diagram and apply a generating rewrite directly to a subdiagram. This

is modelled by pasting along a subdiagram [13, §4.12] in the theory of diagrammatic sets.

Pasting along a subdiagram is implemented in rewalt with methods to_inputs and to_outputs.

These invoke a procedure for recognising subdiagrams, which currently uses a quite naive algorithm.

The issue of recognising subdiagrams deserves further study, so we leave it to future work.

Conclusions and outlook

We have provided a formal implementation of “plain” diagrammatic sets. An obvious next step is the

formalisation of weakly invertible cells, and then of diagrammatic sets with weak composites, a model of
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weak higher categories [13, Sections 5, 6]. This is in fact part of rewalt, but still lacks a formal analysis.

In addition, we still have a limited range of high-level methods for handling weak units. We may want,

for example, flexible higher-dimensional versions of “Mac Lane triangle” rules for shuffling weak units

around. Development of these methods, and others tailored to specific applications, will likely go hand

in hand with practical experience in the use of rewalt as a proof assistant.

To conclude, we have only scratched the surface of the algorithm and complexity theory of diagram

rewriting in higher dimensions. In particular, we have not yet studied the problem of searching for

a subdiagram within another diagram, whose solution is essential to any form of fully automated or

assisted diagram rewriting. We plan to tackle this problem in future work.
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A wide variety of bidirectional data accessors, ranging from mixed optics to functor lenses, can be

formalized within a unique framework—dependent optics. Starting from two indexed categories,

which encode what maps are allowed in the forward and backward directions, we define the category

of dependent optics and establish under what assumptions it has coproducts. Different choices of in-

dexed categories correspond to different families of optics: we discuss dependent lenses and prisms,

as well as closed dependent optics. We introduce the notion of Tambara representation and use it to

classify contravariant functors from the category of optics, thus generalizing the profunctor encoding

of optics to the dependent case.

1 Introduction

Lenses [2, 10] are composable, bidirectional data accessors. They can be thought of as a collection of two

methods: a get method, to access a particular field of a data structure, and a put method, to build a new

instance of the data structure with an updated field value. Lenses and their more recent generalization,

optics, have been implemented and explored in the popular Haskell library lens [12]. The possible fields

of application vary widely, from game theory [9] to automatic differentiation [8].

The current formalization of optics [7, 20] extends the original theory of lenses from Cartesian cat-

egories to arbitrary symmetric monoidal categories, or even actegories, thus including under a unique

formalism a wide variety of data accessors. Unfortunately, this approach fails to include a distinct ele-

gant generalization of lenses, namely functor lenses [21]: every pseudofunctor R : C op→ Cat induces

a fibration of categories LensR → C via the Grothendieck construction on the pointwise opposite of R.

Classical categories of lenses, as well as novel examples, can be obtained with this approach.

The aim of this work is to develop a common generalization of the theories of optics and functor

lenses, via the theory of bicategories and pseudofunctors. In section 2 we lay the fundamental definition

of dependent optic and show that it encompasses both regular optics and functor lenses. We show under

what conditions the category of dependent optics has coproducts. In section 3 we give some examples

of dependent optics—dependent (monoidal) lenses, dependent (monoidal) prisms, and closed dependent

optics—where the key ingredient is the operation of tensoring (co)modules over a (co)monoid in a sym-

metric monoidal category. Finally, in section 4, we establish the notion of Tambara representation. We

show that D-valued Tambara representations are equivalent to contravariant functors from the category

of optics to an arbitrary category D , thus generalizing the profunctor encoding of optics to the dependent

case.

2 Dependent optics

Classically, a lens from a domain (X ,X ′) to a codomain (Y,Y ′) has a get method get : X → Y and a put

method put : X ×Y ′→ X ′. This definition suggests two broad classes of generalizations. One approach,

functor lenses [21], replaces the domain and codomain with pairs (X ,P) and (Y,Q), where the objects

http://dx.doi.org/10.4204/EPTCS.380.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


P. Vertechi 129

P and Q live in categories parameterized by X and Y respectively. The put method is then encoded as a

map put : get∗(Q)→ P. Another approach, mixed optics [7, 20], replaces the Cartesian product × with

two actions L , R of a shared monoidal category M on categories CL,CR. This requires to tweak the

original definition of lens to an equivalent one expressed via a coend

∫ M∈M

CL(X ,M L Y )×CR(M R Y ′,X ′).

Remark 1. Some authors (see for instance [7]) work in the setting of enriched categories, so that the

above coend is not taken in Set but rather in some monoidal category V . For simplicity, in this article

we will work in the standard non-enriched setting.

It follows from the Yoneda reduction lemma [20, Lm. 1.2.2] that this definition recovers classical

lenses when a Cartesian category acts on itself. From a practical perspective, optics are equivalence

classes of pairs of morphisms

l : X →M L Y and r : M R Y ′→ X ′,

where M ∈Ob(M ) is called the representative.

The aim of this section is to establish a general definition of dependent optics which encompasses

both previous generalizations of lenses—functor lenses and optics. The definition is entirely analogous

to the definition of optics, but the monoidal actions are replaced by B-indexed categories, where B is a

bicategory [1] (see also [13] for a more modern treatment). We will consider the bicategory as a category

weakly enriched in categories, hence the notation B(A,B), for A,B∈Ob(B), will represent the category

of morphisms from A to B.

To encode the data of a B-indexed category L , i.e. a pseudofunctor L : Bop→ Cat, we will use

the following notation. L A for A ∈ Ob(B) denotes the category L (A) and f ∗ for f ∈ Ob(B(A,B))
denotes the functor L ( f ). Throughout this manuscript, we will work with two pseudofunctors, L and

R. To avoid ambiguities, we will use the notation f ∗
′
to denote R( f ).

Definition 1. Let B be a bicategory. Let L ,R be B-indexed categories. The category OpticL ,R

of dependent optics has, as objects, triplets (X ,X ′)A, with A ∈ Ob(B), X ∈ Ob(L A), X ′ ∈ Ob(RA).
Morphisms between (X ,X ′)A and (Y,Y ′)B are given by the following coend:

OpticL ,R

(

(X ,X ′)A,(Y,Y ′)B
)

=
∫ f∈B(A,B)

L
A(X , f ∗Y )×R

A( f ∗
′
Y ′,X ′). (1)

To refer to specific morphisms explicitly, we denote by 〈l |r〉 the morphism given by l ∈L A(X , f ∗Y ) and

r ∈RA( f ∗
′
Y ′,X ′), and we say that it has representative f .

More explicitly, morphisms in OpticL ,R

(

(X ,X ′)A,(Y,Y ′)B
)

are equivalence classes of pairs (l,r)

with l : X → f ∗Y and r : f ∗
′
Y ′ → X ′, where f : A→ B is called the representative. The equivalence

relation is generated by

(L (m)Y ◦ l, r)∼ (l, r ◦R(m)Y ′) ,

with m : f ⇒ g, l : X → f ∗Y and r : g∗
′
Y ′→ X ′, where f ,g : A ⇒ B are parallel 1-morphisms in B.

Remark 2. Here and in what follows we assume that the above coend exists, either because the category

B(A,B) is small (and small colimits exist in Set), or because we can compute it explicitly.
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The generalization of optics via B-indexed categories, rather than monoidal actions, has been pro-

posed in [17], where composition of optics is explained in terms of Kan extensions. Here, we will adopt

a direct, explicit approach. While the chosen formalisms are different, the two definitions have been

shown to be equivalent in [4, Ex. 4.2].

Let θ ,θ ′ encode the coherence natural transformations for L ,R respectively. In particular, we have

natural isomorphisms

θA : IdL A ⇒ Id∗A and θ f ,g : f ∗ ◦g∗⇒ (g◦ f )∗.

θ ′A and θ ′f ,g are defined in an analogous way. The identity optic is defined as follows:

Id(X ,X ′)A :=
〈

(θA)X |(θ
′−1
A )X ′

〉

. (2)

The map

L B(Y,g∗Z)×RB(g∗
′
Z′,Y ′)×L A(X , f ∗Y )×RA( f ∗

′
Y ′,X ′)

OpticL ,R

(

(X ,X ′)A,(Z,Z′)C
)

given by

〈l2 |r2〉 ◦ 〈l1 |r1〉=
〈

(θ f ,g)Z ◦ f ∗(l2)◦ l1 |r1 ◦ f ∗
′
(r2)◦ (θ

′−1
f ,g )Z′

〉

(3)

is extranatural in f ,g and thus induces a composition function

OpticL ,R

(

(Y,Y ′)B,(Z,Z′)C
)

×OpticL ,R

(

(X ,X ′)A,(Y,Y ′)B
)

OpticL ,R

(

(X ,X ′)A,(Z,Z′)C
)

.

Theorem 1. OpticL ,R is a category.

Proof. Checking the category axioms (unity and associativity) is tedious but straightforward. Here,

we denote λ f ,ρ f the left and right unitors in B. We use the fact that θA (resp. θ ′−1
A ) is a natural

transformation IdL A ⇒ Id∗A (resp. Id∗
′

A ⇒ IdRA), as well as the identity coherence law for a pseudo-

functor, keeping in mind that Cat is a strict 2-category and hence has a trivial unitor. Given an optic

〈l |r〉 : (X ,X ′)A→ (Y,Y ′)B with representative f :

〈l |r〉 ◦ Id(X ,X ′)A =
〈

(θIdA, f )Y ◦ Id∗A(l)◦ (θA)X |(θ
′−1
A )X ′ ◦ Id∗

′

A (r)◦ (θ
′−1
IdA, f

)Y ′
〉

=
〈

(θIdA, f )Y ◦ (θA) f ∗Y ◦ l |r ◦ (θ ′−1
A )

f ∗
′
Y ′
◦ (θ ′−1

IdA, f
)Y ′

〉

=
〈

(θIdA, f )Y ◦ (θA) f ∗Y ◦ l |r ◦R(ρ f )Y ′
〉

=
〈

L (ρ f )Y ◦ (θIdA, f )Y ◦ (θA) f ∗Y ◦ l |r
〉

= 〈l |r〉,
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where R(ρ f )Y ′ can be moved to the left as L (ρ f )Y thanks to the equivalence relation introduced by the

coend. Analogously,

Id(Y,Y ′)B ◦〈l |r〉 =
〈

(θ f ,IdB
)Y ◦ f ∗((θB)Y )◦ l |r ◦ f ∗

′
((θ ′−1

B )Y ′)◦ (θ
′−1
f ,IdB

)Y ′
〉

=
〈

(θ f ,IdB
)Y ◦ f ∗((θB)Y )◦ l |r ◦R(λ f )Y ′

〉

=
〈

L (λ f )Y ◦ (θ f ,IdB
)Y ◦ f ∗((θB)Y )◦ l |r

〉

= 〈l |r〉.

To prove associativity, let us consider a sequence of morphisms

(X ,X ′)A 〈l1 |r1〉
−−−→ (Y,Y ′)B 〈l2 |r2〉

−−−→ (Z,Z′)C
〈l3 |r3〉
−−−→ (W,W ′)D,

with choices of representatives f , g, h respectively. Then,

(〈l3 |r3〉 ◦ 〈l2 |r2〉)◦ 〈l1 |r1〉=
〈

(θg,h)W ◦g∗(l3)◦ l2 |r2 ◦g∗
′
(r3)◦ (θ

′−1
g,h )W ′

〉

◦ 〈l1 |r1〉

= 〈(θ f ,g;h)W ◦ f ∗((θg,h)W )◦ f ∗(g∗(l3))◦ f ∗l2 ◦ l1 |

r1 ◦ f ∗
′
(r2)◦ f ∗

′
(g∗

′
(r3))◦ f ∗

′
((θ ′−1

g,h )W ′)◦ (θ
′−1
f ,g;h)W ′〉.

Whereas, when associating in a different order, one has

〈l3 |r3〉 ◦ (〈l2 |r2〉 ◦ 〈l1 |r1〉) = 〈l3 |r3〉 ◦
〈

(θ f ,g)Z ◦ f ∗(l2)◦ l1 |r1 ◦ f ∗
′
(r2)◦ (θ

′−1
f ,g )Z′

〉

= 〈(θ f ;g,h)W ◦ ( f ;g)∗(l3)◦ (θ f ,g)Z ◦ f ∗(l2)◦ l1 |

r1 ◦ f ∗
′
(r2)◦ (θ

′−1
f ,g )Z′ ◦ ( f ;g)∗

′
(r3)◦ (θ

′−1
f ;g,h)W ′〉

= 〈(θ f ;g,h)W ◦ (θ f ,g)h∗W ◦ f ∗(g∗(l3))◦ f ∗(l2)◦ l1 |

r1 ◦ f ∗
′
(r2)◦ f ∗

′
(g∗

′
(r3))◦ (θ

′−1
f ,g )h∗

′
W ′ ◦ (θ

′−1
f ;g,h)W ′〉.

The two optics are equal, thanks to the relationships

L (α f ,g,h)W ◦ (θ f ;g,h)W ◦ (θ f ,g)h∗W = (θ f ,g;h)W ◦ f ∗((θg,h)W ),

(θ ′−1
f ,g )h∗

′
W ′ ◦ (θ

′−1
f ;g,h)W ′ ◦R(α−1

f ,g,h)W ′ = f ∗
′
((θ ′−1

g,h )W ′)◦ (θ
′−1
f ,g;h)W ′ ,

where α f ,g,h is the associator of B.

Remark 3. Unlike the dependent lenses case, here we generally do not have a pseudofunctor

OpticL ,R → B. Such a pseudofunctor would be ill-defined on morphisms in OpticL ,R due to the

equivalence relation imposed by the coend. To obviate this issue, a possible approach worthy of future

exploration would be to define a bicategory of dependent optics where, instead of identifying equiva-

lent 1-morphisms, we add 2-morphisms between them. See [3] for a purely bicategorical approach to

dependent optics.

2.1 Comparison with existent constructions

Dependent optics simultaneously generalize both mixed optics [20] and functor lenses [21]. Intuitively,

mixed optics are dependent optics where the bicategory B has a unique object, whereas functor lenses

are dependent optics where B is a 1-category and the B-indexed category L is trivial.
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Proposition 1. Mixed optics [20, Def. 6.1.1] are a particular case of dependent optics, where the source

bicategory has a unique object.

Proof. Let us consider two categories CL and CR acted on by a monoidal category M . We can consider

the bicategory BM obtained by delooping. Explicitly, BM has a unique object ∗ with endomorphism

category BM (∗,∗) = M , where composition is given by the monoidal structure of M . Then the ac-

tion of M on another category C induces a pseudofunctor M → Cat. Under this correspondence,

optics for the actions ψL : M → [CL,CL] and ψR : M → [CR,CR] are the same as optics for the corre-

sponding pseudofunctors L ,R : BM ⇒ Cat, hence they are a special case of dependent optics with

B = (BM )op.

Proposition 2. Functor lenses, as defined in [21], are a particular case of dependent optics, where the

source bicategory B is a category and the B-indexed category L is trivial.

Proof. Let B be a 1-category. In [21], functor lenses are defined as the Grothendieck construction of the

pointwise opposite of a B-indexed category R. Let • be the terminal B-indexed category. Then,

LensR ≃Optic•,R .

Indeed, objects in Optic•,R are simply pairs (A,X ′), with X ′ ∈RA, as there always is a unique object in

•A. As B has no non-trivial 2-morphisms, we have

∫ f∈B(A,B)

R
A( f ∗

′
Y ′,X ′)≃

∏
f∈B(A,B)

R
A( f ∗

′
Y ′,X ′).

2.2 Coproducts

One fundamental motivation for dependent lenses and, more generally, dependent optics is the lack of

coproducts in categories of ordinary lenses or optics. This situation is much improved in the dependent

case: for instance, adding coproducts to the category of lenses leads naturally to dependent lenses [3]. In

the following proposition, we show that there are general conditions to ensure that the category OpticL ,R

has coproducts.

Proposition 3. Let B be a bicategory with finite coproducts. Let us assume that L ,R turn finite co-

products in B into finite products in Cat. Then, OpticL ,R has finite coproducts.

Proof. Let
(

(Xi,X
′
i )

Ai
)

i∈I
be a finite family of objects in OpticL ,R . Let A =

∏
i∈I Ai. Let ιi : Ai →֒ A

be the inclusions. Let X ∈ Ob(L A) and X ′ ∈Ob(RA) be such that, for all i ∈ I,

ι∗i (X)≃ Xi and ι∗
′

i (X ′)≃ X ′i .

For all (Y,Y ′)B ∈ Ob
(

OpticL ,R

)

the following holds:

OpticL ,R

(

(X ,X ′)A,(Y,Y ′)B
)

=
∫ f∈B(A,B)

L
A(X , f ∗Y )×R

A( f ∗
′
Y ′,X ′)

≃

∫ ( fi)i∈I∈∏i∈I B(Ai,B)

∏
i∈I

L
Ai(Xi, f ∗i Y )×R

Ai( f ∗
′

i Y ′,X ′i )

≃∏
i∈I

OpticL ,R

(

(Xi,X
′
i )

Ai ,(Y,Y ′)B
)

,
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where the last isomorphism is Fubini’s theorem for coends, hence (X ,X ′)A is the coproduct of
(

(Xi,X
′
i )

Ai
)

i∈I
.

3 Examples

Different choices of bicategories and functors give rise to different types of optics, see [7] for an overview

of the monoidal case, i.e., B = (BM )op, as in proposition 1. Here, we discuss dependent lenses [21],

dependent prisms, and generalizations thereof. We then show how the existence of a right adjoint to a

given functor can be used to construct further classes of examples of dependent optics. More examples

of dependent optics, such as polynomial optics, are described in [17].

3.1 Dependent lenses

Definition 2. Let C be a finitely complete category. Let SpanC be its bicategory of spans. Let C /– be

the SpanC -indexed category of slices. More explicitly,

C /– : Span
op
C
→ Cat

is a pseudofunctor that associates to each object A ∈ Ob(C ) the slice category C /A. Functoriality is

given by pulling back and then pushing forward along the legs of the span. We define the category of

dependent lenses as follows:

DLensC := OpticC /–,C /–.

Objects in DLensC are cospans X → A← X ′. Morphisms between two cospans X → A← X ′ and

Y → B←Y ′ are given by

∫ M∈C /(A×B)

C /A(X ,M×B Y )×C /A(M×B Y ′,X ′). (4)

Equation (4) can be visualized as follows. A class of homomorphisms in DLensC with representative

A←M→ B is given by a pair of dotted arrows that make the following diagram commute.

X A X ′

M×B Y M M×B Y ′

Morphisms in DLensC can be computed explicitly:

DLensC

(

(X ,X ′)A,(Y,Y ′)B
)

=
∫ M∈C /(A×B)

C /A(X ,M×B Y )×C /A(M×B Y ′,X ′)

≃
∫ M∈C /(A×B) ∏

X→Y

C /(A×B)(X ,M)×C/A(M×B Y ′,X ′)

≃
∏

X→Y

∫ M∈C /(A×B)

C /(A×B)(X ,M)×C/A(M×B Y ′,X ′)

≃
∏

X→Y

C /A(X ×B Y ′,X ′),

(5)
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where the last isomorphism follows from the Yoneda reduction lemma [20, Lm 1.2.2].

Even though this category is equivalent to the definition of dependent lenses via the Grothendieck

construction in [21], we believe it can have independent practical value. Encoding dependent lenses as

maps

X →M×B Y and M×B Y ′→ X ′

can lead to a more efficient implementation of, for instance, reverse-mode automatic differentiation (as

done in the Julia library Diffractor [8]), where the representative M is optimized to contain precisely the

information about the input that is required to compute the backward map. Features of the input that are

not needed can be discarded, and quantities computed in the forward map can be stored in M if they are

useful for the backward map.

The documentation of the Diffractor library [8] hints at the need for dependent optics. Indeed, a

key motivation for this work was to build a rigorous dependently-typed framework for bidirectional data

transformations that would allow for reverse-mode automatic differentiation with an explicit notion of

representative. However, to formalize the difference between our construction of dependent lenses and

the one based on functor lenses, we would need to define the bicategory of dependent optics, where all

the information about the representative is preserved (cp. remark 3).

Unlike lenses, categories of dependent lenses admit finite coproducts, provided that the base category

is lextensive [6, Sect. 4.4].

Lemma 1. If C is a lextensive category, then the inclusion C →֒ SpanC preserves coproducts.

Proof. Let A =
∏

i∈I Ai be a coproduct in C . Then, for all B ∈ Ob(C ),

SpanC (A,B) = C /(A×B)≃ C /
∏
i∈I

(Ai×B)≃∏
i∈I

C /(Ai×B) =∏
i∈I

SpanC (Ai,B) ,

therefore A is the coproduct of (Ai)i∈I in SpanC .

Proposition 4. If C is a lextensive category, then DLensC has finite coproducts.

Proof. By lemma 1, SpanC has finite coproducts, given by coproducts in C . It is straightforward to

show that C /– turns coproducts into products, as

C /A = C /
∏
i∈I

Ai ≃∏
i∈I

C /Ai.

Thanks to proposition 3, DLensC has finite coproducts.

3.2 Dependent monoidal lenses

The construction in section 3.1 can be generalized to a symmetric monoidal category (C ,⊗) with reflex-

ive equalizers that are preserved by the tensor product. This is analogous to the approach taken in [21]

to generalize lenses to symmetric monoidal categories via commutative comonoids.

Let B be a comonoidal object in C . Given a right B-comodule M and a left B-comodule N, we can

define their tensor product over B as the following equalizer:

M⊗B N := eq(M⊗N ⇒ M⊗B⊗N).

The category of commutative comonoids in Ob(C ), denoted CComonC ,⊗, has finite limits: the pullback

of two B-coalgebras Y1,Y2 is isomorphic to the tensor product Y1⊗B Y2 (see [11, C1.1 Lm. 1.1.8] and
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subsequent discussion for the dual statement). Let CCoalg(–) and Comod(–) be the SpanCComonC ,⊗
-

indexed categories of commutative coalgebras and comodules respectively, where functoriality is given

by extension and restriction of scalars. We define the category of dependent monoidal lenses as follows:

DLensC ,⊗ := OpticCCoalg(–),Comod(–)
.

A computation analogous to the one in eq. (5) yields the following explicit formula:

DLensC ,⊗

(

(X ,X ′)A,(Y,Y ′)B
)

≃
∏

X→Y

ComodA(X ⊗B Y ′,X ′),

where the morphism X →Y varies among comonoid homomorphisms.

Proposition 4 can be generalized to the monoidal case, establishing sufficient conditions for the exis-

tence of finite coproducts in DLensC ,⊗. In the following proposition, we rely on the fact that, whenever

C has finite coproducts, the forgetful functor CMonC ,⊗→ C creates coproducts in CMonC ,⊗. See the

proof of [15, Prop. 1.2.14] for the dual statement, which concerns limits of commutative monoids rather

than colimits of commutative comonoids.

Proposition 5. Let (C ,⊗) be a symmetric monoidal category, with reflexive equalizers that are preserved

by the tensor product. Let us assume that C has finite coproducts, and that for all finite coproduct of

commutative comonoids A =
∏

i∈I Ai, the map

ComodA→∏
i∈I

ComodAi
, given by M 7→ (M⊗A Ai)i∈I , (6)

is an equivalence of categories. Then, DLensC has finite coproducts.

Proof. The equivalence in eq. (6) is monoidal, hence the functor

CCoalgA→∏
i∈I

CCoalgAi
, given by X 7→ (X ⊗A Ai)i∈I , (7)

is an equivalence. As CCoalg(–) = CComonC ,⊗/–, the category CComonC ,⊗ is lextensive. Indeed, in

the presence of pullbacks along coproduct injections, eq. (7) is a condition equivalent to extensivity, as

shown in [14, Prop. 1.3]. Thanks to lemma 1, the category SpanCComonC ,⊗
has finite coproducts, given

by coproducts in C . It follows from eqs. (6) and (7) that the functors Comod(–) and CCoalg(–) turn finite

coproducts into products. Thanks to proposition 3, DLensC ,⊗ has finite coproducts.

3.3 Dependent (monoidal) prisms

Dependent prisms are dual to dependent lenses. Let C be a finitely cocomplete category. Let CospanC =
SpanC op be its bicategory of cospans. Let –/C be the CospanC -indexed category of coslices. We define

the category of dependent prisms as follows:

DPrismC := Optic–/C ,–/C .

Objects are given by spans X ← A→ X ′. Morphisms between two spans X ← A→ X ′ and Y ← B→ Y ′

are given by
∫ M∈(A⊔B)/C

A/C (X ,M⊔B Y )×A/C (M⊔B Y ′,X ′). (8)
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As is the case for dependent lenses, the coend in eq. (8) can be computed explicitly:

DPrismC

(

(X ,X ′)A,(Y,Y ′)B
)

≃
∏

Y ′→X ′

A/C (X ,X ′⊔B Y ).

Dependent monoidal prisms are dual to dependent monoidal lenses. Given a symmetric monoidal

category (C ,⊗) with reflexive coequalizers that are preserved by the tensor product, let CMonC ,⊗ be the

category of commutative monoids in Ob(C ). Let CAlg(–) and Mod(–) be the CospanCMonC ,⊗
-indexed

categories of commutative algebras and modules respectively, where functoriality is given by extension

and restriction of scalars. We define the category of dependent monoidal prisms as follows:

DPrismC ,⊗ := OpticMod(–),CAlg(–)
.

Morphisms can be computed via the explicit formula

DPrismC ,⊗

(

(X ,X ′)A,(Y,Y ′)B
)

≃
∏

Y ′→X ′

A/C (X ,X ′⊗B Y ),

where the morphism Y ′→ X ′ varies among monoid homomorphisms.

3.4 Closed dependent optics

Using a technique analogous to coalgebraic optics [20], it is sometimes possible to explicitly compute

the coend in the Optic category using a right adjoint technique.

Let B be a bicategory, and L ,R be B-indexed categories. We say that OpticL ,R is a category of

closed dependent optics if, for any A,B ∈ Ob(B) and Y ′ ∈ Ob(L (B)), the functor (–)∗Y ′ : B(A,B)→
RA has a right adjoint Y ′⊲–: RA→B(A,B). Whenever that is the case, eq. (1) can be greatly simplified.

∫ f∈B(A,B)

L
A(X , f ∗Y )×R

A( f ∗
′
Y ′,X ′)≃

∫ f∈B(A,B)

L
A(X , f ∗Y )×B( f ,Y ′ ⊲X ′)

≃L
A(X ,(Y ′ ⊲X ′)∗Y ).

A possible application of this technique is based on the bicategory of bimodules [1, Ex. 2.5] Bimod

and on the Bimod-indexed category Mod(–). There, Y ′ ⊲X ′ = [Y ′,X ′], considered as an (A,B)-bimodule,

hence morphisms in OpticMod(–),Mod(–)
can be computed explicitly:

OpticMod(–),Mod(–)

(

(X ,X ′)A,(Y,Y ′)B
)

= ModA(X , [Y ′,X ′]⊗B Y ).

4 Tambara representations

Tambara modules [19] can be useful to define an interface for optics that does not depend on a choice

of representative. Here, we adapt the notion of generalized Tambara module from [7] to the dependent

case, and we generalize it to an arbitrary target category. For simplicity of notation, throughout this

section we fix a bicategory B and two B-indexed categories L and R (with coherence isomorphisms

θ ,θ ′ respectively), and we write Optic instead of OpticL ,R .

Definition 3. Let D be a category. A D-valued Tambara representation consists of

• a functor PA :
(

L A
)op
×RA→D , for each object A in B,
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• a natural transformation ζ f : PB(–,=)⇒ PA( f ∗–, f ∗
′
=), for each morphism f : A→ B in B,

where ζ f is extranatural in f and satisfies the equations

PA(θA,θ
′−1
A )◦ζIdA

= IdPA and PA(θ f ,g,θ
′−1
f ,g )◦ζg◦ f = (ζ f )g∗(–),g∗′ (=) ◦ζg,

for all A,B,C ∈Ob(B), f : A→ B, and g : B→C.

Remark 4. As the target category is arbitrary, P does not correspond to a module over an enriched

category, hence we find the name representation more appropriate.

In more graphical terms, when D = Set and thus PA,PB are profunctors, the relationship between

PA, PB, and ζ f can be visualized via the following 2-cell in Prof.

L B RB

L A RA

f ∗

|
PB

f ∗
′

|

PA

ζ f

Set-valued Tambara representations can therefore be thought of as lax B-indexed profunctors.

Definition 4. Morphisms between Tambara representations (P,ζ ),(Q,ζ ′) are natural transformations

ηA : PA⇒ QA satisfying

ηA

f ∗(–), f ∗′ (=)
◦ζ f = ζ ′f ◦ηB. (9)

D-valued Tambara representations and their morphisms form a category, which we denote TambD .

Functors from Opticop to an arbitrary category can be described explicitly, thanks to theorem 2.

The rest of the section is devoted to proving that result, via some intermediate steps, and exploring its

consequences.

4.1 The universal Tambara representation

We aim to establish that all Tambara representations can be expressed as a composition of a functor

with a universal Tambara representation ιop. Here, we will define ι and prove that ιop is a Tambara

representation. In section 4.2, we will show universality.

Definition 5. Let A ∈ Ob(B). The functor ιA : L A× (RA)op→ Optic is defined as follows. Given an

object (X ,X ′), ιA(X ,X ′) := (X ,X ′)A. Given a morphism

(l,r) : (X0,X
′
0)→ (X1,X

′
1),

where l : X0→ X1 and r : X ′1→ X ′0, we define ιA(l,r) as the optic

〈

(θA)X1
◦ l |r ◦ (θ ′−1

A )X ′1

〉

: (X0,X
′
0)

A→ (X1,X
′
1)

A

with representative IdA.

The following lemmas will make it much easier to do computations with ι and will allow us to prove

that ιA is indeed a functor and that ιop is a Tambara representation.
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Lemma 2. Let (X0,X
′
0)

A,(X1,X
′
1)

A ∈ Ob(Optic). Let l1 : X0→ X1 and r1 : X ′1→ X ′0. Then, for all optic

〈l2 |r2〉 with domain (X1,X
′
1)

A,

〈l2 |r2〉 ◦ ιA(l1,r1) = 〈l2 ◦ l1 |r1 ◦ r2〉. (10)

Proof. We use twice the fact that θA (resp. θ ′−1
A ) is a natural transformation IdL A ⇒ Id∗A (resp. Id∗

′

A ⇒
IdRA). Specifically,

Id∗A(l2)◦ (θA)X1
◦ l1 = (θA)X2

◦ l2 ◦ l1 = Id∗A(l2 ◦ l1)◦ (θA)X0

r1 ◦ (θ
′−1
A )X ′1

◦ Id∗
′

A (r2) = r1 ◦ r2 ◦ (θ
′−1
A )X ′2

= (θ ′−1
A )X ′0

◦ Id∗
′

A (r1 ◦ r2).

As a consequence,

〈l2 |r2〉 ◦ ιA(l1,r1) = 〈l2 |r2〉 ◦
〈

(θA)X1
◦ l1 |r1 ◦ (θ

′−1
A )

〉

X ′1

= 〈l2 ◦ l1 |r1 ◦ r2〉 ◦
〈

(θA)X0
|(θ ′−1

A )X ′0

〉

= 〈l2 ◦ l1 |r1 ◦ r2〉.

Lemma 3. Let (Y1,Y
′
1)

B,(Y2,Y
′

2)
B ∈ Ob(Optic). Let l2 : Y1 → Y2 and r2 : Y ′2 → Y ′1. Then, for all optic

〈l1 |r1〉 with codomain (Y1,Y
′

1)
B and representative f ,

ιB(l2,r2)◦ 〈l1 |r1〉=
〈

f ∗(l2)◦ l1 |r1 ◦ f ∗
′
(r2)

〉

. (11)

Proof. As f ∗ and f ∗
′
are functors, eq. (3) implies that

ιB(l2,r2)◦ 〈l1 |r1〉=
〈

(θB)Y2
◦ l2 |r2 ◦ (θ

′−1
B )Y ′2

〉

◦ 〈l1 |r1〉

=
〈

(θB)Y2
|(θ ′−1

B )Y ′2

〉

◦
〈

f ∗(l2)◦ l1 |r1 ◦ f ∗
′
(r2)

〉

=
〈

f ∗(l2)◦ l1 |r1 ◦ f ∗
′
(r2)

〉

.

Proposition 6. For all A ∈Ob(B), ιA is a functor.

Proof. We must verify that ιA preserves identity and composition of morphisms. Preservation of identity

is straightforward, as

ιA(IdX , IdX ′) =
〈

(θA)X |(θ
′−1
A )X ′

〉

= Id(X ,X ′)A .

Let us now consider morphisms

X0
l1−→ X1

l2−→ X2 and X ′2
r2−→ X ′1

r1−→ X ′0.

Then, using eq. (10),

ιA(l2,r2)◦ ιA(l1,r1) =
〈

(θA)X2
◦ l2 |r2 ◦ (θ

′−1
A )X ′2

〉

◦ ιA(l1,r1)

=
〈

(θA)X2
◦ l2 ◦ l1 |r1 ◦ r2 ◦ (θ

′−1
A )X ′2

〉

= ιA(l2 ◦ l1,r2 ◦ r1).
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Proposition 7. ιop is a Opticop-valued Tambara representation, whose associated natural transforma-

tions are
〈

Id f ∗(–) | Id f ∗
′
(=)

〉op

(with representative f ).

Proof. By inverting all morphisms in definition 3, we work with the category Optic rather than Opticop.

Let f : A→ B. First, we need to ensure that

〈

Id f ∗(–) | Id f ∗
′ (=)

〉

: ιA( f ∗(–), f ∗
′
(=))⇒ ιB(–,=)

is a natural transformation. Let us consider morphisms l : Y0→ Y1 and r : Y ′1 → Y ′0. Then, by eqs. (10)

and (11),

ιB(l,r)◦
〈

Id f ∗Y0
| Id f ∗

′
Y ′0

〉

=
〈

f ∗(l) | f ∗
′
(r)

〉

=
〈

Id f ∗Y1
| Id f ∗

′
Y ′1

〉

◦ ιA( f ∗(l), f ∗
′
(r)).

Next, we must show that ζ f is extranatural in f . Let us consider f ,g : A ⇒ B and m : f ⇒ g. The

following diagram commutes for all Y ∈ Ob(L B), Y ′ ∈ Ob(RB).

ιA( f ∗Y,g∗
′
Y ′) ιA( f ∗Y, f ∗

′
Y ′)

ιA(g∗Y,g∗
′
Y ′) ιB(Y,Y ′)

This can be show by direct computation, using eq. (10):

〈

Idg∗Y | Idg∗
′
Y ′

〉

◦ ιA(L (m)Y , Idg∗
′
Y ′
) =

〈

L (m)Y | Idg∗
′
Y ′

〉

=
〈

Id f ∗Y |R(m)Y ′
〉

=
〈

Id f ∗Y | Id f ∗
′
Y ′

〉

◦ ιA(Id f ∗Y ,R(m)Y ′).

Finally, we need to show the coherence laws for Tambara representations. The identity law is straight-

forward, as

〈

IdId∗A X | IdId∗
′

A X ′

〉

◦ ιA((θA)X ,(θ
′−1
A )X ′) =

〈

(θA)X |(θ
′−1
A )X ′

〉

= Id(X ,X ′)A .

Thanks to eq. (10)

〈

Id(g◦ f )∗Z | Id(g◦ f )∗′Z′

〉

◦ ιA((θ f ,g)Z ,(θ
′−1
f ,g )Z′) =

〈

(θ f ,g)Z |(θ
′−1
f ,g )Z′

〉

.

Thanks to eq. (3),

〈

Idg∗Z | Idg∗
′
Z′

〉

◦
〈

Id f ∗(g∗Z) | Id f ∗
′ (g∗′Z′)

〉

=
〈

(θ f ,g)Z |(θ
′−1
f ,g )Z′

〉

.

Hence, the composition law holds and ι is a Opticop-valued Tambara representation.
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4.2 Tambara encoding

In this section, we establish that there is a functor [Opticop,D ]→TambD given by composition with the

universal Tambara representation ι . Furthermore, this functor is an isomorphism of categories, which

we will show in theorem 2. This isomorphism will allow us to recover a classical end formula linking

Tambara representations and optics. We start by showing that composition of a functor and a Tambara

representation yields a Tambara representation.

Proposition 8. Let C ,D be arbitrary categories. There is a functor [C ,D ]×TambC → TambD given

by composition.

Proof. All conditions for Tambara representations are preserved by a functorial transformation. Given

natural transformation µ : F ⇒ G and a morphism of Tambara representations η : P⇒ Q, it is straight-

forward to verify that the horizontal composition of µ and η is a morphism of Tambara representations

F ◦P⇒ G◦Q:

µQA(X ,X ′) ◦F(ηA
X ,X ′)◦F((ζ f )Y,Y ′) = µQA(X ,X ′) ◦F(ηA

X ,X ′ ◦ (ζ f )Y,Y ′)

= µQA(X ,X ′) ◦F((ζ ′f )Y,Y ′ ◦ηB
Y,Y ′)

= G((ζ ′f )Y,Y ′ ◦ηB
Y,Y ′)◦µPB(Y,Y ′)

= G((ζ ′f )Y,Y ′)◦G(ηB
Y,Y ′)◦µPB(Y,Y ′)

= G((ζ ′f )Y,Y ′)◦µQB(Y,Y ′) ◦F(ηB
Y,Y ′).

Theorem 2. Let D be a category. Let ιop be the universal Tambara representation. Then the functor

–◦ ιop : [Opticop,D ]→ TambD

is an isomorphism of categories.

Proof. Let P be a D-valued Tambara representation, with associated natural transformations ζ f . Let us

define P̃ : Opticop→D as follows. On objects,

P̃
(

(X ,X ′)A
)

= PA(X ,X ′).

To extend P̃ to morphisms, we proceed as follows. As ζ f is extranatural in f , the map

L
A(X , f ∗Y )×R

A( f ∗
′
Y ′,X ′)→D

(

P
(

(Y,Y ′)B
)

,P
(

(X ,X ′)A
))

〈l |r〉 7→ PA(l,r)◦ (ζ f )Y,Y ′

induces a map

P̃ : Optic
(

(X ,X ′)A,(Y,Y ′)B
)

→D
(

P
(

(Y,Y ′)B
)

,P
(

(X ,X ′)A
))

.

Preservation of identity and composition follows from the coherence laws of definition 3, hence P̃ is a

functor.

It is straightforward to verify that P̃◦ ιop = P as Tambara representations. On objects,

(P̃◦ ιop)A(X ,X ′) = P̃((X ,X ′)A) = PA(X ,X ′).
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On morphisms, given l : X0→ X1 and r : X ′1→ X ′0,

(P̃◦ ιop)A(l,r) = P̃(
〈

(θA)X1
◦ l |r ◦ (θ ′−1

A )X ′1

〉

)

= P((θA)X1
◦ l,r ◦ (θ ′−1

A )X ′1
)◦ (ζIdA

)X1,X ′1

= P(l,r)◦P((θA)X1
,(θ ′−1

A )X ′1
)◦ (ζIdA

)X1,X ′1

= P(l,r).

Finally,

P̃(
〈

Id f ∗Y | Id f ∗
′
Y ′

〉

) = PA(Id f ∗Y , Id f ∗
′
Y ′
)◦ (ζ f )Y,Y ′ = (ζ f )Y,Y ′ ,

hence P̃◦ ιop = P as Tambara representations, so –◦ ιop is surjective on objects.

Let P,Q be Tambara representations, with associated natural transformation families ζ ,ζ ′ respec-

tively. Let η : P⇒Q be a morphism of Tambara representations. Then, we can define a natural transfor-

mation

η̃ : P̃⇒ Q̃ given by η̃(X ,X ′)A := ηA
X ,X ′.

Naturality can be verified via a direct computation:

Q(〈l |r〉)◦ η̃(Y,Y ′)B = QA(l,r)◦ (ζ ′f )Y,Y ′ ◦ηB
Y,Y ′

= QA(l,r)◦ηA

f ∗Y, f ∗′Y ′
◦ (ζ f )Y,Y ′

= ηA
X ,X ′ ◦PA(l,r)◦ (ζ f )Y,Y ′

= η̃(X ,X ′)A ◦P(〈l |r〉).

Here, we have used eq. (9) and the fact that ηA is a natural transformation from PA to QA. As η̃ιA(X ,X ′) =

η̃(X ,X ′)A = ηA
X ,X ′ , the functor –◦ ιop is full. Finally, if for all A ∈ Ob(B),X ∈ Ob(L A),X ′ ∈Ob(RA),

ηA
X ,X ′ = µιA(X ,X ′)

with µ : P̃⇒ Q̃, then µ = η̃ . Hence, the functor –◦ ιop is faithful.

Theorem 2 has wide practical applications, as it implies that a Tambara representation P can be used

as an interface for optics. In other words, an optic o ∈ Optic
(

(X ,X ′)A,(Y,Y ′)B
)

can be encoded as a

family of morphisms

PB(Y,Y ′)→ PA(X ,X ′),

where P varies among D-valued Tambara representations. This encoding has several practical advan-

tages. It does not depend on a choice of representative, it simplifies composition of optics—replacing

the rule in eq. (3) with standard function composition—and it can be used to compose optics of differ-

ent types, as discussed in [7]. Furthermore, the dependent version of a classical result—the profunctor

representation theorem [7, Thm. 4.14]—is a direct consequence of theorem 2, specialized to the case

D = Set.

Lemma 4. Let C be a locally small category, and let Ĉ denote its category of presheaves. Then, for all

S,T ∈ Ob(C ),

C (S,T )≃

∫

F∈Ĉ
Set(F(T ),F(S)). (12)
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Proof. Let us consider the representable presheaf C (–,T ). Applying the Yoneda reduction lemma [20,

Lm. 1.2.2] to the evaluation-at-S functor Ĉ → Set, we obtain

C (S,T ) = C (–,T )(S)≃

∫

F∈Ĉ
Set(Ĉ (C (–,T ),F),F(S))≃

∫

F∈Ĉ
Set(F(T ),F(S)),

where in the last step we have used the Yoneda lemma to compute Ĉ (C (–,T ),F).

Theorem 3. [4, Thm. 3.5] Let (X ,X ′)A and (Y,Y ′)B be objects in Optic. Then,

Optic
(

(X ,X ′)A,(Y,Y ′)B
)

≃

∫

P∈TambSet

Set
(

PB(Y,Y ′),PA(X ,X ′)
)

. (13)

Proof. By theorem 2, TambSet is isomorphic to the category of presheaves over Optic. Hence, eq. (13)

follows from eq. (12), with C = Optic, S = (X ,X ′)A, and T = (Y,Y ′)B.

5 Discussion

In this work, we developed a theory of dependent optics that simultaneously generalizes (mixed) optics

and functor lenses. Natural examples of this construction arise from finitely complete (or finitely co-

complete) categories or, more generally, from symmetric monoidal categories with reflexive equalizers

(or reflexive coequalizers) preserved by the tensor product. Motivated by the practical applicability of

coproducts of dependent lenses [3, 5, 8], we showed sufficient conditions under which the category of

dependent optics admits finite coproducts. In [18, 21], it was shown that the category of functor lenses

admits a monoidal structure whenever the underlying indexed category is monoidal. Although we did not

pursue this direction here, we believe that the key ingredient used in [18]—the notion of pseudomonoid

in the 2-category of indexed categories—can be adapted to our setting to obtain an analogous result for

the category of dependent optics.

Aiming to mimic the profunctor encoding [7, 16] of optics, we defined a generalization of Tambara

modules—Tambara representations. We showed that contravariant functors from Optic to an arbitrary

category D can equivalently be described as D-valued Tambara representations. Using this result, we

established a representative-free interface for dependent optics, where each dependent optic is encoded

as a polymorphic function, and recovered the profunctor representation theorem [7] in our setting. In the

future, it will be interesting to explore in which particular cases of dependent optics this general result

can be specialized to yield simplified encodings, akin to the van Laarhoven encoding for lenses [20].

A more general definition of optics, fiber optics, has been developed in [3]. Furthermore, the authors

sketched a possible formalization of the bicategory of dependent optics to simultaneously generalize

dependent lenses, mixed optics, and fiber optics. We believe that novel avenues of research can arise

from the interplay between the two works. From the construction in [3, Sect. 4.3], it is straightforward to

see that fiber optics are a particular case of dependent optics, as developed here, and they can probably

be used to unify many examples of dependent optics. Hopefully, the work done here can help fine-tune

the technical details of the definition of the bicategory of dependent optics.

Even though they appear different on the surface, our definition of dependent optics and the notion

of compound optics [17] are equivalent (see [4, Ex. 4.2]). In our view, this has several beneficial con-

sequences. On the one hand, our manuscript can be used to fill the gaps left in [17], such as the study

of the properties of the category of dependent optics or the generalization of Tambara modules and of

the profunctor representation theorem. On the other hand, the approach taken in [17] offers a different
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perspective on dependent optics and their composition in terms of Kan extensions, which can help form

an intuitive understanding of our direct, explicit definitions. Finally, the existence of two equivalent,

independently-developed definitions supports the intuition that this is indeed a principled adaptation of

optics to the dependent case.
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Diegetic Representation of Feedback
in Open Games

Matteo Capucci
University of Strathclyde

We improve the framework of open games with agency [4] by showing how the players’ counterfactual
analysis giving rise to Nash equilibria can be described in the dynamics of the game itself (hence
diegetically), getting rid of devices such as equilibrium predicates. This new approach overlaps almost
completely with the way gradient-based learners [6] are specified and trained. Indeed, we show
feedback propagation in games can be seen as a form of backpropagation, with a crucial difference
explaining the distinctive character of the phenomenology of non-cooperative games. We outline a
functorial construction of arena of games, show players form a subsystem over it, and prove that their
‘fixpoint behaviours’ are Nash equilibria.

1 Motivation

In narratology, diegetic is what exists or occurs within the world of a narrative [7] (such as dialog,
thoughts, etc.), as opposed to extra-diegetic elements which happens outside that world (such as voiceovers,
soundtrack, etc.). Open games represent the situations of classical game theory in a compositional and
purportedly ‘diegetic’ way, i.e. explicitly codifying the development of the game actions and payoff
distribution phases in their specification. Hedges proposed a framework in [12] which evolved first by
adopting the language of lenses [9], and then that of parametric lenses [3] to describe the bidirectional
flow of information in games. In their last iteration [4, 3], open games with agency are defined to be given
by three functions (for concreteness, we assume to work in Set):

playG : Ω×X → Y, coplayG : Ω×X×R→ S×

Ω

, εG : (Ω→

Ω

)→ PΩ. (1.1)

The set Ω represent strategies, X and Y states of the game, while R and S utility and ‘coutility’, respectively.
The play function has an obvious role, choosing a next state y ∈ Y (a move) given the current state x ∈ X
and according to a strategy ω ∈Ω. Coplay is a bit more mysterious. If we think of S and R as the type of
utilities a player can expect to receive at the end of the game while at stage X and Y respectively, coplay
translates between these. Finally, εG is a selection function that encodes a player’s preferences: given a
valuation of strategies in

Ω

(called costrategies or intrinsic utility), εG returns the subset of strategies with
satisfactory outcome. This data defines a parametric lens [4]:

G = (Ω,

Ω

, εG , playG , coplayG ) : (X ,S)� (Y,R). (1.2)

To analyse the game G , that is, to extract its Nash equilibria, we then close the game by specifying an
initial state x̄ ∈ X and a payoff function u : Y → R, and then apply εG to the composite x̄ #G #u.

Since open games have been introduced, similar models have been proposed for learners [6] and
Bayesian reasoners [22, 2], so that a general framework has been proposed in [3] to gather all these
examples of ‘cybernetic systems’.1 Despite having inspired this framework, open games remain quite
singular when compared to their siblings.

1Here we call ‘cybernetic’ systems having a distinguished part controlling the rest.

http://dx.doi.org/10.4204/EPTCS.380.9
https://creativecommons.org
https://creativecommons.org/licenses/by-nc-sa/4.0/
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First of all, their payoff dynamics lacks a well-defined role. This shows in the way coutilities,
costrategies and utilities are all different in theory but very rarely in practice, and coplay is very often
simply an identity or, even worse, a discard map, which makes hard motivating the existence of a backward
pass at all (see e.g. the translation process explained in [4]).

(a) (b)

Figure 1: On the left, a gradient-based learner defined as in [3, 6], and on the right, an open game with
agency as defined in [4].

Secondly, and crucially, the dynamics they express reflect the actions happening in the game but
not the game-theoretic analysis we are actually interested in. There’s no way to know which equilibria
an open game will converge to unless we pack-up the arena2 and then feed it to the selection function. All
of this happens outside of the dynamics of the game, hence extra-diegetically.

This issue grows into a serious conceptual flaw when we realize that according to the very notion of
‘system with agency’ proposed by the author and his collaborators in [3], ‘open games with agency’ have
no agents! In fact, agents are supposed to be systems modelled as morphisms plugged to the top boundary
of the arena whereas in open games with agency players’ preferences are embodied in the parameters,
which are mere objects (Figure 1a). Contrast this with gradient-based learners (Figure 1b) where gradient
descent, which implements the dynamics of an agent’s learning, is explicitly represented in the system.

Contributions. In this work we correct the aforementioned problems by describing the entirety of play,
payoff distribution and players’ counterfactual analysis diegetically, thus in the dynamics of the game
system itself.

We achieve this by introducing two fundamental innovations.
First, we observe that feedback propagating in an open game has to contain information about

the entirety of the payoff function of the game, hence we replace S and R in Figure 1a with PX and PY ,
where P is a specified payoff object. This allows to define coplay functorially from play as precomposition
with a partially-evaluated play. This simple mechanism is enough to reproduce the information on payoffs
available at each stage of a sequential or concurrent game. Moreover, we recognize the crucial role
of the lax monoidal structure of this functor, which can be blamed for the complexity of even small
game-theoretic situations.

Secondly, we describe how players are embodied inside the game by their selection functions, which
are now expressed as parts of a ‘reparameterisation’ describing each player’s optimization dynamic. This
fully realizes what was already intued in [14] (‘agents are their selection function’) and in the drawings in
[3, §6], and vindicates the ideas behind open games with agency introduced in [4]. In fact we find out

2The arena of an open game with agency is the parametric lens left after forgetting about the selection function.
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the workhorse of open games with agency, the Nash product of selection functions, decomposes in three
elementary parts, the key one being ‘just’ monoidal product of lenses.

We then show how this story shares many formal analogies with (a refinement of) gradient-based
learners. There is a formal analogy between loss covectors and payoff functions, reverse derivatives
and functorially-determined coplays, ‘raising indices’ (in the differential-geometric sense) and selection
functions. Ultimately this traces out the contours of an abstract/synthetic theory of backpropagation.

Acknowledgements. We thank Jules Hedges, Philipp Zahn, Neil Ghani and Bruno Gavranović for their
helpful suggestions and enthusiasm towards this work. A special mention goes to Bruno’s insistence in
pointing out the conceptual flaws in the use we made of selection functions in open games with agency, as
well as the numerous conversations we had together on the topic, which eventually lead me to this work.
Finally, we thank the ACT22 reviewers for their patience in reviewing an early version of this manuscript.

2 Diegetic open games

We start by describing our proposed notion of diegetic open games. As anticipated, the key idea is to
recognize that in a strategic game, players have to observe the entirety of their payoff functions with other
players’ actions taken into account. This is done by fixing utility, coutility and intrinsic utility types to
be of the form PY , PX and PΩ, representing entire payoff functions. Then such functions are propagated
through the game in a way which is formally identical to backpropagation in learners, and thus amenable
to the same mathematical treatement. Thus coplayG is actually functorially determined from playG , as a
kind of reverse derivative.

2.1 Preliminaries

Fix a finitely complete category S . The category DLens(S ) of dependent lenses over S has objects
given by pairs of an object Y : S and a map p : R→ Y , and maps given by diagrams of the form:

S R×Y X R

X X Y
f

pf ∗(p)

f ]

y (2.1)

In the internal language of S [21], these maps can be denoted as f : X→Y and f ]x : (x : X)×R f (x)→ Sx.
The full subcategory of DLens(S ) spanned by those p which are projections is the category of simple
lenses over S , Lens(S ). The f ] part of simple lenses has type X×R→ S.

Dependent lenses can be built from any indexed category F : S op→ Cat, in which case we denote
them by DLens(F). A detailed definition and intuition is given in [23].

The 2-category Para(S ) [3, §2] is the strictification of the bicategory whose objects are given by
objects of S , morphisms X to Y by a choice of parameter Ω : S and a map f : Ω×X → Y , and 2-
morphisms (Ω, f )⇒ (Ξ,g) : X → Y by maps Ω→ Ξ making the obvious triangle commute (see loc. cit.,
though we have reversed the direction of 2-cells here), which are called reparameterisations. Composition
of morphisms (Ω, f ) : X → Y and (Ξ,g) : Y → Z is given by

(Ξ×Ω,Ξ×Ω×X
Ξ× f−−→ Ξ×Y

g−→ Z) (2.2)
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This makes it associative only up to coherent isomorphism, hence the strictification. Same applies to the
identites, which are given by (1,1×X πX→ X).

Notice the construction of Para(S ) only used the cartesian monoidal structure of S . In fact such a
construction is functorial over cartesian monoidal categories. Given a lax monoidal functor [15, Definition
1.2.14] F : S →T , with laxators `X ,Y : F(X)×F(Y )→ F(X×Y ), we get a lax 2-functor [15, Definition
4.1.2] Para(F) : Para(S )→ Para(T ) defined on objects as F and on a morphisms (Ω, f ) : X → Y as

Para(F)(Ω, f ) = (F(Ω),F(Ω)×F(X)
`Ω,X−−→ F(Ω×X)

F( f )−−→ Y ). (2.3)

Since `Ω,X is, in principle, not invertible, this means Para(F) preserves composition only up to coherent
non-invertible morphism. Explicitly, there is a reparameterisation Para(F)(Ω, f ) # Para(F)(Ξ,g)⇒
Para(F)((Ω, f ) # (Ξ,g)), given by `Ξ,Ω. Likewise applies to preservation of identities. The well-
definedness of these reparameterisations followz from the axioms of lax monoidal structure ` [15, Diagram
1.2.14].

2.2 Building arenas

We now describe the most simple form of games, deterministic, complete information games, with our
new machinery.

Fixing a payoff object P (often P = RN , with N the number of players), to a map f : X → Y we can
associate the map P f : PY → PX given by precomposition with f . This defines a functor P(−) : Set→ Setop,
which we can lift to a lax monoidal functor

P∗ : Set−→ Lens(Set) (2.4)

sending f : X → Y to ( f ,π2 #P f ) : (X ,PX)� (Y,PY ). Abusing notation, we’ll denote by P∗ f both this
lens and its backward part, and same with objects: P∗X := PX . Notice landing in lenses is crucial to
give P∗ a lax monoidal structure: while its unitor η : (1,1)� (1,P), given by (1, !P) would be definable
anyway; the laxator (1X ,Y ,nX ,Y ) : (X ,P∗X)⊗ (Y,P∗Y )� (X×Y,P∗(X×Y )), which we call Nashator, is
defined by partial evaluation at the residuals:

nX ,Y : X×Y ×P∗(X×Y )−→ P∗X×P∗Y

(x̄, ȳ,u) 7−→ 〈u(−, ȳ), u(x̄,−)〉
(2.5)

Ideally, this functor promotes a play function into a lens obtained by canonically adding a ‘coplay’
function; but since play functions are actually parametric, we need to apply Para to P∗ to obtain the lax
2-functor

Para(P∗) : Para(Set)−→ Para(Lens(Set)) (2.6)

so that a play function (Ω,playG ) : X → Y is turned into a full-blown parametric lens:

Para(P∗)(Ω,playG ) = (Ω,P∗Ω, (1Ω,X ,nΩ,X) # (playG ,P
∗playG )) (2.7)

where the backward part of the right hand side boils down to

Para(P∗)(Ω,playG )
] : Ω×X×P∗Y −→ P∗Ω×P∗X

(ω̄, x̄,u) 7−→ 〈uΩ, uX〉 where uΩ = u(playG (x̄,−))
uX = u(playG (−, ω̄))

(2.8)
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This definition is the workhorse of diegetic open games. Notice how uX encapsulates ω̄ as a fixed
parameter, so that an opponent receiving such function later has that strategy fixed. Dually, uΩ has x̄ fixed
so the player playing at this stage can probe u by varying their own strategy but not the state the game,
something determined, in turn, by other players’ strategies.

Remark 2.1. A word is due regarding the opportunity of fixing a payoff object P for all games. This
actually defeats the point of compositionality, as games with a different number of players would naturally
require a different payoff object, and this without even mentioning how ‘dangerous’ it is to allow all
players to observe everybody else’s payoff! In fact, one can develop a better version of the theory we
describe here in which Set is replaced by a category of ‘objects with payoffs’, so that we restore freedom
in the payoff object we use for each game. For expositional reasons, here we stick to the simpler version
in which P is fixed.

Example 2.2 (Pure sequential game). Consider a very simple game in which two players make one move
each, in succession. The first player has strategy space Ω and play function (Ω,playG ) : X → Y , whereas
the second player has strategies Ξ and play (Ξ,playH ) : Y → Z:

Figure 2

Figure 2 depicts the parametric lens Para(P∗)(Ω,playG ) #Para(P∗)(Ξ,playH ). This is what we call
the arena of the game.

Suppose a x̄ ∈ X and a u ∈ P∗Z are given, so as to close the open input horizontal wires in Figure 2.
These two pieces of data amount to a so-called context for the game, and mathematically correspond to a
further (trivially parameterised) lens (x̄, !P∗X) : (1,1)� (X ,P∗X) and (!Z,u) : (Z,P∗Z)� (1,1).

Then the remaining parametric lens has type (Ξ×Ω,P∗Ξ×P∗Ω,A ) : (1,1)� (1,1), which one can
easily prove being equivalent to a function Ξ×Ω→ P∗Ξ×P∗Ω. Following x̄ and u around the arena, one
can see what this function is given by

(ξ̄ , ω̄) 7→ 〈uΞ, uΩ〉 where uΞ = λξ .u(playH (ξ ,playG (x̄, ω̄))

uΩ = λω .u(playH (ξ̄ ,playG (x̄,ω))
(2.9)

These two functions are thus giving, to each player, all the information needed to compute their optimal
strategies given the other player’s strategy. Para(P∗) makes these payoff functions emerge automatically
from the information flow of lenses and from the careful use of Nashators.

Payoff costates. As we’ve seen in the latter example, an arena needs, eventually, to be closed by a
context. The data of an initial state is not particularly interesting, but we need to spend a few words on
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the construction of payoff costates. Until now, open games shared the definition of payoff function with
traditional strategic games: a payoff costate (Z,P)� (1,1) encodes exactly the information of a payoff
function Z→ P. Now, however, a costate has to emit not just the the payoff corresponding to a given
outcome of the game, but the entire payoff function.

The most direct way to do so is to have a payoff function u : Z → P being promoted to a costate
constu : (Z,P∗Z)� (1,1) in Lens(Set) by

constu = P∗u # (!P,const id) (2.10)

where const id : P→ PP is the constant map picking the identity of P. This costate effectively ignores the
outcome of the game, and returns u regardless. Alternatively, if P has the structure of a group, we can
keep the information about the outcome and define

∆u = P∗u # (!P,curr(−)) (2.11)

where curr(−) : P→ PP is the curried subtraction of P. This effectively composes to the costate corre-
sponding to the function

∆u : Z −→ P∗Z

z̄ 7−→ λ z.(u(z)−u(z̄)).
(2.12)

which is a sort of ‘discrete differential’ of u. Eventually this would get to players as a continuation
describing their possible increment in payoff as a function of their deviation. In traditional game theory ∆u
is known as regret [16, §3.2]. We believe it to be more conceptually convicing than the constant costate,
especially as we compare games with other cybernetic systems in Section 3.

2.3 Adding players

Once an arena is built, we can add players in it. At this stage, we only deal with the ‘vertical’ part of a
game, i.e. we draw above the arena (which constitutes the ‘horizontal’ part of a game). Here’s where
we specify how players team up, what they observe about each others’ strategies and payoffs and, most
importantly, how players process all this information to update their strategies.

The first thing to notice is that, since Para(P∗) is not strongly functorial, lifting the whole play
function to an arena in one fell swoop versus lifting it piece by piece makes a difference in how players
end up being segregated in coalitions. In fact, if playG : X → Y and playH : Y → Z are parameterised by
Ω and Ξ respectively, then Para(P∗)(playG #playH ) is parameterised by (Ξ×Ω, P∗(Ξ×Ω)) whereas
Para(P∗)(playG ) #Para(P∗)(playH ) is parameterised by (Ξ×Ω, P∗Ω×P∗Ξ).

Effectively, Para(P∗)(playG #playH ) represents a game featuring a coalition of two players with
strategy space Ξ×Ω (hence acting as one player), while Para(P∗)(playG ) #Para(P∗)(playH ) represents
a game with two competing players, with strategy spaces, respectively, Ω and Ξ.

The difference stems from the way feedback is received by players, and in their possible deviations.
In the first case, the two players can evaluate joint deviations since their feedback has type Ξ×Ω→ P.
In the second case, the two players can only evaluate unilateral deviations, because they receive two
feedbacks Ω→ P and Ξ→ P obtained by fixing either player’s strategy. We turn the first to the latter
by reparameterising along the Nashator nΞ,Ω : (Ξ×Ω,P∗Ξ×P∗Ω)⇒ (Ξ×Ω,P∗(Ξ×Ω)). Thus, when
used as a reparameterisation, the Nashator breaks down coalitions of players.

Example 2.3 (Sequential game). Suppose we extend Example 2.2 with another move by the first player
(decided by the same staregy space Ω, hence the copy in Figure 3. Contrary to the previous case, if we
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lifted the three play functions separately and then composed, we would have ended up splitting player one
into two players: the long-range correlation between the first and third stage of the game forces us to lift
the arena monolithically, as depicted in Figure 3.

We then reparameterise along ∆Ω to clone the strategies of the first player into the third stage, and
only then use nΩ,Ξ to make sure players are split into two different coalitions.

Figure 3

Remark 2.4. Observe coalitions can always be broken canonically, but there’s no canonical way to form
them. This is to be expected, since creating coalitions requires non-canonical agreements on how to
distribute payoffs among its members (so-called imputations [16, Chapter 8]).

Finally, the last bit of the game specification concerns the process each player uses to turn the feedback
they receive into strategic deviations. Usually, payoffs are numerical and players seek to maximize them.
A bit more generally, players have some preferences encoded by a selection function ε : P∗Ω→PΩ. We
warn the reader that P∗Ω = PΩ is the set of P-valued function to Ω, while PΩ is the powerset of Ω.

A selection function fits very well in the setting we devised so far, since it has (almost) the type of the
backward part of a lens sel : (Ω,PΩ)� (Ω,P∗Ω). We thus call such a lens a selection lens.
Remark 2.5. Notice the object (Ω,PΩ) can be considered the ‘state boundary’ for the player system, in
the sense of [19], and betrays an implicit non-determinism in the game system. In fact, we can generalize
away from sets by replacing the powerset monad P : Set→ Set with other (commutative) monads, like
the Giry monad on measurable spaces (yielding stochastic games) or the tangent space monad on smooth
spaces (yielding differential games).
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Remark 2.6. The backward part of a selection lens is actually of the form sel : Ω×P∗Ω→PΩ, hence
a parametric selection function. This suggests that Ω is even more than a set of strategies, it represents
the epistemic type of a player in the sense of Harsanyi [11], that is, an element ω ∈Ω encodes not only
the way a player plans to play but also their preferences (for instance, their aversion to risk). Harsanyi’s
games of incomplete information, at the moment codified in the framework of open games in [1], can
potentially benefit a lot from the new ideas we introduced here.

2.4 Games as systems

Let’s wrap up the construction we sketched so far. The first step to specify a game is to fix the players
involved (N) and their payoff type P. The arena is built canonically from a play function playG : Ω×X→Y ,
where Ω = Ω1×·· ·×ΩN is the product of a strategy space per player, X is a type of initial states and Y
a type of possible final outcomes of the game. Given this, we apply Para(P∗) to playG , and get back a
parametric lens (Ω,P∗Ω,A ) : (X ,P∗X)� (Y,P∗Y ), the arena.
Remark 2.7. One might object that an initial state x̄ ∈ X and a utility function constu (or ∆u) deserve
to be part of the arena too, but experience tells this data is something to provide only when we want to
move on to the analysis of the game, since closing an arena prematurely hinders further composition. The
difference between a closed and an open arena is remindful of the subtle difference between a normal
(resp. extensive) form and a normal (resp. extensive) form game: the latter is the data of the first plus a
utility function.

Once the game arena has been built, we assemble the system of players over it. Usually, such a lens
will be of the form (

⊗N
i=1 seli) # nΩ1,...,ΩN , where seli : (Ωi,PΩi)� (Ωi,P∗Ωi) are N selection lenses.

Notice such a lens has domain (Ω,PΩ1×·· ·×PΩN), so we precompose it with
N

∏
i=1

(−) : (Ω,PΩ)� (Ω,PΩ1×·· ·×PΩN), (2.13)

which is the identity on the forward part and cartesian product3 in the backward part (see again Figure 3).
We denote the resulting lens (Ω,PΩ)� (Ω,P∗Ω) as G , and this constitutes a diegetic open game in

Set. Abstractly, we can consider this is a ‘system with boundary A ’ (Figure 4), and any such system can
rightfully be called a game.

Figure 4: The look of a generic diegetic open game, as a system G living over an arena A .

We stress this lens deserves to be called a system since its left (‘top’ in the drawings) boundary has a
canonical form: the deviations PΩ canonically associated to the given strategy profiles Ω (what Myers
calls changes in [19]).

3Or better, the canonical lax monoidal structure of the powerset endofunctor.
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Nash equilibria. So far, we never mentioned Nash equilibria. We have claimed that the way we have
woven together the various pieces of a game reproduces, diegetically, the counterfactual analysis players
do in a non-cooperative strategic game.

To see why our claim holds, let’s analyze a game system constructed from a normal form (N,Ω),
following the above recipe. Here N is a finite set of players and Ω = Ω1×·· ·×ΩN .

Since normal forms dispense completely with dynamical information, the associated arena will
be trivial: we set X = 1, Y = Ω4 and play(N,Ω) := πΩ : Ω× 1→ Ω. Hence the arena of the game is
A(N,Ω) = Para(RN∗)(play(N,Ω)).

Now we focus on players. In a traditional non-cooperative game, they simply maximize their payoff,
so that player i acts according to the selection lens

seli = (1Ωi ,λ (ω̄i,u).argmaxR ui) : (Ωi,PΩi)� (Ωi,RN×Ωi). (2.14)

We package this into a systems of players

G(N,Ω) = ∏
N
i=1(−) #

(
N⊗

i=1

seli

)
#nΩ1,...,ΩN : (Ω,PΩ)� (Ω,RN×Ω). (2.15)

The translation of (N,Ω) is then given by the parametric lens (Ω,PΩ,G ∗(N,Ω)A(N,Ω)) : (1,1)� (Ω,RN×Ω)
obtained by plugging G(N,Ω) on the top boundary of A(N,Ω).

Theorem 2.8. Let (N,Ω = Ω1×·· ·×ΩN ,u : Ω→ RN) be an N-players, strategic game in normal form
[16, Definition 1.2.1]. Let G ∗(A(N,Ω) # constu) be its translation to a diegetic open game, as described
above, where constu has been in defined in (2.10). Let G(Ω,u) : Ω→PΩ be the set-valued function
corresponding to such a closed parametric lens. Then a strategy profile ω̄ ∈Ω is a Nash equilibrium for
(Ω,u) if and only if ω̄ ∈ G(Ω,u)(ω̄).

Proof. The set-valued function equivalent to G is obtained by following around a given strategy profile
ω̄ ∈Ω along the arena, which doesn’t need any other input by virtue of being closed:

G(Ω,u)(ω̄) = {ω | ∀i ∈ N,ωi ∈ argmaxR(nΩ(ω̄,u)i))} (2.16)

= {(ω1, . . . ,ωN) | ∀i ∈ N,∀ω ′i ∈Ωi, ui(ω̄1, . . . ,ωi, . . . ω̄N)≥ ui(ω̄1, . . . ,ω
′
i , . . . ω̄N)}

In other words, this is the set of best responses to the strategy profile ω̄ . By definition, Nash equilibria are
fixpoints of the best response function.

In forthcoming work, we describe a principled, general framework to extract Nash equilibria as
‘behaviours’ of the system G over the arena A , in the style of [18, 19]. Specifically, we show that Nash
equilibria coincide, unsurprisingly, with non-deterministic fixpoints of such systems, i.e. simulations
of the trivial game. Most importantly, from such a characterization we can automatically deduce the
compositionality of equilibria which is the key strength of open games. In other words, we can show how
equilibria of a composite game can be expressed in simple terms of the equilibria of its parts.

4Note usually this set is called A for actions, but we prefer to keep notation consistent.
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3 Diegetic feedback as backpropagation

The conceptual story behind the diegetic representation of feedback in games is not at all specific to them.
On the contrary, it opens a window on a broader conceptual story linking the categorical description of
cybernetic systems featuring a ‘backpropagation-like’ feedback dynamics (which is most of them, notable
exception being open servers [25]). Here we outline how gradient-based learners [6] share the same
abstract features, in a striking example of category theory enabling a rigorous description of a previously
only informal analogy.

In gradient-based learning, a smooth function X →Y is learned by optimizing a model f : Ω×X →Y
smoothly parameterised by the variable ω ∈Ω. Conceptually, this is only possible because differential
structure leaks information about the loss ` : Y ×Y → R ‘in a neighbourhood’ of (y, f (ω,x)), and this can
be used to evaluate which changes in parameter the learner should implement to improve. Hence it is
paramount that ` is known ‘locally’, and not just pointwise. In practice, the value of ` at (y, f (ω,x)) is not
even used! Only the covector d f (ω,x)`(y,−) is needed.

This covector is then backpropagated across the various components of the learner until a covector on
Ω is obtained. As for games, this backpropagation mechanism is effortlessly assembled by deploying the
functor

T ∗ : Smooth−→ DLens(VecR) (3.1)

sending each manifold X to its cotangent vector bundle T ∗X → X (the fiberwise dual of its tangent
bundle) and each map f : X →Y to its reverse derivative, i.e. pullback of covectors along f [24], naturally
expressed as a dependent lens ( f ,T ∗ f ) : (X ,T ∗X)� (Y,T ∗Y ).5

Remark 3.1. In [6], a functor very similar to T ∗ is obtained from the structure of reverse differential
category (RDC) on the base category, but Smooth is not such a category. Therefore, in ibid. the authors
confine themselves to its wide subcategory Euc of Euclidean spaces. In light of our findings for games,
it seems that considering functors S → DLens(S ) splitting the view fibration to be more fundamental
than reverse differential structure in the sense of [5]. Already in [5, §4] and [6, Proposition 2.12], it is
shown how reverse differential structures can be encoded as sections of the view fibration of lenses, with
extra conditions account for the ‘additivity’ necessary in the framework of RDCs. It seems reasonable,
therefore, to reformulate RDCs as particularly nice instances of section of feedbacks, dualizing that of
section of changes defined by Myers in [18, 19].
Remark 3.2. The functor T ∗ is strong monoidal and thus is associated to a pseudofunctor Para(T ∗)
that promotes a smooth parametric function straight into a backpropagating model. Compare this with
the functor Para(P∗), whose laxity is, ultimately, the source of the many interesting phenomena in
non-cooperative strategic games. The fact T ∗ is not lax is attributable to the additive structure involved in
each fiber of a cotangent bundle, whereby T ∗(X×Y )∼= T ∗(X +Y ).

In [20] the authors consider what amounts to a different lax monoidal structure on T ∗, one with respect
to the fiberwise tensor product of vector bundles.6 That structure is strictly lax, like that of P∗. Indeed, the
resulting learners behave as if they are ‘competing’, and this is found to be better adapted for training
GANs, as their game-theoretic interpretation would suggest.

Once an arena L := Para(T ∗)(Ω, f ) has been defined, the dynamic of an agent (which is what
really deserves the name of ‘learner’) actually doing the learning is given by a gradient flow lens
GF : (Ω,T Ω)� (Ω,T ∗Ω) which defines a system over L , by reparameterisation (as in Figure 1b). The

5Specifically, the codomain of T ∗ is the category of dependent lenses [23] obtained from the indexed category of smooth
R-vector bundles VecR : Smoothop→ Cat.

6This also entails replacing VecR with its subfunctor of vector bundles and fiberwise linear maps.



M. Capucci 155

backward part of such a lens is a fiberwise linear morphism (−)] : T ∗Ω→ T Ω. The most common way
such a morphism arises is when Ω is endowed with a Riemannian metric g, in which case (−)] (known
as ‘raising indices’ [24]) selects the direction of steepest ascent associated to a covector, so that u] is
argmaxv∈Tω Ω u(v)/‖v‖g for a given u ∈ T ∗ω Ω.

As highlighted in Table 1, (−)] is formally analogous to a selection function sel : Ω×P∗Ω→PΩ,
which indeed has the same role for games. This is corroborated by the type signatures of GF and sel, both
going from an object of ‘states and feedbacks’ to an object of ‘states and changes’.

games gradient-based learners
strategies

Ω
parameters

Ω

deviations
PΩ

vectors
T Ω

payoff functions
P∗Ω := PΩ

covectors
T ∗Ω

precomposition
P∗ f : X×P∗Y → P∗X

reverse derivative
T ∗ f : f ∗(T ∗Y )→ T ∗X

selection function
sel : Ω×P∗Ω→PΩ

sharp (iso)morphism
(−)] : T ∗Ω→ T Ω (of vector bundles over Ω)

Table 1

What might look odd is the asymmetry between PΩ and Ω in the signature of sel, something not
present in (−)]. Indeed, if Ω is the set of ‘states’ of a player, then there is a dissimilarity between T ∗Ω
being the set of R-valuations of T Ω and P∗Ω being the set of valuations on PΩ. This discrepancy requires
a bit more scaffolding to be explained, but intuitively it amounts to observing T ∗Ω is the set of linear
valuations on T Ω, an likewise, when we consider only maps f : PΩ→ P that satisfy f (A) =∑a∈A f ({a}),
these are determined by maps Ω→ P.

Let us remark on another aspect, regarding discretization of such systems. Usually learners are
trained with gradient descent, not gradient flow, due to the evident impossibility of actually performing an
infinitesimal step in the gradient direction. Thus an important role is played by the exponential map of the
Riemannian manifold of parameters, since it allows to move for a definite length along a given direction.
To us, this amounts to another lens expα : (Ω,Ω×Ω)� (Ω,T Ω) on top of a learner, whose backward
part (ω : Ω)×TωΩ→Ω is indeed given by moving for an interval of time α along the geodesic.Doing
this turns the differential system GF into the deterministic and discrete GD described in [6]. In fact, this
can be seen as a general move from differential to discrete given by a forward Euler integration scheme,
similar to what is described in [17].

Similarly can be done for games: the analogous structure would be that of a P-algebra.7 Concretely,
this map collapses the multiple possibilities of deviations to a choice of a next strategy to ‘try’. This can
be used to define a lens analogous to expα that transforms a non-deterministic system into a deterministic
one.

7Algebra of the P endofunctor, not necessarily the monad.



156 Diegetic Representation of Feedback in Open Games

4 Conclusions

In this work we described a new approach to the specification of compositional games in the style of open
games [10, 4]. It corrects some of the conceptual shortcomings of open games with agency, and uncovers
deeper analogies with gradient-based learners and, speculatively, a wider range of cybernetic systems.

The new approach provides a way to specify a game using machinery analogous to reverse-mode
automatic differentiation, abstractly given by a functor P∗ : Set→ DLens(Set). We observed how the lax
monoidal structure of such functor plays a profound role in determining the dynamics of non-cooperative
games, by hiding ‘cooperative’ information.

We have shown how classical strategic games can be naturally represented as non-deterministic
systems over their arenas, systems given by the dynamics of players observing their payoffs and pondering
if and how to deviate from their current strategy. The resulting parametric lens is hence a full realization
of the ideas in [14, 4, 3], and brings the framework of categorical cybernetics (born with [3]) closer to that
of categorical systems theory (detailed in [18, 19]).

Future directions. The new ideas brought about in this paper are not fully formed yet. In preparing this
work, three more follow-up works naturally spawned.

The first, which has already been anticipated at the end of Section 2, concerns laying down a proper
general theory of specification and simulation of cybernetic systems, in the wake of Myers’ work on
dynamical systems [18, 19]. In the first place, this would allow to extract Nash equilibria from diegetic
open games in a principled and compositional way, with practical implications in the way these are
computed. Secondly, using analogous tools we would then be able to talk about simulations of games
and more generally of non-equilibrium trajectories of game dynamics. Lastly, we will have in place a
unifying notion of ‘morphism of open games’, which from preliminary discussions with Hedges, seems to
reproduce the most important features of those in [13] and [10].

The second work concerns the pure game-theoretic aspects of this new definition. Can we improve
the toolset of compositional game theory by leveraging a more accurate reproduction of the dynamics
involved? We believe the answer to be yes, with exciting connections to the topic of Bayesian games [11]
and learning theory for games [8].

The third work is an exploration of the ideas roughly outlined in Section 3, with the aim of crystallizing
the analogy between learners and games. Such an abstract theory of backpropagation would formalize the
intuitive picture whereby such systems come with a notion of ‘type of states’ on which a ‘type of changes’,
a ‘type of scalars’ depend, which together give rise to a ‘type of feedbacks’ obtained as valuations of the
first in the latter.
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We study the notion of a differential 2-rig, a category R with coproducts and a monoidal structure
distributing over them, also equipped with an endofunctor 𝜕 : R → R that satisfies a categorified
analogue of the Leibniz rule. This is intended as a tool to unify various applications of such
categories to computer science, algebraic topology, and enumerative combinatorics. The theory of
differential 2-rigs has a geometric flavour but boils down to a specialization of the theory of tensorial
strengths on endofunctors; this builds a surprising connection between apparently disconnected fields.
We build free 2-rigs on a signature, and we prove various initiality results: for example, a certain
category of colored species is the free differential 2-rig on a single generator.

1 Introduction

The aim of the present paper can be shortly summarized as follows: study a pair (R, 𝜕), where R is a
‘categorified ring’ and 𝜕 : R →R an endofunctor preserving coproducts and satisfying the ‘Leibniz rule’.

Adapting terminology from classical ring theory, such a pair (R, 𝜕) could be termed a differential
2-rig, and 𝜕 a derivation on R; the study of such structures could thus be viewed as a categorified version
of differential algebra [53, Ch. 1], an important part of modern commutative algebra [9, p. III.10], finding
applications (among other areas) in Galois theory [46] and in symbolic computation [11].

Building on this, in our work, a 2-rig1 will be a category R equipped with two structures, one additive
and one multiplicative, such that the latter ‘distributes’ over the former: at its most basic level, this is
the requirement that, for objects 𝐴, 𝐵 ∈ R, the endofunctors 𝐴⊗− and −⊗ 𝐵 distribute over coproducts,
i.e. there are natural isomorphisms 𝐴 ⊗ (𝐵 +𝐶) � 𝐴 ⊗ 𝐵 + 𝐴 ⊗𝐶 and (𝐵 +𝐶) ⊗ 𝐴 � 𝐵 ⊗ 𝐴 +𝐶 ⊗ 𝐴.
Nevertheless, our main definition will be fairly more general, treating other shapes of colimits apart from
this basic one.

Literature on 2-rigs. A motivating example of ‘categorified calculus on a 2-rig’ is Joyal’s theory of
species and analytic functors [28, 27, 6] providing a categorical foundation for enumerative combinatorics
and finding concrete applications as a model of PCF [23].2 The category of combinatorial species
(functors Σop→ Set from the category Σ of finite sets and bijections) is a prominent example of a 2-rig
which supports a viable notion of derivative functor, and it will always be our motivating example and
test-bench for definitions.

This situates our work on a different ground than another important piece of literature dealing with
notions of derivation on a category, namely the theory of differential categories of Blute, Cockett et al.

∗Supported by the ESF funded Estonian IT Academy research measure (project 2014–2020.4.05.19–0001).
1An important difference with classical ring theory is that the request that R admits ‘additive inverses’ is an extremely

restrictive one. This motivates our choice of terminology: a rig (𝑅,+, ·) –also called a semiring– is a ring without negatives,
i.e. an algebraic structure that satisfies all the axioms of a ring, but where (𝑅,+) is just a commutative monoid.

2The equivalence between analytic functors, regarded as ‘categorified formal power series’, and species is a long-established
result first proved in [28]; see also [1].

http://dx.doi.org/10.4204/EPTCS.380.10
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[8]. Differential categories were developed to provide a categorical doctrine for differential linear logic;
as a rule of thumb, the fundamental difference between the two approaches lies in where the categorified
derivative operation acts. In differential categories, every morphism has a derivative assigned via a
so-called differential combinator; instead, we focus on deriving objects functorially and naturally.3

Elsewhere, terms like ‘2-rig’ or ‘rig categories’ have been appropriated by different authors to mean
different things. For example, [3] defines a 2-rig to be a cocomplete symmetric monoidal category in
which the monoidal product distributes over all colimits, and in [4], ‘2-rig’ has meant a Vect-enriched
symmetric monoidal category with biproducts and idempotent splittings (where the distributivity is
automatic). On the other hand, the term ‘rig category’ or ‘distributive category’ [36] has been used
to mean a category with two monoidal products, one called ‘multiplicative’, which distributes over the
other, called ‘additive’. It is easy to imagine variations on these themes: 2-rigs which are only finitely
cocomplete, or that are assumed only to have finite coproducts (which we consider to be a baseline
assumption).

Alternatively, on the multiplicative side, one might want infinite products and a complete distributivity
law over infinite coproducts. This type of ‘2-rig’ would be germane to the study of polynomial functors in
the sense of [20, 31, 50, 51, 49], which have provided a unifying setting for studying numerous structures
in applied category theory. Given the multiplicity of possible definitions of 2-rig, we believe it makes
sense not to fix a single notion of 2-rig but to be flexible and contemplate a whole spectrum of possible
theories, or ‘doctrines’ of 𝑫-rigs parametrized by 𝑫, a 2-monad on Cat (locally small categories) whose
algebras will possess colimits of a certain shape.

Our main contributions. The first goal of this paper is to provide a generalized framework in which
each of these instances can be studied on the same foot; our main definition for a ‘doctrine of 2-rigs’,
2.5, is geared in this direction. Besides unifying most notions of 2-rig under a common framework, in
this paper we are also interested in seeing how different 𝑫-rigs R, for different doctrines 𝑫, interact
with an accompanying notion of derivation 𝜕 : R → R (roughly, functors which obey a Leibniz rule,
𝜕 (𝐴 ⊗ 𝐵) � 𝜕𝐴 ⊗ 𝐵 + 𝐴 ⊗ 𝜕𝐵, see 4.1). Unexpectedly, depending on the doctrine, derivations may be
either virtually nonexistent (cf. 4.8 and 4.9), as is the case when the multiplicative structure is cartesian,
or may exist in great plenitude, typically when the multiplicative structure enjoys a more ‘linear’ character
(in the sense of Girard’s linear logic [22]). Within a doctrine 𝑫 where derivations are prevalent, they
may also be used to give a notion of ‘dimension of a 𝑫-rig’ (cf. 4.10).

In such cases, one generally expects derivations to be potent and unifying tools. We show that this is
the case, once again guided by the theory of species as motivating example, and the usage of derivatives
in the hands of the ‘Montreal school of categorical combinatorics’ [33, 37, 7, 38, 34] (see also the more
recent [48, 42]), where differential equations written in the category of species, as well as their solutions,
are fruitfully interpreted combinatorially. We prove that categories of species are ‘necessary objects’ in
a general theory of 2-rigs, because they arise as free objects for specific doctrines of 2-rigs and acquire
a canonical choice of a differential structure. Moreover, in 5.16 we prove that the category of species
on a countable set, equipped with a ‘shifting’ derivation operation, is the free differential 2-rig on one
generator.

Derivations can also be used to shed light on the theory of operads; for example, recent results
by Obradovich [43] show that ordinary (permutative) operads are certain types of monoids for a skew

3For the sake of completeness, we shall mention yet another approach to ‘categorical differentiation’ recently developed in
[54] with applications to ZX calculus in mind; again, there seems to be no relation with our theory of differential 2-rigs, since
derivations on their category Mat-𝑆 are not Leibniz on objects.
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monoidal structure 𝐹 ′⊗𝐺 defined using the derivative, and that cyclic operads [21] also admit an efficient
description in terms of derivatives of species. In spite the large effort to understand the properties of a
specific instance of differential 2-rig (see [33, 37, 7, 38, 34] for the theory of ODEs in the category of
species, and a variety of works by M. Fiore [15, 17, 16] that explored in detail the meaning of bijective
proofs in terms of datatype structures), a systematic study of general properties of differential 2-rigs (a
‘synthetic 2-rig theory’, so to speak) has never been attempted.

Thus, one first aim of the present paper is to give all the various notions of 2-rig and derivations their
proper due, while balancing generality and applicability, and unifying diverse approaches. In developing
the rudiments of this framework, we aim to clarify what is specific to the category Spc of species and
what instead follows from a general theory of 2-rigs and concentrate on the latter to generalize the former
(to other doctrines, other flavours of monoidality, other flavours of species –colored [41] or linear [37]).

As a showcase example, in 5.18 we present a ‘chain rule’ that categorifies the well-known calculus
theorem ( 𝑓 ◦𝑔) ′(𝑥) = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥) and that holds good across a broad spectrum of doctrines of 2-rigs,
thus generalizing the chain rule true for species and proved by Joyal in his early works.

Structure of the paper. In 2 we introduce the main object of discussion of our paper: a 2-rig for
a ‘doctrine’ 𝑫, i.e. a specified class of colimits, is a category having all colimits specified by 𝑫,
and a monoidal structure ⊗ that distributes over said colimits; we show how this formalism is capable
of encompassing most of the various notions of 2-rig scattered in the literature; in 3 we outline the
fundamental definition in order to arrive at a definition of derivation on a 𝑫-rig R, a pair of tensorial
strengths interacting well with each other; to the best of our knowledge, the characterization of tensorial
strengths as lax natural transformations in (4) and (5) has not been accounted elsewhere. Section 4 is the
heart of the paper: a differential 2-rig is defined in 4.1; after this we concentrate on the major example of
combinatorial species, in 4.3, and we prove that for every ⊗-monoid 𝑀 , its derivative 𝜕𝑀 is a 𝑀-module.
In 5 we provide the construction of free 𝑫-rigs and prove that free 2-rigs acquire differential structures
(5.13) as well as various initiality results: for example, the category of (𝑆-colored) species is the free
cocomplete 2-rig on a single (on |𝑆 |) generator; in 6 we draw the conclusions of the paper and sketch ideas
for future development: the opportunity to gain a geometric view on applicatives, through derivations on
a 2-rig seems to be a promising prospect, as well as the application of our general theory to a synthetic
approach to combinatorial differential equations.

2 Doctrines of 2-rigs

Before defining a notion of 2-rig doctrine, we present a few examples that play a guiding role and show
a need for such a general notion.

Example 2.1 (A list of motivating examples).

• The category of presheaves [Mop,Set] over a monoidal category M, equipped with the Day
convolution, and itsV-enriched analogue [Mop,V] [12]. Note how the convolution product tends
to inherit other structures of the monoidal product ⊗; e.g., the Day convolution (𝐹,𝐺) ↦→ 𝐹 ∗𝐺
is symmetric (or braided, or cartesian monoidal) if ⊗ is so, and it acts as the free monoidally
cocomplete [24] category onM.

• The category of finite-dimensional vector bundles over a space or finitely generated projective
modules over a commutative ring. These categories admit coproducts and tensor products, but not
general colimits. Nor would one necessarily want to impose general colimits because of phenomena
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like ‘Eilenberg swindles’ [45]. These examples of ‘2-rigs’ are typically enriched in vector spaces
or the like, and typically the only colimits envisaged are absolute colimits: those that are preserved
by every (enriched) functor.

• Between these two extremes, one sometimes considers ‘2-rigs’ which have colimits over diagrams
that are bounded in size: for example, the categories of finite 𝐺-sets for some group 𝐺 that may
be infinite, or of continuous finite 𝐺-sets for some topological group 𝐺, admit only finite colimits.
Or, in the theory of locally ^-presentable categories, the subcategory of compact objects will admit
colimits over diagrams bounded in size by ^.

Guided by such examples, the following definitions are meant to encompass a spectrum of notions of
2-rigs that have arisen in practice.

Definition 2.2 (Additive doctrine). An additive doctrine is a 2-category whose objects are categories that
admit all colimits of diagrams belonging to a prescribed class, including at least finite discrete diagrams –
whose colimits are finite coproducts, denoted with the infix +, and 0 for the empty coproduct. Morphisms
of a doctrine 𝑫 are functors that preserve colimits of that class, and 2-cells are natural transformations
between such functors.4

In each case, we may instead work with a stricter notion of additive doctrine where objects are
categories with chosen colimits: these are strict algebras of a strict 2-monad, which is often technically
convenient. Strict algebra morphisms preserve those chosen colimits strictly, which is not what one
wants, but pseudomorphisms preserve colimits in the usual sense [35].

So, an additive doctrine is determined by a (strict or pseudo) 2-monad 𝑨 on Cat, of which we consider
the category of algebras. In short, the notion of an additive doctrine takes care of the additive monoid
part of a 2-rig; as for the multiplicative part, we can similarly state the following definition.

Definition 2.3 (Multiplicative doctrine). A multiplicative doctrine is a 2-category that is monadic (in the
2-categorical sense) over the 2-category MCat𝑠 of monoidal categories, strong monoidal functors, and
monoidal transformations, such that the composition of monadic functors,

𝑈M = (M →MCat𝑠→ Cat), (1)

is also 2-monadic.

Intuitively, a multiplicative doctrine consists of a category of monoidal categories, possibly equipped
with additional structure, that arises as the category of algebras for a monad on Cat. So, a multiplicative
doctrine is given by a 2-monad 𝑴 on Cat modelled over the 2-monad whose algebras are monoidal
categories, of which we consider the 2-category of algebras.

The 2-category MCat of monoidal categories is trivially an example of multiplicative doctrine; so are
the 2-category of symmetric, braided, or strict monoidal categories. For symmetric monoidal categories,
algebra pseudomorphisms coincide with strong symmetric monoidal functors.5 Finally, we need a notion
of what it means for a multiplicative doctrine to distribute over an additive doctrine. Intuitively, this is
taken care by a distributive law in the sense of [5] between the two doctrines.

4A more general notion of additive doctrine is obtained by considering enriched analogues as well; in this paper, we mostly
focus on the unenriched (i.e., Set-enriched) case.

5One might also want to replace MCat𝑠 with the 2-category MCat𝑙 (having lax monoidal functors as 1-cells) or MCat𝑐 (colax
functors), but we do not explore such a generalization here. Also, it is well-known that the composition of monadic functors
can fail to be monadic; to correct this shortcoming, various flatness conditions such as ‘preserving codescent objects’ may be
imposed on a (2-)monadic functor 𝐺 :M→ MCat to guarantee that the composition 𝑈M =𝑈𝐺 :M→ Cat is also monadic,
but this issue is somewhat technical, and it will not be pursued here.



Loregian, Trimble 163

Let 𝑨 be the 2-monad for any additive doctrine in the sense above, and let P be the 2-monad for the
additive doctrine of all small-cocomplete categories, whose underlying functor 𝑃 takes a locally small
category C to the category consisting of presheaves Cop→ Set that are small colimits of representable
functors. We have an inclusion of 2-monads 𝑗 : 𝑨→ P. Temporarily, let 𝑴 denote the 2-monad
whose algebras are monoidal categories, with underlying functor 𝑀 . Now, the Day convolution monoidal
structure provides for each monoidal categoryC a monoidal structure on the free small-cocompletion on its
underlying category, 𝑃𝑈C, and this construction also works as free cocompletion for monoidal categories
[24]. In other words, 𝑃𝑈C carries a canonical 𝑴-algebra structure 𝑀𝑃𝑈C → 𝑃𝑈C pseudonatural in
C, thus leading to an action 𝑀𝑃𝑈 ⇒ 𝑃𝑈 and such an action is equivalent to a canonical distributive
law between monads 𝛿 : 𝑴P⇒ P𝑴. The only thing required to set up this distributive law is that
Day-convolving on either side, 𝐴∗− or −∗ 𝐴, preserves all small colimits. This remains true [52] for any
restricted class of colimits coming from an additive doctrine given by a monad 𝑨 on Cat; thus, we obtain
by restriction a distributive law

𝛿′ : 𝑴𝑨⇒ 𝑨𝑴 (2)

or what is essentially the same, a canonical lifting �̂� of 𝑨 as follows: there is a functor �̂� : MCat→MCat
such that 𝑈 ◦ �̂� � 𝐴 ◦𝑈.
Definition 2.4. A distributivity of a multiplicative doctrineM over an additive doctrine A = 𝑨-Alg is a
choice of lift �̃� in the diagram

M �̃� //

��

M

��
MCat

�̂�

// MCat

(3)

Thanks to [56, Definition 33, Remark 34] such distributivities are essentially unique. This is particu-
larly the case when the unit of the monad for the multiplicative doctrine over MCat is essentially surjective
on objects (eso). In this case, the distributivity is uniquely given by the Day convolution structure at the
underlying monoidal category level.

Now let 𝑴 denote the monad for the monadic functor 𝑈M → Cat in (1). As above, a distributivity
�̃� amounts to an 𝑴-action 𝑀𝐴𝑈M ⇒ 𝐴𝑈M , which corresponds to a 2-distributive law 𝛿 : 𝑴𝑨⇒ 𝑨𝑴
between 2-monads.
Definition 2.5 (Doctrine of 2-rigs). A doctrine of 2-rigs consists of an additive doctrine 𝑨, a multiplicative
doctrine 𝑴, and a distributivity of 𝑴 over 𝑨.

Using the distributive law, one obtains a structure of 2-monad 𝑨𝑴 for the composition of functors.
If one uses strict versions of the 2-monads 𝑨 and 𝑴, one obtains a strict 2-monad 𝑫 = 𝑨𝑴, and a strict
notion of 𝑫-rig, with pseudomorphisms as an appropriate notion of morphism of 𝑫-rigs.
Remark 2.6. The original notion of ‘distributive category’ given by Laplaza in [36] is more general
because it only asks for the presence of two monoidal structures (the ‘additive’ one is not necessarily
cocartesian). In such a setting, the complexity of the diagrams required to ensure coherence is daunting (cf.
[14, p. 2.1.1]); our choice, where ‘coherence conditions’ follow automatically from universal properties,
avoids this problem by design.
Warning 2.7. Whereas ordinary rigs form discrete distributive categories, ordinary rigs do not give
discrete 2-rigs in our sense, since the only discrete category admitting finite coproducts is the singleton.
Nor is a 2-rig with a single object an exciting notion: a monoidal category with a single object is a
commutative monoid; by the Eckmann-Hilton argument, the two operations of 2-rig collapse in one single
commutative monoid structure, for which multiplication 𝑎 · − : 𝑀→ 𝑀 is a monoid homomorphism.
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We can build on the definition of a doctrine of 2-rigs and turn our attention to some specific examples of
interest, where we assume something more on the additive or multiplicative doctrine in study (symmetry,
or the presence of more shapes of colimit).

Definition 2.8 (Terminological conventions for doctrines of 2-rigs).

• A doctrine is symmetric (resp., braided, cartesian) if the underlying multiplicative doctrine is the
doctrine of symmetric (resp., braided, cartesian) monoidal categories.

• A doctrine is (^-)cocomplete if the class of all (^-)small colimits gives the underlying additive
doctrine.

• When the multiplicative doctrine is that of monoidal categories, then for an additive doctrine 𝑨 we
may refer to the 2-rigs as monoidally 𝑨-cocomplete categories.

• By default, ‘the’ doctrine of 2-rigs refers to the minimal notion of 2-rigs, where the multiplicative
doctrine is just the doctrine of monoidal categories, and the additive doctrine is the 𝜔-additive
doctrine.

• A closed 2-rig is a category R as in 2.1 such that each 𝐴⊗− and −⊗ 𝐵 have right adjoints; in this
case, of course, they preserve all colimits that exist in R.

Notation 2.9. With a small abuse of language, when we refer to a 2-rig as symmetric, cocomplete, . . . ,
we declare that we intend to consider it as an object of a 2-rig doctrine thus designated. When necessary,
we call just ‘2-rig’ an object of the minimal 2-rig doctrine.

Example 2.10. The following are examples of 2-rigs:

ra1) Any monoidal category (V,⊗, 𝐼) with the property that ⊗ preserves ^-ary coproducts is a
monoidally ^-additive category. This includes the category of sets, any cartesian closed cate-
gory with finite coproducts, the category of modules over a ring 𝑅 or, more generally, the category
ModV

𝑅
of modules over a monoid 𝑅 in a suitable monoidal baseV.

ra2) In the same notation, the category [A,V] ofV-enriched presheaves over a (symmetric) monoidal
V-category (A,⊕, 𝑗), endowed with the Day convolution monoidal structure is a (symmetric)
closed 2-rig.

ra3) An example of a non-symmetric 2-rig is the category [A,A]+ ⊆ [A,A] of endofunctors 𝐹 :A→
A that commute with finite coproducts.

3 Modules and strengths

Just as ordinary rings and rigs act on modules, so 2-rigs or 𝑫-rigs (for a 2-rig doctrine 𝑫 = (𝑨,𝑴, 𝛿))
act on 2-modules, sometimes called actegories (cf. [26]). For the same additive doctrine 𝑨, if C is an
𝑨-algebra, then we may form the endohom [C,C] of 𝑨-algebra maps or 𝑨-cocontinuous functors, and
this endohom forms a monoidally 𝑨-cocomplete category. If in addition C is a 𝑫-rig, then it has an
underlying monoidally 𝑨-cocomplete category.

Keeping this in mind, we give the following definition to capture an action of R on a category C as a
suitable rig endomorphism.

Definition 3.1. A (left) R-module structure (or actegory structure) on C is a monoidally 𝑨-cocontinuous
map R → [C,C].
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Example 3.2. A simple example is R acting on itself, so the map above takes an object 𝑅 to the functor
𝑅 ⊗− : R → R. This is called the left Cayley action. For objects 𝑅 of R and 𝐶 of C, we sometimes use
𝑅 �𝐶 to denote values of left module actions. In some tautological cases, for example, the left Cayley
action, we use ordinary tensor product notation 𝑅 ⊗ 𝑅′.
Remark 3.3. As a monoidal category, R may also be construed as a one-object bicategory 𝐵R, and an R-
module may be construed as a pseudofunctor of bicategories 𝐵R→ 𝑨-Alg that is locally 𝑨-cocontinuous.

In this notation, we can provide a sensible notion for a morphism of modules.

Definition 3.4. Given R-modules C,D : 𝐵R → 𝑨-Alg, a morphism from C to D is a lax natural
transformation C →D.

It is worth unpacking this very terse definition. Here a lax natural transformation takes the unique
object of 𝐵R to a 1-cell 𝐹 : C →D, in other words an 𝑨-continuous functor of this form. It takes 1-cells
of 𝐵R, i.e. objects 𝑅 of R, to 2-cells which take the form of families in D,

𝑅 � 𝐹𝐶→ 𝐹 (𝑅 �𝐶), (4)

that are natural in 𝐶. This 2-cell constraint is often called a strength on 𝐹; we call it a left strength. The
lax naturality axioms provide the usual axioms for a tensorial strength as defined, e.g. in [30].

One can define right module structures by reversing the 1-cells of 𝐵R, i.e., reversing the order of
tensoring, (𝐵R)op→ 𝑨-Alg. For example, we have a right Cayley action that takes an object 𝑅 to −⊗ 𝑅.
Then, a 2-cell constraint for a lax natural transformation between right module structures is called a right
strength. It involves natural families, sometimes written as

𝐹𝐶 � 𝑅→ 𝐹 (𝐶 � 𝑅). (5)

Similarly, one can define bimodules as homomorphisms (𝐵R)op×𝐵R → [C,C] (for example, there is an
evident Cayley bimodule with R acting on itself on both the left and right), and consider bistrengths.

Example 3.5. Here is one type of example that recurs frequently for us. Suppose given a 𝑫-rig map
𝜑 : R → S. This induces a homomorphism 𝜑op × 𝜑 : 𝐵Rop × 𝐵R → 𝐵Sop × 𝐵S, which composes with
the Cayley bimodule of S. Letting 𝛼R , 𝛼S denote the Cayley bimodules, the data of a morphism from
𝛼R to 𝛼S (𝜑op × 𝜑) entails an 𝑨-cocontinuous functor 𝐺 : R → S with a (‘𝜑-augmented’) left and right
strength 𝜑(𝑅) ⊗𝐺𝑅′→ 𝐺 (𝑅 ⊗ 𝑅′) and 𝐺𝑅′ ⊗ 𝜑(𝑅) → 𝐺 (𝑅′ ⊗ 𝑅).

4 Differential 2-rigs: basic theory

We now turn to the main definition of the present paper, that of a derivation on a 2-rig; in simple terms,
if a 2-rig categorifies the notion of ri(n)g 𝑅, a derivation on a 2-rig categorifies the notion of derivation
on 𝑅, widely used in commutative algebra and finding applications to the Galois theory of differential
equations (see [46, 47]).

Definition 4.1 (Derivation on a 2-rig). Let 𝑫 be a 2-rig doctrine, let R be a 𝑫-rig, and let M be a
R-bimodule. AnM-valued derivation of R is a bimodule morphism 𝜕 from the Cayley bimodule of R
(cf. 3.2) toM, such that the canonical natural maps

𝔩 : 𝜕𝐶 �𝐶 ′+𝐶 � 𝜕𝐶 ′→ 𝜕 (𝐶 ⊗𝐶 ′) 𝔦 : 0→ 𝜕 (𝐼) (6)

are isomorphisms.
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We will refer to the map 𝔩 above as the leibnizator map of the derivation.
Here the first arrow is defined by pairing the module right strength 𝜕𝐶 �𝐶 ′→ 𝜕 (𝐶 ⊗𝐶 ′) with the

module left strength 𝐶 � 𝜕𝐶 ′→ 𝜕 (𝐶 ⊗𝐶 ′).

Definition 4.2 (Differential 𝑫-rig). A differential 𝑫-rig is a 𝑫-rig R equipped with a derivation from
the Cayley bimodule of R to itself.

Example 4.3. A paradigmatic example of a differential 2-rig is given by the category of Joyal species
with its standard derivative functor, sending 𝐹 : Σop→ Set : 𝑛 ↦→ 𝐹𝑛 to 𝐹 ′ : 𝑛 ↦→ 𝐹 (𝑛+1), where 𝑛 ∈ Σ
is an 𝑛-element set.

In this example, the doctrine is that of symmetric monoidally cocomplete categories, and the category
of species is the free symmetric monoidally cocomplete category on one object, i.e. the category of finite
sets and bijections. This is the category of presheaves Σop → Set on the category of finite sets and
bijections, equipped with the Day convolution product induced from the monoidal product on Σ.

Besides the Leibniz rule, whose validity can be proved via elementary methods, the differential
structure in the category of species satisfies two additional properties reminiscent of formal power series
theory.6 If 𝑆,𝑇,𝑈,𝑉 are objects of Σ, we can prove the following result (cf. [2, §8.11] and [57, §4.5.4]).
(We provide a proof of this and of 4.5 appear in Appendix B, page 180.)

Proposition 4.4 (Generalised Leibniz rule for species). Let 𝜕 be the standard derivation on species. We
can think of the 𝑛-th derivative 𝜕𝑛𝐹 as a derivative ‘with respect to a 𝑛-element set 𝑈’, since in case
|𝑈 | = 𝑛 one has 𝜕𝑛𝐹 [𝐴] = 𝐹 [𝐴+𝑛] � 𝐹 [𝐴+𝑈]. Define 𝐹 (𝑈 ) by the formula 𝐹 (𝑈 ) [𝐴] = 𝐹 [𝐴+𝑈]. Now,
let 𝐹,𝐺 : Σ→ Set be two combinatorial species; we have

(𝐹 ∗𝐺) (𝑈 ) [𝐶] �
∑︁

𝑆+𝑇 =𝑈

(𝐹 (𝑆) ∗𝐺 (𝑇 ) ) [𝐶] . (7)

Theorem 4.5 (A Taylor-Maclaurin formula for species). Every species 𝐹 : Σ→ Set has a ‘Taylor-
Maclaurin’ expansion

𝐹 (𝑋 + 𝐴) �
∫ 𝑛

𝐹 (𝐴+𝑛) × 𝑋𝑛 �

∫ 𝑛∈P
𝜕𝑛𝐹 (𝐴) × 𝑋𝑛. (8)

The name of this result is motivated by the fact that when the coend in (8) is unwound, we end up
with the Taylor expansion 𝐹 (𝑋 + 𝐴) � ∑∞

𝑛=0
𝜕𝑛𝐹 (𝐴)

𝑛! 𝑋𝑛.
There is a notion of morphism of differential 2-rig, and a notion of morphism of derivations: together,

these define the category 2-Rig of differential 2-rigs, and the category Der(R, 𝜕) of derivations on a given
2-rig. We will not investigate 2-categorical properties of 2-Rig, but the notion of morphism of derivation
is necessary to turn 5.10 into an equivalence of categories instead of just a correspondence on objects.

Definition 4.6 (Morphism of differential 2-rigs). Given differential 2-rigs (R, 𝜕) → (S, 𝜕 ′), morphisms
of differential 2-rigs are morphisms of 2-rigs 𝐹 : R →S such that 𝜕 ′ ◦𝐹 = 𝐹 ◦ 𝜕.

Definition 4.7 (Morphism of derivations). Let R be a 2-rig, and 𝜕, 𝜕 ′ : R → R two derivations in the
sense of 4.1. A morphism of derivations 𝛼 : 𝜕⇒ 𝜕 ′ is a natural transformation of functors such that the
equality of 2-cells 𝔩′ ◦ (𝛼 ⊗ 1+1⊗𝛼) = (𝛼 ∗ ⊗) ◦ 𝔩 holds if 𝔩 (resp., 𝔩′) is the leibnizator of 𝜕 (resp., 𝜕 ′).

6Given the elementary nature of their proof, we believe both these results pertain to ‘folklore’ in circles of combinatorialists,
but we could not find an appropriate reference for them.
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Now we observe how some notions bearing on 2-rigs, particularly property-like notions for the
multiplicative monoidal product, make sense independent of which doctrine of 2-rigs is considered. For
example, a 2-rig (relative to any 2-rig doctrine) is cartesian if its multiplicative monoidal product is
cartesian and is closed if tensoring with an object on either side has a right adjoint.

A derivation 𝜕 :R→R is trivial if it is constantly 0. A 𝜕-constant object is such that 𝜕𝑋 � 0. Clearly,
a derivation is trivial if and only if every object is a 𝜕-constant. The description of derivations on a 2-rig
in terms of tensorial strengths leads to two fundamental ‘no-go theorem’ for derivations on a 2-rig: the
proofs appear one after the other in Appendix B, page 177.

Proposition 4.8. A derivation 𝜕 : R → R on a cartesian 2-rig must be trivial.

Proposition 4.9. Suppose that R is a closed 2-rig and that the functor R(𝐼,−) : R → Set is faithful. Then
any functor 𝜕 : R → R can carry at most one left strength and one right strength.

Remark 4.10. The intuition behind 4.8 and 4.9 is that in certain categories, every object arises as a
coequalizer of maps between coproducts of copies of 𝐼. If derivations preserve colimits and take 𝐼 to 0,
then, of course, every object maps to 0.

This allows for yet another analogy with differential/algebraic geometry: categories satisfying 4.8, 4.9
are ‘categories of constants’ hence are ‘0-dimensional’ from the point of view of categorified ‘dimension
theory’.

The connection between derivations on 2-rigs and tensorial strengths deserves to be spelt out more
explicitly: to this end, we provide a general procedure to turn every endofunctor 𝐹 : R → R on a 2-rig
into a derivation.

The universal construction of tensorial strengths

This subsection shows that to every endofunctor 𝐹 :A →A one can associate another endofuctor Θ𝐹,
carrying the structure of a cofree coalgebra for a comonad Θ on [A,A]. This, in turn, follows from the
fact that there is a comonad Θ (resp., Θr) on the category [A,A] of endofunctors of a monoidal category
A, that equips an endofunctor 𝐹 with a cofree left (resp., right) tensorial strength. The proof appears in
Appendix B, page 179.

Proposition 4.11. LetA be a complete and left (resp., right) symmetric monoidal closed category; then,
there exists a comonad Θ on the category [A,A] of endofunctors of A, whose coalgebras are exactly
the endofunctors equipped with a right (resp., left) tensorial strength.

Remark 4.12. This result entails that given an endofunctor 𝐹 : R →R on a symmetric 2-rig, 𝐹 is ‘best-
approximated’ by an endofunctor Θ𝐹 that we might think as a ‘lax derivation’ (by this we mean a fairly
weak concept: it’s a functor equipped with both a left and right tensorial strength, and as a consequence
with a noninvertible leibnizator map

[
𝑡
𝑡r
]

: Θ𝐹𝐴⊗ 𝐵+ 𝐴⊗Θ𝐹𝐵→ 𝐹 (𝐴⊗ 𝐵)), obtained by endowing the
functor 𝐹 it with the cofree strength

Θ𝐹𝐴⊗ 𝐵
𝑡
𝐴𝐵 // Θ𝐹 (𝐴⊗ 𝐵) 𝐴⊗Θ𝐹𝐵

𝑡r
𝐴𝐵oo (9)

using the universal property of coproducts, now one gets the desired map
[
𝑡
𝑡r
]
.

The result remains true when the 2-rig R is not symmetric, but a little more care is needed; in that
case, one must define Θr (resp., Θ) exploiting a right (resp., left) closed structure on A.
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Given any category C and a morphism 𝑓 : 𝑋→𝑌 one can consider the category C[ 𝑓 −1] obtained as
the ‘smallest’ category where 𝑓 becomes an isomorphism (cf. [19, p. 1.1]). In this light, the relevance
of this result lies in the fact that one can then formally invert the map

[
𝑡
𝑡r
]

above and endow R with a
derivation canonically obtained from the pair (R, 𝐹).

We conclude the section by turning our attention to the following result, which to the best of our
knowledge is new, despite the simplicity of its proof: let 𝑀 be an internal ⊗-monoid in a differential 2-rig
(R,⊗, 𝜕); the derivative 𝜕𝑀 is an 𝑀-module. The proof appears in Appendix B, page 177.
Proposition 4.13. Let R be a 2-rig, and 𝑀 a internal semigroup (resp., monoid) in R, with multiplication
𝑚 : 𝑀 ⊗𝑀→ 𝑀 (and unit 𝑒 : 𝐼→ 𝑀); then the map 𝜕𝑚 : 𝜕𝑀 ⊗𝑀 +𝑀 ⊗ 𝜕𝑀→ 𝜕𝑀 amounts to a pair
of actions 𝑖𝑅 : 𝜕𝑀 ⊗𝑀→ 𝜕𝑀 and 𝑖𝐿 : 𝑀 ⊗ 𝜕𝑀→ 𝜕𝑀 of 𝑀 on its derivative object 𝜕𝑀 .

5 The construction of free 2-rigs

In this subsection, we turn our attention to constructions of derivations and differentials, restricting focus
to symmetric 2-rig doctrines 𝑫. Our main technique is to exploit the representability of derivations in
the sense of 5.1 and 5.2.

There are several reasons for restricting to symmetric 2-rigs R. First, in ordinary algebra, the vast
majority of applications of derivations are to commutative algebra; categorifying, it is then natural to
consider symmetric monoidal structures. Moreover, tensoring functors 𝑅 ⊗− : R → R carry canonical
(co)strengths, on account of the symmetry.

In the symmetric case, we can turn any left R-module M into a right module or a bimodule by
defining 𝑀 � 𝑅 to be 𝑅 �𝑀 . We call bimodules arising this way symmetric. (Here, it seems pointless to
distinguish between � and �, so we write ⊗ instead.)
Definition 5.1 (Square-zero extensions). LetR be a 𝑫-rig, and letM be a symmetricR-bimodule. Define
the square-zero extension R nM ofM to be R ×M as an 𝑨-algebra, and equipped with a symmetric
monoidal product defined by the formula

(𝐴,𝑀)� (𝐵,𝑁) := (𝐴⊗ 𝐵, 𝐴⊗ 𝑁 +𝑀 ⊗ 𝐵), (10)

and with monoidal unit (𝐼,0). The first projection 𝜋 : R nM→R makes this a 𝑫-rig over R.
A straightforward computation allows determining the associators and unitors for the � monoidal

structure (one must use the compatibility between the left and right module structure onM) and the left
and right distributive maps.

An alternative presentation of the square zero extension, in the case whereM is the Cayley bimodule
of R acting on itself, can be given as a ‘quotient’ 2-rig R[𝑌 ]/(𝑌2): a categorification of an algebra of
‘dual numbers’, as explained in the following subsection. This 2-rig is denoted R[Y].
Proposition 5.2. For a 𝑫-rig S over R, say 𝜓 : S → R, there is a natural equivalence between maps
Φ :S→RnM in 𝑫-Rig/R, and 𝜓-augmented derivations 𝜕 ofS valued inM, where 𝜕 = 𝜋2Φ :S→M.

The proof is fairly routine since (𝜓, 𝜕) being a (strong) symmetric monoidal functor means that we
obtain isomorphisms 𝜕 (𝑆) ⊗𝜓(𝑆′) +𝜓(𝑆) ⊗ 𝜕 (𝑆′) � 𝜕 (𝑆⊗ 𝑆′) whose restrictions to the summands satisfy
the strength coherence conditions, on account of the coherence conditions that obtain for a symmetric
monoidal functor.

For example, we can use this proposition to reconstruct the standard derivative on Joyal species Spc,
working over the doctrine 𝑫 of symmetric monoidally cocomplete categories. Consider Spc as a Cayley
bimodule over itself, and form Spc[Y] = SpcnSpc.
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As Spc is the free symmetric monoidally cocomplete category on one generator 𝑋 (the representable
functor Σ(−,1)), there is an equivalence of categories

𝑫-Rig(Spc,Spc[Y]) ' Spc[Y] . (11)

This means any object (𝐹,𝐺) whatsoever of Spc[Y] induces a 𝑫-rig map Φ(𝐹,𝐺) : Spc→ Spc[Y], hence
(by the Proposition) a𝜓-augmented derivation for some 𝑫-rig map𝜓 : Spc→Spc. Let us be more explicit.
First we calculate𝜓 = 𝜋Φ(𝐹,𝐺) : Spc→ Spc. The pseudonaturality of the equivalence 𝑫-Rig(Spc,R) ' R
means 𝜋Φ(𝐹,𝐺) is the unique (essentially unique, i.e., unique up to unique isomorphism) symmetric
monoidally cocontinuous functor 𝜓𝐹 : Spc→ Spc that carries 𝑋 to 𝐹. Proceeding in stages, the functor
𝐹 : 1→ Spc extends essentially uniquely to a symmetric monoidal functor �̃� : Σ→ Spc, taking 𝑛 to
the 𝑛-fold Day convolution 𝐹⊗𝑛. Then this extends essentially uniquely to a cocontinuous symmetric
monoidal functor Spc = [Σop,Set] → Spc, according to the formula

𝑊 =

∫ 𝑛:Σ
𝑊 (𝑛) ·Σ(−, 𝑛) ↦→

∫ 𝑛:Σ
𝑊 (𝑛) ·𝐹⊗𝑛. (12)

The last coend is an instance of the substitution product of species, denoted 𝑊 ◦𝐹. Whatever it is, the
point is that 𝜓 = (−) ◦𝐹, where the right side is the essentially unique 𝑫-rig map Spc→ Spc that extends
𝐹 : 1→ Spc. In particular, if 𝐹 is the generator 𝑋 , then 𝜓𝑋 is the identity on Spc.

Now a derivation 𝜕 : Spc→ Spc augmented by the identity is just an ordinary derivation, i.e., satisfies

𝜕 (𝐴 ⊗ 𝐵) � 𝜕 (𝐴) ⊗ 𝐵+ 𝐴 ⊗ 𝜕 (𝐵). The composite 1
𝑋→ Spc

〈id,𝜕〉
→ Spc[Y] 𝜋2→ Spc is the component 𝐺 of

(𝐹,𝐺), whereas the composition of the last two arrows is 𝜕. In other words, 𝐺 = 𝜕 (𝑋). If we want 𝜕 to
match the standard derivative of species, then we must have 𝐺 = 𝑋 ′ = 𝐼, the unit of Day convolution.

Therefore, under the natural equivalence of the proposition, the standard derivative of species corre-
sponds to the 𝑫-rig map Spc→ Spc[Y] that takes the generator 𝑋 to (𝑋, 𝐼). If we take 𝑋 to some other
element (𝑋,𝐺) instead, then the corresponding derivation 𝜕 is defined by 𝜕 (𝐹) = 𝐹 ′ ⊗𝐺, because this
is after all a derivation, and because 𝜕 (𝑋) � 𝑋 ′ ⊗𝐺 � 𝐺 is correct. Note then that every differential
structure, i.e., every derivation on Spc augmented over the identity, is obtained by tensoring the standard
derivative by some object.
Remark 5.3. In the analogy between species 𝐹,𝐺 and formal power series 𝑓 , 𝑔, the substitution product
corresponds to functional substitution ( 𝑓 ◦ 𝑔) (𝑥) = 𝑓 (𝑔(𝑥)). The derivative of a substitution can be
computed via the chain rule, known since Joyal [27]:

(𝐹 ◦𝐺) ′ = (𝐹 ′ ◦𝐺) ⊗𝐺 ′. (13)

We will provide a proof for the chain rule, formulated not only for species but valid in any 𝑫-rig, in
Appendix B, page 180.

Presentations of 𝑫-rigs

Here we provide a construction of free 𝑫-rigs and give a few sample constructions of other 𝑫-rigs. We
freely employ the definitions we have introduced so far, and in particular 2.2, 2.3. Our main result, 5.9,
is guided by an analogy with classical algebra: to provide a presentation of an ordinary rig is tantamount
to providing a coequalizer of two maps between free rigs since rigs form a category 2-monadic over Set.

The fact that under mild assumptions on 𝑫 –for example, if its multiplicative monad 𝑴 is finitary–
the 2-category 𝑫-Rig has bicolimits, ensures that similar such constructions exist and can provide
presentations of 2-rigs as suitable 2-dimensional colimits [29] of diagrams of free 2-rigs.
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If 𝑨 denotes the monad on Cat for the additive doctrine, then for a category C, the 𝑨-cocompletion
𝑨(C) is equivalent to the full subcategory of the small presheaf category 𝑃(C) obtained by taking the
closure of the representable functors under the class of 𝑨-colimits.
Remark 5.4. Using the distributive law, the monad for 𝑫 is the composite 𝑨𝑴. Hence, for every doctrine
𝑫, the free 𝑫-rig 𝑫 [C] on a category C is always formed according to a simple two-step procedure:
first, take the free multiplicative structure generated by 𝐶, i.e. the category 𝑴 (C). Then, take the free
𝑨-cocompletion of 𝑴 (C).

We have already seen an example of this in the case of Joyal species (in the doctrine 𝑫 of symmetric
monoidally cocomplete categories): it is the free cocompletion [Σop,Set] of the free symmetric monoidal
category Σ on a single generator. Likewise, we may define multivariate species, say for example species
in two variables, as the category [Σ(2)op,Set] equipped with Day convolution, where incidentally Σ(2)
is equivalent to Σ×Σ.

For the remainder of this section, we return to symmetric 2-rigs (relative to some additive doctrine 𝑨),
and proceed to categorify some commutative algebra. The 2-category of 𝑨-algebras, being a 2-category
of algebras for a KZ-monad, carries a monoidal product � (see [18]) characterized by the fact that for
𝑨-algebrasA, B, C, functorsA×B → C that are 𝑨-cocontinuous in the separateA-, B-arguments are
equivalent to 𝑨-cocontinuous functors A�B → C.
Proposition 5.5 (Coproduct of 𝑫-rigs). Using the universal property one can show that if R, S are
𝑫-rigs, meaning here symmetric monoidally 𝑨-cocomplete categories, then R �S naturally acquires a
𝑫-rig structure and is the coproduct of R and S in 𝑫-Rig.
Notation 5.6 (Extension of scalars). In particular, let S = 𝑫 [𝑌 ] be the free 𝑫-rig on a single generator
𝑌 . We write R � 𝑫 [𝑌 ] as R[𝑌 ]; this plays a role analogous to a polynomial rig 𝐶 [𝑌 ] with coefficients in
a rig 𝐶, and the construction is analogous to the ‘extension of scalars’ from the initial rig N[𝑌 ] to the rig
𝐶 [𝑌 ] obtained as a coproduct in the category of rigs.
Remark 5.7. The formation of R[𝑌 ] does not require working with symmetric 2-rigs: just as one can
form a polynomial algebra 𝑅[𝑥] over a noncommutative rig 𝑅, so one can form a ‘polynomial’ 2-rig
R[𝑌 ] over a monoidal 2-rig R, by taking a tensor product R � 𝑫 [𝑌 ]. However, this tensor product will
generally not be a coproduct in 𝑫-Rig if we work outside the symmetric context.

Kähler differentials

Next, we sketch the construction of a 𝑫-rig of Kähler differentials on a 𝑫-rig R. Again, we borrow ideas
from the analogous construction in algebraic geometry. Let 𝑫 [𝑌 ] be the free 𝑫-rig on a single generator
{𝑌 }, treated as a generic ‘indeterminate’.

Let 0 : 𝑫 [𝑌 ] → 𝑫 [𝑌 ] denote the essentially unique 𝑫-rig morphism that takes 𝑌 to 0, and similarly
let 𝑌2 : 𝑫 [𝑌 ] → 𝑫 [𝑌 ] denote the morphism that takes 𝑌 to 𝑌 ⊗2. The unique map 0→ 𝑌2 in 𝑫 [𝑌 ]
transports across the equivalence

𝑫-Rig(𝑫 [𝑌 ],𝑫 [𝑌 ]) ' 𝑫 [𝑌 ] (14)

to a symmetric monoidal natural transformation 0⇒ 𝑌2 between 𝑫-rig maps 0,𝑌2 : 𝑫 [𝑌 ] → 𝑫 [𝑌 ].
Extending scalars like in 5.6, we obtain a 2-cell in 𝑫-Rig:

R[𝑌 ]
0 ++

𝑌 2
44�� R[𝑌 ] 𝑞 // R[𝑌 ]/(𝑌2) (15)
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The ‘quotient’ construction 𝑞 : R[𝑌 ] → R[𝑌 ]/(𝑌2) we are after is a coinverter of this 2-cell in the
2-category 𝑫-Rig. In fact, diagram (15) satisfies precisely the universal property of a coinverter ([29,
dual of (4.6)]) when we adopt for R[𝑌 ]/(𝑌2) the concrete model deduced from 5.14: each object of
R[𝑌 ]/(𝑌2) is of the form 𝐴+𝐵⊗𝑌 we prove this in Appendix B, page 181.

Remark 5.8. Observe that for some 2-rig doctrines 𝑫, this coinverter may be somewhat degenerate. For
example, in the doctrine of cartesian 2-rigs (for any additive doctrine 𝑨), the condition that an arrow
0→ 𝐶2 is invertible in R forces 𝐶 � 0 (because 𝐶 is a retract of 𝐶2), and in this case, the coinverter
will be the 2-rig map R[𝑌 ] → R taking 𝑌 to 0 (cf. the fact that there are no nontrivial differentials on a
cartesian 2-rig).

Proposition 5.9. For a doctrine 𝑫 of symmetric 2-rigs, there is an equivalence R[𝑌 ]/(𝑌2) ' R nR.

In combination with 5.2, this means that R[Y] = R[𝑌 ]/(𝑌2), equipped with the evident 𝑫-rig map
R[Y] → R taking 𝑌 to 0, represents augmented derivations.

Corollary 5.10. There is an equivalence of categories

Der(R,R) � 2-Rig(R,R[𝑌 ]/(𝑌2)) (16)

or in other words, the category of derivations R → R as in 4.7 correspond to 2-rig morphisms R →
R[𝑌 ]/(𝑌2). More generally, there is an equivalence between derivations R →M values in a R-module
M, and algebra morphisms between R and the square-zero extension of 5.1.

The construction of free 𝑫-rigs and 5.10 allow to provide examples of differentials on categories of
multivariate (or ‘colored’, cf. [41]) species.

Definition 5.11 (Partial derivative). Let 𝑫 [𝑆] be the free 𝑫-rig on a set or discrete category of generators
𝑆. For 𝑠 ∈ 𝑆, define the partial derivative

𝜕

𝜕𝑠
: 𝑫 [𝑆] → 𝑫 [𝑆] (17)

to be the derivation that corresponds to the 𝑫-rig map 𝑫 [𝑆] → 𝑫 [𝑆] [Y] that takes 𝑠 to (𝑠, 𝐼) and 𝑡 ∈ 𝑆,
𝑡 ≠ 𝑠, to (𝑡,0).7

Every differential on 𝑫 [𝑆] is similarly formed from the 𝑫 [𝑆]-rig maps 𝑫 [𝑆] → 𝑫 [𝑆] [Y] taking each
𝑠 to (𝑠, 𝑎𝑠) for some choice of ‘coefficients’ 𝑎𝑠 ∈ 𝑫 [𝑆]. In the case where the additive doctrine admits
arbitrary coproducts, this differential may be denoted

𝜕 =
∑︁
𝑠∈𝑆

𝑎𝑠
𝜕

𝜕𝑠
. (18)

Here is one more example of a differential 2-rig, bearing witness that differential structures on a
symmetric 2-rig tend to be plentiful. The idea goes as follows: let 𝑫 [𝑋,𝑌 ] be the free 𝑫-rig over two
generators; given any two polynomials 𝑝(𝑋,𝑌 ), 𝑞(𝑋,𝑌 ) we can build the ‘quotient 2-rig’ killing off the
‘ideal’ generated by {𝑝, 𝑞} as a suitable 2-colimit.

Example 5.12. We consider the 2-rig H := 𝑫 [𝑋,𝑌 ]/(𝑌2 +1 � 𝑋2) where we categorify the coordinate
ring of an hyperbola. Here we have two morphisms 𝑫 [𝑇] → 𝑫 [𝑋,𝑌 ] to the free 𝑫-rig on two generators,

7One can prove that the ‘Schwarz-Clairaut’s theorem’ of commutativity of composition of derivatives with respect different
‘indeterminates’. We refrain to provide such a proof in detail, as it is completely straightforward.
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one taking𝑇 to𝑌2+1, the other taking𝑇 to 𝑋2; to form 𝑫 [𝑋,𝑌 ]/(𝑌2+1 � 𝑋2), construct a co-iso-inserter
([29, 10]) between these two 𝑫-rig maps.

The differential 𝜕 : H →H is defined by 𝜕 (𝑋) = 𝑌 , 𝜕 (𝑌 ) = 𝑋 , and taking the co-iso-inserter 𝜑 :
𝑌2 +1→ 𝑋2 to a canonical isomorphism 𝜕 (𝑌2+1) → 𝜕 (𝑋2) obtained as follows:

𝜕 (𝑌2+1) � 𝜕 (𝑌2) + 𝜕 (1) � 𝜕 (𝑌2) � 𝜕𝑌 ⊗𝑌 +𝑌 ⊗ 𝜕𝑌

� 𝑋 ⊗𝑌 +𝑌 ⊗ 𝑋 𝜎+𝜎→ 𝑌 ⊗ 𝑋 +𝑋 ⊗𝑌 = 𝜕𝑋 ⊗ 𝑋 +𝑋 ⊗ 𝜕𝑋 � 𝜕 (𝑋2) (19)

where 𝜎 denotes an instance of the symmetry isomorphism.

Proposition 5.13 (Free 2-rigs are differential). The free 2-rig Σ[𝑌 ] and its cocompletion ΣÈ𝑌É with
respect to arbitrary coproducts both admit at least one nontrivial derivation, which is uniquely determined
by the request that the ‘generator’ 𝑌 goes to the monoidal (Day convolution) unit.

From the universal property of R[𝑌 ], we deduce that it is the category generated under coproducts
by formal expressions 𝐴𝑛 ⊗𝑌𝑛 where 𝑛 ≥ 0 is an integer and 𝐴𝑛 ∈ R.

Proposition 5.14. Every object in the differential 2-rig R[𝑌 ] admits a unique representation as a formal
sum like

∑𝑑
𝑖=0 𝐴𝑖 ⊗𝑌 𝑖 .

Proof. In Appendix B, page 178. �

A particularly interesting example of a free 2-rig construction as differential 2-rig is where 𝑆 is
a countable set whose elements we denote {𝑌,𝑌 (1) ,𝑌 (2) . . . ,𝑌 (𝑛) , . . . }, that we interpret as the stock
of all subsequent derivatives of a unique indeterminate 𝑌 . In other words, we construct a differential
𝜕 : 𝑫 [𝑆] → 𝑫 [𝑆] via the 𝑫-rig map

𝑫 [𝑆] → 𝑫 [𝑆] [Y] (20)

that takes 𝑌 (𝑖) to (𝑌 (𝑖) ,𝑌 (𝑖+1) ), in effect defining 𝜕 (𝑌 (𝑖) ) = 𝑌 (𝑖+1) . This construction has a parallel in
differential algebra, see e.g. [47, Ch. 1]. Hence we obtain, by ‘scalar extension’ (tensoring with R)

Example 5.15 (The 2-rig of differential polynomials). We can define the 2-rig of differential polynomials
(with coefficients in a 2-rigR) using an infinite set of ‘indeterminates’Y := {𝑌 =𝑌 (0) ,𝑌 (1) ,𝑌 (2) . . . ,𝑌 (𝑛) , . . . }
as above, and defining the 2-rig R[𝑌𝜕] as the free 2-rig of polynomials overY. This is a differential 2-rig
where the differential 𝜕 takes every ‘constant’ 𝐶 � 𝐼 ∈ R � 𝑫 [Y] to 0, and 𝜕 (𝑌 (𝑖) ) to 𝑌 (𝑖+1) .

The 2-rig 𝑫 [𝑌𝜕] defined above enjoys the following universal property: given a differential 𝑫-rig
S and an element 𝐴 ∈ S, there exists a unique morphism of differential 2-rigs �̄� : Σ[𝑌𝜕] → S with the
property that 𝑌 ↦→ 𝐴. In other words,

Theorem 5.16. The free 𝑫-rig of polynomials Σ[𝑌𝜕] of 5.15 is the free differential 2-rig on a single
generator {𝑌 }.

Remark 5.17. A slightly different way to put this theorem is: the monad E on Cat, whose algebras are
categories R equipped with an endofunctor 𝐷 : R → R, distributes over the 2-rig monad 𝑨𝑴 according
to the Leibniz rule.8 If 𝑫 is a symmetric 2-rig doctrine, then the free differential 𝑫-rig on a set of
generators 𝑆 is

⊙
𝑠∈𝑆 𝑫 [𝑌𝜕

𝑠 ] = 𝑫 [{𝑌 (𝑖)𝑠 }𝑠∈𝑆,𝑖∈N].

8Intuitively, treat 𝐷 as a differential operator so that 𝐷 applied to a polynomial operator can be rewritten as a polynomial
operator applied to 𝐷.
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We conclude the section concentrating on the proof of a chain rule on free 𝑫-rigs. If, following [28],
we shall think about combinatorial species as categorified formal power series, a ‘chain rule’ of the form
( 𝑓 ◦ 𝑔) ′(𝑥) = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥) shall hold; it follows from an easy computation that this is the case when
the substitution 𝐹 ◦𝐺 is interpreted as a substitution product (cf. for example [6, §1.4]). The present
subsection provides a conceptual argument proving a chain rule valid for an abstract symmetric 2-rig
doctrine.

Let 𝑫 be a symmetric 2-rig doctrine, and recall equation (14). To each object 𝐺 of 𝑫 [1], there
is a corresponding 𝑫-rig map denoted −◦𝐺 : 𝑫 [1] → 𝑫 [1]. Indeed, endofunctor composition on the
left side 𝑫-Rig(𝑫 [1],𝑫 [1]) transports to a monoidal structure on 𝑫 [1] which, by abuse of notation,
we denote as ◦ : 𝑫 [1] ×𝑫 [1] → 𝑫 [1]; variously called the substitution monoidal product or plethystic
monoidal product [41]. The unit for the substitution product is the generator 𝑋 : 1→ 𝑫 [1].

The standard derivative 𝜕 : 𝑫 [1] → 𝑫 [1] is defined by 𝜕 (𝑋) = 𝐼, i.e., is given by the unique 𝑫-rig
map 𝑫 [1] → 𝑫 [1] [Y] that takes 𝑋 to (𝑋, 𝐼). The proof of the chain rule appears in Appendix B, page
180.

Theorem 5.18. Given species 𝐹,𝐺, there is a canonical isomorphism (𝐹 ◦𝐺) ′ = (𝐹 ′ ◦𝐺) ⊗𝐺 ′.

6 Conclusions and future work

We introduced the notion of differential 2-rig as a unifying structure for many diverse instances of a
category equipped with a ‘derivation’, an endofunctor that satisfies the Leibniz property.

The link between the Leibniz property for an endofunctor and a pair of tensorial strengths thereon
hints at a connection between differential structures and applicative structures, widely used in functional
programming [40, 44]. Given the ‘geometric’ flavour of differential 2-rig theory, this is a surprising
connection between apparently disconnected fields that will be further investigated.

Another enticing future direction of investigation involves differential equations: one can define a
‘differential polynomial endofunctor’ (DPE) in a similar fashion in which polynomial functors are defined
inductively (cf. [25, §2.2]), by declaring that all polynomial expressions

∑𝑛
𝑖=0 𝐴𝑖 ⊗ 𝜕𝑖 obtained from a

differential 𝜕 : R → R on a 2-rig form the category DPE(R, 𝜕). The theory of differential equations
in the category of species has a long and well-established history: it was mostly developed by Leroux
and Viennot [39, 38, 55, 7] Labelle [32] and other authors built on that [13, 42]. The general theory of
combinatorial differential equations studied in these papers might fruitfully be framed into a more general
theory of DPEs and their solutions.
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A Coherence conditions for strengths

Definition A.1 (Morphism of R-modules). Given a monoidal 2-category, let R be a pseudomonoid, and
letM,N be two R-bimodules. We denote the left and right unit constraints by 𝑗 and 𝑘 , and left and right
associativity constraints by 𝛼 and 𝛽. A (lax) morphism of R-bimodules 𝐹 :M→N is a 1-cellM→N ,
together with, 2-naturally in objects A, maps

𝐶 � 𝐹𝑀
b // 𝐹 (𝐶 �𝑀)

𝐹𝑀 �𝐶 ′ b r
// 𝐹 (𝑀 �𝐶 ′)

(21)

for every 𝐶,𝐶 ′ :A→R and 𝑀 :A→M.
These maps must satisfy the following coherence conditions (we give only the ones pertaining to the

left constraints _,𝛼):

• naturality in both components; the diagrams

𝐹 (𝐶 �𝑀) oo
b

𝐹 ( 𝑓 �𝑢)
��

𝐶 � 𝐹𝑀

𝑓 �𝐹𝑢

��
𝐹 (𝐶 ′ �𝑀 ′) oo

b
𝐶 ′ � 𝐹𝑀 ′

(22)

are commutative, for every pair of morphisms 𝑓 : 𝐶→ 𝐶 ′ and 𝑢 : 𝑀→ 𝑀 ′.

• compatibility with the monoidality of the action maps, in the form of compatibility with the
isomorphisms𝐶 � (𝐶 ′ �𝑀) � (𝐶 ⊗𝐶 ′) �𝑀 witnessing the strong monoidality of the action functor
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and 𝐼 �𝑀 � 𝑀: the diagram

𝐹 (𝐼 �𝑀)
𝐹 𝑗

%%

b

xx
𝐼 � 𝐹𝑀

𝑗
// 𝐹𝑀

𝐹 ((𝐶 ⊗𝐶 ′) �𝑀) 𝐹𝛼 //
OO

b

𝐹 (𝐶 � (𝐶 ′ �𝑀))OO

b

(𝐶 ⊗𝐶 ′) � 𝐹𝑀
𝛼

��

𝐶 � 𝐹 (𝐶 ′ �𝑀)OO

b

𝐶 � (𝐶 ′ � 𝐹𝑀) 𝐶 � (𝐶 ′ � 𝐹𝑀)

are commutative, for 𝐶,𝐶 ′ ∈ R, 𝑀 ∈M.

B Proofs

Proof of 4.8. If 𝑋 is an object of R, then we have a map 𝜕 (!) : 𝜕 (𝑋) → 𝜕 (1) = 0. But for any object 𝐴
that admits a map 𝑓 : 𝐴→ 0, we must have 𝐴 � 0, because the composite 𝜋2 ◦ ( 𝑓 ,1𝐴) : 𝐴→ 0× 𝐴→ 𝐴

is the identity of 𝐴, and 0× 𝐴 � 0 by distributivity. �

Proof of 4.9. Let [𝐴,−] be the right adjoint of 𝐴 ⊗− : R → R. Then left strengths on 𝑇 are in natural
bijection with enrichment structures on 𝑇 , i.e. maps 𝑡𝐴𝐵 : [𝐴, 𝐵] → [𝑇𝐴,𝑇𝐵], and by application of the
faithful functor R(𝐼,−) : R → Set, such enrichment structures map one-to-one (not onto necessarily) to
Set-enrichment structures R(𝐴, 𝐵) → R(𝑇𝐴,𝑇𝐵). However, there is only one of these. �

Proof of 4.13. Let 𝑚 : 𝑀 ⊗𝑀→ 𝑀 be the multiplication of 𝑀; the map 𝜕𝑚 is of the following form

𝜕𝑀 ⊗𝑀 +𝑀 ⊗ 𝜕𝑀 𝜕𝑚−−→ 𝜕𝑀 (23)

and by the universal property of coproducts, it can be written as the map
[
𝑖𝑅
𝑖𝐿

]
, where

𝑖𝑅 : 𝜕𝑀 ⊗𝑀→ 𝜕𝑀 𝑖𝐿 : 𝑀 ⊗ 𝜕𝑀→ 𝜕𝑀. (24)

Evidently, these maps are our candidate right and left actions of 𝑀 over 𝜕𝑀 .
Now, the fact that 𝑚 is associative is witnessed by the commutative square

𝑀 ⊗𝑀 ⊗𝑀 𝑀 ⊗𝑚 //

𝑚⊗𝑀
��

𝑀 ⊗𝑀
𝑚

��
𝑀 ⊗𝑀

𝑚
// 𝑀

(25)

If we derive it, applying 𝜕 to each map, we get the commutative square
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𝜕𝑀 ⊗𝑀 ⊗𝑀 +𝑀 ⊗ 𝜕𝑀 ⊗𝑀 +𝑀 ⊗𝑀 ⊗ 𝜕𝑀
𝜕𝑀 ⊗𝑚+𝑀 ⊗𝜕𝑚

((

𝜕𝑚⊗𝑀 +𝑚⊗𝜕𝑀

vv
𝜕𝑀 ⊗𝑀 +𝑀 ⊗ 𝜕𝑀

[
𝑖𝑅
𝑖𝐿

]
((

𝜕𝑀 ⊗𝑀 +𝑀 ⊗ 𝜕𝑀

[
𝑖𝑅
𝑖𝐿

]
vv

𝜕𝑀

which, thanks to the Leibniz action of 𝜕 on morphisms, can be seen as the object- and morphism-wise
sum of two diagrams

𝜕𝑀 ⊗𝑚//

𝜕𝑚⊗𝑀
��

𝑖𝑅

��

𝑀 ⊗𝜕𝑚//

𝑚⊗𝜕𝑀
��

𝑖𝐿

��
𝑖𝑅

//
𝑖𝐿

//
(26)

witnessing precisely that 𝑖𝑅 is a right action, and 𝑖𝐿 is a left 𝑀-action on 𝜕𝑀 . �

Proof of 5.14. The proof is divided into two parts: first, we show that every object of Σ[𝑌 ] can be written
as a formal sum

∑
𝐸𝑖 ·𝑌 𝑖 , where 𝐸𝑖 is a set and 𝑌 𝑖 is the 𝑖th convolution power of the monoidal unit for

Day convolution; then, we show that similarly, every object of R[𝑌 ] can be written as
∑
𝐴𝑖 ⊗𝑌 𝑖 .

As for the first claim, it follows from the fact that Σ[𝑌 ] is the closure under coproducts of repre-
sentables; as for the second claim, we shall show that R[𝑌 ] has the universal property of the coproduct
R �Σ[𝑌 ], or more clearly, the pushout of the span Σ[𝑌 ] ← Fin→R.9

Inspecting the universal property: first of all, there is an obvious cospan of 2-rig morphisms R →
R[𝑌 ] ← Σ[𝑌 ] sending 𝐶 to 𝐶 ⊗𝑌0 and [𝑛] to 𝑌𝑛; and given a diagram

R

�� 𝐺

��

Σ[𝑌 ] //

𝐹 //

R[𝑌 ] [
𝐹
𝐺

]
""
B

(28)

we can define a unique dotted functor
[
𝐹
𝐺

]
: R[𝑌 ] → B as

𝑑∑︁
𝑖=0

𝐴𝑖 ⊗𝑌 𝑖 ↦→
𝑑∑︁
𝑖=0

𝐺𝐴𝑖 ⊗ (𝐹𝑌 )⊗𝑛, (29)

since a 2-rig morphism 𝐹 : Σ[𝑌 ] → B is completely determined by the image of 𝑌 = 𝑦(1). �

9Something analogous happens in commutative algebra, where rings of polynomials with coefficients in 𝑅 can be defines
from free Z-algebras Z[𝑋] via a universal property, that the diagram

Z //

��

𝑅

��
Z[𝑌 ] // 𝑅[𝑌 ]

(27)

is a pushout.
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Proof of 4.11. Let’s examine the left closed case: this means that every 𝐴 ⊗− has a right adjoint. The
right closed case is analogous, mutatis mutandis.

The condition of having a right tensorial strength amounts to the presence of maps 𝑡𝐴𝐵 : 𝐴⊗𝐷𝐵→
𝐷 (𝐴⊗ 𝐵) satisfying suitable conditions.

The maps 𝑡𝐴𝐵 now transpose to

𝑡𝐴𝐵 : 𝐷𝐵 // [𝐴,𝐷 (𝐴⊗ 𝐵)] (30)

and the 𝑡𝐴𝐵’s are natural in 𝐵, and a wedge in 𝐴: this means that there is a unique map

𝑡𝐵 : 𝐷𝐵 //
∫
𝐴

[𝐴,𝐷 (𝐴⊗ 𝐵)]; (31)

we now claim that
m1) the correspondence _𝐵.

∫
𝐴
[𝐴,𝐷 (𝐴⊗ 𝐵)] is an endofunctor of A;

m2) the correspondence Θ : 𝐷 ↦→ _𝐵.
∫
𝐴
[𝐴,𝐷 (𝐴⊗ 𝐵)] is an endofunctor of [A,A]; moreover, it is a

comonad;
m3) aΘ-coalgebra is exactly an endofunctor equipped with a right tensorial strength, whose components

are obtained from the coalgebra map by reverse-engineering the construction of Θ.
The last part of the third claim is obvious; what remains of the third claim is an exercise on diagram
chasing. Functoriality is evident from the canonical way in which we builtΘ, and 𝐷𝐵→

∫
𝐴
[𝐴,𝐷 (𝐴⊗𝐵)]

attach to the components of a natural transformation 𝐷⇒ Θ(𝐷).
It remains to show that Θ is a comonad:
• the counit is obtained from the terminal wedge of Θ(𝐷), taking the component on the monoidal

unit (say, 𝐼): ∫
𝐴
[𝐴,𝐷 (𝐴⊗ 𝐵)] 𝜖𝐵=𝜋𝐼 // [𝐼, 𝐷 (𝐼 ⊗ 𝐵)] � 𝐷𝐵 (32)

• the comultiplication is obtained from the following computation:

ΘΘ(𝐷) (𝐴) =
∫
𝐵

[𝐵,Θ(𝐷) (𝐴⊗ 𝐵)]

�

∫
𝐵

[𝐵,
∫
𝐶

[𝐶,𝐷 (𝐴⊗ 𝐵⊗𝐶)]]

�

∫
𝐵

∫
𝐶

[𝐵, [𝐶,𝐷 (𝐴⊗ 𝐵⊗𝐶)]]

�

∫
𝐵

∫
𝐶

[𝐵⊗𝐶,𝐷 (𝐴⊗ 𝐵⊗𝐶)]

It is evident, now, that the projections 𝜋𝐵⊗𝐶 of the terminal wedge of Θ(𝐷) assemble into a morphism
𝜎 : Θ⇒ ΘΘ of the right type; moreover, this choice of 𝜖 and 𝜎 is the unique that satisfies the counit
equations of a comonad; showing that 𝜎 : Θ⇒ Θ2 is coassociative is a matter of diagram chasing. �

Proof of 5.9. Let 𝑫 [𝑌 ] → R nR be the essentially unique 𝑫-rig map that takes 𝑌 to (0, 𝐼), and let
R → R nR be the map taking 𝐶 to (𝐶,0). By pairing these maps, we get a map Y : R[𝑌 ] → R nR out
of the coproduct R[𝑌 ] = R � 𝑫 [𝑌 ]. It is clear that Y coinverts the 2-cell 0⇒ 𝑌2. Given a 𝑫-rig map
𝐹 : R[𝑌 ] → S that coinverts this 2-cell, define a map 𝐹 : R nR →S that takes (𝑅,0) to 𝐹 (𝑅), and (0, 𝐼)
to 𝐹 (𝑌 ). One may check that 𝐹 is a 𝑫-rig map. �
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Proof of 5.18. Let 𝜕 denote the standard derivative, and denote the 𝑫-rig map −◦𝐺 by 𝜑. Then the left
side corresponds to the value at an object 𝐹 of the composite 𝑫-rig map

𝑫 [1]
𝜑
→ 𝑫 [1]

〈1,𝜕〉
→ 𝑫 [1] [Y], (33)

taking 𝐹 to (𝐹 ◦𝐺, (𝐹 ◦𝐺) ′) and taking 𝑋 to (𝐺,𝐺 ′). On the other hand, 𝜑 ◦ 𝜕 : 𝑫 [1] → 𝑫 [1] is a
𝜑-augmented derivation, and so is (𝜑𝜕) ⊗𝐺 ′. By 5.2, it corresponds to the 𝑫-rig map 𝑫 [1] → 𝑫 [1] [Y]
taking 𝐹 to

(𝜑(𝐹), (𝜑𝜕 (𝐹)) ⊗𝐺 ′) = (𝐹 ◦𝐺, (𝐹 ′ ◦𝐺) ⊗𝐺 ′). (34)

This map is uniquely determined by where it sends the generator 𝑋 , but this value on 𝑋 is the same as
before,

(𝑋 ◦𝐺, (𝑋 ′ ◦𝐺) ⊗𝐺 ′) = (𝐺,𝐺 ′). (35)

This means the 𝑫-rig maps

𝐹 ↦→ (𝐹 ◦𝐺, (𝐹 ◦𝐺) ′), 𝐹 ↦→ (𝐹 ◦𝐺, (𝐹 ′ ◦𝐺) ⊗𝐺 ′) (36)

coincide, and this completes the proof. �

Generalized Leibniz rule and Taylor formula

Proof of 4.4. Expand (𝐹 ∗𝐺) (𝑈 ) [𝐶] = (𝐹 ∗𝐺) [𝐶 +𝑈] using the fact that

(𝐹 ∗𝐺) [𝐶 +𝑈] =
∑︁

𝐴+𝐵=𝐶+𝑈
𝐹𝐴×𝐺𝐵. (37)

For each indexing pair (𝐴, 𝐵), put 𝐴′ = 𝐴∩𝐶, 𝐵′ = 𝐵∩𝐶, 𝑆 = 𝐴∩𝑈, 𝑇 = 𝐵∩𝑈. Then 𝐴 = 𝐴′+𝑆 and
𝐵 = 𝐵′+𝑇 and 𝑆+𝑇 =𝑈. It follows that

(𝐹 ∗𝐺) [𝐶 +𝑈] �
∑︁

𝐴+𝐵=𝐶+𝑈
𝐹𝐴×𝐺𝐵

�
∑︁

𝑆+𝑇 =𝑈

∑︁
𝐴′+𝐵′=𝐶

𝐹 [𝐴′+𝑆] ×𝐺 [𝐵′+𝑇]

�
∑︁

𝑆+𝑇 =𝑈

∑︁
𝐴′+𝐵′=𝐶

𝐹 (𝑆) [𝐴′] ×𝐺 (𝑇 ) [𝐵′]

�
∑︁

𝑆+𝑇 =𝑈

(𝐹 (𝑆) ∗𝐺 (𝑇 ) ) [𝐶]

This concludes the proof. �

Proof of 4.5. Let’s first observe that we have the analytic functor formula

𝐹 (𝑋) =
∫ 𝑛

𝐹 [𝑛] × 𝑋𝑛 (38)

which mimics the Maclaurin series expansion; this is obtained from the fact that 𝐹 (−) � Lan𝐽𝐹, and the
integral on the right-hand side is exactly that Kan extension.
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Now given an 𝑛-element set 𝑈, let’s interpret 𝜕𝑛𝐹 (𝐴) = 𝜕 (𝑈 )𝐹 (𝐴) = 𝐹 (𝑈 + 𝐴) as a species in the
variable 𝑛 but as analytic in the set-variable 𝐴. We have then the formula

𝜕𝑛𝐹 (𝐴) =
∫ 𝑚

𝐹 [𝑚 +𝑛] × 𝐴𝑚. (39)

And thus we can categorify
∑∞

𝑛=0
𝜕𝑛 𝑓 (𝑎)

𝑛! 𝑥𝑛 as the double coend∫ 𝑛𝑚

𝐹 [𝑚 +𝑛] × 𝐴𝑚× 𝑋𝑛

�

∫ 𝑛𝑚𝑗

𝐹 [ 𝑗] ×Σ( 𝑗 ,𝑚 +𝑛) × 𝐴𝑚× 𝑋𝑛

�

∫ 𝑗

𝐹 [ 𝑗] ×
(∫ 𝑚,𝑛

Σ( 𝑗 ,𝑚 +𝑛) × 𝐴𝑚× 𝑋𝑛

)
.

Now, we have an isomorphism ∫ 𝑚𝑛

Σ( 𝑗 ,𝑚 +𝑛) × 𝐴𝑚× 𝑋𝑛 � (𝐴+ 𝑋) 𝑗 (40)

which ultimately comes out of the fact that Set is an extensive category: there exists an equivalence of
categories Set/𝐴×Set/𝑋 � Set/(𝐴+ 𝑋). We conclude that∫ 𝑗

𝐹 [ 𝑗] × (𝐴+ 𝑋) 𝑗 (41)

is the value 𝐹 (𝐴+ 𝑋) of the analytic functor 𝐹 (−). �

Proof that (15) is a coinverter. The universal property of the coinverter amounts to the following:
c1) for each morphism of 2-rigs 𝑝 : C[𝑌 ] → X such that 0→ 𝑝(𝑌2 ⊗ 𝑅(𝑌 )) is invertible in X, there

exists a unique (up to isomorphism) 𝑝 : C[𝑌 ]<2→X such that 𝑞 ◦ 𝑝 = 𝑝;
c2) for each natural transformation 𝛼 : 𝑝⇒ 𝑝′ of 2-rig morphisms with the property that the horizontal

composition 𝛼�𝑢 is an isomorphism, there exists a unique �̄� : 𝑞⇒ 𝑞′ such that 𝑞 ∗ �̄� = 𝛼.
Both properties descend from the fact that 𝑝, being a 2-rig morphism, preserves coproducts; if 𝑝(𝐴 +
𝐵𝑌 +𝑅𝑌2) � 𝑝(𝐴+𝐵𝑌 ) + 𝑝(𝑅𝑌2), and the initial arrow 0→ 𝑝(𝑅𝑌2) is an isomorphism, the vertical right
arrow in the commutative diagram

𝑝(𝐴+𝐵𝑌 ) +0 //

��

𝑝(𝐴+𝐵𝑌 )

��
𝑝(𝐴+𝐵𝑌 ) + 𝑝(𝑅𝑌2) // 𝑝(𝐴+𝐵𝑌 +𝑅𝑌2)

(42)

is an isomorphism; thus, 𝑝 is uniquely determined by its action on C[𝑌 ]<2, and 𝑝(𝐴+𝐵𝑌 ) can be defined
just as 𝑝(𝐴+𝐵𝑌 ). For what concerns 2-cells 𝛼 : 𝑝⇒ 𝑝′, a similar diagram

𝑝(𝐴+𝐵𝑌 +𝑅𝑌2) //

o
��

𝑝′(𝐴+𝐵𝑌 +𝑅𝑌2)

o
��

𝑝(𝐴+𝐵𝑌 )
𝛼𝐴+𝐵𝑌

// 𝑝′(𝐴+𝐵𝑌 )

𝑝(𝐴+𝐵𝑌 )
�̄�𝐴+𝐵𝑌

// 𝑝′(𝐴+𝐵𝑌 )

(43)
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is commutative, so 𝛼 is uniquely determined by its components at objects 𝐴+𝐵𝑌 of C[𝑌 ]<2. �



J. Master & M. Lewis (Eds.): Fifth International
Conference on Applied Category Theory (ACT 2022).
EPTCS 380, 2023, pp. 183–202, doi:10.4204/EPTCS.380.11

Dynamic Operads, Dynamic Categories:
From Deep Learning to Prediction Markets

Brandon T. Shapiro David I. Spivak

Natural organized systems adapt to internal and external pressures and this happens at all levels of the
abstraction hierarchy. Wanting to think clearly about this idea motivates our paper, and so the idea is
elaborated extensively in the introduction, which should be broadly accessible to a philosophically-
interested audience.

In the remaining sections, we turn to more compressed category theory. We define the monoidal
double category Org of dynamic organizations, we provide definitions of Org-enriched, or dynamic,
categorical structures—e.g. dynamic categories, operads, and monoidal categories—and we show
how they instantiate the motivating philosophical ideas. We give two examples of dynamic categor-
ical structures: prediction markets as a dynamic operad and deep learning as a dynamic monoidal
category.

1 Introduction

Intuitively, an open dynamical system is a machine or worker with an interface by which to interact
with whatever else is out there. Open dynamical systems can be organized as circuits or control loops,
so that they affect each other by their outward expressions of internal work, and thereby possibly form
a more complex worker. The framework here is fractal—or more precisely operadic—in its structure:
organizations of workers can be nested into arbitrary hierarchies of abstraction.

-11

-12

-13

.1

-21

-22

.2

/

Figure 1: A nesting of interacting open dynamical systems: the -8 , 9 are wired together to form the .8 ,
which are wired together to form /; typically these groupings are chosen to create new abstractions,
e.g. in logical circuits or control systems. The permanence of the above-displayed wiring pattern is
exactly what is relaxed in this paper; a dynamic organization is one in which interactions may change
dynamically based on what flows within the system.

But if we think about some things that interact to do work in the real world, we notice that often
the organization itself—the connections themselves—change. Unlike what we see in Fig. 1, the way we
connect this hour may be different from the way we connect next hour; in particular, our interfaces go in

http://dx.doi.org/10.4204/EPTCS.380.11
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and out of contact. At the end of this paragraph, look away from the page for a few seconds, think about
some things you know that interact together or influence each other, and ask yourself three questions
about them: Do these things ever stop interacting? If so, do they ever start interacting again? And how
is it decided?

1.1 Accounting for organizational change

We propose that the metaphysical nature and scope of these questions should be complemented by some
sort of guard rails to keep our contemplation on track. This is the role of mathematics in our work. It
provides a symbolic accounting system which is articulate enough to facilitate one person in explicating
an example and asking questions about it.

The category Poly of polynomial functors in one variable is an ergonomic mathematical structure
with many applications and spin-off categorical gadgets. We will begin in Section 2 by recalling one
such gadget from [4]: a category-enriched multicategory Org that will be the conceptual centerpiece
of our accounting system. Its objects are polynomial functors in one variable, and its morphisms are
polynomial coalgebras related to a certain monoidal closed structure on Poly. We will see that the
morphisms in Org are intuitively “collective organizational patterns that change dynamically”.

Leaving the mathematics aside until Section 2—at which point we will have almost nothing more
to say about the background philosophy—let’s return to the question “how is the organizational pattern
between various systems decided, moment-by-moment?” Let’s mesh this question with the idea that the
so-organized systems can be nested into arbitrary hierarchies of abstraction. And let’s think about all this
in the frame of a certain worldview which we invite you the reader to engage with like a fictional movie,
not intended to convince you of fact but instead simply to convey an experience. Here goes.

In this worldview, we notice that everything that makes any sense to us happens to be a collective.
A cell body, a human body, an antibody, Topos Institute, an idea, an airport, a sentence, a mathematical
definition, a grain of sand, ... each is a collective of interacting parts that may themselves be collectives.

It’s quite often the case that these collectives, like the ship of Theseus, are not permanent organiza-
tions that are fixed for all time; they are adapting to forces from within and without the system. Even
a grain of sand can break or melt; even a mathematical definition can be refactored. So then what’s
outside the system, generating these forces that influence it? We imagine that what’s outside is in fact
more of the same kind of stuff as what’s inside, just not as cohesive perhaps. Let’s go full-on woo: if the
universe is a big system, then maybe the sort of thing that happens in our head is—in some way—just
like what happens outside of it. Maybe the motives that organize Brandon and David into a collaborative
thinking and paper-writing unit are, in the some reasonable account, of the same nature as the motives
that organize each one of them into a body.

But is this right? How could you check such a claim? One would need to give a reasonable account of
it, and since we as authors can’t currently give such an account, we don’t make this claim. Instead, what
we present here is an accounting system in which the woo-person, (or would it instead be the reductive
materialist?) who thought that what went on inside the head was somehow the same as what went on
outside, could endeavor to provide such an account of their thinking.
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1.2 Dynamic categorical structures

Our main definition in this paper is what we call an dynamic categorical structure. We might poetically
say that a dynamic category is one where the morphisms between two objects change in response to what
flows between those objects. To define it, we first refactor the definition of Org from [4] from an operad
to a monoidal double category; we then define a dynamic *thing* to be a *thing* enriched in Org. Once
these are defined, we give a couple examples: a prediction market operad and a deep learning monoidal
category. In the prediction market, a population . predicts a distribution based on the predictions of its
member populations -8 weighted by their reputations, and the reputations change dynamically based on
the returned outcome. A similar story holds with deep learning.

We thank you the reader for having postponed your counterpoints and counterexamples, and we ask
you to reengage both skepticism and interest as you see fit. We invite you to ask openly: what’s not a
collective of interacting parts that are themselves collectives? Nature, love, or experience perhaps? It all
depends on how you look. What we present here is an accounting system for making sense of a certain
sort of experiential pattern; the matter itself is whatever it is.

1.3 Acknowledgments

The influences on this paper are too numerous and unranked to name, but in particular we thank Sophie
Libkind for stimulating conversations, and we thank Scott Garrabrant for teaching us about Kelly betting,
which partially inspired Section 4.1. Thanks also to David Jaz Myers and Samantha Jarvis for catching
typos.

This material is based upon work supported by the Air Force Office of Scientific Research under
award number FA9550-20-1-0348.

2 The Monoidal Double Category Org

In [4], the second author defined a category-enriched multicategory Org, whose objects are polynomials
and whose morphisms are polynomial coalgebras. In this section, we describe how Org in fact more
naturally takes the form of a monoidal double category, with coalgebras as horizontal morphisms, maps
of polynomials as vertical morphisms, and the Dirichlet tensor product ⊗ (see (2) below) providing the
monoidal structure.1

Before we begin, recall that a polynomial is a functor ? : Set→ Set which is isomorphic to a sum of
representables; following [4], we denote ?, @ ∈ Poly by

? =
∑
�∈?(1)

y?[�] and @ =
∑
�∈@(1)

y@[�] (1)

and refer to each � ∈ ?(1) as a ?-position and to each 8 ∈ ?[�] as a ?-direction at �. A map ) : ?→ @

of polynomials is a natural transformation. Combinatorially, ) provides: for each � ∈ ?(1) a choice of
)(�) ∈ @(1) and for each 9 ∈ @[)(�)] a choice of )(� , 9) ∈ ?[�].2

1In fact, Org is a duoidal double category, with a second monoidal structure ⊳, but we will not use that here.
2In [4], what we denote )(�) is denoted )1(�) and what we denote )(� , 9) is denoted )♯

�
(9).
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For polynomials ?, @, their Dirichlet tensor product is the polynomial

? ⊗ @ =
∑

(� ,�)∈?(1)×@(1)
y?[�]×@[�] (2)

2.1 [?, @]-coalgebras

We first recall the definitions of the internal-hom polynomials [?, @] and concretely describe the category
of [?, @]-coalgebras, which will form the category of morphisms from ? to @ in the underlying bicategory
of Org.

Definition 2.1. For polynomials ?, @ ∈ Poly as in (1), their internal hom with respect to the tensor product
⊗ is the polynomial

[?, @]B
∑

) : ?→@

y

∑
�∈?(1)

@[)(�)]
(3)

It can also be written [?, @] �∏
�∈?(1)

∑
�∈@(1)

∏
9∈@[�]

∑
8∈?[�]y. ♦

For intuition, a [?, @]-coalgebra (denoted ? ≈ @) is a machine that outputs maps ) : ?→ @ and that
inputs what flows between them: pairs (� , 9) where � ∈ ?(1) is a position of ?, which “flows” to @ as
� B )(�) ∈ @(1), and 9 ∈ @[�] is a direction of @, which “flows” backward to ? as )(� , 9) ∈ ?[�]. More
precisely, using [4, Definition 2.10], we define [?, @]-coalgebras as follows.

Definition 2.2. The category [?, @]-Coalg has as objects pairs S = ((,�) where ( is a set and � : (→
[?, @](() is a function, and where a morphism from S to S′ is a function 5 : (→ (′ making (4) commute.

( [?, @](()

(′ [?, @]((′)

�

5 [?,@]( 5 )

�′

(4)

We refer to ( as the state set and to each element B ∈ ( as a state. ♦

Unwinding this definition, it is useful to break � into two functions � B (act� ,upd�), an action func-
tion

act� : (→ Poly(?, @) = [?, @](1)

and, for each state B ∈ (, an update function

upd�B :
∑
�∈?(1)

@
[
act�B (�)

]
→ (.

For a state B ∈ ( and position � ∈ ?(1) we often write act�B : ?→ @ and upd�B (�) : @[act�B (�)] → (. We
may suppress the � when it is clear from context, writing actB and updB . A coalgebra map S→ S′ is a
function (→ (′ between the state sets that preserves actions and updates.

When, for each B ∈ (, the update updB is the constant function sending everything to B, we say the
coalgebra S is static, as it remains constantly at B regardless of the inputs � ∈ ?(1) and 9 ∈ @[actB(�)]
flowing between ? and @.
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Example 2.3. A special case of a static [?, @]-coalgebra is given by a map ) ∈ Poly(?, @). For each such
), there is a coalgebra {)} with a singleton state set and with act� sending the point to ); we call it a
singleton coalgebra.

A coalgebra is static iff it is the coproduct of singleton coalgebras. ♦

More examples and intuition for [?, @]-coalgebras can be found in [4].

2.2 Composition of hom-coalgebras

We now describe how [?, @]-coalgebras behave like morphisms from ? to @.

Proposition 2.4. The categories [?, @]-Coalg form the hom-categories in a bicategory Org, which has
polynomials as objects.

We use Org to denote both the bicategory from Proposition 2.4 and the categorical operad in [4,
Definition 2.19], as both are derived from the monoidal double category Org described in the following
sections. For now, we merely present the identities and composites in this bicategory. Identities are easy:
the identity object in Org(?, ?) = [?, ?]-Coalg is given by the one-state coalgebra {id?}.

The composition functor Org(?, @)×Org(@, A) −→Org(?, A) is defined as the composite:

[?, @]-Coalg×[@, A]-Coalg→ ([?, @] ⊗ [@, A]) -Coalg −→ [?, A]-Coalg,

where the first functor is the lax monoidality of (−)-Coalg : Poly→ Cat, as described in [4, Proposition
2.13], and the second is given by applying (−)-Coalg to the usual “composition” map of internal-homs
[?, @] ⊗ [@, A] → [?, A] in Poly. Using (3) we see that on positions, this map takes the form

([?, @] ⊗ [@, A]) (1) = Poly(?, @)×Poly(@, A) #−→ Poly(?, A) = [?, A](1)

and on directions it is given for ) : ?→ @ and # : @→ A by the function( ∑
�∈?(1)

@[)(�)]
)
×

( ∑
�∈@(1)

A[#(�)]
)
←

∑
�∈?(1)

A[#()(�))]

which sends (� , :) to
(
(� ,#()(�), :)), ()(�), 9)

)
.

Concretely, the composite of a [?, @]-coalgebra S and a [@, A]-coalgebra S′ is a [?, A]-coalgebra which
we denote S #S′ and define as follows:

• its state set is given by (×(′
• the action of the pair (B, B′) is given by the composite

act�
#�′

B,B′ B (act�B # act�
′

B′ ) : ?→ @→ A

• the update function of (B, B′) is induced by the functions∑
�∈?(1)

A
[
act�

#�′

B,B′ (�)
] (� ,:)↦→(

� ,act�
′
B′

(
act�B (�),:

))
−−−−−−−−−−−−−−−−−−→

∑
�∈?(1)

@
[
act�B (�)

] upd�B−−−→ (,

∑
�∈?(1)

A
[
act�

#�′

B,B′ (�)
] (� ,:)↦→(

act�B (�),:
)

−−−−−−−−−−−−→
∑
�∈@(1)

A
[
act�

′

B′ (�)
] upd�

′
B′−−−→ (′.
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Horizontal composition of coalgebra-morphisms—i.e. of the 2-cells in the bicategory Org—is given
simply by the cartesian product. The coherence isomorphisms and axioms for a bicategory then follow
from the essential uniqueness of finite products of sets, and the unitality and associativity of composition
for polynomial maps.

2.3 Monoidal product of coalgebras

It is shown in [4, Proposition 2.13] that the tensor product ⊗ of polynomials extends to make Org a
monoidal bicategory. That is, for polynomials ?, @, ?′, @′ there is a functor

[?, @]-Coalg×[?′, @′]-Coalg→ ([?, @] ⊗ [?′, @′]) -Coalg→ [? ⊗ ?′, @ ⊗ @′]-Coalg

derived from the map of polynomials [?, @] ⊗ [?′, @′] → [?⊗?′, @⊗@′] given on positions by

Poly(?, @)×Poly(?′, @′) ⊗−→ Poly(? ⊗ ?′, @ ⊗ @′)

and on directions by, for ) : ?→ @ and )′ : ?′→ @′,( ∑
�∈?(1)

@[)1(�)]
)
×

( ∑
�′∈?′(1)

@′[)′1(�′)]
)
←−

∑
(� ,�′)∈?(1)×?′(1)

@[)1(�)]× @′[)′1(�′)]

sending (� , �′, 9 , 9′) to (� , 9, �′, 9′).
Concretely, this tensor product takes a [?, @]-coalgebra S and a [?′, @′]-coalgebra S′ to the [?⊗ ?′, @⊗

@′]-coalgebra with states (×(′, action

(×(′→ Poly(?, @)×Poly(?′, @′) → Poly(? ⊗ ?′, @ ⊗ @′),

and update described similarly componentwise. The tensor product of coalgebra morphisms is also given
by the cartesian product of functions, and it is (very) tedious but ultimately straightforward to check that
the essential uniqueness of products guarantees that ⊗ gives a monoidal structure on Org.

2.4 Org as a double category

Defining Org as a monoidal bicategory is sufficient for most of the constructions of Org-enriched
structures in Section 3. However, using a double category structure casting singleton coalgebras S) ∈
[?, @]-Coalg (see Example 2.3) as morphisms ) : ?→ @ in Poly facilitates our eventual definition of
maps between dynamic structures.

Specifically, the definition of Org as a monoidal bicategory extends to a monoidal pseudo-double
category with coalgebras as horizontal morphisms, maps in Poly as vertical morphisms, and squares as
in (5) given by maps of coalgebras from S # {#} to {)} #S′.

? @

?′ @′

≈S

) #

≈

S′

(5)
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The symbol ≈ is intended to indicate that the map is “dynamic”, changing in response to what flows
between ? and @.

As {)} and {#} have only one state, and composition of coalgebras acts as the cartesian product on
states, such a square amounts to a function (→ (′ making (6) commute:

( [?, @](() [?, @′](()

(′ [?′, @′]((′) [?, @′]((′)

�

5

#∗

[?,@′]( 5 )

�′ )∗

(6)

Identities and composites for these squares are determined by the bicategory structure, as this double
category is a restriction in the vertical direction of the double category of lax-commuting squares in a
bicategory.3

We now proceed to discuss various categorical structures enriched in Org, which describe dynamical
systems equipped with algebraic structure that lets us remove abstraction barriers when considering
nested layers and complex arrangements of the components of the system.

3 Dynamic structures via Org-Enrichment

A monoidal double category is a viable setting for enriching various categorical structures. Intuitively,
enrichment in Org replaces the usual set of arrows between two objects in a categorical structure with
a [?, @]-coalgebra for some choice of polynomials ?, @. Therefore not only can each arrow be realized
as a map of polynomials ?→ @, but this map carries dynamics that encode how a position in ? and a
direction in @ determine a transition from one arrow to another. The morphism “reacts” to what’s flowing
between ? and @.

Different situations call for different categorical structures to model their dynamics: some systems
primarily involve many-to-one arrangements such as the wiring diagrams in Fig. 1, others such as gradi-
ent descent fit naturally into a many-to-many arrow framework, and we expect in future work to consider
evolving systems in which different components operate at differing time scales. Rather than choose one
such categorical form to favor, and then go through the tedious exercise of forcing all of the others to
conform to it, we describe how to add dynamics to the definitions of many different structures.

A dynamic *thing* is a *thing* enriched in Org.

This slogan is intentionally imprecise, so as to be maximally inclusive of different notions of cate-
gorical structures (*things*) and notions of enrichment, and also to allow the reader who has an intuitive
understanding and no need for precision to skip the remainder of this paragraph. Our intuition and exam-
ples come from the theories of enrichment described in [1] and [3]. In the former, a *thing* can be any
suitable type of generalized multicategory, while in the latter a *thing* can be any structure defined as
an algebra for a familial monad on a presheaf category equipped with a choice of “higher” and “lower”

3It should be noted however that the vertical arrows in Org are regarded as polynomial maps rather than coalgebras, so that
they compose strictly unitally and associatively.
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dimensional cell shapes. In both cases, *things* are algebras for a particular cartesian monad ) and ad-
mit an “enriched” analogue with respect to any )-multicategory. To define )-algebras enriched inOrg is
then to identifyOrg with a )-multicategory, and in all of our examples this identification arises naturally
from the observation that monoidal double categories give rise to )-multicategories in a natural way.

We now give specific instances of Org-enrichment: in Section 3.1 for dynamical categories, in Sec-
tion 3.2 for dynamical multicategories and operads, and in Section 3.3 for dynamical monoidal categories
and PRO(P)s. We are also interested in using dynamic duoidal categories to describe dynamical systems
in which different contributors to a system operate at different rates, using the duoidal structure on Org
based on ⊳, but that is beyond the scope of this paper.

3.1 Dynamic categories

Enrichment of categories only uses Org’s double category structure—not its monoidal structure—as any
double category forms an 5 2-multicategory (also known as a virtual double category) in the sense of [1,
Section 2.1]. The following definition of enrichment in Org is an unwound version of the more general
definition in [1, Section 2.2].

Definition 3.1. An Org-enriched (henceforth dynamic) category � consists of
• a set �0 of objects;
• for each 0 ∈ �0, a polynomial ?0;
• for each 0, 1 ∈ �0, a [?0 , ?1]-coalgebra S0,1;
• for each 0 ∈ �0, an “identitor” square in Org as in (7) left; and
• for each 0, 1, 2 ∈ �0, a “compositor” square in Org as in (7) right:

?0 ?0

?0 ?0

≈

{id?0 }

≈

S0,0

?0 ?1 ?2

?0 ?2

≈

S0,1

≈

S1,2

≈

S0,2

(7)

such that these squares satisfy unit and associativity equations (Definition A.1). ♦

The sets (0,1 form an ordinary category which we say underlies �. In fact, a dynamic category
could be equivalently defined as an ordinary category such that each object 0 is assigned a polynomial
?0 and each set of arrows Hom(0, 1) is equipped with a [?0 , ?1]-coalgebra structure, with composition
and identities respecting the coalgebra structure. This means that the arrow id0 in Hom(0, 0) acts as
the identity map on ?0 and is unchanged by updates, while for 5 in Hom(0, 1) and , in Hom(1, 2) the
composite 5 # , acts as the composite ?0 → ?1 → ?2 of the actions of 5 and ,, and the update of their
composite equals the composite of their updates.

3.2 Dynamic multicategories

A monoidal double category also gives rise to an 5<-multicategory in the sense of [1, Section 3.1], so
we can talk about multicategories enriched in Org as in [1, Section 3.2].

Definition 3.2. An Org-enriched (henceforth dynamic) multicategory � consists of
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• a set �0 of objects;
• for each 0 ∈ �0, a polynomial ?0;
• for each 01 , ..., 0= , 1 ∈ �0, a [?01 ⊗ · · · ⊗ ?0= , ?1]-coalgebra S01 ,...,0= ;1;
• for each 0 ∈ �0, an “identitor” square in Org as in (8) left; and
• for each 01,1 , . . . , 01,<1 , . . . , 0=,1 , . . . , 0=,<= , 11 , . . . , 1= , and 2 ∈ �0, a “compositor” square in Org

as in (8) right

?0 ?0

?0 ?0

≈

{id?0 }

≈

S0;0

?01,1 ⊗ · · · ⊗ ?0=,<= ?11 ⊗ · · · ⊗ ?1= ?2

?01,1 ⊗ · · · ⊗ ?0=,<= ?2

≈

⊗
8 S08,1 ,...,08,<8 ;18

≈

S11 ,...,1= ; 2

≈

S01,1 ,...,0=,<= ;2

(8)

satisfying unit and associativity equations (see Definition A.2 for the one-object case). ♦

The sets (0,1 form an ordinary (set-enriched) multicategory, which underlies � and has a description
similar to the underlying category we described below Definition 3.1.

We will mostly be interested in what we call a dynamic operad, the case when a dynamic multicat-
egory � has only one object, assigned the polynomial “interface” ?. It consists simply of a [?⊗= , ?]-
coalgebra S= for each = ∈ N, equipped with coalgebra maps

{id?} → S1 and
⊗
8∈�

S=8 → S# (9)

where � is any finite set and # B
∑
8∈� =8 , which together satisfy the usual equations.

Example 3.3. A collective (as defined in [2]) is a ⊗-monoid in Poly, meaning a polynomial ? equipped
with a monoid structure on its positions ?(1) and co-unital co-associative “distribution” functions ?[� ·
�]→ ?[�]×?[�] for each � , � ∈ ?(1). This can be viewed as a dynamic operad where S= is given by {·=},
the singleton coalgebra on the =-ary monoidal product (·=) : ?⊗=→ ?, and where the maps of coalgebras
in (9) are isomorphisms deduced from the equations for a monoid. ♦

Example 3.4. In Example 3.3, the coalgebras S= are determined by a single map of polynomials, with
trivial updates since the state sets are singletons. This can be generalized to an intermediate notion
between collectives and dynamic multicategories, where the coalgebras are still static but may have
multiple states.

Given any multicategory " and multifunctor � : "→ Poly, where Poly here denotes the multicate-
gory underlying (Poly,y,⊗), there is a dynamic multicategory �� with

• object set Ob(");
• for each 0 ∈ Ob("), the polynomial interface ?0 B �(0);
• for each tuple (01 , ..., 0= ; 1) in Ob("), state set (01 ,...,0= ;1 B "(01 , ..., 0= ; 1);
• the action act� : "(01 , ..., 0= ; 1) → Poly(?01 ⊗ · · · ⊗ ?0= , ?1) is given by �; and
• for any state B in "(01 , ..., 0= ; 1), the update function upd�B is the constant function at B. ♦

Example 3.5. Let S be any ?-coalgebra for a polynomial ?. There is a dynamic operad on ? with S0 B S,
with S1 B {id?}, and with all other S= B ∅ assigned the empty coalgebra. ♦

Example 3.6. Consider a dynamic operad with interface y ∈ Poly. The internal hom polynomial [y⊗= ,y]
is simply y, so this structure amounts to an operad ( with a function (= → (= for each =, commuting
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with the operad structure. A dynamic operad on y can thus be identified with an operad S equipped with
an operad map S→ S to itself. ♦

3.3 Dynamic monoidal categories

A monoidal double category is precisely a representable 5<2-multicategory as in [3, Section 2], so we
can also enrich strict monoidal categories in Org.4 These are similar to Org-enriched multicategories,
but include many-to-many coalgebras rather than just many-to-one.

Definition 3.7. An Org-enriched (henceforth dynamic) strict monoidal category � consists of
• a monoid (�0 , 4 , ∗) of objects;
• for each 0 ∈ �0, a polynomial ?0;
• an isomorphism of polynomials H � ?4 ;
• for each 0, 0′ ∈ �0, an isomorphism of polynomials ?0 ⊗ ?0′ � ?0∗0′;
• for each 0, 1 ∈ �0, a [?0 , ?1]-coalgebra S0,1;
• for each 0 ∈ �0, an “identitor” square in Org as in Eq. (10) left;
• for each 0, 1, 2 ∈ �0, a “compositor” square in Org as in Eq. (10) center; and
• for each 0, 0′, 1, 1′ ∈ �0, a “productor” square in Org as in Eq. (10) right:

?0 ?0

?0 ?0

≈

{id?0 }

≈

S0,0

?0 ?1 ?2

?0 ?2

≈

S0,1

≈

S1,2

≈

S0,2

?0 ⊗ ?0′ ?1 ⊗ ?1′

?0∗0′ ?1∗1′

o

≈

S0,1⊗S0′ ,1′

o

≈

S0∗0′ ,1∗1′

(10)

satisfying unit, associativity, and interchange equations (see Definition A.3 for the one-object case). ♦

Similar to Sections 3.1 and 3.2, the sets (0,1 form the arrows in an ordinary strict monoidal category
underlying �.

For the rest of this paper, we will only be interested in the restricted case of a dynamic monoidal
category with object monoid (N,0,+), which we call a dynamic PRO.5 Concretely, this consists of a
polynomial interface ? (so that in the notation above ?= B ?⊗= for = ∈ N) along with a [?⊗< , ?⊗=]-
coalgebra (<,= for each <,= ∈ N, equipped with the maps of coalgebras as in (10). The identitors,
compositors, productors, and their equations amount to the ability to compose any string diagram of the
usual sort for monoidal categories, with each <-to-= box given by a state in (<,= , into a new box (i.e.
state) with the appropriate sources and targets. We denote a dynamic PRO as (?,S), where S encodes all
of the coalgebras S<,= that constitute the Org-enrichment and the structure maps are implicit.

We now turn to morphisms between dynamic PROs; the interested reader can hopefully find analo-
gous definitions for dynamic categories and operads.

Definition 3.8. A morphism of dynamic PROs from (?,S) to (?′,S′) is given by a map of polynomials
) : ? → ?′ and, for each <,= ∈ N, “commutor” squares as in (11) in Org which commute with the

4We use throughout the notion of strong enrichment in a monoidal double category from [3, Section 3].
5A PRO is the non-symmetric version of a PROP. While all of our examples are in fact symmetric, to keep the paper short

we do not describe their symmetry operations.
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identitor, compositor, and productor squares.

?⊗< ?⊗=

?′⊗< ?′⊗=

≈

S<,=

)⊗< )⊗=

≈

S′<,=

(11)

♦

This definition of morphism (taken from [3, Section 3]) is the direct theoretical benefit of treating
Org as a monoidal double category rather than as a monoidal bicategory (closer to its description in [4]).
Otherwise morphisms could either only be easily defined between dynamic PROs with the same interface
polynomial, which is needlessly restrictive, or take the form of a [?, ?′]-coalgebra, which seems to be
too general to be of much use.

A morphism (?,S) → (?′,S′) can be interpreted as a way of telling the codomain how to run the
domain. The map of polynomials ?→ ?′ specifies how the positions of ? can be modeled by those of ?′

and how the directions of ?′ are returned as directions of ?, while the commutor squares describe how
the states of S<,= can be modeled by those of S′<,= in a way that respects this change of interface. A type
of theorem that we hope to instantiate in future work is of the form “this dynamic structure that we’re
interested in can be run by (has a map to) this other dynamic structure that we already understand well.”
Example 3.9. For a fixed polynomial ?, there is a terminal dynamic PRO with interface ?, which we
denote S?!; here S?!

<,= is the terminal [?⊗< , ?⊗=]-coalgebra for each <,= ∈ N.
A state in S?! is a (not necessarily finite) [?⊗< , ?⊗=]-tree. By this we mean a tree co-inductively

defined by a root node labeled with a polynomial map ) : ?⊗<→ ?⊗= together with an arrow—whose
source is the root and whose target is another [?⊗< , ?⊗=]-tree—assigned to each tuple(

(�1 , . . . , �<), 81 , . . . , 8=
)
∈ ?⊗<(1)× ?⊗=[)(�1 , ..., �<)] (12)

The action of such a tree is simply the map ) labeling its root, and the update sends a tuple as in (12)
to the target of its assigned arrow.

The idea is that the state-set of the terminal dynamic PRO encodes all possible trajectories along
different actions, and this coalgebra is terminal because from any other coalgebra there is a map to S?!

<,=

sending each state to the tree whose root is labeled by the action of the state and whose edges from the
root go to the trees for each of the state’s possible updates.

To define a dynamic PRO structure on the terminal coalgebra S?!, it only remains to define maps
of coalgebras as in Eq. (10), and these are all taken to be the unique map to the terminal [?⊗< , ?⊗=]-
coalgebra; the equations hold automatically. This is the terminal dynamic PRO with interface ? because
for any other such dynamic PRO there is a morphism given by the identity map on ? and with commutor
squares to S?!

<,= the unique map to the terminal [?⊗< , ?⊗=]-coalgebra. In other words, S?! uniquely runs
any other dynamic PRO with interface ?. ♦

4 Dynamic Structures in Nature

Our main results are that dynamic structures describe phenomena we see instantiated around us. In this
paper, we focus on deep learning and a prediction market in which the reputations of various guess-
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makers evolve based on how successful they are.

4.1 The prediction market dynamic operad

Fix a finite set -, elements of which we call outcomes and intuit to be “all equally likely”, define the set
Δ+
-

of guesses on - as6

Δ+- B

{
� : -→ (0,1]

����� 1 =
∑
G

�(G)
}

Let Δ+ denote the operad of finite nowhere-zero probability distributions, where Δ+
#

is defined as above
with the natural number # regarded as the #-element set. Then Δ+

-
is an algebra for it: for any � ∈ Δ#

and � ∈ (Δ+
-
)# , we define

� · � B
(
G ↦→

∑
8∈#

�8 · �8(G)
)

and it is easy to check that (� · �) ∈ Δ+
-

, i.e. its components are in bounds (� · �)(G) ∈ (0,1] and it is
normalized

∑
G(� · �)(G) = 1.

We now construct a dynamic operad with interface ?- ∈ Poly defined as:

?- B Δ+- y
-

and use the Δ+
#

as our state spaces. The idea is that a state � ∈ Δ+
#

says how much the organization trusts
each of its # members (guess-makers) relative to each other. A member’s position at a given moment is
a report of how much confidence it has in each of the --many possibilities, represented by its probability
distribution.

The action of a trust distribution � ∈ Δ+
#

is the map of polynomials ?⊗#
-
→ ?- which on positions

sends � ∈ (Δ+
-
)# to � · � and on directions sends G ∈ - to (G, ..., G) ∈ -# . The idea is that the organi-

zation aggregates its members’ predictions according to its current trust-distribution, and the outcome is
accurately communicated back to each member.

The most interesting part of the dynamic structure is how the trust distribution is updated once pre-
dictions are made and a result G ∈ - is returned. When # = 0, there’s nothing to do: Δ+0 = ∅. For
membership # ≥ 1, trust distribution � ∈ Δ+

#
, guesses � ∈ (Δ+

-
)# , and outcome G ∈ -, we define the

updated trust distribution �(G) ∗� ∈ Δ+
#

as

�(G) ∗�B
(
8 ↦→ �8(G)�8∑

9 �9(G)�9

)
.

Finally, we describe the operadic structure maps. As Δ+1 is a singleton set whose action is the identity
on ?- , the identitor {id?- } → Δ+1 is an isomorphism. The operadic compositor is given by the usual
operad structure on (nowhere-zero) distributions:

Δ+# ×Δ
+
"1
× · · · ×Δ+"#

→ Δ+∑
8"8

(�, �1 , . . . , �# ) ↦→ �◦ � B
(
(8 , 9) ↦→ �8�9

)
.

6We assume that each guess assigns a nonzero probability to each possible outcome, which avoids the issues of dividing
by zero when updating or permanent loss of a guess-maker’s reputation. This should be interpreted as both humility and good
strategy on the part of the guess-makers.
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Theorem 4.1. The maps defined above are maps of coalgebras and satisfy the coherence equations of a
dynamic operad described in Definition A.2.

This is proven in Appendix B.

4.2 The gradient descent dynamic PRO

Deep learning uses the algorithm of gradient descent to optimize a choice of function, based on external
feedback on its output. This naturally fits into the paradigm of dynamic structures, since functions
R< → R= can form the states of a polynomial coalgebra, with the feedback providing the information
needed to update the choice of function. These functions can be composed and juxtaposed in a way that
preserves the updates. That is, the composite of gradient descenders is a gradient descender.

Definition 4.2. For the rest of this section, we will use the state sets

(<,= B
{
(" ∈ N, 5 : R"+<→ R= , ? ∈ R")

�� 5 is differentiable
}
. ♦

The idea is that these states are the possible parameters among which a gradient descender is meant
to find the optimal choice, while 5 dictates how the parameter affects the resulting function 5 (?,−).
In the dynamics of these states described below, only the value of the parameter ? will be updated;
the parameter-space dimension " and the parameterized function 5 will remain fixed, though network
composition of gradient descenders will involve combining these data in nontrivial ways. Fix & > 0.

For every G ∈ R, let )GR denote the tangent space at G; for all practical purposes )GR can be regarded
as simply R, but in both the description of polynomials as bundles and the intuition for this example it
makes sense to use the tangent space. We proceed to define a dynamic PRO with interface C B

∑
G∈Ry

)GR

and coalgebras S<,= which update the state sets (<,= from Definition 4.2 using gradient descent. The
PRO structure maps encode how networks of gradient descenders can be composed into a single gradient
descender with a larger parameter space.

Definition 4.3. The [C⊗< , C⊗=]-coalgebra structure on (<,= is given by
• On positions, the action act�

", 5 ,?
: R<→ R= is given by 5 (?,−).

• For G ∈R< , the action act�
", 5 ,?
(G,−) : )5 (?,G)R=→)GR< on directions sends H ∈)5 (?,G) to�<(� 5 )> ·

H.
• The update function upd�

", 5 ,?
sends G ∈ R< and H ∈ )5 (?,G) to (", 5 , ?+ &�"(� 5 )> · H) for our

fixed &. ♦

The action of a state as a map C⊗< → C⊗= is given by applying the parameterized function 5 with
the parameter ?, resulting in a function R<→ R= as desired. The transpose (� 5 )> of the derivative of
5 sends a feedback vector H ∈ )5 (?,G)R= , which can be interpreted as the difference in R= between the
“correct” result for G and the current approximation 5 (?, G), to the corresponding “correction” to (?, G)
in R"+< . The projection of this correction to )GR< provides the action of the state on directions, which
in a network will then be further propagated back to the gradient descender which had output G. The
projection to )?R" provides the direction and magnitude in which to update the parameters (scaled by
the “learning rate” &).
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Thus far, we have provided the data of the polynomial C and the [C⊗< , C⊗=]-coalgebras S<,= needed to
define a dynamic PRO. We now define the identitor, compositor, and productor morphisms of coalgebras
presented by the squares in Definition 3.7.

• The identitors {idC⊗= } → S=,= send the unique state in the domain to the state

(0, idR= ,0) ∈ (=,= .

• The compositors Sℓ ,< #S<,=→ Sℓ ,= send the pair ((!, 5 , ?), (",, , @)) to(
"+!, ,(−, 5 (−,−)) : R"+!+ℓ

id× 5
−−−→ R"+<

,
−→ R= , (@, ?) ∈ R"+!

)
.

• The productors S<,= ⊗ S<′,=′→ S<+<′,=+=′ send the pair ((", 5 , ?), ("′, 5 ′, ?′)) to

("+"′, ( 5 , 5 ′), (?, ?′)).

These structure maps ensure that whenever two gradient descenders are combined in series or parallel,
the resulting composite descender retains the parameter spaces of both. Likewise when the input or
output of a descender is wired past some other descender in a network, it does not contribute any new
parameters and merely preserves its input/output until plugged into a descender. The following is proven
in Appendix B.

Theorem 4.4. The maps defined above are maps of coalgebras and satisfy the coherence equations of a
dynamic PRO described in Definition A.3.

A Coherence Equations

We now present the equations that must be satisfied by the structure maps in dynamic categories, operads
and PROs. While we only provide the equations for the single-object variant of dynamic multicategories
and monoidal categories, respectively, the equations in the general case are entirely analogous.

Definition A.1. The equations between the identitors and compositors in a dynamic category are as
follows:

• The left and right unit laws

?0 ?0 ?1

?0 ?0 ?1

?0 ?

≈

{id?0 } ≈

S0,1

≈

S0,0

≈

S0,1

≈

S0,1

=

?0 ?1

?0 ?1

≈

S0,1

≈

S0,1

=

?0 ?1 ?1

?0 ?1 ?1

?0 ?

≈

S0,1

≈

{id?1 }

≈

S0,1

≈

S1,1

≈

S0,1

(13)
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• The associativity law

?0 ?1 ?2 ?3

?0 ?2 ?3

?0 ?3

≈

S0,1

≈

S1,2

≈

S2,3

≈

S0,2

≈

S2,3

≈
S0,3

=

?0 ?1 ?2 ?3

?0 ?1 ?3

?0 ?3

≈

S0,1

≈

S1,2

≈

S2,3

≈

S0,1

≈

S1,3

≈

S0,3

(14)

♦

We now present the equations for dynamic operads. These equations derive directly from the defini-
tion of operads, namely the associativity and unitality of operadic composition, but unlike the equations
above only involve a single polynomial ?.

Definition A.2. The equations between the identitors and compositors in a dynamic operad are as fol-
lows:

• The left and right unit laws

?⊗= ?⊗= ?

?⊗= ?⊗= ?

?⊗= ?

≈

{id?}⊗=

≈

S=

≈

S⊗=1

≈

S=

≈

S=

=

?⊗= ?

?⊗= ?

≈

S=

≈

S=

=

?⊗= ? ?

?⊗= ? ?

?⊗= ?

≈

S= ≈

{id?}

≈

S=

≈

S1
≈

S=

(15)

• The associativity law

?⊗ℓ1,1 ⊗ · · · ⊗ ?⊗ℓ=,<= ?⊗<1 ⊗ · · · ⊗ ?⊗<= ?⊗= ?

?⊗(
∑
9 ℓ1, 9) ⊗ · · · ⊗ ?⊗(

∑
9 ℓ=,9) ?⊗= ?

?⊗(
∑
8 , 9 ℓ8 , 9) ?

o

≈

⊗
8 , 9 Sℓ8, 9

≈

⊗
8 S<8 ≈

S=

o

≈

⊗
8 S

∑
9 ℓ1, 9 ≈

S=

≈

S∑
8 , 9 ℓ8, 9

= (16)
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?⊗ℓ1,1 ⊗ · · · ⊗ ?⊗ℓ=,<= ?⊗<1 ⊗ · · · ⊗ ?⊗<= ?⊗= ?

?⊗ℓ1,1 ⊗ · · · ⊗ ?⊗ℓ=,<= ?⊗(
∑
8<8) ?

?⊗(
∑
8 , 9 ℓ8 , 9) ?

≈

⊗
8 , 9 Sℓ8, 9

o

≈

⊗
8 S<8 ≈

S=

o

≈⊗
8 , 9 Sℓ8, 9

≈

S∑
8 <8

≈

S∑
8 , 9 ℓ8, 9

♦

The equations for dynamic PROs below are similarly derived from the definition of monoidal cate-
gories, namely that composition and products of arrows are associative and unital (giving the associa-
tivity and unitality equations for compositors and productors) and products are functorial (giving the
interchange equations).

Definition A.3. The equations between the identitors, compositors, and productors in a dynamic PRO
are as follows:

• The identitor interchange law

?⊗= ⊗ ?⊗=′ ?⊗= ⊗ ?⊗=′

?⊗= ⊗ ?⊗=′ ?⊗= ⊗ ?⊗=′

?⊗(=+=
′) ?⊗(=+=

′)

≈

{id?⊗= }⊗{id?⊗=′ }

o

≈S=,=⊗S=′ ,=′

o

≈

S=+=′ ,=+=′

=

?⊗= ⊗ ?⊗=′ ?⊗= ⊗ ?⊗=′

?⊗(=+=
′) ?⊗(=+=

′)

?⊗(=+=
′) ?⊗(=+=

′)

o
≈

{id?⊗= }⊗{id?⊗=′ }

o
≈{id

?⊗(=+=′) }

≈

S=+=′ ,=+=′

o

(17)

• The compositor interchange law

?⊗ℓ ⊗ ?⊗ℓ ′ ?⊗< ⊗ ?⊗<′ ?⊗= ⊗ ?⊗=′

?⊗(ℓ+ℓ
′) ?⊗(<+<

′) ?⊗(=+=
′)

?⊗(ℓ+ℓ
′) ?⊗(=+=

′)

o

≈

Sℓ ,<⊗Sℓ′ ,<′

o

≈

S<,=⊗S<′ ,=′

o

≈

Sℓ+ℓ′ ,<+<′

≈

S<+<′ ,=+=′

≈

Sℓ+ℓ′ ,=+=′

= (18)
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?⊗ℓ ⊗ ?⊗ℓ ′ ?⊗< ⊗ ?⊗<′ ?⊗= ⊗ ?⊗=′

?⊗ℓ ⊗ ?⊗ℓ ′ ?⊗= ⊗ ?⊗=′

?⊗(ℓ+ℓ
′) ?⊗(=+=

′)

≈

Sℓ ,<⊗Sℓ′ ,<′

≈

S<,=⊗S<′ ,=′

o

≈Sℓ ,=⊗Sℓ′ ,=′

o

≈

Sℓ+ℓ′ ,=+=′

• The compositor associativity law

?⊗: ?⊗ℓ ?⊗< ?⊗=

?⊗: ?⊗< ?⊗=

?⊗: ?⊗=

≈

S:,ℓ

≈

Sℓ ,<

≈

S<,=

≈

S:,<

≈

S<,=

≈

S:,=

=

?⊗: ?⊗ℓ ?⊗< ?⊗=

?⊗: ?⊗ℓ ?⊗=

?⊗: ?⊗=

≈

S:,ℓ

≈

Sℓ ,<

≈

S<,=

≈

S:,ℓ

≈

Sℓ ,=

≈

S:,=

(19)

• The compositor unit laws

?⊗< ?⊗< ?⊗=

?⊗< ?⊗< ?⊗=

?⊗< ?⊗=

≈

{id?⊗< }

≈

S<,=

≈

S<,<

≈

S<,=

≈

S<,=

=

?⊗< ?⊗=

?⊗< ?⊗=

≈

S<,=

≈

S<,=

=

?⊗< ?⊗= ?⊗=

?⊗< ?⊗= ?⊗=

?⊗< ?⊗=

≈

S<,=

≈

{id?⊗< }

≈

S<,=

≈

S=,=
≈

S<,=

(20)

• The productor associativity law

?⊗< ⊗ ?⊗<′ ⊗ ?⊗<′′ ?⊗= ⊗ ?⊗=′ ⊗ ?⊗=′′

?⊗(<+<
′) ⊗ ?⊗<′′ ?⊗(=+=

′) ⊗ ?⊗=′′

?⊗(<+<
′+<′′) ?⊗(=+=

′+=′′)

o

≈

S<,=⊗S<′ ,=′⊗S<′′ ,=′′

o

o

≈S<+<′ ,=+=′⊗S<′′ ,=′′

o

≈

S<+<′+<′′ ,=+=′+=′′

= (21)
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?⊗< ⊗ ?⊗<′ ⊗ ?⊗<′′ ?⊗= ⊗ ?⊗=′ ⊗ ?⊗=′′

?⊗< ⊗ ?⊗(<+<′′) ?⊗= ⊗ ?⊗(=′+=′′)

?⊗(<+<
′+<′′) ?⊗(=+=

′+=′′)

o

≈

S<,=⊗S<′ ,=′⊗S<′′ ,=′′

o

o

≈S<,=⊗S<′+<′′ ,=′+=′′

o

≈

S<+<′+<′′ ,=+=′+=′′

• The productor unit laws

?⊗< ?⊗=

?⊗0 ⊗ ?⊗< ?⊗0 ⊗ ?⊗=

?⊗0 ⊗ ?⊗< ?⊗0 ⊗ ?⊗=

?⊗< ?⊗=

o

≈

S<,=

o

≈{id
?⊗0 }⊗S<,=

o

≈S0,0⊗S<,=

o

≈

S<,=

o

=

?⊗< ?⊗=

?⊗< ?⊗=
≈

S<,=

≈
S<,=

=

?⊗< ?⊗=

?⊗< ⊗ ?⊗0 ?⊗= ⊗ ?⊗0

?⊗< ⊗ ?⊗0 ?⊗= ⊗ ?⊗0

?⊗< ?⊗=

o

≈

S<,=

o

≈S<,=⊗{id?⊗0 }

o

≈S<,=⊗S0,0

o

≈

S<,=

o

(22)

♦

B Proofs of Dynamic Structure

We now proceed to prove that the coalgebras and structure maps defined above for organized predic-
tions and gradient descent form dynamic structures. In each case, it suffices to show that the structure
maps on states preserve coalgebra structure, and that the equations in Definition A.2 or Definition A.3,
respectively, are satisfied.

Proof of Theorem 4.1. The operad equations are all satisfied as Δ+ is known to be an operad, and mor-
phisms of coalgebras are entirely determined by a function between the state sets. It then remains only
to show that the identitor and compositor as defined in Section 4.1 commute with actions and updates.
This is clearly true for the identitor as it is an isomorphism, so we focus on the compositor.

For the compositor to commute with actions on positions is the claim that Δ+
-

is an algebra for the
operad Δ+; it means that for � ∈ Δ+

#
, �1 ∈ Δ+"1

, ..., �# ∈ Δ+"#
, and �8 , 9 ∈ Δ+- for 8 = 1, ..., # and

9 = 1, ...,"8 , we have ∑
8

�8
©«
∑
9

�9�8 , 9
ª®¬ =

∑
8 , 9

(�8�8 , 9)�8 , 9 ,

which is clearly the case.
The compositor commutes with actions on directions because in (S"1 ⊗ · · · ⊗S"#

) #S# the action of
(�1 , ..., �# ,�) sends an outcome

G ∈ - = ?-[� · (� · �)]
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to
(G, ..., G) ∈ -# = ?⊗#

-
[�1 · �1 , ..., �# · �# ]

and then to
(G, ..., G) ∈ -

∑
8"8 = ?

⊗∑
8"8

-
[�1,1 , ...,�#,"#

],

while in S∑
8"8

the action of �◦ � sends G ∈ - to (G, ..., G) ∈ -
∑
8"8 directly.

It then only remains to show that the compositor commutes with updates. Using the shorthand nota-
tion � = (�1 , ..., �# ) and � = (�1 , ...,�# ) = (�1,1 , ...,�#,"#

) already employed above, to show that the
composite of the updates of �, � agrees with the update of the composite �◦ � amounts to the equation

�(G) ∗ (�◦ �) =
(
(� · �)(G) ∗�

)
◦
(
�(G) ∗ �

)
(23)

for any G ∈ -. Here � · � denotes (�1 · �1 , ..., �# · �# ) and �(G) ∗ � denotes (�1(G) ∗ �1 , ...,�# (G) ∗ �# ).
On the (8 , 9)-component of these distributions, (23) unwinds to

�8 , 9(G)(�8�8 , 9)∑
8′, 9′ �8′, 9′(G)(�8′�8′, 9′)

=

( ∑
9′(�8 , 9′�8 , 9′(G))�8∑

8′
∑
9′(�8′, 9′�8′, 9′(G))�8′

) (
�8 , 9(G)�8 , 9∑
9′ �8 , 9′�8 , 9′(G)

)
,

which is easily seen to hold by extracting �8 from the first fraction on the right hand side and cancelling
the sums over 9′. �

Proof of Theorem 4.4. The unit and associativity equations follow immediately from associativity and
unitality of addition, cartesian products, and function composition. The interchange equations follow
from the preservation of 0 under addition and identity functions under cartesian products, the analogous
interchange property of function composition and cartesian products of functions, and the fact that the
compositors and productors act the same way on the parameters and their dimension.

It then remains only to show that the identitors, compositors, and productors are morphisms of coal-
gebras. This is immediate for the productors, as each component of the action and update functions
respects the cartesian products of functions and parameters that define them, so we proceed only for the
identitors and compositors.

For the identitors, the state (0, idR= ,0) acts as the identity function on R= and on directions by the
transpose of its derivative, which is also the identity. The updates in the coalgebras S=,= only modify the
parameter ?, so as the parameter here is 0-dimensional this state is never changed by the update function,
as is the case in the coalgebra {idC⊗= }. Therefore this function is a map of coalgebras.

The compositors preserve the component of the action on positions as, for states

(! ∈ N, 5 : R!+ℓ , ? ∈ R!) and (" ∈ N,, : R"+< , @ ∈ R"),

we have
,(@,−)◦ 5 (?,−) = ,(−, 5 (−,−))(@, ?,−).

This may seem like a trivial rewriting, but it illustrates how the compositor was defined in order for the
action to be preserved, as on the left we have the composite of the actions on positions as in Sℓ ,< #S<,= ,
and on the right we apply the compositor and take the action of the resulting state in Sℓ ,= .
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To show that the compositor preserves both the action on directions and the update we note that by
the chain rule, for G ∈ Rℓ and I ∈ ),(@, 5 (?,G)),

� (,(−, 5 (−,−)))> I = � 5 > ·�<(�,> · I) ∈ )(?,G)R!+ℓ .

Applying �ℓ to both sides above shows that the compositor preserves the action on directions, as on
the left we have the action on directions after applying the compositor and on the right we have the
composition of the actions of (!, 5 , ?) and (",, , @) on directions as in Sℓ ,< #S<,= .

Finally for updates, we observe by the chain rule that the update rule in Sℓ ,= agrees with that in
Sℓ ,< # S<,= under the compositor, as either way for G, I as above the composite state of (!, 5 , ?) and
(",, , @) updates to(

"+!,,(−, 5 (−,−)),
(
?+ &�!(� 5 > ·�<(�,> · I)), @+ &�"(�,> · I)

) )
. �
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In this paper we generalize the framework proposed by Gour and Tomamichel regarding extensions
of monotones for resource theories. A monotone for a resource theory assigns a real number to each
resource in the theory signifying the utility or the value of the resource. Gour and Tomamichel studied
the problem of extending monotones using set-theoretical framework when a resource theory embeds
fully and faithfully into the larger theory. One can generalize the problem of computing monotone
extensions to scenarios when there exists a functorial transformation of one resource theory to another
instead of just a full and faithful inclusion. In this article, we show that (point-wise) Kan extensions
provide a precise categorical framework to describe and compute such extensions of monotones.
To set up monontone extensions using Kan extensions, we introduce partitioned categories (pCat)
as a framework for resource theories and pCat functors to formalize relationship between resource
theories. We describe monotones as pCat functors into ([0,∞],≤), and describe extending monotones
along any pCat functor using Kan extensions. We show how our framework works by applying
it to extend entanglement monotones for bipartite pure states to bipartite mixed states, to extend
classical divergences to the quantum setting, and to extend a non-uniformity monotone from classical
probabilistic theory to quantum theory.

1 Introduction

Resource theories [19, 6, 9] in physics model systems in which certain operations considered to be
‘free of cost’ among of the set of all operations. For example, placing a glass of chilled water at room
temperature warms up the water to the ambient temperature. In this context, operations that change the
temperature of the water to be in equilibrium with the ambient temperature are considered to be free. In
order to produce a “resourceful state” — for example, a glass of chilled water — one requires non-free
transformations, such as a fridge, which consumes electricity. Resource theories have been successfully
used to study, among other examples, thermodynamical systems [13, 25], entanglement [20, 16], and
coherence [36].

A central question in the resource-theoretic modelling of systems is: given two resources, is there
a free transformation to convert one resource into the other? The answer to this question imposes a
preorder on resources which captures their value or usefulness. Intuitively, a resource is more valuable
than another if, by possessing the former, we are given access to a larger set of resources including the
latter through free transformations. This not a partial order, because their may be different resources
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that can be converted freely into each other. Such resources are considered equivalent. In this way, we
can set up a partial order on the equivalence classes of resources. One way to define such an order is
to quantify resources by introducing monotones, which are a order-preserving maps from the set of all
resources into [0,∞] [9]. Monotones assign a value to resources that is compatible with the preorder,
viz. with their usefulness. Monotones often have a physical meaning, such as in the resource theories
of quantum thermodynamics [25], where, for systems at a fixed temperature, free energy is a monotone,
and for isolated systems, entropy is the natural monotone.

Given a monotone M for a resource theory which embeds in a larger theory, a natural question to
ask is whether the monotone M for the smaller theory can be used to quantify the resources in the larger
resource theory. This question arises from the observation that that resources exclusive to the larger
theory can possibly be converted to resources contained in the smaller theory, and vice versa. It turns out
that one can always compute the optimal upper and lower bound for the value of every resource in the
larger theory. In other words, it is possible to extend the monotone M to give optimal upper and lower
bounds respectively on the value of resources in the larger theory.

In [17], Gour and Tomamichel presented a set-theoretical framework for extending monotones from
a subset of resources to the entire set of resources. A similar construction was also introduced by Gonda
and Spekkens in [12]. Given a monotone M over a subset of states, they compute ‘minimal’ and ‘maxi-
mal’ extensions of the monotone to the entire set of states. In this article, we show that these extensions
are special cases of more general categorical concepts, called (point-wise) left and right Kan extensions
[21, 5, 26, 30]. Kan extensions deal with optimally extending a functor F : X−→A along another functor
K : Y −→ A to give two functors: FK : Y −→ A called the left Kan extension of F along K, and FK : Y
−→ A called the right Kan extension of F along K. The right Kan extension can be interpreted as the
most conservative extension of F along K and the left Kan extension as the most liberal extension of F
along K.

We first introduce partitioned Categories (pCats) as a framework for resource theories. Partitioned
categories are categories with a chosen subcategory of free transformations. The subcategory includes
all the objects of the parent category, in other words, the inclusion of the subcategory into the parent
category is bijective on objects. Relationships between resource theories are set up as pCat functors.
In this article, since we consider monotones which are not necessarily additive, thus we do not demand
symmetric monoidal structure on pCats.

Given a resource theory, the necessary and sufficient conditions for transformations of resources can
be encoded as a pCat functor from the resource theory into a preorder. We call such a pCat functor
as a preorder collapse. A resource monotone is a preorder collapse into ([0,∞],≤). In resource theo-
ries, contravariant rather than covariant monotones are encountered more frequently, the reason being
if resource A can be transformed to resource B using only free transformation(s), then the value of A is
considered to be at least as high as the value of B. We refer to a contravariant resource monotone as an
op-monotone. The distinction between monotones and op-monotones is important in the computation
of monotone extensions. The categorical descriptions of pCats, pCat functors, preorder collapse, mono-
tones are discussed with various running examples in Section 3.1. Table 1, we briefly summarizes the
functors of resource theories introduced in this article.

Having set up monotones as pCat functors, optimal extensions of monotones along any pCat functor
are given by their left and right Kan extensions. Lemma 3.35 examines the properties of the monotone
extensions thus computed, and prove that such extensions are optimal and monotonic. In Lemma 3.37,
we show that extending a monotone along a full and faithful functor recovers the case described in [17] by
Gour and Tomamichel and by Gonda and Spekkens in [12] (therein called yield and cost constructions).
We apply the Kan extension framework for monotones to extend classical divergences to the quantum
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pCat functors functors which preserve free transformations
Preorder collapse a pCat functor whose codomain category is a preorder

Monotone a pCat functor whose codomain category is ([0,∞],≤)
Op-monotone a pCat functor whose codomain category is ([0,∞],≥)

’

Table 1: Functors for resource theories

setting, to extend bipartite pure states entanglement monotone to mixed states, and to extend Shannon
entropy as a measure of non-uniformity from classical probabilistic theory to quantum theory. Section 3.4
is dedicated to setting up the Kan extension framework for monotones, and to studying the extension
properties and its applications.

Notation: In this paper, we use bold letters X, Y, D to denote categories. We use uppercase letters to
denote both objects in the categories and functors between categories, whose meaning will be clear from
the context. Lowercase letters f ,g,h,π are reserved for maps in the categories. Let X ,Y,Z be objects,

and let X
f−→ Y , Y

g−→ Z be two arrows, we denote the composition of the two arrows X
f−→ Y

g−→ Z as f g,
and similar notations apply for the composition of functors.

2 An introduction to Kan extensions

Kan extensions [21, 5, 26, 30] are a broadly applicable notion which is quite central to category theory.
Indeed, Mac Lane in his book ‘Categories for working Mathematician’ [26] gave the chapter on Kan
extensions the title “All concepts are Kan extensions”. In this section, we provide the definition of Kan
extensions and discuss limits and colimits as an example of Kan extensions.

2.1 Left and right Kan extensions

We first provide the definition Kan extensions of a functor along another functor, and explain the univer-
sal properties.

Definition 2.1. Let F : X−→ D and K : X−→ Y be any two functors.

(i) Right Kan (minimal) extension of F along K is a functor FK : Y −→ D with a natural transfor-
mation ψ : KFK ⇒ F which is universal , see Fig. 2-(a). The right Kan extension is written as
(FK ,ψ).

(ii) Left Kan (maximal) extension of F along K is a functor FK :Y−→D with a natural transformation
ψ : F ⇒ KFK which is couniversal, see Fig. 2-(b). The left Kan extension is written as (FK ,ψ).

(a) X K //

F

FFY
FK //

ψ

��

D (b) X K //

F

FFY FK //
KS
ψ

D

Figure 1: (a) Right Kan Extension (b) Left Kan Extension

Fig. 1 shows the Kan extensions of F along K. We refer to the category D as the target, the category
X as the source categories. Functor F is extended from its source X along K. Right and Left Kan
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extensions of F along K are usually written as RanK(F) and LanK(F). However, we use the notation
introduced in [17] for resource monotone extensions for uniformity.

Let us examine the universal properties of the Kan extensions. The universal property of right Kan
extension assures that for any other functor H : Y −→ D with a natural transformation γ : KH ⇒ F ,
there exists a γ ′ : H −→ FK such that γ factors through ψ via γ ′, that is, γ = (K⊗ γ ′)ψ (See Fig. 2-(a)).
Informally, this means the right Kan extension of F along K is the most conservative extension and that
any other extension H can be transformed to FK . In this sense, FK is the minimal extension of F along
K.

Similarly the couniversal property of left Kan extension assures that for any other functor H : Y−→D
with a natural transformation δ : F ⇒ KH, there exists a δ ′ : FK −→ H such that δ factors through ψ via
δ ′, that is, γ = ψ(K⊗ γ ′) (See Fig. 2-(b)). Informally, this means that FK can be naturally transformed
to any other such H. In this sense, FK is the maximal extension of F along K.

The universal properties of Kan extensions assure that the extensions are optimal.

(a)
γ ′
��

X K //

F

FFY

H

��

FK

//

ψ

��

D

(b) KS

δ ′

X K //

F

FFY

H

��

FK

//
KS
ψ

D

Figure 2: (a) Right Kan Extension is universal (b) Left Kan Extension is couniversal

Example 2.2. The left and right Kan extensions of a functor F along a terminal functor (!) gives precisely
the limit and the colimit of F . The terminal functor maps all the objects and the maps of the domain
category to the single object and the single map in the terminal category (1) respectively. Any functor
proceeding from the terminal category chooses precisely one object and its identity morphism in the
codomain category.

(a) X ! //

F

FF1
F ! //

ψ

��

D (b) X ! //

F

FF1
F ! //

KS
ψ

D

The left Kan extension of F : X−→ 1 along the unique functor into 1 gives a colimiting cocone. The
functor F ! chooses precisely one object in D (hence we write the object as F !) which is the apex of the
cocone. The natural transformation ψ has components, ψX :!F(X)⇒ F ! for each X ∈ X.

Due to the couniversal property of ψ , for any other functor P : 1−→ D with a natural transformation
γ :!P⇒ F , there exists a unique natural transformation γ ′ : P⇒!F ! such that γ ′ψ = γ . Hence, F ! is the
limit of diagram F .
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F(A)
ϕA

&&

γA

''

// F(B)
ϕB

xx

γB

ww

F! := colimF

��
P

Suppose D is the poset (R,≤), then in the above diagram, F ! is precisely the greatest lower bound
of {F(A),F(B)}.

Similarly, the right Kan extension gives a limiting cone. F ! is referred to as the limit of diagram
F . When D is a poset F ! is the least upper bound of the subset of R chosen by F .

2.2 How to compute Kan extensions?

In Example 2.2, it was shown that the left and right Kan extensions of a functor F along the unique
functor into the terminal category are respectively the colimit and the limit of diagram F . In this section,
we show how one can compute Kan extensions of a functor when the target category is complete (has all
small limits) and cocomplete (has all small colimits) and the intermediate category is locally small (the
arrows between any two objects in the category is a small set).

Theorem 2.3. [30, Thoerem 6.2.1] Given functors F : X −→ D and K : X −→ Y, if the category D is
cocomplete, then the left Kan extension FK exists and is defined to be:

∀Y ∈ Y, FK(Y ) := colim(K ↓ Y
πK↓Y−−−→ X F−−→ D) (2.1)

with the natural transformation ψ extracted from colimiting cocones in D.
If C is complete, then the right Kan extension FK exists and is defined to be:

∀Y ∈ Y, FK(Y ) := lim(Y ↓ K
πY↓K−−−→ X F−−→ D) (2.2)

with the natural transformation ψ extracted from limiting cones in D.

Proof. (Sketch)
Suppose F : X −→ D is any functor and D is cocomplete. Then, one can compute the left Kan

extension (FK ,ψ) of F along any functor K : X−→ Y as follows:

Defining functor FK : Y−→ D:
The left Kan extension is computed on each point (object) in Y.
For each object Y in Y, consider the slice category (K ↓ Y ). The objects in the slice category are
pairs (X , f ) where,

f : K(X)−→ Y ∈ Y

and a map m : (X , f )−→ (X , f ′) in the slice category is a map m∈X such that the following triangle
commutes:

K(X)
K(m) //

f
!!

K(X ′)

f ′||
Y
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(a) πK↓Y :

Y

K(A)

K(B)

K(C)

7−→
A

B

C
∈ X

(b)

hY

K(A)

K(B)

K(C)

Y ′

K(E) K(F)

Figure 3: (a) πK↓Y projects the shaded region of (K ↓Y ) into X (in general K ↓Y is not a subcategory of
X); (b) An arrow h : Y →Y ′ ∈Y leads to the (shaded) base of above Y ′ to be included in the (shaded) base
above Y . Hence the base of the colimiting cocone of πK↓Y F includes the shaded base of the colimiting
cone of πK↓Y F inducing a unique map colim(πK↓Y F)→ colim(πK↓Y ′F)

Stated informally, the slice category contains complete information on how to arrive at an object
Y ∈ Y using objects and transformations of X. The projection functor πK↓Y chooses precisely
the subcategory of X relevant to Y , see Figure 3-(a). The left Kan extension on point Y is the
colimit of the diagram F applied to this sub-category. The couniversal cocone of the diagram
πK↓Y F has a natural transformation λ : Lim(πK↓Y F)⇒ F , with a component λX for each object
πK↓Y ( f ,K(X)) := X ∈ X.
The left extension FK is then defined as follows:

• For all objects Y ∈ Y, F(Y ) := colim(πK↓Y F).
• For all maps h : Y −→ Y ′, colim(πK↓Y F)−→ colim(πK↓Y ′F) is the unique arrow induced by h,

see Figure 3-(b).

Defining the natural transformation ψ : F ⇒ KFK :
For all X ∈X, ψX is the component lim(πK↓KX F)−→ F(X) of the colimiting cocone corresponding
to the initial object (1KX ,KX) ∈ (K ↓ KX).

Computing right Kan extension is dual to computing left Kan extensions. If F :X−→D is any functor
and D is complete (contains all small limits), then one can compute the right Kan extension FK ,ψ) of F
along any functor K : X−→Y by replacing the slice construction by the coslice construction, and colimits
by limits in the above procedure.

Corollary 2.4. If (FK ,ψ) is the right Kan extension of a functor F along any full and faithful functor
K, then the natural transformation ψ is an isomorphism.

Similarly, if (FK ,ψ) is the left Kan extension of a functor F along any full and faithful functor K,
then the natural transformation ψ is an isomorphism.

Proof. Note that for all X ∈ X, KF(X) = F(K(X)) := lim(πK(X)↓K)
Since K is full and faithful, every K( f ) : K(X)−→ K(X ′) ∈ Y corresponds to a unique f : X −→ X ′ ∈

X. Then for all X ∈ X, (KX ,1KX) is an initial object in the coslice category (KX ↓ K). Thereby, the
diagram πKX↓K contains all the maps radiating from X . Hence, lim(πKX↓KF) = F(X), thereby, ψ is an
isomorphism.
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The argument for the left Kan extension is dual to the above proof.

We use this procedure to compute extensions of resource monotones which are functors into a posetal
category (a poset considered as a category), see Section 3.4.

3 Kan extensions of Resource Measures

3.1 Resource Theories as partitioned Categories

We introduce partitioned Categories as a framework for resource theories, and functors for partitioned
Categories to describe relationships between resource theories.

Definition 3.1. A partitioned category (pCat) (X,Xf) consists of a category X and a chosen subcate-
gory Xf of free transformations with the inclusion being bijective on objects.

The objects of the category are interpreted as resources and the maps to be resource transforma-
tions. The subcategory includes all objects and those transformations which are designated to be free.

The following are a few examples of resource theories as pCats:

Randomness

Cryptographic protocols use randomness as an essential resource for establishing secure communication
of devices by generating random keys. The degree of randomness determines how secure the communi-
cation channel is. Randomness is also used in computer algorithms to solve certain problems. In other
words, randomness is an essential computational resource of practical use. Entropy is used as measure
of randomness: in particular, Shannon entropy quantifies randomness in that it expresses the average sur-
prisal on the outcome of a random experiment. Entropy has been studied in the context of randomness
using the category FinProb (renamed below as Detmn) [1] and [10, Example 2.5]. The following is a
resource theory of randomness:

Example 3.2. (Rand,Detmn):
(Detmn is the chosen sub-category of free transformations in Rand)

Resources: (X , p) where X is a finite set and p is a probability distribution over X .
X can be interpreted of as a set of possible states of a system and p be the probability distribution
over the states.

Resource Transformations: M : (X , p)−→ (Y,q) is a real |X |× |Y | row stochastic matrix (rows sum to
1) such that pM = q.
A resource transformation M : (X , p)−→ (Y,q) is row stochastic if and only if for all x ∈ X , Mx is
a probability distribution: suppose the system is in state x, then the stochastic process produces
states y ∈ Y with probability Mxy.The requirement that pM = q means that under the stochastic
process M, the probability of Y being in state y after process M on X is given by ∑x∈X Mxy px.

Identity transformations: Identity matrices

Composition: Suppose (X , p) M−→ (Y,q) N−→ (Z,s), then (X , p) MN−−→ (Z,s) is defined as the matrix multi-
plication

Free transformations: A resource transformation (X , p) M−→ (Y,q) is free if it is deterministic, that is,
M is simply a function X −→ Y . Hence, for all x ∈ X ,y ∈ Y , Mxy ∈ {0,1}
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Non-uniformity

Pure states represent states on which the experimenter has maximum information. These conditions are
often very hard to achieve in concrete settings due to the presence of external noise. In such cases, the
state is called mixed, and can be expressed as a convex combination of pure states. From this perspective,
it is clear that pure states represent the maximal resource and the closer a state is to a pure state, the more
resourceful it is. Therefore, the least resourceful state of any system is the maximally mixed state, which
can be expressed as a uniform probability distribution over the states of the system. [15]

Example 3.3. (Rand,Uniform):

Resources, transformations, identity and composition: Same as example 3.2

Free transformation: A map (X , p) U−→ (Y,q) is free if U is a uniform matrix. A row stochastic matrix
(X , p) M−−→ (Y,q) is uniform if for all y ∈ Y ,

∑
x∈X

Mxy = 1

The columns of M sum to |X |/|Y |. When U is a square matrix, it is doubly stochastic.

Note that, a uniform probability distribution u := (1/n,1/n,1/n, · · · ,1/n) is simply the uniform ma-
trix ({∗},(1))−→ (X ,u), which is u itself.

(Rand,Uniform) consists of classical probabilistic states. A non-uniformity theory based on quantum
states is as follows:

Example 3.4. (qRand,qUniform)

Resources: (ρ,H) where ρ : H −→H ∈ L(H) is a quantum state, also known as density matrix (a positive
semi-definite operator with trace 1), and H is a finite-dimensional Hilbert space.

Resource transformations: (ρ,H)
E−−→ (σ ,K) is a quantum channel E : L(H)−→ L(K) such that

E (ρ) = σ

Composition and Identity transformations: Usual composition of quantum channels and identity chan-
nels

Free transformations: Unital quantum channels i.e., E : L(H) −→ L(K) such that E
(

1
dim(H)1H

)
=

1
dim(K)1K , where 1H ∈ L(H) is the identity matrix. In other words, unital channels preserve maxi-
mally mixed states.

Entanglement

Entanglement is one of the most important quantum resources, and it is used in several communication
scenarios, such as quantum teleportation [3] or dense coding [4]. It is known that local operations and
classical communication (LOCC) cannot increase the entanglement of a quantum state [20]. Hence, when
entanglement is considered to be a resource, LOCC operations are precisely the free transformations of
this resource theory. The basic setting in which entanglement is studied involves quantum states over
two systems, which is referred to as “bipartite entanglement”.

A resource theory of bipartite entanglement is constructed as follows. The following resource theory
is obtained by applying the coslice (state) construction on [10, Example 3.7]:

Example 3.5. (Bip,LOCC):
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Resources: ρ ∈ L(H⊗K) is a quantum state which is a positive semi-definite operator with trace 1, and
H, K are finite-dimensional Hilbert spaces.

Resource transformations: ρ
E−−→ σ is a quantum channel (completely positive trace preserving map)

such that E (ρ) = σ

Free transformations: Local operations and classical communication

The composition is the usual composition of identity channels.

Distinguishability

In some situations it is important to consider pairs of quantum states and evaluate how different they are
from each other. To this end, various quantifiers have been defined, such as the trace distance, the fidelity
[38] or quantum divergences [17, 14]. These quantifiers all show that, whenever the same channel is
applied to each element of a pair of quantum states, in general our ability to distinguish the resulting
states is decreased. This suggests setting up a resource theory of the distinguishability, also known as
quantum relative majorization [29, 7].

A resource theory of quantum distinguishability is given as follows [17, 14].

Example 3.6. (Distinguish, Processing):

Resources : ((ρ,σ),H) are pairs of quantum states, that is, ρ,σ ∈ L(H) where H is a finite-dimensional
Hilbert space.

Resource transformations : (E1,E2) : ((ρH ,σH),H) −→ ((ρK ,σK),K) are pairs of quantum channels
E1,E2 : L(H)−→ L(K) such that E1(ρH) = ρK and E2(σH) = σK

Composition and identity transformations : (E1,E2)(E3,E4) := (E1E3,E2E4) and identity transforma-
tions are given by pairs of identity channels

Free transformations: (E1,E2) such that E1 = E2

3.2 Relationships between Resource Theories as pCat functors

Now that we have formalized resource theories as pCats, we can formalize the relationship between
resource theories as functors of pCats. For example, classical theories of the corresponding quantum
resource theories. Physical theories defined on pure states are considered as subtheories of corresponding
mixed state theories. Such relationships can be formalized as functors of pCats.

Definition 3.7. A functor of partitioned categories (pCat), F : (X,Xf) −→ (Y,Yf), is a functor F : X
−→ Y such that if f ∈ Xf then F( f ) ∈ Yf i.e., the functor preserves free transformations.

F : (X,Xf) being a functor means that it preserves the identity transformations: F(1A) = 1F(A), and
it preserves the composition in X: F( f g) = F( f )F(g).

Figure 4 is a schematic of a pCat functor. The triangles represent non-free transformations, and the
hollow circles represent free transformations. As one can see, a pCat functor may or may not preserve a
non-free transformation.

Definition 3.8. A pCat functor F : (X,Xf) −→ (Y,Yf) is full if F : X −→ Y is full, and F is faithful if
F : X−→ Y is faithful.
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Figure 4: Schematic for functor of pCats

Let us look at a few examples of full and faithful pCat functors. For a quantum system, pure states
are considered to be a subset of mixed states since mixed states are convex combination of pure states.
The resource theory of pure states bipartite entanglement embeds in the general theory of bipartitle
entanglement through an inclusion functor, see Example 3.9. Lemma 3.10 proves that this inclusion is a
pCat functor.

Example 3.9. The resource theory of bipartite pure-state entanglement, (PureBip,LOCCp) has pure
quantum states ρ , where ρ ∈ L(H⊗K), as resources. A resource transformation is a quantum channel
E : ρ −→ σ such that E (ρ) = σ where σ ∈ L(H ′⊗K′). The free transformations are LOCC operations
between pure bipartite states, here denoted as LOCCp.

Lemma 3.10. The inclusion i : PureBip ↪→ Bip defined to be identity on objects and maps is a full and
faithful pCat functor i : (PureBip,LOCCp) ↪→ (Bip,LOCC).

Proof. The inclusion is a pCat functor since LOCCp ↪→ LOCC. Moreover, i : PureBip ↪→ Bip is full and
faithful inclusion.

Classical theories are considered as sub-theories of quantum theories. This gives an inclusion functor
classical distinguishability into quantum distinguishability. The following is the resource theory for
classical distinguishability and is referred to as classical relative majorization in [31, 32, 33, 29, 7]:

Example 3.11. In the resource theory of classical distinguishability, (cDistinguish,cProcessing), a re-
source ((p,q),X) is a pair of probability distributions p := (p1, · · · , p|X |) and q := (q1, · · · ,q|X |) over a
finite set X . Resource transformations (M,M′) : ((p,q),X) −→ ((p′,q′),Y ) where M and M′ are pairs of
row stochastic matrices such that pM = p′ and qM′ = q′. Free transformations are (M,M′) such that
M = M′.

Example 3.12. The inclusion i : cDistinguish ↪→ Distinguish is defined as follows:

• For all resources ((p,q),X) ∈ cDistinguish, i((p,q),X) := ((ρ p,ρq),C|X |) where [ρ p]i j = δi j pi ,
1≤ i≤ |X |,1≤ j≤ |X |. ρ p and ρq are diagonal density matrices with the probability distributions
p and q as their diagonals respectively.

• Given a transformation (M,M′) : ((p,q),X)−→ ((p′,q′),Y ), i((M,M′)) := (E ,E ′) where E and E ′

are determined by M and M′ respectively as follows.
For any quantum state (positive semi-definite operator of trace 1 on a Hilbert Space H),

E (ρ) = ∑
i, j

Bi jρB†
i j (3.1)

where Bi j =
√

Mi j| j〉〈i| where 1≤ i, j≤ |X | and B†
i j is its adjoint (cf. [38]). (| j〉 is a column vector

with 1 at position j and zero elsewhere.)
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Lemma 3.13. The inclusion i : cDistinguish ↪→ Distinguish defined in Example 3.12 is full and faithful
(or fully faithful) pCat functor i : (cDistinguish,cProcessing) ↪→ (Distinguish,Processing).

Example 3.14. Closely, related to Example 3.12, is the inclusion of Rand into qRand. The inclusion
i : Rand ↪→ qRand is defined as follows: for all (p,X) ∈ Rand, i((p,X)) := (ρ p,C|X |), and for row
stochastic matrices M ∈ Rand, i(M) is defined as in eqn (3.1).

Lemma 3.15. The inclusion i :Rand ↪→ qRand defined in Example 3.14 is a full and faithful pCat functor
i : (Rand,Uniform) ↪→ (qRand,qUniform).

3.3 Preorder collapse and monotones

One of the major goals of resource theories is to the identify necessary and sufficient conditions for the
existence of a free transformation between two resources. Once such conditions are identified, one can
choose to ‘forget’ the different possible ways in which resource A can be converted to resource B freely,
and only ‘remember’ if there exists a free transformation from A to B.

The necessary and sufficient conditions for the existence of a free transformation between pairs
of resources define an equivalence class on the resource theory (freely inter-convertible resources are
considered to be equivalent) and a preorder on the equivalence classes. Such necessary and sufficient
conditions can be encoded into a pCat functor from the resource theory. On applying this functor, the
resource theory collapses into a preorder:

Definition 3.16. Given a resource theory (X,Xf) and a preorder (ob(X),order) where ob(X) refers to
the set of objects of X, a preorder collapse of the resource theory (X,Xf) is a pCat functor (X,Xf)
−→ (chaosX,orderX), where chaosX is the indiscrete (chaotic) category with the same objects as X, and
for any two objects A,B ∈ chaosX, the transformation A−→ B ∈ orderX if “A order B” is true.

Let us look at an example of a preorder collapse of (Randop,Uniform) determined by the majorization
relation [27]. Suppose p := (p1, p2, p3, · · · , pn)

↑ and q := (q1,q2,q3, · · · ,qm)
↑ such that the elements of

the distribution are in increasing order. We say q is majorized by p written as q� p if the Lorenz curve
[27, 24] of p lies either completely below the Lorenz curve of q (see Figure 5) or coincides with it. This
means that q is more uniform than p.

Lorenz curve [24, 27, 15] L(p) for a probability distribution p := (p1, p2, · · · , pn) is characterized
as the linear interpolation of points (i/n,∑i

k=1 pk), where i = 0,1, · · · ,n; see Figure 5.

Example 3.17. Define P : Rand −→ chaosRand as follows: for each probability distribution p ∈ Rand,
P(p) := p; each M : p−→ q is mapped to the unique arrow p−→ q.

The functors into chaotic categories are determined by the objects. It is straightforward that P as de-
fined above is a functor. The below theorem establishes that P : (Randop,Uniform)→ (chaosRand,�Rand)
is pCat functor.

Theorem 3.18. [18] Given two finite probability distributions p and q, q� p if and only if there exists a
uniform matrix U : p−→ q such that pU = q.

Corollary 3.19. The map P : (Randop,Uniform)→ (chaosRand,�) is a preorder collapse.

Proof. By Theorem 3.18, if U : p−→ q ∈ Uniform, then P(q)� P(p).

Given a resource theory, one can assign a real value to each resource such that the assignment respects
the preorder defined by the theory. In this respect, a monotone is a function f : R −→ [0,∞] where R is
a set of resources which preserves the preorder on the equivalence class of resources. To represent a
monotone as a pCat functor, the poset ([0,∞],≤) is defined as a pCat as follows:-
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Figure 5: The Lorenz curve of q is majorized by the Lorenz curve of p

Definition 3.20. The poset ([0,∞],≤) is encoded as the pCat (chaos[0,∞],≤[0,∞]) where chaos[0,∞] is the
chaotic category with objects as r ∈ [0,∞] and the free transformations are those maps respecting the ≤
order (m−→ n ∈≤[0,∞] if and only if m≤ n).

Definition 3.21. A monotone for a resource theory (X,Xf) is a pCat functor

F : (X,Xf)−→
(
chaos[0,∞],≤[0,∞]

)
.

An op-monotone is a contravariant monotone, that is,

F : (X,Xf)−→
(
chaos[0,∞],≤[0,∞]

)op :=
(
chaosop[0,∞],≥[0,∞]

)
.

Even though op-monotones are more frequently used in resource theories, we defined the codomain
of a monotone to be (chaos[0,∞],≤[0,∞]) because, in general, an arrow a−→ b in a posetal category refers
to a ≤ b, and such ordering becomes relevant when one computes inf and sup of a subset in the poset,
see Section 3.4. Let us look at a few examples of monotones:

In information theory, Shannon entropy is a well-known measure of randomness or uncertainty in
the outcome when a random experiment (experiment with multiple outcomes) is repeated one or more
times. The value of Shannon entropy lies in [0,1] where 0 represents absolute certainty and 1 represents
maximum uncertainty. In the following example, we construct a monotone for the resource theory of
randomness, (Rand,Detmn), and an op-monotone (Rand,Uniform) based on the Shannon entropy:

Example 3.22. Define Shannon : Rand−→ chaos[0,∞] as follows:

• For all finite probability distributions, (X , p) ∈ Rand, Shannon(p) := H(p) where H(p) is the
Shannon entropy of p:

H(p) :=− ∑
1≤i≤|X |

pi log pi

• For all (X , p) Shannon−−−−−→ (X ,q) ∈ Rand, then F(M) is the unique arrow H(p)−→ H(q)

It is straightforward that Shannon :Rand−→ chaos[0,∞] is a functor. We note that the functor Shannon
acts as a monotone for (Rand,Detmn) and as an op-monotone for (Rand,Uniform).

Lemma 3.23. [11] Suppose Shannon : (X , p)−→ (Y,q) ∈ Detmn, then H(p)≥ H(q).
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Corollary 3.24. The map Shannon : (Rand,Detmn)→ ([0,∞],≥) defined as in Example 3.22 is an
op-monotone.
Lemma 3.25. [15, 27] Suppose Shannon : (X , p)−→ (Y,q) ∈ Uniform, then H(p)≤ H(q).
Corollary 3.26. The map Shannon : (Rand,Uniform)→ ([0,∞],≤) defined as in Example 3.22 is a
monotone.

Next we describe a monotone for the resource theory, (cDistinguish,cProcessing):
Example 3.27. [17, 14, Definition 2] A classical divergence D : cDistinguish−→ chaos[0,∞] is any func-
tor, that for any resource ((p,q),X)∈ cDistinguish and a resource transformation (M,M)∈ cDistinguish,
satisfies the data processing inequality:

D(p,q)≥ D(pM,qM)

Lemma 3.28. Any classical divergence D : (cDistinguish,cProcessing −→ (chaos[0,∞],≥[0,∞]) is an op-
monotone.

The following is a monotone for PureBip as follows [28, 38]:
Example 3.29. Define Schmidt : PureBip→ chaos[0,∞] to be the following: for all resources ρHK ∈
PureBip, where ρHK ∈ L(H⊗K) is a pure quantum state,

N
(
ρ

HK) := Rank
(
ρ

H) where, ρ
H := TrK

(
ρ

HK)
Lemma 3.30. [28, 38] N : (PureBip,LOCCp)→ (chaos[0,∞],≥[0,∞]) is an op-monotone.

3.4 Kan Extensions of monotones

Now, we set up resource theories to apply Kan extensions for extending monotones from one resource
theory to another when there exists a pCat functor between them.

Given a monotone M : (X,Xf) −→ (chaos[0,∞],≤[0,∞]) and a pCat functor K : (X,Xf) −→ (Y,Yf),
one could desire to extend M to obtain monotones on (Y,Yf). Observe that a monotone M : (X,Xf)
−→
(
chaos[0,∞],≤[0,∞]

)
is concerned only with the free transformations: if f : A−→ B ∈ Xf , then M(A)≤

M(B); otherwise M(A) −→M(B) is the unique arrow signifying that there is no order between A and B.
Since Xf includes all the objects of X, and the monotone M is concerned with only free transformations,
in order to extend M : (X,Xf) −→

(
chaos[0,∞],≤[0,∞]

)
it suffices to extend Mf : Xf −→≤[0,∞] which is

defined as follows :-
Mf : Xf −→≤[0,∞]; A

f−−→ B 7→M(A)≤M(B)

Definition 3.31. Let (X,Xf)
K−−→ (Y,Yf) be a pCat functor. Let M : (X,Xf)−→ (chaos[0,∞],≤[0,∞]) be a

monotone for the resource theory (X,Xf).

(a) The minimal extension1 MK : Yf −→≤[0,∞] of M along K is the right Kan extension of the functor
Mf : Xf −→≤[0,∞] along the functor Kf : Xf −→ Yf ;Kf(h) := K(h) (see Figure 6-(a)).

(b) The maximal extension MK : Yf −→≤[0,∞] of M along K is the left Kan extension of the functor
Mf : X f −→≤[0,∞] along the functor Kf : Xf −→ Yf ;Kf(h) := K(h) (See Figure 6-(b)).

Let us unpack the definition of minimal and maximal extensions of a monotone in Definition 3.31.
Any category given by a poset with suprema and infima is both complete and cocomplete. Since
([0,∞],≤) is such a poset, by Theorem 2.3 one can compute the minimal extension (MK) and the maximal
extension (MK) using equations (2.2) and (2.1) respectively:

1We follow the naming convention in [17] for monotone extensions.
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(a)

≤
��

Xf
Kf //

Mf

==
Yf

G

��

MK

//

≤

��

≤[0,∞]

(b) KS

≤

Xf
Kf //

Mf

==
Yf

G

��

MK

//
KS
≤

≤[0,∞]

Figure 6: (a) Minimal (right Kan) extension (b) Maximal (left Kan) extension

Theorem 3.32. (a) For all Y ∈ Y, the minimal extension MK(Y ) : Yf −→≤[0,∞] is given as:

MK(Y ) := lim(πY↓KMf) = inf{M(X) | Y −→ K(X) ∈ Yf} (3.2)

(b)For all Y ∈ Y, the maximal extension MK(Y ) : Yf −→≤[0,∞] is given as:

MK(Y ) := colim(πK↓Y Mf) = sup{M(X) | K(X)−→ Y ∈ Yf} (3.3)

See Figure 7-(a) for a schematic of the minimal and maximal extensions of a monotone.
Usually for resource theories the codomain of the monotones is ([0,∞]op,≤op

[0,∞]) = ([0,∞]op,≥[0,∞]).
In the computation of extensions of op-monotones, inf is flipped to sup in equation (3.2), and sup to be
flipped to inf in equation (3.3):
Corollary 3.33. Suppose M : (X,Xf)−→

(
chaos[0,∞],≥[0,∞]

)
be a monotone and K : (X,Xf)−→ (Y,Yf).

Then,

(a) For all Y ∈ Y , the minimal extension MK(Y ) : Yf −→≥[0,∞] is given as:

MK(Y ) := colim(πY↓KMf) = sup{M(X) | Y −→ K(X) ∈ Yf} (3.4)

(b)For all Y ∈ Y , the maximal extension MK(Y ) : Yf −→≥[0,∞] is given as:

MK(Y ) := lim(πK↓Y Mf) = inf{M(X) | K(X)−→ Y ∈ Yf} (3.5)

Proof. Note that (chaos[0,∞,≥[0,∞]) = (chaosop[0,∞],≤
op
[0,∞]) =:

(
chaos[0,∞],≤[0,∞]

)op. Hence, the limits in(
chaos[0,∞],≤[0,∞]

)
are the colimits in

(
chaos[0,∞],≤[0,∞]

)op.

Figure 7 - (b) and (c) visualizes the difference in computation of minimal extension of a (regular)
monotone and an op-monotone.

Note that equation (3.4) is same as [17, Equation 2] and equation (3.5) is same as [17, Equation
3]. Let us have a closer look at equations (3.4) and (3.5). The minimum extension MK assigns to any
resource Y ∈ Yf the value of a resource X ∈ Xf such that the value of X is lowest among the value of all
those resources which can be transformed freely to Y under K (KX −→Y ). If there exists no such X ∈Xf

such that KX can be transformed to Y using a free transformation, then MK(Y ) = 0 (colimit of the empty
diagram is the initial object).

Similarly, the maximal extension MK assigns to any resource Y ∈ Yf the value of a resource X ′ ∈ Xf

such that the value of X ′ is the highest among the value of all those resources which Y can be transformed
to freely under K (Y −→ KX). If there does not exist any such X ∈ Xf which Y can be transformed to
using a free transformation, then MK(Y ) = ∞ (limit of the empty diagram is the terminal object).

We define what it means for the computed extensions to be optimal:
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(a)

Yf

Y

Kf(X)

Kf(X ′) For maximal extension

For minimal extension

(b)
A := {M(X) | Y −→ K(X) ∈ Yf}

MK(Y ) := sup A

(c)
A := {M(X) | Y −→ K(X) ∈ Yf}

MK(Y ) := inf A

Figure 7: (a) Schematic of minimal and maximal extensions of any monotone along K; (b) Minimal
extension of monotone M; (c) Minimal extension of an op-monotone M

Definition 3.34. The minimal extension of a monotone is optimal if for any other monotone G : (Y,Yf)
−→
(
chaos[0,∞],≤[0,∞]

)
such that for all X ∈ X, G(K(X))≤M(X), we have that

G(Y )≤MK(Y )

The maximal extension of a monotone is optimal if for any other G : (Y,Yf)−→
(
chaos[0,∞],≤[0,∞]

)
such that for all X ∈ X, M(X)≤ G(K(X)), we have that

MK(Y )≤ G(Y )

For the extensions of an op-monotone to be optimal, “≤ ” is replaced by “≥ ” in definition 3.34.

Theorem 3.35. Let MK and MK be minimal and maximal extensions of a monotone M : (X,Xf) −→(
chaos[0,∞],≤[0,∞]

)
along a pCat functor K : (X,Xf)−→ (Y,Yf) as per definition 3.31. Then,

(a) Reduction: For all X ∈ X,
MK(Kf(X))≤M(X)≤MK(Kf(X))

(b) Monotonicity: For all f : A−→ B ∈ Yf ,

MK(A)≤MK(B) and MK(A)≤MK(B)

(c) Optimality: MK and MK are optimal.

Proof.

(a) Since (MK ,≤) is the right Kan extension, for all X ∈X, MK(Kf(X))≤Mf(X) = M(X) (see Figure 6-
(a)).
Since (MK ,≤) is the left Kan extension, for all X ∈ X, M(X) = Mf(X)≤MK(Kf(X)) (see Figure 6-
(b)).

(b) Monotonicity follows from functoriality of MK and MK

(c) The extensions are optimal by construction (see Figure 6 for the universal properties).

In the above lemma, Statement (a) tells us that the minimal and maximal extensions are respectively
a lower and upper bound for M on X. Statement (b) assures that the extensions are monotonic on free
transformations. Statement (c) assures that the minimal and maximal extensions are respectively the
greatest lower bound and the least upper bound for any other extension of M along K, hence are optimal.
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Corollary 3.36. Let MK and MK be minimal and maximal extensions of an op-monotone M : (X,Xf)
−→
(
chaos[0,∞],≥[0,∞]

)
along a pCat functor K : (X,Xf) −→ (Y,Yf) as per definition 3.31. Then, the

following properties hold for the extensions:

(a) Reduction: For all X ∈ X,
MK(K(X))≥M(X)≥MK(K(X))

(b) Monotonicity: For all f : A−→ B ∈ Yf ,

MK(A)≥MK(B) and MK(A)≥MK(B)

(c) Optimality: MK and MK are optimal.

Proof.
(
chaos[0,∞],≥[0,∞]

)
=
(
chaos[0,∞],≤[0,∞]

)op
Our Corollary 3.36 corresponds to [17, Theorem 1]. However, in contrast to the proof in [17], our

proof uses only the structural properties of the extensions rather than the formula used to compute them.
Moreover, Lemma 3.35 is more general since in [17, Theorem 1], K : (X,Xf)−→ (Y,Yf) is fixed to be a
full and faithful inclusion.

[17, Theorem 1 - (a)] can be recovered precisely by fixing K to be full and faithful functor in Corol-
lary 3.36:
Corollary 3.37. If MF and MF are minimal and maximal extensions respectively of an op-monotone
M : (X,Xf)−→

(
chaos[0,∞],≥[0,∞]

)
along a full and faithful (ff) functor F : (X,Xf)−→ (Y,Yf), then:

(a) ff-Reduction: The extensions exactly preserves the value of the resources in X under the action of
F :

MF(F(X)) = M(X) = MF(F(X))

(b) ff-Optimality: For any other monotone G : (X,Xf)−→
(
chaos[0,∞],≥[0,∞]

)
, which exactly preserves

the value of the resources in X under the action of F , that is, (G(F(X)) = M(X)), then for all Y ∈Y:

MF(F(Y ))≥ G(Y )≥MF(F(Y ))

Proof. Statement (a) follows from Lemma 2.4.
For Statement (b), it is given that for all X ∈ X, G(F(X)) = F(X). From Lemma 3.35-(c), it follows

that for all Y ∈ Y,
MF(Y )≥ G(Y )≥MF(Y )

3.4.1 Extending bipartite entanglement monotone from pure to mixed states:

Example 3.38. We introduced the op-monotone Schmidt : (PureBip,LOCCp) −→
(
chaos[0,∞],≥[0,∞]

)
in Example 3.29. Let us extend the monotone from pure bipartite states to mixed states along i :
(PureBip,LOCCp) ↪→ (Bip,LOCC) (defined in Lemma 3.10), something that was already done in [37],
however without the general machinery for computing extensions.

Figure 8 presents the diagrams corresponding to minimal and maximal extensions of the mono-
tone Schmidt along the inclusion. The minimal and the maximal extensions are computed using equa-
tions (3.4) and (3.5) respectively.

It was pointed out in [17] that the definition for the Schmidt entanglement monotone on mixed
bipartite states introduced in [37] coincides with equation (3.5) referring to the maximal extension of
Schmidt.
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(a)

≥
��

LOCCp
� � i //

SchmidtLOCCp

==
LOCC

G

��

Schmidti

//

≥

��

≥[0,∞]

(b) KS

≥

LOCCp
� � i //

SchmidtLOCCp

==
LOCC

G

��

Schmidti

//
KS

≥

≥[0,∞]

Figure 8: (a) Minimal extension of Schmidt : (PureBip,LOCCp) along i : (PureBip,LOCCp) ↪→
(Bip,LOCC); (b) Maximal extension of Schmidt : (PureBip,LOCCp) along i : (PureBip,LOCCp) ↪→
(Bip,LOCC)

3.4.2 Extending classical divergences

Next we examine the properties of extensions of classical divergences to quantum setting:

Lemma 3.39. Let D : (cDistinguish,cProcessing) −→
(
chaos[0,∞],≥[0,∞]

)
be a classical divergence as

defined in Definition 3.27. Let Di and Di be the minimal and maximal extensions respectively of D along
i : (cDistinguish,cProcessing) ↪→ (Distinguish,Processing). Then the extensions satisfy the following
properties:

(a) Reduction: For all ((p,q),X) ∈ Distinguish, Di(p||q) = D(p||q) = Di(p||q)
(b) Monotonicity: For any M : ((p,q),X) −→ ((p′,q′),Y ), Di(p||q) ≥ Di(pM||qM) and Di(p||q) ≥

Di(pM||qM)

(c) Optimality: Suppose D′ : (Distinguish,Processing)→
(
chaos[0,∞],≥[0,∞]

)
is any pCat functor such

that for all ((p,q),X) ∈ cDistinguish, D′(i((p,q),X)) = D(((p,q),X)). Then for all ((ρ,σ),H) ∈
Distinguish,

Di(ρ||σ)≥ G(ρ||σ)≥ Di(ρ||σ) (3.6)

Proof. By Lemma 3.13, the inclusion i : cDistinguish ↪→ Distinguish is full and faithful. Hence, state-
ment (a) and Statement (c) follows directly from ff-Reduction and ff-Optimality properties respectively
in Lemma 3.35. Statement (b) follows from Monotonicity property in Lemma 3.37-(b).

In the above statement, by the Reduction property, Di and Di reduces to classical divergence D on
the classical states (pairs of density matrices with off diagonal elements to be zero). The optimality
property ensures that, for any other quantum divergence that coincides with D on the classical states,
must lie between the maximal and minimal extensions in the sense of Eqn. (3.6).

3.4.3 Extending Shannon entropy

Now we show that Kan extensions are related to some proposals of extending Shannon entropy from
classical states to states of a general physical theory [2, 35, 22, 34, 8, 23]. Specifically, a measurement
and a preparation extensions were proposed. Here, for simplicity, we will explain them in the context of
quantum theory. In more detail, the measurement entropy Hmeas of a quantum state ρ is defined as

Hmeas (ρ) := inf
F

H (q) , (3.7)
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where the infimum is taken over all rank-one POVMs F :=
{

Fj
}

, and q is a probability distribution with
q j := tr Fjρ . Recall that a POVM is a collection of positive semi-definite operators

{
Fj
}

that sum to the
identity. On the other hand, the preparation entropy Hprep is defined as

Hprep (ρ) := inf
∑ j λ jψ j=ρ

H (λ ) , (3.8)

where the infimum is over all convex decompositions ∑ j λ jψi of the state ρ in terms of pure states
ψ j (recall that a quantum state ψ is pure if ψ2 = ψ). In words, the measurement entropy Hmeas is
the smallest amount of randomness (as measured by Shannon entropy H) present in the probability
distributions generated by rank-one POVMs on ρ . On the other hand, the preparation entropy Hprep is
the smallest amount of randomness necessary to prepare ρ as an convex combination of pure states.

Let us consider the inclusion (Example 3.14) of resource theory of non-uniformity (given in Ex-
ample 3.3) into quantum non-uniformity (given in Example 3.4). Consider extending the monotone
Shannon : (Rand,Uniform)−→ (chaos[0,∞],≤[0,∞]) (given in Example 3.22) along the inclusion as shown
in Figure 9. By the Kan extensions formula in equations (3.2) and (3.3), the minimal and maximal
extension of Shannon are given as follows:

(a) Uniform
� � i //

Shannon

<<
qUniform

Shannoni

//

≤

��

≤[0,∞] (b) Uniform
� � i //

Shannon

<<
qUniform

Shannoni

//
KS
≤

≤[0,∞]

Figure 9: (a) Minimal extension of Shannon : (Rand,Uniform) along i : (Rand,Uniform) ↪→
(qRand,qUniform); (b) Maximal extension of Shannon : (Rand,Uniform) along i : (Rand,Uniform) ↪→
(qRand,qUniform)

For all ρ ∈ qUniform, the minimal extension Shannoni : qUniform−→≤[0,∞] is given as:

Shannoni(ρ) := inf{Shannon(p) | ρ −→ i(p) ∈ qUniform} (3.9)

For all ρ ∈ qUniform, the maximal extension Shannoni : qUniform−→≤[0,∞] is given as:

Shannoni(ρ) := sup{Shannon(p) | i(p)−→ ρ ∈ qUniform} (3.10)

Let us have a closer look at equation (3.9) The only unital channels from a quantum to a classical
system are given by rank 1 projective measurements {Pj}, where Pj are rank 1 orthogonal projectors.
With this in mind, eqn. (3.9) can be rewritten as follows:

Shannoni(ρ) := inf
P

H (q) ,

where the infimum is taken over all rank-one projective measurements P :=
{

Pj
}

, and q is a probability
distribution with q j := tr Pjρ . Now we are going to show that Shannoni(ρ) = Hmeas (ρ). To this end,
notice that Shannoni(ρ) ≥ Hmeas (ρ) because the infimum in the definition of Shannoni(ρ) is over a
smaller set. In theorem 5.4.15 of [34] it was shown that Hmeas (ρ) is achieved by considering the spectral
POVM, which is a rank-1 projective measurement. Being Shannoni(ρ) defined as the infimum over
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rank-1 projective measurements, then we also have Shannoni(ρ) ≤ Hmeas (ρ), from which we conclude
that Shannoni(ρ) = Hmeas (ρ). Since Hmeas (ρ) is achieved by the spectral measurement, we know that
Hmeas (ρ) = H (p), where p denotes the classical vector of the spectrum of ρ . This shows that Hmeas as
defined in equation (3.7) is indeed a monotone, as it coincides with the minimal Kan extension.

Let us now have a closer look at equation (3.10). The only unital channels from a classical to a
quantum system are given by preparations of a convex combination of pure states

{
ψ j
}

associated with
an orthonormal basis of the Hilbert Space corresponding to the quantum system, where the coefficients
are the entries of the classical state on which the channel acts. With this in mind, eqn (3.10) can be
rewritten as follows:

Shannoni(ρ) := sup
∑ j λ jψ j=ρ

H (λ ) ,

where the supremum is taken over all decompositions of ρ into orthogonal pure states. Now, we we
observe that all such decompositions are diagonalizations of ρ (that is, ρ = ∑ j λ j|ψ j〉〈ψ j| with λ being
a probability distribution), and therefore they have the same coefficients λ j, which are the eigenvalues
of ρ . In other words, Shannoni(ρ) = H (p), where p denotes the classical vector of the spectrum of ρ .
Since there is only one vector λ (up to permutation) to optimize over, the supremum can be replaced
with an infimum. With this in mind, we obtain an expression that is close the preparation entropy.

Shannoni(ρ) := inf
∑ j λ jψ j=ρ

H (λ ) ,

where the infimum is taken over all decompositions of ρ into orthogonal pure states. In Theorem 5.4.15
of [34] it was shown that Hprep (ρ) = H (p), from which we have that Shannoni(ρ) = Hprep (ρ). This
shows that Hmeas as defined in equation (3.8) is indeed a monotone, as it coincides with the maximal Kan
extension.

Notice that in this example, the minimal and maximal Kan extensions coincide.

4 Conclusion

In this article, we studied resource theories as partitioned categories (pCats) and relationship between
resource theories as pCat functors thereof. A partitioned category (pCat) is a category with a chosen
subcategory of free transformations. In this framework, a monotone for a resource theory can be viewed
as a pCat functor from the theory into (chaos[0,∞],≤[0,∞]) where the pCat (chaos[0,∞],≤[0,∞]) represents
the partial order ([0,∞],≤).

We showed that a monotone can be extended from one theory to another using Kan extensions. We
applied our framework to extend entanglement monotones for bipartite pure states to bipartite mixed
states, to extend classical divergences to the quantum setting, and to extend non-uniformity monotone
from classical probabilistic theory to quantum theory.

This project was inspired by Gour and Tomamichel’s work [17] (see also [12]), which uses a set-
based framework to provide formulae for the minimal and maximal extensions of a monotone for a
resource theory that embeds (fully and faithfully) in a larger theory. The goal of our work was to present
resource theories and monotones in a framework such that the extension formulae for monotones arise
naturally. We found that they are precisely given by the well-studied notion of Kan extensions. On top
of providing a natural ground to study extensions of monotones, we should also note that our categorical
framework is also more general than the framework in [17], in that it can be used to compute monotone
extensions when the pCat functor between resource theories is not a full and faithful embedding.
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In this work we show how FibLang, a category-theoretic framework concerned with the interplay
between language and meaning, can be used to describe vocabulary acquisition, that is the process
with which a speaker 𝑝 acquires new vocabulary (through experience or interaction).

We model two different kinds of vocabulary acquisition, which we call ‘by example’ and ‘by
paraphrasis’. The former captures the idea of acquiring the meaning of a word by being shown a
witness representing that word, as in ‘understanding what a cat is, by looking at a cat’. The latter
captures the idea of acquiring meaning by listening to some other speaker rephrasing the word with
others already known to the learner.

We provide a category-theoretic model for vocabulary acquisition by paraphrasis based on the
construction of free promonads. We draw parallels between our work and Wittgenstein’s dynamical
approach to language, commonly known as ’language games’.

1 Introduction

Language has always been characterised as a distinctive, exclusive feature of human beings, yet children
are not born fluent in any language at all. Along the history of human thought, this apparent discrepancy
has promptly led to philosophical speculation on the innateness of language [24], which was subsequently
replaced with a more cautious theory of innateness of syntactic structures [6]. On the other hand,
empiricists such as J. Locke [23] argued that the human mind had to be thought of as a tabula rasa.

Either way, these heterogeneous philosophical stances share the necessity of formalising a common
process: language acquisition, i.e. the process in which proficiency in a language increases with time
or solicitation.1 Although years of debate in linguistics have not come to a definite resolution yet, the
transformationalist orientation of Chomsky has received severe criticism in the 20th century with the
growing development of linguistic philosophy and with the renewed interest in L. Wittgenstein’s ideas.

In particular, Chomsky’s model of language acquisition has been accused of being overly reductionist
and mechanical [29], as opposed to Wittgenstein’s dynamic theory that embraces context as a fundamental
aspect of meaning analysis [34, 33].
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1Here and in the rest of paper we will be referring to first language acquisition only: although similarities have been pointed

out concerning second language acquisition, such as the silent period [10], several substantial differences separate the two
processes [16]. For instance, there is evidence that the learner’s first language slows the development of acquisitional sequences
predicted by the Natural Order Hypothesis [18, 27]. Additionally, according to the Critical Period Hypothesis, after puberty,
lateralisation is accomplished, and reduced plasticity of the brain can compromise the fluent acquisition of a second language
[3].
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In this latter perspective, syntax and semantics must interact and reciprocally influence each other
during communication, a process also referred to as a language game [5]. More precisely, language
games can serve as a tool to untie the problems of context-dependency and ambiguity regarding words
with multiple semantic interpretations.

The recently developed FibLang framework [14] takes a stab at tackling the enticing and deep problem
of language, offering a category-theoretic framework concerned with describing the interplay between
meaning and structure in natural language. As a theory, FibLang relies on fibered categories [17, 25, 32,
30]; the main idea underlying FibLang is characterizing linguistic meaning as fibered over grammar.

Here we argue that Wittgenstein’s perspective hints at a fibrational formalisation of language acqui-
sition. We will substantiate our hypothesis by formalising vocabulary acquisition in FibLang and show
how the context-dependency and semantic ambiguity aspects underlying language games are organically
embraced in our categorical description.

Since our fibrational approach to language acquisition naturally encodes agency, it is out-of-the-box
compatible with applications to learning tasks in natural language processing (NLP). In this sense, it also
enriches the static perspective of DisCoCat [7], which by the way, has also been recently revised using
tools from categorical game theory applied to language games in [15].

In point of fact, in more recent years, a different framework, named DisCoCirc, has been adopted to
allow for a dynamic flow between syntax and semantics [8]. Implementation aspects regarding quantum
computers suggested this switch and, as a side-effect, it provides stronger foundations to the philosophical
stance of FibLang.

Structure of the paper. In section 2, we will recall the basic definitions of FibLang. We will then
provide our description of vocabulary acquisition by example in section 3. Subsequently, we will define
the tool of explanations in section 4, and will use them to define vocabulary acquisition by paraphrasis in
section 5. Finally, at the end of section 5, we provide a construction (cf. Construction 5.3) with which to
show how our formalisation of vocabulary acquisition can be used to enrich grammar by appropriately
acknowledging semantic interrelations.

2 Rappels of FibLang

FibLang was introduced in a prior installment of this series, [14]. Its main idea can be summarized as
follows: whereas it is reasonable to believe that language has at least some degree of compositionality,
especially when describing grammar, it becomes much more difficult to substantiate this position when it
comes to describe meaning. Indeed, compositional –and especially cognitive– models of meaning such
as Gärdenfors’ [12] are prone to criticism on multiple fronts, not last the fact that a truly universal model
of meaning is very difficult to define because of cultural and cognitive differences between speakers.

To circumvent these problems FibLang focuses on describing the interplay between meaning and
structure in abstract terms in a way that is agnostic to the particular model one chooses to represent either.
This vision is reified in the main idea being that a ‘language’ is a category L of some sort, and a speaker

𝑝 of a language L is a fibration
[

E𝑝

𝑝♯ ↓
L

]
over L.2 The defining property of a fibration is that its domain

E 𝑝 is obtained gluing together all the various fibres E𝐿 over objects of L in a coherent manner.
Borrowing from the work of Lambek [21], L represents a ‘language category’ while borrowing from

fibration theory [CLLT, 2] E 𝑝, called the total category of the fibration, represents a ‘semantics category’

2In [14] fibrations are denoted using the superscript −♯ to distinguish them visually from bare functors.
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for the speaker 𝑝. This semantics category could be thought of as any sort of cognitive or distributional
model of meaning for the language in question: this is to say that we are not particularly attached to any
specific model but rather aim at the highest possible generality.

To arrive at this idea, the starting point in [14] constitutes the most general and yet reasonable
assumption one could make, namely there is some structure-preserving map from what a speaker means
to what a speaker says. Formally, this directly translates to modelling speakers as simple functors between
categories. From this, multiple reasons are stated that lead to believe that the language category L should
be treated as something that can be explicitly modelled and studied, while E 𝑝 should be treated as a black
box. Then, it is shown how every functor can be factorised into a fibration via Theorem 2.4, obtaining a
more workable definition of a speaker from the very abstract one we started from.

Definition 2.1 (Fibration). A functor 𝑝♯ : E → C is a discrete fibration (for us, just a fibration) if, for
every object 𝐸 in E and every morphism 𝑓 : 𝐶 → 𝑝♯𝐸 with 𝐶 in C, there exists a unique morphism
ℎ : 𝐸 ′ → 𝐸 such that 𝑝♯ℎ = 𝑓 .

Notation 2.2. The domain of a fibration 𝑝♯ : E → C is usually called the total category of the fibration,
and its codomain is the base category. Given any functor 𝑝 we can define the fibre of 𝑝 over an object
𝐶 ∈ C, i.e. the subcategory E𝐶 = { 𝑓 : 𝐸 → 𝐸 ′ | 𝑝 𝑓 = 1𝐶} ⊆ E.

Intuitively, a fibration is a functor 𝑝♯ : E → C that realises the category E as a ‘covering’ of C, in
such a way that morphisms in C can be lifted to E, to induce functions between the fibres in E, called
reindexing functions. We have represented an elementary example of fibration in the following figure,
with the action of the reindexing functions between the elements in the fibres made explicit. The gray
rectangles are the fibres of the fibration.

C

E

𝐴 𝐵 𝐶
𝑓 𝑔

E𝐴

𝐴0

𝐴1

𝐴2

E𝐵

𝐵0

𝐵1

𝐵2

E𝐶

𝐶0

𝐶1

𝑝♯

A fundamental result in the theory of fibrations that we will often use is that fibrations over a category
L are equivalent to functors out of L, with codomain the category of sets and functions. More details
on the construction, and a full explanation of its usefulness for FibLang, can be found in [14, A.6]; a
classical reference for the theory of fibrations is [17].

Theorem 2.3. There is a category DFib/L of fibrations over a given L, where an object is a fibration[
E𝑝

𝑝♯ ↓
L

]
and a map ℎ :

[
E𝑝

𝑝♯ ↓
L

]
→

[
E𝑞

𝑞♯ ↓
L

]
is a functor ℎ : E 𝑝 →E𝑞 such that 𝑞♯ · ℎ = 𝑝♯.

There is an equivalence of categories:

∇− : DFib/L � [Lop,Set] :
∫
− (2.1)

where at the right-hand side we have the category of all functors L → Set and natural transformations
thereof. The functor

∫
− is often called the category of elements construction, or in its most general form

the Grothendieck constuction.

Theorem 2.3 is also instrumental in pointing out how FibLang– which postulates an approach going
from meaning to language – can be made compatible with traditional models of meaning such as DisCoCat
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– which postulate an approach going from language to meaning3. Many conceptual reasons are given in
[14] to prefer the meaning-to-language approach, but Theorem 2.3 shows how the two are faces of the
same medal.

As we remarked above, FibLang relies on some machinery to turn a model for speakers consisting
of simple functors into a model consisting of fibrations. The main theorem allowing us to do so is the
following:

Theorem 2.4 ([31, Theorem 3]). Any functor 𝑝 : D 𝑝 →L can be written as a composition of functors

D 𝑝 𝑠−→ E 𝑝
𝑝♯

−−→ L, such that 𝑝♯ is a fibration.

We will make heavy use of Theorem 2.4 in the following sections to model language acquisition.

3 Vocabulary acquisition by direct example

Vocabulary acquisition denotes the act of acquiring meanings for a word previously unknown [26]. In
this work, we aim to describe two main modes of vocabulary acquisition. In this section, we focus on
vocabulary acquisition by direct example: this is the easiest method of language acquisition that we can
describe and a commonly used method in children’s education and monolingual fieldwork [11, 28]: it
simply works by pointing at something and saying the word one is referring to. This process of language
acquisition, as Wittgenstein explains in [35], can serve as a primitive example of a language game.

Example 3.1. Consider the following dialogue:

alice: Look, a cat!
bob: A what?
[Alice points to a cat]

alice: That, a cat!
bob: Oh!

What happened in that ‘Oh!’ can be mathematically modelled as a colimit in the fibrations that represent
Alice and Bob.

Definition 3.2 (Vocabulary acquisition by language example). Consider two speakers
[

E𝑝

𝑝♯ ↓
L

]
and

[
E𝑞

𝑞♯ ↓
L

]
,

which we will call teacher and learner, respectively.
Suppose that, for some 𝐿 ∈ L – called the linguistic element to learn4 – we have that E 𝑝

𝐿
≠ ∅ and

E𝑞

𝐿
= ∅. Fix a subset 𝑆 ⊆ E 𝑝

𝐿
, called an example for 𝐿. Then we can define a new category F 𝑞 as follows:

obj(F 𝑞) := obj(E𝑞) ⊔ 𝑆
hom(F 𝑞) := hom(E𝑞)

3In the particular case of DisCoCat it would be more proper to say that the chosen approach is from grammar to semantics.
The apparent dissonance is resolved by taking into account the agnostic approach of FibLang. The language category L can
be purely grammatical, employing for instance a Lambek’s pregroup [20] as in DisCoCat, or more expressive. Similarly, the
meaning category E 𝑝 for a speaker 𝑝 could be purely semantical – for instance, a distributional model or a conceptual space [12]
– or more expressive.

4We will use the wording linguistic elements referring to words, entire sentences or something else, depending on the
model we chose for L, without committing to a particular choice. More formally, a linguistic element is the (possibly nonfull)
subcategory of L spanned by a certain choice of objects.
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and a functor 𝑇 : F 𝑞 →L agreeing with
[

E𝑞

𝑞♯ ↓
L

]
on every fibre 𝐿′ ≠ 𝐿, and sending every object of 𝑆 to

𝐿. Relying on Theorem 2.4, the new fibration modelling the speaker 𝑞 after learning 𝐿 is the factorization
𝑞♯ such that:

𝑇 =
(
F 𝑞 𝑠 // E �̃� �̃�♯

// // L
)
.

Let us unpack this definition. We consider two speakers 𝑝, 𝑞 of the same language L. Speaker 𝑞 does
not know the meaning of a given linguistic element which corresponds to an object 𝐿 ∈ L –which is why
we call 𝑞 learner. The fibre E𝐿 in E is the empty set, as 𝐿 has no meaning for 𝑞. On the other hand,
speaker 𝑝 has some model of meaning for 𝐿 –which is why we call 𝑝 teacher, and we assume the fibre
E 𝑝

𝐿
to be not empty.
If 𝑝 points out an instance of 𝐿 to 𝑞, as in Example 3.1, it is reasonable to assume that the instance

in question is itself part of the fibre E 𝑝

𝐿
, as 𝑝 recognises the example as an instance of the concept 𝐿.

So we postulate that the example identifies a subset 𝑆 ⊆ E 𝑝

𝐿
. While following along with the example, 𝑞

incorporates the set 𝑆 as a fibre over 𝐿 by extending its meaning.
On the intuitive side, there is no reason to claim that forcefully adding a scattered set of notions to

the ones previously mastered by a speaker is enough to let 𝑞 ‘understand’ that said set of notions defines
a new language term. Instead, to attain this level of understanding, 𝑞 has to build meaningful relations
between the new term 𝐿 and all the others they master, in concordance with all the pre-existing relations
between general terms.

On the mathematical side, there is no reason why the functor obtained by forcefully adding a nonempty
fibre to a previously empty one shall remain a fibration; to be such, we must let the new fibre interact well
with the environment, in concordance with the hom-sets L(𝑋, 𝐿) and L(𝐿,𝑌 ). This is why we consider
the comprehensive factorisation of 𝑇 and take into consideration only 𝑞♯ instead of the whole 𝑇 .

Example 3.3 (A language game). Consider the following language game borrowed from Wittgenstein’s
Philosophical Investigations [35]: a builder 𝐴 asks his assistant 𝐵 to pass him the stones with which they
are building, in the order 𝐴 calls them out. In this situation, let us imagine that the language they use
consists of only four words: block, pillar, slab, beam.

This language game can be interpreted as a particular case of vocabulary acquisition by example.
The builder 𝐴, when requesting a slab, specifies the linguistic element slab that he wants to learn. On
the other hand, the teacher 𝐵 associates the right stone to the word slab and hands it over to 𝐴. This way,
the fibre of 𝐴 over the word slab is no longer empty since 𝐴 has incorporated as part of its meaning the
stone received by 𝐵.

Crucially, in the construction of Definition 3.2 we suppose that 𝑞 has no meaning at all for the word 𝐿.
What if this is not the case? More generally, we can model a vocabulary acquisition between two speakers
that share some prior knowledge of 𝐿 as a pushout, but this will render necessary the introduction of
some compatibility conditions. Indeed, consider the following diagram:

E𝑞

𝐿

𝑢!
//

_�

��

𝑆

��

� � // E 𝑝

𝐿

��
E𝑞 //

𝑞♯ ++

F𝐿

��

E 𝑝

𝑝♯ss{𝐿}

(3.1)
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The arrow marked as 𝑢! always exists whenever E𝑞

𝐿
is the empty set because of the universal property of

initial objects. Whenever E𝑞

𝐿
is not empty, the arrow 𝑢! will have to be explicitly instantiated. This must

be understood as: the meaning that 𝑞 has for 𝐿 must be compatible with the subset 𝑆 that constitutes the
meaning of the example for 𝑝. In simpler words, the example 𝑝 is making must make sense for 𝑞.

4 Explanations

Our task for the remainder of this work is about modelling vocabulary acquisition by paraphrasis, which
denotes the task of explaining a word by describing it with language, as it happens in a dictionary. To do
so, we first need to model what an explanation is.

In stark contrast with works that are exclusively based on syntax, FibLang can describe linguistic
constructions that have meaning for a given speaker despite their ungrammaticality. For example, it is a
fact of life that often one can understand the meaning of unsound sentences, such as in ‘I hungry now’:
this is because every proficient speaker can interpolate what is missing in the message they receive by
analysing its context, in order to build a grammatical sentence. For that matter, this is precisely how
Wittgenstein’s language games unravel in disambiguating a sentence.

On the other hand, there are perfectly grammatical sentences, such as the famous ‘Dogs dogs dog
dog dogs’ (cf. [1]) that are grammatical (since ‘dog’ is both a verb and a noun in English) but have no
meaning when they are translated to any other speaker out of context. This tension stems from the fact
that acceptability –i.e. the fact that a sentence has a meaning and grammaticality –the fact that a sentence
is formed in observance of some generation rules do not fully overlap (cf. [22]).

As such, leveraging a grammar-based approach to infer meaning in semantics, as in the case of
DisCoCat, is going to miss something –an important part, we say. By contrast, the fibrational approach
of FibLang allows more fine-grained bookkeeping: grammaticality is completely encapsulated in the
category L modelling language, whereas acceptability comes into play in the following definitions:

Definition 4.1 (Finite category, finite diagram). A finite category is a category A having a finite set of
morphisms. A finite diagram valued in L is a functor A →L whose domain is a finite category.

Definition 4.2 (Explanation). Consider a speaker
[

E𝑝

𝑝♯ ↓
L

]
. Fix moreover an object 𝐿 ofL. An explanation

for 𝐿 according 𝑝 is a finite diagram 𝐷𝐿 : A →L such that the limit �̂� of the diagram

A 𝐷𝐿 // L ∇𝑝♯

// Set (4.1)

is a subset of the fibre E 𝑝

𝐿
(Here ∇− is the functor of Theorem 2.3). If �̂� = E 𝑝

𝐿
, we call the explanation

exact.

Here, the functor𝐷𝐿 is picking a collection of linguistic elements in the language intending to describe
𝐿. The finiteness requirement for A stems from the obvious fact that a linguistic sentence is always made
of a finite number of words. The linguistic elements picked by𝐷𝐿 are then sent to the sets of sections sitting
over them under 𝑝♯, in accordance with Theorem 2.3. In postulating that 𝑝 ‘knows’ how to make sense of
some given complex concept 𝐿 ∈ L by breaking it down into some atomic constituents, it becomes reason-
able to assume that the combination of these atomic meanings – that is, the limit �̂� – must itself be a concept
representing 𝐿, and thus be a subset of the fibre over it. In light of this interpretation, an exact explanation
is a selection of linguistic elements describing the fibre over 𝐿 completely, that is, an explanation that more
than any other, conveys exactly all the nuances that the meaning of 𝐿 can assume according to the speaker.
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𝛼
𝛽

𝛾

A

L

evil
black

feline

Set

∇𝑝♯ (evil)

∇𝑝♯ (black)

∇𝑝♯ (feline)

�̂� ⊆ ∇𝑝♯cat

𝐷cat

∇𝑝♯

Figure 1: An explanation of the word ‘cat’ as a black, evil feline:
The limit of a certain diagram of elements having values in the fibres
over concepts like ‘black’, ‘evil’, and ‘feline’ is required to be in the
fiber over ‘cat’.

Remark 4.3 (Acceptability vs.
grammaticality). As we remarked
at the beginning of this section,
a remarkable feature of Defini-
tion 4.2 is that explanations can
be ungrammatical, as they evalu-
ate the acceptability and not gram-
maticality. For instance, if L is a
pregroup [20], the functor 𝐷𝐿 can
specify a bunch of elements that
possibly do not reduce to a sen-
tence type.

Remark 4.4 (On the nature of ex-
planations). Explanations are en-
gineered to be far from unique:
there may be many functors 𝐷𝐿 , with different domains, satisfying the property of Definition 4.2.
This conforms to the idea that the same concept 𝐿 can be explained in different ways (the same object
can be the limit of many different diagrams) by different people, at different moments in time, in different
cultures, in different communication settings.

Interestingly, for every object 𝐿 ∈ L, there is always an exact explanation for it by choosing A to
be the terminal category and 𝐷𝐿 to be the functor picking 𝐿 ∈ L; This explanation is tautological, as it
affirms in essence that the meaning of the word ‘cat’ is ‘cat’.

5 Vocabulary acquisition by paraphrasis

As remarked in the opening of section 4, by vocabulary acquisition by paraphrasis we denote the
mechanism by which we give meaning to things using linguistic explanation. This is the method of
language acquisition commonly used in books and papers like this one, in conversations with a blind man
about cathedrals, and pretty much everywhere 𝑝 needs to convey the meaning of something they know to
a 𝑞 who does not.

Example 5.1. Consider the following dialogue:

alice: I adopted a cat!
bob: A what?
alice: You know, a cat: one of those felines.
bob: Oh, you mean, like a tiger?
alice: No: a cat is smaller and it comes in various colours, not only stripes. Mine is black.
bob: Oh, maybe I see. A cat is like. . . a lynx.
alice: Well, almost; black cats are cursed.
bob: Ah, now I see.

Bob still has probably never seen a real cat when the dialogue ends, and he would have trouble recognizing
one. Still, he can get a rough idea of ‘a cat’ by mixing concepts for which he already had a model of
meaning.
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Mathematically, what we would like to do is proceed as we did in Definition 3.2, by incorporating
an explanation as in Definition 4.2 into the fibration of the learning speaker. In short, our strategy is the
following:

• 𝑝 has an explanation 𝐷𝐿 : A →L of some word 𝐿;
• 𝑝 shares A with 𝑞. This represents the act of 𝑝 uttering the explanation to 𝑞;

• 𝑞 computes the limit of the diagram Aop 𝐷
op
𝐿−−−→ Lop ∇𝑞♯

−−−→ Set;
• 𝑞 includes this limit in their own fibre over 𝐿.

Difficulties arise in the last point. The problem we face is that an explanation is a limit, and as such, a
particular kind of cone in Set is composed not only of objects but also of morphisms. Unfortunately,
including the whole cone in the total category of a fibration sometimes entails the impossibility of defining
the functor 𝑇 : F 𝑞 →L as we did in Definition 3.2.
Example 5.2. To see a practical example, consider the explanation as in Figure 1. Here, the cone legs
are morphisms in Set connecting concepts signifying different nouns (for example, from ‘cat’ to ‘feline’).
If L is a Lambek pregroup, the only morphisms are reductions, so there are no morphisms between
nouns in L. Thus in including the whole cone in F 𝑞, we could not define the functor 𝑇 on the cone
legs. This is related to our previous considerations about grammaticality and acceptability: pregroups
only represent grammatical connections and fail to see conceptual relatedness. Consequently, although
pregroup grammars have been enriched to identify differently worded sentences in [9], the added relations
are exquisitely grammatical and cannot account for context.

One possible solution to this problem would be to consider only the limit itself and proceed as
in Definition 3.2. However, in doing so, we would miss the big opportunity of adding meaning while
being mindful of the context in which this meaning lives.

Another –more stimulating– solution considers Wittgenstein’s approach to language, which we briefly
summarized in the introduction, and leverages the interplay between grammar and semantics. The main
idea here is to use semantics data - i.e. the limiting cone - to enrich the grammar with new morphisms.
Going back to Example 5.2, this means adding new morphisms to the pregroup grammar L that do not
represent reductions but some sort of ‘semantic connection’ between words.

To add new morphisms to a category, we highlight the following procedure. Recall that there is an
adjunction

( ) 𝛿 : Set // Quivoo : ( )0 (5.1)

sending every quiver 𝑄 to the set 𝑄0 of its vertexes, and every set 𝑋 to the ‘discrete quiver’ 𝑋 𝛿 with no
edges, and an adjunction

𝐹 : Quiv // Catoo :𝑈 (5.2)

sending every quiver 𝑄 to the free category 𝐹𝑄 generated by it, and every category C to its underlying
quiver𝑈C.

The following construction is a recipe to add the set of edges 𝐸 of a quiver 𝑄 to a (small) category
C and form a category out of it when C and 𝑄 have the same set of vertices. Regarding a category as
a monad in the bicategory of spans, the following Construction 5.3 consists of a particular instance of a
free-monoid construction in a decent enough monoidal category (cf. [19]).
Construction 5.3 (FP construction). Let C be a category, and 𝑄 : 𝐸 ⇒ 𝐶0 a quiver over the same set 𝐶0
of objects of C.5

5The notation is slightly overloaded here because we denote 𝑄0 the set of vertices of a quiver and 𝐶0 the set of objects of
the underlying quiver of a category C. This confusion is harmless.
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• consider the underlying quiver𝑈C of C;
• compute the pushout

𝐶 𝛿
0

//

��

𝑄

��
𝑈C // 𝑈C +𝐶 𝛿

0
𝑄

(5.3)

in the category Quiv of quivers;
• Applying the free category functor 𝐹 : Quiv → Cat, the square remains a pushout, so we have a

pushout
𝐹𝐶 𝛿

0
//

��

𝐹𝑄

��
𝐹𝑈C // 𝐹𝑈C +𝐹𝐶 𝛿

0
𝐹𝑄

(5.4)

in Cat;
• compose with the counit 𝜖 of the adjunction 𝐹 ⊣𝑈 above:

𝐹𝑈C +𝐹𝐶 𝛿
0
𝐹𝑄 // C +𝐹𝐶 𝛿

0
𝐹𝑄 (5.5)

The category C ≀𝑄 is the FP collage of 𝑄,C.

𝐶 𝛿
0 𝐴

𝐶
𝐿

𝐵

𝑈𝐶
𝐴

𝐶
𝐿

𝐵

𝑄
𝐴

𝐶
𝐿

𝐵

𝐴

𝐶
𝐿

𝐵

𝐹𝑈C +𝐹𝐶 𝛿
0
𝐹𝑄

C ≀𝑄

𝜖𝐶 +𝐹𝐶 𝛿
0

1𝐹𝑄

𝐹

Figure 2: A graphical description of C ≀𝑄, with the pushout of quivers made explicit.

Remark 5.4. Note that there exists a canonical functor

𝐾 : C // C +𝐹𝑄 // C ≀𝑄 (5.6)

given by the coproduct embedding followed by the projection on the quotient realising the pushout C ≀𝑄;
note that by construction this functor is the identity on objects, so it is induced in a canonical way by a
monad 𝔮 : C � // C on C in the category of profunctors, and 𝐾 corresponds to the free functor into
the Kleisli category of 𝔮.
Remark 5.5. A more general construction for C ≀𝑄 is then the following: fix a monad 𝔮 as above,
and consider its Kleisli object C̄; the free part of the Kleisli adjunction yields an identity on objects
functor C → C̄. Given 𝔮, it can be highly complicated to describe its Kleisli category; what makes this
construction combinatorially tamer is that the structure we are adding through the quiver 𝑄 is free.
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Now we finally have all the needed tools to define vocabulary acquisition via paraphrasis satisfactorily.

Definition 5.6 (Vocabulary acquisition by paraphrasis). Consider two speakers
[

E𝑝

𝑝♯ ↓
L

]
and

[
E𝑞

𝑞♯ ↓
L

]
,

which we will call teacher and learner, respectively.
Suppose that, for some 𝐿 ∈ L –called the linguistic element to learn– we have that E 𝑝

𝐿
≠ ∅ and E𝑞

𝐿
= ∅.

Let 𝐷𝐿 : A → L be an explanation of 𝐿 according to 𝑝. Define the category F 𝑞 as L ≀𝑄, where 𝑄 is
the quiver obtained as follows:

• the vertices are the same of L;

• there is an edge 𝐿→ 𝐿′ for each limiting cone leg lim
(
Aop →Lop ∇𝑞♯

−−−→ Set
)
→∇𝑞♯𝐿′.

Now define a functor 𝑇 : F 𝑞 → Set by mapping 𝐿 to �̂�𝑞 and every other 𝐿′ to ∇𝑞♯ (𝐿′). On
morphisms, 𝑇 agrees with ∇𝑞♯ wherever the latter is defined and maps the newly added edges of 𝑄 to the
legs of the limit �̂�𝑞.

Using Theorem 2.3, the new fibration modelling 𝑞 after learning 𝐿 is
∫
𝑇 .

This definition is a bit terse and needs some unpacking, so let us piggyback to Example 5.1. In our
situation, 𝑝 knows at least partly what a ‘cat’ (the object 𝐶) is, because the fibre E 𝑝

𝐶
is not empty. We

postulate that 𝑝 can explain this concept in words, that is, 𝑝 can define a functor 𝐷𝐶 picking a bunch of
linguistic elements in the language that mean ‘cat’ to 𝑝 since, by Definition 4.2, the limit �̂� 𝑝 of ∇𝑝♯ ◦𝐷𝐶

is a subset of ∇𝑝♯𝐶, which corresponds exactly to E 𝑝

𝐶
via Theorem 2.3.

The teacher 𝑝 would like to ‘transmit’ �̂� 𝑝 to 𝑞, but this is not possible since, unless we postulate either
of them is from the planet Vulcan, the only way 𝑝 and 𝑞 have to communicate is through the language L.
Still, 𝑝 can utter the explanation and thus share the functor 𝐷𝐶 with 𝑞. Notice how, at this stage, 𝐷𝐶 is
most likely not an explanation for 𝑞 as ∇𝑞♯𝐶 = E𝑞

𝐶
is empty by definition.

In any case, 𝑞 can calculate the limit �̂�𝑞 of ∇𝑞♯ ◦𝐷𝐶 . The limits �̂�𝑞 and �̂� 𝑝 will, in general, be
different, as the same explanation makes sense to different speakers in different ways. Notice that whereas
�̂� 𝑝 is always non empty as 𝐷𝐶 is defined to be an explanation for 𝑝, �̂�𝑞 can be empty. This happens when
𝑞 is not able to successfully combine the meanings of the words in the explanation 𝐷𝐶 : the explanation
does not make sense to 𝑞. Interestingly, this is the case for the tautological explanation of Remark 4.4,
which captures perfectly the meaning of 𝐶 for 𝑝, but means absolutely nothing to 𝑞.

Whenever �̂�𝑞 is not empty, this is nothing more than a combination of concepts that 𝑞 already knows,
as illustrated in Figure 1. 𝑞 includes this composition of concepts in the fibre over 𝐿, while the morphisms
from the limit to its atomic constituents are included as morphisms between the fibres. In this procedure,
the underlying language category for 𝑞 changes, as we now have a fibration over the category F 𝑞, which
is obtained by adding new morphisms to the language category L. This is not a bug but a feature: in
learning the meaning of a new concept, the speaker 𝑞 also learns new ways to turn words and sentences
into others.
Remark 5.7. The language game in Example 3.3 is taken up and debated later in [35] with a question:
should we interpret the request ‘Slab!’ as a word or a sentence? In the latter case, the sentence ‘Slab!’
should be understood as a shortening of the sentence ‘Bring me a slab!’. Concerning this sentence, we
can consider the roles as inverted with respect to Example 3.3: the builder makes a request, and the
assistant can use Definition 5.6 to build a meaning for the sentence ‘Bring me a slab!’. Hopefully, this
meaning will include things contextually relevant to the situation, allowing the assistant to identify the
slab and fulfil the builder’s request correctly.

Yet, this does not answer Wittgenstein’s question, namely how we manage to go from ‘Slab!’ to
‘Bring me a slab!’. Wittgenstein argues that the reason behind this semantic identification is the fact that



234 Fibrational linguistics

these two sentences admit the same contextual use: there is no need for an explicit explanation, as context
is directly responsible of disambiguating this sentence.

...But what is context mathematically? This is quite a thorny question. One possible solution to model
context in our framework is using stronger models for the language category L. In many examples, L is
taken to be a pregroup, which corresponds to a context-free grammar in the sense of Chomsky [4]. We
could instead make use of models of grammar that are context-sensitive, allowing for a finer degree of
context management. In theory, we could have grammars where ‘Slab!’ can be reduced to ‘Bring me a
slab!’ in a given context, and proceed as specified in Remark 5.7.

Yet, if there is something that Definition 5.6 taught us, it is that the process of acquiring vocabulary
can result in enriching language with semantic meaning. Following the same idea, we could start with a
model of L that is context-free, such as a pregroup, and gradually adding ‘context-sensitive’ morphisms
that we borrow from the semantics, exactly as in Definition 5.6. Going back to Remark 5.7, the reduction
from ‘Slab!’ to ‘Bring me a slab!’ would be added to L as a result of a language game previously played.

This last consideration hints at the fact that we shall be able to define disambiguation, and more in
general communication, fibrationally. This is a broad topic, and a current matter of investigation.

6 Conclusion and future work

In this work, we used the framework provided by FibLang to take a first stab at describing vocabulary
acquisition mathematically. In particular, we defined the concept of explanation to define, in turn,
vocabulary acquisition by paraphrasis. A clear direction of future work is to use Definition 4.2 as the
building block for a more general theory of communication: intuitively, speakers communicate in a
game-theoretic fashion, exchanging explanations and using them to build meanings until they reach some
kind of fixed point, at which providing further explanations does not result in building further meaning.
This broader picture would fully capture Wittgenstein’s ideas regarding language games, and we consider
it an ambitious goal. With respect to this, a conjecture we are currently working on is to show how the
bidirectional, game-theoretic nature of interactions between two speakers naturally suggests the use of
self-dual categorical structures.

On a more practical standpoint, we would like to investigate a possible replacement of the limit
in Definition 4.2 and in Definition 5.6 with something more linguistically sound: it is true that limits are
universal constructions in category theory, and, as such, are mathematically well-behaved. Yet, in strictly
applied contexts it may be useful to experiment with alternative definitions: for instance, considering a
model of meaning where concepts in the fibres are images may be a sensible choice to experiment with
machine-learning algorithms that merge images together [13].
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Liftings of endofunctors on sets to endofunctors on relations are commonly used to capture bisimu-

lation of coalgebras. Lax versions have been used in those cases where strict lifting fails to capture

bisimilarity, as well as in modeling other notions of simulation. This paper provides tools for defining

and manipulating lax liftings.

As a central result, we define a notion of a lax distributive law of a functor over the powerset

monad, and show that there is an isomorphism between the lattice of lax liftings and the lattice of lax

distributive laws.

We also study two functors in detail: (i) we show that the lifting for monotone bisimilarity is the

minimal lifting for the monotone neighbourhood functor, and (ii) we show that the lattice of liftings

for the (ordinary) neighbourhood functor is isomorphic to P(4), the powerset of a 4-element set.

1 Introduction

Coalgebras for an endofunctor are a general model of state-based transition systems. [9] Bisimulations

are a central concept in the study of coalgebras, describing behavioral equivalence of states. Going back

to [14], bisimulations of F-coalgebras in Sets have been defined as prefixed points of F̄ , the extension of

F to Rel, the category of sets and relations.

One issue is that Rel places high demands on extensions: if F̃ : Rel → Rel is to be a strict functor

that preserves the ordering of relations, and coincides with F on graphs of functions, then F̃ only exists

if F preserves weak pullbacks[5]; and if F preserves them, it is unique [4] and equal to the Barr lifting

F̄ . [2] This situation is undesireable for two reasons:

• The elegant extension-based framework for bisimulation cannot be directly applied to coalgebras

of type F when F does not preserve weak pullbacks. Neighbourhood-type functors are the most

prominent example of such F .

• While the lifting F̄ can be used to reason about bisimulation, other notions of simulation or equiva-

lence of coalgebras cannot be expressed in the same way, since there are no other strict extensions.

To remedy this, various weaker notions of extension have been proposed.[18, 1, 8, 12]. Finding

explicit examples has proceeded in a mostly ad-hoc fashion. The aim of this paper is to provide tools to

reason about lax lifting in a more principled way. This paper is based on chapter 3 of the author’s MSc

thesis [16].

Our main contribution is a new notion of a lax distributive law, which we will show are in one-to-one

correspondence with lax liftings. Distributive laws at their most general are simply natural transforma-

tions FG ⇒ GF for two functors F,G. In most cases however, at least one of the two functors F and G

is taken to be a monad, and the distributive law is required to interact ‘nicely’ with the monad structure.

The connection between liftings and distributive laws originates in [3], which focused on monad-

monad interactions. Mulry [13] proved the equivalence between distributive laws of a functor F over a

monad T and liftings of F to the Kleisli category of T .

http://dx.doi.org/10.4204/EPTCS.380.14
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More recently, some notions of ‘weak distributive law’ have been studied [17]; these, like Beck,

pertain to monad-monad interaction, and involve weakening some of the conditions on Becks original

distributive laws. Closer to the work in this paper are the lax distributive laws in [19], though again these

focus on monad-monad interactions.

Aside from their connection to monads, distributive laws are of interest in their own right. They

feature centrally in the bialgebraic approach to operational semantics. [20, 10] In the theory of automata,

morphisms of distributive laws can provide various determinization procedures. [22]

We also analyse the liftings for two specific functors in detail:

• We prove that the minimal lifting for the monotone neighbourhood functor is given by the lifting

M̃ . This lifting has previously been used [15]; our result shows that M̃ is in some sense universal

for M .

• We give a complete description of the liftings for the ordinary neighbourhood functor. Equiva-

lence notions between neighbourhood structures can be quite complex. [7] The classification in

this paper shows that any notion of bisimulation between neighbourhood structures based on lax

liftings will be almost trivial, since none of the 16 possible liftings make meaningful use of the

input relation.

Outline

In section 2, we show that for a fixed functor, the lax liftings form a complete lattice. This implies

that any functor admits a minimal, “maximally expressive” lifting. We show that for weak pullback-

preserving functors, the minimal lifting coincides with the Barr lifting.

In section 3, we define lax distributive laws, and show that there is an isomorphism between the

lattice of lax liftings, and the lattice of lax distributive laws. We also characterize those distributive laws

that correspond to liftings that are symmetric and diagonal-preserving.

In section 4, we study the monotone and ordinary neighbourhood functors in more detail. For the

monotone neighbourhood functor, we show that the known lifting M̃ is minimal. For the ordinary

neighbourhood functor, we show that the lattice of liftings is isomorphic to P(4) by giving an explicit

description of all 16 liftings.

2 Preliminaries and basic properties

Definition 1. We write Rel for the category of sets and relations. The objects of Rel are sets, and a

morphism R ∈ HomRel(X ,Y ) is given by a subset R ⊆ X ×Y .

Given two relations R : X⊸Y and S : Y⊸Z, we write R;S : X⊸Z for their composition R;S =
{(x,z) ∈ X ×Z | ∃y : xRySz}. Note that the order of composition is reversed from function composition.

Given a relation R : X⊸Y , we write R◦ for its converse; that is,

R◦ = {(y,x) | (x,y) ∈ R}

Given a function f : X →Y , we write gr( f ) for its graph, which is the relation

gr( f ) = {(x,y) | f (x) = y}

The category Rel is enriched over posets, where relations are ordered by inclusion. This makes

Rel into a 2-category (in fact, it is the canonical example of an allegory). The operation (−)◦ is the
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morphism part of a functor (−)◦ : Rel → Relop, which is an isomorphism of 2-categories. We write

gr◦ : Setsop → Rel for the composition (−)◦ ◦gr.

Remark 2. The category Rel is isomorphic to the Kleisli category for the powerset monad. The assign-

ment f 7→ gr( f ) is the morphism part of the left adjoint gr in the free-forgetful adjunction gr ⊣ P that

arises out of the Kleisli category construction. For a given relation R : X⊸Y , we will write χR : X → PY

for the corresponding Kleisli morphism. Conversely, for a Kleisli morphism f : X → PY , we will write

⌊ f ⌋ : X⊸Y for the corresponding relation.

The converse of a Kleisli morphism f : X → PY will be written as

f ♭ : Y → PX : y 7→ {x | f (x) ∋ y}

Definition 3. Let F : Sets → Sets be a functor. A (lax) F-lifting is a lax 2-functor L : Rel → Rel such

that

Rel Rel Rel Rel

Sets Sets Setsop Setsop

L

≥

L

≥gr

F

gr gr◦

Fop

gr◦

commute up to the indicated inequalities. A lifting L is called symmetric if

Relop Relop

Rel Rel

Lop

(−)◦

L

(−)◦

commutes; it is called diagonal-preserving if it strictly preserves identities.

Explicitly, we can expand the above into the following 5 conditions:

1. (2-cells) For all R,S : X⊸Y , if R ≤ S, then LR ≤ LS.

2. (lax functoriality) For all R : X⊸Y and S : Y⊸Z, we have LR;LS ≤ L(R;S).

3. (lifting) For all f : X →Y , we have

gr(F f )≤ Lgr( f ), gr◦(F f )≤ (Lgr( f ))◦

4. (diagonal-preserving) For all X , we have L∆X ≤ ∆FX .

5. (symmetry) For all R : X⊸Y , we have

L(R◦) = (LR)◦

Remark 4. The above includes various notions of lifting that have been previously been studied. Some

authors (e.g. [11]) have taken “lifting” to be synonymous with the Barr lifting (see below). The notion

of “(weak) relator” in [1] and [18] strengthen condition 2 to strict functoriality (although [18] does not

require monotonicity). The notion used in [12] is almost identical, the only difference being that they

require symmetry.

We give some examples:

Example 5. (5.1) For all functors F : Sets → Sets, there is the lifting F⊤ : Rel → Rel given by

F⊤(R : X⊸Y ) = FX ×FY

This lifting is symmetric, but does not preserve diagonals unless |FX | ≤ 1 for all X .
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(5.2) Any relation R : X⊸Y is presented as a span R = gr◦(πR
1 );gr(πR

2 ) by the two projection functions

πR
1 : R → X and πR

2 : R →Y . This motivates the definition

F̄X = gr◦(Fπ1);gr(Fπ2)

F̄ is known as the Barr lifting; it originates in [2]. In general, F̄ is not lax but oplax, meaning

LR;LS ≥ L(R;S). However, if F preserves weak pullbacks, then F̄ is a strict functor which strictly

preserves graphs and converse graphs.[11] Since the diagonal is the graph of the identity, F̄ also

preserves diagonals.

(5.3) The Neighborhood functor is defined to be the functor N = PP. The action on a morphism

f : X →Y is given by

(N f )U = {v | f−1(v) ∈U}

The Monotone neighborhood functor is the subfunctor M of N defined by

M X = {U ∈ N X | u ∈U and u ⊆ u′ =⇒ u′ ∈U}

One lifting for the monotone neighbood functor is given by

M̃ (R : X⊸Y ) = {(U,V ) |∀u ∈U∃v ∈V : ∀y ∈ v∃x ∈ u : xRy

and ∀v ∈V∃u ∈U : ∀x ∈ u∃y ∈ v : xRy}

This lifting originates in [15] where it was used to prove uniform interpolation for monotone modal

logic. A closely related notion of bisimulation appeared earlier in [6].

We also state a simple lemma on lax liftings:

Lemma 6. Let L be an F-lifting. For all relations R : X⊸Y and all functions f : X ′ → X and g : Y ′ →Y ,

we have

L(gr( f );R;gr◦(g)) = gr(F f );LR;gr◦(Fg)

This is lemma 3.10(iii) in [16].

For a given functor F : Sets → Sets, write Lift(F) = {L : Rel → Rel | L is an F-lifting}. Liftings are

naturally ordered pointwise: we say L ≤ L′ if and only if for all R, we have LR ≤ L′R.

Theorem 7. Fix a functor F : Sets → Sets. The class Lift(F) forms a complete lattice, with meets given

by (
∧

i∈I

Li

)
R :=

⋂

i∈I

(LiR)

Proof. See appendix.

Since complete lattices have a minimal element, we get the following corollary:

Corollary 8. Every endofunctor on Sets admits a minimal lifting.

The significance of this corollary is the following: each lifting gives rise to a corresponding notion

of simulation of coalgebras, as well as a modal logic. If for two liftings L,L′ we have L ≤ L′, then L-

simulation distinguishes more states than L′-simulation, and L-logic is more expressive than L′-logic. A

minimal lifting hence induces a maximally discerning notion of (bi)simulation, and a maximally expres-

sive logic (among those that arise from lax liftings). [16]

In case F is weak pullback-preserving, we have an explicit description of its minimal lifting.
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Proposition 9. Let F : Sets → Sets be weak pullback-preserving. Then F̄ is minimal among the F-

liftings.

Proof. Let L be a lifting for F . Then let R : X⊸Y be a relation. We know that R is presented as a span

R = gr◦(πR
X );gr(πR

Y ) with πR
X : R → X and πR

Y : R →Y being the projection functions. So,

LR = L(gr◦(πR
X );gr(πR

Y ))≥ L(gr◦(πR
X ));L(gr(πR

Y ))≥ gr◦(FπR
X );gr(FπR

Y ) = F̄R

There is also a natural involution on liftings, induced by (−)◦:

Definition 10. For an F-lifting L, we define the lifting L∼ as

L∼(R) := (L(R◦))◦

It is simple to prove that L∼ is a lifting when L is. [16]

Natural transformations between functors also induce a map between the associated liftings:

Theorem 11. Let F,G : Sets → Sets be functors, and let η : F ⇒ G be a natural transformation.

(i) For every G-lifting L, the assignment

R 7→ {(x,y) ∈ FX ×FY | (η(x),η(y)) ∈ LR}

constitutes an F-lifting η∗L.

(ii) η∗ preserves arbitrary meets and (−)∼.

(iii) If L is symmetric, so is η∗L.

(iv) If η is everywhere injective, then if L preserves diagonals, so does η∗L.

Note that joins are not preserved in general: in particular, the minimal lifting is rarely preserved by

η∗.

Proof. See appendix.

From point (iv), together with the fact that the Barr lifting always preserves diagonals, we immedi-

ately get the following result:

Corollary 12. All subfunctors of a weak pullback-preserving functor admit a diagonal-preserving lifting.

This motivates the following conjecture:

Conjecture 13. The converse of the above: if F has a diagonal-preserving lifting, it can be embedded in

a weak pullback-preserving functor.
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3 Lax distributive laws

In this section, we give an alternative characterization of relation lifting in terms of distributive laws. We

will write µ : P2 → P and η : id → P for respectively the multiplication and unit of the powerset monad.

Definition 14. Let F : Sets → Sets be any functor. A lax distributive law for F is a collection of maps

λ− : FP(−)→ PF(−), satisfying:

(Monotonicity) For any two functions f ,g : X → PY , if f ≤ g, then

λY ◦F f ≤ λY ◦Fg

(Lax naturality) For any function f : X → PY , we have

PF f ◦λX ≤ λPY ◦FP f

(Lax Eilenberg-Moore) For any Z, we have

µFZ ◦PλZ ◦λPZ ≤ λZ ◦FµZ and λZ ◦FηZ ≥ ηFZ

There are also the optional properties

(Lax extensionality) For any Z,

λZ ◦FηZ ≤ ηFZ

(Symmetry) For any map f : X → PY ,

(λY ◦F f )♭ = λX ◦F( f ♭)

Definition 15. Let λ : FP PF be a lax distributive law. For a given relation R : X⊸Y , we define Lλ R

as Lλ R := ⌊λY ◦FχR⌋.

Conversely, for a lax lifting L of F , we define λ L : FP PF as λ L := χL∋.

The main theorem of this section states that these operations describe a bijective correspondence

between lax liftings and lax distributive laws.

Theorem 16. Let F : Sets → Sets be a functor.

(i) The operations L 7→ λ L and λ 7→ Lλ are inverse to each other.

(ii) If L is a F-lifting, then λ L is a lax distributive law. Moreover, if L preserves diagonals then λ L is

laxly extensional, and if L is symmetric, then λ L is symmetric.

(iii) If λ is a lax distributive law, then Lλ is a F-lifting. Moreover, if λ is laxly extensional, then Lλ

preserves diagonals, and if λ is symmetric, then Lλ is symmetric.

Proof. (i) We calculate

⌊λ Lλ

Z ⌋= Lλ (∋Z) = ⌊λZ ◦Fχ∋⌋= ⌊λZ ◦F idPZ⌋= ⌊λZ⌋

showing λ Lλ
= λ .
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For the other equality, we get

Lλ L

(R) = ⌊λ L ◦FχR⌋

= ⌊χL∋ ◦FχR⌋
∗
= ⌊µ ◦PχL∋ ◦η ◦FχR⌋
∗∗
= ⌊η ◦FχR⌋;⌊χL∋⌋

= gr(FχR);L ∋

= L(gr(χR);∋) by lemma 6

∗∗∗
= LR

where in (*), we use one of the unit laws for monads, in (**) we use that ⌊−⌋ turns Kleisli compo-

sition into relational composition, and in (***) we use the (easily verified) identity gr(χR);∋= R.

(ii) We check the conditions in order.

(Monotonicity) We see that

⌊λ L
Y ◦F f ⌋= ⌊λ L

Y ◦Fχ⌊ f ⌋⌋= Lλ L

(⌊ f ⌋) = L(⌊ f ⌋)

where we use point (i) for the final equality. Now monotonicity of λ L follows immediately

from monotonicity of L.

(Lax naturality) Note that

(∋X ;gr( f )) ⊆ (gr(P f );∋PY )

since if A ∋ x, then P f [A] ∋ f (x).

Now we see that

a ∈ PF f ◦λ L
X (Φ) ⇐⇒ ∃a′ : a = F f (a′) and a′ ∈ λ L

X (Φ)

⇐⇒ ∃a′ : a = F f (a′) and a′ ∈ χL∋(Φ)

⇐⇒ ∃a′ : a = F f (a′) and (Φ,a′) ∈ L(∋X)

⇐⇒ (Φ,a) ∈ L(∋X);gr(F f )

=⇒ (Φ,a) ∈ L(∋X ;gr( f ))

=⇒ (Φ,a) ∈ L(gr(P f );∋PY )

⇐⇒ (Φ,a) ∈ gr(FP f );L(∋PY ) by lemma 6

⇐⇒ a ∈ λ L
PY ◦FP f (Φ)

(Lax Eilenberg-Moore) First, we write out that

µ ◦Pλ L
Z ◦λ L

PZ = µ ◦P(χL∋)◦χL∋ = χL∋;L∋

since χ− turns relational composition ; into Kleisli composition. Next, note that

gr(µ);∋=∋;∋

since ⋃

A∈A

A ∋ x if and only if ∃A : A ∋ A and A ∋ x
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So, we conclude that

⌊µ ◦Pλ L
Z ◦λ L

PZ⌋= L ∋;L ∋

≤ L(∋;∋)

= L(gr(µ);∋)

= gr(Fµ);L ∋ by lemma 6

= ⌊η ◦Fµ⌋;⌊χL∋⌋
∗
= ⌊µ ◦PχL∋ ◦η ◦Fµ⌋

= ⌊χL∋ ◦Fµ⌋

= ⌊λ L
Z ◦Fµ⌋

giving the first inequality; where in the equality (*) we use that ⌊−⌋ turns relational compo-

sition into Kleisli composition.

For the second inequality, we simply note that ⌊ηZ⌋= gr(idZ), and so

⌊λ L
Z ◦FηZ⌋= Lλ L

⌊ηZ⌋= Lgr(idZ)≥ gr(F idZ) = gr(idFZ) = ⌊ηFZ⌋

(Lax extensionality) Assume that L is diagonal-preserving. We aim to show that λL is laxly

extensional. This follows simply from

⌊λ L
Z ◦FηZ⌋= Lgr(idZ)≤ gr(idFZ) = ⌊ηFZ⌋

(Symmetry) If L is symmetrical, we get simply

⌊(λ L
Y ◦F f )♭⌋= (L⌊ f ⌋)◦ = L(⌊ f ⌋◦) = ⌊λX ◦F( f ♭)⌋

(iii) We prove each of the five conditions.

(2-cells) If S ≤ R, then

Lλ S = ⌊λY ◦FχS⌋ ≤ ⌊λY ◦FχR⌋= Lλ R

by monotonicity of λ .

(lax functoriality) Let R : X⊸Y and S : Y⊸Z. We draw the following diagram:

FX FPZ PFZ

FPY FPPZ PPFZ

PFY PFPZ PPFZ

F(χR;S)

FχR

λZ

FPχS

λY

FµZ

λPZ

PλZ◦λPZ

µFZ≥

PFχS

≤

PλZ

=

=

The top left square is F applied to the Kleisli composite χR;S. The top right square is lax

Eilenberg-Moore, and the bottom left square is lax naturality. The bottom right square is a

simple equality.

The above diagram shows that

Lλ R;Lλ S = ⌊µFZ ◦P(λZ ◦FχS)◦λY ◦FχR⌋ ≤ ⌊λZ ◦F(χR;S)⌋= Lλ (R;S)

as desired.
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(lifting) Let f : X →Y be a morphism. Then

Lλ gr( f ) = Lλ (⌊ηY ◦ f ⌋) = ⌊λY ◦F(ηY ◦ f )⌋= ⌊λY ◦FηY ◦F f ⌋ ≥ ⌊ηTY ◦F f ⌋= gr(F f )

by lax Eilenberg-Moore. We also have

gr(F f );Lλ gr◦( f ) = ⌊µX ◦PλX ◦PF(χgr◦( f ))◦ηFX ◦F f ⌋

= ⌊λX ◦F(χgr◦( f ))◦F f ⌋

= ⌊λX ◦F(χgr◦( f ) ◦ f )⌋
∗
≥ ⌊λX ◦FηX⌋
∗∗
≥ ⌊ηFX⌋= ∆FX

where in inequality (*) we use monotonicity of λ , together with the fact that χgr◦( f ) ◦ f ≥ ηX ;

and inequality (**) is simply the unit part of lax Eilenberg-Moore. Since gr◦(F f ) is the least

relation R with gr(F f );R ≥ ∆X , we obtain

Lλ gr◦( f )≥ gr◦(F f )

as desired.

(diagonal-preserving) Assume that λ is laxly extensional. Then

Lλ ∆Z = ⌊λZ ◦ηZ⌋ ≤ ⌊ηFZ⌋= ∆FZ

(symmetry) Assume that λ is symmetric. Then it follows immediately that

Lλ (R◦) = ⌊λX ◦F(χ ♭
R)⌋= ⌊(λY ◦FχR)

♭⌋= ⌊λY ◦FχR⌋
◦ = (Lλ R)◦

4 Explicit descriptions

Since the class of F-liftings forms a complete lattice for each F , it follows that each F has a minimal

lifting F̃ . In the case of weak-pullback preserving F , we know that F̃ = F̄ , the Barr lifting. However, for

non-weak-pullback preserving functors, giving an explicit description of the minimal lifting involves a

non-trivial amount of effort.

In this section, we will study the minimal liftings for the neighborhood functor and the monotone

neighborhood functor. For the (ordinary) neighborhood functor, we moreover give a full description of

the complete lattice of liftings.

4.1 Monotone neighborhood functor

Recall the lifting M̃ from example (5.3).

Theorem 17. The lifting M̃ is the minimal lifting for the monotone neighborhood functor M .

To prove this, we first need a lemma.

Lemma 18. Let R : X⊸Y be a total surjective relation. Then M̃ R ≤ LR for all liftings L.
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In [6], a similar statement appears as lemma 4.7.

Proof. Consider the two projection morphisms πX : R→X and πY : R→Y . Since R is total and surjective,

both these functions are surjective.

We claim that M̃ R = (M πX)
◦;M πY . The inequality ≥ follows from R = (πX)

◦;πY .

For ≤, let (U,V ) ∈ M̃ R. Then we set

W0 := {{(x,y) ∈ R | x ∈ u} | u ∈U}

W1 := {{(x,y) ∈ R | y ∈V} | v ∈V}

W := {w | ∃w′ ∈W0 ∪W1 : w′ ⊆ w}

We claim that M πX(W ) =U . For this, we need to show that (1) if u ∈U , then π−1
X (u) ∈W , and (2) if

π−1
X (u) ∈W , then u ∈U .

(1) Clearly, if u ∈U , then π−1
X (u) = {(x,y) ∈ R | x ∈ u} ∈W , so π−1

X (u) ∈W .

(2) Assume π−1
X (u) ∈W . There are two cases: (i) there is a u′ ∈U with {(x,y) ∈ R | x ∈ u′} ⊆ π−1

X (u),
or (ii) there is a v ∈V with {(x,y) ∈ R | y ∈ v′} ⊆ π−1

X (u).

(i) In this case, we know that πX [{(x,y) ∈ R | x ∈ u′}]⊆ πX(π
−1
X (u)). But since R was total, we

know that πX [{(x,y) ∈ R | x ∈ u′}] = u′ and πX [π
−1(u)] = u. So u′ ⊆ u, and hence u ∈U .

(ii) Clearly, πX [{(x,y) ∈ R | y ∈ v}] = {x | ∃y ∈ v : xRy}. Since (U,V ) ∈ M̃ R, there is a u′ ∈U

such that for all x ∈ u′, there is a y ∈ v with xRy. But this just says that u′ ⊆ πX [{(x,y) ∈ R |
y ∈ v}]. So we conclude that there is a u′ ∈U with

u′ ⊆ πX [{(x,y) ∈ R | y ∈ v}]⊆ πX(π
−1
X (u)) = u

and hence u ∈U .

So in both cases, we have u ∈U , as desired.

The proof that M πY (W )=V is completely symmetrical; so, we can conclude that (U,V )∈ (M πX)
◦;M πY .

Now, let L be any lifting. Then

LR = L((πX )
◦;πY )≥ L(πX)

◦;LπY ≥ (M πX)
◦;M πY = M̃ R

With this lemma, we can prove theorem 17.

Proof. Let R : X⊸Y be any relation. Let X ′ be the domain of R and Y ′ the range of R. Then we define

X∗ = X ∪{∗},Y∗ = Y ∪{∗} and

R∗ = R∪{(x,∗) | x ∈ X \X ′}∪{(∗,y) | y ∈ Y \Y ′}∪{(∗,∗)}

Then R∗ : X∗⊸Y∗ is total and surjective.

Let ιX : X → X∗ and ιY : Y →Y∗ be the natural inclusion functions. First, we note that R= ιX ;R∗;(ιY )
◦

The inequality ≤ is clear, since R ⊆ R∗. For ≥, notice that ∗ is not in the range of either ιX or ιY .

Now by lemma 6, we know that for any lifting L,

LR = (M ιX);LR∗;(M ιY )
◦.
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So we can calculate that

LR = M ιX ;LR∗;(M ιY )
◦

≥ M ιX ;M̃ R∗;(M ιY )
◦ by lemma 18

= M̃ R

We conclude that M̃ is minimal.

4.2 The neighborhood functor

We introduce an extremely minimal logic for neighborhood systems. This will consist of the following

expressions:

ρ0 ::=�⊥ | ¬�⊥

ρ1 ::=�⊤ | ¬�⊤

ρ ::= (ρ0,ρ1)

Given (U,V ) ∈ N X ×N Y , satisfaction (U,V )  ρ is defined as follows:

(U,V ) �⊥ iff ∅ ∈U =⇒ ∅ ∈V

(U,V )  ¬�⊥ iff ∅ /∈U =⇒ ∅ /∈V

(U,V ) �⊤ iff X ∈U =⇒ Y ∈V

(U,V )  ¬�⊤ iff X /∈U =⇒ Y /∈V

(U,V )  (ρ0,ρ1) iff (U,V )  ρ0 and (U,V )  ρ1

Now let I be the set of all ρ’s. For each J ⊆ I, we get a lifting LJ defined on a relation R : X⊸Y as

LJ(R) := {(U,V ) ∈ N X ×N Y | (U,V )  ρ for all ρ ∈ J}

Since these liftings do not depend on the chosen relation, we will omit R, writing simply LJ : N X⊸N Y .

Note also that J ⊇ J′ if and only if LJ ≤ LJ′ .

Theorem 19. The lattice (P(I),⊇) is isomorphic to (Lift(N ),≤) via J 7→ LJ.

To prove this theorem, we will need the following lemma:

Lemma 20. Let (U,V ) ∈ N X ×N Y and (U ′,V ′) ∈ N X ′×N Y ′. Assume that for some ρ , we have

(U,V ) 1 ρ and (U ′,V ′) 1 ρ . Then for each ρ ′, we have

(U,U ′)  ρ ′, (V,V ′)  ρ ′

Proof. WLOG, we can assume that ρ = (�⊥,�⊤); all other cases are similar.

Then since (U,V )1 ρ , we know ∅∈U,∅ /∈V and X ∈U,Y /∈V . Similarly, we know ∅∈U ′,∅ /∈V

and X ′ ∈U ′,Y ′ /∈V ′. But from these data, it follows immediately that for all ρ ′, we must have

(U,U ′)  ρ ′

since U and U ′ agree on ∅ and the entire set. And of course the same holds for (V,V ′).
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Now we can start the full proof.

Proof. First, we show that each LJ is a lifting. Since clearly LJ =
∧

ρ∈J L{ρ}, it suffices to show that each

L{ρ} is a lifting.

They are clearly monotonic, since they do not depend on the input R. They are also clearly laxly

functorial. Finally, if f : X →Y is a function, then for all U ∈ N X and all ρ ∈ I, we have

(U,(N f )U)  ρ

since

(N f )U ∋∅ iff U ∋ f−1(∅) iff U ∋∅ and (N f ) ∋ X iff U ∋ f−1(X) iff U ∋ Y

So indeed, each LJ extends the graph of N f .

This shows that the map J 7→ LJ is well-defined. It is clearly injective and meet-preserving (recall

that the meet in (P(I),⊇) is given by union), so it remains to show that it is surjective. We will proceed

in three steps:

1. The top element is preserved by J 7→ LJ;

2. The bottom element is preserved by J 7→ LJ;

3. If L > LJ, then there is some J′ ( J with L ≥ LJ′ .

These three steps together imply that J 7→ LJ is surjective, from which it then follows that it is an iso-

morphism.

For point 1: The top element of (P(I),⊇) is ∅, and indeed L∅(R : X⊸Y ) = X ×Y .

For point 2: Let L be any symmetric lifting for N . For a given X , write 0X : X⊸X for the empty

relation. We will show that (U,V ) ∈ L0X if U and V agree on ∅ and X .

We first assume that X contains some point x0. Write 2 = {a,b} for the generic two-element set; by

abuse of notation, we may also consider a,b : X → 2 and x0 : X → X as constant maps.

Let U ∈ N X be a neighborhood system. There are four cases:

(i) ∅ /∈U,X /∈U . Then we see that

N a(U) =∅= N b(U)

since for constant maps c : X → Y , we have c−1(A) = ∅ or c−1(A) = X for all A. We also clearly

have N b(∅) =∅. So, we have

(U,∅) ∈ gr(N a),(∅,U) ∈ gr◦(N b)

for all U omitting ∅ and X . Now we have if U,V both omit ∅ and X , then

U(Lgr(a))∅(Lgr◦(b))V

and hence

(U,V ) ∈ Lgr(a);Lgr◦(b)⊆ L0X
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U : X

{∅,{b}} : 2

{∅,X \{a}} : X

{∅} : 2

a f a or b

(a)

U : X

{{a},{a,b}} : 2

{{a},X} : X

{{a,b}} : 2

a f a or b

(b)

(ii) ∅ /∈U,X ∈U . Then N a(U) = {∅,{b}}. Take f : X → 2 given by

f (x) =

{
b x 6= x0

a x = x0

Let V = {∅,X \{x0}}. Then it is easily seen that N f (V ) = {∅,{b}}. Finally, we have N a(V )=
N b(V ) = {∅}, again by the remarks on inverse images along constant maps.

Now we have a ‘zigzag’ as in figure 1a. By tracing the definitions, we can see that gr(a);gr◦( f ) =
gr(x0), and

gr(a);gr◦( f );gr(a) = gr(x0);gr(a) = gr(a)

and similarly gr(a);gr◦( f );gr(b) = gr(b). We now have that if U is such that ∅ ∈U,X /∈U , then

(U,{∅}) ∈ L(gr(a)), and ({∅},U) ∈ L(gr◦(b))

But now for all U,V which both contain ∅ and both omit X , we have

(U,V ) ∈ Lgr(a);L(gr◦(b)) ⊆ L(gr(a);gr◦(b)) = L0X

(iii) Let U be such that ∅ /∈ U,X ∈ U . Then N a(U) = {{a},{a,b}}. Take V = {{x0},X}. Then

with f as in point (ii), we have N f (V ) = {{a},{a,b}}. Now for the constant maps a,b, we have

N a(V ) = {{a,b}} = N b(V ). Hence, we obtain a similar zigzag as in point (ii), as can be seen

in figure 1b. From here, the argument is completely the same as in (ii): for U,V both omitting ∅

and both including X , we get

(U,{{a,b}}) ∈ Lgr(a), ({{a,b}},V ) ∈ Lgr◦(b)

showing that

(U,V ) ∈ L(gr(a);(gr(b))◦) = L0X

(iv) ∅ ∈U,X ∈U . Then N a(U) = P2 = N b(U), and so as in (i) we get for all U,V both including

∅ and X that

(U,P2) ∈ Lgr(a), (P2,V ) ∈ Lgr◦(b)

and hence

(U,V ) ∈ L(gr(a);gr◦(b)) = L0X

Now we have that if X is nonempty, then L0X ⊇ LI . But of course, if X and Y are arbitrary, then

the empty relation 0XY : X⊸Y factors through 0X+Y via the inclusions ιX : X → X +Y, ιY : Y → X +Y .

From this, it follows easily that L0XY ⊇ LI . But now, for R : X⊸Y an arbitrary relation, we have that

LR ⊇ L0XY ⊇ LI
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showing that LI is minimal indeed.

For point 3: Let L be any lifting, and J ⊆ I with L > LJ. Then there is some relation R : X⊸Y and

some neighborhood systems (U,V ) ∈ N X ×N Y with (U,V ) ∈ LR and (U,V ) 1 ρ0 for some ρ0 ∈ J.

We claim that now for J′ = J \{ρ0}, we have L ≥ LJ′ . Again, we will show that L0X ′Y ′ ≥ LJ′ for all

X ′,Y ′.

Now let (U ′,V ′) ∈ LJ′ . There are two cases:

(i) (U ′,V ′)  ρ0. Then (U ′,V ′) ∈ LJ < L, so (U ′,V ′) ∈ L0X ′Y ′ .

(ii) (U ′,V ′) 1 ρ0. Since (U,V ) 1 ρ0 we know by lemma 20 that

(U ′,U) ∈ LI, (V,V ′) ∈ LI

and hence

(U ′,V ′) ∈ LI;LR;LI ⊆ L0X ′X ;LR;LYY ′ ⊆ L(0X ′X ;R;0YY ′) = L0X ′Y ′

So indeed, L0X ′Y ′ ≥ LJ′ and hence for arbitrary relations R′ : X ′
⊸Y ′ we have

LR ≥ L0X ′Y ′ ≥ LJ′

as desired.

5 Conclusion and further research

We have shown that for a fixed functor, the lax liftings form a complete lattice. In particular, any functor

admits a minimal, “maximally expressive” lifting. We have shown that for weak pullback-preserving

functors, the least functor coincides with the Barr lifting.

We have defined lax distributive laws, and shown that there is an isomorphism between the lattice

of lax liftings, and the lattice of lax distributive laws. We also characterized those distributive laws that

correspond to liftings that are symmetric and diagonal-preserving.

We studied the monotone and ordinary neighbourhood functors in more detail. For the monotone

neighbourhood functor, we have shown that the known lifting M̃ is minimal. For the ordinary neigh-

bourhood functor, we have explicitly described all 16 liftings. This question was still open in [16].

The results in this paper are specific to the categories of Sets and 2-valued relations. Other kinds

of liftings have been considered. For instance, in [21], liftings of fuzzy relations are defined. A natural

direction of further research is to investigate if the results from this paper could be extended to cover a

wider range of many-valued relations. More generally still, one can see Sets as the category of functions

inside the allegory Rel. A possible approach would be to study liftings in the setting of arbitrary (power)

allegories.
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A Additional proofs

Proof of theorem 7. We show that Lift(F) has all meets. Let {Li | i ∈ I} be any collection of F-liftings.

For a given R : X⊸Y , set

LR =
⋂

i∈I

LiR

We show that L is again a lifting, by showing it satisfies conditions 1, 2 and 3.

(1) If R ≤ S, then

LR =
⋂

i∈I

LiR ≤
⋂

i∈I

LiS = LS

(2) If R : X⊸Y and S : Y⊸Z are relations, then

LR;LS =

(
⋂

i∈I

LiR

)
;

(
⋂

i∈I

LiS

)

≤
⋂

i∈I

⋂

j∈I

LiR;L jS

≤
⋂

i∈I

LiR;LiS

≤
⋂

i∈I

Li(R;S)

= L(R;S)

(3) If f : X →Y is a function, then

Lgr( f ) =
⋂

i∈I

Li gr( f )≥
⋂

i∈I

gr(F f ) = gr(F f ).

The other inequality is similar.

So L is a lifting, and is clearly the greatest lower bound for the Li.

Proof of theorem 11. (i) We check the three conditions.

(2-cells) If R ≤ R′, then

η∗L(R) = (η ×η)−1(LR)≤ (η ×η)−1(LR′) = η∗L(R′)

since for any function f , we know that f−1 preserves inclusions.

http://dx.doi.org/10.48550/ARXIV.2007.01033
https://arxiv.org/abs/2007.01033
http://dx.doi.org/10.4204/eptcs.351.18


E. Schoen 253

(lax functoriality) If R : X⊸Y and S : Y⊸Z, we have

η∗L(R;S) = {(x,z) | (η(x),η(z)) ∈ L(R;S)}

≥ {(x,z) | η(x,z) ∈ LR;LS}

≥ {(x,z) | ∃y ∈ Y : (η(x),η(y)) ∈ LR,(η(y),η(z)) ∈ LS}

= η∗L(R);η∗L(S)

(lifting) Let f : X → Y be a function. Naturality of η states that gr(F f );gr(η) = gr(η);gr(G f ).
From this, it follows that gr(F f )≤ gr(η);gr(G f );gr◦(η). Hence, we have

gr(F f )≤ gr(η);gr(G f );gr◦(η)≤ gr(η);Lgr( f );gr◦(η) = η∗L(gr( f ))

and

gr◦(F f )≤ gr(η);gr◦(G f );gr◦(η)≤ gr(η);L(gr◦( f ));gr◦(η) = η∗L(gr◦( f ))

(ii) For meets, we have

η∗(
∧

i

Li)(R) = (η ×η)−1(
⋂

i

(LiR)) =
⋂

i

(η ×η)−1(LiR) =

(
∧

i

Li

)
(R)

since meets are preserved by inverse images. For (−)∼, we have

η∗(L∼)(R) = (η ×η)−1(L∼R)

= (η ×η)−1((L(R◦))◦)

= ((η ×η)−1(L(R◦)))◦

= (η∗L(R◦))◦

= (η∗L)∼(R)

(iii) This follows directly from preservation of (−)∼: we have

L is symmetric ⇐⇒ L = L∼

=⇒ η∗L = η∗(L∼)

⇐⇒ η∗L = (∼η∗L)

⇐⇒ η∗L is symmetric

(iv) Assume η is everywhere injective, and L preserves diagonals. Then let X be arbitrary. For all

(x,y) ∈ FX ×FX , we have

(x,y) ∈ η∗L∆X ⇐⇒ (η(x),η(y)) ∈ L∆X

=⇒ η(x) = η(y) since L preserves diagonals

=⇒ x = y since η is injective

and hence η∗L preserves diagonals.
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Magnitude and (co)weightings are quite general constructions in enriched categories, yet they have
been developed almost exclusively in the context of Lawvere metric spaces. We construct a meaning-
ful notion of magnitude for flow graphs based on the observation that topological entropy provides a
suitable map into the max-plus semiring, and we outline its utility. Subsequently, we identify a sepa-
rate point of contact between magnitude and topological entropy in digraphs that yields an analogue
of volume entropy for geodesic flows. Finally, we sketch the utility of this construction for feature
engineering in downstream applications with generic digraphs.

1 Introduction

Let M = (M,⊗,1) be a monoidal category (for background, see [26, 10]) and C a (small) M-category,
i.e., a (small) category enriched over M. Recall that this means that C is specified by a set Ob(C);
hom-objects C( j,k) ∈M for all j,k ∈ Ob(C); identity morphisms 1→ C( j, j) for all j ∈ Ob(C); and
composition morphisms C( j,k)⊗C(k, `)→ C( j, `) for all j,k, ` ∈ Ob(C); moreover, these hom-objects
and morphisms are required to satisfy associativity and unitality properties [19, 10].

The theory of magnitude [24, 23] incorporates a M-category C and a semiring S via a “size” map
σ : Ob(M)→ S that is constant on isomorphism classes and that satisfies σ(1)= 1 and σ(X⊗Y )=σ(X) ·
σ(Y ), where the semiring unit and multiplication are indicated on the right-hand sides. If n := |Ob(C)|<
∞ then its similarity matrix Z ∈M(n,S) has entries Z jk :=σ(C( j,k)). Introducing the (common) notation

( f [X ]) jk := f (X jk)

as a shorthand where X is a matrix over the semiring S and f is a function on S, we have Z := σ [C].
A weighting is a column vector w satisfying Zw = 1, where the semiring matrix multiplication and

column vector of ones are indicated. A coweighting is the transpose of a weighting for ZT . If Z has a
weighting and a coweighting, its magnitude is the sum of the components of either one of these: a line
of algebra shows these sums necessarily coincide.

The notion of magnitude has been the subject of increasing attention over the past 15 years, and
over the last year or so applications have begun to emerge based on boundary-detecting properties of
(co)weightings in the setting of metric spaces [2, 16], which is virtually the only case that has been
explored to date. 1 This setting emerges from the choice M = (([0,∞],≥),+,0), which with only a very
mild continuity assumption requires σ(x) = exp(−tx) for some constant t; varying this constant leads
to the notion of a magnitude function. The corresponding enriched categories are precisely the Lawvere
metric spaces, also known as extended quasipseudometric spaces since they generalize metric spaces
by allowing distances that are infinite (extended), asymmetric (quasi-), or zero (pseudo-). In §2 we will

1The only exception of which we are aware is [6], which details a nontrivial example of magnitude for a certain Vect-
category; see also Example 6.4.5 of [23].

http://dx.doi.org/10.4204/EPTCS.380.15
https://creativecommons.org
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show that seemingly adjacent monoidal structures on ([0,∞],≥) in fact lead to the same construction, so
to move away from the generalized metric space setting at all, it is necessary to move quite far indeed.

However, there are other interesting monoidal categories that yield applicable instantiations of mag-
nitude, though §2 shows that these must necessarily give rise to something quite different from metric
spaces. In §3, we introduce such a construction via a monoidal category Flow of flow graphs that in-
forms the analysis of computer programs (and also, e.g., business processes), encompassing constructs
that represent the transfer of control and data [7, 31] as in Figure 1. This category has two monoidal
products that model “series” and “conditional” (versus “parallel” per se) execution of programs as well
as the structure of an operad in Set [15] that dovetails with a hierarchical representation of input/output
structure [17].

For each generic flow graph D, there is a Flow-category described in Lemma 1. The topological
entropy of hom-objects in this category provides a suitable map σ into the max-plus semiring, and the
resulting weighting (resp., coweighting) indicate sub-flow graphs of maximal entropy in the “forward
direction” (resp., “reverse direction”). These constructions are attractive from the point of view of feature
engineering for graph matching [9] and machine learning problems involving flow graphs.

Meanwhile, once we consider interactions between magnitude and topological entropy in the setting
of digraphs, another point of contact is readily discernible, and we discuss it in §4. The magnitude
function of a ball in the universal cover of a strong loopless digraph is closely related to the topological
entropy of the digraph. In §5 we provide evidence of the utility for feature engineering based on this
observation in problems involving generic digraphs.

2 Rigidity of similarity matrix arithmetic

Here we show that there is even less choice in how the theory of magnitude can be applied to metric
spaces and their ilk than §2.3 of [24] suggests, wherein the usual addition operation on ([0,∞],≥) is
chosen for the monoidal structure. This rigidity illustrates that meaningful notions of magnitude outside
its usual arena are likely to involve very different monoidal structures and/or categories.
Proposition 1. Let f be a strictly increasing bijection from [0,∞] to a subset of [−∞,∞] containing 0.
Then x⊗ y := f−1( f (x)+ f (y)) gives rise to a strict symmetric monoidal structure on ([0,∞],≥) with
monoidal (additive) unit f−1(0).

A category C enriched over the strict symmetric monoidal category above has, for every j,k∈Ob(C),
some η jk := C( j,k) ∈ [0,∞] such that η j j = f−1(0) and η jk⊗ηk` ≥ η j`. That is, we have the triangle
inequality f (η jk)+ f (ηk`) ≥ f (η j`). Let us therefore assume f [η ] = d, and furthermore stipulate that
we want our similarity matrix Z to take values in the semiring R with the usual structure, as opposed to
some more exotic choice. Then we require a function σ : [0,∞]→ R such that σ(x⊗ y) = σ(x) ·σ(y)
in order to define Z := σ [η ]. If we require continuity, then this generalized Cauchy equation has the
unique family of solutions σ(x) = exp(−τ f (x)) for τ ∈R. Now Z = σ [η ] = σ [ f−1[d]] = exp[−τd], just
as usual: i.e., this attempted generalization actually has no material effect.

What about a more exotic semiring structure on R? The proposition above has a close analogue:
Proposition 2. Let g be a strictly increasing function from [−∞,∞] to itself, and taking on the value 0
(and also 1 for the final part of the statement). Then x⊕ y := g−1(g(x)+g(y)) gives rise to a strict sym-
metric monoidal structure on ([−∞,∞],≥) with monoidal (additive) unit g−1(0). Moreover, additionally
taking x� y := g−1(g(x) ·g(y)) gives a semiring with multiplicative unit g−1(1). 2

2We thank S. Tringali for this observation. If g(x) := sgn(x) · |x|p for p > 0, we get the semiring ([−∞,∞],⊕,0, ·,1). If
g(x) := exp(−τx) for τ < 0, then we get the semiring ([−∞,∞],⊕,−∞,+,0).
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Now the equation for a weighting is
⊕

k(Z jk�wk) = g−1(1), which unpacks to the matrix equation
g[Z]g[w] = 1 in ordinary arithmetic. Recalling that Z = σ [η ] and f [η ] = d, we have Z = σ [ f−1[d]].
Meanwhile, we have the generalized Cauchy equation σ(x⊗ y) = σ(x)�σ(y), which unpacks to

σ( f−1( f (x)+ f (y))) = g−1(g(σ(x)) ·g(σ(y))). (1)

Defining h := g ◦ σ ◦ f−1, this becomes h( f (x) + f (y)) = h( f (x)) · h( f (y)), i.e., h satisfies the usual
Cauchy equation; assuming continuity, we have h[d] = exp[−τd]. Since g[Z] = h[d], the weighting
equation is h[d]g[w] = 1, which apart from the transformation of w is the same as in ordinary arithmetic.

In short, it appears to be at least difficult–perhaps impossible–to get substantially different arithmetic
of similarity matrices than the “default” while still working over the extended real numbers, regardless of
which underlying arithmetic we use. The thin silver lining is that we can legitimately apply a very broad
class of componentwise transformations to a (co)weighting and still interpret the result as a (co)weighting
also, albeit with respect to a different underlying semiring structure.

Nevertheless, the notion of magnitude still affords useful application to quite different monoidal
categories; in the sequel, we give an example.

3 Max-plus magnitude for flow graphs

Throughout this paper, by digraph we mean the usual notion in combinatorics. In particular, we do not
allow multiple edges between vertices (i.e., a quiver is generally not a digraph per se). See footnote 3.

Consider the specific notion of flow graph discussed in [15], viz. a digraph D with exactly one source
and exactly one target, such that there is a unique (entry) edge from the source and a unique (exit) edge
to the target, and such that identifying the source of the entry edge with the target of the exit edge yields
a strong digraph (i.e., a digraph in which every two vertices are connected by some path). An example is
the digraph in the right panel of Figure 1.

Let Flow be the full subcategory of reflexive digraphs 3 whose objects are (combinatorially realized
as) flow graphs. It turns out that there are both “series” and “parallel” tensor products on Flow, as well
as the structure of an operad in Set which has a conceptually and algorithmically attractive instantiation.
We are presently interested in the “series” tensor product, denoted �. The idea of � is just to identify
the exit edge of its first argument with the entry edge of its second argument (so unlike the “parallel”
tensor product, this does not give rise to a symmetric monoidal structure). It turns out that this yields
(the monoidal base of) an enriched category, viz. the Flow-category SubFlowD of sub-flow graphs of a
flow graph D (these correspond to subroutines in the context of program control flow).

Lemma 1. [15] For a flow graph D, we can form a category SubFlowD enriched over Flow as follows:

• Ob(SubFlowD) := E(D) (i.e., the objects of SubFlowD are the edges of the digraph D); 4

3 An object in the category Dgph of reflexive digraphs is G = (U,α,ω), where U is a set and α,ω : U→U are head and tail
functions that satisfy α ◦ω = ω and ω ◦α = α . For G′ = (U ′,α ′,ω ′), a morphism f ∈ Dgph(G,G′) is a function f : U →U ′

such that f ◦α = α ′ ◦ f and f ◦ω = ω ′ ◦ f . The vertices of G = (U,α,ω) are the (mutual) image V ≡ V (G) of α and ω; the
loops are the set L≡ L(G) := {u ∈U : α(u) = ω(u)} (so that V ⊆ L), and the edges are the set E ≡ E(G) :=U\L. We recover
the usual notion of a digraph by considering α ×ω and its appropriate restrictions on U2, L2, and E2: e.g., we can abusively
write E = (α ×ω)(E2), where the LHS and RHS respectively refer to usual and reflexive notions of digraph edges. Thus a
morphism f : U →U ′ restricts to f |V : V → V ′, f |L : L→ L′, and f |E : E →U ′. Since morphisms are only partially specified
by their actions on vertices, defining Flow as a full subcategory of Dgph is essentially a convention about vertex identification.

4Loops and reflexive self-edges are not included here, though the former may be accommodated without substantial changes.
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1 START

2 repeat

3 repeat

4 repeat

5 if b goto 7

6 if b

7 repeat

8 S

9 until b

10 endif

11 until b

12 do while b

13 do while b

14 repeat

15 S

16 until b

17 enddo

18 enddo

19 until b

20 until b

21 HALT

  START:#1  repeat:#2  repeat:#3  repeat:#4  if b goto 7:#5  if b:#6
  repeat:#7  S:#8
  until b:#9  endif:#10  until b:#11  do while b:#12

  do while b:#13
  repeat:#14  S:#15
  until b:#16  enddo:#17

  enddo:#18

  until b:#19  until b:#20  HALT:#21

Figure 1: (L) A simple imperative program. S denotes a generic statement (or subroutine); b denotes a
generic Boolean predicate. (R) The corresponding control flow graph: branches are shaded black (resp.,
gray) if the corresponding b evaluates to > or ⊥.

• for es,et ∈ SubFlowD, the hom object SubFlowD(es,et) ∈ Flow is the (possibly empty) induced
sub-flow graph of D with entry edge es and exit edge et: we denote this by D〈es,et〉;

• the composition morphism is induced by �;

• the identity element is determined by the flow graph e with one edge.

A digraph D determines a (sub)shift of finite type, i.e., a dynamical system on the space of paths
in D with an evolution operator that simply shifts path indices. The corresponding topological entropy
h(D) := limN↑∞ N−1 logW (D,N) measures the growth of the number W (D,N) of paths in D of length N
[20]. A basic result in symbolic dynamics is that h(D) is given by the logarithm of the spectral radius of
the adjacency matrix of D. (If D is strong, the spectral radius is the Perron eigenvalue ≥ 1.)

Lemma 2. For D j ∈ Flow,

h(� jD j) = max
j

h(D j). (2)

Proof. To see the ≥ direction, consider paths that are confined to whichever D j has highest topological
entropy. For the ≤ direction, note that the number of paths that are not so confined cannot grow at a
faster rate.

Remark 1. In fact more is true: writing A(D) for the adjacency matrix of D, we have via standard
Perron-Frobenius theory that (as multisets)

spec A(� jD j) = {0}∪
⋃

j

spec A(D j).
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(The zero is due to the first column/last row [using the obvious indexing] of A(� jD j) being identically
zero.) Defining the zeta function ζD(t) := 1/det(I− tA(D)) [30], we furthermore have that

ζ� jD j = ∏
j

ζD j .

For examples, see Figures 2 and 3.

-3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

100

Figure 2: Left: D1 �D2 for two flow graphs D1 and D2 on 10 vertices. Upper right: spectra specx ⊂ C
of the adjacency matrices A(Dx) for x = 1, x = 2, and x = 12 with D12 := D1 �D2. Lower right: zeta
functions ζ12 and ζ1 ·ζ2 with ζx ≡ ζDx .
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105

Figure 3: As in Figure 2, but for two flow graphs D1 and D2 on 20 vertices.

Recall that max furnishes a monoidal structure on the poset ([0,∞],≥) of extended nonnegative
real numbers, and that categories enriched over this are Lawvere ultrametric spaces [32]. Similarly,
([−∞,∞),≤,−∞,max) is a monoidal poset. This is sufficient data for us to define (following [24]) the
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e−

e(0,1)

e(1,1)

e(2,1)

e(0,2)

e(1,2)

e(2,2)

e(0,3)

e(1,3)

e(2,3)

e+

Figure 4: Flow graph of the form D := ⊗K
k=1 �

Jk
j=1 D〈e( j−1,k),e( j,k)〉 for Jk ≡ 2 and K = 3. The large

nodes indicate nontrivial interiors of sub-flow graphs.

magnitude of SubFlowD over the max-plus or tropical semiring [14, 33]. 5

Unpacking the details, we have the similarity matrix

(Z�
D )st ≡ Z�

D (es,et) := h(D〈es,et〉). (3)

Now if there exist v, w satisfying the max-plus matrix (co)weighting equations

max
s

[vs +(Z�
D )st ] = 0 = max

t
[(Z�

D )st +wt ],

then the maxima of v and w coincide and also equal the magnitude of Z�
D . Such linear equations can

be solved via methods described in [14], and we simply report the result here: the unique “principal
solutions” (which may not be bona fide solutions in general) are v̂s :=−maxt(Z�

D )st ; ŵt :=−maxs(Z�
D )st .

We therefore obtain the following
Lemma 3. Z�

D , and hence SubFlowD, has well-defined magnitude z over the max-plus semiring iff

max
s

[−max
t
(Z�

D )st ] = z = max
t
[−max

s
(Z�

D )st ]. (4)

It is not obvious when such a z can exist. However, by Lemma 5 of [15], any nontrivial D〈es,et〉must
be of the form � jD〈e j−1,e j〉 where the D〈e j−1,e j〉 are minimal. Appealing to Lemma 2, we therefore
obtain the following
Theorem 1. Z�

D , and hence SubFlowD, has well-defined magnitude over the max-plus semiring.
Example 1. Consider a flow graph of the form D := ⊗K

k=1 �
Jk
j=1 D〈e( j−1,k),e( j,k)〉, where ⊗ denotes the

parallel tensor/composition on Flow described in [15]. For an example, see Figure 4. For convenience,
further assume that the program structure trees of D〈e( j−1,k),e( j,k)〉 are all trivial, i.e., there are no
nontrivial sub-flow graphs. Then (Z�

D )( j0,k),( j1,k) = max j0< j≤ j1 h(D〈e( j−1,k),e( j,k)〉), (Z�
D )−∞,∞ = h(D),

where ∓∞ indicate the entry and exit edges of D, and all other entries of Z�
D are trivial.

The nontrivial weighting components are therefore

w( j,k) =−max
j0< j

h(D〈e( j0,k),e( j,k)〉) =−max
j0< j

h(D〈e( j0,k),e( j0+1,k)〉),

5It is important to distinguish between the magnitude of SubFlowD as an enriched category and the magnitude of D as a
digraph with the usual (asymmetric) notion of distance. Here we are concerned only with the former.
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while the nontrivial coweighting components are

v( j,k) =−max
j1> j

h(D〈e( j,k),e( j1,k)〉) =−max
j1> j

h(D〈e( j1−1,k),e( j1,k)〉).

That is, the weighting and coweighting respectively encode the cumulative forward and reverse maxima
of the topological entropy along the K “backbones” �Jk

j=1D〈e( j−1,k),e( j,k)〉 of D. In particular, v( j∗−1,k) =
w( j∗,k) when j∗ = argmax j h(D〈e( j−1,k),e( j,k)〉).

Finally, it is evident that similar behavior to that detailed in Example 1 should occur when each
D〈e( j−1,k),e( j,k)〉 is itself of the form⊗m�`D′〈e′(`−1,m),e

′
(`,m)〉, and so on. That is, (co)weightings reliably

encode salient features for “series-parallel” flow graphs. It seems likely that the same is true for flow
graphs that correspond to “structured” control flow, which can always be obtained from “unstructured”
control flow [41] in the event that it makes any practical difference.

Operationally, the (co)weighting identifies regions of high topological entropy. 6 This echoes the
observations of [2] that (co)weightings pick out salient features of Euclidean point clouds (e.g., “strata”
of sampled psuedomanifolds). In turn, this suggests a strategy for “anchoring” graph matching methods
for related flow graphs (e.g., for different versions of the same program or business process). Namely,
iteratively coarsen suitably (re)structured flow graphs using the technique of [15], attempting to match
regions of high topological entropy at each stage of the process. Recalling Example 1, suppose that
D′ := ⊗K

k=1 �
Jk
j=1 D′〈e′( j−1,k),e

′
( j,k)〉 is somehow related to D. We can hope to leverage the respective

(co)weightings for graph matching between D and D′.

4 Magnitudes of balls in the universal cover of a digraph

For a finite strong digraph, a ball around any vertex (defined by, e.g. distance to or from that vertex)
eventually saturates. It is helpful to shift perspectives to the universal cover [8] to avoid this saturation
while using a notion of the size of these balls to characterize the digraph. 7 This perspective shift is
motivated by the context of a (compact connected) Riemannian manifold, for which the volume entropy
[27] is defined via limr↑∞ r−1 logvol(Bx(r)), where Bx(r) is the ball of radius r around a point x in the
universal cover of the manifold. It turns out that the volume entropy is independent of the point x. Also,
the volume entropy is bounded above by the topological entropy of the geodesic flow, with equality in
the case of nonpositive sectional curvature. Proposition 5 is a very close analogue of this result. 8

Returning to the context of digraphs, the universal cover of a digraph is a polytree, (i.e., an acyclic
digraph whose corresponding undirected graph is a tree) that “locally looks like the digraph everywhere.”
A telling advantage of this construction is that (at the cost of implicitly encoding structure) it renders the
calculation of magnitude functions trivial:

Lemma 4. Let F be a polyforest, i.e., an acyclic digraph whose corresponding undirected graph is a
forest. Then the magnitude function of F (i.e., the magnitude of exp[−td] where d is the usual Lawvere
metric on F) is |V (F)|− |E(F)|e−t . 9

Proof (sketch). The proof can be adapted almost wholesale from an analogous result for undirected trees
(or for that matter, forests) in §4 of [22]: apart from checking and slightly adjusting definitions, the

6NB. Both Z�
D and its (co)weighting are efficiently computable, as is any necessary preprocessing/restructuring of D.

7For the conventional notion of a universal cover in topology, see [13, 11].
8There is a kind of volume entropy for metric graphs [25, 21] (see also [18]), but we are unaware of a digraph analogue.
9Note that if F is a polytree, then |V (F)|= |E(F)|+1.
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key observation is that the magnitude function of a digraph with a single (directed) edge is 2− e−t (by
comparison, the magnitude function of a graph with a single edge is 2(1+ e−t)−1).

The universal cover UD := (VU ,EU) of a weak digraph D = (V,E) is a polytree defined as follows
[8]: pick v0 ∈V and set

VU := {(v0,v1, . . . ,vL) : (v j−1,v j) ∈ E;v j−1 6= v j}∪{(vL,vL−1, . . . ,v0) : (v j,v j−1) ∈ E;v j 6= v j−1}

where v j ∈V and e j ∈ E identically; and set

EU := {((v0,v1, . . . ,vL−1),(v0,v1, . . . ,vL)) : (vL−1,vL) ∈ E}
∪{((v0,v1, . . . ,vL),(v0,v1, . . . ,vL−1)) : (vL,vL−1) ∈ E}.

Example 2. Consider the digraph D in the left panel of Figure 5. Its universal cover has local structure
shown in the right panel of Figure 5, and the covering map is depicted in Figure 6 (which also shows a
larger local region of the universal cover).

1

2

3

(0)

(0,3,1)

(0,2,3,1)

(1,3,0)

(1,2,3,0)

(0,2)

(0,3,1,2)

(2,3,0) (0,3)

(0,2,3)

(0,3,1,3)

(3,0)

(3,1,3,0)

Figure 5: (L) A strong loopless digraph D with basepoint v0 = 1 highlighted in red. (R) The portion
of UD with vertices at distance ≤ 3 to or from v0. Vertices of UD are labeled by the corresponding
sequence of D-vertices, with 0 explicitly indicating the basepoint. The ball B0(3) is formed by taking the
arborescence of depth 3 rooted at 0, i.e., the right-hand part.

Figure 6: (Cf. Figure 5.) (L) The portion of UD with vertices at distance≤ 3 to or from v0 with covering
of D (at bottom) indicated. (R) The portion of UD with vertices at distance ≤ 10 to or from v0.

Proposition 3. Let γ ∈VU . Then there is either a unique path in UD from v0 to γ or vice versa.
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The number of paths from v0 of length L in UD equals the number of loopless paths from v0 of length
L in D. Define Bv0(L) to be the sub-polytree of UD (defined with basepoint v0) induced by its vertices at
(the usual notion of digraph) distance ≤ L from (versus to) v0. We can compute the magnitude function
of Bv0(L) very easily using the following proposition.

Proposition 4. If D is loopless, then Bv0(L) is an arboresence with |V (Bv0(L))|= ∑
L
`=0 ∑k(A`) jk, where

A is the adjacency matrix of D and j is the matrix index corresponding to v0.

Remark 2. By comparison, the Katz centrality is ∑
∞
`=1 α`

∑i(A`)i j, where α is restricted to ensure con-
vergence [12]. The Katz centrality of the graph with all edges reversed is therefore ∑

∞
`=1 α`

∑k(A`) jk.

Since an arborescence (or more generally a polytree) has one more vertex than it has edges, Lemma
4 yields that for D loopless, the magnitude function of Bv0(L) is

Mag(Bv0(L), t) = |V (Bv0(L))|− (|V (Bv0(L))|−1)e−t , (5)

and the most recent proposition gives an elementary algorithm for computing |V (Bv0(L))|. If D is loop-
less and strong, we have h(D) = h(UD) =: limL↑∞ L−1 log |V (Bv0(L))| independent of the basepoint v0.

Proposition 5. Let D be a strong loopless digraph and v0 ∈V (D). Then

lim
L↑∞

L−1 logMag(Bv0(L), t)≤ h(D) (6)

with equality at t = ∞, and the left hand side is independent of v0 for any t. Here Mag(·, t) denotes the
magnitude function of the first argument.

Example 3. Continuing Example 2, h(D)≈ 0.2812 is the logarithm of the so-called plastic number, i.e.,
the unique real solution of x3− x−1 = 0. Numerics suggest that |V (B1(L))| is given by [1]. Assuming
this to obtain values for large L, we show the convergence of L−1 logMag(Bv0(L), t) in Figure 7.

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

Figure 7: L−1 logMag(Bv0(L), t)→ h(D) for t > 0, but depends strongly on t even for fairly large L.

5 Example: correlated features for digraph matching

In this section we detail how log-magnitudes of small balls associated to the Lawvere metric structure on
a digraph are both interesting and useful from the perspective of feature engineering; for completeness
and comparison, we start by considering the ambient (co)weighting. In keeping with the general theme
of providing tools for graph matching, we focus on the import graph of the Flare software hierarchy,
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accessed from https://observablehq.com/@d3/hierarchical-edge-bundling/2 in November
2020 and depicted in Figure 8.

As an experiment, we considered N = 100 realizations of a pair of random subgraphs of the “ambi-
ent” digraph of Figure 8 obtained by removing edges with probability 3/4 and then retaining the largest
weak component. We then computed the (co)weightings at scale 0, the log-magnitudes of balls of ra-
dius ≤ 3 at scale t = 100 (which is virtually equivalent to t = ∞), and various common vertex centrality
measures. For each of these quantities and N realizations, we then computed the correlation coeffi-
cients on vertices shared by the pair of subgraphs. The results are shown in Figure 9, which shows that
the coweighting and log-magnitudes of balls in the universal cover of the digraph with edges reversed
are very strongly correlated. This suggests the utility of such features for graph comparison [38] and
matching [9]. 10

The strong correlations of log-magnitudes of balls are more robust than those of (co)weightings, as
an experiment along the same lines as above but using different realizations of an Erdős-Renyı́ digraph
(n = 100 vertices; edge probability q = 4/n) as the ambient digraph for each of N = 100 trials shows.
We formed two subgraphs by removing edges with probability 1/2, then retaining the largest weak
component. Figure 10 shows the results, which are qualitatively echoed for different parameters.

One theoretical advantage of using log-magnitudes of balls is that unlike (co)weightings, these are
nonnegative by construction. 11 12 This may be advantageous in the context of graph matching via
optimal transport techniques that require a sensible distribution on vertices. In particular, the recently
developed Gromov-Wasserstein distance [28, 29] is useful for analyzing weighted digraphs endowed with
measures [3] and has been applied to (mostly but not exclusively undirected) graph matching with state of
the art performance [36, 40, 39, 5, 4, 37]. For instance, although [39] did not consider digraphs, it used a
distribution proportional to (deg+a)b, where a and b are hyperparameters, and remarked that “the node
distributions have a huge influence on the stability and the performance of our learning algorithms.”
Meanwhile, this particular sort of distribution is rather similar to the log-magnitude of a unit ball for
a = 1 and b = 0. In short, we can plausibly expect to improve upon the approach of [39] in the context
of digraphs by using weightings rather than a more ad hoc distribution.
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Figure 8: Import graph of the Flare software hierarchy, displayed using the divided edge bundling
approach of [35]. Edge sources and targets are respectively colored red and blue; the hierarchy is depicted
along the figure periphery (and without any material loss of information from occlusions).
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Figure 9: Distribution of correlations for various centralities between two random subgraphs of the
digraph in Figure 8. * indicates a ball in the digraph with all edges reversed. As L increases, boundary
effects cause the log-magnitudes of balls in the universal cover to become (slightly) more correlated to
each other than the log-magnitudes of balls in the digraph itself. Note that the three best-performing
centralities are computing almost exactly the same thing.

Figure 10: Distribution of correlations for various centralities between two random subgraphs of distinct
Erdős-Renyı́ digraphs with n = 100 vertices and edge probability q = 4/n; cf. Figure 9.



J. Master & M. Lewis (Eds.): Fifth International
Conference on Applied Category Theory (ACT 2022).
EPTCS 380, 2023, pp. 268–283, doi:10.4204/EPTCS.380.16

© Elena Di Lavore and Paweł Sobociński
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Monoidal width was recently introduced by the authors as a measure of the complexity of decom-
posing morphisms in monoidal categories. We have shown that in a monoidal category of cospans
of graphs, monoidal width and its variants can be used to capture tree width, path width and branch
width. In this paper we study monoidal width in a category of matrices, and in an extension to a dif-
ferent monoidal category of open graphs, where the connectivity information is handled with matrix
algebra and graphs are composed along edges instead of vertices. We show that here monoidal width
captures rank width: a measure of graph complexity that has received much attention in recent years.

1 Introduction

Many applications of category theory rely on monoidal categories as algebras of processes [26, 15, 28,
18, 10, 25, 11, 17, 23, 27]. Morphisms are compound processes, defined as parallel and sequential
compositions of simpler process components. The compositional nature of this modelling allows a com-
positional computation of the underlying semantics. But how efficient is this computation? Given two
processes f and g, we can compute their semantics separately. However, computing the semantics of
their sequential composition f ;g often requires an additional cost [36]. Indeed, the semantics of sequen-
tial composition often means resource sharing or synchronisation along the common boundary. This in
turn carries a computational burden, dependent on the size of the boundary. On the other hand, com-
puting the semantics of a parallel composition f ⊗ f ′ typically does not involve any resource sharing,
as indicated by the wiring of the string diagrams, and thus typically does not require significant addi-
tional computational resources. Taking this into account, the choice of the recipe for a morphism in
terms of parallel and sequential compositions influences the cost of computing its semantics. As shown
in Figure 1, where vertical cuts represent sequential compositions and horizontal cuts represent parallel
compositions, the same morphism can be defined in different ways with possibly different computational
costs. Given a morphism, it is thefore desirable to find the least costly recipe of decomposing it in terms

f g

f ′ g′
=

f g

f ′ g′

Figure 1: Two monoidal decompositions of the same morphism, the right one being the cheapest.

of more primitive components. We can rephrase the original question: what is the most efficient way to
decompose a morphism in a monoidal category?

The authors recently proposed monoidal width [22] as a way of assigning a natural number to a
morphism of a monoidal category, representing – roughly speaking – the cost of its most efficient de-
composition. In turn, this is related to the cost of computing the semantics of this morphism.

Computing efficient decompositions is not a new problem. The graph theory literature abounds [6,
29, 38, 37, 39, 33, 20, 2, 3, 16] with notions of complexity of graphs that ultimately measure the difficulty
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of decomposing a graph into smaller components by cutting along the vertices or the edges of the graph.
Measures such as tree width [6, 29, 38], path width [37], branch width [39], clique width [20] and rank
width [33] are motivated by algorithmic considerations. Probably the best known among several results
that etablish links with algorithms [8, 9, 19], the following shows the importance of tree width.

Theorem (Courcelle [19]). Every property expressible in the monadic second order logic of graphs can
be tested in linear time on graphs with bounded tree width.

The different notions of complexity for graphs vastly differ in low-level “implementation details” but
they all share a similar underlying idea: that of defining decompositions and suitably measuring their
efficiency. One of our contributions is to exhibit monoidal width as a unifying framework for graph
measures based on a notion of decomposition. In fact, by choosing a suitable algebra of composition
for graphs — i.e. choosing the right monoidal cateory — we recover some of these known measures as
particular instances of monoidal width. We have previously captured [22] tree width, path width and
branch width by instantiating monoidal width and two variants in a category of cospans of graphs.

In this paper we focus on rank width [33] – a relatively recent development that has attracted signifi-
cant attention in the graph theory community. A rank decomposition is a recipe for decomposing a graph
into its single-vertex subgraphs by cutting along its edges. The cost of a cut is the rank of the adjacency
matrix that represents it, as shown in Figure 2. A useful intuition for rank width is that it is a kind of
“Kolmogorov complexity” for graphs. For example, although the family of cliques has unbounded tree
width, the connectivity of cliques is quite simple to describe: and, in fact, all cliques have rank width 1.

rank

(
1 1
1 1

)
= 1

Figure 2: A cut and its matrix in a rank decomposition.

To capture rank width as an instance of monoidal width, rather than taking cospans, we work in a
different monoidal category of graphs. First introduced in [14], it was recently used [21] as a syntax
for network games. This approach to computing with “open graphs” is more linear algebraic, building
modularly on the theory of bialgebra, well known to be closely related to matrix algebra [41]. Indeed,
the connectivity of graphs is handled with adjacency matrices, and boundary connections are matrices.

Related work. This manuscript, although self-contained, complements our previous work [22], where
we considered tree width, path width and branch width as instances of monoidal width.

Previous syntactical approaches to graph widths are the work of Pudlák, Rödl and Savickỳ [35] and
the work of Bauderon and Courcelle [5]. Their works consider different notions of graph decompositions,
which lead to different notions of graph complexity. In particular, in [5], the cost of a decomposition is
measured by counting shared names, which is clearly closely related to penalising sequential composi-
tion as in monoidal width. Nevertheless, these approaches are specific to particular, concrete notions of
graphs, whereas our work concerns the more general algebraic framework of monoidal categories.

Recent abstract approaches focus on other graph widths. The work of Blume et. al. [7], characterises
tree and path decompositions in terms of colimits. Abramsky et. al. [24] give a coalgebraic character-
ization of tree width of relational structures (and graphs in particular). Bumpus and Kocsis [13] also
generalise tree width to the categorical setting, although their approach is far removed from ours.
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Synopsis. Monoidal width is recalled in Section 2. In Section 3, we study the monoidal width of
matrices. Section 4 recalls rank width and gives an equivalent recursive definition of it that will be useful
as an intermediate step towards our main result, which is presented in Section 5.

Preliminaries. We use string diagrams [30, 40]: sequential and parallel compositions of f and g are
drawn as in Figure 3, left and middle, respectively. Much of the bureaucracy, e.g. the interchange law
( f ;g)⊗( f ′ ;g′)= ( f⊗ f ′) ;(g⊗g′), disappears (Figure 3, right). Props [32, 31] are important examples of

f g
f
g

f g

f ′ g′

Figure 3: String diagrammatic notation.

monoidal categories. They are symmetric strict monoidal, with natural numbers as objects, and addition
as monoidal product on objects. Roughly speaking, morphisms can be thought of as processes, and the
objects (natural numbers) keep track of the number of inputs or outputs of a process.

2 Monoidal width

This section recalls the concept of monoidal width from [22]. Monoidal width records the cost of the
most efficient way one can decompose a morphism into its atomic components, thus capturing—roughly
speaking—its intrinsic structural complexity. A decomposition is a binary tree whose internal nodes are
labelled with compositions or monoidal products, and whose leaves are labelled with atomic morphisms.

Definition 2.1 (Monoidal decomposition [22]). Let C be a monoidal category and A be a subset of its
morphisms referred to as atomic. The set D f of monoidal decompositions of f : A→ B in C is defined:

D f ::= ( f ) if f ∈A

| (d1,⊗, d2) if d1 ∈ D f1 , d2 ∈ D f2 and f = f1⊗ f2

| (d1, ;X , d2) if d1 ∈ D f1 : A→X , d2 ∈ D f2 : X→B and f = f1 ; f2

The cost of a decomposition depends on the operations and atoms present: each operation and each
atomic morphism is associated with a cost, which we call weight. Roughly speaking, sequential compo-
sition is priced according to the size of the object the composition occurs over, while monoidal products
are free. Finally, the weight of an atom is the application-specific cost of computing its semantics.

Definition 2.2 (Weight function [22]). Let C be a monoidal category and let A be a set of atoms for C.
A weight function for (C,A ) is a function w : A ∪{⊗}∪Obj(C)→ N such that

• w(X⊗Y ) = w(X)+w(Y ),

• w(⊗) = 0.

Example 2.3. Let 1 : 1→ 2 and 1 : 2→ 1 be the diagonal and codiagonal morphisms in a carte-
sian and cocartesian prop1 s.t. w( 1) = w( 1) = 2. The following figure represents the monoidal
decomposition of ; ( ⊗ ) ; ( ⊗ ) ; given by ( , ;2, ((( , ;2, ),⊗, ), ;2, )).

1In a cartesian prop the ⊗ satisfies the universal property of products. Dually, in a cocartesian prop, the ⊗ satisfies the
universal property of the coproduct.
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The width of a decomposition is the cost of the most expensive node in the decomposition tree.

Definition 2.4 (Width of a monoidal decomposition [22]). Let w be a weight function for (C,A ). Let f
be in C and d ∈ D f . The width of d is defined recursively as follows:

wd(d) := w( f ) if d = ( f )

max{wd(d1),wd(d2)} if d = (d1,⊗, d2)

max{wd(d1), w(X), wd(d2)} if d = (d1, ;X , d2)

As sketched in Example 2.3, decompositions can be seen as labelled trees (S,µ) where S is a tree
and µ : vertices(S)→A ∪{⊗}∪Obj(C) is a labelling function. With this we can restate the width as:

wd(d) = wd(S,µ) := max
v∈vertices(S)

w(µ(v))

which may be familiar to those aquainted with graph widths.
Monoidal width is simply the width of the cheapest decomposition.

Definition 2.5 (Monoidal width [22]). Let w be a weight function for (C,A ) and f be in C. Then the
monoidal width of f is mwd( f ) := mind∈D f wd(d).

Example 2.6. With the data of Example 2.3, define a family of morphisms n : 1→ 1 inductively:
• 1 := 1;

• 2 := ;2 ;

• n+1 := ;2 (n⊗1) ;2 for n≥ 2.

. . .

Each n has a monoidal decomposition of width n: the root node is the composition along the n wires in
the middle. However, mwd(n) = 2 for any n, with an optimal decomposition shown above.

2.1 The width of copying

Before we begin with the original technical contributions of this paper in Section 3, we need to recall
a technical result from [22] about decomposing copy morphisms. We consider symmetric monoidal
categories equipped with such morphisms and show that copying n wires costs at most n+1.

Definition 2.7 (Copying). Let X be a symmetric monoidal category with symmetries given by X ,Y .
We say that X has coherent copying if there is a class of objects CX ⊆ Obj(X), satifying X ,Y ∈ CX

iff X ⊗Y ∈ CX , such that every X in CX is endowed with a morphism X : X → X ⊗X . Moreover,
X⊗Y = ( X ⊗ Y ) ; ( X ⊗ X ,Y ⊗ Y ) for every X ,Y ∈ CX.

An example is any cartesian prop with n : n→ n+ n given by the cartesian structure. We take
X , the symmetries X ,Y and the identities X as atomic for all objects X ,Y , i.e. the set of atomic

morphisms is A = { X , X ,Y , X : X ,Y ∈ CX}. The weight function is w( X) := 2 ·w(X),
w( X ,Y ) := w(X)+w(Y ) and w( X) := w(X). In a prop, we take w(n) := n. Note that w( X⊗Y ) =
2 ·w(X⊗Y ) = 2 · (w(X)+w(Y )), but utilising coherence we can do better, as illustrated below.

Example 2.8. Let C be a prop with coherent copying and consider n : n→ 2n. Let γn,m := ( n⊗
m) ; ( n⊗ n,m) : n+m→ n+m+n. We can decompose γn,m in terms of γn−1,m+1 (in the dashed

box), 1 and 1,1 by cutting along at most n+1+m wires:
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γn,m =
n

m

n

m

n

=

n−1

1

m

n−1

1
m

n−1

1

This allows us to decompose n = γn,0 cutting along at most n+1 wires. In particular, mwd( n) ≤
n+1.

The following result is a technical generalisation of the argument presented in Example 2.8.

Lemma 2.9 ([22]). Let X be a symmetric monoidal category with coherent copying. Suppose that A
contains X for X ∈CX, and X ,Y and X for X ∈Obj(X). Let X :=X1⊗·· ·⊗Xn, f : Y⊗X⊗Z→W
and let d ∈ D f . Let γ( f ) := ( Y ⊗ X ⊗ Z) ; ( Y⊗X ⊗ X ,Z) ; ( f ⊗ X).

γ( f ) := f

Y

X

Z

W

X

There is a decomposition C (d) of γ( f ) of bounded width:

wd(C (d))≤max{wd(d),w(Y )+w(Z)+(n+1) · max
i=1,...,n

w(Xi)}.

3 Monoidal width in matrices

= = =

= = =

= = = =

Figure 4: Bialgebra axioms

Given the ubiquity of matrix algebra, matrices are an obvious case study. Theorem 3.12 shows that
the monoidal width of a matrix is, up to 1, the maximum of the ranks of its blocks.

Consider the monoidal category MatN of matrices with entries in the natural numbers. The objects
are natural numbers and morphisms from n to m are m by n matrices. Composition is the usual product
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of matrices and the monoidal product is the biproduct: A⊗B := (A 0
0 B). Let us examine matrix decom-

positions enabled by this algebra. A matrix A can be written as a monoidal product A = A1⊗A2 iff the
matrix has blocks A1 and A2, i.e. A =

(
A1 0
0 A2

)
. On the other hand, a composition is related to the rank.

Lemma 3.1 ([34]). Let A : n→ m in MatN. Then min{k ∈ N : A = B ;k C}= rank(A).

We first introduce a convenient syntax for matrices.

Proposition 3.2 ([41]). The category MatN is isomorphic to the prop Bialg, generated by : 1→ 2,
: 1→ 0, : 2→ 1 and : 0→ 1 and quotiented by bialgebra axioms (Figure 4).

For the uninitiated reader, let us briefly explain this correspondence. Every morphism f : n→ m
in Bialg corresponds to a matrix A = Mat( f ) ∈ MatN(m,n): we can read the (i, j)-entry of A off the
diagram of f by counting the number of paths from the jth input to the ith output.

Example 3.3. The matrix
(

1 0
1 2
0 0

)
∈MatN(3,2) corresponds to

Definition 3.4. The atomic morphisms A are the generators of Bialg, with the symmetry and identity on
1: A = { , , , , , 1}. The weight w : A ∪{⊗}∪Obj(Bialg)→ N has w(n) := n, for any
n ∈ N, and w(g) := max{m,n}, for g : n→ m ∈A .

3.1 Monoidal width in Bialg

The characterisation of the rank of a matrix in Lemma 3.1 hints at some relationship between the
monoidal width of a matrix and its rank. In fact, we have Proposition 3.7, which bounds the monoidal
width of a matrix with its rank. In order to prove this result, we first need to bound the monoidal width
of a matrix with its domain and codomain, which is done in Proposition 3.5.

Proposition 3.5. Let P be a cartesian and cocartesian prop. Suppose that 1, 1, 1, 1, 1 ∈A
and w( 1)≤ 1, w( 1)≤ 2, w( 1)≤ 2, w( 1)≤ 1 and w( 1)≤ 1. Suppose that, for every g : 1→
1, mwd(g)≤ 2. Let f : n→ m be a morphism in P. Then mwd( f )≤min{m,n}+1.

Proof sketch. The proof proceeds by induction on max{m,n}. The base cases are easily checked. The
inductive step relies on the fact that, applying Lemma 2.9, if n < m, we can decompose f as shown below
by cutting at most n+1 wires or, if m < n, in the symmetric way by cutting at most m+1 wires.

fn m = fn
m−1

1
=

f

f
n

m−1

1

We can apply the former result to Bialg and obtain Proposition 3.7 because the width of 1×1 matri-
ces, which are numbers, is at most 2. This follows from the reasoning in Example 2.6 as we can write
every natural number k : 1→ 1 as the following composition:
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. . .

Lemma 3.6. Let k : 1→ 1 in Bialg. Then, mwd(k)≤ 2.

Proposition 3.7. Let f : n→ m in Bialg. Then, mwd f ≤ rank(Mat f ) + 1. Moreover, if f is not ⊗-
decomposable, i.e. there are no f1, f2 both distinct from f s.t. f = f1⊗ f2, then rank(Mat f )≤mwd f .

Proof sketch. This result follows from Lemma 3.1 and Proposition 3.5, which we can apply thanks to
Lemma 3.6.

The bounds given by Proposition 3.7 can be improven when we have a⊗-decomposition of a matrix,
i.e. we can write f = f1⊗ . . .⊗ fk, to obtain Proposition 3.9. The latter relies on Lemma 3.8, which
shows that discarding inputs or outputs cannot increase the monoidal width of a morphism in Bialg.

Lemma 3.8. Let f : n→m in Bialg and d ∈D f . Let fD := f ;( m−k⊗ k) and fZ := ( n−k′⊗ k′) ; f ,
where k : k→ 0 is the discard morphism with k ≤ m and k′ : 0→ k is the zero morphism with k′ ≤ n.

fD := fn m− k , fZ := fn− k m .

Then there are D(d) ∈ D fD and Z (d) ∈ D fZ such that wd(D(d))≤ wd(d) and wd(Z (d))≤ wd(d).

Proof sketch. By induction. The base cases are easy. If f = f1 ; f2, use the inductive hypothesis on f2.

fn m− k = f1 f2n m− k

The f = f1⊗ f2 case is similar.

Proposition 3.9. Let f : n→ m in Bialg and d′ = (d′1, ;k, d′2) ∈ D f . Suppose there are f1 and f2 such
that f = f1⊗ f2. Then, there is d = (d1,⊗, d2) ∈ D f such that wd(d)≤ wd(d′).

Proof sketch. By Lemma 3.1, rank(Mat f1)+ rank(Mat f2) = rank(Mat( f1⊗ f2)) ≤ k and, by Propo-
sition 3.7, there is a monoidal decomposition di of fi such that wd(di) ≤ rank(Mat fi) + 1. Then,
wd(d) :=wd((d1,⊗, d2))≤max{rank(Mat f1), rank(Mat f2)}+1≤ rank(Mat f1)+ rank(Mat f2) when-
ever rank(Mat f1), rank(Mat f2)> 0. We apply Lemma 3.8 to obtain the same result if rank(Mat f1) = 0
or rank(Mat f2) = 0.

We summarise Proposition 3.9 and Proposition 3.7 in Corollary 3.10.

Corollary 3.10. Let f = f1⊗ . . .⊗ fk in Bialg. Then, mwd( f )≤maxi=1,...,k rank(Mat( fi))+1. Moreover,
if fi are not ⊗-decomposable, then maxi=1,...,k rank(Mat( fi))≤mwd f .

Proof. By Proposition 3.9 there is a decomposition of f of the form d = (d1,⊗, · · ·(dk−1,⊗, dk)), where
we can choose di to be a minimal decomposition of fi. Then, mwd( f ) ≤ wd(d) = maxi=1,...,kwd(di).
By Proposition 3.7, wd(di) ≤ ri + 1. Then, mwd( f ) ≤ max{r1, . . . ,rk}+ 1. Moreover, if fi are not
⊗-decomposable, Proposition 3.7 gives also a lower bound on their monoidal width: rank(Mat( fi)) ≤
mwd fi; and we obtain that maxi=1,...,k rank(Mat( fi))≤mwd f .

The results so far show a way to construct efficient decompositions given a ⊗-decomposition of the
matrix. However, we do not know whether ⊗-decompositions are unique. Proposition 3.11 shows that
every morphism in Bialg has a unique ⊗-decomposition.
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Proposition 3.11. Let C be a monoidal category whose monoidal unit 0 is both initial and terminal,
and whose objects are a unique factorization monoid. Let f be a morphism in C. Then f has a unique
⊗-decomposition.

Our main result in this section follows from Corollary 3.10 and Proposition 3.11, which can be
applied to Bialg because 0 is both terminal and initial, and the objects, being a free monoid, are a unique
factorization monoid.

Theorem 3.12. Let f = f1⊗ . . .⊗ fk be a morphism in Bialg and its unique ⊗-decomposition given by
Proposition 3.11, with ri = rank(Mat( fi)). Then max{r1, . . . ,rk} ≤mwd( f )≤max{r1, . . . ,rk}+1.

Proof. This result is obtained by applying Corollary 3.10 to the ⊗-decomposition given by Proposi-
tion 3.11, which can be applied because, in Bialg, 0 is both terminal and initial, and the objects, being a
free monoid, are a unique factorization monoid.

Note that the identity matrix has monoidal width 1 and twice the identity matrix has monoidal width
2, attaining both the upper and lower bounds for the monoidal width of a matrix.

4 Graphs and rank width

Here we recall rank width [33] for undirected graphs.

Definition 4.1. An undirected graph G = (V,E,ends) is given by a set of edges E, a set of vertices V
and a function ends : E →℘≤2(V ) that gives the endpoints of each edge. We consider graphs up to
isomorphism, or abstract graphs, thus the set of vertices can be fully characterised by its cardinality. An
abstract graph can be equivalently given by an adjacency matrix [G], where G ∈MatN(n,n) and n is the
number of vertices. The equivalence class of adjacency matrices is defined by the equivalence relation

G∼ H iff G+G> = H +H>.

We will refer to abstract undirected graphs as simply graphs.

Definition 4.2. A path in a graph G is a sequence of edges (e1, . . . ,ek) together with a sequence of
distinct vertices (v1, . . . ,vk+1) of G such that, for every i = 1, . . . ,k, ends(ei) = {vi,vi+1}. A tree is a
graph such that there is a unique path between any two of its vertices. Two vertices v and w in a graph G
are neighbours if G has an edge between them. The leaves of a tree are those vertices with at most one
neighbour. A subcubic tree is a tree where each vertex has between one and three neighbours.

A rank decomposition for a graph G is a tree whose leaves are labelled with the vertices of G.

Definition 4.3 ( [33]). A rank decomposition (Y,r) of a graph G is given by a subcubic tree Y together
with a bijection r : leaves(Y )→ vertices(G).

Each edge b in the tree Y determines a splitting of the graph: it determines a two partition of the
leaves of Y , which, through r, determines a two partition {Ab,Bb} of the vertices of G. This corresponds
to a splitting of the graph G into two subgraphs G1 and G2. Intuitively, the order of an edge b is the
amount of information required to recover G by joining G1 and G2. Given the partition {Ab,Bb} of the
vertices of G, we can record the edges in G beween Ab and Bb in a matrix Xb. This means that, if vi ∈ Ab
and v j ∈ Bb, the entry (i, j) of the matrix Xb is the number of edges between vi and v j.

Definition 4.4 (Order of an edge). Let (Y,r) be a rank decomposition of a graph G. Let b be an edge of
Y . The order of b is the rank of the matrix associated to it: ord(b) := rank(Xb).
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Note that the order of the two sets in the partition does not matter as the rank is invariant to transpo-
sition. The width of a rank decomposition is the maximum order of the edges of the tree and the rank
width of a graph is the width of its cheapest decomposition.

Definition 4.5 (Rank width). Given a rank decomposition (Y,r) of a graph G, define its width as
wd(Y,r) := maxb∈edges(Y ) ord(b). The rank width of G is given by the min-max formula:

rwd(G) := min
(Y,r)

wd(Y,r).

4.1 Graphs with dangling edges

As intermediate step between rank decompositions and monoidal decompositions, we introduce recursive
rank decompositions of graphs with dangling edges and we prove that they give a notion of width that
is equivalent to rank width. Similar recursive characterisations were done for tree decompositions in [4]
and for path and branch decompositions in [22]. We first need a notion of graph that is equipped with
some “open” edges along which it can be glued with other graphs.

Definition 4.6. A graph with dangling edges Γ=([G] ,B) is given by an adjacency matrix G∈MatN(k,k)
that records the connectivity of the graph and a matrix B ∈MatN(k,n) that records the “dangling edges”
connected to n boundary ports. We will sometimes write G ∈ adjacency(Γ) and B = boundary(Γ).

Example 4.7. Two graphs with the same ports, as illustrated below, can be “glued” together:

glued with gives

Decompositions are elements of a tree data type, with nodes carrying subgraphs Γ′ of the ambient
graph Γ. In the following Γ′ ranges over the non-empty subgraphs of Γ: TΓ ::= (Γ′) | (TΓ, Γ′, TΓ).
Given T ∈ TΓ, the label function λ takes a decomposition and returns the graph with dangling edges at
the root: λ (T1, Γ, T2) := Γ and λ (Γ) := Γ.

Definition 4.8 (Recursive rank decomposition). Let Γ = ([G] ,B) be a graph with dangling edges, where
G ∈MatN(k,k) and B ∈MatN(k,n). A recursive rank decomposition of Γ is T ∈ TΓ where either: Γ has
at most one vertex and T = (Γ); or T = (T1, Γ, T2) and Ti ∈ TΓi are recursive rank decompositions of
subgraphs Γi = ([Gi] ,Bi) of Γ such that:

• The vertices are partitioned in two, [G] =
[(

G1 C
0 G2

)]
;

• The dangling edges are those to the original boundary and to the other subgraph, B1 = (A1 |C) and
B2 = (A2 |C>), where B =

(
A1
A2

)
.

As with before, the recursive rank width of a graph is the width of its cheapest decomposition.

Definition 4.9. Let T be a recursive rank decomposition of Γ = ([G] ,B). Define the width of T recur-
sively: if T = (Γ), wd(T ) := rank(B), and, if T = (T1, Γ, T2), wd(T ) := max{wd(T1),wd(T2), rank(B)}
Expanding this expression, we obtain wd(T ) = maxT ′ subtree of T rank(boundary(λ (T ′))). The recursive
rank width of Γ is defined by the min-max formula rrwd(Γ) := minT wd(T ).

We show that recursive rank width is the same as rank width, up to the rank of the boundary of the
graph.

Proposition 4.10. Let Γ = ([G] ,B) be a graph with dangling edges and (Y,r) be a rank decomposition
of G. Then, there is a recursive rank decomposition I (Y,r) of Γ s.t. wd(I (Y,r))≤ wd(Y,r)+ rank(B).
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Before proving the lower bound for recursive rank width, we need a technical lemma that relates the
width of a graph with that of its subgraphs.

Lemma 4.11. Let T be a recursive rank decomposition of Γ = ([G] ,B). Let T ′ be a subtree of T and

Γ′ := λ (T ′) with Γ′ = ([G′] ,B′). The adjacency matrix of Γ can be written as [G] =

[(
GL CL C
0 G′ CR
0 0 GR

)]
and

its boundary as B =

(
AL
A′
AR

)
. Then, rank(B′) = rank(A′ |C>L |CR).

Proposition 4.12. Let T be a recursive rank decomposition of Γ = ([G] ,B) with G ∈ MatN(k,k) and
B ∈MatN(k,n). Then, there is a rank decomposition I †(T ) of G such that wd(I †(T ))≤ wd(T ).

From Proposition 4.12 and Proposition 4.10 we conclude the following result.

Theorem 4.13. Let Γ = ([G] ,B). Then, rwd(G)≤ rrwd(Γ)≤ rwd(G)+ rank(B).

5 Monoidal width and rank width

This section contains our main results. We prove that monoidal width in the prop of graphs Grph [14]
corresponds to rank width, up to a constant multiplicative factor of 2.

We start by introducing the algebra of graphs with boundaries and its diagrammatic syntax [21]. A
graph with boundaries is a graph together with two matrices L and R that record the connectivity of the
vertices with the left and right boundary, a matrix P that records the passing wires from the left boundary
to the right one and a matrix F that records the wires from the right boundary to itself.

Definition 5.1 ([21]). A graph with boundaries g : n→m is defined as g= ([G] ,L,R,P, [F ]), where [G] is
the adjacency matrix of a graph on k vertices, with G∈MatN(k,k); L∈MatN(k,n), R∈MatN(k,m), P∈
MatN(m,n) and F ∈MatN(m,m) recording connectivity information as explained above. Graphs with
boundaries are taken up to an equivalence making the order of the vertices immaterial. Let g,g′ : n→ m
on k vertices, with g = ([G] ,L,R,P, [F ]) and g′ = ([G′] ,L′,R′,P, [F ]). The graphs g and g′ are considered
equal iff there is a permutation matrix σ ∈MatN(k,k) such that g′ = (

[
σGσ>

]
,σL,σR,P, [F ]).

Graphs with boundaries can be composed sequentially and in parallel [21], forming a symmetric
monoidal category BGraph. The prop Grph provides a convenient syntax for graphs with boundaries. It
is obtained by adding a cup and a vertex generators to the prop of matrices Bialg (Figure 4).

Definition 5.2 ([14]). The prop of graphs Grph is obtained by adding to Bialg the generators ∪ : 0→ 2
and v : 1→ 0 with the equations below.

and such that = and = .

These equations mean, in particular, that the cup transposes matrices (Figure 5, left) and that we can
express the equivalence relation of adjacency matrices: G∼ H iff G+G> = H +H> (Figure 5, right).

Proposition 5.3 ([21], Theorem 23). The prop of graphs Grph is isomorphic to the prop BGraph.
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C
=

C>
G∼ H iff

G
=

H

Figure 5: Adding the cup.

Proposition 5.3 means that the morphisms in Grph can be written in the following normal form

k

G

L

R

P

F
n

m

.

The prop Grph is more expressive than graphs with dangling edges (Definition 4.6): its morphisms
can have edges between the boundaries as well. In fact, graphs with dangling edges can be seen as
morphisms n→ 0 in Grph.

Example 5.4. A graph with dangling edges Γ = ([G] ,B) can be represented as a morphism in Grph

g = ([G] ,B,¡,!, [( )]) =
k

G

Bn
.

We can now formalise the intuition of glueing graphs with dangling edges as explained in Example 4.7.
The two graphs there correspond to g1 and g2 below left and middle. Their glueing is obtained by
precomposing their monoidal product with a cup, i.e. ∪2 ; (g1⊗g2), as shown below right.

g1 = g2 = ∪2 ; (g1⊗g2) =

5.1 Rank width in open graphs

The technical content of our main result (Theorem 5.12) is split in two: an upper and a lower bound.
As in the prop of matrices Bialg, the cost of composing along n wires is n. All morphisms in Grph are

chosen as atomic. One could restrict this to those with at most one vertex without affecting the results.

Definition 5.5. Let the set of atomic morphisms A be the set of all the morphisms of Grph. The weight
function w : A ∪{⊗}∪Obj(Grph)→N is defined, on objects n, as w(n) := n; and, on morphisms g∈A ,
as w(g) := k, where k is the number of vertices of g.
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Note that the monoidal width of g is bounded by the number of its vertices.
The upper bound (Proposition 5.8) is established by associating to each recursive rank decomposi-

tion a suitable monoidal decomposition. This mapping is defined inductively, given the inductive nature
of both these structures. Given a recursive rank decomposition of a graph Γ, we can construct a de-
composition of its corresponding morphism g as shown by the first equality in Figure 6. However, this

gn =

k1

k2

G1

G2

A1

A2

C
n =

k1

k2

L1

L2

G1

G2

N1

N2

S
n

r1

r2

Figure 6: First step of a monoidal decomposition given by a recursive rank decomposition

decomposition is not optimal as it cuts along the number of vertices k1 +k2. But we can do better thanks
to Lemma 5.6, which shows that we can cut along the ranks, r1 = rank(A1 |C) and r2 = rank(A2 |C>),
of the boundaries of the induced subgraphs to obtain the second equality in Figure 6.

A1

A2

C

n

n

k1

k2

=

N1

N2

S
L1

L2

n

n

k1

k2

r1

r2

Lemma 5.6. Let Ai ∈MatN(ki,n), for i = 1,2, and C ∈MatN(k1,k2). Then, there are rank decomposi-
tions of (A1 |C) and (A2 |C>) of the form (A1 |C) = L1 · (N1 | S ·L>2 ), and (A2 |C>) = L2 · (N2 | S> ·L>1 ).

Once we have performed the cuts in Figure 6 on the right, we have changed the boundaries of the
induced subgraphs. This means that we cannot apply the inductive hypothesis right away, but we need
to transform first the recursive rank decompositions of the old subgraphs into decompositions of the
new ones, as shown in Lemma 5.7. More explicitly, when M has full rank, if we have a recursive
rank decomposition of Γ = ([G] ,B′ ·M), which corresponds to g below left, we can obtain one of Γ′ =
([G] ,B′), which corresponds to g′ below right, of the same width.

g =
G

B′M

 g′ =
G

B′

Lemma 5.7. Let T be a recursive rank decomposition of Γ = ([G] ,B) and B = B′ ·M, with M that has
full rank. Then, there is a recursive rank decomposition T ′ of Γ′ = ([G] ,B′) such that wd(T ) = wd(T ′)
and such that T and T ′ have the same underlying tree structure.

With the above ingredients, we can show that rank width bounds monoidal width from above.
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Proposition 5.8. Let Γ = ([G] ,B) be a graph with dangling edges and g : n→ 0 be the morphism in
Grph corresponding to Γ. Let T be a recursive rank decomposition of Γ. Then, there is a monoidal
decomposition R†(T ) of g such that wd(R†(T ))≤ 2 ·wd(T ).

Proof sketch. The proof proceeds by induction on T . The base cases are easily checked and the inductive
step relies on the decomposition of g in Figure 6, which we can write thanks to Lemma 5.6. Applying
the inductive hypothesis and Lemma 5.7, the width of this decomposition can be bounded by max{r1 +
r2,2 ·wd(T1),2 ·wd(T2)} ≤ 2 ·wd(T ), where T = (T1, Γ, T2).

Proving the lower bound is similarly involved and follows a similar proof structure. From a monoidal
decomposition we construct inductively a recursive rank decomposition of bounded width. The inductive
step relative to composition nodes is the most involved and needs two additional lemmas, which allow
us to transform recursive rank decompositions of the induced subgraphs into ones of two subgraphs that
satisfy the conditions of Definition 4.8.

Applying the inductive hypothesis gives us a recursive rank decomposition of Γ = ([G] ,(L | R)),
which is associated to g below left, and we need to construct one of Γ′ := (

[
G+L ·F ·L>

]
,(L | R+L ·

(F +F>) ·P>)), which is associated to f ; g below right, of at most the same width.

g =
k

G

L

R

P

j m
 f ; g =

k

G

L

R

P

F
j m

Lemma 5.9. Let T be a recursive rank decomposition of Γ = ([G] ,(L | R)). Let F ∈MatN( j, j), P ∈
MatN(m, j) and define Γ′ := (

[
G+L ·F ·L>

]
,(L | R+L ·(F +F>) ·P>)). Then, there is a recursive rank

decomposition T ′ of Γ′ of bounded width: wd(T ′)≤ wd(T ).

In order to obtain the subgraphs of the desired shape we need to add some extra connections to the
boundaries. We have a recursive rank decomposition of Γ = ([G] ,B), which corresponds to g below left,
and we need one of Γ′ = ([G] ,B ·M), which corresponds to g′ below right, of at most the same width.

g =
G

B

 g′ =
G

BM

The following result and its proof are very similar to Lemma 5.7.

Lemma 5.10. Let T be a recursive rank decomposition of Γ = ([G] ,B) and let B′ = B ·M. Then, there
is a recursive rank decomposition T ′ of Γ′ = ([G] ,B′) such that wd(T ′)≤ wd(T ) and such that T and T ′

have the same underlying tree structure. Moreover, if M has full rank, then wd(T ′) = wd(T ).

Proposition 5.11. Let g = ([G] ,L,R,P, [F ]) in Grph and d ∈ Dg. Let Γ = ([G] ,(L | R)). Then, there is a
recursive rank decomposition R(d) of Γ s.t. wd(R(d))≤ 2 ·max{wd(d), rank(L), rank(R)}.

Proof sketch. The proof proceeds by induction on d. The base case is easily checked, while the inductive
steps are a bit more involved. If d = (d1, ; j, d2), then there are gi = ([Gi] ,Li,Ri,Pi, [Fi]) such that g =
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g1 ; g2 and we can write g as follows.

k1

G1

L1

R1

P1

F1n
j

k2

G2

L2

R2

P2

F2 m

=

k1

G1

L1

n

k2

G2

R2

F m
P

C>
R>1 L2

In order to build a recursive rank decomposition of Γ, we need recursive rank decompositions of Γi =
(
[
Gi
]
,Bi), but we can obtain recursive rank decompositions of Γi = ([Gi] ,(Li | Ri)) by applying only in-

duction. Thanks to Lemma 5.9, we obtain a recursive rank decomposition of Γ′2 =(
[
G2 +L2 ·F1 ·L>2

]
,(L2 |

R2 +L2 · (F1 +F>1 ) ·P>2 )). Lastly, we apply Lemma 5.10 to get recursive rank decompositions Ti of Γi.
Thanks to these, we can bound the width of T := (T1, Γ, T2):

wd(T )≤ 2 ·max{wd(d1),wd(d2), j, rank(L), rank(R)} :=2 ·max{wd(d), rank(L), rank(R)}.

If d = (d1,⊗, d2), we proceed similarly.

From Proposition 5.8, Proposition 5.11 and Theorem 4.13, we obtain our main result.

Theorem 5.12. Let G be a graph and let g = ([G] ,¡,¡,( ), [( )]) be the corresponding morphism of Grph.
Then, 1

2 · rwd(G)≤mwd(g)≤ 2 · rwd(G).

6 Conclusions and future work

We have shown that monoidal width, in a suitable category of graphs composable along “open” edges,
yields rank width; a well-known measure from the graph theory literature.

Our goal with this line of research is to develop a generic, abstract “decomposition theory”. We will
study other graph widths like clique width [20] and twin width [12], as well as go beyond graphs: e.g.
by focussing on tree width for hypergraphs and relational structures [1], branch width for matroids and
widths for directed graphs. A part of “decomposition theory” means going beyond width as a mere num-
ber – in fact we believe that in each case the identification of a suitable monoidal category as an algebra
of open graph structures is itself a worthwhile contribution. Indeed, having such an algebra means that
a decomposition, rather than an ad hoc concept-specific construction, becomes more of a mathematical
object in its own right. Such compositional algebras will add to the quiver of compositional structures of
applied category theory; for example serving as syntax for more sophisticated applications [21].
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The notion of a joint system, as captured by the monoidal (a.k.a. tensor) product, is fundamental to the
compositional, process-theoretic approach to physical theories. Promonoidal categories generalise
monoidal categories by replacing the functors normally used to form joint systems with profunctors.
Intuitively, this allows the formation of joint systems which may not always give a system again, but
instead a generalised system given by a presheaf. This extra freedom gives a new, richer notion of
joint systems that can be applied to categorical formulations of spacetime. Whereas previous for-
mulations have relied on partial monoidal structure that is only defined on pairs of independent (i.e.
spacelike separated) systems, here we give a concrete formulation of spacetime where the notion of a
joint system is defined for any pair of systems as a presheaf. The representable presheaves correspond
precisely to those actual systems that arise from combining spacelike systems, whereas more general
presheaves correspond to virtual systems which inherit some of the logical/compositional properties
of their “actual” counterparts. We show that there are two ways of doing this, corresponding roughly
to relativistic versions of conjunction and disjunction. The former endows the category of space-
time slices in a Lorentzian manifold with a promonoidal structure, whereas the latter augments this
structure with an (even more) generalised way to combine systems that fails the interchange law.

1 Introduction

Categorical approaches to the modelling of structures of spacetime have become increasingly rich topics
of study leading to both the development of new mathematics and a greater understanding of the under-
lying structures of our theories of physics. Nevertheless, the precise categorical structures that should be
present in a model of spacetime are far from settled. Monoidal structure is a common requirement, being
a key part of Categorical Quantum Mechanics [1] and of many approaches to Topological Quantum Field
Theory [2]. The key physical argument for the assumption of monoidal structure is simple: if one has
a pair of systems, then one should be able to put them together and consider the composite as a new
system.

While this assumption may be ideal in abstract process theories, say where one wishes to model
arbitrary qubits as in the ZX-calculus [9], when we turn our attention to decompositional approaches
to modelling physical systems [10], it becomes apparent that the universe does not behave in a fully
monoidal fashion. Rather than starting with a collection of existent systems and presupposing that it is
possible to join them together arbitrarily, we start with a global system - the whole of spacetime - and
carve out systems with the hope of recovering some fragment of compositional structure.

In such a framework, the tensor becomes problematic, for instance, if we pick a particular system,
say a specified qubit A, it is clearly not possible to form the product A⊗A in the usual sense, for what
would it mean to consider the composite of a system with itself? Indeed, the fundamental issue here
is trying to tensor two objects that are not independent and that can influence each other in non-trivial
ways; we would also have issues taking the tensor of timelike separated systems, or of mixed systems
whose environments are not causally disjoint.

http://dx.doi.org/10.4204/EPTCS.380.17
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There are two main obstructions to hoping for a total tensor product on a category modelling space-
time regions. Firstly, one would like the objects of the category to have a physical interpretation as
systems existing in reality. It can often be the case though that no such physical system exists for the
composite of physically reasonable systems. For instance, if we take the objects of our category to rep-
resent slices of spacetime - closed spacelike subsets of a Lorentzian manifold - when we try to join two
slices together they will not form another slice unless the original slices were causally separated.

Secondly, functoriality can fail and one often finds that the interchange law does not hold:

(g⊗1)(1⊗ f ) 6= (1⊗ f )(g⊗1) (1)

while functoriality in each side of the tensor still holds (1⊗ f ′)(1⊗ f ) = (1⊗ f ′ f ) and (g′⊗1)(g⊗1) =
(g′g⊗ 1). This occurs because the systems involved in the tensor may not be independent - they might
causally influence each other or possess a shared environment. Thus the casual ordering of f and g is
vitally important.

One possible route forwards could be to define the tensor only partially. It was noted in [10] that
one can recover a partial monoidal structure where the tensor product is only defined on regions of
spacetime that are causally separated. A group theoretic approach was taken in [19] where the resulting
category has partial monoidal structure defined only on compatible systems, which requires both the
causal separation of systems and also their coupled environments. Another approach starting with a
poset modelling the causal relationships of spacetime events [20], resulted in partial monoidality, again
only defined on causally separated systems. Partial monoidality, due to similar causality obstructions has
appeared in a proposal for modelling the Wolfram model [21].

Outside of applications to physics, partially monoidal categories have made an appearance in [4, 5, 6]
where it was noted that the category of finite subsets of some given set N has a partially monoidal struc-
ture given by the union of disjoint sets. The authors develop a string diagrammatic language dubbed
nominal string diagrams, where wires are labelled with elements from the fixed set N. There are similar-
ities between this and the present work - our decompositional approach to physics also has a fixed global
set from which we label all systems (a manifold M ) and the partial monoidal structure of spacetime
slices developed here is also given by unions and intersections of sets. On the other hand, there is a
major point of difference between our approach and that of Balco et. al.. While they made the partial
monoidal structure total by working with categories internal to a monoidal category, we aim to totalise
the partial monoidal structure by working with the presheaves of our category.

We propose the usage of weakenings of monoidal categories in the form of promonoidal [13] and
premonoidal [29] categories to model causal curves in spacetime. Premonoidal categories are like
monoidal ones but dropping the interchange law (1). They were developed for modelling computational
semantics with side-effects and have been used previously to model spacetime particularly in relation to
Algebraic Quantum Field Theories [11, 8], where it was argued one could use them to model the Einstein
causality condition. Here, we reinforce their point and argue that the lack of bifunctoriality seems to be
fundamental in a decompositional approach to spacetime. Premonoidal categories have also appeared
elsewhere in applications to petri nets [3].

Promonoidal categories are loosely like monoidal categories into the presheaf category. To our
knowledge they have not been directly used in a model of spacetime before. Here, we use them to
extend the partial monoidality of spacetime to a total tensor by allowing us to assign useful mathematical
objects to otherwise physically problematic ones. For instance, the union of two slices of spacetime is
another region of the manifold but not necessarily a slice, thus lacking physical interpretation. We can
assign the union a presheaf, with these presheaves being representable whenever the union is another
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slice. The non-representable presheaves can be thought to act like “virtual systems,” they carry useful
information but are not physically meaningful.

In sections 2.1 and 2.2 we recap promonoidal and premonoidal categories respectively. In section 3
we introduce toy categories Slice and Space of causal curves in spacetime before showing in section 4
that Slice is a promonoidal category under the operation of taking intersections of sets of causal curves.
In section 5 we discuss the operation of taking unions of sets of causal curves and demonstrate that
this gives a premonoidal structure on Space while Slice combines the structures of promonoidal and
premonoidal categories. Under either of the tensor-like structures on Slice we prove that the presheaves
assigned to the tensors are representable if and only if the slices are jointly spacelike and in doing so
show that we recover a type of partial tensor product on causally separated regions. In the final section
6 we give the beginnings of a physical interpretation to the operations on Slice as capturing a kind of
logical conjunction and disjunction of predicates about particles in spacetime.

2 Preliminaries

2.1 Promonoidal Categories

Before we introduce the formal definition of a promonoidal category let us comment on the intuition we
hope to capture.

In a monoidal category C , the tensor product of two objects of C returns another object in C , that is,
it is a functor C ×C −→ C . Returning to the example of a category of spacetime slices, it is problematic
to assign an object of C to the tensor product whenever the regions of spacetime are timelike separated.
The best we could hope for would be a partial monoidal structure which is only defined when regions
are spacelike separated. Perhaps it might be possible though to assign the tensor of timelike separated
regions to be a different sort of object, one that lives outside the category C ? What is a sensible choice
of such “external” objects and how can we ensure that they work together compatibly such that we might
describe the overall structure as something like a tensor product?

We will investigate the usage of promonoidal categories to deal with the aforementioned issues.
Rather than assign an object of C to the tensor product, we assign it a presheaf : a functor C op −→
Set. Presheaves are nicely-behaved mathematical objects: they form a category [C op,Set] where the
morphisms are natural transformations between the presheaves, and the Yoneda lemma provides a way
of embedding of C fully and faithfully into its presheaves Y : C −→ [C op,Set]. The image of this functor
consists of the representable presheaves which are of the form YA ∼= C (−,A) for some object A of C .

By working with promonoidal categories we are able to assign the tensor a presheaf (A⊗B)(−) :
C op −→ Set, and in doing so, work with otherwise undefinable tensor products. Since C embeds into its
presheaves, we do not lose any ability to still assign some tensor products to essentially be objects of
C . Indeed, when the tensor product of objects of C is a representable presheaf, (A⊗B)(−) ∼= C (−,C)
we can identify A⊗B with C under the Yoneda embedding. In this way, promonoidal categories are
like partially monoidal ones - when the presheaf is representable we essentially have an object of C
again - but rather than the tensor being undefined elsewhere we can still assign otherwise “untensorable”
objects a non-representable presheaf. For a more detailed discussion of the connections between partially
monoidal and promonoidal categories see appendix A.

Now, let us start with some core definitions concerning profunctors and their composition. A more
comprehensive study can be found in e.g. [26].

Definition 1 (Profunctor). A profunctor P : C −7→D is a functor Dop×C −→ Set.
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Profunctors generalise functors in a similar way to how relations generalise functions between sets -
profunctors are like “relations between categories,” (note that a relation A∼ B is equivalently a function
out of the cartesian product of the sets A×B −→ {0,1}). We will often use a shorthand Einstein-style
notation for profunctors writing P(d,c) = Pd

c , with subscripts for covariant variables and superscripts for
contravariant ones.

Definition 2 (Cowedge, Coend). Given a profunctor P : C op×C −→ Set, a cowedge (d,w) for P is an
object d of Set together with arrows wc : P(c,c)−→ d making the following diagram commute for all f :

d P(c,c)

P(c′,c′) P(c′,c)

wc

wc′

P(c′, f )

P( f ,c)

The coend of P is a universal cowedge (
∫ c P(c,c),copr): this is the cowedge such that all other cowedges

factorise uniquely through it:

d

∫ c P(c,c) P(c,c)

P(c′,c′) P(c′,c)

coprc

wc

coprc′
wc′

P(c′, f )

P( f ,c)

Coends have a series of nice properties which help to justify the use of an integral symbol to represent
them. Firstly, they satisfy a Fubini-style law allowing us to commute coends:∫ c ∫ d

P(c,c,d,d)∼=
∫ (c,d)∈C×D

P(c,c,d,d)∼=
∫ d ∫ c

P(c,c,d,d)

Secondly, the Yoneda lemma implies the following identities, sometimes known as the ninja Yoneda
lemma: ∫ c

C (−,c)×F(c)∼= F(−)
∫ c

G(c)×C (c,−)∼= G(−) (2)

for any functors F : C op −→ Set and G : C −→ Set. So the hom-profunctor behaves “like a Dirac-delta
function”.

Definition 3 (Composition of Profunctors). Given profunctors P : C −7→D and Q : D −7→ E , their com-
posite is given by taking the coend

(Q◦P)(−,=) =
∫ d

Q(−,d)×P(d,=) : C −7→ E

This coend can be characterised as the coequaliser:

⊔
f :d−→d′

Q(−,d)×P(d′,=)⇒
⊔
d

Q(−,d)×P(d,=)−→
∫ d

Q(−,d)×P(d,=)
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where the coequalised pair “act by f on the left and right under the profunctor”. We can think of the
resulting quotient set (Q◦P)(e,c) as equivalence classes of pairs (q, p) where q∈Q(e,d) and p∈ P(d,c)
under the relations (Q(e, f )(q), p)∼ (q,P( f ,c)(p)). We will refer to these as the “sliding” relations since
it is as though we can slide f from one side to the other (up to changing Q and P).

The composition of profunctors will be written as (Q◦P)(e,c)=Qe
dPd

c in the Einstein notation, where
instead of the summation convention we have a “coend convention” - repeated indices, once covariant and
once contravariant, are to be coend-ed out. In this way, one also sees the similarity between profunctor
composition and matrix multiplication.

Categories, profunctors and natural transformations form a monoidal bicategory Prof where the
monoidal product acts as C ×D on 0-cells and as (P×Q)(c,d,e, f ) = P(c,d)×Q(e, f ) on 1-cells.
The hom-profunctors play a special role in Prof: they are the identity 1-cells by the ninja Yoneda lemma
(2).

We are now in a position to define promonoidal categories.

Definition 4 (Promonoidal Category [13, 12]). A category C is promonoidal if it is equipped with

• a tensor product profunctor ⊗ : C ×C −7→ C

• a unit profunctor I : 1−7→ C , i.e. a presheaf I : C op −→ Set

together with natural isomorphisms ⊗(⊗×1)
α∼=⊗(1×⊗) and ⊗(⊗× I)

ρ∼= 1
λ∼=⊗(I×⊗) subject to the

triangle and pentagon coherence conditions similar to a monoidal category. A promonoidal category is
strict when the coherence isomorphisms are identities. A promonoidal category is symmetric when there
is a natural isomorphism σABC :⊗A

BC −→⊗A
CB satisfying the hexagon equation.

Remark. A very concise definition of a promonoidal category C is as a pseudomonoid in Prof.
There are many similarities between the definitions of promonoidal and monoidal categories. One

can think of promonoidal categories as what we get when we “upgrade” the functors of a monoidal
category to profunctors. This really is an upgrade since every functor induces two profunctors by taking
its covariant or contravariant Yoneda embeddings. Furthermore, by the following result we can consider
promonoidal categories as strictly more general than monoidal ones.

Theorem 1 ([13, 12]). All monoidal categories (C ,�,J) are promonoidal categories where we define the
tensor profunctor as (A⊗B)(−) :=C (−,A�B) and the unit profunctor as I(−) :=C (−,J). Conversely,
a promonoidal category whose tensor and unit are everywhere representable is a monoidal category.

We will mostly think of the tensor product profunctor ⊗ : C op×C ×C −→ Set in its curried form as
a functor into presheaves, ⊗ : C ×C −→ [C op,Set] and in an abuse of notation we freely switch between
using⊗ for the tensor product in its three different forms (as a profunctor, a functor into Set and a functor
into presheaves) so long as it is clear which we mean.

2.2 Premonoidal Categories

Alongside promonoidal categories, the other monoidal-like structures in this article are premonoidal
categories. Premonoidal categories are a weakening of monoidal categories to allow for situations when
one can join objects together but each half of the tensor is only individually functorial, that is, while it is
the case that (g′⊗1)(g⊗1) = (g′g⊗1) and (1⊗ f ′)(1⊗ f ) = (1⊗ f ′ f ) we have the following inequality:

f

g f
g

6=
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These categories were originally introduced to model computational semantics with side-effects [29]
but we expect categories of causal curves to have similar structure. If f and g act on slices which are
timelike separated or have a non-trivial intersection, then their causal ordering can be vitally important;
f could change the state space in ways that later influence g or vice-versa. These “hidden” influences
between maps can be seen to be somewhat akin to the side-effects in the computational semantics for
which premonoidal categories were originally intended.

A premonoidal category has for each object X , a pair of functors X o− and −nX acting as the left
and right parts of the tensor product, together with compatibility between their actions on objects. More
precisely:

• for each pair of objects X and Y of C there is an assigned object X�Y of C ,

• for each object X of C , there is a functor X o− : C −→ C acting on objects as X oY = X�Y ,

• for each object Y of C , there is a functor −nY : C −→ C acting on objects as X nY = X�Y .

There is no compatibility condition between the left and right parts on morphisms, so in general it
will be the case that ( f nY ′)(X og) 6= (Y og)( f nX ′) for f : X −→Y , g : X ′ −→Y ′. Pairs of morphism for
which such equalities hold, we can think of as acting like the normal tensor and can safely denote f ⊗g.
In particular, there is a special name for those morphisms which commute with all others:

Definition 5 (Central Morphism [29]). A morphism f : X −→Y is central if and only if for all g : X ′ −→Y ′,
the following two diagrams commute:

X⊗X ′ X⊗Y ′

Y ⊗X ′ Y ⊗Y ′

Xog

fnX ′ fnY ′

Yog

X ′⊗X X ′⊗Y

Y ′⊗X Y ′⊗Y

X ′o f

gnX gnY

Y ′o f

In addition to the above data, a premonoidal category needs associativity and unit natural isomor-
phisms which are central:

Definition 6 (Premonoidal Category [29]). A category C is premonoidal if it is equipped with left and
right tensor functors Xo− and−nY for each X and Y , such that they are compatible on objects, together
with:

• a unit object I with central isomorphisms λX : X⊗ I −→ X and ρX : I⊗X −→ X for each X ,

• a central isomorphism αXY Z : (X⊗Y )⊗Z −→ X⊗ (Y ⊗Z) for each triple X ,Y and Z,

such that the triangle and pentagon equations hold and so that the naturality squares for α,λ and ρ hold.
A premonoidal category is strict when the coherence isomorphisms are identities.

It is possible to combine the left and right tensor functors X o− and −nY into a single functor
C � C −→ C from the funny tensor product [17]. A concise definition of the funny tensor is as follows,

Definition 7 (Funny tensor product [31]). The funny tensor product C � D is given by the following
pushout

C0×D0 C0×D

C ×D0 C �D

1×iD

iC×1
p

(3)

where C0 and D0 are the discrete categories of the objects of C and D respectively.
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Explicitly, the category C � D has as objects pairs (c,d) of an object c of C and d of D . The
morphisms are generated by freely composing ( f ;1) : (c,d)−→ (c′,d) where f : c−→ c′ in C and (1;g) :
(c,d) −→ (c,d′) where g : d −→ d′ in D with the rule that compositions exclusively in C or D may be
contracted: ( f ′;1)( f ;1) = ( f ′ f ;1) and (1;g′)(1;g) = (1;g′g) but ( f ;1)(1;g) 6= (1;g)( f ;1) and thus there
is no sensible notion of “( f ;g)”. There is a oplax monoidal functor C � D −→ C ×D induced by the
universal property of the pushout, which forces the interchange squares to commute.

3 A Category of Spacetime Slices

The aim of the remainder of this article is to develop a toy category of spacetime slices and causal curves
and then demonstrate that it exhibits both premonoidal and promonoidal structures.

3.1 Spacetimes and Causal Curves

From now on we fix a connected Lorentzian manifold M with metric g. A tangent vector X is said to be
spacelike, timelike or null if g(X ,X)> 0,g(X ,X)< 0 or g(X ,X) = 0, respectively. M is said to be time-
orientable if it has a non-vanishing timelike vector field and the timelike tangent vectors at each point
can be divided (in a continuous fashion) into two classes: a future-directed and a past-directed class. We
assume that M is time-orientable and fix a time-orientation. The assumptions we make of our spacetime
are fairly weak causality-wise, and are weaker than those of past- and future-distinguishability [28, 24]
(which was assumed by [20]) and certainly weaker than the existence of a Cauchy slice (equivalently
global hyperbolicity) [18]. As a result we have not ruled out the existence of closed timelike curves in
the spacetime.

A simple example of the kinds of manifolds we are interested in is Minkowski space Rn+1 equipped
the metric g(X ,X) = |x|2−t2 for X = (t,x). The timelike vectors are those (t,x) where t2 > |x|2, of which
there are two classes t > |x| and t < −|x| consisting of vectors which point forwards and backwards in
time, respectively; a timelike vector (t,x) is future-directed when t > 0 and past-directed when t < 0.
There is no issue with restricting oneself to Minkowski space for the remainder of the article, but we
note that the results hold in the fully general case.

A path in M is a continuous map µ : ι −→M where ι ⊆ R is a (possibly unbounded) real interval.
Such a path is smooth if it is infinitely differentiable and regular if its first derivative is non-vanishing.
A smooth regular path is causal when the tangent vector is timelike or null at all points in the path and a
causal path is future-directed when the tangent at every point is future-directed. For a point x ∈M , the
set of all points y ∈M with a future-directed path x to y is called the future light cone of x, whereas the
set of all points with a future-directed path from y to x is called the past light cone of x.

Often it is more convenient to work with equivalence classes of paths, up to reparametrisation, i.e.
µ ∼ µ ′ if and only if there exists a monotone map r : ι → ι ′ such that µ ′ ◦ r = µ . An equivalence class
of causal paths is called a causal curve. Since being future-directed is preserved by ∼, we can also say a
causal curve is future-directed without ambiguity.

A point x ∈M causally precedes another point y ∈M , written x≺ y, if there exists a future-directed
causal curve from x to y, or if x = y. The assumption of time-orientability of M is not enough to ensure
that ≺ gives a total order on points in a causal curve - for instance there could be closed timelike curves
in M containing points x 6= y, for which x≺ y and y≺ x.

A region is any arbitrary subset A⊆M of the manifold. Regions are too general to be useful for many
practical applications, they might contain points which causally precede each other or they might have
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insufficient topological properties to make them well-behaved. As a result we will be more interested in a
restricted class of regions, the spacelike regions, where for all x,y ∈ Σ, x 6= y, x does not causally precede
y and thus there are no future-directed causal curves connecting x with y, or y with x. For instance, in
Minkowski space the surfaces given by fixed times t = τ are examples of spacelike sets.

Definition 8 (Spacelike Slice). A spacelike slice (or simply a “slice”) is a closed spacelike set.

It is worth noting that slices may still be too weak for many applications, and it may be necessary
to demand further properties of them, by working with the Cauchy slices for instance. Whilst we do
not make these restrictions in this work, in principle, there is no obstacle to applying many of the same
methods to categories of more restrictive classes of slices.

We will be very interested in the causal relationship between slices X and Y , which motivates the
following definition.

Definition 9 (Jointly Spacelike Slices). Slices X and Y are jointly spacelike if their union X ∪Y is
spacelike.

Given regions A,B⊆M , A 6= B, we say that a future-directed causal curve γ with representative path
µ : ι −→M , passes through A and then B if there exists a q ∈ ι with µ(q) ∈ B and for all such q there
exists p≤ q ∈ ι such that µ(p) ∈ A. We write C [A,B] for the set of future-directed causal curves passing
through A and then B. We write C [A] := C [A,A] for the set of future-directed causal curves which pass
through A (with no constraint on other regions through which they must pass). It is worth noting that a
closed timelike curve γ containing both the points a∈ A and b∈ B will be in the sets C [A,B] and C [B,A].

3.2 A Category of Causal Curves

With these definitions in place we can define the following categories of slices and regions of spacetime:

Definition 10 (Slice,Space). The category Slice has as objects slices X ⊂M (closed spacelike sets).
For two slices X ,Y ⊂M , the homset Slice(X ,Y ) := P(C [X ,Y ]) is the powerset of C [X ,Y ], that is, a
morphism X −→Y is a set of future-directed causal curves through X then Y . Given two subsets S : X −→Y
and T : Y −→ Z, their composition is given by intersection: T ◦ S := T ∩ S ⊂ C [X ,Z]. The identity
morphism 1X : X −→ X is given by the set C [X ,X ] of all curves through X .

The category Space has as objects arbitrary regions A⊆M . All other data is as Slice.

⊆
X

Y

X

Y
7→

S : X → Y

T : Y → Z

T ◦S : X → Z

Z

Y

X X

Z

Figure 1: Left: A morphism in the category Slice is a set of causal curves passing first through X then
through Y . Right: Composition of two morphisms in Slice via intersection. Note that in both pictures,
past as future light cones of slices are depicted as dotted lines, and sets of many causal curves are depicted
as filled-in regions.
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Proposition 1. Slice and Space are categories.

Proof. Composition is associative because intersection is. Given a set of causal curves S : X −→ Y , by
definition all curves in S pass through X , thus we see S ◦ 1X = S∩C [X ,X ] = S. Similarly for the left
composition with identity morphisms.

Now we examine a few basic categorical properties of Slice and Space.

Proposition 2. Slice and Space have equalisers and coequalisers, given by the complement of the sym-
metric difference.

Proof. Take f ,g : A−→ B. This pair of parallel arrows is equalised by ( f 4g)c : A−→ A and coequalised
by ( f 4g)c : B−→ B where ( f 4g)c = C [A,B]\( f 4g) = ( f ∪g)c∪ ( f ∩g). Any other arrow h making
the parallel pair f and g equal factorises uniquely via ( f 4 g)c because this morphism contains every
causal curve that is in both f and g, or neither. Thus h must be a subset of ( f 4g)c.

It is interesting that equalisers and coequalisers essentially coincide in Slice - in part this is down to
the fact that composition is, up to types, commutative - e.g. for endomorphisms f ◦g = g◦ f .

Proposition 3. Let X and Y be jointly spacelike slices with X ∩Y =∅. Then the product and coproduct
of X and Y exist in Slice and are given by the set theoretic union X×Y = X⊕Y = X ∪Y .

Proof. Proof given in appendix B.1.

While we do have products and coproducts of non-intersecting jointly spacelike slices in Slice, the
(co)products of other regions e.g. timelike separated regions and of intersecting slices do not exist. These
regions are the main issue preventing the set theoretic union from being a monoidal structure on Slice.

Proposition 4. Slice is not a monoidal category under a monoidal product given by taking the union of
regions and curves X⊗Y := X ∪Y and S⊗T := S∪T .

Proof. The union of slices is not always a slice so X ∪Y may not be an object of Slice. For the occasions
when it is, ⊗ cannot in general be bifunctorial. For arbitrary S : X −→ Y , S′ : Y −→ Z, T : X ′ −→ Y ′ and
T ′ :Y ′−→ Z′, we have (S′⊗T ′)◦(S⊗T )= (S′∪T ′)∩(S∪T )⊃ (S′∩S)∪(T ′∩T )= (S′◦S)⊗(T ′◦T ).

One might hope that by relaxing the sorts of objects we are considering and working instead with the
category Space, we could find a monoidal product given by union. Whilst this resolves the issue of the
non-existence of the object X ∪Y for arbitrary X and Y , we still find that the union cannot be bifunctorial
and thus Space is also not a monoidal category under union.

We also cannot hope that Slice or Space are monoidal categories under intersection because there
exist causally connected slices which have an empty intersection:

Proposition 5. Slice and Space are not monoidal categories under a monoidal product given by taking
the intersection of regions and curves X⊗Y := X ∩Y and S⊗T := S∩T .

Proof. Suppose X and Y are causally connected slices so C [X ,Y ] 6= ∅ but with X ∩Y = ∅. Then 1X ⊗
1Y = C [X ,X ]∩C [Y,Y ] 6= ∅ because there exists a causal curve passing through X and Y . On the other
hand we see that 1X∩Y = 1∅ =∅.

In the following sections we will show that while Slice and Space are not monoidal categories in
either of these ways, Slice is a promonoidal category under intersection. Under union, Space is pre-
monoidal while Slice combines both promonoidal and premonoidal structures.
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⊆
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Y
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Z

Y
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Figure 2: Left: An element S ∈ (X 7Y )(Z), as defined in Section 4. Right: An element T ∈ (X 6Y )(Z),
as defined in Section 5.

4 A Promonoidal Structure on Slice

We now aim to show that Slice is a promonoidal category under intersection, that is, it is equipped
with a tensor product functor Slice× Slice −→ [Sliceop,Set] and unit presheaf Sliceop −→ Set subject to
associativity and unit laws.

To each pair of objects X and Y we assign the presheaf (X 7Y )(−) : Sliceop −→ Set which sends a
slice Z to the powerset of causal curves which pass through Z and then both X and Y

(X 7Y )(Z) := P(C [Z,X ]∩C [Z,Y ])

On morphisms S : Z′ −→ Z this presheaf acts by intersection:

(X 7Y )(S) : (X 7Y )(Z)−→ (X 7Y )(Z′) :: C 7→C∩S

Lemma 1. (X 7Y )(−) is a presheaf.

Proof. (X 7Y )(1Z) :: C 7→ C ∩ 1Z = C because every curve in (X 7Y )(Z) passes through Z. Thus
(X 7Y )(1Z) = 1(X7Y )(Z). Now (X 7Y )(T )◦(X 7Y )(S) :: C 7→C∩S 7→ (C∩S)∩T while (X 7Y )(S◦T ) ::
C 7→C∩ (S∩T ) and these are equal by the associativity of intersection.

To each (S,T ) : (X ,Y ) −→ (X ′,Y ′) we are required to assign a natural transformation between the
presheaves S 7T : (X 7Y )(−) =⇒ (X ′7Y ′)(−).

For S : X −→ X ′ there is a natural transformation with components

(S 7Y )Z : (X 7Y )(Z)−→ (X ′7Y )(Z) :: C 7→C∩S

and for T : Y −→ Y ′ there is a natural transformation with components

(X 7T )Z : (X 7Y )(Z)−→ (X 7Y ′)(Z) :: C 7→C∩T

These natural transformations commute, (S 7Y ′)Z(X 7 T )Z = (X ′ 7 T )Z(S 7Y )Z and we can define
(S 7T ) to be given by their composition.

Lemma 2. (S7Y ) and (X 7T ) are natural transformations with (S7Y ′)Z(X 7T )Z =(X ′7T )Z(S7Y )Z .

Proof. Proof given in appendix B.2.

Lemma 3. The assignment (X ,Y ) 7→ (X 7Y )(−) and (S,T ) 7→ (S 7 T ) gives a functor Slice×Slice−→
[Sliceop,Set].
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Proof. Proof given in appendix B.3.

We are now in a position to prove the main result of this section:
Theorem 2. Slice is a symmetric promonoidal category where the tensor is given above and the unit
presheaf is given by I(Z) := P(C [Z,Z]).

Proof. Proof given in appendix B.4.

Now we know that Slice is promonoidal under intersection, we will study when the presheaves as-
signed by this tensor are representable. This allows us to ascertain where 7 acts like a standard monoidal
product on Slice and where it is possible for us to consider the tensor of slices to be another slice.
Theorem 3. When X and Y are jointly spacelike slices, the presheaf (X 7Y )(−) is representable.

Proof. Suppose X and Y are jointly spacelike. Note C [Z,X ]∩C [Z,Y ] ⊇ C [Z,X ∩Y ]. Suppose there
exists γ ∈ C [Z,X ]∩C [Z,Y ] with γ /∈ C [Z,X ∩Y ]. Then γ must pass through some x ∈ X\Y and some
y ∈ Y\X but this would imply that X and Y are not jointly spacelike. Thus γ cannot exist and it follows
that (X 7Y )(Z) = P(C [Z,X ∩Y ]) = Slice(Z,X ∩Y ) = YX∩Y (Z), noting that X ∩Y is a slice because
X ∩Y ⊆ X and thus is an object of Slice.

In particular, the previous theorem shows that on jointly spacelike slices 7 acts like intersection and
we can make the identification (X 7Y )(−) ' X ∩Y . On the other hand, when the slices are not jointly
spacelike there is no representative for (X 7Y )(−). To show this we need the following lemma:
Lemma 4. Let A⊆M be a closed subset of M . Then for any x ∈M , x /∈ A, there exists a causal curve
through x which does not intersect A.

Proof. The timelike vector field is non-vanishing on M and as a result there must be a causal curve
γ through x. In a sufficiently small neighbourhood U of x, γ must restrict to a causal curve which is
contained entirely within U . Since A is closed and M is Hausdorff, this neighbourhood can be made
sufficiently small such that U ∩A =∅.

Theorem 4. When X and Y are not jointly spacelike, the presheaf (X 7Y )(−) is not representable.

Proof. We make much use of Lemma 4. Suppose X and Y are not jointly spacelike and suppose for a
contradiction that (X 7Y )(−) = Slice(−,Z) for some slice Z.

Now suppose there exists a z∈ Z such that z /∈ X ∪Y . We can find a causal curve γ through z that does
not also pass through X ∪Y . It follows that γ ∈ Slice(Z,Z), but γ /∈ (X 7Y )(Z). So Z cannot represent
the presheaf and we conclude Z ⊆ X ∪Y .

Now take a x ∈ X\Y . There exists a causal curve γ passing through x but not Y . Suppose that x ∈ Z,
then γ ∈ Slice(Z,Z), but γ /∈ (X 7Y )(Z). So x /∈ Z.

A similar argument shows that any y ∈ Y\X cannot be in Z and thus Z ⊆ X ∩Y .
Since X and Y are not jointly spacelike, X ∪Y is not spacelike and there exists a causal curve γ from

X ∪Y to itself. In particular γ must pass through a point of X and a point of Y , and not, say, through two
points of X , since X and Y are slices. Then we would have γ ∈ (X 7Y )(X) but γ /∈ Slice(X ,Z) because
if γ ∈ Slice(X ,Z) it would pass through X and X ∩Y ⊆ X , a contradiction with X being a slice.

So we have shown that (X 7Y )(−) is representable if and only if X and Y are jointly spacelike. Note
that one cannot define a partially monoidal category by just working with 7 where it is representable
because the unit presheaf is not representable (the whole manifold is not a slice) and therefore there is
no unit object available in Slice.



J. Hefford & A. Kissinger 295

5 The Structure of Slice and Space under Union

Let us now consider the structure of Slice and Space under union of slices and sets of curves. The larger
category Space where the objects are arbitrary subsets of the manifold M and the homsets are powersets
of causal curves is a premonoidal category:

Proposition 6. Space is a strict premonoidal category under the operation of taking the union of regions
and curves.

Proof. For objects X and Y assign them the object X ⊗Y := X ∪Y . The assignment (T : Y −→ Y ′) 7→
(C [X ]∪T : X ∪Y −→ X ∪Y ′) gives a functor X o− : C −→ C because

X o1Y = C [X ]∪C [Y ] = C [X ∪Y ] = 1X∪Y

(X o f ′)(X o f ) = (C [X ]∪ f ′)∩ (C [X ]∪ f ) = C [X ]∪ ( f ′∩ f ) = X o f ′ f

Similarly the assignment (S : X −→ X ′) 7→ (S∪C [Y ]) extends to a functor−nY : C −→C . The unit object
is I :=∅ and the unit and associativity isomorphisms are identities, which it is straightforward to check
are central.

The above has a clear issue - X ∪Y is generally not another slice and thus not an object of Slice. This
means Slice cannot form a premonoidal category under union and we need to search for something that
combines both premonoidal and promonoidal structures together.

There is no obstacle to defining presheaves (X 6Y )(−) : Sliceop −→ Set which send a slice Z to the
powerset of causal curves through Z and either X or Y :

(X 6Y )(Z) := P(C [Z,X ]∪C [Z,Y ])

On morphisms S : Z′ −→ Z this presheaf acts by intersection:

(X 6Y )(S) : (X 6Y )(Z)−→ (X 6Y )(Z′) :: C 7→C∩S

Lemma 5. (X 6Y )(−) is a presheaf.

Similarly, there is no obstacle to defining natural transformations acting on either the left or right of
6. For S : X −→ X ′ there is a natural transformation with components

(S 6Y )Z : (X 6Y )(Z)−→ (X ′6Y )(Z) :: C 7→C∩ (S∪C [Y ])

and for T : Y −→ Y ′ there is a natural transformation with components

(X 6T )Z : (X 6Y )(Z)−→ (X 6Y ′)(Z) :: C 7→C∩ (C [X ]∪T )

Lemma 6. (S 6Y ) and (X 6T ) are natural transformations.

What fails in comparison to 7 is that, in general, the components of these natural transformations
do not obey the interchange law, so we cannot hope that these data give a functor Slice× Slice −→
[Sliceop,Set]. Nevertheless, the natural transformations are functorial on each side of the tensor and
it is easy to verify that the assignment does give a functor 6 : Slice � Slice −→ [Sliceop,Set] where � is
the funny tensor product of categories.

Lemma 7. The data of Lemmas 5 and 6 specify a functor Slice� Slice−→ [Sliceop,Set]
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Proof. Proof given in appendix B.5.

In this way Slice seems to combine both the structures of premonoidal and promonoidal categories.
We leave it as future work to make rigorous the associativity and unitality of this structure but we note
that the representable presheaf at the empty slice Y∅ is likely the unit of a suitably defined structure.

Similarly to the intersection case we can study when the presheaves (X 6Y )(−) are representable:

Theorem 5. When X and Y are jointly spacelike, the presheaf (X 6Y )(−) is representable.

Proof. Suppose X and Y are jointly spacelike. Then (X 6Y )(Z) =P(C [Z,X ]∪C [Z,Y ]) =P(C [Z,X ∪
Y ]) = YX∪Y (Z) where we have used the fact that X ∪Y is spacelike and thus an object of Slice.

Theorem 6. When X and Y are not jointly spacelike, the presheaf (X 6Y )(−) is not representable.

Proof. We make use of Lemma 4. Suppose X and Y are not jointly spacelike and suppose for a con-
tradiction that (X 6Y )(−) = Slice(−,Z) for some slice Z. By the same argument made in the proof of
Theorem 4 we must have Z ⊆ X ∪Y .

Since X and Y are not jointly spacelike, X ∪Y is not spacelike and thus there exists a causal curve γ

connecting two points of X ∪Y . It must be the case that one of these points is in X\Y and the other in
Y\X else X or Y could not be slices. Write x ∈ X\Y and y ∈ Y\X for these points that γ passes through
and note that they can be the only points of X ∪Y that γ intersects else X or Y could not be slices.

Now note that γ restricts to a causal curve γx which passes through x but not y and similarly a causal
curve γy which passes through y but not x.

Suppose that x /∈ Z, then γx ∈ (X 6Y )(X) but γx /∈ Slice(X ,Z), noting that Z ⊆ X ∪Y so that γx

intersects Z at only x. So we conclude that x ∈ Z.
Similarly, suppose that y /∈ Z, then γy ∈ (X 6Y )(Y ) but γy /∈ Slice(Y,Z). So we conclude that y ∈ Z.
We see that γ is a causal curve connecting two distinct points of Z and consequently Z cannot be a

slice.

So we have shown that the presheaf (X 6Y )(−) is representable if and only if X and Y are jointly
spacelike. By restricting 6 to these slices we can recover a partial premonoidal structure on Slice by
defining the tensor to be given by the representative. The unit of this partial premonoidal category is the
empty slice ∅.

Now that we have two tensor-like structures on Slice we would like to know how they interact. Given
that 6 behaves like union and 7 like intersection, it seems reasonable to expect some sort of distributivity
between them. To understand this at the level of the profunctors we require the following definition:

Definition 11 (Multiplicative Kernel [14]). Let (C ,P, I) and (D ,Q,J) be promonoidal categories. A
multiplicative kernel is a profunctor K : C −7→D such that

Q(K×K)∼= KP KI ∼= J

where concatenation is profunctor composition.

Remark. Viewing C and D as pseudomonoids in Prof, a multiplicative kernel is a homomorphism of
these monoids.

Each slice X determines an endoprofunctor (X 6−)(−) : Slice −7→ Slice and it is the case that each
of these is a multiplicative kernel for Slice equipped with 7.

Theorem 7. For every slice X, (X 6−)(−) is a multiplicative kernel for (Slice,7).

Proof. Proof given in appendix B.6.
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6 Interpreting the operations in Slice

We have shown that Slice admits two operations 6 and 7 taking a pair of spacelike slices to a “gener-
alised” slice, i.e. a presheaf over slices. Here, we give (the beginnings of) a physical interpretation for
these operations.

First, it is helpful to shift from thinking geometrically about slices to thinking logically about them.
That is, we can think of a slice X as a logical predicate, namely that a system satisfies a certain property
at a certain moment in time. The simplest non-trivial example is 1+1 dimensional Minkowski space,
where a particle in 1D space traces out a causal curve through R1+1.

As a simple case, we can consider slices of the form X := {t1}×P for a time t1 ∈ R and a closed
subset P⊆ R. We can now think of P as saying something about the position of a particle at time t1, e.g.
“the particle’s position is ≥ x1”. Similarly, another slice Y := {t2}×Q, expresses that a certain property
Q holds for a particle at time t2, e.g. “the particle’s position is ≤ x2”.

We can now think about whether it makes sense to take conjunctions or disjunctions of these kinds
of predicates. If t1 = t2, then everything works out exactly as one would expect. Namely, X 7Y =
{t1}× (P∩Q), which captures the statement that at time t1, “the particles position is ≥ x1 AND it is
≤ x2”. Similarly, X 6Y = {t1}× (P∪Q), capturing the OR if predicates P and Q at a fixed time t1.

If we look at arbitrary pairs of jointly spacelike slices X and Y , then much the same interpretation
holds, but rather than separating the time and space coordinates in a fixed reference frame, we can regard
X and Y as living on the same spacelike hypersurface.

The more interesting case is of course when X and Y are not jointly spacelike. While we can’t make
sense of X 7Y and X 6Y as spacelike slices themselves, we can make sense of them relative to a third,
“probe” slice Z. If we restrict to the simpler case where X = {t1}×P and Y = {t2}×Q, now with t1 6= t2
and possibly some causal curves between X and Y , then any S ∈ (X 7Y )(Z) is a set of causal curves that
first passes through Z then must satisfy P at t1 AND Q at t2. Hence, 7 captures conjunction, but with
predicates at different times. Similarly, 6 captures this generalised kind of disjunction.

We can apply this kind of interpretation to arbitrary pairs of slices X ,Y , not just those which take
a product form in a fixed reference frame, however the meaning is slightly less intuitive in some cases,
like when X and Y intersect and are furthermore not jointly spacelike. Nevertheless, we obtain a notion
of conjunction and disjunction which is defined everywhere, and thanks to Theorem 7, distributes as one
would expect. Hence, we have the beginnings of a logic for (generalised) spacetime slices. However
there is much still to explore. For example, there is no clear “universal” notion of negation here, but one
may be able to negate a slice relative to another one, e.g. some Cauchy surface containing the slice.

7 Conclusion and Future Work

We have shown that the category Slice of spacelike slices and causal curves admits two generalised
tensor-like structures, corresponding to conjunction and disjunction. We see several avenues of future
work. One is the complete characterisation of the structure 6 defined in Section 5, which combines
elements of both a premonoidal and promonoidal product. As promonoidal and strict premonoidal cat-
egories can be formalised as pseudomonoids in a suitable monoidal bicategory, one might hope to do
similar for the “pre-promonoidal” structure 6.

As hinted at the end of the previous section, there seems to be much more left to say about the logical
interpretation of connectives in Slice. For instance, one could try to obtain an analogue to full classical
logic by introducing a (suitably localised) negation. It also seems natural to study non-commutative
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connectives such as the “sequence” product / present in the logic BV [22], which was recently shown to
capture the one-way signalling processes in the Caus[−] construction [30].

Another direction is to investigate other places tensor-like structures appear, particularly within mod-
els that have some notion of “causality” which may be different from the usual relativistic one. For exam-
ple, by imposing restrictions on the Petri nets of [3], one may force the monoidal category FP developed
there to be only promonoidal. In such a case it seems that the fibres FPi are no longer premonoidal but
can be described by a pre-promonoidal category.

While the category Slice we defined here gives an interesting toy theory for exploring spacetime,
causal curves, and associated notions of logic and compositionality, it is by no means the “one true”
category of spacetime. It would be interesting to study variations on this structure, which may have dif-
ferent, possibly more natural notions of composition. For example, instead of intersecting sets of curves,
one could define a category Slice′ where composition is given by “gluing” curves together, somewhat
in the same spirit as [20]. Such a category seems more amenable to an alternative view of AQFT, as
functors Slice′ −→ Algk, or indeed with codomain taken to be any reasonable process theory.

Finally, one could compare our approach to other categorical models of causality and spacetime, such
as the formulation using idempotent subobjects [15, 16], the order-theoretic formulation of [20], and the
aforementioned Caus[−] construction [23, 30].
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A Partially Monoidal Categories as Promonoidal Categories

In this appendix we compare the partially monoidal categories of [10, 25, 19] to promonoidal categories.
We discuss a class of partially monoidal categories that can be equivalently described as promonoidal
categories which are representable wherever the presheaves are non-empty and discuss when it is possible
to derive a partially monoidal category from a promonoidal one.

Definition 12 (Partial Functor [19]). A partial functor C ⇀ D is a span of functors C
i←− S

F−→ D
where i is an opisofibration, embedding S as a subcategory of C (so i is full, faithful and S is a replete
subcategory of C ). Composition of partial functors is by pullback. A morphism of partial functors
(φ ,η) : (i,F)−→ ( j,G) is a pair of a functor φ : S −→S ′ between the apexes of the spans and a natural
transformation η : F =⇒ Gφ ,

S

S ′

C D

φ

i F

j G

η
(4)

Categories, partial functors and morphisms of partial functors form a monoidal bicategory PCat where
the tensor is given pointwise by taking the product of categories and the product of the underlying func-
tors in the spans. Note that full and faithful opisofibrations are closed under composition and stable under
pullback.

Definition 13 (Partially Monoidal Category [19]). A category C is partially monoidal if it is equipped
with:

• A partial tensor product functor � : C ×C ⇀ C
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• A unit object I

together with associativity and unit natural isomorphisms such that the triangle and pentagon equations
hold.

Remark. A very concise definition of a partially monoidal category C is as a pseudomonoid in PCat

It may not be immediately apparent that there are connections between partially monoidal and
promonoidal categories. It turns out though that there is a case where the two coincide on-the-nose.

There exists a special class of partial functors where the left leg is not only an opisofibration but
a proper discrete opfibration. This makes the left leg a cosieve which coincides with the definition of
partial functor given by [7]. Demanding that the left leg is a cosieve ensures that the subcategory on
which the tensor is defined is closed under post-composition with morphisms of C ×C . This captures
the following physical intuition: if X ⊗Y exists and there is a morphism X −→ X ′ then X ′⊗Y exists too.
Thus we maintain the intuition that if one applies a local map to X then the tensor product should still
exist afterwards. From a mathematical perspective, when the left leg of the tensor product partial functor
is a cosieve, the partially monoidal category is equivalent to a promonoidal one. Indeed, Bénabou notes
that there is an 1-1 correspondence (up to isomorphism) between partial functors with left leg a cosieve
and profunctors which factorise through the representable and empty presheaves [7]. In this light the
following proposition is not surprising but there is a little effort required in checking that everything
works out:

Proposition 7. A partially monoidal category (C ,�,J) whose left leg of the tensor product partial
functor is a cosieve is a promonoidal category with representable unit and a tensor ⊗(−,b,c) which is
either representable or empty for each (b,c) ∈ C ×C .

Proof. Proof given in appendix B.7.

There are many examples of partially monoidal categories which are not equivalent to promonoidal
ones and vice-versa. For instance, we require that the unit presheaf J(−) of a promonoidal category is
representable to have any hope that it is a partially monoidal category.

Conversely, one might hope (similarly to monoidal categories) that all partially monoidal categories
could be turned into promonoidal ones. In general this is not possible though as taking the representable
presheaves at the defined points of the partial tensor is not enough to define a profunctor C ×C −7→ C .
Indeed, a promonoidal category still has a total tensor, just into the presheaf category,

It is possible though to derive partially monoidal structures from a promonoidal one with repre-
sentable unit presheaf J(−), by pulling back the promonoidal tensor along the Yoneda embedding when-
ever it is representable. There is of course a canonical “maximal” such partially monoidal structure
induced by defining it everywhere it is possible to do so, i.e. everywhere the promonoidal tensor is
representable.

One may wonder if there are any further connections between partial functors and profunctors - is
there a category that unites them? This would allow us to place the two on equal footing and compare
arbitrary partially monoidal and promonoidal categories. The key to this unification is the following
result:

Theorem 8 ([7, 27]). There is an equivalence of categories between profunctors C −7→D and two-sided
discrete fibrations DFib(C ,D).

A two-sided discrete fibration is a span of functors C
F←− E

G−→D where:

• each F(e)−→ c′ in C has unique lift f : e−→ e′ in E such that G( f ) = 1G(e),
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• each d −→ G(e) in D has unique lift g : e′ −→ e in E such that F(g) = 1F(e),

• for each f : e −→ e′ in E , the codomain of the lift of F f equals the domain of the lift of G f , and
their composite is f .

The two-sided discrete fibration corresponding to a profunctor P : C −7→D is given by the projections
out of the category Sec(P) of sections of the collage of P. The objects of Sec(P) are the elements of the
sets P(d,c) for all c and d. A morphism x ∈ P(d,c)−→ x′ ∈ P(d′,c′) is given by a pair of arrows f and g
such that P(g,1)(x′) = P(1, f )(x).

Consequently, each profunctor has a canonical span and by working in the category of spans of
functors one can study the partial functors and profunctors side-by-side. For instance, suppose (C ,⊗,J)
is a promonoidal category with J(−) ∼= C (−, I). There is a partial monoidal structure (�, I) on C
given by pulling back ⊗ along the Yoneda embedding whenever it is representable - that is, whenever
⊗(−,b,c)∼=C (−,xbc) for some objects b and c, we define b�c := xbc. Write C ×C for the subcategory
of C ×C where the promonoidal tensor is representable. Then there is a 2-cell in Span(Cat) capturing
the extension of the partially monoidal structure on C to the promonoidal structure:

C ×C

Sec(⊗)

C ×C C

φ

i �

p1 p0

where φ sends (b,c) to 1b�c,b�c ∈ ⊗(b� c,b,c) and (g, f ) to (g� f ,g, f ).

B Proofs

B.1 Proof of Proposition 3

Proof. The projections are given by

π0 = C [X ] : X ∪Y −→ X

π1 = C [Y ] : X ∪Y −→ Y

while the coprojections are given by

i0 = C [X ] : X −→ X ∪Y

i1 = C [Y ] : Y −→ X ∪Y

Given f : Z −→ X and f ′ : Z −→Y , the universal arrow completing the product diagram is 〈 f , f ′〉= f ∪ f ′ :
Z −→ X ∪Y , and given g : X −→ Z and g′ : Y −→ Z, the universal arrow completing the coproduct diagram
is [g,g′] = g∪g′ : X ∪Y −→ Z. Indeed, it follows that the diagrams commute because X and Y are jointly
spacelike with X ∩Y =∅ and thus f ∩C [Y ] = f ′∩C [X ] = g∩C [Y ] = g′∩C [X ] =∅.
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B.2 Proof of Lemma 2

Proof. Note that the following diagram commutes for any U : Z′ −→ Z

(X 7Y )(Z) (X 7Y )(Z′)

(X ′7Y )(Z) (X ′7Y )(Z′)

(X7Y )(U)

(S7Y )Z (S7Y )Z′

(X ′7Y )(U)

because on the top path we see C 7→C∩U 7→ (C∩U)∩S while on the bottom path C 7→C∩S 7→ (C∩S)∩
U . Naturality of (X 7T ) follows similarly and checking the commutativity condition is straightforward.

B.3 Proof of Lemma 3

Proof. Firstly note that each component of 1X 7 1Y : (X 7Y )(−) =⇒ (X 7Y )(−) is just the identity.
Thus it is the identity natural transformation and we conclude 1X 71Y = 1(X7Y )(−).

Now take S : X −→ X ′ and S′ : X ′ −→ X ′′. The arrow (S′7Y )Z ◦ (S 7Y )Z acts as C 7→ (C∩ S)∩ S′

while the arrow ((S′ ◦S)7Y )Z acts as C 7→C∩ (S′∩S). Thus the components of the composite natural
transformation (S′7Y )◦ (S 7Y ) equal those of ((S′ ◦S)7Y ).

A similar argument holds for arrows T : Y −→ Y ′ and because (S 7Y ) and (X 7 T ) commute we are
done.

B.4 Proof of Theorem 2

Proof. Let us begin with associativity 7(7×1)∼= 7(1×7). Note that by Yoneda we have

7(7×1)(W,X ,Y,Z) =
∫ A,B

7(W,A,B)×7(A,X ,Y )×Slice(B,Z)

∼=
∫ A

7(W,A,Z)×7(A,X ,Y )

While

7(1×7)(W,X ,Y,Z)∼=
∫ A

7(W,X ,A)×7(A,Y,Z)

Let us show there is a canonical identification 7(7× 1)(W,X ,Y,Z) ∼= P(C [W,X ] ∩ C [W,Y ] ∩
C [W,Z]) =: Λ. There are functions

7(W,A,Z)×7(A,X ,Y )−→ Λ :: (S,T ) 7→ S∩T

which form a cowedge with apex Λ. By the universal property of the coend this induces a unique function
g :

∫ A 7(W,A,Z)×7(A,X ,Y )−→ Λ making the obvious cowedge diagrams commute.
We can also construct a function f by composing

Λ
f ′−→7(W,W,Z)×7(W,X ,Y )

coprW−−−→
∫ A

7(W,A,Z)×7(A,X ,Y )

where f ′ acts as S 7→ (S,S).
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The universal property of the coend implies that the composition f g = 1, or we can check explicitly:

(S,T ) 7→ S∩T 7→ (S∩T,S∩T )

upon which we simply need to note that we have (S,T ) = (S∩S,T ∩T )∼ (S∩T,S∩T ).
Similarly, it is straightforward to show that g f = 1: S 7→ (S,S) 7→ S∩S= S. Thus Λ∼=

∫ A 7(W,A,Z)×
7(A,X ,Y ) as sets.

Now note that this isomorphism is in fact natural in W,X ,Y and Z. Let w : W ′ −→W,x : X −→ X ′,y :
Y −→ Y ′,z : Z −→ Z′, then we have

(S,T ) (S∩w∩ z,T ∩ x∩ y)

S∩T S∩T ∩w∩ x∩ y∩ z

gWXY Z gW ′X ′Y ′Z′

Thus exhibiting the desired natural isomorphism.
A similar argument shows that 7(1×7)(W,X ,Y,Z)∼= Λ, and thus we have established the associa-

tivity natural isomorphism.
The pentagon equation is given by (writing i for the interchange and ignoring the associativity iso-

morphisms of profunctor composition):

7a
xe 7x

yd 7y
bc 7a

xe 7x
by 7y

cd

7a
yx 7x

de 7y
bc 7a

bx 7x
ye 7y

cd

7a
bx 7x

cy 7y
de

1◦α

α◦1 α◦1

(α◦1)i 1◦α

Clockwise we have the following mapping:

(S,T,V ) 7→ (S,T ∩V,T ∩V ) 7→ (S∩T ∩V,S∩T ∩V,T ∩V ) 7→ (S∩T ∩V,S∩T ∩V,S∩T ∩V )

while anticlockwise we have

(S,T,V ) 7→ (S∩T,S∩T,V ) 7→ (S∩T ∩V,S∩T,S∩T ∩V )

and it clear that (S∩T ∩V,S∩T,S∩T ∩V )∼ (S∩T ∩V,S∩T ∩V,S∩T ∩V ) under the coend equivalence
relation. Thus the pentagon commutes.

Now we show the existence of the unit isomorphisms 7(I×1)∼= 1∼= 7(1× I).
Much of the construction is similar to the previous argument, so we leave the reader to fill in some of

the details. There exist functions 7(−,=,B)×P(C [B,B]) −→ Slice(−,=) for each B given by sending
(S,T ) 7→ S∩ T . These functions form a cowedge and therefore induce a unique function

∫ B 7(−,=
,B)×P(C [B,B])−→ Slice(−,=).

The inverse of this function is given by the function S 7→ (S,S) which factorises via copr. It is
straightforward to check that these give the left unit natural isomorphism, and the construction of the
right unit is similar.
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Writing Y for an application of the Yoneda lemma, the triangle equation is given by

7a
bc

7a
xc 7x

by Iy 7a
bxIy7x

ycα◦1

Yρ Yλ

and it is little work to check that this commutes.
The symmetry (X 7Y )(Z)−→ (Y 7X)(Z) is given by the identity map for all X ,Y and Z.

B.5 Proof of Lemma 7

Proof. Take S : X −→ X ′ and S′ : X ′ −→ X ′′. Then (S′6Y )Z(S 6Y )Z acts as C 7→ C∩ (S∪C [Y ])∩ (S′ ∪
C [Y ]) = C∩ ((S∩ S′)∪C [Y ]) which is precisely the same as the action of (S′S 6Y )Z . We conclude
(S′6Y )Z(S 6Y )Z = (S′S 6Y )Z .

A similar argument shows that (X 6 T ′)Z(X 6 T )Z = (X 6 T ′T )Z and thus we have functoriality of
(−6=) in each component. This is enough to extend to functoriality from the funny tensor.

B.6 Proof of Theorem 7

Proof. (Sketch). The proof is similar and uses the same methods as Theorem 2 so we only sketch the
idea.

Fix a slice A. We will show that (A6−)(−) is a kernel.
Starting with the units we need to show that

∫ X 6Z
AX JX ∼= JZ . There are functions 6Z

AX JX −→ JZ

sending (S,T ) 7→ S∩ (T ∪C [A]). These are dinatural in X and thus form a cowedge factorising uniquely
via the coend. As a result we have a function

∫ X 6Z
AX JX −→ JZ . This function is an isomorphism with

inverse given by S 7→ (S,S) which factorises via copr. Indeed,

S 7→ (S,S) 7→ S∩ (S∪C [A]) = S

and

(S,T ) 7→ S∩ (T ∪C [A]) 7→ (S∩ (T ∪C [A]),S∩ (T ∪C [A]))

∼ (S∩ (S∪C [A]),T ∩T )

= (S,T )

As for the multiplications we want to show
∫ Z 6W

AZ7Z
XY
∼=

∫ ZZ′6Z
AX 6Z′

AY 7W
ZZ′ which it is easiest

to do by showing each is naturally isomorphic to Λ := P(C [W,A]∪ (C [W,X ]∩C [W,Y ])). For the
former, there is a cowedge with components (S,T ) 7→ S∩ (T ∪C [A]), with the inverse to the induced
map given by S 7→ (S,S), as in the case of the units. For the latter, there is a cowedge with components
(S,T,V ) 7→ S∩T ∩V , with the inverse to the induced map given by S 7→ (S,S,S).

To show that all the isomorphisms are natural is little work.

B.7 Proof of Proposition 7

Proof. In a slight abuse of notation write C ×C
i←− S

�−→ C for the underlying span of the partial
functor � : C ×C ⇀ C , and note that J : 1 ⇀ C is simply a normal functor J : 1 −→ C , in other words
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an object J of C . Just like for monoidal categories we can define a promonoidal structure on C by
taking (X⊗Y )(Z) := C (Z,X�Y ) whenever (X ,Y ) ∈S and (X⊗Y )(Z) :=∅ otherwise. The unit is the
representable presheaf at J, YJ .

The associativity isomorphism of a partially monoidal category induces the following arrows:

(S ×C )×C×C S

(C ×S )×C×C S

C ×C ×C C

(i×1)π0 �π1

φ

(1×i)π0 �π1

α (5)

where π0 and π1 are the canonical projections from the pullback and α is a natural isomorphism.
Given a cospan of functors C

F−→ E
G←− D , the pullback C ×E D is the category consisting of pairs

of objects (c,d) with Fc = Gd and pairs of morphisms ( f ,g) with F f = Gg. We can think of (S ×
C )×C×C S as the category with objects (((a,b),c),(a�b,c)) where (a,b) ∈S and c ∈ C with (a�
b,c) ∈ S , while (C ×S )×C×C S has objects ((a,(b,c)),(a,b� c)) where (b,c) ∈ S and a ∈ C
with (a,b� c) ∈S . The left triangle of (5) ensures that φ must act to send (((a,b),c),(a� b,c)) 7→
((a,(b,c)),(a,b� c)). The right triangle of (5) then implies that the components of α have type αa,b,c :
(a�b)� c−→ a� (b� c). This induces the necessary isomorphism ⊗a

xd⊗x
bc −→⊗a

bx⊗x
cd and checking the

pentagon coherence equation now follows the same standard proof as Theorem 1.
The right unit isomorphism induces the following arrows:

(C ×1)×C×C S

C ×1 C

C C

π0

�π1

ψ

∼
1 1

ρ

the components of ρ have type ρa : a�J −→ a as expected. A similar diagram is induced by λ and in turn
one sees that this has components λa : J�a−→ a. Checking the triangle coherence equation follows like
Theorem 1.

Now suppose we begin with a promonoidal category C where the unit is representable J(−) ∼=
C (−, I) and for each (b,c) ∈ C ×C , either ⊗(−,b,c) ∼= C (−,xbc) is representable, or ⊗(−,b,c) ∼=
∅(−) is empty. Define a full subcategory S of C ×C spanned by objects (b,c) where ⊗(−,b,c) is
representable. Suppose for a contradiction that (b,c) ∈ S and there exists a ( f ,g) : (b,c) −→ (b′,c′)
in C ×C but with (b′,c′) /∈ S . Then we would have a natural transformation C (−,xbc) −→ ∅(−), a
contradiction. Thus ( f ,g) cannot exist and as a result the canonical inclusion functor S ↪→ C ×C is a
discrete opfibration.
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We present categories of open dynamical systems with general time evolution as categories of
coalgebras opindexed by polynomial interfaces, and show how this extends the coalgebraic framework
to capture common scientific applications such as ordinary differential equations, open Markov
processes, and random dynamical systems. We then extend Spivak’s operad Org to this setting, and
construct associated monoidal categories whose morphisms represent hierarchical open systems; when
their interfaces are simple, these categories supply canonical comonoid structures. We exemplify these
constructions using the ‘Laplace doctrine’, which provides dynamical semantics for active inference,
and indicate some connections to Bayesian inversion and coalgebraic logic.

1 Background

1.1 Closed dynamical systems and Markov processes

In this brief section, we recall a ‘behavioural’ approach to dynamical systems originally due (we believe)
to Lawvere; for a pedagogical account, see [1]. These systems are ‘closed’ in the sense that they do not
require environmental interaction for their evolution, but they nonetheless form the starting point for our
categories of more open systems.

Definition 1.1. Let pT,`,0q be a monoid, representing time. Let X : E be some space, called the state
space. Then a closed dynamical system ϑ with state space X and time T is an action of T on X . When T
is also an object of E , then this amounts to a morphism ϑ : TˆX Ñ X (or equivalently, a time-indexed
family of X-endomorphisms, ϑptq : X Ñ X), such that ϑp0q “ idX and ϑps` tq “ ϑpsq ˝ϑptq.

Proposition 1.2. When time is discrete, as in the case T “ N, any dynamical system ϑ is entirely
determined by its action at 1 : T. That is, letting the state space be X , we have ϑptq “ ϑp1q˝t where
ϑp1q˝t means “compose ϑp1q : X Ñ X with itself t times”.

Example 1.3. Suppose X : U Ñ TU is a vector field on U , with a corresponding solution (integral curve)
χx : RÑU for all x : U ; that is, χ 1ptq “ Xpχxptqq and χxp0q “ x. Then letting the point x vary, we obtain
a map χ : RˆU ÑU . This χ is a closed dynamical system with state space U and time R.

Proposition 1.4. Closed dynamical systems with state spaces in E and time T are the objects of the
functor category CatpBT,E q, where BT denotes the delooping of the monoid T. Morphisms of dynamical
systems are therefore natural transformations.

We will also often be interested in dynamical systems whose evolution has ‘side-effects’, such as the
generation (or ‘mixing’) of uncertainty or randomness. We will largely model such systems as Kleisli
maps or coalgebras of monads modelling these side-effects. In the case of uncertainty, the monads will be
so-called probability monads, which we will often denote by P . Such a monad P : E Ñ E can often be
thought of as taking each set or space X : E to the set (or space) PX of probability distributions over

http://dx.doi.org/10.4204/EPTCS.380.18
https://creativecommons.org
https://creativecommons.org/licenses/by-sa/4.0/
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X , and each morphism to the corresponding ‘pushforwards’ map; the monad multiplication is given by
“averaging out” uncertainty, and the unit takes a point to the ‘Dirac’ distribution over it. With these ideas
in mind, we can extend the concepts above to cover Markov chains and Markov processes.

Example 1.5 (Closed Markov chains and Markov processes). A closed Markov chain is given by a map
X ÑPX , where P : E Ñ E is a probability monad on E ; this is equivalently a P-coalgebra with time
N, and an object in Cat

`

BN,K `pPq
˘

. With more general time T, one obtains closed Markov processes:
objects in Cat

`

BT,K `pPq
˘

. More explicitly, a closed Markov process is a time-indexed family of
Markov kernels; that is, a morphism ϑ : TˆX ÑPX such that, for all times s, t : T, ϑs`t “ ϑs ‚ϑt

as a morphism in K `pPq. Note that composition ‚ in K `pPq is given by the Chapman-Kolmogorov
equation, so this means that

ϑs`tpy|xq “
ż

x1:X
ϑspy|x1qϑtpdx1|xq .

1.2 Polynomial functors

We will use polynomial functors to model the interfaces of our open systems, following Spivak and Niu
[2]. We will assume these to be functors E Ñ E for a locally Cartesian closed category E , but we will
typically assume that E is furthermore concrete, and often that it is in fact Set.

Definition 1.6. Let E be a locally Cartesian closed category, and denote by yA the representable copresheaf
yA :“ E pA,´q : E Ñ E . A polynomial functor p is a coproduct of representable functors, written
p :“

ř

i:pp1q y
pi , where pp1q : E is the indexing object. The category of polynomial functors in E is the

full subcategory PolyE ãÑ rE ,E s of the E -copresheaf category spanned by coproducts of representables.
A morphism of polynomials is therefore a natural transformation.

Remark 1.7. Every polynomial functor P : E Ñ E corresponds to a bundle p : E Ñ B in E , for which
B “ Pp1q and for each i : Pp1q, the fibre pi is Ppiq. We will henceforth elide the distinction between a
copresheaf P and its corresponding bundle p, writing pp1q :“ B and pris :“ pi, where E “

ř

i pris. A
natural transformation f : pÑ q between copresheaves therefore corresponds to a map of bundles. In the
case of polynomials, by the Yoneda lemma, this map is given by a ‘forwards’ map f1 : pp1q Ñ qp1q and a
family of ‘backwards’ maps f # : qr f1p-qs Ñ pr-s indexed by pp1q, as in the left diagram below. Given
f : pÑ q and g : qÑ r, their composite g˝ f : pÑ r is as in the right diagram below.

E f ˚F F

B B C

f #

qp

f1

{

E f ˚g˚G G

B B D

pg f q#

rp

g1˝ f1

{

where pg f q# is given by the pp1q-indexed family of composite maps rrg1p f1p-qqs
f˚g#

ÝÝÝÑ qr f1p-qs
f #

ÝÑ pr-s.

We can interpret the type pp1q to be a set or space of ‘configurations’ or ‘positions’ of a p-shaped
system, and each pris to be the available ‘inputs’ or ‘directions’ available to the system when it is in
configuration/position i.

We now recall a handful of useful facts about polynomials and their morphisms, each of which is
explained in Spivak and Niu [2] and summarized in Spivak [3].

Proposition 1.8. Polynomial morphisms pÑ y correspond to sections pp1q Ñ
ř

i pris of the correspond-
ing bundle p.
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Proposition 1.9. There is an embedding of E into PolyE given by taking objects X : E to the linear
polynomials Xy : PolyE and morphisms f : X Ñ Y to morphisms p f , idXq : XyÑ Y y.
Proposition 1.10. There is a symmetric monoidal structure pb,yq on PolyE that we call tensor, and
which is given on objects by pbq :“

ř

i:pp1q
ř

j:qp1q y
prisˆqr js and on morphisms f :“ p f1, f #q : pÑ p1

and g :“ pg1,g#q : qÑ q1 by f bg :“ p f1ˆg1, f #ˆg#q.
Proposition 1.11. pPolyE ,b,yq is symmetric monoidal closed, with internal hom denoted r´,“s.
Explicitly, we have rp,qs “

ř

f :pÑq y
ř

i:pp1q qr f1piqs. Given an object A : E , we have rAy,ys – yA.
Proposition 1.12. The composition of polynomial functors q ˝ p : E Ñ E Ñ E induces a monoidal
structure on PolyE , which we denote Ÿ, and call ‘composition’ or ‘substitution’. Its unit is again y.
Famously, Ÿ-comonoids correspond to categories and their comonoid homomorphisms are cofunctors
[4]. If T is a monoid, then the comonoid structure on yT corresponds witnesses it as the category BT.
Monomials of the form SyS can be equipped with a canonical comonoid structure witnessing the codiscrete
groupoid on S.

2 Open dynamical systems as polynomial coalgebras

2.1 Deterministic systems

Definition 2.1. A deterministic open dynamical system with interface p, state space S and time T is a
polynomial morphism β : SyS Ñ rTy, ps such that, for any section σ : pÑ y, the induced morphism

SyS β
ÝÑ rTy, ps

rTy,σs
ÝÝÝÑ rTy,ys „ÝÑ yT

is a comonoid homomorphism.
To see how such a morphism β is like an ‘open’ version of the closed dynamical systems introduced

above, note that by the tensor-hom adjunction, β can equivalently be written with the type TybSyS Ñ p.
In turn, such a morphism corresponds to a pair pβ o,β uq, where β o is the component ‘on positions’ with
the type TˆSÑ pp1q, and β u is the component ‘on directions’ with the type

ř

t:T
ř

s:S prβ opt,sqs Ñ S.
We will call the map β o the output map, as it chooses an output position for each state and moment in
time; and we will call the map β u the update map, as it takes a state s : S, a quantity of time t : T, and an
‘input’ in prβ opt,sqs, and returns a new state. We might imagine the new state as being given by evolving
the system from s for time t, and the input as being given at the position corresponding to ps, tq.

But it is not sufficient to consider merely such pairs β “ pβ o,β uq to be our open dynamical systems,
for we need them to be like ‘open’ monoid actions: evolving for time t then for time s must be equivalent
to evolving for time t` s, given the same inputs. It is fairly easy to prove the following proposition, whose
proof we defer until after establishing the categories CoalgTppq.
Proposition 2.2. Comonoid homomorphisms SyS Ñ yT correspond bijectively with closed dynamical
systems with state space S : E , in the sense given by functors BTÑ E .

This establishes that seeking such a comonoid homomorphism will give us the monoid action property
that we seek, and so it remains to show that a composite comonoid homomorphism of the form rTy,σ s˝β

is a closed dynamical system with the “right inputs”. Unwinding this composite, we find that the condition
that it be a comonoid homomorphism corresponds to the requirement that, for any t : T, the closure
β σ : TˆSÑ S of β by σ given by

β
σ ptq :“ S

β optq˚σ
ÝÝÝÝÝÑ

ÿ

s:S

prβ opt,sqs
β u

ÝÑ S
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constitutes a closed dynamical system on S. The idea here is that σ gives the ‘context’ in which we can
make an open system closed, thereby formalizing the “given the same inputs” requirement above.

With this conceptual framework in mind, we are in a position to render open dynamical systems on
p with time T into a category, which we will denote by CoalgTppq. Its objects will be pairs pS,β q with
S : E and β an open dynamical on p with state space S; we will often write these pairs equivalently as
triples pS,β o,β uq, making explicit the output and update maps. Morphisms will be maps of state spaces
that commute with the dynamics:

Proposition 2.3. Open dynamical systems over p with time T form a category, denoted CoalgTppq. Its
morphisms are defined as follows. Let ϑ :“ pX ,ϑ o,ϑ uq and ψ :“ pY,ψo,ψuq be two dynamical systems
over p. A morphism f : ϑ Ñ ψ consists in a morphism f : X Ñ Y such that, for any time t : T and global
section σ : pp1q Ñ

ř

i:pp1q
pris of p, the following naturality squares commute:

X
ř

x:X
prϑ opt,xqs X

Y
ř

y:Y
prψopt,yqs Y

ϑ optq˚σ ϑ uptq

f f

ψoptq˚σ ψuptq

The identity morphism idϑ on the dynamical system ϑ is given by the identity morphism idX on its state
space X . Composition of morphisms of dynamical systems is given by composition of the morphisms of
the state spaces.

Proof. We need to check unitality and associativity of composition. This amounts to checking that
the composite naturality squares commute. But this follows immediately, since the composite of two
commutative diagrams along a common edge is again a commutative diagram.

We can alternatively state Proposition 2.2 as follows, noting that the polynomial y corresponds to a
trivial interface, exposing no configuration to any environment nor receiving any signals from it:

Proposition 2.4. CoalgTidpyq is equivalent to the classical category CatpBT,E q of closed dynamical
systems in E with time T.

Proof. The trivial interface y corresponds to the trivial bundle id1 : 1 Ñ 1. Therefore, a dynamical
system over y consists of a choice of state space S along with a trivial output map ϑ o “ : TˆSÑ 1
and a time-indexed update map ϑ u : Tˆ S Ñ S. This therefore has the form of a classical closed
dynamical system, so it remains to check the monoid action. There is only one section of id1, which
is again id1. Pulling this back along the unique map ϑ optq : S Ñ 1 gives ϑ optq˚ id1 “ idS. Therefore
the requirement that, given any section σ of y, the maps ϑ u ˝ϑ optq˚σ form an action means in turn
that so does ϑ u : Tˆ SÑ S. Since the pullback of the unique section id1 along the trivial output map
ϑ optq “ : S Ñ 1 of any dynamical system in CoalgTidpyq is the identity of the corresponding state
space idS, a morphism f : pϑp˚q,ϑ u, q Ñ pψp˚q,ψu, q in CoalgTidpyq amounts precisely to a map
f : ϑp˚q Ñ ψp˚q on the state spaces in E such that the naturality condition f ˝ϑ uptq “ ψuptq ˝ f of
Proposition 1.4 is satisfied, and every morphism in CatpBT,E q corresponds to a morphism in CoalgTidpyq
in this way.

Now that we know that our concept of open dynamical system subsumes closed systems, let us
consider some more examples.
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Example 2.5. Consider a dynamical system pS,ϑ o,ϑ uq with outputs but no inputs. Such a system has a
‘linear’ interface p :“ Iy for some I : E ; alternatively, we can write its interface p as the ‘bundle’ idI : IÑ I.
A section of this bundle must again be idI , and so ϑ optq˚ idI “ idS. Once again, the update maps collect
into to a closed dynamical system in CatpBT,E q; just now we have outputs ϑ o : Tˆ S Ñ pp1q “ I
exposed to the environment.

Proposition 2.6. When time is discrete, as with T“ N, any open dynamical system pX ,ϑ o,ϑ uq over p is
entirely determined by its components at 1 : T. That is, we have ϑ optq “ ϑ op1q : X Ñ pp1q and ϑ uptq “
ϑ up1q :

ř

x:X prϑ opxqs Ñ X . A discrete-time open dynamical system is therefore a triple pX ,ϑ o,ϑ uq,
where the two maps have types ϑ o : X Ñ pp1q and ϑ u :

ř

x:X prϑ opxqs Ñ X .

Proof. Suppose σ is a section of p. We require each closure ϑ σ to satisfy the flow conditions, that
ϑ σ p0q “ idX and ϑ σ pt` sq “ ϑ σ ptq˝ϑ σ psq. In particular, we must have ϑ σ pt`1q “ ϑ σ ptq˝ϑ σ p1q. By
induction, this means that we must have ϑ σ ptq “ ϑ σ p1q˝t (compare Proposition 1.2). Therefore we must
in general have ϑ optq “ ϑ op1q and ϑ uptq “ ϑ up1q.

Example 2.7. Suppose 9x“ f px,aq and b“ gpxq, with f : XˆAÑ T X and g : X Ñ B. Then, as for the
‘closed’ vector fields of Example 1.3, this induces an open dynamical system pX ,

ş

f ,gq : CoalgRpByAq,
where

ş

f : RˆXˆAÑ X returns the pX ,Aq-indexed solutions of f .

Example 2.8. The preceding example is easily extended to the case of a general polynomial interface.
Suppose similarly that 9x “ f px,axq and b “ gpxq, now with f :

ř

x:X prgpxqs Ñ T X and g : X Ñ pp1q.
Then we obtain an open dynamical system pX ,

ş

f ,gq : CoalgRidppq, where now
ş

f : Rˆ
ř

x:X prgpxqs Ñ X
is the ‘update’ and g : X Ñ pp1q the ‘output’ map.

It is quite straightforward to extend the construction of CoalgTppq to an opindexed category CoalgT;
we unravel this opindexing explicitly in the appendix (Proposition A.1).

Proposition 2.9. CoalgT extends to an opindexed category CoalgT : PolyE Ñ Cat. On objects
(polynomials), it returns the categories above. On morphisms of polynomials, we simply post-compose:
given ϕ : pÑ q and β : SyS Ñ rTy, ps, obtain SyS Ñ rTy, ps Ñ rTy,qs in the obvious way.

At this point, the reader may be wondering in what sense these open dynamical systems are coalgebras.
To see this, observe that a polynomial morphism SyS Ñ q is equivalently a map SÑ qpSq: that is to say, a
q-coalgebra. By setting q“ rTy, ps, we see the connection immediately; to make it clear, in Proposition
A.2, we spell it out for the case T“ N.

2.2 Open Markov processes via stochastic polynomials

Just as coalgebras SÑ pS correspond to discrete-time deterministic open dynamical systems, coalgebras
SÑ pPS correspond to discrete-time stochastic dynamical systems when P is a probability monad
as introduced above. We have already seen that ‘closed’ Markov chains correspond to maps SÑPS,
and that Markov processes in general time correspond to functors BTÑ K `pPq. Our task in this
section is therefore to connect these two perspectives, extending the categories of deterministic coalgebras
CoalgTppq.

Working concretely, it is not hard to spot the relevant adjustment. We therefore make the following
definition.

Definition 2.10. Let M : E Ñ E be a monad on the category E , and let p : PolyE be a polynomial in E . Let
pT,`,0q be a monoid in E , representing time. Then a pM-coalgebra with time T consists in a triple ϑ :“
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pS,ϑ o,ϑ uq of a state space S : E and two morphisms ϑ o : TˆSÑ pp1q and ϑ u :
ř

t:T
ř

s:S prϑ opt,sqs Ñ
MS, such that, for any section σ : pp1q Ñ

ř

i:pp1q pris of p, the maps ϑ σ : TˆSÑMS given by

ÿ

t:T
S

ϑ op´q˚σ
ÝÝÝÝÝÑ

ÿ

t:T

ÿ

s:S

prϑ op´,sqs ϑ u
ÝÑMS

constitute an object in the functor category Cat
`

BT,K `pT q
˘

, where BT is the delooping of T and K `pT q
is the Kleisli category of T . Once more, we call the closed system ϑ σ , induced by a section σ of p, the
closure of ϑ by σ .

As before, such pM-coalgebras form a category; and these categories in turn are opindexed by
polynomials.

Proposition 2.11. pM-coalgebras with time T form a category, denoted CoalgTMppq. Its morphisms
are defined as follows. Let ϑ :“ pX ,ϑ o,ϑ uq and ψ :“ pY,ψo,ψuq be two pM-coalgebras. A morphism
f : ϑ Ñ ψ consists in a morphism f : X Ñ Y such that, for any time t : T and global section σ : pp1q Ñ
ř

i:pp1q
pris of p, the following naturality squares commute:

X
ř

x:X
prϑ opt,xqs MX

Y
ř

y:Y
prψopt,yqs MY

ϑ optq˚σ ϑ uptq

f M f

ψoptq˚σ ψuptq

The identity morphism idϑ on the pM-coalgebra ϑ is given by the identity morphism idX on its state
space X . Composition of morphisms of pM-coalgebras is given by composition of the morphisms of the
state spaces.

Proposition 2.12. CoalgTMppq extends to an opindexed category, CoalgTMp´q : PolyE Ñ Cat. Suppose
ϕ : pÑ q is a morphism of polynomials. We define a corresponding functor CoalgTMpϕq : CoalgTMppq Ñ
CoalgTMpqq as follows. Suppose pX ,ϑ o,ϑ uq : CoalgTMppq is an object (pM-coalgebra) in CoalgTMppq.
Then CoalgTMpϕqpX ,ϑ o,ϑ uq is defined as the triple pX ,ϕ1 ˝ϑ o,ϑ u ˝ϑ o˚ϕ#q : CoalgTMpqq, where the two
maps are explicitly the following composites:

TˆX ϑ o
ÝÑ pp1q

ϕ1
ÝÑ qp1q ,

ÿ

t:T

ÿ

x:X

qrϕ1 ˝ϑ
opt,xqs

ϑ o˚ϕ#

ÝÝÝÝÑ
ÿ

t:T

ÿ

x:X

prϑ opt,xqs ϑ u
ÝÑMX .

On morphisms, CoalgTMpϕqp f q : CoalgTMpϕqpX ,ϑ o,ϑ uq Ñ CoalgTMpϕqpY,ψo,ψuq is given by the same
underlying map f : X Ñ Y of state spaces.

The opindexed category CoalgTMppq clearly generalizes CoalgT, since we can always take M “ idE .
Yet these concrete definitions obscure the more elegant representation of the objects of CoalgT as
morphisms SyS Ñ rTy, ps. Our task is therefore to find a setting in which a similar representation
is possible; to do so, we generalize PolyE so that the backwards components of its morphisms may
incorporate ‘side-effects’ modelled by M. We will call the corresponding category PolyM, and will find
that instantiating CoalgT in PolyM recovers CoalgTMppq.

We begin by recalling that PolyE is equivalent to the category of Grothendieck lenses for the self-
indexing [2, 5]: PolyE –

ş

E {´ op, where the opposite is taken pointwise on each E {B. We will define
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PolyM by analogy, using the following indexed category. Suppose M is a commutative monad on E and
let ι denote the identity-on-objects inclusion E ãÑK `pMq given on morphisms by post-composing with
the unit η of the monad structure. For ease of exposition in this short paper, we will assume here that
E “ Set.

Definition 2.13. Define the indexed category EM{´ : E op Ñ Cat as follows. On objects B : E , we define
EM{B to be the full subcategory of K `pMq{B on those objects ι p : EÑ‚ B which correspond to maps
E

p
ÝÑ B

ηB
ÝÑMB in the image of ι . Now suppose f : CÑ B is a map in E . We define EM{ f : EM{BÑ EM{C

as follows. The functor EM{ f takes objects ι p : EÑ‚ B to ιp f ˚pq : f ˚EÑ‚ C where f ˚p is the pullback of p
along f in E , included into K `pMq by ι .

To define the action of EM{ f on morphisms α : pE, ι p : EÑ‚ Bq Ñ pF, ιq : FÑ‚ Bq, note that since we
must have ιq‚α “ ι p, α must correspond to a family of maps αx : prxs ÑMqrxs for x : B. Then we can
define pEM{ f qpαq pointwise as pEM{ f qpαqy :“ α f pyq : pr f pyqs ÑMqr f pyqs for y : C.

Definition 2.14. We define PolyM to be the category of Grothendieck lenses for EM{´. That is, PolyM :“
ş

EM{´
op, where the opposite is again taken pointwise.

Unwinding this definition, we find that the objects of PolyM are the same polynomial functors as
constitute the objects of PolyE . The morphisms f : pÑ q are pairs p f1, f #q, where f1 : BÑC is a map in
E and f # is a family of morphisms qr f1pxqsÑ‚ prxs in K `pMq, making the following diagram commute:

ř

x:B Mprxs
ř

b:B qr f1pxqs
ř

y:C qrys

B B C

f #

qηB
˚p

f1

{

Remark 2.15. Note that the tensor b extends to PolyM: on objects, it is defined identically to the
tensor on PolyE . On morphisms f :“ p f1, f #q : pÑ q and g :“ pg1,g#q : p1Ñ q1, we define the tensor
f b g to have forwards component f1ˆ g1 as before, and the backwards components are defined by
p f bgq#

px,x1q :“ qr f1pxqsˆq1rg1px1qs ÑMprxsˆMp1rx1s ÑM
`

prxsˆ p1rx1s
˘

, where the second arrow is
given by the commutativity of the monad M. On the other hand, we only get an internal hom satisfying the
adjunction PolyMppbq,rq – PolyMpp, rq,rsq when the backwards components of morphisms pbqÑ r
are ‘uncorrelated’ between p and q.

Remark 2.16. For PolyM to behave faithfully like the category PolyE of polynomial functors and their
morphisms, we should want the substitution functors EM{ f : EM{CÑ EM{B to have left and right adjoints.
Although we do not spell it out here, it is quite straightforward to exhibit the left adjoints. On the
other hand, writing f ˚ as shorthand for EM{ f , we can see that a right adjoint only obtains in restricted
circumstances. Denote the putative right adjoint by Π f : EM{BÑ EM{C, and for ι p : EÑ‚ B suppose that
pΠ f Eqrys is given by the set of ‘partial sections’ σ : f´1tyuÑ T E of p over f´1tyu as in the commutative
diagram:

f´1tyu tyu

T E B C
f

{

ηB
˚p

σ

Then we would need to exhibit a natural isomorphism EM{Bp f ˚D,Eq – EM{CpD,Π f Eq. But this will
only obtain when the ‘backwards’ components h#

y : Drys ÑMpΠ f Eqrys are in the image of ι—otherwise,
it is not generally possible to pull f´1tyu out of M.
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Despite these restrictions, we do have enough structure at hand to instantiate CoalgT in PolyM. The
only piece remaining is the composition product Ÿ, but for our purposes it suffices to define its action
on objects, which is identical to its action on objects in PolyE

1, and then consider Ÿ-comonoids in
PolyM. The comonoid laws force the structure maps to be deterministic (i.e., in the image of ι), and so
Ÿ-comonoids in PolyM are just Ÿ-comonoids in PolyE .

Finally, we note that we can define morphisms β : SyS Ñ rTy, ps: these again just correspond to
morphisms TybSyS Ñ p, and the condition that the backwards maps be uncorrelated between Ty and p
is satisfied because Ty has a trivial exponent. Unwinding such a β according to the definition of PolyM
indeed gives precisely a pair pβ o,β uq of the requisite types; and a comonoid homomorphism SyS Ñ yT

in PolyM is precisely a functor BTÑK `pMq, thereby establishing equivalence between the objects of
CoalgTppq established in PolyM and the objects of CoalgTMppq. The equivalence between the hom-sets is
established by a similar unwinding. All told, in this section, we have sketched the proof of the following
theorem:

Theorem 2.17. Constructing CoalgTppq in PolyM yields a category equivalent to CoalgTMppq.

2.3 Random dynamical systems and bundle systems

In the analysis of stochastic systems, it is often fruitful to consider two perspectives: on one side, one
considers explicitly the evolution of the distribution of the states of the system, by following (for instance)
a Markov process, or Fokker-Planck equation. On the other side, one considers the system as if it were a
deterministic system, perturbed by noisy inputs, giving rise to the frameworks of stochastic differential
equations and associated random dynamical systems.

Whereas a (closed) Markov process is typically given by the action of a ‘time’ monoid on an object
in a Kleisli category of a probability monad, a (closed) random dynamical system is given by a bundle
of closed dynamical systems, where the base system is equipped with a probability measure which it
preserves: the idea being that a random dynamical system can be thought of as a ‘random’ choice of
dynamical system on the total space at each moment in time, with the base measure-preserving system
being the source of the randomness [6].

This idea corresponds in non-dynamical settings to the notion of randomness pushback [7, Def. 11.19],
by which a stochastic map f : AÑPB can be presented as a deterministic map f 5 : ΩˆAÑ B where
pΩ,ωq is a probability space such that, for any a : A, pushing ω forward through f 5p-,aq gives the state
f paq; that is, ω induces a random choice of map f 5pω, -q : AÑ B. Similarly, under ‘nice’ conditions,
random dynamical systems and Markov processes do coincide, although they have different suitability in
applications.

In this section, we sketch how the generalized-coalgebraic structures developed above extend also to
random dynamical systems, though with most details deferred to the Appendix. By observing that we can
also ‘open up’ the base system of a random dynamical system, we obtain furthermore a notion of open
bundle system: a bundle of dynamical systems that is coherently ‘open’ over polynomials both in the total
space and the base space.

Definition 2.18. Suppose E is a category equipped with a probability monad P : E Ñ E and a terminal
object 1 : E . A probability space in E is an object of the slice 1{K `pPq of the Kleisli category of the
probability monad under 1.

Remark 2.19. In order to consider polynomials in E , we will later assume again that it is locally Cartesian
closed. A simple example of a locally Cartesian closed category equipped with a probability monad is

1We leave the full exposition of Ÿ in PolyM to the forthcoming extended version of this paper.
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the category Set equipped with the monad D taking each set to the set of finitely-supported probability
distributions upon it.
Proposition 2.20. There is a forgetful functor 1{K `pPq Ñ E taking probability spaces pB,β q to the
underlying spaces B and their morphisms f : pA,αq Ñ pB,β q to the underlying maps f : AÑPB. We
will write B to refer to the space in E underlying a probability space pB,β q, in the image of this forgetful
functor.
Definition 2.21. Let pB,β q be a probability space in E . A closed metric or measure-preserving dynamical
system pϑ ,β q on pB,β q with time T is a closed dynamical system ϑ with state space B : E such that, for
all t : T, Pϑptq ˝β “ β ; that is, each ϑptq is a pB,β q-endomorphism in 1{K `pPq.
Proposition 2.22. Closed measure-preserving dynamical systems in E with time T form the objects of a
category CatpBT,E qP whose morphisms f : pϑ ,αq Ñ pψ,β q are maps f : ϑp˚q Ñ ψp˚q in E between
the state spaces that preserve both flow and measure, as in the following commutative diagram, which
also indicates their composition:

Pϑp˚q Pϑp˚q

1 Pψp˚q Pψp˚q 1

Pλ p˚q Pλ p˚q

α

β

γ

α

β

γ

Pϑptq

Pψptq

Pλptq

P f P f

Pg Pg

Definition 2.23. Let pϑ ,β q be a closed measure-preserving dynamical system. A closed random
dynamical system over pϑ ,β q is an object of the slice category CatpBT,E q{ϑ ; it is therefore a bundle of
the corresponding functors.
Example 2.24. The solutions Xpt,ω;x0q : R`ˆΩˆM ÑM to a stochastic differential equation dXt “

f pt,Xtqdt`σpt,XtqdWt , where W : R`ˆΩÑM is a Wiener process in M, define a random dynamical
system R`ˆΩˆM ÑM : pt,ω,xq ÞÑ Xpt,ω;x0q over the Wiener base flow θ : R`ˆΩÑΩ : pt,ωq ÞÑ
W ps` t,ωq´W pt,ωq for any s : R`.
Definition 2.25. Let pθ ,β q be a closed measure-preserving dynamical system in E with time T, and let
p : PolyE be a polynomial in E . Write Ω :“ θp˚q for the state space of θ , and let π : SÑΩ be an object
(bundle) in E {Ω. An open random dynamical system over pθ ,β q on the interface p with state space
π : SÑΩ and time T consists in a pair of morphisms ϑ o : TˆSÑ pp1q and ϑ u :

ř

t:T

ř

s:S
prϑ opt,sqs Ñ S,

such that, for any global section σ : pp1q Ñ
ř

i:pp1q
pris of p, the maps ϑ σ : TˆSÑ S defined as

ÿ

t:T
S

ϑ op´q˚σ
ÝÝÝÝÝÑ

ÿ

t:T

ÿ

s:S

prϑ op´,sqs ϑ u
ÝÑ S

form a closed random dynamical system in CatpBT,E q{θ , in the sense that, for all t : T and sections σ ,
the following diagram commutes:

S
ř

s:S
prϑ opt,sqs S

Ω Ω

π π

θptq

ϑ optq˚σ ϑ uptq
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Proposition 2.26. Let pθ ,β q be a closed measure-preserving dynamical system in E with time T, and let
p : PolyE be a polynomial in E . Open random dynamical systems over pθ ,β q on the interface p form the
objects of a category RDynTpp,θq. See Definition A.3 in the Appendix for details.
Proposition 2.27. The categories RDynTpp,θq collect into a doubly-indexed category of the form
RDynT : PolyE ˆCatpBT,E qP Ñ Cat. See Proposition A.4 in the Appendix for details.

By allowing the base systems of open random dynamical systems instead to be arbitrary dynamical
systems, and then by opening them up similarly, one obtains notions of open bundle dynamical system, and
correspondingly doubly-opindexed categories over pairs of polynomials. Representing these categories
concisely, as we did for the categories CoalgTMppq, is the subject of on-going work, and so we defer the
details to the Appendix, in Definition A.5, and Propositions A.6, A.7, and A.8.

3 Hierarchical systems via generalized Org

In order to exhibit the main example of this paper, we will need to construct, from the opindexed categories
of pP-coalgebras introduced above, monoidal categories whose objects represent the interfaces of
hierarchical systems and whose morphisms represent the hierarchical systems themselves. Informally put,
we will think of a morphism pÑ q in such a category as “a q-shaped system with a p-shaped hole”. In
order to achieve this, we will in turn adopt and generalize the operad Org introduced by Spivak [8].
Definition 3.1 (Following Spivak [8, Def. 2.19]). We define a (category-enriched, symmetric, coloured)
operad, OrgTM. Its objects are polynomials, and for any tuple of polynomials pp1, . . . , pk; p1q of at
least length 2, the hom category OrgTMpp1, . . . , pk; p1q is given by CoalgTMprp1b¨¨ ¨b pk, p1sq. Note that
tyÑ rTy, rp, pssu – tTyÑ rp, psu. On any given interface p, the identity coalgebra is therefore given by
the morphism TyÑ rp, ps that constantly outputs idp and has trivial backwards component. To define
composition, we use the canonical maps rp,qsb rq,rs Ñ rp,rs and rp,qsb rp1,q1s Ñ rpb p1,qbq1s, the
pseudofunctoriality of CoalgTMp´q, and the laxators CoalgTMppqˆCoalgTMpqq Ñ CoalgTMppbqq; since
each of these components is associative and unital, the composition is well-defined.
Remark 3.2. Spivak’s original definition of Org corresponds to the case where M “ idE and T“ N.

For our present purposes, all that is required is to obtain from Org a (monoidal) (bi)category2. We
therefore restrict OrgTM to a bicategory Hier whose objects are again polynomials and whose hom-
categories from p to q are given by OrgTMpp,qq; it inherits a monoidal structure from the monoidal
category associated to the symmetric operad OrgTM . We will write Hier|E to denote the restriction of Hier
to the linear polynomials Ay.

To bring things a little down to earth, first consider a general system β : pÑ q in Hier. Recall that
rp,qs “

ř

f :pÑq y
ř

i:pp1q qr f1piqs. β is therefore given by a choice of state space X along with a pair of maps
β o : TˆX Ñ PolyMpp,qq and β u :

ř

t:T
ř

x:X
ř

i:pp1q qrβ
opt,sq1piqs ÑMX .

To make this a little more comprehensible again, suppose p“ AyS and q“ ByT . Then PolyMpp,qq “
E pA,BqˆE pAˆT,Sq, and so by the universal property of the product, β o is equivalently given by a pair of
maps: a ‘forwards’ output map β o

1 : TˆXˆAÑ B and a ‘backwards’ output map β o
2 : TˆXˆAˆT Ñ S;

if this reminds you of a category of lenses, then this is no surprise: the subcategory of PolyE on the
monomials AyS is indeed the category of bimorphic lenses in E . Finally, the update map simplifies to
β u : TˆXˆAˆT ÑMX , which updates the state given ‘forwards’ inputs in A and ‘backwards’ inputs in
T . We might denote the subcategory of Hier on such linear polynomials as HiBi, to indicate ‘hierarchical
bidirectional’ systems.

2and in fact, we won’t even really need to make use of the monoidal or bicategorical structures here!
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Taking one further step down the ladder of complexity, we briefly consider systems β : AyÑ By in
Hier|E : these are just hierarchical bidirectional systems where S “ T “ 1. Therefore, in this case, the
backwards output map becomes trivial, leaving only a forwards output map β o : TˆXˆAÑ B and an
update map taking inputs in A, β u : TˆX ˆAÑMX . By filling in the A-inputs, we get a system with
B-outputs, corresponding to the informal intuition with which we opened this section: we have a B-shaped
system with an A-shaped hole. Composition of these systems corresponds to placing systems in parallel
using b and plugging interfaces into holes of the matching shape.

We end this section by briefly sketching the canonical b-comonoid structure on Hier|E , making
Hier|E into a ‘semi-Markov’ [7] or ‘copy-discard’ [9] category. Note that, if a system has the trivial state
space 1, then (i) tensoring with it is a no-op, and (ii) it has a trivial update map (assuming that M1– 13).
Thus, for each object Ay, we obtain a discarding system A : AyÑ 1y by taking the trivial state space,
trivial update map, and trivial output map. The copying system A : AyÑ pAˆAqy again has trivial state
space and update map, but now the output map o

A : TˆAÑ AˆA is given by the constant copying map
pt,aq ÞÑ pa,aq. It is then straightforward to check the comonoid laws.

4 Dynamical Bayesian inversion

One consequence of Hier|E being a copy-discard category is that we can instantiate an abstract form
of Bayes’ rule there, giving rise to a notion of when one pP-coalgebraic system can be seen to be
‘predicting’ or ‘inverting’ another. In general, Bayes’ rule is expressed as an equality between morphisms,
but this is too strong for dynamical systems, which ‘black-box’ their state spaces: that is to say, we should
consider two morphisms (systems) ‘equal’ when they are observationally equivalent—or, more precisely,
when they are related by a (quasi-)bisimulation.

Definition 4.1. We define a family of relations „ that we collectively call quasi-bisimilarity. Given
systems ϑ :“ pX ,ϑ o,ϑ uq and ψ :“ pY,ψo,ψuq in CoalgTPppq and a section σ of p, we first define the
trace4 or trajectory of ϑ given σ as the morphism

trpθ ,σq :“ TˆX
ϑ op-q˚σ
ÝÝÝÝÝÑ

ÿ

t:T

ÿ

x:X

prϑ opt,xqs
pϑ uqŹT
ÝÝÝÝÑ TˆPX Pϑ o

ÝÝÝÑP pp1q .

Supposing α : 1ÑPX and β : 1ÑPY to be corresponding initial states, we define ϑ
α,β
„ ψ as the

relation

ϑ
α,β
„ ψ ðñ @σ : Γppq.@t : T. trpϑ ,σqptq ‚α “ trpψ,σqptq ‚β ,

where we write g‚ f to indicate Kleisli composition g‚ f “ µ ˝Pg˝ f (where µ is the multiplication of

the monad P). We write ϑ
D,D
„ ψ when there exists some α,β such that ϑ

α,β
„ ψ , and likewise for ϑ

@,@
„ ψ ,

ϑ
@,D
„ ψ , and ϑ

D,@
„ ψ .

In light of this definition, we can define an appropriate notion of Bayesian inversion for Hier|E :

3This condition is satisfied when M is a probability monad like the finite-support distribution monad, for instance.
4Note that this is in analogy with the coalgebraic trace, not the trace of traced monoidal categories.
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Definition 4.2. We say that a system c : XyÑ Y y in Hier|E admits Bayesian inversion with respect to
π : yÑ Xy, if there exists a system c:π : Y yÑ Xy satisfying the equation [9, eq. 5]:

c

π

X Y

D,D
„

c:π

π

c

X Y

We call c:π the Bayesian inversion of c with respect to π , and call the defining relation the dynamical
Bayes’ rule.

5 The Laplace doctrine of predictive processing

In real-world systems, however, even such quasi-bisimulation is too strong. In the setting of computational
neuroscience, it is proposed [10, 11] that certain neural circuits implement approximate Bayesian inference
by optimizing certain statistical games [12]. A statistical game consists of a Bayesian lens—a pair of a
‘forwards’ stochastic channel AÑPB and a ‘backwards’ inversion PAˆBÑPA—equipped with a
loss function to evaluate the systems predictive performance. Embodied predictive systems such as brains
then realize these games as dynamical systems. Here we sketch this functorial semantics, using a category
of ‘hierarchical bidirectional Stat-systems’, following [12, 13].

We noted above that the category HiBi resembles a category of lenses, but it does not sufficiently
resemble the category of Bayesian lenses: notice that the backwards maps of the latter have codomains of
the form PAˆT ÑPS rather than AˆT Ñ S. For this reason, HiBi makes for an inadequate semantic
category for predictive processing. However, all is not lost, for we can define a modification of HiBi
by analogy to the definition of Bayesian lenses as Grothendieck lenses for the indexed category Stat of
state-dependent maps [13].

Definition 5.1. Denote by HiBiP the following (semi-)(bi)category. Its objects are pairs of objects in E ,
and its hom-categories HiBiPppA,Sq,pB,T qq are given by OrgTPpPAyS,ByT q. Composition is given by
the following family of composite maps:

HiBiPppA,Sq,pB,T qqˆHiBiPppB,T q,pC,Uqq

“OrgTPpPAyS,ByT qˆOrgTPpPByT ,CyUq

“ CoalgTPprPAyS,ByT sqˆCoalgTPprPByT ,CyU sq

Ñ CoalgTPprPAyS,ByT sb rPByT ,CyU sq

Ñ CoalgTPprPAyS,PByT sb rPByT ,CyU sq

Ñ CoalgTPprPAyS,CyU sq

“HiBiPppA,Sq,pC,Uqq

where the fourth line is generated from the monadic unit ηB : BÑPB by CoalgprPyS,pηBqyT sq.
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Remark 5.2. Note that we say ’semi-’(bi)category: this is because HiBiP does not have identities. This
is not problematic for our work here; and of course OrgTP itself does have identities.

We are now in a position to sketch the ‘Laplace doctrine’ of dynamical semantics for approximate
inference. We first recall the notion of D-Bayesian inference game [12]:

Definition 5.3 (Bayesian inference). Let D : K `pPqpI,Xq ˆK `pPqp1,Xq Ñ R be a measure of
divergence between states on X . Then a (simple) D-Bayesian inference game is a statistical game
pX ,Xq Ñ pY,Y q with fitness function φ : K `pPqp1,XqˆK `pPqpY,Xq Ñ R given by

φpπ,kq “ E
y„k‚c‚π

”

D
´

c1πpyq,c
:
πpyq

¯ı

where pc,c1q constitutes the lens part of the game and c:π is the exact inversion of c with respect to π .

Write DKL for the Kullback-Leibler divergence. Given a DKL-Bayesian inference game pγ,ρ,φq :
pX ,Xq Ñ pY,Y q where X and Y are Euclidean spaces and whose forward and backward channels are
constrained to output Gaussian distributions, the Laplace doctrine returns a hierarchical bidirectional
Stat-system minimizing an upper bound on the divergence between each approximate posterior ρπ and
the ‘true’ posterior γ

:
π , for any Gaussian state π : PX .

Remark 5.4. Note that the statistical properties of the system are not the focus of this paper: this doctrine
is merely being used to illustrate the coalgebraic framework.

The Laplace doctrine hinges on the following approximation, whose proof we defer to A.9.

Lemma 5.5 (Laplace approximation). Given a DKL-Bayesian inference game pγ,ρ,φq : pX ,Xq Ñ pY,Y q
with forwards channel γ : X ÑPY constrained to emit Gaussian distributions, write µγpxq : R|Y | for the
mean of γpxq and Σγpxq : R|Y |ˆ|Y | for its covariance matrix, and assume that for all y : Y , the eigenvalues
of Σρπ

pyq are small.
Then the loss φ : K `pPqp1,XqˆK `pPqpY,Xq Ñ R is approximately bounded from above by

φpπ,kq “ E
y„k‚γ‚π

”

D
´

ρπpyq,γ:πpyq
¯ı

ď E
y„k‚γ‚π

”

D
´

ρπpyq,γ:πpyq
¯

´ log pγ‚πpyq
ı

“ E
y„k‚γ‚π

“

F pyq
‰

« E
y„k‚γ‚π

“

F Lpyq
‰

where F is called the free energy and where F L is its Laplace approximation,

F Lpyq “ Epπ,γq
`

µρπ
pyq,y

˘

´SX rρπpyqs (1)

“´ log pγpy|µρπ
pyqq´ log pπpµρπ

pyqq´SX rρπpyqs

where Sxrρπpyqs “ Ex„ρπpyqr´ log pρπ
px|yqs is the Shannon entropy of ρπpyq, and pγ : Y ˆX Ñ r0,1s,

pπ : X Ñ r0,1s, and pρπ
: X ˆY Ñ r0,1s are density functions for γ , π , and ρπ respectively. The

approximation is valid when Σρπ
satisfies

Σρπ
pyq “

`

B2
x Epπ,γq

˘`

µρπ
pyq,y

˘´1
. (2)

With this approximation in hand, and given such a statistical game pγ,ρ,φq, we will construct
a hierarchical bidirectional Stat-system Laplacepγ,ρ,φq performing approximate stochastic gradient
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descent on the loss function, with respect to the statistical parameters of the inversions ρπ . We will work in
discrete time, T“ N, although all of what follows can be done in continuous time, T“ R`, by replacing
the discrete update steps by stochastic differential equations.

Since the entropy SX rρπpyqs depends only on the variance Σρπ
pyq, to optimize the mean µρπ

pyq it
suffices to consider only the energy Epπ,γqpµρπ

pyq,yq. We have

Epπ,γqpx,yq “ ´ log pγpy|xq´ log pπpxq

“ ´
1
2

A

εγpy,xq,Σγpxq
´1

εγpy,xq
E

´
1
2
@

επpxq,Σπ
´1

επpxq
D

` log
b

p2πq|Y | detΣγpxq` log
b

p2πq|X | detΣπ

and a straightforward computation shows that

BxEpπ,γqpx,yq “ ´BxµγpxqT Σγpxq
´1

εγpy,xq`Σπ
´1

επpxq .

Let ηγpy,xq :“ Σγpxq
´1

εγpy,xq and ηπpxq :“ Σπ
´1

επpxq, so that

BxEpπ,γqpx,yq “ ´BxµγpxqT ηγpy,xq`ηπpxq . (3)

Note that Epπ,γq defines a function X ˆY Ñ R. We will use the domain X ˆY of this function as the
state space of our system. To avoid ambiguity, we will write ÝÑX to indicate the space X when it is used
as an input in the ‘forwards’ direction, andÐÝY to indicate the space Y when it is used as an input in the
‘backwards’ direction.

Our system Laplacepγ,ρ,φq will therefore have the type

pXˆY, β
o
1 : XˆY ˆP

ÝÑX Ñ
ÝÑY ,

β
o
2 : XˆY ˆP

ÝÑX ˆÐÝY Ñ
ÐÝX ,

β
u : XˆY ˆP

ÝÑX ˆÐÝY ÑPpXˆY qq.

We define β o
1 to be the projection of the second factor Y of the state space onto Y , and β o

2 to be the
projection of the first factor X onto X . The update map β u : XˆY ˆP

ÝÑX ˆÐÝY ÑPpXˆY q is then given
by composing the commutativity (or ‘double strength’) of the monad P , dst : PXˆPY ÑPpXˆY q,
after the following map (represented as a string diagram in E ):

ρu

γÐ

PX

PY
Y

PX

X

Y

where p´qÐ :“ µP ˝Pp´q denotes Kleisli extension (for µP the multiplication of the monad P), so
that γÐ :“ µP

Y ˝Ppγq : PX ÑPY .
In turn, the map ρu : XˆPXˆY ÑPX is defined by

ρ
u : XˆPXˆY Ñ R|X |ˆR|X |ˆ|X | ãÑPX

px,π,yq ÞÑ
´

x´λBxEpπ,γqpx,yq,Σ
˚
ρπ
pyq

¯
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where the inclusion into PX picks the Gaussian state with the given statistical parameters, where λ : R`
is some choice of “learning rate”, where Σ˚ρπ

pyq is as above and in Equation (2), and where BxEpπ,γqpx,yq
is as in Equation (3).

Observe that the factor ρu performs approximate stochastic gradient descent on the free energy: for a
given input y : Y , the mean trajectory of the system follows the update law µρ ÞÑ µρ ´λBµρ

Epπ,γqpµρ ,yq,
and, when Σρpyq “ Σ˚ρpyq, we have Bµρ

Epπ,γqpµρ ,yq « Bµρ
F pyq. Note also that the update map ρu depends

on a prior, just as the inversion map ρ of the lens pγ,ρq does.
A full treatment of the Laplace doctrine will appear in a forthcoming sequeal to the author’s [12].

6 Conclusions; current and future work

In this work we have sketched a framework for treating open dynamical systems of a general nature
as coalgebras for certain polynomial functors or—in the case of systems with side-effects such as
randomness—certain generalizations thereof. Although we have attempted to give a wide overview of the
applicability of these structures, with a particular focus on the adaptive systems of primary interest to the
author, we are aware that we have barely scratched the surface of their use and relationships. Here, we
briefly list some avenues of current and future work.

Our current principal focus is on exploring the connections between these structures and other
compositional treatments of dynamical systems. In particular, relating our categories to the respective
frameworks of Myers [14], Libkind [15] and Baez and colleagues (e.g., [16]). Evidently, the structures
presented here are most closely in line with the approaches explored by Spivak [8, 17], and are particularly
interested in generalizing his topos-theoretic perspective: given that the category of discrete-time
deterministic systems over a polynomial p forms a topos, we suspect that so too does CoalgTppq. We are
also seeking the connections between these putative topoi and the topoi of behaviour types [17] as well
as with coalgebraic logic [18], particularly in its modal forms. We hope that we can further develop the
theory of PolyM to support some of these methods, too.

Finally, there are a number of ways in which this framework should be made more elegant. In particular,
we hope to cast a number of properties instead as structures, including the comonoid-homomorphism
property of our main definition, and the explicit definitions of random and bundle dynamical systems.
With particular respect to the latter, we expect there to be an inductive story of nested parameterization,
which appears to the author to have an opetopic shape closely connected to the Para construction [19].
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A Extra proofs and structures

Proposition A.1. CoalgTppq extends to a polynomially-indexed category, CoalgT : PolyE Ñ Cat.
Suppose ϕ : p Ñ q is a morphism of polynomials. We define a corresponding functor CoalgTpϕq :
CoalgTppq Ñ CoalgTpqq as follows. Suppose pX ,ϑ o,ϑ uq : CoalgTppq is an object (dynamical system)
in CoalgTppq. Then CoalgTpϕqpX ,ϑ o,ϑ uq is defined as the triple pX ,ϕ1 ˝ϑ o,ϑ u ˝ϑ o˚ϕ#q : CoalgTpqq,
where the two maps are explicitly the following composites:

TˆX ϑ o
ÝÑ pp1q

ϕ1
ÝÑ qp1q ,

ÿ

t:T

ÿ

x:X

qrϕ1 ˝ϑ
opt,xqs

ϑ o˚ϕ#

ÝÝÝÝÑ
ÿ

t:T

ÿ

x:X

prϑ opt,xqs ϑ u
ÝÑ X .

On morphisms, CoalgTpϕqp f q : CoalgTpϕqpX ,ϑ o,ϑ uq Ñ CoalgTpϕqpY,ψo,ψuq is given by the same
underlying map f : X Ñ Y of state spaces.

Proof. We need to check that CoalgTpϕqpX ,ϑ o,ϑ uq satisfies the flow conditions of Definition 2.1, that
CoalgTpϕqp f q satisfies the naturality condition of Proposition 2.3, and that CoalgT is functorial with
respect to polynomials. We begin with the flow condition. Given a section τ : qp1q Ñ

ř

j:qp1q
qr js of q, we

require the closures CoalgTpϕqpϑqτ : TˆX Ñ X given by

ÿ

t:T
X

ϑ op´q˚τ
ÝÝÝÝÝÑ

ÿ

t:T

ÿ

x:X

qrϕ1 ˝ϑ
opt,xqs

ϑ o˚ϕ#

ÝÝÝÝÑ
ÿ

t:T

ÿ

x:X

prϑ opt,xqs ϑ u
ÝÑ X

to satisfy CoalgTpϕqpϑqτp0q“ idX and CoalgTpϕqpϑqτps`tq“CoalgTpϕqpϑqτpsq˝CoalgTpϕqpϑqτptq.
Note that the following diagram commutes, by the definition of ϕ#,

ř

i:pp1q
pris

ř

i:pp1q
qrϕ1piqs pp1q

pp1q pp1q

ϕ
˚
1 q

ϕ
˚
1 τϕ#

p

so that ϕ# ˝ϕ˚1 τ is a section of p. Therefore, letting σ :“ ϕ# ˝ϕ˚1 τ , for CoalgTpϕqpϑqτ to satisfy the
flow condition for τ reduces to ϑ σ satisfying the flow condition for σ . But this is given ex hypothesi by
Definition 2.1, for any such section σ , so CoalgTpϕqpϑqτ satisfies the flow condition for τ . And since τ

was any section, we see that CoalgTpϕqpϑq satisfies the flow condition generally.
The proof that CoalgTpϕqp f q satisfies the naturality condition of Proposition 2.3 proceeds similarly.

Supposing again that τ is any section of q, we require the following diagram to commute for any time
t : T:

X
ř

x:X
qrϕ1 ˝ϑ opt,xqs

ř

x:X
prϑ opt,xqs X

Y
ř

y:Y
qrϕ1 ˝ψopt,xqs

ř

y:Y
prψopt,xqs Y

f f

ϑ optq˚ϕ
˚
1 τ ϑ optq˚ϕ# ϑ uptq

ψoptq˚ϕ
˚
1 τ ϑ optq˚ϕ# ψuptq
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Again letting σ :“ ϕ# ˝ϕ˚1 τ , we see that this diagram reduces exactly to the diagram in Proposition 2.3
by the functoriality of pullback, and since f makes that diagram commute, it must also make this diagram
commute.

Finally, to show that CoalgT is functorial with respect to polynomials amounts to checking that
composition and pullback are functorial; but this is a basic result of category theory.

Proposition A.2. When T“ N, the category CoalgNppq of open dynamical systems over p with time N
is equivalent to the topos p-Coalg of p-coalgebras [8].

Proof. p-Coalg has as objects pairs pS,β q where S : E is an object in E , β : SÑ pŸ S is a morphism
of polynomials (interpreting S as the constant copresheaf on the set S), and Ÿ denotes the composition
monoidal product in PolyE (i.e., composing the corresponding copresheaves E Ñ E ). A straightforward
computation shows that, interpreted as an object in E , pŸS corresponds to

ř

i:pp1q S
pris. By the universal

property of the dependent sum, a morphism β : SÑ
ř

i:pp1q S
pris therefore corresponds bijectively to a

pair of maps β o : SÑ pp1q and β u :
ř

s:S prβ opsqs Ñ X . By Proposition 2.6, such a pair is equivalently
a discrete-time open dynamical system over p with state space S: that is, the objects of p-Coalg are in
bijection with those of CoalgNppq.

Next, we show that the hom-sets p-Coalg
`

pS,β q,pS1,β 1q
˘

and CoalgNppq
`

pS,β o,β uq,pS1,β 1o,β 1uq
˘

are in bijection. A morphism f : pS,β q Ñ pS1,β 1q of p-coalgebras is a morphism f : SÑ S1 between the
state spaces such that β 1 ˝ f “ ppŸ f q ˝β . Unpacking this, we find that this means the following diagram
in E must commute for any section σ of p:

S
ř

s:S
prβ opsqs

ř

i:pp1q
pris pp1q

S pp1q

S1 pp1q

S1
ř

s1:S1
prβ 1ops1qs

ř

i:pp1q
pris pp1q

f
f

β o

{

β 1o

{

β u

β 1u σ

σ

Pulling the arbitrary section σ back along the ‘output’ maps β o and β 1o means that the following
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commutes:

S
ř

s:S
prβ opsqs S

S

S1

S1
ř

s1:S1
prβ 1ops1qs S1

f
f

β u

β 1u

β o˚σ

β 1o
˚

σ

Forgetting the vertical projections out of the pullbacks gives:

S
ř

s:S
prβ opsqs S

S

S1

S1
ř

s1:S1
prβ 1ops1qs S1

f

β u

β 1u

β o˚σ

β 1o
˚

σ

f

Finally, by collapsing the identity maps and reflecting the diagram horizontally, we obtain

S
ř

s:S
prβ opsqs S

S1
ř

s1:S1
prβ 1ops1qs S1

f f

β o˚σ

β 1o
˚

σ

β u

β 1u

which we recognize from Proposition 2.3 as the defining characteristic of a morphism in CoalgNppq.
Finally, we note that each of these steps is bijective, and so we have the desired bijection of hom-sets.
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Definition A.3 (Category of open random dynamical systems over p). Writing ϑ :“ pπX ,ϑ
o,ϑ uq and

ψ :“ pπY ,ψ
o,ψuq, a morphism f : ϑ Ñ ψ is a map f : X Ñ Y in E making the following diagram

commute for all times t : T and sections σ of p:

X
ř

x:X
prϑ opt,xqs X

Ω Ω

Y
ř

y:Y
prψopt,yqs Y

πX πX

θptq

ϑ optq˚σ ϑ uptq

ψoptq˚σ ψuptq

πY πY

f f

Identities are given by the identity maps on state-spaces. Composition is given by pasting of diagrams.

Proposition A.4 (Opindexed category of open random dynamical systems over polynomials). By the
universal property of the product ˆ in Cat, it suffices to define the actions of RDynT separately on
morphisms of polynomials and on morphisms of closed measure-preserving systems.

Suppose therefore that ϕ : pÑ q is a morphism of polynomials. Then, for each measure-preserving
system pθ ,β q : CatpBT,E qP , we define the functor RDynTpϕ,θq : RDynTpp,θq Ñ RDynTpq,θq as
follows. Let ϑ :“ pπX : X ÑΩ,ϑ o,ϑ uq : RDynTpp,θq be an object (open random dynamical system) in
RDynTpp,θq. Then RDynTpϕ,θqpϑq is defined as the triple pπX ,ϕ1 ˝ϑ o,ϑ u ˝ϕo˚ϕ#q : RDynTpq,θq,
where the two maps are explicitly the following composites:

TˆX ϑ o
ÝÑ pp1q

ϕ1
ÝÑ qp1q ,

ÿ

t:T

ÿ

x:X

qrϕ1 ˝ϑ
opt,xqs

ϑ o˚ϕ#

ÝÝÝÝÑ
ÿ

t:T

ÿ

x:X

prϑ opt,xqs ϑ u
ÝÑ X .

On morphisms f : pπX : X ÑΩ,ϑ o,ϑ uq Ñ pπY : Y ÑΩ,ψo,ψuq, the image

RDynTpϕ,θqp f q : RDynTpϕ,θqpπX ,ϑ
o,ϑ uq Ñ RDynTpϕ,θqpπY ,ψ

o,ψuq

is given by the same underlying map f : X Ñ Y of state spaces.

Next, suppose that φ : pθ ,β q Ñ pθ 1,β 1q is a morphism of closed measure-preserving dynamical
systems, and let Ω1 :“ θ 1p˚q be the state space of the system θ 1. By Proposition 2.22, the morphism φ

corresponds to a map φ : ΩÑΩ1 on the state spaces that preserves both flow and measure. Therefore,
for each polynomial p : PolyE , we define the functor RDynTpp,φq : RDynTpp,θq Ñ RDynTpp,θ 1q by
post-composition. That is, suppose given open random dynamical systems and morphisms over pp,θq as
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in the diagram of Proposition 2.26. Then RDynTpp,φq returns the following diagram:

X
ř

x:X
prϑ opt,xqs X

Ω1 Ω1

Y
ř

y:Y
prψopt,yqs Y

θ 1ptq

ϑ optq˚σ ϑ uptq

ψoptq˚σ ψuptq

f f

φ˝πY

φ˝πX

φ˝πY

φ˝πX

That is, RDynTpp,φqpϑq :“ pφ ˝πX ,ϑ
o,ϑ uq and RDynTpp,φqp f q is given by the same underlying map

f : X Ñ Y on state spaces.

Proof. We need to check: the naturality condition of Definition 2.25 for both RDynTpϕ,θqpϑq and
RDynTpp,φqpϑq; functoriality of RDynTpϕ,θq and RDynTpp,φq; and (pseudo)functoriality of RDynT

with respect to both morphisms of polynomials and of closed measure-preserving systems.
We begin by checking that the conditions of Definition 2.25 are satisfied by the objects

RDynTpϕ,θqpπX ,ϑ
o,ϑ uq : RDynTpq,θq

and morphisms

RDynTpϕ,θqp f q : RDynTpϕ,θqpπX ,ϑ
o,ϑ uq Ñ RDynTpϕ,θqpπY ,ψ

o,ψuq

in the image of RDynTpϕ,θq. Given a section τ : qp1qÑ
ř

j:qp1q
qr js of q, we need to check that the closure

RDynTpϕ,θqpϑqτ forms a closed random dynamical system in CatpBT,E q{θ . That is to say, for all t : T
and sections τ , we need to check that the following naturality square commutes:

X
ř

x:X
qrϕ1 ˝ϑ opt,xqs

ř

x:X
prϑ opt,xqs X

Ω Ω

ϑ optq˚τ ϑ optq˚ϕ#
ϑ u

πX

θptq

πX

As before, we find that ϕ# ˝ϕ˚1 τ is a section of p, so that commutativity of the diagram above reduces to
commutativity of the diagram in Definition 2.25. Similarly, given a morphism f : pπX ,ϑ

o,ϑ uq Ñ

pπY ,ψ
o,ψuq, we need to check that the diagram in Proposition 2.26 induced for RDynTpϕ,θqp f q

commutes for all times t : T and sections τ of q. But given such a section τ , the diagram for
RDynTpϕ,θqp f q reduces to that for f and the section ϕ# ˝ϕ˚1 τ of p, which commutes ex hypothesi;
and functoriality of RDynTpϕ,θq follows immediately.
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Next, we check that the conditions of Definition 2.25 are satisfied in the image of RDynTpp,φq. It is
clear by the definition of the action of RDynTpp,φq that the condition that the diagram in Proposition A.1
commutes is satisfied, from which it follows by pasting that RDynTpp,φq is functorial. We therefore just
have to check the induced diagram in Definition 2.25 commutes. Consider the following diagram:

X
ř

x:X
prϑ opt,xqs X

Ω Ω

Ω1 Ω1

πX

ϑ optq˚σ ϑ uptq

πX

θptq

φ φ

θ 1ptq

The top square commutes ex hypothesi, the bottom square commutes by the definition of morphism of
closed measure-preserving dynamical systems (Proposition 2.22), and the outer square is the induced
diagram we need to check, which therefore commutes by the pasting of commuting squares.

Finally, we check that RDynT is functorial with respect to morphisms of polynomials and morphisms
of closed measure-preserving dynamical systems. These reduce to checking that pullback and composition
are functorial, which we again leave to the dedicated reader.

Definition A.5 (Open bundle dynamical system). Let p,b : PolyE be polynomials in E , and let θ :“
pθp˚q,θ o,θ uq : CoalgTidpbq be an open dynamical system over b. An open bundle dynamical system over
pp,b,θq is a pair pπϑθ ,ϑq where ϑ :“ pϑp˚q,ϑ o,ϑ uq : CoalgTidppq is an open dynamical system over p
and πϑθ : ϑp˚q Ñ θp˚q is a bundle in E , such that, for all time t : T and sections σ of p and ς of b, the
following diagrams commute, thereby inducing a bundle of closed dynamical systems π

σς

ϑθ
: ϑ σ Ñ θ ς in

CatpBT,E q:

ϑp˚q
ř

w:ϑp˚q
prϑ opt,wqs ϑp˚q

θp˚q
ř

x:θp˚q
brθ opt,xqs θp˚q

πϑθ πϑθ

ϑ optq˚σ ϑ uptq

θ optq˚ς θ uptq

Proposition A.6 (Category of open bundle dynamical systems over pp,bq). Let p,b : PolyE be polynomials
in E , and let θ :“ pθp˚q,θ o,θ uq : CoalgTidpbq be an open dynamical system over b. Open bundle dynamical
systems over pp,b,θq form the objects of a category BunDynTpp,b,θq. Morphisms f : pπϑθ ,ϑq Ñ
pπρθ ,ρq are maps f : ϑp˚q Ñ ρp˚q in E making the following diagram commute for all times t : T and
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sections σ of p and ς of b:

ϑp˚q
ř

w:ϑp˚q
prϑ opt,wqs ϑp˚q

θp˚q
ř

x:θp˚q
brθ opt,xqs θp˚q

ρp˚q
ř

y:ρp˚q
prρopt,yqs ρp˚q

ϑ optq˚σ ϑ uptq

θ optq˚ς θ uptq

πϑθ

πρθ

πϑθ

πρθ

ρoptq˚σ ρuptq

f f

That is, f is a map on the state spaces that induces a morphism pπϑθ ,ϑ
σ qÑ pπρθ ,ρ

σ q in CatpBT,E q{θ ς

of bundles of the closures. Identity morphisms are the corresponding identity maps, and composition is by
pasting.

Proposition A.7 (Opindexed category of open bundle dynamical systems). Varying the polynomials p
in BunDynTpp,b,θq induces an opindexed category BunDynTp´,b,θq : PolyE Ñ Cat. On polynomials
p, it returns the categories BunDynTpp,b,θq of Proposition A.6. On morphisms ϕ : p Ñ q of
polynomials, define the functors BunDynTpϕ,b,θq : BunDynTpp,b,θq Ñ BunDynTpq,b,θq as in
Proposition 2.27. That is, suppose pπϑθ ,ϑq : BunDynTpp,b,θq is object (open bundle dynamical system)
in BunDynTpp,b,θq, where ϑ :“ pϑp˚q,ϑ o,ϑ uq. Then its image BunDynTpϕ,b,θqpπϑθ ,ϑq is defined
as the pair pπϑθ ,ϕϑq, where ϕϑ :“ pϑp˚q,φ1 ˝ϑ o,ϑ u ˝ϑ o˚ϕ#q. On morphisms f : pπϑθ ,ϑqÑ pπρθ ,ρq,
BunDynTpϕ,b,θqp f q is again given by the same underlying map f : ϑp˚q Ñ ρp˚q of state spaces.

Proof. The proof amounts to the proof for Proposition 2.27 that RDynTpϕ,θq constitutes an indexed
category, except that the closed base dynamical system θ of that Proposition is here replaced, for any
section ς of b, by the closure θ ς by ς of the open dynamical system θ : CoalgTidpbq of the present
Proposition. The proof goes through accordingly, since the relevant diagrams are guaranteed to commute
for any such ς by the conditions in Definition A.5 and Proposition A.6.

Proposition A.8 (Doubly-opindexed category of open bundle dynamical systems). Letting the base
system θ also vary induces a doubly-opindexed category BunDynTp´,b,“q : PolyE ˆCoalgTidpbqÑCat.
Given a polynomial p : PolyE and morphism φ : θ Ñ ρ in CoalgTidpbq, the functor BunDynTpp,b,φq :
BunDynTpp,b,θq Ñ BunDynTpp,b,ρq is defined by post-composition, as in Proposition 2.27 for the
action of RDynT on morphisms of the base systems there. More explicitly, such a morphism φ corresponds
to a map φ : θp˚q Ñ ρp˚q of state spaces in E . Given an object pπϑθ ,ϑq of BunDynTpp,b,θq,
we define BunDynTpp,b,φqpπϑθ ,ϑq :“ pφ ˝ πϑθ ,ϑq. Given a morphism f : pπϑθ ,ϑq Ñ pπρθ ,ρq in
BunDynTpp,b,θq, its image BunDynTpp,b,φqp f q : pφ ˝πϑθ ,ϑq Ñ pφ ˝πρθ ,ρq is given by the same
underlying map f : ϑp˚q Ñ ρp˚q of state spaces.

Proof. As for Proposition A.7, the proof here amounts to the proof for Proposition 2.27 that RDynTpp,φq
constitutes an indexed category, except again the closed systems are replaced by (the appropriate closures
of) open ones, and the measure-preserving structure is forgotten.
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Proof A.9 (Proof of the Laplace approximation). First note that the KL divergence is bounded from above
by the free energy since log pγ‚πpyq is always negative.

Next, we can write the density functions as:

log pγpy|xq “
1
2
@

εγ ,Σγ
´1

εγ

D

´ log
b

p2πq|Y | detΣγ

log pρπ
px|yq “

1
2
@

ερπ
,Σρπ

´1
ερπ

D

´ log
b

p2πq|X | detΣρπ

log pπpxq “
1
2
@

επ ,Σπ
´1

επ

D

´ log
b

p2πq|X | detΣπ

where for clarity we have omitted the dependence of Σγ on x and Σρπ
on y, and where

εγ : Y ˆX Ñ Y : py,xq ÞÑ y´µγpxq ,

ερπ
: XˆY Ñ X : px,yq ÞÑ x´µρπ

pyq ,

επ : Xˆ1Ñ X : px,˚q ÞÑ x´µπ .

Then, note that we can write the free energy F pyq as the difference between expected energy and entropy:

F pyq “ E
x„ρπpyq

„

log
pρπ
px|yq

pγpy|xq ¨ pπpxq



“ E
x„ρπpyq

“

´ log pγpy|xq´ log pπpxq
‰

´SX rρπpyqs

“ E
x„ρπpyq

“

Epπ,γqpx,yq
‰

´SX rρπpyqs

Next, since the eigenvalues of Σρπ
pyq are small for all y : Y , we can approximate the expected energy by

its second-order Taylor expansion around the mean µρπ
pyq:

F pyq « Epπ,γqpµρπ
pyq,yq`

1
2
@

ερπ

`

µρπ
pyq,y

˘

,
`

B2
x Epπ,γq

˘`

µρπ
pyq,y

˘

¨ ερπ

`

µρπ
pyq,y

˘D

´SX
“

ρπpyq
‰

.

where
`

B2
x Epπ,γq

˘`

µρπ
pyq,y

˘

is the Hessian of Epπ,γq with respect to x evaluated at pµρπ
pyq,yq.

Note that
@

ερπ

`

µρπ
pyq,y

˘

,
`

B2
x Epπ,γq

˘`

µρπ
pyq,y

˘

¨ ερπ

`

µρπ
pyq,y

˘D

“ tr
“`

B2
x Epπ,γq

˘`

µρπ
pyq,y

˘

Σρπ
pyq

‰

, (4)

that the entropy of a Gaussian measure depends only on its covariance,

SX
“

ρπpyq
‰

“
1
2

logdet
`

2π eΣρπ
pyq

˘

,

and that the energy Epπ,γqpµρπ
pyq,yq does not depend on Σρπ

pyq. We can therefore write down directly the
covariance Σ˚ρπ

pyq minimizing F pyq as a function of y. We have

BΣρπ
F pyq «

1
2
`

B2
x Epπ,γq

˘`

µρπ
pyq,y

˘

`
1
2

Σρπ

´1 .

Setting BΣρπ
F pyq “ 0, we find the optimum

Σ
˚
ρπ
pyq “

`

B2
x Epπ,γq

˘`

µρπ
pyq,y

˘´1
.

Finally, on substituting Σ˚ρπ
pyq in equation (4), we obtain the desired expression

F pyq « Epπ,γq
`

µρπ
pyq,y

˘

´SX rρπpyqs “: F Lpyq .
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Polynomial Functors and Shannon Entropy

David I. Spivak

Past work shows that one can associate a notion of Shannon entropy to a Dirichlet polynomial,
regarded as an empirical distribution. Indeed, entropy can be extracted from any d ∈ Dir by a two-
step process, where the first step is a rig homomorphism out of Dir, the set of Dirichlet polynomials,
with rig structure given by standard addition and multiplication. In this short note, we show that this
rig homomorphism can be upgraded to a rig functor, when we replace the set of Dirichlet polynomials
by the category of ordinary (Cartesian) polynomials.

In the Cartesian case, the process has three steps. The first step is a rig functor PolyCart →
Poly sending a polynomial p to ṗy, where ṗ is the derivative of p. The second is a rig functor
Poly→ Set×Setop, sending a polynomial q to the pair (q(1),Γ(q)), where Γ(q) = Poly(q,y) can
be interpreted as the global sections of q viewed as a bundle, and q(1) as its base. To make this
precise we define what appears to be a new distributive monoidal structure on Set×Setop, which can
be understood geometrically in terms of rectangles. The last step, as for Dirichlet polynomials, is
simply to extract the entropy as a real number from a pair of sets (A,B); it is given by logA− log A

√
B

and can be thought of as the log aspect ratio of the rectangle.

1 Introduction

In practice, a probability distribution on a set of outcomes arises from considering finite samples. A
sample consists of a set of observations, or draws, each corresponding to one of the outcomes. For
example, the following is a sample with five (5) outcomes and eight (8) draws:

draws

π

outcomes

(1)

This corresponds to the probability distribution P = (1
2 ,

1
8 ,

1
8 ,

1
8 ,

1
8). But the sample itself can be en-

coded in the form of a polynomial, namely p := y4 +4y. Note that p(1) = 5 is the number of outcomes
and that ṗ(1) = 8 is the number of draws, where ṗ = 4y3 + 4 is the derivative of p. The map π itself
is somehow inherent in p: one of its summands has an exponent of 4, whereas its other four summands
each have an exponent of 1. Yet one may wonder: is this polynomial encoding really meaningful, or is
it just a bizarre packaging of the sample? Our goal in this paper is to show that it is meaningful, at least
when it comes to considering the Shannon entropy H(P).

http://dx.doi.org/10.4204/EPTCS.380.19
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The Shannon entropy of a distribution [Sha48] is a measure of how much information is transmitted
when outcomes are selected according to the distribution. For example, if one repeatedly chooses an
element of the 8 draws in diagram (1) uniformly at random but only reports the outcome, then the first
outcome will show up four-times more often than any other. As we will explain, Shannon’s information
theory says that this distribution has entropy H(P) = 2, i.e. it transmits the same amount of information
as if it were a uniform distribution on only 4 outcomes.

In this paper we will give a category-theoretic account of the Shannon entropy of the probability
distribution corresponding to a sample encoded as a polynomial p, or more precisely a polynomial functor
p ∈ Poly. Polynomial functors are ubiquitous: they show up in type theory [ACH19; AN18], dynamical
systems theory [Spi20; SN22], database theory [SW15; Spi21], programming language theory [BD96;
AAG03], and higher category theory [TCM19; Sha21].

The category Poly of polynomial functors in one variable has an enormous amount of structure. For
example, it has at least eight distinct monoidal structures, of which two will be relevant to us. One is
the coproduct: given two polynomials p,q, we may add them to form p+ q. In terms of samples, this
operation simply takes the disjoint union of two samples: both the sets of outcomes and the sets of draws.
The other is the Dirichlet product, denoted ⊗. We will give the precise formula for p⊗q in Section 2.3,
but the idea is that it runs the two samples independently: an outcome in p⊗q is a pair consisting of an
outcome from p and an outcome from q, and a draw is also a pair consisting of a draw from p and a draw
from q.

These two operations make Poly a distributive monoidal category, because⊗ distributes over +. The
goal of this paper is to show that most of the process for taking the Shannon entropy of a sample is
fully category-theoretic. Indeed, we will factor the process into three stages, the first two of which are
completely categorical, and the last of which extracts a real number that will be the entropy.

The first stage is to define a rig functor T : PolyCart→ Poly, which sends a polynomial p to T (p) :=
ṗy, where ṗ is the derivative of p. The second stage is to define a rig functor R : Poly→ Set×Setop,
which sends a polynomial q to R(q) := (q(1),Γ(q)), where Γ(p) = Poly(p,y) can be construed as the
set of global sections of p, viewed as a bundle.

The fact that both T and R are rig functors means that each preserves both the coproduct and the
⊗-product, a surprising amount of structure. But to say this, we need to define what appears to be a
novel symmetric monoidal product ⊗ on Set×Setop. It is given by

(A1,B1)⊗ (A2,B2) :=
(

A1A2 , BA2
1 BA1

2

)
.

This monoidal product ⊗ distributes over the coproduct, which is given by

(A1,B1)+(A2,B2) := (A1 +A2 , B1×B2) ,

hence making Set× Setop a distributive monoidal category, and in particular a rig category. We will
explain these two rig functors T and R in Section 3. We denote their composite—the result of the first
and second stages—by

h := (R◦T ) : PolyCart→ Set×Setop.

It contains the categorical aspect of the entropy in a given sample p ∈ PolyCart.
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Before we discuss the third stage, we need a bit of intuition. Namely, we can think of an object
(A,B) ∈ Set× Setop as encoding a rectangle that has length A and width A

√
B. The coproduct of two

rectangles is given by adding their lengths and taking the geometric mean of their widths. The ⊗-
product of two rectangles is given by multiplying both their lengths and their widths. It is in these terms
that we can understand the third and final stage, which is simply to take the log aspect ratio (the log of
the quotient of length divided by width) of a given rectangle:

L(A,B) = logA− log A
√

B.

That is, we will prove that for any polynomial p with an associated probability distribution P, the
Shannon entropy H(P) can be computed by first applying the rig-functorial operation to obtain h(p) ∈
Set×Setop, and then by extracting the log aspect ratio:

H(P) = L(h(p)).

We will conclude by returning to our original example, after giving the full composite: the function
that takes a polynomial p and returns the entropy of the corresponding empirical distribution is given by

L(h(p)) := log ṗ(1)− logΓ(ṗy)
ṗ(1)

Note that log A
√

B = logB
A .

So consider again the polynomial p = y4 +4y, depicted in (1). Then we calculate

ṗy= 4y4 +4y, ṗ(1) = 8, Γ(ṗy) = 44 ∗14 = 28, and L(h(p)) = log8− log28

8
= 2

which agrees with our former calculation: its entropy is H(P) = L(h(p)) = 2.
The remainder of this note is divided into two sections: Section 2 gives background on polynomial

functors, including the definition of PolyCart⊆Poly as well as the + and⊗ structures. Section 3 gives the
main results: explaining the seemingly novel distributive monoidal structure on Set×Setop, providing a
rig monoidal functor h : PolyCart→ Set×Setop, showing how to extract the entropy via a partial function
L : Ob(Set×Setop)→ R, and finally proving the main theorem: that H(P) = L(h(p)).

There have been other categorical approaches to entropy, most notably [BFL11], [BF14], [Lei21],
and [Par22]. Our presentation here has almost nothing in common with those.

However, this work is closely aligned with [SH21]. There, the authors—myself and Tim Hosgood—
use Dirichlet polynomials rather than ordinary (Cartesian)1 polynomials. At the time, we seemed to have
a choice of whether to use Dirichlet or Cartesian polynomials, and the Dirichlet route seemed cleaner
and more intuitive for talking about the bundles. However, we were missing a few key ideas at the time.
Whereas there we only factored out from H a rig homomorphism (a function) Dir→ Rect to a somewhat
ad hoc rig we called Rect, the presentation here factors out from H a rig functor PolyCart→ Set×Setop.
Thus it is a significant categorical upgrade.

1René Decartes at least invented the notation, e.g. y2 + 3y+ 2, for polynomials; hence we refer to them as Cartesian
polynomials when we need to distinguish them from Dirichlet polynomials.
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2 Background on polynomial functors

Readers familiar with the rig category (Poly,0,+,y,⊗) should skip to Section 3.1.

2.1 Basics

The main purpose of this section is to fix notation and provide a brief overview of polynomial functors
in one variable. More extensive background material can be found in [SN22] and [GK12].

Definition 2.1 (Polynomial functor). Given a set S, we denote the corresponding representable functor
by

yS := Set(S,−) : Set→ Set,

e.g. yS(X) := XS. In particular y= y1 is the identity and y0 = 1 is constant singleton.
A polynomial functor is a functor p : Set→ Set that is isomorphic to a sum of representables, i.e. for

which there exists a set T , a set p[t] ∈ Set for each t ∈ T , and an isomorphism of functors

p∼= ∑
t∈T

yp[t].

We refer to T as the set of p-types, and for each type t ∈ T we refer to p[t] as the set of p-terms of type t.
A morphism ϕ : p→ p′ of polynomial functors is simply a natural transformation between them. It

is called cartesian if for every map of sets f : S→ S′, the naturality square

p(S) p(S)

p′(S′) p′(S′)

p( f )

ϕ(S) ϕ(S′)

p′( f )

y

is a pullback of sets. We denote the category of polynomial functors by Poly and the wide subcategory
of polynomials and cartesian maps by PolyCart ⊆ Poly. ♦

For any polynomial p = ∑t∈T y
p[t], we have a canonical isomorphism p(1)∼= T ; hence from now on

we will denote p by
p = ∑

I∈p(1)
yp[I] (2)

so that each p-types is written with an upper-case letter, e.g. I ∈ p(1), and its terms are written with
corresponding lower-case letters, e.g. i ∈ p[I].



David I. Spivak 335

Remark 2.2. Using the Yoneda lemma, the fact that a morphism in Poly is just a natural transformation,
and the fact that a polynomial is a coproduct of representables, we derive

Poly(p,q) = Poly

(
∑

I∈p(1)
yp[I], ∑

J∈p(1)
yq[J]

)

∼= ∏
I∈p(1)

Poly

(
yp[I], ∑

J∈p(1)
yq[J]

)
∼= ∏

I∈p(1)
∑

J∈q(1)
Set(q[J], p[I]).

Thus we can understand a morphism p→ q in Poly to consist of two parts (ϕ1,ϕ
]) as follows:

ϕ1 : p(1)→ q(1) and ϕ
]
I : q[J]→ p[I], (3)

where J := ϕ1(I). That is, ϕ1 is a function from p-types to q-types, and ϕ
]
i is a function on terms that

depends on a choice of position I ∈ p(1). We refer to ϕ1 as the on-types function and to ϕ] as the
backwards on-terms function.

One can check that a map ϕ : p→ q is cartesian iff the backwards-on-terms function ϕ
]
I is a bijection

p[I]∼= q[ϕ1I] for each type I ∈ p(1). ♦

Example 2.3 (Types and global sections, p(1) and Γ(p)). For any polynomial p, we will be particularly
interested in two sorts of maps: y→ p and p→ y. The former is easy: a map y→ p is given on types
by choosing a single type I ∈ p(1) to be the image of the unique type ! ∈ y(1) and given backward on
terms using the unique choice of function p[I]→ 1 = y[!]. Thus we have p(1)∼= Poly(y, p).

More interesting are the maps γ : p→ y. This time γ is trivial on types: each type I ∈ p(1) is sent to
the unique type ! ∈ y(1). However on terms, we need a map ϕ

]
I : 1→ p[I] for each I, meaning a choice

of term i ∈ p[I] for each I ∈ p(1). In other words, writing Γ(p) := Poly(p,y), we have

Γ(p)∼= ∏
I∈p(1)

p[I]. (4)

We refer to Γ(p) as the set of global sections of p, as is justified by the bundle terminology the next
section.

Note that −(1) : Poly→ Set and Γ : Poly→ Setop are functorial, as they are represented and corep-
resented by y ∈ Poly. We will be very interested in the functor

R : Poly→ Set×Setop (5)

given by R(p) := (p(1),Γ(p)). In fact, R is a left adjoint, but we do not need that for this paper. In
Remark 3.6 we will explain that R(p) can be viewed as the rectangular aspect of the polynomial p,
hence the name R. ♦

2.2 Derivatives and bundles

We can understand polynomial functors in terms of bundles, using the derivative. For any polynomial p,
its derivative ṗ is defined as follows:

ṗ := ∑
I∈p(1)

∑
i∈p[I]

yp[I]−{i} (6)
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where p[I]−{i} denotes the set-difference. Note that ṗ(1)∼= ∑I∈p(1) p[I] is the set of all p-terms, and it
comes with a map ṗ(1)→ p(1) to the set of p-types. Often in the literature, this map of sets—which we
call a bundle—is taken to be the polynomial itself. A map of polynomials ϕ : p→ q can be written in
terms of these bundles:

ṗ(1) p(1)×q(1) q̇(1) q̇(1)

p(1) p(1) q(1)

ϕ]

ϕ1

y

Just as in Remark 2.2, one provides a forward map on types ϕ1 : p(1)→ q(1), at which point one takes
the pullback of that map with q̇(1)→ q(1), and then one provides a backward map ϕ] : p(1)×q(1) q̇(1)→
ṗ(1) on directions. Again, ϕ is cartesian iff ϕ] is a bijection.

We write pq = p×q for the usual product of two polynomials, e.g. ṗy= ṗ×y.

Proposition 2.4. The assignment p 7→ ṗy is a functor PolyCart→ PolyCart.

Proof. We can think of ṗy as follows:

ṗy∼= ∑
I∈p(1)

∑
i∈p[I]

yp[I] (7)

Given a cartesian map ϕ : p→ q, the bijection ϕ] : q[ϕ1(I)] ∼= p[I] lets us define a map ṗy→ q̇y in an
obvious way.

Remark 2.5. In fact, the assignment (p 7→ ṗy) : PolyCart→ PolyCart extends to a comonad on PolyCart.
The counit map εp : ṗy → p is cartesian and is given on types by (I, i) 7→ I. The comultiplication
δp : ṗy→ p̈y2 + ṗy is given by the coproduct inclusion.

A coalgebra for this comonad is a polynomial p equipped with a map γ : p→ ṗy such that εp◦γ = idp;
it is not hard to check that the other condition holds for free. Hence a coalgebra structure on p can be
identified with a choice a global section p→ y, i.e. an element γ ∈ Γ(p). Of course the map p→ y is
not cartesian in general, so the only way it can be encoded in PolyCart is via this coalgebra structure. A
map of coalgebras is a cartesian map ϕ : p→ p′ that commutes with the global sections: Γ(ϕ)(γ ′) = γ .

The above is intriguing in that Γ(p) is a major player in the story of this paper, but we currently know
of no further connection between entropy and this comonad. ♦

2.3 Rig monoidal structure on Poly

The category Poly has coproducts p+ q and products p× q given by usual polynomial arithmetic. We
will be more interested in the former:2 coproducts constitute a symmetric monoidal product with unit 0.
A type in p+ q is a type in p or disjointly a type in q, and a term of that type is as specified in p or q,
respectively.

2The only reason we introduce × for Poly is to explain that the polynomial product ṗy is in fact the categorical product
ṗy∼= ṗ×y.
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We will also be interested in another monoidal product called Dirichlet product and denoted −⊗−;
the types and terms of p⊗q are given by the following formula:(

∑
I∈p(1)

yp[I]

)
⊗

(
∑

J∈q(1)
yq[J]

)
:= ∑

(I,J)∈p(1)×q(1)
yp[I]×q[J]. (8)

This gives a symmetric monoidal structure (Poly,y,⊗). A type in p⊗ q is just a pair of types (I,J) ∈
p(1)×q(1) and a term of it is just a pair of terms (i, j) ∈ p[I]×q[J].

In the language of bundles, p+q and p⊗q are respectively given by

ṗ(1)+ q̇(1) ṗ(1)× q̇(1)

p(1)+q(1) p(1)×q(1)

i.e. ˙(p+q)(1)∼= ṗ(1)+ q̇(1) and ˙(p⊗q)(1)∼= ṗ(1)× q̇(1).
The ⊗-structure distributes over the + structure:

p⊗ (q1 +q2)∼= (p⊗q1)+(p⊗q2),

thus making (Poly,0,+,y,⊗) a distributive monoidal category, and in particular a rig monoidal category.

Remark 2.6 (Leibniz and chain rules). Some readers may be interested in the Leibniz rule and chain
rule, that

˙(p×q)∼= ṗ×q+ p× q̇
˙(p/q)∼= (ṗ/q)× q̇

where × is the categorical product and / is the composition product in Poly. These hold, but we will not
need them in this paper. ♦

3 Main results

We divide this section into two parts. Section 3.1 is the category theory part, in which we provide
what seems to be a novel symmetric monoidal structure on Set×Setop and show that both p 7→ ṗy and
q 7→ (q(1),Γ(q)) are rig functors. At the end of this section, we will have a rig functor h : PolyCart→
Set×Setop that does the categorical work of Shannon entropy.

Section 3.2 is the finishing step, providing a function Ob(Set×Setop)→R and showing that when it
is combined with the above, the map H : Ob(PolyCart)→ R sends an appropriately finite polynomial p
to the Shannon entropy of the empirical distribution defined by p.

3.1 Categorical entropy of a polynomial

Below we will often denote products of sets by juxtaposition, AB := A×B. Recall the functor p 7→ ṗy
from Proposition 2.4.
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Proposition 3.1. The functor p 7→ ṗy is a rig functor PolyCart→ PolyCart.

Proof. Clearly 0̇ = 0 and ˙(p+q) ∼= ṗ+ q̇, and by multiplying both sides by y we see that the functor
p 7→ py preserves the coproduct structure. There is an isomorphism ẏy∼= y, and for any p,q ∈ PolyCart

there is also an isomorphism ˙(p⊗q)y∼= (ṗy)⊗(q̇y), as follows from (7) and (8); thus p 7→ ṗy preserves
the ⊗-structure. All of these isomorphisms are natural in p,q ∈ PolyCart, completing the proof.

The following corollary is straightforward, since PolyCart inherits + and⊗ from the forgetful functor
PolyCart→ Poly.

Corollary 3.2. The functor T (p) := ṗy is a rig functor T : PolyCart→ Poly.

Remark 3.3 (Total polynomial). Note that for any p we have (ṗy)(1) ∼= ṗ(1). We think of ṗy as the
total polynomial of p, akin to the total space of a bundle, where p is playing the role of the base. To
justify this intuition, note that ṗy comes with a “projection” map ε : ṗy→ p and that a section p→ ṗy
of ε can be identified with a section γ ∈ Γ(p) of p as a bundle; see Remark ??. ♦

Example 3.4. For any polynomial p, we have

Γ(ṗy)∼= ∏
I∈p(1)

p[I]p[I].

This formula—which follows directly from Eq. ??—will be relevant when connecting the category the-
ory to Shannon entropy later on. ♦

Proposition 3.5. The category Set×Setop has a distributive monoidal structure:

(A1,B1)+(A2,B2) := (A1 +A2 , B1B2) (9)

(A1,B1)⊗ (A2,B2) := (A1A2 , BA2
1 BA1

2 ) (10)

The units are (0,1) and (1,1) respectively.

Proof. Coproducts in Setop are products in Set, justifying the first line; these clearly form a symmetric
monoidal structure. For the ⊗-monoidal structure, note that the formula is functorial in A ∈ Set and
B ∈ Setop. It is also symmetric as well as unital: (1,1)⊗ (A2,B2)∼= (A2,B2). Associativity is justified as
follows:

(A1,B1)⊗ ((A2,B2)⊗ (A3,B3))∼= (A1A2A3,B
A2A3
1 BA1A3

2 BA1A2
3 )

∼= ((A1,B1)⊗ (A2,B2))⊗ (A3,B3).

There is an absorption map (0,1)⊗(A,B)∼= (0,B)→ (0,1), and the distributivity of⊗ over + is justified
as follows:

(A,B)⊗
(
(A1,B1)+(A2,B2)

)∼= (A(A1 +A2),BA1+A2(B1B2)
A)

∼=
(
AA1 +AA2,BA1BA2BA

1 BA
2
)

∼=
(
(A,B)⊗ (A1,B1))+((A,B)⊗ (A2,B2)

)
.

We leave the remaining details to the interested reader.
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Remark 3.6 (Formal roots and rectangular aspect). One can think of an object (A,B) ∈ Set×Setop as
formally representing the Ath root of B, i.e. the number A

√
B = B

1
A , keeping track of the base A as well. It

is helpful to think of (A,B) as a rectangle with length A and width A
√

B. From this perspective, the sum
from (9) adds the lengths and takes the geometric mean of the widths, and the monoidal product from
(10) takes the product of both lengths and widths:

(B1B2)
1

A1+A2 =
((

A1
√

B1
)A1×

(
A2
√

B2
)A2
) 1

A1+A2 and (BA2
1 BA1

2 )
1

A1A2 = A1
√

B1
A2
√

B2.

For any polynomial p, the functor R(p) := (p(1),Γ(p)) from (5) is consonant with this interpretation.
We may say that R(p) denotes the rectangular aspect of p in the sense that p(1) represents the length
and p(1)

√
Γ(p), the geometric mean of the fiber cardinalities, represents the width. For example, the

polynomial p = y4 +4y, depicted in Diagram (1), has length p(1) = 5 and width 5
√

4≈ 1.3. ♦

Remark 3.7. The ⊗ operation (10) on Set×Setop in fact has a closure

[(A1,B1),(A2,B2)] :=
(

AA1
2 BB2

1 , A1B2

)
.

We will not need this, but it is interesting that Set×Setop has so much structure. ♦

Proposition 3.8. The functor R : Poly→ Set×Setop from (5) is a rig functor.

Proof. Recall from (5) that R(p) := (p(1),Γ(p)). Clearly 0(1) = 0 and (p+q)(1)∼= p(1)+q(1). Also
Γ(0) = 1 and Γ(p+ q) ∼= Γ(p)× Γ(q); hence R preserves the (0,+) monoidal structure. Moreover,
we have y(1) = 1 and (p⊗ q)(1) ∼= p(1)× q(1) and Γ(y) = 1, so to show that R preserves the (y,⊗)
monoidal structure, it remains only to provide an isomorphism

Γ(p⊗q)∼= Γ(p)q(1)×Γ(q)p(1).

It is given as follows:

Γ(p⊗q)∼= ∏
(I,J)∈p(1)×q(1)

p[I]q[J]

∼=

(
∏

(I,J)∈p(1)×q(1)
p[I]

)
×

(
∏

(I,J)∈p(1)×q(1)
q[J]

)
∼= ∏

J∈q(1)
∏

I∈p(1)
p[I]× ∏

I∈p(1)
∏

J∈q(1)
q[J]

∼= Γ(p)q(1)×Γ(q)p(1)

We summarize the above section before we go on to the final one. Namely, the functors T : PolyCart→
Poly and R : Poly→ Set×Setop from Corollary ?? compose to form a rig functor h := R◦T given by

PolyCart h−→ Set×Setop

p 7→ (ṗ(1),Γ(ṗy)).
(11)

We refer to h(p)∈ Set×Setop as the categorical entropy of the polynomial p. This pair of sets leaves
behind any semblance of the probability distribution associated with p, but it retains the data necessary
to compute p’s entropy—as we’ll see in Theorem 3.13—and it is rig-functorial in p.
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3.2 Shannon entropy

Writing log to denote log2, we define a partial function L : Ob(Set×Setop)→ R by

(A,B) 7→ logA− logB
A

. (12)

Equivalently, L(A,B) = logA− log A
√

B. When A= 0 and B= 1, we define this function to be L(0,1) := 0;
for all cases where A = 0, or B = 0, or either A or B is infinite, we leave L(A,B) undefined. We will be
only interested in this map when it is composed with the categorical entropy h from (11), and Lemma 3.9
below says that we do not need to worry about the undefined cases.

Lemma 3.9. Let p∈ PolyCart with categorical entropy (A,B) := h(p), and suppose that # ṗ(1)<∞. Then
we have that

i. B 6= 0,
ii. if A = 0 then B = 1, and

iii. both A and B are finite.

Proof. By definition of h, we have that A := ṗ(1) and B := Γ(ṗy).
i. One easily checks using (4) that for any q ∈ Poly, the set Γ(qy) 6= 0 is nonempty since every

(qy)-type has at least one term.
ii. If ṗ(1) = 0 then p ∈ Set is constant, so ṗy= 0 as well, and Γ(0) = 1 by (4).

iii. By assumption #A = # ṗ(1) < ∞. For B, note that there are only a finite number of I ∈ p(1) for
which p[I] is nonempty, so by (4) and (6) the set Γ(ṗy) is finite.

Remark 3.10 (Log aspect ratio). With the interpretation of an object (A,B) ∈ Set×Setop as a rectangle
with length A and width A

√
B, as in Remark 3.6, we can think of L(A,B) = logA− log A

√
B as its log aspect

ratio, the log of its length divided by its width. This is a quantity that has come up in the study of vision
[TGH11; Dic+17], though we’re making no claim about whether this connection is meaningful. ♦

Definition 3.11 (Empirical distribution). Let p 6= 0 be a nonzero polynomial and suppose that the car-
dinality of ṗ(1) ∈ Set is finite, # ṗ(1) < ∞. We define the empirical distribution defined by p to be the
following function P : p(1)→ [0,1]:

P(I) :=
# p[I]
# ṗ(1)

Note that 1 = ∑I∈p(1) P(I), so P is indeed a probability distribution. ♦

Remark 3.12. One may ask how to view Poly’s monoidal structures, especially + and ⊗, under the
correspondence from Definition 3.11. Suppose given polynomials p,q∈Poly with associated probability
distributions Pp and Pq. For Dirichlet product we have

Pp⊗q = Pp⊗Pq

where the left-hand side is the probability distribution associated to p⊗q and the right-hand side is the
usual tensor (independent) product of probability distributions. For sums we have

Pp+q =
ṗ(1)

ṗ(1)+ q̇(1)
Pp +

q̇(1)
ṗ(1)+ q̇(1)

Pq
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the convex combination of Pp and Qq, weighted according to the relative number of draws ṗ(1) and q̇(1)
in each. ♦

Recall that the Shannon entropy H(P) of a probability distribution P : X → [0,1] is given by

H(P) :=−∑
x∈X

P(x) logP(x).

The following theorem could be summarized as follows: “thinking of p ∈ PolyCart as a statistical
sample, the entropy H(P) of the corresponding probability distribution P is equal to the log ratio of the
rectangular aspect of p’s total polynomial”; see Remarks 3.3, 3.6, and 3.10.

Theorem 3.13. Let p 6= 0 be a nonzero polynomial with # ṗ(1)< ∞, and let P be the empirical distribu-
tion defined by p. Then the following equation holds

H(P) = L(h(p))

where H is the Shannon entropy and L,h are as defined in Eqs. (11) and (12).

Proof. We need to show that the following holds:

H(P) = log ṗ(1)− logΓ(ṗy)
ṗ(1)

.

With the fact Γ(ṗy)∼= ∏I∈p(1) p[I]p[I] from Example 3.4 in hand, this is a routine calculation:

H(P) :=− ∑
I∈p(1)

# p[I]
# ṗ(1)

log
# p[I]
# ṗ(1)

=
1

# ṗ(1) ∑
I∈p(1)

# p[I]
(

log # ṗ(1)− log # p[I]
)

=
1

# ṗ(1)

(
# ṗ(1) log # ṗ(1)− log ∏

I∈p(1)

# p[I]
# p[I]

)

= log # ṗ(1)− logΓ(ṗy)
ṗ(1)

Example 3.14 (Entropy of a uniform distribution). It is well-known and easy to calculate that if P is
a uniform distribution on A elements, then H(P) = log(A). There are many samples that correspond
to P; what differs are their sample sizes. The sample in which AB-many observations are taken—each
outcome occurring B-many times—corresponds to the polynomial AyB.

Our formula for entropy needs to agree, and it does. The rectangular aspect of the total polynomial is
h(p)∼= (AB,BAB): length AB and width B =

AB
√

BAB, so its log aspect ratio is

L(h(p)) = log(AB)− log(BAB)

AB
= logA. ♦
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Premonoidal and Freyd categories are both generalized by non-cartesian Freyd categories: effectful
categories. We construct string diagrams for effectful categories in terms of the string diagrams for a
monoidal category with a freely added object. We show that effectful categories are pseudomonoids
in a monoidal bicategory of promonads with a suitable tensor product.

1 Introduction

Category theory has two sucessful applications that are rarely combined: monoidal string diagrams [23]
and functional programming semantics [28]. We use string diagrams to talk about quantum transfor-
mations [1], relational queries [6], and even computability [31]; at the same time, proof nets and the
geometry of interaction [13, 5] have been widely applied in computer science [2, 18]. On the other hand,
we traditionally use monads and comonads, Kleisli categories and premonoidal categories to explain
effectful functional programming [19, 20, 28, 34, 42]. Even if we traditionally employ Freyd categories
with a cartesian base [32], we can also consider non-cartesian Freyd categories [40], which we call
effectful categories.

Contributions. These applications are well-known. However, some foundational results in the in-
tersection between string diagrams, premonoidal categories and effectful categories are missing in the
literature. This manuscript contributes two such results.

• We introduce string diagrams for effectful categories. Jeffrey [22] was the first to preformally
employ string diagrams of premonoidal categories. His technique consists in introducing an ex-
tra wire – which we call the runtime – that prevents some morphisms from interchanging. We
promote this preformal technique into a result about the construction of free premonoidal, Freyd
and effectful categories: the free premonoidal category can be constructed in terms of the free
monoidal category with an extra wire.
Our slogan, which constitutes the statement of Theorem 2.14, is

“Premonoidal categories are Monoidal categories with a Runtime.”

• We prove that effectful categories are promonad pseudomonoids. Promonads are the profunctorial
counterpart of monads; they are used to encode effects in functional programming (where they are
given extra properties and called arrows [19]). We claim that, in the same way that monoidal cate-
gories are pseudomonoids in the bicategory of categories [9], premonoidal effectful categories are
pseudomonoids in a monoidal bicategory of promonads. This result justifies the role of effectful
categories as a foundational object.

1.1 Synopsis

Sections 2.1 and 2.2 contain mostly preliminary material on premonoidal, Freyd and effectful categories.
Our first original contribution is in Section 2.3; we prove that premonoidal categories are monoidal
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categories with runtime (Theorem 2.14). Section 3 makes explicit the well-known theory of profunctors,
promonads and identity-on-objects functors. In Section 4, we introduce the pure tensor of promonads.
We use it in Section 5 to prove our second main contribution (Theorem 5.3).

2 Premonoidal and Effectful Categories

2.1 Premonoidal categories

Premonoidal categories are monoidal categories without the interchange law, ( f ⊗ id) # (id⊗g) 6= (id⊗
g) # ( f ⊗ id). This means that we cannot tensor any two arbitrary morphisms, ( f ⊗g), without explicitly
stating which one is to be composed first, ( f ⊗ id)#(id⊗g) or (id⊗g)#( f ⊗ id), and the two compositions
are not equivalent (Figure 1).

Figure 1: The interchange law does not hold in a premonoidal category.

In technical terms, the tensor of a premonoidal category (⊗) : C×C→ C is not a functor, but only
what is called a sesquifunctor: independently functorial on each variable. Tensoring with any identity is
itself a functor (•⊗ id) : C→ C, but there is no functor (•⊗•) : C×C→ C.

A good motivation for dropping the interchange law can be found when describing transformations
that affect some global state. These effectful processes should not interchange in general, because the
order in which we modify the global state is meaningful. For instance, in the Kleisli category of the writer
monad, (Σ∗×•) : Set→ Set for some alphabet Σ∈ Set, we can consider the function print : Σ∗→ Σ∗×1.
The order in which we “print” does matter (Figure 2).

Figure 2: Writing does not interchange.

Not surprisingly, the paradigmatic examples of premonoidal categories are the Kleisli categories of
Set-based monads T : Set→ Set (more generally, of strong monads), which fail to be monoidal unless
the monad itself is commutative [15, 33, 34, 16]. Intuitively, the morphisms are “effectful”, and these
effects do not always commute.

However, we may still want to allow some morphisms to interchange. For instance, apart from asking
the same associators and unitors of monoidal categories to exist, we ask them to be central: that means
that they interchange with any other morphism. This notion of centrality forces us to write the definition
of premonoidal category in two different steps: first, we introduce the minimal setting in which centrality
can be considered (binoidal categories [34]) and then we use that setting to bootstrap the full definition
of premonoidal category with central coherence morphisms.
Definition 2.1 (Binoidal category). A binoidal category is a category C endowed with an object I ∈ C
and an object A⊗B for each A ∈ C and B ∈ C. There are functors (A⊗•) : C→ C, and (•⊗B) : C→ C
that coincide on (A⊗B), even if (•⊗•) is not itself a functor.
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Again, this means that we can tensor with identities (whiskering), functorially; but we cannot tensor
two arbitrary morphisms: the interchange law stops being true in general. The centre, Z (C), is the
wide subcategory of morphisms that do satisfy the interchange law with any other morphism. That is,
f : A→ B is central if, for each g : A′→ B′,

( f ⊗ idA′) # (idB⊗g) = (idA⊗g) # ( f ⊗ idB′), and (idA′⊗ f ) # (g⊗ idB) = (g⊗ idA) # (idB′⊗ f ).

Definition 2.2. A premonoidal category is a binoidal category (C,⊗, I) together with the following
coherence isomorphisms αA,B,C : A⊗ (B⊗C)→ (A⊗B)⊗C, ρA : A⊗ I→ A and λA : I⊗A→ A which
are central, natural separately at each given component, and satisfy the pentagon and triangle equations.

A premonoidal category is strict when these coherence morphisms are identities. A premonoidal
category is moreover symmetric when it is endowed with a coherence isomorphism σA,B : A⊗B→ B⊗A
that is central and natural at each given component, and satisfies the symmetry condition and hexagon
equations.

Remark 2.3. The coherence theorem of monoidal categories still holds for premonoidal categories: every
premonoidal is equivalent to a strict one. We will construct the free strict premonoidal category using
string diagrams. However, the usual string diagrams for monoidal categories need to be restricted: in
premonoidal categories, we cannot consider two morphisms in parallel unless any of the two is central.

2.2 Effectful and Freyd categories

Premonoidal categories immediately present a problem: what are the strong premonoidal functors? If we
want them to compose, they should preserve centrality of the coherence morphisms (so that the central
coherence morphisms of F # G are these of F after applying G), but naively asking them to preserve all
central morphisms rules out important examples [40]. The solution is to explicitly choose some central
morphisms that represent “pure” computations. These do not need to form the whole centre: it could be
that some morphisms considered effectful just “happen” to fall in the centre of the category, while we do
not ask our functors to preserve them. This is the well-studied notion of a non-cartesian Freyd category,
which we shorten to effectful monoidal category or effectful category.1

Effectful categories are premonoidal categories endowed with a chosen family of central morphisms.
These central morphisms are called pure morphisms, constrasting with the general, non-central, mor-
phisms that fall outside this family, which we call effectful.

Definition 2.4. An effectful category is an identity-on-objects functor V→ C from a monoidal category
V (the pure morphisms, or “values”) to a premonoidal category C (the effectful morphisms, or “compu-
tations”), that strictly preserves all of the premonoidal structure and whose image is central. It is strict
when both are. A Freyd category [24] is an effectful category where the pure morphisms form a cartesian
monoidal category.

Effectful categories solve the problem of defining premonoidal functors: a functor between effectful
categories needs to preserve only the pure morphisms. We are not losing expressivity: premonoidal
categories are effectful with their centre, Z (C)→ C. From now on, we study effectful categories.

1The name “Freyd category” sometimes assumes cartesianity of the pure morphisms, but it is also used for the general case.
Choosing to call “effectful categories” to the general case and reserving the name “Freyd categories” for the cartesian ones
avoids this clash of nomenclature. There exists also the more fine-grained notion of “Cartesian effect category” [12], which
generalizes Freyd categories and may further justify calling “effectful category” to the general case.
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Definition 2.5 (Effectful functor). Let V→ C and W→ D be effectful categories. An effectful functor is
a quadruple (F,F0,ε,µ) consisting of a functor F : C→ D and a functor F0 : V→W making the square
commute, and two natural and pure isomorphisms ε : J ∼= F(I) and µ : F(A⊗B) ∼= F(A)⊗F(B) such
that they make F0 a monoidal functor. It is strict if these are identities.

When drawing string diagrams in an effectful category, we shall use two different colours to declare
if we are depicting either a value or a computation (Figure 3).

Figure 3: “Hello world” is not “world hello”.

Here, the values “hello” and “world” satisfy the interchange law as in an ordinary monoidal category.
However, the effectful computation “print” does not need to satisfy the interchange law. String diagrams
like these can be found in the work of Alan Jeffrey [22]. Jeffrey presents a clever mechanism to graph-
ically depict the failure of interchange: all effectful morphisms need to have a control wire as an input
and output. This control wire needs to be passed around to all the computations in order, and it prevents
them from interchanging.

Figure 4: An extra wire prevents interchange.

A common interpretation of monoidal categories is as theories of resources. We can interpret pre-
monoidal categories as monoidal categories with an extra resource – the “runtime” – that needs to be
passed to all computations. The next section promotes Jeffrey’s observation into a theorem.

2.3 Premonoidals are monoidals with runtime

String diagrams rely on the fact that the morphisms of the monoidal category freely generated over a
polygraph of generators are string diagrams on these generators, quotiented by topological deformations
[23]. We justify string diagrams for premonoidal categories by proving that the freely generated effectful
category over a pair of polygraphs (for pure and effectful generators, respectively) can be constructed as
the freely generated monoidal category over a particular polygraph that includes an extra wire.

Definition 2.6. A polygraph G (analogue of a multigraph [38]) is given by a set of objects, Gobj, and
a set of arrows G (A0, . . . ,An;B0, . . . ,Bm) for any two sequences of objects A0, . . . ,An and B0, . . . ,Bm. A
morphism of polygraphs f : G →H is a function between their object sets, fobj : Gobj →Hobj, and a
function between their corresponding morphism sets,

fA0,...,An;B0,...,Bn : G (A0, . . . ,An;B0, . . . ,Bm)→H ( fobj(A0), . . . , fobj(An); fobj(B0), . . . , fobj(Bm)).
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A polygraph couple is a pair of polygraphs (V ,G ) sharing the same objects, Vobj = Gobj. A morphism
of polygraph couples (u, f ) : (V ,G )→ (W ,H ) is a pair of morphisms of polygraphs, u : V →W and
f : G →H , such that they coincide on objects, fobj = uobj.

Remark 2.7. There exists an adjunction between polygraphs and strict monoidal categories. Any mo-
noidal category C can be seen as a polygraph UC where the edges UC(A0, . . . ,An;B0, . . . ,Bm) are the
morphisms C(A0⊗ . . .⊗An,B0⊗ . . .⊗Bm), and we forget about composition and tensoring. Given a
polygraph G , the free strict monoidal category Mon(G ) is the strict monoidal category that has as mor-
phisms the string diagrams over the generators of the polygraph.

We will construct a similar adjunction between polygraph couples and effectful categories. Let us
start by formally adding the runtime to a free monoidal category.

Definition 2.8 (Runtime monoidal category). Let (V ,G ) be a polygraph couple. Its runtime monoidal
category, MonRun(V ,G ), is the monoidal category freely generated from adding an extra object – the
runtime, R – to the input and output of every effectful generator in G (but not to those in V ), and letting
that extra object be braided with respect to every other object of the category.

In other words, it is the monoidal category freely generated by the following polygraph, Run(V ,G ),
(Figure 5), assuming A0, . . . ,An and B0, . . . ,Bm are distinct from R

• Run(V ,G )obj = Gobj +{R}= Vobj +{R},

• Run(V ,G )(R,A0, . . . ,An;R,B0, . . . ,Bn) = G (A0, . . . ,An;B0, . . . ,Bn),

• Run(V ,G )(A0, . . . ,An;B0, . . . ,Bn) = V (A0, . . . ,An;B0, . . . ,Bn),

• Run(V ,G )(R,A0;A0,R) = Run(V ,G )(A0,R;R,A0) = {σ},

with Run(V ,G ) empty in any other case, and quotiented by the braiding axioms for R (Figure 6).

Figure 5: Generators for the runtime monoidal category.

Figure 6: Axioms for the runtime monoidal category.

Somehow, we are asking the runtime R to be in the Drinfeld centre [11] of the monoidal category.
The extra wire that R provides is only used to prevent interchange, and so it does not really matter where
it is placed in the input and the output. We can choose to always place it on the left, for instance – and
indeed we will be able to do so – but a better solution is to just consider objects “up to some runtime
braidings”. This is formalized by the notion of braid clique.

Definition 2.9 (Braid clique). Given any list of objects A0, . . . ,An in Vobj = Gobj, we construct a clique
[41, 39] in the category MonRun(V ,G ): we consider the objects, A0⊗ . . .⊗R(i)⊗ . . .⊗An, created by
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inserting the runtime R in all of the possible 0 6 i 6 n+ 1 positions; and we consider the family of
commuting isomorphisms constructed by braiding the runtime,

σi, j : A0⊗ . . .⊗R(i)⊗ . . .⊗An→ A0⊗ . . .⊗R( j)⊗ . . .⊗An.

We call this the braid clique, BraidR(A0, . . . ,An), on that list.

Definition 2.10. A braid clique morphism, f : BraidR(A0, . . . ,An)→ BraidR(B0, . . . ,Bm) is a family of
morphisms in the runtime monoidal category, MonRun(V ,G ), from each of the objects of first clique to
each of the objects of the second clique,

fik : A0⊗ . . .⊗R(i)⊗ . . .⊗An→ B0⊗ . . .⊗R(k)⊗ . . .⊗Bm,

that moreover commutes with all braiding isomorphisms, fi j #σ jk = σil # f.

A braid clique morphism f : BraidR(A0, . . . ,An)→ BraidR(B0, . . . ,Bm) is fully determined by any
of its components, by pre/post-composing it with braidings. In particular, a braid clique morphism is
always fully determined by its leftmost component f00 : R⊗A0⊗ . . .⊗An→ R⊗B0⊗ . . .⊗Bm.

Lemma 2.11. Let (V ,G ) be a polygraph couple. There exists a premonoidal category, Eff(V ,G ), that
has objects the braid cliques, BraidR(A0, . . . ,An), in MonRun(V ,G ), and as morphisms the braid clique
morphisms between them. See Appendix.

Lemma 2.12. Let (V ,G ) be a polygraph couple. There exists an identity-on-objects functor Mon(V )→
Eff(V ,G ) that strictly preserves the premonoidal structure and whose image is central. See Appendix.

Lemma 2.13. Let (V ,G ) be a polygraph couple and consider the effectful category determined by
Mon(V )→ Eff(V ,G ). Let V→ C be a strict effectful category endowed with a polygraph couple mor-
phism F : (V ,G )→U (V,C). There exists a unique strict effectful functor from (Mon(V )→ Eff(V ,G ))
to (V→ C) commuting with F as a polygraph couple morphism. See Appendix.

Theorem 2.14 (Runtime as a resource). The free strict effectful category over a polygraph couple (V ,G )
is Mon(V )→ Eff(V ,G ). Its morphisms A→ B are in bijection with the morphisms R⊗A→ R⊗B of
the runtime monoidal category,

Eff(V ,G )(A,B)∼= MonRun(V ,G )(R⊗A,R⊗B).

Proof. We must first show that Mon(V )→ Eff(V ,G ) is an effectful category. The first step is to see
that Eff(V ,G ) forms a premonoidal category (Lemma 2.11). We also know that Mon(V ) is a monoidal
category: in fact, a strict, freely generated one. There exists an identity on objects functor, Mon(V )→
Eff(V ,G ), that strictly preserves the premonoidal structure and centrality (Lemma 2.12).

Let us now show that it is the free one over the polygraph couple (V ,G ). Let V→ C be an effectful
category, with an polygraph couple map F : (V ,G )→ U (V,C). We can construct a unique effectful
functor from (Mon(V )→ Eff(V ,G )) to (V→ C) giving its universal property (Lemma 2.13).

Corollary 2.15 (String diagrams for effectful categories). We can use string diagrams for effectful cate-
gories, quotiented under the same isotopy as for monoidal categories, provided that we do represent the
runtime as an extra wire that needs to be the input and output of every effectful morphism.
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3 Profunctors and Promonads

We have elaborated on string diagrams for effectful categories. Let us now show that effectful categories
are fundamental objects. The profunctorial counterpart of a monad is a promonad. Promonads have
been widely used for functional programming semantics, although usually with an extra assumption of
strength and under the name of “arrows” [17, 19, 20]. Promonads over a category endow it with some
new, “effectful”, morphisms; while the base morphisms of the category are called the “pure” morphisms.
This terminology will coincide when regarding effectful categories as promonads.

In this section, we introduce profunctors and promonads. In the following sections, we show that
effectful categories are to promonads what monoidal categories are to categories: they are the pseu-
domonoids of a suitably constructed monoidal bicategory of promonads. In order to obtain this result,
we introduce the pure tensor of promonads in Section 4. The pure tensor of promonads combines the
effects of two promonads over different categories into a single one. In some sense, it does so in the
universal way that turns “purity” into “centrality” (Theorem 4.2).

3.1 Profunctors: an algebra of processes

Profunctors P : Aop×B→ Set [3, 7, 4] can be thought as indexing families of processes P(A,B) by the
types of an input channel A and an output channel B [10].

The category A has as morphisms the pure transformations f : A′→ A that we can apply to the input
of a process p ∈ P(A,B) to obtain a new process, which we call ( f > p) ∈ P(A′,B). Analogously, the
category B has as morphisms the pure transformations g : B→ B′ that we can apply to the output of a
process p ∈ P(A,B) to obtain a new process, which we call (p < g) ∈ P(A,B′). The profunctor axioms
encode the compositionality of these transformations.

Definition 3.1. A profunctor (P,>,<) between two categories A and B is a family of sets P(A,B) indexed
by objects of A and B, and endowed with jointly functorial left and right actions of the morphisms of
A and B, respectively. Explicitly, types of these actions are (>) : hom(A′,A)×P(A′,B)→ P(A,B), and
(<) : hom(B,B′)×P(A,B)→ P(A,B′). They must satisfy

• compatibility, ( f > p)<g = f > (p<g),

• preserve identities, id> p = p, and p< id = p,

• and composition, (p< f )<g = p< ( f #g) and f > (g> p) = ( f #g)> p.

More succintly, a profunctor P : A 9 B is a functor P : Aop×B→ Set. When presented as a family of
sets with a pair of actions, profunctors are sometimes called bimodules.

A profunctor homomorphism α : P→ Q transforms processes of type P(A,B) into processes of type
Q(A,B). The homomorphism affects only the effectful processes, and not the pure transformations we
could apply in A and B. This means that α( f > p) = f >α(p) and that α(p<g) = α(p)<g.

Definition 3.2 (Profunctor homomorphism). A profunctor homomorphism from the profunctor P : A9B
to the profunctor Q : A9B is a family of functions αA,B : P(A,B)→Q(A,B) preserving the left and right
actions, α( f > p<g) = f >α(p)<g. Equivalently, it is a natural transformation α : P→Q between the
two functors Aop×B→ Set.

How to compose two families of processes? Assume we have a process p ∈ P(A,B1) and a process
q ∈ Q(B2,C). Moreover, assume we have a transformation f : B1 → B2 translating from the output of
the second to the input of the first. In this situation, we can plug together the processes: p ∈ P(A,B1)
writes to an output of type B1, which is translated by f to an input of type B2, then used by q ∈Q(B2,C).
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There are two slightly different ways of describing this process, depending on whether we consider the
translation to be part of the first or the second process. We could translate just after finishing the first
process, (p< f ,q); or translate just before starting the second process, (p, f >q).

These are two different pairs of processes, with different types. However, if we take the process
interpretation seriously, it does not really matter when to apply the translation. These two descriptions
represent the same process. They are dinaturally equivalent [10, 25].

Definition 3.3 (Dinatural equivalence). Let P : A 9 B and Q : B 9 C be two profunctors. Consider the
set of matching pairs of processes, with a given input A and output C,

RP,Q(A,C) = ∑
B∈B

P(A,B)×Q(B,C).

Dinatural equivalence (∼), on the set RP,Q(A,C) is the smallest equivalence relation satisfying (p<
g,q)∼ (p,g>q). The set of matching processes RP,Q(A,C) quotiented by dinaturality (∼) is written as
(P �Q)(A,C). It is a particular form of colimit over the category B, called a coend, usually denoted by
an integral sign.

(P�Q)(A,C) = RP,Q(A,C)/(∼) =
∫ B∈B

P(A,B)×Q(B,C).

Definition 3.4 (Profunctor composition). The composition of two profunctors P : A 9 B and Q : B 9 C
is the profunctor (P�Q) : A 9 C has as processes the matching pairs of processes in P and Q quotiented
by dinaturality on B,

(p,g<q)∼ (p>g,q).

Its actions are the left and right actions of p and q, respectively, f > (p,q)<g = ( f > p,q<g).
The identity profunctor A : A 9 A has as processes the morphisms of the category A, it is given by

the hom-sets. Its actions are pre and post-composition, f >h<g = f #h #g.

Profunctors are better understood as providing a double categorical structure to the category of cate-
gories. A double category D contains 0-cells (or “objects”), two different types of 1-cells (the “arrows”
and the “proarrows”), and cells [37]. Arrows compose in an strictly associative and unital way, while
proarrows come equipped with natural isomorphisms representing associativity and unitality. We employ
the graphical calculus of double categories [29], with arrows going left to right and proarrows going top
to bottom.

Definition 3.5. The double category of categories, CAT, has as objects the small categories A,B, . . . , as
arrows the functors between them, F : A→ A′, as proarrows the profunctors between them, P : A 9 B,
and as cells, the natural transformations, αA,B : P(A,B)→ Q(FA,GB).

Figure 7: Cell in the double category of categories.

Every functor has a companion and a conjoint profunctors: their representable and corepresentable
profunctors [14]. This structure makes CAT into the paradigmatic example of a proarrow equipment (or
framed bicategory [37]).



352 Promonads and String Diagrams for Effectful Categories

3.2 Promonads: new morphisms for an old category

Promonads are to profunctors what monads are to functors.2 It may be then surprising to see that so little
attention has been devoted to them, relative to their functorial counterparts. The main source of examples
and focus of attention has been the semantics of programming languages [19, 30, 20]. Strong monads
are commonly used to give categorical semantics of effectful programs [28], and the so-called arrows (or
strong promonads) strictly generalize them.

Part of the reason behind the relative unimportance given to promonads elsewhere may stem from the
fact that promonads over a category can be shown in an elementary way to be equivalent to identity-on-
objects functors from that category [25]. The explicit proof is, however, difficult to find in the literature,
and so we include it here (Theorem 3.9).

Under this interpretation, promonads are new morphisms for an old category. We can reinterpret the
old morphisms into the new ones in a functorial way. The paradigmatic example is again that of Kleisli
or cokleisli categories of strong monads and comonads. This structure is richer than it may sound, and
we will explore it further during the rest of this text.
Definition 3.6 (Monoids and promonoids). A monoid in a double category is an arrow T : A→A together
with cells m ∈ hom(M⊗M;1,1;M) and e ∈ cell(1;1,1;M), called multiplication and unit, satisfying
unitality and associativity. A promonoid in a double category is a proarrow M : A 9 A together with
cells m ∈ cell(1;M⊗M,M,1) and e ∈ cell(1;1,M;1), called promultiplication and prounit, satisfying
unitality and associativity.

Figure 8: Data and axioms of a promonoid in a double category.

Dually, we can define comonoids and procomonoids.
A monad is a monoid in the category of categories, functors and profunctors Cat. In the same way,

a promonad is a promonoid in Cat.
Definition 3.7. A promonad (P,?, ◦) over a category C is a profunctor P : C 9 C together with natural
transformations representing inclusion (◦)X ,Y : C(X ,Y )→ P(X ,Y ) and multiplication (?)X ,Y : P(X ,Y )×
P(Y,Z)→ P(X ,Z), and such that

i. the right action is premultiplication, f ◦ ? p = f > p;

ii. the left action is posmultiplication, p? f ◦ = p< f ;

iii. multiplication is dinatural, p? ( f >q) = (p< f )?q;

iv. and multiplication is associative, (p1 ? p2)? p3 = p1 ? (p2 ? p3).
Equivalently, promonads are promonoids in the double category of categories, where the dinatural mul-
tiplication represents a transformation from the composition of the profunctor P with itself.
Lemma 3.8 (Kleisli category of a promonad). Every promonad (P,?, ◦) induces a category with the same
objects as its base category, but with hom-sets given by P(•,•), composition given by (?) and identities
given by (id◦). This is called its Kleisli category, kleisli(P). Moreover, there exists an identity-on-objects
functor C→ kleisli(P), defined on morphisms by the unit of the promonad. See Appendix.

2To quip, a promonad is just a monoid on the category of endoprofunctors.
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The converse is also true: every category C with an identity-on-objects functor from some base
category V arises as the Kleisli category of a promonad.

Theorem 3.9. Promonads over a category C correspond to identity-on-objects functors from the category
C. Given any identity-on-objects functor i : C→ D there exists a unique promonad over C having D as
its Kleisli category: the promonad given by the profunctor homD(i(•), i(•)). See Appendix.

3.3 Homomorphisms and transformations of promonads

We have characterized promonads as identity-on-objects functors. We now characterize the homomor-
phisms and transformations of promonads as suitable pairs of functors and natural transformations.

Definition 3.10 (Promonoid homomorphism). Let (A,M,m,e) and (B,N,n,u) be promonoids in a double
category. A promonoid homomorphism is an arrow T : A→ B together with a cell t ∈ cell(F ;M,N;F)
that preserves the promonoid promultiplication and prounit.

Figure 9: Axioms for a promonoid homomorphism.

Definition 3.11 (Promonad homomorphism). Let (A,P,?, ◦) and (B,Q,?, ◦) be two promonads, possibly
over two different categories. A promonad homomorphism (F0,F) is a functor between the underlying
categories F0 : A→ B and a natural transformation FX ,Y : P(X ,Y )→Q(FX ,FY ) preserving composition
and inclusions. That is, F(p1 ? p2) = F(p1)?F(p2), and F( f ◦) = F0( f )◦.

Proposition 3.12. A promonad homomorphism between two promonads understood as identity-on-objects
functors, V→ C and W→ D, is equivalently a pair of functors (F0,F) that commute strictly with the two
identity-on-objects functors on objects F0(X) = F(X) and morphisms F0( f )◦ = F( f ◦). See Appendix.

Definition 3.13 (Promonoid modification). Let (A,M,m,e) and (B,N,n,u) be promonoids in a dou-
ble category, and let t ∈ cell(F ;M,N;F) and r ∈ cell(G;M,N;G) be promonoid homomorphisms. A
promonoid modification is a cell α ∈ cell(F ;1,1;G) such that its precomposition with t is its postcom-
position with r.

Figure 10: Axiom for a promonoid transformation.

Definition 3.14. A promonad modification between two promonad homomorphisms (F0,F) and (G0,G)
between the same promonads (A,P,?, ◦) and (B,Q,?, ◦) is a natural transformation αX : F0(X)→ G0(X)
such that αX >G(p) = F(p)<αY for each p ∈ P(X ,Y ).

Proposition 3.15. A promonad modification between two promonad homomorphisms understood as
commutative squares of identity-on-objects functors F0( f )◦ = F( f ◦) and G0( f )◦ = G( f ◦) is a natural
transformation α : F0 ⇒ G0 that can be lifted via the identity-on-objects functor to a natural transfor-
mation α◦ : F ⇒ G. In other words, a pure natural transformation.
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Figure 11: Promonad modifications are cylinder transformations.

Summarizing this section, we have shown a correspondence between promonads, their homomor-
phisms and modifications, and identity-on-objects functors, squares and cylinder transformations of
squares. The double category structure allows us to talk about homomorphisms and modifications, which
would be more difficult to address in a bicategory structure.

Promonad Identity-on-objects functor Theorem 3.9
Promonad homomorphism Commuting square Proposition 3.12

Promonad modification Cylinder transformation Proposition 3.15

4 Pure Tensor of Promonads

This section introduces the pure tensor of promonads. The pure tensor of promonads combines the effects
of two promonads, possibly over different categories, into the effects of a single promonad over the
product category. Effects do not generally interchange. However, this does not mean that no morphisms
should interchange in the pure tensor of promonads: in our interpretation of a promonad V→ C, the
morphisms coming from the inclusion are pure, they produce no effects; pure morphisms with no effects
should always interchange with effectful morphisms, even if effectful morphisms do not interchange
among themselves.

A practical way to encode and to remember all of the these restrictions is to use monoidal string
diagrams. This is another application of the idea of runtime: we introduce an extra wire so that all
the rules of interchange become ordinary interchange laws in a monoidal category. That is, we insist
again that effectful morphisms are just pure morphisms using a shared resource – the runtime. When
we compute the pure tensor of two promonads, the runtime needs to be shared between the impure
morphisms of both promonads.

4.1 Pure tensor, via runtime

Definition 4.1 (Pure tensor). Let C : V 9 V and D : W 9 W be two promonads. Their pure tensor,
C∗D : V×W→ V×W, is a promonad over V×W where elements of C∗D(X ,Y ;X ′,Y ′), the morphisms
X⊗R⊗Y→X ′⊗R⊗Y ′ in the freely presented monoidal category generated by the elements of Figure 12
and quotiented by the axioms of Figure 13.

Figure 12: Generators for the elements of the pure tensor of promonads.

Multiplication is defined by composition in the monoidal category, and the unit is defined by the
inclusion of pairs, as depicted in Figure 14.
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Figure 13: Axioms for the elements of the pure tensor of promonads.

Figure 14: The pure tensor promonad.

In other words, the elements of the pure tensor are the morphisms the category presented by the graph
that has as objects the pairs of objects (X ,Y ) with X ∈ Vobj and Y ∈Wobj, formally written as X⊗R⊗Y ;
and the morphisms generated by

• an edge fC : X⊗R⊗Y → X ′⊗R⊗Y for each arrow f ∈ C(X ,X ′) and each object Y ∈W;

• an edge gD : X⊗R⊗Y → X⊗R⊗Y ′ for each arrow g ∈ D(Y,Y ′) and each object X ∈ V;

• an edge vV : X⊗R⊗Y → X ′⊗R⊗Y for each arrow v ∈ V(X ,X ′) and each object Y ∈W;

• and an edge wW : X⊗R⊗Y → X⊗R⊗Y ′ for each arrow w ∈W(Y,Y ′) and each object X ∈ V;

quotiented by centrality of pure morphisms: fC # wW = wW # fC and gD # vV = vV # gD; by compositions
and identities of one promonad: fC # f ′C = ( f ? f ′)C and idC = id; by compositions and identities of the
other promonad: gD # g′D = (g ? g′)D and idD = id; and by the coincidence of pure morphisms and their
effectful representatives: vV = v◦C and wW = w◦D.

Crucially in this definition, fC and gD do not interchange: they are sharing the runtime, and that
prevents the application of the interchange law. The pure tensor of promonads, C ∗D, takes its name
from the fact that, if we interpret the promonads V→ C and W→D as declaring the morphisms in V and
W as pure, then the pure morphisms of the composition interchange with all effectful morphisms. The
spirit is similar to the free product of groups with commuting subgroups [26].

4.2 Universal property of the pure tensor

There are multiple canonical ways in which one could combine the effects of two promonads, C : V 9 V
and D : W 9 W, into a single promonad, such as taking the product of both, C×D : V×W 9 V×W.
Let us show that the pure tensor has a universal property: it is the universal one in which we can include
impure morphisms from each promonads, interchanging with pure morphisms from the other promonad,
so that purity is preserved.
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Theorem 4.2. Let C : V 9 V and D : W 9 W be two promonads and let C∗D : V×W→ V×W be their
pure tensor. There exist a pair of promonad homomorphisms L : C×W→ C∗D and R : V×D→ C∗D.
These are universal in the sense that, for every pair of promonad homomorphisms, A : C×W→ E and
B : V×D→E, there exists a unique promonad homomorphism (A∨B) : C∗D→E that commutes strictly
with them, (A∨B) #L = A and (A∨B) #R = B. See Appendix.

5 Effectful Categories are Pseudomonoids

We will now use the pure tensor of promonads to justify effectful categories as the promonadic coun-
terpart of monoidal categories: effectful categories are pseudomonoids in the monoidal bicategory of
promonads with the pure tensor. Pseudomonoids [9, 43] are the categorification of monoids. They are
still formed by a 0-cell representing the carrier of the monoid and a pair of 1-cells representing multipli-
cation and units. However, we weaken the requirement for associativity and unitality to the existence of
invertible 2-cells, called the associator and unitor.

In the same way that monoids live in monoidal categories, pseudomonoids live in monoidal bicat-
egories. A monoidal bicategory A is a bicategory in which we can tensor objects with a pseudofunctor
(�) : A×A→ A and we have a tensor unit I : 1→ A, these are associative and unital up to equivalence,
and satisfy certain coherence equations up to invertible modification [36].

5.1 Pseudomonoids

Definition 5.1. In a monoidal bicategory, a pseudomonoid over a 0-cell M is a pair of 1-cells, M�M→M
and I→M, together with the following triple of invertible 2-cells representing associativity and unitality
(Figure 15), and satisfying the pentagon and triangle equations (see Appendix).A homomorphism of
pseudomonoids is given by a 1-cell between their underlying 0-cells and the following invertible 2-cells,
representing preservation of the multiplication and the unit (Figure 15), and satisfying compatibility with
associativity and unitality (see Appendix).

Figure 15: Data for a pseudomonoid and pseudomonoid homomorphism.

A pseudomonoid is strict when the associators and unitors are identity cells. Note that, in strict 2-
categories (sometimes called 2-categories, in contrast to bicategories), this is the same as a monoid in
the monoidal category that we obtain by ignoring the 2-cells.
Remark 5.2. A pseudomonoid in the monoidal bicategory of categories with the cartesian product of
categories, (Cat,×) is a monoidal category. A strict pseudomonoid in the same monoidal bicategory is
a strict monoidal category.

A strict pseudomonoid in the monoidal bicategory of categories with the funny tensor product of
categories (Cat,�) is a strict premonoidal category. However, it is not immediately clear how to re-
cover premonoidal categories as pseudomonoids. A naive attempt will fail: (Cat,�) is usually made
into a monoidal bicategory with non-necessarily-natural transformations, but we do want our coherence
morphisms to be natural, so we must ask at least naturality. This will not be enough: taking natural
transformations as 2-cells will give us premonoidal categories where the associators and unitors do not
need to be central. Centrality is what requires a more careful approach.
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5.2 Effectful categories are promonad pseudomonoids

Promonads form a monoidal category with the pure tensor product and moreover a strict monoidal bicat-
egory with promonad modifications. Effectful categories are the pseudomonoids in this category.
Theorem 5.3. An effectful category (or monoidal Freyd category) is a pseudomonoid on the monoidal
2-category of promonads with promonad homomorphism, promonad transformations and the pure tensor
of promonads. A pseudomonoid homomorphism between effectful categories is an effectful functor.

As a consequence, preomonoidal categories with their centre are pseudomonoids. See Appendix.

6 Conclusions

Premonoidal categories are monoidal categories with runtime, and we can stil use monoidal string dia-
grams and unrestricted topological deformations to reason about them. Instead of dealing directly with
premonoidal categories, we employ the better behaved notion of non-cartesian Freyd categories, effectful
categories. There exists a more fine-grained notion of “Cartesian effect category” [12], which generalizes
Freyd categories and justifies calling “effectful category” to the general case.

Promonads have been arguably under-appreciated, possibly because of their characterization as “just”
identity-on-objects functors. However, speaking of promonads as the proarrow counterpart of mon-
ads makes many aspects of the theory of monads clearer: every monad and every comonad induce
a promonad (their Kleisli category) via the proarrow equipment, monad morphisms lift to promonad
morphisms, distributive laws of monads induce a way of composing morphisms from different kleisli
categories [8]. Justifying effectful categories in terms of promonads highlights their importance as the
monadic counterpart of monoidal categories.

Ultimately, this is a first step towards our more ambitious project of presenting the categorical struc-
ture of programming languages in a purely diagrammatic way, revisiting Alan Jeffrey’s work [22, 21, 35].
The internal language of premonoidal categories and effectful categories is given by the arrow do-
notation [30]; at the same time, we have shown that it is given by suitable string diagrams. This corre-
spondence allows us to translate between programs and string diagrams (Figure 16).

Figure 16: Premonoidal program in arrow do-notation and string diagrams.

Related work. Staton and Møgelberg [27] propose a formalization of Jeffrey’s graphical calculus for
effectful categories that arise as the Kleisli category of a strong monad. They prove that ’every strong
monad is a linear-use state monad’, that is, a state monad of the form R(!(•)⊗R, where the state R, is
an object that cannot be copied nor discarded.
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String Diagrams for Layered Explanations

Leo Lobski Fabio Zanasi
University College London

We propose a categorical framework to reason about scientific explanations: descriptions of a phe-
nomenon meant to translate it into simpler terms, or into a context that has been already understood.
Our motivating examples come from systems biology, electrical circuit theory, and concurrency. We
demonstrate how three explanatory models in these seemingly diverse areas can be all understood
uniformly via a graphical calculus of layered props. Layered props allow for a compact visual pre-
sentation of the same phenomenon at different levels of precision, as well as the translation between
these levels. Notably, our approach allows for partial explanations, that is, for translating just one
part of a diagram while keeping the rest of the diagram untouched. Furthermore, our approach paves
the way for formal reasoning about counterfactual models in systems biology.

1 Introduction

Different fields of science and engineering come with their own notions and traditions of explaining one
phenomenon in terms of another one. For example, statistical mechanics explains thermodynamics, since
it relies on fewer assumptions, which are moreover perceived as more fundamental than those of thermo-
dynamics. A similar pattern may be found in the reduction of climate science to various areas of physics
and biology. The converse move, from a “lower” to a “higher” level, is also interesting: for instance, tem-
perature and vessel shape may be used to explain crystallisation. Choosing the right level of abstraction
is paramount for successful communication between different disciplines, as well as between the scien-
tific community and the general public. In particular, the definition of what constitutes an explanation is
an increasingly important topic in the areas of automated reasoning and artificial intelligence [19].

Perhaps the most drastic divide between different modes of explaining can be found in biology,
where some phenomena are explained mechanistically (or reductively), that is, by reducing them to the
underlying chemical or physical laws, while others are explained functionally, that is, by appealing to
what an organism does as a part of a larger whole [10, 21]. For instance, when explaining production
of ATP within a cell, the mitochondria can either be introduced as elementary blocks providing energy
to the cell (functional), or as compartments containing a whole pathway to process ATP (mechanistic).
This divide is not merely of conceptual interest, but has practical implications for the modelling of
biological systems: the ability to replicate biological functions is taken as a measure of success of the
rule based models [8, 10]. However, the existing rule based languages that model molecular interactions
are typically not able to formally distinguish between mechanistic and functional rules, as these exist at
different levels of abstraction [10].

The goal of this work is to identify fundamental mathematical structures underlying explanations
across different fields of science. Upon these structures, we develop a formalism that is able to describe
the different levels of abstractions involved in an explanation, and account for more elaborate aspects
such as the divide above. Additionally, we attempt to provide a uniform framework for counterfac-
tual reasoning by allowing explanations that depend on what could potentially occur. Ability to model
counterfactual dependencies is of interest in rule-based models of molecular interactions [13]. We shall
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illustrate our approach by showing how it models case studies in diverse scientific areas.1

In our framework, explanations always concern a certain process. The process can be thought of
as an actually occurring natural phenomenon, or a computation, or a rule in some formal system. An
explanation should then consist of another process whose level of abstraction is strictly lower than that
of the process being explained. In addition to the lower level process, an explanation should state in what
way the two processes are related, for example by giving a translation from one to the other. Moreover,
we want the explanations to be modular or compositional, in the sense that the same explanation may
be reused multiple times in case different systems have equivalent subsystems, and that the explanations
can be composed to create larger, more complicated explanations. The reason for requiring modularity
is twofold. First, it allows explanations to be reused by potentially different areas, in much the same way
lemmas and theorems in mathematics are used to develop different theories. Second, this allows for a
certain efficiency, as we may be interested in explaining only a part of a large system; in such a case
modularity allows us to focus on this one part only, instead of explaining the whole system.

The above requirements for what an explanation should be like lead naturally to monoidal categories,
as these allow for both sequential and parallel composition of processes (i.e. morphisms in a category).
We assume that the monoidal categories are partially ordered “by abstraction”, so that more abstract
theories (i.e. categories) are higher in the order. We want to be able to compose not just the processes
but also the explanations, so that we require the categories and functors under consideration to have a
monoidal structure. We thus arrive at a 2-category which is able to simultaneously talk about processes
in all the individual categories (0-cells), translations between processes (1-cells), compositions of the
processes and the translations, as well as rules or equations between the processes and the translations
(2-cells). The definitions of an explanation (Definitions 7 and 8) use all of this structure. This is the
motivation for what we call a layered prop (Definition 2).

It is worth noting that, in the categorical approaches inspired by the paradigm of functorial semantics,
an explanation and what is being explained live in two separate categories, with some translation between
them expressed as a functor — see e.g. [1, 4, 3]. Within this perspective, some equality or relation in
the domain is explained by passing to the codomain (or vice versa). Our framework allows to treat
such situations in a single language, staying within one category. The main technical advantage of our
approach is that partial interpretations are built into our language from the very beginning, potentially
reducing the amount of computation that is needed. More conceptually, unlike in the functorial semantics
approach, working in our framework allows for counterfactual reasoning: since we can mix-and-match
categories and morphisms, this gives the flexibility to ask such questions as What would happen if p did
not occur?

Our contributions are organised as follows. In Section 2 we define layered props and outline their
connection to the so-called internal string diagram construction. Section 3 briefly outlines how a layered
prop can be interpreted in the bicategory of pointed profunctors. We give three definitions of an explana-
tion in Section 4: one applies to 1-cells, another one to 2-cells, and the last one formalises counterfactual
explanations. The remaining sections contain case studies formalised in our framework. Section 5 shows
an example involving biology and chemistry. Section 6 shows the explanation of electrical circuit be-
haviour in terms of signal flow graphs — as it draws from the circuit theory developed in [3, 4], this
example also clarifies how our approach relates to the ‘functorial semantics’ approaches. Finally, Sec-
tion 7 presents a case study from concurrency, involving the explanation of CCS expressions.

1On the other hand, we do not delve into the philosophical ramifications of our approach. Rather, the aim is to offer an
abstract formalisation of of existing intuitions, thus potentially providing precise tools for debating what a scientific explanation
should be.
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2 Layered Props

We shall build our language on string diagrammatic syntax: the standard representation of morphisms in
(strict) monoidal categories [22]. Algebraic reasoning on string diagrams is typically formulated using
props (product and permutation categories), which are just symmetric strict monoidal categories with
the natural numbers as objects — see e.g. [15, 12, 24] for an overview. In fact, in order to model the
different layers involved in an explanation, we will need a more sophisticated concept: layered props.

Since we want to talk about “string diagrams in context”, the context being a theory at a particular
level of abstraction, we draw the string diagrams inside a rectangle which represents its context. This
allows us to reason both internally with the string diagrams, as well as externally by pasting and piling
the rectangles. In order to formalise such graphical intuition as a layered prop, we need the preliminary
notions of a system of sets and a layered monoidal theory.

We begin with systems of sets, which we think of as contexts and translations between them. Fix a
collection of sets Ω. An Ω-type is a finite list of pairs (ω1,α1; . . . ;ωn,αn) where each ωi is in Ω and each
αi ∈ω

∗
i is an element in the free monoid on ωi. Precisely, define Ω-types recursively as:

• the empty list ε is an Ω-type,
• if t is a type, ω ∈Ω, and α ∈ω

∗, then (t; ω,α) is an Ω-type.
We denote the collection of all Ω-types by typeΩ.

We call Ω a system of sets when it is equipped with a partial order, and, for each comparable pair
ω ≤ ω

′, with a choice of a homomorphism f ∶ ω
′∗ → ω

∗. Intuitively, as we think of the sets ω ∈ Ω

as contexts, the partial order is saying which contexts are more abstract, and the homomorphisms are
translations from more abstract contexts to less abstract ones. We now introduce the counterpart of
algebraic theories for monoidal categories (typically called monoidal theories, see e.g. [24]) based on
this structure.

Definition 1 (Layered monoidal theory). A layered monoidal theory is a tuple (Ω,Σ,ar,coar) consisting
of a system of sets Ω, a set Σ (signature), and functions ar,coar ∶ Σ→ typeΩ.

It is convenient to introduce notation for the internal signature Σ
i, defined as

Σ
i ∶= {σ ∈ Σ ∶ there are ω ∈Ω and α,β ∈ω

∗ s.t. ar(σ) = (ω,α) and coar(σ) = (ω,β)} .

The idea is that the generators in Σ
i are completely contained in a single context ω: there is no transition

between contexts involved. We define the terms and the corresponding sorts (arity-coarity pairs of types
(t ∣ s)) of a layered monoidal theory by the recursive procedure in Figure 1. For the ⊗ω -rule, there is a
side condition that only the rules for Σ

i, identity, composition and ⊗ω are used in constructing the terms
x and y. This ensures that x and y only contain generators from the internal signature, so that it makes
sense to graphically represent the term x⊗ω y as juxtaposition of x and y inside the rectangle representing
ω . We call the terms that are generated using only these four rules internal. If a layered monoidal theory
is generated by monoidal categories (see Section 2.1 below), the internal terms will correspond precisely
to morphisms inside the categories.

We think of the pants and the copants (line 3 of Figure 1) as composition and decomposition within
a level of abstraction. The black and white triangles (line 4 of Figure 1) are translations between the
levels: ◀ translates an abstract layer to a more concrete one (refinement), while ▷ maps towards a higher
abstraction (coarsening). In the pointed profunctor semantics (Section 3), pants will be interpreted as the
monoidal product (seen as a profunctor), and copants as its adjoint profunctor (cf. axioms in Figure 3).
Likewise, refinement will be interpreted as a monoidal functor (seen as a profunctor), and coarsening as
its adjoint (cf. axioms in Figure 4).
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σ ∈ Σ∖Σ
i

σ ∶ (ar(σ) ∣ coar(σ))

σ ∈ Σ
i

ar(σ) = ω,α coar(σ) = ω,β

σαω β ω ∶ (ω,α ∣ ω,β)
ωω α α ∶ (ω,α ∣ ω,α)

ω

ω α

τ

τ

β

β

α

∶ (ω,α;τ,β ∣ τ,β ;ω,α) ∶ (ε ∣ ε) ε ωε ∶ (ε ∣ ω,ε) εω ε ∶ (ω,ε ∣ ε)

ω

ω

ω

α

α

β

β

∶ (ω,α;ω,β ∣ ω,αβ)

ω

ω

ω

α

α

β

β

∶ (ω,αβ ∣ ω,α;ω,β)

f ∶ ω → τ

ω τ

◀

α f α ∶ (ω,α ∣ τ, f α)

f ∶ ω → τ

ωτ

▷

αf α ∶ (τ, f α ∣ ω,α)

x ∶ (t ∣ s) y ∶ (s ∣ u)

x;y ∶ (t,u)

x ∶ (ω,α ∣ ω,γ) y ∶ (ω,β ∣ ω,δ)

x⊗ω y ∶ (ω,αβ ∣ ω,γδ)

x ∶ (t ∣ s) y ∶ (u ∣ w)

x⊗y ∶ (t;u ∣ s;w)

Figure 1: Recursive construction of the terms of a layered monoidal theory. Each term of the sort
(ω,α ∣ τ,β) is drawn as an area connecting the type ω,α on the left to the type τ,β on the right. The
area inside a term, demarcated by black lines, is to be thought as representing the set ω , and an internal
red wire as α (the element of ω

∗). The change of type α → β inside ω is drawn as a red box. The change
of type at the level of sets ω → τ is drawn as a vertical black line.

In order to define a layered prop, we need to consider the terms modulo certain equations. Given
ω ∈Ω and α,β ∈ω

∗, consider the internal terms with the sort (ω,α ∣ ω,β). We may quotient this subset
by the usual rules of monoidal categories: the identities and the monoidal unit are given by the third rule
on the first line,

ωω α α ωω β β ωω ε ε

while the monoidal product ⊗ω is represented by vertical juxtaposition inside the ω-rectangle. Further,
we may quotient all the terms with the sort (t ∣ s) by the usual rules of symmetric monoidal categories:
the identities are given by appropriate vertical juxtapositions of terms generated by the third rule on the
first line, the monoidal unit is given by the second rule on the second line, and the monoidal product ⊗
is once again represented by vertical juxtaposition, this time of whole rectangles.

Definition 2 (Layered prop). A layered prop generated by a layered monoidal theory (Ω,Σ,ar,coar) is a
2-category whose 0-cells are the types typeΩ and whose 1-cells t→ s are terms with sort (t ∣ s) quotiented
by the laws of symmetric monoidal categories both internally and externally, as discussed above. The
2-cells are generated by the rules in Figures 2, 3 and 4. Where arrows are going in both directions,
we require the 2-cells to be inverses. Further, we require the usual triangle identities to hold for each
unit-counit pair in Figure 3, and the usual laws of monoidal categories to hold for the isomorphisms in
Figure 4.
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Figure 2: 2-cells of a layered prop expressing functoriality of refinement, coarsening, pants and copants.

◀ ▷

ωω

unit-ref

ωω

counit-ref
▷ ◀

ττ

α αα

f α f α ττ f α

α

f α

a

b b

ω a ω

ω ω

ω

ω

a

b

ω

ω

a

b

unit-pants

a a
b b

ω ω

counit-pants
a

ω
a

ω
b b

unit-cup

εω ε ω

counit-cup

εω ε ω

Figure 3: 2-cells of a layered prop that exhibit pants-copants and refinement-coarsening as two adjoint
pairs.

Note that the 1-categorical structure of a layered prop can be seen as a generalisation of a coloured
prop: any coloured prop gives rise to a layered prop with just one layer (i.e. with just one set in Ω).
Furthermore, layered props are known in the literature as the internal string diagram construction. This
was first introduced in the work of Bartlett, Douglas, Schommer-Pries and Vicary on topological quantum
field theories [2]. The connection to profunctors is discussed by Hu [9].

2.1 Layered Props from Monoidal Categories

It is natural to build layered props from existing monoidal categories. In fact all the examples of layered
props we consider arise in this way — see Sections 5-7 below. We assume that instead of a system of
sets, we have a system of monoidal categories Ω with monoidal functors instead of homomorphisms.
The construction of the layered prop L(Ω) then proceeds as before, taking the internal signature to
contain all morphisms in each category in Ω. We now proceed to define this formally.

A system of monoidal categories Ω is a subcategory of Cat such that
• every category ω ∈Ω is strict monoidal,
• every functor in Ω is strict monoidal,
• there is at most one functor between any pair of categories, that is, Ω is posetal.

The last condition is assumed merely for simplicity, we could construct a layered prop from Ω with
multiple monoidal functors between a pair of monoidal categories. The formalism could be modified to
incorporate non-strict monoidal categories, we leave this for future work.

We view a system of monoidal categories as a system of sets in a straightforward manner: the col-
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Figure 4: 2-cells of a layered prop that are motivated by monoidal categories and functors.

lection of sets is given by {Ob(ω) ∶ω ∈Ob(Ω)}, we identify αβ ∶=α⊗β for all α,β ∈ω and ω ∈Ω, we
have ω ≤ ω

′ whenever there is a functor f ∶ ω ′ → ω , and the monoid homomorphisms are given by the
restriction of each functor to objetcs.

Assuming that all the categories ω ∈Ω as well as Ω itself are small, we define the signature Σ(Ω) as
follows:

Σ(Ω) ∶= {σ
α,β
ω }

ω∈Ob(Ω),α,β∈Ob(ω),σ ∶α→β
.

The arities and coarities are defined as:

ar(σ
α,β
ω ) =ω,α coar(σ

α,β
ω ) =ω,β .

In other words, Σ(Ω) contains every morphism in every category ω ∈Ω.

Definition 3 (Layered prop generated by a system of monoidal categories). A layered prop generated
by a system of monoidal categories Ω is the layered prop generated by the layered monoidal theory
(Ω,Σ(Ω),ar,coar). Additional generators for 2-cells are given by the equalities of morphisms in each
category ω ∈Ω.

We denote the layered prop generated by a system of monoidal categories Ω by L(Ω).

3 Pointed Profunctor Semantics

While our framework is purely syntactic (indeed, the whole point of constructing a layered prop is that
we are able to treat all the layers in the same language), we are able to provide a semantic justification for
the layered prop formalism: as we show in this section, they can be naturally interpreted in the category
of pointed profunctors Prof∗. We include the Appendix A on profunctors and pointed profunctors as
a quick reference and to disambiguate any notation. For a proper introduction, see Borceux [6] and
Loregian [14], and references therein.
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Definition 4. Let L be a layered prop. A profunctor model of L is a 2-functor L→ Prof∗ which is
consistent in the sense that

• if the 0-cells (ω,α) and (ω,β) are respectively mapped to (C,c) and (D,d), then C =D,
• if the 1-cells σαω β ω and σ

′αω β ω are respectively mapped to (P, f ) and (Q,g), then
P =Q.

For the rest of this section, we assume that Ω is a system of monoidal categories. We will show that
there is a natural profunctor model of the layered prop generated by Ω. To this end, we wish to define a
2-functor I ∶L(Ω)→Prof∗.

Let us define I on objects (i.e. Ω-types) recursively as follows: I(ε) ∶= (1,●), and I(t;ω,α) ∶=
I(t)×(ω,α). In order to define I on morphisms, for each ω ∈ Ω, let us write Iω ∶ 1→ω for the functor
sending the unique object of 1 to the monoidal unit of ω . Likewise, let us write s ∶ C ×D→D×C for the
symmetry map in Cat. Note that since s is an isomorphism, we have ps ≃ ps. We then define I by the
following action on the generators:

σαω β ω ↦ σ ↦ id
(1,●)

ε ωε ↦ (pIω , idI) εω ε ↦ (pIω , idI)

ω τ

◀

α f α ↦ (p f , id f α) ωτ

▷

αf α ↦ (p f , id f α)

ω

ω

ω

α

α

β

β

↦ (p⊗ω , id
(α⊗β))

ω

ω

ω

α

α

β

β

↦ (p⊗ω
, id
(α⊗β))

ω

ω α

τ

τ

β

β

α

↦ (ps, id
(β ,α)) x;y ↦ I(y)○I(x)

x⊗ω y ↦ I(x)⊗ω I(y) x⊗y ↦ I(x)×I(y).

where p− and p− are the covariant and contravariant embeddings of Cat in the category of pro-
functors, and σ stands for the pointed profunctor (homω ,σ). We prove the following proposition in
Appendix B.

Proposition 5. The assignment I is a profunctor model of L(Ω). Namely, it preserves the equalities of
morphisms in each category ω ∈Ω as well as the rules in Figures 2, 3 and 4.

4 Explanations

Using the formalism introduced in the previous sections, we are now able to formulate precisely the
notion of an explanation. First, we give names to two special shapes of 1-cells in a layered prop and
outline their connection to explanations. We assume that we are working with a layered prop generated
by a system of monoidal categories Ω.

Definition 6 (Window, cowindow). A window is a morphism in a layered prop of the form on the left
below. Dually, a cowindow is a morphism in a layered prop of the form on the right below.

◀ ▷

σα f α f β β

◀▷

σf α α β f β
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Windows correspond to reductive explanations: a process at the higher level gets translated to the
lower level, where we can apply laws or rules that are (presumably) more flexible, after which we trans-
late back to the higher level, hence completing the explanation. This remark should be compared to the
shape of the explanation of glucose phosphorylation in Section 5 below.

Cowindows, in turn, correspond to functional explanations: a process at the lower level is justified by
passing through a higher level in such a way that the higher level process translates back to what is being
explained. It can thus be thought that the lower level process takes place in order to yield the appropriate
form at the higher level. Axioms unit-ref and counit-ref state that there is an asymmetry between
reductive and functional explanations: using unit-ref, it is always possible to create a window (and
hence give a reductive explanation), while counit-ref only allows reducing a trivial cowindow to the
identity. Note that what we call a cowindow is usually called a functorial box in the literature — see
e.g. [16].

We may now define what an explanation is: we do this separately for 1-cells and for 2-cells. Both
correspond to a reduction: an explanation of a 1-cell reduces a process to another one at a lower level
of abstraction, while an explanation of a 2-cell reduces a rule between two processes to a rule between
reductions of these processes. For examples of explanations (now in a formal sense), see Figure 6 and
the discussion in Section 7 (1-cell), and Figure 7 (2-cell).

Definition 7 (Explanation of a 1-cell). Let e and σ be parallel 1-cells in a layered prop (that is, having
the same domain and codomain). We say that e is an explanation of σ if

1. σ is an internal morphism contained in some category ω ∈Ω,
2. every internal non-identity morphism of e is contained in some category ω

′ such that ω
′ <ω in the

partial order of Ω,
3. there is either a 2-cell e→ σ or a 2-cell σ → e.

Definition 8 (Explanation of a 2-cell). Let η and µ be parallel 2-cells in a layered prop. We say that η

is an explanation of µ if
1. µ is generated by an equality of morphisms in some category ω ∈Ω,
2. η can be constructed using the generating 2-cells of a layered prop and the 2-cells that come from

an equality of morphisms in those categories ω
′ for which ω

′ <ω in the partial order of Ω.

The above definitions correspond to the intuitive understanding of a (reductive) explanation we out-
lined in Section 1. The first condition in both definitions ensures that what is being explained is internal
to a particular category, that is, to a description at a particular level of abstraction. The second condition
says that the explanation is indeed reductive: it may only use lower levels of description than what is
being explained (in addition to the metalanguage of the layered prop). This implies that an explanation
must contain at least one window. The third condition in the first definition ensures that the explanation
is relevant in the sense that it is either a sufficient or a necessary cause for what is being explained.
There is no such condition for the explanations of 2-cells since in our setup there are no 3-cells. We thus
simply assume that an explanation is relevant. This assumption need not be made if we are working with
higher categories. These definitions can be dualised, this gives definitions of functional explanations, or
“coexplanations”. We will not need these in this work, and therefore omit the explicit statements.

Interestingly, if we require that the third condition of Definition 7 does not hold (i.e. there is no 2-
cell between the explanation and what is being explained), we obtain the definition of a counterfactual
explanation. Ability to model counterfactual reasoning is important for the causal analysis in the rule-
based models of molecular interactions, such as the Kappa language [13]. While a particular simulation
of a rule-based model may tell us that a rule e was invoked in the computation of the effect σ , so that e
explains σ in the sense of Definition 7, this tells nothing about necessity (or sufficiency) of e for σ . Thus
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a rule-based model is not (without modifications) able to deal with such questions as Would σ occur
had e not occurred? In a layered prop, the positive answer to such question (establishing non-necessity)
can be provided by finding a counterfactual explanation of σ that has the same sort as e. Intuitively, a
(possibly) counterfactual explanation can be thought of as a 1-cell that “fills in the gap” left by e:

g

◀ ▷

We give an example of a counterfactual explanation in our discussion of concurrency in Section 7.
Models based on variable substitution [18] and trajectory sampling [13] have been proposed to model

counterfactual statements. Since our setup remains agnostic about what the internal morphisms in a
layered prop actually are, we expect that both of these situations can be modelled within a layered prop.
We leave this investigation for future work.

5 Example: Glucose Phosphorylation

In this section, we construct a minimal example — inspired by Krivine [11] — that illustrates our notion
of an explanation (specifically, Definition 7) for an important biochemical process known as phospho-
rylation of glucose. This is motivated by the problem of systematising a vast amount of experimental
data in systems biology in a way that is easy for humans to both understand and use. Our strategy is to
define three monoidal categories that are capable of talking about chemical reactions at three different
abstraction levels:

L+ English names of the relevant molecules
Mol+ Molecules

PartMol+ Partitions of molecules into smaller units

First, let us define L+ as the free monoidal category with generating objects

{glucose,ATP ,glucose-6-phosphate,ADP ,hydrogen ion},

whose monoidal product is denoted by +, and with just one generating morphism

glucose +ATP Ð→ glucose-6-phosphate+ADP +hydrogen ion. (9)

The generating morphism simply represents the high-level chemical rule describing phosphorylation of
glucose. Here ATP and ADP stand for adenosine triphosphate and adenosine diphosphate.

5.1 Molecules and Molecule Partitions

We define a molecule partition as a certain connected multigraph (Definition 10). We then identify as
molecules those molecule partitions that do not have free variables. Fix a countable set of free variables
FW. We denote the elements of FW by lowercase Greek letters α,β ,γ, . . . . Let us define the set of
atoms as containing the symbol for each main-group element of the periodic table together with the
symbols − and +: At ∶= {−,+,H,C,O,P, . . .}. Define the function v ∶At⊔FW→N as taking each element
symbol to the valence of that element2, define v(−) = v(+) = 1 and finally for all α ∈ FW let v(α) = 1.

2This is a bit of a naive model, as valence is in general context-sensitive and not determined by a single atom. Yet this is
good enough for the purposes of this example.
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Definition 10 (Molecule partition). A molecule partition is a triple (V,τ,m), where V is a finite set of
vertices, τ ∶ V → At⊔FW is a function taking each vertex to its type and m ∶ V ×V → N is a function
satisfying the following conditions:

• for all v ∈V , we have m(v,v) = 0,
• for all v,w ∈V , we have m(v,w) =m(w,v),
• for all v,u ∈V with v ≠ u, there are w0, . . . ,wn ∈V such that w0 = v and wn = u and m(wi−1,wi) ≠ 0

for each i = 1, . . . ,n,
• for all v ∈V , we have ∑u∈V m(u,v) = vτ(v).

In other words, the integers m(i, j) form an adjacency matrix of an irreflexive, symmetric and connected
multigraph, and the sum of each row or column gives the valence of the (type of) corresponding vertex.

Definition 11 (Molecule). We say that a molecule partition (V,τ,m) is a molecule if the image of the
function τ is contained in At.

We denote the set of all molecules by Mol and the set of all molecule partitions by PartMol.
Define the partitioning relation R ⊆ PartMol × (PartMol ×PartMol) as follows. Let M = (V,τ,m)
be a molecule partition, let u,v ∈ V and let α ∈ FW. Denote by m′ ∶ V ×V → N the function such that
m′(u,v) =m′(v,u) = 0 and m′ =m otherwise. Suppose that the following conditions are satisfied:

1. m(u,v) = 1,
2. the graph (V,m′) is not connected,
3. α does not appear as a free variable in M (that is, τ(w) ≠ α for all w ∈V ).

In such case we denote by V(u) and V(v) the connected components of u and v, respectively, in (V,m′).
Let Mα

u = (V(u)⊔ {α},τα ,mu) be the molecule partition where τα(α) = α and τα = τ otherwise, and
mu(u,α) = mu(α,u) = 1 and mu = m otherwise. The molecule partition Mα

v = (V(v)⊔ {α},τα ,mv) is
defined similarly. Now we finally define R by stipulating that MR(Mα

u ,M
α
v ) for all M, v, u and α that

satisfy the above conditions.
Let us define Mol+ as the free monoidal category with generating objects Mol and just one gen-

erating morphism, which has the same shape as the generating morphism of L+ (9), except that all the
English names of the molecules are translated to the corresponding graphs (see Figure 5). Similarly,
define PartMol+ as the free monoidal category with generating objects PartMol. For all variables α

and β we add the rule

+ + +

β

O

H

P

O

α

O−

O− H+ P

O

O

O−

O−β

α

−

as a generating morphism to PartMol+. We draw this as a box: APartMol+ . Further, for all molecule
partitions M,N and K such that MR(N,K) we introduce the following generators

M
N

K
M

N

K

.

We now wish to define monoidal functors L+ TÐ→Mol+
i

↪Ð→ PartMol+ so as to make this into a system
of monoidal categories. First, define a monoidal functor T ∶L+→Mol+ by the action on the generating
objects in Figure 5, where we use the convention from chemistry that an unlabelled vertex represents
a carbon atom with an appropriate number of hydrogen atoms attached to it to make its valence equal
to 4. The only generating morphism of L+ is mapped to the only generating morphism ofMol+. The

monoidal functorMol+
i

↪Ð→PartMol+ is identity on objects and maps the only generating morphism of
Mol+ to the composite morphism in the middle rectangle of Figure 6.
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glucose ↦
OH

OH

OH

HO

O

HO

ATP ↦

OHOH

O

OP

O

O−

OP

O

O−

OP

O

O−

O−

N

N

N

N

NH2

glucose-6-phosphate ↦
OH

OH

OH

HO

O

O

PO

O−

O−

ADP ↦

OHOH

O

OP

O

O−

OP

O

O−

O−

N

N

N

N

NH2

hydrogen ion ↦ H+

Figure 5: Translation of English names to chemical graphs.

5.2 Explaining Phosphorylation

We can now use the lowest level language PartMol+ to explain the high-level rule (9) as is shown in
Figure 6. Note that this is indeed an explanation according to Definition 7, since the rule that is being
explained is internal to L+, the explanation does not use any non-identity morphisms from L+, and
the explanation can be derived starting from the rule (9) using the 2-cells of the layered prop, whose
composite gives a 2-cell from the rule to the explanation. While the diagram in Figure 6 fulfills the

glucose

ATP

L+ ◀ ◀Mol+

CH2 OH. . .

OP

O

O−

OP

O

O−

OP

O

O−

O− CH2 . . .

APartMol+

▷

β O H

CH2. . . β

P

O

O−

O−

α

OP

O

O−

OP

O

O−

O CH2 . . .α

P

O

O

O−

O−β

H+

α−

▷Mol+PartMol+

P

O

O

O−

O−CH2. . .

OP

O

O−

OP

O

O−

O− CH2 . . .

glucose-6-phosphate

hydrogen ion

ADP

L+

Figure 6: Explaining glucose phosphorylation: each area between the vertical black bars represents a
layer, so in this case L+,Mol+ or PartMol+.

definition of an explanation, it is not very “explanatory" in an intuitive sense. This is because we chose
to stop at a fairly high level of abstraction. It is important to note that the morphism APartMol+ is just
a black box, which could itself be explained at the level of atoms exchanging electrons. Modularity of
layered props would then allow us to add this further level to the diagram. The resulting explanation
would bring us closer to satisfactorily answering the question Why does this reaction occur?.

We conclude this example by remarking that we didn’t have to assume that we already know the
higher level chemical rule (9). Instead we could have chosen to generate the higher level rules by
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declaring as morphisms every 1-cell from (L+,c) to (L+,d) for some objects c,d ∈ L+. Instead of an
explanation, this would correspond to deriving higher level rules from a single lower level rule.

6 Example: Electrical Circuits

While in the previous section we constructed a minimal example from scratch, in this section we take an
existing example from the literature where explanations are already used implicitly. Namely, we focus
on the research program that has formalised electrical circuits in terms of string diagrams and given them
an interpretation in graphical affine algebra [1, 4, 5, 3].

The string diagrammatic electrical circuit theory is a paradigmatic example of explanations taking
a functorial form: the relations between electrical components are proved by interpreting them as mor-
phisms in the graphical affine algebra. Thus this example also shows how functorial explanations can be
incorporated into our framework. Note, however, that Boisseau and Sobociński [3] already use some-
thing like layered explanations to only partially translate their diagrams. They call the notational device
used for this an impedance box. In our language, impedance boxes arise in a principled way as instances
of a general definition: they are just windows (Definition 6) of a particular shape.

We define the props graphical affine algebra GAA and electrical circuits ECirc as well as the
translation functor I ∶ ECirc→GAA as in [3], except that we quotient the morphisms in ECirc by
equality under I. This makes I faithful, which we reflect in our syntax by adding a left inverse to the
2-cell unit-ref in Figure 33. Additionally, we define the impedance category Imp and the category of
bipoles Bip in order to express the impedance calculus of [3] formally within our setup.

Definition 12 (Impedance category). The impedance category Imp is a prop whose generating mor-
phisms are all the morphisms of GAA with exactly one input and exactly one output. The identity is

, and composition is given by the rule

;C D ∶=
C

D
.

Definition 13 (Bipole category). The bipole category Bip is the subcategory of ECirc given by those
generators which have exactly one input and one output. That is, it is the free prop generated by

R L C

−+

V I

.

Define the “boxing" functor B ∶Bip→ Imp by the following action on the generators:

−+

R

↦ R

L

Lx

C

Cx

V

V

I

I .

, , ,

,

↦ ↦

↦ ↦

Further, define a "wrapping" functor W ∶ Imp→GAA which acts as n↦ 2n on objects and on mor-
phisms as shown below left. The boxing and the wrapping functors are so defined that we have a com-
mutative square below right:

C ↦ C B I

W
GAAImp

Bip ECirc

3This causes some problems for the semantic interpretation of Section 3, whose resolution we leave for a more technical
paper.
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where the top horizontal morphism is the inclusion functor, and I is the translation of electrical circuits
to graphical affine algebra. Treating the above diagram of monoidal functors as a system of monoidal
categories, we obtain a layered prop. Within this layered prop, we are able to replicate what is called the
impedance calculus in [3]. To illustrate this, we give an explanation of the rule governing the sequential
composition of resistors. This rule is a 2-cell in the layered prop, and the explanation is therefore that of
a 2-cell (Definition 8).

Figure 7 shows how the rule for composing two resistors
R1 R2 R1+R2

can be explained (this is essentially part (i) of Proposition 3 of [3]). This is indeed an explanation of a
2-cell (Definition 8), since we are explaining an equality in ECirc using only the 2-cells of a layered
prop and a 2-cell from Imp (the third 2-cell of the derivation).

R1 R2

ECirc

R1 R2

ECircImp◀ ▷ ECircImp◀ ▷ECirc

R1

R2

ECircImp◀ ▷ECirc

R1+R2

R1+R2

ECircImp◀ ▷

R1+R2

ECirc

Figure 7: Explaining sequential composition of resistors. Note that the explanation relies on the compo-
sition in Imp. This could, in turn, be itself explained by translating to GAA.

As for the example with glucose phosphorylation, we could choose to generate the equalities in
ECirc rather than assume them a priori. In this case, there would be no need to quotient morphisms in
ECirc by equality under the translation functor, yet the equality of 1-cells should be taken up to a trivial
window.

7 Example: Calculus of Communicating Systems

The calculus of communicating systems (CCS) [17] is widely used to reason about programs, formal lan-
guages and concurrency. Here we consider a restricted version of CCS and two ways to give semantics to
the CCS expressions: reduction semantics is very heavily syntactic, in addition to the structural congru-
ences, it only allows for only one rewrite rule (the reduction), while the labelled transition system (LTS)
semantics [17] is more flexible and comes with more rewrite rules. Our goal is to show how the LTS
semantics can be used to give an explanation (this time in the sense of Definition 7) of the rewrite rule
of the reduction semantics. Intuitively, the LTS semantics may be seen as a lower level implementation
of the concurrent processes described abstractly by CCS. Furthermore, we demonstrate that LTS seman-
tics has a larger scope of allowed derivations than the reduction semantics by giving a counterfactual
explanation of a rewrite rule in the reduction semantics.

Let us fix a set of action names A. Define Ā ∶= {ā ∶ a ∈ A} and Act ∶= A∪ Ā∪{τ}. The set of processes
is defined recursively as follows, where x ranges over Act:

P ∶∶= 0 x.P P ∥ P.
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Definition 14 (Congruence). Define the congruence as the smallest equivalence relation ∼ on the set of
processes that satisfies:

P ∥Q ∼Q ∥ P, (P ∥Q) ∥ R ∼ P ∥ (Q ∥ R),

0 ∥ P ∼ P, if P ∼ P′ and Q ∼Q′, then P ∥Q ∼ P′ ∥Q′.

Definition 15 (Reduction semantics). A rewrite rule in reduction semantics is an ordered pair of pro-
cesses, which we write as P→Q, generated by the following three deduction rules:

x.P ∥ x̄.Q→ P ∥Q
P→Q

P ∥ R→Q ∥ R
P→Q P ∼ P′ Q ∼Q′

P′→Q′

In other words, rewrite rules are parallel compositions of the reduction (first rule in the above defini-
tion) up to the congruence. For instance, we can derive the following rewrite rule:

x.0 ∥ (y.0 ∥ x̄.0)→ 0 ∥ (y.0 ∥ 0). (16)

In order to talk about layered props, we wish to express reduction semantics as a monoidal category.
Let Red be the monoidal category whose objects are the processes, monoidal product on objects is the
parallel composition ∥, and whose morphisms are generated by:

P

Q

Q

P
Rx.P

x̄.Q
P
Qλ

0

P
P ρ

0

P
P

R

P

α
R

P
Q

Q

together with inverses for the first four generators. Here P, Q and R range over processes, and x ranges
over A. The first four morphisms correspond to the congruence, and R corresponds to the first deduction
rule for transitions. The parallel composition is taken care of by the monoidal structure. Note that the
monoidal product is not strictly associative, so we need to keep track of the bracketing of the wires.

Next, we introduce a LTS as an alternative semantics for the above fragment of CCS.

Definition 17 (Labelled transition). A labelled transition is a triple (P,x,Q), where P and Q are processes
and x ∈ Act, generated by the deduction rules below. We write P

xÐ→Q for such triple. Note that we write
the silent action τ as an unlabelled arrow.

P′
xÐ→ P

P′ ∥Q
xÐ→ P ∥Q

P′
xÐ→ P

Q ∥ P′
xÐ→Q ∥ P x.P

xÐ→ P
P′

xÐ→ P Q′ x̄Ð→Q
P′ ∥Q′→ P ∥Q

Definition 18 (Bisimulation). A bisimulation on the set of processes is a binary relation b such that for
all processes P and Q and all x ∈ Act, we have that PbQ implies

• if P
xÐ→ P′, then there is a process Q′ such that Q

xÐ→Q′ and P′bQ′,
• if Q

xÐ→Q′, then there is a process P′ such that P
xÐ→ P′ and P′bQ′.

The largest bisimulation is the union of all bisimulations.

Labelled transitions define the LTS semantics, which, similarly to the reduction semantics, can be
modelled as a monoidal category. Thus let LTS be the free monoidal category whose generating objects
are pairs P,↑ x, where P is a process and x ∈ Act. We think of ↑ x as the “pending action", and omit the
silent pending action: P ∶= P,↑ τ . The morphisms of LTS are generated by

A1 A2x.P P,↑ x
P,↑ y
Q,↑ ȳ

P
Q

P ∥Q
P

Q
P ∥Q,↑ x

P,↑ x

Q
P ∥Q,↑ x

P

Q,↑ x
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where P and Q range over processes, x ∈ Act and y ∈ A∪ Ā and we identify ¯̄y ∶= y. The structural iso-
morphisms of the monoidal category have the same form as the structural isomorphisms of Red, and
correspond to the largest bisimulation. The other morphisms in LTS model those rewrite rules of the
usual LTS semantics that are derivable via our restricted set of deduction rules.

There is a monoidal functor I ∶Red→LTS, whose action on objects is defined as 0↦ 0,↑ τ , x.P↦
P,↑ τ and P ∥ Q↦ (I(P),I(Q)). For morphisms, I takes each structural isomorphism in Red to the
corresponding isomorphism in LTS, and the morphism R to

P,↑ x

Q,↑ x̄

P

Q

A1

A1

A2

x.P

x̄.Q

I(P)

I(Q)

. . .

. . .
,

where the dots refer to an appropriate decomposition of P and Q into I(P) and I(Q).
We use the functor I to view the LTS semantics as the lower level language that explains the reduction

semantics. For instance, we can explain the rewrite rule (16) by just moving its derivation in Red

x.0

y.0
x̄.0 y.0

x̄.0
R

0

0 y.0

0

0

α
−1 α

through the window, that is, essentially by applying I. In this case, we are also able to give a counterfac-
tual explanation:

x.0

y.0
x̄.0

y.0

0

0

A1
0,↑ x

A1
0,↑ x̄

y.0 ∥ 0,↑ x̄

A2

0

y.0 ∥ 0

◀ ▷Red RedLTS

.

The above diagram is indeed a counterfactual explanation (see the discussion in Section 4) of the rewrite
rule (16): (1) the rewrite rule is an internal morphism in Red, (2) every non-identity internal morphism
in the diagram is contained in LTS, which is strictly below Red in the partial order of the layered prop,
(3) there are no 2-cells between the rewrite rule and the diagram. To see that (3) is indeed the case, note
that there are in fact no 2-cells having the above diagram as either domain or codomain (one can see this
by going through the generators of 2-cells of a layered prop one by one).

The fact that there is a counterfactual explanation of the rewrite rule (16) shows that it is not neces-
sary to invoke the (analogue of) rule R in its derivation at the level of LTS. This observation allows us to
show neatly that LTS semantics is more flexible than the reduction semantics, in the sense that there are
more derivations of the same transitions. Note that the counterfactual explanation does not need to be
more complex than an ordinary explanation: in this case it is in fact more direct, in the sense that it shows
that there is an actual labelled transition, while the explanation obtained by translating the diagram in
Red merely shows that there is a labelled transition up to the largest bisimulation.

8 Conclusions and Future Work

We have taken the first steps towards developing a mathematical framework for formalising explanations.
Explanations in a category theoretic context usually take the form of a functor, whose domain is thought
of as syntax and codomain as semantics. Our approach differs from this: in a layered prop, there are
several possible translations to different levels, which are nonetheless syntactically represented in the
same language (that is, within one layered prop). A layered prop allows one to easily work with different
theories describing the same phenomenon, and, importantly, allows for partial translations instead of
having to translate the full diagram, as we have illustrated with the examples. We have also observed
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how counterfactual processes arise naturally within layered props: these are those processes that “look
like” a translation without being one. Furthermore, the examples show that the same abstract principles
hold in areas as distant as biology, electrical circuit theory and concurrency theory. Layered props can
thus indeed be conceived as the initial stage of a general mathematical theory of explanations.

On the mathematical level, the next phase of developing the theory is to explore the precise connec-
tion of layered props to pointed profunctors. Currently, there is a canonical 2-functor which translates a
layered prop generated by a system of monoidal categories to the category of pointed profunctors which
preserves the axioms of a layered prop. One way to proceed would be to characterise the image of this
functor, thus identifying a subcategory of Prof∗ to which a given layered prop is equivalent. Another
mathematical aspect that is important for practical applications is to modify the definition of a layered
prop to allow for non-strictly associative monoidal categories, as for instance described diagrammatically
in [23]. As briefly remarked in Section 6, the current semantics cannot adequately handle the important
special case when the translation functor is faithful. This suggests that the current interpretation of the
2-cells as natural transformations is too restrictive, and some other notion of 2-cells for pointed profunc-
tors should be used. In order to connect layered props to known structures, it would also be useful to
express them as a Grothendieck construction.

Even though it was beyond the scope of this paper, we believe it is important to connect our work
with the philosophy of science literature on explanations. Since the initial motivation for our work comes
from biology, it is particularly interesting to see how ideas on explanations and causality in biology fit our
framework. For instance, one of the main motivations of Robert Rosen for introducing the theoretical
framework of relational biology was to put the function of an organism on equal grounding with the
mechanism that underlies it [21]. This can be modelled within a layered prop: reductive and functional
explanations are a priori completely symmetric, and in any case equally well-defined.

Several systems with multiple layers are known in the applied category theory literature. In addi-
tion to the already discussed [23] and [3] (Section 6), we mention the formalism of hierarchical petri
nets [7], and Román’s notion of an open diagram [20]. All of these rely on an intuitive notion composing
processes at different levels, and hence we plan to explore them using layered props.
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A Profunctors and Pointed Profunctors

In order to fix notational conventions, we recall the standard definition of profunctors. We also define the
not-so-standard category of pointed profunctors. We state the results about (pointed) profunctors needed
in the main body of the paper, mostly without proof.

A.1 Profunctors

We follow Loregian [14] in our discussion of profunctors and coends.

Definition 19 (Bicategory of profunctors). Define the bicategory of profunctors Prof as follows.
• the 0-cells are (small) categories,
• the 1-cells, denoted by CÐ∣→D, are functors

Cop×D→ Set,

• the 2−cells are natural transformations α ∶ F ⇒G,
• the composition

cA,B,C ∶Prof(A,B)×Prof(B,C)→Prof(A,C)

takes profunctors F ∶AÐ∣→B and G ∶BÐ∣→C to the coend G○F = ∫ B F(−,B)×G(B,=). Explicitly,
we define

(G○F)(A,C) ∶= ∫
B∈B

F(A,B)×G(B,C).

There is a bifunctor
× ∶Prof ×Prof →Prof

defined as the product functor of n-cells for each n = 0,1,2 which equips Prof with a symmetric
monoidal structure.

Given a 2-categoryK, let us writeKop for the 2-category whose 0-cells and 2-cells are those ofK and
whose 1-cells are the reversed 1-cells ofK, that is, for all 0-cells A and B we haveKop(A,B) =K(B,A)op.
Similarly, we write Kco for the 2-category whose 0-cells and 1-cells are those of K and whose 2-cells are
the reversed 2-cells of K, that is, for all 0-cells A and B we have Kco(A,B) =K(A,B)op.

There are two ways to embed the 2-category Cat into Prof : one is contravariant on the 1-cells, the
other on the 2-cells. Both embeddings are identity on objects. The embedding

p− ∶Catco→Prof

takes a functor F ∶ C →D to the profunctor pF ∶ CÐ∣→D defined on objects by pF(C,D) ∶=D(FC,D),
and a natural transformation η ∶ F →G to the natural transformation pG → pF whose (C,D)-component
is given by −○ηC.

Dually, the embedding
p− ∶Catop→Prof

takes a functor F ∶ C →D to the profunctor pF ∶DÐ∣→C defined on objects by pF(C,D) ∶=D(D,FC),
and a natural transformation η ∶ F →G to the natural transformation pF → pG whose (C,D)-component
is given by ηC ○−.

Both p− and p− are 2-functors, locally fully faithful and for every functor F the 1-cell pF is the left
adjoint to pF in the bicategory Prof (see section 5.1 of Loregian [14] for the details).
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Proposition 20. Both p− ∶Catco→Prof and p− ∶Catop→Prof are monoidal 2-functors.

Proof. We prove the result for p−: the argument for p− is dual.
Since the embedding is identity on objects, the monoidal product of 0-cells (which is just the cartesian

product of categories) is preserved.
For 1-cells, let F ∶ C → D and G ∶ C′ → D′ be functors. We wish to show that pF×G ≃ pF ×pG. We

compute as follows:

pF×G(C,C′;D,D′) =D×D′(F ×G(C,C′),(D,D′))
=D×D′((FC,GC′),(D,D′))
=D(FC,D)×D′(GC′,D′)
= pF(C,D)×pG(C′,D′)
= (pF ×pG)(C,C′;D,D′),

whence it follows that pF×G and pF ×pG agree on objects. The fact that they agree on morphisms is a
similar computation.

For 2-cells, let F,F ′ ∶ C → D and G,G′ ∶ C′ → D′ all be functors. Given natural transformations
η ∶ F → F ′ and µ ∶ G→ G′, we wish to show that pη×µ = pη ×pµ . This follows by observing that their
components coincide:

p
η×µ

(C,C′;D,D′) = −○(η ×µ)(C,C′) = (−○ηC)×(−○µC′) = pη

C,D×p
µ

C′,D′ = (pη ×pµ)C,C′;D,D′ .

A.2 Pointed Profunctors

Definition 21 (Pointed profunctors). Define the bicategory of pointed profunctors Prof∗ as follows:
• the 0-cells are pairs (C,c) of a (small) category C and an object c ∈Ob(C),
• the 1-cells (P, f ) ∶ (C,c)→ (D,d) consist of a profunctor P ∶ CÐ∣→D, that is, a functor

P ∶ Cop×D→ Set,

together with an element f ∈ P(c,d),
• the 2-cells α ∶ (P, f )→ (Q,g) are natural transformations α ∶ P⇒Q such that αc,d( f ) = g,
• the composition of (P, f ) ∶ (C,c)→ (D,d) and (Q,g) ∶ (D,d)→ (E ,e) is given by (Q○P,[ f ,g]),

where ○ is the composition of profunctors and [ f ,g] the equivalence class of the pair ( f ,g) in
(Q○P)(c,e).

Note that a pointed hom-functor (C(−,−), f ) ∶ (C,c)→ (C,c′) is precisely a morphism f ∶ c→ c′.
Thus we will simply write the hom-functor (C(−,−), f ) as f . For a category C, we define an assignment

zC ∶ C →Prof∗

c↦ (C,c)
( f ∶ c→ c′)↦ ( f ∶ (C,c)→ (C,c′))

Proposition 22. The assignment zC is a pseudofunctor (when C is taken to have the trivial bicategory
structure).
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Proof. We first show that zC preserves composition. Thus let f ∶ c→ d and g ∶ d → e be morphisms in C.
First, C(−,−)○C(−,−) ≃ C(−,−) since the hom-profunctor is the identity profunctor. Observe that such
an isomorphism is given by ∫ aC(c,a)×C(a,e) ∼Ð→ C(c,e) given by [n,m]↦m○n (this is well-defined).
Thus in particular [ f ,g]↦ g f , whence

zC(g)○ zC( f ) = (C(−,−),g)○(C(−,−), f ) ≃ (C(−,−),g f ) = zC(g f ).

From the above it follows that idc ∶ (C,c)→ (C,c) is the identity on (C,c), so that zC preserves the
identities.

There is a pseudofunctor
× ∶Prof∗×Prof∗→Prof∗

defined as
• (C,c)×(D,d) ∶= (C×D,(c,d)) on the 0-cells,
• (P, f )×(Q,g) ∶= (P×Q,( f ,g)) on the 1-cells,
• the product of natural transformations on the 2-cells.

Writing 1 for the terminal category and ● for its unique object, we have the following:

Proposition 23. (Prof∗,×,(1,●)) is a symmetric monoidal bicategory.

B Semantic Properties of Layered Props

We discuss the properties that the interpretation functor I ∶L(Ω)→Prof∗ has. Throughout the section,
we assume that Ω is a system of monoidal categories.

We begin by proving that I is indeed a pointed profunctor model (Proposition 5).

Proof of Proposition 5. The equalities of morphisms for each category ω ∈ Ω are preserved by Propo-
sition 22. The unit and counit maps in Figure 3 are preserved and the triangle equalities for them hold
since we have defined each pair of profunctors as an adjoint pair. Since all the internal morphisms are
identities, there is nothing to show for the composition of the internal morphisms.

All the rules in Figure 4 follow from the fact that each category and functor in Ω is monoidal and
that both p− and p− are monoidal 2-functors (Proposition 20). For example, by (strict) associativity we
have that ⊗(id×⊗) =⊗(⊗× id) in Cat. We get the desired equations by applying the embeddings:

p⊗ ○(p⊗× id) = p⊗ ○(id×p⊗) assoc,

(id×p⊗)○p⊗ = (p⊗× id)○p⊗ coassoc.

It remains to show that the rules in Figure 2 are preserved. These are the only rules with a non-trivial
internal structure. Observe that all these rules are either of the form

(p f , id f β )○σ ≃ f σ ○(p f , id f α) or σ ○(p f , id f β ) ≃ (p f , id f α)○ f σ

for some functor f ∶ω → τ and some morphism σ ∶α → β . We show the isomorphism on the left. First, at
the level of profunctors the isomorphism holds since hom-functors are the identities. It remains to show
that [σ , id f β ] ∼ [id f α , f σ] under this isomorphism. To this end, note that the left-hand side evaluates via
the isomorphism

∫
γ∈ω

ω(α,γ)×ω( f γ, f β) ≃ω( f α, f β) [h,k]↦ k○ f h
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to f σ . Similarly, the right-hand side evaluates via the isomorphism

∫
γ∈τ

ω( f α,γ)×ω(γ, f β) ≃ω( f α, f β) [h,k]↦ k○h

also to f σ , whence the desired identification follows. The argument for the rules of the second form is
dual.

The following proposition shows that we can detect properties of monoidal categories in a layered
prop. This observation is not relevant for the examples that we discuss in this work, yet it is important
for the development of the general theory of layered props.

Proposition 24. If both τ,ω ∈Ω are monoidal closed (resp. coclosed) and f ∶ω→ τ in Ω is also monoidal
closed (resp. coclosed), then the interpretation I preserves the 2-cell C (resp. coC) in Figure 8.

Proof. For C, we have to show that

p⊗ ○(p f × id) ≃ p f ○p⊗ ○(id×p f ).

Both profunctors are of the type τ×ωÐ∣→ω . Let us compute both sides on the triple of objects (D,C,C′).
The right-hand side computes to

∫
B,E∈τ

τ( fC,B)×τ(D⊗B,E)×τ(E,FC′) ≃ τ(D⊗FC,FC′),

while in order to reduce the left-hand side we use the monoidal closed structure:

∫
A∈ω

τ(D,FA)×ω(A⊗C,C′) ≃ ∫
A∈ω

τ(D,FA)×ω(A,[C,C′])

≃ τ(D,F[C,C′])
≃ τ(D,[FC,FC′])
≃ τ(D⊗FC,FC′).

Since these agree and all isomorphisms are natural, we have the desired isomorphism. The argument for
coC is dual, using that the categories and functors are monoidal coclosed.
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β
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f α

β
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α

β
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coC
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ω
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β
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α

β

◀
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Figure 8: Monoidal (co)closure equations.
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In this paper we provide a unifying description of different types of semantics of modal logic found
in the literature via the framework of topological categories. In the style of categorical logic, we
establish an exact correspondence between various syntactic extensions of modal logic on one hand,
including modal dependence, group agent structures, and logical dynamic, and semantic structures
in topological categories on the other hand. This framework provides us a uniform treatment of in-
terpreting these syntactic extensions in all different types of semantics of modal logic, and it deepens
our conceptual understanding of the abstract structure of modal logic.

1 Introduction

Throughout the history of modal logic, many different types of semantics have been developed to in-
terpret the modal language, with various applications in mind. Starting from the seminal work by von
Wright [24] and the later extension by Hintikka in [14], the Kripkean style semantics of modal logic
has been widely applied in the philosophical study of epistemology. Tarski and McKinsey in [19] have
also discovered that the interior operator induced by a topological space could be used to interpret modal
formulas as well, which naturally finds its connection with propositional intuitionistic logic. Other vari-
ations include neighbourhood semantics for modal logic, first suggested by Scott in [22] in order to
study certain non-normal fragments of modal logic. Finally, we also have semantics of a more algebraic
flavour, extending the usual algebraisation of propositional logic using Boolean algebras.

These various forms then naturally bear the following question: Is it possible to provide a unifying
description of all types of semantic models of modal logic? To provide a positive answer, this paper starts
with the following observation: In all of the above mentioned examples, in fact in many more cases, the
categories of semantics of modal logic all organise themselves into topological categories (over Set).

The notion of a topological category is introduced in [1], with the aim of axiomatising the structure of
those categories containing objects X equipped with certain geometric data, with X living in an ambient
category X. This results in the notion of topological categories over an arbitrary base X. For our purpose
though, we will exclusively work over Set, and this is our default for topological categories henceforth.
The prototypical example is Top, the category of topological spaces, whose objects are sets equipped
with a topology. We will give an overview of topological categories in Section 2, and provide another
equivalent way of describing topological categories more suitable for modal logic (cf. Theorem2.5).
According to this theorem, it can then be immediately recognised that all the mentioned examples of
semantics conform to such a description: Kripke models are sets equipped with a binary relation, which
are often depicted diagrammatically. We’ve already mentioned topological spaces, and neighbourhood
models are no exceptions. Perhaps surprisingly, a particular style of algebraic semantics, using complete
atomic Boolean algebra with operators (CABAO), can also be recognised as topological or geometrical
over Set, once we take its dual category. This is arguably an incarnation of the duality principle between
algebra and geometry within the context of modal logic. We will prove in Proposition 2.6 that all these

http://dx.doi.org/10.4204/EPTCS.380.22
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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types of semantics, and in fact much more, are instances of topological categories, hence building the
foundations of unification.

But such fact alone is far from convincing that this is a good framework for unifying modal logic. The
more important topic is how the semantic structures of topological categories would explain the various
logical features that are present in a modal context. In this paper, we will follow the philosophy of
categorical logic, establishing exact correspondences between different syntactic patterns of modal logic
with semantic structures of topological categories. Such correspondences are witnessed by considering
transformation of models, viz. functors between topological categories.

The first thing to explain is the interpretation of modalities. As we will see in more detail in Sec-
tion 3, it is precisely the geometric data of a topological category that is responsible for its interpretation.
Furthermore, the structure of topological categories also connects tightly with many other extensions of
basic modal logic studied in the literature, including the multi-agency, group agency, modal dependence,
logical dynamics, etc.. For each of these reasoning patterns we have established theorems (see Theo-
rem 3.4, 4.4 and 5.3), showing that functors preserve certain structures of topological categories if, and
only if, the linguistic interpretation of the corresponding fragment of modal logic remains unchanged
under the transformation. These results significantly improve our conceptual understanding of modal
logic, and will be the main topics of Section 4 and 5.

To the best knowledge of the author, in the current literature there has been no theoretic framework
to enable all these different fragments of modal logic to be described in a uniform way for all types of
semantics. Our systematic approach allows seamless generalisation of all these constructions in modal
logic to any other semantics. For instance, it has been actively discussed what is the corresponding notion
of common knowledge in topological semantics [4], how to extend different forms of logical dynamics
to wider contexts [5], or how to develop modal dependence described in [3] and [2] for other semantic
types. Our work provides a novel answer to all these different questions by accommodating them to the
framework of topological categories, and it has ample potential applications.

2 Preliminaries

In many existing texts, e.g. in [1, 15], topological categories are usually introduced as fibrations over Set
satisfying certain lifting properties. It is well-known from the Grothendieck construction that fibrations
can be equivalently described by indexing categories, or functors mapping out of Set. For our purpose,
it is this equivalent indexing point of view of topological categories that is more suitable for making
connections with modal logic. We will discuss this in more detail below.

Recall that a concrete category, or a construct, is simply a faithful functor U : A → Set. When it is
clear from the context what the functor U is, we will simply refer to A as a concrete category.

Example 2.1. We take this opportunity to introduce the main examples of category of semantics:

• Kr denotes the category of Kripke frames, whose objects are sets equipped with a binary relation
on them, with morphisms being monotone maps. It has certain useful full subcategories including
Pre and Eqv, whose objects only contains preorders or equivalence relations.

• We’ve mentioned that Top will denote the category of topological spaces.

• Nb is the category of neighbourhood frames, whose objects are sets X equipped with a neighbour-
hood relation E ⊆ X×℘(X), and whose morphisms f : (X ,E)→ (Y,F) are functions from X to Y
satisfying a continuity condition: For any x ∈ X and V ⊆ Y , f xFV ⇒ xE f−1V .
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• We let objects of CABAO be pairs (X ,m) with m being an arbitrary endo-function on ℘(X), and
morphisms f : (X ,m)→ (Y,n) are functions from X to Y satisfying f−1 ◦ n ⊆ m ◦ f−1, where we
extend the order ⊆ on ℘(X) point-wise to the function space ℘(X)℘(Y ).1

• Besides models of the above form, to interpret modal formulas we also need evaluation functions
to interpret propositional letters. For a fixed set P of propositional variables, we introduce the
category Evl of evaluations, whose objects are pairs (X ,V ) with V : P→℘(X), and morphisms
f : (X ,V )→ (Y,W ) are functions from X to Y satisfying V ⊆ f−1 ◦W , where similarly the order
is the point-wise extension of the subset relation on the function space ℘(X)P.

In each case, there is an evident forgetful functor to Set that identifies them as concrete categories. ♦

Let us say a few more words on the category CABAO. From a well-known theorem of Tarski, we
know every CABA is isomorphic to a power set algebra ℘(X) (and every power set algebra is a CABA),
and every morphism between them is of the form f−1 : ℘(Y )→℘(X) for some function f : X → Y .
Hence, our definition of a CABAO as a pair (X ,m) does not lose anything, and it builds in the duality,
since it uses f , rather than f−1, as morphisms. Notice that the morphisms we choose between CABAOs
are not the algebraic ones, which should commute with the operators on both sides, but lax ones that only
require an inequality. A possible intuition for this choice is to read the operators m,n as interior operators
induced by a topology, and the above continuity condition is exactly saying that f is a continuous map
for the two topological spaces. We will see later that such a choice makes CABAO topological over Set.

There is also an accompanying notion of concrete functors between concrete categories: A functor
F between two concrete categories (A , |−|A ) and (B, |−|B) is a concrete functor iff it commutes with
the forgetful functors, i.e. iff it preserves the underlying sets. Obviously, each forgetful functor of |−|
of a construct A constitute a concrete functor from (A , |−|) to (Set,1Set), which establish Set as the
terminal object in the (large) category of concrete categories and concrete functors.

The faithfulness of the forgetful functor of a concrete category has many consequences. For any
construct (A , |−|), we will identify the Hom-sets A (A,B) simply as subsets of Set(|A| , |B|), and say a
function f : |A| → |B| is an A -morphism if it belongs to A (A,B). For instance, f is a Top-morphism
if it is continuous. Faithfulness of |−| also implies that each fibre AX over a set X is a (possibly large)
preorder — recall that a morphism in AX is a morphism in A above idX . If each fibre is indeed small,
then we say the construct A is fibre-small. It is easy to verify that all the introduced categories in
Example 2.1 have small fibres. All the constructs considered in the future will be fibre-small.

As mentioned, topological categories are constructs that satisfy certain lifting properties. For any
construct (A , |−|), a structured source is defined to be a set of functions of the form { fi : X → |Ai|}i∈I ,2

where each Ai ∈A . An initial lift of such a structured source is an object A in the fibre AX , satisfying the
following universal properties: For any function g : |B| → |A|, g is an A -morphism iff fi ◦g : |B| → |Ai|
is an A -morphism for any i ∈ I. Evidently, initial lifts are identified up to isomorphisms in the fibre AX .

Definition 2.2 (Topological Categories). A construct (A , |−|) is a topological category if every struc-
tured source has a unique initial lift.

We can break the definition of a topological category into two parts: It first requires the existence of
initial lifts of structured sources, and it also requires the uniqueness of such lifts. The notion of initial
lift of structured source is a generalisation of cartesian lifts for Grothendieck fibrations. In fact, cartesian
lift is exactly initial lift for a singleton structured source, viz. a structured source consisting of only one

1This definition of the category CABAO contains certain subtle points, which we will explain in a minute.
2If we don’t restrict to fibre-small constructs, then we need to consider structured sources whose size are proper classes.

However, this is not a problem for us to worry about. We refer the readers to [1] for more details.
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function. This in particular suggests that topological categories are special types of fibrations where we
can perform lifts against an arbitrary set of morphisms with a common codomain. Together with the
uniqueness part of the definition, a topological category satisfies many desirable properties:3

Lemma 2.3. If A is a topological category, then each fibre AX is a complete lattice for any set X.

Proof. For any family {Ai}i∈I in the fibre AX , consider the structured source, {1X : X → |Ai|}i∈I . It is
routine to verify that its unique initial lift is precisely the meet of this family in AX .

The existence of initial lifts guarantees each fibre to be complete preorders, and the uniqueness
then implies that they are indeed posets. As a fibration, given any function f : X → Y , the initial lifts
along f will induce functions of the form f ∗ : AY → AX . Again, f ∗ being a well-defined function is
guaranteed by the uniqueness of initial lifts, and we will also denote maps of the form f ∗ as pullback
maps. Furthermore, uniqueness also suggests that the fibration splits, in the sense that 1∗X = 1AX and
g∗ f ∗ = (g f )∗. The more important observation is that each pullback map preserves meets in the fibre:
Lemma 2.4. Let (A , |−|) be a topological category, then for any function f : X → Y , the pullback map
f ∗ : AY →AX preserves arbitrary meets.

Proof. For any family {Bi}i∈I in AY , we only need to prove
∧

i∈I f ∗Bi ≤ f ∗
∧

i∈I Bi. By definition, this
holds iff the identity function, viewed as a map 1X : |

∧
i∈I f ∗Bi| → | f ∗

∧
i∈I Bi|, is an A -morphism. By

the universal property of initial lift, it is so iff f ◦ 1X = f : |
∧

i∈I f ∗Bi| → |
∧

i∈I Bi| is an A -morphism,
and again, this is furthermore equivalent to all the maps in the structured source { f : |

∧
i∈I f ∗Bi| → |Bi|}

being A -morphisms. However, we know that
∧

i∈I f ∗Bi ≤ f ∗Bi for any i ∈ I, which means both 1X :
|
∧

i∈I f ∗Bi| → | f ∗Bi| and f : | f ∗Bi| → |Bi| are A -morphisms, hence so is the composite.

It follows that each pullback map f ∗ has a unique left adjoint, which we denote as f! and call it the
pushforward map. By the adjunction f! a f ∗ and the universal property of initial lift, it is easy to see that
f! are exactly describing the cocartesian lifts, which makes a topological category an opfibration as well,
hence a bifibration. As Theorem 2.5 will show, the data of fibres and pullback or pushforward maps
uniquely determines a topological category:
Theorem 2.5. Let InfL (resp. SupL) be the category of inflattices (suplattices).4 Recall that they are
canonically dual to each other. The data of a topological category (A , |−|) is the same as the data of a
functor A(−) : Setop→ InfL, or equivalently A− : Set→ SupL.

Proof. We’ve already shown that a topological category induces a functor from Setop to InfL. On the
other hand, since InfL is a subcategory of Cat, any functor F : Setop → InfL admits a Grothendieck
construction, resulting in a fibration p : F → Set. The objects of F are pairs (X ,A) with A being an
element in F(X); a morphism f : (X ,A)→ (Y,B) is a function f : X → Y , such that A ≤ F f (B). The
forgetful functor p is evident. To this end, we only need to verify that for arbitrary structured source
{ fi : X → p(Xi,Ai)}i∈I , it has a unique initial lift, which we claim is given by

∧
i∈I(F fi)(Ai) over X . For

any function g : p(Y,B)→ p(X ,
∧

i∈I(F fi)(Ai)), by definition it is an F -morphism iff

B≤ Fg
∧
i∈I

(F fi)(Ai) =
∧
i∈I

F( fi ◦g)(Ai)⇔∀i ∈ I[F( fi ◦g)B≤ A],

which exactly means that all fi ◦g : p(Y,B)→ p(Xi,A) are F -morphisms. Hence, (F , p) is a topological
category, and we leave the readers to verify that the above two processes are mutually inverse.

3The following two lemmas are both contained in [1]. We include the proof here for the convenience of the readers.
4InfL (resp. SupL) is the category of complete lattices with meet (resp. join) preserving maps. For more detailed description

of various categorical structures on InfL or SupL, we refer the readers to [16, Chapter I].
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Proposition 2.6. All the categories of semantics mentioned in Example 2.1 are topological categories.

Proof Sketch. It is evident that all the fibres of those mentioned examples are complete lattices. We only
describe in each case how the pullback or pushforward maps are constructed, and trust the readers to
verify the universal properties and functoriality. Given a function f : X → Y :

• In Kr, f ∗ lifts a relation R on Y to the largest relation in X such that f is monotone, i.e. for any
x,x′ ∈ X , (x,x′) ∈ f ∗R iff ( f x, f ′x) ∈ R. The pullback maps in Pre,Eqv are inherited from Kr.

• In Top, the pullback f ∗ maps a topology γ on Y to the so-called weak topology on X , i.e. U ∈ f ∗γ
iff there exists V ∈ γ that U = f−1(V ).

• In Nb, the description of f ∗ is similar to that in Top. For a neighbourhood relation F on Y , the lift
f ∗F satisfies that (x,U) ∈ f ∗F iff there exists V ⊆ Y that U = f−1(V ) and ( f x,V ) ∈ F .

• In CABAO, it is easier to describe the pushforward maps. Given any endo-function m on ℘(X),
its pushforward is the operator ∀ f ◦m◦ f−1 on Y , where ∀ f is the right adjoint of f−1.

• In Evl, evidently the pullback f ∗ is obtained by post-composing with f−1.

At this point, we have accomplished our first goal to recognise all the instances of semantics in
Example 2.1 as topological categories. We end this section by describing the product construction:

Definition 2.7 (Product of Topological Categories). For any family {Ai}i∈I of topological categories
viewed as functors {Ai : Setop→ InfL}i∈I , their product ∏i∈I Ai is given as the following composition,

Setop
∏i∈I InfL InfL.∏i∈I Ai

⊕
i∈I

The functor
⊕

i∈I is the biproduct functor on InfL, which takes a family of inflattices to its set-
theoretic product with entry-wise order. In other words, the fibre (∏i∈I Ai)X of a product is simply the
product of the fibres ∏i∈I(Ai)X . It is easy to verify that ∏i∈I Ai is indeed their categorical product in the
category of concrete categories and concrete functors. The product construction for instance allows us to
combine a Kripke model with an evaluation function by looking at Kr×Evl, or to consider a family of
models by introducing A Σ for any set Σ, which is the Σ-indexed product of A with itself.

3 Interpreting Modalities via Geometric Data

In this section, we will see how the categorical structure we have described in Section 2 would unify the
interpretation of modalities in each different types of semantics. We start by briefly recalling the very
basics of the modal language and its interpretation; standard references include [11, 7]. Let a non-empty
set Σ serve as the signature, and let P be a non-empty set of propositional variables. The modal language
LΣ over the signature Σ and the variable set P is the smallest set of formulas containing P and closed
under forming conjunctions, negations, and adding modalities �a for all a ∈ Σ. When Σ is a singleton,
we will omit the subscript, and L denotes the usual modal language with a single modality. We will
refer to it as the basic modal language. Other logical connectives are viewed as defined notions.

In any set-based semantics of modal logic, the classical propositional connectives are always in-
terpreted by the Boolean operations on the power set algebra. From an algebraic point of view, the
interpretation of the additional modality, in its most general form, should be given by an arbitrary endo-
function on the power set, which is exactly the structure of a CABAO. Hence, we define the structure of
a semantic functor to provide the interpretation of basic modal language:
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Definition 3.1 (Semantic Functor and Modal Category). Let (A , |−|) be a topological category. A se-
mantic functor on A is a concrete functor (−)+ : A →CABAO. A modal category is then a topological
category together with a semantic functor.

For any modal category A with semantic functor (−)+, we recursively define the interpretation of
modal formulas as follows: For any set X and any pair (A,V ) in (A ×Evl)X ,

JpKV
A =V (p), Jϕ ∧ψKV

A = JϕKV
A ∩ JψKV

A , J¬ϕKV
A = X\JϕKV

A , J�ϕKV
A = A+(JϕKV

A).

We may also define the more familiar local version of semantics, and write A,V,x |= ϕ whenever x ∈
JϕKV

A . Evidently, the identity functor on CABAO establishes itself as a modal category. We see below
that all other categories of semantics mentioned previously have modal category structures:

Proposition 3.2. There exist fully faithful modal functors on Kr,Pre,Eqv,Top and Nb that embeds
them into CABAO, inducing the usual semantics of modal logic.

Proof Sketch. Again, we only describe the construction of semantic functors in each case, and trust the
readers to verify their fully faithfulness:

• Recall for any relation R⊆X×Y , there exists an induced operator ∀R :℘(X)→℘(Y ), such that for
any S⊆ X , ∀R(S) = {y ∈Y | ∀x[xRy⇒ x ∈ S]}. We then construct the embedding Kr ↪→CABAO
by sending each relation R in fibre KrX to the operator ∀R† , where R† is the dual relation of R. The
semantic functors on Pre and Eqv are inherited from the one on Kr.

• For Top, it sends each topology τ on a set X to the interior operator jτ it induces.

• For Nb, it assigns E in NbX to nE , such that nE(S) = {x | (x,S) ∈ E } for any S⊆ X .

Proposition 3.2 then completes our categorical unification of all the mentioned types of semantics
on how they interpret the basic modal language. Clearly, our approach of given in Definition 3.1 closely
relates to the spirit of algebraic semantics of modal logic. But one additional insight our categorical
framework suggests is an even closer connection between these different types of semantics with modal
algebras via Proposition 3.2, in that the single notion of continuous morphisms between CABAOs as
defined in Example 2.1 explains all the different types of morphisms in these topological categories, by
identifying them as full subcategories of CABAO.

Intuitively, it is precisely the semantic functor that provides the interpretation of modalities in all
cases, but we can establish the correspondence in a more formal way, by considering transformation of
models as mentioned in Section 1. We define when a concrete functor between two modal categories
interacts well with a specific fragment of modal logic:

Definition 3.3 (Preservation of Language). Let A ,B be two modal categories, which both support the
interpretation of certain fragment of modal language L0 which extends L . We say a concrete functor
F : A →B preserves the interpretation of the language L0, if the following happens: For (A,V ) in
(A ×Evl)X over some set X and for any formula ϕ ∈L0, we have JϕKV

A = JϕKV
FA.

In other words, a concrete functor F preserves the interpretation of a language L0 iff the evaluation
of each formula in L0 remains unchanged when we apply the transformation F . As a first example of
establishing an exact correspondence between a semantic structure and a particular syntactic pattern, we
prove the following theorem:

Theorem 3.4. For any concrete functor F : A → B between two modal categories (A ,(−)+A ) and
(B,(−)+B), it commutes with the two semantic functors iff it preserves the interpretation of L .
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Proof. Suppose F does not commute with the two semantic functors, then for some object A in A over
some set X , (A)+A and (FA)+B would not agree. This means that the two operators on ℘(X) do not
coincide, which implies they must not coincide on some subset S⊆ X . Consider the simple formula �p,
and an evaluation function V that assigns p to S. By definition, J�pKV

A and J�pKV
FA will not be the same.

The proof of the only if direction is obviously by induction on the structure of formulas, and the only
interesting case is the one involving modalities. Since F is assumed to be a modal functor, we must have
(A)+A = (FA)+B for any A in A , which means that the interpretation of the modalities by A through (−)+A
and by FA through (−)+B are identical, which suffices for the inductive proof.

Theorem 3.4 provides the precise formal content of what we mean informally by the correspondence
between the syntactic structure of modalities and the semantic structure of semantic functors of a modal
category. And henceforth, we will refer to those concrete functors between two modal categories which
commutes with the semantic functors on both sides as modal functors. There are already many interesting
examples of modal functors we can explore, and below we only list a few:

Example 3.5. Here we list some interesting examples of model transformations between the modal
categories we have introduced so far:

• By definition, any modal category has a unique modal functor mapping into CABAO, which makes
it the terminal object in the category of modal categories and modal functors.

• Since the semantic functors in Pre and Eqv are induced by the one in Kr, the embeddings Eqv ↪→
Pre and Pre ↪→Kr are both modal functors.

• There is a modal embedding Pre ↪→ Top, assigning a preorder its Alexandroff topology.

• In fact, we can show that Nb is isomorphic to CABAO, which means that all the above examples
has a modal embedding into Nb as well.

It is also instructive to look at counter-examples of modal functors. It turns out, the above modal embed-
dings all have either a left or a right adjoint, and these adjoints are usually not modal embeddings with
respect to the semantic functors we have constructed in Proposition 3.2:

• We have both a left and a right adjoint Pre ⇒ Eqv for the modal embedding Eqv ↪→ Pre, sending
a preorder to the smallest equivalence relation containing it and the least one it contains. These
adjoints do not commute with the semantic functors since they change the relation. Similarly, there
is a left adjoint Kr→ Pre sending a relation to its preorder closure, which isn’t modal either.

• The embedding Pre ↪→ Top has a right adjoint Top→ Pre, sending a topological space to its
specialisation order, but this construction does not preserve the information of all open neighbour-
hoods of a point, hence it is also not modal. ♦

However, the mere syntactic structure of a modality, arguably, has not too much to do with the rich
structure of topological categories we have seen in Section 2. In fact, the notion of semantic functors
and modal categories in Definition 3.1 can indeed be stated more generally for concrete categories, not
only for topological ones. The true usage of the full structure of topological categories emerges when we
consider further syntactic extensions of modal logic, which are the topics of the next two sections.

4 Modal Strength, Group Knowledge and Fibre Structure

In this section, we will proceed to study the extension of multi-agent fragment of modal logic, with
explicit syntactic comparison of modal strength, or dependence relation, between different modalities,
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and forming group agents. Recent works [3, 2] put dependence purely in modal terms, but they have
only considered the relational and topological contexts. How to form group agents is also an active topic
for current research on modal logic and collective agency [13, 23], but almost all approaches focus on a
single type of models. In both cases, our categorical approach allows a unifying description for all types
of semantics, which is one of the main benefit. Our ultimate goal is again to identify an exact correspon-
dence between these syntactic patterns with certain semantic structures of topological categories, with
formal content similar to that of Theorem 3.4.

Let’s first look at the simple extension of a multi-modal language, i.e. when the indexed set Σ is not
a singleton. There will be different modalities �a,�b, · · · with a,b ∈ Σ in the language LΣ. It should
be straight forward to recognise that the multi-agent fragment LΣ are related to taking the products of
topological categories. Given any modal category A , recall that we use A Σ to denote the Σ-indexed
self-product of A . Any semantic functor (−)+ on A naturally extends to one from A Σ to CABAOΣ,
which by an abuse of notation we also denote as (−)+: Given any object (Aa)a∈Σ in the fibre A Σ

X , which
by our construction in Definition 2.7 is simply a Σ-indexed tuple of objects in the fibre AX , we have
(Aa)

+
a∈Σ

= (A+
a )a∈Σ. The Σ-indexed tuple (A+

a )a∈Σ is then expected to provide the interpretation of each
modality �a in the language LΣ for any a ∈ Σ, using the corresponding object A+

a . Intuitively, different
modalities correspond to different objects in the same fibre of a topological category. Hence, given any
((Aa)a∈Σ,V ) in the fibre (A Σ×Evl)X , we may change the clause of modalities in the recursive definition
of evaluation of formulas to J�aϕKV

(Aa)a∈Σ
= (Aa)

+(JϕKV
(Aa)a∈Σ

), to interpret LΣ.
However, in the language LΣ, we treat different modalities as different individuals, and do not con-

sider the possible relations between different modalities. But we do have a meaningful way comparing
them, since semantically they denote different objects within the same fibre of a topological category A ,
and there is a canonical order in each fibre AX . It turns out, this partial order within each fibre signifies
the modal strength of different modalities. Explicitly, suppose we have two objects A,B in the fibre AX

that A ≤ B. The semantic functor then gives us two operators mA ≤ mB in CABAOX , which, according
to our definition of morphisms in CABAO, actually means mB ⊆ mA.

In different contexts, the modal strength relation has various incarnations. For instance, in epistemic
or doxastic logic, we read the modal formula �aϕ as agent-a knows or believes ϕ (cf. [10]). Now if
we have Aa ≤ Ab in the fibre AX , the above induced two modalities satisfying mb ⊆ ma would actually
suggest that there is an epistemic dependence between the two agents’ knowledge or belief: Whenever
b knows some proposition at state x ∈ X , viz. x ∈ mb(JϕK), a also knows it at that state, because x ∈
mb(JϕK)⊆ma(JϕK). In other applications, such modal strength comparison would mean something else.

This observation motivates us to add such comparison of modalities explicitly into our syntax, in the
form of dependence atoms. For any a,b ∈ Σ, we could add an atomic proposition Kab into our language,
with the intuitive reading of Kab as stating the modality denoted by a lies below the one denoted by b.
We refer to this extended language as L D

Σ
. But to interpret such dependence atoms as predicates, we

need the following local version of strength orders between two operators on the same power set algebra:
Definition 4.1. For any two operators m,n in CABAOX and any U ⊆ X , we say m locally depends on n
in U , denoted as m⊆U n, if for any S⊆ X and any x ∈U , x ∈ m(S)⇒ x ∈ n(S).
In this way, the global relation m⊆ n is the same as m⊆X n. When U is a singleton {x}, we simply write
m⊆x n. The following observation is crucial for us to define the interpretation of the dependence atoms:
Lemma 4.2. For any m,n in CABAOX , there is a maximal subset U that m⊆U n.

Proof. By definition, for the empty set /0 we always have m⊆ /0 n, since the universal quantification ∀x∈ /0
is vacuous. Furthermore, local dependence is closed under taking unions, since it is trivial to note that
m⊆⋃

i∈I Ui iff for any i ∈ I, m⊆Ui n. Thus, the maximal subset U is given by {x | m⊆x n}.
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Given an object (Aa)a∈Σ in the fibre A Σ
X , the interpretation JKabK of the newly added dependence

atoms should now be defined as the maximal subset U of X , such that A+
b ⊆U A+

a holds. This is exactly
how the dependence atoms are interpreted in any topological categories. We might also give the local
version of the truth condition, (Aa)a∈Σ,x |= Kab iff A+

b ⊆x A+
a . Notice that the interpretation of Kab is

independent from the choice of the evaluation function V on X . We may look at the concrete meaning of
such dependences in all the remaining examples we have considered so far:

Example 4.3. We list here how local dependence looks like in each exemplar modal category:

• In Kr, Pre and Eqv, given relations (Ra)a∈Σ on X , we have (Ra)a∈Σ,x |= Kab iff Ra[x]⊆ Rb[x]. In
the epistemological interpretation, this means agent-a’s uncertainty locally at x is less than b’s.

• In Top, given topologies (τa)a∈Σ on X , (τa)a∈Σ,x |= Kab iff 1X : (X ,τa)→ (X ,τb) is locally con-
tinuous at x. This relates to the continuity view of epistemic dependence discussed in [2].

• In Nb, given neighbourhoods (Ea)a∈Σ on X , (Ea)a∈Σ,x |= Kab iff Eb[x]⊆ Ea[x]. In evidence based
logic, this interprets as the evidence set of b’s is contained in that of a’s locally at x (cf. [9]). ♦

In this case, preserving the interpretation of the multi-agent modalities and the dependence atoms
does not require anything else than being a modal functor:

Theorem 4.4. For any concrete functor F : A → B between two modal categories, it preserves the
interpretation of L D

Σ
iff it preserves the interpretation of L .

Proof. The only if part is trivial, since L D
Σ

is an extension of L . For the if part, by Theorem 3.4 we
know F must be a modal functor. This implies that for any a ∈ Σ and any tuple (Aa)a∈Σ in A Σ, we must
have (Aa)

+
A = (FAa)

+
B, which means that Aa induces the same operator as FAa. This suffices for the

preservation of the fragment LΣ by F . F preserving dependence atoms is also immediate, since their
interpretation only relies on the operators on the underlying set.

However, this changes once we start to combine sets of agents into a single agent and consider such
group structures explicitly in our syntax. From a philosophical perspective, when modelling the inference
and reasoning patterns of agents under certain information structure using modal logic, we not only care
about individual agents themselves, but we would also like to study how a group of agents as a whole
reasons and interacts with each other. As mentioned, this is an active topic on how to represent group
agency in different contexts. Most of the traditional developments of group agency in modal logic are
based on Kripkean semantics [7, 8], but there has been recent efforts exploring how to define common
knowledge of a group in topological semantics [4]. Again, our categorical approach would uniformly
describe the group structure in any topological category associated with every type of semantics.

To combine a group of agents to a single one, it requires us to transform an object in A G for any
subset G ⊆ Σ, which is a tuple representing each individual agent in the group G, to a single object in
A , which corresponds to the collective group agent. Naturally, there are two canonical ways to do this
in general for any set G, using the fact that each fibre in a topological category is not only a poset, but
indeed a complete lattice. In particular, we can form two (families of) concrete functors

∧
,
∨

: A G→A .
As the symbols suggest, for any tuple (Aa)a∈G in A G, they act on it as follows:

∧
(Aa)a∈G =

∧
a∈G Aa,

and
∨
(Aa)a∈G =

∨
a∈G Aa. Functoriality of

∧
,
∨

should be immediate.
These functors then allow us to combine a group of agents of arbitrary size into a single one. We will

denote them as the
∧

- and
∨

-combination of group agents, and they correspond to two different readings
of what a group of agents means. Intuitively, the

∧
-combination means the group shares the information

of each individual, as if they are physically together. Because once we form a group
∧

a∈G Aa, for any
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individual a in the group G we would have
∧

a∈G Aa ≤ Aa in the fibre, which implies A+
a ⊆ (

∧
a∈G Aa)

+.
Just as we have discussed before, if we adopt an epistemic interpretation of modalities, this means that
whatever agent a knows, so does the group, and this holds for any agent in this group. Furthermore,
the meet taken in the fibre AX actually shows that the group modelled by

∧
a∈Σ Aa is the universal one

that has this property. This informally suggests that the group acts like an agent who has access to all
the information owned by each individual agent in this group, exactly like the case when everyone in the
group has come to a single location, and put all of their information on the table where anyone can see. In
Pre or Eqv, the

∧
-combination simply take the conjunction of all the relations, and this is exact the well-

known distributive knowledge of a group (cf. [8]). Hence, the
∧

-combination generalises distributive
knowledge to all types of semantics.

On the other hand, the
∨

-combination means the group shares the uncertainties of each individual,
as if they are only abstractly considered as a single agent. Dual to the case before, we must have
(
∨

a∈G Aa)
+ ⊆ Aa for any a ∈ G. This implies that for the combined group, if it knows something then

necessarily each individual in the group also knows this, and the group agent is the universal one that has
this property. To better compare with the existing literature, we observe the following simple result:

Lemma 4.5. If the semantic functor (−)+ on a topological category A always induces monotone and
idempotent operators, then (

∨
a∈G Aa)

+ ⊆ A+
a1
◦ · · · ◦A+

an
for any a1, · · · ,an ∈ G.

Proof. If follows by (
∨

a∈G Aa)
+ ⊆ A+

ai
for any i, and monotonicity, idempotence of these operators.

Translating back to natural language, in the condition of Lemma 4.5, what the
∨

-combined group knows
is much more restrictive, in that if the group knows something, then any agent in the group also knows
it, and furthermore ai knows that a j knows that · · · that ak knows it. This shows that the

∨
-combination

is a generalisation of the common knowledge of a group (again, cf. [8]).
We may now formally define the syntactic extension where we also allow group formation in our

logic. For any indexed set Σ, we let Σl , Σr be synonyms for the power set ℘(Σ). The language L D
Σl

and
L D

Σr
is nothing more but the modal languages with agent symbols in Σl,Σr, respectively, together with all

the dependence atoms between these group agents. However, we write in this way because to interpret
the language L D

Σl
or L D

Σr
, we still only need to work within A Σ, not A Σl or A Σr .

Given an object (Aa)a∈Σ in A Σ over the set X , we can interpret the modal operators for a group
of agents in the two fragments as either the

∧
- or

∨
-combination. For any subset G ⊆ Σ, we define

the interpretation of �G in L D
Σl

as the operator (
∧

a∈G Aa)
+; and similarly for the language L D

Σr
, �G

is interpreted as the operator (
∨

a∈G Aa)
+. Building on what we have developed before, this suffices to

interpret the two languages L D
Σl

and L D
Σr

. Of course, for a singleton group {a}, its interpretation under
the two fragments coincide, which still corresponds to the usual interpretation of the operator A+

a . The
upshot is that we can identify the following valid logical rules in the two fragments L D

Σl
and L D

Σr
:

Proposition 4.6. For any modal category A , the following axioms are valid in L D
Σl

(resp. L D
Σr

):5

• Inclusion: KGH (resp. KHG), provided H ⊆ G;

• Additivity: KGH ∧KGP→ KG(H ∪P) (resp. KHG∧KPG→ KH∪PG);

• Transitivity: KGH ∧KHP→ KGP (resp. KGH ∧KHP→ KGP);

• Transfer: KGH ∧�Hϕ →�Gϕ (resp. KGH ∧�Hϕ →�Gϕ).

5Half of these axioms corresponding to the fragment L D
Σl

has already been identified in [3, 2] in the special case of Top.
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Proof. We only prove the case for L D
Σl

; the other case is completely dual. Let (Aa)a∈Σ be any object in
A Σ over X . Whenever we have H ⊆ G ⊆ Σ, we have AG =

∧
a∈G Aa ⊆

∧
a∈H Aa = AH , which implies

A+
H ⊆ A+

G . Hence, according to our definition of the interpretation of the dependence atoms, we have
JKGHK = X , and this validates Inclusion. For any two groups H,P, by definition AH∪P =

∧
a∈H∪P Aa =

AH ∧AP, which implies mH ∪mP ⊆mH∪P. Now locally, suppose for some x ∈ X we have x ∈ JKGHK and
x ∈ JKGPK. Then for any S⊆ X , x ∈mH∪P(S)⇒ x ∈mH(S)∪mP(S). Either x ∈mH(S) or x ∈mP(S), we
would have x ∈ mG(S), according to our assumption that KGH and KGP locally holds at x. Hence, the
Additivity law also holds. The validity of Transitivity and Transfer axioms are evident.

Up to this point, we have completed our generalisation of group structure to all the exemplar modal
categories in a uniform way, and identified a set of valid inference rules. The remaining task is then to
identify which part of the semantic structure in topological categories does the syntactic group-forming
operation corresponds to. Considering our usage of the complete lattice structure of fibres, the following
result should be of no surprise:

Theorem 4.7. Let F : A → B be a modal functor between two modal categories, and suppose the
semantic functor (−)+B is injective on objects. F preserves arbitrary meets (resp. joins) fibre-wise, i.e.
the induced functions FX : AX →BX on fibres is a morphism in InfL (resp. SupL) for any set X, iff it
preserves the interpretation of the language L D

Σl
(resp. L D

Σr
) for any indexed set Σ.

Proof. Again, we only prove the case for F preserving meets fibre-wise and the preservation of the
interpretation of L D

Σl
. We already know from Theorem 4.4 that F is a modal functor iff it preserves the

interpretation of L D
Σ

, thus it suffices to show it further preserves the interpretation of
∧

-group-formation
iff it preserves meets fibre-wise. From how the

∧
-group modality is defined, it is immediate to note

that F preserves the interpretation of L D
Σl

iff (
∧

a∈Σ Aa)
+
A , which by the fact of F being a modal functor

is equal to (F
∧

a∈Σ Aa)
+
B, coincides with (

∧
a∈Σ FAa)

+
B, for any (Aa)a∈Σ. By assumption on (−)+B, this

holds iff F
∧

a∈Σ Aa =
∧

a∈Σ FAa, which exactly means F preserves meets fibre-wise.

Consider the various model transformations we have described in Example 3.5, Theorem 4.4 im-
mediately tells us how these functors behave with respect to group knowledge. For instance, since the
modal embedding Eqv ↪→ Pre has both a concrete left and right adjoint, it must preserve both meets and
joins fibre-wise, which suggests that the two fragments L D

Σl
and L D

Σr
behave coherently between Eqv

and Pre. However, as for the embedding of Eqv and Pre into Kr, it only has a concrete left adjoint but
lacks a right one, which means only the

∧
-group formation, viz. the distributive knowledge, coincide in

Eqv,Pre and Kr, but not the common knowledge. We can see this more explicitly, since the join in fibres
of Kr are simply unions of relations, while in Pre and Eqv we must further take the transitive closure of
unions of relations. Other modal embeddings can be analysed in a similar fashion.

5 Logical Dynamics and Fibre Connections

The “dynamic turn” of modal logic in the recent two decades makes logical dynamics another very
important topic in the current literature. In this section, we will see how certain general types of logical
dynamics could be subsumed into our categorical framework in a similar fashion as before.

Logical dynamics concerns with the reasoning patterns of agents when new information comes in,
which generally changes the underlying set of a model. This is where the fibre connection plays a crucial
role, because it allows us to transfer the geometric data over the original model to the updated model
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in a uniform way. For simplicity, below we describe all the dynamic extensions based on the simplest
fragment L , but it should be clear that our method can be equally applied to other fragments as well.

To warm up, we start by generalising the simplest form of dynamic logic, known as PAL, public
announcement logic (cf. [20, 21]). It concerns with information events of publicly announcing that ϕ

holds, which we denote as !ϕ . A typical formula in PAL is of the form [!ϕ]ψ , intuitively read as ψ is
true after announcing ϕ . For a modal category A , given any object (A,V ) in the fibre (A ×Evl)X , the
information event !ϕ naturally restricts the domain X to the subset S = JϕKV

A . If we denote the inclusion
function S ↪→ X as i, then the natural way to transfer the geometric data on X to S is by pulling back
along i. This way, we obtain a new semantic model (i∗A, i∗V ) over S, and the formula following the
dynamic operator [!ϕ] could be interpreted in this new model. We also need to transfer subsets of S back
to subsets of X , to maintain the recursive structure of adding dynamic operators within the syntax. The
natural candidates are ∃i and ∀i, which we will see correspond to the pair of dual operators 〈!ϕ〉 and [!ϕ].

More formally, we define the extension L PAL of L by the smallest set of formulas containing L
and is closed under forming dynamic formulas of the form [!ϕ]ψ , with ϕ,ψ in L PAL. Following the
above informal idea, we define the interpretation of formulas in L PAL by adding the following recursive
clause: For (A,V ) in (A ×Evl)X , we define J[!ϕ]ψKV

A = ∀iJψKi∗V
i∗A , and J〈!ϕ〉ψKV

A = ∃iJψKi∗V
i∗A , where i

is the inclusiong map JϕKV
A ↪→ X . Perhaps the more familiar form of truth conditions of these dynamic

operators are the following equivalent local formulation: For any x ∈ X ,

A,V,x |= [!ϕ]ψ ⇔ A,V,x |= ϕ implies i∗A, i∗V,x |= ψ,

A,V,x |= 〈!ϕ〉ψ ⇔ A,V,x |= ϕ and i∗A, i∗V,x |= ψ.

Again, if we combine this general form of semantics of PAL in any modal category with the special de-
scription of pullback maps in Kr given in the proof of Proposition 2.6, we recover exactly the usual PAL
dynamics developed for Kripke models, but we also get the PAL dynamics in other types of semantics at
the same time. This again exhibits the usefulness of a unifying description of semantics of modal logic.

Expectedly, the syntactic PAL dynamic operators in the L PAL fragment should correspond to the
semantic structure of initial lifts along inclusions in a topological category:

Theorem 5.1. Let F : A → B be a modal functor between two modal categories, and suppose the
semantic functor (−)+B is injective on objects. F further preserves the interpretation of L PAL iff it
preserves the initial lifts of any injections, i.e. for any inclusion map i : S ↪→ X and for any object A in
the fibre AX , Fi∗A = i∗FA holds.

Proof. Again for the if direction we prove by induction, and the only case we need to think about is for
the PAL dynamic operator. Given ϕ,ψ and any (A,V ) in (A ×Evl)X , by induction hypothesis we have
JϕKV

A = JϕKV
FA, and we denote the inclusion map of this subset into X by i. Now by definition of the

interpretation of [!ϕ]ψ , we have J[!ϕ]ψKV
A = ∀iJψKi∗V

i∗A = ∀iJψKi∗V
Fi∗A = ∀iJψKi∗V

i∗FA = J[!ϕ]ψKV
FA. Thus, F

preserves the interpretation of L PAL.
On the other hand, suppose for some object A in the fibre AX and for some injection i : S ↪→ X ,

we have i∗FA is not equal to Fi∗A. This in particular suggests that the associated operators (i∗FA)+B
and (Fi∗A)+B on S are not identical, and they must disagree at some subset T of S. Then let V be
an interpretation on X such that V (p) = S and V (q) = T . Consider the interpretation of the formula
〈!p〉�q. On one hand, we have J〈!p〉�qKV

A = ∃iJ�qKi∗V
i∗A = ∃iJ�qKi∗V

Fi∗A = (Fi∗A)+B(T ). On the other hand,
we have J〈!p〉�qKV

FA = ∃iJ�qKi∗V
i∗FA = (i∗FA)+B(T ). By assumption, (Fi∗A)+B(T ) does not coincide with

(i∗FA)+B(T ), and thus F does not preserve the interpretation of L PAL by definition.
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For those model transformations that has a concrete left adjoint, they automatically commutes with
all pullback maps, hence preserves the interpretation of L PAL. Perhaps surprisingly, all of the modal
embeddings described in Example 3.5 actually do commutes with pullbacks of injections, though not all
of them have a concrete left adjoint, and this statement for arbitrary functions is false. As a result, L PAL

is a particularly nice fragment of dynamic logic to work with.
However, PAL as dynamic logic is still too restrictive. A much more powerful dynamic mecha-

nism is product update in DEL, dynamic epistemic logic [6, 18]. In product update, information events
themselves form a model E, which carries additional geometric data signifying agent’s uncertainly about
which event actually happens, and the update is parametrised by E. Each event e ∈ E is also equipped
with a formula ϕe that specifies the precondition of that event happens. For any model over a set X , the
updated model is a subset of the product space E×X , consisting of those pairs (e,x) where x satisfies the
precondition of e. The geometric data over the updated set takes into account the ones on both X and E.

There are already several categorical reformulation and generalisation of DEL in the literature, e.g.
see [17, 12], but most of them are based on relational semantics, while our approach applies to arbitrary
topological categories. We first define the notion of a product type, which generalises event models:

Definition 5.2 (Product Type). A product type E for the modal category A is a tuple 〈E,B,W,{ψe}e∈E〉,
where E is a set, and B,W are objects in the fibre AE ,EvlE . The family {ψe}e∈E is an E-indexed family
of formulas within the language L .

The notion of product type update we are going to describe, which generalises DEL, is parametrised by
such a product type E. For any semantic model (A,V ) in the fibre (A ×Evl)X , we write E⊗V X as the
underlying set of the updated model, which is given by the dependent sum ∑e∈EJψeKV

A . Intuitively, the
updated model is indexed by events in E, whose fibre over e is the set of all possible words satisfying
the precondition ψe. There are then two natural projection maps πX : E⊗V X → X and πE : E⊗V X → E,
and we define the geometric data (E⊗V A,W ⊗V ) in the fibre (A ×Evl)E⊗V X to be π∗X A∧ π∗EB and
π∗XV ∧ π∗EW , respectively. A typical dynamic formula in product type update is of the form [E,S]ϕ or
〈E,S〉ϕ , where E is a product type and S is a subset of E. We define their interpretation as follows,

J[E,S]ΦKV
A := ∀πX

(
(S⊗V X)→ JΦKW⊗V

E⊗V A

)
, J〈E,S〉ΦKV

A := ∃πX

(
(S⊗V X)∩ JΦKW⊗V

E⊗V A

)
,

where the set S⊗V X = ∑e∈SJψeKV
A is a subset of E ⊗V X , and →, ∩ are calculated in the power set

℘(E ⊗V X). Again, interpreted our general construction back in the relational context Kr of Kripke
models, one immediately recovers the usual product update in DEL.6

In a word, the way we associate the geometric data on the updated model E⊗V X is by pulling back
the ones over X and E along the two projection maps, and then take their intersection in the fibre. How-
ever, a categorically minded reader would perhaps wonder what happens to the degenerate case where
we have an empty intersection. Though being kind of trivial, this is in fact important for correspondence
results of product type update, which will be stated later. Hence, we also introduce empty product update,
whose syntactic structure is extremely simple: It is of the form Uϕ , and for any (A,V ) in (A ×Evl)X we
define JUϕKV

A to be JϕKV
>X

, where >X is the maximal element in AX . This is indeed a form of dynamics,
since the operators U results in the change of the geometric data, though the update is constant in all
cases. We then define L PRO to be the least fragment containing L , which is also closed under taking
dynamic formulas of empty product update and product type update.

6In the literature, only the case where S is a singleton set {e} is usually considered, but this is a minor generalisation. It is
possible to define product update more generally along any function mapping into E, but we leave that for future work.
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Now that product type update is properly generalised to arbitrary topological categories, we can
realise PAL dynamics as special case of product type update. In fact, for any formula ϕ , we can associate
it with a product type, which we also denote as !ϕ . Explicitly, !ϕ is the tuple 〈1,>,>,{ϕ}〉, where 1 is
the singleton set, and ϕ is the corresponding precondition of the single element in 1. It is evident that
the updated model by this product type !ϕ is exactly the one obtained by publicly announcing ϕ in PAL
dynamics. In fact, many other types of dynamics turn out to be special cases (cf. [6]).

Now, it should certainly be expected that the dynamic extension L PRO corresponds exactly to pull-
back maps between fibres and finite meets within fibres. However, for product type update, we need
to slightly modify our definition of preservation of languages, since now in the syntax of L PRO, we
have explicitly included certain semantic data, viz. the product types E. We now say a concrete func-
tor F : A →B preserves the interpretation of L PRO if, after uniformly changing every product type
E= 〈E,B,W,{ψe}e∈E〉 appearing in the syntax to FE= 〈E,FB,W,{ψe}e∈E〉, the resulting interpretation
remains unchanged under transformation of models induced by F .7 We then have the following result:

Theorem 5.3. Let F : A → B be a modal functor between two modal categories, and suppose the
semantic functor (−)+B is injective on objects. F further preserves the interpretation of L PRO iff it
preserves pullback maps and fibre-wise finite meets.

Proof. The if part can be proven by a straight forward induction on the complexity of formulas in L PRO.
The only if part is technically trickier, though the general idea is no different from previous proofs of such
correspondence results. We include a detailed proof in Appendix A for the convenience of referees.

6 Conclusion

In this paper, we have used the language of topological categories to provide a unifying description of dif-
ferent types of semantics of modal logic, and have showed how various semantic structures within topo-
logical categories enable us to interpret different extensions of modal logic, including modal strength,
group structure, and logical dynamics. We believe our approach is instructive for the current active
research in the modal logic world on related topics.

For each fragment we have also proven a correspondence result, showing the equivalence for a con-
crete functor to preserve the interpretation of that fragment and for it to preserve certain categorical
structures. Such results have established a close connection between the syntax and semantics of modal
logic, and have deepened our understanding of its abstract mathematical structures. They can be seen as
justification that topological category is a particularly nice framework to explore its further connections
with modal logic.
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A Proof of Theorem 5.3

To complete the other half of the proof, we roughly need to show that any initial lift and any finite meets
in the fibre could be represented by some product type update with a specific chosen product type. First
of all, since empty product type update is included in our dynamic extension L PRO, to preserve it we
may assume F already preserves the top element within each fibre. We first show that F commutes with
pullback maps. Suppose for some function π : E → X , F does not commute with the initial lifts on π

in A and B. This means that we have some object A in the fibre AX , such that Fπ∗A and π∗FA are
two distinct objects in BX . Now since the semantic functor on B is injective on objects, the induced
operators (π∗FA)+B, which we denote as m, and (Fπ∗A)+B, which we denote as m′, will be distinct, which
means they disagree on some subset T of E.

Now consider the product type E = 〈E,>A
E ,W,{pe}e∈E〉, where the family of formulas is an E-

indexed family of distinct propositional letters. For the evaluation function W on E, we require that
for some propositional letter q distinct from pe for any e ∈ E, we have W (q) = T . Now consider an
evaluation function V on X , such that for any e ∈ E we have V (pe) = {π(e)}, which means that JpeKV

A is
a singleton for any e ∈ E. We also requires that V (q) = X . Then by definition, we have

E⊗V X = ∑
e∈E

JpeKV
A = E,

and it is not hard to see that the projection map πE is the identity on E, and πX is simply given by π .
Notice that, the above statement of the underlying set of the updated model remains true even if we have
calculated it in B.

Now by definition, the geometric data on the updated model is calculated as follows,

E⊗V A = 1∗E>A
E ∧π

∗A = π
∗A,

and for the induced product update in B,

FE⊗V FA = 1∗EF>A
E ∧π

∗FA =>B
E ∧π

∗FA = π
∗FA.

The above uses the fact that initial lifts preserves top elements since it is a right adjoint, and the as-
sumption that F preserves top elements in the fibres. As for the evaluation function W ⊗V , it is easy to
calculate that

(W ⊗V )(q) =W (q)∧π
−1V (q) =W (q) = T.

Finally, consider the interpretation of the formula 〈E,{e}〉�q, where e is some element in E such that
e∈m(T ) but e 6∈m′(T ) (or the other way around). Then by definition, we have the following calculation,

J〈E,{e}〉�qKV
A = ∃π({(e,π(e))}∩ J�qKW⊗V

π∗A ) = ∃π({(e,π(e))}∩ J�qKW⊗V
Fπ∗A) = /0.

The first equality is due to the fact that E⊗V A = π∗A as we have shown above; the second equality is by
the fact that F preserves the interpretation of L ; and the final equality holds because we have assumed
e 6∈ m′(T ). On the other hand, we have the other calculation as follows,

J〈FE,e〉�qKV
FA = ∃π({(e,π(e))}∩ J�qKW⊗V

FE⊗V FA) = ∃π({(e,π(e))}∩ J�qKW⊗V
π∗FA ) = {π(e)}.

https://doi.org/10.1007/s11229-020-02597-0
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These calculation are basically the same as before, only that in the final step, the result is a singleton
{π(e)} because e ∈ m(T ). This constructions shows that F would then not preserve the interpretation of
the formula 〈E,{e}〉�q on this particular model. Hence, F must preserves the initial lift of any single
structured sources.

Furthermore, we need to show that F preserves the binary meets fibre-wise as well. The basic idea
is the same. Suppose F does not preserve binary meets in the fibre, then for some set X and some A,
B in the fibre AX , we would have F(A∧B) distinct from FA∧FB in BX . Again, the operators m,m′

associated to F(A∧B) and FA∧FB would differ on some subset T of X ; we let y ∈ X be the element in
m(T ) but not m′(T ) (or the other way around). We can then construct the product type X as follows,

X= 〈X ,B,>Evl
X ,{px}x∈X〉.

We also consider the model A on X , with a chosen evaluation function V satisfying the following condi-
tion: For any x ∈ X , we have V (px) = {x}, and for another distinct variable q we have V (q) = T . The
product type update would result in the following model,

X⊗V X = ∑
x∈X

JpxKV
A = X ,

and the two projection maps are both the identity function 1X on X . Again, this is independent of the
modal categories A or B. The topology categorical structure on the updated model, calculated in A , is
simply given as follows,

X⊗V A = 1∗X B∧1∗X A = A∧B.

In the modal category B however, we have

FX⊗V FA = 1∗XFB∧1∗XFA = FA∧FB.

In both cases, it is easy to see that the updated evaluation function >Evl
X ⊗V remains to be V itself.

By definition, consider the evaluation of the formula 〈X,{y}〉�q. On one hand,

J〈X,{y}〉�qKV
A = {y}∩ J�qKV

A∧B = {y}∩ J�qKV
F(A∧B) = {y}∩m(T ) = {y}.

On the other hand,

J〈FX,{y}〉�qKV
FA = {y}∩ J�qKV

FA∧FB = {y}∩m′(T ) = /0.

Hence, this explicitly constructs a formula where F does not preserve its interpretation, and this com-
pletes the proof.
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A comprehensive account of the categorical properties of the category of small categories and
asymmetric delta lenses is given in the recent works of Chollet et al. and Di Meglio. An important
construction for proving many of these properties is Johnson and Rosebrugh’s “pullback” of lenses,
which we call the proxy pullback of lenses. We give a new treatment of the proxy pullback in terms
of compatibility—a stronger notion of commutativity for squares of lenses. The proxy pullback is
sometimes, but not always, a real pullback. Using new notions of sync-minimal and independent lens
spans, we characterise when a lens span that forms a commuting square with a lens cospan has a
comparison lens to a proxy pullback of the cospan.

1 Introduction

A bidirectional transformation is a specification of when the joint state of two systems should be regarded
as consistent, together with a protocol for updating each system to restore consistency in response to a
change in the other [13]. An asymmetric bidirectional transformation is one where the state of one of the
systems, called the view, is completely determined by that of the other, called the source.

A symmetric delta lens is a mathematical model of a bidirectional transformation in which both
of the systems involved are modelled as categories of states and transitions (deltas) rather than merely
as sets of states, and the consistency restoration operations are aware of specifically which transition
occurred rather than merely the state resulting from it [12]. An asymmetric delta lens is, in a similar
way, a mathematical model of an asymmetric bidirectional transformation [11]. Johnson and Rosebrugh
established an equivalence between the symmetric delta lenses between two categories and the spans
of asymmetric delta lenses between the categories modulo a certain equivalence relation [14]. This
correspondence is important because, although we usually need the level of generality afforded by
symmetric delta lenses to describe real-world bidirectional transformations, we would rather work with
asymmetric delta lenses as they are easier to reason about.

Bidirectional transformations can be chained together; this is modelled mathematically by composition
of symmetric delta lenses. Under the equivalence described above, composition of spans of asymmetric
delta lenses is achieved not by pullbacks, which do not even always exist [10], but by a seemingly ad hoc
pullback-like construction that Johnson and Rosebrugh called the “pullback” (with quotation marks) [14].
As in prior work [9], we adopt the name proxy pullback from Bumpus and Kocsis [4].

Our goal in this work is to understand in what sense the notion of lens proxy pullback is actually
canonical. In category theory, canonicity is usually formalised by a universal property. Unfortunately, the
obvious universal property, the one that characterises real pullbacks, does not always hold for lens proxy
pullbacks. However, Lens is not the only category with proxies for real pullbacks. Others include

• the category of Polish probability spaces and measure preserving maps [18],
• the category of smooth manifolds and smooth maps [20], and

http://dx.doi.org/10.4204/EPTCS.380.23
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• the category of comonoids in a symmetric monoidal category with nice coreflexive equalisers [5].
Several frameworks for understanding such pullback-like constructions have been proposed, including
Simpson’s local independent products [18], Böhm’s relative pullbacks [5] and Yassine’s F-pullbacks [20].
In particular, Simpson and Böhm’s approaches are both based on the idea that although a proxy pullback
of a cospan may not be universal amongst all spans that form a commuting square with the cospan, it
should be universal amongst some class of those spans. Inspired by this idea, we answer the main question

“Amongst which lens spans is a lens proxy pullback universal?”
Although the notion of lens proxy pullback is fundamentally about modelling composites of bidirec-

tional transformations, it has recently also become an important tool for understanding the theory of lenses.
In the comprehensive account of the categorical properties of the category Lens of small categories and
lenses given by Chollet et al. [6] and Di Meglio [9], the proxy pullback played the role of a real pullback
in many of the proofs. With an answer to our main question, we address some of the open questions posed
by Chollet et al. [7] about real pullbacks in Lens and their relationship with proxy pullbacks.

Outline

In Section 3, we reformulate the notion of proxy pullback in terms of compatibility—a commutativity-like
property of squares of (asymmetric delta) lenses. Our new definition is better suited to category theory
than the original one given by Johnson and Rosebrugh.

To answer our main question, our overall approach is to search for lens span properties that are
possessed by proxy-pullback spans and that are preserved by precomposition with lenses, until we find
enough of them that a lens span posessing all of these conditions is guaranteed to have a comparison lens
to the proxy pullback. Only two such properties are needed: the first is compatibility with the cospan;
the second is a new property of lens spans that we call independence, which is itself defined in terms
of another new property of lens spans that we call sync minimality. We introduce these properties in
Section 4, and we prove their necessity in Section 5. In Theorem 6.1, one of the main results of this paper,
we see that for sync-minimal proxy-pullback spans, the possession of these two properties by a lens span
is also sufficient for the existence of such a comparison lens to the proxy-pullback span.

A natural next step is then to determine whether the sync minimality of a proxy-pullback span is
itself also a necessary condition for the existence of such a comparison lens. This is not in general true,
however, in Theorem 6.2, we see that it is actually a necessary condition for the simultaneous existence
of a comparison lens to the proxy pullback from all independent lens spans that are compatible with the
cospan. Stated differently, if a proxy-pullback span of a lens cospan is terminal amongst the independent
spans that are compatible with the cospan, then the proxy-pullback span is necessarily sync minimal.

Combining the above results, a proxy pullback is a real pullback if and only if it is sync minimal
and every lens span that forms a commuting square with the cospan is compatible with the cospan and
is also independent. Although this statement completely characterises when a proxy pullback is a real
pullback, it is somewhat unsatisfactory, as it is not expressed in terms of properties of the cospan that are
easily checked. There is, however, a tractable characterisation for lens cospans whose apex is the terminal
category. Indeed, a proxy product of two categories is a real product if and only if at least one of the two
categories is a discrete category. This result, Proposition 8.3, is the pinnacle of Sections 7 and 8. Finding
such a tractable characterisation for general lens cospans is ongoing work.

Remark 1.1. This paper is based on Chapter 4 of the author’s Master of Research thesis [10].
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2 Background

2.1 Notation

Application of functions (functors, etc.) is written by juxtaposing the function name with its argument, and
parentheses are only used when needed. Binary operators like ◦ have lower precedence than application,
so an expression like Fa◦Fb parses as (Fa)◦ (Fb).

Let Cat denote the category whose objects are small categories and whose morphisms are functors.
Categories with boldface names A, B, C, etc. are always small. We write |C| for the set of objects of a
small category C, and, for all X ,Y ∈ |C|, we write C(X ,Y ) for the set of morphisms of C from X to Y .
For each X ∈ |C|, we write C(X ,∗) for the set

⊔
Y∈|C|C(X ,Y ) of all morphisms in C out of X . We write

src f and tgt f for, respectively, the source and target of a morphism f . We also write f : X → Y to say
that X ,Y ∈ |C| and f ∈ C(X ,Y ). The composite of morphisms f : X → Y and g : Y → Z is denoted g◦ f .

The category with a single object 0 and no non-identity morphisms, also known as the terminal
category, is denoted 1. The category with two objects 0 and 1 and a single non-identity morphism, namely
u : 0→ 1, also known as the interval category, is denoted 2. We will identify objects and morphisms of a
small category C with the corresponding functors 1→ C and 2→ C respectively.

If the square in Cat

D B

A C

T

S G

F

is a pullback square and S′ : D′→ A and T ′ : D′→ B are functors for which F ◦S′ = G◦T ′, then we write
〈S′, T ′〉 for the functor D′→ D induced from S′ and T ′ by the universal property of the pullback. By our
above identification of objects with functors from 1, if A ∈ |A| and B ∈ |B| are such that FA = GB, then
〈A, B〉 is the object of D selected by the functor 1→ D induced by the universal property of the pullback
from the functors 1→ A and 1→ B that respectively select the objects A and B.

2.2 Cofunctors and Lenses

The definition of (asymmetric delta) lens most useful to us will be as a suitable pairing of a functor and a
cofunctor [2]. Let us first recall the definition of a cofunctor [1, 7].
Definition 2.1. For small categories A and B, a cofunctor F : A→ B consists of

• a function F : |A| → |B|, called the object function, and

• functions FA : B(FA,∗)→ A(A,∗) for all A ∈ |A|, called lifting functions,
such that the equations

F tgtFAb = tgtb FA idFA = idA FA(b′ ◦b) = FA′b′ ◦FAb
(PutTgt) (PutId) (PutPut)

hold whenever they are defined.
Warning 2.2. The notions of cofunctor and contravariant functor are distinct and unrelated.

There is a category Cof whose objects are small categories and whose morphisms are cofunctors. The
composite G◦F of cofunctors F : A→ B and G : B→ C has as its object function the composite of the
object functions of F and G, and has (G◦F)Ac = FAGFAc for all A ∈ |A| and all c ∈ C(GFA,∗).

In the following definition of a lens, although we use the name of the lens to refer both to its get
functor and its put cofunctor, the equal object function requirement ensures that there is no ambiguity.
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Definition 2.3. For small categories A and B, a lens F : A→ B consists of
• a functor F : A→ B, called the get functor, and

• a cofunctor F : A→ B, called the put cofunctor,
with same object functions, such that the equation

FFAb = b (PutGet)

holds whenever it is defined.
There is a category Lens of small categories and lenses. There are also identity-on-objects functors

G : Lens→ Cat and P : Lens→ Cof that respectively send a lens to its get functor and put cofunctor.

2.3 Discrete Opfibrations and Split Opfibrations

Definition 2.4. A functor F : A→ B is a discrete opfibration if, for each A ∈ |A| and each b ∈ B(FA,∗),
there is a unique a ∈ A(A,∗) such that Fa = b.
Definition 2.5. A lens F : A→ B is a discrete opfibration if the equation

FAFa = a (GetPut)

holds for each A ∈ |A| and each a ∈ A(A,∗).
Warning 2.6. The name GetPut has, in the past, been used for what is now called PutId. The reader should
note that lenses in general need not satisfy GetPut the way that we have defined it.

If F : A→ B is a discrete opfibration, then there is a unique lens mapped by G to F , which we
sometimes also refer to as F . A lens is a discrete opfibration if and only if its get functor is a discrete
opfibration. Together, these results mean that we need not specify whether a discrete opfibration F : A→B
is a functor or a lens, and we can use the name F in both functor and lens contexts without ambiguity.
Definition 2.7. For a functor F : A→B, a morphism f : X→Y in A is F-opcartesian if, for all morphisms
f ′ : X→Y ′ in A and all morphisms v : FY → FY ′ in B such that F f ′ = v◦F f , there is a unique morphism
u : Y →Y ′ in A such that f ′ = u◦ f and v = Fu. For f to be weakly F-opcartesian, the property described
in the previous sentence need only hold for v = idFY .

A

X Y

Y ′

f

∀ f ′
∃!u

B

FX FY

FY ′

F f

F f ′
∀v

F

Definition 2.8. A lens F : A→ B is a split opfibration if each morphism FAb is G F-opcartesian.
Proposition 2.9. A lens F : A→ B is a split opfibration if and only if, for all a : A→ A′ in A, there is a
unique u : tgtFAFa→ A′ in A such that a = u◦FAFa and Fu = idFA′ .

A

A tgtFAFa

A′

FAFa

∀a
∃!u

B

FA FA′

FA′

Fa

FaF

Proof sketch. Having opcartesian lifts is equivalent to having weakly opcartesian lifts that are closed
under composition. The chosen lifts of a lens are, by the PutPut axiom, closed under composition.

In particular, every discrete opfibration is a split opfibration.
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3 Compatible Squares and Proxy Pullbacks

Compatibility is a stronger notion of commutativity for a square of lenses. In addition to requiring that
the underlying square of functors and the underlying square of cofunctors commute, it also imposes
conditions on certain squares formed from a mix of the underlying functors and the underlying cofunctors.

Definition 3.1. A compatible lens square is a commuting lens square

D B

A C

G

F

G

F

(1)

such that the compatibility equations

FGDa = GFDFa GFDb = FGDGb

hold whenever they are defined. We also say that (G,F) is compatible with (F,G).

Proposition 3.2. Every commuting lens square for which one leg of the cospan is a discrete opfibration is
a compatible lens square.

Proof. For all D ∈ |D|, all a ∈ A(GD,∗) and all b ∈ B(FD,∗), we have

FGDa = FGDFGDFa = F(G◦F)DFa = F(F ◦G)DFa = FFDGFDFa = GFDFa,

GFDb = FGDFGFDb = FGDGFFDb = FGDGb.

Remark 3.3. As identity lenses are discrete opfibrations, every commuting lens triangle becomes a
compatible lens square by inserting an identity lens into the triangle in the appropriate place.

Definition 3.4. A proxy-pullback square is a compatible lens square sent by G to a pullback square. A
proxy pullback of a lens cospan is a lens span forming a proxy-pullback square with the cospan. A proxy
product is a proxy pullback of a cospan whose apex is the terminal category.

In diagrams, we will mark proxy-pullback squares with PPB.
Suppose that the lens square (1) is mapped by G to a pullback square. By the universal property of

this pullback square, the compatibility conditions for (1) to be a proxy-pullback square are equivalent to
the equations GDa = 〈a, GFDFa〉 and FDb = 〈FGDGb, b〉. Actually, starting with a pullback in Cat of
the get functors of a lens span, these equations define lifts on the pullback projection functors; one may
check that this turns these functors into lenses and that the resulting lens square is compatible.

Proposition 3.5. For each lens cospan, there is a unique proxy pullback of the cospan above each pullback
of the get functors of the cospan.

Proposition 3.6 ([10, Corollary 3.15]). Proxy-pullback spans are unique up to unique span isomorphism.

4 Sync-minimal and Independent Lens Spans

As was explained in the introduction to this paper, new notions of sync minimality and independence of
lens spans give various necessary and sufficient conditions for the existence of comparison lenses into
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proxy pullbacks. In this section, we merely introduce these notions, delaying the development of their
theory to when it is needed later in the paper.

Johnson and Rosebrugh [14] proposed that we regard a lens span A F←− C G−→ B as a synchronisation
protocol between the systems represented by the categories A and B. From this perspective, the category C
has the sole purpose of coordinating the propagation to B of transitions that occur in A and vice versa. As
transitions always originate in A or B, there may be morphisms in C that are never used—these are the
ones that are not composites of a sequence of morphisms that are all lifts along F or G. If there are no
such extraneous morphisms in C, we call the lens span sync minimal.
Definition 4.1. A lens span

A C BF G

is sync minimal if each morphism in C is a composite of a sequence of morphisms

C1 C2 C3 Cn−1 Cn
c1 c2 · · · cn−1

that are all lifts along F or G, that is, for each k, either ck = FCk Fck or ck = GCk Gck.
There are many sync-minimal lens spans, but not all proxy-pullback spans are sync minimal.

Example 4.2. Consider the proxy-pullback square depicted in the diagram below, where the lens lifts are
indicated by the colouring of the morphisms.

D (A1,B1)

(A′2,B
′
2) (A2,B′2)

(A′2,B2) (A2,B2)

(a,b)(a′,b)

(a,b′)(a′,b′)

A

A1

A′2 A2

a′ a

BB1

B′2

B2

b

b′

C

C1

C2

c
F

GG

F

PPB

The lens span (G,F) is not sync minimal as the morphism (a′,b′) is not a composite of lifts. Notice that
removing (a′,b′) from D would make the span (G,F) sync minimal.

Starting with a lens span A F←− C G−→ B, by removing all morphisms in C that are not composites of
a sequence of morphisms that are lifts along F or G, we obtain a sync-minimal lens span from A to
B that encodes the same synchronisation protocol as (F,G). We call this sync-minimal lens span the
sync-minimal core of (F,G) and denote it by M (F,G). Let E(F,G) denote the inclusion functor from the
apex of M (F,G) to C.

We are now ready to define the notion of independence for lens spans. It is similar to a jointly-monic
condition, except only with respect to morphisms in the apex of the sync-minimal core of the span with
the same source object. Defining independence with respect to the sync-minimal core is necessary for
independence to be preserved by precomposition with lenses.
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Definition 4.3. A lens span A F←− C G−→ B is called independent if, for all morphisms c and c′ in the apex
of M (F,G) with the same source, whenever Fc = Fc′ and Gc = Gc′, also c = c′.

Remark 4.4. Simpson [18] defines the notion of independent product with respect to a chosen independence
structure—a multicategory of multispans, called independent multispans, that satisfies certain additional
properties. This is where our terminology for independent lens spans originates. We will have more to say
about Simpson’s independent products and local independent products at the end of this paper.

The lens span (G,F) in Example 4.2 is independent.

5 Necessity of Compatibility and Independence

Proxy-pullback spans of a lens cospan are, by definition, compatible with the cospan. In this section, we
will show that proxy-pullback spans are also independent, and that compatibility and independence of lens
spans are preserved by precomposition with lenses. It follows that whenever a lens span that commutes
with a lens cospan has a comparison lens to the proxy pullback of the cospan, the span is necessarily
independent and compatible with the cospan.

Proposition 5.1. All proxy-pullback spans are independent.

Proof. Let A G←−D F−→ B be a proxy pullback of some lens cospan. For all D ∈ |D|, and all d,d′ ∈D(D,∗),
if Fd = Fd′ and Gd = Gd′ then d = d′ by the universal property of the pullback in Cat underlying the
proxy pullback. In particular, this holds for those objects and morphisms in the apex of M (G,F).

Proposition 5.2. Consider the following diagram in Lens, where K1 = K2 ◦H and J1 = J2 ◦H.

E1

E2

A B

C

HK1 J1

K2 J2

F G

If the span (K2,J2) is compatible with the cospan (F,G), then so is the span (K1,J1).

Proof. Suppose that the span (K2,J2) is compatible with the cospan (F,G). Then the span (K1,J1)
forms a commuting square with the cospan (F,G). One of the compatibility conditions holds because
J1K1

Ea = J2HHEK2
HEa = J2K2

HEa = GJ2HEFa = GJ1EFa, and the other holds similarly.

Proposition 5.3. Consider the following commuting diagram in Lens.

C1

A B

C2

F1 G1

H

F2 G2

If the span (F2,G2) is independent, then the span (F1,G1) is also independent.
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Proof. Suppose that c and c′ are morphisms in the apex of M (F1,G1) with the same source object C
such that F1c = F1c′ and G1c = G1c′. Then Hc and Hc′ are morphisms in the apex of M (F2,G2) with the
same source object HC such that F2Hc = F2Hc′ and G2Hc = G2Hc′. As (F2,G2) is independent, actually
Hc = Hc′. But c and c′ are both composites of lifts along H ◦F2 and H ◦G2, so they are both lifts along
H, and thus c = HCHc = HCHc′ = c′.

Although compatibility and independence give necessary conditions for the existence of a comparison
lens, these conditions are not sufficient ones.

Example 5.4. Consider again the proxy-pullback square in Example 4.2. The sync-minimal core
M (G,F) of (G,F) is obtained by removing the morphism (a′,b′) from D. Although the span M (G,F)
is independent and compatible with the cospan (F,G), there is no comparison lens from it to the proxy-
pullback span (G,F). Assume that such a comparison lens exists. Then, as the put cofunctor of the
comparison lens commutes with the put cofunctors of the legs of both spans, all of the morphisms in
the apex of M (G,F) are necessarily lifts of the corresponding morphisms in D. The PutGet axiom
necessitates that the lift by such a comparison lens of the morphism (a′,b′) into the apex of M (G,F) be
distinct from the lifts of the other morphisms (a′,b), (a,b′) and (a,b), but there is no such morphism.

6 Necessity and Sufficiency of Sync Minimality

In the previous section we saw that a lens span that commutes with a lens cospan and has a comparison
lens to the proxy pullback of the cospan is necessarily independent and compatible with the cospan. It
turns out that if the proxy pullback is also sync minimal, then these conditions are also sufficient.

Theorem 6.1. Consider the following commuting diagram in Lens.

E

D

A B

C

K J

G F

PPB

F G

Suppose that the span (K,J) is independent and is compatible with the cospan (F,G). If the span (G,F)
is sync minimal, then there is a unique lens E→ D such that the triangles commute.

Proof. Suppose that (G,F) is sync minimal. Let L : E→ D be the unique comparison functor from the
span (G K,G J) to the pullback span (G G,G F). If there is a lens structure on L that makes the triangles
commute, then, for all E ∈ |E|, all a ∈ A(KE,∗) and all b ∈ B(JE,∗), we necessarily have

LEGLEa = KEa and LEFLEb = JEb;

that is, the lifts by L of those morphisms of D that are lifts by G and F are determined by the lifts by K
and J. As (G,F) is sync minimal, each morphism in D is a composite of lifts by G and lifts by F , and so
the above equations and the PutPut axiom for L determine the lifts by L of all morphisms of D. Such a
lens structure on L is thus uniquely determined if it exists.
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In order to define LEd using the above equations, we need to check, for any two decompositions

FDnbn ◦GDn−1an−1 ◦ · · · ◦FD1b1 ◦GLEa0 and FD′mb′m ◦GD′m−1a′m−1 · · · ◦FD′1b′1 ◦GLEa′0

of d, that

JEnbn ◦KEn−1an−1 ◦ · · · ◦ JE1b1 ◦KEa0 = JE ′mb′m ◦KE ′m−1a′m−1 · · · ◦ JE ′1b′1 ◦KEa′0.

Using the compatibility of both (K,J) and (G,F) with (F,G), we see that

Fd = F
(
FDnbn ◦GDn−1an−1 ◦ · · · ◦FD1b1 ◦GLEa0

)
= FFDnbn ◦FGDn−1an−1 ◦ · · · ◦FFD1b1 ◦FGLEFa0

= bn ◦GFDn−1Fan−1 ◦ · · · ◦b1 ◦GFLEFa0

= bn ◦ JKEn−1an−1 ◦ · · · ◦b1 ◦ JKEa0

= JJEnbn ◦ JKEn−1an−1 ◦ · · · ◦ JJE1b1 ◦ JKEa0

= J
(
JEnbn ◦KEn−1an−1 ◦ · · · ◦ JE1b1 ◦KEa0

)
Similarly, we see that

J
(
JE ′mb′m ◦KE ′m−1a′m−1 · · · ◦ JE ′1b′1 ◦KEa′0

)
= Fd

K
(
JEnbn ◦KEn−1an−1 ◦ · · · ◦ JE1b1 ◦KEa0

)
= Gd

K
(
JE ′mb′m ◦KE ′m−1a′m−1 · · · ◦ JE ′1b′1 ◦KEa′0

)
= Gd,

and so
JEnbn ◦KEn−1an−1 ◦ · · · ◦ JE1b1 ◦KEa0 = JE ′mb′m ◦KE ′m−1a′m−1 · · · ◦ JE ′1b′1 ◦KEa′0

by the independence of (K,J).
We now check that L, with lifts defined in this way, satisfies the lens axioms. The PutPut axiom is

immediate from the definition of L, the PutId axiom follows from that of K (or of J), and the PutGet
axiom holds because

LKEa = 〈GLKEa, FLKEa〉= 〈KKEa, JKEa〉= 〈a, GJEFa〉= 〈a, GFLEFa〉= GLEa

and similarly LJEb = FLEb for each E ∈ |E|, each a ∈ A(KE,∗) and each b ∈ B(JE,∗). The relevant
triangles of lenses commute by definition.

Although the sync minimality of a proxy pullback of a lens cospan is sufficient for the existence of
a comparison lens to the proxy-pullback span from an independent lens span that is compatible with
the lens cospan, it is not in general necessary. For example, there is always a comparison lens from any
proxy-pullback span to itself, namely, the identity lens on its apex. However, sync minimality is in fact
necessary for there to be such comparison lenses simultaneously from all of the independent lens spans
that are compatible with the lens cospan.
Theorem 6.2. Consider the proxy-pullback square in Lens depicted below.

D B

A C

F

G PPB G

F

If the proxy-pullback span (G,F) is terminal amongst the independent spans that are compatible with the
cospan (F,G), then the proxy-pullback span (G,F) is sync minimal.
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To prove this proposition, we will consider what happens when there is a comparison lens to a proxy
pullback from its sync-minimal core.

Lemma 6.3. Let A G←− D F−→ B be a lens span. The functor E(G,F) has a lens structure if and only if it is
the identity functor on D, in which case (G,F) = M (G,F) is sync minimal.

Proof. By construction, the functor E(G,F) is an identity function on objects and is a subset inclusion on
morphisms. A lens that is surjective on objects is also surjective on morphisms [6]. Hence, if E(G,F) is the
get functor of a lens, then it is surjective on morphisms and thus actually the identity functor. Conversely,
if E(G,F) is the identity functor on D, then it is the get functor of the identity lens on D.

Proof of Theorem 6.2. Suppose that (G,F) is terminal amongst the independent spans that are compatible
with (F,G). As the span (G,F) is a proxy pullback, it is by definition compatible with the cospan (F,G),
and it is independent by Proposition 5.1. The independence of the span M (G,F) and its compatibility
with the cospan (F,G) follows from these properties of the span (G,F); the former from the way that the
sync-minimal core is defined, and the latter because independence is defined in terms of the sync-minimal
core. By our assumption, there is thus a comparison lens H from the span M (G,F) to the span (G,F).
By the universal property of the pullback span (G G,G F) in Cat, the functors G H and E(G,F) are both
the unique comparison functor from the span of get functors of M (G,F) to the pullback span (G G,G F),
and so they are necessarily equal. The result then follows by Lemma 6.3.

7 Proxy Pullbacks of Split Opfibrations

In the remainder of this paper, we unpack the results in the previous two sections for the proxy pullback
of a lens cospan with additional known properties. In this section, we consider what happens when one of
the legs of the cospan is a split opfibration.
Proposition 7.1. A proxy-pullback span of a lens cospan with one leg a split opfibration is terminal
amongst the independent lens spans that are compatible with the cospan.

Proposition 7.1 follows directly from Theorem 6.1 and the following lemma.
Lemma 7.2. Consider a proxy-pullback square

D B

A C

G

F

PPB G

F

.

If F or G is a split opfibration then the lens span (G,F) is sync minimal.

Proof. Without loss of generality, suppose that F is a split opfibration. Let d : D1→D2 be a morphism in
D, and let a = Gd : A1→ A2 and b = Fd : B1→ B2. Let u be the unique comparison morphism from the
F-opcartesian morphism FA1Fa to a, as in the diagram

A1 A′2

A2

a

FA1 Fa

u .

Then d = 〈a, b〉= 〈u, idB2〉 ◦ 〈FA1Fa, b〉= 〈u, GB2Fu〉 ◦ 〈FA1Gb, b〉= G〈A
′
2,B2〉u◦F〈A1,B1〉b.
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Remark 7.3. Split opfibrations are pullback stable, so in the proof above F is actually a split opfibration.
However, lens spans with one leg a split opfibration are not in general sync minimal.

Shortly we will see that for a lens cospan with one leg a split opfibration, the independence condition for
lens spans forming compatible squares with the cospan is equivalent to a simpler notion of independence,
which we will call split independence.

Definition 7.4. A lens span A G←− D F−→ B is called F-split independent if for all D1 ∈ |D|, all a1 : GD1 =
A1→ A′1 in A, all b : FD1 = B2→ B2 in B, and all a2 : tgtGFD1b = A2→ A′2, as shown in the diagram

D

D1

D′1

D2

D′2
D′2

GD1 a1

FD1 b

FD′1 b

GD2 a2

A

A1

A′1

A2

A′2

GFD1 b

a1 a2

GFD′1 b

B

B1

B1

B2

B2

FGD1 a1

b

b

FGD2 a2
G F , (2)

whenever the square in A commutes and FGD1a1 = idB1 and FGD2a2 = idB2 , then also D′2 = D′2 and the
resulting square in D commutes.

Proposition 7.5. Consider a compatible lens square

D B

A C

G

F

G

F

.

If F is a split opfibration, then (G,F) is independent if and only if it is F-split independent.

The only if direction follows directly from the definition of independence. Essential to the proof of
the if direction is the following lemma.

Lemma 7.6. Suppose that F is a split opfibration and (G,F) is F-split independent. Then, each morphism
d : D1→ D2 in the apex of M (G,F) has the factorisation

D1 D′2

D2

FD1 Fd

d GD′2 u
(3)

where u : GD3→ GD2 comes from the universal property of the F-opcartesian morphism FGD1GFd, that
is, u is the unique morphism of A for which Fu = idFGD2

and the diagram

GD1 GD′2

GD2

FGD1 GFd

Gd
u (4)

commutes. In particular, the right leg of M (G,F) is also a split opfibration.
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We will return to prove the lemma shortly, but let us first finish the proof of the proposition.

Proof of if direction of Proposition 7.5. If F is a split opfibration and (G,F) is F-split independent, then
Lemma 7.6 implies that each morphism d in the apex of M (G,F) is uniquely determined by the data Gd
and Fd. Indeed, from (3), d is a composite of morphisms expressed in terms of Fd and u, and u itself is
uniquely determined by the top side and hypotenuse of the triangle (4), which are themselves expressed in
terms of Gd and Fd.

Proof of Lemma 7.6. Recall that each morphism in the apex of M (G,F) is a composite

D1 D2 D3 Dn−1 Dn
d1 d2 · · · dn−1

of morphisms in D such that, for each k, either dk = GDk ak or dk = FDk bk, where ak = Gdk and bk = Fdk.
We will inductively construct the dashed morphisms in the diagram

D′1 D′2 D′3 D′n−1 D′n

D1 D2 D3 Dn−1 Dn

FD′1 b1

GD′1 u1

FD′2 b2

GD′2 u2

· · ·

GD′3 u3

FD′n−1 bn−1

GD′n−1 un−1 GD′n un

d1 d2
· · ·

dn−1

in D such that the resulting diagram in D commutes and FGD′k uk = idFDk
for each k.

For the base step, we may set D′1 = D1 and u1 = idGD1
, so that FGD′1u1 = F idD1 = idFD1

.
For the inductive step, suppose that we have already constructed D′k and uk, and wish now to construct

D′k+1 and uk+1. Consider the diagram

D

D′k

Dk

D′k+1

Dk+1

Dk+1

GD′k uk

FD′k bk

dk

GD′k+1 uk+1

C

Ck

Ck

Ck+1

Ck+1

ck

ck

A

A′k

Ak

A′k+1

Ak+1

FA′k ck

uk uk+1

ak

B

Bk

Bk

Bk+1

Bk+1

bk

bk

G

F

G

F

From the universal property of the F-opcartesian morphism FA′k ck, there is a unique morphism uk+1 : A′k+1→
Ak+1 in A above idCk+1 such that the square in A above commutes.

Suppose that dk = GDk ak. By the PutPut axiom, and commutativity of the lens square,

dk ◦GD′k uk = GD′k+1uk+1 ◦GD′k FA′k ck = GD′k+1uk+1 ◦FD′k GBk ck. (5)
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We also have FGD′k uk = GBk Fuk = GBk idCk = idBk by compatibility of the lens square, and similarly
FGD′k+1uk+1 = idBk+1 . Hence, applying F to both sides of (5), we see that bk = GBk ck. Thus (5) actually
says that Dk+1 = Dk+1 and the square in D above commutes.

Otherwise, dk = FDk bk, and thus also ak = GFDk bk. Also, as the lens square is compatible, FA′k ck =
GFD′k bk. As (G,F) is split independent, again Dk+1 = Dk+1 and the square in D above commutes.

8 Proxy Pullbacks of Discrete Opfibrations and Proxy Products

The results in the previous section apply in particular to proxy pullbacks of lens cospans with one leg a
discrete opfibration. For proxy pullbacks of such cospans, Proposition 7.1 simplifies as follows.

Proposition 8.1. Proxy pullbacks of discrete opfibrations are real pullbacks in Lens.

This result was actually first proved by Chollet et al. [6], but in a nuts-and-bolts manner rather than as
a consequence of the general theory that we present in this paper.

Lemma 8.2. Consider a compatible lens square

D B

A C

G

F

G

F

.

If F or G is a discrete opfibration, then (G,F) is independent.

Proof. Without loss of generality, suppose that F is a discrete opfibration. Let D1 ∈ |D|, let a1 : GD1 =
A1→ A′1 in A, let b : FD1 = B2→ B2 in B, and let a2 : tgtGFD1b = A2→ A′2, as shown in the diagram
(2). Suppose also that the square in A commutes, and that FGD1a1 = idB1 and FGD2a2 = idB2 . We have

Fa1 = GGB1Fa1 = GFGD1a1 = G idB1 = idGB1 = idFA1

by compatibility of the lens square, and so a1 = idA1 as F is a discrete opfibration. Hence GD1a1 =
GD1 idA1 = idD1 and D′1 = D1. Similarly, GD2a2 = idD2 and D′2 = D2. As D′1 = D1, we have FD1b = FD′1b.
Hence the square in D commutes.

Proof of Proposition 8.1. By Proposition 7.1, a proxy-pullback span of a lens cospan with one leg a
discrete opfibration is terminal amongst the independent lens spans that are compatible with the cospan.
Every lens span that forms a commuting square with such a cospan is actually compatible with the cospan
by Proposition 3.2 and independent by Lemma 8.2.

Specialising further, we now consider the proxy pullbacks of those cospans whose apex is the terminal
category, that is, proxy products. Recall that the unique lens from a category C to the terminal category is
a discrete opfibration if and only if C is a discrete category. The specialisation of Proposition 8.1 then
says that the proxy product of a category with a discrete category is a real product. Actually, in this case,
the converse also holds.

Proposition 8.3. The proxy product of two categories is a real product if and only if at least one of the
two categories is a discrete category.
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To prove the converse, it suffices to show, for all non-discrete categories A and B, that there is a
non-independent lens span from A to B. We may explicitly describe such a non-independent lens span;
it is merely the so-called funny tensor product A�B of A and B with a canonical lens structure on the
projection functors. Henceforth, we will refer to the funny tensor product as the free product of categories,
as it generalises the well-known free product of groups. The free product of categories has several different
descriptions; we will use the following one.

Definition 8.4. The free product A�B of categories A and B is the category with object set |A|× |B|
whose morphisms are freely generated by those of the form

(A1,B)
(a,B)−−−→ (A2,B) and (A,B1)

(A,b)−−−→ (A,B2),

subject to the equations

(idA,B) = id(A,B) (a2,B)◦ (a1,B) = (a2 ◦a1,B)

(A, idB) = id(A,B) (A,b2)◦ (A,b1) = (A,b2 ◦b1).

There are projection lenses P1 : A�B→ A and P2 : A�B→ B, defined by the equations

P1(A,B) = A P1(a,B) = a P1(A,b) = idA P1
(A,B)a = (a,B)

P2(A,B) = B P2(A,b) = b P2(a,B) = idB P2
(A,B)b = (A,b),

whose get functors are the usual projection functors.

Proof of Proposition 8.3. The if direction is a particular case of Proposition 8.1. For the only if direction,
suppose that A and B are both non-discrete categories, that is, that there are non-identity morphisms
a : A1→ A2 in A and b : B1→ B2 in B. Then the morphisms

(A1,B1)
(a,B1)−−−→ (A2,B1)

(A2,b)−−−→ (A2,B2) and (A1,B1)
(A1,b)−−−→ (A1,B2)

(a,B2)−−−→ (A2,B2)

in A�B both have the same source object, and both are mapped by P1 to a and P2 to b, but they are not
equal. Hence the lens span A P1←− A�B P2−→ B is not independent.

9 Conclusion

In this paper, we gave necessary and sufficient conditions for when a lens span that forms a commuting
square with a lens cospan has a comparison lens to a proxy pullback of the cospan. These conditions
involved the new notions of compatibility, sync minimality and independence. They enabled us to describe
exactly when a proxy pullback is a real pullback, and this description simplified further for proxy products.
A search for such a simplified description for general proxy pullbacks is ongoing.

We would like to obtain categorical characterisations of the notions of sync minimality and indepen-
dence, perhaps in terms of some universal property. Whilst the author is yet to discover a compelling such
characterisation of independent lens spans, some interesting progress has already been made for sync
minimal ones. The key observation is that being sync minimal is really a property of the put cofunctors
of a lens span, and that the process of taking the sync minimal core actually gives a factorisation of
this span of put cofunctors. Spivak and Niu [19] show that Cof has products; the explicit description
of these products is unfortunately rather complicated—the objects of the product of two categories are
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certain pairs of rooted infinite trees whose edges are morphisms from either category, and the morphisms
out of such an object are the paths in either tree from its root. It turns out that a cofunctor span is sync
minimal exactly when its product pairing in Cof has surjective lifting functions. We will call a cofunctor
with surjective lifting functions cofull and one with injective lifting functions cofaithful. There is a
well-known factorisation system on Cof whose left class is the bijective-on-objects cofunctors and whose
right class is the discrete opfibrations [7], which, in this context, we might also call the cofull cofaithful
cofunctors. The factorisation system on Cof that we are actually interested in has as its left class the
cofaithful bijective-on-objects cofunctors, and its right class the cofull cofunctors; this factorisation of
the put cofunctor of a lens coincides with the other factorisation. If we factor the product pairing of a
cofunctor span using this factorisation system, then the sync-minimal core of the cospan is obtained by
composing the second factor with the appropriate product projection cofunctors.

We have already recalled that symmetric lenses between two categories correspond to the equivalence
classes of a certain equivalence relation on asymmetric lens spans between the two categories [14]. Clarke,
with a different definition of symmetric lens, constructed an adjoint triple1

SymLens(A,B) SpanLens(A,B)

L

`
`

R

M

between his category SymLens(A,B) of symmetric lenses from A to B and the category SpanLens(A,B)
whose objects are lens spans from A to B and whose morphisms are functors satisfying certain compatibil-
ity conditions [8]. The comonad L ◦M on SpanLens(A,B) induced by the adjoint triple appears to be
closely related to our process that sends a lens span to its sync minimal core. Additionally, as L is fully
faithful, we may think of those lens spans in the image of L as representing symmetric lenses. It might
thus be reasonable to think of the sync-minimal lens spans as being the symmetric lenses, an idea that is
reinforced by the interpretation of the sync-minimal property that was given in Section 4.

The original proposal for the Categories of Maintainable Relations project of the Applied Category
Theory Adjoint School 2020, which did not end up being the actual focus of the project, was to work out
how to view symmetric lenses as some kind of generalised relations in Lens. A relation in a category
from object X to object Y is usually defined as a jointly monic span from X to Y . A regular category [3]
is a finitely complete category with a pullback-stable regular-epi mono factorisation system. Relations
in regular categories are particularly nice as they form the morphisms of a bicategory; the composite of
two relations is the image (from the factorisation system) of their composite as spans (from the pullback).
Given a not-necessarily-proper orthogonal factorisation system (E ,M ) on a category with products,
an M -relation from X to Y is a span from X to Y whose product pairing is in M . If the factorisation
system is pullback-stable, then the M -relations still form the morphisms of a bicategory with nice
properties [16, 15, 17], where composition of M -relations is defined similarly to that of relations in a
regular category. As Cof is finitely complete, we may consider the M -relations in Cof for the factorisation
system where E is the class of cofaithful bijective-on-objects cofunctors and M is the class of cofull
cofunctors. From our earlier discussion, these M -relations are exactly the sync-minimal cofunctor spans.
It would be interesting to work out what the composition of such M -relations is, as the pullback in Cof is
very different to the proxy pullback in Lens. Returning to the question of whether symmetric lenses may
be viewed as some kind of relations in Lens, we seem to need a further generalisation of the notion of
internal relation as the sync-minimal core of a lens span is not obtained from a factorisation system on
Lens itself.

1Clarke’s functor M is not to be confused with our M that sends a lens span to its sync-minimal core.
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Value Iteration is Optic Composition

Jules Hedges Riu Rodrı́guez Sakamoto

Dynamic programming is a class of algorithms used to compute optimal control policies for Markov

decision processes. Dynamic programming is ubiquitous in control theory, and is also the foundation

of reinforcement learning. In this paper, we show that value improvement, one of the main steps of

dynamic programming, can be naturally seen as composition in a category of optics, and intuitively,

the optimal value function is the limit of a chain of optic compositions. We illustrate this with three

classic examples: the gridworld, the inverted pendulum and the savings problem. This is a first step

towards a complete account of reinforcement learning in terms of parametrised optics.

1 Introduction

In this paper we describe basic concepts of dynamic programming in terms of categories of optics. The

class of models we consider are discrete-time Markov decision processes, aka. discrete-time controlled

Markov chains. There are classical methods of computing optimal control policies, underlying much

of both classical control theory and modern reinforcement learning, known collectively as dynamic pro-

gramming. These are based on two operations that can be interleaved in many different ways: value

improvement and policy improvement. The central idea of this paper is the slogan value improvement is

optic precomposition, or said differently, value improvement is a representable functor on optics.

Given a control problem with state space X , a value function V : X→R represents an estimate of the

long-run payoff of following a policy starting from any state, and can be equivalently represented as a

costate V :
(

X
R

)

→ I in a category of optics. Every control policy π also induces an optic λ (π) :
(

X
R

)

→
(

X
R

)

.

The general idea is that the forwards pass of the optic is a morphism X → X describing the dynamics of

the Markov chain given the policy, and the backwards pass is a morphism X ⊗R→ R which given the

current state and the continuation payoff, describing the total payoff from all future stages, returns the

total payoff for the current stage given the policy, plus all future stages.

Given a policy π and a value function V :
(

X
R

)

→ I, the costate
(

X
R

) λ(π)
−→

(

X
R

) V
−→ I is a closer approx-

imation of the value of π . This is called value improvement. Iterating this operation

. . .

(

X

R

)

λ(π)
−→

(

X

R

)

λ(π)
−→

(

X

R

)

V
−→ I

converges efficiently to the true value function of the policy π .

Replacing π with a new policy that is optimal for its value function is called policy improvement. Re-

peating these steps is known as policy iteration, and converges to the optimal policy and value function.

Alternatively, instead of repeating value improvement until convergence before each step of policy

improvement, we can also alternate them, giving the composition of optics

. . .

(

X

R

)

λ(π2)
−→

(

X

R

)

λ(π1)
−→

(

X

R

)

V
−→ I

where each policy πi is optimal for the value function to the right of it. This is known as value iteration,

and also converges to the optimal policy and value function. For an account of convergence properties of

these algorithms, classic textbooks are [32, Sec.6], [6, Ch.1].

http://dx.doi.org/10.4204/EPTCS.380.24
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In this paper we illustrate this idea, using mixed optics to account for the categorical structure of

transitions in a Markov chain and the convex structure of expected payoffs, which typically form the

kleisli and Eilenberg-Moore categories of a probability monad. This paper is partially intended as an

introduction to dynamic programming for category theorists, focussing on illustrative examples rather

than on heavy theory.

1.1 Related work

The precursor of this paper was early work on value iteration using open games [22]. The idea originally

arose around 2016 during discussions of the first author with Viktor Winschel and Philipp Zahn. An early

version was planned as a section of [25] but cut partly for page limit reasons, and partly because the idea

was quite uninteresting until it was understood how to model stochastic transitions in open games [7] via

optics [33]. In this paper we have chosen to present the idea without any explicit use of open games, both

in order to clarify the essential idea and also to bring it closer to the more recent framework of categorical

cybernetics [11], which largely subsumes open games [12]. (Although, actually using this framework

properly is left for future work.)

A proof-of-concept implementation of value iteration with open games was done in 2019 by the

first author and Wolfram Barfuss1, implementing a model from [4] - a model of the social dilemma of

emissions cuts and climate collapse as a stochastic game, or jointly controlled MDP - and verifying it

against Barfuss’ Matlab implementation. A far more advanced implementation of reinforcement learning

using open games was developed recently by Philipp Zahn, currently closed-source, and was used for

the paper [16].

The most closely related work to ours is [31], which formulates MDPs in terms of F-lenses [35] of

the functor BiKl(C×−,∆(R×−))op, where C×− is the reader comonad and ∆(R×−) is a probability

monad over actions with their expected value. A MDP there is a lens from states and potential state

changes and rewards to the agents observation and input
(

X
∆(X×R)

)

→
(

O
I

)

. Our approach differs in two

ways. We firstly assume that the readout function is the identity, as we are not dealing with partial

observability [1]. Secondly, we specify a concrete structure of the backwards update map f ∗ : X × I→
∆(X ×R), which allows us to rearrange the interface of this lens from policies to value functions. Doing

so opens up the possibility of composing these lenses sequentially, which is the heart of the dynamic

programming approach explored in this paper.

Bakirtzis et al. propose a category of MPDs as models of tasks [3]. This emphasis on models allow

them to compose different MPDs using fiber products and pushouts, and is agnostic to the control and

RL algorithms that operate on them, which they take as given. Since our work focuses on a particular

family of algorithms, we believe this approach is orthogonal to ours, and both could potentially be done

simultaneously.

Another approach is to model MDPs as coalgebras from states to rewards and potential transitions,

as done by Feys et al. [17]. They observe that the Bellman optimality condition for value iteration is a

certain coalgebra-to-algebra morphism. We similarly believe this is orthogonal to our work and could

potentially be unified.

A series of papers by Botta et al (for example [8]) formulates dynamic programming in dependent

type theory, accounting in a serious way for how different actions can be available in different states, a

complication that we ignore in this paper. It may be possible to unify these approaches using dependent

optics [9, 40].

1Source currently available at https://github.com/jules-hedges/open-games-hs/blob/og-v0.1/src/

OpenGames/Examples/EcologicalPublicGood/EcologicalPublicGood.hs

https://github.com/jules-hedges/open-games-hs/blob/og-v0.1/src/OpenGames/Examples/EcologicalPublicGood/EcologicalPublicGood.hs
https://github.com/jules-hedges/open-games-hs/blob/og-v0.1/src/OpenGames/Examples/EcologicalPublicGood/EcologicalPublicGood.hs
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Finally, [2] builds a category of signal flow diagrams, a widely used tool in control theory. Besides

the common application to control theory there is little connection to this paper. In particular, time is

implicit in their string diagrams, meaning their models have continuous time, whereas our approach is

inherently discrete time. Said another way, composition in their category is ‘space-like’ whereas ours is

‘time-like’ - their morphisms are (open) systems whereas ours are processes.

2 Dynamic programming

2.1 Markov Decision Processes

A Markov decision process (MDP) consists of a state space X , an action space A, a state transition

function f : X ×A→ X , and a utility or reward function U : X ×A→ R. The state transition function is

often taken to be stochastic, that is, to be given by probabilities f (x′ | x,a). In the stochastic case the utility

function can be taken without loss of generality to be an expected utility function. We imagine actions

to be chosen by an agent, who is trying to control the Markov chain with the objective of optimising the

long-run reward.

A policy for an MDP is a function π : X → A, which can also be taken to be either deterministic or

stochastic. The type of policies encodes the Markov property: the choice of action depends only on the

current state, and may not depend on any memory of past states.

Given an initial state x0 ∈ X , a policy π determines (possibly stochastically) a sequence of states

x0, x1 = f (x0,π(x0)), x2 = f (x1,π(x1)), . . .

The total payoff is given by an infinite geometric sum of individual payoffs for each transition:

Vπ(x0) =
∞

∑
k=0

β kU(xk,π(xk)) (1)

where 0 < β < 1 is a fixed discount factor which balances the relevance of present and future payoffs.

(There are other methods of obtaining a single objective from an infinite sequence of transitions, such as

averaging, but we focus on discounting in this paper.) A key idea behind dynamic programming is that

this geometric sum can be equivalently written as a telescoping sum:

Vπ(x0) =U(x0,π(x0))+β (U(x1,π(x1))+β (U(x2,π(x2)+ · · ·)))

The control problem is to choose a policy π in order to maximise (the expected value of) Vπ(x0). In

terms of decision theory, we assume that the agent choosing the policy operates under rational behaviour.

Continuous and independent preferences of outcome implies by the von Neumann-Morgenstern expected

utility theorem that the utility function has as codomain the reals.

2.2 Deterministic dynamic programming

In dynamic programming, the agent’s objective of maximizing the overall utility can be divided into two

orthogonal goals: to determine the value of a given policy π (which we call the value improvement step),

and to determine the optimal policy π∗ (the policy improvement step). Bellman’s equation is used as an

update rule for both:

Value improvement: V ′(x) =U(x,π(x))+βV ( f (x,π(x))) (2)

Policy improvement: π ′(x) = arg max
a∈A

U(x,a)+βV ( f (x,a)) (3)
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A Bellman optimality condition on the other hand determines the fixpoint of this update rule, and is met

when V ′ =V and π ′ = π respectively.

The update rule (2) is the discounted sum (1) where the stream of states is co-recursively fixed by the

policy π and transition function f . The co-recursive structure refers to the calculation of the utility of a

state x, where one needs the utility of the next state, while in a recursive structure, x needs the previous

state, starting from an initial state as a base case.

Two classical algorithms use these two steps differently: Policy iteration iterates value improvement

until the current policy value is optimal before performing a policy improvement step, and value iteration

interleaves both steps one after another.

In policy iteration, a initial value function is chosen (usually V (x) = 0), and a randomly chosen policy

π is evaluated by (2) repeatedly until the value reaches a fixpoint, which is assured by the contraction

mapping [15]. Once V reaches (or in practice gets close to) a fixpoint V ′ = V or another convergence

condition, the policy improvement step (3) chooses a greedy policy as an improvement to π .

A q-function or state-action value function qπ : X×A→R describes the value of being in state x and

then taking action a, assuming that subsequent actions are taken by the policy π

qπ(x,a) =U(x,a)+βV ( f (x,a)) (4)

The policy improvement theorem [5] states that if a pair of deterministic policies π,π ′ : X → A satisfies

for all x ∈ X

qπ(x,π
′(x))≥Vπ(x)

then Vπ ′(x)≥Vπ(x) for all x ∈ X .

The optimal policy π∗, if it exists, is the policy which if followed from any state, generates the

maximum value. This is a Bellman optimality condition which fuses the two steps (2), (3):

Vπ∗(x) = max
a∈A

U(x,a)+βVπ∗( f (x,a)) (5)

Value iteration is a special policy iteration algorithm insofar it stops the update rule for value im-

provement to one step, by truncating the sum (1) to the first summand. Moreover, it introduces the value

improvement step implicitly in the policy improvement, which assigns a value to states

V ′(x) = max
a∈A

U(x,a)+βV ( f (x,a))

while the policy in each iteration is still recoverable as

π ′(x) = argmax
a∈A

U(x,a)+βV ( f (x,a))

2.3 Stochastic dynamic programming

Stochasticity can be introduced in different places in a MDP:

1. in the policy π : X → ∆A, where the probability of the policy π taking action a in a state x is now

notated π(a | x).

2. in the transition function f : X ×A→ ∆X and potentially the reward function U : X ×A→ ∆R

independently.
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3. usually the reward is included inside the transition function f : X ×A→ ∆(X ×R), allowing cor-

related next states and rewards. This is relevant when the reward is morally from the next state,

rather than the current state and action. If the reward were truly from the current state and action,

the transition function can be decomposed into a function f : X×A→ ∆X×∆R.

In this section we assume for simplicity that ∆ is the finite support distribution monad, although the

equations in the following can be formulated for arbitrary distributions by replacing the sum with an

appropriate integral.

The policy value update rule (2) becomes stochastic, and adopts a slightly different form depending

on which part of the MDP is stochastic. For the cases 1. and 2.:

V ′(x) = ∑
a

π(a | x)(U(x,a)+βV ( f (x,a))) (6)

V ′(x) = ∑
r

U(r | x,a)r+∑
x′

f (x′ | x,a)βV (x′) (7)

In the most general case, that is 1. together with 3.:

V ′(x) = ∑
a∈A

π(a | x)∑
x′ ,r

f (x′,r | x,a)(r+βV (x′)) (8)

(Note that the sum over r is over the support of f (− | x,a), which we assume here to be finite, although

in general it can be replaced with an integral.)

The policy improvement theorem holds in the stochastic setting [38, Sec.4.2] by defining

qπ(s,π
′(s)) = ∑

a

π ′(a | s)qπ(s,a)

2.4 Gridworld example

A classic example in reinforcement learning is the Gridworld environment, where an agent moves in the

four cardinal directions in a rectangular grid. States of this finite MDP correspond to the positions that

the agent can be in.

Assume that all transitions and policies are deterministic, and that the transition function prevents

the agent from moving outside the boundary. Suppose that the environment rewards 0 value for all states

except the top left corner, where the reward is 1 (see figure 1).

Starting with a policy which moves upwards in all states and a value function which rewards 1

only in the top left corner, a policy iteration algorithm would improve the value of the current policy

until converging to the optimal values in the leftmost column, before updating the policy, while a value

iteration algorithm would update the value function and also update the policy.

Take the finite set of positions as the state space X , and A = {←,→,↑,↓} as the action space.

This example can be made stochastic if we add stochastic policies like ε-greedy, where the action that

the agent takes is the one with maximum value with probability 1− ε and a random one with probability

ε . Another way is for the transition function to be stochastic, for example with a wind current that shifts

the next state to the right with some probability ε .

2.5 Inverted pendulum example

A task that illustrates a continuous state space MDP is the control of a pendulum balanced over a cart,

which can be described in continuous-time exactly by two non-linear differential equations [18, Example
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Figure 1: Difference between policy iteration (above) and value iteration (below). The numbers in the

cells are state values and the red arrows are the directions dictated by the policy at each stage. The arrows

between grids indicate what kind of update the algorithm does, either value improvement (V ) or policy

improvement (π). Notice how policy iteration performs value improvement three times before updating

the policy, whereas value iteration improves the value and the policy at each stage.

2E]:

(M +m)ÿ+mLθ̈ cos θ −mLθ̇2 sinθ = a

mLÿcosθ +mL2θ̈ −mLgsinθ = 0

where M is the mass of the cart, m the mass of the pendulum, L the length of the pendulum, θ the

angle of the pendulum with respect to the upwards position, y the carts horizontal position, g the grav-

itational constant and a is our control function (usually denoted u). We rewrite the state variables as

x = [y, ẏ,θ , θ̇ ]⊤.

Sampling the trajectory of continuous-time dynamics d
dt

x(t) = f (x(t)) by xk = x(k∆t), one can define

the discrete-time propagator F∆t by

F∆t(x(t)) = x(t)+
∫ t+∆t

t
f (x(τ))dτ

which allows to model the system with xk+1 = F∆t(xk).
A more common approach is to observe that the system of equations ẋ = A(x)+B(x)a with A and B

being non-linear functions of the state space, can be linearized near a (not necessarily stable) equilibrium

state, like the pendulum being in the upwards position. There we can assume certain approximations like

cos θ ≈ 1 and sinθ ≈ θ , as well as small velocities leading to negligible quadratic terms θ̇2 ≈ 0 and

ẏ2 ≈ 0. This linearization around a fixpoint allows for the expression ẋ = Ax(t)+Ba(t), where the matrix

A and vector B are constants given by

A =









0 1 0 0

0 0 −mg
M

0

0 0 0 1

0 0
(M+m)g

ML
0









B =









0
1
M

0

− 1
ML









If we assume that the observation of the pendulum angle and cart position is discretized in time, an

a priori time-discretization of this model using Euler approximation follows xk+1 = xk +∆t(Axk +Bak),
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with the same constants, where k indexes time steps. Therefore we can say that the time-discretized,

linearized model of the inverted pendulum over a cart follows a deterministic MDP for which a controller

u can be learned. We take the state space as R4 and the action space of the force exerted to the cart as R.

The time-discretised formulation of this problem is more common in reinforcement learning settings

than in ‘classical’ control theory. In that case, a a common payoff function is to obtain one unit of reward

for each time step that the pendulum is maintained within a threshold of angles. The not linearized, not

time-discretized setting, which is more common in optimal control theory, allows the reward, which is

usually termed negatively as a cost function J, to have a much more flexible expression, in terms of time

spent towards the equilibrium, energy spent to control the device, etc.

J(x,a) =
∫ ∞

0
C(x(t),a(t))dt

2.6 Savings problem example

The savings problem is one of the most important models in economics, modelling the dilemma between

saving and consumption of resources [28, part IV] (see also [37]). It is also mathematically closely

related to the problem of charging a battery, for example choosing when to draw electricity from a power

grid to raise the water level in a reservoir [30].

At each discrete time step k, an agent receives an income ik. They also have a bank balance xk, which

accumulates interest over time (this could also be, for example, an investment portfolio yielding returns).

At each time step the agent makes a choice of consumption, which means converting their income into

utility (or, more literally, things from which they derive utility). If the consumption in some stage is less

than their income then the difference is added to the bank balance, and if it is more than the difference

is taken from the bank balance. The dilemma is that the agent receives utility only from consumption,

but saving gives the possibility of higher consumption later due to interest. The optimal balance between

consumption and saving depends on the discount factor, which models the agent’s preference between

consumption now and consumption in the future.

In the most basic version of the model, all values can be taken as deterministic, and the income ik can

also be taken as constant. This basic model can be expanded in many ways, for example with forecasts

and uncertainty about income and interest rates. A straightforward extension, which we will consider in

this paper, is that income is normally distributed i∼N (µ ,σ), independently in each time step.

We take the state space and action space both as X = A = [0,∞). Given the current bank balance

x and consumption decision a, the utility in the current stage is U(x,a) = min{a,x+ i}. (That is, the

agent’s consumption is capped by their current bank balance.) The state transition is given by f (x,a) =
max{(1+ γ)x−a+ i,0}, where γ is the interest rate.

3 Optics

In this section we recall material on categories of mixed optics, mostly taken from [13].

3.1 Categories of optics

Given a monoidal category M and a category C , an action of M on C is given by a functor • : M ×C →
C with coherence isomorphisms I •X ∼= X and (M⊗N)•X ∼= M • (N •X). C is called an M -actegory.
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Given a pair of M -actegories C ,D , we can form the category of optics OpticC ,D . Its objects are

pairs
(

X
X ′

)

where X is an object of C and X ′ is an object of D . Hom-sets are defined by the coend

OpticC ,D

((

X

X ′

)

,

(

Y

Y ′

))

=

∫ M:M

C (X ,M •Y )×D(M •Y ′,X ′)

in the category Set. Such a morphism is called an optic, and consists of an equivalence class of triples

(M, f , f ′) where M is an object of M , f : X → M •Y in C and g : M •Y ′ → X ′ in D . We call M

the residual, f the forwards pass and f ′ the backwards pass, so we think of the residual as mediating

communication from the forward pass to the backward pass. Composition of optics works by taking the

monoidal product in M of the residuals.

A common example is a monoidal category M = C = D acting on itself by the monoidal product,

so

OpticC

((

X

X ′

)

,

(

Y

Y

))

=

∫ M:C

C (X ,M⊗Y )×C (M⊗Y ′,X ′)

This is the original definition of optics from [33]. If C is additionally cartesian monoidal then we can

eliminate the coend to produce concrete lenses:

∫ M:C

C (X ,M×Y )×C (M×Y ′,X ′)∼=

∫ M:C

C (X ,M)×C (X ,Y )×C (M×Y ′,X ′)

∼= C (X ,Y )×C (X ×Y ′,X ′)

On the other hand, if C is monoidal closed then we can eliminate the coend in a different way to produce

linear lenses:

∫ M:C

C (X ,M⊗Y )×C (M⊗Y ′,X ′)∼=

∫ M:C

C (X ,M⊗Y )×C (M, [Y ′,X ′])

∼= C (X , [Y ′,X ′]⊗Y )

Both of these proofs use the ninja Yoneda lemma for coends [29].

Example 1. Let Set act on itself by cartesian product. Optics
(

X
X ′

)

→
(

Y
Y ′

)

in OpticSet can be written

equivalently as pairs of functions X →Y and X ×Y ′→ X ′, or as a single function X →Y × (Y ′→ X ′).

Example 2. Let Euc be the category of Euclidean spaces and smooth functions, which is cartesian but

not cartesian closed. Optics
(

X
X ′

)

→
(

Y
Y ′

)

in OpticEuc can be written as pairs of smooth functions X →Y

and X ×Y ′→ X ′.

Example 3. Let Mark be the category of sets and finite support Markov kernels, which is the kleisli

category of the finite support probability monad ∆ : Set→ Set. It is a prototypical example of a Markov

category [20], and it is neither cartesian monoidal nor monoidal closed. Optics
(

X
X ′

)

→
(

Y
Y ′

)

in OpticMark

can only be written as optics, it is not possible to eliminate the coend. This is the setting used for Bayesian

open games [7].

Example 4. Let Conv be the category of convex sets, which is the Eilenberg-Moore category of the

finite support probability monad [19]. A convex set can be thought of a set with an abstract expectation

operator E : ∆X→ X . Thus the functor ∆ : Mark→Conv given by X 7→ ∆(X) on objects is fully faithful.

Conv has finite products which are given by tupling in the usual way. Conv also has a closed structure:

the set of convex functions X →Y themselves form a convex set [X ,Y ] pointwise. However Conv is not

cartesian closed: instead there is a different monoidal product making it monoidal closed [36, section
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2.2] (see also [27]). This monoidal product “classifies biconvex maps” in the same sense that the tensor

product of vector spaces classifies bilinear maps. The embedding ∆ : Mark→ Conv is strong monoidal

for this monoidal product, not for the cartesian product of convex sets.

We can define an action of Mark on Conv, by M •X = ∆(M)⊗X [10, section 5.5]. Together with

the self-action of Mark, we get a category OpticMark,Conv given by

OpticMark,Conv

((

X

X ′

)

,

(

Y

Y ′

))

=

∫ M:Mark

Mark(X ,M⊗Y)×Conv(∆(M)⊗Y ′,X ′)

∼=

∫ M:Mark

Mark(X ,M⊗Y)×Conv(∆(M), [Y ′,X ′])

(This coend cannot be eliminated because the embedding ∆ : Mark→ Conv does not have a right ad-

joint.)

This category of optics will be very useful for Markov decision processes, where the forwards direc-

tion is a Markov kernel and the backwards direction is a function involving expectations.

3.2 Monoidal structure of optics

A category of optics OpticC ,D is itself (symmetric) monoidal, when C and D are (symmetric) monoidal

in a way that is compatible with the actions of M . The details of this have been recently worked out in

[10]. The monoidal product on objects of OpticC ,D is given by pairwise monoidal product. All of the

above examples are symmetric monoidal.

A monoidal category of optics comes equipped with a string diagram syntax [24]. This has directed

arrows representing the forwards and backwards passes, and right-to-left bending wires but not left-to-

right bending wires. The residual of the denoted optic can be read off from a diagram, as the monoidal

product of the wire labels of all right-to-left bending wires. For example, a typical optic (M, f , f ′) ∈

OpticC

(

(

X
X ′

)

,
(

Y
Y ′

)

)

is denoted by the diagram

f

f ′

X

X ′

Y

Y ′

M

These diagrams have only been properly formalised for a monoidal category acting on itself, so for

mixed optics we need to be very careful and are technically being informal.

Costates in monoidal categories of optics, that is optics
(

X
X ′

)

→ I (where I =
(

I
I

)

is the monoidal unit

of OpticC ,D ), are a central theme of this paper. When we have a monoidal category acting on itself,

costates in OpticC are given by

OpticC

((

X

X ′

)

, I

)

=

∫ M:C

C (X ,M⊗ I)×C (M⊗ I,X ′)∼= C (X ,X ′)

Thus costates in optics are functions. A different way of phrasing this is by defining a functor K :

Optic
op
C
→ Set given on objects by K

(

X
X ′

)

= C (X ,X ′), and then showing that K is representable [25].

We will generally treat this isomorphism as implicit, sometimes referring to costates as though they are

functions.
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In the case of a cartesian monoidal category C , given a concrete lens f : X → Y , f ′ : X ×Y ′→ X ′

and a function k : Y →Y ′, the action of K gives us the function X → X ′ given by x 7→ f ′(x,k( f (x))).
When we have M = C acting on both itself and on D (which includes all of the examples above)

then similarly

OpticC ,D

((

X

X ′

)

, I

)

=
∫ M:C

C (X ,M⊗ I)×D(M • I,X ′)∼= D(X • I,X ′)

4 Dynamic programming with optics

Given an MDP with state space X and action space A, we can convert it to an optic
(

X⊗A
R

)

→
(

X
R

)

. The

category of optics in which this lives can be ‘customised’ to some extent, and depends on the class of

MDPs that we are considering and how much typing information we choose to include. The definition

of this optic is given by the following string diagram:

U

+

×β

fX

A

R

X

R

To be clear, this diagram is not completely formal because we are making some assumptions about the

category of optics we work in. In general, we require the forwards category C to be a Markov category

(giving us copy morphisms ∆X and ∆A), and the backwards category D must have a suitable object R

together with morphisms ×β : R→ R and + : R⊗R→ R. Specific examples of interpretations of this

diagram will be explored below. When the forwards category acts on the backwards category, then the

forwards pass is a morphism g : X ⊗A→ X ⊗X⊗A in C where

g = ∆X⊗A # ( f ⊗ idX⊗A)

and the backwards pass is a morphism g′ : X • A •R → R in D encoding the function g′(x,a,r) =
EU(x,a)+β r. The resulting optic is given by λ = (X ⊗A,g,g′) :

(

X⊗A
R

)

→
(

X
R

)

in OpticC ,D .

Given a policy π : X → A, we lift it to an optic π :
(

X
R

)

→
(

X⊗A
R

)

, by

X

R R

π A

X

Here we are also assuming that the forwards category has a copy morphisms ∆X (for example, because it

is a Markov category), and the backwards category has a suitable object of real numbers. The interpreta-

tion of this diagram is the optic (I,∆X # (idX ⊗π), idR).
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4.1 Discrete-space deterministic decision processes

Consider a deterministic decision process with a discrete set of states X , discrete and finite set of actions

A, transition function f : X ×A→ X , payoff function U : X ×A→ R and discount factor β ∈ (0,1).
We convert this into an optic λ = (X × A,g,g′) :

(

X×A
R

)

→
(

X
R

)

in OpticSet, whose forwards pass is

g(x,a) = (x,a, f (x,a)) and whose backwards pass is g′(x,a,r) =U(x,a)+β r.

Consider a dynamical system with the state space AX ×OpticSet

(

(

X
R

)

, I
)

. Elements of this are pairs

(π,V ) of a policy π : X → A and a value function V : X → R. We can define two update steps:

Value improvement: (π,V ) 7→ (π,π #λ #V )

Policy improvement: (π,V ) 7→ (x 7→ argmax
a∈A

(λ #V )(x,a),V )

(We assume that arg max is canonically defined, for example because A is equipped with an enumeration

so that we can always choose the first maximiser.)

Unpacking and applying the isomorphism between costates in lenses and functions, a step of value

improvement replaces V with

V ′(x) =U(x,π(x))+βV ( f (x,π(x)))

and a step of policy improvement replaces π with

π ′(x) = argmax
a∈A

U(x,a)+βV ( f (x,a))

Iterating the value improvement step converges to a value function which is the optimal value function

for the current (not necessarily optimal) policy π . A fixpoint of alternating steps of value improvement

and policy improvement is a pair (π∗,V ∗) satisfying

V ∗(x) = max
a∈A

(λ #V ∗)(x,a) = max
a∈A

U(x,a)+βV ∗( f (x,a))

π∗(x) = arg max
a∈A

(λ #V ∗)(x,a) = argmax
a∈A

U(x,a)+βV ∗( f (x,a))

Example 5 (Gridworld example). A policy of an agent in our version of Gridworld (Figure 1) is a func-

tion from the 4×4 set of states X = {1,2,3,4}2 that we index by (i, j) to the four-element set of actions

A = {←,→,↑,↓}, i.e. an element of AX . Initializing the value function V with the environments imme-

diate reward whose only non-zero value is V (0,0) = 1 (top-left corner) and the policy with a upwards

facing constant action π(i, j) = ↑ for all (i, j) ∈ X , a value improvement step would leave the policy

unchanged while updating V to π #λ #V , which differs with V only at (0,1) 7→ β .

If we instead perform a policy improvement step, the value function remains unchanged while the

new policy differs with π at (1,0) 7→ arg maxa∈A(λ # v)(1,0,a) =←.

4.2 Continuous-space deterministic decision processes

Example 6 (Inverted pendulum). A state of our time-discretized inverted pendulum on a cart consists of

[y, ẏ,θ , θ̇ ]⊤ in the state space X =R
4. The linearized transition function that sends xk to xk+1 = Axk+Bak

is a smooth map X → Y . The discretized cost J(x,a) = ∑∞
k=0 β kC(x(k),a(k)) defines the backwards

smooth function X ×A×R→ R which adds the cost at the kth time step C(x(k),a(k)) to the discounted

sum:
(

x(k),a(k), ∑
j=k+1

β jC(x( j),a( j))

)

7→ ∑
j=k

β jC(x( j),a( j))
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These two maps form an optic λ :
(

X×A
R

)

→
(

X
R

)

in OpticEuc. Note that the cost function C is itself

typically not affine, but rather convex (intuitively, since the ‘good states’ that should minimise the cost

fall in the middle of the state space).

In conclusion, the two optics involved in this example are

λ =

(

f

J

)

:

(

X ×A

R

)

→

(

X

R

)

f : X ×A→ X

(x,a) 7→ Ax+Ba

J : X ×A×R→ R

(x,a,r) 7→C(x,a)+β r

π =

(

π

p2

)

:

(

X

R

)

→

(

X ×A

R

)

gr(π) : X → X ×A

x 7→ (x,π(x))

p2 : X ×R→ R

( ,r) 7→ r

This formalisation of the continuous state space misses however a practical problem. Let S be a con-

tinuous state space. In numerical implementations, policy improvement over S needs to map an action

to every point in the space. Two common approaches are to discretize the state space into a possibly

non-uniform grid, or to restrict the space of values to a family of parametrized functions [34, Sec.4.].

The discretization approach treats the continuous state space as a distribution over a simplicial com-

plex X obtained e.g. by triangulation, Euc(1,S) ≈Mark(I,X), where a continuous state gets mapped

to a distribution over the barycentric coordinates of the simplex. This effectively transforms the ini-

tial continuous-space deterministic decision process into a discrete-space MDP, modelling numerical

approximation errors as stochastic uncertainty.

4.3 Discrete-space Markov decision processes

Consider a Markov decision process with a discrete set of states X , discrete and finite set of actions A, a

transition Markov kernel f : X×A→ ∆(X), expected payoff function U : X×A→R and discount factor

β ∈ (0,1). We can write the transition function as conditional probabilities f (x′ | x,a).
We can convert this data into an optic λ :

(

X⊗A
R

)

→
(

X
R

)

in the category OpticMark,Conv given by

Mark acting on both itself and Conv. This optic is given concretely by (X ⊗A,g,g′) where g : X⊗A→
X ⊗A⊗X in Mark is given by ∆X⊗A # ( f ⊗ idX⊗A), and g′ : ∆(X ⊗A)→ [R,R] in Conv is defined by

g′(α)(r) = EU(α)+β r, where α ∈ ∆(X ×A) is a joint distribution on states and actions. Alternatively,

we can note that the domain of g′ is free on the set X ×A (although it cannot be considered free on an

object of Mark), and define it as the linear extension of g′(x,a)(r) =U(x,a)+β r.

With this setup, value improvement (π,V ) 7→ (π,π #λ #V ) yields the value function

V ′(x) = Ea∼π(x)[U(x,a)+βV ( f (x,a))]

Alternating steps of value and policy improvement converge to the optimal policy π∗ and value function

V ∗, which maximises the expected value of the policy:

V ∗π∗(x0) = E

∞

∑
k=0

β kU(xk,π
∗(xk))

Example 7 (Gridworld, continued). In a proper MDP, transition functions can be stochastic, and update

steps have to take expectations over values: value improvement maps (π,V ) 7→ (π,π #λ #V ) and policy

improvement maps (π,V ) 7→ (x 7→ argmaxa∈AE(λ #V )(x,a),V ). This model also accepts stochastic

policy improvement steps like ε-greedy, which is an ad hoc heuristic technique of balancing exploration

and exploitation in reinforcement learning [26, Sec.2], a problem which is known in control theory as

the identification-control conflict.
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4.4 Continuous-space Markov decision processes

For continuous-space MDPs we need a category of continuous Markov kernels. There are several possi-

bilities for this arising as the kleisli category of a monad, such as the Giry monad on measurable spaces

[23], the Radon monad on compact Hausdorff spaces [39] and the Kantorovich monad on complete met-

ric spaces [21]. However, control theorists typically work with more specific parametrised families of

distributions for computational reasons, the most common being normal distributions. We will work with

the category Gauss of Euclidean spaces and affine functions with Gaussian noise [20, section 6]. (This

is an example of a Markov category that does not arise as the kleisli category of a monad, because its

multiplication map would not be affine.) This works because the pushforward measure of a Gaussian

distribution along an affine function is still Gaussian, which fails for more general functions.

Example 8. We will formulate the savings problem with normally-distributed income. The inequality

constraints (namely that the balance cannot be negative and that the agent cannot consume more than their

current balance) introduce nonlinearities. We can deal with the latter by constraining the optimisation in

the policy improvement step, but the former threatens to take us outside the category Gauss and we must

allow the balance to possibly become negative for the purposes of this example.

Gauss is a Markov category that is not cartesian (the monoidal product is the cartesian product of

Euclidean spaces, which adds the dimensions), so it acts on itself by the monoidal product and we take

the category OpticGauss. We take the state and action spaces to be X = A = R. The transition function

f : R⊗R→ R is given by f (x,a) = (1+ γ)x−a+N (µ ,σ), and the payoff function U : R⊗R→ R is

given by U(x,a) = a.

We modify the policy improvement step to be

Policy improvement: (π,V ) 7→ (x 7→ arg max
a∈A(x)

(λ #V )(x,a),V )

where A(x) is the set A(x) = {a ∈ R | 0 ≤ a ≤ x+ i}. This enforces that the agent cannot consume

negative amounts or consume more than their current balance - since the optimisation is done externally

to the category Gauss we can avoid one source of nonlinearity this way.

5 Q-learning

Consider a deterministic decision process corresponding to the optic λ :
(

X×A
R

)

→
(

X
R

)

. The dynamical

system with state space AX ×OpticSet

(

(

X×A
R

)

, I
)

has elements (π,q) consisting of a state-action value

function q : X ×A→ R as in (4) rather than a state-value function V : X → R.

We can define similar update steps

Value improvement: (π,q) 7→ (π,λ #π #q)

Policy improvement: (π,q) 7→

(

x 7→ arg max
a∈A

q(x,a),q

)

These can also be fused into a single step:

State-action value iteration: (π,q) 7→

(

x 7→ argmax
a∈A

q(x,a),λ #π #q

)

Observe that composition of the λ optic with π is flipped compared to the case seen in Section 4.1, as

we want an element of OpticSet

(

(

X×A
R

)

,
(

X×A
R

)

)

to compose with q.
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The advantage of learning state-action value functions X ⊗A→ R rather than state-value functions

X → R is that is gives a way to approximate arg maxa∈A(λ # π # q)(x,a) without making any use of λ ,

namely by instead using argmaxa∈A q(x,a). This leads to an effective method known as Q-learning for

computing optimal control policies even when the MDP is unknown, with only a single state transition

and payoff being sampled at each time-step. This is the essential difference between classical control

theory and reinforcement learning. The above method, despite learning a q-function, is not Q-learning

because it makes use of λ during value improvement.

Q-learning [41] is a sampling algorithm that approximates the state-action value iteration, usually by

a lookup table Q referred as Q-matrix. It treats the optic as a black box, having therefore no access to

the transition or rewards functions used in (4), and instead updates q by interacting with the environment

dynamics:

q′(x′,a) = (1−α)q(x,a)+α(r+β max
a′

q(x′,a′))

where α ∈ (0,1) is a weighting parameter. Note that both the new state x′ and the reward r are obtained

by interacting with the system, rather than looked ahead by x′ = f (x,a) and r = U(x,a). It falls in the

family of temporal difference algorithms.

6 Further work

At the end of the previous section, it can be seen that Q-learning is no longer essentially using the

structure of the category of optics, instead treating the Q-function as a mere function. We believe this

can be overcome using the framework of categorical cybernetics [11], leading to a fully optic-based

approach to reinforcement learning. By combining with other instantiations of the same framework, it is

hoped to encompass the zoo of modern variants of reinforcement learning that have achieved spectacular

success in many applications in the last few years. For example, deep Q-learning represents the Q-

function not as a matrix but as a deep neural network, trained by gradient descent, allowing much higher

dimensionality to be handled in practice. Deep learning is currently one of the main applications of

categorical cybernetics [14].

The proof that dynamic programming algorithms converge to the optimal policy and value function

typically proceed by noting that the set of all value functions form a complete ordered metric space and

that value improvement is a monotone contraction mapping. The metric structure is used to prove that

iteration converges to a unique fixpoint by the contraction mapping theorem, and then the order structure

is used to prove that this fixpoint is indeed optimal. Since value improvement is optic composition, these

facts would be a special case of the category of optics being enriched in the category of ordered metric

spaces and monotone contraction mappings. We do not currently know whether such an enrichment

is possible. Unlike costates, general optics have nontrivial forwards passes, so there are two possible

approaches: either ignore the forwards passes and defining a metric only in terms of the backwards

passes, or defining a metric also using the forwards passes, for example using the Kantorovich metric

between distributions. This would also be a reasonable place to unify our approach with the coalgebraic

approach with metric coinduction [17].

Finally, continuous time MDPs pose a serious challenge to any approach for which categorical com-

position is sequencing in time, since composition of two morphisms in a category appears to be inherently

discrete-time. (Open games are similarly unable to handle dynamic games with continuous time, such

as pursuit games.) A plausible approach to this is to associate an endomorphism in a category to every

real interval, by treating that interval of time as a single discrete time-step, and then requiring that all
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morphisms compose together correctly, similar to a sheaf condition. It is hoped that the Bellman-Jacobi-

Hamilton equation, a PDE that is the continuous time analogue of the discrete-time Bellman equation,

will similarly arise as a fixpoint in this way. Exploring this systematically is important future work.
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